

Range $440 \mathrm{kHz}-280 \mathrm{MHz}$ in 6 Coils

- Coil 0.44-1 3MHz

8 Coil 1.3-4 $3 \mathrm{MHz}^{2}$
C Coil 414 MHz
D Coil 1440 MHz
F Coil $1440 \mathrm{MHz}_{2}$
Transistor 3 TR's \& 1 Diode
Transistor 3 TR's \&
Meter $500 u$ A Fs
Meter $500 u$ A Fs
Ballery: $9 V$ (BL -006P)
Ballery: 9V (BL-006P)
Dimensions: $180 \times 80 \times 40 \mathrm{~mm}$
Dimensions: $180 \times 80 \times 40 \mathrm{~mm}$ Weighl 730 g

Price $\mathbf{\$ 3 6 . 5 0}$
P 8 P $\$ 1.00$

DELUXE
AUDIO GENERATOR
SPECIFICATION

Model TE-15

Model HE-22D
Mod-1 TE-22D
Freq Range Sin: $20 \mathrm{~Hz}-200 \mathrm{kHz}$ Outpul Voltage: Sine $\quad 20 \mathrm{~Hz}-25 \mathrm{kHz}$ Outpul Voltage: Sine: 7 volt Outpul Impedance 1000 ohm Freq. Accuracy $+3 \%+2 \mathrm{H}$ Disioplion: Les than 2% Tube Complement 6BMB 12 AT7. 624
Power Source: 105-125, 220. 240V AC. $50 / 60$ cDs $19 W$ With Altenuation Range 4 Ranges-1/1. 1/10. 1/100

Compaci-Space Saving
Printed Circuil for uniform
Characterislics
Low Distortion
Dimensions: $140 \times 215 \times 170 \mathrm{~mm}$
Welght 28 kg

Disposal Specials - Richmond only

Crysials

1 MHz D style ea. $\$ 8.00$
100 kHz 7 pin glass enclosed $\$ 10.00$
Most popular D style for 2 m FM channels 1. 4, B, 50 etc.
58 ohm new $1 /{ }^{\prime \prime}$ " diameter coax cable
12c/yd or 100 yd
Tank whip antenna bases, new Selsyn motors, 50 volt, new
$\$ 10.00{ }^{\text {- }}$

PMG phone plug and socket Ericcson type, per pair
Phone curly cords, cream
Rocking armature mic. Insert
/125a Ceramlc valve socket
7 pin PTFE valve socket with
screw-on shield
9 pin as above
Polypak 100 mixed resistors $1 / 8$ W-2W all new
Polypak 30 assorted capacitors, ceramic, electrolytic polyester, all new $\$ 1.50$ Switches, 11 position, 2 pole, 2 bank ceramic

8 transistor radio cricuit board with all components and battery holder ready to go straight from production line $\$ 3.00$
6 transistor, as above

LAFAYETTE HA-600A SOLID STATE

GENERAL COVERAGE

5 BANDS 150.400 kHz . 550.1600 kHz (Broadcast hand), $1.6 .48 \mathrm{MHz}, 4.8-14.6 \mathrm{MHz}, 105.30 \mathrm{MHz}$
Operales from 12 Valla DC (negalive ground) or
220 -240 Volis 50 Hz

- Field Elfect Transistors in AF Mixer and - Oscillator Stages
- Two Mechanical filters for exceptional selec - Rivity.
- Voltage Regulated with Zener Diodes
- Producl Detector lor SSB/CW
- Edge illuminated Siide Rule Dial with "S" Mete, - Continuous Electica Bandspread Calibrated $80-100 \mathrm{M}$ Amateut Bands
- Variable BFO. Automalic Noisc Limile
- Speaker impedance 4 :0 16 ohms

Price $\$ 215.00$
P \& P $\$ 200$
Also available - HA800日 Amateur Band 6 Bands 3. 5 MHz 1029.7 MHz and 50.54 MHz as above tealures with 100 kHz calibition facility: 8210.00 . 100 kHz Xial Exita $\$ 10.75$. P \& P $\$ 200$

SOLID STATE WIDEBAND RF SIGNAL

GENERATOR

MODEL SG-402
This is an all solid state. wide. band RF Signal Generator which produces low impedance low distortion RF signals It is highly dependable and easy to oderate. and is a handy working instrument for service wonches and electionic equip. ment production centres.
SPECIAL FEATURES ment production centres.

Generaies wide range signals from 100 kHz 10 30MHz in six requency ranges
All solid state construction for instant waveforms. compact and lightwelght portabllity
3. Includes 400 Hz signal source for modulation of oulpul signal. which can be modulated by external sources

Price $\$ 99.50$. p \& p $\$ 2.00$

Disposal Specials - Richmond only
5BPI CRO lubes, new $\$ 3.00$
Headphones, low impedance, ex-Army
in sealed box, palt
$\$ 2.00$
Tag strips, 7 lug plus 2 mounting lugs 50 c
10 for
Egg insulators, porcelain, new, ea. 12c
20 amp DC meter in wooden carrying case $\$ 10.00$
Telephone hand set with PTT switch. ex-Army
$\$ 1.50$
Coil formers, $11 / 4^{\prime \prime}$ with octal plug, 40 cents each or 3 for
$\$ 1.00$
No. 19 and 62 transceivers, partly wrecked, any reasonable offer accepted.
Personal shoppers only.

TRIO $3^{\prime \prime}$ OSCILLISCOPE DC - 1.5 MHz MODEL CO-1303A

SPECIAL FEATURES

1. Verfical sensitivity of 20 $\mathrm{mV} / \mathrm{cm}$, three slep atten. uation AC DC operation 8 wideband frequency re. wideband
sponse from DC $10 \quad 15 \mathrm{MHz}$
2 DC verlical and horizontal ampliliers lor wide versa lility make possible exlernal sweed speeds of less inan 1 Hz
3 All solid slate construclion for compaci. light. weight dorlabilily
2. Smoked filter glass CAT lace and exclusive designed graticule. graduated in dB for clear waveform comparisons
5 Direct input $10 \quad 150 \mathrm{MHz}$ for SSB and $A M$ trans mission monitoring

Price $\$ 150 . p$ \& $p \$ 2.00$

DISPOSAL SPECIALS

Coax. Cable, 58 ohm Ascand 15 P1/24. Brand new $1 / 8$ outside diameter. 12c per yard. $\$ 10$ per 100 yard reel.

AWA BEAT FREQUENCY OSCILLATOR

from Zero Cycles to 13 kHz , 240 Volt AC
$\$ 35$.

PLESSEY TRANSCEIVERS

in stock at present include B47, B48, C42, C45 with power supplies and accessories also available.

Brand new valves and semiconductors

2N3055	$\$ 1.00$
OA91	15 c
807	$\$ 2.00$
IT4, 6C8, IR5	75 c
6BA6-6AK5-6V6G-6J6	$\$ 1.00$
2E26-QQEO4/7-QQEO4/10	
6SK7-ECH35-6K8G-5763 $\$ 3.00$	
6SJ7GT-12AT7	$\$ 1.50$

HAM RADIO
 (Disposal Branch)

104 Highett Street, Richmond, Vic., 3121 - 428136

HAM RADIO SUPPLIERS

323 ElIZABETH STREET, MELBOURNE, VIC., 3000
Phones: 67-7329, 67-4286 All Mail io be addressed in above address
Our Disposeds 8tore at 104 HICMETY 8T., RICHMOND (Phone 42-8136) is open Mondaya io Fridays, 10.30 a.m. to 5.0 p.m., and on Saturdays to midday.

amateur radio

JOURNAL OF THE WIRELESS INSTITUTE OF AUSTRALIA, FOUNDED 1910
JANUARY, 1975
VOL. 43, No. 1
Price, 70 cents

Reglstered at the G.P.O. Melbourne for transmissioni by Post

Editor:	
Bill Roper	VK3ARZ
Assistant Editor:	
Bruce Bathols	VK3UV
Technical Editors:	
Bil! Rice Ron Cook	VK3ABP VK3AFW
Publications Committee:	
John Adcock	VK3ACA
Rodney Champness	VK3UG
Syd Clark	VK3ASC
Ron Fisher	VK3OM
Ken Gillespie	VK3GK
Neil Osborne Howard Rider	VK3YE1
Roly Roper	,
Gil Sones	VK3AUI
Contributing Editors:	
Brian Austin	VK5CA
Deane Blackman	VK3TX
Eric Jamieson	VK5LP
Jim Payne	VK3AZT
Drafting Assistant	
Gordon Row	1.30187
Business Manager:	
Peter B. Dodd	VK3CIF

Enquiries and material to:
The Editor,
P.O. Box. 150 Toorak, Vic., 3142.

Copy is required by the third of each month. Acknowledgment may not be made unless specially requested. All important Items should be sent by certified mail.
The Editor reserves the right to edit all material, including Letters to the Editor and Hamads, and reserves the right to refuse acceptance of any material, without specifying any reason.

Advertising:

Advertising material should be sent direct to P.O. Box 150, Toorak, Vic., 3142, by the 25th of the second month preceding publication. Phone: 24-8652.
Hamads should be sent direct to P.O. Box 150, Toorak, Vic., 3142, by the 3rd of the month preceding publication.
Printers:
Chas E. Tully
35 Clifford Street, Huntingdale, 3166
Phone: 5431242.
Published monthly as the official journal by the Wireless Institute of Australia.
Reg. Office:
2/517 Toorak Rd., Toorak, Vic. 3142
P.O. Box 150, Toorak, Vic., 3142
as a PeriodicalCategory " B "

OSCAR 7 LAUNCHED

David Hull VK3ZDH
Project Australis

After a couple of delays Oscar 7 was launched from the western test range in California at 1711 GMT on Nov. 15, 1974.
To cover the launch two international telephone circuits and a number of HF radio links were employed including an 80 m net for within VK traffic. The spacecraft station conference telephone circuit linked VK3ZDH in Australia and VE3QB and VE2BYG in Canada with Perry Klein K3JTE and Jan King W3GEY at the Goddard Spaceflight Centre In Maryland. The Net telephone conference circuit linked W3ZM, the AMSAT Net control station, W1AW, the ARRL Net station, WA3NAN, the club station at the Goddard Spaceflight centre, W6AB, the club station at the western test range and WA4DGU at the Goddard Spaceflight centre. A number of W stations transmitted the launch proceedings on the $15,20,40$ and 75 metre bands.

At 1711 GMT the voice of Dick Daniels WA4DGU echoed around the world " 5,4 , $3,2,1,0 \ldots$ we have lift off" in the approved space age manner and the Delta
rocket carrying Oscar 7, the Itos G weather satellite and the Spanish research satellite INTASAT, lifted off the launch pad and into Amateur Radio history.

The spacecraft was initialised with the 435.1 MHz beacon on FSK CW mode and signals at very high signal levels were heard in VK on the initial orbits. The CW was decoded and telemetry frames, showing all values as nominal, reported back to AMSAT. On later orbits the Australis RTTY telemetry was switched to the 435.1 MHz beacon and also performed as designed. Initial orbits with the translators switched on showed that many VK and ZLs were ready and many contacts were made. The power levels required to work through the 70 cm to 2 m translator were much lower than AMSAT had predicted which is encouraging to VKs on lower power limits. Codestore messages were loaded from VK3ZDH for the first time on Orbit 172.
Thus the second long life Amateur satellite was born, and for the first time Radio amateurs have two operational satellites at once. Amateur Radio is in space to slay.

ANSAT-OSCAA 7 during vibration tests. The 2304 MHz quadrufilar antenna lurnished by RCA and 10 metre deployable antenna from ametek Hunter Spring are on the lop.

NEWLY APPOINTED

AUSTRALIAN REPRESENTATIVE! . . . with well-known Manager, 3IZ

Vicom International Pty. Limited
 137 AUBURN ROAD, HAWTHORN, 3122

OUR NEW SHOWROOM OPENS FEBRUARY 3rd

INOUE VHF/UHF EQUIPMENT

2m IC22 \$198 with 3 Channels
2m IC21A $\$ 298$ with 3 Channels $6 m$ IC60 $\$ 225$ with 3 Channels

All prices include tax, but freight and insurance extra.
ALL THE PROVEN QUALITY ICOM PRODUCTS
Available in the interim by mail order and ex stock. Stand by for our complete range announcement in February. SALES AND SERVICE FROM

Vicom International Pty. Limited

137 AUBURN ROAD, HAWTHORN, 3122
"ANYTHING FROM DC TO DAYLIGHT"

The IARU R3 Association Conference is due to be held 4th to 13th March 1975. The Conference will be held In THE LEE GARDENS HOTEL, Hysan Avenue, Hong Kong.

A special IARU discounted rate at this hotel has been secured and applies as long as at least 20 people stay there. At this stage there are still a few vacancies so if any amateur with or without family wants a holiday why not consider taking it at this time to take advantage of discounted accommodation. You do not have to joln in any of the amateur functions and you could spend all your time sight-seeing.

If you are likely to be in Hong Kong around that time why not write direct to Rudi Gmelin, VS6AX, c/- Jebsen \& Co. Lid., P.O. Box 97, Hong Kong, for more detalls and say you wish to support Region 3.

Readers will be well aware of the aims and objects of the IARU and the enormous value of this organisation to amateur radio on the International scene. Everyone ought to know also how the IARU delegation at the 1971 Space Conference worked wonders for the cause under some very adverse conditions. This followed in the footsteps of the very able IARU representation at the ITU's W.A.R.C. in Geneva In 1959.

In the earlier 1959 WARC the local amateur representation was sponsored and pald for by the WIA and the delegate was accredited as a member of the official Australian delegation. The IARU was represented by various Region 1 delegates. In the 1971 WARC the status of the IARU had Improved and the IARU team included prominent amateurs from each of the three IARU regions. The delegate from Region 3 was in fact supported and financed by the IARU Region 3 organisation.

Why was it necessary to have a regional IARU body at all? This is very simply answered by saying that the IARU is our 'trade unlon' - "united we stand, divided we fall" and all that. Not only does a united body such as the IARU carry weight but it also serves to spread the financlal and administrative loads much more evenly.

The 1959 W.A.R.C. cost the WIA a lot of money. The 1971 W.A.R.C. cost to the WIA was part of the Institute's subscription to the IARU Region 3 Association.

For ITU purposes the world is divided into three Regions: Region 1 being broadly Europe and Africa, Reglon 2 the Americas and Region 3 the rest of the world. If, as did actually occur, IARU regional organisations sprang up in Regions 1 and 2, the amateurs in Region 3 had to get together or remaln out on a limb. Hence the birth in Sydney of the IARU Region 3 Assoclation sponsored heavily by the three largest of the region's amateur socleties in 1968/69.

The first formal conference of the Region 3 Association was held in Tokyo on the invitation of JARL from 17th to 22nd March 1971 and was occupied mainly with constltutional and procedural matters although some thought was given to the 1971 WARC and the need for more spectrum space for the amateur service.

The composition of the Reglon 3 Association is that the Conferences (every 3rd or 4th year) are the supreme authority of the Association and each member society is entitled to appoint one delegate who shall have one vote provided the society he represents is financial.

The day-to-day management of the affairs of the Association are carried out by four Directors acting in accordance with Conference directives and regulations and answerable to the Conference. The Directors and the Secretary have no vote but can of course speak at a Conference.

WIA DELEGATE

The 1974 WIA Federal Conventlon appointed Dr. David Wardlaw,
the Federal President, to be the WIA delegate at the Hong Kong R3 Conference. It is believed that the other delegates to the Conference could be VS6DD or VS6FU or VS6AX of HARTS (the Hong Kong 'host' Society), ZL2IY or ZL2AMJ of NZART (the Kiwis), 9VIQG of SARTS (Singajore) and W1RU of ARRL. There are at present 9 member societies of the R3 Association - ARRL, ARSI (India), JARL (Japan), HARTS, NZART, PARA (Philippines), SARTS, RSSL (Srl Lanka), and WIA. As each Society has to defray all the costs of its own delegate(s) to attend the Conference it can be seen that this could bear heavily on the smaller societies but there is provision for proxy voting.

R3 DIRECTORS

The Region 3 organisation itself has to pay the costs of the Directors attending each conference as well as the Secretary. The Secretary is no less a person than our own David Rankin VK3QV/ 9VIRH and the present Directors serving through to 14th March 1975 are Michael Owen VK3KI, Kan Mizoguchi JA1BK, Tom Clark. son ZL2AZ and Bob Denniston WODX. As all these people have to be flown to Hong Kong and return (which, in the case of WODX is believed to be the Caribbean area) it can be seen that the transportation expenses will be considerable unless some of them can fit in a business trip to pay for most of their expenses.

R3 SUBSCRIPTIONS

The R3 Assoclation must have access to funds and thls is done through an annual subscription payable by each member Society. The annual dues are on a sliding scale beginning with 15 USA cents per transmitting member up to 5000 subject to a minimum sub. of \$US25. The association's financial year ends on 31st May each year and as the dues are specified in U.S. currency a wide variation is likely to occur from year to year by reason of differences in exchange rates. The WIA in turn set aside a small amount (20 cents up to 1974 and 30 cents from 1975) from each member's subscription so as to form a fund not only to pay the Institute's dues to the Reglon 3 Association but also towards the costs of sending a delegate or delegates to R3 conferences.

THE 1975 CONFERENCE

No agenda has come to hand as yet for the 1975 Conference and It is not known what proposals are likely to be put forward except that the WIA are working on a VHF memorandum relative to Region 3 so that member societies may have some materlal to convey to their own administrations in the event of amateur VHF frequencies becoming diverted to other servlces as is already beginning to occur. IARUMS would certainly be another item under discussion. Baslcally, however, the various divisions of the WIA appear to have nothing to contribute or, if they have, nothing has been submitted.

One of the most important items which the Conference may elect to discuss in great depth is of course the impending 1979 WARC. This is because the 1975 R3 Conference could well be the last one which can be held before administrations crystallise their attitudes in advance. A R3 Conference in 1978 is likely to be much too late to have any effect on the 1979 attitudes of administrations.

It is not unlikely that the virus which affects amateurs as exemplified by their apparent inablity to communlcate amongst themselves is also a disease which spills over to the wider arena of Region 3. Very little has come out of the Region since 1971 but this is not due to any lack of thought by many who are Involved. Perhaps the establishment of a regular column in AR may stimulate interest in this field not only by WIA members but by some of those in distant countries of the Region who recelve this journal. If this can be the forum for Region 3 affairs at least something might be achieved which did not exist before.

BOOKS OF INTEREST FOR AMATEUR OPERATORS

Questions and Answers on Transistors-3rd Ed.-Clement Brown \$2.75
RCA Receiving Tube Manual $\$ 3.75$
GE Transistor Manual-Light Weight Edition $\$ 3.60$
Electronics Experimenters Circuit Manual-GE $\$ 3.60$
Philips Product Book-Thyristors $\$ 6.60$
Kwik-Fix TV Service Manual-Forest H. Belt $\$ 6.60$
Pin-Point TV Troubles in 10 Minutes $\$ 7.40$
Radio Handbook-19th Ed.-William I. Orr $\$ 14.95$
Radio Valve and Transistor Data-9th Ed.-A. M. Ball $\$ 3.00$
Electronic Organ Servicing Guide-Robert G. Middleton $\$ 5.45$
Electric Guitar Amplifier Handbook-Jack Darr $\$ 7.65$
TV Servicing Guide Arranged by Trouble Symptoms-Leslie D. Deane and Calvin C. Young, Jr. $\$ 4.00$

McGILI'S AUTHORISED NEWSAGENCY

Established 1860
187-193 ELIZABETH STREET, MELBOURNE, VIC., 3000
"The G.P.O. is opposite"

QSP
OSL INFORMATION FROM KEN VKBAH
CR8AC - P.O. 59, DIII, Portuguese Timor.
806AC - Oper. 4S7YL. 8 Quebec St., Marleigh. Rep Maldive isles.
8P6FU - C/- L.I.A.T. Airways. Barbados.
9Y4CR - Box 1036, Trinldad.
OA4BV - Box 538, Lima. Peru.
SVOWGL - OSL Mgr., K4EKJ.
FK8BB - OSL via DJ9ZB.
gY4VV - OSL KgKXA.
FRTAK - Bert (can anyone supply this one?)
ET3USE - P.O. Box 191. Asmirrah.
ZMTAH - OSL vie W52F, 11504 Golden Gate St., New Mexico. 87111
S231JA - OSL via JA2KLT.

INTEHFERENCE PROBLEMS

Radio Communication |ournal of the RSGB carrles a box inviting members accused of causing interterence or who suffer interference from external sources. to seak the assistance of RSGB interterence Committee in solving their problems. It would certalnly be useful if the WIA Dlvislons had such Committees or access to a Central Committee. RECIPROCAL LICENSING - UK
According to Radio Communications, Sept. '74. applications for reciprocal G licences should be sent to the Home Office, Radio Regulatory Division, Waterloo Bridge House, Waterloo Road, London SE1 8UA, England. Visitors who propose to rake into the UK equipment capable of transmissions between 26.1 and 29.7 MHz must first obtaln written authority from the Secretary of State, Home Dept. TVI
Pat Hawker, wrlting in π Radio Comms, Sepl. '74, comments that there is plenty of evidence that UHF TV has brought far less relief to the amateur scene than expected, due largely to TV Rx design with susceptibility to plck-up on the outer braid of the aerlal and extremely limited dynamic range He adds that the torecasted improvement that UHF would bring appears to be cancelled out by transistor tuners and the lack of front end filtering

MO108 MIXER

Spectrum International of the USA draws attention to the availabllity from them of an equivalent mixer weight $11 / 2$ oz. price $\$$ US8.50. This mixer was the one included in the SL600 Series SSB transceiver articie on page 8 of August '74 AR in which Sl's advertisement appeared on p. 24.

AARTO

The now Secretary of the AARTG is Fred Hull, VK6FH, c/o Royal Flylng Doctor Service of Australia, 187 Roberts Rd.. Subiaco, WA 6008. The new Chairman is Don Graham VK6HK. In a circular. the Group say it will not be possible to continue publishing "Keybaud" for the time being and that affiliation with the VK6 Dlvision should be sought. Interstate members are encouraged to form local groups to affiliate with local Divisions, but if this is not possible, individuals would still be welcomed as a present AARTG member.

LICENCE FEE INCREASE

As may have been expected, there was a very satiatactory response to the suggestion that members of Parllament be lobbied about the Increase to $\mathbf{\$ 1 2}$ p.a. of the licence fee. In a letter dated 29in October, the PMG rejected the Institute's submissions mainly on the grounds that the Government could not continue to subsidise the administralion of amateur radio stations to the extent that It had done over recent years. The parts played by amateurs in providing emergency communicatlons and the study of the radio art as well as being a leisure time activity were all noted and pralsed but the new tee sticks.

SELFHELP

"And I would then urge that thay (the members) remember the fact that office-bearers of a voluntary organisation do NOT exist to serve the members: they exist to co-ordinate the efforts of the members in helping one another. I belleve that the members and the Committee alike have forgotten this simple fact." John Martin in an editorial in the Sept./Dec. '74 lasue of 'The Radio Bulletin' of the E. \& M. Dist. Radio Club. (You can aay that again-Ed.)

QUICK QUIZ

Submitted by:
IAIN MORRISON. VK4ZIG
33 Soule St.. Hermit Park, Old. 4812
In the past 6 months:-

1. Have you built or modified any of your gear?
2. Have you experimented on any of your gear?
3. Have you gainfully educated or instructed anybody on some aspect of A.R.?
4. Have you learnt anything new about A.R.?
5. Have you used most of your test gear?
6. Do you attempt to repair all your gear, If faulty?
7. Is your gear state of the art?
8. Is your test gear state of the art?
9. Do you attend your local Radio Club meetings? socials?
10. How many hours average per week do you devote to any aspect of A.R.?

ANSWERS:

Q 1.-9. - If you scored "No" - why?
Q 10. - Of course, the number of hours will vary from week to week, but did the question set you thinking?

This test was to stir up the silent amateurs, with a lot of "No" answers and "No" hours. For these I refer to the Handbook definitions - "Amateur Service", or Wireless Telegraphy regulations par. 55 (Page 36 of Sept. 1967 Revised Handbook).

Improved AM with the FT 200

GEORGE FRANCIS, VK3ASV
31 Donald Sireel, Monwell, 3840

This article describes an attractive colution to the problem many VHF operators have experienced with their FT200 - how to receive AM signals a:s well as their old RX did.

Many VHFers and limited licencees are now using 6 and 2 metre converters, and transverters with the very popular Yaesu FT200 transceiver.

Excellent 2 m SSB operation is achleved, but for AM signals, especially ones that are poorly modulated or weak in signal strength, receptlon is poor. Little difference is noticed if the transceiver function switch is in the SSB or AM mode positlons. To make matters worse, there are still many VHF AM transmitters in use using 8 MHz Command Transmitters, or similar, as a VFO multplled up. These are quite acceptable on a wide-band AM receiver, but are unreadable on a modern SSB transceiver having only a narrow band filter fitted, such as In the FT200 - (1). Any hum, VFO or even Xtal warm-up drift, frequency warble or FM-ing shows up markedly, making these AM signals almost unreadable with the BFO switched in. In the AM position these signals suffer from loss of audio and very bassy response.

This is of course caused by the $9 \mathbf{M H z}$ SSB crystal filter cutting all the highs above approximately 1250 Hz . That is, an audio response of $300-2700 \mathrm{~Hz}$ divided by two; remember in AM there are two sidebands.

RTTY readers appreciate this problem on HF when trying to use the FT200, as this same filter attenuates the 2975 Hertz (space) audio tone in wide shift (850 Hz). Either you design your FSK converter using another set of audlo tones such as 1575 and 2425 Hz , and still maintaining the 850 Hz separation, or change the transceiver upper or lower sideband crystal(s) - (2) to increase the audio frequency response to cover the two standard tones, i.e. 2125 and 2975 Hz . By moving the carrier crystal frequencies further away from the centre frequency of the 9000 kHz SSB filter, then the lower audio frequencies would be attenuated, and the higher frequancies covering the 2975 Hz tone would not be attenuated. However, this is not so easy - (3) and is unsuitable for SSB reception as the pitch is too high. It is also no help in receiving AM signals.

To overcome the above problem with the FT200 is a simple matter. It can be made compatible to both SSB and AM. As you may have guessed, why not add a 9 MHz filter with the desired band width to recelve $A M$ signals so that it can be switched in in lieu of the sideband filter.

Initlally, a simple LC filter was made up, but at this high IF frequency, it was difficult to get any sort of selectivity. Unless you want to hear the strong stations on the
band all at once, this is not recommended. To overcome this deficiency, a filter would have to be used with 5 to 10 kHz selectivity. After many letters, it was discovered that except for some VHF FM transceivers, only crystal lattice filters are used at this frequency.

Two of the local manufacturers were contacted; one firm stated they do not make filters up to special orders and so could not help me, and the other placed a $\$ 90.00$ tag on such an orderl Looking through overseas ham magazines showed such a filter was readily available - (4). I chose a KVG filter, type XF-9D - (5) having a 5 kHz bandwidth 6 dB down and a shape factor of 1.8 , which promised to do the trick nicely. Ordered from the USA, it took only thirteen days to arrive at a very reasonable - (6) cost. The filter is $1-7 / 16^{\prime \prime}$ wide and $3 / 4^{\prime \prime}$ high. Incidentally, the KVG firm of Europe also offer other models sultable for home constructors in the 9 and 10.7 MHz intermediate frequency

FIG. 1 |a|
FILTER MOUNTING
\& SHIELD LAYOUT
ranges, covering bandwidths designed especially for CW, SSB, narrow or wide AM and FM modes.

This miniaturised filter is of simlar dimensions to the existing Yaesu sideband filter. The KVG filter is mounted under the chassis against the printed board beneath the sideband filter. It is supported and mounted on a small braket made of sheet tin or brass plate. This bracket also acts as a shield and is soldered or bolted In place.

To carry out this modification when you have the filter and relays on hand, the chassis is removed from the cabinet as per transcelver Instruction manual and placed on the bench upside down. Remember to switch the power point (GPO) off and remove the power cable and power supply cable from the FT200, and to place the five bottom screws aside where the. can be found again.

Fig. 1 shows the construction details of the bracket. The bracket is then fitted, and the filter bolted on using the filter mounting studs (3 mm nuts). It is mounted sideways so the Input and output terminals line up adjacent to the connections of the sideband filter coming through the printed board.

So that the filter can be switched in and out of circuit, two sub-miniature relays are used. These are speclals, and are approximately the size of a " K " style crystal can. These can be obtained in Melbourne - (8) or your Japanese ham friend in Japan. They are the same relays as supplied with the FTDX400 CW crystal filter kits - (9). Switching diodes could be used as is done in the FT101 series. These sub-miniature relays have the contact wiring connections printed on the outside of the relay and can be soldered directly in supported by the wires if short-

FIG. 2 RF WIRING
ened. I soldered them to the two filters as shown in Fig. 2. The capacitor C153 has to be lifted and wired to the common contact to one relay, and the wire from L103 wired to the other relay common leg. Remember to separate the relays and wiring as far apart as possible.

Fig. 3 shows the RF wiring. When the relays are un-energised (normal resting position) the sideband filter is switched in; the AM filter is switched in when the relays are energised.

No alignment whatsoever is required to L103 or L104, otherwise the shaping of the sideband filter band pass would be tilted or altered. RF lead lengths to the relays are to be kept as short as possible. 1 mm PVC sleeving should be slipped over the fine relay pigtails before soldering in, thus insulating the wires from one another.

Now wire up the DC Solenoid wiring to the relays as per Fig. 3.

Both relays are by-passed to earth by disc ceramic capacliors. The relay windings RL1, RL2, each require 24 volts and are wired in series. It doesn't matter which direction, but should there be a red dot painted on the relay, keep this one positive going. One side of the relay group goes direct to the 150 v HT rail, and is soldered directly on to pin 11 at the power plug via an 8.2 k 2 watt resistor (or two 15k in parallel).

The other wire is run to the unused switch contact on the function switch S3h, when switched to the AM position. The wiper blade on this water is already earthed. Therefore the circuit energlses both relays, and changes over filters when the function switch is in the AM position.

Try and maintain good isolation between the filter input and output connections to minimise leakage, otherwlse you will be destroying the steep slopes of the sideband filter band pass curve. Now, re-check all relay wiring with a multimeter on the resistance scale, and if satisfied all is correct, replace the chassis Into the cabinet, re-connect cables and plugs. and switch on with the function switch in the SSB mode position.

The FT200 should operate normally as before. Now tune in a 80 or 40 metre AM signal (which may prove to be the hardest task in the project, as AM HF signals are rare nowadays). Switch to the AM position, and the speech should sound clean and crisp, with some highs. If no luck hearing an AM amateur station, tune into a 41 matre international broadcast shortwave station above 7.1 MHz . It will be observed broadcasting stations will still suffer, as the high notes will still have some attenuation as these stations are 7 to 10 kHz wide.

As you tune across a steady strength 9 AM signal, the ' S ' meter will show some silter ripple across the 5 kHz plateau, and the sides should be very sharp Indeed.

This modification or addition will provide the user with a compatible receiver when used with a VHF 6 or 2 m converter or transverter, and many an old style of AM signal will still be enjoyed.

When you transmit now In the AM position, this wide band filter will allow two sidebands plus your re-inserted carrier to be transmitted. Tune up and operation on the AM mode is just the same as before.

So much for the AM operators, now what about the FSK boys. This addition also allows reception at the standard (wideband) - (12) RTTY tone frequencles, but to recover these tones the BFO is re-

The additional filfer and relay can be seen bailde the high wattege resialor on the bit side of the FT200.

Fig. 3 relay wiring
quired to be switched in, or in other woras, when in the CW position, the wide band filter requires to be able to be switched In for FSK. This also is easily done by switching in a parallel set of spare contacts sltuated on the switch-pot VR1, with wafer switch Sh3. Thls switch pulls out for Noise Limiter which I find does not work properly. I suggest a noise blanker be wired in as kits are now avallable sultable for the FT200 - (8).

FIG. 6 USING THE 5 kHz BANDWIDTH FILTER FOR WIDEBAND FSK
After the above NB wiring is added, the NL switch is spare and can be wired so that when the NL SW is pulled out, the 5 kHz filter is switched in. This makes it possible to copy the tones of a RTTY signal.

Incidentally, the FT200 is very readily modified to transmit FSK carrier by using the clarlfier diode as the modulator (variactor) - (10). Of course two-tones (AFSK) can be fed directly Into the microphone socket, but the success of this method depends on the efficiency of the filter.

A future article will show how to wire up an FT200 of the older model to use an FV200 External VFO.

NOTES AND REFERENCES

(1) FT200 9 MHz filter charactarlatics: Bandwidth 2.3 kHz at 8 dB down, 4 kHz at 80 dB down: Shape Factor 1.7.
(2) Change $x 101$ now 9001.5 to 9002.5 and $x 102$ now 8998.5 to 8997.5 Suitable relays could be fitted to change from SSB to FSK mode, but see article for better mathod.
(3) A later article to be written, will show how to add these two extra cryatale in a FT200 for FSK recepilion uaing a standard RTTY converter. The irend is to uae narrow shift on HF which is $170 \mathbf{~ H z}$ using a tone of 2295 kHz within range of the SSB illter.
(4) KVG mada by Kriatall-Verarbeltung Nackarblachotshelm GMBH West Germany.
(5) Attention: Mr. Henry Ingwersen, PAOAFN/WI. Spectrum Internalional. P.O. Box 87. Topafield. Massachuselts. U.S.A. 01983.
(8) Coat in 1970 was $\$ 32.45$ U.S. plus 50 centa for bank clearance charge.
(7) See CQ. Novamber 1970 "Now Apparatus" KVG Cryatal latice filters.
(8) Available on order from Ball Electronic Services. 60 Shannon St., Box Hill North. Vic. 3129.
(9) Sub-miniature relay, type SM24. 24 volt windIng. Japanase manufacture may be avallable from Yaesu Agents, for $\$ 19.00$ apalr.
(10) See "Amateur Radio" Page 11, September 1972 "Adding FSK 10 the FT200" by 0. francis VK3ASV (also reprinted in the 2LFT200 club magazine edited by ZLIBBU).
(11) Radio Teletype Reception, by Eric Farguson VK3KF. In "The Radio Bullatin". Octobet 1973. Page 11.
(12) Hal RTTY Demodulator (2nd paragraph) Page 52. OST April 1973 and ASFK for RTTY. page 11 OST Fabruary 1889.

Bermuda: Key role in disaster net

ALAN SHAWSMITH, VK4SS

Abstract

The Amateur Radio Caribbean Emergency Net claims to be as efficient as any Eastern USA Seaboard Emergency system. The Net is comprehensive and includes Florida, Mexico, West Indies, Bermuda, Yucatan, Honduras, Jamaica, Curacao, Grand Cayman etc., and covers several thousands of square miles of ocean.

Bermuda, particularly, plays a key role. The Island is just right 'skip' for optimum reception from all other areas. Every Net signal is 5×9 at the QTH of Ed. Kelly, VP9GE, who is Zone 1 Controller. Zone 1 also Includes SE USA.

Besides their own up-to-date rigs, all Net members have a full kit of emergency gear, i.e. auxiliary power and antennas and can remain in action in the event of any crisis, such as tornado, earthquake, flood, disaster at sea, succour for injured or ill, etc. So well organised is the Caribbean Net that within seconds the whole system can be fully operational and ready to deal with any emergency.

One of the Net's most recent operations was during the Managua earthquake disaster when the Nicaraguan capltal was almost destroyed, including its communication system. Rescue workers set up a radio station, and thereafter it was up to the Amateur operators who handled the calls for food, medical and other supplies, and set up a 'health and welfare' link to help people trying to trace relatives.

In April this year, the USA was hit by a series of tornadoes. Several Bermudians, away from home, were caught in the effected areas and had miraculous escapes from death. Stateside Hams in the worst hit areas set up emergency communications and Ed, VP9GE, was able to calm the fears of many, by relaying messages to relatives and friends on the Island.

Ed Kelly's set-up is worth describing. The 'shack' is a brick building, specially designed and situated behind his house in the suburb of Pembroke. There are two towers with beams atop. He Is QRV all bands from $160-2 \mathrm{mx}$. Inside the 'shack' is a maze of units: many of them are
homebrew. He has RTTY and is the only VP9 set up for SSTV.

The Island is not short of Hams. The hobby is thriving under the activity of the Radio Society of Bermuda. Those who can stand in for Ed, VP9GE in Zone 1 in the Net, are Frank VP9GR, Jim VP9GY, Peter VP9GO and Roy VP9HM.

It is estimated that one in five of the Island's vehicles has 2 metre two-way radio, Installed. Field sporting events such as rallies, powerboat racing and other out-of-the-line-of-sight activities are easily and adequately covered.

The AR Caribbean Emergency Net monitors the area twenty-four hours per day. Tuned ears and antennas provide an umbrella of watchfulness and assistance. In the event of a crisis in which any regular or commercial communication breaks down, or Is overtaxed, the Net is ready to offer service. One of the many means of help that Hams can now provide on a global basis.

BELOW: Ed Kelly, VP9GE.

Radio Receiver R390A URR

PART 3

JOHN WEIR, VK3ZRV
221 St. Helena Road, Greensborough, 3088

Following on from the previous two articles, the series will now be concluded with the filment of a product detector and a modified AGC system.

The first product detector circuit tried was the one described in AR Feb. 74, page 26, which used OA91 diodes, together with the refinement of shorting out one diode for AM detection. It seemed to work well but not completely to my satisfaction. Together with the added shielding and shlelded wires necessary the whole thing became a bit unwieldy and so was discarded.

The second circuit trled was originally described by W3JHR In 'CQ' Jan. 68. This requires the replacing of the original BFO tube V505 (5749/6BA6W) with a 6BE6. Fig. 1 shows the original circuit for the BFO, while Fig. 2 shows the results of the modifications I have made using the 6BE6. Detailed instructions are unnecessary as I think the clrcult is self-explanatory; however, there are a couple of points worth mentioning.
The BFO off-on switch has to be changed to a 2 pole 2 position switch. The relay is a small 24 V sealed type salvaged from sources unknown (600 ohm coil resistance), while the 26V AC is derived from the hot side of the heater off-on switch on the rear of the receiver. When working around the socket of V505 make sure that the new components are clear of the bellows used to drive the tuneable Inductor Z502. The clrcuit itself works extremely well and requires a minimum amount of fuss.

One problem did arise, however. I tried to feed the recovered audio from the product detector to the input of the noise limiter (via relay contacts) but found that the loss in audio was too great. Hence the decislon to use the circuit shown.
AGC
The next part of the modification programme involved the AGC circuit which

AGC CCT DIAGQAM
(MODIFIEO FOR SSB)
is shown unmodified in Fig. 3, while Fig. 5 shows the original schematic of the overall AGC distribution in the recelver. The maln cause for concern with the original circult was that the attack time seemed to be too long. The first couple of syllables after a pause tended to thump through before
the AGC gave sufficient control of the audio level.

After experimenting with a number of circuits that one finally decided upon was an adaptation of that found In the FRDX400. The schematic is as shown In Fig. 4. When this was originally tried a small problem

was found in the action of the AGC time constant tube V509A (refer to AR July 73) Rewiring of the AGC switch S107 and the inclusion of two extra capacitors ended up giving a very effective AGC for SSB/CW with the choice of 3 time constants. The voltage divider of 100 K and 2.7 K to the cathode of the AGC detector provides some measure of delay and so holds the AGC line down until the antenna signal level reaches about 3 microvolts.

When the new circuit is installed it is necessary to earth the suppressor grids of the AGC IF amplifier (V508 pin 2) and the fourth IF amplifier (V504 pin 2).

The final ltems necessary were some changes in the AGC feed to the controlled stages, RF (V201 6GM6), 1st mixer (V202 6C4), 2nd mixer (V203 6C4), 3rd mixer (V204 6C4), As previously mentioned, Fig.

5 shows the original AGC bias distribution while Fig. 6 shows the modified distribution.

The main points to note are the removal of R234 (1.5 M) associated with V201 and the removal of AGC to the 1st, 2nd and 3rd mixers. With this change carried out I find I can run the RF gain flat out If necessary and still have no overload or distortion problems even on a 40 over 59 signal. Those who have these receivers in original condition will know that the setting of the RF gain control for reception of SSB signals is rather critical to say the least.
CONCLUSIONS
This now completes the series. However, to round things off, let me answer some of the queries I raised in my first article. 1. Is it possible to obtain better reception
of SSB signals than can be obtained from the receiver in its original state?

My answer to this one is yes. With the modifications as described carried out, I am much happier with the performance of the receiver.
2. Is it possible to build into the set an effective FM demodulator?

My answer to this one is that all the circuits I have tried have left much to be desired. I believe that an outboard demodulator would be far more effective.
3. Is the noise limiter effective on AM and SSB?

To this one I must answer yes and no; for AM it is very effective especially on 10 metres; for SSB however, as previously explained the answer is no. More experiments in this area are envisaged, for example, an IF noise blanker; but as thls project is only In its infancy, I will make no further comments at this stage.
4. Is the AGC effective on SSB?

In lts original form, no, it is not, however modified as explained in this article the answer is yes, the receiver has a very effective AGC system for SSB.
My thanks are extended to the numerous people with whom I have had informal discussions regarding this project, and whose ideas I may have begged, borrowed or stolen. Finally, my thanks to a very patient XYL without whose typing effori and endless prodding, the article might still be unfinished!

Page 12 Amatel: Radio

It all Started 40 years ago

The four weekends in October, 1934, saw the staging of the WIA (VIctorian Division) Centenary contest. This was the first time In history that any division or even the F.H.Q. of the WIA had staged such an enormous undertaking. I had the privilege of being appointed manager of the Centenary Contest Commiltee under the baton of Harry Kinnear (VK3KN), President of the Victorian Division at that time.

This contest was such a success that it saw the start of what is known today as the VK-ZL annual contest.

In making this report, I am referring to the initial publication of the contest and its rules as they appeared in "Amateur Radio" for the 1st March, 1934 and in QST for October, 1934.

The VK-ZL contest as it is known today, differs very little indeed to the original contest of 1934. However one point was allowed by each contacting station for every 1,000 miles between the capital cities of the States of the competing sta-
thons, measured by a great circle line. The Australian stations multiplied their score by the number of countries worked, and the stations outside VK by the number of Australian districts contacted.

It is Interesting to note that the prizes offered were donated by Australian organisations such as Philips, A.W.A., and Siemens. These prizes consisted of transmitting valves, meters, etc. However, the main prize I think everybody treasured more than anything else, was a very excellent certificate commemorating the Centenary. A reproduction of this certificate appears In these notes and it should be noted that we were fortunate in obtaining a sketch of Batman In 1834 visualising the city of Melbourne.

The results of the contest were very interesting. In the Open Section, 1st place went to "Snow" Campbell (VK3MR) with 100,320 points, 2nd place to VK3GQ with 97,218 points, and 3rd place to VK3JQ with 56,666 points. VK3MR worked 38 countries, VK3GQ, 36 countries, and VK3JQ, 29 countries. in the Handicap Section, VK3HL won with 40,181 points with an input of 23
watts. Outstanding overseas station scores included G2ZQ with 3,850 points, J2GX with 3,414 , PAOAZ with 4,908 , VESBI with 2,256, W6EXW with 7.854, closely followed by W9TB and W9FM and D4BAR with 5,400 points.

The complete results of this contest appear In "Amateur Radio" for the 1st March, 1935 and in QST for May and June, 1935.

It is of interest to note a very important point other than that of the contest itself. This period was the actual opening of the 10 -metre band to international stations.

To recall the success of this contest, I would like to quote from a letter received from Horace Greer, W6TI, as follows:
"On behalf of the Oakland Radio Club, I would like to take this opportunity of expressing our sincere congratulations and wishes for your October DX contest. We would like to go down on record In offering our complete co-operation in making your first contest of this nature most successful in every respect, and one to be long remembered in the hearts of loyal amateurs in all parts of the universe, to the best of our ability."

WIRELESS INSTITUTE of AUSTRALIA

Vartorlan

$$
\text { CENTENARY } 1934 \text { CONTEST }
$$

Soldering for Electronics

By Roy Hartkopf VK3AOH
Reprint from Zero Beat, December 1872

Abstract

Every trade and profession has some implement which is assoclated with it. The gardener has his spade and rake, the carpenter his hammer and nalis and the doctor his stethoscope. The basic fool for anyone who works in electronics is the soldering iron and until you can use it wall you will never get much satisfaction from your work. There is no magic about using a soldering iron. Like any craft there are some tricks and bite of knowledge which only come with practice. However there are some fundamental requirements and in the first part of this articte we will consider these.

CLEANING SURFACES

Solder is an alloy, a mixture of tin and lead, sometimes with small amounts of other elements. This alloy melts at a fairly low temperature and on the cleaned surfaces of some metals the molten solder will 'wet' the surface and penetrate a tiny amount into the structure making a bond which is as effectlve as if there were no joint but a continuous piece of metal. To get this result the first essential is that the surfaces should be completely free from contamination. Plumbers and sheet metal workers achieve thls by using acid (this is called a flux) to etch the surface and remove all dirt and corrosion. In electronics work it is not possible to use this drastic method because the acid fumes and the acid left on the joint eventually corrode the components. So it is necessary to use a non-corrosive flux such as resin. This has the ability to dissolve some of the impurities which are on the surface although the surface must be falily clean before thls can happen.

When the metal to be soldered is tin the resin is very effective as the tin alloys with the tin in the solder and a perfect bond is formed. This is why most components and hookup wire are made with a tin coating over the copper conducting wire. An additional advantage of tin is that it does not corrode (that is, tarnish) in the atmosphere as much as many other metals do.

Circuit boards also often have their copper foll coated with tin, if they are not protected by a coating of resin. Occasionally you will find circuit boards, copper bralds and so on without any protective coating at all. If this copper is clean and bright you will have little difficulty in soldering, but if the surface is dull and discoloured, It may well be impossible to make a good joint unless you scrape the surface thoroughly to remove the Impurities. Sometimes disposal components which have
been stored for a long time have corrosion even on the tin coated surfaces. Again the only remedy is to scrape the surface thoroughly until it is bright and shiny. This extra trouble is often worth the effort. because the manufacturers cannot afford the time and trouble Involved in doing this, and often unload such components on the disposals market at very low prices.

CHOOSING SUITABLE SOLDER

The solder itself does not present many problems. As menlioned before, it must be used with a non-corrosive flux. The best way to get this is to use solaer which is in the form of a hollow tube with the resin flux in the hollow centre. This is known as resin cored solder and is almost universally used in electronics work. Some manufacturers make solder which has not one but up to five separate cores so that the flux is distributed more evenly. Solder which has a large percentage of tin - about 60 per cent - is more expensive, but the extra cost is justlified by the improved results. Some solders have a trace of copper in them and thls is very effective in preventing the copper bit of the soldering lion from being eaten away.

Re:In cored solders can be bought in different gauges, and the use of the correct gauge for the job not only makes a better soldered joint but makes the work easler and saves solder. For the soldering of valve type equipment and general heavy work 16SWG is quite satisfactory; for soldering integrated circuits on to circuit boards and other fine work a gauge as light as 22SWG can be used to advantage. Eyperimenting with different gauges will soon show you the best gauge for any particular Job and It will pay in the long run to have two or three different gauges of solder handy.

CHOOSING THE CORRECT SOLDERING IRON

Probably the most Important thing of all is to get the correct soldering iron. The
electrically heated soldering iron Is almost unlversally used nowadays, and there are many brands and types of soldering irons on the market. They range from those which are excellent to some which are so unsultable that one wonders if the manufacturer ever used a soldering iron in his life! A fairly common mistake of some manufacturers is to try to make a general purpose tool. If you see an advertisement which tells you that a particular soldering Iron is a universal too and is suitable for the entire radio, electronlcs, telephone and hobbyist areas, don't buy it. It attempts to do everything, and you can be certain that it will do nothing really well.

There are several reasons for this. The purpose of a soldering iron is to store heat and apply it to the joint. The question is, how much heat is needed and how hot should it be? A small soldering iron is fine for small joints but it can only store a small amount of heat. If this iron is applled to a joint which contains a large amount of metal (for example, if you are trying to solder a thick wire to a metal chassis) there just is not the necessary amount of heat available to ralse the temperature of the large volume of metal to a level where a satisfactory joint can be made. The manufacturers of these socalled universal soldering irons try to get over the problem by increasing the power which the iron uses. What they seem to overlook is that a small bit stores only a small amount of heat and also has a small surface area. When the iron is not in use and is resting on lis stand, the air around it has onty a sllght cooling effect and the bit gets far too hot. This means that the solder on the bit, and the bit itself, oxidises (burns or corrodes), so that the blt must be constantly scraped and re-tinned. When the iron is used on light work, such as circuit boards, the heat is so great that small components and the adhesive bonding the copper foil to the board are burnt and ruined. Even If joints are made, the overheating causes them to be unreliable. On the other hand If the iron is used on heavy work it is still unsatisfactory, because although it may be too hot, it will still not have a sufficient amount of heat stored to heat the large volume of metal. The spot where the iron touches may be overheated for an instant, then the heat will spread out and the temperature drop so that the rest of the area is still too cold.

Even for an expert at soldering the use of the wrong type of lion can make good quality soldering almost impossible. For a beginner the results can be disastrous. Quite a lot of people have lost interest in electronics because they could not solder without burning components and spoiling clrcuit boards. In almost every case the fault is not with the person, but due to him using the wrong soldering lron and, possibly, the wrong solder.
Now that you can see how important It is to choose the most sultable iron here are some hints which will help you:

1. Look for an iron which you find comfortable to hold. (You will be holding it a lotl) A light weight flex is an advantage because it does not drag when you move the iron around. Also make sure that the lead is long enough.
2. If you expect to do a lot of work with printed boards, transistors and integrated circuits then choose a small iron, but don't expect to be able to use it in heavier work. The power rating of such an iron would be from about 10 Watts to a maximum of about 20 Watts. A physically small Iron which consumes more than this, say 25 or 30 Watts, will be in the 'universal' class mentioned above and will burn light work but still not have enough heat capacity for heavy work. Generally it will be an endless source of trouble.
3. If you are building only valve type equipment and want to solder tinplate then a 30 to 40 Watt iron would be more sultable. It should of course be much larger physically and have a bit at least a quarter of an inch in diameter. It wlll be too large for really fine work.
4. All modern soldering irons have replaceable bits. See that these are avallable when you buy the iron. With care, and an iron that does not overheat, the bit should last a long time but it is a good Idea to have a spare in hand for when you need it. There are some fancy shaped blts available, but unless you are doing very specialised work they are not much use. A simple circular bar with the end filed at an angle of 30 to 45 degrees is all tht is nqeded.
5. The above comments apply whether the iron is operated directly from the mains or from a low voltage transformer or battery. The heating effect depends on the power in watts and not on the voltage. It is largely a matter of personal preference as to which type you choose. The low voltage Iron can be operated from a battery if necessary and is usually more robust and at the same time lighter than the mains iron. Or, the other hand It requires a battery or a bulky and expensive transformer.
6. Finally there are two special types of soldering iron which should be mentloned. There is the heat controlled type which warms up very quickly but never overheats. This is very nice if you can afford the price which mainly limits it to laboratory and professional use. The other type has a switch on the handle
so that the iron can be switched on and off during the actual soldering operation. This is very useful if one is not soldering continuously as the Iron heats up quickly and the temperature can be controlled. A fair amount of experience ls necessary, because if one does not let the switch go soon enough, the iron can become red hot and everything burns. These irons are avallable In different sizes for light and heavy work.
When you have selected your Iron, you should buy or make a suitable stand, and mount it firmly on the bench so that if the lead is accidentally pulled, the Iron does not fall and smash on the floor, possibly giving you a nasty burn in the process. Incidentally, if you do drop your iron it is a natural reaction to try to catch it. You should learn to overcome this as you will Invariably catch it by the hot part and get a very nasty burn. It is better to look down to where it is going to fall so that you are ready to pick it up by the handle as soon as it has touched the floor.

There is one final accessory that you wIII need. When you have been soldering for a while you will find you are elther a wiper or a flicker. Even though the soldering iron blt does not get too hot or the solder burn off, it is still necessary when making a joint to have a bright and shiny film of solder on the point of the bit. If the iron has not been used for a couple of minutes, the surface of the solder on the bit becomes dull and this Impedes the transter of the heat to the joint. So to get a bright and shiny film of solder it is necessary to melt a little fresh solder on the blt just before using it. To remove the blob of solder thus formed one elther wipes it off or flicks it off. The writer, a confirmed flicker from way back, has an open topped container about four Inches square screwed to the
workbench under the soldering Iron stand. Over a period of months this box gradually fills with solder and saves a great deal of mess on the floor. The wipers should organise a similar box with a piece of sponge slightly damped, or a plece of rag.

That concludes the first part of our article on soldering. We will now consider the soldering operation itself and its application in various fields of electronics.

SOLDERING TECHNIQUE

Soldering is something like painting a house. If you have the correct materials and equipment, and the surfaces are perfectly prepared, the job is easy. If not then no amount of skill can make up for poor materials and lack of preparation. Careful preparation of the materials means seeing that they are bright and clean as mentioned earlier. Contrary to what many people seem to imagine, there is not the slightest need to wrap wires round tags or twist them together before soldering. This idea has come about because some manufacturers assemble a lot of components and then solder the lot at once to save time. If you can't hold the wires and solder them at the same time there is no reason why you should not hook them together. It won't make the least difference to the strength of the joint. In fact a wrapped wire can sometimes make a badly soldered joint harder to detect. And if you want to dismantle the project later and use the components again a wrapped joint makes it very difficult to do so.

What is a properly soldered joint? If you have reasonable eyesight you will soon be able to see. The important characteristics are shown in Fig. 1. The sketch represents a wire being joined to a flat surface end on.

The solder should run or flow over the

> The solder flows along and up the wire, with the main body of solder being smooth and shiny without lumps.

FIG. 2

metal and the wire. The usual description for thls is that the surfaces are "wetted". The opposite situation is where the solder does not wet the surfaces but draws away from them like water on a greasy surface. This kind of poor or "dry" (opposite to wetted) joint is shown in Fig. 2.

If you see this effect anywhere on the joint you can be sure it is a bad one and it should be re-cleaned and re-soldered. If you ever want to remove the solder from a joint, then a piece of clean copper braid laid on the joint and heated with the soldering iron will soak up the solder as though it were blotting paper.

Finally, If the solder is not heated sufficiently, or the wire is moved before the joint has hardened properly you can get the kind of result shown in Fig. 3.

A joint which looks like this should be re-heated until it looks like the one in the first figure.

There is one general tip which applies to all soldered joints from the finest wire in a meter movement to the soldering of guttering and down pipes for a house. If you have any trouble making a good soldered joint take the joint apart and clean and tin each surface separately and only try to solder them together after both have been completely wetted with solder.

Incidentally If you use this method it is quite easy to solder a wire to a sheet of aluminium or two pieces of aluminium together. Provided of course that the soldering iron has enough heat capacity to bring the aluminium up to the soldering temperature. This is how it is done. Clean the surface of the aluminlum as thoroughly as you can and put a drop of ordinary engine oil on it. Then, with a sharp knife or scriber, scratch the already cleaned surfaces of the aluminium underneath the oil film and, without wiping the oll away. tin the surface of the aluminium as you would do any other metal. Once it has been tinned you can solder any othet tinned metal on to it. But remember that If the aluminium is even moderately thlck you will need a very heavy iron (a very hot small iron is no substitute as has already been explalned) in order to provide the large amount of heat needed to heat the aluminlum.

That covers most of the basic information you will need to make a success of the craft of soldering - essential for
everyone who works in electronics. The formula for success can be summed up as, preparation, the right tools and materlals, practice and patience.

SEMICONDUCTORS - SPECIAL

PRECAUTIONS

After everything has been wired up, and the joints are perfect, it is not very encouraging if you find the gadget you have bullt does not work. But thls can happen when dealing with semiconductors such as transistors, FETs, or integrated circuits. Contrary to popular belief these wlll withstand a surprising amount of heating and bending or twisting of thelr leads. In many years of experimenting, the writer has never experienced a case where a transistor has been spoilt simply by overheating. Of course if you use a dirty iron and hold it on the pin of the transistor for a minute or two trying to make a good joint with dirty surfaces you will burn it up, but it will stand normal soldering perfectly well. In fact In some projects the same transistors and components have been taken out of a discarded circuit board and soldered Into a new one as many as seven or eight times (another good reason for not wrapping leads), and they were still as good as ever.

However, a few months ago I was working in another workshop with a strange soldering iron. I made a couple of joinis and then discovered that a whole board full of Integrated circuits had been ruined. I soon discovered the reason. The solderIng iron was a low voltage one, fed from a transformer. The iron, as is usual with thls type had the two leads from the
transformer and no separate earth lead. When I put the probe of an oscilloscope on the tip of the iron 1 found there was no less than 150 volts of alternating voltage between the soldering Iron and ground. This voltage is not dangerous because there is practically no current behind it. It is caused through capacity leakage between the windings of the transformer. You can experience the effect in another way if you can get a high impedance voltmeter or an oscilloscope. If you hold the probe in one hand, and take hold of ordinary mains flex in the other you will see if the flex has power on it. The instrument will indicate anything up to a hundred volts according to the type of flex, the floor jou are standing on and so forth. You won't feel anything because as mentioned before there is almost no current. But this static voltage is quite sufficlent to ruin semiconductors.
Although in most ways, semicunductors are far more robust than people give them credit for, there is one thing they can not take, and that is high reverse voltage. For example, a power transistor which will handle more than a hundred watts and will work with sixty to eighty volis and carry several amps, will go out like a light if it gets a reverse base-emitter voltage of more than five volts. Even amateurs who have worked with valve circuits for many years have almost given up using transistors because they have many failures and do not realise what is causing them. There would probably be even more failures but for the fact that most circuit boards, when being soldered, are isolated from any earth connection so that this voltage does not then appear across them.
This leads to the final recommendation; when soldering semiconductors elther everything should be earihed or nothing should be earthed. If the soldering iron Is not effectively earthed, then you cannot make alterations to the equipment unless it is completely Isolated. This problem does not arise with valves and ordinary components because they are affected by thls kind of static voltage.

There are many more practical tips one picks up through experience, but if you master the basic technique and start in the right way with a suitable iron and the correct solder you will have won the major battle. Good solderingl

Commercial Kinks
 with Ron Fisher VK3OM

KEN KP202

The little KEN KP2O2 still evokes ideas for simple modifications. Any one who has used It for mobile work for any length of time will no doubt have dlscovered the problem of driving and operating the KEN at the same time. To start with, some form of external microphone possibly mounted on a boom or head band would be needed. Then, if some form of external operation of the push to talk switch could be devised, full remote operation of the KEN could be achieved. The first problem has been overcome by Mr. K. Moore, VK4IJ, the second has yet to be solved. Perhaps a solution might be a bracket which could be attached to the car dash board and fitted with a relay which mechanically operates the push to talk bar. In this way, no internal wiring changes would be required. All that is needed now is some bright person to work out the detalls. (Such an article has been submitted by Mike O'Burtill, VK3WW, and will be published shortly-Ed.)

However, back to the external microphone and over to VK4IJ.
"While it is possible to fit a relay and PTT for an external microphone it coes involve considerable modification. I have fitted an external microphone and still use the PTT on the case. While this does involve two hand operation, it is an improvement when using an external aerial. The maln problem was finding a small socket. Finally, two different types of elght pln IC sockets were found, one for the socket as shown in the first drawing and one for the plug as in the second.

These have connections in the form of flat plns which fit nicely into one another. The shlelded cable from the microphone was soldered to two of the contacts and the whole top of the plug encased in araldite.

The socket was mounted on the sloping panel which carries the name plate. A sllding switch was fitted to cut off the Internal microphone on the side of the bulge immediately alongside the grill cover-

Ing the internal mic. This cuts out extraneous nolses and possible echo with two microphones in parallel".

Another thought for moblle operation might be to use some of the vacant pins on the plug to bring out connections for an external speaker to give improved quality.

Try This
 with Ron Cook VK3AFW and Bill Rice VK3ABP

IGNITION NOISE REDUCTION

Many cheap car radios are now on the market which have both excellent sensitivity and selectivity. These can be used as tunable IFs for VHF as well as their primary function of broadcast reception. However, when used in a car, the ignition
interference has to be heard to be believed. The suppression kit supplied and the usual suppression procedures appear to have little effect on the residual noise level. When the case of the radio is opened, Input filtering of speaker and power leads is evident, although this may be improved by an auxlliary lowpass filter using a toroidal choke and disc ceramics. This is only a partial cure. Closer investigation will reveal that the input filter and the antenna lead in earthing polnts are up to 50 mm from the rear of the case. This results in an effective 1 turn loop coupling noise into the case. Earthing of the antenna coax braid at the point of entry by soldering it directly to the case and slmilarly soldering the bent metal power and speaker entry shield will result in a large improvement, to the point of ellmination, of the interference.
G. Sones, VK3AUI

HUNTING LIONS IN THE AIR

(Reprinted from the Australian LION Magazine, November, 1974

Lions and Leos whose hobby is ham radio will once again make contacts in the name of international friandship and underatanding, when the annual "Hunting Lions in the Alr" contest hits the alnwaves on January 11, 1975.

Originated in 1971 under the sponsarahip of the Rlo de Janeiro (Arpoador) Lions, the first "hunt" showed 1,550 operators in 26 countries on five continents particlpating. Since then, the contes has expanded to a network that spans the globe.

Open to sll licensed radio operators, Lions, Leos and non-Llons, the contest will begin al 1200 GMT on January 11. It will run for 24 hours, using the top 25 kHz of the $40,20,15$ and 10 Dhone and CW bands.

Amateup radlo operators participating in the contest will transmit by calling "CQ . . . Contest 'Hunting Lions In the Alr' - Lions International' together with his prefix. When a contact is made the operator will state his QRA, QTH, the number of contacts. and the QTR (hour) of each. Llon and Leo members should Identity their club names as well.

Each participant will note in his log the QTR, the prefix of the station contacted, and, if the contact is a Llon of Lea, the name of the club. Log eniries will be conflimed by comparing the loge of the particlpating clubs.

Within 30 days of the end of the contest, each contesiant must send his log aheols to:

Contest Committes
Hunilng Lions In the Air
Lions Club of Rlo de Janeiro (Arpoador)
Rua Souza Llma no. 310 -
Apartamento 802
Rlo de Janalpo-20.000-ZC-37-Brasil.

The Arpoador Llons will verify point totals after examining logs submitied 10 them by contestants. Ons polnt will be given for each communication, with no extra points allowed for more than one contact with the same station.

Each communication made with a fadlo operator who is also a Llon will have a two point value when verified with the log of the Lion contact. For contacts made with Lion radio operators from the Llons club of Rlo de Janelro (Arpoador) and the Llons club of Curitiba (Marumbi), the following points will be awarded: (a) within Brazil - 3 points, (b) participants from other countrles who make contacta with two above-mentioned clubs 5 points for each participant.

After verifying point totals, the contest committes will refer the results to the co-ordinating club. They. In turn, will submit a report to the chalrman of the International Understanding and Youth Exchange Committes of the Intemalional Board of Directors before May 15 of the current year.

Lions International will then present first, second and third place awards In iwo categorles phone and code (CW). The first place winner in each category will receive a trophy: the second place winner in each category will recelve a irophy medallion; the third place winner in each category will receive plaque.

The Llons club of Rlo de Janelfo (Arpoador) and Curitiba (Marumbi) will award medallions in vermillion with Identical Inscriptions 10 the fourth through tenth place winners in each category.

Each contestani making more than 20 polnis will recelve aSL from the Arposior Llons.

Lions and Leos may Invite non-club members $t 0$ Join the world-wide radio hookup. However, a Lion of Leo should be present durirg all con-
tacta and should take care 10 explain to nonmambera the purposes and Ideals of Llons International with regard to international understanding.
"Hunting Llons in the Air" is a unique yet effective method whereby initial contacts are formed, contacts which have the poientlal for lasting International friendshipe between individuala and clubs. It Is a special way for Lions and Leos to reach handa across bordera via the unseen roadways of the alr. Won't you join in this "conteat" of communication?

Awards Column
 with BRIAN AUSTIN VKSCA
 PO. Box 7A. Cralers. SA. 5152

WADM SEAIES

1. The awards are available to llcensed amateurs and ahortwave llsteners (on a "heard" basis).
2. Conlacts after 14.7.1853 are valld for WADM 1. 2 and 3 and after 1.1.196B for WADM 4 and 5 .
3. Do not send OSL cards. A list, showing full detalls of the contacts should be certlied by two licensed amateurs or a club officlal.
4. WADM 1 to 4 is isaued for CW, phone or $2 \times$ SSE but not mixed modes. It is NOT avallable o shortwave Ilsteners for $2 \times$ SSB.
WADM 5 la lesued for CW or phone but not mixed modes.
5. The fee for each award is 7 IRCs.
6. The address for applications is:

$$
\begin{aligned}
& \text { Radioklub Der DDR } \\
& \text { DM Award Bureau } \\
& \text { DDR-1055 Berlin } \\
& \text { Hosemannatrasee 14, DDR. }
\end{aligned}
$$

Rules:
East Germany is divided Into 10 districts, denoted by the LAST letter of the call sign (DM2 BCD is District D).

Each district may be contacted ONCE par band for WADM 1 to 3.3 and each contact ls ONE point. If, however, the same station la contacted on four or flue bands then four or tive extra pointa are counted (DM2ABB on flve bands counts as live band points and five extra polnts).

A "speclal station" may be subatituied for any missing district on the ame band as the OSL from the special station but once only per bend. WADM 4 and 5 are available on one band only see below.
Aoquiramenfa:
WADM 510 polnts, with 10 districts on elther 3.5 MHz or 28 MHz .

WADM 420 points, with 10 districts represented on 3.5 or 28 MHz .
WADM 3 European stations require 40 pointa with 13 districts represented and non-European stations require 32 points with 13 diatricts represented.
WADM 2 European stations require 75 pointa with 15 districts represented and non-Europesan stations require 45 points with 15 districts represented.
WADM 1 Europesn stations require 120 poin!e with 15 disiflets represented and nonEuropean statlons require 75 points with 15 districts represented.
DM Calla:
The number in the call slgn means -

DM2	Private stations
DM3, 4,5 5	Club stations
DM6	District speclal stations
DM7	Reserve
DM8	Special stations
DM9	Foreign amateurs
DMO	Central and speclal atations

9HI AWARD

1. The award is available to licensed amateurs and shortwave liateners.
2. Contacis after 21.9.1964 (Independence Day) are valid.
3. Do not send OSL cardz A list showing fult detalls of the contacts should be certified by the Awarda Managar of a National Society.
4. The fee for the award is $\mathbf{\$ 1}$ or 10 IRCs.
5. The addrese for applications is:

Malta Amateur Radlo Society
"Maytalr" New Street off Ursuline Siaters Streat Guardamangla Malte

Aulea:

The same siation may counted once per band. Only 5 bands may be used.
9HI SWL cards may be used (provided that SWL has received a repiy) on the bands on which the report was made - up to a maximum of 2. Band polnta:

Band in MHz

CO Magazine Zone $1.8 \quad 3.5 \quad 7.0 \quad 14.0 \quad 21.0 \quad 28.0$ \& Points per contact
$\begin{array}{llllllllllll}14 & 15 & 16 & 33 & 34 & 5 & 3 & 2 & 1 & 3 & 5 & 25\end{array}$
All other Zones,
axcept as under
Areas north of Arctic
Circle and south of
$\begin{array}{llllllll}\text { Antarctic Clicle } & 3 & 25 & 15 & 5 & 12 & 20 & 50\end{array}$
*all other bands
Requinaments:
50 polnts required tor one band working
40 pointe required tor two bande working
30 polnte required for three benda working
20 polnte required for four bands working
Magazine Index
sith Syd Clark. VrijasC
Before commencing the Indexing of this month's bag of oversess amateur joumals I would like to take this opportunity of wishing my readers the "Compliments of the Season".
RADIO 28 June, July, Auquet Seplomber
"You're Of Frequency Old Man": Reminiscences of 25 Ancient Radio Practitionar; Thank You Hams.
The Port Elizabeth 2-metre Repeater: South Alrican Pollce Wachthula Radio Reserve.
Speech Procesaling: Extracts from the Radio Regulations: Omega.
Hamnet; Yacht Surprise; R.F. Power Measurement: Electronic Braakthrough for Inatant TV; New Swop Shop; They Probably Wouldn't but They Just Mlght.
AADIO COMMUNICATION Augual \&eptember
A Speech Clippar for SSB Tranamitters; And it Can be Done . . .l; Performance of Tranalstorlsed Cap Ignition; Technical Toplcs; Bullding Blocks for the Novice.
A Self Contained High-Power Linear Amplifler for the HF Bends; Building Blocks for the Novice; An SL600 Series SSB Transceiver; A Three-Stage Pre-Amplifier for the 1296 MHz Band: Modificationa to a Trap Dipole; Technical Topics.
BREAK-IN Septomber 1974
Lat's Bulld a Kayer: A 20/15/10 Metre Triband Vertical; Satellites in the Amateur Radio Service: Crystal Checker; The Surprise Story.
73 MAGAZINE July \& 8eptomber 1974
4-1000A Grounded Grid Linear; Free IT Batteries; The Scotch Tranaiator; Poor Man's Universal Frequency Generator: Univeral AFSK Generator: A Cheap Ten Minute Timer for the Shack: A Low Frequency Phased Array; DC Isolallon; Little Bill: 3 kV DC Power Supply; Dlagrams.
Moskey; A Ham Radio Savera Wasther Warning Net; The Agltable; LXpedition; 50 Megahertz DX: Questions Quesilions Questions: Improve your Heath 10-103: Mono Reproducer: Low Power 8 Metre AM Transmilter; Inexpenaive RF Speech Cllpper: Protesaor Beama Special Lecture to Cless: My Favourite Band; The Audlo Blahop; 4UITU - Geneve; Use that 120 volf Varlac on a 220 volt Circult; Westem Satellite Picture on Your SSTV Monltors; Someone Should Do Something About; Nostalgla; A Unlveral IC Tester: Tabus; Making It Small: Easy-Way Tower; Low Cosi Infinite Attenuator for Ama:eur Use; Lightning In a Botlle - Flashtubes; Modernising the Selact-o-Ject; Profle Roy Alclatore W5RU: It Happened in Mexical
OST October 1974
A Naw Frant End for Direct-Conversion Recelvers; Dipele Passe?; Solld-Slate Repeater Control: Apanment Dwellers Slinky Jr Antenna; An All SolldState Keyer for Cathode-Keyed Transmitters; The Twenty-Metre DX Weasel; RepackIng the Ten-Tec Power Mite; A Remote Head; Two-Toter Two: Reviewe of: Curtis Electro Devices KB-4200 Morse Keyboard; Regency HRT-2 FM Transcelver; The Henry Radio Kenwood Palr; Spectrum International UHF Equipment; Getling Told the Ham Story; Amateur Radio in our Independent Civilisation;

Tornadoes Strike . . . Hams Help.
HACA RADIO Auguat \& Saplember
HIgh-Power Solld State Linear Power Amplifier; How to calculate Wind Loading on Towera and An enna Structures; Scanning Recelvers for TwoMetre FM: Integrated-Clicult SSB Transceiver: Harmonic Phase Detector: Amateur Marine Insta:lations - Small Boat Siyle; Electronic Speed Control for RTTY Machines; Batiery Powar.
Eesy-10-Bulld SSB Transcelver for 1286 MHz ; MIniaturised Communications Recelver: Intermodulation Measurements on SSB Tranamitters: Modern RF Amplifiers for Communications Receivers: Design Data for Pipe Masts; Reciprocating Detector Converter; MIniatura Filament Transformers; Versatlle Squalch-Audlo Amplitier for FM Recelvers; Adding Carriage Return to the Automatic Line-Feed Generator.
PRIDEBTAUSTRALIS
with David Hull, VK32DH
OSCAR 6 EQUATOR CROSSINOS FOR "ON" OREITS OVEA VK - JAN. 1875 (Dates local, Times Z)

Ontl Mo.	Time (Z)	Equator Cross (${ }^{\circ} \mathrm{W}$)	Oiblt No.	Time (Z)	Equator Crose (${ }^{\circ}$ W)
Thura. 2/	178		10304	1253	241
10126	0744	164	Eat. 18/1/75		
10127	0839	183	10327	0858	182
10128	1134	221	10328	1053	211
8al. 4/1/			10329	1248	240
10151	0738	163	8un. 18/1/75		
10152	0934	181	10332	1833	326
10153	1129	220	10333	2028	355
8un. 5/1			10334	2223	24
10157	1909	335	Mon. 20/1/75		
10158	2104	4	10352	0853	181
10158	2259	33	10353	1048	210
Mon. 6/1			10354	1243	238
10178	0734	161	Thura. 23/1/75		
10177	0928	190	10389	0748	165
10178	1124	218	10390	0943	193
Thure 8	175		10393	1138	222
10214	0824	174	Sal. 25/1/75		
10215	1019	202	10414	0743	163
10216	1214	231	10415	0938	182
Sat. 11/1			10416	1133	221
10239	0818	172	Sun. 28/1/75		
10240	1014	201	10420	1913	336
10241	1208	230	10421	2108	5
Sun. 12/	175		10422	2303	33
10245	1949	345	Mon. 27/1/75		
10246	2144	14	10439	0738	162
10247	2339	42	10440	0933	181
Mon. 13/	175		10441	1128	220
10246	0814	171	Thurs. 30/1/75		
10265	1009	200	10477	0827	175
10266	1204	229	10478	1022	203
Thur. 18/1/75			10478	1217	232
10302	0903	184			
10303	1058	212			
See not	in N	, AR.			

It was hoped to supply at leasi preferance orblts for Oscar 7 by this time (late Nov.) but 80 far all supplied orbli data has been wildly inacurate after a fow days. Please listen io local divialon broadcasis for later detalls. Australls will keep slata co-ordinators advised as data is made avallable.

Book Review

"LET'S TALK TRAN8ISTOR8"

Robert Stoffels is an author who is recognised as an authorlty on his subject.

In this nine-part series. now sssembled Into one pamphlel by the ARRL, is packed a considerable amount of information 10 set students of Eiectronics on the road to buccese in a discipline which challenges the most vivid of imaginations.

Available as a re-print from "Magpubs" at $\$ 0.95$ plus 25c posiage.

VK3ASC

AMATEUA BAND DEACONS FOR JAMUARY 1978
VKO VKOMA, Mawson
VKOGR, Casey
VK1 VK1RTA, Canberra
VK2 VK2WI. Sydney
VK2WI, Sydney
VK3RTG, Vermont
VKARTL, Townsville
VKAWI/1. Mr. Mowbullan
VKS VK5VF. Mt. Lofty
VK5VF, Mi. Lofty
VKBRTV Perth
VKBRTU, Kalgoorlie
VKBRTW, Albany
VKBRTV, Parth
VK7 VK7RTX, Devonport
VK8 VK8VF, Darwin
P29 P29GA, Lae, Nluginl
303 3D3AA, Suve, Fijl
ZL1 ZLIVHF. Auckland
ZL2 ZL2VHF. Wallington
ZL2VHP, Palmeraton $\quad 145.200$
ZL3 ZL3VHF, Chrisichurch
ZL4 ZLAVHF, Dunedin
145.400 Main changes to beacon listings this month are
deletions, which ahould bring the liat to being substantially correct. Firat nowa came from Steve VK3ZAZ that there would be lifte likellhood of any VKO 6 metre contacta this year due to shortage of oparators. Confirmation of this, and further news that the Macquarie Island beacon was not on the alr, came in a letter from Don VK3akn who advised that as a result of a contact with Dave VKODM on Macquarle Island firat hand news of the VKORSA beacon was on hand. It appeare the original location caused severe problems with the HF equipment, and so it was switched off. Another location was iried later but then interference resulted to phyalce equipment, so it is now ofl at least until next March when it is hoped to have a third try to find a sultable operating position. No confirmation at present of the Mawson and Casey beacona but these have been left on the liat for now.

The Carnañon beacon VK6RTT la also off the air, and reating on ahelf, mainly due to lack of operatore in that area. The P29GA beacon ahould be all solid state by the time you read this, with a photo-electric keyer with "P2gGA LAE PNG" ident. continuoualy on 52.150 to 2 wavalength collinear.

George VK3ASV advises the Eastern Zone of VK3 two metre beacon la not likely to be oparating for some time yet, furthar advice later on. As if to confirm my comment last month on lack of a channal for JAiligY due to heavy band population on 6 matres in Jepan, George VK3ASV has Included a comment in the Eastorn Zone Bulletin that as of March 1974 the number of Japanese amataur station licences lasuad was 436,377, and may be 500,000 by Chrlatmas. If only 10 Der cont of these operated on 6 metres that's 50,000 , and If only 10 per cent of these were on 50-54 MHz at any one time, that's less than 1 kHz per operator - see what I mean? Imagine having 1,000 operators on an FM channel al one time - and 1 heard someone on Channel 4 the other day complain that the repeater always seems to be occupled!l

SIX METAES AND DX

What else is the main toplc at the moment on the VHF bends? As was predicted carlier this year, 1974 looks like being a real bumper year for VHF contacts. At time of writing (late November) no 2 metre contacts have been made but these could have eventuated by the time you read thia - however, that's for next month - concem for the moment muat go to slx metres. Openinga started towards the end of October, and came
along with a vengeance In November, some of the best early openinga for many years, probably alnce 1963. All VK States. P28 and ZL1 to 4 Inclusive have been the order of the day Irequently. After walting 11 yeare between, I worked my eecond ZL4 on 20/11 when Stan ZLAMB came on for a brief burst. At the same time Eric ZL3OE was $\mathrm{Sa}+20$, the atrongeat I have over heard a ZL station, so If I have to walt for ZL3s to be that atrong it may be a long time betore 1 work my third ZL4I However, be that as it may, there appears to be plenty of 6 metre activity in ZL this year, and if is pleasing to see those boya recognising that most VK atations are now ope:atIng transcolve, and so coming up into our 52 MHz segment to allow SSB tranacelve contacte to be made. Very few modern 6 metre atations today would have separate VFO tuning ability for VHF, so It is necessary for the ZLs to come up to us as wa are unable to go down to them.

Pleased also to work Nool p2gaA agaln thla year, and grateful indeed are we that he is interested enough to keep that beacon going on $\mathbf{5 2 . 1 5 0}$. In a letter to me Noel mentlons qulte successful operatlon ihrough Oscar 6 since 28/10, having worked VK2, 3, 5 and 7, and heard DU and JA atations. Good luck Noal, and thanke for the latter.

A pleasing feature of DX so tar this season has been the very wide-spread nature of the contacts openings to as many as four or five Slates at once, plua 2L. Long dialance contacta are more common too, VK4 to VK8, VKS to VKB, VKS to P28. VK5 to ZL, VK4 to ZL eic. Northern VK4 atationa have been heard more often, and all slgnala have been consiatently good.
AM statione have aimoat disappeared from 6 metres it aeema, and FT620a have taken thair place, some barefool, others with good sized linears. There is no doubt whatever that the SSB signals on VHF are readable for longer, and at much lower slgnal sirength than the former AM aignals, and do not suffer the eame phase diatorflon (to the ear anyway) that the other mode does, during fading perlode. At the same time signala are generally well atabilized, and with moat operatIng tranaceive, It la Inevitable more contacte must be made.

My nearast amateur neighbour, Fred VKSFT, about 1 mile away, and saparated by 1,000 feet of hill, has finally succumbed to the thrill of 6 matres after purchasing a metre device. Being - doyen of HF operation, particularly the R.D. Conteat. Fred has a veritable antenna farm of sundry V beams pointing in all directlons, switchable from the shack. These have been pressed Into sarvice through a sultable tuning unlt, and Fred has been sending out some mighty 6 metre aignals from 10 or so watts - how he gets out from behind thase hills I Just don't know, but he's doing it. Walcome to the bande, Fred. What about some of the others in the HF gangs around VK helping to populate our VHF bands. Sultable commerclal equipment does not cost that much nowadays if you do not have the time to build something, and many of you smoke more clgareltes in a year than the coat of a good transcelver for 6 meires!

Don VK3AKN advises in his letter that Western Victoria is having its thare of VHF SSB operatore, some silll bullding and lesting. Moat monitor 52.050 . I quote the following from Don's letter as it is of Interest: "Recent tropospheric openings have of course resulted in some severe shambles when Melboume atallons have been hearing and triggaring our repatar Ch. 1 at Mt. William and fondly imagining they were working through VK3WI/ R1 on Mt. Dandenong. I get the impression that many of the repeater operatora do not have a clue as to what goes on. Such openinga are deacribed as 'unuaual' or 'fraak', and you can't tell them that they are as normal as the raln in winter." There are many excellent articles writion on the subject of VHF propagation and, for those not so well informed on such matters, make very interesting reading, and will at the same time give - belter underatanding of such phenomena.

TWO METRE8 ETC.

Kerry VK5SU at Caduna sent along an intereating letter, too lang for Inclusion of courge as the Information keeps me informed, but I would like to mention one day. 9 th November, as an Indicator of the excellent state of VHF. Ceduna la 550 km
from Adelalde. Times stated for this particular exerclae are Eastern Summer Time, as the information ls only likely to be of Intereat to VK. and therefore such times relate more easily to the altuation at the time.
0830 VKSVF beacon on 144.800 S5, Ch. 4 repeater Adelalde audible.
0937 Trigger unknown Ch. 2 rapeater.
1130 VK5VF S5. Trigger Ch. 4.
13352 metre tade-out.
Away trom home during reat of day and evening.
0025 Worked VK5zMJ at Pt. Pirie (500 km) vie Ch. 4 Adalaidal
0030 Worked VK5PB via Ch. 4. also 144.010 SSB. VK5ZPS 144.010 and 52.050 . Worked VK5PB varlous croes band dup!ex e.g. $2 \times$ SSB, 2 m repeater and 6 meires.
0100 Trigger Mt. William (Victoria) Ch. 1 repeater. Varlous Adelalda stationa on Ch. 4.
0300 Trigger Mt. William using 1 watt Signal 30dB over 9 on IC-22 S mater.
0350 VK5ZTS went up to Mt. Lotty, worked moblle via Ch. 4. then directly on Ch. 日 using y/4 wave whip on car, and 52.525 FM. VK5ZTS was using a miamatched 6 m dipole clipped to car and 2 leat above ground
0504 Heard VK3LX and VK3ALU moblle via Ch. 1 repeater. (Kerry notes: It is atlll uncertaln if this was Ch. 1 Mt. William or Mt. Dandenong as neither repeater has auto ident like Adelaide. Distance to Mt. William 1015 km and Melbourne 1240 km).
0820 VK3AV, VK3AKN and VK3BDH via MI. WIllam, many Adalalde stations.
0933 VK5CU direct on Ch. 50. VK3BRE and VK3YEJ, both Mildura, vie Me. William repeater. VKSWI broadcast on Ch. 4.
1000 VKSVF on 2 m S9.
1015 VK5VF etc. all inaudible.
1305 VKGZDY, VKGZHJ, VKGZBW and VKGZBM Kalgoorile on 6 m .
And then 10 work!
That la really dedication for you. No aleep for ane complete night, two periode of work, reat of the time operating various bands, and making plenty of intereating contacta. Juat shows what can be done if you have the gear, the time and the dedicallon, and the band conditiona are pight. And look at the 11 me VKSZTS got the car out and went up to MI. Lofty. 0350 in the moming! Can't be married surely! My doghouse wouldn't be blg enough if I tried thall Thanke Kerry for a very Interesting letter; more please.

DITS AND PIECES

John VK4ZJB advises after 1at December he will be out each week-end on his tavourlie mountain with 400 watis of SSB on 6 m , and from Wednesday 25th to Sunday 29th December Incluaive. Did not say whether he would have 2 metres . . . Our old Irlend Lindsay VKAZIM now has the call of VKAAAL, atIII with the excellent signal as before Steve VK3ZAZ not now going to Nortolk laland, cos's have plsen too high with recent increases in plane farea and accommodation about 20/10/74 HLSWI warked by VKARO, VKAOS, VKAZRG and VKAAAL. . VKARO wIII be on 144.090 thia year cryatal locked .. . colour TV from ZL has been viewad in Sydnay .. VK8VF being heard from Darwin eround VK, but very little heard of amaleura from same area Rod VK2ZQJ now sporing new call of VK2BQJ, has not spoken to me yetl

portalale opeantion

You are reminded that a number of atations will be out portable over the Christmas-Now Year period again this yaar. Detalls of all known operation were included in the December lasue. It is hoped as many as possible of the home stations will be on the alr to make the eflorts of those camped on mountain tops worthwhile. Two melre and 432 MHz will particularly be in demand.

NEW CHANMEL EA BTATIONB

I am sure the dedicated VHF operators around Australle raad with dismay recently that new Channal 5A TV atationa are to be acatterad all around the countryside, high power stations at Loxton S.A. and Goaford N.S.W. and one other place I have temporarily forgotten, plua tranalators and repeatere of low power. What a dismal thought. The high power stations are bad enough with the amount of garbage they put on to 144 MHz . even If the spurious reaponses are within specified
limits. 50 dB down from 100 kW ERP is still plenty strong enough to spoil reception efforts by the amateurs. Low power stations simply means that amateur operators within the limited service area of such stations Jusi won't be able to come on because of TVI. Some areas have already been severely affected because of Channel O operations, now it seems the one world wide VHF band lef to us is to be amothered with rubbish or at best will stop operators from coming on during TV hours.

The following comment is purely my own opinion. and I want it to be known as such. I knew it had to come. With the clamour going on trom vested in:erests for the FM band to be opened up. the P.M.G. has little option but to make available the same frequencies as used overseas for FM (88 to 106 MHz) which means a shift around of TV channels. Greedy eyes have long been casi on 144 to 148 MHz by the commercial intereste as being an area of amall activity overall, but one providing qulte a tew two-way radio channals If it could be wrested from the amateurs. Unfortunately. there are many of you who read this who have done nothing or very little to keep the band in constant use, and so added to the problem. There are probably several thousand operators theoughout Australla who use some portion of $144-148 \mathrm{MHz}$, e very small percentage use the lower luneable portions, whilst the majority sit on a few FM channels about the middle of the band and contribute nothing towards general band occt sency elsewhere. It is interesting to note that in the main the operators who use the tuneable portion of the band also have FM capablitity, in other words, they have spread their Interest to include a wider area of operation. And I suppose now with more compatible repeater channels covering the countryside, city operators will be content to work two metres DX through a repeater In case anyone gels the wrong idea, I have worked on 2 metres tuneable tor years, first with AM and latterly with SSB. both home and portable. I also can work on at least three FM channels Including Ch. 4 repeater, and I do use FM from time to time. so my interesis are not narrow.
personally see the widespread use of Channel 5A as the thin edge of the wedge. gradually easing out operation on the lower part of 144 148 MHz by the amateurs due to ORM and TVI. In the end we will be told that as we do not use 144 to 146 we do not need it. so will lose it. after all, most operation is above 146 MHz , and it is easily proved we can get by with three or four FM channels, no worryl And that's all we will have.

I can never understand why in Australia there seams to be su much pressure for spectrum space. with eyes conslantly looking at the lew MHz we have. In the U.S.A. they seem to be able to man age in a country about the same size as ours. and with a few more people, nearly 200 million more In tact. and I think they would surely have a few more radio telephone and similar services than we do, and more TV and radio stations, and more FM stations, and with only the same amount of spectrum space. Just makes me wonder what is behind it all.

So, all you amateurs who operate on VHF, you had better start doing some thinking pretly soon and get some more gear operating on other places than purely FM channels, or is that all you really want? If I were a betling man, I would take even money that if Melbourne is to have a fourth commercial channel, or another channel anyway, in the future. it will be on Channel 5A. Sydney. the other centre of population able to support a lourth commercial channel, probably will miss out on a 5A, but then they have one elther side, at Wollongong and the new one at Goslord. Overall. the siluation looks very bleak for amateur radio in the luture, and what will you do about? Nothing?

Il seems a pity to end these notes on such a pessimistic note. but those are the facts 1 can only hope 1975 will finish a little brighter than it looks like starting. However, plenty of DX on 2 metres during 1975, it may be the last you will work in some areas, ever. The thought for the month: "A newspaper is not just for reporting the news as it is. but to make people mad enough to do something about It^{\prime}. Quite relevant, I telleve.

The Voice in the Hills

Contests
 with Jim Payne, VK3AZT
 Federal Contest Manager.
 Box 67. Eas: Melbourne, Vic., 3002

CONTEST CALENDAR

Nov to Jan 19: Ross Hull VHF-UHF
Jan 8-9: YL-DX to Nth America (CW)
Jan 29-30: YL-DX to Nth America (Phone)
Jan 11-12: YU 80 metre CW
Jan 11-12: DL ORP CW
Jan 18: RTTY Flash Conteat (Italy)
Jan 24-26: CQ WW 160 CW
Jan 25-28: French CW
Feb 1-2: ARRL DX Phone
Feb 8-9: John Moyle Field day
Feb 15-16 ARRL DX CW
Feb 22-23: French phone

AEMEMBRANCE DAY CONTEST

All the cerificates for this contest have been posted and logs returned to those contestants who requested same. Please let me know il yours has nol arrived.

YL-DX TO NTH AMERICA CONTEST

YLs on Nth American continent will be working OX YL's. Phone \& CW are separate contests and require separate logs. Same station may be worked on each band for OSO credit and only OSO's with other YLs are valid. Please send SASE to FCM for detalls.
ARRL INTERNATIONAL DX COMPETITION:
Phone - first full weekends Feb $\&$ Mar.CW - Third full weekends in Fob \& Mar, Starls 0001 GMT Sat. ends 2400 GMT Sun.
Classes - Single op: All band; high band $\mathbf{1 2 0}$, 15, 10): Low band ($160,80,40$); enter only one. Mulli op. single Tx_{x} or Multi Tx_{x}. All band only.
Obfact - DX stations OSO as many stations in the 48 contiguous US and Canadian call areas as possible. Repeat contacts on additional bands are permitted.
Polnta - Each comp!ete contact 3 points; incomplete count 2 points.
Exchange - Send RS(T) and DC input power. The W/VE will transmit RS(T) and his slate or province.
Multipliar - On each band your multipllers are the 48 contiguous US. plus VE1 Through VEB and VO; a total of 57. Your final multiplier is the sum of multipliers worked on each band. OSO points times the final multiplier equals claimed score.
Loga - Must contain dates, times in GMT, bands. exchanges and points. Signed legible coples of your stalion log are acceptable. Logs must be accompanied by a summary showing valld OSO's and mullipliers for each band, and a multiplier chack sheet showing the number of contacte with each of the 57 states on each band. Logs elc. must reach ARRL. 225 Main St., Newington, Connecticut, USA. 06111, before last Monday in Aprll.
BARTG SPRING RTTY CONTEST
Ted. G8CDW. BARTG Contests and Awards Manager. has sent particulars of the latest RTTY contest to be arranged by the British Amateur Radio Teleprinter Group. The contest will be held from 0200 GMT on Sal Mar 22nd until 0200 GMT Mon Mar 24th, 1975. Please send SASE to FCM tor delails.
JOHN MOYLE MEMORIAL NATIONAL FIELD DAY It's on Feb 8th and 9th. 1975. See Dec issue tor detalls. Making yourself independent of the power mains Ilmits the number of high power SSB stalions which can be heard in this conteal as portable units. However, it you can't be in the field please tune up at home and send in your log in due course.

Intruder Watch
 with Alf Chandler VK3LC
 1538 High Sircot. Gien Ir.s, 3140

As I missed out on the December issue 1 must heraby wish all Members a Happy and Prosperous Naw Year, and may 1975 fulfil all your wishes.
From reports received it seems that the 3.5 MHz band is being clobbered by Bloadcast stations al the present time. It may be presumed that the 7 MHz band is so full of these insiduous broadcasters that the 3.5 MHz band has become more
profiteble to the newcomers because of the good propagation now. In any case the following trequencies have been reported as being occupied, but I would appreciate identlications of call signs or country of origin if Members would mind taking the trouble to listen at various times in the hope that some may be given. The reports all, so lar have been submitted by the VK6 Division. Times of observations are 1100 to 1230 GMT.
3512 A3 Female singer.
$3528 \quad$ A3 Singing group.
3535 A3 Dlalogue, male and temale.
3560 A3 Plano and orchestra, male announcer.
3580 A3 Woman singing.
3632 A3 Foreign language.
3641 A3 Musical programme
A3 Foralgn language
Would you please refer to my "Letter to the Editor" regarding jamming and jammers. Good hunting.

Letters to the Editor

Any opinion expressed under this heading is the individual upition of the writer amil
jucs not necessarily coincide with that of
the publishers.

The Editor,

Dear Sir,

feel that 1 must comment on plece of information contained in the letter by VK5JE in the October issue ol the magazine

John my boy, you are a little off beam!
The WIA "started the ball rolling" as you put it some years ago when I advocated the formation of what I designated "The QRM Brigade". Unfortunately, this has not been ullised as much as I had visualised, some members being opposed for ethical reasons. However, if has been uselul and effective when used by those who have participated. It is most eeffctive with those point to point CW intruders.

I cannol agree that "it is a long and sometimes hopeless process in getting rid of them". We have many successes internationally and two instances immediately come to mind - we had a South American News Agency station in the 21 MHz band, and we couldn't gat his call sign untll a German Amateur reported him and gave us the call. By co-operallon beiween countries this stalion was removed. Another instance - we couldn't gel an identification on a stalion on 14231.7 kHz for a long time. but it eventually furned out to be a Thai station. With Amateur methods we ran it down to broadcast transmitter of the local television company at the airport in Bangkok. We lound out it was an old transmitter, but they didn't want to replace it because they hoped it would sland up for a little while longer. We managed to persuade them to take it of that irequency. Thus you see, we have had our successes.

As I mentioned in my Intruder Watch column In the normal sense Jammers are far more insiduous than the actual stationa being jammed, the main reason being that they use tar more of the band I would heartily congratulate anybody who could gel the co-operation of the ARRL, the RSGB end especially the JARL, or our own Administration on the aspect of "controlled jammers".
Go to it, John and get logether a CW net who are prepared to operate my "QRM Brigade" Idea You're in the clear.

Alf Chandier, VK3LC
Intruder Watch Co-ordinator for WIA
The Editor.
Dear Sir.
I still can'l figure out why the Amateur Service is screaming over the increase of the cost of the licence to $\$ 12.00$.

If the subject is looked at in the broad sense the following points must surely evolve:-
. The commercial senvices now pay $\$ 20.00$ for a base and $\$ 12.00$ for each moblle.
2. The handphone service costs $\$ 12.00$ tor each unit. however the licence provides for at least a pair of handphones, thus $\mathbf{\$ 2 4 . 0 0}$ per annum. 3 The amateur licence allows each propriator the use of mobles. which can be crammed with as many transmitters as desired, and that same licence permits the operation of a separate base station with another compliment of

TRIO

TEST EQUIPMENT IS REAL VALUE FOR MONEY

MODEL SG-402. All Solid State, Wideband RF Signal Generator, 73.00

Plus 15\% Sales Tax
MODEL AG-202A. WIen Bridge CR. Type Sine and Square Wave Audio Signal Generator.
$\$ 92.00$
Plus 15% Sales Tax
MODEL VT-108 FET - Type Electronic VoltOhm Meter equipped with a "Memory" Circuit. Reads up to Scale-by-10 Megohm (Equals 100 Megohm)

Plus 15\% Sales Tax
MODEL CO-1303A. All Solid State 75 mm Oscilloscope with Outstanding Performance $\$ 167.00$
Plus 15\% Sales Tax
TRIO - TRIO - TRIO - TRIO - TRIO TEST EQUIPMENT
Write for Full Technical Specifications of this Excellent Range of Top Quality Equipment for the ham shack at PRICES YOU CAN AFFORD.

WILLIAM WILLIS \& CO PTY. LTO
Manufacturers and Importers
77 CANTERBURY RD., CANTERBURY
VIC, 3126
Phone 836-0707

FOR YOUR-

YAESU MUSEN

AMATEUR RADIO EQUIPMENT

in PAPUA-NEW GUINEA

Contact the Sole Territory Agents-
SIDE BAND SERVICE PTY. LTD.
Phones 53557. 55511

O. T. LEMPRIERE \& CO. LIMITED

Head Office: 31.41 Bowden St., Alexendrla, N.S.W., 2015 and at Melbourne. Brisbane. Adelaide, Perth, Newcentle

the ALL-band

COMMUNICATIONS RECEIVER
All-band/all-mode reception on frequencies 170 kHz 10 30 mHz covered by 6 bands. Receives broadcasts in any mode AM. SS8. CW or FM-with the optional accessory QR6-FM. Super sensitivity from dual gate MOS types FET's. double signal selectivity and AGC characteristics. If circuit with mechanical and ceramic filters designed for high selectivity, resistance to interference; single button selection of wide band ($5 \mathrm{kHz} / 6 \mathrm{~dB}$) or narrow band 2.5 $\mathrm{kHz} / 6 \mathrm{~dB}$). Altogether a high performance compact, smartly styled unit ot advanced design at a suggested 'Today' price of $\$ 296.60$.

COPAL 24-HOUR DIGITAL ELECTRIC CLOCKS
 clearly visible figures INSTANT READABILITY, ACCURATE

MODEL 225, A.C., ECONOMY MODEL
A desk/table stock of modern design. Colours white and red. Buitt-in neon lamp. 230 V 50 Hz A.C. Cord and plug attached. Price $\$ 14.00$

MODEL 703 AC, with Alarm. A desk/table clock of modern design. Colour, Avocado Green, built-in neon lamp. 230 V 50 Hz . Cord 8 plug attached. Price $\$ 19.00$.

MODEL T7, Battery operated, with alarm. Tuning fork controlled. A clock that will operate anywhere and does not clutter up the room with a cord. It is accurately controlied with a tuning fork operating at 400 Hz . running from a single torch cell which has a life of approx. one year. The alarm can be set 24 hours ahead. Colours, orange or green. Price $\$ 27.95$.

Bail Electronic Services
60 SHANNON St.. BOX HILL NTH.;
VIC.. 3129
transmission gear Including television if required.
4. Despite the fact that the broadcast and television receiving licence has been scrapped, we still are told of cases of hardship - il that is found to be so, the matter should naturally be looked into by the institute.
So what's the beef - it's a bargainll
M. R. Morris, L30134

The Editor,
Dear Sir,
Are we in VK considering changing our call sign to G? You must be Joking.

In these days of unemployment benefits, retrenchment benefits and Government handouts the VK amateurs are Jumping on the bandwagon and saying that $\mathbf{\$ 1 2}$ for a licence is 100 much, and we want a benefit handout as well.

This $\$ 12$ tee is cheap. About 50 middies per year or one per week or 25 packs of cigarettes per year or ten per week and so l could 90 on.

Alright the cry goes up "what about our senior and Junior members'. O.K. what about them, why don't WE as an Institute, do something instead of whinge.
Most Divisions look after their senior and Junior members by having a lower fee structure, so why not for the same price Include a licence. But don't ask for a Government handout. No! Ask it of every WIA member. For that lower fee the local Division could buy that right, BUY the licence for each senior and Junior member and this would be subsidised by all other WIA members.

We must learn to help ourselves as an institute and stick together rather than cry poor-mouth to the Government.

We should be showing the administration that WE as an Institute can, and are, united and able to look after ourselves; then, when an important erisis oeeurs, our voiee will be heard.

Members, stop erying WOLF and unite.
Wally WatkIna, VK2ZNW

Book Review

THE ARRL ANTENNA BOOK
The 13th Edition of THE ARRL ANTENNA BOOK represents the most extensive revision this publication has recelved within the past 25 years. Although much of the basic information of previous editions on subjects such as radio wave propagation and antenna theory has been retained in early chapters of the book, all information has been carefulty edited for clarity and has been supplemented with later data where modern technology has brought new knowledge.

In the later chapters some striking changes from previous editions will be noted. A large section appears on the use of the Smith Chart In solving transmission-line problems. Information on cublealquad antennas has been greatly expanded. Design and consifuction information on log-periodic antennas has been added. Construction information on "standard" antennas - dipoles, Yagis, and simple arrays - has been revised extensively, and new antenna types such as a 40 -meter "s'oper" are described. Information on rotator and tower selection and installation has been added.
Four new chapters appear in the 13th Edition, one on antennas for restricted space, one on antennas for space communications, one on measurements, and one on specialised antennas that amateur radio enthuslasts often hear about but are unable to find information on - the Beverage, discone, conical monopole, fishbone. bobtail curtain, and others. From its newly designed front cover, which retains a bit of the appearance of the covers of older editions, to its completely new index at the back, this edition is packed with useful information on all types al practical antennas.

VHF COMMUNICATIONS

STOP PRESS NEWS IS THAT THE
SUBSCRIPTION RATE FOR 1975
WILL BE: $\$ 45.00$ Surface Mail \$A7.00 Air Mall
"MAGPUBS"
P.O. BOX 150, TOORAK, VIC. 3142

Hamads

Eight lines free to all W.I.A. members.
$\$ 6$ per 3 cms . for other amateura and S.W.L.'a.
Copy should be in block letters or typescript, signed and forwarded to The Editor, P.O. Box 150, signed and forwarded to The Edito

- Excludes commercial advertising.
- Closing date for Hamads is the 3rd day of the month preceding publication.
OTHR means the advertiser's name and address are correct in the current Australian Callbook.

FOR SALE

VK3ASC Quad. Triband - Castings with fibregiass spreader, assembled, as new $\$ 90.00$. W. J. Bennett. VK3EJ, 4 Karralla Court, Lilydale. Ph. (03) 7351350. KEN, KP202 portable FM transceiver in new condition with 2 repeater and 4 simplex channels, \$110.00; also new base station mlc., dynamic, 200 ohms, cost $\$ 24.00$, sell $\$ 14.00$. Ring (03) 4672131 bus. hrs.
Gallbraith Noise Bridge, wired and going, $\$ 12.00$. Ampress speech processor, as new, $\$ 30.00$. VK3LC, OTHR. Ph. (03) 50-2558.
2 Mx FM Carphone, similar to A.R. model, but updated version, very neat construction with AWA escutcheon. dual gate Mosfet front end in $R x$. Tx, Rx \& xtal switching ail on a single P.C.B., 6 channel capacity, Ch. 40 installed, $T x 25$ watts. $\$ 125.00$ O.N.O. Nell Osborne, VK3YEI. Ph. (03) 763-0256, evenings only.
MTR13, good cond. unconverted, $\$ 40.00$. John Lancaster, VK3ZWL. Ph. (03) 62-0201, ext. 2486 (B.H.) or (03) 89-9017 (A.H.).

TCA1677 2 metre transcelver with instruction manual and mobite mount, fully converted and in good condition, with xtals for Ch. B, 4 and X. Best offer around $\$ 100$ or swap with cash adjustment for good, general coverage, communications receiver. VK2BJK, OTHR. Ph. (02) 4491598.
HW-7 QRP Transceiver, complete kit in unopened factory sea!ed package. Travelling overseas and will have no time to construct, \$107. Ross Treloar. VK2BPZ, OTHR. Ph. (02) $259-5267$ bus. hrs.
2m FM base and mobile units comprising AWA MR10 base with A.C. power supply, in-built speaker, and separate carbon P.T.T. mike both Rx and Tx separately switched; xtals for Ch. A. B and C. Pye Reporter with transistor power supply and xtals Ch C out Ch A in, with two cradles and circuit diagram. Recent satisfactory mobile contact with Orange repeater from Dubbo and Parkes. Some spare tubes including 2E26. Base station $\$ 50$. mobile $\$ 35$ or both $\$ 80$ O.N.O. VK2AWY. Box 843. P.O., Orange 2800. Ph. (063) 621533 or A.H. 621807.

R5223 Receiver Modules, large quantity including the following: VFO, tuneable IF, IF Army. Detector, AF Amp, xtal Cal Osc, set of one each, $\$ 30$. Also front panels and complete dial mechanism assemblies, $\$ 30.48$ Milham Crescent, Forestivile, N.S.W. 2087. Ph. (02) 888-2981 A.H.

Trio Rx 9R-59DS, $1.6-30 \mathrm{MHz}$ coverage, AM/SSB/CW reception, 4 years old, AR mods. good condition, except for front panel slightly marred. $\$ 85$; consider exchange for antenna rotator. Also No. 10 xtal cal., $\$ 16$. VK3LJ, OTHR. Ph. (053) 323412 but during Jan try (03) 3471729
Yaesu FTDX580, mint condition, only 18 months old. $\$ 400$ ONO. 6 meter Transverter, $6 / 40$ in final FET converter. 590 ONO. VK5AS, c/- P.O. Cowell. S.A. 56 C 2.

WANTED

Eand Spanner or similar mobile HF antenna required. Offers to VKAZEZ, 35 Sycamore St., Pimlico. Townsville, 4810.
Coax Switch, two or more outlets. VK3LC, OTHR. Ph. (03) 502556.
Yaesu Type F, 5.1724 MHz sideband generator. David Farquharson, 29 Roberts Road, Belmont, Vic. Ph. (052) 43-2176 A.H.
ZL Repeater Crystals for KP202, VK3BAX, OTHR. Ph. (052) 97401.
Ex R.A.A.F. RT-322/APG-30A and PP-2170/APG56 (modified unit), information on units wanted. Lionel Sharp, VKANS, OTHR.

Silent Keys

JOHN WATSON JOHN WALKER BOB O'MAY
 LEW SCOWN
 vKEJW VK2GA VK70M
 VK5YS

It is with deep regret that we record the passing of Lew Scown, VK5YS. Operating from the Brahma Lodge area in the Salisbury disitict. Lew was an active amateur up to the end.
Always cheerful and bright despite two recent heart attacks, he carried on with his work where he was employed as a Technical Assistant at the Weapons Research Establishment, Salisbury and participated in the 2 metre net run nightly amongat his fellow hams after knock-off time at that establishment.
Lew died on the morning of Saturday. 26 th October, aged 52 years after a malor operation.

Whilst in hospital, Lew carried on with his amateup radio activity, having taken his 2 metre transceiver there with him so as to keep in touch with all his friends. He had not been operating on VHF for very long. but In the short period that he did operate on the net frequencies he became well known to many who had not heard him on the HF bands

Lew's main interest In amateur radio was antennas, and he spent many hours working on same with a special emphasis on designing and lesting miniature and loaded type arrays.

He worked on all the HF bands using both SSB and CW, and ran a number of skeds both with other VK5s and also interstate stations.

Lew held a licence for 20 years and in that time his hobby of radio was by far his major interest.
Lew leaves behind him his wife Thelma. iwo sons Lee and Dean. his daughter-in-law and one grandson. We extend our sincere sympathy to them in their loss.
He was a member of the 9th Division, A.l.F., and at the age of 18 years fought in the battle of El Alamein.
Lew will be remembered in high, esteem by his many friends in the world of Amateur Radio.
lan J. Hunt

FRANK W. NOLAN
VK2BNB
Passed away peacelully early on 18th November, after a long illiness. He was an oldlimer from Queensland and until recently was still active on 14 MHz CW .

Mr. M. D. Clegg VKszeg

Sadly missed by many amateurs and all his frients.

FOR SALE
52 MHz 144 MHz 432 MHz Swan Yagi Antennas in Kit Form used by many 144 MHz Moon
Bounce operators in USA. Also large quantity aluminium tubing.

Write
 "ANTENNAS"
 Box 80, Birchip, Vic. 3483

Two Antenna Rotators, one suitable for a VHF Yagi and the other suitable for an HF cubical quad or beam. Price and details to VK3ZR (ex VK3ZIP), 30 Mitchell Rd., Mont Albert N. 3128. Ph. (03) 894645 A.H.
Yaesu FV400 ext. VFO and FTV650 transverter. Pariculars to VK3LP, OTHR, or Box 20, Castlemaine 3450. All replies answered.
Prop Pitch motor. Price and particulars to VK5SW. OTHR. All replies answered.

SIDEBAND ELECTRONICS SALES and ENGINEERING MERRY CHRISTMAS TO ALL!
 YAESU MUSEN SEEMS TO HAVE CHANGED THEIR PRODUCTION PLANS AGAIN! PRESENTLY THE FT DX 401 WILL BE DISCONTINUED and THE PRODUCTION OF THE FT-FP 200 TAKEN UP AGAIN. THIS SHOULD PLEASE A LOT OF PEOPLE.

YAESU-MUSEN	
FT 101 B AC-DC transceivers 8 weeks delay	\$575
YC 355 D digital frequency counter still only	\$250
Spectronics DD-1 digital counter for 101/401	\$150
FT DX 400 / 560 noise blankers	\$20
FT-FP 200 ex stock!	\$420
TRIO-KENWOOD	
TS 520 AC-DC with speaker	\$550
External VFO for TS 520	\$80
HY-GAIN ANTENNAS	
14 AVO 10-40 M vertical 19 feet tall no guys	\$65
18 AVT / WB 10-80 M vertical 23 feet tall no guys	\$90
TH3JR 10-15-20 M junior 3 el. Yagi	\$135
TH3Mk3 10-15-20 M senior 3 el. Yagi soon	\$180
TH6DXX 10-15-20 M senior 6 el. Yasi	\$225
204BA 20 M monoband 4 el. full size Yagi	\$190
Hy-Quad 10/15 / 20 M full size Cubical Quad	\$200
Magnetic base mobile whip 108 MHz up with 18'	\$18

CDR ANTENNA ROTATORS

AR-20, smallest model only for 2m beams	
AR-22R for stacked 2 \& 6 m or small HF beams	$\$ 40$
Ham II with re-designed control box, now with	
separatebrake-control	
All for $230 V$ AC with indicator-control units.	
4-core cable for AR $20-22$ p. yard	
8-core cable for HAM II heavy duty	
Light 12-core cable for HAM II	

BARLOW-WADLEY RECEIVERS

Model XCR-30 Mk II 500 kHz to 31 MHz
continuous coverage, crystal controlled
recept ion of AM / USB / LSB / CW

NOISE BRIDGES

Omega TE 01 up to 100MHz

POWER OUTPUT METERS

Galaxy RF-550A with 6 pos. coax switch $\$ 75$
SWR METERS$\$ 22$
BALUNS
New Japanese model. 52 or 75 Ohm 1 KW PEP $\$ 10$
MOBILE ANTENNAS
MARK helicals 6 feet long
HW-20 for 20 M $\$ 16$
HW. 80 for 80 M $\$ 18$
tri-band helical HW-3. $10 / 15 / 20 \mathrm{M} \quad \$ 25$
Swivel Base for MARK 'S $\$ 6$
CUSH CRAFT ANTENNA PRODUCTS
DGPA 27.50 MHz ground plane $\$ 25$
AR-2 144 MHz Ringo $\$ 20$ $\$ 6$
LAC-2 lightning arrestors
LAC-2 lightning arrestors
CRYSTAL FILTERS
9 MHz similar to the FT 200 ones. with carrier xtals \$35
POWER SUPPLIES
240 AC to 12V DC 3 to 3.5 Amps. regulated $\$ 35$
MIDLANDPTT dynamic microphone$\$ 10$

27 MHz NOVICE LICENSEE \& CITIZEN-BAND EQUIPMENT
MIDLAND 5 W AM 23-channel transceivers complete with PTT mike all channel crystals 12 V DC op. \$95
MIDLAND 13-893 SSB-AM 23 channel 15 W PEP transceivers $\$ 175$
SIDEBAND BRAND NC- 310 one Watt hand-held transceivers $\$ 50$: SE-501 SSB-AM 15 W PEP SSB 23-channel transceivers, complete with PPT mike, etc. 12V DC $\$ 190$
144 MHz TWO METRE EQUIPMENTMULTI-7 solid state 24 channel FM 12V DC transceivers, I and 10W output, receiver with FET $r f$ stage and mixer, equippedwith crystals for TEN Australian channels Nos. $40,42,44,46,48,50,54,56,58,60$, to be used either transceive or com.binat ions repeaters and ANTI-repeaters, complete with PTT microphone, mounting bracket $\$ 225$

KEN PRODUCTS KP- 202 hand-held 2 W out put transceivers, now with' 4 Australian channels, $40 \& 50$ plus a choice of 2 repeaters 42-54, 44-56, 46-58, 48-60 $\$ 150$; KCP-2 battery charger and 10 NICAD batteries $\$ 35$: Leat her case for KP- 202 \$6: Flexible helical whip for KP-202 \$6.50: Extra crys!als for KP-202 two crystals p. channel $\$ 8$.
KLM ELECTRONICS solid state 12V DC 2 M . amplifier, 12 Wat t output, automatic antenna change-over when driven, ideal for mobile use with the KEN KP-202

VOL. 43, No. 2
FEBRUARY 1975

CONTENTS

TECHNICAL -	
A Keyer for VK3RTG	12
Improvements to the	22
Loudspeaker Filter	20
Phased Verlical Antennae	21
Re-Vamping a VTVM	
Try This - Look Ma, No Hands	19
Try This - Avoiding 'Pentagonal'	
Holes	19
20 Metre Quad Tuning made	
Simpler	
GENERAL -	11
Darwin Disaster Communications	9
The Shack	10
Trade Review	25

DEPARTMENTS -

Contests	25
Hamads	26
Letters to the Editor	25
Magazine Index	25
Project Australis	26

Peter Williams, VK3/Z, operating at VK3AUP, one of the WICEN HF control stations during the Darwin Disaster. See page 9 for further information.

amateur radio

JOURNAL OF THE WIRELESS INSTITUTE OF AUSTRALIA. FOUNDED 1910

FEBRUARY, 1975 VOL. 43, No. 2 Price, 70 cents

Registered at the
Registered al the for
G.P. Melbourne for
G.P.O. Melbourne for
transmissioni by Poat
transmissioniby Pos
as a Periodical-

Published monthly as the official journal by the Wireless Institute of Australia.
Reg. Office:
2/517 Toorak Rd., Toorak, Vic. 3142
P.O. Box 150, Toorak, Vic., 3142

Editor:
BIII Roper
VK3ARZ
Assistant Editor:
Bruce Bathols
VK3VE
Technical Editors:
BII! RIce
VK3ABP
Ron Cook
VK3AFW
Publications Committee:
John Adcock
VK3ACA
VK3UG
Rodney Champness
Syd Clark
Ron Fisher
Ken Gillespie
Neil Osborne
Howard Rider
Roly Roper
VK3ASC
VK3OM
VK3GK
VK3YE:
VK3ZJY
VK3YFF
Gil Sones
VK3AUI
Contributing Editors:
Brian Austin
Deane Blackman
Deane Blackman
Jim Payne
VK5CA
VK3TX
VK5LP
VK3AZT
Drafting Assistant
Gordon Row
$L .30187$
Business Manager:
Peter B. Dodd
VK3CIF
Enquiries and material to:
The Editor,
PO Box 2611W, GPO Melb., 3001
Copy is required by the third of each month. Acknowledgment may not be made unless specially requested. All important ltems should be sent by certified mall. The Editor reserves the right to edit all materlal, including Letters to the Editor and Hamads, and reserves the right to refuse acceptance of any material, without specifying any reason.

Advertising:

Advertising material should be sent direct to P.O. Box 150, Toorak, Vic., 3142, by the 25th of the second month preceding publication. Phone: 24-8652.
Hamads should be sent direct to P.O. Box 150, Toorak, Vic., 3142, by the 3rd of the month preceding publication.
Printers:

Penny Printing Co., incorporating Tully Printing, 33 Roberna Street, Moorabbin, 3189. Tel. 956462.
as a Periodic.
Calegory "B'

FiE8

At the same time as cyclone Tracy was wreaking havoc on Darwin, a fire gutted the building occupied by the printer of Amateur Radio magazine.

Much of the material which had been prepared for this and future Issues of AR was destroyed, includIng manuscripts, drawings and photographs.
We have had to find a new printer, arrange re-drawing of diagrams by our draftsmen, and commence the tedious business of resurrecting the dastroyed articles.

Following is a list of articles whose publication will be delayed because of the fire:-
"Some Useful Modifications to the FT101 Series" - Geoff Wilson, VK3AMK.
"Vertical Extended Double Zepp for 2 Metres" - John Hassell, VK6ZGE.
"A Cradle for Ken" - Mike O'Burtill, VK3WW.
"Rotating a 3-Element 20 Metre Beam with a Stolle" - Les Newsome, VK4LR.
"Modifying the Trio JR60 Receiver" - C. P. Daw, VK2AGJ.
"A Mini-Size Fleld Strength Meter" - Maurie Evered, VK3AVO.
"Modification to the VK3ABP 2 and 6 Metre Converters' - Geoff Wilson, VK3AMK.
"The Shack" - J. A. Gazard, VK5JG.
"Microstrip Data Curves" - Neil Weste, VK5TB.
'Vehicle Ignition Noise Suppression" - Rod Champness, VK3UG.
"Antenna Measurements" - Dick Turrin, W2IMU.

Bill Roper, Editor

AME THE AMATEUR FREQUENCIES JUSTIFIED? This was a question asked In Moblle Vews and G3BID In the Oct. '74 Issue says he wel. .umembers In the old days winding his own colls but he did not relline hla mun copper nor draw the wire so he might even in those days have been classed as an appliance user having actually bought the wire off the stielf. He wound his own colls for no other reason than that they could not be bought. As soon as colls, olc., could be purchased the amateur was then free to spend more lime experimenting with systems of modulation, antennas, etc. Graduaily we could buy our transmitters oft the sheit and. so he says, thls is progress and allows the amateur to move on to the next problem. Let us be grateful, he concludes, that much of the ground work is taken off the amaleur by his being able to buy a 'black box' so that he has tar more time avallable for experiments on the vast number of subjects which atll need to be investigated.

GAREAGE CAN LIDS

"Several of the smoothly-rounded lype of ordinary domeslic ga:vanised Iron dustbin lida". writes G3RPE in his Microwaves column In Radio Communications for Oct. '74, "have been checked and all have been found sufficiently accurate paraboloids to make efficient dishes at frequencies up to 10 GHz at least. Thelr diameters ranged from 18 to 24 inches. A rule of thumb is that a dish ahould have a diameter exceeded 5 pl and preferably :O pi at the frequency of operation so this size of dish is best used above 3 or 6 GHz . The galn to be expected (on one model) ranges from about 76 dB at 5760 MHz to 38 dB at $24 \mathrm{GHz}^{\prime \prime}$.
THOUGHT
OST. Oct. '74, has a quote of the month by WA4BDW "So long as we depend on the publiclyowned trequencies for amateur radio's very existence. we had better make sure the public knows who we are and what we do"

FOR Your-
YAESU MUSEN

AMATEUR RADIO EQUIPMENT

 inPAPUA NEW GUINEA
Contact the Sole Territory Agents-
SIDE BAND SERVICE PTY. LTD.

ANYTHING FROM DC TO DAYLIGHT

YAESU

FT-101B TRANSCEIVER: $160 / 10 \mathrm{mx}, 300 \mathrm{w}$ peak input SSB inl. noise blanker, fan, AC/DC. Price $\$ 585$ incl. tax. Available ex-stock.

FT-501 DIGITAL READ.OUT TRANSCEIVER: 80-10mx, SSB/CW 500 watts peak input. Incl. 2 speed fan, noise blanker VOX etc, for the bargain price of $\$ 750$ incl. power supply. Delivery 26 days on 50\% deposit.

FT- 75 TRANSCEIVER: SSB/CW noise blanker, very small and a perfect mobile rig (80 w pep transistorised). Price $\$ 245$;, AC pwr supply $\$ 65$. DC pwr supply $\$ 75$.

FL-2100B LINEAR: Price $\$ 388$ incl. tax. Delivery four weeks.

FT-201 TRANSCEIVER: $80 / 10 \mathrm{mx}$. Price $\$ 505$.
90-DAY WARRANTY ON ALL PRODUCTS

TRIO

TS-520D TRANSCEIVER: AC/DC, noise blanker, full metering, 25 KHz crystal filter. Come and inspect this incredible transceiver (avl ex-stock) for yourself and note the price, too: $\$ 520$ incl. tax and the VICOM 90 day warranty.

QR-666 ALL BAND COMMUNICATIONS RECEIVER: 170 KHz to $\mathbf{3 0 M H z ~ K i t ~ \$ 2 3 0 ; ~ a s s e m b l e d ~} \$ 275$.

KEN

KP-202 incl 4 channels \$150. Charger and Nicad set \$32, stubby helical whip $\$ 8.90$. Extra crystals $\$ 7.80 \mathrm{pr}$.

25 WATTS FM MOBILE!

Seiwa SV230 2 metre FM 12 channel transceiver featuring 25 watt/1 watt power switch, priority channel system and internally mounted deviation control. Sensitivity is .5 uv or better for 20 db quietening. Adjacent channel rejection is 70 db or better. Fitted with channels, 1, 4, and 50. \$198available ex-stock.

SU. 71070 cm FM MOBILE TRANSCEIVER: incl 1 ch 435.00 MHz. Price $\$ 298$.

MULTI-7 SPECIAL!

MULTI-7 2M FM MOBILE TRANSCEIVER: incl 3 chs 1/4/50. SPECIAL PRICE $\$ 185$. Extra crystals $\$ 7.80$ pr. This introductory price lasts to 6 th March only, so hurryl

SOME OTHER GEAR

D. 60 FREQUENCY COUNTER incl 2 metre prescaler $\$ 360$. RB- 145 MAST-HEAD AMP: $144-146 \mathrm{MHz} \$ 32$ incl tax. RB-147 MAST-HEAD AMP: 146 - $148 \mathrm{MHz} \$ 32$ incl tax. ELECTRONIC DISPLAY DIGITAL CLOCK: $\$ 39.90$.

12 volt 3 amp fully regulated pwr supply, \$28.

RAIC ANTENNA VICOM HAVE BEEN APPOINTED AUSTRALIAN AGENTS!

CX-2A 52 ohm 2 pos coax switch $\$ 21$.
CX-6A (a) 52 ohm 6 pos 1.5 kw to $500 \mathrm{MHz} \$ 54$.
CX-6A (b) 75 ohm 6 pos 1.5 kw to $500 \mathrm{MHz} \$ 54$.
AL-48 DXN 40/80 trap dipole $\$ 31$.
AL-24 DXN 20/40 trap dipole $\$ 24$.
A-4VPN 40m trap dipole $\$ 24$.
A-8VPN 80m trap dipole \$26.50.

ALSO:
Baluns
Swr bridges
Power meters
2m whips
600 ohm spaced feeder
SWL antenna

ICOM INTERNATIONAL
 PTY. LIMITED

139 AUBURN RD. AUBURN, VIC., 3123. AUSTRALIA
TELEPHONE: (03) 82-5398 OPEN SATURDAY MORNINGS
Manager: Peter Williams VK3IZ
Geelong - Phil Fitzherbert (OS2) 43-6033
Agents being appointed in other states.

OUR POLICY: Persons not in possession of the appropriate certificate of proficiency will not be sold amateur equipment. This may have to be produced on request. Our terms of trading are strictly net cash, no COD, no credit other than Bankcard. All equipment sold carries the VICOM 90-day all-inclusive warranty. Add extra for freight or postage. Insurance cover 50c per $\$ 100$. Prices subject to change without notice.

SIDEBAND ELECTRONICS SALES and ENGINEERING

YAESU MUSEN SEEMS TO HAVE CHANGED THEIR PRODUCTION PLANS AGAIN! PRESENTLY THE FT DX 401 WILL BE DISCONTINUED and THE PRODUCTION OF THE FT-FP 200 TAKEN UP AGAIN. THIS SHOULD PLEASE A LOT OF PEOPLE.

YAESU-MUSEN

FT 101 B AC-DC transceivers 8 weeks delay	$\mathbf{\$ 5 7 5}$
YC 355 D digital frequency counter still only	$\mathbf{\$ 2 5 0}$
Spectronics DD-1 digital counter for 101/401	$\mathbf{\$ 1 5 0}$
FT DX 400 / 560 noise blankers	$\$ 20$
FT-FP 200 ex stock!	$\mathbf{\$ 4 2 0}$
TRIO-KENWOOD	
TS 520 AC-DC with speaker	$\mathbf{\$ 5 5 0}$
External VFO for TS 520	$\mathbf{\$ 8 0}$

HY-GAIN ANTENNAS

14 AVO 10-40 M vertical 19 feet tall no guys	\$65
18 AVT / WB 10-80 M vertical 23 feet tall no guys	\$90
TH3JR 10-15-20 M junior 3 el. Yagi	\$135
TH3Mk3 10-15-20 M senior 3 el. Yagi soon	\$180
TH6DXX 10-15-20 M senior 6 el. Yagi	\$225
204BA 20 M monoband 4 el. full size Yagi	\$190
Hy-Quad 10/15 / 20 M full size Cubical Quad	\$200
Magnetic base mobile whip 108 MHz up with 18'	
RG-58U cable and coax plug	\$18

CDR ANTENNA ROTATORS

AR-20, smallest model only for 2 m beams AR-22R for stacked $2 \& 6 \mathrm{~m}$ or small HF beams Ham II with re-designed control box, now with separate brake-control		
		All for 230V AC with indicator control units.
4-core cable for AR $20-22 \mathrm{p}$. yard		
cable for HAM II hea		60 cents

BARLOW-WADLEY RECEIVERS

Model XCR-30 Mk II 500 kHz to 31 MHz
continuous coverage, crystal controlled
recept ion of AM / USB / LSB / CW
$\$ 250$

NOISE BRIDGES

Omega TE 01 up to 100 MHz
$\$ 28$

| POWER OUTPUT METERS |
| :--- | :--- |
| Galaxy RF-550A with 6 pos.coax switch |

SWR METERS

Midland twin meter type, 52 ohms
$\$ 22$

BALUNS

New Japanese model, 52 or 75 Ohm 1 KW PEP
$\$ 10$

MOBILE ANTENNAS

Swivel Base for MARK'S

$\$ 6$

CUSH CRAFT ANTENNA PRODUCTS

DGPA 27-50 MHz ground plane	$\$ 25$
AR-2 144 MHz Ringo	$\$ 20$
LAC-2 lightning arrestors	$\$ 6$
CRYSTAL FILTERS	
9 MHz similar to the FT 200 ones. with carrier xtals	$\$ 35$

POWER SUPPLIES
240 AC to 12V DC 3 to 3.5 Amps. regulated
$\$ 35$

MIDLAND

PYT dynamic microphone
$\$ 10$

All prices quoted are net, cash with orders, sales tax included in all cases, subject to changes without prior notice. No terms nor credit nor COD, only cash and carry, Government and Public Company orders no exceptions. Include 50 cents per $\$ 100$ value for all-risk insurance, minimum insurance $\$ 0.50$. Allow for freight, postage or carriage, excess will be promptly refunded. MARY \& ARIE BLES, Proprietors.

BIG REWARDS WAIT FOR YOU in COLOUR TELEVISION SERVICING -if you're trained for it!

Colour TV is the exciting breakthrough for the electronics service industry. It offers a great future for the service man who's gained the knowledge necessary to do the job.

Stott's introduce a brand new course designed to take you, step by step, all the way from basic electronic theory through to colour television receiver servicing techniques.

If you're a beginner, it can teach you everything you need to know about television principles and receiver circuitry.

If you are already working in the field or have already successfully completed some studies in electronics, you may be eligible to commence the course at an advanced stage.

Divided into three sections, the Stott's course covers:
Part 1 - Introduction to Electronics (theory and practice)
Part 2 - Monochrome Television Receivers.
Part 3 - Colour Television including fundamentals, colour processing
circuitry, servicing techniques and faults.
Like all Stott's courses, you will work with your own instructor, an expert in this exciting field, at your own pace, in your own home. Whether you intend to enter the television service industry, or whether you wish to gain a thorough understanding of television theory and servicing as an aid to sales experience, this is the course to help you make it.

Other electronic courses offered by Stott's include:
Radio for Amateurs - Amateur Operator's Certificate
For full information mail this coupon today:

UHF SERVICES

For:
CONVERSION
ALIGNMENT
SERVICE
on all VHF, UHF and Microwave Equipment

AGENTS FOR

SCALAR ANTENNAS

Also available:

2 metre and 6 metre RF pre-amplifiers, soon to be followed by a 70 cm low noise pre-amp for AM, ATV and FM use.

PHONE 914300
or by appointment at
129 TENNYSON ST., ELWOOD

Manufacturers of. Electrical / electronic equipment, wound components and lighting control equipment.

BRANCHES
IN
ALL STATES
Ferguson Transformers Pty Ltd.

Head Office
331 High Streer. Chatswood NSW 2067
PO Box 301 Chatswood
NSW, Australia 2067
Phone: 02-407-0261

DOES COLOUR TV QUALIFY FOR INTRUDER WATCH ACTION?

The following is the text of a letter sent by the Executive on behall of the Institute to the PMG and others in specific reference to the use of TV channel 5A:
"At the recent Inquiry into Frequency Modulation Broadcasting a submission on behall of this Institute was made that the broad principle of international uniformity should be followed in the use of the electromagnetic spectrum particularly in relation to the entertainment service. The submission also supported the early introduction of UHF television and recommended relocation of stations using channel 5A and channel 0 to the UHF band as soon as possible.

Unfortunately a decision has been made (possibly due to economic considerations) that there shall now be greater use of channel 5A.

The spectrum between 108 and 170 :AHz is allocated World Wide to such International services as Aeronautical, Land and Harbour mobile, Satellites and Amateur. Australia however is the only country to have allocated a television channel in this segment; vide note 279A.

Past experience, (as indicated by the need to hold the Independent Inquiry into FM Broadcasting) has shown the necessity lor conformity with international allocations and the economic penalties incurred by non-conformity. These penalties may be expected to increase greatly the longer conformity is delayed.

Therefore it is submitted that before the use of channel 5A becomes more widespread, a decision should be made at once to phase out its use for television. To permit this to take place as soon as possible it is urged that the fitment of UHF tuners to all production television receivers be made mandatory immediately. thereby permitting the early introduction of UHF television. This will also permit implementation of the Institute's recommendation to the FM inquiry that channel 0 be transterred to UHF on the grounds that it is the TV channel most susceptible to electrical interference, that it can produce interterence problems in conjunc-
tion with FM broadcasting and that there are technical di.ficullies with transmitting colour on this channel.

It is considered that there will be a long term benefit to the community as a whole it action along the lines recommended can be taken without delay by all authorities concerned.'

This is yet another step taken by the Institute in an attempt to tidy up the VHF specirum allocations.

Most of us are aware of the uniqueness of the Ch . 5A allocation but how many amateurs realise that we appear to have yet another burden about to be placed on our backs, namely colour TV, in association with the allocation of the Channel 5A and Channel 0 frequencies.

The problem of introduction of colour TV is not so much the Interference caused by amateurs to its reception as to the interference by the colour broadcast itself. Interference by amateurs may not apparently be as big a problem as we were led to believe.

Complaints are coming in from members about additional spurii appearing in the 6 metre band whilst colour programmes are being transmitted. It is demoralising enough to have TV channels adjacent to our bands without having to put up with noise and crud from them within our bands.

At this stage more delails are essential in order to prepare suitable, properly documented, submissions to the approprlate authorities.

Are you experiencing more problems in using 6 melras or any other of your lavourite bands since colour TV began? Can you specilically pinpoint any additional noise or interterence on the bands concemed which can properly be aftributed to colour TV? If so, write in with full delails plus, of course, any date on the Ch. 5A problem which has come within your own practical experience.

> Peter Woltenden, VK3zPA
> Member of the Executive
> Chairman VHF/UHF Advisory
> Committee

amATEUR RADIO LICENCE FEES

CORRESPONDENCE

Posimasier-General.

Canbarra, A.C.T. 2600
Dear Colonel Bennell,
I reter 10 your leller of 301h September. 1974. addressed to the Minister for Delence, the Honourable L. H. Barnard, concerning the recent increase in fees for amateur radio station licences.

I should like to explain that licences for civil radiocommunlcation stations are granted in accordance with the provisions of the Regulations made under the Wiraless Telegraphy Acl. These Regulafions provide for the payment of an annual tee in respect of the grant or renewal of such licences and the revenue collecled is Intended to cover the costs incurred by my Depariment in ils role of ensuping the orderly development and conducl of radocommunication services generally. Since 1950. developments in techniques have been such as 10 permit of a large expansion in the commercial and other fields and more than 203.000 licensed stations are now in operation. I need hardly add that in order to meal the varying requirements of users it has been necessary lor my Depariment 10 institute a wide variety of licensing condilions which add to the administrative load.

There have baen developments in amaleur radio corresponding to those relerred to above. Thirly years ago. lor instance, there were only 335 licensed amateur iransmititing stalions using quite limiled operating lechniques. The number has now grown and at June. 1974. there were 6698 licensed stalions using a far greater range of techniques than in earlier years. Today amateur licensees are authorised 10 pursue experiments in the V.H.F., U.H.F. and S.H.F. bands, to undertake television
experiments and to employ single sideband and pulse transmissions. Amateur licensees also now engage in experiments involving moon reflected signals and communication satallites.
In de:ermining the new fee structure which was .o apply to all radio services, account was laken of the fact that the cosis associated with the licensing and surveillance of land and lixed stations are greater than those associated with stations In the mobile calegory. Accordingly the tee for the former has been sal at a higher rate than for the latler.
Although the large majority of amateur stations more appropriately belong in the fixed category. It was decided thal because amateur stations have no commercial involvement and their aclivities are normally confined to experiments that they should be included in the lower rate licence lee category. Neverlheless, the Government's views in relation to :eisure lime activities should not be construed as to presume its acquiescence to tlie community at large bearing any portion of the costs involved in the pursuits of hobbyists.

In relurn lor this $\$ 12$ fee my Department is required 10 grant llcences, lssue and record call slgns. inspect stations. investigale complaints. arrange for reciprocal agreements with olher countries, trequency measure and monilor transmissions as required and llaise with other Administrations and the International Telecommunlcations Unlon in regard to amareur radio stalions generally.
You may be assured that I am well aware of the part which amateur radio operators have played and are continuing to play in providing emergency communications durling nallonal emergencles. I also appreciate the encouragement given to the
study of the radio ant through amatoup radio aclivilies.

In considering the effect of the increased foes on pensioner amateur station operators it should. perhaps. be borne in mind that the increase represents only a veity small proportion of the overall cost of maintaining an amateur slation In terms of weakly contribuilons this amounts 10 only 12 cents.

The increased fees are not expected to fully reduce the discrepancy between revenue and costs. I regret to advise. therefore, that the Government cannot continue to subsidise the administration of amateur radio stallons to the extent that it has done over recent years and the way is not clear. therefore, 10 reduce the new lee of $\mathbf{\$ 1 2}$.

Yours sincerely,
Lieutenant Colonel J. McL. Bennett.
Public Relations Otlicer.
The Wireless Institute of Ausiralia
Executive.
P.O. Box 150,

TOORAK. Vic., 3142

gUNSPOT BULLETIN

Thanks to the Swiss Federal Obsenvatory Bulletin for 301h Nov., it is noted that the first spot of the now cycle was observad on 15th November The smoothed mean for May 1974 was given as 36.4, the provisional mean for Nov. 74 was 23.9 and the smoothed monthly predicted sunspot numberg for the next 6 months were given 88 Dec. '74 - 29. Jan. '75-27. Fab. - 25. Mar. - 24.

Darwin Diaster Communications

Christmas morning 1974, what would normally have been a happy day, dawned over Darwin, Australia's northern-most city, 10 show the carnage left in the wake of Cy=lone "Tracy" in all her fury.

Hardly a building or structure of any sort had escaped the thrashing of cyoleni= winds, which reached an estimated 160 knots. Most of the ciiy's 40.000 inhabianis were homeless and, within the next few days, more than 28,000 ol them were to be evacuated in the biggest air-lift in Australia's history.

In this, Australia's worst ever natural disaster, the total cost of property and equipment loss is still being calculated long after the event.

Darwin is remote, even in the vast continent of Australia where the people think little of travelling long distances - Darwin's help could only come from outside - from Sydney and Melbourne, $\mathbf{3 , 2 0 0} \mathrm{km}$ away; and from Brisbane. Adelaide and Perth, all around the $2,700 \mathrm{~km}$ mark!

The remoteness of Darwin was emphasised by the near-total loss of communication facililies.

Darwin, normally well equipped with and well serviced by communication facilities, had lost her voice and contact with the outside world to tell of her plight . . . almost, but not quite, lost her voice.

Shortly after 1 a.m., Eastern Australian Summer Time, the last telephone call from the city was cut short - the OTC Telex link failed at 6.30 a.m. For the next three hours or so, little or nothing was heard. Then, an amateur operator's voice was heard from Darwin!

Bob Holland, VK8RR, having found his mobile gear serviceable, came up on 14 MHz and was the first known voice from the devastated city. This was around 9.00 a.m. EAST.

About the same time, Bruce Wilson VK3IG, a Technical Officer with Radio Australia at Shepparton, 220 km north of Melbourne, was calling "CO Darwin" in the hope of ascertaining the status of "RA" equipment there, as the telex link with Darwin and Shepparton transmitters was "out" and all attempts to contact Darwin by other means had failed.

Bruce's call "CQ Darwin" was heard by HL6WI in Seoul, South Korea, who told Bruce that there was a VK8 on the band and that a cyclone had apparently hit Darwin. A quick call for Bruce from P29WB informed him that VK8RR was operating down on 14195 kHz . . . so contact was established on that freq . . . although it later moved down to 14175 kHz .

Bob, VK8RR, is the Manager of the OTC Coastal Radio Station, VID, Darwin and his concern was to get a message to OTC headquarters in Sydney to advise the present state of OTC communications in Darwin. This traffic was swiftly passed by telephone. Around 10.30 a.m. EAST, Bob was on his way to Darwin wharf with other OTC operators to establish CW communications with the Marine Operations Centre in Canberra using the radlo facilities of the coastal trading vessel "Nyandra", anchored in Darwin harbour. This link was opened at 14.30 EAST using the call sign VID-2 . . . VID itself having suffered considerable damage in the cyclone.

Those amateurs known to have been on watch and operating on 14175 and 14195 kHz between 0.900 and 12.30 EAST
were: VK3IG, VK3KF, VK3ZA, VK4YG. VK4DK, VK4GD. VK5SL, VK5NJ, VK5OX and VK6NA.

Doubtless, there were numerous others monitoring the frequency, as was the case throughout the entire operation. all of whom were ready to give assistance if required.

Nothing further was heard from VK8RR after 10.30 EAST, as Bob was flat-out with the operation of VID-2.

As that circuit, Army RTTY and other links came into service around midday, the picture of Darwin's plight began to emerge at the headquarters of the Natural Dis-

John McL. Bennett. VK3ZA.
WIA Executive, Public Relations Officer

asters Organisation in Canberra

At 5.30 p.m. 06302 . . from this point in the slory all times will be quoted in "Zulu" . . GMT . . . showing in date time group style e.g. $250630 Z$. .).

So . . . at 2506302 . . . the next amateur voice was heard.

Trevor "Slim" Jones, VK8JT, operating an FT101 mobile, about 8 km from the centre of Darwin, called "Mayday" on approximately 14114 kHz and the call was heard in Melbourne by Ken, VK3AH, who immediately advised the Victoria Police communications centre "D24". Within minutes, the police were at Ken's Mooroolbark home at the foot of the Dandenong Ranges, some 40 km east of Melbourne.

By $250645 Z$ the police had declared 14114 kHz "a police priority channel for emergency traffic only". A telephone link was established by Ken's 'phone with "D24". This 'phone link was later supplemented by a police UHF radio link. In Darwin, "Slim" had informed the Police Commissioner of the existence of the amateur radio emergency circuit with the Victoria Police in Melbourne and, as a result. a police walkie-talkie radio was installed adjacent to "Slim's" gear 10 complete the hook-up between the two police organisations.

The Victoria Police established com-

The scone at Dlaastar Centrol, D24, where mambers of WICEN provided the link Irom the HF stations to the Victorian Pollice, and conirol tor the VHF alationa at Tullamarine and the Commonwealth Centre.
munication with the Natural Disasters Organisation operations centre in Canberra and so the chain was completed and police Information began to flow over the amateur radio circuit out of Darwin.

Word quickly spread through the amateur world and soon an effective net was established which allowed for relay facilities between Darwin and Melbourne and Cairns and Perth. The need to QSP was vital to the success of the circuit as 14 MHz , although quite good between Melbourne and Darwin for a large part of the day, couldn't be relled on for the whole 24 nours

The stations Involved in primary relay and logged in the first 30 minutes of operation at VK3AH were: Ted VK4YG, Terry VK2BTS/4, Mount Isa, Craig VK8CW, Alice Springs, Owen VK8OM, 270 km from Darwin, Bert VK5AH and lan VK5QX, both of Adelalde.

Three overseas stations also played a significant part in relay ops . . . VR4BD; 9M2ML RAAF Butterworth, Malaysia; and HL9WI in South Korea.

HL9WI, in the first three or four hours after VKBJT commenced operatlon could read Darwin clearly and OSP traffic to VK3AH. Most useful to the relief operation was HL9WI's abllity to both receive and transmit on service aircraft frequencies this enabled him to relay the Darwin weather report, sent by VK8JT, to the first RAAF C130 Hercules transport inbound with support for the city.

> If you have a story to tell about Amateur involvement in the uffermath of the Darwin Disaster, please write to:
> AMATEUR RADIO STATION VK3ZA, P.O. Box 134,

> Mount Ehiza, 3930

In those first few hours, the "net" grew to an estimated 200 participating stations with unknown hundreds listening on the frequency as "Slim" and his assistants, Gary VK2BNN/8 and his XYL Wendy, who were on holiday In Darwin. passed police traffic tirelessly. This was no easy task as "Slim" was operating under great difficulty with make-shift antenna slung-up with string!

At 251400Z, seven and a half hours after Ken, VK3AH commenced operation, he was joined by Bruce, VK3UV and these two alone kept going with meals and coffee brewed by Ken's wife Bett, continued to control the net and handle police traftic for a further 18 hours. At that stage, 260643Z, both men were very tlred and the operation was now very large. Ken was notlified that the Wireless Institute Clvil Emergency Net was ready to commence operation. Ken signed clear at 06472 and WICEN took over a well-oiled machine which was to steadily grow in complexity and continue operating for another three and a half days and nights.

Inltially, WICEN control station was VK3AUP, operating from Templestowe, with a VHF FM link utilising the 2 mX
channel 1 repeater between there and police headquarters at Russell Street. Andrew Moffatt VK3FJ acted as co-ordinator in overall control. VK3LM, at East Ringwood later carried on the same fuñtion of VK3AUP using the same facllities.

VK3AUP continued to handle police and Natural Disasters Organlsation (NDO) traffic until $270640 Z$ when advised by NDO through VK3ZA that PMG circuits to Darwin were almost fully restored for NDO purposes and that there was no further requirement for WICEN net for official purposes. NDO had closed their radio link in Canberra with WICEN around 2701002 but asked W!CEN to remain on standby in case there was a need to reactivate the net at short notice. From the official closedown time of 2708002 for NDO traffic, WICEN took on a new role.

Although NDO traflic had ceased, the Victoria Police considered that there was need for the net to continue in order to handle the volume of traffic arising from the evacuation of some 28 to 30,0000 people from Darwin.

At 280445Z, VK3AUP changed callsign to VK3WIA, the official call sign of the Executive of the Wireless Institute of Australia. Coincldent with that change, VK3WIA called "CQ CQ VK, CQ VK"... with a message from WICEN Sigcen Melbourne. '

All stations operating into Darwin... PMG has authorised third party traffic in and out of Darwin may be accepted and passed to this station from VK8 statlons or interstate relays or to local Police Headquarters for onward transmission to D24 Melbourne. Priority is to be given to sigs out of Darwin unless vital.

Within an hour, the officlal Wireless Institute callsign of every State in Australla was on the air, together with about another 20 stations in major provincial areas. These stations handled and relayed messages of a welfare nature until the closure of the net at 2913002 - on the fifth day of operation.

Tribute must be paid to all those amateurs who operated and staffed the repeater links on 2 mX FM between WICEN HF control stations and D24, the second repeater link between D24 and Tullamarine airport and the simplex net between Tullamarine and the Commonwealth Centre in the City of Melbourne. Without these links, much of the traffic handled on the Darwin-Melbourne circuit would have been meaningless or wasted.

Nor can one find words to express the gratitude due to the many amateurs throughout the country who so willingly made available their equipment to be sent to Darwin to supplement the meagre resources there or for use in the VHF nets.

Behind every amateur Involved there stood the support of XYLs, YLs and Mums without thelr unflagging efforts, be it in Darwin or wherever, many an operator may have flagged!

Thank you ladies, one and all.
There is a host of storles and anecdotes yet untold about this disaster and there
are countless names and callsigns richly deserving of a place in the history of this communications challenge.

For these sins of omission, please forgive the historian at this stage.
As more and more information comes to hand, the full story will take shape, thus enabling us to publish, in due course. the complete history of communications with, within and from Darwin in the aftermalh of Cyclone Tracy.

All that has been attempted here is to chronicle the key points of the saga of restoring contact with Darwin. The author would appreciate any Information which readers may care to add or amplify. whether it concerns amateur radio or other forms of communication

We, the amateurs of Australia, capably assisted by the brotherhood of fellow amateurs outside the Commonwealth, fulfilled our emergency role of providing a replacement and backup support for the normal facilities of the Australian Post Office and in the words of a police Inspector in Melbourne ".. . . a good job well done".

However, we were only a part of the "big picture" in providing emergency communications and our part, with your help. will be told, along with that of all the other agencies and organisations involved. in a later edition of "Amateur Radio". -

The Shack

Alan Shawsmith. VKASS

Maybe it's carpeled, rich in decor Or humbly furnished and bare of lloor. Spaclous and speclally made
Or a tiny room. downstairs laid.
It could house gear worth dollars 10K:
The sky-hook. a reaching phallic apray Or is there simply a rig QRP.
Working an LW or inverted ' V '?
Do Iropities and merits adorn the wall
Of is there no space for cards al all? Maybe It's built up high In a irea. There are such places known to be--or is there only to be had.
A cellar in which the alr is bad? Does it sland on a hill or country glade Or deep in a slum in eternal shade? -o' have you as a last resort. Converted a corner of the carport? No matler what or where il may be. It's THE one place where a man is iree. if's THE SHACK - the Ham's Holy Pad. Where pleasure unhindered is lo be had Who cares a $\mid 01 \mathrm{It}$ it's Ildy or bright, So long as the person in it, leels right. It's Ihe Den, wherein you can do. What the spirit moves the lancy lo-: Chase rare DX or call a CQ.
-or simply give the rag a good chew.

> And if the bands are dull or dead.

Work on some homebrew job instead.
It's the Inner Sanctum, so shul the door. And the dally 'rat race is no more. Switch on the plg. spin over the dial. And Just for an hour or longer while. In this Castle the Ham is King. Here. from the fones, voices ring. to come and lalk, to OSO
With friends, whose hobby all do know. Has no distinction to embrace
Any creed, politics or race.
A sociaty egallarian,
Of Joe. Nick, Karl, Ivan, Sven or Ben.
The SHACK - that imperalive territory.
Where I am Han and I am me.

20 Metre Quad Tuning Made Simpler

Many amateurs have difficulty in finding a suitable power source for adjusting a quad antenna. The author used 70 ohm co-ax coupled by a 2 turn link to the coil of a GDO.
A simple SWR bridge using a 50 UA meter was used in the line and this gave ample sensitivity. The circuit of the simple indicator is shown in Fig 1.

TO blilike

FIG 1 SIMPLE SWK BRIDGE 70 ÁL
Leave the meter leads long and the meter can be read outside the shack, or through field glasses from the tower or pole (even longer and you could have the meter next to youl - Tech. Ed.) All that is required is to slide the gamma bar along approximately 3 feet, then adjust the 100 pf capacitor. This can be a close spaced capacitor small enough to fit in a small plastic container for weather prooting. If metal acts as a shield, this also makes earthing to the lower centre of the driven element easy. A coaxial connector can be used for the 70 ohm cable. The

SPACING 10^{\prime} GAIN 8 dB APPROX

FIG 2 GENERAL DETAILS OF QUAD

rough layout of the beam and tuning is shown in Fig 2. If the SWR is not to minimum or very close to a pure resistive 70 ohms, re-adjust the Gamma Bar and Capacitor.

Note:-For those wanting a 50 ohm resistance on the Quad, simply replace the 70 ohm resistor in the bridge with one of 50 ohms.

TUNE UP METHOD

Set GD Oto 14.150 MHz , adjust 2 turn link to give a full scale reading on a 50 uA meter. With the quad lead disconnected, connect a terminating resistor of 70 ohms to load the co-ax terminal. The bridge meter should now read zero. Without touching anything, except to replace the 70 ohm terminating load with the antenna 70 ohm cable to Gamma bar and driven element, adjust length of Gamma match and 100 pf capacitor for bridge meter reading of zero. Leave set-up as Is and rotate the beam with the reflector facing a dipole 10 feet high and as far away as possible.

With the 70 ohm feeder at the end, insert the meter with a diode across the line, and tune the reflector stub shorting bar for a minimum signal on the reflector. Repeat above adjustments to ensure accuracy.

RESULTS:

Back to front ratio - 6 " S ' units, ends approx. 2 " S " units. Lobe spread approx. 45-50 degrees.

These are the owner's figures with the antenna only 20 feet high. Note by the Technical Editor:
If the test dipole cannot be placed say, 50 feet or more from the Quad, then a small dipole (say 3 feet per side) could be used closer in. A diode should be connected in series with the feedline and bypassed with a 0.01 uF capacitor in the feedline side so that the meter sees only $D C$.

A Keyer for VK3RTG

The design and circuitry of the keyer for the VK3 two metre beacon ls discussed. A novel approach to the design to save on components and an extensive list of references are features of this article.

Late in 1972 the author visited the station of Gil Sones VK3AUI. During the course of the evening the discussion turned to the keying system used at the Victorian 144.7 MHz beacon at Vermont, Melbourne. The system then in use was an optical disc encoded with the call-sign rotated by a 1 RPM motor and operating the keying relay. This system suffered the usual problems associated with mechanical-optical discs. The code timing tended to be sloppy with the dahs varying from two dits to four dits long. The encoding discs had to be replaced at roughly two monthly Intervals and had to be photographically produced :nd re-produced.

As a result of this conversation, the Victorian VHF Group of the WIA requested that the author design and construct a fully electronic keyer to replace the existing system.

After exploring the methods used by others in this field it was decided to try to economise on matrix space as far as possible. Certain basic characteristics of the Morse code were used to achieve this end. This keyer differs from most others in that it uses a variable clock rate to optimize matrix usage. Roughly a 60 per cent saving can be made in matrix space for a given message using a variable clock compared with a fixed clock. Use is made of the fact that every morse character is followed by a space at least one dit long. This information is made part of the circuit external to the matrix, thus reducing by one bit, for each character stored, the

Roly Roper, VK3YFF
15/10 Brook Street, Hawthorn. 3125

FIGURE 2 COUNTERS, DECODERS AND AUTO-START CIRCUITS

number of bits needed to be stored. The second important basic relationship is that a dah is three times as long as a dit. If the stored dahs are generated by an external timer (monostable multivibrator) then only one bit need be stored for each dah rather than three, giving a saving of two bits for each dah stored.

Referring to the block diagram it can be seen that the keyer consists of two Inter-locked loops.

The first loop is through the four monostable multivibrators (74121s). These monostables form a two state oscillator in which one of the states is fixed and the other is variable. The fixed part consists of the dit space mono and the variable part is selected by the counters and matrix and may be dit, dah or two dit space.

The path of the first loop is through the dit space mono, along the "recycle" line and through whichever mono is selected by the matrix and back to the dit space mono via a combining gate.

only $\$ 48.50$

RESISTOR PACKS

 ${ }^{\text {thom }} 22$ orm to 070 k . Owet 50 diticerent volues and
 CAPACITOR PACKS
Here ris our hiss compuler isted pick ol single ended uspless valuesl.
loV $2 \times 33 \mathrm{uF}$
$16 \mathrm{~V} 4 \times 100 \mathrm{uF}, 4 \times 220 \mathrm{UF}, 2 \times 470 \mathrm{uF}$
$25 \mathrm{~V} 4 \times 2.2 \times 4.7 .4 \times 25.2 \times 33,4 \times 47.4 \times 100$, $25 \mathrm{~V} 4 \times 2.2,4 \times 4.7 .4=25.2 \times$
$4 \times 220.2=330.2 \times 470$

OSKER BLOC SWR200 Protessional SWR Power Meter

 Aldached to the imptrument. Four power ranges covel
$0-2 \mathrm{~W}, 0-20 \mathrm{~W}, 0.200 \mathrm{~W}$ and 0.2 WW .

BOOKS

75 ARBL HANDBOOK due mid Feb Reserve your copy now!

DIPACKS 2.50
DIGIPACKS
Tor counter enthusissis. A detaled
tited instuuction shees covers the operation of
the ICI and how thay ars intercannected The ICi zind how thry ate interconnuctiod. Goith packs can be cascaded. TTL A. asek has a Dataly 707 display
with 7490 日CD countier and 7447 mith 7490 BCD counter ind 7447
 TIL ' E paek has the same componen ta
as the A pack but also has 7445 inteh ic as the A pack but also has 7445 latth
which hoide the display whila counting

ICOM IC22 SEE E.A. DEC. 74 \$199
 Deviation 5 IS KHA, Fenluits solid stale Tx/Ax relay, large built-in spenker. MOSFE T tront end with 5 hefical liliters.
noise cancelling mic., quick disconnact mohila mount. An The spac doesn' g gab you, the loohs will. Sofs green back incoming sinnals if the vol ume is luvned down. Supplied complaile with woik thop manuil and mocessoriss cright do

 ather al 39.00 a pair as follow
New Channels

50
$\begin{array}{ll}146.1 & 146.7 \\ 146.4 & 14700 \\ 1465 & 146.5\end{array}$

| R.F. POWER TRANSISTOR SPECIAL
 devices. Fully quat anterd, premium quality devictes at stwinga up to $\$ 2.00$ asch.
2NS589 7W was $\mathbf{\$ 6 . 5 0}$ NOW $\$ 4.90$
2N5590 15W was $\$ 7.75$ NOW $\$ 6.90$
2N5591 30W was 59.85 NOW $\$ 7.50$
Sel ol 3 to give compleite chain trees Kitsl nas $\mathbf{S 2 2 . 5 0}$ NOW
$\mathbf{\$ 1 9 . 2 6}$.
$\$ 18.26$.
Get rogether with yous Irionds lot clubl buik purctiese and
share the sevings
 Cannon type comnectass tor in tine
$50,150.600$ ohmas IT700 S7.90.

REAL SUPERHET TUNER ONLY $\mathbf{\$ 8 . 9 0}$

 phere's all the besic peris lor a 3 liansistor suptrind funtr Prinied curcuit, all moils, furrita bat antenna, tuning ganCovers 530 to 1600 kHz lihumbuheel died includad).
 Ilass than parts nione!ll. Sell ote illating mixer, 2 stage if
 No. 46 30W VHF Amp 144 MHz A completi VHF Ampliner kit comprising thite siges. Ameteur une. 30 W on 144 MHz with only 300 MW input using a 12.6 V supply. Ideal tor mobile ust. Cirevit and instructions suppliad. Uses the vitually indistructube
2N5589, 2 N 5580 , 2N5591 VHF Communications T/Int $\$ 39.50$ lail P AP 75 c).
This unit is aso ivailabla in inree seperate reger:-

No. 46A	7 watl stage	\$12.50
No. 468	15 walt staga	\$14.60
No. 46C	30 watt sisce	\$18.60

Plasast Note: Instructions fer conversion to 52MH2 ata

Ideal lor ure on cars. caravans, bosts ilc. Anywiate y CMOS ind deliente IC circuits since there are no orith ienkrge cultents, Only for ilectronic soldeting (worit
mend kettesl). Iron comple te with lip at only|s $19: 80$ mend kettestl. Iron comple te with lip at only|\$19:E0 car chargee for only 50 cenns $1 P$ \& P $\$ 1.00190$ diry quarmites. Sozes wailibile.

Reforence Dats for

Radio Engineery
11196 papasi). This massina book
conilins every thing you need to know. Over $2 / 1$ million copies sold om 100 ispaers-in tritir. liblids. engineets, prolistsors, fovernmen experte mod stalf ol ITT. 45
chapiers, 100 of chmit. nomo ruphs, disgrems, curwet ithers pictures Yes there's 1190 peges of everybing. We nhewe s large audntily of the litelt edition s

\section*{

 Ken KP202 146. 148 Hand-held tians

Cener, has 5 channel capacity nith $2 W$ output Telescopic merini, squatich. adaprar plug supplied. Operater on penCrustals included as tollows falease
 \begin{tabular}{|c|c|c|}

\hline | 1 Charnel 50 |
| :--- |
| 2 Channel 42/45 |
| 3 Channal 48/60 | \& \[

$$
\begin{aligned}
& 146.5 \\
& 146.1 \\
& 146.4
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 146.5 \\
& 146.7 \\
& 147.00
\end{aligned}
$$
\]

\hline Alternative 8 \& Tx \& Rx

\hline | 1 Channal 8 |
| :--- |
| 2 Channel 1 |
| 3 Channel 4 | \& \[

$$
\begin{aligned}
& 146.00 \\
& 146.1 \\
& 146.4
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 146.000 \\
& 145.6 \\
& 145.9
\end{aligned}
$$
\]

\hline \multicolumn{3}{|l|}{Special KCP. 2 NiCad battery set and chaiger with 10 ceils to sult the KP202 analidule at $\$ \mathbf{3 5} .00$.}

\hline
\end{tabular}

프물

Lenk Cordless Iron

atar The bp ico is ime greatest devalopmant vel. Aunt olla recharge able call giving up 10120 , ints per charge. Diur buek-m working ligh. hemy

[^0] Me Cheon Roell. Tul. 709 ehol.

Subscribe to Ham Radio
We en rirange your subscriplion ihrough our magazine depl to us and we will ariange lor this top US mag to be tent

The World Radio-TV Hanabook is int
complete diroctory of indio and TV.
complete directory ol indio and T.
400 papes give complete and enect information on mevery tranimilting suation in the woild. Comiont relerence book lor Shortwowe listensers. DXets st wifl profe stional users: Recommendedion Radio Auntra
P \& P P 5 cl .

VHF FM Transceivers - from Yaesu

FT-224

- 24 Channel FM Transceiver

Join the action on FM - the "Fun Mode". The FT-224 is an advanced, solid state transceiver, that features 10 Watts and 23 channel flexibility plus one priority channel, all in one com pact package. The FT- 224 includes a built-in tone burst for repeater actua tion and six popular channels installed. Additional plus features in cludes automatic high VSWR protec zon of the final output transistor, and reverse power line polarity protection. The FT- 224 comes complele with a built-in speaker, mobile mounting bracket, and dynamic microphone.

Sigmasizer-200R

- 200 Channel Synthesized Transceiver

YAESU now offers the FM enthusiast a complete, solid-state, 200 channel 2 Meter FM transceiver. The Sigmasizer. 200R featuzes advanced. synthesized circuitry for total repeater and simplex coverage of the 144 to 146 MHz or 146 to 148 MHz FM band. Frequen. cies are selectable in 10 KHz incre. ments and front panel selectable - 600 KHz transmitter offset oscillators give complete flexibility for repeater opera tion. A built-in tone burst oscillator is included for activation of tone coded repeater systems. A priority channel may be preset for instant selection of

```
\(\$ 448\)
```


FT-2 Auto

All sels supplied tor $146-148 \mathrm{MHz}$ operation. - All prices incl, S.T., freight exira. Prices and specifications sublect to change. - All sels pre-sales checked in our workshop and carry our 90 day warranty. - Comprehensive range ol spare parts.

- 8 Channel 2M
 "Auto Scan"
 Transceiver

A new concept in a 2 meter $F M$ transceiver is the FT- 2 Auto. The unique "Auto Scan" circuit. with priority channel search, place the FT-2 Auto in a class by itself. The versatule capabilities of this transceiver are achieved through the use of advanced digital logic circuits. The "Auto Scan" circuit monitors your favorite 8 chan nels at the rate of 20 channels per second with indicator lights for each channel. It automatically locks upon receipt of a signal on any channel.

Sets supplied by B.E.S. are equipped with all crystals installed for channels B, 50, 1, 2, 3 and 4.

Specifications

GENERAL

Frequency Range: 144 to 146 MHz or 146 to 148 MHz
Number of Channels: 23 plus 1 priority channel.
Mode: FM.
Frequency Stability: $\pm 0.001 \%$.
Antenna Impedance: 52 Ohm unbalanced.
Circuitry: 30 Transistors, 23 Diodes, 4
IC, 5 FET.
Power Source: 13.5 VDC.

Power Requirement: 0.4 A receive.
2.2 A transmit (DC).

Size: $1801 \mathrm{~W} / \times 70(\mathrm{H}) \times 2201 \mathrm{DI} \mathrm{m} / \mathrm{m}$. Weight: 2.5 Kg .

RECEIVER

Sencitivity: $0.3 \mu \mathrm{~V}$ for 20 dB quieting Selectivity: 15 KHz at 6 dB .25 KHz at 60 dB
Audio Output: 2.5 Watts at 4 Ohm

TRANSMITTER

RF Output Power: 1 or 10 Watts.
Spurious Radiation: 60 dB better
than 60 dB .
Deviation: $\pm 5 \mathrm{kHz}$ nominal

FP-2

AC POWER SUPPLY FOR HOME OPERATION
The FP- 2 can be used with the FT- 224 or Sigmasizer-200R supplying regu. lated 13.5 V DC. Provision has been made for installation of optional colloid batteries which are automatically charged. and connected when the AC supply stops. The colloid batteries last approximately 10 hours. Contains a $80 \times 120 \mathrm{~m} / \mathrm{m}$ speaker.

Output: $13.5 \mathrm{~V} D C, 2.2 \mathrm{~A}$ maximum. Power Requirement: 100/110/117/ $200 / 220 / 234 \mathrm{~V}$ AC, $50 / 60 \mathrm{~Hz}, 35$ Watts.
Size: $160(\mathrm{~W}) \times 120(\mathrm{H}) \times 230(\mathrm{D}) \mathrm{m} / \mathrm{m}$. Weight: $\mathbf{4} \mathrm{Kg}$.
your favorite channel. Automatic final protection against high VSWR is another total performance feature of this outstanding transceiver.

Specifications

GENERAL

Frequency Range: 144 to 146 MHz or 146 to 148 MHz .
Number of Channels: 200110 KHz intervals) Simplex and -600 KHz TX offset for Repeater operation.
Mode: FM.
Frequency Stability: $\pm 0.001 \%$.
Antenna Impedance: 52 Ohm unbalanced.

Power Source: 13.8 V DC (negative ground).
Power Requirement: 0.45A receive.
2.2A transmit

Size: $220(W) \times 80(H) \times 230(D) \mathbf{m} / \mathrm{m}$.
Weight: $\mathbf{3} \mathrm{Kg}$.

RECEIVER

Sensitivity: $0.3 \mu \mathrm{~V}$ for 20 dB quieting Selectivity: $\pm 8 \mathrm{KHz}$ at $6 \mathrm{~dB}, \pm 16 \mathrm{KHz}$ at 60 dB .
Audio Output: 2 Watts at 4 Ohm

TRANSMITTER

RF Output Power: 1 or 10 Watts. Spurious Radiation: 60 dB minimum. Deviation: $\pm 5 \mathrm{KHz}$ nominal.

$\$ 79$

Individual lock-out buttons enable you to eliminate any undesired channels. To transmit on a channel being received. a momentary depressing of the mike button locks the transmitter to the receiver. A priority circuit may be activated to check your favorite channel every two seconds. A built-in front panel switchable tone burst generator is included for repeater actuation. Only the YAESU FT- 2 Auto offers you such a unique two meter transceiver; complete with cables, mounting bracket, crystals for six popular channels and microphone.

Specifications

GENERAL

Frequency Range: 144 to 146 MHz or 146 to 148 MHz .
Number of Channels: ' 8 (6 oupplled, B, 50, 1, 2, $3 \& 4$).

Mode: FM.

Frequency Stability: $\pm 0.001 \%$.
Antenna Impedance: 52 Ohm unbalanced.
Circuitry: 61 Transistors, 94 Diodes, 7 IC, 3 FET.
Power Source: $100 / 110 / 117 / 200 / 220 /$ $234 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$ or 13.5 VDC.
Power Requirement: 30 Watts (AC). 0.5 A receive, 2.1 A transmit (DC). Size: $210(\mathrm{~W}) \times 95(\mathrm{H}) \times 270(\mathrm{D}) \mathrm{m} / \mathrm{m}$. Weight: 4.2 Kg .

RECEIVER

Sensitivity: $0.5 \mu \mathrm{~V}$ for $\mathbf{2 0 ~ d B}$ quieting. Selectivity: 7 KHz at $6 \mathrm{~dB}, 16 \mathrm{KHz}$ at 60 dB nominal.
Scanning Rate: 20 channels/second.
Scan Delay: 0.3 second.
Priority Channel Check: Every 2 sec-
onds.
Audio Output: 2 Watts at 4 Ohm
TRANSMITTER
RF Output Power: 1 or 10 Watts
Spurious Radiation: - 60 dB better than
60dB.
Deviation: $\pm 5 \mathrm{KHz}$ nominal.

COMMUNICATIONS EQUIPMENT AVAILABLE FROM STOCK:

R-4C	Receiver with crystals for ham bands plus provision for 15 additional crystals	\$638.00	DC-4 RV-4C	Power Supply 12 volyts DC Input for TR-4C Remote VFO for TR-4C	$\mathbf{\$ 1 6 7 . 0 0}$ $\mathbf{\$ 1 1 2 . 0 0}$
T-4XC	Transmitter with crystals for ham bands. Transceivers with R-4C	\$609.00	MN-2000	Matching network/Wattmeter/S.W.R. Meter Antenna switch	\$210.00
TR-4C	Transceiver with crystals for ham bands		W-4	Wattmeter/S.W.R. Meter $1.8-54 \mathrm{MHz}$	\$65.00
		\$630.00	WV-4	Wattmeter/S.W.R. Meter $20-200 \mathrm{MHz}$	\$78.00
AC-4	Power Supply 240 volts AC Input for T-4XC or TR-4C	\$148.50	TV-42-LP TV-1000	Low Pass Filter to 30 MHz 100 watts Low Pass Filter to 30 MHz 1000 watts	\$11.50 $\$ 22.50$
MS-4	Speaker (houses AC-4)	\$37.00	SPR-4	Solid State Communications Receiver	'\$674.00
	Nippan model FC3A Frequency Counter 15 Hz to 250 MHz - \$247.25. 572B valves - $\mathbf{2 9} .00$				

ELMEASCO INSTRUMENTS PTY. LTD. 7 Chard Road, Brookvale, 2100 939-7944

ELMEASCO INSTRUMENTS PTY. LTD. Box 14, P.O.
St. Kilda South, 3182
26-6658

BOOKS OF INTEREST FOR AMATEUR OPERATORS

The Radio Amateurs Handbook (ARRL), 1975 Edition$\$ 8.95$ABC's of Tape Recording, Norman H. Crowhurst \$3.30
Transistor Audio Amplifiers (Jack Darr) $\$ 6.05$
Transistor Manual (GE) Light-Weight Edition $\$ 3.60$
Pin-Point TV Troubles in 10 Minutes $\$ 7.40$
Kwik-Fix TV Service Manual, Forest H. Belt $\$ 6.60$
Basic Electronics - Prepared by the Bureau of Naval Personnel $\$ 5.30$
Basic Electricity - Prepared by the Bureau of Naval Personnel $\$ 4.65$
High Fidelity Designs - Wireless World \$3.00
Transistor Substitution Handbook No. 14, Howard W. Sams $\$ 3.25$
ADD PQSTAGES: LOCAL 50c
INTERSTATE 75c
McGILL'S AUTHORISED NEWSAGENCY

The second loop controls the addressing of the matrix and passes through the dit space mono, the counters and decoders, the matrix, the selected mono and back to the dit space mono.

AUTO START

The auto start is required to provide clock pulses in the event of a power failure as it is most likely that the counters (7490s) will set up into an "illegal" state when power is restored. The decoders are designed not to give any output unless the Input is a binary number between zero (0000) and nine (1001) inclusive. Therefore, no number is presented to the matrix which consequently has no output. In this case the keyer would $n \in$ ver start, hence the need for the auto-start. The auto-start consists of a timer (NE555) which Is set to a time of about one second. Normally this timer is unable to time out as it is reset by each clock pulse into the counters which should occur far more often than one per second. The timer times out and a reset pulse is fed to the counters which resets them to zero (0000) which is a decoded state which allows the keyer to start. The auto-start timer is arranged so that in the absence of clock pulses it will continue to produce reset pulses (i.e. until the keyer starts).
COUNTERS AND DECODERS
The counters are binary counters internally "moded" to only count to nine (1001) then reset to zero (0000). The decoders are arranged to decode the binary coded decimal (BCD) Into one-of-ten lines to drive the matrix and matrix decoding (7442s).

THE MATRIX

The matrix consists of ten lines crossing rows which are in groups of three. The lines and rows are interconnected with germanium diodes (for lower forward voltage drop) as required for the message.

Fig. 3 shows the first row which has been encoded with the first part of the callsign VK3RTG. In the circult shown, "VK" and the first dit of the " 3 " are generated. The matrix is on a plug-in card for easy code changing.
MATRIX DECODING
The four groups of three are selected (7402s) then routed to the keying monostables (7453s and SP317A) as shown in Fig. 4.

The expander input on the SPACE gate is used to run the counters around to the start so that the code may be sent again. monostable multivibrators
When a monostable is selected by taking its A input low, its output Q goes high for Its set time. In the case of the dah mono, its Q Output goes high for 600 ms , then it reverts to its resting state. The recycle line is used to retrigger a monostable via
its B input if it is required for consecutive characters; the 100 micro second delay prevents false retriggering if a different character ls selected.

A gate (7410) is used to provide three long "key down" periods so that the keyer may operate as a beacon.

POWER SUPPLY

The power supply required by standard Transistor Transistor Logic (TTL) is 5 volts + or -5 per cent and this is provided by a bridge rectifier and an integrated regulator (7805).

As the keyer was intended to operate in close proximity to a high powered 144 MHz transmitter, extensive precautions were taken to stop RF getting Into the counters or gates. Mains borne RF (and other) interference is filtered by a combination of lossy ferrite beads over the incoming mains cable and a capacitive filter. The logic and power supply were bulit in separate compartments, and all leads from the power supply compartment Into the logic compartment pass through feed through capacitors. The entire unit is housed in a screened case.

Due to the need for a high order of reliability, Light Emitting Diodes were used

FIG.4. MATRIX DECODER CIRCUIT

FIGURE 5 MONOSTABLE MV CIRCUTI

FIGURE 7 CLOCK INDICATOR

FIGURE 8 KEYING CIRCUIT
as indicator lights as they have a MTBF of about 100 years.

OUTPUT

Fully solid state output was employed with a current sink being first installed (B) and later a current source (A). Refer to Fig. 8.

PERFORMANCE

The unit first ran in early September 1973. A faulty two dit space mono was located and replaced and the unit "soak tested" for some three weeks. It was then placed in service at VK3RTG and has performed faultessly since.

BIBLIOGRAPHY

1. An introduction to Digital Electronics Theory, Instruments and Computers. J. Rowe. Pub. Electronics Ausiralla.
2. Radio and Television Enginears Reference Book. Newnes J. P. Hawker-Ed. 1960. Ch. 7-32.
3. A Keyer for GB3VHF, by G. E. Coodwin G3MNO. Radio Communication, June 1970, P. 336.
4. Dlgital Logic Devices, by N. Pos WAGKGP. OST, suly, 1968 . P.17.
5. Integrated-CIrcult Fllp-Flops. by N. Pos WA6KGP. OST. Fobruary. 1971. P.31.
6. Programmable Digital Keyers, D. McArther VK8KK. Amateur Radio, May, 1973. P. 13 of seq.
7. Combinad Keyer and Audio monltor, by M. Jahn K2ERI. OST. September, 1969. P.32.
8. The "Yet Another Keyer". by R. G. Wheatland G3SZW. Radio Communication, May, 1973. P. 326.
9. P.E.K. (Perfect Electronic Keyar), by W. O. Hamin W6ENU, Radlo-Electronics, November, 1969, P. 69.
10. Spakey. a Controlled-Space IC Keyer, by K. Stone K8ORD. OST, December, 1970. P.39.

Interior view of the keyer with the various stages clearly labelled.

Try This

with Ron Cook VK3AFW
and Bill Ricon VK3ÁBP

"LOOK. MA, NO HANDS"
A boom microphone for mobile or VOX operation can be made using a 290 mm plece of $0.42 \times 24 \mathrm{~mm}$ clock spring as the

AVOIDING "PENTAGONAL" HOLES

Not all hams possess a set of classic punches and therefore have to employ other methods to make large holes in panels, chassis etc., and at times there is no room to fit a chassis punch anyway,

basis of a collar clip. A piece of light welding rod is silver soldered to one end of the spring. This becomes one lead to the rocking armature microphone as a loop in the end attaches to a mike terminal and supports it. The other conductor is taped to the rod. A toggle send/recelve switch mounts on the clip via a silver soldered loop. It can easily be reached
by feel alone making it useful for night time operation. The unit takes half a second to put on or take off, yet doesn't strangle or get in the way.

The photos (via VK3GK) showing the unit both in use and lying on the seat of the car illustrate the method of construction.

VK3AKL

particularly in a piece of already constructed equipment.

Very often, holes from say 3/a" to $1 / 2^{"}$ are required, and we are tempted to use plain ordinary iwist drills, with the inevitable result - "ugly pentagonal holes" and this is particularly true in thin sheet metals.
Why they insist on going that way I do not know, but they most certainly do.

Many ideas have been put forward to overcome the problem, such as sharpening the drill somewhat flatter than the normal 110 degrees, or sharpening the drill to provide culting blades at the edges etc. The result being that the drill is no longer of use for normal work, and drills of these sizes are not cheap.
There is a very simple and tremendously effective way out of the problem, and it requires no special sharpening or spoiling of the drill.
All that is required is a small piece of rag, calico, shirt, etc.
Method: First mark the position of the required hole, then drill a small pilot hole - say $3 / 32^{\prime \prime}$ or $1 / 8^{\prime \prime}$. Take a small piece of cloth about $31 / 2^{\prime \prime}$ to $4^{\prime \prime}$ square and fold over once each way, giving four thicknesses of material.

If you have a drill press, first make sure
the point of the large drill centres on the pilot hole when the handle is pulled down.

Keep the job steady and place the folded rag over the pilot hole; pull the drill handle down and drill as usual. You will be pleasantly surprised to see a nice clean cutting come spiralling up through the cloth.

A sharp penknife, or chisel, will easily remove the very thin cutting on the lower side of the hole - a clean round hole.

I have drilled $1 / 2^{\prime \prime}$ holes in 20 S.W.G. aluminium and 24 S.W.G. hard rolled copper sheet with equal success, and with no soul-shattering noise and vibration. Larger holes have not been tried for the very good reason that $1 / 2^{"}$ Is the largest drill which I possess.

I do not have the slightest idea why the idea works as it does, and the gent who first put me on to it had no idea either, nor did the very old craftsman who told him.

If you do not have a drill press, you can still use a hand or breast drill, or electric drill, provided you make sure the drill is centred over the pilot hole when you have applied the folded cloth.

I have made $1 / 2^{\prime \prime}$ holes in existing equipment with no trouble of any kind.

Alex Slight, VK2ZA

Continued from page 18
11. The Five Finger Keyer, by T. H. Turrin, W2IMU OST, January, 1971.
12. The Saga of the Bug, by K. Gilleaple VK3GK. Amateur Radio, September, 1973.
13. Recent Equipment - The Curtis EK-39M Mnemonic Electronic Keyer. OST, March, 1971.
14. An Automatic Code Sender, by M. Groseman. Electronics Handbook, Page Publlcatlons P/L. Sydney. P. 19.
15. Morse Code Keyboapd usee iCs, novel en-
coding ayetem, by A. D. Helfick W2BLA Electronics Australla, November, 1973. P.47 (Reprinted from an unknown lisue of CQ.)
16. Proposals tor a natlonal beacon philosophy, by R. Harrison VK3ZTB. 6UP. October, 1973. Vol. 2. No. 8. P. 12.

Phased Vertical Antennae

Bruce Mann. VK3BM
PO Gox $\because \because 4$ Enin M, bic 3ssb

This article describes the fea'ures ol the 3 verticals in the background of the cover picture of AR in October 1973.

Each of these verticals is 75 feet high and they are in line on U.S.A.. one quarter wave apart on 3.675 MHz (66 feet 9 inches). The two outer verticals are therefore one quarter wave apart on 1837 kHz . The verticals are insulated at the base by hefiy disposals ceramic insulators, and there are 30 radials of old copper wire buried from the base of each vertical to the boundary of the QTH 150 feet $\times 100$ feet block. The ideal of course, would be to have these radials much longer.

At the base of each antenna there is a weather-proof box containing a . 00035 variable capacitor, a 4 inch diameter x 15 turn tapped inductor, and two 2 pole DC relays to switch either the capacitor or the inductor in series with the vertical. Seeing that the 75 foot height of each pole is a compromise between a quarter wave on 80 metres and a quarter wave on 160 metres, the series variable capacitor will tune the vertical to an electrical quarter wave on 80 metres, and the coil will load the vertical to an electrical quarter wave on 160 metres. It was found that the height of 75 feet when series tuned to a $1 / 4$ wavelength on 80 metres gave an impedance of approximately 52 ohms. thus a good match to the co-ax. It was a simple matter using an antenna noise bridge to place a tap on the loading coil to give a 52 ohm match on 160 metres. Phasing: If antennas A, B and C are simultaneously fed with an equal amount of power through exactly equal feedlines (say $1 / 2$ wave length for convenient tune-up) from the same transmitter, they will each put out an equal wave in all directlons. But the wave from B travelling to the left will at the mid-point meet "head-on" an exactly equal wave from A travelling to the right, and so they cancel out.

Similarly, there will be cancellation be-

tween B and C. and a left-travelling wave from A will balance out a right-travelling wave Irom C. The resultant eflect is that the power from the transmitter is concentrated into a sharp figure 8 pattern at right angles to the line of A, B, C.

If, in addition to the above hookup, an electrical quarter wave of co-ax is added to the feedine that goes to anlenna B. and an electrical half wave to antenna C feedline, then we have the condition where the 3675 kHz wave has arrived through air to antenna B at precisely the same instant as the same wave from the transmitter has negotiated the extra quarter wave of co-ax, and arrived to add together and boost the wave from it. This greatly augmented wave then arrives through air at C simultaneously with the signal from the transmitter (delayed by traversing the extra half wave of co-ax) to cause a further boost, and so a strong signal in the

RELAY SWITCHING

80 METRES	ANTENNA A	ANTENNA B	ANTENNA C
Omni Directioñal	Floats	Fed thru $1 / 2$ wave lenglh	Floats
North East	Fed thru $1 / 2$ wave length	Fed thru $1 / 2$ wave length plus $1 / 4$ wave length	Fed thru $1 / 2$ wave length plus $1 / 2$ wave length
South West	Fed thru $1 / 2$ wave lengith plus $1 / 2$ wave length	Fed thru $1 / 2$ wave length plus $1 / 4$ wave length	Fed thru $1 / 2$ wave lengin
NW/SE	$1 / 2$ wave liength	$1 / 2$ wave length	$1 / 2$ wave length
160 METAES	ANTENNA A	ANTENNA B	ANTENHA C
Omni Directlonal	Fioats	Direct	Floals
North East	Fed direct	Floats	Fed thru $1 / 4$ wave length 160 - ($3 / 2$ wave lengih 80)
S-W	Y/4 wave length 160 (1/2 wave length 80)	Floats	Direct
NW-SE	Direct	Floats	Direci

NW-SE
Note: Halt wave co-ax delay lines on 80 metres used for $1 / 4$ wave length on 160 . For convenlence in tune-up. $1 / 2$ wave of co-ax was used to each antenna base luner - bul exaclly equal lines of any length would be ok.
direction A-C is obtained. Waves in the opposite direction clash with oncoming waves and so cancel out.

To reverse direction, all one has to do is to switch the half wave delay line from C to A.

The first attempt gave little gain and front to back ratio, but a visit from VK5PB was needed to discover the error. When the co-ax was properly fitted with connectors and everything tuned exacily with the noise bridge, it worked. Surprisingly. having got it so exactly tuned, we could QSY quite a deal without too much loss of performance.

A number of 12 V DC heavy duty relays were made up from military disposals types, and switching arranged so that 4 directions and an omni-directional pattern were obtained on 80 and 160 metres as per chart.

At this stage in the testing, VK3QI/M circled the antenna at about 1 mile distance, and again at about 12 miles radius. The pattern obtained was very satisfactory, indicating 18-20 dB front-to-back, and gain $6-9 \mathrm{~dB}$ over the single vertical.

A few weeks later, performance and front-to-back ratio had tallen off seriously. A thorough overhaul of relays and a retune, and performance was again o,k.

Then weeks later, another tune up was indicated - no F.B. and no gain over the dipole! This repeated frustration led to a spate of reading and discussions with some of the famous antenna experts overseas and in VK. All this and a further temporarily effective tune up confirmed the growing helief that the trouble was in the "earth" - In lact literally the earth. There is not enough of it, and it is not the right quality. Although there are at least thirty copper radials around each vertical out to the fence boundary where they join a

cable right around the perimeter of the "antenna farm". The problem is that the antenna farm is only 100 feet by 150 feet, and some of the radials therefore are only 15-18 foot long, and furthermore these shortest radials are in the direction where length is most important.

Some articles in U.S.A. journals and some hams contacted have commented on directional effects according to the disposition of the radials. Almost invariably where really good results have been regularly obtained with phased verticals, the soil has been flat and wet, and a great mat of wires has extended out to or beyond $1 / 4$ wave.

Previous very successful use of a vertical on the unlimited space on a farm was obtained using $1 / 4$ wave radials 10 feet above ground. Here in Swan Hill the radials are of necessity buried, they are too short and the soil is exceptionally sandy and non-conductive, the average rainfall being less than 14 inches.

It was concluded that the problem is due to the short radials in sandy soil, in which the conductivity and therefore the tuning varies greatly with each rain or dry spell of weather.

Now for some comments on the performance when it did work. Strength 8 SSB reports were obtained from Europe, and 9 plus from U.S.A. and occasional reports from somewhat closer stations who were in the path of the beam of 9 plus 30 , falling to strength 6 when the phasing was reversed.

It is believed that a similar set-up, with adequate radials would be very effective indeed, and in the four beam directions. It was surprising that the system is so sharply directive, and 1 believe that in most cases, the 3 verticals in triangular formation, giving 6 directions. would serve better.

At a DX location better reports are usually obtained on the verticals or even on the single central vertical than on a dipole at about the same height. The horizontal wire invariably gives quieter reception in this noise plagued location.

Re-Vamping a VTVM

Abstract

A Japanese VTVM failed some years ago, and after several altempts at getting the open circuit meter repaired or replaced, it was linally concluded that the lask was hopeleas. Ten years later the need arose for a VTVM and another attempt, successful this time, was made to get the unit back into operation.

Further examination revealed that the small power transformer had developed short circuited turns, and the small semi-conductor rectifier which provided HT for the valves was open circuit.

A locally made transformer was installed. This was a universal type which enabled a secondary voltage of 100 V RMS to be obtained.

An EM401 diode was substituted for the defective diode.
A "University" movement was bought to replace the original one.

All components fitted into place with a little re-arrangement.

The VTVM then operated satisfactorily. but the need to replace the small dry cell used in resistance measurement seemed an obvlous shortcoming in the design.

After glving the matter some further

MAX RILEY, VK2ARZ
6 Baringa Rd., Mortdale Heights, NSW, 2223
thought the following circuit was installed.

It can be seen that the three silicon diodes are used as voltage regulating devices. It was found that some diodes gave slightly different forward voltage drop figures, and eventually, three were located that produced 1.8 V in serles (see Fig 2).

This figure was sllghtly higher than the 1.65 V which is found with a new cell, but it was found that the normal range of adjustment would accommodate the difference (2 diodes would not provide enough voltage to enable this to be done).

The VTVM is now working beaulifully and. given reasonable luck. il should not be necessary to open the unit up for a long time.

Since carrying out the repair. it was discovered that other people have had similar problems with small test equipment manufactured in Japan.

It is suspected that ine transformers in these units are really designed for use at 60 hertz, and as a result. they tend to over-heal when used on 50 hertz mains.

In some cases, devices of this nature have been observed which were rated at 220 V .

A combination of over-voltage operation and insufficient core material would predestinate such equipment to a short life in this country.

Bruce Mann. VK3BM
PO Box 724. Swan Hill. 3585
Phil Williams. VK5NN
40 Hy:and Tce. Rosslyn Park. 5072
transceiver provides only voice-coil output (4. 8. or 15 ohms) then two transformers are necessary. but even then the benefit will be worth the slight additional cost.

The circuit of the improved filter is shown in Fig. 1. It has two sections, the first being of constant-k form, which gives steadily falling response below cut-off. but the attenuation becomes "infinito" only at zero-frequency. The second is known as m-derived, involving a series resonant shunt leg which gives a irequency of very high attenuation not far below cut-off. Its response at still lower frequencies then tends to rise, but this is offset by the still-falling response of the first section.

FILTER PERFORMANCE

The filter characteristics were calculated (by the Technical Editor) using the component values specified in Fig. 1, and the standard filter design equations available in many handbooks. The impedance of both sections was found to be 550 ohms (near enough to the nominal 600). The cut-off frequency of the constant-k section is 290 Hz , and of the m-derived section 360 Hz . The frequency of high attenuation by the latter is 210 Hz . The combined effect of both sections should be to give negligible attenuation of frequencies above 360 Hz , but with rapidly increasing attenuation as the frequency drops towards 210 Hz . For all frequencies below about 220 Hz the attenuation will probably be more than 50 dB . This contrasts greatly with the behaviour of the constant-k section alone, which does not give 50 dB attenuation until the frequency has dropped to about 20 Hz .

As explained in the earlier article, most of the audio energy which makes 'static' and electrical interference so distracting is contained in the lower-frequency part of the spectrum. Conversely, most of the components of speech which are necessary for intelligibility fall in the range be-
tween about 1 and 3 kHz . Even with its relatively modest amount of low frequency attenuation, the earlier filter was capable of greatly improving intelligibility, so it may be expected that the improved filter will do even better, and reduce much more the hearing fatigue produced by almost continuous crashes of static.

COMPONENTS

It is suggested that the filter canacitors should be the polyester type. of 100 or 160 volt rating. The 4 microfarad value may need to be made up of two 2.0 or 2.2 microfarad units in parallel, or perhaps an old-style block paper capacitor may be available from the junk-box. None of the values is especlally critical. For the inductors the use of ferrite pot-cores is recommended (type FX2242 or similar). The manufacturer's data on such cores usually gives a figure for the number of turns to give 1 millihenry inductance. Since Inductance is proportional to the square of the number of turns, about $121 / 2$ times the 1 mH turn figure will give the desired 150 mH . More information may be found n desired in the article "Building High-Q Inductors with Ferrites" by VK3ZRQ in the February 1973 issue of AR.

Finally, it is suggested that a switch be Included to cut the filter in or out, or change to a normal speaker system to make possible a rapid comparison between the two. It is guaranteed that on a noisy band the result will be found most impressive, particularly if you are an older amateur and tend to have a restricted highfrequency hearing response.

CRYSTAL FILTERS • FILTER CRYSTALS - OSCILLATOR CRYSTALS
SYNONYMOUS for QUALITY and ADVANCED TECHNOLOGY By KVG

Matching			
Oscillator Crystals			
XF90J	Carrier	9000.0	$\mathrm{kHz}^{\text {che }}$
XF901	USB	89985	hlyz
$\times \mathrm{F902}$	LSB	90015	$\mathrm{kHz}^{\text {c }}$
XF903	BFO	8999.0	kHz^{2}
All crys	stals	8380	ea
Socket	(FOS)		50\%

Export Inquiries Welcome

SPECTRUM
INTERNATIONAL
BOX 1084:CONCORD MASSACHUSETTS 01742 U.S.A.

Filser Tyue	XF9A	XF 98	XF 9C	XF90	XF YE	XF 9N
Applicat	S.5 Tratisenir	$\begin{aligned} & \text { SSB } \\ & T_{x} / R_{x} \end{aligned}$	AM	AM	FM	CW
Number of Filler Civstals	5	8	8	8	8	4
Bandwidth 16dt duwnl	25 kHz	24 kHz	375 kHz	50 kHz	120 kHz	05 kHz
Passlarnd Aipple	$\because 1 \mathrm{~dB}$	$<2 d 8$	$<2 \mathrm{~dB}$	- 2 dB	< 2 dB	$<1 \mathrm{~dB}$
1 isection Loss	<308	c 35 dB	$\because 35 \mathrm{~dB}$	$\therefore 35 \mathrm{d8}$	$<35 \mathrm{~dB}$	$<5 \mathrm{~dB}$
Input Output	$2,500 \$ 2$	500 \$	500 §	500Ω	1200Ω	500 s?
Teimination	C, 30 pF	30 pF	30 pF	30 of	30 pF	30 pF
Shape Factor	$(650 \mathrm{~dB}) 1.7$	$\begin{aligned} & (6: 60 \mathrm{~dB}) \\ & (6: 80 \mathrm{~dB}) \\ & 16 \end{aligned}$	$\begin{aligned} & 16.60 \mathrm{~dB} \mid \\ & 1680 \mathrm{~dB}) \\ & 16.2 \end{aligned}$	$\begin{array}{llll} 16: 60 \mathrm{~dB}) & 18 \\ 16: 80 \mathrm{~dB} & 2 & 2 \end{array}$	$\begin{aligned} & 16: 60 \mathrm{~dB}) 1.8 \\ & 16: 80 \mathrm{~dB}) 2.2 \end{aligned}$	$\begin{array}{\|l\|} \hline(6: 40 \mathrm{~dB}) 25 \\ 16: 60 \mathrm{~dB}) 44 \\ \hline \end{array}$
Ultimate Attenuation	$>45 \mathrm{~dB}$	$>100 \mathrm{~dB}$	$>100 \mathrm{~dB}$	$>100 \mathrm{~dB}$	>90 d8	$>90 \mathrm{~dB}$
Price	\$3195	SA5 45	$\$ 4885$	\$48 95	\$48.95	S34 25

in urfer tu simplify matching. the input and output of the filters comprise tuned differential trans. formers with the "common" connections internally connected to the metal case.

Registration Fee: \$1.00; Air Mail: 26c per $1 / 202$. Shipping weights: Filters 202 ea., Crystals $1 / 2$ oz ea. All Prices in U.S. Dollars.

COMMUNICATIONS RECEIVER

All-band/all-mode reception on Irequancies 170 kHz to 30 mHz covered by 6 bands. Receives broadcasts in amy mode AM. SSB. CW or FM-with the optional accessory OR6.FM Super sensilivity from dual gate MOS types FET's double signal selectivity and AGC characteristics if circuit with mechanical and ceramic fllters designed for high selectivity. resistance to interference: single button selection of wide band ($5 \mathrm{kHz} / 6 \mathrm{~dB}$) of narrow band 2 S $\mathrm{KH}_{2} / 6 \mathrm{~d}$) Altogetiner a high pertormance compact, smartly styled unit of advanced design at a suggested 'Today' price of $\$ 332.20$

SPECIAL

VHF RF Dower amplifier, 200 mW in. 25 walls out at 13.8 volts 50 ohms in 8 out (BNC connectors). Completely wired and lested in a die cast box and pretuned to 146 MHz .
$\$ 40.00$
UHF RF powar amplifier as above but 300 mW. 10 watls out pretuned to 436.5 MHz
$\$ 45.00$
VHF, UHF Spurious indicators, meter indicates if stage is laking oll $\$ 65.00$ VHF RF power transmittars: 2N5589. s4.60; 2: :5590. 85.75; 2N5591, 86.90 ; or $\$ 16.50 \mathrm{kit}$ of 3 .

UHF RF power translators 2N5945 (4 wall). 89.20; 2N5946 (10 wall). \$13.80; 2 N5645 (4 watt). \$6.00.

Dow Key co-ax relays type 77-114, \$11.50; 9 pF miniature tellon trimmers, 30c; 13 pF miniature ceramic Irimmers. 20c; $1 / 4$ wall metal glaze resistors llots of 10 only. 10 ohm to 180k 2ces.

Cash with order to:
WILLIS COMMUNICATIONS PTY. LTD.
13 Bishop St., Kelvin Grove, Q. 4059

Orders to $\$ 4.00$ add 50c Psp. over $\mathbf{\$ 4 . 0 0}$ add \$1.50.

QRU - Problems?

If you've been putting out calls for parts lately and haven't been receiving any satisfaction, try AUSTRALIAN ELECTRONICS SUPPLY. We handle the full range of electronic components and make your supply difficulties our special area of interest. Exclusively mail order, we pride ourselves on our efficiency and hope that we can be of service to you soon, by quoting on your component requirements.

AUSTRALIAN ELECTRONICS SUPPLY P.O. Box 257. Bondi Beach. N.S.W.. 2026
"WILIS" AlR.WOUND INDUCTANCES
Take the hard work out of Coil Winding use - "WILLIS" AIR. WOUND INDUCTANCES

NO	$\begin{aligned} & \text { Dia } \\ & \text { linch } \end{aligned}$	$\begin{aligned} & \text { Turns } \\ & \text { ber } \\ & \text { buc: } \end{aligned}$	$\begin{aligned} & \text { Loth } \\ & \text { Inch } \end{aligned}$		8 W	Price
1.08	$1 /$ 。	8	3	No	3002	88c
1.16	$1 / 2$	16	3	No	3002	88c
2.08	5/8	8	3	No	3006	\$1.06
2.16	5/8.	16	3	No	3007	\$1.06
3.08	$3 / 4$	8	3	No	3010	\$1.28
3.16	$3{ }_{4}$	16	3	No.	3011	\$1.28
4.08	1	8	3	No	3014	\$1.42
4.16	1	16	3	No	3015	\$1.42
5.08	11/4	8	4	No	3018	\$1.58
5.16	$11 / 8$	16	4	No.	3019	\$1.58
8.10	2	10	4	No	3907	\$2.29

Special Antenma All Band Tuner Inductance
monvalent tor \& W No mo: 7 moll
7" length, 2" dia.. 10 T.P.I Price $\mathbf{\$ 3 . 9 6}$ Reference A R R L Handbook. 1961
Stockist of Transmission Cables. Insulators and Hard Drawn Copper Antenna Wire
Wrile for range of Tranamiasion Cables

WILLIAM WILLIS \& CO. pir $2 T 0$
 \therefore Aambiturers and l:pponiteres
 77 CANTERBURY RD.. CANTERBURY
 VIC. $3126 \quad$ Phone 836-0707

ANTENNA PARTS. KITS

QUAD HUB: $\$ 23.00$ plus P/P $\$ 2.00$ QUAD KIT: $\mathbf{\$ 1 2 0 . 0 0}$. Freight forward.

Consisting of: Hub: 12 ft . solid F/G. Spreaders: Aluminium Extenders. Ferrules. Adaptors: 350 ft .0 .064 Hard Drawn Copper wire.
Nylon line and insulators.

MOBILE ANTENNA PARTS:

6 ft . solid F / G blanks.
$1 / 2-1 / 4$ inch
Solid brass butt fitting. $1 / 2$ in. whit. or $3 / 8$ in. UNF thread
$\$ 2.00$ Brass tip chuck 50c

S. T. CLARK
P.O. BOX 45, ROSANNA
VIC., 3084
Ph.: 45-3002

BRIGHT STAR CRYSTALS

- PROMPT DELIVERY GUARANTEED

- ALL TYPES OF MOUNTINGS

Such as HC6/U (style D) . HC18/U (style J).... HC25/U (style K) ...
etc.... Frequency range up to 140 MHz on 5 th overtone.

- ACCURACY
- STABILITY
- ACTIVITY
- OUTPUT

Our increased production now enables us to offer Special Discounts from 10\% Let us quote you for all your Crystal requirements.
Our easy-to-read Price List is now available.

BRIGHT STAR CRYSTALS PTY. LTD.

35 EILEEN ROAD. CLAYTON, VIC., 3168. Phone: 546-5076 (Area Code 03). INTERSTATE AGENTS:
Sydney: PARIS RADIO ELECTRONICS, 7a Burton Street, Darlinghurst, N.S.W. 2010, Phone: 31-3273.
Perth: W. J. MONCRIEFF PTY. LTD., 176 Wiftenoon Street, East Perth,, 6000. Phone: 25-5722, 25-5902.

Brisbane: FRED HOE \& SONS PTY. LTD., 246 Evans Road, Salisbury North, 4107. Phone: 47-4311

Adelalde: ROGERS ELECTRONICS, P.O. Box 3, Modbury North, S. A. 5092. Phone: 64-3296.

To 1200 GMT Saturday. 14th March.
Mode CW only 3.5 to 28 MC.
Eligible entrants are radio amateurs licensed to operate In British Commonwealth call areas. VK1-8: Lord Howe VK2; Willis VK4; Chrisimas VK9: Cocos VKg: Norlolk VK9: Heard VKO: Macquarle VKO: and Australian Antarctica are all separate contest areas. P29 is now a single ares.

Two Trophles have been presented for competltion belween VK stations - a silver medallion for the highest VK scorer in the official RSGB results. and a bronze medalion for a middle placed VK scorer based on tolal VK entries divided by two I.e. for 26 entries. to 13 th placing; for 33 entries. to 17 th placing. Overall winner in 1975 was VE3BMV and only 60 points separated the first four. VE, G. VE, G. VK3MR, placed 16ih overall. and VK7RY, B1st, won the 1975 medallions.

Scoring: 5 points for contest exchange, plus 20 bonus points for 1st, 2nd and 3rd contact with each call area other than one's own (there are 111 in all, with G, GW, GC etc. counting as a single area) - exotic prefixes are the rule rather than the exception.

Logs: Separale logs are required for each band showing columns - 1. Date and time GMT: 2. Station worked; 3. Nr sent; 4. Nr received; 5. Band: 6. Leave blank; 7. Contact points clalmed; 8. Bonus points.

Each band log should be separately totalled and should include at the end, a check list of all as worked on the band. Separate band totals should be added together and the total claimed score entered on a cover sheet giving particulars ol stallon. OTH, equipment, power, and a declaration that the rules and spiril of the contest have been observed.

Entries may be single or multi-band. Single band entries should claim contacts on one band only, but submit detalts of contac!s on other bands for checking purposes only. Eniries should be addressed to - D. J. Andrews G3MXJ, 18 Downsview Crescent. Ucklield, Sussex, England. Closing date 17th May. 1976 (by alrmall. please).

Letters to the Editor

Any opinion expressed under this heading tues not necessarily coincide with that of the Publishers.

The Editor,

Dear Sir.

ORP IS ALIVE AND WELL!

The purpose of this letter is to kindle some more interest in the low power field. as well as eliciting information from other ORP operators as to what they are up to and with what results.
Recent QRP/ORP QSO's from this OTH. include
-rie ZL2PV, JIm VK2BBO using a G5RV and
-7. Snow VK3MR with his 1 watt rig. Drew VK3XU winding down to 500 milliwatis, John VK2LM with his 15 watts and Vee, and Yoshi JHIRUF sporting 10 watts to a 2 element beam. These OSO's were from 40 and 20 meires and all CW.
The author has been exparimenting with $40 / 20$ metre directional antennas in order to come up with an effectlve QRP station. and the list includes 4 element fixed beam, 40/20 X-beam. 40/20m quad and X-O quad. The CO WW DX CW contest was worked with the 3 watts into the 4 el beam, and resulted in 190 OSO's. 20 zones, 23 countries and a lat of lun. all on 20 and all CW .
Quickest OSLers as 1 see them are, WOIPU. VK5XD. VK5BS. KV4AA, VK4NL and VE3EWY.

Best 20 m DX worked 80 tar - A9XU. YV5AE and ZS6ME to complete the ORP WAC, and HZ1AB.

The o!d 5763 plg is due for molhballs shortly, as the belated Chrisimas present, an HW7, is due any day.

Hope to hear from other "Fleapower Men" elther by Mail, OSO or on the CWN Sunday Mornings. Till then, best DX and vy 73 s .

David S. Down VK5HP/QRP.
Dear Sir
The article by Alan Shawsmith. "The Golden Years of AR in VK" (AR Dec., 1975) might have been Interesting and more convincing had he taken the trouble to check his tacts.

It was not to Charles Maclurcan A2CM. that the honour of making either the first VK-W or the first

VK-Europe contact went. That honour belongs to Max Howden, then A3BQ. now VK3BQ and stIII active on the amateur bands. On Monday. 3rd November, 1924. just after 1900 EAST. Max worked U6AHP (not 6EKY) - see, for example, "Radio In Australia and New Zealand" Vol. 2. No. 45, 10th December. 1924 - and It was Max who wrote in this magazine. "I did my best to answer him, and he certainly managed to read me, although local 'hams' say they never heard such feartul sending. I admit my hand acquired a double phase vibration in place of the usual single, but it couldn't have been too bad'. In the 26th November issue of the above magazine. Maclurcan wrote: "Congralulaflons to 3BO for being the first Aussie to work U.S.A. 2CM had hopes. but it was not to be'.

On Friday. 14ih November, at 0500 EAST Max worked G2OD to obtain the double - first to Americe and first to Europe. The wavelength used for these contacts was about 85 metres.

Maclurcan, who certainiy contributed greatly to amateur radio through the 20 's was the first AusIralian to contact England on $\mathbf{2 0}$ metres. This was on Saturday. 2nd May, 1925, and G2OD was the other station (see, for example, Radio in Australia and Naw Zealand, Vol. 3, No. 59, 24th June, 1925).
What Shakespeare wrote was "All the world's a stage, and all the men and women merely players" (As You Like II. Act 2, Scene 7). Pedantic perhaps, but weren't we taught that if inverted commas are used, l.e. The writer is quoting, then the original words must be used and not a paraphrase of them. A careful reading of the story of Nebuchadnezzar as given in Kings. Chronicles, Daniel and Jeremiah talls to reveal anything about "scales". Was Alan thinking about that tamous king's son. Belshazzar, at whose feast the mysterious hand wrote on the wall "Mene Mene Tekel Upharsin" (Numbered, numbered. welghted and divided) Tekel being interpreted in more detail as "thou aft waighed in the balances and att found wanting". Let us hope that this will not be the fate of amateur radio!

By all means let us remember the past. and the explolis of the men who laid the foundations of amateur radio, but for goodness sake let us have the facts, which may be found in the documents of the time, and not woolly memories which only serve to create confusion.

Yours sincerely.
F. K. McTaggart VK3NW/2BNW

Dear Sir.
I am interested In using a Parametric Amplifier on 146 MHz and due to my difliculties experienced in obtaining the information required, I would be gratelul if one of your readers could assist me

Yours faithfully.
Ga:y Stern VK22BB.
C/O P.O. Box. 330.
Hurstville, N.S.W. 2226.

NEW TRANSFORMER

Ferguson Transtormers P/L. have provided a sample of their new PL50/60VA Iranstormer, a recent addition to their 'low profle' range. This small 10 cm $\times 6 \mathrm{~cm} \times 5 \mathrm{~cm}$) translormer, which looks somewhal like a 'fluro' ballast choke, has two windings of 25 volts. lopped at 20 volts and rated at 1.2 amps each.
With the two windings in serles the off-load voltage of 57V AC only fell 10 53V AC at full load.
Connections are made via round 'quick connects' and six 30 cm coloured leads are provided with one end tinned and a connector on the other. A 10 cm lead is also provided with a connector on both ends for linking the windings.

On test the transformer was quiet and met the ratings given. It is claimed that this trans!ormer meets AS C126. - VK3YFF.

IPSWICH RC 2M PREAMPLIFIER

"If I can get it going. anybody can". Well, I did. but reference to the relevant article in AR was a must. The Instruclions that came with the kit were poorly printed and vague, and the tinned copper wire provided to wind the colls was only enough tor one coll.
Once mounted inside my deal Pye 789, however. the story was quite different. Channel 40. dead a tew moments before, was filled with stations and tound that my rig could now receive much better than it could transmit; reversal of the previous situation.
An A/B test on a recent trip to Ballarat showed that I could hear both 3RML and 3RWZ with the preamp, but not without.
A preamp will not necessarily improve a good rig. but it yours is a bit deal. then I am sure that you would be pleased with the results of fitting one of these IRC unils. - VK3YFF.

1976 SUBSCRIPTIONS REMINDER

No final notices will be cent out thle year from the Executlve Office.
All subacripition noticas already malled carry the wording -
"FIRST AND FINAL NOTICE"
Please take note and arrange to pay your 1978 subscription at once if you have not already done 10.
AR's will soon cease for unfinanclats and mlasing coples cannot be eupplied if your aupply ceased because of being unfinanclal. please take notice.

Coming Soon NEW EDITIONS

Foundations of Wireless \& Electronics 9th Edition
Scroggie 528 pages
A Guide to Amateur Radio 16th Edition
Hawker 112 pages
Radio Valve \& Semiconductor Data 10th Edition Ball $\quad 240$ pages

See your local bookseller for these

The vollages quoted above are full load ms voltages. The no load output voltages could be up to 25 per cent higher, however the three samples tested exhibited better load-no load characteristics than his.

The DC resistance of the secondarles were found to be unbalanced by about 10 per cent in each of the samples. However, due to the high resistance of the primary (1.6 k ohms) and careful matching of turns ratios, there was negligible imbalance of secondary load currents in the parallel connection.

A pleasantly surprising feature of these transformers is the low lemperature rise of the assembly. Even when seen on the bench at 20 per cent beyond maximum recommended load the transformers did not get very hot.

These transtormers meet the requirements of ASC 126 for construction and Insulation and the manulacturer claims they are the amallest locally manufactured stock type available.

The core size is approximately $4 \times 3.2 \times 1.4 \mathrm{~mm}$.
This trio of transformers deserves to be popular.
VK3AFW

PROJEGTAUSTRALI8

OBCAR G ORBITS FOR FEBRUARY
The satallite la on Sunday morning, Monday night. Thursday night and Saturday night local times.

The time period is 114.99455 minutes. Longitude increment - 28.7487 degrees/orbit. Times are in GMT and longitudes are in degrees west of Greenwich.

		OPblı	Tlme 2	deg. Lang W
Sal.	1.2 .75	10498	0042.5	59.1
Sun.	2.2 .75	10511	0137.4	72.8
Mon.	3.2 .75	10523	0037.4	57.8
Thur.	6.2 .75	10561	0127.2	70.2
Sal.	8.2 .75	10586	0122.0	69.0
Sun.	9.2 .75	10598	0021.9	53.9
Mon.	10.2 .75	10611	0116.9	67.7
Thur.	13.2 .75	10648	001.7	51.4
Sal.	15.2 .75	10673	0006.5	50.1
Sun.	16.2 .75	10686	0057.9	59.1
Mon.	17.2 .75	10699	0152.9	72.8
Thur.	20.2 .75	10736	0047.69	56.5
Sat.	22.2 .75	10761	42.55	55.2
Sun.	23.2 .75	10774	0137.48	68.9
Mon.	24.2 .75	10786	0037.41	53.9
Thur.	27.2 .75	10824	0127.2	66.4

OSCAR 7 ORBIT8 FOR FEBRUARY

Tlme period is 114.945 minutes. Longilude increment is 28.736 degrees/orblt.

