
Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release
9.3(x)
First Published: 2019-12-23

Last Modified: 2020-07-21

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS REFERENCED IN THIS DOCUMENTATION ARE SUBJECT TO CHANGE WITHOUT NOTICE.
EXCEPT AS MAY OTHERWISE BE AGREED BY CISCO IN WRITING, ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS DOCUMENTATION ARE
PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED.

The Cisco End User License Agreement and any supplemental license terms govern your use of any Cisco software, including this product documentation, and are located at:
http://www.cisco.com/go/softwareterms.Cisco product warranty information is available at http://www.cisco.com/go/warranty. US Federal Communications Commission Notices are found
here http://www.cisco.com/c/en/us/products/us-fcc-notice.html.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any products and features described herein as in development or available at a future date remain in varying stages of development and will be offered on a when-and if-available basis. Any
such product or feature roadmaps are subject to change at the sole discretion of Cisco and Cisco will have no liability for delay in the delivery or failure to deliver any products or feature
roadmap items that may be set forth in this document.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

The documentation set for this product strives to use bias-free language. For the purposes of this documentation set, bias-free is defined as language that does not imply discrimination based
on age, disability, gender, racial identity, ethnic identity, sexual orientation, socioeconomic status, and intersectionality. Exceptions may be present in the documentation due to language
that is hardcoded in the user interfaces of the product software, language used based on RFP documentation, or language that is used by a referenced third-party product.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com
go trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any
other company. (1721R)

© 2019–2020 Cisco Systems, Inc. All rights reserved.

http://www.cisco.com/go/softwareterms
http://www.cisco.com/go/warranty
http://www.cisco.com/c/en/us/products/us-fcc-notice.html
https://www.cisco.com/c/en/us/about/legal/trademarks.html
https://www.cisco.com/c/en/us/about/legal/trademarks.html

C O N T E N T S

Preface xiiiP R E F A C E

Audience xiii

Document Conventions xiii

Related Documentation for Cisco Nexus 3000 Series Switches xiv

Documentation Feedback xiv

Communications, Services, and Additional Information xiv

New and Changed Information 1C H A P T E R 1

New and Changed Information 1

Overview 3C H A P T E R 2

Programmability Overview 3

Standard Network Manageability Features 4

Advanced Automation Feature 4

Power on Auto Provisioning Support 4

Programmability Support 4

NX-API Support 4

Python Scripting 5

Tcl Scripting 5

Bash 5

Bash Shell Access and Linux Container Support 5

Guest Shell 5

Container Tracker Support 5

Perl Modules 6

Shells and Scripting 9P A R T I

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
iii

Bash 11C H A P T E R 3

About Bash 11

Guidelines and Limitations 11

Accessing Bash 12

Escalate Privileges to Root 13

Examples of Bash Commands 14

Displaying System Statistics 14

Running Bash from CLI 15

Managing Feature RPMs 16

RPM Installation Prerequisites 16

Installing Feature RPMs from Bash 16

Upgrading Feature RPMs 17

Downgrading a Feature RPM 18

Erasing a Feature RPM 18

Managing Patch RPMs 18

RPM Installation Prerequisites 18

Adding Patch RPMs from Bash 19

Activating a Patch RPM 21

Committing a Patch RPM 22

Deactivating a Patch RPM 23

Removing a Patch RPM 24

Persistently Daemonizing an SDK- or ISO-Built Third-Party Process 25

Persistently Starting Your Application from the Native Bash Shell 26

Synchronize Files from Active Bootflash to Standby Bootflash 27

An Example Application in the Native Bash Shell 28

Guest Shell 31C H A P T E R 4

About the Guest Shell 31

Guidelines and Limitations 32

Accessing the Guest Shell 36

Resources Used for the Guest Shell 36

Capabilities in the Guest Shell 37

NX-OS CLI in the Guest Shell 37

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
iv

Contents

Network Access in Guest Shell 38

Access to Bootflash in Guest Shell 40

Python in Guest Shell 40

Python 3 in Guest Shell versions up to 2.10 (CentOS 7) 41

Installing RPMs in the Guest Shell 44

Security Posture for Guest Shell 45

Kernel Vulnerability Patches 45

ASLR and X-Space Support 45

Namespace Isolation 45

Root-User Restrictions 46

Resource Management 47

Guest File System Access Restrictions 47

Managing the Guest Shell 48

Disabling the Guest Shell 51

Destroying the Guest Shell 51

Enabling the Guest Shell 52

Replicating the Guest Shell 53

Exporting Guest Shell rootfs 53

Importing Guest Shell rootfs 53

Importing YAML File 55

show guestshell Command 58

Verifying Virtual Service and Guest Shell Information 59

Persistently Starting Your Application from the Guest Shell 60

Procedure for Persistently Starting Your Application from the Guest Shell 61

An Example Application in the Guest Shell 61

Troubleshooting Guest Shell Issues 62

Innovium Shell 65C H A P T E R 5

About the Innovium Shell 65

Guidelines and Limitations 65

Accessing the Innovium Shell Through CLI API 66

Passing Commands to the Innovium Shell 68

Python API 69C H A P T E R 6

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
v

Contents

About the Python API 69

Using Python 69

Cisco Python Package 69

Using the CLI Command APIs 71

Invoking the Python Interpreter from the CLI 72

Display Formats 73

Non-Interactive Python 74

Running Scripts with Embedded Event Manager 75

Python Integration with Cisco NX-OS Network Interfaces 76

Cisco NX-OS Security with Python 76

Examples of Security and User Authority 77

Example of Running Script with Schedular 78

Scripting with TCL 79C H A P T E R 7

About Tcl 79

Guidelines and Limitations 79

Tclsh Command Help 79

Tclsh Command History 80

Tclsh Tab Completion 80

Tclsh CLI Command 80

Tclsh Command Separation 81

Tcl Variables 81

Tclquit 81

Tclsh Security 81

Running the Tclsh Command 82

Navigating Cisco NX-OS Modes from the Tclsh Command 82

Tcl References 83

Kernel Stack 85C H A P T E R 8

About Kernel Stack 85

Guidelines and Limitations 85

Changing the Port Range 86

Netdevice Property Changes 87

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
vi

Contents

Applications 89P A R T I I

Cisco Nexus Application Development - SDK 91C H A P T E R 9

About the Cisco SDK 91

Installing the SDK 91

Procedure for Installation and Environment Initialization 92

Using the SDK to Build Applications 93

Using RPM to Package an Application 94

Creating an RPM Build Environment 95

Using General RPM Build Procedure 95

Example to Build RPM for collectd with No Optional Plug-Ins 96

Example to Build RPM for collectd with Optional Curl Plug-In 97

NX-SDK 99C H A P T E R 1 0

About the NX-SDK 99

Install the NX-SDK 100

Building and Packaging C++ Applications 101

Installing and Running Custom Applications 103

NX-API 107P A R T I I I

NX-API CLI 109C H A P T E R 1 1

About NX-API CLI 109

Transport 109

Message Format 109

Security 110

Using NX-API CLI 110

Escalate Privileges to Root on NX-API 112

Sample NX-API Scripts 113

NX-API Management Commands 114

Working with Interactive Commands Using NX-API 115

NX-API Request Elements 116

NX-API Response Elements 119

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
vii

Contents

Restricting Access to NX-API 120

Updating an iptable 121

Making an Iptable Persistent Across Reloads 122

Table of NX-API Response Codes 123

JSON and XML Structured Output 124

About JSON (JavaScript Object Notation) 125

Examples of XML and JSON Output 125

NX-API REST 129C H A P T E R 1 2

About NX-API REST 129

NX-API Developer Sandbox 131C H A P T E R 1 3

About the NX-API Developer Sandbox 131

Guidelines and Limitations 132

Enabling and Accessing the Developer Sandbox 133

Configuring the Message Format and Input Type 133

Using the Developer Sandbox 135

Using the Developer Sandbox to Convert CLI Commands to Payloads 136

Using the Developer Sandbox to Convert from REST Payloads to CLI Commands 139

Using the Developer Sandbox to Convert from RESTCONF to json or XML 143

Model-Driven Programmability 147P A R T I V

Infrastructure Overview 149C H A P T E R 1 4

About Model-Driven Programmability 149

About the Programmable Interface Infrastructure 149

Managing Components 153C H A P T E R 1 5

About the Component RPM Packages 153

Preparing for Installation 155

Downloading Components from the Cisco Artifactory 156

Installing RPM Packages 156

Installing the Programmable Interface Base and Common Model Component RPM Packages 156

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
viii

Contents

OpenConfig YANG 159C H A P T E R 1 6

About OpenConfig YANG 159

Guidelines and Limitations for OpenConfig YANG 159

Understanding Deletion of BGP Routing Instance 164

NETCONF Agent 167C H A P T E R 1 7

About the NETCONF Agent 167

Guidelines and Limitations 169

Configuring the NETCONF Agent 169

Using the NETCONF Agent 170

Error Messages 173

Troubleshooting the NETCONF Agent 174

Converting CLI Commands to Network Configuration 175C H A P T E R 1 8

Information About XMLIN 175

Licensing Requirements for XMLIN 175

Installing and Using the XMLIN Tool 176

Converting Show Command Output to XML 176

Configuration Examples for XMLIN 177

RESTCONF Agent 181C H A P T E R 1 9

About the RESTConf Agent 181

Guidelines and Limitations 182

Configuring the RESTConf Agent 182

Using the RESTConf Agent 182

Troubleshooting the RESTConf Agent 183

gRPC Agent 185C H A P T E R 2 0

About the gRPC Agent 185

Guidelines and Limitations 186

Configuring the gRPC Agent 187

Using the gRPC Agent 188

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
ix

Contents

Troubleshooting the gRPC Agent 189

gRPC Protobuf File 189

gNMI - gRPC Network Management Interface 197C H A P T E R 2 1

About gNMI 197

gNMI RPC and SUBSCRIBE 198

Guidelines and Limitations for gNMI 199

Configuring gNMI 200

Configuring Server Certificate 201

Generating Key/Certificate Examples 202

Verifying gNMI 206

Clients 206

Sample DME Subscription - JSON Encoding 206

Sample DME Subscription - PROTO Encoding 207

Subscribe 209

Guidelines and Limitations for Subscribe 209

gNMI Payload 210

Capabilities 212

About Capabilities 212

Guidelines and Limitations for Capabilities 212

Example Client Output for Capabilities 213

Troubleshooting 216

Gathering TM-Trace Logs 216

Gathering MTX-Internal Logs 216

Innovium Path Telemetry 219

About Innovium Path Telemetry 219

Guidelines and Limitations for Innovium Path Telemetry 219

Configuring Flow of Interest ACL for IPT 220

Configuring the TCAM Region for Innovium Path Telemetry 221

Configuring the Source Node 221

Configuring the Transit Node 223

Configuring the Sink Node 224

Verifying Innovium Path Telemetry 226

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
x

Contents

Dynamic Logger 231C H A P T E R 2 2

Prerequisites 231

Reference 231

Model-Driven Telemetry 239C H A P T E R 2 3

About Telemetry 239

Telemetry Components and Process 239

High Availability of the Telemetry Process 241

Licensing Requirements for Telemetry 241

Installing and Upgrading Telemetry 241

Guidelines and Limitations 242

Configuring Telemetry Using the CLI 247

Configuring Telemetry Using the NX-OS CLI 247

Configuration Examples for Telemetry Using the CLI 252

Displaying Telemetry Configuration and Statistics 255

Displaying Telemetry Log and Trace Information 261

Configuring Telemetry Using the NX-API 262

Configuring Telemetry Using the NX-API 262

Configuration Example for Telemetry Using the NX-API 271

Telemetry Model in the DME 274

XML Mangement Interface 277P A R T V

XML Management Interface 279C H A P T E R 2 4

About the XML Management Interface 279

Information About the XML Management Interface 279

NETCONF Layers 279

SSH xmlagent 280

Licensing Requirements for the XML Management Interface 280

Prerequisites to Using the XML Management Interface 280

Using the XML Management Interface 281

Configuring the SSH and the XML Server Options Through the CLI 281

Starting an SSHv2 Session 282

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
xi

Contents

Sending a Hello Message 283

Obtaining XML Schema Definition (XSD) Files 283

Sending an XML Document to the XML Server 284

Creating NETCONF XML Instances 284

Information About Example XML Instances 294

Example XML Instances 294

NETCONF Close Session Instance 294

NETCONF Kill Session Instance 295

NETCONF Copy Config Instance 295

NETCONF Edit Config Instance 296

NETCONF Get Config Instance 297

NETCONF Lock Instance 298

NETCONF Unlock Instance 299

NETCONF Commit Instance: Candidate Configuration Capability 299

NETCONF Confirmed Commit Instance 299

NETCONF Rollback-On-Error Instance 300

NETCONF Validate Capability Instance 300

Additional References 301

Streaming Telemetry Sources 303A P P E N D I X A

About Streaming Telemetry 303

Guidelines and Limitations 303

Data Available for Telemetry 303

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
xii

Contents

Preface

This preface includes the following sections:

• Audience, on page xiii
• Document Conventions, on page xiii
• Related Documentation for Cisco Nexus 3000 Series Switches, on page xiv
• Documentation Feedback, on page xiv
• Communications, Services, and Additional Information, on page xiv

Audience
This publication is for network administrators who install, configure, and maintain Cisco Nexus switches.

Document Conventions
Command descriptions use the following conventions:

DescriptionConvention
Bold text indicates the commands and keywords that you enter literally
as shown.

bold

Italic text indicates arguments for which the user supplies the values.Italic

Square brackets enclose an optional element (keyword or argument).[x]

Square brackets enclosing keywords or arguments separated by a vertical
bar indicate an optional choice.

[x | y]

Braces enclosing keywords or arguments separated by a vertical bar
indicate a required choice.

{x | y}

Nested set of square brackets or braces indicate optional or required
choices within optional or required elements. Braces and a vertical bar
within square brackets indicate a required choice within an optional
element.

[x {y | z}]

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
xiii

DescriptionConvention

Indicates a variable for which you supply values, in context where italics
cannot be used.

variable

A nonquoted set of characters. Do not use quotation marks around the
string or the string will include the quotation marks.

string

Examples use the following conventions:

DescriptionConvention
Terminal sessions and information the switch displays are in screen font.screen font

Information you must enter is in boldface screen font.boldface screen font

Arguments for which you supply values are in italic screen font.italic screen font

Nonprinting characters, such as passwords, are in angle brackets.< >

Default responses to system prompts are in square brackets.[]

An exclamation point (!) or a pound sign (#) at the beginning of a line
of code indicates a comment line.

!, #

Related Documentation for Cisco Nexus 3000 Series Switches
The entire Cisco Nexus 3000 Series switch documentation set is available at the following URL:

https://www.cisco.com/c/en/us/support/switches/nexus-3000-series-switches/
tsd-products-support-series-home.html

Documentation Feedback
To provide technical feedback on this document, or to report an error or omission, please send your comments
to nexus3k-docfeedback@cisco.com. We appreciate your feedback.

Communications, Services, and Additional Information
• To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.

• To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.

• To submit a service request, visit Cisco Support.

• To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit
Cisco Marketplace.

• To obtain general networking, training, and certification titles, visit Cisco Press.

• To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
xiv

Preface
Related Documentation for Cisco Nexus 3000 Series Switches

https://www.cisco.com/c/en/us/support/switches/nexus-3000-series-switches/tsd-products-support-series-home.html
https://www.cisco.com/c/en/us/support/switches/nexus-3000-series-switches/tsd-products-support-series-home.html
https://www.cisco.com/offer/subscribe
https://www.cisco.com/go/services
https://www.cisco.com/c/en/us/support/index.html
https://www.cisco.com/go/marketplace/
https://www.cisco.com/go/marketplace/
http://www.ciscopress.com
http://www.cisco-warrantyfinder.com

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system
that maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. BST provides
you with detailed defect information about your products and software.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
xv

Preface
Preface

https://www.cisco.com/c/en/us/support/web/tools/bst/bsthelp/index.html

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
xvi

Preface
Preface

C H A P T E R 1
New and Changed Information

This chapter contains the following topics:

• New and Changed Information, on page 1

New and Changed Information
Table 1: New and Changed Features

Where DocumentedChanged
in
Release

DescriptionFeature

Python API, on page 699.3(5)Added support for Python 3.Python 3 for NX-OS

9.3(3)Initial releaseSupport for the Cisco Nexus
3400-S

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
1

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
2

New and Changed Information
New and Changed Information

C H A P T E R 2
Overview

This chapter contains the following topics:

• Programmability Overview, on page 3
• Standard Network Manageability Features, on page 4
• Advanced Automation Feature, on page 4
• Programmability Support, on page 4

Programmability Overview
The Cisco NX-OS software running on the Cisco Nexus 3400-S platform switches is as follows:

• Resilient

Provides critical business-class availability.

• Modular

Has extensions that accommodate business needs.

• Highly Programmatic

Allows for rapid automation and orchestration through Application Programming Interfaces (APIs).

• Secure

Protects and preserves data and operations.

• Flexible

Integrates and enables new technologies.

• Scalable

Accommodates and grows with the business and its requirements.

• Easy to use

Reduces the amount of learning required, simplifies deployment, and provides ease of manageability.

With the Cisco NX-OS operating system, the device functions in the unified fabric mode to provide network
connectivity with programmatic automation functions.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
3

Cisco NX-OS contains Open Source Software (OSS) and commercial technologies that provide automation,
orchestration, programmability, monitoring, and compliance support.

For more information on Open NX-OS, see https://developer.cisco.com/site/nx-os/.

Standard Network Manageability Features
• SNMP (V1, V2, V3)

• Syslog

• RMON

• NETCONF

• CLI and CLI scripting

Advanced Automation Feature
The enhanced Cisco NX-OS on the device supports automation. The platform includes support for Power On
Auto Provisioning (POAP).

The enhanced Cisco NX-OS on the device supports automation. The platform includes the following feature
that supports automation:

• Power On Auto Provisioning (POAP) support

Power on Auto Provisioning Support
Power On Auto Provisioning (POAP) automates the process of installing and upgrading software images and
installing configuration files on switches that are being deployed in the network for the first time. It reduces
the manual tasks that are required to scale the network capacity.

When a switch with the POAP feature boots and does not find the startup configuration, the device enters
POAP mode. It locates a DHCP server and bootstraps itself with its interface IP address, gateway, and DNS
server IP addresses. The device obtains the IP address of a TFTP server or the URL of an HTTP server and
downloads a configuration script that enables the device to download and install the appropriate software
image and configuration file.

Programmability Support
Cisco NX-OS software on Cisco Nexus 3400-S platform switches support several capabilities to aid
programmability.

NX-API Support
Cisco NX-API allows for HTTP-based programmatic access to the switch. This support is delivered by
NX-API, an open source webserver. NX-API provides the configuration and management capabilities of the

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
4

Overview
Standard Network Manageability Features

https://developer.cisco.com/site/nx-os/

Cisco NX-OS CLI with web-based APIs. The switch can be set to publish the output of the API calls in XML
or JSON format. This API enables rapid development on the switch.

Python Scripting
Cisco Nexus 3400-S platform switches support Python v2.7.5 and later in both interactive and noninteractive
(script) modes.

Beginning in Cisco NX-OS Release 9.3(5), support for Python 3 was added.

The Python scripting capability on the devices provides programmatic access to the switch CLI to perform
various tasks, and to Power-On Auto Provisioning (POAP) and Embedded Event Manager (EEM) actions.
Responses to Python calls that invoke the Cisco NX-OS CLI return text or JSON output.

The Python interpreter is included in the Cisco NX-OS software.

Tcl Scripting
Cisco Nexus 3400-S platform switches support Tcl (Tool Command Language). Tcl is a scripting language
that enables greater flexibility with CLI commands on the switch. You can use Tcl to extract certain values
in the output of a show command, perform switch configurations, run Cisco NX-OS commands in a loop, or
define EEM policies in a script.

Bash
Cisco Nexus 3400-S platform switches support direct Bourne-Again Shell (Bash) access. With Bash, you can
access the underlying Linux system on the device and manage the system.

Bash Shell Access and Linux Container Support
The Cisco Nexus 3400-S platform switches support direct Linux shell access and Linux containers. With
Linux shell access, you can access the underlying Linux system on the switch and manage the underlying
system. You can also use Linux containers to securely install your own software and to enhance the capabilities
of the switch. For example, you can install bare-metal provisioning tools like Cobbler on a switch to enable
automatic provisioning of bare-metal servers from the top-of-rack switch.

Guest Shell
The Cisco Nexus 3400-S platform switches support a guest shell that provides Bash access into a Linux
execution space on the host system that is decoupled from the host Cisco NX-OS software. With the guest
shell, you can add software packages and update libraries as neededwithout impacting the host system software.

Container Tracker Support
Cisco NX-OS can communicate with the Kubernetes API Server to understand the capabilities of the containers
behind a given switch port.

The following commands communicate with the Kubernetes API Server:

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
5

Overview
Python Scripting

• The show containers kubernetes command obtains data from kube-apiserver using API calls over
HTTP.

• The kubernetes watch resource command uses a daemon to subscribe to requested resources and process
streaming data from kube-apiserver.

• The action assigned in the watch command is performed on pre-defined triggers. (For example, Add or
Delete of a Pod.)

Perl Modules
The Cisco Nexus 3400-S platform switches support the following selected PERL modules.:

• bytes.pm

• feature.pm

• hostname.pl

• lib.pm

• overload.pm

• Carp.pm

• Class/Struct.pm

• Data/Dumper.pm

• DynaLoader.pm

• Exporter/Heavy.pm

• FileHandle.pm

• File/Basename.pm

• File/Glob.pm

• File/Spec.pm

• File/Spec/Unix.pm

• File/stat.pm

• Getopt/Std.pm

• IO.pm

• IO/File.pm

• IO/Handle.pm

• IO/Seekable.pm

• IO/Select.pm

• List/Util.pm

• MIME/Base64.pm

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
6

Overview
Perl Modules

• SelectSaver.pm

• Socket.pm

• Symbol.pm

• Sys/Hostname.pm

• Time/HiRes.pm

• auto/Data/Dumper/Dumper.so

• auto/File/Glob/Glob.so

• auto/IO/IO.so

• auto/List/Util/Util.so

• auto/MIME/Base64/Base64.so

• auto/Socket/Socket.so

• auto/Sys/Hostname/Hostname.so

• auto/Time/HiRes/HiRes.so

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
7

Overview
Perl Modules

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
8

Overview
Perl Modules

P A R T I
Shells and Scripting

• Bash, on page 11
• Guest Shell, on page 31
• Innovium Shell, on page 65
• Python API, on page 69
• Scripting with TCL, on page 79
• Kernel Stack, on page 85

C H A P T E R 3
Bash

This chapter contains the following topics:

• About Bash, on page 11
• Guidelines and Limitations, on page 11
• Accessing Bash, on page 12
• Escalate Privileges to Root, on page 13
• Examples of Bash Commands, on page 14
• Managing Feature RPMs, on page 16
• Managing Patch RPMs, on page 18
• Persistently Daemonizing an SDK- or ISO-Built Third-Party Process, on page 25
• Persistently Starting Your Application from the Native Bash Shell, on page 26
• Synchronize Files from Active Bootflash to Standby Bootflash, on page 27
• An Example Application in the Native Bash Shell, on page 28

About Bash
In addition to the NX-OS CLI, Cisco Nexus 3400-S platform switches support access to the Bourne-Again
Shell (Bash). Bash interprets commands that you enter or commands that are read from a shell script. Using
Bash enables access to the underlying Linux system on the device and to manage the system.

Guidelines and Limitations
The Bash shell has the following guidelines and limitations:

• The binaries that are located in the /isan folder are meant to be run in an environment which is set up
differently from the environment of the shell that is entered from the run bash command. It is advisable
not to use these binaries from the Bash shell as the behavior within this environment is not predictable.

• When importing Cisco Python modules, do not use Python from the Bash shell. Instead use the more
recent Python in NX-OS VSH.

• Some processes and show commands can cause a large amount of output. If you are running scripts, and
need to terminate long-running output, use Ctrl+C (not Ctrl+Z) to terminate the command output. If you
use Ctrl+Z, a SIGCONT (signal continuation) message can be generated, which can cause the script to
halt. Scripts that are halted through SIGCONT messages require user intervention to resume operation.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
11

Accessing Bash
In Cisco NX-OS, Bash is accessible from user accounts that are associated with the Cisco NX-OS dev-ops
role or the Cisco NX-OS network-admin role.

The following example shows the authority of the dev-ops role and the network-admin role:
switch# show role name dev-ops

Role: dev-ops
Description: Predefined system role for devops access. This role
cannot be modified.
Vlan policy: permit (default)
Interface policy: permit (default)
Vrf policy: permit (default)

Rule Perm Type Scope Entity

4 permit command conf t ; username *
3 permit command bcm module *
2 permit command run bash *
1 permit command python *

switch# show role name network-admin

Role: network-admin
Description: Predefined network admin role has access to all commands
on the switch

Rule Perm Type Scope Entity

1 permit read-write

switch#

Bash is enabled by running the feature bash-shell command.

The run bash command loads Bash and begins at the home directory for the user.

The following examples show how to enable the Bash shell feature and how to run Bash.
switch# configure terminal
switch(config)# feature bash-shell

switch# run?
run Execute/run program
run-script Run shell scripts

switch# run bash?
bash Linux-bash

switch# run bash
bash-4.2$ whoami
admin
bash-4.2$ pwd
/bootflash/home/admin
bash-4.2$

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
12

Shells and Scripting
Accessing Bash

You can also execute Bash commands with run bash command.

For instance, you can run whoami using run bash command:
run bash whoami

You can also run Bash by configuring the user shelltype:
username foo shelltype bash

This command puts you directly into the Bash shell upon login. This does not require feature bash-shell to
be enabled.

Note

Escalate Privileges to Root
The privileges of an Admin user can escalate their privileges for root access.

The following are guidelines for escalating privileges:

• Only an Admin user can escalate privileges to root.

• Bash must be enabled before escalating privileges.

• Escalation to root is password protected.

• SSH to the switch using root username through a non-management interface will default to Linux Bash
shell-type access for the root user. Type vsh to return to NX-OS shell access.

NX-OS network administrator users must escalate to root to pass configuration commands to the NX-OS
VSH if:

• The NX-OS user has a shell-type Bash and logs into the switch with a shell-type Bash.

• The NX-OS user that logged into the switch in Bash continues to use Bash on the switch.

Run sudo su 'vsh -c "<configuration commands>"' or sudo bash -c 'vsh -c "<configuration commands>"'.

The following example demonstrates the network-administrator user MyUser with a default shell type Bash
using sudo to pass configuration commands to the NX-OS.
ssh -l MyUser 1.2.3.4
-bash-4.2$ sudo vsh -c "configure terminal ; interface eth1/2 ; shutdown ; sleep 2 ; show
interface eth1/2 brief"

--
Ethernet VLAN Type Mode Status Reason Speed Port
Interface Ch #
--
Eth1/2 -- eth routed down Administratively down auto(D) --

The following example demonstrates the network-administrator user MyUser with default shell type Bash
entering the NX-OS and then running Bash on the NX-OS.
ssh -l MyUser 1.2.3.4
-bash-4.2$ vsh -h
Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
13

Shells and Scripting
Escalate Privileges to Root

Copyright (C) 2002-2019, Cisco and/or its affiliates.
All rights reserved.
The copyrights to certain works contained in this software are
owned by other third parties and used and distributed under their own
licenses, such as open source. This software is provided "as is," and unless
otherwise stated, there is no warranty, express or implied, including but not
limited to warranties of merchantability and fitness for a particular purpose.
Certain components of this software are licensed under
the GNU General Public License (GPL) version 2.0 or
GNU General Public License (GPL) version 3.0 or the GNU
Lesser General Public License (LGPL) Version 2.1 or
Lesser General Public License (LGPL) Version 2.0.
A copy of each such license is available at
http://www.opensource.org/licenses/gpl-2.0.php and
http://opensource.org/licenses/gpl-3.0.html and
http://www.opensource.org/licenses/lgpl-2.1.php and
http://www.gnu.org/licenses/old-licenses/library.txt.

switch# run bash
bash-4.2$ vsh -c "configure terminal ; interface eth1/2 ; shutdown ; sleep 2 ; show interface
eth1/2 brief"

--
Ethernet VLAN Type Mode Status Reason Speed Port
Interface Ch #
--
Eth1/2 -- eth routed down Administratively down auto(D) --

Do not use sudo su - or the system hangs.Note

The following example shows how to escalate privileges to root and how to verify the escalation:
switch# run bash
bash-4.2$ sudo su root
bash-4.2# whoami
root
bash-4.2# exit
exit

Examples of Bash Commands
This section contains examples of Bash commands and output.

Displaying System Statistics
The following example displays system statistics:
switch# run bash
bash-4.2$ cat /proc/meminfo
MemTotal: 32827712 kB
MemFree: 27429772 kB
MemAvailable: 28004236 kB
Buffers: 54296 kB
Cached: 2863648 kB
SwapCached: 0 kB

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
14

Shells and Scripting
Examples of Bash Commands

Active: 1993452 kB
Inactive: 2616472 kB
Active(anon): 1812124 kB
Inactive(anon): 2192904 kB
Active(file): 181328 kB
Inactive(file): 423568 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 24 kB
Writeback: 0 kB
AnonPages: 1691732 kB
Mapped: 578756 kB
Shmem: 2313336 kB
Slab: 248788 kB
SReclaimable: 53660 kB
SUnreclaim: 195128 kB
KernelStack: 11520 kB
PageTables: 58812 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 16413856 kB
Committed_AS: 23471740 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 579308 kB
VmallocChunk: 34358945788 kB
HardwareCorrupted: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
DirectMap4k: 26588 kB
DirectMap2M: 1998848 kB
DirectMap1G: 33554432 kB
bash-4.3#

Running Bash from CLI
The following example runs ps from Bash using run bash command:
switch# run bash ps -el
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
4 S 0 1 0 0 80 0 - 528 poll_s ? 00:00:03 init
1 S 0 2 0 0 80 0 - 0 kthrea ? 00:00:00 kthreadd
1 S 0 3 2 0 80 0 - 0 run_ks ? 00:00:56 ksoftirqd/0
1 S 0 6 2 0 -40 - - 0 cpu_st ? 00:00:00 migration/0
1 S 0 7 2 0 -40 - - 0 watchd ? 00:00:00 watchdog/0
1 S 0 8 2 0 -40 - - 0 cpu_st ? 00:00:00 migration/1
1 S 0 9 2 0 80 0 - 0 worker ? 00:00:00 kworker/1:0
1 S 0 10 2 0 80 0 - 0 run_ks ? 00:00:00 ksoftirqd/1

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
15

Shells and Scripting
Running Bash from CLI

Managing Feature RPMs

RPM Installation Prerequisites
Use these procedures to verify that the system is ready before installing or adding an RPM.

Procedure

PurposeCommand or Action

Before running Bash, this step verifies that the
system is ready before installing or adding an
RPM.

switch# show logging logfile | grep -i "System
ready"

Step 1

Proceed if you see output similar to the
following:

2019 Apr 18 17:24:22 switch
%ASCII-CFG-2-CONF_CONTROL:System
ready

Loads Bash.switch# run bash sudo su

Example:

Step 2

switch# run bash sudo su

bash-4.2#

Installing Feature RPMs from Bash

Procedure

PurposeCommand or Action

Displays a list of the NX-OS feature RPMs
installed on the switch.

sudo yum installed | grep platformStep 1

Displays a list of the available RPMs.yum list availableStep 2

Installs an available RPM.sudo yum -y install rpmStep 3

Example

The following is an example of installing the bfd RPM:
bash-4.2$ yum list installed | grep n9000
base-files.n9000 3.0.14-r74.2 installed
bfd.lib32_n9000 1.0.0-r0 installed
core.lib32_n9000 1.0.0-r0 installed
eigrp.lib32_n9000 1.0.0-r0 installed
eth.lib32_n9000 1.0.0-r0 installed

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
16

Shells and Scripting
Managing Feature RPMs

isis.lib32_n9000 1.0.0-r0 installed
lacp.lib32_n9000 1.0.0-r0 installed
linecard.lib32_n9000 1.0.0-r0 installed
lldp.lib32_n9000 1.0.0-r0 installed
ntp.lib32_n9000 1.0.0-r0 installed
nxos-ssh.lib32_n9000 1.0.0-r0 installed
ospf.lib32_n9000 1.0.0-r0 installed
perf-cisco.n9000_gdb 3.12-r0 installed
platform.lib32_n9000 1.0.0-r0 installed
shadow-securetty.n9000_gdb 4.1.4.3-r1 installed
snmp.lib32_n9000 1.0.0-r0 installed
svi.lib32_n9000 1.0.0-r0 installed
sysvinit-inittab.n9000_gdb 2.88dsf-r14 installed
tacacs.lib32_n9000 1.0.0-r0 installed
task-nxos-base.n9000_gdb 1.0-r0 installed
tor.lib32_n9000 1.0.0-r0 installed
vtp.lib32_n9000 1.0.0-r0 installed
bash-4.2$ yum list available
bgp.lib32_n9000 1.0.0-r0
bash-4.2$ sudo yum -y install bfd

Upon switch reload during boot up, use the rpm command instead of yum for persistent RPMs.
Otherwise, RPMs initially installed using yum bash or install cli shows reponame or filename
instead of installed.

Note

Upgrading Feature RPMs

Before you begin

There must be a higher version of the RPM in the Yum repository.

Procedure

PurposeCommand or Action

Upgrades an installed RPM.sudo yum -y upgrade rpmStep 1

Example

The following is an example of upgrading the bfd RPM:
bash-4.2$ sudo yum -y upgrade bfd

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
17

Shells and Scripting
Upgrading Feature RPMs

Downgrading a Feature RPM

Procedure

PurposeCommand or Action

Downgrades the RPM if any of the Yum
repositories has a lower version of the RPM.

sudo yum -y downgrade rpmStep 1

Example

The following example shows how to downgrade the bfd RPM:
bash-4.2$ sudo yum -y downgrade bfd

Erasing a Feature RPM

The SNMP RPM and the NTP RPM are protected and cannot be erased.

You can upgrade or downgrade these RPMs. It requires a system reload for the upgrade or downgrade to take
effect.

For the list of protected RPMs, see /etc/yum/protected.d/protected_pkgs.conf.

Note

Procedure

PurposeCommand or Action

Erases the RPM.sudo yum -y erase rpmStep 1

Example

The following example shows how to erase the bfd RPM:
bash-4.2$ sudo yum -y erase bfd

Managing Patch RPMs

RPM Installation Prerequisites
Use these procedures to verify that the system is ready before installing or adding an RPM.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
18

Shells and Scripting
Downgrading a Feature RPM

Procedure

PurposeCommand or Action

Before running Bash, this step verifies that the
system is ready before installing or adding an
RPM.

switch# show logging logfile | grep -i "System
ready"

Step 1

Proceed if you see output similar to the
following:

2019 Apr 18 17:24:22 switch
%ASCII-CFG-2-CONF_CONTROL:System
ready

Loads Bash.switch# run bash sudo su

Example:

Step 2

switch# run bash sudo su

bash-4.2#

Adding Patch RPMs from Bash

Procedure

PurposeCommand or Action

Displays a list of the patch RPMs present on
the switch.

yum list --patch-onlyStep 1

Adds the patch to the repository, where
URL_of_patch is a well-defined format, such

sudo yum install --add URL_of_patchStep 2

as bootflash:/patch, not in standard
Linux format, such as /bootflash/patch.

Displays a list of the patches that are added to
the repository but are in an inactive state.

yum list --patch-only availableStep 3

Example

The following is an example of installing the nxos.CSCab00001-n9k_ALL-1.0.0.lib32_n9000
RPM:
bash-4.2# yum list --patch-only
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
bash-4.2#
bash-4.2# sudo yum install --add bootflash:/nxos.CSCab00001-n9k_ALL-1.0.0.lib32_n9000.rpm
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
19

Shells and Scripting
Adding Patch RPMs from Bash

groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
[##############] 70%Install operation 135 completed successfully at Tue Mar 26 17:45:34
2019.

[####################] 100%
bash-4.2#

Once the patch RPM is installed, verify that it was installed properly. The following command lists
the patches that are added to the repository and are in the inactive state:
bash-4.2# yum list --patch-only available
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
nxos.CSCab00001-n9k_ALL.lib32_n9000 1.0.0 patching
bash-4.2#

You can also add patches to a repository from a tar file, where the RPMs are bundled in the tar file.
The following example shows how to add two RPMs that are part of the
nxos.CSCab00002_CSCab00003-n9k_ALL-1.0.0.lib32_n9000 tar file to the patch repository:
bash-4.2# sudo yum install --add
bootflash:/nxos.CSCab00002_CSCab00003-n9k_ALL-1.0.0.lib32_n9000.tar
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
[##############] 70%Install operation 146 completed successfully at Tue Mar 26 21:17:39
2019.

[####################] 100%
bash-4.2#
bash-4.2# yum list --patch-only
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
patching/primary | 942 B 00:00 ...
patching 2/2
thirdparty | 951 B 00:00 ...
nxos.CSCab00003-n9k_ALL.lib32_n9000 1.0.0 patching
nxos.CSCab00002-n9k_ALL.lib32_n9000 1.0.0 patching
bash-4.2#

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
20

Shells and Scripting
Adding Patch RPMs from Bash

Activating a Patch RPM

Before you begin

Verify that you have added the necessary patch RPM to the repository using the instructions in Adding Patch
RPMs from Bash, on page 19.

Procedure

PurposeCommand or Action

Activates the patch RPM, where patch_RPM is
a patch that is located in the repository. Do not
provide a location for the patch in this step.

sudo yum install patch_RPM --nocommitStep 1

Adding the --nocommit flag to the
commandmeans that the patch RPM
is activated in this step, but not
committed. See Committing a Patch
RPM, on page 22 for instructions
on committing the patch RPM after
you have activated it.

Note

Example

The following example shows how to activate the nxos.CSCab00001-n9k_ALL-1.0.0.lib32_n9000
patch RPM:
bash-4.2# sudo yum install nxos.CSCab00001-n9k_ALL-1.0.0.lib32_n9000 --nocommit
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package nxos.CSCab00001-n9k_ALL.lib32_n9000 0:1.0.0 will be installed
--> Finished Dependency Resolution

Dependencies Resolved

===
Package Arch Version Repository Size
===
Installing:
nxos.CSCab00001-n9k_ALL lib32_n9000 1.0.0 patching 28 k

Transaction Summary
===
Install 1 Package

Total download size: 28 k
Installed size: 82 k
Is this ok [y/N]: y

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
21

Shells and Scripting
Activating a Patch RPM

Downloading Packages:
Running Transaction Check
Running Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : nxos.CSCab00001-n9k_ALL-1.0.0.lib32_n9000 1/1

[##################] 90%error: reading
/var/sysmgr/tmp/patches/CSCab00001-n9k_ALL/isan/bin/sysinfo manifest, non-printable characters
found

Installed:
nxos.CSCab00001-n9k_ALL.lib32_n9000 0:1.0.0

Complete!
Install operation 140 completed successfully at Tue Mar 27 18:07:40 2018.

[####################] 100%
bash-4.2#

Enter the following command to verify that the patch RPM was activated successfully:
bash-4.2# yum list --patch-only
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
nxos.CSCab00001-n9k_ALL.lib32_n9000 1.0.0 installed
bash-4.2#

Committing a Patch RPM

Procedure

PurposeCommand or Action

Commits the patch RPM. The patch RPMmust
be committed to keep it active after reloads.

sudo yum install patch_RPM --commitStep 1

Example

The following example shows how to commit the nxos.CSCab00001-n9k_ALL-1.0.0.lib32_n9000
patch RPM:
bash-4.2# sudo yum install nxos.CSCab00001-n9k_ALL-1.0.0.lib32_n9000 --commit
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
Install operation 142 completed successfully at Tue Mar 27 18:13:16 2018.

[####################] 100%
bash-4.2#

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
22

Shells and Scripting
Committing a Patch RPM

Enter the following command to verify that the patch RPM was committed successfully:
bash-4.2# yum list --patch-only committed
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
nxos.CSCab00001-n9k_ALL.lib32_n9000 1.0.0 installed
bash-4.2#

Deactivating a Patch RPM

Procedure

PurposeCommand or Action

Deactivates the patch RPM.sudo yum erase patch_RPM --nocommitStep 1

Adding the --nocommit flag to the
commandmeans that the patch RPM
is only deactivated in this step.

Note

Commits the patch RPM. You will get an error
message if you try to remove the patch RPM
without first committing it.

sudo yum install patch_RPM --commitStep 2

Example

The following example shows how to deactivate the nxos.CSCab00001-n9k_ALL-1.0.0.lib32_n9000
patch RPM:
bash-4.2# sudo yum erase nxos.CSCab00001-n9k_ALL-1.0.0.lib32_n9000 --nocommit
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
Setting up Remove Process
Resolving Dependencies
--> Running transaction check
---> Package nxos.CSCab00001-n9k_ALL.lib32_n9000 0:1.0.0 will be erased
--> Finished Dependency Resolution

Dependencies Resolved

===
Package Arch Version Repository Size
===
Removing:
nxos.CSCab00001-n9k_ALL lib32_n9000 1.0.0 @patching 82 k

Transaction Summary
===
Remove 1 Package

Installed size: 82 k
Is this ok [y/N]: y
Downloading Packages:

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
23

Shells and Scripting
Deactivating a Patch RPM

Running Transaction Check
Running Transaction Test
Transaction Test Succeeded
Running Transaction
[######] 30%error: reading
/var/sysmgr/tmp/patches/CSCab00001-n9k_ALL/isan/bin/sysinfo manifest, non-printable characters
found
Erasing : nxos.CSCab00001-n9k_ALL-1.0.0.lib32_n9000 1/1

[##################] 90%
Removed:
nxos.CSCab00001-n9k_ALL.lib32_n9000 0:1.0.0

Complete!
Install operation 143 completed successfully at Tue Mar 27 21:03:47 2018.

[####################] 100%
bash-4.2#

You must commit the patch RPM after deactivating it. If you do not commit the patch RPM after
deactivating it, you will get an error message if you try to remove the patch RPM using the instructions
in Removing a Patch RPM, on page 24.
bash-4.2# sudo yum install nxos.CSCab00001-n9k_ALL-1.0.0.lib32_n9000 --commit
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
Install operation 144 completed successfully at Tue Mar 27 21:09:28 2018.

[####################] 100%
bash-4.2#

Enter the following command to verify that the patch RPM has been committed successfully:
bash-4.2# yum list --patch-only
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
nxos.CSCab00001-n9k_ALL.lib32_n9000 1.0.0 patching
bash-4.2#

Removing a Patch RPM

Procedure

PurposeCommand or Action

Removes an inactive patch RPM.sudo yum install --remove patch_RPMStep 1

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
24

Shells and Scripting
Removing a Patch RPM

Example

The following example shows how to remove the nxos.CSCab00001-n9k_ALL-1.0.0.lib32_n9000
patch RPM:
bash-4.2# sudo yum install --remove nxos.CSCab00001-n9k_ALL-1.0.0.lib32_n9000
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
[##########] 50%Install operation 145 completed successfully at Tue Mar 27 21:11:05
2018.

[####################] 100%
bash-4.2#

If you see the following error message after attempting to remove the patch RPM:

Install operation 11 "failed because patch was not committed". at Wed Mar 28 22:14:05 2018

Then you did not commit the patch RPM before attempting to remove it. See Deactivating a Patch
RPM, on page 23 for instructions on committing the patch RPM before attempting to remove it.

Note

Enter the following command to verify that the inactive patch RPM was removed successfully:
bash-4.2# yum list --patch-only
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
patching/primary | 197 B 00:00 ...
thirdparty | 951 B 00:00 ...
bash-4.2#

Persistently Daemonizing an SDK- or ISO-Built Third-Party
Process

Your application should have a startup Bash script that gets installed in /etc/init.d/application_name.
This startup Bash script should have the following general format. For more information about this format,
see http://linux.die.net/man/8/chkconfig.
#!/bin/bash
#
<application_name> Short description of your application
#
chkconfig: 2345 15 85
description: Short description of your application
#
BEGIN INIT INFO
Provides: <application_name>

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
25

Shells and Scripting
Persistently Daemonizing an SDK- or ISO-Built Third-Party Process

http://linux.die.net/man/8/chkconfig

Required-Start: $local_fs $remote_fs $network $named
Required-Stop: $local_fs $remote_fs $network
Description: Short description of your application
END INIT INFO
See how we were called.
case "$1" in
start)
Put your startup commands here
Set RETVAL to 0 for success, non-0 for failure
;;
stop)
Put your stop commands here
Set RETVAL to 0 for success, non-0 for failure
;;
status)
Put your status commands here
Set RETVAL to 0 for success, non-0 for failure
;;
restart|force-reload|reload)
Put your restart commands here
Set RETVAL to 0 for success, non-0 for failure
;;
*)
echo $"Usage: $prog {start|stop|status|restart|force-reload}"
RETVAL=2
esac

exit $RETVAL

Persistently Starting Your Application from the Native Bash
Shell

Procedure

Step 1 Install your application startup Bash script that you created into /etc/init.d/application_name

Step 2 Start your application with /etc/init.d/application_name start

Step 3 Enter chkconfig --add application_name

Step 4 Enter chkconfig --level 3 application_name on

Run level 3 is the standard multi-user run level, and the level at which the switch normally runs.

Step 5 Verify that your application is scheduled to run on level 3 by running chkconfig --list application_name and
confirm that level 3 is set to on

Step 6 Verify that your application is listed in /etc/rc3.d. You should see something like this, where there is an
'S' followed by a number, followed by your application name (tcollector in this example), and a link to
your Bash startup script in ../init.d/application_name

bash-4.2# ls -l /etc/rc3.d/tcollector

lrwxrwxrwx 1 root root 20 Sep 25 22:56 /etc/rc3.d/S15tcollector -> ../init.d/tcollector

bash-4.2#

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
26

Shells and Scripting
Persistently Starting Your Application from the Native Bash Shell

Synchronize Files from Active Bootflash to Standby Bootflash
Cisco Nexus 3400-S platform switches are generally configured with two supervisor modules to provide high
availability (one active supervisor module and one standby supervisor module). Each supervisor module has
its own bootflash file system for file storage, and the Active and Standby bootflash file systems are generally
independent of each other. If there is a need for specific content on the active bootflash, that same content is
probably also needed on the standby bootflash in case there is a switchover at some point.

Certain files and directories on the active supervisor module, or active bootflash (/bootflash), can be
automatically synchronized to the standby supervisor module, or standby bootflash
(/bootflash_sup-remote), if the standby supervisor module is up and available. You can select the
files and directories to be synchronized by loading Bash on your switch, then adding the files and directories
that you want to have synchronized from the active bootflash to the standby bootflash into the editable file
/bootflash/bootflash_sync_list.

For example:
switch# run bash
bash-4.2# echo "/bootflash/home/admin" | sudo tee --append /bootflash/bootflash_sync_list
bash-4.2# echo "/bootflash/nxos.5.bin" | sudo tee --append /bootflash/bootflash_sync_list
bash-4.2# cat /bootflash/bootflash_sync_list
/bootflash/home/admin
/bootflash/nxos.5.bin

When changes are made to the files or directories on the active bootflash, these changes are automatically
synchronized to standby bootflash, if the standby bootflash is up and available. If the standby bootflash is
rebooted, either as a regular boot, switchover or manual standby reload, a catch-up synchronization of changes
to the active bootflash is pushed out to the standby bootflash, once the standby supervisor comes online.

Following are the characteristics and restrictions for the editable /bootflash/bootflash_sync_list
file:

• The /bootflash/bootflash_sync_list file is automatically created on the first run and is
empty at that initial creation state.

• Entries in the /bootflash/bootflash_sync_list file follow these guidelines:

• One entry per line

• Entries are given as Linux paths (for example, /bootflash/img.bin)

• Entries must be within the /bootflash file system

• The /bootflash/bootflash_sync_list file itself is automatically synchronized to the standby
bootflash. You can also manually copy the /bootflash/bootflash_sync_list file to or from
the supervisor module using the copy virtual shell (VSH) command.

• You can edit the /bootflash/bootflash_sync_list file directly on the supervisor module
with the following command:
run bash vi /bootflash/bootflash_sync_list

All output from the synchronization event is redirected to the log file /var/tmp/bootflash_sync.log.
You can view or tail this log file using either of the following commands:

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
27

Shells and Scripting
Synchronize Files from Active Bootflash to Standby Bootflash

run bash less /var/tmp/bootflash_sync.log

run bash tail -f /var/tmp/bootflash_sync.log

The synchronization script will not delete files from the standby bootflash directories unless it explicitly
receives a delete event for the corresponding file on the active bootflash directories. Sometimes, the standby
bootflash might have more used space than the active bootflash, which results in the standby bootflash running
out of space when the active bootflash is synchronizing to it. To make the standby bootflash an exact mirror
of the active bootflash (to delete any extra files on the standby bootflash), enter the following command:
run bash sudo rsync -a --delete /bootflash/ /bootflash_sup-remote/

The synchronization script should continue to run in the background without crashing or exiting. However,
if it does stop running for some reason, you can manually restart it using the following command:
run bash sudo /isan/etc/rc.d/rc.isan-start/S98bootflash_sync.sh start

An Example Application in the Native Bash Shell
The following example demonstrates an application in the Native Bash Shell:
bash-4.2# cat /etc/init.d/hello.sh
#!/bin/bash

PIDFILE=/tmp/hello.pid
OUTPUTFILE=/tmp/hello

echo $$ > $PIDFILE
rm -f $OUTPUTFILE
while true
do

echo $(date) >> $OUTPUTFILE
echo 'Hello World' >> $OUTPUTFILE
sleep 10

done
bash-4.2#
bash-4.2#
bash-4.2# cat /etc/init.d/hello
#!/bin/bash
#
hello Trivial "hello world" example Third Party App
#
chkconfig: 2345 15 85
description: Trivial example Third Party App
#
BEGIN INIT INFO
Provides: hello
Required-Start: $local_fs $remote_fs $network $named
Required-Stop: $local_fs $remote_fs $network
Description: Trivial example Third Party App
END INIT INFO

PIDFILE=/tmp/hello.pid

See how we were called.
case "$1" in
start)

/etc/init.d/hello.sh &

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
28

Shells and Scripting
An Example Application in the Native Bash Shell

RETVAL=$?
;;
stop)

kill -9 `cat $PIDFILE`
RETVAL=$?

;;
status)

ps -p `cat $PIDFILE`
RETVAL=$?

;;
restart|force-reload|reload)

kill -9 `cat $PIDFILE`
/etc/init.d/hello.sh &
RETVAL=$?

;;
*)
echo $"Usage: $prog {start|stop|status|restart|force-reload}"
RETVAL=2
esac

exit $RETVAL
bash-4.2#
bash-4.2# chkconfig --add hello
bash-4.2# chkconfig --level 3 hello on
bash-4.2# chkconfig --list hello
hello 0:off 1:off 2:on 3:on 4:on 5:on 6:off
bash-4.2# ls -al /etc/rc3.d/*hello*
lrwxrwxrwx 1 root root 15 Sep 27 18:00 /etc/rc3.d/S15hello -> ../init.d/hello
bash-4.2#
bash-4.2# reboot

After reload
bash-4.2# ps -ef | grep hello
root 8790 1 0 18:03 ? 00:00:00 /bin/bash /etc/init.d/hello.sh
root 8973 8775 0 18:04 ttyS0 00:00:00 grep hello
bash-4.2#
bash-4.2# ls -al /tmp/hello*
-rw-rw-rw- 1 root root 205 Sep 27 18:04 /tmp/hello
-rw-rw-rw- 1 root root 5 Sep 27 18:03 /tmp/hello.pid
bash-4.2# cat /tmp/hello.pid
8790
bash-4.2# cat /tmp/hello
Sun Sep 27 18:03:49 UTC 2015
Hello World
Sun Sep 27 18:03:59 UTC 2015
Hello World
Sun Sep 27 18:04:09 UTC 2015
Hello World
Sun Sep 27 18:04:19 UTC 2015
Hello World
Sun Sep 27 18:04:29 UTC 2015
Hello World
Sun Sep 27 18:04:39 UTC 2015
Hello World
bash-4.2#

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
29

Shells and Scripting
An Example Application in the Native Bash Shell

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
30

Shells and Scripting
An Example Application in the Native Bash Shell

C H A P T E R 4
Guest Shell

This chapter contains the following topics:

• About the Guest Shell, on page 31
• Guidelines and Limitations, on page 32
• Accessing the Guest Shell, on page 36
• Resources Used for the Guest Shell, on page 36
• Capabilities in the Guest Shell, on page 37
• Security Posture for Guest Shell, on page 45
• Managing the Guest Shell, on page 48

About the Guest Shell
In addition to the Cisco NX-OS CLI and Bash access on the underlying Linux environment, the Cisco Nexus
3400-S platform switches support access to a decoupled execution space running within a Linux Container
(LXC) called the Guest Shell.

From within the Guest Shell the network-admin has the following capabilities:

• Access to the network over Linux network interfaces.

• Access to Cisco Nexus 3400-S bootflash.

• Access to Cisco Nexus 3400-S volatile tmpfs.

• Access to Cisco Nexus 3400-S CLI.

• Access to Cisco NX-API REST.

• The ability to install and run Python scripts.

• The ability to install and run 32-bit and 64-bit Linux applications.

Decoupling the execution space from the native host system allows customization of the Linux environment
to suit the needs of the applications without impacting the host system or applications running in other Linux
Containers.

On Cisco NX-OS switches, Linux Containers are installed and managed with the virtual-service commands.
The Guest Shell appears in the show virtual-service command output.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
31

By default, the Guest Shell occupies approximately 35 MB of RAM and 200 MB of bootflash when enabled.
Use the guestshell destroy command to reclaim resources if the Guest Shell is not used.

Note

Guidelines and Limitations
Common Guidelines Across All Releases

If you have performed customwork inside your installation of the Guest Shell, save your changes to bootflash,
off-box storage, or elsewhere outside the Guest Shell root file system before performing a guestshell
upgrade.

The guestshell upgrade command essentially performs a guestshell destroy and guestshell enable

in succession.

Important

• Use the run guestshell CLI command to access the Guest Shell on the Cisco Nexus device: The run
guestshell command parallels the run bash command that is used to access the host shell. This
command allows you to access the Guest Shell and get a Bash prompt or run a command within the
context of the Guest Shell. The command uses password-less SSH to an available port on the localhost
in the default network namespace.

• The sshd utility can secure the pre-configured SSH access into the Guest Shell by listening on
localhost to avoid connection attempts from outside the network. The sshd utility has the following
features:

• It is configured for key-based authentication without fallback to passwords.

• Only root can read keys use to access the Guest Shell after Guest Shell restarts.

• Only root can read the file that contains the key on the host to prevent a non-privileged user with
host Bash access from being able to use the key to connect to the Guest Shell. Network-admin users
may start another instance of sshd in the Guest Shell to allow remote access directly into the Guest
Shell, but any user that logs into the Guest Shell is also given network-admin privilege.

Introduced in Guest Shell 2.2 (0.2), the key file is readable for
whom the user account was created.

In addition, the Guest Shell accounts are not automatically
removed, and must be removed by the network administrator
when no longer needed.

Guest Shell installations before 2.2 (0.2) will not dynamically
create individual user accounts.

Note

• Installing the Cisco NX-OS software release on a fresh out-of-the-box automatically enables the Guest
Shell. Subsequent upgrades to the Cisco NX-OS software will not automatically upgrade Guest Shell.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
32

Shells and Scripting
Guidelines and Limitations

• Guest Shell releases increment the major number when distributions or distribution versions change.

• Guest Shell releases increment the minor number when CVEs have been addressed. The Guest Shell
updates CVEs only when CentOS makes them publicly available.

• Cisco recommends using yum update to pick up third-party security vulnerability fixes directly from
the CentOS repository. This provides the flexibility of getting updates as, and when, available without
needing to wait for a Cisco NX-OS software update.

Alternatively, using the guestshell update command would replace the existing Guest Shell rootfs. Any
customizations and software package installations would then need to be performed again within the
context of this new Guest Shell rootfs.

Upgrading from Guest Shell 1.0 to Guest Shell 2.x

Guest Shell 2.x is based upon a CentOS 7 root file system. If you have an off-box repository of .conf files
or utilities that pulled the content down into Guest Shell 1.0, you will need to repeat the same deployment
steps in Guest Shell 2.x. Your deployment script may need to be adjusted to account for the CentOS 7
differences.

Guest Shell 2.x

The Cisco NX-OS automatically installs and enables the Guest Shell by default on systems with sufficient
resources. However, if the device is reloaded with a Cisco NX-OS image that does not provide Guest Shell
support, the installer will automatically remove the existing Guest Shell and issue a
%VMAN-2-INVALID_PACKAGE.

Systems with 4GB of RAM will not enable Guest Shell by default. Use the guestshell enable command to
install and enable Guest Shell.

Note

The install all command validates the compatibility between the current Cisco NX-OS image against the
target Cisco NX-OS image.

The following is an example output from installing an incompatible image:
switch#
Installer will perform compatibility check first. Please wait.
uri is: /
2014 Aug 29 20:08:51 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE:
Successfully activated virtual service 'guestshell+'
Verifying image bootflash:/n9kpregs.bin for boot variable "nxos".
[####################] 100% -- SUCCESS
Verifying image type.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "bios" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "nxos" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
33

Shells and Scripting
Guidelines and Limitations

Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
"Running-config contains configuration that is incompatible with the new image (strict
incompatibility).
Please run 'show incompatibility-all nxos <image>' command to find out which feature
needs to be disabled.".
Performing module support checks.
[####################] 100% -- SUCCESS
Notifying services about system upgrade.
[#] 0% -- FAIL.
Return code 0x42DD0006 ((null)).
"Running-config contains configuration that is incompatible with the new image (strict
incompatibility).
Please run 'show incompatibility-all nxos <image>' command to find out
which feature needs to be disabled."
Service "vman" in vdc 1: Guest shell not supported, do 'guestshell destroy' to remove
it and then retry ISSU
Pre-upgrade check failed. Return code 0x42DD0006 ((null)).
switch#

As a best practice, remove the Guest Shell with the guestshell destroy command before reloading an older
Cisco NX-OS image that does not support the Guest Shell.

Note

Pre-Configured SSHD Service

The Guest Shell starts an OpenSSH server upon boot up. The server listens on a randomly generated port on
the localhost IP address interface 127.0.0.1 only. This provides the password-less connectivity into the Guest
Shell from the NX-OS virtual-shell when the guestshell keyword is entered. If this server is killed or its
configuration (residing in /etc/ssh/sshd_config-cisco) is altered, access to the Guest Shell from
the NX-OS CLI might not work.

The following steps instantiate an OpenSSh server within the Guest Shell as root:

1. Determine which network namespace or VRF you want to establish your SSH connections through.

2. Determine the port that youwant OpenSSH to listen on. Use the NX-OS command show socket connection
to view ports already in use.

The Guest Shell sshd service for password-less access uses a randomized port from 17680 through 49150.
To avoid port conflict, choose a port outside this range.

Note

The following steps start the OpenSSH server. The examples start the OpenSSH server for management netns
on IP address 10.122.84.34:2222:

1. Create the following files: /usr/lib/systemd/systm/sshd-mgmt.service and
/etc/ssh/sshd-mgmt_config. The files should have the following configurations:
-rw-r--r-- 1 root root 394 Apr 7 14:21 /usr/lib/systemd/system/sshd-mgmt.service
-rw------- 1 root root 4478 Apr 7 14:22 /etc/ssh/sshd-mgmt_config

2. Copy the Unit and Service contents from the /usr/lib/systemd/syste/ssh.service file to
sshd-mgmt.service.
[Unit]
Description=OpenSSH server daemon

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
34

Shells and Scripting
Guidelines and Limitations

After=network.target sshd-keygen.service
Wants=sshd-keygen.service

[Service]
EnvironmentFile=/etc/sysconfig/sshd
ExecStartPre=/usr/sbin/sshd-keygen
ExecStart=/sbin/ip netns exec management /usr/sbin/sshd -f /etc/ssh/sshd-mgmt_config
-D $OPTIONS
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process
Restart=on-failure
RestartSec=42s
[Install]
WantedBy=multi-user.target

3. Copy the contents of /etc/ssh/sshd-config to /etc/ssh/sshd-mgmt_config. Modify
the ListenAddress IP and port as necessary.
Port 2222
ListenAddress 10.122.84.34

4. Start the systemctl daemon using the following commands:
sudo systemctl daemon-reload
sudo systemctl start sshd-mgmt.service
sudo systemctl status sshd-mgmt.service -l

5. (optional) Check the configuration.
ss -tnldp | grep 2222

6. SSH into Guest Shell:
ssh -p 2222 guestshell@10.122.84.34

7. Save the configuration across multiple Guest Shell or switch reboots.
sudo systemctl enable sshd-mgmt.service

8. For passwordless SSH or SCP and remote execution, generate the public and private keys for the user
ID you want to user for SSH/SCP using the ssh-keygen -t dsa command.

The key is then stored in the id_rsa and id_rsa.pub files in the /.ssh directory:
[root@node01 ~]# cd ~/.ssh
[root@node02 .ssh]# ls -l
total 8
-rw-------. 1 root root 1675 May 5 15:01 id_rsa
-rw-r--r--. 1 root root 406 May 5 15:01 id_rsa.pub

9. Copy the public key into the machine you want to SSH into and fix permissions:
cat id_rsa.pub >> /root/.ssh/authorized_keys
chmod 700 /root/.ssh
chmod 600 /root/.ssh/*

10. SSH or SCP into the remote switch without a password:
ssh -p <port#> userid@hostname [<remote command>]
scp -P <port#> userid@hostname/filepath /destination

localtime

The Guest Shell shares /etc/localtime with the host system.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
35

Shells and Scripting
Guidelines and Limitations

If you do not want to share the same localtime with the host, this symlink can be broken and a Guest Shell
specific /etc/localtime can be created.

Note

switch(config)# clock timezone PDT -7 0
switch(config)# clock set 10:00:00 27 Jan 2017
Fri Jan 27 10:00:00 PDT 2017
switch(config)# show clock
10:00:07.554 PDT Fri Jan 27 2017
switch(config)# run guestshell
guestshell:~$ date
Fri Jan 27 10:00:12 PDT 2017

Accessing the Guest Shell
In Cisco NX-OS, the Guest Shell is accessible to the network-admin. It is automatically enabled in the system
and can be accessed using the run guestshell command. Consistent with the run bash command, these
commands can be issued within the Guest Shell with the run guestshell command form of the NX-OS CLI
command.

The Guest Shell is automatically enabled on systems with more than 4 GB of RAM.Note

switch# run guestshell ls -al /bootflash/*.ova
-rw-rw-rw- 1 2002 503 83814400 Aug 21 18:04 /bootflash/pup.ova
-rw-rw-rw- 1 2002 503 40724480 Apr 15 2012 /bootflash/red.ova

When running in the Guest Shell, you have network-admin level privileges.Note

In version 2.2(0.2) and later, the Guest Shell dynamically creates user accounts with the same information as
the user logged into switch. However, all other information is not shared between the switch and the Guest
Shell user accounts.

In addition, the Guest Shell accounts are not automatically removed, and must be removed by the network
administrator when no longer needed.

Note

Resources Used for the Guest Shell
By default, the resources for the Guest Shell have a small impact on resources available for normal switch
operations. If the network-admin requires more resources for the Guest Shell, the guestshell resize {cpu |
memory | rootfs} command changes these limits.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
36

Shells and Scripting
Accessing the Guest Shell

Minimum/MaximumDefaultResource

1/20%1%CPU

256/3840MB256MBMemory

200/2000MB200MBStorage

The CPU limit is the percentage of the system compute capacity that tasks running within the Guest Shell are
given when there is contention with other compute loads in the system. When there is no contention for CPU
resources, the tasks within the Guest Shell are not limited.

A Guest Shell reboot is required after changing the resource allocations. This can be accomplished with the
guestshell reboot command.

Note

Capabilities in the Guest Shell
The Guest Shell has several utilities and capabilities available by default.

The Guest Shell runs CentOS 7 Linux which supports Yum install software packages that are built for this
distribution. The Guest Shell is pre-populated with many of the common tools that you would expect on a
networking device including net-tools, iproute, tcpdumpand OpenSSH. Python 2.7.5 and later is included
by default as is the PIP for installing extra Python packages.

By default the Guest Shell is a 64-bit execution space. If the switch needs 32-bit support, you can install the
glibc.i686 package.

The Guest Shell has access to the Linux network interfaces used to represent the management and data ports
of the switch. Typical Linux methods and utilities like ifconfig and ethtool can be used to collect counters.
When an interface is placed into a VRF in the NX-OS CLI, the Linux network interface is placed into a
network namespace for that VRF. The name spaces can be seen at /var/run/netns and the ip netns
utility can be used to run in the context of different namespaces. A couple of utilities, chvrf and vrfinfo, are
provided for running in a different namespace and getting information about which namespace or VRF a
process is running in.

The switch's systemd manages services in CentOS 7 environments, including the Guest Shell.

NX-OS CLI in the Guest Shell
The Guest Shell provides an application to allow the user to issue NX-OS commands from the Guest Shell
environment to the host network element. The dohost application accepts any valid NX-OS configuration or
exec commands and issues them to the host network element.

When invoking the dohost command each NX-OS command may be in single or double quotes:

dohost "<NXOS CLI>"

The NX-OS CLI can be chained together:

[guestshell@guestshell ~]$ dohost "sh lldp time | in Hold" "show cdp global"

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
37

Shells and Scripting
Capabilities in the Guest Shell

Holdtime in seconds: 120
Global CDP information:
CDP enabled globally
Refresh time is 21 seconds
Hold time is 180 seconds
CDPv2 advertisements is enabled
DeviceID TLV in System-Name(Default) Format
[guestshell@guestshell ~]$

The NX-OS CLI can also be chained together using the NX-OS style command chaining technique by adding
a semicolon between each command. (A space on either side of the semicolon is required.)

[guestshell@guestshell ~]$ dohost "conf t ; cdp timer 13 ; show run | inc cdp"
Enter configuration commands, one per line. End with CNTL/Z.
cdp timer 13
[guestshell@guestshell ~]$

With Guest Shell version 2.2 (0.2) and later, commands that are issued on the host through the dohost command
are run with privileges that are based on the effective role of the Guest Shell user.

Prior versions of Guest Shell run commands with network-admin level privileges.

The dohost command fails when the number of UDS connections to NX-API are at the maximum allowed.

Note

Network Access in Guest Shell
The NX-OS switch ports are represented in the Guest Shell as Linux network interfaces. Typical Linuxmethods
like view stats in /proc/net/dev through ifconfig, or ethtool are all supported:

The Guest Shell has several typical network utilities included by default. They can be used on different VRFs
using the chvrf vrf command command.
[guestshell@guestshell bootflash]$ ifconfig Eth1-47
Eth1-47: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 13.0.0.47 netmask 255.255.255.0 broadcast 13.0.0.255
ether 54:7f:ee:8e:27:bc txqueuelen 100 (Ethernet)
RX packets 311442 bytes 21703008 (20.6 MiB)
RX errors 0 dropped 185 overruns 0 frame 0
TX packets 12967 bytes 3023575 (2.8 MiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Within the Guest Shell, the networking state can be monitored, but not changed. To change networking state,
use the NX-OS CLI or the appropriate Linux utilities in the host Bash shell.

The tcpdump command is packaged with the Guest Shell to allow packet tracing of punted traffic on the
management or switch ports.

The sudo ip netns exec management ping utility is a common method for running a command in the context
of a specified network namespace. This can be done within the Guest Shell:
[guestshell@guestshell bootflash]$ sudo ip netns exec management ping 10.28.38.48
PING 10.28.38.48 (10.28.38.48) 56(84) bytes of data.
64 bytes from 10.28.38.48: icmp_seq=1 ttl=48 time=76.5 ms

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
38

Shells and Scripting
Network Access in Guest Shell

The chvrf utility is provided as a convenience:
guestshell@guestshell bootflash]$ chvrf management ping 10.28.38.48
PING 10.28.38.48 (10.28.38.48) 56(84) bytes of data.
64 bytes from 10.28.38.48: icmp_seq=1 ttl=48 time=76.5 ms

Commands that are run without the chvrf command are run in the current VRF or network namespace.Note

For example, to ping IP address 10.0.0.1 over the management VRF, the command is “chvrf management
ping 10.0.0.1”. Other utilities such as scp or ssh would be similar.

Example:

switch# guestshell
[guestshell@guestshell ~]$ cd /bootflash
[guestshell@guestshell bootflash]$ chvrf management scp foo@10.28.38.48:/foo/index.html
index.html
foo@10.28.38.48's password:
index.html 100% 1804 1.8KB/s 00:00
[guestshell@guestshell bootflash]$ ls -al index.html
-rw-r--r-- 1 guestshe users 1804 Sep 13 20:28 index.html
[guestshell@guestshell bootflash]$
[guestshell@guestshell bootflash]$ chvrf management curl cisco.com
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>301 Moved Permanently</title>
</head><body>
<h1>Moved Permanently</h1>
<p>The document has moved here.</p>
</body></html>
[guestshell@guestshell bootflash]$

To obtain a list of VRFs on the system, use the show vrf command natively from NX-OS or through the
dohost command:

Example:

[guestshell@guestshell bootflash]$ dohost 'sh vrf'
VRF-Name VRF-ID State Reason
default 1 Up --
management 2 Up --
red 6 Up --

Within the Guest Shell, the network namespaces associated with the VRFs are what are actually used. It can
be more convenient to just see which network namespaces are present:
[guestshell@guestshell bootflash]$ ls /var/run/netns
default management red
[guestshell@guestshell bootflash]$

To resolve domain names from within the Guest Shell, the resolver needs to be configured. Edit the
/etc/resolv.conf file in the Guest Shell to include a DNS name server and domain as appropriate for the network.

Example:

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
39

Shells and Scripting
Network Access in Guest Shell

nameserver 10.1.1.1
domain cisco.com

The name server and domain information should match what is configured through the NX-OS configuration.

Example:

switch(config)# ip domain-name cisco.com
switch(config)# ip name-server 10.1.1.1
switch(config)# vrf context management
switch(config-vrf)# ip domain-name cisco.com
switch(config-vrf)# ip name-server 10.1.1.1

If the switch is in a network that uses an HTTP proxy server, the http_proxy and https_proxy environment
variables must be set up within the Guest Shell also.

Example:

export http_proxy=http://proxy.esl.cisco.com:8080
export https_proxy=http://proxy.esl.cisco.com:8080

These environment variables should be set in the .bashrc file or in an appropriate script to ensure that they
are persistent.

Access to Bootflash in Guest Shell
Network administrators can manage files with Linux commands and utilities in addition to using NX-OS CLI
commands. Bymounting the system bootflash at /bootflash in the Guest Shell environment, the network-admin
can operate on these files with Linux commands.

Example:

find . –name “foo.txt”
rm “/bootflash/junk/foo.txt”

While the name of the user within the Guest Shell is the same as when on the host, the Guest Shell is in a
separate user namespace, and the UID does not match that of the user on the host. The file permissions for
group and others control the type of access the Guest Shell user has on the file.

Note

Python in Guest Shell
Python can be used interactively or Python scripts can be run in the Guest Shell.

Example:

guestshell:~$ python
python
Python 2.7.5 (default, Jun 17 2014, 18:11:42)
[GCC 4.8.2 20140120 (Red Hat 4.8.2-16)] on linux2

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
40

Shells and Scripting
Access to Bootflash in Guest Shell

Type "help", "copyright", "credits" or "license" for more information.
>>>

guestshell:~$

The pip Python package manager is included in the Guest Shell to allow the network-admin to install new
Python packages.

Example:
[guestshell@guestshell ~]$ sudo su
[root@guestshell guestshell]# pip install Markdown
Collecting Markdown
Downloading Markdown-2.6.2-py2.py3-none-any.whl (157kB)
100% |################################| 159kB 1.8MB/s
Installing collected packages: Markdown
Successfully installed Markdown-2.6.2
[root@guestshell guestshell]# pip list | grep Markdown
Markdown (2.6.2)
[root@guestshell guestshell]#

You must enter the sudo su command before entering the pip install command.Note

Python 3 in Guest Shell versions up to 2.10 (CentOS 7)
Guest Shell 2.X provides a CentOS 7.1 environment, which does not have Python 3 installed by default. There
are multiple methods of installing Python 3 on CentOS 7.1, such as using third-party repositories or building
from source. Another option is using the Red Hat Software Collections, which supports installing multiple
versions of Python within the same system.

To install the Red Hat Software Collections (SCL) tool:

1. Install the scl-utils package.

2. Enable the CentOS SCL repository and install one of its provided Python 3 RPMs.

[admin@guestshell ~]$ sudo su
[root@guestshell admin]# yum install -y scl-utils | tail
Running transaction test
Transaction test succeeded
Running transaction
Installing : scl-utils-20130529-19.el7.x86_64 1/1
Verifying : scl-utils-20130529-19.el7.x86_64 1/1

Installed:
scl-utils.x86_64 0:20130529-19.el7

Complete!

[root@guestshell admin]# yum install -y centos-release-scl | tail
Verifying : centos-release-scl-2-3.el7.centos.noarch 1/2
Verifying : centos-release-scl-rh-2-3.el7.centos.noarch 2/2

Installed:
centos-release-scl.noarch 0:2-3.el7.centos

Dependency Installed:

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
41

Shells and Scripting
Python 3 in Guest Shell versions up to 2.10 (CentOS 7)

centos-release-scl-rh.noarch 0:2-3.el7.centos

Complete!

[root@guestshell admin]# yum install -y rh-python36 | tail
warning: /var/cache/yum/x86_64/7/centos-sclo-rh/packages/rh-python36-2.0-1.el7.x86_64.rpm:
Header V4 RSA/SHA1 Signature, key ID f2ee9d55: NOKEY
http://centos.sonn.com/7.7.1908/os/x86_64/Packages/groff-base-1.22.2-8.el7.x86_64.rpm:
[Errno 12] Timeout on
http://centos.sonn.com/7.7.1908/os/x86_64/Packages/groff-base-1.22.2-8.el7.x86_64.rpm: (28,
'Operation too slow. Less than 1000 bytes/sec transferred the last 30 seconds')
Trying other mirror.
Importing GPG key 0xF2EE9D55:
Userid : "CentOS SoftwareCollections SIG
(https://wiki.centos.org/SpecialInterestGroup/SCLo) <security@centos.org>"
Fingerprint: c4db d535 b1fb ba14 f8ba 64a8 4eb8 4e71 f2ee 9d55
Package : centos-release-scl-rh-2-3.el7.centos.noarch (@extras)
From : /etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-SIG-SCLo
rh-python36-python-libs.x86_64 0:3.6.9-2.el7
rh-python36-python-pip.noarch 0:9.0.1-2.el7
rh-python36-python-setuptools.noarch 0:36.5.0-1.el7
rh-python36-python-virtualenv.noarch 0:15.1.0-2.el7
rh-python36-runtime.x86_64 0:2.0-1.el7
scl-utils-build.x86_64 0:20130529-19.el7
xml-common.noarch 0:0.6.3-39.el7
zip.x86_64 0:3.0-11.el7

Complete!

Using SCL, it is possible to create an interactive bash session with Python 3’s environment variables
automatically setup.

The root user is not needed to use the SCL Python installation.Note

[admin@guestshell ~]$ scl enable rh-python36 bash
[admin@guestshell ~]$ python3
Python 3.6.9 (default, Nov 11 2019, 11:24:16)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-39)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

The Python SCL installation also provides the pip utility.
[admin@guestshell ~]$ pip3 install requests --user
Collecting requests
Downloading

https://files.pythonhosted.org/packages/51/bd/23c926cd341ea6b7dd0b2a00aba99ae0f828be89d72b2190f27c11d4b7fb/requests-2.22.0-py2.py3-none-any.whl
(57kB)

100% |################################| 61kB 211kB/s
Collecting idna<2.9,>=2.5 (from requests)
Downloading

https://files.pythonhosted.org/packages/14/2c/cd551d81dbe15200be1cf41cd03869a46fe7226e7450af7a6545bfc474c9/idna-2.8-py2.py3-none-any.whl
(58kB)

100% |################################| 61kB 279kB/s
Collecting chardet<3.1.0,>=3.0.2 (from requests)
Downloading

https://files.pythonhosted.org/packages/bc/a9/01ffebfb562e4274b6487b4bb1ddec7ca55ec7510b22e4c51f14098443b8/chardet-3.0.4-py2.py3-none-any.whl
(133kB)

100% |################################| 143kB 441kB/s
Collecting certifi>=2017.4.17 (from requests)
Downloading

https://files.pythonhosted.org/packages/b9/63/df50cac98ea0d5b006c55a399c3bf1db9da7b5a24de7890bc9cfd5dd9e99/certifi-2019.11.28-py2.py3-none-any.whl

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
42

Shells and Scripting
Python 3 in Guest Shell versions up to 2.10 (CentOS 7)

(156kB)
100% |################################| 163kB 447kB/s

Collecting urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 (from requests)
Downloading

https://files.pythonhosted.org/packages/e8/74/6e4f91745020f967d09332bb2b8b9b10090957334692eb88ea4afe91b77f/urllib3-1.25.8-py2.py3-none-any.whl
(125kB)

100% |################################| 133kB 656kB/s
Installing collected packages: idna, chardet, certifi, urllib3, requests
Successfully installed certifi-2019.11.28 chardet-3.0.4 idna-2.8 requests-2.22.0
urllib3-1.25.8
You are using pip version 9.0.1, however version 20.0.2 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.
[admin@guestshell ~]$ python3
Python 3.6.9 (default, Nov 11 2019, 11:24:16)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-39)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import requests
>>> requests.get("https://cisco.com")
<Response [200]>

The default Python 2 installation can be used alongside the SCL Python installation.
[admin@guestshell ~]$ which python3
/opt/rh/rh-python36/root/usr/bin/python3
[admin@guestshell ~]$ which python2
/bin/python2
[admin@guestshell ~]$ python2
Python 2.7.5 (default, Aug 7 2019, 00:51:29)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-39)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> print 'Hello world!'
Hello world!

Software Collections makes it possible to install multiple versions of the same RPM on a system. In this case,
it is possible to install Python 3.5 in addition to Python 3.6.
[admin@guestshell ~]$ sudo yum install -y rh-python35 | tail
Dependency Installed:
rh-python35-python.x86_64 0:3.5.1-13.el7
rh-python35-python-devel.x86_64 0:3.5.1-13.el7
rh-python35-python-libs.x86_64 0:3.5.1-13.el7
rh-python35-python-pip.noarch 0:7.1.0-2.el7
rh-python35-python-setuptools.noarch 0:18.0.1-2.el7
rh-python35-python-virtualenv.noarch 0:13.1.2-2.el7
rh-python35-runtime.x86_64 0:2.0-2.el7

Complete!

[admin@guestshell ~]$ scl enable rh-python35 python3
Python 3.5.1 (default, May 29 2019, 15:41:33)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-36)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

Creating new interactive bash sessions when multiple Python versions are installed in SCL can cause an issue
where the libpython shared object file cannot be loaded. There is a workaround where you can use the source
scl_source enable python-installation command to properly set up the environment in the current bash session.

The default Guest Shell storage capacity is not sufficient to install Python 3. Use the guestshell resize rootfs
size-in-MB command to increase the size of the file system. Typically, setting the rootfs size to 550 MB is
sufficient.

Note

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
43

Shells and Scripting
Python 3 in Guest Shell versions up to 2.10 (CentOS 7)

Installing RPMs in the Guest Shell
The /etc/yum.repos.d/CentOS-Base.repo file is set up to use the CentOS mirror list by default. Follow
instructions in that file if changes are needed.

You can point Yum to one or more repositories at any time by modifying the yumrepo_x86_64.repo
file or by adding a new .repo file in the repos.d directory.

For applications that need to be installed inside Guest Shell, go to the CentOS 7 repo at http://mirror.centos.org/
centos/7/os/x86_64/Packages/.

Yum resolves the dependencies and installs all the required packages.
[guestshell@guestshell ~]$ sudo chvrf management yum -y install glibc.i686
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
* base: bay.uchicago.edu
* extras: pubmirrors.dal.corespace.com
* updates: mirrors.cmich.edu
Resolving Dependencies
"-->" Running transaction check
"--->" Package glibc.i686 0:2.17-78.el7 will be installed
"-->" Processing Dependency: libfreebl3.so(NSSRAWHASH_3.12.3) for package:
glibc-2.17-78.el7.i686
"-->" Processing Dependency: libfreebl3.so for package: glibc-2.17-78.el7.i686
"-->" Running transaction check
"--->" Package nss-softokn-freebl.i686 0:3.16.2.3-9.el7 will be installed
"-->" Finished Dependency Resolution

Dependencies Resolved

==
Package Arch Version Repository Size
==
Installing:
glibc i686 2.17-78.el7 base 4.2 M
Installing for dependencies:
nss-softokn-freebl i686 3.16.2.3-9.el7 base 187 k

Transaction Summary
==
Install 1 Package (+1 Dependent package)

Total download size: 4.4 M
Installed size: 15 M
Downloading packages:
Delta RPMs disabled because /usr/bin/applydeltarpm not installed.
(1/2): nss-softokn-freebl-3.16.2.3-9.el7.i686.rpm | 187 kB 00:00:25
(2/2): glibc-2.17-78.el7.i686.rpm | 4.2 MB 00:00:30
--
Total 145 kB/s | 4.4 MB 00:00:30
Running transaction check
Running transaction test
Transaction test succeeded
Running transaction
Installing : nss-softokn-freebl-3.16.2.3-9.el7.i686 1/2
Installing : glibc-2.17-78.el7.i686 2/2
error: lua script failed: [string "%triggerin(glibc-common-2.17-78.el7.x86_64)"]:1: attempt
to compare number with nil
Non-fatal "<"unknown">" scriptlet failure in rpm package glibc-2.17-78.el7.i686
Verifying : glibc-2.17-78.el7.i686 1/2
Verifying : nss-softokn-freebl-3.16.2.3-9.el7.i686 2/2

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
44

Shells and Scripting
Installing RPMs in the Guest Shell

http://mirror.centos.org/centos/7/os/x86_64/Packages/
http://mirror.centos.org/centos/7/os/x86_64/Packages/

Installed:
glibc.i686 0:2.17-78.el7

Dependency Installed:
nss-softokn-freebl.i686 0:3.16.2.3-9.el7

Complete!

When more space is needed in the Guest Shell root file system for installing or running packages, use the
guestshell resize roofs size-in-MB command to increase the file system size.

Note

Some open source software packages from the repository might not install or run as expected in the Guest
Shell due to restrictions that have been put into place to protect the integrity of the host system.

Note

Security Posture for Guest Shell
Use of the Guest Shell in Cisco Nexus 3400-S platform switches is just one of the many ways the network
Admin can manage or extend the functionality of the system. The Guest Shell is intended to provide an
execution environment that is decoupled from the native host context. This separation allows the introduction
of software into the system that may not be compatible with the native execution environment. It also allows
the software to run in an environment that does not interfere with the behavior, performance, or scale of the
system.

Kernel Vulnerability Patches
Cisco responds to pertinent CommonVulnerabilities and Exposures (CVEs) with platform updates that address
known vulnerabilities.

ASLR and X-Space Support
Cisco NX-OS supports the use of Address Space Layout Randomization (ASLR) and Executable Space
Protection (X-Space) for runtime defense. The software in Cisco-signed packages uses this capability. If other
software is installed on the system, it is recommended that it be built using a host OS and development
toolchain that supports these technologies. Doing so reduces the potential attack surface that the software
presents to potential intruders.

Namespace Isolation
The Guest Shell environment runs within a Linux container that uses various namespaces to decouple the
Guest Shell execution space from that of the host. The Guest Shell is run in a separate user namespace, which
helps protect the integrity of the host system, as processes running as root within the Guest Shell are not root
of the host. These processes appear to be running as UID 0 within the Guest Shell due to UID mapping, but
the kernel knows the real UID of these processes and evaluates the POSIX capabilities within the appropriate
user namespace.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
45

Shells and Scripting
Security Posture for Guest Shell

When a user enters the Guest Shell from the host, a user of the same name is created within the Guest Shell.
While the names match, the UID of the user within the Guest Shell is not the same as the UID on the host.
To still allow users within the Guest Shell to access files on shared media (for example, /bootflash or
/volatile), the common NX-OS GID that are used on the host (for example, network-admin or
network-operator) are mapped into the Guest Shell such that the values are the same and the Guest Shell
instance of the user is associated with the appropriate groups based on group membership on the host.

As an example, consider user bob. On the host, bob has the following UID and GID membership:
bash-4.3$ id
uid=2004(bob) gid=503(network-admin) groups=503(network-admin),504(network-operator)

When user bob is in the Guest Shell, the group membership from the host is set up in the Guest Shell:
[bob@guestshell ~]$ id
uid=1002(bob) gid=503(network-admin)
groups=503(network-admin),504(network-operator),10(wheel)

Files that are created by user bob in the host Bash shell and the Guest Shell have different owner IDs. The
example output below shows that the file created from within the Guest Shell has owner ID 12002, instead
of 1002 as shown in the example output above. This is due to the command being issued from the host Bash
shell and the ID space for the Guest Shell starting at ID 11000. The group ID of the file is network-admin,
which is 503 in both environments.
bash-4.3$ ls -ln /bootflash/bob_*
-rw-rw-r-- 1 12002 503 4 Jun 22 15:47 /bootflash/bob_guestshell
-rw-rw-r-- 1 2004 503 4 Jun 22 15:47 /bootflash/bob_host

bash-4.3$ ls -l /bootflash/bob_*
-rw-rw-r-- 1 12002 network-admin 4 Jun 22 15:47 /bootflash/bob_guestshell
-rw-rw-r-- 1 bob network-admin 4 Jun 22 15:47 /bootflash/bob_host

The user is allowed to access the file due to the file permission settings for the network-admin group, and the
fact that bob is a member of network-admin in both the host and Guest Shell.

Inside the Guest Shell environment, the example output below shows that the owner ID for the file that is
created by bob from the host is 65534. This indicates that the actual ID is in a range that is outside the range
of IDs that are mapped into the user namespace. Any unmapped ID will be shown as this value.
[bob@guestshell ~]$ ls -ln /bootflash/bob_*
-rw-rw-r-- 1 1002 503 4 Jun 22 15:47 /bootflash/bob_guestshell
-rw-rw-r-- 1 65534 503 4 Jun 22 15:47 /bootflash/bob_host

[bob@guestshell ~]$ ls -l /bootflash/bob_*
-rw-rw-r-- 1 bob network-admin 4 Jun 22 15:47 /bootflash/bob_guestshell
-rw-rw-r-- 1 65534 network-admin 4 Jun 22 15:47 /bootflash/bob_host

Root-User Restrictions
As a best practice for developing secure code, Cisco recommends running applications with the least privilege
needed to accomplish the assigned task. To help prevent unintended accesses, software added into the Guest
Shell should follow this best practice.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
46

Shells and Scripting
Root-User Restrictions

All processes within the Guest Shell are subject to restrictions imposed by reduced Linux capabilities. If your
application must perform operations that require root privileges, restrict the use of the root account to the
smallest set of operations that absolutely requires root access, and impose other controls such as a hard limit
on the amount of time that the application can run in that mode.

The set of Linux capabilities that are dropped for root within the Guest Shell follow:

• cap_audit_control

• cap_audit_write

• cap_mac_admin

• cap_mac_override

• cap_mknod

• cap_net_broadcast

• cap_sys_boot

• cap_syslog

• cap_sys_module

• cap_sys_nice

• cap_sys_pacct

• cap_sys_ptrace

• cap_sys_rawio

• cap_sys_resource

• cap_sys_time

• cap_wake_alarm

While the net_admin capability is not dropped, user namespace and the host ownership of the network
namespaces prevents the Guest Shell user from modifying the interface state. As root within the Guest Shell,
bind mounts may be used as well as tmpfs and ramfs mounts. Other mounts are prevented.

Resource Management
ADenial-of-Service (DoS) attack attempts to make a machine or network resource unavailable to its intended
users.Misbehaving ormalicious application code can causeDoS as the result of over-consumption of connection
bandwidth, disk space, memory, and other resources. The host provides resource-management features that
ensure fair allocation of resources between Guest Shell and services on the host.

Guest File System Access Restrictions
To preserve the integrity of the files within the Guest Shell, the file systems of the Guest Shell are not accessible
from the NX-OS CLI.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
47

Shells and Scripting
Resource Management

bootflash: and volatile: of the host are mounted as /bootflash and /volatile within the Guest
Shell. A network-admin can access files on this media using the NX-OS exec commands from the host or
using Linux commands from within the Guest Shell.

Managing the Guest Shell
The following are commands to manage the Guest Shell:

Table 2: Guest Shell CLI Commands

DescriptionCommands

• When guest shell OVA file is specified:

Installs and activates the Guest Shell using the
OVA that is embedded in the system image.

Installs and activates the Guest Shell using the
specified software package (OVA file) or the
embedded package from the system image (when
no package is specified). Initially, Guest Shell
packages are only available by being embedded
in the system image.

When the Guest Shell is already installed, this
command enables the installed Guest Shell.
Typically this is used after a guestshell disable
command.

• When rootfs-file-URI is specified:

Imports a Guest Shell rootfs when the Guest
Shell is in a destroyed state. This command
brings up the Guest Shell with the specified
package.

guestshell enable {package [guest shell OVA file |
rootfs-file-URI]}

Exports a Guest Shell rootfs file to a local URI
(bootflash, USB1, and so on).

guestshell export rootfs package destination-file-URI

Shuts down and disables the Guest Shell.guestshell disable

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
48

Shells and Scripting
Managing the Guest Shell

DescriptionCommands

• When guest shell OVA file is specified:

Deactivates and upgrades the Guest Shell using
the specified software package (OVA file) or the
embedded package from the system image (if no
package is specified). Initially Guest Shell
packages are only available by being embedded
in the system image.

The current rootfs for the Guest Shell is replaced
with the rootfs in the software package. The
Guest Shell does not make use of secondary
filesystems that persist across an upgrade.
Without persistent secondary filesystems, a
guestshell destroy command followed by a
guestshell enable command could also be used
to replace the rootfs. When an upgrade is
successful, the Guest Shell is activated.

You are prompted for a confirmation before
carrying out the upgrade command.

• When rootfs-file-URI is specified:

Imports a Guest Shell rootfs file when the Guest
Shell is already installed. This command removes
the existing Guest Shell and installs the specified
package.

guestshell upgrade {package [guest shell OVA file
| rootfs-file-URI]}

Deactivates the Guest Shell and then reactivates it.

You are prompted for a confirmation before carrying
out the reboot command.

This is the equivalent of a guestshell
disable command followed by a guestshell
enable command in EXEC mode.

This is useful when processes inside the
Guest Shell have been stopped and need
to be restarted. The run guestshell
command relies on sshd running in the
Guest Shell.

If the command does not work, the sshd
process may have been inadvertently
stopped. Performing a reboot of the Guest
Shell from the NX-OS CLI allows it to
restart and restore the command.

Note

guestshell reboot

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
49

Shells and Scripting
Managing the Guest Shell

DescriptionCommands

Deactivates and uninstalls the Guest Shell. All
resources that are associated with the Guest Shell are
returned to the system. The show virtual-service
global command indicates when these resources
become available.

Issuing this command results in a prompt for a
confirmation before carrying out the destroy
command.

guestshell destroy

Connects to the Guest Shell that is already running
with a shell prompt. No username or password is
required.

guestshell

run guestshell

Executes a Linux or UNIX command within the
context of the Guest Shell environment.

After execution of the command you are returned to
the switch prompt.

guestshell run command

run guestshell command

Changes the allotted resources available for the Guest
Shell. The changes take effect the next time the Guest
Shell is enabled or rebooted.

Resize values are cleared when the
guestshell destroy command is used.

Note

guestshell resize [cpu | memory | rootfs]

On systems that have Active and Standby supervisors,
this command synchronizes the Guest Shell contents
from the active supervisor to the standby supervisor.
The network-admin issues this command when the
Guest Shell rootfs has been set up to a point that the
Standby supervisor to use the same rootfs when it
becomes the Active supervisor. If this command is
not used, the Guest Shell is freshly installed when the
standby supervisor transitions to an active role using
the Guest Shell package available on that supervisor.

guestshell sync

If the guest shell or virtual-services cannot be
managed, even after a system reload, the reset
command is used to force the removal of the Guest
Shell and all virtual-services. The system needs to be
reloaded for the cleanup to happen. No Guest Shell
or extra virtual-services can be installed or enabled
after issuing this command until after the system has
been reloaded.

You are prompted for a confirmation before initiating
the reset.

virtual-service reset force

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
50

Shells and Scripting
Managing the Guest Shell

Administrative privileges are necessary to enable/disable and to gain access to the Guest Shell environment.Note

The Guest Shell is implemented as a Linux container (LXC) on the host system. On NX-OS devices, LXCs
are installed and managed with the virtual-service commands. The Guest Shell appears in the virtual-service
commands as a virtual service named guestshell+.

Note

Disabling the Guest Shell
The guestshell disable command shuts down and disables the Guest Shell.

When the Guest Shell is disabled and the system is reloaded, the Guest Shell remains disabled.

Example:
switch# show virtual-service list
Virtual Service List:
Name Status Package Name

guestshell+ Activated guestshe11.ova

switch# guestshell disable
You will not be able to access your guest shell if it is disabled. Are you sure you want
to disable the guest shell? (y/n) [n) y

2014 Jul 30 19:47:23 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Deactivating virtual
service 'guestshell+'
2014 Jul 30 18:47:29 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully deactivated
virtual service 'guestshell+'

switch# show virtual-service list
Virtual Service List:
Name Status Package Name
guestshell+ Deactivated guestshell.ova

The Guest Shell is reactivated with the guestshell enable command.Note

Destroying the Guest Shell
The guestshell destroy command uninstalls the Guest Shell and its artifacts. The command does not remove
the Guest Shell OVA.

When you destroy the Guest Shell and reload the system, the Guest Shell remains destroyed.
switch# show virtual-service list
Virtual Service List:
Name Status Package Name

guestshell+ Deactivated guestshell.ova

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
51

Shells and Scripting
Disabling the Guest Shell

switch# guestshell destroy

You are about to destroy the guest shell and all of its contents. Be sure to save your work.
Are you sure you want to continue? (y/n) [n] y
2014 Jul 30 18:49:10 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Destroying virtual service
'guestshell+'
2014 Jul 30 18:49:10 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Successfully destroyed
virtual service 'guestshell +'

switch# show virtual-service list
Virtual Service List:

The Guest Shell can be re-enabled with the guestshell enable command.Note

If you do not want to use the Guest Shell, you can remove it with the guestshell destroy command. Once the
Guest Shell has been removed, it remains removed for subsequent reloads. This means that when the Guest
Shell container has been removed and the switch is reloaded, the Guest Shell container is not automatically
started.

Note

Enabling the Guest Shell
The guestshell enable command installs the Guest Shell from a Guest Shell software package. By default,
the package that is embedded in the system image is used for the installation. The command is also used to
reactivate the Guest Shell if it has been disabled.

When the Guest Shell is enabled and the system is reloaded, the Guest Shell remains enabled.

Example:

switch# show virtual-service list
Virtual Service List:
switch# guestshell enable
2014 Jul 30 18:50:27 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Installing virtual service
'guestshell+'
2014 Jul 30 18;50;42 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Install success virtual
service 'guestshell+'; Activating

2014 Jul 30 18:50:42 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Activating virtual service
'guestshell+'
2014 Jul 30 18:51:16 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully activated
virtual service 'guestshell+'

switch# show virtual-service list
Virtual Service List:
Name Status Package Name
guestshell+ Activated guestshell.ova

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
52

Shells and Scripting
Enabling the Guest Shell

Enabling the Guest Shell in Base Boot Mode

You can choose to boot your system in base boot mode. When you boot your system in base boot mode, the
Guest Shell is not started by default. In order to use the Guest Shell in this mode, you must activate the RPMs
containing the virtualization infrastructure as well as the Guest Shell image. After, the Guest Shell and
virtual-service commands are available.

If the RPM activation commands are run in this order:

1. install activate guestshell

2. install activate virtualization

The Guest Shell container will be activated automatically as it would have been if the system had been booted
in full mode.

If the RPM activation commands are run in the reverse order:

1. install activate virtualization

2. install activate guestshell

Then the Guest Shell will not be enabled until you run the guestshell enable command.

Replicating the Guest Shell
The switch has a Guest Shell rootfswhich can be customized on one switch and can be deployed ontomultiple
switches.

The approach is to customize and then export the Guest Shell rootfs and store it on a file server. A POAP
script can download (import) the Guest Shell rootfs to other switches and install the specific Guest Shell
across many devices simultaneously.

Exporting Guest Shell rootfs

Use the guestshell export rootfs package destination-file-URI command to export a Guest Shell rootfs.

The destination-file-URI parameter is the name of the file that the Guest Shell rootfs is copied to. This file
allows for local URI options (bootflash, USB1, and so on).

The guestshell export rootfs package command:

• Disables the Guest Shell (if already enabled).

• Creates a guest shell import YAML file and inserts it into the /cisco directory of the rootfs ext4 file.

• Copies the rootfs ext4 file to the target URI location.

• Re-enables the Guest Shell if it had been previously enabled.

Importing Guest Shell rootfs

When importing a Guest Shell rootfs, there are two situations to consider:

• Use the guestshell enable package rootfs-file-URI command to import a Guest Shell rootfs when the
Guest Shell is in a destroyed state. This command brings up the Guest Shell with the specified package.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
53

Shells and Scripting
Replicating the Guest Shell

• Use the guestshell upgrade package rootfs-file-URI command to import a Guest Shell rootfs when the
Guest Shell is already installed. This command removes the existing Guest Shell and installs the specified
package.

The rootfs-file-URI parameter is the rootfs file that is stored on local storage (bootflash, USB, and so on).

When this command is executed with a file that is on bootflash, the file is moved to a storage pool on bootflash.

As a best practice, you should copy the file to the bootflash and validate the md5sum before using the
guestshell upgrade package rootfs-file-URI command.

The guestshell upgrade package rootfs-file-URI command can be executed from within the Guest Shell.Note

The rootfs file is not a Cisco signed package, you must configure to allow unsigned packages before enabling
as shown in the example.

(config-virt-serv-global)# signing level unsigned
Note: Support for unsigned packages has been user-enabled. Unsigned packages are not endorsed
by Cisco. User assumes all responsibility.

Note

To restore the embedded version of the rootfs:

• Use the guestshell upgrade command (without extra parameters) when the Guest Shell has already
been installed.

• Use the guestshell enable command (without extra parameters) when the Guest Shell had been destroyed.

Note

When running this command from within a Guest Shell, or outside a switch using NX-API, you must set
terminal dont-ask to skip any prompts.

Note

The guestshell enable package rootfs-file-URI command:

• Performs basic validation of the rootfs file.

• Moves the rootfs into the storage pool.

• Mounts the rootfs to extract the YAML file from the /cisco directory.

• Parses the YAML file to obtain VM definition (including resource requirements).

• Activates the Guest Shell.

Example workflow for guestshell enable :

switch# copy scp://user@10.1.1.1/my_storage/gs_rootfs.ext4 bootflash: vrf management
switch# guestshell resize cpu 8

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
54

Shells and Scripting
Importing Guest Shell rootfs

Note: System CPU share will be resized on Guest shell enable
switch# guestshell enable package bootflash:gs_rootfs.ext4
Validating the provided rootfs
switch# 2017 Jul 31 14:58:01 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Installing virtual
service 'guestshell+'
2017 Jul 31 14:58:09 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Install success virtual
service 'guestshell+'; Activating
2017 Jul 31 14:58:09 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Activating virtual service
'guestshell+'
2017 Jul 31 14:58:33 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully activated
virtual service 'guestshell+'

Workflow for guestshell upgrade is preceded by the existing Guest Shell being destroyed.Note

Resize values are cleared when the guestshell upgrade command is used.Note

Importing YAML File
A YAML file that defines some user modifiable characteristics of the Guest Shell is automatically created as
a part of the export operation. The YAML file is embedded into the Guest Shell rootfs in the /cisco directory.
The YAML file is not a complete descriptor for the Guest Shell container. The file only contains some of the
user-modifiable parameters.

Example of a guest shell import YAML file:

import-schema-version: "1.0"
info:
name: "GuestShell"
version: "2.4.0"
description: "Exported GuestShell: 20170216T175137Z"

app:
apptype: "lxc"
cpuarch: "x86_64"
resources:
cpu: 3
memory: 307200
disk:
- target-dir: "/"
capacity: 250

...

The YAML file is generated when the guestshell export rootfs package command is executed. The file
captures the values of the currently running Guest Shell.

The info section contains non-operational data that is used to help identify the Guest Shell. Some of the
information will be displayed in the output of the show guestshell detail command.

The description value is an encoding of the UTC time when the YAML file was created. The time string
format is the same as DTSTAMP in RFC5545 (iCal).

The resources section describes the resources that are required for hosting the Guest Shell. The value "/" for
the target-dir in the example identifies the disk as the rootfs.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
55

Shells and Scripting
Importing YAML File

If you specified resized values while the Guest Shell was destroyed, those values take precedence over the
values in the import YAML file when you use the guestshell enable package command.

Note

The cpuarch value indicates the CPU architecture that is expected for the container to run.

You can modify the YAML file (such as the description or increase the resource parameters, if appropriate)
after the export operation is complete.

Cisco provides a Python script that you can run to validate a modified YAML file with a JSON schema. It is
not meant to be a complete test (for example, device-specific resource limits are not checked), but it is able
to flag common errors. The Python script with examples is located at Guest Shell Import Export . The following
JSON file describes the schema for version 1.0 of the Guest Shell import YAML.

{
"$schema": "http://json-schema.org/draft-04/schema#",
"title": "Guest Shell import schema",
"description": "Schema for Guest Shell import descriptor file - ver 1.0",
"copyright": "2017 by Cisco systems, Inc. All rights reserved.",
"id": "",
"type": "object",
"additionalProperties": false,
"properties": {
"import-schema-version": {
"id": "/import-schema-version",
"type": "string",
"minLength": 1,
"maxLength": 20,
"enum": [

"1.0"
]

},
"info": {
"id": "/info",
"type": "object",
"additionalProperties": false,
"properties": {
"name": {
"id": "/info/name",
"type": "string",
"minLength": 1,
"maxLength": 29

},
"description": {
"id": "/info/description",
"type": "string",
"minLength": 1,
"maxLength": 199

},
"version": {
"id": "/info/version",
"type": "string",
"minLength": 1,
"maxLength": 63

},
"author-name": {
"id": "/info/author-name",
"type": "string",
"minLength": 1,
"maxLength": 199

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
56

Shells and Scripting
Importing YAML File

https://github.com/datacenter/opennxos/tree/master/guestshell_import_export

},
"author-link": {
"id": "/info/author-link",
"type": "string",
"minLength": 1,
"maxLength": 199

}
}

},
"app": {
"id": "/app",
"type": "object",
"additionalProperties": false,
"properties": {
"apptype": {
"id": "/app/apptype",
"type": "string",
"minLength": 1,
"maxLength": 63,
"enum": [
"lxc"

]
},
"cpuarch": {
"id": "/app/cpuarch",
"type": "string",
"minLength": 1,
"maxLength": 63,
"enum": [
"x86_64"

]
},
"resources": {
"id": "/app/resources",
"type": "object",
"additionalProperties": false,
"properties": {
"cpu": {
"id": "/app/resources/cpu",
"type": "integer",
"multipleOf": 1,
"maximum": 100,
"minimum": 1

},
"memory": {
"id": "/app/resources/memory",
"type": "integer",
"multipleOf": 1024,
"minimum": 1024

},
"disk": {
"id": "/app/resources/disk",
"type": "array",
"minItems": 1,
"maxItems": 1,
"uniqueItems": true,
"items": {
"id": "/app/resources/disk/0",
"type": "object",
"additionalProperties": false,
"properties": {
"target-dir": {
"id": "/app/resources/disk/0/target-dir",
"type": "string",

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
57

Shells and Scripting
Importing YAML File

"minLength": 1,
"maxLength": 1,
"enum": [
"/"

]
},
"file": {
"id": "/app/resources/disk/0/file",
"type": "string",
"minLength": 1,
"maxLength": 63

},
"capacity": {
"id": "/app/resources/disk/0/capacity",
"type": "integer",
"multipleOf": 1,
"minimum": 1

}
}

}
}

},
"required": [
"memory",
"disk"

]
}

},
"required": [
"apptype",
"cpuarch",
"resources"

]
}

},
"required": [
"app"

]
}

show guestshell Command
The output of the show guestshell detail command includes information that indicates whether the Guest
Shell was imported or was installed from an OVA.

Example of the show guestshell detail command after importing rootfs.
switch# show guestshell detail
Virtual service guestshell+ detail
State : Activated
Package information
Name : guestshell.ova
Path : /isanboot/bin/guestshell.ova
Application
Name : GuestShell
Installed version : 2.4(0.0)
Description : Cisco Systems Guest Shell

Signing
Key type : Cisco release key
Method : SHA-1

Licensing
Name : None
Version : None

Resource reservation

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
58

Shells and Scripting
show guestshell Command

Disk : 190 MB
Memory : 256 MB
CPU : 1% system CPU

Attached devices
Type Name Alias

Disk _rootfs
Disk /cisco/core
Serial/shell
Serial/aux
Serial/Syslog serial2
Serial/Trace serial3

Verifying Virtual Service and Guest Shell Information
You can verify virtual service and Guest Shell information with the following commands:

DescriptionCommand

Displays the global state and
limits for virtual services.

show virtual-service global

switch# show virtual-service global
Virtual Service Global State and Virtualization Limits:

Infrastructure version : 1.10
Total virtual services installed : 1
Total virtual services activated : 1

Machine types supported : LXC
Machine types disabled : KVM

Maximum VCPUs per virtual service : 1

Resource virtualization limits:
Name Quota Committed Available

system CPU (%) 6 1 5
memory (MB) 5376 256 5120
bootflash (MB) 8192 190 8002

switch#

Displays a summary of the
virtual services, the status of
the virtual services, and
installed software packages.

show virtual-service list

switch# show virtual-service list

Virtual Service List:

Name Status Package Name
--
guestshell+ Activated guestshell.ova

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
59

Shells and Scripting
Verifying Virtual Service and Guest Shell Information

DescriptionCommand

Displays details about the
guest shell package (such as
version, signing resources, and
devices).

show guestshell detail

switch# show guestshell detail
Virtual service guestshell+ detail
State : Activated
Package information
Name : guestshell.ova
Path : /isanboot/bin/guestshell.ova
Application
Name : GuestShell
Installed version : 2.4(0.0)
Description : Cisco Systems Guest Shell

Signing
Key type : Cisco release key
Method : SHA-1

Licensing
Name : None
Version : None

Resource reservation
Disk : 190 MB
Memory : 256 MB
CPU : 1% system CPU

Attached devices
Type Name Alias

Disk _rootfs
Disk /cisco/core
Serial/shell
Serial/aux
Serial/Syslog serial2
Serial/Trace serial3

Persistently Starting Your Application from the Guest Shell
Your application should have a systemd / systemctl service file that gets installed in
/usr/lib/systemd/system/application_name.service. This service file should have the following
general format:
[Unit]
Description=Put a short description of your application here

[Service]
ExecStart=Put the command to start your application here
Restart=always
RestartSec=10s

[Install]
WantedBy=multi-user.target

To run systemd as a specific user, add User=<username> to the [Service] section of your service.Note

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
60

Shells and Scripting
Persistently Starting Your Application from the Guest Shell

Procedure for Persistently Starting Your Application from the Guest Shell

Procedure

Step 1 Install your application service file that you created above into
/usr/lib/systemd/system/application_name.service

Step 2 Start your application with systemctl start application_name

Step 3 Verify that your application is running with systemctl status -l application_name

Step 4 Enable your application to be restarted on reload with systemctl enable application_name

Step 5 Verify that your application is running with systemctl status -l application_name

An Example Application in the Guest Shell
The following example demonstrates an application in the Guest Shell:
root@guestshell guestshell]# cat /etc/init.d/hello.sh
#!/bin/bash

OUTPUTFILE=/tmp/hello

rm -f $OUTPUTFILE
while true
do

echo $(date) >> $OUTPUTFILE
echo 'Hello World' >> $OUTPUTFILE
sleep 10

done
[root@guestshell guestshell]#
[root@guestshell guestshell]#
[root@guestshell system]# cat /usr/lib/systemd/system/hello.service
[Unit]
Description=Trivial "hello world" example daemon

[Service]
ExecStart=/etc/init.d/hello.sh &
Restart=always
RestartSec=10s

[Install]
WantedBy=multi-user.target
[root@guestshell system]#
[root@guestshell system]# systemctl start hello
[root@guestshell system]# systemctl enable hello
[root@guestshell system]# systemctl status -l hello
hello.service - Trivial "hello world" example daemon

Loaded: loaded (/usr/lib/systemd/system/hello.service; enabled)
Active: active (running) since Sun 2015-09-27 18:31:51 UTC; 10s ago

Main PID: 355 (hello.sh)
CGroup: /system.slice/hello.service

##355 /bin/bash /etc/init.d/hello.sh &
##367 sleep 10

Sep 27 18:31:51 guestshell hello.sh[355]: Executing: /etc/init.d/hello.sh &
[root@guestshell system]#

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
61

Shells and Scripting
Procedure for Persistently Starting Your Application from the Guest Shell

[root@guestshell guestshell]# exit
exit
[guestshell@guestshell ~]$ exit
logout
switch# reload
This command will reboot the system. (y/n)? [n] y

After reload
[root@guestshell guestshell]# ps -ef | grep hello
root 20 1 0 18:37 ? 00:00:00 /bin/bash /etc/init.d/hello.sh &
root 123 108 0 18:38 pts/4 00:00:00 grep --color=auto hello
[root@guestshell guestshell]#
[root@guestshell guestshell]# cat /tmp/hello
Sun Sep 27 18:38:03 UTC 2015
Hello World
Sun Sep 27 18:38:13 UTC 2015
Hello World
Sun Sep 27 18:38:23 UTC 2015
Hello World
Sun Sep 27 18:38:33 UTC 2015
Hello World
Sun Sep 27 18:38:43 UTC 2015
Hello World
[root@guestshell guestshell]#

Running under systemd / systemctl, your application is automatically restarted if it dies (or if you
kill it). The Process ID is originally 226. After killing the application, it is automatically restarted with a
Process ID of 257.
[root@guestshell guestshell]# ps -ef | grep hello
root 226 1 0 19:02 ? 00:00:00 /bin/bash /etc/init.d/hello.sh &
root 254 116 0 19:03 pts/4 00:00:00 grep --color=auto hello
[root@guestshell guestshell]#
[root@guestshell guestshell]# kill -9 226
[root@guestshell guestshell]#
[root@guestshell guestshell]# ps -ef | grep hello
root 257 1 0 19:03 ? 00:00:00 /bin/bash /etc/init.d/hello.sh &
root 264 116 0 19:03 pts/4 00:00:00 grep --color=auto hello
[root@guestshell guestshell]#

Troubleshooting Guest Shell Issues

Unable to Access Files on Bootflash from Root in the Guest Shell

You may find that you are unable to access files on the bootflash from root in the Guest Shell.