Ortil	Date	Time \mathbf{Z}	Long W deg.	Mode
969	Feb. 1	0042.7	60.6	A
982	Feb. 2	0136.9	74.1	B
994	Feb. 3	0036.3	59.0	A
1007	Feb. 4	0130.6	72.6	B
1019	Feb. 5	0029.9	57.4	A
1032	Feb. 6	0124.2	71.0	B
1044 -	Feb 7	0023.5	55.8	A
1057	Fab. 8	0117.8	69.4	B
1069	Feb. 9	0017.1	54.2	A
1082	Feb. 10	0111.4	67.8	B
1094	Feb. 11	0010.8	52.6	A
1107	Feb. 12	0105.0	66.2	B
1119	Feb. 13	0004.4	51.0	A
1132	Feb. 14	0058.7	64.6	B
1145	Feb. 15	0152.9	78.1	A
1157	Feb. 16	0052.3	63.0	B
1170	Feb. 17	0146.8	76.6	A
1182	Feb. 18	0045.9	61.4	B
1185	Feb. 18	0140.2	75.0	A
1207	Feb. 20	0039.5	59.8	B
1220	Feb. 21	0133.8	73.4	A
1232	Feb. 22	0033.1	58.2	B
1245	Feb. 23	0127.4	71.8	A
1257	Feb. 24	0026.8	56.6	B
1270	Feb. 25	0121.0	70.2	A
1282	Feb. 26	0020.4	55.0	B
1295	Feb. 27	0114.7	68.6	A
1307	Feb. 28	0014.0	53.4	B

Please note this new method of orbit prediction. The system has been changed to allow for more unlform coverage of both Oacar 6 and 7 and to conserve AR apace. A tow minutes work with a calculator and the standard orblis from the AR printout will provide azimuth and elevation for any particular GTH and ortit. Please alao note that the modes of operation of Oscar 7 have been changed from those printed in December AR.

Hamads

FOR 8ALE

Yasau FT2FB 2 Mx FM TXCR. 12 channel capability -Channels 40,50, R1 and R4 (new) and 3 Japanese Simplex channels. Also Moblle Mount and Microphone. v.g. cond., 18 mits. old. $\$ 185.00$ ONO. B. Bathols, VK3UV, 3 Connewarra Ave., Aspendale. 3195. Ph. (03) 806424 (evenings).

Geloso TX G4/228 P/SG 4/229, 1968 per SSB CW - AM, beautilul condition, $\$ 350.00$, mike and manual. E. Wookey. 158 Kilgour St., Geelong. Latayelle HA-144 2 AM transceiver tunable Rx Tx xtal locked on 144.180. \$100. FTV-650 6m transverter, wired for use with FT101. \$100. Orion Stereo car casselte player less speakers but perfect condition. \$55. VTVM, needs new meter, \$10. VK3NM, QTHR. Ph. (03) 883710.
2L Aepaster crystals for Ken KP202. VK3BAX. OTHR. Ph. (052) 97401.
TCA1677 converted 102 m single channel. Very clean condition. Circuit and moblle mount. \$80 ONO. VK3BAX. Ph. (052) 97401.
Colline 75S3 receiver. 32S3 xmitter, W/516FZ AC supply. 30L1 linear, all as brand new, huge saving. sell complete only. Ph. (03) 24 1231. AH (03) 206135 . A. A. Roy, Vk3ADR, 16 Kent Court. Toorak. MrA13 converted, six channels, xtals for channels B. 1. 4, $\$ 65.00$. Ph. (03) 5503521 . BIII VK3SB.

One 日SR Oscillator (audio). excell. order, $\mathbf{\$ 2 5 . 0 0}$. BC221 W/O P/SU with xtal. $\$ 20$. One 3.5 MHz 7.5MHz lunable IF EA complete nearly. S30. Dusty Leopold. 9 Hyland Ave.. Darlington. SA. 5047. Ph. (08) 2964250 alter 5 p.m weekdays till 10 D.m. FL-DX-2000 Linear Amplifier, $\$ 170.00$ ONO. looks and goes as brand new. VK3TG, 2 Willow Court. Kyabram. Ph. (058) 521636.
SWh Power Meler. Asahl ME 2B, never used. $\$ 15.00$. VK3TG. 2 Willow Court. Kyabram. Ph. (058) 521636.

MRB FM mobile, good condition, unconverted, \$35 Signal generator, advance $300 \mathrm{kHz}-60 \mathrm{MHz}$, 520 . Sel of Eico 753 spares. $\$ 5.100 \mathrm{kHz}$ vacuum crystal, $\$ 4$. 1296MHz solid s'ale converter. S15. Approx 70 Electronics Australia, $\$ 3$ the lat. Bob Halligan, VKJAOT. OTHR. Ph. (03) 9496612 Bus., (03) 2778295 AH.
Heathkit HW22, SSB trans. mod for 80-40-20, $\$ 80$. SAE details. 100 logic ICs. $\$ 12$ SAE details, vert. an!.. as new. 4BTV and RM 80, 80-10. \$ 45 . Vk3BBh. Main Rd.. Harrietville. 3741.
FT-101. Dertect condition, S 45000 "Ham-Cat" Hy Gain Mobile base mast and 80 m . 40 m and 20 m coils. $\$ 65.00$ Lot. All with manuals. VK3ASI. PO Box 907. Geelong, 3220. Ph. (052) 43.1283.

WANTED

R65/APN9 Schemalic R391. R392, or 5iJ1, cond. secondary. spares. incomplete anything US armed lorces technical manuals. also PRC74. 77. 25 or similar. Dusty Leopold. 9 Hyland Ave.. Darlington. S.A., 5047. Ph. (08) 2964250 (AH).

VHF or HF receiver. transmitler, transcaivar, any band/mode. Tor new high school sludent ham. VK2YCR. Ph. (02) 982 3707. Tony Richardson. 15 Pertaka PI.. Cromer. 2099.
FT/FP200 transceiver, VK2OC. OTHR or Ph (068) 623100.

Control Boxes and handbooks for R101/R101/ARN6/ ARNG radio compass recelvers. Lionel L. Sharp. VKANS. OTHR.
Fax Fraake to make up bulk order to import Desktax Facsimile Transceivers $6^{\prime \prime} \times 4^{\prime \prime}$ printout 300 lines per inch definition. Approx $\$ 14.00$ in Sydney. Delalls from VK2aKG via VK2BEE. OTHR.
FT1018 or similar transceiver in good condition. Detalls and price to F. G. Storey, VK3ZNT. QTHR. Ph. (03) 2773082.
Facsimile Machina, preterably direct copy type. Tyoe, condition and price to VKSJE, QTHR. Ph. (08) 2624622.

FT200 preferably with power supply. Ph. (03) 467 2131, business hours.

Silent Keys
 Dr. R. W. ALLISON VK2AEA Mr. W. S. RINGROSE VK2BSR Mr. F. W. CHAPMAN VK4TH Mr. B. Whitmee
 Mr. R. A. ISAAC VKAZW VK4ZAI Mr. W. W. PARSONS d. F. MURAEN VK5PS
 VKJJH VK2GA

It is with deap regrel and sadness that 1 have to record the passing on 24.11.74 of John Walker, VK2GA. John was active on mosi bands since the war. he was an assoclate member of the I.R.E.E., a foundation member of the Woy Woy Rotary Club, a Past Master of Lodge Morning Star, and a life member of the Ellalong Memorial Club. Simply he was a wonderful community bloke. who responded to every demand on him and sought nothing in relurn.
His passing is a sad loss to The Central Coast and on behalt of all his amateur triends I extend to his wife Chrls and tamily our deepest sympathy.

Major, VK2RU
J. C. (JOHN) WATSOM VKEJW

It. was with regret that we learned of the passing of John Watson VKGWW, on Salurday 26th Oclober. 1974.
John lirst look out his licence in the Eastern States in 1947, shortly belore comIng to the west. He was a trained Pharmaceutical Chemist, and followed this protession for a number of years. In the early 1950s John was elected to the Council of the VKG Division.

Amateur radio was not his sole interest however. as yachting played an important parl in his spare time aclivitles. He was at one period. Commodore of the Royal Freshwater Yacht Club. Nalurally he was often heard operating maritime mobile from his vessel 'Silver Fin'. under the callsign of VK6SF.

Prior 10 his passing. John had renewed his interest in the administrative side of the hobby and was once again elected to the Divisional Council. He was also keenly interested in the W.A. VHF Group and their project, the Communications Museum at Wreless Hill. where he was resident caretaker.
Both the Wireless Inslitute of Australia and the W.A. VHF Group. will miss John's enthusiasm and energy.

20 Years Ago
 with Ron Fisher IVK30M

TWENTY YEARS AGO
January 1955
Amateur Call books were the in thing iwenty years ago. The Editorial page of the January 1955 issue of Amateur Radio told of the arrival of the NZART Break-In Call Book. They have of course been producing this excellent relerence ever since.

A rechnical article that was no doubt reterted to many years after its publication was Command Conversions For Five Bands by Jim Herd VK3JK. Jim described how the various transmitter models could be converted for operation on the $80,40$. 20. 15 and 10 metre amateur bands, along with a suitable power supply, antenna coupler and multi band antenna.
A 'Simple S Meter'. Les Eliason VkJale described a simple bridge type meter clicuit that could be applied to almost any recelver. Les used it with his 8C348.
Expectations of six metre DX were high with the news that Macquarie Island was expected on the air in early January. A report Just in from VR2CG tells of his reception of lwo VKGs on six.

Two comprehensive reports were published on the NSW Woy Woy Field Day and the Victorlan Annual Slate Convention.

IC-21A - \$298 BOTH FOR $\$ 570$ incl. tax

IC-21A FM 10W 146-148 MHz base station with variable power control adjustable deviation, 24 channels, built-in discriminator meter, 5 meter, SWR meter, PA protection, modular circuitry, runs from $13 \mathrm{~V} D C$ or $240 \mathrm{~V} A C$. Complete with three channels. PRICE $\$ 298$ incl. tax, extra crystals $\$ 7.80$ pair.

OR WHAT ABOUT THE FAMOUS IC22?

IC-22 FM 10W 146-148 MHz mobile transceiver, featuring switchable power 1 or 10 watts, 22 channéls, adjustable deviation, solid state T / R relay, built-in protection for PA, DC voltages filtered. Read Dec ' 74 "AR" for review. Complete with mounting brackets, microphone, cables, etc, three channels. PRICE $\$ 198$ incl. tax, extra crystals $\$ 7.80$ pair. Available ex-stock.

IC-3PA is a regulated power supply for all the Inoue mobile transceivers. It's completely regulated and gives you an indication of its operating condition; normal, excessive current, or if the protection circuit is working. There is also a built-in speaker in the cabinet. Price $\$ 78$ incl. tax.

DV-21. The perfect companion for your IC-21A, the DV-21 is an all new unique digital VFO to complete your ICOM 2 meter station. The DV-21 will operate in 5 or 10 KHz steps over the entire 2 meter band. It can also scan either empty frequencies, or the frequencies being used, whichever you select. Complete, separate selection of the transmit and receive frequencies, is as simple as touching the keys. When you transmit, bright easy to read LEDs display your frequency. Release the mic switch, and the receive frequency is displayed. There are also two programable memories for your favorite frequencies. You won't believe the features and versatility of the DV-21 until you've tried it. It's new, and it's from ICOM. Price $\$ 298$ incl. tax.

6M FM MOBILE TOO!

IC. 60 6M FM 10 W mobile transceiver featuring switchable power 1 or 10 watts. Complete with mounting brackets, microphone, cables, two channels. PRICE $\$ 234$, incl. tax. extra crystals $\$ 7.80$ pair.

90-DAY WARRANTY ON ALL PRODUCTS.

IC-30 70CM FM 10W mobile transceiver incl. 1 channel (435.00). Price $\$ 370$ incl. tax.

IC-501 6M SSB transceiver, 10 watts pep with AM and CW facilities. Price $\$ 445$ incl. tax.

OUR POLICY: Persons not in possession of the appropriate certificate of proficiency will not be sold amateur equipment. This may have to be produced on request. Our terms of trading are strictly net cash, no COD, no credit other than Bankcard. All equipment sold carries the VICOM 90 -day all-inclusive warranty. Add extra for freight or postage. Insurance cover 50c per $\$ 100$. Prices subject to change without notice.

FEBRUARY, 1975
VOL. 43. No. 2

Rri.Cunningham

R. H. Cunningham is the name to know when it comes to superior quality communications and electronic equipment and components. Names of products that have proved themselves in the field of international electronics; products such as Sennheiser microphones and test equipment, Eddystone communications receivers,

Bulgin components,
Sonnenschein batteries, Alert fuses, Paso sound equipment, Dow-Key RF components, Stolle acrial rotators, Millbank PA equipment to name some. But let us tell you more and in detail. . . . WRITE NOW ana we will register you to receive our FREE monthly Technical Library Service Bulletin

493-499 Victoria Street, West Melbourne, 3003, P.0. Box 4533, Melbourne, Victoria.
Phone 329 9633. Cables: CUNNIG MELBOURNE. Telex: AA31447
N.S.W.: Sydney. Ph.: 909 2388. W.A.. Perth. Ph.: 49 4919. QLD.: L. E. Boughen \& Co. Ph.: 708097. S.A.: Arthur H. Hall Pty. Ltd. Ph : 424506.

VOL. 43, No. 3

MARCH 1975

CONTENTS

TECHNICAL -

A Twelve Months Study of the 20 metre band between Melbourne and London 11
Commercial Kinks - FT20021
Solar Flux and Sunspots 20

Some Useful Modifications to the FT101 Series9
Vehicle Ignition Noise Suppression 5
GENERAL -Darwin Relief Fund18
Trade News 4

DEPARTMENTS -

Awards Column
 18

Contests 17
Hamads 22
Intruder Watch 22
Letters to the Editor 19
Project Australis 21
OSP - IARU News 3
QSP 4, 7, 9
VHF-UHF - an expanding world 15
20 Years Ago 22

COVER PHOTO

"Foxhunting" is a populat 2 metre activity in Australia. It is surprising what excellent results are obtained with a simple three element beam mounted on the side of the car. Photo: Roly Roper VK3YFF

Special Announcement !
 DISPOSAL BRANCH AND ELECTRONIC BARGAIN CENTRE is now open at 390-392 BRIDGE ROAD, RICHMOND - PHONE 425174

Plenty of bargains for the radio amateurs or the hobbyist owing to the recent tariff cuts. We have obtained large quantities of components, test equipment, complete and incomplete radios, transc eivers, tape recorders, panel meters, valves, transistors, transformers. All at throw-away prices. Be early. Plenty of Opening Specials. WATCH THIS ADVERTISEMENT NEXT MINTH FOR MORE DETAILS.

HAM

$2+\frac{1}{2}+2$

323 ELIZABETH STREET, MELBOURNE, VIC., 3000

Phones: 67-7329, 67-4286 All Mail to be addressed to above address
Bulk Store: 104 HIGHETT ST., RICHMOND (Phone 42-8138)

24 HOUR DIGITAL ELECTRONIC ALARM CLOCK $\$ 29.50$

Commercially bult, large LEO readout, 6 digit.

KENWOOD/TRIO TS 5205 BAND SSB TRANSCEIVER

Speeifications
Frequency Range: 80 metre band - 3.50 to 4.00 MHz: 40 metre band - 7.00 to 7.30 MHz ; 20 metre band - 14.00 to 14.35 MHz ; 15 metre band - 21.00 to 21.45 MHz ; 10 metre band - 28.00 to 28.50 MHz, 28.50 to 29.10 MHz , 29.10 to 29.70 MHz : WWV - 10.00 MHz .

Mode (Receive only) USB, LSB, CW.
Input Power: 180 watts on 80 to 15 metre band. 140 watts on 10 metre band.
Nett emateur prices:
TS 520 \$550.00 with PTT mike; VFO 520 \$95.00; SP $520 \$ 25.00$.

COMNUNICATION RECEIVERS

Trio QR666 general coverage communications receiver solid stale $550 \mathrm{kHz}-30 \mathrm{MHz} 6$ bands 230v/i2v.

Price $\$ 330$

BARLOW-WADLEY RECEIVERS
Model XCR-30 Mk il 500 kHz continuoús coverage. crybtal controlied reception of AM/USB/LSB $\$ 259$
LAFAYETTE HA800A

SOLID STATE 19 TRANSISTOR MULTI-
BAND RADIO - 9 Ranges $\$ 79$

AM, SW, FM,
VHF, AIR, PB
battery operated colour coded g Band dial 1. AM 535 to 1600 kHz : 2. Marine $1-5$ to 4 MHz . 3 \& 4. combined SW 4 to 12 MH2: 5. 30 to 50 MHz_{i} 6. 88 to $108 \mathrm{MHz}_{\mathrm{H}} 8$ \& 9 combined VHF Alrcralt $145 \mathrm{MHz}-174 \mathrm{MHz}$ incorporating weather bend.
Slider controls, Dial light, Fine tuning control, Flip-up Time Zone map. Telescope antennas complete with batteries.
$\$ 79.00$ P\& $\$ 1.40$

1 WATT 2 CHANNEL TRANSCEIVER
with call system. $27.240 \mathrm{MHz}, 12$ transistor. PMG approved type.

Spacifeatlons:
Transmilter - Crystal controlled: 1 Watt input power to RF stage. Operating Irequency - Any 2 channels in the 11 -metre Citizens Band. Receiver -Crystal-controlled superheterodyne circuit with 455 Kc IF. Antenna - Built-in 60° telescopic whip antenna. Audio Output - 0.8 Walt maximum. Power supply required - 12 volts DC (Eight 1.5 volt DC battery cells). Loudspeaker - $21 / 4$ ". PM lype (built-in) function as microphone on transmit $\$ 39.95$ each

AM/FM/AIR-PB-WB
sOLID state

$\$ 39.00$

VHF MONITOR
battery operated.

Specilleatlons:

Transistor: 12 Translstor 88 Dlode; Frequency: FM 88-108 MHz, AM $540-1600 \mathrm{kHz}$, AIR-PB108174 MHz : Power Output: Maximum 800 mW , Undis'orted 280 mW ; Speaker. $3^{\prime \prime} 8$ ohms; Earphone: Magnetic 8 ohms; Power Source: DC $6 V$ UM- 2×4 pes. or AC 230 Volt. Antenna: Ferrlte bar for AM, Rod antenna lor FM/AIR-PB-WB; Controls: Volume (w/on-ofI switch); Selector (AM/FM/AIR-PB-WB); Accessories: Earphone a batlerles; Dimensions: $33 / 8^{\prime \prime} \times 6 \not \mathrm{z}^{\prime} \times 93_{4} . \therefore$ Welght: Approx. 3 lb .

144-148 MHz TWO METRE EQUIPMENT

 NOW WITH 6 CHANNELS$$
\begin{aligned}
& \text { | KEN KP-202, 2W, } 144 \mathrm{MHz} \text { band. } \\
& \text { FM. Hand held transcelver with } \\
& \text { crystala for } B \text { channals. } \\
& \text { KCP-2 NICAD battery chargers a } \\
& 10 \text { Nicad batterles } \$ 35 \\
& \text { Genutine leather carrying case for } \\
& \text { KP-202 } \\
& \$ 8
\end{aligned}
$$

KENWOOD/TRIO GEAR

TRIO MOBILE TAT200G TRANsCEIVEA, VHF/FM with crystals for 2 channels
$\$ 233$
TRIO TR2200G hand held 2 metre portable transceiver with crystals for 2 channels … ... 3148

Extra crystals
$\$ 8.00$ exira

Published monthly as the official journal by the Wireless Institute of Australia.

Reg. Office
$2 / 517$ Tcorak Rd., Toorak. Vic. 3142
P.O. Box 150. Toorak. Vic.. 3142

Editor:
Bill Roper
VK3ARZ
Assistant Edioor:
Bruce Bathols
VK3UV
Technical Editors:
Bill Rice
VK3ABP
Ron Cook
VK3AFW
Publications Committee:
John Adcock
Rodney Champness
Syd Clark
Ron Fisher
Ken Gillespie
Neil Osborne
Howard Rider
Roly Roper
Gil Sones
Contributing Editors:
Brian Austin
Deane Blackman
Eric Jamieson
Jim Payne
Drafting Assistant
Gordon Rowe
L3018 ${ }^{7}$
Business Manager:
Peter B. Dodd
VK3CIF
Enquiries and material to:
The Editor.
Box 2611W, GPO Melb.. 3001
Copy is required by the third of each month. Acknowledgment may not be made unless specially requested. All important items should be sent by certified mail.
The Editor reserves the right to edit all material, including Letters to the Editor and Hamads, and reserves the right to retuse acceptance of any material, without specifying any reason.

Advertising:

Advertising material should be sent direct to P.O. Box 150, Toorak, Vic., 3142, by the 25th of the second month preceding publication. Phone: 24-8652.
Hamads should be sent direct to P.O. Box 150, Toorak, Vic., 3142, by the 3rd of the month preceding publication.

Printers:

Moorabbin. 3189. Tei. 956462

OSP

IARU NEWS

Arrangements are going ahead well for the IARU R3 Associalion Conference in Hong Kong from 4 th to 13 th March in the Lee Gardens Hotel (see Jan. AR, p.6).

The Agenda for the Conference was circulated before Christmas and predictably includes the usual round of formalities including the appointment of Conference Chairman, Secretary and Asst. Sec., Credentials and Editorial Committees, Agenda and Rules of Procedure. Reports from officers, Society delegates and other interested amateurs are then taken, followed by discussions on these.

Then comes matters arising from the 1971 R3 Tokyo Conterence, a summary and review of the 1971 ITU Space Conference by Tom Clarkson ZL2AZ and an address about the 1979 WARC by IARU President Mr. Noel Eaton VE3CJ.

The formulation and adoption of policies as the result of further discussions and appointments of Working Groups then follows in association with the best methods of implementing such policies.

Two additional matters arising from the 1971 Tokyo Conference are then on the agenda namely "Conformity with the ITU Radio Regulations" and "Development of amateur radio activity in Region III."

Discussion on the Intruder Watch Scheme is followed by general proposals submitted by member Societies, the budget, election of Directors for the next triennium, date and venue of the 4 th IARU R3 Conference and formal closure.

The triennlum budget as might be expected shows that Inflation may well catch up with the R3 Association for the 4th Conference, not because of increases in the exceedingly modest secretariat expenses, but from anticipated travel and accommodation charges which would then have to be met for the Directors and officers of the Association despite the assumption that the Association should expand slightly. The budget prudently includes a little for travel expenses within the Region.

IN DAYS OF OLD

"A solendid attendance of members and visitors tolalling about 100 was the result of a broadcast invllation All were very enlhusiaslic and the meet. ing was an unparalleled success. Several proposal forms were lilled in and a great many mcre were taken away for completion. A very interesting lecture on Induclion Coil Construclion was delivered by Mr. J. Strickland and was greatly appreciated by those present. A hearly vote of thanks was accorded the lecturer. Several specimens of home made instruments were on view ${ }^{*}$. Excerpls Irom the minulus of a General Meeting of the Amatour Wireless Society of Victoria held in the Oxford Chambers Bourke Sireel on 5in December. 1912

The WIA have three main papers for this Conterence to date. An Intruder Watch document which could prove difficult "to sell" in the light of the WIA apparenlly being the sole interested party in intruders Ihroughout the entire region. A well documented up-to-the-minute paper about the need for international uniformity of frequency allocations in the VHF/UHF region by the Chairman and members of the Institute's VHF/UHF Advisory Committee is the second of the three papers and ideally is aimed at Administrations rather than other amateurs who need little convincing about this (e.g. Malaysia and absence of the 2 m amateur band). The third paper is a report by myself as the WIA delegate.

Tom Clarkson's reports about the 1971 WARC are of course exceedingly bulky and much of the material has already been adequately reported over the years since then. Tom Clarkson also produced proposals for consideration by the R3 Conference for strengthening the Amateur Service influence in the right directions for WARC 1979. Tom suggests, Inter alia, that during 1976 and 1977 a personal call should be made by the IARU President (or Deputy) upon the heads of all the Radio Administrations and this should be sought and arranged by the national Society.

A report by Michael Owen VK3KI, one of the Directors, supporis Tom Clarkson's proposals with a number of detailed suggestions to aid in implementation.

I am looking forward to this Conference as your appointed representative but I feel a little disappointed that although WIA Divisions, were specifically asked to send material forward to help me at this Conference but the response was noticeabl. poor.

Let us wish the R3 Association well for their Conference which may well be crucial for this part of the world in the next few years.

D. A. WARDLAW VK3ADW
 Federal President

EMERGENCY COMMUNICATIONS IN PERU

"It the Reguiations dealing with radio amateur activily) a!so lays down that all radio amalcur stations must be permanently operational in the 40 metre band so that they can be called upon at any time to take part in the emergency service' Radio Amateurs column in the Telecommunicalions Journal. Oct., 1974

70 cm DRAFT GAND PLAN
Ale yo:l aritue in the 70 cm band? If so. have you sent in your comitents on the pioposed 70 cm band p!an as prinled on page 9 of AR Ocl '74? If nol do 11 now or be lor ever silent. as the sayilly gous.

QSP

WENTWORTHSHIRE BUSHFIRES FROM

OECEMBER 27th
A note from Geoff Syme, a WIA member in Pooncarle, glves some details of communications operations carried out by a number of varlous operators, Including the Shire President, Jeff Whyte VK2AHM, using equipment loaned by the NSW State Emergency Services. He commented that the size of the shire makes VHF impracticable without the use of repeaters and that almost all fires in the area are started by thunderstorms late on a summer's day makes HF contacts almost Impossible during the Initlal period of fire fighting. Also he said that most of the fire fighting is done during the night because the fires tend to be quite uncontrollable during the day. He concludes that VHF is essentlal In areas around a fire especlally as HF gets very difficult at night unless portable aerials can be strung up high enough and greater power is available.

AR AWARDS

The Publications Commlttee announce the following awards for the year 1974 -
Higginbolham Award (worth S50) to Eric Jamleson VK5LP for his splendld work in continuing his interesting VHF/UHF column.
A.S.J.A. (Plaque and $\$ 10$) to Don Marshall VK4ZAF for his article "The Brisbane Valley Flood Disaster" published In April AR.
Technical Award. Because so many articles vied equally with each other for first cholce the Commiftee felt unable to select any particular one as more outstanding than the others for the purposes of thls Award (worth \$25).

MORE STATISTICS

Radio Communication for Nov. ${ }^{\prime} 74$ contains a chart which shows that the Income of the RSGB for the year ended 30th June 1974 derived from subscriptions 53 per cent, book sales 34 per cent, advertlsing 11 per cent and sundries 2 per cent; whilst expenditure for the same period went out at 43 per cant production cost of Radio Communication, 25 per cent cost of books, 21 per cent salaries and wages and staff cosis, 8 per cent all other ltems and 3 per cent surplus. The comments In Councll's Report about 'Radio Communication" are that this is RSGB's largest single outgoing (and so it should be) and would cost
more if it were not for the considerable savings achleved by forward purchasing of paper, combined with Judicious Juggling of paper welghts and pages per lissue to make the most economical use ol postal rates. It seems that AR is not therefore unique In the way we also must Juggie!

OVERSEAS LICENCE FEES

Taking the old $\$ 6$ as a yardstick, what malor countries charged more for the annual amateur Ilcence renewal? Nearly all the communist bloc countries made no charge. but of the others with amateur populations exceeding Australia's, the fee was greater In Canada, West Germany and France. The most expensive licences were apparently Belglum, Ivory Cosst and Austria, which were well In excess of our present $\$ 12$. Spain, at 15 cents per watt, was an Interesting variation since there was no apparent upper power limit. Other countries which had llcence fees in excess of our new rate Included Switzerland and Lebanon.
2m BAND IN U.K.
"I am afraid it is not yet possible to allow amateurs full access to the $144-145 \mathrm{MHz}$ segment, but the aeronautical assignments have been reduced to the three frequencies $144.0 \mathrm{MHz}, 144.54 \mathrm{MHz}$ and 144.9 MHz . We cannot say when these remalning channels will be given up and amateurs must continue to avold them". Extract from a letter from UK Radio Regulatory Division quoted In Moblle News, Oct. '74.

CW NETWORK PROGRESSES

Founded about two years ago by Frank (VK411), the CW Net Is now a regular each Sunday morning on 7 MHz . At the time of wrlling. the net has functioned 97 times, and has drawn into its ranks a large number of expert CW operators. These men are firm bellevers in the permanence of telegraphy in a world where technological complexity is otten developed for its own sake, or for commerclal reasons.

TIII recently the Net Controllers have come from elther VK2 or VK4, but on Sunday January 5th, a Victorlan, VK3XU, conducted the net for the first time and in a most effective manner. Drew handed the necessary QSOs for eighteen amateurs during a two-hour session, and repeated the performance on the following Sunday. And when one considers that each station would average about three contacts per session, this represents a considerable amount of work.

The net is there to be used by anyone reasonably proficient in CW operation. It will be found an 7025 kHz at 1000 hrs EAST on Sundays.

VK2AV for CWN

Operators (I. to r.) at the VK7 Divisional Hamfest were Bob VK7ZJS, Tony 7AX and Ken 7KH. This was the first hamfest organised by the N-W Branch and was held on $16 / 17$ Nov. 1974 in the Turners Beach Hall, 8 miles west of Devonport. A number of social activities (including a fashion parade of night attire) were greatly enjoyed by the 80 or so adults attending. Photo courtesy The Advocate of Burnie.

UHF SERVICES

A CONPANY DEVOTED TO THE STATE OF THE ART

WE WILL . .

SERVICE ALIGN
 Or
 CONVERT

equipment for $6 \mathrm{~m}, 2 \mathrm{~m} 70 \mathrm{~cm}$ or higher.

AVAILABLE EX STOCK
 COMPLETE 6 m and 2 m Low Noise Preamps
 $\$ 18.75$

THESE ARE BUILT, TUNED and CHECKED.

70cm Low Noise Preamp - A must for all 70cm Enthusiasts $\$ 22.50$

10.7 MHz FN IF BOARD. Completo with Commercial Spec. Crystal Filter - checked and aligned
$\$ 75.00$
FERRIC CHLORIDE tor atching circuit boards. $\mathbf{5 0 0} \mathbf{g}$ only $\$ 0.80$

PHONE 914300 or by appointment at 129 TENNYSON ST., ELWOOD

Trade Nens

Peter Williams, VK3IZ, has recently been appointed general manager of newly-fonned VICOM Internalional Pty. Limited. Peter (known around the traps as "IZ") has been active in WIA Federal, State and International affairs and until recently managed the Australlan Electronic subsidiary of the Schaeffer Pen Group.

Vehicle Ignition

Noise Suppression

Abstract

The noise created by the ignition and other electrical circuitry of the common automoble is well known, and well cursed, by the amateur who has tried mobile operation. Some, of course, have been frightened off by the apparent problems involved in suppressing a vehicle. I Intend to show a fow methods of suppression from the easy to the much more laborious methods.

There are three easy methods. Firstly, if you are wealthy enough, you can buy a diesel powered car. A diesel produces no interference. The second method is to switch off the motor of your car whilst you are mobile. This is hardly practical and additionally is dangerous with the latest cars which have steering locks. The third method which may or may not be feasible is to walt for the introduction of the steam driven car. For the average person none of these easy methods is practical, so I will concentrate on the laborlous but effective methods I have tried myself.

One of the first things that I found out when doing extensive experimentation on the suppression of spark ignition engines was that it would be a long job if the right techniques were not used. The final conclusion that I came to was that THE WHOLE OF THE INTERFERENCE CAUSing source must either be shielded COMPLETELY OR HAVE SUPPRESSION FILTERS FITTED WHERE SHIELDING IS NOT PRACTICAL.
The Ignitlon system of a car must have the whole of the HT spark system shielded, and thls includes spark plugs, HT spark plug leads, distributor, connecting wiring to the coil, and the shielding of the coll top. The low tension lead from the coll is filtered because it would convey Interference to all sections of the car as it is integrated with the rest of the wlring. It is also much easier to filter this lead. There is no practical method that I know of, of filtering completely the HT spark system. The carbon trace leads fitted to most new cars when new, do reduce interference quite considerably. Regretably. many car owners and Ignorant garage mechanics treat suppression leads as if they are the prime cause of englne trouble. They do give suppression figures of up to about 25 db over an unsuppressed vehicle ignition system.

Having made my point in regard to the general philosophy of suppression, I will describe two methods of suppression. The

Diagram 2. View of coil from top of shielding box.

first has been reasonably successful on the HF bands but not particularly so on VHF. The second method was a lot of work but is very good at MF, HF, and VHF, and should be reasonable at UHF. I don't claim that what I have done is necessarily original, but this style of thing has not been published in AR for many years, If ever.

METHOD ONE

At one time I was involved in the Emergency Fire Services of South Australia and the Country Fire Authority of Victoria. I was concerned with communications, partlcularly the communications to and from my mobile. I used a No. 122 transceiver and these are not blessed with a noise limiter as such. I didn't bother modifying the set so I had to do something about the noise from the Ignition system of the FE Holden.

I had quite a bit of old half inch coaxial cable so this formed most of the raw material source for the suppression. The cable was stripped down to its components. The only section used was the coaxial braid. It was cut into lengths that suited each individual plug wire and a length to suit the HT line between distributor and coil. Each of these tubes of coaxlal brald was slid over the approprlate distributorplug lead. The ends of the braid were trimmed away from the plug at one end and the top of the distributor lead rubber gaskets, so that no arcing from the HT system to earth occurred. At each plug end a braid lead was soldered on and extended to the rocker cover where it was earthed. At the distributor the seven braids were bonded together. At the coil end of the distributor-coll lead the brald was bonded to the coll frame. FE Holdens do not have resistlve HT cable so I fitted one of the 15,000 ohm resistive suppressors in the coll-distributor lead. This concludes all the information on the shlelding of the HT system.

The coil LT lead had a 0.5 UF 40 ampere coaxial capacitor fitted in the Ignition line at the coll. These are much better than the normal suppressor used for car radio suppression work, even though three times the price. The generating system of the vehicle also required attention. The output and field leads were shielded, like the HT line, from the generator to the regulator. The output lead to the battery was
filtered with a coaxial capacitor, 0.5 UF 40 ampere. The field terminal of the regulator was bypassed to earth with a series comblnation of a 5 ohm resistor and a 0.001 uF mica capacitor. The coaxlal capacltors must have their frame lugs bolted directly to the frame of the vehicle. The idiot light line was suppressed also, this time with a series RF choke situated at the regulator. The RF choke used was a LT choke from an old Astor vibrator car radlo.

I could now work mobile to base distances of 25 mlles whilst mobile which I certainly could not do before. If the set had had a noise limiter no doubt this range would have been even greater. The output power of the base was only of the order of 5 to 8 watts so 1 believe this was a credible performance. I found it most desirable to have the aerial on the rear of the vehicle to get as far away from the engine as possible, and so escape whatever Interference still remained. I bonded the englne to the firewall with a heavy earth strap such as used on batteries and did the same to the bonnet. How desirable these were I am not sure. I do know that the noise at VHF emanating from this vehicle had to be heard to be believed - it could be heard a block or so away - and other vehicles were not
audible.
With later types of vehicles which have a rubber sheath over the spark plugs it is likely that the braid shield can be extended down onto the top of the plug which is partially recessed into the engine. This may Improve VHF suppression. If you do this style of suppression you will probably find that the ignition timing has changed and may have to be advanced or retarded: I cannot remember which.

AETHOD TWO

If you really want to have your vehicle suppressed so that a sensitive AM recelver at a few feet hears no interference - then this is the method for you. A vehicle suppressed using this method should not have any trouble passing the Society of Automotive Engineers interference specification SAE-J551. The vehicle suppressed in this case was a 1970 Ford Falcon.

There was a lot of blood, sweat and tears shed during this project before success was ours. This was not originally my project - my boss decided that he wanted his vehicle suppressed so that any receiver, AM or FM, could be operated in the vehicle on any frequency from the broadcast band to a couple of hundred megahertz. This was to be on a set with no noise limiter. Some task!
The Ignition system was to be suppressed along the initial lines of method one only in a more thorough manner. The carbon trace HT spark plug lines were removednot because we didn't like them, but because they would not sult the end terminations we would use, and they were too short. The distributor was to be completely shielded, and some interesting metal work evolved during the exercise. A metal disc slightly larger than the diameter of the distributor formed the basis of the distributor shield. This had a half inch lip bronzed to it, and through the top of the disc 6 equally spaced holes were drilled around the disc. The holes were large enough to take normal wire cored Ignition HT wire. Six tubes each one Inch long able to take these cables were bronzed around the circumference of the holes.

An additional hole for the coll-distributor HT lead was bronzed to the centre of the disc. You may have realised this was a slx cylinder engine.

Around the lip of the disc was wrapped a piece of 26 gauge galvanised sheet steel and this extended down past the distributor assembly. It was held in place onto the lip of the disc by a large hose clamp. Underneath the distributor another clamp was fitted and this was intended to draw the metal of the sleeve close into the distributor housing. To facllitate this drawing in of the metal, slits were cut vertically in the metal so that adjoining pleces of metal would fit under one another. It was found necessary to turn up a fow of the ends of the metal strips so that they would prevent the clamp from slippling off the metal sheath. Thls must be fairly tight otherwise RFI leaks out from the small gaps underneath the distributor. There were two slots cut in the metal sheat to allow access to the distrlbutor cap clips. All of this can be seen in diagram 1.

The HT leads extend through the disc mounted above the distributor. The disc is mounted about 2 inches above the top of the distributor cap. The HT lines are covered with heavy duty coaxial cable braid as were the leads In method one. We had no shlelded spark plugs so the braid was extended as far down the spark plugs as could be achieved. The spark plug leads all had heavy rubber sleeves over them on the ends where they attached to the spark plugs. The braids were all bonded to the rocker cover near each spark plug. The coaxial shield braids were clamped onto the tubes protruding from the top of the disc on top of the distributor. Small screw type clamps available from Ford dealers or the smallest size hose clamps were used to do this job.

The HT lead from distributor to coil was also shielded, and clamped in the same way. A small metal case was made to go over the top of the coll. Access to the coil was galned by removing a small panel from this case. The HT lead outlet on the case was the same as the tubes on the top of the disc over the distributor and the brald was clamped in the same way. A 15,000 ohm resistive suppressor was placed In the HT lead. The coil to distributor LT lead was also shielded using a thinner coax braid. The braid was earthed at the coil and the distributor.

The ignition switch volt 12 active lead to the coil was filtered with a variety of L and C. A small balun core as used in many TV sets was used to wind a small VHF choke. Two or three turns of single core hook up wire was used through the two holes In the core. One end went to the coil LT line the other went to a 0.5 uF 100 ampere coaxlal capacitor. The capacitor output end should be the only terminal of the capacitor visible outside the case. The filtered end of the RF choke should be very short as the capacitor may not be completely effective at VHF. Robert Bosch (Ausi.), have some quite elaborate filters for this job - complete pi networks
in the one metal case. The filtering is qulte effective.

After all this hard work success should have been ours - it wasn't. At VHF in particular there appeared to be virtually no nolse reduction - It was enough to make a grown man cry. What was wrong? Hadn't we done something we should have? What was wrong with our reasoning? We were at a loss. We thought it may have been the bonding of the vehicle itself. We had all the mudguard panels spot welded every 3 inches to the engine compartment; we had the back edge of the bonnet bonded every 3 inches to the fire wall; we had the bonnet cleaned of paint so that It would make metal to metal contact with its hinges and bonding straps; we had the whole of the engine bay, engine mounts and exhaust pipe bonded with zero success. This is probably the stage that many people get to and give up - and I wouldn't blame them. After all this work we were not going to give up. We were going to succeed, and succeed we did.

Initlally, we had been unable to obtain shielded spark plugs and these had now become avallable. KLG-Lodge are the only manufacturers of aircraft style shielded plugs that I know of. We obtalned a set of these complete with elbows, fitted them and then listened to the glorious hiss of the receiver when the engine was running, no Ignition noise. We did hear Ignition noise though - that of passing cars but not ours. The type numbers of the shielded plugs I belleve from memory is the same as the plugs that you may be using at the moment, only they are prefixed with the letter S . Shielded plugs are only made to order, I believe, and take about 2 weeks to come through. These plugs cost about 3 times as much as ordinary plugs and the slbows cost about the same as the plugs.

The alternator and regulator also had to be suppressed. The leads from the alternator were all shielded except that the battery lead had a coaxial capacitor wired in serles with it and was unshielded. Two more coaxial capacitors were fitted to critical leads from the regulator but I cannot remember which. Later regulators will not require these extra capacltors. The shields must of course be earthed at each end for the shield to be effective. The instruments on the Falcon are fed via a small voltage regulator and this causes noise. Dismantle the instruments and inside either the fuel or temperature gauge will be found a small bl-metal regulator. A small 0.05 uF or similar ceramic capacitor is wired from active to instrument case on the outside and another Inside from the regulated line to earth. A small ferrite cored RF choke having about 3 turns of wire through it is wlred in place of the pink interconnecting wire in the instrument. This got rid of the plop that was heard every second or so in the recelver. Perhaps not all that annoying, but if suppression is going to be worthwhile the job may as well be done properly. So ends the saga of the suppression of two vehicles. The 3 diagrams will help
you should you wish to try out this method. Another Falcon was suppressed identically to the first with complete success, so it wasn't just luck.
COMMERCIAL SUPPRESSION METHODS
For those who wish to suppress their vehicles but do not wish to go to the troubie that we had done in the previous method I would suggest you contact firms such as Robert Boach (Australla), who do specialised work on vehicle suppression. I have seen some of the suppression equipment used and it is quite impressive. It woutd take under an hour to completely suppress an average 6 cylinder car. The bits and pieces are easily removed when the car Is traded in and may suit the new car with slight modification. These suppression kits are not cheap, but I can see them becoming more common as people realise their value in improving moblle communications.
In the United States of America a variety of suppression kits are advertised from time to time - these may be suitable for use here in Australia but this could not be guaranteed. In the March ' 74 issue of Ham Radio, page 63, a book called Ellminating Engine Interterence was described. I have not seen this book, but from the write-up on it would appear to be an Interesting and Informative book. Being an American book I am not sure how it should be ordered - Magpubs, or one of the book shops who advertise in AR?

SETS WITH NOISE BLANKERS

Many people will say that suppression is not necessary on a vehicle if you have a noise blanker fitted to the recelver. This is not strictly so. The noise pulses can be of such amplitude that they overload the front end of the receiver. The end results of the high amplitude pulses can be de-sensitisation of the receiver, cross modulation and in some FM recelvers, where the IF selectivity curve is asymetrical, the noise pulses ride through. The noise blanker is a very handy addition to a receiver but does not replace suppression of the ignition system.

QSP

VHF PROPAGATION
This is only one of the ways amateurs can Justlify the portions of the spectrum we occupy - by contributing to the basic understanding of VHF propagation. Conclusion of an article "VHFer's View of Solar Cycle 20''. In Ham Radio, Dec. '74. 1876 OLYMPIC GAMES
According to RASO (Radio Amaleurs serving the Olympics) the 1976 Olymplc Games are in Montreal during the summer and RASO Intend to organise Canadian amateurs for actlve participation in permilted facilities of communicatlons not contrary to third party Iraffic prohibitlons.
USA PACIFIC ISLANDS LICENBING REGION 3 Looking at the U.S.A. dependencias in the Paclific it seems that Guam comes under the F.C.C. and there is an amateur radio club on the Island which is not affiliated to the I.A.R.U. except possibly through ARRL. This appears to be the pattern in many other U.S. islands and does not of course help the Region 3 Assoclation in any way. Oihers of the U.S. Pacific Islands - I.e. the Trust Dependencies - do not appear to come under the Jurisdiction of the F.C.C. and no reciprocal licensing arrangements are in force for thesa areas. In a similar manner it seems that any amateur radlo societies on any of these islands also could not Joln the I.A.R.U. direct.

TRIO TEST EQUIPMENT

 At Pre-devaluation pricesSPECIAL OFFER FOR 4 WEEKS ONLY

MODEL AG-202A

The AG-202A is a Wien bridge CRtype, sine and square wave audio signal generator which is invaluable for high fidelity analyses in the lab, on service benches and in electronic educational classrooms. All solid state in construction, it produces excellent sine waves instantly with a minimum of distortion and square waves with fast rise time that are ideal for hi-fi tests. input for synchronisation with external signal sources has been provided to further enhance the versatility of this fine Instrument.

SPECIAL DEAL
 ON ANY TWO INSTRUMENTS

MODEL SG-402

This is an all solid state, wideband RF Signal Generator which produces low impedance, low distortion RF signals. It is highly dependable and easy to operate, and is a handy working instrument for service benches and electronic equipment production centres.

MODEL CO-1303A

This is an all solid state, 75 mm oscilloscope with outstanding performance features-vertical sensitivity of $20 \mathrm{mV} / \mathrm{cm}$, bandwidth from DC to 1 MHz -despite its small size and ease of operation. Lightweight and portable, it will prove to be a very handy and reliable instrument in electronic equipment assembly centres, school classroms and amateur radio stations for a wide range of scope applications.

MODEL VT-108

This is a new FET-type, electronic Volt-Ohm meter equipped with a "Memory" circuit which will prove to be an indispensable asset on any electronic production line, service bench or educational facility because of its wide versatility, ease of operation and efficient panel layout. Alltransistorised for instant voltage and ohm value readings and compact portability. It boasts exceptionally high sensitivity for accurate measurements. A special feature of this advanced multimeter is a built-in "Memory" circuit which memorises measured values temporarily for instant recall reference of the user.

Please post me Technical Details and Special Month-ot-March Pre-Devaluation Prices.

NAME: \qquad ADDRESS \qquad
\qquad

some useful modifications to the FT-IOl series

Geoff Wilson, VK3AMK
7 Norman Ave., Frankston, VIc., 3199

The following are modilications which have been made to a FT-101B transceiver. In each case there is no external change and if desired the unit can always be returned to its original state should this ever be desired.
The author has always been of the opinion that unless some very beneficial improvement occurs, it is unwise to make external changes to good commercial equipment as this will almost certalnly reduce resale value. Note that these modifications were made to an FT-101B, and due to slight internal layout changes it may not be possible to fit the fan relay (see modification 3) to the FT-101.

MODIFICATION 1

As supplled, the transceiver showed a tendency for RF feedback when using an external speaker, RF being picked up by the speaker leads. This was cured by the addition of a 0.01 UF 50 volt ceramic capacitor across the external speaker jack (J 12), connecting the capacitor from the green lead to earth.

MODIFICATION 2

When operating VOX It is often desirable to be able to hold the Tx on for short periods without having to continue speaking to do so. As supplled the PTT is inoperative In the VOX position. By bridging S7 (MOX-PTT-VOX selector) the Tx may be held on durlng VOX operation by pressing the microphone PTT switch. When this switch is released, VOX operation returns to normal, if the PTT switch is not pressed there is no change from normal vOX operation. A link is placed between the moving arm of S7 and the centre PTT contact so that PTT is available at all times. I did this by carefully placing a bead of solder across the contacts which are adjacent, falling thls a short piece of

EXTENSION

INSTRUMENT BIT
wire can be used. Care is required to prevent heat from the soldering Iron damaging surrounding wires and components. To make the job easier I used an instrument tip on my iron overwound with a simple extension made of 16 g copper wire which provided sufficlent heat in the confined space to solder the link.

MODIFICATION 3

When using the FT-101B with a VHF transverter, or during long periods when the heaters of the 6JS6Cs are turned off, it is quite unnecessary for the fan to continue to run. Under these conditions the only source of heat is the 128Y7A driver tube which produces very little heat at any stage. The noise produced by the fan can become Irritating during long periods of listening and can even tend to mask very weak VHF DX signals. In addition, considerable amounts of dust accumulate in the final cage over a period of time as a result of the volume of air passing through it.

The addition of a relay in the fan supply circuit operated from the filament line of the 6JS6Cs enables operation of the fan to be limited to periods when the tubes are heated. The critical component is the relay. This must be physically fairly small, a 12 V type, and capable of switching 100 volts at 0.09 amps . If a suitable type can be found, a reed relay with a 12 volt coll could also be used. Remove the bottom cover plate from the transceiver and check the available space immedlately below the electrolytics.

In the author's case, there was sufficient room to fit a small relay on a bracket which was attached to the side of the frame surrounding the power transformer. The dimenslons of the bracket and its exact location will depend upon the type of relay used. Ensure that there is adequate clearance from all surrounding parts. Trace the fan supply leads back to the power transformer and unsolder the white lead attached to the 100 volt terminal. Connect another lead to this terminal and then run both leads to the relay contacts, connecting them so that with the relay disconnected the fan circuit is OPEN. Next take a lead from pln 1 of the 11 pin accessory socket and connect this to a spare contact on the relay or a tag strip mounted on the chassis. From this lead connect a diode to one side of the relay coll, connect a 220 uF electrolytic across the relay coil and earth the other end.

Make sure that correct polarity of the rectlier is observed as this circuit must cater for 12 volt DC operation as well as 240 volt AC mains operation. When used on 12 volts DC, the diode conducts and allows the relay to operate. A far simpler way of controlling the fan would be to place an on-off switch in the 100 volt line, but this could easily be forgotten. The

relay circuit is completely automatic and ensures cooling of the final tubes whenever they are used.

NOTE: Some relays may run hot under continuous operatlon if the voltage exceeds 12 volts. If so reduce the coll voltage by adding a parallel resistor of suitable value and wattage. It is not recommended that this princlple be used with the FT401 etc. These transceivers have many valves and continuous cooling is desirable, especially in hot cllmates.

QSP

W.A.R.C. 1878

The fact of the matier is that in these ilmes the voling sirength of the ITU is controlled by several blocks of developing countries in South America, Africa and the Middle East. The League la already embarked on a programme of "selling" amateur padio In these sometimes hostile areas, working with other socleties in the IARU. In the months ahead there will be more extensive travel by HO staffers and by ARRL and IARU HO Officera and by the representatives of the regional IARU divisions. In addition we are calling on the services of those amateurs whose business travela take them Into critical areas and who have the lingulstic skill and the knowledge and enthusiasm to bolster The amateur cause. QST Dec. '74 Editorlal.

THE FUTURE OF THE SOCIETY
The RSGB Councll as reported In Nov. '74 Radio Communication had been diacussing the future of the RSGB and the outcome appaared to be that the Soclety must now seplously consider the administrative and economic aspecta of move from London; there must be far greater encouragement to younger members to paricipate In the Soclety's affalrs and it must do far more to publicise the work that it is doing. The WIA no doubt will also be busily considering lis own finances in 1875 judging by comments which came in from some members along with their subscripilona thla year.

MOBILE DX

During a recent ipip to the Northern part of Queenaland, VK2AOK found that a sure way to radiate a good signal on 14MHz at about 0930 EAST, was to tranamit from the centre of the Jordine Rlver, 38 milea from the top of Cape York.

All of the operatore on the frequency at the time from as far south as VKO. were greatly Imprecsed by the increased algnal strength as the river was crossed.
The tiver at thia polnt la approximately 350 metres wide and at least 1 metre deap.

The moblle atation used a Japanese tranacelver and amall 20 matre vartical antenna mountad on the front mudguard of a Land-Rover.

CDICOM PRESENTS A NEW MODEL - IC22A 2M FM MOBILE \$210

IC22A 2M FM TRANSCEIVER replaces the IC22 and is identical electronically, but features a redesigned front panel with easier-to-read channel selection. It features switchable power 1 or 10 wats, 22 channels, solid state T / R relay, built-in PA protection, filtered d.c. voltages. The unit comes complete with mounting brackets, microphone, cables, etc, and three channels $-1 / 4 / 50$. Price is $\$ 210$ incl. tax and VICOM 90 -day warranty. Extra crystals $\$ 7.80$ pair.

WHAT A WAY TO SAVE ROCKS! - IT'S EASY WITH THE ICOM DIGITAL VFO

DV-21 DIGITAL VFO employs a PLL synthesised system with 59 IC's, 34 transistors, 1 FET and 37 diodes. It can be INTERFACED with the IC22 or any 2 m transceiver with $44-45 \mathrm{MHzrx} 18 \mathrm{MHz} \mathrm{tx}, 10.7 \mathrm{MHz}$ i.f., Iwr side hetrodyne, $8 x$ basic freq for $t x$ and 3 or 9 x basic freq for $r x$. Only a slight modification is required for such equipment and is detailed in the operating manual. It operates in 5 or 10 KHz steps from 146 to 148 MHz and can scan either empty frequencies, or the frequencies being used, whichever you select. Complete separate selection of the transmit and receive frequencies is as simple as touching the keys. When you transmit, bright easy to read LEDs display your frequency. Releasa the mic switch and the receive frequency is displayed. There are two programmable memories for your favorite frequencies. You won't beleive the features and versatility of the DV-21 untilyou've tried it. Price $\$ 298$ includes VICOM 90-day warianty.
THE IC21A is the 10 w base station or mobile $(146-148 \mathrm{MHz})$ with variabie power control, adjustable deviation, 24 channels, built-in discriminator meter, S meter, SWR meter. PA protection, modular circuitry, runs from $13 v$ DC or $240 v$ AC. Complete with three channels. Price $\$ 298$, extra crystals $\$ 7.80$ pair.

Next month we'll tell you about our recent visit to the lcom factory in Japan - the production methods, quality controls and the active research and development team.

IC-3PA is a regulated power supply for all the Icom mobile transceivers. It's completely regulated, includes protection circuits and a built-in speaker in the cabinet. Price $\$ 78$.

INSPECT ALL THE QUALITY ICOM PRODUCTS AT OUR SHOW ROOMS.

AND 6M FM MOBILE TOO!

IC-60 6M FM 10 w mobile transceiver, featuring switchable power 1 or 10 watts, complete with mounting brackets, mic, cables, two channels, VICOM warranty. Price $\$ 234$, extra crystals $\$ 7.80$ pair
IC-30 70CM IOw mobile transceiver, incl. 1 channel (435.00). Price $\$ 370$.

IC-501 6M SSB transceiver, 10 watts pep with AM and CW. Price $\$ 445$.

Head Office:
139 Auburn Rd, Auburn, Vic. 3123. Australia
Telephone: (03) 82-5398
OPEN SATURDAY MORNINGS
Manager: Peter Williams
Geelong - Phil Fitzherbert (052) 43-6033
Agents being appointed in other states.

OUR POLICY: Persons not in possession of the appropriate certificate of proficiency will not be sold amateur equipment. This may have to be produced on request. Our terms of trading are strictly net cash, no COD, no credit other than Bankcard. All new equipment sold carries the VICOM 90 -day warranty (this excludes final, transistors or valves or damage caused by negligent use, excessive heat or "fiddling") which covers labor and materials and where possible the loan of a similar piece of equipment while repairs are being effected. Add extra for freight or postage and 50 c per $\$ 100$ for insurance cover.
Prices are subject to change without notice.

a twelve months study of the 20 metre band between melbourne and london

On the 14th November 1973, Jim G4BGJ, South London, and myself VK3LY, Melbourne, commenced a series of chats on the 20 metre band which in effect continued intermittently for the complete 12 months thereafter.

Everything was going along nicely when about the middle of May 1974, the band went out completely in Melbourne, which of course it had done on previous occaslons. However, this particular occasion differed from its predecessors in that it continued to stay out and was now declared extinct. Somehow the band couid not appreclate that Jim and I had been in regular contact either in the afternoon or evening (at the Australian-end) for about 6 months. But no matter what my feelings were on the matter the band Itself could not care less and like the river just continued on lis way.

By this time I of course was beginning to realise that JIm in London would be considering me a very discourteous type of individual - you see 1 had not told Jim that I would not be back! It occurred to me that if the band itself was not concerned about this lack of courtesy then I most certainly was and so set about finding a way of predicting the Irregularities of the mode of communication I had chosen. The idea of a chart occurred to me. Not an ionospheric prediction chart, but a chart which displayed the behavioural pattern of any selected band.

I probably have always been fascinated by the regularity of the passage of the earth in orbit around the sun. Further I have always been fascinated by the fact that the sun shines through the same hole in a cenotaph onto the same spot each year at precisely the same time as the previous year. I was further fascinated by observations I had made over a couple of years while being a 4th floor employee in a 19 -storey bullding noting the short shadow cast by our building in Melbourne on the 21st December as compared with the very-very-long shadow cast on the 21st June each year. Of course we had learnt of this at school but this was now taking on an added reallsm, as at the window at which I worked I was able to observe at my leisure and observe I most certainly did.

We are told that above us is an ionospheric region situated somewhere between 50 and 300 miles up. We are also told that thls ionosphere is affected by the emission from the sun causing the ionosphere to form a system of layers as our earth rotates. Of course planet earth is not a fixture - it does varlous things at the one time - it rotates on lis axis once in 24 hours - it also travels on an orbital path around the sun completing this journey in 365 days. Well so far it seems as though we have no problems

Ron Schmidt. VK3LY
i3 Rowell Ave.. Camberwell. 3124
and that all is plain sailing - until we realise that the earth amongst other things, is tilted on its axis by 23 degrees, and this alters the whole situation. One is forced to admit that this trick is tremendously ingenious however, for we have now introduced a system of seasons summer, autumn, winter and spring. You see now the plot thickens because the poor ionosphere doesn't know whether it is coming or going so to speak - for as stated the earth is rotating and continually presenting a different face to the sun. And because the earth is following an elliptical path it is always at a different distance from the sun to that had it been only on a circular orbit, where at least it would have always have been at the same distance from the sun. So much for the complexities which initiated the idea of the chart.

The chart itself was produced by drawing an ellipse with a looped piece of string and two drawing pins. Try It for yourself - put the pins about three or four inches apart, place the string loop over them, now with a ball-point pen or pencil strain the string loop slightly and following the perimeter draw out an elliptic type path. The ellipse itself is then divided Into quarters and subdivided until the segments are reduced to the chart as illustrated. One end of the ellipse was elected as representing the 21st December and the other end as the 21st June, while the 21st March and the 21st September are at their usual positions on the equinox line, or equinoctial line as listed on the chart. From there on divisions and date lines follow evenly. The principle applied was that there are 360 degrees in a circle and 365 days in a year - near enough for one degree to equal one day.

All of the G4BGJ signal strength readings recorded on the chart were taken on the long-path, our normal communication path for that time of the day. The few readings taken on the short-path were from other G stations. The length of the lines drawn are scaled to represent the signal strength of the station being recelved. S1 being a dot $1 / 16$ th inch long, S5 beling 5/16th inch and S9 being 9/16th inch long. A line drawn from the perimeter away from the sun in the centre of the chart indicates a long-path contact whereas a line drawn in towards the sun from the perimeter indicates a short-path contact of which a few only are recorded, there being very few short-path loggings as compared to the long-path. Times are shown as Melbourne tIme and are listed as Eastern Australian Standard TIme (EST) which is 10 hours ahead of Greenwich Mean Time or conversely GMT is 10 hours behind EST. Where no contacts are recorded this is because no signals were coming into Melbourne from G land due to ionospheric disturbances caused presumably by solar flares or solar storms, both associated with the manufacture of a sunspot - be It ever so humble. Some of the solar disturbances put the band out of action for 10 days - another lot for 19 days - thereafter in Melbourne was to occur the longest band drop-out of 72 days or $21 / 2$ months, that was from 17 th May 1974, until the 29th July 1974. This was on the long-path and the frequency was around 14140 kHz and in the normal time reglon of band openings between 0500 GMT to 1000 GMT, the times in this

Below is a reproduction from a colour slide of the chart prepared by Ron VK3LY

SIDEBAND ELECTRONICS SALES and ENGINEERING

TRIO-KENWOOD

Model TS. 520 AC-DC transceivers, for a glowing description, see September 1974 QST magazine, with external speaker unit
$\$ 550$
The SUPERB model TS-900 transceivers, see QST for July 1973 "this device has to be the pace setter for the 70's'", expected soon in stock, with AC power-supply-speaker unit, the Rolls Royce in amateur equipment $\$ 800^{\prime}$ External VFO for the TS-520 $\$ 80$

YAESU MUSEN

FT 101B AC DC transceivers	
FT-FP 200 AC transceivers with power supply-	
Speaker unit, ex stock	$\$ 400$
SPECTRONICS DD-1 digital counters for the FT 101B	$\$ 150$
FT-101B CW filters	$\$ 35$
FTDX 400-560 noise blankers	$\$ 20$
Alimited number of the latest ENGLISH manuals for	
the FTDX-401, FT-101B,FT-200 \& YC-355D post paid	$\$ 2$

HY-GAIN ANTENNAS

14 AVQ 10-40 M. vertical, 19' tall, no guys	\$65
3 JR 10-15-20 M. junior 3 el. Yagi 12' boom	\$135
TH 3 Mk3 10-15-20 M. senior 3 el. Yagi 14' boom	\$180
6DXX 10-15-20 M. senior 6 el. Yagi 24' boom	\$225
204-BA 20 M. monoband 4 el. full size Yagi 26" boom	\$190
HY-QUAD 10-15-20 M. full size Cubical Quad	\$200
etic base mobile whip 108 MHz and high	
18' RG-58U cable and coax plug	\$18
3N-86 baluns	\$18

CDR ANTENNA ROTATORS

AR-22 for 2 and 6 M . and small HF beams	$\$ 50$
AR-20 for 2 and 6 M . beams	$\$ 40$
HAM-II with re-designed control box	$\$ 150$
All for 230 V . AC complete with indicator-control units.	

BARLOW WADLEY RECEIVERS

Model XCR-30 Mk II 500 KHz to 31 MHz continuous coverage communications receivers, crystal controlled reception of AM-USB-LSB-CW
$\$ 250$

POWER OUTPUT METERS

Galaxy RF 550A with 6 posit ion coax switch
$\$ 75$

SWR METERS

Midland twin-meter type for 52 Ohms, up to 1 KW on hf $\$ 22$

BALUNS

New Japanese model, in 52 or 75 Ohms impedance 1 KW
PEP
MOBILE ANTENNAS
Markhelicals 6 feet long HW-80 for 80 M $\$ 18$ HW- 40 for 40 M $\$ 18$
HW-20 for 20 M $\$ 16$ high power KW- 40 for 40 M $\$ 25$
ASAHI AS-303A set of 5.10 to 80 M . mobile whips, complete with ball mount and spring $\$ 90$
AS-2DW-E1/4 wave 2 M. mobile whip $\$ 12$
DP-BSB mobile swivel mount \& HD spring $\$ 12$
$\$ 12$
COAX CONNECTORS
Amphenol VHF types Standard PL-259, Angle male-female.T-connector, RCA male to Amphenol female adaptor. Alimodels
$\$ 1$ each
CUSH CRAFT ANTENNAS
DGPA 50 to 27 MHz ground plane, adjustable $\$ 25$
AR-2 $144 \mathrm{MHz} \mathrm{s} / \mathrm{s}$ wave RINGO $\$ 20$
LAC-2 lightning arrestors $\$ 6$
CRYSTAL FILTERS
$9 . \mathrm{MHz}$ similar to the FT-200 ones, with 2 carrier crystals \$35
POWER SUPPLIES
240V. AC to 12V DC 3 to 3.5 Amps, regulated \$35
SPECIALS USED EQUIPMENT

HENRY RADIO 2 K ULTRA AMPLIFIER	$\$ 600$
HENRYRADIO 2 K 2 AMPLIFIER	$\$ 600$
COLLINS RADIO 30 L AMPLIFIER	$\$ 600$
COLLINS RADIO R-390-A mechanical digital read-out	
receiver. 5 to 32 MHZ	$\$ 800$
ALPHA 77 AMPLIFIER	$\$ 1200$
SIGNAL ONE TRANSCEIVER	$\$ 1100$
DUMONT model 304 A OSCILLOSCOPE	$\$ 150$
TEKTRONICS model 502 dual beam OSCILLOSCOPE	$\$ 500$
FAIRCHILD-DUMONT model 766H dual trace 0-25 MHz	
OSCILLOSCOPE	$\$ 500$

27 MHz EQUIPMENTMIDLAND 5 W AM 23 channels t ransceivers, with PTT mike 12 V DC$\$ 95$
MIDLAND 5 W AM 15 W PEP SSB 23 channels transceivers PTT mike 12 V $\$ 175$
SIDEBAND Brand One Watt model NC- 310 hand-held transceivers $\$ 50$
SIDEBAND Brand 5 W AM 15 W PEP SSB 23 channels transceivers, with noise limiter-blanker, PTT mike, 12 V DC $\$ 190$
144 MHz TWO METER EQUIPMENT
MULTI-7 10 W output FM transceivers, 24 channels with crystals for 10 channels 40 to 60, includes all Australianrepreaters and anti-repeater operation, with PTT mike and mobile mounting bracket, 12 V DC operation, still only $\mathbf{\$ 2 2 5}$KEN PRODUCTS KP-202 2 W output FM hand-held transceivers with the hottest receiver available anywhere, 6 channelsnow with crystals for channels 40 and 50 and all 4 repeaters $\$ 150$; KCP-2 battery chargers and 10 NICAD batteries $\$ 35$:Leat her carrying case for the KP-202\$6; Stubby flexible helical whip antennas for the KP-202\$6.

KLM ELECTRONICS solid state 12 V DC 2 M . amplifier, 12 W output, automatic antenna change-over when driven, ideal for mobile use with the KEN KP-202 \$50.

All prices quoted above are net SPRINGWOOD, N.S.W., cash with orders, sales tax included in all cases, subject to changes without prior notice. No terms nor credit nor COD available, only cash and carry, no exceptions. All-risk insurance available for 50 cents per $\$ 100$ value, minimum insurance $\$ 0.50$. Allow for freight, postage or carriage, excess will be promptly refunded ... MARY \& ARIE BLES, Proprietors.
segment being of particular interest and were charted accordlngly. There was an occasional opening to Spain or Southern France in that time - but to G land well if you look at the chart you will see an occasional working but it seemed to an exasperated operator in Melbourne. that "never" would have been a nearer truth.

The shortest QSO betwen G4BGJ South London, and VK3LY Melbourne, was for about two minutes - time only to exchange callsigns when the band faded out. However, that was only on one occasion. The longest QSO occupled us for something llke $21 / 2$ hours. The average QSO on SSB would have been for about $11 / 2$ hours which would also have been about the length of the band opening. SSB was the normal communication mode used. Transceivers at each end were FTDX 401 s plus a linear at the G end. Antennas were, at G4BGJ a Mustang Mosley at 40 feet while at VK3LY a 2 element homebrew tribander at 22 feet was operative.

A comparison of charts drawn up by keen amateurs around the world would certainly be most revealing. A chart comparison taken between the Australian cities on the Eastern coast would In themselves be a revelation in displaying the varlations of the band over a similar path to any country the amteur operators so elected. This project would call for quite a disclpline for the twalve months in that those conducting the experiment would require to be in attendance at band opening times for the sake of recording or not recording on the chart, whichever it turned out to be for that day or night. As stated, a chart comparison taken on the same band around band-opening times at Brisbane, Sydney, Melbourne and Hobart in Australia in itself would be tremendously interesting as each of these capltal cities are almost on similar longitudes while differing satisfactorily in latltude for the exerclse. The times given on the chart purport to be band-opening times. These became very accurate as the operator became adept in recognising and observing the opening to G land. The commencement date for the taking of readings was the 14 th November 1973, and the final reading was the day before that date in 1974. I define the band-opening time as being that time at which the G station became reability 5 . On first hearIng the G station, the time and signal strength is immediately logged together with the dial frequency-reading, being recorded on scrap paper Inltially for comparison purposes while scanning the band, the final signal strength being recorded on the chart; in short you sample the band.

Because of the rotation of the earth from west to east the New Zealanders hear the G stations open before the VK3 stations. As a result of this it is not uncommon to find yourself listening to the ZLs working the Gs for perhaps a $1 / 2$ hour or so before the Gs are even being heard in Australia. This in itself is an interesting experiment in that it makes it easy to hear the birth of a G station from nil heard,
to the eventual final signal strength at which that particular signal is going to settle down. Only temporarily of course, for the life of a DX signal on the highfrequency bands is normally of a very temporary nature. The birth of the incoming signal when it starts can be from 2 minutes to perhaps 10 minutes before it reaches its maximum signal strength, its final strength being predetermined by conditions assoclated with the ionosphere, power into the antenna at the transmitting end, and the antenna height and galn. At the recelving end we have exactly the reverse situation except that the receiver takes the place of the transmitter. This of course presupposes that locations are normal and that directional antennas are being used for best DX communication purposes and are of course beamed correctly towards one another.

From the series of observations taken in constructing the chart it became obvious that the boys around Sydney were generally able to contact G land slightly earlier (because of the slight longitude difference) and more frequently than their counterparts in Melbourne. This applied particularly when solar actlvity was having an adverse effect on the band down Melbourne way; it was not uncommon under those condltions to hear the Sydney boys working and giving the G stations normal signal reports. Under those conditions of course the more southern VK3 knows instinctively from his acquired experience of the band that this is not his night. However, this is not necessarily the end of things for it is not uncommon for conditions to change slightly and favour the VK3 more than previously.

In summarising the advantages of this particular type of chart over the normal ionospheric prediction chart I would say that this particular chart provides the operator with:-
(i) a fuller comprehension of the band by providing a better understanding of ils behavioural pattern,
(ii) an indication of temporary band drop-outs of a periodic nature,
(ili) and Indication of winter (at the Australian end) band drop-out as well as an indicatlon of a return to continulty of communication for the remainder of the year,
(lv) a rough prediction of probable repeat performance for guidance purposes for the following years, or year at least,
(v) a once In your life comprehension of the band under observation.

Statistically on the chart there are 130 contacts with G4BGJ, 32 G contacts not G4BGJ, plus 12 G stations heard with signal strengths recorded, altogether making a total of 174 recordings. These in their turn produced the final chart. The chart shows an average of one contact every second day throughout the year, remembering that there was a time during the winter months at the Melbourne end when signals stayed out for $21 / 2$ months; although a rebirth was around the corner and patience was to eventually win the day.

On discussing the chart with a Canadian who enquired about the principle on which the chart was established, I repeated the opening story of the cenotaph, which brings us back to a repeating cycle of events. In short if there was no sunspot activity ever to cause magnetic storms then the band would not go out as spasmodically as it now does, and you would be left to presume that you would have an even flow of communications at the normal contact times. It should be noted that the solar storm does something else which is not immediately obvious - as stated the solar sform-eauses the upset in the ionosphere and the result caused by the upset may take place for perhaps 10 days, after which the lonosphere resettles - but here is the point - it now resettles not at the point where it was before the band went out, but resettles at a point which is in direct accordance with the earth's new position on its orbit in space around the sun. If there were 10 days of disturbance the planet earth would have travelled 16 million miles further on its elliptic-path journey and the result of this Is that the band would now come in earlier or later than that where it was before the sunspot disturbance under discussion (which produced the resulting magnetic storm). Whether it is earller or later depends upon whether the earth is heading datewise towards the 21st December which is the longest day at the Melbourne end or the shortest day at the London end and which is recorded on the chart as the 17th December (possibly due to the tilt of the earth's axis from the vertical). For the purposes of straight reading it would be better to put aside this slight discrepancy as that type of change can be a separate study in itself. Let us proceed. On the chart as you approached the 17th December the band in Australia opened to G land later, opening in London also later, for the length of the plece of string holding London and Melbourne together for the purposes of this exercise, does not alter, the band opening being now around 1000 GMT: conversely, as the earth moves away from the 17th December towards the 21st June the time of band opening becomes earlier - i.e. 0530 GMT with the intermediate times of opening being proportlonally distributed along the intervening date points on the chart. Inserted on the chart you will find references to 40 metres and an occasional reference to 15 metres. Please consider these as extras in terms of G land openings to Australia and they were not really associated with the main project, that of course being the study of the 20 metre band only.

Having now completed the elliptical trip around the sun on plant earth and having covered something like 583 million miles you now may have a better appreclation of the digestive troubles had by the ionosphere in erideavouring to adjust to its changing surroundlings; in spite of everything, the band does have a tremendous element of loglc despite a seeming multltude of inconsistencies.

VHF UHF
 an expanding world

with Eric Jamieson VK5LP
Forreston. S.A.. 5233
Times: GMT

ANATEUR BAND BEACONS	
VKO	VKOMA Mawson
	VKOGR. Casey
VK1	VK1RTA. Canberra
VK2	VK2WI, Sydney
	VK2WI. Sydney
VK3	VK3RTG, Vermont
VK4	VK4RTL, Townsville
	VK\&WI/1, Mt. Mowbullan
VK5	VKSVF. Mt. Lotty
	VKSVF, MI. Lofty
VK6	VK6RTV. Perth
	VK6RTU. Kalgoorlie
	VK6RTW, Albany x
	VK6RTW. Albany
	VK6RTV. Perth
VK7	VK7RTX, Devonport
	P29GA, Lae, Niugini
$\begin{aligned} & 3 D \\ & \text { ZL1 } \end{aligned}$	3DAA, Suva, Fili
	ZLIVHF, Auckland
	ZLIVHW. Waikato
2L2	ZL2VHF, Wellingion
	ZL2VHP. Palmerston North
2L3	23LVHF, Christchurch
2L4	ZL4VHF, Dunedin
	x denotes addlition

53.100
53.200
144.475
52.450
144.010
144.010
144.700
52.600
144.400
53.000
144.800
52.300
52.350
52.950
144.500
145.000
144.900
52.150
52.500
145.100
145.150
145.200
145.250
145.300
x denotes addlition
Beacon news thls month shows the new Albany 6 metre beacon with a listing on 52950 , and reported heard by Kerry VKSSU at Ceduna. It uses slow CW with 5 watts oulput presently to a 5 element beam pointing east. but an omnidirectional antenna is planned for the beacon. No news has been heard of the Darwin beacon VK8VF since the cyclone. so it can only be presumed to be lost along with so much other damage, and I guess there are more important things to do in Darwin at present than worry about the beacon. However. probably something will be heard about it by the lime the next DX "season" comes around al the end of the year.

SIX METRES

This band seamed to be behaving in a somowhat unusual manner this "season". Excellent early openings were observed to all States in November, with a trequency indicating something was going to happen early. Possibly the best way of going over activities would be to plck out some of the highlights as 1 gaw them, and with some news from other areas to complete the pleture.

One of the highlights would have been the copying of the Fiji beacon 3D3AA by VK7JV and VK7ZAH on 24th November for 15 minutes with signals 5×3. Distance would be over 3000 km . About this time news came to hand that VKBVF. the Darwin beacon, was operating as a transponder and was capable of giving signal reports back to the calling station . . . 16/12 Rod VK2BQJ (ex ZQJ) reported digging in the garden - consequently missed working ZL48...John VKAZJB worked some JAs on this day. 26/12 all ZL districts 1 to 4 worked 27/12 VK7ZAH heard 3D3AA beacon. and later worked VK2日KE on Lord Howe Island. who was using an FT200 driving FTV650 Jim VK5ZMJ also worked VK2BKE. Good work chaps. ZLs still available

1/1/75 open to all States, all day to VK4 report came In. still uncontirmed that Clarrie VKszCV heard gY\&VV in Trinidad . . $4 / 1$ ZLs again. including ZLAPG (David). . From the end of the first week in January conditions tapered of quite markedly. or the operators did, but openings did continue intermillently most days culminating in a good opening to VK6BV and others in Kalgoorlie on 28/1 and a very strong opening to VK1 and VK2 on 29/1

Summing up my Impressions of slx matres this time: not as many good openings or contacls to VK3 as some times . . . VK2s very nollceable by their absence, commented upon in many circles Activity in VK6 qulte high with many excellent signala
northern VK4 prominent. some Brisbane activity, but no doubt hampered by Ch .0 mosi stations operating SSB now, many using

FT620 baraloot, with about 10 watts output. others using same to drive fair sized linears. theretore many very slrong signals. Several good. stiong. well modulated AM stations noted. mostly matching It with the SSB boys . . . weaker AM stations noted ollen working quile well lurther up the band good ides 10 gel out of the QRM If crystal lockednoticed they went up further of their own tree will! Band operating manners very good, never heard a cross word from anyone, and most operators indicating they would move of the tequency on completing a contact so leaving the position to the original stallon; nice thought boys
Two metres
As predicled last year, two metres was again available this year for long distance sporadic E contacts. and there were some very interesting ones. I think the letter from Kerry VK5SU would sum up most of the two metre operating. so here are some extracts for your Interest. Again, these times specifically are Eastern Summer Time so you can better associate the time of day with the activity indicated.
22/11 1115 Adelaide repeater Ch 4 worked.
$23 / 110700$ Ch. 4 again worked
0815 VK5BC heard 144.103 S6 CW. S3 AM
1005 VK5LP S1 SSB 144.107. Also via Ch. 4.

7/12 0845 VK3ZAZ Ballaral worked via Adelaide Ch. 4 repeater.
0930 VK5CU/S mobile Adelalde worked Ch. 50 and B.
15/12 0835 Heard briefly VK2YDK in OSO on Ch. B.
0850 Heard vk2zay Gunnedah 144.1 SSB 5×4 via Es.
16/12 1218 Worked VK5ZK, VK5ZTS 144.1 SSB. 21/12 1220 Worked VK2ZAY Gunnedah (1636 km) 144.15×3 SSB via Es
1225 Worked VK2ZCV a: Tamworth 144.1 5×9 SSB.
1251 Worked VK2ATI mobile Ballina (1974 km) on Ch. B. 5×4, Es.
1253 Worked VK2YBZ portable Evane Head near Ballina Ch. B. 5×9. Es.
1254 Heard and called by VK4ZJB Brisbane Ch. B No report obtained!
23/12 1029 Worked VK2ZRH Sydney $144.15 \times$ 9 SSB
29/12 1200 Heard VK5NC MI. Gambler
1735 Worked VK5DK MI Gambier CW 5×4.
30/12 0820 Worked via Ch. 4 Adelaide
0826 Worked via Ch. 1 Mt. William (Vic.) repeater.
0838 to 1100 Worked VKSMT, VK5MC. VK5RO. VK5LP. VK5SPS, 144.1 SSE
5/1 0733 Worked VK3ASV and VK3ZVL/3 60 miles east of Melbourne via MI. William repeater, also VK3TN aeronautical mobile via Ch. 1.
Now that's a pretly falr effort, and shows that the interest Kerry is able to give to the game has allowed him in a very short while to make some very good contacts. I would like to add the following bits as well betore summing up the two metre situation.
During the 2 metre opening on 21/12 Jim VK5ZMJ al Port Pirie in the mid-north of SA worked 22 stations in VK2 and VK4 using SSB and Ch. B FM That's a pretty talr elfort too. On 16/12 Tony VK52DY and myself worked Daniel VK7ZDA. and was the only reported occasion (10 me) ol VK7 to VK5 this year ... Around $1 / 12$ a report was received from Sydney thal GRM was being experienced in that city to the international PMG system from a station in Hawaii just below the 144 MHz band! Now that's a long way - perhaps someone should have VFO'd down and told them to come up into our band for a contact!
VKSVF. Adelaide 2 m beacon heard in Perth on 29/12 by VK62CN and VK6ZFY . . . Numerous redorts of cross Easiern States odenings. VK3 to VK4, VK3 to VK2, VK2 to VK4, much short skip around top end of VKA, Bundaberg to Rockhampion for example

Taken all round, it was a great time for 2 metres. both SSB and FM. It shows how one mode can help the other. Having operators fairly constantly using FM on fixed channals gives intarested operators the chance to monitor something. and it looks as though Ch . B (40) will remain a pratty popular frequency for a long while, despite Ch. 50 being nominated as a nalional calling frequency.

Looking back at the FM scene one could probably say more stations in Adelaide in particular would probabiy have worked into VK2 and VKA on FM if they had belter antenna systems - the idea ol a small vertical antenna is fine for cross town working. but when the guns are out, you need something better. A 5 or 6 element beam doesn't cost much to bulld. and the ideal would be one tor both verfical and horizontal polarization - there are some operators around who only have horizontal. but certainly 5 elements at least vertical would be a great improvement. So what about it you guys. Get on the job ready tor next November and December when there should be sporadic E openings on 2 melres again.
Summing up. 2 metres was really good thls year. helped by plenly of statlons having equipment on one or other of the sections of the band, and In general having better equipment than that of a lew years ago. More vigilant operators help to keep signals on the varlous frequencies and in lurn more people hear them. It would be nice to see more stations migrating to the lower section of the 144 MHz band in tune with the sentiments I expressed last month about using the 2 metre band - we don't want commercial stations operating right up alongside even the FM channels or do you? With so many operators now having SSB equipment on 6 metres. it is not an enormous task to ullise the SSB portion of that gear for 2 metres, a 52 MHz exciter unit. coupled to a 144 MHz transverter with the use of a 92 MHz oscillator chain will start you on the way II you are not keen on slarting the SSB at some lowet frequency. There are plenty of OQEO3/12 valves around tor 15 walts or 80 at 144 MHz , the QQEO3;20 will give you 40 to 50 watts and a 00EO6/40 double that, and none of these will cost you a tortune to get going. It's essential more of you blokes give very serlous thought to gelling oft the FM channels at limes and spread your interest to other areas of the band. or you may live to rue the day that you did not do something about it Channel 5A is coming!!

PORTABLE OPERATION

Well. the big portable operation 1 started out on just after Christmas ended in disaster! The first day (26/12) was very pleasant and many 2 metre contacts were made, plus 6 metres of course. That night the winds shifted to the north, first bringing with it a violent thunderstorm and drenching rain. I was out at 2.30 a.m. battening down everylhing. finishing up with 9 guy wires on the mast with the 6 and 2 metre antennas and rolator. Gradually the winds shifled to the west and increased in violence until they were screaming around the 1445 foot deak of Myponga Hill in excess of 40 knots. threatening to tear everything apart. I spent most of the night standing up in the caravan in one corner holding it down against the wind which was raising the van 2 to 3 inches with each gust. The rain still poured down. My only comfort was the lorch. The alternator was outside covered down (I hoped) so couldn't glve me any cheerful lights. Next morning the rain slowed down. but the winds continued to rise in strength, and anger. I lied the caravan down as best 1 could with baling iwine and iron droppers. When the rain linally stopped. I uncovered the alternator, and got it going. deciding 1 might try my luck on the bands despite the winds. All the equipment was salely housed in a Kombi van, which weathered the storm well. and kept everything quitie dry

From lime to lime 1 had to sweep oft the operating lable because of the fine sand being blown onto it. The antennas (4 el . on 6, 10 el. on 2) took an awiul hammering, and so did the vary plucky rolator, but they all held together. By mid-afternoon i couldn't stand watching the caravan lift off the ground a few Inches with the stronger gusts. so decided to pack it in - much to my disappointment.

Summoning some nearby help I was able to linally get the mast and antennas down in one plece. How I still don't know. The rotator was encrusted with salt from the spray oft the sea, and then I realised from where all the aand had been coming on to the table. The map showed 1 was 9 miles from the nearest part of the ocean. yet the winds were so atrong and unabating that they never allowed the spray or sand to drop once it became alrborne. What an ordeall I'll go out portable again one day of course, but I don't think to Myponga Hill - 100 exposed to the

BOOKS OF INTEREST FOR AMATEUR OPERATORS

NOW AVAILABLE!

NEW 1975 EDITION

RADIO AMATEURS HANDBOOK

By American Radio Relay League
Price \$8-95

POSTAGE-LOCAL 50c

INTERSTATE 85c

McGILL'S AUTHORISED NEWSAGENCY

Established 1860
187-193 ELIZABETH STREET, MELBOURNE, VIC., 3000
"The G.P.O. is opposite"
\exists FERGUSON E

BRIGHT STAR CRYSTALS

Manufacturers of: Electrical / electronic equipment, wound components and lighting control equipment.

BRANCHES IN
 ALL STATES

Ferguson Transformers

Pty Ltd.
Head Office
331 High Street. Chatswosid NSW 2067
PO Box 301 Chatswood.
NSW. Australia 2067
Phone: 02-407-0261

- PROMPT DELIVERY GUARANTEED

- ALL TYPES OF MOUNTINGS

Such as HC6/U (style D)HC18/U (siyle J) . . . HC25/U (style K) . . . etc. . . . Frequency range up to 140 MHz on 5 th overtone.

Our increased production now enables us to offer Special Discounts from 10\% Let us quote you for all your Crystal requirements.
Our easy-to-read Price List is now available.

BRIGHT STAR CRYSTALS PTY. LTD.

35 EILEEN ROAD, CLAYTON, VIC., 3168. Phone: 546-5076 (Area Code 03). INTERSTATE AGENTS:
Sydney: PARIS RADIO ELECTRONICS, 7a Burton Street, Darlinghurst, N.S.W. 2010, Phone: 31-3273.
Perth: W. J. MONCRIEFF PTY. LTD., 176 Wiftenoon Street, East Perth., 6000, Phone: 25-5722, 25-5902.
Brisbane: FRED HOE \& SONS PTY. LTD., 246 Evans Road, Salisbury North, 4107, Phone: 47-4311
Adelaide: ROGERS ELECTRONICS, P.O. Box 3, Modbury North, S. A. 5092. Phone: 64-3296.
e!ements. but what a pily, such a beauilul site for VHF. If only to console myselt to a degree. I did hear eventually that some of the VK3 boys also packed up due to adverse conditions, so I didn't teal quite such a chlcken at!er all.

MOONBOUNCE

Congratulations to Chris VK5MC for his continuing success with 144 MHz moonbounce. At 1105 Z on Saturday 30th November Chrls contacted VE2DFO and W8KPY on CW, then a 2 way contact was successful with WOKPY on SSE, which looks like being a VK first for SSB moonbounce. Chrls sent 5×5 and recsived S2 back. Chris used 150 watts input for CW and 300 watts PEP output for SSB. to 4 stacked rhombics 50 wavelengths per leg length. Converter uses U310 FET for the front-end situated at the entenna teedpoint. and then situated to a palr of MPF121 FETs. Trevor VK5NC was in the shack at the time and was witness to the successful contacts.
The Dapto (NSW) boys have run Into trouble with their moonbounce equipment with extensive damage caused by a nearby llghtning strike. Dlodes and translators have had to be replaced in the power supply, defective coll in the control system. faulty coaxial relay, transmitter multipliar board and receiving converter oscillator chain transistors pitc. all need repairs. In addition the valuable

575 transistor in the front end of the converter whist not destroyed shows a marked deterioration In noise figure, so it appeara it will be several monthe before the equipment will be operational again.
From Roger VK2ZFB comea news that Andrew VKGZCN is starting on a 144 MHz moonbounce prolect, and tests are scheduled to commence in March with 800 watts CW to a bay of $4 \times 14 \mathrm{el}$. (112 el. Total) crossed Swan yagls spaced approx. 4m with mesh reflector end will have the capabllity of reversing sense of polarizallon.
News is also to hand that Barry VK2zAY in northern NSW is starting out on moonbounce and is currently looking for a sultable recelver. No other detalla avallable at the moment, but Barry will let me know in due course of his experlments.

meteor scatten

Results of Geminids Complex meteor scatter skeds on 13th to 16th December 1974 between VKBTZ and VKBZGQ at Kalgoorlie on 13/12 a.m.. VK6TZVKGZBM Kalgoorlie and VKGTZ and VKSSU on 14/12 a.m., VK6TZ-VK6ZBM on 15/12 a.m. and p.m. and VKGTZ-VK6ZBM $16 / 12$ a.m., on 52.100 SSB. Ross Hull numbers were passed on each of the $5 \mathrm{~m} / \mathrm{s}$ aked sessions with Kalgoorlie and Kerry VK5SU was heard on $14 / 12$ In Perth oft the back of VK6ZBM's beaml Others participating were VK6ZGZ and VK6ZJD. Lewis VK6ZGQ went portable to Eaperance and with vertical whip heard returns from Perth. Hour rates for $14 / 12$ were
$15 / 12800$; and $16 / 12$ 704. VKBTZ used 250 watte PEP into QQEO6/40 with 5 el. beam at 50 feet. FT620 driver.

52 mHz FM SURVEY

Latest news from George VK3ASV Indicates the world-wide standard 6 metre calling FM channel of $\mathbf{5 2 . 5 2 5} \mathrm{MHz}$ is alowly growing in activity in Australla, especially northern VK4, replacing the old AM net trequency of 53.032 MHz . In addition to the FM net In Brisbane, meny stations have moved eway from 53.032 and now operate on 53.995. This frequency has been suggested as sultable for use In VK3 to reduce Ch. O TVI. 52.525 FM was quite active during the last DX season in Melbourne, but has since gone rather dead.

In VK6 the primary channel is 52.658 and secondary 52.765 MHz . VK6WI re-broadcast their Sunday moming news on 52.656 also. The WA VHF Group Bulletin In November 1973 proposed a 6 metre band plan, v/2. FM nets 52.500 to 52.800 ; AM nets 52.600 io 53.300 . Experimental 53.300 to 54.000 MHz . VK6 also have uged 52.586 as an AM net.

In NSW we find 52.658 used in some locations, but the primary FM net appears to be 53.950 In Sydney, aspecially for WICEN. The VK2 DIvision broadcast by VK2AWI is on 52.525 FM and 53.866 AM, and VK2BWI on 53.982 AM in the Wollongong area, this being an AM net in the lliawarra area. Other AM neta used In VK2 are 53.786, 53.826 , 53.866 (primary AM), 53.920 (South Coast), 53.982 (Wollongong). Alao 53.538 MHz has been uaed as an FM net. George adds - "What a mix-up!"

SA, Including Allice Springs, use 52.525 FM, the
main $A M$ net being 53.100 MHz . Neither of these two trequencies are used by VK5WI: instead broadcasts are made on 52.150 using lunesble equip. ment and SSB.
Victorla, South Ausiralla and Tasmania stlli use 53.032 AM nel, but its use appears to be dying out. VKTWI and VK3WI up to recently used 53.032 AM for thelf broadcasts.

At the VK3 VHF Group meeting last March, John VK3ZMA advised two new 6 metre AM nits had been started in the Melbourne area, namely 52.900 and 53.100 MHz . In conclusion Ceorge adds he would like to see AM nets tade away, unless only for beginners up near 54 MHz away from TV, and more use made of low power 8 metre FM nets.
Thanks George for the information, which came via VK2ZTB. The most important point to come from your survey is the need for some semblance of order to be arranged for 6 metre net operation. whether AM or FM.
That will have to do for this time, there is quite a lot more which could be written, but due to the time lag at the moment, much of the news Is too old for inclusion. Closing with the thought for the month: "The way some people find fault you'd thing there was a reward"

The Voice in the Hills.
STOP PRESS 432 MHz RECORD BROKEN On Sunday, 2nd February 1975, a iwo way contact on 432 MHz was successfully completed by Wally VK6WG in Albany and Les VK32BJ in Melbourne. Signals were not atrong. Wally used CW and Les SSB. Distance about 2440 km . That now narrows down the field for anyone wishing to extend the distance further: eastern Victoria or Tasmania remain about the last chances unless someone makes it to New Zealand. Good work boys, let us hope it acts as en Incentive to others to get on 432 MHz

BIG 144 MHz OPENING

For days the 2 metra enthuslasts in VK3. VKS and VK6 have been watching the buildup of conditions suitable for long distance 2 metre operation. Finally with a zone of high pressure extending right across southern Australia conditions came right. Firat news came on $31 / 1$ with Wally VKGWG at Albany working Into VK5, also Aub VK6XY. Then Bob VK6BT was noted working Harry VK3XI on Channel B FM, and later VK5ZOO. Saturday conditions continued good right through to mid-day, then Sunday evening produced tis share of signala together with the 432 MHz record. Bob VK6BE who deserves some reward through. Keeping up 40 metre schedules almost daily with VKSZK and VK5LP, worked 10 VKS and 16 VK3 stations on $\mathbf{1 4 4 . 1 0 0}$ SSB for a total of 67 contacts which ls pretty good effort. Bob commented that signals were up to 5×8, best contact being whith VK3BMD who was operalling mobile in Melbourne running 20 watts PEP to afive-elghth wavelength whip! That's hauling them int Bob also added that VK3 had been worked via the Albany Ch. 2 repeater. Sunday evening contacta to Bob from VK5 were not over sirang. but Garry VK5ZK and Peter VKEZPS ware able to work him. I had to listen to the others as Bob was too weak here. Garry commented that it was interesiling that it was possible to work Bob on 2 metres but not on 20 or 40 metres. So much for VHF.
So that's the reward of the diveralitied operators. Those confined to repeater operation miss out on so much. Even after many years on VHF 1 still gat a thrill from working aomeone long distance away. with my own equipment, not that provided by someone else on a hill. And how very interesting it becomes watching the weather pattern emerge, finally to note conditions are right. This time the ducting or Inversion was centred some distance below the continent. restricting operation to those more tavourably sltuated near the coastline, particularly Mt. Gambier and Victorla. LATEST ON MOONBOUNCE
On 30/12 Chris VK5MC worked WAKPY on CW, received 449, sent 549. Heard K4IXC. then WBKPY called on SSB, Chris received 4×4, sent 5×4. Wakpy heard for three consecutive periods of 2 minutes. Both Ron VK3AKC and Trevor VKSNC present on
those occasions.
On 21/1 heard 3 stations, but not well. Antenna not always in right apot for moon positlon.

Trevor VK5NC in Mi. Gambler with his 56 elements on 2 metres has heard the VK5MC echoes, also unidentified CW. Ron VK3AKC has improved his control system for 1296 MHz , now hearing good echoes 3 dB above nolse consistently.

Contests

with Peter Brown VK4PJ
Federal ConlesIs Manager. G.P.O. Box. 638 Brisbane. Qld.. 4001.

CONTEST CALENDAA

MARCH

APRIL

1	8	2	ARRL DX Phone
8	8	9	BERU CW
8	$\&$	9	YL-OM CW
15	8	16	ARRL DX CW
22	-	24	BARTG Spring RTTY
29	8	30	CQ WW WPX SSB
5	$\&$	6	Pollsh (SP)
12	8	13	SWISs (H22)
26	$\&$	27	WAEDC RTTY

CONTEST DETAILS

A sma!l number of overseas radio associations send full detalls of the rules of their forthcoming contests to the WIA and these usually arrive several months in advance of the contest date. It is not practicable to publish these rules and scoring tables In full as most would require a page of our Journal. Most other Information about DX contests is supplled by Frank WiWr, and this arrives by airmail about the middle of the month. Unfortunately the detalled info generally refers to contests which are to be held during the next calendar month. As copy for our magazine tor that month must be with the Editor by the third of the preceding month it it frequently not pogaible 10 include as much contest Information as some readers would like. However, if you send a SASE to me at Box 87. East Melbourne, 3002, the detall required will be forwarded to you.
1974 WPX SSB RESULTB
Frank, WIWY aent these out by alrmall together with the following comment, "Not a bad showing for VK, but think you fellows could do better".
OCEANI

VK1AOP	A	111,006	5	
vk20W	A	8,358	71	42
VKAVU	A	274,247	642	138
VK4FH	"	182,932	536	118
VK4AK		21,375	110	75
VK5NO	A	351,770	838	145
VK5MF		74,980	283	92
VK2XT	21	31,977	323	33
VK3SM	21	23,779	193	43
VKAPJ		714	19	14
VK2APK	14	229,824	479	171
VK6LK	14	99,975	281	120

ROSS HULL MEMORIAL CONTEST
Only two loge to hand up to this date, 28th January. A VK3 has 98 OSOs on 2 motres and 43 on 6 metres. A VK4 well north of Brisbane has 225 QSOs on 6 metres. There are some letters to hand and a fow of them comment on the vary limited opportunities amateura in the Brisbane. Wagga and Melbourne areas have to use 6 metres. Another reters to similar restrictions in an area where TV Channel 5A limita 2 metre operation.
It is also suggested that the conteat runa for too long a pariod; that there are better times in the year for VHF working; and that to score accurately one neede to be a mathematician with a very good allas supplemented by detalled rasd maps of the various states. Then, if you have those qualifications and the equipment, there la the time necessary to calculate the distance of each OSO. Fortunately most writers, while being critical, also Include conatructive auggeationa. However, all have stated that they enjoyed the Contear.
Well, I would not attempt to draft now rules for this Contest as it seems that soecial sectlons must be caretully defined. With that in mind I have requested that a committee be set up to "overhaul" all the contest rules and scoring tables. Recommendations can then be made and you, the contestants, should have the opportunity to comment before final decialona are made.

BERU 1975
A rominder that this conleat will run from 12002 Saturday, Bth March to 12002 Sunday 9 th March.

Rules nolified in AR for February. Trophy medallions to VK winner and middle placing.

RESULTS BERU 1974

VK2BPN	1778	VK3K8	480
VK32C	815	VK3RJ	275
VKZBJL	580	VK3KX	215
VK6RU	865		

The Recolving Contest was won by Eric Trobllcock BCR8 195 who recelves the Receiving Rose Book.

VK sliver medallion VK2BPN, Bronze VKBRU.

gGI AWARD
The award is avallable to llcensed amateurs. Contacts on and after 1st January 1858 are valld.

The applicant's own QSL cards for the Ghanian statlons with whom contact is being claimed must be included with the application.

The award is avallable for all CW , all phone or mixed modes.

The fee for the award la 7 IRCs.
The address for application ls:
QSL Awards Manager
Post box 3773
Accra, Ghana.
Requirements: Confirmed contacts are required with 5 different 9G1 stations using at least two bands.

5N AWARD

The award is available to licensed amateurs and shortwave llsteners (on a "heard" basis).

Contacts with 5 N stations are valid
Do not send QSL cards. A list, showing full detalis of the contacts should be certified by the Awards Manager of a Natlonal Society.

The award is lssued for all CW, all phone and mlxed modes.

The tee for the award is 5 IRCs.
The address for appllcations ls:
Nigerlan Amateur Radlo Soclety,
Post Box 2873
Lagos. Nigeria.
Requirements: Confirmed contact with 5 different 5 N stallons are required.
P.A.C.C.

The award is avallable to licensed amateurs.
Contacts on and after ist June 1945 are valid.
Do not send QSLs. A list showing full detalls of the contacts should be certified by the Awards Manager of a Natlonal Soclety.

The fee for the award is 7 IRCs.
The address for application is:
Traffic Bureau VERON, C/O PADAAC
Post box 1166
Arnhem, Holland
Requirementa: Confirmed contacts are required with 100 different PA/PI stations. Stickers are avallable for 200 and 300 contacts.
special Note: VERON orgenises an International PACC contest every year during the last weakend In April. Contacts made during thls contest count without QSL cards provided that logs have been submitted by the PA/PI station for checking purposes.

BGGERWABSS wat ron ou in colour TELEVISION SERVICING -if you're trained for it!

Colour TV is the exciting breakthrough for the electronics service industry. It offers a great future for the service man who's gained the knowledge necessary to do the job.

Stott's introduce a brand new course designed to take you, step by step, all the way from basic electronic theory through to colour television receiver servicing techniques.

If you're a beginner, it can teach you everything you need to know about television principles and receiver circuitry.

If you are already working in the field or have already successfully completed some studies in electronics, you may be eligible to commence the course at an advanced stage.

Divided into three sections, the Stott's course covers:
Part 1 - Introduction to Electronics (theory and practice)
Part 2 - Monochrome Television Receivers.
Part 3 - Colour Television including fundamentals, colour processing circuitry, servicing techniques and faults.
Like all Stott's courses, you will work with your own instructor, an expert in this exciting field, at your own pace, in your own home. Whether you intend to enter the television service industry, or whether you wish to gain a thorough understanding of television theory and servicing as an aid to sales experience, this is the course to help you make it.

Other electronic courses offered by Stott's include: Radio for Amateurs - Amateur Operator's Certificate

For full information mail this coupon today:

QRU - Problems?

If you've been putting out calls for parts lately and haven't been receiving any satisfaction, try AUSTRALIAN ELECTRONICS SUPPLY. We handle the full range of electronic components and make your supply difficulties our special area of interest. Exclusively mail order, we pride ourselves on our efficiency and hope that we can be of service to you soon, by quoting on your component requirements.

AUSTRALIAN ELECTRONICS SUPPLY P.O. Box 257. Bondi Beach. N.S.W.. 2026

Letters to the Editor

Any opinion expressed under this heading is the individual oplnion of the writer and does not necessarily coincide with that of the Publishers

Tha Editor.

Dear Sir,
I would appreciate it if you would make the following matter as widely known as possible

Until January of this year, I had the call sign VK2HT and had been a member of the WIA for 15 years. In May 1973, I had a severe heart attack, and was in the hospital four times in the yoar.

I realised I would have to ratire from my protession, and gave up all my gear to various clubs. I surrendered my licence and resigned from the WIA reluctantly. I went to live In a amall unit where aerial systems were Impossible. My problem is that for a fow past years there is a very active pirate who uses my call sign VK2HT, and for several years I have been getting a flood of DX cards for contacta he has made in my name. He has the nerve to use my name and address (former) and I have been greatly ombarrassed by his activity. I would like it known that VK2HT is now no longer a legitimate call sign. I would appreciate it If anyone can catch this pirate and let me know, and I shall take legal action against him. He is atill vary active. Recently, I had an ofticlal letter from Germany asking for details of a OSD a month or two ago, as they were suspicious about the call. I have not made a call on the air for nearly two years.

If anyone can supply me with Information I would be very glad to take steps. The pirate is very familiar with my, or what was my setup, and Is very active. Is there any way that he can be nailed and stopped, as he is still actlve and cards especially from Japan are coming in?

Thanking you for all tha years of good fellowahip and wishing you wall with many now recruits in the coming year.
73.
(Rov.) Harry Harris
5/25 Etonville Parade.
Croydon. NSW, 2132
The Editor,
Amateur Radio
Daar Sir,
Townsville Pacific Festival Results for Contest.
Re the abovementloned contest rasults, It would be appreciated if a correction could be published.
In the published results I omitted to Include the score of VKIVP.

Score for VK1VP was 150 points in section ' A ' and was the highest score for VR1.
R. R. Kearney, VK4HE

Queensland Contest Manager
The Editor,
Amatour Radio
Dear Sir.
In reply to the letters in Ā̄ January 1975 about the Increase In licence fee, a number of points need to be discussed:-

1. Mr. Morris Implies that amateurs are paying considerably less than the "poor" commercial operator. Unfortunately as an amateur I cannot use my radio for the purpose of gaining income nor can I claim the licence and equipment costa as a tax deduction thus offectively halving the cost of these items. My radio actually COSTS me $\$ 12$ wheress tha majority of commercials would be savings cosis of actually making money from thair operations.
2. If Mr. Wathins had bean a complainer he would hava, Ilka me, received a letter from the PMG which clearly ililustrated how ilitla our political masters reallse what amateur radio ls and what contribution it makes to the community. The important crlals when it comes will moât surely be settled againat us in the present climate of opinion. We must be sufficiently politically aware to reallse that without continual representation of our Interests to parliamentarians and buraaucrats we will most certainly be lgnored aa Insignificant and ineflectual. However, If we choose to represent our case at every turn againgt us, and the fees Increase la an ideal opportanity,
then wo will avold losing the majority of the 144 MHz and 432 MHz bands to the commerciale $s 0$ beloved by Mr. Morris. These same commerclale reallse somathing amateurs do not; they are prepared to employ conalderable monies on direct and Indirect lobbying . . . even to the extent of fostaring a fealing of halpleaseses in the ranke of amateurs perhaps

Amateurs must atop being ostriches. Pollticians hold the powar of llfe of death over our hobby and will not jual go away if we are "good boye" and hodp quiet when we are disadvaniayud. There are plenty of others walting in the wings to knock the amateur and take over our frequenciea for the purposes of commercial profit.

Yours falthfully.
R. Martin Luther vkavu

Editor,
Amateur Radio
Dear Slif.
With raference to Erlc Jamieson'e VHF/UHF column of December AR I wish to take lasue with several of his inferences.

I cannot believe it is the opinion of the bulk of SSB funeable atalions in the 8 metre band that AM stations. tuneable or crystal locked, should be excluded from the firat 300 kHz of the band. The fact that AM requires a blt more spectrum than SSB should not preclude AM operation anywhere in a band 2 MHz wide. If Eric is worrled about bandwidth why advocate impreasing 25 watts of audio on 35 watte of carriar with the resultant splatter Some SSB algnals I have heard on 6 matras occupled a dam slie more bandwidth than a well modulated AM rig. Perhaps some operators whithout the ablity or Intereat to home brew a rig, even lack the ability to operate commercial equipmentl To infer that the first 300 kHz of the 8 metre band la the preserve of SSB tuneable operationa amacks of self indulgence that is hardly compatible with the ethica of emateur operations In the VHF/UHF apectrum as I underatand them - those of tolerance and encouragement.

A well known fact is that a certaln percentage of amataurs are well heeled and can afford commercial SSB equlpment. Eflc may well be one within this group but I sincerely hope his indulgent sentiments for that group are not representa:Ive of that group. A great percentage of the amateur fratemity la comprised of the lower income group whose capacity for Investment in equipment is limited to homebrew, ex-commerclal or diaposala type equipment very litile of which is SSB. I find Intolerable the inference that this group should not pursue their hobby with the equipment avallable to them In the apectrum not apecifically designated for other services.

As DX le, generally, first worked within the firat 300 kHz of 8 matres, as the MUF slowly arises to suggest that only SSB atations should be firat (as thay Invarlably are anyhow) to work it would be to deny a section of our fraternity the very experience to which they aspire. I remind Eric that AM slations which perennially utilise the 6 metre band help juatify our frequency allocation. Many SSB stations only work the frequency during the DX "season".

I consider we should actively encourage all modes of operation anywhere in the tuneable sections of 6 metres and can do without the parochial attitudes that frequently prevall.
P. Pendiebury, VK32AA

The Editor.

Amatour Radio

Dear Sir,
My thanks to you for giving me an opportunity of raplying to the above letter. My firat reaction after rushing to look at what I had actually written and heaving a sigh of rellef, was to Ignore the letter if only because of inaccuracias and misInterpretations, but after a couple of days decided the beal intereats of "VHF - An expanding world" would be served by a reply.

I would suggest readers at this atage get out Decembar 1974 "Amateur Radio" and look at what I did write on page 19, the VHF page, under the sub-heading "The DX is coming". Having done this, now read the letter from VK3ZAN again.

Now anybody can posalbly dream up the Implication that I advocate AM atations should operate above 52.3 MHz la beyond me. There it no mention
of AM, not even by implication, at all until halfway down the paragraph when i say: 'If you are running AM. please see your signal is well modulated

I suggeated operaling above 52.3 MHz for cryatal locked tranamissiona simply because a station up there should be in the clear "when the band is wide open" and being in that reglon such a atation would be less likely to finish on top of someone else. and better able to be worked by others. Good griaf! What should I say? The suggestion I made for those type of conditions is perfectly sound - If VK3ZAA wants to operate 10 kHz Inside the band or elsewhere, cryatal locked AM or SSB that's ok by me - but any inability 10 move up or down efow $k H z$ to get into the clear under crowded conditiona will certalnly preclude many contacta.
Mr. Pendiebury comments at the atart of tia second paragraph that he doesn't belleve It to be the opinion of the bulk of SSB operators that AM siations should be excluded from the firat 300 kHz of the band. Of course it wasn't. Who sald it was? I did not. How anyone can read that out of what I wrote la beyond me. How do you reply to such wild etatementis? if he can read that out of my writinge what hope have 1 of convincing him of anything.
I note Mr. Pendlebury recalved his call aign In late 1972. Pertaps he ls young. and rather Inexperienced. If so, time will halp this aliuation. If he le of mature years then he would be well advised to atudy more carafully writien words betore rushing into print. When he has experienced one of those daye "with the band wide open" as they ware some years ago, but not so much of recent ilme, he will surely better understand the reasoning behind my suggestion.

To accuse me of parochlal attitudes and othe various inferences is quite laughable. I guess there are many who have read my notes in various publications over the years who would back me completely when I atate I have alwaya belleved I have adopted a moat tolerant and underatanding attitude towarda all on the various bande - l.e. atearing a middie course, and with as little bias as possible. I cannot remember when the Editor leat blue-pencliled any of my notas

Yes, Mr. Pendlebury, I do have a few itema o commerclal equipment, but 1 have a lot of homebiew too. I guess there would not be a lot of ama'eurs around in VK who over the years have constructed more equipment than I, ranging from AM, DSB, SSB and FM for bath HF and VHF. various convertera, 6 and 2 matre liansvertera. 432 MHz tranaverter, power amps., linear ampa. portable and moblle equipment, SWR meters, nolse bridges, antenna tuners, antennas, teat equipment. power supplies. and so l could go on. Perhaps you will grant me the privilege to own a few pieces of commerclal equipment now. My operational interats are suraly divaralifed when you know that I oparale 160 to 10 metres SSB, 8 and 2 matres AM, SSB. FM and CW. 432 MHz AM, SSB and CW, and before long on 576 MHz 100 . Apparently in your words this makes me self-Indulgent, lacking in tolerance and encouragement. At least I do my share to keep the bands occupled by oparating in all sagmenta and using all modes Are you playing your part to keep the bande alive?

I conclude with a relevant thought from the writinge of Bertrand Russell .. . "The degree of one's emotion varies inversely with one's knowledge of the facts - the leas you know the hotter you gat'.
73. Eric Jamieson, VKSLP

solar flux and

sunspots -

Arrangemente have been made by Frank VK2OL with the Ionospheric Prediction Service, for the daily flux number for the preceding weak to be included in the weekly broadcast over VK2WI.
A word of warning though is necessary. This Soler Flux number is not related to the actual sun apot number, bul for the avid DXer, this flux number can be used as a gulde to propagation conditions that have taken place, and one can lorm an opinion of what may be expected in the future.

For those who have the means of listening to WWV. this flux number ia given every day at 18 minutes past the hour.
An indicallon of how this flux number could be used was the weakend of the CW section of the VK/ZL contest when excellent conditions prevalled until the Magnetic dialurbance round 12002 on the Sunday. The flux number In thie inatance reached 144. and then plummelted to round the 70 mark.

The flux number could have been used as a guide for the CW section of the WW contest when again the flux number rose, with a quist sun, to almost 100 after slowly climbing from the mid 80 s . During this conleat the 28 MHz band was wide open to all parta of the world.
At present there are 2 theorles being advanced on the current cycle. One is that it will follow aproximataly the normal 11 year cycle, and on going back to the aunspot number recorde Frank has since 1954. It could be about the middle of next year. However, mathematiclans have produced alrong case to Indicate that the bottom 1 tlme will not be reached untll the year 1977.
The I.P.S. have advieed VK2OL that one sun apot of the now cycle has bean sighted for a short perlod of a few hours only. When nearing the bottom of a cycle, it is poasible to tell whether - sunspot belongs to the old or the new cycle but it is 100 Involved to cover in this report.

Year	Jon	Feb	OF SM	Apr	MONTHLY May	$\begin{aligned} & \text { MEAN } \\ & \text { Jne } \end{aligned}$	VALUE8 duly	$\begin{gathered} \text { OF } \\ \text { Aug } \end{gathered}$	BUN8POT 8ep	NUMRERE Oct	$8 \text { AT }$	ZURICH DAC
1854	6.4	5.6	4.2	3.4	3.7	4.2	5.4	7.2	7.8	7.9	9.4	12.0
1955	14.2	18.4	19.5	23.4	28.8	35.1	40.1	46.5	55.5	64.4	73	81.0
1956	88.8	98.4	109.2	118.8	127.4	138.8	145.5	149.6	151.4	156.0	159.9	164.3
1957	170.2	172.2	174.3	181.0	185.5	187.8	191.4	194.4	197.2	189.5	200.8	200.0
1958	189.0	201.0	201.2	186.8	191.4	188.8	184.7	184.9	183.8	182.2	180.8	180.5
1959	178.6	176.8	173.5	168.4	164.4	161.4	155.8	151.2	146.2	141.0	137.2	132.6
1980	129.0	125.0	121.6	119.6	117.0	114.0	108.6	102.4	97.8	92.8	87.4	83.6
1961	80.2	74.8	68.8	64.3	60.0	55.8	53.1	52.4	52.3	51.8	50.8	48.7
1962	45.2	41.8	39.8	39.4	38.2	38.3	36.8	35.0	32.7	30.8	30.0	29.8
1963	29.4	29.8	29.8	29.0	28.8	28.2	27.7	27.2	28.8	28.0	23.8	21.3
1984	18.5	17.8	15.4	12.7	10.8	10.2	10.4	10.4	10.0	9.7	10.3	11.2
1965	12.0	12.3	12.7	13.8	14.7	15.2	15.4	18.5	17.2	19.4	21.8	23.9
1988	27.0	30.6	33.6	36.4	39.5	43.3	48.8	58.4	62.7	68.8	69.0	71.2
1967	73.1	78.4	79.4	81.5	84.2	87.8	93.8	84.6	94.4	94.0	88.2	100.0
1968	102.2	102.7	104.8	107.4	107.8	107.0	105.2	104.8	107.1	109.6	110.0	109.4
1969	108.6	107.6	105.3	103.0	103.2	102.8	108.1	108.9	105.8	104.5	105.0	105.6
1970	108.2	108.7	106.8	108.6	108.1	105.1	103.3	99.6	95.4	81.8	87.2	81.6
1971	77.8	75.2	71.6	68.0	65.0	63.9	65.5	65.0	68.4	67.1	67.6	69.9
1972	76.8	71.2	72.4	73.4	72.9	70.4	68.1	65.4	62.0	60.4	58.5	54.8
1973	50.4	45.9	43.6	42.2	40.3	38.6	37.6	36.4	34.8	33.2	32.6	32.6
1974	34.2	38.2	35.8	35.7								

FOR YOUR-

YAESU MUSEN

AMATEUR RADIO EQUIPMENT in
PAPUA NEW GUINEA Contact the Sole Territory AgentsSIDE BAND SERVICE PTY. LTD.

Phones 53557, 55511
Cables: Sideband

SPECIAL OFFER for March-April ONLY from AUSTRALIAN ELECTRONICS SUPPLY

$\$ 2.00$ per 100 in minimum lots of 100 per value resistance.*
$\$ 2.50$ per 100 in minimum lots of $\mathbf{1 0}$ per value resistance.* Specials
"Please add 50c pack and post for first 100 and additional 20 c per additional 100.

MINIMUM ORDER: 100 Resistors.

RANGE: E12 preferred values from 6.8 Ohms to 1 Megohm inclusive.
TOLERANCE RATING: 5\% POWER RATING: $1 / 2$ Watt A special buying arrangement allows us to offer these resistors at this unbeatable low price. Offer closes last post Friday, 11 th April, 1975. Deliveries will commence late April.

SEND YOUR ORDER TO: Australian Electronics Supply P.O. Box 257. Bondi Beach. N.S.W. 2026

O. T. LEMPRIERE \& CO. LID. Head Office: 31.41 Bowden St., Alexandra, N.S.W., 2015 and at Melbourne - Brisbane - Adelaide - Perth - Newcastle

Commercial Kinks

with Ron Fisher VK3OM
3 Fairview Ave.. Glen Waverley, 3150
This monin it's back to our old friend the FT200 lof a few quick and easy hints.

Firsi it's over to Llonel Swain VK2CS.

- Ever since I have had my FT200, the assoclated FP200 power supply has had a terrlfying metallic "Clunk' every lime it was switched on, due apparently to the momentary short circult in the form of the discharged filter capacitors. In fact during that time. I have blown the 5 amp fuse in the power transformer primary twice due apparenily to no other reason than that the swich closed at the instant of maximum current.

During the weak I had a rush of braina and installed a CZII thermister in the tranaformar primary circult - and the sainis be pralsed, there is now only a berely percepilble grunt when the powet is switched on. There are many types of thermistors available, but the CZII seems to be optimum for most iranscalvars although the higher powar types may need a CZ12'.

Llonel's idea is certalnly worth the time it would lake. Many amateurs have had irouble with diodes blowing in the FP200. The thermistor would no doubt asea the strain on them 100.

Receiver cross modulation is a problem that seems to effect aome amateurs more than others. Over the years I have had no serious irouble with the FT200 in ihle regard but if you happen to Ilve In an area where broadcast signala are sirong on 40 metres, here are a tew simple modifications.
The harmonic producing dlode (D301) In the output of the cryatal calibrator circult is the number one suspect as it is connected to the recelver inpui at all times.

Fortunately, there is a spare set of switching contacts on the recelve/operate/calibrate control. and this can be utlised in iwo different ways.

The flrat end easiest way is 10 route the output Ine of the calibrator through the switch. It is necessary to use small diameter coaxlal cable for this and In order that the capacily of the cable does not appear across the input of recelver. insert a 10 DF ceramic capacitor at the Junction of the cable and the recelver input. The second method is a litile more sophlaticated. It Involves applying a blas to the dlode to eflectively cut it out of clicuit. Four new components are needed plua a small amount of re-wiring. Needed are two 47K ohm resistors and iwo 4700 pF ceramic capacitors. First locate the 9 volt connection on the Rec/Op/Cal and bridga to the apare section 80 that it connects to the moving arm in the operate position.

From the Junction of C306 and D301 connect a 47 K resistor to ground. Connect one of the . 0047 mF between D301 and C301. Now connect a 47K resistor from the junction of tha 4700 pF capacitor and the diode to the moving arm of the Rec/Op/ Cal ewitch and bypass the awitch end of the 47 K resistor to ground with another 4700 pF capacitor. Thila compleies the modification.

Many of the older SSB transcalvars lackad a means of varying the drlve under tune-up conditions. Next month wa will discuss means of incorporating a dive control in Swan and similar rigs.

PRIDJEGTAUSTRALIB

with David Hull. VK3ZDH

FUTURE

In the middle of March the author will be attending an AMSAT meeting in Washington which will explote the roles of the National groups in future satellites. Up for consideration by the meeting will be new Project Australls command system logether with an integrated ATTY Telemetry/ Codestore system. If present plans work out these sub-aystems will be part of a future Joint Australls/ AMSAT CANADA satellite project designed to provide a continuation of the low orblt (a la Oacar 6 and 7) programme Into the late 1970s. Members are Invitad to write 10 Project Ausiralls with auggestions for future satellite projects. Any mail should reach me before my departure on March 13th.

PAST

Some difficulties were experienced In late January and early February with Oscar 6 commands affecting Oscar 7. At this time the satellites were virtually In the same spot in the sky and desplte precautions some of the dozens of commands a day fired at Oscar 6 caused unscheduled mode changing in Oscar 7. We apologise for any Inconvenlence caused but these problems were really out of our control.

OSCAR 8 REF ORBITS MARCH

Day Obit Time $z^{\text {Long }}$
Day Orbit Tlme 2 ow 10849125.2468 .7 $\begin{array}{llll}10861 & 25.18 & 53.7\end{array}$ 10874120.1067 .4 1088620.0452 .4 10899114.9666 .2 $\begin{array}{rrr}10911 & 14.8951 .1 \\ 10924 & 109.82649\end{array}$ $10936 \quad 9.7549 .8$ 10949104.6883 .6 109614.6148 .6 1097459.5462 .3 10987154.4776 .0 1099954.4061 .0 11012149.3374 .7 1102449.2659 .7 11037144.1973 .4 1104944.1258 .4 11062139.0572 .2 $11074 \quad 38.9857 .1$ 11087133.9170 .9 1109933.8455 .8 11112128.7769 .8 1112428.7054 .6 $\begin{array}{rrr}11137 & 123.63 & 68.4 \\ 11149 & 23.56 & 53.3\end{array}$ 11162118.4967 .0 $11174 \quad 18.4252 .0$ 11187113.3565 .7 $11199 \quad 13.2850 .7$ 11212108.2164 .4 $11224 \quad 8.1449 .4$

OBCAR 7 REF ORBITS MARCH

			Long
Day	Orblir	Time Z	ow
1	1320	108.23	6.8
2	1332	7.58	51.6
3	1345	101.85	65.2
4	1357	1.18	50.0
5	1370	55.47	63.6
6	1383	149.75	77.1
7	1395	49.09	62.0
8	1408	143.37	75.5
9	1420	42.71	60.4
10	1433	136.99	73.9
11	1445	36.32	58.8
12	1458	130.61	72.3
13	1470	29.94	57.2
14	1483	124.23	70.7
15	1495	23.56	55.6
16	1508	17.85	69.1
17	1520	17.18	54.0
18	1533	111.47	67.5
19	1545	10.80	52.4
20	1558	105.08	65.9
21	1570	4.42	50.8
22	1583	58.70	64.3
23	1596	152.99	77.9
24	1608	53.32	62.7
25	1621	146.61	76.3
26	1633	45.94	61.1
27	1646	140.23	74.7
28	1658	39.56	59.5
29	1671	133.84	73.1
30	1683	33.18	57.9
31	1696	127.46	71.5

Intruder Watch

with Alf Chandler VK3LC
1536 High Street, Glen Iris, 3146
A few of the successes that the Intruder Watch has achieved may be interesting to Members, but firsti:y a plea may be more appropriate. I have a rather comprehensive report on the Broadcasters in the 3.5 MHz band emanating from Indonesia. but need more information. On comparing notes with the U.S. I find that the frequencles given are compalible with trequencies on which Observers in the U.S. can hear AO carriers, but cannot get enough strength for Identificalion. I quote from a communication from K6KA - "We need help. particularly from Region 3 because it involves tropical and sout:ern reports where we can NOT. repeat NOT. get anything at all here during the winter months.

I have been hearing only a very few signals on 14 MHz so that we are down to practically nothing. but if we know from southern hemisphere reports that a certain signal is coming through we can watch for it and just as soon as we find it we can alert it to FCC and get some action. This has proved extremely useful: ${ }^{\text {. }}$.

Now for some successes -

1. A harmonic on 14240 trom the BBC relay in Johore, Malaysia, was causing a lot of Interference. The RSGB became interested and got the engineers 10 suppress the 2nd harmonic down to -79D8 and we haven't heard it since.
2. We complalned about a harmonic trom a station on Okinawa on 14330 kHz and they fixed that.
3. On 14115 the Voice of America station in the Philippines was heard and reported by one of my Observers. I subsequently reported it to the U.S. and the englneers cured the spurious. An interesting phenomenon occurred here. It was found that two closely located transmitters ware interacting to produce the spurious - the harmonle of one and the fundamental of another transmitter were mixing to propagate a signal on 14115 kHz .
4. A spurious signal (A3) on 14231.7 kHz took a long time to track down. We eventually found it to be in Thailand. By Amaleur methods we ran it down to a broadcast station of the local television company at the alrport at Bangkok. The company didn't want to replace the old transmitter because they hoped it would stand up for a little longer. but by persuasion through their engineers it was replaced and the spurious cured.
There are many more I could recount, but space does not permit. You will remember in a previous issue about KJG in Yugoslavia, and TCX in Turkey. It is by co-operallon between Obsencers. and between Amateur Socleties that the best work has been done; in other words BY AMATEUR METHODS.
Reference the Majak (Russian) Jammer on 7030 7040 kHz jamming the Peking broadcast on 7035 kHz the signal strength from that fammer has been measured In Los Angeles and is 2000 microvolts (that's two millivolts) that is an awful lot of signal, and no wonder it is so troublesome here Australla.

20 Years Ago
 with Ron Fisher VK3OM

MARCH 1855

Our Waning Herltage. The Editorial for March 1955 looked at our use or perhaps our non-use of the amateur bands. One paragraph was significant: "To protect what's left it has been said that we cannol now expect to rely on the two larger world socleties to represent Australla at the next International Conference - when ever that might be. We must have our own representative there" And Indeed we did.
Only one main technical article appeared, however it was a case of quality rather than quantity. Eric Cornellus VK6EC. remembered of course for his suparb series on television a short time eapller. wrole on "Wobbulators - Sweep Generators".
The late Don Knock VK2NO supplied a lew interesting "Hints and Kinks". Six melre men were having fun. The VHF column. "Fifty Megacycles and Above" reported DX contacts between VR2CG in F:ji and VK6HK in Perth. FK8AB listening oniy. heard VK2. 4. 5, ZL and VR2, while VK1ZM on Macquarle Island heard many New Zealand slalions.

The Short Wave Listener Section reported on s:ations heard, activities of members pius a faw technical ideas Including the perennial 'S' meter circuit.

Hamads

Eight lines ree to all W.I.A. mambers.
S6 per 3 cms for other amateurs and S.W.L.'s Copy should be in block letters or lypescript. signed and forwarded to The Editor, P.O. Box 150. Toorak. Vic., 3142.
Excludes commercial advertising.
Closing date for Hamads is the 3rd day of the month preceding publication.
OTHR means the advertiser's name and address are correct in the current Australlan Callbook.

FOR 8ALE

A.R. Type Frequancy Counter with prescaler to $200 \mathrm{MHz}, \mathrm{S} 120.00$ ONO. B. Bathols VK3UV, 3 Con'newarra Ave., Aspendale, 3195. Ph. (03) 906424 (evenings).
FT101 excellen: condition (no 160m). $\mathbf{\$ 4 3 0}$ or best offer. ICOM IC-22 moblle transceiver. 4 months old, complete with 1/4/50 and accessorles. \$175. Russell Kelly. VK3NT. Ph. (03) 817243.
AWA MA6A Car Phones, FM. One on ch. 40, one on 52.525. Both In claan condillon and work well. Easily changed to multi-channel operallon, $\$ 50.00$ each. of $\$ 95.00$ for the two. VKAUX, OTHR.
Swan 350 T/R, AC PSU, spare PA tubes. BC221 Freq. Meler with handbook and circuit for solid state. Phillips CRO 2 inch CRT. Variety PWR translormers, valves, etc. Best offers. VK3AJR, OTHR. TV Equipmant. AWA TV of air recelver, $\$ 40.00$. Video monitors, various sizes, $\mathbf{\$ 4 0 . 0 0}$. Studlo Sync. generalor RCA T92, \$45.00. Monoscope TV pleture
generator with sync. generator, spare lubes, $\$ 50.00$ EMI 302 Wave Form Monllor, S40.00. RCA Video Switcher 3×9 inpuls. $\$ 50.00$. Various other TV equipment. All tiems ONO. D. Stokes, VK22PM, OTHR. Ph. (02) 4762304.
2 Phillipe Battery Ellminators with valves. very early AWA radio. 9 valve Kriesler radio P.P. 2A3s are gassy. Also Type "S" power supply. in good order. J. E. Mackie, VK22DM. Hillsion.
Gelono Tranamitter and PSU G4/229 with matching speaker, mike, manual, 80-10 Mx SSB - 260 W PEP. CW 225 W. AM 120 W . As new condition. $\$ 350.00$. Miss E. Wookey, 158 Kllgour St., Geelong. Ph. (052) 212674.
Completed Wellingion VHF Group handheld 2m FM Tranacalvar Klt with xials for channels R_{1} and 40 plus 7 W amplifier stage and pre-amp. $\mathbf{\$ 7 5}$. Mosiey 4 band trap vertical $10-40 \mathrm{~m}$. $\mathbf{\$ 3}$. Type 3 Mk 2 portable transcelver AM \& CW, 14-1.8 MHz. $\$ 50$. VK3AHG, QTHR. Ph. (03) 2882024.
Yeesu FTi01B. Brand new, \$545. VK3YBA, 97 Victor Rd., Sth. Oakleigh, 3187.
Yeasu FT7B Tranacalver, DC75 power supply, FV50 C VFO. Hygain 18V portable antenna $80 \mathrm{~m}-10 \mathrm{~m}$. And 30 II. UR67 coax - all in new condition and complete. $\$ 300.00$. R. F. Lloyd. VK3KK, OTHR Ph. (03) 6528377 bus.; (03) 464200 A.H.
6m FM Model 88 set and handbook. S5. Also Sole motors, ofter, VK3ZKS, OTHR. Ph. (03) 386793.
Colline R391/URR Recaiver, 532 MHz , good cond. Including manual. See aricles AR, $\$ 500$. J. G. Macluer, 27 Jeanatie Ave., Springwood, Old., 4127. Ph. (072) 804020 A.H.

Yaesu-FL200B Transmitter, In excellent working order. 80 to 10 m . Complete with matching microphone and 10 new spare valves. $\$ 160.00$. VK6HE, OTHR.
Bolld state Talavialon Vidicon Camera, complete with tast scan to slow scan sampling converter for SSTV operation. Home brew but very neat construction and small in size. Vidicon nearly naw and complate with lens, $\$ 100.00$. VKSGV, QTHR Ph. (08) 2625152.
Tower 25 fi., single section Hills, 10 In. trlangle. s15. Hills 10 el. 2 m Yagi s7. CDR rolator TR-44 with indicator and 240/110V trans, $\$ 40$. VK2AOW, OTHR. Ph. (02) 4493538
104 Coples OST, 1965-1973. some complete years. good condilion. Any reasonable offer accepted. Also RSGB "Radiocommunication" 1965-1972, 101 copies, some complete years, good condition, price as above VKAMY. OTHR.
Eddyalane 8BEA Receiver, ham bands $1.6-30 \mathrm{MHz}$. 100 kHz calibrator with data sheet, price $\$ 150.00$. VKAMY. OTHR.
FT DX 580, immaculate condilion, litile used, protessionally modified to better than FT DX 4010 specs. incl. 160 matres. tan. CW filter, nolse blanker, nolse Ilmiter, full metaring of HT, acrean current and volts. SWR, s495. FY 401, external VFO as new in carton, $\$ 110$. Matching external speaker, \$25. Magnum 8ix RF speech processor suitable FT DX 400. 401. 560, as new. little use. Si35. The lot 5740 . VK3ARZ, 12 Explorers Court. Vermont South. 3133. Ph. (03) 2329492.
AR7 all coil boxes. $\$ 80$. Many aerial tuning caps, OAK switches and ex alrcraft gear. Phone 668-9054. VK2ZKV. 41 Torres St., Kurnell, 2231.

WANTED

SSB HF Bands Transcelver, suitable tor AC and DC operation. W. Marshallsea, VK2ADZ, 28 Probert Ave., Gritlith, N.S.W., 2680 . Ph. (069) 623718 A.H. Kindly Amataur to Coach keen but busy prospect at my OTH or yours to pass AOCP in August 1975. Agree to pay coaching fee for good no nonsense knowledgeable approach. Ollers to Stephen Phillips, 7 Macedon Court, Nunawading. Ph. (03) 8788336 - S. G. Phillips.

Sarvice Manuala for Pya Transisior FM Ranger model PTCA 8002 TWL a $1 . d$ Vinten Vantage MTR 19 B. J. Cleret, Linton. Bombala, N.S.W., 2553. Clicuil Diagram for No. 19 wireless sat wanted urgently. John Sparkes. 105 Daglish St., Wembley WA. 6014. Ph. (092) 818030.
Heavy duly commerclal 12 volts DC Mobile Power Supply Unit to suit Swan 350, 800 volt at 500 ma elc. etc. Price and specs. to VK4OV, 4 Topaz St., Mount lsa, O. 4825. Ph. (077) 432808.

Economical Mobile/Base Station FT-201

FEATURES

*Built-In AC power supply (DC optional)

* 260 Watts peak SSB 180 Watts CW \& 80 Watts AM
* Factory sealed, solid state VFO with 1 KHz readout
*Effective Noise Blanker, threshold adjustable, for elimination of noise spikes
* Built-in front panel adjustable VOX
* Automatic break-in CW operation with sidetone
* $\pm 5 \mathrm{KHz}$ receiver clarifier
* Built-in WWV/JJY reception
* Adjustable carrier level for tune-up and Novice operation
* Indicator lights for internal VFO and clarifier operation
* All mode operation • SSB, CW, \& AM
- Fast or slow receiver AGC
* Built-in internal crystal control provision and dual VFO adaptor
* Built-in final cooling fan
* Complete line of compatible accessories for flexible station design

TECHNICAL DATA

GENERAL

Frequency Range: $3.5-4.0 \mathrm{MHz}$, $7.0-7.5 \mathrm{MHz}^{2} \quad 14.0-14.5 \mathrm{MHz}$, $21: 0-21.5 \mathrm{MHz}, 28.0-30.0 \mathrm{MHz}$, WWV 15 MHz (receive only).

Mode: Selectable USB, LSB, CW or AM.
Frequency Stability: Within 100 Hz during any 30 minute period after warm-up. Not more than 100 Hz with 10% line voltage variation.
Calibration Accuracy: 2 KHz maxtmum after 100 KHz calibration.
Backlash: Not more than 50 Hz .
Antenna Impedance: 50 to 75 Ohm unbalanced nominal.
Circuitry: 32 Transistors, 9 FET, 6 Integrated Circuits, 52 Diodes and 3 Tubes.
Power Requirement: 100/110/117/ $200 / 220 / 234$ V AC, $50 / 60 \mathrm{~Hz}, 380$ Watts maximum, or 13.5 V DC nominal, 6.7 A for standby, 0.7 A for
receive (Heater OFF) and 24 A for transmit.
Size: $340(\mathrm{~W}) \times 153(\mathrm{H}) \times 285(\mathrm{D}) \mathrm{m} / \mathrm{m}$. Weight: 15 Kg .

RECEIVER

Sensitivity: $0.3 \mu \mathrm{~V}$ for 10 dB Noise plus Signal to Noise Ratio on 14 MHz . Selectivity: 2.4 KHz nominal bandwidth at 6 dB down, 3.8 KHz at 60 dB down on SSB, CW and AM. 600 Hz nominal bandwidth at 6 dB down, 1.2 KHz at 60 dB down with optional CW filter. 600 Hz nominal bandwidth at 6 dB down, 12 KHz at 60 dB down with optional AM filter.
Harmonic \& Other Spurious Response: Image Rejection better than 50 dB . Internal Spurious Signal below $1 \mu \mathrm{~V}$ equivalent to antenna input.
Automatic Gain Control: AGC threshold nominal $6 \mu \mathrm{~V}$. Selectable AGC time constant, fast or slow. Fast attack time 3 milli-second and slow attack
time 5 milli-second. Fast release time 0.35 second and slow release time 2 seconds.
Audio Noise Level: Not less than 40 dB below 1 Watt.
Audio Output: 3 Watts to internal or external speaker at 40 hm impedance. Audio Distortion: Less than 10% at 3 Watts output.

TRANSMITTER

Input Power: 260 Watts PEP on SSB, 180 Watts on CW at 50% duty cycle and 80 Watts on AM. (Slightly lower on 10 meter.)
Microphone: 50 K Ohm dynamic type.
Carrier Suppression: $\mathbf{- 4 0 \mathrm { dB }}$.
Sideband Suppression: -50 dB .
Spurious Radiation: -40 dB .
Distortion Products: -30 dB .
Frequency Response: 300 Hz to 2700 $\mathrm{Hz} \pm 3 \mathrm{~dB}$.
Final Tube: 6JS6C $\times 2$.

3ZYO-P. S. Collins, 5 Van-Wyk Court, Spring vale. 3172
32ZG-1. R. Gillard, 6 Miaml Court. Bendigo. 3550

QUEENSLAND

VK4AS—K. H. Smith, 17 Sefton Avenue, Claytield. 4011
4NM-A. B. Nyhuis. "Forests Lodge", Port Douglas Road, Port Doug'as, 4871
40 H -D. R Ham, 20 Altred St., Charleville, 4470 4SI-J. E. Spencer. Station: Burnside Road, Nambour: Postal: PS 1712. Nambour. 4560

sOUTH AUSTRALIA

vK5GZ-E. B. Gliddon, 31 Hillside Ave., Highbury, 5089
5VU-A. J. Pawelczyk, F/23 Carllidge 515 MN North Road. Ellzabeth, 5112
5ZLB-L. J. Blee, 18 Norfolk Ave., Fulham Gardens, 5024
52MW—B. M. Wallis, Lot 9,Quintrell Road, Virginia, 5120
5ZRT-R. Battilana, 7 Mitcham Avenue. Lower Mitcham, 5062
5ZZA-B. J. Lenny. 5 Wells :escent, Valley Vlew, 5093
5BO-A. E. Williams, 33 May race, Ottoway, 5013
5FV-V. Clemence, 21 Thompson Ave., Salisbury Downs. 5108
5SF-M. H. Wood, 22 Blocmfield Cres., Elizabeth Downs, 5113
5TW-W. E. Giles Clark. 355 Shepherds Hill Road. Blackwood, 5054
52B-E. B. Stephenson, 1 Emily Ave.. Clapham, 5062
52OF-G. C. Adams, 4 Willowle St., Eden HIlls, 5050
5ZPC-P. Clemence, 21 Thompson Ave., Salisbury Downs, 5109

WESTERN AUSTRALIA

VK6XK-B. A. Wheeler, Slation: 1 Yalberee St., Newman; Poslal: P.O. Box 146, Newman, 6753
6DR-J. G. Harmsen. 3 Sllverton TCe., Willetion, 6155
6NY/P-M. B Bertram, Station: Portable; Postal: 26 Gloster St.. Subiaco. 6008
6EM-S. E. Harrison, 18 Linton Place, Morley, 6062
6PR/T-R. T. Fisher, 16 Lindsay Way, Padbury, 6025
6QR-D. M. Maley. 16 Narrung Way, Nollamara, 6061
6NL-V. H. Harrls, "Birkenhead", Lot 650 Scotsdale Rd., Denmark, 6333
6ZBC-G. J. O. Coles, Stalion: 90 Parramatia Road, Doubleview: Postal: P.O. Box 164, Doubleview. 6018
6ZKO/T-P. R. Casper, Lot 61, Burrinjuck Road. Gooseberry Hill, 6078

TASMANIA
NiI

NORTHERN TERRITORY

vK8aC-A. J. Kelso. Caplain Cook Hostel, Nhulunbuy: Pos:al: P.O. Box 55. Nhulunbuy. 5797
8AJ-A. C. Johnson, 2922 Knowles St., Jingill, 5792
82RD-Dr. Gordon. 3312 Thornton Crescent. Casuarina, 5792
CANCELLED STATIONS
AUSTRALIAN CAPITAL TERRITOAY
VKiIGI-I. Grant, non-payment.
1SR-S. N. Graves, not required
12PB-P. S. Bell, not required

NEW SOUTH WALES

vK2bRC-Taree O.K. Youth Radio Club. no longer required
2LM-L. M. Wilson, non-payment
2YAl-L. G. Baker, no longer required
$22 \times B-F$. R. Hare. no longer required
2ZWF-B. J Foster, non-payment
2AT/T-L. Altman, deceased
2IU-M J. McDonald, non-payment
2ZGT-R. C. McGregor, not required

2ZYZ/T-H. J. Smith, not required
2ZAX-W. S. Baynes. non-payment
2BPR-H. Pearson, non-payment
2BZE-M. S. Hort, not required
2UG-R. W. Eagiling. not required
2BZA-W. Senlor, not required
2YBE-N. C. We!stead, not required
2ZCW-J. B. Webster, not required
28VT-G. Ulm, non-payment
2YD - T. D. Withnall, non-navment
2ZWO-J. H. Howe, non-payment VICTORIA
VK3DT-M. J. Rieper, Iransterred to New South Wales
3XU-J. R. Oxiey, not renewed
3AZK-W. D. Harwood, now VK3SR
3AMY-M. J. Mains, not renewed
3BGO-R. N. Swift, not renewed
3YFJ-P. G. Nlehof, not renewed
3YFW-W. G. McDerrmott, transtered to Queensland
3YHJ-M. J. Rosa, now VK3LT
32NW-L. R. Stewart, now VK3ASW
3ZRO-R. W. Duckworth, now VK3AIC
320W-J. L. Gras, transferred to New South Wales
3YGS-Q. J. Clare, transferred to Queensland OUEENSLAND
VK4AG-A. J. Greenham, not renewed
4DS-De La Salle College Radio Club. disbanded
4EJ-E. J. Chandier, deceased
4OY-J. C. A. Young. deceased
4RS-R. E. S'acey, deceased
4RT-R. H. Coat, Iransterred to South Australia
4YU-G. C. F. Dillon, transierred to Victorla SOUTH AUSTAALIA
VK5OM-J. L. Watts, nol renewed

WESTERN AU8TRALIA

VK6RV-R. G. B. Vaughan, left country, now In United Kingdom
6WK-T. W. Ruse, not renewed
6ZAG-G. E. Waits, non-payment renewal fee TASMANIA
Nil
NORTHERN TERRITORY
Nil

AUGUST, 1974

NEW STATION8

AUSTRALIAN CAPITAL TERRITORY

VK12SH-S. H. Neilsen, 6/86 Anzac Park, Campbell. 2601

NEW SOUTH WALES

VK2DT-M. J. Rleper, 5 Cobbltee St., Mosman, 2088
2TZ-A. Roberts, 55 Windsor Rd., Kellyulle. 2153
2WO-Wollongong University College Amateur Radio Club. Northfielda Lane, Wollongong, 2500
2YD-T. D. Whitnall, 195 Marco Ave., Pananla. 2213
2AOB-J. T. Morgan, 3/83 Wentworth St., Randwick, 2031
2AOD-South Broken Hill Boys Club, Centra! Street. Broken Hill, 2880
2AGK-H. J. Hathrill. 5/12 Bando Rd., Cronulla, 2230
2BCU-L. N. F. Smith. 8 Dora Creek Road. Cooranbong. 2265
2BDE-E. R. Cooper. c/. G. S. Bracewell, 36 Corang Road. Westleigh, 2120
2BmF-M. Flynn. 10 Redman Pde., Beimore. 2192
$2 B Z K-W$. Lean. 3 Eighth St. Boolaroo, 2284
2CAB-R. G. Wright. P.O. Box 24, Coogee. 2034 2YDD-D. J. Grant, 3 Kapala Ave.. SradDury, 2560
2YDP-P. A. Dalton, 68 Unwin St., Bexiey, 2207 2ZNW/T-W. A. Walkins, 154 Moulder Sireel. Orange. 2800
victoria
vK3CC-C. M. Cohen, 21 Bowen St., Chadstone. 3148
3JY-1. Sykes. 14 Ruskin St. Orbost. 3888
3KA-W. J. Kirkhope, 271 High Street, Lower Temp!estowe, 3107
3OV-P. O'Shannessy, 19 Kilpatrick Ave., Shepparton. 3630

3PC-C. R. Fine. 1 Heyington Place. Toorak. 3142
3TI-R. S. Pearce, 115 Plenty Rd., Bundoora. 3083
$3 K L \sim$. A. Hudson. 33 Burke Rd. North. East Ivanhoe, 3015
3AGA-J. T. Franklin, 7 Bradford Ave., Kew, 3101
3AHS-Harbour Trust Amateur Radio Club, P Weaver, Lot 84, Lockwood Rd.. South Belgrave, 3160
3AKG-D. C. T. Arnold, 8 Russall St., Camberwell, 3124
3ACB-W. Babb, 76 David Ave., Easi Keilor. 3033
38CO-R. W. Bell, 38 Spray St., Rosebud, 3939
3BEW-J. Baytala, 5/68 Kernot St., Spotswood, 3015
3BHK—S. K. Bushall, 74 King Parade, Knoxfield, 3180
3YEC-P. J. McDonald, 24 Higgins Ave., Sunbury, 3429
3YEL-D. J. Stuart. 32 Burind Rd., South Caulfield, 3162
3ZOY-H. J. De-Deugd. 422 Upper Heldelberg Road. Heidelberg. 3084
3ZVT-M. J. Alkinson, 6 Mark Court, Dandenong North, 3175

QUEENSLAND

VKAAAB-S. N. Graves, 25 Churchill St., Maryborough. 4650
4AAS-E. J. Smith, 20 Tinglewood St., KIrwan, Townaville, 4814
4AE-G. K. Williamson, 210 Grafton St., Cairns. 4870
4CL-M. L. Barrett, Flat $4 / 8$ Ridiey St., Auchenflower. 4066
4UO-E. W. B. Wollen, Sunshine Motel Caravan Site. Elizabeth Ave., Clontart. 4019
4ZEG-A. E. Burge. 4 Jacaranda Drive, Albany Creek, 4035
4ZJK-J. H. Barlatt, 54 Domoch Terrace, West End, 4101
4ZYA-L. G. Baker, Station: 34 Millchester Rd., Charters Towers, 4820; Postal: c/- 10 San. Radio R.A.A.F. Base, Townsville. 4810
4ZZZ-W. G. McDermott, 10 Pinelands Street, Lawnion, 4501
4ZJZ-G. J. Clare. 42 Scherger St., Moorooke, 4105
sOUTH AUSTRALIA
VKSIG-R. J. W. Hester, 13 Lambeff St., Ceduna, 5690
500-J. Klimes, 60 Marrelt Drive, Ing!e Farm 5098
5RV-R. H. Coat. 6 Warunda Ave., Seaview Downs, 5049
5RZ-D. L. Nestrom, U1/29A Winchester Street. St. Peters, 5069
5ZBL-P. C. Bachil, 50 Blrnie Avenue, Kensington Park, 5068
5ZSL-L. H. Smith, 66 Ways Road, Manningham. 5086

WESTERN AUSTRALIA

Nit

TASMANIA

VK7ZYZ/T-H. J. L. Smith. Slation: 425 Invermay Road. Mowbray Heights; Postal: P.O. Box 9. Mowbray Heights, 7250 NORTHERN TERRITORY
Nil

cocos island

VK9YT-Wayne Warden Jnr., not known "exactly" on Island (Route 12. 704 Meadowbrook. Bloominglon. Indiana. U.S.A. 47401) CHANGE OF ADDRESS
AUSTRALIAN CAPITAL TERRITORY
Nil

NEW SOUTH WALES

VK2KT-L. P. Gerrlty. "Ebbtide" Marine Dr., Ben. netts Head. Forster, 2428
2NL-H. J. Freeman, 318 Maroubra Rd.. Maroubra. 2035
22K-W. G. Kirchner, Lot 3, Paterson Rd., Woodville. 2321
2ADR-D. W. Reed, 100/1 Bridge St.. Muswellbrook, 2333

HF TRANSCEIVERS ${ }^{\text {wiwe have }}$
T101B 160/10mx AC EX-STOCK at $\$ 585$

- YAESU FV-101B VFO for FT101B - \$102

YAESU FT75B 80w pep transceiver - \$245

- AC power supply $\$ 65$, DC power supply $\$ 75$

TRIO TS-520 all band transceiver - $\$ 550$

- external VFO $\$ 80$ (6 m and 2 m transverters arriving soon !)

6 METRES

ICOM IC-60 fm 10 watt mobile transceiver incl 2 channels $\$ 235$
ICOM IC-501 SSB transceiver incl AC pwr supply $\$ 445$

2 METRES

ICOM IC-22A fm 10w mobile transceiver incl 3 chs $\$ 210$
ICOM IC-21A fm 10w base/mobile transceiver incl 3 chs $\$ 298$
SEIWA SV-230 25 w fm mobile for 2 m incl 3 chs

$\$ 210$

MULTI-7 10w 2 m fm mobile transceiver incl 3 channels $\$ 210$
KEN KP-202 hand-held 2 m fm 2 watts incl 4 chs (40/50/1/4) \$150

- Nicad chargers and nicads \$32
- stubby helical whip $\$ 8.90$

YAESU FT220 SSB/FM/CW solid state transceiver \$480

70 cm

 (incl 1 channel, 435.00 MHz)SEIWA SLI-710 fm mobile transceiver, complete \$298 ICOM IC- 30 10w fm mobile transceiver $\$ 370$

NOT HERE?

The gear you want may not appear on this page. VICOM can procure ANY amateur gear avl overseas lusually within 10 days) via our TELEX service. Try usl.

2 MITRE DIGITAL VFO

ICOM DV-21 solid state can be interfaced with other gear $\$ 298$

RECEIVERS

TRIO QR-666 all band/mode communications receiver 170 KHz to 30 MHz \$275 (kit \$230)

POWER SUPPLIES

ICOM IC-3PA for ICOM mobile gear $\$ 78$
SPECIAL 12v 3 amp regulated supply from $240 \mathrm{v} \$ 28$
VICOM 90-DAY WARRANTY ON ALL NEW PRODUCTS

					BY VICOM PRICE \$
	Model	Imp	Freq	VSWR	
BALUNS	$\begin{aligned} & B L-50 A \\ & B L-70 A \end{aligned}$	$\begin{aligned} & 52 \\ & 75 \end{aligned}$	$\begin{aligned} & 1.8-38 \mathrm{MHz} \\ & 1.8-38 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 1.3: 1 \\ & 1.3: 1 \end{aligned}$	$\begin{aligned} & 14.90 \\ & 14.90 \end{aligned}$
COAX SWITCHES (2 \& 6 pos)	$\begin{aligned} & C S-2 A \\ & C X-6 A(A) \\ & C X-6 A(B) \end{aligned}$	$\begin{aligned} & 52 \\ & 52 \\ & 75 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { to } 300 \mathrm{MHz} \\ & \text { to } 500 \mathrm{MHz} \\ & \text { to } 500 \mathrm{MHz} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.3: 1 \\ & 1.3: 1 \\ & 1.3: 1 \end{aligned}$	$\begin{aligned} & 21.00 \\ & 54.00 \\ & 54.00 \end{aligned}$
TRAP DIPOLES	III-N	52	$\begin{aligned} & 7 \text { to } \\ & 28 \mathrm{MHz} \end{aligned}$	1.2:1	31.00
	AL48DXN	53	$\begin{aligned} & 3.58 \\ & 7 \mathrm{MHz} \end{aligned}$	1.2:1	31.00
	AL24DXN	52	$\begin{gathered} 7 \& \\ 14 \mathrm{MHz} \end{gathered}$	1.2:1	24.00
	A-4VPN	52	7 MHz	1.2:1	24.00
	A-8VPN	52	3.5 MHz	1.2:1	26.50
LISTENER	L1	75	$\begin{gathered} 3 \text { to } \\ 30 \mathrm{MHz} \end{gathered}$	-	14.90
BALANCED FEEDER	BTF-1	600	-	-	12.00

TEST GEAR

TRIO VT108 FET VOM 8 ranges 0.5 to $1.5 \mathrm{kv}, 11$ meg input. ohms 0.1 to 1000 meg, memory feture $\$ 85$
TRIO AG202A AUDIO GENERATOR covers 20 Hz to 200 KHz 10 v rms output. sine and sa wave, ext sync $\$ 94$
TRIO 75 mm scope 20 mv cm sens, dc to $1.5 \mathrm{MHz} \$ 170$
TRIO SG402 RF GENERATOR covers 100 KHz to 30 MHz \$76
D-60 FREQUENCY COUNTER including 2 metre prescaler $\$ 360$

ANT. ACCESSORIES

ME-11B SWR/PWR METER 3-150MHz $\$ 22$
ME-UA UHF POWER METER \$69
AS-GM GUTTER CLANPS $2 \mathrm{~m} \$ 7.50$
SCALAR MOBILE WHIPS:
M22 2 m fibreglass $\$ 7.50$ ($1 / \mathrm{w}$)
M60 6m fibreglass $\$ 10.70$ ($1 / \mathrm{w}$)
M21 2 m s.steel $\$ 6.90(1 / w)$
COAX 58 U 45 c per m
RB 2metre mast amp (144-146 or 146-148) \$32

SPECIAL

VICOM 24 or 12 hr digital (electronic) clock $\$ 39.90$

Geelong - Phil Fitzherbert (052) 43-6033

YAESU AMATEUR EQUIPMENT

HERE'S WHERE IT IS MADE

Photo shows part of the modern Fukushima plant of Yaesu Co in Japan. The same high quality service is followed through at the Australian Agency, BAIL ELECTRONIC SERVICES, where full facilities exist to give you the Warranty, Service and spare parts availability that is your entitlement when you purchase new high quality equipment.
Here at B.E.S. we pre-sales check all sets to help ensure that you will have trouble free operation with your purchase. And, in the event that a problem does develop, then you can be assured that your purchase gives you an equity in our service facilities and spare parts.
Write or call for information and advice about your amateur radio requirements for all bands, all modes.

WWA. BULLETIV
 WEST AUSTRALIAN SUPPLEMENT TO
 "AMATEUR RADIO" MARCH 1975.

Patron
President
Secretary
Treasurer
Asst. Treasurer
Broadcast Officer
Equipment Officer
Minute Secretary
Membership Secretary
W.I.C.E.N. Co-ordinator

Bulletin Co-editors

Bgdr.G.P.Hunt	C.B.E.	VK6QJ	
A.Austin		VK6MA	681808
N. Penfold		VK6NE	463232
C. Waterman		VK6NK	684717
P.Dew	VK6EU	684902	
A.Austin		VK6MA	681808
G.Ogg	VK6KY	494433	
R. Greenaway		VK6DA	242909
B. Pemberton		VK6WW	871269
P. Beacher		VK6DD	763346
L. Ball	VK6AN	281100 Ext240	
R. Greenaway		VK6DA	242909

All material for inclusion in the "Bulletin" to reach the editors by phone or to :-22 Salisbury St., Leederville. before the $10 t h$. of each month.

CORRESPONDENCE.
All correspondence should be addressed to :Hon. Secretary, W.I.A. (W.A. Division). P.O. Box N1OO2, G.P.O. PERTH. 6001.

DIVISIONAL NEWS BROADCAST
Sundays,

0930 W.A.S.T.
VK6WI

GENERAL MEETINGS.
Held on the THIRD TUESDAY of each month at 7.45 p.m. at Science House, 10 Hooper St. West Perth.

COUNCJL MEETINGS. Held on the LAST FRIDAY of each month at 7.30 p.m. at the above address - - observers welcome. SLO: MORSE TRANSMISSIONS.

Practice sessions are held Monday to Friday inclusive, on $3550 \mathrm{KHz} \pm$ QRM at $8.30 \mathrm{p} . \mathrm{m} . \mathrm{W} . \mathrm{A} . \mathrm{S} . \mathrm{T}$.
SUBSCRIPTIONS are OVERDUE - - have you paid yours ?
W.I.A. Darwin Appeal all donations to the Divisional Treasurer.

INTRUDERS. Make it a habit to log and report at least one Intruder every time you go on the air - please !

This concerns all..SWL's.

In attompt is being made to have a colum of this Bulletin set aside for all Silu's and this can only be achieved by you cheps getting behind the 6 Ball and contributing items of interest, carments and questions

It is felt that you have mach to contribute and every effort vill be made to ancourage you to participaie.

Do you know of any SNL who is not a membor of the W. I.i.?? If so, let us lnow and we will endeavour to encourage him (or her) to join Remember they will be joining the ranks of same of the finest chaps anyone could wisin to meet. 'They are always ready to offer advice and assistance whene evor possible You con show your appreciaticn by micing this coluen a worthwilile section of the Bulletin. Further details can be ohtaincia by witing to the Editor clearly marking your envelope "SVL CORNER": ard any contrilution by war of notes, items of interest and etc. can be forwarded in the scurc ranne?' So cone on chaps - lets have it.
is "pen namei may be used but all coirespondence must have name and adiress attachod.
\therefore fer weuls ago I was vioiting tie sheck of a sull and was most concerned to soe a mall chilid of about 3 yenrs of age climbing under the work bench where a fully exposed Power Surply was switched en This could rave endeci in tradgety IITASE use extreae ceution with your caumant. It is a simn?e matter to install safety siniuld cic. era io put that oean back in its nicc safe cabinet after you have reen rowicing ca t .
 making thine bad for rs ar. Traw hive a total disiegrd for miles of any sort.
fimon rimi Iremy

$$
\text { :ッ0: } \quad \text {... :0. }
$$

Weanedy 15-1-7j on 2 metres.
Who was the opdiation tionsimittinis wien his car radio blaring out backgound jusic. Coun in oo commiting a krexuh of Regu'stions?

 equipmatio and any paricular neencis Tis vould be of geat help and may enable us to be of assistanes to scme otiner ecrorice on part of the W. I. iso
sGoc: kine citio iveris
HAMITHOX SHJICiR HIGHI SCTHOOL IADIO CLUS
Hamilton Sne High school have aquied an m 602 metre Base Station and are koin to becene active as VKGij. Unfortunately the tronsciever has to be put on to 2 matres and the club leaders VK6ill and Vrains carnot obtain the information Would any Amateur who is willing and has eny details of this unit or know how

The frory is also kean io cotain a 2 meine mobile transciever at a
Page 2 of 3 pages

3.

revioniblo cosit. If you have cquipment for sile which does not neud modification or repairs woulc you please contact VKGNH

 Nonli" : Option to tirst and Second Year students.

The following year: izadio 1 and Radio 2 werc offcred and about 30 boys and 4 girls took the course, niost werc suecessful and many recieved certificates at the verious jovels afite passing the Y in a exams.

This yoan 15 students hevi studied Radio 2 . Seven have mined Intermediate Cortificates

Keith, TKGT He Clun Cipencor, has writtea a Radio 3 Course which prepares

Threc stucients sit for the i o Doc. E_{0} in August. Two passed Regs and got Theoxy maris in tixc $\mathrm{SO}^{2} \mathrm{~S}$. Boull are recn and will be sititine again in February We wish then Iuch.

A disappointing farure cis the C^{3}.uss activities has been the lack of skeds on Vify- only tinece Purin suations ware contactuad. on 6 metres in three years although we wee gettires trirough 5-6 ard 5-8 on 52.586 .

Now then the scinol is cligible for a full callsign (VK6AG ??) and hF

TE any upwitas (retired) can come un on 80 Metres on Mondays $4-5 \mathrm{~mm}$
 anas aro very low,

73 Keita VKGP

Ta Ponso Ratio C゙ubne a litule iqte staring off during 1974 duc to the lack of an Opeator. Ve bolieve that scia of the ladsput some preseure on tos What who certe to their assisunce an? in Septmber VK6PS was bayd on tres air. Quite a deal of eperineating with antemas vas done by the mabers ass sutiole aroas ate a bit of a problon. Finally came up with on Irverted for fio ian 20 meines in time for J.O.T. Ao and from reports these inust hate wive wion wil.

Drate foy fave as ret unainable but do believe some of the

From the QSL Manager＇s Report ：－
There has been a small increase in turnover with a greater proporiicn destined for Japan and U．S．A．This has led to a better economic handling until October last when the rise in postage was over 60\％．Approval was thus requested for a rise in sticker prices to 80 cents per 100 and dated from the December General Mecting．

A close measurement of postage costs compared with cards despatched since October has been kept and in packs of 100 gm and over there is some slight gain to offset a number of obscure addressecs．The position will be reviewed each quarter 0^{\wedge} this year and any abnormal situation will be adviscd．

The assets of the Bureau are $\$ 79.13$ to commence the new year which is considered quite adeqaate．＇

THE WIRELESS INSTITUTE OF AUSTRALIA
 W．A．DIVISION

QSL BUREAU AS AT $315 T$ DECEMBER． 1974. RECEIPTS
1．to 1.74 Sale of Suickers $\$ 106.00 \quad 1$. to 1.74 Burchasig Rentainps $\begin{aligned} & 84.42 \\ & 21.00\end{aligned}$ 31.12 .74
$\$ 106.00$
$=======$

TRADING ACCOUNT

i． 1.74 Stock of Stickers $\$ 65.92 \quad 31.12 .74$ Stock of Stamps $\$ 33.03$ Purchase of Stamps Trading Profit \＄84．42 $\$ 1.76$
$\$ 185.13$
＝＝＝＝＝＝＝
ASSETS

1． 1.75 Stock on hand Postage Stamps \＄ 26.05 Stickers atcost\＄53．08

$$
\$ 79.1 \overline{3}
$$路

Sale of Stickers $\$ 106.00$ Stock of Stickers\＄ 53.08 Stamps on hand \＄ 26.05

PAYMENTS

Burchasig RenttampsReceipt Book	nps $\begin{aligned} & 84 \\ & 21\end{aligned}$

$$
==ニ=ニ=
$$

finswer to last months Bruin Tcasior

3	8	7	2	0	-	1
5	-	3	2	-	4	4
5	-	9	-	3	5	2
-	1	6	1	0	-	-
7	2	-	1	9	1	3
0	-	-	-	7	9	2
2	7	-	1	6	-	5

This six element wood boom Yagi is the best performer on 2 metres I have come across. Several have been built, including 2 stacked 6 by 6.

The single 6 element has a gain of 10 db with a 3 db beam anglc of about ± 30 degrees.

Elements are cut from $1 / 8$ in. brass rod. and the boom from a suitable length of $3 / 4 \mathrm{in}$. wood.

Construction : Drill holes of such a size that the elements require tapping into position - this should hold them in place.

Gamma rod is mounted in the same manner and in the same plane as the elements. The Gamma capacitor is a 30 pf beehive type. Method of water proofing - this is up to you.

When attaching coax braid to centre of driven element, divide braid into two parts and attach one half onto one side of driven element and the other onto the other side. This is necessary because the wooden boom makes attachrnent to the cxact centre rather difficult. If you want to be sure that the elements wont fall out, a drop of solder on either side of the wood boom will do the trick.

Gamma dimensions are for 50 ohm cable.
Frequency 145.5 to 147.5 . MHz .

Below are some of the highlights from the report from the Scout Association of Australia 17 th Jamborec -on-the-Air.

- About 20% more Scouts, but about 20% less Guides and the lowest number of visitors for five years took part. The waather was terrible - a very stormy week-end which threatened the portable antennae systems, but showed the value of proper pioneering methodsso that probably acoounted for the drop in numbers.'
'Christmas Island reported in for the first time and showed what a dream DX they had- Malaysia,UK, Finland, Malawi, Italy, Germany, Bahrain, India, Sweden, Denmark, and South Africa.'

I For the first time RTMY was used betweon Scout Groups in W.A. and demonstrated operating DX, but not to a Scout station. '
'From the log Sheets it seems only one station in W.A. (VKGAN) was able to contact VK1BP for the official opening. Our attempts to tape the exercise for rebroadcast at a time convenient to W.A. were unsuccessful. It is still not sure: whether 1500 or 2000 hours is more convenient.!
! A copy of a report apparently printed as a press release accompanied one of the Guide returns, and it shows the true spirit of !!.I,A./ J.O.T.A. co-operation:-
J.O.T.A. meant a very interesting and enjoyable Saturday afternoon for the 1 st. South Perth Guides and their Leader, who were accompanied by the Division Commissioner of Lee Steere South, Mrs Gelley. There were friendly conversations with other W.A. Guide and Scout Groups and with the 1 st. Silkstone Scout Group of Ipswich, Queensland. The callsign was VK6LG and the operator froquently gave his identification by saying' 6IG - Six Lovely Girls' much to the blushes and amusement of the Gujdes who, appropriately, numbered six. Between calls, the operator, Mr. L.G. Wilson, told of his contacts and experiences over many years of ham operating from the time he was introduced to radio in the 1920 's. He played a tape recording, which included traditional Japanese music, sent by a fellow "ham", a Japanese doctor.

After having stayed far longer than intended, thanks were extended to our host, who seemed reluctant to say goodbye, and homeward bound the girls ail agreed that it had been a satisfying afternoon in more ways than one- the pleasure gained fron contact with other groups, and being in the company of a fine old gentleman who apparently really enjcyed himself in his first participation in J.O.T.A.with Guides.'

Once again many thanks to all those who made the weekend activity possible - Amateurs and their wives, National Organisation, Branch Staff, Liaison personnel, Lee?ers, Scouts and Guides.

Report from:- Petc: Hughes VK6HU
Branch Commissioner for J.O.T.A.

This is a magic space
to make it grow B I G GER and B I G GER before your eyes
DONT CONTRIBUTE ANYTHING TOWARDS THE BULLETIN.

From an SWL friend of mine, Bill Marchant, en route from Melbourne to Broome, comes this first hand account of how business as usual (almost) is the order of the day in Darwin in the aftermath of cyclone Tracey. I dont think Bill or the boys in Darwin will mind me putting this to print.

Dear Ross,
I'm still " on the road" but I have made my stopover in Darwin a lengthy one by giving a hand on sone of the repair work, mainly re-roofing.

Last night i had the priveledge of attending the 100 th. meeting of the Darrin Amateur Radio Club. This was held in the ground fioor flat of Henry VK\&HA, the secretary, and since the flat was a ground floor one it was in reasonable condition, the noise of a portaole generator outside being the only indication that something sirange was afoot. However, if you looked out the window at the wreckage of the Club H.Q. you:d realise these were extraordinary times.

The minutes of the 99 th genoral meeting were read out :
"Meeting held at resjdence of VK8HA on 6.1.75

Meeting opened at 1930 hours.

Present: VK8HA, hon. sec.
Tike mainly to the aftermath of Cyclone Tracey devestation, no other meabers arailable for the meoting.
(Signed) VK8HA Hon. Sec."
Needless to say these finutes were passed and seconded amid great laughter: anci general business consisted of finding out the condition of beacons, tovere and masts etc. This didnt take long, w they were all wrecied. Most personal equipment was intact - but water danaged and members agreed their big loss was that of technical notes ans fublicaticns. Just when the Club becomes operative again is very doubtiul since some members are either transferred or leaving Darwin, and those remaining have a prime concern of getting homes rebuilt so that vives aind cliildren can return. And if you see the colossal damaee it is hand to inagine when that will be.
By the way, som on those josont vere Dous VK8KK, Barry 8ZCF, Henry 8HA? Trevcr 8qriv, Dava 8inB, Colin 8 CM , and in the visitors book I noticed the sigature of BaEil 6NA.

There wero suito a mumber of QSL cards received wich unfortunate ly cannot ba anhioniciged. Cno I notice was fron R. A. Gray VKGRQ. P.S. Rainstorm sent a Bog taings afloai in my room, including this letter but apart irom anothc envelope, I dont have to re-write.

I wonder $i:$ we could do a practical service for this club by collectinç spare copies of "A, R." QST, etc and ARRL Handbooks or other technical publicaiions to nelp re-establish this club?

Just a brief reminrier to anyone willing to do a little bit more work as a menber of council - bung in a nomination form - thats the first step, then just sit back and wait for the election -if there is one ! WANTED URGENTLY PROGRAM ORGANISER URGENTIY WANTED

Must be villing to spend hours on the phone twisting arms by remote control. Wiust be flexible -able to change lectures instantly.

HAMADS

FOR SALE ;	Mosley Tri-Band Beam Please contact VK6WC Phone: 571550	
FOR SALE :	Pye Ranger VHF Hi Band AM 12V Transcievers Ideal for modification and satellite work	\$20.00
	Pye hybrid Low Band AM	\$ offer
	Weston Low Band AM	\$25.00
	Pye 50nHi Band AM Base	\$40.00
	Commications Reciever Lafayette HA-600 12 V and 24 ONAC Solid State	\$ 33.00
	Numerous Hi Band Pye Overland 1 OW 50^{\prime} Crank Up Tower with new guys Quantity of Aluminium Tubing	Offer
	shoack Sell out Vk6NW Dave Bridge 574060 (B667487) 264 High Road, Riverton 6155	
FOR SAIE:	KP202 (Chan B, 1,4) plus 10 NICADS plus Charger	\$140.00
	VKGEU QTHR Phone: 684092	
WANTED :	Rotator Ham II, CDL 44 or similar. VKGHK GIHR Phone: 462864	

FOR SALE : Globe D S B 100 Transmitter - ex VKGE DSBSC $80 \mathrm{mx}-10 \mathrm{mx}$ with H / D Transformer and wire ready to go on air. CantactVk6CN for demo

REHEATER G ROUP NOTES

The new Solid State Repeater, which the group has decided to build, is already functional and may be in use when you read these notes.

The Repeater Fund is ruming short and there are a lot of
users of the Repeater who have not, as yet, helped financially.
PLEASE - THE REFPIATER NIUDS YOUR FTNANCIAL ASSISTANCE.
Cheques etc. are payable to:

> J.C. Famell

C/- P.O. Box 87
SCARBOROUGH
W.A. 6019

EARBASHERS please note - Lecturers are required for our general meetings. please feel free to choose your own topic!

HURRY - before someone beats you to this wonderful opportunity. pages.

VOL. 43, No. 4
APRIL 1975
CONTENTS

TECHNICAL -

A Cradle Ior KEN	13
Commercial Kinks	21
Experimenters Delight	5
Microstrip Data Curves	19
Moditying the Trio JR60 Receiver	11
Newcomers' Notebook	21
Proportional Crystal Oven	20
Rolating a 3-Element 20 metre	
Beam with a Stolle	14
Try This	20
Vertical Extended Double Zepp	
\quad for 2 metres	4

GENERAL -

Divisional Broadcasts
Postmaster General's Dept. -
A.O.C.P. Examination Papers,

Feb. 1975
ExpripModitying the Trio JR60 ReceiverNewcomers' NotebookProportional Crystal Oven

Rolating a 3-Element 20 metre Beam with a Stolle14
Try This4GENERAL27

Results 1974/75 Ross Hull VHF-UHF Memorial Conteat29

DEPARTMENTS -

Awards Column 25
Contests 29
Hamads 30
Letters to the Editor 25
Magazine Index 29
Project Australis 30
QSP - Federal Convention 3
QSP 4, 27
Silent Keys 30
VHF-UHF - an Expanding World 2320 Years Ago

FRONT COVER

The "Experimenters Delight" is a very interesting regulated power supply described in detail on page 5 of this issue. This view shows the general layout of the unit.

JOURNAL OF THE WIRELESS INSTITUTE OF AUSTRALIA

Special Announcement !
 dISPOSAL BRANCH AND ELECTRONIC BARGAIN CENTRE is now open at

390-392 BRIDGE ROAD, RICHMOND - PHONE 425174
Plenty of bargains for the radio amateurs or the hobbylst owing to the recent tariff cuts. We have obtained large quantities of components, test equipment, complete and incomplete radios, transceivers, tape recorders, panel meters, valves, transistors, transformers. All at throw-away prices. Be early. Plenty of Opening Specials.

KENWOOD/TRIO TS 5205 BAND SSB TRANSCEIVER

8peciflications
Frequency Range: 80 metre band - 3.50 to $\mathbf{4 . 0 0}$ MHz: 40 metre band - 7.00 to $7.30 \mathrm{MHz} ; 20$ metre band - 14.00 to $14.35 \mathrm{MHz} ; 15$ metre band - 21.00 to $21.45 \mathrm{MHz} ; 10$ metre band - 28.00 to 28.50 MHz, 28.50 to 29.10 MHz . 29.10 to 29.70 MHz : WWV - 10.00 MHz.

Mode (Receive only) USB, LSB, CW.
Input Power: 160 watts on 80 to 15 metre band. 140 watts on 10 metre band.
Nett amateur prices:
TS 520 \$550.00 with PTT mike, SP 520 Speaker.

COMMUNICATION RECEIVERS

Trio QR666 general coverage communications receiver solid state $550 \mathrm{kHz}-30 \mathrm{MHz} 6$ bands. $230 \mathrm{~V} / 12 \mathrm{~V}$.

Price $\mathbf{\$ 3 3 0}$

KENWOOD/TRIO GEAR

TRIO MOBILE TR7200G TRANSCEIVER, VHF/FM with crystals for 2 channels

TRIO TR2200G hand held 2 metre portable transceiver with cryatals for 2 channels … $\$ 148$

Exira cryatals
88.00 extra

1 WATT 2 CHANNEL TRANSCEIVER

with call system. $27.240 \mathrm{MHz}, 12$ translator. Pisc approved type.

8pecillicallone:
Transmittor - Crystal controlled: 1 Watt input power to RF stage. Operating Prequency - Any 2 channels in the 11-metre Citizens Band. Receiver -Crystal-controlled superheterodyne circuit with 455 Kc IF. Antenna - Built-in 60" telescopic whip antenna. Audio Output - 0.8 Watt maximum. Power supply required - 12 volts DC (Eight 1.5 volt DC battery celis). Loudspeaker - 21/4" PM type (built-in) function as microphone on transmit $\$ 39.95$ each

144-148 MHz TWO METRE EQUIPNENT NOW WITH E CHANNELS

$$
\begin{aligned}
& \text { KEN KP-202, } 2 \mathrm{~W}, 144 \mathrm{MHz} \text { band. } \\
& \text { FM. Hand held transceiver with } \\
& \text { cryatals for } 6 \text { channols. } \\
& \text { KCP-2 NICAD battery chargers } 8 \\
& 10 \text { Nicad batteries } \\
& \text { Genuine leather carrying case for } \\
& \text { KP-202 }
\end{aligned}
$$

THIS MONTH'S SPECIALS

2 METRE MOBILE ANTENNA ROOF MOUNT ANTENNA AND BASE $\$ 8.50$

2 INCH SQUARE CLEAR FACE 0-1 MA METERS Calibrated 0-60 $\$ 3.00$ EACH

EDGEWISE 0-1 MA METERS $2 y_{2}^{\prime \prime} \times 1 /{ }^{\prime \prime}$ FACE, $3^{\prime \prime}$ DEEP Calibrated 0.5
$\$ 3.00$ EACH

We now have available ex stock

 the following equipment for the amateur:```
YAESU MUSEN FT101B
 SSB/AM 240V AC & 12V DC
 operation,
 160-10m transceiver $585
```

TWIN METER
S.W.R. Bridge and Power Meter .... $\$ 25$

## RINGO AR-2

135-175 MHz. Antenna has 3.75 dB gain$\$ 27$

YAESU FT/FP200 TRANSCEIVER P.S.U. COMBINATION

One only in stock
$\$ 475$

## MIDLAND 13-870D

AM, 23 channel, 11 metre transceivers, 12V DC operation .... .... \$100

MIDLAND 13-893
SSB/AM, 23 channel, 11 metre transceivers, 12V DC operation
$\$ 195$
We also have in slock the following 1 Watt hand-held transceivers for 27 MHz hand phone service which are P.M.G.-type ap-proved:-
STRATOCOM TC10 2 channel with call tone
$\$ 39.50$ ea.
LAFAYETTE HA310 3 channel.... .... $\$ 65$ ea.
Additional crystals available for $\mathbf{2 7 . 2 4 0}$ MHz, 27.880 MHz and 27.910 MHz at $\$ 6.50$ pair

27 MHz centre loaded fibreglass cowl mount mobile antenna with base and co-ax

27 MHz centre loaded fibreglass roof mount mobile antenna with base $\$ 16.90$

27 MHz gutter mount mobile antenna with co-ax and PL259 plug filted $\$ 22.50$

## FEDERAL CONVENTION

Published monthly as the official journal by the Wireless Institute of Australia.

Reg. Office:
2/517 Toorak Rd., Toorak, Vic. 3142
P.O. Box 150, Toorak, Vic., 3142

Editor:
BIII Roper
VK3ARZ
Assistant Editor:
Bruce Bathols
VK3UV
Technical Editors:
Bill Rice
VK3ABP
Ron Cook
Publications Committee:
John Adcock
Rodney Champness
Syd Clark
Ron Fisher
Ken Gillesple
Nell Osborne
Howard Rider
Roly Roper
VK3AFW

Gil Sones
VK3ACA
VK3UG
VK3ASC
VK3OM
VK3GK
VK3YEI
VK3ZJY
VK3YFF

Contributing Editors:
Brlan Austin
VK5CA
VK3TX
VK5LP
Deane Blackman
Fric Jamleson
VK3AZT
Drafting Assistant
Gordon Rowe
L30187
Business Manager:
Peter B. Dodd
VK3CIF
Enquiries and material to:
The Editor,
PO Box 2611W, GPO Melb., 3001
Copy is required by the third of each Month. Acknowledgment may not be made unless specially requested. All Important Items should be sent by cerlfied mail.
The Editor reserves the right to edit all material, including Letters to the Edltor and Hamads, and reserves the right to refuse acceptance of any material, without specifylng any reason.

## Advertising:

Advertising material should be sent direct to P.O. Box 150, Toorak, Vic., 3142, by the 25th of the second month preceding publication. Phone: 24-8652.
Hamads should be sent direct to P.O. Box 150, Toorak, Vic., 3142, by the 3rd of the month preceding publication.

Printers:

Moorabbin, 3189. Tel. 956462.

April is the usual month of the Federal Convention. It is in April this year - over the Anzac Day weekend of April 25th, 26th and 27th, 1965.

This year is the first departure from "tradition" which hitherto dictated that the Federal Convention must be held at Easter.

For the first time in many years the Federal Councillors could have taken their families out or maybe could have gone fishing over Easter. Easter will have passed when you read this.

This year's Convention will be in Melbourne and will be held at the Belvedere Motel in Church Street, Richmond. For the first time it will be paid for out of Executive funds.

At the time this is being written it is not known who will be representing each Division but indications are that old friends Neil Penfold from the West and Lawrie Blagbrough from the Sunshine State will be with us. New triends will be with us, probably including Peter Frith Irom Tasmania, Ed Perkins from the ACT, and lan Hunt from South Australia. At this moment we have no delinite news about the New South Wales delegate. The "host" Division, last but not least, will probably field the same team as last year captained by Russell Kelly, the Victorian Division's President and Federal Councillor.

Most of the business to be transacted at this Convention ought to have been in the system by the end of 1974 if last year's Convention Motions had been properly observed. That this has not occurred is understandable because of the protracted delays in getting the 1974 Convention Minutes out. This arose through a misunderstanding that the Minutes must follow the traditional pattern. The marathon performances in the 1974 Convention would have pushed up the cost of the Minutes if written out in the old manner and in fact this would be unnecessary as the tapes are available and copious notes can be referred to by any Federal Councillor.

Obviously, some of the Agenda items left over from last year's General Business will come up for discussion this year. There are good reasons to believe that a lew items from last year will require further consideration not only because there has been insufficient time to finalise some of them but also that some further discussions could be useful in clarifying them and certain others.

New items will, of course, have been submitted one month beforehand as explained in some of the recent Divisional broadcasis but any last minute items could be brought up under General Business if the Chairman concurs.

However, the problem with these items under "A.O.B." is that they rely upon enough time being available for adequate discussions after all the Agenda Items have been cleared away in one working day less this year than in previous Federal Conventions. Last year some were in fact left over.

Whatever transpires, there is every indication that so much of interest to amateurs will be discussed in depth at the Convention that a visit by members in the Melbourne area will help them in understanding what amateur radio is all about.

Better still, why not come and help. Volunteers are needed to help with recordings, photo-copying, transport of delegates and many other essential functions.

II you do not take an interest in the business of the Federal Convention you cannot hope to have your pet complaint airad, let alone discussed.

Perhaps this Convention could be the beginning of a new era in the organisation of the Institute.

## OSP

EMERQENCY COMNUNICATIONB BY BATELLITE
"Nevertheless the long diatance transmission (a walkle-talkie Into an old golt umbralla through ATS-3) showed that almple radio gear and a collapaible antenna - plus a apace satellite orbiting somewhere overhead - would enable persona in diatress to summon help trom any point on earth". Part of editorlal in Ham Radio, December 1974, before the Darwin disasier.

## ENVIRONMENTAL PROTECTION

No responsible person ever has contended that the generation, tranamisalon and propagation of radio communication aginals have any effect whatsoever upon the alr. water, or soll. l.e.. the envifonment. The only possible connection with the environment is in the ares of eeathetics
aealhatics cannot be regulated or controlled by atalute, ordinance or regulation because there la no readily definable standard. 'Beality is in the oyes of the beholder'. Amateur redlo has palnatakingly developed a body of law over the years (In the USA) which provides that the Instaliation and operation of an amateur radio atalion. In. cluding ite absolutely essential outdoor antenna and aupporting atructure, is a normal and parm! alble use of residential property and cannol be restricted of prohlblted by 20 ning ordinances and bullding codes". Part of ARRL submissiona to FCC as quoled in OST Dec 1972, p.78/81

## DXCC OF ARAL

ARRL announce a new DXCC Award for CW only for contacts made on and after lat January 1975 Applications will be accepted from 13t June 1975 ARRL also announce new fees for all DXCC Awarda endorsements from 1 st June 1975. All new applications will cost SUS 10.00 (or 56 IRCs) each. Thereafter each endorsement will cost sUS2.00 plus poatage for the relurn of OSL cards From That date the applicalion charge for 5BDXCC will be $\operatorname{sUS} 2000$. Basically the charges are intended to cover return postages for OSLs. Iadal nin and handling There is no mention of reductions if you do not want your confirmations returned to you, so if you want your ARRL EXCC Award in future. these are the fees

### 3.5 MHz BAND

In Region 3 the 80 m band is shown as extending from 3500 to 3900 kHz shared with fixed and moblie services In Ausiralia the bend 3500-3700 is allocated to the Amateur Senvice and 3700-3900 is allocaled to the fixed and mobile service. In Indla the band 3500-3890 is allocated to the lixed and mobile senvices and the band $3890-3900 \mathrm{kHz}$ is allocated to the amateur service. A letter from JARL advises that after many years of petitioning the Japanese amateur service has been granted a new frequency allocation from 3793.3802 kHz from 1st January 1975. The WIA 1971 Federal Convenlion (Motlon 71.15.01) passed a molion seeking a band 3790-3800 but nothing further on this has transpired although it was duly pul forward in New zealand the amateur band extends from 3500 3800 kHz The 80 m amateur band In Region 2 exiends from $3500-4000 \mathrm{kHz}$ but for the USA posses sions in Region 3 (Guam, Samoa. Wake. etc.) the band extends only from $3500-3900 \mathrm{kHz}$.
NEW HEERIDES CONDOMINIUM
According to Kev Magee (ex VK3KM) the whole of the Condominium is now YJB as FU8 seems to have been discontinued. Amateur licences are obtainable from the Condominium Post Office at Por Vila against an oversess full licence, provided you are a resident. at 1.000 NH Francs per annum There appears to be no reciproclity for visitors but anyone interested should write direct to the Condominium Post Master
SUPPLY OF AR
Many have received the message AR ceases to be sent out to unfinancials. Because of escalating cosls the period of grace in future years could be reduced. AR ceases to unfinancials by means of an automatic function of the EDP: the computer address label is omitted. By the way. in Australia AR only goes to linancial members of the WIA and on direct subscription to Libraries. schools and simllar organisations. AR is freely available on direct subscription to anybody resident oulside the VK area

# vertical extended double zepp for 2 metres 

John Hassell, VK6ZGF
17 Federal Street. Cottesloe, W.A. 6011

impedance match. The most economical way to leed the antenna is to use 300 ohm ladder line with a balun or tuning unit at the Tx end.

## ADJUSTMENT

To adjust the antenna all that is needed is an SWR meter and a transmitter on the required frequency.

The first step is to connect the feeder to the stub at about the centre. Apply power from the transmitter and adjust the shorting bar on the stub until a dip is seen on the SWR meter. Thls should bring the antenna to resonance. Now slide the feeder up and down the stub for the lowest SWR. Some interaction between the positions of the feed and the shorting bar will be noticed. Juggle both for the best result. An SWR of $1: 1$ should be possible without too much trouble.

## RESULTS

Simple comparison tests showed a considerable improvement in performance over a $1 / 4$ wave ground plane and a noticeable improvement over a \$/b wave ground plane used at this QTH.

## experimenters delight

Rolf B. Peterson, VK5ZIE
11 Gundawarra Street, Woomera 5720

This is the description of the frult of quite a few hours of thinking and experimenting. It deals with a power supply which has been found to be a "delight" to use.
How would you like to have available, on your own bench, at a twist of your wrist, any voltage between zero and 50 V to the tune of four amperes? Should you not want four amps, there is another knob for your second wrist that will control the maximum to anything between zero and four amps. If your hands are like all left thumbs, and you drop screwdrivers, etc., across the output, this power pack will not mind. It's nicely protected and also affords protection for your circuit. No need to unplug the leads to remove the volts either; there is a little button - touch it and no volts are there in a wink. To get the juice back touch button $B$. If your chosen current limit is exceeded, an amber light tells and the volts go down.

If you wish, and flick a small switch, the "no volts" condition comes up automatically as soon as there is an over current. You may wish again and tlick another little switch and the "no volt" condition is delayed two or three seconds. Just enough time to get that telling meter reading. You get a red light with the "no volts" too. Do you like it?

A few more smallgoods; there are two meters to monitor the output, the fuse holder lights up a self-contained neon when or if the fuse goes and, of course, there is a mains pilot neon which glows when the mains are on and the switch is


The "Experimenters Delight" pushing $25.16 \times 1018$ electrons per second through a screwdriver.
made. And nothing runs blazing hot. The output is obtained at fairly good efficiency (power in over power out). That's ail from the outside.

In order to have the unit "keep its cool", good efficiency must be built in. A cool running piece of gear will be more stable and last longer. With less self-heating, it can tolerate higher ambient temperatures. To this end a switching regulator is em-
ployed. This provides initial stabilisation and converts a high DC voltage to a low one at good efficiency. It does put out some ripple, however, and on its own, therefore, is of limited usefulness. To get a smooth output as well requires further regulation by a linear regulator. That is what was done, ending up with the best of both Ideas; low loss pre - and precision post-regulation.


## Fantastic Offer



STOP PRESS
New City Store Open - $1: 5$ YORK STREET (Opposite Cueun Victoria Buildina-10126. from Town Hall

## ICOM IC22A 2M TRANSCEIVER

Features:

- 146-148 MHz in 22 Channels
- RF Out 10W/1W Switchable
- Mode f3
- Deviation 3-16 KHz Adjustable
- Dynamic PTT Mic Supplied
- 5 Helical Resonators in Front End
- Receiver Sensitivity 0.4uV, 20dB Quieting
- Audio Output 1.5W into 8 Ohms
- Power Requirements $13.5 \mathrm{~V} \pm 15 \%$

The IC22A is Icom's new and improved version of the very popular IC22. The IC22A is ideally suitable for home or mobile use. We are offering this unit with 3 channels, i.e. channel 50 simplex and channels $42 / 54$ and $48 / 60$ repeat.


Dick Smıth Wholesale Pty. Ltd St. Leonards Head Office \& Mail Orders: 160-162 Pacific Highway, Gore Hill 2065 Tel. 4395311
Bankstown: 361 Hume Hwy, Bankstown (Nr. Chapel Road). Tel. 7096600.

Dick Smith has purchased a huge shipment of the very latest Icom transceivers.
Not only is this unit to be sold at a very competitive price but EVERY purchaser will help his Division of the WIA to obtain a FREE IC22A.
For every ten units purchased, Dick Smith will donate one to your nominated Division or Club, These units are ideal for repeater use or WICEN emergency activities.
Yes, by making a large cash purchase of over 100 Icom IC22A transceivers, we have been able to get them at an incredibly low price. The savings are being passed on to you. The normal IC22A price is $\$ 199$ plus crystals at $\$ 9.00$ a pair.
We have the IC22A INCLUDING 3 CHANNELS of crystals (normal price $\$ 217$ ) for only $\$ 200.00$ ( P \& P Insured anywhere in Australia \$3.00). PLUS, . .
YOUR PURCHASE HELPS YOUR DIVISION OF THE WIA TOWARDS A FREE ICOM IC22A
Remember: - All units fully guaranteed 90 days

- Spares available
- Ex-stock availability

PLUS - Our exclusive satisfaction guarantee - buy one, inspect it. If you aren't satisfied return it for refund less P\&P costs. What could be fairer?
PLUS EXTRA SPECIAL 240 V AC -12 V DC fully regulated power supply, normally $\$ 32$ - however if ordered with an IC22A - ONLY $\$ 26.00$ plus P \& P \$1.50.
PLEASE USE COUPON TO SPEED DELIVERY


What happens in a switching regulator is briefly this; an excess voltage is generated to cover all contingencies - and then connect the load to this excess for brief periods of time, so that the average power coming through is just right. The same thing happens in automobiles. It's like taking from a 500 gallon tank by the cupful or bucketful. In this power supply. a transistor switch is used to do the connecting of the load, which in this case is the linear regulator, to the excess supply - a capacitor charged constantly by the raw supply to 70 Volts. Have a look at the block diagram now and if you didn't know before, a light should start to glow.

There is a block called "raw supplies". connected to mains and pre-regulator etc. That has in it transformers, rectifiers and such like, putting out raw DC with the ripple, keeping the primary storage capacitor at 70V. This primary storage capacitor (PSC) feeds the secondary storage capacitor and thus the linear regulator, via the transistor switch pre-regulator (PR) and a buffer choke. Contact is made whenever the voltage on the pass transistors in the linear regulator goes below 2.5 volts. The block marked pre-regulator control sees to that. It will signal the power switch to open again as soon as 2.5 V difference between output and input of the linear regulator is re-established. The pre-regulator control compares the volts on the secondary storage capacitor (SSC) with a bias on the second input of its op. amp. (741).

This makes the pre-regulator a "switch on demand" type rather than the usual continuously running, pulse width modulated one. It results in a simpler circuit. Of course, when there is a load on, this one is also continuously switching.

Now something about the buffer choke. Its purpose in life is to limit the huge surge of electrons, too much for the transistors, from one capacitor to the next, to lower values. It does this because of its self-Inductance. When volts are applied to it a current commences to flow and the slug generates a back EMF which opposes the applied voltage, thus leaving us with only just enough current to keep generatIng the back EMF. That action causes the current through the inductor to rise from low values to a maximum value at a rate that is higher at first but which decreases with time. The maximum current is set by the voltage across the primary storage capacitor (PSC) and the total circuit resistance. It can reach many amps. In a pure non-saturating inductor with no series resistance, the current would rise from low values linearly to infinity. Practical inductors have resistance, but it can be made quite low. Monltoring the current rise In such a device then, shows the Initial increase up to several amps to be quite linear.

One of those in series with our preregulator power switch will cause the charging of the secondary storage capacitor (SSC) to be a pleasant affair instead of a violent one. It gives more time to do
it. Why an inductor and not a resistor? Because of the lower losses - much lower. A resistor would dissipate E2 watts. $\overline{\mathbf{R}}$
With the primary storage capacitor at 6570 V and the output at $6 \mathrm{~V}, 4 \mathrm{~A}$, for instance, that resistance would have to take care of roughly a couple of hundred watts! Our choke has very little resistance and therefore behaves like it should; instead of wasting the extra energy, it stores it, and, when the transistors switch off, the stored energy is pumped into the SSC via the catching diode. It is as if the choke were a generator and charged the capacitor SSC via the diode. Of course, it is only re!easing now what was put into it before the pre-regulator switched off.

The electrical parameters of the choke are not a! l that critical, as long as certain requirements are met. If it is to operate efficiently, it must not go into saturation. The iron core must be a reasonable size. The author's measures $21 / 2^{\prime \prime} \times 17 / 9^{\prime \prime} \times 34^{\prime \prime}$ ( $\mathrm{E}-1$ core) and employs a 0.7 mm airgap. Finding the wanted value of $L$ took some cutting and trying, and starting once more, approximately 90 turns were made finishing up with 3 mH and about 110 milli-ohms. The wire is 19 g . and there is enough room for 18 g . wire too.

Having spent all available pocket money on the major parts, only 2 N 3055 s and an ordinary 300 V 10 amp diode were available for the pre-regulator power switch. It was found that they do not like to switch heavy currents and high voltage at an inaudible rate. They would do it, but they got a bit too warm for comfort - reasoning on the thought of long term reliability. That is why 3 mH was chosen and got cooler running. The current in the prereguiator rises up to about twice the load current. This is caused by the pre-regulator current having to rise to equal the load in order to stop any further discharge of the secondary storage $C$. It must then rise further to restore the charge to the switch off level which is 2.5 V above the output voltage. In the process of doing this, it reaches about 8 amps . or so. The repetition rate and duty cycle adjust themselves to requirements.

The first time a load of 4A was connected onto the output, an electromechanical process was witnessed, with the surety that the pre-regulator operated. The choke made a lot of noise. The choke was vacuum impregnated with a plastic floor finish. This was done twice, in a large glass jar with a stiffened lid to which a simple valve was fitted. The choke was immersed, the lid screwed on and the arrangement connected to the intake of a compressor. Lots of bubbling showed escaping alr, and upon restoration of atmospheric pressure the goo was pushed into all the nooks and crannles. Each time it was dried in the sun for a day. Now it sings softly instead of screaming.
Back to the block diagram. The box marked "linear regulator power amp" contalns a compound emitter follower which is driven via an OR gate by a precision


Rear viaw of the unlt showing, $L$ to $A$, Ilnest regulator, pie-ragulator, and maln sov sectifier.
op. amp. type 777. 471s or 709s may be used also. The 777 was selected particulariy as it did not cost all that much more than the others. It also does exhibit more stability. Using this amp., the thermal drift is mainly due to the reference drift. Monitoring the output volts and the reference shows that both have almost the same temperature co-efficient. Only two decimal places could be checked after zero on 50 V out.

No special tricks are used to stabilise anything in this supply apart from staying c'ear of obvious layout and wiring errors. The voltage control amplifier compares the output volts with a reference and does any necessary adjusting. A 3 amp . load causes a voltage drop of 3 mV . This means an internal resistance of 0.001 ohm (on DC anyway). If you look onto the left side of the block diagram you will find two reference supplies. These are complete 12 V regu'ators of conventional design except perhaps for the peak voltage supply in each, which feeds the first emitter follower and the error amplifier collector via a constant current source (CCS). Makes it quieter and it can operate on slightly lower voltage. The two blocks put out +12 V and -12 V respectively, which are used as references and also as op. amp. supplies. The zero point for them is not OV, but the positive output rail. In other words, the references "ride" on the output. Connection is made at the output terminal.

## An Important point here

A whole bunch of solderlugs have been provided and are connected directly to positive and negative output terminals respectively, as reference points. So anything that you find on the circuit diagram, which is connected to positive output (marked + ) or negative output (-) goes directly to these two bunches and not to any other convenient point. There is one exception, and that is the negative rail from the raw supply and the wires from the pre-regulator. They have a separate gathering point and that is connected to the 2000 micro-farad output capacltor, which in turn connects to the negative "bunch". For the negative main rail which is mentioned as an exception and its positive counterpart, heavy wire is used $70 \times 007$.

Back to the reference. The positive 12 V is used for voltage control and the negative 12 V for current control. In each case a resistive divider is used which is adjustable from the front panel. It puts a bias


NOTES 1. Zmm control on current amp is set with current control
fully enti-clochwise. Sof to point of op. amp output going down from $\operatorname{si-2V}$. 5-10mA out thould Dring on amber light,
2. Sat refermene to $12-00 \mathrm{~V}$ efter 20 minutes warmup to stobilise junction temperatures.
2. Ayust 2.5 K trimpot ter 120 mV . on C.W. and of current control. io. biac le $\mathbf{I m a s}^{*} \mathbf{2 - 5 \%}$. Adjust with control luily countarclockwist.
4. Res in ohme

Ceps in frirads.
Meters 1 mA .100 otm .
Unmerked diedes M9k
Zeners ere reverse biaead base-emitter junctions.
5. Current limetprotectereply not load.
onto one Input of the respective op. amp. which wi!l drive the output via the emitter follower to make its other input look the same, the other input being connected to the positive solderlug in case of the voltage control amp, and to the other end of a sensing resistor in case of the current control amp. The output of the latter is nominally at +6.2 V with respect to the positive solderlug, and the volts amplifier has control. In case of an overload, the current amplifier takes over via the OR gate. This happens when the voltage drop on the sensing resistor exceeds the bias set in on the current control. In order to obtain linear response of this control, the -12 V reference is used to make a 6.2 V reference with its reference on the regulator side of the sensing resistor R. Both controls employ 10 lurn potentiometers with counting dials and that makes it so convenient. You can preset the output to your requirements before switching on and expect to have things happening your way. They do - within 1 per cent. In fact
it was found that the control reading is always closer to the output than the meter reading. No regrets are held having spent the extra. It can be done with a coarse and a fine control too, of course, using resistance values of 100 to 1 or 50 to 1 . but this costs a bit less and "tastes" rather more ordinary.

Now for the last main blocks, the trip circuit. It is not needed: you can have 0 to 50 V and 0 to 4 A without that. It's one of those extras like a car stereo or a TV set. Not necessary, but nice to have. Here is how it works. The current control amplifier signals an overload to it and a lamp driver lights up an amber light. If the TRIP ON-OFF switch is made a capacitor will aiso be charged. This one is in the emitter circuit of a unijunction transistor (UJT) and will switch it on when the capacitor volts are high enough (6 or 7V). The UJT then fires a small SCR which conducts via a resistor and a clamping diode and connects to the 3 rd input of the OR gate. It takes over control from the op. amps.
and clamps the drive for the regulator emitter follower to just below the voltage at the positive output terminal, thus switu.. ing the latter off. At the same time a relay slaps 10 ohms across the output and a red light glows. The SCR can be fired manually via the "NO VOLTS" button. To release the clamp we short out the SCR with the aid of the RESET button. To get the delayed TRIP you close the second small switch and the value of $C$ at the UJT is upped to make the charging time longer.

So much then for the tour of the block diagram. Now a few more explanations of various details. Back at the raw supplies, you will find on the detail diagram two more relays. RL1 has two contacts paralleled and is used to short out a "startup" resistor which is used to limit the switch on surge to 30 A or so. Both of the relays are delayed a little. RL1 pulls in first and RL2 about 250 ms later. RL2 fires the SCR in the trip circuit as soon as the negative reference comes up, which happens be-
fore RL2 pulls in. This action allows the reference volts and the op. amps to settle. In other words, when switching on "from cold" the supply does not start up under load because the "NO VOLT" condition exists. You have to push the RESET button in order to get an output. It gives the "innards" a second or two to settle. Strictly speaking, that feature is not needed - but it is felt that the start resistor and RL1 are a reasonable idea. There is, also in that block, a 70 V peak voltage supply. It feeds the pre-regulator drive via a constant current source with more and cleaner DC than is available on the Primary Storage Capacitor, and drives the pre-regulator emitters closer towards the collectors, saving a bit of heat or dissipation. The link between pre-regulator control and preregulator power section consists of two constant current sources, each using a high voltage output transistor.

A transistor switch was wanted on the positive rail. There is the possibility of using a PNP switch in the negative rail which can be fed from a sensing circuit
sed on OV. However, that would force the whole transformer secondary to fly up and down as it switched, and it was felt that It may generate unnecessary noise. It was fed in - so to speak - bit by bit. you can see it on the circuit diagram. One of the problems was to feed the NPN switch on the positive side with a reasonable value of base current over the 70 V range. Resistors just would not do. Constant current sources will. Two are necessary because the control section can be at any level between zero and +50 V , and also the pre-regulator switch bases and emitters can be at any level between +2.5 and +52.5 V in the off condition. In the on condition they are close to the collector voltage, about $65-75 \mathrm{~V}$.

The solution was therefore to give the pre-regulator control section a constant current source. This puts out a 0.5 mA signal whenever the pre-regulator is to be on, and the power section another constant current source, providing a constant 2 mA
re when requested by the 0.5 mA signal from control, all this regardless of the voltage differences. The type of constant current source will work down to 1.2 V as long as enough base current is available for the output transistor. It changes its current with temperature though, because the $E$ to $B$ junction of the bottom transistor is used as the reference. Whereas in this application it does not matter, in others it may. So if you wish to use it elsewhere, you might have to compensate. It's not hard to do.

Some words now on the buffer choke. When the pre-regulator switches off, the choke produces a "backfire" which will drive its pre-regulator end towards OV. taking emitters and bases of the switch with it. Upon going through OV the catching diode turns on and now forces the choke to discharge into the secondary storage capacitor.

When that job is done the cathode of the diode, emitters and bases of the switch
and one collector of constant current source pre-regulator power section, go to the voltage level present on the secondary storage capacitor, until the next cycle.

Heavy diodes have been connected across both regulators and across the output - in reverse. They do not do anything normally but abnormal things can happen. For instance you want more volts and use this supply in series with another. The other one might be switched on first and that would put reverse volts onto the regulators. They do not like it. It cost a few new 2N3055s to find that out, the output goes up and with it the emitters. The collectors are held at OV by an empty large capacitor, and $\$ 2.20$. Now with the diodes, that last mentioned capacitor is charged and so the reverse volts on the transistors will not be high enough to ruin them. The reverse diode across the output comes into action when polarity mistakes are made. It causes big sparks, blows fuses and saves your circuit. Use one that can stand up to it - like a 30A model, perhaps 50A would be even surer. Ridiculous? Could be, but it's foolproof.
A short note on the reference regulators. The power transistors in the supply are bigger than need be. But what you can shift in a wheelbarrow will not hurt a truck! During experimenting it was found


APPENDIX C.
that the temperature stability of the 12 V rails was 3 times better, percentage wise. than the 6.2 V zeners. It is due to cancellation, in part, of the positive temperature co-efficient of the zeners by the negative one of the E to B junction of the amplifier transistor. One more thought; you can put the rectifier, and capacitor feeding each regulator, on the same etched circuit card. but if you do, beware of hum injection via common grnund conductors. It was amazing to see how much voltage will drop along a short strip $2^{\prime \prime}$ by $1 / 4^{\prime \prime}$. You may possibly want to know why two power transistors were used in parallel in the linear regulator. The beta of 2N3055s and such like drops off fairly drastically at high current levels. Although 4 amps is not all that high it would, in the particular brand used, drive the transistor too close to a region of its characteristic in which the thing starts to look like a transistor with a fairly low value resistor in parallel. That means more noise on the output rail and reduced loop gain. With two helping each other, we have more savoury conditions.

Perhaps even another little trick? Primary and secondary storage capacitors are 10 milli-farad, a fairly large size which keeps the ripple current per unit capacitance down, hopefully resulting in longer life. At the same time there is less ripple voltage for the regulators to iron out. On the output. 3 capacitors in parallel are used in an effort to have the smaller ones shunt the inductance of the larger ones. The meters are hand calibrated 1 mA 100 ohm models.

Little trouble was experienced in getting anything in the unit to work. It really is handy on the rench. When you analyse the circuit you will see that it is all more or less basic ingredients.

## APPENDIX A

Rough check on salurallon:-
Procedure: Adjust $R$ so that the current through the choke $L$ under lest is say to the rated current. Open micro-swilch and note reading of VTVM. discharge $C$ Increase current through $L$ to $2 / 10$ ths of rated current. Open micro-swlich. The VTVM should show twice the voltage previously measured. Nole this value also. Repeat the procedure until an even current increment no longer gives an even vollage increment. The choke is now starting 10 saturate.

The value of $C$ given will produce a reading of iv per $A$. Discharge $C$ each time. The microswifch needs to make only for $1 / 4$ of a second. Test to 10 amps. NOTE POLARITIESI

## APPENDIX B

Clicult tor high voltage test on iransiatora:-
Procedure: Increase volts slowly until you see metar deflect. From there on, the reading will increase more rapidly. You can use the transistor up to the point of current noise. From there on it may be risky. If a varlable supply is available that can cover 50 to 100 volts. do NOT use the potentiometer drain. Instead put 50 to 100 K into point $X$. All transisiors contained in or connected to the pre-regulator should go to 80 V or belter. Make certain they dol
APPENDIX C
Checking outpul admiliance, hoe:-
Constant current sources and voltage amps are best equipped with transistors exhiblting low hoe. The circuit described here helps to find them.

Wire up the circuit as shown in Fig 1.
Adjust base drive to give IC used in your circuit with 6 volts (Vc not crillcal), then sweep collector volts up and down. Look for the transistor with least variation of $I C$ between 1.5 and max. Vc.

In a constant current source. only the output transistor is important in the above respect.

# SIDEBAND ELECTRONICS SALES and ENGINEERING 

## TRIO-KENWOOD

Model TS-520 AC-DC transceivers, for a glowing
description, see September 1974 QST magazine, with ex-
ternal speaker unit
The SUPERB model TS- 900 transceivers, see QST for July
1973 'this device has to be the pace setter for the 70 's'",
expected soon in stock, with AC power-supply-speaker unit,'
the Rolls Royce in amateur equipment
External VFO for the TS-520

## YAESU MUSEN

| FT 101B AC DC transceivers | $\$ 575$ |
| :--- | ---: |
| FT.FP 200 AC transceivers with power supply- |  |
| speaker unit, ex stock | $\$ 400$ |
| SPECTRONICS DD-1 digital counters for the FT 101B | $\$ 150$ |
| FT-101B CW filters | $\$ 35$ |
| FTDX $400-560$ noise blankers | $\$ 20$ |
| Alimited number of the latest ENGLISH manuals for |  |
| the FTDX-401, FT-101B. FT-200 \& YC-355D post paid | $\$ 2$ |

## HY-GAIN ANTENNAS

| 14 AVQ 10-40 M. vertical, 19' tall, no guys | \$65 |
| :---: | :---: |
| M. vertical, 23 ' tall, no guys | \$90 |
| TH 3 JR 10-15-20 M. junior 3 el. Yagi 12' boom | \$135 |
| 3 Mk3 10-15-20 M. senior 3 el. Yagi 14' boom | \$180 |
| 0-15-20 M. senior 6 el. Yagi 24' boom | \$225 |
| M. monoband 4 el. full size Yagi 26' boom | \$190 |
| 10-15-20 M. full size Cubical Quad | \$200 |
| igher |  |
| cable and coax | 8 |
| BN- 86 baluns | \$18 |

## CDR ANTENNA ROTATORS

| AR- 22 for 2 and $6 M$. and small HF beams | $\$ 50$ |
| :--- | ---: |
| AR-20 for 2 and $6 M$. beams | $\$ 40$ |
| HAM-II with re-designed control box | $\$ 150$ |
| All for 230 V . AC complete with indicator -ontrol units. |  |

## BARLOW WADLEY RECEIVERS

Model XCR-30 Mk II 500 KHz to 31 MHz continuous ©overage communications receivers, crystal controlled reception of AM-USB.LSB.CW
$\$ 250$

## POWER OUTPUT METERS

Galaxy RF 550A with 6 position coax switch
$\$ 75$

## SWR METERS

Midland twin-meter type for 52 Ohms. up to 1 KW on hf $\mathbf{\$ 2 2}$

## BALUNS

New Japanese model, in 52 or 75 Ohms impedance 1 KW PEP
$\$ 10$
MOBILE ANTENNAS


## COAX CONNECTORS

> Amphenol VHF types Standard PL-259, Angle male-female, T -connector, RCA male to Amphenol female adaptor. Ail models $\$ 1$ each

CUSH CRAFT ANTENNAS

| DGPA 50 to 27 MHz ground plane, adjustable | $\$ 25$ |
| :--- | ---: |
| AR-2 $144 \mathrm{MHz} \mathrm{s} / \mathrm{wave}$ RINGO | $\$ 20$ |
| LAC-2 lightning arrestors | $\$ 6$ |
| CRYSTAL FILTERS |  |
| 9.MHz similar to the FT-200 ones. |  |
| with 2 carrier crystals | $\$ 35$ |

## POWER SUPPLIES

240 V , AC to 12 V DC 3 to 3.5 Amps, regulated

## SPECIALS

Buyers of h.f. transceivers will until further notice receive a twin-meter S.W.R. Meter as bonus!
TRIO-KENWOOD have announced 6 and 2 Meter TRANSVERTERS to be used in conjunction with the TS-520. News on these TV- 506 and TV- 502 will soon be advertised, they are already ordered.

For builders of 40 Meter YAGIS, essential hardware and traps are available

## 27 MHz EQUIPMENT

MIDLAND 5 W AM 23 channels transceivers. with PTT mike 12 V DC $\$ 95$
MIDLAND 5 W AM 15 W PEP SSB 23 channels transceivers PTT mike 12 V \$175
SIDEBAND Brand One Watt model NC. 310 hand-held $t$ ransceivers
SIDEBAND Brand 5 W AM 15 W PEP SSB 23 channels transceivers, with noise limiter blanker. PTT mike. 12 VDC
144 MHz TWO METER EQUIPMENT
MULTI-7 10 W output FM transceivers. 24 channels with crystals for 10 channels 40 to 60 . includes all Australian repreaters and anti-repeater operation. with PTT mike and mobile mounting bracket. 12 V DC operation. still only $\$ 225$ KEN PRODUCTS KP. 2022 W output FM hand-held transceivers with the hottest receiver available anywhere. 6 channels now with crystals for channels 40 and 50 and all 4 repeaters $\$ 150$ : KCP. 2 battery chargers and 10 NICAD batteries $\$ 35$ : Leat her carrying case for the KP. 202 $\$ 6$ : Stubby flexible helical whip antennas for the KP- $202 \$ 6$.
KLM ELECTRONICS solid state 12 VDC 2 M. amplifier. 12 W out put. automatic antenna change over when driven, ideal for mobile use with the KEN KP-202 \$50.

All prices quoted above are net SPRINGWOOD. N.S.W. cash with orders, sales tax included in all cases. subject to changes without prior notice. No terms nor credit nor COD available. only cash and carry. no exceptions. All-risk insurance available for 50 cents per $\$ 100$ value. minimum insurance $\$ 0.50$. Allow for freight. postage or carriage. excess will be promptly refunded... MARY \& ARIE BLES. Proprietors.

# modifying the trio jr60 receiver 

C. P. Daw VK2AGJ
'Woodlands'", Wombat, N.S.W., 2595


#### Abstract

This article describes a number of worthwhile modifications to the JR60. These modifications are equally applicable to the Lafayette HE8O receiver.


One of these units was acquired some years ago and it was most disappointing to observe that this particular unit drifted bady even on BC. Many fruitless hours were spent trying to improve it. The conclusion was that it was a heat problem due to compact design. First modification Involved replacing the 6CA4 rectifier with silicon diodes. Running the valve heaters continuously helped greatly, but valve life was reduced to an unacceptable degree and there was still some drift. The only answer seemed to be transistorisation to eliminate the heat.

This has been a long process over a period of several years and the unit still uses valves for the second IF amp, product detector and 2 metre converter.

The modifications carried out are listed as follows:
(1) A pair of germanium diodes were connected across the antenna input to protect the RF transistor.
(2) The RF valve was replaced with an MPF102 source follower feeding a BF115 amplifier (see AR June 1968) with the emitter resistor unbypassed. A partial bypass ( 100 ohms in series with $40,000 \mathrm{pF}$ ) increases gain but creates cross modulation problems. The existing 1 K and 10,000 pF B+ decoupling network was used. The existing AGC decoupling was retained.
(3) The 6CA4 heater winding was connected in series with one of the other 6.3 V windings to produce 12.6 V AC. This end was connected to a 2500 UF 25 V capacitor via a silicon diode. Half-wave rectification seems adequate. The DC output was fed to a 1.5 W 12 V zener diode via a 300 ohm resistor. This 12 V source was fed via a 560 ohm resistor to a 400 mW 6 V zener which feeds the local oscillator and BFO. The existing HT wiring was removed from the "remote" socket and 12 V connected to this so that the set can be remotely controlled.
(4) The tape recorder outlet was removed and a 3 amp toggle switch fitted in the hole. The converter heater lead was wired in so the heater can be switched off when not in use. This also requires rewiring one dial light so it isn't switched off when the converter is off.
(5) The 6BE6 mixer was replaced with an MPF105, with a 10K source resistor bypassed with 1000 pF capacitor.

The RF transistor was wired to the existing valve socket plus a terminal strip mounted adjacent to the vaive socket. The mixer was also wired to the 6BE6 socket. Do NOT wire transistors to 7 pin plugs and plug them into valve sockets if instability is to be avoided.

The original circuit shows a cathode follower between the oscillator and mixer but this was not wired in my set; injection was direct from the oscillator grid to the mixer grid via a 20 pF capacitor.
(6) The 6AQ8 oscillator was replaced with an MPF104 soldered to the valve socket and a terminal strip mounted under one of the socket bolts. No variation was found in calibration with the MPF104 but a slight shift was noticed using a 2N3319. A source follower after the oscillator was tried but it was considered unnecessary. Injection to the mixer is fairly critical. A 5 pF coupling is a good compromise.

The drain end of the RFC must NOT be bypassed since oscillation on top band depends on extra feedback provided by a 10.000 pF capacitor connected to a winding on the top band oscillator coil.
(7) The first IF amplifier was replaced with a MPF105 source follower feeding a BF115 amplifier. To preserve stability the FET should be mounted on the IF transformer and the Bipolar mounted on the 6BA6 IF amplifier socket. Lead length between the FET and the BF115 is not so important, being relatively low impedance. AGC was applied to the gate of the FET via existing components.

From here trouble occurred. Another MPF105, BF115 combination was tried in the second IF but could NOT be stabitised. Replacing the BF115 with a 2N3564 (lower Beta) did stabilise the stage but it then suffered overload. An MPF121 was tried in place of the FET-bipolar combination but had the same overload problem. Not satisfied with the solid state result in this stage. the 6BA6 was re-used.
(8) AGC action was now superior to the original and it was necessary to shunt the $S$ meter with 220 ohms. As each stage was removed from the $B+$ line the voltage rose as resistive filtering is used. The voltage applied to the second IF 6BA6 screen exceeded valve ratings, so a 22 K ohm $2 W$ resistor was required to feed the screen of this tube.
(9) Several different RF gain control arrangements were tried, but none found satisfactory. Finally the system shown on the circuit was tried. 6.3V AC from the valve heater line was rectified with a silicon diode to produce a negative voltage (no filter capacitor is required) and applied via a 7.5 K ohm resistor to the existing 10K RF gain control. The moving arm was connected via a small silicon signal diode
(has to be silicon for high back resistance) and a 1 M otim isolating resistor to the AGC line. This gives limited control but is quite smooth and adequate. It does upset the $S$ meter reading but in practice the RF gain is rarely used since the AGC is adequate.
(10) The 6AL5 NL was replaced with 2 germanium diodes mounted on a 7 pin plug with a back cover to protect the diodes, and plugged into the valve socket. The noise limiter is inferior to the original. A silicon diode was tried but was still not as good as the original, however the noise limiter at best is not very effective so the germanium diodes were left in. The germanium diode detector performs as well as the value.
(11) An MPF121 and a 2 N3819 were tried as a product detector. The MPF121 worked well on weak signals, but overloaded on strong signals. The JFET worked, but injection was extremely critical (gate injection). Both were inferior to the 6BE6 so the valve was re-installed.
(12) The BFO valve was replaced with a 2 N 3810 supplied from the 6V DC regulated voltage. The slug in the BFO coil required slight adjustment to centralise the front panel BFO control.
(13) The audio stages were replaced with a transistor amplifier as used in the "EA 270" and solid state Deltahet. The PCB heat sink was home designed so that the unit was self-contained. This amplifier has approximately the same gain as the valve amplifier and produces about the same output with $17 \mathrm{~V} \mathrm{~B}+$ and a 4.7 ohm resistor in series with a 3 ohm speaker.

The speaker should be 8 ohms but all speakers on hand were 3 ohms, hence the 4.7 ohm series resistor. The high input impedance of this amplifier allows retention of the 500 K ohm volume control. This module is mounted above the chassis over the sockets of the valve audio amplifier.
(14) The 6AQ8 calibration oscillator and $Q$ multiplier was removed from its socket and a nine pin plug inserted. A 2N3819 was wired to provide the Q multiplier "triode" connections. A 1K ohm swltch potentiometer with DPDT switch was fitted in place of the existing 10K ohm potentlometer. This requires enlarging the chassis hole to 3 '", taking care to avoid marking the front panel. Also the shaft of the potentiometer has to be reduced to fit the metric size knobs. This was done using an ordinary file, and some care. (Tip: make a diagram of connections before removing pot). The feed resistor was reduced from 22 K to 1 K ohm and connected to 12 V DC. The original $5,000 \mathrm{pF}$ injection capacitor was reduced to 20 pF since the original design severely detuned

the first IFT. Even with 20 pF some detuning occurs and the capacitor could possibly be reduced, however this has not yet been tried.
(15) Simple replacement of the trlode calibration oscillator with a FET did not work. The "EA" circuit (EA Oct. 1970) was built on a home made PCB as shown in the circult. This circuit works very well and is slightly superior to the original on higher frequencies. This module is mounted above the chassis over the mixer and local oscillator valve sockets.
(16) It is necessary to reduce the HT on the product detector by using an extra 12 K ohms of appropriate wattage in the HT feed to reduce the anode voltage to about 100 V .
(17) The reduction of current required for valve heaters plus the fact that the TRIO was designed to operate on 220 V AC instead of 240 V meant that in this set, the heater voltage rose to 7.40 V . This was reduced by fitting a 2 ohm resistor in the heater circuit to the 6BA6 and 6BE6 and a 1 ohm resistor in circuit to $c$
lamps and converter heaters. Resistors were made up from resistance wire. Some electric jug elements are solderable but several strands may be necessary to keep the temperature of the resistor down. (Alternatively suitable resistors may be purchased from a radio parts supplier - Ed.). The existing HT resistors can be re-arranged to reduce the HT to appropriate voltages with the reduced drain. The red wire linking the ends of the 2.2 K 8 W and the 2.2 K 20 W nearest the rear of the chassis is removed from the 2.2 K 8 W and soldered to the B+ pin on the now vacant OA2 voltage regulator socket. From this point an added 6.8 K 6 W goes to the product detector.

This arrangement requires a minimum of change and gives 170 V at the $\mathrm{B}+$ end of the 6BA6 IFT plate winding and 75 V at screen of 6BA6 (with 33K extra dropping resistor reduced to 22 K ) with the converter off. With the converter on, the voltages become 115 V at the $\mathrm{B}+$ end of the IFL and 48 V at the screen of the 6BA6 and 125 V to the converter. The 2.2 K 6 W resistor gets fairly hot with the converter on so if prolonged use of the converter is envisaged, a higher wattage resistor in this position may be desirable.

Although some drift is still apparent, the improvement was well worth the effort. The mixture of FETs used shown on the circuit was not deliberate - they just happened to be ones that were on hand, and although they have not been tried, probably MPF102, 104, 105 or 2N3819 would be equally suitable.

Existing valve circuitry has been retained except where the HT had to be changed to 12 V or 6 V and, where possible, existing HT decoupling and AGC decoupling has been used. The results have been very satisfying.

REFERENCES: Q mult "EA" Aprll 1969 p.58; XTAL CALIB "EA" Oct. 1870 p.101; SOLID STATE MODULES "AR" JUne 1968; SOLID STATE DELTA. HET "EA" Feb., Mar., Apr., May 1971; EA 270 "EA" Feb., Mar., Apr. 1970.

## a cradle for ken

Mike O'Burtlll, VK3WW

3 Maxwell St., Lalor, 3075

This is not a bedtime story. Most two metre enthusiasts are familiar with the KEN KP202 transceiver. Those with extensive funds have one as a spare; others, like the author, use a KEN for all 2 Mx FM operation.
It was decided that the KEN could be used for other than portable operation. Mobile seemed a good idea, but how to operate safely in the car?

Being very conscious of road safaly and the dangers of driving, it was determined that mobile operation would not compromise the driving technique. Also being very keen on caravanning, the car is a manual shift model. (It is believed that a manual is a better all-round towing vehicle.)

The following requirements for mobile operation with the KEN were set:-

1. Switch to talk (not PTT).
2. Boom microphone (two hands on the wheel).
3. Power from car circuit rather than inbuilt batteries.
4. Minimum action to revert to hand-held portable operation.
5. No serious change to appearance of the unit.
For every change there is some compromise. In this case it was decided that the nicad battery positions were not required, so this space was used for the power circuit modifications. Of course, if you want to use nicads you don't really need to use power from the car, so just delete this section of the modifications.

A 2.5 mm socket was fitted to the base of the KEN battery box. Be careful of the


A close-up of the complete installation ready to put in the car.
metal plate in the base, also the two nicad charging points are not slotted so initial removal is difficult. Before reassembly, cut a slot in each screw thus allowing a screwdriver to be used for reassembly.

Trace the power circuit with a multimeter and wire the socket so that with the plug removed internal batteries run the rig, and with plug inserted external power is applied. This system has the added attraction of being available for use with a bench power supply.

The socket can hardly be noticed in the base so does not detract from the appearance of the KEN.

Speaking of appearance, the only visible modification is that which brings the speaker and microphone connections from the unit to two 3.5 mm sockets.

Drill two $1 / 4 \mathrm{in}$. holes in the name plate just below the speaker. Through these holes bring twin shielded cables, one for speaker and one for microphone. These are wired
boom microphone, try one of the cheap JA microphones that can be hung around the neck; some work quite well.
The external speaker function is not used in this installation, but is there to balance the appearance and to provide the facility to use an ear piece if required.
We now have inputs for power, microphone and speaker, all of which disconnect the in-built equipment.

All that is required now is switch-to-talk and the rig will be ready for mobile operation.

One look at the miniaturisation in the KEN and all thought of bringing the PTT function out to a plug or some such is forgotten.

If it cannot be done electrically, then try a simple mechanical device. It was reasoned that if the KEN were to be held firmly in one position, a cam could operate the PTT. Here was borne the idea of the cradle.

to the 3.5 mm sockets so that the internal equipment operates when no plug is inserted, and external equipment is connected when the plugs are inserted. (Plug Insertion disconnects internal equipment.) There was no room to mount two 3.5 mm sockets on the case of the KEN, so a mounting plate was made from a piece of copper. The plate measured $6.5 \mathrm{~mm} \times 6.2$ mm and was bent as shown in the diagram. With careful application of paint this can look quite neat and, while it is an obvious modification, it does not detract from the KEN's appearance too badly. Four small holes are drilled at the corners and the plate is mounted using small selftapping screws.

Once installed any type of external microphone can be tried. If you don't have a

A U-shaped cradle was knocked together from scraps of pine board, and a small cam was made of the same material. An old "pot" shaft was fitted to the base of the $U$ in such a position that it could swing the cam against the PTT switch on the KEN. Once this was tested the cam was glued (araldite) to the pot shaft and the lot was fitted to the cradle.

This first cradle was rough and ready, for in addition to holding the KEN position, it also contained the socket for the head set and a filter board which was made up for mobile operation.

This set-up was used with good effect until June '74, when the time was found to design a better cradle and neaten the whole thing up.

Pine board ( $1 / 2 \mathrm{in}$.) was used and this

panel nails, Selleys Aquadhere, and $1 / 2 \mathrm{in}$. pine board.

For anyone who wishes to copy this design, diagrams giving dimension are provided. Obviously this idea could be adapted to suit many different cars and radio equipment.

The cradle holding the KEN sits on the seat on the left and when desiring to transmit. just throw the cam switch with your left hand. When finished, release the cam and you are receiving.


Apart from the very quick excursions of the left hand to set the cam switch, you have two hands on the wheel all the time. The diagrams and photos show the cradle and cam switch. A small clip on the left hand side of the cradle holds a mini pen In which to log mobile QSOs.

It is hoped that this short article will be of interest to other KEN owners and perhans stimulate a few more ideas. See you on two moblle.

## rotating a 3 element 20 metre

 beam with a stolleL. R. Newsome, VK4LR

58 Prospeci Terrace, St. Lucla, 4067

## Not wanting to go to the expense of a heavy-duty rotator, the way was cast to enable a TV type rotator to be used with a shortened version of a $\mathbf{2 0}$ metre yagi. The trick is easy enough.

While TV type rotators are capable of carrying up to about 20 kg in load, thay are limited in the amount of torque which the motor gearing can supply to the rotating elemenis. It is not that a large array requires a large tuming torque, once the array is on its way. It is the initiating impulse to start the array, and the mechanical strength necessary in the gearing to stop the array at the required place. More seriously, a gust of wind hitting the array off-centre can severely damage the lightweight gearing in the rotator.

The solution was to take all bearing weight off the rotator and provide a mechanical buffer between the beam's mass and the rotator. The mechanism is depicted in the drawing. The buffer was a spring from the rear-ถan of a motorcycle.

With the aid of an "oxy" torch. the ends of the spring were turned at right-angles to provide lugs for clamping to both the shaft of the beam and the rotator. The head weight of the present beam is about 8 kg and the boom is 6.5 m of 5 cm diameter aluminium. The longest element is about 8 m . each element being shortened by the use of loading inductances 1 m in from the ends.

So far the rotator has been in service for about two years and has passed through one or two mild cyclones. The rotat' r can be reversed instantly while the beam is still swinging in the opposing direction. The motor seems to accept this abuse quite readily. On initial operation, the beam seems to take about three or four seconds to start moving, although the motor can be heard running almost instantly. Some lag and oscillation occurs at the ends of the run also. In a high wind the beam will oscillate up to about 20 degrees In either direction, but this is a small matter. One does, however, have to check the wind conditions before giving out a report of rapld QSBI


## VICOM <br> presents..... Âtias-210

SOLID STATE SINGLE SIDEBAND TRANSCEIVER
5 Band - 200 Watts 10, 15, 20, 40 and 80 meters NO TRANSMITTER TUNING. MODULAR CONSTRUCTION. ALL SOLID STATE

. . . AND THE COMPANION MODEL, ATLAS 215 WHICH COVERS 15, 20, 40, 80 AND 160 METERS.


## PLUGS INTO MOBILE BRACKET

(Optional Accessory)
Operates directly from
12-14 volts D.C.
Only $3 \% / 2$ inches high, $9 \%$ inches wide, $91 / 2$ inches deep.
Built-in speaker.


With front facing speaker, space for adding VOX and other accessories.


## The Sensational ATLAS-210/215

## GENERAL SPECIFICATIONS

- Atlas-210, Frequency Coverage With Internal VF0: 3700-4050, $7000-7350,14,000-14,350,21,100-21,450$, and 28,400-29,100 KC.
- Atlas-215, Frequency Coverage With Internal VFO: 1800-2000, $3700-4050,7000-7350,14,000-14,350$, and 21,100-21,450 KC.

NOTE that the 80 and 15 meter bands can be easily owner adjusted to cover any 350 KC portion of the band, and that 10 meters can be adjusted to cover any 700 KC portion.

- Frequency Readout: Dial scale calibrated in 5 KC increments on all bands except 10 meters, where increments are 10 KC . Tuning knob skirt provides 1 KC increments on all bands except 10 meters, where increments are 2 KC .
- Frequency Ranges When Using Model 10X Crystal Oscillator Accessory: 10 Crystal positions permit fixed channel operation as follows:
$1800-2050 \mathrm{kc}$ (Atlas-215 only), 3400-4300, 7000-7600, $13,900 \cdot 14,600,21,000 \cdot 21,450$, and $28,000 \cdot 29,700 \mathrm{kc}$ (Atlas-210 only).
- Special Mars Models, Atlas-210M and Atlas-215: These models offer extended frequency range when crystal controlled by the model 10X crystal oscillator accessory, as follows:
$1800-2400 \mathrm{kc}$ (Atlas 215M only), 3300-4600, 7000-8000, 13,900-14,900, 20,600-21,450, 27,500-30,000 kc (Atlas210M only).

Notice that the internal VFO ranges in the 210 M and 215 M are identical to the standard 210 and 215 . The extended frequency ranges are provided only by use of the 10 X crystal oscillator.

- Circuit Design: Single conversion, 5520 kc I.F.
- Finist: Vinyl Covered Steel. Durable and scratch resistant. Black.
- Dimensions: $91 / 2 \mathrm{in}$. ( 24.1 cm ) wide, $31 / 2 \mathrm{in}$. $(8.9 \mathrm{~cm})$ high, $91 / 2 \mathrm{in}$. ( 24.1 cm ) deep, overall.
- Weight: 6 lbs. 14 oz. ( 3 Kg ) net. 8 lbs .6 oz. ( 3.7 Kg ) Shipping weight.
- Frequency Control: Highly stable VFO, common to both Receive and Transmit modes. Tuning dial calibrated in 5 kc increments with easy interpolation to 1 kc . Tuning rate is 15 kc per revolution.
- External Frequency Control: Rear socket provides for plug-in of external VFO or crystal oscillator for separate control of transmit and receive frequencies, or for network and MARS operation.
- All Solid State: Includes 4 I.C.'s, 18 transistors, 32 diodes.
- Modes of Operation: SSB (selectable USB or LSB), CW with offset frequency in transmit mode.
- Modular Construction: Includes plug-in circuit boards for ease of service and maintenance.
- Plug-in Design: Rear connectors are designed so the transceiver plugs into the Mobile Mounting Bracket, or into the AR-117 desk top power supply, making the transfer or removal a simple operation. Transceiver may be secured to the Mobile Mount, if desired. All connectors are standard: SO-239 antenna jack, $1 / 2 \mathrm{in}$. phone jacks for Mic., CW key, External speaker or headphones, and linear amplifier control.
- Power Supply Requirements: Operates directly from 12-14 volt D.C. source. negative ground (standard automotive electrical system). Draws 300 to 500 ma . in receive mode, 16 amps peak in transmit mode. (Atlas models AR-117 and AR-230 desk top power supplies are available for $A C$ operation.)
- Front Controls: Tuning Dial, Dial Set, Function Switch, Band Switch, A.F. Gain, R.F. Gain, Mic. Gain, Sideband Selector, Calibrator Switch, Dial Light Dimmer.


## PRICE LIST

Atlas-210/215
SSB Transceiver $\$ 570$
Atlas 210M/215M (Mars Model) $\$ 585$
AR-230 Power Supply . . . . . \$150
AR-200 Portable AC
Power Supply . . . . . . . . . . . . $\$ 96$
Mobile Mounting Bracket Deluxe Plug-in Model . . . . . . \$47
DC Battery Cable . . . . . . . . . free
Mobile Bracket Kit free
$\qquad$ $\$ 6$

## OTHER HF GEAR . . .

YAESU FT101B 160/10mx AC-DC transceiver. Aul EX. STOCK at \$585.

- YAESU FV.101B VFO for FT101B-\$102.
YAESU FT75B 80 w pep transceiver - $\$ 245$.
- AC power supply $\$ 65$, DC power supply - $\$ 75$.
TRIO TS 520 all band transceiver - $\$ 550$.
- external VFO $\$ 80$

YAESU FT- 201 \$505
YAESU FT-2100B Linear $\$ 388$ KENVYDDO


## 6 METRES SSB

YAESU TS-620B transceiver (new release) \$435
TRIO TRANSVERTER TUEN6 \$212 ICOM IC-501 TRANSCEIVER \$445

## 2 METRES SSB

YAESU FT-220 SSB/CW/FM solid state transceiver $\$ 480$ TRIO TRANSVERTER TV. 502 \$243

# fm directory 

Vicom have made available a frequency counter in the front window of the Auburn showrooms to assist mobile 2M FM rig owners in staying on frequency. Come anytime and tune your rig while parked at the curb.

## 019 419



AUSTRALIA'S BEST SELLING 2M FM rig - the IC-22A

IC22A 2M FM TRANSCEIVER replaces the IC22 and is identical electronically, but features a redesigned front panel with easier-to-read channel selection. It features switchable power 1 or 10 watts, 22 channels, solid state T/R relay, built-in PA protection, filtered d.c. voltages. The unit comes complete with mounting brackets, microphone, cables, etc, and three channels $-1 / 4 / 50$. Price is $\$ 210$ incl. tax and VICOM 90.day warranty. Extra cystals $\$ 7.80$ pair.


DV- 21 DIGITAL VFO employs a PLL synthesised system with 59 ICs, 34 transistors, I FET and 37 diodes. It can be INTERFACED with the IC22 or any 2 m transceiver with $44-45 \mathrm{MHzrx} 18 \mathrm{MHz} \mathrm{Ix}$. 10.7 MHz i.f., Iwr side hetrodyne, $8 \times$ basic freq. for $t x$ and 3 or $9 x$ basic freq. for rx. Only a slight modification is required for such equipment and is detailed in the operating manual. It operates in 5 or 10 KHz steps from 146 to 148 MHz and can scan either empty frequencies, or the frequencies being used, whichever you select. Complete separate selection of the transmit and receive frequencies is as simple as touching the keys. When you transmit, bright easy to read LEDs display your frequency. Release the mic switch and the receive frequency is displayed. These are two programmable memories for your favorite frequencies. You won't believe the features and versatility of the DV- 21 until you've tried it. Price $\$ 298$ includes VICOM 90 day warranty.
THE IC21A is the 10 w base station or mobile ( 146.148 MHz ) with variable power control, adjustable deviation, 24 channels, built-in discriminator meter, S meter, SWR meter, PA protection, modular circuitry, runs from 13 v DC or 240 v AC. Complete with three channels. Price $\$ 298$, extra crystals $\$ 7.80$ pair.


SEIWA SV. 230 2M FM, mobile incl 3 channels, 25 watts! \$210


Open Friday nites and Saturdays.

ICOM IC-60 FM 10 watt mobile transceiver, complete including two channels, mic, cables and mobile mount. Price $\$ 235$.

ICOM IC-30 FM 10 watt mobile 70 CM 70 CM
transceiver for 70 CM , includes 1 channel 435.0
MHz , mic, cables and mobile mount, $\$ 370$.

ICOM IC-3PA power supply for ICOM mobile gear, $\$ 78$ incl. tax.
We do not sell "C.B." equipment.

NEWS
NEWS . . . .
NEWS

| 10 | ANTENNA |  |  |  | $\begin{aligned} & \text { BY } \\ & \text { VICOM } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Model | Imp | Fieq | VSWR | $\begin{gathered} \text { PRICE } \\ \$ \end{gathered}$ |
| BALUNS | BL-50A BL. 70 A | $\begin{aligned} & 52 \\ & 75 \end{aligned}$ | $\begin{aligned} & 1.8 \cdot 38 \mathrm{MHz} \\ & 1.8 \cdot 38 \mathrm{MHz} \end{aligned}$ | $\begin{array}{\|l\|} \hline 1.3: 1 \\ 1.3: 1 \end{array}$ | $\begin{aligned} & \hline 14.90 \\ & 14.90 \end{aligned}$ |
| COAX SWITCHES (2 \& 6 pos) | $\begin{array}{l\|} \hline C S-2 A \\ C X-6 A(A) \\ C X-6 A(B) \end{array}$ | $\begin{aligned} & 52 \\ & 52 \\ & 75 \end{aligned}$ | $\begin{aligned} & \text { to } 300 \mathrm{MHz} \\ & \text { to } 500 \mathrm{MHz} \\ & \text { to } 500 \mathrm{MHz} \end{aligned}$ | $\begin{array}{\|l\|} \hline 1.3: 1 \\ 1.3: 1 \\ 1.3: 1 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 21.00 \\ 54.00 \\ 54.00 \\ \hline \end{array}$ |
| TRAP DIPOLES | III-N | 52 | $\begin{aligned} & \hline 7 \mathrm{to} \\ & 28 \mathrm{MHz} \end{aligned}$ | 1.2:1 | 31.00 |
|  | AL48DXN | 53 | $\begin{aligned} & 3.5 \& \\ & 7 \mathrm{MHz} \end{aligned}$ | 1.2:1 | 31.00 |
|  | AL240XN | 52 | $\begin{gathered} 7 \& \\ 14 \mathrm{MHz} \end{gathered}$ | 1.2:1 | 24.00 |
|  | A.4VPN | 52 | 3.5 MHz | 1.2:1 | 24.00 |
|  | A-8VPN | 52 | 7 MHz | 1.2:1 | 26.50 |
| LISTENER | L1 | 75 | $\begin{gathered} 310 \\ 30 \mathrm{MHz} \end{gathered}$ | - | 14.90 |
| BALANCED FEEDER | BTF. 1 | 600 | - | - | 12.00 |

## ANTENNAE

MARK MOBILE (HELICAL):
HW-80 80M 6ft \$18.
HW-40 40M 6ft \$18.
HW-20 20M 6ft \$16.
Bumper mount \$14, Heavy spring \$11

HY-GAIN
TH3JR 10-15-20 3 el yagi \$118 203BA 3el 20 m beam $\$ 168$

## VHF ANTENNAE

Scalar Mobile Whips
M22 2m fibreglass $1 / \mathrm{ww} \$ 7.50$
M60 6m fibreglass $1 / \mathrm{w}$ \$ $\$ 10.70$
M21 2m steel $1 / \mathrm{w}$ w $\$ 6.90$
LINDENOW $2 \mathrm{~m} 5 / 8$ whip $\$ 21$, base $\$ 2.60$
RINGO ARX-2 6db 2 m gamma matched vertical $\$ 35$
Extension kit to improve gain of the old AR-2, \$12


## ANT. ACCESSORIES

ME-1B SWR PWR METER 3-150 MHz \$22
ME-UA UHF POWER METER \$69
AS-GM gutter damps $2 \mathrm{~m} \$ 7.50$
SH-7E lightning arrester $\$ 14.90$
CO-AX 58u 45c per m
RB 2 m mast amp (144-146 or 146 -148) $\$ 32$
VICOM 6 m and 2 m low noise preamps $\$ 18.75$
VICOM 70cm low noise preamp $\$ 22.50$
Rotator - CDR ham II 240v \$165

## TEST GEAR

TRIO CS1557 CRO DC.IOMHz \$340
TRIO VT 108 FET VOM 8 ranges 0.5 to $1.5 \mathrm{kv}, 11$ meg input. ohms 0.1 to 1000 meg, memory feture $\$ 85$
TRIO AG202A AUDIO GENERATOR covers 20 Hz to 200 KHz 10 vrms output. sine and sq wave, ext sync $\$ 94$
TRIO 75 mm scope 20 mv cm sens, dc to $1.5 \mathrm{MHz} \$ 170$
TRIO SG402 RF GENERATOR covers 100 KHz to 30 MHz
\$76
D-60 FREQUENCY COUNTER including 2 metre prescaler
$\$ 360$
GILCO $275 \quad 0.15 \mathrm{MHz}$ frequency counter $\$ 210$
VICOM 24 or 12 hr digital (electronic) clock $\$ 39.90$

VICOM 90 DAY WARRANTY ON ALL NEW PRODUCTS

## CRYSTAL OVENS

pcb mount proportional control crystal
ovens can be supplied for standard temperatures and voltages. Model PCL1-12 clip type oven for He-25/u crystal $\$ 19.80$ ModeI PCL2-21 slip-on oven for Hc-6/u crystals $\$ 19.80$

## ODDS AND SODS

TUBES - 6SJ6C, special this month . . . $\$ 6.50$
DISCRIMINATOR METER as used in the IC-21A, centre scale type 50 UA. Price $\$ 7.50$
TRIO QR-666 all band/mode communications receiver 170 KHz to $30 \mathrm{MHz} \$ 300$

## PRACTICE DRIVING SAFETY \& OPERATING EFFICIENCY WITH A PATENTED MAGNETIC SAFETY MIKE <br>  \$34苃 <br> POWER SUPPLIES

ICOM IC-3PA for ICOM mobile gear $\$ 78$
SPECIAL 12 v 3 amp regulated supply from $240 \mathrm{v} \$ 28$
OUR POLICY: Persons not in possession of the appropriate certificate of proficiency will not be sold amateur equipment. This may have to be produced on request. Our terms of trading are strictly net cash, no COD, no credit other than Bankcard. All new equipment sold carries the VICOM 90 -day warranty (this excludes final, transistors or valves or damage caused by negligent use, excessive heat or "fiddling") which covers labor and materials and where possible the loan of a similar piece of equipment while repairs are being effected. We do not believe in "bait" advertising and subject to unanticipated heavy demand the products advertised on this page are available from stock. Add extra for freight or postage and 50 c per $\$ 100$ for insurance cover. Prices are subject :o change without notice.

> VICOM INTERNATIONAL PTY LIMTED (03) 82-5398 139 AUBURN RD. AUBURN, VIC 3123. Manager: Peter Williams Geelong - Phil Fitzherbert (052) 43-6033 Queensland - db Electronics,

21 Christine Ave. Miami, 4220.
Ph (075) 35-1798

## microstrip data curves

Interest is growing in the ultra high Irequencies, on which certain techniques are useful, although impractical at lower Prequencies. The one deall with in this brief review is the use of microstrip transmission lines.

The construction of the line consists of a ground plane separated from the conductor by a dielectric (see Fig. 1). An Ideal medium to form such a line is doubleslded fibreglass cliccult board. Despite some limitations it provides a good basis for experiments with microstrip.

Recently a number of articles have appeared relating to the use of microstrip in amateur projects. Refs 1, 2. It is the main purpose of this article to present the relevant-design curves to enable the amateur to "roll his own" filter, coupler, or ler transmission line device.


As with other transmission lines there are two parameters of Interest, these being impedance and velocity factor. In the mlcrostrip medium the factors affecting these two quantities are the dielectric constant of the separating dielectric (K), the distance of separation (d) and the width of the strip (w). In amateur clicles the most available medlum would be fibreglass PCB. With this in mind the parameters for this

FIG.4. NITBFACING DETNLS.

medium are presented in graph form in Flgs. 2 and 3. This assumes $d=0.0625$ in, $K=$ 4.4. It has been found in practice that these values represent a good average of the different boards available. Thus for width $w$, the impedance may be read off the graph. Similarly the velocity factor may be found.

## EXAMPLE 1

Suppose a quarter-wavelength 50 ohm line is needed at 1296 MHz . From the graph it is found that a width of 0.115 inches gives an impedance of 50 ohms.
Next, for $w=0.115 \mathrm{in}$, it is found that the velocity factor $(n)=1.84$. Hence length of line

$$
\frac{3 \times 10^{4}}{1296 \times 1.84 \times 4}
$$

Included in Figs. 2 and 3 are the curves for teflon-Impregnated fibreglass PCB as used by DJ1EE in his 1296 preamp.

This extra data enables one to convert from one medium to another, allowing the cheaper PCB to be used. Values assumed were $d=0.0625$ in and $K=2.1$.

## INTERFACING AND USES

The lowest discontinuity (and hence loss)

Neil Weste, VK5TB
Electrical Engineering Depl..
Unlversity of Adelaide, S.A. 5000
results when the coaxial connector is mounted as shown in Fig. 4. Usually connectors have to be modified to fit flush with the structure, this being achieved by a touch of discreet culting and filing. The protruding centre conductor is soldered to the microstrip.

To use microstrip fully, an understandIng of transmission line techniques is definitely an advantage. However, with a bit of imagination, uses will become evident. The primary aim of this article is to present the data. and it is hoped that future articles will show the methods of design and indicate where the llne can be used.

## LIMITATIONS

Microstrip is a relatively low $\mathbf{Q}$ transmission line and thus more lossy than stripline or waveguide. However the losses involved are still very small. An improvement may be made by using teflon-glass board but considering the economics it is the author's view that fibreglass PCB provides the best compromise. At 2.5 GHz the losses are still at a tolerable level for most amateur appllcations.

Accuracy of strip widths and lengths is another minor problem. The claimed accuracy of the graphs is plus or minus 2 per cent. Considering the flatness of the graphs around 50 ohms, one may be confident that the design is reasonably close. Keeping to an accuracy of 0.05 In will usually suffice.

## CONCLUSIONS

While only an outline has been presented, it is hoped that the data presented will provide some motivation to explore new methods and techniques in our UHF bands. AEFERENCES

1. "23 cm Preamplifier with printed microstiplines". K. Hupfer, DJIEE. VHF Communications, Sept. 1972.
2. 'A High-Performance Balanced Mixep for 1296 MHz'. Paul Wade. WA222F. QST, Sept. 1873.

FIG. 2
MICROSTRIP CHARACTERISTIC IMPEDANCE


FIG. 3
MICROSTRIP VELOCITY FACTOR



#### Abstract

The following ts used to hold the temperalure of the crystal of a frequency counter at 40 deg. C. A special crystal was ordered for this temperature.


Five silicon dlodes in series, type unknown, ex computers, are used as the sensing element. These are in series with a 16k resistor across a $7 V$ Zener rail connected to one Input of a uA741 op amp: the other input is connected to the same 7V rall through a trimpot, which sets the desired temperature.

The sensitivity is such that holding the sensing diodes between the fingers will swing the output of the op amp from 9V to zero.

When the unit was finally set up, the trimpot was replaced with fixed resistors, juggling the values to obtain the desired temperature.

The oven consists of $2^{\prime \prime}$ of 7/8" ID aluminlum tubing, squeezed in a vice to an oval. Caps were cut from sheet aluminium, flanges formed on them and the lower one araldited on. An HC6U crystal holder mounts by a bolt through the
lower cap. Two strands of fine wire through insulating bushes connect to the crystal. These are fine so as to prevent thermal losses through the leads. The heating element is $15^{\prime \prime}$ of fine (probably 40 SWG - Tech Ed.) Nicrome wire wound over aluminium tube with a couple of layers of brown paper under it for Insulation. The sensing diodes were tightly tied over the element with cotton and the whole liberally covered with araldite. Very close contact between the sensing dlodes and the element is necessary to prevent hunting.

The use of brown paper and araldite in an oven may seem out of place, but remember the temperature is only $\mathbf{4 0}$ deg. C.

The oven is clamped between two hollowed out pieces of Coolite to provide thermal insulation. A $1 / 4$ " diameter hole (normally plugged) permits the use of a thermometer for setting up.

The power supply is provided by one 15V CT, 1 amp rated, transformer. The op amp draws about 20 mA , and the heater 450 mA cold; this reduces to 100 mA after a few minutes and finally settles down to about 50 mA .

The value of the electrolytic capacitors may seem low, but they were on hand and they work OK.


POWER SUPPLY FOR VKLIJ CRYSTAL OVEN

## Try This

with Ron Cook VK3AFW and Bill Rice VK3ABP

## MOBILE OUTPUT INDICATOR

This output Indicator is fitted to a "Courier Car Phone" and removes the query "Am I getting out?" when no one replies to your calls. The coupling capacitor is only 1.5 pF and so there is no discernable loss of output, measured on a Field strength meter with the Indicator connected.

The indicator bulb is a panel light from a VW which mounts through a $1 / 4$ " hole in the front panel, and is held in place by two rings cut from thick walled plastic tubing of $1 / 4{ }^{\prime \prime}$ ID.

Some juggling with resistor values will be necessary to give a satisfactory indication, the ideal is the bulb just coming to maximum brightness with full TX output.
H. Moores, VK4IJ


## MOBILE OUTPUT INDICATOR

## EXTRA RELAY CONTACTS

After fitting the front end of a VK3 (Jenkins/Hepburn) carphone to my courier car phone, I was faced with the problem of
supplying a switched plus 12 V rall to the front end as the courier uses $P$ types and the new front end $N$ type devices.

No extra relay contacts were available, but a switched minus 12 V rail was. The use of one PNP transistor solved the problem thus:
(The reslstor " $R$ " in the diagram is for base current limiting, around 6.8 k ohms Ed.)
H. Moores VK4IJ


EXTRA RELAY CONTACTS

# Newc omers Notebook 

with Rodney Champness VK3UG
44 Rathmullen Rd., Boronia, Vic., 3155
A NEW CONTRIBUTOR
My pleas for assistance in producing Newcomers Notebook have brought a welcome offer of help from David Down of Christies Beach in South Ausiralia. With David's assistance it is hoped that a wider range of subjects of interest can be covered - and a vital point is that you will get two points of view instead of one. David's first article will be on setting up a station for low power DX. For the Newcomer to amateur radio it will set you on the road to DXCC.
Presently more short circuits and other articles from Zero Beat will be published. For a few months it has not been possible to produce articles. During that period a transceiver was designed and is nearing completion. A few problems have been encountered with some established American and Australian designs - to put it plainly they don't work properly. More of this later - now over to David.

## LOW POWER DX

Many new amateurs gain the impression that expensive equipment. a hilltop QTH. and a lot of luck are the requisites to make regular foreign contacts. This is categorically untrue. For the newcomer, be assured. many long distance contacts are made every day with simple equipment. from urban residential locations. How then does one start?

## FIRST:

We'll assume you are a licensed amateur. or soon will become one, and that you are in a position to establish a simple station. If you are the holder of one of the new Novice licences (when they arrive) strive for the full licence as soon as possible.

## SECOND:

Plan your equipment to operate on one of the DX bands, 7,14 or 21 MHz . Going multiband can come later, and will be the subject of a future article in this column. While it is natural to want to become multiband like most others, it is a natural progression from the suggested monoband operation, by which time, certain listening and operating expertise will have been attained, a knowledge of propagation will be added to by simple practical application, certain aspects of antenna design, construction, erection and tuning will be more familiar and the operator will have a greater depth of constructional knowledge of equipment he will need, on which to expand.

## THIRD:

Plan to do most of your serious long distance, low power work on CW (morse). Less generated power is required for DX work, equipment construction is simpler
and more economical, and in addition, prototypes have been, and are still being built by the author, for insertion in this column as projects towards setting up your first low-power, home-brew DX station.

## FOURTH:

Plan to spend plenty of time and work on your antenna system, as this is primarily where the important factors in DX work commence. A monoband rotary beam, vertical whip or half-wave dipole antenna can be employed, and the RSGB and ARRL handbooks can provide many types to choose from. It is up to you to select, construct and erect the antenna of your choice, but don't let it stop there. Experiment with antennas, their theory, construction, location and methods of teeding, and you should learn a lot, in addition to achieving self-satisfaction from something so important that you have done yourself. FIFTH:
Provide yoursell with a good receiver, the basic requirements of which include:

1. Freedom from bad connections and hand capacity.
2. Stability - the ability to tune in and hold a signal despite reasonable mechanical shock and over a reasonable period of time.
3. Sensitivity - the ability to bring weak signals up to an audible level. A good practical test is to alternately connect and disconnect the antenna at the receiver. If the noise level does not markedly increase when the antenna is connected, your receiver will hardly do well on weak foreign signals.
4. Quietness and convenience - your receiver should not produce any sounds apart from a smooth quiet hiss when the antenna is connected (until a signal is tuned in). If it hums, crackles, grunts or groans, it needs internal attention (or maybe even replacement). It should also have a non-slip, smooth-acting tuning mechanism if you are to tune in the weak ones on the nose. A receiver need not be expensive and indead, a properly built 2 valve unit will qualify easily on all four counts. Remember, it is not how loud the signals are, but how well the weak ones come through. that counts.
For best results, use your transmitting antenna for receiving too.

## SIXTH:

Use a good variable frequency oscillator (VFO) with your transmitter. Construction details of a suitable and economical VFO will be another project in the series forthcoming.

## SEVENTH:

Adjust your transmitter to produce a steady, clean, reliable signal. If one or more valves overheat, bad connections exist, or it needs a kick to make it work, you'll miss many good DX chances (in addition to incurring the PMG's displeasure.) The transmitted power is inconsequential, both experience and maths verifying that, indeed, the lower the power, the greater the challenge to the true Amateur Operator. Anyone can catch fish with
a depth charge, similarly, anyone can contact all the continents in one afternoon with a 400 watt, store-bought transceiver, but that is commercial radio, not amateur radio. $30-100$ watts is adequate and sportIng.

## EIGHTH:

Operate intelligently. Never ca:I CQ DX. Instead, wait and listen for the foreigner's call, then answer it. Look for DX at the proper time. You must be on hand when the ionosphere is right, if you want results. Be a gentleman. Other amateurs judge you and your country by your behaviour on the air. Don't give up. Try another time, another antenna or a different frequency. but there are plenty of DX stations about, so start your planning, and go to it.

## Commercial Kinks

with Ron Fisher VK3OM

## 3 fairview Ave., Glen Waverley. 3150

A DRIVE CONTROL FOR THE OLDER

## SSB TRANSCEIVERS

Most of the original sideband transceivers such as the Swan 240,350 series, the Galaxy 300 and the National NCX3 did not incorporate any form of drive control as an aid to the tune-up procedure. In all cases a carrier balance control was provided and this was used to provide some carrier for tune-up and also for AM transmission. In many ways this was not an ideal method. Firstly the minimum carrier positlon was often a very critical point, difficult to find without some sensitive RF indicating device. As later model sets have shown it is better to leave this control set and provide a separate carrier control.

In all cases this proves to be a simple modification. In the case of the Swan 350 it is necessary to connect a one megohm potentiometer in series with the wire connecting pin 9 of the 7360 balanced modulator tube (V13) to the receive/tune switch S2. Now remove the 50 pF capacitor connection on S2 and return this to a convenient ground point.

For the earlier Swan 240 the modification is similar. Once again a one megohm potentiometer is inserted in the lead connecting pin 9 of the 7360 (V9) and the function switch SW1. The 50 pF capacitor from pin one of the 6UBA carrier oscillator to the function switch should be disconnected at the switch end and grounded.

No doubt many owners of early model Swans have looked at photos of the later model 500C and 500CX and noticed a small knob to the left of the dial labelled "output level". This knob does not in fact vary the output level at all, but only output indication on the meter when in the tune mode. It is however an ideal place to put your new carrier level control.

## Commercial interest

Looking through a copy of Ham Radic magazine the other day I noticed the following under the signature of James Young from Spectronics, the US Yaesu agents of that time. In relation to spurious output from the FTDX 560 he states; 'Starting with serial number 30001, the VFO frequency range in the FTDX560 was changed from

## Some of our Accessories for the Amateur Station

## BALUNS

RAK BL-70A, 75 ohm, especially suitable for dipole use
$\$ 15.90$
KW Balun, 1:1, for 50 or $\mathbf{7 5}$ ohms, screw terminals, $\mathbf{1 k W} \$ 11.90$
$\mathrm{BN}-86$, broad-band ferrite Balun, 2 kW for Beams and Doublets
$\$ 24.00$
BN-27A as above especially for 11 m CB band ...... $\mathbf{\$ 2 2 . 0 0}$

## ROTATORS

Ham II, 230 V AC $\$ 175$
AR-22L Light, low cost rotator, 230 V . $\$ 59$
Cable \& Conductor for Ham II CD-44 75 cents yd.

## ANTENNA ACCESSORIES

LA-1, Lighining Arrestor, for installation In standard
52 or 72 co-axial feedline, designed to Mil. specs.
$\$ 39.00$
LA-2, smaller size co-ax arrestor
$\$ 8.75$
C1. Centre Insulator, for Doublets
$\$ 10.00$
421A, Power meter, 3-60 MHz, reads SWR, power on $10,100 \& 500 \mathrm{~W}$ scales, and AM modulation percentage. Especially made for Novice \& Marine 11 m use
$\$ 48.00$
476 TVI filter, attenuation begins at 41 MHz and is 25 dB down at 54 MHz , SO-239 connectors
$\$ 15.00$
Yaesu TVI filter, 3 section, with SO-239 connectors $\$ 25.00$
KW TVI filter, 5 section, SO-239 connectors, A superior job with excellent attenuation $\$ 39.50$
KW Multiband trap dipoles:-
With approx. 65 ft . co-ax and talun, 500W
$\$ 87.75$
With approx. 65 ft. co-ax and balun, 1000W
\$108.00
With approx. 75 ft . twin feeder
$\$ 69.75$
Porcelain Egg Insulators 17 cents
WIDE RANGE of Co-axial cable and connectors in stock.
K-20 70 ohm twin feeder
24c yd.
KW multi-band dipole traps with ceramic " $T$ " centre insulator,
80-10m bands per pair complete with insulator ... $\$ 24.00$
KW co-axial switch, 3 position, 500 MHz
Co-axial B \& W switches, 5 position, Model 590G
$\$ 24.00$
RAK L1 SWL trap antenna, 3-30 MHz
$\$ 15.90$

## SWR METERS AND DUMMY LOADS

SWFS-2, single meter type, combined SWR and FS meter, 50 ohms, inc. FS pick-up whip, size $5^{\prime \prime} \times 2^{\prime \prime} \times 21 / 4{ }^{\prime \prime}$. 3-150 MHz, UHF connectors
$\$ 15.00$
SWR-2, dual meters, 50 ohms. Simultaneous reading of forward and reflected power, $5^{\prime \prime} \times 2^{\prime \prime} \times 2^{1 / 4^{\prime \prime}}$. $3-150 \mathrm{MHz}$, UHF connectors
SWR-200 large dual meters, switched 50-75 ohms, with calibration chart for direct power readings to 2 kW in three ranges. A very elegant instrument. $75 /{ }^{\prime \prime}{ }^{\prime \prime} \times 23 / 4^{\prime \prime} \times 33 / 4{ }^{\prime \prime}, 200 \mathrm{MHz}$
$\$ 44.00$
KW ELECTRONICS Z Match Antenna Couplers 80 metres to 10 metres. Beautifully finished in communication grey (see revlew "QST" July, 1972):-
KW E-Zee Match, screw terminals at rear, size $51 / 2^{\prime \prime} x$ $6^{\prime \prime} \times 12^{\prime \prime}, 30-2500$ ohms, 400 W
$\$ 67.80$
KW-107 Supermatch, as above but with addition of SWR meter, power meter with large 50 ohm dummy load to read up to 1 kW PEP, UHF sockets at rear. A superb plece of equipment, $7^{\prime \prime} \times 8^{\prime \prime} \times 13^{\prime \prime}$
$\$ 187.50$
KW-109 high power version of KW-107, larger condenser coils
$\$ 218.00$

KW-160 "L" network single wire or co-ax. feed coupler especially for 160 m . Also usable on 80 \& 40 … $\$ 57.00$
KW-103 SWR Power Meter uses toroidal coll pick-up for continuous operation 52 ohms 1 kW max. to 30 MHz SO239 UHF sockets, very accurate .... .... $\$ 49.00$
KW Dummy Load 52 ohm Air Cooled. Will handle up to 1 kW (ideal for use in the workshop or field) … ... $\$ 36.00$
HN31 Cantenna Kit 1 kW oil cooled (oil not included) $\mathbf{\$ 2 6 . 0 0}$

## OTHER ACCESSORIES

AT-3 RF actuated CW Monitor and Code Practice Audio Osc. uses 4 transistors, 2 diodes, with built-In speaker and tone control.
Requires one UM3 penlite cell. In grey metal case, $2^{\prime} \times 31 / 4^{\prime \prime} \times 31 / 2^{\prime \prime}$
$\$ 16.00$
EKM-1 Audio Morse CP Osc with speaker, one transistor.
Headphone socket and tone control, requires one UM3 cell, in black metal case $31 / 4^{\prime \prime} \times 31 / 4^{\prime \prime} \times 15 / 8^{\prime \prime}$
$\$ 8.50$
AT-8 Audio Osc, larger de luxe type CP Audio Osc., 3 transistors. Includes relay for transmitter keying if required, and headphone socket. Tone and volume controls. Plenty of volume, suitable for group practice or tests. Nicely finished brown metal cabinet, $31 / 4^{\prime \prime} \times 5^{\prime \prime} \times 5^{\prime \prime}$. Requires four UM3 cells
MC-701 Mic. Compressor, battery operated. Available with 4 pin or TRS mic. connector, improved model $\$ 39.50$
Yaesu YO-100 monitorscope, compatible with most other equipment. Includes IF for 3180 kHz (IF kits 455 kHz or 9 MHz , \$9.00)
$\$ 192.00$
Yaesu YC-355D irequency counter, 200 MHz \$335.00
MORSE KEYS
HK-708 light weight morse key suitable for practice or Tx use, flat style knob. Same mnfr. as HK-701
$\$ 9.95$
EK-108 Electronic keyer, super quality, IC with dot memory. Built-in monitor \& paddle. Solid state "relay"
230 V AC \& 12 V DC types
$\$ 78.00$
HK-701 De luxe heavy duty morse key. Heavy base. A really beautifully constructed and finished unit. Fitted with a dust cover, standard knob and knob plate, ball bearing shaft
$\$ 20.00$
MK-701 Side Swiper key to actuate Electronic keyer $\mathbf{\$ 2 4 . 5 0}$
BK-100 (BUG) Semi-automatic bug key, full adjustable $\$ 29.50$
NEW - VHF FM TRANSCEIVERS, 146 MHz
Arriving soon, a 25 W 24 channel commercial quality
set, superb construction in a compact metal case.
Price approximately
$\$ 220.00$
Also a 10W 12 channel set at approximately ........ $\$ 175$
And, after many delays, some FT-220 due around end
of April. Will include provision for operating FM
repeaters. With extra crystal. Anticipated price $\$ 475.00$
Also available: Equipment for novice, CB and Marine use on 11 m band. Antennas, beams, Walkie Talkies, base statlons, and accessories. Digital clocks.
Digital Clock BC/FM radios, Automatic VHF/UHF scanning receivers, SSTV, Generator noise filters.
Servicing facilities for all types of Amateur and Novice equipment. We check all sets before sale and provide a 90 day warranty.
All prices incl. S.T. Postage and freight extra. Prices and speclfications subject to change without notice. Availabllity depends on stock positlon at time of ordering.
$8400-8900$ to $8700-9200 \mathrm{kHz}$. The resulting change in local-osclllator frequencies produced a heterodyne with the second harmonic of the 3180 IF in some units to produce the spurious output. This was eliminated by addition of the 6358.6 kHz crystal. All FTDX560s manufactured after introduction of the FTDX-570, and all FTDX570s have thls circuit modification incorporated during production".

# VHF UHF 

an expanding world

with Eric Jamieson VK5LP<br>Forreston, S.A., 5233<br>Times: ©MT

## amateuk band beacons

VKO VKOMA. Mawson

VK1 VKIGR, Casay
VK2 VK2WI, Sydnay
VK2WI, Sydnay
VK2WI, Sydney
VK3RTG. Vermon
VKARTL, Townsville
VKAWI/1. MI. Mowbullan
VKSVF, Mr. Lotty
VKSVF, M. Lotty
VKGRTV. Perth
VK6RTU. Kalgoorlie
VKGATW, Albany VKGRTW, Albany VKGRTV. Perth VK7RTX. Devonport 3D3AA. Suva. Fiji ZLIVHF. Auckiand ZLIVHW, Waikato zL2VHF. Wellington 2L2VHP. Palmerston Norlh 2L3VHF. Christchurch 53.100 53.200
144.475 52.450 144.010 144.700
52.600
144.400
53.000
144.800
52.300
52.350
52.950
144.500
145.000
144.900
55.150
52.150
52.500
145.100
145.150
145.200
145.250
145.300

2L4 2LAVHF, Dunedin
No alterationg or additions to the beacon listings this month. Anyone in the know who can shed some light on the situation in regard 10 operation of the vKO beacons could help me by conlitming or denying the existence of the two beacons listed. Thank you.

## SIX METAES

Although things have gone rather quiet (probably many ops writing up their Ross Hull Contests Logs!) there have been a number of openings 10 various paris of the counlry. Probably the best was on $9 / 2$ when VK1. 2. 3. 4. 5. 7 and 8 plus ZL3 were worked at my OTH, and with a number of other stations joining in. The various VHF portable stations out for the John Moyle National Field Day would have had a ball considering the excellent conditions. Atter this the general decline set in, but for those operators with 144 MHz equipment, and following the activity around the starl of February and its great DX. we now saw further
$D X$ on 144 MHz and 432 MHz .
The excellent conditions prevailing since $31 / 1$ continued on into February when on $4 / 2$ Garry VK52K conlacted Wally VK6WG on 432, crossband $432 / 144$ with VK6BE. Wally VK6WG heard VK32DW and VK3ZFJ on 432. Bob VK6EE heard VK3AUU on 432, while Bob's total of contacts on 2 metres for the opening at this slage had sisen to 98! A iull in proceedings started soon alter this, but the 2 metre beacons in Adelaide and Albany were being watched very carefully.

The right conditions commenced building up on 15/2. with some contacts VK5 10 VK6. However. $16 / 2$ was the night. The sked on 40 m . with Bob VK6BE conlirmed something big lor VKS was coming up. and then it happened. 144 and 432 MHz both opened up with a vengeance, particularly into VK5 Adelaide area, Garry VK5ZK and Peter VK52PS wearing their voices out with a multitude of contacts 10 Albany. Garry was heard to remark at one time to the boys in Albany that there did not seem to be any more ways they could be worked on VHF: contacts had been iwo way 144 MHz . iwo-way 432 MHz . crossband 543/144.

146 FM both ways and crossband, all manner of antennas used, right down 10 whips eic. $5 \times 8$ algnals boih bands 144 and 432. From my location 50 km Inland once more I had to sit on the fence and Ilsten to those in Adelaide getting amongst it. Finally my turn came, albeit very briet, but at 11232 on $16 / 2$ I worked Wally VK6WG and nine minutes later Bernle VK6KJ. Soon after that the band closed for me again except for 4 minutes about an hour later when Wally VK6WG was again heard. Others to Join In the general proceedings were VKSMT, VK5RO and most of the boys in the MI. Gambler area.

Looking back on the 144 and 432 scens, one could have to say it has been a tather outstanding period. Excellent conditlons coupled with generally very good equipment now in use has allowed belter contacts to be made over a longer period, and this situation could well improve further when hopefully more 2 metre operators will stan going funeable, and the present luneable operators go further up and include 432 in their range. Perhaps those further north In the eastern States do not share a great deal in this form of ducting and inversions, but may have some other worthwhile 2 m and 432 contacts. Why not let me know and we will all hear about ItI

## EME CONTACTS

The moon has been bombarded with quite sew signals of late, and been returning them safely to earth as usual. On Saturday, 22/2, Ron VK3AKC heard WA6LET on 432 at 0730Z, report 429. Later al 13352 Ron had a two-way contact on CW with PAOSSB, received 528, sent 539. PAOSSB was using a 24 loot dish to a UPX4 front end. trans mitter a ringed amplifier using six 3CX100A5s with 1 kw input. 14302 on 23/2 Ron conlacled O29TR. $O$ reports exchanged, simllar $T x$ to PAOSSB but with a 28 dish. At 1525 Ron worked PAOSSB on CW, with 0 reports and rogers

Chils VKSMC on $22 / 2$ heard WA6LET, W6PO and VE2DFO on CW. Around 06402 he heard these atalions in contact with VE2DFO on SSB, on 144 MHz EME. To follow up, on $23 / 2$ at 07382 Chris worked KiWHS, sent 439, recalved 339. K2RTH slighlly stronger. sent 449, rec. 439.

Tesis on 22/2, 23/2, were facilitated because WA6LET had been able to use the 150 foot dish of the Stanford Research Institute. Schedules were arranged to call for the first 30 seconds of each minute during the lime the moon would provide a window for both ends of the circuit. This commenced at $0640 Z$ on $22 / 2$ here and continued until alter 07502, with elevations ranging from about 1 degree to 11.5 degrees. true north azimuth ranging from 58.9 to 48.7 degrees. Operating frequency 144.190 for calling and receiving about 144.120. This split frequency operation was necessary due 10 stations calling out of sequence and on the same frequency causing severe interference on previous occasions.

Chris VK5MC was good enough to pass on this information to Pater VK52PS who in lurn passed it on to me. As I had never tried to listen for any EME signals from my home OTH, I thought nothing to lose by Irying. Due to some miscalculations somewhere along the line the beam headings at this end were inilially in the wrong place by about 10 degrees. When the moon finally became visible through the clouds corrections were made and lo! There were the signals from WA6LET. First signals were heard at 07502 and copied at one minute intervals for 9 minules until disappearing. These signals were recorded on lape as prool and were quite readable on the loudspeaker despite a high noise level emanating from the relatively wide. bandwidth of the SSB receiver, 2.3 kHz . Had a CW filter been available I am sure much more could have been heard. It goes to show that if there is enough power capability al one end to overcome most of the path losses, then reason. able equipment at the other end can complete the Job, and I would be less than honest if I said olher than it gave me quite a thrill to hear these signals so well. Now I wonder how much a 30 foot dish would cost . . . hmm? The XYL needs a fur coat lirst though!
2304 MHz RECORD
Alan VK32HU writes in a letter which was un fortunately mislaid, with detalls of a two-way conlact between himself and lan VK3ATY, on MI. Cowley and Lake Mountain respectively, al 01302 on $7 / 12 / 74$. Reports. Alan received $5 \times 6$, sent $5 \times 8$. He suggests these are scmewhat optimistic as calibrated pads indicated only readable 2.3
with 34 dB attenuation. Also readable 3 with VK3ATY transmitting on a $1 / 4$ wave whip - $1 . e$. $11 / 4$ Inches long! - As a CW gignal it was estimated It would have been an R5 signal with 40 dB attenuation. Equipment at VK3ZHU all solid state. BLY8g final on 144 MHz. MA4060 quadrupler to 576 MHz, SV220 quadrupler to 2304 MHz. Power out 2W. Slot-dipole-reflector used with a 4 foot parabolic refleclor. Converter using 1N23F mixer to 144 MHz IF TIS8a converter to Barlow Wadey recelver (tuneable IF).
Equipment at VK3ATY identical except for 144 MHz exciter and CQEO3/20 final, a valve funeable IF. Liaison was via old Channel B crossband duplex operation (very helpful to optimise deviation and antenna alignment. Mode NBFM. Subject to varification and any other pending claims, this is probably a new Australian record. Estimated dis-tance-209 km ( 130 miles). Further experiments will be made in 1975 when It is hoped to have at leasi a one-way contact on 3456 MHz , which awaits completion of final doubler 1728 to 3456 MHz .
Congratulations Alan and lan. It was well worth the effort. Thank you for writing, and I know readera will be pleased to hear what you achieve in 1975.

## VARIOUS JOTTINGS

David VK3AGB writes in a letter which alao got missed. that he had a contact with VKAMM at Rockhampton at 08402 In December uaing 10 watts of FM power Into a "Ringo" antenna at 50 teet. He enquires if it has been bellered by anyone else for such low power and half wave aerial, distance about 2000 km (Warrnambool to Rockhampton) . . . I would think the contact between VK6BE and VK3BMD mentioned earller would have to eclipsa the above surely. The Victorlan atation was operating mobile in Melbourne using a \% wavelenglh whip and 20 watts. That's distance of some 2700 km , which is a very good eftort. Thanks for writing anyway. David.
must stress once again the necessity for sending any malerial for publication to REACH ME not later than the 28th of the month. I asy this because I received quite a lot of Information about a proposed portable expedition by Peter VK32AA, John VK3ATQ and Jan VK3ZUE for the 13ih to 15 th December 1974. This information did not get to me until 15th November, and copy for the December Issue closed on 3rd Nov. Theretore, I could do nothing about publicising the expedition. Sorry chaps. you will just have to be earller next lime.
A letter from Gordon Featherstone, SWL40392, of Gladstone. Old., advises of the death of Bob VKAZAI, on $23 / 12 / 74$. Bob was certainly well known in VKS, and we are sorry to learn of his passing. Gordon mentions that Bob had acquired new equipment for 6 and 2 metres not long before his death. and had logged a number of contacts in the Ross Hull Contest with the gear. Thanks for writing Gordon, and pleased to nole you keep close watch on six metres.
Wally VK2ZNW (ex VK52WW of meteor scatter fame) currently has no antennas erecled whilst awaiting parmission to stand up a tower to hold same. Wally now resides at Orange, and was heard a lew times in VKS on 6 metres. We in VKS hope Wally will eventually pul out a stiong signal on 2 metres and 432 MHz for contacts this way - the distance is not much over 1000 km , not an im possible task. Let us know when you are ready, Wal.

New material which arrived at my desk recently was "APC". The newsletter of the Moorabbin \& District Radio Club. Call sign VK3APC. A very well presented journal, the initial copy coming from Percy, VK3ZQP, Publiclly Officer. I am hoping it will be a regular arrival in the future.
Roger VK2ZTB, Editor of "6 UP" when it was being produced. indicates he has a lot of original material on hand which could be of interest to readers. He is considering a proposal to present same in book form, at a reasonable price, as he believes the articles and information are too valuable to be gathering dust at his place. If you are into:ester why not write him a tew lines and say so
to Roger Harrison, 47 Ballast Point Road, Birchgrova, NSW 2.041.
Finally, the leller to me bearing nows from the Pijblications Committce that I had boen awarded the H!gginbe:han Award for 1974 came as a surprise, ard a pleasant one at that. This gward had never ever crossed my mind, but 1 am indeed

# RUN 200Wpep FOR 

 OSCARSSM EUROPA B 10 METRE TO 2 METRE SSB TRANSVERTER The Europa B is a linear transmit and receive converter from $28-30 \mathrm{MHz}$ to 144 to 146 MHz

A crystal switch and extra crystal can be fitted to extend the frequency coverage. It is suitable for use with either a transceiver or a separate receiver/ transmitter. It is ideal for Oscar operation as well as normal tropo work. Although its primary use is for SSB, it will receive and transmit any mode of which the H.F. equipment is capable, SSB, AM, CW, FSK, FM.

Once attached to your H.F. equipment, you operate it exactly the same as on the H.F. bands, the Europa B does the rest.

The receive converter is broadbanded to cover the whole band without any tuning of the Europa B. It uses protected dual gate MOSFETs to give you optimum sensitivity, gain and minimum trouble from strong signals. In fact the H.F. receiver will normally overload before the Europa B does.

The transmit converter employs valves to provide, high power, good linearity and extraordinarily high rejection of spurious signals. This gives you a clean, sharp signal. The transmitter tuning is brought out to the front panel and requires retuning as you move around the band, in the same way as H.F. equipment requires tuning up.

The oscillator chain is a stable solid state circuit to ensure same frequency transceive operation, or correct netting with separates. The crystal used has a very high stability specification with only 5 ppm tolerance.

* Dual gate MOSFETS in the receive converter.
* Bipolar transistors oscillator chain.
* Valves used in the transmit converter.
* Low receive noise figure - 2dB.
* Receive converter gain - 30dB.
* Transmit drive requirement, 200 mW .
* Internal aerial change over relay included.
* A crystal switch and extra crystal can be fitted to extend the frequency coverage.
* High power - 200W maximum input $50 \%$ efficiency.
* Stable highly developed circuitry.
* Clean transmit output - 80dB except for harmonics of the fundamental.
* Attractive appearance, inside and outside, size only $9^{\prime \prime} \times 43 / 4^{\prime \prime}$ front panel $4 \frac{1}{2}$ " deep.

The Europa B plugs directly into the accessory socket of the FT101, FT227, FT200, FT250. Some older designs of YAESU equipment only have 6.3 volt A.C. available at the accessory socket (FT560, FT401, FL400, FL500). With these units a separate 12.6 V supply must be provided for the Europa B.

Many people are using the Europa B with Heathkit.KW, Trio etc., equipment, we have the information on how to couple this to the Europa B.

TOTAL PRICE: $\$ 229$ Road Freight $\$ 3.00$. Available ex-stock, includes 90 day warranty. Valves included: 2 off QQVO3/10/1 off QQVO6/40A.
grateful to recelve 11 , and makes me feel the eftorts expended for so long have been worthwhlle. Thank you, fellas

I cannot, however, let the opportunity pass without again saying how much I appreciate recelving all those letters from all over Australla with news, notes, information for the VHF page, usually with a word of thanks for what is written into the column. The varlous Club Secretaries and Publicity Oflicers who send regularly coples of their magazines and journala for my perusal: whout them nows would be a blt scarce at ilmes.

Therefore, it is really one blg effort when you think about it - all who take the trouble to write to me share in the final set-up of our page, after all I only put it together, really. If you like to read ou'r page, and find something of value in it from time to time, then I ask no more, I have recelved all the thanke I need.

Well, after all that, let's close with the thought for the month: "Love looks forward, hate looks back, anxiety has eyes all over ita head".

The Volce in the Hilla

## Letters to the Editor

Any opinion expressed under this heading is the individual opinion of the writer and joes not necessarlly coincide with that of the Publishers

## The Editor.

Amaleur Radio.
Dear Sir,
"An SL600 Series SSB Tranacelver", by B. D. Comer, G3ZVC.
A small number of the transceivers bultt from the above article, which you published recently suffer from apparant AGC Inslability. The symptoms are generally motor-boating at certain signal levels.

The problem it not, In fact, due to the AGC but to Instability caused by IF teedback through the unused transmitter section of the circult. It may easlly be cured by connecting a single 0.1 uF capacitor with low RF resistance between the transmitter section power supply rail and ground - as near as possible to the SL610C ampllfier.

Installing this capaction does not ramove the necessily of grounding the transmitter power rall during reception and vice versa.

1 apologise to anyone who has been inconvenienced by thls fault but the majortty of these Iranscelvers are not affected and the problem has only recently been brought to my attention. Brian D. Comer, G3ZvC

The Edilor.
Amateur Radio.
Dear Sir.
We are pleased to inform you that the 5th SEANET Convention will be held in Kuala Lumpur 7-9th November 1975. Since we have been going
for a rather long time then it might be time to tell everyone who doesn't know what it is who we are.
SEANET AND SEANET CONVENTION
The South Easi Asia Net (SEANET) meets every day al 12.00 GMT on 14.320 kHz and is a very active net. 4S7PB Paddy is normally acling as net control but VO9R Carl is also acting at limes. Any slation in Asia, Middle East. Pacilic. may call in when respective call area is being an. nounced by net control slation. Other stations outside the mentioned call areas are called at the end of the net.
In order to get closer to each other every year we also have whal we call the SEANET Convention. Previous conveitions have been in Penang 1971. Bangkok 1972. Singapore 1973. Manila 1974. The convention lor 1975 will be held in Kuala Lumpur 7-91h November.
The convention is informal and merely intended to meet hams from various countries. A club station with a special call sign is set up. and we will this year be operating from 9M2SEA. There is somelimes an exhibition of amateur equipment elc. In Singapore there was a film from the Spratly DX expedition by SEANET members and so on. The latest convention in Manila gathered around 125 people and hams from VK, YB, 9V1, 9M2, HS, XV5, W, JA, F and DU.

## 73.

Roland Fisk 9M2CJ for MARTS

## BRIGHT STAR CRYSTALS

## - PROMPT DELIVERY GUARANTEED ALL TYPES OF MOUNTINGS

Such as HC6/U (style D) . . . HC18/U (style J) . . . HC25/U (style K) . . . etc. . . . Frequency range up to 140 MHz on 5 th overtone.


- ACCURACY
- STABILITY
- ACTIVITY
- OUTPUT


## BRIGHT STAR CRYSTALS PTY. LTD.

35 EILEEN ROAD, CLAYTON, VIC., 3168. Phone: 546-5076 (Area Code 03).

## INTERSTATE CLIENTS: Contact your Local Agent

Our increased production now enables us to offer Special Discounts from 10\% Let us quole you for all your Crystal requirements.
Our easy-to-read Price List is now available.
Sydney: PARIS RADIO ELECTRONICS, 7a Burton Streat, Darlinghurst, N.S.W. 2010, Phone: 31-3273.
Perth: W. J. MONCRIEFF PTY. LTD., 176 Wiftenoon Street, East Perth,, 6000, Phone: 25-5722.
Brisbane: FRED HOE \& SONS PTY. LTD., 246 Evans Road, Salisbury North. 4107, Phone: 47-4311
Adelaide: RQGERS ELECTRONICS, P.O. Box 3, Modbury North, S. A. 5092. Phone: 264-3296.

## FOR YOUR-

# YAESU MUSEN 

AMATEUR RADIO EQUIPMENT PAPUA NEW GUINEA
Contact the Sole Territory AgentsSIDE BAND SERVICE PTY. LTD.

## PO Box 795, Port Moresby <br> Phones 53557, 55511 <br> Cables: Sideband

年水

The Editor.
Amateur Radlo.
Dear Sir,
In reply to VK2AGZ regarding his comments of lament in the Letters column of the February AR. may $I$ be permitted to clarify my posilion with Colin in that I am nol one of those "one-eyed Labour Party Supporters" as he seems to think.
My condonation of the $\$ 12.00$ licence tee had nolhing whalsoever to do with party polilics no way - so where did I go wrong?

Yours falthfully
M. A. Morrls L30134


## of series

General

1. Various awards are available to licensed amateurs and shoriwave lisieners.
2. Contacis on and after 1st April 1954 are valid with the exception of worked all OE/160 and
heard all OE/160 where contacts on and afte 19 February 1964 are valid.
3. Stations should submit a list certified by the Awards Manager of a Nalional Soclety.
4. Awards are available for all CW, all Phone.
$2 \times$ SSB, 160 metres and mixed modes.
5. The fee for each award is 10 IRCs.
6. Address for aplications is:

## OevsV

Awards Menager
Postach 999
A-1014 Vienna. Austria
Rulea:
The same station may be worked on different bands for WAOE in the case of stations in Europe generally.

The same station may be worked twice on 160 metres provided that the contacts are at least one month apart.
Requiraments:
WAOE - Stations outside Europe need one contact with any 8 of the 9 call aress.
WAOE/160 - Siations outside Europe require one contact with 4 call areas on 160 metres.
HAOE - This award lo available to shortwave listeners who submit pront of having heard 8 of the 9 cal! areas.
HADE/16 - This areard is quailnble to shortwave
World Radio \& Television Handbook 1975 ..... $\$ 8.95$
Philips Pocketbook 1974 ..... $\$ 2.75$
Electro-Optics Handbook (RCA) ..... $\$ 6.40$
The Radio Amateur's Handbook (A.R.R.L.) ..... $\$ 8.95$
IC Op-Amp Cookbook (Walter G. Jung) ..... $\$ 14.90$
T.V. Fault Finding (Edited and Revised by J. R. Davies) ..... $\$ 3.00$
The A.R.R.L. Antenna Book (A.R.R.L.) ..... $\$ 5.10$
Transistor Substitution Handbook No. 14 ..... $\$ 3.25$
Electric Guitar Amplifier Handbook (Jack Darr) ..... $\$ 7.65$
T.V. Servicing Guide - Arranged by Trouble Symptoms (Leslie D. Deane \& Calvin C. Young) ..... $\$ 4.00$
ADD POSTAGES: LOCAL 55c
INTERSTATE 85C

# McGILI'S AUTHORISED NEWSAGENCY 

Established 1860
"The G.P.O. is opposite"

### 10.7 MHz CRYSTAL FILTERS FOR FM SYNONYMOUS FOR QUALITY AND ADVANCED TECHNOLOGY




Registration Fee: $\$ 1.00$; Alr Mall: 26c per $1 / 20$ oz. Shipplng welghts: Filters 202 ea., Crystals $1 / 202$ ea. All Prices in U.S. Dollars.

## UHF SERVICES

For:
CONVERSION
ALIGNMENT
SERVICE
on all VHF, UHF and Microwave Equipment

## AGENTS FOR

SCALAR ANTENNAS

## Also available:

2 metre and 6 metre RF pra-amplifiers, soon to be followed by a 70 cm low nolse pre-amp for AM, ATV and FM use.

PHONE 914300
or by appointment at
129 TENNYSON ST.,
ELWOOD
listeners on the same requirementa as WAOE/ 160.

## WABP AWARD

Ceneral:
The award is available to licensed amateura and shortwave listeness.
There is no date limit.
Do not send OSL carda. A list, showing full delails of the contacts, should be certifled by the Awards Manager of a Natlonal Society.

Any bands and modes may be used.
The tee for the award is 5 IRCs.
The address for applications is: ONSTO
UBA Awards Manager
P.O. Box 634

Brussels, Belgium
Aequiremente:
Confirmed contacts are required with each of the 9 provinces on two bands.
Llat of Provinces:
WV - West Flanders: OV - East Flanders; AN Antwerp: LM - Limburg: LG - Llege: LX Luxembourg; NR - Namur; HT - Hainaut: BT Brabant.

## THE CYPRUS AWARD

The award is available to licensed amatoura. Contacts on and after 1 st May 1972 are valld. Either log extract plus OSLs or a liat of QSLa certified by the Awards Manager of a Natlonal Society should be submitted.
Contacts with both 5B4 and 2C4 stations are valld.
There are no mode endorsemente.
The fes for the award is 10 IRCs or equivalent. The address for applications is:

Awards Manager.
CARS
Post box 216
Famagusta. Cyprus
Requiremente:

20

1. 2, 3. 6, 7. 10, 12.
2. 24, 25. 26. 27.

29, 30, 31, 32
All other zones Cyprus amateurs
$\begin{array}{rrrrrrr}16 & 8 & 4 & 2 & 4 & 8 & - \\ 8 & 4 & 2 & 1 & 2 & 4 & 16 \\ 4 & 2 & 1 & 1 & 2 & 4 & 8\end{array}$
Applicants outside Cyprus require 50 points if all contects were on 1 band. 40 if on 2 bands, 30 on 3 .

## POSTMASTER GENERAL'S DEPARTMENT

 AMATEUR OPERATOR'S CERTIFICATE OF PROFICIENCY EXAMINATION PAPERS: FEBRUARY 1875
## TELEORAPHY

sECTION L (Recelving)
(SPEED - 10 worde per minute)
The 4 cyllinder twin overhead
camshaft engine punches out a very crisp 157 horsepower It certainly mooks people who think that tast accoleration can only come from most 6 or 8 cylinder motors it makes 80 kilometres per hour in about 9 seconds and has completed the slanding kllometre from 32
SECTION L (8ending) - (Time allowed 2 Vz mine.) An old newspaper account says hat 225 men 840 horses
and bullocks and about 130 camels were used for thls work great expanses of country did
SECTION M (Theory) - (Time allowed - 2y hra.) NOTE: SEVEN questions only to be attempted. Credit will not be given for more than SEVEN answars. All questions carry equal marks.

1. (a) Explain the fundamental difference between frequency modulation and amplitude modulatlon.
(b) With the aid of a circuit diagram. explain the theory of operation of the discriminatop stage of a receiver suitable for reception of trequency modulated signals.
2. (a) Explain the theory of operation of a junction type transistor.
(b) Draw a clicuit diagram of a single stage audio amplitier in which use is made of a junction type transigtor.
3. (a) Explain briefly the theory of radio transmlasion vie the ionosphere.
(b) Discuss the effects on high frequency transmission of the daily variations of the ionosphere, the seasonal changes and the eleven year sunspot cycle.
(c) What is an "lonospheric prediction chart"?
4. (a) Using appropriate curves Indicate the current and voltage distribution on half-wave transmitting aerial (dipole).
(b) Show whether even or odd quarter wave sections of resonant feeders are necessary to provide parallel tuning at the transmilterend when the aerial is to be:
(i) current led:
(i) vollage ted.
5. (a) What is the essential difference between a "Tuned Radio Frequency" type ol recelver and one of the "Superheterodyne" type?
(b) Explain why an "image" signal can sometimes be received on a Superheterodyne. type. Discuss means of reducing "image" effect.
6. (a) With the aid of a sketch, describe the construction and theory of operation of a crystal microphone.
(b) Lisiling component values, show by means of a circuit diagram how this type of microphone is connected to an amplifier.
7. Explain the theory of operation of a "griddip" meter. Use diagrams to llluatrate your answar. Give a praclical example of the use of such an instrumant.
8. (a) Show a circult diagram of the final RF stage of a tranamilter using a triode valve. and state step by step how you would neutralise it.
(b) What effects could result from operating such an amplifier which was not neutralised? Explain.
9. Two resistors, R1 and R2, of 20,000 and 10,000 ohms respectively are connected in saries across a 20 volt DC supply of negligible impedance. Calculate:
(i) the potenilal difference across each resistor:
(ii) the power dissipated by R2:
(iii) the voltage reading which will be obtained it a voltmater having an Internal resigtance of 10,000 ohms is connected across R1.

SECTION K (Regulationg) -
(Time allowed 30 minutes)
NOTE: THREE questions only to be allempted.
Credit will not be given for more than THREE answers. All questiona carry equal marks.

1. (a) What precaullons should be laken by the operator of an amateur atation before he commences to transmit?
(b) Ouring the period of working with another station of stations what procedure must be adopled concerning announcement of callsigns?
2. (a) State the maximum power which may be used in an amateur wireless atation ualng: (i) amphlude-modulated double sideband emlasiona (A3):
(II) alngle-sideband auppress-carriar emiasions (A3).
(b) In each case. indicate where the power should be measured.
3. (a) What is meant by a "third party" measage?
(b) State the requirementa of the regulationa in regard 10 the handling of "third party" messages by licensees of amateur wireless stationa.
4. Give the meaning of the following abbreviatlons:
QSA? QRG OSB? AS QRV?

## DIVISIONAL BROADCASTS

Do you have the time and want to keap in touch with events? If so here are the lalesi detalla avallable of Dlvisional broadcaste.

## VKIWI

Sundays 10.00 Z -

## 3595 kHz

27125 kHz AM
146.5 MHz FM

BC Committee VKiVP, IMP. 2Y8/1.

## VK2AWI

11.00 local lime Sundays:

3595 kHz AM
7148 kHz SSB
52.525 MHz FM
53.868 MHZ AM
145.13 MHz AM
146.00 FM

Hunter Branch Mondaye 19.00 h 80m

## vicswi

10.30 local time Sundays:

1825 kHz AM
3600 kHz SSB
7146 kHz SSB
144.5 MHz AM

Ch1 FM
(subject to avallablity at present of relay atations whilat under re-location).

## VKAWI

09.00 local time Sundays:

3580 kHz AM
7146 kHz SSB
14342 kHz SSB
re-broadcast on Ch B FM. BC officer VK4HB.

VRSWI
23.302 Sunday morninge opiginating on 1.8 MHz band and relays as follows-
3.615 MHz by VK5ZQ
7.125 MHz by VK5NB
14.170 MHz by VKSTY
52.2 MHz by VKSZEG

Channel 4 Repeater. Adelaide
VK5DK In MI. Gambier on 2 m FM

## VKEWI

09.30 local time on Sundays:

3600 kHz SSB
7080 kHz SSB
14100 kHz SSB
52.656 MHz FM

## VK7

09.30 local ilme on Sundays originated on Mt. Barrow 2 m repeater VK7RAA and rebroadcast In Launcesion area 3672 kHz SSB, 7130 kHz AM and in Hobart area on 53.032 AM, $144.1 \mathrm{MHz} \mathrm{AM}$,146 MHz FM and 432.1 MHz AM.

## OSP

## COMNUNICATIONS

"The Austratian P.M.G. has announced that the APO will commission an integrated serles of social research projects over the next two yeara to study how now technologies could affect the way we live. Thay wlil tocus on three basic questions concerning the current and future relationshlp between Australian Soclety and its "nervous system" - the national telecommunications network. The questions relate to social trends (A. Nat. Uni. leam under Dr. F. Emery), the information indusiry (computers, etc.) and telecommunications and tranaportation". Adaplation from article in ITU'a Telecommunication Journal of Nov. '74.

## "WILLIS" AIR-WOUND INDUCTANCES

Take the hard work out of Coil Winding. use - "WILLIS" AIRWOUND INDUCTANCES

Dia per ligh B \& W

| No | $\begin{aligned} & \text { Dia } \\ & \text { lach } \end{aligned}$ | $\begin{aligned} & \text { per } \\ & \text { trich } \end{aligned}$ | l gth Inch | $B$ \& W Eguiv | rice |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 108 | $1 / 4$ | 8 | 3 | No 3002 | 88c |
| 1.16 | $1 / 2$ | 16 | 3 | No. 3002 | 88c |
| 2.08 | 5/8 | 8 | 3 | No 3006 | \$1.06 |
| $2 \cdot 16$ | 3/8. | 16 | 3 | No. 3007 | \$1.06 |
| 3.08 | $3 / 4$ | 8 | 3 | No 3010 | \$1.28 |
| $3 \cdot 16$ | $3 / 4$ | 16 | 3 | No 3011 | \$1.28 |
| 408 | 1 | 8 | 3 | No. 3014 | \$1.42 |
| 4.16 | 1 | 16 | 3 | No. 3015 | \$1.42 |
| 508 | $11 / 4$ | 8 | 4 | No. 3018 | \$1.58 |
| 5.16 | $11 / 4$ | 16 | 4 | No 3019 | \$1.58 |
| 8.10 | 2 | 10 | 4 | No 3907 | \$2.29 |

Special Antenna All-Band Tuner
Inductance
Aliumalent to 8 a $W$ No ini 7 mah
$7^{\prime \prime}$ length, $2^{\prime \prime}$ dia.. 10 T.P.I. Price $\$ 3.96$
Reterence: A.P.RL. Handbook. 1961 Stockist of Transmission Cables. Insulators and Hard Drawn Copper Antenna Wire Write for range of Transmission Cable:
WILLIAM WILLIS \& CO PTV. LTD
Manufacturers and Importers
77 CANTERBURY RD.. CANTERBURY
VIC, 3126
t0 All READERS

FROM

## YAESU MUSEN CO. LTD. <br> OF JAPAN

We wish to announce that our products are only supplied by us, in Australia, to our sole authorised dealer:

## BAIL ELECTRONIC SERVICES

and our warranty service as applicable in Australia is only available against the equipment sold through this dealer.
Yaesu Musen Co. Ltd. have not authorised sales or dissemination of information by any other dealer.

## S. HASEGAWA

President
YAESU MUSEN CO. LTD.
JAPAN


COMMUNICATIONS RECEIVER
All-band/ali-mode reception on frequencies 170 kHz to 30 mHz covered by 6 bands. Receives broadcasts in any mode AM. SSB. CW or FM-with the optional accessory OR6-FM. Super sensitivity from dual gate MOS types FET's.
that gives you the world and an FM circuit with mechanical and ceramic filters designed for high selectivity, resistance to interference; single button selection of wide band ( $5 \mathrm{kHz} / 6 \mathrm{~dB}$ ) or narrow band 2.5 $\mathrm{kHz} / 6 \mathrm{~dB}$ ). Altogether a high performance compact, smartly styled unit of advanced design at a suggested 'Today' price of $\$ 332.20$


W-Mall coupon NOWI Weston Electronics Company 215 North Rocks Rd., North Rocks, N.S.W. 2151 Phone 630-7400 NAME ADDRESS
$\#$ FERGUSON
Manufacturers of: Electrical / electronic equipment, wound components and lighting control equipment.

## BRANCHES IN ALL STATES

## Ferguson Transformers

Pty Ltd.
Head Office
33.1 High Street. Chatswood NSW 2067
PO Box 301 Chatswood.
NSW, Australia 2067
Phone: 02-407-0261

# Contests 

with Jim Payne, VK3AZT
Federal Contest Manager,
Box 67. East Melbourne, VIc., 3002
NOTES ON THE ROSS HULL VHF-UHF MEMORIAL CONTEST 1974-75
Again it is congratulations to Kerry for a very good win and also to Trevor VKSNC for his fine eftort In the 48 hour section. Only 20 loga were recelved for this Contest and the winning scores Indicate the extend of the reduced activity. Last year the top scores for the 7 day and 48 hour divisions were 7300 and 2211. However. Kerry scored his win last year from 1008 contacts with 252 different stations. This time he worked 218 different stations for 622 contacts.
The modes uaed by atations recelved by Kerry during the last 3 contests were:-

| $1972 / 73$ | $1973 / 74$ | $1974 / 75$ |
| :---: | :---: | :---: |
| $\%$ | $\%$ | $\%$ |
| 52 | 70 | 78 |
| 30 | 24.5 | 19.7 |
| 17.9 | 5.4 | 1.9 |
| .05 | .08 | 0.3 |

Kerry also commented that the trend in operating modes la now almost $100 \%$ SSB on the tuneable section of 52 MHz and two matres DX.

The highest scoring contacta recorded in the logs recelved were clalmed by Trevor, VK5NC for 2 contacte with 6KJ and one with 6BE when using
, watts SSB on 144 MHz on 20th Dec 1974. these were worth 125 points each. Kevin, 3AUQ worked 32BJ over 125 kllometres using FM on 1296 MHz on 8th Jan and repeated the effort on 11th Jan using cross mode CW/SSB. These conlacte were worth 50 pointe each. The following contacts on $144 / 146 \mathrm{MHz}$ were scored at 75 points:-
21.12.74 VK5SU to 2ZAY, 2ZCV. 2ATI/M2, 2YBZ/M2
VK5ZTT/T to $4 U X, ~ 4 M M, ~ 4 N Y, ~ 4 O B$
All those contacts were made sround 0220 GMT. CONTEST COMMENTS
Again thia year there are a number of requeata for use of GMT wholly, that is star and finiah on GMT days as wall as use GMT. Kevin, 3AUO refarred to GMT and concluded with "otherwlae not a bad contest. In spite of lack of DX openinga". Trevor. 5NC commented, "A most enjoyable contast. I thoroughly enjoyed it and only operated on 144 MHz. Had ovar 300 contacts - Sorry I have nol enclosed my full log - too much writing (HI)". VKTZAH commented. "A frlendly and most onjoyable contest as usual. Unfortunataly band conditlons ware not as good as in past years". Harold VKADO suggeats "that diatances be calculaled from atate to state with points awarded accordingly for reapective diatances". Murray 52MM wrote "It we are to log times in GMT it is logical to uae GMT daya and not EAST calendar daya as required. Experience at this OTH Indicates that propagation tenda to keep GMT daya".

Mark 6ZGZ commented "Friendly conieat agaln this year with all atationa glving information on equipment. OTH, etc. Lousy DX season In Perth. Did better last year running xtal locked AM than thls year's VFO SSB'. The only entrant in the CW section, Ruse VKAXA wrote "Activily appeared to be down on last conteat when I particlpated as VK3KX". And the last word goes to 2 HZ . "Conditions were poor compared with latt year appeared to be reduced activity alao"

## COMTEST CALEMDAA

## Apri

5/6 Polish CW DX
12/13 Swlas (H-22)
19/20 Bermuda phone
19/20 WAEDC RTTY
26/27 PACC Phone/CW
May
3/4 Bermuda CW
World Telecomm phone
Worked all Britain (LF Phone)
World Tolecomm CW
POLISH CW DX COMTEST POLISH CW DX CONTEB
Starts 1500 GMT Sat Apr 5. Ends 2400 GMT Apr 8. The world working SPs 3.5 thru 28 MHz . Single op. single and all band, multiop all band. SWLs alac. Send usual RST and receive RST plua letlers (powlat letter). Each SP OSO 3 points with multiplier for each powiat (once only). Saparate

RESULTS OF THE 1974-75 ROSS HULL VHF-UHF
MEMORIAL CONTEST
FOURTH TIME IN A ROW FOR VK5SU

| Section (A) Tranamitiling | Opan |  |
| :---: | :---: | :---: |
| VK5SU | 3570 | 943 |
| VK3AUO | 2009 | 787 |
| VKADT | 798 | 241 |
| VK2HZ | - | 272 |
| Section (B) Tranamitting | Phone |  |
| VK5NC | 2494 | 1148 |
| VK72AH | 2041 | 828 |
| VK4DO | 1885 | 714 |
| VK6ZKO/T | 1931 | 1058 |


| V. 5 LP | 1228 | 370 |
| :---: | :---: | :---: |
| VKIVP | 1194 | 515 |
| VK52TT/T | 1042 | 328 |
| VK5ZMM | 670 | 300 |
| vK6ZGZ | 618 | 341 |
| VK3KK | 464 | 292 |
| VKAZGF | 450 | - |
| VK52DG | 291 | - |
| VK3ASV | 188 | - |
| VK22CT/T | 178 | 128 |
| section (C) Tranemitiling | cW |  |
| VK4XA | 200 | 55 |
| Section (D) Aecelving |  |  |

sheat for each band, aummary aheet and declarallon. Malling deadiline Apill 30th to PZK Contest, Box 320. 00-950, Warazawa, Poland.
8 W188 H22 CONTEST
Many of the para cantons are activated for thla conteal offering an excellent opportunity for the attractive $\mathrm{H}-22$ centificate. All bande 1.8 thru 28 MHz . Phone and CW . The same atation may be worked on each band for QSO and multiplier credit but only on one mode. Uaual RST, Swlas alations will Include thair canton. These are AG, AR, BE, BS, FR, GE, GL, GR, LU. NE, NW, SG, SH, SO, SZ, TG, TI, UR, VD. VS, ZG, ZH. Each QSO counte 3 polnte. The multiplier is the am of the cantona worked on each band, a possible of 22 on each band. Final acore la OSO polnta by aum of cantons from all bands. Mall log within 30 days to USKA Traffic Manager, HB9AHA, Im Moos, 5707. Seengen, Switzerland.

Plasas sand SASE to FCM for full datalle of contesta llated for May.

## Magazine Index

with 8yd Clark. vkusc

## BREAK-IM Novamber 1874

Slow Scan Television; The Reatless Atmosphere: ZLIBKB Wideband Dipole Antenna; An Electronic Thermometer: Two Cheap and Easy Regulated Power Supplles: Radio Expo '74.
December 1874
A Direct Converalon Recelver: Automotive Interference Suppreasion: Improving Your FT200; AmsatOscar 7.
CO 8eplomber 1974
An SSTV Keyboard: Short-Term Predictiona for Ionoapheric Propagation: ORP (Fdature).
November 1974
Impedance Measurements at Radio Frequenclea: CO World-Wide DX Conieat: Vialling the Balken Hame.
HAM RADIO Movember 1874
Low Power CW Tranacelver: Scattering Characterlatice of Artificial Radio Aurora; VHF FM Channel Scanner: Measuring Peak Envelope Power: Harmonic Prediction: The Code MIII; Automatic Phone Controller for Repeaters: Tuneable Low-Frequency Converter: Solar Power.
08T Navember 1974
A Two-Band Delta-Loop Array for Oscar: Dighal Clocks for the Amateur Station: More Basica of Solid-State Tranamitier Dealgn; Communlcating at VHF vie Anificial Radio Aurora: A ORP Solar-Call Supply: Antenna Performance Measurements: ARRL 10 a 160 matre conteat announcementa.

## December 1874

Another Look at Reflections, Part VI; The MInooka Special: The RYer: The Tower-Guard Syatem; A One-KW Linear Amplifier Uaing Four 811As; VHF Antenna Arrays for High Pertormance; Some leade on Antenna Couplers
January 1975
Practical Ideas for the ATV Enthualast, Part 1: An Integrated Keyer/TR Swltch; An Inexpensive Low Nolse Preamplifier for $432 \mathbf{M H z}$ : A Simple

Fixed-Direction Quad: Frequency Counter-A Moduar Approach: 100 Wat's PEP Output with Power Tranalators: The Octopus: A NoJunkbox Regulated Power Supply; Annual ARRL Novice Roundup Announcement; On Handiling Public Service Traffic; Recent Equipment: The HAL DKB-2010 Dual Mode Keyboard and Regency HR-6 FM Tranaceiver. RADIO COMMUNICATION November 1974
A 2 m Hellcal Aerial for Satellite Communicationa: The Oacar File; Injection Locking of Reflex-Klyatron Oscillatora: 4m SSB from a Pye Ranger: A Balun Tranaformer for 50 and 75 ohm Lines.
The Cambridge on 2m; An Outline of Pulse Code Modulatlon: An Integrated Clicult Two-Tone Gen. orator: A Converter for the 432 MHz Band
SHORTWAVE MAQAZINE 8eptembor 1974
Getting Going on 23 Contimetres; Tranaiator Cas. code Amplifier: Easy Top Band Vertical; Ground P!ane for Two: Booster for the FDK Multi-2000.
RADIO 28 Nowembar 1974
Oacar-EME Working Group and area notes only. 73 October
The FCC Aa Seen By W6EIF: Iniroduction 10 Mlcro Tranalators; Bulld a 2 m Frequency SynThesizer: Repeater Government Gulde; The Heath HWA202-1: Simple Power Supp!y for Digital Work; The Wet Net: The ODO the VOM \& XYL: Selective Calling: Ramovable VHF/UHF Moblle Antennas: Two-Metre Types You Have Met: How to Win Frlende and Influence the 2 m Man; AM or FM Inputs: Another Look at Verical Waterplpe Antennas for 2m: Adjuating FM Deviation; A 146 MHz Moblle Antenna; Minlboxing the 1.65 MHz IF: Hold on to that Rig: It's a Call; Moakey; Oacar 7 with a Recelver: High Output Accessory Mic; A High Power Low Pase filter; if was a Bench Job; Ham Radlo \& Forelgn Languages; Simple Six PreAmp: The Three Wire Dlpole; Loading up tor Optlmum Anode Current or RF Output; A Digital Interlaced Sync Generator for Closed Cliccult TV: Notes on Converting the AC/DC for WWV: Electric Extenalon Cords: Longer Tube Life with the NCX-5. November 1874
Dipole Antenna Tuning: Latest Counter Update; Who Needs a SV Supply; How to Win a Big Conteat: Digital Wind Direction Indicator; Bulld a 2m Frequency Sythesiser; Experiment In Terior: A Wind-Proot 20 m Beam; Tones and How to Touch Them: The Double Stub Matching System; How You can Teach Novices: Bulld This Digital SWR Computer: A Real Hot Front End for Slx: Bulld a Baslc Bridge: Moskay, Part 3; Auguat 73 Conveter Update; Beep-Beep-Beep. You're HIgh; What's Really Inalde the Regency HT; Would You Believe 187.000 Phone Patches.

December 1874
Making Nicads Behave: Zillions of Parts for NothIng: C31 or Buat: Wind Indicator for Your Shack: Modified Weather Satellite: A Logical Keyer; The Perils of Novicehood; Can FM SImplex be Solved; Metera and Thelr Faces; Slow Scan Tape Secreta; Simple Probe Logic Check; Publlc Sorvice Band Converter: Tuned Diode VHF Recelvers: Automatic SWR Compuler Part 2; EI Cheapo Tower: Hamshack Goodies; Hamtest Wheeling and Dealing: Rhombics and Thelf Worth; DX Chasing: Heathkit GR-78.

# 20 Years Ago 

with Ron Fisher VK3OM

## APRIL 1855

Aprll 1955 was one of the first 'special issues devoted to one particular aspect of amaleur radio This one was for VHF. Gordon Bowen VKSXU presented two antenna articles. The first was the 'Skeleton Slot' Antenna. Gordon told of its history. development and then described construction and teed methods. His next article Twin Lead 'Sprigs' told how a single 300 ohm feeder could be used to teed two antennas, one on 144 MHz and one on 50 MHz . A saries of quarter wave slubs were used to isolate the two antennas.
Back to 'Skeleton Slots this time with Don Knock VK2NO. Don described how he went about bullding the slot. linishing up with some thoughts on using it on lower trequency bands.
Receiver noise has always been a problem on VHF. The goal always a better RF stage; Fied Bail VK3YS decided that the one for him was a push-pull 6J6. Full construction information was given plus the clicult of a follow-up mixer oscilllator also using a 6J6. An article reprinted from CQ. "The Silicon Crystal Noise Generator". by William Orr. W6SAI. The construction and use of tis simple device was explained in Bill Orr's usual manner.
"Max Howden VK3BO". A word plclure of this pioneer amateur and the equipment he was using on VHF at that time was given by Jack Duncan VK3VZ. Max of course is still going strong and still an active amateur.
On the Federal front. a report Indicated that steps were well in hand towards the formation of the Papua and New Guinea division of the WIA.
The OX page reports that conditions were on the up-grade. There was even a report of a W6 being heard on 28 MHz. However many good contacts were to be had on 15 and 20.

## hepeater call signs

In letter RB4/4/23 of 9th January 1975 the APO contirm that the callsign block RAA to RZZ (preceded by VK plus appropriate State numeral) is reserved for use by amateur repeater and beacon stations. It seems that the blocks RSA to RSZ and RTA to RTZ have been retained lor beacons but clarification on this is still awaited.

## GEELONG HAMFEST <br> weekend of 26th \& 27th APRIL 1975 <br> EVENTS INCLUDE:- <br> $\square$ CAR PHONE CHECKS <br> $\square$ TRANSMITTER HUNTS <br> $\square$ SCRAMBLES <br> $\square$ DISPOSALS SALE <br> Further Details from WIA BROADCASTS <br> or from <br> DAVID FARQUHARSON VK3ZOQ PO Box 520, Geelong, 3220

[^1]
## Hamads

- Eight lines free to all W.I.A. membera.
$\$ 6$ per 3 cms . Tor other amateurs and S.W.L.'s.
Copy should be in block letters of typescript signed and forwarded to The Editor, P.O. Box 150 Toorak. Vic.. 3142.
Excludes commercial advertising.
Closing date tor Hamads is the 3rd day of the month preceding publication
OTHR means the advertiser's name and address are correct in the current Australian Callbook.


## FOR SALE

Heathkit HW22, Dynalab tri-banded for 80, 40 and 20 metres. complete with AC PSU and speaker. two 12V DC supplies, mic., mobile mount, spare linal tubes, manuals. $\$ 125$ VK3ARZ, 12 Explorers Crt., Vermont South 3133. Ph. (03) 232-9492.
$\overline{455} \overline{\mathrm{kHz}}$ Mechanical Filters: Toyo CM, 24 kHz bandpass. $\$ 20$ : Kokosai 2.7 kHz with data sheet. \$17.50: Collins 3.1 kHz with data book, $\$ 17.50$. VK3ARZ. 12 Explorers Court. Vermont South. 3133. Ph. (03) 232-9492.
Rack 4 fl., $\$ 500$; Frequency Counter, 1 H.P. 524日. 20 CPS 100 MCS. S198.00: STC High Band Moblles, 4 MTR 25/121: STC Low Band Moblles, 2 MTR 25/11, \$25.00 each; 2m FM Unit, solid state home brew. going $\$ 100$ VK3YDB, OTHR. Ph.: (03) 91-3905

GEC $1 \times 4$ high band repeater system. $\$ 30.000$ : Low Band MR10, S1000; AWA deviation meter, 40 to 170 MCS, $\$ 6000$ : B47, 6 m tuneable transceiver (FM). \$35.00: Palec sig. gen. SG1, \$20.00: CRO Cosser. 1049, dual beam final CTT HT transformer U/S. \$3000: plus assorted other blts and pieces. Having general clean-out. VK3YDB. OTHR Ph. (03) 91.3905

Eddyalone $830 / 7$ receiver. $300 \mathrm{KC} / \mathrm{S}-30 \mathrm{MHz}$ continuous coverage, perfect condition, recently overhauled, $\$ 450.00$, manual and spare valves J. V Hitch. 37 Harding Sireel, Portarlington, Vic. 3223.

AWA BS-500 base station with RC-1A remote control unit. Unmodified lo-band in good working condition. Ex OATB $\$ 5000$ ONO or exchange for SSTV components. VKAZKI. OTHR. Ph. (072) 76-1284
FT75 Solid Slate HF transceiver. Including AC powor pack, DC power pack and VFO. Worth $\$ 500$ - sell $\$ 350$ ONO. Peter Cossins vK3BFG. OTHR. Ph. (03) 231-2778.
Solld Fibreglass Rode $9 / 16^{\circ}$ " to $y_{4}{ }^{\prime \prime}$. 10 teet long. S5: BC 221 Frequency Meter, s30: Command Tx 35 MC CW. \$10. will accept nearest ohers C/. Box 279 Nambour. 0. 4560.
Rack 6 it high. Incorporating 2 Mx FM Base and 6 Mx FM Base, both AWA and with 6-40 finals. Also HF Linear Amp. legal limit for $80 \cdot 40-20 \mathrm{Mx}$. including power supplies for the above. Price $\$ 350$ ONO. P. Milne VK3BEJ, Box 30. Mildura, VIc. 3500. Ph. (050) 24-5814

Yasau FL2100 linear amplifier, as new. in original packing. S390 VK3VF, OTHR. Ph. (03) 64-0661, ext. 595 Bus: (03) 723-3554 A.H.
FTV-650 6 m Iransvertor. complete with all cables and insiruction book, and spare 6146 linal. All new. $\$ 175.00$, or will exchange for FT-75 Transceiver. cash adjusiment. Claud Singleton, VKAUX. OTHR. 2 VIniage Receivers ATR-2C. ex RAAF. 1 near orig. 8 going. $11_{4}$ converted to 160 Mx . CCT supplied. $\$ 35$ each. 1 power supply for same in mint cond. $\$ 30$. Sold if both Xceivers sold. Otlers? Aileron cable heavy duty for guys. 10c yd. VHF pre-amp. Commercial valve lype wilh p/s. $\$ 10$. Power Xformor $750-750$ at 2 amps. $\$ 30$, offer? VK3Ww. OTHR. Ph. (03) 465-2991.
Shack Clean-out Collins 75S3B, late model, mint, S525: Yaesu FT2FB, 8 channels, as new, \$185; Pye overland, solid state, valve PA 2 FM 1, 4. 408 50. \$125: Trio 9R59DS, very good, \$125. VK3OM. Phone (03) 560-9215.

## WANTED

FT200 and matching PS or similar transceiver. VK3OM. QTHR. Phone (03) 560-9215.
Unused Spare Valvas, Swan 350 transcelver, including matched pair 6HF6s. Prices: L. Peasley. VK2BLP. 53 Iris St., Moree NSW. Ph. (067) 52-2172.

Silent Keys
It is with deep regret that we record the passing of-

$$
\begin{array}{lll}
\text { Mr. A. WILLIAMSON } & \text { L30304 } \\
\text { Mr. E. N. STEET } & \text { L30200 } \\
\text { Mr. F. R WHITFIELD } & \text { VK6XF }
\end{array}
$$

PRIDJFGTAUSIRALIS

Reterence Orbits for April \& May. 1975. Code: Date. Orbit No. Ilme $Z$ and degrees west, of Equator crossing of first orbit of GMT day.

OSCAR 6
APRIL

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 11237 | 10307 | 63.1 | 1 | 1708 | 26.80 | 56.3 |
| 2 | 11249 | 3.00 | 48.1 | 2 | 1721 | 121.08 | 69.9 |
| 3 | 11262 | 57.93 | 61.9 | 3 | 1733 | 20.42 | 54.7 |
| 4 | 11275 | 152.85 | 75.6 | 4 | 1746 | 114.70 | 68.3 |
| 5 | 11287 | 52.79 | 60.6 | 5 | 1758 | 14.04 | 53.1 |
| 6 | 11300 | 147.71 | 74.3 | 6 | 1771 | 10832 | 66.7 |
| 7 | 11312 | 47.65 | 59.3 | 7 | 1783 | 7.66 | 51.5 |
| 8 | 11325 | 142.57 | 73.0 | 8 | 1796 | 101.94 | 65.1 |
| 9 | 11337 | 42.51 | 58.0 | 9 | 1808 | 1.28 | 49.9 |
| 10 | 11350 | 137.43 | 71.7 | 10 | 1821 | 55.56 | 63.5 |
| 11 | 11362 | 37.36 | 56.7 | 11 | 1834 | 14984 | 77.1 |
| 12 | 11375 | 132.29 | 70.4 | 12 | 1846 | 49.18 | 6 |
| 13 | 11387 | 32.22 | 55.4 | 13 | 1859 | 143.46 | 75 |
| 14 | 11400 | 127.15 | 69.2 | 14 | 1871 | 42.80 | 60.3 |
| 15 | 11412 | 27.08 | 54.1 | 15 | 1884 | 137.08 | 73.9 |
| 16 | 11425 | 122.01 | 67.9 | 16 | 1896 | 36.42 | 58.7 |
| 17 | 11437 | 21.94 | 52.8 | 17 | 1909 | 130.70 | 72.3 |
| 18 | 11450 | 11687 | 66.6 | 18 | 1921 | 30.04 | 57.1 |
| 19 | 11462 | 1680 | 51.6 | 19 | 1934 | 124.32 | 70.7 |
| 20 | 11475 | 111.73 | 65.3 | 20 | 1946 | 23.66 | 55.5 |
| 21 | 11487 | 11.66 | 50.3 | 21 | 1959 | 11794 | 69.1 |
| 22 | 11500 | 106.59 | 64.0 | 22 | 1971 | 17.28 | 53.9 |
| 23 | 11512 | 6.52 | 49.0 | 23 | 1984 | 111.56 | 67.5 |
| 24 | 11525 | 101.45 | 62.7 | 24 | 1996 | 10.90 | 52.3 |
| 25 | 11537 | 138 | 47.7 | 25 | 2009 | 105.18 | 659 |
| 26 | 11550 | 56.31 | 61.4 | 26 | 2021 | 452 | 50.7 |
| 27 | 11563 | 151.24 | 75.2 | 27 | 2034 | 58.80 | 64.3 |
| 28 | 11575 | 51.17 | 60.1 | 28 | 2047 | 15308 | 77.8 |
| 29 | 11588 | 146.10 | 73.9 | 29 | 2059 | 52.42 | 62.7 |
| 30 | 11600 | 46.03 | 58.9 | 30 | 2072 | 146.70 | 76.2 |
| MA |  |  |  | MA |  |  |  |
| 1 | 11613 | 140.96 | 72.6 | 1 | 2085 | 240.98 | 89.8 |
| 2 | 11625 | 40.89 | 57.6 | 2 | 2097 | 140.32 | 74.6 |
| 3 | 11638 | 13582 | 71.3 | 3 | 2109 | 39.66 | 595 |
| 4 | 11650 | 35.75 | 56.3 | 4 | 2122 | 133.94 | 73.0 |
| 5 | 11663 | 130.68 | 70.0 | 5 | 2134 | 33.28 | 57.9 |
| 6 | 11675 | 30.61 | 55.0 |  | 2147 | 127.56 | 71.4 |
| 7 | 11688 | 125.54 | 68.7 | 7 | 2159 | 26.90 | 563 |
| 8 | 11700 | 25.47 | 53.7 | 8 | 2172 | 121.18 | 69.8 |
| 9 | 11713 | 120.40 | 67.4 | - | 2184 | 20.52 | 54.7 |
| 10 | 11725 | 20.33 | 52.4 | 10 | 2197 | 114.80 | 68.2 |
| 11 | 11738 | 115.26 | 66.1 | 11 | 2209 | 14.14 | 53.1 |
| 12 | 11750 | 15.19 | 51.1 | 12 | 2222 | 10842 | 6 |
| 13 | 11763 | 110.12 | 64.9 | 13 | 2234 | 7.76 | 5. |
| 14 | 11775 | 10.05 | 498 | 14 | 2247 | 102.04 | 65.0 |
| 15 | 11788 | 104.97 | 63.6 | 15 | 2259 | 1.38 | 49.9 |
| 16 | 11800 | 4.91 | 48.6 | 16 | 2272 | 55.66 | 63.4 |
| 17 | 11813 | 59.83 | 62.3 | 17 | 2285 | 149.94 | 77.0 |
| 18 | 11826 | 154.76 | 76.0 | 18 | 2297 | 49.28 | 61.8 |
| 19 | 11838 | 54.69 | 61.0 | 19 | 2310 | 143.56 | 75.4 |
| 20 | 11851 | 149.62 | 74.7 | 20 | 2322 | 42.90 | 60.2 |
| 21 | 11863 | 49.55 | 59.7 | 21 | 2335 | 137.18 | 73.8 |
| 22 | 11876 | 144.48 | 73.4 | 22 | 2347 | 3652 | 58.6 |
| 23 | 11888 | 44.41 | 58.4 | 23 | 2360 | 130.80 | 72.2 |
| 24 | 11901 | 139.34 | 72.2 | 24 | 2372 | 30.14 | 57.0 |
| 25 | 11913 | 39.27 | 57.1 | 25 | 2385 | 124.42 | 70.6 |
| 26 | 11926 | 134.20 | 70.9 | 26 | 2397 | 23.75 | 55.4 |
| 27 | 11938 | 34.13 | 55.8 | 27 | 2410 | 118.04 | 69.0 |
| 28 | 11951 | 129.06 | 69.6 | 28 | 2422 | 17.37 | 53.8 |
| 29 | 11963 | 28.99 | 54.6 | 29 | 2435 | 111.66 | 67.4 |
| 30 | 11976 | 123.92 | 68.3 | 30 | 2447 | 10.99 | 52.2 |
| 31 | 11988 | 23.85 | 53.3 | 31 | 2460 | 105.28 | . 8 |

Oacllloscope, good condition, vertical response to 3-4 MHz (or greater) and calibrated timebase. Preter external triggering option. Price and Details to: P. Hall, Levendale. Tasmania, 7204. Ph. (002) 28-5264 (A.H., weekdays).
Taylor R\&C bridge, model 110C. full schematic, or detalls of range switching required. VKAZMF. QTHR. Ph. (072) 97-5667.

# RriCumingham 

## The Name Everybody Knows

R. H. Cunningham is the name to know when it comes to superior quality communications and electronic equipment and components. Names of products that have proved themselves in the field of international electronics; products such as Sennheiser microphones and test equipment, Eddystone communications receivers,

Bulgin components,
Sonnenschein batteries, Alert fuses, Paso sound equipment, Dow-Key RF components, Stolle aerial rotators, Millbank PA equipment to name some. But let us tell you more and in detail. . . WRITE NOW ana we will register you to receive our FREE monthly Technical Library Service Bulletin.


493-499 Victoria Street, West Melbourne, 3003, P.O. Box 4533, Melbourne, Victoria.
Phone 3299633 . Cables: CUNNIG MELBOURNE. Telex: AA31447
N.S.W.: Sydney. Ph.: 909 2388. W.A.. Perth. Ph.: 494919. QLD.: L. E. Boughen \& Co. Ph.: 708097. S.A.: Arthur H. Hall Pty. Ltd. Ph.: 424506.

APRIL 1975
VOL. 43, No. 4

## An inspiring series from TIME-LIFE BOOKS

THELIIFELIBRARYOF PHOTOGRAPHY

## FREE <br> 10-dayexamination OF VOL.UME ONE <br> Share the knowledge of the experts in the LIFE Library of Photography. <br> In this scrics, all of LIFE Magazine's photographic specialists

 (photographers, laboratory technicians, etc.) share with you what they have learned about every aspect of photography.They will demonstrate its principles and processes; take you through its history; discuss your picture-taking and pictureprocessing problems; show you how to take pictures that sing with imagination; and explain how to make prints that are professional.

For example, in The Camera. your first volume on 10 days free trial, you will find the follow ing subjects thoroughly and interestingly discussed: How Camcras Work, Light and Lenses, Evolution of the Camera, Composing the Picture, Photography as Art.

In short, the LI IFE Library of Photography will create a complete, authoritative home library on the how-to, on the history, and on the humanity of photography.

Complete and post the counon below and you will receive your FREE Photcoirapher's Lens Brush, as well as the first book in the serics, The Camira, for 10 days" frec examination. If you decide to kecp The Camera we will enrol you in the LIFE brary of Photography
The print, Lighit anu Film, Colour and additional beautifully illustrated books will be sent to you for free inspection in your home at approximately two-monthly intervals. There is no minimum number of books you must accept, and all books come to you on 10 days' frec examination. And you can leave the LIFE Library of Photography at any time, just by writing to us.

We're sure you won't though, because if you're interested in photography - whether as a serious hobby or to advance a profession - you'll find these books invaluable.

The LIFE Library of Photography has been created for a wide range of readers:
For the beginner, already involved in photography, the series helps him to organise his thinking, to plunge deeply into the medium under expert tutelage.
For the advanced hobbyist, there is sophisticated information about the finer points of photo-techniques, aesthetics, dark-room work. For the working photographer, the Library is a forum where ideas may be exchanged..
For the reader and historian, the volumes are rich in fascinating material not previously brought together in one place ..
For everyone who responds to great pictures, the scrics is a sumptuous gallery of photographs in black-and-white and colour.

Some other picture-packed titles in the LIFE Library of Photography

* THE PRINT $\quad$ * LIGHTAND FILM


## 

This photographer's soft hair lens brush ideal for cleaning even the most expensive camera lens - is yours FREE, just for examining The Camera, Volume 1 of the Life Library of Photography. The brush with its retracting mechanism to protect its soft hairs, will be shipped to you with The Camera, and is yours to keep whether or not you decide to buy The Camera.

Yime-Lite Books, 22 Bridge St., Sydney, N.S.W 2000 or in N.Z. c/- David Markham \& Co., Dixon
St., Wellington.

Each volume in the series is an oversize $10^{\circ} \times 10^{\circ}$ ( $25.5 \times 25.5 \mathrm{~cm}$ ) format and contains:

* Over 200 pages and approvimarely 40.0 KO words.
*Orer $2(N)$ examples of superb photography. many in colowr.
* Many graphs and diagrams.
* Explanations of how pichures were taken, and equipment used.

 Please accept My irial order for, ${ }^{2}$ copy of the tion, and send me at the same dime my EREE PHOTOGRAPHER'S LENS BRUSH which I may keep in any case
I NEED SEND NO MONEY NOW. If I keep THE CAMERA, I will pay $\$ 9.95$ (plus. 95 posiape and handling). You will then enro quent volumes in this series at approximaty wim receive subse each for 10 days' Iree examination and at the same luw subscribers price of 59.95 (olus 95 posiape and handling) price or not purchase any minimum number or
need not purchase any minimum number of books and may cancel delighted with THE CA time. simply by notirying you. If am not will then not enrol me in the LIFE Library of Photography; and will owe you nothing.
$7965-45$


## Mr./Mrs./Miss

Address
Town
Post Code
Please Sign
(No orders can be accepted without a signature)
Post your order form today or write to thls address:
Time-Life Books, P.O. Box 3814, G.P.O., Syuney,
N.S.W. 2001.


VOL. 43, No. 5
MAY 1975

## CONTENTS

## TECHNICAL -

A Mini Size Field Strength Meter 11
Commercial Kinks
Making the Most of Mercator Part 2
Modifications to the VK3ABP
2 and 6 Metre Converters16

Try This - Modifications to Miniscope Soldering Iron16

Try This - Yaesu T101 Audio
Gislick

Try This - 2 Wire Reversing of AC/DC Series Motors

## GENERAL -

DX QSL Notes

The Melbourne Science Museum Amaleur Radio Station9
The Shack ..... 12
VK-ZL Oceania DX Contest - 1974 Results ..... 23
1975 John Moyle MemorialNational Field Day Results19
DEPARTMENTS -
Contesis ..... 17
Hamads ..... 26
Letters to the Editor ..... 19
QSP ..... 3, 21, 24, 26
Silent Keys ..... 26
VHF-UHF - an Expanding World 1720 Years Ago

## FRONT COVER

The equipment racks of amateur radio station VK3BWIIVK3AOM permanently on display at the Melbourne Science Museum. See story on page 9.
Photo courtesy of Science Museum of Victoria, Photographic Section.

## STOP PRESS

## NOVICE LICENCE APPROVED

# Special Announcement \& <br> disposal branch and electronic bargain centre is now open at 

390-392 BRIDGE ROAD, RICHMOND - PHONE 425174
Plenty of bargains for the radio amateurs or the hobbyist owing to the recent tariff cuts. We have obtained large quantities of components, test equipment, complete and incomplete radios, transc eivers, tape recorders, panel meters, valves, transistors, transformers. All at throw-away prices. Be early. Plenty of Opening Specials.

## HAM RADIO SUPPLIERS <br> 323 ELIZABETH STREET, MELBOURNE, VIC., 3000 <br> Phones: 67-7329, 67-4286 All Mail to be addressed to above address

Our Disposels Store at ios HIGHETT ST, AICHMOND (Phone 428136) is open Mondays to Fridays. 10.30 as. to 5.0 p.m., and on Saturdays to midday.

KENWOOD/TRIO TS 5205 BAND SSB TRANSCEIVER


Specificaliona
Fiequency Range 80 melio band - 350 to $\$ 00$ MHz: 40 metre band - 700 10 $730 \mathrm{MHz}, 20$ metre band - 1400 to 1435 MHz . 15 melte band - 2100 $102145 \mathrm{MHz}: 10$ molio band - 28.00 to 2850 MHz .2850 io 29.10 MHz .29 .10 10 29.70 MHz WWV - 1000 MHz

Mono (Receive only) USB. LSB. CW
Input Power. 160 watts on 80 to 15 mette band 1 dO walls on 10 metre band
Nelt ama:eur prices
TS 520 \$550.00 with PTT mike, SP 520 Speaker.

## DA 2000 STEREO AMPLIFIER



20 Walls R.M.S. per channal. Circultry uses 21 ICa , 18 Sillicon Transialors. Magnelic, Ceramic. Tuner and Tape Inpuls, Remote Speaker Operation and Prolected Ouiput Stage. Dimensions $374 \mathrm{~mm}(W) x$ $108 \mathrm{~mm}(H) \times 198 \mathrm{~mm}$ (D).
B.8.A. BTEREO AUTOMATIC TUNEABLE. FIIted with Ceramic Cartidge. Complete with base and hinged plastic cover.

859 + P\&P
PUSH BUTTON CAR RADIOS. Complete with Speaker and lock-down Antenna. 12V dual polarity

## 1 WATT 2 CHANNEL TRANSCEIVER

with call syatem. $27.240 \mathrm{MHz}, 12$ tiansistor. PMG approved lype. Fitted with 27.240 MHz .

Specificationa:
Transmittet-Crystal controlled: 1 Walt input power to RF stage Receiver - Crysial controlled superheterodyne circuil with 445 Kc IF. Antenna Buittin 60 .. telescopic whip antenna Audio Output - 08 Walt maximum. Power supply required - 12 volts DC (Eight 1.5 volt DC baltery cells) Loudspeaker - $2 \frac{1}{4}$." PM lype (built-In) functions as mictophone on transmit.
$\$ 39.50$ each

144-148 MHz TWO METRE EQUIPMENT now with 6 channels

```
KEN KP.202, 2W. 144 MHz band FM Hand held iransceiver with crystals for 6 channels. Ch \(\mathbf{4 0} 50\) R1. R2, R3. R4 \$169 KCP. 2 NICAD battery chargers 8 10 Nicad balier:es \(\$ 35\) Genulne leather catiying casc for KP-202
```

We now have available ex stock the following equipment for the amateur:

YAESU MUSEN FT101B
SSB/AM 240 V AC \& 12 V DC operation.
160-10m transceiver

RINGO AR-2
135-175 MHz. Antenna has 3.75 dB gain

YAESU FT/FP200 TRANSCEIVER P.S.U. COMBINATION

MIDLAND 13-870D
AM, 23 channel. 11 metre trans-
ceivers. 12 V DC operation
$\$ 100$
MIDLAND 13-893
SSB/AM. 23 channel. 11 metre
transceivers. 12V DC operation
\$195

We also have in slock the following 1 Watt hand-held transceivers for 27 MHz hand phone service which are P.M.G.-type ap-proved:-
STRATOCOM TC10 2 channel with call tone
$\$ 39.50$ ea.
LAFAYETTE HA310 3 channel … $\mathbf{\$ 7 3 . 5 0}$
Additlonal crystals available for 27.240 $\mathrm{MHz}, 27.880 \mathrm{MHz}$ and 27.910 MHz at
$\$ 6.50$ pair
27 MHz centre loaded fibreglass cowl mount mobile antenna with base and co-ax
$\$ 25.50$
27 MHz centre loaded fibreglass roof mount moblle antenna with base $\$ 16.90$

27 MHz gutter mount mobile antenna with co-ax and PL259 plug fitted $\$ 22.50$

MAY 1975
VOL. 43, No. 5
Price, 70 cents
JOURNAL OF THE WIRELESS INSTITUTE OF AUSTRALIA. FOUNDED 1910
Registered at the
G.P.O. Melbourne for
G.P.O. Melbourne for
transmissioni by Post
As a Periodic

## OSP

| Published monthly as the officlal journal by the Wireless Institute of Australia. |  |
| :---: | :---: |
| Reg. Office: <br> 2/517 Toorak Rd., Toorak, Vic. 3142 <br> P.O. Box 150, Toorak, Vic., 3142 |  |
|  |  |
| Editor: |  |
| BIII Roper | VK3ARZ |
| Assistant Editor: |  |
| Bruce Bathols | VK3UV |
| Technical Editors: |  |
| Bill Rice | VK3ABP |
| Ron Cook | VK3AFW |
| Publications Committee: |  |
| John Adcock | VK3ACA |
| Rodney Champness | VK3UG |
| Syd Clark | VK3ASC |
| Ron Fisher | VK30M |
| Ken Glllesple | VK3GK |
| Nell Osborne | VK3YEI |
| Howard RIder | VK3ZJY |
| Roly Roper | VK3YFF |
| Gil Sones | VK3AUI |
| Contributing Editors: |  |
| Brian Austin | VK5CA |
| Deane Blackman | VK3TX |
| Eric Jamieson | VK5LP |
| Jim Payne | VK3AZT |
| Drafting Assistant |  |
| Gordon Rowe | L30187 |
| Business Manager: |  |
| Peter B. Dodd | VK3CIF |

Enquiries and materlal to:
The Editor,
PO Box 2611W, GPO Melb., 3001
Copy is required by the third of each month. Acknowledgment may not be made unless specially requested. All Important Items should be sent by certified mail. The Editor reserves the right to edit all material, including Letters to the Edltor and Hamads, and reserves the right to refuse acceptance of any material, without specifying any reason.

## Advertising:

Advertising material should be sent direct to P.O. Box 150, Toorak, Vic., 3142, by the 25th of the second month preceding publication. Phone: 24-8652.
Hamads should be sent dlrect to P.O. Box 150, Toorak, Vic., 3142, by the 3rd of the month preceding publication.

## Printers:

33 Roberna Street.

## The Crossroads

The Wireless Institute of Australia exists to provide a service for its members. Australians who are interested in amateur radio.

However, like many similar organisations, it has reached the stage where it cannot function effectively without paid staff.

The amount of work which can be expected from unpaid volunteers becomes increasingly difficult due to the many side attractions of the affluent society in which we live.

But paid stafl means more money. More income from more members.
Why are only 50 per cent of the licensed amateurs in Australia members of their own radio organisation?

Surely not all of those 3000 non-members are inactive, or freeloaders. (Freeloaders. Non-members who reap the benefits of the expenditure of time and cash of members.)

If they are not members because of disenchantment with policies, facilities, or even personalities, then they are burying their heads in the sand.

They should become active members of the Institute and bring about change. After all, the Institute is only as good as its members, and it is a society of amateurs for amateurs.

One school of thought is that "AR" should provide the additional income. But "AR" barely stands on its own feet.

If the content was widened to include hi-fi, stereo, and other general electronics, the public may be interested in buying it on the news-stands. But then the magazine would cease to be "personal" to amateur radio.

How long is it since you put something constructive back into this fascinating hobby of ours? Attended a meeting, submitted an article to "AR", assisted one of the many groups in the Institute, signed up a new member?

Or are you just a taker?
The Wireless Institute of Australia is your society. And without your active assistance, IT WILL NOT SURVIVE.

BILL ROPER, VK3ARZ

## MARITIME MOBILE, LAKE EYRE

Plans are well advanced for an expedition of Malbourne amateurs ic Lake Eyre during May. Two members of the Publications Commillee (VK3ARP and VK3YFF) among chers. expert to oparale maritime mobile on the HP tande flom a saillng

[^2]
# making the most of mercator 

## part 2

A. M. Phillips VK5ZU

SATELLITE TRACKING
The methods outlined in Part 1
(AR November 1973) are further developed to plot the path of a satellite in near-circular orbit and to determine its position in space and time with respeci to a given observer, by use of a simple overlay.

## THEORY

The track of a satellite in circular orbit is typically as shown in Fig 7. It can be shown that the latitude of point $B$ and its longitude with respect to point $A$, the ascending node, are related to the orbital inclination (angle BAC ) and the orbital travel (angle $A O B$ ) as follows:
$\sin$ Lat $B=\sin B A C . \sin A O B$
$\sin$ Long $B=\cos B A C . \sin A O B$
Also, if " $t$ " is time from ascending node Orbital travel angle $A O B=t \times 360$

> period

If time intervals of four minutes are used in calculation, allowance can be made for the rotation of the earth simply by adding one degree of longitude for each four minutes.

Calculated data for the orbit of Oscar 6 is given in Table 2 and plotted in Fig 8.

Fig 9 shows the path of Oscar 6 in elevation. For a given elevation, " $E$ ", the angular range " $R$ " can be computed as follows:

$$
\begin{aligned}
\sin F & =\frac{6370}{7830} \sin (90+E) \\
R & =90-(E+F)
\end{aligned}
$$

giving the following values:
Elevation E

| $\left({ }^{\circ}\right)$ | 0 | 15 | 30 | 45 | 60 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Range R |  |  |  | 75 |  |
| $\left(^{\circ}\right)$ | 35.6 | 23.2 | 15.2 | 9.9 | 6.0 | $\begin{array}{lrrrrr}\left({ }^{\circ}\right) & 35.6 & 23.2 & 15.2 & 9.9 & 6.0 \\ \text { Circles of constant elevation (range), } & 2.9 \\ \text { when }\end{array}$ plotted on a Mercator chart will appear as shown in Fig 10. The points of intersection of these curves with lines of given bearing at point $A$ can now be computed, using the formulae derived in Part 1 and above as follows:

Given:
Example
Latitude "a" of reference point 35 deg
Bearing " $b$ " at reference point 45 deg
Range " $R$ " from reference point 23.2 deg Compute:

| $s=\cot b . \sec a$ | 1.221 |
| :--- | :--- |
| $y=\operatorname{arc} \tan \sqrt{s^{2}+\tan ^{2}} a$ | 54.6 deg |
| $x=\operatorname{arc} \cos \frac{s}{\tan y}$ | 29.8 deg |
| $0=\operatorname{arc} \sin \frac{\sin a}{\sin y}$ | 44.7 deg |

Lat $P=\operatorname{arc} \sin [\sin (0+R) \sin y] \begin{aligned} & 67.9 \\ & 49.1 \\ & \mathrm{deg}\end{aligned}$ Long $P($ from point 0$)=\operatorname{arc} \sin \ldots$




## Fantastic Offer



## TEN SETS 10 AWA FREE NEM ICOM

 IC22ASTOP PRESS Naw City Store Open - 125 Y UnK STREET. (Opposite Queen Victoria Bunding 291126. from Town Hall Station). Phone: 291126.

ICOM IC22A 2M TRANSCEIVER
Features:

- 146-148 MHz in 22 Channels
- RF Out 10W/1W.Switchable
- Mode F3
- Deviation 3-16 KHz Adjustable
- Dynamic PTT Mic Supplied
- 5 Helical Resonators in Front End
- Receiver Sensitivity 0.4uV, 20dB Quieting
- Audio Output 1.5W into 8 Ohms
- Power Requirements $13.5 \mathrm{~V} \pm 15 \%$

The IC22A is Icom's new and improved version of the very popular IC22. The IC22A is ideally suitable for home or mobile use. We are offering this unit with 3 channels, i.e. channel 50 simplex and channels 42/54 and 48/60 repeat.


Dick Smıth Wholesale Pty. Ltd. St. Leonards Head Office \& Mail Orders: 160-162 Pacific Highway, Gore Hill 2065 Tel. 4395311
Bankstown: $\mathbf{3 6 1}$ Hume Hwy, Bankstown (Nr. Chapel Road). i del. 7096600.

Dick Smith has purchased a huge shipment of the very latest Icom transceivers.
Not only is this unit to be sold at a very competitive price but EVERY purchaser will help his Division of the WIA to obtain a FREE IC22A.
For every ten units purchased, Dick Smith will donate one to your nominated Division or Club.These units are ideal for repeater use or WICEN emergency activities.
Yes, by making a large cash purchase of over 100 Icom IC22A transceivers, we have been able to get them at an incredibly low price. The savings are being passed on to you. The normal IC22A price is $\$ 199$ plus crystals at $\$ 9.00$ a pair.
We have the IC22A INCLUDING 3 CHANNELS of crystals (normal price \$217) for only \$200.00 (P \& P Insured anywhere in Australia $\$ 3.00$ ).

PLUS. . .
YOUR PURCHASE HELPS YOUR DIVISION OF THE WIA TOWARDS A FREE ICOM IC22A
Remember: - All units fully guaranteed 90 days

- Spares available
- Ex-stock availability

PLUS - Our exclusive satisfaction guarantee - buy one, inspect it. If you aren't satisfied return it for refund less P\&P costs. What could be fairer?
PLUS EXTRA SPECIAL 240 V AC - 12 V DC fully regulated power supply, normally $\$ 32$ - however if ordered with an IC22A - ONLY $\$ 26.00$ plus $\mathbf{P} \& \mathbf{P} \$ 1.50$.
PLEASE USE COUPON TO SPEED DELIVERY
Dirk,
Please rush me a brand new, fully guaranteed IC22A fitted with 3 channels of
crystals.
Please allocate 10 sales points to the ..................................................................
(club or section of WIA). I understand that when my nominated club/division
gains 100 sales points you will present them with a FREE fully guaranteed unit.
Name




FIG 11 (a) Bearing / Elevation chart for Oscar 6 Altitude 1460 Km .

(b) Track of Oscar 6
(Latitude $0=70^{\circ} \mathrm{s}$ )
Showing times of ascending node

Repeat for all desired values of Rpositive and negative. Repeat for next value of $b$.

## APPLICATION

Using a Sharp Model PC-1001 programmable desk calculator, the complete plotting data was obtained in less than half an hour. Another half-hour was required to carry out the manual plot, the result of which is shown in Fig 11a.

That portion of the Oscar 6 orbit from 56 to 82 minutes after ascending node was then plotted on transparency to the same scale. (Fig 11b). By superimposing the two plots, with due regard to the longitude of the ascending node, the time and bearing of acquisition can be read off directly and the pass can be tracked in detail.

To cover the northbound leg, the transparency was reversed and time-markers from 92 to 115 minutes were added, together with the appropriate index for longitude of the ascending node.

The most time-consuming part of the exercise is the calculation and plotting of the bearing/elevation curves. To simplify this, the problem was fed to a Hewlett Packard Model 9810A Calculator and its


FIG.9. Oscar 6 orbit in elevation.
associated X-Y plotter. The complete calculation and plot was then carried out in about two minutes.

Note: In plotting to Mercator's projection, if unit length is taken as one degree of longitude, then a point at latitude $X$ will be $131.9 \log -\tan (X+45)$ units from the equator. $10 \quad \overline{2}$

## FEEDBACK TO PART 1

The method used above provides an alternative means of deriving the great-circles

shown in Fig 5 of Part 1, together with additional curves indicating distance from the reference point. Such a plot is shown in Fig 12.

Note: An angular range of 9 degrees represents 1000 km .


FOOTNOTE:
Received recently is data relating to the orbit of Oscar 7 which indicates that, for all practical purposes, it is identical with that of Oscar 6. The comparative data is as follows:

|  | Oscar 6 | Oscar 7 |
| :--- | :---: | :---: |
| Inclination (deg) | 101.6534 | 101.7287 |
| Period (minutes) | 114.994355 | 114.944785 |
| Regression (deg) | 28.74897 | 28.736 |

Semi-major-
axis (km)
7832.583
7830.336

The differences are so small - much less than the plotting accuracy of the diagrams, that they will apply equally well to both Oscar 6 and Oscar 7.

## Try This

with Ron Cook VK3AFW and Bill Rice VK3ABP

## THE YAESU 101 AUDIO GISLICK

Most 101 users find it hard to think up an improvement. Here's one If you have an hour to spare. I have found it works so well that I am going to paint itl Build It and you can remove those magazines or such used to prop it up, place the rig on top, locate the front feet into the slots provided and hey presto, you have real beaut out front sound and a 101 that looks you right in the eye. The unit has no ill effect on the ventilation and will also serve as a mobile fitting.

# The Melbourne Science Museum Amateur Radio Station 

## To the majority of people, mention of the word 'Museum' conjures up Images of dusty old bones fussed over by againg recluses and a place once visited when very young, probably on a wet day.

This picture however, is not accurate. There are collections, some of which seldom see the light of day, but the Science Museum has many activities going on, and mechanised displays to demonstrate fundamental principles to the delight of both young and old.

Over the past 103 years of its existence, the Science Museum has engaged in various activities involving the general public including the training of telegraphists (1873), lectures on geology, chemistry, etc. and more recently (1965), lectures on astronomy in the planetarium and the observatory. The latter service is provided by the Astronomical Society of Victoria, utilising both their own and Science Museum telescopes. Also on the staff of the Science Museum are five teachers seconded from the Education Department, who give demonstrations both at primary and secondary level on sound and light, including a CCTV link via laser. Other technological topics such as development of musical instruments, transport and communications are illustrated with items from the collections.

The Museum is always looking for ways to increase its activities, and resulting from a chance discussion with Jim Lloyd VK3CDR, in late 1973, a joint WIA/Science Museum radio station was conceived. The main objectives of this station were:
(a) 10 provide a facility to educate the public in radio communications, particularly amateur activities; and
(b) 10 accommodate the VK3BWI broadcast equipment.
After agreement on facilities and services to be provided by both parties, a suitable site was selected for the station. Consideration was given to staff access and attraction of visitors' attention. Visitors number 500,000 per year (one seventh of Victoria's population). The position on the ground floor of a gallery facing Swanston Street, although a premier position for operation, was quite distant from suitable roof top antennas (HF - 130m, VHF/UHF - 30 m ). Good quality UR67 and FHJ (Heliax) co-axial cable was installed to overcome transmission losses. After nearly twelve months, stage one has been completed - comprising the installation and modification of VK3BWI equipment, the construction and installation of a control console, and a console with HF and VHF transceivers for the Museum station VK3AOM.

The VK3BWI console is a multi-program source, multi-output audio, system to drive the transmitters which are housed in racks.

RF feedback problems encountered were largely solved by the addition of LP filters inserted at strategic points within the console. Much of the equipment which was transferred from the old QTH at 478 Victoria Parade, was in poor repair and was given an extensive face-lift.
At the time of writing this article, the 432 MHz transmitter has been built but no antenna has yet been installed. All coaxial feeders are in a sealed duct and hence an interesting problem is posed for any further expansion of frequencies. The possibility of diplexing transmitters into the single cable feeding a dual resonant antenna is one possible solution.

As mentioned earlier, there are two foof top antenna sites, one directly above the transmitting room for VHF (which can be seen from Swanston Street) and one towards the rear of the building for HF.

Antennas are as follows:-
160 m - Vertical with top hats and counterpoise,
80/40/20 - Inverted vees (a tri-band
beam and tilt over tower is planned for stage 2)
53.032 MHz - 5/9 vertical 52.525 MHz - $1 / 4$ G-plane
144.5 MHz - Stacked clover leaves
146.1 MHz - $5 / 8$ vertical/10 element beam
432 MHz - Still in planning
From a public point of view the station demonstrates a range of equipment used by amateurs from the ex Navy A14 (80 and 40 Mx ), amateur designed and constructed AM ( $160 \mathrm{~m}, 2 \mathrm{~m}, 6 \mathrm{~m}, 70 \mathrm{~cm}$ ), modified commercial equipment (Ch 1, 6 FM), a 40 m transmitter constructed from a kit; and state-of-the-art, a HF transceiver with digital readout and an autoscan VHF transceiver. Public demonstrations have commenced and acquisition of gear for RTTY, SSTV and UHF TV is planned.
Comparison of these wide ranging current activities can be made with items in the Musuem's collection, sucli as the receiver built by Max Howden VK3BQ in 1923.

If you are interested in operating or demonstrating in your field of interest, please contact Peter VK3BFG/T on (03) 231-2778.


Peter Cossins, VK3BFG seated at the operating position of VK3BWI/VK3AOM. This photo was taken during the callback Immediately after the opening ceremony.

# SIDEBAND ELECTRONICS SALES and ENGINEERING 

## TRIO-KENWOOD

| Model TS-900 de-luxe transceivers, with PS-900 AC supply- |  |
| :--- | ---: |
| speaker unit | $\$ 800$ |
| Model TS-520 AC-DC transceivers with external |  |
| speaker | $\$ 550$ |
| External VFO for the TS-520 | $\$ 80$ |
| CW filter for the TS-520-900 | $\$ 40$ |
| TV-502 2M. transvertor for the TS-520, just plug it in and |  |
| switch over to 2M. SSB operation | $\$ 200$ |
| Model QR-666 all-band coverage receiver | $\$ 300$ |

YAESU MUSEN
Model FT-101-B AC-DC transceivers
Model FT-200 AC transceivers with AC FP-200 supply $\$ 400$
Digital Frequency counters
model YC-335-DO-200 MHz
SPECTRONICS DD-1 digital counter for the FT-101-B $\$ 150$
AII TRIO-KENWOOD \& YAESU MUSEN transceivers come
complete with original English manual, all crystals for all
available bands, a P.T.T. dynamic microphone and a bonus
free S.W.R. Meter.

HY-GAIN ANTENNAS


## CDR ROTATORS

| AR-22.R for 286 M . and small h.f. beams | $\$ 50$ |
| :--- | ---: |
| AR-20.R for 286 M . beams |  |
| 40 |  |

HAM-II with re-designed control box $\$ 150$
All three models for 230 V AC complete with indicatorcontrol units.
4.conductor light cable for AR-20-22 20 cents per yard

12 -conductor light cable for HAM-II $\quad 30$ cents per yard
8 -conductor heavy duty cable for HAM-II 60 cents per yard

## BARLOW WADLEY RECEIVERS

Model XCR- 30 Mk $\quad$ II 500 KHz to 31 MKz continuous
coverage communications receivers, crystal controlled
reception of AM-USB-LSB-CW
POWER OUTPUT METERS
Galaxy RF 550A with 6 position coax switch ..... $\$ 75$
SWR METERS
Midland twin-meter type for $\mathbf{5 2} \mathbf{O h m s}$, up to 1 KW on hf $\mathbf{\$ 2 2}$
BALUNS
Japanese baluns, 1 KW PEP 75 Ohms impedance only ..... $\$ 10$
MOBILE ANTENNAS
MARK helicals 6 feet long HW-80 for 80 M . ..... $\$ 18$ HW- 40 for 40 M . ..... $\$ 18$
HW-20 for 20 M . ..... $\$ 16$
high power KW-40 for 40 M . ..... $\$ 25$
Swivel mobile mount \& chrome plated spring for MARKs ..... $\$ 12$
ASAHI model AS-303A set of 5 whips 10 to 80 M . Complete with ball mount and spring ..... $\$ 90$
AS-2-DW-E 1.4 wave 2 M. mobile whip ..... $\$ 8$
AS-WW $3 / \mathrm{s}$ wave 2 M. mobile whip ..... $\$ 15$
$\$ 10$
AS.GM gutter clip mount with cable \& connectors M-RING body mount and cap for 2 M . whips ..... $\$ 5$
COAX CONNECTORS
Amphenol VHF types Standard PL-259, Angle male-female,T-connector, RCA male tō Amphenol female adaptor. Alimodels
\$1 each

## CUSH CRAFT ANTENNAS

DGPA 52 to 27 MHz adjustable ground-plane ..... $\$ 25$
LAC-2 lightning arrestors ..... $\$ 6$
CRYSTAL FILTERS
9 MHz similar to the FT-200 ones, with 2 carrier crystals ..... $\$ 35$
POWER SUPPLIES240 V, AC to 12V DC 3 to 3.5 Amps, regulated$\$ 35$
SPECIAL

KEN KP-12A speech processors, 230V AC, contain a complete SSB generator, 10.7 MHz filter, clipper, etc. $\$ 100$

[^3]
## a mini size field strength meter

Maurie Evered, VK3AVO
13 Sage Street, Oakleigh, 3166


#### Abstract

A field strength meter is one of those instruments that falls into the "useful but not essential" class. However, since this one was first constructed, it has worked overlime. I am sure other operators will find it as useful as I have.


This field strength meter could not be simpler. It consists of only seven components including the meter and battery. It was built on a piece of Veroboard and everything is mounted $\ln$ a $4^{\prime \prime} \times 2^{\prime \prime} \times 11 / 4^{\prime \prime}$ metal box. The "antenna" is a piece of brass welding rod about six inches long. It passes through a rubber grommet and is soldered directly to the Veroboard.

The circuit is very straightforward. Transistor Q1 is normally non-conducting because there is no external bias applied to its base. RF voltage developed across RFC1 is rectified by D1 and applied to the base of Q1 which then conducts according to this rectified RF voltage. VR1 is to keep the meter reading at $1 / 2-3 / 4$ full scale deflection. Once this circult is enclosed in Its metal box it is virtually a DC one, so layout is of little importance. There is little more to be said about the instrument itself, it is so simple. However, a few words should be said about its use.

If the meter is used to measure relative transmitter output into the regular station antenna (as it is usually used at this QTH)


RFC-2.5 mH

$$
\begin{gathered}
D-0 A 91 \\
C-.001 \\
V R-50 k
\end{gathered}
$$

then readings are quite straightforward and follow those obtained on the SWR meter in its "Forward" position.

The field strength meter is completely


In this photo of Maurie's neat station the field strength meter can be seen to the left of the FT101B.

## Q - BC 108 (2N3565)

M-Any meter 0-1mA
(or more sensitive) A-6 inch length brass welding rod.

Independent of coupling to feedlines, and so gives added confidence compared to any other method of measuring that is used. Just sit the field strength meter in a convenient position on your operating table or desk.

If the meter is used to monitor antenna adjustments the situation is more complex because:-

1. The "antenna" of the field strength meter should have the same polarisation as the transmitting antenna under test.
2. Measurements should be made at a distance of several wavelengths from the antenna being tested. If made within one wavelength the meter may respond to the combined induction and radiation fields rather than the radiation field alone.
3. If an adjustment alters the angle of radiation of the antenna under test it may decrease the measured field strength at ground level although the total radiation level may have increased.
This meter has been used from 3.5 to 30 MHz satisfactorily. If it is to be used at 1.8 MHz with a low power rig it may be necessary to extend the short antenna with a piece of wire and a clip. If this is done it performs very well at this 'nwer frequency.

This little meter is very cheap and easy to construct and once built becomes a very useful addition to the range of instruments ln any shack.

## The construction of an outdoor

 building to house the amateur station need not necessarily require the services of a builder. VK5JG describes one way in which you may be able to "roll your own', subject, of course, to the agreementAll over the world the place in which the amateur operates his equipment is called "The Shack". The dictionary defines a
of your local councll. shack as "a roughly built hut" and it is probable that the name evolved when in the early days, the roaring spark gap working late into the night made it necessary for the amateur to move into an outhouse so described.

Today, there are still advantages in having an operating room outside the main residence. Two of these are the ease of leading-in the aerial and the avoldance of interference with the remainder of the family. With the increase of new operators from Youth Radio and the coming of the novice licence, more shacks will be required and the following suggestion is offered for cheap and easy home construction.

## materials

Common covering material for walls and roof are corrugated galvanised iron or asbestos cement sheets. The costs per square foot of galvanised sheets and 6 inch corrugated asbestos cement sheets are ap-


FIG 1

proximately the same. However "super six" asbestos cement sheets are sufficiently strong and rigid to stand up as walls, and support a roof without timber framing. Used thus they are by far the cheapest material for walls. Also, with no timber framing, erection is simple and no special skills are required.
The super six sheets have a wide corrugation at one side which laps with the narrow one at the other side. If two sheets are set up at 90 degrees with the wide corrugations together, it will be found that the edges overlap and can be bolted together with $1 " \times 1 / 4$ " gutter bolts to form a corner.
LAYOUT
The layout of sheets for a $10 \mathrm{ft} \times 7 \mathrm{ft}$ shack is shown in Fig. 1. Gutter bolts are used to bolt the edges of all sheets together.

The bottoms of the vertical sheets can be set in a shallow trench and backfilled and rammed to hold them upright during construction. The trench need only be $6^{\prime \prime}$ deep on the high side, and with a $6^{\prime \prime}$ roof fall, will be 12 " deep on the low side. It is best to lay out the walls flat on level ground first, with the laps nesting neatly, and drill the $1 / 4$ " holes for the gutter bolts with a masonry drill. Bolts can then be Inserted quickly during erection, which should not be done in a gale!


FIG 3 CONSTRUCTION DETAILS

## PROCEDURE

It is possible for one man to erect tile walls of a small shack in less than a day. The sloping tops of the side walls can be cut with a ceramic cutting disc set in an electric drill. Erection is commenced at one corner. The two sheets are carefully
set up at 90 degrees and clamped at the top with a G-clamp. Then the holes ( 4 per corner) are drilled and the bolts inserted. The corner will have sufficient stability to support two more sheets even if the trench is left unfilled. Around the top of
the sheets, lengths of planed $2 \times 2$ inch timber are bolted to the asbestos sheets, with $21 / 2^{\prime \prime}$ gutter bolts. This increases the rigidity and provides a method of fastening down the roof.

## ROOF

The roof can be of galvanised iron or supersix. To provide a flat celling and block off the open spaces of the corrugations, sheets of flat asbestos are laid on the roof first and the corrugated sheets placed over them. Special screws are available for fastening the asbestos (if this is used) to the $2 \times 2 \mathrm{~s}$.

When the roof is screwed down with two screws per sheet at each end, the structure becomes very rigid.

Aluminium foil can be laid between the flat asbestos and the corrugated sheet for heat Insulation.

## DOOR AND WINDOWS

One sheet left out of the wall provides a doorway and the use of a 5 ft sheet instead of an 8 ft sheet makes space for a window. The door and window frames can be made of $4 \times 11 / 2^{\prime \prime}$. The doors will not be standard size and so will have to be made to fit. It is suggested that doors be framed in $2 \times 1$ inch and $3 / 16^{\prime \prime}$ hardboard be glued and screwed to each side. For a $3 \mathrm{ft} \times 3 \mathrm{ft}$ window, half (about 18") could be plain glass and the remainder louvres.
If it is desired to line the shack, flat asbestos sheets can be bolted Inside to the super-six with $3 / 16^{\prime \prime}$ gutter bolts. This lining, which can be painted, greatly improves the appearance and insulation.

The shack shown in the sketches is 3 sheets by 2 sheets - approximately 10 ft $x 7 \mathrm{ft}$ but other sizes can be used. The largest shed built by this method has been 5 sheets by 3 sheets ( $16 \mathrm{ft} \times 9 \mathrm{ft}$ ). If super-six is used for the roof, one of the laps in the wall will have to be a double lap so that the rool will have an overlap at each end.

## Try This <br> with Ron Cook VK3AFW and Bill Rice VK3ABP

## TWO-WIRE REVERSING OF

AC/DC SERIES MOTORS
When the distance between shack and tower is a long one, it is desirable to keep the number of wires to the rotator down to a minimum. At the same time, those of us who make their own rotators find that the most inexpensive suitable motors are the series-wound AC/DC motors commonly used in electrical appliances. The problem is how to use these motors with the ON/OFF-reversing switch at the shack and still require only two whes to feed the motor.

The problem has been overcome here
by using two bridge rectifiers as shown in the diagram. The motor is supplied with DC via a bridge rectifier from 240 V AC. The field, which is still used in series with the armature, is connected through another bridge rectifier which causes it to retain the same polarity at its terminals regardless of the armature polarity, which is controlled by the switch in the shack.

We use a little motor that previously drove a blower. It was found necessary to change the field position slightly in respect of the brushes to obtain similar torque in both directions, and a filter has been fitted near the motor to cut commutator noise down. The diodes in the bridges are normal 400 p.l.v., 0.5 A rectifier types.
'Tubby' Vale, VK5NO


# MAY 

## MANY NEW LINES IN STOCK OR ARRIVING SHORTLY Including the value-packed commercial quality PFT-203 TRANSCEIVER



The model PFT-203, originally designed for marine use in America, is a 30 watt plus, 25 channel mobile FM transceiver for the 2 m amateur band. It is compactly housed in a metal cabinet of attractive appearance. The IF amp. frequencies are 10.7 MHz and 455 kHz , clear of HF amateur bands to reduce interierence to a minimum. Excellent selectivity is assured by the use of a 2 pole crystal filter and three ceramic filters! A low pass filter is included In the antenna circuit for both transmit and receive.
Incorporates power level adjustment and automatic SWR protection which does not cut the transmission on high SWR but reduces power according to SWR deficiency. Thus you can still transmit even with a relatively poor SWR . . . good for emergency, etc. situations.
The use of a large area heat sink and PA transistor with power dissipation of 70W help to ensure trouble-free operation under arduous conditions. One channel provides priority "call-channel" operation.

## TECHNICAL DATA OF PFT-203

general

Frequency Coverage Number of Channels Maximum Bandwidth per Unit Mode
Power Source
Power Drain

Operating Temperature
Antenna Impedance
Microphone
Dimensions
Weight
TRANSMITTER
Power Output
Modulation
Multiplications
Frequency Deviation Harmonics Spurious Radiation
Adj. Chann. Radiation
Frequency Stability
Mod. AF Response

## RECEIVER

Receiving System
Frequency Stability
Intermediate Frequency
Sensitivity
Selectivity
Spurious Response
Spurious Radiation
Intermodulation
Audio Output
$140-170 \mathrm{MHz}$, factory adjusted to the 2 m band
24 Channels plus 1 memory channel
2 MHz
F3 (Phase Modulation)
$13.5 \mathrm{~V} D C( \pm 10 \%)$ Negative Ground
Receive 0.3A
Transmit $5.0 \mathrm{~A} / 25 \mathrm{~W}$

$$
1.2 A / 1 W
$$

$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
50 ohms
Dynamic 500 ohms
$61 \mathrm{~mm}(\mathrm{H}) \times 166 \mathrm{~mm}(\mathrm{~W}) \times 215 \mathrm{~mm}$ (D) or
$23 /$ " $^{\prime \prime} \times 61 / 2^{\prime \prime} \times 87 / 16^{\prime \prime}$
2.2 Kgs or 4.8 lbs .

30 Watts or 1 Watt, switchable (max.)
Variable capacitance phase modulation
12 Times
12.5 kHz max. (adjustable)

211 W or less
$2, \mathrm{~W}$ or less
Not exceeding $\pm 0.001 \%$ ( $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ )
0.3 to $3 \mathrm{kHz}+6 \mathrm{~dB} /$ Octave

Crystal controlled double superheterodyne
Not exceeding $\pm 0.001 \%$ ( $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ )
1st IF : 10.7 MHz 2nd IF : 455 kHz
$0.5 \mu \mathrm{~V}$ or less at 20 dB OS
$\pm 10 \mathrm{kHz}$ at $-6 \mathrm{~dB}, \pm 20 \mathrm{kHz}$ at -80 dB
Greater than 60 dB
$0.002 u \mathrm{~W}$ or less
At least 75 dB down at $\pm 25 \mathrm{kHz}$ separation
1 Watt (less than $10 \%$ distortion)


INTRODUCTORY PRICE - \$228, includes crystals for B and one repeater chan. (advise chan. required), microphone, mobile mount, etc. Extra standard channels only $\$ 8.00$. Prices include S.T. Freight or postage and Insurance extra (allow $\$ 4.50$ ). All sets pre-sales checked and covered by our 90 day warranty. Prices and specifications subject to change.

## AUSTRALIAN AGENT:

## MONTH AT B.E.S



## TENKO 2XA

The Tenko model 2XA (similar to the Swan FM2XA) is a 10 watt, 12 channel 2 m FM transceiver.
Using dual gate MOS FETS in the front end it exhibits excellent cross modulatioh and overload characleristics. The 2XA comes complete"with mobile mount, microphone, and DC power cable.

TECHNICAL DATA:
Transmitter: Power output: 10 watts. Deviation: $\pm 7 \mathrm{kHz}$. Spurious Response: - 60 dB .
Receiver: Sensitivity: 0.5 uV for 20 dB quieting. Selectivity: 6 dB down at $\pm 12.5 \mathrm{kHz} ; 50 \mathrm{~dB}$ down at $\pm 25 \mathrm{kHz}$. Squelch sensitivity: Less than 0.3 uV . Circuitry: Double conversion with IFs of 10.7 MHz and 455 kHz .
INTRODUCTORY PRICE - $\$ 169$, includes 3 JA channels and 2 Aust. channels. Extra standard channels, $\$ 8.00$.

## YAESU FT-620B

New model 6 m SSB/AM/CW transceiver, Illus. at right. PRICE - including AM filter and crystal calibrator - $\$ 468$.
YAESU FT-220, 2 m SSB/FM/CW transceiver, latest model with crystals and mods for FM repeater operation. Similar appearance to FT-620B.
 Limited quantity only - $\$ 475$.
YAESU FT-224, 24 channel 2 m FM transceiver - $\$ 259$ with 6 Australian channels installed.
YAESU FT-2 AUTO, 8 channel, auto-scan 2 m FM transceiver.
YAESU S-200R, 200 channel, frequency synthesised 2 m FM transceiver.

## NEW FROM STANDARD CO.:

SR-C146A, 2m FM 2W output, 5 channel Walkie-Talkie. This superior quality transceiver comes complete with a leather carrying case, and auxiliary jacks are provided for external microphone, earphone, antenna and battery charger. Whip antenna telescopes down level with top of set.

TECHNICAL DATA:
TRANSMITTER:
RF output 2 walts
Modulation
Spuríous \& Harmonics
FM noise
At least 45 dB
PRICE - \$158, includes carrying case and 4 Channels (2 U.S. and 2 Aust.). Optional accessories extra, e.g. hand mic., stubby ant., charger, mobile mount adaptor, 230 V AC home use adaptor.

## RECEIVER SENSATION

MR-2 MINI-RECEIVER for pocket use. A little larger than a cigarette packet, the MR-2 is a full double conversion crystal controlled VHF miniature receiver of really high quality. 12 channel capability. Delivery expected June/July with anticipated price under $\$ 100$, including selfcontained Ni-Cad batteries, earphone, wire antenna, and battery charger. Crystals will be stocked for the 2 m band.


All prices inc. S.T. Fright etc. extra. And . . . don't forget, your purchase from B.E.S. Inçludes pre-sales checking of séts plus our 90 day warranty.

## AUSTRALIAN AGENT:

ELECTRONIC SERVICES

# modifications to the VK3ABP 2 and 

 metre converters
#### Abstract

It was with some delight that one of the technical edhore, VR3ABP, recelved this article for perusal. He also has found an IF tuned circuit desirable in one case when an IF above 30 MHz wes used. The article explains some of the factora Involved in choice of IF, and how auch a tuned clrcult may be added where necessary.


The VK3ABP VHF converters need no introduction to anyone active on 2 or 6 metres over the last decade. There would probably be very fow shacks that have not had at least one of these at some stage. I have lost count of the number that I have built and every one was a good performer. In the early days of Ch. 0 the 6 m version seemed about the only converter capable of solving the cross mod. problem. Some ldea of the success I have had can be seen from the DX of the last season: 2 m, VK1-7 Inclusive, 6 m , VK1-0 \& ZL1-4 Inclusive, in addition to five JA call areas in other years. All signals recelved on the standard 2 or 6 m version.

The trend today is to use 28 MHz as the tunable IF for VHF converiers for a variety of reasons, not the least being the 2 MHz or more available compared with other bands. Unfortunately few recelvers give their best performance at 28 MHz , especially when compared to say 80 m where galn is usually more than adequate. My 6m converter, while a good performer and relatively free of cross mod, except when beaming directly at Ch 0 , seemed to lack the sensitivity of the classic "R, TV \& $\mathrm{H}^{\prime \prime}$ type converter which used a 6BQ7 front end. Unfortunately the latter was totally unsulted for operation in Ch O areas and had to be abandoned despite its previous excellent performance. My Impression has always been that the 6 m VK3ABP converter obtains freedom from cross modulation at the expense of gain.

The mixer stage output is untuned and the signal is coupled to the IF by an untuned cathode follower. Therefore the first tuned circuit at the IF is the frontend tuning of the receiver. I set out to see where some additional gain could be

obtained without drastic modification to the converter, especially as the tunable IFs at 28 MHz were not as hot as they might be. The reason for using untuned circults in the mixer and cathode follower areas appears to have been to make things as flexible as possible and allow IFs from BC upwards to be used.
The original mixer circult is shown in Fig. 1 and the modifications in Fig. 2.
The 10 K resistor In the anode of the mixer section of the 6BL8 is replaced by a tuned circult at the IF and tests on DX slgnals on both $2 \& 6 m$ have shown a very worthwhile increase in gain without Increasing cross mod. The $\mathbf{6 m}$ version was simply peaked for maximum at 28 MHz but due to the gain of the 6ES8 cascode RF stage ahead of the mixer in the 2 m version It was found necessary to back off the tuning slightly as the noise was too great and produced a standing $S$ meter reading of about S6. By backing off the tuning untll the $\mathbf{S}$ meter just reaches zero with no signal the galn is about right and should give somewhere in the vicinity

of 2 to 3 S points improvement over a converter without this modification. The 6 m converter, due to the lower gain of the RF amp, does not glve any noticeable increase in noise. During a recent 2 m opening to VK5, I monitored the VK5VF beacon for long perlods and found that the signal was in the noise and not moving the S meter at all without the addition of the tuned IF circuit but as soon as this was added the signal rose to about S3 and was quite clear. Also car Ignition was much more pronuunced and there was a noticeable rise in background electrical nolse, inaudible previously. I made my tuned circuits up on Neosid formers and fitted cans, then soldered the tuned circuits In , directly replacing the 10 K resistor ( 15 K in the case of the 2 m converter). Coil dimenslons will vary of course depending upon the IF used. Should any Instability result from the addition of the tuned circults try a damping resistor across the coll; values probably between $22 K$ and 47 K would be suitable.

## Try This

with Ron Cook VK3AFW
and Bill Rice VK3ABP

## MODIFICATIONS TO MINISCOPE SOLDERING IRON

After a period of use, the barrel (although made of stalnless steel) oxidises in the thread where the bit screws in, leading to overheating due to poor contact and ar.celerating the oxidation process. Cleaning the thread with a 5/32" Whitworth tap helps for a short period, but erosion of the barrel thread leads to a poorly fitting bit. To overcome this, a slot was cut in the barrel with a hacksaw blade with the "set" ground off each side (so the cut will not be excessively wide). Cut through the thread on one side, being careful not to damage the thread on the opposite side,


END OF BARREL
the cut extending a little beyond the tapered part of the barrel. With a pair of fairly heavy pliers, carefully reduce the size of the thread portion by pinching together the cut. Try and maintain the threaded portion clrcular. Run a 5/32" Whitworth tap through to thoroughly clean the threads. Pinch the end in until a new bit is a firm fit, requiring pliers to screw it in. It pays to clean the thread with a tap each time a new bit is fitted and also check that the new bit is a firm fit in the threads.
C. P. Daw, VK2AGJ

# VHF UHF an expanding world 

with Eric Jamieson VK5LP Forresion. S A.. 5233
Times GMT
amATEUR BAND BEACONS
VKO VKOMA, Mawson
VKOGR, Casoy
VK1RTA, Canberra
VK2 VK2WI, Sydney
VK2WI. Sydney
VK3 VK3RTG, Vermont
VKARTL, Townaville
VK4WI/1. Mt. Mowbullan
VKs VKSVF, Mt. Lolly
VKSVF. MI. Lofly
VK6 VK6RTV. Perth
VK6RTU. Ka!goorlie
VK6RTW. Albany
VK6RTW, Albany
VK6RTV. Perth
VK7RTX. Devonport P29GA, Lae, Nluginl 3D3AA, Suva, Fiji ZLIVHF, Auckland ZLIVHW, Waikato ZL2VHF, Wellington Zl2VHP Palmerston Norn ZLaVHF, Dunedin 145.300

| ZL3 | ZL3VHF, Christchurch | 145.300 |
| :--- | :--- | :--- |
| ZL4 | ZL4VHF, Dunedin | 145.400 | The only item of likely interest in regard to beacons al present is the information from Bill VK2HZ to the eflect that from his elevated site at Springwood in the Blue Mountains of NSW he monitored the Fifl beacon 3D3AA on 6/1/75 from 02002 to 06002. being audible for the full four hours, very slow fade - not lypical Es lading. Signal S 6 at maximum down to $\mathrm{S}_{2}$ at times. Again on 7/1/75 the beacon was heard from $0830 Z$ to 09002 with signals peaking S3 about 08452, otherwise just being audible for most of the period.

If the beacon can be oncouraged to keep on air it may well be that towards the end of the year in particular. contacts could be made into what will be a new country tor most 6 metre operators.

## 52 MHz FM SURVEY

Well, some people at least, read the VHF notes. Two letters have arrived laking to task George VK3ASV for apparent errors in relation to VK2 FM activity. The first is from Bill VK2HZ who mentions he has worked 239 difterent VK2 statlons on 52 MHz during the past eight years. 95 per cent of them would have been on the primary frequencles of 52.525 FM and 53.866 AM, the remainder on AM or SSB. To clarity the position a quote from Bill's letter: "George, VK3ASV. has his lines crossed when he lists VK2 52 MHz net trequencies in " 52 MHz FM Survey" (AR March 75. P17).
"The primary frequenclea are 52.525 FM and 53.866 AM and have been for the last ten years at least (longer for AM frequency). The VK2AWI broadcasis appear on these two trequencies, also on 52.100 SSB.
'Some six or seven 'years ago 52.656 was generally adopted as a secondary FM trequency. The use of an additional trequency was necessary due to the activity on 52.525 and to provide a apot where stallons could enjoy a quiet yarn, without too much compettion
"On the AM side 53.868 was used extensively before Low Band FM Car-phones became readily avallable, when many stations moved to 52.525 . The lllawarra (Wollongong) WIA Branch used 53.982 especially for fox-hunts and the like. In recent years the use of AM nets has fallen with FM operating taking over.
"It would be falr to say that 52.525 FM operallon is on the wane, except of course during the DX season when the 'wood-work' opens upl
"The reason for this reduction in activity could possibly be blamed on the ready avallabillty of 144/148 MHz 'Minl-Black-Boxes' with the added Interest of repeaters and multi-channela. Juas another phase in the ever-changing pattern of

VHF activity"
Thank you Bill for setting the facts atralght, and George will now be able to bring his book up to da!e too.
While on the subject of net trequencies, repesters etc. Is it to be a fact that if one should travel from VK5 through VK3, VK2 to VK4, and north to Townsville, one will need about 7 different repeater channels to be able to have a reasonable coverage of the country? And is it also true that In addition to the main four repeater channels. 1 to 4, on 2 metres FM, VK2 look like using Channels 5. 6 and 7? I guess It would be reasonable to say most operalors would consider fitting at least the four primary channels 1 to 4 . plus Ch. 40 ( $B$ ) and Ch . 50, the national simplex Trequency, but to be asked to add itree more repeater channels seems beyond all reason.
It thoughta are proceeding along these llnes. might I suggest some thought be given to Interstale operators as well. Nice to have your own special repeater on say Ch. 6, as long as itis alao OK 10 only talk amongst yourselves in the maint So there! Now someone tear me apart and tell me how wrong my grapevine is, because I will be glad to be told I am wrong - 1 will be through the eastern States betore too long and I am certainiy not going to s:ock up on Ch. 5. 6 and 7.
And still further to the FM bualness. JeH VK2BYY wittes to confirm what Bill VK2HZ has already noted above, but adds there is little of no WICEN activily in Sydney now or for some years. However, moves are under way to revive WICEN in VK2. Thanks Jeff for writing 100.

The Bundaberg Amateur Radio Club advises that as from $2 / 4 / 75$ channel 50 will be the Club's 2 metre calling and net trequency, so you guys travelling north through Queens!and might bear this in mind. Nole trom Club Secretary D. W. Albrecht. via Editor "AR".

## MOONBOUNCE

Not much to hand this IIme, but the 432 MHz equipment of the Illawarra Branch which was damaged by lightning las! Oclober has been largaly repaired It is no!ed the FMT4575 are now priced at $\$ 44$ each. duly Iree. atter a price drop! However. such transistors provide a NF of 1.5 dB which is pretty good for 432 MHz . A new PA stage for the transmitter is being constructed to allow for the production of 700 watts of RF output from 1000 walts inpul. which represents a 3 dB increase in transmit power.

The high ERP signals from WAGLET on 22/2/75 were also received by VK2AMW. the Groups EME station. from 08002 to 08452 up to 8 dB above the noise, but repeated calls from VK2AMW were not acknowledged.

Incidentally. the lllawarra Branch of the WIA have adopted a name for their magazine. "The Propogator'. So now you will know what 1 am referring to in the future!

## SPECIAL HF BEACON

Although HF news may be rather forelgn to these columns, nevertheless, this intormation may still be of some use to VHF operators. The NZART Upper Hult Branch are now operating a beacon on 28.170 MHz. and it is part of the RSGB World Wide 10 metre beacon network. Detalls from "Break In" March 1975: Call signs: ZL2MHF: Freq. 28.170 MHz; Modulation: F1, call sign aboul every 10 seconds: Antenna: Vertical halt-wave omnldirectional: Location: Mount CIlmie, Upper Hutt. near Wellington, 890 m ASL. Power Input 90 watts. continuous operation.

Because the ractors governing communlcations on 28 MHz are linked to a certain degree with those apertaining to 52 MHz , this 28 MHz beacon could be useful with its continuous operation. The fact that it can be heard at all in VK indicates a flee in the MUF, and good strong signals could harald a band opening around 52 MHz and above. With so many transcelvers around these days, it could well be that some good could come from morittoring the trequency on which the beacon om'ates during those odd moments when you are In the shack doing something else but nattering on the alr. And It might be a good Idea to tune down to thla beacon during the time of any 52 MHz openings and see how strong it may be: from this you could probably work out a pattern related to signal strengith which will Indicate Just how high the MUF might be. Think about It!

As you have probably observed from the lack of specific information littie has happened on the

6 and 2 matre scene this month - as seen from thla area anyway. However, this could mean some of the unual operations are improving equipment while those habitually on the FM nels are constructing tuneable equlpment - 1 wonder!

Thought for the month: "A man must keep"a little back shop where he can be himsell without reserve. In solitude alone can he know the true treedom."

## The Voice in the Hills

## Contests <br> with JIm Payne, VK3AZT

Federal Contest Manager,
Box 67, East Melbourne, Vic., 3002
AOSS RULL VHF-UHF CONTEST
Although a lew days of grace were allowed for late entries some did not arrive until later and consequently could not be included in the results published in the April issue of AR.
Section (A) -
VK2BHO

2555
Section (B)

| VK3BMD | 1446 | 666 |
| :--- | :--- | :--- |
| VK3AUJ | 1255 | 533 |
| VK3YJE |  | 694 |

The PO Box 67 is normally cleared once each weak and twice weekly when competition logs are coming in. It is not possible for me to allow more than a lew days grace unless the subsequent publication of results is to be delayed for a month. Sorry lellas.
hemembrance day contest
When you read this the popular Friendly Contest will be only tour months away. So mark the calendar for Augist 15/16 and lee up some pencil'ers. Maybe we will have some variations 10 both the rules and the scoring table as recommendations have been made to the Fedoral Council and some decisions should be made at the forth. coming convention to be held in Molbourne during the weekend of April 25/26/27. Unfortunately there has been very little response to my suggestion in the Feb issue of AR to reduce the amount of dotail required in logs.

However, one VK5 has a gem of an XYL who wrote "Having wrillen out very lenalhy log sheets from this call sign tor 21 years. I can soe no great advantage in changing the tormat of the RD log sheels, as suggested. Surely it could be no easier for anyone (non-lechnical or otherwise) than to copy page for page from the oflicial station log'. Well, not many of us may be so fo:lunate and I pondered the matter again last weekend while disposing of last years RD logs, a pile of foolscap almost 63 centimetres high. in the incinerator. There is so much delail on those sheets that the FCM does not require. Perhaps with a tew shorl cuts we can get at least 1000 entries this time. CONTEST CHAMPION TROPHY
This matter is being considered by the Executive but it is most unlikely that any announcement could be made untll after the Convention.
CONTEST CALENDAR
May 10 World Telecomm Phone
Worked all Britain LF phone
10/11 USSR M-CO DX
17 World Telecomm CW
17/19 Michigan OSO parly (CW \& Phone)
June 1 Worked all Britaln LF CW
21 All Asian DX Phone
28/29 ARRL Fleld Day
WORLD TELECOMM CONTEST
Phone 0000-2400 GMT May 10
CW 0000-2400 GMT May 17
Limited to single operator statlons 10 through 160 metres. Use a separate log for phone and CW. Exchange RST plus your ITU zone.
Scoring
Same country
Other country
same zone
Other zonea
same continent

| Other continents | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |

Final score: Total QSO pointe multiplled by different ITU zones worked. The same station may be worked on each band for OSO points but zone ia counted once only. Mall logs before June 30th to Ministerio das Comunicacoes, DENTAL, 70,000, Brasilla, DF, Brazil.
WORKED ALL BRITAIN
These contests are 12 hour affairs from 0900 to

## FERGUSON

Manufacturers of: Electrical / electronic equipment, wound components and lighting control equipment.

BRANCHES
IN
ALL STATES

## Ferguson Transformers

Pty Ltd.
Head Office
331 High Street. Chatswood NSW 2067
PO Box 301 Chatswood.
NSW. Australia 2067
Phone: 02-407-0261

## BRIGHT STAR CRYSTALS

## - PROMPT DELIVERY GUARANTEED

## - ALL TYPES OF MOUNTINGS

Such as HC6/U (style D) . . . HC18/U (style J) . . . HC25/U (style K) . . . etc. . . . Frequency range up to 140 MHz on 5 th overtone.


- ACCURACY
- STABILITY
- ACTIVITY
- OUTPUT


## BRIGHT STAR CRYSTALS PTY. LTD.

35 EILEEN ROAD, CLAYTON, VIC., 3168. Phone: 546-5076 (Area Code 03).
INTERSTATE CLIENTS: Contact your Local Agent
Our increased production now enables us to offer Special Discounts from 10\% Let us quote you for all your Crystal requirements.
Our easy-to-read Price List is now available.
Sydney: PARIS RADIO ELECTRONICS, 7a Burton Street, Darlinghurst, N.S.W. 2010, Phone: 31-3273.
Perth: W. J. MONCRIEFF PTY. LTD., 176 Wiftenoon Street, East Perth,, 6000, Phone: 25-5722.
Brisbane: FRED HOE \& SONS PTY. LTD., 246 Evans Road, Salisbury North, 4107, Phone: 47-4311
Adelaide: RQGERS ELECTRONICS, P.O. Box 3, Modbury North, S. A. 5092. Phone: 264-3296.

Second Generation Instruments from

## HRLTROCIES



101E DIGITAL MULTIMETER

- D.1\% accuracy
- automatic polarity
- $3^{1 / 2}$ digit L.E.D. readout
- 16 ranges - D.C. volte, A C. volte
-D.C. current $\mathcal{E}$ resistence

2100 GMT on dates listed in calender. The LF bands are 160, 80 \& 40 . Exchange RS(T) and OSO number. UK stations will also give their county and WAB area number. Scoring: Each contact 5 points. The same station may be worked on difterent bands for OSO points but not multiplior. This is determined by number of different UK areas worked. Logs go to R. L. Senter, G4BFY, 10 Toll Bar Av, Bottestord. Nottingham, NG13, England.
18th ALL ASIAN DX CONTEST
Phone 1000 GMT June 21 to 1600 GMT June 22 CW 1000 GMT Aug 23 to 1600 GMT Aug 24 A brochure has been recelved setting out full details of these contests. The rules are detalled and a summary shee: is prescribed. You can also be named in the resulte for a defactive log or a false statement in the report so please sand a SASE to the FCM for complete details of this competition.


## Letters to the Editor

Any opinion expiessed under this heading is the individual opinion of the writer and does not necessantly coincide with that of the Publishers.

## Dear SIr.

One of the highlighta of my amateur year is the RD Contest.

I have enjoyed it lop many years and hope to contlaue enjoying if for many more.

The comments. criticisms and suggestions that follow are made with view to stimulating dis. cussion about. and interest in. the RD Contest and are not meant to be "shots" at anybody of any organisation

To begin with, let us look at my definition of a conlest:-

A conteat la dealgned to teat operaling skille, rellability of equipment and endurance of the operator.

I believe the first mentioned is most important and a good score (iop ten) requires a good operator. The frlendly contest concept is OK providing it doesn't deiract from the operating skill aspect. I can see no need to swap names in the contest unless it can add to my acore.

Please remember thal speed and accuracy are vital in a contest. The same skilis are vital in emergency communication.
You will always back a good contest operator when the chips are down and the message. must go ihrough In spite of bad conditions

Parlicipation in the RD Contest should be encouraged for the above reason, if for nothing elso.

Equipment rellability is a must, and whether you buy $1 t$ or bulld It, you will find it gets pretty hol alter 20-24 hours conilinuous operalion.

Durabilliy of the amateur? All I know is that each year li's a litte harder to last the distance and it rakes a lifte longer to recover. nevertheless I wouldn'I miss the RD Contest for such minor dlscomforis.

## PARTICIPATION:

Always there are recpiminations about poor participation. I have already wrltien on the sublect of the handicap of counling non-atarters in the acore.

In VK3 we have the largest number of limited licensees. but very very few participate. Some of the ideas given later may encousage more VHF participation but for starters. whal aboul a nominated VHF period duping which VHF polnts score double? I would suggest midnight to 2 am for a trial.

While we are encouraging VHF operators to participate. let's also encourage HF operators to use all bands. Let's have bonus or multiplier for operation on $160 \mathrm{Mx}, 15,10.6$ and 2 Mx . Say ten

## 1975 JOHN MOYLE MEMORIAL NATIONAL FIELD DAY RESULTS

24 HOUR DIVISION
Section (a) Tx Phone

| Section (a) Tx Phone | VKAAL | 2022 |  |
| :---: | :---: | :---: | :---: |
|  | 38 BB | 1880 |  |
|  | 1JP | $1859$ |  |
|  | 4FD |  | 520 |
|  | 3 CCH | 302 |  |
| Section (b) TX CW |  |  |  |
|  | VK3TX | 487150 |  |
|  | 5DL |  |  |
| Section (c) Tx Open |  |  |  |
|  | VK2CAX | 2183 |  |
|  | 3AU0 | 1264 |  |
| Section (d) Tx Multiple | Phone |  |  |
|  | VK5AWI | 4079 | 4 0ps |
|  | 8AS | 3592 | 6 ops |
|  | 5LW | 2943 | 6 opa |
|  | 3ANR | 2296 | 5 ops |
|  | 3RV | 715 | 3 ops |
| Section (e) Tx Multiple | Open |  |  |
|  | P29PNG | 6599 | 6 ops |
|  | VK3ATM | 6138 | 16 ops |
|  | 3APC | 5728 | 16 ops |
|  | 3AWS | 4944 | 11 ops |
|  | 1ACA | 4752 | 8 Ops |
|  | 2WG | 3738 | 12 ops |
|  | 1WI | 3852 | 7 0ps |
|  | 3XK | 2892 | 4 ops |
| Section (1) TX VhF |  |  |  |
|  | VK3AVJ | 1031 |  |
|  | 2YCK |  |  |
|  | 3AYE | 554 |  |
|  | 22CT | 338 |  |
|  | 42AF | 228 |  |
|  | 2YDV | 192 |  |
|  | 4ZGR | 138 |  |
| Section (9) Home Stations |  |  |  |
|  | VK5LM | 545 |  |
|  | 3 BCH | 430 |  |
|  | 3KK | 410 |  |
|  | 3YIG | 270 |  |

Saction (h) Recelving
6 HOUR DIVISION
Section (a) Tx Phone


QSOs needed on each band to earn the bonus/ multipllar for thal band

No bonus for 80. 40 or 20 Mx but for the amateur with limited lacllities give an award for aingle band operation only.
8CORES:
This ia always a point of discuasion. How can It be made to balance belween States of such widely varying amaleur population.

I would suggest the following points be conaldered as a basia for determining the winning State:
(a) Score entries only - not non-starlers.
(b) Total scores of top ten logs.
(c) A multiplier for number of bands used.
(d) Give a score for \% Increase In participation over, say the last three conteats.
(a) Give exira score for number of entries with 100 or more points.
Balancing all that won't be easy but I'm sure one of our fraternity has access to a computer which could handle the problem.

To summarlse, here are my suggestions for the conteat:

1. Bonus of multiplier for $\mathbf{1 0}$ or more contacts on each of $160 \mathrm{Mx} .15,10,8,2 \mathrm{Mx}$.
2. Double points for VHF intra-atate from midnight to 2 am .
3. Certificate for highest log entered as single band only.
4. Allow points for different modes with same s'ation on same band.
5. Consider use of repeaters (I don't know if this would be good of bad).
6. Re-vamp Winning State formula.
7. What about a bonus for new modes such as SSTV?
No doubt there are more (and better) Ideas floating around, so let's see what everyone thinks vie the pages of this Magazine.

73 's
MIke VK3WW
The Editor,
Dear Sir.
My wite. Betty, And I arrived In Ausiralla, from England, at the end of November 1874 to visit
our son and his tamily In Sydney
Prior 10 our deparlure Irom England I had contacted many of my Australian radio amateur friends and recelved many invitatlons to visit them.
We are due to leave Auatralle on the 15th Aprll '75 for home, via Singapore, and we wlah to axpress our sincere appreclation and thanks to the many amateurs who afforded us aii the triendship and hospitallty that we onjoyed.
I was privileged to be invited to the recent "Old Timers" meating In Melbourne, and met many of the "Youngaters" who started off with smoke algnalsl
We were Invited to the thomes of VKaKS VK3AAO, VK3BM and VK3GN where we stayed and were treated like VIPs. We met so many "VK" amateurs and recelved the same wonderful hospitallty that it seems untals to mention any one In particularl
I was Imprassed by the enthusiasm and knowhow of the Australlan amateurs and the quality of performance of the home-brew equipment.
My wite and I agree that you have a wonderful country and such grand people - we thank you all for the wonde:•••1 time spent in Australla.
73. Yours sincerely.

Leslie and Betty Luacombe
G8NY. VK2BNY, FONY
The Editor,
Dear SIr.
TOWNSVILLE PACIFIC FESTIVAL CONTEST 1975
The aim of the contest is to foster an Interest In the Townaville Pacific Festival, and to Increase Interest and aclivity on all amatour Banda by Australlan and New Zealand Amatours.
It will be noted that a further effort is made In this contest to Increase popularity of the CW Mode of communication. Hence all CW contacta count for double scors.

This is the second year that the Townsville Pacific Featival contest has been run. Last year 1874 VKAIZ scored the highest points and recelved the trophy.
This year we wish to Include the ZL and P29 to get some more Interost in the contest, if oither win the contest the trophy will remaln in


Australia and be presented to the Highest Scorer In Australla.

I trust that all will enjoy the contest and make It as interesting as last year.

73s Good Luck, Hugh C. Barlow VK4AM Queens'and Contest Manager

1. Time of Contest:

The Contest will be of 12 hours duration - 0200 GMT to 1400 GMT Saturday 15th June, 1875. 2. Sections:
(a) Transmilling all bands phone only
(b) Transmitting all bands CW only.
(c) Transmitting all bands. Open.
(d) Receiving all bands. Open.
3. Contacts:
(a) CW contacts count as double score (CW to CW).
(b) One (1) contact per band per mode only.
(c) No cross band contacts.
4. Awarda:
(a) A centificate will be awarded to the Mighest scorer in each section for each call area. Per band.
(b) The entrant with the highest score will be awarded a certificate.
(c) Trophy awarded to entrant with highest overall score within Australia. Trophy to be held over until next contest.

## 5. Scoring:

Bonus - (a) For conlact with VKAWIT - 15 points to be added to score on table below. N B.-VK4WIT and other Townsville stations are the
y VK4 stations that other VK4 stations can contact. Scoring for VKAWIT and other Townsville stations will be the same as for other VK4 stations. However VK4WIT and Townsville stations receive no bonus points.
Scoring lor VHF \& UHF:
Same as for HF except that on bands above 50 MHz - (i.e. inters'ate contacts are permitted) for this purpose, a contact on frequencies above 50 MHz within an entrant's own call area will score 1 contact point. With the excepion of VK4 where the Bonus rule applles for contact with VK4WIT of other Townsville stations.
Contacts on 180 metras:
Same scoring as in table with additional 5 bonus points per contact.
Contact pointe as per table below:

## P29

VK1 VK2 VK3 VK4 VK5 VK6 VK7 VK8 VK9 VKO 2L

| VKO | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | - | 3 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VK1 | - | 1 | 1 | 2 | 3 | 6 | 2 | 4 | 5 | 6 | 3 |
| VK2 | 1 | - | 2 | 1 | 2 | 6 | 3 | 4 | 5 | 6 | 3 |
| VK3 | 1 | 2 | - | 3 | 2 | 4 | 1 | 6 | 5 | 6 | 3 |
| VK4 | 2 | 1 | 3 | - | 4 | 6 | 5 | 2 | 1 | 6 | 3 |
| VK5 | 3 | 2 | 2 | 4 | - | 1 | 5 | 1 | 6 | 6 | 3 |
| VK6 | 6 | 6 | 4 | 6 | 1 | - | 4 | 1 | 2 | 6 | 3 |
| VK7 | 2 | 3 | 1 | 5 | 5 | 4 | - | 6 | 5 | 6 | 3 |
| VK8 | 4 | 4 | 6 | 2 | 6 | 1 | 6 | - | 2 | 6 | 3 |
| P29 | 5 | 5 | 5 | 1 | 1 | 2 | 5 | 2 | - | 6 | 3 |
| VK9 | 5 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |

6. Send $\log 810:$

Townsville Pacific Festival Contest,
P.O. Box 964,

Townsville, Q. 4810
7. Cloalng Date of Entrias:

15th July, 1975.
P.S:-Townsville Statlons Identlity by:
(Phone)-VKAWIT Townsville
(CW)-VKAWIT/TVL.
The Editor.
Dear Sir.
1 think it is correct that technical errors in aricles should be pointed out. I would therefore like to point out an apparent error in the diagram on Page 11 of March Amateur Radio, 1875

The author of the article describes how to draw an ellipse which represents the earth's orbit around the sun. The orbit shown contains a major error.

The earth's orbit is not as elliptical as that shown in the diagram. This is quite excusable since an exaggerated diagram can olten be used to illustrate a point. In the diagram the major and minor axes are shown as being in line with the summer and winter so:stice and the equinox This is not correct but the difference is only 12 days and !his is also a minor point.
The diagram shows the sun as being at the centre of the orbit and herein is the error. The sun is actually at one of the focal points of the ellipse. In the case of this ellipse the tocal polnts are the points where the pins were used to do the drawing. The sun of local point of the orbit always lies on the major axis and has its closest point along the major axis. The diagram shows tre closest points lying along the minor axes.
The following are a fow facts about the eatits orbit. The ratio of the distance from the centre of an orbit to the sun compared with half the major axis is known as the eccentricity of the orbit. In the case of the earth, the eccentricity is about 1 in 60 (an almost circular orbit). The earth is closest to the sun on the 2nd of January and furthest from the sun on the 6ith of July. The diflerence between the closest distance to the furthest distance is about 3 million miles J. A. Adcock.

Member of the Astronomical Soclety of Victoria.

## SWLs

Would you like an SWL column in AR?
What should this column cover?
What do you want to see in AR?
CAN ANYONE HELP OUT?

## QSP

## frequencies

"So long as we depend on the publicly-owned Irequencies lor amateur radio's very existence, we had better make sure the public knows who we are and what we do". Quote of the month in OST. Oct .74.
STATISTICS
Radio Communications tor Nov. 74 advises that RSGB membership at the end of Sepl. Tolalled 17.250 which included 1.720 overseas members and 1.020 associates in the U.K. At the end of Aug. '74 there were 25.333 amateut licences in force in the U.K.

## DX QSL Notes

The following list of DX stations and OSL information has been supplied by Ken VK3AH.
3C1AGD - SM3CXS
FBAYC. FBQYD - FgMD or FGKAW
806AC, 806AB - c/- Tokyo Village. Marleigh Rep. of Maldive Islands
SWOWV - U.S. Embassy KAV A.PO. Now York. NY 09259
7P8AQ - PO. Box 1266 Maseru, Lesotho
7P8AT - P.O. Box 1098 Maseru, Lesotho
ZS6BHW/306 - K. Muller, P.O. 283 Mbabane. Swaziland
SU7HL - Rev. T Schultz. BP 8062. Tokoin Lome. Togo
VU2ABC - WAIFEO
VP2KO - Box 364. SI Kitls. Windward Isles
VP2AB - J. Brown. Box 229. St. Johns. Antigua W. isles

KV4BW - Box 3680 SI. Thomas. American Virgin Isles
vS6AQ - Dr. Lo, Salkung. Hongkong
OH7RF - Ukkola 81290. Finland
KG4GG - Box 12. Usnavsla. FPO N York, NY 09593
KP4EAX/H18 - K. Gonzalez Rodriguez. Calle 27 No. 22. Ensanche Naco. Santo Domingo Dr.
KX6LN - Eox 1199 APO San Francisco. CA9655s
KX6LP - Box 1604 APO San Francisco, CA96555 VK2B2M/9 Norfolk - VE3GUS (Direct only)
FL8BH - H. Bouchet. PO. Box 10 Ali Sabieh. French Somaliland
VP2EEE - WAREI. WE4ZNH
PJaIDX - WB4IDX
SP9PT/VE - SP9RU
2M7AH and ZM7AJ - W5ZF
HDIORC - WAATDY. John Croll. 3528 Craig Drive. Lint. Michigan 48506 (SASE. 83 IRCs)
CRTIC - AA Pedro Das. Santos. P O. Box 135 Porto Amelia. Mozambique
WA6TJV/KS6 - M. Hitchcock. Box 1619 Pago Pago. US Samoa
XE2RLP - Box 1147 Maratian. Sin. Mexico
3A2CP - Leslie Newporl Gwilt. Le Bormuda Monaco, M.C or WA3HUP
7078C - Peler Conway. Box 5595. Limbe. Malawı Central Alrica (VO2BG 8 9J2BC)
CPIDN - Malcolm Chris Jensen. Usaid Bolivia APO NY 09867 Casilla 673 La Paz Bolivia A35AF - Kazu Inouo Box 19 Vavua. Tonga
C21AZ - Bell Beszelzen. PO. Ropublic of Nauru PY2CPK - Osvaldo Reis de Magalnaes, Rua Mar. ques ce Paranagua, 164, 01303 - Sao Paulo Brazil, Sth. Amorica
tggau - F. Humborio. Cordon - Apartado Postal 248 Guatemala. C.A.
A4FO - P.O. Box 1000 Muscat. Sultanate of Oman VP2DH - W8HM
8RIAG - WATTDZ



COMMUNICATIONS RECEIVER



## STOP PRESS - NOVICE LICENCE APPROVED

The P.M.G. announced in a press release dated 16th April 1975 that arrangements have been made for the introduction of Novice amateur radio station licences.

Senator Bishop stated that the Novice licence is being introduced to enable persons who have is being introduced to enable persons who have not passed the standard amateur examination to engage in radio as a hobby on a restricted basis and gain the knowledge and experlence necessary to qualify for a normal licence. This move by the Government had the wholehearted support of the Wireless Instltute of Australia.

To become eligible for such a licence, persons will be required to qualify for a Novice Amateur Operator's Certificate of Proficlency.

The Certificate will be issued to any person, regardless of age, who passes a comparatively
simple examination in radlo theory and regulations and a morse code test at 5 words a minute
He said that the fee for a Novice amateur station llcence had been set at half the normal rate and would be $\$ 6$ a year. The fee for the examination will be $\$ 2$.
Novice amateur station licensees will be perNovice amateur station licensees will be per-
mitted to operate within the bands $3.525-3.575$ mitted to operate within the bands 3.525-3.575
megahertz $(\mathrm{MHz}$ 21.125-21.500 MHz and 26.960 megahertz. (MHz) $21.125-21.500 \mathrm{MHz}$ and 26.960 -
27.230 MHz . All transmitters must be crystal con27,230 MHz. All transmitters must be crystal con-
trolled. Powers of up to 10 watts for double trolled. Powers of up to 10 watts for double
sideband and 30 watts for single sideband transsideband and 30 watts for
mission will be authorised.
Persons wishing to obtain more information concerning the new Novice Licence should contact the Regulatory and Licensing Section of the Post-master-General's Department In the State in which they reside

## RAC ANTENNA

 BYVICOM

|  | Model | 1 mp | Frea | VSWR | $\mathrm{PRICE}_{\$}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BALUNS | $\begin{aligned} & \mathrm{BL} .50 \mathrm{~A} \\ & \mathrm{BL} .70 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 52 \\ & 75 \end{aligned}$ | $\begin{aligned} & 1.8 \cdot 38 \mathrm{MHz} \\ & 1.8 \cdot 38 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 1.3 .1 \\ & 1.3 .1 \end{aligned}$ | $\begin{aligned} & 1490 \\ & 14.90 \end{aligned}$ |
| COAX <br> SWITCHES <br> (2 \& 6 pos) | $\begin{aligned} & \text { CS 2A } \\ & C X-6 A(A) \\ & C X-6 A(B) \\ & \hline \end{aligned}$ | $\begin{aligned} & 52 \\ & 52 \\ & 75 \end{aligned}$ | $\begin{aligned} & 10300 \mathrm{MHz} \\ & 10500 \mathrm{MHz} \\ & 10500 \mathrm{MH} \end{aligned}$ | $\begin{array}{\|l\|} \hline 1.31 \\ 1.3 .1 \\ 1.31 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 21.00 \\ 54.00 \\ 54.00 \end{array}$ |
| TRAP DIPOLES | III-N | 52 | $\begin{aligned} & \hline 7 \mathrm{to} \\ & 28 \mathrm{MHz} \end{aligned}$ | 1.2.1 | 31.00 |
|  | AL480XN | 53 | $\begin{aligned} & 3.58 \mathrm{~g} \\ & 7 \mathrm{MHz} \end{aligned}$ | 1.21 | 31.00 |
|  | AL 24DXN | 52 | $\begin{gathered} 78 \\ 14 M H_{z} \end{gathered}$ | 1.2:1 | 24.00 |
|  | A.4VPN | 52 | 3.5 MHz | 1.2:1 | 24.00 |
|  | A-8VPN | 52 | 7 MHz | 1.2:1 | 26.50 |
| LISTENER | L1 | 75 | $\begin{gathered} 310 \\ 30 \mathrm{MHz} \\ \hline \end{gathered}$ | - | 14.90 |
| BALANCED FEEDER | BTF. 1 | 600 | - | - | 12.00 |

## ANTENNAE

MARK MOBILE (HELICAL):
HW-80 80M 6ft \$18.
HW-40 40M 61t \$18.
HW-20 20M 6ft \$16.
Bumper mount \$14, Heavy spring \$11
HY-GAIN
TH3JR 10-15-20 3 el yagi \$118 203BA 3el 20m beam \$168

## VHF ANTENNAE

Scalar Mobile Whips
M22 2 m fibreglass $1 / \mathrm{w}$ \$7.50
M60 6m fibreglass $1 / \mathrm{w}$ \$10.70
M21 2m steel Kw $\$ 6.90$
LINDENOW $2 m 5 / 8$ whip $\$ 21$, base $\$ 2.60$ RINGO ARX-2 6db 2m vertical \$35
Extension kit to improve
gain of the old AR-2, \$12

## ANT. ACCESSORIES

ME. 18 SWR PWR METER $3.150 \mathrm{MHz} \$ 22$ ME-UA UHF POWER METER \$69

AS-GM gutter damps $2 \mathrm{~m} \$ 7.50$
SH-7E lightning arrester $\$ 14.90$
CO-AX 58 u 45 c per m
RB 2 m mast amp (144-146 or $146 \cdot 148$ ) $\$ 32$
6 m and 2 m low noise preamps $\$ 18.75$
VICOM 70 cm low noise preamp $\$ 22.50$
Rotator -. CDR ham II 240v \$165

## CRYSTAL OVENS

pcb mount proportional control crystal ovens can be supplied for standard temperatures and voltages.
$\mathrm{He} \cdot 25 / \mathrm{u}$ crystal $\$ 19: 80$
Hc -6/u crystals $\$ 19.80$

## SPECIAL

KEN KP-202 handheld 2M FM 2 watts
incl 4 chs (40;50:1/4)
$\$ 130$.

- Nicad chargers
and nicads \$32


## - stubby helical

whip $\$ 8.90$
We do not sell "C.B." equipment.
vICOM INTERNATIONAL PTY LIMITED (03) 92-5398 139 AUSURN RD. AUBURN, YIC 3123 mengere Peter whme Agents:





# VK ZL OCEANIA DX CONTEST 1974 RESULTS 



## aSP

USA AMATEUR RE-8TRUCTURING
From an atticle in Jan '75 OST "as anticipated, FCC says we should have two routes of Incentive licensing. One would be the present basic HF ladder of Novice to General to Advanced (and Extra). It is termed Series ' $A$ ' or the 'short wava' domain defined as below 29 MHz . The second would be an expanded VHF-UHF progression with a new 'Communicator Class' as the entry point to feed technician ranks, and beyond $\mathrm{It}_{\text {, }}$ an 'Experimenter Class' - a sort of 'super-tech', paralleling the Advanced level. An amateur would thus have to hold two types of license authorisation to operate both below and above 29 MHz . The Extra Class would remain the top objective'.

8ARL
From the editorial in Radio ZS for Jan '75 it is observed that 1975 is the 50th Anniversary of the South African Radio League. ZS6IY in the editorial says "our hobby cannot be conducted in isolation and thus by its very nature it depends or Its fulfilmant on the co-operation of others there is no such thing as a one-way OSO".

TELECOM 75
The Secretary-General of the ITU proposes a World Radio Amateur Convention be held within the framework of Telecom 75 scheduled for Oct. 1975 (4th and 5th) in Geneva as part of the World Telecommunication Forum. Any member likely to be able to join in please write in to the Executive Otfice in Toorak.

ARE YOU UNFINANCIAL?
If you are your AR will have ceased and missing ssues cannot be sent free of charge when you do pay up. If you are financlal your AR will still be mailed out and you should still be gatting it so long as the address is correct and there are no artors which might have accidentally crept into the system.

## UHF SERVICES

For:
CONVERSION ALIGNMENT SERVICE
on all VHF, UHF and Microwave Equipment

## AGENTS FOR

## SCALAR ANTENNAS

## Also evailable:

2 metre and 6 metre RF pre-amplifiers, moon to be followed by a 70 cm low noise pre-amp for AM, ATV and FM use.

PHONE 914300
or by appointment at
129 TENNYSON ST. ELWOOD

## WILLIS AIR-WOUND INDUCTANCES

Take the hard work out of Coil Winding use - "WILLIS" AIR. WOUND INDUCTANCES

| Dia luch | $\begin{aligned} & \text { Turns } \\ & \text { per } \\ & \text { luch } \end{aligned}$ | L'gin Ineh | $B E W$. Equiv | ce |
| :---: | :---: | :---: | :---: | :---: |
| $1 / 6$ | 8 | 3 | No. 3002 | c |
| $1 / 2$ | 16 | 3 | No. 3002 | 88c |
| 5/8 | 8 | 3 | No 3006 | \$1.06 |
| 5/8 | 16 | 3 | No. 3007 | $\$ 1.06$ |
| $3 / 4$ | 8 | 3 | No. 3010 | \$1.28 |
| $3 / 4$ | 16 | 3 | No. 3011 | \$1.28 |
| 1 | 8 | 3 | No. 3014 | \$1.42 |
| 1 | 16 | 3 | No. 3015 | \$1.42 |
| $11 / 4$ | 8 | 4 | No 3018 | \$1.58 |
| $11 /$ | 16 | 4 | No. 3019 | \$1.58 |
| 2 | 10 | 4 | No 3907 | \$2.29 | Special Antenna All.Band Tuner Inductance

equivalent to 8. \& W. No. 38077 inchs Willis Pi-Coupler Unit - $\mathbf{\$ 8 . 0 0}$
T' length, 2" dia 10 T.PI. Price $\$ 3.96$ Relerénce: A. .'R L. Handbook. $196{ }^{\circ}$ Stockist ol Transmission Cables. Insulators and Hard Drawn Copper Antenna Wire Write for range of Transmisaion Cables

WILLIAM WILLIS \& CO PTY LTO
Abambacturers and liporters
77 CANTERBURY RD.. CANTERBURY
VIC. 3126 Phone 836.0707

## B.E.S NEWS

We are pleased to announce that the long awaited shipment of Hy-Gain antennae is now to hand. If you have previously ordered and not been notified then your antenna is not in this shipment. A further shipment is due to arrive within a month or so.

Plenty of rotators, baluns, mobile whips and mounts, VHF beams, co-ax switches, vertical trap antennas, trap dipole kits, SWR meters, FM transceivers, manual and auto keys, digital clocks, and digital clock radios, co-ax cable, low pass fiters, 70 ohm twin feeder cable, egg insulators, dummy loads, etc., in stock.

A shipment from KW Decca Electronics U.K. is expected to arrive very soon. This will contain antenna couplers, baluns, dummy loads, low pass filters and multi-band trap dipoles.
And, of course, Yaesu equipment for HF and VHF, including the new FT-620B, FT-220, FT-224, etc.

## A USEFUL HINT!

When constructing or repairing equipment and you have a screw or nut to place in an awkward-to-reach position, try holding the screw in the end of a length of spaghetti Insulation or stuck to the end of a screwdriver with a small piece of wax, and the nut partially screwed onito a piece of resin cored solder of suitable diameter or with 2 or 3 strands of thin solder twisted together.

ELECTRONIC
60 Shannon St., Box Hill North. Vic., 3129. SERVICES

OLO. MITCHELL RADIO CO. 59 Albion Road, Albion, 4010 N.S.W STEPHEN KUHL, F O. Box 56, Mascot, 2020

Ph. 88-2213
Ph 576630
Ph Day 6671650
A H. 3715415
S.A. Farmers radio pty. LTD.. 257 Angas Streat. Adelaide, 5000 Ph 231268 WA. H. R PRIDE. 26 Lockrant Strest. Como, 6152 Ph 604379

| OK1KYS | 84 | U020W | 1056 |
| :---: | :---: | :---: | :---: |
| OKIKDR | 80 | UK2GKW＊ | 2147 |
| OKIMGW | 80 | UR2REZ | 416 |
| OK2日GR | 75 | UR2RDO | 32 |
| OK2BEJ | 70 | UK3AAO | 4830 |
| OK2BGH | 70 | UA3ADO | 182 |
| OK2BJJ | 30 | UA3ABD | 85 |
| OKIIAR | 18 | UK3ABB＊ | 1734 |
| OK3KFO | 18 | UAAAL | 234 |
| OZ1LO | 2728 | UKAWAB＊ | 2440 |
| OZ4PM | 217 | UBSLAY | 780 |
| O25ME | 154 | UB50E | 320 |
| PAOOI | 243 | UBSVAA | 114 |
| PAOUV | 50 | UKSWAA＊ | 720 |
| SP2AVE | 392 | UKSVAA＊ | 559 |
| SPSTT | 75 | UK5Q日E＊ | 168 |
| SO9ABU | 16 | UKSICG | 145 |
| SP9DH | 8 | UKSQAA＊ | 44 |
| YuibCD | 469 | UA6DL | 1131 |
| YUINZW | 90 | UW6CA | 8 |
| YU2HDN | 18 | UK6LEZ＊ | 4048 |
| UKINAA | 18 | UK6AA」＊ | 891 |
| UC2WP | 264 | UK6FAA ${ }^{\text {a }}$ | 24 |
| UK2WAF＊ | 1120 | Check logs | m： |
| UK2AAA＊ | 41 | UP2日L，UK | AA． |
| UK2CAQ＊ | 27 | UAAPWW． | NAB， |
| UP2BAO | 50 | UAACAK． | WAK， |
| UK2BAS＊ | 3542 | UAAAA，UK | AQ． |
| UK2PAF＊ | 3404 | UDGYAA． | APP． |
| UK2BAO＊ | 95 |  |  |
| ASIA |  |  |  |
| JA 1OLT | 1040 | JATARW | 3978 |
| JAIAAT | 176 | JA7KXD | 1600 |
| JH1CXE | 168 | JATEWS | 188 |
| JA1KOX | 160 | JABBB | 1120 |
| JAOBMS／1 | 140 | JABOTE | 806 |
| JAIEM | 110 | JA8FBM | 68 |
| JAILB | 84 | JAgYEA | 4850 |
| JHILKH | 80 | JAgCIH | 3325 |
| JH1EJA | 55 | JA9CWJ | 728 |
| JH1BLX | 40 | JA9DUR | 480 |
| JAIEL | 12 | JAgen | 133 |
| JAIBUI | 8 | JAgLX | 95 |
| JA1BBZ | 2 | JADEZP | 405 |
| JA12SX | 2 | JAOIAD | 8 |
| JA2VUP | 9612 | UG6JJ | 4 |
| JA2CPD | 8277 | UL7FM | 1580 |
| JA2HGA | 7170 | UL7GBM | 8 |
| Ja2mya | 2348 | UH8BO | 162 |
| JH2NDJ | 2185 | UIBACI | 765 |
| JA2EG | 1573 | UKBIAA＊ | 1802 |
| JH2WMN | 858 | UJ\＆JAS | 368 |
| JH2PWQ | 351 | UJBAB | 8 |
| JH2日FT | 324 | UW9PT | 2431 |
| JA2XH | 258 | UASCBM | 1106 |
| JA2GXD | 210 | UW9WL | 854 |
| JH2RVP | 152 | UAGOCI | 392 |
| JA2VSS | 126 | UW9AT | 357 |
| JH2IRH | 24 | UAOBT | 39 |
| JA3YBF | 12897 | UAgYaR | 33 |
| JH3LXN | 5568 | UAgMY | 4 |
| JASCEK／3 | 2784 | UK90AD＊ | 957 |
| JA 3ARM | 588 | UKSLAA＊ | 564 |
| JA 3WHX | 208 | UK9HAC• | 444 |
| JAAAOR／3 | 108 | UAOFGM | 16638 |
| JH3BJN | 100 | UAOMI | 4450 |
| JA4XW | 8808 | UWOIX | 3408 |
| JA4BJO | 8400 | UAOCAV | 1428 |
| JAACLL | 882 | UAOJAY | 320 |
| JH4BHM | 300 | UAOSAU | 315 |
| JA4DZ | 110 | UAOACJ | 312 |
| JAAYVL | 18 | UKOLAB＊ | 6993 |
| JASEVO | 10 | UKOFAD＊ | 603 |
| JH6DVA | 8568 | UKOSAA＊ | 414 |
| JA6SVP | 6060 | UKOFAJ＊ | check |
| JAGAKW | 976 | Check Log |  |
| JABEDB | 864 | ULTTA |  |
| JABLCJ | 336 | UA9MFM |  |
| JATMJ | 6630 |  |  |
| NORTH AMERICA |  |  |  |
| VE3BbH | 6130 | W2HF | check |
| VE7FE | 1062 | WAKXV | 4428 |
| vetazo | 243 | WAWSF | 4424 |
| hR1AT | 2352 | WAAAPG | 2037 |
| PJ2VD | 264 | K4HWW | 108 |
| W1EVT | 9471 | Wssex | 9820 |
| W1BPW | 1071 | KSLMG | 8505 |
| WA1SCX | 85 | W50B | 2862 |
| W2GXD | 9828 | WAGEPO | 18480 |
| W2LWI | 6330 | WEKYA | 1388 |

## Hamads

- Elohe linas iree 10 all W.I.A. mambers.
- 86 per 3 cms . Ior other amateurs and $S . W . L$.' .
- Copy should be in block lettere or typescript. elgned and lorwarded to The Editor, P.O. Box 150, Toorak, Vic., 3142.
- Excludes commerclal adveriaing
- Closing date for Hamada la the 3rd day of the month preceding publication.
- OTHR means the adveriser's name and addrese are correct in the current Australlan Callbook.


## FOR 8MLE

Tranecelvere 3.5 to 30 MHz bands. Only used tow hours. Complete with AC PS \& Manuals In English. ICOM IC700, solid state except transmit mixer \& finals, $\$ 200$ a $\$ 250$. Also TRIO TS500 Including exire VFO. \$300 ONO. Syd Clark VK3ASC, OTHR or Telephone (03) 45-3002.
Mallicraftera SX 117 Receiver - HT 37 Transmitter. 80-10 Mx, VOX, SSB - CW - AM. Really good condition, $\$ 300$ ONO. VK4FT, M. Miller, 95 Finucane Rd., Capalabe. Brisbana. Old. 4157.
Yeanu FT1018. Lillle used, unmarked, as brand new with matching Yaesu external speaker and accessories. \$475. J. D. Moyle, VKAZT, Yarwon, 4694. Old.

Amateur Gear including serviceable BC348, home bullt bandswitched linear 6146s. power supplies, SSB exciter, $\$ 100$ the lot to clear. VK3AE, OTHR. Ph. (03) 60-0471 exi. 283 bus.: (03) 211 -7965 A.H.
Olglial Frequency Counter with pre-scaler to 200 $\mathrm{MHz}^{6} 6$ digit LED display, excellent cond. $\$ 120$. VK3UV. Ph.: (03) $90-6424$ (evenings only).
KEN KP202 Hand held 2 Mx FM Transceiver. modified to include earphone socket. Includes Ch 40, 508 R1. R4, also helical antenna, 10 nicads a charger - only 4 months old, as new condition. The lot tor $\$ 180.00$. B. Bathols VK3UV. 3 Connewarre Ave.. Aspendale 3185. Ph. (03) 90-6424 (evenings only).
BO toot Teleacople Tower, attached to 15 sq. 4 bedr. B/V home. Ideally situated on hill. excellent take off in all directions with nice outlook. Large brick garage and shack. easy to maintain OTH for XYL witt considerate neighbours. Contact VK3ANI (soon to be VKB) in UpDet Ferntree Gully on (03) 758-5791 for this bargain at \$34.900.
TCA 1877 aingle channel, very clean condition, clicult and mobile mount, \$65 ONO. VK3BAX. OTHR. Ph. (052) 97401 evenings.
Yeesu FTDX 560, $\$ 300$; Tower 30 ft., s75: Mosley Beam TA33 Jr. S75; TCA 1675 FM 2 m \$75: Realistic DX 150日, s125. G. Snell, 305 High St., Chatswood 2067.
MR6A, 6 cnannel, crystals tor B and 1 CW whip and moblle mount, vory clean, $\$ 65$. Bendix BC433 LF RCV with 240 V supply, good cond., $\$ 20$. 522 Tx and RCV, good cond., $\$ 25$. AR88 Tuning Unit only \$10. Peter Cosway VK3zXO. 10 Aitken St., Clitton HIII, 3068. Ph. (03) 489-1385.
swan 350C with crystal mike and SWR meter and 240 V PSU, $\$ 300$. Account Late VK2BSR, contact Mrs. Aingrose, OTHR or Ph. Forgter 306.
Drake A4C Rx with nolse blanker plus xtals for 160,31 and 19 metres, iwalve hours use only. \$625. VK3AIF, 8 Abassia St. N. Balwyn. 3104. Ph. (03) 857-5401.
FT DX570 with FV401 external VFO. $\$ 450$. VK3AIF, 8 Abassla St., N. Ealwyn, 3104. Ph. (03) 8755401. Yaesu FT/FP 200, cond. as new, at S.H. price. unmodilied, with manual, S375 ONO. VK3EM, QTHR. Ph. (03) 58-7745.
Byar R-33 disc recorder, 33, 45, 78, RPM, with sapphire cutters (3) and level meter. with portable case. cast alum. turntable, $\$ 25$. Tape Re corder, HB $71 / 2^{\prime \prime}$ sec. with 12 reels of misc. tapes. xtal mic. and bulk eraser, spare reels, in port. case and working order, \$15. VKEM, OTHR. Ph. (03) 58-7745.
Carphone AWA MA10c H :g? band, dual channel, DC PS (less vibs), cables and handset cradie, mod. to 2 Mx , no xtals, with speaker, EC, $\$ 20$. TV Healing, $17^{\circ}$ lable model, working order with all chennels, useful for shack checks. In cabinet, $\$ 20$. Filter xtals in $k H z, 444,446$, (2) 447, 448,

450, 452, 454 and 458. For BC 348, 912 and 917. the lot, S5. VK3EM, OTHR. Ph. (03) 58-7745.
AWA MR10c ( 6146 Final) low band, FM, carphone original, as new condition, translstor (2) power supply, control unit and cables. \$42. Pye Reporter on 6 m with xial. Rx tuneable, $\$ 20$. VK2PT, OTHR. Ph. (048) 43-1308.
FTDX100 Transcolver, 80-10 Mx, 230V DC, good condition, s275 ONO. 4 Channel 2 Walt FM 146 MHz excliter, $\$ 20$, less xtals. VK3AFQ, OTHR. Ph. (03) $96-2414$ A.H.

## WANTED

455 kHz Mechanical Filler with a band pass of either 1000 of 1500 Hz . VK3ACA, QTHR.
Command Transmitter for wrecking. Exterior condition of trequency immaterial. VK3AFQ, OTHR. Ph. (03) 96-2414 A.H.
Are there any amataura interested in exchanging lapes of old lime radio. Television programmes? Either Australian, British or American? Also, are there any collectors of cinema material? $T$. King VK2ATJ. PO Box 45. Kensing!on, NSW, 2033.
Any back lesues of:- E:ectronics Australla, ElecIronics Today. Amateur Radio or any other magazines for a school llbrary. Contact: G. Scoth, VK3ZR ex VK3ZIP, OTHR. Ph. (03) 89-4645.

> QSL CARDS - VK3AJU
> NOVUS MATHEMATICIAN 4510 immediate delivery $\$ 81$ p.p. Student T/Ex avallable NORSTATE ELECTRONICS

> Box 582, Shepparton 3630

## Silent Keys

Mr. C. C. OUINN<br>VK2AWO<br>Mr. R. G. GARAETT<br>VK28RG

On 14 March 1975, Noel 8torck VK3zO passed away rather suddenly In Honalulu, Hawall whan on hia way back to Australia after a hollday In USA, with his wile.

The writer took over the running of the VK3 Inwarda OSL Bureau from Noel in early 1981 - we had the casleal of handovartakeovers one could wish for due to Noal's beling uD-to-date with the Bureau affalis! VKSZO, a PMG Talephone Technician of tong alanding, had not enloyed good health for the past two years and had had a boul of hosphalisalion, but recovered sutficiently to enable him to commence (and almost finlah) his one blg wish of vislling Uncle Sam's counity. He operated CW malnly, almast dally, from way back. His body was cramated and brought back to Ausiralla.

Efic Trabilicock
L30042

## QSP

FH Bc BAND
II is interesting to note from circular letter $\mathbf{B 1 1 2}$ (T118) of 21st March from the Sec. of the ABCB that Interested purchasers of FM receivers should be advised that only those covering the whole frequency range 88 to 108 MHz will provide adequate reception of the developing Australian FM service. He advises that action is being taken now to transter the Newcastle national TV station from Ch $5(101-108 \mathrm{MHz})$ to Ch 5A to tree the band 101-108 MHz for FM Iransmissions in Sydney and Newcastle.

## SILENT KEY

## WARWICK PARSONS VK5PS

The sudden death of Warwick a fow days belore Christmas left all of us stunned at its unexpectedness. Talking with him a month before, he was full of plans for making the bands on SSB with a new FT200, quite an event for such a CW man.

But the "Reaper" is no respector of oup personal plans for the future and we, his friends. are the poorer for Wanwick's passing.

Warwick was associated with the Council of the VKS division from Immediately after the war until his death, having held the oftices of vicePresident, President, Immediate Past-President and Public Otticer. During that time we remember how highly regarded were his Divisional notes to AR, and the weekly contribulion to the "Advertiser" under his callsign SPS which did much to keep a good image of amateur radio belore the publle.

Whenever there was something to be done for the instifute. Warwick would be there assisting in his usual quiet way. So we lind him caplaining the CW team at the Annual Pienic CW/Phone cricket match. a delightiul experience for all. for his sense of fun and the ridiculous was so characteristic of Warwick that we will always remember him thus. As late es November last we were "entertained" al one of his legendary "auctions" when most of us were privileged to see him in action for the last lime.

Warwick was no "Yes" man. He held very strong principles and put them into practice, speaking his mind forcetully. but with due regard to the feeling of others. Thus he was an excellent chairman at Institute meetings. never forgetting that Amateur Radio is a hobby.

He had three great loves: love tor his tamily, love for Amateut Radio. love for the Institute.

His greatest love was for his lamily and it is to them that our hearts go out in sympathy and compassion.

May they take comfort In the knowledge that Warwick was respected and loved by many including those who attended his funeral at Centennial Park, and by all who counted it a privilege to know him.

Warwick Parsons VKSPS was one of Amateur Radio's "GREATS".
VK5×L

## HAM HEADQUARTERS!

## IC21A - \$298 DV-21 - \$298 BOTH FOR $\$ 570$

DV- 21 DIGITAL VFO employs a PLL synthesised system with 59 ICs, 34 transistors, I FET and 37 diodes. It can be INTERFACED with the IC22 or any 2 m transceiver with $44-45 \mathrm{MHz} \mathrm{rx} 18 \mathrm{MHz} \mathrm{tx}$, 10.7 MHz i.f., Iwr side hetrodyne, $8 \times$ basic freq. for $t x$ and 3 or $9 \times$ basic frea. for rx . Only a slight modification is required for such equipment and is detailed in the operating manual. It operates in 5 or 10 KHz steps from 146 to 148 MHz and can scan either empty frequencies, or the frequencies being used, whichever you select. Complete separate selection of the transmit and receive frequencies is as simple as touching the keys. When you transmit, bright easy to read LEDs display your frequency. Release the mic switch and the receive frequency is displayed. These are two programmable memories for your favorite frequencies. You won't believe the features and versatility of the DV- 21 until you've tried it. Price $\$ 298$ includes VICOM 90 -day warranty.
THE IC21A is the IOw base station or mobile ( $146-148 \mathrm{MHz}$ ) with variable power contral, adjustable deviation, 24 channels, built-in discriminator meter, S meter, SWR meter, PA protection, modular circuitry, runs from 13 v DC or 240 V AC. Complete with three channels. Price \$298

SEIWA SV. 230 2M FM, mobile incl 3 channels. 25 watts! \$210


## 6 METRES SSB

AUSTRALIA'S BEST SELLING 2M. FM rig - the IC-22A release) \$435
TRIO TRANSVERTER TV-506 \$212
ICOM $\$ 445$

## 2 METRES SSB

YAESU FT- 220 SSB/CW/FM solid state transceiver $\$ 480$
TRIO TRANSVERTER TV.502 \$243

IC22A 2M FM TRANSCEIVER replaces the IC22 and is identical electronically, but features a redesigned front panel with easier to read channel selection. It features switchable power 1 or 10 watts, 22 channels, solid state T/R relay, built-in PA protection, filtered d.c. voltages. The unit comes complete with mounting brackets, microphone, cables. etc, and three channels $-1 / 4 / 50$. Price is $\$ 210$ incl. tax and VICOM 90-day warranty:

INSPECT ALL THE QUALITY ICOM PRODUCTS AT OUR SHOW ROOMS.

MF TiANSEEMES
Atlas-210/215
SSB Transceiver
Atlas 210M/215M
(Mars Model)
AR-230 Power Supply . . $\$ 150$
AR-200 Portable AC
Power Supply
$\$ 96$
Mobile Mounting Bracket
Deluxe Plug-in Model
$\$ 47$
DC Battery Cable . . . . . free Mobile Bracket Kit $\$ 6$

## OTHER HF GEAR

YAESU FT101B AC-DC transceiver. Avl EX. STOCK at $\$ 585$. - YAESU FV.101B VFO for FT101B-\$102.
YAESU FT75B 80w pep transceiver $\mathbf{-} \$ 245$.

- AC pawer supply \$65, DC power supply - \$75.
TRIO TS 520 all band transceiver
- \$550.
- external VFO $\$ 80$

YAESU FT-201 \$505
YAESU FT-2100B Linear $\$ 388$


> VICOM INTERNATIONAL PTY LIMITED (03) 82-5398 139 AUBURN RD. AUBURN, VIC 3123 Manager: Peter Williams GEELONG: Phil Fitzherbert Ph (052) 436033 A.C.T.: Andrew Davis, 32 Kalgoorlie Cres, Fisher, 2611 Ph (062) 884899 QLD: db Electronics, 21 Christine Ave., Miami, 4220 Ph (075) 351798 W.A.: Avio Electric, 264 High Rd, Riverton, 6155 Ph (092) 574060


## SOLID STATE

## TRANSCEIVER

## The Sensational ATLAS-210/215

TRANSMITTER SPECIFICATIONS:

- Circuit: Broadband design eliminates transmitter tuning. Single conversion from I.F. to output frequency. Includes ALC and infinite VSWR projection.
- Frequency Control: Internal VFO automatically provides transmission on exactly the same frequency as is being received. Rear socket provides for plug-in of 2nd VFO or crystal oscillator for separate control of transmit and receive frequencies, or for network and MARS operation.
- Power Rating: 200 Watts P.E.P. Input and CW input on 160, 80, 40,20 , and 15 meters. 120 Watts on 10 meters. ( 50 ohm resistive load 13.6 volt 0.C. supply.
- Power Output: 80 watts minimum P.E.P. on 160 through 15 meters, 40 watts minimum P.E.P. on 10 meters. ( 100 watts typical on 160 through 15 . 50 watts typical on 10 meters.)
- Emission: SSB (selectable USB or LSB), and CW.
- Unwanted Sideband Suppression: Better than 60 db at 1000 cycles.
- Carrier Suppression: More than 50 db below peak power.
- Intermodulation Distortion: Approximately 30 db below power.
- Spurious and Image Output: More than 40 db below rated power.
- Harmonic Output: More than 35 db below rated power.
- CW Keying: Manual send-receive. Semi-break-in when VOX accessory is installed in AR-117 power supply.
- Transmit Control: Press-to-talk with mic. button, or manual transmit with panel function switch. Automatic voice control when VOX accessory is installed in AR-117 power supply.
- Microphone: Dynamic or Crystal. Plug requirement: Standard phone plug, 3 circuit, $1 / \mathrm{in}$. diam.


## RECEIVER SPECIFICATIONS:

- Super Selectivity: A new 8 pole ladder design crystal filter provides unequaled selectivity. Frequency: 5520 kc . Bandwidth at $6 \mathrm{db}: 2.7 \mathrm{kc}$ for audio bandpass of 300 to 3000 cycles. Bandwidth at 60 db down is 4.3 kc . Bandwidth at 120 db is only 9.2 kc !! Ultimate rejection is greater than 130 db !!
- Circuit Design: No preamplification of signals. After passing through tuned circuits the signals are coupled into a low noise mixer using a double balanced diode ring. This provides exceptional immunity to overload and cross modulation, outperforming any receiver with R.F. amplifier.
- Sensitivity: Requires less than 0.3 microvolts for 10 db signal-plus-noise to noise ratio. (Typically $0.2 \mu \mathrm{v}$.)
- Image Rejection: Better than 60 db .
- Internal Spurious: Less than equivalent $1 \mu v$ signal.
- AGC Characteristics: Audio output constant with in 4 db with signal variation from $5 \mu v$ to more than 3 volts.
- Overall Gain: Requires less than $1 \mu v$ signal for 0.5 watts audio output. (CW carrier.)
- Audio Fidelity: 300-3000 cycles, plus or minus $\mathbf{3} \mathbf{d b}$.
- Audio Power: , 2 watts to a 3 ohm speaker, less than $10 \%$ distortion.
- Internal Speaker: 3 inch, 3 ohm, 68 oz. magnet. Rear jack permits plug-in of headphones or external speaker. When Transceiver is plugged into the AR-117 power supply, a front facing $3 \times 5$ speaker is automatically connected.
- Meter: Reads S unitsofrom 1 to 9, plus 10 to 50 db .
- Calibrator: Provides 100 kc check points for accurate dial setting.

SOLE AUSTRALIAN DISTRIBUTOR . . .

VOL. 43, No. 6
JUNE 1975

## CONTENTS

technical -

| A Repeater Identifler | 15 |
| :---: | :---: |
| A Review of the Atlas Tranaceiver | 19 |
| Commercial Kinks - FT75 | 2 |
| FT-101 Technical Notes | 7 |
| Newcomers Notebook | 1 |
| Power Transiormers The Beginnings | 11 |
| Remote Crystal Switching |  |
| The Pioneer 8-Track Cartridge Player in the Moblle Shack | 13 |
| The ST-5 RTTY Demodulator | 5 |
| GENERAL - |  |
| At the 1975 WIA Annual Convention |  |
| Perth 2 Metre Repeater | 11 |
| The Executive Annual Report | 29 |
| The 39th Annual Federal |  |
| Convention of the WIA | 28 |

## DEPARTMENTS -

| Around the Trade | 34 |
| :--- | ---: |
| Awards Column | 33 |
| Contests | 26 |
| Hamads | 34 |
| Intruder Watch | 27 |
| Letters to Editor | 25 |
| Magazine Index | 25 |
| Project Australis | 23 |
| QSP | $3,4,18,34$ |
| Silent Keys | 34 |
| VHF-UHF - an expanding world | 32 |
| VK-ZL Oceanla DX Contest Rules |  |
| 1975 | 26 |
| YRCS | 27 |
| 20 Years Ago | 26 |

## COVER PHOTO

This interesting photo shows much of the works of the exciting new Allas transceiver. An AR review appears on page 19.

Photo: Barrie Bunning

# HAM RADIO SUPPLIERS <br> 323 ElIZABETH STREET, MELBOURNE, VIC, 3000 

Phones: 67-7329, 67-4286 All Mail to be addressed to above address
Our Disposals Store at 104 HIGHETT ST., RICHMOND (Phone 42.8136) is open Mondays to Fridays. 10.30 ann. to 5.0 p.n., and on Saturdays to midday.

# ALSO AT: <br> 390 BRIDGE RD. RICHMOND. 425174 AND DISPOSALS STORE: 104 HIGHETT ST. RICHMOND. 428136 

KENWOOD/TRIO TS 5205 BAND SSB TRANSCEIVER


Specifications
Frequency Range: 80 metre band - 3.50 to 4.00 MHz ; 40 metre band -7.00 to $7.30 \mathrm{MHz} ; 20$ metre band - 14.00 to $14.35 \mathrm{MHz} ; 15$ metre band - 21.00 to 21.45 MHz : 10 metre band - 28.00 to 28.50 $\mathrm{MHz}, 28.50$ to $29.10 \mathrm{MHz}, 29.10$ to 29.70 MHz ; WWV $\rightarrow 10.00 \mathrm{MHz}$.

Mode (Receive only) USB. LSB, CW.
Input Power: 160 watts on 80 to 15 metre band, 140 watts on 10 metre band.
Nett amateur prices:
TS $520 \$ 550.00$ with PTT Mike

YAESU MUSEN FT101B
SSB/AM 240V AC \& 12V DC
operation,
160-10m transceiver .... .... .... .... \$585

RINGO AR-2
135-175 MHz. Antenna has 3.75 dB
gain

## YAESU FT/FP200 TRANSCEIVER

 P.S.U. COMBINATIONMIDLAND 13-870D 5 WATT
AM, 23 channel, 11 metre transceivers, 12 V DC operation

## 5 WATT

SSB/AM, 23 channel, 11 metre transceivers, 12 V DC operation

144-148 MHz TWO METRE EQUIPMENT NOW WITH 6 CHANNELS

KEN KP-202, 2W. 144 MHz band. FM. Hand leld transceiver with crystals for 6 channels, Ch. $40-50$. R1, R2, R3, R4 $\$ 155$

KCP-2 NICAD battery chargers \& 10 Nicad batteries $\$ 35$

Genulne leather carrying case for KP-202
$\$ 5$
Agk for a package doal prics


TRIO MOBILE TR7200C
2 METRE FM TRANSCEIVER
22 Channels, fitted with Ch. 1 and 4 repeaters. Technical Data: Transmit 10 and 1 wall positions Max. trea. deviation +15 kHz . Spurious response -60 dB . Receiver less than iw for 30 dB SW selectivity. 20 kHz at 60 dB down: 40 kHz at 70 dB down.
$\$ 235$ - Extra Channel Crystals $\$ 10$ Set
BARLOW WADLEY XCR30 Mk. II RECEIVER - LATEST MODEL $\$ 269$


## RF AMPLIFIER AM-4306/GRC

Origlnally used in conjunction with PRC10 which covers $30-75 \mathrm{MHZ}$ FM. Requires $1-4$ watts drive and gives a nominal 25 watts out. Brand new in sealed box with complete service and user manuals.

RF SIGNAL GENERATOR Model TE-20D SPECIFICATIONS


Dial has 7 separale band TE-200 covers 120 kHz - 500 MHz .
( 6 Fundamental Bands \& 1 Harmonic Band)
Frea. Accuracy: + or- $2 \%$
Audio Output: to 8 voll
Internal Modulate: 400 Hz approx.
Tube: 12BH7A, 6AR5
Power Source: 105-125V, 220-240V $A C 50 / 60 \mathrm{~Hz}, 12$ watts.

TE-20D employs a xtal socket and can be used as below:
a.-Self-Calibration. b-Marker Generator

Small size - Space saving.
Printed Circuit for a uniform characteristics.
Dimensions: $140 \times 215 \times 170 \mathrm{~mm}$. Weight: 2.8 kg .
Price $\$ 52.50$, P\&P $\$ 2.00$

DELUXE
Model TE-22D
AUDIO GENERATOR
SPECIFICATION


Freq. Range: Sin : $20 \mathrm{~Hz}-200 \mathrm{kHz}$ Square: $20 \mathrm{~Hz}-25 \mathrm{kHz}$ Output Voltage: Sine: 7 volt

Square: 7 volt
Output Impedance: 1000 ohm Frq. Accuracy $+3 \%+2 \mathrm{~Hz}$
Distortion: Less than $2 \%$
Tube Complement: 6BMB
12 AT7, 624
Power Source: 105-125, 220240 V AC, $50 / 60 \mathrm{cos}$. 19 W With Allenuation Range 4 Ranges-1/1. 1/10, 1/100 1/1K
$\$ 63.50$

GRID DIP METER
Model TE-15
SPECIFICATION
Freq. Range: $440 \mathrm{kHz}-280 \mathrm{MHz}$ in 6 Coils
A Coil $0.44-1.3 \mathrm{MHz}$
B Coil $1.3-4.3 \mathrm{MHz}$
C Coil 4.14 MHz
D Coil 14.40 MHz
F Coll $120-280 \mathrm{MHz}$
Transistor: 3 TRs 1 Diode Meter: 500 u A Fs.
Battery: 9V (BL.006P)
Baltery: 9 V ( ${ }^{\text {BL. } 006 \mathrm{P} \text { ) }}$
Dimensions:
$180 \times 80 \times 40 \mathrm{~mm}$
Dimensions: $180 \times 80 \times 40 \mathrm{~mm}$
Weight: 730 g
Price $\$ 39.50$

JUNE 1975

Published monthly as the official journal by the Wireless Institute of Australia.
Reg. Office:
$2 / 517$ Toorak Rd., Toorak, Vic. 3142
P.O. Box 150, Toorak, Vic., 3142

Editor:
Bill Roper
VK3ARZ
Assistant Editor:
Bruce Bathols
VK3UV
Technical Editors:
Bill Rice
VK3ABP
Ron Cook
Publications Committee:
John Adcock
Rodney Champness
Syd Clark
Ron Fisher
Ken Gillesple
Nell Osborne
Ken Reynolds
Roly Roper
Gil Sones
Contributing Editors:
Brian Austin
Deane Blackman
Eric Jamleson
Jim Payne
VK3ACA
VK3UG
VK3ASC
VK30M
VK3GK
VK3YEI

Drafting Assistants
Gordon Rowe
Harry Cane
Business Manager:
Peter B. Dodd
Enquiries and material to:
The Editor.
PO Box 2611W, GPO Melb., 3001
Copy is required by the third of each month. Acknowledgment may not be made unless specially requested. All important items should be sent by certified mail. The Editor seserves the right to edit all material, including Letters to the Edltor and Hamads, and reserves the right to refuse acceptance of any material, without specifying any reason.

## Advertising:

Advertising material should be sent direct to P.O. Box 150, Toorak, Vic., 3142, by the 25th of the second month preceding publication. Phone: 24-8652.
Hamads should be sent direct to P.O. Box 150, Toorak, Vic., 3142, by the 3rd of the month preceding publication.
Printers:

33 Roberna Street,
Moorabbin, 3189. Tel. 956462.

Greetings to the rest of Australia from the VK6 division. VK6?? Where is that?

We are the other third of this great continent to the West of you where most of the mineral wealth of our great country is mined. This is the home of the black swan and the mythical sand groper. There is a small but thriving amateur body, some 300 of which belong to the West Australian Division of the WIA.

Aside from the regular activities, which include ATV, repeater operation and RTTY, there is the embryo of what promises to be the finest radio museum in Australia. The WA VHF group, a sister organisation, has been steadily collecting and restoring both small and large items and slices of Australia's and West Australia's pioneer radio history. The Melville City Council has been busy restoring the old transmitting hall and developing park lands around Wireless Hill, both historic landmarks in their own right, as the heart of the project.

Amateur activity spreads from the North to the South. Our Northern frontiers are represented by Keith, VK6KC, at Kuri Bay and Father Basil, VK6NA, at Kalumburu Mission. Extending further alield we have the boys on Christmas and Cocos Islands. To the South we have the virile and active Southern Electronics Group. This body runs a hamlest, which has become an annual tradition, to which members from all over the state travel to enjoy some of our finest scenery and comradeshio.

Despite rumours we are a friendly folk and welcome visitors from the underprivileged Eastern areas. So . . . if you survive the trip over that last diminishing unsealed stretch of road approaching the WA border, what about dropping in on one of our meetings on the 3rd Tuesday of every month.