From the host:
root@switch# ls -al /bootflash/try.that
-rw-r--r-- 1 root root 0 Apr 27 20:55 /bootflash/try.that
root@switch#

From the Guest Shell:
[root@guestshellbootflash]# ls -al /bootflash/try.that
-rw-r--r-- 1 65534 host-root 0 Apr 27 20:55 /bootflash/try.that
[root@guestshellbootflash]# echo "some text" >> /bootflash/try.that
-bash: /bootflash/try.that: Permission denied
[root@guestshellbootflash]#

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
62

Shells and Scripting
Troubleshooting Guest Shell Issues

This might be because the user namespace is being used to protect the host system, so the root in the Guest
Shell is not actually the root of the system.

To recover from this issue, verify that the file permissions and group-id of the files allow for shared files on
bootflash to be accessed as expected. You may need to change the permissions or group-id from the host Bash
session.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
63

Shells and Scripting
Troubleshooting Guest Shell Issues

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
64

Shells and Scripting
Troubleshooting Guest Shell Issues

C H A P T E R 5
Innovium Shell

This chapter contains the following topics:

• About the Innovium Shell, on page 65
• Guidelines and Limitations, on page 65
• Accessing the Innovium Shell Through CLI API, on page 66
• Passing Commands to the Innovium Shell, on page 68

About the Innovium Shell
The Cisco Nexus 3400-S platform switches consist of the following:

• Cisco Nexus 3408-S, which is a 4-RU switch with 8 module slots. The module slots can accept a mix of
line-card expansion modules (LEMs) for extra high-speed connectivity.

• Cisco Nexus 3432D-S, which is a 1-RU chassis switch with a fixed port configuration. This switch has
no module slots or LEMs.

Cisco Nexus 3400-S platform switches use Innovium Teralynx ASICs, which exist on the switch motherboard.
A specific shell enables access directly to the ASICs, or passing ASIC commands to the shell from Cisco
NX-OS. This shell is the Innovium shell (innoshell).

Guidelines and Limitations
Following are the guidelines and limitations for the Innovium shell (innoshell):

• The innoshell is for authorized use only. Use it with extreme caution and only when authorized by Cisco.

• You can access and read information from the Innovium Teralynx ASICs without any limitations.
However, Cisco does not recommend changing the Innovium configuration settings.

• The Innovium shell is supported on the Cisco Nexus 3408-S and the Cisco Nexus 3432D-S switches
only.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
65

Accessing the Innovium Shell Through CLI API
The Innovium shell is available directly from EXECmode at the top level of the NX-OS command hierarchy.
The Innovium shell enables you to issue commands directly to the Innovium Teralynx ASICs.
switch-1# ?
...
gunzip Uncompresses LZ77 coded files
gzip Compresses file using LZ77 coding
hardware Change hardware usage settings
innoshell Innoshell
install Upgrade software
ip Display IP information
key Encryption key for strong encryption
...

As an alternative, you can enter individual Innovium-shell commands directly from NX-OS. See Passing
Commands to the Innovium Shell, on page 68.

The Innovium shell is supported on the Innovium Teralynx ASICs, which are in Cisco Nexus 3408-S and
Cisco Nexus 3432D-S switches. You can check the model of your switch by entering the show module
command.

Example:
switch-1# show module
Mod Ports Module-Type Model Status
--- ----- ------------------------------------- --------------------- ---------
1 0 Supervisor N3K-C3408-S active *

This topic documents how to access the Innovium shell from NX-OS, use the online Help function, and exit
the Innovium shell. For detailed documentation about the Innovium shell and its commands, consult the
Innovium Teralynx documentation.

• To enter the Innovium shell, enter the innoshell command.

Example:
switch-1# innoshell
Warning: innoshell access should be used with caution
exec /lc/isan/bin/innoshell
moving ifcsrshell.log to ifcsrshell.log.bkp
Script started, file is ifcsrshell.log

Connected to Innovium Shell Server

Innovium Remote Command Shell Client.
Type '?' or 'help' for help. Type 'exit' or 'quit' to exit shell.

IVM-R:0>

The command prompt changes to IVM-R:0 to indicate that you are in the Innovium shell.

• To get a list of top-level commands in the hierarchy, type ? (question mark) or help.

Example:
IVM-R:0>?

+--+
| Innovium CLI Shell Help Menu : Description

|
|--|

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
66

Shells and Scripting
Accessing the Innovium Shell Through CLI API

| exit : Quit the Innovium shell
|

| source : Source a command file with shell commands
|

| redirect : Redirect outputs from a shell to a file
|

| pen : Pen Access Commands
|

| ifcs : IFCS Api Debug Commands
|

| console : Start an interactive Python Interpreter from within
the shell |
| clear : Clear screen

|
| run : Clear screen

|
+--+

• To get detailed syntax help for a command, type the command name plus ? (question mark) or help.

Example:
IVM-R:0>pen ?

Usage:
pen read ib <ib#> pen_name <index> - node pen read <pen_id>

...
pen write ib <ib#> pen_name <index> - node pen write <pen_id>

...
pen modify ib <ib#> pen_name <index> - node pen modify <pen_id>

...
pen insert ib <ib#> pen_name <index> - node pen insert <pen_id>

...
pen lookup ib <ib#> pen_name <index> - node pen lookup <pen_id>

...
pen delete ib <ib#> pen_name <index> - node pen delete <pen_id>

...
pen flush ib <ib#> <pen_id> - node pen flush <pen_id>

...

pen help or ? - show this text
Command Details:

Type : "pen <subcmd> ? or pen <subcmd> help" For more specific sub
cmd help

• Notice that command help is nested, so you can get help about subcommands.

Example:
IVM-R:0>pen read ib ?

Usage::
pen read ib <ib> [pic <pic_id>] <pen-name> [count] - node pen read

Command Options:
<ib> - IB #
[pic-id] - pic_id (mandatory for pic

pens)
<pen_name> - pen name

[count] - number of entries (optional)

<index> - Read index (mandatory for
Direct index pen)

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
67

Shells and Scripting
Accessing the Innovium Shell Through CLI API

IVM-R:0>

• To exit the Innovium shell, enter either the exit or quit command, which terminates the current Innovium
CLI session and returns you to the NX-OS prompt.

Example:
IVM-R:0>exit
Script done, file is ifcsrshell.log
switch-1#

Passing Commands to the Innovium Shell
Besides logging in to the Innovium shell, you can pass Innvoium shell commands directly from NX-OS to
the Innovium shell. The command is executed in the Innovium shell, and then returns its output to NX-OS.
Passing Innovium commands from Cisco NX-OS to the Innovium shell is helpful if you have the exact syntax
of the command, or if you have just a few tasks to do in the Innovium shell.

To pass the command to the Innovium shell, issue the innoshell cmd command and enclose the exact command
syntax in double quotes.

Example: This example is equivalent to:

1. Logging in to the Innovium shell

2. Issuing ifcs show ecmp

3. Logging out of the Innovium shell

switch-1# innoshell cmd "ifcs show ecmp"
exec /lc/isan/bin/innoshell ifcs show ecmp
Script started on Tue Apr 16 13:47:49 2019
ifcs show ecmp
exit

Connected to Innovium Shell Server

Innovium Remote Command Shell Client.
Type '?' or 'help' for help. Type 'exit' or 'quit' to exit shell.

IVM-R:0>ifcs show ecmp
Total ecmp count: 3
+---+
| ecmp | type | number_of_slots | group_size | member_count |
|---|
| (ecmp: 1) | DEFAULT | 0 | 0 | 2 |
| (ecmp: 2) | DEFAULT | 0 | 0 | 2 |
| (ecmp: 4) | DEFAULT | 0 | 0 | 4 |
+---+

IVM-R:0>exit

Script done on Tue Apr 16 13:47:55 2019

switch-1#

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
68

Shells and Scripting
Passing Commands to the Innovium Shell

C H A P T E R 6
Python API

• About the Python API, on page 69
• Using Python, on page 69

About the Python API
Beginning with Cisco NX-OS Release 9.3(5), Python 3 is now supported. Python 2.7 will continue to be
supported. We recommend that you use the python3 command for new scripts.

The Cisco Nexus 3400-S platform switches, support Python v2.7.11 and v3.7.3 in both interactive and
counteractive (script) modes and are available in the Guest Shell. .

Python is an easy to learn, powerful programming language. It has efficient high-level data structures and a
simple but effective approach to object-oriented programming. Python's elegant syntax and dynamic typing,
together with its interpreted nature, make it an ideal language for scripting and rapid application development
in many areas on most platforms.

The Python interpreter and the extensive standard library are freely available in source or binary form for all
major platforms from the Python website:

http://www.python.org/

The same site also contains distributions of and pointers to many free third-party Python modules, programs
and tools, and more documentation.

The Python scripting capability gives programmatic access to the device's command-line interface (CLI) to
perform various tasks and Power On Auto Provisioning (POAP) or Embedded EventManager (EEM) actions.
Python can be accessed from the Bash shell.

The Python interpreter is available in the Cisco NX-OS software.

Using Python
This section describes how to write and execute Python scripts.

Cisco Python Package
Cisco NX-OS provides a Cisco Python package that enables access to many core network-device modules,
such as interfaces, VLANs, VRFs, ACLs, and routes. You can display the details of the Cisco Python package

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
69

http://www.python.org

by entering the help() command. To obtain additional information about the classes and methods in a module,
you can run the help command for a specific module. For example, help(cisco.interface) displays the properties
of the cisco.interface module.

The following is an example of how to display information about the Cisco Python package:
>>> import cisco
>>> help(cisco)
Help on package cisco:

NAME
cisco

FILE
/isan/python/scripts/cisco/__init__.py

PACKAGE CONTENTS
acl
bgp
cisco_secret
cisco_socket
feature
interface
key
line_parser
md5sum
nxcli
ospf
routemap
routes
section_parser
ssh
system
tacacs
vrf

CLASSES
__builtin__.object

cisco.cisco_secret.CiscoSecret
cisco.interface.Interface
cisco.key.Key

The following is an example of how to display information about the Cisco Python Package for Python 3:
switch# python3
Python 3.7.3 (default, Nov 20 2019, 14:38:01)
[GCC 5.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import cisco
>>> help(cisco)
Help on package cisco:

NAME
cisco

PACKAGE CONTENTS
acl
bgp
buffer_depth_monitor
check_port_discards
cisco_secret
feature
historys
interface

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
70

Shells and Scripting
Cisco Python Package

ipaddress
key
line_parser
mac_address_table
md5sum
nxcli
nxos_cli
ospf
routemap
routes
section_parser
ssh
system
tacacs
transfer
vlan
vrf

CLASSES
builtins.dict(builtins.object)
cisco.history.History
builtins.object
cisco.cisco_secret.CiscoSecret
cisco.interface.Interface
cisco.key.Key

Using the CLI Command APIs
The Python programming language uses three APIs that can execute CLI commands. The APIs are available
from the Python CLI module.

These APIs are listed in the following table. You must enable the APIs with the from cli import * command.
The arguments for these APIs are strings of CLI commands. To execute a CLI command through the Python
interpreter, you enter the CLI command as an argument string of one of the following APIs:

Table 3: CLI Command APIs

DescriptionAPI

Returns the raw output of CLI commands, including
control or special characters.

The interactive Python interpreter prints
control or special characters 'escaped'. A
carriage return is printed as '\n' and gives
results that can be difficult to read. The
clip() API gives results that are more
readable.

Note

cli()

Example:
string = cli (“cli-command”)

Returns JSON output for cli-command, if XML
support exists for the command, otherwise an
exception is thrown.

This API can be useful when searching the
output of show commands.

Note

clid()

Example:
json_string = clid (“cli-command”)

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
71

Shells and Scripting
Using the CLI Command APIs

DescriptionAPI

Prints the output of the CLI command directly to
stdout and returns nothing to Python.

clip (“cli-command”)

is equivalent to
r=cli(“cli-command”)
print r

Note

clip()

Example:
clip (“cli-command”)

When two or more commands are run individually, the state is not persistent from one command to subsequent
commands.

In the following example, the second command fails because the state from the first command does not persist
for the second command:
>>> cli("conf t")
>>> cli("interface eth4/1")

When two or more commands are run together, the state is persistent from one command to subsequent
commands.

In the following example, the second command is successful because the state persists for the second and
third commands:
>>> cli("conf t ; interface eth4/1 ; shut")

Commands are separated with " ; " as shown in the example. The semicolon (;) must be surrounded with
single blank characters.

Note

Invoking the Python Interpreter from the CLI
The following example shows how to invoke Python 2 from the CLI:

The Python interpreter is designated with the ">>>" or "…" prompt.Note

Python 2.7 is End of Support, Future NX-OS software deprecates Python 2.7 support. We recommend for
new scripts to use python3' instead. Type python3 to use the new shell.

Important

switch# python
switch# python

Warning: Python 2.7 is End of Support, and future NXOS software will deprecate
python 2.7 support. It is recommended for new scripts to use 'python3' instead.
Type "python3" to use the new shell.

Python 2.7.11 (default, Jun 4 2020, 09:48:24)
[GCC 4.6.3] on linux2

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
72

Shells and Scripting
Invoking the Python Interpreter from the CLI

Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> from cli import *
>>> import json
>>> cli('configure terminal ; interface loopback 1 ; no shut')
''
>>> intflist=json.loads(clid('show interface brief'))
>>> i=0
>>> while i < len(intflist['TABLE_interface']['ROW_interface']):
... intf=intflist['TABLE_interface']['ROW_interface'][i]
... i=i+1
... if intf['state'] == 'up':
... print intf['interface']
...
mgmt0
loopback1
>>>

The following example shows how to invoke Python 3 from the CLI:
switch# python3
Python 3.7.3 (default, Nov 20 2019, 14:38:01)
[GCC 5.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> from cli import *
>>> import json
>>> cli('configure terminal ; interface loopback 1 ; no shut')
''
>>> intflist=json.loads(clid('show interface brief'))
>>> i=0
>>> while i < len(intflist['TABLE_interface']['ROW_interface']):
... intf=intflist['TABLE_interface']['ROW_interface'][i]
... i=i+1
... if intf['state'] == 'up':
... print(intf['interface'])
...
mgmt0
loopback1
>>>

Display Formats
The following examples show various display formats using the Python APIs:

Example 1:
>>> from cli import *
>>> cli("conf ; interface loopback 1")
''
>>> clip('where detail')
mode:
username: admin
vdc: switch
routing-context vrf: default

Example 2:
>>> from cli import *
>>> cli("conf ; interface loopback 1")
''

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
73

Shells and Scripting
Display Formats

>>> cli('where detail')
' mode: \n username: admin\n vdc:
switch\n routing-context vrf: default\n'
>>>

Example 3:
>>> r = cli('where detail')
>>> print(r)
mode:
username: admin
vdc: switch
routing-context vrf: default

>>>

Example 4:

Non-Interactive Python
A Python script can run in non-interactive mode by providing the Python script name as an argument to the
Python CLI command. Python scripts must be placed under the bootflash or volatile scheme. A maximum of
32 command-line arguments for the Python script are allowed with the Python CLI command.

The Cisco Nexus 3400-S platform switches also support the source CLI command for running Python scripts.
The bootflash:scripts directory is the default script directory for the source CLI command.

This example shows the script first and then executing it. Saving is like bringing any file to the bootflash.
switch# show file bootflash:scripts/deltaCounters.py
#!/isan/bin/python3
from cli import *
import sys, time
ifName = sys.argv[1]
delay = float(sys.argv[2])
count = int(sys.argv[3])
cmd = 'show interface ' + ifName + ' counters'
out = json.loads(clid(cmd))
rxuc = int(out['TABLE_rx_counters']['ROW_rx_counters'][0]['eth_inucast'])
rxmc = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inmcast'])
rxbc = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inbcast'])
txuc = int(out['TABLE_tx_counters']['ROW_tx_counters'][0]['eth_outucast'])
txmc = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outmcast'])
txbc = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outbcast'])
print ('row rx_ucast rx_mcast rx_bcast tx_ucast tx_mcast tx_bcast')
print ('===')
print (' %8d %8d %8d %8d %8d %8d' % (rxuc, rxmc, rxbc, txuc, txmc, txbc))
print ('===')
i = 0
while (i < count):

time.sleep(delay)
out = json.loads(clid(cmd))
rxucNew = int(out['TABLE_rx_counters']['ROW_rx_counters'][0]['eth_inucast'])
rxmcNew = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inmcast'])
rxbcNew = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inbcast'])
txucNew = int(out['TABLE_tx_counters']['ROW_tx_counters'][0]['eth_outucast'])
txmcNew = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outmcast'])
txbcNew = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outbcast'])
i += 1
print ('%-3d %8d %8d %8d %8d %8d %8d' % (i, rxucNew - rxuc, rxmcNew - rxmc, rxbcNew -

rxbc, txucNew - txuc, txmcNew - txmc, txbcNew - txbc))

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
74

Shells and Scripting
Non-Interactive Python

switch# python bootflash:scripts/deltaCounters.py mgmt0 1 5
row rx_ucast rx_mcast rx_bcast tx_ucast tx_mcast tx_bcast
===

291 8233 1767 185 57 2
===
1 1 4 1 1 0 0
2 2 5 1 2 0 0
3 3 9 1 3 0 0
4 4 12 1 4 0 0
5 5 17 1 5 0 0
switch#

The following example shows how a source command specifies command-line arguments. In the example,
policy-map is an argument to the cgrep python script. The example also shows that a source command can
follow the pipe operator ("|").
switch# show running-config | source sys/cgrep policy-map

policy-map type network-qos nw-pfc
policy-map type network-qos no-drop-2
policy-map type network-qos wred-policy
policy-map type network-qos pause-policy
policy-map type qos foo
policy-map type qos classify
policy-map type qos cos-based
policy-map type qos no-drop-2
policy-map type qos pfc-tor-port

Running Scripts with Embedded Event Manager
OnCisco Nexus 3400-S platform switches, Embedded EventManager (EEM) policies support Python scripts.

The following example shows how to run a Python script as an EEM action:

• An EEM applet can include a Python script with an action command.
switch# show running-config eem

!Command: show running-config eem
!Running configuration last done at: Thu Jun 25 15:29:38 2020
!Time: Thu Jun 25 15:33:19 2020

version 9.3(5) Bios:version 07.67
event manager applet a1
event cli match "show clock"
action 1 cli python bootflash:pydate.py

switch# show file logflash:vdc_1/event_archive_1 | last 33

eem_event_time:06/25/2020,15:34:24 event_type:cli event_id:24 slot:active(1) vdc
:1 severity:minor applets:a1
eem_param_info:command = "exshow clock"
Starting with policy a1
stty: standard input: Inappropriate ioctl for device
Executing the following commands succeeded:

python bootflash:pydate.py
Completed executing policy a1
Event Id:24 event type:10241 handling completed

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
75

Shells and Scripting
Running Scripts with Embedded Event Manager

• You can search for the action that is triggered by the event in the log file by running the show file
logflash:event_archive_1 command.
switch# show file logflash:event_archive_1 | last 33

eem_event_time:05/01/2011,19:40:28 event_type:cli event_id:8 slot:active(1)
vdc:1 severity:minor applets:a1
eem_param_info:command = "exshow clock"
Starting with policy a1
Python

2011-05-01 19:40:28.644891
Executing the following commands succeeded:

python bootflash:pydate.py

PC_VSH_CMD_TLV(7679) with q

Python Integration with Cisco NX-OS Network Interfaces
On Cisco Nexus 3400-S platform switches, Python is integrated with the underlying Cisco NX-OS network
interfaces. You can switch from one virtual routing context to another by setting up a context through the
cisco.vrf.set_global_vrf() API.

The following example shows how to retrieve an HTML document over themanagement interface of a device.
You can also establish a connection to an external entity over the in-band interface by switching to a desired
virtual routing context.
switch# python

Warning: Python 2.7 is End of Support, and future NXOS software will deprecate
python 2.7 support. It is recommended for new scripts to use 'python3' instead.
Type "python3" to use the new shell.

Python 2.7.11 (default, Jun 4 2020, 09:48:24)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import urllib2
>>> from cisco.vrf import *
>>> set_global_vrf('management')
>>> page=urllib2.urlopen('http://172.23.40.211:8000/welcome.html')
>>> print page.read()
Hello Cisco Nexus 9000
>>>
>>> import cisco
>>> help(cisco.vrf.set_global_vrf)
Help on function set global vrf in module cisco.vrf:
set global vrf(vrf)
Sets the global vrf. Any new sockets that are created (using socket.socket)
will automatically get set to this vrf (including sockets used by other
python libraries).
Arguments:
vrf: VRF name (string) or the VRF ID (int).
Returns: Nothing
>>>

Cisco NX-OS Security with Python
CiscoNX-OS resources are protected by the CiscoNX-OS Sandbox layer of software and by the CLI role-based
access control (RBAC).

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
76

Shells and Scripting
Python Integration with Cisco NX-OS Network Interfaces

All users who are associated with a Cisco NX-OS network-admin or dev-ops role are privileged users. Users
who are granted access to Python with a custom role are regarded as nonprivileged users. Nonprivileged users
have limited access to Cisco NX-OS resources, such as the file system, guest shell, and Bash commands.
Privileged users have greater access to all the resources of Cisco NX-OS.

Examples of Security and User Authority
The following example shows how a privileged user runs commands:

Python 3 example.
switch# python3
Python 3.7.3 (default, Nov 20 2019, 14:38:01)
[GCC 5.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> os.system('whoami')
admin
0
>>> f=open('/tmp/test','w')
>>> f.write('hello from python')
17
>>> f.close()
>>> r=open('/tmp/test','r')
>>> print(r.read())
hello from python
>>> r.close()
>>>

The following example shows a nonprivileged user being denied access:
switch# python3
Python 3.7.3 (default, Nov 20 2019, 14:38:01)
[GCC 5.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> os.system('whoami')
system(whoami): rejected!
-1
>>> f=open('/tmp/test','w')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

PermissionError: [Errno 13] Permission denied: '/tmp/test'
>>>

RBAC controls CLI access based on the login user privileges. A login user's identity is given to Python that
is invoked from the CLI shell or from Bash. Python passes the login user's identity to any subprocess that is
invoked from Python.

The following is an example for a privileged user:
>>> from cli import *
>>> cli('show clock')
'Warning: No NTP peer/server configured. Time may be out of sync.\n15:39:39.513 UTC Thu Jun
25 2020\nTime source is NTP\n'
>>> cli('configure terminal ; vrf context myvrf')
''
>>> clip('show running-config l3vm')

!Command: show running-config l3vm
!Running configuration last done at: Thu Jun 25 15:39:49 2020
!Time: Thu Jun 25 15:39:55 2020

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
77

Shells and Scripting
Examples of Security and User Authority

version 9.3(5) Bios:version 07.67

interface mgmt0
vrf member management

vrf context blue
vrf context management
vrf context myvrf

The following is an example for a nonprivileged user:
>>> from cli import *
>>> cli('show clock')
'11:18:47.482 AM UTC Sun May 08 2011\n'
>>> cli('configure terminal ; vrf context myvrf2')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/isan/python/scripts/cli.py", line 20, in cli
raise cmd_exec_error(msg)

errors.cmd_exec_error: '% Permission denied for the role\n\nCmd exec error.\n'

The following example shows an RBAC configuration:
switch# show user-account
user:admin

this user account has no expiry date
roles:network-admin

user:pyuser
this user account has no expiry date
roles:network-operator python-role

switch# show role name python-role

Example of Running Script with Schedular
•

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
78

Shells and Scripting
Example of Running Script with Schedular

C H A P T E R 7
Scripting with TCL

This chapter contains the following topics:

• About Tcl, on page 79
• Running the Tclsh Command, on page 82
• Navigating Cisco NX-OS Modes from the Tclsh Command, on page 82
• Tcl References, on page 83

About Tcl
Tcl (pronounced "tickle") is a scripting language that increases flexibility of CLI commands. You can use Tcl
to extract certain values in the output of a show command, perform switch configurations, run Cisco NX-OS
commands in a loop, or define Embedded Event Manager (EEM) policies in a script.

This section describes how to run Tcl scripts or run Tcl interactively on Cisco NX-OS devices.

Guidelines and Limitations
Following are guidelines and limitations for TCL scripting:

• The switch supports TCL.

• Some processes and show commands can cause a large amount of output. If you are running scripts, and
need to terminate long-running output, use Ctrl+C (not Ctrl+Z) to terminate the command output. If you
use Ctrl+Z, a SIGCONT (signal continuation) message can be generated, which can cause the script to
halt. Scripts that are halted through SIGCONT messages require your intervention to resume operation.

Tclsh Command Help
Command help is not available for Tcl commands. You can still access the help functions of Cisco NX-OS
commands from within an interactive Tcl shell.

This example shows the lack of Tcl command help in an interactive Tcl shell:
switch# tclsh
switch-tcl# set x 1
switch-tcl# puts ?

^
% Invalid command at '^' marker.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
79

switch-tcl# configure ?
<CR>
session Configure the system in a session
terminal Configure the system from terminal input

switch-tcl#

In the preceding example, the Cisco NX-OS command help function is still available but the Tcl puts command
returns an error from the help function.

Note

Tclsh Command History
You can use the arrow keys on your terminal to access commands you previously entered in the interactive
Tcl shell.

The tclsh command history is not saved when you exit the interactive Tcl shell.Note

Tclsh Tab Completion
You can use tab completion for Cisco NX-OS commands when you are running an interactive Tcl shell. Tab
completion is not available for Tcl commands.

Tclsh CLI Command
Although you can directly access Cisco NX-OS commands from within an interactive Tcl shell, you can only
execute Cisco NX-OS commands in a Tcl script if they are prepended with the Tcl cli command.

In an interactive Tcl shell, the following commands are identical and execute properly:
switch-tcl# cli show module 1 | incl Mod
switch-tcl# cli "show module 1 | incl Mod"
switch-tcl# show module 1 | incl Mod

In a Tcl script, you must prepend Cisco NX-OS commands with the Tcl cli command as shown in the following
example:
set x 1
cli show module $x | incl Mod
cli "show module $x | incl Mod"

If you use the following commands in your script, the script fails and the Tcl shell displays an error:
show module $x | incl Mod
"show module $x | incl Mod"

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
80

Shells and Scripting
Tclsh Command History

Tclsh Command Separation
The semicolon (;) is the command separator in both Cisco NX-OS and Tcl. To execute multiple Cisco NX-OS
commands in a Tcl command, you must enclose the Cisco NX-OS commands in quotes ("").

In an interactive Tcl shell, the following commands are identical and execute properly:
switch-tcl# cli "configure terminal ; interface loopback 10 ; description loop10"
switch-tcl# cli configure terminal ; cli interface loopback 10 ; cli description loop10
switch-tcl# cli configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

switch(config-tcl)# cli interface loopback 10
switch(config-if-tcl)# cli description loop10
switch(config-if-tcl)#

In an interactive Tcl shell, you can also execute Cisco NX-OS commands directly without prepending the Tcl
cli command:
switch-tcl# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

switch(config-tcl)# interface loopback 10
switch(config-if-tcl)# description loop10
switch(config-if-tcl)#

Tcl Variables
You can use Tcl variables as arguments to the Cisco NX-OS commands. You can also pass arguments into
Tcl scripts. Tcl variables are not persistent.

The following example shows how to use a Tcl variable as an argument to a Cisco NX-OS command:
switch# tclsh
switch-tcl# set x loop10
switch-tcl# cli "configure terminal ; interface loopback 10 ; description $x"
switch(config-if-tcl)#

Tclquit
The tclquit command exits the Tcl shell regardless of which Cisco NX-OS commandmode is currently active.
You can also press Ctrl-C to exit the Tcl shell. The exit and end commands change Cisco NX-OS command
modes. The exit command terminates the Tcl shell only from the EXEC command mode.

Tclsh Security
The Tcl shell is executed in a sandbox to prevent unauthorized access to certain parts of the Cisco NX-OS
system. The system monitors CPU, memory, and file system resources being used by the Tcl shell to detect
events such as infinite loops, excessive memory utilization, and so on.

You configure the initial Tcl environment with the scripting tcl init init-file command.

You can define the looping limits for the Tcl environment with the scripting tcl recursion-limit iterations
command. The default recursion limit is 1000 iterations.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
81

Shells and Scripting
Tclsh Command Separation

Running the Tclsh Command
You can run Tcl commands from either a script or on the command line using the tclsh command.

You cannot create a Tcl script file at the CLI prompt. You can create the script file on a remote device and
copy it to the bootflash: directory on the Cisco NX-OS device.

Note

Procedure

PurposeCommand or Action

Starts a Tcl shell.tclsh [bootflash:filename [argument ...
]]

Step 1

If you run the tclsh command with no
arguments, the shell runs interactively, readingExample:
Tcl commands from standard input and printingswitch# tclsh ?

<CR>
bootflash: The file to run

command results and error messages to the
standard output. You exit from the interactive
Tcl shell by typing tclquit or Ctrl-C.

If you run the tclsh command with arguments,
the first argument is the name of a script file
containing Tcl commands and any additional
arguments are made available to the script as
variables.

Navigating Cisco NX-OS Modes from the Tclsh Command
You can change modes in Cisco NX-OS while you are running an interactive Tcl shell.

Procedure

PurposeCommand or Action

Starts an interactive Tcl shell.tclsh

Example:

Step 1

switch# tclsh
switch-tcl#

Runs a Cisco NX-OS command in the Tcl shell,
changing modes.

configure terminal

Example:

Step 2

The Tcl prompt changes to indicate
the Cisco NX-OS command mode.

Noteswitch-tcl# configure terminal
switch(config-tcl)#

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
82

Shells and Scripting
Running the Tclsh Command

PurposeCommand or Action

Terminates the Tcl shell, returning to the
starting mode.

tclquit

Example:

Step 3

switch-tcl# tclquit
switch#

Example

The following example shows how to change Cisco NX-OS modes from an interactive Tcl shell:
switch# tclsh
switch-tcl# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config-tcl)# interface loopback 10
switch(config-if-tcl)# ?
description Enter description of maximum 80 characters
inherit Inherit a port-profile
ip Configure IP features
ipv6 Configure IPv6 features
logging Configure logging for interface
no Negate a command or set its defaults
rate-limit Set packet per second rate limit
shutdown Enable/disable an interface
this Shows info about current object (mode's instance)
vrf Configure VRF parameters
end Go to exec mode
exit Exit from command interpreter
pop Pop mode from stack or restore from name
push Push current mode to stack or save it under name
where Shows the cli context you are in

switch(config-if-tcl)# description loop10
switch(config-if-tcl)# tclquit
Exiting Tcl
switch#

Tcl References
The following titles are provided for your reference:

• Mark Harrison (ed), Tcl/Tk Tools, O'Reilly Media, ISBN 1-56592-218-2, 1997

• Mark Harrison and Michael McLennan, Effective Tcl/Tk Programming, Addison-Wesley, Reading, MA,
USA, ISBN 0-201-63474-0, 1998

• John K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, Reading,MA, USA, ISBN 0-201-63337-X,
1994.

• Brent B. Welch, Practical Programming in Tcl and Tk, Prentice Hall, Upper Saddle River, NJ, USA,
ISBN 0-13-038560-3, 2003.

• J Adrian Zimmer, Tcl/Tk for Programmers, IEEE Computer Society, distributed by JohnWiley and Sons,
ISBN 0-8186-8515-8, 1998.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
83

Shells and Scripting
Tcl References

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
84

Shells and Scripting
Tcl References

C H A P T E R 8
Kernel Stack

This chapter contains the following topics:

• About Kernel Stack, on page 85
• Guidelines and Limitations, on page 85
• Changing the Port Range, on page 86
• Netdevice Property Changes, on page 87

About Kernel Stack
Kernel Stack (kstack) uses well known Linux APIs to manage the routes and front panel ports.

Open Containers, like the Guest Shell, are Linux environments that are decoupled from the host software.
You can install or modify software within that environment without impacting the host software packages.

Guidelines and Limitations
• Guest shell and the host Bash Shell use Kernel Stack (kstack).

• The Guest Shell and the host Bash Shell start in the default network namespace.

• Use the setns system call to access other network namespaces

• The nsenter and ip netns exec utilities can be used to execute within the context of a different
network namespace.

• The interface state may be read from /proc/net/dev or retrieved using other typical Linux utilities
such as ip, ifconfig, or netstat. The counters are for packets that have initiated or terminated on the
switch.

• Use ethtool –S to get extended statistics from the net devices, which include packets that are switched
through the interface.

• You can run packet capture applications like tcpdump to capture packets that initiate or terminate on
the switch.

• There is no support for networking state changes (interface creation or deletion, IP address configuration,
MTU change, and so on) from the Guest Shell.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
85

• IPv4 and IPv6 are supported.

• Raw PF_PACKET is supported.

• Only on stack (Netstack or kstack) at a time can use well-known ports (0-15000), regardless of the
network namespace.

• There is no IP connectivity between applications using Nestack and applications running kstack on the
same switch. This limitation holds true regardless of whether the kstack applications are being run from
the host Bash Shell or within a container.

• Applications within the Guest Shell are not allowed to send packets directly over an Ethernet out-of-band
channel (EOBC) interface to communicate with the line cards or standby Sup.

• The management interface (mgmt0) is represented as eth1 in the kernel netdevices.

Changing the Port Range
Netstack and kstack divide the port range between them. The default port ranges are as follows:

• Kstack—From 15001 through 58000

• Netstack—From 58001 through 65535

Ports within the range from 63536 through 65535 are reserved for
NAT.

Note

Procedure

PurposeCommand or Action

This command modifies the port range for
kstack. This command does not modify the
Netstack range.

[no] sockets local-port-range start-port
end-port

Step 1

Example

The following example sets the kstack port range:
switch# sockets local-port-range 15001 25000

What to do next

After you have entered the command, be aware of the following issues:

• Reload the switch after entering the command.

• Leave a minimum of 7000 ports unallocated which are used by Netstack.

• Specify the start-port as 15001 or the end-port as 65535 to avoid holes in the port range.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
86

Shells and Scripting
Changing the Port Range

Netdevice Property Changes
Netdevices representing the front channel port interfaces are always in the ADMIN UP state. The final,
effective state is determined by the link carrier state.

The following example shows the following interfaces in NX-OS, where eth1/17 is shown as up and eth1/1
is shown as down:
root@kstack-switch# sh int ethernet 1/17 brief
Eth1/17 -- eth routed up none 1000(D) –

root@kstack-switch# sh int ethernet 1/1 brief
Eth1/1 -- eth routed down Link not connected auto(D) –

The following example shows these same interfaces, but this time as shown in the Bash shell using the ip link
show command:
bash-4.3# ip link show Eth1-17
49: Eth1-17: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode
DEFAULT group default qlen 100

link/ether 00:42:68:58:f8:eb brd ff:ff:ff:ff:ff:ff

bash-4.3# ip link show Eth1-1
33: Eth1-1: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast state DOWN mode
DEFAULT group default qlen 100

link/ether 00:42:68:58:f8:eb brd ff:ff:ff:ff:ff:ff

In this example, Eth1-1 is shown as being UP, but is shown as NO-CARRIER and state DOWN.

The following example shows these same interfaces, but this time as shown in the Bash shell using the ifconfig
command:
bash-4.3# ifconfig Eth1-17
Eth1-17 Link encap:Ethernet HWaddr 00:42:68:58:f8:eb

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:7388 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:0 (0.0 B) TX bytes:1869164 (1.7 MiB)

bash-4.3# ifconfig Eth1-1
Eth1-1 Link encap:Ethernet HWaddr 00:42:68:58:f8:eb

inet addr:99.1.1.1 Bcast:99.1.1.255 Mask:255.255.255.0
UP BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

The output from the ifconfig command provides different information, where the RUNNING keyword is
used to represent the final state. By default, all netdevices show the keywordUP, which represents the ADMIN
state of the netdevice in the kernel.

The following IPv4 and IPv6 behaviors are applicable to netdevices configured on the switch:

• IPv4 address on netdevices — The IPv4 addresses are plumbed to the kernel space only when the
interface is in the UP state. Once plumbed, the IPv4 address continues to stay with the netdevice in the

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
87

Shells and Scripting
Netdevice Property Changes

kernel even if the interface goes DOWN. It will be removed only after you have entered the following
CLI command to explicitly remove the IP address from the NX-OS interface:
Interface Eth1/1

no ip address IP-address

• IPv6 address on netdevices—Netdevices are always in the AdminUP state, so the IPv6 addresses will
not get flushed from the kernel when the interface goes down.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
88

Shells and Scripting
Netdevice Property Changes

P A R T II
Applications

• Cisco Nexus Application Development - SDK, on page 91
• NX-SDK, on page 99

C H A P T E R 9
Cisco Nexus Application Development - SDK

This chapter contains the following topics:

• About the Cisco SDK, on page 91
• Installing the SDK, on page 91
• Procedure for Installation and Environment Initialization, on page 92
• Using the SDK to Build Applications, on page 93
• Using RPM to Package an Application, on page 94
• Creating an RPM Build Environment, on page 95
• Using General RPM Build Procedure, on page 95
• Example to Build RPM for collectd with No Optional Plug-Ins, on page 96
• Example to Build RPM for collectd with Optional Curl Plug-In, on page 97

About the Cisco SDK
The Cisco SDK is a development kit that contains all the tools to build applications for execution on a Cisco
Nexus switch running the Cisco NX-OS Release 9.2(2t). The basic components are the C cross-compiler,
linker, libraries, and header files that are commonly used in many applications. The list is not exhaustive, and
you might need to download and build any dependencies that are needed for any particular application. Some
applications are ready to be downloaded and used from the Cisco devhub website and do not require building.
The SDK can be used to build RPM packages which may be directly installed on a switch.

Installing the SDK
The following lists the system requirements:

• The SDK can run on most modern 64-bit x86_64 Linux systems. It has been verified on CentOS 7 and
Ubuntu 14.04. Install and run the SDK under the Bash shell.

• The SDK includes binaries for both 32-bit and 64-bit architectures, so it must be run on an x86_64 Linux
system that also has 32-bit libraries installed.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
91

Procedure

Check if the 32-bit libraries are installed:

Example:
bash$ ls /lib/ld-linux.so.2

If this file exists, then 32-bit libraries should be installed already. Otherwise, install 32-bit libraries as follows:

• For CentOS 7:
bash$ sudo yum install glibc.i686

• For Ubuntu 14.04:
bash$ sudo apt-get install gcc-multilib

Procedure for Installation and Environment Initialization
The SDK is available for download at: https://devhub.cisco.com/artifactory/open-nxos/.

This file is a self-extracting archive that installs the SDK into a directory of your choice. You are prompted
for a path to an SDK installation directory.
bash$./wrlinux-8.0.0.25-glibc-x86_64-n9000-nxos-image-rpm-sdk-sdk.sh
Wind River Linux SDK installer version 8.0-n9000
==
Enter target directory for SDK (default: /opt/windriver/wrlinux/8.0-n9000):
You are about to install the SDK to "/opt/windriver/wrlinux/8.0-n9000". Proceed[Y/n]? Y
Extracting
SDK...done
Setting it up...done
SDK has been successfully set up and is ready to be used.

Each time that you want to use the SDK in a new shell session, you will need to source the environment setup
script. For example:
$. /opt/windriver/wrlinux/8.0-n9000/environment-setup-x86-wrsmllib32-linux
$. /opt/windriver/wrlinux/8.0-n9000/environment-setup-x86_64-wrs-linux
bash$

Use the source environment-setup-x86-wrsmllib32-linux and source environment-setup-x86_64-wrs-linux
commands to add the SDK-specific paths to your shell environment. Add the SDK-specific paths for each
shell you intend to use with the SDK. Adding the SDK-specific paths is the key to setting up the SDK to use
the correct versions of the build tools and libraries.

Procedure

Step 1 Browse to the installation directory.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
92

Applications
Procedure for Installation and Environment Initialization

https://devhub.cisco.com/artifactory/open-nxos/

Step 2 Enter the following commands at the Bash prompt:
bash$ source environment-setup-x86-wrsmllib32-linux
bash$ source environment-setup-x86_64-wrs-linux

Using the SDK to Build Applications
Many of the common Linux build processes work for this scenario. Use the techniques that are best suited
for your situation.

The source code for an application package can be retrieved in various ways. For example, you can get the
source code either in tar file form or by downloading from a git repository where the package resides.

The following are examples of some of the most common cases.

(Optional) Verify that the application package builds using standard configure/make/make install.

bash$ tar --xvzf example-app.tgz
bash$ mkdir example-lib-install
bash$ cd example-app/
bash$./configure --prefix=/path/to/example-app-install
bash$ make
bash$ make install

Sometimes it is necessary to pass extra options to the ./configure script, for example to specify which
optional components and dependencies are needed. Passing extra options depends entirely on the application
being built.

Example - Build Ganglia and its dependencies

In this example, we build ganglia, along with the third-party libraries that it requires - libexpat, libapr, and
libconfuse.

libexpat

bash$ wget 'http://downloads.sourceforge.net/project/expat/expat/2.1.0/expat-2.1.0.tar.gz'
bash$ mkdir expat-install
bash$ tar xvzf expat-2.1.0.tar.gz
bash$ cd expat-2.1.0
bash$./configure --prefix=/home/sdk-user/expat-install
bash$ make
bash$ make install
bash$ cd ..

libapr

bash$ wget 'http://www.eu.apache.org/dist/apr/apr-1.5.2.tar.gz'
bash$ mkdir apr-install
bash$ tar xvzf apr-1.5.2.tar.gz
bash$ cd apr-1.5.2
bash$./configure --prefix=/home/sdk-user/apr-install
bash$ make
bash$ make install
bash$ cd ..

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
93

Applications
Using the SDK to Build Applications

libconfuse

confuse requires the extra --enable-shared option to ./configure, otherwise it builds a statically linked
library instead of the required shared library.

Note

bash$ wget 'http://savannah.nongnu.org/download/confuse/confuse-2.7.tar.gz'
bash$ mkdir confuse-install
bash$ tar xvzf confuse-2.7.tar.gz
bash$ cd confuse-2.7
bash$./configure --prefix=/home/sdk-user/confuse-install --enable-shared
bash$ make
bash$ make install
bash$ cd ..

ganglia

The locations to all the required libraries are passed to ./configure.Note

bash$ wget
'http://downloads.sourceforge.net/project/ganglia/ganglia%20monitoring%20core/3.7.2/ganglia-3.7.2.tar.gz'
bash$ mkdir ganglia-install
bash$ tar xvzf ganglia-3.7.2.tar.gz
bash$ cd ganglia-3.7.2
bash$./configure --with-libexpat=/home/sdk-user/expat-install
--with-libapr=/home/sdk-user/apr-install/bin/apr-1-config
--with-libconfuse=/home/sdk-user/confuse-install --prefix=/home/sdk-user/ganglia-install
bash$ make
bash$ make install
bash$ cd ..

Using RPM to Package an Application
If the application successfully builds using "make", then it can be packaged into an RPM.

RPM and spec files

The RPM package format is designed to package up all files (binaries, libraries, configurations, documents,
etc) that are needed for a complete install of the given application. The process of creating an RPM file is
therefore somewhat non-trivial. To aid in the RPM build process, a .spec file is used that controls everything
about the build process.

Note

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
94

Applications
Using RPM to Package an Application

Many third-party applications are available on the internet in the form of source code packaged into tarballs.
In many cases, these tarballs will include a .spec file to help with RPM build process. Unfortunately, many
of these .spec files are not updated as frequently as the source code itself. Even worse, sometimes there is no
spec file at all. In these cases the spec file may need editing or even creating from scratch so that RPMs can
be built.

Note

Creating an RPM Build Environment
Before using the SDK to build RPMs, an RPM build directory structure must be created, and some RPM
macros set.

Procedure

Step 1 Create the directory structure:
bash$ mkdir rpmbuild
bash$ cd rpmbuild
bash$ mkdir BUILD RPMS SOURCES SPECS SRPMS

Step 2 Set the topdir macro to point to the directory structure created above:
bash$ echo "_topdir ${PWD}" > ~/.rpmmacros

This step assumes that the current user does not already have a .rpmmacros file that is already set
up. If it is inconvenient to alter an existing .rpmmacros file, then the following may be added to all
rpmbuild command lines:

Note

--define "_topdir ${PWD}"

Step 3 Refresh the RPM DB:
bash$ rm /path/to/sdk/sysroots/x86_64-wrlinuxsdk-linux/var/lib/rpm/__db.*
bash$ rpm --rebuilddb

The rpm and rpmbuild tools in the SDK have been modified to use
/path/to/sdk/sysroots/x86_64-wrlinuxsdk-linux/var/lib/rpm as the RPM
database instead of the normal /var/lib/rpm. This modification prevents any conflicts with the
RPM database for the host when not using the SDK and removes the need for root access. After
SDK installation, the SDK RPM database must be rebuilt through this procedure.

Note

Using General RPM Build Procedure
General RPM Build procedure is as follows:
bash$ wget --no-check-certificate --directory-prefix=SOURCES http://<URL of example-app
tarball>
bash$ # determine location of spec file in tarball:

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
95

Applications
Creating an RPM Build Environment

bash$ tar tf SOURCES/example-app.tar.bz2 | grep '.spec$'
bash$ tar xkvf SOURCES/example-app.tar.bz2 example-app/example-app.spec
bash$ mv example-app/example-app.spec SPECS/
bash$ rm -rf example-app
bash$ rpmbuild -v --bb SPECS/example-app.spec

The result is a binary RPM in RPMS/ that can be copied to the switch and installed. Installation and
configuration of applications can vary. Refer to the application documents for those instructions.

This rpmbuild and installation on the switch is required for every software package that is required to support
the application. If a software dependency is required that is not already included in the SDK, the source code
must be obtained and the dependencies built. On the build machine, the package can be built manually for
verification of dependencies. The following example is the most common procedure:
bash$ tar xkzf example-lib.tgz
bash$ mkdir example-lib-install
bash$ cd example-lib/
bash$./configure --prefix=/path/to/example-lib-install
bash$ make
bash$ make install

These commands place the build files (binaries, headers, libraries, and so on) into the installation directory.
From here, you can use standard compiler and linker flags to pick up the location to these new dependencies.
Any runtime code, such as libraries, are required to be installed on the switch also, so packaging required
runtime code into an RPM is required.

There are many support libraries already in RPM form on the Cisco devhub website.Note

Example to Build RPM for collectd with No Optional Plug-Ins
Download source tarball and extract spec file:
bash$ wget --no-check-certificate --directory-prefix=SOURCES
https://collectd.org/files/collectd-5.5.0.tar.bz2
bash$ tar tf SOURCES/collectd-5.5.0.tar.bz2 | grep '.spec$'
collectd-5.5.0/contrib/redhat/collectd.spec
collectd-5.5.0/contrib/aix/collectd.spec
collectd-5.5.0/contrib/sles10.1/collectd.spec
collectd-5.5.0/contrib/fedora/collectd.spec
bash$ tar xkvf SOURCES/collectd-5.5.0.tar.bz2 collectd-5.5.0/contrib/redhat/collectd.spec
bash$ mv collectd-5.5.0/contrib/redhat/collectd.spec SPECS/
bash$ rm -rf collectd-5.5.0

There are four spec files in this tarball. The Red Hat spec file is the most comprehensive and is the only one
that contains the correct collectd version. We will use it as an example.

This spec file sets the RPM up to use /sbin/chkconfig to install collectd. However on a switch, you will use
the /usr/sbin/chkconfig instead. Edit the following edited in the spec file:

bash$ sed -r -i.bak 's%(^|\s)/sbin/chkconfig%\1/usr/sbin/chkconfig%' SPECS/collectd.spec

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
96

Applications
Example to Build RPM for collectd with No Optional Plug-Ins

collectd has numerous optional plug-ins. This spec file enables many plug-ins by default. Many plug-ins have
external dependencies, so options to disable these plug-ins must be passed to the rpmbuild command line.
Instead of typing out one long command line, we can manage the options in a Bash array as follows:
bash$ rpmbuild_opts=()
bash$ for rmdep in \
> amqp apache ascent bind curl curl_xml dbi ipmi java memcachec mysql nginx \
> notify_desktop notify_email nut openldap perl pinba ping postgresql python \
> rrdtool sensors snmp varnish virt write_http write_riemann
> do
> rpmbuild_opts+=("--without")
> rpmbuild_opts+=(${rmdep})
> done
bash$ rpmbuild_opts+=(--nodeps)
bash$ rpmbuild_opts+=(--define)
bash$ rpmbuild_opts+=("_unpackaged_files_terminate_build 0")

It is then passed to rpmbuild as follows to start the entire build and RPM package process:
bash$ rpmbuild "${rpmbuild_opts[@]}" -bb SPECS/collectd.spec

You can then find the resulting RPMs for collectd in the RPMS directory.

These RPM files can now be copied to the switch and installed from the switch Bash shell:
bash$ rpm --noparentdirs -i /bootflash/collectd-5.5.0-1.ia32e.rpm

Example to Build RPM for collectd with Optional Curl Plug-In
The collectd curl plug-in has libcurl as a dependency.

In order to satisfy this link dependency during the RPM build process, it is necessary to download and build
curl under the SDK:
bash$ wget --no-check-certificate http://curl.haxx.se/download/curl-7.24.0.tar.gz
bash$ tar xkvf curl-7.24.0.tar.gz
bash$ cd curl-7.24.0
bash$./configure --without-ssl --prefix /path/to/curl-install
bash$ make
bash$ make install
bash$ cd ..

The curl binaries and libraries are installed to /path/to/curl-install. This directory will be created
if it does not already exist, so you must have write permissions for the current user. Next, download the source
tarball and extract the spec file. This step is exactly the same as in the collectd example for no plugins.

Note

bash$ wget --no-check-certificate --directory-prefix=SOURCES
https://collectd.org/files/collectd-5.5.0.tar.bz2
bash$ tar tf SOURCES/collectd-5.5.0.tar.bz2 | grep '.spec$'
collectd-5.5.0/contrib/redhat/collectd.spec
collectd-5.5.0/contrib/aix/collectd.spec
collectd-5.5.0/contrib/sles10.1/collectd.spec
collectd-5.5.0/contrib/fedora/collectd.spec
bash$ tar xkvf SOURCES/collectd-5.5.0.tar.bz2 collectd-5.5.0/contrib/redhat/collectd.spec

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
97

Applications
Example to Build RPM for collectd with Optional Curl Plug-In

bash$ mv collectd-5.5.0/contrib/redhat/collectd.spec SPECS/
bash$ rm -rf collectd-5.5.0

There are four spec files in this tarball. The Red Hat spec file is the most comprehensive, and it is the only
one to contain the correct collectd version. We will use that one as an example.

Note

This spec file sets the RPM up to use /sbin/chkconfig to install collectd. However on a switch, you
must use /usr/sbin/chkconfig instead, so the following can be edited in the spec file:

bash$ sed -r -i.bak 's%(^|\s)/sbin/chkconfig%\1/usr/sbin/chkconfig%' SPECS/collectd.spec

Here a deviation from the previous example is encountered. The collectd rpmbuild process needs to know the
location of libcurl. Edit the collectd spec file to add the following.

Find the string%configure in SPECS/collectd.spec. This line and those following it define the options
that rpmbuild will pass to the ./configure script.

Add the following option:
--with-libcurl=/path/to/curl-install/bin/curl-config \

Next a Bash array is built again to contain the rpmbuild command options. Note the following differences:

• curl is removed from the list of plug-ins not to be built

• The addition of --with curl=force

bash$ rpmbuild_opts=()
bash$ for rmdep in \
> amqp apache ascent bind curl_xml dbi ipmi java memcachec mysql nginx \
> notify_desktop notify_email nut openldap perl pinba ping postgresql python \
> rrdtool sensors snmp varnish virt write_http write_riemann
> do
> rpmbuild_opts+=("--without")
> rpmbuild_opts+=(${rmdep})
> done
bash$ rpmbuild_opts+=("--with")
bash$ rpmbuild_opts+=("curl=force")bash$ rpmbuild_opts+=(--nodeps)
bash$ rpmbuild_opts+=(--define)
bash$ rpmbuild_opts+=("_unpackaged_files_terminate_build 0")

It is then passed to rpmbuild as follows to start the entire build and RPM package process:
bash$ rpmbuild "${rpmbuild_opts[@]}" -bb SPECS/collectd.spec

The resulting RPMs in the RPMs directory will now also include collectd-curl. These RPM files can now be
copied to the switch and installed from the switch Bash shell:
bash$ rpm --noparentdirs -i /bootflash/collectd-5.5.0-1.ia32e.rpm
bash$ rpm --noparentdirs -i /bootflash/collectd-curl-5.5.0-1.ia32e.rpm

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
98

Applications
Example to Build RPM for collectd with Optional Curl Plug-In

C H A P T E R 10
NX-SDK

This chapter contains the following topics:

• About the NX-SDK, on page 99
• Install the NX-SDK, on page 100
• Building and Packaging C++ Applications, on page 101
• Installing and Running Custom Applications, on page 103

About the NX-SDK
The Cisco NX-OS SDK (NX-SDK) is a C++ abstraction and plug-in library-layer that streamlines access to
infrastructure for automation and custom native application creation, such as generating custom:

• CLIs

• Syslogs

• Event and Error managers

• Inter-application communication

• High availability (HA)

• Route manager

The NX-SDK also supports Python bindings.

For more information on Cisco NX-SDK, go to https://github.com/CiscoDevNet/NX-SDKwere you can find
release and documentation information. Click the versions.md link to get information on features and
details on each supported release.

Requirements

The NX-SDK has the following requirements:

• Docker

• A Linux environment (either Ubuntu 14.04 or higher, or CentOS 6.7 or higher).

• Cisco SDK (optional) build environment.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
99

https://github.com/CiscoDevNet/NX-SDK

The Cisco SDK is required to start applications in VSH. VSH requires
that all applications be installed through RPMs, which requires that
you build them in the Cisco SDK.

The Cisco SDK is not required for Python applications.

The Cisco SDK is not required for C++ application, but is still
recommended. Using g++ to build applications and then copying the
built files to the switch may pose stability risks as g++ is not
supported.

Note

Install the NX-SDK
Procedure

Step 1 Note The Cisco SDK is required for applications that are started in VSH.

The Cisco SDK is optional for applications that are started in Bash.

(Optional) Build the Cisco SDK RPM to persist on switch reloads and from standby mode.
a) Pull the Docker image for Ubuntu 14.04+ or Centos 6.7+ from https://hub.docker.com/r/dockercisco/

nxsdk.
b) Source for a 32-bit environment:

Example:
export ENXOS_SDK_ROOT=/enxos-sdk
cd $ENXOS_SDK_Root
source environment-setup-x86-linux

Step 2 Clone the NX-SDK toolkit from https://github.com/CiscoDevNet/NX-SDK.git.

Example:
git clone https://github.com/CiscoDevNet/NX-SDK.git

What to do next

You can find the following references to the API in $PWD/nxsdk and includes the following:

• The NX-SDK public C++ classes and APIs,

• Example applications, and

• Example Python applications.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
100

Applications
Install the NX-SDK

https://hub.docker.com/r/dockercisco/nxsdk
https://hub.docker.com/r/dockercisco/nxsdk
https://github.com/CiscoDevNet/NX-SDK.git

Building and Packaging C++ Applications
The following instructions describe how to build and package your custom C++ NX-OS application.