```
A. M. AUSTIN VKGMA Divisional President
```



A FEW IONOSPHERIC PREDICTIONS FOR JUNE (all limes are GMT)
VK2 to $G$ seems possiblo on 20 metres shorl paith about 2300 h and long path 22 to 0000 h with VK3 10 G-land 19.22 h shorl path and the same as VK2 tor long path. Perth to G seems more problematical a short path but 07.08 h and around 00.00 h for long path. However Perth 10 G -land looks better on 7 MHz shorl palh from 18.23h whereas for VK2 on the same band sholl palh looks likely aboul 19-21 00n

VK2 to W1 on 14 MHz looks possibla around 0300 and on 7 MHz Irom 06-11.00h VK6 to Wi looks rathei dismal - maybe an hour or so aboul 9-11.00h on 7 MHz but litile if anything on 14 MHz

On all bands from 21 MHz upwards the chalts show large blank spaces excepl to VKO and local hauls. Daiwin shows up as olfering something on 21 MHz as also does the N-S path from most areas (eg VK7 io J) None of the charls shows anything much for 28 MHz
RADIO SCOUTING
New terms in the language come and go but por haps Radio Scouling is one which may stay 11 could take over from that abbreviation JOTA which Is a reminder of the notepad upon which 10 |ol down a few mnemonics it would be a geat pily however if the word Jamboree lell by the wayside "Last year" we read in the 17in Reporl "we men. tioned the amazing growith of 'Radio Scouting' the extension of JOTA inlo the normal scout programme throughout the year we can salely torecast that this section (giving examples of Radio Scouling as opposed 10 a one hil recorl on JOTA) will grow sieadily year Dy year


This issue of AR contains 36 pages, but even so I was not able to include everything I wanted.

June lissue was to be exclusively VK6. However, the tremendous pressure for space in the pages of AR precluded this. (At present there are sufficient articles to fill the next 8 issues!)

AR is more than a technical magazine - it ls also a news magazine.
In addition to the VK6 articles, an equipment review, and a topical article on a repeater identilier, you will find some important news and information.

As well as the many regular news columns, make sure you read the Executive Annual Report, balance sheet and siatistics, the Federal Convention report, Project Australia, and the many QSP paragraphs.

This is Australian amateur radio, happening now.
It concerns you - Are you concerned?

## BILL ROPER VK3ARZ

NEW PREFIX
REF advises all taRU sister socleties that during May 1975 French Radio Amateurs will use the prefix TK to celebrate the golden Jubile of the foundation of R.E.F. Thus F6XYZ will be able to use TKGXYZ. The REF also advises that its OSL bureau is located at 2 Square Trudaine 75009 Paris, France.

IT CAN'T 日E TRUEI
OST for Mar 75 gives the latest Honour Roll for DXCC being the top ten numerical totals. Over 630 stations are listed ranging from 321/354 down to $312 / 315$. The first figure is the participants' total countries less any credits given for deleted countries whilst the second numeral represents the total credits Including deleted countries. Only

## AT THE 1975 WIA ANNUAL CONFERENCE (Report on page 28)

2 VK stations appear in the list compared with 6 ZLs. The two VKs are VK4QM at $320 / 351$ and VK5MS at 314/342. This seems a numerically poor performance for Australasia.

## MPORT LICENSINO

Many amateurs will be aware of all the various problems which arise when a country feels compelled to impose import llcensing to conserve overseas funds or for other essential reasons. "Break-In'" for March '75 gives some guidelines to amateurs in New Zealand for the purchase of equipment requiring an import licence. Apparently the Idea ls not to stop the importation of amateur equipment but to reduce It. II nothing else import licensing can help the home brewers.
CALL SIGN INFORMATION
Is your call sign correct in the institute's membership records? Have you acquired your licence In the past year or two and not advised your Division or the Executive Office of the new call sign? It is known that many call signs have been acquired or changed but nothing has been notified by the member. Please remember that the WIA Call Book call sign details derive from Radio Branch records but WIA membership details derive from the members themselves.

## SUNSPOT NUMBERS

The Swlss Fed. Observatory, Zurlch, quotes a smoothed mean for September 1974 of 32.1. The provisional mean sunspot number for March 1975 is 12.0 and predictions of the smoothed menthly sunsopt numbers for the next few months are 19 for April 1875 dropping by one each month to 14 for September 1975. The smoothed mean for August 1974 was 33.1 and the revised ligure for July 1974 was 34.0 .
PREFIXES FOR AMSTERDAM
During 1975 Amsterdam will be celebrating the 700th jubilee and a special station manned by amateurs of VRZA In Amsterdam will be on air from time to time with the call PA700ASD (Papa Alpha seven hundred Alpha Sierra Delta). QSL cards for this will go via P.O. Box 400 Rotterdam, the Dutch OSL Bureau. Also all amateurs living in Amsterdam may change their preflx to PA7 during 1975. An Award is also on offer for the above. Details supplied by VRZA


L to R: Laurie VK4zal, Norm VK4NP, Colin VK5hi, lan VK5QX, and Neil VKENE.


L to R: Peter VK3ZPA, Eddie VK1VP, VKiYs, lan VK2zIU, Andrew VK3FJ, Rusaell VK3NT and michael VK3BDL.


L to R: lan VK50X, Nell VK6NT, Peter VK7PF, Peter Dodd VK3CIF (Federal Manager), Keith VK3YO, David Wardlaw VK3ADW (Federal Presidenl), Ken VK3ACS, Peter VK3ZPA, and Eddie VKiVP.

## The <br> ST-5 RTTY Demodulator

VK6 DIVISION

This demodulator unit comprises two type 709c linear integrated 'op amps', one used as a limiter and the second as a trigger stage, which in turn switches a Motorola MJE-340 transistor used as a keyer for the tele-printer. This transistor switches the printer from mark to space.

It has a balanced linear discriminator for 850 Hz and 170 Hz shift, switchable from the front panel giving the operator a choice of 2125/2975 tones or 1275/2125 tones for mark/space, and a tuning meter is provided along with take off points for an oscilloscope if preferred.

Also included on the front panel is a Normal/Reverse switch, a Standby/Run switch, Mains On/Off, Indicator Lamp and CW Jack. The unit is complete with all Power Supplies for the Demodulator, and for driving the Tele-printer Magnet Itsêlf. These are mounted to the rear of the unit and can be seen in the photo of the top of chassis, i.e. Transformer, Magnet supply Smoothing Capacitor and dropping resistors, while in the photo of the underside of chassis shows the smoothing capacitors of the demodulator supply.

On the rear of the chassis there are the audio input, FSK, and Printer Jack Sockets along with fuse and CW Shift Control. The complete unit is housed in a dark grey metal case, and is 5 in . high $\times 4 \mathrm{in}$. wide $\times$ $101 / 2$ in. deep, these dimensions being less the feet.

It is proposed at a later date to make add-on units to produce auto-start and


anti-space, along with an oscilloscope unit to be added in the same case.

The complete kit for the unit is available from the VK6 Division of the WIA, PO Box N1002, Perth 6001, as follows:
(a) ST5 Kit complete - $\$ 70.00$ post paid. The kit comprising metal case, chassis panel, meter bezel and panel decal, printed circuit board, mains transformer, all diodes, transistors, and ICs, meter, set of resistors, capacitors.
plugs, jacks, etc., with Instructions and board layout.
(b) Printed circuit board and layout $\$ 4.5 \mathrm{C}$ post paid.
(c) Mains transformer to suit board $\$ 10.70$ post paid.
(d) Case chassis and all metal work $\$ 9.50$ post paid.
(e) Set of diodes, transistors and ICs $\$ 10.00$ post paid.
(f) Set of toroids - $\$ 2.00$ post paid.


## GIiMnomingram



## The Name Everybody Knows

R. H. Cunningham is the name to know when it comes to superior quality communications and electronic equipment and components. Names of products that have proved themselves in the field of international electronics; products such as Sennheiser microphones and test equipment, Eddystone communications receivers,

Bulgin components, Sonnenschein batteries, Alert fuses, Paso sound equipment, Dow-Key RF components, Stolle aerial rotators, Millbank PA equipment to name some. But let us tell you more and in detail. . . . WRITE NOW ana we will register you to receive our FREE monthly Technical Library Service Bulletin.

493.499 Victoria Street, West Melbourne, 3003, P.0. Box 4533, Melbourne, Victoria.

Phone 329 9633. Cables: CUNNIG MELBOURNE. Telex: AA31447
N.S.W.: Sydney. Ph.: 909 2388. W.A.. Perth. Ph.: 494919. QLD.: L. E. Boughen \& Co. Ph.: 708097. S.A.: Arthur H. Hall Pty. Ltd. Ph.: 424506.

## FT-IOI Technical Notes

Qulte a number of earlier FT101 owners have been rather perturbed to have reports of being off frequency on some bands, when the clarifier is off or centred correctly and the presel controls have been set up correctly.

Investigation showed the culprit to be the crystal conversion oscillator on the RF Board. This oscillator is coupled to both Rx first mixer and $T x$ second mixer, and it appears that they reflect a different load on the oscillator, causing the pulling. This can easily be checked by listening to the


FIGURE - 1
crystal frequency on another receiver with BFO on, while pressing the PTT switch and Ilsten to the frequency shift.

All is not lost, the condition can be corrected fairly easily by installing an emitter follower transistor as a buffer for the oscillator. This is most easily achieved by removing the RF Board and fitting the extra components as indicated in Fig. 1 showing portion of the circuit side of PB 1077. Fig. 2 shows the circuit of the addition.

At present the output from the oscillator taken from a link on T111 by a small


FIGURE-2

coax grey lead to pin 15 of the RF Board socket.

Remove this lead from the coil and socket as injection will now be supplied by the wire shown going from the emitter of the added transistor to terminal connector 15 on the PCB.

Check over the additions carefully, then after replacing the PCB into its socket, set the setting of the clarifier presets by having a signal source such as GDO or signal generator tuned to say 7.1 MHz and another Rx with BFO off, tuned to the same frequency. With the clarifier turned off, set the trimpot "Freq." on the regulator board so that with the FT101 in SSB position (USB or LSB) it receives the external signal zero beat and with $T x$ on it is zero beat with the signal source in the other receiver. Check this on other bands to show the improvement and now settle down to enjoy being "on frequency".


$$
\text { FIGURE - } 6
$$

MODIFICATIONS FOR FSK FOR FT101: It is only a small job to include FSK capability in the FT101. The external VFO socket J13 has pins 2 and 3 vacant and can be used for the external circuit so no holes have to be drilled. Use is made of the clarifier circuitry as shown in Fig. 3.

Couple pin 2 of the external VFO socket J14 to pin 11 of MJ6 and fit a small silicon diode such as OA200 with cathode to pin 9 of MJ6 and anode to pin 3 of J14. As in Fig. 4 a ten thousand ohm variable resistor in series with the FSK contacts will provide adjustable frequency shift. Arrange FSK contacts to be open for MARK condition.

For RTTY operation place the FT101 in tune position and tune up for 100Ma IC meter reading, then using a separate receiver to monitor the frequency of opera-


## FIGURE - 5

tion, operate the FSK contacts and set the 10 K variable resistor to give the required shift, i.e. 170 Hz . The clarifier will require offsetting to '-' side to transceive with another RTTY station, but will operate normally on SSB operation.

## AUDIO DISTORTION:

Distortion on strong signals, has been a problem, when signals over S9 have been accompanied by severe audio distortion.

An exercise with a multi-meter showed that 01 on the IF PCB was being biased close to cut off causing severe clipping of the signal. Replacing the lower base blas resistor R15 of 3.3 K with one of 3.9 K cured the trouble (see Fig. 5).


AGC:
A further improvement was to stabilise the supply rail for the AGC circuit. This stabilises gain of the receiver with changing supply voltage, particularly while mobileering. The particular components are on the IF board PB 1080. R27 has a 470 ohm resistor paralleled with it, R26 is changed to 2.4 K and a 13 volt, $400 \mathrm{~m} / \mathrm{w}$ zener diode is fitted from the junction of R26 and R27 to ground. This stabilises this point at about 12.8 volts and the AGC rail now has 9 volts on it with no signal. This gives the receiver far greater AGC range to handle strong signals, without overload (see Fig. 6).

## Remote Crystal Switching

## Design:

## M. T. MURPHY VK6ZCX <br> Construction: <br> DON S. REIMANN VK6DY

If you need to switch crystals at a distance and have experienced the problems of diode switching then you may like to adapt this circuit to suit your requirements. It uses CMOS (field effect) gates. It is largely immune to reasonable levels of RF or hum on the switching leads and there is no need to use individually shielded coaxial cables for these. See Fig 1.

## COMBINING OUTPUTS

There are several ways of doing this:-

1. Take a capacitor from each output to a common output. (Not tried here, due to possible crystal interaction.)
2. Use a NAND gate with an appropriate number of inputs as a buffer. Suitable NAND gates are:-
3. 74 COO 2 inputs ( 4 gates per package)
4. 74C20 4 inputs ( 2 gates per package)
5. 74 C 308 inputs ( 1 gate per package)

Any inputs not used should be returned directly to the HT supply (i.e. positive). This only works because oscillators which are not switched on are arranged to produce an output equal to the positive supply voltage (i.e. a "HIGH" output). The output of the NAND gate buffer is "LOW" (-earthed) when all inputs are HIGH. If

all but one are HIGH and the other (from our oscillator) is going HIGH, LOW, HIGH, then the output will go LOW, HIGH, LOW, exactly out of step with the oscillator.
3. Outputs from buffers may be combined by judicious use of diodes, for example see Fig 2.

If G2 has a "low" output and G1 is
"HIGH" D2 will be reverse biased while D1 is forward biased.

Hence G1 does not pour current into the output of G2, as it would if the diodes were left out. (This effect could be mutually destructive.)

A version of this has been built and tested on air by VK6DY Don Reimann.



This uses $2 \times 74 \mathrm{COOs}$. Five gates (of the 8) are used as oscillators. The other three are used as buffers. The outputs are combined using diodes as above (see Fig 5).

This is a very economical circuit (74C00s cost $\$ 1.20$ each) and performance is excellent.

Output into 470 ohm load is about half the supply voltage, peak to peak. Max. supply voltage is 16 volts. Minimum is about 4 volts.
Although OUTPUTS must not be directly connected together, they can be connected to other inputs without any need for capacitors. See Fig 3.

Incidentally, if both oscillators are activated, the buffer becomes a very good mixer, which can then be run into a tuned circuit to pick off the required product. See Fig 4.

AM modulation on F1 or F2 will suffer severe distortion and both must be LARGE signals so this circuit is no good for receiver front ends, only for transmitters. FM on either signal should be OK.

These buffers are digital gates and produce harmonics fairly readily. Hence, DO NOT hang an antenna directly on an output without a tuned circuit.

The possibility of using them as frequency multipliers has not been tried yet, but may be soon (should work to 30 MHz or so).

## SUGGESTED LAYOUTS

1 crystal - 2 gates of 74C00
2 crystals - 3 gates of 74 COO
3 crystals - 3 gates of 74 COO ( 3 inputs of a 74 C 20 )
4 crystals - 4 gates of 74 COO ( 4 inputs of a 74 C 20 )
5 crystals - 5 gates of Two 74C00s plus 3 buffers and 3 diodes (see text)
6, 7, 8 crystals - 6, 7, 8 gates of Two 74C00s + One 74C30
(Spare gates ignored, spare inputs to positive supply rail.)
CONSTRUCTION
As the transmitters and power supplies for 2 and 6 metres will be housed remote from the operating position, it was necessary to fit both 6 and 2 metre oscillators with a switch for tune-up procedure.

The oscillators are built on a printed circuit board, with the crystals and trimmers on a separate strip mounted $5 / 8$ in. from the main board, and the whole assembly fits into a mini box $31 / 2$ in. $x$ $2^{1 / 2}$ in. $\times 1^{11 / 2} \mathrm{in}$.

The abutment plate of the switch fits onto the main case, and the switch wafer is mounted on the PC board. This method allows the whole oscillator assembly to be constructed and wired as a unit. and is then slipped into the case, and secured by four screws.
The oscillator unit is then mounted on the main chassis approximately 1 in . behind the front panel, which has a rectangular cutout covered by a small plate to allow adjustment of the trimmers and removal of crystals, with the selector shaft below.

No trouble should be experienced in duplicating this design if required, or any other lay-out may be used. The switch has six positions. The first is remote and when in this position the oscillators can be controlled from the remote position. Switching to the other five positions brings each separate channel imto operation at the transmitter for adjustment purposes. irrespective of the position of the remote switch.

The first unit has been operating for several weeks on 2 metres, and has been completely reliable and can be recom. mended.

## Yaesu De-Iuxe Receiver FR-IOID



SOLID STATE RECEIVER with Total Spectrum Coverage $160-2 \mathrm{~m}$ plus provision for major short wave broadcast bands

Advanced communications technology now brings you a total coverage, solid-state communications receiver. The FR-101D has the flexibility that even the most demanding amateur desires - with provision for all mode reception on twenty-one 500 kHz amateur and shortwave bands from $160-2 \mathrm{~m}$. This versatile receiver is capable of transceive VFO control with the matching FL-101 transmitter or FT-101B transceiver. New, solid-state technology, with features such as a doublebalanced mixer, offer unparalleled performance and rejection of cross-modulation and intermodulation interference. Build your total performance base station with the addition of the FR-101D communications receiver.

## FEATURES

$\square$ Total coverage capability: $160-2 \mathrm{~m}$ plus major short wave broadcast bandsProvision for all mode reception: SSB, CW, AM, RTTY, and FMComplete transceive capability with all 101 series equipmentReliable, plug-in circuit boards for service simplicity
$\square$ Selectable fast or slow AGCBuilt-in, threshold adjustable, noise blankerBetter than 1 kHz readout on all bandsFixed channel, crystal control operation
$\square \pm 5 \mathrm{kHz}$ clarifierBuilt-in calibrator 25 or 100 kHz (selectable)Indicator lights for internal VFO and clarifier operationBuilt-in AC power supply and 12V DC operation.

## TECHNICAL DATA

Frequency Range: $160 \mathrm{~m} 1.8-2.0 \mathrm{MHz}, 80 \mathrm{~m} 3.5-4.0 \mathrm{MHz}, 60 \mathrm{~m}$ 4.5-5.0 MHz, 40 m 7.0-7.5 MHz, $31 \mathrm{~m} 9.5-10.0 \mathrm{MHz}, 25 \mathrm{~m}$ 11.5$12.0 \mathrm{MHz}, 20 \mathrm{~m} 14.0-14.5 \mathrm{MHz}, 19 \mathrm{~m} 15.0-15.5 \mathrm{MHz}, 16 \mathrm{~m} 17.5-$ $18.0 \mathrm{MHz}, 15 \mathrm{~m} 21.0-21.5 \mathrm{MHz}$, $13 \mathrm{~m} 21.5-22.0 \mathrm{MHz}$, $11 \mathrm{~m} 25.5-$ $26 \mathrm{MHz}, \mathrm{CB} 27.0-27.5 \mathrm{MHz}, 10 \mathrm{~A}$ 28.0-28.5 MHz, 10 B 28.5-29.0 $\mathrm{MHz}, 10 \mathrm{C} 29.0-29.5 \mathrm{MHz}, 10 \mathrm{D} 29.5-30.0 \mathrm{MHz}, V H F 6 m ~ 50.0-$ 52.0 MHz and $52.0-54.0 \mathrm{MHz}$, VHF2m $144-146 \mathrm{MHz}$ and $146-148 \mathrm{MHz}$ and additional four bands of 500 kHz segment within $4.0-4.5 \mathrm{MHz}, 5.0-5.2 \mathrm{MHz}, 7.5-9.0 \mathrm{MHz}$ and $22.0-27.0$ MHz (optional extra).
Mode: Selectable USB, LSB, CW, AM, FM or RTTY.
Frequency Stability: Within 100 Hz during any 30 minute period after warm-up. Not more than 100 Hz with $10 \%$ line coltage variation.
Calibration Accuracy: 1 kHz maximum after 100 kHz calibration.
Backlash: Not more than 50 Hz .
Antenna Impedance: 50 ohm unbalanced nominal.
Circuitry: 20 Transistors, 12 FET, 4 Integrated Circuits and 33 Diodes.
Power Requirement: 100/110/117/200/220/234V AC, 50/60 Hz , or 13.5 V DC nominal.

Sensitivity: 0.3 uV for 10 dB Noise plus Signal to Noise Ratio on 14 MHz for SSB and CW. 1 uV for AM on 14 MHz . 12 dB SINAD for FM reception.
Selectivity: 2.4 kHz nominal bandwidth at 6 dB down, 4.0 kHz at 60 dB down on SSB, CW and RTTY. 600 Hz nominal bandwidth at 6 dB down, 1.5 kHz at 60 dB down with CW filter. 6.0 kHz nominal bandwidth at 6 dB down, 12 kHz at 60 dB down with AM filter. 20 kHz nominal bandwidth at 6 dB down, 45 kHz at 60 dB down with FM filter.
Harmonic and Other Spurious Response: Image Rejection better than 60 dB . Internal Spurious Signal below 1 uV equivalent to antenna input.
Automatic Gain Control: AGC threshold nominal 1 UV. Selectable AGC time constant, fast or slow. Fast attack time 3 milli-second and slow attack time 4 milli-second. Fast release time 0.5 second and slow release time 2 seconds.
Audio Noise Level: Not less than 40 dB below 1 watt.
Audio Output: 2 Watts at 4 ohm impedance.
Audio Distortion: Less than $10 \%$ at 2 Watts output.
Size: $340(W) \times 153(H) \times 285$ (D) mm.
Weight: 9 kg .

Price: FR-101D \$675. FR-101D/Digital (as above but with Digital readout) $\mathbf{\$ 7 9 0}$.
All prices include sales tax. Freight extra. Prices and Specifications subject to change.
AUSTRALIAN AGENT:

# Power Transformers The Beginnings 

Power transformers are an essontial feature of our every day life, and range in capacity from a few volt amps to hundreds of M.V.A.
One of the major factors limiting transformer capacity is the difficulty or inability to transport units beyond a certain physical size and weight. In any case most of us spare very little thought for this rather uninteresting device until it comes to findIng the necessary $d B$ for the purchase of a new one, or cursing the junk box for containing an assortment of everything excepting a tranny of suitable current and voltage rating.

The history of the transformer follows a fairly logical development with the major breakthrough occurring in 1884.

The beginning must date from the independent discovery of the principle of electro magnetic induction, by Michael Faraday on August 29th, 1831, and by Joseph Henry. The early devices were primitive in nature, and relied on the interruption of DC, AC not being available at the time. The principle of mutual induction, using electrically separated primary and secondary windings was discovered by an English priest, N. J. Callan, in 1837. Relatively little further development took place until after the invention
of the dynamo electric principle.
The first AC device was produced by Sir W. Grove in 1868, and the arrangement consisted of two separated coils wound on an open iron core. One of these windings was AC excited. Further development continued along these lines, but the devices produced were all open core and multiple units were all connected in series. Voltage was controiled by adjusting the position of the iron core within the coils.

These so-called secondary generators were displayed at an exhibition in Turin. Italy, in 1884. This exhibition was visited by three engineers, Max Déri, Otto Bláthy and Karl Zipernowsky, from the electrical section of the Ganz factory in Budapest. Fortunately, they recognized the additional advantages in using a closed core construction, and operating individual transformers in parailel instead of in series. On their return to Hungary, work commenced on the first transformer, a name coined by the three aforementioned gentlemen. Pages of their laboratory record show that the first written notes of their experiments were recorded on August 7th, 1884. Transformer No. 1, a single phase, shell type unit, rated at $1400 \mathrm{~W}, 40 \mathrm{~Hz}, 120 / 70 \mathrm{~V}$ was despatched from the company on September 16th, 1884.

An opportunity for public display came
the following year when 75 transformers were produced to supply power for 1067 incandescent lamps, at the Hungarian National Exhibition. These transformers operated from a single phase alternator. supplying 1350 V at 70 Hz . The generator was started and the lights energised on May 1st. 1885, and operation continued until the close of the exhibition in November of the same year.

May 1st, 1885 must undoubtedly rate as one of the most important in the history of alternating current electrical engineering. The exhibition was patronised by many foreign visitors, amongst them George Westinghouse, an early advocate and ploneer of AC in the USA. Many roreign orders were received as a result of this display, and the transformer was launched into the everyday position which it has at the present time.

Finally, it is interesting to note that the transformer as a closed core device, and its position in an AC distribution system was realised by an American, J. B. Fullar, and confided to an associate just prior to his death. His notes found in early 1879 were not appreciated or understood at the time, and so the world had to wait a few more years for Messrs. Diri, Blithy, and Zipernowsky to find the missing links.

## Perth 2 Metre Repeater <br> Perhaps the biggest change to

 Amateur Radio since the widespread use of SSB has been the extensive use of the talk-through repeaters. Satellite and earthbound repeaters constitute a very large, and steadily growing, part of Amateur Radio today, and the future looks excling.VK6 was the last state (excluding VK8) to build and operate a 2 metre repeater. This situation was due in part to the small active amateur population and poor communication with those in the east who had already constructed repeaters. To many of us, the problems of getting a repeater on the air seemed formidable. Little was written on the subject and what was written tended to indicate one needed a good clean transmitter, spurious free receiver, considerable screening between the transmitter and receiver, great aerial separation, aerial phasing, cavity filters and, finally, a lot of luck. So for several years most of us talked about building a repeater, but little was done. The biggest motivating force was missing in that few amateurs in VK6 had operated through a repeater, and until you have, the full impact of repeater operation does not become obvious.

However, prior to 1972 not all amateurs
who were interested in 2 metre repeaters were only talking. Graham VK6BY and Mac VK6MM were constructing and testing a repeater, and the project was well advanced when Russ VK6CV returned to VK6 from VK3. After sizing up the situation, Russ and Jerry VK6ZAS obtained a Pye F60 base station and converted it to a 2 metre repeater operating on the original channel 4. The repeater was installed at a commercial group site 1200 feet ASL on the escarpment 15 miles S-SE of Perth, and it worked, with no cavity filter, no special aerial phasing or any of the other supposed requirements. So Perth finally had a 2 metre repeater, and it worked very well, except for one problem.

The problem followed the development of the Perth repeater for a considerable time - channel standardisation. You may or may not remember that around 1972 through 73 was the re-allocation of channels. This meant that for many amateurs the purchase of crystals for a repeater channel that may not exist in the very near future was put off. In fact those that were associated with the repeater advised against the purchase of crystals until repeater channels had been decided on. Hence, for the first few months of operation of the channel 4 repeater, very few amateurs were equipped to use it.

After much thought and frustration to
find out what was likely to happen in the Eastern states, Channel 1 was decided on as the new repeater frequency. In December of 1972, the repeater frequency changed to channel 1, but as there had been no decision as to repeater frequencies, many amateurs were reluctant to invest in a sat of channel 1 crystals. This problem remained until new repeater channeis were worked out and the VK6 repeater changed to the new channel 1 frequency during February of 1974.

However, returning to the end of 1972. the repeater had been running with great success and it was about this time that I became interested in doing something about maintaining the repeater. During this time, drift problems with the mute had been eliminated, a high performance preamp constructed, and control circuitry and ident. facilities added. The control and ident. circuitry was based on the VK5 design and was constructed to meet our local requirements by Graham VK6BY.
As the site was only temporary, much of the early installation was also temporary, but the general coverage from this site was 60 miles up and down the coast. and about 40 miles inland. Best DX worked was about 800 miles to VK5WE-MM up north of Carnarvon. During this time a narrow IF filter ( 20 kHz ) was tried, but was found to be unsatisfactory due to poor


DELICA WB 200 GRID DIP METER FET transistorised GDM to beat all GDM's. This one works reliably on VHF to 200 MHz . It is a eally professional unit for those who seek the
best Covers 400 kHz to 200 MHz 7 bands. Battery operated.

512202

Fantastic Offer TENSETS TO be CIVEN away FREE NEM
COM
CO2A

Dick Smith has purchased a huge shipment of the very fatest Icom transceivers.
Not only is this unit to be sold at a very competitive price but EVERY purchaser will help his Division of the WIA to obtain a FREE IC22A.
For every ten units purchased, Dick Smith will donate one to your nominated Division or ClubThese units are ideal for repeater use or WICEN emergency activities.
repeaters. Only $\$ 5.00$ Australia $\$ 3.00$ ).

Additional crystals available as follows: Channel TX RX $\begin{array}{lll}40 \text { (B) } & 146.00 & 146.00\end{array}$ $44 / 56 \quad 146.20 \quad 146.80$ $\begin{array}{lll}46 / 58 & 146.30 & 146.90\end{array}$ Price $\$ 9.00$ per pair (per channel) Limited number of 145.90 Rx crystals available for use with existing Ch 4
The IC22A is Icom's new and improved
version of the very popular IC22. The version of the very popular IC22. The mobile use. We are offering this unit with 3 mobile use. We are offering this unit with channels $42 / 54$ and $48 / 60$ repeat: We have the IC22A INCLUDING 3 CHANNELS of crvstals (normal price \$217) for only $\$ 200.00$ ( P \& P Insured anywhere in

##  <br> max s200

This new microphone features twin inserts which are out of phase to ensure good noise cancelling. Fitted with high quality PTB switch and retractible cord. Frequency response from $300-5 \mathrm{kHz}, 250-600$ ohms. Why pay up to $\$ 30$ ? The CDM 1541 is only p\&p75


TRANSVERTER
The Europa B is a linear transmit and receive transverter $28-30 \mathrm{MHz}$ to 144146 MHz . It is suitable for use with either a transceiver or a separate receive/transmitter. It is ideal for Oscar operation as well as normal tropo work Although its primary use is for SSB, it will receive and transmit any mode of which the F.FK. equipment is capable: SSB, AM, CW, FSK, FM. Once attached to your H.F. equip-
ment, you operate it exactly the same as on ment, you operate it exactly the same as on
the H.F. bands, the Europa B does the rest.

## AnTHMY <br> Model AR2UL, ideal for medium size VHF arrays. Requires 4 wire control



ROAD FREIGHT $\$ 3^{\circ}$
ROODFREIGHT \$300|
audio quality if stations were off channel or running greater deviation than 10 kHz , so the wide band filter remained ( 30 kHz ).

Due to the forssight and generosity of Mac VK6MM, a new site several hundred yards from the original became available, complete with a 250 ft . tower. Power was also available, but it was necessary to construct an asbestos lined wooden box to house the repeater. The complete relocation of the repeater including coax runs, aerial installation, mast head amplifier, power supply connection and cabinet installation was accomplished in one weekend. Those who took part were 6CV, 6ZFG, 6KB, 6PR, 6ZHR, 6TZ, and 6UU. It was an example of how a relatively difficult project can be accomplished, glven the enthusiasm and support of a few.

This basic setup is still in use with surprisingly fow problems. The aerials used are commercial folded dipoles suitable for direct coax feed. The coax used is lo-loss foam, but even so has a loss of 6 dB and hence the use of a mast head pre-amp consisting of 2 grounded qate TIS88s. The pre-amp may be switched
and out of circuit, thus allowing checks to be made on it and the receive aerial. The transmitter runs 50 watts output with
an e.r.p. of 14 watts. No cavities or any special shielding is needed. Aerials are separated vertically by 35 ft . Mute sensitivity is very good, opening on signals that produce insulficient audio to be copied. A mute tail operates for 1-2 seconds on weak signals, but strong signals produce no mute tail. This discrimination between strong and weak signals is accomplished by a second mute circuit set to operate at about 1 uV . This second mute switches the delay into the main mute circuit.

During its two years of operation the repeater has only been off the air for two days due to a 6/40 faiiure. General stablity has been excellent and thoughts of a solid state transmitter have not advanced far due to the high reliability of the repeater. As yet no battery standby has been included into the unit but it is hoped that this will be done. Due to the location on an escarpment, coverage inland is only about 40 miles. It was noticed that shifting from the original site where the aerial height was around 60 ft ., to the new site with areial heights in excess of 200 ft . produced no noticeable increase in signal strength up and down the coast. However much greater signals were noticed along the escarpment and made the great aerial
heights worthwhile.
Since this article was commenced. a 6 dB gain aerial has been added to the transmitter. One interesting change which appears to have occurred is that increased signals are most noticed at gieat distances from the repeater. Signals reccived at a closer range appear to be only slightly better, or no change. The reasons for this couid be several - but possibly the radiation angle is more favourable at the horizon than at points closer in.

Looking back on the history of the Perth repeater, one can only say that it has been highly successful, due mainly to the enthusiasm of a few and the luck of picking out a piece of equipment that has performed very well as à repeater. The future capabilities of repeaters seems limitless. Some argue that repeaters make it ail too easy and this is obviously true. But for every change in amateur radio, there are always afterthoughts.

Perhaps the excitement of repeater operation can best be summed up by being able to work someone 100 miles away and all that is required is a few hundred milliwatts from a hand-held transceiver, AND A REPEATER.

# The Pioneer 8 Track Cartridge <br> Player in the Mobile Shack 

A. M. Ausiin VK6MA

have to contend with cleaning the cartridge pinch rollers, pressure pads and occasionally free up inside the more troublesome cartridges. The problems are now all external to the player unit.

## INSTALLATION:

For the Jast time remove the motor. take off the outer cover, MHU metal shield and pulley. Remove the circular magnetic assembly and watch out you do not bend or damage those tiny brushes and springs. Using short pieces of 15 amp fuse wire. bridge out both pairs of governor contacts and re-assemble the motor. Fit the motor to the unit. Make an L-shaped aluminium bracket for the 2N3504 and fit the tag strips as indicated. Take care when drilling holes for the transistor bracket and tag strip. The two tag strip earth lug is mounted under the motor holding screw.

The BC108 and other components are supported by the four tag strip and 2N3504 connecting leads. Take care there is only just enough room. Do not forget to use a mica washer and insulated mounting kit for the 2 N 3504.

## CIRCUIT OPERATION:

The motor stalled current of 2 amps is well within the IC max. 4 amp rating of the 2N3504 for starling purposes. Once running, the motor current quickly falls to around 0.25 amp . As the molor back EMF rises with speed the 2 N 3504 and BC108 emitters tend to tloat up closer to their respective base voltage values. This reduces their respective collector currents thus controlling the motor voitage (and speed) at a value determined by the zener pegged base voltage of the BC108. The motor voltage is 8.1 V in my case. At a maximum input voltage of 16.6 V the 2N3504 dissipation would be 2.4 W and therefore heat sinking requirements are minimal.

## FINAL ADJUSTMENT:

If the speed is too slow. insert a normal forward biased diode in series with the zener to raise the BC108 base voltage.

If the speed is too fast strap a 2 K preset potentiometer across the zener and connect the 2.2 K resistor to the wiper. Using the preset potentiometer adjust the BC108 base voltage to give the desired speed.

In my case the circuil worked exactly as is but with component variations some final fiddling may be necessary.

## SIDEBAND ELECTRONICS SALES and ENGINEERING

## TRIO-KENWOOD

| Model TS-900 de-luxe transceivers, with PS-900 AC supplyspeaker unit |  |
| :---: | :---: |
| Model TS-520 AC-DC transceivers with extern |  |
| speaker | \$550 |
| External VFO for the TS-520 | \$80 |
| CW filter for the TS-520-900 | \$40 |
| TV-502 2M. transvertor for the TS | in and |
| tch over to 2M. SSB operation | \$200 |
| Model QR-666 all-band coverage receiv | \$300 |

Model TS-520 AC-DC transceivers with external speaker

TV-502 2M. transvertor for the TS-520, just plug it in and
Model QR-666 all-band coverage receiver
$\$ 300$

## YaESU MUSEN

Model FT-101-B AC-DC transceivers
Model FT-200 AC transceivers with AC FP-200 supply $\$ 400$
Digital Frequency counters
model YC-335-D 0-200 MHz
SPECTRONICS DD-1 digital counter for the FT-101-B $\$ 250$
All TRIO-KENWOOD \& YAESU MUSEN transceivers come
complete with original English manual, all crystals for all
available bands, a P.T.T. dynamic microphone and a bonus
free S.W.R. Meter.

Model FT-101-B AC-DC transceivers
Model FT-200 AC transceivers with AC FP-200 supply $\$ 5700$ Digital Frequency counters model YC-335-D 0-200 MHz \$250 SPECTRONICS DD-1 digital counter for the FT-101-B \$150 All TRIO-KENWOOD \& YAESU MUSEN transceivers come complete with original English manual, all crystals for all free S.W.R. Meter.

## hY-GAIN ANTENNAS

| 14 AVQ 10-40 M. vertical 19' tall, no guys | $\$ 65$ |
| :--- | ---: | ---: |
| 18 AVY-WB 10-80 M. vertical, 23' tall, no guys | $\$ 90$ |
| TH 3 JR 10-15-20 M. junior el. Yagi 12' boom | $\$ 135$ |
| TH 3 Mk3 10-15-20 M. senior 3 el. Yagi 14' boom | $\$ 180$ |
| TH6DXX 10-15-20 M. senior 6 el. Yagi 24' boom | $\$ 225$ |
| 204-BA 20 M. monoband 4 el. full size Yagi 26"' boom | $\$ 190$ |
| HY-QUAD 10-15-20 M. full size Cubical Quad | $\$ 200$ |
| Magnetic base mobile whip 108 MHz and higher with 18 |  |
| RG-58U cable and coax plug | $\$ 18$ |
| BN-86 baluns | $\$ 18$ |

## CDR ROTATORS

| AR-22-R for 286 M . and small h.f. beams | $\$ 50$ |
| :--- | ---: |
| AR-20-R for $2 \& 6 \mathrm{M}$. beams | $\$ 40$ |
| HAM-II with re-designed control box | $\$ 150$ |

HAM-II with re-designed control box $\$ 150$
All three models for 230 V AC complete with indicatorcontrol units.
4-conductor light cable for AR-20-22 20 cents per yard 12-conductor light cable for HAM-II 30 cents per yard 8 -conductor heavy duty cable for HAM-II 60 cents per yard

## BARLOW WADLEY RECEIVERS

Model XCR-30 Mk II 500 KHz to 31 MKz continuous coverage communications receivers, crystal controlled reception of AM-USB-LSB-CW
$\$ 250$

## POWER OUTPUT METERS

Galaxy RF 550A with 6 position coax switch $\quad \$ 75$

## SWR METERS

Midland twin-meter type for $\mathbf{5 2}$ Ohms, up to 1 KW on hf $\mathbf{\$ 2 2}$

## BALUNS

Japanese baluns, 1 KW PEP 75 Ohms impedance only $\$ 10$

## MOBILE ANTENNAS



## COAX CONNECTORS

Amphenol VHF types Standard PL-259, Angle male-female,
T-connector, RCA male to Amphenol female adaptor. Ali models
\$1 each

## CUSH CRAFT ANTENNAS

| DGPA 52 to 27 MHz adjustable ground-plane | $\$ 25$ |
| :--- | :--- |
| $\$ 6$ |  |

LAC-2 lightning arrestors
$\$ 6$

## CRYSTAL FILTERS

9 MHz similar to the FT-200 ones,
with 2 carrier crystals

## POWER SUPPLIES

240 V, AC to 12V DC 3 to 3.5 Amps, regulated

## SPECIAL

KEN KP-12A speech processors, 230V AC, contain a complete SSB generator, 10-7 MHz filter, clipper, etc. $\$ 100$

## 27 MHz EQUIPMENT

MIDLAND 5 W AM 23 channels transceivers, with PTT mike 12 V DC . ..................................................... . . . . . 595
MIDLAND 5 W AM 15 W PEP SSB 23 channels transceivers PTT mike 12 V . .......................................... $\$ 175$
SIDEBAND Brand One Watt model NC-310 hand-held transceivers

## 144 MHz TWO METER EOUIPMENT

MULTI-7 10 W output FM transceivers, 24 channels with crystals for 10 channels 40 to 60 , includes all Australian repeaters and anti-repeater operation, with PTT mike and mobile mounting bracket, 12 VDC operation, still only ..... $\$ 225$ KEN PRODUCTS KP-202 2 W output FM hand-held transceivers with the hottest receiver available anywhere, 6 channels now with crystals for channels 40 and 50 and all 4 repeaters $\$ 150$; KCP- 2 battery chargers and 10 NICAD batteries $\$ 35$; Leather carrying case for the KP-202 $\$ 6$; Stubby flexible helical whip antennas for the KP-202 $\$ 6$.
KLM ELECTRONICS solid state 12 VDC 2 M. amplifier, 12 W output, automatic antenna change-over when driven, ideal for mobile use with the KEN KP-202 $\$ 50$.
All prices quoted above are net SPRINGWOOD, N.S.W., cash with orders, sales tax induded in all cases, subject to changes without prior notice. No terms nor credit nor COD available, only cash and carry, no exceptions. All-risk insurance available for 50 cents per $\$ 100$ value, minimum insurance $\$ 0.50$. Allow for freight, postage or carriage, excess will be promptly refunded ... MARY \& ARIE BLES, Proprietors.

## A Repeater Identifier

## During 1974 it became apparent that the P.M.G.'s Department would require automatic identification to be installed on the various repeaters operating in Victoria.

The writer was asked to produce a unit which would generate the appropriate call signs and have outputs which would give a choice. of keying method.
Much discussion indicated that the simplest method of identification on VK3RML was narrow ( $\mathbf{2 0 0} \mathbf{~ H z}$ or thereabouts) frequency shift keying since it is normally inaudible and does not require the complex (and expensive) external logic necessary if an audible ident is used which takes into account previous transmissions, current transmissions and time. Nevertheless, the unit had to make provision for an auxiliary keyed audio output should local repeater commitiaes opt for an audio ident.
This article describes the keyer produced for VK3RML.

## GENERAL DESCRIPTION

The unit is completely self-contained and is built on a $51 / 2$ in. $\times 4 \mathrm{in}$. single sided PC board which is housed in a $7 \mathrm{in} . \times 4 \mathrm{in}$. diecast box to shield it from strong local RF fields. It will accommodate call signs up to 32 characters long - a character in this context being a dot or a dash or a space. The length of the dot is determined by the internal clock and dashes or spaces are each three dots long. Both sending speed and ident cycle time may be pre-set within wide limits. The only input required is $8-12$ volts DC - the 5 volts regulated required for the TTL logic used being provided by an inbuilt LM309 K (or 7805) three terminal regulator. Four outputs are available:
(a) A positive going square wave which is normally low (approx 0.4 V ) which goes high (approx 3.5V) when keyed.
or (b) A negative going square wave which is normally high (approx 3.5 V ) which goes low (approx. 0.4 V ) when keyed.
or (c) A keyed sine wave of about 800 Hz having a maximum amplitude of 2 volts peak to peak and whose level can be set with an on board trimpot
and/or
(d) A "Hold" signal which is normally low ( 0.4 V ) but which goes high (3.5V) during the keying cycle. This output can be used to control internal logic.
Programming is extremely simple and consists of putting a germanium diode between the "dot" line and the common line when a dot is required; between the "space" line and the common line when a space is wanted and omitting the diode altogether if a dash is called for. A detailed example of programming is given later in the text.

No originality is claimed for the design since, basica'ly, it is that described by Peter Starke K2OAW in the February 1973 issue of "73 Magazine" with modifications to suit the current purpose.

## DETAILED DESCRIPTION

Figure 1 gives the full circuit diagram and Figure 2 the layout on the component side of the circuit board.

Other than the voltage regulator four main functions are involved. They are:

1. The cycle timer
2. The clock generator
3. The call sign generator
4. The audio tone generator.

These functions will now be described in detail.

H. L. Hepburn VK3AFQ

4 Elizabeth St., East Brighton, 3187

## 1. The cycle timer:

A NE555 is used to determine how often the call sign is sent. This cycle time is determined by the values of R1, R2 and C1. Fairly obviously the cycle time must not be shorter than the time taken to send the call sign (usually 5-6 seconds at 12 wpm) but any cycle period up to around 5 minutes can be achieved using practical values of A and C . If longer intervals are required it is easier to put a divider ( 7490 . 7493 etc.) between the NE555 output and the controlled device than to scratch around the supply houses looking for very high values of resistance or capacitance. But no matter whether the NE555 is used on its own or in combination with a divider. one point must be considered - the relationship between the "high" and "low" times of the NE555 output.

Normally, with R1 having a low value (say $1 / 10$ th that of R2) then the output from pin 3 of the NE555 is close to having equal "high" and "low" times. Since the call sign generator needs only a very short negative going pulse to the clear pin of the 74107 (D) stop/start flip flop to start it, and since a starting pulse having a "low" time greater than the 5-6 seconds needed to send the call sign would cause erratic operation of the call sign generator (fractional call signs for example), then the time output must be such that it is only low for a very short period during each timing cycle. This is achieved by making R1 many times the value of R2. In the unit described the call sign is sent every 20 seconds or thereabouts and the starting pulse is about one second long. Under these conditions R1 is 3.3 megohms. R2 is 470 K and C 1 is 4.7 mfd .

## 2. The clock generator:

The basic string of dots (the clock pulses) for the system is generated by a simple RC oscillator using two gates of a 7400 quad two input NAND array. The other two gates are used elsewhere in the circuit. With the values of 220 ohms and 100 mid shown the keyed output is around 12 wpm . Some coarse adjustment to keying speed can be obtained by lowering the value of the capacitor to increase speed and vice versa.

Note that the clock generator is always in operation, its output being selected by the subsequent circuitry.

## 3. The call sign generator:

Until started by a negative going pulse to the clear of flip flop 74107 (D) the system is at rest with the $\bar{\sigma}$ of 74107 (D) and the clear of 74107 (A) low. Pulses from the clock do not cause either 74107 (A) or (B) to toggle. At rest the enable pins of 74154 ( $B$ ) are high being held this way by the $Q$ and $Q$ outputs of 74107 (C).

When the clear of 74107 (D) is taken low its $Q$ goes high, thus enabling 74107 (A).

If the "dot" line is low (and this depends on whether the outputs of the

## VICOM NTERNATIONAL PTY LIMITED Manager: Peter Williams


#### Abstract

WHAT THIS WORLD NEEDS IS A GOOD $\$ 25$ SCANNER KIT Here is our new 4 -channel scanner board. It is small sized, includes LED indicators which mount in small holes added in your tront panel. Two or more boards can be ganged for eight or more channels. Unit can be used with any AM or FM recerver or transceiver with squelch and eleclronically switched crystals. Oscillator circuits with directly switched crystals can be easily adapted Price $\$ 25$ tor the kit, including undrilled pcb. all components. instructions, LED indicators. Add 60c for drill bit and $\$ 1 \mathrm{P}$ 8. $P$


FEATURES:
Inexpensive - $\$ 25$, including LED's Small - $2 \times 2$ 1/8 $\times 7 / 8$ inches. Operates trom +12 V - No 5 V regulator needed Low power drain - 25-40mA +5 V oulput compatible with most oscillator switching schemes; simple inverter circuit can be used for ground-switching circuits. Can be setup for any number of channels with programmable counter circuit. Two or more can be ganged for as many channels as you desire


SCANNER
\$25

## QUALITY MODULAR CIRCUITS FOR VHF

©
A new kit at VICOM is for UHF enthusiasts, the 432 MHz converter kit. The converter is constructed on a $3 \times 4$ inch pcb and teatures a low noise J-tet, high quality milled air variable capacitors, integral coax connectors, and low current 12 volt operation. The Converter has one built-in oscillator, and an adapter is avalable for channelised, fM operation. II can be constructed to output on the popular 2 M fM band or $6 \mathrm{M}, 10 \mathrm{M}$, commercial bands etc. Price for the kit is $\$ 36$. Xtals are extra

> Vicom have made available a frequency counter in the front window of the Auburn showrooms to assist mobile 2 M FM rig owners in staying on frequency. Come anytime and tune your rig while parked at the curb.

## ANTI-NOISE KITS

Vicom now have a range of suppression kits for the mobile enthusiast, including oc line filters, alternator and generator kits, ignition suppression kits and electroshield kits for the tough iobs


## COMPONENTS

Vicom now has in slock components for the Amateur including plugs. LED's popular IC's and a arge range of other solid slate components for the home brewer.

PROFESSIONAL QUALITY 2M FM RECEIVER MODULE. . . Ideal as an auxiliary montor for the shack or to keep the XYL posted (perhaps not a good idea!) this kit comes complete with a single channel oscillator and a premium grade 11 element il ladder ilter. The price of $\$ 69.50$ includes predniled fibreglass pcb. all components, it crystal, tititer, instruction manual. Add \$t P\&P
Features:

- outstanding selectivity. 90 dB adjacent channel rejection
7.5 MHz bandwidth
- 0.1 uV squelch sensitivity, 0.3-0.5 uV for 20 dB

1 watt audio output

- solid design, fully-shielded coils, stable cascode circuitry - no neutralisation required.
\$49.50


## PFT-203

SORRY!
Despite many requests from customers we do not wish to supply the Seiwa PFT-203 25 watt 2M IM transceiver. We are advised that production of the set has been discontinued and therefore VICOM cannot guarantee a continuing supply of spares and the necessary back-up service. We hope you will understand. VICOM.

Head Office. ... 139 AUBURN RD. AUBURN, VIC 3123. 82-5398 Distributors -
CEELONG: Phil Fitzherbert
Ph (052) 436033
A.C.T.: Andrew Davis, 32 Kalgoorlie Cres., Fisher, 2611

Ph (062) 884899
QLD.: db Electronics, 21 Christine Ave., Miami, 4220

Ph (075) 351798
S.A.: Graham E.Stallard, 27 White Ave., Lockleys, 5032 Ph (08) 437981

74154s have been 80 programmed) then 74107 (B) is inoperative but one input of Gate 3 "sees" a single dot. If the clear of 74107 (B) is high (l.e., no dot is programmed) then gate 3 receives a dot and a "double dot" from 74107 (B) and outputs a dash.

Output from gate 3 (one pulse for each dot, dash or blank) is divided by 16 in the 7493 and by two In 74107 (C) to give a total divide ratio of 32. These pulses from gate 3 also go to gate 4 which may or may not output them to the keying terminal depending on the programme.

The outputs from the binary lines of the 7493 (1-16 inclusive) pass to the binary inputs of the two 74154s. Only one 74154 Is enabled at a time so that the first sixteen pulses to the 7493 cause 74154 (A) to operate and the second sixteen cause 74154 (B) to operate.

The outputs of the 741548 are normally high but when the sequence starts the first pulse causes pin 1 of 74154 (A) to go low, the second pulse causes pin 2 to go low and 80 on. The overall effect is that a "low" ripples through from the 1 output of 74154 (A) to the 16 output of 74154 (B) to give a total of 32 low going command pulses.

The 32nd pulse causes 74107 (D) to change state. its $\overline{\mathbf{Q}}$ goes low, the clear of 74107 (A) is pulled low and the sequence stops untll the next negatlve golng pulse is forthcoming from the NE555 timer.

If a germanium (not silicon) diode is connected between an output from the

74154s and the space line, then when that particular output goes low it will pull the space line low and disable gate 4 so that no output appears from gate 4. If the diode is put between the 75154 output and the dot line, then when that output goes low the dot line is pulled low blocking off 74107 (B). However, the space line is high and gate 4 is enabled so that one dot reaches the output of gate 4. If no diode is present between the 74154 output and either the dot or space lines then 74107 (B) toggles and lis output (a "double dot" in effect) Inputs to gate 3 . This gate adds the "double dot" from 74103 (B) to a single dot from the clock and outputs a "triple dot" which is either a dash or a space. Gate 4, beling enabled because no space is programmed, passes a dash to the keying output. Thus, during the ontime of the call sign generator a total of 32 dots, dashes or spaces appear at the keying output. The sequence is determined by the positioning (or omission) of dlodes between the 74154s and the dot or space lines.

## 4. The audio tone generaior:

This is a simple single transistor phase shift oscillator. With the values shown the trequency of oscilitation is around 800 Hz . Just how close depends on the actual (not nominal) value of the 0.047 mfd capacitors in the collector/base feedback path. The osclliator is followed by a 2 N 5245 or MPF102 buffer/source follower to provide a low output impedance.

When the call sign generator is inopera-
tlve the output of gate 4 is high, the 2N3565 keying transistor is switched on and Its collector is at a low potential. The audio oscillators HT feed, being taken from the 2N3565 collector, is also low and the oscillator does not operate.
When gate 4 operates its output goes low, the 2N3565 switches off and HT is applied to the audio oscillator.

The audio output level can be pre-set by means of the 1.0 K trimpot used as a source resistor for the 2N5245/MPF102.

## PROGRAMMING

Up to 32 characters can be accommodated by the keyer, a character being either a dot or dash or a blank space. To program the keyer it is first necessary to set down the call sign and determine the number of characters involved. Using the writer's call sign as an example it is first set down as follows:

| Posilion | Characters | Position | Characiers |
| :---: | :---: | :---: | :---: |
| 1 |  | 17 | - |
| 2 | $V$ | 18 | Space |
| 3 | - | 19 | - |
| 4 | - | 20 | - |
| 5 | Space | 21 | - |
| 6 | - | 22 | - |
| 7 | - | 23 | Space |
| 8 | - | 24 | - |
| 9 | Space | 25 | - |
| 10 | - | 26 | - |
| 11 | - | 27 | - |
| 12 | - | 28 | Space |
| 13 | - | 29 | Space |
| 14 | - | 30 | Space |
| 15 | Space | 31 | Space |
| 16 | - | 32 | Space |

The complete call sign requires 27 of the 32 available positions leaving 5 unused (or space) positions. It is advisable to have



## FIGURE 2 - CALLSIGN GENERATOR - LAYOUT OF COMPONENTS

most of the unwanted spaces at the start of the cycle (to allow a transmitter time to come on for example) so that the table is readjusted a bit to give the following:

| Position | Character | Position | Character |
| :---: | :---: | :---: | :---: |
| 1 | Space | 17 | - |
| 2 | Space | 18 | - |
| 3 | Space | 19 | Space |
| 4 | Space | 20 | - |
| 5 | - | 21 | - |
| 6 | - | 22 | Space |
| 7 | - | 23 | - |
| 8 | - | 24 | - |
| 9 | Space | 25 | - |
| 10 | - | 28 | - |
| 11 | - | 27 | Space |
| 12 | - | 28 | - |
| 13 | Space | 29 | - |
| 14 | - | 30 | - |
| 15 | - | 31 | - |
| 16 |  | 32 | Space |

Note that, if the call sign has 25 characters or less, it is possible to fit in "DE"
ahead of it and still have one space at the start and one at the end.

All that is now necessary is to put germanium diodes between the 74154 outputs and the dot line or the space line as dictated by the table. No diode is put where a dash is required.

Figure 2 shows VK3AFQ programmed into the keyer.

## USING THE KEYER

The simplest way of using the keyer is to take one of the TTL outputs (the $K$ or the R ) and use it to drive a varactor diode placed across the transmitter crystal. Sultable decoupling and level control must of course be included.

Alternatively, the keyed audio output can be impressed on the transmitter audio line and the level adjusted so that it does not override any speech audio present.

The "hold" output can be used to turn on a transmitter for the duration of the call sign if that transmitter is not already switched on by a received signal. In this case (as in the case of audio tone) the cycle time would have to be lengthened to a maximum of 10 minutes since, without further logic, the TX would come on whether or not the repeater was in use.

## CONCLUSION

Whilst the keyer described was built primarily to ident VK3RML (Melbourne Channel 1) it is flexible enough to have alternative end uses. A batch of boards has been struck to allow other VK3 local repeater committees to build their own ident unit but supply is not restricted to them. Others interested in building a similar unit are asked to contact the writer (SAE please!).

## OSP

## DX-PEDITION

News of a DX-pedition by the Bartadoa Radio Club, has been passed on by Ken VK3AH.

Several club members are lourneying to Palm Island (13 deg. $3^{\prime}$ N. 61 deg. 23' W) In the Windward Islands Group. and will be operaling under one of the VP2S call signs. It is hoped that the call VP2SPI will be allotted, but this detall is not yet certain.
The dales ere 20, 21, 22 June 1975 and all bands $80-10 \mathrm{Mx}$ will be operative.

OSLs should be sent to the Barbados Amateur Radio Sociaty. Bridgetown, Barbados.

## PIAATES

The Australlan Cltizens Radio Movement, according to numerous sources is spearheading moves to legallse CB ectivlites as they say the Government has unialily banned tham from alrwaves they are
entiled to use under the Geneva Convention. They also claim that Australia was one of the few western countries where masa iwo-way radio was outlawed. They even persuade some of the nowspapars carrying their propagande matter to use headlines like "The Hams want aay". Adapted from Westlakes RC news. Aprll '75.

## JOTA

Yes, Jamboree-on-the-alr is over the weekend 18ih/ 19th Oclober 1975. An Interesting comment from the 1974 report "A number of other (amateur) stations combined amateur actlvities with camping and other scouting activities'. This opens up quite a vista of possibilitles in conjunction with radio scouting, the new "Novice Licensing" and dare one Include the WIA YRCS movement. Perhaps even those keen people who organise fielddays and Conventions could wall combine all these thinga Into special events throughout the year
which, with amateur satellites, especially Oscar 8 could open up wonderful fields of vision for the youth (and even oldsters) of today. The marvel of JOTA seems not so much "what has been done" as "what can be done".

RECIPROCAL VISITORS' LICENCE
A note from VKANB advises that a visiting Japanese amateur JH2TEL applied for and was granted a licence to operata in Australia during his slay. It seems he has VKAAAY for a twelve-month parlod. VKANB asks if thls is a first.

## sTAND UP AND EE COUNTED

"As one of the several dozen radio services which compete for allocallons in the radio spectrum. It Is important that the amateur radio service make such efforts to enhance lis visibility to the people who will play an important role in determining Its future'. IARU News in OST, February 1975.

# An A R Special - A Review of the Atlas Transceiver 

The ATLAS 210/215 transceivers are five band fully solid state single sideband transceivers and as such represent a new approach to both electronic and physical design. They are manufactured in the USA by Atlas Radio Inc. of Oceanside California, and sold in Australia by Vicom International Pty. Limited of 139 Auburn Road, Auburn. The units used in our tests were obtained from Vicom and readers requiring information on delivery and price should contact them.

The Atlas is the smallest and lightest HF transceiver on the market at the present time. It is only slightly larger than many of the current two metre FM transceivers. Dimensions are 24.1 cm wide, 8.9 cm high and 24.1 cm deep. It weighs in at 3 kg or a shade under 7 lbs .

Current drain at 12 volts is 500 milliamps or less in the receive mode and 16 amps peak transmit. Average current drain while transmitting would however be only about 4 to 5 amps. This represents many hours of operating from an average car battery.

## TECHNICAL FEATURES

The 210 and the 215 are identical in all respects except for frequency coverage. The 210 tunes 350 kHz of the $80,40,20$ and 15 metre bands with 700 kHz on the 10 metre band. As imported, the 80 metre band starts from 3.7 MHz , however full details are given in the instruction manual to retune this to 3.5 MHz to suit local conditions.

The 215 differs in that the 160 metre band is included and the $1 \overline{0}$ metre band omitted. Coverage on 160 is from 1.8 MHz .

Operation of the Allas is simplified by the use of broadband output transmitter circuits which require no tuning on the part of the operator and so long as a reasonably matched 50 ohm load is presented to the rig, full output will be obtained. Receiver input is treated in a similar manner and no peaking is provided or needed.

All circuits are powered directly from 12 volts DC, so mobile operation requires only connection to the normal 12 volt car battery. No power supplies are required. Transmitter power is a very healthy 200 watts PEP input on the 160 to 15 metre bands with 120 watts on the 10 metre band.

The inbuilt VFO is calibrated in 5 kHz increments on all bands except for 10 metres which is double this figure. A separate calibration scale for the 160 metre band is provided on the 215, whilst the 210 has a separate scale for the 10 metre band. The tuning drive is exceptionally smooth and has a tuning rate of 15 kHz per revolution. The circumference of the knob is divided into fifteen segments giving approximately one kHz calibration. A 100 kHz calibrator is included

as is opposite sideband selection. Provision is made to index the dial setting against the calibrator.

Some very interesting circuitry is employed in the Atlas. In order to overcome front end overload problems common to solid state receivers, no RF or first mixer gain is used. Instead, the input from the antenna goes via individual tuned circuits for each band to the first receiver mixer which is a double balanced diode ring. A low noise high gain IF strip provides all the actual RF gain of the receiver. Single conversion is employed with an IF frequency of 5520 kHz . Selectivity is well taken care of with a special eight pole crystal filter giving a band pass of 2.7 kHz at the 6 db points and a total rejection of 130 db .

The ' $S$ ' meter is calibrated in the usual way to S 9 and 50 db over S 9 . In the transmit mode, the meter is switched to read final collector current and is calibrated to 16 amps. Both the meter and tuning dial are indirectly illuminated, with switching to lower the intensity for night time mobile operation.

## THE ATLAS ON THE AIR

Unfortunately the time spent testing the Atlas was limited. We were therefore unable to carry out many of the technical tests that make up the usual 'AR' reviews. However the time was quite sufficient to form many definite opinions. As the AR230 AC power supply console was supplied with the test units we were able to try them out in the comfort of the home shack. As no doubt many amateurs will be purchasing this unit to go with their Atlas transceiver some comments on the AC power supply are also in order.

First impression was the extreme smoothness of the tuning dial. With only 15 kHz per knob rotation, SSB resolution is easy. Because a different VFO range is selected for each band, drift varied slightly from band to band. However the maximum drift from a cold start did not exceed 1.5 kHz most of this occurring during the first five minutes of operation. Although no actual measurements were made, it appeared that the VFO drift was slightly higher during the transmit function than during receive. Receiver AGC action was
smooth with only a small amount of harshness occurring on the very strongest signals.

The Atlas specifications claim that the AGC will handle signal levels up to 3 volts. As a test, the normal station transceiver was fired up and the Atlas was used as a monitor for this. Excellent copy was obtained in this extreme situation.

Used with a standard high impedance dynamic microphone, reports on audio quality were excellent however it appeared that it was easy to overdrive the final resulting in a dramatic falling oll of intelligibility. Whiie a front panel ALC adjustment is provided, the instruction manual suggests a try and see approach to its setting.

Tuning up for any band seems almost 100 easy. Select your band. flip the function switch to the CW position, check that the collector current is around 12 to 14 amps, and you are in business. Speak into the microphone and adjust the MIC gain for a peak current reading of 8 amps . It's rather hard to resist the temptation to adjust the final tuning, but the Atias does not have or need any peaking controls.

A small loudspeaker is built into the transceiver, but it is on the wrong side for mobile operation in Australia. This also applies to the rear mounted microphone input socket. The Atlas is of course designed to actually plug into its companion mobile mounting bracket. All connections are then made to the bracket allowing easy removal to the home station power supply unit.

With the AC console the Atlas turns into a very elegant home station taking no more space on the operating table then any comparable all band transceiver. Over long periods of transmission the supply remained quite cool. Under very quiet conditions a smail amount of both mechanical and via the speaker hum could be heard. CONCLUSION
There is no doubt the Atlas breaks new ground in HF mobile operation. It would be entirely feasible to fit it into the smallest of cars while the current drain over a period of time would average only two or three amps. No doubt this little rig will catch the imagination of many amateurs.


An excellent compact transceiver, (similar to Swan FM 2XA), 12 channels, 12 V DC, with up to 15 W output. Receiver uses dual gate MOS FETs in the front end for excellent cross mod. and overload characteristics. Comes complete with microphone, mobile mount, battery cable, UHF antenna plug, instr. book, circuit, socket for ext. speaker or headphone, built in "front sound" speaker, SWR protection of PA.
Four U.S.A. channels. Recelve 146.94, 146.94, 146.26, 145.00. Transmit 146.94, 146.34, 146.34, 145.00; and two Aust. chans. installed, ( $B$ and one repeater, 1, 2, 3 or 4).
90 day warranty - all for an economical $\$ 169.00$
Extra standard channels ( $B, 50,51,1,2,3$ and 4) $\$ 8.00$
This is surely the lowest cost power packed mobile, now available. Reliable, powerful, compact, neatl

TECHNICAL DATA:

RECEIVER
Circuit Type
Frequency Coverage
Sensitivily
Selectivity
Audio Output Squelch Sensitivity

Double Superheterodyne, 10.7 MHz \& 455 kHz $144-148 \mathrm{MHz}$
0.5 uV for 20 dB quieting 6 dB down at +or- 12.5 kHz
50 dB at +or- 25 kHz
1 Walt (Distortion: 10\%)
Less than 0.3 uV

TRANSMITTER
Type of Wave
Frequency Coverage
Antenna Output Power
Modulation Method
Frequency Deviation
Multiplication Method
Output Impedance
Spurious Response
GENERAL
Size
Weight

> Frequency modulation (F3)
> $144-148 \mathrm{MHz}$
> Up to 15 Watts (at 13.8 V )
> Variable reactance phase modulation
> + or 7 kHz (Maximum) at 1 kHz
> $\times 3 \times 2 \times 2=12$ multiple
> $50-75$ ohms
> -60 dB or better
> $200(\mathrm{~W}) \times 80(\mathrm{H}) \times 190(\mathrm{D}) \mathrm{mm}$
> 2.13 kilograms

Price includes S.T. Freight or postage and insurance extra, allow $\$ 4.50$. Price and Specifications subject to change. OBTAINABLE ONLY FROM:


# Newc omers Notebook 

with Rodney Champness VK3UG
44 Rathmullen Rd., Boronia, Vic., 3155
A MEDIUM WAVE LOOP ANTENNA This month David presents a loop antenna/aerial, which ever term you wish to use, that could be of use to those who have problems with electrical interference or with two stations on adjacent frequencies which mutually interfere with one another.
For frequencies between 500 kHz and 2 MHz , the loop antenna takes a lot of beating. It consists of 7 turns of wire ( 5 or 6 for higher frequencies) around a wooden framework (x-shape as in the diagram). The ends of the wire connect to a 500pF tuning capacitor. A second wire, wound around the centre turn, connects to a coax cable which goes to the antenna and earth sockets on the recelver, or preferably to balanced input.
The loop forms a tuned circuit in conjunction with the capacitor, with the inductive loop providing a low impedance feed to the receiver. The capacitor has to be tuned for each frequency and the selectivity is excellent. The loop is highly directional and by rotating it, interfering stations can be virtually eliminated. The tuning is very sharp and it is advantageous to fit either a slow motion drive to the capacitor or to wire a small value variable trimmer ( 10 to 20pF) in parallel with it.

The gain is not as high as that of a long wire antenna, but this is more than outweighed by the much improved signal-tonolse ratio and the directional characteristics. The direction of a station can be
determined within a few degrees by nulling it out to take its bearing. The broomhandle can be fitted into a box as shown, with the bottom fitting into a recessed slot to prevent it slipping.

The main frame can be made of $1 / 4 \mathrm{in}$. ( 6 mm ) plywood or softwood. The wires should be wound very tight and should be kept that way (under tension the wire tends to stretch slightly). The softwood blocks merely act as bracers and as supports for the broom-handle.

## NOVICE

The long awalted Novice Amateur Operators Centificate has finally come to pass. Within a few monthe we should hear the firsi Novice Amateurs on the air, as the initial examination is on the 24th of June this year and the following full Novice exam will be on the 18th of November. The Novice conditions are such that a Limited Amateur can sil for 5 wpm morse and obtain a Novice Licence as well as his Limited Licence. It will mean that many of those who seem to find morse the bugbear may be able to get his standard of morse and at least achieve some of the additional privileges a full status amateur already enjoys. Let us all hope that Novice Amateur Radio is a success and that it enriches the amateur service and that it is here to stay.
The conditions for the granting of the Novice licence are not greatly different to those proposed originally by the PMG but there are a few Important differences, and I will endeavour to highlight these. There is to be no age limit on people wishing to apply, and the two year tenure doesn't seem to have been retained. The Novice licence will cost $\$ 6$ instead of the normal amateur licence of $\$ 12$, so perhaps the din made about the fee to the PMG did have

some measure of success. The bands that will be allocated for Novice use are 3.525 MHz to $3.57 \mathrm{MHz}, 21.125 \mathrm{MHz}$ to $\mathbf{2 1 . 2 0 0}$ MHz and 26.960 MHz to 27.230 MHz , using crystal controlled transmitters with a power OUTPUT of 10 watts for constant carrier modes of transmission, and 30 watts OUTPUT for SSB.

The output power rating for constant carrier type transmissions is most unexpected and means that the maximum power output is about 50 per cent greater than had been expected with the 10 watt INPUT licence condition. It will also mean that low efficiency type transmitters can be used where versagtility is more important than circult efficiency, and that many of the Novice transmitter designs will in fact be considerably different to those normally used. It has caused me to do some rethinking regarding the style of equipment that I will describe in AR, although the initial Novice transmitter will remain as it is with a few modifications to up its power on CW only.

The modes permitted for use are $A 1$. A3, A3A, A3H, A3J. A3B and F3 with modulation of $\pm 3 \mathrm{kHz}$ deviation. No doubt all modes of operation will be used although I expect that A3 (AM), A3A and J (SSB) and A1 (CW) will be the most popular modes, with AM/CW rigs perhaps being the most popular initially.

From what I have been able to gather the examination is likely to be of the multichoice answer type and it will take less time to do than the traditional essay style examination used for the Limited and Full examinations. The Regulations examination will be identical in style to the existing Regulations exam, and of course the morse is just a half speed version of the 10 wpm morse used by the full privilege amateur now.

The style of morse used for the examination will no doubt be required to conform to the standards as set by the International Telecommunications Union of which Australla is a signatory. The characters will sound horribly slow and drawn out. A person who has just learnt the code out of the book should almost be at 5 wpm and be able to take the examination with very little study time involved. However, it is most important that morse be learnt correctly whether you are going to do 5 wpm or 50 wpm so please make sure your morse is of good standard both receive and transmit, as you will need to up-grade it to at least 10 wpm if you Intend to become a full privilege amateur. Probably the best DX mode to use as a Novice is CW, also the cheapest. and is a good tralning ground in operating procedure, etc.

I have reservations about anyone who becomes a Novice and then proceeds to buy some so called Citizens Band radio and merrily operate on 27 MHz to the exclusion of all other bands. It will be a bit like the amateurs who now operate only their little black boxes on the 2 metre band and then mostly via the repeaters. No, don't get me wrong I am not necessarily "agin" FM, fixed frequency operation, and
repeaters, but like many things too much of a "good thing" is not necessarily good. The people concerned in many cases appear to have Verbal Diarrhoea, and say nothing over a long period. I hope you as a Novice are not foolish enough to fall into this trap, as it is hard to get out of it.

Over the next few months David Down and I hope to present a number of projects and general hints which it is hoped will help Novices and Novices to be. It is hoped that the articles will be of interest to all newcomers, and that you the readers will write to David and me with your suggestions on how this column can help you. Do you think that the name of the column should be changed or is it okay as is? When Novicing is next written about in this column in about two months time the first exam will be over and the general conditions applying to Novicing should be much clearer than they are at the moment. If you have queries on Novicing please write to me and I will endeavour to get the correct answers so that confusion does not reign supreme. Cheerio for now and good luck in the exam.

## Commercial Kinks

## with Ron Fisher VK3OM

3 Fairview Ave., Glen Waverley. 3150
MODIFICATIONS TO THE YAESU FT75
The little Yaesu FT75 transceiver seems to have carved itself into a special niche for many amateurs. Being both small enough and light enough to fit into the family car without encroaching too much on passenger space, its success as a mobile rig is easily understood. Bob Martindale VK3BMA has come up with a few ideas that add to the operating convenience of this unit. Originaliy published in "The Radio Bulletin", journal of the Eastern and
(a) AS PER CCT DAGRAM

(b) AS ACTUALLY WIRED

(c) as rewired to enable key to be left PLUGGED IN IN SSB MODE


MODIFIED FILAMENT WIRING - FT 75/FP75

Mountain District Radio Club, Bob has kindly passed it on for inclusion in this column.
"Described here are three modifications I have performed on my FT-75. Performance of the unit is unaffected but operating is made more convenient.

1. Relocation of the PA blas adjusting pot
This potentlometer is mounted on the chassis of the transceiver and access is obtained by removing the top cover. The suggested alternative is to drill a hole in the top cover to enable entry of an adjusting tool. I was not too keen to drill a hole in the case, so a position on the rear panel was selected to enable direct access. The pot was mounted just below the VFO socket on the rear.

The hole in the chassis from which the pot is removed is then fitted with a grommet and the wires to the pot are passed through it after being extended.

Adjustment of the PA bias is now much
more convenient, particularly if the rig is frequently alternated between home and mobile operation with the DC-75 mob. power supply as in my case.
2. Rewiring of the filament supply to the driver and PA tubes
When operating the FT-75 on the FP-75 AC power supply there is no provision for switching off the driver and final filaments during lengthy periods of listening only.

Reference to the circuit diagram produced the following solution: The cable between the FP-75 and the transceiver has two conductors connected in parallal for the switched mains return to the power supply (the light green and violet coloured conductors). If one of these is unsoldered at the connector and Inside the FP-75 a spare conductor is now available in the cable.

This spare conductor is used to provide mains voltage from the HEATER switch to the primary of an added filament transformer.

The main filament supply conductor is transferred to the secondary of this new transformer.

## 3. Rewiring of the CW switch

Due to the mathod by which the FT-75 is keyed for CW transmission and the arrangement for plugging in the key, the rig cannot be operated in the SSB mode while the key is left plugged in unless the key is held depressed. I prefer to leave the key permanently plugged in and select the mode of operation with a switch.

2. Viewed from underside of transceiver.

GJs
UNMODIFIED CW SWITCH WIRING-FTTS


MODIFIED CW SWITCH WIRING-FT75

Again reference to the circuit diagram produced a simple solution. S3c-2, the switch section controlling the 'CW' lamp PL5 is rewired according to the circuit diagram. The switch now piaces a short circuit across the key socket when the CW mode is not selected and the PA bias is now unaffected by plugging in the key."

I am sure that owners of the FT75 will find Bob's ideas worth a try.

## PRIJEGT AUSTRALI8

with David Hull, VK3ZDH

The 1975 International AMSAT-Oscar Experimenters Conference was held in the Goddard Space Flight Centre, Greenbelt, Maryland, USA over the period 21at to 24th March. 1975. It was convened to dafine the next satellite(s) in the OSCAR series and to decide the reaponsibilities of the national groups involved towards developing these satellites.

Those who attended Included Larry Kayser VE3OB and Bob Papper VezaO from AMSAT Canada. Karl Melnzer DJ4ZC from AMSAT Deutschland. Chuck Swadblom WAGEXV and Dick Kolbly KBHIJ from the San Bernardino Microwave Sociely, Jan King W3gEY and Perry Kieln K3JTE from AMSAT HQ and Dave Hull VK3ZDH from the WIA Project Australis.

The princlpal area of discussion was Oacar 8 and the possible launch vehicle/ortit opportunities for this project. Without golng too much into the alternative possibilities, which included a loint VK/VE satallite In an Oscar 6/7 orbit, it can be atated that the conference decided to go ahead on development of an AMSAT phase III advanced apacecrall for launch in mid-1878 end to concentrate all effort to that end.

The development le constralned by the launch date of the last ltos launch on the Delta 2910. a call-up misaion with a mid-1978 target. Faillng this launch the titan 3C/377 Milltary launch could be considered as could the Space Shutte acheduled for an expected first launch in June 1979. The orbit posalbilities of these launches are 900 miles, Sun Synchronous (as per Oscars 6 \& 7) for the Delta, Geostationary Synchronous for the titan, and low altitude low inclination for the Shuttie. None of these orbits was considered entirely satisfactory for the Amateur Satallite service worldwide at our present atate of development.

An optimum location for the Geostatlonary satelIlte was Imposalble 10 find; it would serve only one ares for long perlods at atime. The 900 mlle orbit had been fully explored with Oscars 9 and 7 and there seamed little point to a lower shuttie height orblt. The only alternative soemed to be an initial launch Into a 900 mlle orbit with a subeequent in-fight manoeuvie to raise the apogee of the satellite to such a height that a considerable radio range would result for much of the orbit.
What the conference had in mind was to provide a vlable altarnative to the 20 metre band without any of the propagation problems of the HF bands. This in-fight manoeuvie would require the spacecraft to be filted with an Apogee Kick Motor (an AKM, a small Internal rocket motor) and this would be a complately new development for the Oscar Serles. This motor would be fired by ground control some orbits after launch at a time delermined by the orbit mechanics.

To this and, and to further advance our command techniques, It was decided to fly, also for the lirst time. an Inboard computer. This unit would integrate the Command. Telemalry and general housekeaping of the whole spacecraft. The Computer would Intertace directly with Ground Station Equipment (GSE) computers in the worldwlde chain of command atations. The Spacecraft computer would also arrange the tranamiasion of telamatry in any format (RTTY. CW. ECD of al) as decided by the software fed from the command atallons. Commande and operating achedulea would also be decided In like manner by ground loaded eotiware.

All thla ia an intoreating technical exerclae from the particlpant point of view, but what about the Ocear users?

The principal transponder would be a linear unit of 150 kHz bandwidth with reception either in the 2 m or 70 cm band and transmigsion in the alternalive $(70 \mathrm{~cm}$ of 2 m band). The exact choice of uplink. 2 m of 70 cm . and thus downlink, was not decided and the conterence chase to reler thig choice to pall of interested parties
In general. "E and VK with some of the W's favoured 2 m up and 70 cm down: the DJ and AMSAT HO representatives were in favour of the allernallve (as in Oscar 7). Project Australle would appreclate feedback from VK eatellite usert on this question.
Two or three Beacons will be llown. There will be a beacon al each end of the passband and. possib'y. e 2304 MHz beacon it the present problem with the FCC on this question can be overcome.
It is anticlpaled that the AKM will push the astellite Into an Initial apogee over the North Pole of 7.2 earth radil. From the VK point of view this would provide 2-3 hours access to the whole of North Americe and Japan elc. every 12 hours. In time the apogee would drift southwards with consequent increasing satellite lime to a maximum of perhaps 10 out of the 12 hour orbit time. About 1000 watts. EIRP would be required for effective communication at apogee.

The responsibilitias of the groups involved in bullding Oacar 8 ware lald down as follows: AMSAT Deulsentand:

Design major units of spacecraft. I.e., transponder, Integrated housekeeping unlt including computer.
Build prototype spacecraft.
AMsat Caneda:
Build spacectaft both prototype and fight units.
Project Australis:
Dasign and build GSE equipment with ground computer etc.. provide prototype for teal use and 5-6 integrated units for world command stations bafore launch. Provide soliware for both soacecraft and GSE computers.
San Eamardino Mleromave Society:
Design and bulld 2304 MHz beacon. amsat ma:

Provide overall ayatem management. procure components. afrange launch, provide operations management once spacecraft is In orbit.
As will be seen this is an ambitious program and is, of course, subject to future changes and modificallons as circumstances may demand The planned epacecraft Is, however, a loglcal expanalon of the AMSAT-Oscar programme and we belleve within the capabilities of the International parilcipants given reasonable fortune and support

On a personal note I would like to thank aincerely Larry Kaysar VE3OB, Parry KIaln K3JE. Tom Clapk WA3LND and Jan KIng W3GEY amongst many others who made the author so welcome and provided the hospliality for which the $W$ and VE amateurs are so well known. In Iddilion, I would IIke to thank the Executive and Divisiona of the WIA whose falth In Project Australls and the Oscar programme made my tilp possible. I hope the end justifies the means.
NOTES ON WASNIMGTON AND OTTAWA
As might be imagined. the author was very Interesied in amaleur radio operation In North Eastern US and Sauthern Canada during his recent vigit. Due 10 commilments, listening was limited to Oscar passes and FM operalion whilst moblle. The amount of traflic through the Oscars. particularly mode B on AO7. was Incredible to a listaner used to Southern Ausiralian conditions. At one stage 10 call areas ware counted in as many minules. all on SSB. The number of European countries available to VE3 Just serves to highlight the lack of Oscap aclivily in the South East Asian countries within our range. It also serves to emphasise lust how much a high altilude salellite such as Oscar $B$ would mean 10 VHF in VK. Some measure of the Impact of $A O 7$ and 6 on Aegions 1 and 2 can be gauged by the number of articles on satallite subjects appearing in the amateur press. but the effect on a stranger firsthand is a lltio ovapwhelming. They sound like an open 20 m in contesl. This activity is also reflected in the number of amaleurs Joining AMSAT, currently running in the order of 80 per weak! VKs are reminded that AMSAT dues will rise Irom USSS to USS 10 per annum on July 181 so il you have an interest in satallitas join NOW. Lite memberahip, real bar-

## The Sensational ATLAS-210/215

SPIECIAL ANNOUNCEMENT.
Dear OM.
You are cordially invited to in npect
nowrom the new You are cordialy the new Aitas
at our showrom the
210-215 SSB transceiver.

 and South mint mitary developmen by chiet
USA) in the at Southom (ex
 Enginer. Les is consto solid-stave
ZLAAX
one of the toremost
 miliany designs:-
madio marke.t.
rad to been ap-
dico


CRYSTAL FILTERS • FILTER CRYSTALS • OSCILLATOR CRYSTALS
 SYNONYMOUS for QUALITY and ADVANCED TECHNOLOGY

Listed is our well-known series of 9 MHz crystal filters for SSB, AM, FM and CW applications. By KVG

| Fildie Pydu | XF ¢ ${ }_{\text {¢ }}$ | XF 98 | XF 9C | XF90 | XF 9F. | XF 9M | |
|---|---|---|---|---|---|---|---|
| Applateich, | SSत <br> Trangma | $\begin{gathered} \text { SSB } \\ T \\| / R_{x} \end{gathered}$ | AM | AM | FM | CW |
| Number at Fildei Cirysals | 5 | 8 | - 8 | 8 | 8 | 4 |
| Bandwidth I6dB thewnl | 25 kHz | 24 kHz | 375 kHz | 50 kHz | 120 kHz | 0.5 kHz |
| Passlatid Aloule | $\cdots 1 \mathrm{~dB}$ | $<2 \mathrm{~dB}$ | $<2 \mathrm{~dB}$ | 2 dB | $<2 \mathrm{~dB}$ | $<1 \mathrm{~dB}$ |
| 1 section Loss | 3 dB | $<35 \mathrm{~dB}$ | $\because 35 \mathrm{~dB}$ | c 35 dB | $<35 \mathrm{~dB}$ | $<5 \mathrm{~dB}$ |
| Invui Oulput | $2,500 \mathrm{~s}$ | 50012 | 50032 | $500 \Omega$ | $1200 \Omega$ | 500 \$ |
| Terminalion | $\mathrm{C}_{1} 30 \mathrm{pF}$ | 30 pF |
| Shape Factor | 1650 dBl 17 | $\begin{array}{\|l\|l\|} \hline 6 \mathrm{6} .60 \mathrm{~dB}) & 18 \\ 6.80 \mathrm{dBl} & 2 \end{array}$ | $\left.\begin{array}{\|cc\|} \hline 16 & 60 \mathrm{dBI} 18 \\ 16 & 80 \mathrm{dBI} \\ 162.2 \end{array} \right\rvert\,$ | $\left\|\begin{array}{lllll} 16 & 60 & \mathrm{~dB} & 1 & 8 \\ 16 & 80 & \mathrm{~dB} & 2 & 2 \end{array}\right\|$ | $\left\lvert\, \begin{array}{l\|l\|} \hline 6: 60 \mathrm{dBl} & \mathrm{~dB} \\ \hline 6.80 \mathrm{dBl} & 2.2 \end{array}\right.$ | $\begin{aligned} & 6.40 \mathrm{dBl} 2.5 \\ & 16.60 \mathrm{dBI} 4.4 \end{aligned}$ |
| Ulimate Altenuation | $\therefore 45 \mathrm{~dB}$ | $>100 \mathrm{~dB}$ | $>100 \mathrm{d8}$ | $>100 \mathrm{~dB}$ | $>90 \mathrm{~dB}$ | $>90 \mathrm{~dB}$ |
| Price | \$3195 | \$45 45 | 54895 | \$4895 | \$4895 | \$34 25 |

In order 10 simplify matching. the input and output of the filters comprise tuned differential transformers with the "common". connections internally connected to the metal case.

INTERNATIONAL BOX 1084ACONCORD MASSACHUSETTS 01742 U.S.A.

| Matching |  |  |  |
| :---: | :---: | :---: | :---: |
| Oscillator Crystals |  |  |  |
| XF900 | Carier | 9000.0 | kHz |
| $\times$ X901 | USR | 89985 | k $\mathrm{Hz}_{2}$ |
| XF90? | LSB | 9001.5 | $\mathrm{kHz}_{2}$ |
| XF9.03 | BFO | 8999.0 | k Hz |
| All ery | stals | \$380 |  |
| Sockets | (FO5) |  | 50 c |

Export Inquiries Welcome


Registration Fee: $\$ 1.00$; Air Mail: 26c per $1 / 202$.
Shipping weights: Filters 2 oz ea., Cryslals $1 / 2$ oz ea.
All Prices in U.S. Dollars.


PEAK Pañel-Meters are attractivaly styled and represent top-quality at keen prices.
A.C. \& D.C. Voltmeters \& Ammeters are available in a wide selection of ranges.
The model stocked is the KR-65 Series in $4 \overline{5}$ popular ranges. Alternatlve models or special callbrations are available to indent order.
Plastic cases for conversion to desk ineters are available.
Peak Panel-Meters are guaranteed for 3 months and are backed by excellent service facilities.
comichumeturanas cho inponitas
" contenatiar moso, cantenumiva, vic. sal PHONE $336-0707$
gain now at USS50 will double a:so. FM repeaters operation in $W$ and VE was also a litt:e strange to a VK. Most repeaters are privately or club operated, some carry Loud idents, some don't. some are on 24 hours a day, some only at night. In the latter category fell the AMSAT repeater in Washington WR3ABU ( 146.25 to 146.85 MHz ). This unit had a loud audio tone ident consisting of the call letters and the words AMSAT REPEATER at 10 wpm . This seemed 10 go on for ever to the author, but 1 guess oniy look 10 seconds of so. Other repeaters are used solely as links to tie two other repeaters together in towns 50 miles or so apart. Remote control of these is common, as in multi-frequency operation with remote telemetry links. All VHF bands from 50 MHz up are used to accomplish this. As can be imagined, there are problems. Particularly in de-sensitisation of a mobile receiver under shadow of a 500 watl rapeater on an adjacent channel. One thing I noticed was the remarkable absence of button pushers, all the operation I heard was courteous and well managed. Due to their regulations, call signs are not given on every over and as a personal observation it seemed to me that this cut down a lot of unnecessary transmission. Touch tone operallon was required for some repeaters. In general, the same power levels were used. IC 22s and similar rigs were common as were hand-held units. All in all most interesting and perhaps a portent of future operation here.

## O8CAR PREDICTIONS OSCAR 6

| JUNE | Orbit | Time 2 | -W | $\begin{gathered} \text { JUNE } \\ \text { Day } \end{gathered}$ | Orblı Mada |  | - W |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 12001 | 01.19 | 70 | 1 | 2472B | 00.04 | 51 |
| 2 | 12013 | 00.19 | 55 | 2 | 2485A | 00.59 | 64 |
| 3 | 12026 | 01.14 | 69 | 3 | 24988 | 01.53 | 78 |
| 4 | 12038 | 00.14 | 54 | 4 | 2510A | 00.52 | 63 |
| 5 | 12051 | 01.09 | 67 | 5 | 2523B | 01.46 | 76 |
| 6 | 12063 | 00.08 | 52 | 6 | 2535A | 00.46 | 61 |
| 7 | 12076 | 01.03 | 66 | 7 | 2548B | 01.40 | 75 |
| 8 | 12088 | 00.03 | 51 | 8 | 2560A | 00.39 | 60 |
| 9 | 12101 | 00.58 | 65 | 9 | 2573B | 01.34 | 73 |
| 10 | 12114 | 01.53 | 79 | 10 | 2585A | 00.33 | 58 |
| 11 | 12126 | 00.53 | 64 | 11 | 25988 | 01.27 | 72 |
| 12 | 12139 | 01.48 | 77 | 12 | 2610A | 00.27 | 56 |
| 13 | 12151 | 00.48 | 62 | 13 | 2623B | 01.21 | 70 |
| 14 | 12164 | 01.43 | 76 | 14 | 2635A | 00.20 | 55 |
| 15 | 12176 | 00.43 | 61 | 15 | 2648B | 01.15 | 68 |
| 16 | 12189 | 01.38 | 75 | 16 | 2660A | 00.14 | 53 |
| 17 | 12201 | 00.38 | 60 | 17 | 2673B | 01.08 | 67 |
| 18 | 12214 | 01.33 | 74 | 18 | 2685A | 00.08 | 52 |
| 19 | 12226 | 00.33 | 59 | 19 | 2698B | 01.02 | 65 |
| 20 | 12239 | 01.28 | 72 | 20 | 2710A | 00.01 | 50 |
| 21 | 12251 | 00.27 | 57 | 21 | 2723B | 00.55 | 64 |
| 22 | 12264 | 01.22 | 71 | 22 | 2736A | 01.50 | 77 |
| 23 | 12276 | 00.22 | 56 | 23 | 2748B | 00.49 | 62 |
| 24 | 12289 | 01.17 | 70 | 24 | 2761A | 01.43 | 76 |
| 25 | 12301 | 00.17 | 55 | 25 | 2773B | 00.43 | 60 |
| 26 | 12314 | 01.13 | 68 | 26 | 2786A | 01.37 | 74 |
| 27 | 12326 | 00.12 | 53 | 27 | 2798日 | 00.37 | 59 |
| 28 | 12339 | 01.07 | 67 | 28 | 2811A | 01.31 | 72 |
| 29 | 12351 | 00.07 | 52 | 29 | 2823B | 00.30 | 57 |
| 30 | 12364 | 01.02 | 66 | 30 | 2836A | 01.25 | 71 |
| Macrine flax |  |  |  |  |  |  |  |
| with oyd Clerk, VKuASC |  |  |  |  |  |  |  |

## BREAK-IM Jan/Fab 1975

Transistor Testers: VHF/UHF Rejection Fillers UsIng Coaxial Stubs: Reflections on a Commercial Rig: Some Thoughts on Mobile Noise Suppression. CO MAGAZINE Dec \& Jan 1974.75
Digital Speed Readoul in an Electronic Keyer: Results of the 1974 CQ World Wide WPX SSB Contest: Announcing the ORPD Transmitter Design Contest; Loss In Transmission Line Systems; An tennas. 1S1A Spratly Island Expedition - 1973; Transistor Final Techniques: Antennas.
ham Radio dec \& Jan 1974-75
Understanding 0 ; Collins 75A4 PTO Maintenance: Clicularly Polarised Satellite Antenna: FM TouchTone Decoder: IC VTVM Conversion: VHFer's View of Solar Cycle: Improving Vertical Antennas; RTTY Message Generator: Low-Cost Printed Clircult Boards: Az-al Antenna Control System for Satellite Communications: Audio Oscillator; Regulated, Variable High Vollage Power Supply: Electronic Keyer Paddle: Wind Driven Power Generators.

08T Fob 1975
The Contester: A State of the Art ORP Transceiver for 50 MHz : Precision Tuning. WWII Vintage: Frequency Counter, a Modular Approach: Practical Ideas for the ITV Eninusiasi; Transmitting Variables - Who Needs 'Em; A S:acked Multiband Vertical for 80-10 Metres; Simple 160 Metre Converter. RADIO $2 S$ Dee '74, Jan ' 75
Ham-M Operation for the Blind: RTTY; Intruder Watch. The IARU Monitoring System; Keeping Track of Oscar 7: A Coaxial Phase Detector: PEP Definition and Melhods of Measurement.

## Letters to the Editor

Any opinion expressed under this heading is the individual opinion of the writer and does not necessarily coincide with that of the Publishers

The Editor,
Dear SIr.
On the Queen's Birthday weekend. the NSW Div. VHF \& TV Group, is conducting a Field Day contest. The perlod is from 1200 hours EAST. 14in June to 1400 hours EAST. 16th June 1975. There are 3 sections; Field. Mobile and Home stations. with the beat 6 hour and overall score in each section. The points score table is basically as the Ross Hull, on page 13 of the October 1974 issue of AR, with a loading for tunable oparation.
Full de?alls can be obtained from the Group's address: 14 Atchison St. Crows Nest 2065.
A. D. Tilley VK2ZYT, Secretary.

The Editor,
Dear Sir.
THE FRIENDLY CONTEST
Amateurs must have been pleased to note that 822 amaleur operators forwarded logs in our last Remembrance Day contest. I could suggest that we reached that ligure "without even lrying"?
All would certainly feel proud if we toppled 1000 by Just irying a ilttle.
Book someone. who missed last year. In for this year's contest and for sure we'll top 1000.

Quantity should not reduce quality . . . the exchange of Christian names, for those who have time, and the big scorers do not have tlme it they are to score well, seems to be calching on and really makes the contest "Friendly"
Help a lot of chaps enfoy the 1975 Remembrance Day Contest.

Peter H. Brown VKAPJ.
The Editor,
Dear Sir.
Recently the VK3 Stale Repeater Committee held a combined repater meating on Saturday 15th February at Melbourne. It was slated at the meating that the Post Oflice has as last released the call sign block VK3RAA to VK3RZZ for repeaters. This means that the Victorian application to have repeater call signs in accordence to their place if required will at last come into being.

| VK3RML | .. | .. | Melbourn <br> Geelong |
| :--- | :--- | :--- | :--- |
| VK3RGL |  |  |  |
| VK3RWZ |  |  |  |$\cdots$

VK3RWZ ... Western Zone
Latrobe Valley
MI. Macedon

Midland Zone
Swan Hill
Ballarat
East Gippsland
MI. Arapiles

The meeting decided thal all future repeater ingtallations around the State can only be satistactorily achleved by the use of seven repeater channels in accordance with the 1973 WIA $t e$ pealer band plan. Many problems of overlap thus will be overcome.

Repeater Standards were fully discussed and unanimously agread to adopt a universal and unitorm set of repeater standards: Deviation plug/minus 7.5 kHz average with 10 kHz peak. Power up to 150 walts DC input it required (local service area repealer wll not require this power). Identification: it was agreed that FSK be used. Squelch tails: It was decided for one second Silent tall to be adopled and applied to all repeaters. throughoul the Slate. Two and a half minute timers in accordance with Post Office requirements would be put on. and country repeaters a 5 minule timer would be allowed. A lone on Time Out would also be applied.

Rules for Repeater Operation were also discussed. and were also unanimously agreed to by all repeater project leaders and ofticers.

Repeaters are used for MOBILE working and intended to exsend mobile coverage. eg. Mobile 10 Mobile: Mobile to Base Also used tor any Base to Base or Base 10 Mobile station to establish contact. Where it is possible for any station mobile or base to work on Simplex. then they should do so.
2. If a Breaker breaks in, he should be given the go-ahead immediately: this allows for emergency calls, of a quick joining of leaving of the nel. 3. Up to two minute transmissions to apply. giving the $21 / 2$ minute limer a half minute grace before lime out. This is in no way to restrict the length of QSOs. only the length of the trans mission, to Time Share for all users.
4. Let the repeater drop out before commencing Iransmission
5. Don't Talk 'Waffle' - If you have nothing to say - Don't say it.
For further detalis or information, please write to the Repeater Committee Secretary. Mr. Ken W Jewell, VK3ZNJ. 100 McClelland Ave., Lara. Vic 3212.

## W. G. Francis VK3ASV. Publicity Officer.

Vic. State Repeater Committee.
The Editor.
Dear Sir.
Since I wrote some time ago suggesting that some VK hams might like to make the effort to speak a little elementary Japanese. I have received quite a tow enquiries on the phone and on the air.
It would appear that a considerable interest exists and the usual query was "How does one go about il and where do you slarif" As all active DXers know, there is never a lime of the day or night that you can't hear droves of Jas on at least one of the HF bands, so there fo never a shortage of Japanese speaking hams 10 practice on. Without exceplion they are extremely co-operative with any toreigner interested enough to liy and master a litlle of their languaga.
When listening to two JAs ratting oll a OSO in their native tongue, it would appear an impossible lask to ever get beyond the "sayonara" slage but, by slowing down the tempo. things become a little clearer for all concerned and this is the lirst essential requirement. Remember it's fust as difticult for an average JA 10 lully under. sland our rapid mode ol everyday speech.

Well now, to get slarled on a few basic words that are in everyday usage on ham radio and. al the same time. bearing in mind that It is practically Impossible 10 write the correct phonetics of any foreign language in an English form. The obvioug answet is to listen intenily to the way they pronounce worda. What better teacher can you have than a Japanese national brought right into the shack, via the loudspeaker.
Let's start with the usual opening greetings of "good alternoon" and "good evening". These are cespectively "kon-nichi wa" and "konban wa" bul remembering what $I$ said earlier about concentrat. ing on the way they say it.

I suggest the next simple step would be to make oul an "idiat sheel" with the numbers "one to ten" as this fils in admirably in giving a sig. report and it goes something like thig -

| 1. | Ichi | 6. | Roku |
| :--- | :--- | ---: | :--- |
| 2. | NI | 7. | Nana |
| 3. San | 8. | Hachi |  |
| 4. Yon | 9. | Ku |  |
| 5. | Go | 10 | Ju |
|  |  |  |  |

A reporl of 4.6 would be forly six in Japanese which is "yon lu roku" from your idiol sheet. Likewise 5-8 would be "go ju hachi". Gel the Idea!
One other important point when speaking to a JA is to tag "san" on to the end of his handle as a form of politeness. but NEVER on the end of your own name. In the same way he will add "san" to your name. but NEVER to his own name
Let me finish up by saying I don'l possess a Ph.D. in the Japanese language. Far from it. I have only read text books and practised it. via ham radio. and 1 find that making an ellort to mect the JAs half way makes the more mundane OSO a little more enjoyable than the usual "Hello Goodbye: type of contact.

I trust the foregoing proves of sufficient interest to those who would like to try out their linguistic
talents and so gain confldence towards an improved vocabulary in the tuture.
R. B. Monities VK5RB,

975 Main Road, Modbury. SA. 5092 EDITOR'S NOTE-For those interested in sludying Hiragana and Kala Kana further, the book "How lo use Good Japensa'" (ihe Japanese School of the International Sludents Inatilute, Tokyo), is recammended.

## Contests <br> with Jim Payne, VK3AZT <br> Federal Contest Manager. <br> Box 67. East Melbourne, Vic., 3002

JOHN MOYLE MEMORIAL NATIONAL FIELD DAY One late entry from VK6II. The 29DX club, with a score of 944 in the 24 hour multi op open. Bad luck seems to have dogged these tellows for the log bears the comment "Hon Sec got horribly lost in trying to find a field day site". However, from the variely of calls listed, it was a good choice.

Lots of comments from all call areas and these will be considered before the rules. etc. for the next contest are published. It is difficult to draft the rules free of anomaly but hopefully we are improving.

VK4AL was at Mt. Nebo National Park about 25 km NW of Brisbane, and 1800 feet above saa level. An FT75 for 78 14, FT100日 for 3.5 and 21 and a Pye 734 for 146 were powered by a 300 watl generator. An inverted $V$ slung in a tree was used tor HF and a $5 / 8$ whip lor VHF.

VK1JR was near Tumut with a TS520. There is mention of 4 doz. cans - petrol for the 2 kW generator or lubricant for the VF?

VK3YQ was marine portable with an FTDX 100 on Lake Eildon. VKJADW was in the same area with an FIDX 100 and a 10 watt AM rig for 160. A 133 flat top tuned teeder was used for HF and a dipole lor the 160 rig.
VK3TX was using an FT101 with battery pack and generator at Snowy Plains, aboul 170 km north of Traralgon. Using another rig on 2 metres, Dean's log shows a QSO with VK3LT/P and the RS/T reports are 51009, 529015. A comment on the cover shest states "The contact with VK3TL/P on 2 m is real; my transmission by F2 mode'.
VK2YB used an ATR2B with a batlery powered vibrator providing about 15 watts inpul, at Springwood.
VK2CAX selected the Jenolan State forest to erect an 80 metre dipole. 20 m groundplane and 52 MHz Yagi. The rigs HW101. MR2OB, a home made linear and a 52 MHz transverter were powered from an E2500 generator.

VK3AUQ went to Christmas Hills, about 35 km east of Melbourne with home brew and other gear to work 1.8 through $28,52,144,146,432,576$ and 1296. The last iwo ware not used

VKAAAR operaled an FT 101 from a baltery, into a 300 foot long wire for 20 and a lo'ded dipole for 40 and 15 at Moggil, 40 km SW of Brisbane.

VKSAWI was sel up 1800 leet ASL on MI. Gawler, 25 km NE of Adelalde. Their 3 kVA generator failed after only hall an hour and an 800 watt look over. Alan suggesis that a national simula'ed emergency test similar to those held in the US would provide an opportunlty to demonstrate the ellecliveness of portable equipment and give valuable experience in message handling.
VKBAS was located 3 miles north of Allce Springs at the old telegraph station with a 6 kVA generator, several rigs SB101. FT200 and TR3. A 400 loot long wire was used for $3.5,21$ and 28.5 bands.

VK5SR used an 18 AVT vertical with 8 radials and an FTDX 560 with a 1500 watt alternator at the Bluft. 20 km NW of Mt. Gambler.
P29PNG was a speclal call allotted to P29FV. BG. WB, MO, EM and ZMJ tor the duration of the contest. The three operating positions were set ud within the Murray Barracks area about 5 km from Port Moresby. Gear included TAXB. R4B, FT101B, FL2100, TS510 and FT200. Antennas were 14AVQ. 18AVT/WB, a dipole and long wires.
VKIATM went to Blue Mountain about 8 miles south of Trentham. They worked all bands 160 to 2 melres.
1975 CQ WW SSB CONTEST
Although this contest tell on Easter holiday this year there were quite a lew VKs and ZLs aclive. Peter, VK4PJ reported that 'conditlons were nol

## VK-ZL Oceania DX Contest Rules = 1975

The National Amateur Radio Association in Australia Invites world wide participation in this year's contest.
Objects: For amateurs of the world to,contact VK, ZL, Oceania slations on all bands, 1.8 through to 28 MHz .
Dales: Phone - 1st weekend in October. CW 2nd weekend in October. Starts 1000 GMT Saturday, ends 1000 GMT Sunday.
Type of Compelilion:

1. (a) Transmitting Phone - Single Operator
(b) Multi Operator outside of VK/ZL.
2. (a) Transmitting CW - Single Operator
(b) Multi Operator outside of VK/ZL

Number Exchange: To consist of five or six figures, made up of the RST report, plus three figures which commence at 001 and increase by one for each successive contact.
Scoring -
Oceania Station: 2 points for each OSO on a specific band with VK/ZL, 1 point for each OSO on a specific band with the rest of the world.
Warld Slation: 2 points for each OSO on a specific band with VK/ZL, 1 point for each OSO on a specific band with Oceania other than VK/ZL.
Final Score for Oceania and World Statlons is derived by multiplying total QSO points by the sum of VK/ZL call areas worked on all bands. (The same VK/ZL call area worked on different bands counts as a separate multiplier.)
VK/ZL Slations: 5 points for a contact on a band, and In addition for each new counliry worked on that band, bonus points to be added as follows: 1 st contact - 50 points: 2 nd contacl - 40 pis; 3rd - 30 points: 4 th - 20 points; and 5th 10 points.
VK/ZL on 80 Metres: As well as to overseas counIrles, contacts on this band between VK/ZL counts for points. Each call area of VK and ZL to be considered a scoring area.
VK/ZL on 160 Metres: As well as to oversess countries, for this band only contacts between VK/ZL, VK/VK, ZL/ZL, count for points: NOTE: an entrant may claim points for contacts in the same call area.
Final Score is the result of the OSO points plus
bonus points for that band and final score is the result of the all bands score added logether.
Logs: (a) Must show in this order: Date, time in GMT. Callsign of station contacled, band, serial number sent, serial received. Underline each new VK/ZL call area contacted and make separate log for each band used.
(b) Summary Sheat to show - Callsign, name and address (use block letters please) details of equipment used and for EACH BAND OSO points for that band and total of VK/ZL call areas worked on that band.
All Band score will be total QSO points multiplied by sum of VK/ZL call areas on all bands while "SINGLE BAND" scores will be that band's OSO points multiplied by VK/ZL call areas worked on that band.

Sign a declaration that all rules and regulations have been observed.

## AWARD8

For Oversess Slations: Top scorer using all bands in each country (each call area in Japan, USA and USSR will be considered as a "country"). vK/ZL 8tations: The WIA will award Certificates as follows: 1. TOD scorer on each band for VK, and $\mathrm{ZL}_{\text {; }}$ 2. Top scorer in each VK and ZL Call area.
General: There are separate awards for CW and Phone. Certificates, other than those issued above may be awarded and these will be determined by conditions and activily.
Listener's Secllon: To count for points, a VK of ZL station ONLY must be heard in a OSO and the following delalls noled in the log - Date, time in GMT, call of the ZL of VK station heard, Callsign of the station he is working. RS(T) of the VK/ZL station heard, band, points. Scoring is on the same basis as for the transmitting section and the Summary Sheet should be similarly set out.
Return of Loge posted to reach -
VK/ZL Manager - WIA, GPO Box 1002.
Perth, 6001. Wesiern Australia
N. Penfold, VK6NE, 388 Huntriss Road.

Woodlands, 6018, Western Australia,
before 31st January, following the contest.
the best. The long path In!o the east coast of the Americas must have heard of the Easter break but came back to work on Tuesday.
"Very little from the western side of Europe and the evening long path no help. Even Jas were comparatively scarce except for a lew 15 metre breaks. Stateside 15 metre stations below par. At the times 1 operaled there were no 10 metre contacts. Quite a few Russian stations on 20 metres which was essily the best band. I heard quite a tew VK4s, Including Roy, VKAZQ, with over a 1000 contacts and VK4UR with a substantial score".

## REMEMBRANCE DAY CONTEST

This year it is on the weekend of August 15/16. At the Federal Convention the ban on the use of repasters for contest OSOs was reatlirmed. The rules and scoring table will be in next month's AR. CONTEST CALENDAR
JUNE:
7/8 RSGB National Field Day
15 Townsville Pacilic Festival Contest
21/22 All Asian Phone
28/29 ARRL Field Day
JULY:
12/13 ARRL Open CD CW
19/20 ARRL Open CD Phone
26/28 County Hunters CW
$\begin{aligned} & \text { AUGUST: } \\ & 9 / 10 \text { European DX CW }\end{aligned}$
15/16 R D
23/24 All Aslan CW

## hSGB NATIONAL FIELD DAY

1700 GMT June 7 to 1700 GMT June 8 th .
Stations outside Great Britaln not ellgible to enter but a certificate will be issued to the VK station whose check log shows most contacts with Arilish portable stations. Send logs 10 RSGB HF Contests Committee, c/-A. Davis, 41 Gainsborough Road, Crawley, Sussex, RH10-5LD, England.

## 20 Years Ago <br> with Ron Fisher VK3OM

## JUNE 1955

I's hard to belleve, but the 6146 tube is now over twenty years old. Philips had a tront cover advertisement for this historic output tube on the front cover of the June 1955 Amateur Radio. Apart from the old 807 which is now around thirty-seven years old. the 6146 must rate as one of the mosit popular 'amateur' tubes ever produced. It's Inleresting to note that some of the very latest solid state rigs use the 6146 as an output stage.
An interesting group of technical articles appeared for June 1955.

In the first of a iwo part series. N. Southwell VK2ZF described the theory and construction of -Wideband Phase Shift Networks'.
Construction of a Cheap Beam. Tom Athey VK5UT used a wooden trame to support an BJK type beam cut for the twenty metre band. Tom used diessed plne which even loday would be fairly cheap. Talking of the W8JK beam, I cannot think of anyone using this antenna any more. Although bi-directional they gave a useful amount of gain with the advantage of multi-band operation. Have you ever gone portable? The late 'Pansy Parsons took a Ilghthearted look at the combined effects of a quit holiday and amateur radio. After much effor the only conlact that eventuated was with an arch enemy from VK3 by name of PIncolt.

Several new appointments were announced to Federal Executive. President and Vice-President were Bill Mitchell VK3UM and Max Hull VK3ZS. Other new members included Rick Ewin VK3AGC.

BIII Falconer. Bill Gronow VK3WG and George Glover VK3AG.

The Editorial page for June 1955 took an appreciative look at the efforts of all who were working to the benefit of the institute and Ifs members. Many of those old-timers are still at It.

## Intruder Watch

with Alf Chandler VK3LC
1536 High Sireet. Glen Iris, 3146
JUNE, 1975
It is with some feeling of satisfaction 1 have learned that the formation of the IARU Monitoring Service (IARUIAS) Region 3 was achieved at the Ragion 3 Conterence held in Hong Kong in March this year. It is now my responsibility to get the service working throughout the region, and it will take quite a deal of organiging to obtain the co-operation of all Pacific countries.

During the last few months reports have bean flowing in from Observers more readily than previously, and 1 must thank all concerned for their reports. Keep it up, fellowsi

Unfortunataly we are losing our VK3 Co-ordinator. Albert Cash has been doing that lob for quite a tew years now, and I must thank Albert and note that we are very appreciative of his efforts. It is with a great deal of pleasure, though, that I can announce the appointment of a new co-ordinator in the person of Ivor Stafford, VK3XB. Ivor has had many years of successful participation in the Victorlan Division affairs, and I do hope that Members will rally around lvor to make the VK3 Intruder Watch one of the best in the Commonwealth. There are plenty of stations to report and many Observers are necessary to cover all bands.

Also it is with pleasure that 1 ennounce the appointment of Les Weldon VK2AFG as the new Intruder Co-ordinator tor NSW. Members in VK2 now theretore have a tocal point so please rally round and glve Les your full support.

From my summary issued at the end of the three months to 31st March the following Intruders have been identlifed -
14030-14040 MOEX - A Red China CW station calling DVQT
14085 HZV - A Norlh Vietnamese CW press in English and in Vietnamese.
14100-14130 ZCPU - A Red China CW station calling YMBK.
14250 BCX24 - A Taiwan CW station in Taipei. Press in English.
7020-7030 NMOY - A Red China CW station calling WHQ4.
The Radio Peking slations are stlll operating broadcast in the 7 MHz band accompanied by the Russlan Jammers, who transmit an overmodulated A3 signal using Majak USSR 2nd program audio, to the dire detriment of Amateurs who use that band. Broadcas's in the 3.5 MHz band also seem to be becoming more prevalent.
i have reported all the above to our Authorlties with a strong recommendation, now that the Australian Government has been sending delegations to Red China and 10 North Vietnam, for complaints to be lodged with the respective Governments.

I wonder if anything will eventuate?

Y.R.C.S.<br>with Bob Guthberlet<br>3 Bandon Terrace, Marino, SA

A recent Press anouncement indicates that the Novice Licence will become available within the next lew months. Supervisors and Club Instructors should start now preparing candida!es for the first examination in June 1975. The format is a multichoice (tick the right answer) type of theory exam and the normal ordinary Regulations exam we have all had to pass. The important message to clubs is that they should produce many candidates and Justify this new licence.

To encourage students for fulure Amateur Radio Operating 1 suggest that Club Leaders promote

## FOR YOUR-

# YAESU MUSEN 

## AMATEUR RADIO EQUIPMENT

## in <br> PAPUA NEW GUINEA



Contact the Sole Territory AgentsSIDE BAND SERVICE PTY. LTD.
PO Box 795, Port Moresby
Phones 53557, 55511
Cables: Sldeband


## BRIGHT STAR CRYSTALS

## - PROMPT DELIVERY GUARANTEED ALL TYPES OF MOUNTINGS

Such as HC6/U (style D) . . . HC18/U (style J) . . . HC25/U (style K) . . . etc. . . Frequency range up to 140 MHz on 5th overtone.


- ACCURACY
- STABILITY
- ACTIVITY
- OUTPUT


## BRIGHT STAR CRYSTALS PTY. LTD.

35 EILEEN ROAD, CLAYTON, VIC., 3168. Phone: 546-5076 (Area Code 03).
INTERSTATE CLIENTS: Contact your Local Agent
Our increased production now enables us to offer Special Discounts from 10\% Let us quote you for all your Crystal requirements.
Our easy-to-read Price List is now available.
Sydney: PARIS RADIO ELECTRONICS, 7a Burton Street, Darllnghurst, N.S.W. 2010, Phone: 31-3273.
Perth: W. J. MONCRIEFF PTY. LTD., 176 Wiftenoon Street, East Perth., 6000. Phone: 25-5722.

Brisbane: FRED HOE \& SONS PTY. LTD., 246 Evans Road, Salisbury North. 4107. Phone: 47-4311

Adelaide: RQGERS ELECTRONICS, P.O. Box 3, Modbury North, S. A. 5092. Phone: 264-3296

Short Wave Listening, making an incentive award each month for the best DX logs. Remember incentive recognilion plays an important part in our TV and Radio "soad box operas' and brings results. Another vital facior in successiul club management is the element of "surprise". Try something new - don't let your programs become stodgy and. most important, involve the parents.

What's in a name? The Federal Constitution awaits ratification by the Federal Council of the Wireless institute of Australla. This and lis predecessor designates that we are a "Youth orientaled organisation. A suggestion has been made that we should considet changing the name to "Amateur Radio Training Scheme" the point being made that we have many adults associated with the Scheme. Now. please do not read this. shrug your shoulders, and say. "So what?" It will cost you Just 10 cents and a scrap of paper to write me and express your obinion.
Are you aware that we are patt of an organisation which purports to be communlcative bul which. in really, is uncommunicallue. Now for another
suggestion: should we delete the "Hobby" from our Conslitution, literature and publicity and sub. stitute, say, "lelsure activity"? Again. I would appreciate your reply ... Just a scrap of paper. ten cents and my addess. 31 Bandon ice. Marino, SA. 5049, and I challenge you to prove me wrong about the "uncommunicalive" response to communication!

One of the major hindrances to club programs is that of linance. II would appear that in my case. because we handle so little, we do so litle How. ever. let us remember that we are responsible for the monies we receive, and further. if YRCS is 10 make successtul application for Government assistance. It will be necessary to prove ithat wo are worthy of such aid Make sure that your club Ireasurer gives receipts, have more than one operator for the banking accounl. produce a yearly audited stalement, and ensure that payments are made with the endorsement of a commillee Without these sateguards we can never hope 10 receive linancial aid.

# An AR Special The 39th Annual Federal Convention 

 of the WIAThe 39th Federal Convention of the Institute was held in the Conference Room of the Be!vedere Lodge Motel in Richmond. Melbourne over the Anzac Day weekend, Friday 25th April to Sunday 27Ih April. 1975.

The Convention was chaired by the Federal President. Dr. David Wardlaw. VK3ADW.

Divisional delegations were headed by Federal Councillors E. Penikls VKIVP (assisted by P. Bowers VKIYS. Alternate Councillor) - I. Binnie VK2zIU. R. J. L. Kelly VK3NT lassisted by Alternate Councillor $A$. Molfat VK3FJ and observers $A$. M. Goode VK3BDL, I. A. Morehouse VK3YAY and P. S. D. Edwards VK3ZZU), L. Blagbrough VKAZGL (assisted by Al'ernate Councllior N. F. Witson VKANP). I. J. Hunl VK5aX (assisted by Alternate Councillor C. J. Hurst VK5HI). N. R. Penfo!d VK6NE and P. O Frilh VK7PF

Others giving up all or part of their weekend to attend and assist in specialised spheres included members of the Executive K. V. Roget VK3YO. K. C. Seddon VK3ACS and P. A. Wolfenden VK32PA as well as W. E. J. Roper VK3ARZ. M. J. Owen VK3KI, D. J. B. Hull VK3ZDH and J. B. Payne VK3AZT - Editor of AR, IARU Lialson Officer. Project Ausiralis Chairman, and Federal Contesi Manager respectively.

Recording equipment was loaned by Max Hull VK3ZS and both he and Cyril Maude VK3ZCK operaled it despite some late evening audio interference from a 120 dB sound source close by in the same bullding. The Convention ran daily Irom about 09.00 hours until 23.00 hours or later with short breaks for meals. Additional work conlinued into the early hours of the morning on several subjects requiring specialised debate or further ciarilication.

This Convention can be labelled "the financial Convention:

Very lengthy and searching debates in committee high-lighted in depth research into ways and means of combating the inflationary trends affecting the WIA - exacily as it does the whole of soclety. The problems were no less easy lo resolve when it is remembered that the budget for the year was approved as long ago as the previous Convention and the budget under which the Institute's alfairs were conducted last year was sel oul in April 1973. Some Inflation had been foreseen and allowances had been made but in acluality the extent of the fises in costs exceeded all the estimates so carelully calculated for the budgets. Delicits therelore arose each year and have to be faced now rather than be allowed to accumulale to the extent of becoming lethal.

The Ins'ilute al the Federal level is owned in equal parts by the Divisions and thesi, are the members of the Federal body. The Federal part of the Institute is, and always has been. keenly aware that the whole of the WIA. including the Federal part. is supported by the members of the Divisions. The WIA exists for the benelit of these members.

II was therefore exceedingly difficull and Indeed necessarily unpalalable for everybody to realise that deficits can only be overcome by the eflorts of the memberghip through the Divisional organisations as presontly constituted. Whether the necessary finances can derive from additional subscriplions. increased membership. fund-raising activlties of various kinds or a combination of part or all of these or other means must rest with the Divisions. The Federal part of the Institule is small in numbers. limited lacilities and merely exisis as a central body to produce AR. to guard the amaleur service at national and wider levels. and to provide various common services which can be more efficiently and economically carried out in bulk as it were - on a centralised basis.

The Federal Council did not hesitate to demand a furlher financial review in August/September so as 10 examine at that lime the further depredations of Inllation. Each Division can therealter decide its subscription levels for 1976 which must of course
be finalised by November so thal subscription notices can come from the computer for digitibution. At this point in lime the Council directed that the Federal element of RACT grade subsriptions for 1976 should be $\$ 14.50$ - subject to the review in September. This amounts 10 oniy 28 cents per week which in this light appears very reasonable when compared with the price of a dally newspaper. It should be remembered that the rates lor students and pensioners are considerably lower.

Having got through this very complex and much undesired but exceedingly necessary business, the Council could then concentrate upon several other important matters requiring allention.

These included such diverse items as the IARU Region 31975 Conference recommendations, the urgent need for a properly qualified and impartial person to look into the whole of the WIA to report upon numerous aspects of the Institute including efliciency. administration and organisation, the very recent introduction of Novice licensing. the gathering storm clouds of the 1979 WARC where the whole frequency spectrum will come up for review by the ITU. and a number of domestic aflairs requiring examination, reviston or action.

The Execulive for the ensulng year was appolnted and was the same as for the previous year except That Ken Seddon VK3ACS look the place of Jack Martin (deparled to South Australia) and Russell Kelly VK3NT replaced David Rankin VK3OV (extended absences on business to Singapore plus his growing duties as Region 3 Secrelary). See page 8 AR of May 1974. The Council was honoured with a visit and informal discussions with the DADG of the Radio Frequency Management Branch. Amongst other liems he gave an outline of the work going ahead preparalory to 1 st July 1975 when the Telecommunications and the Postal Commissions come into being of which the Regulatory and Licensing Branch (RFMB) would not form a part. As a consequence of re-organisation a Radio Act would replace the present WT Act and It was expected this would rela:e more closely to modern conditions. The arrangements made for Novice Licensing were outlined and it transpired that the theory exam for this would be of the multi-choice ('polysampling') kind although the Regulations exam would of course follow the same lines as this particular exam for the other two grades of Amateur Licence.
Very briefly, the following Includes some of the other business conducted at inis Convention:$\square$ The WIA follows a policy consistent with the aims of IARU Region 3 in relation to WARC 1979 and prepartory work lor this Including the lollowing for all ITU Regions:

- Return of $1800-2000 \mathrm{kHz}$ band;
- Eliminate sharing 3500.400 kHz ;
- Expand 40 m band to $7000-7500 \mathrm{kHz}$ and ellminate sharing:
- New amaleur bands about $10.5,18.5$ and 24 MHz ; - Expand 20 m band 10 14-14.5 MHz:
- Expand 15 m band to 21-21.5 MHz:
- Retain 10 m band as it is:
- Press for retention of all presently assigned VHF/UHF bands, new amateur band at 220 MHz and obtain allocation of lurther amateur bands up to 275 GHz .
$\square$ A WIA item requires the Executive to pursue the return to us ol $50-52 \mathrm{MHz}$.
$\square$ Press for the amendment to ITU Radio Regulation 41 describing the Amateur service) which is phrased in such a way that anyone untamiliar with Amateurs who reads the amended version can immediately see what the Amaleur service does
$\square$ Delete definition of "Amateur Satellite Service" which is of course the source of present satellite operations band restrictions.
$\square$ Apply the ITU fund lowards the cosis of any amateur delegate of the WIA oflicially participating In WARC 1979
$\square$ Begin a fund-raising campaign for Increasing the iTU lund.
Support for WIA Project Australis, need for PR
work, March visit of Mr. D. Hull to the special meeting in Washington concerning, inter alia, Oscar 8 and possible geostationary orbit such that contacts with KH6, J, VE, W, elc.-lands through such a satellite could be consistently better than piesent lonospheric unreliability of 20 m band.
1975-76 Call Book is under way but much work remains to be done. This ends present contract and now must consider future of the publication. AR quality and costings are under continual review - can only produce it from material supplied by the members. Hamads from non-mambars Increased in price in line with current commerclal adverlising rates recently increased. AR is vitatly important to the membership.
$\square$ YRCS Constitution lald on the table.
$\square$ Rules for all conlests (including RD Conlest) now in the hands of FCM, but VK6NE contlnues (with grateful thanks) VK/ZL/Ocesnia contest Every contestant has own notions of what the rutes should be and all Ideas on this should go to FCM to help him in his work. Satellite endorsement for various VK awards to be investlgated $\square$ New 70 cm band pian now required in view of PMGs approval of allowing unatlended repeaters and beacons between $430-440 \mathrm{MHz}$. VHF/UHF Advisory Committee is active on this as well as the TV Channel 5A and Channel 0 problems. The present Committee will conlinue for another threeyear term.
$\square$ Continuing requirement for a Federal Interference Co-ordinator but no volunteas appeared.
$\square$ Federal WICEN Co-ordina:or (VK1QJ) and Committee (to be set up in WIA ACT Division) were approved to improve VK-wide co-ordination plus llaison with NDO lor emergencles (vide Cycione Tracy experience, elc.).
$\square$ A very strong need was felt for a full-lime Public Relations officer to "sell" amateur radio to the media but finances disallow this at present. Also the need to motivate every amateur to be an ambassador for amaleur rado in the proper manner.
$\square$ WIA to negotiate for the removal of restrictions on Amateur RTTY transmissions in regard to Irequency shift, code used and (trom 1974) mode of Idenilfication (also applicable to ATV etc.). Also WIA to negotlate for removal of separate ATV permits and /T suffix.
$\square$ Legislation be sought to control the sale of radio transmitting equipment to other than authorised persons.
$\square$ An attempt to standardise the nomenclature for 2 m repeaters resulted in the descriptions baing Channel

| No. | Input | Outpu1 | Fraquencles MHz |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 42 | 54 | 146.1 | 146.7 |
| 2 | 44 | 56 | 146.2 | 146.8 |
| 3 | 46 | 58 | 146.3 | 146.9 |
| 4 | 48 | 60 | 146.4 | 147.0 |
| 5 | 43 | 55 | 146.15 | 146.75 |
| 6 | 45 | 57 | 146.25 | 146.85 |
| 7 | 47 | 59 | 146.35 | 146.95 |

The Execulive to investigate the production of a good publicity package with visual aids for use in high school and adult education projects and general interest lectures for the public.
$\square$ The next (401h) Federal Convention was sel down for April 30th-May 1st/2nd 1976 in Melbourne.
$\square$ Last, but by no means least, the appointment was approved of an expert and impartial Investlgator to inquire into and report upon the whole of the services and systems of the Institute trom top to bottom as quickly and economically as possible. Mr. Bob Arnold VK3ZBB was appolnled to this important position and the Federal Councll requested that all members should glve him every possible assistance in carrying out his work so that his report can be completed about the end of this year.
This is a briet and highly condensed summary of the work done at the 1975 Convention. Any member degiring further details on any particular item should contact his Federal Councillor.
gTATEMENT OF INCOME AND EXPENDITURE FOR YEAR ENDED 31at DECEMBR, 1974
Income
Membera Subscriptions
Profit on aale of Publications -


Expenditure

| Loss-Amateur RadioSchedule Two | \$16.804 |  | \$11.339 |
| :---: | :---: | :---: | :---: |
| Audil Fees | 150 |  | 150 |
| Accountancy Fees | - |  | 189 |
| Bank Charges | 296 |  | 192 |
| Contribution-IARU | 850 |  | 814 |
| Committee Expenses | 377 |  | 393 |
| Depreciation | 403 |  | 148 |
| EDP Expenses | 625 |  | 834 |
| General Expenses | 346 |  | 128 |
| Insurance | 176 |  | 144 |
| Licence | - |  | 6 |
| Project Australis | 653 |  | 491 |
| Provision for Bad Debls | - |  | 200 |
| Postage, Telephone. Printing 8 Stationery | 3.064 |  | 2.577 |
| Rent \& Power ... .. | 1.759 |  | 1.300 |
| Repalis 8 Maintenance | 79 |  | 99 |
| Salaries | 14,646 |  | 10,583 |
| Provision for Superannuation | 500 |  | - |
| Travelling | 860 |  | 116 |
| TOTAL EXPENDITURE | .. .. | \$41,588 | \$29,702 |
| Deficli-io Accumulated | unds | \$7.028 | \$415 |

balance sheet as at 31at december, 1874

## Members' Funda

| Balance, 31si December Add Deficlt for year | $\begin{gathered} \$(357) 6 \\ (7,028) \end{gathered}$ | \$(7.385) | $\begin{gathered} \$ 58 \\ (415) \end{gathered}$ |
| :---: | :---: | :---: | :---: |
|  |  |  | (357) |
| Reserve Fund | 627 |  | 752 |
| Special Funde - |  |  |  |
| ITU Fund | 7,206 |  | 6,903 |
| IARU Fund | 3,306 | 11,139 | 3.579 |
|  |  | \$3.754 | 10.877 |

This is represented by: Current Aesets



| Daduct <br> Current Llabilities <br> Sundry Creditors | .. | 3,325 |  | 2.782 |
| :---: | :---: | :---: | :---: | :---: |
| Subs. In Advance | . | 14,750 |  | 8,664 |
| Loan-VK8 Division |  | 250 |  | 250 |
| VKA Division |  | 125 |  |  |
| Provialon for |  |  |  |  |
| Superannuation | . | 500 |  | - |
|  |  |  | \$18,950 | 9,898 |
|  |  |  | \$3,754 | \$10,877 |

The Executive Annual
Report 1974-1975

1. In opening this annual report on behalt of the Executive, I would like to point out that thls year has had some vary successful aspects in the activities of the Institute. Unfortunateiy, however, one overpowering maller is causing a considerable amount of concern. Although at the last Convention we set our budget anlicipating same degree of inflation, we were distinctly shorl ol the mark.
2. This problem has been of utmost concern to the Execulive which has spent a high proportion of time considering the matter.
3. The financial problems of the Inslitute highlights one of the major disadvantages in tis sel-up as it is at present operating. That is the inability to be able to react quickly to changes in the inanclal climate.
4. Consideration was given to aress In which we could make significant reductions in expenditure without upselling the function of the Institute. bearing in mind the possibility that economies made In one year may have a harmful effect in subsequent years.
5. The Executive feels that an in-depin appralsal of the whole of the Institule, both at a State and Federal level, would be of great value and essentlal for our future planning in these days of change.
6. Membere al Exacutive

The following were appointed at the 1974 Conventlon:
David Wardlaw VK3ADW. Piesident; Jim Lloyd VK3CDR, Editor (executive position): Jack Martin VK3TY; David Rankin VK3QV: Kelth Roget Vk3Yo. Peter Wolfenden VK3ZPA.
7. During the year, because of his move to Port Lincoln in South Australla. Jack Martin had to regretfully resign from the Executive. I would like to express my appreciation to Jack for his untling work on behalf of the Institute during his term of oflice on the Executive and especially tor the personal support he gave me in his position as Vice President.
8. Ken Seddon VK3ACS, a former Viclorian Division President, who has just returned 10 Mel bourne afler having spent the last three years in The USA. has been co-opted to Executive to act untll the 1975 Federal Convention.
9. Kelth Roget was deservedly appointed Vice President for the year and remains Honorary Treasurer, where his meticulous attention to the affalis of the Institute in these times of financial problems has enabled Execulive to form a current plcture of the Institute's ilnances as the year progressed.
10. Peter Woltenden as Chalrman of the VHF/ UHF Advisory Committee has been able to keep Executive especlally well informed on VHF and UHF matters.
11. David Rankin, because of his long association with the Executive, has been a valuable member. However, David's business commitments have agaln caused him to spend more time oversess than he thought at the beginning of the year. David is also the Secretary of the IARU Region 3 Assoclation.
12. Jim Lloyd has been Invaluable for his Involvement in matters concerning Federal WICEN.
John Bennett VK3ZA as our PRO has been able to give some excellent assistance although, unfortunately, not as much as he would have liked.
13. The following tabulation sels out the altendances at Executive meatings:
Erecutive:


## THE FEDERAL OFFICE

14. Shortly after the last convention the nagofiations for new office space were concluded. This onabled us to move out of our completely inadequale accommodation into an offlce which provided facllities of a nature lar in excess of the addilional rent. Pater Dodd has been able to organise the arrangement of the oflice in such a manner that It is much moie comfortable for those being asked to work there.
15. In tact, In reirospect it is hard to see how we ware able to keep any employess when the physical nature of the former office was considered.
16. This year Colonal Perry has conllnued wilh us on a part-time basis handing the routine EDP matters. thus leaving Peter Dodd freer for olher important matlers.
17. On the secrelarial slde we have not been 80 forlunale, as Mrs. Wendy Hopkins, who showed great promise In her undersianding of our require. ments. resigned during the year to go overseas. Since then we have had litile success in finding a full time suitable replacement.
18. Due to the much higher than anticipated wage rises, secretarial aid in the oflice is one of the aress of steeply rising cosis. Part time assistance is being used as an economy measure, and Is proving highly satisfaciory.
19. To take care of AR advertising and other routine time-consuming mattere concerning prinilng and distribution of the magazlne. we recruitad Tom Cook. He is with us on a part lime basis and is doing an Invaluable job.
20. Even more highlighied over the Chilsimas period this year, because of the loss of our experienced typiste-clerk, is the desirability of cyclic bllling. Thls would spread this aspect of the work over the whole iwelve monits instead of a three month rush.
21. The move Into the new office made it neces. sary 10 purchase some office furniture and shelving. However, we were lucky as the previous tenant loft his partitions and air condlioner at no cost 10 us.
22. There is a greal need for new copying machine, as the present one is wasteful of boih time and materials. However, it seems at present that the purchase of such a machine is beyond our resources.
23. In concluding on matters concerning the oflice. I must pay tribute to our Manager, Peter Dodd. for the manner in which he, realising the draslic effect Inllation was having on our resources. Initiated as many economles as possible. However, the Executive fesls that if the oflice is to provide the service to the Instlite that the Council expects of it then there is a limit to the economies which we can apply.
24. To keep the Federal Councll intormed ol the happenings in the Federal sphere. the minutes of Execulive meatings are produced in an expanded form rather than giving Just the bare lacts. Also distributed are mid-monthly circulars which provide more detailed information on Instilute allairs. material for Divisional broadcasts and Inatitule operating instruclions, e.g. EDP lorms.
25. As further aid, noles of meetings with the APO etc. are distilbuled. as also are notes on Committee mealings held in Melbourne, such as Publicatlons Commillee and VHFAC.
26. It is very pleasing to note that the newly lormed ACT Division is parlicipating wholeheartedly In the affairs of the Instilute.
27. Handbook Ior Amaleur Operatora

Since the resignation from Execulive of Jack Martin VK3TY very litile further work has taken place in this area. The matter is further compllcated by the shortage of slaff within the posi office and thelr present concern with reorganisaIlon.

## 28. Trophy

Ouf thanks to Pater Brown VKAPJ for the receipt of his Contesi Champlonship trophy which he donated and which was gratefully acknowiedged In Minute 74.17.19. Detalls of the administration of this Award are belng worked out.

## (4) an

## NEW from Yaesu FT-IOI E I60-IOm SSB, CW, AM transceiver,

Following in the footsteps of,
 and SUPERSEDING the well known world popular FT-101B comes the new FT-101E.
Similar basic specifications to the 101B but with the addition of a built-in RF SPEECH PROCESSOR with individual crystal filter, separate switching of the Clarifier control, modern, easy to operate "flick" switches replacing the previously used old-style slide switches.

STOCKS EXPECTED AUGUST - Also expected soon, a new 6 m Transverter FTV-650B, Superseding the earlier Model FTV-650.
Enquiries to the Australian Agent:-
ELECTRONIC
60 Shannon St., Box Hill North. Vic., 3129. SERVICES

QLD. Mitchell fadio co., 59 Albion Road, Albion, 4010 N.S.W. STEPHEN KUHL, P.O. Box 56, Mescot, 2020

Ph. 89-2213
Ph 576830
Ph Day 6671650
A.H. 371 5445
S.A. FARMERS RADIO PTY. LTD., 257 Angas Street, Adelalde, 5000 Ph 231268 W.A. H. R. PRIDE. 26 Leckhart Street, Come, 6152 Ph 60479

ANTENNA PARTS. KITS


QUAD HUB: $\$ 23.00$ plus $P / P$ \$2.00 QUAD KIT: $\$ \mathbf{1 2 0 . 0 0}$. Freight forward.

Consisting of: Hub: 12 ft . solid $\mathrm{F} / \mathrm{G}$. Spreaders: Aluminium Extenders. Ferrules. Adaptors: 350 ft .0 .064 Hard Drawn Copper wire.
Nylon line and insulators.
MOBILE ANTENNA PARTS:
6 ft . solid $F / G$ blanks,
$1 / 2-1 / 4$ inch
Solid brass butt fitting, $1 / 2$ in.
$\$ 2.00$
$\begin{array}{lr}\text { whit. or } 3 / 8 \text { in. UNF thread } & \$ 2.00 \\ \text { Brass tip chuck } & \mathbf{5 0 c}\end{array}$
S. T. CLARK
P.O. BOX 45, ROSANNA

VIC., 3084
Ph.: 45-3002

## VISITING HONG KONG?

TRY OUR BARGAIN PRICES

INOUE 22 \$116
KEN KP202 \$119
WITH CHARGER CRYSTALS
dELTA COMMUNICATION SERVICES LTD.
15 REAR CUMBERLAND ROAD
KOWDOON TONG K360606
HONG KONG
30. Repeaters

It is heartening to see that all Siates are now convinced of the desirability of a unlform repeater plan and are willing to conform. There has been some confusion with regard to the requirements of licensing of repeaters, but following repiesentalions to the APO It is hoped that nallonal unitormity will be achleved. However, there are some areas where further clarification is atill required and undoubtedly negotlations will have to continue.
31. The Victorlen Division ls to be thanked for their position paper on Repeatera which covered the matter very thoroughly and gave the Executive some useful up to date material on the matter
32. It has become apparent that at least tour primary repeater channels will be necessary to provide Interference-tree coverage; in fact it may be neceasary to employ several of the secondary channels as well.
33. Band planning is good trequency management and it is to be hoped that as frequencies are now avallable for repeaters in the $\mathbf{7 0} \mathbf{~ c m}$ band, planning will be definite and will be adhered to by all Statas. Any changes should thereatter only be made as last resort for extremely good reasons.
34. Changes in TV Channele

The result of the FM Inguiry is now common knowledge. VHF-FM means that two TV channels have to move. This has resulted in more use being made of Channel SA adjacent to the 2 metre band and also another of Australla's non-International atandard allocationa.
35. Realising that there may be problems for amateurs, ald was sought from those in areas aleady served by Channal 5A: unfortunately. the reporta did not provide sufficient conclusive evidencs of the problems which may evolve.
36. Personal representatlons have been made to the ABCB and also a detalled letter to the Post Master General and the Minisier for the Media. expressing our concern and pointing out the desirability of UHF/TV. We have an assurance that in no case will Channal 0 and Channel 5A be alle. cated in the same area.

## 37. 70 cm Band Plan

The VHFAC, after considerable work, produced a band plan which has bean published in AR for comment. Much to their disappointment very little was forthcoming, and most of that berause of direct approach by members of the VHFAC. It now seems that in view of the frequencies Jusi made avallable on the band for unallended repeaters and beacons, the plan will have to be modified.
38. WIA Project Australla

The last year was a very satiatying one, with the successful launching of Oscar 7 and Oscar 6 atill operaling.
39. In December, David Hull VK3ZDH recelved an Invitation to atiend an AMSAT Experimentera meeting in the USA. After consultation with the Councll it was decided that David must go as matters of vital importance were to be discussed. Executive was to underwrite the trip and Divisions ware asked to help later on a pro rala basia.
40. InIrudar Wetch

It la pleasing to report on the conilnued actlvity
our Intruder Watch organlsation, one of the three leaders in the world. Our sincere thanks to Alf Chandier vk3LC for his dedication throughout the year. A proposal by the WIA for Region 3 co-ordination was carried by the Reglon 3 Conference and Alf will act as Co-ordinator for the whole reglon.
41. IARU

The most Important IARU matter to be reported Is the IARU Reglon 3 Assoclation meeting which was held In Hong Kong during March. Attending this meating ware representalives of eight member countrles. tagether with further representatives from three other countries not yet members of the association. The major concern of all those aftending was the protection of Amateur trequencles and privileges
42. Some very interesting diacussions on the material presented took place, the delails of which will be presented by the IARU Llalson Oflicer in his report. A few points are worthwlle Including here by way of reinforcement. General support was given to the proposale for additional HF bands: alatiatics ahow that there will be about one million Amateurs in the world by 1982. It was poinied out that the Increasing use of satelitie systems has meant that many fixed services would no longer need their HF allocations. The original allocation
of amateur bands on harmonic frequency basis did not give enough acope in the upper part of the HF spectrum to make full use of ionospheric propagation in maintaining reliable communications on a world-wide basis.
43. The Conterence also felt, as does the WIA. that further bands should be allocated above the existing highest of 24 GHz . During the next iwelve months it is hoped that agreement will be reached as to what bands to keep.
44. The matter of representation al WARC 1979 was discussed and I would like to make the following points:

If was apparent from the statementa of VE3CJ, WIRU and ZL2AZ, who have all at'ended ITU Conferences. That a strong team is essential to share the load and that continuity is important. However. It is predicled that WARC 1979 may last for 10 weeks and this poses problems as far as IARU reoresentation is concerned.
45. On the financial side, the whole conterence expressed their gratitude to the JARL who undertook to aubscribe an additional 800.000 Yen ( $\$ 2100$ ) Der year for three years. the purpose of which as they staled, was for the defence of frequencies used by the Amateur service.
46. It is also pleasing to note that the number of Societies belonging to the Region 3 Association has risen to 11.
47. The sublecta menlioned only give a meagre outline of the matters discussed. It was very apparent to me that each country not only has problems which are specific to it alone, bul also has problems which ate common to us all. I feel that the value of personal discussions with the representalives of such a widespread number of Sociaties la of Ineatimable value, amongst other things. In helping to unify the approach to be made to the administering authorities by the various Societles. It is alao helped to explain the allitude of certain authorilies in their approach to the Amaleur service.
48. On the way to Hong Kong, a call was made In Singapore on the officera of SARTS and some very proftable diacuasions took place.
48. A stopover was made in Jakarta on the relurn |ourney from Hong Kong and a meeling was held with the officers of ORARI which at the moment is not a member of IARU. It is likely that they will join later thla year with the final formathon of the National Soclety. A detailed report and assesament of the alluation in Indonesla will be presented to the Councll separately.
50. WICEN

Cyclone Tracy's destruction of Darwin on Christmas moming and the subsequent apparent breakdown in public communications crealed a siluation in which Amateur Radio became involved as - communications link with an isolaied ravaged clity. At the time of wilting this, the final reports on the Amateurs' participation are yet to be recelvad.
51. Over the last two yeara the matter of Federal WICEN has been discussed by the Federal Councli, and the general fealing generated was that the States are operating satislactorily on their own and a Federal WICEN man would be accep:able as long as he did not Interfere in the relationships between the various States and their authoritles.

In the latter half of last year, the Natural Dlasster Organisation was sel up with HO in Canberra. Cantact was made with the NDO and proliminary submiasions on the usefulness of Amateurs brought to the notice of the Co-ordinator.
52. The cylone arrived before the full poten. Hality of Amateur Radio had been able to be assessed, and it is possible that full use was not made of the HF links available. This was a disaster the Influence of which extended tar beyond State boundariea and obviously required a difterent type of WICEN co-ordination to that already existing.

John Eattrick VK3OR and Jim Lloyd VK3CDR have Investigated the malter and it is raised as an agenda item at this Convention.
53. Darwin Appeal

In order to provide some asglatance for those Amateurs who lost their possessions in Cyclone Tracy, an appeal has been opened and I commend thle to you.

## 54. Aere Modellera

During the year a meeting rook place between members of the Executive and authorised repre. sentatives of the Aero modellers who were em
powered to speak on a National basis. The com. plexit:es and problems of radio contral were ex. plained to us and. although there appeared to be no proven cases of interlerence. It was agreed that some terts should lake place. The Victorian Division was approached and olfered to halp.

## 55. YRCS

This has been another year of hard work lor our YRCS administrators with a Convention being held In Ma:l'and.
A YRCS Constitution is presented to this Convention tor ratification.
Thanks go to Bob Cuthberlet for his dedication to the carse during the last year.
56. Amateur Radio

It is really encouraging to see the high standard of the magazine being mainlained by the hard working Editor, Bill Roper VK3ARZ, and his willing Commillee.
Rising prinling and paper cosis and postage charges have been a worry. However. It is pieas. ing to nole the report of the good supply at quality lechnical arlicles coming in.
57. Since the introduction ol EDP labelling. The number of missing ARs has reduced diamatically This is a dislinct saving as rep'acing missing coples has to be done by hand and wastes both lime and money
58. The EMC issue of AR produced by the Publications Committee in September evinced very favourable comment both trom within and oulside the Instituie

## 59. Poal Office

During the year our relallonship with the Post Oftice has been most cordial and regular meelings have laken place belween members of the Executive and deparimental oflicers. Agreement has been reached on most malters raised. However, there are several items on which negotiations are still taking place. for example. identification for RTTY
60. You will be glad to know that permission has been granted for the use of unattended re. peaters and beacons on a portion of the 70 cm bend.
61. Reorganisation of the APO takes eflect on the 18 st July. 1975, and as from that date the Regulatory and Licensing section of the Post Office will be a separale entily under its own control.
62. Licance Fae Incrase

The Execulive. together with all other Amaleurs, were shocked to learn in the Federal Treasurer's budgat speech of the $100 \%$ rise in lleance tees.
Immediate protesis on your behall were forwarded to the Treasurer. Post Master General and Leader of the Opposition. Members were urged to protest to their own MHRs and Members

63 A reply was received Irom the Post Mastel General which you have all no doubt read How. ever, we do not consider the malter closed and further approaches to MPs are being encouraged.
64. 27 MHz Problema

As you are all no doubt aware, political pressure is being brought to bear by the lliegal usors ol 27 MHz hand phone equipment to legitimise this type ol use. At this slage I would like to quote a resolution passed at the IARU Region 3 Con ference.
"This Conterence noling

1. That the question of trequency allocations will be reviowed generally;
2. That frequency bands allocated to the Amaien!

Service are for use by duly qualified persons.
3. That the competing Justifications for frequeney allocations of all users is integral to the determination of frequency allocations
This Conference views with concern the alloca flon of radio frequencies for so-called citizen band use and resolves that it is opposed to the use of radio trequency on a hobby basis by persons withoul proper and adequale technical qualificalions and urges Member Socleties 10 ensure that the lechnical quallications required by thelr respoclive administrations tor licensing in all portions of the spectrum shall be of a slandard such that the principles of good radio Irequency spectrum management shall be uni versally malntained.
65. At previous Federal Conventions the Fefteral Council has deplored the proliteration of unlicenser operalors and their behavlour. also the easo with which they can obtain equipment.
66. Believing that the novice licence would provide an outlel for some of these operators. the Executive again pressed the matter of the
novice licence with the Post Master General who replled that the matter was in hand. We are led to belleve that we may $88 e$ novices on the alr. belore the end of the year.
67. I would like on your behall to express our gratitude to all Federal Officers of the Institute.

These volunteers give numerous hours of their llmo in order that the majorlty of us may derive more pleasure out of Amateur Radio.
68. In conclusion, I would like to thank all the members of Executive for their unfalling assistance during the year.

DAVID WARDLAW, Federal President

## APPENDIX E

MEMBERSHIP AND OTHER STATI8TIC8

1. The following table sels out the membership detalls adjusted to 31st December. 1974 compared with total licensed amateurs (flgures courtesy Radlo Branch), percentages and tolals for the previous years below

|  |  |  |  |  | $\begin{aligned} & \text { S } \\ & \text { E } \\ & \text { 틍 } \\ & \text { ㅇ } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VK1 | 128 | 64 | 50 | 26 | 80 |
|  | 127 | 44 | 34 | 10 | 54 |
| VK2 | 2200 | 968 | 44 | 225 | 1193 |
|  | 2081 | 997 | 45 | 386 | 1383 |
| VK3 | 2122 | 1083 | 46 | 366 | 1449 |
|  | 2057 | 1041 | 50 | 396 | 1437 |
| VK4 | 781 | 428 | 55 | 174 | 600 |
|  | 776 | 435 | 51 | 140 | 575 |
| VK5/8 | 843 | 451 | 54 | 186 | $637^{\circ}$ |
|  | 808 | 428 | 52 | 166 | 623 |
| VK6/9X | 526 | 268 | 51 | 63 | 331 |
|  | 516 | 254 | 49 | 69 | 323 |
| VK7 | 238 | 160 | 67 | 53 | 213 |
|  | 238 | 152 | 63 | 63 | 215 |
| vKo | 5 | - | - | - |  |
| totals | 6841 | 3420 | 50 | 1093 | 4513 |
|  | 6674 | 3292 | 49 | 1096 | 4417 |
| - Includes VK5 | the io | wing | lor Ass | ciates 31 | 39 |


| 2. The | licensees | ibution Full | was es fol!ows: Limited |
| :---: | :---: | :---: | :---: |
| VKO | . . . | 5 | - |
| VK1 |  | 101 | 25 |
| VK2 (1 on | Nortolk) | 1547 | 628 |
| VK3 | . . . . | 1333 | 789 |
| VK4 | . . . . | 529 | 252 |
| VK5 | - . . | 530 | 255 |
| VK6 (5 on <br> Is. \& 1 | Christmas on Cocas) | 387 | 139 |
| VK7 |  | 157 | 81 |
| TOTALS | . . . | 4665 | $2176=6841$ |

3. PNG statistics - At 31.12.74 the tollowing are the nearest avallable statistics:
4. The following WIA prellminary membership statistics may be found useful for comparison purposes (F - Full; C - Country Full; A - Assoclate: T - Country Assoclate):

| Divis |  | F | C |  | A | T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VK1 |  | 58 | 2 | 2 | 24 |  |
| VK2 | .. . | 889 | 8 |  | 200 | 1 |
| VK3 | . | 708 | 264 |  | 215 | 77 |
| VK4 |  | 212 | 185 |  | 63 | 79 |
| VK5 |  | 323 | 94 |  | 98 | 33 |
| VK6 |  | 181 | 62 |  | 31 | 18 |
| VK7 | $\cdots$ | 152 | 1 | 1 | 50 | - |
|  |  | 2533 | 616 |  | 881 | 208 |
|  |  | oners denle Unlice |  | Llcena | Club |  |
| VK1 | - | 1 |  | 2 |  | - |
| VK2 | 40 | 14 |  | 9 |  | 8 |
| VK3 | 79 | 68 |  | 14 |  | 2 |
| VK4 | 15 | 27 |  | 8 |  | 2 |
| VK5 | 18 | 23 |  | 3 |  |  |

VK8


VK1
VK2
VK3
VK4
VKS
VK6
VK7
window" (where both Calltornia and Sweden can see the moon). Successiful EME aniennas range from simple 4 yagl arrays through the popular 160 element collinear, to a 150 foot dish.
"Satellite activity also is quite high, with the satellites undergoing considerable desensitisation when over North America. There are 4 continents and many countrles within range of north-easi USA so that better equipped stations can readlly work good DX.
"Some operators, myself included, have spent conalderable time Investigating 29 MHz downlink antennas for Oacar, and the genaral consensus of opinion is that thia is the area where most problems exist. El-Az beams are quite practicab:e for 144 and 432 MHz , and many are used, but they gel cumbersome on 28 MHz
"All these comments are orientated towards 144 MHz as that was all the gear I had". . . . Many thanks for that Information Graham, I am sure It will be of interest to readers, and many will heave a sigh of reliet that such crowded conditions do not exist here, but 50 times as many as normally operate on the lower end of 2 metres here in Australia would help to keep hungry lingers off our bands!

## NEW allstralian uhf record

lan VK3ATY and Alan VK3ZHU have received confirmation of thelr new Australlan record for 2304 MHz which was mentioned previously on this page. The computer distance shows 130.791 miles or 210.487 km . I am sure readers will joln with me In congratulating these two boys for thelp outatanding effort. Who wlll be next?

## THE LONDON GCENE

Mike Farrell, G4DJV (ex VK2AM) wrltes from London with some naws of VHF activity in England, and this too ahould be of Interest to readers.
"I have been operaling as G4DJV on 2 metres very Intensely, also a couple of contests. 144 MHz In England is a far cry from thal In VK. The Belcom Liner 2 has provided an enormous boost 10 SSB here, there must be hundreds of LIners on the band, and long haul contacts Into Wales, North England and the continent are common.
"FM is becoming popular here. but the Ga have avoided the blind development or repeaters as in VK, there are only 2 repeaters going in Eng'and at the moment. Most FM operators are aware of what is happening in other parts of the band a healthy slgn.
"UHF is popular - 432 MHz gear (amatour) is avaliable commercially - varactors, converters and even tranavertera can be bought from several places, so no lack of activity here. Much interest In 1296 and 2304 MHz as wall; there are several up there using SSB, usually HBR hybrid ring mixers and 2C38As
"I have been collecting blis such as VHF and UHF power transistors, type ' N ' and 'BNC' connectors otc. as they are cheap here. I have been converted to solld state VHF SSB so will be busy when I relurn. Certainly miss 6 malres over here: 4 matres ( 70 MHz ) is no subsiltute - little activity and no DX as it is only a G allocallon" Thanks to you Mike for writing. and glad to know you silll follow us through the pages of AR even if several monthe old by the time copies arrive. 6 METRE ACTIVITY IN PAPUA NEW QUINEA Wike Hennesay, P29ZMJ. has writien from Konedobu. PNG with some news of what is going on In that area on six metres. He reports that at present there are 4 operators on 6 metres In Port Moresby, being P29GR, P292FS. P29ZJW and P2sZMJ, and more are expected to be on soon. A scheduled Sunday morning net operates on 52.050 MHz at 23002, and by the ilme this is read. on 52.525 FM .
Mike mentions openings to the south seem very rare, and on occasions when the band has shown signa of being open, nothing is heard. He wonders If anyone is aware of thelr exlatence. Maybe the backs of all VK beams are on them! Most activity of course lakes place at the weekends, but if anyone would like to set up a schedule. it is suggested they write to Mike, P29ZMJ, PO Box 2237. Konedobu. PNG; all letlers will be answered, and beams will be polnting south for sure

Plans are being made for the establishment of a 6 matre beacon In Port Moresby, and by the time the next "DX season" arrives it is expected there will be quite a lot of 2 matre activity up there as well. That last bit makes very good news indeed, and will have the Quesnalend boys think again
about their 2 metre activity. It would be a good water path from the coastal areas to PNG so why not try It?

For the sake of the record. Mike Includes these log entries which indicates not 100 much worked south. 27/12/74 23252 P29GR Garry worked Lindsay VKAAAL on 52.050 SSB. 23362 worked Ciaude VKAWX. 19/1/75: P29ZMJ worked VKAEN. Ron, on 52.525 FM, at 06302. 16/3/75: Ch. O Brisbane S9 + at 06002. 25/3/75: Townsville beacon S2 all day. 28/3/75: 23002. Ch. 0 Brisbane S9t. Will be pleased to hear from you again some time Mike. and I hope in the meantime you can have a lew more contacts to keep up your interest.

## 52 MHz AND THE USA

This month the news seems to be coming trom all over the globe, so much so that I was p!easantly surprised to find a large air mall le:ter on my desk recently from Ray Clark, K52MS, 7158 Stone Fence Drive. San Antonio, Texas. 78227. I would like to quote portion of Ray's letter.
"I had the privilege of reading your column in AR recently in the March issue sent to me by Peter VKgZDY. It has lot of intereating info in It, particularly about the beacons. There are a number of us here In the States who are already thinking ahead to the next solar peak and we are starting to prepare again. I think the major reason we had no contact last time, is that many people were not Ilstening at 52 MHz and above. Many did not know what to lisien for. We had openings into ZL areas, but nothing much to your area. We hope to correct that, by providing up-to-date info on what to Ilsten for as Indicators of openinga Into your area.
"I am Secretary/Treasurar of SMIRK (which stands for Slx Metre International Radio Klub 6-6 Nel). We are also engaged in fighting the RFI problems exiating in this country, which are causing many peop!e to leave 6 metras for other banda. Our membership stands at 744 in 48 States and 13 countries, atter $11 / 2$ years operation.
"To become a member, stations outside the USA need to contact three members of SMIRK Peter VK6ZDY is the only VK station to quallity so far with contacts to members HLSWI, JA1LZK and JA1RJU. The one lime membership foe is $\mathbf{5 2}$ US.
'For years, no one know what other 6 metre operators in different parts of the world were doing. I have been maintaining a running correspondence with JA1LZK and JA1RJU on their activity over theire and telling them about ours here. I do the same with KG6JDX and others in Ceniral and South America. I do my reporting of acilvities to 73 and OST magazines, so others might find out what is going on. I also add it to our quarierly newsletter that goes out to our members
Well, that all makes rather Interesting reading. and I think I will take up Ray's ofter to stant correspondence between us to let each other know of developments in our respecilive countries. At the very least we should have some prior knowledge of what goes on in the USA and other member countries, and thls can be passed on to you, the readers, through these pages.
At last it looks as though interest overseas is being shown in our 2 MHz removed allocation. Other countries at last recognise we cannot go down below 52 MHz to apeak to them. they must come up and speak to us. However, if they want to get really aerlous about this, they will alao need to make some alterations to thelr equipment. Large yagl antonnas designed for oplimum results at 50 MHz are of little use on 52 MHz , so now antennas will be needed. Retuning of transmitting and recaiving equipment also will be necessary. though with today's modern transcelvers with only one control needing peaking makes this part quite simple. Success will largely depend on what effort is put into the antenna system, and I will emphasise this point In correspondence. 1978 and 1979 should ses the start of something worthwhile in actoss the Pacific contacts if they are golng to happen during the next 11 year peak. In the meanilme, VK stations should be looking at their equipment needs In the future, with those on the eastern sea-board area heving the best chance due to a long water path with litile land in between. THE LOCAL SCENE
Moat of the local acllvity seems to be concerned with DX via the various FM rapeaters, nolably 10 MI. William (Ch. 1) In Victoria. Some contacta have been made to Mildura and Broken Hill from VK5, with Peter VK5ZPW al Angaston operating
from his tavourite hill being amongst the forefront of activily, and with Kaith VK5ZMK al Wasloys also sharing.
Certainly it is surprising how far contacts can be made using a repeater situated on a high spot. but it would be also nice to see something of the same thing being done on the low end of 144 MHz . in the hope that the incteased aclivity will deter the "greedy Fingers" of other interests from wresting those lower 2 MHz from us.

Other then the above. there is little to report. There have been the occasional Es openings on 6 metres. with the TV stations acting es the main beacons.
50 MHz: LU3EX - JA6FR. 12000 miles. 243.56 144 MHz: WABJRA - KMGGRU. 2591 mlles 29.7 .73 220 MHz : W6NLZ - KH6UK 2540 miles. 226.59 420 MHz : WODRL - K1PXE. 1210 miles. 16.8 .71 1215 MHz: WA2LTM - WGWCD, 770 miles 26.10 .72 2300 MHz: W6FZJ - WA6HXW. 330 miles. 6.274. 3300 MHz : W6IFE/6-K6HIJ/6, 214 miles. 186.70 $5650 \mathrm{MHz}:$ K6HIJ/6 - W6OYJ/6, 214 miles 18.2.70. 10000 MHz: W7JIP/7-W7LHL/7. 265 miles 31760. 21000 MHz: G3BNL - G3EEZ. 45 miles. 12.11 .72 The above are the latest Two-way Terrestial records according to March 1975 OST. However I think the 420 MHz record will return to Australia with the contact between Les VK3ZBJ and Wally VK6WG on 2.2.75 over a distance of about 1450 miles. Once this has been confirmed the boys in the USA can amend their records)
EME TWO-WAY RECORDS
50 MHz : WASHNK - K5WVX, 415 miles 30.8 .72 144 MHz: SM7BAE - ZLIAZR. 11055 miles. 4.369 220 MHz: WB6NMT - K2CBA. 2650 miles 163.70 420 MHz : VK2AMW - G3LTF, 10530 miles 30.374 $1215 \mathrm{MHz}:$ WB6IOM - G3LTF. 5492 mlles 27.469. 2300 MHz: K4RJ - W6YFK, 1975 mlles. 22.11.72. All records Information by courlesy of Ray K5zMS

It is interesting to noie that in a:l 16 records have been set down. and of these 13 have been established or re-established since 1969. that is. In the last 5 years. About the only hope for a 144 MHz record to be set in Ausiralia would be for Albany to work into New Zealand: the USA record of 2591 miles will be hard to beal. unless someone works to Hawall from the east coast of Australie. I have not heard of anyone trying yot, but it should not really be impossible. Anybody with a stack of 8 rhombics on the shore?
Do not forget the South East Radio Group Convention at Mt. Gambier over the Oueen's Holiday weekend. 14th and 15ih June. Should be good show as usual. Mosi of those likely to be interested would have already received registration torms.
That should give you enough to read lor now Closing with the thought for the month: "People who value their privileges above thalt principles soon lose boit'

The Voice in the Hills.

## Awards Column <br> with BRIAN AUSTIN VK5CA PO Box 7 A Craters SA SIS2

This month 1 am publicising iwo Awards which may be described as "temporary".
The first. the "Amsterdam 700 Years Award" has been made available to commemorate the 700th annlversary of the founding of the City ol Amaterdam in 1275.
For this purpose a speclal amateur station PA700ASD will be on the air almost every day on all bands, both CW and SSB. All contacts with this station will be conlirmed by especial OSL card, and SWL reports will be contirmed in all cases. Amateurs living in the City of Amsterdam may change their prefix from PAO to PA7 and will confirm contacts with especial OSL card. The Awerd it open to every licensed emateur and SWL.

Rulea: Contact with PAO station living in Amsterdam counts one point; contact with a PA7 alation counts two points: conlact with PA700ASD counta four points. Dutch amateurs and SWLs need 15 points. European stations need 10 points. DX alalions need 5 points. Only one contact with the same stalion is permilled All OSO have to be made in the year 1975. There are no band and/or mode limits. Awards will be endorsed for all one mode. all one band eic.
Application: Sand certified loglist (no OSLs) and

4 IRCs or 1 US dollar belore 1st March 1976 to VRZA Awards Manager, PO Box 190, Groningen, The Neinerlands.

The second Award, which might prove a little difticult to obtain here in VK, is the first Award to be issued in Greenland

This Award is to commemorate the bi-centenary of the lounding of the town of Julianehaab on 7th April 1775 by Anders Olsen. Today the lown is the biggest in South West Greenland with a population of 2.900 of whom 15 are licensed amateurs.
To obtain the Certiticate it is necessary to galn 200 points. All HF bands are permissible and there are ihree classes - phone. CW and mixed. VHF, UHF or Oscai can be used if avallable here. but not crossband OSOs on HF or repealep contacts.

Points are scored as under - 20 points for the tirst OSO on any band with any one of the stations in Julianehaab. but 30 points for an Oscar 2 m 10 m OSO and 40 points tor an Oscar $70 \mathrm{~cm}-2 \mathrm{~m}$ oso.

The same station can be contacled three times on the same band but with a minimum of one month between the lirst. second and third OSO The second and third QSO will only give 10 points each.
Send your request for the certificate with details of your callsign. date and time (GMT) with your repon to OX3AB. Arne Pedersen, PO Box A5. DK-3920 Julianehaab. Greenland, with 5 IRCs to cover posiage. The necessary OSOs will be crosschecked with the named OX slations, whose log books are decislve.

The certilicate applies to OSOs from 7th April 1975 to 6th Adril 1976 inclusive. The issue of certificates stops at the end of 1976.
At present, the following stations are located in Julianehaab: OX3AB. AC. BY. CS. EL. FG. HA, KS. LA. MD. PN, RA. RF, WX and ZM.
Even though you might find the certificale rather difficull to attain, those who need a tew OXs should find it a blt easier while the Award is current.

By the way. if you work an OX who tells you that his OTH is Qaqortoq. it's OK. That's the Greenlandic name for Jullanehaab.


## LUCAS MARKET SOLAR POWER IN AUSTRALIA

Joseph Lucas (Australia) Ply. Lid., Cheltenham, are proud to announce that they have now concluded an agreement with the Solar Power Corporation of America for marketing rights in Aus. tralia of their Solar Electrical Energy Systems.

Photo shows - Happy atter slgning agreement to market Solar Power products in Australia and holding a typical unit are, second from right: Mr. Bob Willis. President. Solar Power Corporation of America: from lelt: Mr. Barrie Hare, Marketing Manager. Mr. Arthur Wookey, Product Supervisor, extreme right: Mr. Jim Thomson, Director and General Manager. Parts and Service Division of Joseph Lucas Australia Pty. Lid.

## Hamads

Eight lines free to all W.I.A members
$\mathbf{s 6}$ per 3 cms tor olher amateurs and S.W.L.'s.
Copy should be in block letters or typescript. signed and lonwarded to The Editor, P.O. Box 150 Toorak, Vic., 3142.
Excludes commercial advertising
Closing date for Hamads is the 3rd dey of the monih preceding publication.
OTHR means the edvertiser's name and address are corract in the current Australian Callbook. FOR SALE
Swan 500 CX Transeeiver W/Vox. 16 pole filter. AC PSU. Mint condition. 3 el. 20 melre Hygain beam. Ph. (03) 241231. (03) 206135.
Yaesu FT75B Transcelver, DC7SB power supply and FV50C VFO. Additional crys'als and spares. All as new. \$300. VK3VF, OTHR. Ph. (03) 723-3554 A.H.
HT Transformer 2 kV a gide at 1 amp., $\$ 25.00$. Chokes: 6.5 H at 1 amp .: 10 H al 100 mA ; 3.2 H at 1 amp. $\$ 10.00$ each. All top quality and guaranteed as represented. VK5BI, QTHR. Ph. Cowell 39 Bus. 62 A.H.
Ten-Tec Model PM3 ORP CW transceiver. Rarely used due absences overseas, $\$ 75$. Ross Treloar. VK2BPZ. Ph. (02) 259-5267 Bus.
Slow Scan Valve Monltor (shown in EA July '73). plus SSTV solid s!ate sig. gen and 931A scanner attachment, S100. FT2FB transcelver complete with 8 latest channels. $\$ 180$. Gll Miles, VK2KI, OTHR. Ph. (02) 78-4237.
8TC MTR25, 121 Series car phones. lo-band, FM with $3 / 20$ final. Complete excepl for cradies and mikes. Suit conversion to 6 FM or wrecking. Three available at $\$ 12$ each complete with circuits. Jeff. VK3ZJS. Ph. (03) 37-1332.
Pye Reporter Units (2 only) converted 53982 MC AM. with crystals for 12 V DC operation for direct AC with a 12 V transtormer). $\$ 25$ each or $\$ 45$ the palr. AWA FM transceiver on 73.332 MCS. 12V DC operation with PSU. cables and handset, $\$ 20.00$. 250 FM AWA Box Stn. 73.332 MCS, complete wlith exciter, receiver and $2 \times 125 A$. Linear and crystals, standard rack $\$ 50.00$. VKALN. OTHR. Ph. (071) 82-2675.
Swan Hornet TB-3H three element beam 10-15-20m, \$55. Heath SB-220 linear, \$450. Heath SB-610 monitorscope, $\$ 70$. Heath GR-78 general coverage communicalions receiver 190 kHz to 30 MHz , fully solid state. \$55. VK2AQW. QTHR. Ph. (02) 449-3538. FT200 Transceiver with specially built AC PS/spkr. unit and all 10 m and 11 m xtals. $\$ 320$ ONO. VK10A. OTHR. Ph. (062) $633048 \mathrm{BH}, 884899 \mathrm{AH}$.
FT101 (Mark II) 18 months old, $160-10 \mathrm{Mx}$ (incl. 11 Mx ). microphone, cables, etc. Excellent cond. \$485. B. Bathols VK3UV. 3 Connewarra Ave., Aspendale 3195. Ph. (03) 90 6424 (evenings only).
Yaesu FL DX400-FR DX400. Tx/Rx combination. $\$ 280$ each with spare valves. Will consider selling separalely. VK3PR. OTHR. Ph. (056) 622291 bus. 622711 AH.
Garrard Model 301 transcription turntable. 3 speed. perfect order, and MBH 600 ohm mag. PU. \$55. "Gramdeck" tape recorder turniable allachment tree with above. A. Roudie, VK3UJ. QTHR. Ph. (03) 8745632 AH
FT101 HF Transcolvar fitted with optional tan and 160 m band. Supplied with spare set of final lubes. mobile brackel. manual and all cables, mike, etc. $\$ 480$.
FTV 6506 m Trangverier with new tubes and recently reluned. With all cables to operate from FT101 plus manual. \$120.
HF Long-wite luner. Imported model with roller inductor and multi-turn dial, \$40.
Set HF Helical Antennas. 160, 80, 40, 20, 11 and 10 metres. to fit Philips or Scalar VHF antenna base. $\$ 65$.
Belcom 2 m SSB Transcalvar, modified to cover 144.00-144.48 MHz. With auto-changeover masthead amplifier, all cables, mobile mount, menual. elc. S220.
Two Pye Bantam Solid State 2 m Porlable Trans. ceivers. 2 watts FM out, complete with mic-speakers and circuit details. One with 40. 184 . Olher with $50,1 \& 4,585$ each.
Honde Generator. E300. 250 watts AC of 10 amps at 12 volts. Only used approx. 40 hours, $\$ 150$.

# Silent Keys 

It is with deep regret that we record the passing of-

Mr C. J. ERWIN<br>Mr M. A. V. DARWEN<br>VK2YCE

Aluminlum Portable Mast. 25 H telescopes to 5 ft . With all nylon guys, pegs. etc., $\$ 15$.
6 metre Beam. 3 element commercial design, 50 ohm feed, $\$ 10$.
2 metre Beam. 3 element commercial design, side mounting, 50 ohm leed, $\$ 10$.
Ray Roche, Vk3ZRG. 380 Napler Street, Bendigo. Vic. 3350.
Vinten MTR13T with channels 1. 4. 40 and 50. Excellent condilion, $\$ 75$ ONO. David Farquharson, Vk3ZOO, 29 Roberts Road. Belmont. 3216.
Yaesu FT2FB VHF FM as new. 6 ch . plus additional Rx end Jap treas, S180 ONO. 14AVS 4 band trapped vert, sound working order - best offer. VK2VN, QTHR. Ph. (02) 4982956.
Yeesu FT-75 Transcalver, $10-80 \mathrm{~m}$ solld state, with FV50C VFO, complete with Yaesu AC and DC power supplies. Condition as new, few months old, s350. VK7MG. QTHR.
Trlo Aecalver, Model 9R-59D, 550 kHz to 30 MHz \$150. VK6LT, 19 Erinbee St. Rlverton, WA 6155.
Solld State Tranacelvar modules for comp'ete unit, comprising m|xer, VFO, transmitter, audio amp. side:one amp. TEN-TEC, brand new in carton with circuit details and cabinet. Gives 3 watts on 80-40-20-15 metres, S65. VK2BSJ. Ph. (02) 6511316.

VHF Transeaiver TCA-1675, good working condition with Ch B and 4 and 1. \$50. VK2BSJ. Ph. ( 02 ) 6511316.

Asahl A8-303A, set of 10 to 80 metre moblle whips, complete with loading coils. HD spring and ball mount. Beautifully engineered. \$50 plus freight. Mal Sinclaif VK2BMS, QTHR. Ph. (02) 4070261 bus., 952362 AH.
AA7 Recelver with AC power supply and spesker. All coil boxes - higher bands may need allgnment, \$50. Don Brown VK5KT. 35 Highfield Ave., St. Georges 5064. Ph. (08) 794262.

## WANTED

Decant morea key, PMG type or long-arm Admiralty model or simllar. VK4SO. Box 1513, G..PO. Brisbane, 4001. Ph. (072) 29-4666 Bus.
MF SSB Transcelver. This is your opportunity to donate some surplus equipment to a school YRCS station to halp bring on more young men to enter our ranks. Old Radios. TVs, Componente, etc. for use with YRCS courses in schools. WIII plek up if you can't delliver. G. Scolt. VK3ZR. Ph. (03) 89-0231 Buв.: (03) 89-4645 A.H.
$\overline{C W}$ or CW/AM Tranamilier. Complete with power supply (home made preterred). VK3NK, OTHR. Ph. evenings (03) 83-1025.
Communications Receiver in good condilion. Co age 1.6 MHz 1030 MHz . Contact J. W. Lacey, 6 Mawson Ave., MI. Gambier, SA, 5290.
Socke1 for 4CX250日. Bill Currie VK3AWC, QTHR. Ph. (057) 922316 evenings only.

## NOVUS <br> MATHEMATICIAN 4510

immediate delivery $\$ 81$ p.p. Student T/Ex available
NORSTATE ELECTRONICS
Box 582, Shepparton 3630

[^4]
## VICOM INTERNATIONAL PTY LIMITED Manager: Peter WHIliams

## ANTENNAE

MOBRLE WHIPS:
RM-80 Resonator for $80 \mathrm{~m} . \$ 18.50$ RM-40 Resonator for $40 \mathrm{~m} . \$ 16.80$ RM-20 Resonator for $20 \mathrm{~m} . \$ 13.50$ BM-1 Bumper mount $\$ 13$. Spring $\$ 13$. HY-GAIN
203BA 3el 20m beam $\$ 168$
TH6DX 6el yagi 10-15-20. \$225
TH3JR 3el yagi 10-15-20. \$135
18AVT trap vertical 80-10. $\$ 90$
14AVQ trap vertical 40-10. \$65

| 1 | ANTHNNA |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Model | Imp | Frea | USWR | PRICE |
| BALUNS | $\begin{aligned} & \mathrm{BL}-50 \mathrm{~A} \\ & \mathrm{BL}-70 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 52 \\ & 75 \end{aligned}$ | $\begin{aligned} & 1.8-38 \mathrm{MHz} \\ & 18-38 \mathrm{MHz} \end{aligned}$ | $\begin{array}{\|l\|} \hline 1.3: 1 \\ 1.3: 1 \end{array}$ | $\begin{aligned} & 1600 \\ & 1600 \end{aligned}$ |
| COAX SWITCHES (2 86 pos) | $\begin{array}{l\|} \hline C S-2 A \\ C X-6 A(A) \\ C X-6 A(B) \\ \hline \end{array}$ | $\begin{aligned} & 52 \\ & 52 \\ & 75 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { to } 300 \mathrm{MHz} \\ & \text { to } 500 \mathrm{MHz} \\ & \text { to } 500 \mathrm{MHZ} \end{aligned}$ | $\begin{array}{\|l\|} \hline 1.3: 1 \\ 1.3: 1 \\ 1.3: 1 \\ \hline \end{array}$ | $\begin{aligned} & 23.00 \\ & 54.00 \\ & 54.00 \end{aligned}$ |
| $\begin{aligned} & \text { TRAP } \\ & \text { DIPOLES } \end{aligned}$ |  | 52 | $\begin{array}{r} 7 \text { to } \\ 28 \mathrm{MHz} \end{array}$ | 12: | 33.0 |
|  | AL48DXN | 53 | $\begin{aligned} & 3.58 \\ & 7 \mathrm{MHz} \end{aligned}$ | 1.2:1 | 33.0 |
|  | AL24DXN | 52 | $\begin{gathered} 78 \\ 14 \mathrm{MHz} \end{gathered}$ | 1.2:1 | 26.00 |
|  | A-4VPN | 52 | 3.5 MHz | 1.2:1 | 26.00 |
|  | A-8VPN | 52 | 7 MHz | 12:1 | 28.00 |
| LISTENER | L1 | 75 | $\begin{array}{r} 3 \mathrm{to} \\ 30 \mathrm{MHz} \\ \hline \end{array}$ | - | 15. |
| BALANCED FEEDER | BTF-1 | 600 | - | - | 12.0 |

## VHF ANTENNAE

Scalar Mobile Whips:
M22 2m fibreglass 1/4w \$7.50
M60 6m fibreglass $1 / \mathrm{w}$ \$ $\$ 10.70$
M21 2m steel 1/4w \$6.90
LINDENOW $2 m 5 / 8$ whip $\$ 21$, base $\$ 2.60$.
RINGO ARX-2 6db 2 m gamma matched vertical \$35
Extension kit to improve gain
of the old AR-2, \$12

## ANT. ACCESSORIES

ME-1B SWR PWR METER 3-150 MHz $\$ 22$
ME-UA UHF POWER METER $\$ 69$
AS-GM gutter damps $2 \mathrm{~m} \$ 7.50$
SH-7E lightning arrester \$14.90
CO-AX 58u 45c per m
RB 2 m mast amp (144-146 or 146-148) $\$ 32$
VICOM 6 m and 2 m low noise preamps $\$ 18.75$
VICOM 70 cm low noise preamp $\$ 22.50$
Rotator - CDR ham II 240v \$165


Power AMP for 2 metres. carrier operated relay, infinite VSWR protection, 60 watts from 10 watts in, BNC connectors. $\$ 89$

## HF GEAR

TRIO TS-520 all band transceiver - \$550.

YAESU FT101B 160-10m transceiver. $\$ 585$
YAESU FV101B VFO for FT101B. $\$ 102$
YAESU FL2100B Linear Amplifier. $\$ 388$
YAESU FT75B 80w pep transceiver. SPECIAL this month \$225 (3 only).

AC power supply $\$ 50$
DC power supply $\$ 60$

## Y AESU FT-201 \$505

ATLAS 210-215 solid state transceiver \$570 ATLAS MARS model solid state transceiver $\$ 585$ ATLAS 230v power supply for transceiver $\$ 150$ ATLAS mobile mounting bracket \$47

## 2 METRES FM.



AUSTRALIA'S BEST SELLING 2M FM rig - the IC-22A

IC22A 2M FM TRANSCEIVER replaces the IC22 and is identical electronically, but features a redesigned front panel with easier-to-read channel selection. It features switchable power 1 or 10 watts, 22 channels, solid state $T / R$ relay, built-in PA protection, filtered dc. voltages. The unit comes complete with mounting brackets, microphone, cables, etc, and three channels - $1 / 4 / 50$. Price is $\$ 210$ incl. tax and VICOM 90-day warranty. DV-21 Diaital VFO $146-148 \mathrm{MHz}$.PLL synth€ sised system uses 59 ICs land 34 transistors. Can be interfaced with ICOM rigs or any rig with $45-18 \mathrm{MHz}$ multiplier. Price of $\$ 280$ in cludes VICOM 90 day warranty.
ICOM IC-21A 10w base staton or mobile. Features variable pwr control, adjustable deviation, built-in discriminator meter, S meter. SWR meter and modular circuitry. Includes 3 chs 1-4-50. Price $\$ 298$. Extra xtals $\$ 8.50 \mathrm{pr}$
KEN KP202 handheld 2 watts. Incls 4 chs (1.4-40-50) $\$ 150$.
TRIO TR 200 G handheld portable transceiver incl 2 chs, 1-50 \$150.
SEWIA SV-230 mobile rig, runs 25 watts! Price $\$ 210$ includes 3 channels, mic, cables and mobile mount ing bracket.

## 2 METRES SSB

SSM-EUROPA B transverter \$224
YAESU FT 220 ssb-cw-fm solid state transceiver. Prica of $\$ 480$ incl mod to use im repeaters.
TRIO TV-502 transverter \$243.
We do not sell "C.B." equipment.

## 6 METRES SSB

Y AESU FT-620B transceiver (new release) $\$ 460$
TRIO TV506 transverter \$212
ICOM IC-501 transceiver $\$ 445$


70 cm

SEIWA SU-710 70 CM FM transceiver runs 10 watts and is the ideal mobile rig - complete with 1 channel 435.0 MHz and 90 -day warranty, \$298.


YAESU frequency counter $\$ 250$. Covers up to 200 MHz max sensitivitv 20 mV , hi-lo inout impedance.
MONITOR SCOPE. The YAESU YO-100 monitor scope can be interfaced with most transceivers and can cover a wide range of modes incl RTTY. A two tone built-in generator at 1500 and 1900 Hz adds to the versatility. Price $\$ 190$.
D. 60 FREQUENCY COUNTER including

2 metre prescaler $\$ 360$


TRIO MC-50 desk microphone $\$ 44$
TRIO MC-15 hand ptt microphone $\$ 1350$
MICROPHONE HEADSET lor driving salety. \$34
6 METRES FM.


IC60 fm 10 watl mobile transceiver incl 2 channels. mic. bracket and cables $\$ 235$

JUNE 1975

## Check the fine print.



Easily recognised as a quality product of the largest European I.C. manufacturer, these new SL600 I.C.'s open up a new world in communication equipment design. This totally compatible range finds use in most types of radio communtcations equipment including:
RF/IF amplifiers/double balanced modulators/ Vogad and sidetone amplifiers/audio operated AGC's/AM detectors/AGC amplifiers/SSB demodulators/micro-phone-headphone amplifiers/multi-mode detectors and
symmetrical limiting amplifiers.

The SL600 offers an exceptionally wide temperalure range, a high degree of speech processing, a minimum of preset components, high performance and efficiency.

Enquiries to the Professional Products Division:


## PLESSEY

Plessey Australia Piy Limited Components Division Box 2 PO Villawoad NSW 2163 Telephone 720133 Telex 20384 MELB, Zephyt Products Pty Lid 567231.
ADEL. K. D Fisher \& Co 2236294 . BRIS. L. E. Boughen \& Co 708097. PERTK H. J. MCOuillan Ply Lid 687111 . N.Z. Henderson (N.Z.) 64189.

# BOOKS OF INTEREST FOR AMATEUR OPERATORS 

TEST EOUIPMENT FOR THE RADIO AMATEUR (H. L. Gibson) An RSGB publication ..... $\$ 6.65$
HIGH FIDELITY DESIGNS (A Wireless World publication) ..... $\$ 3.00$
THE RADIO AMATEUR'S HANDBOOK 1975 - The Standard Manual of Amateur Radio Communication (ARRL) ..... $\$ 8.95$
SLOW SCAN TELEVISION HANDBOOK (Don C. Miller \& Ralph Taggart) ..... $\$ 7.10$
COLOUR TELEVISION - with Particular Reference to the PAL System - 3rd Edition (G. N. Patchett) ..... $\$ 15.35$
VHF HANDBOOK FOR RADIO AMATEURS (Herbert S. Brier \& William I. Orr) ... ..... $\$ 8.50$
T.V. FAULT FINDING - 5th Revised Edition (Edited \& Revised by J. R. Davies) ..... $\$ 3.00$
AN INTRODUCTION TO DIGITAL ELECTRONICS - Theory, Instruments and Com- puters (Jamieson Rowe) An "Electronics Australia" publication ..... $\$ 2.00$
PROJECTS AND CIRCUITS - More Than Thirty Projects plus Circuits (Electronics Australia) ..... $\$ 2.00$
FUNDAMENTALS OF SOLID STATE - An Introduction to Semiconductors and their Applications (Jamieson Rowe) (Electronics Australia). ..... $\$ 3.00$
BASIC ELECTRONICS - 4th Edition - Electronics Explained - Components, Circuits \& Symbols - HiFi, Amateur Radio (Electronics Australia) ..... $\$ 2.00$
SPECIALIZED COMMUNICATIONS TECHNIQUES FOR THE RADIO AMATEUR (ARRL) ..... $\$ 4.50$

## McGIIL'S AUTHORISED NEWSAGENCY



VOL. 43, No. 7
JULY 1975

## CONTENTS

## TECHNICAL

Amateur Building Blocks-Pt. 119
Commercial Kinks
23
Modifying the TCA1675 \& 167711
More Modifications to the FT200 9
Newcomers Notebook 23
Review of the Multi-7 20
The Trinity Antenna 6
Try This 28

## GENERAL

Colour Amateur TV Demonstration 4 Remembrance Day Contest Rules 29 Worked Indian Ocean Award 25

## DEPARTMENTS

Afterthoughts 30
Awards Column 27
Book Review 24
Contests 28
Hamads 30
Intruder Watch 27
Key Section 28
Letters to the Editor 25
Magazine Index 27
Project Australis 30
OSP 3, 4,5
Silent Keys 30
Trade News 4
Trade Review 24
VHF-UHF - an expanding world 25
20 Years Ago

## COVER PHOTO

This is the SRI 150 If. dish used by WA6LET during the February 1975 moonbounce tests on 144 and 432 MHz . See details in letter on page 25.

# ham <br> RADIO SUPPLIERS 323 ELIZABETH STREET, MELBOURNE, VIC., 3000 

Phones: 67-7329, 67-4286
All Mail to be addressed to above address
Our Disposals Store at 104 HIGHET ST., RICHMOND (Phone 42.8136) is open Mondays to Fridays. 10.30 am. to 5.0 pam., and on Saturdays to midday.

## ALSO AT: <br> 390 BRIDGE RD. RICHMOND. 425174 AND DISPOSALS STORE: 104 HIGHETT ST. RICHMOND. 428136

## KENWOOD/TRIO TS 5205 BAND SSB TRANSCEIVER



Specificallons
Fiequency Range: 80 metre band - 3.50 to 4.00 MHz: 40 metre band - 7.00 to 7.30 MHz ; 20 metre band - 14.00 to 14.35 MHz ; 15 metre band - 21.00 to 21.45 MHz : 10 metre band - 28.00 to 28.50 MHz, 28.50 to $29.10 \mathrm{MHz}, 29.10$ to 29.70 MHz : WWV - 10.00 MHz

Mode (Receive only) USB. LSB, CW.
Input Power: 160 walts on 80 to 15 metre band. 140 watts on 10 metre band.
Nell amateur prices:
TS 520 \$550.00 with PTT Mike

## YAESU MUSEN FT101B

SSB/AM 240V AC \& 12V DC
operation,
160-10m transceiver

RINGO AR-2
135.175 MHz . Antenna has 3.75 dB gain

## YAESU FT/FP200 TRANSCEIVER P.S.U. COMBINATION

## MIDLAND 13-870D 5 WATT

AM, 23 channel, 11 metre trans-
ceivers, 12V DC operation

## 5 WATT

SSB/AM, 23 channel, 11 metre transceivers, 12V DC operation

144-148 MHz TWO METRE EQUIPMENT now with 6 channels


TRIO MOBILE TR7200C
2 metre fm transceiven


## RF AMPLIFIER AM-4306/GRC

Originally used In confunction with PRCio which covers 30.75 MHz FM. Requires $1-4$ walts which and gives nominal 25 watts out. Brand now in and gives nominal 25 watts out. Brand now in

RF SIGNAL GENERATOR
Model TE-20D SPECIFICATIONS


Dial has 7 separate band TE-20D covers 120 kHz - 500 MHz .
(6 Fundamental Bands \& 1 Harmonic Band)
Freq. Accuracy: +0 or $2 \%$
Audio Output: 108 volt
Internal Modulate: 400 Hz approx.
Tube: 12BH7A. 6AR5
Power Source: 105 -125V, 220-240V AC $50 / 60 \mathrm{~Hz}, 12$ walts.

TE-20D employs a xtal socket and can be used as below:
a.-Self-Calibration. b-Marker Generator

Small size - Space saving.
Printed Circuit for a uniform characteristics.
Dimensions: $140 \times 215 \times 170 \mathrm{~mm}$. Weight: 2.8 kg
Price $\$ \mathbf{5 2 . 5 0}$. P\&P $\$ 2.00$

## DELUXE

Model TE-22D
AUDIO GENERATOA
SPECIFICATION


Freq. Range: $\operatorname{Sin}: 20 \mathrm{~Hz}-200 \mathrm{kHz}$
Square: 20Hz-25kHz
Output Voltage: Sine: 7 volt.
Square: 7 volt
Output Impedance: 1000 ohm
Fra. Accuracy $+3 \%+2 \mathrm{~Hz}$
Distorlion: Less than 2\%
Tube Complement: 6BM8
12 ATV. 624
Power Source: 105-125, 220
240 V AC. $50 / 60 \mathrm{cps}^{19 \mathrm{w}^{220}}$ With Altenuation Rens 4 Ranges-1/1, 1/10. $1 / 100$

Ranges-1/1, 1/10. 1/100.

## $\$ 63.50$

GRID DIP METER
Model TE-15
SPECIFICATION
Freq. Range: $\mathbf{4 4 0 k H z - 2 8 0 M H z}$ In 6 Coils


A Coll $0.44-1.3 \mathrm{MHz}^{2}$
B Coil $1.3-4.3 \mathrm{MHz}$
C Coll 4.14 MHz
D Coll 14.40 MHz
F Coll $120-280 \mathrm{MHz}$
Transistor: 3 TRs \& 1 Dlode Transistor: ${ }^{3}$ TRi
Meter: 500 A Meter: 500uA Fs.
Battery: 9 V (BL-006P)
Dimenslons: $180 \times 80 \times 40 \mathrm{~mm}$
Weight: 730 g
Price $\$ 36.50$ PAF 81.00

Published monthly as the official journal by the Wireless Institute of Australia.
Reg. Office:
2/517 Tcorak Rd., Toorak, Vic. 3142
P.O. Box 150, Toorak, Vic., 3142

Editor:
Bill Roper
VK3ARZ
Assistant Editor:
Bruce Bathols
VK3UV
Technical Editors:
Bill Rice
VK3ABP
Ron Cook
VK3AFW
Publications Committee:
John Adcock
Rodney Champness
Syd Clark
Ron Fisher
Ken Gillesple
Neil Osborne
Ken Reynolds
Roly Roper
VK3ACA
VK3UG
VK3ASC
VK3OM
VK3GK
VK3YEI

Gil Sones
VK3YFF
VK3AUI
Contributing Editors:
Brian Austin
VK5CA
VK3TX
VK5LP
VK3AZT
Eric Jamleson
Jim Payne
Drafting Assistants
Gordon Rowe
L30187
Harry Cane
VK3ZIK
Business Manager:
Peter B. Dodd
VK3CIF
Enquiries and material to:
The Editor,
PO Box 2611 W. GPO Melb., 3001
Copy is required by the third of each month. Acknowledgment may not be made unless speclally requested. All Important tiems should be sent by certlfied mail.
The Edltor reserves the right to edit all material, including Letters to the Editor and Hamads, and reserves the right to refuse acceptance of any material, without specilying any reason.

## Advertising:

Advertising material should be sent direct to P.O. Box 150, Toorak, Vic., 3142, by the 25ith of the second month preceding publication. Phone: 24-8652.
Hamads should be sent direct to P.O. Box 150, Toorak, Vic., 3142, by the 3rd of the month preceding publication.

## Printers:

EQUITY PRESS PTY. LTD.
50-52 Islington Street
Collingwood, 3066
Tel.: 41-5054, 41-5055

OSP
IARU
The IARU Calendar (No. 89) of Dec. '74 slated that concern has been expressed in some circles that the radio amateurs of the world, particularly in countries where there are no IARU Societies, do not fully appreclate the importance of the forthcoming World Administrative Radio Conference (WARC Geneva 1979) and that a way must be found to inform the world's amateurs that it may have the most serious consequences for the amateur radio service if we are not adequately prepared for it. It has been suggested that a message from the President of the IARU should be printed in many languages and distributed through OSL Bureaux.

The following is the message -
"The World Administrative Radio Conterence to be held in Geneva in 1979 will decide the use to be made of all radio trequencies throughout the world in the following years. This includes trequencies now allocated to the amateur radio service.
"The radio frequency spectrum is a vital and limited resource. Increasing demands upon it are being made by a wide variety of government and commercial services. The result, of course, is increased pressure upon trequencies allotted to radio amateurs.
"Fortunately, the enormous benefits flowing trom a strong amateur radio service are recognised by many governments. The world is advancing technically and nearly every nation is experiencing the need for a large cadre of trained engineers and technicians. However, the increasing frequency demands of other services pose a threat to the amateur radio international allocations, and this must be effectively countered if we are to emerge from the 1979 World Administrative Radio Conference with frequency resources which will assure the future growth and development of worldwide amateur radio.
"To this end, each radio amateur can help by:
$\star$ assuring that his tellow amateurs are well aware of the nature and importance of the conference;

* working with his fellow amateurs, his local radio club, and his natlonal society to assure that a proper understanding of and appreciation for the benefits of amateur radio exists at government levels; and
$\star$ encouraging and assisting wherever possible in the preparation of a national policy which will assure allocation of adequate radio trequencies to meet the needs of the amateur radio service in the years ahead.
"Each of the member countries of the International Telecommunication Union carries a vote to the World Administrative Radio Conference. Decisions on frequency allocations are made by majority vote. It is of vital importance to each radio amateur in the world that his country's vote is cast in support of the modest requirements of the amateur radio service. YOUR help may tip the scales to the advantage of radio amateurs throughout the world for years to come."

73. 

(signed)
NOEL B. EATON VE3CN

## President, IARU

The Calendar says that IARU activities are oriented strongly toward making certain that the amateur radio service is in the most favourable position possible entering this Conference. To this end, IARU officers and staff travelled extensively during the year to discuss WARC plans with the officials of member-societles. During each visit, the member socisty is urged to maintain the closest possible liaison with its govemment. One goal is to have the radio sociaty consulted by the government during the formulation of the lafter's conference policy between now and 1979.

THROUGH A GLASS DARKLY
"So, In the tempo of the times. it would be well to realize that amateur radio is subject to scruliny. You all know aboul the squeaking wheal that gets the grease. The louder the squeak, the more the gresse. The loudness of the squeak depends a lot on how many wheels are squeakingl You may not be aware of It. but the amateur population in the Uniled States is decreasing at the present time by aboul 350 licensees per month. Thls is happenIng whlle all olher services are Increasing". Part of speech by FCC Commissioner Robert E. Lee es reported in QST Fob. '75.

FLEA RADIOS AND CB-ET
The April 75 issue of APO News carfies an Inter. esting article about interterence on the legal handphone service by kids using pirate walkie talkles preventing communication between a helicapter pilot and surf life savers to locate a swimmer in difflculties belween Broken Bay and Wanda In Sydney recently. The helicopier pilot could see the swimmer In trouble but because of the interterence could not tell the shore life savers exactly where to lind him despite constant repetition. The pilat asked the kids to get oft the air but they ralused in language which made further entreaties pointless.

The article did not say if the swimmer was ultimately saved but one trusts this occurred somehow. The article goes on to mention a steady stream of complaints from legitimate users of licensed equipment with their operations disturbed by lliegel operators and that the APO will not have a bar of the claims being made for a clilzens band by the so-called Australian Citizens Radio Movement. It also says the APO is going all out to nab the illegal operators.
(The WIA also wIII not have a bar of CB operations as confirmed al the 1969 Federal Convention onwards. See also page 8 AR Oct '74Ed.)
publicity
From the "Radio Bulletin" (E \& Mt. Dlst. Rad. Club) Aprll '75 comes a report about the Inaugural meating of the Nunawading Branch attended by the Mayor of Nunawading. In his speech the Mayor is reported as making the point that the general lack of knowledge about amateurs and amateur radio in the community was largely our own fault. He said that it we were to gain the co-operation and support of local and other levels of Government we must be seen to be active in the community. Amateurs have valuable akllis and technical knowledge resources, he conilnued, which we should use to benatit the community as well as to enjoy our hobby. In these days of growing involvement in community affairs, we cannot afford to stay In the background, he said. Hear, hear.
ROYAL AUSTRALIAN SIGNALS ASSOCIATION OF NEW SOUTH WALES
Lt Col Tony Gallantine VK2AAA advises that the Royal Australian Corps of Signala celebrates its 50th birthday this year

The Corps was formed in 1925 and has disIlingulshed itselt in action in three subsequent wars. Many of lis members have been decorated for bravery as well as diatingulshed senvices in mllitary communlcations in peacetime.

Amateur Radio generally and the Wireless Institute in particular, has also numbered amongst its ranks, many past and present members who have sarved in signals. Mutual interests have always helped to maintain closest links between Signals and their civilian counterparts.
As part of the anniversary calebrations a world wide amateur radio link-up is to be conducted from the Australlan Army School of Signals at Watsonia, Victoria, and all Interasied members are asked to note the date. Salurday 8 November 1975. More detalls are to follow in later editions of AR.

Royal Australian Signals Association of New South Wales will be parlicipating with VK2ANE the ofticial amataur radio station of the 8th Signal Regiment, Lidcombe. New South Wales. Many other VK2s are expected to Join the activity and we hope 10 welcome all other interested VKs.

## IARU AND POSTAGE 8TAMPS a REGION 1

The IARU Region 1 Conterence held In Warsaw in May was honoured by the Pollsh Government by the issue of an IARU commemoratlve stamp (and special first day cover) to the value of 1.50 zt . The Region 1 conference, advised Noal Eaton VE3CJ, President of the IARU, who attended It, loined Region 3 in the latter's decisions relating to worldwide exclusive amaleur bands on 1.8, 3.5, 7.0, 14, 21 and 28 MHz plus 3 new bands in the region of 10, 18 and 24 MHz and the relention of at the very least our present VHF, UHF and SHF bands. He also said there were some minor dilterences between the two Regions' positions representing only different conditions in them. It is hoped that the Region 2 meating in Miami next April will lake ud a similar position.

## SUNSPOT NUMBERS

Smoothed mean for Oct '74 was 30.2. Prediction for Oct '75 is shown as 7 in the smoothed monthly sunspot numbers. The provisional mean for Apr '75 was 6.2. Courlesy Swiss Fed. Observalory, Zurich.

## LOOSE TALK

An amataur in Akron. Ohio (rather caralessly) announced his location at one of the large suparmarket car parks and that he would be back on the repeater after some shopping. On his return all his ema'eur equipment, a stereo tape deck and other ilems had been stolen. Quote from QSt Mar '75.

## UHF TELEVIBION

The ABCB In a news release of 12th May, advises again that it plans to introduce a limitad number of UHF trans!ator transmissions to Improve receptlon of existing VHF programmes in certain locations in Australia, probably by the end of 1878.

Advice is also given that the Board wlll be seaking stlli further consultations with industry to ensure that appropriate domestic recelving equlpment, Including UHF aerial systems and UHF adaptors for existing VHF recelvers, will be avallable to viawers seeking to improve their reception by using the UHF transmissions In the areas where these new transmissions are planned.

## DARWIN APPEAL

You will remember an Executive Appeal was made through Divisional Councils for members to contribute something towards helping Darwin amateura to replace equipment they lost during Cyclone Tracey. An appeal is again made for contributors towards this worthy cause as the closing date of the appeal has now been set as 1at August 1975. If you have not already contrlbuted, send a donation now, direct to the Executive Office, P.O. Box 150, Toorak, Vic. 3142, or through your Division.
SOLAR FLUX
Use of solar flux as a measure of dally solar activity is now preferred to the use of the dally sunspot count because solar flux has been found to be more direct and objective. It is also much more sensitive to change than is the dally sunspot count . . . Solar flux is a measure of the level of radiation from the sun and, consequently, is an indication of the general state of the lonosphere .. The values of solar flux broadcast by WWV (14 minutes past each hour) are measured at a frequency of $2800 \mathrm{MHz}^{\prime \prime}$. Extracts from an Interesting article by George Jacobs W3ASK and Theo Cohen W4UMF In CQ Mar '75 describing solar flux, geomagnetic activity Indices short-term forecasting and related sublects.

## COLOUR AMATEUR TV DEMONSTRATION

Friday 21.3.75 saw the first successful public Colour ATV demonsiration transmitted in Melboume on 428 MHz .
From the elevated OTH of Lou VK3ZYD at Mt. Dandenong. Don VK3YV/T transmitted three programmes to an audience of 94 people at the Moorabbin Radio Club's rooms. A distance of 30 km .

The entire programme lasted 65 minutes, and consisted of a monochrome video taped interview with Peter VK3BFG/T for 20 minutes, who explained delalls of the ATV scene and modulation systems. This was then followed by two excellent colour films from Falrchlld showing the design and production of Integrated circults.

The colour segment lasted for 45 minutes.
Plcture quallity of both the monochrome and colour transmisaions was excellent, and considerIng that the transmitter output was in the vicinity of 3 walts (yes, three watts!!). the demonstration was a tremendous credit to the capability of those involved.
Interference from outside sources was negligible. although during the monochrome segment, a little "breakthrough" from one of the commerclal TV stations appeared on the audio channel. This was due to the close proximity of commercial TV transmitters.

The colour transmissions were recelved un-Impeded.

Don's tranamitter is all solld state and bulit up from an article described In VHF Communication. The iransmitter antenna was an 11 -element yagl.
After the colour demonstration further monochrome transmissions between Peter VK32PA/T located at Sunbury and Les VK3ZBJ/T at Franketon, were recelved. Both stations providing excellent quallity pletures.
At the end of the evening, detalls of a simple to build 428 MHz converter for attachment to an ordinary TV set were discussed.

The converter used was that as described in Electronics Australia of January 1972, page 63.

The President, members and visitors of the Moorabbin Radio Club gratefully acknowledge the following amateurs for their efforts in presenting a tine display:-
Don VK3YV/T, Neville VK3YDR/T, Greg VK3YGB/ T. Pe!er VK3BFG/T, John VK3YJB/T. Cralg VK32BD/T, Les VK32BJ/T, Peter VK32PA/T, Les VK3BEN (supply of colour receiving equipment). (Report from VK3UV)

## TRADE <br> NEWS



As part of a programme to increase inlerest in the 2 melre band, Dick Smith Electronics is glving one tree set away for every ten sold. Purchasers of the new Icom IC22A can nominate the club or division of the WIA they would like the sels to go 10. Once ten nominations have been given, a tree set is donated to the particular club or division.

TIm MIIIs VK2ZTM, President of the NSW Divialon of the WIA is seen in the picture receiving the first Icom IC 22A from Harry Tyreman VK2BHT/G3SLL, Manager of the Amateur Radio section at Dlck Smith Electronice.

## WILLIS" AIR-WOUND INDUCTANCES

Take the hard work out of Coil Winding. use - "WILLIS" AIRWOUND INDUCTANCES

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No | $\begin{gathered} \text { Dia } \\ \text { lich } \end{gathered}$ |  |  |  | Price |
| 1.08 | $1 / 8$ | 8 | 3 | No 3002 | 88c |
| 16 | $1 / 2$ | 16 | 3 | No. 3003 | 88 |
| 2.08 | \$/8 | 8 | 3 | No 3006 | \$1.06 |
| 2.16 | 5/8. | 16 | 3 | No. 3007 | \$1.06 |
| 08 | $3 / 4$ | 8 | 3 | No 3010 | \$1.28 |
| 16 | $3 / 4$ | 16 | 3 | No. 301 | \$1.28 |
| 08 |  | 8 | 3 | No. 301 | \$1.42 |
| 16 |  | 16 | 3 | No. 3015 | 81. |
| 08 | $11 / 4$ | 8 | 4 | No 3018 | \$1.58 |
| 5.16 | $11 / 4$ | 16 | 4 | No. 3019 | \$1.58 |
| 8.10 | 2 | 10 | 4 | No 3907 |  |
| Special Antenna All-Band Tuner Inductance |  |  |  |  |  |
| lequivalem to 8. \& W. Na 32017 inchl Willis Pl-Coupler Unit - $\$ 18.00$ |  |  |  |  |  |
| $T^{\prime}$ length, 2"' dia. 10 T.P.I. Price $\$ 3.96$ Relarence: A.a.i.L Handbook. 1961 |  |  |  |  |  |
| Stockist of Transmission Cables. Insulators and Hard Drawn Copder Antenna Wire Walle for range of Tranamiasion Cablea |  |  |  |  |  |
|  |  |  |  |  |  |
| WILLIAM WILLIS \&. |  |  |  |  |  |
| Pry Lid |  |  |  |  |  |
| Mablufacturers and lixporters |  |  |  |  |  |
| 77 CANTERBURY RD.. CANTERBURY |  |  |  |  |  |
| VIC. 3126 Phone 836-0707 |  |  |  |  |  |

How does one get amateur radio across to one's neighbours, the public at large, the non-technical administrators in the less-developed countries?

IARU Region 3 Association has put forward a policy that the ITU Radio Regulations should be amended to emphasise the philosophy of the amateur service -
(1) That the amateur service is a voluntary non-commercial service particularly with respect to providing emergency communications.
(2) That the amateur service provides for advancing an individual's skills in both the technical and operating phases of the art thus helping to provide a reservoir of trained operators, technicians and electronics experts and also provides an avenue for further investigation in the electronic art for those persons already engaged in the field.
(3) That the amateur service has a unique ability to enhance international goodwill.
This is designed to replace the existing definition of "a service of self-training intercommunication and technical investigations carried on by amateurs, that is, by duly authorised persons interested in radio technique solely with a personal aim and without pecuniary interest'".

All this tends to be set uut in lawyers' language. In plain language it's try and see what we can explain about amateur radio to people around us. Amateur radio, firstly, is a leisure activity like any other activity for the leisure hours such as mountaineering, golf, collecting stamps or art treasures. It is carried on by nearly a million ordinary people all over the world. To be a radio amateur requires study in order to pass examinations both technical and practical. In the process the elements of electronics must be learned along with the proper behaviour to be observed when communicating with other amateurs over the air. The electronics part of the hobby forms a solid foundation for those who wish to make a career in this science. The behaviour patterns follow, possibly dogmatically (for good reasons) the kind of conduct expected of one civilised person conversing with others. The technical skills and knowledge which the amateur acquires are necessary to enable him to operate his equipment at the best efficiency with the least interference to other radio users. Civilised society accepts that you cannot drive a car or pilot an aircraft without first acquiring a minimum standard of skill to pass exams. The amateur must know not only how to "drive" his transmitter (and other equipment) but he must also know how to mend it if it goes wrong. Thus a bridge is formed for communicating with other amateurs.

Talking over the air with other amateurs poses some (common sense) restrictions. He must not discuss religious, political, advertising or business matters over the air. He is also forbidden to transmit music or entertainment forms and in most parts of the world, including Australia, he cannot send or process messages on behalf of other people. Bad language is strictly forbidden. Any reward in cash or kind from his operations on air renders him liable to severe penalties. Any kind of news about third parties is not allowed. But all this does not prevent him from talking about all kinds of other things to the other amateur he is in contact with in the next town or in some place half way round the world. The bulk of the contacts you might hear on the amateur bands probably would be in English but some would be in French, German, Russian or any other language under the sun.

An amateur could go on and on about his wonderful leisure activity. He could become as boring about his hobby as the golfer expounding at length about his strokes on every hole. What the amateur does with his equipment and how he does it is well known to any other amateur. His knowledge and experience are shared with others although an ordinary member of the public listening in would come up against an unusual array of abbreviations and symbols.

The possession of gear and operating skills allows the amateur to take his place at once in any natural emergencies which arise such as Cyclone Tracy which wrecked Darwin. Amateurs quickly set up channels of communications to the outside world. The licensing authorities readily set aside the rules to allow him to pass traffic for such extended emergencies knowing how amateurs train themselves to handle such traffic.

Each amateur takes pride in being an ambassador for his country and for his chosen leisure activity be he a pensioner or a schoolboy, a bed-ridden patient or an active sportsman, a busy housewife or a prince, a millionaire or somebody struggling to make ends meet.

The next time you need to tell someone about amateur radio why not let him read this as a starter. After all, if there was anything fundamentally wrong with the activity it would not have flourished so greatly as it has done during the past 70 years - The Executive

Amateur Radio July 1975 Page 5


Amongst the comprehensive range of SCALAR ANTENNAS there are some of special interest to the Radio Amateur. These include our VHF \& UHF, Citizens Band Range, HF Mobile and Base Station Units for Land \& Marine applications, for example . . .

## MODEL M25

For more efficient 2-metre performance use the SCALAR M25. A 3dB gain mobile, designed for use in the 140-175 Mhz band. The antenna is a $5 / 8$ wavelength whip complete with integral loading coil. Constructed of fibreglass these antennas combine resilience with non-ferrous continuity for high quality performance and noise free operation.

## AND SCALAR'S OWN

"MAGNABASE"<br>MODEL MGB



This high quality magnetic base may be fitted with any SCALAR whip. Instant installation on any flat metal surface.
Fully protected for scratch free mounting.
Complete with 12 feet of RG58CU coaxial cable.

Available from -

| N.S.W.: DICK SMITH ELECTRONICS | Tel.: $439-5311$ |  |
| :--- | :--- | :--- |
| ViC.: | BAIL ELECTRONIC SERVICES | Tel.: 89.2213 |
| S.A.: | ROGERS ELECTRONICS | Tel.: $264-3296$ |
| W.A.: | ALLCOM PTY. LTD. | Tel.: $57-1555$ |



## SCALAR Industries Pty Ltd <br> Communication Antennas and RF Shidlding Engineers


#### Abstract

The name comes from the fact that the antenna is in effect three antennas in one. The antenna may be either a single band or a mult band design.


## bRIEF DESCRIPTION

The Trinity Antenna has three switchable bi-directional patterns equally spaced at 120 deg. apart. By this means good allround horizontal coverage can be obtained. The problem of directional dead spots of conventional fixed single antenna systems is thus overcome. The switching can be done at any point between the central junction of the antenna radiators and the operating position. Usually it is preferable to do the switching near ground level where it is easy to get at the switches which will usually be relays controlled from the operating position.

The space required is only back yard size if an inverted $V$ design is used, or slightly larger for horizontal elements. The appearance is quite neat with few wires being used. The last two statements refer to an all band 80 to 10 metres design.

## What does it look like?

From a birds eye view it resembles the letter " Y ", except the angles between the straight lines are all 120 deg., and the lengths of the lines are all equal. From the junction of the three wires at a central insulator, a three wire feeder system is used. The feeder descends vertically to near ground level, say 5 feet high. At this point a switching system followed by a balun is used. A co-ax cable continues to the operating position.

## HOW DOES IT WORK?

At the switching point, by selecting the correct feeders, any two of the three radiator wires may be used. This gives the choice of three bent dipoles facing directions 120 deg. apart. The third (unused) feeder wire and radiator wire are located symmetrically with respect to the equal and opposite fields of the other two feeder and radiator wires, so there is little coupling between the active and unused wires either on transmission or reception. To help keep a good balance in the three wire feeder and the antenna system, a 1 to 1 balun is used between the switching system and the co-ax cable to the equipment.

## A PRACTICAL DESIGN:

An inverted $V$ trapped dipole Trinity Antenna for 80 to 10 metres. This design uses manufactured traps of a type often advertised in this magazine. The kit contains two 7.1 MHz traps and a T -shaped
insulator. It is called a Multiband doublet antenna kit. You will need to buy two kits and have a spare trap left over, or perhaps you can combine with a friend and obtain three kits between you. You could, of course, make your own; there is a design in the ARRL Handbook.

The three radiator legs are each a total of 54 feot long. Each leg is broken at 32 ft .6 in . from the feedpoint by a trap and after the trap, a further 21 ft .6 in . is connected. A three wire feeder must be improvised, such as 240 volt electrical wire. As the length used is only 30 to 35 feet, the losses will not be too high. Some three wire flex is reasonably good, or twist some .044 or .064 into a three strand feeder. The feeder system is non-resonant and untuned. The length required is from the top of the pole to the switching point. A single wooden pole 35 to 40 ft . high is used at the centre of the antenna system.

There are three egg Insulators equally spaced around the top of the pole and as close to it as possible. The three radiators are joined to the insulators at the top of the pole and the end of the feeder wires connected to them. The feeder is then attached to the pole every 3 feet or so coming down to within 5 feet of the base. When the pole is erected the three radiators also serve as guy wires; they may be anchored to the fence through a couple of insulators. The pole and the anchor points may be moved to get the proper angles between the wires. If space does not permit pulling the wires out straight they may bend down near the end of each wire, preferably as little as possible. However, it is better to use a higher pole so the wires can be straight. The distances between the lower ends of the three antenna legs (if they are straight) should all be equal. Once the right pole position and anchor points have been located make everything properly secure for a permanent job.

The next task is to connect the switchIng system to the lower end of the three wire feeder about 5 feet from the ground. Various types of switching can be used; possibly the simplest system is to use two relays, each having one set of changeover or two way contacts. The moving arms of the relays connect to the balanced terminals of a 1 to 1 balun. The fixed, normally closed, contacts of the relays connect together and to one of the three feeder wires. The remaining two normally open contacts (one on each relay) are each connected to one of the remaining feeder wires. This means it will be possible to switch the balun to any two of the three feeder wires. Also there will be a short across the balun when both relays are de-energised. This is useful for testing the co-ax cable.

The unbalanced side of the balun is now connected via 50 ohm co-ax to the equip-
ment. A light three wire lead Is attached to the co-ax throughout its length to operate the relays. String the co-ax up about 7 feet high or bury it in the ground. Join one side of each relay coll to one of the three relay wires. This is a common wire and at the equipment end is connected to one side of the relay power supply. The other two wires each connect a relay coil via one of two separate on-off switches to the power supply.

With relay power supply on, check that with both control switches on, both relays are energised. Then check that each of the relays can be operated on and off by its own switch. When all is correct, the equipment may be switched on and tests made.

Remember to keep the power down when testing and avoid the short circuit which takes place when both switches are off.

Check the SWR on each band on each of the three usable switch combinations. These combinations are, either one on, or both on, and these of course give the three directional patterns. The readings should not vary significantly if the antenna has been carefully measured and constructed. The length of feeder wire that leaves the tightly twisted part and fans out to reach the insulators at the top of the pole is part of the radiator length.

Assuming you have achieved good standing wave ratios on all bands (10 metres will most likely be the worst) you can now do some listening checks to see how the directivity works. Rule up a writing pad with sets of three columns, one for the band, one for the callsign and one for the switching combinations.

The three possible combinations are denoted as $A, B$ \& $C$ and the switching system is marked to show what position is beling used. Directivity patterns A, B \& C are recorded for future reference.

On 20, 15 and 10, it will often be found that changing the pattern will produce a change in the received signal level. If $A$ produces best results but $B$ and $C$ are poor, A-BC is logged in the column next to the call sign. If $A$ and $B$ produce equal results but $C$ is poor, AB-C is logged. If $A$ is best, $B$ is fair and $C$ is poor, ABC is logged in that order. If all are the same, a dash is used, and no letters.

To obtain best results from the Trinity, it is very desirable to keep a systematic record such as this, perhaps by use of an extra column in the log book. Sometimes there will be little difference between the positions, but often one or more positions are about two S points down on the best position. When this happens it shows the benefit of not having only a single fixed antenna in the position of the poor signal antenna combination.

With this inverted V design, very little directivity is noticed on 40 and 80 , showing that a $1 / 2$ wave inverted $V$ is a good non-directional antenna. If a horizontal Trinity is used there will be considerable directivity on 40 and 80 , as well as increased directivity on 20, 15, and 10.

In reception one point worth mentioning Is that interference may be reduced by using a different pattern. Try for the pattern that gives the best signal to QRM ratio, but if your signals are poorly received, go to the best signal strength
pattern for transmission. In group working some advantages may be gained by using different patterns for the various stations. This can be done for reception and also during transmission if your remarks are for the moment directed to one particular station.

Of course everyone will want to compare the Trinity to a rotary beam, but the comparison is not really possible. A beam has only one main lobe in its pattern but the Trinity has many; secondly, the beam will give the impression of great gain as


COAX. CABLE TO EQUIPMENT
it is rotated simply because of the great attenuation off the back. The actual forward gain compared to a dipole is only about 1 to $11 / 2 \mathrm{~S}$ points in most cases and it could well be that the Trinity will equal this, but operating the switches will not produce the same spectacular results as a rotary beam. Remember that the main advantage of the Trinity is good all round coverage without dead spots. It is not claimed it will out-perform a beam. When transmitting it will be found that signals received by a distant station will change in a similar manner to that noticed in reception. There are of course many more points that could be mentioned, however you will no doubt find great pleasure in discovering them yourself as you use the Trinity.

## OTHER DESIGNS:

A G5RV design is a good proposition, the radiator lengths are very similar. Make a three wire radiator top and use a three wire open wire feeder with the three wires equally spaced from each other. The bottom end of the three wire feeder is switched in the same manner as described for the previous design. The balun will have to handle high standing wave ratios so use a high power job for safety.

A Tuned Feeder Zepp design with three 33 feet radiators and a three wire 33 feet tuned feeder system with switches at the bottom end is a possibility. By using suitable tuned circuits connected to any two of the three feeder wires, it will operate from 80 through to 10. However this design is difficult to handle with relay switching due to the high RF volts and tuned circuits that need switching. If the shack is under the antenna, these problems largely disappear and the switching and tuning can be done in the shack in comfort.

## VHF DESIGNS:

At these frequencies it is possible to make a radiator and attached feeder out of a single piece of metal rod or tubing bent into a " $L$ " shape. The combined length of two of the radiator portions should be an odd number of $1 / 2$ waves to give low $Z$ at the feed point. The rods are insulated, perhaps with a sleeve of insulating material to give the right spacing for the low $Z$ feed line impedance. The three pieces are placed together, set at the proper angles to each other, and clamped together where the three feeder portions touch and run parallel to each other. The three feeder rods can form the main portion of the vertical supporting structure. At the base of the feeders they can be attached to a support such as a wooden post. The usual switching, balun and co-ax feeder are used as in the previous designs.

## CONCLUSION

There are so many designs and variations that it is not possible to mention them all. Only representative types likely to appeal to amateurs have been discussed.

Several small details have been omitted that could have been included, however, if you are uncertain of any aspects, the author would be only too pleased to answer any queries.


# MORE MODIFICATIONS TO THE FTROO 


#### Abstract

Three modifications to the ever popular FT200 are described. The first involves fitting a 12826 as an additional RF amplifier. The second provides sharper RF peaking and more drive for 80 and 40 metres, while the third covers an improve-: ment to the key click filters.


Athol Pritchard VK3CP
15 First Ave., East Kew, Vic. 3102


I have been a "home-brewer" most of my ham life, licensed as VK3CP in August 1931, and have always been interested in portable operation, but not with a car full of gear. A couple of married sons living in the country provided an incentive to do something about it.

As I was brought up on the "care and feeding of vacuum tubes" the logical choice, in my case, for a compact transceiver fell to the FT200, and with Heli whips mounted on the back bumper, fixed portable contacts have left nothing to be desired, VK and DX being a surprise and a delight.

Sensitivity on receiving was more than adequate on the three lower bands, adequate on 21 MHz , but less on 28 MHz . The various modifications were all tried such as 6GM6, 6EH7 frame grid tube, in adapters with very short leads and well by-passed. But the improvement was less than desired. Before this present modification the 100 kHz calibrator " S " meter reading on 21 and 28 MHz was S8 and S1 respectively with normal " $\$ 8$ " meter sensitivity on the lower bands. With the extra RF stage these bands now read $\mathrm{S} 9+15$ dB and $\mathrm{S} 9+10 \mathrm{~dB}$ without regeneration or oscillation, and no change to the " S " meter sensitivity control setting, nor realignment of coils necessary.

The extra RF stage uses a $12 B Z 6$ (to save a dropping resistor in the heater) and goes between the driver coils/grid coils and the first grid of the 6BZ6. It is mounted under the chassis adjacent to the 6BZ6 RF stage with its socket soldered by the
edge to the vertical partition that is over this RF stage. There is no heat problem as the shield of this extra tube lies against the bottom of the perforated cabinet when this is in place and a self-tapper holds the shield firmly against same, making an Ideal heat sink.

All the connections to the new tube are conveniently where they should be. The control grid and cathode resistors go to the same tag strip and are of the same value as used by the 6BZ6. The plate and screen voltage comes from the supply end of the screen resistor to the 6BZ6 RF stage and is open-circuited by the extra contacts on the antenna relay during transmitting. The screen voltage goes through a 4.7 k ohm resistor, and is by-passed at the socket with a .01 uF disc. (Refer Fig 1.) The slug-tuned plate coll has a 330 ohm resistor in series and is by-passed by a 50 pF capacitor at the junction of these two, and this gives extra sensitivity on the lower bands where the slug-tuned coil acts as an RF choke only. The slug-tuned coil is tuned to a little above 29 MHz approximately and this gives adequate gain on 21 MHz and the two 28 MHz ranges. If the coil is tuned to the working range of these bands, oscillation takes place. The coil can be set between 21 and 28 MHz but I prefer it just above the higher range on 29 MHz .

If desired the gain on 3.5 and 7 MHz can be increased by shunting the 330 ohm

Previously connected to V 2 grid
FIG 1 NEW FT 200 RF STAGE THE NEW CIRCUITRY IS SHOWN IN HEAVY LINES


12BY7 plate de-coupling resistor with a 150 uH choke.
The modification has been in use here for about five months, with no problems at all. The new tube is protected by the same circuitry as used with the normal RF stage. The AVC and " S " meter action is now better than ever, and taken all round t feel the improvement more than worthwhile. The slug-tuned former is $1 / 4^{\prime \prime}$ diameter by $1^{\prime \prime}$ long and has 26 turns close-wound with 26 gauge cotton-covered wire.

The job takes about an hour to do after the various bits have been soldered to the socket. The components are wired to the socket before it is soldered to the partition.


FIG 2 MODIFIED FT 200 KEY FILTER

Two other small modifications are as follows:- I have sharpened up the tuning on 80 and 40 metres by increasing the value of the two 10 k resistors R72 (3.5 MHz range) and R73 ( 7 MHz range) to 47 k . This also gives more drive on these two bands.

The other modification deals with the keying filter. I removed the 330 ohm series resistor at the key jack and replaced it with a 220 ohm and 68 ohm resistor in series (the 68 ohm nearest to the key). and a 1 mF capacitor on the junction of these two to earth. (Refer Fig 2.) (Notesome models have a 680 ohm resistor instead of 330 ohms-ED). Also a 2 mF capacitor in parallel with the 3.3 mF electrolytic capacitor. I added 47 ohms in series with the .01 disc that is across the key. This gives firmer keying without clicks.


(4)
ECONOMICAL SSB! FT-200 FIVE-BAND TRANSCEIVER

GENERAL DESCRIPTION

A superb quality. low cost, versatile transceiver. Covers $80-10 \mathrm{mx}$. tuning range 500 Kc . each band. On 10 mx . crystal supplied for $28.5-29 \mathrm{Mc}$. (Crystals available optional extra for full 10 mx cover. age.) SSB, CW. AM: with a speech peak input of 300 w . Transistorised VFO, voltage regulator, and calibrator. 16 valves, 12 diodes, 6 transistors. PA two 6JS6A pentodes. ALC. AGC, ANL, PTT and VOX. Calibrated metering for PA cathode current. relative power output. and receiver S units. Offset tuning $=5 \mathrm{Kc}$. Uses a 9 Mc . crystal filter with bandwidth of 2.3 Kc . at -6 db . Selectable sidebands,
Provision for use of optional external VFO. FV-200 VFO includes fixed channel facility.
Dperates from conservatively rated separate 230 volt 50 c.p.s. AC power supply, FP-200. which includes built-in speaker. Transceiver incorporates power take off and low level R.F. drive outlets suitable for transverters.
Cabinet and panel finlshed In black.
If required for novice use, the power can be easily reduced, and 11 M installed in a 10 M position. If a separate externai erystal oscillator (not supplied) is used then fixed C.C. erystal oscillator (not supplied) is used then fixed C.C.
transmit operation would be possiblés, with tunabie transmit
reception.

TECHNICAL DATA
OPTION

MODE OF OPERATION frequency range.

FREQUENCY STABILITY SPURIOUS RESPONSE: ANTENNA IMPEDANCE: CARRIER SUPPRESSION
SIDE BAND SUPPRESSION
3 RD HARMONIC INTERMONULATION DISTORTION: -- 30 db IP.E.PI TRANSMISSION BANDWIDTH:
receive sensitivity
FILTER SELECTIVITY IF MIXING BEATS:
image interference AGC CHARACTERISTIC RECEIVER OUTPUT POWER WEIGHT
DIMENSIONS

SSB(A3J). PHONE: A3H). CW. 3.5~4.0. 7.0~7.5. 14.0-14.5, 21.0-21.5. (28.0-28.5). 28.5-29.0.129.0~29.5), (29.5-30.0 MHz)

AFTER WARM.UP. 100 CPS/ 30 MIN .
better than - 40db
50~1000 UNBALANCED
BETTER THAN - 40 ©
-50 db AT 1000 CPS
3 KHz
$0.5 \mu \mathrm{~V} / \mathrm{N} 10 \mathrm{db}$
2. $3 \mathrm{KHz}(-6 \mathrm{db}) 4 \mathrm{KHz}(-60 \mathrm{db}$

50 db DOWN
50 db DOWN
AMPLIFIED AGC
1 WJAT $10 \%$ DISTORTIONI
17.6 LBS
$13 \frac{1}{6}$ wide. $5 \frac{1}{2}$ high. 11 deep

Price, including sales tax, excluding freight:
FT-200B, including FP-2008 Power Supply - $\$ 449.00$
Prices and specifications subject to change.

OLD. MITCHELL RADIO CO S9 Abion Roxd. Abion, 4010 NSW STEPHEN KUHL. P.O Box 56. Mascot. 2020

Ph. $89-2213$

Ph Day 6671650

# MODIFYING THE TCA1675 AND 167 ' FOR USE DN 6 AND 2 METRES 

R. H. Wales VK3ACM<br>Samaria Roadside via Benalla 3672

These units are the hybrid type, the only valves used being a 12AT7, QQE02/5, and QQE03/20. The transmitter audio and crystal oscillator/ phase modulator stages are transistorised. The current drain of the units is as follows, receive muted approx 90-100 Ma., full audio (receive only) - approx. 300 Ma., Standby 1.2 Amp, Transmil - approx 7.5 Amp. The differences between the 1675 and 1877 are minor, although the oower sunply is considerably different in the ' 77.
High band 1675s and '77s should only require tuning up to operate on the various 2 Mx nets.

LOW BAND 1675s and 77s FOR OPERATION ON $6 \mathrm{Mr}-52.525 \mathrm{Mc} / \mathrm{s}$ Basic modification data as follows:

## RECEIVER

Aerial coil: Add 6 turns of same gauge wire to "hot" end.
Collector coil: Add 8 turns of slightly smaller gauge wire to "hot" end, move collector lead from tap to "hot" end of coil, i.e. to trimmer.
1st mixer coil: Add 6 turns of same gauge wire to "hot" end. Disconnect lead from trimmer of the middle tuned circuit. Disconnect lead from trimmer of middle tuned circuit to RF stage collector coil, run a piece of enamelled wire from trimmer of mixer coil to lead on collector coil. This bypasses the 2nd tuned circuit.
Osc. Mult. coil: Add 6 turns to "hot" end (same gauge wire).
Oscillator coil: Add 8 turns to "hot" end (same gauge wire).

## TRANSMITTER

Remove RF filter (under chassis near relay).
T3: Replace windings with 30 turns of about 24 SWG wire, same spacing as original.
L1: Replace winding with 19 turns of same gauge wire.
2/5 plate coil: Replace with 16 turns, spaced $11 / 2^{\prime \prime}$, same shape, same gauge, same diameter, tinned copper wire.

FIG. 1.

## TO AUDIO CARD (CONTROL)



COMMON POSITIVE
(EARTH)

FIG. 2.


3/20 grid coil: Replace with 22 turns, spaced 2", same shape (centre tapped), same gauge, same diameter, tinned copper wire. Add 22 pF across link tuning capacitor (C25).
3/20 plate coil: Replace with 14 turns, spaced $\mathbf{2}^{\prime \prime}$, same diameter, same gauge and shape, tinned copper wire (centre tapped).

## CRYSTAL FREQUENCIES

Rx crystal frequency is calculated from the following:
$\begin{aligned} & F x= F C+16.755 \\ & 2 \text { where } F x \text { is } x \text { tal freq. } \\ & F C \text { is car. freq. }\end{aligned}$
For 52.525 MHz , the recelve crystal is 36.640 MHz .

Tx crystal frequency is calculated from the following:
$F x=\frac{F C}{24}$ where $F x$ is crystal frea.
$F c$ is cartier freq.
For 52.525 MHz , the transmit crystal is 2.18854 MHz .

LOW BAND 1675s and 77s FOR
OPERATION ON 2 Mx NETS
Basic modification data as follows:

## RECEIVER

Aerial coil: Remove turns from "hot" end until $81 / 2$ turns remain.
Collector coil: Remove turns from cold end until 6 turns remain. The collector of the AFZ12 is connected to the trimmer.
2nd tuned circuit: Remove turns from cold end until 7 turns remain. The 1 turn links on the above two coils are to be placed as close as possible to the "hot" ends of the coils.
1st mixer coll: Remove 1 turn from cold end. Remove turns from "hot" end until 7 turns remain. Coil will now be 7 turns tapped 2 turns from cold end.
Osc. multiplier coil: Remove turns from "hot" end until 6 turns remain.
Oscillator coil: Leave as original.
The mixer transistor in these low band units is an AF116N; this works quite well at 2 Mx and above, however some worthwhile improvement is obtained if this is replaced with an AFZ12 (same type as in the RF stage).


## TRANSMITTER

Remove RF filter (under chassis near relay, 77s only).

Oscillator card (U3) Replace R5 (The 220 K through the shield plate) with 100K. Add 200 pF between card and crystal (102 in high band circuit).

Change R11 (on 77 circuit), the 100 K screen resistor for the $2 / 5$, to 2 by 33 K 1 Watt in parallel. Change R14 and R16 originally $4.7 \mathrm{~K} \quad 1$ Watt, to $1.8 \mathrm{~K} \quad 1$ Watt, although this is not strictly necessary, but the screen resistor (R11) must be changed to give adequate drive.

Remove the 22 ohm resistor from the centre of the final plate tuning capacitor. It is between the rotor and earth.

Disconnect the Tx audio filter if fitted (between mic. amp. and osc. cards).
Modification to the Tx coils. Note: Keep spacing between windings the same.
L2: Remove 1 pie winding, replace 10 pF with 4.7 pF .
11: Remove 1 pie winding from each side.
T2: Remove 22 turns from each winding (approx. half).
r3: Remove turns until 9 turns remain on each winding.
L1: Remove turns until 4 turns remain.
$2 / 5$ plate coil: Remove turns until 4 turns
remain, same shape as original.
Link: Remove turns until 1 turn remains, same shape as original.
3/20 grid coil: Remove turns until 4 turns (CT) remain, same shape as original.
Link: Remove 1 turn, leaving 2 turns, same shape as original.
3/20 plate coil: Remove turns until 4 turns (CT) remain, same shape as original. Cut capacitor so that 4 stator plates remain, and 5 rotor plates remain.
Output link: Should be 2 turns.

## CRYSTAL FREQUENCIES

Rx crystal frequency is calculated from the following:
$F x=\frac{F c-16.755}{3}$ where $F x$ is crystal freq.
$F c$ is carrier freq. For 146 MHz , the receive crystal is 43.08167 MHz .

# HAM <br> RADIO SUPPLIERS <br> 323 ElIZAbETH STREET, MELBOURNE, VIC., 3000 PHONE: 677329-674286 Also af 390 BRIDGE RD. RICHMOND. PHONE: 425174 

## KENWOOD SSB TRANSCEIVER MODEL TS-520



The TS520 is a highly sophisticated solid state Amateur Transceiver employing only three vacuum tubes. Operating on all amateur bands between 3.5 and 29.7 MHz , this unit is constructed modularly. Designed for operation on SSB and CW, the TS520 delivers more than 200 Watts PEP input. The low power consumption of the TS520, makes it ideal for portable or mobile operation using its own 12V DC inbuilt power supply. A 240V AC supply, also inbuilt, permits operation from your home location as well.

Specifications can be read from Page 2 of thls Issue.

$\$ 235.00$

## SPECIFICATIONS:

COMPONENTS
R.F. OUTPUT POWER
D.C. CURRENT CONSUMPTION DIMENSIONS
MAXIMUM FREQUENCY DEVIATION
SPURIOUS RADIATION
RECEIVER I.F. FREQUENCY
.. SENSITIVITY
., . SELECTIVITY
.. AUDIO OUTPUT

## KENWOOD TR-7200G

## 2 METRE FM TRANSCEIVER

This Transceiver, designed for use in the 144 MHz Amateur Band, employs F3 type emission with 22 xtal controlled channels and in addition has an external VFO terminal for both transmit and receive.

## HAM

## RADIO ELECTRONIC bargain centre 390 BRIDGE ROAD, RICHMOND 3121 PHONE: 425174

Plenty of BARGAINS for the Radio Amateur or the Hobbyist. Owing to the recent tariff cuts on electrical goods, we have obtained large quantities of components, transformers, panel meters etc. which can be bought at very reasonable prices while they last.

STEREO TONE ARMS with ceramic cartridge fitted
$\$ 5.90$
MONO TONE ARMS with crystal cartridge fitted \$2.00 2N3055 TRANSISTORS with insulating kit ..... \$1.00 STOLLE 300 ohm FEEDER with foam dilectric 15c yd 58 ohm COAX CABLE 100 yd Rolls, $1 / \mathrm{s}^{\prime \prime}$ diam. $\$ 12$ Roll 52 ohm COAX CABLE $1 / 4$ " diam. - 45c yd, 50c metre DOW KEY COAXIAL RELAYS 48 Volt D.C. operation \$15

SPLIT STATOR CAPACITORS with screwdriver slot drive, $9 \mathrm{pF}-17 \mathrm{pF}-25 \mathrm{pF}$. Brand new Eddystone type
$\$ 4.50$ ea
EX ARMY HEADPHONES approx. 600 ohms impedance. New, in sealed boxes
\$2.00
$3^{\prime \prime}$ TAPE SPOOLS
2' SQUARE FACE 0-10 mA METERS calibrated 0-60
$\$ 3.00$
EDGEWISE $0-1 \mathrm{~mA}$ METERS $21 / 2^{\prime \prime} \times 1 / 2^{\prime \prime}$ face $3^{\prime \prime}$ deep, calibrated 0-5
$\$ 3.00$
PANEL METERS $57 / 8^{\prime \prime} \times 41 / 4^{\prime \prime}$ with $0-1 \mathrm{~mA}$ movement, various scales on meters (gas analyser, etc.) $\$ 5.00$
COMBINATION 240V AC 2400 WATT HEATER-FANS Tangi-type, use for blower, heater or cooler or both
$\$ 10.00$
$30 \mathbf{k H z}$ CRYSTAL FILTERS 10.7 MHz ........ \$5 ea
3 ft . TWIN CABLE AUDIO LEADS with 3.5 mm plug fitted

10 for $\$ 2.00$
CAR RADIO ANTENNAS 5-Section, lock-down $\$ 3.50$ ea
PLESSEY SPEAKER SPECIALS
$5^{\prime \prime} \times 3^{\prime \prime} 3.5$ ohm speakers with ferrite magnet ..... $\$ 3.00$
$5^{\prime \prime}$ round 8 ohm, $41 / 2$ watts ..... $\$ 3.50$
$5^{\prime \prime} \times 4^{\prime \prime} 15 \mathrm{ohm}, 31 / 2$ watts ..... $\$ 3.00$
$5^{\prime \prime}$ round 15 ohm, $31 / 2$ watts ..... $\$ 3.00$
X20 Tweeters, freq. range $3 \mathrm{kz}-20 \mathrm{kHz}, 20$ watts RMS ..... $\$ 6.50$
CAR SPEAKERS
$7^{\prime \prime} \times 5^{\prime \prime} 4$ or 8 ohms, 5 W , compl. with grille ..... $\$ 4.90$
$9^{\prime \prime} \times 6^{\prime \prime} 4$ or 8 ohms, 3 W , compl. with grille ..... \$5.90
CAR EXTENSION SPEAKER CONTROLS. Use both speakers together or sparately ..... \$1.50
WIRE WOUND POTENTIOMETERS in the following values:
5 ohm
10 ohm 2 watt 3000 ohm 2 watt ..... ALL
PLASTIC TURNTABLE COVERS (blue tint)$15 \times 18 \times 31 / 2^{\prime \prime}$ deep$\$ 5.00$
JACKSON SLOW MOTION DRIVES 6:1 ratio ..... \$2.30
NEW 240V AC TURNTABLE MOTORS 3 speed operation ..... $\$ 2.00$
CAR RADIO SUPPRESSOR KITS (2 condensers, 1 coil lead suppressor) ..... \$1 ea
CAR RADIO SUPPRESSOR CONDENSER ..... 50c ea
CIGARETTE LIGHTER ACCESSORY PLUGS
45c ea 10 for $\$ 4$
"MASPRO" TV BALUNS 300-75 ohm for colour ..... TVSTANDARD BLACK AND CLEAR TV RIBBON 15c yd



## 2nd IF BOARD CONNECTIONS.

Tx crystal frequency is calculated from the following:
$\mathrm{Fx}=\frac{\mathrm{Fc}}{36}$ where Fx is crystal freq. Fc is carrier freq. For 146 MHz , the transmit crystal is 4.05556 MHz .

## TUNING UP PROCEDURE, BOTH

 2 and 6 METRES
## RECEIVER

The Rx has a 1st IF of 16.755 MHz , and this is mixed with a 17.210 MHz crystal to the 2 nd IF of 455 kHz . The Rx filter is on $455{ }^{\prime} \mathrm{Hz}$. It is essential that both IFs are lined up correctly before the front end alignment is commenced. The correct peak for the cores in the 1st IFs is the one farthest from the middle, i.e. cores should be fairly close to the top and bottom of the cans. If the cores are peaked near the middle of the can, the mute circuit may not function correctly on weak signals. For more details on the IF alignment refer to a manual on the 1677.

I have found that with most units the IFs are reasonably good, the 1st IFs may need a slight touch up on a weak signal. Now onto the alignment details for the front end. It is a good idea to have a Tx on the frequency to give a really potent signal source to start with. Other equipment required is a stable signal generator, and a fairly high impedance multimeter, and if possible a 25-0-25 uA centre zero meter.

Plug in the Rx crystal, connect a high impedance meter to emitter Ts3 (i.e., lug on stand off), set meter to 3 volt range. Adjust C6 for max reading, making sure that crystal starts reliably. Connect meter to the test point on the 2nd IF card, set to 50 uA range. Feed in a fairly strong signal, then as Rx is peaked up decrease the input signal, whilst still maintaining a useful indication on the meter. Finally peak all trimmers and cores on a weak signal. It takes a fairly strong input signal to get an indication from this IF testpoint even when using a 12 uA meter. So final peaking may have to be done by "ear".

Setting Rx on frequency is done as follows:

Connect a 25-0-25 uA meter between the black wire on the audio card and positive, and with an input signal on exactly the right frequency adjust the coil in series with the crystal to give zero reading on the meter.

NOTE: For all receiver testpoints the common or meter positive connection is receiver positive. The chassis of the RF
unit is a good place to which to connect the meter common lead. The plus and minus rails of the unit are isolated above ground. Care should be taken when working on the Rx. The manual suggests that the voltage regulator stage be disabled when working on the unit, as if the regulated line is accidentally shorted (the whole Rx excepting the audio power stage is supplied via the regulator stage, an AC128) then the regulator transistor will be destroyed.

## TRANSMITTER

Plug in crystal, connect a meter to M1. Chassis of the unit is common for all Tx test points except $3 / 20 \mathrm{IG}$. Tune L2 and T1 for max, use 300 uA meter range.

Connect meter to M2, 300 UA range, tune T2 for max.

Connect meter to M3, 300 UA range, tune T3 for max.

Connect meter to M4, 300 UA range, tune L1 for max.

Connect to M5 and M6, 1 mA range, tune C23, C25 and C29 for max (may be necessary to adjust the coupling links).

Adjust final tuning and coupling for max RF power out. It is a good idea to recheck these adjustments.

FIG. 4.


## VICOM INTERNATIONAL PTY LIMITIED Manager Peter Williams



## UNIDEN 2020 PLL DIGITAL SSB TRANSCEIVER

## FEATURES -

* Frequency display on LEDs down to 100 KHz and remaining 99 KHz by a rotator-drum in combination.
* Phase Locked Loop (PLL) circuitry).
* Superior quality VFO - because each VFO range is only 100 KHz , the linearity, temperature characteristics and effect from shock and vibration parameters are much better.
* High quality 8 pole crystal filters specially designed for the Uniden 2020.
* Dual range selectable clarifier, +5 KHz or $\pm 1 \mathrm{KHz}$.
* $6146 \mathrm{~B} \times 2$ finals, built-in cooling fan.
* Noise blanker and fast/slow AGC control together with 70 db attenuator.
* 52 transistors, 16 FETs, 18 ICs, 154 diodes, 3 valves.



SPECIFICATIONS-GENERAL
Bands: $\quad 80,40,20,15,10,11$, WWV
Modes: LSB, USB (A3J), AM (A3), CW (Al).
Stability: During warm-up less than 300 Hz , after 100 Hz during any 30 minutes.
Ant: $\quad 50-75$ ohms impedance unbalanced, nominal. 240 V AC or 13.8 V DC (includes built-in DC supply) $R \times 2$ amps (heaters off) 7 amps (heaters on) 22 amps peak transmit.
Size: $\quad 360 \times 165 \times 333 \mathrm{~mm}$. Weight 18 Kg .

## RECEIVER:

Sensitivity: 0.3 uV for more than $10 \mathrm{db} \mathrm{S} / \mathrm{N}$.
Selectivity: 2.4 KHz nominal bandwidth at 6 db 4.0 KHz at 60 db down.

Harmonics: lmage rejection better than 50 db .
TRANSMITTER:
Input Power: 200 watts pep, 100 watts AM.
こarrier suppression: -50 db or less
jideband suppression: -50 db or less (at 1000 Hz )
jpurious radiation: $\quad-40 \mathrm{db}$ or less
Mic impedance: $\quad \mathrm{High}$
Price includes plugs, cables, mic etc. VICOM 90 day warranty.

## VICOM INTERNATIONAL PTY LIMITIED Manager Peter Williams



Following the successful FTIOIB comes the FTIOIE $160 \mathrm{~m}-10 \mathrm{~m}$ SSB transceiver which comes with lots of little improvements. Toggle switches on the front (replacing those designed for Japanese fingers) and the inclusion of a speech processor are some of the improvements. See the FTIOIE first at VICOM. "

## HF TRANSCEIVERS

Yaesu FTIOIB ( $160-10 \mathrm{~m}$ ) transceiver. $\$ 585$ Yaesu FVIOIB VFO for FTIOIB/E. $\$ 102$ Yaesu FTIOIE ( $160-10 \mathrm{~m}$ ) transceiver. $\$ 628$ Yaesu FL2100B Linear Amplifier, $\$ 388$ Yaesu FT75B mobile transceiver, $\$ 445$

## AC power supply $\$ 50$

DC power supply $\$ 60$
Yaesu FT201 transceiver incl. pwr. supply, $\$ 505$ Trio TS-520 (80-10m) transceiver, $\$ 550$ incl. mic. Uniden 2020 ( $80-10 \mathrm{~m}$ ) transceiver, $\$ 550 \mathrm{ncl}$. mic. Atlas 210-215 solid-state transceiver, $\$ 570$ Atlas 240 v power supply, $\$ 150$ Atlas delux mobile mounting bracket, $\$ 47$ Micro-6 27 MHz NOVICE transceiver incl. mic, $\$ 75$.

## HAM HEADQUARTERS!



## SOLID STATE

5 Band - 200 Watts
NO TRANSMITTER TUNING
MODULAR CONSTRUCTION
DV. 21 Digit 146-148MHz.PL esised system u and 34 transistor interfaced with or any rig with multiplier. Price cludes VICOM 9 ranty

## VICOM INTERNATIONAL PTY LIMITED Manager Peter Williams

money on a special Novice rig which isn't much thour full call?
t you purchase a fully-fledged HF transceiver n our normal price) which has been VICOMISED. D!! You will obtain the normal rig less one final 0 de-activated. When the big day comes, simply ional tube and reconnect the VFO!!

## T GEAR

CS 1557 CRO DC-10MHz S340
VT 108 FET VOM 8 ranges 0.5 to $1.5 \mathrm{kv}, 11 \mathrm{meg}$ input 0.1 to 1000 meg, memory feture $\$ 85$

AG202A AUDIO GENERATOR covers 20 Hz to 200 lov rms output. sine and sq wave, ext sync $\$ 94$ , 75 mm scope 20 mv cm sens, dc to $1.5 \mathrm{MHz} \$ 170$ - SG402 RF GENERATOR covers 100 KHz to 30 MHz

FREQUENCY COUNTER including 2 metre prescaler
0.15 MHz frequency counter $\$ 210$

MONITOR SCOPE. The YAESU YO- 100 monitor scope can be interfaced with most transceivers and can cover a wide range of modes incl RTTY. A two tone built-in generator at 1500 and 1900 Hz adds to the versatility. Price \$190.
YAESU frequency counter $\$ 250$. Covers up to 200 MHz max sensitivity 20 mV . hi-lo input impedance.

## 2 METRES SSB

SSM-EUROPA B transverter \$224
YAESU FT220 ssb-cw-fm solid state transceiver. Price of $\$ 480$ incl mod to use fm repeaters.
TRIO $\mathbb{V}$-502 transverter $\$ 243$.

## SPECIAL

The Seiwa SU-710 70 cm fm transceiver runs 10 watts and is the ideal mobile rig. Complete with I channel (435.0) and mounting bracket, mic, cables etc. and VICOM 90 day warranty. Price $\$ 278$.

## 2 METRES FM.

COM IC-21A IOw base station or mobile. Features 'ariable pwr control, adjustable deviation, built-in scriminator meter, S meter. SWR meter and modu--rar circuitry. İncludes 3 chs 1-4-50. Price \$298. Extra xtals $\$ 8.50 \mathrm{pr}$.
KEN KP202 handheld 2 watts. Incls 4 chs (1-4-40-50)
nth- $\$ 150$
ICs TRIO TR2200G handheld portable transceiver inci 2 chs. 1-50'\$150.
ngs SEWIA SV-230 mobile rig. runs 25 watts! Price $\$ 210$ includes 3 channels, mic, cables and mobile mounting bracket.

## SCANNER

RLD NEEDS IS A GOOD \$25 SCANNER KIT! 4-channel scanner board. II is small sized. licators which mount in small holes added in iwo or more boards can be ganged tor eighi or Whit can be used with any AM or FM recerver or
in nit can be used electronically switched crystals
squalch I with directly switched crystals can be easily !5 tor the kit, including undrilled peb. all compos. LED indicalors. Add 60 c lor drill bil and \$1 P

## ANTENNAE

MOBILE WHIPS:
RM-80 Resonator for $80 \mathrm{~m} . \$ 18.50$
RM-40 Resonator for $40 \mathrm{~m} . \$ 16.80$ RM-20 Resonator for $20 \mathrm{~m} . \$ 13.50$ BM-1 Burnper mount $\$ 13$. Spring $\$ 13$. HY-GAIN
203BA 3el 20 m beam $\$ 168$ TH6DX 6el yagi 10-15-20. \$225 TH3JR 3 el yagi $10-15-20$. $\$ 135$ 18AVT trap vertical 80-10. $\$ 90$ 14AVO trap vertical 40-10. $\$ 65$

| - . |  | WHANE |  |  | $\begin{gathered} \mathrm{BY} \\ \text { VICOM } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mocel | Imp | Freq | VSWA | $\underset{S}{\text { PRICE }}$ |
| BALUNS | $\begin{aligned} & \text { BL.50A } \\ & \text { BL. } 70 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 52 \\ & 75 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.8 \cdot 38 \mathrm{MHz} \\ & 1.8 \cdot 38 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 1.3: 1 \\ & 1.3: 1 \end{aligned}$ | $\begin{aligned} & 16.00 \\ & 16.00 \end{aligned}$ |
| $\begin{aligned} & \text { COAX } \\ & \text { SWITCHES } \\ & (28.6 \text { DOS }) \end{aligned}$ | $\begin{aligned} & C S-2 A \\ & C X-6 A(A) \\ & C X-6 A(B) \\ & \hline \end{aligned}$ | $\begin{aligned} & 52 \\ & 52 \\ & 75 \\ & \hline \end{aligned}$ | 10300 MHz <br> 10500 MHz <br> to 500 MHz | $\begin{aligned} & 1.3: 1 \\ & 1.3: 1 \\ & 1.3: 1 \\ & \hline \end{aligned}$ | $\begin{aligned} & 23.00 \\ & 54.00 \\ & 54.00 \\ & \hline \end{aligned}$ |
| TRAP DIPOLES | III-N | 52 | $\begin{gathered} 7 \mathrm{to} \\ 28 \mathrm{MHz} \end{gathered}$ | 1.2:1 | 33.00 |
|  | AL48DXN | 53 | $\begin{aligned} & 358 \\ & 7 \mathrm{MHz} \end{aligned}$ | 1.2:1 | 33.00 |
|  | AL24DXN | $52$ | $\begin{gathered} 78 \\ 14 \mathrm{MHz} \end{gathered}$ | 12:1 | $26.00$ |
|  | A-AVPN | - 52 | 3.5 MHz | 1.2 :1 | 26.00 |
|  | A-8VPN | 52 | 7 MHz | 1.2:1 | 28.00 |
| LISTENER | LI | 75 | $\begin{gathered} 3 \text { to } \\ 30 \mathrm{MHz} \end{gathered}$ | - | 15.00 |
| BALANCED FEEDER | BTF-1 | 600 | - | - | 1200 |

Power AMP for 2 metres. carrier operated relay, infinite VSWR protection, 60 watts from 10 watts in, BNC connectors. $\$ 89$

GET WITH THE STRENGTH! More IC22A 2 m fm transceivers are sold in Australia than all other 2 m fm rigs put tozether! No advertising gimmicks are necessary, it's simply the best! Featuring switchable power $1 / 10$ watts, 22 channels, solid-state $T / R$. relay, $P A$ protection, filtered dc voltages, the unit comes complete with mounting brackets mic, cables etc. and three channels $1 / 4 / 50$. Price is $\$ 210$ and includes the VICOM 90 day warranty. Spares and after-warranty service available.
 wer


Crystals for VHF transceivers are available for $\$ 8.50$ pair $+50 c$ P \& P. Xtals outside WIA Band Plan are in short supply.

[^5]QUALITY 2M FM RECEIVER MODULE. . Ideal as an auxiliary monitor tor the shack or osted (perhaps not a good idea!) this kut comes complete with a single channel oscilator ade 11 element if ladder filter. The price ol $\$ 69.50$ includes predniled tibreglass pcb. al al. inter, instruction manual. Add si Par
3ctrvity, 90dB adjacent channel rejection
dth
ensitiv
Jtput
Iput 0.5 uV tor 20 dB
shielded coils. stable cascode circuilry — no neutralisation required.

What now follows will be some of the modifications to the units in general to obtain better performance on the amateur nets.
the mute circuit
As original this works well but, on overdeviated and/or off frequency signals, the mute can have a tendency to close up on audio peaks. This effect is particularly bad if the unit is "hard muted".

To cure this, I have added a delay to the mute circuit, the result being that the mute may take a second or so to close.

Add a $50 \mathrm{uF} / 10 \mathrm{~V}$ electrolyte and 47 K resistor across the mute control line and place between the black shielded wire on the mute card (which runs to the audio card) and the earthy part of the board (i.e., positive). Fig 1 shoula explain this; also refer to the layout diagram.

## THE RECEIVER FILTER

If you desire to change the filter to either a narrow or wide type, Figs 2 and 3 should assist in this. The wide filter has one' less connection than the narrow one. When the filter is changed don't forget to alter the connection on the IF board also. The narrow filter has 7 cores and is meant for 5 kHz deviation, while the wide filter has 11 cores and is meant for 12.5 kHz deviation.

## LOCATION OF TEST POINTS

Figs 4 and 5 should assist with locating the test points. The Tx test points are marked X.
THE FRONT END OF THE 1675
The front end of this is similar to the 1677, but the 1 st mixer is not biased, if it is left like this then the performance is very poor. It must be biased as in the 1677.

To do this, lift the base lead of the mixer transistor, connect a 22 K resistor

from the cold side of the oscillator multiplier trimmer to the base lead, connect a 3.9 K in parallel with a .01 ceramic capacitor from the base to the chassis of the RF unit. See Fig 6. The emitter resistor must be changed to 1.2 K , if this is not done then the mixer (AFZ12) may not last very long.

This completes the article. The complete circuit is too large to be reproduced here. Reference to the circuit should clarify any doubtful points. The units are capable of good results when tuned up correctly and should give years of satisfactory service.

However, dry joints can be troublesome, and it is a good idea to have a spare AF116N and a AC125 on hand. Once the bugs are ironed out (if any) there should not be too many problems.

## TECHNICAL EDITOR'S NOTE:

A note received from John Day VK3ZJF contains the following information which is relevant to the preceeding article.

No information on the relative performance of units modified by the different approaches is available.
(a) The receiver crystal should be cut for SERIES resonance.
(b) Only minor modifications to high-band 1675s and 77s will be necessary for operation on the two metre nets.

## RECEIVER

No modifications normally necessary, iust re-align front-end board.

## TRANSMITTER

The amount of work required depends on the actual transmitter as in some cases, particularly late model 1677s, the transmitter will tune straight down to two metres. In other cases you may need as much as 10 pF across each winding of T1, T2, T3. Coil $L 1$ will normally be fitted with a brass slug; remove this and replace with ferrite. If this is done and the remainder of the circuit tuned properly, you should have more than enough drive, even for 40 watts of output. Unfortunately, in the search for drive you may possibly need to rewind some coils tor improved L/C ratio. In some cases it has been found necessary to add 1 turn to each side of L6 (3/20 grid coil) and 1 turn to each side of L10 (3/20 plate). The 0-25 pF trimmer C42 on the schematic is not included on most 1675s (and even some 1677s). For this use, a 3-30 pF Phillip "Beehive" type trimmer.

The use of a transmitter as a signal source is NOT recommended and should be avoided.

# AMATEUR BUILDING BLDCKS 

PART ONE

H. L. Hepburn VK3AFQ<br>4 Elizabeth St., East Brighton, 3187

## In the amateur constructional literature, especially as it relates to receivers and transmitters, there has been an understandable tendency to describe equipment in terms of a specific finished product that does this and thus, measures so by so, and uses such and such components.

Yet, no matter how complex the final result, these pieces of equipment still consist of a finite number of functions combined together to do whatever the builder had in mind. Rarely, however, has the described article been exactly what the would-be constructor wanted, so that the tendency has been to abstract the parts of the published circuit which are of immediate interest to him.

The writer's main interest in amateur radio has been the evolution of home built equipment and it is the intention of this series of articles to describe a nummer of modules or building blocks. Each module is useful on its own, but modules may be combined to synthesise quite complex arrangements, although emphasis is placed on receivers, transmitters, frequency standards and frequency counters, these being the main pieces of "hardware" likely to be of interest to amateurs.

What the articles will, quite specifically. NOT do is to describe an all purpose. multiband, multimode "black box" which will be all things to all people. Rather, it presents a useful library of flexible and compatible units from which a selection can be made to build a wide range of end products.

Only components currently on sale in Australia (mostly through supply houses advertising in this and other local journals) have been used and suppliers are quoted where considered necessary. By and large there is nothing sacred about the devices used and, within reason, other equivalent devices can be substituted.

## Section 1-

## BRIEF DESCRIPTION OF MODULES

## All the modules described in this series

 of articles are constructed on single sided
circuit boards measuring 6 in. $x 2$ in. ( $152.4 \times 50.8 \mathrm{~mm}$ ). All have four corner mounting holes on 5.7 in. $\times 1.7 \mathrm{in}$. centres $(144.8 \times 43.2 \mathrm{~mm})$ so that, if required, they can be stacked vertically to save space.

The functions contained in each module are as follows:

## Unit A

This is a receiver "front end" module and contains -
(a) An RF amplifier whose gain may be fixed or manually controlled or AGC controlled;
(b) A balanced mixer
(c) A VFO capable of covering selected portions in the $1.5-12.0 \mathrm{MHz}$ range;
(d) A fixed frequency crystal oscillator ( $3-18 \mathrm{MHz}$ ) which can be used in place of the VFO, making the module useful as an HF converter.
Unit B
This is an IF amplifier module for AM, CW or SóB. It can be operated on any of the common frequencies between 455 kHz and
10.7 MHz and the PCB makes provision for most (but not all) of the currently available filters. Home wound or commercial IFTs can be accommodated and an off-take is provided after the 1st IF amplifier so that the module can be used in a transceiver.
Unit C
This is a receiver "back end" module and contains -
(a) A product detector;
(b) A crystal controlled BFO;
(c) An AM detector:
(d) An audio AGC generator;
(e) An audio preamplifier:
(f) Audio power output;
(g) "S" meter circuitry.

Note that units $\mathrm{A}, \mathrm{B}$ and C combine together to make a single band receiver.
Unit D
This module contains the additional functions necessary to provide a low level SSB signal when used in conjunction with Units A, B, C above. On board are:
the vkiafa solid state ssb transceiver


A prototype of the solid state SSB transceiver, which can be assembled from circuit boards, to be described in this magazine by Harold Hepburn VK3AFQ, was tested by members of the Publications Committee. The unit submitted for test included the full digital readout dial.

Tested over a period of several days, overall performance was rated first class. Receiver sensitivity and selectivity compared favourably with several commercial transceivers. In fact, due to the very low internal noise level, signals were very easy to copy.

On air reports indicated that the transmit quality was crisp and very readable. Digital dial readout for transceivers seems to be very much a matter of opinion. Suffice to say that this one works well with only a slight amount of flicker appearing on the last ( 10 Hz ) digil.

This project is recommended for those who have had some constructional experience and are familiar with the operation of SSB transceivers.
(a) A microphone preamplifier;
(b) A balanced modulator;
(c) A signal frequency balanced mixer;
(d) A (3-18 MHz) crystal oscillator.

Unit E
This is a $25 / 30$ watt single band linear amplifier to build the signal from Unit D up to a useful level for "on air" use.
Note that units $A$ through $E$ inclusive combine to form a single band $25 / 30$ watt SSB transceiver.
Unit F
This is a $11 / 2 / 2$ watt VHF single channel exciter ( $50-150 \mathrm{MHz}$ ) which, if required, can be frequency modulated. Its output level is adjustable so that the unmodulated output can be used, for example, as a carrier injection source for transverters. On board functions are -
(a) Microphone preamplifier;
(b) Frequency modulator;
(c) Crystal oscillator/tripler;
(d) Two doubler stages;
(e) Signal amplifier with adjustable output. Unit G
This is a 10.7 MHz input FM receiver "back end". It contains -
(a) Filter;
(b) 10.7 MHz amplifier;
(c) Crystal oscillator/mixer;
(d) 455 kHz amplifler/limiter/detector;
(e) Audio preamplifier;
(f) Audio output;
(g) Squelch circuitry.

Unit H
This is a crystal oscillator on 10.00 MHz . Sufficient dividers are provided to give output at decade intervals down to 0.1 Hz . A separate, on board, dual flip flop can be used to divide any of the main clock outputs by 2 and/or by 4 so that outputs down to 0.025 Hz are available. Optional circuitry is provided to enable remote adjustment of the crystal frequency to be carried out. The unit can be used as a frequency standard and/or a counter time base.
Unit I
This is a display unit which is capable of operating in excess of 40 MHz for use in frequency counters, digital dials and timing devices. The number of digits displayed is optional with a maximum of six figures.
Unit J
This is a signal processing module accept-
ing low level ( 20 mV ) sine waves and outputting a TTL compatible waveform. Also on board are the necessary housekeeping functions for timing or frequency counting projects including a single band digital dial.
Note that Units $\mathrm{H}_{1} \mathrm{I}$ and J combine together to produce a 40 MHz , six digit frequency counter capable of a $\pm 1 \mathrm{~Hz}$ resolution and that all units $A$ through $J$ make a SSB transceiver showing operating frequency to the nearest cycle if required. Figure 1 is a simple block diagram showing two of the module groupings possible. Specifically, units $A$ to $E$ produce a single band HF SSB transceiver while units H to J are grouped to give a 40 MHz frequency counter. It must be emphasised, however, that the grouping shown is not mandatory and individual modules, or parts of those modules, can be otherwise put together to achleve other end uses.

The writer is prepared to comment on, or suggest, other specific groupings or end products. A stamped addressed envelope for the reply is requested.

To be continued

## AN AR SPECIAL

# A REVIEW DF THE MULTI-7 2 METRE FM TRANSCEIVER 


#### Abstract

In the Decernber 1974 issue of Amateur Radio we reviewed the Icom IC22 and stated that more two metre FM transceivers would be reviewed in the future. Here then is the second in this series.


The Multi-7 is a product of the FDK Company of Fukushima, Japan. It is distributed in Australia by Sideband Electronic Sales and Engineering of Springwood NSW, who supplied the unit used in our review. De-

tails of price and delivery can be obtained from the above company.

In keeping with the latest approach the Multi-7 has provision for 22 channels plus a priority channel and also an external VFO. There is no indication that the FDK Company produce a matching VFO nor Is any information supplied on the use or construction of one.

Naturally, the unit is fully solid state and employs 27 transistors, 3 FETs, 1 IC, 1 SCR and 18 diodes. The Multi-7 is the smallest two metre transceiver currently on the Australian markel. The overall dimensions are: 134 mm wide, 216 mm deep and 75 mm high. The weight is 1.6 kg .

No doubt, to match the non-reflecting finish of modern car dash boards, the Multi-7 is finished in a dull black plastic on the front panel while the metal cabinet Is painted in satin black. The overall appearance is first class with colour relief provided by touches of satin chrome on the control knobs. The meter and channel
selector are both illuminated from the rear and an "on air" indicator is placed to the right of the meter. Channel selector markings are unusual in that they are numbered for the frequencies commonly used in Japan, with the colour changing to signity either 144 or 145 MHz . As supplied by Sideband Electronics, 10 Australian channels are included, these being a receive and transmit crystal on every 100 kHz point from 146 MHz to 147 MHz with the exception of 146.6 MHz . In effect this allows operation on simplex channels 40 and 50 plus repeaters $1,2,3$ and 4 and then the same four repeaters in reverse. Additional crystals are available from the distributor.

The Multi-7 is supplied with the usual accessories, a good quality dynamic microphone, mobile mount with quick release facility, DC connecting cable and spare fuses.

The transmitter is rated at either one or 10 watts output, this being selected by


A Review of the Multl-7 2 metre FM transc. a three position switch with "off" in the centre. The receiver section of the Multi-7 incorporates two Interesting features which to date appear to be unique in a strictly mobile unit. First there is an offset tune control. This enables the receiver to be tuned a few kHz either side of the nominal frequency. This is achieved by pulling the second conversion crystal oscillator, hence the same frequency offset occurs on all channels. So that this control can be effectively used, a rear mounted slider switch changes the meter from its normal functions of RF output and receive signal strength to that of a discriminator zero indicator. The meter is designed to have its zero about a fifth of the way up the scale, so that the actual meter movement is rather sma'l.

Power consumption is rated at 2.3 amps on high power transmit, 1.2 amps on low power transmit and 400 mA on receive. This is at a nominal input voltage of 13.5 .

## CIRCUIT DESCRIPTION

Apart from the features mentioned above, the circuitry of the Multi-7 is rather typical of modern thought in amateur 2 metre gear. It follows tried and proven methods. The receiver uses two dual gate Mos FETs in the front end, one for the RF stage and the other for the first mixer. The coupling between is via a three stage helical filter. This system is capable of good sensitivity combined with good immunity to strong out-of-band signals. The first conversion oscillator uses crystals in the 45 MHz region followed by a tripler stage. The receive crystals do not have individual trimmers as this function is well taken care of with the front panel "TUNE" control. It also saves considerable internal space and no doubt contributes to the overall compact size of the transceiver.

Many amateurs might query the lack of receive trimmers, however the fact is that even were these provided, there is no guarantee that the crystal frequency will stay put. With this system it is at least possible to compensate for temperature changes and off-frequency stations.

The IF strip is conventional with a 10.7 $\mathrm{MHz}, 455 \mathrm{kHz}$ set-up. A standard Murata
filter is used in the 455 kHz section, giving a band pass of 15 kHz .

Receive audio consists of a single transistor stage driving an IC as the output. Audio power is rated at two watts with 10 per cent distortion. The speaker size is 92 mm or about $31 / 2$ inches. It is mounted in the lid of the cabinet which can be either the top or bottom of the set, the two being interchangeable. This Is a handy feature as It overcomes the problem of the speaker firing into the floor of the car.

Transmitter starts off with a 12 MHz crystal oscillator and as is usual is phase modulated. The modulator is followed up with a tripler and two doublers, two amplifiers, a driver and power output stage, High SWR protection is taken from a pickup link at the output stage, fed to a silicone controlled rectifier which controls the supply voltage to the first tripler stage. I often wonder why some form of SWR indicator is not provided from this circuit. It might not be too difficult to incorporate. High/low power switching is arranged by reducing the voltage on the driver stage with a series resistor.

## THE MULTI-7 ON THE AIR

The channel selector was rather stiff in its action and this, combined with a round knob set on a fairly cramped front panel, did not encourage channel swapping. The priority channel, rather quaintly called "MY" channel was easily selected by pushing the buttons. This selected "MY" channel regardless of the position of the main channel selector. With "MY" channel selected the main dial light was extinguished. The meter is rather small and difficult to read at a distance but nonetheless effective. This discriminator position proved most useful when used with the "TUNE" control. Stations off-frequency on simplex channels could be put right on the nose.

Received audio quality was good, but not outstanding considering that the speaker was rather larger than is usually found in this type of transceiver. The transmit frequency was checked on each channel and was found to have been set within $\pm 150 \mathrm{~Hz}$. Stability was exceptional. Checked two weeks later after having been
put through all its tests, crystals were still spot on.

Deviation was set at 10 kHz as received from the distributor. Transmit quality was very smooth.

## THE MULTI-7 ON TEST

A series of tests were carried out to determine the performance. The transmitter power output was measured with 13.5 volts applied to the set. In the high power setting, 11 watts was indicated on the Horwood PM502 meter with 1.3 watts in the low setting. Current drain was 2.4 and 1.0 amps at the respective powers. Receive current drain was 275 mA with the set muted, 200 mA with "MY" channel selected (Dial light out), and 350 mA at normal listening level.
Receiver performance was checked next using a Marconi TF995 signal generator tuned to channel $40(146.0 \mathrm{MHz})$ and the following results were obtained. With the mute set to the just-on point a signal input of .3 uV opened the receiver. Quieting was 17 dB at .5 uV and 25 dB at 1.0 uV with a signal-to-noise ratio of 23 dB and 34 dB at the same two levels. We later discovered that the figures were better at 146.0 than at 146.5 MHz which indicated that the receiver was in fact peaked at a lower frequency. However, as the figures were actually better than the published specification, we did not attempt to repeak the front end. At a later date the receiver was repeaked with a very worthwhile increase in sensitivity. No figures were taken at this point. The signal strength meter was checked and the following calibration was recorded:


Receiver audio output was measured with steady 400 Hz tone. At the onset of audible distortion one watt was indicated. Although this is well down on the specified two watts, no doubt more power would be delivered on voice peaks. All the above figures were obtained with 7.5 kHz deviation on the signal generator.

The front panel "TUNE" control had a total range of 10 kHz with the centre point at the three o'clock point.

## INSTRUCTION MANUAL

Two manuals are supplied with the Multi-7 one of which appears to be fairly complete although it is written in Japanese. The second is written in rather odd Japanese English and contains basic operating Information but little more. There is a circuit and block diagram but no printed layouts. Alignment and maintenance do not even rate a mention.

## CONCLUSIONS

This little set is well built and attractive in appearance. It meets all the published specifications with the exception of audio output, however it would be wise to check the receiver front end alignment if you want all the performance you are paying for. With the number of channels included it represents very good value at the advertised price.

## Completely Solid-State Choice of

 40 or 80 METER MONOBANDERSDesigned and engineered for the ham on the move, single-band transceivers put the pleasure of mobile operation within the means of all amateur radio operators. Simple to install and operate, these compact units work directly off any standard 12 V DC automobile battery. No transmitter warm-up time or intricate tuning is required. An easy to see Transmit LED Indicator, on the S-meter face, lets you know when your signal is getting out. And, you've never heard better clarity or experienced better performance from such as small, yet handsome, rig.
Experienced hams appreciate the Monobander selectivity, which minimizes all QRM distrubances.

A subsidialy ar Cuaic Corgoration


MONOBANDER SPECIFICATIONS

MB-40A . . . . . . . 40 meters ( $7.0-7.3 \mathrm{MHz}$ ]
MB-80A . . . . . . 80 meters ( $3.5-4.0 \mathrm{MHz}$ )
Requirements ...13.5V DC (nominal) at 5 amps CW. average 1.5 amps SSB transmit and 0.4 amps receive.
I.F. Filter . . . . . . . Crystal lattice, 2.8 kHz bendwidth, 1.7 shape factor, ultimate rejection in excess of 100 dB .
Dimensions . . . . $3^{\prime \prime} \mathrm{H} \times 8.5^{\prime \prime} \mathrm{W} \times 9^{\prime \prime} \mathrm{D}$.
Weight . . . . . . . . . 6 lbs.

GENERAL
Frequency Range

Power Source

Modes of
Operation

## RECEIVER



# Commercial Kinks 

with Ron Fisher VK3OM

In May AR, I finished up on the subject of second hand amateur gear. This sparked off a thought that it might be a good idea to look over some of the older gear in this column from time to time. In doing so, I do not intend to give a full review of the particular piece, but more a general description of its electrical and physical characteristics, plus a photograph to aid in its identification. The whole idea is to help both buyers and sellers of second hand gear.

Perhaps there might be a piece of gear you are interested in. If so, let me know and it can be the subject of a future article. One point however, this does not apply to disposals gear. I regret that my knowledge of this type of equipment is limited.

## THE WRL GALAXY 300

The Galaxy 300 was one of the first of the popular priced three band transceivers sold in the United States during 1962/1963. It sold in competition with the Swan 240 and the National NC-3. The Galaxy was the largest in size of all of these and measured 15 inches wide, $131 / 2$ inches deep and 7 inches high. It also had the highest power rating at that time with 300 watts PEP input to a pair of 6HF5s in the final.


The circuit worked on the single conversion principle using a 9 MHz IF with possibly the best filter in the lower priced transceivers. Frequency coverage was limited to the American phone bands with the exception of 40 metres. Actual coverage was 3.8 to $4.0 \mathrm{MHz}, 7.05$ to 7.35 MHz , and 14.2 to 14.4 MHz . As with most transceivers of the time, VOX and crystal calibrator were optional extras. Dial drive was smooth with a two speed planetary and gear arrangement. The meter was switched for final cathode current or " S " meter. An unusual feature was the use of two separate VFOs. One was used for 20 and 80 metre coverage while the other was used for 40 metres. They were both combined into the one enclosure.

Not a great number of these transceivers found their way to Australia. Sideband Electronics did import a few second hand Galaxy 300s around the middle of 1965

Galaxy 300 transcelver with matching AC power supply and 2 kW linear. A 12 V DC supply was also avaliable.
and sold them for $£ 150$. I cannot remember ever seeing one advertised in the Hamads section of AR so there is no basis for a second hand value. However, because of their limited coverage, they would probably bring somewhat less than the other tri-banders. The units sold by Sideband Electronics were all converted to cover Australian band segments and I would think others would have been similarly converted. Matching Galaxy power supplies are unknown in this country, so of course you could expect to find a home built supply with them.

I do have circuits of these rigs available for any one interested at 40 c including postage. A full review of the Galaxy 300 was published in the December 1963 issue of CQ magazine. It was superseded by the well known Galaxy III and V models.

## Newc omers Notebook

with Rodney Champness VK3UG

44 Rathmullen Rd., Boronia, Vic., 3155

## MORSE CODE

From time to time much griping is heard about the morse code examinations. You hear one person say that it was too fast, another that it was too slow, another that the characters are sent too fast with too much gap, another that there is no spacing, another that the dots are too short and yet another that the dots and dashes are the same length. You would think that they were all sitting for separate exams under different examiners whereas they all sat for the one exam which was sent by one examiner.
The morse cannot be all these things at once!! It seems to me that perhaps various methods of mis-instruction of morse students are used. I would imagine that the examining authorities would have some standard which they send for examinations. I would rather think that morse could only be sent fairly if sent to the standard as set by the International Telecommunications Union. Check your morse study against the ITU standards before the August exam.
Now over to David Down with some information on aerials.

## PRACTICAL ANTENNA BASICS

This article represents the first "followup" to the earlier article in this column "LOW POWER DX". As mentioned therein, plenty of time and work should be spent on the antenna system. The dipole or vertical are excellent types of antennas with which to commence. They are simple to construct and erect, cheap to build, and so are Ideal "firsts" for the newcomer to amateur radio.

Many and varied are the references on the subject of antennas and, suffice to say here, a simple method of calculating the length of a practical half wave antenna is $468 / F(\mathrm{MHz})$ feet. At resonance the induced voltage will be maximum at the ends of the antenna (high impedance) while the current will be maximum at the centre.

## FEEDERS

Since the antenna should be located in the clear and generally as high as possible to produce maximum slgnal strength, it is necessary to use a feeder to connect the antenna to the receiver. Low impedance feeders may be flat twin (nominal 70-80 ohms), coaxial cable (nominal 50-80 ohms) or flat TV ribbon (nominal 240-300 ohms). High impedance feeders consist of two parallel wires spaced apart by insulators every 8-12 in. or so.

## HALF WAVE DIPOLE

Lengths of a half wave antenna in the various HF and broadcast bands are as follows:

| BROADCAST |  | AMATEUR |  |
| :---: | :---: | :---: | :---: |
| Band | Length | Band | Length |
| 11m | 18.2* | 160 m | $256{ }^{\prime}$ |
| 13m | 21'7* | 80 m | $128^{\circ}$ |
| 16 m | $26^{\prime}$ | 40 m | $66^{\circ}$ |
| 19m | $30 \cdot$ | 20m | $33^{\prime}$ |
| 25m | $39.4 *$ | 15m | $22^{\circ}$ |
| 31 m | $48^{\circ}$ | 10 m | 16. |
| 41 m | $65^{\circ}$ |  |  |
| 49m | $76^{\circ}$ |  |  |

As the impedance at the centre of a half wave antenna is approximately 70 ohms, either flat twin or coaxial cable will provide a good impedance match to the antenna ensuring maximum signal transfer. The antenna length calculated from the formula given above, is cut at the centre and an insulator inserted, the wires of the feeder being connected to either side of the insulator. When connecting the feeder to the antenna at the insulator. it is good practice to loop the feeder over the insulator in an inverted " $U$ " style to prevent rain and dirt from settling in the feeder. Coaxial feeder ends can be sealed for the same reason by means of plastic tape or mastic waterproof compounds.

## FOLDED DIPOLE

If you prefer, you may feed a dipole with 300 ohm TV ribbon, but to ensure the best feeder-antenna match it is necessary to form the antenna as shown in Flg 1. This configuration will transform the input impedance by a factor of 22 or $4 \times 70=$ 280 ohms.
If a three-fold dipole is used, the input impedance will be $70 \times 3^{2}=630$ ohms,

which will provide a good match to an open line feeder as shown in Fig 2.

When constructing a folded dipole using 300 ohm feeder and antenna ribbon, one conductor only of the antenna is cut at the centre, and the feeder inserted and the joints soldered. The junction is then clamped between pieces of insulating material and properly waterproofed. When the 300 ohm ribbon is cut for the half wave antenna length, bare back about $1 / 2 \mathrm{in}$. of the plastic insulation on each of the four conductors, then short each end to complete the folded dipole loop.

## MULTIBAND DIPOLE

If dipoles are required for optimum performance on several frequency bands they
can be connected in parallel at their centres and fed with a common feeder, thus providing multiband facilities in a minimum of space. The ends of the dipoles may be tied off to any convenient supports and the dipoles need not all be in the same plane. Note that a dipole cut for, say, the 40 m amateur band, will be three half waves on the 15 m amateur band, thus eliminating the need for a separate antenna for that band. See Fig 3.

## VERTICAL ANTENNAS

Also known as "whips" and these come in a variety of forms, many being ex-Government and very cheap. They can be telescopic, lengths of rod which screw into each other, or several tubular sections with a single wire running through them which holds the sections rigid when tightened. In certain locations a whip antenna is about the only practical type, since it can simply be mounted outside a window, as shown in Fig 4. The whip should be as long as possible, but very tall ones present mounting problems due to wind pressure. Generally a whip antenna will be nonresonant on the HF bands and should, ideally, be connected to an Antenna Tuning Unit. If not, it may be connected to the aerial terminal directly or via a variable capacitor.

## DIRECTIVITY

Signal pick-up of a half wave antenna is maximum at right angles to the line of the wire and this factor should be taken into account when deciding where to site the antenna. Antennas longer than this tend to have their directivity reduced but improve all-round coverage.

In the next article in this series, the construction and use of an Antenna Tuning Unit suitable for use with the various types of wire antennas will be discussed.

## Trade <br> Revieu

Spectrum International market a range of equipment for the amateur radio market. Readers of AR will be aware of some of the HF crystal filters offered by this company. We have been fortunate in obtaining a filter from their range for evaluation.

The filter supplied was the XF-9E, a $9 \mathrm{MHz}, 12 \mathrm{kHz}$ wide, filter designed for FM receiving applications. This filter would suit owners of transceivers with a 9 MHz filter who would like to receive FM, or reasonable quality $A M$.

A passive matching circuit was connected to the filter prior to test. This provided a 50 ohm load/source for the test equipment and a $1200 \mathrm{ohm}, 30 \mathrm{pf}$ load/ source for the filter. This network unfortunately had a 34 dB loss, which when combined with the filter's ultimate rejection of more than 90 dB , meant that the test equipment should have a dynamic range of 124 dB .

In fact, the test equipment available
worked satisfactorily over 115 dB only, and so the ultimate rejection could not be measured. Considerable care was taken to shield the input from the output. The filter was tested In a diecast box and additional shielding was fitted around the input and output circuitry. To obtain the specified performance from the filter in normal use, one would need to exercise similar care. The filter will not give 90 dB attenuation if stray leakage is only 60 dB down! It is also most important to ensure that the filter bottom plate is solidly grounded.
The input and output transformers are built into the filter and the only adjustment required involves adjusting the 30 pf input and output trimmers so as to obtain minimum bandpass ripple.

The bandpass characteristics were obtained using a signal generator, a vector voltmeter and a preamplifier. A later test using a spectrum analyser system confirmed the test results, which are shown in the table.
The performance of the filter is excellent as can be seen from the figures. When mounted on a PCB it is $3 / 4^{\prime \prime}$ high and requires an area $1-3 / 64$ th in. by $1-27 / 64$ th in. This represents quite a lot of performance in a small volume. The bandpass ripple figures of SI filters are always impressive and this unit was no exception.
The unit was delivered within a few days of the request reaching the USA. SI claim this incredibly quick service is quite normal. Allowing for mail delays in VK you should be able to get delivery of goods from SI in less than 10 days.

The filter was well packed in expanded foam and obviously was not affected by its journey.

In summary, an excellent filter at a reasonable price.

| S.I. XF-9E FM 8 Papameter | Whz FILTER Specified | Measured |
| :---: | :---: | :---: |
| -6 dB Bandwidth | 12 kHz | 12.3 kHz |
| Pass Band Ripple | less than 2 dB | 1.2 dB |
| Insertion loss | less than 3dB | 2.6 dB approx. |
| Shape Factor | (6:60 dB) 1.8 | (6:60 dB) 1.6 |
|  | (6:80 dB) 2.3 | (6:80 dB) 2.2 |
|  |  | VK3AFW |

## Book <br> Review

"SPECIALIBED COMMUNICATIONS TECHNIQUES FOR THE RADIO AMATEUA"
Published by the ARRL. 208 pages.
As the litie implies this recent ARRL book deals with some of the more esoterlc emateur radio practices. The subjects covered in chapter form include amateur television, both fast and slow scan, space communication via satellites and moonbounce, radioteletype and racsimlle. A further chapter is devoted to lasers, and varlous pulse and digital communication modes.
In general. the book follows the usual ARRL lormal of background material supplemented by construction articles reprinted from OST. The amount and quality of the reference materlal varies from chapter to chapter but is genarally of a high standard. In particular the RTTY and space communication gections are very well covgred. The material on the reception of weather satellite pictures in the facsimile chapter, whilat somewhat dated in choice of circuits, is also good. Thirteen pages of concise background data on moonbounce is provided and the Oscar satellite coverage ls excellent.

My sole criticism of this book would be of the editor's choice of some of the circuits. I would doubt, for example, whether an amateur with the technical abllity to build a Vidicon camera would choose, in 1975, a valve clicult. Notwithstanding. the book would be excellent value, in my oplnion, if bought for the reference value alone. I would recommend it to anyone interested in one or more of the subjects covered.

VK3ZDH

## VHF UHF an expanding world

with Eric Jamieson VK5LP Forreston. S.A.. 5233
Times: GMT

AMATEUR BAND EEACONS
VKOMA. Mawson
53.100
53.200

VKOGR Casay
144.475

VK1RTA, Canberra
VK2WI. Sydney
VK2WI, Sydney
VK3RTG, Vermont
VK4RTL, Townsville
VKAWI/1, Mt. Mowbullan
VK5VF, Mt. Lofty
VK5VF, M:. Lofty
VK6RTV. Perth
VK6RTU, Kalgoorlle
VK6RTW, Albany
VK6RTW, Abany
VK6RTV. Perth
VK7RTX, Devonport
P29GA, Lae, Niugini
3DAA, Suva. Fiji
44.010
144.700
52.600
144.400
53.000
144.800
52.300
52.350
52.950
144.500
145.000
144.900
52.150
52.500

Last month, and again this month, the ZL 2 metre beacons have been omitted from the listings. At this time of the year the llkelihood of them being heard In VK Is rather remote; they will return to the list when the warmer weather arrives. Long distance 6 metre beacons are still included as these can pop up any time especially as nowadays there does seem to be an increase in distance contacts in the middle of winter. Still no news of the Darwin beacon, someone may advlse the sltuation soon.
Activity in general has been very slack this month, about the oniy worthwhile activity being an opening to VK2 from VKS at 0800 to 10002 on 29.5.75.

Don VK3AKN writes that Steve VK3ZAZ on 5.5.75 heard 3D2AZ at $0945 Z$ and worked the same station af 10502 via Oscar 6 or 7. Steve again worked 3D2AZ on 13.5 at 0949Z, sent $5 \times 7$, received $5 \times 5$. He has now worked 5 countries including two DU stations in the Philippines, DU1 JMG and DU1POL. Also included are P29GA and VKOGM. Sleve has now recelved his OSL for the OSO with VK2BKE on Lord Howe Island on 6 metres, and on 2 metres is hoping for a VKa to show up to complete Worked-All-States on 144 MHz . A lot of others are waiting too, and if present Indications of activily in Allce Springs, the logical p'ace from which to orlginate such a slgnal, are any gulde, you may all be walting for quite a while yell

## FM ACTIVITY

Well, it happened. In the May Issue I sluck my neck out with a comment on the use of repeaters higher than Channel 4, asking for contirmations etc. I got one A letter came from Don VK3AKN, and I do not think Don would mind it being printed. It reads: "I am sorry you don't approve of repeaters outside Channels 1 to 4 . We, In the Western Zone WIA Vic. Division are planning to put Mt. William repeater on Ch. 7.
"We are quite clear about our aim in establishing this repeater and we have tound we can not achieve this fully on any of the four common. channels nor indeed on channels 5 or 6 . Please give us the credit for knowing what we are doing since we feel that our repeater sub-committee are as well qualified as any others in capital cites or elsewhere.
"While we are always happy to welcome visitors and travellers, this repeater was not primarlly established for them. It is very active with local traffic, and consequently DX signals cause quite a
lot of interference when openings come about. I am atraid though, if you wish to spaak with us. you will have to speak our language. 73. Don."

I suppose the on:y comment I can make is that one is never too o.d to learnl it just comes rather as a surprise to me to find that DX on VHF, and at 146 MHz at that, worries people to the extent that frequency changes for the troops are necessary. Nevertheless, I do acknowledge that if the Western VK3 boys do need something akin to a private channal then that is their right and privllege, I wish them well.

George VK3aSV, the Publicity Officer for the Victorlan State Repeater Commlttee, has sent along his latest llst of Australian repeaters. It is a formidab:e list totalling 39 stations, Including those presently operating and those projected. According to this list, those operating, of projected, outside Channe:s 1 to 4 are Tamworth VK2RAB on Ch. 6; Gosford VK2RAG on 5; Blue Mountains area on 7: Wollongong VK2AMW on 6; Wagga on 5; Ballarat VK3RBA on 5; Mt. Macedon VK3RMM 6 or 7; MI. William VK3RWZ on 7 ; on a very close study of George's latest listing, which is more comprehensive than earlier, I would have to acknowledge that the two heavier populated States, VK2 and 3, have a case for extending beyond Channels 1 to 4 especially when considering a mutual interference situation due to repeaters on similar trequencies being within operating range. The DX boys will Just have to reduce power.

## ARE YOU HOME?

Quote from OST March $1975{ }^{\prime \prime}$. . . a ham in Akrom (rather carelessly) announced his location at one of the large mall parking lots and that he would be back on the repeater atter some shopplng. Some thieves did some shopping in his absence. taking all ham equipment and the stereo tape deck. A word to the wise . . ." There's a moral In stories like that; repeaters can be useful, in more ways than you might think.

News is pretty scarce this month, so the notes end here.

Thought for the month: "Crowding a llite does not always enrich It'.

The Voice in the Hills.

## WORKED ALL INDIAN OCEAN AWARD

Instituted by CHC Chapter 66, Australia

## 1. OBJECT OF THE AWARD

The object of the Award is to foster an interest by Australian and Overseas radio amateurs in making two-way radio contacts with fellow amateurs In countries bordering on, and islands within, the Indian Ocean.

## 2. INDIAN OCEAN BOUNDARIES

For the purpose of this award the following specifies
the accepted boundaries of the Indian Ocean:
(a) From Cape Leeuwin (Western Australia) to the intersection of lalitude $48^{\circ}-20^{\circ}$ Sth and Longitude $60^{\circ} \mathrm{E}$, thence along Letitude $48^{\circ}-20^{\prime}$ Sth in a westerly direction 10 lis intersection with Longitude $20^{\circ} \mathrm{E}$.
(b) Northwards Longitude $20^{\circ} \mathrm{E}$ to Cape Agulhas (South Africa), along the East Coast of Africa to the Gulf of Aden, and across the Gulf of Aden via Perim Island to Aden.
(c) Along the coast of South Yemen, Muscat and Oman to Trucial Oman to the Gulf of Oman and across the Straight of Ormuz from Kalhat to Bander-Abbas (Iran).
(d) Along the coast of Iran, the entire coast of India. West and East Pakistan and Burma, the West cosst of Thalland and Malaya, down to, and Including, the Island of Singapore.
(e) A lline Joining Singapore to the North-eastern tip of Timor. This line passes through the Southern cosst of Borneo and cuts through Celebes at, approximately. Macassar.
(f) From the North-eastern tio of Portuguese Timor to the point where the Eastern boundary line of Western Australia (Longitude 1290 East) meets the coast between Cambridge Gull and the mouth of the Victoria River.
(a) Thence along the coast of Western Australla to the starting point at Cape Leeuwin.

## ง. OSO REQUIREMENT8

Applicants will be required to establish two-way radio contact, by any mode and/or band/s. with one station in ten (10) of the twelve (12) countrles.
or groups of countries, plus one contact in live (5) of the islands listed In paragraph 4 below, a total of fifteen (15) contacts.
4. COUNTRY, OR GROUP OF COUNTRIES
(a) Western Australla - VK6.
(b) Indonesia - including Borneo and Celebes (Sarawak and Sabah are excluded).
(c) Singapore.
(d) Malayan Peninsula - 8M2.
(e) Burma or Thailand.
(t) India.
(g) East Pakistan or Caylon
(h) West Pakistan or Iran.
(i) Muscat and Oman, Trucial Oman, or South Yemen.
(I) French Somalliand, Somali Republic. Kenya, or Tanzania.
(k) Mozamblaue or Malagasy Republic.
(I) South Alrica $251,2,4,5$ and 6.

Note: Lesothe - 7P8, and Swaziland - 2D5, both being "land-locked" are not acceptable for purposes of this award.
The following are the acceptable islands:
Christmas Island VK9. Andaman Islands VU5. Laccadive Islands VU4 or VU5, DX-pedition, Socotra Island VSS. Seychelles VA9, Algelega Island 3B6, Comoro Island FB8, Rodriguez Island 3B9, Reunion Island FR7. Juan de Nova FR7. TImor CR8 YB 8F, New Amsterdam Island FB8, Cocos Islands VK9, Nicobar Islands VUS, Maldive Island 8QA, Chagos Archipalago VQ9, Gloriosa Island FR7, St. Brandon Igland 387. Mauritlus 3B8, Zanzlbar VQ1. Prince Edward and Marlon Islands ZS2. Crozet Islands FB8, St. Pauls Island FB8, Tromelin Island FB8.
Any other Islands within the Indian Ocean boundaries specified in para 2 above, and officlally accepted by the Wireless Institute of Australia and the ARRL.

Note particularly that Heard Island and the Kerguelen Islands are in the Southern Ocean nol the Indian Ocean.

## 6. APPLICATIONS FOR THE AWARD

(a) The award is available to any radlo amateur who submits proot of having made iwo-way contact with the required number of countries and islands as laid down in paragraph 3, and within the Indian Ocean boundaries as spacified in paragraph 2.
(b) All conlacts must be confirmed by OSL. Open to all SWL.
(c) QSL cards need not be forwarded with applications for the award, but may be sent should the applicant so desire.
(d) If QSL cards are sent with application it is recommended that they be sent by registered post, with sufficient remittance for return by the same means.
(e) Applications which are not accompanied by OSL cards must contain an endorsement from either one CHC Member, of two licensed emateurs, cerlifying that the requlred QSL cards have been sighted
(1) An operator engaged on a DX-pedition may claim the country or Island concerned towards the award.
(g) Contacts made since the end of World War II are ellgible.
(h) In general all CHC Rules are applicable.
(i) Applications for the WIO Award, accompanled by OSL cards, or certification/s, plus tees prescribed in paregraph 6 below, should be forwarded to:
VK3APU, J. C. Gutcher,
17 Foulds Court.
Montrose, Victoria. Australia 3765.
6. FEES
(a) By Surlace Mail - 50c or 4 IRCs
(b) By Air Mail - $\$ 1.00$.

## Letters to the Editor

Any opinion expressed under this heading is the individual opinion of the writer and
does not necessartly coincide with that of the. Publishers

## The Editor.

Dear Sir,
The following is a list of radio amateur stations whose moon echoes were heard by WAGLET af the SRI 150' dish during the February 22-23, 1875 moonbounce tests. Two-way CW communications was completed with all except those marked with ) (, who were only heard, or had incomplete exchange of Information. Those stations marked with

## BOOKS OF INTEREST FOR AMATEUR OPERATORS

SLOW SCAN TELEVISION HANDBOOK — Miller. ..... $\$ 7.10$
FET, PRINCIPLES, EXPERIMENTS and PROJECTS - Noll ..... 6.35
VHF HANDBOOK FOR RADIO AMATEURS - Orr ..... 8.50
SELECTING and IMPROVING YOUR HI-FI SYSTEM - Swearer ..... 5 .35
PIN-POINT TRANSISTOR TROUBLES IN 12 MINUTES - Garner Jr. ..... 9.65
FIELD EFFECT TRANSISTORS - Philips ..... 3.45
the amateur radio vertical antenna handbiook - Lee ..... 7.10
SPECIALIZED COMMUNICATIONS TECHNIQUES FOR THE RADIO AMATEUR - AMR.R.L. ..... 4.50
TEST EQUIPMENT FOR THE RADIO AMATEUR - Gibson. ..... 6.65
bASIC ELECTRONICS - An Electronics Aust. Publ. ..... 3.00

Postages: LOCAL 50c INTERSTATE 85c

## McGILI'S AUTHORISED NEWSAGENCY

Established 1860
"The G.P.O. is opposite"

187-193 ELIZABETH STREET, MELBOURNE, VIC., 3000
Phones 60-1475-6-7

## $\Rightarrow$ FERGUSON E <br> Manufacturers of: Electrical / electronic equipment, wound components and lighting control equipment. <br> BRANCHES IN ALL STATES

## BRIGHT STAR CRYSTALS

Ferguson Transformers Pty Ltd.

Head Office
331 High Street. Chatswoüd NSW 2067
PO Box 301 Chatswood.
NSW. Australia 2067
Phone: 02-407-0261

PROMPT DELIVERY GUARANTEED
ALL TYPES OF MOUNTINGS
Such as HC6/U (style D) . . . HC18/U (style J) . . . HC25/U (style K) etc. . . Frequency range up to 140 MHz on 5 th overtone.


- ACCURACY
- STABILITY
- ACTIVITY
- OUTPUT


## BRIGHT STAR CRYSTALS PTY. LTD.

35 EILEEN ROAD. CLAYTON, VIC., 3168. Phone: 546-5076 (Area Code 03).
INTERSTATE CLIENTS: Contact your Local Agent
Our increased production now enables us to offer Special Discounts from 10\% Let us quote you for all your Crystal requirements.
Our easy-to-read Price List is now available.
Sydney: PARIS RADIO ELECTRONICS, 7a Burton Street, Darlinghurst, N.S.W. 2010, Phone: 31-3273.
Perth: W. J. MONCRIEFF PTY. LTD., 176 Wittenoon Street. East Perth., 6000, Phone: 25-5722.
Brisbane: FRED HOE \& SONS PTY. LTD., 246 Evans Road, Salisbury North. 4107, Phone: 47-4311
Adelaide: RQGERS ELECTRONICS, P.O. Box 3, Modbury North. S. A. 5092. Phone: 264-3296.
\& had multiple contacte, and those marked with S had two-way SSB contacts.

| K1HTV-Conn | 144 MHz (11 | hours) |  |
| :---: | :---: | :---: | :---: |
|  |  | W7FN-Wash |  |
| K1WHS-Maine | \$ 8 | K7HTZ/7-Wash | 8 |
| WiYTN-Malne |  | WA7KYZ-Wash | \$8 |
| W2AZL-NJ | )( | W7RUC-Ariz | $)$ |
| WA2BIT-NY | \$8 | K8III-Ohio | S |
| WB2CIK-NY |  | K9UYK-III |  |
| K2RTH-NY | \$8 | KgUIF-Ind |  |
| K3NYD-? | $)$ | KOWLU-SDak | 8 |
| K3PGP-Pa | 8 | VE2DFO-Que | s8 |
| WA3OVN-Md | 8 | VE3ONT-Ont |  |
| W3TMZ-Md |  | DK1KO |  |
| KAGL-SC |  | DL3YBA |  |
| W50RH-Okla |  | DLOWW | ) |
| WA5UNL-Okla |  | F6CER |  |
| K5VWW-Tex |  | F8S0 |  |
| WAGUAM-Cal | 8 | F9FT |  |
| K6DYD-Cal |  | F9Qw |  |
| K6OEH-Cal |  | PAOJMV |  |
| W6RDF-Cal |  | Sm7BAE |  |
| WA7BBM-Arlz |  | ZE1DX |  |
|  | $492 \mathrm{MHz}(2$ | hours) |  |
| W1SL-Conn |  | K8UQA-Ohlo |  |
| WIJAA-Mass |  | W9WCD-III |  |
| K8AQP / - Mase |  | KOTLM-MO | )( |
| K2UYH-NY | \$8 | PAOSSB |  |
| W2SZ/2-NY | )( | ONSFF | ) |
| W3CCX-Pa |  | SM5LE | )( |
| W42XI-Fla |  | ZE5JJ |  |

53 EME QSOs were made with 36 different stations In 14 states and 6 foreign countries on 144 MHz , bringing our total to 25 states and 8 countries (Including USA). Eleven EME CSOs were made with 10 different stations in 7 states and 2 foreign countiles on 432 MHz . Three varlable power transmitting tests were conducted. Equipmental difficulties allowed only two hours of transmitting time on 432 MHz . It is hoped that these will be corrected, a standby transmitter will be obtalned, and the 432 MHz EME teats can be repeated by next tall.

Victor R. Frank
The Editor.
Amateur Radio
Dear SIr.
For iwo years I studied a WIA Radlo Courae and finally took the plunge sitting for the examination on 18 Fabruary 1975.
I have, 13 weeks later, still not given up hope that one day the PMG wlll mark it. A triend of mine in Australia has not received his either, so I doubt that it is because I am residing in PNG.

Perhaps there is a very good reason for the delay, although one escapes me. If it took approx 7 weeks to obiain resul!s for a one page Morse Exam then, in proportion, I guess that I have a long walt for a 13 page Theory Paper.

Yours falthfully,
J. T. Connel, P.O. Box 718, Madang.

40 Hardwicke St., Balwyn, 3103
The Editor,
Amateur Radio
Dear SIr,
The morse sessions iransmitted nightly through VK2BWI have for many years provided excellent practice and their usefulness will be even more widespread with the introduction of the novice licence.

It appears that some amateurs are not aware of this service, as severe ORM is becoming increasing'y frequent from both CW and SSB operators In the Melbourne area.
I am sure that many Intending examinees would appreciale 3550 kHz being kept clear for approximately one hour from 0930 GMT.

Yours sincerely.
Rlchard Gosiln, L30598

## 20 Years Ago

with Ron Fisher VK3OM

## JULY 1955

The Australian Amateur Radio call book celebrates its first birthday. The Editorlal page of July Amateur Radio of 1955 looked at its success and future possibilities. The call book was published each year in those days. The 1955 edition ran to 140
pages with only about 35 call signs to a page. Raiher spread out in comparison to our current editions.

The VHF page reported a couple of tirats. VK2WH at Forbes worked Into Melbourne on 144 MHz , while VK3ATN at Birchip made the first VK3 to Adelaide contact on the same band. The gear at VK2WH was typlcal of the day and consisted of 6AKS 6J6 6AK5 converter in a cascode set up to a BC348 recelver as a tuneable IF. Transmitter ran 95 watts input to a $6 / 40$ and a 32 element phased array antenna. SCR522 transmitters were also a popular means of RF generation around that time.

The DX activity page Included a name for the first time that was to become famous over the next few years. Danny Well of "Yasme" tame. Yasme was of course his first Yacht and used to transport Danny and his many famous call slgns on a world wide Dxpeditlon.
Results of the Ross Huli VHF contest for 1954/55 announced the trophy winner as $R$. Greenwood VK4NG. Top scores in other states were VK2ABC. VK3ZL, VK5MK and VK7ZL with no entries from VK6.

Technical articles in the July 1955 issue of Amateur Radio included: Part two of Wideband Audio Phase Shift Networks by N. Southwell VK2ZF. Modification of MN26 Receivers by Syd Clark VK3ASC. Syd showed how the -MN26 could be adapted to a car radio or a high performance broadcast recelver for home use.
An Antenna for the SWL. Norman Burton clalmed his almple wire antenna gave 4 to 6 " S " points gain over a long wire.

An Accurate Electronlc Timer. VK3 assoclate member R. Barnett described a timer suitable for photographic work.

## Magazine Index <br> With Syd Clark. VK3ASC

Every now and again we have a light load of magazines for review; probably due to uncertaintles of mail arfivals etc. This is such a month, so 1 have been able to include mention of the British magazine catering to Amateur TV enthusiasts.
CQ-TV Fabruary 1975 No. 89
A Noval Use for a Varicap Tuner; More Facts on Fax: An Image Orticon Camera: Circuit Notebook No. 20 and news of ATV dolngs.

## QREAK-IN March 1975

Crystal Control Operallon with the FT101: Another Linear Amplifier: Otago Branch Contest - Recelver Section.
OST March 1975
Using the Double Balanced Mixer In VHF Converters: ARP Shakedown Caymanian Style; A State of the Art QRP Transcelver for 50 MHz ; SSTV to Fast Scan Converter Pt. 1; An Up Converter for Oscar Reception: Emergency Electrical Energy via ManPower.
RADIO COMMUNICATION February 1875
VHF Meteor Scatter Propagation; An 80 m DC Recelver for the Novice; Control of Aerlal Polarisation: Speech Cllpper for the Microwave Modules A3 Tranamitter: Bullding Blocks for the Novice; A Strange Case of Malns Interference; Modifications to a Stolle Memomatic Rotator.

## 73 MAGAZINE January 1875

Using the W.U. Desk Fax: How to find the Satellite: RTTY Secrets; The 432 Recelver: The AN/ GRA-5 Receiver: TTL as a Decoder Mode; SimplifyIng Satellite DXIng: Blow a Bundle on TTLs; The R-511, A Real Surplus Bargain; How not to be a Loser: The Versatile Transistor Checker; SSTV Video Analysis; An All-Band Recelvar to Bulld: Keep Amateur Radio a Secret.

## Intruder Watch

with Alf Chandler VK3LC
1536 High Sireat. Glen Iris, 3146

## JULY, 1978

As I shall be overseas for some months this will be my last report untll my return, and intruder observationa should be forwarded to lvor, VK3XB untll further notice.

A precis of the latest summary may be of inlerest to Mambers -
21030 A3 Radio Paking announced.
21249 A1 GVYR calling JOU.
14015.5 A1 WLG calling PEPE.

14016 A1 HBKL calling MVCP.
14021 to
14041
OEBL calling CBFN. This station has been calling and passing traflic every day now at varlous times and frequencles.
14080 A1 LPU calling AOX with propegande re Vletnam.
14084 A1 HZV Broadcast of news re Vietnam.
14143.5 A1 MH22 calling CQ.

14150 A3J Fishing boats off Queensland coast. presumably Taiwanese. (Strong recommendation for complaint put in to PMG.)
14298 F1 HMA22 RTTY with read-out submitted. 14300 F1 HMAS ditto
7000 A2 Jammer with CO superimposed.
7002 A3 Broadcast In Cantonese.
7015 A3 Penang Radio, Malayslan language.
7120 F1 "QRA de HMK22/HMF12 freq 10580/ 7120 kc KCNA Pyong Yang" (Our old friend moved from 7015).
3504 A1 JF32 calling SBLQ.
3518 F1 RDW2 calling RIX52.
3522 A1 DQB11 "TBO de DQB11".
These are only a lew of the reported stations for which I am always grateful, but keep them coming.
Several broadcast slations In the 3.5 MHz band have also been reported, and fonwarded to our Authorities.

## Awards Column

with BRIAN AUSTIN VKSCA
PO Box 7A. Cralers. SA. SIS2

WORKED ALL BRITAIN SERIES

1. The awards are available to licensed amateurs and shortwave llateners (on a "heard" basis).
2. Contacts on and after 1at January 1948 are valld.
3. QSL cards must be in the possession of applicants if the claimed contacts were before 1st January 1971 otherwise log entries are sufficient.
4. Do not send QSL cards. A special book, containing application forms (see below) is avallable from the Awards Manager. The special application form is mandatory. The cost of the book is 65p or $\$ 2$.
5. The award is issued to the operator and not to the callalgn. Where an operator has been operating a club station the contact is to the credit of both the operator and the club.
6. The tee for the award is $\$ 1.50$. 40 p or 10 IRCs. International Money Orders may be used for payment but not cheques on non-UK banks. Cheques should be made out to "The WAB Award Account'. Seals are available for a larga addressed envelope and 1 IRC.
7. The address for application is

> Roy Kirk, G3ULH,

11 Essex Ave
KIngswinford
Eriarley HIII
Stafls. U.K.
The Unlted Kingdom la divided into 10 km squares (National Grid) and each square has a reference of two letters and two figures (SP99 TX34 etc.) The book. see above, contains all the grid reterences with the names of the towns etc. within the square, arranged by counties. It also contains a Ilst of Islands etc. around the coast of the United Kingdom - an essential part of the award.

All contacts on and after 1.1.1946 count. Howover from 1.1.1975 only contacts on and after 1.1.1970 will be valid.

The book also contains detalls of other WAB awards. All profits from the sale of the book are donated to the RAIBC and donations above the cost of the book are always appreciated.
Requilrements:
Basic Award - 300 aress with at least 30 counties and one each of GC, GI, GM and GW.
Bronze Award - 500 areas with at least 45 counties and any 3 UK islands.
Silver Award - 750 areas with at least 65 counties with any 4 UK Iglands.

Gold Award - 1,000 areas with at least 80 countles and any 5 UK islands.
Diamond Award - Details of this award are in the WAB book and is not contined to working WAB areas.

WORKED ZAMBIA AWARD
The award is avallable to licensed amateurs and shortwave listeners (on a "heard" basis).
2. Contacts with 9J2 and other prefixes In Zambla are valid.
3. Do not send OSL cards. A list, giving full detalle of the contacts shou'd be certified by the Awards Manager of a National Society.
4. Separate classes of the award are available all CW. a!l AM. $2 \times$ SSB and mlxed modes.
5. The fee for the award is $\$ 1$ or 7 IRCs
6. The address for application is: Awards Managêt. RSZ.
Post Box 332.
Kitwe
Zambia.
Rulas:
Each 9J2 station counts as one point on 7. 14, 21 $\& 28 \mathrm{MHz}$. Each 9J2 station counts as two points on 1.8 and 3.5 MHz . Other prefixes count double points. The same station may be worked on different bands.
Requirements:
Stations in CO Zones 36, 37 and $38-20$ points: all other stations - 10 points.

## Key Section <br> with Deane Blackman VK3TX <br> Box 382. Clayton. Vic. 3168

The President's Cup for 1974 has been won by VK3ANU. By the time you read these notes I hope it will have been engraved and be gracing Drew's mantlepiece.

The Cup is an actual cup. first awarded to the Kay Section by the Federal Prealdent in 1931 and revived in 1973. It is now awarded to the Australian amaceur who scores the greatest aggregate in the four VK contes!s for any year. The scores published in Amateur Radio are weighted because it is easier to score in some contests than others. The weighting lactors are 100 tor the Ross Hull, 80 for the National Field Day, 40 for the Remembrance Day. and 1 for the VK/ZL. These factors were based on aclual results in these contests from 1965 to 1972. You do not have to be a member of the Key Section, nor apply in order to win - just be in the contests
As it is quite some time since any details of the Section appeared in this column perhaps I might, quietly, explain things again. The Section was set up by the Institute in 1972 to promote CW and the interests of CW operators. Membership is not restricted 10 WIA members. As Federal Manager I have a sort of secretarial function, and control at divisional level is through divisional co-ordina-ors. The present divislonal co-ordinators are VK1DC VK2YB, VK3XB. VK4RF, VK6WT and VK7RH. There is presently no VKS co-ordinator. If you have any quastions about, or ideas for, the Section please wrile to me.
Congratulations to VK2SG, who topped the VK scores in the CW section of the VK/ZL contest, and to VK2YB, who won the 6-hour section of the NFD. As 1 will have no entry in August AR, let me anticipate by wishing you now an enjoyable contest.

## Try This <br> with Ron Cook VK3AFW and Bill Rice VK3ABP

## CONVERT YOUR FT200 TO 11 METRES

 (26.96 MHz-27.23 MHz)If you have looked at your station licence you will realise 11 metres is available to amateurs, that is full, and (in due course) novice, licencees.

Because most rigs do not include coverage of this band, usage is minimal. Or is
it? Those able to listen on 11 will know of the many Pirates who are having a ball up there. On our band!

If you have an FT200 and half an hour to spare, you can increase the versatility of your rig by adding 11 metre coverage.

Open the cabinet and with the front panel facing you, you will notice on the right front side a row of crystal positions. As supplied, only one of these positions will be occupied unless you have requested, or have added yourself, extra coverage of 10 metres.

The conversion to 11 metres is very simple.
Step 1 Locate the 42.5 MHz crystal position and solder in a 41.5 MHz crystal.* Step 2 Move your band change switch to the 28 MHz position and set the black tuning dial to 500 . This will co-Incide with 27.5 MHz. Activate the internal calibrator and adjust the dial until a beat note is heard. (A stronger signal will result if the antenna is removed).
Step 3 Set the grid control to the fifth stop position and then up-end the set so that you are able to observe the S meter whilst adjusting the slugs in the relevant coils. Peak L3, L8, and L13 in that sequence for the greatest meter reading.

Yqu should now be on 11 metres. If your receiver is a bit deaf, you might consider replacing the first RF tube with a 6EW6.
*41.5 MH2 crystal, HC18U holder. Fundamental operation. Parallel mode, 20 pF load. Tolerance $.005 \%$.

## Steve Bushell VK3BHK

# Contests <br> with JIm Payne, VK3AZT <br> Federal Contest Manager, <br> Box 67. East Melbourne, Vic., 3002 

## CONTEST CALENDAR

| July | 5-6 | Venezuelan Phone |
| :--- | ---: | :--- |
|  | $5-6$ | OL aRP CW |
|  | $12-13$ | ARRL "Open". CD CW |
|  | $19-20$ | ARRL "Open" CD Phone |
|  | $19-20$ | Colombian CW \& Phone |
| Aug | $9-10$ | European CW |
|  | $16-17$ | Remembrance Day |
|  | $23-24$ | All Asian CW |
| REMEMBRANCE DAY CONTE8T |  |  |

## REMEMBRANCE DAY CONTEBT

Variations In the rules have been designed to allow more contacts to be made, particularly during the usually quieter perlods. There are lots of alternatives, and more suggestlons to help the FCM come up with the ullimate in rules and scoring will be vary welcome. In the US a new Area Code Contest will be held on Independence Day and Thanksgiving Weekend. The first of these ls on 5/6 July. Telephone area code numbers, of which there are more than 120 in US and Canada, are Included in the RST report. Each QSO is to count as 2 points and the multiplier la the number of different area codes worked.
A Space net VHF contest on July 19/20 requires the zipcode (postcode) to follow the RST report and for scoring, the last 2 digits of every zipcode are added. Sum of these digits la your final score, no multiplier.

As It appears likely that the number of amateur stations In Ausiralla may almost double as a result of Novice licensing there should be much more intra-call area activity on the novice bands for the 1976 RD. Just in case some scoping scheme incorporating the postcodes does materlalise, some con'estants may wish to keep their new call books up to date as this shows postcodes for each QTH. VENEZUELAN CONTEST
Starts 0000. Sat July 5th for 24 hours. No Indica-
tlon on detall sheet whether this is local or GMT Phone only on 10 through 80 . Exchange RS and 3 figures starting 001. Scoring ls 1 point per QSO (world wide) and 2 points each Y . Contacts in same country no value. Multipller is 1 for each country, YV and US call areas worked on each band. Final score la total OSO polnts times the sum of multiplier on each band. In addition to awards, certificates are issued to VK stations who work 5 YVs and stations In 5 other countries and who aend $\$ 1$ or equivalent IRCs for return of what Frank WiWY describes as "one of the most attractive certificates I have seen". Entries to be postmarked not later than Sept 15 to Radio Club Venezolano, PO Box 2285, Caraces 101, Venezuela. DL QRP CW CONTEST
1800 GMT July 5th to 1500 GMT July 6th. Limited 1010 watts Input and CW only. Limit operation to 15 hours. Contacts $1.8-28 \mathrm{MHz}$. Scoring is complex. COLOMBIAN CONTEST
0001 GMT 19th July to 2359 201h July.
Exchanges on world wide basls on all bands 3.5 through 28 MHz . Exchange RST and 3 figure QSO number. Scoring is 5 polnts for OSOs with HKs, 3 points North America, other countries 2 points, In same country 1 point. Multiplier is number of DX countries worked each band. Final score is sum of OSO points from all bands multiplied by sum of different countries worked on each band Award winners muat have at least 50 OSOa on log Use separate log sheet each band. Include sum. mary sheet and declaration with logs. These must reach L.C.R.A., Concurso Independencia, Apartado, Posial 584. Bogota, Colombla by 30th Sept, 1975. A plaque la awarded for the best log from Oceanis. EUROPEAN CW
0000 GMT Aug gth to 2359 Aug 10th.
(David VK3OV sent detalls of this conteat from SPS land. Also recelved was a handbook containing results of the 1974 contest, log sheets, summary sheat and a multiplier check list tor the 1975 cantest. The administratlve work Involved in these international contesta must be a mammoth task.)
All bands 3.5 through 28 MHz . Only 38 of the 48 hours of the conteat may be used. Up to 3 periode of rest totalling 12 hours are permitted. Contacta from VKs are limited to European atations. Each QSO is 1 point. A station may be worked once per band. Each confirmed OTC, glven or received, 1 doint. Multiplier for vKs is number of Europeen countrles worked on each band. In addition multlplier on 3.5 is muliplied by 4 , on 7 MHz by 3 and on $14 / 21 / 28 \mathrm{MHz}$ by 2. Final score is total QSO points plus OTC points multiplied by the sum total multipllers from all bands. OTC traftic. Additional point credit can be realised by making use of the QTC traffic feature. A QTC is a report of a confirmed OSO that has taken place earlier in the contest and later sent back to a European station. It can only be sent from a non-European station to a European station. The general Idea being that after a number of European stations have beat worked, a list of these stations can be reported back during a OSO with another station. A OTC contalns the time, date and QSO number of the station being reported, l.e. 1300/DA1AA/134. This means that at 1300 GMT you worked DA1AA and recelved number 134. A QSO can be reported once only and not back to the originating station. ONLY A MAXIMUM OF 10 OTCs TO A STATION IS PERMITTED. You may work the same atation severa times $t 0$ echleve this quote. Only the original contact however has QSO point value. Keep a unitorm list of OTCs sent. QTC 3/7 Indicates that this is the 3rd series of OTCs sent and that 7 OSOs are reported.
Use a separate log for aach band. These muat reach the WAEDC Commitiee, D-895 Kaufbeuren, Postbox 262 Germany, by 151h Sept 1976.
European Country Lest: C31 - CT1 - CT2 - DL - DM - EA - EAB - EI-F-FC-G-GC Guer - GC Jar - GD-GI-GM - GM Shetland - GW - HA - HBO - HBO - HV - I IS - IT - JW Bear - JW - JX - LA - LX LZ - M1 - OE - OH - OHO - OK - ON OY - OZ - PA - SM - SP - SV - SV Crete - SV Rhodes - SV Athos - TA1 - TF - UA1346 - UA2 - UB5 - UC2 - UN1 - UO5 - UP2 UQ2 - UR2 - UA Franz Josef Land - YO YU - 2A - 2B2 - 3A - 4U1 - 8H1.

## EUROPEAN PHONE

13/14 Sept 1975. Same rules atc as for CW contast above.

## 1975 REMEMIBRANCE DAY CONTTEST RULES

A perpetual trophy is awarded annually for competitlon between Divisions of the Wireless Institute of Australla. It Is Inscribed with the names of those who made the supreme sacrifice and so perpetuates their memory throughout Amateur Radio in Australla.
The name of the winning Division each year is a'so inscribed on the trophy and, in addition, the winning Division will recelve a sultably inscribed certificate.

## OBJECTS

Amateurs in each VK call area, will endeavour to contact other amateurs:-
(i) In other VK call areas, P2s and ZL on all bands 1.8 through 30 MHz .
(ii) In any VK call area (Including their own), P29 and ZL on authorised bande above 52 MHz and is indicated In rule No. 5.

## CONTEST DATE

0800 hours GMT on Saturday 18th August 1875 to 0759 hours GMT on Sunday 17th August 1975.

All amataur stations are requested to observe 15 minutes slience before the commencement of the contest on Saturday alternoon. An appropriate broadcast will be relayed from all Divisional stations during this perlod.

## RULES

1. There shall be 4 sections to the Contest.
(a) Transmitting Phone
(b) Transmitting. CW
(c) Transmilting, Open and
(d) Receiving, Open.
2. All Australian amateurs (VK callaigna) may enter the contest whether their stations are fixed, Porlable or moblle. Members and nonmembers of the Wireless Instifute of Australla are ellgible tor awards.
3. Amateurs may use these modes:
(a) Phone
(b) CW
(c) RTTY
(d) SSTV.

However, only one entry may be submilted for sections (a) to (c) in Rule 1. An open log la one where points are clalmed for more than one mode. AM, SSB and FM are grouped as one mode, l.e. Phone.
4. Cross mode operation is permitted but both atations may only claim points as for a phone/ phone contact. Cross band operation is not permitted. excepting via a satellite repaster.
5. SCORING
(a) On the 3.5, 7, and 14 MHz bands a station in another call area may be contacted once on each band using each mode. That is, you may work the same station on each of these bands on phone, CW. SSTV or RTTY.
(b) On the $1.8,21,26$ and 28 MHz bands $a$ atation in another call area may be contac'ed iwice on each band using each mode proulded that not less than 12 hours has elapsed since the previous contact on that band using that mode.
(c) Between 1600 hours GMT and 2100 hours GMT on Saturday Intra-call area contacts may be made on 1.8, 7, 21, 26 and 28 MHz , once for each mode on each band.
(d) Batween 0300 hours GMT and 0759 houra GMT on Sunday intra-call area contacts may be made on $1.8,21,28$ and 28 MHz bands, once for each mode on each band.
(e) On the bands 52 MHz and sbove. the same alation in any call aras may be worked uaing any of the modes listad in Rule 3 at interva's of not less than 2 houra since the previous same band/mode contact. However, the same station may be con'acted repeatedly via satellite not more than once by each mode on each orbit.
(1) All CW/CW, SSTV and RTTY contacts count double. Note rule 4 re cross mode contacis.
6. Multi licensed oparator stations are not permitted. Although log keepers are permilted, only the licensed operator is allowed to make a contact under his own call sign. Should
two or more licensed operators wish to operate any particular station, each will be considered as a contestant and must aubmit a log under his own call sign. Such contestants shall be refarred to as substitute operators for the purpose of these rules and their operating procedures shall be as shown.
PHONE. Substitute operators will call "CQ RD" of "CQ Remembrance Day" followed by the call of the station they are operating, then the word "log" followed by their own call sign, e.g. "CQ RD from VK4BBB log VKABAA". CW. Substitute operators will call "CO RD de" followed by the group call sign comprising the call sign of the station they are operating. an oblique stroke and their own call e.g. "CQ RD de VKABBE/VKABAA".
Contestants receiving slgnals from a subst|fute operator will qually for points by recording the call sign of the substitute operator only.
7. Club stations may be operated by other then llcensed members and contacts credited to the Club station call sign. Rule 8 applles to the llcensed operator in attendence. All operators must sign the declaration.
8. Entrants must operate within the terme of their licence.
9. CYPHERS. Before pointe may be claimed for a contact, serlal numbers must be exchanged and acknowledged. The serial number of 5 or 6 figures will be made up of the RS (telephony) or RST (CW) reports plus 3 figures that will be Incremented by one for each successive contact. If any contestant reaches 998 he will start agaln with 001.
10. ENTRIES. Must be set out as shown in the example, using one side of the paper only and standard WIA log sheats if possible. Entries must be clearly marked "Remembrance Day Contest" on the envelope and must reach the Federal Contest Manager, WIA. Box 67. East Melbourne, 3002 in time for opening on Wednesday 17 th September, 1975. Early gubmission of logs will be appreclated.
11. TERRESTRIAL REPEATERS. Contacta via terrestrial repeaters are not permitted for scoring
purposes. However, contacts may be arranged through the repater and if successful on another 2 metre channel, that contact counts for scoring purposes.
12. Portable operation. Log scores of operatore located outside thair own call area will be credited to that call area in which operation takes place, e.g. VK5XYZ/2. His acore la added to the VK2 scores.
13. ALL LOGS shall be set out as in the example shown and in addition MUST carry a front sheet showing the following information:
Name
Address
Section
Call sign
Claimed score
Number of contacts
Modes used
Declaration: "I hereby certify that 1 have operaled in accordance with the rules and spirlt of the conteat".
Signed
Date
All contacts made during the contest must be shown in the log submitted. If an invalld contact is made it must be shown but no score claimed. Entrants in the "Open" section must show the various mode contacts in numerical, l.e. chronological order.
14. The Federal Contest Manager has the right to disquality any entrant who during the contest, has not observed the regulations or has consistently departed from the accepted code of operating ethics. The Federal Contest Manager also has the right to disallow any lliegible. incomplete or incorrecily set out logs.
15. The ruling of the Federal Contest Manager of the WIA is final and no disputes will be entered into.

## AWARDS

Certificates will be awarded to the top scoring stations in Sections (a) to (c) ol Rule 1, in each call area, and will include top scorer in each Section of each call area operating excluslvely on 52 MHz and above. Each VK, ZL and P29 call area will count as separate areas for awards. There
scoring table for phone contacts - all cw/cw, ssty and htty contacts count double

| From | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | P29 | 2L |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| VKO | - | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 2 |
| VK1 | 6 | - | 1 | 1 | 2 | 3 | 5 | 4 | 6 | 5 | 5 | 2 |
| VK2 | 6 | 3 | - | 1 | 2 | 3 | 5 | 4 | 6 | 5 | 5 | 2 |
| VK3 | 6 | 4 | 1 | - | 2 | 1 | 4 | 3 | 6 | 5 | 5 | 2 |
| VK4 | 6 | 3 | 1 | 2 | - | 3 | 6 | 5 | 4 | 3 | 3 | 3 |
| VKS | 6 | 5 | 2 | 1 | 3 | - | 4 | 3 | 3 | 6 | 6 | 4 |
| VKB | 6 | 6 | 2 | 1 | 4 | 2 | - | 3 | 5 | 6 | 6 | 4 |
| VK7 | 6 | 5 | 1 | 1 | 3 | 2 | 5 | - | 5 | 6 | 6 | 2 |
| VKB | 6 | 5 | 1 | 1 | 2 | 3 | 6 | 4 | - | 3 | 3 | 4 |
| VK9 | 6 | 5 | 3 | 3 | 3 | 4 | 5 | 6 | 3 | - | 6 | 5 |
| P29 | 6 | 5 | 3 | 3 | 4 | 4 | 5 | 5 | 5 | 6 | - | 5 |
| ZL | 6 | 5 | 3 | 3 | $-A$ | 4 | 5 | 5 | 5 | 6 | 5 | - |

Read table from left to plght for points for the varlous call areas.
ALL INTRA-CALL AREA CONTACTS ON 52 MHz AND ABOVE, OR AS INDICATED IN RULES 5(c). (d), and (e) are worth one point.


NOTE-Times for Intra-call area loggings shown in Rule 5.
will not be an outright winner. Further certiflcates may be issued at the discretion of the Federal Contest Manager. The Division to which the Re membrance Day Trophy will be awarded shall be determined in the following way-

Average of top 6 logs plus (number logs entered divided by number of call area licences, multiplied by total points from all entrants from call area in Sections a, b and c).

VKO scores are added to VK7 and VK8 to VK5. Scores by VKS stations are added to the mainland call area geographically nearest. Scores claimed by ZL and P 29 stations are not included in the score of any VK call area.

Acceptable logs for all sections shall show at least five valid contacts. The trophy shall be forwarded to the winning Division in its container and will be held by that Division for the specified period.

## heceiving section (Section d)

1. This section is open to all short wave listeners in Ausiralia. Papua-New Guinea and New Zealand but no active transmitting station may enter.
2. Contest times and loggings of stations on each band are as for transmitting.
3. All logs shall be sel out as in the example. It is not permissible to log a station calling "CQ". The detail shown in the example must be recorded.
4. No'e the times and conditions set out in Rule 5.
5. Club stations may enter this section. All oderators must sign the declaration.

## AWARDS

Certificales will be awarded to the highest scorers in each call area. Further certificales may be avarded at the discretion of the Federal Contests Manager.

## PROJEEIAUISTRALIS

With david hull vk3zoh
Reterence Orbits for Oscar 6 and Oscar 7. Schedule for Oscar 6. Satellite is "on": Sunday morning. Monday night. Thursday night, Saturday night. local limes Oscar 7 is slways "on"


| JULY |  | JULY |  |  |  |  | Equalor crosaing |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Equator crosaing |  |  |  |  |  |  |
|  | Ormit |  |  |  | Orbit |  | Time |  |
| Date | No. | 2 | ${ }^{\circ} \mathrm{W}$ | Data | No. | Mode | 2 | - W |
| 1 | 12376 | 00.02 | 51 | 1 | 2848 | B | 00.24 | 56 |
| 2 | 12389 | 00.57 | 65 | 2 | 2861 | A | 01.18 | 70 |
| 3 | 12402 | 01.52 | 79 | 3 | 2873 | B | 00.18 | 54 |
| 4 | 12414 | 00.52 | 64 | 4 | 2886 | A | 01.12 | 68 |
| 5 | 12427 | 01.47 | 77 | 5 | 2898 | B | 00.12 | 53 |
| 6 | 12439 | 00.47 | 62 | 6 | 2911 | A | 01.06 | 66 |
| 7 | 12452 | 01.42 | 76 | 7 | 2923 | B | 00.05 | 51 |
| 8 | 12464 | 00.42 | 61 |  | 2936 | A | 00.59 | 65 |
| 9 | 12477 | 01.37 | 75 | 9 | 2949 | B | 01.54 | 78 |
| 10 | 12489 | 00.37 | 60 | 10 | 2961 | A | 00.53 | 63 |
| 11 | 12502 | 0132 | 74 | 11 | 2974 | B | 01.47 | 77 |
| 12 | 12514 | 00.32 | 59 | 12 | 2986 | A | 00.47 | 61 |
| 13 | 12527 | 01.27 | 72 | 13 | 2999 | B | 01.41 | 75 |
| 14 | 12539 | 00.27 | 57 | 14 | 3011 | A | 00.40 | 60 |
| 15 | 12552 | 01.22 | 71 | 15 | 3024 | B | 01.35 | 74 |
| 15 | 12554 | 0022 | 56 | 16 | 3036 | A | 00.34 | 58 |
| 17 | 12577 | 01.17 | 70 | 17 | 3049 | B | 01.28 | 72 |
| 18 | 12589 | 00.17 | 55 | 18 | 3061 | A | 00.28 | 57 |
| 19 | 12602 | 0111 | 68 | 19 | 3074 | B | 01.22 | 70 |
| 20 | 12614 | 00.11 | 53 | 20 | 3086 | A | 00.21 | 55 |
| 21 | 126,27 | 01.06 | 67 | 21 | 3099 | B | 01.15 | 69 |
| 22 | 126.39 | 0006 | 52 | 22 | 3111 | A | 00.15 | 54 |
| 23 | 126,52 | 0101 | 66 | 23 | 3124 | B | 01.09 | 67 |
| 24 | 1265, 4 | 00.01 | 51 | 24 | 3136 | A | 00.09 | 52 |
| 25 | 12677 | 00.56 | 65 | 25 | 3149 | B | 0103 | 65 |
| 26 | 12630 | 0151 | 78 | 26 | 3161 | A | 00.02 | 50 |
| 27 | 12702 | 0051 | 63 | 27 | 3174 | B | 00.56 | 64 |
| 28 | 12715 | 0146 | 77 | 28 | 3187 | A | 01.51 | 78 |
| 23 | 12727 | 0045 | 62 | 29 | 3139 | B | 00.50 | 62 |
| 30 | 12740 | 01.41 | 76 | 30 | 3212 | A | 01.44 | 76 |
| 31 | 12752 | 00.41 | 61 | 31 | 3224 | B | 00.44 | 61 |
| AUG | UST |  |  | AUG | UST |  |  |  |
| 1 | 12765 | 01.36 | 75 | 1 | 3237 | A | 0138 | 74 |
| 2 | 12777 | 0036 | 59 | 2 | 3249 | B | 00.37 | 59 |
| 3 | 12790 | 0130 | 73 | 3 | 326,2 | A | 0132 | 73 |
| 4 | 12802 | 0030 | 58 | 4 | 3274 | B | 00.31 | 58 |
| 5 | 12815 | 0125 | 72 | 5 | 3287 | A | 01.25 | 71 |
| 6 | 12827 | 00.25 | 57 | 6 | 3299 | 8 | 00.25 | 56 |


| 7 | 12840 | 01.20 | 71 | 7 | 3312 | A | 01.18 | 69 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 12852 | 00.20 | 56 | 8 | 3824 | B | 00.18 | 54 |
| 9 | 12865 | 01.15 | 70 | 9 | 3337 | A | 01.12 | 68 |
| 10 | 12877 | 00.15 | 54 | 10 | 3349 | B | 00.12 | 53 |
| 11 | 12890 | 01.10 | 68 | 11 | 3362 | A | 01.06 | 66 |
| 12 | 12902 | 00.10 | 53 | 12 | 3374 | B | 00.05 | 51 |
| 13 | 12915 | 01.05 | 67 | 13 | 3387 | A | 00.58 | 65 |
| 14 | 12927 | 00.05 | 52 | 14 | 3400 | 日 | 01.54 | 78 |
| 15 | 12940 | 00.59 | 66 | 15 | 3412 | A | 00.53 | 63 |
| 16 | 12953 | 01.55 | 79 | 16 | 3425 | B | 01.48 | 77 |
| 17 | 12965 | 00.54 | 64 | 17 | 3437 | A | 00.47 | 62 |
| 18 | 12978 | 01.49 | 78 | 18 | 3450 | 8 | 01.41 | 75 |
| 19 | 12990 | 00.49 | 63 | 19 | 3462 | A | 00.41 | 60 |
| 20 | 13003 | 01.44 | 77 | 20 | 3475 | B | 01.35 | 74 |
| 21 | 13015 | 00.44 | 62 | 21 | 3487 | A | 00.34 | 58 |
| 22 | 13028 | 01.39 | 75 | 22 | 3500 | B | 01.28 | 72 |
| 23 | 13040 | 00.39 | 60 | 23 | 3512 | A | 00.28 | 57 |
| 24 | 13053 | 01.34 | 74 | 24 | 3525 | B | 01.22 | 70 |
| 25 | 13065 | 00.34 | 59 | 25 | 3537 | A | 00.21 | 55 |
| 26 | 13078 | 01.29 | 73 | 26 | 3550 | B | 01.16 | 69 |
| 27 | 13090 | 00.29 | 58 | 27 | 3562 | A | 00.15 | 53 |
| 28 | 13103 | 01.23 | 72 | 28 | 3575 | B | 01.09 | 67 |
| 29 | 13115 | 00.23 | 57 | 29 | 3587 | A | 00.09 | 52 |
| 30 | 13128 | 01.19 | 70 | 30 | 3600 | B | 01.03 | 65 |
| 31 | 13140 | 00.19 | 55 | 31 | 3612 | A | 00.02 | 50 |

Eight lines free to all WIA members.
Sj per 3 cms for other amateurs and SWLs.

- Copy should be in block letters or typescript. signed and lorwarded to the The Editor. PO Box 150, Toorak. Vic. 3142.
- Excludes commercial advertising.
- Closing date for Hamads is the 3rd day of the month preceding publication.
- OTHR means the advertiser's name and address are correct in the current Australian Callbook.


## fOR SALE

Siow Ecan Valve Monitor (shown in EA July '73). plus SSTV solid state sig. gen. and 931A scanner altachment, $\$ 100$. FT2FB transceiver complete with 8 latest channels, $\mathbf{\$ 1 8 0}$. Gil Miles, VK2KI, QTHR Ph. (02) 784237.
Amarican Raytheon compact 60 watt marine radiotelephones (lour). 8 channels $1.65 \mathrm{MHz}-5 \mathrm{MHz}$, separate $110 V$ AC PSU. Inbuilt broadcast receiver. sque:ch. mic., cables. 14 valves and diodes incl. 12BY7 osc., 6883 PA, $12 A B 5$ driver, 12006 mod. Ideal for conversion, $\$ 85.00$ each. Ian Marshall VK2JI, QTHR. Ph. (02) 904035.
Multi-7 Crystals, 10 channels 40 to 60. AC power suppiy, HyGain magnetic whip, new Feb. '75, $\$ 225$. VkiBH. 99 Warragamba Ave., Dufly. ACT. Ph. (062) 886062.

SI Filter XF-9E (see advert. AR, Feb. '75, page 23). new but tested and evaluated, $\$ 35.75$ post paid. First cheque secures. Box 150, Toarak, Vic. 3142.
Yaegu FT2FB Aulo Tranacanner 2 m , mobile cradle, built-in $12 / 240 \mathrm{~V}$ supply, brand new condition, in original pack, 2N5590 15W linal. spares. Asahi 5/8 loaded whip. gutter mount. 12 It . coax. 8 scanned channels and priority, A. B, C. R1, R4, was $\$ 400$ asking $\$ 240$ the lot VK22DR, OTHR. Ph. (049) 336501 (day).
Colour TV RCA 21 inch with inbuilt Pal (D) decoder and separate 240 V AC to 110 V AC step-down XFMR. $\$ 350$. VK2BRA, OTHR. Ph. (02) 470146 A.H.
TH3JA Baam, unused, brand new in carton, $\$ 120$ ONO.
Hustrer ABTV irap vertical 80 to 10 melres, as new condi'ion. $\$ 65$ ONO.
FT1018, as new, complete with matching speaker in t. mic., handbook. etc.. \$525 ONO.
Collins 3.1 kHz mechanical fitter, wlin data book. \$20 ONO.
VK3ARZ. 12 Explorers Court, Vermont South. 3133. Ph. (03) 2329492.
FLSO SSB Tx with fV50 VFO, \$150. SR550 Ham Band Rx. s70. STC CTR50-132 Base Slation with remo'o 727 type control unit, $\$ 90$. PO Box 909. Orange. NSW. Ph. (063) 62 4388. ext. 218 bus: (063) 626072 A.H.

HW 32a Heath 20 malre transceiver. 200 PEP. excellont rig. sultable for tranaverting. \$140 ONO. HW17a Heaih 2 melre transceiver. AM \& FM, neads xta:s lor nets and repeatera, a very line rig (Rx lunes $143-148 \mathrm{MHz}$ ). $\$ 160$ ONO. G Scoll VK3ZR. Ph. (03) 894645

# Silent Keys 

## OWEN BESTED

## VK2AEB

It is with deep regret that we record the passing of Owen Bested VK2AEB. Owen obtained his AOCP at the age of 54, and operated from Grittith where he was a successlul wine maker. Retiring in 1969, he moved 10 Port Macquarie, and was active mostly on twenty metres. Secretary/Treasurer of The Oxley Reglon Radio Club, his happy nature was always apparent amongst fellow amateurs. He passed away quielly alter a short lliness on the 24th April at Port Macquarie. Our sympathy to his wife and tamily. and his brother Phil VKSCS.
N. E. MOATLOCK
vK2PO

New 6HF5s, \$4.00 ea.. Walky-Talky 27.125 MHz, one pair for $\$ 21.00$, postage incl.. VK2日MI, OTHR. Ph. (02) 7711657.
Geloso 222 7x 70W AM CW 80-10m. Good cond. Geloso 209 Rx SSB AM CW $80-10 \mathrm{~m}$. Fair cond. Will sell separately. What offers? VK2ADZ, 28 Probert Ave.. Gritlith. 2680. Ph. (069) 623718.
Eddysione 730/4 communications Rx, 500 kHz 30 $\mathrm{MHz}, 16$ valves, good condition with instruction manuar, \$200. A. R. Dexter VK5DL, 37 Adelaide Tce., St. Marys, Adelaide 5042. Ph (08) 797901 bus. only.
Yaesc FT101, Iltile used, unmarked, as brand new. all accessories used only as a Rx by present owner. 160-10 Mx, s420 ONO. 30 ft . galvanised selt-supporting Southern Cross Tower, \$75. No. 62 Set Mk 11 1.6-10 Mcs, original condition. \$35. No. 62 Mk II transceiver, suitable for parts, $\$ 15$. G. McNamara. 14 Hyland St., Warrnambool. Ph. (055) 628238 bus. only.
Home Brew Linear, pair 813s GG, with power supply, $\$ 100$. XFBS 9Mc xal tilter with upper and lower sideband xtals, $\$ 25$. VK3BW, OTHR. Ph. (052) 592322.

Swan 350 SSB Transceiver, includes matching AC supply, mic., spare PA tubes, $\$ 290$. DC supply for above. S45. VK5ZG. 4 Glencoe Rd., Reynella, SA. 5161.

AR7 Receiver, modified to DCA circuit, complete with power supply and all coll boxes. $\$ 34$ ONO. QQE06/40 power amp with tuned lines for 144 MHz . Suit linear or PA use. $\$ 30$ ONO. G. Scolt VK32R. Ph. (03) 894645.
Solid Slate Tracking $\overline{A x}, 19^{\prime \prime}$ rack mount, $x \not t l$ synthesized local oscillator, digital trequency display. 10, 30. 100. 300 kHz xll tilters. PLL BW 10, 30, 100. 300 Hz . Used for direct reception of 130-140 MHz and as luneable if for 400 and 1700 MHz . With iwo 136 MHz preamps, $\mathbf{5 3 3 0}$. VKiVP, OTHR. Ph. (062) 485882.

## WANTED

Modulator Type 17SU-14A Unit tor STC AMT125 Iransmitter and any spare parts available tor same unit. Contact I. Keenan VK3AYK, OTHR. Ph. (03) 925667.

Maintenance Handbook for trequency meler type AN-URM-32A, reasonable payment. Please write VK5TI, PO Box 307. Clare, SA, 5453.
52 NHz Iransverter, sultable FT-101. VK5ZJP, 20 Alexandra Ave., Rose Park, 5067. Ph. (08) 311638.

## Afterthoughts

## novice licensing

AR May 1875, page 22, contained a trangcripiton error. The 21 MHz band portion permitted for Novices will be 21.125 to 21.200 NOT 21.125 to 21.500 as printed. This eccords with the PMG's letter printed in May 1973 AR, page 7 (see also July 1973 AR. D. 15 for other information). Sorry. but it was really a rush job to get it Into May AR.

# SIDEBAND ELECTRONICS SALES and ENGINEERING 

\begin{abstract}
TRIO-KENWOOD


## YAESU MUSEN

Model FT-101-B AC-DC transceivers $\$ 575$
Model FT-200 AC transceivers with AC FP-200 supply $\$ \mathbf{4 0 0}$ Digital Frequency counters
model YC-335-D O-200 MHz $\$ 250$
SPECTRONICS DD-1 digital counter for the FT-101-B $\$ 150$ All TRIO-KENWOOD \& YAESU MUSEN transceivers come complete with original English manual, all crystals for all available bands, a P.T.T. dynamic microphone and a bonus free S.W.R. Meter.

## hY-GAIN ANTENNAS



## COR ROTATORS

| AR-22-R for $2 \& 6 \mathrm{M}$. and small h.f. beams AR-20-R for $2 \& 6 \mathrm{M}$. beams | $\$ 50$ $\$ 40$ |
| :---: | :---: |
| HAM-II with re-designed control box | \$150 |
| All three models for 230 V AC complet control units. | with indicator- |
| 4-conductor light cable for AR-20-22 12-conductor light cable for HAM-II | 20 cents per yard <br> 30 cents per yard |
| 8 -conductor heavy duty cable for HA | 60 cents per yard |

## barlow wadley receivers

Model XCR-30 Mk 11500 KHz to 31 MKz continuous coverage communications receivers, crystal controlled reception of AM-USB-LSB-CW
\$250

## POWER OUTPUT METERS

Galaxy RF 550A with 6 position coax switch ..... $\$ 75$
SWR METERS
Midland twin-meter type for $\mathbf{5 2}$ Ohms, up to 1 KW on hf $\mathbf{\$ 2 2}$
BALUNS
Japanese baluns, 1 KW PEP 75 Ohms impedance only ..... $\$ 10$
MOBILE ANTENNAS

MARK helicals 6 feet long HW. 80 for 80 M . ..... $\$ 18$ | $\mathrm{HW} \cdot 40$ for 40 M. |
| :--- |
| $\mathrm{HW}-20$ for 20 M. | high power KW-40 for 40 M. $\$ 25$ tri-band HW-3 for $10-15-20 \mathrm{M}$. $\$ 25$

Swivel mobile mount \& chrome plated spring for MARKs ..... $\$ 12$
ASAHI model AS-303A set of 5 whips 10 to 80 M . Complete with ball mount and spring ..... $\$ 90$
AS-2-DW-E 1-4 wave 2 M. mobile whip ..... $\$ 8$
$\$ 15$
AS-GM gutter clip mount with cable \& connectors ..... $\$ 5$
COAX CONNECTORSAmphenol VHF types Standard PL-259. Angle male-female.T-connector, RCA male to Amphenol female adaptor. Allmodels$\$ 1$ each
CUSH CRAFT ANTENNAS
DGPA 52 to 27 MHz adjustable ground-plane ..... $\$ 25$
LAC-2 lightning arrestors ..... 56
CRYSTAL FILTERS
9 MHz similar to the FT- 200 ones.with 2 carrier crystals$\$ 35$
POWER SUPPLIES
240 V, AC to 12V DC 3 to 3.5 Amps, regulated ..... $\$ 35$
SPECIAL

KEN KP-12A speech processors. 230V AC. contain a complete SSB generator, $10-7 \mathrm{MHz}$ filter, clipper, etc. $\$ 100$

[^6]
## SIDEBAND ELECTRONICS SALES and ENGINEERING P.O. BOX 23, SPRINGWOOD, N.S.W. Postcode 2777 TELEPHONE, DURING BUSINESS HOURS ONLY! STD 047 511-394

Hy-Gain's Incomparable HY-TOWER for 80 thru 10 Meters

## Model 18 HT

\author{

- Outstanding Omni-Directional Performance <br> - Automatic Band Switching <br> - Installs on 4 sq . ft. of real estate <br> - Completely Self-Supporting
}

By any standard of measurement, the Hy -Tower is unquestionably the finest multi-band vertical antenna system on the market today. Virtually indestructible, the Model 18 HT features automatic band selection on 80 thru 10 meters through the use of a unique stub decoupling system which effectively isolates various sections of the antenna so that an electrical $1 / 4$ wavelength cor odd multiple of a $1 / 4$ wavelength) exists on all bands. Fed with 52 ohm coax, it takes maximum legal power...delivers outstanding performance on all bands. With the addition of a base loading coil, it also delivers outstanding performance on 160 meters. Structurally, the Model 18 HT is built to last a lifetime. Rugged hot-dipped galvanized 24 ft . tower requires no guyed supports. Top mast, which extends to a height of 50 ft ., is 6061 ST 6 tapered aluminum. All hardware is iridite treated to MIL specs. If you're looking for the epitome in vertical antenna systems, you'll want Hy-Tower. Shpg. Wt., 96.7 lbs.

## NOW...A GREAT NEW WIDE BAND VERTICAL for 80 through 10 Meters

## Hy-Gain's 18AVT/WB

Take the wide band, omni-directional performance of Hy-Gain's famous 14AVQ/WB, add 80 meter capability plus extra-heavy duty construction-and you have the unrivalled new 18AVT/WB. In other words, you have quite an antenna.

- Automatic switching, five band capability is accomplished through the use of three beefed-up Hy-Q traps (featuring large diameter coils that develop an exceptionally favorable L/C ratio).
- Top loading coil.
- Across-the-band performance with just one furnished setting for each band ( 10 through 40).
- True $1 / 4$ wave resonance on all bands.
- SWR of $2: 1$ or less at band edges.
- Radiation pattern has an outstandingly low angle whether roof top or ground mounted.


CONSTRUCTION . . . of extra-heavy duty tapered swaged seamless aluminum tubing with full circumference, corrosion resistant compression clamps at slotted tubing joints... is so rugged and rigid that, although the antenna is $25^{\prime}$ in height, it can be mounted without guy wires, using a $12^{\prime \prime}$ double grip mast bracket, with recessed coax connecter.
Order No. 386 - $\$ 90.00$

Order No. 182 - $\$ 245.00$

## The Versatile Model 18V for $\mathbf{8 0}$ thru $\mathbf{1 0}$ Meters

Also available . . .
14AVQ/WB 40-10m - $\mathbf{\$ 6 7 . 5 0}$ 12AVQ 20, 15 \& 10m - $\$ 48.00$ All prices include sales tax, freight extra. Prices and specifications subject to change. All in stock at time of preparation of advertisement.

The Model 18 V is a low-cost, highly efficient vertical antenna that can be tuned to any band... 80 thru 10 meters...by a simple adjustment of the feed point on the matching base inductor. Fed with 52 ohm coax, this 18 ft . radiator is amazingly efficient for DX or local contact. Constructed of heavy gauge aluminum tubing, theModel 18 V may be installed on a short $15 / 6$ inch mast driven into the ground. It is also adaptable to roof or tower mounting. Highly portable, the Model 18 V can be quickly knocked down to an overall length of 5 ft . and easily re-assembled for field days and camping trips. Shpg. Wt., 5 lbs.
Order No. 193-\$33.50

# HAM RADIO SUPPIERS 323 ELIZABETH STREET, MELBOURNE, VIC., 3000 <br> Phones: 67-7329, 67-4286 All Mail to be addressed to above address 

ALSO AT:

## 390 BRIDGE RD. RICHMOND. 425174

## AND DISPOSALS STORE:

27 MHz TRANSCEIVERS AND ANTENNAS SUITABLE FOR NOVICE AMATEUR USE


SE501 23 CHANNEL TRANSCEIVER 5W AM, 15W PEP SSB, 12V DC operation $\$ 195$


MIDLAND 13-870D 23 CHANNEL TRANSCEIVER
5 Watts AM, 12V DC Operation

## V/ WAVE FIBREGLASS MOBILE

 ANTENNASWith insulator and heavy spring base \$35
CENTRE LOADED FIBREGLASS MOBILE ANTENNA AND BASE 43 in . long
$\$ 16.90$


PONY CB74A 6 CHANNEL TRANSCEIVER 5 Watts AM, PMG approved for 27.880 MHz operation. Fitted with 27.880 and 27.240 crysta's

MIDLAND TWIN METER TYPE SWR BRIDGE AND POWER METER

COMMUNICATION RECEIVERS AND TRANSCEIVERS


Kenwood OR666 general coverage communications receiver, solld state, $550 \mathrm{kHz}-30 \mathrm{MHz}, 6$ bands. 230V/12V.

$$
\text { Price } \$ 330
$$



KENWOOD TS 5205 BAND SSB TRANSCEIVER


Specifications
Frequency Range: 80 metre band - 3.50 to $\mathbf{4 . 0 0}$ MHz ; 40 metre band -7.00 to 7.30 MHz ; 20 metre band - 14.00 to 14.35 MHz ; 15 metre band -21.00 to $21.45 \mathrm{MHz} ; 10$ metre band - 28.00 to 28.50 $\mathrm{MHz}_{1} \quad 28.50$ to $29.10 \mathrm{MHz}, 29.10$ to 29.70 MHz : WWV - 10.00 MHz .

Mode (Receive only) USB, LSB, CW.
Input Power: 160 watts on 80 to 15 metre band, 140 watts on 10 matre band.
Netl amateur prices:
TS 520 \$550.00 with PTT Mike

## YAESU MUSEN FT101B

SSB/AM 240V AC \& 12V DC operation,
160-10m transceiver

YAESU FT/FP200 TRANSCEIVER P.S.U. COMBINATION $\$ 400$

144-148 MHz TWO METRE EQUIPMENT NOW WITH Channels

KEN KP-202, 2W, 144 MHz band. FM. Hand held transceiver with crystals for 6 channels, Ch. 40-50, R1. R2. R3, R4
$\$ 150$
KCP-2 NICAD battery chargars \& 10 Nicad batteries

535


KENWOOD MOBILE TR7200C

## 2 METRE FM TRANSCEIVER

22 Channels, litted with Ch. 1 and 4 repeaters. Technical Data: Transmit 10 and 1 watt positions. Max. freq. deviation $+15 \mathbf{k H z}$. Spurious response -60 dB . Receiver less than 1 W for 30 dB SW selectivity. 20 kHz at 60 dB down; 40 kHz at 70 dB down.
\$235 - Exira Channel Crystals \$10 Set


RF AMPLIFIER AM-4306/GRC
Originally used in conjunction with PRC25 which covers $30-75 \mathrm{MHz}$ FM. Requires 1.4 watts drive and gives a nominal 25 watts out. Brand new in sealed bax with complete service and user manuals.

Published monthly as the official journal by the Wireless Institute of Australia.
Reg. Office:
2/517 Toorak Rd., Toorak, Vic. 3142
P.O. Box 150, Toorak, Vic., 3142

Editor:
Bill Roper
VK3ARZ
Assistant Editor:
Bruce Bathols
VK3UV
Technical Editors:
Bill Rice
VK3ABP
Ron Cook VK3AFW
Roly Roper
VK3YFF
Publications Committee:
John Adcock VK3ACA
Rodney Champness VK3UG
Syd Clark
VK3ASC
Ron Fisher
VK3OM
Ken Gillespie
VK3GK
Nell Osborne
VK3YEI
Ken Reynolds
Gil Sones
VK3AUI
Contribuling Editors:
Brian Austin
VK5CA
VK3TX
Deane Blackman
David Hull
VK3ZDH
Eric Jamieson
VK5LP
Jim Payne
VK3AZT
Drafting Assistants
Gordon Rowe L30187
Harry Cane
VK3ZIK
Business Manager:
Peter B. Dodd
VK3CIF
Enquiries and material to: Editor.
PO Box $2611 W$, GPO Melb., 3001
Copy is required by the third of each month. Acknowledgment may not be made unless specially requested. All important Items should be sent by certlifed mail.
The Edltor reserves the right to edit all material, including Letters to the Editor and Hamads, and reserves the right to refuse acceptance of any material, without specifying any reason.

## Advertising:

Advertising material should be sent direct to P.O. Box 150, Toorak, Vic., 3142, by the 25th of the second month preceding publication. Phone: 24-8652.
Hamads should be sent direct to P.O. Box 150, Toorak, Vic., 3142, by the 3rd of the month preceding publication.

## Printers:

EQUITY PRESS PTY. LTD.
50-52 Islington Street
Collingwood, 3066
Tel.: 41-5054, 41-5055

## QSP

## ON LAUNCHING WIA NEWS

It has now become possible to organise a regular column in AR - WIA NEWS (pronounced wire news) giving publicity to Federal Institute affairs both at the national and international level.

You must be the judge as to the value of the column, but remember that you can communicate amongst yourselves much more quickly than it takes WIA NEWS to see the light of day in AR because it is at least one month old when it reaches you.

Reluctance to publicise Federal news through the medium of AR is sometimes labelled as a failure. Inability to find someone to write such a column has been the real cause of all the troubles.

Whichever way your views prompt you, please remember that AR circulates all over the world. The desire not to publicise our troubles for the delectation of overseas readers has been in the back of our minds, but perhaps we have been too reticent about ourselves, and too sell-conscious to admit our weakness.

The WIA is by no means a perfect organisation. We have our own serious inflation problems. We try to accommodate views which are poles apart while doing our best to avoid fence-sithing. Genuine efforts are always made in the best short and long term interests of amateur radio in Australia.

Priorities constantly vary to meet whatever aspects are currently under discussion.
The Executive must tender an account of its actions to the Federal Council.
This Federal Council consists of your Divisional Federal Councillor, plus one from each of the other six Divisions.

All Divisions must have their say. Some may feel more strongly than others on certain issues. Nevertheless, if we are to operate effectively, all views are required.

WIA NEWS is presented by the oxecutive so that you can be informed of Institute affairs and form effective opinions. Your Divisional Federal Councillor wants to know your views.
D. A. WARDLAW VK3ADW

Federal President

DARWIN APPEAL
The Executive announce that the appeal for conalions for those losing gear during Cyclone Tiacy in the Darwin area

WILL CLOSE ON ist SEPTEMBER 1975

- PLEASE SEND IN YOUR DONATION NOW

The following is List No. 3 of contributors:-
Amount already acknowledged S207.7
per VK4 Division
VK6 Division
VK3Ya
524.26
$\$ 37.50$
$\$ 400$
$\$ 5000$
er VKS Division

| $\$ 3.00$ |  |
| :--- | :--- |
| $\$ 5.00$ |  |
| $\$ 5.00$ |  |
| $\$ 800$ |  |
| $\$ 10.00$ |  |
| $\$ 19.001$ |  |
|  |  |
| $\$ 2.00$ |  |
| $\$ 2.00$ |  |
| $\$ 2.00$ |  |
| $\$ 2.00$ |  |
| $\$ 2.00$ |  |
| $\$ 2.00$ |  |
| $\$ 2.00$ |  |
| $\$ 2.00$ |  |
| $\$ 2.00$ |  |
| $\$ 3.00$ |  |
| $\$ 2.00$ |  |
| $\$ 2.00$ |  |
| $\$ 1.00$ |  |
| $\$ 200$ |  |
| $\$ 12901$ |  |
|  |  |
|  |  |

Geclong Hamfest Society $\quad \$ 60000$
$\$ 96438$

The VK2 DIVISION would like ell dersons and OSi Butcaus to note that the G.P.O. Box 1734. will be cancelled later this year.

Mail should be directed as follows
VK2 Inwarde OSLe 10 :
P.O. Box 134. Charlestown, 2290

VK2 Oulwarde OSLe 10:
PO Box 95. Fienchs Foresi. 20EE
Other Divisional Mail to:
14 Atcheson Si. Cious Nest. 2065

## SCOUTS SYATIONS

In his bulletin $18 / 2$ of 281 h Mas Noel Linser. JOTA o:ganiser. advised that the Goy Scouts c' Korea now have a scouping station on the ait 11 cm 3ist May with the call sign HAOS He also menitions a diptoma for contacting stations on states: num:ber/points scored stistem liom 151 A!ay $k$ Eist July. relating to Algesion Scouts celebrating ine doin anniversily of scouting in that counti) For these interested witte is ix2 SMA Service Ciplomid DOA SMA. Scouts Musulmins dipplians B P. 69. Alge:-bate

## pirates

A man u.is lined $\$ 350$ in Canterta iecentis is. llegally trarismiting bradeasts from a moterehicle on an amiteut Irequency and ine gea had been scized 11 is undurs'cod that the case was delended

## REFLECTION

The editoi.al in Shorl Wave Magazine for May 'is gives lood for inought and can only to bitel) summirised he: Auslin Forsyih G6FO niote "In these days of rapid development in the att $c^{\prime}$

Pressures of business to be conducted by the Executive became so great that 1970 saw agreement between the Divisions to employ a Secretary and to set up an office.

A very small office was established in 1971 and it is still small. That year the Divisions saw the advantages of centralised membership records and subscriptions processing. An EDP programme was done in time for the 1972 subscription year.

Also in 1971 "Magpubs" was added to the little Federal office's duties.

In 1972 the publication of AR was handed over to the Executive. In the same year the Executive's office was moved from the Victorian Division's rooms to Toorak. It had been hoped that a loint office would have been more economical than separate offices but so many problems arose which only a move could resolve.

The Federal body does what the Divisions, acting as Federal Council, tells it to do.

The Executive office began with one person - the Secretary/ Manager - with clerical and typing assistance. This person was engaged to put into effect the directives of the Executive. He was engaged on a proper salary for expertise, co-ordination and administrative abilities. That salary (with all allowances) by the way is today only 8 per cent higher than it was in 1971.

Unfortunately the work load has increased out of all proportion from the time when the concept of a Secretary/Manager was envisaged in 1970.

In 1973 the Executive recognised this and authorised the employment of a part-timer to do all the EDP and subscriptions work. This part-timer, after training, allowed the Secretary/Manager and his clerk/typist to concentrate on the more important duties of the office - negotiations with Central Office, co-ordination of numerous functions, dissemination of information to Divisions and a host of other administrative and organisational work.

In 1974 it was obvious that the time available to service AR advertising and to get more of it could be improved profltably by employing a part-timer solely for this work. This has paid off. Check the advertising in AR now compared with 1973 for example.

AR, centralised subscriptions processing, membership records, and Magpubs cannot function without a central office. AR could not be distributed without an addressing service for example.

Your AR now reaches you through a computer label addressing system which is part of EDP. In the old days a laborious, timeconsuming addressing plate system was in operation.

In the old days each Division prepared, mailed, collected and accounted for their own members' subscriptions. Ask anyone who was involved what time and effort were needed from volunteers year in and year out. In Divisions with the largest membership pald staft were even required.

Improvements are required even if to meet changing conditions from year to year. The Executive has this in mind all the time. Unfortunately very little can be done in the tace of severe inflationary financial stresses except to improve efficiency and productivity.

Remember what you used to get for your $£ 2$ sub? But then numbers of members were fewer and perhaps you didn't realise the work put in by unpaid volunteers behind the scenes. In those days AR made a profit at 6d a copy. You can't even buy a newspaper for 5 cents today.

Perhaps this is a slight exaggeration but have you compared your present subscriptions to other societies or clubs with what you paid them 10 or 20 years ago?

The 1975 Federal Convention approved the appointment of an Investigator to put the whole WIA machine under a microscope and to come up with some answers.

Have you any ideas how the WIA can be improved?
A tremendous amount of thought has been given to publicising amateur radio in Australia, Improving its image and encouraging more members.

One of the big problems is getting good publicity into the media on every possible occasion. Ever tried to convince a newspaper edftor to publish a sweet little blurb about what amateur radio is about or what amateur operators did under such-and-such an emergency?

Apart from this one time effort, even if you succeed, how mány will read it and how long will it stay in the public's memory? Vice, murder, sport, political bickerings. These seem to be the money spinners.

The yawn of a hippo is puny compared with the yawn of an editor when confronted with amateur radio. But his yawn is lust as great on a whole range of other beneficial subjects unless he can "smell" a julcy story.

Anything which can be done to get favourable publicity for our leisure activity is good. Not merely a one time hit. It must go on and on, all the time.

What would you do it you read in your newspaper that amateurs ("hams" of course) were really 007 agents working undercover for the secret service of a forelgn power or were Martlans in humanoid form?

Would all of you put pen to paper and bombard the editor with letters of correction? And yet this kind of rubbish hits the media from time to time.

Somehow a beneficial and tiny minority group of a few thousand must keep its good works before the eyes of the public millions.

The ACT Division has been given the iob of examining ways and means to produce an economically feaslble publicity package and film for Divisions for use at shows, exhlbitions and for displays to adult and high school groups.

How about oftering them your help? Write now to P.O. Box $11^{-}$ Canberra City, ACT, 2601.

An often asked question: Does the WIA represent the Australian amateur to the authorities? Yes! Six consultations on various matters occurred during the month of June alone between the Executive o!fice and the Central office of the Radio Branch.
alacironics - for it is now an arl as wall as a science - The field is so vasi that no one Individual can hava much knowledge, and certainly very llille experience, outside his own range of activily. The cleverest men are those who reslise how litile they know and how much there is to learn. As radio amaieurs. many of us are nol bound by the limitations of the professional radlo engineer, who has to keep his mind on the particulap aspect of the subject that earns him his living. As freslance radio men, we can range over the whole lield at will" and he lisia a vast range ol subjects. He thinks the amaieur generally may be a mote comperent practical man than his professional confrare and it is this lact that enables the amateur to be a usaful and imporiant member of the whole fraternity of radio men.

## CITIRENSHIP

April OST carries an llem that the (USA) amateur pules have been amended to delele references to clitizenship of nalionally with respect to ellgibility for mateur license. The new rules require each llcensee to fumish an address in the U.S.A. The
only allens not ellgible to oblain an amateur llcence, 80 it appears, are represenlatives of foraign governmenta.

## IN BAND TAANSMISSION8

April '75 OST quoies a clarification by FCC of the rules for amateur transmissions making it plain that boin wanted and unwanted producia must be confined to the amateur banda within the limits of good practice. An example is quoted of a lype A3J emisalon which limils the carrier power level $t 0$ at least 40 dB below P.E.P. and in relation to unwanted sldebands and intermodulation products lays down three steps of acceplable attenuation.

## ELF

"The spectrum below 10 kHz (at present unallocated) is far from being a forgolten ferritory and Is the centre of much altention in the communicatlons world at the present time". Extract from an arlicie entiliad "Radio Communicationa al frequencles below 10 kHz ' by G3XBM in Aprll '75 Rad. Comms.

## SUNSPOT NUMEERS

Smoolhed mean for Nov. '74 was 27.6. Mean for May 1975 provisionally 8.7. The predictions of smoolhed monithly sunspoi numbers drop from 8 in June by one a month 104 In Nov. '75. Swisa Fed. Obs. Zurich bullelin 5/1975.

## Afterthoughts

An omission from the published results of the VK/ZL Ocesnia DX Coniest 1974: VK SWL: $130042 \quad 3900$ 140182640
Sorry about some phologrephe reproduced back io Itont although the printere cay this was lmpoestble! Top right hand pleture on PA af June AR and front caver photograph of July AR were thue malireated.

ASJA monetary award is 815 not 810 as bhown on P4 of March AR.

# ON EYRE 

W. M. Rice VK3ABP

54 Maidstone St. Altona 3018


#### Abstract

During the May 1975 school vacation, VK3s NS, ABP, YBP and YFF made history by operating marine-mobile from Lake Eyre for the first time ever. This is the story of their expedition.


In 1840, the explorer Edward John Eyre was the first white man to see Australia's largest lake. For 109 years its 9300 square kilometres (named Lake Eyre by Goyder in 1859) was never known to carry more than a few centimetres of water, lying above 40 mm of solid salt. Spanning the latitudes 28 and 29 deg. S, about 700 kilometres north of Adelaide, its occasional salty pools soon dried out under a cloudless sky where solar evaporation can be up to 2 metres each year.

The lake was mapped by J. W. Lewis in 1874-5, first flown over by G. H. Halligan in 1922, and extensively explored by C. T. Madigan between 1929 and 1939. Madigan, who was Professor of Geography at Adelaide University, was of the opinion that the lake could never fill. Although fed by several large rivers, the Warburton and Cooper's Creek being the best known, they are seldom more than dry beds with occasional waterholes. The Lake Eyre Basin covers more than a million square kilometres, about one sixth of the continent, but most of this area is desert, with an average annual rainfall of less than 100 mm .

Then, in 1949, the greatest floods for more than a century filled the inland rivers, and by 1950 Lake Eyre was truly a lake, with up to three metres of water covering its area. An attempt was made to launch a sailing-boat on the lake in 1950, but it was soon swamped by large waves. Before long the seasons returned to normal, and by 1953 the lake was once again dry.

## SPEED RECORD

World history was made in July 1964, when the late Donald Campbell established the still-current speed record for a wheel-driven vehicle of 690.9 kilometres per hour over a prepared strip on the bed of Lake Eyre. This story is told in great detail by John Pearson in his book "Bluebird and the Dead Lake" (Collins, 1965). The strip was located in the south-east corner of the lake in the area known as Madigan Gulf. Headquarters for the record-breaking team was at the homestead of Muloorina Station, about half-way between the southern shore and the nearest town of Marree about 110 km to the south-east. Muloorina, established by the late Eiliot Price in 1942, is a cattle station of hundreds of square kilometres of sand and saltbush, and is the nearest permanent settlement to the lake. The

homestead is adjacent to several waterholes in the normally-dry Frome River, around which grow numerous sizable trees in a landscape otherwise marked by no trees at all.

The author first saw Lake Eyre in 1969, from one of the scheduled civil aircraft which daily link Darwin with Adelaide. In spite of the height and distance it was still impressive, although at the time completely dry. But weather is always setting new records, and in February 1973 extremely heavy rain fell over most of Queensland, breaking an eight-year drought, and bringing floods down the Diamantina and Barcoo into the Warburton and Cooper. Lake Eyre began to fill for the second time in 133 years, only 24 years after the first!

In September 1973 the author flew over the southern end of the lake in a light aircraft, seeing for the first time in his life the vast expanse of water where dazzling white salt was usual; and an idea began to germinate. No one had ever before operated on the amateur bands from a boat on Lake Eyre. Someone had to be first!

## PLANNING

Obviously, with limited funds available, one cannot organise transport, equipment and personnel overnight for such an expedition. What type of boat could be used? The water might be too shallow to launch a boat big enough for several people plus equipment. Fuel would be a problem; a sailing boat would overcome that. But sailing boats usually have keels or centreboards needing a metre or more of water. Perhaps a catamaran? With a weatherproof cabin? No such craft existed, at least not one easy to transport over rough dirt roads for long distances. Power supply? Obviously car batteries. Solid-state transceivers, naturally; they didn't have them in 1950!

While all these factors were being considered, and time rushed on, the lake might have been fast drying up again. But Nature stepped in and poured more floods into the system early in 1974. Lake Eyre, by the end of that year had a greater depth of water in it (aboul four metres) than had ever been known before. And up in Darwin a man named Neil Fowler had devised a sailing boat which became known as the Red Baron.

Based on Fowler's design, the Western Australian firm of Ken Hill and Dale Cameron began to produce a unique fibreglass craft: a catamaran nearly 6 metres long and 2.4 metres wide, with a cabin in which four people could sleep. The 6 metre mast carried as a minimum about 13 square metres of sail. Yet the boat could be towed anywhere on its lightweight trailer by an ordinary car, and best of ail, required only 30 cm of water, not only to float but to sail. And the alloy extrusion mast, insulated at its base by the fibreglass hull, looked a natural choice for an allband antenna when fed through a suitable transmatch.

Hill and Cameron's Victorian agent, a dedicated yachtsman named Roger Bullock, was approached in February 1975 and was immediately enthusiastic. His only Red Baron could be made available atter the Sailboat 75 exhibition in April. He himself would be delighted to take part in the expedition, particularly since the plans by now envisaged making a documentary film to publicise the Lake. the amateur radio aspect, and not least, the boat. Besides. for a couple of weeks anyway, we could all get away from the approaching Melbourne winter!

## FILM

The idea of making a professional quality movie of the expedition had been thought about for 12 months, but it was only because of the technical expertise ol Tim Robinson VK3YBP that it eventually became possible. Tim had been an enthusiastic movie-maker for several years, and owned a good proportion of the 16 mm equipment which would be needed. Not only that. but he knew where and from whom the rest could be borrowed or cheaply hired. The outlay for the film could therefore be held down to not much more than the cost of film-stock and processing. Even so, this was a sizable amount of money, but not beyond the team's joint resources. The audio side of the venture was looked after by Roly Roper VK3YFF. who was also no newcomer to the movie art.

A number of HF licensees had hoped to take part in the expedition, but unfortunately several could not leave their work for the necessary week or two. This by now had been decided as the period 10-25 May

1975, the first term school vacation, permitting wives and children to join the party. Ultimately there were only two HF operators, Jack Taylor VK3NS and the author VK3ABP. Even so, It was a sizable party of 17 people who left Melbourne at various times on the 9th and 10th of May and headed for Adelaide in four cars. Space was fully utilised in the vehicles and trailers, as ail food and water (about 300 litres) had to be carried, plus sufficient tents and camping gear including gas stoves, lights, and a refrigerator. Battery charging was provided for with a "homebrew" portable wind-powered generator, plus an engine driven outfit if the wind proved inadequate.

## SAFARI

Besides the Red Baron on its trailer, Roger's car also carried a lightweight 4 metre "Surf Cat" catamaran on a roof rack. Quite an eye-catching combination on the road, and few people travelling at the time between Melbourne, Adelaide and points north failed to notice it, judging by comments later heard by party members! Incidentally there was also a 3 kW outboard motor in case the Baron ran out of wind.

The team left Adelaide on Sunday morning (11 May), and arrived that night at Hawker, to enjoy the last luxury for a week or so at the Outback Motel. Monday's travelling over somewhat less-than-perfect roads (Hawker marks the end of the bitumen) was hard on trailer fittings, fuel tanks, overloaded roof-racks, and mufflers, but Muloorina was reached just before sunset without serious mishaps. On advice from Keith Price, whose family runs the station, that the remaining 50 km to the Lake was no worse than roads already covered, the convoy pressed on into the darkness, and arrived at the shore of Level Post Bay about 8 p.m. There were some overnight visitors already there around a campfire (they brought the firewood with them!), and their galant offer of cups of tea all round was gratefully accepted by 17 weary traveliers. The tents were set up on top of the sand dunes by flashlight. (the new moon had not yet risen).

After a brief (also flashlight) inspection of the beach and the water, and some marvelling at the myriads of stars shining from the unpolluted and cloudless sky, it was time for bed.

## BLUE WATER

Tuesday 13th May, and daylight displayed the great expanse of blue water that was Madigan Gulf, extending northward to the horizon and far beyond, yet still representing only about one-sixth of the area of the Lake. The Baron was eased on its trailer down the slope to the beach, and by midmorning the largest sailing craft ever on the Lake was afloat. In the event, there was no depth problem; the water was 2 metres deep within 10 metres of the beach. The next few hours were spent in rigging the boat and installing the home-brew SSB transceiver. A plate had been fitted under the stern of the starboard hull and from this a wire was run up to the cabin for connection to the 9000 sq km ground-

plane! The SWR indicator and transmatch (the Rollerless Uitimate from QST of November 1973) were connected to the base of the mast, which was conveniently accessible electrically via a bolt through the cabin roof. Part of what is normally a double bunk was used as the operating table, and the battery was stowed underneath it.

After a late lunch, sailing nowhere in particular the first ever marine-mobile contact from Lake Eyre was made about 3 p.m. with Hughie VK5BC, who was landmobile at the time, on 40 metres. It would be nice to say that QSOs followed thick and fast after that, but before long there was evidence of sad lack of ampere-hours in the rather old battery, and after a short QSO with Snow VK3MR it was necessary to go ashore and fire up the generator.

## BROOKS ISLAND

Wednesday 14th May proved to be the highlight of the trip. By mid-morning there was a good south-westerly blowing, so plans were made to sail up to Brooks Island at the north-west corner of the Gulf about 25 nautical miles distant. A crew of 5 (Roger and Noelene Bullock being the sailors, plus VK3s YBP, YFF and ABP) set out about 1.1 a.m. with provisions for two meals, and more reliable batterles than before. VK3NS stayed ashore to monitor the proceedings, and with his help the first 20 metre DX was worked from the boat (VE7UZ. WB4SWS and WA6VGJ) plus a few VKs. Reports were somewhat discouraging, and it was obvious that 50 watts PEP and a distinctly nondirectional antenna were going to make DX difficult. From a non-radio viewpoint the trip was exhilarating., The course was west to near Pittosporum Head, then NNW towards Artemia Point. For three hours on this leg there was no land in sight, and the waves were up to a metre high. The sun shone brilliantly, cabin temperature was about 28 degrees $C$. gulls and pelicans flew overhead, and it was hard to realise the boat was 500 km from the sea (and incidentally, about 12 metres below sealevel).

Brooks Island was reached just before sunset. The trip had taken longer than expected, mainly due to the heavy load aboard reducing speed to about 4 knots at the best. At some time the Baron must have crossed the track used by Donald Campbell, but he was faster! It had been hoped to set foot on the island, which is
about 7 by 3 km in size and reputed to have a fresh-water spring, but there was neither time nor provisions to anchor for the night. So. as darkness fell and the wind held fair, sail was set for home. At this stage operations were transferred to 80 metres, in the hope of working all VK during the night, but the static was bad and few QSO's were made except reports to Jack giving progress at intervals. Navigation involved little more than keeping the compass heading on south-east, with occasional checks on 146 MHz to establish range from the camp. Jack's 146 MHz signal was first heard about midnight, and the beacon light he had rigged was sighted about an hour later. Surprisingly, it was dead ahead! By this time the wind had dropped almost to nil, so the last few miles were run on the outboard motor, and the crew staggered ashore at camp about 3 a.m. After 16 hours afloat, one tends to stagger on terra firma! Incidentally, who fired a green flare at 2310 CST on 14 May from somewhere east of Madigan Gulf, or was it a particularly bright meteor?

The remainder of the stay was less eventful, mainly because lack of good winds prevented any more long trips being made. Being ashore every night, no more MM contacts were made on 80 metres. Daytime activity, seldom more than a few km from base, was mostly on 20, and for the last three days Jack's FT 101 B was used in the boat, which helped a little with DX, being at least twice the power of the 3ABP rig. On Friday 16th an attempt was made to sail down Goyder's Channel (which connects Lake Eyre North to the much smaller Lake Eyre South), but rather less than half-way even the Surf Cat grounded in soit mud with only about 20 cm of water covering it.

## WEATHER

One gratifying feature of the visit was to hear from those worked how bad the weather was in Adelaide and Melbourne, cold, windy, raining; but the Lake Eyre sun was warm all day every day, and the nights quite mild. Enjoyment was tempered by the realisation that before long we too would have to go South and back to winter again. Visitors for the last night at the Lake were Ron VK3AFW, lan VK3ZDW and their families returning home from Alice Springs, so they also had the opportunity of a brief sail on the Gulf before helping to separate the Baron from the water on the morning of 20th May.

It is a sobering thought to realise that in another two or three years of normal seasons a!l the vast body of water that is Lake Eyre will have reverted to dry salt. Already there are many thousands of dead fish around its shores as the water falls and the salinity rises. But perhaps this once in a century phenomenon may recur more frequently in the future. Perhaps the weather pattern is changing and the Lake becoming permanent. Who knows? But we
will return some day with a sailing craft again, even If needs be a land-yacht! To those who worked us either portable or in the boat, some rather special QSLs will be on their way when we have had them printed. And we hope that all our readers and many others will be able to see our documentary film on television some time in the next few months.
In the meantime we can proudly claim to have been first-ever marine-mobile Lake

Eyre (102 siations in 5 countries): to have travelled further under sail on the lake (about 75 nautical miles) than anyone be!ore; and in the largest saiiing boat ever sten there: and to have been first under sail to navigate any significart distance ( 25 nm ) across the lake by night. Hopefully the future may allow someone else to outdo some of these claims, but the first can never be contested.

## VHF/UHF ADVISORY COMMITTEE PROPOSED BAND PLANS

During 1974, the VHF/UHF Advisory Committee proposed a draft band plan for the 70 cm amateur band. This was duly published in the October 1974 Issue of AR. Prior to publlcation it had been forwarded to Divisions for comment. If you have not read the article, or forgot its contents, then dig It out and read It now. The explanations in general remaln true for this new plan, although some of the frequencles

## PROPOSED WIA BAND PLANS



FIG 1 PLAN FOR TUNABLE PORTION OF ALL VHF \& UHF BANDS
have been altered in accordance with APO requirements.

During 1974 and early 1975 the Executive office entered Into a number of negotiations with the Central Office of the APO during which the case for beacons and repeaters in the 70 cm band was put $(23$ cm was also discussed but no favourable decision has as yet been achleved).

(VHFAC 6/75)

On 20th March the Central Office wrote to the Executive indicating that repeaters and beacons would be given favourable consideration provided they operated only between 430 and 440 MHz .

The VHFAC then set out to redraft the plan for 70 cm . At the same time it was considered expedient to prepare a more detailed draft for the first 500 kHz of the tuneable section of all bands.

The result is shown in Figs 1 and 2 of the diagram.

Both plans are self-explanatory, and reference should be made to the orlginal article in October 1974 AR. However, a few points are worth mentioning. With respect to the tuneable section. It can be seen that the segment has been divided into three broad categories:

1-DX. 2-Local. 3-Beacons.
Calling frequencles have been nominated. Many of these frequencles are in current use. Some are new. The calling frequencles are mainly related to DX operation. However it can be seen that a second SSB/AM calling irequency has been nominated on $\mathbf{2 0 0}$. This could be known as the secondary calling frequency and would normally be used for local operation.

Calling frequencies are suggested as 'oliows:
CW .... .... .... 025
Meteor Scatter - all modes . 050
RTTY .............. 075
SSB/AM ... 100 (primary DX calling) SSB/AM $\quad 200$ (secondary local calling) SSTV
Beacons could be established between . 4 and .5 with some overflow down to .35 allowable in certain areas.

The 70 cm Band Plan is self-explanatory. Presently the actual net frequencies and repeater input and output frequencies are being considered. The Federal Repeater Committee should soon be in a position to nominate some channels so as to get the ball rolling in this area.

Further negotiations must now take place with the APO betore final approval can be granted. The Executive is hopelul thal at least some channels can be agreed to readily by the APO.

Details relating to the remainder of the 6 metre and 2 metre bands will follow at a later date.

Peter Wolfenden VK3ZPA
Chairman VHAC

## 

ICOM IC22A 2M TRANSCEIVER
Features:
146-148 MH
Mode F

- Deviation 3- 16 KH2 Adjustable
- Dynamic PTT Mic Supplied
- 5 Helical Resonators in Front End - Recaiver Sensitivity O.4UV, 2OuB Ouieting - Acadio Output 1.5 W into 8 Ohms - Power Requirenents $13.5 \mathrm{~V}=15 \%$ The IC22A is Icom's new and improved version of the very popsilar for home or mobile use. We are oflering this unit with 3 channels, i.e. channel 50 simplex and channels $42 / 54$ and 48/60 repeat NCLUDING 3 CHANNELS of crystals m" $\$ 200$
 away FREE Not onty is this thit to be sold at a very
comyetrtive price fut $E \cup E R Y$ gurchaser will help his Division of the WIA to obtai a FREE IC22A.
For every ten units purchased, Dick Smith wiil donate one to your nominated Division or Club.T hese units are ideal for repeater use or WICEN emergency activities.
 TRANSVERTER
The Europa $B$ is a linear transmit and receiv transverter $28-30$ ant 7 to 144.146 MHz . It is wutible for use with either a transceiver or Oscar operation as well as normal tropo wor Although iss primary use is tor SSB it will receive and transmit ony mode of which the HE Equipment is cspable SSB AM CW FSK, FRG Once at tached to your H.F. equip ment. you operate it exactly the same as on the H.F. bands, the Europa B does the rest.
$\$ 299$

NEW TAX FREE
PREE LIST
NGI AVILABS
 (yes BC108 SAB.E.
SEND S.

Dick Smith Electronics


Deor Amsiewi's/ Just beck from oversers and look at all the goodies I've found and look at all The gookelaw-yai'l want te lot!' Dick.

JABEL ALIGNMENT TOOL PACK No. 2



1 Alsoar CITY 125 York St tel:29||26<br>BANKSTOWN $36 \mid$ Hume Hwy<br>atscriontcs cJNTRE $160-162$ Pacific Hwy<br>Head Ofice \& Mailorders Gore Hill NSW2O65 pap 50cmin tel-43953!<br>tel:7096600

Telex No:AA20036 Cables:DIKSMIT Sviney]

# BENCI PDWER SUPPLY 

Described in the following article is a low voltage power supply. No doubt you have seen many power supplies published in this and other magazines, but this particular supply should capture your interest even if you only require some of its features.

The power supply presented here is fully variable in both voltage and current modes from 0 to 15 volts and 0 to 10 amps. It may be used either as a voltage source or a current source and is metered with two $31 / 2^{\prime \prime}$ meters.

Regulation and ripple rejection are both excellent and, in fact, put this supply into the laboratory quality class as can be seen in the specification table.

## sUPPLY SPECIFICATIONS

Line Regulation: $0.01 \%$ for $10 \%$ mains change Load Regulation: $0.03 \%$ for any load addition or removal
Ripple Rejection: Better than 76 dB
Metering: Two meters $3^{\prime \prime} \times 31 / 2^{\prime \prime}$

- voltage 0.1 mA FSD calibrated 0.15 V FSD
- current 0-1 mA FSD calibrated in two ranges 0-1 AMP FSD 0-10 AMP FSD

OPERATION
Constant Voltage: Output continuously variable $0-15 \mathrm{~V}$ Constant Current Mode: Output continuously variable in 2 ranges $0-1$ AMP and $0-10$ AMP
Voltage Sensing: Selective on front panel for local or remote voltage sense
Temperature: up to 50 deg.c for full output.

You may ask, why go to the trouble of providing these high specifications for amateur use? These features are actually a bonus from the prudent use of integrated circuits and modern design used in this supply.

The supply has been designed to cover applications such as charging single cells or complete batteries, powering logic circuits covering $3.6 \mathrm{~V}, 5 \mathrm{~V}$ or 7 volt rails, zero derived voltage powered equipment such as $9 \mathrm{~V}, 10 \mathrm{~V}$ and 15 V and mobile/portable equipment such as $4.5 \mathrm{~V}, 6$ to $7 \mathrm{~V}, 9 \mathrm{~V}, 12-14$ volts.

It can be used as a general bench supply powering portable/mobile equipment, but more Importantly it can be used in powering equipment where rigid voltage and current control is required (e.g. newly constructed transmitter/transceiver or faulty existing gear - solid state SSTV etc.), or the power supply current can be set to limit at a pre-determined level, thus alleviating possible equipment damage due to short circuits, incorrect terminations or poor tuning up. How many times have you discovered that a fuse has been protected by the circuit it was meant to protect? And when that rig is tuned up you can set the current limit just above normal operating current, thereby protecting the rig during use. Another use is recharging of batteries where the current can be set to give constant current charge with the supply



PRICE BREAKTHROUGH ON AUSTRALIAN-MADE UHF FM TRANSCEIVER BY WILIS COMMUNICATIONS PTY. LTD. §220 WILLIS AUTOPHONE U32-5 $\mathbb{E 2 2 0}$


SPECIFICATIONS:

| RF Power Output: | 5 watts $(\min )$ | Welght: | 3.2 kg |
| :--- | :--- | :--- | :--- |
| Power Requirement: | 13.8 V DC, 2 A (max) - | (negative ground) | Width: |
| Rx Sensitivity: | 0.5 uV for 20 dB quieting typical, 0.7 uV max. | Depth: | 20.2 cm |
|  |  |  | Height: |
|  |  | 4.8 cm |  |

This 70 cm transcelver is basically the same as the Willis commercial unit of which there are thousands operating mobile throughout Australia, it is not a cheap toy radio.
All prices include sales tax. Add $\$ 8.00$ to cover packing, freight and insurance.


FIG. 1
The auxiliary circuit from the 25 V winding is a constant voltage source, and the outputs are used as control voltages for the main regulator.

The auxiliary voltages are derived from a minor secondary winding of 25 volts at 50 mA . The $A C$ is half-wave rectified and filtered by the 100 uF capacitor. This voltage is fed to the supply pins V - and $V+$ ) of the UA723C integrated circuit. This in turn produces the reference voltage which is fed to the non-inverting terminal of the UA741C operational amplifier. This input causes the operational amplifier output to rise thus raising the emitter voltage of the PN3641 transistor.

The 8 K 2 and 10 k resistor divider cause the circuit to regulate at approximately 13 volts. Hence we have $a+13$ auxiliary supply with reference to the zero volt ( OV ) line. Also the insertion of a 6.2 V zener diode as shown in the circuit allows us to derive a -6V auxiliary supply. These voltages +13 V , reference volts and -6 V are used as supply and control voltages for the power supply.

Fig 3 clearly shows the principle of operation for constant voltage control. The reference voltage is fed to two voltage divider networks. One divider is fixed (4K7 network), whilst the other is variable (5K6 network with 25 k potentiometer). When

the "rheostat connected" potentiometer is at zero resistance, the error amplifier will only see equal input voltages when the voltage across the power supply positive and negative terminal is zero. By adjusting the 25 k potentiometer away from zero, the input to the error amplifier is no longer balanced and the output rises causing the series pass transistor to rise, thereby producing voltage across the power supply positive and negative terminals.
This in turn biases the 4K7 divider and equilibrium is reached when the error amplifier sees equal input voltages. Hence we have a regulated supply available from the supply terminals.

Fig 4 clearly shows operation for constant current control.
The reference voltage is divided to approximately 1 V across the 1 k potentiometer. This is fed to a UA741C operational amplifier and causes the output to remain high. As load current flows, a potential is developed across the 0.1 ohm current sensing resistor. If this potential exceeds the input from the 1 k potentiometer, the operational amplifier output falls and closes down the UA723C regulator via the OA202 diode. This gives good cut-off characteristics and network switching allows


## FIG. 4

two continuously variable ranges of current control.

Remote sensing is provided and can be used when required. When the load is distant from the power supply terminals. small twin flex can be run from the load back to the supply terminals and remote sensing used to keep load voltage constant under varying load currents.

Monitoring of load voltage and current is carried out by two 0-1 mA FSD meters. The 15 k resistor gives $0-15 \mathrm{~V}$ FSD and use of the current sensing resistor does away with shunts for measuring current. The current limit switch gives FSD meter indications $\mathrm{D}-1$ and $\mathrm{D}-10 \mathrm{amps}$.

A "centre-off" DPDT switch enables current and voltage to be set up before applying the load.

The series pass elements are a 2N3055 driver stage controlling five 2 N3055s in parallel.

The five 2N3055s are necessary due to the large dissipation evident under conditions of high load current at low to virtually zero output voltage. Each parallel 2N3055 transistor has a current sharing resistor to prevent thermal destruction.

The driver and parallel transistors are mounted two each on three 6 inch pieces of "MINIFIN" - 002.

If you are interested in building this supply, it is highly desirable to obtain the Printed Circuit Board which has been designed so that control circuits are not influenced by small potential drops occurring under high load currents. If these potentials were developed in control circuits, then regulation would be lost.

To make construction of this supply as simple and economical as possible, the Moorabbin and District Radio Club has available a complete kit of parts. This kit includes all items down to the last nut and bolt, and instructions.

Enquiries may be made to the Secretary: P.O. Box 88, East Bentleigh, 3165.

## VICOM NTERNATIONAL PTY LIMITED Manager Peter WHiliams

## 12 month warranty* on all ICOM TRANSCEIVERS!

* warranty excludes final transistors and damage caused by user negligence.

Model:
General
Numbers of Semi-Conductors Employed
Transistors
F.E.T

IC
Diodes
Power Source:
Current Drain:

Antenna Input
Dimension: $H \times W \times D$ in mm
Net Weight:
Transmitter
Frequency Range: 'viH,
Band Spacing:
Channels: Ciystal Contiolled
RF Output Power: Switchable
Mode. (Phone by FM)
Max Frequency Deviation:
Morlulation System:
Multuplication:
Spurious Radiation:
Microphone: Dynamic P.T.T
Receiver
Frequency Range: MH /
Band Spaciny:
Mode: (Phone by FM)
Receiving System:
IF: 1st $\mathrm{MH} /, 2 \mathrm{nd} \mathrm{KH}$
Sensitivity
Spurious Response
Band Width
Stauelch Sensitivity:
Audio Output: 8 ohm
(Negative Ground) $13.5 \mathrm{~V} \pm 20 \%$
$\begin{array}{ll}\text { Transmit HI.10W } & 2.1 \mathrm{~A} \\ \text { Transmit LO.1W } & 1.2 \mathrm{~A}\end{array}$
$\begin{array}{ll}\text { Transmit HI.10W } & 2.1 \mathrm{~A} \\ \text { Transmit LO.1W } & 1.2 \mathrm{~A}\end{array}$
Receive at Peaking
Receive Average

IC-60
IC-22A

32
4
1
20

150 mA
50 ohms
$58 \times 156 \times 216$
2 kgs
50.54

1 MH ?
12
10 W as HI (high) and 1 W as LO (low)
F3 F3
$\pm 5.15 \mathrm{KH}=\quad \pm 5.15 \mathrm{KHz}$
Variable Reactance Phase Modulation
$\begin{array}{ll}2 \times 2 \times 2 & 2 \times 2 \times 2 \\ -60 \mathrm{~dB} \text { or less } & -60 \mathrm{~dB} \text { or less }\end{array}$
$10 \mathrm{~K} / \mathrm{ohms}$
50.54

2 MH ;
F3
Double Super Heterodyne System
$10.7 \& 455 \quad 10.7 \& 455$
a. Better than 0.4 uV at 20 dB quieting
b. $\mathrm{S}+\mathrm{N} / \mathrm{N}$ at 1 uV input. 30 dB or more

60 dB or less
a. $\pm 8 / \pm 15 \mathrm{KHz}$ at $\cdot 6 \mathrm{~dB}$ point
b. $\pm 16 / \pm 25 \mathrm{KH} /$ at -50 dB point
$8 \mathrm{~dB} \quad .8 \mathrm{~dB}$
$1.5 \mathrm{~W} \quad 1.5 \mathrm{~W}$

## fim

IC-22A conopece channels $\stackrel{1}{\boldsymbol{t}}$
Fratures:

- Solid.State T/R relay
- PA protection
- 5 hellecal resonators
- 12 month war ranty

Complett: with cables, bracket, mic Extra channe:1s $\$ 8.50$ piair
PRICE: $\$ 210$ plus freight
Packayt deal with DV. $21 \$ 450$

## 6 M SSB IC 501

F-eatures:

- 50.54 MH , SSB/AM/CW
- Pll VFO
* 10 Watis
- Xtal filters lor AM/CW
- AC or DC operation
- siere $111 \times 230 \times 260 \mathrm{~mm}$

PRICE: $\$ 445$ plus freight


## DV-21 PLL DIGITAL VFO

DV. 21 DIGITAL VFO employs a PLL synthesised system with 59 ICs, 34 transistors. 1 FET and 37 diodes. It can be INTERFACED with the IC22A or any 2 m transceiver with 44.45 MHz ix 18 MHz tx, 10.7 MH z i.f., Iwr side hetrodyne, $8 \times$ basic freq for $t x$ and 3 or $9 \times$ basic frec. for rx. Only a slight modification is required for such equipment and is detailed in the operating manual. It operates in 5 or $10 \mathrm{KH} /$ steps from 146 to $148 \mathrm{MH}_{2}$ and can scan either empty frequencies, or the irequencies being used, whichever you select. Complete separate selection of the transmit and receive frequencies is as simple as touching the keys. When you transmit, bright easy to read LEDs display your frequency. Release the mic switch and the receive frequency is displayed. These are two programmable memories for your favorite frequencies. You won't believe the features and versatility of the DV-21 until you've tried it.
Stability: Better than $\pm 2 \times 10^{-5}$
Power: 230 VAC $\pm 10 \%$
$13.8 \mathrm{VDC} \pm 15 \%$ at 1.5 A
Output: 400 mV (no load)
Spurious: Better than -60dB
Sice: $\quad 111 \times 161 \times 261 \mathrm{~mm}$ Weight: $\quad 2.5 \mathrm{~kg}$

PRICE: \$285

## IC-3PA

13.8 b nuwe supply for lC?2A/IC60

PRICE: \$78

## CRYSTALS

WIA Band Plan Xlals for Icom tianscelvers $\$ 8.50$ $\mathrm{pr}+50 \mathrm{c}$ P \& P

## VICOM INTERNATIONAL PTY LIMITED Manager Peter WHIliams

HF TRANSCEIVERS


5 Bands, 200 Watts Input
Atlas 210-215 solid-state transceiver,
\$570
Atlas 240 V power supply, \$150 Atlas delux mobile mounting bracket. $\$ 47$

## ANT. ACCESSORIES

ME-UA UHF POWER METER $\$ 69$ AS-GM gutter damps $2 \mathrm{~m} \$ 7.50$ SH-7E lightning arrester $\$ 14.90$ CO-AX 58u 45c per m
RB 2m mast amp (144-146 or 146-148) \$32
Rotator - CDR ham II 240v \$165.


Vicom have made available a frequency counter in the front window of the Auburn showrooms to assist mobile 2 M FM rig owners in staying on frequency. Come anytime and tune your rig while parked at the curb.
SEE IT
ALL AT VICOM!

MONITOR SCOPE. The YAESU YO-100monitor scope can be interfaced with most transceivers and can cover a wide range of modes incl. RTTY. A two tone built-in generator at 1500 and 1900 Hz adds to the versatility. Price: S190.
YAESU frequency counter $\$ 250$. Covers up to 200 MHz max. sensitivity 20 mV , hi-lo input impedance.

## ANEENAE <br> MOBILE WHIPS:

RM-80 Resonator for $\mathbf{8 0 m}$. $\mathbf{\$ 1 8 . 5 0}$
RM-40 Resonator for 40 m . $\$ 16.80$
RM-20 Resonator for $20 \mathrm{~m} . \$ 13.50$
BM-1 Bumper mount \$13. Spring \$13.
HY-GAIN
203BA 3el 20m beam $\$ 168$
TH6DX 6el yagi 10-15-20. \$225
TH3JR 3el yagi 10-15-20. \$135
18AVT trap vertical 80-10. $\$ 90$
SAFETY MIKE
MICROPHONE HEADSET
for driving saiety. \$34


14AVQ trap vertical 40-10. \$65
VHF ANTENNAE
LINDENOW $2 \mathrm{~m} 5 / 8$ whip $\$ 21$, base $\$ 2.60$.
RINGO ARX-2 6db 2m gamma matched vertical, \$35.
Extension kit to improve gain of the old AR-2, \$12.
Vicom now have a range of suppression kits for the mobile enthusiast, including de line filters, alternator and generator kits, ignition suppression kits and electroshield kits for the tough jobs.

## Distributors

A.C.T.:

Andrew Davis, 32 Kalgoorlie Crescent, Fisher. Phone: (062) 88-4899.
OLD.: DB Electronics, 21 Christine Ave., Miami. Phone: (075) 35-1798
S.A.: Graham Stallard, 27 White Avenue, Lockleys. Phone: (08) 43-7981.
Geelong: Phil Fitzherbert, Phone: (052) 43-6033.
Newcastle: Digitronics, 188 Parry Street, Newcastle. Phone: (049) 69-2040.
W.A.: Netronics, 388 Huntriss Avenue, Woodlands. Phone: (092) 46.3232.

PROFESSIONAL QUALITY 2M FM RECEIVER MODULE... Ideal as an auxiliary monitor for the shack or to keep the XYL posted (perhaps not a good idea!), this kit comes complete with a single channel oscillator and a premium grade 11 element if ladder filter. The price of $\$ 69.50$ includes predrilled fibreglass pcb, all components, if crystal, filter, instruction manual. Add \$1P \& P.
$\$ 69.50$

## SPECIAL



The Seiwa SU-710 70 cm fm transceiver runs 10 watts and is the ideal mobile rig. Complete with I channel (435.0) and mounting bracket, mic, cables etc. and VICOM 90 day warranty. Price $\$ 278$. \$260

Head office .... 139 AUBURN RD. AUBURN, VIC 3123.
82-5398


## PART TWO

## Section 2-

## DETAILED DESCRIPTION

In this section each of the modules, and the separate functions it contains, is described in detail. Circuit diagrams and component layouts are given as are the details for steering frequency determining circuits to the desired values.

## 2A - Unit A - RF AMPLIFIER/VFO/ MIXER/CRYSTAL OSCILLATOR

Figure 2 gives the circuit diagrams of the four on board functions while Figure 3 shows the placement of components on the board. Table 2.1 gives coil and capacitor data for the signal and IF circuits, Tables 2.3 and 2.4 detail the VFO tuned circuit constants while Table 2.5 gives representative coil data for the crystal oscillator.

## (i) The RF Amplifier

The RF amplifier uses a dual gate protected MOSFET such as the Motorola MPF121, the Fairchild FTO501 or the RCA 40763 or any pin compatible electrical equivalent. Input is at low impedance via the link winding on L1, this latter coil being resonated by C1 for fixed tuning of narrow frequency ranges or by an external variable capacitor if a "peaking" facility is required or if a wide frequency coverage is sought.

Note that the "cold" (to RF) end of L1/ C1 is returned to the source and not to earth as in the more conventional arrangements.

The source of the FET is maintained at
a constant voltage of around 1.6 V by using a light emitting diode as a low voltage zener. The gain of the stage is determined by the potential applied to gate 2 of the MOSFET.
With conventional biasing arrangements, using a decoupled source resister and/or resistive biasing of the gates, the voltage across the source resister falls as gain is reduced so that, even if gate 2 is connected directly to earth, there is still some residual gain because gate 2 cannot achieve a potential sufficiently negative with respect to the source to cut the stage off completely. This problem can be overcome by using a negative return rail for
H. L. Hepburn VK3AFQ 4 Elizabeth St., East Brighton, 3107


FIGURE 1 - BLOCK DIAGRAM OF MODULES
the gate biasing network but provision of such a negative voltage supply can be a problem if mobile work is contemplated. The arrangement used here is to fix the source voltage at-approximately 1.5 V by means of the LED/Zener so that if gate 2 potential is manually or automatically reduced to near ground potential there exists a sufficient differential between gate 2 and source to reduce stage gain to zero

The gain control voltage can be obtained manually by means of a resistor and potentiometer across the main HT supply or automatically from the AGC generator described in Unit C, or combined as shown in Figure 6.


Since a dual gate MOSFET likes to see a low impedance drain load (it is only the gates which have high input impedance) link coupling is used to L2/C2. L2 is mutually coupled to L3/C3 and a further link on L3 provides the necessary low impedance output required by the signal ports of the balanced mixer.
(ii) The Mixer

The mixer is a Motorola 1496/1596 or its less costly Fairchild equivalent, the 796 HC .

Both are in TO5 10 pin packages. Other manufacturers market electrical equivalents that can be used provided they are pin compatible.

Oscillator feedthrough is minimal even with no variable balancing arrangement and there is no significant output at the fundamental of either input frequency. This characteristic makes for a clean, noise free output. The 10 k trimpot allows the device to be balanced for minimum oscillator feedthrough.

The output transformer L4 is bifiliar wound and is resonated by C4. A link wound over the centre of L4 provides a low impedance output.

As mentioned with respect to C1, both C2 and C3 can be wholly or partially replaced with an external variable capacitor if a "peaking" control is wanted or if a large signal frequency range is to be covered.

Coils L1, 2 and 3 are wound on Neosid 722/1 formers (obtainable from Neosid,


## VK 2 AVA INTRODUCES THE OUTSTANDING


mode 8120
model POPO
MODELBO10

UNIDEN CORPORATION of JAPAN, an old established manufacturer of commercial communications equipment, has just entered the field of amateur transceivers and is introducing an all-band 80 to 10 M . coverage AC-DC transceiver with many novel features, amongst others:

PAIR of 6146-B tubes in the final stage with high voltage Zener diode, stabilizing the screen voltages to the 6146's, resulting in minimum distortion products and a very clean out put signal.

SEPARATE USB and LSB and CW 8-pole crystal filters as standard and no frequency change when going from USB to LSB.
PHASED LOCK LOOP oscillator circuitry, maximum stability.
INDEPENDENT r.f. circuitry for transmitting and receiving, no compromise common circuits.

MAXIMUM accessability to plug-in PCB modules, even the front panel can be swung out for easy servicing should this be required.

CONTINUOUS RF attenuator with up to 70 db . maximum at tenuation.

DUAL.RANGE R.I.T. control (clarifier) with either 5 KHz or 1 KHz 'plus and minus irequency control.

100 KHz VFO Range, with push-button selection of each 100 KHz frequency coverage.

Many more features, no front-end overloading on even the strongest signals, matching external VFO and speaker units available, in all combining the better things of competing products at a lower price.

## Will be introduced during AUGUST, 1975, for just $\$ 550$

All prices quoted are net SPRINGWOOD, N.S.W., cash with order s, sales tax included in all cases, subject to changes without prior notice. Noterms nor credit nor COD facilities, only cash and carry, no exceptions. All-risk insurance available for 50 cents per $\$ 100$ value, minimum insurance charge 50 cents. Allow for freight, postage or carriage, excess will be promptly refunded. - MARY \& ARIE BLES, Proprietors.

## SIDEBAND ELECTRONICS SALES and ENGINEERING

## SIDEBAND ELECTRONICS SALES and ENGINEERING

## UNIDEN

| Model 2020 de-luxe all-band AC-DC transceivers <br> External VFO model 8010 for the 2020 <br> External speaker for model 2020 | $\begin{aligned} & \$ 550 \\ & \$ 100 \\ & \$ 25 \end{aligned}$ |
| :---: | :---: |
| TRIO-KENWOOD |  |
| Model TS-900 de-luxe all-band transceivers, with PS-900 AC supply-speaker unit <br> Model TS-520 AC-DC transceivers all-band Model TV-502 2 Mtr transvertor for TS-520 QR-666 all-band coverage receiver $170 \mathrm{KHz}-30 \mathrm{MHz}$ | $\$ 800$ $\$ 530$ $\$ 200$ $\$ 300$ |
| YAESU-MUSEN |  |
| Latest model FT-101-E AC-DC transceivers with genuine RF clipper-speech processor <br> Model FT-200 transceivers with FP-200 AC unit Model YC-355-D digital frequency counters 0.200 MHz <br> SPECTRONICS DD-1 digital counter for FT-101-B-E | \$650 |

All UNIDEN, TRIO-KENWOOD \& YAESU MUSEN trans ceivers come complete with original English manuals, all crystals for all available bands and a P.T.T. dynamic microphone. Sorry, no more free S.W.R. Meters.

## HY-GAIN ANTENNAS

| 14AVO 10-40 M. verticals 19' tall, no guys | \$65 |
| :---: | :---: |
| 18 AVT-WB 10-80 M. verticals, 23 ' tall, no guys | \$90 |
| TH 3 JR 10-15-20 M. junior 3 el Yagi 12' boom | \$135 |
| TH 3 Mk 3 10-15-20 M. senior 3 el . Yagi 14' boom | \$180 |
| TH 6 DXX 10-15-20 M. senior 6 el. Yagi 24' boom | \$225 |
| 204 BA 20 M. monoband 4 el. TIGER YAGI 26' boom | \$190 |
| HY-QUAD 10-15-20 M. full size Cubical Quad | \$200 |

## CDR ANTENNA ROTATORS

AR 22 for 2 and 6 M . and small HF beams control units.
4-conductor light cable for AR-20-22 20 cents per yard 12-conductor light cable for HAM-II 30 cents per yard 8 -conductor heavy duty cable for HAM-II 60 cents per yard

## BARLOW-WADLEY RECEIVERS

Model XCR-30 Mk II 500 KHz to 31 MHz continuous coverage portable communications receivers, crystal controlled reception of AM-USB-LSB-CW \$275

## POWER OUTPUT METERS

Galaxy RF 550A with 6-position coax switch $\quad \$ 75$

## S.W.R. METERS

Midland twin-meter model for 52 Ohms. up to 1 KW on HF

## BALUNS

New Japanese model, 75 Ohms impedance 1 KW PEP

## MARK MOBILE ANTENNAS



## ASAHI MOBILE ANTENNAS

Model AS-303A set of 5 whips 10 to 80 M.
complete with ball spring and mount
AS.2-DW-E $1 / 4$ wave 2 M . mobile whip $\$ 90$

AS-WW $5 / 8$ wave 2 M . mobile whip
AS-GM gutter clip mount with cable and connectors $\$ 10$ M-RING body mount and cap for 2 M . whips $\$ 5$

## COAX CONNECTORS

VHF types PL-259, angle and T-connectors RCA male to SO 239 type female, all models

## CUSH CRAFT ANTENNAS

| Model DGPA 52 to 27 MHz adjustable ground plane LAC- 2 lightning arrestors | $\$ 25$ $\$ 6$ |
| :---: | :---: |
| Model AR-2 RINGO $5 / \mathrm{s}$ wave verticals | \$20 |
| AR-2X RINGO double $5 / 8$ waves verticals | \$35 |
| ARX-2 extension for AR-2 | \$15 |
| A147-20T combination vertical-horizontal |  |
| $2 \mathrm{M} . Y$ agis, 10 element s each | \$60 |
| A147-1111 elements 2 M . Yagi | \$30 |
| CRYSTAL FILTERS |  |
| 9 MHz similar to FT-200 ones, with carrier xtals | \$35 |
| POWER SUPPLIES |  |
| 240 V AC to 12V DC 3 A, regulated overload protected | \$35 |
| FDK MULTI-7 |  |

2 M. FM transceivers, 10 W output, now with 12 Aussie channels crystals, 40 to 60 . including channels 43 and 45 includes all repeaters and ant in-repeater use, still \$225

## KEN PRODUCTS

KP-2022 M. hand-held transceivers with 6 channels $\$ 150$
KCP-2 charger for KP-202 with 10 NICAD batteries $\$ 35$