Procedure

Step 1 Build your application files.
a) Building a C++ application requires adding your source files to the Makefile

Example:

The following example uses the customCliApp.cpp file from /examples.
...
##Directory Structure
...
EXNXSDK_BIN:= customCliApp
...

b) Build the C++ application using themake command.

Example:
$PWD/nxsdk# make clean

$PWD/nxsdk# make all

Step 2 (Optional) Package your application.

Autogenerate RPM Package

Custom RPM packages for your applications must run on VSH and allow you to specify whether a given
application persists on switch reloads or switchovers. Use the following to create a custom specification file
for your application.

RPM packaging is required to be done within the provided ENXOS Docker image.Note

a) Use the rpm_gen.py script to auto-generate RPM package for a custom application.

Example:

Specify the -h option of the script to display the usages of the script.
/NX-SDK# python scripts/rpm_gen.py -h

b) By default, NXSDK_ROOT is set to /NX-SDK. If NX-SDK is installed in another location other than the
default, then you must set NXSDK_ROOT env to the appropriate location for the script to run correctly.

Example:
export NXSDK_ROOT=<absolute-path-to-NX-SDK>

Example of autogenerate RPM package for C++ App examples/customCliApp.cpp

/NX-SDK/scripts# python rpm_gen.py CustomCliApp
###

Generating rpm package...

Executing(%prep): /bin/sh -e /enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/var/tmp/rpm-tmp.49266

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
101

Applications
Building and Packaging C++ Applications

https://github.com/CiscoDevNet/NX-SDK/tree/master/scripts

+ umask 022
+ cd /enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/../../src/rpm/BUILD
+ exit 0
Executing(%build): /bin/sh -e
/enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/var/tmp/rpm-tmp.49266
+ umask 022
+ cd /enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/../../src/rpm/BUILD
+ exit 0
Executing(%install): /bin/sh -e
/enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/var/tmp/rpm-tmp.49266
+ umask 022
+ cd /enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/../../src/rpm/BUILD
+ /bin/rm -rf
/enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/../../../var/tmp/customCliApp-root

+ /bin/mkdlr -p
/enxos-sdk/sysrOOts/x86_64-wrIinuxsdk-linux/usr/lib/rpm/../../../var/tmp/customCliApp-root//isan/bin

+ cp -R /NX-SDK/bin /enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/..
/../../var/tmp/customCliApp-root//isan/bin
+ exit 0
Processing files: customCliApp-1.0.x86_64
Requires: libc.so.6 libc.so.6(GLIBC 2.0) 3.0) Libc.so.6(GLIBC_2.1.3) libdl.so.2 libgcc_s.so.1
libgcc_s.so.1(GCC_3.0) libm.so.6 libnxsdk.so libstdc++.so.6 libstdc++.so.6 (CXXAB1 1.3)
libstdc++.so.6(GLIBCXX 3.4) libstdc++.so.6(GLIBCXX_3.4.14) rt1d(GNU HASH)
Checking for unpackaged file(s):
/enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/check-files
/enos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/../../../var/tmp/customCliApp-root
Wrote: /enxos-sdk/sysrootS/X86_64-wrlinuxsdk-linux/usr/src/rpm/SRPMS/customCliApp-1.0.src-rpm

Wrote:
/enxos-sdk/sysrootS/X86_64-wrlinuxsdk-linux/usr/src/rpm/RPMS/x86_64/customCliApp-1.0.x86_64.rpm
Executing($clean): /bin/sh -e
/enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/var/tmp/rpm-tmp.49266
+ umask 022
+ cd /enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/../../src/rpm/BUILD
+ / bin/rm -rf
/enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/../../../var/tmp/customCliApp-root

RPM package has been built
###

SPEC file: /NX-SDK/rpm/SPECS/customCliApp.spec
RPM file : /NX-SDK/rpm/RPMS/customCliApp-1.0.x86_64.rpm

Manually generate RPM Package

Custom RPM packages for your applications are required to run on VSH and allow you to specify whether a
given application persists on switch reloads or system switchovers. Use the following steps to create a custom
specification file (*.spec) for your application.

a) Export the Cisco SDK RPM source to $RPM_ROOT.

Example:

export RPM_ROOT=$ENXOS_SDK_ROOT/sysroots/x86_64-wrlinuxsdk-linux/usr/src/rpm

b) Enter the $RPM_ROOT directory.

Example:

ls $RPM_ROOT (BUILD RPMS SOURCES SPECS SRPMS)

c) Create/edit your application-specific *.spec file.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
102

Applications
Building and Packaging C++ Applications

Refer to the customCliApp.spec file in the /rpm/SPECS directory for an example specification
file.

We recommend installing application files to /isan/bin/nxsdk on the switch as per the
example customCliApp.spec file.

Note

Example:

vi $RPM_ROOT/SPECS/<application>.spec

d) Build your RPM package.

Example:

rpm -ba $RPM_ROOT/SPECS/<application>.spec

A successful build generates an RPM file in $RPMS_ROOT/RPMS/x86_64/

Installing and Running Custom Applications
You can install applications by copying binaries to the switch, or installing unpacking the binaries from the
RPM package.

Only custom applications that are installed from RPM packages can persist on switch reload or system
switchovers. We recommend reserving copying binaries to the switch for simple testing purposes.

Note

Before you begin

The switch must have the NX-SDK enabled before running any custom application. Run feature nxsdk on
the switch.

Procedure

Step 1 Install your application using either VSH or Bash.

To install your application using VSH, perform the following:

a) Add the RPM package to the installer.

Example:
switch(config)# install add bootflash:<app-rpm-package>.rpm

b) After installation, check if the RPM is listed as inactive.

Example:
switch(config)# show install inactive

c) Activate the RPM package.

Example:
switch(config)# install activate <app-rpm-package>

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
103

Applications
Installing and Running Custom Applications

d) After activation, check if the RPM is listed as active.

Example:
switch(config)# show install active

To install your application using Bash, run the following commands:
switch(config)# run bash sudo su
bash# yum install /bootflash/<app-rpm-package>.rpm

Step 2 Start your application.

C++ applications can run from VSH or Bash.

• To run a C++ application in VSH, run the nxsdk command:
switch(config)# nxsdk service-name /<install directory>/<application>

If the application is installed in /isan/bin/nxsdk, the full file path is not required. You can use
the nxsdk service-name app-name form of the command.

Note

• To run a C++ application in Bash, start Bash then start the application.
switch(config)# run bash sudo su
bash# <app-full-path> &

Python applications can run from VSH or Bash.

• To run a Python application from VSH, run the nxsdk command:
switch(config)# nxsdk service-name <app-full-path>

The Python application must be made executable to start from VSH:

• Run the chmod +x <app-full-path> command.

• Add #!/isan/bin/nxpython to the first link of your Python application.

Note

• To run a Python application from Bash:
switch(config)# run bash sudo su
bash# /isan/bin/python <app-full-path>

Use /isan/bin/python to run Python applications in Bash.Note

Step 3 Run show nxsdk internal service to verify that your application is running.

Example:
switch(config)# show nxsdk internal service

NXSDK Started/Temp unavailabe/Max services : 2/0/32
NXSDK Default App Path : /isan/bin/nxsdk
NXSDK Supported Versions : 1.0 1.5 1.7.5

Service-name Base App Started(PID) Version RPM Package
------------------------- --------------- ------------ ---------- --------------------

/isan/bin/capp1 nxsdk_app2 VSH(25270) 1.7.5 capp1-1.0.x86_64
/isan/bin/TestApp.py nxsdk_app3 BASH(27823) - -

Step 4 Stop your application.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
104

Applications
Installing and Running Custom Applications

You can stop your application in the following ways:

• To stop all NX-SDK applications, run the no feature nxsdk command.

• To stop a specific application in VSH, run:

switch(config)# no nxsdk service-name /<install directory>/<application>

• To stop a specific application in Bash, run:

bash# <application> stop-event-loop

Step 5 Uninstall your application.

To uninstall the RPM from the switch using VSH, perform the following:

a) Deactivate the active RPM package.

Example:
switch# install deactive <app-rpm-package>

b) Verify that the package is deactivated.

Example:
switch# show install inactive

c) Remove the RPM package.

Example:
switch# install remove <app-rpm-package>

To uninstall the RPM from the switch using Bash, run the yum remove <app-full-path> command.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
105

Applications
Installing and Running Custom Applications

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
106

Applications
Installing and Running Custom Applications

P A R T III
NX-API

• NX-API CLI, on page 109
• NX-API REST, on page 129
• NX-API Developer Sandbox, on page 131

C H A P T E R 11
NX-API CLI

This chapter contains the following topics:

• About NX-API CLI, on page 109
• Using NX-API CLI, on page 110
• JSON and XML Structured Output, on page 124

About NX-API CLI
NX-API CLI is an enhancement to the Cisco Nexus 3400-S platform switch CLI system, which supports
XML output. NX-API CLI also supports JSON output format for specific commands.

On switches, command-line interfaces (CLIs) are run only on the device. NX-API CLI improves the accessibility
of these CLIs by making them available outside of the switch by using HTTP or HTTPS. You can use this
extension to the existing Cisco NX-OS CLI system on the switch. NX-API CLI supports show commands,
configurations, and Linux Bash.

NX-API CLI supports JSON-RPC.

Transport
NX-API uses HTTP or HTTPS as its transport. CLIs are encoded into the HTTP or HTTPS POST body.

The NX-API feature is enabled by default on HTTPS port 443. HTTP port 80 is disabled.

NX-API is also supported through UNIX Domain Sockets for applications running natively on the host or
within Guest Shell.

The NX-API backend uses the Nginx HTTP server. The Nginx process, and all its children processes, are
under Linux cgroup protection which caps the CPU and memory usage. If the Nginx memory usage exceeds
the cgroup limitations, the Nginx process is restarted and restored.

Message Format
NX-API is an enhancement to the Cisco NX-OS CLI system, which supports XML output. NX-API also
supports JSON output format for specific commands.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
109

• NX-API XML output presents information in a user-friendly format.

• NX-API XML does not map directly to the Cisco NX-OS NETCONF implementation.

• NX-API XML output can be converted into JSON.

Note

Security
• NX-API supports HTTPS. All communication to the device is encrypted when you use HTTPS.

• NX-API does not support insecure HTTP by default.

• NX-API does not support weak TLSv1 protocol by default.

NX-API is integrated into the authentication system on the device. Users must have appropriate accounts to
access the device through NX-API. NX-API uses HTTP basic authentication. All requests must contain the
username and password in the HTTP header.

You should consider using HTTPS to secure your user's login credentials.Note

You can enable NX-API by using the feature manager CLI command. NX-API is disabled by default.

NX-API provides a session-based cookie, nxapi_auth when users first successfully authenticate. With the
session cookie, the username and password are included in all subsequent NX-API requests that are sent to
the device. The username and password are used with the session cookie to bypass performing the full
authentication process again. If the session cookie is not included with subsequent requests, another session
cookie is required and is provided by the authentication process. Avoiding unnecessary use of the authentication
process helps to reduce the workload on the device.

A nxapi_auth cookie expires in 600 seconds (10 minutes). This value is a fixed and cannot be adjusted.Note

NX-API performs authentication through a programmable authentication module (PAM) on the switch. Use
cookies to reduce the number of PAM authentications, which reduces the load on the PAM.

Note

Using NX-API CLI
The commands, command type, and output type for the switches are entered using NX-API. NX-API encodes
the CLIs into the body of an HTTP or HTTPS POST request. The response to the request is returned in XML
or JSON output format.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
110

NX-API
Security

For more details about NX-API response codes, see Table of NX-API Response Codes, on page 123.Note

NX-API CLI is enabled by default for local access. The remote HTTP access is disabled by default.

The following example shows how to configure and launch the NX-API CLI:

• Enable the management interface.
switch# conf t
switch(config)# interface mgmt 0
switch(config)# ip address 192.0.20.123/24
switch(config)# vrf context managment
switch(config)# ip route 10.0.113.1/0 1.2.3.1

• Enable the NX-API nxapi feature.
switch# conf t
switch(config)# feature nxapi

The following example shows a request and its response in XML format:

Request:
<?xml version="1.0" encoding="ISO-8859-1"?>
<ins_api>
<version>0.1</version>
<type>cli_show</type>
<chunk>0</chunk>
<sid>session1</sid>
<input>show switchname</input>
<output_format>xml</output_format>

</ins_api>

Response:
<?xml version="1.0"?>
<ins_api>
<type>cli_show</type>
<version>0.1</version>
<sid>eoc</sid>
<outputs>
<output>
<body>
<hostname>switch</hostname>

</body>
<input>show switchname</input>
<msg>Success</msg>
<code>200</code>

</output>
</outputs>

</ins_api>

The following example shows a request and its response in JSON format:

Request:
{

"ins_api": {
"version": "0.1",
"type": "cli_show",

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
111

NX-API
Using NX-API CLI

"chunk": "0",
"sid": "session1",
"input": "show switchname",
"output_format": "json"

}
}

Response:
{

"ins_api": {
"type": "cli_show",
"version": "0.1",
"sid": "eoc",
"outputs": {

"output": {
"body": {

"hostname": "switch"
},
"input": "show switchname",
"msg": "Success",
"code": "200"

}
}

}
}

There is a known issue where an attempt to delete a user might fail. The result is an error similar to the
following appearing approximately every 12 hours:
user delete failed for username:userdel: user username is currently logged in - securityd

This issue might occur in a scenario where you try to delete a user who is still logged into a switch through
NX-API. Enter the following command in this case to try to log the user out first:
switch(config)# clear user username

Then try to delete the user again. If the issue persists after attempting this workaround, contact Cisco TAC
for further assistance.

Note

Escalate Privileges to Root on NX-API
For NX-API, the privileges of an Admin user can escalate their privileges for root access.

The following are guidelines for escalating privileges:

• Only an Admin user can escalate privileges to root.

• Escalation to root is password-protected.

The following examples show how an Admin escalates privileges to root and how to verify the escalation.
After becoming root, the whoami command shows you as Admin; however, the Admin account has all the
root privileges.

First example:

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
112

NX-API
Escalate Privileges to Root on NX-API

<?xml version="1.0"?>
<ins_api>
<version>1.0</version>
<type>bash</type>
<chunk>0</chunk>
<sid>sid</sid>
<input>sudo su root ; whoami</input>
<output_format>xml</output_format>

</ins_api>

<?xml version="1.0" encoding="UTF-8"?>
<ins_api>
<type>bash</type>
<version>1.0</version>
<sid>eoc</sid>
<outputs>
<output>
<body>admin </body>
<code>200</code>
<msg>Success</msg>

</output>
</outputs>

</ins_api>

Second example:

<?xml version="1.0"?>
<ins_api>
<version>1.0</version>
<type>bash</type>
<chunk>0</chunk>
<sid>sid</sid>
<input>sudo cat path_to_file </input>
<output_format>xml</output_format>

</ins_api>

<?xml version="1.0" encoding="UTF-8"?>
<ins_api>
<type>bash</type>
<version>1.0</version>
<sid>eoc</sid>
<outputs>
<output>
<body>[Contents of file]</body>
<code>200</code>
<msg>Success</msg>

</output>
</outputs>

</ins_api>

Sample NX-API Scripts
The sample scripts demonstrate how a script is used with NX-API.

• Cable Checker (check_cable.py)

• Cable Checker Blueprint (connectivity.json)

• Using NX-API over UDS (rest_client.py)

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
113

NX-API
Sample NX-API Scripts

NX-API Management Commands
The following table shows the CLI commands that can manage and enable through the NX-API.

Table 4: NX-API Management Commands

DescriptionNX-API Management Command

Enables NX-API.feature nxapi

Disables NX-API.no feature nxapi

Specifies a port.nxapi {http | https} port port

Disables HTTP or HTTPS.no nxapi {http | https}

Displays port information.show nxapi

Specifies the upload of the following:

• HTTPS certificate when httpscrt is specified.

• HTTPS key when httpskey is specified.

Example of an HTTPS certificate:
nxapi certificate httpscrt certfile bootflash:cert.crt

Example of an HTTPS key:
nxapi certificate httpskey keyfile bootflash:privkey.key

nxapi certificate {httpscrt certfile |
httpskey keyfile} filename

Enables a certificate.nxapi certificate enable

Weak ciphers are disabled by default. Running this command
changes the default behavior and enables the weak ciphers for
NGINX. The no form of the command changes it to the default
(by default, the weak ciphers are disabled).

nxapi ssl-ciphers weak

TLS1.0 is disabled by default. Running this command enables
the TLS versions that are specified in the string, including the
TLS1.0 that was disabled by default, if necessary. The no form
of the command changes it to the default (by default, only TLS1.1
and TLS1.2 are enabled).

nxapi ssl-protocols {TLSv1.0 TLSv1.1
TLSv1.2}

Specifies the default VRF, management VRF, or named VRF.nxapi use-vrf vrf

Implements any access restrictions and can be run in management
VRF.

You must enable feature bash-shell and then run the
command from Bash Shell. For more information on
Bash Shell, see the chapter on Bash.

Note

Iptables is a command-line firewall utility that uses policy chains
to allow or block traffic and almost always comes pre-installed
on any Linux distribution.

ip netns exec management iptables

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
114

NX-API
NX-API Management Commands

Following is an example of a successful upload of an HTTPS certificate:
switch(config)# nxapi certificate httpscrt certfile certificate.crt
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
switch(config)#

Following is an example of a successful upload of an HTTPS key:
switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
switch(config)#

In some situations, you can get an error message saying that the certificate is invalid:
switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
Nginx certificate invalid.
switch(config)#

This error can occur if the key file is encrypted. In that case, you must decrypt the key file before you can
install it. You might have to go into Guest Shell to decrypt the key file, as shown in the following example:
switch(config)# guestshell
[b3456@guestshell ~]$
[b3456@guestshell bootflash]$ /bin/openssl rsa -in certfilename.net.pem -out clearkey.pem

Enter pass phrase for certfilename.net.pem:
writing RSA key
[b3456@guestshell bootflash]$
[b3456@guestshell bootflash]$ exit
switch(config)#

See the Guest Shell chapter in this document for more information on Guest Shell.

If this was the reason for the issue, you should now be able to successfully install the certificate:
switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
switch(config)#

Working with Interactive Commands Using NX-API
To disable confirmation prompts on interactive commands and avoid time outs with an error code 500, prepend
interactive commands with terminal dont-ask. Use ; to separate multiple interactive commands, where each
; is surrounded with single blank characters.

Following are several examples of interactive commands that use terminal dont-ask to avoid timing out with
an error code 500:
terminal dont-ask ; reload module 21

terminal dont-ask ; system mode maintenance

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
115

NX-API
Working with Interactive Commands Using NX-API

NX-API Request Elements
NX-API sends request elements to the device in XML format or JSON format. The HTTP header of the request
must identify the content type of the request.

You use the NX-API elements that are listed in the following table to specify a CLI command:

Table 5: NX-API Request Elements for XML or JSON Format

DescriptionNX-API Request Element

Specifies the NX-API version.version

Specifies the type of command to be executed.

The following types of commands are supported:

• cli_show

CLI show commands that expect structured output. If the
command does not support XML output, an error message is
returned.

• cli_show_array

CLI show commands that expect structured output. Only for
show commands. Similar to cli_show, but with
cli_show_array, data is returned as a list of one element, or
an array, within square brackets [].

• cli_show_ascii

CLI show commands that expect ASCII output. This aligns
with existing scripts that parse ASCII output. Users are able
to use existing scripts with minimal changes.

• cli_conf

CLI configuration commands.

• bash

Bash commands. Most non-interactive Bash commands are
supported by NX-API.

Note • Each command is only executable with the current
user's authority.

• The pipe operation is supported in the output when
the message type is ASCII. If the output is in XML
format, the pipe operation is not supported.

• A maximum of 10 consecutive show commands
are supported. If the number of show commands
exceeds 10, the 11th and subsequent commands
are ignored.

• No interactive commands are supported.

type

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
116

NX-API
NX-API Request Elements

DescriptionNX-API Request Element

Some show commands can return a large amount of output. For
the NX-API client to start processing the output before the entire
command completes, NX-API supports output chunking for show
commands.

Enable or disable chunk with the following settings:

Note Do not chunk output.0

Chunk output.1

Only show commands support chunking.When a series
of show commands are entered, only the first command
is chunked and returned.

The output message format is XML. (XML is the
default.) Special characters, such as < or >, are converted
to form a valid XML message (< is converted into <
> is converted into >).

You can use XML SAX to parse the chunked output.

Note

When chunking is enabled, themessage format is limited
to XML. JSON output format is not supported when
chunking is enabled.

Note

chunk

Valid only for configuration CLIs, not for show commands.
Specifies the configuration rollback options. Specify one of the
following options.

• Stop-on-error—Stops at the first CLI that fails.

• Continue-on-error—Ignores and continues with other CLIs.

• Rollback-on-error—Performs a rollback to the previous state
the system configuration was in.

The rollback element is available in the cli_conf mode
when the input request format is XML or JSON.

Note

rollback

The session ID element is valid only when the response message
is chunked. To retrieve the next chunk of the message, you must
specify a sid to match the sid of the previous response message.

sid

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
117

NX-API
NX-API Request Elements

DescriptionNX-API Request Element

Input can be one command or multiple commands. However,
commands that belong to different message types should not be
mixed. For example, show commands are cli_show message type
and are not supported in cli_conf mode.

Except for bash, multiple commands are separated with
" ; ". (The ; must be surrounded with single blank
characters.)

Prepend commands with terminal dont-ask to avoid
timing out with an error code 500. For example:
terminal dont-ask ; cli_conf ; interface Eth4/1
; no shut ; switchport

For bash, multiple commands are separated with ";".
(The ; is not surrounded with single blank characters.)

Note

The following are examples of multiple commands:

show version ; show interface brief ; show
vlan

cli_show

interface Eth4/1 ; no shut ; switchportcli_conf

cd /bootflash;mkdir new_dirbash

input

The available output message formats are the following:

Note Specifies output in XML format.xml

Specifies output in JSON format.json

The Cisco NX-OS CLI supports XML output, which
means that the JSON output is converted from XML.
The conversion is processed on the switch.

To manage the computational overhead, the JSON
output is determined by the amount of output. If the
output exceeds 1 MB, the output is returned in XML
format. When the output is chunked, only XML output
is supported.

The content-type header in the HTTP/HTTPS headers
indicate the type of response format (XML or JSON).

Note

output_format

When JSON-RPC is the input request format, use the NX-API elements that are listed in the following table
to specify a CLI command:

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
118

NX-API
NX-API Request Elements

Table 6: NX-API Request Elements for JSON-RPC Format

DescriptionNX-API Request Element

A string specifying the version of the JSON-RPC protocol.

Version must be 2.0.

jsonrpc

A string containing the name of the method to be invoked.

NX-API supports either:

• cli ̶ show or configuration commands

• cli_ascii ̶ show or configuration commands; output without
formatting

• cli_array ̶ only for show commands; similar to cli, but with
cli_array, data is returned as a list of one element, or an array,
within square brackets, [].

method

A structured value that holds the parameter values used during the
invocation of a method.

It must contain the following:

• cmd ̶ CLI command

• version ̶ NX-API request version identifier

params

Valid only for configuration CLIs, not for show commands.
Configuration rollback options. You can specify one of the
following options.

• Stop-on-error—Stops at the first CLI that fails.

• Continue-on-error—Ignores the failed CLI and continues with
other CLIs.

• Rollback-on-error—Performs a rollback to the previous state
the system configuration was in.

rollback

An optional identifier established by the client that must contain a
string, number, or null value, if it is specified. The value should
not be null and numbers contain no fractional parts. If a user does
not specify the id parameter, the server assumes that the request is
simply a notification, resulting in a no response, for example, id :
1

id

NX-API Response Elements
The NX-API elements that respond to a CLI command are listed in the following table:

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
119

NX-API
NX-API Response Elements

Table 7: NX-API Response Elements

DescriptionNX-API Response Element

NX-API version.version

Type of command to be executed.type

Session ID of the response. This element is valid only when the response
message is chunked.

sid

Tag that encloses all command outputs.

Whenmultiple commands are in cli_show or cli_show_ascii, each command
output is enclosed by a single output tag.

When the message type is cli_conf or bash, there is a single output tag for
all the commands because cli_conf and bash commands require context.

outputs

Tag that encloses the output of a single command output.

For cli_conf and bash message types, this element contains the outputs of
all the commands.

output

Tag that encloses a single command that was specified in the request. This
element helps associate a request input element with the appropriate
response output element.

input

Body of the command response.body

Error code returned from the command execution.

NX-API uses standard HTTP error codes as described by the Hypertext
Transfer Protocol (HTTP) Status Code Registry
(http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml).

code

Error message that is associated with the returned error code.msg

Restricting Access to NX-API
There are two methods for restricting HTTP and HTTPS access to a device: ACLs and iptables. The method
that you use depends on whether you have configured a VRF for NX-API communication using the nxapi
use-vrf <vrf-name> CLI command.

Use ACLs to restrict HTTP or HTTPS access to a device only if you have not configured a VRF for NX-API
communication. For information about configuring ACLs, see the Cisco Nexus 3400-S NX-OS Security
Configuration Guide.

If you have configured a VRF for NX-API communication, however, ACLs will not restrict HTTP or HTTPS
access. Instead, create a rule for an iptable. For more information about creating a rule, see Updating an iptable,
on page 121.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
120

NX-API
Restricting Access to NX-API

Updating an iptable
An iptable enables you to restrict HTTP or HTTPS access to a device when a VRF is configured for NX-API
communication. This section demonstrates how to add, verify, and remove rules for blocking HTTP and
HTTPS access to an existing iptable.

Procedure

Step 1 To create a rule that blocks HTTP access:
bash-4.3# ip netns exec management iptables -A INPUT -p tcp --dport 80 -j DROP

Step 2 To create a rule that blocks HTTPS access:
bash-4.3# ip netns exec management iptables -A INPUT -p tcp --dport 443 -j DROP

Step 3 To verify the applied rules:
bash-4.3# ip netns exec management iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP tcp -- anywhere anywhere tcp dpt:http
DROP tcp -- anywhere anywhere tcp dpt:https

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Step 4 To create and verify a rule that blocks all traffic with a 10.155.0.0/24 subnet to port 80:

bash-4.3# ip netns exec management iptables -A INPUT -s 10.155.0.0/24 -p tcp --dport 80 -j
DROP
bash-4.3# ip netns exec management iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP tcp -- 10.155.0.0/24 anywhere tcp dpt:http

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Step 5 To remove and verify previously applied rules:

This example removes the first rule from INPUT.

bash-4.3# ip netns exec management iptables -D INPUT 1
bash-4.3# ip netns exec management iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
121

NX-API
Updating an iptable

target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

What to do next

The rules in iptables are not persistent across reloads when you modify them in the Bash shell. To make the
rules persistent, see Making an Iptable Persistent Across Reloads, on page 122.

Making an Iptable Persistent Across Reloads
The rules in iptables are not persistent across reloads when you modify them in the Bash shell. This section
explains how to make a modified iptable persistent across a reload.

Before you begin

You have modified an iptable.

Procedure

Step 1 Create a file called iptables_init.log in the /etc directory with full permissions:
bash-4.3# touch /etc/iptables_init.log; chmod 777 /etc/iptables_init.log

Step 2 Create a startup script called iptables_init in the /etc/init.d directory with the following set of commands:

#!/bin/sh

BEGIN INIT INFO

Provides: iptables_init

Required-Start:

Required-Stop:

Default-Start: 2 3 4 5

Default-Stop:

Short-Description: init for iptables

Description: sets config for iptables

during boot time

END INIT INFO

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin
start_script() {

ip netns exec management iptables-restore < /etc/sysconfig/iptables
ip netns exec management iptables
echo "iptables init script executed" > /etc/iptables_init.log

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
122

NX-API
Making an Iptable Persistent Across Reloads

}
case "$1" in
start)
start_script
;;
stop)
;;

restart)
sleep 1
$0 start
;;

*)
echo "Usage: $0 {start|stop|status|restart}"
exit 1

esac
exit 0

Step 3 Set the appropriate permissions to the startup script:
bash-4.3# chmod 777 /etc/init.d/iptables_int

Step 4 Set the iptables_int startup script to on with the chkconfig utility:
bash-4.3# chkconfig iptables_init on

The iptables_init startup script now executes each time that you perform a reload, making the iptable rules
persistent.

Table of NX-API Response Codes
The following are the possible NX-API errors, error codes, and messages of an NX-API response.

The standard HTTP error codes are at the Hypertext Transfer Protocol (HTTP) Status Code Registry
(http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml).

Note

Table 8: NX-API Response Codes

MessageCodeNX-API Response

Success.200SUCCESS

Output is piped elsewhere due to request.204CUST_OUTPUT_PIPED

Input Bash command error.400BASH_CMD_ERR

Chunking only allowed to one command.400CHUNK_ALLOW_ONE_CMD_ERR

CLI execution error.400CLI_CLIENT_ERR

Input CLI command error.400CLI_CMD_ERR

Request message is invalid.400IN_MSG_ERR

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
123

NX-API
Table of NX-API Response Codes

No input command.400NO_INPUT_CMD_ERR

Permission denied.401PERM_DENY_ERR

Configuration mode does not allow show .405CONF_NOT_ALLOW_SHOW_ERR

Show mode does not allow configuration.405SHOW_NOT_ALLOW_CONF_ERR

Maximum number of consecutive show
commands exceeded. The maximum is 10.

413EXCEED_MAX_SHOW_ERR

Response size too large.413MSG_SIZE_LARGE_ERR

Backend processing error.500BACKEND_ERR

System internal file operation error.500FILE_OPER_ERR

System internal LIBXML NS error.500LIBXML_NS_ERR

System internal LIBXML parse error.500LIBXML_PARSE_ERR

System internal LIBXML path context error.500LIBXML_PATH_CTX_ERR

System internal memory allocation error.500MEM_ALLOC_ERR

User not found from input or cache.500USER_NOT_FOUND_ERR

XML to JSON conversion error.500XML_TO_JSON_CONVERT_ERR

Bash command not supported.501BASH_CMD_NOT_SUPPORTED_ERR

Chunking allows only XML output.501CHUNK_ALLOW_XML_ONLY_ERR

JSON not supported due to large amount of
output.

501JSON_NOT_SUPPORTED_ERR

Message type not supported.501MSG_TYPE_UNSUPPORTED_ERR

Pipe operation not supported.501PIPE_OUTPUT_NOT_SUPPORTED_ERR

Pipe XML is not allowed in input.501PIPE_XML_NOT_ALLOWED_IN_INPUT

Response has large amount of output. JSON not
supported.

501RESP_BIG_JSON_NOT_ALLOWED_ERR

Structured output unsupported.501STRUCT_NOT_SUPPORTED_ERR

Undefined.600ERR_UNDEFINED

JSON and XML Structured Output
The NX-OS supports redirecting the standard output of various show commands in the following structured
output formats:

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
124

NX-API
JSON and XML Structured Output

• XML
• JSON
• JSON Pretty, which makes the standard block of JSON-formatted output easier to read.

Converting the standard NX-OS output to JSON, JSON Pretty, or XML format occurs on the NX-OS CLI by
"piping" the output to a JSON or XML interpreter. For example, you can issue the show ip access command
with the logical pipe (|) and specify JSON, JSON Pretty, or XML, and the NX-OS command output will be
properly structured and encoded in that format. This feature enables programmatic parsing of the data and
supports streaming data from the switch through software streaming telemetry. Most commands in Cisco
NX-OS support JSON, JSON Pretty, and XML output.

Selected examples of this feature follow.

About JSON (JavaScript Object Notation)
JSON is a light-weight text-based open standard that is designed for human-readable data and is an alternative
to XML. JSON originally evolved from JavaScript, but it is a language-independent data format. Command
output from NX-OS supports JSON and JSON Pretty format.

The switch supports JSON CLI Execution.

Nearly all modern programming languages support two primary Data Structures in some way. These Data
Structures are:

• Ordered List :: Array

• Unordered List (Name/Value pair) :: Objects

Also, through the Cisco NX-OS Sandbox, you can access JSON or XML output for a show command.

CLI Execution
switch-1# show cdp neighbors | json
{"TABLE_cdp_neighbor_brief_info": {"ROW_cdp_neighbor_brief_info": [{"ifindex": "
83886080", "device_id": "SW-SPARSHA-SAVBU-F10", "intf_id": "mgmt0", "ttl": "148"
, "capability": ["switch", "IGMP_cnd_filtering"], "platform_id": "cisco WS-C2960
S-48TS-L", "port_id": "GigabitEthernet1/0/24"}, {"ifindex": "436207616", "device
_id": "BLR-VXLAN-NPT-CR-178(FOC1745R01W)", "intf_id": "Ethernet1/1", "ttl": "166
", "capability": ["router", "switch", "IGMP_cnd_filtering", "Supports-STP-Disput
e"], "platform_id": "N3K-C3132Q-40G", "port_id": "Ethernet1/1"}]}}
switch-1#

Examples of XML and JSON Output
This section documents selected examples of NX-OS commands that are displayed as XML and JSON output.

This example shows how to display the unicast and multicast routing entries in hardware tables in JSON
format:

switch(config)# show hardware profile status | json
{"total_lpm": ["8191", "1024"], "total_host": "8192", "max_host4_limit": "4096",
"max_host6_limit": "2048", "max_mcast_limit": "2048", "used_lpm_total": "9", "u
sed_v4_lpm": "6", "used_v6_lpm": "3", "used_v6_lpm_128": "1", "used_host_lpm_tot
al": "0", "used_host_v4_lpm": "0", "used_host_v6_lpm": "0", "used_mcast": "0", "
used_mcast_oifl": "2", "used_host_in_host_total": "13", "used_host4_in_host": "1
2", "used_host6_in_host": "1", "max_ecmp_table_limit": "64", "used_ecmp_table":
"0", "mfib_fd_status": "Disabled", "mfib_fd_maxroute": "0", "mfib_fd_count": "0"

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
125

NX-API
About JSON (JavaScript Object Notation)

}
switch(config)#

This example shows how to display the unicast and multicast routing entries in hardware tables in XML
format:

switch(config)# show hardware profile status | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w
ww.cisco.com/nxos:1.0:fib">
<nf:data>
<show>
<hardware>
<profile>
<status>
<__XML__OPT_Cmd_dynamic_tcam_status>
<__XML__OPT_Cmd_dynamic_tcam_status___readonly__>
<__readonly__>
<total_lpm>8191</total_lpm>
<total_host>8192</total_host>
<total_lpm>1024</total_lpm>
<max_host4_limit>4096</max_host4_limit>
<max_host6_limit>2048</max_host6_limit>
<max_mcast_limit>2048</max_mcast_limit>
<used_lpm_total>9</used_lpm_total>
<used_v4_lpm>6</used_v4_lpm>
<used_v6_lpm>3</used_v6_lpm>
<used_v6_lpm_128>1</used_v6_lpm_128>
<used_host_lpm_total>0</used_host_lpm_total>
<used_host_v4_lpm>0</used_host_v4_lpm>
<used_host_v6_lpm>0</used_host_v6_lpm>
<used_mcast>0</used_mcast>
<used_mcast_oifl>2</used_mcast_oifl>
<used_host_in_host_total>13</used_host_in_host_total>
<used_host4_in_host>12</used_host4_in_host>
<used_host6_in_host>1</used_host6_in_host>
<max_ecmp_table_limit>64</max_ecmp_table_limit>
<used_ecmp_table>0</used_ecmp_table>
<mfib_fd_status>Disabled</mfib_fd_status>
<mfib_fd_maxroute>0</mfib_fd_maxroute>
<mfib_fd_count>0</mfib_fd_count>
</__readonly__>
</__XML__OPT_Cmd_dynamic_tcam_status___readonly__>
</__XML__OPT_Cmd_dynamic_tcam_status>
</status>
</profile>
</hardware>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
switch(config)#

This example shows how to display LLDP timers that are configured on the switch in JSON format:

switch(config)# show lldp timers | json
{"ttl": "120", "reinit": "2", "tx_interval": "30", "tx_delay": "2", "hold_mplier
": "4", "notification_interval": "5"}
switch(config)#

This example shows how to display LLDP timers that are configured on the switch in XML format:

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
126

NX-API
Examples of XML and JSON Output

switch(config)# show lldp timers | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w
ww.cisco.com/nxos:1.0:lldp">
<nf:data>
<show>
<lldp>
<timers>
<__XML__OPT_Cmd_lldp_show_timers___readonly__>
<__readonly__>
<ttl>120</ttl>
<reinit>2</reinit>
<tx_interval>30</tx_interval>
<tx_delay>2</tx_delay>
<hold_mplier>4</hold_mplier>
<notification_interval>5</notification_interval>
</__readonly__>
</__XML__OPT_Cmd_lldp_show_timers___readonly__>
</timers>
</lldp>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
switch(config)#

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
127

NX-API
Examples of XML and JSON Output

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
128

NX-API
Examples of XML and JSON Output

C H A P T E R 12
NX-API REST

This chapter contains the following topics:

• About NX-API REST, on page 129

About NX-API REST
NX-API REST

OnCisco Nexus 3400-S platform switches, you perform configuration tasks by using command-line interfaces
(CLIs) that run only on the device. NX-API REST improves the accessibility of the Cisco NX-OS configuration
by providing HTTP or HTTPS APIs that:

• Make specific CLIs available outside of the switch.

• Enable configurations that would require issuing many CLI commands by combining configuration
actions in relatively few HTTP or HTTPS operations.

NX-API REST supports show commands, basic and advanced switch configurations, and Linux Bash.

NX-API REST uses HTTP or HTTPS as its transport. CLIs are encoded into the HTTP or HTTPS POST
body. The NX-API REST backend uses the Nginx HTTP server. The Nginx process, and all its children
processes, are under Linux cgroup protection where the CPU and memory usage is capped. If the Nginx
resource usage exceeds the cgroup limitations, the Nginx process is restarted and restored.

For more information about the Cisco Nexus 3400-S Series NX-API REST SDK, see Cisco Nexus NX-API
References.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
129

https://developer.cisco.com/site/cisco-nexus-nx-api-references/
https://developer.cisco.com/site/cisco-nexus-nx-api-references/

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
130

NX-API
About NX-API REST

C H A P T E R 13
NX-API Developer Sandbox

This chapter contains the following topics:

• About the NX-API Developer Sandbox, on page 131
• Guidelines and Limitations, on page 132
• Enabling and Accessing the Developer Sandbox, on page 133
• Configuring the Message Format and Input Type, on page 133
• Using the Developer Sandbox, on page 135

About the NX-API Developer Sandbox
The NX-API Developer Sandbox is a web form hosted on the switch. It translates NX-OS CLI commands
into equivalent XML or JSON payloads, and converts NX-API REST payloads into their CLI equivalents.

The web form is a single screen with three panes—Command (top pane), Request, and Response— as shown
in the figure.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
131

Figure 1: NX-API Developer Sandbox with Example Request and Output Response

Controls in the Command pane allow you to choose a message format for a supported API, such as NX-API
REST, and a command type, such as XML or JSON. The available command type options vary depending
on the selected message format.

When you type or paste one or more CLI commands into the Command pane, the web form converts the
commands into an API payload, checking for configuration errors, and displays the resulting payload in the
Request pane. If you then choose to post the payload directly from the Sandbox to the switch, using the POST
button in the Command pane, the Response pane displays the API response.

Conversely, when you type an NX-API REST designated name (DN) and payload into the Command pane
and select the NXAPI-REST (DME)Method format and the model Input type, Developer Sandbox checks
the payload for configuration errors, then the Response pane displays the equivalent CLIs.

Guidelines and Limitations
Following are the guidelines and limitations for the Developer Sandbox:

• Clicking Send in the Sandbox commits the command to the switch, which can result in a configuration
or state change.

• Some feature configuration commands are not available until their associated feature has been enabled.

• Using Sandbox to convert with DN is supported only for finding the DN of a CLI config. Any other
workflow, for example, using DME to convert DN for CLI configuration commands is not supported.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
132

NX-API
Guidelines and Limitations

• The Command pane (the top pane) supports a maximum of 10,000 individual lines of input.

Enabling and Accessing the Developer Sandbox
By default, NX-API is disabled on the switch, as is the Sandbox. This procedure shows you how to enable
both and how to access the Sandbox with a browser.

Before you begin

Configure the management port of the switch.

Procedure

Step 1 Enable the NX-API nxapi feature and the sandbox using the following commands.
switch# configure terminal
switch(config)# feature nxapi

Step 2 (Optional) To change the HTTP or HTTPS port number, enter the nxapi http[s] port port-number command.

Example:
switch# configure terminal
switch(config)# nxapi http port 80
switch(config)# nxapi https port 443

Step 3 Open a browser and enter http[s]://management-ip-address (or http[s]://management-ip-address:port-number,
if you configured with a specific port number in the previous step) to launch the NX-API Developer Sandbox.

Example:

If the management IP address of the switch is 192.0.20.123, browse to https://192.0.20.123.

Cisco recommends that you use the Chrome browser, release 69.0.3497.100 (64-bit), or later, to
access the NX-API Developer Sandbox.

Note

Configuring the Message Format and Input Type
The Method, Message format, and Input type are configured in the upper right corner of the Command
pane (the top pane). For Method, choose the format of the API protocol that you want to use. The Developer
Sandbox supports the following API protocols:

Table 9: NX-OS API Protocols

DescriptionProtocol

Cisco NX-API proprietary protocol for delivering NX-OS CLI or bash commands in
an XML or a JSON payload.

NXAPI-CLI

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
133

NX-API
Enabling and Accessing the Developer Sandbox

DescriptionProtocol

Cisco NX-API proprietary protocol for manipulating and reading managed objects
(MOs) and their properties in the internal NX-OS data management engine (DME)
model. For more information about the Cisco Nexus 3400-S Series NX-API REST
SDK, see Cisco Nexus NX-API References.

NXAPI-REST
(DME)

The YANG ("Yet Another Next Generation") data modeling language for configuration
and state data.

RESTCONF (Yang)

When the Method has been chosen, a set of Message format and Input type options are presented. The
Message format setting can constrain the input CLI and can determine the Request and Response format.
The options vary depending on the Method selection.

For each Message format, the following table describes the Input type options:

Table 10: Command Types

Input typeMessage formatMethod

• cli — show or configuration commands

• cli-ascii — show or configuration commands,
output without formatting

• cli-array — show or configuration commands.
Similar to cli, but with cli_array, data is returned
as a list of one element, or an array, within square
brackets, [].

json-rpcNXAPI-CLI

• cli_show — show commands. If the command
does not support XML output, an error message
will be returned.

• cli_show_array — show commands. Similar to
cli_show, but with cli_show_array, data is
returned as a list of one element, or an array,
within square brackets [].

• cli_show_ascii — show commands, output
without formatting

• cli_conf— configuration commands. Interactive
configuration commands are not supported.

• bash — bash commands. Most non-interactive
bash commands are supported.

The bash shell must be enabled in the
switch.

Note

xmlNXAPI-CLI

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
134

NX-API
Configuring the Message Format and Input Type

https://developer.cisco.com/site/cisco-nexus-nx-api-references/

Input typeMessage formatMethod

• cli_show — show commands. If the command
does not support XML output, an error message
will be returned.

• cli_show_ascii — show commands, output
without formatting

• cli_conf— configuration commands. Interactive
configuration commands are not supported.

• bash — bash commands. Most non-interactive
bash commands are supported.

The bash shell must be enabled in the
switch.

Note

jsonNXAPI-CLI

• cli — configuration commands

• model — DN and corresponding payload.

NXAPI-REST (DME)

• json — JSON
structure is used for
payload

• xml — XML
structure is used for
payload

RESTCONF (Yang)

Output Chunking

In order to handle large show command output, some NX-API message formats support output chunking for
show commands. In this case, an Enable chunk mode checkbox appears below the Command Type control
along with a session ID (SID) type-in box.

When chunking is enabled, the response is sent in multiple "chunks," with the first chunk sent in the immediate
command response. In order to retrieve the next chunk of the response message, you must send an NX-API
request with SID set to the session ID of the previous response message.

Using the Developer Sandbox
You can use the Developer Sandbox to make multiple conversions, including the following:

• Using the Developer Sandbox to Convert CLI Commands to Payloads, on page 136

• Using the Developer Sandbox to Convert from REST Payloads to CLI Commands, on page 139

• Using the Developer Sandbox to Convert from RESTCONF to json or XML, on page 143

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
135

NX-API
Using the Developer Sandbox

Using the Developer Sandbox to Convert CLI Commands to Payloads

Online help is available by clicking Quick Start in the upper right corner of the Sandbox window.

Additional details, such as response codes and security methods, can be found in the chapter "NX-API CLI".

Only configuration commands are supported.

Tip

Procedure

Step 1 Configure the Method, Message Format, and Input Type for the API protocol you want to use.

For detailed instructions, see Configuring the Message Format and Input Type, on page 133.

Step 2 Type or paste NX-OS CLI configuration commands, one command per line, into the text entry box in the top
pane.

You can erase the contents of the text entry box (and the Request and Response panes) by clicking Reset at
the bottom of the top pane.

Step 3 Click the Convert at the bottom of the top pane.

If the CLI commands contain no configuration errors, the payload appears in the Request pane. If errors are
present, a descriptive error message appears in the Response pane.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
136

NX-API
Using the Developer Sandbox to Convert CLI Commands to Payloads

Step 4 When a valid payload is present in the Request pane, you can click Send to send the payload as an API call
to the switch.

The response from the switch appears in the Response pane.

Clicking Send commits the command to the switch, which can result in a configuration or state
change.

Warning

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
137

NX-API
Using the Developer Sandbox to Convert CLI Commands to Payloads

Step 5 You can copy the contents of the Request or Response pane to the clipboard by clicking Copy in the pane.
Step 6 You can also convert the request into the following formats by clicking on the appropriate tab in the Request

pane:

• Python

• Python3

• Java

• JavaScript

• Go-Lang

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
138

NX-API
Using the Developer Sandbox to Convert CLI Commands to Payloads

Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

Online help is available by clicking Quick Start in the upper right corner of the Sandbox window.

Additional details, such as response codes and security methods, can be found in the chapter "NX-API CLI".

Click on theDME Documentation link in the upper right corner of the Sandbox window to go to the NX-API
DME Model Reference page.

Click on the Model Browser link in the upper right corner of the Sandbox window to access Visore, the
Model Browser. Note that you might have to manually enter the IP address for your switch to access the
Visore page:

https://management-ip-address/visore.html.

Tip

Procedure

Step 1 Select NXAPI-REST (DME) as the Method and model as the Input Type.

Example:

Step 2 Enter a DN and payload into the text entry box in the top pane. Then click on the Convert button below the
top pane.

Example:

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
139

NX-API
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

For this example, the DN is /api/mo/sys.json and the NX-API REST payload is:
{
"topSystem": {
"attributes": {
"name": "REST2CLI"

}
}

}

When you click on theConvert button, the CLI equivalent appears in theCLI pane as shown in the following
image.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
140

NX-API
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
141

NX-API
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

The Developer Sandbox cannot convert all payloads into equivalent CLIs, even if the Sandbox
converted the CLIs to NX-API REST payloads. The following is a list of possible sources of error
that can prevent a payload from completely converting to CLI commands:

Table 11: Sources of REST2CLI Errors

ResultPayload Issue

The Error pane will return an error related to
the attribute.

Example:

CLI

Error unknown attribute
'fakeattribute' in element
'l1PhysIf'

The payload contains an attribute that does not
exist in the MO.

Example:
api/mo/sys.json
{
"topSystem": {
"children": [
{
"interfaceEntity": {
"children": [
{
"l1PhysIf": {
"attributes": {
"id": "eth1/1",
"fakeattribute":

"totallyFake"
}

}
}

]
}

}
]

}
}

The Error Pane will return an error related to
the unsupported MO.

Example:

CLI

Error The entire subtree of
"sys/dhcp" is not converted.

The payload includes MOs that aren't yet
supported for conversion:

Example:
api/mo/sys.json
{
"topSystem": {
"children": [
{
"dhcpEntity": {
"children": [
{
"dhcpInst": {
"attributes": {
"SnoopingEnabled": "yes"

}
}

}
]

}
}

]
}

}

Note

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
142

NX-API
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

Using the Developer Sandbox to Convert from RESTCONF to json or XML

Online help is available by clicking Quick Start in the upper right corner of the Sandbox window.

Click on the Yang Documentation link in the upper right corner of the Sandbox window to go to the Model
Driven Programmability with Yang page.

Click on the Yang Models link in the upper right corner of the Sandbox window to access the YangModels
GitHub site.

Tip

Procedure

Step 1 Select RESTCONF (Yang) as the Method and either json or xml as the Message format.

Example:

Step 2 Enter a command into the text entry box in the top pane, choose a message format, then click on the Convert
button below the top pane.

Example:

For this example, the command is logging level netstack 6 and the message format is json:

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
143

NX-API
Using the Developer Sandbox to Convert from RESTCONF to json or XML

Example:

For this example, the command is logging level netstack 6 and the message format is xml:

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
144

NX-API
Using the Developer Sandbox to Convert from RESTCONF to json or XML

Step 3 You can also convert the request into the following formats by clicking on the appropriate tab in the Request
pane:

• Python

• Python3

• Java

• JavaScript

• Go-Lang

The Java-generated script does not work if you choose the PATCH option from the drop-down
menu in the area above the Request tab. This is a known limitation with Java and is expected
behavior.

Note

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
145

NX-API
Using the Developer Sandbox to Convert from RESTCONF to json or XML

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
146

NX-API
Using the Developer Sandbox to Convert from RESTCONF to json or XML

P A R T IV
Model-Driven Programmability

• Infrastructure Overview, on page 149
• Managing Components, on page 153
• OpenConfig YANG, on page 159
• NETCONF Agent, on page 167
• Converting CLI Commands to Network Configuration, on page 175
• RESTCONF Agent, on page 181
• gRPC Agent , on page 185
• gNMI - gRPC Network Management Interface, on page 197
• Dynamic Logger, on page 231
• Model-Driven Telemetry, on page 239

C H A P T E R 14
Infrastructure Overview

This chapter contains the following topics:

• About Model-Driven Programmability, on page 149
• About the Programmable Interface Infrastructure, on page 149

About Model-Driven Programmability
Themodel-driven programmability of the NX-OS device allows you to automate the configuration and control
of the device.

Data Modeling

Data modeling provides a programmatic and standards-basedmethod of writing configurations to the network
device, replacing the process of manual configuration. Data models are written in a standard, industry-defined
language. Although configuration using a CLI may be more human-friendly, automating the configuration
using data models results in better scalability.

The Cisco NX-OS device supports the YANG data modeling language. YANG is a data modeling language
that is used to describe configuration and operational data, remote procedure calls, and notifications for network
devices.

Programmable Interfaces

Three standards-based programmable interfaces are supported by NX-OS for operations on the data model:

• NETCONF

• RESTConf

• gRPC

About the Programmable Interface Infrastructure
This section provides a brief overview of the NX-OS Programmable Interface infrastructure.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
149

When NX-OS receives a request whether through NETCONF, RESTConf, or gRPC, the request is converted
into an abstract message object. That message object is distributed to the underlying model infrastructure
based on the namespace in the request. Using the namespace, the appropriate model is selected and the request
is passed to it for processing. The model infrastructure executes the request (read or write) on the device
datastore. The results are returned to the agent of origin for response transmission back to the requesting client.

NX-OS Programmable Interface Agents

Agents provide an interface between the Device and clients. They specify the transport, the protocol, and the
encoding of the communications with the Device. NX-OS Programmable Interfaces support three agents:
NETCONF, RESTConf, and gRPC, each providing different interfaces for configuration management of the
Device through YANG models.

Supported YANGmodels for each Cisco NX-OS release are provided at https://devhub.cisco.com/artifactory/
open-nxos-agents.

Note

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
150

Model-Driven Programmability
About the Programmable Interface Infrastructure

https://devhub.cisco.com/artifactory/open-nxos-agents
https://devhub.cisco.com/artifactory/open-nxos-agents

Table 12: NX-OS Programmable Interface Agents

EncodingProtocolTransportAgent

XMLSSHNETCONF

XML or JSONdraft-ietf-netconf-restconf-10[1HTTPRESTConf

Google ProtobufgRPC Protocol Spec[2]HTTPgRPC

The protocol specifications are described in the following documents:

• [1] RESTCONF Protocol draft-ietf-netconf-restconf-10 https://tools.ietf.org/html/
draft-ietf-netconf-restconf-10

• [2] Cisco NX-OS gRPC Protocol Specification

Model Infrastructure

The Model Infrastructure takes requests that are received from the Agent, determines the namespace that is
associated with the YANG model in the request, and selects the model component matching the namespace
to process the request. When the selected model component completes request processing, the processing
results are sent to the requesting Agent for transmission back to the client. The Model Infrastructure is also
responsible for handling protocol initiation requests involving authentication, handshaking, and so on, as
specified by the Agent protocol.

Device YANG Model

The Device Configuration is described in a YANG model that is called a Device Model. The Device Model
is manifested in the Model Infrastructure as another model component with the Device namespace.

Common YANG Models

A Common Model is another kind of model component that contains within its elements, YANG Paths to the
equivalent DeviceModel elements. These equivalent DeviceModel elements are used to read and write Device
Model data in the Device YANG context.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
151

Model-Driven Programmability
About the Programmable Interface Infrastructure

https://tools.ietf.org/html/draft-ietf-netconf-restconf-10
https://tools.ietf.org/html/draft-ietf-netconf-restconf-10

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
152

Model-Driven Programmability
About the Programmable Interface Infrastructure

C H A P T E R 15
Managing Components

This chapter contains the following topics:

• About the Component RPM Packages, on page 153
• Preparing for Installation, on page 155
• Downloading Components from the Cisco Artifactory, on page 156
• Installing RPM Packages, on page 156

About the Component RPM Packages
NX-OS Programmable Interface Component RPM packages may be downloaded from the Cisco Artifactory.
There are two types of component RPM packages that are needed:

• Base Components (required)

• Common Model Components (OpenConfig models must be explicitly downloaded and installed)

Base Components

The Base Components comprise the following required RPM packages:

• mtx-infra — Infrastructure

• mtx-device —Cisco native model

At least one of the following agent packages must be installed in order to have access to the modeled NX-OS
interface:

• mtx-netconf-agent —NETCONF agent

• mtx-restconf-agent —RESTCONF agent

• mtx-grpc-agent — gRPC agent

Common Model Components

Common Model component RPMs support OpenConfig models. To use the OpenConfig models, you must
download and install the OpenConfig RPMs. For convenience, there is a single combined package of all
supported OpenConfig models, mtx-openconfig-all.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
153

While the single combined package is recommended, an alternative is to download and install RPMs of selected
models and their dependencies among the supported models listed in the following table. The
mtx-openconfig-all RPM is not compatible with the individual model RPMs. You must uninstall the
former before installing the latter, and you must unistall the latter before installing the former.