Stubby flexible whip for KP 202
KP-12A speech processor, self contained 240 V AC

## KLM ELECTRONICS

$$
\begin{aligned}
& \text { Solid state 12V DC } 2 \text { M. amplifier, 12W output, automatic } \\
& \text { antenna change.over when driven, ideal for mobile use } \\
& \text { with the KP-202 }
\end{aligned}
$$

## NOVICE LICENSEES EQUIPMENT

5 W AM 23 channels 27 MHz transceivers with P.T.T. mike ..... $\$ 95$
5 W AM 15 W SSB 23 channels transceivers
with P.T.T. mike ..... $\$ 175$

Dick Smith Electronics, WIA Components Committee and some supply houses) and use F16 or F29 self-locking tuning slugs. All coils use screening cans obtainable from the same sources.

L4 (at least at the higher IF frequencies) can also be wound on a Neosid former. However, at an IF of 455 kHz , the coil is a little difficult to wind and a standard 11 mm 455 kHz replacement type transistor broadcast transformer can be used Instead. The PCB is laid to accommodate either type of coil.

If required, the RF stage and its associated components (including the 100 ohm HT decoupler and its associated 0.047 mfd capacitor) can be omitted. The drain end of the input link on L2 then becomes the antenna input and a wire across the two holes originally occupied by the 0.047 decoupling capacitor earths the other end of the link.

| TABLE <br> Freq. MHz | 2.1-RF/MIXER COIL DATA |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Primary <br> Turns | Link Turns | A.W.G. En. | DIA. Ins. | $\begin{aligned} & \text { 8lug } \\ & \text { Type } \end{aligned}$ | $\underset{\text { pif }}{\text { C1-CB }}$ |
| 1.8 | 75 | 10 | 37 | 0.0045 | F16 | 470 |
| 3.5 | 50 | 5 | 37 | 0.0045 | F16 | 150 |
| 5.0 | 35 | 4 | 32 | 0.008 | F16 | 150 |
| 7.0 | 30 | 3 | 32 | 0.008 | F16 | 100 |
| 9.0 | 26 | 3 | 32 | 0.008 | F16 | 100 |
| 10.7 | 20 | 3 | 32 | 0.008 | F29 | 100 |
| 12.0 | 20 | 3 | 32 | 0.008 | F29 | 82 |
| 14.0 | 20 | 3 | 32 | 0.008 | F29 | 47 |
| 18.0 | 20 | 3 | 26 | 0.016 | F29 | 47 |
| 21.0 | 20 | 3 | 26 | 0.016 | F29 | 33 |
| 28.0 | 20 | 3 | 26 | 0.016 | F29 | 15 |

Notes
(a) All colls close wound on Neosid 722/1 formers using specifled American wire gauge (or closest SWG equivalent) enamelled wire.
(b) Links for L1, 2, 3 and 5 are wound over the "cold" of earthy end of the tuned winding.
(c) L4 is wound bifillar. For example, at 9 MHz L4 is two 13 lurn windings or 26 turns total. The link is wound over the centre of the tuned winding.
(d) L 4 for 455 kHz can be a centre tapped 10 mm broadcast replacement IF transtormer.
(iii) The VFO

Using single conversion places some restriction on the VFO if reasonable stability is to be achieved and intermediate hetrodyning of the VFO to a high injection frequency is to be avoided.

Using the Amateur bands as an example, the following VFO ranges will be required


FIGURE 4 16 COIL ASSEMBLY
for 160 metres through 15 metres at various IF frequencies.

| TABLE <br> Band | 2.2 <br> 8ignal Fraquenciea MHz | $\begin{aligned} & \text { I.F. } \\ & \text { CHz } \end{aligned}$ | VFO Frequancy MH2 |
| :---: | :---: | :---: | :---: |
| 160 | 1.8-1.86 | 9.0 | 7.2-7.14 |
|  | " | 10.7 | 8.9-1.84 |
|  | " | 5.0 | 3.2-3.14 |
|  | - | 0.455 | 2.255-2.315 |
| 80 | 3.5-3.7 | 8.0 | 5.5-5.3 |
|  | " | 10.7 | 7.2-7.0 |
|  | ' | 5.0 | 1.5-1.3 |
|  | " | 0.455 | 3.855-4.155 |
| 40 | 7.0-7.15 | 9.0 | 2.0-1.85 |
|  | ' | 10.7 | 3.7-3.55 |
|  | . | 5.0 | 2.0-2.15 |
| 20 | 14.0-14.35 | 9.0 | 5.0-5.35 |
|  | " | 10.7 | 3.3-3.65 |
|  | . | 5.0 | 9.0-9.35 |
| 15 | 21.0-21.45 | 8.0 | 12.0-12.45 |
|  |  | 10.7 | 10.3-10.75* |
|  | - To be e | oided |  |

Thus, in order to glve as wide a choice of signal and IF frequencies as possible, the VFO circuitry used must enable frequency segments to be selected in the
range $1.3-12.5 \mathrm{MHz}$. The circuit adopted is given in Figure 2 and component layout in Figure 3. Note that capacitors used in the oscillator proper (C6-C9 and the 100 pF output coupling capacitor) are styroseals and are so marked on the circult diagram. The FET oscillator is a 2N5245 and has its collector supply regulated at 5.0 volts. The FET/Bipolar buffer provides both isolation and a very low output impedance. The Texas Instruments 2N5245 was used but other HF fets can be substituted provided they are pin compatible. The writer has used MPF102s and 2N3819s in this clrcult but the board layout is specific to the TI2N5245 or the MPF102.

The coil form used is a Neosid (23-25 Percival St., Lilyfield, NSW 2040) Type A1 assembly. This assembly consists of a three section plastic winding bobbin enclosed in two mushroom shaped powdered iron shrouds. The core and shrouds fit over a threaded nylon cylinder containing a powdered iron tuning slug. The whole assembly is held together and to the PCB with a nylon bolt. See Figure 4.

The tuning capacitor CT is a 100 pF (nominal) varlable. Elther the Eddystone Type 585 or Jackson Brothers Type C804/ 100 pF are very suitable and are stocked by William Willis (77 Canterbury Rd., Canterbury, Vic. 3126).

The capacitor swings required to cover the Amateur bands are given in Table 3 and a styroseal capacitor (CP) is used to restrict the tuning range to that required. Note that both tuning capacitor and series padding capacitor are not on the PCB but should be firmly mounted close to it and the inter-connects kept as short and stiff as possible.

Table 4 glves the VFO coverage to be expected using various coil windings and resonating capacitors. This data will be useful if either a wide signal frequency range or frequency segments other than the amateur bands are of interest.

## (Iv) The Crystal Oscillator

To increase the flexibility of Unit $A$, on board provision is made for a simple FET crystal oscillator. It uses fundamental mode paraliel resonant crystals. The board layout allows for either Style D or Style K



FIGURE 6 - UNIT B -COMPONENT LAYOUT
crystals and a fixed capacitor (CA) for fixed adjustment to the crystal frequency. CA may be replaced by a $3 / 30 \mathrm{pF}$ trimmer for more precise adjustment of the crystal frequency lf so desired.

L5 is resonated with C5 at the crystal frequency and the output link coupling uses, to the nearest turn, one eighth of the number of turns on the tuned winding. Representative coil/capacitor data is given in Table 2.5 below.

Having provision for a crystal oscillator means that the module can be used as an HF converter, the VFO not being used. Alternatively, both VFO and crystal oscillator can be used to provide tuned or fixed frequency operation of a receiver or transmitter. A third possibllity is to use both VFO and crystal oscillator in Unit A, $m i x$ them together in the signal frequency mixer of Unit D (described later) to provide the higher injection frequencles needed to cover, say the 28 to 30 MHz band.

| TABLE 2.5 - REPRE Crystal Frequency NH2 | ESENT <br> Turna | $\begin{aligned} & \text { TIVE D } \\ & \text { LS } \\ & \text { AWG } \end{aligned}$ | A FOR <br> Core | C3 |
| :---: | :---: | :---: | :---: | :---: |
| 3 | 30 | 32 | F16 | 330 |
| 6 | 30 | 32 | F16 | 150 |
| 9 | 28 | 32 | F16 | 100 |
| 12 | 20 | 32 | F29 | 100 |
| 18 | 20 | 28 | F29 | 47 |

## 2B — Unit B - SSB/CW/AM IF AMPLIFIER

The circuit diagram is given in Figure 5 while the component layout is given in Figure 6. Table 2.6 gives coil data.

A 2N3564 input stage is used primarily to provide an impedance match to the input of the filter. The stage does give a voltage gain of 2 or 3 at 9 MHz and somewhat more at 455 kHz .

Output from the filter is amplified by a three stage discrete component amplifier using MPF121s or equivalent dual gate MOSFETS. The three stages are identical and are AGC controlled.

As in the case of the RF amplifier in Unit A, the sources are kept at a constant voltage by using a LED as a low voltage zener and the signal gate returns being made to source and not directly to earth.

Since this system allows stage gain to be reduced to zero by taking gate 2 to near earth potential, the AGC action is very much enhanced and is known to be in excess of 120 dB .
An offtake is provided from the drain of the first MPF121 to allow a double sideband signal from a balanced modulator to be amplified and stripped of one sideband before passing to a subsequent mixer to produce a signal frequency SSB output. Suggested off board switching to do this is given in Figure 4.

The PCB is laid out so that most of the popular filters on 5.0 . 9.0 or 10.7 MHz can be used. The Hy 0 filters type QF9BO (9 MHz ) or QF10E7 ( 10.7 MHz ) are available from their Australian makers at 10-12 Rosella St., Frankston, Vic. 3199 or their interstate agents. The board will also accept the KVG range of filters which are advertised in local journals as being available from overseas. Other filters such as the (now discontinued) Pye 90A will also fit the PCB but the Collins 455 kHz range of mechanical filters are too long to fit the board unless mounted vertically.
The two resistors marked RL and the two capacitors marked CL are normally specified by the supplier. The HyO QF9BO
requires terminating impedances of 500 ohms and 30 pF . The 1000 ohm collector load of the 2N3564 first stage is effectively in parallel with the input of the filter so that the actual value of RL put on the board will be 1000 ohms and CL will be 30 pF minus circuit strays or say 22 pF . The output CL will also be 22 pF but the output RL will be 650 ohms. Other terminating R and C values can be established bearing these points in mind. If a 455 kHz Collins mechanical filter is used both input and output CL will be 120 pF , no output RL will be needed and the input RL will have to be put IN SERIES with the 1000 pF coupling capacitor and not between filter input and earth.

For $5.0,9.0$ and 10.7 MHz IFs the interstage transformers may be wound on Neosid 722/1 forms. Coil and capacitor data is given in Table 2.6. For a 455 kHz strip. use may be made of either 7 mm or 11 mm replacement type transistor broadcast transformers. Those having a low impedance output link (i.e., white or yellow codes) are suitable. The PCB is laid to accept all three coil types.

If a commercial unit on 455 kHz is used for IFT 3 then it will have to be modified by removing its internal resonating capaci-



## Notes

(1) Coll tuma equally diatibuted in all three coll former sections.
(2) For wide band tuning C6 can conviently be a 60 pF trimmer.
(3) Coll inductance adjuatment allows correction tor normal capacitor tolerances.

## The value-packed commercial quality PFT-203 TRANSCEIVER for 2 m FM 25 CHANNELS 30 WATT



TECHNICAL DATA OF PFT-203

The model PFT-203, originally designed for marine use in America, is a 30 watt plus, 25 channel mobile FM transceiver for the 2 m amateur band. It is compactly housed in a metal cabinet of attractive appearance. The IF amp. frequencies are 10.7 MHz and 455 kHz , clear of HF amateur bands to reduce interference to a minimum. Excellent selectivity is assured by the use of a 2 pole crystal filter and three ceramic filters! A low pass filter is included in the antenna circuit for both transmit and receive.
Incorporates power level adjustment and automatic SWR protection which does not cut the transmission on high SWR but reduces power according to SWR deficiency. Thus you can still transmit even with a relatively poor SWR... good for emergency, etc. situations.
The use of a large area heat sink and PA transistor with power dissipation of 70 W help to ensure trouble-free operation under arduous conditions. One channel provides priority "call-channel" operation. Enables you to flick over to your favourite pre-determined Channel without altering the main channel selector switch.
general
Frequency Coverage
Number of Channels
Maximum Bandwidth per Unit Mode
Power Source
Power Drain

Operating Temperature
Antenna Impedance
Microphone
Dimensions

## Weight

tRANSMITTER
Power Output
Modulation Multiplications Frequency Deviation Harmonics Spurious Radiation Adj. Chann. Radiation
Frequency Stability
Mod. AF Response

## RECEIVER

Receiving system Frequency Stability Intermediate Frequency Sensitivity Selectivity Spurious Response Spurious Radiation Intermodulation Audio Output
$140-170 \mathrm{MHz}$, factory adjusted to the 2 m band 24 Channels plus 1 memory channel 2 MHz
F3 (Phase Modulation)
13.5 V DC $( \pm 10 \%)$ Negative Ground

Receive 0.3A
Transmit $5.0 \mathrm{~A} / 25 \mathrm{~W}$

$$
1.2 \mathrm{~A} / 1 \mathrm{~W}
$$

$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
50 ohms
Dynamic 500 ohms
$61 \mathrm{~mm}(H) \times 166 \mathrm{~mm}(W) \times 215 \mathrm{~mm}$ (D) or $23 /$ " $^{\prime \prime} \times 61 / 2^{\prime \prime} \times 87 / 16^{\prime \prime}$
2.2 Kgs or 4.8 lbs.

30 Watts or 1 Watt, switchable (max.)
Variable capacitance phase modulation
12 Times
12.5 kHz max. (adjustable)
$2 ، W$ or less
$2 a W$ or less
Not exceeding $\pm 0.001 \%\left(-20^{\circ} \mathrm{C}\right.$ to $+60^{\circ} \mathrm{C}$ )
0.3 to $3 \mathrm{kHz}+6 \mathrm{~dB} /$ Octave

Crystal controlled double superheterodyne
Not exceeding $\pm 0.001 \%$ ( $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ )
1st IF: 10.7 MHz 2nd IF : 455 kHz
0.5 uV or less at 20 dB OS
$\pm 10 \mathrm{kHz}$ at $-6 \mathrm{~dB}, \pm 20 \mathrm{kHz}$ at -80 dB
Greater than 60 dB
$0.002 u W$ or less
At least 75 dB down at $\pm 25 \mathrm{kHz}$ separation
1 Watt (less than $10 \%$ distortion)


FURTHER STOCKS ARRIVING. Comprehensive range of spares in stock. PRICE $\mathbf{\$ 2 1 8}$ (special for this month) includes crystals for $B$ and one repeater channel (1,2,3 or 4), microphone, mobile mount, etc. Extra standard channels 50,51 , 1.2. 3. 4, $\$ 8.00$ each. Prices include Sales Tax. Freight or postage and insurance extra (allow $\$ 4.50$ ). All sets pre-sales checked and covered by our 90 -day warranty. Prices and specifications subject to change.
AUSTRALIAN AGENT:

|  | ELECTRONIC 60 Shamnon St.. Box hill North. Vie., 3129. SERVICES <br> OLD. MITChELL FADIO CO., 50 Aiblon Romd, Alblon, 4010 N.S.W. STEPHEN KUHL, P.O. Box 56, Mateol, 2020 Ph 676830 SA. FARMERS RADIO PTY. LTO., 257 Angat Sirast, Adolalde. 5000 A.H. 3715448 |
| :---: | :---: |

tor and noting its value (usually 330 pF ). The next highest value in the preferred range is entered on the board at C3A and a capacitor having about 8-10 times the value of C3A placed at C3B. It may be necessary to trim C3A a little if the tuning core will not peak the signal.

The chokes marked "F29" are simply Neosid 12 mm F29 tuning slugs with a single wire passing through the central hole. Output at low impedance is taken from the junction of C3A and C3B.

In conjunction with the product detector AGC and audio of Unit 3 the IF strip has a measured sensitivity of 3 microvolts for a discernible CW signal. Its AGC range is in excess of 120 dB .

| Frequency MHz | Primary Turns | T 1. 2 | Link Turns | $\begin{gathered} \text { C1,2,3A } \\ \text { pl } \end{gathered}$ | $\begin{array}{r} \text { C3日 } \\ \text { p1 } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5.0 | 35 | 32 | 9 | 150 | 1500 |
| 9.0 | 25 | 32 | 7 | 100 | 1000 |
| 10.7 | 25 | 32 | 7 | 68 | 680 |

## Noles

(a) All coils are close wound on Neosid 722/1 formers.
(b) Links are wound over the cold or earthy ends of the tuned windings.

## Section 2 - Unit C -

AM/SSB/AUDIO/AGC
Figure 7 gives the circuit diagram covering all the functions available, while Figure 8 gives the component layout on the 6 in . x .

2 in. PCB.
Note that only those functions required need be incorporated, the components associated with unused functions simply being omitted.

Each on board function will now be separately described.

## (i) AM Detector

A simple voltage doubler type of detector uses two germanium diodes. IF is fed to the diodes via the 0.1 capacitor and the demodulated output appears across the $22 k$ load resistor. This resistor is decoupled for RF, but not for audio, by the 100 pF capacitor in parallel with it. An 0.1 mfd capacitor takes the resulting audio to output on the PCB.

## (ii) The Product Detector

A Motorola 1496/1596 or Fairchild 796HC TO5 IC is used in a configuration suggested by the manufacturers save that the biasing has been modified to allow a single HT supply rail to be used. Oscillator input is fed to pin 8 of the IC while the SSB or CW signal from the IF strip is fed to pin 1. Note that both these entry ports require a low impedance source. Oscillator input Vernier balancing is not used, approximate (and sufficient) balance being provided by the circuit shown. Audio output is well filtered before being applied to a 741 op amp.
As shown the 741 has a gain of just under 50 in order to supply sufficient drive
to the AGC rectifier diodes. This order of amplification is in excess of that required to drive the LM 380 audio chip so that a dropping resistor is used in series with the 10 k audio volume control. The value of this dropping resistor is shown as 47 k in the circuit diagram but can be varied to suit other audio amplifiers, or other conditions, should it be necessary. The value of this resistor can be in the 10 k to 100 k range.

## (ili) The BFO

This is a simple FET oscillator with provision for adjustment of the crystal oscillating frequency on to the correct portion of the filter slope. Either a USB or LSB crystal can be used but not both, unless external crystal switching is used. L7/C7 are resonant at the crystal frequency and coil and capacitor data are the same as those given in Table 2.6 except that the link coupling is about one eighth of the number of turns on the tuning winding.

Provision is made on the board for a separate BFO oscillator offtake so that its output can be used elsewhere - say, for example, to feed the transmit mixer of Unit $D$ and/or the logic of a digital dial.

## (iv) The AGC Generator

The full output from the 741 audio preamplifier is taken via the 0.1 coupling capacitor to a voltage doubler rectifier using two germanium diodes. The DC resulting from the rectification of the applied


FIGURE 7-UNIT C - BFO/PROD DET / AUDIO/AGC

# Ril.Onningham 



The Name Everybody Knows
R. H. Cunningham is the name to know when it comes to superior quality communications and electronic equipment and components. Names of products that have proved themselves in the field of international electronics; products such as Sennheiser microphones and test equipment, Eddystone communications receivers,

Bulgin components, Sonnenschein batteries, Alert fuses. Paso sound equipment, Dow-Key RF components, Stolle aerial rotators, Millbank PA equipment to name some. But let us tell you more and in detail. . . WRITE NOW ana we will register you to receive our FREE monthly Technical Library Service Bulletin

493.499 Victoria Street, West Melbourne, 3003, P.0. Box 4533, Melbourne, Victoria Phone 329 9633. Cables: CUNNIG MELBOURNE. Telex: AA31447
N.S.W.: Sydney. Ph.: 909 2388. W.A. Perth. Ph.: 494919. QLD.: L. E. Boughen \& Co. Ph.: 708097. S.A.: Arthur H. Hall Pty. Ltd. Ph.: 424506.


FIGURE 8 -UNIT C-BFO/DETECTORS/AUDIO/AGC - COMPONENT LAYOUT


## FIGURE 9 -CONNECTIONS FOR SINGLE BAND SSB-CW RECEIVER

audio is used to charge up a 100 mfd capacitor. The low impedance output of the 741 allows the capacitor to be charged quickly when the generator is "hif" with a sudden large signal and thus has a "quick attack" characteristic.
The charge on the capacitor is applied through a 100 k trimpot direct to the base of a 2N3565 transistor whose emitter is earthed and which has a 4.7 k collector load.

With no charge on the capacitor (i.e., no audio signal present) the 2N3565 is switched off and its collector assumes a potential near to the HT supply. The AGC line is taken from the collector so that the RF and IF controlled stages are at maximum gain.

When a signal appears, rectified DC progressively switches the transistor on, thereby causing the collector to assume a lower potential and thus reducing the gain of the controlled stages.

When the audio signal is removed (or varies) the 100 mfd capacitor discharges through the 100 k resistor and the emitter/
base function of the 2N3565 giving a "slow decay" characteristic to the AGC. Note that with all of the trimpot in circuit the decay time is around 10 seconds. This decay time can be varied downwards by adjustment of the trimpot. With the trimpot out of circuit and only the 3.3 k fixed resistor in circuit the AGC decay time is a fraction of a second.

## (v) S Meter

A 1 mA meter movement is used in a bridge circuit to indicate the voltage on the AGC line and thus the strength of the received signal. Resistor RM in series with the meter will vary according to the meter movement used but 4.7 k is a good starting point.
With no signal applied, the 1 k trimpot is adjusted to give a zero meter reading. RM is then chosen so that the meter reads, say, 70 per cent full sacle on what is judged to be an S9 signal. Or, of course, it can be chosen to give a meter reading that is socially acceptable to DX contacts!! (vi) The Audio Output Stage

An LM380 IC is used to drive an 8 ohm
speaker. Output will be dependent on the HT supply but at 10 volts around 500 mW can be expected at full drive. The HT feed point is kept separate so that a higher supply voltage than that used elsewhere in the module can be used to provide more audio output should it be required, However, at the lower supply voltages the chip needs no cooling and its current demands are not excessive.

The three modules so far described can be combined to make a single band SSB: CW receiver. Figure 9 shows the interconnections needed to do this.

Sensitivity is typically 0.2 micro volt for a very readable CW signal or a marginally readable sideband signal. AGC control is excellent and no problems have been encountered with the (average) 200 watt PEP signals put out by the dozen or so amateurs active on 20 metres who live within a mile radius of the writer's QTH.

Part III will describe the modules necessary to convert a single band SSB receiver into a single band SSB 25/30 watt transceiver.

# VHF EQUIPMENT 

FTV-650B New model 6m transverter from Yaesu .... $\$ 185.00$
FT-620 Transceiver for $6 \mathrm{~m}, \mathrm{SSB}, \mathrm{AM}, \mathrm{CW}, 10 \mathrm{~W}, \mathrm{AC} \& ~ D C$ operation, also inc. $A M$ filter and calibiator, a few only at this special price of
\$385.00
FT-6208 Transceiver, same specifications as FT-620, but with new design of front panel and a few small modifications, $\$ 468.00$
FT-220 Transceiver for 2 m , SSB, FM, CW, 10-15 W output, $A C$ \& DC operation. Includes calibrator and modified for operation of simplex and repeaters on $146.5-147 \mathrm{MHz}$. A few only left at
$\$ 475.00$
FT-224 Transceiver for 2m FM, $10 \mathrm{~W}, 24$ Channels. Panel meter reads signal strength, discriminator centre scale, and transmitter output. Includes priority "call-channel" facility and monitor. A premium quality unit, with all accessorles and six channels included ( $B, 50,1,2,3 \& 4$ ). Real value at $\$ 248.00$

S200R Transceiver, 2m FM, 200 channels trequency synthesized, $146-148 \mathrm{MHz}$. No more crystals to buy! A real beauty at
$\$ 448.00$

2XA Transceiver, 2 m FM, 12 Chan. 10 W . An excellent little rig, with mobile mount, microphone and cables. Includes 4 USA channels and Aust. B plus one repeater. Extra chans. 50, 51. 1. 2, 3, 4, $\$ 8.00$ each. Priced at a very economical $\$ 169.00$

PFT-203 Transceiver 2 m , FM, 25 channels, 30 W . For detalls see other advertisement this Issue. Price this month $\quad \mathbf{\$ 2 1 8 . 0 0}$

FP-2 Power supply 2, 3, 4V AC to 12V DC. Housed in attractive cabinet, with speaker and battery charging facilities. Ideal for home operation of FM Transceivers up to 20 W
$\$ 69.00$

All prices include Sales Tax. Freight or postage and insurance extra. All sets pre-sales checked, stock of spare parts, and 90 -day warranty. Prices and specifications subject to change.


## BOOKS OF INTEREST FOR AMATEUR OPERATORS

HAM NOTEBOOK (Ham Radio) ..... $\$ 5.10$
BUILDING HI-FI SPEAKER SYSTEMS (Philips Application Book) ..... $\$ 3.45$
UNDERSTANDING AMATEUR RADIO (ARRL) ..... $\$ 4.10$
FM AND REPEATERS FOR THE RADIO AMATEUR (ARRL) ..... $\$ 4.35$
SPECIALIZED COMMUNICATIONS TECHNIQUES FOR THE RADIO AMATEUR (ARRL) ..... $\$ 4.50$
THE RADIO AMATEUR'S VHF MANUAL (ARRL) ..... $\$ 5.10$
SINGLE SIDEBAND FOR THE RADIO AMATEUR (ARRL) ..... $\$ 4.35$
THE ARRL ANTENNA BOOK (ARRL) ..... $\$ 5.10$
BASIC TELEVISION PRINCIPLES AND SERVICING Fourt Edition (Bernard Grob) ..... \$21.80
TTL DIGITAL INTEGRATED CIRCUITS Part I (De Muiderkring) ..... $\$ 8.95$
TRANSISTOR EQUIVALENTS 9th Edition (De Muiderkring) ..... $\$ 5.75$ ..... $\$ 5.75$

# Commercial Kinks <br> with Ron Fisher VK3OM <br> 3 Fairview Ave., Glen Waverley. 3150 

## LET'S KEEP IT CLEAN!

No, I am not going to relate a few doubtful jokes; instead I think It's time we took a look at methods of cleaning up the dirty appearance of that pride and joy transceiver sitting over there on the bench.

It seems to be a sad fact of amateur life that our frlend the average amateur operator never bothers to clean his rig. Mind you, he probably cleans his car with great care every weekend.

Deterioration In appearance of a modern amateur rig is a slow but sure process, much faster if you happen to be a smoker. Incidentally, having looked at dozens of receivers, transceivers and transmitters over the years, there is no doubt that a smoking amateur will have more trouble with his gear than his non-smoking compatriots. The by-products of cigarette smoke will firstly discolour the front panel, fog up the dial and meter faces, and finally work their way into valve sockets, relay contacts and even into the bearings of VFO tuning capacitor. It forms a sticky coating over valves and, in conjunction with dust, forms a substance that will reduce the efficiency of a final stage to a marked extent.

## Newcomers Notebook

with Rodney Champness VK3UG
44 Rathmullen Rd., Boronia, Vic., 3155

## BELONGING TO THE WIRELESS INSTITUTE OF AUSTRALIA

Should you belong to the WIA? Some will say - belong to that organisation? - not on your life; others will say that not to belong is sacrlege, you're letting the side down. Some people are very antiInslltute without cause, using a manufactured reason/excuse. There are others equally biased to the other extreme who believe that the Institute can do no wrong, and refuse to listen to reasoned argument about the deliciencies of the WIA.
It should be most apparent that with lack of willing people on Council, or on various committees, the system is not working as it should or could.

If you, as a newcomer, think that you have no right to stick your nose into the affairs of the Institute how wrong could you be. As a newcomer your view could be just what is wanted to get some line of action going in the right direction. Sometimes, if we have been close to something for a long time, we do lose our ability to be objective. We get in a rut and the system runs dow.. This is one of the reasons

However, let's start at the beginning; the microphone. If you use a typical curlycord type push-to-talk microphone, possibly the cord has stretched so that it is now a series of elongated curves instead of its original shape. First clean the cord with warm soapy water and an old soft tooth brush. Even if you are a normally clean type, the amount of dirt that comes off will amaze you. Now just rewind the cord back on its self turn by turn. This will re-tension the cord to like new condition. Incidentally, this operation can be carried out several times before the cord finally has to be replaced. As for the microphone, remove the insert and wash the case in soapy water, again using an old toothbrush to remove the dirt from all corners.

Now to the set. Remove the cabinet. Once again we will use the soapy water method but this time use a soft nail brush. This is very effective on crackle finish surfaces as even in very clean surroundings, dust will settle in to the minute Indentatlons of the surface. Often a good wash is all that is needed to restore the finish to its original condition; however, if you are the fussy type, apply a small quantity of wax and brush it up with a white shoe type brush. One of the many aerosol furniture polishes such as Mr Sheen are easy to use. Now, if the cabinet has a smooth finish such as you find on Yaesu equipment, the lustre can be restored with an
application of one of the auto polishes with a slight cutting action. Even one of the mild brass pollshes is good. Finish off with wax and polish with a soft cloth.

For dusting the chassis and the components on it, a small paint brush is ideal. If you happen to have a harmonic at kindergarten, the round paint brushes used there fit well between closely packed parts. If the dust will not yield to a dry brush. apply a little carbon tetrachlorlde or some contact cleaner. If you have compressed air available, or even a blowing attachment for your vacuum cleaner. it is great for blowing dust from variable capacitors and other nooks and crannies.

The front panel is best attacked by removing the knobs and then cleaning with applications of spray wax. then finishing with a soft cloth. The knobs are often the dirtiest part of the front. Whlle they are off. soak them in warm soapy water for a few minutes and then use the old tooth brush to remove the dirt.

While you have the knobs off it's a geod time to check that the nuts that hold the various controls to the front panel are tight. If you carry out the above procedure every twelve months at least. it might save you buying a new rig-the old one will look 100 good. It wlll also Improve the resale value to quite a marked extent. Try it anc you will be delighted.
that some peopla use for not joining the Institute, or WIA or whichever term you wish to name our organisation. It is not a good reason to say "I won't join the Institute, because they do this that and the other wrongly". You should get in there and CORRECT what you think is wrong or at least give it a good try.

Many peopie ask. "What is there in the Institute for me?" If you are prepared to do nothing, ultimately there wil! be nothing for you - for instance possibly no bands to operate on. How come, you say. Simple. If you don't support the WIA. w:tn its evident faults notwithstanding, we as a country wil! not have representation at Geneva in 1979. The commercial concerns - ever hungry for new frequencies to exploit will be there and they will have done their homework we!l, and may be able to prove that the amateur bands are not being used. and that they (commercials) can use them VERY effectively. Is that what you want? If so, don't belong and don't help, and in a few years your expensive gear will have no value because you will not be able to use it.

There are many other reasons for belonging to the Institute not the least being that you recsive the best amateur radio magazine in the Southern Hemisphere.

There are many other benefits not quite so obvious. Okay, you say. Why preach to me. Well, there are as many non-members as members, so why not try and get your friends to join. After all, why should they reap the benefits of what you are paying for, when it could mean that your subs could be lower for one thing.

I am most critical of some aspects of the operation and aims of the Institute. but you wili notice i am still a member.

## NOVICING

f.s I write this at the end of June. the Novice Amateur Examination has not been held - to the disappointment of 832 candidates throughout Australia - according to the Institute insert. No news at this time as to when the initial exam will take place. but possibiy it will have taken place by !ne time this appears in print. In retrospect it ma; have been a welcome ce'ey for some so that they could get their morse code up to scratch - the sample theory paper looks fairly simple so that may not te a worry to many, and the regulations exam is of the noinial standard.

## A 10 WATT NOVICE TRANSMITTER

 FOR 3.5 MHzThe series of articles on the novice :ransceiver will probab!y conmence next mon?! . Tee transmitter is described over two parts: the first part is the RF section compiste to the point of operating on CVV. It has a single valve. a GGV8 a television vertical section type. with the triode as a Pierce osciilator leeding into the pentode as a class $C$ power amplifier. For operator convenience the transmitter uses a semi-break-in method of keying - in other words as scon as you work the key the transmitter goes ontc transmit cutting off the receiver: and when the key is released the transmitter changes back automatically a!ter a short period to stand-by with the receiver operating. This is a much less tedious method of changeover than mechanically operating a switch. This requires


QUAD HUB: $\mathbf{\$ 2 3 . 0 0}$ plus P/P $\$ 2.00$ QUAD KIT: \$120.00. Freight forward.

Consisting o!: Hub: 12 ft solid F/G Spreaders Aluminium Extenders Ferrules. Adaptors: 350 ft. 0.064 Hard Drawn Copper wire
Nylon line and insulators.

## MOBILE ANTENNA PARTS:

6 ft . solid $\mathrm{F} / \mathrm{G}$ blanks
$1 / 2 \cdot 1 / 4$ inch $\$ 4.00$
Solid brass butt fitting, $1 / 2$ in. whit. or $3 / 8$ in. UNF inread $\$ 2.00$ Brass tip chuck 50c

## S. T. CLARK

P.O. BOX 45, ROSANNA VIC., 3084 Ph.: 45-3002


## VK2 DIVISION SOUTH WEST ZONE CONVENTION

To be held in DENILIQUIN on 4th \& 5th OCTOBER, 1975
Features will be Transmitter Hunts - Scrambles - Competitions for best piece of Home Brew Gear and best Decorated Cake on Amateur Radio Theme.
An AUCTION of Surplus Equipment and Components subject to an adequate amount being provided.
Accommodation bookings should be finalised by 8th August. After that date we'll do all we can, but cannot guarantee accommodation.
A deposit of $\$ 10$ should accompany all accommodation bookings.
For further information write to:
The Secretary,
1975 South West Zone Convention Committee P.O. Box 312, Deniliquin, 2710

### 10.7 MHz CRYSTAL FILTERS FOR FM SYNONYMOUS FOR QUALITY AND ADVANCED TECHNOLOGY


spectrum
INTERNATIONAL BOX 1084A CONCORD MASSACHUSETTS 01742 U.S.A.

| Fillet Type | XF107-A | XF107-8 | XF 107 C | XF107 D | XF107E | XF 107 SO4 | XF 102 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Auplication | NBFM | NBFM | WBFM | WBFM | WBFM | NBFM | NBFM |
| Number of Filter Ciystals | 8 | 8 | 8 | 8 | 8 | 4 | 2 |
| Bsadwidth | 12.0 kH, | 150 kHz | 300 kHz | 360 kHz | 100 kH ) | 140 kll | 140 kH , |
| Pass Band Ripule | $\leqslant$ |  | $\leqslant 2 \mathrm{~dB}$ |  |  | $<1 \mathrm{~dB}$ | $\leqslant 2 \mathrm{~dB}$ |
| Insertion Loss | E 35 dB | $=3.5 \mathrm{~dB}$ | 545 dB | $\because 4518$ | 45 dd | $\sim 3 \mathrm{~dB}$ | $=15 \mathrm{~dB}$ |
| Input-Output $\mathbf{Z}_{\mathbf{t}}$ <br> Terminstion $\mathrm{C}_{\mathbf{t}}$ | 820 S2 | 910 § | 2000 § | 2700 !? | 3000 \$2 | $910 \leq ?$ | 2500 s? |
|  | 25 рF | 25 pF | 25 pF | $25 \mu \mathrm{~F}$ | 25 טF | 35 pt | - |
| Shape Factor | (70 dB) 24 | 170 dBl 23 | 170 dB 12.2 | $170 \mathrm{dB1} 1.9$ | (70 (18) 20 | 140 d81 30 | $120 \mathrm{dB)} 36$ |
|  | 190 dBl 28 | 190 त8) 29 | 190 dBl 2.7 | 190.18125 | (90 di3) 2.5 | - | (30 d8) 57 |
| Ultimate Attenuation | ¢ |  | $>90 \mathrm{~dB}$ | -- | $\underline{2}$ | $>60 \mathrm{~dB}$ | $>30 \mathrm{~dB}$ |
| Size | $127 / 64^{\prime \prime} \times 1.3 / 64^{\circ} \times 3 / 4^{\circ} 11.91$ <br> Mounting Hadwart Included |  |  |  |  | Hc 6/u | He. 18 |
|  |  |  |  |  |  | can | cian |
| Price 11.91 | $<$ |  | \$4060 |  | 3 | \$1835 | \$795 |

Registration Fee: $\$ 1.00$; Air Mail: 26c per $1 / 202$.
Shipping weights: Filters 2 oz ea., Crystals $1 / 2$ oz ea.
All Prices in U.S. Dollars.

## HIGH PERFORMANCE

Both kits employ low noise UHF MOSFETS, and the converter has variable IF gain.
NOTE-The converter is designed sor use in a transverter and does not include an oscillator.

IPSWICH AND DISTRICT
RADIO CLUB
C/- 20 Peacock Street, Leichhardi, Qld. 4305
the use of two small transistors and a few minor parts. The transmitter is wired ready for the fitting of a modulator which is described in the second part.

The modulator uses a GAU6 as the microphone amplifier and a 6BQ5 as the modulator valve. The circuitry is arranged so that the speech bandwidth is only from about 300 to 3000 Hz , with modulation over $100 \%$ in the upward direction and less than $100 \%$ in the downward direction this stops splatter without dropping the eifectiveness of the transmitter. Press to taik has been included for convenience and works in with the CW semi-break-in system. All the switching for the AM/CW changeover is included in the first part of the transmitter description. No power supply is shown in these articles, although a suitable one will be described at a later
date. Power supplies generally are not a very complex item of equipment.

## GENERAL

Very recently David Down received good news - he has passed his full amateur ticket - congratulations David. Incidentally, David is a relative newcomer. He also runs a Radio Club with a friend in one of the southern suburbs of Adelaide. David's address, for those who wish to write to him direct on matters pertaining to this column, particularly on those sections he has written, is as follows: 17 Brodie Crescent, Christies Beach, 5165. There will be more of David's articles in the near future.

Thank you to those amateurs, amateurs to be and short wave listeners who took the time to write to me about the queries I had in the June issue of AR. Wherever possible the suggestions will be acted upon.

Are you looking around for a Novice transmitter or a Novice transceiver? Some of the old ex-service transmitters and transceivers may fit the bill - although you may need a bit of help to get them going properly. The following sets fit the bill for 3.5 MHz with little modification: No. 122. 3BZ, No. 109, Type A Mk3, Type 3 Mk2, ATR2 and No. 62. I am not saying that all of these sets are marvellous, but they require little modification if any. The fo:lowing sets require modification for crystal control as well and are: No. 11, No. 19. No. 22, No. 22 English, FS6. These sets would have to be cheap to make it worthwhile. Other sources of transmitters and transceivers will become apparent as time goes by and I will endeavour to point you in the right direction. See you next month with the first part of the Novice transmitter.

# Contests <br> will Jim Panne. vkasaz 

Federal Contest Manager,
Box 67, East Melbourne, Vic., 3002

CONTEST CALENDAR<br>AUGUST<br>9-10 European CW<br>16-17 Remembrance Day<br>23-24 All Asian CW<br>30-31 Seanet Worldwide Phone \& CW<br>SEPTEMBER<br>13-14 European DX phone<br>20-21 ScandInavian CW<br>27-28 Scandlnavian Phone<br>OCTOBER<br>4.5 VK/ZL Oceanic Phone<br>11-12 VK/ZL Oceanic CW<br>25-26 CQ WW DX Phone<br>NOVEMEER<br>8-9 European RTTY DX<br>29-30 CQ WW DX CW<br>REMEMBRANCE DAY CONTEST

As this was writien before the rules for this year's RD Contest have been published I can only hope that by the time you, the contestants, read this at least 1,000 of you will have declded to spend some lime on the alr during the weekend of August $16 / 17$ and subsequently send in a log. Col:ecilvely you will send a lot of paper to Box 7. East Melbourne so please take epecial care to prepare a face sheet as requested and attach it to your log. Last year quite a number of lace sheets ware omitted and this makes a great deal more work for the FCM. For example, It the section for which you have entered is not shown, i.e. phone. CW or open, each RST report may have to be perused to find out the section for which the log is entered. It will also be of great help If entrants who operate exclusively on 52 MHz and above will indicate this on the front shest. Finally. good luck to you all and may the sun have the measles during this weekend

## ALL ASIAN DX CW

1000 GMT Aug 23rd to 1600 GMT Aug 24th All bands 1.9 to 28 MHz . The contest call is CO

AA for non-Asian stations, CO Test for Asian stations. OM stations exchange RST and operator's age. YL stations give RST and OO. Scoring is one polnt for each Asian station (except KA) Multiplier is number of different Asian pretixes worked on each band, using the WPX rules. Contacts between non-Asian stations do not score. Final score is sum of the contest points on each band multiplied by sum of multipliers on each band. The highest scorer in each continent will get a medal and certificate from the Minister of Posis and Telecommunications of Japan. Logs must reach JARL, Box 377. Tokyo Central, Japan. betore 30th Nov., 1975. Results should be known about Aprll 1976.
The following are countries in Asis:
A4X (Sultanate of U18/UKBA-G.I.L.O.

Oman)
A51 (Bhutan)
A6X/MP4D (United
Arab Emirates)
A7X/MP4Q (Qatar)
A9X/MP4B (Bahrein)
AC3 (Sikkim)
AP (Wesl Pakistan)
BV
BY
CRg
CR ${ }^{\text {EP }}$
EP
HL/HM
HS
HZ/7Z
JA/JE/JF/JG/
JH/JI/JR
JD1 (Ogasawara ls.)
JT
JY
ODS
S21 (Bangladesh)
TA
UA/UKIUV/UW9-O
UDG/UK6C, D. K
UF6/UK6F. O, Q, V
UG6/UK6G
UH8/UKBH
1S9 (Spratly Is.)

A copy of the results will be sent lo you it you enclose a self-addressed envelope and a reply coupon with your log. Reply coupons can be purchased at Post Offices.

MARTS SEANET WORLDWIDE CONTEST 1975
C01 GMT 301h August to 2359 31st August
Information about this contest arrived Irom "Eshee" 9M2FK and the cover bore an instruction: "Smiie B4 opening - Open B4 reading - Read B4 answering - Answer B4 long". One of the aims o: the contes! is to publicise the 5th SEANET CONVENTION to be held In Kuala Lumpur Irom Nov i9. 1975, The contest is being held on Aug 30/39 which is Malaya's Independence Day. Phone o' CW (no cross mode) may be used on all bands 160 inru 10 metres. Contest call is "CQ Seatest" for phone and "CO Sea" for CW. Usual RS/T and OSO numbering

Contestants in SEANET area (includes VK) score 1 point for contacts with other SEANET stalions (except other VKs) and 2 polnts for contacis outside SEANET area. VK contestants use a multiplier of 3 tor each country outside SEANET and 2 for each country within SEANET.

A separate log is required for each band and a summary sheet showing Band. Number of OSOs. Doinis. Multiplier and score. A description of the s:ation and antenna is required logether vith the ustal certilication.
The highest VK scorer will receive a commemo:stive certilitate of the 5th Seanet Convenfon. Wiorked All Ma!aysian Areas Award can be c'simed ty sending in a separate lag sheet covering the required number of contacts i.e. ten SM2. ten 9V1. one 9M6. one 9M8 and one VS5. Logs e:c. to reach MARTS SEANET CONTEST CTEE. za1-C Jalan Pekeliling. Bukil Glugor. Penang. Malaysia, not later than 30th September. Results will be announced Nov. 8th.
Only one contact per band with the same station is permitted.

## seanet area countries

A4, A51, A6, A7. A9, AC3. AP. BV. CR9, DU. EP. HL/HM. HS. JA etc., JDi. JY. KC6. KG6. KH6. KXG, P29. S21, VK, VG9. VS5. VS6. VS9K, VS9M/ s®6. VU2. VU (Andaman. Nicobar and Laccadive Is !, XU. XV5. XW8. YB, YJ8, ZL, 3D2, 3B6. 3B8. 4S7. 4W1. 5Z4. 9M2. 9M6, 9M8. 9K2, 9N1 and 9V1. EUROPEAN DX PHONE
SOCO GMT Sept 13 to 2359 Sepl 14th
See details as given for European CW in Ama!ev: Radio July, 1975.

## Letters to the Editor

Any opinion expressed under this heading is the individual opinion of the writer and does not necessarily coincide with that of the Publishers.

## The Editor.

Dear Sir.
This is International Women's Year, but where are all the VK YLs? it is elating to be told,
"You are my first VK YL'", but this turns to embarrassment when asked,
"How many Australian YLs are there? We never hear them".

[^7]reference to the call book). Can you help us upgrade il.
VKI-YL
VK2—HD. MI. MR, SU, AIA - Murial, APR, AOK Hebe. BSB - Susan, AXS - Mona. BYL Wendy.
VK3-HQ. KS - Mavis, KT - Brenda, VB C!arice. YL - Austine, ADT. AGO. AYL Norma, BAK - Vi. ZYX - Dawn. ZYL Rhonda. BJB - Joan.
VK4-EQ - Evelyn. VV - Linda
VKS-LM - Lorraine. YL, YWV - Merna
VK6-MH.
VK7-YL. LY - Anne, ZA.
Some further suggestions - how about our own VK YL award and a net ragchew session.

## BRIGHT STAR CRYSTALS

## - PROMPT DELIVERY GUARANTEED - ALL TYPES OF MOUNTINGS

Such as HC6/U (style D) ...HC18/U (style J) ... HC25/U (style K) etc. . Frequency range up to 140 MHz on 5 th overtone.


## BRIGHT STAR CRYSTALS PTY. LTD.

35 EILEEN ROAD. CLAYTON, VIC., 3168 Phone: 546-5076 (Area Code 03)
INTERSTATE CLIENTS. Contact your Local Agent
Our increased production now enables us to ofler Special Discounts from 10\% Let us quote you tor all your Crystal requirements
Our easy-to-read Price List is now available.
Sydney: PARIS RADIO ELECTRONICS. 7a Burton Street, Darlinghurst. N.S.W 2010. Phone: $31-3273$

Perth: W. J. MONCRIEFF PTY. LTD., 176 Wiftenoon Street. East Perth.. 6000. Phone: 25-5722.

Brisbane: FRED HOE \& SONS PTY. LTD. 246 Evans Road, Salisbury North. 4107. Phone 47-4311

Adelaide: RQGERS ELECTRONICS. P.O. Box 3. Modbury North. S A 5092. Phone: 264-3296.

- ACCURACY
- STABILITY
- ACTIVITY
- OUTPUT


## "WILLIS" ARR-WOUND INDUCTANCES

Take the hard work out of Coil Winding. use - "WILLIS" AIR. WOIJio INDUCTANCES


TP-R 174

## NOVICE 27 MHz ANTENNAS (by hy-gain)

5 ELEMENT BEAM (inexpensive)

- 17 Foot Boom
- 10 dB Forward Gain
- Mounts Horizontal or Vertical
- 1000 Watts Capability


This beam features our exclusive Beta Match system which matches it 10 a 52 ohm feedline and puts the driven element at DC ground for noise-free operation and lightning protection. Constructed of high tensile strength aluminium tubing with a heavy machine formed boom-to-mast clamp. All hardware is iridite treated for maximum resistance from corrosion.
WEIGHT 14.1 lbs.
$\$ 58.00$

BIG GUN II (an authentic quad, 4-element)

- Selectable Polarisation Vertical or Horizontal
- 14.6 dB Gain
- 20 Fool Boom
- All Aluminium Construction


Hy-Gain's Big Gun II has the longest boom available of any selectable polarity antenna. The Big Gun II will glve you the tightest beam available from a CB Quad antenna - so tight that you must aim directly at the signal on receive or you don't hear. Optimum luning by our twin driven double loop elements provides greater capture area. All aluminium construction including the element wires, gives you durabillty.
WEIGHT 39 lbs.
$\$ 180.00$
MANY OTHER TYPES IN STOCK - e.g. 2-element Quads, Long John 5-element, 3-element low cost beam, vertical s/b $\boldsymbol{W}_{\&}$ $1 / 4$ W I ground planes, mobile whips. Write for list and prices.
All prices include Sales Tax. Freight and insurance extra. Prices and specifications subject 10 change

10 the OMs , don't think this does not concern you. Give the ladies a go, encourage them to be Interested in the hobby, let them know there are other lades to lalk lo, Invite them into the shack to have a lillie ragchew or at least a listen.

In conclusion to all, please help us let the world know we have women interested In radio If you have some suggestions of how this can be done please let us know. All ideas are welcome 73s. 88s, 33s (where appropriate) Norma VK3AYL, Rhonda VK32YL. SWLs Irene and Jenny
The Editor.

## Dear Sir,

Last week itirteen amateurs formed a local net In Sydney on the 10 metre band. 28.500 MHz was established as an all modes CW. AM, SSB calling channel for mobile, handheld and base station operalors.
28.100 MHz was allocated as a secondary net 80 as to allow 11 metre novice operators who oblained their full licence to use both the 11 and 10 metre bands with litile modification and no loss of their existing 11 metre band coverage.

These nets were sltuated so that not only local but also International contacts could be promoted. In Sydnay there are now two HF calling channels In use. The idea is, when you are in the shack. tune your HF set to monitor one of these channels. On 11 meires there is 27.125 MHz for all modes. On 10 metres 28.5 MHz is primary and, for those wishing to add 10 metres onto their 11 metre transceiver. 28.1 MHz is encouraged. Shorily, it is hoped that detalls of a third all-mode Sydney calling channel for 1.825 MHz in the 160 matre band will be avallable

Amateurs in Sydney would like to encourage amateurs Interstate to adopt similar trequencies through thelr local WIA broadcasts and "on air" publicity so as to encourage Interstale contacts as well as promote the local coverage characterlsilics of these bands

For the latest DX news, experimentallon and local ragchew see you on the 160, 11 and 10 metre nets.

The Editor,
Amateur Radio
Dear Sir,
Further to my letter regarding the marking of A.O.C.P. Examinations by the P.M.G.

I rang the Radio Branch in Melbourne the other day to inquire as to the progress of same and was told (by an obviously harassed female) that there would not be much chance of obtain Ing results until well after August

This is a deplorable state of aflairs. When 1 asked as to the reason for such a delay 1 was told that all Radio Inspectors ware occupled on the new Novice Licensing.

Whilst I am all in tavour of thls licence 1 do consider that a full licence takes precedence. My interest in radio is slightly dampened.

Impalient prospecilve amateur. T. J. Connell
P.O. Box 718. Madang. P.N.G

3 June. 1975

## Awards Column <br> with BRIAN AIJSTIN VKSCA

FROM OST, APRIL, 1975:
Announcement is hereby made of the avaliablity of a new DXCC award and a new tee schedule for all DXCC awards

The new DXCC award le for CW only. Applicatlons for it will be accepted slaring 1st June 1975. Credits for the CW DXCC musi be for con tacts made 181 January 1975 and aller.
A new tee schedule for all DXCC awards and endorsements will go into effect starting ist June 1975. All new applications for the DXCC award must contain $\$ 10$ US (or 56 IRCs). This $\$ 10$ will be used to return the applicanl's confirmations by registered first class mail, the centificate, the DXCC lapel pin and handing. Whlle applications may be made for any or all of the DXCC awards at the same time, the $\$ 10$ application charge applies to each of the applications.

Each subsequent submission for endorsement (or completion of a new application) musi contain a handling tee of $\$ 2$ plus postage for the retum of the applicant's confirmalions.

The above charges apply to everyone. In addition, however. non-ARRL member applicants in Canada, the US and possessions (including Puerto Rico) musi Include an additional service charge of $\$ 5$ for each new application and a $\$ 2$ additional service charge for each endorsement application.
As of 1st June 1975 the application charge for the 5BDXCC will be $\$ 20$.

WORKED ALL MALAYBIAN AWARD - W.A.M.A. This award has been available from the Malaysian Amateur Radio Transmilters Society for some time, but in case of any of you haven'l heard of it the opportunily is taken to announce the requirement again.

A WAMA Certificate will be issued to any ham that can prove he has established a iwo-way contact with the following call prefixes:

10 GM2 contacts with different callsigns
10 gV1 contacts with different calleigne
1 VSS contacl
1 9M6 contact
Any speclal attachment like "All contacts by SSB'. "All contacts on 80 m SSB" etc. can be Indicaled on the cerlificate.
A list showing all contacts made, indicatirg callsign, date, time. mode and band, should be sent with the application. OSLs do not have to be Included if the list has been certified by the loca: amateur sociely or livo other amateurs
The applicalion should be followed by 5 IRCs 10 cover return postage.
Applicatlons should be addressed 10 : MARTS
PO BOX 777
KUALA LUMPUR, MALAYSIA

# VHF UHF an expanding world <br> with Eric Jamieson VK5LP Forreston. SA.. 5233 <br> Times GMT 

AMATEUR GAND BEACONS
VKO VKOMA. Mawson
VK1 VKGGR. Casey 53.200
vk2 VKIRTA, Canbe:ia
44.475

VK2 VK2WI. Sydnay $\quad 52.450$
VK3 VK3RTG. Vermonl 144.7C
VK4 VKARTL. Townsville $52.6 \mathrm{C}(1$
VK5 VKSVF. MI. Lolty 53000
VK6 VKSVF. M. Lolly $\quad 144.800$
VK6RTU. Ka'goorie 52.350
$\begin{array}{ll}\text { VKGRTU. Ka'gooriie } & 52.350 \\ \text { VKGRTW. Albany } & 52.950\end{array}$
VKGRTW. Albany 144 SCO
VK6RTV. Per:h 145.000
$\begin{array}{llr}\text { VK7 } & \text { VK7RTX. Devonperl } & 144.900 \\ \text { P29 P29GA. Lae. Niugini } & 52.150\end{array}$
3D 3DAA. Suva, Fiji 52.500
These notes are being prepared whils: on holidays louring alound Oueensland, parlicularly around Cairns and Townsville. sampling some of the hospitality of the northern VKA amaleurs. Prior 10 leaving. Eddie VKAZEZ advised of the operalion of the 2 molte repeater in Townsville. call sign VK4RAT on repeater Channel 1 . Service area ex. tonds as lar as Alligator Creek. Eddie also mer. tions Mackay area calling frequency will be eithe, Channel 40 or Channel 50. Rockhampion and South will be on Channel 40 . So bear these channels in mind as you come up the Coast 10 Townsville. The inland roads are rather rough al present, and somewhat lonely, and of course, no amateurs!!
hepeater mews
Now that repeaters and FM in general represent such a large portion of the operation on VHF of so many amateurs, it seems reasonable to give more space to their operations - particularly in the absence of much news from the funeable end of the bands.
George VK3ASV mentions in a lellar that the Victorian Siale Repeater Commiltee are fully organised, with Chalrman Peter VK3BX. Vice-President Peter VK3zPP. Secretary Ken VK3zNJ. Publicily Officer George VK3ASV. The latest 2 matie

Fin redeate lislings have been sent to AR by George. $\varepsilon 0$ will nol be separately listed here Here a:e a lew ilems which should be of generai interest also to those Iravelling interstate.
aLBURY-WODONGA - Excellent results using Ch 4 in simplex operation from MI. Big Ben have been made. MILDURA - Channel 4 operation now satislaclory with installation of co-axial filter. MT WILLIAM - Western Zone meeting decided 10 change from Ch .1 to Ch .7 to eliminate co. channel interference with Melbourne. SWAN HILL - Tiansmitter/Receiver is ready. awaiting licence appioval. Probably Ch. 1. MT. MACEDON - Pro. posal to operate on Ch. 6 LATROBE VALLEY VK3RLV on Ch. 2 has been resited to GLVio Tower on MI. Tassie, general upgrading ol repeater and power increase to 20 watts. Identifier using FSK \& PACW and limers 10 be litled at same time EAST GIPPSLAND - VK3REG - Ch. equipment ready. solar cell power supply being igsted Proposed sile Mi. Sugarloal. 900 m a.s. Should provide quite good area coverage of Lakes area and Princes Highway. MT. DANDENONG - VK3RML on Ch 1 now operates with a timer time oul "beep". and FSK Identifier. Transmille power reduced to 60W to heip heating problems receiver sensilivity improved.
OTHER AREAS - If other States repeaser publicity officers would like to tonward information in a s'yle similar to that stown above. o:Illining briet points which stould be of general interest. Dlease le: me have the notes by $2 E$ tin of the month to allow to: editing and inclusion in matorial tor AR

As mentioned previously these noles are being written on holidays inicrmation is somewhal scarce, so will ask you to bear with me until nex: lime

Belore closing. Iwo thinẹs come to mind Firs!ly :ongratulations 10 the South East Radio Groud :n M1:. Gambier for another excellent Convention in June. The other is the Moonbounce report from lliawarra Branch of WIA (VK2AMW). Construction n! the new one kilowall power amplifiet for the t:ansnitter has been completes and installed. A ieller from FgFt requesis special EME lesis with VK2AMW if something eventuates from this. a rew area should be avsilable 10 Aus!ratia

That's all lor now. Closing with the thought ic. the month: "The wisdom of the spoken word mas :ieil exceed the value of the derson uttering inem

Tr.e voice in the Hills

## 20 Years Ago <br> with Ron Fisher VK3OM

## AUGUST 1955

Algust 1955 and tine eta of the 6146 was with us Actua:ly Phillids had been running frent cover advertisements tor this new tube tor the thise issues prior to August 'AR' introduced the 6146 wilh a reptinl fiom OST. " 120 Walis of Audio V.:Thout Driving Powet" by George Grammer. WidF Two pages of 6146 data tor all classes of operation lol'owed. However with disposals 807s available al a pound each it was going to lake a lew years for the 6146 to take over
"An Iniroduction to Two Melres" Roberl Black VK2OZ look a ligh:hearted look al the problems of firsily lifeding the iwo metre band and then getting equipment going Two calloons. diawn by an un. ramed arlist. Illistiated the article

Interesting correspondence was going on in the pages of Amate:ar Radio regarding the proposal by the VK6 Division to restrict limited licence holders to associale membershid Both Gordon Weynton VK3XU and David Rankin vK3ZAO (now VK3OV) took up an opposing stand

Back on the lechnical side. John Miller vkian described the construction, calibration and operalion of a vacuum tube voltmeter

Wooden lowers were popular iwenly years ago Ready made TV lowe;s had net appeared on the scene. John Harlock VK6GU showed us his parlicular method for construcling a 42 lool lattice tower

VK3AHH's DX noles reporied that lamous opers. tor Bob Ford ex-AC4RF had been roleased from internment in Tibel and was now anticipaling activity from VS6. Conditions on the bands were on the up and up whith even a lew reports of DX conlacts on ten metres

## Hamads

- Eight llnes tres to all WIA members. 56 per 3 cms for other amateurs and SWLs
- Copy should be in block letters of lypescript. signed and forwarded to the The Editor, PO Box 150, Toorak, Vic. 3142.
- Excludes commercial advenising.
- Closing date for Hamads is the 3rd day of the month preceding publication.
- QTHR means the advertiser's name and address are correct in the current Australian Caltbook


## FOR SALE

Conv. MTR 16 on 6 m . working. S 26 . Homebrew 2 m AM Tx 25W, needs xil/VFO. \$35. Part competed 3 band transceiver, beaut. VFO. dial. svitciting inciudes PSU and some parts, \$30. 20-88 $\mathrm{MHz}_{2}$ v. tecurate sig. gen.. noise gen., xil calib.. S25. Many odd trannies, chokes, chassis. etc. Ask! Simen VK3ZUI. QTHR. Ph. (03) 923442 AH.
finten MTR13 with channel 1. and new dynamic mike. S5j. Type 3 Mark 2 transceiver 160 to 20 metres. S50. VK3AHG. OTHR. Ph. (03) 2882024 AH. Transceiver and 24 V dower supply. Plessey model C13. 10 to 12.0 MHz in 1 MHz steps. Tx APA/CNS Rx ANI/CW/SSS. $\$ 50.00$. A G Lyall VK3ZTV 102 Seaford Rd. Seaford. 3198. Ph. (03) 7865961 $\overline{400} \bar{W}$ Linear with P/S, uses 4C $x$ 350A on 6 m . $2.5 / 3.5 \mathrm{kV}$ al 1 amp . 1 HP blower 800 CFM . Fully metered 3 in Pane! Meters. Reg. Screen and Bias Supplies. Extra Socket mounted lor extra band Spare 4C x 350A (new) 4C x 250B, 2 used. Will swap for early SSB Tx/Rx or sell $\$ 300$ ONO. Could be modified 10 any HF band with any tube up 10 4 kV rating. VK32AZ, R. S. D. Buninyong. Vic. 3357. Ph 413777
Thunderbird THG DXX Beam, Iri-band, 6 el., exceltent condition, little used. complete, 580 . plus 50 it lower. crank-up alloy, very solld construction. Own liansport to be arranged, $\$ 100$. Both items too large for new OTH. VK28GL, 4 Buena Vista Rd.. No:th Springwood. Ph. (047) 541096.
Svan 500C Transceiver with VOX. mike. heavy duly power supply. hand book, excellent condition, $\$ 375$ IKK2AYE, QTHR. Ph. (02) 5288825.
TCA 1677 Low Band Transcaiver complete with mike. plugs and circult, not converted, good condition. S40. AW/A BS-50C. 50 Walt base station and receiver - high band less some valves, otherwise complete, not converted. $\$ 40$ ONO. VK3ALT, QTHR. Ph. (03) 2772337.
Compiete Servica Manual for communication Rx R5223 model. T.C.A. Also includes two large interna! and oxternal circuit diagrams. for \$15. PO. Box 141. Si. Kilda West, 3182. Ph. (03) 6992400 A. H.

Svian 350, mint cond.. S250. C/W manual and soare fina!s VK2BTL, QTHR. Ph. (03) 20223. X 209. Coilins 7SSI Rx, litted with 500 HCW filter, mint condition, \$425 BC221 AK Irea. meter, incl. 240V res sisply. 125 kHz to 20 MHz , excellent cond. sICO ONO. VK2AS. OTHR. Ph. (02) 4671784
FT200 and Duke 5 SSB Transcaiver with PSU and mike. S300 ea or $\$ 550$ both, Will swap. Adam Kay VK2AXN. Ph. (02) 4519570
Hallicrafters HT-44 80 to 10 m SSB TX, complete with PSU (110V AC). manual, spare final tubes, iOOW PEP, perfect cond. S200. Yaesu FT101日 Transceiver. pertect cond., only 6 months old. $\$ 560$. Set of Asahi whips, with bumper mount. 80-10 met:es. S50 Lionel VK3NM, OTHR. Ph. (03) 883710 AH. (03) $3297888 \times 45 / 46$ Bus.
Scope Soldering Iron with spare tips, $\$ 15$ (wlih Iranstormar) 1973 XA Falcon Car Radio, perlect cond. S50. TV Camera with tripod stand, 2 lens, very good cord., \$200. 2 HT Holden Whe日ls (new) gach S20. Lionel VK3NM, OTHR. Ph. (03) 883710 AH. 103) $3297888 \times 45 / 46$ Bus.
Realistic DX-150A, inbulli Hy-O cal. G.C., $\$ 150$. Variable Condensers. 50c per gang. Jeff L-30409 Ph. (03) 5463940
FTOX560, late model. immaculate cond., with silent fan. noise blanker. CW liltsr, spare final tubes, etc. \$435 ONO. FV401 external VFO, as new in carton. s90) ONO Magnum 6 RF Speech Processor. Suit FTDYCCO, 401, 401 B. 560, 570, FT101 \& 1018, mint condition. S 100 ONO VK3ARZ, 12 Explorers Court. Vermont Soulh. (03) 2329492.

## PRTJFGT AUSTRALI8

## WIth david hull vkszor

## OSCAR BEACONS

The Oscar 6 and 7 beacons provide vital data on the soacecralls healith and are a necessary pait of the housekeeping of the satellites. These beacons a:e piaced on the edges of the transponder pass. tends, 29.45 MHz in the case of Oscar 6. 29.5C and 145.52 MHz for Oscar 7 Strong signals picked up by the satellite on the corresponding edges of the up!ink passband will tend to interfere with these seacoris by being re-transmitted on lop of or a:ongside, the beacons, causing reduced readability ard consequent problems 10 command stations The VK2 repeater on the old Chan. 4 frequency tas caused problgms with the AO6 beacon since its laurich and from time to time several CW sta:iors have tended to operate within QRM range of the beacons. This can be a parlicular problem with the RTTY telemetry of AO7. It should be pointed out that the spacecralts have reduced receiver sensitivities on their bandpass edges and the:s the stations using the edges are reducing their on-ground received strength by straying 100 lar from the passband centre. VHF FM use:s' cooperation wou:d be appreciatud also in avoiding inadvertent QRM of Oscar 7's beacon on 145.980 MHz .

## PREDICTIONS FOR SEPTEMBER 1875

OSCAR 6
Orbit Time Long
Dale

## Silent Keys

NORMAN ERIC MORTLOCK VK2PO
Many VK and Overseas Amateurs will be saddened at the passing of 'NORM' mORTLOCK UK2PO late of Randwlek and Engadine. N.S.W., on 18th May, 1975 ether a long liliness at the age of 65 years.

Norm was well known CW operator on most HF bands as well as a keen VHF 2 malre oparator, where he helped many to the full licence with his CW practice sessions during the late 1960s desplte his tailing health and demanding occupation.

Norm had recently retired from the Department of Customs and Excise and prior to this appoiniment had been a Tachniclan with the Post Master Generale Depariment.

Norm was a genfleman who was always ready with a helping hand or word; he will be aedly migsed by hle triends.

To his famlly we extend our deepest aympathy.

VK220H

| Mr. M. H. MEYER8 | VK2VN |
| :--- | :--- |
| Mr. R. S. MITCHELL | VK2AID |
| Mr. G. WALKER | VKAEX |
| Mr. J. V. HUTCHISON | VK2JH |

Array; 80 Metie Bow-Tie Antenna: Low-Fiequency Loop Anienna: Tlit over Tower.

## ast April \& May 1975

Simple RF Bridges; A Ten-Metre Swiss Quad Missouri Style; Learning to Work with Semiconductors: Transmitter Design; Varicap Tune Your VFO; The Uliramounialneer: A Low Coal CW Identifier: The Lossless Radiator: A 160 Mette Receiving Lcop: The ETO Alpha 374 Bandpass Linear Amplifler: HTACPS Put your FM Handytalkie 10 Work at Home.
A Paraliel 4CX250B Amplifier for 144 MHz : A Convenient Stub-Tuning System for Quad Antennas: Learning to Work with Semiconductors Pt. 2; An Analog Computer Type Acllve Filter: Slow-Scan 10 Fest-Scan TV Converter Pt. 2; The City Sllcker.

## RADIO COMMUNICATION April 1975

A Caption Generator for SSTV; Reduclion of an In-Band Spurlous Emission in the Liner 2: Testing Fall-out Integrated Circuits: Radio Communications at Frequencies below 10 kHz ; Taking the Radio Amateurs Examination; Building Blocke for the Novice - Diodes.

## MANAGER REQUIRED <br> FOR AMATEUR GEAR

## Magazine Index <br> wib sha ciakk weasc

CO March 1975
A Brearthrough in Simplitying Ionospheric Propagation Forecasis: Antennas. The Wideband 20 Melie Array: White House Rips oft Amateur Radio; Alternate Sources of Power; Mixers and Local Oscillators tor VHF Converters: VFO Design for QRP Trans. mitters: Dockel 20282 and the Novice Licence.
han hadio April \& May 1975
Integrated Circuit Electronic Keyer: Microstripline Pre-amplifiers for 1296; Digltal Touch-Tone Encoder; Dlrect Reading Capacilance Meter; Keyboard Morse Code Generator; Variable Cryslal Oscillator: Whideband RF Amplitier: VHF Single Frequency Conversion.
Large Verlical Anlennas; Log-Periodic Antenna Design; Phased Vertical Array: Open-Grid Parabolic Reflectors; Shunt-Fed Vertical Antennas; 1296 MHz Yagi Array: Measuring Complex Impedance with an SWR Bridge: Electrically Steered Phased

We need a competent manager for our expanding Amateur department. He will report directly to Dick Smith and his responsibilities will include purchasing,importing and selling Amateur gear. He should preferably be an active, licenced Amateur. He will also represent the company at Field Days and other events.

Age is iess important than ability and enthusiasm. Phone Dick himself to discuss prospects or write giving experience and salary etc, etc, to DICK SMITH ELECTRONICS Pty Ltd 160.162 Pacific Hwy, Gore Hill 2065 Tel: 4395311.

# RADIO ELECTRONIC BARGAIN CENTRE 390 BRIDGE ROAD, RICHMOND 3121 PHONE: 425174 

Plenty of BARGAINS for the Radio Amateur or the Hobbyist. Owing to the recent tariff cuts on electrical goods, we have obtained large quantities of components, transformers, panel meters etc. which can be bought at very reasonable prices while they last.

Stereo Tone Arms with ceramic cartridge fitted .... .... .... .... .... .... .... .... ... $\$ 5.90$ Mono Tone Arms with crystal cartridge fitted
$\$ 2.00$
2N3055 Translstors with insulating kit $\$ 1.00$ Stolle 300 ohm Feeder with foam dllectrlc 15c yard 58 ohm Coax Cable 100 yd. Rolls, 1/a" diam. .... .... .... .... .... .... .... \$12 Roll
52 ohm Coax Cable $1 / 4$ " diam. 45c yard, 50c metre

Dow Key Coaxial Relays 48 Volt DC operation
$\$ 15$
Split Stator Capacitors with screwdriver slot drive, 9 pF-17 pF-25 pF. Brand new Eddystone type ......... $\mathbf{\$ 4 . 5 0}$ ea.
Ex Army Headphones approx, 20 ohms impedance. New, in sealed boxes ... $\$ 2.00$
3" Tape Spools ..... 15c ea., $\$ 1.00$ for 10
2" Square Face 0-10 mA Meters, calibrated 0-60 .... .... .... .... .... .... .... .... .... $\$ 3.00$

## SCOOP PURCHASE

## TRANSISTOR RADIO CIRCUIT BOARDS IDEAL FOR HOME CONSTRUCTORS

Due to Tarlff cuts on transistor radios, we can offer the ltems below at this price. Most are in working order but no guarantees at these prices.

## THOUSANDS AVAILABLE

## AM 8 TRANSISTOR CIRCUIT BOARDS

All new parts. IFs, capacitors, resistors, etc.
$\$ 1.50$ each or 3 for $\$ 3.50$

## AM/FM CIRCUIT BOARDS

10 transistors, all new. Ideal for use as FM tuner. $88-108 \mathrm{MHz}$.
$\mathbf{\$ 2 . 7 5}$ or $\mathbf{3}$ for $\mathbf{\$ 7 . 0 0}$

## ALSO LARGE QUANTITY OF RADIOS

In various stages of manufacture. Some AC/DC models AM/FM etc. Speakers, cabinets, etc. Personal shoppers only.

From $\$ 3$ each
TRANSFORMERS A \& RTPE 5509
Ex. equipment, but as new. PrI. 240V. Sec. $2 \times 12.6 \mathrm{~V}$ at 2.5 A .

## $\$ 8$ each

## "ZEPHYR" 2K ROCKING ARMATURE MICROPHONES

Desk Type with PTT key switch in base. Brand new.

## $\$ 25$

"PHILIPS" TYPE CONCENTRIC TRIMMERS
Threaded stud mounting, 25 pF . 75c

## BRAND NEW 4-TRACK STEREO

## CARTRIDGE PLAYERS

2-5 Watts per channel at 8 ohms, 12 V DC operation. In sealed boxes.
$\$ 15$ each

## miniature siemens relays

4 sets changeover contacts, $6-12 \mathrm{~V}$ DC operation. Type V23154. New.
$\$ 4$ each
6 TRANSISTOR RADIO CHASSIS \$1 each

## TANK WHIP ANTENNAS

16it., complete with base $\$ 12$

## C45 TRANSCEIVERS

23-38 MHz, FM, with inbullt calibrator, approx. 15 Watts output. With 24V DC PSU. $\$ 49$

## C11 TRANSMITTERS

2-16 MHz, AM or CW. 50 Watts output. inbuilt 100 kHz crystal calibrator. Complete with 24V DC PSU,
$\$ 65$

Edgewise 0-1 mA Meters $21 / 2^{\prime \prime} \times 1 / 2^{\prime \prime}$ face. $3^{\prime \prime}$ deep, calibrated 0-5 $\$ 3.00$
Panel Meters $57 / 8^{\prime \prime} \times 41 / 4^{\prime \prime}$ with $0-1 \mathrm{~mA}$ movement, various scales on meters (gas analyser, etc.) $\quad \$ 5.00$

30 kHz M.E.W. Crystal Filters 10.7 MHz $\$ 5$ each

3 tt. Twin Cable Audio Leads with 3.5 mm plug fitted

10 for $\$ 2.00$
Plessey Speaker Specials
$5^{\prime \prime} \times 3^{\prime \prime} 3.5$ ohm speakers with ferrite
magnet … .................. $\$ 3.00$
$5^{\prime \prime}$ round 8 ohm. $41 / 2$ watts $\$ 3.50$
$5^{\prime \prime} \times 4^{\prime \prime} 15 \mathrm{ohm}, 31 / 2$ watts $\$ 3.00$
$5^{\prime \prime}$ round 15 ohm, $31 / 2$ watts $\quad \$ 3.00$
$\times 20$ Tweeters, freq. range $3 \mathrm{kz}-20 \mathrm{kHz}, 20$ watts RMS
$\$ 6.50$

## Car Speakers

$7 " \times 5$ " 4 or 8 ohms. 5 W . compl. with grille $\$ 4.90$
$Q^{\prime \prime} \times 6^{\prime \prime} 4$ or 8 ohms, $3 W$. compl. with grille $\$ 5.90$
Car Extension Speaker Controls. Use both speakers together or separately ... $\mathbf{\$ 1 . 5 0}$
Wire Wound Potentiometers in the following values: 5 ohm 2 watt, 10 ohm 2 watt, 500 ohm 2 watt. 3000 ohm 2 watt. All $\$ 1.30$ ea

Plastic Turntable Covers (blue tint) $15 \times$ $18 \times 31 / 2^{\prime \prime}$ deep
$\$ 5.00$
Jackson Slow Motion Drives 6:1 ratio \$2.30
New 240V AC Turntable Motors, 3 speed operation
$\$ 2.00$
Car Radio Suppressor Kits (2 condensers. 1 coil lead suppressor)
$\$ 1$ ea
Car Radio Suppressor Condenser 50c ea Cigarette Lighter Accessory Plugs

45c ea, 10 for $\$ 4$
"Maspro" TV Baluns 300.75 ohm for colour TV
$\$ 2.50$ ea
Standard Black and Clear TV Ribbon 15c yd

MAIL ORDERS WELCOMED. Please allow pack and post on items listed on this page. If further information required send a stamped S.A.E. for immediate reply from the above address.

## Completely Solid-State Choice of 40 or 80 METER MONOBANDERS

Designed and engineered for the ham on the move, single-band transceivers put the pleasure of mobile operation within the means of all amateur radio operators. Simple to install and operate, these compact units work directly off any standard 12 V DC automobile battery. No transmitter warm-up time or intricate tuning is required. An easy to see Transmit LED Indicator, on the S-meter face, lets you know when your signal is getting out. And, you've never heard better clarity or experienced better performance from such as small, yet handsome, rig.
Experienced hams appreciate the Monobander selectivity, which minimizes all QRM distrubances.


## MONOBANDER SPECIFICATIONS

## GENERAL

Frequency Range
MB-40A . . . . . . 40 meters ( $7.0-7.3 \mathrm{MHz}$ )
MB-80A ....... 80 meters ( $3.5-4.0 \mathrm{MHz}$ )
Power Source
Requirements ...13.5V DG (nominal) at 5 amps CW, average 1.5 amps SSB transmit and 0.4 amps receive.
Modes of

Operation
I.F. Filter

SSB or CW
Crystal lattice, 2.8 kHz bandwidth. 1.7 shape factor, ultimate rejection in excess of 100 dB .
Dimensions ..... $3^{\prime \prime} \mathrm{H} \times 8.5^{\prime \prime} \mathrm{W} \times 9^{\prime \prime} \mathrm{D}$.
Weight . . . . . . . . 6 lbs.

## RECEIVER

Sensitivity ...... Less than 0.5 microvolt at 50 Ohms for 10 dB signal plus noise-to-noise ratio.
Image Rejection. Better than -70 dB .
CW Sidetone. . . Optional MBCW accessory monitors CW keying.
Audio Output .. 4 -watts with less than $10 \%$ distortion to 3.2 Ohm internal speaker.
Audio
Response . . . . . . Essentially flat from 300 to 3000 Hertz $\pm 3 \mathrm{~dB}$.


VOL. 43, No. 9
SEPTEMBER 1975

## CONTENTS

## TECHNICAL

Amateur Building Blocks-Pt. 37
A Review of the Kenwood TR7200G 2 Metre Transceiver 13
Commercial Kinks
High Periormance Two Metre
Preamplifier and Converter
Horizontal to Vertical the Easy Way
Modifications to Carphone for use with a 6 position switch
Newcomers Notebook 23
Trap Dipole for $\mathbf{4 0}$ and $\mathbf{8 0}$ Metres
Try This

| GENERAL |  |
| :--- | ---: |
| IARU News | 27 |
| Radio Ghosts | 6 |
| Where, Oh Where does the | 5 |
| Money Go? | 4 |
| DEPARTMENTS | 30 |
| Afterthoughts | 29 |
| Awards Column | 26 |
| Book Review | 30 |
| Contests | 27 |
| Hamads | 29 |
| Intruder Watch | 28 |
| lonospheric Predictions |  |
| Ladies Amateur Radio Association |  |
| News | 28 |
|  |  |


| Letters to Editor | 26 |
| :--- | ---: |
| Magazine Index | 27 |
| Project Australis | 29 |
| QSP | 6,3 |
| Silent Keys | 30 |
| Trade Review | 29 |
| VHF-UHF - An Expanding World | 25 |
| WIA News | 4 |
| Y.R.C.S. | 27 |
| 20 Years Ago | 28 |

## COVER PHOTO

A top view of the works of the excellent Kenwood TR-7200G 2 metre FM transceiver which is reviewed on page 13 of this issue.
Photo: ken reynolds

# HAM RADIO SUPPLIERS 323 ELIZABETH STREET, MELBOURNE, VIC., 3000 <br> Phones: 67-7329, 67-4286 All Mail to be addressed to above address 

Our Disposals Store at 104 HIGHETT ET. BICHMOND (Phona 42-8136) is open Mondays to Fridays. 10.30 a.sin. to 5.0 prin., and on Saturdays to midday.

ALSO AT:
390 BRIDGE RD. RICHMOND. 425174

AND DISPOSALS STORE: 104 HIGHETT ST. RICHMOND. 428136


SE501 23 CHANNEL TRANSCEIVER 5W AM, 15W PEP SSB, 12V DC operation $\$ 195$
MIDLAND 13-870D 23 CHANNEL TRANSCEIVER
5 Watts AM, 12V DC Operation \$99
CENTRE LOADED FIBREGLASS MOBILE ANTENNA AND BASE 43 in . long
$\$ 16.90$
$1 / 4$ WAVE FIBREGLASS MOBILE ANTENNAS
With insulator and heavy spring base $\$ 35$ PONY CB74A 6 CHANNEL TRANSCEIVER
5 Watts AM, PMG approved for 27.880 MHz operation. Fitted with 27.880 and 27.240 crystals
$\$ 105$
MIDLAND TWIN METER TYPE SWR BRIDGE AND POWER METER
$\$ 25$
COMMUNICATION RECEIVERS AND TRANSCEIVERS

KENWOOD MODEL TS520 AC-DC. 80-10 metre, complete with microphone .... .... .... .... .... .... \$550 Matching External Speaker .... .... .... .... .... .... \$25 KENWOOD TRT200G 2 metre, 22 channel, 12V DC operation, fitted with Ch. 1 and 4 Repeaters. 10 W and $1 W$ output positions .. .. .. .. ..... $\$ 235$ YAESU MUSEN FT101B AC-DC, 160-10 metre, complete with microphone .... .... .... .... .... .... .... $\$ 585$ FT200 Transceiver with A.C. power supply .... $\$ 400$ KEN KP202 hand held 2 mètre Transceiver, 2 Watts output, fitted with xtals for channels $40^{\circ}$ and 50 . repeaters 1, 2, 3 and 4 .... .... .... .... .... .... ... $\$ 150^{\circ}$
KCP2 Battery Charger for KP202 with 10 rechargeable Ni-Cad batteries
$\$ 35$
KENWOOD QR-666 general coverage, operates from 240 V AC or 12 V DC .... .... .... .... .... .... .... $\$ 330$ BARLOW WADLEY XCR30 Mk 11 , alt band coverage, AM, SSB, CW reception .... .... .... .... .... .... \$279 POWER SUPPLY 240 V AC -13.5 V OC at 3.5 amps regulated
WE ALSO KEEP A RANGE OF 27 MHz WALKIE TALKIES which are type approved by the P.M.G. for boating, bushwalking, etc.

# THIS MONTH'S SPECIAL 

PRECOR 4 BAND RADIO AM-FM. AC/DC operation. VHF frequency coverage is $56-217 \mathrm{MHz}$ in 3 bands. $\$ 49.50$ plus pack \& post


## SCOOP PURCHASE

## TRANSISTOR RADIO CIRCUIT BOARDS IDEAL FOR HOME CONSTRUCTORS

Due to Tariff cuts on transistor radios, we can offer the ltems below at this price. Most are in working order but no guarantees at these prices.

## THOUSANDS AVAILABLE

AM 8 TRANSISTOR CIRCUIT BOARDS
All new parts. IFs, capacitors, resistors, etc.

## $\mathbf{\$ 1 . 5 0}$ each or $\mathbf{3}$ for $\mathbf{\$ 3 . 5 0}$

## AM/FM CIRCUIT BOARDS

10 transistors, all new. Ideal for use as FM tuner. $88-108 \mathrm{MHz}$.

## $\$ 2.75$ or 3 for $\$ 7.00$

## ALSO LARGE QUANTITY OF RADIOS

In various stages of manufacture. Some AC/DC models AM/FM etc. Speakers, cabinets, etc. Personal shoppers only.

From \$3 each
TRANSFORMERS A + R TYPE 5509
Ex. equipment, but as new. Prl. 240V. Sec. $2 \times 12.6 \mathrm{~V}$ at 2.5 A .

## $\$ 8$ each

"ZEPHYR" 2K ROCKING ARMATURE MICROPHONES
Desk Type with PTT key switch in base. Brand new.

## $\$ 25$

"PHILIPS" TYPE CONCENTRIC TRIMMERS Threaded stud mounting, 25 pF . 75c

## BRAND NEW 4-TRACK STEREO

CARTRIDGE PLAYERS
2-5 Watts per channel at 8 ohms, 12V DC operation, In sealed boxes.
\$15 each

30 kHz M.E.W. Crystal Filters 10.7 MHz
$\$ 5$ each
2N3055 Transistors with insulating kit $\$ 1.00$ Stolle 300 ohm Feeder with foam dilectric

15c yard
58 ohm Coax Cable 100 yd. Rolls, 1/a" diam. .... .... .... .... .... .... .... \$12 Roll 52 ohm Coax Cable $1 / 4^{\prime \prime}$ diam. 45c yard, 50c metre
Dow Key Coaxial Relays 48 Volt DC operation
$\$ 15$
Split Slator Capacitors with screwdriver slot drive, $9 \mathrm{pF}-17 \mathrm{pF}-25 \mathrm{pF}$. Brand new Eddystone type .... .... .... .... $\$ 4.50$ ea.
Ex Army Headphones approx. 20 ohms impedance. New, in sealed boxes .... $\$ 2.00$
3" Tape Spools .... .... 15c ea., $\$ 1.00$ for 10
$\mathbf{2 ' S}^{\prime \prime}$ Square Face 0-10 mA Meters, calibrate 0-60
$\$ 3$.
Jackson Slow Motion Drives 6:1 ratio $\$ 2.30$ New 240V AC Turntable Motors, 3 speed operation
$\$ 2.00$

## MINIATURE SIEMENS RELAYS

4 sets changeover contacts, 6-12V DC operation. Type V23154. New.
\$4 each
6 TRANSISTOR RADIO CHASSIS \$1 each
TANK WHIP ANTENNAS
16 ft ., complete with base
\$12
C45 TRANSCEIVERS
$23-38 \mathrm{MHz}, \mathrm{FM}$, with inbuilt calibrator, $\overline{\text { app }}$ prox. 15 Watts output. With 24V DC PSU. $\$ 49$

## C11 TRANSMITTERS

$2-16 \mathrm{MHz}, \mathrm{AM}$ or CW, 50 Watts output, inbuilt 100 kHz crystal calibrator. Complete with 24 V DC PSU.
$\$ 65$

MAIL ORDERS WELCOMED. Please allow pack and post on items listed on this page. If further information required send a stamped SAE for immediate reply from the above address. Larger items can be sent F.O.B.
(80c mall dellvarad to members)

Published monthly as the official journal by the Wireless Institute of Australia.
Reg. Office:
2/517 Toorak Rd., Toorak, Vic. 3142
P.O. Box 150, Toorak, Vic., 3142

Editor:
Bill Roper
VK3ARZ
Assistant Editor:
Bruce Bathols
VK3UV
Technical Editors:
Bill Rice
VK3ABP
VK3AFW
VK3YFF
Roly Roper
Publicatlons Committee:
John Adcock
VK3ACA
VK3UG
Rodney Champness
Syd Clark
Ron Fisher
Ken Gillesple
Neil Osborne
Ken Reynolds
Gil Sones
VK3ASC
VK30M
VK3GK
VK3YEI
VK3AUI
Contributing Editors:
Brian Austin
Deane Blackman
David Hull
Eric Jamieson
Jim Payne

| Drafting Assistants |  |
| :--- | ---: |
| Gordon Row | L30187 |
| Harry Cane | VK3ZIK |

Business Manager:
Peter B. Dodd
VK3CIF
Enquiries and material to:
The Editor.
PO Box 2611W, GPO Melb., 3001
Copy is required by the third of each month. Acknowledgment may not be made unless speclally requested. All important Items should be sent by certlified mail.
The Editor reserves the right to edit all material, including Letters to the Editor and Hamads, and reserves the right to refuse acceptance of any material, without specifying any reason.

## Advertising:

Advertising material should be sent direct to P.O. Box 150, Toorak, Vic., 3142, by the 25th of the second month preceding publication. Phone: 24-8652.
Hamads should be sent dlrect to P.O. Box 150, Toorak, Vic., 3142, by the 3rd of the month preceding publication.

## Printers:

## EQUITY PRESS PTY. LTD.

50-52 Islington Street
Collingwood, 3066
Tel.: 41-5054, 41-5055

There is no doubt the real concem for the WIA these days is to stay alive in the present financial situation.

Some may think the solution lies in returning to the beginning and starting all over again.

Others more realistically acknowledge the results of inflation and realise there can be no going back.

Yet again there is a growing number who see the necessity for the regrouping of the entire forces of the WIA.

Have we over-reached ourselves in providing the kind of service members expect but which many are unwilling to pay for?

What profit areas have been missed by the Federal Councll to offset our losses?
Your execulive knows there can be no going back. If the institute is to continue the only way is to go forward.

Over half the costs of the Executive go into the production and distribution of the joumal. What would the Institute be like without AR?

Certainly we could turn out a small semi-duplicated, cheap version of AR, but at this year's Federal Convention the matter was considered in depth and the Council were unanimous in their decision that it was essential for AR to continue in its present form!

Could we throw away our modest EDP system and go back to addressing plates? Let the divisions collect and account for membership dues?

Return to voluntary effort in maintaining membership records?
If anyone can come forward to do a cheaper and yet equally as good a job as our prosent EDP system we would like to hear from him at once.

We know a cheaper job could be done for a few hundred members, but we want something cheaper and better for the entire membership. We are still looking for it.

Did you notice that postages, wrappers and wrapping services, account for nearly one fifth of the costs of AR? Would it surprise you that you would get no change out of $\$ 1,000$ for the cost of the postage and stationery bills for the subscription processing.

The Execulive is well aware of the costs to members of the Federal organisation. It reviews these costs frequently and constantly seeks to do what has to be done as economically as possible.

There is no ready-made solution. No easy way out. Unless, of course, the Federal Councll gives directions to abandon many of the things now expected of us.

D. A. WARDLAW VK3ADW Federal President

RETURN OF 50-52 MHz
Work has begun by the VHF Advisory Committee in preparing a case for the return to amateurs of the 50 to 52 MHz segment of the 6 m band as required at the 1975 Federal Convention. Work is being done In two phases. Phase 1 is aimed at achieving a shared band arrangement for amateurs operating beyond defined service areas of Channel O TV transmitters and Phase 2 aims at full resioration. Both of these objectives could take a long time in getting any results even assuming there is success in putting forward a strong enough case. The VHFAC now needs the maximum amount of Information from amateurs on the co-channel operations of TV stations and other radio services in any part of the spectrum. Not only as affecting Ausiralia but also oversess. Have you anything useful to ofer about this? Do not delay - please write at once to "VHFAC, PO Box 150, Toorak, VIc., 3142'', in contidence if necessary.

## FRAGMENTATION

The editorial in QST for May '75 quotes "One characteristic of amateur radio that continues to cause us some concern is fragmentation, the splitling up of amateur radio Into a myriad of narrow interests which sometimes divide us Internally and waaken the strength and unity which we must display externally". W1RU writes that in one respect thls fragmentation is healthy but what does weaken the image of amateur radio is the on-the-air intolerance exhlbited by some amateurs for those who have different interests.

## SOLOMON ISLANDS

VK3YO whllst in Honlara, spoke with the $P$ \& $T$ Controller who happens to the VR4AA. Visitors, he was told. could obtain an amataur licence on production of an Australian AOCP (or photostat of It) and payment of $\$ 12$ per annum (minimum $\$ 3$ per quarter). The amateur bands are stated to be the same as applicable in the UK and will probably continue after Independence (some time in the future).

## NEW PREFIXES

Radio Communication, June '75, advises that the call sign block C7A-C7Z has been allocated provisionally by the ITU to the World Meteorological organisation.

## IARU NEWS

April '75 OST advises that a revisad Constitution of the IARU proposed by the RSGB has been adopled by the Union. The new Constitution recognises the existence of the regional IARU organisations. The necessary two thirds majority was achieved in voting for lis adoption.

## hECIPROCAL LICENSING

Break-In for May '75 carries official advice that reciprocal licensing of amateur radio stations now exisis between France and New Zealand (including Cook Is., Nive and Tokelau Is.). So if you hear an FAAA/ZLIZZZ you'll know what it's all aboul.

In July the Executive closely examined the expenses of the Federal body. The results appear elsewhere in this issue.

It is too early to say what the total subscription rates will be for each Division next year. Divisional activities are just as subject to inflationary pressures as are those of the Executive. It is at the Divisional level where more voluntary helpers working to sensible plans can effect greater savings than elsewhere.

At the Executive meeting in July David Rankin, VK3QV/ 9VIRH, the Secretary of the IARU Region 3 association, regaled the members with impressions from the Region 1 conference he attended in Warsaw during May. There is little doubt that the encouragement of the 'sports activity' of amateur radio in the USSR and Eastern bloc countries is likely to be very useful in the light of WARC 1979.

Work on uniformity of repeater conditions has continued. The Federal Repeater Committee in the person of John Harris, VK5ZRH came into action and work on 70 cm repeater parameters is obviously an early priority. The AARTG under Chairman Don Graham VK6HK was given the task of drafting suitable submissions to the authorities about RTTY.

The task of assisting with the revision of the PMG's Handbook was re-activated in advance of new regulations expected to become law perhaps later in the year. This work is in the capable hands of Geoff Taylor, VK5TY and Jack Martin, VK5EJ.

It was considered most important for the future of satellite operations in this part of the world that the Chairman of the Project Australis Group, Dave Hull, VK3ZDH should attend the Amsat experimeters meeting in Washington, USA in mid-March. The Executive funded his air fare after protracted negotiations failed to provide cash assistance from sources outside the WIA. All his other expenses were met out of his own pocket or through good friends, Amsat and others. The Executive sought financial assistance from Divisions and to date less than 20 per cent of the total has been raised. Thanks are given for the following -

| VK7 - | 50.00 |  |  |
| :--- | :--- | :--- | :--- |
| VK1 - |  |  |  |
|  |  |  | VKIWI 20.00, VKIVP 5.00, |
|  |  | VK1ZT 4.00, VK1DS 1.00, |  |
|  |  |  |  |

$$
V K 5-100.00
$$

184.50

By the time this appears in print the 1975 WIA Call Book should have been available for about a month. Perhaps it should be emphasised that the call sign data derives from PMG Dept. not the WIA. For the first time the compliation of the Call Book was done outside iMelbourne. It would be interesting to hear what the Group concerned thought about it all. Everybody involved with Call Book compilation should breathe a sigh of relief if next year's edition is done from EDP records. It this comes to fruition it is probable that WIA members will be designated with an asterisk and there should be less scope for error. Any WIA unfinanclal would obviously not be listed as a member.

Another Customs problem arose in relation to frequency coverage of amateur band HF transceivers. The By-Law lists the bands available tor use by amatours in Australia whereas HF transceivers are manufactured for a world market. The whole question is under active negotiations with the appropriate authorities using the criteria prepared by the WIA last year for the Industries Assistance Commission.

The Key Section raised the question of a CW and telephony gentleman's agreement for the frequency bands to be used by Novices. This was reterred to Divisional Councils for comments but it is obviously desirable that a decision should be reached before Novices are licensed.

Also as a result of WIA representations the necessity for ATV operators to obtain a special permit has been removed. With this change, of course, the -/T suffix disappears.

A letter explaining the objects and organisation of WICEN and advising that Brig Rex Roseblade, VKIQJ had been appointed Federal WICEN Co-ordinator was sent to the Minister for Defence.

The good offices of the PMG were sought to remove the ban on the Novice Examination deferred from 23rd June but no sign of any breakthrough was evident at the time this news/etter was written.

## 10 m BEACONS

From Radio Communication July '75 comes an Interesting beacon list starting with 28.165 MHz for PYiCK in Rio de Janeiro and VP9BA in Bermuda. Then follows an 28.170 ZL2MHF in Wellington, 28.175 VE3TEN in Ottawa, 28.180 5B4CY in Limassol, 28.185 GB3SX In Sussex, 28.190 3BBMS in Mauritius and DLOIGI on 28.195.

## NEW PREFIX

From IARU news in OST June ' 75 mention ls made of a special Memorial Meeting early in July at Skaple in Southern Yugoslavia and In conjunction with this event YU amateurs will be using the special prefix YZ for the remalnder of 1975.

## 8AFETY

OST June '75 mentions that a notice which would have exempted electronic pocket calculators from the general restrictions on the use of electronic devices in alrcraft was withdrawn. It seems there were enough reports of interference to navigational aids and the like by some models of calculator aboard some aircraft, particularly light planes and helicopters.

## Afterthoughts

## EXPERIMENTERS DELIGHT - APAIL 1975

On the circuit diagram there is a capacitor value shown as 10 nanof which should be 1 (one) nanof (0.001F). It is in the pre-regulator control section. Ten if make the response too slow and the power switch will pun hot. Also the ripple on the Ilnear pass tranaistors becomes too high on 200W out. A new malns switch has been fitted.
This is a dpdt switch. the spare section of which is used to discharge the PRIMARY STORAGE capacitor via 5 to 10 ohms, 5 W . and, alsc, via the revarse protection diodes the other blg capacitors, when the mains switch is switched OFF.
The reason for this modification was the discovery that upon switching off, the remaining stored energy would sometimes be fed through to the output and cause the volis to go high. That is due to the collapse of the references upon switch-aft.

The reverse protection diodes must be fitted on
both, the switching and linear pass transistors.
If your load is sensitive to small spikea (150 to 200 mV ), then use a iwisted pair of wires for connection to the supply and earth only at the mains earth terminal provided on the tront panel. Watch earth loops through CRO and other gear. Roll VKszie
MODIFYING THE TRIO JREO RECEIVEA
(By VK2AGJ)
A small gremlin has produced some errors in the process of publiahing this article. Except for the polnis listed below, the circult diagram is correct. and where any differences between the diagram and the text occur, it is the text which is Incorrect. 1. Add a dot to 2 N 3819 日FO FET, lower 800PIV diode. converter heater switch and MPF105 mixer.
2. Add transistor type numbers to calibrator. 1st NPN ME2001, PNP 2N3838, 2nd NPN 8C108.
3. Audio output capacitor is an electrolytic with the positive lead connected to the emitters.
4. 2N3638 audio amp la a PNP not NPN as drawn.

The author has subsequently found 11 necessary to fit a 4.7 uF filter capacitor to the negative supply to the RF gain control.

## WHERE, OH WHERE DOES THE MONEY GO?

The Executive made an extensive in depth study of its finances as in July and came up with some interesting facts. These had long been suspected but never quantified.

The pie charts show the distribution of our financies as they appear at the middle of the current financial year.


## AUSTRALIAN VHF/UHF/SHF RECORDS - JULY 1975

new south wales

|  |  |  |  |  |  | km | milas |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50/52 | MHz | VK2ADE | 10 | VE7AQO | 8-4-59 | 11,778 | 7,320 |
| 144 | MHz | VK2ATO/2 | 10 | 2L2HP | 2-1-66 | 2,344 | 1,457 |
| 432 | MHz | VK4ZT/2 | 10 | VK4KE/4 | 12-7-69 | 352 | 218 |
| 576 | MHz | No clalm |  |  |  |  |  |
| 1,296 | MHz | AX4ZT/2 | 10 | AX4NO/4 | 12-4-70 | 402 | 250 |
| 2,300 | MHz | VK2ZAC/2 | 10 | VK2BDN/2 | 19-5-73 | 159.9 | 99.4 |
| 3,300 | MHz | VK2AHC/2 | 10 | VK2SB/2ZNO/2 | 10-2-74 | 59.5 | 37.0 |
| -5,650 | MHz | VK2AHC/2 | 10 | VK2SB/2ZND/2 | 12-4-75 | 114.1 | 70.9 |
| * 10,000 | MHz | VK2AHC/2 | 10 | VK2SB/2ZND/2 | 12-4-75 | 114.1 | 70.9 |
| VICTORIA |  |  |  |  |  |  |  |
| -50/52 | MHz | VK3ALZ | 10 | XEIFU | 1-5.59 | 13,545 | 8,418 |
| 144 | MHz | VK3ZNC | 10 | ZL2HP | 13-12-65 | 2,692 | 1,673 |
| 432 | MHz | VK3ZYO | 10 | VKSZDY | 1-2.70 | 654 | 408.4 |
| 576 | MHz | VK3AOT/3 | 10 | VK3ZKB/3 | 11-4-71 | 237 | 147.5 |
| $\bullet 1.298$ | MHz | VK3AKC | 10 | VK7ZAH | 17-2-71 | 439 | 273 |
| -2,300 | MHz | VK3ATY/3 | 10 | VK32HU/3 | 6-12-74 | 210.5 | 130.8 |
| -3,300 | MHz | $\begin{aligned} & \text { VK32GT/ } \\ & \text { ZGK/3 } \end{aligned}$ | 10 | VK3ZDQ/3 | 14-12-63 | 101.4 | 63.0 |
| 5.650 | MHz | No claim |  |  |  |  |  |
| 10,000 | MHz | No claim |  |  |  |  |  |
| QUEENSLAND |  |  |  |  |  |  |  |
| 50/52 | MHz | VK4ZAZ | 10 | K6ERG | 16-3-58 | 8.536 | 5,305 |
| 144 | MHz | VK42AZ | 10 | VK7ZAH | 1-1-67 | 1.910 | 1,187 |
| 432 | MHz | VK4KE/4 | 10 | VK42T/2 | 12-7-69 | 352 | 219 |
| 576 | MHz | No claim |  |  |  |  |  |
| 1,296 | MHz | AX4NO/4 | 10 | AX4ZT/2 | 12-4-70 | 402 | 250 |
| 2,300 | MHz | No claims |  |  |  |  |  |
| and abo | ve |  |  |  |  |  |  |
| SOUTH AUSTRALIA |  |  |  |  |  |  |  |
| 50/52 | MHz | VK5KL | 10 | W7ACS/KH6 | 26-8-47 | 8,626 | 5,361 |
| -144 | MHz | VK5BC | 10 | ZL2HP | 23-12-65 | 3,149 | 1.957 |




## Mr. P. D. Dodd.

Secretary.
The Wireless Institute of Australla Executive. P O. Box 150.
Toorak. Vic. 3142
Dear Mr. Dodd,
I have received your letter of 25.7 .75 on behalf of The Wireless Instifute of Australla concerning the delerment of the first Amateur Radio Novice Examination.
Industrial action was taken by the Professional Radio and Electronics Institute over organisational proposa!s and this matter is currently in the hands of the Public Service Board.

I have alraady initated action which I hope will lead to an early settlement of this dispute.

Yours sincerely, R. Blshop

Postmaster-General. Canberra. ACT 2600 30th July. 1975

## Mr. P. D. Dodd

Secretary.
The Wireless Institute of Australla,
P O. Bax 150,
Toorak, Vic. 3142
Dear Mr. Dodd,
I refer again to your letter of 8th June. 1875 on behalf of the Wireless Insiltute of Ausiralla concerning the delay in finalising the results of the examination for the Amateur Operator's Certificate of Proliciency held in February, 1975.

I agree that despite the intensive efforts of staff employed in the area. the results of the February examinations were not despatched as early as usual.
II should be noted. however, that several factors have contributed to the delay. In the main these are the current shortage of competent staft and the significant increase in the number of candidates who sat for the examination. These were further compounded by the need to divert staft from the marking of examination submissions to prepare the first examination for the Novice Amateur Operator's Certificate of Proficiency, which as you know, was scheduled to be held in late June. 1975.
Action is in hand to secure addilional staft to overcome the difliculties being experienced in the examination area and it is expected that the position will Improve in the near future.

Your suggestion concerning more modern methods of sefting and marking examination papers has been read with Interest and it is opportune to mention that for some time now. multi-choice type question papars have been included in examinations or one of the commercial operators' certificates $t o$ supplement normal essay type papers sel for the radio theory sections. You may not be aware that use of the multi-choice type of question paper has been extended to the theory section of the Novice amateur examination. I feel that this style ol paper will greally assist in minimising delays in the return of examination results to the candidates.
My officers are interesied in using multi-choice type questions in the full Amateur examination and will be sludying this matter when the staffing situation permits

Yours sincerely. R. Blshop

## ORIGINAL TECHNICAL ARTICLES

The Publications Committes recently discussed the copyright of articles in AR in the light of reprints being done by overseas magazines on a reclprocal basis. Where the author does not specifically reserve copyright in his own name and includes this with his article reprints in sister society journals would continue as in the past. If other publications request permission to reprint, the request will be reterred to the author concerned before agresing to the reques!. In the past year or two many AR articles have been reprinted in overseas amateur magazines and due acknowledge ments had been credited. AR is exchanged on a reciprocal basis with most of the world's major amateur publications and it is most encouraging to note how carelully it is read and reviewed

## 1975 CALL BOOK

All being well the call book should be avallable by the time you read this. The price will be $\$ 1.50$ and il will contain some extra material no

## RADID GHOSTS

Reach out the trip and breaker, James, and turn the lights to 'low' We'll watch the pushpull finals cool - see how their anodes glow. And whilst they lose their rosy state, revert to black and grey They'll mirror distance conquered, oldtimers gone away. Ere Ohm's Law meant a thing to you, ere the Q code felt your hand to vanquish isolation, be it seawise, air or land
I've warmed to friendly handgrips by morse from men allied To "fingertalk" with kindred when the wireless world was wide. In retrospect I'm frozen in my pipedreams as they pass Harold from St. Lucia, his sets' panels made from glass With Alf his fervent cobber whose fetish was 'lo-loss' His tuners self-supporting, devold of bolt or boss.
Here's Longreach Bill his morse a treat to copy as he raced His "skeds" with me a jousting-ground for learners as we paced: And Harold from Rockhampton, phlegmatic on the key Our weekly "meet" a tonic from "GE" to seven three. Hail Andy from Mareeba, your signal's faint tonight With Leighton at the Brisbane end they held the circuit tight When once a cyclone struck the coast near his North Queensland Town
'Twas Andy with his two-watt rig who poured the story down.
A keening alternating current note, nine hundred cycles sweet Comes up to strength and calls me in - the morse is cllpped and neat.
Ray Loving of the Eastern Moon's tied up in Panama
Tonight he'll toast old friends he says in a favoured Yankee bar.
Six weeks ago across my log his name was duly signed Below a Kiwi's off a tramp: both callsigns underlined. A singing crystal note swells up above the crowded bandI reach across the narrow Strait - grasp Watto's eager hand. There's Norm from Perth Westralia. He never seems to tire. At twelve my time he'll go on shift, controls trains on the wire.
"We're one fifty north of Alice" comes the tap tap faint but clear Tis Arthur from his mobile home. Been on the road a year. The Lottery Goddess smiled on them and beckond them away From Melbourne with its sleet and noise, they're gone a year today. Friend Trev from Bathurst pipes "GE" in a ringing crystal sound Piezo-electrics bow to Trev - how many has he ground? James old man my pipe is cold. They're passing by me still Helene from Invercargill, Maree from Broken Hill l'll bide a while, the moon rides high, the Taylor Range stands plain A halliard flog against a mast - the chime whistle of a train Cuts frostily across the morse of men whose "fists"। knew I'll turn my own ham license in, next month its falling due Few "morse men" are no longer "it" - the present ham it seems Won't "fingertalk" for pleasure, let the oldsters have their dreams.

MAT O'BRIEN ex VK4MM
included in previous issues. Remember one thing - the call sign data is that which was provided to us by the PMG's Department. Do not write to the Institute saying your address or other details are incorrect in the Call Book or are not included.

## FRAGMENTATION

"Indeed" - says the writer of the editorlal in OST May ' 75 - "one characteristic of amateur radio that continues to cause us some concern is fragmentation, the splliting up of amateur radio into a myriad of narrow interests which sometimes divide us internally and weakens the strength and unity which we must display externally."

## NOVICES AS WIA MEMEERS

Are very welcome indeed. The 1972 Federal Convention Motion 72.17 .04 set out the pollcy that Novcie Licensees may be admitted as Assoclate members. Some people believe this would be correct for Novices under the age of 16 which is of course the minimum age limit for other amateur licences. Perhaps some WIA Divisions might even now be looking at their Constltutions relating to membership and voting qualifications apart of course from the ACT Division where thelr Constitution is of more recent date than the uniform divisional conslitutions still in use elsewhere. Novices who are students or even pensioners could presumably qually for the lower subscription rates but what aboul those in between?

## AMATEUR BUILIDING BLDCKS

## PART THREE

H. L. Hepburn VK3AFQ

4 Elizabeth St., East Brighton, 3187

The third part of this series of articles describes a module to generate a low level sideband signal and a single band linear amplifier to raise this low level signal into the 25/30 watt region.

## Section 2 - Unit D -

## BALANCED MODULATOR/SIGNAL MIXER

Figure 10 gives the circuit diagram of the four functions involved while Figure 11 shows the component layout on the $6 \mathrm{in} . \times 2 \mathrm{in}$. PCB.

## (I) THE MICROPHONE PREAMPLIFIER

 Input from a 2000 ohm dynamic microphone is filtered for RF by the F29 RFC and associated capacitors and is amplified in a $2 N 3565 / 2 N 4249$ NPN/PNP feedback pair. A 22k on board trimpot (or panel mounted pot) provides control of the audio level into a 2N5245/2N3565 FET/Bipolar pair having a very low output impedance to feed the signal ports of the balanced modulator via a 10 mFd electrolytic. This capacitor is connected between two PCB stakes so that easy access to the board for audio is available and allows the balanced modulator or the pre-amplifier to be used separately if desired.
## THE BALANCED MODULATOR

As for the receiver mixer in Unil A and the product detector in Unit $\mathrm{C}_{\mathrm{I}}$ use has

again been made of the 1496/796HC type of device.

Audio is fed to pin 1 while pin 8 receives input either from the auxiliary BFO crystal oscillator offtake in Unit $C$ or from the crystal oscillator provided on the board under discussion. If used as part of a transceiver the BFO injection can come from the receiver but if the module is used as part of a separate sideband generator the on board oscillator can be used.

Balancing to give minimum oscillator

feed-through is by means of the 22 k trimpot between pins 1 and 4. In the layout used, output at the BFO frequency is some 50 dB below the input level at 9 MHz .
L8 is bifila, wound and is resonated by C8. A link in L8 gives a low impedance DSB output which normally goes to a filter to strip off the unwanted sideband and further reduce the carrier level.

For best operation the BFO input should not exceed 60 MV RMS while the audio input should be below 300 MV RMS.




Table 2.7 below gives coil and capacitor data for L8/C8 for the most popular IF frequencies.

## (iii) THE CRYSTAL OSCILLATOR

The crystal oscillator provided on the PCB of Unit $D$ is exactly the same as that provided in Unit A. Coil and capacitor data for L10/C10 is the same as that given in Table 2.5 for L5/C5.

As indicated in (ii) above, the function can be used to provide the carrier input (at IF frequency) for the balanced modulator if it is not availabie from other sources.

Alternatively it can be used in conjunction with the balanced signal mixer where a fixed frequency from the crystal oscillator can replace the VFO input to the signal mixer to provide a fixed, single frequency output.


* may need adjustment to set standing collector current to 25 ma . FIGURE 12 -UNIT E - $25 / 30$ WATT LINEAR

If neither of the above facilities is required the crystal oscillator components are simply omitted.
(iv) THE SIGNAL MIXER

After DSB has been generated in the balanced modulator and one sideband removed in a suitable filter the resulting SSB (usually at the IF frequency) has to be heterodyned to the required signal frequency.

The signal mixer is designed to do this. The oscillator input (pin 8) is fed with the
TABLE 2.7

| Fraq. <br> MHz | Primary <br> turns | Line <br> turns | AWG | Slug | C8-pF |
| ---: | :---: | :---: | :---: | :---: | :---: |
| S.0 | $18+18$ | 9 | 32 | F16 | 150 |
| 9.0 | $13+13$ | 6 | 32 | F16 | 100 |
| 10.7 | $10+10$ | 6 | 32 | F29 | 100 |

Note to Table 2.7:
Colls are close wound on Neosid 722/1 formers links are wound over the centre of the tuned winding.
TABLE 2.8

| Freq. <br> MHz | Tuned <br> WInding | LInk | AWG | Slug | C9 |
| ---: | ---: | :---: | :---: | :---: | :---: |
| 1.8 | $37+37$ | 15 | 37 | F16 | 470 |
| 3.5 | $25+25$ | 10 | 37 | F16 | 150 |
| 7.0 | $15+15$ | 6 | 32 | F16 | 100 |
| 14.0 | $10+10$ | 4 | 32 | F29 | 47 |
| 21.0 | $10+10$ | 4 | 26 | F29 | 33 |
| 28.0 | $10+10$ | 4 | 26 | F29 | 15 |

Note to Table 2.8:
All coils close wound on Neasid $722 / 1$ former. Link is wound over centre of tuned winding.


FIGURE 13 - UNIT E - COMPONENT LAYOUT


FIGURE 16 - UNIT E-MOUNTING METHOD OF P.A. TRANSISTORS


Table 2.8 gives coil and capacitor data for L9/C9.

## Section 2 - Unil E - <br> LINEAR AMPLIFIER

This is a single function module providing linear amplification of signals over any one amateur band or other narrow frequency spectrum up to 30 MHz .
With a 13.6 volt supply, a 60 mV RMS input gives 30 watts RMS output into 50 ohms.

Figure 12 gives the circuit diagram while Figure 13 shows the parts placement on the 6 in. $\times 2$ in. PCB. Figure 14 shows the method of mounting the three transistors on the PCB and (very necessary!) heat sink.

Table 2.9 gives the values for the tuned circuit constants for the amateur bands whilst Table 2.10 gives the results obtained at 7 MHz with one of these modules.

Use has been made of the widely available 2N5589/90/91 series of power transistors. These are available from Dick Smith In Sydney or Radio Parts in Melbourne.

A 2 N 5539 is used as a class A resistance coupled amplifier to feed a 2 N5590, this latter device being coupled to the 2N5591 output transistor via a tuned network comprising L10, C10 and C11. The output tuned network is L11, C12 and C13 with 20/220 pF Ducon ceramic trimmers across the fixed capacitors for "set and forget" adjustment.

The standing current for the 2N5589 amplifier should be around 100 mA with a 13.6 volt supply and no signal input. The 2N5590 and 2N5591 operate in Class B and the bottom base bias resistor values shown in Figure 12 may need adjustment to ensure that each stage draws in more than 25 mA with a 13.6 volt supply and no signal input. It is essentlal that a good heat sink be used - the simplest being a 6 in . length of $21 / 2 \mathrm{in} . \times 11 / 2 \mathrm{in}$. $\times 1 / 4$ in. thick " $U$ " channel aluminium extrusion.

If a finned heat sink is used the flat centre channel will have to be at least
$n$. wide to accommodate the PCB. The U' shaped extrusion has proven quite adequate in service and has the advantage of taking up the minimum cabinet space. The method of mounting the transistors to the PCB and the joint assembly to the heat sink is shown in Figure 14.

Figure 15 suggests one method of connecting Units $A$ to $E$ to give a single band tuneable SSB transceiver. Its physical form is left to the builder but a few comments are in order.

For all except the PA board, the HT supply is set at 10 volts using a 7810 or equivalent three terminal regulator. Note that the 0.22 mFd and 10 mFd tantalum capacitors are mounted as close to the regulator as posible.

It is assumed that a PTT microphone is used and that the appropriate signal and power changeovers are done by a relay operated from the PTT switch on the mlcrophone. This is easier, but by no means obligatory, since the change from Tx to $R x$ and vice versa can be done
using an appropriate rotary switch. Note that AGC to the first stage comes from the normal AGC line during receive but is replaced with a fixed voltage on transmit, with the two silicon dlodes acting as gates to pass the appropriate supply.
Use of a normal mechanical dial is assumed and its form is left to the constructor. In a later article it will be shown how a digital dial can be fitted.

Before describing the digital units it is
proposed to cover the FM and VHF modules and the next article will cover the two units involved.

## building blocks

Moast general components can be obfained from the VKS Dlaposala Committee al P.O. Bor 65, Mount Waverley, Vic. It is hoped that arrangements will be nade for the Commitiee to provide all but filters and crysials. In the maanwhile printed clrcult boards can be obfalned from the aulhor.

TABLE 2.8 - P.A. COIL AND CAPACITOR DATA

| Band | C1/C2 pF | Turna | ${ }_{\text {AWG }}^{\text {L10 }}$ | 8lug | 111 | RFC5 | $\begin{aligned} & \text { C12 } \\ & \text { DF } \end{aligned}$ | $\begin{aligned} & \mathrm{C13} \\ & \mathrm{pF} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 160 | 470 | 50 | 32 | F16 | $\begin{aligned} & 24 \mathrm{t} . \\ & 16 \text { AWG } \\ & 11 / \mathrm{HI} \mathrm{ID} \\ & 8.8 \mathrm{uH} \end{aligned}$ | $\begin{aligned} & 16 \mathrm{t} . \\ & 16 \mathrm{AWG} \\ & 1 / 2 \cdot \mathrm{tD} \\ & 2 \mathrm{uH} \end{aligned}$ | $\begin{gathered} 1000 \\ + \\ 20 / 220 \end{gathered}$ | $\begin{gathered} 4400 \\ + \\ (2-2200) \end{gathered}$ |
| 80 | 220 | 45 | 32 | F16 | 18 t. <br> 16 AWG <br> 1" ID <br> 4.4 uH | $\begin{aligned} & 10 \mathrm{t} . \\ & 16 \text { AWG } \\ & 1 / 2 \cdot{ }^{\circ} \mathrm{ID} \\ & 1.0 \mathrm{uH} \end{aligned}$ | $\begin{gathered} 560 \\ + \\ 20 / 220 \end{gathered}$ | $\begin{aligned} & 2200 \\ & + \\ & 20 / 220 \end{aligned}$ |
| 40 | 100 | 25 | 26 | F16 | $\begin{aligned} & 16 \mathrm{t} . \\ & 16 \mathrm{AWG} \\ & 1 / 2 \cdot{ }^{\prime \prime} \text { ID } \\ & 2.2 \mathrm{uH} \end{aligned}$ | 14 t. <br> 16 AWG <br> $1 / 4$ " ID <br> 0.5 uH | $\begin{gathered} 220 \\ + \\ 20 / 220 \end{gathered}$ | $\begin{aligned} & 1000 \\ & + \\ & 20 / 220 \end{aligned}$ |
| 20 | 47 | 20 | 26 | F29 | $\begin{aligned} & 10 \mathrm{t} \\ & 16 \mathrm{AWG} \\ & 1 / 2 \cdot \mathrm{ID} \\ & 1.1 \mathrm{uH} \end{aligned}$ | $\begin{aligned} & 8 \mathrm{t} . \\ & 16 \text { AWG } \\ & 1 / 4.3 \mathrm{ID} \\ & 0.25 \mathrm{uH} \end{aligned}$ | $\begin{gathered} 100 \\ \stackrel{+}{+} \\ 20 / 220 \end{gathered}$ | $\begin{gathered} 470 \\ + \\ 20 / 220 \end{gathered}$ |
| 15 | 33 | 16 | 26 | F29 | $\begin{aligned} & 14 \mathrm{t} \\ & 18 \mathrm{AWG} \\ & 5 / 16^{\circ} \mathrm{ID} \\ & 0.7 \mathrm{uH} \end{aligned}$ | $\begin{aligned} & 7 \mathrm{t} . \\ & 16 \text { AWG } \\ & 1 / 4.4 \mathrm{ID} \\ & 0.2 \mathrm{uH} \end{aligned}$ | $\stackrel{47}{\stackrel{4}{20 / 220}}$ | $\begin{gathered} 330 \\ + \\ 20 / 220 \end{gathered}$ |
| 10 | 22 | 12 | 26 | F29 | $\begin{aligned} & 15 \mathrm{f} \\ & 16 \text { AWG } \\ & 1 / 4 \cdot \mathrm{ID} \\ & 0.55 \mathrm{uH} \end{aligned}$ | ```t. 16 AWG 1/4 0.15 uH``` | $\stackrel{33}{+}$ | $\begin{gathered} 150 \\ + \\ 20 / 220 \end{gathered}$ |

## NOTES TO TABLE 2.9

(a) Coll Inductances are approximate only.
(b) Colls L10 are close wound on Neosid $722 / 1$ formers.
(c) The fixed parts of C12 and C13 are silver mica or Ducon 100 volt Type LRJ
(d) RFC1 and RFC2 conslat of 18 turns of 20 AWG enamelled wire wound on a $1 / 2$ " OD F25 Neosid toroidal core Type 4327R/F25/EC.
(e) RFC3 consists of 10 turns of 16 AWG enamslled wire wound on a $1 / 2$ " OD F25 Neosid toroidal co:e Type 4327R/F25/EC.
(1) RFCA for all bands consists of 20 lurns of 20 AWG enamelled close wound on the body ol a 1.0 K 2 walt resistor.
(g) For 160 meters L11 can conslst of 11 turns 16 AWG wound on a Ducon 02 toroid $17 /{ }^{\prime \prime} \mathrm{OD} \times \mathrm{I}_{4}$ " ID $x \not / 6$ " thick. The tums are spread over $7 / 4$ of the core.

TABLE 2.10 - POWER AMPLIFIER PERFORMANCE


## NOTES

2.10.A Vec was set at 13.0 volts, Input frequency was set at 7.07 MHz (mid band) and output noted at various dilve levals.
2.10.日 VCC was set at 13 volts and drlve was set at 60 mV RMS. Output was noted at band centre and the frequency/output relationships established elther side of this frequency.
2.10. Malntaining a constant drive level and frequency. the feed voltage was varled and output and total current noted.

## VICOM INTERNATIONAL PTY LIMITED Manager Peter Williams



## IC-202

$144 \mathrm{MHz} \mathrm{SSB} \mathrm{CW} \mathrm{3W}$

## TRANSCEIVER <br> ARRIVING SOON!

## © ICOM


#### Abstract

This military style portable rig has just come off the ICOM production line and will soon be released for export. With 66 He semi-conductors it produces $3 w$ pep or $3 w$ for cw in the range $144-145 \mathrm{MHz}$. Power is optional external 13.8 V dc or internal $\$ 8.50 \mathrm{pr}$ nicads (UM-2).


The IC22A now comes complete with 6 channels from the WIA band plan and the VICOM 12 month warranty. Featuring Isolid-state T/R relay, PA protection and 5 helical resonators this |popular mobile rig is the biggest seller in Australia in the Amateur 2 meter line. Price $\$ 210$ plus freight. Extra crystals S8.50 pair.
The DV-21 PLL Digital VFO can be easily interfaced with the |IC22A or IC21A or any rig with 44.45 MHz rx and 18 MHz tx. |The VFO runs from either 13.8 V dc or 240 V ac and can scan either empty frequencies or those being used. In addition 2 programmable memories for favourite channels can be selected. | Price \$285.
|DV-21 COMBINATION DEALS:

$$
\begin{array}{ll}
\text { IC22A plus DV21 } & \$ 450 \\
\text { IC21A plus DV21 } & \$ 570
\end{array}
$$

IC-3PA 13.8V dc power supply has been designed for the | IC22A/30A/60 series. Price $\$ 78$.


## WHY NOT JOIN THE GANG ON 2 METRES?

PROFESSIONAL OUALITY 2M FM RECEIVER MODULE . . Ideal as an auxiliary monitor lor the shack or to keep the XYL posted (perhaps not a good ideal) this kit comes complete with a single channel oscilato and a premium grade 11 element it ladder filter The price of $\$ 69.50$ includes predrilled libreglass pab. all components. il crystal, filter. instruction manual. Add \$1P\&P
Features:

- outstanding selectivity. 90dB adjacent channel rejection
7.5 MHz bandwidth
o. I uV soueten sen

WIA Band Plan Xtals for IC22A/IC21A
Repeaters 1.7
Anti-repeat 1-7
Simplex: 20, 28, 32, 37, $38,40,49,50,51,52$,

## AN AR SPECIAL - REVIEW

## KENWDOD TRy 200 © $\mathbf{2 m}$ Transceiver

Kenwood is the export name of equipment manufactured by the Trio Electronics Group of Tokyo, Japan. They are of course well established in the amateur communications field with several models of both HF and VHF gear available on the Australian market at the present time. The TR7200G is the first piece of two metre FM equipment marketed here, although their earlier TR7100 was sold in large quantities in both Japan and in the United States under the SBE label. The current 2 metre models are marketed in the USA under the Drake label.

Kenwood is handled In Australia by the Weston Electronics Company at North Rocks NSW. The unit used in our review was supplied to us by Ham Radio Suppliers of 323 Elizabeth Street, Melbourne. Details of price and delivery can be obtained from them or by reference to their advertisements in this magazine.

The TR7200G has much in common with other 2 metre FM rigs available at the moment, but as we will see, the Kenwood has many features that are both unique and interesting.

It is, of course, fully solid state and uses a total of 37 transistors, 2 FETs, 1 IC, and 24 diodes. Both dimensions and weight are slightly greater than other sets tested in the past, however it still rates as a very compact unit. It measures 180 mm wide $\times 60 \mathrm{~mm}$ high $\times 240 \mathrm{~mm}$ deep or in old terms $7-1 / 16^{\prime \prime} \times 2-3 / 8^{\prime \prime} \times 9-7 / 16^{\prime \prime}$. Weight is 2.5 kg which is approximate!y 5.5 Ibs.

The appearance of the Kenwood Is quite outstanding with the front panel finished in silver and light grey, with a satin chrome surround. Knobs are flat black and the cabinet is finished In a fine black crackle. The front panel is resplendent with a muititude of indicator lights which warn of any change from normal operation. Their functions will be later itemised.

As with all its contemporaries, the TR 7200G has provision for 22 channels plus an external VFO input. The optional external VFO is pictured in the advertisement brochure and is designated as VFO 30. Apart from this, no mention is made as to how it operates, nor have any apparently made their way to this country. The set is supplied with crystals for repeaters one and four. Crystals for other channels can be supplied on order from Ham Radio Suppliers, however, correspondence with Weston Electronics in Sydney indicates that they have only heard of repeater channels one to four and simplex channels ' A ', 40 and 50 . It would appear though that in the future they might investigate the possibility of importing additional channels.

The mobile mounting bracket has provision to take a small padlock to frustrate the efforts of any would-be thieves. The
transceiver slides in and out quite easily and can be adjusted to four different angles of tilt.

The Kenwood operates from a nominal 13.8 volts $D C$ and is rated to deliver 10 watts output to a 50 ohm load in the high power position and 1 watt in low. Power selection is by a front panel push button with visual indication provided by a colour change in the illumination of the meter. The channel selector is clearly numbered 1 to 22 plus VFO. Position 1 can be selected by pressing the "Call Ch." button regardless of the actual channel selected. At the same time a small panel light indicates that the "Call" position has been selected.

Accessories supplied include a good quality dynamic push-to-talk microphone, mobile mounting bracket, DC power cable with in-line fuse, external speaker plug $(3.5 \mathrm{~mm})$, chrome stand leg for home station use and an assortment of nuts, bolts and washers for attaching the mobile mount.

## TR 7200G CIRCUIT DESCRIPTION

Starting with the receiver, a normal double conversion system is used with 10.7 MHz and 455 kHz IF frequencies. The front end uses a 3SK41 in both the RF stage and first mixer. Ceramic filters are used at both IF frequencies with the 455 kHz filter having a bandpass of 20 kHz at the 6 dB points. The receiver is thus a little more tolerant with high deviation signals than are most of its competitors. All of the receiver stages with the exception of the audio end are supplied with 8.3 volts from a series regulator stage. Returning to the front end, the first conversion oscillator starts off with crystals in the 15 MHz region. These operate in a parallel resonant circuit with about 40 pF across each crystal, Perhaps due to this higher than normal capacity, receiver stability is excellent. Output from the last multiplier stage is monitored with a transistor driving a LED indicator. This is situated in the
dial and meter escutcheon and gives an indication that the channel selected has a receive crystal installed. It would also of course fail to light in the unlikely event of a fault in the crystal or multiplier stages.
Transmitter circuitry commences at 12 MHz , again with about 40 pF across the crysta!s. The only IC In the TR7200G is used as the microphone amplifier and speech clipper stage. In a system similar to that used on the receiver, the output of the last transmitter doubler stage is monitored with a DC amplifier and transistor swltch to operate the "On Air" light on the front panel. This will then only come on when the transmitter is actually delivering drive to the final stages. An elaborate protection system is provided for tha final stage. This is actuated ho a hinh SWR sensing circuit. The low power setting is variable over a wide range as it operates the same voltage regulating system used to provide the high SWR protection.

Another feature that appears to be quite unique to the Kenwood is a built-in public address system. A special socket on the rear of the set can be connected to an external speaker, then with the receiver squelch turned fully counter-clockwise, the microphone amplifier output is switched to the input of the receiver audio stage. At the same time the internal speaker of the Kenwood is disconnected. As well as the external PA speaker socket a normal receiver external speaker socket is situated on the back panel.

## THE KENWOOD TR7200G ON THE AIR

The transceiver is mooth to operate. The channel selector knob is relatively large and rotates with a satisfying clunk. When the rig is turned on with the push-on. push-off volume control, the channel selector and meter are illuminated and providing a receive channel is selected, the red LED indicator will also come on. The escutcheon is covered with a darkly tinted glass so that it is difficult to see which

# BRIGHT STAR CRYSTALS 

PTY. LTD.
35 EILEEN ROAD, CLAYTON, VIC., 3168. Phone: 546-5076 (Area Code 03)

## new products

CRYSTAL CLOCK AND DECADE COUNTER UNIT This unit comprises a 10 MHz crystal oscillator and eight decade counter units with TTL outputs at each decade and additional functions of divide by 2 or by 4 . The crystal oscillator can be used also with any frequency crystal between 1 and 20 MHz to provide decade outputs of these frequencies.

The WB250 WIDE BAND AMPLIFIER can be used to improve the sensitivity of most frequency counters. The operation of this unit is simplicity in itself. Just hold the probe of this unit near the oscillator of which the trequency is to be measured and the frequency will be read out on the counter. The principal advantages of this unit are: LOW COST, HANDY SIZE. No actual connection to the equipment under test. Therelore, no loading of the circuit. Very low lavel oscillator frequency can be measured with ease

For further detalls please contact us:
Sydney: PARIS RADIO ELECTRONICS, Phone: 31-3273
Perth: W. J. MONCRIEFF PTY. LTD.,
Phone: 25-5722
Brisbane: FRED HOE \& SONS PTY. LTD.,
Phone: 47-4311
Adelaide: ROGERS ELECTRONICS.
Phone: 264-3296
Hobart: DILMONT INSTRUMENTS
Phone. 47-9077

channel is selected when the set is off. When in the high power position, the meter illumination is white, in low it turns green. With the green call channel light and the orange on air light the Kenwood can be a very colourful sight. Receive audio quality at first appeared to lack low frequency response; however, after use in high noise situations, this turned out to be a decided advantage. When first put on-atr, reports indicated considerable roughness.

Investigation revealed that the microphone gain control was full on. Reducing this to the half way point cleaned up the audio.

Squelch control operation was smooth and progressive. However, when set close to the mute point, it was noticed that when external electrical noise such as from other cars at the traffic lights, the mute would open. This proved to be the only annoying feature of the set. I have checked with other TR7200G owners who report the same problem.
THE TR7200G ON TEST
Our usual series of tests were carried out.

Transmitter power output was checked with 13.8 volts applied. A Hewlett Packard 432A thermo-coupled power meter was used. On high power 12 watts exactly was delivered and on low power 1 watt. Current draln was 2.9 amps and 1.35 amps respectively, Current drain on receive rather depended on how many of the various indicator lights were on. We recorded the following; Muted: 375ma. Muted low power
selected: 500ma. Muted, low power and call channel: 550ma. Receive with normal volume 450 ma , and with full volume 600 ma . Transmitter deviation was set at 10 kHz . Flgures obtained on receive sensitivity were excellent. The mute opened at . 1 uV

Quieting at $.5 \mathrm{uV}-27 \mathrm{~dB}$ $1 \mathrm{uV}-33 \mathrm{~dB}$
Signal to Noise Ratio . $5 \mathrm{uV}-33 \mathrm{~dB}$ $1 \mathrm{uV}-40 \mathrm{~dB}$ The meter readings on receive were calibrated against the signal generator.

| Meter | Input |
| :---: | :---: |
| 2 | .5 uV |
| 3 | 1 uV |
| 5 | 1.6 uV |
| 7 | 2.0 uV |
| 8 | 2.5 uV |
| 9 | 3.1 uV |
| 10 | 5.0 uV |

Receiver audio output was measured on steady tone and at the onset of audible distortion was 1.5 watts. This meets the specification. A Marconi signal generator was used in the above tests. No further comment is needed as these figures are the best obtained in this series of reviews. INSTRUCTION BOOK
The book is well written in so far as operation of the set is concerned. From a service point of view it leaves a lot to be desired. Only a circuit diagram is included. There are no printed board layouts or alignment instructions.

In regard to service, Weston Electronics advise that "Our Company is able to pro-

vide full service support and the supply of spare parts to our authorised dealers". CONCLUSION
An excellent performer in all respects except the mute sensitivity to external noise. Crystal availability could be a problem but Ham Radio Suppliers can obtain crystals at around two weeks delivery for $\$ 10$ per set.

## BOOKS OF INTEREST FOR AMATEUR OPERATORS

SEMICONDUCTOR HANDBOOK (Robert B. Tomer) ..... $\$ 7.40$
FET CIRCUITS (Rufus P. Turner) ..... $\$ 5.75$
RTL COOKBOOK (Donald E. Lancaster) ..... $\$ 7.00$
UNIQUE IC OP-AMP APPLICATIONS (Walter G. Jung) ..... $\$ 6.35$
30 IC PROJECTS (Herbert Friedman) ..... $\$ 3.75$
AUDIO IC OP-AMP APPLICATIONS (Walter G. Jung) ..... $\$ 6.35$
SPECIALIZED COMMUNICATIONS TECHNIQUES FOR THE RADIO AMATEUR (ARRL) ..... $\$ 4.50$
FM AND REPEATERS FOR THE RADIO AMATEUR (ARRL) ..... $\$ 4.35$
VHF HANDBOOK FOR RADIO AMATEURS (Herbert S. Brier, William I. Orr) ..... $\$ 8.50$
ALL ABOUT CUBICAL QUAD ANTENNAS (William I. Orr) ..... $\$ 5.65$
HAM NOTEBOOK (Edited by James R. Fisk) ..... $\$ 5.10$
TRANSISTOR SPECIFICATION MANUAL-6th Ed. (Howard W. Sams) ..... $\$ 5.75$
SEMICONDUCTOR REPLACEMENT GUIDE (Howard W. Sams) ..... $\$ 5.10$

# McGILI'S AUTHORISED NEWSAGENCY 

## SIDEBAND ELECTRONICS SALES and ENGINEERING

| UNIDEN |  |
| :--- | ---: |
| Model 2020 de-luxe all- band AC-DC transceivers | $\$ 550$ |
| External VFO model 8010 for the 2020 | $\$ 100$ |
| External speaker for model 2020 | $\$ 25$ |

## TRIO-KENWOOD

Model TS-900 de-luxe all-band transceivers, with PS. 900 AC supply-speaker unit $\$ 800$ Model TS-520 AC-DC transceivers all-band $\$ 530$ Model TV-502 2 Mtr transvertor for TS-520 $\$ 200$ QR-666 all-band coverage receiver $170 \mathrm{KHz}-30 \mathrm{MHz} \$ 300$

## YAESU-MUSEN

Latest model FT-101-E AC-DC transceivers with genuine RF clipper-speech processor
Model FT- 200 transceivers with FP-200 AC unit
Model YC-355-D digital frequency counters 0.200 MHz

SPECTRONICS DD- 1 digital counter

All UNIDEN, TRIO-KENWOOD \& YAESU MUSEN transceivers come complete with original English manuals, all crystals for all available bands and a P.T.T. dynamic microphone. Sorry, no more free S.W.R. Meters.

## HY-GAIN ANTENNAS

| 14AVQ 10-40 M. verticals 19 ' tall, no guys 18 AVT-WB 10-80 M. verticals, 23 ' tall, no guys | $\begin{aligned} & \$ 65 \\ & \$ 90 \end{aligned}$ |
| :---: | :---: |
| TH 3 JR 10-15-20 M. junior 3 el Yagi 12' boom | \$135 |
| TH 6 DXX 10-15-20 M. senior 6 el . Yagi $24{ }^{\text {' boom }}$ | \$225 |
| band 4 el. TIGER YAGI 26' boom | \$190 |
| Y-QUAD 10-15-20 M. full size Cubical Quad | 200 |

## CDR ANTENNA ROTATORS

| AR 22 for 2 and 6 M . and small HF beams | $\$ 50$ |
| :--- | ---: |
| AR 20 for 2 and 6 M . beams | $\$ 40$ |
| HAM-II with re-designed control box | $\$ 150$ |

HAM-II with re-designed control box $\quad \$ 150$
All three models for 230 V AC complete with indicatorcontrol units.
4-conductor light cable for AR-20-22 20 cents per yard 12-conductor light cable for HAM-II 30 cents per yard 8 -conductor heavy duty cable for HAM-II 60 cents per yard

## BARLOW-WADLEY RECEIVERS

Model XCR-30 Mk II 500 KHz to 31 MHz continuous coverage portable communications receivers, crystal controlled reception of AM-USB-LSB-CW
$\$ 275$

## S.W.R METERS

Midland twin-meter model for 52 Ohms, up to 1 KW on HF

## TEN-TEC

Argonaut New Model 509 5W PEP All Band 12 V SSB-CW Transceivers all solid state
$\$ 300$

## MARK MOBILE ANTENNAS



## ASAHI MOBILE ANTENNAS



A147-11 11 elements 2 M . Yagi

## CRYSTAL FILTERS

9 MHz similar to FT-200 ones, with carrier xtals $\$ 35$
POWER SUPPLIES
240V AC to 12V DC 3 A, regulated overload protected $\$ 35$

## FDK MULTI-7

2 M. FM transceivers, 10 W output, now with 12 Aussie channels crystals, 40 to 60 , including channels 43 and 45 includes all repeaters and ant in-repeater use, still \$225 Spare Mobile Cradle and Power Cord $\$ 7.50$

## KEN PRODUCTS

KP-202 2 M. hand-held transceivers with 6 channels $\$ 150$
KCP-2 charger for KP- 202 with 10 NICAD batteries $\$ 35$
Stubby flexible whip for KP 202
$\$ 6$
KP-12A speech processor, self contained 240 V AC
$\$ 100$

## KLM ELECTRONICS

Solid state 12V DC 2 M. amplifier, 12W output, automatic antenna change-over when driven, ideal for mobile use with the KP-202
$\$ 50$

## NOVICE LICENSEES EQUJPMENT

| 5 W AM 23 channels 27 MHz transceivers |  |
| :--- | ---: | ---: |
| with P.T.T. mike |  |
| $5 W$ AM 15 W SSB 23 channels transceivers | $\$ 95$ |
| with P.T.T.mike | $\$ 175$ |

P.O. BOX 23, SPRINGWOOD, N.S.W. Post Code 2771 TELEPHONE, DURING BUSINESS HOURS ONLY! STD 047 511-394

## VK2AVA MESSAGE

With the wide choice of amateur transceivers available these days, many need unbiased advice.

In the 10 to 80 m coverage range, if economy is important, one cannot pass up the YAESU FT/FP200 combination, an excellent buy and performer. But if mobile use is considered, forget it as the DC 200 supply then needed will bring it into the TRIO KENWOOD TS-500 price range, which is the next recommended choice. It has a better receiver, solid state, AC/DC supply built-in, excellent finish and don't overlook the pair of 6146 -B genuine transmit output tubes.

The UNIDEN 2020 will soon be popular, it has so many extra features for so little more money.

Next comes the YAESU FT-101-E if 160 m coverage essential and if one likes speech-processing or -clipping, personally I do not like it and don't particularly look forward to more abuse with excessive speech processing on our bands.

If HF bands mobile operation is the sole interest and also small physical size, look for the SWAN 40 m monobanders first, most mobile work is done on 40 metres anyway. Much dearer but with all HF bands coverage and small physical size is no doubt best provided by the ATLAS transceiver range.

Deluxe transceiver quality and performance, but only for AC power base-station use, is offered by the TRIO KENWOOD TS-900 and further the DRAKE TR-4-C or COLLINS KWM-2 or even SIGNAL ONE CX-7/11 if money is no concern!

For VHF FM operation there is such a multitude of good choices that economy and value of crystals supplied should be considered. For SSB VHF work there are some transverters available for use with HF transceivers. I do not recommend the SSB-FM combination transceivers for 6 or 2 metres, the SSB and FM sections of the bands are too far apart in frequency to provide optimum performance on both in one set. The small ARGONAUT is a nice source to drive a VHF transverter.

The next matter to consider is the antenna, even with a better than average location a lot depends on the care taken in the radiator department. Here again the choice is almost embarrassing, from the simple homemade wire dipoles to the mono- or multi-band verticals, junior or senior multi- or mono-band Yagis or multi band Quad
arrays. Forget about the G5RV dipole, there are different and better ways to string up a multiband dipole in a restricted space, even on 80 meters with only 100 feet between supports, an open wire tuned feeder dipole with an antenna matchbox will radiate many times better.
$\ddagger$ wave verticals, mono- and multi-band ones, are only half the radiating system, the other part has to be formed by a counterpoise, consisting either of a good conductive soil with some ground rods or a large number of radial wires or a bonded metal surface. DX coverage on 40 and 80 meters is best done with a good $\ddagger$ wave vertical ground-plane.

Rotatable Yagis and Quads require mostly towers and rotators and HF beams are only safe with a HAM-II rotator. All together one can spend much more on a tower, rotator and beam than the most expensive transceivers cost. For low power and lighter towers and masts, a junior triband $10 / 15 / 20$ metre TH3JR is the choice, but still needs a HAM-II rotator in most locations. Other tri-band Yagis, even the senior TH6DX included, are still compromises on 15 and 20 metre bands if compared with the performance of mono-band Yagis. The exception is the tri-band QUAD because it has full-size elements on each of its bands. That is almost the sole reason why Quad antennas outperform Yagis, it is unfair to compare them with tri-band Yagis. But Quads are more difficult to erect and require stronger supports, as towers cannot be guyed up to their tops with Quads. A lot of hard work and time in assembly, choice of materials and tuning-up plus problems of future repairs can be saved by choosing the sturdy Hy-gain Quad antenna.

However nothing can outperform on 20 metres the 4element monoband Hy-gain 204-BA, the so-called TIGERARRAY. There are a few 40 m Yagis in use down here, mostly of reduced size with some sort of loading of the elements, but most are homebrew. Anybody requiring advice on reduced size 40 m Yagis can ask for my own, frequently frustrating experiences with 40 m beams.

Arie Bles.

All prices quoted on the adjacent page are net SPRINGWOOD, N.S.W. on a cash with order basis, sales tax included in all cases, but subject to changes without prior notice. No terms nor credit nor COD facilities, only cash and carry, no exceptions. All-risk insurance available for 50 cents per $\$ 100$-value, minimum insurance charge 50 cents. Allow for freight, postage or carriage, excess will be promptly refunded.

Mary \& Arie Bles.

# HIGH PERFDRMANCE 2m PREAMIPLIFIER AND CONVERTER 

Brian Richardson VK4CCR
20 Peacock St., Leichhardt, Old. 4305

With rising aclivity among SSB stations in the lower part of the two metre band, and the availability of high performance VHF MOSFETs, VKACCR decided to build a better front end for his two metre transverter. The project started off with a preamplifier, which is described first.

## PREAMPLIFIER

The MOSFETs selected, because of their ready availability and low cost were the MPF1000, or the equivalent 3N210. These devices are capable of 15 dB gain and better than 2 dB noise figure at 150 MHz . The first circuit tried was the one shown in Fig 1, but it proved disappointing mainly due to the difficulty in optimising the source impedance seen by the FET. The tapped coil method will work if you are able to determine the Q and coupling coefficients between the two sections of the tapped coil, but this poses problems at VHF, and is difficult to repeat on a production basis.

The 3N210 will only give minimum noise figure for a signal-source impedance of 375 ohms and a drain current of about 10 mA . The circuit in Fig. 2 is the one finally used as it allows continuous adjustment of the source and load impedances. C1 and C4 match the input and output impedances, while C2, L1, and C3, L2 tune to resonance. C1 and C4 could be made fixed values, but it was considered desirable to leave them variable to compensate for different antenna and load impedances. For those who wish to use a fixed input capacitor, the equations In Fig. 3 should help. ${ }^{1}$

The values of $L$ and C2 are determined by the bandwidth, i.e. $Q L$ at 144 MHz . It should be noted that Om and QL are two different quantities.

## Construction

The coils should be at least $1 / 8 \mathrm{in}$. above the board, and all of the RF conductors should be short and wide to minimise stray inductance. A small shield placed across the FET will prevent possible instability. Do not remove any more copper from the circuit board than necessary.

## Alignment

The preamplifier may be tuned by using an S meter, or receiver quieting as an indication, but slightly better noise figures will be achieved if a sensitive audio voltmeter is used to detect maximum recovered modulation from a good signal generator. Using a tunable audio filter and a millivolt meter noticeably less gain is achleved than by tuning to an $S$ meter, but a better noise figure results. 2 The only difference In adjustment between the two methods will be slightly different positions for C1 and C2.

## Performance

The new preamplifier was compared with an optimised 3N140 preamp. The 3N210 provided a SINAD figure (measured on a noise and distortion meter) of 12 dB from a signal input at least 6 dB below that required for the 3N140.

## TWO METRE CONVERTER

The converter, Fig. 4 (which followed the preamplifler project) was required to be easily adaptable to any IF from 6 MHz to 30 MHz . An outboard oscillator was to be used, eliminating the risk of feedback between the front end and oscillator, which experience had shown to be a problem, and enabling the existing transverter oscillator to be used. The injection should be 1 volt to gate 2 of the MPF121 mixer for best results. The mixer load is the only tuned circuit which needs changing for different intermediate frequencies. After much thought, it was decided to incorporate an IF amplifier with a $16: 1$ broadband balun for output matching, and variable
gain to prevent overload of the following receiver. Some IF gain was thought worthwhile as the FT200 tends to lack sensitivity on 28 MHz .

The balun was set up on a HP 2508 receiver bridge to ensure broad band operation. It will, if constructed as in Fig. 5 , give a flat response from $6 \mathrm{M} \mathbf{H z}$ to 50 MHz . If a 200-300 ohm output impedance is desired, the tap should be across two coils instead of one used for 50 ohms. The core used is available from the VK3 components divislon.

## Construction

The same method of construction is used as for the preamplifier, and the board will accept a 3N140 or MPF121 mixer. The oscillator injection must be via coaxial cable, or there is likelihood of instability in the front end.

## Alignment

The If gain pot should be set initially for maximum gain, as indicated by a rise in

$$
\begin{aligned}
& Q_{m}=\left(\frac{R 1}{R 2}-1\right)^{1 / 2} \\
& C_{1}=\frac{10^{0}}{W O m R 2} \mathrm{DF} \\
& Q L=\frac{10}{B W} \\
& L=\frac{R 1}{2 W Q 1} u H \\
& C 2=\frac{10^{0}}{W^{2} L(U H)}-C I n D E
\end{aligned}
$$

Om = matching network 0
R1 $=$ desired source impedance seen by the FET
R2 $=50$ ohms
$w=11$
$10=M H z$
$B W=\mathbf{M H z}$


FIG 4 TWO METRE CONVERTER



## FIG 1 FIRST PREAMPLIFIER


noise output. A strong signal will be detectable through the converter and the IF transformer should be tuned up first. The front end tuning is as for the preamplifier. After tuning is completed, the receiver should show several $S$ points of noise. If not, go back and check the balun
wiring. Several people have come to grief In this area already! Set the IF gain pot back until antenna noise in the absence of QRM lifts the $S$ meter about $S 1$ to $S 3$, as this seems best. An AM signal generator can be used to find the optimum setting, by measuring $S+N / N$ ratio.

6 WIRES TWISTED INTO A BUNDLE GTPI



WIRING CONNECTIONS
 three times
fig 5 6-50 MHz BROAD BAND BALUN

## Performance

A HP8654A signal generator with a 20 dB pad was set for $40 \%$ AM, and the sensitivity measured. At 0.2 uV the $\mathrm{S}+\mathrm{N} / \mathrm{N}$ ratio from the FT200 on AM position was 8 dB . The generator has very low leakage, and the attenuator was recently calibrated, so the figures are assumed to be accurate. On-air testing verified that the sensitivity and noise figure were good.

## CONCLUSION

The two circuits described here are not one-off types, difficult to duplicate, or using hard-to-get components. Approximately 10 preamplifiers, and five converters have been constructed so far, and all have come up to expectations. The Ipswich and District Radio Club will make kits avallable, either in basic form or fully assembled and tuned, if there is sufficient interest. Enquiries should be addressed to the club. c/o 20 PEACOCK ST, LEICHHARDT, 4305.

## heferences

1. Transistor Circuit Design; Texas Instruments Inc. High Frequency Designs, p324.
2. Semiconductor Noise Figure Considerations. Motorola, $\mathrm{AN}-421$.
TWO RETRE CONVERYER
C1-C3 2-20 pF Philips T20 (Green case).
L1-L2 5T 16 gauge, 0.2 in . ID, 0.6 in . long, mounted $1 / 8$ in. above board.
Q1 3N210, or MPF-1000 (Motorola).
Q2 MPF-121, or MPF-131.
Q3 BF115 or BF167.
To drop supply to zener voltage, which should be between 10 V and 12 V (an 11 V zener is shown), at 35 mA .

All IF coils are wound with 30 8as enamel wire on a Neosid former with an F16 slug. The lormer is mounted in a can for shielding.

| IF | C4 | 13 | 14 |
| :---: | :---: | :---: | :---: |
| 22.33 MHz | 27 pF | 15T 0.16" long | 2T <br> ovar centre of 13 |
| 17-25 MHz | 27 pF | 23T 0.25' long | $3 T$ |
| 12.18 MHz | 27 pF | 27T 0.29 ${ }^{\prime \prime}$ long | $4 T$ |
| $8-12 \mathrm{MHz}$ | 39 pF | 42T 0.23" long 2 layers of 21T | $5 T$ |
| 7.10 MHz | 39 pF | 52T 0.28' long 2 layers ol 26T | $6 T$ |
| 5-7 MHz | 39 pF | 69T 0.25' long <br> 3 layers of 23T | 8 T |

## BALUN CONSTAUCTION

The balun core used is the larger of the two sizes commonly available, being $14 \mathrm{~mm} \times 14 \mathrm{~mm} \times 7 \mathrm{~mm}$. Four strands of 26B\&S enamelled wire are twisted in a hand drill, four turns per inch, for $5 \frac{1}{\mathrm{i}} \mathrm{in}$. The twisted bundle is wound through the core three times, so that the start and finish of the windings protrude from one end of the core. The protruding ends are untwisted and labelled slapt, S1, S2, S3 and S4, then tinish, F1, F2, F3 and F4. The wiring diagram shows the connections of these wires. Make sure that the wiring diagram is rigidly followed, of the balun will not work.

# MODIFICATIONS TO CARPHONE for use with 2 Pole - 6 Position Switch 

Don Sinclair VK3VH
6 Tintern Drive. Springvale South, 3172
In March and April 1971, "A
Transistorised Carphone" appeared in AR and proved very popular. This modification is a method of earthing one side of the crystal in the carphone.

The circuit used series mode crystals in the transmitter and incorporated a bipolar transistor whose junction varied as the audio, in series with the crystal, and there-
by produced an FM signal. This idea is excellent and very linear, but the use of an exotic switch to open both sides of the crystal was used.

This modification entails the use of a silicon diode and thereby does away with one switching system.

All components can be fitted on the original board and can be completed in one evening. The idea of using a reversed diode to FM an oscillator is quite old, and therefore no originality is claimed for this circuit. The diode is reverse biased to $41 / 2$ volts, and a good swing on modulation is obtained. The crystal is placed on frequency by the 30 pF "netting trimmer".

The original audio control in the modulator can now be used to set deviation.

Modification to the printed circuit board entails replacing the 22 K pot with $2 \times 10 \mathrm{~K}$ resistors, and substituting a 56 K and 10 K with a $2 \times 100 \mathrm{~K}$ resistors. The extra 100 K can be placed under the board and soldered.

Removal of the bipolar modulator transistor and associated components leaves ample holes for the new modifications.

The modifications have been used in my carphone for six crystals and all crystals net without difficulty. This idea also cuts out stray capacitance inherent with the original two switch idea.


## HORIZONTAL TO VERTICAL THE EASY

 WAY
## Amaleurs who wish to transmit on the 160 metre band are usually faced with an immediate problem; what to use for an antenna?

The majority of operators use some sort of horizontal antenna for the HF bands (at least on 80 and 40 metres). This is usually a dipole of sorts ("Straight" variety, G5RV, trap dipole etc.). Even if an ATU is used for matching such an antenna on 160 metres, horizontal polarization is not very effective on this band. (See AR May-Sept. 1971 for John VK3ACA' excellent discussion of this topic). The best solution is to use the existing horizontal antenna as a top loaded

Maurie Evered VK3AVO
13 Sage Street, Oakleigh, 3166


Fig. 1


Fig. 2
vertical by joining the feeders at the station end. This is often done by the use of clips, a very untidy and unworkable arrangement.

The little gadget, shown in cross section in Fig. 1, overcomes these problems. The diagram is self explanatory. A male and female coax connector are used to convert a coax feeder into a single wire by joining the inner and outer conductors at the female socket. The best position to use this device is on the antenna side of your SWR bridge (Fig 2). Simply unscrew your antenna, insert the device in series and
reconnect. You now have a "vertical" antenna and you can use the "Forward" position of the SWR meter for tune up purposes and to continuously monitor relative output.

NOTE - SWR measurements made with this arrangement may be meaningless. The meter is only used as a relative output indicator.

If this "shorting device" is used in conjunction with an ATU it may be inserted at some convenient point to do the same job.

My G5RV will load "as is" on 160 metres so $l$ used it as shown in Fig 2.

Needless to say a good earth connection is essential with such a vertical system.

Finally, a word about the point of connection of the earth wire. I found that the best output was obtained (as judged by the " $S$ " meter of other operators) if the earth connection was made right at the antenna connector (shown as "earth lug" in Fig 1) but this is a point for experimentation by the individual amateur.
See you on 160 metres.

## TRAP DIPDLE FDR 80 AND 40 METRES <br> Harry Capsey VK2OQ <br> 58 Elliston Street, Chester Hill, N.S.W. 2162

## Described is a trapped dipole

 arrangement which is inexpensive and easy lo construct. This antenna is suitable for those who have space limitations and difficulties in erecting a full size $\mathbf{8 0}$ metre dipole.The ends of the antenna may be bent without loss of signal, and tests on 80 metres have confirmed this.

Tuning the 40 metre section makes no difference to the operating frequency of the 80 metre section, and vice versa.

## METHOD OF CONSTRUCTION

(1) Connect a short length of antenna wire to each side of an insulator, say 16 gauge, about 8 in. long.
(2) Space wind 20 gauge wire 20 turns (as a start), connect 47 pF across coil, coil diameter 2 inches, coil length $21 / 4$ inches.
(3) Grid dip to 40 metres at required frequency of operation, say 7080 kHz . Construct both coils exactly the same, slip coil over insulator, insert capacitor inside, give coil several coats of coil dope, fix insulator with epoxy cement.
(4) Drill a small hole in bottom of Pitl Box, insert antenna wire, drill hole in lid, insert other antenna wire, screw on lid, cement around wires.
(5) Connect to dipole, raise to operating height, check SWR of 40 metre section first.
(6) This can be done by the same method as described in the article " 20 MX Quad Tuning made Simpler" previously published, using the same GDO and Bridge. Note: Most antannae can be tuned using this method.
(7) If the GDO reads lower in frequency
(that is the dip in SWR meter) the 40 metre section must be cut shorter, say a few inches at a time, until the dip on the bridge meter occurs at the same frequency to which the trap is tuned. If the dip occurs at a higher frequency, the 40 metre section must be made longer.
(8) The same procedure is then carried out on the frequency required for 80 metre operation. Trim the 20 ft . sections.
Note: These tests must be made at normal operating height.

## CONCLUSION

This antenna has been in operation for $21 / 2$ years and used at least twice weekly on both the 80 and 40 metre bands.

A recent inspection found the traps to be in excellent condition.

Comparison tesis with this antenna and a G5RV have shown equal performance.

TRAP DIPOLE 40-80 METRES.


To transceiver or A.T.U.


(47pF 5Kv if linear used)
47pF 1 Kv breakdown voltage fitted inside former


Approx 20 turns 20 gauge enamel wire-See note( + )

## NEW VHF EQUIPMENT FROM YAESU

FT-221 144-148 MHz SSB, CW, AM \& FM TRANSCEIVER
Following in the footsteps of the FT-220 is the complete 2 metre station, giving full coverage in eight 500 kHz segments. It includes forward and reverse repeater capability, position for 11 crystal locked channels, noise blanker and many other features. Write for complete technical data.

PRICE: $\$ 550$


FTV-650B 6 METRE TRANSVERTER


## Y-150 DUMMY LOAD/POWER METER

Just released by YAESU, the YP-150 features a flat response from 1.8 MHz to 500 MHz (SWR less than 1.2 at 450 MHz ), a wide power range of 1 watt to 150 watts in three ranges ( $0-6,0-30$, and $0-150$ watts), and stable operation with a built-in cooling fan.

PRICE: $\$ 85$
Built to match Yaesu's 101 line of equipment, the FTV-650B runs 50 watts to a 6146 final with up to 3 volts RMS drive. Input frequency is $28-30 \mathrm{MHz}$ and the output frequency is in two ranges, 50-52 and 52-54 MHz .

PRICE: $\$ 190$


Prices include S.T., Freight or postage extra. Allow $\$ 0.50$ per $\$ 100$ for insurance, min. $\$ 0.50$.

OLD. MITCHELL RADIO CO., 50 Alblon Road, Alblon, 4010
N.S.W. STEPHEN KUHL, P.O. Box S6, Mancot. 2020

# Newc omers Notebook 

with Rodney Champness VK3UG

44 Rathmullen Rd., Boronia, Vic., 3155

## A NOVICE TRANSMITTER - PART 1

Originally it had been intended that the description of the iransmitter would only take two monthe in the magazine but to do the job property It appears that as many as four months of description will be necessary. It Is intended that this series of articles should not only be a constructional article, but indicale to you what the purpose of each component is and so give you ideas for your own projects in the future. Additionally, it is hoped that the detailed descriptions will assist you when you sit for the full amateur ticket.
This month the circuit diagram for the CW part of the transmitter is shown, along with a detailed parts list, and expected voltage and current readings in various parts of the transmitter. Most components can be varied in value by up to $50 \%$ in either direction, but it is preferable to use the values shown so that there is no problem getting the transmitter to function correctly. The only ratings that should not be reduced are the voltage and wattage rating of components. Those with sufficient experience will find enough information in this first part to build the transmitter successfully. Those with little experience should wait for a couple of months before starting to build the transmitter.

Next month a detailed descriptlon will be presented of how the transmitter works.

The voltages to expect at various points In the transmitter are as follows with a 310 volt supply on AM and a 330 volt supply on CW.


[^8]R7 - 100k ohm $1 / 2$ watt, part of voltage divider to limit cathode voltage on key up conditions.
R8 - 220 ohm 1 watt, protective cathode bias and CW timing resistor.
R9 - 270k ohm 1 watt, part of voltage divider to limit cathode voltage during key up conditions, works with R7.
R10-22k ohm 1 watt, screen voltage dropping resistor, sets screen voltage and controls plate current indirectly.
R11 - 82 ohm 1 watt, parasitic suppressor allied with RFC2, acts to damp any spurious oscillations.
R12 - 100 ohm $1 / 2$ watt, metering resistor in plate circuit of the PA.
R13 - 6k ohm $1 / 2$ watt, exact value of this meter multiplier is determined as per the text.
R14 - 10k ohm $1 / 2$ watt, portion of charging circuitry of semi-break-in keying system.
R15 - 1 k ohm $1 / 2$ watt, part of TR1 collector load, emitter resistor for TR2.
R16 - 1.5k ohm $1 / 2$ watt, as for R15, plus acts to speed up relay pull in time.
R17 - 100k ohm $1 / 2$ watt, TR1 base discharge resistor, forms delay circuit with C12.
R18 - 47K ohm $1 / 2$ watt, supplies HT to crystal oscillator in netting position, see text.
R19-440 ohms 2 watts, $2 \times 1$ watt 220 ohm resistors in series, to drop HT so that transmitter is not over power on CW.
R2O - 22 ohm $1 / 2$ watt, part of DC smoothing circuit of 12VDC relay and seml-break-in supply.
C1 - 33 pF mica, ceramic or styroseal. part of feedback network for crystal oscillator. Can be varied slightly to swing the frequency a small amount.
C2 - 0.004 uF polyester or styroseal, 160 volts working, cathode RF bypass.
C3 - 440 pF mica, styroseal or ceramic, DC isolating capacitor for crystal.
C4-10 uF 100 VW electrolytic, part of CW timing circuit, as well as audio bypass for modulated DC current through valve.
C5-0.0047 UF polyester or styroseal, 160VW, RF cathode bypass.
C6-0.001 UF 630 VW polyester, ceramic, styroseal, screen bypass for RF but too small for audio bypassing, so that screen swings with modulation.
C7-0.001 UF 630 VW polyester, styroseal or ceramic, RF bypass on plate circuit of PA. Works in conjunction with RFC3.
C8-0.001 UF mica or similar, 600 VW . RF coupler to tuned circuit, stops DC from being applied to these RF components.
C9 - 15-415 pF large size tuning capacitor, single gang, relatively wide plate spacing required so that flashover does not occur. Single gang needed but dual gang from old radio sultable. Tunes circuit to resonance.

C10 - 900 pF twin gang minialure tuning gang, solid or air dielectric, acts as transmitter loading control.
C11 - 560 pF mica or styroseal, used as additional loading capacity for 50 or 75 ohm loads (aerials).
C12-1-2.2 UF 16 VW electrolytic capacitor, part of semi-break-in timing circuit.
C13-0.01 uF low voltage ceramic, polyester, acts as RF bypass on heater line.
C14-470 uF 16 VW electrolytic capacitor, main reservoir capacitor on relay power supply.
C15 - 25-50 uF 160 WW electrolytic capacitor, final smoothing capacitor for relay power supply.
D1 - OA91-EM401. 50 mA 50 volt diode, time constant charging diode.
D2 - OA91-EM401, 50 mA 50 volt diode, transient suppressor.
D3 - EM401, 1 amp 100 volt silicon diode, half wave 12 V DC power supply rectifier.
V1 - 6GV8 television vertical valve, used as crystal oscillator and power amplifier.
TR1 - BC108 or similar small signal silicon NPN transistor.
TR2 - 2N3638-AC128, medium signal PNP silicon or germanium transistor. Used as switch to apply actuating voltage to the relay.
Relay - Small relay with 4 sets of changeover contacts with a coil resistance of at least 50 ohms and designed to work on 12 volts. Used to changeover functions of equipment from receive to transmit and vice-versa.
L1-21 turns of enamelled wire on a $11 / 4 \mathrm{in}$. diameter former with winding $11 / 4 \mathrm{in}$. long. Gauge of wire 18 to 26 B \& S. Tank circuit for transmitter.
RFC1 - Small 1 to 2.5 mH choke with 1 to 3 pies, part of plate load of the crystal oscillator.
RFC2 - 7 turns of wire wound over R11, as a VHF parasitic suppressor.
RFC3 - 2.5 mH 4 pi choke 60 mA rating, part of plate load for the PA, also isolates RF from HT DC circuits.
RFC4 - 1 pi 1 mH choke, used as a DC return if $\mathrm{C8}$ should break down.
$\mathrm{J} 1-6.5 \mathrm{~mm}$ stereo socket, used as the key jack.
P2 - 6.5 mm stereo plug, used as the key plug.
P1 - Octal plug, used on the end of a four core lead to supply voltage from the power supply to the transmitter.
J2 - Aerial socket, Belling Lee or similar.
S1-4 pole 2 position single bank switch, Oak or similar, used as the AM/CW mode switch.
S2-2 pole 2 position rotary, slide, or toggle switch, preferably the latter due to its snap action. Used as the netting-normal switch.
M1 - 1 mA full scale deflection meter, approx. 2 in. diameter, used to meter PA plate current.


10 WATT 80 METRE NOVICE TRANSMITTER

X1 - FT243 or HC6/U crystal for the 80 metre band. A suitable crystal socket is also required.
Knobs, nuts and bolts, terminals, wire. a metal chassis and miscellaneous other pieces are required such as a 9 pin valve socket.

## OVERSEAS PUBLICATIONS SUBSCRIPTIONS

- Inflation may cause subscription rates to rise at short notice but here is the latest list:

| AS | $\begin{gathered} 1 \\ \text { year } \end{gathered}$ | $\stackrel{2}{\text { years }}$ | $\stackrel{3}{\text { years }}$ |
| :---: | :---: | :---: | :---: |
| Ham Padio | 6.25 | 10.50 | 15.00 |
| Ca | 6.50 | 11.00 | 14.50 |
| 73 | 7.00 | - | 13.50 |
| OST | 8.50 | 17.00 | 25.50 |
| Break-ln | 4.20 | - | - |
| Radio |  |  |  |
| Communicalion | 18.00 | - |  |
| CO-TV | 2.50 |  |  |
| VHF |  |  |  |
| Communicatlona | 5.00 | - Surfa | mall |
|  | 7.00 | Airm |  |

- VHF Communications back issues are normally available from stock -

Postage
1968/70/71 with binder $\$ 10.50+\$ 1.30$ 1972/73/74 separate years $\$ 4.20$ + $\$ 0.50$ single copies $\$ 1.10+\$ 0.25$ $\begin{array}{ll}1975 \text { single coples } & \$ 1.40+\$ 0.25 \\ \text { Binders } & \$ 2.00+\$ 0.20\end{array}$
Write lor these and other thems to:
MAGPUBS, PO Box 150, Toorak, Vic. 3142


KENWOOD

웅

QR-666 the ALL-band
COMMUNICATIONS RECEIVER

that gives you the world and an FM
option, too.
Alt-band/all-mode tereption on frequencies 170 kHz to 30 mHz covered by 6 bands. Receives broadcasis in any mode AM, SSB. CW or FM-with the oplional accessory aR6.FM. Super sensitivity from dual gate MOS types FETS. double signal selectivity and AGC characteristics. IF circuil with mechanıcal and ceramic filters designed for high selectivity. resistance to interference; single button selection of wide band ( $5 \mathrm{kHz} / 6 \mathrm{d8}$ ) or narrow band 2.5 $\mathrm{kHz} / 6 \mathrm{~d} 8$ ). Altogether a high performance compact. smartly styled unit of advanced design al a suggested 'Today price
of $\$ 332.20$. of $\$ 332.20$.


## Commercial Kinks

with Ron Fisher VK3OM
3 Fairview Ave.. Glen Waverley. 3150

## LOOKING AT THE FT101B

Over the last couple of years this column has mentioned the 101 on only one occasion. A lot has been written on the 101 series, mainly in the American Fox Tango club news letter and of course quite a few artic!es in Amateur Radio from time to time.

A couple of months ago I decided to take the bull by the horns and buy a 101B to see for myself just what should be done and, for that matter, what could be done without digging into the works too far. Just prior to this I recelved a letter from Bruce Mann VK3BM with a few of his ideas on the 101B.

So for the next couple of months, Commercial Kinks will take a hard look at the 101B and hopefully present a fow simple ideas that can be incorporated by any owner.

## BiAs setting

Firstly over to Bruce for his ideas:The final bias setting has to be changed whenever the set is changed from AC to battery operation. The potentiometer was inaccessible both with the set in the car and on the home station console. The internal blaspot. was disconnected and leads

# VHF <br> UHF an expanding world 

with Eric Jamieson VK5LP Forreston. S.A. 5233<br>Times GMT

## AMATEUR BAND BEACON8

| VKO | VKOMA, Mawson | 53.100 |
| :--- | :--- | ---: |
|  | VKOGR, Casay | 53.200 |
| VK1 | VK1RTA. Canberra | 144.475 |
| VK3 | VK3RTG. Vermont | 144.700 |
| VK4 | VK4RTL. Townsville | 52.600 |
|  | VK4WI/1. Mt. Mowbullan | 144.400 |
| VK5 | VK5VF, MI. Lolly | 53.000 |
|  | VK5VF, M. Lotty | 144.800 |
| VK6 | VK6RTV. Perth | 52.300 |
|  | VK6RTU, Kalgoorlie | 52.350 |
|  | VK6RTW. Albany | 52.950 |
|  | VK6RTW. Albany | 144.560 |
|  | VK6RTV. Perlh | 145.000 |
| VK7 | VK7RTX, Devonport | 144.900 |
| 3D | 3DAA, Suve, Fiji | 52.500 |

There has been quite a bit of pruning and resultant up-dating of the beacon list this month. The VK2 beacons have apparently been off the alf for some time, as also has the P29GA beacon. They have now been removed from the listing. Contirmation comes from Terry VK8ZCB that the Darwin beacon VK8VF has not operated since cyclone Tracy on Christmas Day. not even for test purposes. The Darwin Club is still awalting reconnection of the AC mains to the beacon site, plus repalis to the bullding, keyer and antenna system. None of these beacons will be re-listed until definite information is received that they are operating

I am back home again after a month's hollday, including a stay in sunny Queensland, and right at the IOD end In Caims at that. Met a fow of the boys. In Townsville spent an evening with Eddie VK4ZEZ and George VKAGS; down the coast a bit further hunted up Ross VKARO at Ayr. Al Rockhampton went hunting for my old friend Lance VKAZAZ, found him just ready to catch a plane to Townsville, so missed on that one. Next in line was another well known acqualntance, Lindsay
brought out to an external potentiometer. The existing wiring is well by-passed so there is no problem with instability.

## NOISE BLANKER

The blanker in the more recent models of the 101 and also the 101B are factory adjusted by means of an internal potentiometer, to give blanking of spiky noise peaks without appreciable reduction in audio level.

The older models did considerably reduce the audio if worthwhile noise reduction was achieved, however 1 found that on the models I have had that excellent noise reduction, even of background noise and continually rumbling static, can be achieved jy advancing the threshold adjustments, but at the expense of audio gain. To make full use of this advantage in operation it was necessary to bring this control outside the cabinet. In the late model 101 that I had, the nolse blanker was quite a complicated affair rather haywire and spread out on top of the VFO housing. It included three or four small coils in cans, six transistors and some diodes. Earlier models had the blanker in the same position but it was much simpler. In my latest FT101B/2 the bianker is on a piug in circuit board towards the rear of the chassis. In this the potentiometer is of 10 K ohms with one side earthed. In the FT101 referred to earlier the pot is 2.2 K ohms and earthed
through a 3.3 K ohm resistor. The noise blanker circuit of the earlier 101B appears to be the same except for the change of cne transistor type number. The two external pots, one bias and one blanker, were mounted on a small panel flush with the front panel and attached to the small screw haif way up the side of the cabinet. Two tiny ho'es were drilled in the cabinet to pass through some fine gauge hookup wire.

Bruce finishes with a comment that the earlier FT101's were unstable when used with a linear amplifier but that the latest 101B is quite stable under all conditions.

Now one sma!l idea of my own. I found the receive audio of the 101 B rather hard with a predominant high in the response. Alter a period of listening the sound became rather fatiguing. I took the opposite approach to previous authors in this magazine who found bass response atienuation suited their ears. I connected a 64 mFd electrolytic capacitor across the external 5 in . by 7 in . speaker. The high frequency hiss was gone and the sharp edge was removed from noise pulses. Try it - no internal modifications are needed.

Next month I will show two methods of reducing distortion on local signals, a problem that seems to effect some 101B owners but strangely not others. However there is no denying that this probiem exists.

VKAAAL (ex-4ZIM). I spent a very enjoyable even ing there, especially drooling over the mass of JA QSL cards he has, a drawer full in factl Oh, to live In VK4 when the DX is aroundl Further down worked quite a number of the Brisbane boys on Ch. 1 repeater and on simplex Ch. 40 and 50. Whip to whip over 38 miles quite a good haul, even able to do it with 1 watt! Silence then till we got to Mlldura when a number of the VK3 boys were worked via their Ch. 4 repeater. A few bits of information were picked up on the irlp as follows:
Ted VKAYG in Cairns said there is now an interest being laken on 6 and 2 metre operation in the New Hebrides, call area Yj8. Ted also mentioned the Calrns boys were investigating the possiblity of a 28 MHz beacon as a lead-up to band conditions on 6 metres . . . On the Island of Guam ex-VKAIK, Laurie now with a KG6 call sign is operating on 144.100 SSB with 1 kW , beaming south at 09002 daily. He apparenily is also trying to put a signal to any of our Ch. 1 repeaters. Perhaps the southern operators should be turning thelr 6 and 2 metre beams 10 the north and north east more often than previously. VK4 should be in the box seat for boih Guam and the Naw Hebrides. NEWS FROM JAPAN
Two letters are to hand from JA land. Thay contain some items which should interest, so I have picked these out. They both come from Yoshiyuki Abe JA1PLI in Tokyo. He reports last sesson 6 metre conditions were rather quiet in Japan, only thres llmes worked KG6, and sometimes heard TVQ-O on 51.750 MHz . Normally they would expect to work HL9WI and HM1GO, but noihing. In June this year JD1 and JA8 both worked to KG6 (Guam) on two occasions. On 4 ith July Yoshl and another amaleur heard KG6APP on 50.117. this belng the Guam beacon. 2500 km from Tokyo, but no replles $t 0$ their 300 watt signal. He has worked 50 VKs , covering all areas. but mostly VK4 and VK8. He uses a $4 C \times 350 F$ with CW and SSB, and wIII have a new beam up about September.

Yoshl's second lelter gives a full listing from his own call book of 6 metre DX stations worked over the past 4 years, and it makes fascinaling reading. Apart from a multifude of VKs, exotic call signs include KX6HK, 2K1AA, VS6DA. DU12AI, KR6CR, 5W1AR, KR8GV. HL9WI. KH6GRU. LUIMBJ, KL7 HAM, HM1BE, VK9ZAP. C21AA, KC6AO. In addition, he heard Ws and ZL. Addltionally, other areas to be woiked from Japan during cycle 20 included

XW8, W. JD1, KW6 and KG6R. This gives us in VK some Idea of the spread of 6 metre activity throughoul the Pacific area. and probably indicates we shou!d all be doing a lot more listening and perhaps calling to the north and north east

It wou!d appear the JA stations are showing quite a lot of interest in working VK, particularly the lesser worked areas such as VK5. VK3 and VK7. When VK is not available to them, thay operate their band along these lines: 50.000 to 50.100 CW: 50.100 to 50.250 SSB; 50.300 to 50.900 AM: and 51.000 and up for FM Yoshi advises the teacons JAiIGY on 52.500 In Tokyo and JDIYAA on 53.110 (Marcus is.) are currently not operallonal. and possibly thay may not be on again for this year.

It is interesting to hear from interested operators in other countries, and I will do what 1 can 10 foster interest in Japan to keep them, and others in the Pacific through them, looking this way when conditions are suitable. In addition to writing parhaps I should be doing something more on HF to stir up further interest.

## MID-WINTER DX

Kerry VK5SU sends along his usual interesting snippets of his doings on VHF. Of special Interest is the prolonged receptlon of VK5VF, on 144.800. which was audible at varying strengths, day and night. from about $5-6-75$ to $14-6$. a longer period than when heard during the height of the summer season. The VK5 Ch. 4 repeater is often available. A subsequent letier mentions a 6 metre opening on 28-6 from 01532 when Wally VK2ZNW. ex-VK5ZWW (believe he was asked to leave VK5!) at Orange was worked. Up to 02302 worked VK2ZNS, VK2ZND and VK2HZ. Rod VK2BQJ. then climbed on the bandwagon with a $5 \times 9++$ signal to make his presence felt. Even had time to sneer at my $21 / 2$ elements at 80 teet! The same day VK2ZZU and VK2YO were also worked. plus VK2ZMW al Coonabarabran $S 7$ on 52.525 FM. All other VK5s were resting.

Kerry mentions the 10 metre band In his lelter. advising of a net in Sydnay on 28.500 MHz , Insilgated mainly by VK2BVS it seems. On what appeared to be a dead band recently he gave a call on that spot and was answered by VK2IN R3 SO. Again irled 28.5 during the above mentioned 6 metre opening and worked VK2NT and VK2AAB at S 4/5. So with the ZLs placing a beacon on 28.170 MH2, 10 meires might be looked at more frequently as a gulde to what may come on 6 metres. A
closer study of the relationship between contacts on that band and 6 metre activity could be Indica:ed. Thanks Kerry.

## six methes again

Joe VKTZGJ in his notes in "O.R.M." indicates There is sti!! some meteor scatter activity. On 22-6 at 22452 he heard Wally VK2ZNW calling CQ via this mode. Call signs were exchanged, taking about 15 minutes to complete. Half an hour later Wally was S9+ for about 3 mins. and three short overs were exchanged. Subsequently the band opened to VK2 and VK4 with signals peaking $5 \times 9$ for about an hour. Further reasons why we should be looking at 6 metres other than in the summer time.
3.3 GHz RECORD

From "Break-In" June 1975 comes a report of a new New Zealand long distance record, established on 3.3 GHz between Mt. Murchison and Mt. Ruapehu, a distance of 238 miles. It has not as yet been confirmed as a world record, though it could well be as the prevlous best appears to be 24 miles established by W6IFE/6 to K6HIJ/6 on 18-870.

It was on Sunday, 2-2-75 at 22402 when the record was established between ZL2THW and ZL2TSM with copy $5 \times 5$ peaking to $5 \times 9$, power 60 milliwatis. Congratulations boys. They were not content to take 3.3 GHz gear to their respective mountain sites, but each party took along 80 metres SSSS. 2 metres SSB/AM/FM, also $432 \mathrm{MHz}, 1296$ MHz and 10000 MHz ! That's dedication for youl MOONBOUNCE REPORT
Lyle VK2ALU redorts in "The Propogator", monthly
Contests
with Jim Payne, VK3AZT
Federal Contest Manager.
Box 67. East Melbourne. VIc., 3002

## contest calendar

SEPTEMBER

| 13-14 | European DX phone |
| :---: | :--- |
| 20-21 | Scandinavian CW |
| 27-28 | Scandinavian phone |
| TOBER |  |
| 4-5 | VK/ZL/Oceanla phone |
| $11-12$ | VK/ZL/Oceanla CW |
| 12 | RSGB 21-28 MHZ phone |
| $18-19$ | RSGB 7 MHZ DX CW |
| $25-26$ | CQ WW DX phone |
| VEMBER |  |
| $1-2$ | RSGB 7 MHZ phone |
| $8-9$ | European DX RTTY |
| 8 | CZechoslovaklan DX |
| $29-30$ | CQ WW DX CW |

## EUROPEAN DX PHONE

0000 GMT Sat. 13th Sapt. to 2400 GMT 14th. Rules game as for European CW in July issue of Amaleur Radio.

## SCANDINAVIAN CONTESTS

1500 GMT Sat. 101800 GMT Sun. (see Contest Calendar). Non-Scandinavians call CQ SAC on CW and CQ Scandinavia on phone. Bands 3.5 through 28 MHz . Non-Scandinavians work only Scandinavlan stalions once oniy on each band in each contest.
Scandinavian pretixes are LA, LJ. LG (Norway) JW (Swalbard) JX (Jan Mayer) OH (Finland) OHO (Aland Is!ands) OJO (Market Reet) OX (Greenland) OY (Faroe Islands) OZ (Denmark) and SM/SK/SL (Sweden). Usual RS/T report and OSO numbers commencing OD1. Multipllers IImited to 10 per band (from above prefixes) and one point each completed OSO. Certificate to best VK log. Logs to show date. GMT. station worked, number sent, band and mode of NEW multiplier. Separate logs for each band not permitted but summary sheet must show total acore each bend, final score, call sign, name and full address. These 1975 contests arranged by SARL Finland, Postllokero 306, 00101. Helsinkl 10. Finland.
UK/ZL/OCEANIA CW AND PHONE
See Amateur Radio. June 1975
1975 BARTG RESULT8
A copy of the resulis recelved from BIII VKSWV shows that Chris, VKBCT finished 49th in the con:est with 29.376 points and Ron VK5RY was 66th with 12.896 points. Bl!I mentioned that he will return to RTTY activity shortly, with some different gear. WPX RULES
These rules were referred to in the rules for the 16th All-Aslan DX contest and several VK amateurs
newslefter of the now newly named "llawarra Amateur Radio Society" that work continued throughout the month on completion of transmitter modificallons and adjustments, during which much was learned about UHF cavity type high power amplifier operation, Including the effects of this level of RF power on substances such as epoxy resin and nylon. They do not last very long at all. especial!y it in the stronger areas of the electroslatic field. Teflon or porcelaln, and possibly fibreglass, ara about the only Insulating materials which will last in the 600 watts of RF output power they are now gelting. from about 1000 walts input. It is hoped this 3 dB Increase In transmitter power on 432 MHz will help in achleving contacts, together with an expected improvement from the naw recelve system input coax filter which has been silverplated. Thanks Lyle. Anyone else any EME news?

## fM REPEATERS

I was interested in a brief comment Eddle VKIVP made to me in a leiter regarding repeaters, prompted by the letter I published by Don, VK3AKN in July. "Repeaters have been established for the prime purpose of Incressing the communication range of mobile VHF statlons. To my knowledge no appllcations for a repeater licence have stated that it is malnly for home to home communlcations, but as you know, most of the repeaters, maybe except some metropolitan ones, handle primarily base to base traffic. What about linear repeaters for other modes of transmissions? It seems that in most amateur minds and also on the licensing authorities mind repeater means FM repeaterl" Thanks for the comment Eddie, I am sure the points are very valid.

Additionally, the repeater represents a means of establishing an initial contact with 80 many monltoring the frequency, but all too frequently once contact is made stations well within the range of one another by a diract path refusa to vacate the repeater channel for another simplex or vacant repeater channel, and contlinue to occupy the channel for long perlods. Those who do this are either very inexperienced or selfish. Diverslication by various operators would ensure they had either additional channels available, or they could do as I and some others do, go down to the tuneable portion of the band and occupy some portion of that, instead of everything being conducted in the FM porlion.
Whilst In the area of Canberra, the latest issue of thelr newslelter, "Forward Bias", indicates Increasing Interast In 2 metre operation. Apart from the long distance operators who have been around for a long time, there are now VK1AOP, VK1RY and VK1LF who own FT220 transceivers (SSB, CW, FM on any part of 2 metres). Good to see the spread of operating capability and it is hoped there are s!III some VHF operators in Sydney Interested in working Canberra. Perhaps VK5 and Canberra should be trying for that elusive contact more often?
Other news remains a bit scarce al it always does at this lime of the year, and I have not been back long enough for much to happen. So we will close at this point with the thought for the month and start preparing for the "RD" Contest. "Critlcism, like rain. should be gentle enough to nourish a man's growth without destroying his roots".

> The Voice In the Hills
entries a:e received from that area or that the contestant has ecored 500 points or more.

73s. VKGNE

## Letters to the Editor

Any opinion expressed under this heading is the individual opinion of the writer and does nol necessarly coincide with that of the Publishers
The Editor,
Dear BlII.
I was recently asked by a primary school teacher about assistance with a very basic radio course she wished to ofter for some 6th grade boys. I gave her what ideas and suggastions I thought appropriate about her intended course, and later had the thought that maybe a retired amateur operator In the area may llke to otter his senvices to the school concerned to give the kids some technical (but not too Involved). assistance. I would say that the time commitment would be minimal but the benefits to the kids and teacher would be very great. The work would probably centre on assistance with actually getting the kids' crystal sets and basic Axs golng with perhaps some basic theory from time to time.
The school concerned 1s: Koonung Heights State School, Belmore Road, Box Hill North, 897081. This might be a way to keep another retired amateur operator ofl the streats?

73, Graeme Scott. VK3ZR
The Editor.
Amateur Redio.
H.R.P.P.R.C.
P.O. Northampion.
via Western Australla
Dear Sir,
It is with much pleasure that I advise you of the tormation of the Hutt River Province Princlpality Radio Club. (The Hutt River Province seceded from the Commonwalth of Australia on the 20th of April, 1970).
As the Province grows rapidly and Interest in Amateur Radio being high. the formation of an organigation to toster all Intarests in radio and its technology was essential.
Although the organisation is in its infant stages amenities Include eleclrically noise free location. 100 foot tower, THBDXX antenna, and some associaled equipment.
Any Amateur contemplating a vistl to the Province, which is only 350 miles north of Perth, will be made most welcome and invited to "hook up" his gear and work the fantasic DX that is avaliable.

Yours falthfully.
A. McINTYRE,

The Editor,
Amataur Radio.
W. J. Mordue, British Embasay No. 1 Ichlban-Cho, Chlyoda-Ku Tokyo 102, Japan.
Dear Sir.
Thought that the enclosed cutting from the local newspaper, the Mainichi Dally News, may be of interest to you or the readers of Amateur Radio.

## JAPAN HAS MOST DXERS

The number of licensed amateur radlo operators in lapan reached 286,247, or the equlvalent of the population of Takamatsu last March, out-numbering their counterparts in the United States by nearly 10,000, It was learned Monday.

There are 14 times as many hams in Japan as in West Germany, the third largest nation for Amaleur Radio operators.

Ham stations among TV, radio and other commerclal wireless communication stations authorised by the Posts and Telecommunications Ministry acacount for 25 per cent of the total, 11 is said.

Ministry oflicials sald the sharp increase in the number of hams reflects the spread of scientific knowledge in Japan. Simplificalion of the licensing examination system also has helped to boost the number of hams in all age brackets, they said.
The oflicials said the amaleur radio boom in Japan was traceable to the tact that the average Japanese today has enough money to spare. A radio capable of transmitting over a radius of 100 kilometres costs between 60,000 and 70,000 Yens. and advanced communications equipment capable of reaching overseas stations cosis between 170,000 and 1 million Yens.

The boom, they cautioned, was also giving rise to a number of Inexperienced hams who cause Jamming of TV and radio broadcasts and other commercial communications.

Lack of disclpline on the part of some hams, such as bugging of police communications, was also pointed out by the public relations official of the Japan Amateur Radio League (JARL) founded In 1926.

JARL reports a rise In the number of physically handicapped persons who have taken up Amateur Radio and said it is compling a textbook in bralle.

Yours sinceraly. BILL VKGJM

## IARU



In Radio Communication of June 1975 the IARU Region 1 HF band plan is detalled. It is perhapa useful to compare this band plan with the official WIA "gentlemen's agreement" HF band plan In use for many years.
We use 3.5 to 3.535 MHz for CW only whereas they recommend 3.5 to 3.6 MHz , presumably because their band extends all the way from 3.5 to 3.8 MHz whereas ours slops at $3.7 \mathbf{M H z}$. Their RTTY channal is $3.6 \mathrm{MHz}+$ or -20 kHz whereas ours is 3.62 MHz. Thelr recommended SSTV trequency is $\mathbf{3 . 7 3 5}$ MHz.
On 40 m they recommend 7 to 7.04 MHz for CW only (ours is 7.0 to 7.3 MHz ) with 7.04 MHz , the same as ours. for RTTY ( + or -5 kHz ). Their SSTV is on 7.04 MHz as well.
For 20 m the frequencles coinclde with ours for CW only ( 14.0 to 14.1 MHz ) and RTTY ( 14.09 MHz + or -10 kHz ). SSTV is 14.23 MHz
On 15 m the CW only portion is the same as ours ( 21.0 to 21.15 MHz ) but the RTTY frequency $1+$ or - 20 kHz ) is shown as 21.1 MHz agalnst our $\mathbf{2 1 . 0 9}$ MHz. 21.34 MHz is the recommended Irequency for SSTV.

The CW only portion of 10 metres is the same for both ( 28.0 to 28.1 MHz ) but they have a RTTY frequency of 28.1 MHz ( + or -50 kHz ) whereas we have none and they fit thelr beacons Into the recommended segment of 28.2 to 28.25 MHz . Their SSTV trequency is $28.67 \mathrm{MHz}^{2}+$ or -5 kHz as applies to all their SSTV channels. 29.4 to 29.55 MHz is their recommended downilink of amateur satellites.

Of course, all the remalning portions of each band in both cases can be used by CW and tele-
chony stalions. It is interesting to note they recommend 3.5 to 3.51 and 3.79 to 3.8 MHz as reserved for inter-continental working.

The article which is wiliten by G2BVN. the R1 secretary, says there was considerable discussion concerning electromagnetic compatibility of electronic entertainment equipment and it was agreed to set up a working group between conferences for which the RSGB will act es convenor. Pressure on manufacutrers is considered to be essential and a report was made that one maker already markets an "Interference free" television recelver.

Another Item considered that the Intemational Beacon Project is a valuable way in which radio amateurs can paricipale in serious scientific work

In relation to the 70 cm band plan some changes were made firstly to align as far as possible the 432 to 433.5 MHz segment with the 2 m band plan (thus easing the problem of memorising the plan) and secondly to make provision for a repeate scheme contained within the band 432 to 438 MHz - this is the only 70 cm allocalion available to a number of R1 member sociaties. Their scheme defines an Input/output separation of 1.6 MHz and has a marked similarity with the current 2 m scheme. Inputs are in the band 433.0 to 433.225 MHz and outputs 434.6 to 434.825 MHz ( 1.6 MHz higher)

Band plans were also discussed for the 23 cm band (1296 to 1298 MHz ) to align with the 2 m plan Unfortunately France has lost her allocation in the reglon 1298 to 1298 MHz due to Government action - "a note of warning to all member societies" is the comment by the writer G3FZL.

Among the "other" matiers discussed was an exchange of experience with linear translators which are currently In operation In Austria, Czechoslovakia, West Germany and Holland. Typical of these is DBOVU which has an input on 432.6 MHz . an output on 145.4 MHz , and a bandwidth of + or - 16 kHz . Very successiul operation was reported both with this and other linear repeaters, It being found that the predominant mode of transmission through the repeater was SSB.

## Magazine Index <br> win spec caric. verasc

Break-in May 1975
Hong Kong Conference Report; Kit Set Assembly: A FET GDO/Wavemeter; 2 Maich or Triband Coupler; A Top-Cut Filter for Your Transmitter: Notes on the Wellington Walkies.

## CQ-TV May 1975

This is a publication especlally for the ATV fan. It is published in England and deals with Slow. scan on the HF bands and CCIR standard transmissions on VHF/UHF. A Modification to the Sony TVg-goub; An IC Scan Fallure Protection Circult: An Image Orthicon Camera; Circult Notebook No. 21 (Regular teature) this month - Motor Control Clircuils.
CO April 1975
Inexpensive Surplus $160 / 80$ Metre VFO Contralled CW Transmitter: My Audio Transducer: Amateur Radio - The "Invisible Man"; The Venus Scientific Slow-Scan TV Equipment; Antennas, Reader Response and 80 Metre Antennas; An Introduction to Aclive Filters; An RF Transistor Tester; Recelver Updating Clircults. QRPP; VFO Design Notes; The Best Amateur Band for You; How to Pass Multiple Choice Test When you Don't Know the Answers.

## CQ May 1975

The Wondertul HRO Receiver; The Atlas 210 and 215 Transceivers: 1974 CO World-Wide DX ContestPhone Results: Operating RTTY on Two Melte FM: Slanding Wave Ratio; Frequency Pre-Scalers; DilverFinal Design Notes; Seanet Convention: The AN/ ARC-44 Transcelver.
GREAK-IN June 1975
3.3 GHz Long Distance Record: CO Nine Cms Sealed Nicad Batteries; Masts Agaln.
MOBILE NEWS May 1975
Membership report: The Hamburg Relay: The Renault 16 TL (Suppression techniques).
RADIO COMMUNICATION May 1975
Dealing with Interterence Problems; Interterence The Social Aspect; Going ORT; TV Masthead Amplifiers and their Problems to the Amaleur: Who Pays the Price; Invesilgation by the Post Office of Radio and Telavision Interference from Amateur Transmilting Stations; Interference Problems in 1973; Determining Azimuth and Elevation for Oscar Satellites; The W2AU 1:1 Balun: RSGB Interference Survey: Building Blocks for the Novice.

RADIO 2S May 1975
Series ol profiles of SARRL presidenis; An Old Timer Remembers; A Foundalion Member Reminisces: A 9 dB Gain Co-linear Antenna System (Looks like 144 MHz bul. is nol stated).

## Y.R.C.S. <br> with Bob Guthberlet <br> Methodisi Manse. Kadina, S.A. 5554

Co you remember my lasi AR Notes in which asked for oplnions on certain suggestions and my challenge for answers? Would you be surprised to know that I received one answer? But what happened to the replies from the VK 3. 4. 5 . 6. 7 State Supervisors? This brings me to a lurlher question - are YRCS Notes read? And how the heck am 1 to furnish news about the activities of clubs. etc., il the Supervisors maintain silence?

Have recaived a copy of the Minutes of the SA YRCS Annual Meeting from the new secretary, Maxine McEvoy. Thank you, Maxine. and welcome to the YRCS Lib movement. The meeting was held at the WIA Headquarters in SA with an altendance of VIP's from the WIA SA Division.

Bert Groves. Editor of "Zero Beat" reported the healthy state of the magazine finances, largely due to a donation from the defunct Elizabeth Club. However, Bert indicated the inevitabilliy of a price increase. Club reports showed increased interest and activity. A resolution 10 the eflect that present Leclure Notes no longer be used In SA because they were lolally inadequate, was carried unanimously. Allen Dunn. Federal YRCS Education Officer and Phil Emery, State YRCS Examiner wIII co-operate to ensure exams are based on the new Syllabus. Will all State Supervisors please lake note of the above resolutions? (For information only).

A suggestion has been made that we should extract the best circuits from "Zero Beat" and oublish same in collective formal. This is a good idea, and. perhaps club leaders may have suggestions to offer. How about It, chaps?

NSW State Supervisor, Rex Black reports that Blue Mounlains Branch of WIA has started an Outreach Programme to make the local cltizenry aware that Amateur Radio is functioning in this area. Rex mentions having been asked by a Government Department to run a vacation coursa in Amateur Radio from August 25th to September 5th. This is a Pilot coursa and could lead to operating courses in olher centres. As 1 have mentioned before, publicily is an Important factor in YRCS progress, and I would recommend to all club leaders and supervisors that they approach local news media for coverage.
Did you take note of the item in the July 1975 WIANEWS regarding Novice Licenses? I quote. "Novice Licenses would be issued for a year at a time and would not ordinarily be re-issued for a third year. The first exam was designated easy so as to allow a standard to be established for the future. The review In 5 years obviously will show where changes are needed." Unquole. YRCS could save the PMG time and expense with the following suggestion: that the Radio Branch grant exemplions In Novice Theory for YRCS candidates who pass to YRCS Senior Radio Certificate (Slage 2): in Morse Code receiving and sending for YRCS candidates who gain the YRCS Radio Telephone and Wireless Telegraphy Cerlificates: In Regulations for holders of the YRCS R/T and W/T awards.

To close in the words of Channing: Every man is a volume. If you know how 10 read him.

## Intruder Watch <br> with Alf Chandler VK3LC <br> 1536 High Sleer. Gien Ir. .s. 3:40

Notwithstanding the international agreements on Irequencies, non-amateur stations will be heard in the exclusive amateur bands from time to time. There is, unfortunately, an "escape clause" in the Radio Regulations to the effect that an administration may assign any station to any frequency provided that no interference is caused to any
station of another counlry operating in accordance with the allocations table.
In other words, if amateurs fail to object to interference from non-amateur stations in the amateur bands, the administration concerned is Justified in feeling that it is complying with the regulations.
Accordingly many amateurs are parlicipating in the WIA Intruder Watch spending iwo or more hours a weak looking for intruders, establishing the lact that interference is indeed being raused by these stations, and reporting the tacls to WIA Intruder Watch. The various reporis are matched up and the consolidated report sent through the approprlate government channels. At worst. a recoro of disiegard of agreements can be built up. 10 be used as "ammunition" against the oftending govern ment at the next international conference. Often the reports by amaieurs to the WIA result in removal of the station.

The $X Y L$ and sell are enjoying the hospitality and privitege of travelling through the USA. We have met my long-known friend and fellow intruder watcher Bill Conklin, K6KA in Los Angeles, and intend visiting ARRL $H Q$ to meet Dick Baldwin WIRU ex-Intruder Watch Co-ordinator and now General Manager of the ARRL and his staft. We have been given VIP treatment wherever wa have visited and enjoy mesting the people and viewing the scenery through the country.

On my relurn i shall continue my co-ordination of Region 3 and endeavour to arrange IARUMS throughout the Region. In the meantime I wish my tand-in and VK3 co-ordinalor, Ivor Morgan VK3XB every success in his endeavours.

## LARA

LADIES AMATEUR RADIO ASSOCIATION NEWS

The Ladies Amaleur Radlo Association has been formed. During this year several women. both licensed amateurs and SWLs. mel to discuss the role of women in amateur radio and the means by which they could increase female participation in what has been, until now, a predominantly male activity. Notes were prepared for the VK3 Sunday morning broadcast with the intention of ascertalning the extent of Victorian women's Interest in a ladies amateur radio group. Simultaneously, letters and questionnaires ware sent lo many licensed lady amateurs all over Australia asking for support and ideas for forming a nationwide assoclation.
LARA aims to increase women's Interest and aclive participation in all areas of amateur radio. It is no longer acceptabie for women to be locked out of the shack or left to watch cooking demonstrations and throw radios at conventions and rallies. Admittedly there are some wives/girlfriends who will never be more than casually interested In their OM's hobby. but for those who would like to loin in. LARA plans a wide range of $Y L$ and YL/OM acllvities.

For those ladies who have (or have access to) a full call, a regular sked is held on Monday nights at 8.00 pm EAST on $3650 \mathrm{kHz}+$ or - QRM. The first sked was held on the 21 st of July and $Y L$ operators from all over Australia took part. It was a very promising beginning. Those YLs who have not yet taken part ars very welcome to come up on air and add thelf voices to the growing number of YLs meeting regularly for a chat In thls way.
LARA also plans to establish an award known as "The LARA Award'. This award will differ from most in that unllcensed YLs as well as all licensed operators will be eligible 10 work towards it. Detalls will appear in a future issue of AR. YL activily on national field days and at stale conventions is planned and organisers of these events are urged to get in touch with LARA in order to discuss YL activity on these occasions.

## VICTORIAN DIVISION NEWS

As LARA began in Vicioria, activity has largely been confined to that state and so. in this lssue of AR LARA (VIC.) news has been included to illustrate what can be done in other states. At the W|A (Victorian Divlsion) councll meeting held on July 10th, councll members voted in favour of LARA becoming an affiliated body of that division and a motion was passed by the Vic. Div. Annual General


Norma VK3AYL, President of Victorian Division of LARA.

Meeting expressing wholehearled support for the aims of LARA.

The first General Meating of the Victorian Division of LARA was held on the 26th of July and Ms Norma Boyle VK3AYL was elecied President. A provisional constilution was adopted and a temporary committee formed. It was suggested that LARA hold classes in elementary radio theory for YLs to assist them to obtain AOCP. AOLCP, or Novice quallficatilns. This is to be discussed at future meelings. A sked for Melbourne YLs was organised and takes place every Tuesday at 8.30 p.m. Call in is via VK3RML.

Details of the first LARA YL/OM foxhunt on August 3rd were finallsed. These foxhunts are family affairs, a barbecue being held at the conclusion of this one. A perpetual trophy has been donsled and the name of the $Y L$ on the winning leam will be engraved on the trophy. LARA hopes 10 hold several hunts each year. LARA will also be sending mambers to the VK2 South West Zone convention In October to compele in the contests and publicise LARA in NSW.

Ons of LARA's initial achievements has been the formation of a crystal bank. This involves building up a stock of crystals so that anyone who needs cryslals for a short period will be able to borrow from the bank. Novices in particular will be helped by this scheme since operation under a Novice licence has to be crystal controlled. Many people have generously donated crystals to the bank but more are needed before the bank can start to oderate. If you can help with crystals please contact R. Roper VK3YFF, $15 / 10$ Brook St., Hawthorn. Vic. 3122.

Anyone interested in Joining LARA and helping us grow can get in touch with the Secretary (Vic.). Jenny, and she will send information and membershlp forms on request. Jenny's address is: The Secretary (LARA). Ms J. Roper, $15 / 10$ Brook St., Hawthorn, Victoria 3122.

## 20 Years Ago

with Ron Fisher VK3OM

## SEPTEMBER 1955

With commercial television just around the corner. the Institute was carrying on a continulng battle with the PMG for the lssue of Amateur Television Transmitting licenses. According to the Editorial page of September 1955 Amateur Radio, thls had been going on for the last nine years with the same answer every time. "Certain investigations have been made, but it is necessary to make further investigations atter which the Institute can expect a reply to lis representations".

Telavision was very much in everyone's thoughts and so. of course, was that great unknown, TVI. Who Will Be on the Alr When TV and TVI is on? Hans Ruckert VK2AOU showed how TVI occurs. how to recognise and cure it, and how a modern transmitter should be designed to eliminate harmonic radiation.

In a later issue. Hans fully described a transmitter following the princlples he had set out.

The Legendary Don Knock VK2NO described his Triple Conversion Amateur Band Recelver. It was based on iwo Command Receivers and a crysial controlled converter for each band. Don stated that he got his insplration from the Collins 75A series receivers.

Noticed in this issue is my first atlempt at Amateur Radio Journalism, a 7Mc Moblle Converter Transistors were on the way. Philips had a full Dage advertisement for the OC72 which Included a circuit for a push pull audio amplifiar with OC71s in the driver stages.

Reading through the VHF notes, it was obvious that this was the era of the 288 MHz modulated oscillator. 7193s in push pull and the like. I am not sure how wa lound the band. or remalned in it. bul It was good fun just the same.

## Book Review

THE RADIO AMATEUR'S HANDBOOK
Writing a factual book revlew in a few short sentences is quite difficult and we are perhaps fortunate that the publishers have, over the years, refined their comments about their publication in a manner difficult to Improve upon. We therefore reproduce below. their remarks which are corract in every way.
"The 1975 edition of THE RADIO AMATEUR'S HANDBOOK keeps pace with the latest technical developments, white retaining a solid foundation of fundamental theory and practical techniques for radio communication. Revised and updated Information is included in the areas of receiving techniques. transmitter design, antenna construction, and port-able/emergency-powered apparatus, among others.
The technical staft of the American Radio Relay League has assisted Bob Myers WIFBY, in the predaration of the 1975 edition. Like its predecessors the 52nd edition of the Handbook places the emphasis on proven designs and practical information of a how-to-do-it nature. Noted for its technical accuracy and clarity of description, the HANDBOOK appeals to beginners and advanced amateurs alike.
Among the new construction projects Included are a 160 metre amplifier, a solid-state single sideband/CW exciter, a direct-conversion portable recelver for 20 and 40 metres, a transvertar for 160 metres, a $10 / 15$ metre preamplifier, a Unimatch antenna coupler and a 5 -element triband quad."
This year the ARRL has chosen to print the lalest edition of the Handbook upon a poorer qually paper than has hitherto been their practice. This reviewer leels sure that this will not detract from the usefulness of the publication and that the price has been kept at an irreducible minimum.
Review copy supplied by ARRL. Copies avallable from advertisers.

## Trade <br> Review

MULTI-TAPPED POWER TRANSFORME
Ferguson Transformers Pty. Lid. have released two new multi-tapped transformer additions to their line of 20VA and 40VA low height transformers. These transformers will be useful for providing a range of output voltages.

Both bridge, centre tapped full wave, and half wave circults can be used. Both provide a maximum voltage of 18 Volts and the windings can provide 1.11 amps. for the 20VA type, and 2.22 amps . for the 40VA type.

On test, the sample transformers were quiet and provided the rated outputs without excessive heating. The windings are tapped at $4.5,6,7.5,9,12,15$, and 18 volts.

Connections are made using shrouded quick connect leads which were supplied with the transformer.
The 20VA Transformer is Type PL1.5 18/20VA.
The 40VA Transformer is Type PL1.5 18/40VA.

## IONOSPHERIC PREDICTIONS

WITH LEN POYNTER VK3ZGP

From Seplember onwards the Ionospheric Predictions will return to AR ano I trust they will be of Interest to those who have missed them. I also hope to be in the position to offer further information to those who are following the Solar Flux and other Indices.

## LATEST SUNSPOT INFORMATION

December 1974 Predicted 29. Mean 20.4 R6 (six monthly smoothed) 25.4 June 1975 (Predicted April '75) was 17. Provisional mean 11.4 Predictions in June ' 75 for the next 6 months, July 9. August 8 , Septamber 7. October 6, November 5, December 4. Informed opinion suggests that March 1976 will see the minima. IPS advise that 2 spots of the new cycle have been noled; however il is sill too early to recognise them due to the extremely slow decay of cycle 20.

Our problem with the prediclions is the tremendous amount of data portrayed in the computar printout from IPS and the space avallable in AR. Inltially I will try to cover two areas, Eastern Australla based on Canberta, and Western Australla based on Perth. If any correction factors imerge I will mention them.

For September the plcture is not bright. With the predictions generally based on a low SSN there is not much consolation to offer. Conditlons will vary dally. Around the 17th September should prove difficult if old Sol keeps up his antics.
Generally: 21 MHz should be watched from 2100-0400 across the Pacific and 0400-0500 trom Japan across to Middle East and Alrica.

14 MHz will be unpredictable. Generally. signals will range from poor to good depending largely on conditions; you will have to be there when It's good. Daytime across the various paths will be variable.
7 MHz from 0400-1000 Europe LP. North Central, South America and Pacific areas. $1000-2200$ Middle East Europe SP. West Alrica SP, South Atrica. Japan, at varlable levels.

Fiom Perth 14 MHz, 0400 Alrica, $0700-0900$ North Amarica, West Africe LP, 1000-1200 Eurode LP, America East Coast 1200-1500. 7 MHz could be interesting 0700-0900, West Africa LP. 0900-1700 Pacific America West Coast, New Zealand 1600 2300. Middle East, South America. South Africa.

## ATTENTION

## FT101 OWNERS

At last a distortion-Iree RF Clipper. Fits in minutes and really works. Yaesu SSB Filter fitted. Only for FT101. Gives up to 6 times for more eftective talk power gain plus extra RX selectivity and gain - not to be confused with audio type distortion producing cllppers, or compressors.
Prica: \& 45 sterling, alr poat pald.
Send for detalls:
G3LLL, HOLDINGS LTD.
39/41 Mincing Lane, Blackburn BB2 2AF, England

Next month I hope to include 80 m in the summaries. DX is being worked on 80 and 160 m it you know when and where to watch and listen tor the experts. Being patlent will pay off. Best of luck lill next month.
Zurich figures courtesy Dr. Waldmeler, Swles Federal Observatory, Zurich. Prediction from IPS, Sydney. All Ilmes Universal Time.

## PRIJJEGTAUSTRALIB

WIth DAVID HULL VK3ZDH OCTOBER PREDICTIONS

| O8CAR $B$ ("On" Days |  | Only) |  | OSCAR 7 Orbit |  | Time |  | Lona |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Orbil | Time L | ong | Date | No. | Mode | 2 | - W |
| Data | No. | 2 | - W | 1 | 4001 | B | 01.15 | 69 |
| 2 | 13541 | 00.50 | 64 | 2 | 4013 | A | 00.15 | 53 |
| 4 | 13586 | 00.45 | 62 | 3 | 4026 | B | 01.09 | 67 |
| 5 | 13578 | 01.40 | 76 | 4 | 4038 | A | 00.08 | 52 |
| 6 | 13591 | 00.40 | 61 | 5 | 4051 | B | 01.03 | 65 |
| 9 | 13629 | 01.29 | 74 | 6 | 4063 | A | 00.02 | 50 |
| 11 | 13654 | 01.24 | 72 | 7 | 4076 | B | 00.56 | 64 |
| 12 | 13666 | 00.24 | 57 | 8 | 4089 | A | 01.51 | 77 |
| 13 | 13679 | 01.19 | 71 | 9 | 4101 | B | 00.50 | 62 |
| 16 | 13716 | 00.15 | 55 | 10 | 4114 | A | 01.44 | 76 |
| 18 | 13741 | 00.09 | 53 | 11 | 4126 | B | 00.44 | 60 |
| 19 | 13754 | 01.04 | 67 | 12 | 4139 | A | 01.38 | 74 |
| 20 | 13766 | 00.04 | 52 | 13 | 4151 | B | 00.37 | 59 |
| 23 | 13804 | 00.53 | 65 | 14 | 4164 | A | 01.31 | 72 |
| 25 | 13829 | 00.48 | 63 | 15 | 4176 | B | 00.31 | 57 |
| 26 | 13842 | 01.43 | 77 | 16 | 4189 | A | 01.25 | 71 |
| 27 | 13854 | 00.43 | 62 | 17 | 4201 | B | 00.24 | 56 |
| 30 | 13892 | 01.33 | 74 | 18 | 4214 | A | 01.19 | 6 S |
|  |  |  |  | 19 | 4226 | B | 00.18 | 54 |
|  |  |  |  | 20 | 4239 | A | 01.12 | 68 |
|  |  |  |  | 21 | 4251 | B | 00.12 | 52 |
|  |  |  |  | 22 | 4264 | A | 01.06 | 66 |
|  |  |  |  | 23 | 4276 | B | 00.05 | 51 |
|  |  |  |  | 24 | 4289 | A | 01.00 | 64 |
|  |  |  |  | 25 | 4302 | B | 01.54 | 78 |
|  |  |  |  | 26 | 4314 | A | 00.53 | 63 |
|  |  |  |  | 27 | 4327 | B | 01.48 | 76 |
|  |  |  |  | 28 | 4339 | A | 00.47 | 61 |
|  |  |  |  | 29 | 4352 | B | 01.41 | 75 |
|  |  |  |  | 30 | 4364 | A | 00.40 | 60 |
|  |  |  |  | 31 | 4377 | B | 01.35 | 73 |

## QSP -

## R.D. TROPHY

VK5 reckon they will once again retain the R.D Trophy this year. It is very interesting to recelve news that the :rophy was in Darwin when Cyclone Tracy struck. It was recovered from under tons of rubble from VKAHA's place. The trophy was damaged but has now been repaired and re-plated. with the excertion of the shlelds, in gold - so writes the VK5 Federal Councllior Ian Hunt, VK5OX He says it looks extremely good and the change will serve to mark yet another event in the hlatory of the trophy and also Amataur Radio.

## HIGH PERFORMANCE

Both kits employ low noise UHF MOSFETS, and the converter has variable IF gain.
NOTE-The converter is designed sor use in a transverter and does not include an oscillator.
IPSWICH AND DISTRICT
RADIO CLUB
C/- 20 Peacock Street, Leichhardt, Qld. 4305

## 2 METRE CONVERTERS and PREAMPLIFIERS

| CONVERTER: KIT | $\$ 10$ |
| ---: | ---: |
| COnsiructed | $\$ 20$ |
| PREAMP: KIT | $\$ 6$ |
| Consiructed | $\$ 10$ |
| P/P | $\mathbf{5 0 c}$ |

- Eight lines tree to all WIA members.

39 per 3 cm for non-members.

- Copy in typescript please or In block letters to P.O. Box 150. Toorak. Vic. 3142
- Commercial advertising is excluded.
- Closing date: 1st day of the month preceding publication. Cancellations recelved atter about 12th of the month cannot be processed.
- OTHR means the advertiser's name and address are correct in the current WIA Radio Amateurs Call Book


## FOR 8ALE

Lafayelte HAB00, $\$ 110$ ONO. FG Rods, solid $8 / 16$ to $y_{4}$ Inches, 10 leet long. \$5 each. VKAWR, 6 Olive Ct., Nambour, Old. 4560.
Yaesu FTDX100 with AIWA mike and SWR/power meter included. Has had very little use, is in first class order and gives excellent performance, $\$ 350$ the lot. Contact VK2AOR, L. J. Sparke, P.O. Box 102. Adamstown, NSW 2289.

Yaegu FT620 6 m Solld State SSB $12 \mathrm{~V} / 240 \mathrm{~V}$ inbulti. As new, few months old, In shipping carton, with manual. $\$ 370$ or best offer. VK5ZTS, 5/11 Wakefleld St., Kent Town, SA, 5067
Geloso 222 Tx 70W AM, CW 80-10m, good condition. Geloso 209 Rx SSB AM, CW 80-10m tair cond., will sell separately, best offer. VK2ADZ, 28 Probert Ave., Griftith. 2680. Ph. (069) 623718.
Swan 350 SSB Transcelver with Swan power supply. mic. and two spare PA tubes, excellent condition. \$285. DC supply for above. \$40. H. Bone VK4NX. QTHR. Ph. (075) 381615.
Shack Clearance - complete equipment of the late Jack 2JH sold for the estate. Swan 350. "Communications Eight" Rx, 6m. 2m. 432 equipment. Tx and Rx, Converters, Test instruments, Mullimeters, grid dippers. Frequency meters, Power-Match with accessories, AWA Universal Bridge, Phones. Microphones and many more ltems. No reasonable offer refused, ring Prof. Felser VK2zGF (02) 2211655 for inspec-: tion.
Hallicrafters HT37 TX, 70/100 walts SSB AM CW, MOX/VOX, 80-40-20-15-10.2-6146 final with S00W 240-110 transformer. OK. 20 and 80 needs adjustment other bands, $\$ 140$ ONO. National HRO Rx old limer, good order, all coil boxes 0.5 to 30 MHz , in current use, s30 ONO. A. M. Doble VK3AMD. OTHR. Ph. (03) 574610.
Geloso Tx-G4/228 with PSU and matching speaker, mike and manual, 80-10m SSB AM CW, as new. \$275. E. Wookey, 158 Kllgour St., Geelong. 3220. Ph. (052) 212674
Sharp CBT72Q, 12 Ch., 27 MHz Transcelver, compiete with xtals, mic., aerial, plus root rack mount. ideal for the moblle lot, $\$ 100$ ONO. Ronn MCDougali VK2BPA, QTHR (new book). 3/16 Murray St., Waverley. Ph. (02) 3873055.
FT/FP200. Very good condition, extra 28.0 to 28.5 MHz crystal fitted, spare set PA tubes, complete with microphone, cables, manual, in original pack.. \$330. VK2BHS, OTHR. Ph. (047) 513534.

## WANTED

Ham Radia, January 1974. To complete collection. M. E. Hood VK1ZME. Box 572, Woden, ACt 2606. Husiler 4BTV Verical 80 to 10 metres. VK3SX, QTHR Ph. (03) 822152.
Crank-up Tower Hills 57 ft . or similar. Recelver Marconi or similar. VK2SI, 12 Ruswell Ave., Warners Bay, 2282.
Xtals for new amateur, fundamental frequencles of B0. 40 or 20 metres (CW section of band). for homebrew CW Tx. VK6WT, 105 Daglish Street. Wembley, WA 6014.
Manual for Palec Madel VCT-2 Valve Checker and Multimeter, or opportunity to copy. D. L. Robinson VK3ALD. OTHR. Ph. (03) 630481.
Trio 9R-59DS Circuit Diagram, handbook: also TCA 1674 FM maintenance handbook or circuit diagram. modifications for 2 metre operation. P29ZMJ, PO Box 2237. Konedobu, Papua-New Guinea
ORL? If not. OSX 52020 for first $21 / 2$ minutes each live minute period from 0800 Sundays. I will QSW first $21 / 2$ minutes then OSX last $21 / 2$ minutes. OSN and QSL, VK2ZNW. Box 1117. Orange. 2800.
$\overline{175} \mathrm{kHz}$ Tapped Osc. Coll, Barlow-Wadley XCR-30 receiver. Jeff L-30409. Ph. (03) 5463940.
Stolle Ant. Rolator. Price and availablity to VKSXR, QTHR. 22 Pine St., Peterborough, SA, 5422.


AUSTRALIAN DXCC

| Phone |  | CW |  |
| :---: | :---: | :---: | :---: |
| VK6RU | 319/351 | VK3NC | 268/297 |
| VK4KS | 314/333 | VK6RU | 288/295 |
| VK5MS | 313/343 | VKAVX | 263/268 |
| VK6MK | 306/333 | VK3YD | 258/281 |
| VK3AHO | 304/326 | VK4TY | 253/272 |
| VK2APK | 300/313 | VK3TL | 248/260 |
| VK4VX | 300/304 | Open |  |
| VK4PX | 294/301 | VK6RU | 319/351 |
| VK5AB | 291/314 | VK4KS | 315/339 |
| VK4UC | 288/293 | VK4SD | 314/335 |
| VK4FJ | 287/314 | VK2APK | 311/329 |
| VK3.W | 283/290 | VK2VN | 311/338 |
| CW |  | VK2EO | 306/335 |
| VK3AHO | 308/331 | VK4VX | 306/312 |
| VK2QL | 299/328 | VK6MK | 306/333 |
| VK3YL | 294/317 | VK2SG | 301/311 |
| VK2APK | 291/304 | VK4PX | 301/312 |
| VK4FJ | 290/322 | VK4FJ | 300/332 |
| VK3X | 280/300 | VK4TY | 300/321 |
| NEW ME |  |  |  |
| Phone |  | Open |  |
| VK4UA | 118/120 | VK3AUT | 105/105 |
| VK2EB | 108/110 | VK3ZU |  |
| VK3WU | 105/105 | now VK2QC | 100/102 |
| VK3AYF | 104/108 | VK2日RK | 98/103 |

## MORRIE MEYERS VK2VN

With the sudden passing of Morris Henry Meyers O.B.E. on Tuesday June 10th the amateur movement and the WIA lost a member who followed the Amateur Code and Spirit to the letter and did much to ensure that the amateur service was well respected in the general community. Morrie was first licenced in the early thitties and was active in most contests. He was also a top runner In the WIA DXCC open section, with wall over 300 countries. His skill as a gifted CW operator was acknowledged by his election to the Fine Operators Club and the A1 Operators Club, selective groups of the world's finest radio operators. His Immaculate C.W. was a reflection of everything he attempted and he altacked problems from a grass roots level with energy, determination, confldence and tenacity, supported by an astute mind and a sound technical underslanding. He also conquered much through


## Silent Keys

Mr. M. F. TIERNEY<br>\section*{Mr. A. E. BROWN<br><br>Mr. C. J. W. COOK<br><br>Mr. H. L. FOOQ}<br>Mr. H. W. A. HAWKINs

VK2RT

ARNOLD HOLST
VK5ZN
VKSZN
VK6HF
VK3OH
On Wednesday July 30th, one of Ausiralia's Amateur Radlo Ploneers died. Amold's Hcence la dated 1813; ihls makes 62 years of amateur radio. In the 1914-18 World War, Amold was a radio operator and a Irlbute comes from his friends in The Meaopaiamlan Unils Association. They are golng to mise him at this year's "gat-together".

Amold wat known throughout the world for his CW acilvilies whith hF beam from his resldence at 10 Flintoft Ave., Toorak. When the firat Russlen Satellite wat launchad, Arnold was reported In the "elop press", because he had the resourcetulness to tune In the "beeps" on his HF recelver. Thla and many other evenia colour the amataur radia alde of Arnold; and then there la hie fame as painter.

He was a mamber of The Australlan Inalltute of Accounianis and The EHock Exchange of Melboume. He enjoyed a game of tennis.

Arnold's brothers Hector and Otto caught the radio "bug" by laking an early intarast in his work and oparated the famous top amateur station, 3BY Malboume, on the broadcaat band up unlll the commencement of the 2 nd World War, when once again In the Holat radio hlatory, operations had to cesse for a war.

It will lake us some lime to get uead to his absence. In November he would have been the grand age of 78 yeara.

IVOR MORGAN VKJDH
sheer personality - with charm, understanding. tact and compassion - amply lllustrated by his popularlty and his bridging of the generation gap with so many friends amongst the " 2 " calls. His cheery volce and his warmith of frlendship and comradeship will be gratly missed - no less his intelligent interest and constructive contribution to amateur activities at all levels. A Past-president of the NSW Division and past-member of the Federal Executive, he served the WIA over a perlod of 30 years. Morrie was a complete radio amateur.

As a member of the RAAF Wireless Reserve. along with many other amateurs, he was called up in September 1939. He saw service on the mainland and in forward areas, in the Borneo landing and in New Guinea and the Pacific. He was commissioned In 1941 and rose to the rank of Wing Commander, was mentioned in despaiches and awarded the Order of the Brltish Emplre. In the post war years he olten led the RAAF Signals contingent in the Sydney ANZAC Day March.

For 25 years he was a member of the Radio Sub-committes of the NSW Bush Fire Councll. He was also a member of the Quarter Century Wireless Association and the Institution of Radlo and Electronics Engineers Australia.

His intense Interest In communications led to a highly successful careep with Qanlas where, as Communications and Electronics Manager he was to work In a significant and complex field at a time of major expansion. Through this activity he served on many Advisory Boards at International level. A lask with the Government of Thailand extending over 20 years is worthy of special note. From his regular overseas irlps he made numerous friends in professional and amateur circles and conInved the communlcations link. In latter years he became a keen bowler and qualliled as a nationa: umpire.

Morrie was an exceplionally fine man and citizen. with a great depth of faith and a strong grasp of the basic essentlals. He was a deacon of his church and he enjoyed the warmith and security of his famlly and his home. May the tributes, the many triends and the wide representation, including the numerous amateurs who attended his funeral on June 13th. be a comfort to his widow Gwen and daughters Elizabeth and Rosemary, and may happy memorles abound for them, his many friends, and :he amateur fraternity. for this unlque sllent key

## VICOM INTERNATIONAL PTY LIMITED Manager Peter Williams

HF TRANSCEIVERS


The Uniden Corporation is no new-comer to the communications industry. Established in 1966, the Company has demonstrated its expertise in the manufacture of crystal filters, crystal oscillators and nearly 100 different transceiver models for the commercial and CB markets with a monthly production of $\mathbf{4 5 , 0 0 0}$ units! The Uniden 2020 is the first of five Amateur transceivers released for export last month and VICOM is proud to take part of this new development.
Uniden $2020(80-10 \mathrm{~m})$ transceiver, $\quad \$ 550$ incl. mic.
Uniden External (PLL) VFO
$\$ 105$
Uniden Matching Speaker \$28
Yaesu FT101E ( $160-10 \mathrm{~m}$ ) transceiver. \$650
Yaesu FL2100B Linear Amplifier. \$388
Yaesu FT75B mobile transceiver, \$245 AC power supply \$50


SU- 71070 cm 10 watt fm transceiver complete with 435.0
crystals, mic, brackets, etc. . . . . . . . . . . . . . . . . . . . . . . . $\$ 278$
IC501 SSB/AM/CW 6 meter transceiver at 10 watts. .... . $\$ 445$
TRIO STOCKTAKING SALE (SEPTEMBER ONLY)
Ts-520 HF transceiver (a few only at this price) . 5525
Tr-7200G 2 m fm 10 watts incl 2 chs .................... . $\$ 210$
Ts-520 dc power leads . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\$ 2$
AC/DC converter pak for Ts-520, incl $2 \times 2 n 4049$, heatsink, etc.
A real bargain!
SG402 RF Generator \$68
VT108 FET VOM: $\$ 70$
AG202A Audio Gen $\$ 85$ 75 mm CRO $\$ 150$

## Distributors

Canberra: Andrew Davis, 32 Kalgoorlie Crescent, Fisher. Phone: (062) 88-4899.
Gold Coast: DB Electronics, 21 Christine Ave., Miami. Phone: (075) 35-1798
Adelaide: Graham Stallard, 27 White Avenue, Lockleys. Phone: (08) 43-7981.
Geelong: Phil Fitzherbert, Phone: (052) 43-6033.
Newcastle: Digitronics, 188 Parry Street, Newcastle. Phone: (049) 69-2040.
Perth: Netronics, 388 Huntriss Avenue, Woodlands. Phone: (092) 46-3232.

SUPPRESSION KITS FOR THE MOBILE ENTHUSIAST!
DC Power line filter ( 6410 ) incl 50A shielded cable and in-line suppressor avl in various lengths . . . . . . . . . . . . . . . . . . \$19.80 Ignition suppression kit (6415) featuring military grade| components, special coil cable, coil filter, suppressors with hardware and instructions. 6 and 8 cyl. kits avl.
$\$ 25.70$ Universal Suppression Kit (6405) for ignition and alternator suppression plus bonding material. 6 and 8 cyl . kits avl. \$35.70

## CRYSTAL OVENS

pcb mount proportional control crystat
ovens can be supplied for standard temperatures and voltages. Model PCL1-12 clip type oven for He-25/u crystal $\$ 19.80$ Model PCL2-21 slip-on oven for Hc-6/u crystals $\$ 19.80$

## TEST GEAR



MONITOR SCOPE. The YAESU YO-100 monitor scope can be interfaced with most transceivers and can cover a wide range of modes incl. RTTY. A two tone built-in generator at 1500 and 1900 Hz adds to the versatility. Price: $\$ 190$.
YAESU frequency counter $\mathbf{\$ 2 5 0}$. Covers up to 200 MHz max. sensitivity 20 mV , hi-lo input impedance.
Oskerblock SWR200 SWR/PWR Meter with ranges
2/20/200/2000w to 200 MHz
. $\$ 49$
ODDS AND SODS . .
VARIAN POPULAR TRANSMITTING TUBES

| 4X150A | $\$ 23.00$ | $4 C X 250 B$ | $\$ 27.50$ |
| :--- | :--- | :--- | :--- |
| 4CX250BC | $\$ 31.00$ | $4-125 A$ | $\$ 35.00$ |
| $4-250 A$ | $\$ 40.00$ | $3-400 Z$ | $\$ 42.00$ |
| $3-500 Z$ | $\$ 42.00$ | CHIM SK606 | $\$ 4.50$ |
| SOCK SK600 | $\$ 17.00$ | CHIM SK406 | $\$ 10.60$ |
| SOCK SK410 | $\$ 10.60$ | SOCK SK400 | $\$ 74.00$ |

MC. 15 low impedance ptt mic

Safetymic Headset
Regulated DC power supply board up to $15 v$ at 4 amps depending on transformer secondary and value of current | sensing resistors on board

## VICOM 90 DAY WARRANTY ON ALL NEW PRODUCTS

## ANTENNAE

MOBILE WHIPS:
RM-80 Resonator for 80 m . $\$ 18.50$
RM-40 Resonator for $40 \mathrm{~m} . \$ 16.80$
RM-20 Resonator for 20 m . $\$ 13.50$ BM-1 Bumper mount \$13. Spring \$13. HY-GAIN


203BA 3el 20 m beam $\$ 168$
TH6DX Gel yagi 10-15-20. \$225
TH3JR 3el yagi 10-15-20. \$135
18AVT trap vertical 80-10. $\$ 90$
14AV0 trap vertical 40-10. \$65
VHF ANTENNAE


LINDENOW 2m 5/8 whip \$21, base $\$ 2.60$.
RINGO ARX-2 6db 2m gamma matched vertical, \$35. Extension kit to improve gain of the old AR-2, \$12.


## SCALAR

 ANTENNASAmongst the comprehensive range of SCALAR ANTENNAS there are some of special interest to the Radio Amateur. These include our VHF \& UHF, Citizens Band Range, HF Mobile and Base Station Units for Land \& Marine applications, for example . . .

## MODEL M25

For more efficient 2 -metre performance use the SCALAR M25. A 3dB gain mobile, designed for use in the $140-175 \mathrm{Mhz}$ band. The antenna is a $5 / 8$ wavelength whip complete with integral loading coil. Constructed of fibreglass these antennas combine resilience with non-ferrous continuity for high quality performance and noise free operation.

## AND SCALAR'S OWN

## "MAGNABASE" MODEL MGB



This high quality magnetic base may be fitted with any SCALAR whip. Instant installation on any flat metal surface.
Fully protected for scratch free mounting.
Complete with 12 feet of RG58CU coaxial cable.

Available from -

| N.S.W.: | DICK SMITH ELECTRONICS | Tel.: |
| :--- | :--- | :--- |
| VIC | B39-5311 |  |
| S.A.: | ROG ELECTRONIC SERVICES | Tel.: $89-2213$ |
| W.A.: | ALLCOM ELECTRONICS | Tel.: 2644.3296 |
|  |  |  |

W.A.: ALLCOM PTY

Tel.: 57-1555


SCALAR
Industries Pty Ltd
Communication Antennas and RF Shialding Engineers

for all the power under the sun


This space age device converts the sun's light directly into electrical energy and is the ideal power source for applications remote from conventional sources of power, including:-

- Radio beacons - air and marine navigation
2 Railway signalling systems
E Marine buoys - harbour or oil rig
- Radio telephories
- Telecommunications and T.V. relay stations

Send the coupon for full information about the many unique and down to earth advantages this remarkable new development has to offer you.

Please send more information on Solar Power.
To: Joseph Lucas (Australia) Piy. Ltd.,
Parts 2 Service Division,
1156 Nepean Highway, Cheltenham, Vic., 3192.
Name
Address
Post Code
! $9 \rightarrow 2$
JOSEPH LUCAS (AUSTRALIA) PTY. LTD.


VOL. 43, No. 10
OCTOBER 1975

## CONTENTS

TECHNICAL
Amateur Building Blocks-Pt. 4 ..... 9
A Simplified Method of Morse Code Message Generation ..... 20
Commercial Kinks ..... 26
CW Netting the Transceiver ..... 16
Improving the EICO 753 on 14 MHz ..... 22
Meteor Scatter Linear Amplifier ..... 5
Newcomers Notebook ..... 24
Try This ..... 23
GENERAL
Golden Jubilee 1925-1975 of the Royal Australian Corps of Signals
DEPARTMENTS
Afterthoughts ..... 26
Awards Column ..... 29
Contests ..... 28
Hamads ..... 34
Key Section ..... 31
Ionospheric Predictions ..... 33
LARA ..... 34
Letters to Editor ..... 26
Magazine Index ..... 17
QSP ..... 3, 17, 29, 34
Silent Keys ..... 34
Trade Review ..... 32
VHF-UHF - an expanding World ..... 27 ..... 4
WIA News
WIA News
20 Years Ago ..... 32

## COVER PHOTO

Major Darryl Slade, Ops Officer 2 Sig Regt, Corporal Robert Linton, and Sergeant Barrie Edwards, both of the Radio Troop, discussing plans for the erection of antennas for AX3SIG. See story on page 4.

# HAM RADIO SUPPLIERS 

## 323 elizabeth street, melbourne, vic., 3000

Phones: 67-7329, 67-4286 All Mail to be addressed to above address
Our Dispoanis Store at 104 HIGMETT 8T, hICHMOND (Phone 42-136) is open Mondays to Fridays, 10.30 a.ma. to 50 p.m., and on saturdays to midday.

## ALSO AT: <br> 390 BRIDGE RD. RICHMOND. 425174

AND DISPOSALS STORE:
104 HIGHETT ST. RICHMOND. 428136

## 27 MHz TRANSCEIVERS AND <br> ANTENNAS SUITABLE FOR NOVICE AMATEUR USE



SE501 23 CHANNEL TRANSCEIVER 5W AM, 15W PEP SSB, 12V DC operation $\$ 195$

MIDLAND 13-870D 23 CHANNEL TRANSCEIVER
5 Watts AM, 12V DC Operation
CENTRE LOADED FIBREGLASS MOBILE ANTENNA AND BASE
43 in . long
$\$ 16.90$
$1 / 4$ WAVE FIBREGLASS MOBILE ANTENNAS
With Insulator and heavy spring base $\$ 35$ PONY CB74A 6 CHANNEL TRANSCEIVER 5 Watts AM, PMG approved for 27.880 MHz operation. Fitted with 27.880 and 27.240 crystals
\$105
MIDLAND TWIN METER TYPE SWR
BRIDGE AND POWER METER
$\$ 25$
COMMUNICATION RECEIVERS AND TRANSCEIVERS

KENWOOD MODEL TS520 AC-DC, 80-10 metre, complete with microphone .... .... .... .... .... .... 8550
Matching External Speaker .... .... .... .... .... .... \$25
KENWOOD TR7200G 2 metre, 22 channel, 12V DC operation, fitted with Ch. 1 and 4 Repeaters. 10 W and 1 W output positions $\ldots$ and 4 Repeaters. $\$ 235$ YAESU MUSEN FT101B AC-DC, 160-10 metre, com plete with microphone .... .... .... .... .... .... .... $\$ 585$
FT200 Transceiver with A.C. Dower supply .... $\$ 400$
KEN KP202 hand held 2 metre Transcelver, 2 Watts output. fitted with xtals for channels 40 and 50 repeaters 1, 2, 3 and 4 .... .... .... .... .... .... .... 8150
KCP2 Battery Charger for KP202 with 10 recharge able Ni-Cad batteries
KENWOOD QR-666 general coverage, operates from 240V AC or 12V DC .... .... .... .... .... .... .... $\boldsymbol{s 3 3 0}$
BARLOW WADLEY XCR3O Mk II, all band coverage. AM. SSB, CW reception .... .... .... .... .... .... \$278 POWER SUPPLY 240V AC - 13.5V DC at 3.5 amps regulated
${ }_{s 35}$
WE ALSO KEEP A RANGE OF 27 MHz WALKIE TALKIES which are type approved by the P.M.G. for boating, bushwalking, etc.

## THIS MONTH'S SPECIAL

PRECOR 4 BAND RADIO AM-FM. AC/DC operation. VHF frequency coverage is $56-217 \mathrm{MHz}$ in 3 bands. $\$ 49.50$ plus pack \& post



## SCOOP PURCHASE

TRANSISTOR RADIO CIRCUIT BOARDS IDEAL FOR HOME CONSTRUCTORS

Due to Tariff cuts on transistor radios, we can offer the ltems below at this price. Most are in working order but no guarantees at these prices.

## THOUSANDS AVAILABLE

AM 8 TRANSISTOR CIRCUIT BOARDS
All new parts. IFs, capacitors, resistors, etc.
$\$ 1.50$ each or $\mathbf{3}$ for $\$ 3.50$
AM/FM CIRCUIT BOARDS
10 transistors, all new. Ideal for use as FM tuner. 88 -108 MHz.
$\$ 2.75$ or 3 for $\$ 7.00$
ALSO LARGE QUANTITY OF RADIOS
In various stages of manufacture. Some AC/DC models AM/FM etc. Speakers, cabinets, etc. Personal shoppers only.

From \$3 each
TRANSFORMERS A + R TYPE 5509
Ex. equipment, but as new. PrI. 240V. Sec. $2 \times 12.6 \mathrm{~V}$ at 2.5 A .
\$8 each
"ZEPHYR" 2K ROCKING ARMATURE MICROPHONES
Desk Type with PTT key switch in base. Brand new.

## $\$ 25$

"PHILIPS" TYPE CONCENTRIC TRIMMERS Threaded stud mounting, 25 pF . 75c

## BRAND NEW 4-TRACK STEREO

CARTRIDGE PLAYERS
2-5 Watts per channel at 8 ohms, 12V DC operation. In sealed boxes.

> \$15 each

30 kHz M.E.W. Crystal Filters 10.7 MHz $\$ 5$ each
2N3055 Transistors with insulating kit $\$ 1.00$ Stolle $\mathbf{3 0 0}$ ohm Feeder with foam dilectric 15c yard
58 ohm Coax Cable 100 yd. Rolls, $1 / \mathrm{B}^{\mathrm{N}}$ diam. .... .... .... .... .... .... .... \$12 Roll 52 ohm Coax Cable $1 / 4^{\prime \prime}$ diam. 45c yard, 50c metre
Dow Key Coaxial Relays 48 Volt DC operation
$\$ 15$
Split Stator Capacitors with screwdriver slot drive, 9 pF-17 pF-25 pF. Brand new Eddystone type .... ........... $\$ 4.50$ ea.
Ex Army Headphones approx. 20 ohms impedance. New, in sealed boxes .... $\$ 2.00$
3" Tape Spools .... .... 15c ea., $\$ 1.00$ for 10
2 Square Face 0-10 mA Meters, callbrated 0-60 … .... .... .... .... .... .... .... .... \$3.00
Jackson Slow Motion Drives 6:1 ratio $\$ 2.30$
New 240V AC Turntable Motors, 3 speed operation
$\$ 2.00$

## miniature siemens relays

4 sets changeover contacts, 6-12V DC operation. Type V23154. New.

## \$4 each

6 TRANSISTOR RADIO CHASSIS \$1 each TANK WHIP ANTENNAS
16ft., complete with base
$\$ 12$
C45 TRANSCEIVERS
23-38 MHz, FM, with inbuilt calibrator, approx. 15 Watts output. With 24V DC PSU. $\$ 49$

## C11 TRANSMITTERS

$2-16 \mathrm{MHz}, \mathrm{AM}$ or CW, 50 Watts output, inbuilt 100 kHz crystal callbrator. Complete with 24 V DC PSU.
\$65

MAIL ORDERS WELCOMED. Please allow pack and post on items listed on this page. If further information required send a stamped SAE for immediate reply from the above address. Larger items can be sent F.O.B.

Published monthly as the official journal by the Wireless Institute of Australia.
Reg. Office:
2/517 Toorak Rd., Toorak, Vic. 3142
P.O. Box 150, Toorak, Vic., 3142

Editor:
Bill Roper
VK3ARZ
Assistant Editor:
Bruce Bathols
VK3UV
Technical Editors:
Bill Rice
VK3ABP
Ron Cook
VK3AFW
Roly Roper
Publications Committee:
John Adcock
VK3YFF

Rodney Champness
Syd Clark
VK3ACA
VK3UG
VK3ASC
Ron Fisher
VK30M
Ken Gillesple
VK3GK
Neil Osborne
Ken Reynolds
VK3YEI
Gil Sones
VK3YCY
VK3AUI
Contributing Editors:
Brian Austin
VK5CA
VK3TX
VK5HP
VK3ZDH
VK5LP
VK3AZT
Drafting Assistants
Gordon Row
L30187
Harry Cane
VK3ZIK
Business Manager:
Peter B. Dodd
VK3CIF
Enquiries and material to:
The Editor.
PO Box 2611W, GPO Melb., 3001
Copy is required by the third of each month. Acknowledgment may not be made unless specially requested. All Important items should be sent by certified mail.
The Editor reserves the right to edit all material, including Letters to the Editor and Hamads, and reserves the right to refuse acceptance of any material, without specifyling any reason.

## Advertising:

Advertising material should be sent direct to P.O. Box 150, Toorak, Vic., 3142, by the 25th of the second month preceding publication. Phone: 24-8652.
Hamads should be sent direct to P.O. Box 150, Toorak, Vic., 3142, by the 3rd of the month preceding publication.

## Printers:

EQUITY PRESS PTY. LTD.
50-52 Islington Street
Collingwood, 3066
Tel.: 41-5054, 41-5055

## QSP - DNE WIA

We often hear the question, "why are there two WIA offices in Melboume when one should be cheaper and more efficient?"

In order to rafresh memories and bring newer members up to date, may we go back in history a little. In the late sixties it became obvious that the Institute was not able to cope with the increasing complexities of amateur radio unless paid assistance at a high level of competence was made available. This does not reflect on the paid divisional staffs in VK2 and VK3, who could handle the administrative work, under voluntary officers. They could not, however, deal on the technical level with more information that has arisen from more countries in the ITU, IARU and the administration that goes with advancing techniques; such as EME Amateur TV Satellites and Repeaters etc. For voluntary officers, the amount of reading material was simply more than could be digested, so essential work was not done. Thus newer techniques were essential, and must be developed If Amateur Radio is to justify the frequency space it now has. Newer countries' administrations without the background of the development of radio by amateurs are simply unimpressed by need for the spectrum resource that we hold, if we just use the frequencies for ragchewing.

Federal Council authorised Executive to proceed with the appointment of a suitably qualified officer, and in addition it would be responsible for the publication of "Amateur Radio", centralised membership records and "Magpubs". Arrangements were made with VK3 for Executive to rent space in the VK3 rooms at Victoria Parade.

Executive VK2 and VK3 divisional officers agreed on the appointment of the present Secretary Manager, and he commenced duties at Victoria Parade in early 1971.

It was quickly found that he was overworked, voluntary officers who had done a fine jot for the Institute fell that the Secretary/Manager was better informed on day-today matters by the nature of his work, and consequently passed their duties over to him as quickly as possible. In addition, having to supervise the VK3 division office, led to conflicts between executive and the division, and accordingly the Secretary/Manager had to deal directly with VK3 members, who called for QSL cards and publications, but felt that they should talk to him. Naturally, this was a "not unpleasant" past time, and no doubt good PR but it led to him having to work at night on Executive work.

During 1972 we received the first EDP centralised records, and those who have dealt with initial EDP programmes know the bugs and frustrations in getting them operational. The WIA programmes were no exception, and making them work added to the conflict that had been developing with VK3 Council.

It quickly became evident at this stage that the activities of division executive must be physically separated, as the joint operation was about to break down. Accordingly, Executive moved to Toorak, despite the seemingly increased costs that would be incurred.

This separation has certainly improved relations with VK3, and has led to a better definition of duties between executive and divisions. The Executive office is now free to pursue the objectives of council and executive, and now has the same relationship with VK3 as it has with other Divisions.

This is a somewhat simplified explanation of the past, but now what of the future? We are not sure that costs necessarily would be cut by sharing the same or adjoining office space. Because of the nature of the activities, the VK3 council would need to adopt a "strong line" to prevent the Executive office from appearing to take over the Division. Executive would not want this, but the fact of full time availability of Executive staff would give this appearance, and this would lead to conflict again as in the past. Historically, Australia is a country where "State's Rights" predominate, and the Institute is no exception.

I would like to suggest that we give consideration to a better administrative concept of the Institute. This could well take the form of regions. Radio waves do not respect "State Rights" and a group cutting across state borders may be more appropriate e.g. Brisbane and the Gold Coast, Albury-Wodonga, Mildura-Broken Hill and border areas of South Australia. Groupings such as these could be more efficient and productive of amateur radio activity and development, than the existing capital based divisional arrangement.

The EDP is now proving very effective on the records side, and we aim to improve the accounting as finance becomes avallable and could well provide the administrative base for future development.

Members should discuss the future of the Institute between themselves and at meetings, so that we can have fruitful discussions and motions at the Federal level on what our development over the next few years should be. We now have a suitable base, let us develop it in the interests of all.

Executive have been looking into ways and means whereby properly qualified amateurs could take their part in assisting the Regulatory and Licensing authorities in amateur examinations.

Attempts to persuade the authorities that amateurs should themselves conduct the simpler exams have proved as unsuccessful as in numerous other countries.

Equally unsuccessiul were attempts to secure exemptions - particularly in Novice exams - on the grounds of passing other equivalent (or better) examinations such as might be passed by Y.R.C.S. candidates of a suitable standard.

The future problems of shortage of funds granted to Government Departments, the fact that difficulties may arise for holding certain exams at country post offices (vide Aust. Post now being a separate entity) and the concentration of stalf in the capital cities are very real problems.

The institute therefore has considered that a submission should be made for full licensees in certain country areas and possessing such professional qualifications as for example, enables them to perform duties under the Evidence Act, should be put on a register for supervising or invigilating amateur examinations in country areas not directly served by staff of the Regulatory and Licensing Branch.

It is hoped that such amateurs would be willing to undertake these responsible duties acting In accordance with sealed instructions. Such places as Alice Springs, Kalgoorlie and Launceston spring to mind but there are obviously many others.

It appears to the Executive that it could be quite some hardship to expect students applying to sit the Novice Exam for example, to travel long distances for one or two days to attend centres in the main cities. Some alternative seems highly desirable in the light of the greater numbers likely to be interested in the Novices exam quite apart from those in distant places wishing to sit other amateur examinations.

Representations along these lines have therefore been made but it could be some time before any decision is forthcoming. At least the amateur service recognises the problems and is actively pursuing ways and means to have them overcome.

The projected use of Divisional rooms wherein to hold the June Novice examination certainly came as a recognition that the Institute can render assistance. Everything is being done diplomatically to have the knot untied which caused the first

Novice exam to be deferred. Whether or not the industrial dispute can be resolved by the Government by the time this appears in print remains to be seen.

That first Novice exam was so near and yet now appears as far off as ever it was. Let us hope that industrial dispute is resolved before it spreads turther afield as now appears to be a possibility. (The August exams also have been deferred because of the extension).

The disposal of the funds collected for amateur Cyclone Tracy victims has been passed across to the Darwinites for their views although one suggestion was the purchase of a transceiver for the Darwin Radio Club.

Jim Payne's duties at work and at home have so increased that he has been compelled with regret, to give up being Fed. Contest Manager, although he will handle the administrative work of the 1975 R. D. Contest all being well.

FCM's work is very time consuming and a replacement is being arranged as soon as possible in VK3 where the Contest Committee has some time to remain before passing in rotation to the next Division (VK2).

Another vacancy on the books is Federal EMC Co-ordinator.
The savage increases in postal charges gives food for thought and ways to economise.

AR seems "sate" until February 1, 1976, after which we might pay a cent or two more depending on gross weights.

Sending out subscription notices and later on the final notices will hit hard. There'll be very little change, if any, outlay $\$ 1000$ on postages alone unless we could dispense with the final notices. This is a Divisional matter.

Magpubs will be hit with increased parcel rates which will have to be passed on. By the way new lists should be ready when you read this. Send for one right away, but PLEASE send a self-addressed stamped envelope. Only about 5 letters can now be sent lor a dollar.

If members would kindly send self-addressed stamped envelopes with their enquiries this would help enormously in keeping costs down.

Another area of possible economy looked into was the wrapper or envelope for AR. For technical reasons we cannot use plastic envelopes. Equally we can find no way of having the wrapper stapled to AR as an 'outside cover'. We are left with the present envelope system of returning to the old wrapper around a folded AR. Since the tinal costing differentials are not too great, it has been decided to stay with the present envelope system. Presentationally it is a better system also.

Would you really like a bumper issue of AR for December? This could become a certainty if enough advertising comes forward.

## GOLDEN JUBILEE 1925-75 DF THE ROYAL AUSTRALIAN SIGNAL CORPS

To celebrate the above Jubilee, the RACS will establish an Amateur station to operate world-wide from the Watsonia Barracks, Macleod, Victoria, from November 3, 1975, to November 10, 1975, inclusive.

A special call sign AX3SIG has been allocated for this occasion.

The station will operate on all of the most popular Amateur Bands. Modes will be, 1.8 MHz using 150 watts input on $A M$, and $3.5,7.0,14.0,21,28 \mathrm{MHz}$ using 400 WATTS PEP UPPER SIDE BAND (in all cases). In most instances the station will operate essentially on phone, however. there will also be CW operation included, and it is also hoped to provide RTTY facllities (this detall was not confirmed at the time of printing). 2 Mx FM Simplex and repeater operation will also be a feature of the celebrations.

The station will operate 24 hours daily for the entire period.

A special QSL card is to be printed and inwards QSL cards may be sent to the VK3 Inwards Bureau or direct via QSL Manager VK3ZA, C/o Box 134, Mt. Eliza, Vic., 3930.

## PUBLIC DISPLAY

On the weekend November 8 and 9, 1975. the station will be on display to the general public at the School of Signals within the barracks.

A museum of Service Radio and communications equipment will be displayed, and it is anticipated that the Governor General will be in attendance to officially open the museum.

## A REQUEST FOR ASSISTANCE

To assist the Royal Australian Corps of Signals, establish the museum, amateurs and SWLs are asked to either donate or
loan the museum suitable items of exservice equipment for the display.

If you can help in this regard please contact Lieutenant Colonel John Bennett (VK3ZA) in the first instance by telephone (03) 7871325 or letter C/o Watsonia Barracks, Victoria. Please note that freight on equipment donated or loaned will be paid for at the army's expense. Please act now if you can assist.

## QSP

morse tapes
A note from the WIA NSW Division tape service advises that C90 morse code cassettes are avallable (2 casseltes covering introduction, then 5, 6, 7. 8, 9. 10 wom ) on maximum two months loan at $\$ 3.00$. plus, $\$ 5.00$ deposit. plus, $\$ 1.00$ extra for Interstate posts (prices subject to change). This charge also appears to cover $5^{\prime \prime}$ reals at $3 \not / 1 / 108$, lectures on $7^{\circ}$ reels are also avallable as wall as slides. The address is Mr. K. Black, P.O. Box 43. Erskineville. NSW., 2043. Phone (02) 5163673 AH. Prices are sublect to change without notice.

## METEOR SCATTER LiNEAR

Steve Gregory VK3ZAZ
Gear Avenue. MI. Helen, Vic. 3354

After a season of sporadic "E" DX, it has been discovered that a few extra watts is most effective to work anything going. However, of the multitudes of stations worked during 1973-1974, only a few have been heard during the winter months, and these few all ran high power.


To embark on the project of a high power linear amplifier, it is first necessary to pass on a common warning. The tube used operates at voltages which can be deadly, and your equipment has to be designed properly so that NO contact with high voltage can occur. Use safety enclosures for all high voltage circuits and terminals, use a substantial bleeder to ensure instantaneous bleed-off the capacitor reservoir voltages, and if you must operate with RF and probe the caged area, have another person present during that time. Remember at 2000 volts and 1 amp , you do not get a second chance.

In this project the cholce was the Amperex 4CX-350A external anode tetrode,
but the mechanical layout caters for $4 \times 150$ or $4 \times / C \times 250$ tubes also. The reason behind the choice was a higher available plate dissipation and the linear design characteristics of this model.

Greater flexibility will be obtained by use of the other tubes mentioned, especially should AM or FM operation be contemplated.

On the subject of the socket, it is essential to obtain the correct socket for the application, and in this case an EIMAC SK-600 series with an EIMAC SK-606 chimney will ensure correct aip-flow and circuit stability.

## COOLING

Sufficient forced air must be provided


A LINEAR FOR METEOR SCATTER DX

## SIDEBAND ELECTRONICS SALES and ENGINEERING

## UNIDEN

Model 2020 de-luxe all-band AC-DC transceivers External VFO model 8010 for the 2020
External speaker for model 2020

Model TS-900 de-luxe all-band transceivers, with PS-900 AC supply-speaker unit
Model TS-520 AC-DC transceivers all-band
Model TV-502 2 Mtr transvertor for TS-520 $\$ 200$
QR-666 all-band coverage receiver $170 \mathrm{KHz}-30 \mathrm{MHz} \$ 300$ YAESU-MUSEN

Latest model FT-101-E AC-DC transceivers with genuine RF clipper-speech processor
$\$ 650$
Model FT- 200 transceivers with FP- 200 AC unit $\$ 400$
Model YC-355-D digital frequency counters
$0-200 \mathrm{MHz}$
SPECTRONICS DD. 1 digital counter
for FT-101-B-E
All UNIDEN, TRIO-KENWOOD \& YAESU MUSEN transceivers come complete with original English manuals, all crystals for all available bands and a P.T.T. dynamic microphone.
HY-GAIN ANTENNAS

| 14AVQ 10-40 M. vert icals 19' tall, no guys | $\$ 65$ |
| :--- | ---: |
| 18AVT-WB 10-80 M. verticals, 23' tall, no guys | $\$ 90$ |
| TH JR 10.15-20 M. junior 3 el Yagi 12' boom | $\$ 135$ |
| TH 6DXX 10-15-20 M. senior 6el. Yagi 24' boom | $\$ 225$ |
| 204 BA 20 M. monoband 4 el. TIGER YAGI 26' boom | $\$ 190$ |
| HY-QUAD 10-15-20 M. full size Cubical Quad | $\$ 200$ |

CDR ANTENNA ROTATORS

| AR 22 for 2 and 6 M . and small HF beams | $\$ 50$ |
| :--- | ---: |
| HAM- 11 with re-designed control box | $\$ 150$ |

All three models for 230 V AC complete with indicatorcontrol units.
4-conductor light cable for AR-20-22 20 cents per yard 12-conductor light cable for HAM-II 30 cents per yard 8 -conductor heavy duty cable for HAM-II 60 cents per yard BARLOW-WADLEY RECEIVERS

Model XCR-30 Mk II 500 KHz to 31 MHz continuous coverage portable communications receivers, crystal controlled reception of AM-USB-LSB-CW
\$275
S.W.R. METERS

Midland twin-meter model for 52 Ohms, up to 1 KW on HF

Argonaut New Model 509 5W PEP All Band 12 V SSB-CW Transceivers all solid state $\$ 300$ POWER SUPPLIES

240V AC to 12 V DC 3 A, regulated overload protected $\$ 35$

## MARK MOBILE ANTENNAS



## ASAHI MOBILE ANTENNAS

Model AS-303A set of 5 whips 10 to 80 M .
complete with ball spring and mount
$\begin{array}{ll}\text { Complete with ball spring and mount } & \$ 90 \\ \text { AS-2-DW-E } 1 / 4 \text { wave } 2 \mathrm{M} . \text { mobile whip } & \$ 8\end{array}$ $\$ 8$
$\$ 15$
AS-GM gutter clip mount with cable and connectors \$10
M-RING body mount and cap for 2 M. whips $\$ 5$
CUSH CRAFT ANTENNAS
Model DGPA 52 to 27 MHz adjustable ground plane $\quad \mathbf{\$ 2 5}$
LAC-2 lightning arrestors $\quad \$ 6$
Model AR-2 RINGO s/s wave verticals \$20
AR-2X RINGO double $5 / 8$ waves verticals $\$ 35$
ARX-2 extension for AR-2 \$15
A147-20T combination vertical-horizontal
2 M. Yagis, 10 elements each
$\begin{array}{ll}2 \mathrm{M} . \text { Yagis, } 10 \text { elements each } & \$ 60 \\ \text { A147.11 } 11 \text { elements } 2 \mathrm{M} \text {. Yagi } & \$ 30\end{array}$

## CRYSTAL FILTERS

$9 \mathbf{M H z}$ similar to FT. 200 ones, with carrier xtals $\$ 35$ FDK MULTI-7

2 M. FM transceivers, 10 W output, now with 12 Aussie channels crystals, 40 to 60 , including channels 43 and 45 includes all repeaters and anti-repeater use, still $\$ 225$ Spare Mobile Cradle and Power Cord $\$ 7.50$

## KEN PRODUCTS

KP-202 2 M. hand-held transceivers with 6 channels $\$ 150$
KCP-2 charger for KP- 202 with 10 NICAD batteries $\$ 35$
Stubby flexible whip for KP 202
$\$ 6$
KP-12A speech processor, self contained 240 V AC $\$ 100$

## KLM ELECTRONICS

Solid state 12V DC 2 M. amplifier, 12W output, automatic antenna change-over when driven, ideal for mobile use with the KP-202
$\$ 50$

## NOVICE LICENSEES EQUIPMENT

5 W AM 23 channels 27 MHz transceivers with P.T.T. mike

$\$ 95$
5 W AM 15 W SSB 23 channels transceivers with P.T.T. mike ..... $\$ 175$
COAX CONNECTORS \& SWITCHES
VHF types PL-259, angle and T-connectors RCA male to SO 239 type female, all models ..... $\$ 1.25$ each
3 Position Coax Switch ..... $\$ 8$

All prices quoted are net SPRINGWOOD, N.S.W. on a cash with order basis, sales tax included in all cases, but subject to changes without prior notice. No terms nor credit nor C.O.D. facilities, only cash and carry, no exceptions. All-risk insurance available for 50 cents per $\$ 100$ value, minimum insurance charge 50 cents. Allow for freight, postage or carriage, excess will be promptly refunded. - Mary \& Arie Bles.

# SIDEBAND ELECTRONICS SALES and ENGINEERING 

## P.O. BOX 23, SPRINGWOOD, N.S.W. Post Code 2777

TELEPHONE, DURING BUSINESS HOURS ONLY! STD 047 511-394
for the anode, base seals and body seals to be maintained below the rated values.

| Plate Disalpallon | Alr Flow (CFM) | Pressure Drod |
| :---: | :---: | :---: |
| 200 watts | 5.0 | 0.52 in. |
| 250 watts | 6.4 | $0.82 \mathrm{in}$. |
| 350 watts | 7.8 | 1.12 in. |

The blower selected in a given application must be capable of supplying the desired air-flow at a bank pressure equal to the pressure drop shown.

For reliable long-life, the cooling air-flow must be maintained during stand-by periods, when only heater volts are applied.

The rated filament voltage is 6.0 volts and should be maintained as close as is practical. Short time variations $\pm 10 \%$ will not damage the tube, but variations will occur in performance. To minlmize variations, try to hold the level within $\pm 5 \%$.

If you are unsure of your operating conditions, then contact the suppliers of your tube for application ratings or write to the author for possible assistance.

## DESIGN

Reference to RSGB and ARRL publications have no real design parameters because each user had his own way of putting things together.

Commencing with the grld input stage, the RSGB idea of a grid swamping resistor and a tuned circuit to give the required impedance match for the driving amplifier was used.

An 820 ohm resistor was the starting value and after neutralisation, this value was Increased to 10,000 ohms with no decrease in stability. A sure fire test for your amplifier is to run it in idle conditions and swing the grid and anode tuning through the entire range. You should be able to carry out this action without any signs of movement from any meters.

Second stage of construction was the final tank circuit, starting with the RF choke. This little coil of wire is the secret behind the success or failure of any output stage. After reference to a section devoted to these devices in the ARRL VHF Handbook, a $1 / 2 \mathrm{in}$. diameter ceramic former was chosen, and space wound with 30 turns of 20 gauge enamelled copper wire not the enamel that turns to flux with temperature. The high RF voltage across this choke and the circulating currents cause heating and high stress, so by space winding on a good quality former (teflon or ceramic reliability may be ensured.

The coupling capacitor from the anode is a .001-12,000 volt epoxy set unit available for approximately 80 cents plus tax from trade television outlets. Why 12,000 volts? Read on for the explanation.

The pi-section output is conventional with a choice of capacitors to give a good tuning and loading range. The coil is simply 3 turns of $1 / 4$ in. copper tubing wound a $11 / 2$ in. steel pipe and then stretched out to 2 turns spacing to resonate at 52 MHz .

Back to the grid circuit; a lead was connected from the opposite end of the grid coil and routed through the chassis toward the anode. Here was the first trick for young players that you find no reference to in any books.

The screen ring of a 4CX tube sits a little above the chassis and it seems that the little bit of grid wire prefers to look at the screen rather than the anode. The remedy for this is a small brass shield approximately $1 / 2 \mathrm{in}$. high and 3 inches long curved to match the circumference of the tube, and fastened to the chassis about $1 / 4$ inch away. The neutralizing lead is brought through behind this shield and placed in the proximity of the anode ring. The connection to the anode ring was made around the large fenced area with a small brass tag, and held in place by a standard $11 / 4 \mathrm{in}$. radiator hose clamp.
(Other constructors may prefer to use finger stock if they are fortunate enough to have some-Ed.)
To neutralise the amplifier, apply sufficient drlve to be detected with some type of RF probe in the tank circuit (no filaments, and of course NO HV).
Use a pair of snippers to clip the neutralising wire until NO output is discernable in the tank circuit. Check that it is neutralised for well over 500 kHz of operating range.
The amount of wire past the shleld will be around $1 / 2$ in. and about the same distance from the anode, $1 / 2 \mathrm{in}$.

## FIRING IT UP

The use of a malns variable transformer is very desirable, and in the author's case a switchable decade-screen supply was used and the screen voltage was run up in 10 volt steps. Remember, screen volts with no plate volts will destroy these tubes in less than the time it takes to manually turn the screen supply off, so the inclusion of a control relay, that removes screen volts should the anode volts fail, is highly desirable.
Firstly, check that you have adequate grid control voltage, and that the control that varies this will give you a full range, say - 100 to 0 volts.

Apply some plate volts only, with no screen volts. With 2000 volts applied, as you vary the grid bias, around 3 or 4 mA of plate current will flow at zero bias. If that happens you are able to control the electron flow and at least the tube is behaving like a tetrode. At this stage the author's original .001-5000 VW coupling capacitor disintegrated. So the initial check at high volts is a good test of your insulation characteristics of chokes, filters


Tank Circuit of 4CX350A with thermal inertia branze collar filted to improve thermal efliciency.
etc. This experience caused the author to select a more conservative rating for the next capacitor.

A point here is that some surge protection is desirable when coming to the high voltage switch-on. A 500 watt radiator resistor on a 4 second time delay relay was used. This relay can also be overridden and the tube run on low power with only 1500 volts applied to the anode. At high power, 2400 volts is used which is 100 volts less than the maximum rating.

With maximum bias applied, activate screen and plate volts, and set the standing plate current at 100 mA , which is the manufacturer's recommendation. Apply drive, and load and tune for maximum power output.

A word on negative screen current for the uninitiated.

The electrons dislodged as secondaries by arriving primaries will be accelerated away from the screen causing a net reduction in the measured screen current. It is possible to have more low energy secondaries leaving the screen than primaries arriving, and when this occurs the current is negative.

An important consequence of this is the need to provide a stabilised low impedance screen power supply which can tolerate the negative current and still control the screen. A zener diode is the ideal method, but for shunt resistance methods, 40 mA bleed per tube is recommended.

Secondary emission varies from tube to tube and in the author's case - 4 mA occurs at 150 watts carrier. Increasing the drive further, the current starts to increase to a value of 20 mA maximum at 310 V DC regulated, for 250 watts carrier output.

On two tone test at 350 watts PEP out, a similar figure occurs of +27 mA .

The rest of the project is really up to the individual, and power supply design is arbitrary. The author used 866A rectifiers because they are still only $\$ 1.00$ each and you could blow up a lot of those before you would equal the 22 diodes, capacitors and resistors necessary for solid state. If you do not have a filament transformer rated at 5 vo'ts 10 amps plus a DC rating of greater than 2000 volts, then the cost of that would make a string of diodes in a stack most desirable.

A 5-25 H swinging choke was used with choke input from the rectifiers. The filter capacitors were 3000 volt block oil filled.

The bias is regulated and taken from the junction of an OA2, OB2 combination from the supply line of - 200 volts. Grid current in this type of tube is "verboten" and should be avoided at all costs. To drive the amplifiers to full output takes less than 1 watt from the QQEO3/12 amplifier in the transverter.

It is recommended that a minimum of 30 seconds elapses before applying high voltage after filaments are activated.
(A further precaution that may need to be observed is the provision of a Relay System with a switching sequence that switches on bias, anode and screen supplies in that order atter the 30 second warm up-Ed.)


## AMATEUR BUILDING BLDCKS

PART FOUR

H. L. Hepburn VK3AFQ<br>4 Elizabeth St., East Brighton, 3187


#### Abstract

Having deall with the essenilally HF modules, ettention is glven in this arlicle to the besic requirements for VHF FM trensmission and reception. Clrculte, layouts and other data are given lor low power transmitiors and physically small recolvars whlch can be steerad on to eny Irequency belween 50 and 150 AHz.




## PHOTOS BY KEN REYNOLDS VK3YCY

ule to be used anywhere between these frequency limits.

The basic design is not new, having originally been described by VK3ZBJ and the writer in the April 1971 issue of AR. Its inclusion In this series of articles is in deference to continuing interest ln the original design. Four years' experience
with the "1971" carphone transmitter has led to the beleif that a physically smaller unit which incorporated the driver stage as part of the exciter proper would be advantageous, as would the ability to vary the output. The module now described can be used as a low power FM transmitter, or the medulator section can be omitted and

## Section 2 - Unit F -

## 2 WATT VHF/FM EXCITER

This module is a very flexible unit which can be used to provide up to 5 watts (according to frequency) of modulated or unmodulated output on a single channel anywhere between 50 and 150 MHz . The coil data given in this section is specifle to 146 MHz and 52 MHz but simple modification to the tuned circuits enable the mod-


## LARGE RANGE of VHF ANTENNAE at B.E.S. <br> +hily giin <br> MODEL ARX-2 <br> 

## MODEL GPG-2

$2 \mathrm{Mx} 5 / 6$ wave ground plane, 3.4 dB gain, radiation length 4 ft .

Price (Special this month) $\$ 22.50$

## MODEL 215

2 Mx 15 el . yagi, 17.5 dB gain,
boom length of 28 feel. Front-to-back ratio $25-30 \mathrm{~dB}$.

Price $\$ 69$


## MODEL 28

2 Mx 8 el yagi, 14.5 dB gain.
front-to-back ratio 20-25 dB,
boom length 14 ft .
Price $\$ \mathbf{3 8}$

2 Mx colinear, $3 / 2$ wave lengths in phase, provides 6 dB of gain over a $1 / 4$ wave whip. Length 9 ft .
Price $\$ 40$

## MODEL ARX-450

70 cm colinear, $3 / 2$ wave lengths in phase, 6 dB gain over a $1 / 4$ wave whip. Length approx. 3 ft .
Price $\$ 35$

## MODEL AR-6

$6 \mathrm{Mx}, 1 / 2$ wave ringo, 3.75 dB gain over a $1 / 4$ wave whip. approx. length 9 ft .
Price $\$ 33$

## MODEL CR-1

$10 / 11 \mathrm{MX}, 1 / 2$ wave ringo, 3.75 dB gain over a $1 / 4$ wave whip, approx. 17 ft . long.

## MODEL A144-7

2 Mx 7 el . yagi, 11 dB gain, boom length 8 feet.
Price $\mathbf{\$ 2 3}$

## MODEL A144-11

2 Mx 11 el . yagi, 13 dB gain, boom length 12 ft ., front lobe $1 / 2$ power points at $42^{\circ}$.
Price $\mathbf{\$ 3 2 . 5 0}$

MODEL A430-11
70 cm 11 el . yagi, 13 dB gain, boom length 5 ft . Price \$23

## MODEL A50-5

6 Mx 5 el. yagi, 9.5 dB gain, 12 ft . boom.
Price $\$ \mathbf{5 2 . 5 0}$

Also available, a large range of HF yagis and verticals, VHF and HF mobile antennae. All prices include Sales Tax. Freight or Postage extra. Prices and specifications subject to change.



FIGURE 17 -UNIT F -2 WATT VHF EXCITER - COMPONENT LAYOUT


UNIT•J
the RF section used as a local oscillator generator for transverters. The circuit diagram and component layout are given in Figures 16 and 17. Table 2.12.1 gives coil data for 146 MHz ; Table 2.12.2 lists coll data for 52 MHz .

The audio section consists of a 2N3565/ 2N4249 microphone pre-amplifier driving a 2 N 4249 modulator. On board is a preset modulation level (or deviation) control and a pre-set linearity control which also acts as a coarse frequency adjustment. Final adjustment to operating frequency is by means of a $3 / 30 \mathrm{pF}$ trimmer.

The 56 K modulator collector load is in parallel with the $3 / 30 \mathrm{pF}$ trimmer. A variation of the bias on the base of the 2N4249 modulator (caused either by adjustment of P2 or caused by audio from the microphone pre-amplifier) reflects a capacitance change across the 56 K resistor. Since this


FIGURE 18 - UNIT G - VHF FM RECEIVER - CIRCUIT DIAGRAM

## KL.M antennas . . .

They're heard when others aren't
Some well known band openers are:

- KLM's 20 METER 5 ELEMENT "BIG STICK"
- KLM's 6 METER 8 \& 11 ELEMENT
- KLM's 2 METER 12, $14 \& 16$ ELEMENT
- KLM's 220 MHz 14 ELEMENT


## AND NOW

Winner in the 1975 West Coast VHF-UHF Antenna Measuring Contest . .
IELNIS NEW 432-16 Element Long Boom (12')
Specifically Optimized for $432 \mathrm{MHz}(430-434)$

15.0 dB over dipole

SOLE AUSTRALIAN AGENTS
RAMAY PTY. LTD.
BOX 80, BIRCHIP, VIC. 3483
Phone (054 92 3211)-192 or 264 AH or MELBOURNE 5600986 AH


RITE-BUY TRADING CO. 69-71 ARDEN Street, north melbourne, 3051 - Phone 3297618



FIGURE 19 - UNIT G - VHF FM RECEIVER - COMPONENT LAYOUT
(varying) capacity is effectively in series with the crystal it induces a change in oscillation frequency. Modulation is pure FM and thus the deviation obtalned is a function only of audio drive level. This is in sharp contrast to the more widely used phase modulation system where deviation is a function of both audio drive level and audio frequency.

The crystal oscillator uses a $2 N 3564$ in an oscillator/tripler arrangement, L11 and L12 being resonated at three times the crystal frequency.

The crystal oscillator is followed by two MPF121 doubler stages so that L13 and L14 are resonated at six times crystal frequency and L15 and L16 are resonated at twelve times crystal frequency. Note that the output frequency is always iwelve times crystal frequency.

The third MPF121 acts as a straight signal frequency amplifler whose gain is controlled by varying the potential applied to gate 2. A pre-set potentiometer (P3) is provided on the PCB but It may be replaced with an off board control or an off board switched resistive network should this be required.

## Table 2.11.1

Coll Data-2 Matre Tranamilter
L11 - 18 turns 26 AWG Enam. close wound on Neosid 722/1 Formar. Tapped at 7 turns from supply end. F29 Slug.
L12 - 18 turns 28 AWG Enam. close wound on Neosid $722 / 1$ Former. F29 Slug.
L13/14 - 8 turns 22 AWG Enam. close wound on Neosid 722/1 Former. F29 Slug.
L15/18/17 - $4 \mathrm{~K}_{4}$ turns 20 gauge tinned copper wire spresed over $3 / 8^{\prime \prime}$ on Neosid 722/1 Former uaing F28 Slug.
L18 - $5 \%$ turns 20 gauge tinned copper wire spresd over $3 / 8^{\prime \prime}$ on Neosid 722/1 Former using F29 Slug.
(a) The chokes marked "F29" are aingle wires through a Neosid F29 Tuning Slug.
(b) RFC 1 - 12 turns 22 AWG Enam. wire wound 1/8'" ID Former (drill shank) and spread to a length of $1 / 2{ }^{\prime \prime}$.
(c) RFC 2 - is a Philips 6 hole ferrite bead No. 4312/020/31550. Two wires are passed through two of the holes and are effectively in parallel.
(d) RFC 3 - 6 turns 20 gauge tinned copper wire on $1 / 8^{\prime \prime}$ drill shank and spread to a length of $1 / 2{ }^{\prime \prime}$.

The third MPF121 is shunt fed via RFC1 with two capacitors and L7 providing the matching to the base of the 2N5589 transistor. The base choke (RFC2) consists of a Phillips Type 4312/020/31550 6 hole ferrite bead with single wires through two of the holes (for 146 MHz ) so that they are effectively in parallel. This arrangement provldes a choice of very low $Q$ and other ferrites - such as the Neosid F29 tuning slugs - should not be used slnce they give a choke with a very high Q . Several cases of transistor failure or fauity operation have been traced to use of improper ferrites for the base choke.

It is also Important to note that the crystal (which may be either Style D or Style K) should be specified for parallel operation and should be calibrated with 25 pF IN SERIES with the crystal. Failure to specify this method of calibration invariably leads to an off channel output frequency. Use of HY Q Style K Type PDD crystals is strongly recommended. The method of calibration should be specified on the order. If an FM exciter is required, then the complete unit is built. If only an unmodulated output is required then all components up to Point $Y$ are omitted. The microphone pre-amplifier can be used Independently by omitting the 2N4249 FM modulator and its associated components and taking off audio (at high impedance) from Point $Z$ on the circuit diagram.

Setting up is simple. The unit is terminated into a 50 ohm wattmetter and power applied. P1 (the deviation control) is set to zero and P2 set to half scale. P3 (the output level control) is set to give maximum voltage on gate 2 of the MPF 121 amplifier.

A 10 volt meter is placed across the 330 ohm source resistor of the first MPF 121 doubler and the cores of L11 and L12 adjusted for maximum meter deflection. The voltmeter is then transferred to the source resistor of the second MPF 121 doubler and the cores of L13 and L14 adjusted for maximum deflection. With the voltmeter stlll across the source resistor of the 2nd MPF 121 doubler the cores of L15 and L16 adjusted for a dlp in the meter deflection. L18 core is set full in
and L17 core adjusted to give discernable output Into the wattmeter load. All cores are then adjusted for maximum output starting with L18 and going back to L12. The core of L11 is set midway between the two points of its travel where the final output drops to zero as the crystal goes out of oscillation.

## TABLE 2.11.2

Coll Data - Component Modifications Iar 6 Matrea
L11 - 20 turns 26 AWG Enam. close wound on Neosid $722 / 1$ Former. Tappad 6 turns Irom HT End. F29 Slug. Resonated with 100 pF instead of 10pF.
L12 - As L11 but no lap. Resonated with
L13/14 - 15 turns 23 AWG Enam. close wound on Neosid $722 / 1$ Former. F29 Slug. Resonated with 33 pF Instead of 10 pF
L15 - 10 turne 22 AWG Enam. close wound on Neosid 722/1 Former. F29 Slug. Resonated with 10 pF .
L16 - As L15 but resonated with 15 pF.
L17/18 - 8 turns 22 AWG Enam. close wound on Neosid 722/1 Former. F29 Slug.
(a) Chokes marked "F29" are single wires through a Neosid F29 Tuning Slug.
(b) RFC 1 - 20 turns 26 AWG Enam. close wound directly on to Neosid F29 Tuning Slug.
(c) RFC 2 - 5 turns 26 AWG through Philips No. 4312/020/31550 "6 hole" ferrite bead.
(d) RFC 3 - 20 turns 23 AWG Enam. close wound 3/16" ID alr cored.
(e) Other changes -
(i) The two 330 DF capacitors in the oscillator are replaced with 820 pF.
(II) The capacity between the third MPF 121 drain and L 17 is increased to 6.8 pF .
(iii) The capacity between L17 and ground is is Increased to 22 pF .
(lv) The capacity between the 2N5589 collector and L18 is increased to 47 pF .
(v) The capacity between L18 and ground is increased to 47 pF .
Note that the crystal Irequency is still signal frequency divided by twelve and that the crystal must still be calibrated with 25 pF in series.

## Section 2 - Unit G - <br> VHF FM RECEIVER

In the preface to this series of articles (AR August 1975) the brief description of the FM receiver implied the use of a double conversion IF block similar to the circult described in 1971 for what has become known as the "VK3" carphone. In the intervening period a complete redesign has

CRYSTAL FILTERS • FILTER CRYSTALS • OSCILLATOR CRYSTALS SYNONYMOUS for QUALITY and ADVANCED TECHNOLOGY

Listed is our well-known series of 9 MHz crystal filters for SSB. AM, FM and CW applications. By KVG


Export Inquiries Welcome
 INTERNATIONAL BOX 1084ACONCORD MASSACHUSETTS 01742 U.S.A.

| 1.1t.1 $I_{\text {vil. }}$ | XF 9A | XF 98 | XF YC | X F 90) | Xf 9 \% | XF901 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $s S_{i d}$ <br> Tislisurnt | $\begin{aligned} & \text { SSE } \\ & \mathrm{I}_{\mathrm{E}}=\mathrm{R} \end{aligned}$ | AA9 | AM | FM | CW |
|  | 3 | 8 | - 8 | 8 | 8 | 4 |
|  | 25 hll | 24 hHz | 315 ald | $10^{\text {kH/ }}$ | 120 hHz | 05 hliz |
| $\boldsymbol{P}^{\text {asstarand Reypule }}$ | 1 18 | $\because 2 \mathrm{OH}$ | $\therefore 2 \mathrm{dH}$ | - 2 dB | - 2 dB | $<1$ 18 |
| 1 sets.en 1 ass | - 3 dt | $<3518$ | $\cdots 5 \mathrm{dg}$ | - 35 dB | $\because 3508$ | - 5 d8 |
| lugul Unitmet | 2, 50086 | 500 1: | 500 S2 | 30012 | $1200 \Omega$ | 50012 |
| Ieramonsthat | C, 30 上 F | 30 pr | 30 of | 30 pf | 30 pF | 30 pf |
| Sinape tater | (650 181) 1 | $\begin{array}{\|llll} \hline 660 d B) & 18 \\ (680 & d B & 2 & 2 \end{array}$ | $\left[\begin{array}{llll} 16 & 60 \mathrm{~dB}) & 18 \\ 16 & 80 \mathrm{~dB}) & 2 & 2 \end{array}\right.$ | $\begin{aligned} & 1660 \mathrm{~dB}) \\ & 1680 \mathrm{~dB}) \\ & 162 \end{aligned}$ | $\begin{array}{\|l\|l\|} \hline 1660 \mathrm{dB1} 18 \\ 1680 \mathrm{~dB}) & 22 \\ \hline \end{array}$ | $\begin{array}{lllll} 16 \mathrm{4O} \\ 16 \mathrm{~dB} & 2 & 25 \\ \mathrm{~dB}) & 4 & 4 \end{array}$ |
| Ulitisle Alteriudiuli | . 45 d8 | $>100 \mathrm{~dB}$ | - $100 \mathrm{d8}$ | - 100 dB | $>90 \mathrm{~dB}$ | $>90 \mathrm{~dB}$ |
| Price | \$3195 | 54545 | $\$ 4895$ | \$48 95 | 84895 | \$34 25 |

ANTENNA PARTS. KITS


QUAD HUB: $\mathbf{\$ 2 3 . 0 0}$ plus P/P $\$ 2.00$ QUAD KIT: \$120.00. Freight forward

Consisting of: Hub 12 ft solid $\mathrm{F} / \mathrm{G}$ Spreaders Aluminium Extenders Ferrules Adaptors: 350 li 0.064 Hard Drawn Copper wire.
Nylon line and insulators.
MOBILE ANTENNA PARTS:
6 ft . solid $F / G$ blanks.
1/2-1/4 inch
$\$ 4.00$
Solid brass bull filting. $1 / 2$ in. whit or $3 / 8$ in. UNF thread $\$ 3.00$
Brass lip chuck
S. T. CLARK
P.O. BOX 45, ROSANNA

VIC., 3084
Ph.: 45-3002

## BOOKS OF INTEREST FOR AMATEUR OPERATORS

IC OP-AMP COOKBOOK (Walter G. Jung) ..... $\$ 14.90$
AUDIO IC OP-AMP APPLICATIONS (Walter G. Jung) ..... $\$ 6.35$
BASIC ELECTRICITY (Bureau of Naval Personnel) ..... $\$ 5.40$
DIGITAL INTEGRATED CIRCUITS (N.S. National) ..... $\$ 5.75$
PIN-POINT T.V. TROUBLES IN 10 MINUTES (Foulsham-Tab) ..... $\$ 8.05$
ALL ABOUT CUBICAL QUAD ANTENNAS (William I. Orr) ..... \$5.65
SECURITY ELECTRONICS (John E. Cunningham) ..... $\$ 6.35$
T.V. FAULT FINDING (Ed. J. R. Davies) ..... \$3.00
THE OSCILLOSCOPE (George Zwick) ..... $\$ 6.70$
TEST EQUIPMENT FOR THE RADIO AMATEUR (H. L. Gibson) ..... $\$ 6.65$
AMATEUR RADIO TECHNIQUES - 5th Ed. (Pat Hawker) ..... $\$ 7.40$
ADD POSTAGE: LOCAL 80c - INTERSTATE \$1.50

# McGILI'S AUTHORISED NEWSAGENCY 

Established 1860
been undertaken aimed at simplification, size reduction and lower cost. The design now presented achieves these objectives.

Figure 18 gives the circuit employed while figure 19 gives the placement of the components on the $6 \mathrm{in}, \times 2 \mathrm{in}$. circuit board used. Table 2.13.1 gives coil data for 146 MHz while Table 2.13.2 gives coil data for 52 MHz .

A fixed gain MPF 121 or equivalent dual gate protected FET is used as an RF amplifler which is coupled through L2 and L3 to gate 1 of a second MPF 121 (or equal) used as a mixer.

The oscillator section uses a 2 N 3564 in an osciilator/tripler arrangement. If used at 146 MHz coils L4 and L5 are resonant at the injection frequency, this being 10.7 MHz less than the signal frequency of interest. Output is taken from a tap on L5 via a 1000 pF capacitor to gate 2 of the MPF 121 mixer.

At 146 MHz the crystal frequency Is:
Signal frequency - 10.7 MHz
3
Use of the Hy Q Style K or Style D Type
TS is recommended. L6 is slug tuned and afords a simple method of trimming the injection frequency to its correct value.

If used at 52 MHz the crystal frequency is given by the expression:

Signal Frequency - 10.7 MHz
At 52 MHz the oscillator is used direct and does not triple. Accordingly colls L4 and L5 and their associated capacitors are omitted. A wire link is used to bridge the two holes previously occupied by the 10 pF resonating capacitor of L4 and a second link (under the PCB) connects the emitter of the 2N3564 oscillator to the "L5" end
table 2.13.1
Coll and Capacitor data lor 2 metree.
L1 - 43/4 turns 20 gauge tinned copper wire spread over $3 / 8^{\prime \prime}$ on a Neósid 722/1 former using an F29 slug. Tap is $11 / 2$ tums from the earthy end of the coil.
L2 - As L1 but tap $21 / 4$ turns from the HT end of the coil.
L3 - As L1/L2 but no tap
L4 - 5 $3 / 4$ turns 20 gauge tinned copper wire spread over 3/8" on Neosid 722/1 former using an F29 slug. Tap 21/4 turns from HT end of coil.
L5 - As L4 but tap $21 / 2$ turns from earthy end of coll.
L6 - 10 turns 22 AWG enamel|ed wire close wound on Neosid 722/1 former. F29 slug.
L7 - 10 turns 22 AWG enamelled wire space wound on Neosid 722/1 former to length of 3/8". F29 slug.
L8 - 60 turns 36 AWG enamelled wire close wound on Neosid 722/1 former. F29 slug. Note that T1 and T2 are suppiied with the filter.

TABLE 2.13.2
Coil and Capacitor data for 52 MHz
L1 - 12 lurns 22 AWG enam. close wound on Neosid 722/1 former. F29 slug. Tapped at 3 turns from earthy end. Resonated with 10 pF.
L2 - 12 turns 22 AWG enam. close wound on Neosid 722/1 former. F29 slug. Tap at 5 turns from HT end. Resonated with 10 pF .
L3 - As L2 but no tap.
L4/5 - Not required.
L6 - 12 turns 22 AWG enam. close wound on Neosid 722/1 former. F29 slug.
In the next issue it is intended to describe the digital modules.


FIGURE $20-$ INTERCONNECTING UNITS $F \& G$ FOR TRANSCEIVE
of the 1000 pF capacitor feeding gate 2 of the MPF 121 mixer.
Output at the IF of 10.7 MHz is taken from the mixer drain via $T 1$ to the Toyo 10M2A filter. Output from the filter is coupled via T2 to a Motorola MC 1350P minidip amplifier. The filter and its associated transformer are marketed by R.P.G. Agencies of 54 Looker Road, Montmorency, Vic. 3094. The transformer marked 10 A 02 is used for T1 and that marked 10A10 as T2.

The 1350P amplifier has a gain of around 45 dB at 50 MHz . Such gain in a small space did produce a problem in a developmental model since sufficient 45 MHz energy from the oscillator was picked up by the MC1350 input and after amplification, was sufficient to quiet the MC1351 demodulator. This problem was overcome by use of a series tuned trap ( $\mathrm{L} 7 / 47 \mathrm{pF}$ ) at the output of the MC1350. In use the core of $L 7$ is adjusted for maximum noise in the absence of any signal.
Further amplification, limiting and demodulation is done by a National LM 1351 or Motorola MC 135114 pin D.I.L. device. Since the 1351 operates direct on 10.7 MHz the need for a conversion stage with its associated crystal and components is avoided. L8 is the coincidence detector coil. No resonating capacitor is needed for L8.

The audio output of the 1351 (Point $A$ on the circuit diagram) splits two ways.

The first branch goes via a 3.3 K resistor to a 25 K " C " taper pot which acts as a mute threshold control. The small value of the 220 pF capacitor to the base of the 2N3565 noise amplifier discriminates against the lower audio frequencies so that only the "hiss" noise is amplified. The amplified noise is rectified, filtered and applied to Pin 2 of the LM380 audio amplifier. The 2.2 MFD tantalum electrolytic at this point provides a small measure of mute delay. When a quieting signal is received there is no output from the 2N3564 noise amplifier and the 0.12 volts (or more) required to mute the LM380 disappears and the mute is lifted.

The second branch of the audio circuitry goes via the 22K fixed resistor to the 25 K " C " taper audio level control. This control is capacitively coupled to an LM380 audio amplifier which provides about 1 watt of output to an 8 ohm speaker.

Note that the 22 K resistor and 0.01 MFD capacitor associated with the audio level control are not on the circuit board. The 0.01 MFD capacitor is soldered direct across the two outer lugs of the contro while the 22 K resistor is used to connect the potentiometer to the appropriate point on the PCB. Similarly the 3.3 K resistor is used to connect the audio output point on the PCB to the mute control.

Note that the receiver is designed to operate from a nominal 10 volt supply.


UNIT-H


## UNIT-I

Whilst the receiver will, in fact, operate quite satisfactorily over the $8-14$ volt range the 10 volt design centre was adopted to allow use of a simple regulator between the normal mobile supply of 13.6 volts and the receiver. In a mobile environment such a regulator has been found necessary to prevent direct modulation of the LM380 audio device by ignition spikes appearing on the vehicle supply lines. Alignment is best done using a signal generator having a reiiable attenuator.

With no signal input the core of L7 is adjusted for maximum noise - indicating that any osciilator feed through is not quieting the 1351 demodulator.

A large signal is now applied to the antenna input and the core of L4 adjusted until a signal of some sort is heard.

When the signal has been identified the signal generator input is reduced until the signal is barely audible and the cores of T1 and T2 adjusted for maximum signal. The cores of L5 and L4 are peaked fol-
lowed by L3, L2 and L1 in that order, reducing the signal generator output after each adjustment. The alignment process should then be repeated using the minimum discernible input from the generator.

With an off air signal (of known and reliable frequency and audio quality!) the cores of T1 and T2 are adjusted for best sounding audio. The core of L8 is adjusted to minimise ignition noise.
The front end, or converter, section of the receiver can be used on its own as a VHF converter. To do this replace the primary link coupling of T1 with a 100 microhenry R.F. choke. Output is taken from the mixer drain via a 220 pF (or thereabouts) capacitor. This coupling method provides a broadband output although some gain is sacrificed in so doing. Similarly the back end of the receiver can be used as a 10.7 MHz FM IF strip. In this case all components prior to T 1 are omitted - including the dropping resistor supplying HT to the link winding of T1. The (originally HT) end
of T1 input link is earthed and input applied to the end of the link originally connected to the mixer drain.

To be continued

## AMATEUR BUILDING BLOCKS

 ERRATA(a) Figure 2 - Unit A - Page 15 - AR August 1975:
VFO buffer amplifier should have been as shown on attached diagram.
(b) Figure 5 - Unit B - Page 18 - AR August 1975:
First IF amplifier shown as 2N3565 should be 2N3564.
(c) Figure 6 - Unit B - Page 19 - AR August 1975:
Resistor in top right hand corner shown as 2.2 k ; should be 22 k .


## AVAILABILITY:

Printed circuit boards and/or components for the modules described in the "Amateur Building Blocks" series of articles can be obtained from the WIA, VK3 Components Committee, P.O. Box 65, Mount Waverley, Vic. 3149, or UHF Services, 129 Tennyson St., Elwood, Vic. 3184. Enquiries should be directed to these suppliers. A stamped, self-addressed envelope for a reply would be an appreciated courtesy.

## CW Netting The Transceiver

Goffrey Thompson VK3AC 78 lllawarra Road. Hawthorn, 3122

> Listening on a number of occasions to the CW net which is attracting many CW ops to the 7 MHz band on Sunday mornings, I have been struck by the number of stations which call the control station well off frequency. In fact recently, of more than 20 callers, only two or three were accurately netted with the control.

It was also puzzling why several stations were calling 1.6 kHz or so higher than the control station frequency and well outside the range of a CW filter excepting

for the clicks. However, this was obviously a result of zero-beating the transceiver on its USB listening frequency with the control station. This resulted in a transmission 800 odd Hz higher than the controller's
frequency, who, if he was transceiving, would be listening on a frequency 800 Hz or so lower than his transmitting frequency, thus producing a separation of 1.6 kHz .

The problem for the transceiver operator
is that netting must remain guesswork since there is no way in which he can zero beat another station without some external aid such as a separate monitor receiver.

This problem has been overcome by a very simple measure taken when using an FTDX401 and also an FT101.
To implement the idea however, a second receiver or a frequency counter will be needed temporarily, to set up the method which consists simply of providing a side tone with which the beat note of the incoming signal can be instantly matched.

The FTDX401 and most modern transceivers transmit on three frequencies for each dial setting depending on the position of the mode switch, namely LSB. USB and the CW/Tune position. The AM position also operates on the offset frequency which is approximately 800 Hz higher than the USB listening frequency in Yaesu transceivers.

If you have not done this before, I would suggest that you listen to your rig and note that the USB and LSB carriers are 3 kHz apart, the USB carrier being 3 kHz lower in frequency than the LSB carrier. The CW carrier will be found about 800 Hz higher than the USB carrier, which is on the normal CW listening position. By doing this, you will gain some idea of just what the relationshlp is between the CW signal and the listening mode.

Obviously, if we can beat the incoming signal to the same audio frequency as the difference between the USB and CW frequencies of our particular rig, our CW transmission will be zero beat with that signal.

Of course, the clarifier could be used to guess this difference, but unless one is blessed with "pertect pitch", it is not possible for the average person to carry the memory of a particular pitch for any length of time without some error when trying to repeat it. If we could, then there would be no problem, but in the absence of "perfect pitch", the simple solution is to use a side tone oscillator which matches the offset frequency. The FTDX401 already has this oscillator.

In the 401 I have reduced the pitch of the side tone oscillator from 1000 Hz to 750 Hz until it matches exactly the offset frequency. A couple of dits on the key when tuning to the station to be called enables the two tones to be matched in a second or two and you can be confident when you call you will be well within the CW filter of the other fellow and pretty close to being zero beat with his transmission.

The question of standardising all offset frequencies has been raised, but this does not enter into the matter, since each individual operation will match the incoming signal to whatever the offset frequency happens to be on his particular transceiver. The task of the CWN control operator would certainly become a little less arduous.
The FTDX401 uses a parallel capacity with its own trimmer across the USB
crystal to achieve the CW offset and put the carrier into the SSB filter pass-band. These capacities are transistor-switched into circuit by the mode switch when it is switched to the CW, Tune or AM positions. Note that after having set up the matching side tone frequency, any alteration to the USB carrier crystal trimmer will change the offset CW frequency on the 401. Make sure the rig is well warmed up before checking the offiset frequency and matching the side tone. Drift is sufficient to reduce accuracy, but the amount will be insignificant compared with the "guesswork" method of netting by clarifier and straight listening.

The method has been incorporated in my 401 and all that was required was one fixed capacitor from the junk box.

The same method can be applied to the FT101, but with the 101 I am using I simply changed the fixed pitch of my Autronic keyer monitor oscillator to match the offset frequency of 750 Hz . This meant one more fixed capacitor from the junk box to bring the pitch down from 1034 Hz to 750 Hz . If your keyer has a pitch adjustment on its monitor then there will be no need for any components at all with the exception of a borrowed monitor receiver.

Of course, it is important to ensure that the 101 is initially correctly adjusted so that it transmits and receives SSB on the listening frequencies. These can be different if voltage adjustments are incorrect and this fault would make it difficult to apply the matching tone idea with any accuracy.

While on the subject of CW, it should not be assumed that a commercial rig will be without its keying faults. Clicks, thumps and poor notes can be experienced when using the sideband rig for CW. So if you have another receiver and have never listened to your CW, take a look at the keying characteristics and check for faults.

Transistor switching can often reduce key clicks, but additional keying circuit filtering will be rieeded in most cases. The FT101 keying was vastly improved with the addition of a 2 mfd capacitor across the key outlet from the rig and a 300 ohm resistor in series with the keying circuit. This eliminated thumps.

The 401 with its tube complement required slightly different treatment since it keys a number of stages together with the PA stage. Clicks and thumps were eliminated by connecting a 2 mfd capacitor in series with a 500 ohm resistor across the key outlet of the rig. The keyer was connected across the capacitor with a 250 ohm resistor in series with the keyer. The result was an excellent shape to the keyed CW and the eliminating of the clicks and thumps. Viewing CW from this rig, John VK3IQ reported that on this CRO, the keying pattern matched exactly the recommended shape published in the ARRL Handbook. This unsolicited comment came before I had mentioned to John that I had been playing around with the keying circuit.

In connection with the idea discussed above for netting the transceiver, a couple
of friends in VK2 have adopted the idea with success. One said during a QSO that it would be a bit of a bore to have to build an oscillator to get the tone required, so in fun I suggested that he get a Swanee whistle and tune this to match the $G$ sharp above the seventh octave of $C$ on the pianoforte. He took this seriously, having been through the Conservatorium of Music, made himself a pipe resonant at the difference frequency of his rig and by blowing his whistle and beating the incoming signal against it, zero beats the incoming signal with his own transmitted CW. To beat it all, another VK2 who has been caught with the same problem, iwangs his guitar string which he has tuned to the difference frequency, or I should say the offset frequency of his particular rig.

One final word about SSB rigs and CW. The recent interest in QRP has raised the problem of poor tone. On those transceivers which depend, like the 401, on the unbalancing of the balanced modulator, instead of the switching in of another xtal as with the 101, tone can deteriorate with very small amounts of carrier insertion. One possible solution to this is to alter the bias pot on the rig to beyond cut off of the PA stage. This will require more carrier insertion and will very likely improve the note.

Happy netting with the CWN.

## Magazine Index <br> With Syd Clark. VK3ASC

## QST July 1975

HF Discone Antenna; Receivar Dynamic Range; Crystal-Controlled SSTV Sync System: Monollthic Crystal Filter; Learning to Work with Semiconductors. Pt. 3; RIT for the HW-7.
RADIO COMMUNICATION June 1975 a July 1975 The GM30XX Portable 3CM Transceiver: Bullding Blocks for the Novice; Microwaves: Report of the IARU Region 1 Conference.
Bulletin Reflections. Pat Hawker talks at length about the RSGB over 50 years; Switched Polarization Cubical Quad; A Simple Pre-Scaler for 145 MHz : Buildirg Blocks for the Novice.

## QSP

UNLICENSED TRANSMISSIONS
Recent coples of the local Rockhampton daily contaln news of three persons appearing in the Magistrates' Court on charges under the Wireless Telegraphy Act. One of the persons was commitied to the District Court for sentence and the other two were convicled, one being lined $\$ 50$ or three weeks in jail on each of the two charges of possessing radio transceivers for the purpose of transmitling and receiving messages without being authorised under the Act, and the other was released on probation for two years on two charges of malntaining a station for transmitting and recalving radio messages without being authorised under the Act. The newspaper reports also contained a statement by one of the accused thal "he didn't have the time to do exams or try". This person was stated to have used the call signs KTt53 and 80JL.

## ANOTHER ANGLE

QST July 1975, gives a quote of the month "Amateur Radio doesn't measure its success by volume of traffic, gross revenue, or audience, but simply by how well it has served humanity", and goes on to ask what part have you played in the success of Amateur Radio.

## LICENCE FEES

"The DOC In Canada has Increascd the annual licence fee for Canadian amateurs from ten dollars to thirtean dollars per year". QST July 1975
(03) 82.5398

AUBURN, Vic. 3123
Telex: AA30566. Cables \& Telegrams: "VICOM" Melbourne.

DISTRIBUTORS:
Canherra: Andrew Dayis, 32 Kalgoorlie Crescent, Fisher. Phone: (062) 88-4899.

Gold Coast: DE Electronics, 21 Christine Ave., Miami, Phone: (075) 35-1798.
Adelaide: Graham Stallard, 27 White Avenue, Lackleys. Phone: (08) 43.7981.

Nowcastle: Digitronics, 188 Parry Street, Nowcastle. Phone: (049) 69-2040.
Natronics, 388 Huntriss Avenue, Woodlands. Phone: (092\} $46 \cdot 3232$.

We are Australian agents for ICOM quality VHF/UHF transceivers.

IC-3PA 13.8 V dc power supply has been designed for the


We do not sell "C.B." equipment.

## ODDS AND SODS . .

pcb mount proportional control crystal

## WARRANTY

$\qquad$ pa-day wainmiy coverina lishewe and

 NOTE ICOMT Trensceivary cariry a 12 monten wisrinaty subjest to the sbove cenditons. res and voltages. ovens can be supplied for standard temperatures and voltages
Model PCL $1-12$ clip type oven for He-25/u crystal $\$ 19.80$ Model PCL2-21 slip-on oven for Hc-6/u crystals \$19.80

| VARIAN POPULAR TRANSMITTING TUBES |  |  |  |
| :--- | :--- | :--- | :--- |
| 4X150A | $\$ 23.00$ | $4 C \times 250 B$ | $\$ 27.50$ |
| 4CX250BC | $\$ 31.00$ | $4-125 A$ | $\$ 35.00$ |
| 4-250A | $\$ 40.00$ | $3-400 Z$ | $\$ 42.00$ |
| $3-500 Z$ | $\$ 42.00$ | CHIM SK606 | $\$ 4.50$ |
| SOCK SK600 | $\$ 17.00$ | CHIM SK406 | $\$ 10.60$ |
| SOCK SK410 | $\$ 10.60$ | SOCK SK400 | $\$ 74.00$ |

Regulated DC power supply board up to 15 v at 4 amps depending on transformer secondary and value of. current sensing resistors on board . 24
MC-15 low impedance ptt mic ........................ $\$ 15$
Safetymic Headset . 34

## HF TRANSCEIVERS

Yaesu FV101B VF0 for FT101B/E. $\$ 102$
Yaesu FT101E $(160-10 \mathrm{~m})$ transceiver. $\$ 650$
Yaesu FL2100B Linear Amplifier. \$388
Uniden $2020(80.10 \mathrm{~m})$ transceiver.
Uniden External (PLL) VFO
$\$ 550$ incl. mic.
\$105
Uniden Matching Speaker
\$28

## TEST GEAR

MONITOR SCOPE. The YAESU YO-100 monitor scope can be interfaced with most transceivers and can cover a wide range of modes incl. RTTY. A two tone built-in generator at 1500 and 1900 Hz adds to the versatility. Price: S190.
YAESU frequency counter $\$ 250$. Covers up to 200 MHz max.
$\left\{\begin{array}{l}\text { sensitivity } 20 \mathrm{mV} \text {, hi.lo input impedance } \\ \text { ANT. ACCESSORIES }\end{array}\right.$
Oskerblock SWR200 SWR/PWR Meter with ranges 2/20/200/2000w to 200 MHz . . . . . . . . . . . . . . . . . . . . . . . $\$ 49$ Rotator - CDR ham II 240v S165. POWER METER $\$ 69$

HY-GAIN ANENAE
203BA 3el 20m beam $\$ 168$


TH6DX 6el yagi 10-15-20. \$225
TH3JR 3el yagi 10-15-20. \$135
18AVT trap vertical 80-10. $\$ 90$
14AV0 trap vertical 40-10. \$65
VHF ANTENNAE
LINDENOW $2 \mathrm{~m} 5 / 8$ whip $\$ 21$, base $\$ 2.60$.
RINGO ARX-2 6db 2 m gamma matched vertical, $\$ 35$.



# vewPeter Williams VK3IZ Manager <br> 139 AUBURN ROAD, AUBURN, Vic. 3123 <br> Canberra: Andrew Davis, 32 Kalgoorlie Crescent, Fisher, Phone: (062) 88 -4899. <br> Gold Coast: DB Electronics, 21 Christine Ave., Miami. Phone: (075) $35 \cdot 1798$. <br> Adelaide: Graham Stallard, 27 White Avanue, Lockleys. Phone: (08) 43-7981. <br> Newcastie: Digitronics, 188 Parry Street, Newcastle. Phone: (049) 69-2040. <br> Parth Netronics, 388 Huntriss Avenue, Woodjands. Phone: (092) 46-3232. <br> <br> \section*{DISTRIBUTORS:} 

 <br> <br> \section*{DISTRIBUTORS:}}

## GET WITH THE STREHGTH

## IC22A



Features:

* 12 -month warranty
* crystals for 6 channels
* RF out switchable 10 watts/1 watt
* 5 helical resonators in front end
* receiver sensistivity better than 0.4 uV , 20dB 0
* solid-state T/R relay
* PA protection

Complete with cables, bracket for mobile use, ptt mic and English manual. Price $\mathbf{\$ 2 1 0}$ plus freight (collect the best method). Extra crystals for Band-plan channels $\$ 8.50$ per pair. The IC22A can be interfaced with the DV21 Digital VFO. Special package price for IC22A + DV21 $\$ 450$.

## 12 MONTH WARRANTY + 6 CHANNELS! $\$ 210$

 WIA Band Plan Xtals for IC22A/IC21A Repeaters 1-7 Anti-repeat 1-7
$\$ 8.50$ pr Simplex: 20, 28, 32, 37, 38, 40, 49, 50, 51, 52, (\$1 P\&P) 53, 61, 63.

Monita-mini MR2 minature $\mathbf{2 m} \mathbf{f m}$ receiver with 12 channel positions. This palm size receiver has double conversion $455 / 10.7$ IF and a sensitivity of better than $\mathbf{1 u V}$ for $\mathbf{2 0} \mathbf{d B}$ OS. Price $\$ 98$ includes charger (crystals extra).
SEWIA SV-230 mobile rig, runs 25 watts! Price: $\$ 210$, includes 3 channels, mic, cables and mobile mountingbracket.
KEN KP202 handheld 2 watts. Incls 4 chs (1-4-40-50), \$150. Charger and nicads $\$ 32$
Trio 7200G 10 w incl 2 chs Special \$210
SU-710 70cm 10 watt fm transceiver complete with 435.0 crystals, mic, brackets, etc.
Yaesu FT75B mobile transceiver, \$245 AC power supply \$50 DC power supply $\$ 60$


5 Bands, 200 Watts Input
Atlas $\mathbf{2 1 0 - 2 1 5}$ solid-state transceiver,
Atlas 240 V power supply,
Atlas delux mobile mounting bracket.
$\$ 570$
$\$ 150$

$\$ 47$
\$278
PROFESSIONAL QUALITY 2M FM RECEIVER MODULE . . . Ideal as an auxiliary monitor for the shack or to keep the XYL posted (perhaps not a good idea!), this kit comes complete with a single channel oscillator and a premium grade 11 element if lauder filter. The price of $\$ 69.50$ includes predrilled fibreglass pcb, all components, if crystal, filter, instruction manual. Add \$1 P \& P.

SAFETY MIKE
MICROPHONE HEADSET
for driving salety. \$34

 MOBILE
ANTEHNAE
MOBILE WHIPS:
RM-80 Resonator for $80 \mathrm{~m} . \$ 18.50$
RM-40 Resonator for $\mathbf{4 0 m} . \$ 16.80$
RM-20 Resonator for 20 m . $\$ 13.50$
BM-1 Bumper mount $\$ 13$. Spring $\$ 13$.

## MORE RANGE <br> with NO NOISE

When VICOM commenced 6 months ago we had little idea that the response to a new market contender would reach the level now arrained. During this short period of time we have become the biggest Amateur retailer in Australia! Our many new friends helped our learning curve to the point where we are now ready for further expansion. Believe it or not - our original intention for starting VICOM was to put comperition back into the Amateur market place. This we have done and will continue to do. Using modern management rechniques such as compurerised srock control and ordering VICOM and its team of enthusiastic $d$ ispributors will continue to provide a high standard of techinical service and in particular will ensure that our products do not fall into the hands of illegal operators. Thanks to those who have given VICOM support and encouragement. Peter Williams VK3ILZ.

# A SIMPLIFIED METHOD OF MORSE CDIE MESSAGE GENERATION 


#### Abstract

This arlicle describes a method of reducing somewhat the complexity of morse-code message generators, particularly in the area of the diode matrix, and describes a tall-ender now in use employing the system.


The normal scheme of message generation is to generate a train of equally spaced intervals with an osclllator (the bit generator), and to provide digital clrcuitry to form an output signal only during the equally spaced intervals necessary to form the desired message. In Fig 1, this has been illustrated for formation of the letter $V$ and a subsequent letter space. A digital counter is made to count the equally spaced intervals (bits) and during bits 1, 3, 5, 7, 8 and 9, diodes are so connected as to key the transmitter.

We can assume that the number of diodes is a measure of the complexity of the coding circuit; in any case the effort required to redesign the coding to fit a new message, and to put the changes into effect, or to design a switching circuit to enable alternate messages, is directly proportional to the number of diodes or other coding elements used, that is the number of -its during which action needs to be taken.

It can be seen from Fig 1 that, in the case of the letter $V$ and its subsequent space, that the proportion of bits during which action is taken to the total number of bits is $50 \%$. This ratio is approximately true for all morse code messages. The coding method described significantly reduces this percentage; it is possible only because of the unique timing relations existing in the standard telegraphic code (herein loosely termed "Morse" code).

If we compare a string of dots with the letter $V$ plus space, as in Fig 2, one can see that they differ only during bits 8 and 11. Therefore, if we start our process by producing a string of dots, we need only take action to invert it during these two bits; this Immediately reduces the number of diodes required to one third of that normally required. Fortunately, the string of dots is already available in the usual message generator at the output of the first

counter stage, and the inversion can be accomplished by an exclusive-OR gate, or some similar circuit which acts as an inverter when the second input is at (1) but is non-inverting when the second input is (O), or vice-versa.

The reduction by twa thirds of the bits during which action needs to be taken is generally the case with this system but varies, of course, with the particular message required.

Action is required to be taken during the centre bit of a dash, the centre bit of a letter space, and twice during a word space, so if the total of dashes, characters and word spaces in a message are added, the result is one more than the number of diodes (or other devices used in coding) required.
 Decoder Numbers $0^{\prime} 1_{1} 2^{\circ} 3^{\prime} 45^{\prime} 5^{\prime} 6^{\prime} 7^{\prime} 8^{\prime} 90^{\prime} 11122^{\prime} 13^{\circ} 4^{\prime} 15^{\circ}$


An example of the use of the above simplification method is a tail-ender recently made to send the message DE VK2AHM. A push-button initiates the sequence and a pair of relay contacts close during the sequence to switch the transmitter on.

In the message there are 10 dashes, 8 characters and one word space, so the number of bits in which action is required is 18. A 1 of 16 decoder and an 8 bit multiplexer are used. The total number of diodes required in the matrix is 18 , and modifying the sequence is simple. The total number of bits available for the sequence is 128 which is more than enough for any amateur call. There are 84 bits in the required message, counting a first starting (switching on) bit.

Fig 3 is a circuit diagram of the tailender. U1B and U1C form a latch which, when triggered by pushing the start button, applies positive voltage to initiate the unijunction clock oscillator Q1 and, via U1D and Q2, to pull in relay RL, which switches the transmitter on.

The clock pulses from Q1 drive dual flip-flops U6 and U7, and the Q outputs of these flip-flops code the inputs to the decoder U4. A string of clock pulses from Q1 therefore has the effect that the outputs of the decoder each go low in sequence from 0 to 15 (pins 1 to 11 , 13 to 17) during

L. H. Vale VK5NO

5 Carlton Road, Gawler, S.A. 5118
the periods between clock pulses, and repeat this sequence as long as there are clock pulses. The output (QD) from U7 also clocks another dual flip-flop U8 which clocks single flip-flop U9 to provide three more Q outputs, QE, QF and QG to code the control inputs of an 8 input multiplexer U5, which switches each of the inputs in turn to the output Y. Therefore, at any time in the sequence, only one output of U4 is low, and only one path is complete through U5. DTL inverters in U2 connect to each of the six U5 inputs so that the addition of a diode between an input of U2 and an output of U 4 will cause the corresponding output of U2 (and input of U5) to go high during the period when that output of U4 is low.
Before starting, when the flip-flops are set at zero, the 0 output of U4 (pin 1) is low and the $O$ input of U5 (pin 4) is connected to $Y$ as there is no diode in position $O$ to $O$ in the diode matrix, therefore the $O$ input of $U 5$ and $Y$ will both be low.

To clarify the description of the sequence, we should look first at the diode matrix for DE VK2AHM (Fig 4) and the method of deciding where to connect the diodes.

The first step is to lay the required message out in sequence on graph paper which has the same number of squares in a horizontal row as there are outputs in the decoder (in this case 16), and number the columns in decoder output numbers and pin numbers (in this case for the 74154). The required message is then laid out with correct spacing on the squares, using exactly 16 bits per row, as shown, starting at the start of decoder output 1.


Then mark with a cross the blts during which an inversion is required - that is, the centre dots added to form dashes, and the dots removed to form spaces.

Firstly, it can be seen from the graph layout that in thls case there is a total requirement of 84 bits, which is well below the total of 128 bits available with a 16 output decoder and 8 input multiplexer. The 85th bit turns the tail-ender off.

Secondly, it will also be seen that diodes are required at the following positions on the first row: $(2-0),(9-0),(13-0)$ and (15-0). These diodes are therefore connected with cathodes going separately to the required U4 outputs and anodes golng in common to the input of the inverter whose output is connected to the 0 Input of U5. Repeating this performance on the other rows we finish up with the diode matrix as shown
in Fig 5.
Following the logic through, it will be seen that when there is no dlode present in the matrix, that is during all bits in the first row, except bits $2,9,13$ and 15 , the base of Q3 is taken negatively by U3B ( $W$ is an output of U5 complementary to output Y) whenever QA goes high. This produces the required string of dots. During a bit such as 2, when a diode is present,


FIG.3. TAILENDER CIRCUIT DIAGRAM.

U3A is enabled instead of U3B, inverting the process; so that the availability of complementary outputs from both U5 and U6 enable U3A and U3B to perform the inverting function instead of an exclusiveOR gate.

The end-of-message function is performed as follows: U3C output goes low when both QE and QG outputs of U8 and

U9 respectively are high (on row 5), when this condition coincides with a low on output 4 of U4, the output of U1A goes high, unlatching U1B and U1C, which stops the sequence, and drops out the relay, taking power off the transmitter, and resetting all the flip-flops to zero. By choosing the correct combination of U8 and U9 outputs to determine the row of the
"stop" bit and the U4 output to determine the position in the row the sequence can be stopped as required.

This tall-ender is built on perforated board and enclosed in a die-cast box. The unit keys an FI DX400 transmitter and has been in operation since late 1973.

# Improving The 'EICD ${ }^{753}$ on 14 MHz 

## Alan Shawsmith VK4SS

35 Whynot Street, West End, Brisbane, 4101

## The EICO 753 Tri-band transceiver

 might be described as a popular, low cost, utility type set. The writer has owned two such units and found their performance quite satisfactory, except that the gain, sensitivity, and $S / \mathrm{N}$ ratio on 20 metres is below that on 80 and 40 metres. The manual gives the sensitivity as $1 \mathbf{u V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$, however better than .5 uV on 80 and 40 metres is claimed by a USA magazine which put the set on test.If $D X$ is your main interest, an improvement on weak 20 metre signals can be obtained by the following very simple and almost instant modifications. In brief, proceed as follows-

Remove ground wire between RF valve 6BA6 V16, pin 2 and ground. Remove resistor R61 from pin 1 of V16 and connect it to pin 2 of V16. Wire a .02 disc ceramic by-pass condenser from pin 2 of V16 to ground. Wire a 1 meg. resistor between pin 1 of V16 and ground.

On the tag strip associated with the wiring for the VFO tube 6EH7 V11 (or solid state modified VFO) remove the 27 K resistor R56 and replace it with a small 1 mH RF choke. Remove the 47 K resistor R53 and replace it with a 4.7 K resistor.

These changes should result in maximum RF gain on weak signals and better first conversion efficiency. Tagging the AVC line on to the suppressor grid, pin 2 of RF tube 6BA6, does not result in any increased pumping or blocking as might be supposed.

It is common practice to tie both the IF and RF gain to one variable control and designate it on the front panel as RF gain.


This makes for easier operation by virtue of only one knob. However, in the case of the EICO on 14 MHz , there is a point reached when this control is advanced towards maximum, where the internal noise and signal, increase at the same rate. This is because of excessive and unnecessary gain through the IF strip where much of the noise is generated.

Better S/N ratio and greater flexibility on the weaker signals can be obtained if the IF and RF gains are manipulated separately. This means an added knob on the front panel. It can be done without spoiling in any way the aesthetic or symmetrical appeal of the panel, by installing a suitable 10K RF control potentiometer in the place at present occupied by the PHONES. The speaker jack, at rear, is sultable for phones, as it is on the same circuit, 3 ohms. If the set is used exclusively for CW, the RF pot can be installed where the MIKE GAIN is
now placed. (Do not cut the leads to the MIKE GAIN: simple let the pot rest loose in the set - you may want to restore it).

However, as a temporary measure, the effect of this modification can be gauged without changing anything at all. Simply disconnect, at the RF GAIN pot, the cathode lead from the RF tube 6BA6, V16, and earth it. This will allow maximum gain through the tube. Previously weak signals required the RF gain to be $3 / 4$ or more advanced. Now it will be found only necessary to advance the gain $1 / 3$ to $1 / 2$ and the recelver noise, previously audible, will now be virtually nil. If you favour CW DX and happen to live in an area where there is no blocking from nearby stations, this modification could remain as a fixture.

Selectivity in the EICO 753 is up to manual specifications. In fact, the $30-1$ fine control of the main tuning is too coarse for comfortable handling of weak slgs. Fine


RELEVANT PART OF THE ORIGINAL CIRCUIT OF "EICO 753".

## OVERSEAS PUBLICATIONS SUBSCRIPTIONS

- Inflation may cause subscription rates to rise at short notice but here is the latest llat:

|  | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| As | year | years | years |
| Ham Radio | 8.25 | 10.50 | 15.00 |
| Ca | 6.50 | 11.00 | 14.50 |
| 73 | 7.00 |  | 13.50 |
| 085 | 8.50 | 17.00 | 25.50 |
| Break-In | 4.20 | - | - |
| Radio |  |  |  |
| Communication | \$8.00 | - | - |
| CO-TV | 2.50 |  |  |
| VHF |  |  |  |
| Communicatlona | 5.00 | -8urfa | mall |

pPlase ask for mamberahip form.
-
VHF Communications back lssues are normally avallable from stock -

+ Poalage
1869/70/71 with binder $\$ 10.50+\$ 1.30$ 1972/73/74 separate years $\$ 4.20+\$ 0.50$ gingle copies $\$ 1.10+\$ 0.25$ 1975 single coplea $\quad \$ 1.40+\$ 0.25$ Bindern $\quad \$ 2.00+\$ 0.20$
- Write for these and other items to: MAGPUE8, PO Box 150, Toorak, Vic. 3142


## Try This <br> with Ron Cook VK3AFW and Bill Rice VK3ABP



FROM PSU
CURRENT INDICATOR AND FUSE


INDICATING
WAVEMETER
trim is usually done with the RX-OFFSET. But again, this control is too coarse and would be improved by the introduction of a small 3-1 or 5-1 vernier. This is something the owners of the set can ponder on.

The transceiver's If strip is at 5.2 MHz . In common with some makes, it is prone to outside QRM, at this frequency. There will be times when a strong modulated signal breaks through and renders the set virtually useless. It matters not if the antenna is selective with co-ax feed, or a random wire with an ATU. Fortunately, it is easily cured. In an earlier Issue of "AR", a suitable trap for this type of QRM was described. It is effective and can be constructed and tuned, In a matter of minutes. The simplest way is to use wire of sufficient gauge to be self-supporting. Wind 12 turns at about $3 / 4 \mathrm{in}$. diameter and spaced about $11 / 2 \mathrm{in}$. long. Solder the ends to a heavy duty .001 uF condenser and insert in the co-ax line, at the set. Now, with a screwdriver short out a turn, or two, or fraction thereof, until the offending signal is at a minimum. Enclose trap, at leisure, in small metal box
and re-trim coil.
A final comment, on the transmitting section - the PA. If there is a tendency to instability, reset the neutralizing condenser as per manual instructions. If the trouble still persists, connect to the junction of R110 and the long wire leading from it, a .01 disc ceramic to ground. The output of the PA on 14 MHz is likely to be about $10 \%$ below that of the other two bands: this seems to be mainly in the set design. However, increasing the coupling condenser C97 between driver tube V15 and PA V13 by as much as 3 to 5 times in capacity should result in an increase in output of about $5 \%$. Do not forget to realign tuned circuits L10, L11, L12.

A short perusal of the circuit manual will show that these modifications for improving the EICO 753 are simple and virtually selfexplanatory. The $\mathrm{S} / \mathrm{N}$ improvement is quite noticeable and brings the performance on 14 MHz closer to that pertaining on the other two bands. It is also an easy matter to restore the changes to "as-was", In a matter of minutes.

## LAMPS AS INDICATORS

In addition to its role as a power on indicator, or dial illuminator, the humble light bulb can be of great use as a cheap indicator of current, voltage or power.

Light bulbs can be powered by DC, AC or RF and provide highly visible indications.

A light bulb in series with a transmitter final provides both a dip indicator and a fuse in case of overload.

In the aerial circuit, a combination of


DUMMY LOAD POWER INDICATOR
light globe and resistors can provide a means of indicating antenna currents.

Other uses are in wavemeters and as a power indicator for a dummy load.

Gil Sones VK3AUI

## QSP

BEWARE OF NICAD MEMORY
Just a reminder if you have NiCad batterles in your walkle talkle or other portable appliances. They have a "memory" such that if you run them down Just a little bit then recharge, they start believing that is all they should put oul and will go dead long before you expect them to. The solution periodically discharge them then give them a full charge. From 'Collector \& Emitter', June 1975.

## USA 70 CM BAND

Ham Radio, June 1975, contains relerences to more threats to the $420-450 \mathrm{MHz}$ band from 20 KW ERENS (Extended Range Electromagnetic Navigational System) transmitiers with a range of 250 miles in Dallas on 430 MHz and new ones projected on Cape Cod and Montauk Point L.I. The comment is, "It permitted. these pulsed navigational systems would make a large porlion of the 420.450 MHz band pracilcally unusable".
QSL MANAGER FOR VK CONTACTS
A note from VK5BS QTHR, advises he handles OSL cards for VKs contacing ZKiCV, ZKiBS and VK5BS/YJB.
CONTEST LOGS
Sound comment seen in the write-up of the 1974 CQ WW DX contest results column in CQ for June 1975 - "Stop breaking my heart. Stop recopying your logs. Every year I see log after log with 500103000 contacts recopied - by hand. It ain't necessary. Honesi. Use carbon paper or make a pholocopy. Rewrite any illegible calls in the margin 'Contests' are supposed to be fun and recopying logs ain't fun. Besldes, recopying logs can introduce errors no matter how careful you are

## WARC 1878

CQ June 1975 quotes introductory remarks by $A$. Prose Walker (chiel of FCC amateur and CB Div ision). Chairman of the Amateur Service Working Group's Conference on May 8, at FCC HO in Washington as follows - "This could be a golden opportunlty for Amateur Radio. We're in a position hopefully, to shape Amateur Radio for the remainder of the century and well beyond. Our goal is to do everylhing possible to strengthen Amateur Radlo's position at the 1879 Conference. Our task won't be an easy one and no one can guarantee that we will succeed. Thal's why we are here today... to get things started in the right direction, and to give it our best."

# NEWCOMERS NOTEBDOK <br> with <br> Rodney Champness VK3UG and David Down VK5HP 

## A NOVICE TRANSMITTER - Part 2 <br> Recelvers of many types are avallable fairly readily to do the job of receiving a Novice will require. It doesn't matter that it will tune the broadcast band as well as the Intemational Broadcasting Short Wave transmissions, as long as it does cover the Novice sections of the bands that you are interested in.

However, the transmitter is a totally different proposition. It must be Crystal Controlled or have a Frequency Synthesiser (expensive) or a variable Crystal Osclllator, and the bands that you are interested in are only 3.5, 21 and 27 MHz so the transmitter does not need to cover other bands. Most commercially available transmitters cover several more, and also are much higher in power than the 10 watts Output allowed on constant carrier modes, or the 30 watts Peak Envelope Output Power allowed in the Side Band modes. It is with these things in mind that the transceiver to be described came into being. It does transmit AM/CW with an output of 7 watts and 10 watts respectIvely. It only transmits on 3.5 MHz . The receiver is for the same band and can receive AM/CW/SSB and with careful tuning FM, and follows at the end of the transmitter articles.

This month the Radio Frequency side of the transmitter is described. It would be possible to get on the alr with just this section if you wish to work on CW exclusively. The valve used in this transmitter is a television vertical oscillator triode and pentode power output; it performs equally well in the role of crystal oscillator and PA output. Throwouts from TV sets sometimes work quite satisfactorily in this transmitter long after their useful life in a TV Is over. An approximate chassis layout will be given in a later article as well as information on how each section works together.
The 6GV8 triode is connected as a Pierce oscillator with no tuning. Feedback to maintain this oscillator working is obtained from C1 and the distributed capacity between the plate of the valve and other circuit components to earth (cathode). The plate load of this valve consists of RFC1 and R4 as well as R5, R6 and the diode load formed by the gridcathode circuit of the pentode output section. The oscillator will provide about 1.5 mA of grid drive to the output stage.

The drive to the grid of the power amplifier causes the grid to conduct on each half cycle. The voltage at pln 9 is calculated by multiplying grid current in milliamps ( 1 ) $x$ the resistance in the grid circult in kilohms (R) and this will equal
the bias at the grid $(E)$ in volts. $1 \times R=E$ $\mathrm{I}=1.5 \mathrm{~mA}, \mathrm{R}=28 \mathrm{~K}$ ohms, therefore 1.5 $\times 28=42$ volts, and this is the negative bias on the grid of the power amplifier. The valve is being run in Class C2 and is normally biased well beyond cutoff. The cutoff point for the pentode section of a 6GV8 is less than - 42 volts that the grid has on it normally. The output of the triode oscillator, however, causes great variations in the instantaneous grid voltage and at times it is driven into grid current - in other words the grid goes positive relative to the cathode. It must go positive otherwise no grid bias will be developed.

The power amplifler stage has protective cathode blas with the resistor R8 between the cathode and earth. Should the drive from the oscillator disappear for any reason the output stage and the oscillator stage will be protected for a short period by their respective cathode blas resistors. I don't recommend that you operate the transmitter without drive for a period of more than about a minute as the power amplifier stage will have its plate dissipation rating exceeded. On AM this works out to 10 watts, $I(.040) \times E(250)=10$ watts. The plate dissipation of a 6GV8 pentode is 7 watts. When the transmitter is putting out RF energy into the aerial, 7 watts of the energy flowing through the plate circuit of the 6GV8 is fed to the aerial and only 3 watts heat up the valve, so It is safe from damage.

The resistors and capacitors in the cathode circuit of the two valve sections need special comment as they do several jobs. R3 and R8 provide cathode blas for both sections. To key this transmitter in the CW mode the key is placed across the terminals marked tip and sleeve of socket J1. Consider that the key is at rest. The voltage at pin 3 and pin 8 will be determined by the voltage divider formed by R7 and R9 and glves a voltage of about 100 volts plus at these points effectively cutting off both valve sections. The key is now depressed and the bottom ends of both R3 and R8 are earthed. The voltage at pin 3 decreases to normal operating voltages for the oscillator from the 100 volt hold off blas in about 10 microseconds. The oscillator therefore starts to work quickly. However the time constant for the components in the cathode circult of the power amplifier is very much longer. For the purpose of this exerclse we will assume that the formula $\mathbf{T}$ (time in seconds for discharge or charge of RC circuit from 10 percent to 90 percent charge and viceversa) $=2.2 \times C$ (Capacity in Farads) $x$ $R$ (resistance in ohms) is the correct one. For proper shaping of the CW keyed waveform, it is necessary to switch the transmitter on and off slowly. Slowly is a relative term and for CW wave shaping this is of the order of 5 to 20 milliseconds. Now to calculate our particular circuits time constant $-T=2.2 \times C(10 u F=10 / 1,000,000$ farads) $\times R(220$ ohm). $T=5$ mllliseconds. This means that the transmitter will not be up to full power for approximately 5 milliseconds after switch on. When the key is lifted the reverse action occurs
except that the charging current for the cathode capacitors comes via the plate circuits of both valve sections and the cut-off procedure is much slower and could easily equal 20 milliseconds. Therefore the attack characteristics of the network are faster than the decay characterIstics, and regrettably with this simply CW key shaping circuit these slight limitations must be accepted. The oscillator is fed in parallel when the key is lifted so the oscillator remains in operation until about the time the output section ceases to operate. On AM, C4 also acts as the audio bypass for the modulator audio, so therefore does two jobs. C5 and C2 are only for RF bypassing. R8 is the power amplifier cathode biasing resistor as well as the timing resistor for the CW wave shaping circuit. R7 and R9 are purely to act as a voltage divider so that the cathode bias on the two valve sections is approximately 100 volts, so cutting off the two sections with key up in the CW mode.

The screen circuit of the output section has the normal bypassed screen voltage dropping resistor. The value of R10 depends to a certain extent on the total supply voltage to the valve, and will be lower in value if the power supply voltage is lower than Indicated in this particular instance, and conversely it will be higher in value if the supply voltage is higher than specified in this article. If you want a little more output with the voltage specified on the supply lowering this resistor will increase the output so that it exceeds the Novice level, and maybe, if you don't take care, the valve could quit on the job.

The plate circuit is the usual pi-coupler output system which is quite popular in modern HF transmitters. R11 and RFC2 form a parasitic oscillation suppression circuit, designed primarily to suppress VHF parasitics. R2 in the grld of the triode oscillator performs the same function quite effectively. The HT voltage is shunt fed via an RF choke RFC3 via metering resistances R12, R13, and M1, RFC2 and R11. C7 is an RF bypass capacitor of value such that it bypasses the RF but has little effect on the audio from the modulator. Ci in the screen circuit serves the same purpose. RFC3 blocks most of the RF in the plate circuit from being wasted in the HT supply circuit of the transmitter or from causing all sorts of miscellaneous transmitter ills. C8 passes the RF energy to the pi-coupled output tuned circuit. Note that from the plate pin of the output stage to the junction of RFC3 and C8, RF and DC are coursing down the one lead together. The choke and capacitor separate these two components and this in reality is a basic filter network. The RF having passed through C8 encounters the tuned circuit. The values of C9, C10, C11 and L1 are optimised so that not only will the circuit tune to 3.5 MHz , but will present the correct load impedance to the output valve section and to the 50 or 75 ohm aerial system. The correct ratios of the component values ensures that the transmitter tunes correctly, loads correctly and has minimum spurious output. The spurious out-
put is -39 dB relative to the carrier level, this is better than some very we!l known and respected amateur transceivers, in fact it would not be hard to better this figure with slight additional complexity.

An interesting observation was made during the period whilst various LC ratios were being tried in the output of the transmitter. At one stage about 50 per cent more inductance than currently used was in circuit. This caused the output of the transmitter to peak off to one side of the dip in plate current. An old crystal for a frequency of about $2 / 3$ rds the frequency was inserted, and it was found that the peak output occured when the plate current dipped at resonance, as observed on the watt meter and the plate meter. This seemed strange so the formulae used to calculate the inductance/capacity values were rechecked and it was found that one factor had been overlooked in the calculations. When this factor was incorporated, it was found that the inductance to use was less than before. A new coll was wound and wired in. Now the transmitter output range tuned such that maximum output occured at plate current dip, when on 3.5 MHz and did not tune properly on the frequency where it was previously tested. There is possibly a small point to be considered here although an important one the transmitter will tune correctly if the tuned circuits match the output stage and the load impedances at the frequency of operation. If your transmitter does not appear to give maximum output near or on the bottom of the valley of the plate current dip it could mean the circult LC ratio is wrong. Other problems could be that the stage needs neutralising or that it is on the verge or occasionally going into parasltic oscillation.

RFC4 is not really needed, in fact you can remove it and no trouble should occur ever - but, it is possible to kill yourself if you do leave it out. The purpose of RFC4 is to act as a DC return should C8 breakdown and place HT on the aerial line. In most cases no harm will come to anything if the majority of aerials are insulated from earth. Woe betide anyone who touches such an aerlal if this capacitor fails as it could be the last thing they do. 300 volts DC with a larger fliter capacitor behind it could be fatal. RFC4 acts as a short circuit for the HT voltage and static build up too, so that the power supply fuse blows to alert the operator that something is wrong.

There are two manually operated switches on the transmitter, and these switches function so that the transmitter is set up for AM or for CW, S1, and to actuate the netting function. S2. Switch S1 is shown in the CW position 2. In this positlon S1a switches the plate circult HT supply via 19 and the HT relay contacts. In position 1, it switches the HT line to the modulated HT line via the modulator. S1b is open circuit on the CW position and switches HT voltage to the modulator and PA valve when in the AM position. S1c Is open circuit on CW but grounds the cathode resistors of the RF valve sections
when in the AM position. The morse key goes across the switch contacts in the circuit. S1d is open circuit on the CW position, but the back contacts of the morse key keep this line shorted to earth whenever the key is not being used. If this complete line has both short circuits removed from earth the semi-break-in keying system will start to work, but that is further on in the article. In the AM position, this llne is earthed and the semi-break-in circuit cannot work.

S2 is shown in the normal position. S2a is shown with no short on the cathode lines of the two valve sections so that the AM/CW switch can operate independently. S 2 b is switched so that the oscillator recelves its voltage via the same path as the output stage when on CW. When the switch is thrown to the netting position, the cathode circuits of both valves are completed to earth and the oscillator receives HT via R18 so activating the oscillator without the output stage operating. The value of R18 is adjusted such that the oscillator puts a good strength signal into the recelver when you are netting to your transmitter; without being so strong as to swamp the receiver or be so weak that it is almost Impossible to hear below static crashes, signals, etc.

The circuitry which comprises the two transistors TR1 and TR2 is the circuitry used for the Press To Talk (PTT) function on voice and for the Semi-Break-In functlon on CW. This is a very simple circult which works quite effectively. It does just the same job as one seen in an American article with a fraction of the parts count. This particular transmitter/receiver function changeover system was described in The Radio Bulletin the journal of the Eastern and Mountains District Radio Club for December 1974. The author always abhorred the drudgery of manual changeover from transmit to receive and viceversa on CW, and this particular little clrcuit is the result. It has features which are quite important if the first character of any string of characters is not to be clipped as several transmitters do.

You will note by checking the circuit that the morse key is wired so that the back contact is used in addition to the normal keying contact. As you commence to operate the morse key the earth on the back contact is broken several milliseconds before the keying contact is earthed. During this time, current flows through R14, D1 and R17 to turn TR1 on, as the earth on R14 is removed. The current into the base of TR1 turns it on hard which causes the base of TR2 to be drawn towards the collector voltage which is at earth potential. This causes TR2 to also turn on hard and in so doing it pulls in the relay in its emitter circuit, which changes over the equipment from recelve to transmit. This changeover occurs in the time it takes for the key to unearth the back contact to the time the keying contact is made. This is only a few milliseconds, and these few milliseconds are sufficient time for the relay to operate and change the equipment over from recelve to transmit. However, when the key is released the relay would im-
mediately drop out so causing quite a bit of mechanical noise in the set. The components R16 and C12 function to keep the transmitter in the ready to transmit condition for a period that is governed by the value of C12. C12 is normally in the range 1 to 2.2 uF and these values will give a hold time for the semi-break-in system of $1 / 2$ to 1 second before the relay releases. With a 12 volt DC supply R16 must be of such a value that about a volt or two is dropped across it if C12 were shorted out with the key depressed. R16 is in series with C12 so that as soon as the earth is removed from R14, etc., enough voltage is developed across R16 and fed to the base of TR1 to cause it to saturate, despite the momentary apparent short circuit across C12 as it charges. The inclusion of R16 means that it is not necessary to worry about the delay that would have been caused to the operation of TR1 because of the charging time constant of R14, D1 and C12. This worked out to be a delay of at least 3 milliseconds. This amount of delay combined with the response time of the relay could mean that the first character sent may well be clipped. A 3 cent resistor prevents this.

When the key is released the short is re-applied to R14. D1 isolates C12, R16 and R17 so the charge on C 12 supplies base current to TR1 for about $1 / 2$ to 1 sec ond keeping it saturated, in turn TR2 as well and the relay operated. After a perlod, the voltage on C12 drops to a level that will not keep base current flowing in TR1 and it ceases to conduct, likewise TR2 has no base current supplied, ceases to conduct and the relay releases and the equlpment is back on receive - until the key is again pressed.

D2 functions only as a transient suppressor so that TR2 is not damaged. D3, C14, R20 and C15 form a rectifier filter system from the 12 volt AC filament line. Nominally the output from this half wave rectifying system is 12 volts DC but with no load this does creep up to about 16 volts. The regulation on this line is not particularly important as long as the DC is reasonably well filtered.

At this stage 1 will not be giving you a layout for the transmitter, but recommend that you read Newcomers Notebook for March and April 1974, which goes into design and layout of equlpment. A layout suitable for the complete transceiver will be published in a later issue, complete with photograph.

STR1 is a 8 or 9 tag terminal strip, and the points labelled are as follows - $A=$ chassis earth, $B=$ Press to talk (microphone line), $C=12.6$ volt $A C$ heater line, $D=H i g h t e n s i o n ~ l i n e ~ t o ~ t h e ~ m o d u l a t o r, ~$ $E=$ Modulated high tension line from the modulator to the PA stage, $F=6.3$ volt $A C$ heater line, G = Receiver HT earthing line, used to prevent accoustic feedback when changing over from transmit to receive and vice-versa. It may not be necessary, $H=$ Audio monitor line from the modulator output transformer.

STR2 is a 6 to terminal strip (or a multipin socket, If the receiver is mounted on
a separate chassis to the transmitter). The points are labelled as follows - 1 . Receiver HT if taken from the transmitter supply. 2. 12.6 volts AC for heaters if taken from transmitter supply. 3. Receiver aerial terminal. 4. Chassis and shield earth. 5. See G of STR1. 6. See H of STR1.

The plug P1 is connected to the power supply, pin 3 supplies 6.3 volts AC for heaters, pin 4 supplies 12.6 volts AC for heaters and relay supplies, pin 6 supplies HT at approximately 300 volts DC positive and pin 7 is the common earth return for the various supply voltages.

Hopefully you will not have much trouble in understanding the whys and wherefores of this transmitter. The tuning of the transmitter in use is simplicity itself. Plug a crystal in for 80 metres, set C9 and C10 to maximum capacity and with a dummy load/indicating wattmeter or aerial attached, turn the transmitter HT on. A reading between 40 and 60 mA will be indicated on the plate current meter. Rotate C9 towards minimum capacity and the plate current should reduce and then rise again as you go through resonance of the final tuned circuit. C9 should be adjusted so that the plate current reads in the middle of this dip. Your wattmeter should show a reading of a few watts on its meter. If the meter dips below 40 mA on AM or 50 mA on CW rotate C10 about 30 degrees and redip the plate current with C9. Alternately adjusting C9 and C10 should give you the plate currents specified or if you are using your wattmeter, adjust the transmitter tuning for maximum output, which should be about 7 watts on AM and 10 watts on CW. However, on some aerials particularly if reactive, the tuning may be odd to say the least and in these circumstances an aerial tuning unit may be required.

Should you get no dip in the plate current, check that the oscillator is in fact working by measuring the voltage across R6 - this should be about 1.5 volts with positive to earth. If this is not so check your valve, circuit wiring: and the crystal too, if you have another. Check the voltages around the stage too. If you still have troubles and can find no drive voltage, it is suggested that you approach an amateur with more experience than yourself for a helping hand. It the drive is okay check that the plates of C9 and C10 are not shorting. If they are - like one of the ones used in the prototype - you will have to use a litile gentle persuasion by gently bending the moveable plates so that they do not short throughout their rotation.

The meter M1 is a 2 inch square meter marked "Advance" and is calibrated 0-60. This was most convenient as a maximum plate current of 60 mA in the off tune condition was expected. R13 and M1 form a 0-6 voltmeter across R12. It is necessary to vary the value of R13 until a total current drain of 60 mA flows through the network R12, R13 and M1. To calibrate this meter accurately it is suggested that a multimeter be wired in temporarily in series with thls combination and set to an appropriate meter range. It is then easy
to adjust R13 for a reading on M1 which corresponds to the multimeter current reading.
The semi-break-in section of the transmitter should give no trouble, and any problems are likely to be wiring errors such as connecting the transistors incorrectly into circuit, or incorrect wiring of the mode switch that the short is not removed in the CW position.

This part of the article is already lengthy so it is not possible to give a chassis layout this month. It will, however, follow shortly. It is suggested that a chassis of at least 8 inches $\times 5$ inches $\times 2$ inches be used to construct the transmitter on, and preferably a bit larger to allow plenty of room for some layout mistakes.

Next month the modulator.

## Commercial Kinks

with Ron Fisher VK3OM
3 Fairview Ave.. Gien Waverley. 3150
This month we shall continue our look at the FT101 and in particular the ' $B$ ' model. Talk to a 101 owner and more often than not, the subject of overload by strong local signals will come up. The interesting thing is that often the 101 owner doesn't know what front end overload is. I well remember when I did the revlew of the 101B that appeared in February 1974 Amateur Radio, that front end overload was something I was looking for but did not find. Why are some 101 Bs not subject to this trouble? Well at this point of time I don't know the answer. Have you any thoughts? However for those who do have trouble in this regard here is a simple cure. As I have not tried this out myself, there is no guarantee of Instant success. The originator of the idea is Jack Taylor VK3NS.

Simply locate the 100 K ohm resistor feeding the second gate of the 3SK40M RF stage (R5) and remove it from the board. Now replace It with a 5.6 volt zener diode. A small $1 / 4$ watt type is quite OK. That's all you need do. According to those who have tried this, stations as close as a few hundred metres are now clean copy without the need to use the RF attenuator. Another method that seems to have originated from several sources is to use a UA 741 IC to amplify the AGC voltage to the RF stage. This method was described by Arn, VK5XV, in the South Australian Wireless Institute Journal of April 1975. It has also been published in the Fox Tango Newsletter and is also the subject of a future article for this magazine.
While on the subject of AGC and the 101B, I find the action a bit on the fast side. Some additional capacity ecross the AGC line improves matters and I have found that ten uF with a two thousand ohm resistor in series, connected from either pin 13 of the IF board, or pin 9 of the RF board to ground is ideal. However as AGC decay time is very much a matter of opinion, you should try different amounts of capacity. With smaller amounts of capacity the series resistor should be reduced in proportion.

The FT101B VOX adjustment has been covered in this column in the past, but VOX operation still remains a problem. As the setting of the controls is very critical, it follows that many amateurs just will not bother to use VOX at all. This is a pity as the intelligent use of VOX is one of the real benefits of the sideband mode.

However, things can be improved to a very large extent by a simple change. If the source of transistor Q5 (an MK-10D FET on the audio board PB-1315), is connected direct to ground instead of through the resistor thermistor network, the adjustment of VR3 will become much less critical. Satisfactory operation should occur with VR3 set to about half resistance. Many operators find that the VOX delay is a bit short so while you have the audio board out, replace C23 a .1uF with a .33uF of the same physical type and there will be delay to spare.
Commercial interest: I am at the moment checking out a G3LLL RF clipper on an FT101B and hope to have a full write up on thls unit in print very soon. With the release of the 101E, RF clippers are very much in the news. I hope to be able to write up the 101E in comparison with the B model soon also.

## Afterthoughts

VK/ZL CONTESTS, RESULTS FOR 1974
Corrections (from Jack White ZL2GX) Individual Band Scores:

| 15Mx/Phone | VK2APK | 5815 |
| :--- | :--- | :--- |
|  | VK4VU | 5430 |
|  | VK2XT | 5355 |

## Letters to the Editor

Any opinion expressed under this heading is the individual opinion of the writer end does not necessarlly coincide with that of the Publishers

The Editor.
Dear Sir.
On behalf of the Light Car Club of Australia, Experts Trial organisers, I wish to thank those who participated and who did a remarkable job under the prevailing conditions.

The standard of operation was high ensuring the complete salety of competitors in this highly competitive event. Saturation penetration into the bush by station VK3AWI resulted in complete coverage of 1200 square kilometres of dense bush and range Nine control stallons manned posts up to 7.30 a.m. on Sunday 10.8 .75 atter being placed at 3.00 D.m. Saturday 9.8.75
A big thank you especially to Bob VK3UW who provided equipment and running gear on behalf of the Army. Including a $\mathbf{5 0}$ toot tower, freshly painted and equipped with 4000 watts of floodlighting. Power sources were a Lister 25 kVA and a smallar VW powered 10 kVA generator also courtesy of the Army.

Thank you to the stations who gave up their time and provided the equipment on loan for use at Graytown.

Thank you in alphabetical order: VK3s IZ, MK, UW, VL, AFR. ALS, AMH, AUQ, AUR, BMA, BMD. CCT, YAY, YBC, YFF, YFL, YHR, YID, YJE, YJT; ZAC, ZLK, ZLP, ZMM, ZRS, ZUP, ZVD, ZYG. John Longen and Jenny Roper (LARA).

Steve Gregory VK3ZAZ

# VHF UHF an expanding world 

with Eric Jamieson VK5LP<br>orresion, S.A. 5233

rimes: GMT

## AMATEUR BAND BEACONS

| VKO | VKOMA, Mawson VKOGR, Casey | $\begin{aligned} & 53.100 \\ & 53.200 \end{aligned}$ |
| :---: | :---: | :---: |
| VK1 | VK1RTA, Canberra | 144.475 |
| VK3 | VK3RTG, Vermont | 144.700 |
| VK4 | VKARTL, Townsville | 52.600 |
|  | VK4WI/1, Mt. Mowbullan | 144.400 |
| VK5 | VKSVF, Mt. Lofty | 53.000 |
|  | VKSVF, MI. Lofty | 144.800 |
| VK6 | VK6RTV. Perth | 52.300 |
|  | VK6RTU, Kalgoorlle | 52.350 |
|  | VK6RTW, Albany | 52.950 |
|  | VK6RTW, Albany | 144.500 |
|  | VKBRTV. Perth | 145.000 |
| VK7 | VK7RTX, Devonpont | 144.900 |
| 3D | 3DAA, Suva, Fifl | 52.500 |

A letter comes from Colin VK8CM with some interesting Information about VK8VF, the Darwin beacon, and could do llttie better than let you read that
rmation as it comes.
Pre-cyclone, the 6 metre beacon at VK8VF was dellvering 25 watts from a solld stale transmitter. It was keyed by a digital device which at that time. was arranged to encode the simple ident. signal with which we ware all lamiliar. However, the keying system was designed and built to transpond l.e. It was capable of listening 10 an incoming signal and Iransmitting a algnal report, after a suitable listening pause. Final development, In the hands of Doug, VK3UM. (ex VK8KK), Barry, VK8ZCF and Colin VK8CM, was at the stage of refining the necessary analogue-digital converter, and the provision of suitable voltage levels out of the Rx strip with a sufficiently linear response. The iniention was to commission a system whose responses were of instrument qualliy, so that it could be used by serious amateurs and professional services as a measurement tool in propagation studies. It is easy Io make a device which merely responds to the presence of a signal. Accurate measurement is another thing altogather

We can assume, I think, that the gear suffered one of more lignlning-strikes during the cyclone. As well, the block-house in which the beacon is Installed is less than 100 metres Irom the sea, so that we were not surprised to find the equipment full of sand, tine gravel and salt. The solid state transmitter was washed off and cleaned up and when voltage was applied it fired up without trouble. This must be a tremendous tribute to the workmanship of Peter VK5PV, who built it during his residence in Darwin. The keyer did not escape so IIghtiy. Most of the ICs remained intact, but the keying-matrix and IIne-drivers leeding the matrix were largely wlped out. On the thousand-plus diodes In the matrix, somewhere beiween a third and a half did not survive.
"The antenna survived reasonably well. It conslated of stacked furnstiles on a pipe mast. The mast was destroyed, but the lower turnstle was intact, logether with the insulator-mounting block assembly for the upper one. The Darwin Club has obtalned a 30 foot triangular tower, which will be fixed to the block-house rool, and the turnstlie array re-assembled on a plpe-mast lixed to the top of the tower. Coverage should improve, since the array will be some 25 feat higher than before.
"To gat the beacon on the alr, it has been decided to reinstate the old code-wheel keyer, driven by an NDB nav-aid motor and gear traln. Since this can be made operational quite quickly, it is probable that the beacon can be re-commissioned during October/November 1975.
"Trevor, VK8ZTW has completed a 2 metre beacon and ls presently 'boxing it up'. This will be installed and keyed by the same system.

The iransponder concept has not been abandoned. Some re-design work has been undertaken by VK3UM and once the design is finished, a suitable PCB wlll be made by Colin, VKBCM and con-
atruction and assembly carried oul. A reasonable satimate for re-commissloning of the transpond function would be, I think, mid-1978.
"Potential VHF activity in Darwin is not too good. As far as 1 know, only Barry, VK8DI and mysalf have 6 metre gear. I have no antenna, and no place to put one, in my present temporary quarters. The 2 metre FM net is stlli functioning, but is a little short of 'subscribers'. However, the Radio Club is full of vigour, and I am sure these problems will soon rectity themselves'.
Many thanks, Colln, for that information; I am sure the VHF boys throughout Australla will await the re-commissioning of your beacon with interest. and we all wish you well with your re-esiablishmen: programme. I note with some excitement the establlshment of a 2 metre beacon in Darwin in the future, and there will be plenty of others who will get excited, particularly it eventually some operators at your end will be able to transmit CW and SSB on 144 MHz . How soon before someone has "WAS'" on 2 metres?

## EME REPORT

Via "The Propogator" comes the report that QSL cards were exchanged between VK2AMW and VE7BBG confirming their EME contact on 12.7.75. this beling the first UHF contact between VE and VK and also the first 432 MHz EME contact between these two countries. A second contact was made with VE7BBG on 3.8.76, slgnals peaking to 6 dB above noise. VK2AMW received O-Rs from him. VK2ALU and VK2ZEN got out of bed early for this lest, which started at 20302
SSB signals were heard in the noise immediately after the contact with VE7BBG on 3.8.75, but could not be deciphered. The Drake $2 B$ receiver used as the IF channel is not basically designed for SSB, and copy of this mode would probably be better on a more up-to-dale SSB receiver.
That covers the Dapto Moonbounce report, but what about you other guys around the country who work EME. Surely you all haven't stopped? A repori for inclusion in these pages from all the EME operators and intending operators from time to time would spread the area of interest. What about it chaps?

## THE FM CHANNELS

In a very roundabout way a letter has arrived on my desk detailing some Information on the state of the art in regard to repeaters in Western Australia, an area which does not receive much publicity (whose lault?), and also an area which has little Information golng east to west. However, Will VK6UU writes to fill In the gaps for the moment. and the following is a condensation of his long letter.

Three 2 metre repeaters are at present in use in VK6, with another Insialled awaiting a licence. Perth clty uses Ch . 1 on an escarpment 1200 feet a.s.l. and 25 km SE of Parth, ideal for coastal working. but limited to about 60 km Inland. Runs 25 watts. MCW ident, call sign VKBRAP, and time out set for 5 mins

Albany uses Ch. 2 operating from Mt. Barker 1400 teet a s.l. and 50 km north of Albany. Coverage is 100 km radius, and runs about 40W. Cal!sign VKgrai. A Ch. 4 repeater is installed at Wagin. 200 km south of Perth, location 1300 feet e.s.I. providing circular coverage of 70 km . Runs 12 watts, call sign VKGRAW.

Three other repeaters are planned, the one awaiting licence is on Ch. 2, located at Wireless HIII, 10 km south of Perth, 300 feet. a.s.1., and will fill in the blank spots of Perth Ch. 1. Another site under digcuasion is at Mt. Wells, 110 km SE of Perth, and another at Bunbury 200 km south of Perth.
WIII makes a plea for increased information on the arass of coverage of the various repeaters throughout Australla, and suggests a sultable map In AR could help the varlous travellers whether they go east or west, north or south. What do you think George, VK3HV (ex VK3ASV)?

While stlll on the subject of repeaters, there are an Interesting few lines in "Forward Blas" by Andrew VK1DA, and they are worth 'repeating' here.
"A complaint heard recently was that there is little activity on 2 m FM channels. Yet seldom do I hear anyone calling CO. Saying 'VKiXYA mobile listening on channel is NOT an acceptable form of calling CO.

Pressing the button for half a second and hearing the repeater Ident is NOT an acceplable
way to use the repeater. Unmodulated carriers. while legal on some bands, are downright ANTISOCIAL when transmitted on net channels.
"If you expect people to monitor the repeater channel and reply to your cal's, don't drive them mad with repeater idents caused by your buttonpushing without Ident My reaction to blips is that they are transmitted by flips.
In other words, the absence of intelligence on the carrier imples the absence of Intelligence in the operator. SO - always announce your call sign
If wanting a contact, call CQ ... It testing, say so, and TRY and avoid prime channels". Food tor thought, eh?

And might I add my own comments: Don'l forget to leave a 3 second pause beiween overs to allow someane with an urgent massage to get through, or to quickly call someone else. Also, many long convarsations are carried out between metropolitan stallons via the repeater - wouldn't it be courlesy 10 go to some other channel to conduct such conversations, or better still, why not shift down to the lower end of 2 metres or go to 6 metres, It's just as easy there for stations almost with line of site as so many are in the clties, anyway, there's always a case for making more use of the funeable portions of 6 and 2 metres. Don't be selfish!

## FATHER AND SON TEAM

A word of welcome to David VKSKK, who received his full call sign just in time for his 18th birthday on 17th August Congratulations on such a fine effort. David, and I know from personal contact you will be a very valuable member of the amateur Pralernity. David operates on both HF and VHF which Is what we like to see. David is the son of Keith VKSSV, who also changed his call recently from that of VK5ZMK, at Wasleys. Keith has been known for years for his whopping big signal on 6 and 2 metres, and despile the full call, still plans to operate VHF as well. This tather and son team celebrated their new call signs by really getting Into the recent RD Contest, and between them notched up 1570 points for VK5. Truly valuable people to have around, and we wish them both a very happy period comblning HF and VHF.

## METEOR SCATTER

Being little to report on 6 and 2 metres this month, which isn't unusual. I feel the several paragraphs of Joe, VK7ZGJ, in "QRM" on the subject of meteor scatter should be of interest, as it reters to meteors and why you have to get up ac early in the mornIngs for best results.

Meteors are small bodies, most of which orbit the sun. Their orbital velocity lies between 11.3 $\mathrm{km} / \mathrm{s}$ (minimum velocity for a solar orbit) and 72 $\mathrm{km} / \mathrm{s}$ (the velocity required to escape soiar gravity) The measured mean velocily is $\mathbf{4 0} \mathrm{km} / \mathrm{s}$. On the other hand, the orbital velocity of the earth is approx. $30 \mathrm{~km} / \mathrm{s}$

At 0600 local time at the point of observation, the orbital velocity of the earth is directed towards the zenith, and the relative velocity of the earth is directed towards the zenlth 100 , and the relative valocity of meteors in relation to the almosphere lies between 41 and $102 \mathrm{~km} / \mathrm{s}$ with mean value of 70 $\mathrm{km} / \mathrm{s}$. At 1800 local time at the point of observation the orbital velocity of the earth is directed towards the nadir, and some metors are unable to catch up with it. while others arrive at velocities between 0 and $42 \mathrm{~km} / \mathrm{s}$, with a mean value of $10 \mathrm{~km} / \mathrm{s}$. Therefore, the number of meteors encountered and their velocity are considerably greater at 0600 than at 1800 .

The deceleration of meteors by the relatively low layers of the atmosphere produces intense heat. which causes thal combustion at a greater height and more rapidly it their initial velocity was greater. The combustion products are ionised and form a mateoric trall that is capable of reflecting radio waves. Very thick tralls can be seen with the naked eye at the moment of their formation, meteoric ionisation occurs at altitudes belween 80 and 100 km , with a maximum ionisation occurring immediately after the trail formation allitudes between, has been formed; the trail then beging to expand and to diffuse outwards. Its election density decreases and it is no longer capable of rellecting high frequencles.
At the same time, the trail is distorted by atmosphere dislurbances. In the case of a large meteor, the head of the trall reflects a considerable amount of energy. Because of the motion involved, this reflection occurs with a change in frequency due 10 Doppler effect. Waves reflected by the head of the trall Interfere with those rellected by the body
at the trall, thereby ascends again. On 52 MHz it sounds like a 'ping'. Now you know why one carries out metor scatter contacts at such an unearthly hour'". Thank you, Joe.
the vks vhf group field day

## OBJECT

The object of the field day is to encourage the use of portable mobile operation in South Australla and Australla on bands allocated for VHF use ( 52 MHz above).

## DATE

Saturday and Sunday Bith and 7th December, 1975. DURATION
Section 1-24 hours duration from 0600Z on Saturday 8.12 .75 to 07002 Sunday 7.12.75. A break from 0300 to 0400 on Sunday 7.12.75.
Section 2 is a 6 hour duration and has two Sectlons of each 3 hours. First section 0000Z $10 \mathbf{0 3 0 0 Z}$. Second section 04002 to 07002.

## DEFINITIONS

## Portable Station

Portable stations must not be established on site with any equipment 24 hours prior to the start of the fleld day.
All power used for the operation of the station, must be delivered from an external power source, other than the normal electriclty supply malns.
Moblle station
Must operate with equipment fitted within or on the vehicle, this includes antenna systems, power etc.
If a normally mobile atation operates from a stationary location, the station will be classed as being a portable station for scoring purposes.

## Fized Stations

May only contact Portable or Moblle atations. Fixed station to fixed atation contacta cannot be clalmed for scoring.
Single operators will compete againat other single operators - they will not be required to compete against multi-operator stations.
Multi-operator stations are permitted, but only one operator may operate at any one lime for the purpose of scoring. l.e. It is not permilted to have a contact in progress on more than one band at a lime.
scoring
Score 1 polnt/2 kllometres but for those contacts greater than 1000 kllometres 1 point/10 kilometres additional to the above.
Oscar Scoring is by equivalent Direct distance (see general note).
For contacle on:
6 metres multiply distance score by 1
2 metres F3 multiply distance score by 1
2 metres other modes multiply distance score by 3
432 MHz multiply distance score by 4
578 MHz multiply distance score by 5
all above multiply diatance score by 8
For Oecar satellita:
multiply distance score by 2

## GENERAL

Any stallon may be worked more than once on the same band provided that a pariod of two hours has elapsed. However cross band operation is permitted and la deamed as a separate contact anc subject to the two hour rule. Thus you may wors a station on a band then work that station crois band. To work again the same procedure two hours must elapse again.

Operation va EARTHBOUND rapaalera or transLators for scoring is nat permilted, but thay are allowed for Ilalson to establish other conlacts.
No cross band operation on frequencles of 10 m and 2 m (i.e. Oscars mode A trequencies, etc.) are allowed although full Oscar facilities are to be encouraged.
All stations must operate within the terms of thelf licence.

Stations working the 24 hour duration are also elliglble for the 8 hour duration. Stations working the 8 hour duration may submit logs for either or both, first or second sessions of the 6 hour duration. The 24 hour duration stations are not eligible for either first or second sessions of the 8 hour duration separately but if submitting section 2 log muat be for full 6 hours.
LOG8
(1) Mark clearly which Sectlon or session you are competing in.
(2) A copy of your log will be required for scoring purposes and must contain information such as -

## Time: in GMT.

Location of station worked.
Frequency/bands used during the field day. Modes of operation used dufing the field day.
Log/QSO are as live Ilgure group (or 6 with CW) of RS(T) and a contact number commencing at 001 and Increasing by one number per contact.
The VHF Group Committee are the Judges. The Judges' decislons are final and no correspondence wIII be entered into.
Send your logs with an attached note giving detaile of:

Station locatlon, equipment used, number of operators, polnts clalmed, sections and/or sessions entered, and signed by the holder of the callsign of the station. Any constructlve suggestions for improvement to the Contest will be welcome.
All logs to be recelved no later than 5.1.76, to be sent to:

Mr. J. INGHAM VK5KG
37 Second Avenue
Sefton Park, SA 5083
That will have to do for this month. Closing with the thought for the month: "Concelt is God's gift to little men".

The Volce in the Hills

## Contests <br> with Jim Payne, VK3AZT

Federal Contest Manager.
Box 67, East Melbourne. Vic., 3002

## CONTEST CALENDAA

## Oclober

4-5 VK/ZL Oceanic phone
11-12 VK-ZL Oceanic CW
RSGB $21 / 28 \mathrm{MHz}$ phone
15-16 YL Annlversary CW party
17-19 Scouls Jamboree
18-19 RSGB 7 MHz CW
25-26 CQ wW DX phone
November

| 1-2 | RSGB 7 MHz phone |
| :--- | :--- |
| 6-7 | YL Annlvarsary phane party |
| $8-9$ | European RTTY DX |
| 9 | CZechoslovakian |
| 8-9 | ARRL CW sweepstakes |
| $22-23$ | ARRL phone sweepstakes |
| $29-30$ | CQ WW DX CW |

## YL ANNIVERBARY PARTY

CW 1800 GMT Wednesday to 1800 GMT Thursday.
Phone 1800 GMT Thursday to 1800 GMT Friday.
Thursday is 36th YLRL contest for YLs only. Contacts with OM stations do not count. All bands. CW \& phone are separate contests (see contest calendar). Scoring is one point per QSO between stations within an ARRL section, and between DX stations. Two points if between DX and ARRL saction stations. Same station can be worked only once. Multiplier is number of ARRL sections and DX countrles worked. Also a low power multiplier of 1.25 it Input is 150 watts or less, 350 PEP on SSB.

18t, 2nd and 3rd in VK get centificates. Two gold cups for winners phone and CW contests. Also a pleque for highest comblned CW/phone score. Logs to Myrtle Cunningham, WABISY, 1105 East Accasia Ave., EL SEGUNDO, CA 90245 by November 24.

## CO WW DX CONTEST

Frank WiWY advises that there are no changes to last year's rules.

## REMEMBRANCE DAY CONTEST

No doubi as I write these notes many other hams or their XYLs perhaps, are writing up their contest logs. About 120 had arrived by Filday (August 22) and there are some line scores. However, some country members have complained bitterly and the following letter explains the situation.

[^9]discriminatory nature of rule 5 (e). I must once again take up the cudgel on behalt of the country operator. I understand the reasoning behind all of these rules I think but do believe that these 'concessional' rules should be grouped in their own section.
Consider the position of myself and both of us country stations. 52 MHz is a no-no, except under inversion conditions. 7 MHz sometimas opens for a couple of hours to the city. certainly not at that itme of night. For all practical purposes the situation on 21,27 and 28 MHz ls the same as applles on 52 MHz , none.
Which leaves us 1.8 , I ask you, what chance does a country (distant) station have of being heard In the cliy (and that is where the numbers are) between 0300 and 0759 ? Try it sometime.

To relterate; I can appreciate the reason for inclusion of the above, but give us country blokes a chance. We'd like to win the contest too.
P8. You will notice I went to bed between 1710 and 2015. If you dan't know why. after reading the above, I have been westing my time."

Falr enough, but the RD as I understand it is a team effort within each call area, and the main idea is to permit and promote every opportunity for making QSOs. There is another contest for individual effort and for contestants having the necessary interest, and competence, perhaps a remote country OTH may provide some advantage Anyway, one cannot plasese evarytody and the RD rules and ecoring are too complex alraady.
The VE/W contast rules may be a pointer to a sultable alternative and therefore are reproduced here:
CW - 0000 to 2400 GMT Sat. Sept. 20. Phone 0000 to 2400 GMT Sun. Sept. 21.
The VE/VOs will be working the W/Ks in the "General" portion of the US bands in this one.
This year's contest is divided Into two classes CW and phone, with separate operating times for each. Therefore each is logged separately.
Only 18 hours total oparating ilme may be used In the 24 hour perlod of each contest. The minimum off perlod is 15 minutes, which must be shown on log.

The same station may be worked on each band for OSO end multipller credit. There two types of entries, single and multi-operator.
Exchange: RS (T), year lirst licensed and QTH. ARRL section for W/K, geographical aress for VE/VO (9 provinces plus Nild., Lab., Yukon, N.W.T.).
Scoring: Two polnts per QSO, VE/VOs use US ARRL sections worked on each band for their multiplier. W/Ks use Canadian areas, (max. of 13 on each band). In addition, a multiplier of 10 has been instifuted for W/Ks to equalize the W/VE scores. (QSOs $\times$ area multiplier $\times 10=$ Final Score.
Awards: Certificates to the top scorers In each class In each section it there are at least 3 entries for that section (Min. of 25 OSOs).
Summary and check sheets are a must as is a declaration that all rules and regulations have been observed. A dupe check sheet is required for logs with 200 or more contacts. Reduction of clalmed score by 2 per cent or more because of duplicate contacts and etc may mean disqualificalon.
Fred, VK3ARK, wrote that he enjoyed the 1975 contest and commented "that with a bit of luck we would get our 1000 logs'". Roy, VK4RU, has sent a chack log, all CW, for 92 contacts. Glen, VK2AGM, asked "what happened to the VKis this year? Maybe they were around but I only worked iwo'. Here is a completely acceptable comment. 'Sorry I didn't get more contacts but I had to work most of the night and day. I enjoyed the couple of hours available". That came from the Rev. Ron, VK3AIS. Finally, a comment from Wayne, VK4AXJ who claims 332 points for 50 CW contacts. "My first contest. I have only had a licence this year. I share my father's station, hls call is VK4XJ. I am 15 years old'. A certificate for a fine effort will reach you shortly. Wayne.
Next years RD? Peter, VK3QI, concluded hls Intereating lelter "'. .but the problem of novices is a ripper which I would not have for all the tea in. .'.

## BERU CONTEST RESULTS

The news that the 1975 Contest would be the last under the then existing rules prompted a large number of VKs to take part, in conditions that could only be described as fair and to send ir. logs. 26 in a!l.

Results were:

| Placing | Call | Score |
| :---: | :--- | ---: |
| 16 | VK3NR | 2902 |
| 23 | VK2BPN | 2520 |
| 29 | VK4XA | 2256 |
| 38 | VK7CH | 1728 |
| 43 | VK3ZC | 1470 |
| 44 | VK7BC | 1485 |
| 51 | VK6RU | 1350 |
| 52 | VK2BJL | 1319 |
| 58 | VK2VN | 1240 |
| 68 | VK5BO | 1005 |
| 77 | VK2NS | 821 |
| 79 | VK4KX | 795 |
| 81 | VK7RY | 775 |
| 85 | VK4MY | 645 |
| 87 | VK2IV | 638 |
| 89 | VK3XB | 635 |
| 92 | VK5KJ | 560 |
| 94 | VK5KL | 550 |
| 96 | VK2HC | 505 |
| 97 | VK3YD | 445 |
| 102 | VK4AK | 330 |
| 104 | VK5RG | 255 |
| 105 | VK5KO | 240 |
| 106 | VK2HW | 215 |
| 109 | VK3RJ | 100 |
| 112 | VK5HO | 25 |

AUSTRALIAN AWARDS
Snow Campbell VK3MR wins the silver medallion for the leading VK, while F. E. Nlcholls, VK7RY. takes out the bronze medallion for middle placing In the VK field.
The great majority of entrants expressed opinions against any significant changes to the contest, and although no lirm decision for 1976 has been made. there may yet be little change from the very satisfactory competition rules and scoring sysiem of the past


## YO AWARDS PROGRAMME

Romanlan Radioamateur Federation displays an interesting awards programme. YO awards are issued for different modes: CW, AM, SSB, RTTY or mixed and for difterent bands as well: 3.5, 7. 14, 21. 28 MHz , any combination being considered as a separate award. Valid contacts after 23rd August 1949. The application which is of GCR kind (no cards are needed) and a tee of 7 IRCs or the equivalent foreign currency ( $\$ 1.00$ ) should be mailed to Romanian Radioamateur Federation. P.O. Box 1395, Bucharest 5, Romania.
"YO-BZ" YO - BALCANS ZONE OF PEACE
This award is issued for working rado amateur stations from LZ, SV, TA, YO, YU, ZA as follows:
"YO-DR" YO - DANUBE RIVER
This award is issued for working on two bands different stations located in countries along the river Danube: FR of Germany, Austria. Czechoslovakia, Hungary. Yugoslavia. Bulgaria, Romania. USSR as follows:

No. of QSOs from each country worked 2
No. of YO OSOs
3
At least 3 QSOs out of the abovementioned contacts must be with stations located in cities just on the Danube river.
"YO-2OZ" YO - ZONE 20
This award is Issued for working countries located in zone 20: Bulgaria, Greece, Cyprus, Israel, Jordan, Lebanon, Romanla, Syria and Turkey, as tollows:

Class of the award Number of countries

| 1 | 6 |
| :---: | :---: |
| $I I$ | 4 |
| $I I I$ | 2 |

in all cases Romania is obllgatory to be among the worked countries.
"YO-25M" YO - 25 deg. MERIDIAN
This award is issued for working the following countries situated on the meridian 25 deg. East: Norway, Finland, USSR, Romania, Bulgaria, Greace, Libya, Arab Republic of Egypt, Sudan, Centratrican Republic, Zaire, Rwanda, Burundi. Zambia,. Rhodesia. Botswana, Republic of South Alrica, as tollows:

$$
\begin{array}{lr}
\text { Class I } & 12 \text { countrles } \\
\text { Class II } & 8 \text { countries } \\
\text { Class III } & 5 \text { countries }
\end{array}
$$

In all cases Romania is obligatory to be among the worked countries.
"YO-AEP" YO - 45 deg. PARALLEL
This award is issued for working the following countries situated on the parallel 45 deg. North: USA, Canada, Is. of St. Pierre and Miquelon, France, Italy, Yugoslavia, Romania, USSR, Peoples Republic of Mongolia, Peoples Republic of China, Japan, as follows:

$$
\begin{array}{ll}
\text { Class I } & 8 \text { countries } \\
\text { Class II } & 6 \text { countries } \\
\text { Class III } & 5 \text { countries }
\end{array}
$$

In all cases Romania is obligatory to be among the worked countries.
Any further information will be supplied by the Romanlan Radioamateur Federation.

Please note that the recent increases in Postal charges make it very difficult to keep the Awards programme goling without subsidy.
Accordingly, return postage with all correspondence would be appreciated.

It registration of cards is required, a sufficient remittance must be included with the cards to cover the cost. otherwise ordinary mall will be used.

## QSP

## WISDOM

Three tidblis adopted from ARNS, June 1975. 'In almost every QSO truth is the lirst victim". "They always say there is nothing busier than an Ide rumour. Speaking of an idele person there is always. "" "If you are studying for your AOCP remember that hard work never killed anyone; on the other hand resting didn't either".

## HIGH PERFORMANCE

Both kits employ low noise UHF MOSFETS, and the converter has variable IF gain.

NOTE-The converter is designed for use in a transverter and does nol include an oscillator.

IPSWICH AND DISTRICT RADIO CLUB
C/- 20 Peacock Street, Leichhardt, Old. 4305

## 2 METRE CONVERTERS and PREAMPLIFIERS

| CONVERTER: KIT | $\$ 10$ |
| ---: | ---: |
| Constructed | $\$ 20$ |
| PREAISP: KIT | $\$ 6$ |
| Constructed | $\$ 10$ |
| P/P | $\mathbf{5 0 c}$ |



## SCAN-HI рт..tт.

Telephnone: 421429
45 Church Street, Abbotsford, 3067
From small portable to large industrial, we're MELBOURNE'S LARGEST GENERATOR SPECIALISTS AND AUTHORISED HONDA DISTRIBUTORS

Various sizes to suit your needs. send coupon
for fully illustrated brochure

Name
Address

Phone No
Size of Unit.

MOST MODERN DAY TRANSCEIVERS need a proper termination of 50 oh ms in order to function satisfactorily. The KW E-Z MATCH is designed to transform a high impedance or mismatched transmission line to 50 ohms resistive. The circuitry and components used allow this to be done with a minimum loss. Modern transmitters and transceivers will meet their spurious and intermod specifications only if worked into a proper load. A Low Pass Filier is almost useless for harmonic reduction if it is not terminated in a proper impedance.

## KW E-Z MATCH

The KW E-Z Match will match $30-2500$ ohms on 20. 15 and 10 metres 80 and 40 metres on 80 and 40 metres. Impedances outside these limits can also be matched depending on the magnitude of the reactive component. Transmitters with power inputs as high as $1 / 2$ KW PEP can be used if the natural SWR is less than 1.8:1 on a 50 ohm line. For high impedance and end fed antennas the sate maximum transmitter input.
Dower is 350 watts PEP. The limitation is basically one of peak RF voltage and is dependent on the reactive component of the load. Tuning is simple and siraightforward. Connections are provided for balanced feeders to the antenna and a UHF coaxial connector (S0239) for input. There is also provision for mounting an additional coax connector when the antenna feedline is coaxial.
$\$ 67.80$


KW-107 SUPERMATCH
$\$ 187.50$
The KW 107 SUPERMATCH combines the eatures of the famous KW E-Z Match, the KW Antenna Switch, the KW Cummy Load and the KW103 SWR/PWR Meter Plug-in binding post connectors are provided lor balanced feeders. as well as 2 SO-239 connectors for coaxial feed lines. Transmitters with power inputs as high as $1 / 2 \mathrm{KW}$ PEP can be used if the nalural SWR is less than 1.8:1 (50 ohms line). For high impedance, end fed an-
tennas, the power input should be limited to 350 watts PEP. The proven KW E-Z Match circuitry is used in the SUPERMATCH and will efficiently match complex antenna fed impedance from approximately 30 to 2500 ohms on 20, 15 and 10 metres, and 30 to 1000 ohms on 40 and 80 metres. A small adjustment in teeder length will usually allow a match to be made.



$\qquad$


Also available: KW-160 160m Matcher, KW-109 High Power Supermatch, KW Co-Ax Switch, KW 5-Section Low Pass Filter, KW Dummy Load, KW-2000E Transceiver 160-10m (2 only to clear, $\$ 490$ ), KW-1000 Linear Amplifier 80-10m. $\$ 475$,

All prices include Sales Tax. Freight extra. Prices and Specifications subiect to change.

## Key Section <br> with Deane Blackman VK3TX Box 382. Clayton, vic., 3168

I promised some time ago to match the article on Russian morse with one on Japanese morse, and here it is.

The way in which the Japanese write their langusage, and hence send it by telegraphy, differs very considerably from English. The difference is much more than is apparent from the very unfamiliar script, and an understanding of the nature of this difference is necessary to realise the basis of the Japanese telegraph code.
The real language of any race ls its spoken language. The business of writing It down, although of incalculable value for transmitting Information between people separate in space or time, is secondary. The way in which different languages have elected to write down their spoken words varies greatly. All European languages now use the system of a small set of characters (the alphabet, so called in English) each representing roughly one sound. These characters are divided into two classes, called vowels and consonants. The pronounceable bits of words, the syllables, are then generally represented by consonant-vowel combinations of these characters (letters).
However natural this may seem to speakers of English (and it certainly Is a very efficient method (of writing) there are other means of putting on paper the spoken words of a language. The opposite extreme to English Is probably represented by Chinese. Roughly speaking. In Chinese there is a separate " 1 enter", a little picture called an ideograph, for each word required. The inherent dipflculty of this scheme for English, which boasts of half a million words, is clear. There are far fewer words In Chinese, but there are still over 20,000 ideographs. Even a moderately educated


$N$
$\overbrace{}^{\prime \prime}$




person will not know all of these in the same way as even a moderately well educated person will use. perhaps only a tenth of the words available to him In English. One advantage of the Ideograph system is that, being quite unrelated to the phonetics, although I may sound the word which I associate with a particular ideograph quite differently from you the meaning of the symbols remains the same for both of us and we can write to one another even though we may not be able to talk to one another. This situation Is quite familiar. If I send 'OSL 599'", the other chap will read that in his own language, even though I think of it as having the English meaning "I acknowledge receipt of your report RST 599".

In part. Japanese is similar to Chinese in its script. Written Japanese does represent the spoken language by Ideographs, only some of which have the same meaning in Chinese

In part, though, Japanese has broken away from this system and in lis writing uses as well as the ideographs, a form of syllabic writing. In syllable scripts, of which Japanese is not the only example, the sounds which in English we would represent by the letter combinations "TA", "TE". "TO" etc. are each represented by a single special symbol of their own. English has almost no examples of such usage, and perhaps the only one which is not confusing is the use of " $\&$ " for "AND". Japanese, like English, has five vowels and a dozen or so consonants so it is clear that there will be quite a number of symbols needed to represent the various sounds. In fact there are in Japanese nearly 80 different sounds.

TELEGRAPHY.

If you look al a bil of Japanese writing. then you will see a mixture of ideographs and of words "spelled" out in syilabic form. The symbols representing the syllables the Japanese call the "KANA". There is more than one Kana. The one which has become generally used since 1945 is called the Hiragana (for -gana read -kana), and is a sort of Japanese cursive script. The kana I am going to describe here is a rather more formal script. called the Katakana, and is used for domestic telegrams and other purposes.

The Japanese have economised somewhat, in order to reduce the number of different symbols in the Katakana, by a ruse. There are 48 basic Kana which represent the sound of the English letters W. R, Y, M, H, N, T (usually). $S$, and $K$ with the five vowels $A$. $E, I$. $O$, and $U$. Plus the vowels themselves and the isolated letter $N$. Each of these sounds (consonant plus vowel, and the single ones) has a separate character to represent it. I will mention the complication associated with " $T$ " in a moment. There are a further 25 sounds to be represented, being those of P, B, D. Z (or sometimes T) and $G$ combined with the live vowels. These sounds are represented by adding to one of the 48 basic Kana one or two diacritical marks - either '', which is called the Nigori, or by ${ }^{\circ}$, which is called the Hannigori.

If you are still with me the two tables which show the basic Kana (table 1) and the modified Kana (lable 2) may be less puzzling. Laid out there, in my inexpert scripl, are the 73 members of the Kana and some added marks

Given this method representing the language it is of course natural to develop telegraph characters to stand for the Kana. The dash-dot equivalents of the basic 48 Kana are included in Table 1. With 48 characters to be represented instead of 26 in English. the number of units (dashes or dots) in each character is on average more. The additional Kana in Table 2 are sent by using a special code symbol for the diacritical mark in conJunction with one of the basic Kana from Table 1. I would guess that the mark is sent first.

It is pretty obvious how the above system operates with hand keying. though clearly both parties have to know it. I understand that teleprinters which operate in the Kata Kana are widely used, certainly for internal telegraph Irallic and for all I know, for diplomatic traffic also. But the recognised alphabets for the international circults are the morse tamiliar here (not the American varlety) and an agreed Roman alphabet (the one in which this is written) for use on teleprinters. The Kana symbols can be represented as combinations of Roman letters as I have done in the tables, so that a text written in the Kata Kana can be transliterated into Roman letter pairs and these sent by the standard teleprinter. The Japanese call this representation of their language "Romanji". To lllustrate the various methods of writing I have described, figure 1 shows the word "telephone" written in Japanese in four different ways - ideographically, using the Kata Kana, using the Hiragana, and tinally in Romanji. The iwo syllables, incidentally, mean "electricity" and 'speaking'. Hence 'telephone'.
$心$ clear up a couple of details I skipped over. the preteired forms of "TI" and "Tu" are "Chi" and "Tsu", these representing the sounds better. For the same reason " Si " is represented by "Shi" and "Hu" by "Fu" and the forms "Wi". "We" and "Wo". I think are out of use. The torms "Ya" etc. make combination symbols with other Kana - but perhaps that is getting a blt away from the problems of telegraphy. You will notice, though, that the letters ' $L$ ". " $Q$ ". " $V$ " and " $X$ '" do not appear at all in the language. The absence of "L" especially makes the representation of words like "Ireland" difficult. In Romanji, "Ireland" becomes "A-I-RU-N-DO'

On the distinct. though apparently related. problem of transmitting Chinese by telegraphy, 1 have not a great deal of information. So far as 1 have been able to determine, Chinese ideographs are represented by numerical groups and it is these groups which are transmitted. One informant told me that it is not necessary for you to do this - at least for telegrams. You hand in your text in ideograph form, and the post office staff convert it into numbers from a standard lexicon they have. I suppose the stall at the other end write it back Into ideographs for your addressee.
Many people have helped me with material for this article. In particular VK3IZ, VK3TJ, Peter

# COPAL <br> 24-HOUR DIGITAL CLOCKS 

## CLEARLY VISIBLE FIGURES, INSTANT READABILITY, ACCURATE



MODEL T. 7 - BATTERY POWERED ALARM CLOCK
A clock that will operate anywhere and does not clutter up the room with a power cord It is accurately controlled by a tuning fork operating at 400 Hz and running from a single size ' $D$ ' cell with a lite of approx one year. The alarm can be set 24 hours ahead. Ivory colour.

PRICE $\$ 29.95$


MODEL 707 - AC DAY \& DATE ALARM CLOCK
A unique Desk/Table calendar model combining utility and beauty. Built-in neon lamp for ease of reading at night. 230 V 50 Hz AC . Available in white

PRICE $\$ 36.00$


MODEL 227 ECONOMY MODEL ALARM CLOCK
A desk/table clock of modern design Available In white with a built-in neon lamp for ease of reading at night. 230 V 50 Hz $A C$.

## PRICE $\$ 17.95$



MODEL 703 REPEATER ALARM CLOCK
Modern design desk clock with an alarm which repeats until turned oH. Available in green. 230V 50 Hz . AC.

PRICE $\mathbf{5 2 2 . 5 0}$
MODEL 801 WALL MOUNT CLOCK
Large, easy to read figures. 230 V 50 Hz AC Can also be used as a very large desk clock

## PRICE $\$ 68.00$

Copal Clocks come from the world's largest and most advanced producer of digital clocks and movements
12-HOUR TYPES AVAILABLE ON ORDER.
All prices include Sales Tax. Freight extra Prices and specifications subject to change Allow $\$ 2.50$ for postage and insurance within Ausiralia

## bel ELECTRONIC SERVICES

60 SHANNON STREET, BOX HILL NORTH, 3129
Phone: 89-2213

Hocker of the Law School at Monash University. and the American Cryptogram Association, to whom I extend my thanks.

## 20 Years Ago

with Ron Fisher VK3OM

## OCTOBER 1955

Horizons Ahead: The editorial page of the October 1955 issue of Amateur Radio made the rather startling suggestion that perhaps we should be looking towards space for our future communications. Of course artificial satellites were still in the realms of science fiction, so the moon was the suggested medium. A tew Australian amateurs have in the nterim been succesful in doing Just this. Satellites nowever have made the job easy for the average amateur. What does the next twenty years hold in store for us. In 1955 most amateurs were thinking of more immediate problems like TVI. Hans Ruckert. JK2AOU, gave us food for thought with his article. A Transmitter, with Low Harmonic Output. Hans used high selectivity and double tuned circuits between all stages.
The Extended Lazy H Antenna: Wal Salmon, VK2SA. showed how to modily an extended double zepp to give more gain as vell as multiband operation. Of course Wal is still producing new ideas on antennas as reference to recent issues of AR will show. Band Spreading and all That: A down to earth article on coil calculations winding and determining :he right amount of coverage for your favourte amateur band. V. J. McMillan VK2AWN showeu just how it could be done. Skeleton Slot Antennas were very much the in thing and Don Knock, VK2NO, 'ollowed up an earlier article with more application ideas.
The Geloso Pi-Coupler Tank Coil was the subject of a Trade review. No doubt hundreds of these were used in transmitters with the companion VFO. The idea of using VOX with an AM transmitter seems strange, however it was trled with some success. N. L. Southwell, VK22F, showed how any relay sontrolled transmitter could be VOX controlled with anti-lrip and all.

The A 11 Models Exhibition held every three years in the Exhibition Buildings Melbourne was an Ideal siace to demonstrate Amateur Radio to the public. A full description of the 1955 WIA stand complete with photo appeared in the October 1955 AR
Robert Black, VK2QZ, presented some statistics on the incidence of BCl in the Sydney area, and n so doing tormed a tew conclusions on how we might fare when television was with us.
Note that I received my first mention as a mem. zer of the Technical staff of AR. Apart from a few years around the mid 1960's I have been al it ever since.

## ATTENTION

## FT101 OWNERS

At last a distortion-tree RF Clipper. Fits in minutes and really works. Yaesu SSB Filter fitted. Only tor FT 101. Gives up to 6 times fitted. Only for Fr 101. Gives up to 6 times or more effeclive talk power gain plus extra
RX selectivity and gain - not to be conRX selectivity and gain - not to be con-
fused with audio type distortion producing fused with audio type di
cllppers. or compressors.
cllppers. or compressors.
Price: $£ 45$ glerling, air post paid.
Send for details:
G3LLL, HOLDINGS LTD.
39/41 Mincing Lane, Blackburn BB2
2AF, England

## Trade Review

Scalar Distributors Piy. Lid have announced the availabllity of 4 channel low loss transmitter combiners which allow simultaneous operation of tour transmitters into a single broad-band antenna. They are available in frequency ranges from $145-174 \mathrm{MHz}$ and $450-512 \mathrm{MHz}$. The power limits are around 125 watts with a minimum frequency separation of 30 kHz (VHF) and 75 kHz (UHF).

Also available are new style 2100 series switched RF attenuators. The new serles provide switched attenuation from 1 to 100 dB in steps of 1 dB . Models operate from DC to 250 MHz with elther 50 or 75 ohm characteristic impedance

Full iescriptive literature is avallable.

## IONOSPHERIC PREDICTIONS

WITH LEN POYMTER VKSZGP
In presenting the predictions for October, I am trying a new format that hopefully will give both Eastern and Western path openings, comprising both lirst "F" layer and mixed lirst and second mode. The lower symbol being Eastern VK, the upper symbol being the Western VK predictions. I am hoping with the small print to achieve semi-bap type lines to enable some ease in reading.

For this month we will try to show some interesting path openings, and introducing 80 m to the list for those interested. All times are universal times.

At this period of the cycle "The crystal ball" is the order of the day. It being almost Impossible to be even marginally correct. The daily sunspot variations are rising significantly at the time of writing. The July mean of 28.3 will probably be endeeded by August. early August the solar flux reached 125 and slowly subsided to around the high 70 mark.

For those following the solar flux and " $A$ '" index ex WWV, and keeping records, it might pay to arrange your records in solar rotation periods. The sun rotates approximataly every 27 days. Perlod 1943 slarts on September 30, period 1944 on October 27. From your records it is handy to see the recurring events and be in the position to take advantage of the good periods and watch TV or lake the YL or XYL out in the bad periods.

Latest Zurich Observatory figures show July prov. mean of 28.3. First smoothed mean lor January ' 75 as 23. Predictions up to Decembar ' 75 have been raised approximately 4 polnls. Informed opinion still rates March ' 76 as the botlom, the way the trend continues they could well be right.

There is quite a deal of comment around the world regarding the large quantily of geomagnetic storms over the past iwo years. From my short records it certalnly shows. The almost monotonous pise and fall of solar activity and particte radlation has its insultable elfect on DX over past year.

At the time of writing. "The giant X-ray" source observed by satellite and noted in the press has been detacted in VK, however no significant change has been noticed In propagation conditions to date.

1 would be pleased to have any comments from those who use the predictions as to their accuracy. and to the method of presentation. More so, I would be mosi Interested to hear from DXers who note ang abnormal behaviour of any of the bands at any partlcular time. It will greatly assist me collate conditions against my indices. I am slowly building up quite elaborate records of solar flux and the " $A$ " index. The latter from three sources, namely WWV. locally from Melbourne and the world mean.

When charted along with the daily sunspot number, the whole effort looks worthwhile, however I only have one avid worker feeding back band conditions. I hope by the end of this year to have some worthwhile contribution to the do-it-yourself, prediction expert.

Just a word in closing. October looks Interesting as there could be some 28 MHz openings and perhaps 21 MHz could show some life. Try giving a call when the band appears io be dead. The other guy could well be tuning. It's surprising how much DX has been wopked on an otherwise dead band. Don't forget, your comments please.

## NOTE8:

Each column:
Upper row \& or \& from Westarn VK
Lower row *- or from Eastem VK

- or *- possible on some days, but not more than 50 per cent of the month.
\& or $\bigcirc$ - possible on at least half of the month using first and/or second $F$ modes some days will be the best times only.
Prediclians courtasy I.P.S. Sydney.
$\begin{array}{lllllllllllllllll} & 00 & 02 & 04 & 06 & 08 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24\end{array}$


21

3.5
$\diamond$







Since the first LARA article appeared In last month＇s Issue of AR，state LARA groups have flourlshed in VK4 and VKS．It is hoped that notes from these two groups will appear in next month＇s AR．Interest In other states has steadily Increased，and LARA will be truly Australla－wide within the next few months．

LARA akeds are becoming vary popular with licenced lady amateurs and SWL＇s，however we have been informed that in one or two cases we have been gulty of＂ungentlemanly＂behaviour by holding LARA akeds on a frequency and at a time when it is normally used by another net．We apol－ ogise for any inconvenience LARA skeds have caused．

The skeds are held at； 8.00 p．m．EAST，Monday evenings on 3650 kHz plus／minus QRM and 11.30 a．m．EAST，Sunday momings on 7065 kHz plus／minus QRM．

## VICTORIAN DIVIBION NEWB

The second General Meeting of LARA（Vic）took place on August 23，1975．It was decided at the meeting to produce a quarterly LARA（Vic）news－ letter to be sent to all LARA members and Interested groups．The newsletter will contain a message from the Victorlan President，editorial comment，news of future LARA events，proposed LARA Involvement in amateur activities such as conventions and ralles． a calender detalling future LARA fixtures，detaile of the following three general meetings，memberahip forms and articles of general interest．

To meet general administrative expenses and the cost of the newalatter，an annual membership fee of $\$ 2.00$ will be levied from each member．If the newsletter is not required（as in the case of an as－ sociate member whose wife／girifiend is a full mem－ ber of LARA（VIc）the annual membership fee will be $\$ 1.00$ ．

The LARA foxhunt hald on August 3，was a great success．Congratulations to Irene Robinson and OM for a series of halr－zalsing hunts and to Jean Truebridge and team member VK3 YAP for their excellent effort in winning．The next LARA foxhunt will be held on October 28．Details may be obtalned from the secretary．

A delegation of LARA（VIc）committee members will ettend the South West Zone convention over the weakend of October 4／5，and the Warrnambool Hamfest over the weekend of November 1／2．Ladies interested in LARA In those aress are welcome to come and have a chat to us about LARA and find out＂what＇s in It for them＂
For any Information on Lara activities contact The Secretary，C／o 15／10 Brook St．，Hawthorn， VIc．， 3122.

## QSP <br> WARC 1979 <br> ＂North Allantic would like to Increase the Inter－ national BC allocatlons between 3 and 27 MHz by another 7 MHz at the forthcoming world conter ence．．That＇s more than twice they＇re presently allocated＇．Ham Radio，June 1975.

## Hamads

－Elght linar tree to all WIA membera．
$\$ 9$ per 3 cm for non－members．
－Copy In typescript pleasa or in block lettora 10 P．O．Box 150，Toorak，Vic． 3142.
－Commercial advertising ia excluded．
－Closing date： 1 st day of the month preceding publication．Cancellations recalved after about 12th of the month cannot be processed．
－OTHR means the advertiser＇s name and addrase are correct in the current WIA Radio Amateurs Call Book．
－The curtent WIA Callbook to the 1975 edition．

## POR 8AIE

FT200 Transcalver and power supply， 12 monthe old． Condition and function equal to new，has per－ manently attached blower for cooling final stage， \＄370 ONO．V．Kerr，Box 237，Charleville，0． 4470.
2M FM Carphone Rx．AR model－wired．iuned； all．case，incl．spkr．and IF xtal， 558 ．Also 2M FM Rx in parts，no case or apkr．，s47．Variable PSU $0-15 \mathrm{~V}, 1 \mathrm{~A}$ ，regulated，fully metered，$\$ 18$ ．Power transf．， 18 V at 10A，$\$ 18.2 \mathrm{M}$ yaw moble whip，$\$ 4$. L30174．P．O．Box 1，Ferntree Gully， 3156.
Complete 8envice Manual for the RS223 and ARE8 Communication RX，includes circuit diagrams and full Information，$\$ 15$ each．P．O．Box 141，St．Kilda West 3182，Vic．Ph．（03） 6992400 A．H．
8wan 500 Doluxe 5 日and Tr， 480 watts PEP plus PSU／speaker unit，VGO，Includes tranalstorised vOX／BK CW adaptor，upper／lower SSB xtal callbra－ tor，mic．，CW sidetone faclily added，\＄350．T． Foster，VK3GM，QTHR．
Robot SSTV Montior and Camera，complete with lens，tripod，cables，manuals，as new condition， \＄547．VK3CR，QTHR．Ph．（03） 7724039.
Heathkll Model 88220 10－80m IIneap amplifier．$\$ 400$ ． VK2AOW，OTHR．Ph．（02） 4493538.
Equipment Rack， 5 ff ．high，standard 18 Inch mount－ Ing， 15 Inches deep．\＄8．VK2AAB， 28 Redgrave Rd．， Normanhurst，2078．Ph．（02） 4871428.
SWR Metap，Hansen，as new \＄10．Home brew solld state osclliator，all bands 1.8 MHz to $29.7 \mathrm{MHz}, \$ 12$ ． Home brew GDO 200 kHz to 300 MHz accurately callbrated，$\$ 25$ ． 27 MHz valve iransmitter and con－ verter with xtals，no modulator or power supply，$\$ 15$ ． VK3AOH．OTHR．Ph．（03） 486224.
Power Tranalormar for FT－200，brand new，cost \＄86， sell beat offer plus freight ex Alice Springs．VKAFB， Yuendumu vila Allice Springs， 5750.
Yeasu FL200日 Tx，FR100 AX，complete 80m－10m station．Excellent condition，\＄325．VK3AQL，QTHR， Post Code 3148．Ph．（03） 2775623.
Meath HW 32，\＄100． 27 MHz T／R AC or DC，$\$ 50$ ． 144 MHz AM TX 25W，xial of VFO，$\$ 60$ ．MR10B Hi Bnd．，\＄30．MR20B HI Band，\＄48．MR10B Lo Bnd．． \＄30．Plessey 847 T／R 23－38 MHz，\＄60．3＂CRO，\＄15． 432 ATV TX Color Mod．\＆Sub Carrier Unit，$\$ 90$. Paton VTM，$\$ 40$ ．VHF Sig．Gen． $80-220 \mathrm{MHz}, \$ 40$. W．War II Mine Detector，antlque， $\mathbf{\$ 3 0}$ ．No reason－ able offers refused，VK2AJY，QTHR．

## Silent Keys

M．F．tiermey D．W．BRIDGE c．T．RYLATT
vK2ZRT VKGNW
VK2BIC

FT1018，hardly used，complete with SP101 matching speaker，handbook，microphone，etc．$\$ 500$ ONO． Yaesu FR50B ham bands only recalver，with hand－ book，brand new．\＄200 ONO．Ph．（02） 3717681 A．H．
Yaesu FT100，mint conditlon，leas than 50 hrs． operation．$\$ 330$ or near offer．VK3ASC，OTHR．
40 fi．Oregon Nasi， 4 in．$\times 4$ in．at bese，tapars towards top，any ofters．Delivery can be arranged． VK2DT， 2 Patya Close，Epplng 2121．Ph．（02） 8881131.

Yeasu FTAD1，spare finals，Yaesu deak mic．，plus Spectronice digital frequency display，$\$ 500$ the lot． Eric Blerre VK2BEK．Ph． 358 3491，Sydney．
SB－sa Single gideband Tranacelver，tranalatorised， except for driver and two output tubes， 200 kHz on 15． 20.40 and $80 \mathrm{~m}-240 \mathrm{~V}$ to 110 V transiormer． microphone \＆manual，$\$ 220$.
Pye Lynx tranalatorised TV Camara with 1 in．Vidi－ con and full service manual，no lens，$\$ 120$.
TY Prajection Unil，Schmidt mirror systom and 2 In． pleture tube，$\$ 20$ ．R．Nell，VK3ZAN， 11 Xavier St．， Oak Park， 3046.
FTDX 400 TXCA，mint condition，excellent pertormer mic．tan，and handbook，apare BKD6s，$\$ 360$ ．Hone brew PS，unused，all new parts，500V 300 mA ． 280V．255V reg 150 V reg．，\＄40．SCR 522 Tx for 2 m ， $\$ 15$. VK3ZB．OTHR．Ph．（03） 452295 A．H．
Galaxy V Tranacelver， $80 \mathrm{~m}-10 \mathrm{~m}$ ，complete，very com－ prehensive metered protected power supply，VOX， xtal callbrator，mic．，spare tubes，CKT，handbook． $\$ 380$ ．Phillps 1677 Transceivers， 2 m converted， Ch 1 ． Ch 4 xtals，CKT，handbook，mic．，cradle，cables， $\$ 100$ ．Identical unit，unconverted，as above，com－ plete，all 2 m colls etc．，$\$ 80$ ．VK3BCL，OTHR．Ph． （03） 494246.

## WANTED

More Keys，homebrew or commercial，hand，＂bug＂ or electronic，any type from early telegraph to pre－ sont，any condition．Wrlte VKASS， 35 Whynot St．， Weat End．Brisbane，Old． 4101.
Blowar Fan for Yacau FT101．Plasas write by airmall to T．Connell，P．O．Box 718，Madang．P．N．G．
Butierily Capacliars for 2 and 6 metre transmiftera （valve）and 6LO6 valves．Bob Black VK2日BR，P．O． Box 349，Lismore 2480．Ph．（066） 214384 Bua．

## TI＇S ON AGAINI

THE WESTERN ZONE ANNUAL CONVENTION 18t and 2nd NOVEMBER， 1975 af WARRNAMBOOL
Trade Displays by many leading Dealers
 Bill on The Hill Awards and other ridiculous fun and games， for all ages and sexes．

SEE YOU THERE
Bookings and further Information （S．A．E．）to：

## ＂Convention Secretary＂

DAVID BEVAN VK3AGB
134 Princes Highway Weat Warmambool 3280
Enclose $\$ 5$ per adult Booking Fee．

## The Name Everybody Knows

R. H. Cunningham is the name to know when it comes to superior quality communications and electronic equipment and components. Names of products that have proved themselves in the field of international electronics; products such as Sennheiser microphones and test equipment, Eddystone communications receivers,

Bu'gin components,
Sonnenschein batteries, Alert fuses. Paso sound equipment, Dow-Key RF components, Stolle aerial rotators, Millbank PA equipment to name some. But let us tell you more and in detail. .. WRITE NOW ana we will register you to receive our FREE monthly Technical Library Service Bulletin

493.499 Victoria Street, West Melbourne, 3003, P.O. Box 4533, Melbourne, Victoria.

Phone 3299633 . Cables: CUNNIG MELBOURNE. Telex: AA31447
N.S.W.: Sydney. Ph.: 9092388 W.A.. Perth. Ph.: 494919. QLD.: L. E. Boughen \& Co. Ph.: 708097. S.A.: Arthur H. Hall Pty. Lid. Ph.: 424506.


MINI-MOBILE/BASE STATION FT-75B

FT-75B. High power, for General use.

FT-75BS. Low power, for Novice use.

VOL. 43, No. 10


FT-75B, inc. one crystal for each band 3565, 7085, 14,200, 21400 28550 kHz, mic. \& inst. book

FT-75B, inc. crystals for 3565, 7085, 14200, 21175, 27125 kHz , mic inst. book \$258 FV-50 optional VFO $\$ 65$ FP-75B or BS, AC PSU DC-75B or BS DC PS, inc. mobile mounting bracket

COMPACT 120 WATT thru 10 METRE TRANSCEIVER

Even the compact and sports car enthusiast can enjoy all band, SSB mobile operation, with the FT-75B "Mini-Mobile" transceiver. Features in one compact case are a 120 Watt transmitter with provision for three, variable crystal controlled frequencies on each band; as well as provision for external VFO operation.
The FT-75B is all solid state except for the final and driver stages and includes a built-in noise blanker and squelch circuit for quiet channel monitoring. The compact and squelch low stand-by current drain of only 300 mA ., give the FT-75B the flexibility required in even the most demanding, compact installations.
The FT-75BS has one final tube removed and PS transformer tapped to reduce power to approx. 30W PEP output. When full call is obtained the set can be re-modified back to original condition.
TECHNICAL DATA - FT-75B

GENERAL
Frequency Range: 80 M 75 KHz seg. ment within $3.5-4.0 \mathrm{MHz}, 40 \mathrm{M}$ 100 KHz segment within $7.0-7.5$ $\mathrm{MHz}, 20 \mathrm{M} 150 \mathrm{KHz}$ segment within $14.0-14.5 \mathrm{MHz}, 15 \mathrm{M} 240 \mathrm{KHz}$ seg. ment within $21.0-21.5 \mathrm{MHz}$ and 10 M 400 KHz segment within $28.0-30.0$ MHz .
Mode: Upper Sideband for 20, 15 and 10 meter bands. Lower Sideband for 80 and 40 meter bands. CW for all bands.
Frequency Control: Crystal control VXO with 3 channels per band.
VXO Coverage: $\pm 3 \mathrm{KHz}$ for $80 \mathrm{M}, \pm 3$
KHz for $40 \mathrm{M}, \pm 3 \mathrm{KHz}$ for $20 \mathrm{M}, \pm 5$ KHz for 15 M and $\pm 6 \mathrm{KHz}$ for 10 M . Antenna Impedance: 50 Ohm unbalanced.

Circuitry: 16 Transistors, 7 FET, 23 Diodes and 3 Tubes.
Power Requirement: External power Supply FP.75B for 100/110/117/200/ $220 / 234 \mathrm{~V}$ AC, $50 / 60 \mathrm{~Hz}$, or DC-75B for 13.5 V DC.
Size: $210(\mathrm{~W}) \times 80(\mathrm{H}) \times 300(\mathrm{D}) \mathrm{m} / \mathrm{m}$. Weight: 3.8 Kg .

RECEIVER
Sensitivity: $0.5 \mu V$ for 10 dB Noise plus Signal to Noise Ratio on 14 MHz for SSB and CW.
Selectivity: 2.3 KHz nominal bandwidth at 6 dB down, 4.5 KHz at 60 dB down on SSB and CW.
Harmonic \& Other Spurious Response: Image Rejection better than 50 dB . Internal Spurious Signal below $1 \mu \mathrm{~V}$ equivalent to antenna input.

Automatic Gain Control: AGC threshold nominal $1 \mu \mathrm{~V}$. Attack time 5 milli second and release time 1.5 seconds. Audio Output: 2 Watts at 4 Ohm impedance.
Audio Distortion: Less than 10\% at 2 Watts output.

TRANSMITTER
Input Power: 120 Watts PEP on SSB and 100 Watts on CW at $50 \%$ duty cycle. (Slightly lower on 10 meter.) Microphone: 50 K Ohm dynamic type. Carrier Suppression: -40 dB .
Sideband Suppression: -40 dB .
Spurious Radiation: -40 dB.
Distortion: -30 dB .
Frequency Response: 350 to 2700 Hz $\pm 3 \mathrm{~dB}$.
Final Tube: $12 \mathrm{~GB} 7 \times 2$.

ATTENTION! Yaesu Co. have advised a correction to the specifications of their YP-150 advertised in Sept. AR. The upper frequency of the YP-150 is 200 MHz , not 500 MHz as originally stated.
All prices include S.T., Freight extra. Prices and specifications subject to change.


ELECTRONIC 60 Shannon St., Box Hill North.

# MRM RADIO SUPPLIERS <br> 323 elizabeth street, melbourne, vic., 3000 <br> Phones: 67-7329, 67-4286 All Mail to be addressed to above address 

Our Disposals Store at 104 HICHETT ST, RICHMOND (Phone 42-8136) is open Mondays to Fridays. 10.30 a.s. to 50 p.m., and on Saturdays to midday.

# THIS MONTH'S SPECIALS 

## NC310 WALKIE TALKIES

1 Watt 3 Channel. Fltted with crystals for 27.240 MHz operation, call tone, squelch and external antenna and DC input provision.

## PEAK CAR STEREO SPEAKER KITS

Hi-Fidelity 5" Cone Speakers. Using a quality ceramic magnet. Frequency response $120-13000 \mathrm{~Hz}$. music power 12 watts and $4-8 \mathrm{olm}$ impedance. Fltted in a rear parcel shelf type housing.
$\$ 5.95$ Kit of 2 Speakers
Pack and Post \$1.75

AMATEUR TRANSCEIVERS,
RECEIVERS AND ACCESSORIES
MIDLAND 13-893 23 Channel 27 MHz Transcelver SSB and AM 12 V DC operation. \$195 MIDLAND $13-870 \mathrm{D} 23$ Channel 27 MHz AM Transceiver. 5 watts AM. 12 V DC operation. $\$ 99$
PONY CB74A 6 Channel Transceiver. 5 walts AM. P.M.G. approved for 27.880 MHz operation. Fitted with crystals tor 27.880 MHz .
$\$ 105$
NC310 WALKIE TALKIES. 3 channel 27 MHz 1 watt operation. Fitted with crystals for $\mathbf{2 7 . 2 4 0} \mathbf{~ M H z}$. $\mathbf{\$ 4 8 . 5 0}$ each
LAFAYETTE HA310 WALKIE TALKIES. $27 \mathrm{MHz}, 1$ watt, 3 channel. Fitted with 27.240 MHz crystals $\$ 69.90$ each
Lafayerte 27 MHz Fibreglass Cowl Mount Mobile Loaded Antenna. 36" long.
$\$ 22.95$
27 MHz MARINE ANTENNA designed for installation on fibreglass boals. Does not require any metallic earthing. $\$ 51.50$
HANSEN FS5 COMBINATION SWR. Bridge and power meter. 2 power ranges, 10 and 100 watt. 52 and 75 ohm impedance switching. $\mathbf{\$ 2 9 . 5 0}$

30 kHz CRYSTAL FILTERS. S5 each
2N3055 TRANSISTORS 81 each
58 OHM COAX. CABLE. 100 yd. rolls, $1 / 8 \mathrm{in}$. diameter. $\$ 12$ roll 52 OHM COAX. CABLE. $1 / 4 \mathrm{ln}$. diameter.

45c yd., 50c matre
DOW KEY COAXIAL RELAYS. 48 volt DC operalion.
$\$ 15$
3" "N" type connectors to suit \$5 each
SPLIT STATOR CAPACITORS with screwdriver slot drive 9PF-17PF-25PF. Brand new Eddystone type. $\$ 3.50$ each
EX-ARMY HEADPHONES. Approx. 20 ohms impedance. New In sealed boxes. 82 each
$\mathbf{2 "}^{\prime \prime}$ SQUARE FACE 0-1MA METERS. Callbrated 0-60.
83 each

EDGEWISE 0-1 MA METERS. $21 / 2^{\prime \prime} \times 1 / 2^{\prime \prime}$ face. $3^{\prime \prime}$ deep. Calibrated 0-5. \$3 each
PANEL METERS $57 / 8^{\prime \prime} \times 4 y_{4}{ }^{\circ}$ with $0-1$ MA movement. Various scales on meters.. (Gas Analyser etc.). 55 each NEW QQE08/40 CERAMIC VALVE SOCKETS
\$2 each
MORSE CODE PRACTICE KEYS $\$ 1.50$ each
BATTERY ELIMINATORS to suit transistor radios and cassele recorders, AC-DC 6 volt, 300 MA P.S. 6300 . $\$ 7.50$ SPEAKER CABLE, colour coded iwinflex. 20c yard JACKSON SLOW MOTION DRIVES. 6:1 ratio. $\$ 2.30$ Cigarette lighter accessory plugs.

45c each, 10 for $\$ 4$
miniature siemens relars. 4 sets changeover contacts. 6-12 V DC operation. Type V23154 new. \$3.50 each
"'PHILIPS' TYPE CONCENTRIC TRIMMERS.
Threaded stud mounting. 25PF. 75e
BRAND NEW A-TRACK STEREO CARTRIDGE PLAYERS. 2.5 watts per channel at 8 ohms. 12 V DC operation. In sealed boxes. $\$ 15$ each
"ZEPHYR" $2 K$ ROCKING ARMATURE MICRO. PHONES. Desk type with P.T.T. key switch in base. Brand new. Reduced to $\mathbf{\$ 1 9}$

TRANSFORMERS A \& R TYPE S509. Ex equipment but as new. PRI 240 V secondary $2 \times 12.6 \mathrm{~V}$ at 2.5 AMP. ss each

## SCOOP PURCHASE

thousands of transistor radio circuit BOARDS. Ideal for the hobbyist and home constructor.

AM 8 TRANSISTOR CIRCUIT BOARDS. All new parts. IFs capacitors, resistors etc.
$\$ 1.50$ each or 3 for $\$ 3.50$

LARGE VARIETY OF AM/FM CIRCUIT BOARDS. 10 transistors, Ideal for use as FM tuner. 88-108 MHz. $\mathbf{\$ 2 . 7 5}$ each of 3 for $\$ 7$

LARGE QUANTITY OF TRANSISTOR RADIOS In various stages of manufacture. AM and AM/FM models in varios stages of manufacture. Personal shoppers only.

From 32 each
6 TRANSISTOR RADIO CHASSIS
$\mathbf{\$ 1}$ each or 3 for $\$ 2.50$
POCKET TRANSISTORS. Complete and working OK.
s2 each

## HIGHETT ST. DISPOSALS STORE SPECIALS

NO. 26 SET TRANSCEIVERS. 6 channel portable. VHF transceviers. Present operating Prequency approx. 48 MHz. Suitable low power 6 metre FM. Complete with handset antenna etc.
$\$ 12$ each or $\$ 20$ pair
C45 TRANSCEIVERS. $23-38 \mathrm{MHz}$ FM with Inbuilt calibrator, epprox. 15 watts output complete with mic. 24 V DC PSV cables etc. Reduced to $\$ 45$

C11 TRANSMITTERS. 2-16 MHz, AM or CW. 50 watts output. Inbuilt 100 kHz crystal calibrator. Complete with heavy duty 24 V DC PSU.

Reduced to $\$ 80$
BC221 FREQUENCY METRES from $\mathbf{3 2 5}$ each
AMPEX COMPUTER TAPE. $2400^{\circ} \times 1 / 2^{\prime \prime}$ on $1012^{\prime \prime}$ spools $\$ 1$ each 866 MERCURY VAPOUR RECTIFIERS
\$3 each or 6 for $\$ 15$

MAIL ORDERS WELCOMED. Please allow pack and post on items listed on this page. If further Information required send a stamped SAE for Immediate reply from the above address. Larger items can be sent F.O.B.

Published monthly as the official journal by the Wireless Institute of Australia.
Reg. Office:
2/517 Toorak Rd., Toorak, Vic. 3142 P.O. Box 150, Toorak, Vic., 3142

Editor:
Bill Roper
VK3ARZ
Assistant Editor:
Bruce Bathols
VK3UV
Technical Editors:
Bill Rice
VK3ABP
Ron Cook
VK3AFW
Roly Roper
VK3YFF
Publications Commitiee:
John Adcock
VK3ACA
VK3UG
Rodney Champness
Syd Clark
VK3ASC
Ron Fisher
Ken Gillesple
VK30M
Neil Osborne
VK3GK
Ken Reynolds
Gil Sones
VK3YEI

Contributing Editors:
Brian Austin
Deane Blackman
David Hull
VK3AUI

Eric Jamieson
Jim Payne
VK5CA
VK3TX
VK3ZDH
VK5LP
VK3AZT
Drafting Assistants
Gordon Row
L30187
VK3ZIK
Business Manager:
Peter B. Dodd
VK3CIF
Enquiries and material to:
The Editor,
PO Box 2611W, GPO Melb., 3001
Copy is required by the third of each month. Acknowledgment may not be made unless speclally requested. All important Items should be sent by certified mail.
The Editor reserves the right to edit all material, including Letters to the Edltor and Hamads, and reserves the right to refuse acceptance of any material, without specifying any reason.

## Advertising:

Advertising material should be sent direct to P.O. Box 150, Toorak, Vic., 3142, by the 25th of the second month preceding publication. Phone: 24-8652.
Hamads should be sent direct to P.O. Box 150, Toorak, Vic., 3142, by the 3rd of the month preceding publication.

## Printers:

EQUITY PRESS PTY. LTD.
50-52 Islington Street
Collingwood, 3066
Tel.: 41-5054, 41-5055

## QSP - TRADING

A long letter from a keen member in Townsuille was reterred by the Editor (to whom it was addressed), on his return from holidays, to the Executive.

In brief the letter suggested that the Institute should engage centrally in trading. To provide working capital contributions should be sought from members or debentures issued. At an average of $\$ 20$ per member the total should reach about $\$ 90,000$. The trading to be on a fully commercial basis dealing initially in amateur equipment with possible expansion at a later date into other electronic and similar fields.

This is not the first time such an idea has come up for consideration. Many Divisions have been active for a long time in limited trading activities confined to members. Surplus gear has been handled over the years but this has dwindled. Attention has therefore been directed more and more towards components and kits designed for home construction use.

A natural extension would have been a central WIA agency to handle these things but many factors prevented this from happening. Several Divisions have done very well out of theif own "disposals" activities. Only in the last four years has there been a formal central organisation by Constitution.