DependenciesPackage NameModel

Ver

Model RevModel Name

mtx-openconfig-interfacesmtx-openconfig-acl1.0.02017-05-26openconfig-acl

mtx-openconfig-interfaces

mtx-openconfig-routing-policy

mtx-openconfig-bgp-policy4.0.12017-07-30openconfig-bgp-policy

mtx-openconfig-if-ethernet

mtx-openconfig-interfaces

mtx-openconfig-if-aggregate2.0.02017-07-14openconfig-if-aggregate

mtx-openconfig-interfacesmtx-openconfig-if-ethernet2.0.02017-07-14openconfig-if-ethernet

mtx-openconfig-if-aggregate

mtx-openconfig-if-ethernet

mtx-openconfig-interfaces

mtx-openconfig-vlan

mtx-openconfig-if-ip1.0.22016-05-26openconfig-if-ip

mtx-openconfig-if-aggregate

mtx-openconfig-if-ethernet

mtx-openconfig-if-ip

mtx-openconfig-interfaces

mtx-openconfig-vlan

mtx-openconfig-if-ip-ext2.3.02018-01-05openconfig-if-ip-ext

-mtx-openconfig-interfaces2.0.02017-07-14openconfig-interfaces

mtx-openconfig-bgp-policy

mtx-openconfig-if-aggregate

mtx-openconfig-if-ethernet

mtx-openconfig-interfaces

mtx-openconfig-routing-policy

mtx-openconfig-vlan

mtx-openconfig-network-instance0.8.12017-08-24openconfig-network-instance

mtx-openconfig-routing-policymtx-openconfig-network-instance-policy0.1.02017-02-15openconfig-network-instance-policy

mtx-openconfig-interfaces

mtx-openconfig-routing-policy

mtx-openconfig-ospf-policy0.1.12017-08-24openconfig-ospf-policy

-mtx-openconfig-platform0.8.02018-01-16openconfig-platform

mtx-openconfig-platformmtx-openconfig-platform-linecard0.1.02017-08-03openconfig-platform-linecard

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
154

Model-Driven Programmability
About the Component RPM Packages

DependenciesPackage NameModel

Ver

Model RevModel Name

mtx-openconfig-if-ethernet

mtx-openconfig-interfaces

mtx-openconfig-platform

mtx-openconfig-platform-port0.3.02018-01-20openconfig-platform-port

mtx-openconfig-if-ethernet

mtx-openconfig-interfaces

mtx-openconfig-platform

mtx-openconfig-platform-transceiver0.4.12018-01-22openconfig-platform-transceiver

mtx-openconfig-interfacesmtx-openconfig-relay-agent0.1.02016-05-16openconfig-relay-agent

-mtx-openconfig-routing-policy2.0.12016-05-12openconfig-routing-policy

mtx-openconfig-interfacesmtx-openconfig-spanning-tree0.2.02017-07-14openconfig-spanning-tree

-mtx-openconfig-system0.3.02017-09-18openconfig-system

mtx-openconfig-if-aggregate

mtx-openconfig-if-ethernet

mtx-openconfig-interfaces

mtx-openconfig-vlan2.0.02017-07-14openconfig-vlan

Preparing for Installation
This section contains installation preparation and other useful information for managing NX-OS Programmable
Interface components.

Opening the Bash Shell on the Device

You perform RPM installation in the switch's Bash shell. Make sure that feature bash is configured on the
device.
switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# feature bash-shell
Switch(config)# end
Switch# run bash sudo su
bash-4.2#

To return to the device CLI prompt from Bash, type exit or Ctrl-D.

Verify Device Readiness

You can use the following CLI show commands to confirm the readiness of the device before installation of
an RPM.

• show module—Indicates whether all modules and LEMs are up.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
155

Model-Driven Programmability
Preparing for Installation

Switch# show module

• show system redundancy status—Indicates whether the standby device is up and running and in HA
mode. If a standby sync is in progress, the RPM installation may fail.
Switch# show system redundancy status

If the line cards have failed to come up, enter the createrepo /rpms command in the Bash shell.
bash-4.2# createrepo /rpms

Downloading Components from the Cisco Artifactory
You can download the NX-OS Programmable Interface Component RPMs from the Cisco Artifactory at the
following URL. The RPMs are organized by NX-OS release-specific directories. Ensure that you are
downloading the RPMs from the correct NX-OS release directory.

https://devhub.cisco.com/artifactory/open-nxos-agents

The NX-OS Programmable Interface Component RPMs adhere to the following naming convention:

<package>-<version>-<NX-OS release>.<architecture>.rpm

Select and download the desired NX-OS Programmable Interface Component RPM packages to the device
for installation as described in the following sections.

Installing RPM Packages

Installing the Programmable Interface Base and Common Model Component
RPM Packages

Before you begin

• From the Cisco Artifactory, download the following packages:

• mtx-infra

• mtx-device

• mtx-netconf-agent/mtx-restconf-agent/mtx-grpc-agent (at least one)

• mtx-openconfig-all (alternatively, selected individual models)

• Using the CLI commands in Preparing for Installation, on page 155, confirm that all line cards in the
Active and Standby devices are up and ready.

Procedure

Step 1 Copy the downloaded RPMs to the device.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
156

Model-Driven Programmability
Downloading Components from the Cisco Artifactory

https://devhub.cisco.com/artifactory/open-nxos-agents

Example:

Switch# copy scp://jdoe@192.0.20.123/myrpms/mtx-infra-2.0.0.0-9.2.1.lib32_n9000.rpm bootflash:
vrf management
Switch# copy scp://jdoe@192.0.20.123/myrpms/mtx-device-2.0.0.0-9.2.1.lib32_n9000.rpm
bootflash: vrf management
Switch# copy scp://jdoe@192.0.20.123/myrpms/mtx-netconf-agent-2.0.0.0-9.2.1.lib32_n9000.rpm
bootflash: vrf management
Switch# copy scp://jdoe@192.0.20.123/myrpms/mtx-openconfig-all-1.0.0.0-9.2.1.lib32_n9000.rpm
bootflash: vrf management

Step 2 From the Bash shell, install the RPMs.

Example:

bash-4.2# cd /bootflash
bash-4.2# yum install mtx-infra-2.0.0.0-9.2.1.lib32_n9000.rpm
mtx-device-2.0.0.0-9.2.1.lib32_n9000.rpm mtx-netconf-agent-2.0.0.0-9.2.1.lib32_n9000.rpm
mtx-openconfig-all-1.0.0.0-9.2.1.lib32_n9000.rpm

Step 3 From the Bash shell, verify the installation.

Example:

bash-4.2# yum list installed | grep mtx

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
157

Model-Driven Programmability
Installing the Programmable Interface Base and Common Model Component RPM Packages

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
158

Model-Driven Programmability
Installing the Programmable Interface Base and Common Model Component RPM Packages

C H A P T E R 16
OpenConfig YANG

This chapter contains the following topics:

• About OpenConfig YANG, on page 159
• Guidelines and Limitations for OpenConfig YANG, on page 159
• Understanding Deletion of BGP Routing Instance, on page 164

About OpenConfig YANG
OpenConfig YANG supports modern networking principles, such as declarative configuration andmodel-driven
management and operations. OpenConfig provides vendor-neutral datamodels for configuration andmonitoring
of the network, as well as helping with moving from a pull model to a push model, with subscriptions and
event update streaming.

The switch supports a broad range of functional areas, including BGP, OSPF, Interface L2 and L3, VRFs,
VLANs, and TACACS.

For more information about OpenConfig YANG, see About OpenConfig YANG.

For the OpenConfig models, see YANG Models. OpenConfig YANG models are grouped by Cisco NX-OS
releases, so when the Cisco NX-OS release number changes, the last digits in the URL change.

Guidelines and Limitations for OpenConfig YANG
OpenConfig YANG has the following guidelines and limitations:

• The following OpenConfig YANG limitations exist for OC-BGP-POLICY:

• Action type is always permit for community-set and as-path-set, which applies to the
following containers:

• /bgp-defined-sets/community-sets/community-set/

• /bgp-defined-sets/as-path-sets/as-path-set/

In OpenConfig YANG, there is no action type concept as there is in the CLI for community-set
and as-path-set. Therefore, the action type is always permit for community-set and
as-path-set.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
159

https://developer.cisco.com/docs/openconfig-yang-release-9-2x/
https://github.com/YangModels/yang/tree/master/vendor/cisco/nx/

• The following OpenConfig YANG limitation applies to this container:
/bgp-defined-sets/community-sets/community-set/

In the CLI, community-list can have two different types: standard and expanded. However,
in the OpenConfig YANG model, community-set-name has no such differentiation.

When you create the community-set-name through OpenConfig YANG, the following things
happen internally:

• The _std suffix is appended after community-set-name if community-member is in
the standard form (AS:NN).

• The _exp suffix is appended after community-set-name if community-member is in
the expanded form (regex):
<community-set>

<community-set-name>oc_commset1d</community-set-name>
<config>

<community-set-name>oc_commset1d</community-set-name>
<community-member>0:1</community-member>
<community-member>_1_</community-member>

</config>
</community-set>

The preceding OpenConfig YANG configuration is mapped to the following CLI:
ip community-list expanded oc_commset1d_exp seq 5 permit "_1_"
ip community-list standard oc_commset1d_std seq 5 permit 0:1

• The following OpenConfig YANG limitation applies to this container:
/bgp-conditions/match-community-set/config/community-set/

OpenConfig YANG can only map to one community-set, while the CLI can match to multiple
instances of the community-set:

• In the CLI:
ip community-list standard 1-1 seq 1 permit 1:1
ip community-list standard 1-2 seq 1 permit 1:2
ip community-list standard 1-3 seq 1 permit 1:3

route-map To_LC permit 10
match community 1-1 1-2 1-3

• The corresponding OpenConfig YANG payload follows:
<config>
<routing-policy xmlns="http://openconfig.net/yang/routing-policy">
<defined-sets>
<bgp-defined-sets xmlns="http://openconfig.net/yang/bgp-policy">
<community-sets>
<community-set>
<community-set-name>cs</community-set-name>
<config>
<community-set-name>cs</community-set-name>
<community-member>1:1</community-member>
<community-member>1:2</community-member>
<community-member>1:3</community-member>

</config>
</community-set>

</community-sets>
</bgp-defined-sets>

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
160

Model-Driven Programmability
Guidelines and Limitations for OpenConfig YANG

</defined-sets>
<policy-definitions>
<policy-definition>
<name>To_LC</name>
<statements>
<statement>
<name>10</name>
<conditions>
<bgp-conditions xmlns="http://openconfig.net/yang/bgp-policy">
<match-community-set>
<config>
<community-set>cs</community-set>

</config>
</match-community-set>

</bgp-conditions>
</conditions>

</statement>
</statements>

</policy-definition>
</policy-definitions>

</routing-policy>
</config>

As a workaround, create one community with multiple statements through OpenConfig YANG:
ip community-list standard cs_std seq 5 permit 1:1
ip community-list standard cs_std seq 10 permit 1:2
ip community-list standard cs_std seq 15 permit 1:3

route-map To_LC permit 10
match community cs_std

• The following OpenConfig YANG limitation applies to this container:
/bgp-conditions/state/next-hop-in

In OpenConfig YANG, the next-hop-in type is an IP address, but in the CLI, it is an IP prefix.

While creating the next-hop-in through OpenConfig YANG, the IP address is converted to a
"/32" mask prefix in the CLI configuration. For example:

• Following is an example of next-hop-in in the OpenConfig YANG payload:
<policy-definition>

<name>sc0</name>
<statements>

<statement>
<name>5</name>
<conditions>

<bgp-conditions xmlns="http://openconfig.net/yang/bgp-policy">

<config>
<next-hop-in>2.3.4.5</next-hop-in>

</config>
</bgp-conditions>

</conditions>
</statement>

</statements>
</policy-definition>

• Following is an example of the same information in the CLI:
ip prefix-list IPV4_PFX_LIST_OPENCONFIG_sc0_5 seq 5 permit 2.3.4.5/32
route-map sc0 permit 5

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
161

Model-Driven Programmability
Guidelines and Limitations for OpenConfig YANG

match ip next-hop prefix-list IPV4_PFX_LIST_OPENCONFIG_sc0_5

• The following NX-OS limitations exist for OC-BGP-POLICY:

• /bgp-actions/set-community/config/method enum "REFERENCE" is not supported.

• enum "SELF", which is supported in the OpenConfig YANG model for
/bgp-actions/config/set-next-hop, is not supported.

• For OC-BGP-POLICY,
/bgp-conditions/match-community-set/config/community-set getmapped only to
match community <community-set>_std, so only standard community is supported. Match
to expanded community set is not supported.

• There is a limitation in replacingmatch-tag-set because defined sets fortag-sets are not currently
implemented.

Currently, replacing match-tag-set appends the values. To replace match-tag-set, delete it,
then create it again.

• The following guidelines and limitations apply to OSPF OpenConfig YANG:

• If you configure and remove an area configuration in OSPF, the deleted areas (stale entries) are still
shown in DME. Those stale area entries are shown in the GETCONFIG/GET output in OpenConfig
YANG.

• Only one area is supported in OpenConfig YANG in the OSPF policy match ospf-area
configuration. In the CLI, you can configure to match multiple areas, such as match ospf-area
100 101. However, in OpenConfig YANG, you can configure only one area (for example, match
ospf-area 100).

• The area virtual-link and area interface configurations payload cannot go under the same area list.
Split the area container payload as Virtual link area and interface area in the same payload.

• The MD5 authentication string cannot be configured in OSPF OpenConfig YANG.

In the OSPF model, Authentication-type is defined for the Authentication:
leaf authentication-type {
type string;
description
"The type of authentication that should be used on this
interface";

}

OSPF OpenConfig YANG does not support an option for authentication password.

• The OSPF area authentication configuration is not supported. For example, area 0.0.0.200
authentication message-digest cannot be configured from OpenConfig YANG.

• The OSPF/BGP instance configuration that falls under default VRF (for example, router ospf 1/router
bgp 1) will not get deleted when you delete the Protocols container with the default network instance.

• The following are guidelines and limitations for VLAN configuration between the OpenConfig payload
and the Cisco Nexus 3400-S interfaces:

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
162

Model-Driven Programmability
Guidelines and Limitations for OpenConfig YANG

• When you attempt to simultaneously configure a trunk-mode interface and trunk VLANs in the
same OpenConfig payload, the configuration does not complete successfully. However, when you
split the payload so that the trunk-mode interface is sent first, then the trunk VLANs are sent, the
configuration completes successfully.

On Cisco NX-OS interfaces the default interface mode is access. To implement any trunk-related
configurations, you must first change the interface mode to trunk, then configure the trunk VLAN
ranges. Do these configurations in separate payloads.

The following examples show the separate payloads for the configuring trunk mode and VLAN
ranges.

Example 1, payload configuring the interface to trunk mode.
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<edit-config>
<target>
<running/>

</target>
<config>
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>eth1/47</name>
<subinterfaces>
<subinterface>
<index>0</index>
<config>
<index>0</index>

</config>
</subinterface>

</subinterfaces>
<ethernet xmlns="http://openconfig.net/yang/interfaces/ethernet">
<switched-vlan xmlns="http://openconfig.net/yang/vlan">
<config>
<interface-mode>TRUNK</interface-mode>

</config>
</switched-vlan>

</ethernet>
</interface>

</interfaces>
</config>

</edit-config>
</rpc>

Example 2, payload configuring the VLAN ranges.
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<edit-config>
<target>
<running/>

</target>
<config>
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>eth1/47</name>
<subinterfaces>
<subinterface>
<index>0</index>
<config>
<index>0</index>

</config>
</subinterface>

</subinterfaces>
<ethernet xmlns="http://openconfig.net/yang/interfaces/ethernet">

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
163

Model-Driven Programmability
Guidelines and Limitations for OpenConfig YANG

<switched-vlan xmlns="http://openconfig.net/yang/vlan">
<config>
<native-vlan>999</native-vlan>
<trunk-vlans xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"

nc:operation="delete">1..4094</trunk-vlans>
<trunk-vlans>401</trunk-vlans>
<trunk-vlans>999</trunk-vlans>

</config>
</switched-vlan>

</ethernet>
</interface>

</interfaces>
</config>

</edit-config>
</rpc>

• Because of the design of OpenConfig YANG, when you configure VLANs, there must be no overlap
between the VLANs in the payload and the VLANs already configured on an interface. If an overlap
exists, the configuration throughOpenConfig is not successful.Make sure that the VLANs configured
on an interface are different from the VLANs in the OpenConfig payload. Pay particular attention
to the starting and ending VLANs in a range.

Understanding Deletion of BGP Routing Instance
With OpenConfig YANG network-instance (OCNI), when attempting to delete only the BGP configuration
of the default VRF instead of deleting the entire BGP routing instance, BGP information might not be deleted
at the protocols/BGP level. In this situation, when the delete is at the protocols or BGP level with the
autonomous system number in the payload, only the configuration of the default VRF is deleted instead of
removing the entire BGP routing instance.

Following is an example payload that would be used to delete the configuration under the default VRF in
BGP.
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<edit-config>
<target>
<running/>

</target>
<config>
<network-instances xmlns="http://openconfig.net/yang/network-instance">
<network-instance>
<name>default</name>
<protocols>
<protocol>
<identifier>BGP</identifier>
<name>bgp</name>

<bgp xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" nc:operation="delete">

<global>
<config>
<as>100</as>

</config>
</global>

</bgp>
</protocol>

</protocols>
</network-instance>

</network-instances>

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
164

Model-Driven Programmability
Understanding Deletion of BGP Routing Instance

</config>
</edit-config>

</rpc>

Expected Behavior: The BGP routing instance itself should be deleted, which is the equivalent to no router
bgp 100.

Actual Behavior: Only the BGP configuration under the default VRF is deleted. No equivalent single CLI
configuration exists.

Following is the running configuration before the delete operation:
router bgp 100
router-id 1.2.3.4
address-family ipv4 unicast
vrf abc
address-family ipv4 unicast
maximum-paths 2

And following is the running configuration after the delete operation:
router bgp 100
vrf abc
address-family ipv4 unicast
maximum-paths 2

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
165

Model-Driven Programmability
Understanding Deletion of BGP Routing Instance

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
166

Model-Driven Programmability
Understanding Deletion of BGP Routing Instance

C H A P T E R 17
NETCONF Agent

This chapter contains the following topics:

• About the NETCONF Agent, on page 167
• Guidelines and Limitations, on page 169
• Configuring the NETCONF Agent, on page 169
• Using the NETCONF Agent, on page 170
• Troubleshooting the NETCONF Agent, on page 174

About the NETCONF Agent
The Cisco NX-OS NETCONF Agent is a client-facing interface. The agent provides secure transport for the
client requests and server responses in the form of a YANG model, encoded in XML.

The NETCONF Agent supports a candidate configuration feature. The Candidate configuration datastore
temporarily holds candidate configuration and any changes you make without changing the running
configuration. You can then choose when to update the configuration of the device with the candidate
configuration when you commit and confirm the candidate configuration.

If you do not confirm the changes, exit from a nonpersistent NETCONF client session, or choose to cancel
the commit after you commit the change, a system timer then times out and rolls back the changes.

If you initiate a confirmed-commit operation with a persistent token, the NETCONF client session becomes
a persistent process. In a persistent process, exiting the NETCONF client session does not call an automatic
roll-back. Also, the changes cannot be rolled back without the matching persistent token.

Cisco NX-OS NETCONF supports the following configuration capabilities:

• Writable-Running Capability
urn:ietf:params:netconf:capability:writable-running:1.0

• Rollback-on-error Capability
urn:ietf:params:netconf:capability:rollback-on-error:1.0

• Candidate Configuration Capability
urn:ietf:params:netconf:capability:candidate:1.0

• Validation Capability
urn:ietf:params:netconf:capability:validate:1.1

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
167

• Confirmed Commit Capability
urn:ietf:params:netconf:capability:confirmed-commit:1.1

When a new session starts, the NETCONF Agent sends out a <hello> message advertising its capabilities.
The following example shows a NETCONF agent sending a <hello> message to the client:

<?xml version="1.0" encoding="UTF-8"?>
<hello>

<capabilities>

<capability>urn:ietf:params:netconf:base:1.0</capability>
<capability>urn:ietf:params:netconf:base:1.1</capability>
<capability>urn:ietf:params:netconf:capability:writable-running:1.0</capability>
<capability>urn:ietf:params:netconf:capability:rollback-on-error:1.0</capability>
<capability>urn:ietf:params:netconf:capability:candidate:1.0</capability>
<capability>urn:ietf:params:netconf:capability:validate:1.1</capability>
<capability>urn:ietf:params:netconf:capability:confirmed-commit:1.1</capability>

<capability>http://cisco.com/ns/yang/cisco-nx-os-device?revision=2017-04-06&module=cisco-nx-os-device&deviations=cisco-nx-os-device-deviations</capability>

</capabilities>

<session-id>1438752697</session-id>
</hello>

The Cisco NX-OS NETCONF Agent supports the following NETCONF Protocol operations:

• get

• get-config

• edit-config

• close-session

• kill-session

Candidate configuration supports the following NETCONF Protocol operations.

• Operations for the candidate configuration as <source> or <target>.

• get-config

• edit-config

• copy-config

• lock

• unlock

• validate

• Operations for the candidate configuration that do not require explicitly specifying the candidate
configuration as <source> or <target>.

• commit

• cancel-commit

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
168

Model-Driven Programmability
About the NETCONF Agent

• discard-changes

The delete-config operation is not allowed.Note

Guidelines and Limitations
The NETCONF Agent has the following guideline and limitation:

• NETCONF does not support enhanced Role-Based Access Control (RBAC) as specified in RFC 6536.
Only users with a "network-admin" role are granted access to the NETCONF agent.

• NETCONF requires RPM to be installed on port 830.

Configuring the NETCONF Agent
The NETCONF Agent supports the following optional configuration parameters under the [netconf]
section in the configuration file (/etc/mtx.conf).

DescriptionParameter

(Optional) Specifies the timeout in minutes after
which idle client sessions are disconnected.

The default value is 5 minutes.

A value of 0 disables timeout.

idle_timeout

(Optional) Specifies the number of maximum
simultaneous client sessions.

The default value is 5 sessions.

The range is 1 to 50.

limit

The following is an example of the [netconf] section in the configuration file:

[netconf]
mtxadapter=/opt/mtx/lib/libmtxadapternetconf.1.0.1.so
idle_timeout=10
limit=1

For the modified configuration file to take effect, you must restart the NETCONF Agent using the CLI
command [no] feature netconf to disable and reenable.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
169

Model-Driven Programmability
Guidelines and Limitations

Using the NETCONF Agent
General Commands

The NETCONF Agent is enabled or disabled by the command [no] feature netconf.

General Control Commands

The available control commands for the NETCONF agent are:

netconfctl { status | start | restart | reload | stop }

Viewing the Agent Status

bash-4.2# netconfctl status
xosdsd is stopped
netconf is stopped

Starting the Agent

bash-4.2# netconfctl start
Starting Netconf Agent: [OK]

Initializing the Candidate Configuration Datastore

The candidate configuration can only be initialized with the contents of the running configuration. To Initialize
the candidate configuring datastore, send a Copy-Config request using SSH, with candidate as the target and
running as the source.

Performing Read and Write on the Candidate Configuration

To read from the candidate configuration, send a Get-Config request with SSH, using candidate as the source.

To write to the contents of the candidate configuration, send an Edit-Config request with SSH, using candidate
as the target.

NETCONF Candidate Configuration Workflow

The candidate configuration workflow is as follows:

• Edit the candidate configuration file.

• Validate the candidate configuration.

• Commit the changes to the running configuration.

Example: An SSH Session

This example shows initiating a session using the SSH client and sending an Edit-Config and GET request
using the SSH Client.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
170

Model-Driven Programmability
Using the NETCONF Agent

client-host % ssh -s admin@172.19.193.152 -p 830 netconf
User Access Verification
Password:
<?xml version="1.0" encoding="UTF-8"?>
<hello>

<capabilities>
<capability>urn:ietf:params:netconf:base:1.0</capability>
<capability>urn:ietf:params:netconf:base:1.1</capability>
<capability>urn:ietf:params:netconf:capability:writable-running:1.0</capability>
<capability>urn:ietf:params:netconf:capability:rollback-on-error:1.0</capability>
<capability>urn:ietf:params:netconf:capability:candidate:1.0</capability>
<capability>urn:ietf:params:netconf:capability:validate:1.1</capability>
<capability>urn:ietf:params:netconf:capability:confirmed-commit:1.1</capability>
<capability>http://cisco.com/ns/yang/cisco-nx-os-device?revision=2017-04-06&

module=cisco-nx-os-device&deviations=cisco-nx-os-device-deviations</capability>
</capabilities>
<session-id>1912037714</session-id>

</hello>
]]>]]><hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:netconf:base:1.1</capability>

</capabilities>
</hello>
]]>]]>
#794
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">

<edit-config>
<target>

<running/>
</target>
<config>

<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<bgp-items>

<inst-items>
<dom-items>

<Dom-list>
<name>default</name>

<rtrId>2.2.2.2</rtrId>
</Dom-list>

</dom-items>
</inst-items>

</bgp-items>
</System>

</config>
</edit-config>

</rpc>
##

#190
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">

<ok/>
</rpc-reply>

##

#511
<rpc message-id="109"

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
171

Model-Driven Programmability
Using the NETCONF Agent

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get-config>

<source>
<running/>

</source>
<filter type="subtree">

<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<bgp-items>

<inst-items>
<dom-items>

<Dom-list/>
</dom-items>

</inst-items>
</bgp-items>

</System>
</filter>

</get-config>
</rpc>
##

#996
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="109"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<data>
<System>

<bgp-items>
<inst-items>

<dom-items>
<Dom-list>

<name>default</name>
<always>disabled</always>
<bestPathIntvl>300</bestPathIntvl>
<holdIntvl>180</holdIntvl>
<kaIntvl>60</kaIntvl>
<maxAsLimit>0</maxAsLimit>
<pfxPeerTimeout>30</pfxPeerTimeout>
<pfxPeerWaitTime>90</pfxPeerWaitTime>
<reConnIntvl>60</reConnIntvl>
<rtrId>2.2.2.2</rtrId>

</Dom-list>
</dom-items>

</inst-items>
</bgp-items>

</System>
</data>

</rpc-reply>

##

The operation attribute in edit-config identifies the point in configuration where the specified operation
will be performed. If the operation attribute is not specified, the configuration is merged into the existing
configuration data store. Operation attribute can have the following values:

• create

• merge

• delete

The following example shows how to delete the configuration of interface Ethernet 0/0 from the running
configuration.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
172

Model-Driven Programmability
Using the NETCONF Agent

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>

<target>
<running/>

</target>
<default-operation>none</default-operation>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">

<top xmlns="http://example.com/schema/1.2/config">
<interface xc:operation="delete">

<name>Ethernet0/0</name>
</interface>

</top>
</config>

</edit-config>
</rpc>]]>]]>

Error Messages
If a request results in an error, the response payload includes the error.

Errors Defined by Cisco

The following are the errors that are defined by Cisco.

DescriptionError defined by Cisco

Unknown error encountered.unknown-error-cond

The requested operation is not supported (not-yet-implemented)n-y-i

Error in the request payload.namespace-not-found

Error in the request payload.namespace-already-exists

Error in the request payload.object-not-found

Error in the request payload.object-not-container

Error in the request payload.object-not-property

Error in the request payload.no-property-in-object

Internal error.invalid-dn

Internal error.invalid-arg

Error in the request payload.already-exists

Error in the request payloadcontainer-not-found

Error in the request payload.container-already-exists

Error in the request payload.property-not-found

Error in the request payload.property-already-exists

Error in the request payload.malformed

Internal error.alloc-failed

Internal error.sigint

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
173

Model-Driven Programmability
Error Messages

Internal error.not-initialized

Internal error.inappropriate

The following is an example of a NETCONF error response payload that reports an invalid IP address value:

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="320" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<rpc-error>
<error-type>Protocol</error-type>
<error-tag>operation-failed</error-tag>
<error-severity>Error</error-severity>
<error-message xml:lang="en">Property Merge (set property) Failed: operation-failed

value=500.500.500.500</error-message>
<error-path>/config/System/bgp-items/inst-items/dom-items/Dom-list/rtrId</error-path>

</rpc-error>
</rpc-reply>

Troubleshooting the NETCONF Agent
Troubleshooting Connectivity

• From a client system, ping the management port of the switch to verify that the switch is reachable.

• In the Bash shell of the switch, execute the service netconf status command to check the agent status.

• Check whether the RSA host key for SSH is outdated. If so, remove the RSA host key entry of the switch
from the ~/.ssh/known_hosts file on the client host. This example shows the message that is received
when the host key is outdated:

client-host % ssh -s admin@192.0.20.111 -p 830 netconf
@@@
@@ @ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
@@ IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-
the-middle attack)! It is also possible that the RSA host
key has just been changed. The fingerprint for the RSA key
sent by the remote host is
82:3d:49:5c:1b:08:4c:8e:19:94:a8:1f:32:8d:1e:dd. Please
contact your system administrator. Add correct host key
in /users/myuser/.ssh/known_hosts to get rid of this
message. Offending key in
/users/myuser/.ssh/known_hosts:304 Password
authentication is disabled to avoid man-in-the-middle
attacks. Keyboard-interactive authentication is disabled
to avoid man-in-the-middle attacks. User Access
Verification Permission denied
(publickey,password,keyboard-interactive).
client-host %

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
174

Model-Driven Programmability
Troubleshooting the NETCONF Agent

C H A P T E R 18
Converting CLI Commands to Network
Configuration

This chapter contains the following contents:

• Information About XMLIN, on page 175
• Licensing Requirements for XMLIN, on page 175
• Installing and Using the XMLIN Tool, on page 176
• Converting Show Command Output to XML, on page 176
• Configuration Examples for XMLIN, on page 177

Information About XMLIN
The XMLIN tool converts CLI commands to the Network Configuration (NETCONF) protocol format.
NETCONF is a network management protocol that provides mechanisms to install, manipulate, and delete
the configuration of network devices. It uses XML-based encoding for configuration data and protocol
messages. The NX-OS implementation of the NETCONF protocol supports the following protocol operations:
<get>, <edit-config>, <close-session>, <kill-session>, and <exec-command>.

The XMLIN tool converts show, EXEC, and configuration commands to corresponding NETCONF <get>,
<exec-command>, and <edit-config> requests. You can enter multiple configuration commands into a single
NETCONF <edit-config> instance.

The XMLIN tool also converts the output of show commands to XML format.

Licensing Requirements for XMLIN
Table 13: XMLIN Licensing Requirements

License RequirementProduct

XMLIN requires no license. Any feature not included in a license package is bundled with
the Cisco NX-OS system images and is provided at no extra charge to you. For a complete
explanation of the Cisco NX-OS licensing scheme, see the Cisco NX-OS Licensing Guide.

Cisco
NX-OS

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
175

Installing and Using the XMLIN Tool
You can install the XMLIN tool and then use it to convert configuration commands to NETCONF format.

Before you begin

The XMLIN tool can generate NETCONF instances of commands even if the corresponding feature sets or
required hardware capabilities are not available on the device. But, you might still need to install some feature
sets before entering the xmlin command.

Procedure

PurposeCommand or Action

switch# xmlinStep 1

Enters global configuration mode.switch(xmlin)# configure terminalStep 2

Converts configuration commands to
NETCONF format.

Configuration commandsStep 3

Generates the corresponding <edit-config>
request.

(Optional) switch(config)(xmlin)# endStep 4

Enter the end command to finish the
current XML configuration before
you generate an XML instance for a
show command.

Note

Converts show commands to NETCONF
format.

(Optional) switch(config-if-verify)(xmlin)#
show commands

Step 5

Returns to EXEC mode.(Optional) switch(config-if-verify)(xmlin)# exitStep 6

Converting Show Command Output to XML
You can convert the output of show commands to XML.

Before you begin

Make sure that all features for the commands you want to convert are installed and enabled on the device.
Otherwise, the commands fail.

You can use the terminal verify-only command to verify that a feature is enabled without entering it on the
device.

Make sure that all required hardware for the commands you want to convert are present on the device.
Otherwise, the commands fail.

Make sure that the XMLIN tool is installed.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
176

Model-Driven Programmability
Installing and Using the XMLIN Tool

Procedure

PurposeCommand or Action

Enters global configuration mode.switch# show-command | xmlinStep 1

You cannot use this command with
configuration commands.

Note

Configuration Examples for XMLIN
The following example shows how the XMLIN tool is installed on the device and used to convert a set of
configuration commands to an <edit-config> instance.

switch# xmlin
**
Loading the xmlin tool. Please be patient.
**
Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Copyright (C) 2002-2019, Cisco and/or its affiliates.
All rights reserved.
The copyrights to certain works contained in this software are
owned by other third parties and used and distributed under their own
licenses, such as open source. This software is provided "as is," and unless
otherwise stated, there is no warranty, express or implied, including but not
limited to warranties of merchantability and fitness for a particular purpose.
Certain components of this software are licensed under
the GNU General Public License (GPL) version 2.0 or
GNU General Public License (GPL) version 3.0 or the GNU
Lesser General Public License (LGPL) Version 2.1 or
Lesser General Public License (LGPL) Version 2.0.
A copy of each such license is available at
http://www.opensource.org/licenses/gpl-2.0.php and
http://opensource.org/licenses/gpl-3.0.html and
http://www.opensource.org/licenses/lgpl-2.1.php and
http://www.gnu.org/licenses/old-licenses/library.txt.

switch(xmlin)# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)(xmlin)# interface ethernet 2/1
% Success
switch(config-if-verify)(xmlin)# cdp enable
% Success
switch(config-if-verify)(xmlin)# end
<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:6.2.2.:configure_"
xmlns:m="http://www.cisco.com/nxos:6.2.2.:_exec"
xmlns:m1="http://www.cisco.com/nxos:6.2.2.:configure__if-eth-base" message-id="1">
<nf:edit-config>

<nf:target>
<nf:running/>

</nf:target>
<nf:config>
<m:configure>
<m:terminal>
<interface>

<__XML__PARAM__interface>

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
177

Model-Driven Programmability
Configuration Examples for XMLIN

<__XML__value>Ethernet2/1</__XML__value>
<m1:cdp>
<m1:enable/>

</m1:cdp>
</__XML__PARAM__interface>
</interface>
</m:terminal>
</m:configure>
</nf:config>
</nf:edit-config>

</nf:rpc>
]]>]]>

The following example shows how to enter the end command to finish the current XML configuration before
you generate an XML instance for a show command.

switch(xmlin)# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)(xmlin)# interface ethernet 2/1
switch(config-if-verify)(xmlin)# show interface ethernet 2/1
**
Please type "end" to finish and output the current XML document before building a new one.
**
% Command not successful

switch(config-if-verify)(xmlin)# end
<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:6.2.2.:configure_"
xmlns:m="http://www.cisco.com/nxos:6.2.2.:_exec" message-id="1">

<nf:edit-config>
<nf:target>

<nf:running/>
</nf:target>
<nf:config>

<m:configure>
<m:terminal>

<interface>
<__XML__PARAM__interface>

<__XML__value>Ethernet2/1</__XML__value>
</__XML__PARAM__interface>

</interface>
</m:terminal>
</m:configure>

</nf:config>
</nf:edit-config>

</nf:rpc>
]]>]]>

switch(xmlin)# show interface ethernet 2/1
<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:6.2.2.:if_manager" message-id="1">
<nf:get>
<nf:filter type="subtree">
<show>
<interface>
<__XML__PARAM__ifeth>

<__XML__value>Ethernet2/1</__XML__value>
</__XML__PARAM__ifeth>

</interface>
</show>

</nf:filter>

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
178

Model-Driven Programmability
Configuration Examples for XMLIN

</nf:get>
</nf:rpc>
]]>]]>
switch(xmlin)# exit
switch#

The following example shows how you can convert the output of the show interface brief command to XML.

switch# show interface brief | xmlin
<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:6.2.2.:if_manager"

message-id="1">
<nf:get>
<nf:filter type="subtree">

<show>
<interface>

<brief/>
</interface>

</show>
</nf:filter>

</nf:get>
</nf:rpc>
]]>]]>

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
179

Model-Driven Programmability
Configuration Examples for XMLIN

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
180

Model-Driven Programmability
Configuration Examples for XMLIN

C H A P T E R 19
RESTCONF Agent

This chapter contains the following topics:

• About the RESTConf Agent, on page 181
• Guidelines and Limitations, on page 182
• Configuring the RESTConf Agent, on page 182
• Using the RESTConf Agent, on page 182
• Troubleshooting the RESTConf Agent, on page 183

About the RESTConf Agent
Cisco NX-OS RESTConf is an HTTP -based protocol for configuring data that YANG version 1 defines,
using datastores in NETCONF.

NETCONF defines configuration datastores and a set of Create, Retrieve, Update, and Delete (CRUD)
operations that can access these datastores. The YANG language defines the syntax and semantics of datastore
content, operational data, protocol operations, and event notifications.

Cisco NX-OS RESTConf uses HTTP operations to provide CRUD operations on a conceptual datastore
containing YANG-defined data. This data is compatible with a server which implements NETCONF datastores.

The RESTCONF protocol supports both XML and JSON payload encodings. User authentication happens
through the HTTP Basic Authentication.

The following table shows the Protocol operations that the Cisco NX-OS RESTConf Agent supports:

NETCONF EquivalentRESTConf

NETCONF: noneOPTIONS

NETCONF: noneHEAD

NETCONF: <get-config>, <get>GET

NETCONF: <edit-config> (operation="create")POST

NETCONF: <edit-config> (operation="create/replace")PUT

NETCONF: <edit-config> (operation="merge")PATCH

NETCONF: <edit-config> (operation="delete")DELETE

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
181

Guidelines and Limitations
The RESTCONF Agent has the following guideline and limitation:

• Cisco NX-OS RESTCONF is based on an RFC draft entitled RESTCONF Protocol
draft-ietf-netconf-restconf-10. See the https://tools.ietf.org/html/draft-ietf-netconf-restconf-10 document.

• RESTCONF does not support enhanced Role-Based Access Control (RBAC) as specified in RFC 6536.
Only the users with a "network-admin" role are granted access to the RESTCONF agent.

Configuring the RESTConf Agent
The RESTConf Agent does not require any configuration in the configuration file (/etc/mtx.conf).

Using the RESTConf Agent
General Commands

• You can enable or disable the RESTCONF Agent [no] feature restconf command.

• Configure the following commands to enable HTTP or HTTPS access:

• feature nxapi

• nxapi http port 80

• nxapi https port 443

General Control Commands

The available control commands for the RESTConf agent are:

restconfctl { status | start | restart | reload | stop }

Viewing the Agent Status

bash-4.2# restconfctl status
xosdsd is stopped
restconfctl is stopped

Starting the Agent

bash-4.2# restconfctl start
Starting Restconf Agent: [OK]

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
182

Model-Driven Programmability
Guidelines and Limitations

https://tools.ietf.org/html/draft-ietf-netconf-restconf-10

Sending a POST Request to the Server Using Curl

client-host % curl -X POST -H "Authorization: Basic YWRtaW46Y2lzY28=" -H "Content-Type:
application/yang.data+xml" -d '<always>enabled</always><rtrId>2.2.2.2</rtrId>'
"http://192.0.20.123/restconf/data/Cisco-NX-OS-device:System/bgp-items/inst-items/dom-items/Dom-list=default"
-i

HTTP/1.1 201 Created
Server: nginx/1.7.10
Date: Tue, 27 Sep 2016 20:25:31 GMT
Transfer-Encoding: chunked
Connection: keep-alive
Set-Cookie: nxapi_auth=admin:147500853169574134
Status: 201 Created
Location: /System/bgp-items/inst-items/dom-items/Dom-list=default/always/rtrId/

Sending a GET Request to the Server Using Curl

client-host % curl -X GET -H "Authorization: Basic YWRtaW46Y2lzY28=" -H "Accept:
application/yang.data+xml"
"http://192.0.20.123/restconf/data/Cisco-NX-OS-device:System/bgp-items/inst-items/dom-items/Dom-list?content=config"
-i

HTTP/1.1 200 OK
Server: nginx/1.7.10
Date: Tue, 27 Sep 2016 20:26:03 GMT
Content-Type: application/yang.data+xml
Content-Length: 395
Connection: keep-alive
Set-Cookie: nxapi_auth=admin:147500856185650327
Status: 200 OK

<Dom-list>
<name>default</name>
<always>enabled</always>
<bestPathIntvl>300</bestPathIntvl>
<holdIntvl>180</holdIntvl>
<kaIntvl>60</kaIntvl>
<maxAsLimit>0</maxAsLimit>
<pfxPeerTimeout>30</pfxPeerTimeout>
<pfxPeerWaitTime>90</pfxPeerWaitTime>
<reConnIntvl>60</reConnIntvl>
<rtrId>2.2.2.2</rtrId>

</Dom-list>
client-host %

Troubleshooting the RESTConf Agent
Troubleshooting Connectivity

• Enable the web server by issuing the feature nxapi command.

• Ensure that the nxapi http port 80 command is configured to open up the port for HTTP

• Ensure that the nxapi https port 443 command is configured to open up the port for HTTPS.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
183

Model-Driven Programmability
Troubleshooting the RESTConf Agent

• Ping the management port of the switch to verify that the switch is reachable.

• In the Bash shell of the switch, execute the service restconf status command to check the agent status.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
184

Model-Driven Programmability
Troubleshooting the RESTConf Agent

C H A P T E R 20
gRPC Agent

This chapter contains the following topics:

• About the gRPC Agent, on page 185
• Guidelines and Limitations, on page 186
• Configuring the gRPC Agent, on page 187
• Using the gRPC Agent, on page 188
• Troubleshooting the gRPC Agent, on page 189
• gRPC Protobuf File, on page 189

About the gRPC Agent
The Cisco NX-OS gRPC protocol defines a mechanism through which a network device can be managed and
its configuration data can be retrieved and installed. The protocol exposes a complete and formal Application
Programming Interface (API) that clients can use to manage device configurations.

The Cisco NX-OS gRPC protocol uses a remote procedure call (RPC) paradigm where an external client
manipulates device configurations utilizing Google Protocol Buffer (GPB)-defined API calls along with their
service- specific arguments. These GPB-defined APIs transparently cause an RPC call to the device that return
replies in the same GPB-defined API context.

The gRPC Agent provides a secure transport through TLS and user authentication and authorization through
AAA.

The functional objective of the Cisco NX-OS gRPC protocol is to mirror that provided by NETCONF,
particularly in terms of both stateless and stateful configuration manipulation for maximum operational
flexibility.

The Cisco NX-OS gRPC Agent supports the following protocol operations:

• Get

• GetConfig

• GetOper

• EditConfig

• StartSession

• CloseSession

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
185

• KillSession

The gRPC Agent supports two types of operations:

• Stateless operations are performed entirely within a single message without creating a session.

• Stateful operations are performed using multiple messages. The following is the sequence of operations
that are performed:

1. Start the session. This action acquires a unique session ID.

2. Perform session tasks using the session ID.

3. Close the session. This action invalidates the session ID.

The following are the supported operations. See the Appendix for their RPC definitions in the .proto file that
is exported by the gRPC Agent.

DescriptionOperation

Starts a new session between the client and server and acquires a unique session
ID.

StartSession

Writes the specified YANG data subset to the target datastore.EditConfig

Retrieves the specified YANG configuration data subset from the source datastore.GetConfig

Retrieves the specified YANG operational data from the source datastore.GetOper

Retrieves the specified YANG configuration and operational data from the source
datastore.

Get

Forces the termination of a session.KillSession

Requests graceful termination of a session.CloseSession

GetConfig, GetOper, and Get are stateless operations so don’t require a session ID.

EditConfig can be either stateless or stateful. For a stateless operation, specify the SessionID as 0. For a stateful
operation, a valid (nonzero) SessionID is required.

The gRPC Agent supports timeout for the sessions. The idle timeout for sessions can be configured on the
device, after which idle sessions are closed and deleted.

Guidelines and Limitations
The gRPC Agent has the following guideline and limitation:

• gRPC does not support enhanced Role-Based Access Control (RBAC) as specified in RFC 6536. Only
users with a "network-admin" role are granted access to the gRPC agent.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
186

Model-Driven Programmability
Guidelines and Limitations

Configuring the gRPC Agent
The gRPC Agent supports the following configuration parameters under the [grpc] section of the
configuration file (/opt/mtx/etc/grpc.key).

DescriptionParameter

(Optional) Specifies the timeout in minutes after
which idle client sessions are disconnected.

The default timeout is 5 minutes.

A value of 0 disables timeout.

idle_timeout

(Optional) Specifies the number of maximum
simultaneous client sessions.

The default limit is 5 sessions.

The range is from 1 through 50.

limit

(Optional) Specifies the port number on which the
gRPC Agent listens.

The default port is 50051.

lport

Specifies the key file location for TLS authentication.

The default location is/opt/mtx/etc/grpc.key

key

Specifies the certificate file location for TLS
authentication.

The default location is/opt/mtx/etc/grpc.key

cert

Specifies the type of secure connection.

Valid choices are:

• TLS for TLS

• NONE for an unsecure connection

security

The following is an example of the [grpc] section in the configuration file:

[grpc]
mtxadapter=/opt/mtx/lib/libmtxadaptergrpc.1.0.1.so
idle_timeout=10
limit=1
lport=50051
security=TLS
cert=/etc/grpc.pem
key=/etc/grpc.pem

For the modified configuration file to take effect, you must restart the gRPC Agent using the CLI command
[no] feature grpc to disable and reenable.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
187

Model-Driven Programmability
Configuring the gRPC Agent

Using the gRPC Agent
General Commands

You can enable or disable the gRPC Agent by issuing the [no] feature grpc command.

Example: A Basic Yang Path in JSON Format

client-host % cat payload.json
{
"namespace": "http://cisco.com/ns/yang/cisco-nx-os-device",
"System": {
"bgp-items": {
"inst-items": {
"dom-items": {
"Dom-list": {
"name": "default",
"rtrId": "7.7.7.7",
"holdIntvl": "100"

}
}

}
}

}
}

The JSON structure has been pretty-formatted here for readability.Note

Sending an EditConfig Request to the Server

client-host % ./grpc_client -username=admin -password=cisco -operation=EditConfig
-e_oper=Merge -def_op=Merge -err_op=stop-on-error -infile=payload.json -reqid=1
-source=running -tls=true -serverAdd=192.0.20.123 -lport=50051

##
Starting the client service
##
TLS set true for client requests1ems.cisco.com
TLS FLAG:1
192.0.20.123:50051
All the client connections are secured
Sending EditConfig request to the server
sessionid is
0
reqid:1
{"rpc-reply":{"ok":""}}

Sending a GetConfig Request to the Server

client-host % ./grpc_client -username=admin -password=cisco -operation=GetConfig
-infile=payload.json -reqid=1 -source=running -tls=true -serverAdd=192.0.20.123 -lport=50051

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
188

Model-Driven Programmability
Using the gRPC Agent

##
Starting the client service
##
TLS set true for client requests1ems.cisco.com
TLS FLAG:1
192.0.20.123:50051
All the client connections are secured
Sending GetConfig request to the server
in get config
Got the response from the server
###
Yang Json is:
###
{"rpc-reply":{"data":{"System":{"bgp-items":{"inst-items":{"dom-items":{"Dom-list":{"name":"default","rtrId":"7.7.7.7","holdIntvl":"100"}}}}}}}}
###
client-host %

Troubleshooting the gRPC Agent
Troubleshooting Connectivity

• From a client system, verify that the agent is listening on the port. For example:

client-host % nc –z 192.0.20.222 50051
Connection to 192.0.20.222 50051 port [tcp/*] succeeded!
client-host % echo $?
0
client-host %

• In the Bash shell of the switch, execute the service grpc status command to check the agent status.

gRPC Protobuf File
The gRPC Agent exports the supported operations and data structures in the proto definition file at
/opt/mtx/etc/nxos_grpc.proto. The file is included in the gRPC Agent RPM. The following shows the
definitions:

// Copyright 2016, Cisco Systems Inc.
// All rights reserved.

syntax = "proto3";

package NXOSExtensibleManagabilityService;

// Service provided by Cisco NX-OS gRPC Agent
service gRPCConfigOper {

// Retrieves the specified YANG configuration data subset from the
// source datastore
rpc GetConfig(GetConfigArgs) returns(stream GetConfigReply) {};

// Retrieves the specified YANG operational data from the source datastore

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
189

Model-Driven Programmability
Troubleshooting the gRPC Agent

rpc GetOper(GetOperArgs) returns(stream GetOperReply) {};

// Retrieves the specified YANG configuration and operational data
// subset from the source datastore
rpc Get(GetArgs) returns(stream GetReply){};

// Writes the specified YANG data subset to the target datastore
rpc EditConfig(EditConfigArgs) returns(EditConfigReply) {};

// Starts a new session between the client and server and acquires a
// unique session ID
rpc StartSession(SessionArgs) returns(SessionReply) {};

// Requests graceful termination of a session
rpc CloseSession(CloseSessionArgs) returns (CloseSessionReply) {};

// Forces the termination of a session
rpc KillSession(KillArgs) returns(KillReply) {};

// Unsupported; reserved for future
rpc DeleteConfig(DeleteConfigArgs) returns(DeleteConfigReply) {};

// Unsupported; reserved for future
rpc CopyConfig(CopyConfigArgs) returns(CopyConfigReply) {};

// Unsupported; reserved for future
rpc Lock(LockArgs) returns(LockReply) {};

// Unsupported; reserved for future
rpc UnLock(UnLockArgs) returns(UnLockReply) {};

// Unsupported; reserved for future
rpc Commit(CommitArgs) returns(CommitReply) {};

// Unsupported; reserved for future
rpc Validate(ValidateArgs) returns(ValidateReply) {};

// Unsupported; reserved for future
rpc Abort(AbortArgs) returns(AbortReply) {};

}

message GetConfigArgs
{

// JSON-encoded YANG data to be retrieved
string YangPath = 1;

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;

// (Optional) Specifies the source datastore; only "running" is supported.
// Default is "running".
string Source = 3;

}

message GetConfigReply
{

// The request ID specified in the request.
int64 ReqID = 1;

// JSON-encoded YANG data that was retrieved
string YangData = 2;

// JSON-encoded error information when request fails

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
190

Model-Driven Programmability
gRPC Protobuf File

string Errors = 3;
}

message GetOperArgs
{

// JSON-encoded YANG data to be retrieved
string YangPath = 1;

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;

}

message GetOperReply
{

// The request ID specified in the request.
int64 ReqID = 1;

// JSON-encoded YANG data that was retrieved
string YangData = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

message GetArgs
{

// JSON-encoded YANG data to be retrieved
string YangPath=1;

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;

}

message GetReply
{

// The request ID specified in the request.
int64 ReqID = 1;

// JSON-encoded YANG data that was retrieved
string YangData = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

message EditConfigArgs
{

// JSON-encoded YANG data to be edited
string YangPath = 1;

// Specifies the operation to perform on teh configuration datastore with
// the YangPath data. Possible values are:
// create
// merge
// replace
// delete
// remove
// If not specified, default value is "merge".
string Operation = 2;

// A unique session ID acquired from a call to StartSession().
// For stateless operation, this value should be set to 0.
int64 SessionID = 3;

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
191

Model-Driven Programmability
gRPC Protobuf File

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 4;

// (Optional) Specifies the target datastore; only "running" is supported.
// Default is "running".
string Target = 5;

// Specifies the default operation on the given object while traversing
// the configuration tree.
// The following operations are possible:
// merge: merges the configuration data with the target datastore;
// this is the default.
// replace: replaces the configuration data with the target datastore.
// none: target datastore is unaffected during the traversal until
// the specified object is reached.
string DefOp = 6;

// Specifies the action to be performed in the event of an error during
// configuration. Possible values are:
// stop
// roll-back
// continue
// Default is "roll-back".
string ErrorOp = 7;

}

message EditConfigReply
{

// The request ID specified in the request.
int64 ReqID = 1;

// If EditConfig is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

message DeleteConfigArgs
{

// A unique session ID acquired from a call to StartSession().
// For stateless operation, this value should be set to 0.
int64 SessionID = 1;

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;

// (Optional) Specifies the target datastore; only "running" is supported.
// Default is "running".
string Target = 3;

}

message DeleteConfigReply
{

// The request ID specified in the request.
int64 ReqID = 1;

// If DeleteConfig is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
192

Model-Driven Programmability
gRPC Protobuf File

message CopyConfigArgs
{

// A unique session ID acquired from a call to StartSession().
// For stateless operation, this value should be set to 0.
int64 SessionID = 1;

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;

// (Optional) Specifies the source datastore; only "running" is supported.
// Default is "running".
string Source = 3;

// (Optional) Specifies the target datastore; only "running" is supported.
// Default is "running".
string Target = 4;

}

message CopyConfigReply
{

// The request ID specified in the request.
int64 ReqID = 1;

// If CopyConfig is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

message LockArgs
{

// A unique session ID acquired from a call to StartSession().
int64 SessionID = 1;

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID=2;

// (Optional) Specifies the target datastore; only "running" is supported.
// Default is "running".
string Target = 3;

}

message LockReply
{

// The request ID specified in the request.
int64 ReqID = 1;

// If Lock is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

message UnLockArgs
{

// A unique session ID acquired from a call to StartSession().
int64 SessionID = 1;

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;

// (Optional) Specifies the target datastore; only "running" is supported.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
193

Model-Driven Programmability
gRPC Protobuf File

// Default is "running".
string Target = 3;

}

message UnLockReply
{

// The request ID specified in the request.
int64 ReqID = 1;

// If UnLock is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

message SessionArgs
{

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 1;

}

message SessionReply
{

// The request ID specified in the request.
int64 ReqID = 1;
int64 SessionID = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

message CloseSessionArgs
{

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 1;

// A unique session ID acquired from a call to StartSession().
int64 SessionID = 2;

}

message CloseSessionReply
{

// The request ID specified in the request.
int64 ReqID = 1;

// If CloseSession is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

message KillArgs
{

// A unique session ID acquired from a call to StartSession().
int64 SessionID = 1;

int64 SessionIDToKill = 2;

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 3;

}

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
194

Model-Driven Programmability
gRPC Protobuf File

message KillReply
{

// The request ID specified in the request.
int64 ReqID = 1;

// If Kill is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

message ValidateArgs
{

// A unique session ID acquired from a call to StartSession().
int64 SessionID = 1;

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;

}

message ValidateReply
{

// The request ID specified in the request.
int64 ReqID = 1;

// If Validate is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

message CommitArgs
{

// A unique session ID acquired from a call to StartSession().
int64 SessionID = 1;

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;

}

message CommitReply
{

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 1;

// If Commit is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

message AbortArgs
{

// A unique session ID acquired from a call to StartSession().
int64 SessionID = 1;

// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;

}

message AbortReply

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
195

Model-Driven Programmability
gRPC Protobuf File

{
// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 1;

// If Abort is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;

// JSON-encoded error information when request fails
string Errors = 3;

}

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
196

Model-Driven Programmability
gRPC Protobuf File

C H A P T E R 21
gNMI - gRPC Network Management Interface

This chapter contains the following topics:

• About gNMI, on page 197
• gNMI RPC and SUBSCRIBE, on page 198
• Guidelines and Limitations for gNMI, on page 199
• Configuring gNMI, on page 200
• Configuring Server Certificate, on page 201
• Generating Key/Certificate Examples, on page 202
• Verifying gNMI, on page 206
• Clients, on page 206
• Sample DME Subscription - JSON Encoding, on page 206
• Sample DME Subscription - PROTO Encoding, on page 207
• Subscribe, on page 209
• Capabilities, on page 212
• Troubleshooting, on page 216
• Innovium Path Telemetry, on page 219

About gNMI
The gNMI protocol is an RPC-based Network Management Interface that Google created. gNMI sits on top
of gRPC (Google Remote Procedure Call) messaging protocol, which acts as a transport protocol.

Cisco NX-OS supports gNMI for dial-in subscription to telemetry applications running on the Cisco Nexus
3400-S platform switches. Although past release supported telemetry events over gRPC, the switch pushed
the telemetry data to the telemetry receivers. This method was called dial out.

With gNMI, applications can pull information from the switch. They subscribe to specific telemetry services
by learning the supported telemetry capabilities and subscribing to only the telemetry services that it needs.

Cisco NX-OS Release 9.3(1) and later supports gNMI version 0.5.0. Cisco NX-OS Release 9.3(1) and later
supports the following parts of gNMI version 0.5.0:

Table 14: Supported gNMI RPCs

Supported?gNMI RPC

NoGet

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
197

Supported?gNMI RPC

NoSet

YesCapabilities

YesSubscribe

gNMI RPC and SUBSCRIBE
The NX-OS 9.3(1) release supports gNMI version 0.5.0. Cisco NX-OS Release 9.3(1) supports the following
parts of gNMI version 0.5.0.

Table 15: SUBSCRIBE Options

DescriptionSupported?Sub TypeType

Switch sends current
values only once for all
specified paths

YesOnce

Whenever the switch
receives a Poll message,
the switch sends the
current values for all
specified paths.

YesPoll

Once per stream sample
interval, the switch sends
the current values for all
specified paths. The
supported sample interval
range is from 1 through
604800 seconds.

The default sample
interval is 10 seconds.

YesSampleStream

The switch sends current
values as its initial state,
but then updates the
values only when
changes, such as create,
modify, or delete occur to
any of the specified paths.

YesOn_Change

NoTarget_Defined

Optional SUBSCRIBE Flags

For the SUBSCRIBE option, some optional flags are available that modify the response to the options listed
in the table. In release 9.3(1), the updates_only optional flag is supported, which is applicable to ON_CHANGE

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
198

Model-Driven Programmability
gNMI RPC and SUBSCRIBE

subscriptions. If this flag is set, the switch suppresses the initial snapshot data (current state) that is normally
sent with the first response.

The following flags are not supported:

• aliases

• allow_aggregation

• extensions

• heart-beat interval

• prefix

• qos

• suppress_redundant

Guidelines and Limitations for gNMI
Following are the guidelines and limitations for gNMI:

• Beginning with Cisco NX-OS Release 9.3(3), if you have configured a custom gRPC certificate, upon
entering the reload ascii command the configuration is lost. It will revert to the default day-1 certificate.
After entering the reload ascii command, the switch will reload. Once the switch is up again, you need
to reconfigure the gRPC custom certificate.

• The gNMI feature supports the Subscribe and Capability gNMI RPCs.

• The feature supports JSON and gnmi.proto encoding. The feature does not support protobuf.any encoding.

• Each gNMI message has a maximum size of 12 MB. If the amount of collected data exceeds the 12-MB
maximum, the collected data is dropped.

You can avoid this situation by creating more focused subscriptions that handle smaller, more granular
data-collection sets. So, instead of subscribing to one higher-level path, create multiple subscriptions for
different, lower-level parts of the path.

• All paths within the same subscription request must have the same sample interval. If the same path
requires different sample intervals, create multiple subscriptions.

• The feature does not support a path prefix in the Subscription request, but the Subscription can contain
an empty prefix field.

• The gRPC process that supports gNMI uses the HIGH_PRIO cgroup, which limits the CPU usage to
75% of CPU and memory to 1.5 GB.

• The show grpc gnmi command has the following considerations:

• The gRPC agent retains gNMI calls for a maximum of 1 hour after the call has ended.

• If the total number of calls exceeds 2000, the gRPC agent purges ended calls based on the internal
cleanup routine.

The gRPC server runs in the management VRF. As a result, the gRPC process communicates only in this
VRF forcing the management interface to support all gRPC calls.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
199

Model-Driven Programmability
Guidelines and Limitations for gNMI

gRPC functionality now includes the default VRF for a total of two gRPC servers on each switch. You can
run one gRPC server in each VRF, or run only one gRPC server in the management VRF. Supporting a gRPC
in the default VRF adds flexibility to offload processing gRPC calls from the management VRF, where
significant traffic load might not be desirable.

If two gRPC servers are configured, be aware of the following:

• VRF boundaries are strictly enforced, so each gRPC server processes requests independent of the other.
Requests do not cross between VRFs.

• The two servers are not HA or fault tolerant. One gRPC server does not back up the other, and there is
no switchover or switchback between them.

• Any limits for the gRPC server are per VRF.

Configuring gNMI
Configure the gNMI feature through the grpc gnmi commands.

Procedure

PurposeCommand or Action

Enters global configuration mode.configure terminal

Example:

Step 1

switch-1# configure terminal
switch-1(config)#

Enables the gRPC agent, which supports the
gNMI interface for dial-in.

feature grpc

Example:

Step 2

switch-1# feature grpc
switch-1(config)#

Sets the limit of simultaneous dial-in calls to
the gNMI server on the switch. Configure a
limit from 1 through 16. The default limit is 8.

grpc gnmi max-concurrent-call number

Example:
switch-1(config)# grpc gnmi
max-concurrent-call 16
switch-1(config)#

Step 3

The maximum value that you configure is for
each VRF. If you set a limit of 16 and gNMI is
configured for both management and default
VRFs, each VRF supports 16 simultaneous
gNMI calls.

This command does not affect and ongoing or
in-progress gNMI calls. Instead, gRPC enforces
the limit on new calls, so any in-progress calls
are unaffected and allowed to complete.

The configured limit does not affect
the gRPCConfigOper service.

Note

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
200

Model-Driven Programmability
Configuring gNMI

PurposeCommand or Action

Enables the gRPC agent to accept incoming
(dial-in) RPC requests from the default VRF.

(Optional) grpc use-vrf default

Example:

Step 4

This step enables the default VRF to process
switch(config)# grpc use-vrf default incoming RPC requests. By default, the

management VRF processes incoming RPC
requests when the gRPC feature is enabled.

Both VRFs process requests
individually, so that requests do not
cross between VRFs.

Note

Configuring Server Certificate
When you configured a TLS certificate and imported successfully onto the switch, the following is an example
of the show grpc gnmi service statistics command output.
#show grpc gnmi service statistics

=============
gRPC Endpoint
=============

Vrf : management
Server address : [::]:50051

Cert notBefore : Mon Jan 27 15:34:08 PDT 2020
Cert notAfter : Tue Jan 26 15:34:08 PDT 2021

Max concurrent calls : 8
Listen calls : 1
Active calls : 0

Number of created calls : 1
Number of bad calls : 0

Subscription stream/once/poll : 0/0/0

gNMI communicates over gRPC and uses TLS to secure the channel between the switch and the client. The
default hard-coded gRPC certificate is no longer shipped with the switch. The default behavior is a self-signed
key and certificate which is generated on the switch as shown below with an expiration date of one day.

When the certificate is expired or failed to install successfully, you will see the 1-D default certificate. The
following is an example of the show grpc gnmi service statistics command output.
#show grpc gnmi service statistics

=============
gRPC Endpoint
=============

Vrf : management
Server address : [::]:50051

Cert notBefore : Wed Mar 11 19:43:01 PDT 2020
Cert notAfter : Thu Mar 12 19:43:01 PDT 2020

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
201

Model-Driven Programmability
Configuring Server Certificate

Max concurrent calls : 8
Listen calls : 1
Active calls : 0

Number of created calls : 1
Number of bad calls : 0

Subscription stream/once/poll : 0/0/0

With an expiration of one day, you can use this temporary certificate for quick testing. For long term a new
key/certificate must be generated.

After the certificate expires, there are two ways to have the key/certificate to regenerate:

• Reload the switch.

• Manually delete the key/certificate in the /opt/mtx/etc folder and enter the no feature grpc and
feature grpc commands.

Note

Generating Key/Certificate Examples
Typically, there are two possible scenarios:

1. The server and client can use a Self-Signed Certificate. Self-Signed Certificates are less secure and are
not to be used in production environments.

a. Generating self-signed certificates on the switch:

1. Generating self-signed certificates on the switch:
a. Login to the Bash shell:
b. cd to the location where you want to store the key/cert
c. switch# openssl req -x509 -newkey rsa:2048 -keyout self_sign2048.key -out

self_sign2048.pem -days 365 -nodes
Generating a 2048 bit RSA private key
...
........
writing new private key to 'self_sign2048.key'

You are about to be asked to enter information that will be

incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name

or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
string is too long, it needs to be less than 2 bytes long
Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:CA
Locality Name (eg, city) []:San Jose
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Cisco

Systems

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
202

Model-Driven Programmability
Generating Key/Certificate Examples

Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:benton.cisco.com
Email Address []:
switch#
switch# ls -al | grep self
-rw-r--r-- 1 root root 912 Jun 6 15:16 self_sign2048.key
-rw-r--r-- 1 root root 952 Jun 6 15:16 self_sign2048.pem
switch#

NOTE: Steps 2 and 3 are need only with Cisco NX-OS Release 9.3(2) and earlier.
2. Modify /etc/mtx.conf file. The mtx.conf file is not persistent after reloads but
persistent through "no feature grpc" & "feature grpc"
3. Under the "grpc" section in the file add the key and cert location

[grpc]
key = /bootflash/self_sign2048.key
cert = /bootflash/self_sign2048.pem

4. Go to cli and run
a. no feature grpc
b. feature grpc
c. show grpc internal gnmi service statistics

1. Verify that the new cert and key are used by grpc process.

NOTE: If you upgraded to Cisco NX-OS Release 9.3(3) or later, edit /etc/mtx.conf.user
and remove the entries in Step 2.
If you downgraded from Cisco NX-OS Release 9.3(3) or later to a previous release,
you need to edit /etc/mtx.conf.user and add the entries in Step 5b.
5. Optional: If you want the changes to be persistent across reloads

a. Create a new file /etc/mtx.conf.user
b. Add the following
[grpc]
key = /bootflash/self_sign2048.key
cert = /bootflash/self_sign2048.pem
c. To get the mtx.conf file to accept the changes either

1. Install, activate or de-activate a MTX RPM
2. Or reload the box

2. Generating a Trusted Certificate Example.
On any Linux server, follow the steps below.
Step 1: Create a TLS directory, and then navigate to it:
mkdir -p TLS
cd TLS

Step 2: Create three directories under mypersonalca and two prerequisite files:
mkdir -p mypersonalca/certs
mkdir -p mypersonalca/private
mkdir -p mypersonalca/crl
echo "01" > mypersonalca/serial
touch mypersonalca/index.txt

Step 3: Create the CA configuration file (ca.conf). The following is an example of the
contents of the ca.conf file:

[ca]
default_ca = CA_default
[CA_default]
dir = mypersonalca
serial = $dir/serial
database = $dir/index.txt
new_certs_dir = $dir/newcerts
certs = $dir/certs

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
203

Model-Driven Programmability
Generating Key/Certificate Examples

certificate = $certs/ca.pem
private_key = $dir/private/ca.key
crl_dir = $dir/crl
default_days = 365
default_crl_days = 30
default_md = sha1
preserve = no
email_in_dn = no
nameopt = default_ca
certopt = default_ca
policy = policy_match
copy_extensions = copy
[policy_match]
countryName = match
stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional
[req]
default_bits = 2048 # Size of keys
default_keyfile = example.key # name of generated keys
default_md = sha1 # message digest algorithm
string_mask = nombstr # permitted characters
distinguished_name = req_distinguished_name
req_extensions = v3_req
x509_extensions = v3_req
[req_distinguished_name]
Variable name Prompt string
#---------------------- ----------------------------------
0.organizationName = Organization Name (company)
organizationalUnitName = Organizational Unit Name (department, division)
emailAddress = Email Address
emailAddress_max = 40
localityName = Locality Name (city, district)
stateOrProvinceName = State or Province Name (full name)
countryName = Country Name (2 letter code)
countryName_min = 2
countryName_max = 2
commonName = Common Name (hostname, IP, or your name)
commonName_max = 64
Default values for the above, for consistency and less typing.
Variable name Value
#------------------------------ ------------------------------
commonName_default = www.cisco.com
0.organizationName_default = Cisco
localityName_default = San Jose
stateOrProvinceName_default = CA
countryName_default = US emailAddress_default = webmaster@cisco.com
organizationalUnitName_default = NDB
[v3_ca]
basicConstraints = CA:TRUE
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid:always,issuer:always
[v3_req]
Extensions to add to a certificate request
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
Some CAs do not yet support subjectAltName in CSRs.
Instead the additional names are form entries on web
pages where one requests the certificate...
subjectAltName = @alt_names
[alt_names]
IP.1 = 1.1.1.1

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
204

Model-Driven Programmability
Generating Key/Certificate Examples

IP.2 = 2.2.2.2
IP.3 = 3.3.3.3
IP.4 = 4.4.4.4
[server]
Make a cert with nsCertType set to "server"
basicConstraints=CA:FALSE
nsCertType = server
nsComment = "OpenSSL Generated Server Certificate"
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid,issuer:always
[client]
Make a cert with nsCertType set to "client"
basicConstraints=CA:FALSE
nsCertType = client
nsComment = "OpenSSL Generated Client Certificate"
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid,issuer:always

Step 4: Create the TLS certificate file.
· Generate the TLS private key and Certification Authority (CA) files by entering running:

'openssl req -x509 -nodes -days 3650 -newkey rsa:2048 -out mypersonalca/certs/ca.pem
-outform PEM -keyout mypersonalca/private/ca.key'
This step generates the TLS private key in PEM format with a key length of 2048 bits,
and the CA file

NOTE: The field values entered for this cert should be different from the ones entered
for server certificates below. These are identity attributes and should be different for
each cert.

Creating a PEM server certificate signed by the CA.
Create a Certificate Signing Request (CSR) and client key
cd TLS ; mkdir server-certs ; cd server-certs
openssl genrsa -des3 -out server.key 4096
openssl req -new -key server.key -out server.csr
NOTE: The field values entered for this cert should be different from the ones entered
for CA cert above. These are identity attributes and should be different for each cert.

Sign a CSR to client certificate by CA
openssl x509 -req -days 365 -in server.csr -CA ../mypersonalca/certs/ca.pem -CAkey
../mypersonalca/private/ca.key -set_serial 02 -out server.crt
NOTE: The -set_serial value should be different for each new certificate generated by a
CA!

__
Server certificate to be sent from client-side for GRPC:

The server certificate that is sent from client-side for GRPC, must have the entire
chain, i.e., the CA certificate AND the identity certificate. For this, the CA cert and
identity cert files must be bundled into one to form a certificate chain.

cd server-certs
cat ../mypersonalca/certs/ca.pem server.crt > server-cert-chain.pem

__
Creating a PKCS12 cert file from PEM for importing the certificate to the switch:

cd server-certs
openssl pkcs12 -export -out server.pfx -inkey server.key -in server.crt -certfile

../mypersonalca/certs/ca.pem -password pass:cisco123
For the CLI in section 1.1:

crypto ca import mytrustpoint pkcs12 <certfile> <password>,

<certfile> would be server.pfx

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
205

Model-Driven Programmability
Generating Key/Certificate Examples

<password> would be cisco123

Verifying gNMI
To verify the gNMI configuration, enter the following command:

DescriptionCommand

Displays a summary of the agent running status,
respectively for the management VRF, or the default
VRF (if configured). It also displays:

• Basic overall counters

• Certificate expiration time

If the certificate is expired, the agent
cannot accept requests.

Note

show grpc gnmi service statistics

=============
gRPC Endpoint
=============

Vrf : management
Server address : [::]:50051

Cert notBefore : Thu Mar 12 13:37:49 PDT 2020
Cert notAfter : Fri Mar 13 13:37:49 PDT 2020

Max concurrent calls : 8
Listen calls : 1
Active calls : 0

Number of created calls : 1
Number of bad calls : 0

Subscription stream/once/poll : 0/0/0

Clients
There are available clients for gNMI subscription. One such client is located at https://github.com/influxdata/
telegraf/tree/master/plugins/inputs/cisco_telemetry_gnmi.

Sample DME Subscription - JSON Encoding
gnmi-console --host <iip> --port 50051 -u <user> -p <pass> --tls --
operation=Subscribe --rpc bl_paylod/once/01_subscribe_bgp_dme.json

[Subscribe]-------------------------------
Reading from file ' bl_paylod/once/01_subscribe_bgp_dme.json '

Generating request : 1 -----------
Comment : ONCE request
Delay : 2 sec(s) ...
Delay : 2 sec(s) DONE
subscribe {
subscription {
path {

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
206

Model-Driven Programmability
Verifying gNMI

https://github.com/influxdata/telegraf/tree/master/plugins/inputs/cisco_telemetry_gnmi
https://github.com/influxdata/telegraf/tree/master/plugins/inputs/cisco_telemetry_gnmi

origin: "DME"
elem {
name: "sys"
}
elem {
name: "bgp"
}
}
}
mode: ONCE
use_models {
name: "DME"
organization: "Cisco Systems, Inc."
version: "1.0.0"
}
}

Received response 1 --------------------------
update {
timestamp: 1549061991079
update {
path {
elem {
name: "sys"
}
elem {
name: "bgp"
}
}
\"\" } } }] } }] } }] } }] } } }"
}
duplicates: 1093487956
}
}
/Received -------------------------------------
Received response 2 --------------------------
sync_response: true
/Received -------------------------------------
(_gnmi) [root@tm-ucs-1 gnmi-console]#

•

Sample DME Subscription - PROTO Encoding
gnmi-console --host >iip> --port 50051 -u <user> -p <pass> --tls --
operation=Subscribe --rpc /root/gnmi-console/testing_bl/once/61_subscribe_bgp_dme_gpb.json

[Subscribe]-------------------------------
Reading from file ' /root/gnmi-console/testing_bl/once/61_subscribe_bgp_dme_gpb.json '
Wed Jun 26 11:49:17 2019
Generating request : 1 -----------
Comment : ONCE request
Delay : 2 sec(s) ...
Delay : 2 sec(s) DONE
subscribe {
subscription {
path {
origin: "DME"
elem {
name: "sys"
}
elem {

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
207

Model-Driven Programmability
Sample DME Subscription - PROTO Encoding

name: "bgp"
}
}
mode: SAMPLE
}
mode: ONCE
use_models {
name: "DME"
organization: "Cisco Systems, Inc."
version: "1.0.0"
}
encoding: PROTO
}
Wed Jun 26 11:49:19 2019
Received response 1 --------------------------
update {
timestamp: 1561574967761
prefix {
elem {
name: "sys"
}
elem {
name: "bgp"
}
}
update {
path {
elem {
}
elem {
name: "version_str"
}
}
val {
string_val: "1.0.0"
}
}
update {
path {
elem {
}
elem {
name: "node_id_str"
}
}
val {
string_val: "n9k-tm2"
}
}
update {
path {
elem {
}
elem {
name: "encoding_path"
}
}
val {
string_val: "sys/bgp"
}
}
update {
path {
elem {

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
208

Model-Driven Programmability
Sample DME Subscription - PROTO Encoding

}
elem {
/Received -------------------------------------
Wed Jun 26 11:49:19 2019
Received response 2 --------------------------
sync_response: true
/Received -------------------------------------
(_gnmi) [root@tm-ucs-1 gnmi-console]#

Subscribe

Guidelines and Limitations for Subscribe
Following are the guidelines and limitations for Subscribe:

• The gNMI feature supports Subscribe and Capability RPCs.

• The feature supports JSON and gnmi.proto encoding. The feature does not support protobuf.any encoding.

• Each gNMI message has a maximum size of 12 MB. If the amount of collected data exceeds the 12-MB
maximum, the collected data is dropped.

You can avoid this situation by creating more focused subscriptions that handle smaller, more granular
data-collection sets. So, instead of subscribing to one higher-level path, create multiple subscriptions for
different, lower-level parts of the path.

• All paths within the same subscription request must have the same sample interval. If the same path
requires different sample intervals, create multiple subscriptions.

• The feature does not support a path prefix in the Subscription request, but the Subscription can contain
an empty prefix field.

• The feature supports Cisco DME and Device YANG data models.

• The gRPC process that supports gNMI uses the HIGH_PRIO cgroup, which limits the CPU usage to
75% of CPU and memory to 1.5 GB.

• The show grpc gnmi command has the following considerations:

• The commands are not XMLized in this release.

• The gRPC agent retains gNMI calls for a maximum of 1 hour after the call has ended.

• If the total number of calls exceeds 2000, the gRPC agent purges ended calls based an internal
cleanup routine.

The gRPC server runs in the management VRF. As a result, the gRPC process communicates only in this
VRF forcing the management interface to support all gRPC calls.

gRPC functionality now includes the default VRF for a total of 2 gRPC servers on each switch. You can run
one gRPC server in each VRF, or run only one gRPC server in the management VRF. Supporting a gRPC in
the default VRF adds flexibility to offload processing gRPC calls from the management VRF, where significant
traffic load might not be desirable.

If two gRPC servers are configured, be aware of the following:

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
209

Model-Driven Programmability
Subscribe

• VRF boundaries are strictly enforced, so each gRPC server processes requests independent of the other,
and requests do not cross between VRFs.

• The two servers are not HA or fault tolerant. One gRPC server does not back up the other, and there is
no switchover or switchback between them.

• Any limits for the gRPC server are per VRF.

gNMI Payload
gNMI uses a specific payload format to subscribe to:

• DME Streams

• YANG Streams

Subscribe operations are supported with the following modes:

• ONCE: Subscribe and receive data once and close session.

• POLL: Subscribe and keep session open, client sends poll request each time data is needed.

• STREAM: Subscribe and receive data at specific cadence. The payload accepts values in nanoseconds
1 second = 1000000000.

• ON_CHANGE: Subscribe, receive a snapshot, and only receive data when something changes in the
tree.

Setting modes:

• Each mode requires 2 settings, inside sub and outside sub

• ONCE: SAMPLE, ONCE

• POLL: SAMPLE, POLL

• STREAM: SAMPLE, STREAM

• ON_CHANGE: ON_CHANGE, STREAM

Origin

• DME: Subscribing to DME model

• device: Subscribing to YANG model

Name

• DME = subscribing to DME model

• Cisco-NX-OS-device = subscribing to YANG model

Encoding

• JSON = Stream will be send in JSON format.

• PROTO = Stream will be sent in protobuf.any format.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
210

Model-Driven Programmability
gNMI Payload

Sample gNMI Payload for DME Stream

Different clients have their own input format.Note

{
"SubscribeRequest":
[

{
"_comment" : "ONCE request",
"_delay" : 2,
"subscribe":
{

"subscription":
[

{
"_comment" : "1st subscription path",
"path":
{

"origin": "DME",
"elem":
[

{
"name": "sys"

},
{

"name": "bgp"
}

]
},
"mode": "SAMPLE"

}
],
"mode": "ONCE",
"allow_aggregation" : false,
"use_models":
[

{
"_comment" : "1st module",
"name": "DME",
"organization": "Cisco Systems, Inc.",
"version": "1.0.0"

}
],
"encoding": "JSON"

}
}

]
}

Sample gNMI Payload YANG Stream

{
"SubscribeRequest":
[

{
"_comment" : "ONCE request",
"_delay" : 2,
"subscribe":
{

"subscription":

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
211

Model-Driven Programmability
gNMI Payload

[
{

"_comment" : "1st subscription path",
"path":
{

"origin": "device",
"elem":
[

{
"name": "System"

},
{

"name": "bgp-items"
}

]
},

"mode": "SAMPLE"
}

],
"mode": "ONCE",
"allow_aggregation" : false,
"use_models":
[

{
"_comment" : "1st module",
"name": "Cisco-NX-OS-device",
"organization": "Cisco Systems, Inc.",
"version": "0.0.0"

}
],
"encoding": "JSON"

}
}

]
}

Capabilities

About Capabilities
The Capabilities RPC returns the list of capabilities of the gNMI service. The response message to the RPC
request includes the gNMI service version, the versioned data models, and data encodings supported by the
server.

Guidelines and Limitations for Capabilities
Following are the guidelines and limitations for Capabilities:

• The gNMI feature supports Subscribe and Capability as options of the gNMI service.

• The feature supports JSON and gnmi.proto encoding. The feature does not support protobuf.any encoding.

• Each gNMI message has a maximum size of 12 MB. If the amount of collected data exceeds the 12-MB
maximum, the collected data is dropped.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
212

Model-Driven Programmability
Capabilities

You can avoid this situation by creating more focused subscriptions that handle smaller, more granular
data-collection sets. So, instead of subscribing to one higher-level path, create multiple subscriptions for
different, lower-level parts of the path.

• All paths within the same subscription request must have the same sample interval. If the same path
requires different sample intervals, create multiple subscriptions.

• The feature does not support a path prefix in the Subscription request, but the Subscription can contain
an empty prefix field.

• The feature supports Cisco DME and Device YANG data models.

• The gRPC process that supports gNMI uses the HIGH_PRIO cgroup, which limits the CPU usage to
75% of CPU and memory to 1.5 GB.

• The show grpc gnmi command has the following considerations:

• The commands are not XMLized in this release.

• The gRPC agent retains gNMI calls for a maximum of 1 hour after the call has ended.

• If the total number of calls exceeds 2000, the gRPC agent purges ended calls based an internal
cleanup routine.

The gRPC server runs in the management VRF. As a result, the gRPC process communicates only in this
VRF forcing the management interface to support all gRPC calls.

gRPC functionality now includes the default VRF for a total of 2 gRPC servers on each switch. You can run
one gRPC server in each VRF, or run only one gRPC server in the management VRF. Supporting a gRPC in
the default VRF adds flexibility to offload processing gRPC calls from the management VRF, where significant
traffic load might not be desirable.

If two gRPC servers are configured, be aware of the following:

• VRF boundaries are strictly enforced, so each gRPC server processes requests independent of the other,
and requests do not cross between VRFs.

• The two servers are not HA or fault tolerant. One gRPC server does not back up the other, and there is
no switchover or switchback between them.

• Any limits for the gRPC server are per VRF.

Example Client Output for Capabilities
The following is an example of client output for Capabilities.
hostname user$./gnmi_cli -a 172.19.193.166:50051 -ca_crt ./grpc.pem -insecure -capabilities
supported_models: <
name: "Cisco-NX-OS-device"
organization: "Cisco Systems, Inc."
version: "2019-11-13"

>
supported_models: <
name: "openconfig-acl"
organization: "OpenConfig working group"
version: "1.0.0"

>
supported_models: <

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
213

Model-Driven Programmability
Example Client Output for Capabilities

name: "openconfig-bgp-policy"
organization: "OpenConfig working group"
version: "4.0.1"

>
supported_models: <
name: "openconfig-interfaces"
organization: "OpenConfig working group"
version: "2.0.0"

>
supported_models: <
name: "openconfig-if-aggregate"
organization: "OpenConfig working group"
version: "2.0.0"

>
supported_models: <
name: "openconfig-if-ethernet"
organization: "OpenConfig working group"
version: "2.0.0"

>
supported_models: <
name: "openconfig-if-ip"
organization: "OpenConfig working group"
version: "2.3.0"

>
supported_models: <
name: "openconfig-if-ip-ext"
organization: "OpenConfig working group"
version: "2.3.0"

>
supported_models: <
name: "openconfig-lacp"
organization: "OpenConfig working group"
version: "1.0.2"

>
supported_models: <
name: "openconfig-lldp"
organization: "OpenConfig working group"
version: "0.2.1"

>
supported_models: <
name: "openconfig-network-instance"
organization: "OpenConfig working group"
version: "0.11.1"

>
supported_models: <
name: "openconfig-network-instance-policy"
organization: "OpenConfig working group"
version: "0.1.1"

>
supported_models: <
name: "openconfig-ospf-policy"
organization: "OpenConfig working group"
version: "0.1.1"

>
supported_models: <
name: "openconfig-platform"
organization: "OpenConfig working group"
version: "0.12.2"

>
supported_models: <
name: "openconfig-platform-cpu"
organization: "OpenConfig working group"
version: "0.1.1"

>

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
214

Model-Driven Programmability
Example Client Output for Capabilities

supported_models: <
name: "openconfig-platform-fan"
organization: "OpenConfig working group"
version: "0.1.1"

>
supported_models: <
name: "openconfig-platform-linecard"
organization: "OpenConfig working group"
version: "0.1.1"

>
supported_models: <
name: "openconfig-platform-port"
organization: "OpenConfig working group"
version: "0.3.2"

>
supported_models: <
name: "openconfig-platform-psu"
organization: "OpenConfig working group"
version: "0.2.1"

>
supported_models: <
name: "openconfig-platform-transceiver"
organization: "OpenConfig working group"
version: "0.7.0"

>
supported_models: <
name: "openconfig-relay-agent"
organization: "OpenConfig working group"
version: "0.1.0"

>
supported_models: <
name: "openconfig-routing-policy"
organization: "OpenConfig working group"
version: "2.0.1"

>
supported_models: <
name: "openconfig-spanning-tree"
organization: "OpenConfig working group"
version: "0.2.0"

>
supported_models: <
name: "openconfig-system"
organization: "OpenConfig working group"
version: "0.3.0"

>
supported_models: <
name: "openconfig-telemetry"
organization: "OpenConfig working group"
version: "0.5.1"

>
supported_models: <
name: "openconfig-vlan"
organization: "OpenConfig working group"
version: "3.0.2"

>
supported_models: <
name: "DME"
organization: "Cisco Systems, Inc."

>
supported_models: <
name: "Cisco-NX-OS-Syslog-oper"
organization: "Cisco Systems, Inc."
version: "2019-08-15"

>

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
215

Model-Driven Programmability
Example Client Output for Capabilities

supported_encodings: JSON
supported_encodings: PROTO
gNMI_version: "0.5.0"

hostname user$

Troubleshooting

Gathering TM-Trace Logs
1. tmtrace.bin -f gnmi-logs gnmi-events gnmi-errors following are available
2. Usage:

bash-4.3# tmtrace.bin -d gnmi-events | tail -30 Gives the last 30
}
}
}
[06/21/19 15:58:38.969 PDT f8f 3133] [3981658944][tm_transport_internal.c:43] dn:
Cisco-NX-OS-device:System/cdp-items, sub_id: 0,
sub_id_str: 2329, dc_start_time: 0, length: 124, sync_response:1
[06/21/19 15:58:43.210 PDT f90 3133] [3621780288][tm_ec_yang_data_processor.c:93] TM_EC:
[Y] Data received for 2799743488: 49
{
"cdp-items" : {
"inst-items" : {
"if-items" : {
"If-list" : [
{
"id" : "mgmt0",
"ifstats-items" : {
"v2Sent" : "74",
"validV2Rcvd" : "79"
}
}
]
}
}
}
}
[06/21/19 15:58:43.210 PDT f91 3133] [3981658944][tm_transport_internal.c:43] dn:
Cisco-NX-OS-device:System/cdp-items, sub_id: 0,
sub_id_str: 2329, dc_start_time: 0, length: 141, sync_response:1
[06/21/19 15:59:01.341 PDT f92 3133] [3981658944][tm_transport_internal.c:43] dn:
Cisco-NX-OS-device:System/intf-items, sub_id:
4091, sub_id_str: , dc_start_time: 1561157935518, length: 3063619, sync_response:0
[06/21/19 15:59:03.933 PDT f93 3133] [3981658944][tm_transport_internal.c:43] dn:
Cisco-NX-OS-device:System/cdp-items, sub_id:
4091, sub_id_str: , dc_start_time: 1561157940881, length: 6756, sync_response:0
[06/21/19 15:59:03.940 PDT f94 3133] [3981658944][tm_transport_internal.c:43] dn:
Cisco-NX-OS-device:System/lldp-items, sub_id:
4091, sub_id_str: , dc_start_time: 1561157940912, length: 8466, sync_response:1
bash-4.3#

Gathering MTX-Internal Logs
1. Modify the following file with below /opt/mtx/conf/mtxlogger.cfg

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
216

Model-Driven Programmability
Troubleshooting

<config name="nxos-device-mgmt">
<container name="mgmtConf">
<container name="logging">
<leaf name="enabled" type="boolean" default="false">true</leaf>
<leaf name="allActive" type="boolean" default="false">true<

/leaf>
<container name="format">
<leaf name="content" type="string" default="$DATETIME$

$COMPONENTID$ $TYPE$: MSG">$DATETIME$ $COMPONENTID$ $TYPE$
$SRCFILE$ @ $SRCLINE$ $FCNINFO$:MSG</leaf>

<container name="componentID">
<leaf name="enabled" type="boolean" default="true"></leaf>
</container>
<container name="dateTime">

<leaf name="enabled" type="boolean" default="true"></leaf>
<leaf name="format" type="string" default="%y%m%d.%H%M%S"><

/leaf>
</container>
<container name="fcn">

<leaf name="enabled" type="boolean" default="true"></leaf>
<leaf name="format" type="string"

default="$CLASS$::$FCNNAME$($ARGS$)@$LINE$"></leaf>
</container>

</container>
<container name="facility">

<leaf name="info" type="boolean" default="true">true</leaf>
<leaf name="warning" type="boolean" default="true">true<

/leaf>
<leaf name="error" type="boolean" default="true">true</leaf>
<leaf name="debug" type="boolean" default="false">true<

/leaf>
</container>
<container name="dest">
<container name="console">
<leaf name="enabled" type="boolean" default="false">true<

/leaf>
</container>
<container name="file">
<leaf name="enabled" type="boolean" default="false">true<

/leaf>
<leaf name="name" type="string" default="mtx-internal.log"><

/leaf>

<leaf name="location" type="string" default="./mtxlogs">
/volatile</leaf>

<leaf name="mbytes-rollover" type="uint32" default="10"
>50</leaf>

<leaf name="hours-rollover" type="uint32" default="24"
>24</leaf>

<leaf name="startup-rollover" type="boolean" default="
false">true</leaf>

<leaf name="max-rollover-files" type="uint32" default="10"
>10</leaf>

</container>
</container>
<list name="logitems" key="id">
<listitem>

<leaf name="id" type="string">*</leaf>
<leaf name="active" type="boolean" default="false"

>false</leaf>
</listitem>
<listitem>

<leaf name="id" type="string">MTX-EvtMgr</leaf>

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
217

Model-Driven Programmability
Gathering MTX-Internal Logs

<leaf name="active" type="boolean" default="true"
>true</leaf>

</listitem>
<listitem>

<leaf name="id" type="string">TM-ADPT</leaf>
<leaf name="active" type="boolean" default="true"

>false</leaf>
</listitem>
<listitem>

<leaf name="id" type="string">TM-ADPT-JSON</leaf>
<leaf name="active" type="boolean" default="true"

>false</leaf>
</listitem >
<listitem>

<leaf name="id" type="string">SYSTEM</leaf>
<leaf name="active" type="boolean" default="true"

>true</leaf>
</listitem>
<listitem>

<leaf name="id" type="string">LIBUTILS</leaf>
<leaf name="active" type="boolean" default="true"

>true</leaf>
</listitem>
<listitem>

<leaf name="id" type="string">MTX-API</leaf>
<leaf name="active" type="boolean" default="true"

>true</leaf>
</listitem>
<listitem>

<leaf name="id" type="string">Model-*</leaf>
<leaf name="active" type="boolean" default="true"

>true</leaf>
</listitem>
<listitem>

<leaf name="id" type="string">Model-Cisco-NX-OS-
device</leaf>

<leaf name="active" type="boolean" default="true"
>false</leaf>

</listitem>
<listitem>

<leaf name="id" type="string">Model-openconfig-bgp<
/leaf>

<leaf name="active" type="boolean" default="true"
>false</leaf>

</listitem>
<listitem>

<leaf name="id" type="string">INST-MTX-API</leaf>
<leaf name="active" type="boolean" default="true"

>true</leaf>
</listitem>
<listitem>

<leaf name="id" type="string">INST-ADAPTER-NC</leaf>
<leaf name="active" type="boolean" default="true"

>true</leaf>
</listitem>
<listitem>

<leaf name="id" type="string">INST-ADAPTER-RC</leaf>
<leaf name="active" type="boolean" default="true"

>true</leaf>
</listitem>
<listitem>

<leaf name="id" type="string">INST-ADAPTER-GRPC</leaf>
<leaf name="active" type="boolean" default="true"

>true</leaf>

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
218

Model-Driven Programmability
Gathering MTX-Internal Logs

</listitem>
</list>

</container>
</container>

</config>

2. Run "no feature grpc" / "feature grpc"
3. The /volatile directory houses the mtx-internal.log, the log rolls over time so be sure
to grab what you need before then.

bash-4.3# cd /volatile/
bash-4.3# cd /volatile -al
total 148
drwxrwxrwx 4 root root 340 Jun 21 15:47 .
drwxrwxr-t 64 root network-admin 1600 Jun 21 14:45 ..
-rw-rw-rw- 1 root root 103412 Jun 21 16:14 grpc-internal-log
-rw-r--r-- 1 root root 24 Jun 21 14:44 mtx-internal-19-06-21-14-46-21.log
-rw-r--r-- 1 root root 24 Jun 21 14:46 mtx-internal-19-06-21-14-46-46.log
-rw-r--r-- 1 root root 175 Jun 21 15:11 mtx-internal-19-06-21-15-11-57.log
-rw-r--r-- 1 root root 175 Jun 21 15:12 mtx-internal-19-06-21-15-12-28.log
-rw-r--r-- 1 root root 175 Jun 21 15:13 mtx-internal-19-06-21-15-13-17.log
-rw-r--r-- 1 root root 175 Jun 21 15:13 mtx-internal-19-06-21-15-13-42.log
-rw-r--r-- 1 root root 24 Jun 21 15:13 mtx-internal-19-06-21-15-14-22.log
-rw-r--r-- 1 root root 24 Jun 21 15:14 mtx-internal-19-06-21-15-19-05.log
-rw-r--r-- 1 root root 24 Jun 21 15:19 mtx-internal-19-06-21-15-47-09.log
-rw-r--r-- 1 root root 24 Jun 21 15:47 mtx-internal.log
-rw-rw-rw- 1 root root 355 Jun 21 14:44 netconf-internal-log
-rw-rw-rw- 1 root root 0 Jun 21 14:45 nginx_logflag
drwxrwxrwx 3 root root 60 Jun 21 14:45 uwsgipy
drwxrwxrwx 2 root root 40 Jun 21 14:43 virtual-instance
bash-4.3#.

Innovium Path Telemetry

About Innovium Path Telemetry
Innovium Path Telemetry (IPT) is a telemetry feature which makes a truncated copy of the original packet
and adds IPT metadata at each node that has IPT enabled.

• Source: At this node a copy of the original packet is made and IPT probe-marker, base header and hop
information are added after the original packets L2-L4 headers.

• Transit (1 or more): At this node, IPT packets are identified based on the probe-marker value and another
hop information is added after the last node hop information. There can be multiple transit nodes for an
IPT packet.

• Sink: This is the last node, and here hop information is added to all IPT packets based on the probe-marker
value. Collector headers are added at the beginning of the packet and sent to the collector.

Guidelines and Limitations for Innovium Path Telemetry
Innovium Path Telemetry (IPT) has the following configuration guidelines and limitations:

• On the sink node, IPT packets are accounted for on the sink interface queue besides being accounted for
on the collector interface queue.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
219

Model-Driven Programmability
Innovium Path Telemetry

• Egress remarking of Innovium Path Telemetry (IPT) packets is not supported. Egress remarking of
original packets should not be used with IPT since IPT data cannot be guaranteed in this case.

• SPAN and ERSPAN cannot monitor IPT packets.

• Innovium Path Telemetry is supported on Cisco Nexus 3408-S and 3432D-S switches.

• For Innovium Path Telemetry to work correctly, TCAM carving for ingress and egress is required.

• Only unicast, non-fragmented TCP and UDP packets are supported.

• Flow of Interest (FoI) is supported.

• The FoI ACL is shared with buffer latency and buffer drop features.

• Deny ACEs within the ACL are not supported.

• A maximum of one monitor can be applied.

• IPT/buffer drop and buffer latency share same ACL. If buffer drop and/or buffer latency have FoI with
action telemetry_path, even though FoI is not applied to IPT, filter action happens for IPT as well.

Configuring Flow of Interest ACL for IPT
This procedure describes how to configure a flow of interest.

Procedure

PurposeCommand or Action

Enter global configuration mode.configure terminal

Example:

Step 1

switch# configure terminal

Configure the access list.ip access-list list-name

Example:

Step 2

switch(config)# ip access-list ipt-foi-v4

Specify packets to forward. IPT enabled. The
value of seq-number is from 1 to 4294967295.

seq-number {permit | deny} protocol
{source-ip-prefix | source-ip-mask}
{destination-ip-prefix | destination-ip-mask}
telemetry_path

Step 3

Example:
switch(config-acl)# 10 permit ip
10.1.1.1/32 11.1.1.1/32 telemetry_path

switch(config-acl)# 10 permit ipv6
10:1:1::/64 20:1:1::/64 telemetry_path

Specify packets to forward. IPT enabled. The
value of seq-number is from 1 to 4294967295.

seq-number {permit | deny} protocol
{source-ip-prefix | source-ip-mask}
{destination-ip-prefix | destination-ip-mask}
telemetry_path

Step 4

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
220

Model-Driven Programmability
Configuring Flow of Interest ACL for IPT

PurposeCommand or Action

Example:
switch(config-acl)# 20 permit ip
30.1.1.2/32 30.1.1.2/32 telemetry_path

switch(config-acl)# 20 permit ipv6
30:1:1::/64 30:1:1::/64 telemetry_path

Configuring the TCAM Region for Innovium Path Telemetry
This procedure configures a TCAM region in support of the Flow of Interest (FOI) option.

Procedure

PurposeCommand or Action

Enter global configuration mode.configure terminal

Example:

Step 1

switch# configure terminal

Configure the TCAM region for the hardware
telemetry size. The values of size are 128 or
256.

hardware access-list tcam region
hw-telemetry size

Example:

Step 2

switch(config)# hardware access-list tcam
region hw-telemetry 128

Saves the running configuration to the startup
configuration.

copy running-config startup-config

Example:

Step 3

switch(config)# copy running-config
startup-config

Reboots the switch.reload

Example:

Step 4

switch(config)# reload

Configuring the Source Node
This procedure configures the IPT probe marker, base header, and hop information.

Procedure

PurposeCommand or Action

Enters global configuration mode.configure terminal

Example:

Step 1

switch# configure terminal

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
221

Model-Driven Programmability
Configuring the TCAM Region for Innovium Path Telemetry

PurposeCommand or Action

Enable hardware telemetry.feature hardware-telemetry

Example:

Step 2

switch(config)# feature
hardware-telemetry

Enable INT Clone MD configuration.hardware-telemetry int-clone-md

Example:

Step 3

switch(config)# hardware-telemetry
int-clone-md

Configure a probemarker value. For pm_value,
the range is from 1 - 281474976710655.

int-clone-md probe-marker
pm_valueint-clone-md probe-marker

Example:

Step 4

switch(config-int-clone-md)#
int-clone-md probe-marker 0x4d2

Define a source record.int-clone-md source record src_rec

Example:

Step 5

switch(config-int-clone-md)#
int-clone-md source record src_rec1

Configure interfaces.interface ethernet slot/chassis

Example:

Step 6

switch(config-int-clone-md-source-record)#
interface ethernet 1/23

Exit current configuration mode.exit

Example:

Step 7

switch(config-int-clone-md-source-record)#
exit

Define a source record.int-clone-md source monitor src_mon

Example:

Step 8

switch(config-int-clone-md)#
int-clone-md source monitor src_mon1

Add a record.record src_rec

Example:

Step 9

switch(config-int-clone-md-source-monitor)#
record src_rec1

Applies the previously configured FoI ACL.filter ip access-list ipt

Example:

Step 10

switch(config-int-clone-md-source-monitor)#
filter ip access-list ipt

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
222

Model-Driven Programmability
Configuring the Source Node

PurposeCommand or Action

Specify sampling rate for INT Clone MD.sampling rate sr-value

Example:

Step 11

switch(config-int-clone-md-source-monitor)#
sampling rate 1

Configure the IPv4 filter.filter ip access-list access-list-name

Example:

Step 12

switch(config-buffer-drop-monitor)#
filter ip access-list ipt

Configure the IPv6 filter.filter ipv6 access-list access-list-name

Example:

Step 13

switch(config-buffer-drop-monitor)#
filter ipv6 access-list acl2

Exit current configuration mode.exit

Example:

Step 14

switch(config-int-clone-md-source-monitor)#
exit

Specify source monitor to be applied.int-clone-md system source monitor src_mon

Example:

Step 15

switch(config-int-clone-md)#
int-clone-md system source monitor
src_mon1

Configuring the Transit Node
This procedure configures the probe-marker value.

Before you begin

Procedure

PurposeCommand or Action

Enters global configuration mode.configure terminal

Example:

Step 1

switch# configure terminal

Enable hardware telemetry.feature hardware-telemetry

Example:

Step 2

switch(config)# feature
hardware-telemetry

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
223

Model-Driven Programmability
Configuring the Transit Node

PurposeCommand or Action

Enable INT Clone MD configuration.hardware-telemetry int-clone-md

Example:

Step 3

switch(config)# hardware-telemetry
int-clone-md

Configure a probe marker value. The range for
pm_value is from 1 - 281474976710655.

int-clone-md probe-marker pm_value

Example:

Step 4

switch(config-int-clone-md)# int-clone-md
probe-marker 0x4d2

Configuring the Sink Node
This procedure configures the hop information to all IPT packets based on the probe-marker value.

Before you begin

Procedure

PurposeCommand or Action

Enters global configuration mode.configure terminal

Example:

Step 1

switch# configure terminal

Enable hardware telemetry.feature hardware-telemetry

Example:

Step 2

switch(config)# feature
hardware-telemetry

Enable INT Clone MD configuration.hardware-telemetry int-clone-md

Example:

Step 3

switch(config)# hardware-telemetry
int-clone-md

Configure a probe marker value. The range of
pm_value is from 1 - 281474976710655.

int-clone-md probe-marker pm_value

Example:

Step 4

switch(config-int-clone-md)#
int-clone-md probe-marker 0x4d2

Configure sink collector.int-clone-md sink collector sink_col

Example:

Step 5

switch(config-int-clone-md)#
int-clone-md sink collector sink_col

Configure IP address.source ipv4 ipaddr

Example:

Step 6

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
224

Model-Driven Programmability
Configuring the Sink Node

PurposeCommand or Action
switch(config-int-clone-md-sink-collector)#
source ipv4 192.0.2.1

Configure DSCP value. The range of dscp-val
is 0-2147483647.

dscp dscp-val

Example:

Step 7

switch(config-int-clone-md-sink-collector)#
dscp 33

Configure TTL value. The range of ttl-val is
1-255.

ttl ttl-val

Example:

Step 8

switch(config-int-clone-md-sink-collector)#
ttl 60

Exit current configuration mode.exit

Example:

Step 9

switch(config-int-clone-md-sink-collector)#
exit

Define a sink record.int-clone-md sink record sink_rec

Example:

Step 10

switch(config-int-clone-md)#
int-clone-md sink record sink_rec1

Configure interface.interface ethernet slot/chassis

Example:

Step 11

switch(config-int-clone-md-sink-record)#
interface Ethernet1/23

Exit current configuration mode.exit

Example:

Step 12

switch(config-int-clone-md-sink-collector)#
exit

Define a sink monitor.int-clone-md sink monitor sink_mon

Example:

Step 13

switch(config-int-clone-md)#
int-clone-md sink monitor sink_mon1

Define a sink monitor.collector sink_col

Example:

Step 14

switch(config-int-clone-md-sink-monitor)#
collector sink_col1

Add a record.record sink_rec

Example:

Step 15

switch(config-int-clone-md-sink-monitor)#
record sink_rec1

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
225

Model-Driven Programmability
Configuring the Sink Node

PurposeCommand or Action

Exit current configuration mode.exit

Example:

Step 16

switch(config-int-clone-md-sink-collector)#
exit

Sink monitor to be applied.int-clone-md system sink monitor sink_mon

Example:

Step 17

switch(config-int-clone-md)#
int-clone-md system sink monitor
sink_mon1

Verifying Innovium Path Telemetry
To display the Innovium Path Telemetry configuration information enter the following command:

PurposeCommand

Displays Innovium Path Telemetry details.show ipt details

IPT Enabled ***** System Details

Probe Marker : 1234

Source Monitor : src_mon(1) details

In use (applied to system): YES
V4 acl: ipt
V6 acl: iptv6
Sampling Rate: 1
Record Attached: src_rec

Source Record : src_rec(1) details

Total interfaces under record: 1
Ethernet1/23

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
226

Model-Driven Programmability
Verifying Innovium Path Telemetry

PurposeCommand

Displays TCAM carving.show hardware access-list tcam region

IPV4 PACL
[ifacl] size = 512

IPV6 PACL
[ipv6-ifacl] size = 0

MAC PACL
[mac-ifacl] size = 0

IPV4 VACL
[vacl] size = 0

IPV6 VACL
[ipv6-vacl] size = 0

MAC VACL
[mac-vacl] size = 0

IPV4 RACL
[racl] size = 256

IPV6 RACL
[ipv6-racl] size = 0

Egress IPV4 RACL
[e-racl] size = 0

Egress IPV6 RACL
[e-ipv6-racl] size = 0

SPAN
[span] size = 0

Ingress L2 QOS
[ing-l2-qos] size = 0

Ingress L3/VLAN QOS
[ing-l3-vlan-qos] size = 128

Ingress SUP
[ing-sup] size = 256

Egress L2 QOS
[egr-l2-qos] size = 0

Egress L3/VLAN QOS
[egr-l3-vlan-qos] size = 128

Ingress PACL v4 & v6
[ifacl-all] size = 0

Ingress RACL v4 & v6
[racl-all] size = 0

Ingress QoS L2/L3
[ing-l2-l3-qos] size = 0

HW Telemetry
[hw-telemetry] size = 128

Egress PACL v4 v6
[e-ifacl-all] size = 0

Egress HW Telemetry
[e-hw-telemetry] size = 128

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
227

Model-Driven Programmability
Verifying Innovium Path Telemetry

PurposeCommand

Display egress TCAM carving.show hardware access-list tcam region

show hardware access-list tcam region
IPV4 PACL

[ifacl] size = 512
IPV6 PACL

[ipv6-ifacl] size = 0
MAC PACL

[mac-ifacl] size = 0
IPV4 VACL

[vacl] size = 0
IPV6 VACL

[ipv6-vacl] size = 0
MAC VACL

[mac-vacl] size = 0
IPV4 RACL

[racl] size = 256
IPV6 RACL

[ipv6-racl] size = 0
Egress IPV4 RACL

[e-racl] size = 0
Egress IPV6 RACL

[e-ipv6-racl] size = 0
SPAN

[span] size = 0
Ingress L2 QOS

[ing-l2-qos] size = 0
Ingress L3/VLAN QOS

[ing-l3-vlan-qos] size = 128
Ingress SUP

[ing-sup] size = 256
Egress L2 QOS

[egr-l2-qos] size = 0
Egress L3/VLAN QOS

[egr-l3-vlan-qos] size = 128
Ingress PACL v4 & v6

[ifacl-all] size = 0
Ingress RACL v4 & v6

[racl-all] size = 0
Ingress QoS L2/L3

[ing-l2-l3-qos] size = 0
HW Telemetry

[hw-telemetry] size = 128
Egress PACL v4 v6

[e-ifacl-all] size = 0

Displays IPv4 access lists.show ip access lists

show ip access-lists

IP access list ipt
10 permit ip 1.1.1.1/32 2.2.2.2/32

telemetry_path
20 permit ip 3.3.3.3/32 4.4.4.4/32

telemetry_queue

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
228

Model-Driven Programmability
Verifying Innovium Path Telemetry

PurposeCommand

Displays IPv6 access lists.show ipv6 access-lists

show ipv6 access-lists

IPv6 access list iptv6
10 permit ipv6 1:1::1:1/128

2:2::2:2/128 telemetry_path
20 permit ipv6 3:3::3:3/128

4:4::4:4/128 telemetry_queue

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
229

Model-Driven Programmability
Verifying Innovium Path Telemetry

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
230

Model-Driven Programmability
Verifying Innovium Path Telemetry

C H A P T E R 22
Dynamic Logger

This chapter contains the following topics:

• Prerequisites, on page 231
• Reference, on page 231

Prerequisites
Before using dynamic logging, confirm that the following are on your switch:

• The libmtxlogmgr*.so library is installed /opt/mtx/lib/. The libmtxlogmgr*.so library
is part of the mtx_infra RPM.

• The mtx.conf file that is located in /etc/ contains:
[mtxlogger]
config=/opt/mtx/conf/mtxlogger.cfg

• The mtxlogger.cfg file is in /opt/mtx/conf/.

Reference
The configuration file has the following structure:
<config name="nxos-device-mgmt">
<container name="mgmtConf">
<container name="logging">
<leaf name="enabled" type="boolean" default="false"></leaf>
<leaf name="allActive" type="boolean" default="false"></leaf>
<container name="format">
<leaf name="content" type="string" default="$DATETIME$ $COMPONENTID$ $TYPE$:

MSG"></leaf>
<container name="componentID">

<leaf name="enabled" type="boolean" default="true"></leaf>
</container>
<container name="dateTime">

<leaf name="enabled" type="boolean" default="true"></leaf>
<leaf name="format" type="string" default="%y%m%d.%H%M%S"></leaf>

</container>
<container name="fcn">

<leaf name="enabled" type="boolean" default="true"></leaf>
<leaf name="format" type="string"

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
231

default="$CLASS$::$FCNNAME$($ARGS$)@$LINE$"></leaf>
</container>
</container>
<container name="dest">
<container name="console">
<leaf name="enabled" type="boolean" default="false"></leaf>

</container>
<container name="file">
<leaf name="enabled" type="boolean" default="false"></leaf>
<leaf name="name" type="string" default="mtx-internal.log"></leaf>
<leaf name="location" type="string" default="./mtxlogs"></leaf>

<leaf name="mbytes-rollover" type="uint32" default="10"></leaf>
<leaf name="hours-rollover" type="uint32" default="24"></leaf>
<leaf name="startup-rollover" type="boolean" default="false"></leaf>

<leaf name="max-rollover-files" type="uint32" default="10"></leaf>
</container>

</container>
<list name="logitems" key="id">
<listitem>
<leaf name="id" type="string"></leaf>

<leaf name="active" type="boolean" default="true"></leaf>
</listitem>

</list>
</container>

</container>
</config>

The <list> tag defines the log filters by <componentID>.

The following table describes some of the containers and their leaves.

Table 16: Container and Leaf Descriptions

Contained Leaf and
Description

Contained ContainersContainer DescriptionContainer

enabled: Boolean that
determines whether
logging is on or off.
Default off.

allActive: Boolean that
activates all defined
logging items for logging.
Default off

format

dest

file

Also contains
list tag
"logitems"

Note

Contains all logging data
types

logging

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
232

Model-Driven Programmability
Reference

Contained Leaf and
Description

Contained ContainersContainer DescriptionContainer

content: String listing data
types included in log
messages. Includes:

• $DATETIME$:
Include date or time
in the log message

• $COMPONENTID$:
Include component
name in the log
message.

• $TYPE$: Includes
message type ("",
INFO, WARNING,
ERROR)

• $SRCFILE$:
Includes the name of
the source file.

• $SRCLINE$:
Include the line
number of the source
file

• $FCNINFO$ Include
class::function name
from the source file.

• MSG: Include the
actual log message
text.

componentID

dateTime

type

fcn

Contains the log message
format information

format

enabled: Boolean that
determines if the log
message includes the
component ID. Default to
"true." Value of "false"
returns a "" string in the
log message.

NAName of the logged
component.

componentID

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
233

Model-Driven Programmability
Reference

Contained Leaf and
Description

Contained ContainersContainer DescriptionContainer

enabled: Boolean whether
to include date or time
information in the log
message. Default is
enabled.

format: String of values to
include in the log
message. Format of
%y%m%d.%H%M%S.

NADate or time of the log
message

dateTime

NAconsole: Destination
console. Only one
allowed.

file: destination file.
Multiple allowed.

Holds destination logger's
configuration settings.

dest

enabled: Boolean that
determines whether the
console is enabled for
logging. Default of
"false."

NADestination consoleconsole

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
234

Model-Driven Programmability
Reference

Contained Leaf and
Description

Contained ContainersContainer DescriptionContainer

enabled: Boolean that
determines whether the
destination is enabled.
Default is "false."

name: String of the
destination log file.
Default of
"mtx-internal.log"

location: String of
destination file path.
Default at "./mtxlogs."

mbytes-rollover: uint32
that determines the length
of the log file before the
system overwrites the
oldest data. Default is 10
Mbytes.

hours-rollover: uint32 that
determines the length of
the log file in terms of
hours. Default is 24 hours.

startup-rollover: Boolean
that determines if the log
file is rolled over upon
agent start or restart.
Default value of "false."

max-rollover-files: uint32
that determines the
maximum number of
rollover files; deletes the
oldest file when the
max-rollover-files value
exceeded. Default value
of 10.

NADetermines the settings of
the destination file.

file

Example

The following is the configuration file with the default installed configuration.
<config name="nxos-device-mgmt">
<container name="mgmtConf">
<container name="logging">
<leaf name="enabled" type="boolean" default="false">true</leaf>
<leaf name="allActive" type="boolean" default="false">false</leaf>
<container name="format">
<leaf name="content" type="string" default="$DATETIME$ $COMPONENTID$ $TYPE$:

MSG">$DATETIME$ $COMPONENTID$ $TYPE$ $SRCFILE$ @ $SRCLINE$ $FCNINFO$:MSG</leaf>

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
235

Model-Driven Programmability
Reference

<container name="componentID">
<leaf name="enabled" type="boolean" default="true"></leaf>

</container>
<container name="dateTime">

<leaf name="enabled" type="boolean" default="true"></leaf>
<leaf name="format" type="string" default="%y%m%d.%H%M%S"></leaf>

</container>
<container name="fcn">

<leaf name="enabled" type="boolean" default="true"></leaf>
<leaf name="format" type="string"

default="$CLASS$::$FCNNAME$($ARGS$)@$LINE$"></leaf>
</container>
</container>
<container name="dest">
<container name="console">
<leaf name="enabled" type="boolean" default="false">true</leaf>

</container>
<container name="file">
<leaf name="enabled" type="boolean" default="false">true</leaf>
<leaf name="name" type="string" default="mtx-internal.log"></leaf>
<leaf name="location" type="string" default="./mtxlogs">/volatile</leaf>

<leaf name="mbytes-rollover" type="uint32" default="10">50</leaf>
<leaf name="hours-rollover" type="uint32" default="24">24</leaf>
<leaf name="startup-rollover" type="boolean" default="false">true</leaf>

<leaf name="max-rollover-files" type="uint32" default="10">10</leaf>
</container>

</container>
<list name="logitems" key="id">
<listitem>
<leaf name="id" type="string">*</leaf>

<leaf name="active" type="boolean" default="false">false</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">SYSTEM</leaf>

<leaf name="active" type="boolean" default="true">true</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">LIBUTILS</leaf>

<leaf name="active" type="boolean" default="true">true</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">MTX-API</leaf>

<leaf name="active" type="boolean" default="true">true</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">Model-*</leaf>

<leaf name="active" type="boolean" default="true">true</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">Model-Cisco-NX-OS-device</leaf>

<leaf name="active" type="boolean" default="true">false</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">Model-openconfig-bgp</leaf>

<leaf name="active" type="boolean" default="true">false</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">INST-MTX-API</leaf>

<leaf name="active" type="boolean" default="true">false</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">INST-ADAPTER-NC</leaf>

<leaf name="active" type="boolean" default="true">false</leaf>
</listitem>

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
236

Model-Driven Programmability
Reference

<listitem>
<leaf name="id" type="string">INST-ADAPTER-RC</leaf>

<leaf name="active" type="boolean" default="true">false</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">INST-ADAPTER-GRPC</leaf>

<leaf name="active" type="boolean" default="true">false</leaf>
</listitem>

</list>
</container>

</container>
</config>

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
237

Model-Driven Programmability
Reference

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
238

Model-Driven Programmability
Reference

C H A P T E R 23
Model-Driven Telemetry

This chapter contains the following topics:

• About Telemetry, on page 239
• Configuring Telemetry Using the CLI, on page 247
• Configuring Telemetry Using the NX-API, on page 262

About Telemetry
Collecting data for analyzing and troubleshooting has always been an important aspect in monitoring the
health of a network.

Cisco NX-OS provides several mechanisms such as SNMP, CLI, and Syslog to collect data from a network.
These mechanisms have limitations that restrict automation and scale. One limitation is the use of the pull
model, where the initial request for data from network elements originates from the client. The pull model
does not scale when there is more than one network management station (NMS) in the network. With this
model, the server sends data only when clients request it. To initiate such requests, continual manual intervention
is required. This continual manual intervention makes the pull model inefficient.

A push model continuously streams data out of the network and notifies the client. Telemetry enables the
push model, which provides near-real-time access to monitoring data.

Telemetry Components and Process
Telemetry consists of four key elements:

• Data Collection—Telemetry data is collected from the Data Management Engine (DME) database in
branches of the object model specified using distinguished name (DN) paths. The data can be retrieved
periodically (frequency-based) or only when a change occurs in any object on a specified path
(event-based). You can use the NX-API to collect frequency-based data.

• Data Encoding—The telemetry encoder encapsulates the collected data into the desired format for
transporting.

NX-OS encodes telemetry data in the Google Protocol Buffers (GPB) and JSON format.

• Data Transport—NX-OS transports telemetry data using HTTP for JSON encoding and the Google
remote procedure call (gRPC) protocol for GPB encoding. The gRPC receiver supports message sizes
greater than 4 MB. (Telemetry data using HTTPS is also supported if a certificate is configured.)

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
239

UDP and secure UDP (DTLS) are supported as telemetry transport protocols. You can add destinations
that receive UDP. The encoding for UDP and secure UDP can be GPB or JSON.

Telemetry supports streaming to IPv6 destinations and IPv4 destinations.

Use the following command to configure the UDP transport to stream data using a datagram socket either
in JSON or GPB:

destination-group num
ip address xxx.xxx.xxx.xxx port xxxx protocol UDP encoding {JSON | GPB }

Example for an IPv4 destination:

destination-group 100
ip address 171.70.55.69 port 50001 protocol UDP encoding GPB

Example for an IPv6 destination:

destination-group 100
ipv6 address 10:10::1 port 8000 protocol gRPC encoding GPB

The UDP telemetry is with the following header:

typedef enum tm_encode_ {
TM_ENCODE_DUMMY,
TM_ENCODE_GPB,
TM_ENCODE_JSON,
TM_ENCODE_XML,
TM_ENCODE_MAX,

} tm_encode_type_t;

typedef struct tm_pak_hdr_ {
uint8_t version; /* 1 */
uint8_t encoding;
uint16_t msg_size;
uint8_t secure;
uint8_t padding;

}__attribute__ ((packed, aligned (1))) tm_pak_hdr_t;

Use the first 6 bytes in the payload to process telemetry data using UDP, using one of the following
methods:

• Read the information in the header to determine which decoder to use to decode the data, JSON or
GPB, if the receiver is meant to receive different types of data from multiple endpoints.

• Remove the header if you are expecting one decoder (JSON or GPB) but not the other.

Depending on the receiving operation system and the network load,
using the UDP protocol may result in packet drops.

Note

• Telemetry Receiver—A telemetry receiver is a remote management system or application that stores
the telemetry data.

The GPB encoder stores data in a generic key-value format. The encoder requires metadata in the form of a
compiled .proto file to translate the data into GPB format.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
240

Model-Driven Programmability
Telemetry Components and Process

In order to receive and decode the data stream correctly, the receiver requires the .proto file that describes
the encoding and the transport services. The encoding decodes the binary stream into a key value string pair.

A telemetry .proto file that describes the GPB encoding and gRPC transport is available on Cisco's GitLab:
https://github.com/CiscoDevNet/nx-telemetry-proto

High Availability of the Telemetry Process
High availability of the telemetry process has the following behaviors:

• System Reload—During a system reload, any telemetry configuration, and streaming services are
restored.

• Supervisor Failover—Although telemetry is not on hot standby, telemetry configuration, and streaming
services are restored when the new active supervisor is running.

• Process Restart—If the telemetry process freezes or restarts for any reason, configuration and streaming
services are restored when telemetry restarts.

Licensing Requirements for Telemetry
License RequirementProduct

Telemetry requires no license. Any feature that is not included in a license package is
bundled with the Cisco NX-OS image and is provided at no extra charge to you. For a
complete explanation of the CiscoNX-OS licensing scheme, see theCisco NX-OS Licensing
Guide.

Cisco NX-OS

Installing and Upgrading Telemetry

Installing the Application

The telemetry application is packaged as a feature RPM and included with the NX-OS release. The RPM is
installed by default as part of the image bootup. After installation, you can start the application using the
feature telemetry command. The RPM file is in the /rpms directory and has the following name:

telemetry-version-build_ID.libn32_n3000.rpm

As in the following example:
telemetry-2.0.0.lib32_n3000.rpm

Installing Incremental Updates and Fixes

Copy the RPM to the device bootflash and use the following commands from the bash prompt:
feature bash
run bash sudo su

Then copy the RPM to the device bootflash. Use the following commands from the bash prompt:
yum upgrade telemetry_new_version.rpm

When the application restarts, it is upgraded and the change appears.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
241

Model-Driven Programmability
High Availability of the Telemetry Process

https://github.com/CiscoDevNet/nx-telemetry-proto

Downgrading to a Previous Version

To downgrade the telemetry application to a previous version, use the following command from the bash
prompt:

yum downgrade telemetry

Verifying the Active Version

To verify the active version, run the following command from the switch exec prompt:
show install active

The show install active command shows the active installed RPM only after an upgrade has occurred.
The default RPM that comes bundled with the NX-OS is not displayed.

Note

Guidelines and Limitations
Telemetry has the following configuration guidelines and limitations:

• Telemetry is supported in Cisco NX-OS releases that support the data management engine (DME) Native
Model.

• Telemetry supports DME data collection, NX-API data sources, Google protocol buffer (GPB) encoding
over Google Remote Procedure Call (gRPC) transport, and JSON encoding over HTTP.

• The smallest sending interval (cadence) supported is five seconds for a depth of 0. Theminimum cadence
values for depth values greater than 0 depends on the size of the data being streamed out. Configuring
cadences below the minimum value may result in undesirable system behavior.

• Up to five remote management receivers (destinations) are supported. Configuring more than five remote
receivers may result in undesirable system behavior.

• If a telemetry receiver goes down, other receivers see data flow interrupted. The failed receiver must be
restarted. Then start a new connection with the switch by unconfiguring then reconfiguring the failed
receiver's IP address under the destination group.

• Telemetry can consume up to 20% of the CPU resource.

• To configure SSL certificate-based authentication and the encryption of streamed data, you can provide
a self-signed SSL certificate with certificate ssl cert path hostname "CN" command.

Configuration Commands After Downgrading to an Older Release

After a downgrade to an older release, some configuration commands or command options can fail because
the older release may not support them. As a best practice when downgrading to an older release, unconfigure
and reconfigure the telemetry feature after the new image comes up. By doing so, you avoid possible failure
of unsupported commands or command options.

The following example shows this procedure:

• Copy the telemetry configuration to a file:

switch# show running-config | section telemetry

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
242

Model-Driven Programmability
Guidelines and Limitations

feature telemetry
telemetry
destination-group 100
ip address 1.2.3.4 port 50004 protocol gRPC encoding GPB
use-chunking size 4096

sensor-group 100
path sys/bgp/inst/dom-default depth 0

subscription 600
dst-grp 100
snsr-grp 100 sample-interval 7000

switch# show running-config | section telemetry > telemetry_running_config
switch# show file bootflash:telemetry_running_config
feature telemetry
telemetry
destination-group 100
ip address 1.2.3.4 port 50004 protocol gRPC encoding GPB
use-chunking size 4096

sensor-group 100
path sys/bgp/inst/dom-default depth 0

subscription 600
dst-grp 100
snsr-grp 100 sample-interval 7000

switch#

• Execute the downgrade operation. When the image comes up and the switch is ready, copy the telemetry
configurations back to the switch:

switch# copy telemetry_running_config running-config echo-commands
`switch# config terminal`
`switch(config)# feature telemetry`
`switch(config)# telemetry`
`switch(config-telemetry)# destination-group 100`
`switch(conf-tm-dest)# ip address 1.2.3.4 port 50004 protocol gRPC encoding GPB `
`switch(conf-tm-dest)# sensor-group 100`
`switch(conf-tm-sensor)# path sys/bgp/inst/dom-default depth 0`
`switch(conf-tm-sensor)# subscription 600`
`switch(conf-tm-sub)# dst-grp 100`
`switch(conf-tm-sub)# snsr-grp 100 sample-interval 7000`
`switch(conf-tm-sub)# end`
Copy complete, now saving to disk (please wait)...
Copy complete.
switch#

gRPC Error Behavior

The switch client disable the connection to the gRPC receiver if the gRPC receiver sends 20 errors. You will
need to unconfigure then reconfigure the receiver's IP address under the destination group to enable the gRPC
receiver. Errors include:

• The gRPC client sends the wrong certificate for secure connections.

• The gRPC receiver takes too long to handle client messages and incurs a timeout. Avoid timeouts by
processing messages using a separate message processing thread.

Telemetry Compression for gRPC Transport

Telemetry compression support is available for gRPC transport. You can use the use-compression gzip
command to enable compression. (Disable compression with the no use-compression gzip command.)

The following example enables compression:

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
243

Model-Driven Programmability
Guidelines and Limitations

switch(config)# telemetry
switch(config-telemetry)# destination-profile
switch(config-tm-dest-profile)# use-compression gzip

The following example shows that compression is enabled:
switch(conf-tm-dest)# show telemetry transport 0 stats

Session Id: 0
Connection Stats

Connection Count 0
Last Connected: Never
Disconnect Count 0
Last Disconnected: Never

Transmission Stats
Compression: gzip
Source Interface: loopback1(1.1.3.4)
Transmit Count: 0
Last TX time: None
Min Tx Time: 0 ms
Max Tx Time: 0 ms
Avg Tx Time: 0 ms
Cur Tx Time: 0 ms

switch2(config-if)# show telemetry transport 0 stats

Session Id: 0
Connection Stats
Connection Count 0
Last Connected: Never
Disconnect Count 0
Last Disconnected: Never
Transmission Stats
Compression: disabled
Source Interface: loopback1(1.1.3.4)
Transmit Count: 0
Last TX time: None
Min Tx Time: 0 ms
Max Tx Time: 0 ms
Avg Tx Time: 0 ms
Cur Tx Time: 0 ms
switch2(config-if)#

The following is an example of use-compression as a POST payload:

{
"telemetryDestProfile": {
"attributes": {
"adminSt": "enabled"

},
"children": [
{
"telemetryDestOptCompression": {
"attributes": {
"name": "gzip"

}
}

}
]

}
}

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
244

Model-Driven Programmability
Guidelines and Limitations

Support for gRPC Chunking

For streaming to occur successfully, you must enable chunking if gRPC has to send an amount of data greater
than 12 MB to the receiver.

gRPC chunking must be done by the gRPC user. Fragmentation occurs on the gRPC client side and reassembly
occurs on the gRPC server side. Telemetry is still bound to memory and data can be dropped if the memory
size is more than the allowed limit of 12 MB for telemetry. In order to support chunking, use the telemetry
.proto file that is available at Cisco's GibLab, which has been updated for gRPC chunking, as described
in Telemetry Components and Process, on page 239.

The chunking size is from 64 through 4096 bytes.

Following shows a configuration example through the NX-API CLI:
feature telemetry
!
telemetry
destination-group 1
ip address 171.68.197.40 port 50051 protocol gRPC encoding GPB
use-chunking size 4096

destination-group 2
ip address 10.155.0.15 port 50001 protocol gRPC encoding GPB
use-chunking size 64

sensor-group 1
path sys/intf depth unbounded

sensor-group 2
path sys/intf depth unbounded

subscription 1
dst-grp 1
snsr-grp 1 sample-interval 10000

subscription 2
dst-grp 2
snsr-grp 2 sample-interval 15000

Following shows a configuration example through the NX-API REST:
{

"telemetryDestGrpOptChunking": {
"attributes": {

"chunkSize": "2048",
"dn": "sys/tm/dest-1/chunking"

}
}

}

The following error message appears on systems that do not support gRPC chunking:
switch-1(conf-tm-dest)# use-chunking size 200
ERROR: Operation failed: [chunking support not available]

NX-API Sensor Path Limitations

NX-API can collect and stream switch information not yet in the DME using show commands. However,
using the NX-API instead of streaming data from the DME has inherent scale limitations as outlined:

• The switch backend dynamically processes NX-API calls such as show commands,

• NX-API spawns several processes that can consume up to a maximum of 20% of the CPU.

• NX-API data translates from the CLI to XML to JSON.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
245

Model-Driven Programmability
Guidelines and Limitations

The following is a suggested user flow to help limit excessive NX-API sensor path bandwidth consumption:

1. Check whether the show command has NX-API support. You can confirm whether NX-API supports
the command from the VSH with the pipe option: show <command> | json or show <command> | json

pretty.

Avoid commands that take the switch more than 30 seconds to return JSON output.Note

2. Refine the show command to include any filters or options.

• Avoid enumerating the same command for individual outputs; for example, show vlan id 100 ,
show vlan id 101 , and so on. Instead, use the CLI range options; for example, show vlan id
100-110,204 , whenever possible to improve performance.

If you need only the summary or counter, avoid dumping a whole show command output. By doing
so, you limit the bandwidth and data storage that is required for data collection.

3. Configure telemetry with sensor groups that use NX-API as their data sources. Add the show commands
as sensor paths

4. Configure telemetry with a cadence of five times the processing time of the respective show command
to limit CPI usage.

5. Receive and process the streamed NX-API output as part of the existing DME collection.

Telemetry VRF Support

Telemetry VRF support allows you to specify a transport VRF, which means that the telemetry data stream
can egress through front-panel ports and avoid possible competition between SSH/NGINX control sessions.

You can use the use-vrf vrf-name command to specify the transport VRF.

The following example specifies the transport VRF:

switch(config)# telemetry
switch(config-telemetry)# destination-profile
switch(config-tm-dest-profile)# use-vrf test_vrf

The following is an example of use-vrf as a POST payload:

{
"telemetryDestProfile": {
"attributes": {
"adminSt": "enabled"

},
"children": [
{
"telemetryDestOptVrf": {
"attributes": {
"name": "default"

}
}

}
]

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
246

Model-Driven Programmability
Guidelines and Limitations

}
}

Support for Streaming of YANG Models

The YANG ("Yet Another Next Generation") data modeling language is supported as part of telemetry. Both
device YANG and open config YANG model data streaming are supported.

Configuring Telemetry Using the CLI

Configuring Telemetry Using the NX-OS CLI
The following steps enable streaming telemetry and configuring the source and destination of the data stream.
These steps also include optional steps to enable and configure SSL/TLS certificates and GPB encoding.

Procedure

PurposeCommand or Action

Create an SSL or TLS certificate on the server
that will receive the data, where

(Optional) openssl argument

Example:

Step 1

private.key file is the private key and the
public.crt is the public key.Generate an SSL/TLS certificate using a

specific argument, such as the following:

• To generate a private RSA key: openssl
genrsa -cipher -out filename.key
cipher-bit-length

For example:
switch# openssl genrsa -des3 -out
server.key 2048

• To write the RSA key: openssl rsa -in
filename.key -out filename.key

For example:
switch# openssl rsa -in server.key
-out server.key

• To create a certificate that contains the
public or private key: openssl req

-encoding-standard -new -new
filename.key -out filename.csr -subj
'/CN=localhost'

For example:
switch# openssl req -sha256 -new
-key server.key -out server.csr
-subj '/CN=localhost'

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
247

Model-Driven Programmability
Configuring Telemetry Using the CLI

PurposeCommand or Action

• To create a public key: openssl x509 -req
-encoding-standard -days timeframe
-in filename.csr -signkey filename.key
-out filename.csr

For example:
switch# openssl x509 -req -sha256
-days 365 -in server.csr -signkey
server.key
-out server.crt

Enter the global configuration mode.configure terminal

Example:

Step 2

switch# configure terminal
switch(config)#

Enable the streaming telemetry feature.feature telemetryStep 3

Enable NX-API.feature nxapiStep 4

Enable the VRF management to be used for
NX-API communication.

nxapi use-vrf managementStep 5

Enter configuration mode for streaming
telemetry.

telemetry

Example:

Step 6

switch(config)# telemetry
switch(config-telemetry)#

Use an existing SSL/TLS certificate.(Optional) certificate certificate_path
host_URL

Step 7

Example:
switch(config-telemetry)# certificate
/bootflash/server.key localhost

(Optional) Specify a transport VRF or enable
telemetry compression for gRPC transport.

Step 8 • Enter the destination-profile command
to specify the default destination profile.

Example: • Enter any of the following commands:

switch(config-telemetry)# • use-vrf vrf to specify the
destination VRF.destination-profile

switch(conf-tm-dest-profile)# use-vrf
• use-compression gzip to specify
the destination compressionmethod.

default
switch(conf-tm-dest-profile)#
use-compression gzip

• use-retry size size to specify the
send retry details, with a retry buffer

switch(conf-tm-dest-profile)# use-retry
size 10
switch(conf-tm-dest-profile)# size from 10 through 1500

megabytes.
source-interface loopback1

• source-interface interface-name to
stream data from the configured

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
248

Model-Driven Programmability
Configuring Telemetry Using the NX-OS CLI

PurposeCommand or Action

interface to a destination with the
source IP address.

After configuring the use-vrf
command, you must configure a
new destination IP address within
the new VRF. However, you may
re-use the same destination IP
address by unconfiguring and
reconfiguring the destination. This
ensures that the telemetry data
streams to the same destination IP
address in the new VRF.

Note

Create a sensor group with ID srgp_id and
enter sensor group configuration mode.

sensor-group sgrp_id

Example:

Step 9

Currently only numeric ID values are
supported. The sensor group defines nodes that
will be monitored for telemetry reporting.

switch(config-telemetry)# sensor-group
100
switch(conf-tm-sensor)#

Select a data source. Select from either YANG,
DME or NX-API as the data source.

(Optional) data-source data-source-type

Example:

Step 10

DME is the default data source.Noteswitch(config-telemetry)# data-source
NX-API

Add a sensor path to the sensor group.path sensor_path depth 0
[filter-condition filter]

Step 11

• The depth setting specifies the retrieval
level for the sensor path. Depth settings
of 0 - 32, unbounded are supported.

Example:

• The following command is applicable for
DME, not for NX-API or YANG:
switch(conf-tm-sensor)# path
sys/bd/bd-[vlan-100] depth 0

depth 0 is the default depth.

NX-API-based sensor paths
can only use depth 0.

If a path is subscribed for the
event collection, the depth
only supports 0 and
unbounded. Other values are
treated as 0.

Note

filter-condition eq(l2BD.operSt,
"down")

Use the following syntax for state-based
filtering to trigger only when operSt
changes from up to down, with no
notifications of when the MO changes.
switch(conf-tm-sensor)# path
sys/bd/bd-[vlan-100] depth 0 • The optional filter-condition parameter

can be specified to create a specific filter
for event-based subscriptions.

filter-condition
and(updated(l2BD.operSt),eq(l2BD.operSt,"down"))

For state-based filtering, the filter returns
both when a state has changed and when

• The following command is applicable for
NX-API, not for DME or YANG:
switch(conf-tm-sensor)# path "show
interface" depth 0

an event has occurred during the specified
state. That is, a filter condition for the DN
sys/bd/bd-[vlan] of eq(l2Bd.operSt,

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
249

Model-Driven Programmability
Configuring Telemetry Using the NX-OS CLI

PurposeCommand or Action

"down") triggers when the operSt
changes, and when the DN's property

• The following command is applicable for
device YANG:
switch(conf-tm-sensor)# path
Cisco-NX-OS-device:System/bgp-items/inst-items

changes while the operSt remains down.
One example is when a no shutdown
command is issued while the VLAN is
operationally down.• The following command is applicable for

OpenConfig YANG:
switch(conf-tm-sensor)# path
openconfig-bgp:bgp

query-condition parameter—For
DME, based on the DN, the
query-condition parameter can be
specified to fetch MOTL and
ephemeral data with the following
syntax: query-condition
"rsp-foreign-subtree=applied-config";
query-condition
"rsp-foreign-subtree=ephemeral".

Note

• For the YANG model, the sensor path
format is as follows: module_name:
YANG_path, where module_name is the
name of the YANG model file. For
example:

• For device YANG:

Cisco-NX-OS-device:System/bgp-items/inst-items

• For OpenConfig YANG:

openconfig-bgp:bgp

The depth, filter-condition,
and query-condition
parameters are not supported
for YANG currently.

Note

For the openconfig YANG models, go to
YANG Models and navigate to the
appropriate folder for the latest release.

All the openconfig YANG models have
a specific RPM, so you must install the
associated RPM before you can use
telemetry. See Adding Patch RPMs from
Bash, on page 19 for more information
on installing patch RPMs.

Create a destination group and enter
destination group configuration mode.

destination-group dgrp_id

Example:

Step 12

Currently dgrp_id only supports numeric ID
values.

switch(conf-tm-sensor)#
destination-group 100
switch(conf-tm-dest)#

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
250

Model-Driven Programmability
Configuring Telemetry Using the NX-OS CLI

https://github.com/YangModels/yang/tree/master/vendor/cisco/nx

PurposeCommand or Action

Specify an IPv4 IP address and port to receive
encoded telemetry data.

(Optional) ip address ip_address port
port protocol procedural-protocol
encoding encoding-protocol

Step 13

gRPC is the default transport
protocol.

GPB is the default encoding.

Note
Example:
switch(conf-tm-sensor)# ip address
171.70.55.69 port 50001 protocol gRPC
encoding GPB
switch(conf-tm-sensor)# ip address
171.70.55.69 port 50007 protocol HTTP
encoding JSON

switch(conf-tm-sensor)# ip address
171.70.55.69 port 50009 protocol UDP
encoding JSON

Specify an IPv6 IP address and port to receive
encoded telemetry data.

(Optional) ipv6 address ipv6_address port
port protocol procedural-protocol
encoding encoding-protocol

Step 14

gRPC is the default transport
protocol.

GPB is the default encoding.

Note
Example:
switch(conf-tm-sensor)# ipv6 address
10:10::1 port 8000 protocol gRPC
encoding GPB
switch(conf-tm-sensor)# ipv6 address
10:10::1 port 8001 protocol HTTP
encoding JSON
switch(conf-tm-sensor)# ipv6 address
10:10::1 port 8002 protocol UDP encoding
JSON

Create a destination profile for the outgoing
data, where ip_version is either ip (for IPv4)
or ipv6 (for IPv6).

ip_version address ip_address port
portnum

Example:

Step 15

When the destination group is linked to a
subscription, telemetry data is sent to the IP
address and port that the profile specifies.

• For IPv4:
switch(conf-tm-dest)# ip address
1.2.3.4 port 50003

• For IPv6:
switch(conf-tm-dest)# ipv6 address
10:10::1 port 8000

Enable gRPC chunking and set the chunking
size, from 64 through 4096 bytes. See the

(Optional) use-chunking size chunking_size

Example:

Step 16

section "Support for gRPCChunking" formore
information.switch(conf-tm-dest)# use-chunking size

64

Create a subscription node with ID and enter
the subscription configuration mode.

subscription sub_id

Example:

Step 17

Currently sub_id only supports numeric ID
values.

switch(conf-tm-dest)# subscription 100
switch(conf-tm-sub)#

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
251

Model-Driven Programmability
Configuring Telemetry Using the NX-OS CLI

PurposeCommand or Action

When subscribing to a DN, check
whether the DN is supported by
DME using REST to ensure that
events can stream.

Note

Link the sensor group with ID sgrp_id to this
subscription and set the data sampling interval
in milliseconds.

snsr-grp sgrp_id sample-interval interval

Example:
switch(conf-tm-sub)# snsr-grp 100
sample-interval 15000

Step 18

An interval value of 0 creates an event-based
subscription, in which telemetry data is sent
only upon changes under the specified MO.
An interval value greater than 0 creates a
frequency-based subscription, in which
telemetry data is sent periodically at the
specified interval. For example, an interval
value of 15000 results in the sending of
telemetry data every 15 seconds.

Link the destination group with ID dgrp_id to
this subscription.

dst-grp dgrp_id

Example:

Step 19

switch(conf-tm-sub)# dst-grp 100

Configuration Examples for Telemetry Using the CLI
This example creates a subscription that streams data for the sys/bgp root MO every 5 seconds to the
destination IP 1.2.3.4 port 50003.

switch(config)# telemetry
switch(config-telemetry)# sensor-group 100
switch(conf-tm-sensor)# path sys/bgp depth 0
switch(conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50003
switch(conf-tm-dest)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 5000
switch(conf-tm-sub)# dst-grp 100

This example creates a subscription that streams data for sys/intf every 5 seconds to destination IP 1.2.3.4
port 50003. The subscription encrypts the stream using GPB encoding that is verified using the test.pem.

switch(config)# telemetry
switch(config-telemetry)# certificate /bootflash/test.pem foo.test.google.fr
switch(conf-tm-telemetry)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50003 protocol gRPC encoding GPB
switch(config-dest)# sensor-group 100
switch(conf-tm-sensor)# path sys/bgp depth 0
switch(conf-tm-sensor)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 5000
switch(conf-tm-sub)# dst-grp 100

This example creates a subscription that streams data for sys/cdp every 15 seconds to destination IP 1.2.3.4
port 50004.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
252

Model-Driven Programmability
Configuration Examples for Telemetry Using the CLI

switch(config)# telemetry
switch(config-telemetry)# sensor-group 100
switch(conf-tm-sensor)# path sys/cdp depth 0
switch(conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch(conf-tm-dest)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 15000
switch(conf-tm-sub)# dst-grp 100

This example creates a cadence-based collection of show command data every 750 seconds.

switch(config)# telemetry
switch(config-telemetry)# destination-group 1
switch(conf-tm-dest)# ip address 172.27.247.72 port 60001 protocol gRPC encoding GPB
switch(conf-tm-dest)# sensor-group 1
switch(conf-tm-sensor# data-source NX-API
switch(conf-tm-sensor)# path "show system resources" depth 0
switch(conf-tm-sensor)# path "show version" depth 0
switch(conf-tm-sensor)# path "show environment power" depth 0
switch(conf-tm-sensor)# path "show environment fan" depth 0
switch(conf-tm-sensor)# path "show environment temperature" depth 0
switch(conf-tm-sensor)# path "show process cpu" depth 0
switch(conf-tm-sensor)# path "show nve peers" depth 0
switch(conf-tm-sensor)# path "show nve vni" depth 0
switch(conf-tm-sensor)# path "show nve vni 4002 counters" depth 0
switch(conf-tm-sensor)# path "show int nve 1 counters" depth 0
switch(conf-tm-sensor)# path "show policy-map vlan" depth 0
switch(conf-tm-sensor)# path "show ip access-list test" depth 0
switch(conf-tm-sensor)# path "show system internal access-list resource utilization" depth
0
switch(conf-tm-sensor)# subscription 1
switch(conf-tm-sub)# dst-grp 1
switch(conf-tm-dest)# snsr-grp 1 sample-interval 750000

This example creates an event-based subscription for sys/fm. Data is streamed to the destination only if
there is a change under the sys/fm MO.

switch(config)# telemetry
switch(config-telemetry)# sensor-group 100
switch(conf-tm-sensor)# path sys/fm depth 0
switch(conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50005
switch(conf-tm-dest)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 0
switch(conf-tm-sub)# dst-grp 100

During operation, you can change a sensor group from frequency-based to event-based, and change event-based
to frequency-based by changing the sample-interval. This example changes the sensor-group from the previous
example to frequency-based. After the following commands, the telemetry application will begin streaming
the sys/fm data to the destination every 7 seconds.

switch(config)# telemetry
switch(config-telemetry)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 7000

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
253

Model-Driven Programmability
Configuration Examples for Telemetry Using the CLI

You can link multiple sensor groups and destinations to a single subscription. The subscription in this example
streams the data for Ethernet port 1/1 to four different destinations every 10 seconds.

switch(config)# telemetry
switch(config-telemetry)# sensor-group 100
switch(conf-tm-sensor)# path sys/intf/phys-[eth1/1] depth 0
switch(conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch(conf-tm-dest)# ip address 1.2.3.4 port 50005
switch(conf-tm-sensor)# destination-group 200
switch(conf-tm-dest)# ip address 5.6.7.8 port 50001 protocol HTTP encoding JSON
switch(conf-tm-dest)# ip address 1.4.8.2 port 60003
switch(conf-tm-dest)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 10000
switch(conf-tm-sub)# dst-grp 100
switch(conf-tm-sub)# dst-grp 200

A sensor group can contain multiple paths. A destination group can contain multiple destination profiles. You
can link a subscription to multiple sensor groups and destination groups, as shown in the following example.

switch(config)# telemetry
switch(config-telemetry)# sensor-group 100
switch(conf-tm-sensor)# path sys/intf/phys-[eth1/1] depth 0
switch(conf-tm-sensor)# path sys/epId-1 depth 0
switch(conf-tm-sensor)# path sys/bgp/inst/dom-default depth 0

switch(config-telemetry)# sensor-group 200
switch(conf-tm-sensor)# path sys/cdp depth 0
switch(conf-tm-sensor)# path sys/ipv4 depth 0

switch(config-telemetry)# sensor-group 300
switch(conf-tm-sensor)# path sys/fm depth 0
switch(conf-tm-sensor)# path sys/bgp depth 0

switch(conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch(conf-tm-dest)# ip address 4.3.2.5 port 50005

switch(conf-tm-dest)# destination-group 200
switch(conf-tm-dest)# ip address 5.6.7.8 port 50001

switch(conf-tm-dest)# destination-group 300
switch(conf-tm-dest)# ip address 1.2.3.4 port 60003

switch(conf-tm-dest)# subscription 600
switch(conf-tm-sub)# snsr-grp 100 sample-interval 7000
switch(conf-tm-sub)# snsr-grp 200 sample-interval 20000
switch(conf-tm-sub)# dst-grp 100
switch(conf-tm-sub)# dst-grp 200

switch(conf-tm-dest)# subscription 900
switch(conf-tm-sub)# snsr-grp 200 sample-interval 7000
switch(conf-tm-sub)# snsr-grp 300 sample-interval 0
switch(conf-tm-sub)# dst-grp 100
switch(conf-tm-sub)# dst-grp 300

You can verify the telemetry configuration using the show running-config telemetry command, as shown
in this example.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
254

Model-Driven Programmability
Configuration Examples for Telemetry Using the CLI

switch(config)# telemetry
switch(config-telemetry)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50003
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch(conf-tm-dest)# end
switch# show run telemetry

!Command: show running-config telemetry
!Running configuration last done at: Wed Apr 12 21:29:11 2000
!Time: Wed Apr 12 21:29:23 2000

version 9.2(1) Bios:version 05.35
feature telemetry

telemetry

destination-group 100
ip address 1.2.3.4 port 50003 protocol gRPC encoding GPB
ip address 1.2.3.4 port 50004 protocol gRPC encoding GPB

You can specify transport VRF and telemetry data compression for gRPC using the use-vrf and
use-compression gzip commands, as shown in this example.

switch(config)# telemetry
switch(config-telemetry)# destination-profile
switch(conf-tm-dest-profile)# use-vrf default
switch(conf-tm-dest-profile)# use-compression gzip
switch(conf-tm-dest-profile)# sensor-group 1
switch(conf-tm-sensor)# path sys/bgp depth unbounded
switch(conf-tm-sensor)# destination-group 1
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch(conf-tm-dest)# subscription 1
switch(conf-tm-sub)# dst-grp 1
switch(conf-tm-sub)# snsr-grp 1 sample-interval 10000

Displaying Telemetry Configuration and Statistics
Use the following NX-OS CLI show commands to display telemetry configuration, statistics, errors, and
session information.

show telemetry control database

This command displays the internal databases that reflect the configuration of telemetry.

switch# show telemetry control database ?
<CR>
> Redirect it to a file
>> Redirect it to a file in append mode
destination-groups Show destination-groups
destinations Show destinations
sensor-groups Show sensor-groups
sensor-paths Show sensor-paths
subscriptions Show subscriptions
| Pipe command output to filter

switch# show telemetry control database

Subscription Database size = 1

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
255

Model-Driven Programmability
Displaying Telemetry Configuration and Statistics

--
Subscription ID Data Collector Type
--
100 DME NX-API

Sensor Group Database size = 1

--
Sensor Group ID Sensor Group type Sampling interval(ms) Linked subscriptions
--
100 Timer 10000(Running) 1

Sensor Path Database size = 1

--
Subscribed Query Filter Linked Groups Sec Groups Retrieve level Sensor Path
--
No 1 0 Full sys/fm

Destination group Database size = 2

--
Destination Group ID Refcount
--
100 1

Destination Database size = 2

--
Dst IP Addr Dst Port Encoding Transport Count
--
192.168.20.111 12345 JSON HTTP 1
192.168.20.123 50001 GPB gRPC 1

show telemetry control stats

This command displays the statistics about the internal databases about configuration of telemetry.

switch# show telemetry control stats
show telemetry control stats entered

--
Error Description Error Count
--
Chunk allocation failures 0
Sensor path Database chunk creation failures 0
Sensor Group Database chunk creation failures 0
Destination Database chunk creation failures 0
Destination Group Database chunk creation failures 0
Subscription Database chunk creation failures 0
Sensor path Database creation failures 0
Sensor Group Database creation failures 0
Destination Database creation failures 0
Destination Group Database creation failures 0
Subscription Database creation failures 0
Sensor path Database insert failures 0
Sensor Group Database insert failures 0
Destination Database insert failures 0
Destination Group Database insert failures 0
Subscription insert to Subscription Database failures 0
Sensor path Database delete failures 0

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
256

Model-Driven Programmability
Displaying Telemetry Configuration and Statistics

Sensor Group Database delete failures 0
Destination Database delete failures 0
Destination Group Database delete failures 0
Delete Subscription from Subscription Database failures 0
Sensor path delete in use 0
Sensor Group delete in use 0
Destination delete in use 0
Destination Group delete in use 0
Delete destination(in use) failure count 0
Failed to get encode callback 0
Sensor path Sensor Group list creation failures 0
Sensor path prop list creation failures 0
Sensor path sec Sensor path list creation failures 0
Sensor path sec Sensor Group list creation failures 0
Sensor Group Sensor path list creation failures 0
Sensor Group Sensor subs list creation failures 0
Destination Group subs list creation failures 0
Destination Group Destinations list creation failures 0
Destination Destination Groups list creation failures 0
Subscription Sensor Group list creation failures 0
Subscription Destination Groups list creation failures 0
Sensor Group Sensor path list delete failures 0
Sensor Group Subscriptions list delete failures 0
Destination Group Subscriptions list delete failures 0
Destination Group Destinations list delete failures 0
Subscription Sensor Groups list delete failures 0
Subscription Destination Groups list delete failures 0
Destination Destination Groups list delete failures 0
Failed to delete Destination from Destination Group 0
Failed to delete Destination Group from Subscription 0
Failed to delete Sensor Group from Subscription 0
Failed to delete Sensor path from Sensor Group 0
Failed to get encode callback 0
Failed to get transport callback 0
switch# Destination Database size = 1

--
Dst IP Addr Dst Port Encoding Transport Count
--
192.168.20.123 50001 GPB gRPC 1

show telemetry data collector brief

This command displays the brief statistics about the data collection.

switch# show telemetry data collector brief

--
Collector Type Successful Collections Failed Collections
--
DME 143 0

show telemetry data collector details

This command displays detailed statistics about the data collection which includes breakdown of all sensor
paths.

switch# show telemetry data collector details

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
257

Model-Driven Programmability
Displaying Telemetry Configuration and Statistics

--
Succ Collections Failed Collections Sensor Path
--
150 0 sys/fm

show telemetry event collector errors

This command displays the errors statistic about the event collection.

switch# show telemetry event collector errors

--
Error Description Error Count
--
APIC-Cookie Generation Failures - 0
Authentication Failures - 0
Authentication Refresh Failures - 0
Authentication Refresh Timer Start Failures - 0
Connection Timer Start Failures - 0
Connection Attempts - 3
Dme Event Subscription Init Failures - 0
Event Data Enqueue Failures - 0
Event Subscription Failures - 0
Event Subscription Refresh Failures - 0
Pending Subscription List Create Failures - 0
Subscription Hash Table Create Failures - 0
Subscription Hash Table Destroy Failures - 0
Subscription Hash Table Insert Failures - 0
Subscription Hash Table Remove Failures - 0
Subscription Refresh Timer Start Failures - 0
Websocket Connect Failures - 0

show telemetry event collector stats

This command displays the statistics about the event collection which includes breakdown of all sensor paths.

switch# show telemetry event collector stats

--
Collection Count Latest Collection Time Sensor Path
--

show telemetry control pipeline stats

This command displays the statistics for the telemetry pipeline.

switch# show telemetry pipeline stats
Main Statistics:

Timers:
Errors:

Start Fail = 0

Data Collector:
Errors:

Node Create Fail = 0

Event Collector:

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
258

Model-Driven Programmability
Displaying Telemetry Configuration and Statistics

Errors:
Node Create Fail = 0 Node Add Fail = 0
Invalid Data = 0

Queue Statistics:
Request Queue:

High Priority Queue:
Info:

Actual Size = 50 Current Size = 0
Max Size = 0 Full Count = 0

Errors:
Enqueue Error = 0 Dequeue Error = 0

Low Priority Queue:
Info:

Actual Size = 50 Current Size = 0
Max Size = 0 Full Count = 0

Errors:
Enqueue Error = 0 Dequeue Error = 0

Data Queue:
High Priority Queue:

Info:
Actual Size = 50 Current Size = 0
Max Size = 0 Full Count = 0

Errors:
Enqueue Error = 0 Dequeue Error = 0

Low Priority Queue:
Info:

Actual Size = 50 Current Size = 0
Max Size = 0 Full Count = 0

Errors:
Enqueue Error = 0 Dequeue Error = 0

show telemetry transport

This command displays all configured transport sessions.

switch# show telemetry transport

Session Id IP Address Port Encoding Transport Status

0 192.168.20.123 50001 GPB gRPC Connected

Retry buffer Size: 10485760
Event Retry Messages (Bytes): 0
Timer Retry Messages (Bytes): 0
Total Retries sent: 0
Total Retries Dropped: 0

show telemetry transport <session-id>

This command displays detailed session information for a specific transport session.

switch# show telemetry transport 0

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
259

Model-Driven Programmability
Displaying Telemetry Configuration and Statistics

Session Id: 0
IP Address:Port 192.168.20.123:50001
Encoding: GPB
Transport: gRPC
Status: Disconnected
Last Connected: Fri Sep 02 11:45:57.505 UTC
Tx Error Count: 224
Last Tx Error: Fri Sep 02 12:23:49.555 UTC

switch# show telemetry transport 1

Session Id: 1
IP Address:Port 10.30.218.56:51235
Encoding: JSON
Transport: HTTP
Status: Disconnected
Last Connected: Never
Last Disconnected: Never
Tx Error Count: 3
Last Tx Error: Wed Apr 19 15:56:51.617 PDT

The following example shows output from an IPv6 entry.
switch# show telemetry transport 0
Session Id: 0
IP Address:Port [10:10::1]:8000
Transport: GRPC
Status: Idle
Last Connected: Never
Last Disconnected: Never
Tx Error Count: 0
Last Tx Error: None
Event Retry Queue Bytes: 0
Event Retry Queue Size: 0
Timer Retry Queue Bytes: 0
Timer Retry Queue Size: 0
Sent Retry Messages: 0
Dropped Retry Messages: 0

show telemetry transport <session-id> stats

This command displays details of a specific transport session.

switch# show telemetry transport 0 stats

Session Id: 0
IP Address:Port 192.168.20.123:50001
Encoding: GPB
Transport: GRPC
Status: Connected
Last Connected: Mon May 01 11:29:46.912 PST
Last Disconnected: Never
Tx Error Count: 0
Last Tx Error: None

show telemetry transport <session-id> errors

This command displays detailed error statistics for a specific transport session.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
260

Model-Driven Programmability
Displaying Telemetry Configuration and Statistics

switch# show telemetry transport 0 errors

Session Id: 0
Connection Stats

Connection Count 1
Last Connected: Mon May 01 11:29:46.912 PST
Disconnect Count 0
Last Disconnected: Never

Transmission Stats
Transmit Count: 1225
Last TX time: Tue May 02 11:40:03.531 PST
Min Tx Time: 7 ms
Max Tx Time: 1760 ms
Avg Tx Time: 500 ms

Displaying Telemetry Log and Trace Information
Use the following NX-OS CLI commands to display the log and trace information.

show tech-support telemetry

This NX-OS CLI command collects the telemetry log contents from the tech-support log. In this example,
the command output is redirected into a file in bootflash.

switch# show tech-support telemetry > bootflash:tmst.log

show system internal telemetry trace

The show system internal telemetry trace [tm-events | tm-errors |tm-logs | all] command displays system
internal telemetry trace information.

switch# show system internal telemetry trace all
Telemetry All Traces:
Telemetry Error Traces:
[07/26/17 15:22:29.156 UTC 1 28577] [3960399872][tm_cfg_api.c:367] Not able to destroy dest
profile list for config node rc:-1610612714 reason:Invalid argument
[07/26/17 15:22:44.972 UTC 2 28577] [3960399872][tm_stream.c:248] No subscriptions for
destination group 1
[07/26/17 15:22:49.463 UTC 3 28577] [3960399872][tm_stream.c:576] TM_STREAM: Subscriptoin
1 does not have any sensor groups

3 entries printed
Telemetry Event Traces:
[07/26/17 15:19:40.610 UTC 1 28577] [3960399872][tm_debug.c:41] Telemetry xostrace buffers
initialized successfully!
[07/26/17 15:19:40.610 UTC 2 28577] [3960399872][tm.c:744] Telemetry statistics created
successfully!
[07/26/17 15:19:40.610 UTC 3 28577] [3960399872][tm_init_n9k.c:97] Platform intf:
grpc_traces:compression,channel
switch#

switch# show system internal telemetry trace tm-logs
Telemetry Log Traces:
0 entries printed
switch#
switch# show system internal telemetry trace tm-events

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
261

Model-Driven Programmability
Displaying Telemetry Log and Trace Information

Telemetry Event Traces:
[07/26/17 15:19:40.610 UTC 1 28577] [3960399872][tm_debug.c:41] Telemetry xostrace buffers
initialized successfully!
[07/26/17 15:19:40.610 UTC 2 28577] [3960399872][tm.c:744] Telemetry statistics created
successfully!
[07/26/17 15:19:40.610 UTC 3 28577] [3960399872][tm_init_n9k.c:97] Platform intf:
grpc_traces:compression,channel
[07/26/17 15:19:40.610 UTC 4 28577] [3960399872][tm_init_n9k.c:207] Adding telemetry to
cgroup
[07/26/17 15:19:40.670 UTC 5 28577] [3960399872][tm_init_n9k.c:215] Added telemetry to
cgroup successfully!

switch# show system internal telemetry trace tm-errors
Telemetry Error Traces:
0 entries printed
switch#

Configuring Telemetry Using the NX-API

Configuring Telemetry Using the NX-API
In the object model of the switch DME, the configuration of the telemetry feature is defined in a hierarchical
structure of objects as shown in Telemetry Model in the DME, on page 274. Following are the main objects
to be configured:

• fmEntity —Contains the NX-API and Telemetry feature states.

• fmNxapi —Contains the NX-API state.

• fmTelemetry —Contains the Telemetry feature state.

• telemetryEntity —Contains the telemetry feature configuration.

• telemetrySensorGroup —Contains the definitions of one or more sensor paths or nodes to be
monitored for telemetry. The telemetry entity can contain one or more sensor groups.

• telemetryRtSensorGroupRel —Associates the sensor group with a telemetry subscription.

• telemetrySensorPath—Apath to bemonitored. The sensor group can containmultiple objects
of this type.

• telemetryDestGroup —Contains the definitions of one or more destinations to receive telemetry
data. The telemetry entity can contain one or more destination groups.

• telemetryRtDestGroupRel—Associates the destination group with a telemetry subscription.

• telemetryDest —A destination address. The destination group can contain multiple objects
of this type.

• telemetrySubscription — Specifies how and when the telemetry data from one or more sensor
groups is sent to one or more destination groups.

• telemetryRsDestGroupRel—Associates the telemetry subscription with a destination group.

• telemetryRsSensorGroupRel —Associates the telemetry subscription with a sensor group.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
262

Model-Driven Programmability
Configuring Telemetry Using the NX-API

• telemetryCertificate —Associates the telemetry subscription with a certificate and hostname.

To configure telemetry using the NX-API, you construct a JSON representation of the telemetry object structure
and push it to the DME with an HTTP or HTTPS POST operation.

For detailed instructions on using the NX-API, see the Cisco Nexus 3000 and 9000 Series NX-API REST SDK
User Guide and API Reference.

Note

Before you begin

Your switch must be configured to run the NX-API from the CLI:
switch(config)# feature nxapi

nxapi use-vrf vrf_name
nxapi http port port_number

Procedure

PurposeCommand or Action

The root element is fmTelemetry and the base
path for this element is sys/fm. Configure the
adminSt attribute as enabled.

Enable the telemetry feature.

Example:

{

Step 1

"fmEntity" : {
"children" : [{
"fmTelemetry" : {
"attributes" : {
"adminSt" : "enabled"

}
}

}
]

}
}

The root element is telemetryEntity and the
base path for this element is sys/tm. Configure
the dn attribute as sys/tm.

Create the root level of the JSON payload to
describe the telemetry configuration.

Example:

Step 2

{
"telemetryEntity": {

"attributes": {
"dn": "sys/tm"

},
}

}

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
263

Model-Driven Programmability
Configuring Telemetry Using the NX-API

PurposeCommand or Action

A telemetry sensor group is defined in an
object of class telemetrySensorGroup.

Create a sensor group to contain the defined
sensor paths.

Example:

Step 3

Configure the following attributes of the
object:

"telemetrySensorGroup": { • id —An identifier for the sensor group.
Currently only numeric ID values are
supported.

"attributes": {
"id": "10",
"rn": "sensor-10"
"dataSrc": "NX-API" • rn — The relative name of the sensor

group object in the format: sensor-id.
}, "children": [{
}]

}
• dataSrc — Selects the data source from

DEFAULT, DME, YANG, or NX-API.

Children of the sensor group object will
include sensor paths and one or more relation
objects (telemetryRtSensorGroupRel) to
associate the sensor group with a telemetry
subscription.

The telemetryCertificate defines the location
of the SSL/TLS certificate with the telemetry
subscription/destination.

(Optional) Add an SSL/TLS certificate and a
host.

Example:

Step 4

{
"telemetryCertificate": {

"attributes": {
"filename": "root.pem"
"hostname": "c.com"

}
}

}

A telemetry destination group is defined in
telemetryEntity. Configure the id attribute.

Define a telemetry destination group.

Example:

Step 5

{
"telemetryDestGroup": {
"attributes": {
"id": "20"

}
}

}

A telemetry destination profile is defined in
telemetryDestProfile.

Define a telemetry destination profile.

Example:

Step 6

• Configure the adminSt attribute as
enabled.{

"telemetryDestProfile": {
• Under

telemetryDestOptSourceInterface,
"attributes": {

"adminSt": "enabled"
}, configure the name attribute with an"children": [

interface name to stream data from the{

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
264

Model-Driven Programmability
Configuring Telemetry Using the NX-API

PurposeCommand or Action

"telemetryDestOptSourceInterface": {
configured interface to a destination with
the source IP address.

"attributes": {
"name": "lo0"

}
}

}
]

}
}

A telemetry destination is defined in an object
of class telemetryDest. Configure the
following attributes of the object:

Define one or more telemetry destinations,
consisting of an IP address and port number
to which telemetry data will be sent.

Example:

Step 7

• addr—The IP address of the destination.

{ • port — The port number of the
destination."telemetryDest": {

"attributes": {
• rn—The relative name of the destination
object in the format: path-[path].

"addr": "1.2.3.4",
"enc": "GPB",
"port": "50001",

• enc—The encoding type of the telemetry
data to be sent. NX-OS supports:

"proto": "gRPC",
"rn":

"addr-[1.2.3.4]-port-50001"
} • Google protocol buffers (GPB) for

gRPC.}
}

• JSON for C.

• GPB or JSON for UDP and secure
UDP (DTLS).

• proto — The transport protocol type of
the telemetry data to be sent. NX-OS
supports:

• gRPC

• HTTP

• VUDP and secure UDP (DTLS)

See "Support for gRPC Chunking" in
Guidelines and Limitations, on page 242 for
more information.

Enable gRPC chunking and set the chunking
size, between 64 and 4096 bytes.

Example:

Step 8

{
"telemetryDestGrpOptChunking": {

"attributes": {
"chunkSize": "2048",
"dn":

"sys/tm/dest-1/chunking"
}

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
265

Model-Driven Programmability
Configuring Telemetry Using the NX-API

PurposeCommand or Action
}

}

A telemetry subscription is defined in an object
of class telemetrySubscription. Configure
the following attributes of the object:

Create a telemetry subscription to configure
the telemetry behavior.

Example:

Step 9

• id —An identifier for the subscription.
Currently only numeric ID values are
supported.

"telemetrySubscription": {
"attributes": {

"id": "30",
"rn": "subs-30" • rn — The relative name of the

subscription object in the format: subs-id.}, "children": [{
}]

}
Children of the subscription object will include
relation objects for sensor groups
(telemetryRsSensorGroupRel) and
destination groups
(telemetryRsDestGroupRel).

Add the sensor group object as a child object
to the telemetrySubscription element under
the root element (telemetryEntity).

Step 10

Example:
{

"telemetrySubscription": {
"attributes": {
"id": "30"

}
"children": [{
"telemetryRsSensorGroupRel":

{
"attributes": {
"sampleIntvl": "5000",
"tDn": "sys/tm/sensor-10"

}
}

}
]

}
}

The relation object is of class
telemetryRsSensorGroupRel and is a child

Create a relation object as a child object of the
subscription to associate the subscription to
the telemetry sensor group and to specify the
data sampling behavior.

Step 11

object of telemetrySubscription. Configure
the following attributes of the relation object:

Example: • rn — The relative name of the relation
object in the format:
rssensorGroupRel-[sys/tm/sensor-group-id]."telemetryRsSensorGroupRel": {

"attributes": {
• sampleIntvl—The data sampling period
in milliseconds. An interval value of 0

"rType": "mo",
"rn":

"rssensorGroupRel-[sys/tm/sensor-10]",

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
266

Model-Driven Programmability
Configuring Telemetry Using the NX-API

PurposeCommand or Action
"sampleIntvl": "5000",
"tCl": "telemetrySensorGroup",

creates an event-based subscription, in
which telemetry data is sent only upon

"tDn": "sys/tm/sensor-10",
changes under the specified MO. An"tType": "mo"
interval value greater than 0 creates a}

} frequency-based subscription, in which
telemetry data is sent periodically at the
specified interval. For example, an
interval value of 15000 results in the
sending of telemetry data every 15
seconds.

• tCl — The class of the target (sensor
group) object, which is
telemetrySensorGroup.

• tDn — The distinguished name of the
target (sensor group) object, which is
sys/tm/sensor-group-id.

• rType —The relation type, which is mo
for managed object.

• tType — The target type, which is mo
for managed object.

A sensor path is defined in an object of class
telemetrySensorPath. Configure the
following attributes of the object:

Define one or more sensor paths or nodes to
be monitored for telemetry.

Example:

Step 12

• path — The path to be monitored.Single sensor path

{
• rn—The relative name of the path object
in the format: path-[path]

"telemetrySensorPath": {
"attributes": { • depth—The retrieval level for the sensor

path. A depth setting of 0 retrieves only
the root MO properties.

"path": "sys/cdp",
"rn": "path-[sys/cdp]",
"excludeFilter": "",
"filterCondition": "",

• filterCondition — (Optional) Creates a
specific filter for event-based

"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "", subscriptions. The DME provides the
"depth": "0" filter expressions. For more information}

about filtering, see the Cisco APIC REST}
API Usage Guidelines on composing}

queries: https://www.cisco.com/c/en/us/
td/docs/switches/datacenter/aci/apic/sw/Example:
2-x/rest_cfg/2_1_x/b_Cisco_APIC_

Single sensor path for NX-API

{

REST_API_Configuration_Guide/b_
Cisco_APIC_REST_API_Configuration_
Guide_chapter_01.html#d25e1534a1635

"telemetrySensorPath": {
"attributes": {

"path": "show interface",
"path": "show bgp",

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
267

Model-Driven Programmability
Configuring Telemetry Using the NX-API

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635

PurposeCommand or Action
"rn": "path-[sys/cdp]",
"excludeFilter": "",
"filterCondition": "",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

}

Example:

Multiple sensor paths

{
"telemetrySensorPath": {

"attributes": {
"path": "sys/cdp",
"rn": "path-[sys/cdp]",
"excludeFilter": "",
"filterCondition": "",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

},
{

"telemetrySensorPath": {
"attributes": {

"excludeFilter": "",
"filterCondition": "",
"path": "sys/fm/dhcp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

}

Example:

Single sensor path filtering for BGP disable
events:

{
"telemetrySensorPath": {

"attributes": {
"path": "sys/cdp",
"rn": "path-[sys/cdp]",
"excludeFilter": "",
"filterCondition":

"eq(fmBgp.operSt.\"disabled\")",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
268

Model-Driven Programmability
Configuring Telemetry Using the NX-API

PurposeCommand or Action
}

}

Add sensor paths as child objects to the sensor
group object (telemetrySensorGroup).

Step 13

Add destinations as child objects to the
destination group object
(telemetryDestGroup).

Step 14

Add the destination group object as a child
object to the root element (telemetryEntity).

Step 15

The relation object is of class
telemetryRtSensorGroupRel and is a child

Create a relation object as a child object of the
telemetry sensor group to associate the sensor
group to the subscription.

Step 16

object of telemetrySensorGroup. Configure
the following attributes of the relation object:Example:

• rn — The relative name of the relation
object in the format:
rtsensorGroupRel-[sys/tm/subscription-id].

"telemetryRtSensorGroupRel": {
"attributes": {

"rn":
"rtsensorGroupRel-[sys/tm/subs-30]", • tCl—The target class of the subscription

object, which is telemetrySubscription."tCl": "telemetrySubscription",

"tDn": "sys/tm/subs-30" • tDn —The target distinguished name of
the subscription object, which is
sys/tm/subscription-id.

}
}

The relation object is of class
telemetryRtDestGroupRel and is a child

Create a relation object as a child object of the
telemetry destination group to associate the
destination group to the subscription.

Step 17

object of telemetryDestGroup. Configure the
following attributes of the relation object:Example:

• rn — The relative name of the relation
object in the format:
rtdestGroupRel-[sys/tm/subscription-id].

"telemetryRtDestGroupRel": {
"attributes": {

"rn":
"rtdestGroupRel-[sys/tm/subs-30]", • tCl—The target class of the subscription

object, which is telemetrySubscription."tCl": "telemetrySubscription",

"tDn": "sys/tm/subs-30" • tDn —The target distinguished name of
the subscription object, which is
sys/tm/subscription-id.

}
}

The relation object is of class
telemetryRsDestGroupRel and is a child

Create a relation object as a child object of the
subscription to associate the subscription to
the telemetry destination group.

Step 18

object of telemetrySubscription. Configure
the following attributes of the relation object:Example:

• rn — The relative name of the relation
object in the format:
rsdestGroupRel-[sys/tm/destination-group-id].

"telemetryRsDestGroupRel": {
"attributes": {

"rType": "mo",

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
269

Model-Driven Programmability
Configuring Telemetry Using the NX-API

PurposeCommand or Action
"rn":

"rsdestGroupRel-[sys/tm/dest-20]",
• tCl—The class of the target (destination
group) object, which is
telemetryDestGroup.

"tCl": "telemetryDestGroup",
"tDn": "sys/tm/dest-20",
"tType": "mo"

• tDn — The distinguished name of the
target (destination group) object, which
is sys/tm/destination-group-id.

}
}

• rType —The relation type, which is mo
for managed object.

• tType — The target type, which is mo
for managed object.

The base path for the telemetry entity is sys/tm
and the NX-API endpoint is:

Send the resulting JSON structure as an
HTTP/HTTPS POST payload to the NX-API
endpoint for telemetry configuration.

Step 19

{{URL}}/api/node/mo/sys/tm.json

Example

The following is an example of all the previous steps collected into one POST payload (note that
some attributes may not match):
{
"telemetryEntity": {
"children": [{
"telemetrySensorGroup": {
"attributes": {
"id": "10"

}
"children": [{
"telemetrySensorPath": {
"attributes": {
"excludeFilter": "",
"filterCondition": "",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

}
]

}
},
{
"telemetryDestGroup": {
"attributes": {
"id": "20"

}
"children": [{
"telemetryDest": {
"attributes": {
"addr": "10.30.217.80",
"port": "50051",
"enc": "GPB",

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
270

Model-Driven Programmability
Configuring Telemetry Using the NX-API

"proto": "gRPC"
}

}
}
]

}
},
{
"telemetrySubscription": {
"attributes": {
"id": "30"

}
"children": [{
"telemetryRsSensorGroupRel": {
"attributes": {
"sampleIntvl": "5000",
"tDn": "sys/tm/sensor-10"

}
}

},
{
"telemetryRsDestGroupRel": {
"attributes": {
"tDn": "sys/tm/dest-20"

}
}

}
]

}
}
]

}
}

Configuration Example for Telemetry Using the NX-API

Streaming Paths to a Destination

This example creates a subscription that streams paths sys/cdp and sys/ipv4 to a destination 1.2.3.4 port

50001 every five seconds.

POST https://192.168.20.123/api/node/mo/sys/tm.json

Payload:
{

"telemetryEntity": {
"attributes": {

"dn": "sys/tm"
},
"children": [{

"telemetrySensorGroup": {
"attributes": {

"id": "10",
"rn": "sensor-10"

}, "children": [{
"telemetryRtSensorGroupRel": {

"attributes": {
"rn": "rtsensorGroupRel-[sys/tm/subs-30]",
"tCl": "telemetrySubscription",
"tDn": "sys/tm/subs-30"

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
271

Model-Driven Programmability
Configuration Example for Telemetry Using the NX-API

}
}

}, {
"telemetrySensorPath": {

"attributes": {
"path": "sys/cdp",
"rn": "path-[sys/cdp]",
"excludeFilter": "",
"filterCondition": "",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

}, {
"telemetrySensorPath": {

"attributes": {
"path": "sys/ipv4",
"rn": "path-[sys/ipv4]",
"excludeFilter": "",
"filterCondition": "",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

}]
}

}, {
"telemetryDestGroup": {

"attributes": {
"id": "20",
"rn": "dest-20"

},
"children": [{

"telemetryRtDestGroupRel": {
"attributes": {

"rn": "rtdestGroupRel-[sys/tm/subs-30]",
"tCl": "telemetrySubscription",
"tDn": "sys/tm/subs-30"

}
}

}, {
"telemetryDest": {

"attributes": {
"addr": "1.2.3.4",
"enc": "GPB",
"port": "50001",
"proto": "gRPC",
"rn": "addr-[1.2.3.4]-port-50001"

}
}

}]
}

}, {
"telemetrySubscription": {

"attributes": {
"id": "30",
"rn": "subs-30"

},
"children": [{

"telemetryRsDestGroupRel": {
"attributes": {

"rType": "mo",

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
272

Model-Driven Programmability
Configuration Example for Telemetry Using the NX-API

"rn": "rsdestGroupRel-[sys/tm/dest-20]",
"tCl": "telemetryDestGroup",
"tDn": "sys/tm/dest-20",
"tType": "mo"

}
}

}, {
"telemetryRsSensorGroupRel": {

"attributes": {
"rType": "mo",
"rn": "rssensorGroupRel-[sys/tm/sensor-10]",
"sampleIntvl": "5000",
"tCl": "telemetrySensorGroup",
"tDn": "sys/tm/sensor-10",
"tType": "mo"

}
}

}]
}

}]
}

}

Filter Conditions on BGP Notifications

The following example payload enables notifications that trigger when the BFP feature is disabled as per the
filterCondition attribute in the telemetrySensorPathMO. The data is streamed to10.30.217.80 port

50055.
POST https://192.168.20.123/api/node/mo/sys/tm.json

Payload:
{
"telemetryEntity": {
"children": [{
"telemetrySensorGroup": {
"attributes": {
"id": "10"

}
"children": [{
"telemetrySensorPath": {
"attributes": {
"excludeFilter": "",
"filterCondition": "eq(fmBgp.operSt,\"disabled\")",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

}
]

}
},
{
"telemetryDestGroup": {
"attributes": {
"id": "20"

}
"children": [{
"telemetryDest": {
"attributes": {

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
273

Model-Driven Programmability
Configuration Example for Telemetry Using the NX-API

"addr": "10.30.217.80",
"port": "50055",
"enc": "GPB",
"proto": "gRPC"

}
}

}
]

}
},
{
"telemetrySubscription": {
"attributes": {
"id": "30"

}
"children": [{
"telemetryRsSensorGroupRel": {
"attributes": {
"sampleIntvl": "0",
"tDn": "sys/tm/sensor-10"

}
}

},
{
"telemetryRsDestGroupRel": {
"attributes": {
"tDn": "sys/tm/dest-20"

}
}

}
]

}
}
]

}
}

Using Postman Collection for Telemetry Configuration

An example Postman collection is an easy way to start configuring the telemetry feature, and can run all
telemetry CLI equivalents in a single payload. Modify the file in the preceding link using your preferred text
editor to update the payload to your needs, then open the collection in Postman and run the collection.

Telemetry Model in the DME
The telemetry application is modeled in the DME with the following structure:

model
|----package [name:telemetry]

| @name:telemetry
|----objects

|----mo [name:Entity]
| @name:Entity
| @label:Telemetry System
|--property
| @name:adminSt
| @type:AdminState
|
|----mo [name:SensorGroup]
| | @name:SensorGroup
| | @label:Sensor Group

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
274

Model-Driven Programmability
Telemetry Model in the DME

https://github.com/CiscoDevNet/nx-telemetry-proto/tree/master/postman_collections

| |--property
| | @name:id [key]
| | @type:string:Basic
| | @name:dataSrc
| | @type:DataSource
| |
| |----mo [name:SensorPath]
| | @name:SensorPath
| | @label:Sensor Path
| |--property
| | @name:path [key]
| | @type:string:Basic
| | @name:filterCondition
| | @type:string:Basic
| | @name:excludeFilter
| | @type:string:Basic
| | @name:depth
| | @type:RetrieveDepth
|
|----mo [name:DestGroup]
| | @name:DestGroup
| | @label:Destination Group
| |--property
| | @name:id
| | @type:string:Basic
| |
| |----mo [name:Dest]
| | @name:Dest
| | @label:Destination
| |--property
| | @name:addr [key]
| | @type:address:Ip
| | @name:port [key]
| | @type:scalar:Uint16
| | @name:proto
| | @type:Protocol
| | @name:enc
| | @type:Encoding
|
|----mo [name:Subscription]

| @name:Subscription
| @label:Subscription
|--property
| @name:id
| @type:scalar:Uint64
|----reldef
| | @name:SensorGroupRel
| | @to:SensorGroup
| | @cardinality:ntom
| | @label:Link to sensorGroup entry
| |--property
| @name:sampleIntvl
| @type:scalar:Uint64
|
|----reldef

| @name:DestGroupRel
| @to:DestGroup
| @cardinality:ntom
| @label:Link to destGroup entry

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
275

Model-Driven Programmability
Telemetry Model in the DME

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
276

Model-Driven Programmability
Telemetry Model in the DME

P A R T V
XML Mangement Interface

• XML Management Interface, on page 279

C H A P T E R 24
XML Management Interface

This chapter contains the following topics:

• About the XML Management Interface, on page 279
• Information About Example XML Instances, on page 294
• Additional References, on page 301

About the XML Management Interface

Information About the XML Management Interface
You can use the XMLmanagement interface to configure a device. The interface uses the XML-based Network
Configuration Protocol (NETCONF), which allows you to manage devices and communicate over the interface
with an XML management tool or program. The Cisco NX-OS implementation of NETCONF requires you
to use a Secure Shell (SSH) session for communication with a device.

NETCONF is implemented with an XML Schema (XSD) that allows you to enclose device configuration
elements within a remote procedure call (RPC) message. From within an RPC message, select one of the
NETCONF operations that matches the type of command that you want the device to execute. You can
configure the entire set of CLI commands on the device with NETCONF. For information about using
NETCONF, see Creating NETCONF XML Instances, on page 284 and RFC 4741.

For more information about using NETCONF over SSH, see RFC 4742.

This section includes the following topics:

NETCONF Layers
The following table lists the NETCONF layers:

Table 17: NETCONF Layers

ExampleLayer

SSHv2Transport protocol

RPC, RPC-replyRPC

get-config, edit-configOperations

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
279

http://tools.ietf.org/html/rfc4741
http://tools.ietf.org/html/rfc4742

ExampleLayer

show or configuration commandContent

The following is a description of the four NETCONF layers:

• SSH transport protocol—Provides an encrypted connection between a client and the server.

• RPC tag—Introduces a configuration command from the requestor and the corresponding reply from the
XML server.

• NETCONF operation tag—Indicates the type of configuration command.

• Content—Indicates the XML representation of the feature that you want to configure.

SSH xmlagent
The device software provides an SSH service that is called xmlagent that supports NETCONF over SSH
Version 2.

The xmlagent service is referred to as the XML server in Cisco NX-OS software.Note

NETCONF over SSH starts with the exchange of a Hello message between the client and the XML server.
After the initial exchange, the client sends XML requests, which the server responds to with XML responses.
The client and server terminate requests and responses with the character sequence >. Because this character
sequence is not valid in XML, the client and the server can interpret when messages end, which keeps
communication synchronized.

The XML schemas that define the XML configuration instances that you can use are described in Creating
NETCONF XML Instances, on page 284.

Licensing Requirements for the XML Management Interface
License RequirementProduct

The XML management interface requires no license.
Any feature that is not included in a license package
is bundled with the Cisco NX-OS image and is
provided at no extra charge to you. For a complete
explanation of the Cisco NX-OS licensing scheme,
see the Cisco NX-OS Licensing Guide.

Cisco NX-OS

Prerequisites to Using the XML Management Interface
Using the XML management interface has the following prerequisites:

• You must install SSHv2 on the client PC.

• You must install an XML management tool that supports NETCONF over SSH on the client PC.

• You must set the appropriate options for the XML server on the device.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
280

XML Mangement Interface
SSH xmlagent

Using the XML Management Interface
This section describes how to manually configure and use the XML management interface.

Use the XML management interface with the default settings on the device.Note

Configuring the SSH and the XML Server Options Through the CLI
By default, the SSH server is enabled on your device. If you disable SSH, you must enable it before you start
an SSH session on the client PC.

You can configure the XML server options to control the number of concurrent sessions and the timeout for
active sessions. You can also enable XML document validation and terminate XML sessions.

The XML server timeout applies only to active sessions.Note

For more information about configuring SSH, see the Cisco NX-OS security configuration guide for your
platform.

For more information about the XML commands, see the Cisco NX-OS system management configuration
guide for your platform.

Procedure

Step 1 Enter global configuration mode.

configure terminal

Step 2 (Optional) Display information about XML server settings and active XML server sessions. You can find
session numbers in the command output.

show xml server status

Step 3 Validate XML documents for the specified server session.

xml server validate all

Step 4 Terminate the specified XML server session.

xml server terminate session

Step 5 (Optional) Disable the SSH server so that you can generate keys.

no feature ssh

Step 6 Enable the SSH server. (The default is enabled.)

feature ssh

Step 7 (Optional) Display the status of the SSH server.

show ssh server

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
281

XML Mangement Interface
Using the XML Management Interface

Step 8 Set the number of XML server sessions allowed.

xml server max-session sessions

The range is from 1 through 8. The default is 8.

Step 9 Set the number of seconds after which an XML server session is terminated.

xml server timeout seconds

The range is from 1 through 1200. The default is 1200 seconds.

Step 10 (Optional) Display information about the XML server settings and active XML server sessions.

show xml server status

Step 11 (Optional) Saves the running configuration to the startup configuration.

copy running-config startup-config

Example

The following example shows how to configure SSH and XML server options through the CLI:
switch# configure terminal
switch(config)# xml server validate all
switch(config)# xml server terminate 8665
switch(config)# no feature ssh
switch(config)# feature ssh server
switch(config)# xml server max-session 6
switch(config)# xml server timeout 2400
switch(config)# copy running-config startup-config

Starting an SSHv2 Session
You can start an SSHv2 session on a client PC with the ssh2 command that is similar to the following:
ssh2 username@ip-address -s xmlagent

Enter the login username, the IP address of the device, and the service to connect to. The xmlagent service is
referred to as the XML server in the device software.

The SSH command syntax can differ based on the SSH software on the client PC.Note

If you do not receive a Hello message from the XML server, verify the following conditions:

• The SSH server is enabled on the device.

• The max-sessions option of the XML server is adequate to support the number of SSH connections to
the device.

• The active XML server sessions on the device are not all in use.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
282

XML Mangement Interface
Starting an SSHv2 Session

Sending a Hello Message
You must advertise your capabilities to the server with a Hello message before the server processes any other
requests. When you start an SSH session to the XML server, the server responds immediately with a Hello
message. This message informs the client of the capabilities of the server. The XML server supports only
base capabilities and, in turn, expects that the client supports only these base capabilities.

The following are sample Hello messages from the server and the client:

You must end all XML documents with]]>]]> to support synchronization in NETCONF over SSH.Note

Hello Message from a Server

<?xml version="1.0"?>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:xml:ns:netconf:base:1.0</capability>
</capabilities>
<session-id>25241</session-id>

</hello>]]>]]>

Hello Message from a Client

<?xml version="1.0"?>
<nc:hello xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<nc:capabilities>
<nc:capability>urn:ietf:params:xml:ns:netconf:base:1.0</nc:capability>
</nc:capabilities>

</nc:hello>]]>]]>

Obtaining XML Schema Definition (XSD) Files

Procedure

Step 1 From your browser, navigate to the Cisco software download site at:

http://software.cisco.com/download/navigator.html

The Download Software window is displayed.

Step 2 From the list of products that are displayed, choose Switches > Data Center Switches > platform model.
Step 3 If you are not already logged in as a registered Cisco user, you are prompted to log in now.
Step 4 From the Select a Software Type list, choose NX-OS XML Schema Definition.

Step 5 Find the desired release and click Download.

Step 6 If you are requested to, follow the instructions to apply for eligibility to download strong encryption software
images.

The Cisco End User License Agreement is displayed.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
283

XML Mangement Interface
Sending a Hello Message

http://software.cisco.com/download/navigator.html

Step 7 Click Agree and follow the instructions to download the file to your PC.

Sending an XML Document to the XML Server
To send an XML document to the XML server through an SSH session that you opened in a command shell,
copy the XML text from an editor and paste it into the SSH session. Although typically you use an automated
method to send XML documents to the XML server, you can verify the SSH connection to the XML server
through this copy-paste method.

The following are the guidelines to follow when sending an XML document to the XML server:

• Verify that the XML server has sent the Hello message immediately after you started the SSH session,
by looking for the Hello message text in the command shell output.

• Send the client Hello message before you send XML requests. Note that the XML server sends the Hello
response immediately, and no additional response is sent after you send the client Hello message.

• Always terminate the XML document with the character sequence]]>]]>.

Creating NETCONF XML Instances
You can create NETCONF XML instances by enclosing the XML device elements within an RPC tag and
NETCONF operation tags. The XML device elements are defined in feature-based XML schema definition
(XSD) files, which enclose available CLI commands in an XML format.

The following are the tags that are used in the NETCONF XML request in a framework context. Tag lines
are marked with the following letter codes:

• X —XML declaration

• R—RPC request tag

• N—NETCONF operation tags

• D—Device tags

NETCONF XML Framework Context

X <?xml version="1.0"?>
R <nc:rpc message-id="1" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
R xmlns="http://www.cisco.com/nxos:1.0:nfcli”>
N <nc:get>
N <nc:filter type="subtree">
D <show>
D <xml>
D <server>
D <status/>
D </server>
D </xml>
D </show>
N </nc:filter>
N </nc:get>
R </nc:rpc>]]>]]>

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
284

XML Mangement Interface
Sending an XML Document to the XML Server

You must use your own XML editor or XML management interface tool to create XML instances.Note

RPC Request Tag

All NETCONFXML instances must begin with the RPC request tag <rpc>. The <rpc> element has a message
ID (message-id) attribute. This message-id attribute is replicated in the <rpc-reply> and can be used to correlate
requests and replies. The <rpc> node also contains the following XML namespace declarations:

• NETCONF namespace declaration—The <rpc> and NETCONF tags that are defined in the
urn:ietf:params:xml:ns:netconf:base:1.0 namespace, are present in the netconf.xsd
schema file.

• Device namespace declaration—Device tags encapsulated by the <rpc> and NETCONF tags are defined
in other namespaces. Device namespaces are feature-oriented. Cisco NX-OS feature tags are defined in
different namespaces. RPC Request Tag <rpc> is an example that uses the NFCLI feature. It declares
that the device namespace isxmlns=http://www.cisco.com/nxos:1.0:nfcli. nfcli.xsd
contains this namespace definition. For more information, see Obtaining XML Schema Definition (XSD)
Files, on page 283.

Examples

RPC Request Tag <rpc>

<nc:rpc message-id="315" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns=http://www.cisco.com/nxos:1.0:nfcli">
...
</nc:rpc>]]>]]>

Configuration Request

<?xml version="1.0"?>
<nc:rpc message-id="16" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0:if_manager">
<nc:edit-config>
<nc:target>
<nc:running/>

</nc:target>
<nc:config>
<configure>
<__XML__MODE__exec_configure>
<interface>
<ethernet>
<interface>2/30</interface>
<__XML__MODE_if-ethernet>
<__XML__MODE_if-eth-base>
<description>
<desc_line>Marketing Network</desc_line>

</description>
</__XML__MODE_if-eth-base>

</__XML__MODE_if-ethernet>
</ethernet>

</interface>
</__XML__MODE__exec_configure>

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
285

XML Mangement Interface
RPC Request Tag

</configure>
</nc:config>

</nc:edit-config>
</nc:rpc>]]>]]>

__XML__MODE tags are used internally by the NETCONF agent. Some tags are present only as
children of a certain __XML__MODE. By examining the schema file, you can find the correct mode
tag that leads to the tags representing the CLI command in XML.

Note

NETCONF Operations Tags

NETCONF provides the following configuration operations:

Table 18: NETCONF Operations in Cisco NX-OS

ExampleDescriptionNETCONF Operation

NETCONFClose Session Instance,
on page 294

Closes the current XML server
session.

close-session

NETCONF Commit Instance:
Candidate Configuration
Capability, on page 299

Sets the running configuration to
the current contents of candidate
configuration.

commit

NETCONF Confirmed Commit
Instance, on page 299

Provides the parameters to commit
the configuration for a specified
time. If a commit operation does
not follow this operation within the
confirm-timeout period, the
configuration is reverted to the state
before the confirmed-commit
operation.

confirmed-commit

NETCONF Copy Config Instance,
on page 295

Copies the contents of the source
configuration datastore to the target
datastore.

copy-config

—Operation not supported.delete-config

NETCONF Edit Config Instance,
on page 296

NETCONF Rollback-On-Error
Instance, on page 300

Configures the features in the
running configuration of the device.
You use this operation for
configuration commands.

edit-config

Creating NETCONF XML
Instances, on page 284

Receives configuration information
from a device. You use this
operation for show commands. The
source of the data is the running
configuration.

get

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
286

XML Mangement Interface
NETCONF Operations Tags

ExampleDescriptionNETCONF Operation

Creating NETCONF XML
Instances, on page 284

Retrieves all or part of a
configuration.

get-config

NETCONF Kill Session Instance,
on page 295

Closes the specified XML server
session. You cannot close your own
session.

kill-session

NETCONFLock Instance, on page
298

Allows a client to lock the
configuration system of a device.

lock

NETCONF Unlock Instance, on
page 299

Releases the configuration lock that
the session issued.

unlock

NETCONF Validate Capability
Instance, on page 300

Checks the configuration of a
candidate for syntactical and
semantic errors before applying the
configuration to a device.

validate

Device Tags

The XML device elements represent the available CLI commands in XML format. The feature-specific schema
files contain the XML tags for CLI commands of that particular feature. See Obtaining XMLSchemaDefinition
(XSD) Files, on page 283.

Using this schema, it is possible to build an XML instance. The relevant portions of the nfcli.xsd schema file
that was used to build the NETCONF instances. See Creating NETCONF XML Instances, on page 284.

show xml Device Tags

<xs:element name="show" type="show_type_Cmd_show_xml"/>
<xs:complexType name="show_type_Cmd_show_xml">
<xs:annotation>
<xs:documentation>to display xml agent information</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:choice maxOccurs="1">
<xs:element name="xml" minOccurs="1" type="xml_type_Cmd_show_xml"/>
<xs:element name="debug" minOccurs="1" type="debug_type_Cmd_show_debug"/>
</xs:choice>
</xs:sequence>
<xs:attribute name="xpath-filter" type="xs:string"/>
<xs:attribute name="uses-namespace" type="nxos:bool_true"/>
</xs:complexType>

Server Status Device Tags

<xs:complexType name="xml_type_Cmd_show_xml">
<xs:annotation>
<xs:documentation>xml agent</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="server" minOccurs="1" type="server_type_Cmd_show_xml"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="server_type_Cmd_show_xml">
<xs:annotation>

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
287

XML Mangement Interface
Device Tags

<xs:documentation>xml agent server</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:choice maxOccurs="1">
<xs:element name="status" minOccurs="1" type="status_type_Cmd_show_xml"/>
<xs:element name="logging" minOccurs="1" type="logging_type_Cmd_show_logging_facility"/>
</xs:choice>
</xs:sequence>
</xs:complexType>

Device Tag Response

<xs:complexType name="status_type_Cmd_show_xml">
<xs:annotation>
<xs:documentation>display xml agent information</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="__XML__OPT_Cmd_show_xml___readonly__" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:group ref="og_Cmd_show_xml___readonly__" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:group name="og_Cmd_show_xml___readonly__">
<xs:sequence>
<xs:element name="__readonly__" minOccurs="1" type="__readonly___type_Cmd_show_xml"/>
</xs:sequence>
</xs:group>
<xs:complexType name="__readonly___type_Cmd_show_xml">
<xs:sequence>
<xs:group ref="bg_Cmd_show_xml_operational_status" maxOccurs="1"/>
<xs:group ref="bg_Cmd_show_xml_maximum_sessions_configured" maxOccurs="1"/>
<xs:group ref="og_Cmd_show_xml_TABLE_sessions" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>

The __XML__OPT_Cmd_show_xml___readonly__ tag is optional. This tag represents the response. For
more information on responses, see RPC Response Tag, on page 293.

Note

You can use the | XML option to find the tags that you can use to execute a <get> operation. The following
is an example of the | XML option. This example shows you that the namespace-defining tag to execute
operations on this device is http://www.cisco.com/nxos:1.0:nfcli, and that the nfcli.xsd file
can be used to build requests.

You can enclose the NETCONF operation tags and the device tags within the RPC tag. The </rpc> end tag
is followed by the XML termination character sequence.

XML Example

Switch#> show xml server status | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0:nfcli">
<nf:data>
<show>
<xml>

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
288

XML Mangement Interface
Device Tags

<server>
<status>
<__XML__OPT_Cmd_show_xml___readonly__>
<__readonly__>
<operational_status>
<o_status>enabled</o_status>
</operational_status>
<maximum_sessions_configured>
<max_session>8</max_session>
</maximum_sessions_configured>
</__readonly__>
</__XML__OPT_Cmd_show_xml___readonly__>
</status>
</server>
</xml>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>

Extended NETCONF Operations

Cisco NX-OS supports an <rpc> operation named <exec-command>. The operation allows client applications
to send CLI configuration and show commands and to receive responses to those commands as XML tags.

The following is an example of the tags that are used to configure an interface. Tag lines are marked with the
following letter codes:

• X —XML declaration

• R—RPC request tag

• EO—Extended operation

The following table provides a detailed explanation of the operation tags:

Table 19: Operation Tags

DescriptionTag

Executes a CLI command.<exec-command>

Contains the CLI command. A command can be a
show command or configuration command. Separate
multiple configuration commands by using a
semicolon (;). Although multiple show commands
are not supported, you can sendmultiple configuration
commands in different <cmd> tags as part of the same
request. For more information, see the Example on
Configuration CLI Commands Sent Through
<exec-command>.

<cmd>

Replies to configuration commands that are sent through the <cmd> tag are as follows:

• <nf:ok>̶̶—̶All configuration commands are executed successfully.

• <nf:rpc-error>—Some commands have failed. The operation stops at the first error, and the <nf:rpc-error>
subtree provides more information about which configuration has failed. Configurations that are executed
before the failed command would have been applied to the running configuration.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
289

XML Mangement Interface
Extended NETCONF Operations

Configuration CLI Commands Sent Through the <exec-command>

The show command must be sent in its own <exec-command> instance as shown in the following
example:

X <?xml version="1.0"?>
R <nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="3">
EO <nxos:exec-command>
EO <nxos:cmd>conf t ; interface ethernet 2/1 </nxos:cmd>
EO <nxos:cmd>channel-group 2000 ; no shut; </nxos:cmd>
EO </nxos:exec-command>
R </nf:rpc>]]>]]>

Response to CLI Commands Sent Through the <exec-command>

The following is the response to a send operation:

<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="3">
<nf:ok/>
</nf:rpc-reply>
]]>]]>

Show CLI Commands Sent Through the <exec-command>

The following example shows how the show CLI commands that are sent through the
<exec-command> can be used to retrieve data:

<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="110">
<nxos:exec-command>
<nxos:cmd>show interface brief</nxos:cmd>
</nxos:exec-command>
</nf:rpc>]]>]]>

Response to the show CLI Commands Sent Through the <exec-command>

<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0"
xmlns:mod="http://www.cisco.com/nxos:1.0:if_manager" message-id="110">
<nf:data>
<mod:show>
<mod:interface>
<mod:__XML__OPT_Cmd_show_interface_brief___readonly__>
<mod:__readonly__>
<mod:TABLE_interface>
<mod:ROW_interface>
<mod:interface>mgmt0</mod:interface>
<mod:state>up</mod:state>

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
290

XML Mangement Interface
Extended NETCONF Operations

<mod:ip_addr>192.0.2.20</mod:ip_addr>
<mod:speed>1000</mod:speed>
<mod:mtu>1500</mod:mtu>
</mod:ROW_interface>
<mod:ROW_interface>
<mod:interface>Ethernet2/1</mod:interface>
<mod:vlan>--</mod:vlan>
<mod:type>eth</mod:type>
<mod:portmode>routed</mod:portmode>
<mod:state>down</mod:state>
<mod:state_rsn_desc>Administratively down</mod:state_rsn_desc>
<mod:speed>auto</mod:speed>
<mod:ratemode>D</mod:ratemode>
</mod:ROW_interface>
</mod:TABLE_interface>
</mod:__readonly__>
</mod:__XML__OPT_Cmd_show_interface_brief___readonly__>
</mod:interface>
</mod:show>
</nf:data>
</nf:rpc-reply>
]]>]]>

Failed Configuration

<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="3">
<nxos:exec-command>
<nxos:cmd>configure terminal ; interface ethernet2/1 </nxos:cmd>
<nxos:cmd>ip address 192.0.2.2/24 </nxos:cmd>
<nxos:cmd>no channel-group 2000 ; no shut; </nxos:cmd>
</nxos:exec-command>
</nf:rpc>]]>]]>
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="3">
<nf:rpc-error>
<nf:error-type>application</nf:error-type>
<nf:error-tag>invalid-value</nf:error-tag>
<nf:error-severity>error</nf:error-severity>
<nf:error-message>Ethernet2/1: not part of port-channel 2000
</nf:error-message>
<nf:error-info>
<nf:bad-element>cmd</nf:bad-element>
</nf:error-info>
</nf:rpc-error>
</nf:rpc-reply>
]]>]]>

After a command is executed, the interface IP address is set, but the administrative state is not
modified (the no shut command is not executed. The administrative state is not modified because
the no port-channel 2000 command results in an error.

The <rpc-reply> is due to a show command that is sent through the <cmd> tag that contains the
XML output of the show command.

You cannot combine configuration and show commands on the same <exec-command> instance.
The following example shows config and show commands that are combined in the same instance.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
291

XML Mangement Interface
Extended NETCONF Operations

Combination of configure and show Commands

<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="110">
<nxos:exec-command>
<nxos:cmd>conf t ; interface ethernet 2/1 ; ip address 1.1.1.4/24 ; show xml
server status </nxos:cmd>
</nxos:exec-command>
</nf:rpc>]]>]]>
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="110">
<nf:rpc-error>
<nf:error-type>application</nf:error-type>
<nf:error-tag>invalid-value</nf:error-tag>
<nf:error-severity>error</nf:error-severity>
<nf:error-message>Error: cannot mix config and show in exec-command. Config cmds
before the show were executed.
Cmd:show xml server status</nf:error-message>
<nf:error-info>
<nf:bad-element>cmd</nf:bad-element>
</nf:error-info>
</nf:rpc-error>
</nf:rpc-reply>
]]>]]>

show CLI Commands Sent Through the <exec-command>

<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="110">
<nxos:exec-command>
<nxos:cmd>show xml server status ; show xml server status </nxos:cmd>
</nxos:exec-command>
</nf:rpc>]]>]]>
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="110">
<nf:rpc-error>
<nf:error-type>application</nf:error-type>
<nf:error-tag>invalid-value</nf:error-tag>
<nf:error-severity>error</nf:error-severity>
<nf:error-message>Error: show cmds in exec-command shouldn't be followed by anything
</nf:error-message>
<nf:error-info>
<nf:bad-element><cmd></nf:bad-element>
</nf:error-info>
</nf:rpc-error>
</nf:rpc-reply>
]]>]]>

NETCONF Replies

For every XML request sent by a client, the XML server sends an XML response that is enclosed in the RPC
response tag <rpc-reply>.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
292

XML Mangement Interface
NETCONF Replies

RPC Response Tag

The following example shows the RPC response tag <rpc-reply>:

RPC Response Tag <rpc-reply>

<nc:rpc-reply message-id=”315” xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns=http://www.cisco.com/nxos:1.0:nfcli">
<ok/>
</nc:rpc-reply>]]>]]>

RPC Response Elements

The elements <ok>, <data>, and <rpc-error> can appear in the RPC response. The following table describes
the RPC response elements that can appear in the <rpc-reply> tag:

Table 20: RPC Response Elements

DescriptionElement

The RPC request completed successfully. This
element is used when no data is returned in the
response.

<ok>

The RPC request completed successfully. The data
that are associated with the RPC request is enclosed
in the <data> element.

<data>

The RPC request failed. Error information is enclosed
in the <rpc-error> element.

<rpc-error>

Interpreting the Tags Encapsulated in the data Tag

The device tags encapsulated in the <data> tag contain the request, followed by the response. A client
application can safely ignore all the tags before the <readonly> tag, as show in the following example:

RPC Reply Data

<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0:if_manager">
<nf:data>
<show>
<interface>
<__XML__OPT_Cmd_show_interface_brief___readonly__>
<__readonly__>
<TABLE_interface>
<ROW_interface>
<interface>mgmt0</interface>
<state>up</state>
<ip_addr>xx.xx.xx.xx</ip_addr>
<speed>1000</speed>
<mtu>1500</mtu>
</ROW_interface>
<ROW_interface>
<interface>Ethernet2/1</interface>

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
293

XML Mangement Interface
RPC Response Tag

<vlan>--</vlan>
<type>eth</type>
<portmode>routed</portmode>
<state>down</state>
<state_rsn_desc>Administratively down</state_rsn_desc>
<speed>auto</speed>
<ratemode>D</ratemode>
</ROW_interface>
</TABLE_interface>
</__readonly__>
</__XML__OPT_Cmd_show_interface_brief___readonly__>
</interface>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>

<__XML__OPT.*> and <__XML__BLK.*> appear in responses and are sometimes used in requests.
These tags are used by the NETCONF agent and are present in responses after the <__readonly__>
tag. They are necessary in requests, and should be added according to the schema file to reach the
XML tag that represents the CLI command.

Note

Information About Example XML Instances

Example XML Instances
This section provides examples of the following XML instances:

• NETCONF Close Session Instance, on page 294

• NETCONF Kill Session Instance, on page 295

• NETCONF Copy Config Instance, on page 295

• NETCONF Edit Config Instance, on page 296

• NETCONF Get Config Instance, on page 297

• NETCONF Lock Instance, on page 298

• NETCONF Unlock Instance, on page 299

• NETCONF Commit Instance: Candidate Configuration Capability, on page 299

• NETCONF Confirmed Commit Instance, on page 299

• NETCONF Rollback-On-Error Instance, on page 300

• NETCONF Validate Capability Instance, on page 300

NETCONF Close Session Instance
The following examples show the close-session request, followed by the close-session response:

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
294

XML Mangement Interface
Information About Example XML Instances

Close Session Request

<?xml version="1.0"?>
<nc:rpc message-id="101" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0">
<nc:close-session/>
</nc:rpc>]]>]]>

Close Session Response

<nc:rpc-reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0" message-id="101">
<nc:ok/>
</nc:rpc-reply>]]>]]>

NETCONF Kill Session Instance
The following examples show the kill session request, followed by the kill session response:

Kill Session Request

<nc:rpc message-id="101" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0">
<nc:kill-session>
<nc:session-id>25241</nc:session-id>
</nc:kill-session>
</nc:rpc>]]>]]>

Kill Session Response

<?xml version="1.0"?>
<nc:rpc-reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0" message-id="101">
<nc:ok/>
</nc:rpc-reply>]]>]]>

NETCONF Copy Config Instance
The following examples show the copy config request, followed by the copy config response:

Copy Config Request

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<copy-config>
<target>
<running/>
</target>
<source>
<url>https://user@example.com:passphrase/cfg/new.txt</url>
</source>
</copy-config>
</rpc>

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
295

XML Mangement Interface
NETCONF Kill Session Instance

Copy Config Response

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

NETCONF Edit Config Instance
The following examples show the use of NETCONF edit config:

Edit Config Request

<?xml version="1.0"?>
<nc:rpc message-id="16" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0:if_manager">
<nc:edit-config>
<nc:target>
<nc:running/>
</nc:target>
<nc:config>
<configure>
<__XML__MODE__exec_configure>
<interface>
<ethernet>
<interface>2/30</interface>
<__XML__MODE_if-ethernet>
<__XML__MODE_if-eth-base>
<description>
<desc_line>Marketing Network</desc_line>
</description>
</__XML__MODE_if-eth-base>
</__XML__MODE_if-ethernet>
</ethernet>
</interface>
</__XML__MODE__exec_configure>
</configure>
</nc:config>
</nc:edit-config>
</nc:rpc>]]>]]>

Edit Config Response

<?xml version="1.0"?>
<nc:rpc-reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0:if_manager" message-id="16">
<nc:ok/>
</nc:rpc-reply>]]>]]>

The operation attribute in edit config identifies the point in configuration where the specified operation
is performed. If the operation attribute is not specified, the configuration is merged into the existing
configuration data store. The operation attribute can have the following values:

• create

• merge

• delete

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
296

XML Mangement Interface
NETCONF Edit Config Instance

Edit Config: Delete Operation Request

The following example shows how to delete the configuration of interface Ethernet 0/0 from the
running configuration:

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target>
<running/>
</target>
<default-operation>none</default-operation>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<top xmlns="http://example.com/schema/1.2/config">
<interface xc:operation="delete">
<name>Ethernet0/0</name>
</interface>
</top>
</config>
</edit-config>
</rpc>]]>]]>

Response to Edit Config: Delete Operation

The following example shows how to edit the configuration of interface Ethernet 0/0 from the running
configuration:
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>]]>]]>

NETCONF Get Config Instance
The following examples show the use of NETCONF get config:

Get Config Request to Retrieve the Entire Subtree

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get-config>
<source>
<running/>
</source>
<filter type="subtree">
<top xmlns="http://example.com/schema/1.2/config">
<users/>
</top>
</filter>
</get-config>
</rpc>]]>]]>

Get Config Response with Results of a Query

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
297

XML Mangement Interface
NETCONF Get Config Instance

<data>
<top xmlns="http://example.com/schema/1.2/config">
<users>
<user>
<name>root</name>
<type>superuser</type>
<full-name>Charlie Root</full-name>
<company-info>
<dept>1</dept>
<id>1</id>
</company-info>
</user>
<!-- additional <user> elements appear here... -->
</users>
</top>
</data>
</rpc-reply>]]>]]>

NETCONF Lock Instance
The following examples show a lock request, a success response, and a response to an unsuccessful attempt:

Lock Request

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<lock>
<target>
<running/>
</target>
</lock>
</rpc>]]>]]>

Response to a Successful Acquisition of Lock

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/> <!-- lock succeeded -->
</rpc-reply>]]>]]>

Response to an Unsuccessful Attempt to Acquire Lock

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<rpc-error> <!-- lock failed -->
<error-type>protocol</error-type>
<error-tag>lock-denied</error-tag>
<error-severity>error</error-severity>
<error-message>
Lock failed, lock is already held
</error-message>
<error-info>
<session-id>454</session-id>
<!-- lock is held by NETCONF session 454 -->
</error-info>
</rpc-error>
</rpc-reply>]]>]]>

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
298

XML Mangement Interface
NETCONF Lock Instance

NETCONF Unlock Instance
The following examples show the use of NETCONF unlock:

Unlock Request

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<unlock>
<target>
<running/>
</target>
</unlock>
</rpc>

Response to an Unlock Request

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

NETCONF Commit Instance: Candidate Configuration Capability
The following examples show a commit operation and a commit reply:

Commit Operation

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<commit/>
</rpc>

Commit Reply

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

NETCONF Confirmed Commit Instance
The following examples show a confirmed commit operation and a confirmed commit reply:

Confirmed Commit Request

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<commit>
<confirmed/>
<confirm-timeout>120</confirm-timeout>

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
299

XML Mangement Interface
NETCONF Unlock Instance

</commit>
</rpc>]]>]]>

Confirmed Commit Response

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>]]>]]>

NETCONF Rollback-On-Error Instance
The following examples show how to configure rollback on error and the response to this request:

Rollback-On-Error Capability

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target>
<running/>
</target>
<error-option>rollback-on-error</error-option>
<config>
<top xmlns="http://example.com/schema/1.2/config">
<interface>
<name>Ethernet0/0</name>
<mtu>100000</mtu>
</interface>
</top>
</config>
</edit-config>
</rpc>]]>]]>

Rollback-On-Error Response

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>]]>]]>

NETCONF Validate Capability Instance
The following examples show the use of NETCONF validate capability. The string
urn:ietf:params:netconf:capability:validate:1.0 identifies the NETCONF validate capability.

Validate Request

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<validate>
<source>
<candidate/>
</source>
</validate>
</rpc>]]>]]>

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
300

XML Mangement Interface
NETCONF Rollback-On-Error Instance

Response to Validate Request

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>]]>]]>

Additional References
This section provides additional information that is related to implementing the XML management interface.

RFCs

TitleRFCs

NETCONF Configuration ProtocolRFC 4741

Using the NETCONF Configuration Protocol over
Secure Shell (SSH)

RFC 4742

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
301

XML Mangement Interface
Additional References

http://tools.ietf.org/html/rfc4741
http://tools.ietf.org/html/rfc4742

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
302

XML Mangement Interface
Additional References

A P P E N D I X A
Streaming Telemetry Sources

This chapter contains the following topics:

• About Streaming Telemetry, on page 303
• Guidelines and Limitations, on page 303
• Data Available for Telemetry, on page 303

About Streaming Telemetry
The streaming telemetry feature of the Cisco Nexus 3400-S platform switches continuously streams data out
of the network and notifies the client, providing near-real-time access to monitoring data.

Guidelines and Limitations
Following are the guidelines and limitations for streaming telemetry:

• The telemetry feature is available in Cisco Nexus 3400-S platform switches.

• Switches with less than 8 GB of memory do not support telemetry.

Data Available for Telemetry
For each component group, the distinguished names (DNs) in the appendix of the NX-API DME Model
Reference can provide the listed properties as data for telemetry.

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
303

https://developer.cisco.com/site/nxapi-dme-model-reference-api/
https://developer.cisco.com/site/nxapi-dme-model-reference-api/

Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
304

Streaming Telemetry Sources
Data Available for Telemetry

	Cisco Nexus 3400-S Series NX-OS Programmability Guide, Release 9.3(x)
	Contents
	Preface
	Audience
	Document Conventions
	Related Documentation for Cisco Nexus 3000 Series Switches
	Documentation Feedback
	Communications, Services, and Additional Information

	New and Changed Information
	New and Changed Information

	Overview
	Programmability Overview
	Standard Network Manageability Features
	Advanced Automation Feature
	Power on Auto Provisioning Support

	Programmability Support
	NX-API Support
	Python Scripting
	Tcl Scripting
	Bash
	Bash Shell Access and Linux Container Support
	Guest Shell
	Container Tracker Support
	Perl Modules

	Shells and Scripting
	Bash
	About Bash
	Guidelines and Limitations
	Accessing Bash
	Escalate Privileges to Root
	Examples of Bash Commands
	Displaying System Statistics
	Running Bash from CLI

	Managing Feature RPMs
	RPM Installation Prerequisites
	Installing Feature RPMs from Bash
	Upgrading Feature RPMs
	Downgrading a Feature RPM
	Erasing a Feature RPM

	Managing Patch RPMs
	RPM Installation Prerequisites
	Adding Patch RPMs from Bash
	Activating a Patch RPM
	Committing a Patch RPM
	Deactivating a Patch RPM
	Removing a Patch RPM

	Persistently Daemonizing an SDK- or ISO-Built Third-Party Process
	Persistently Starting Your Application from the Native Bash Shell
	Synchronize Files from Active Bootflash to Standby Bootflash
	An Example Application in the Native Bash Shell

	Guest Shell
	About the Guest Shell
	Guidelines and Limitations
	Accessing the Guest Shell
	Resources Used for the Guest Shell
	Capabilities in the Guest Shell
	NX-OS CLI in the Guest Shell
	Network Access in Guest Shell
	Access to Bootflash in Guest Shell
	Python in Guest Shell
	Python 3 in Guest Shell versions up to 2.10 (CentOS 7)
	Installing RPMs in the Guest Shell

	Security Posture for Guest Shell
	Kernel Vulnerability Patches
	ASLR and X-Space Support
	Namespace Isolation
	Root-User Restrictions
	Resource Management
	Guest File System Access Restrictions

	Managing the Guest Shell
	Disabling the Guest Shell
	Destroying the Guest Shell
	Enabling the Guest Shell
	Replicating the Guest Shell
	Exporting Guest Shell rootfs
	Importing Guest Shell rootfs
	Importing YAML File
	show guestshell Command

	Verifying Virtual Service and Guest Shell Information
	Persistently Starting Your Application from the Guest Shell
	Procedure for Persistently Starting Your Application from the Guest Shell
	An Example Application in the Guest Shell
	Troubleshooting Guest Shell Issues

	Innovium Shell
	About the Innovium Shell
	Guidelines and Limitations
	Accessing the Innovium Shell Through CLI API
	Passing Commands to the Innovium Shell

	Python API
	About the Python API
	Using Python
	Cisco Python Package
	Using the CLI Command APIs
	Invoking the Python Interpreter from the CLI
	Display Formats
	Non-Interactive Python
	Running Scripts with Embedded Event Manager
	Python Integration with Cisco NX-OS Network Interfaces
	Cisco NX-OS Security with Python
	Examples of Security and User Authority
	Example of Running Script with Schedular

	Scripting with TCL
	About Tcl
	Guidelines and Limitations
	Tclsh Command Help
	Tclsh Command History
	Tclsh Tab Completion
	Tclsh CLI Command
	Tclsh Command Separation
	Tcl Variables
	Tclquit
	Tclsh Security

	Running the Tclsh Command
	Navigating Cisco NX-OS Modes from the Tclsh Command
	Tcl References

	Kernel Stack
	About Kernel Stack
	Guidelines and Limitations
	Changing the Port Range
	Netdevice Property Changes

	Applications
	Cisco Nexus Application Development - SDK
	About the Cisco SDK
	Installing the SDK
	Procedure for Installation and Environment Initialization
	Using the SDK to Build Applications
	Using RPM to Package an Application
	Creating an RPM Build Environment
	Using General RPM Build Procedure
	Example to Build RPM for collectd with No Optional Plug-Ins
	Example to Build RPM for collectd with Optional Curl Plug-In

	NX-SDK
	About the NX-SDK
	Install the NX-SDK
	Building and Packaging C++ Applications
	Installing and Running Custom Applications

	NX-API
	NX-API CLI
	About NX-API CLI
	Transport
	Message Format
	Security

	Using NX-API CLI
	Escalate Privileges to Root on NX-API
	Sample NX-API Scripts
	NX-API Management Commands
	Working with Interactive Commands Using NX-API
	NX-API Request Elements
	NX-API Response Elements
	Restricting Access to NX-API
	Updating an iptable
	Making an Iptable Persistent Across Reloads

	Table of NX-API Response Codes

	JSON and XML Structured Output
	About JSON (JavaScript Object Notation)
	Examples of XML and JSON Output

	NX-API REST
	About NX-API REST

	NX-API Developer Sandbox
	About the NX-API Developer Sandbox
	Guidelines and Limitations
	Enabling and Accessing the Developer Sandbox
	Configuring the Message Format and Input Type
	Using the Developer Sandbox
	Using the Developer Sandbox to Convert CLI Commands to Payloads
	Using the Developer Sandbox to Convert from REST Payloads to CLI Commands
	Using the Developer Sandbox to Convert from RESTCONF to json or XML

	Model-Driven Programmability
	Infrastructure Overview
	About Model-Driven Programmability
	About the Programmable Interface Infrastructure

	Managing Components
	About the Component RPM Packages
	Preparing for Installation
	Downloading Components from the Cisco Artifactory
	Installing RPM Packages
	Installing the Programmable Interface Base and Common Model Component RPM Packages

	OpenConfig YANG
	About OpenConfig YANG
	Guidelines and Limitations for OpenConfig YANG
	Understanding Deletion of BGP Routing Instance

	NETCONF Agent
	About the NETCONF Agent
	Guidelines and Limitations
	Configuring the NETCONF Agent
	Using the NETCONF Agent
	Error Messages

	Troubleshooting the NETCONF Agent

	Converting CLI Commands to Network Configuration
	Information About XMLIN
	Licensing Requirements for XMLIN
	Installing and Using the XMLIN Tool
	Converting Show Command Output to XML
	Configuration Examples for XMLIN

	RESTCONF Agent
	About the RESTConf Agent
	Guidelines and Limitations
	Configuring the RESTConf Agent
	Using the RESTConf Agent
	Troubleshooting the RESTConf Agent

	gRPC Agent
	About the gRPC Agent
	Guidelines and Limitations
	Configuring the gRPC Agent
	Using the gRPC Agent
	Troubleshooting the gRPC Agent
	gRPC Protobuf File

	gNMI - gRPC Network Management Interface
	About gNMI
	gNMI RPC and SUBSCRIBE
	Guidelines and Limitations for gNMI
	Configuring gNMI
	Configuring Server Certificate
	Generating Key/Certificate Examples
	Verifying gNMI
	Clients
	Sample DME Subscription - JSON Encoding
	Sample DME Subscription - PROTO Encoding
	Subscribe
	Guidelines and Limitations for Subscribe
	gNMI Payload

	Capabilities
	About Capabilities
	Guidelines and Limitations for Capabilities
	Example Client Output for Capabilities

	Troubleshooting
	Gathering TM-Trace Logs
	Gathering MTX-Internal Logs

	Innovium Path Telemetry
	About Innovium Path Telemetry
	Guidelines and Limitations for Innovium Path Telemetry
	Configuring Flow of Interest ACL for IPT
	Configuring the TCAM Region for Innovium Path Telemetry
	Configuring the Source Node
	Configuring the Transit Node
	Configuring the Sink Node
	Verifying Innovium Path Telemetry

	Dynamic Logger
	Prerequisites
	Reference

	Model-Driven Telemetry
	About Telemetry
	Telemetry Components and Process
	High Availability of the Telemetry Process
	Licensing Requirements for Telemetry
	Installing and Upgrading Telemetry
	Guidelines and Limitations

	Configuring Telemetry Using the CLI
	Configuring Telemetry Using the NX-OS CLI
	Configuration Examples for Telemetry Using the CLI
	Displaying Telemetry Configuration and Statistics
	Displaying Telemetry Log and Trace Information

	Configuring Telemetry Using the NX-API
	Configuring Telemetry Using the NX-API
	Configuration Example for Telemetry Using the NX-API
	Telemetry Model in the DME

	XML Mangement Interface
	XML Management Interface
	About the XML Management Interface
	Information About the XML Management Interface
	NETCONF Layers
	SSH xmlagent

	Licensing Requirements for the XML Management Interface
	Prerequisites to Using the XML Management Interface
	Using the XML Management Interface
	Configuring the SSH and the XML Server Options Through the CLI
	Starting an SSHv2 Session
	Sending a Hello Message
	Obtaining XML Schema Definition (XSD) Files
	Sending an XML Document to the XML Server
	Creating NETCONF XML Instances
	RPC Request Tag
	NETCONF Operations Tags
	Device Tags
	Extended NETCONF Operations
	NETCONF Replies
	RPC Response Tag
	Interpreting the Tags Encapsulated in the data Tag

	Information About Example XML Instances
	Example XML Instances
	NETCONF Close Session Instance
	NETCONF Kill Session Instance
	NETCONF Copy Config Instance
	NETCONF Edit Config Instance
	NETCONF Get Config Instance
	NETCONF Lock Instance
	NETCONF Unlock Instance
	NETCONF Commit Instance: Candidate Configuration Capability
	NETCONF Confirmed Commit Instance
	NETCONF Rollback-On-Error Instance
	NETCONF Validate Capability Instance

	Additional References

	Streaming Telemetry Sources
	About Streaming Telemetry
	Guidelines and Limitations
	Data Available for Telemetry