Everything of common concern to the Institute was, and still is, controlled by the Federal Council comprising one representative from each fully autonomous Division managing State affairs.

Bofore the present era of inflation, coming so soon after establishing the central organisation, there was little need for large sums of money to offiset costs of a nonDivisional nature.

The climate was right for normal trading companies to sell amateur requirements according to the needs of the times. There are now many outlets for amateur requirements to cater for the appliance user as well as the home constructor. In fact there are some grounds for believing that competition today has depressed the net profit margins quite considerably. A new entrant into this field must more than ever before acquire and stock the right goods at the right price for re-sale on the one hand at a competitive price and yet on the other to make reasonable proflts to keep going.

If central trading were to be approved by Federal Council it would have to be done for Constitutional reasons as a separate commercial enterprise under close control and proper management. These and other requirements need not be beyond attainment.

However, the outlook for launching such a project differs according to the viewpoint be it Melbourne or Perth or Cairns or elsewhere. As is to be expected in this speciallsed fleld the largest cities seem to be well catered for although mail order business exists but increases prices and creates other problems.

It could be thought that amateur gear could be bought much cheaper if we had our own trading company but accountants demand satisfactory proflts not solely to ensure adequate returns on capital.

A most detailed analysis would be absolutely essential. The institute would have to look for an assured net profit of at least $\$ 15,000$ or $\$ 20,000$ after tax, staff wages, and general overheads have been paid. A few thousand dollars once every few years would not be worth the effort. To achieve such a return the annual turnover might well have to be $\$ 200,000$ or more it the store has to be competitive.

The Executive would not be daunted if Federal Council decides that trading must be begun. There are ample resources available to draw on expert advice at all stages particularly to determine the viability of such a project in the beginning. It is recognised that some regular source of income is needed to keep subscription rates from getting out of hand. Many other Amateur Radio societies face this same problem.

However, an answer must be found to another equally important question. What other areas should be explored to achieve a reasonably viable source of subscription subsidisation? Such as doubling our membership, expanding "Magpubs" activities, setting up a credit union, and so on.

The Executive.

## CUSTOMS DUTIES

Remember how the Inslitute's Executive went to work in the past few years to gain duty free admigsion for transcalvers? And were successful.

The draft repont on telecommunications equlpment by the Industries Assistance Commission has now come $t 0$ hand.

Section 2 of the report deals with Interests covering aerials and radio telegraphic and radio telephone aoparatus Including mobile transceivers, communications recelvers, HF transcelvers and the like. Two sub-paragraphs of section $2, B$ In the Report acknowledged requests lop duty iree entry belng made In relation to amateur radio equipment by the Wireless Institute among others. The next aub-para reads:-
"Some of the abovementioned products already enter under by-law. The Commission considers that the remaining requests for duty free entry of spectic Items would be more approprialely dealt with through the by-law system".

Page 13 of Appendix 4 to the Report adequately summarises the original Institute's submissions under Tarift ltem 85.15 .9 as follows:-
(a) The admission of all iranscelvers of a kind designed for and solely capable of use on amateur frequencles as a permanent measure - no certification, no security, no statutory declaration; applicable to new and used iransceivers, for HF, VHF/ UHF/SHF, commerclally built or home constructed, through all ports, commercial of private imports, for re-sale or own use, as freight or In baggage and

At the time of writing the burning question is still the industrial dispute which has caused disruption in the examinations area. A copy of letter 320/5/101 of 22nd September received from the Postmaster-General is published elsewhere in this issue. This was in response to a telegraphic protest sent to the Minister by the Executive when it became known that the August exams also came under the ban.

It is too early to expect that the last award handed down by the Arbitration Commission will or will not cause the door to be opened for the successtul conclusion of the dispute.

Information available to the Executive indicates that meetings between the PMG's Department and all interested parties have been held on several occasions but so far without success.

The Executive is very well aware that 'outsiders' could create additional problems if they are seen to seek direct intervention but the situation is under constant review in the light of developments. This sounds all very wordy but the old adage about 'fools rushing in where angels fear to tread' was not coined for nothing.

September seems to have been a month of information flowing in for consideration of action to be taken after recelving comments from Divisions.

One such ltem was a letter from the Secretary of the Radio Frequency Management Division of the PMG's Department advising that the call sign block RAA to RZZ has definitely been allocated for use by any amateur repeater or beacon.

The previous allocation of the blocks RSA to RTZ solely for amateur beacons has now been rescinded - see AR Dec., 1972, p. 21.

This whole question came to the fore last year when one Division required that repeater call signs should be made avallable so as to Identify the geographical location or service areas of each repeater. As a result of this the Executive supported the request. The previous restriction of call signs for repeaters deriving from the block RAA to RAZ has thus gone overboard and presumably repeater owners can now request their own geographical call sign even If it falls within the RSA to RTZ block. Presumably the same will apply to beacons.

It is believed that the PMG's Department will have reserved the right to allocate any call-sign in the RAA to RZZ block for any other amateur use in line with the general conservation of call letters.

Another letter from the same source dealt with repeater conditions in reply to a preliminary letter from the Executlve on this subject back in May. A couple of quotes from this letter might be useful. Quote number 1 - "The Department has always been happy to consider representations from your Institute and I have no doubt that this cordial situation will continue in the future".

Quote number 2 - "The Department does not propose to impose unnecessary rules on the Amateur Service but, provided they are framed within the current licensing conditions, no objection in principle is seen to additional rules being devised and applied by amateurs for operation of their services".

Yet another letter trom "Central Office" clarifies the procedures to be followed by "C" calls operating in difterent states. It is now clear that if the owner of a "C" call registered in one State visits another State for a period not exceeding 5 days all he has to do is to change the numeral in his call sign and of course abide by paragraph 120 in the Handbook. Thus If VK3CDZ goes to Canberra for a couple of days at a time he uses the call sign VK1CDZ and not VK3CDZIVK1 as would be customary for normal series call signs. Letter RB4/8/1 of 8-9-1975 refers.

A letter from the Minister for Detence confirms that the NDO and Directors of State/Territory Emergency Services have been advised of the name and function of the Federal WICEN Coordinator (Brig. Rex Roseblade VK1QJ) and asked to ensure cooperation with WICEN.

Peter Brown, VK4PJ, donated a cup designated the "Contest Champion Trophy" and the rules for this annual award have been received but awalt adoption. Peter suggested the first "perlod should be 1st October, 1975 to 1st October, 1976 and the Federal Contest Manager should take into account the highest aggregate scores obtained in the 1975 VK/ZL contest, the 1975 Ross Hull, the 1976 John Moyle Memorial NED and the 1976 R.D. Contest.

It is unfortunate that the draft rules arrived too late to be included in October AR and equally unfortunate that the office of F.C.M. Is under change. In any event they must be considered and adopted as early as may be possible. The handsome trophy donated by Peter is held by the Executive and awalts its first annual owner hopetully before the end of 1976.

The Federal President is scheduled to meet Mr. F. Green, the Head of the PMG's Department, later in October at which a number of high level administratlive arrangements are to be discussed. Obviously the IARU related Motions trom the 1975 Federal Convention concerning W.A.R.C. 1979, legislation aftecting the amateur service, examinations, licence tees and frequency management are likely to be ltems at the top of the list.

Also at this time of the year Divisional Councils will be seriously considering their subscription rates for 1976. The Executive have done their homework and concluded that the Federal element of the 1976 Full and Associate Members' subscriptions should indeed be recommended as the $\$ 14.50$ adopted at the 1975 Federal Convention. Out of this amount $\$ 7.20$ will be the direct cost of AR plus 30 cents tor the IARU contribution.

Finally, it might be appropriate to mention that October was the 3rd birthday of OSCAR 6. Congratulations to everybody concerned with this amateur satellite and all amateur satellites.
effects; end-user criterlon inapplicable
(b) Transmitters and transverters of a kind designed for and solely capable of use on amateur frequencies.
(c) R.F. Linear amplifiers for amateur bands only. (Note - these appear to be covered by By-law already).
(d) Communications receivers designed for use and capable of use only on amateur frequencles.
(e) Amateur band, Ancllary equipment for use with such transceivers, transmitters and recelvers - e.g. outboard VFOs, tuning units, etc. Would negotiate on separate power supply units which are of a kind manufactured domestically and similar items.
(f) liems normally supplled with each piece of apparatus (e.g. microphone ordinarily sold as part of transcolver).

1. WIA (Wireless Institute) accepts the need to foster and encourage local Industry but the amateur market is so selective and of such small proportions that the importation of emateur equipment not de-
signed for use on other trequencies and not resdily and cheaply convertible should enjoy duty free concessions.
2. Certain items for use by amateurs already appear to enler under by-law - e.g. Aerial rotators. monoband and multi-band antennas, HF Vertical antennas, LP Filters, antenna couplers. Some articles classified under other Tarlft headings.
3. Readily understood, easily administered and positive idenificication at time of import are criteria greatly to be recommended in this somewhat technical field.
4. WIA happy to assist In any way and to provide definitions where desired. Would agrae to Importation of "difficult" items under statutory declarations for amateur end-usage.

After receiving and considering any further submlssions it is assumed the draft report will become, after any amendments and additions, the final Report which will be submitted to Government in due course. Whether or not the Govemment will accept the recommendations of the final Report will of course remain to be seen.

## EURMA

"The authorities in Burme have prohlbited everything that has the slightest thing to do with Amateur Radio. Even the import of radio parts is on the black list. So If you write to an Amateur In Burma do not use his call sign. In some cases it is known that the Amateur landed in Jail because of supposed activity". The World Radio News, June, 1975.

## WICEN NETS-VKB

VKGAN writes that visitors to VK6 may be Interested to note that the best frequencles for contacts with WICEN operators In VK6 are 3.6 MHz dally at 00.00 Z, 7.1 MHz dally at 04.30 h Z and Ch 1 is monitored at all times. At 02.00 h Z Sundays there is a WICEN callback after the VK6 broadcast; frequencies are 3.6 or 7.1 depending on band conditions. The other daily monitoring frequencies are given as 14.106 at $03.00 \mathrm{~h} \mathrm{Z}$,7.078 at $08.30 \mathrm{~h} \mathrm{Z}$,146.00 MHz FM nightly as well as 52.656 MHz in most arass most of the time Ch 4 is monitored In the Narrogin-Wagin area and Ch 2 in the Albany-Mt. Barker area.

TRANSCRIPT OF ADDRESS BY THE PRIME MINISTER OF AUSTRALIA, THE HONOURABLE E. G. WHITLAM, Q.C., M.P., OPENING THE

## 1975 REMEMBRANCE DAY

 CONTEST ON 16th AUGUST, 1975"l am honoured by your Instltuie's kind invitation to declare open your 1975 Remembrance Day Contest.

It is right that we should remember the amateur radio operators who laid down their lives for Australia during two world wars.

This occasion has taught me a little more about your useful and remarkable hobby. Perhaps the ward 'hobby' is a misnomar for such a varied lassure activity. Your contacts as radio operators are truly world-wide. As amataurs you have been experimenting for many years with your own satellite and communicating with other amateurs as far afield as Africa and Japan. With the next generation of amateur satellites you will be able to contact your friends much further afield in the U.S.A. and elsewhere.

In these days of developing communications Australians can pick up their telephone for discussions with people round the globe at any time, but the process is expensive. It is surprising indeed that you in your shack can talk at almost no cost with old friends and make new ones anywhere in the world. You are truly private ambassadors for Australia and I have no doubt that the wide network of amateur radio communication makes a valuable contribution to international understanding.

1 commend your work in providing communications with stricken areas and your ability to move into action quickly in a national emergency. My colleague. Senator Bishop, the Postmaster-General. assures me that every possibla lacility is given to amateurs involved in emergency traflic. I believe the use of amateur satellites for communications in emergencies will be more fully exploited.

At present you hava training classes for your members, particularly in Youth Radio Clubs, and I hope you will try to widen your educational programmes and bring knowledge and experience of your existing work to the widest possible audience.

Young people today with their natural interest in scientific knowledge and advancement would want to know more of your work and how they may participate in it.

I have much pleasure in declaring open the Wireless Instituta of Australia 1975 Remembrance Day Contest'".

## AOCP EXAMINATIONS

The following letter was received in respanse to a telegram sent by the W|A.

320/5/101
Postmaster General Canberra, ACT 2600 22 September 1975
Dear Mr. Dodd,
I reter to your recent telegram concerning the postponement of the August examination for the Amateur Operator's Cartificate of Proficiency.

The Industrial dispute which has so far prevented this examination from being held, concerns stafi classifications. The parties involved in the dispute are the Australian Public Service Board, the Stalf Association representing the officers of my Department who conduct examinations and, to a lesser exient, my Department.

Attempts to reach a solution to the disputa are being pursued as expeditlously as possible. Noting, however, that certain instructions have been given to slaff by their Association, it would be pointless to attempl to re-schedule the examination until the difficulty is resolved.
The dispute has already been widened to include other examinations conducted by my officers and I am loath to initiate any action which could precipitate further disruption of my Department's activities.
I regret that some inconvenience was caused to candidates but I am sure you will appreciate that the postponement is outside the control of my Department.

You may be assured that following settlement of the dispute, the earliest practicable date will be selacted for the examination and all candidates advised accordingly.

Yours sinceroly,
R. Bishop

Mr. P. B. Dodd, Secretary,
The Wireless Institute of Australia,
P.O. Box 150, Toorak, Vic., 3142

## HISTORY OF SOUND AND MOVIES

In a recent letter from JIm Davis, registered SWL and future novice licensee of 55 James Si., Latrobe, Tasmania, comes news of a pather unusual sideline.
Jim has oblained and fully restored equìpment to depict the History of Sound and Movies.

## ELMEASCO INSTRUMENTS PTY. LTD.

ADVISE THAT A DISPLAY OF

## DRAKE AMATEUR EQUIPMENT

## WILL BE HELD AT THEIR MELBOURNE OFFICE

21/23 Anthony Drive Mount Waverley
Phone 2334044
ON

## WEDNESDAY 19;h NOVEMBER

 1975From 1 p.m. until 9 p.m.

## ALL ARE WELCOME

The attached photograph gives a briet idea of some of the equipment on display.
This Includes the 1916 Telefunken Spark transmitter/receivar used by the Navy during World War 1 at Currie, King Island, TRF Battery Receivers, 'all electric' sets of 1928 vintage, one of the first Erams Record players with automalic changer, an 1893 Edison Projecting Kinetoscope and many other tiems from the early days to the present time.
The museum is on display in Jim's private Cinemascope theatrette in his new home at the above address. Jim states that visitors to 'the shack' would be most welcome.

## THE NORTH QUEENSLAND CONVENTION

London has its Changing of the Guard. Melbourne has its Moomba.
And Townsville -
it has its Radio Convention
which is better still.
You who weren't there missed out on a great time while the lucky ones who did attend had a ball.

Occurring during the blaak southern winter month of July, It provided a very enjoyable escape tor those that came, for the daytime weather was fine and sunny and the nights mild. The only unfortunate thing is that it occurs only each second year - but perhaps that's a good thing as it allows new ideas to be thought up and plenty of planning to be made by visitors.

The programme of events took second place to the renewal of old triendships and the kindling of new ones.

This is the true meaning of Convention - where souls of a like nature convene. As a result Amateur Radio has received a valuable 'Shot in the Arm' by the efforts of the Townsville Amateur Radio Club in North Queensiand.

VK4ZEZ.
Townsville Amateur Radio Club Publicity Officer


# AMATEUR BUILDING BLOCKS 

## DIGITAL MODULES

## This final part of the Building Block series covers the predominantly digital functions. Three such modules are presented - a crystal clock pulse generator, a gating and control unit and a display or Indicator unit.

## Section 2-Unit H - <br> CRystal clock

This unit is a comprehensive crystal clock and divider chain which produces accurately controlled timing pulses between 10 MHz and 0.025 Hz . The module can be used for a variety of purposes including control of a counter or timer, production of frequency markers and to act as a standard in the digital stabilisation of a VFO.

The circuit diagram is given in Fig. 21 while the component layout is given In Fig. 22.
A 10 MHz crystal oscillator is formed using two gates of a 74 HOO or 74 SOO quadruple NAND array, the remaining two sections being used to buffer the output. The oscillator is followed by elght 7490s in the divide by ten mode and outputs taken after each stage so that a total of nine decade outputs are available ranging from 10 MHz down to 0.1 Hz .

Also on board, but divorced from the main divide chain, is a 74107 dual JK flip flop. This chip enables any one of the main decade outputs to be further divided by two and/or four so that, if required, outputs down to 0.025 Hz , or one pulse every 40 seconds, are available.

Note that each output from the dividers is capable of drlving another eight 7400 series inputs so that, for example, the 100 pps output could be used to drive external logic and at the same time could be routed through the 74107 to provide 50 Hz and 25 Hz as well. The only forbidden interconnection is to join two outputs together.

While a trimmer is provided on the board to adjust the crystal to its correct operating frequency it is often worthwhile to be able to do this adjustment from a remote point - say a front panel control. Provision is therefore made on the board for a BA102 varactor diode and its associated decoupling components. The only off board control is the potentiometer and associated 3.3 K fixed resistor. It should be stressed that the supply to the potentiometer, and thus to the varactor diode, should be very well regulated or else the facility will degrade the stability of the oscillator. The value of the control voltage is less important than its stability, any value between 10 and 15 volts being satisfactory. If this external control facility is not required the components are simply omitted.

The accuracy of the clock is a direct function of tise crystal used. If the accuracy requirements are modest (say 1 part in

100,000 ) then a low priced crystal can be used. Short term accuracies of the order of 1 part per million can be obtained using a Hy Q Delta GF crystal which is more expensive but which has been designed to have minimum change of frequency with temperature in the 15-25 deg. C region. For greater accuracy, a crystal oven and a crystal designed for the oven temperature are necessary.

With the exception of the varactor supply
(If it is required), the whole module is powered from a 5 volt regulated line. Use of a LM 305 K (National) or 7805 (Fairchild) monolithic regulator is advised and these are freely available at a modest cost from most supply houses. Note that if these regulators are used then an input capacitor of 0.1 or 0.22 mFd and a 4.7 or 10 mFd tantalum capacitor should be fitted right at the regulator using the shortest possible leads.


FIGURE 22 UNIT H CLOCK OSCILLATOR AND DVIDERS COMPONENT LAYOUT


FIGURE $23-$ UNIT I-LOMHz 6 DIGIT DISPLAY-CIRCUIT DIAGRAM


FGURE 24 -UNIT I - LOMHz 6 DIGIT DISPLAY - COMPONENT LAYOUT

If the full range of output down to 0.025 Hz is not needed then the decade dividers (7490s) after the lowest required frequency are omitted. For example, if only a 100 kHz signal is wanted then only dividers 1 and 2 are used and dividers 3 to 8 omitted.

## Section 2 - Unit I-

## GATING AND DISPLAY UNIT

The proliferation of opto-electronic devices over the past two or three years has been rapid. Whereas in late 1972, when the writer was designing a counter (later described in AR), the only easily obtainable display was the incandescent filament 3015F. At the present time this type of display has been superseded by a wide variety of LED based readouts which vary in size, format and drive requirements. Most decade display units published in amateur literature have been made up of four separate ICs (divider, latch, decoder/driver and readout) each requiring a relatively large PCB to mount them and some sort of base in which to plug each decade board. More recently devices containing all the functions combined into one 16 pin DIL case have become available, notably the Texas Instrument TIL306/308 series. Use of these 'combined' displays has much to recommend it since the total area of PCB required is considerably reduced, the labour of wiring up has been significantly lowered and the volume of a complete display has been cut to under a quarter. Total cost (as distinct from chip cost!) has also been reduced. Thus the writer has designed the display unit now presented around the 71 devices. They are stocked by the Radio Parts Group, 562 Spencer Street, West Melbourne, Vic. 3003.

The TIL306, which is a seven segment, two bars per segment, LED decade divider, latch, decoder and readout with a LH decimal point option, has one minor limitation in that the maximum operating frequency of the decade divider is 18 MHz . However this is only a problem in the right hand (or least significant figure) display and when it is desired to read a frequency to the nearest Hz .

In order to overcome this frequency limitation a TIL308 is used in the first stage. This is a TIL306 without an inbuilt decade divider, the division being done outside the chip using a high frequency divider such as the 74196 to give the display a 50 MHz capability. This is the approach adopted as reference to the circuit diagram (Fig. 23) will show. The signal gate is on the display board and uses a 7400 (for inputs up to 20 MHz ) or a 74 SOO (for frequencies up to 40 MHz . Only five inputs
are required:
1.5 volts 1 amp well regulated HT .
2. Signal - amplified and squared so as to be TTL compatible.
3. A negative going strobe pulse.
4. A negative going clear pulse.
5. A positive going timing pulse.

All the required inputs, except the 5 volt regulated supply, are produced by Unit J which is the next (and last) unit described in this series of articles.

Only two of the four gates of the 7400/ 74 SOO are essential to the display proper so use is made of one of the spare gates (Gate C) as a buffer/driver for a gate speed LED which can be mounted remote from the display on some other part of whatever cabinet is used. This gate speed indicator is purely optional.

The incoming (TTL compatible) signal (from Unit $J$ for example) goes to one input of Gate $A$, with the timing pulse from the control unit being applied to the other input of Gate $A$. When the timing pulse is high, Gate $A$ passes the input pulse to the display. When low the signal pulses are not passed.

The pulse train passed by Gate $A$ to the display enters a 7419650 MHz decade divider. The binary outputs are taken to the TIL308 for decoding and display. The D output is inverted by Gate B and applied to the input of the first of five TIL308 decades.

The facility is provided to blank out all zeros showing on the left hand side of the display. Preferences for this type of zero blanking seem divided so that an external switch is suggested to allow the facillty to be used if desired. One point in favour of zero blanking is the reduction in the overall current demand of the display.

No specific decimal point switching is given since the exact format will depend on the use to which the display is put. The circuit diagram (Fig. 23) shows that it is necessary to take the DP pin 13 low to extinguish it. This can be accomplished by permanently wiring a 220 ohm 1/8th watt resistor between the DP pin of each of the five TIL306s and earth. Applying 5 volts regulated (either directly or via a multiposition rotary switch) will cause the DP to light up. Note that if the DP pin connection is left 'floating' (i.e., not connected directly to earth or to earth via a low value resistor) then it will remain alight.

It is strongly recommended that 16 pin IC sockets be used to mount the TIL308 and the TIL306s and that the devices themselves not be soldered directly into the board. Sockets leaving a space between the back of the TIL306/308 and the centre of the socket are recommended to altow a free flow of cooling air over the displays.

Components are mounted in the usual fashion on the non-copper side of the board, but the PCB stakes shown in Fig. 24 are inserted from the copper side of the board, since it is this side which is accessible when the board is in place on the panel.

Board mounting details are given in Fig. 25.

A separate PCB stake is provided for each TIL306 decimal point. The DP outlets and their associated 220 ohm resistors are wired as dictated by the DP switching used.

The physical and electrical format used for this display board makes it extremely flexible. The display will continue to operate even if the TIL308 is not in place, although of course it will have ten times less readout resolution. Similarly successive left hand TIL306s can be removed without causing the display to stop operating. The practical minimum number of displays is probably three. Since the clock module (Unit H), the display module (Unit I) and the processor module (Unit J) have so many options, the ways in which they can be combined together are also many.

The writer is prepared on receipt of a stamped addressed envelope) to give interconnection and switching information where the enquirer has a specific end use in mind.


# Deluxe Mobile/Base Station  

E MODEL with
RF PROCESSOR \$698


EE MODEL without RF PROCESSOR \$651

## - Solid State 160 thru 10 Meter Transceiver

The world's number one transceiver now offers even more value and performance in one, compact, thirty pound package. An effective, RF Speech Processor is a built-in integral part of this exciting transceiver. Now you can realize that extra talk power to cut through the pile ups without the addition of a linear amplifier. Except for the final and driver stages, the FT-101E/EE features the latest in solid state technology, incorporating time proven, plug-in
"computer type" modules for unparalleled reliability and servicability. New lever type switches offer easier operation. Here is a complete radio station designed to go anywhereideal for todays active amateur. Just add an antenna and 12 VDC or 100-234 VAC for instant operation on 160 thru 10 meters. The FT $101 \mathrm{E} / \mathrm{EE}$ is another step forward in amateur communications from the world's leader in communications equipment. YAESU- The Radio Company.



## FEATURES

$\star$ Built-In AC \& DC power supplies
$\star$ Built in RF-speech Processor for increased talk power ( E model only)

* 260 Watts PEP SSB, 180 Watts CW, \& 80 Watts AM.
$\star$ Factory sealed, solid state VFO for optimum stability and accurate 1 KHz readout
$\star$ Effective Noise Blanker, threshold adjustable, for elimination of noise spikes
$\star$ Built-in, fully adjustable VOX
* Automatic break-in CW operation with sidetone Selectable 25 KHz and 100 KHz calibrator $\pm 5 \mathrm{KHz}$ receiver clarifier w/separate ON/OFF switch Built-in WWV/JJY reception Heater switch to shut off final tubes for conservation of current drain.
$\star$ Reliable easy to operate lever panel switches

* Adjustable carrier level for tune-up and novice operation * Built-in speaker High-Q, permeability tuned, RF stages to provide the performance required even in base station operation * Includes dynamic, hand-held type microphone
$\star$ Indicator lights for internal VFO and clarifier operation
$\star$ Eight pole SSB filter for unparalleled selectivity on today's crowded bands
$\star$ All mode operation - SSB, CW \& AM
* Built-in internal crystal control provision and Dual VFO adaptor.
* Complete line of compratible accessories for flexible station design (CW filter, ext. VFO, ext. speaker, mobile mount, 6 m transverter, monitorscope, digital readout adaptor)
$\star$ English language factory instruction manual with full circuitry, AC and DC power cables, all connectors.


## TECHNICAL DATA

## GENERAL

Frequency Range: $1.8-2.0 \mathrm{MHz}, 3.5-4.0 \mathrm{MHz}, 7.0$. 7.5 MHz, $14.0-14.5 \mathrm{MHz}, 21.0-21.5 \mathrm{MHZ}, 27.0-27.5$ $\mathrm{MHz}, 28.0-30.0 \mathrm{MHz}$ all full transmit and receive. WWV $10.0-10.5 \mathrm{MHz}$ (receive only). One auxiliary 500 kHz segment is available except for IF and VFO frequency range. Heterodyne crystal for $1.8-$ 20 MHz is available optionally. (NOTE: All our sets include this crystal).
Mode: Selectable USB, LSB, CW or AM.
Frequency Stability: Within 100 Hz during any 30 minute period after warm-up. Not more than 100 Hz with $10 \%$ line voltage variation.
Calibration Accuracy: 2 kHz maximum after 100 kHz callbration.
Backlash: Not more than 50 Hz .
Antenna Impedance: 50 to 75 ohm unbalanced nominal.
Circuitry: 40 Transistors, 3 Integrated Circuits, 38 Diodes and 3 Tubes.

Power Requirement: 100/110/117/200/220/234 V AC. $50 / 60 \mathrm{~Hz}, 350$ Watts maximum, or 13.5 V DC nominal, 5 A for standby, 0.5 A for receive (Heater OFF) and 20 A for transmit.
Size: $340(W) \times 153(H) \times 285(D) \mathrm{m} / \mathrm{m}$.
Weight: 15.9 kg . (Shpg. Wt.: 20 kg .).

## RECEIVER

Sensitivity: 0.3 uV for 10 dB Noise plus Signal to Noise Ratio on 14 MHz .
Selectivity: 2.4 kHz nominal band-width at 6 dB down, 4.0 kHz at 60 dB down on $\mathrm{SSB}, \mathrm{CW}$ and $A M, 600 \mathrm{~Hz}$ nominal bandwidth at 6 dB down, 1.2 kHz at 60 dB down with optional CW filter.
Harmonic \& Other Spurious Response: Image Relection belter than 50 dB . Internal Spurious Signal below 1 uV equivalent to antenna Input.
Automatic Gain Control: AGC threshold nominal 3uV. Attack time 8 milli-Second and release time 1800 milli-second.

Audio Noise Level: Not less than 40 dB below 1 watt.
Audio Output: 3 Watts to internal or extemal speaker at 4 ohm impedance.
Audio Distortion: Less than $10 \%$ at 3 watts output.

## TRANSMITTER

Input Power: 260 Watts PEP on SSB, 180 Watts on CW at $50 \%$ duty cycle and 80 Watts on AM except for 160 metre. Slightly lower on 10 metre).
Microphone: 50 K ohm dynamic type.
Carrier Suppression: - 50 dB .
Sideband Suppression: - 50 dB .
Spurious Radiation: - 40 dB ,
Distortion Products: -30 dB .
Frequency Response: 350 to $2700 \mathrm{~Hz} \pm 3 \mathrm{~dB}$.
Final Tube: 6JS6C $\times 2$.

All prices include S.T., Freight extra. Prices and specifications subject to change.
90 DAY WARRANTY
EIECTRONIC 60 Shannon St., Box Hill North.

Vic., 3128.
Ph. 88-2213


Section 2 - Unit J-
SIGNAL PROCESSING AND CONTROL
This module has three functional roles. In the first place it acts as a signal shaper accepting a low level (better than 30 mV RMS) signal and after amplification and squaring, outputs a TTL compatible waveform to drive the six digit display of Unit I.

Secondly it generates the necessary gating strobing and clearing commands so that the display unit may be used as a counter and finally, the module provides a mixing facility so that, say, the BFO and VFO of a single conversion Rx/Tx can be combined to re-constltute the signal frequency and allow it to be displayed in the form of a 'digital dial'.

Fig. 26 gives the circuit diagram of the three functions Involved, Fig. 27 gives the component layout on the 6 in $\times 2$ in circult board, while Fig. 28 shows how Units H, I and $J$ can be interconnected to make a $30 / 40 \mathrm{MHz}$ digital frequency meter or a digital dial display.

The signal processor uses a Motorola MC 1035P triple line receiver. The circuit is the same as that used in the DFM described by the writer in AR (1973). In spite of much experimentation with other, and simpler, signal processors the original circuit is still considered to be the most flexible, especially at higher frequencies, and has thus been retained. The input impedance is approximately 1000 ohms and sensitivity is better than 30 mV RMS from 100 Hz to 40 MHz . Occasionally some low frequency instability is encountered and can be cured by additional decoupling of the bias supply (Pin 9) with about 2000 mFd . A response down to 10 Hz can be obtained by increasing the size of the two 0.1 mFd capacitors associated with Pins 10 and 11 to 1.0 mFd or larger.

The control circuitry is, again, essentially that used in the 1973 counter except that 74107 dual JK flip flops are used in place of 7493 s , and the omission of the strobe buffer/inverters. These buffer Inverters were originally needed to provide the positive going strobe pulses required by the 7475 latches used, but the TIL306 devices now used require a negative going strobe pulse which can be obtained direct from the control flip flops.

Two inputs to the control section are needed:
(a) A fixed 100 K pps from the crystal clock of Unit $H$.
(b) A timing pulse from the crystal clock of Unit H. If the modules are to be used only as a digital dial then this timing pulse can be fixed at 10 pps or 1/10th
second. If the modules are to be used also as a counter then switched selection of 1.0, 10, 100 and 1000 pulses per second from the clock is recommended, giving four sampling periods of $1.0,0.1$, 0.01 and 0.001 seconds.

The three outputs from the control section (gate, strobe and clear pulses) are connected direct to the corresponding inputs of the display module (Unit I). If types of display other than the TIL306/308 are used then it may be necessary to invert and/or buffer the clear and/or strobe pulses. Otherwise the TTL outputs from the control section are compatible with most other displays in current use.

The third on board function is a mixer, the purpose of which is to combine two Inputs to give an output which is at signal frequency, and which can thus be processed and displayed (in conjunction with the crystal clock and the display unit) in the form of a digital dial.
The modules $A$ through $E$ (in previous issues of AR) describe single conversion receivers and/or transmitters. The incoming signal is either added to or subtracted from the VFO frequency to produce a fixed IF frequency. At zero beat (for AM) or with intelligible speech (for SSB) this IF frequency is exactly equal to the BFO input. Thus all that is necessary to reconstitute the signal is to add or subtract the VFO to or from the BFO.
As an example consider a signal on 14.1000 MHz and a VFO set at 5.1020 MHz . The resultant IF is 8.9980 MHz - the normal USB BFO crystal frequency.

To reconstitute the ACTUAL signal frequency it is necessary only to add the 8.9980 BFO frequency to the VFO on 5.1020 MHz to get 14.1 MHz .

The necessary mixing is done in a Motorola 1496/1596 or Fairchild 796 HC in exactly the same way as this device was used in earlier modules. The output tuned circuit is on the required signal frequency. The data for coil LS and resonating capacitor CS is the same as that given in Table 2.8 In the September 1975 issue.

Note that in a single conversion system the transmitter output is the algebraic sum


FIGURE 28-INTERCONNECTIONS FOR A 6 DIGIT 40 MHz DFM AND DIAL
of the BFO and VFO frequencies and thus, for a transmitter only, the mixer is probably redundant. However, if the mixer is in use to reconstitute the frequency of a received signal then its use also to display the transmitted signal seems logical and avoids switching when changing between the receive and transmit modes. Where a clarifier' is in use then the frequencies of the transmitted signal and the received signal are not necessarily the same and use of an avallable facility to show the difference seems warranted.

Since only around 30 mV RMS is all that is required as input to the MC 1035 signal processor, the demands on the 1596/ 796 mixer are minimal and it can convenlently be powered by the same 5 volt regulated supply that is used by the rest of the on-board logic.

Links and PCB stakes are used so that the mixer, or the signal processor, or the control section can be used separately if so desired. Although provision is made on the board to balance out residual carrier (the two 22K fixed resistors and the 22K trimpot
between Pins 1 and 4 of the $1596 / 796$ ) this facility may not be strictly necessary when there is a large difference between the BFO/VFO and the mixer output frequency.
During the development of the three digital modules the writer had some doubts about putting them into the same cabinet as the transcelver proper. However (and rather surprisingly) no desensitisation of the receiver was noted and the system has been used several times since with no problems.

## SDLAR FLUX, SUN SPDT CYCLE,

 AND THE DYerFor those amateurs who wish to keep the chart in March 1975 AR up to date, the tollowing are the smoothed mean values issued since my article was prepared -
May 1974, 36.4: June, 36.2: July. 34: Aug. 33.1; Sept, 32.1.
I have gathered some additional Information which may be of assistance to those who have shown interest in my prevlous brief reterence. WWVH gives the solar flux number and other propagation information in its broadcast on thair 5 MHz transmission at 45 minutes past the hour and this posslbly sults the VK boys better than WWV. get a good signal from them round 0745z.
One interesting thing has emerged in the almost daily check I make, and that is the varlation in the signal from WWV as agalnst WWVH. One parilcular day WWV was better than WWVH.
It now transpires that the information broadcast by WWV \& WWVH has been Included at the request of radio amateurs.
To date there has been no further sunspots of the naw cycle reported and the latest "guess". is the bottom will not be reached untll early 1977. Whilst my previous article mentioned my records go back to 1954, this was used for the purpose of the exerclse only, whereas in fact they go back to 1750.

For those who remamber the magnificent band conditions we experienced in 1958, they and others may be interested to know the nearest previous high sun spot peak occurred In 1778 when the sunspot number was in the region of 158. The next highest number did not occur until 1946, when the peak was in the reglon of 156, followed by the best ever In 1958, that cycle being numbered 19. I will be retering to cycle numbers again later. The last cycle, No. 20, reached 119 (see March AR table). which was similar to 1917. The 1928 cycle. 16 , only reached a peak of 80. Alter the peak of 1778 , cycle 3 mentioned above. each cycle was less until the two lowest numbers occurred in 1804, and 1816 when the peak of only

approx. 45 was reached. The next cycle, No. 7 in 1830 only peaked at 65 . The bottom between cycles $5 \quad \& \quad 6$ and $6 \& 8 \quad 7$ reached approx. zero. So . . ., if sunspot activity follows its prevlous pattern after a good cycle, amataurs are golng to have to work hard for real DX, especially Dxpeditions, and to help them know what to expect. keep a close watch on flux numbers etc. trom WWVH and also the sunspot numbers.
In Fig. 1 is reproduced a graph which was in an article written by W3ASK in March '75 CQ.

By use of this graph in conjunction with the reports given over WWW/WWNH, the DXer can get some idea of the propagation conditions he may expect. The graph has now caused me to keep in my dally records. the index as well as the flux number. The $K$ index varies from 1 to 9, the higher the value, the greater influx of solar particles. which in furn causes weaker signals.

Solar flux indicates the degree ol ionisation in the earth's atmosphere and the $K$ Index measures the activity of the earth's magnellc field or any possible magnetic disturbance.
In general. the higher the value of solar flux and the lower level of magnatic activity, the better the HF bands will be for DX, and the reverse if the flux number is low and the magnetlc activity high. During Aprll a Solar tlux number of 67 was recorded.

Use the following procedure in applying the use of Fig. 1. Assume that WWVH broadcasi reports a solar llux number of 80 and a $K$ index of 2 . The Intersection of these values within the area defined as "high normal" is the result. and it could be worthwhile to expect some reasonably good HF DX. If a flux of 70 is reported with a $K$ Index of 5 , one may as well be in the garden or watching $T V$ or doing that lob that has been outstanding for years.

Use the same method of application to the graph, if instead of the $K$ Index you have an A index figure, e.g. Solar llux ol 70 and A Index of 5 or less, the band is worth watching.
The diagram and detail shown in Fig. 1 can be put 10 use by the VHF fraternity who are Interested in DX. When the flux reading, and the A index figures take the propagation condillons into the below normal or disturted area, there is a good chance that unusual propagation may occur on the 50 and 144 MHz bands. As Auroral conditions usually accompany radio storms, they could produce some sporadic-E ionlsation. Accordingly, there is good reason for the VHF operator to dally check the WWV/WWVH broadcasts. Waiting for the information over the VK2 broadcest will be useless; the information must be oblained dally and checked against Fig. 1. as VHF operators are aware that they have to watch the band for the openings. The use of the information from WWV/ WWVH could be very helpful, so it could be that an amateur who uses the HF and VHF bands, may not have to be occupying himself in some other chore, after all.
However, as IPS have told me, there is still a lot to be learned on what goes on in the ionosphere and things happen which are completely unexpected and nothing appears on the scientific information available to indicate what is happening. Such an occurrence was on April 17. It is
a long time since I have heard the band full of European signals on 14 MHz short palh in the momings, yet when turning to that band at 2100 GMT. it was full of them and one only had to send a callsign and they were at you like a swarm of bees. Yet the flux number was only 69. I only wish now I had kept a record of the $A$ index for that day. By 22002, the band had changed and the US stations were coming through lull bore. Next day flux was 68 but not a sign of a European.
In respect to the $A$ Index, the following applies: Figs. 100 to 400 , impossible conditions: 30 to 40 , poor to falr; 15 to 30, fair; 0 to 15, good to excellent.
For those who may not be aware of thls, over the weekly broadcast by the VK2 Division, as well as the recent Iniroduction of the flux ligures for the preceding week, the IPS provide information of what transpired in the past week and what may be expected in the week to come, such as 'a recurrent disturbance is due to start on a cerlain date' or may be a sun spot has appeared, or flares occurred on certain limes of a particular day.
WWVH, after giving the flux number, give the sunspot activity, index etc at the current time and then a forecast for the next 24 hours, but not all amateurs have the equipment 10 cover WWV/ WWVH, so the next bet is the VK2 broadcast.
It is well that amaleurs be aware of the difference between a sunspot and solar flare. Solar flares do nol always occur near sunspots, and they occur only in the day time. A liare causes greater absorption and may be accompanied by emission of solar particles or so-called 'magnetic storm particles' and these arrive at the earth one to two days after the occurrence of the llare and hence we have the magnetic storm, lonospheric storm, etc.
The most prominent occurrence with this lype of storm is a reduction in the MUF and an increase in the absorption, which in effect means a narrowing of the useable number of DX bands, so 3.5 and 14 MHz can be affected. During recent months, the most reliable band for DX has been 7 MHz , but even if has shown adverse propagation at times. The areas worst affected at this time are the Geomagnetic poles and auroral zones.
For those who have just started their 'DX careers' and are somewhat disheartened when they hear old timers talking about the DX they have worked and the newcomer has never heard such a station. they can take some heart from the knowledge that a sunspot cycle rises much faster than it falls. Just think of a graph and the leading side is much steeper than the falling side. so once we do reach the bottom of the present cycle. No. 20, you can watch the DX come back again. But if we are in for another small cycle it won't be 100 good.

I am fortunate in having, due to my fellow 'student' of sunspot actlvity, K4GSU, obtaining it for me, a copy of some 'good gen' from the US Dept of Commerce. There is far too much to Include in this article, but if any one is interested, they can write to:

US Department of Commerce.
National Bureau of Standards
Boulder,
Colorado USA 80302;
and ask for thelr literature NBS special publication 236 and a copy of the paper by K. D. Boggs, lonospherlc Forecaster, Spectrum Utllisation Division.

One final word. Most of the information promulgated by WWV/WWVH is for the North Atlantic area, but can be put to good use by radio amateurs in Australla.

## SIDEBAND ELECTRONICS SALES and ENGINEERING

## UNIDEN

| Model 2020 de-luxe all-band AC-DC transceivers | $\mathbf{\$ 5 5 0}$ |
| :--- | ---: |
| External VFO model 8010 for the 2020 | $\$ 100$ |
| External speaker for model 2020 | $\$ 25$ |
| TRIO-KENWOOD |  |

TRIO-KENWOOD
Model TS-900 de-luxe all-band transceivers, with PS-900 AC supply-speaker unit $\$ 800$ Model TS-520 AC-DC transceivers all-band $\$ 530$ Model TV. 5022 Mtr transvertor for TS- 520 $\$ 200$ QR-666 all-band coverage receiver $170 \mathrm{KHz}-30 \mathrm{MHz} \$ 300$ YAESU-MUSEN

Latest model FT-101-E AC-DC transceivers with genuine RF clipper-speech processor
$\$ 650$
Model FT- 200 transceivers with FP. 200 AC unit $\$ 400$
Model YC-355-D digital frequency counters $\$ 250$ $0-200 \mathrm{MHz}$
SPECTRONICS DD-1 digital counter for FT-101-B-E $\$ 150$ All UNIDEN, TRIO-KENWOOD \& YAESU MUSEN trans. ceivers come complete with original English manuals, all crystals for all available bands and a P.T.T. dynamic microphone.
HY-GAIN ANTENNAS


Model XCR-30 Mk II 500 KHz to 31 MHz continuous coverage portable communications receivers, crystal controlled reception of AM-USB-LSB-CW \$275

## S.W.R. METERS

Midland twin-meter model for 52 Ohms,
upto 1 KW on HF
TEN-TEC
Argonaut New Model 509 5W PEP All Band
$12 V$ SSB-CW Transceivers all solid state
POWER SUPPLIES

POWER SUPPLIES
240 VAC to 12 VDC 3 A , regulated overload protected $\$ 35$

## MARK MOBILE ANTENNAS



## CRYSTAL FILTERS

9 MHz similar to FT - 200 ones, with carrier xtals $\mathbf{\$ 3 5}$
FDK MULTI-7
2 M. FM transceivers, 10 W output, now with 12 Aussie channels crystals, 40 to 60 , including channels 43 and 45 includes all repeaters and anti-repeater use, still \$225 Spare Mobile Cradle and Power Cord $\$ 7.50$

## KEN PRODUCTS

| KP. 2022 M. hand-held transceivers with 6 channels | $\$ 150$ |
| :--- | :--- |
| KCP. 2 charger for KP-. 202 with 10 NICAD batteries | $\$ 35$ |
| Stubby flexible whip for KP 202 | $\$ 6$ |
| KP. $12 A$ speech processor, self contained 240 V AC | $\$ 100$ |

KP.12A speech processor, self contained $240 \mathrm{VAC} \$ 100$

## KLM ELECTRONICS

Solid state 12 V DC 2 M . amplifier, 12W output, automatic antenna change-over when driven, ideal for mobile use with the KP- 202
$\$ 50$
NOVICE LICENSEES EQUIPMENT

| 5 W AM 23 channels 27 MHz transceivers |  |
| :--- | ---: |
| with P.T. mike | $\$ 95$ |
| $5 W$ AM 15 WSB 23 channels transceivers |  |
| with P.T.T.mike | $\$ 175$ |

COAX CONNECTORS \& SWITCHES
VHF types PL-259, angle and T-connectors RCA male
to SO 239 type female, all models
3 Position Coax Switch

All prices quoted are net SPRINGWOOD, N.S.W. on a cash with order basis, sales tax included in all cases, but subject to changes without prior notice. No terms nor credit nor C.O.D. facilities, only cash and carry, no exceptions. All-risk insurance available for 50 cents per $\$ 100$ value, minimum insurance charge 50 cents. Allow for freight, postage or carriage, excess will be promptly refunded. - Mary \& Arie Bles.

# SIDEBAND ELECTRONICS SALES and ENGINEERING 

## SPECIAL VK2AVA MESSAGE

## A CLEARANCE SALE will be held during NOVEMBER-DECEMBER 1975 of all stock listed on the adjacent page.

A BLANKET DISCOUNT of 5 PERCENT will apply during this period until CHRISTMAS 1975 on all items on the adjacent page's list.
NO, no termination of business, although if anyone wants to buy my retail business, he is welcome to negotiate. This is just prior to a re-organisation for 1976 and onwards.

MULTI-7 2 M . Transceivers, now all crystals available for all AUSTRALIAN channels, repeaters 1 to 7 inclusive plus all anti-repeater operation crystals and channels 40-50-52 transceiver crystals. In all 17 Channels now!

Also all crystals for KEN KP-202 repeaters 1 to 7 incl. Crystals are still $\$ 4$ each

## FURTHER SPECIALS <br> OUTSIDE THE 5 PERCENT DISCOUNT LIST!

Near new DRAKE R-4-C and T-4-XC receiver-transmitter combination. The R-4-C receiver is complete with 15 extra crystals, the MS-4 speaker, further a TV-1000-LP filter, MN-2000 antenna matchbox, Shure microphone, in all a super-de-luxe combination for $\mathbf{\$ 1 2 0 0}$.

HY-GAIN Model LP-1017 Log-periodic beam, covering 6 to 30 MHz continuous, 36 ft boom, 40 ft longest element, 14 elements, 320 lbs weight with the HY-GAIN Model R-3501 rotator for this beam, 330 lbs weight, the lot for $\$ 3,000$

## LINEAR AMPLIFIERS

ALPHA 374 brand new linear ..... $\$ 1,100$
ALPHA 70 linear ..... $\$ 1,200$
HENRY 2K Ultra linear complete with HENRY POWER-SUPPLY ..... $\$ 750$
HENRY 2K Ultra linear with locally made power-supply ..... $\$ 600$
ARIE BLES VK2AVA
P.O. Box 23, SPRINGWOOD, N.S.W. 27777

## LATESTIAMateur

BOOKS
NTENNAS for radio amateurs 192 pages, 97 illustrations. 58.60

 uniernanss tor diticticul
all about cubical ouad antennas
 dimensions. rensed guns das ousd $V$ Guse Mini Oundinamo

BEAM ANTENNA HANDBOOK
200 pages. 122 ilustrations 58.60 (p\&p 51.00 )
 beams. the truil abouit he oht matching sy tlems baluns, and lest unstuments
VHF HANDBOOK FOR RADIO AMATEURS 336 gaper. 298 illustrationes 59.95 lokAp S2 00 elrat Iunquage: FM equipment, antimind. repeaiers.

## BARLOW

 WADLEYBARLOW WAOLEY XCR3O MARK II RECEIVER

 ccalions receuset with a inge trom 500 KH to
30 MH : There is no bend switching yince one
 It uxes the wixley toce as ured by Pacsi ntich involises a trant end oceillaloc corerinu 455 to 75 MHz bee mogazines lor tull dexriptionl. The retur 1 SH leyuency siale decuracy of SKHz respl to nithin the hignall' Selictivivis 6 KH : $\wedge \mathrm{M}$ IKHISSB Sonsinvity is limiled by antenna thermal no se. Imes revecinon SOdB. Modes Jre LSB/AM:USB clatitier o SSB Aeception is at courte arsial conildied O
 eugineterng in our op rinion \$275 00 P8P $\mathbf{S 2} 00$



## $13^{2}$

lcomlC22A now in stock at $\$ 210=$

## JUST IN... Sat ot 2 caseteses tor



MOASE CODE BY THE WORD ME THOD Ho have Harchent we worid in responer to hundiells of 'muass for halp with leaining the code This US lave
has been evaluet atter years of pracical encuerience II is unusual.yet is cla med to motik. by staring it s? moderate speed using simple maserial and then bullding up at he same speed to mote diflicult material Thus ine sluaten doesri i have to ink rease his suerd. A1 the end ol the twa casseltes you should bo reidy to incelve at sevel of thill in much ipss lime Come on


FT. 101 ES SPECIAL IOR NOVICE OPL RATOAS

HAM HIGH OUA







ERE 271CB1
ERE
ERA
ER
ER
$2729 \mathrm{mH}_{2}$
S1B 50







## KENWOOD



KENWOOD ISS20 SSE TRANSCEIVER


CENWOOD ISGOO DELUXE SSE TRANSCEIVER



Gear


RAK BL50A 50 ohm Batun (1 to 1 Ratiol



AMIDON TOROIDAL KIGOWATT BALUN KIT

 oroidit instructions to makel lualar' a !ollur.

| CXIIOP I2V COAX HELAY <br>  <br>  <br>  <br>  $\$ 975$ 1RAD 75 c <br> KATSUMI MCIOI MICROPHONE COMPHESSOR <br>  lithe luss th clanty will itis C E.T IC Lumplesen <br>  <br>  <br>  <br>  of dudtu to tre used Sares at follow $1 \times$ IC (UPC <br>  <br>  <br>  <br>  <br>  <br>  <br>  Cornplete willicircuil arid insliwithor, beook <br>  |
| :---: |
| SW 3CO3 POSITION COAX SWITCH <br> Hexth quality pold pisted coniscis pives a maximam ratimet 15 kW with un inserliuan uss of on y 003 ut al $50 \mathrm{mH} \mathrm{H}_{2}$ Incterdity y low VSWH uret 604b <br>  <br>  which preveris " "fostists" blawing things u, ; <br> $\$ 22.00$ ofo $\$ 1.00$ |
| Rak bl50a 50 ohm Batun (1 to 1 Patio) <br>  <br>  trmate stringith VHF soxtat sumbinod 51740 p\& ${ }^{2} 75$ |
| AMIDON TOROIDAL KIG OWATT BALUN KIT Mene yeur umb Balun wilh this tirntitul Anwtrod <br>  Torond. enamelled hesry isade cuiner wire and $v$ vicit insiructions to make 1 lealar a ! baliar. <br>  $\$ 1200 \mathrm{p}$ \& 75 |

## Hirse comel wornh on 28 <br> 

 JLu mutching 1036$\$ 1200$ p\& 75 c

HAM $G 2$ METREFETC
LOCKEO CONVERIERS


LOCKEO CONVERTERS

we whint hiod complet ind wire is






ANTENNAE

A- SBON
Diunt multitanal limsmithing ituriving zinterina is nol convinerd thal hram are hesil Courris all hanck



# pICK SuIW <br> FIfarinhe cJuliz lee Pacific Highway Gore Hill Hesd Chice a priforders NSW 2065 tel:43953II <br> Strop hours: telex:AA20036 <br> Mon-Fn 9-5.30 Sat 9-12.00 czbes: DIKSMIT Syotney 

|Aso at CITY 125 York St tel:29126 (Nrowntal)
BANKSTOWN
361 Hume Hwy tel:7096600 (Nr Chapel Ra)

## LDUDSPEAKERS AS MICRDPHONES

Alan Renton, VK4AZ

The Manse, 13 Herbert St., Proserpine, Qld. 4800


#### Abstract

Recently I was given for my junk box a dynamic microphone which had been through a cyclone. I salvaged the transformer and was interested to see that in conjunction with loudspeakers from both valve and transistor radios, the resulting combinations were quite sensitive microphones.


Then I decided to see whether I could dispense with the microphone transformer and instead use the output transformer, that had originally taken the output of a 6 V 6 GT . coupled to the loudspeaker of a mantel
radio. The loudspeaker was an ancient 6 inch 3.5 ohm Rola.
Using this loudspeaker plus its own transformer as a mike, 1 connected it to a Philips (valve type) tape recorder. The sensitivity was very much greater than the rather high quality dynamic mike that 1 normally use. Indeed, we were able to get quite good recordings of frogs, crickets etc., from the window of the house. The quality of the reproductlon was reasonably good.

Later I disconnected the loudspeaker plus transformer from the tape recorder and connected a 20 k ohm per volt multimeter across the transformer. I was able to get an output of one volt by speaking into the loudspeaker in a reasonably loud and low tone of voice.

Then $I$ tried using the combination as the microphone for my FT200 transceiver. I adjusted the ALC so that its output was comparable to the usual dynamic mike.

Two amateurs, one in South Australia and one in Southern Queensland gave me reports comparing the loudspeaker with the dynamic mike. The VK5 reported that the speaker was slightly more bassy but that it would serve very well as a stand-by mike. The other amateur actually thought that the speaker gave an improved performance.

The speaker was not in an enclosure and even had a $11 / 2$ inch long tear in the diaphragm!

Perhaps the above may be of use to young amateurs with strained finances or to any who might be looking for a very sensensitive microphone at short notice.

## QRP CW RIG FOR

## 7 MHz

Drew Diamond VK3XU
55 Winblrra Pde., Ashwood. 3147
Presented here are all the details of a simple low-power CW transmitter for the experimenter. Interstate contacts have bren made wilh this transmitter and an ordinary Inverted-Vee dipole antenna. Power oulput is about 500 mW into 50 ohms from a 12 voll supply. The transistors used are cheap (about 40c) and readily available. The power supply used is two 509 lantern batteries connected in series to produce 12 volts.
The photograph shows the form of construction used, a small fibreglass board


## 139 AUBURN ROAD, AUBURN, Vic. 3123

Telex: AA30566. Cables \& Telegrams: "VICOM" Melbourne.

DISTRIBUTORS:<br>Canberra: Daicom 32 Kalgoorlis Crescent, Fisher. Phone: (062) 88-4899.<br>Gold Coast: DB Electronics, 21 Christine Ave., Miami. Phone: (075) Adelaide: Graham Stallard, 27 White Avenue, Lockleys. Phone: (08) 43.7981.<br>Newcastle: Diqitronics, 188 Parry Street, Newcastle. Phone: (049) 69-2040.<br>Perth: Netronics, 388 Huntriss Avenue, Woodlands. Phone: 10921 46.3232.



WHY 11 GOOD FEATURES BECOME 11 GOOD REASONS WHY YOUR NEXT (OR FIRST) HF RIG SHOULD BE A"2020"
 price - \$550!

## SO WHAT's WITH THE PLL BIT?

We have taken an output frequency of 7 MHz as an example and the relevant frequencies to eventually generate 7 MHz are shown on the diagram.

1. The 9.138 MHz signal from the VFO is fed into the mixer in the PLL system. Here it is mixed with the 5.838 MHz signal from the VCO (voltage controlled oscillator) to produce an output frequency of 6.7 MHz .
2. The 6.7 MHz signal is passed to the programmable divider where it is divided by 67 to produce a 100 KHz signal which is passed to a phase detector (P/D).
3. In the phase detector the 100 KHz signal is compared with another 100 KHz signal derived from a highly stable 10 MHz crystal oscillator.
4. The output from the P/D (an error voltage if one exists) is then fed back to the VCO to lock it precisely to 15.838 MHz .
5. This output of 15.838 MHz is fed to the local oscillator mixer where it is mixed with 29.025 MHz from the band oscillator circuit.
6. This produces a 13.187 MHz signal which is then fed to the transmitter or receiver mixer where it is mixed with the ssb signal generated at 6.187 $\mathbf{M H z}$ to produce the final output of 7 MHz .
7. For other bands, a different band oscillator crystal is used, and to generate the 100 KHz segments within a band, the program on the divider is altered so that the divider's output is still 100 KHz .
Thus the $\mathbf{2 0 2 0}$ has the stability of the 10 MHz reference oscillator.
So much for the example given: of somewhat more practical interest is the sequence of events if the tuning knob (VFO) is turned - a reasonable state of affairs if we are going to tune the band! The following explanation also applies if the VFO or VCO tends to drift.
When the VFO frequency is varied, the programmable divider is presented with a frequency other than 6.7 MHz . Hence its output will not be exactly 100 KHz .
This produces an error vol tage from the P/D which shifts the VCO such that a difference in frequency between the VCO and the VFO is exactly 6.7 MHz . Naturally all this takes place with the speed and agility of a startled gazelle! i.e. instantaneously. For other bands, different local oscillator frequencies are employed, and a different frequency is presented to the divider. However the principle is exactly the same as described above.
. . . . . . Peter Williams, VK3IZ

The $\mathbf{2 0 2 0}$ does not have $\mathbf{1 6 0}$ metre coverage but there is some scope to bring a little "do-it-yourself" back into the shack - why not make a transverter connections for transverter operation are on the rear panel.
LINEAR AMP? Keep posted on a matching linear for early release in 1976.

| 3andsimeters) | FrequencyiNolz |
| :--- | :--- |
| 80 | $3.5 \sim 4.0$ |
| 40 | $70 \sim 75$ |
| 20 | $140 \sim 14.5$ |
| 15 | $210 \sim 21.5$ |
| $10(A)$ | $28.0 \sim 28.5$ |
| $10(B)$ | $285 \sim 290$ |
| $10(C)$ | $290 \sim 29.5$ |
| $10(D)$ | $29.5 \sim 30.0$ |
| 11 | $27.0 \sim 27.5$ Receive only |
| WWV | 15.0 |






Peter Williams VK3IZ Manager

## 139 AUBURN ROAD,

 AUBURN, Vic. 3123Telex: AA30566. Cables \& Telegrams: "VICOM" Melbourne.

DISTRIBUTORS:
Canberra: Daicom 32 Kalgoorlie Crescent, Fisher. Phone: (062) 88-4899.
Gold Coast: DB Electronics, 21 Christine Ave., Miamı. Phone: (075) 35-1798.
Adelaide: Graham Stallard, 27 White Avenue, Lockleys. Phone: (08) Newcastle: Digitronics, 188 Parry Street, Neweaste. Phone: (049) 69-2040. Netronics, 388 Huntriss Avenue, Woodlands. Phone: (092) 46.3232.

## ANTENNAE

MOBILE WHIPS:
RM-80 Resonator for $80 \mathrm{~m} . \$ 18.50$
RM-40 Resonator for $40 \mathrm{~m} . \$ 16.80$
RM-20 Resonator for $20 \mathrm{~m} . \$ 13.50$
BM-1 Bumper mount $\$ 13$. Spring \$13
HY-GAIN
203BA 3el 20 m beam $\$ 168$
TH6DX Gel yagi 10-15-20. \$225
TH3JR 3el yagi 10-15-20. \$135
18AVT trap vertical 80-10. $\$ 90$
14AV0 trap vertical 40-10. $\$ 65$
VHF ANTENNAE
LINDENOW $2 \mathrm{~m} 5 / 8$ whip $\$ 21$, base $\$ 2.60$.
RINGO ARX-2 6db 2m gamma matched vertical, \$35. Extension kit to improve gain of the old AR-2, \$12.

## ANT. ACCESSORIES

Rotator - CDR ham II 240v $\$ 165$.
Oskerblock SWR200 SWR/PWR Meter with ranges $2 / 20 / 200 / 2000 \mathrm{w}$ to 200 MHz

## 2 METRES © M

Seiwa SV230 2 metre FM 12 channel transceiver featuring 25 watt/1 watt power switch, priority channel system and internally mounted deviation control. Sensitivity is .5 uv or better for $\mathbf{2 0 ~ d b}$ quietening. Adjacent channel rejection is 70 db or better. Fitted with channols, 1, 4, and 50. \$198available ex-stock.
KEN KP202 handheld 2 watts. Incls 4 chs $\$ 150$.
Charger and nicads $\$ 32$
Trio 7200G 10 w incl 2 chs Special $\$ 210$

## TEST GEAR

TRIO VT108 FET VOM 8 ranges 0.5 to 1.5 kv .11 meg input. ohms 0.1 to 1000 meg, memory feture $\$ 85$
TRIO AG202A AUDIO GENERATOR covers 20 Hz to 200
KHz 10 v rms output. sine and sq wave, ext sync $\$ 94$
TRIO 75 mm scope 20 mv cm sens, dc to $1.5 \mathrm{MHz} \$ 170$
TRIO SG402 RF GENERATOR covers 100 KHz to 30 MHz $\$ 76$
D.60 FREQUENCY COUNTER including 2 metre prescaler $\$ 360$

## HAM HEADQUARTERS!

## CRYSTAL OVENS

pcb mount proportional control crystal
ovens can be supplied for standard temperatures and voltages. Mode PCL.1-12 clip type oven for He-25/u crystal \$19,80
Model PCL2-21 slip-on oven for Hc-6/u crystals $\$ 19.80$

## HF TRANSCEIVERS


Uniden External (PLL) VFO S105
Uniden Matching Speaker S28
Yaesu FT101E ( $160-10 \mathrm{~m}$ ) transceiver $\mathbf{\$ 6 6 0}$
Yaesu FL2100B Linear Amplifier. $\$ 388$
Yaesu FT758 mobile transceiver, \$245
Atlas $210-215$ solid-state transceiver, $\$ 570$
Atlas 240 V power supply, $\quad \$ 150$
Atlas delux mobile mounting bracket. $\$ 47$

## 70 cm

The SU .710 cm fm transceiver runs 10 watts and is the ideal mobile rig. Complete with 1 channel (435.0) and mounting bracket, mic, cables etc., and VICOM 90 - day warranty.

$10 \times 5 \mathrm{~cm}$. The components are soldered to the copper side of the board and drilling is unnecessary. Coax to the antenna connector is soldered to the left hand side of the board shown on the photograph. Tag board construction or matrix will also yield satisfactory results if circuit board working facilities are not available.

The toroidal coil formers used at $L 4$ and L5 are not easy to obtain, as it is necessary to order a minimum quantity of ten from the supplier. (I bought a number of these formers for this project and will be pleased to post a pair to any intending constructor for the price $I$ paid, 40c plus postage
please.)
Any active 7 MHz crystal in the CW band ( 7000 to about 7040 kHz ) may be used at X1. Operation of the crystal oscillator can be checked before the components of the output stage are soldered into place. Tune the station receiver to the crystal frequency and adjust L 1 for maximum signal consistent with re-starting of the oscillator with removal and re-application of the 12 V supply. The components of the output stage can now be mounted into place.

To test the completed circuit, connect a 6 volt, 100 mA lamp across the output, or better still, a 56 ohm 1 watt resistor and X10
probe and CRO, with a bandwidth greater than about 10 MHz . With the key circuit closed, adjust L1, C7, C9 and C10 for maximum output. The lamp should glow at almost full brightness when the circuit is operating correctly. The character of the keying may sound a little chirpy with the lamp load, but that is because the load variations of the lamp are reflected through the output stage to the oscillator. With a pure load (resistor or antenna) there is no chirp and keying sounds quite good.
If you have been using high power and feel you need a little adventure, this little QRP rig may provide it.

## A WIDEBAND RF TRANSFDRMER

Ivan Huser VK5QV
5 Mugtord St., Mount Gambier, SA 5290

## A transformer sultable for matching the input of a passive grid linear ampllfier to a transmitter or transceiver.

If one looks at the circuit diagrams of passive grid linear amplifiers it will be seen that the input swamping resistor is generally in the order of 300 ohms. Thus, if fed by coax directly from a transmitter or,

transceiver, a mismatch will occur with a resultant high standing wave ratio between the two units.

This problem can be overcome by using an RF transformer having a 2:1 turns ratio (4:1 impedence ratio) between the input socket of the linear amplifier and the swamping resistor in the tube grid circuit.

If 75 ohm coax. is used, a swamping resistor of 300 ohms will give an SWR of 1:1 on all bands. For 50 ohm coax. a 220 ohm resistor should be used.


The construction of the transformer is quite straightforward. The original was wound on two Ducon Q2 ferrite rings having an outside diameter of approximately 18 mm stacked one upon the other.
Two lengths of $7 / .0076$ PVC hook-up wire were twisted together to give about two twists per inch length as shown in Fig. 1. The twisted pair was then wound tightly around the toroid to give ten or twelve turns (see Fig. 2). The exact number of turns does not appear to be too critical.
If two different coloured wires are used, it becomes a relatively simple task to connect the transformer as shown in Fig. 3. It should be noted that this transformer is NOT a balun since both the input and output are unbalanced. Although not tried on 160 m , I can see no real reason why it should not work satisfactorily on this band also.
Mounting and/or potting of the transformer is left to individual tastes.

This transformer would be quite suitable for use with the G2DAF/VK5MS linear amplifier described in the May 1974 issue of Amateur Radio.

## OPTIMISE YOUR IAAVQ

Hans Smit VK2BHS
9 Moore Cres., Faulconbridge. NSW 2778

The ubiquitous 14AVQ trapped vertical antenna can be optimized for operation on five Australian bands quite easily with two simple modifications.

1. Shorten the distance between the 10 metre trap and the 15 metre trap to $51 / 2$ inches. This involves cutting about 2 inches off the connecting tube and about 1 inch off the bottom of the 15 metre trap.
2. Lengthen the top section to allow it to be adjusted to 78 inches. Insert an extension piece (flat $1 / 2$ inch plated steel bent at each end and drilled, about 4 inches long) between the top section and the capacity hat. Bend the three aluminium wires up, to add a further 5 inches of height to the antenna.


Now adjust the antenna, using the key letters for dimensions referred to in the instruction leaflet. A - $29 \mathrm{in}, 8-71 / 2 \mathrm{in}$, C - 12 in, D - $5^{1 / 2}$ in, E - 12 in and $F-78$ in (plus the additional 5 in . gained by bending up the capacity hat wires).

Make sure that the ground system is
effective. If you have a flat steel roof, as is the case at this QTH, solder all the sheets together with short lengths of braid or thick wire.

The following SWR curves were obtained with the bottom of the antenna mounted 6 in. above the flat steel roof.

# NEWCOMERS NOTEBDOK 

with

Rodney Champness VK3UG and David Down VK5HP

## A NOVICE TRANSMITTER - Part 3 THE MODULATOR

The transmitter has been designed so that the modulator can be added at any time to the basic CW transmitter. The modulator descrlbed in this article is capable of pulting out about 6 watts of audio which will modulate a transmitter with a DC inpul of 12 watts to the plate and screen of the output valve.
However, the DC input to the final consists of the DC used in the screen as well as the plate circuit. The DC used in the screen can be as high as 20 per cent of that used in the plate clircult.
The modulator can therefore not be expected to modulate a transmitter with more than about 10 watts plate input. The modulator is capable of modulating the carrier to 120 per cent in the positive direction and 85 per cent in the negative direction, which means the transmitter is more effective than some other transmitters of considerably higher power.

The audio quality of the modulator is quite satisfactory and the distortion figures come out at 8 per cent, which is quite acceptable for a piece of equipment in this category. A ceramic microphone is used to maintain the overall speech quality. The frequency response of the modulator has been tailored to be substantially flat from 300 Hz to 3000 Hz and is down by about 6 dB at both of these points relative to 1000 Hz response. The components responsible for the speech frequency shaping are C14, C15, C16, C17, C18, C19, C20. C22, R18, R23, and R24. For example C14 and C15 have opposite effects on the frequency response of the particular stage C14 with R18 acts as a low pass filter attenuator, whilst C15 with R20 acts as a high pass filter and attenuates frequencies below about 300 Hz . C14 also acts as an RF bypass in the front of the modulator.

Valve stage V2 amplifies the weak signals produced by the microphone by about 300 times and then applies these to the modulator output stage V3. These voltages are built up in this stage to approximately 500 volts peak to peak, enough to fully modulate the RF section of the transmitter. All the DC valve operating parameters were extracted almost entirely from the various valve data books; the signal coupling components are the things which were calculated for this particular amplifier/modulator requirement. The modulation transformer is a push-pull speaker transformer of the cheaper replacement type rated at about 5 watts. Approximately 300 volts DC is placed on the plate of the 6BQ5 modulator valve.

When it Is driven by the 6AU6 the plate current is made to fluctuate at an audio rate. When the input voltage to the grid of the 6BQ5 is swung in a positive direction, this causes the plate current to increase because the valve has less bias. As this action is occurring at an audio rate the transformer T 1 acts as a choke at audio frequencies preventing the valve from drawing much more current than normal, and by so doing the plate voltage drops to a low value - theoretically to zero. However, when the drive from the GAU6 is in a negative direction, the valve will tend to cut off and T1 again acts as an audio choke but in this case it tries to maintain the current drawn by the 6BQ5 at a constant rate so the voltage at the plate end of the transformer increases to something like 600 volts.

This swing from zero volts to 600 volts at the modulator plate end of the transformer does not in fact occur if the modulator valve is to be operated in Class A1 which it is in this transmitter. The voltage swing is limited to 60 volts DC to 540 volts DC, which works out to a swing of $\pm 240$ volts about the 300 volts DC at the plate of the modulator. If the swing is only 240 volts either side of the resting DC voltage, it is necessary for the transmitter RF section to be supplied only with 240 volts DC HT voltage otherwise 100 per cent modulation will not occur. The DC voltage must be swung between zero and twice supply by the modulator audio output, and this is approximated in this transmitter. To accomplish this it is necessary to drop the HT voltage on the RF output stage to $240-$ 250 volts and R28 does this. The 480 volts peak to peak audio must not be attenuated by R28 so C22 bypasses this resistor to make sure the peak audio is applied to the final RF valve. T1 is a $\mathbf{1}$ to $\mathbf{1}$ speaker transformer. The DC currents in T1 are in opposite directions so their magnetising currents largely cancel and T1 does not become magnetically saturated. The secon-
dary winding on T 1 , the normal speaker winding of 3.5 ohms, is used for monitoring purposes in the companion receiver section.

Some may think that the relay shown in the circuit diagram of the modulator serves no useful purpose - but it does. In conjunction with R27 the relay shorts out the electrolytic capacitors in the modulator and receiver on changeover from transmit to receive and vice-versa. If these capacitors are not shorted out on changeover enough charge will be left in them to cause both transmitter and receiver to operate momentarily together and probably cause some acoustic feedback. The time for C21 to discharge through R27 is of the order of 0.1 milliseconds with a value of 10 uF for C21. The momentary discharge current through the relay contacts and the resistor is of the order of 2.5 amps . Without the resistance the relay contacts could easily weld themselves together, so it is not recommended to delete this seemingly insignificant resistor. It may be that in some cases this anti-acoustic feedback circuit is not required.

Press-to-talk facilities for the transmitter are extended via the microphone to the plug and socket and then to relay control circuitry which has previously been described. At this juncture it is probably advisable to point out that the terminal strips labelled STR1 in the transmitter and modulator circuit diagrams are meant to mate, i.e. A connects to $A$, etc.

The voltages which will appear in the modulator are tabulated below:-

| Valve | Calhode volla | Screen volia | Plate volis |
| :--- | :---: | :---: | :---: |
| 6AU6 | +1.5 | +55 | +45 |
| 6BO5 | +8.8 | +250 | +300 |

These voltages are subject to variation due to component variations, supply voltage variations and individual valve variations, but are near enough for practical purposes.

## MODULATOR FOR 10 WATT TRANSMITTER.



The next two months should finish the transmitter description, and will include a practical chassis layout, any modifications to the transmitter which may improve its performance, or extend it, and a simple aerial tuning unit which may be useful.

## COMPONENT LIST FOR MODULATOR OF THE 10 WATT 80 METRE NOVICE TRANBMITTER

R21 - 1 M ohm $1 / 2$ watt, screen voltage dropping resistor.
R22 - 0.47 M ohm $1 / 2$ watt, plate load resistor, valve output voltage is developed across thls resistor.
R23 - 1M ohm potentiometer, gain control for the modulator. A fixed resistor can be used here if R24 connects to C17. This is the grid relurn resistor.
R24 - 100k ohm $1 / 2$ watt, grid stopper and part of audio low pass filter.
R25 - 135 ohm 1 watt $(2 \times 270$ ohm $1 / 2$ watt in parallel) ca!hode blas resistor.
R26 - 10k ohm 1 watt. HT decoupling and voltage dropping resistor.
R27 - 100 ohm $1 / 2$ wall, used 10 dlscharge receiver or transmitter HT line to earth when particular section switched to stand-by. Value not at all critical, up to ik ohm satiofactory.
R28 - 1k ohm 3 watt wire wound resistor or $3 \times 2.7 \mathrm{k}$ ohm 1 watt resistors in parallel. HT voltage dropping resistor for $P A$ valve.
R29 - 39 ohm ( $2 \times 82$ ohm 1 watt in parallel or a 6.3 volt 0.15 amp pllot lamp). Used to balance the voltage across the serlesparallel valve heater network.
R30 - 100 k ohm $1 / 2$ watt, grid stopper and portion of audio low pass filter. Also acts as a suppressor to RF voliages and currents being impressed on the grid of V2 and so causing audio distortion.
R31 - 2.2 m ohm $1 / 2$ wall. grid return resistor for V2 and load for the high Impedance microphone.
R32 - 2.2k ohm $1 / 2$ watt, cathode bias resigtor for V2.
C16-0.022 uF 400 volt polyester or simllar capacitor. Screen bypass, value helps with the shaping of the modulator audio passband.
C17- 0.001 uF 400 volt polyester or simllar, coupling capacitop from V2 to V3, acta to restrict the low audlo frequencles passing through the modulator.
C18 - 390 pF ceramic disc capacitor, used for frequency shaping, restricting the passage of highs through the modulator.
C19 - 5 UF 25VW electrolytic, cathode bypass. used to attenuate the lowar frequencias.
C 20 - 0.01 uF 400 voli polyester or slmilar, used to attenuate the higher audio frequencies, can be omitted from the clrcult with no problems.
C21-4 UF th 24 uF 350VW electrolytic. HT by pass to prevent feedback in the modulator and reduce hum on the modulated signal.
C22-4 uF 160VW electrolytic, passes audlo around DC dropping resistor R28, Improves modulation percentage of the transmitter. also restrlcts the passege of the lower audio frequencies.
C23 - 390 pF ceramic disc capacitor, used for audio frequency shaping and bypassing of RF Induced into the first audio stage from the iransmitter
C24-1 uF 10VW electrolytic. cathode bypass for V2, alds in attenuating the lower audio frequencies.
J3 - 5 pin miniature socket for the PTT microphone.
P3 - 5 pin miniature plug to sult above.
XM1 - Crystal, ceramic or high impedance dynamic microphone with press-to-talk facility.
V2 - GAU6 high galn sharp cut-off pentode valve.
V3 - 6BQ5 high gain audio output valve.
T1 - 10k ohm plate to plate replacement pushpull speaker transformer. Exact impedance not over important.
REL - See iransmitter details in Septamber issue.

Miscellaneous hook-up wire, lag strips, solder, shielded cable, nuts and bolts, valve sockets, metal for chassis and brackets, labels and paint, also required.

# so who needsa power generator 

## for amateur radio?



Look at it this way, if you had a Honda EM 300 Portable Generator, you'd have 240 Volt. 50 cycle 250 Watt power when and where you need it. This little Honda Genius is extremely quiet and lightweight and can even charge 12 volt batteries. WE have a generator to suit your every need
(All units packed ready to freight anywhere)
ATTRACTIVE FINANCE ON LOW DEPOBIT SCAN-HI Pтт.Lто. Telephone: $\mathbf{4 2 1 4 2 9}$
45 Church Street, Abbotsford, 3067
From small portable to large industrial. we're MELBOURNE'S LARGEST GENERATOR SPECIALISTS AND AUTHORISED HONDA DISTRIBUTORS

Various sizes to suit your needs. send coupon
for fully illustrated brochure
SCH 7

## Name

Address

Phone No.
Slze of Unit

## 20 Years Ago

with Ron Fisher VK3OM

## NOVEMBER 1955

'Nation Shall Speak Peace Unto Nation'. The late Don Knock VK2NO suggested that perhaps Instead of super power broadcasting stations laking up shortwave space, more frequencv space should be handed over to amateurs so that the youth of all nations could do Just this.
From the technical point of view, the November issue belonged to Hans Ruckert VK2AOU. Part two of 'A Transmitter With Low Harmonic Output' plus 'Anli TVI Filters for the Amateur Transmitter'. Hans showed how to design and align low pass fillers sultable for connection in the oulput coax Ilne of a typical amateur rig. plus Information on the design of $A C$ line filters.
Back in 1955, VHF receivers did not usually Include automatic band scanning. However, not to be outdone. Dr. H. A. F. Rofe VK2HE altached an AGC controlled motor to the tuning dial of his receiver. The whole thing was described in an article entitled 'A VHF Automatic Tuner'
Most amateurs give little thought to lightning protection until it is too late. An article reprinted from QST gave examples of Just what should be done to avoid serious trouble.

An interesting account of the formation of a communlcations net for the marathon events of the forthcoming Olympic Games showed Just what could be achleved with two metre gear at the time. I am not sure it the net actually operated during the games of not.
If you follow the Hamads column try a few of these from November 1955. An AR7 complete for \$70. Or how aboul an RAAF scope for $\$ 30$. No. well perhaps you could be templed with tive 826 lubes at $\$ 2$ each.

## IARU

NEWS

Word has been received that the Minutes of the Region 3 Hong Kong Conlerence have been completed and are on the way to us by sea mail. All the more important Items are likely to have been dealt with already at the 1975 Federal Convention.

The NZART Golden Jubilee will be marked next year by a Conference in Auckland. The dates are 4th to 7th June, 1976.
If any amateur has plans to visit New Zealand "some time or other, maybe next year'", or Indeed intends to visit Kiwiland next year anyway, the provisional programme certainly caters for all tastes. A world renowned Scientist will be a guest lecturer. there are social evenings and luncheons, a mobile rally, fox hunt, coach tours around New Zealand before and after the conference, and even a creche lor chlldren.
With the recent devaluation of the New Zealand dollar this is certainly a popular holiday area nowadays. When you have a willing band of New Zealand amateurs ready to assist with advice and organisation for a bonus such as this Convention it is difficult to see how anyone could pass up this golden opportunity for a most congenlal and economical break from everyday chores.

The oldies are to be catered for as at least 7 of the original founders of NZART are expected to be present. Marion Lister writes that youth will also be catered for as well as VHF. Repeaters will be in operation. she says, so take the hand-held transceiver with you for which a licence is necessary. Take photocopies of your licence and arrange for lorms to be completed in advance.
Accommodation etc. will be through Avis Lid. and It seems that Air New Zealand will also take bookings and arrange group tours.

If you are interested in this once in a Ilfetime scoop why not get further details by writing to Marion Lister, ZLIEKL, the organising secretary at P.O. Box 23-680, Papatoetoe East, Auckland, New Zealand.

All the above information kindly provided by David Rankin, 9V1RH, Region 3 Secretary.

## Commercial Kinks

with Ron Fisher VK3OM<br>3 farview Ave. Gien Waveiley. 3150

This month it's back to the FT200. It seems incredible that modifications keep coming in for this rig. I often wonder where it will finish.

John Adcock VK3ACA has come up with improved CW performance for the FT200.
"I would like to offer some simple methods of improving the usefulness of the FT200 on CW. These modifications may be equally applicable to other transceivers.

The FT200 falls short of my idea of a good CW rig in the following ways.

1. The final was designed for class AB1 operation and therefore is inefficient on CW.
2. There is no netting facility when using a separate CW receiver, and
3. It is impossible to zero beat when transceiving. This is because the transmitted carrier is shifted inside the band pass of the filter on transmit but on receive the beat frequency is not shifted.

Consider the first point. In the CW position the final is operated under 'saturation' conditions and the input to the final is excessively high.

The plate current can be reduced by reducing the loading. Under this condition there is a tendency for the tuning capacitators to flash over. A common modification is to reduce the drive in which case the final will operate correctly in class AB1. This will reduce the plate current but the efficiency is very low.

The method suggested here is to increase the bias on the final. This will reduce the plate current and allow the final to operate in class $C$ at the same time. This can be done by adjusting the bias resistor VR 103. However it is now necessary to readjust the bias resistor each time one returns to SSB. The best solution is a second jias adjustment. This is done by placing an extra resistor VRx in series with the bias line (see Fig. 1). Here a 50 k variable carbon pot appears to be satisfactory. When the resistance of VRx is increased the voltage bias to the final will rise.

Ideally this resistor should be switched in with the function switch in the CW position only. Unfortunately I have not discovered a simple method of doing this.

The pot VRx can be mounted at the right hand end (viewed from the back) of the row of pots. By carefully following the wiring it is necessary to run only a few


FIG 1b
short lengths of wire to the printed circuit board.
To operate the new facility, when in the transmit CW position with the key down, rotate the new pot until the plate current is at a satisfactory value. 250 mA gives 150 watts input (do not hold the key down too long). When returning to the SSB position rotate the new control to the zero resistance position.
The second and third modifications are now considered. The switch Sn in Fig. 1a and 1 b is a netting switch and the switch Ss in Fig. 2 is a shift beat frequency switch. These were mounted to the right (above and below) of the mike gain control at the right hand side of the panel. Time and space do not permit a detailed description of the physical wiring except to say that it is not difficult to place.
The switch Sn was an NKK Sb2061 DPDT press button type. Ss is an NKK SPDT toggle with only one pair of contacts used. The purpose of the net switch is to turn on the transmitter except for the final and thus provide a carrier for netting in an adjacent receiver. Sna will operate the relay system to turn the receiver off and turn the transmitter on. Snb maintains the maximum blocking bias on the final. There should now be ample carrier for netting a second receiver.
The switch Ss will cause the carrier crystal to shift in the receive position as well as the transmit, with the function switch in the CW position only. When tuning in CW. the clarifier can be left off or in the O


Sn $=$ DPDT PRESS BUTTON CHANGE OVER SWITCH

position and the incoming signal set to zero beat. Now the clarifier can be adjusted to the desired pitch. The switch Ss can now be left on or off as desired. The transmitted signal will now be zero beat with the received signal.

Some thoughts in the use of the switch are as follows. Using the switch Is the only way you can be sure your transmitted signal is zero beat with the incoming signal. In the on position it does allow the CW to be copied at a lower pitch than is usually possible. This is sometimes an advantage under QRM conditions.
There is some feed-through from the beat oscillator to the AGC detector and this will cause a small shift to the " S " meter and some de-sensitising of the receiver. This may be undesirable on weak signal bands such as 21 and and 28 MHz . Also the switch should not be used when receiving SSB and transmitting CW.

Since all these modifications are independent of each other, any one or all can be tried'.

## BOOK REVIEW

quide to amateur hadio' by Pat Hawker Gava It is my pleasure to review the 16 th edition of Gulde to Amateur Radio which has Just been published by the Radio Soclety of Great Britain.
The highly readable lext is supplemented throughout by extenslve use of diagrams, photographs and tables, making the book one of the most compact reference sources on this subject available. Naturally the book is intended for interesled poople In Great Britain but most of the text is applicable to Australla. The chapter titles are (1) This is Amateur Radio: (2) Getting Started: (3) Communlcations Receivers; (4) Amateur Transmitters: (5) The Licence Examination; (6) Operating an Amateur Radio Station: (7) Workshop Practice: (8) Amateup Radio Equipment: (9) The RSGB and the Radio Amateur.

The only sections not applicable here are Chapters 5 and 9 and in the latter. WIA can be nearly written In. In place of RSGB. The Llcence exam is significantly different here in Australla. Chapter 7 is one of the best 1 have rasd on Workshop Practice. All in all I could not do less than recommend it to those who read. and those who should read. Newcomers Notebook.

Rodney Champness VK3UG
SPECIAL ACTIVITY ETATION
ZSABD writes that the special call sign ZSAOIL will be activated to celebrata the 25th anniversary of South Africa's oll-from-coal plant at Sasolburg.



Thanks for this most informative letter, Peter. location. "Only one QSO on 15, that being to P29, nll on 10 or above".
VK3AIE (formerly VKAAZ) sald he found the conlest as much fun in Malbourne as in Darwin. 10 llstened quite a few times but nothing hesid. Jack VK2CX reveals the real ham splrit In his comments, "I always enjoy any of the Australian contesta, and I always take part In any contest Just to repay my contribution $t 0$ any country that takes part in any in the $n$ the CW section of the RD the bands afe dead hours should be mandatory

Probably the youngest contestant was Nigei Dobson of Fulham, S.A. who submitted an SWL VK5KK D. Minchin, only had his call for 3 days prior to the RD. Dad had to share his gear while unior scored 850 points! And finally a faw words about Victor R. P. Cook, VK5AC, who has been as a foundetion member of the WIA he must be among. if not the oldest, of the cat's whiskep winders who sent in logs for this contest.
It is now obvious that the RD rules need a on review. The scoring takes into consideraThe results for many years past show that this does not occur. VK6RS Ron has spelt it out, "I do. $k$ the latest scoring lable is very equitable, but 0 give away many more points than we could posall comers as I should, and made 368 polnta, or as it was CW exclusively, 736. To galn these points I had to give away 703 or CW 1406. To give a VK2 live points to receive 2 means that for 37 statlons writing to the Editor of AR. Please do not write to the FCM as in the past some correspondents ished in our magazine, and consequently sugges. llons recelved by the FCM cannot be made widely known. All that is wanted are a few slmple rulesi

## CONTEST CALENDAR

$\begin{array}{lll}\text { Nov. } 9 & \text { Czechoslovaklan }\end{array}$
Nov. 22/23 ARRL Phone Swespstakes
. $23 / 30$ WW DX CW
ac. 6/7 ARRL 160 metre

Czechoslovaklan Contest
GMT Nov. 9 to 2400 GMT Nov. 8th
Rules romain unchanged. Phone and CW. World wide contest with Czech stations having additional value. Exchange RS(T) plus 2 figures indicating 2one. One point per QSO, 3 points 11 milted for multiplier credit but have zero QSO Doint value. Multiply total by sum of ITU zones on each band for Inal score. Mailing deadline Dec. 31st to Central Radio Club, Box 69, 113 27 Praha 1, Czechoslovakia.

CQ WW DX CW
000 GMT Sat. Nov. 29 to 2400 GMT Sun., 30th Nov. No changes to rules. Suggest 880 magazine for . 14 Vanderventer Ave., Port Washington, L1, N.Y., USA, 11050 by Jan. 15, 1976. Essenilal you show CW on envelope.

## DX ITENS

VK2BVS reports there is a 160 m net on 1.825 MHz or the VKZ Sunday morning broadcasis and, also a VK2BPX, that ZL2IG and ZL2ABF transmit on 1.884 MHz and Ilsten for VK stations on 1.825 MHz hls band as well as VK3QINK8. CW is monitored continuously on 27.125 MHz to provide a link-up active statlons on 28.5 MHz were also reported including HL9TG, VK6MB and a P29.

# VHF UHF an expanding world <br> with Eric Jamieson VK5LP Forreston. S.A., 5233 <br> Times: GMT 

| AMATEUR VKO | BAND EEACON8 |  |
| :---: | :---: | :---: |
|  | VKOMA, Maweon | 83.100 |
|  | vKOGR. Casay | 53.200 |
| VK1 | VK1RTA, Canberra | 144.475 |
| VK3 | VKSRTA, Vermont | 144.700 |
| VK4 | VK4RTL, Townaville | 52.800 |
|  | VKARTT, Mi. Mowbullan* | 144.400 |
| VK5 | VKSVF, MI. Lofty | 53.000 |
|  | VK5VF, Mi. Lotty | 144.800 |
| VK8 | VK6RTV, Parth | 52.300 |
|  | VKBRTU, Kalgaorle | 52.350 |
|  | VK6RTW, Albany | 52.950 |
|  | VK6RTW, Albany | 144.500 |
|  | VK6RTV, Parth | 145.000 |
| VK7 | VK7RTX, Devanpart | 144.900 |
| SD | 3D3AA, 8uva, Fijl | 52.500 |
| ZL1 | ZLIVHF, Auckland | 145.100 |
|  | ZLIVHW, Walkato | 145.150 |
| ZL2 | ZL2VHP, Rt. Stewan* | 52.500 |
| ZL2 | zL2VHF, Wellington | 145.200 |
| ZL2 | Zlevip, Paimeraton North | 145.250 |
| ZL2 | ZLLVHP, Palmarion Morth* | 431.850 |
| 2L3 | ZL3VHF, Chrletchurch | 145.300 |
| 2L4 | zLAVHF, Dunedin | 145.400 |
| - denotes | change. |  |

Some alterations to beacon lisilnga this month. For a atart the Mt. Mowbullan beacon is operational again with lis new call sign VKARTT using 20 watts of FM.

In a letter from Selwyn ZL2BJO comea newa of the first $Z L$ beacon on 6 metres, ZL2VHP, and $I$ note they have had the very good sense to put it where we might hear it, namely on 52.500 MHz . The beacon runs 10 watts oulput with horizontal polarisatlon, keying 800 Hz -ve FSK. The antenna consiata of crossed dipoles at 35 feet on Mt. Stewart, which muat be somawhere near Palmerston North. Reports are requested from anyone hearing any of the ZL2VHP beacons, of which there are three listed herein, details to Selwyn Cathcort, ZL2BJO, 406 Featherston Street, Palmerston North, New Zealand. Thelr 70 cm beacon has also been given a lialing.
Other points of Interest In Selwyn's letter concem VHF Fiald Days as follows: Sunday. 16/11/75: 2200 to 0200 GMT, 6 metres only. Saturday 6/12/75 0400 to 1000 GMT all bands; Sunday $7 / 12 / 75$ 1800 to 2400 GMT all bands.

## QUEEN8LAND NEW8

Very plessed to receive some news this month on activity in VK4, firsily from Noil Lynch VK4ZNI who is Secretary of the Brisbane VHF Group. who sent notes prepared by their Prealdent, Dave Laurle VKADT, which are as follows:
General: The Brisbane VHF Group has about 50 active members and holds general meetings on the fourth Thursday of each month. All viaitors welcome to the Club Rooms in the Oakleigh Scout Grounds off High Street, Dorrington. The Club has active 70 cm and Repeater Committees and runs a very successful fund ralsing venture.
52 MHz Band: There are about 25 stations acilve mostly using low to medium power SSB. Activity Is mostly limited to Sunday mornings when many stations are on 52.050 and $52: 100 \mathrm{MHz}$. Many stations will be active again this Chriatmas, partlcularly when you can hear their "beacon" TV station TVQO. Many stations also monitor 52.525 MHz FM as a guide to band conditions.
144 MMz Band: About 40 stalions are active on the lowar end of this band using a mixture of SSB and AM. (VKS stations might note this amount of activity and take heed . . . SLP). The main calling frequency is 144.100 MHz and a call there during the evening will result in a OSO. Several stations are capable of working through Oacar 6, several more building equipment.
On the "puah-button" frequencles, Channal 40 and 50 are the most popular with activity by about 100 slations apread evenly between them. Two repeaters (Ch. 1 Mt. Tamborine and Ch. 3 Ipswich) are currently in operation, and two others (Ch. 2

Toowoomba and Ch. 4 Mt. Glorious) have licence applicallons panding.
432 MHz Band: About 12 stations operate using SSB, $F M$ and $A M$. The Brisbane VHF Gioup la holding a serles of lectures aimed at increasing interest and actlvity on this band. Another 20 members are commencing construction of a 70 cm converter as a Group project.

The Group's 70 cm Committee is also engaged In the construction of an unattended 70 cm beacon transmitter. The project is about $60 \%$ complete, and a licence is soon to be applled for, and the aim of the beacon is pincipally to ald members to tune up their convertars. A lot of |nlerest ls being expressed In 70 cm repeaters in S.E. Queensland, and the Group wIII be actlve in the bandplanning area.
Conclusion: The Group is encouraging increased actlvity on these three bands and in the future will be setting lis slghts on higher bands.

Thanks chaps for your notes of Interest. Will be pleased to haar from you again.

Whilst still In Queensland, John VK4UI sends news of some of the work of the Gold Coast Radio Club at Soulhport. He reports the new mast for the repeater on Mi. Tamborine has been erected, but not yet completed. The new high gain aerial systems have still to be attached, and secured against storm damage. When the VHF repeater is completed, work will commence on a U.H.F. Repester Project for 432 MHz using the same site and mast. They have been fortunate through the good services of John Willis VK4WN of Willis Communications. Brisbans, in securing a complete transmitter/recelver for the U.H.F. Repeater. Good luck fellas.

## REPEATER USER GROUP

While we still seam to be on repeatars, i note with interest the setting up of such a group in VK6 (from the VK6 VHF Group Newsletter) for the maintenance, and financlal operation of the repeaters, 80 anyone who uses repeaters under the control of the Group are considered members, for which a fee of $\$ 4.00$ p.a. Is expected. This seems falr enough, and I note a aimilar line of thinking is belng undertaken in VK5 from notes in the VK5 Joumal.

In VK5 there has already been some help with finance from members, plus some who are not mem bers of W.I.A. - for best reasons known only to them - 80 it only seems logical where considerable running costs are Involved that these costs should be shared by all users, not those who contribute as W.I.A. members. Uniortunately this comment won't be read by those mostly to whom it is directed, the non-members, so members should take up the issue with those who subscribe nothing.

Talking of running costs, I sea an interesting comment in a letter published in "QRM" from Northem Tasmania, Ihat over in Botswana In Atrica where Chrls VK7UX happens to be, the power charge is 15 c par Kw , with the exchange rate being the same as the SA. It may pay you to take your own alternator if going there.
E.M.E. PEPORT

Still no one writes except the Dapto N.S.W. Group. so I can only presume all others scheduling EME are alisfied to the limit or don't have the time to write, which is a plty. However, Dapto reports:
'EME tesis acheduled for $9 / 8 / 75$ with K2UYH. W1SL and VE7BBG, but they could not get on. However, W3CCX called us and was worked for our first contact with them. The second test period for $9 / 8$ was a European CQ period. Called by F9FT and had our first contact with him. PAOSSB also called 48 but we missed out on a contact due to the moon getting too low. He had a good signal. We were also heard by G3LTF.
'FSSE (2nd op. of F9FT) has since advised the point to polnt distance batween us is 16821 Km which is just 100 Km ahort of our record with G3LTF. He also provided detalls of several interesting exira galactic radio sources, some of which are in our window. As they emit a constant signal they can be a useful reference for calibration purposes. F5SE has derived a formula for their use and has asked us to check it on certaln sources accessible only in the southern hemisphare. F9FT has a big signal which peaked to 10dB over nolse for a ahort period.
"We have now had 432 MHz contacts with $81 x$ different stations in tour countrles (but no VK contacts yetll). With our higher power output we hope for several more contacts over the next fow months
as 6 contacts in 5 years affort probably does not seam a lot!

## VKS ACTIVITY

As you guessed, there is not a lot to report, but It is noted that Keith VK5SV has been hearing the Mt. Willam repeater on Ch. 1 occasionally: not strong on $10 / 902302$. Tues. 23/9 Kelth worked VK5ZWP at Cleve on the West Cosst via the Ch. 1 repeater. Also heard VK3VL and VK2YAH who was at Swan HIII . . . Mataor scatter contacts are being made again. Old Wally VK2ZNW (ex-5ZWW) made it to Peter VK5ZPW with good signals on 23/9. Peter is now using a palr of 6146B's and has a potent signal. Good work chaps. A faw changes are likely to be made at this OTH (5LP) which then might allow me to send a M/s signal over to Wally, even the Baron of Oyster Bay. Rod VK2BOJ might show interest also!
VKS CONTEST
A reminder of the VK5 VHF Group Contest over the weekend of 6th and 7th December. The 6 metre band will be open to the Eastern States during that period so some good contacts should ensue. Appears a number of stations and groups are likely to be going out on to their favourite mountains, and it will be as well to remember the ZL's are also going out onto their favourite mountalns the same weekend.

Two metres will be available again thls year in December so get the gear ready, contacls are being sought in Brisbane and Sydney from VK5. And there does not seam to be any reason why good conditions should not prevail to VK6 on 2 meires in the New Year period. You seel

## S.M.I.R.K.

In the June 1975 issue of these notes, I outlined what SMIRK was (Six Melre International Radio Klub) with No. 1 SMIRK being Ray Clark, of San Antonlo, Texas, U.S.A. Through the medium of Peter, VK6ZDY, comes some further information from Ray, and the tollowing has been selected as likely to Interest those who read these columns. The Information has been edited where necessary to make conclse reading.
The maln information comes as of 29/8/75 which would be towards the end of the Northern Hemisphere Es season, and some very good conracts had been made considering we are down at the bottom of the 11 year cycle. KTTUO and KTGWE worked KH6EQI in Hawall, and Ray remarks that is the first honest-to-goodness contact to KH6 he knows of in the past few years. The rest have been third and fourth hand reports. VE1, VE2 and VE3 In Canada were worked, also C6A. TG9KJ, KP4, XE1, XE2, T12NA and YV5RA have been heard or worked.

VEIATN on 50.056 is a beacon atation, while FOBDR is still active on 6 metres in Tahitl. KZSWA should be on 50.110, also HP1XDC. On Swan Island HR6SWA should be using SSB on 50.110, and HC8GL also on. Guam has more than one beacon, listen for KG6JDX on 50.105 and KG6APP on 50.150 . K2IRT/KG6 runs a beacon on 50.098 and liatens on 52.150 or 52.050 . (That last bit is interesting to us . . . 5LP).

Across the Pacific in Japan, Ray advises quite a lot of 6 metre activity, though six metre stallons have had their power cut back from 50 to 20 watts since June due to the ORM caused by the mass of JA stations in operation. Stations to listen for are: JD1YAA beacon on 50.110. K2IRT/KG6, KG8APP, KG6JDX, HLSWI, HM1GO, HM1FM (on FM), JAOQKM/JD1, HM1EJ, KG6JCM, VS6AI, VS6BE, JE3DGJ/JD1, KG6JFT, KG6JFR and VKAIK/KG6. Bill KX6HK is now in U.S.A. on 6 metres in New England, having left the Marshall Islands. A new station on is HL9VP.

That about covers the best of the information, but It is very Interesting. Thase of you sufticiently interested will be able to gat out your prefix lists and maps and pin-point where some of these stations are located. With $s 0$ many people now owning FT620's with their capablity of tuning effectively down to 50 MHz , it would be a good Idea for the keen DX-er to purchase the extra crystals to give the full coverage from 50 to 54 MHz . I have the full range in my FTB20 and with the faclity of being able to quickly peak the front end of the recelving section, adequate sensitivity is avaliable ovar the full range. Bear in mind also our antennas will still have some useable gain down to 50 MHz desplte being cut for 52 MHz due to the slower taper off in performance of a yagl as the frequency is lowered away from the resonant point. The

## KIM antennas

They're heard when others aren't

## Some well known band openers are:

- KLM's 20 METER 5 ELEMENT "BIG STICK"
- KLM's 6 METER 8 \& 11 ELEMENT
- KLM's 2 METER 12, 14 \& 16 ELEMENT
- KLM's 220 MHz 14 ELEMENT


## AND NOW

Winner in the 1975 West Coast VHF-UHF Antenna Measuring Contest . .
KLII's NEW 432-16 Element Long Boom (12')
Specifically Optimized for $432 \mathrm{MHz}(430-434)$


SOLE AUSTRALIAN AGENTS
RAMAY PTY. LTD.
See Your Local KLM Dealer For The New Spring ' 75 Catalog Or Write

Phone (054 92 3211)-192 of 264 AH or MELBOURNE 5600986 AH

## BOOKS OF INTEREST FOR AMATEUR OPERATORS

HANDBOOK OF TRANSISTOR CIRCUITS (Allan Lytel) ..... $\$ 7.60$
ALL ABOUT CUBICAL QUAD ANTENNAS - 2nd Ed. (William I. Orr) ..... \$5.65
FINGERTIP MATH (Edward M. Roberts) ..... \$2.95
THE COMPLETE SHORT WAVE LISTENERS' HANDBOOK (Hank Bennett) ..... $\$ 8.05$
TRANSISTOR EQUIVALENTS (De Muiderkring) ..... $\$ 5.95$
RCA SOLID STATE - 1975 DATABOOK SERIES -
SSD-201C Linear Integrated Circuits Selection Guide/Data ..... $\$ 4.50$
SSD-202C Linear Integrated Circuits Application Notes ..... \$4.50
SSD-203C COS/MOS Integrated Circuits ..... $\$ 4.50$
SSD-204C Power Transistors ..... $\$ 4.50$
SSD-205C RF/Microwave Devices ..... $\$ 4.50$
SSD-206C Thyristors/Rectifiers ..... $\$ 4.50$
SSD-207C High-Reliability Devices ..... \$4.50
ADD POSTAGE: LOCAL 80c - INTERSTATE \$1.50
McGILI'S AUTHORISED NEWSAGENCY

Established 1860
"The G.P.O. is opposite"
revarse is true for the $W$ stations whose antennas will lose afficiency faster on coming up to 52 MHz but then they run more power as a rule.

With the slow rise out of the low part of the cycle from now onwards, and with so much better equipment now In use, every possibility exists for trans-Pacific contacts to take place betore too long. And we must remember the Americans are now more interasted in working us, and are aware of our 2 MHz difterence In frequency, which did not seem to be the case in general during the last aun-spot peak. Also do not overlook the tact that if you have a full call, then be set up to use CW on 52 MHz when that elusive or exclusive DX comes through; get set up now.

Peter VKGZDY adds a little information himself. He mentions the Perth beacons at Bickley have their antennas mounted at the 130 foot leval on the Channel 7 TV mast, the 6 metre beacon running with 23 watts out and the 2 metre 10 watts out.

Peler advises no TEP heard or worked from Perth for 1975 so far, so conditlons are really at a low ebb. He wlll be set up belore Christmas for high power 2 metre operation, so maybe the Perth barrier can be broken this year, and take the prizes away from the Albany area

My thanks go to George VK3HV for the recelpt of a very well set out Repeater Directory covering all States 146 and 435 MHz . Information will be drawn from this as required.

Can I get up on my large soap box again with a plea to users of the FM section of the 2 metre band to help us to retain the lower section of 2 metres by becoming operational there as well. I have no objections whatever to FM and/or repeater operation by anyone, but I am alraid for the safety of 144 MHz , especially here in VK5 where the operation is almost nil. but hundreds of stations operate on 3 or 4 FM channels. Or don't you care?

Closing with the thought for the month: "Let us not look back in anger, nor forward in fear, but around in awarenesa"


LARA has been growing aleadily over the last few weaks. As well as thls, LARA has started to develop varlous prolects which members have suggested. Some of these are for the beneflit of amateur radio in general and not Just the YLs. Other projects are designed to help YLs just startIng off in amataur radio since it is difficult to slart from scratch, as many of us are doing.

Events such as YLIOM toxhunts are designed to be family events with everyone particlpating (as well as being good funl) The spectacle of YLs standing around bored, or staying at home on field days, might Just disappear if these events can comtinue.

Weakly skeds on 80m are now uniting YLs all over Australia, with occasional visitors also adpearing on the nets. We all know how lonely it can teel to be a YL In what Is, somewhat overwhelmingly, an OM field. Our first skeds were quite funny with a faw 'rookle' operators belng 'mike shy' but getting togather with other YLs for a chat is a very rewarding experience. We all have to start somewhers and the YL skeds are a frlendly atmosphere for getting your feet wet. YLs who don't yet have licences also Join in these skeds as guests on OM's calls (with supervision). This allows us some access to the bands and is a great Incenlive for getting one's own call. More YLs are being seen at WIA and club classes and we will have some brand new YL calls after the 'next exams'.

Possibly as YL amateurs become more numerous the PMG will desist from addressing their communications to 'Dear Sli'I

One LARA prolect which has been getting off the ground in VK3 is the crystal bank. This is a scheme whereby donated crystals are loaned to amataurs, over a certain perlod, lor a small tae. This should cover running costs and will allow purchase of additional crystals when demand exceeds supply. Some crystals will be offered for sale or exchange from time to time to allow updating of the available range. We wIII be keeping as large a range of amateur band crystals as possible with any amateur ellgible to borrow. When Novice calls are Introduced we will be able to
help these operators to get on the air with crystal controlled rigs. The establishment of crystal banks in other States would be a move to be considered by clubs and groups as this is a realisation of the amateur apirit of helping the beginner.
For the future, LARA is planning to start a YL award with conditions simllar to those of other awards, the difference being that both licensed and unlicensed YLs will be able to enter. On an international level LARA has contacted the ZL YL organisation, WARO, and helpful suggestions from this established group were much appreciated in getting LARA on its feet. ZL operators have been heard on the VK nets and hopetully, some events and skeds will be organised belween the two Assoclations.

LARA in VK3 is planning some local events such as foxhunts and YL events at club and Zone field days. The social side will be organised with meetings to bring the group together and other events in store.

LARA In VK3 can be conlacted via the WIA Victorian Division or you can joln in the weekly skeds held on Monday nights at 8.00 pm EAST on 3650 kHz (and on Tuesday nights a 2 m FM aked for Melbourne YLs starting on Channel 1).

## MAGATINE INDEX <br> with Syd Clark, VK3ASC

## BREAK-IN Auguat 1975

A 6 Metre Transuarter for the FT101; A Battery Saver for the Wellington Walkie: Making Printed Circuit Boards: Converting the Pye Commando to 80 \& 40 Metre Operation; T.R.I.C.O.: Sock It to Me; A High Performance VHF Converter.
RADIO COMMUNICATION July
Bulletin Refections: Switched Polarization Cubical Quad; A Simple pre-scaler for 145 MHz ; Technical Toplcs deals New Graphic Symbols; Wavechange swliching with Diodes; Variable Power Supply: More on Cathode Impedance \& Class C; PAOKSB Phased Locked VFO: VFO Stabllized by PAL Delay Line: Single Sideband CW; Building Blocks for the Noulce.
Seplember
Subjective Selectlvity and Stereocode; 2m SSB Transmitter using the FR400SDX VFO; GB310W a 10 GHz Bracon: TT: Home Office TVI Statistics: Class E High Efficlency Ampllifiers; Delay Line Oscillators: The G3ULA PALO: Elestic Aerlal Supports: Audible Output from Digital Instruments; Third Meihod SSB - A Warning: Long Delay Echoes Unheard: A Teleprinter Message Generator: Cumulative Index 1970-4.
MOBILE NEWS Juty
What shall we do with the Profit; Subacription Renewals: Maurice Margolls Award; TRIO TR2200 Transcelver Revlewed.

## RADIO $\mathbf{Z 8}$ June

Lightning Research; First Steps (50 years afterwards); Go and Take that Test.
AEADERS NOTE: Magazines Indexed herein are Foderal Omice property and requasis for coplen al articles should be addressed io P.O. Box 180, Taorak, s142, eccompanled by © SABE and suitabie donation to cover costs.

## PRIJEGTAUSTRALIS

With david hull vk3zdh

## APOLOGY

Due to an unfortunate delivery problem the notes for October AR never made it. Our apologies to all those who rely on the orbit predictions.

## OSCAR 6 BIRTHDAY

The 15th of October marked the third birthday for the first of the iwo present operational satellites, Oscar 6. The fact that the satellite was designed for a life of 12 months speaks well for the care devoted to Its design and construction. Something should be sald also for the persisience of the ground command statlons since this satellite requires orblt by orblt attention.

## PHASE III FREQUENCIEG CHOSEN

Advice has been recelved trom Dr. Karl Meinzer of AMSAT-DL regarding the final choice of the uplink - downlink bands for Oscar 8. It may be remembered that during the March satellite conference In

Washington the author put lorward the view that VK would prefer 2 metre uplink and 70 cm downlink as being the reverse of Oscar 7. This was very much a personal appreciation of what was suitable for VK, thare being no time to reler this back to the WIA. Subsequent correspondence to me on this question backed my stand I am glad to say.
It has now been decided to fly a primary repeater using these trequencles ( 2 m up to 70 cm down) and if time permits a second repeater of reverse trequencles will also be flown, to be time shared as usage dictates. Australls' regards these decisions as being most sultable for the next satellite and is happy that the question has been resolved to the benefit of all concerned.
nOVEMBER PREDICTIONS
-

| n | - Daya Orbls | Only |  |
| :---: | :---: | :---: | :---: |
| Date | No. | 2 | - W |
| 1 | 13917 | 01.29 | 73 |
| 2 | 13927 | 00.28 | 58 |
| 3 | 13942 | 01.23 | 72 |
| 6 | 13979 | 00.18 | 55 |
| 8 | 14004 | 00.13 | 54 |
| 9 | 14017 | 01.08 | 68 |
| 10 | 14029 | 00.08 | 53 |
| 13 | 14067 | 00.58 | 65 |
| 15 | 14092 | 00.53 | 64 |
| 16 | 14105 | 01.47 | 78 |
| 17 | 14117 | 00.47 | 62 |
| 20 | 14155 | 01.37 | 75 |
| 22 | 14180 | 01.32 | 74 |
| 23 | 14192 | 00.32 | 59 |
| 24 | 14205 | 01.27 | 73 |
| 27 | 14242 | 00.22 | 56 |
| 29 | 14267 | 00.17 | 55 |
| 30 | 14280 | 01.11 | 68 |

DECEMBER PREDICTIONS

| 1 | 14292 | 00.11 | 54 | 1 | 4765 | A | 00.53 | 69 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 14330 | 01.01 | 66 | 2 | 4778 | B | 01.48 | 76 |
| 6 | 14355 | 00.56 | 65 | 3 | 4790 | A | 00.47 | 61 |
| 7 | 14368 | 01.51 | 78 | 4 | 4803 | B | 01.41 | 75 |
| 8 | 14380 | 00.51 | 63 | 5 | 4815 | A | 00.41 | 60 |
| 11 | 14418 | 01.41 | 76 | 6 | 4828 | B | 01.35 | 73 |
| 13 | 14443 | 01.36 | 75 | 7 | 4840 | A | 00.34 | 58 |
| 14 | 14455 | 00.36 | 60 | 8 | 4853 | B | 01.29 | 72 |
| 15 | 14468 | 01.30 | 73 | 9 | 4865 | A | 00.28 | 66 |
| 18 | 14505 | 00.25 | 57 | 10 | 4878 | B | 01.22 | 70 |
| 20 | 14530 | 00.20 | 56 | 11 | 4890 | A | 00.22 | 55 |
| 21 | 14543 | 01.15 | 70 | 12 | 4903 | B | 01.16 | 68 |
| 22 | 14555 | 00.15 | 54 | 13 | 4915 | A | 00.15 | 53 |
| 25 | 14583 | 01.05 | 67 | 14 | 4928 | B | 01.09 | 67 |
| 27 | 14618 | 01.00 | 68 | 15 | 4940 | A | 00.09 | 51 |
| 28 | 14630 | 00.00 | 51 | 16 | 4953 | B | 01.03 | 65 |
| 29 | 14643 | 00.55 | 65 | 17 | 4965 | A | 00.02 | 50 |
|  |  |  |  | 18 | 4978 | B | 00.57 | 64 |
|  |  |  |  | 19 | 4991 | A | 01.51 | 77 |
|  |  |  |  | 20 | 5003 | B | 00.50 | 62 |
|  |  |  |  | 21 | 5016 | A | 01.45 | 76 |
|  |  |  |  | 22 | 5028 | B | 00.44 | 60 |
|  |  |  |  | 23 | 5041 | A | 01.38 | 74 |
|  |  |  |  | 24 | 5053 | B | 00.38 | 59 |
|  |  |  |  | 25 | 5066 | A | 01.32 | 72 |
|  |  |  |  | 26 | 5078 | B | 00.31 | 57 |
|  |  |  |  | 27 | 5091 | A | 01.25 | 71 |
|  |  |  |  | 28 | 5103 | B | 00.25 | 56 |
|  |  |  |  | 29 | 5116 | A | 01.19 | 69 |
|  |  |  |  | 30 | 5128 | B | 00.18 | 54 |
|  |  |  |  | 31 | 5141 | A | 01.13 | 68 |

Please Note: Oscar 7 should stay on mode A through Jan. 1 in order to resume odd day mode A even day mode B during 1976.

LIONS INTEANATIONAL
VKACW has sent a photocopy of a letter from Lions International advising he oblained first place internationally in the 1975 Hunting Lions in the Air Contest whilat VK5ZX secured 4th position. Thls conteat he says la held annually over the 2 nd weakend in January using the top 25 kHz of most bands.

## YRCS

with Bob Guthberlet
31 Bandon Terrace, Marino, S.A., 5049.

The story is told of a preacher who was asked to conduct a service in a small church set amidat the scrub In the Adelaide hills. Arriving several minutes before the appointed hour he decided to make an inspection of the property. The outside appearance auggested a poverty atricken congregation, but inside the furnishings Indicated that the people valued their place of worshlp. In the porch he noticed a small table covered with a green balze cloth and on it a small wooden box with the word "Donations" prinied on the lid. As a triendly gesture he opened the box and placed a two shilling plece therein. With the arrival of the congregation the service commenced and at the conclusion, an e!derly steward approached the preacher, and after thanking him, requested that he accept a donation to help defray travelling expenses, pointing out that they kept a small box in the porch for such purpose. Somewhat non-plussed the visitor kept silent. In the porch the box was duly opened; "Sorry, Sir". asid the steward, "there's only two ahllinga here. but it may help a little".

Arriving back home the preacher told his tamily of the Incident and how he recelved the money he had put into the box, whereupon his young son said. "Dad, don't you think if you had put more In you would have got more out?'

Far be it for me to morallas on this story - 1 leave it to your imagination, but if your club, or aa a Slate Supervisor your YRCS affairs are not ticking as they should, perhapa you should ask yourself the perinent question: "Don't you think if you had put more in . . . . etc. etc".

Received a letter from VKB a tew days ago Informing me that Norm Hyde has resigned from the position of Slate Supervisor. Thanks, Norm, for your help to YRCS. Now for a few excerpts from that letter which does not auger well for the future of the Scheme in the West. Quote, "The Hamilion HIII S.H.S. Club had the Sclence Master changed so the ham In charge of YRC was denled access to the Club transcelver which is part of the Sclence room facilitles'. Unquote. Here's the next one: "Another S.H.S. Club has a FTiO1B but it is not allowed to put up any earial. It has to be put up by the Public Works Department who are not intereated". Unquote. The final quole: "Each High School is under the Juriadiction of its Head Master and each one has different Ideas". Unquote.

One can only hope that those reaponsible tor this Gllbertian situation know what they are doing to youth. On many previous occasions I have appealed to State WIA Divisions to get right behind YRCS but with Ilmited response. Why is it that State WIA Counclis will not foster the very means whereby they could Increase local membership. May I suggest to all State WIA Presidents that they Include. at least once a quarter the following question on thelr agenda: "What more can we do to promote the cause of YRCS in this State?"

And, I would like a lew angry replies from those who are really intereated in the welfare of young peraons. Maybe, too many amateurs are filling the ether with nonsensical jabble as they twiddle the knobs on the little black boxes, and showing little or no concern for the generation which hasn't any encouragement to follow them, but probably will. desplte the lack of aupport.

## Awards Column <br> with BRIAN AUSTIN VKSCA

 PO BOM TA. Craters. SA SIS2
## WORKED ALL SM 2 (WASM 2) AWARD

The award is available to licensed amateurs. Contacts after 1-1-1953 are valid. OSL cards must be submitted with the application along with a check list showing full detalls of the contacta. The award is available for all CW, all phone and mixed modes. The fee for the award is 7 IRCs. The address for applications is:
K. O. Friden,

P1. 325 Ollovstrand,
20090 Bastad,
Sweden.

# COPAL <br> 24-HOUR <br> DIGITAL CLOCKS 

CLEARLY VISIBLE FIGURES, INSTANT READABILITY, ACCURATE


MODEL T-7 - BATTERY POWERED ALARM Clock
A clock that will operate anywhere and does not clutter up the room with a power cord It is accurately controlled by a tuning fork operating at 400 Hz and running from a single size ' $D$ ' cell with a life of approx. one year. The alarm can be set 24 hours ahead. Ivory colour.

PRICE \$29.95


MODEL 707 - AC DAY \& DATE ALARM ClOCK
A unique Desk/Table calendar model combining utility and beauty. Built-in neon lamp tor ease of reading at night. 230 V 50 Hz AC. Available in white

PRICE S36.00


MODEL 227 ECONOMY MODEL ALARM ClOCK
A desk/table clock of modern design Available in white with a built-in neon lamp for ease of reading at night. 230V 50 Hz AC

PRICE $\$ 17.95$


MODEL 703 REPEATER ALARM CLOCK Modorn design desk clock with an alarm which repeats until turned of Available in green. 230 V 50 Hz . AC.

PAICE 522.50
MODEL 801 WALL MOUNT CLOCK
Large, easy to read figures 230 V 50 Hz AC Can also be used as a very large desk clock. PRICE S68.00

Copal Clocks come from the world's largest and most advanced producer of digital clocks and movements.
12-HOUR TYPES AVAILABLE ON ORDER.
All prices include Sales Tax Freight extra Prices and specifications subject to change Allow $\$ 2.50$ tor postage and insurance within Australia

## Bail ELECTRONIC SERVICES

60 SHANNON STREET,
BOX HILL NORTH, 3129
Phone: 89-2213

Stations require confirmed contacts with each of the 25 laens (countries):

| A | Stockholm-Stad | SMO |
| :---: | :---: | :---: |
| B | Stockholm lan | SMO |
| C | Uppsala | SM5 |
| D | Sodermanland | SM5 |
| E | Oatergoltand | SM5 |
| $F$ | Jonkoplng | SM7 |
| G | Kronberg | SM7 |
| H | Kalmar SM5, | SM7 |
| 1 | Gotland | SM1 |
| $K$ | Blokinge | SM7 |
| L | Krlatlanstad | SM7 |
| M | Malmohue | SM7 |
| N | Halland | SM6 |
| 0 | Goteborg oeh Bohus | SM6 |
| P | Alvaborg | SM6 |
| A | Skaraborg | SM6 |
| S | Varmland | SM4 |
| $T$ | Orebro | SM4 |
| $u$ | Vastmanland | SM5 |
| W | Kopparberg | SM4 |
| X | Gavieborg | SM3 |
| Y | Vasternorrland | SM3 |
| 2 | Jamtland | SM? |
| AC | Vasterbotten | SM2 |
| BD | Norrbotten | SM2 |

1978 SUMMER OLYMPICS AWARD
A certificate to honor the 1976 Summer Olymplcs wIII be awarded to licensed amateurs who comply with the following requirements:

Amateurs must work 5 Montreal Island atation
Contacts must be made between 1-8-1975 and 31-7-1976, any mode.

Send $\$ 1$ or 5 IRCs and a copy of your log containing date, time, atation worked and operator, mode, frequancy, recelved signal report, sent algnal report. No OSLs required.
Send applications to:
Secretary, Westminster Amateur Radlo School, Box 323,
Monireal Int'I Alrport, A.M.F.
P.Q. Canada.

## WORKED ALL 28

The award is avallable to licensed amateurs.
Contacts on and after 1-1-1858 are valid. Claims which must be sent by registered post, muat be accompanled by proot in the form of QSL cards or letters and sent to the sponsor.
Endorsemente are given for all CW or all phone if the OSL cards etc. clearly indicate the mode used. The lee for the award la 60 cents (South African currency). The award la, however, Issued free to members of SARL. The address for appllcations is:

Awarde Manager,
Soulh Alrican Radio League,
Postbox 3911.
Cape Town,
Red. of South Africa.
Requirementa: 100 OSL cards or other proot are required as follows:

| ZSI | 18 |
| :--- | ---: |
| ZS2 | 10 |
| ZS3 | 3 |
| ZS4 | 10 |
| ZSS | 16 |
| ZS8 | 45 |

## WANTED

ARTICLES FOR AR

-     -         -             - $-\infty-\infty$,

SEND NOW TO:
P.O. BOX 2611W, MELBOURNE, 3001

## IONOSPHERIC PREDICTIONS

WITH LEN POYNTER VK3ZGP

All times are UTC. Predictions courtesy of Ionospheric Prediction Service, Sydney. Sunspot Information: Dr. Waldmeier, Swiss Federal Observatory, Zurich. Geomagnatic Planetary Indices. Institut fur Geophysik, GottIngen, Germany. K indices Local: Toolangl Geomagnetic Observatory, Melbourne.
I trust that last month's effort will not have been in vain; somehow I was out in proportion and caused much confusion. This month I have tried a form of bar chart. Each block indicates paths eastwards and westwards. The top portion is based on Perth, the lower portion based on Canberra.

To read: The black portions are based on predictions for time of year, etc., when the path would normaly be open. The striped portions indicate openings that could occur with abnormally good conditions.

In retrospect, July, August, September has shown a slight upward trend in sunspot activily with a distinct peak during the first week in August, and is now settling down again to normal in the latter part of September. Solar activity in the terms of Solar Flux has lifted since the April, May, June low. Geomagnetic disturbances have noticeably less activity, averaging two per month but only of moderate activity and lasting three or four days.

If you are following WWV $K$ index at +14 mins, It has been noted that a period of good conditions exists just prior to a rise in the $K$ index. So the qualification 'tending to rise' will indicate a period of unsettled conditions to follow. During August and September some good openings occurred on 1.8 and $3.5 \mathrm{MHz}, 7 \mathrm{MHz}$ has improved, whilst 14 MHz has produced some fine openings across all paths within the predicted times. 21 MHz has shown some promise, but not quite across to Africa yet. 28 MHz has been very patchy with just a few


# BRIGHT STAR CRYSTALS 

PTY. LTD.
35 EILEEN ROAD, CLAYTON, VIC., 3168. Phone: 546-5076 (Area Code 03)

## NEW PRODUCTS

CRYSTAL CLOCK AND DECADE COUNTER UNIT This unit comprises a 10 MHz crystal oscillator and eight decade counter units with TTL outputs at each decade and additional functions ot divide by 2 or by 4. The crystal oscillator can be used also with any trequency crystal between 1 and 20 MHz to provide decade outputs of these Irequencies.
ALSO AVAILABLE IN C-MOS
The WB250 WIDE BAND AMPLIFIER can be used to improve the sensitivity of most frequency counters. The operation of this unit is simplicity In itsell. Just hold the probe of this unit near the oscillator of which the trequency is to be measured and the frequency will be read out on the counter. The principal advantages of this unit are: LOW COST. HANOY SIZE. No actual connection to the equipment under test. Therefore, no loading of the circuit. Very low level oscillator can be measured with ease. Response 100 kHz to above 500 MHz . Gain 40 dB .

For further detalls please contact us:
Sydney: PARIS RADIO ELECTRONICS, Phone: 31-3273
Perth: W. J. MONCRIEFF PTY. LTD.,
Phone: 25-5722
Brisbane: FRED HOE \& SONS PTY. LTD,
Adelaide: ROGERS ELECTRONICS
Phone: 264-3296
Hobart: DILMONT INSTRUMENTS
Phone: 47-9077

the morse code
MADE EASY
An album of three Fecords produced with Ivan $A$. Hodder by the Fligh Iraining Cenire thust.) Piy, Ld
Revolutionises the learning of Morse Code-sill ycu need is the tamily Hecord Player!








 Proot of the ethecencr ef the swatem in the
thor incease in gisues br those who PRICE:
3.Aecord Set Complete with Instruclions: Post Paid $\$ 18.75$ Instructions Posi Paid $\$ 16.75$


Avalable from
WILIIAM WILLIS \& CO.
77 Cantarbury Rd. Canterbury, Vic. 3216 Phone 8360707

North-South openings of short duratlon observed Smoothed Sunspot Number (R6) for February 75 was 22.2. The August mean was relatlvely high at 39.3 (July 28.3, June 11.4). The predictions for smoothed numbers to February 76 have rlsen slightly, no doubt as a result of the July, August highs. They now run (July 75) Sept 15. Oct 13. Nov 12. Dec 10, Jan 9, Feb 8.

Looking back to Frank Hines VK2QL summaries of monthly means sometime back, a low of 3.4 In Aprll 54 and 9.7 In Oct 84, then looking at June 75 at 11.4, we could almost be bold enough 10 say we are at the bottom six monits. March/April 76 sill looks a reasonable target for the crystal-ball gazers. Here's hoping.

Hope you are sill irying correlation of the Indices. Should anyone require copies of July, August Indices, or any month onwards, a SASE with a $9 \times 4$ envelope will provide you with a copy. OTH is okay in any call book since 61.

## Afterthoughts

additions to rules for vks field day Additional rule No. 1 :

Contacts via Oscar Satellite may contact each stalion every pass.
Additional rule No. 2:
Cross bands points mulilply by points of highest band used
Additional rule No. 3:
Mark logs statlons elther multi-aperator or single operation for purpose of scoring.

## Hamads

- Elght linee iree to all WIA members.

So per 3 cm for non-members.

- Copy in typescript please of In block letters to P.O. Box 150. Toorak, Vic. 3142.
- Commerclal advertising ls excluded.
- Closing date: 18t day of the month preceding publication. Cancellationa recelved after about 12th of the month cannot be processed.
- QTHR meane the adveriser's name and addreas are correct In the current WIA Radio Amateura Call Book.
- The current WIA Callbook is the 1975 edifion. FOR SALE

Moble HF Ant. Mounting Base, CW heavy duty spring and integral 50 ohm $1 / 2^{\prime \prime}$ coax (approx. 10 tt .). New - stlli in carton (Belling Lee). \$20 or ofter. Phone Ron VK3CN (056) 55 1929. 28 Radovick St., Korumburra, 3950.
Colline 75S1 Recelver, litted with Waters relection tuning. mint condition, \$350. VKAVK 6 Tostl St., Sorrento, 4217. Ph. (075) 384164.
Drake Complete Station, R4B Rx. T4XB Tx, MS4 speaker, all as new. \$695. VK3OM, OTHR. Ph. (03) 5609215.

Frontlar 1200GT.Tranacalvar, S150. SR550 Star Rx (amateur bands only). \$95. VHF Pye Overland (not converted). \$20. VK2ALK. Ph. (02) 5287967.
GM-SSB-Heath 8B110A SSB/CW transceiver with HP23 AC PSU and port. beam, 180W PEP TX 0.1 uV Rx sens., $\$ 330$. Heath HP 13A 12V DC/DC PSU, \$35. 2M Poly-Comm 144-148 AM/CW túnesble transceiver with Inbuill Rx VFO and Tx VFO or ext. xtal, squelch, noise blanker, AC/DC PSU inbuilt. Copies FM FB excellent for mobile or base, $\$ 135$. All units in mint cond. with manuals and cables. VK3BGW, L. Kubis, OTHR. Ph. (03) 2326528 A.H. or (03) 6992011 bus.
Pya Basa Station PTCA703, $3 / 20$ IInal 53.032 MHz and PTCA116 Mk III mobile unlt. Both in going condition. $\$ 34$ ONO. VK3YFB, OTHR. Ph. (03) 7581738. Comm. Rx TCA R5223. 14 tubes, 28 bands, xial locked dual conversion, hi stabllily, new, never in service. Sell 80 or Irade VHF gear. A. L. Macfarlane, Lardner Rd., Warragul. 3820.
Carphone STC 131, solld state except 2 valves In Tx - 25W - fitted with chan. 1, 4, 40 \& $50, \$ 75$. VK2AVQ, OTHR. Ph. (02) 882359.
1 kVA Powamac, 3 hp B \& S, $\$ 160$. VK3VK, QTHA. Ph . AH (054) 237213.

Swan 400, excellent condition, external power supply, spare set tubes, microphone, manual, $\$ 325$ ONO. Noel HIII VK1NH, 50 Hicks St., Red Hill, Canberra. Ph. (062) 950992 pm only; (062) 411000 bus. hours.
Hellicrafters 8R150 Transceiver, $80-10 \mathrm{~m}$, works well all bands, new PA tubes, complete with home brew PSU. $\$ 300$ ONO. VK3ZU. OTHR. Ph. AH (03) 5605136.

FTDX 40088 B Transcelver, $80-10 \mathrm{~m}$, In excellent working condillon and appearance. Complete with SP400 malching speaker unit, handbook and spare valves, \$400. VK5GV, OTHR. Ph. (08) 2825152.
Hallicraflers HT32A, xtal filter Tx, 80-10m, 100W PEP, SSB, CW, AM, very good condition, with manual, S165. Hallicraftera Sxi01A Rx, 80-10m, 30.5 MHz , converter channel, SSB, AM, CW, variable selectivily, very good condition, with manual, \$200. Both units and "Slidup" auto trans., \$360 ONO. VK3HZ, OTHR. Ph. (03) 565088.
Advance type D1D VHF sig. gen., $\mathbf{1 0 - 3 0 0} \mathbf{~ M H z ~ f u n d ~}$ sine. SQ. CW, calib., xtal, VM accurate calib. dial and atten. cables and term. Weight 38 lbs., mint cond., \$260. VK2ZRD, OTHR, but post code 2082. Ph. (02) 4561577.
Yaesu FT200 and FP200 PSU. OHers wanted for these and sundry components. All must be sold on behalf of the estate of the late R. N. Buzacott Vk3aUB. VK3VF, OTHR. Ph. (03) 7233554.
12V to $240 \mathrm{~V} 50 \mathrm{~Hz} .5 A$ Converter, 125 VA regulated and protected. Fully solld state DC Electronics Model 100. Can be slaved to other unils, $\mathbf{5 8 0}$. VK5TT 3 IIford Street. Vale Park. Ph. (08) 282 5313, ext. 2387, bus. hours.
Fibreglase Guy LIne, 5000 Ibs tenslle, 60 cents per metre, also $7 / 18$ galv. strand, iwo tons. VKAWR. 6 Ollve Court, Nambour. 4560.
FT501, Just 8 weeks old, complete with matching power supply, digltal readout, etc. Immac. cond., must sell, 8500 ONO. M. Hardy, VK2AAM, Newcastle. Ph. 20321 bus. hours.
40 ft Oregon Mast, $4 \times 4$ at base, tapers towards 20p. Any offers. VK2DT, 2 Patya Close, Epping, 2121. Ph. (02) 8681131 - dellvery can be arranged
Collins R391/URR Receiver, .5-32 MHz in 32 bends. See AR arlicles, \$400. Hewlett Packard 5248 freq. meter, $0-100 \mathrm{MHz}$. 8 digit readout, $\$ 120$, good cond. with manuals. J. G. Maclver, VKUJE, OTHR. Ph. (072) 804020.

Communicallon Ax type R5223, covers 1.5 MHz to 30.5 MHz in 29 switched bands. BFO noise limiter, Inbullt PSU for $230 / 110$ or 24V DC, Inbuilt speaker, with all leads, headphones and complete service manual, tested overall on all ranges 2 uV for 10 dB S/N. Unit is similar to the 51J serles of receivers. S200. C. Cook VK32BD/T. Ph. (03) 892117 (AH).
TCA1676 HI-Band TXCR, unconverted, $\$ 25$ ONO. Power Transformar, 500V CT to 3000V CT at 100 500 mA . cheap. Large numbers Rx and Tx tubes, chaap. Parts and CROs for SSTV, all types of meters. W. H. Ross VK3UT, OTHR. (O55) 695220.

Barlow-Wadey XCR30, Rx $500 \mathrm{kHz}-30 \mathrm{MHz}, \$ 200$. Yaesu Musen FV101, VFO, \$90. Swan 140 Tranaceiver, converted to $80-40-20$ TOPAZ 12 V supply. HB AC supply, hell whips, etc., \$200. VK3PZ. OTHR. Ph. (03) 2881047.
Collina 30L-1 LInear Amplifior, In Immaculate conditlon, with manual, $\mathbf{3 4 0 0}$. Ian McCosker VKAPF, P.O. Box 274, Surfers Paradise, Old. 4217. Ph. (075) 385487.

SEL Handbook for CE type SC6B single channel VHF R/T equipment, $\$ 10.00$ plus postage. WANTED Handbook of service instructions for sweep generator AN/TRM3 and manual for Micovac VTVM type CT54. VK4ZTJ. Ph. (072) 886343.
8R550 Hamband Rr, 870.00 . R. Davies, Box 909 , Orange, 2800. Ph. (063) 6082 bus. hours. or (063) 6072 AH.
Multi-7 two metre .transceiver, complete In original carton, fitted with Repeater channals 1, 2, 3 \& 4, Contra Repeater channels 1, 2, 3 \& 4. plus simplex channels 37. 40, 43, 50 and 51 . Exchange for FT75 outfit. Cash adjustment. VKAUX, OTHR.
Heathkil Oacilloacope Model 0-12-U, response 10 6 MHz . Now BWD CR tube and Mu-Matal shleld fitted, good order. price $\$ 90$ ONO. Heath-Kit Electronic Switch to suit above, response to 100 kHz . good order, price $\$ 30$ ONO. RIc HIII VK3RC, OTHR. Mla Mla Road, Broadford. Ph. Broadford 359 (STD 057842211 to exchange).

## Silent Keys

It is with deep regret that we record the passing of-
A. N. BUZACOTT

VK3AUB

Naw UR87 Coax Cable, 50 yard roll, $\$ 25$, plus frelght. Max VK4DA, OTHR. Ph. (074) 633524.
O8Ts, protessionally bound, light blue with gold lettering in sets of six, Jan-June 1968 to Jan-June 1975, I.e. 15 in all. Roth Jones, 1 Albert Rd., Melbourne, 3004.

## WANTED

May 75 Issue of Rsas Radio Communication. My copy lost In mall. Write Ron VK3CN, 26 Radovick St., Korumburra, 3850.
FTV-650 or simllar 6 metre transverter. VKAVK, 6 Tosti St., Sorrento, 4217. Ph. (075) 384164.
Antlque Amateur Radlo Gear, pre-1935, prefer in restorable condition, your price pald. VK3OM, OTHR. Ph. (03) 5609215.
Control Unil for Low-Band aWA NR10A. VK3ZTA, QTHR. Ph. (03) 5601157 AH.
Xtals for Novice 10 Be. 10500 KC. 17500 KC, 245 KC. Also 80 m fundementals, 3.525 to 3.575 MHz Wes L60236, 118 Huntriss Rd., Doubleview, 8018. Ph. (092) 483008.
Roller Inductor (approx 28 UH ), sultable ARRL Jransmatch. Also require transmitting type variable capacitors (a) two gang. 200 pF per section; (b) single gang 350 DF , willing pay any reasonable prices. VK3LJ, OTHR.
Halp - poor student trying to get on 160 m . Needs QB3/300 or OY3/125. Sam VK2BVS, VK2BGV. OTHR. Ph. (02) 4071068.
Mant, tilt-ovar and/or crank-up. Also rotator and 20 metre beam or tri-bander. Mal Sinclalr VK2BMS, OTHR. Ph. (02) 4070261 bus. hours or (02) 952362 AH.

20, 40 and 80 metre colla for Ah7 Cammunlcationa Receivar, push-in type colls, approx. 11 Inches long, 2 inches wide. Write to P.O. Box 85, Umine Beach N.S.W.

## ATTENTION

## FT101 OWNERS

At last a distortion-free RF Clipper. Fits in minutes and really works. Yaesu SSB Flltar fitted. Only for FT101. Gives up 106 times or more effective lalk power gain plus extra RX selectivlty and gain - not to be confused with audio type distortion producing clippers, or compressors.
Price: 845 sterling, air post paid.
Send for delails:
G3LLL, HOLDINGS LTD.
39/41 Alincing Lane, Blackburn BB2 2AF, England

## FOR SALE

RTTY 7B Vol 1 - concerns Creed 7 and 8 teleprinters

## WIA WA Division Box N1002, GPO Perth, 6001

## SWAN

## URGENT NOTICE

Would the Holders of the following Swan Amateur Radio Equipment or any persons knowing of such Equipment please contact the advertiser af their earliest convenience. This Notice is in the best interest of all persons concerned.

# SWAN MODEL 700CX-SS16 SPECIAL FILTER <br> SERIAL NUMBER 19199 <br> SWAN MODEL 700CX STANDARD FILTER <br> SERIAL NUMBER 16171 <br> SERIAL NUMBER 19779 

## SWAN MODEL MB80A MOBILE

SERIAL NUMBER 16788
SWAN POWER SUPPLIES MODEL 230XC
SERIAL NUMBER 17835
SERIAL NUMBER 20653
SERIAL NUMBER 17769
SERIAL NUMBER 17767


321 PRINCES HIGHWAY, ST. PETERS, N.S.W. 2044
AUTHORISED AUSTRALIAN SWAN DISTRIBUTORS
TELEPHONE: (045) 73-6215 Office Hours
A.H. 522-7272

# VHF Mobile/Base Station FT-221 2 Meter Transceiver 



## SOLID STATE ULTIMATE 2 METRE TRANSCEIVER WITH VERSATILE SSB/FM/CW/AM OPERATION

Here is a compact, versatile transceiver designed for the active 2 metre enthusiast. The FT-221 features all mode operation - SSB/FM/ CW/AM - with repeater offset capability. Advanced phase lock loop circuitry offers unsurpassed stability and clean spurious free signals. Modular, computer type construction offers reliability and ease of service. Pre-set pass band tuning provides the optimum selectivity and performance needed on today's active 2 metre band. Join the fun on FM, DX, or OSCAR, with the FT-221 transceiver. Another winner from the world's leader in amateur communications equipment.

## FEATURES



## TECHNICAL DATA

GENERAL
Frequency Range: 144.00 to 148.00 MHz in eight 500 kHz segments.
Mode: SSB (selectable USB or LSB), AM, FM or cw.
Frequency Stabllity: Within 100 Hz during any 30 minute perlod after warm-up. Not more than 20 Hz with $10 \%$ line voltage variation.
Calibration Accuracy: 1 kHz maximum after 100 kHz calibration.
Backlash: Not more than 50 Hz .
Antenina Impedance: 50 ohm unbalanced nominal. Power Requirement: $100 / 110 / 117 / 200 / 220 / 234 \mathrm{~V}$ AC. $50 / 60 \mathrm{~Hz}, 100 \mathrm{VA}$ maximum or 13.5 V DC, 3 A transmit maximum (11.5-16.5V DC).

Size: $200(\mathrm{~W}) \times 125(\mathrm{H}) \times 295(\mathrm{D}) \mathrm{mm}$. Weight: 8.5 kg (Shlpping weight: 13 kg ).

## RECEIVER

Sensitivity: 0.5 uV for 10 dB Noise plus Signal to Noise Ratlo on SSB/CW. 1.0 UV for 10 de Nolse plus Signal to Noise Ratio with $400 \mathrm{~Hz} \mathrm{30} \mathrm{\%}$ modulation on AM. 0.75 uV for 20 dB quieting on FM.
Selectivity: 2.4 kHz nominal bandwidth at $\overline{6} \mathrm{~dB}$ down, 4.1 kHz at 60 dB down on SSB/CW/AM. $\pm 6 \mathrm{kHz}$ nominal bandwidth at 6 dB down, $\pm 12 \mathrm{kHz}$ at 60 dB down on FM .
Harmonic so Spurious Response: Image Ratio better than 60 dB .

Audio Output: 2 Watts to Internal or externa. speaker at 4 ohm impedance.
Squelch Threshold: Lese than 0.3 uV .
I.F. Frequencies: SSB/AM/CW 10.7 MHz, FM 10.7 MHz and 455 kHz .

## TRANSMITTER

Spurious Radiation: -60 dB .
Frequency Response: Balanced SSB 300 to 2700 $\mathrm{Hz}: \pm 3 \mathrm{~dB}$. Low power AM better than $\mathbf{6 0 \%}$. Variable reactance $F M \pm \mathbf{7 . 5} \mathbf{k H z}$ maximum.
Carrier Suppression: -50 dB .
Sidaband Supprassion: - $\mathbf{5 0} \mathrm{dB}$.


## (1) <br> SPECIAL - <br> 65th ANNIVERSARY ISSUE

## CONTENTS

## TECHNICAL

| Afterthoughts | 6 |
| :--- | ---: |
| An Antenna Rotalor | 14 |
| An Audio Frequency Notch Q | 15 |
| Filter |  |
| A Solid State 6 Metre SSB | 21 |
| Transceiver | 16 |
| A Tilt Over Pole | 48 |
| Commercial Kinks |  |
| Exiended Use For Your SWR | 42 |
| Bridge | 35 |
| Fixed Channels For The FT200 | 35 |
| Newcomer's Notebook | 46 |
| A Simple Top Band Transmitter | 38 |
| Technical Correspondence | 42 |
| Try This | 19 |
| What's Inside The Battery | 17 | Transcelver21

A Till Over Pole48
Bridge ..... 42Newcomer's Notebook46
nitter ..... 3819
What's Inside The Baltery

## Filter A Solid State 6 Metre SSB

GENERALBeginners Guide to the 6Metre Band36
Index of AR Technical Articles 1971-1975 ..... 43
More From the CW Network ..... 53
The Firsi WIA Sunday Broadcast on ATV ..... 5
The Golden Years of AR in VK ..... 39
DEPARTMENTS
Around The Trade ..... 57
Awards Column ..... 57
Contests ..... 53
Hamads ..... 58
IARU NewsIntruder Watch

## Ionospheric Predictions

 LARAMagazine Index
Project Ausiralis
QSP - Count Our Blessings
Silent Keys
VHF UHF An Expanding World WIA News
YRCS
20 Years Ago

## COVER PHOTO

Amateur radio has come a long way since the WIA was founded in 1910. We now have news broadcasts on TV. Tom VK7TM and Brian VK7RR check the program before the first TV news broadcast. See story on p.5.

# HAM 

# RADIO SUPPLIERS 

 323 ELIZABETH STREET, MELBOURNE, VIC., 3000 Phones: 67-7329, 67-4286 ALSO AT: 390 BRIDGE RD. RICHMOND. 425174MODEL NC-310 DE LUXE 1 WATT 3 CHANNEL C.B. TRANSCEIVER

- WITHCALL SVSTEM
- EXTERNAL AERIAL CONNECTION
SPECIFICATIONS. NC-310
Transistors: 13
Channel Number: 3, 27.24 OMHz Citz. Band Frequency Tolerance Transmitter Frequency Tolerance: $\pm 0.005 \%$
RF Input Power: 1 Watt
Tone Call Frequency: 2000 Hz
Receiver type: Superheterodyne
Receiver Sensitivity: $0.7 \mu \mathrm{LV}$ at 10 dB S/N
Selectivity: $\mathbf{4 5}$ dB at $\pm 10 \mathrm{kHz}$
IF Frequency: 455 kHz
Audio Output: 500 mW to External
Power Supply: 8 UM-3 (penlite
battery) Suppiy, 0 UM-3 (penlite
Current Draln:
$120-220 \mathrm{~mA}$
Transmitter:
Receiver: 20-130mA.
$\$ 49.00$ each or $\$ 95$ a pair.
Post \& pack $\$ 1.50$ per unit.

1 watt 2 channel transceiver
with call system. 27.240 MHz .
12 transistor. PMG approved type.
SPECIFICATIONS Transmitter Crystal Controiled: 1 watt input power to RF stage. Operating frequency - Any 2 channels in the 11-meter Citizens Band. Receiver - Crystal-controlled superheterodyne clrclit with 455 Kc IF. Anteni.a - Built-in 60' telescopic whip antenna. Audio Output - 0.8 Watt maximum. Power supply required - 12 volts DC (Eight 1.5 volt DC battery cells).
Loudspeaker - $21 / 4$ PM tyDe (built-in) function as microphone on transmit.
$\$ 39.00$ each or $\$ 75$ a pair.
post \& pack $\$ 1.50$ each unit.

$\$ 27.95$
P\&P 1.50.

MODEL C-7077/P MULTIMETER Specifications: 100,000 onms/volt DC; 10,000 on ms/volt $A C$ : $D C$ volts -5.5; 25: 50; 250: 500; 1.000. AC volts $10_{i} 50_{i}{ }^{250}{ }^{250} 500$ imps 1,$000 ;$
$10 \mu \mathrm{AC}$
$2.5 \mathrm{~mA} \mathrm{mams}_{2} 25 \mathrm{~mA}$ 500 mA Onms - 10 $\mathrm{k} \mathrm{L}_{\mathrm{L}} 1 \mathrm{MS} 2_{i} 10 \mathrm{MS} \Sigma_{i} 100$
 $1.5 \mathrm{MS} \mathrm{S}^{5}$ Decibel - 20 $10+22$ dB. Dimensions $\frac{151 \times 102 \times 48 \mathrm{~mm}}{}$ Diode orotected movement. Carrying case availabie Model C

SOLID STATE
19 TRANSISTOR MULTIBAND RADIO - 9 RANGES


> BATTERY/OPERATED

COLOUR CODED 9 BAND DIAL

1. AM 535 to $1600 \mathrm{kHz}, 2$. Marine $1-5$
to 4 MHz, 3 \& 4 . combined SW 4 to 12 $\mathrm{MHz}, 5$. 30 to $50 \mathrm{MHz}, 6.88$ to 108 MHz, 7,8 \& 9 combined VHF Aircrapt 145 MHz-174 MHz Incorporating weather band.
Slider controls, Dial llght, Fine tuning control, Fllp-up Time zone map Telescope antennas complete with batterles

## SPECIAL $50 \begin{gathered}\text { Post } \\ \text { Pack }\end{gathered}$ <br> PRICE \& 4 $4 \begin{aligned} & \text { Pack } \\ & \$ 3.00\end{aligned}$

NEW REDUCED PRICE THIS MONTH ONLY

$\$ 6.95$ Post Free.

> MODEL CIOOOM MULLTIMETER Compact, handy and versatile, the $\quad .1000 \mathrm{M}$ is the ideal low cost pocket meter Mirror Scale. Specifications: $\quad 1.000$ Onm/Volc DC: 1,000 Ohm/Volt AC: DC volts - 10: 50: 250: 1,000; AC volts $-10: 50: 250$ :
$1.000 ;$ DC amps 1 mA 109 mA; Onms - 150 KJ: Centre scale $\quad 3$ 22 dB; Dimensions $3-1 / 2 " \times 2.3 / 8^{\prime \prime} \times 1-1 / 8^{\prime \prime}$
$90 \times 60 \times 30 \mathrm{mn}$. $90 \times 60 \times 30 \mathrm{~mm}$.

## CHRISTMAS SPECIAL

8 transistor, push-button car radio, 12 volt neg. earth. With large $7 \times 5$ inch speaker and lock down aerial

\$24.95 P\&P \$2.00. Manual tuning model \$15.50 Post \& Pack \$2.00.

MODEL AS100 D/P MULTIMETER. This meter leatules double zener diode meter protection and 3 ! $\%$ " full view easy to read 2 colour scale. It is titted with polarity reversing switch and housed in a strong moulded case with carrying handle. Specifications: 100.000 ohm /volt DC . 10.000 ohm/volt AC. DC voits - o.3; 12: $\mathrm{CO}: 120$; 300: 600: 1,200. AC volts -6: 30; 120; 300: 600; $1,200 \mathrm{kDC}$ amps - 2 kS : 200 KNZ 20 MMS 200 MSI
 200.000SL: 20 M 52 Decibei $\$ 37.50$
 $5-2 / 5^{\prime \prime} \times 2 \cdot 3 / 5^{\prime \prime} 193 \times 137$ $\times 66 \mathrm{~mm}$. Carrying case available model $I$

MODELOL64 D/P MULTIMETER. Very ruggedly construcied this model is particularly suitable for workshops. It leatures special scales for measurement ot capacitance and inductance. Diode protested movement: Specificatioris: 20,000
 Onm/Vali DC. 8,00 $10: 50.250$. 1000 5 0.25 1: 2.5 V . 50; 250; $000, \mathrm{AC}$ volts - 10. $\mathrm{mA} .501,0 \mathrm{~A}$. $10 \mathrm{mps}: 50 \mu \mathrm{~A}_{\mathrm{i}} 1 \mathrm{~mA}: 50$

 -20 to +62 dB Dimensions: $6^{\circ} \times 4.115^{\circ}$
 $\begin{array}{lll}\times 2^{\prime \prime} ; 152 \times 107 & \times 51 \mathrm{~mm} \text {. Capacitance } \\ 250 & \text { pF to } 0.02 \text { uF. Inductance }\end{array}$ $0 / 5000 \mathrm{H}$ Carrying case available Model $C$.

$$
\$ 22.50 \quad P \& P \$ 1.50
$$

SCOOP $200-\mathrm{H}_{1}$ p.p. 75 c . 90 PURCHASE size. AC V : $10 \mathrm{~V}, 50 \mathrm{~V}$,
 ( 10,000 ohm/V). DC/V: $5 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}$ $500 \mathrm{~V} 2500 \mathrm{~V}(20,000$ Ohms/V). DCA/A: $50 \cup A$, $2.5 \mathrm{~mA}, 250 \mathrm{~mA}$. OHM: 60 k onm, 6 M ohm. Capacitance: 100pF to 0.1 UF. .00luF to .luF dB: $-20 \mathrm{~dB} 10+22 \mathrm{~dB}$. Audio Output: loV, 50V, l20V,
$1000 V$ AC. Approx. size: $41 / 2^{\prime \prime} \times 31 / 4^{\prime \prime} \times 1-1 / 8^{\prime \prime}$
$\$ 13.50$ With FREE leather carry case. \$1.50 Postage.

Published monthly as the officlal journal by the Wireless Institute of Australia.
Reg. Office:
2/517 Toorak Rd., Toorak, Vic. 3142
P.O. Box 150, Toorak, Vic., 3142

Editor:
Bill Roper
VK3ARZ
Assistant Editor:
Bruce Bathols
VK3UV
Technical Editors:
Bill Rice
VK3ABP
Ron Cook VK3AFW
Roly Roper
Publications Committee:
John Adcock
Rodney Champness
Syd Clark
Ron Fisher
Ken Gillesple
Nell Osborne
Ken Reynolds
Gil Sones VK3YFF

Contributing Editors:
Brian Austin
Deane Blackman
David Hull
Eric Jamieson
Jim Payne
VK3ACA
VK3UG
VK3ASC
VK3OM
VK3GK
VK3YEI
VK3AUI

VK5CA
VK3TX
VK3ZDH
VK5LP
VK3AZT

## Drafling Assistants

Gordon Row
L30187
VK3ZIK
Business Manager:
Peter B. Dodd
VK3CIF
Enquiries and material to:
The Editor,
PO Box 2611W, GPO Melb., 3001
Copy is requised by the third of each month. Acknowledgment may not be made unless specially requested. All Important Items should be sent by certified mail.
The Editor reserves the right to edit all material, including Letters to the Edltor and Hamads, and reserves the right to refuse acceptance of any material, without specifying any reason.

## Advertising:

Advertising material should be sent direct to P.O. Box 150, Toorak, Vic., 3142, by the 25th of the second month preceding publication. Phone: 24-8652.
Hamads should be sent direct to P.O. Box 150, Toorak, Vic., 3142, by the 3rd of the month preceding publication.

## Printers:

EQUITY PRESS PTY. LTD.
50-52 Islington Street
Collingwood, 3066
Tel.: 41-5054, 41-5055

## COUNTING OUR BLESSINGS

Despite Inflation and a whole host of problems the Institute is very much a going concern. We are proud in having one of the best amateur radio Joumals in the world.
Our membership is on the increase. Not as much as we would like but nevertheless It is increasing.

At the Federal level there has been Intense activity during the year. Several benefits have been secured for amateur radio in Australia as a whole and more are under negotiation.

Your watchdogs are keen and active. The many volunteers managing your affairs at the various levels are by and large deep thinking, hard working, and blessed with much common sense and sound judgement based upon a wide knowledge of amateur affairs.

Sure, there is scope for improvement. This can only happen if members, or groups of members, communicate their problems. If any cause is right, and if enough members keep pushing for it, something good will eventuate. Your administrators of amateur radio cannot work in a vacuum. They need to know about problems. Despite a very high volume of trivia and routine matters which cannot be ignored, there is an amazing number of important items which get extensive consideration and for which positive action is initiated. There is a very real grading of priorities, a very real feeling of facing facts.

There is ample scope for the views of minorities to be discussed. In all organisations there are people who single-mindedly exert immense pressures to have their own (frequently parochial) views adopted for one reason or another. This Institute is no exceptlon. As often as not these people spoil their own cases by over-emphasis and extremes of pressure. Sometimes their efforts prove harmful to the public Image of amateur radio particularly if the media becomes involved.

Fortunately the backbone of amateur radio is based on good sense and tolerance.
Fortunately we can count our blessings in possessing great stores of these commoditles. Even if they do remain slient or apparently silent.

We need all the backing we can get for the years ahead - especially WARC 1979. Happily there is now a great awareness in amateur ranks of what WARC 1979 could do to us. Happily we are not alone in the world. We support the IARU and it supports us.

Count your blessings that amateur radio world-wide is alert to the dangers ahead. We do not intend amateur radlo to fizzle out as a spent force. Preparations to join battle are progressing well. With the full support of every amateur we can emerge triumphant into the closing decades of this century.

A Very Merry Christmas and Prosperous New Year to you all.
D. A. WARDLAW VK3ADW, Federal President

## EXECUTIVE OFFICE <br> The Execulive Office will not be open between Christmas Day and 19th January 1976. Mall buslness as usual, however.

## SUBECRIPTION8

Some members are aaking why should they have to send their aubscription payments to the Executive Office in Melboume. "Why can't we pay our Dlvision $7^{\prime \prime}$ they ask. The answer is quite simple - centralised accounting to save money. Our EDP system calculates the subscriptions payable and prinis out the notices ready for envaloping and posiling. It also takes care of address changes and the printing of the AR address labele each month so that all the address changes go through into all the systems Including aubscription notices at the specifled date. The EDP also automatically does a number of other things Including a call book llsting. liatings by poat codes as wall as the accounting area. Datalls of all payments recelvad go Into the computer on the aubscription notices which you return with your payment so that firstly you will continue to receive AR and will not have your address label suppressed because of belng unfinancial, and sacondly your computar records will be ready for the following years aubacription listing. As a result of all this the Divisions no longer have to calculate, write out, despatch and record aubscripilon detalie because the Executive office is geared to handie all this on a bulk basis. If temptation proves too great and you happen to pay into your Division this only introduces com-
plications, possible delays, double handiling and extra accounting and other work for which the Division might find it difticult to cope. The centrallsed sys!em is working pretty well so please comply witt: the Instructions printed on the subscription notice and PLEASE REMEMBER that this year because of the Increased postal charges your subscription notice could well be endorsed "FIRst AND FINAL MOTICE". It will theretore be better to pay early and avoid the disappointment of being automatically removed from the listings because of being unfinancial. And finally a reminder that if you need a recelpt please ask for one and gend a SASE with your request. Always make sure you cross all cheques etc. because in past. years a fow have gone astray In the mail. If you do not recsive Aprli AR this is uaually an Indicator of something having gone wrong.

## DARWIN APPEAL

As stated on p. 3 of AR for Aug. '75 the Darwin Appeal has now closed. The donation of $\$ 600$ shown as from the Geelong Hamfest Soclety In fact derived from a soclal function excellently supported by the amateurs in the area and further alield.

The total amount collacted amounts to $\$ 1084.38$. The previous total as published was augmented by the following donations:-
VK2AKY .... .... .... .... .... .... .... $\$ 10.00$
VK2 DIvlsion...
VKBAT

The question of the disposal of this Fund has been under active diacuasiona and Invesilgation. A result of which. the Executive, on the advice of the

At the time of writing it is known that everything is ready for the Novice Licensing Exam due to be held on the third Tuesday in November. Whether or not the examination can in fact be held is unknown since no news has come to hand that the industrial dispute has been settled.

Criticisms have been levelled at the Institute that the tenure of the Novice Licence to two years was a deep dark plot lald by those in charge of Institute affairs. It appears to be alleged that this fact was hidden from the membership.

Readers are requested to turn to page 7 of AR for May 1973 as a starting point. The penultimate paragraph in the letter reproduced on that page is self-explanatory. This letter arose out of negotiatlons with the PMG's Department conducted by the Executive following the mandate given at the 1972 Federal Convention.

The 1972 Federal Convention crystalised thinking in relation to Novice Licensing, a subiect which had been under discussion since the 1950's and which had finally led to the commissioning of an investigation into the matter late in 1970 and early in 1971. The Investigation was carried out by a committee under the chairmanship of Mr. Rex Black, VK2YA and a lengthy Report containing this committee's deliberations and recommendations had been submitted a few days prior to the 1971 Federal Convention - so late that the Convention considered such an important matter could not recelve that amount of close study and informed discussion that it rightly deserved - hence the delayed decision.

It is interesting to observe that the Novice Ucensing Investigation Committee's Report specifically stated "That Novice Licences should be issued on the basis of LIMITED TENURE'. The commentary on this recommendation read:-
"It is suggested that applicants for Novice Licences should be permitted to hold the orlginal licence for one year with provision for renewal for a limited period only, except in exceptional cases in which special reasons for turther renewal would be sublect to consideration by the Licensing authority; the principle of the Novice Licence concept is based on its being an introductory form of transmitting permit, another avenue of entry into the Amateur Service, another means whereby enthusiasts may proceed to AOCP status. The Novice Licence should NOT be regarded as an end in itselt but merely the first step towards qualified amateur operator level. This principle follows the American pattern and is strongly supported by the opinion survey conducted by this Committee. In America the tenure period is
two years. Formerly it was 12 months only, but the increased perlod was introduced in 1968. Under the original one-year tenure period it was found that 50 to 60 per cent of Novices proceeded to General Class, which equates to the Australian AOCP. No flgures are yet avallable to show the effects of the two year tenure period".

Although all systems are go there are stlll no Novice licences In existence with their 3 letter " $N$ " calls.

Equally, nothing has come forward from any of the Divislons of the Institute to discuss any alterations to the Novice Licensing arrangements let alone proposing any amendments to the conditions.

It is Interesting to observe that discussions are proceeding at the present time to formulate a 'gentleman's agreement' on band sharing as exists for the HF bands as separating phone and CW segments of the bands. Since Novices would be able to use telephony as well as telegraphy and since a part of each segment in two out of the three HF bands allowed to Novices is within the CW portions of those bands it is obvious that band sharing arrangements are necessary to avoid chaos both for the Novices and other users as well. A decision on this must emanate from the Federal Council but it would not ordinarlly be necessary for this to lie dormant until the next Federal Convention in May 1976.

During October the Federal President held discussions with the Secretary to the PMG's Department together with Mr. H. Young Assistant Secretary of the Radio Frequency Management Branch of the Department.

High on the list of Items discussed was the Instliute's request for proper representation in all areas affecting the amateur service leading up to, and at, WARC 1979. It was understood that Australia is beginning to swing into action for this important conference and strong submissions for the amateur service to be involved were noted by the officials. Many will remember that after enormous efforts the late Mr. John Moyle was officially appointed as an amateur observer with accreditation as a member of the official Australlan delegation to WARC 1959 at Geneva.

Other matters brought up by the Federal President included representation on any frequency management or planning committee, an actlve interest in any impending legislation affecting the amateur service, arrangements for future call books, examinations in co.7siderable depth in relation to all the various problems which arlse, Intruder Watch follow up, reduced licence fees for pensioners and disabled persons, and delays in obtaining replies on amateur matters.

Immediate answers to all these matters cannot be expected. However, these are things of prime importance and no lack of follow-up action will occur.
W.I.A. South Australian Divislonal Council propose to Inform the Darwin Amateur Radio Club that the monles collected for the Darwin Appeal Fund will be made avaliable for the establishment of the moat sultable radio Insiallation for the Club subject to proper accounting for the monles expended.

1976 SUBSCRIPTION RATES
At the time of writing (late Oct.) all the rates are not yet known. Here is a list of those that are known:-

| Div. |  | $\$$ |
| :--- | :--- | ---: |
| VK1 | One rate | $\mathbf{S 0 . 0 0}$ |
| VK2 | Full member | $\$ 20.00$ |
|  | Associates | $\$ 18.00$ |
|  | Pensioners | $\$ 10.00$ |
|  | Students | $\$ 10.00$ |
|  | Family members | $\$ 10.00$ |
| VK3 | Full members | 22.00 |
|  | Associates | 19.50 |
|  | Students | 13.00 |
|  | Pensioners | 13.00 |
| VK4 | Full clty | 20.00 |
|  | Full country | 18.50 |
|  | Assoc. city | 20.00 |
|  | Assoc. country | 18.50 |
|  | Pensioners | 13.00 |
|  | Student grade discontinued |  |
| VK5 | Full central | 20.50 |
|  | Full country | 19.00 |

Assoc. central Assoc. country ..... 19.00

StudentaPens:onersJr. studentVKBJr. student19.00| Jr. student $\quad 9.00$ |
| :--- | ---: |

20.00
19.00AssociatePensionersStudentsVK7 Full
AssocialesStudentsPensionera2.00
12.00
12.0017.00
17.00
10.00
Jolning tees
VK2 $\$ 2.00$
VK7 ..... 1.00
14.50
Federal dues for 197814.50
(AR 7.20, IARU 0.30, other 7.00)(The full dues are levied against
all full and Assoclate mambers)
15T JOTA CONFERENCE
The Report of the firgt Jambouree-on-the-air Con-ference was held in Lillehammar, Norway as partof the 14th World Jambouree on 1/8/1975. About60 delegates from 22 countries attended the formalsessions under the joint chalrmanship of LesMitchell, g3Bik and Len Jarrett, HB8AMS. In hishistorical review G3BHK said JOTA began in 1858although many earller ties between the two Interestshad occurred golng back to 1912. Radio Scouting.
he sald, grew out of JOTA and several Scout Associations had incorporated radio into Scout activities Including fox hunting and kit buliding. One of the problems was that few, If any, JOTA stations were heard from the developing countries yet these countries ware the vary ones clamouring for more and more commercial trequency space. As they usually had no national amateur radio organisation they fully supported any International move to reduce the bandwldthe avallable to amateurs. Amongst other items the Conference felt the need for a Scout Radio Handbook containing material about radio acouting not avallable elsewhere.

## PR WORK

"Awareness - apecifically, the public's awareness of amateur radio - will play a large part in the future of amateur radio. In today's world of political realities, a concerted effort is needed to aggresalvely boost the image of amateur radio in the public's eye'. Opening remarke of editorial, August ${ }^{\prime} 75$ OST.

## MULTI-CHOICE EXAM8

Aug. '75 OST contains Information that the Canadian Dept. of Communications have Introduced now multiple choice type examinations for proapective Canadian amateur and advanced amateur radio class operatora.
PROVOCATION OF THE MONTH
Nobody under 30 reads AR.

## THE FIRST <br> WIA <br> SUNDAY BROADCAST ON ATV

## A RLOW BY BLOW DESCRIPTION

Tom Moffat, VK7TM
7 Shannuk Dr., West Hobart, 7000


#### Abstract

On Sunday moming, October 5, 1975, the VK7 Wireless Institute Southem Branch transmitted what is believed to be the first ever divisional broadcast on Amateur Television. Here's how it came about:


May, 1975:
The idea germinates. Over the past several months Tom VK7TM had built up an ATV transmitter. It worked very nicely, but there was one problem - nobody to work on ATV in Hobart. Winston VK7EM, had been on ATV from the Northwest Coast, along with Tony VK7AX; and a few others had ATV transmitters under construction. But they are not within UHF range of Hobart, and several mountain ranges separate us.

In an effort to stir up some ATV activity in Southern Tasmania, the WIA Disposals group, under Andrew VK7AW, put up about 20 ATV converter kits and started selling them around Hobart. We were soon at the stage of having 20 receiving stations but still only one transmitting station. So the idea was born: why not start transmitting the weekly WIA broadcast on ATV, in the hope of encouraging more general activity on ATV?

The Tasmanian Division, WIA, duly dispatched a letter to the PMG Radio Branch, asking that the UHF TV channel be added to the list of WIA broadcast frequencies.

Response was not immediate. Apparently no one had proposed running a Sunday broadcast on ATV before, in any part of Australia. We were going to be first, so we kept quiet about it, and waited.
Sept. 11, 1975:
We are told approval for the ATV broadcast is granted. This is an unexpected surprise. In Tasmania the Sunday broadcast origina-

tion point rotates around the state on a three week cycle - one week Hobart, the next Launceston, the next Devonport or Ulverston, and then back to Hobart. Hobart's next turn is Sept. 14, only three days away. We will never make that VK7TM's TV transmitter is in 10 pieces after some unsuccessful modifications. It is decided to set the target date for three weeks further on - October 5.
Sept. 29:
The ATV transmitter is now back together and working nicely, but we have discovered another problem. As well as broadcasting on ATV, we have to provide a service on 80 metres to parts of the state out of range of our UHF ATV. But 80 metre SSB coming from the same shack as ATV works its way up the camera cable and modulates the ATV transmitter. It is right in the middle of the video passband. So the 80 metre transmission has to come from somewhere else.

Andrew VK7AW, was in on the planning of this broadcast from the start. He was going to be the original announcer. But a few days ago his wife Judy presented him with a baby boy, their first.

So we had decided to keep out of Andrew's hair, and leave him to his nappy changing. But now he is needed, badly. He has a good 80 metre SSB transmitter and an ATV converter. We plan to broadcast from VK7TM on ATV only, get Andrew to pick it up off air, patch the speaker of his TV set to the audio input of the SSB rig, and re-transmit the audio.

This sounds like an easy thing to do, but in this case it will not work. There is a big hill between the VK7TM and VK7AW QTH's, and our 15 watts of ATV just won't penętrate it. Andrew gave his converter a
good tweak and crawled all over the roof of his house trying different aerial positions. But all he got was a very snowy picture and noisy sound, not fit for re-broadcast. The path just was not there.

## Sept. 30:

Brian VK7RR, has volunteered to be the 'newsreader' in place of Andrew. Tonight we are going to try a dry run. First we have to set up some big TV studio lights that mysteriously turned up during the week. Then we set Brian in the 'hot seat' and hit him with a couple of thousand watts of light. As he sits and roasts under the lights we juggle the light positions, his seating position, and camera angles to try to get a professional effect. Satisfied, we shut the whole lot down and retire to Tom's lounge room for coffee, and to discuss how we are going to achieve that 80 metre rebroadcast now that the test with VK7AW has failed.

Oct. 1:
The night of the W.I.A. Branch meeting at the Prince of Wales Hotel, Hobart. Still nobody to do the 80 metre re-broadcast. Sitting at the other end of our table is Peter VK7PS, with his hand wrapped around a glass of beer. Now there is a possibility - he has got an ATV converter and can transmit 80 metre SSB. We put the hard word on him and he agrees to give it a try. So we set up a test later in the weak to check the ATV path.
Oct. 3:
Peter lives an Mt. Nelson, and has a near Ilne-of-sight path to VK7TM. He receives the ATV picture and sound virtually noise free. His 80 metre SSB is good and clean and doesn't interfere with the ATV reception. Peter says he will arrange a TV to

SSB audio patch, to try out the next day. We shut down for the night.

## Oct. 4:

Peter has constructed a TV set to SSB rig patch, complete with level adjustment and equalisation. He hooks it up, we give a test call on ATV, and he re-broadcasts on 80. We receive it off 80 and record it on a casette. On playback it sounds tremendous. Peter has done a good job, and one more worry is over. Then Peter announces he may have to work on Sunday morning and may not be able to get home to operate his equipment. Panic again.

## Oct. 5, 0800 AM:

The Big Day. Turn all VK7TM equipment on for a final test. No smoke, everything looks OK. Pace up and down for a while, have another cup of coffee.

## 0830 AM:

Brian VK7RR, is supposed to be here, but he is not. Call him on two metres Channel B. No answer, but Mike VK7FB, comes up. He will do the Hobart relay on Channel B and 52.525. We ask him to advise listeners that we will begin transmitting ATV test pattern at 0900 for final converter tweaking.

## 0845 AM:

Call Peter VK7PS, our 80 metre relay. He doesn't answer, so he must be working. This means our 80 metre relay, the link with the rest of the VK7WI network, has failen through. It looks like we will have to scrub the ATV for the week and originate on 80 ourselves, voice only.
0850:
"VK7PS listening Channel B". He is on the way home, taking an early 'lunch break'. We have got our 80 metre relay back again. Another crisis over.

## 0855:

VK7AX calls on 80 with some last minute news from the North. We ask him to hang on for a few minutes, Brian is on the way and will take it himself, since he is the one who will be reading it.

## 0857:

VK7RR arrives. He climbs over all the camera and audio cables to the 80 metre rig to talk to Tony. Just as he is getting seated his foot catches the mic cable, pulling the whole ATV transmitter off the bench. It is left dangling by its power cable. Disaster again. But not quite - a quick check-out proves it is still working O.K.

## 0900:

Brian calls Tony on 80 metres. At the same time we hit the switch putting the ATV test pattern on air. A loud buzz comes from the 80 metre rig - the ATV is overloading it. We kill the ATV again and ask VK7FB to announce that the test pattern will be slightly delayed.

## 0905:

Brian and Tony are finished, so we fire up the test pattern. Brian moves into the 'hot seat' and once again we check lighting. There is a bit of flare coming off Brian's forehead, so his wife Sue moves in with some make-up. She smears his face with cream, followed by brown facial powder. Brian's not too happy about this, until we
remind him that it is common practice in every TV studio.
0915:
The make-up is finished, and Brian is going over his notes. Tom is going over the transmitter yet again, and finds the linear Is getting hot. He arranges a tangi heater set to 'cool' to direct its air flow on the linear's heatsink and all is well. Test pattern looks good coming off air.

## 0920:

Peter VK7PS, advises all his gear is running and asks for a sound test. We plug in the microphone, get Brian to count, and Peter patches it through to 80 . Mike, VK7FB, takes the cue and patches 80 through to the VHF network. This results in great squeals of feedback from the VHF rigs in the 'studio'. We are lucky we tested it before VKTWI 'officially' went to air. Anyhow, everything works.
0927:
Checklist - Lights on, vision on, transmitter on, blower on, sound off, VHF rig speakers off, all kids, dogs, etc. out of shack. Everybody ready? Yes!
09:29; 45:
Fade test pattern to black. Tell Brian to stand by. Sue removes the test pattern and stand while Tom wheels the camera back into position for the opening shot. Turn sound on.
0930:
Fade up picture and cue Brian. Picture is out of focus and Brian looks a bit startled. But Australia's first W.I.A. broadcast on TV is underway.
0935:
Brian's initial nervousness is gone, the camera is back in focus, and everything looks good. We forgot to start the audio casette recorder on the 80 metre receiver. Missed the first five minutes. But now it is running.

Brian has got through the opening remarks and a few meeting announcements, and launches into a report on the history of WIA broadcasts in VK7. We did not know he was going to do this. It Is a bit of a surprise but it sounds tremendous and certainly fits the occasion. And he is not even looking at his notes. He has memorised the whole thing and dellvers it looking straight into the camera.
0940:
Brian's going so well we must do something to make the production match the content. So we try a few tracking shots - wheelling the camera closer and further from him to glve a variety of aspects. But the floor is uneven and each time the camera is moved it looks like our 'studlo' is hit by an earthquake. As well the wheels squeak.
0945:
Time for a few photographs. Tom grabs the film camera and shoots off a whole roll of film, of the whole set-up, from all angles. 0959:
Brian is finishing up. Perhaps we will try one more spectacular camera shot. As Brian closes, Tom pulls the camera back to get a wide shot of the whole studlo. But the camera rolls over his foot causing another 'earthquake'. The camera ends up pointing at the ceiling, so there's nothing
left to do but fade out and be done with it. 1000:
Cut the main power switch to the transmitter, and breathe a sigh of relief. Now to take the callback on 80 metres and see what they thought of us.
The Result:
The callback indicates we had about four TV viewers, which is better than nothing. We had more than the usual number of listeners to the re-broadcast on 80 metres and VHF. Most commented on Brian's ability to produce something different (the historical report) and wanted to hear more of the same.
The Future:
Now that we are over the Initial hurdle, we hope to produce most broadcasts originating in Hobart on ATV. This might not be possible, since a lot more people are involved in a TV broadcast than in a voiceonly version. Hopefully the Oct. 5 effort will cause a few more people to get their converters going, increasing our viewing audience considerably. Although we had expected no opposition from the 'professional' TV stations, they must have heard what we were up to, because for the first time this year a commercial TV station was on at 0930 in the morning, carrying the Bathurst 1000 motor race. They probably got a few more viewers, because they've got colour, and we haven't. (Yet).
The Equipment:
Camera: Ikigami vidicon camera type VR621.
Microphone: Electrovolce studio type.
Lighting: Mole-Richardson variable spotflood.
Transmitter: 10 mW exclter, sound and vision, solid state, similar to one described in VHF Communications, Feb. and May, 1973.

Linear: Four stage, solid state, 15 watts average power output.
Aerial: Discone (AR April, 1973).
Frequencies:
Vision carrier 426.25 MHz .
Sound carrier 431.75 MHz .

## Afterthoughts

A simplified method of morse code generatlon . . . October, page 20.
(i) Q3 is not a BC107 as was labelled in the schematic but is a 2N4249, which is a P.N.P., and should be connected with collector to the key terminal, and emitter to +5 .

This will only handle a key-open voltage of 60 volts, which is ample for the transmitter it was used on (FLDX400). If a transmitter with a higher key-open voltage is keyed, a higher voltage transistor is necessary, or a shunting resistor must be used to reduce the open-key voltage.
(ii) The type of U2 is not mentioned for the circuit shown, the extendable hex inverter Fairchild 9935 was used. The other manufacturers have equivalents.
The use of a DTL device among TTL's is a bit odd, but there is no functional equivalent in TTL.


Vicom International Pty Limited is an Australian Company owned and controlled by active licensed Amateur Radio operators who understand the Amateur's desires as well as professional conduct in business. We offer the same to our purchasers of our products. Being active Amateurs and consumers of amateur equipment ourselves, we demand an organised, qualified, well equipped service facility to support the equipment we purchase. VICOM outlets are able to solve any problem that may occur and are well stocked with spares for Uniden, Icom and Trio-Kenwood brands. VICOM is a healthy, growing corporation (now the largest Amateur retailer in Australasia) and fully recognises its responsibility to provide the customers the support and constancy to put them at ease. Careful planning, attention to detail and response to customer needs have been material in its rapid rise to success. A long future of continued planned growth and success is ahead.

INSURANCE
Where a request for insurance is not specified on ordering, goods are sent at customer's risk. An all-risk cover can be arranged by enclosing $\$ 1$ plus 50c per $\$ 100$ value of goods.

## WORKSHOP LABOUR RATE SIO PRR HOUR

## FREIGHT

Prices exclude freight and postage. We recommend 'freight-on' by road transport - ie. customer pays at his end.

## PAYMENTS

We regret that other than Government Departments we cannot offer credit facilities other than Bank Card. Postal order, money order, telegraphic orders or crossed cheques to be sent with order. No COD please.

## WARRANTY

All products sold by VICOM carry our 90 -day warranty which excludes final transistors and tubes, accidental damage, negligence, excessive heat and supply voltage polariry reversal. Icom transceivers are warranted (subject to the above exclusions) for a period of 1 year.

## PIRATES

Help stamp-out illegal intruders on our bands! Persons not in possession of the appropriate Certificate of Proficiency will not be sold Amateur transmitting equipment. We do not sell "CB" equipment.

## PRICES

Prices and specifications are subject to variation without notice.

## VICOM PRODUCTS ALSO AVAILABLE AT:

| * Canberra | Daicom, 32 Kalgoorlie Cres, Fisher, Phone (062) 88-4899 |
| :---: | :---: |
| * Newcastle | Digitronics, 188 Parry St, Newcastle, Phone (049) 69-2040 |
| * Perth | Netronics, 388 Huntriss Ave, Woodlands, Phone (092) 46-3232 |
| - Adelaide | Graham Stellard, 27 White Ave, Lockleys, Phone (08) 43.7981 |
| - Gold Coast | Gold Coast Communications, 24 Australia Ave., Broadbeach, Phone (075) 31-7594 |



PETER WILLIAMS B.Sc. GENERAL MANAGER

\section*{RAC ANTENNA | BY |
| :---: |
| Vicom |}

Now appears in a completely new style LOADED DIPOLE

Equipped with the new traps that combine the merits of linear loading and colinear loading.

Wire and wire locks ... 525 type
Hardware (screws, nuts, washers) ... stainless steel
New Deluxe series, designed for easy installation rather than for additional shortening.
Almost no need of adjustment for any band. May be mounted in non-standard configuration.


| Model | Description | Impedance | Freq. | Power | VSWR | Overall <br> Length | Net Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AL.48DXN | New Deluxe type, Duoband Loaded Dipole | 52 ohm | $3.5,7 \mathrm{MHz}$ | $\begin{aligned} & 2 \mathrm{KW} \text { PEP } \\ & 1 \mathrm{KW} \mathrm{CW} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Less than } \\ & 1.2 / \pm 80 \mathrm{KHz} \end{aligned}$ | 28m | 1.2 Kg |
| AL-24DXN |  | 52 ohm | 7, 14 MHz | do | do | 14m | 900 g |
| AL-15DXN |  | 52 ohm | $21,28 \mathrm{MHz}$ | do | do | 6 m | 870 g |
| Midy-II N | New Deluxe type. Multi-band Loaded Dipole | 52 ohm | 3.5, 7, 14MHz | $\begin{aligned} & 1.5 \mathrm{KW} \text { PEP } \\ & 750 \mathrm{CW} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Less than } \\ & 1.3 / \pm 50 \mathrm{~Hz} \end{aligned}$ | 23m | 1.4 Kg |
| Midy-IIIN |  | 52 ohm | $7 \sim 28 \mathrm{MHz}$ | $\begin{aligned} & 2 \mathrm{KW} \mathrm{PEP} \\ & 1 \mathrm{KW} \mathrm{CW} \\ & \hline \end{aligned}$ | do | 14m | 1.4 Kg |
| Midy-V N |  | 52 ohm | $3.5 \sim 28 \mathrm{MHz}$ | $\begin{aligned} & 1.5 \mathrm{KW} \text { PEP } \\ & 750 \mathrm{WW} \\ & \hline \end{aligned}$ | do | 23m | 2.2 Kg |

## ANTENNA STYLES NEW DELUX TYPE



AL-15DXN
AL-48DXN, AL-24DXN
Midy-II N


Midy-II N


Midy-V N

## CENTER-LOADED DIPOLE

By the use of center loading coils the length of the antenna is shortened to $55 \%$ at 3.5 MHz and to $60 \%$ at 7 MHz . Being center loaded, it suffers less influence of adjacent metalic objects than other types of antennas.


| Model | Description | Impedance | Freq. | Power | VSWR | Overall Length | Net Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A.4VPN | Center-loaded Dipole | 52 ohm | 7 MHz | $\begin{aligned} & \text { 600W PEP } \\ & 300 \mathrm{~W} \text { CW } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Less than } \\ & 1.2 / \pm 38 \mathrm{KHz} \end{aligned}$ | 12m | 570g |
| A-8VPN |  | 52 ohm | 3.5 MHz | do | do | 22m | 800 g |

## COAXIAL SWITCHES

| Model | Description | Impedance | Freq. | Power | VSWR | Dimensions | Net Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CX-2A(A) | Coaxial Switch | 52 ohm | Up to 300 MHz | $\begin{aligned} & \text { 500W PEP } \\ & 250 \mathrm{~W} \text { CW } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Less than } \\ & 1.3 / 170 \mathrm{MHz} \end{aligned}$ | $80 \times 60 \times 40 \mathrm{~mm}$ | 2509 |
| CX-2A(B) |  | 75 ohm | do | do | do |  |  |
| CX-6A(A) |  | 52 ohm | Up to 500 MHz | 1.5KW PEP | Less than $1.3 / 400 \mathrm{MHz}$ | (round) $85 \times 70 \mathrm{~mm}$ |  |
| CX-6A(B) |  | Bre | do | do | do |  |  |

[^10]
# 制位-gailn Arternas? fabulous thunderbird junior Model th3jr 



AVAILABLE
FROM STOCK

Up to 8db Forward Gain 25db Front-to-Back Ratio<br>Takes up to 300 Watts AM; 600 Watts P.E.P.<br>$\$ 145$<br>Rotates with Heavy Duty TV Rotator Turning Radius 14.3 ft .

## NEW, IMPROVED SUPER

## 3-Element THUNDERBIRD

New "Hy-Q" Traps
Up to 8db Forward Gain
25db Front-to-Back Ratio Delivers outstanding performance on 10,15 and 20 meters. Separate and matched "Hy-Q" Traps for each band. Feeds with 52 ohm coax. Hy-Gain Beta Match presents tapered impedance which provides most efficient 3 band matching and provides DC ground to eliminate precipitation static resulting in maximum $\mathrm{F} / \mathrm{B}$ ratio, SWR less than $2: 1$ at resonance on all bands. Mechanically superior construction features taper swaged slotted tubing allowing easy adjustment and permitting larger diameter where it counts. Has heavy tiltable boom to mast clamp. Shpg. Wt. 35.9 lbs .

If you're looking for top performance on 10,15 and 20 meters but are hampered with severe space limitations, you'll want the Model TH3JR. Constructed of durable, lightweight taperswaged aluminum tubing, the Model TH3JR is ideal for rooftop or lightweight tower installations. Separate and matched "Hy-Q" traps for each band. Feeds with 52 ohm coax-Beta Matched for optimum gain, maximum F/B ratio without compromise. SWR less than $2: 1$ at resonance on all bands. Molded high impact cycolac insulators all hardware iridite treated to MIL specs. Shpg. Wt. 20.4 lbs .


No other antenna gives you the performance on 10,15 and 20 meters equal to that of the Thunderbird. Built, without compromise, to be electrically and mechanically superior to everything else.

- Separate "Hy-Q" traps for each band. Tuned at the factory for peak performance. Get optimum results for your preferred mode on transmission, phone or CW, using factory supplied charts.
- Cast aluminum, tilt-head, boom-to-mast bracket accommodates masts from $11 / 4^{\prime \prime}$ to $21 / 2^{\prime \prime}$ and provides mast feed-through for stacking. (Extra heavy gauge, formed element-to-boom brackets used throughout.)
- All taper-swaged, slotted aluminum tubing for easy adjustment, lightweight, with full circumference, compression clamps instead of usual self-tapping screws used throughout.
- Exclusive Beta Match for optimum matching on all three bands and positive DC ground path.
- 3 active elements on 20 and 15 meters, 4 on 10.
- 25 db front-to-back ratio.
- SWR less than 1.5:1 on all bands at resonance.
- $24^{\prime}$ boom, longest in the industry.
- $20^{\prime}$ turning radius, 6.1 sq . ft. surface area, 61.5 lbs . net weight.


## The ultimate Tri-band



## ELECTRICAL SPECIFICATIONS

Frequency Range ..................20, 15 and 10 Meters

Gain........................................8.7db (average)
Front to Back Ratio ........................................25db
Maximum Power Input........... 1 kw AM; 2 kw P.E.P.
VSWR (at resonance) ........................................1.5:1
Impedance ............................................... 50 ohms

## MECHANICAL SPECIFICATIONS

| Longest Element | 31.1 ft |
| :---: | :---: |
| Boom Length. | 24 ft |
| Turning Radius. | 20 ft . |
| Wind Load at 80 MPH | 156 lbs. |
| Maximum Wind Survival | 100 MPH |
| Net Weight. | 61.5 lbs. |
| Mast Diameter. | $11 / 4^{\prime \prime}$ to $2^{1 / 2} 2^{\prime \prime}$ |
| Boom Diameter | ......... $2^{\prime \prime}$ |
| Surface Area. |  |



GENERAL: Frequency Coverage with Internal VFO: 1800-2000 kHz. (Mordel $215 x$ only), $3500-4000 \mathrm{kHz} .7000-7500 \mathrm{kHz} .14,000-14.500 \mathrm{kHz}, 21.000-21.500$ $\mathbf{k H z}, 28,400-29,400 \mathrm{kHz}$. (Model 210 x only). Note that the 10 meter band may be easily owner adjusted to cover any 1000 kHz segment.
Frequency Control: Highly stable VFO common to both receive and transmit modes. Tuning dial calibrated in 5 kHz increments with 1 kHz increments on skirt of tuning knob, except on 10 meters where increments are $10 \mathrm{kHz}_{\mathrm{z}}$ and 2 kHz , respectively. Tuning rate is 22 kHz per revolution. Frequency Stability: Less than 1 kHz drift during first 30 min . ( 2 kHz max. on 10 meters). Less than 300 Hz per hour after 30 min . Less than 100 Hz shift from 11 to 14 volts supply. External Frequency Control: Rear socket provides for plug-in of external VFO or crystal oscillator for separate control of transmit and receive frequencies, or for network and MARS operation. Frequency Coverage with Crystal 0 scillator: 1800.3000 kHz , model $215 x$ only). $3300-4600 \mathrm{kHz}, 6900-8000 \mathrm{kHz}, 13,800-14.900 \mathrm{kHz}_{2} 20,600-21,600$ kHz. 27.500-30.000 kHz, (Model 210x only).

Completely Solid
State: Includes 4 I.C.'s. 18 iransistors. 32 diodes. Modes of Operation: SSB with selectable sideband, and CW. Normal sideband position is LSB on 160, 80, and 40 meters, USB on 20, 15. and 10 meters. Automatic off-set frequency on CW transmit. Modular Construction: Plug-in PC boards for R.F., I.F., and audio circuits. Plug-in Design: Rear connectors are designed so transceiver plugs into Mobile Mounting Bracket, or AC Console. Connectors are standard: S0-239 coax. antenna jack, 1/4 in. diam. 3 circ. jacks for Mic. and external speaker or headphones, 1/4 in. diam. 2 circ, jack for CW key, 9 pin Noval sockets for Ext. Osc. and Aux. Linear control. Power Supply Requirements: 12-14 volts D.C.. negative ground only. Terminal P1 is high current circuit for power amplifier, 16 amps . peak in transmit mode. Terminal P2 is low current circuit for receiver and low level stages, draws 300 to 600 ma . in rec. and trans. modes. Finish: Vinyl covered aluminum cabinet, black. Anodized aluminum panel. Dimensions: $91 / 2 \mathrm{in}$. $(24.1 \mathrm{~cm})$ wide. $31 / 2 \mathrm{in}$. ( 8.9 cm ) high, $91 / 2 \mathrm{in} .(24.1 \mathrm{~cm}$ ) deep. Weight: $6 \mathrm{lbs} .1402 .(3.1 \mathrm{~kg})$ net. $8 \mathrm{lbs} .602 .(3.8$ kg) shipping;

MODEL 210x or 215x With Noise Blanker

## SEVEN POUNDS OF DYNAMITE!

RECEIVER SPECIFICATIONS: Circuit Design: Direct conversion of signal to 5520 KHz l.f. using double balanced diode ring mixer, providing exceptional immunity to overload and cross modulation. Sensitivity: Requires less than 0.4 microvolts for 10 db signal-plus-noise to noise ratio, 160 through 15 meters. Less than 0.6 microvolts on 10 meters. Selectivity: Crystal ladder 8 pole filter. Bandwidth 2700 Hz at 6 db down. $4300 \mathrm{~Hz}_{\mathrm{z}}$ at 60 db , and only 9200 Hz at 120 db . Ultimate rejection greater than 130 db . 1.6 shape factor. Image Rejection: Better than 60 db . Internal Spurious: Less than equivalent 2 microvolt signal. AGC: Audio output constant within 4 db with signal variation from 5 microvolts to more than 3 volts. Over all Gain: Less than 1 microvolt for 0.5 watts audio output. (CW carrier. 1000 Hz heterodyne.) Audio Output: 2 watts at $10 \%$ distortion, 300 to 3000 Hertz, plus or minus 3 db . Internal Speaker: 3 in ., 4 ohm . 68 oz . magnet. Rear jack permits plug-in of external speaker or low impedance headphones. AC console automatically disconnects internal speaker and connects front facing speaker. Plug-in Mobile Mount provides for automatic connection of external speaker if desired. Meter: Reads " $S$ " units from 1 to 9 . plus 10 to 50 db . Calibrator: Provides calibration markers at 100 KHz increments on tuning dial. Dial Set: Permits adjustment of dial scale calibration
TRANSMITTER SPECIFICATIONS: Circuit Design: Broadband design eliminates transmitter tuning. Single conversion produces minimum spurious mixing products. 2 section low-pass filters on each hand provide excellent harmonic and TVI suppression. ALC with panel adjustment. Infinite SWR protection. Frequency Control: Internal VF0 automatically transmits exactly on receive Irequency. Rear socket provides for plug-in of external VFO or crystal oscillator accessory. (Model 10-X). for separate control of transmit and receive frequencies, or for network and MARS operation. Power Rating: 200 watts P.E.P. input, and CW input, 150 ohm nonreactive load, and 13.6 DC supply voltage) 160 through 15 meters. 120 watts on 10 meters. Power Output: 80 watts minimum P.E.P.. and CW on 160 through 15 meters. 50 watts min. on 10 meters. Note: Ratings are at 13.6 DC volts to transceiver at full load. RTIY/SSTV Power Rating: Approx. 90 watts input. depending on heat sink ventilation. Small fan recommended. Unwanted Sideband: More than 60 db down at 1000 Hz audio input. Carrier Suppression: More than 50 db down. Third Order Distortion: Approx. 30 db below peak power. Harmonic Output: More than 35 db below peak power. CW Transmit: Manual send-receive. Semi-break-in with CW accessory installed in AC console. Automatic off-set transmit freq. Transmit Control: Press-to-talk with Mic. button, or manual transmit with panel switch. Automatic voice control when VOX is installed in AC console. Microphone: Dynamic or Crystal. high impedance. Requires $1 / 4$ in. diam. 3 circ. phone plug. Audio Fidelity: 300 to 3000 Hz , plus or minus 3 db . Meter: Reads P.A. collector current, $\mathbf{0}-16 \mathrm{amps}$. Linear Amplifier Control: Aux. socket on rear provides for keying of linear.


[^11]

* Phase Locked Loop circuitary for optimum stability
* Separate USB/LSB/CW 8-pole crystal filters as standard and no frequency change required when going from USB to LSB
* Maximum accessibility to plug-in PCB modules, even the front panel can be swung out for easy servicing. Full spares catalogue plus parts available.
* Pair 6146B's in final with screen voltage stabilisation for minimum distortion products and a very clean output signal
* 90 day warranty
* Price $\$ 570$ including mic, cables, plugs, English manual

Receiver selectivity; SSB/AM
2.4 kHz at -6 dB and
4.0 kHz at -60 dB

CW
600 Hz at -6 dB and
1.5 kHz at -60 dB

Audio Output; $\quad 2.5$ Watts or more (10\% distortion at 4 ohms load)
Audio Output Impedance;
Power Source;
4 ohms
100/110/117/200/220/234
Volts AC $50 / 60 \mathrm{~Hz}$
$13.8 \pm 10 \% \mathrm{DC}$
Power Consumption; AC: 350 VA at the maximum final input
DC: 22 A at the maximum final input. 7 A in receiving with final tubes heater "on" and 2A with heater "off"
Frequency Ranges;

| Bands (meters) | Frequency $(\mathrm{MHz})$ |
| :---: | :---: |
| 80 | $3.5=4.0$ |
| 40 | $7.0=7.5$ |
| 20 | $14.0=14.5$ |
| 15 | $21.0-21.5$ |
| 10 (A) | $28.0-28.5$ |
| $10(\mathrm{~B})$ | $28.5-29.0$ |
| $10(\mathrm{C})$ | $29.0-29.5$ |
| $10(\mathrm{D})$ | $29.5-30.0$ |
| 11 | $27.0-27.5$ |
| WWV | 15.0 |

Antenna Output Impedance;
Receiver Sensitivity;

## Image Interference <br> Ratio;

IF interference ratio; same as above $\mathrm{MHz}) \mathrm{SSB} / \mathrm{CW}$ AM MHz )

LSB, USB, CW and AM 180 Watts DC INPUT SSB \& CW
90 Watts DC INPUT AM 50 dB
Sideband Suppression; 50 dB at $1,000 \mathrm{~Hz}$
Spurious Radiation; Distortion;
Microphone impeance;
Modulation Method;

Transmitter Frequency Response;

Frequency Stability;
300 to $2,700 \mathrm{~Hz}$ (down 6 dB )
Less than 300 Hz drift in starting
Less than 100 Hz drift or less after 30 minutes of warm up

50-75 ohms unbalanced $0.3 \mu \mathrm{~V} \mathrm{~S} / \mathrm{N} 10 \mathrm{~dB}$ (at 14 $1 \mu \mathrm{~V} / \mathrm{N} 10 \mathrm{~dB}($ at 14 MHz$)$
-50 dB and more (at 14
VICOM [VICOM] VICOM|VICOM|VICOM|VICOM|VICOM|VICOMIVICOM VICOM VICOM|VICOM|VICOMIVICOM|VICOM|VICOM| 12 month warranty on all ICOM TRANSCEIVERS!

## For the first time! fensunaliriobile ibase

 2M SSB.There have been $\mathbf{2 m}$ ssb mobile/base units - large, Features: weighty and expensive! Now from the best known and specialist VHF manufacturer ICOM, comes the IC-202 - small, light weight and only \$199. FEATURES:

* Coverage $144-145 \mathrm{MHz}$ :
144.0-144.2/144.2-144.4 (crystals provided)
Provisions for other crystals ( 200 KHz per xtal).
* VXO operation giving 200 KHz with excellent stability.
* pep output 3 watts.
* cw output 3 watts.
* RIT tuning $\mathbf{~} 3 \mathrm{KHz}$
* noise blanker.
* receiver sensitivity $0.5 \mathrm{uV}(\mathrm{S}+\mathrm{N}) / \mathrm{N} 10 \mathrm{~dB}$
* receiver selectivity $1.2 \mathrm{KHz}-6 \mathrm{~dB}$

$$
2.4 \mathrm{KHz}-60 \mathrm{~dB}
$$

* aduio output 1 watt
* battery external supply 13.8 V @ $15 \%$. Provision for internal dry cells or nicads.
* Size $183 \times 61 \times 162 \mathrm{~mm}$.
* mass 2 Kg .
* current drain max ssb 540 ma Tx, 90ma av Rx.
Complete with mic, manual, carry-strap, dry cells and the VICOM 12 month warranty.


WHAT'S THE NEW CALL SWITCH FOR ON THE IC-22A?
No, we don't expect another band-plan conference for tone access repeaters, but ICOM kindly left the switch in for other uses as takes your fancy. We have been using it to switch in the $S$ meter so that you can use it as al discriminator meter. The switch is inserted at point $X$. Simply press the switch to read discriminator and release for normal S/RF meter readings.


The IC-501 ssb/am/cw
transceiver is PLL VFO
|controlled and runs 10
watts. Separate filters |for am/cw are built-in
ternal ac/dc power
supply. Covers
$50-54 \mathrm{MHz}$ and price of
$\$ 445$ includes mic, $1 \$ 45$ includes mic, warranty.
The IC-60 has been de-
signed along the lines of the successful IC-22A and runs 10 watts fm at $\$ 52.525 \mathrm{MHz}$. Includes mobile bracket, mic
cables, 2 channels and 12 month warranty, all
for $\$ 235$ !

The IC21A is the 10 watt base station or mobile ( $146-148 \mathrm{MHz}$ with variable power control, adjustable deviation, 24 channels, built-in discriminator meter, $S$ meter, power/swr meter, PA protection and modular circuitary . . . In addition:

- Low intermod, due to MOS.FET RF amp and 5 helical resonators
- calibrate position netting switch allows the IC21A to listen to itself on simplex channels.
* The RIT control offsets the receiver frequency to bring in signals which are not properly calibrated
- runs from either 240 V or 13.8 V
- complete with mic, cables, manual, 3 channels and the VICOM 12 month warranty.
* PRICE: \$298.

The DV-21 PLL Digital VFO is a unique synthesiser to omplete your ICOM 2M station lit can also be 240 V and can scan either empty frequencies or those being used. In addition, two programmable memories for favourite channels can be selected. PRICE: $\mathbf{\$ 2 8 5}$. DV21 COMBINATION DEALS:

IC22A plus DV21 $\$ 450$


PRICE: \$78
Trio TV. 502 for TS. 520 etc .....  $\$ 243$
QM-70 high pwr $10 / 2 \mathrm{~m} \mathrm{cw} / \mathrm{fm} / \mathrm{ssb} / \mathrm{am}$ with input drive .5 w for attachment to Uniden, FT101E etc ..... \$199
QM-70 solid state output 2 w suitable for driving $6 / 40$ .....  $\$ 105$
QM-70 70 cm transverter $10 / 70 \mathrm{~cm} 26 \mathrm{w}$ pep output ..... \$168
70 m VICOM 90 DAY WARRANTY ON ALL NEW PRODUCTS
Seiwa SU- 710 transceiver runs 10 wattsat 435 MHz , complete with mobile bracket,mic, cables etc and VICOM 90 day warr\$278
TEST GEAR
Yaesu YO-100 monitorscope ..... \$205
Yaesu YC-355D frequency counter ..... $\$ 205$
D-60 freq counter to 200 MHz .....  $\$ 360$
Gilco $2750-15 \mathrm{MHz}$ freq counter .....  $\$ 210$
RECEIVERS
Kit for 2 mfm - complete except xtal .....  $\$ 70$
MR2 2 mfm mini receiver incl 4 chs .....  885
Drake SSR1 general coverage receiver .....  $\$ 420$
ANTENNA ACCESSORIESHam-11 rotator, 230 V ac withindicator control units $\$ 168$
Oskerblock SWR200 swr/pwr meter with
ranges $2 / 20200 / 200 \mathrm{w}$ to 200 MHz ..... $\$ 49$
eader LPM885 swr/pwr meter .....  $\$ 78$
ME-UHF swr/pwr meter $15 / 5 \mathrm{w}$ ..... \$69
Balun BL-50a 52 ohm\$18
-70a 75 ohm\$18
CX-2A 20pos coax switch ..... \$23
CX-6A(A) 6 pos 520 hm coax sw ..... \$54
BTF-1 600 ohm balanced feeder 12
CO-AX RG58AU 45c per metre
$\$ 12$SH-7E lightning ar restor
\$15
VICOM low-noise 2 m preamp 19
HFI TRANSCEIVERS (we have used gear tool)
Uniden 2020800.11 m transceiver, completeUniden external PLL FVOUniden matching sf. aker$\$ 69$
\$105. TH3jr 10-15-20m 3 el yag
$\$ 28$ TH3MK $10.15 \cdot 20 \mathrm{~m} 3 \mathrm{e}$ ..... \$190Yaesu FT 101E 160.10 m transceiver
Yaesu FV101E VFO for FT101E ..... $\$ 240$\$689 TH6DXX 10-15-20m 6el yagi
Yaesu FL2100B linear amplifier ..... \$430
Kenwood TS-520 80-10m transceiver .....  $\$ 590$HF TRAP DPPOLES BY RAK $\$ 185$
Kenwood TS-900 - out of production
Kenwood TS-900 - out of production Atlas $210 \times 80-10 \mathrm{~m}$ solid MIDY 111 N 40.10 m ..... $\$ 38$
including noise blanker . $\$ 695$ MID Y VN $80-10 \mathrm{~m}$
Atlas AR-230 AC power supply$\$ 44$
Atlas delux mobile mount (DMK) ..... $\$ 38$
.$\$ 28$\$165 AL48DXN 40/80m
Yaesu FT75B mobile transceiver A 4VPN 80 m ..... $\$ 28$

- FP75B AC power supply $\$ 280$ ..... $\$ 75$2 METRES FMIC-22A incl 6 chs, 12 month warrantyIC-21A base/mobile 3chs, 12 month warr.ODDS AND SODS
SUPPRESSION KITS FOR THE MOBILE ENTHUSIAST!$\$ 210$
DV-2L PLL Digital VFO for above\$298
Ken KP202 handheld incl 4 channels ..... $\$ 285$
$\$ 150$
Ken nicads and $230 v$ charger .....  $\$ 32$
2 METRES SSB/CW
IC-202 portable, 3 w ssb/cw .....  $\$ 199$
IC-201 base ssb/cw/fm ..... \$510
QM-70 solid state linear for fm/am/cw
$\mathrm{ssb} /$ at $2 \mathrm{w}(\mathrm{min})$ input for 50 w rms out .....  $\$ 102$ $\$ 35$
WHIPS
HF HUSTLER RESONATORS
lowest VSWR and badn-edge markers: ..... $\$ 26$
RM-80 ( 80 metres)
RM-80 ( 80 metres)
RM40 (40 metres) ..... $\$ 25$
RM20 ( 20 metres) ..... $\$ 29$
-2 mast for resonators ..... $\$ 15$
VHFLindenow $2 \mathrm{~m} 5 / 8$ fibreglass $\$ 21$
M 21 Scalar $2 \mathrm{~m} 5 / 8$ fibreglass .....  16
M60 Scalar $6 \mathrm{~m} / 1 /$ fibreglass ..... 12
MGB magnetic base ..... \$33:
E

ANIENAE BY HY-GALN

ANIENAE BY HY-GALN$\$ 5$14AVQ $10-40 \mathrm{~m}$ trap vertI
$\$ 570$ 18AVT-WB $10-80 \mathrm{~m}$ trap vert .....  $\$ 95$$.53 n$
DC Power line filter ( 6410 ) incl 50A shielded cable and in-linesuppressor avl in various lengths$\$ 19.80$
Ignition suppression kit (6415) featuring military gradecomponents, special coil cable, coil filter, suppressors withhardware and instructions. 6 and 8 cyl. kits avl. . . . . . . $\$ 25.70$Universal Suppression Kit (6405) for ignition and alternatorsuppression plus bonding material. 6 and 8 cyl . kits avl. $\$ 35.70$Regulated DC power supply board up to $15 v$ at 4 ampsdepending on transformer secondary and value of currentsensing resistors on boardi

## AN

## ANTENNA

 ROTATORBrian F. Lavery VK1ZBL 65 James St., Curtin, A.C.T.

The ability to operate a rotatable beam gives a great flexibiltiy in both the VHF/UHF region and the upper HF bands. Instead of paying a considerable sum of money for a commercial rotator, it is quite possible to build a modest unit without difficulty and for minimal cost. This article describes how to make such a unit. Position indication or automatic direction following is not described and is left to your own inventiveness. This device is not a complete rotator system. It is a slow motion drive unit, but of Itself, it will not support a beam assembly.

The modern car windscreen wiper motor with its gearbox provides a suitable building block for making a home-brew antenna rotator. The permanent magnet motor can be reversed and the speed can be controlled by control of the supply voltage. The typical motor speed is 2000 RPM and the
worm gearing gives a reduction of about 40:1. Two reductions in series yield an output of about 1 turn per minute, which is ideal for antenna control.
Second hand units are readily available from any car wrecker. The following constructional details are based on the Lucas link type permanent magnet motor. The Lucas designation is 13 AUW or 15 AUW, and was fitted to many cars built locally in the last few years. The 13 AUW and the 15 AUW come in several external configurations to suit the car models, and some have a piggy-back washer pump, but the internals are very similar.
In brief, two wipers are used. The motor of the first drives the two gear reductions in tandem. The coupling shaft is made up from the discarded armature shaft, and the jointing plate is made from the discarded
motor yoke. The degree of weather seal obtained depends largely on the care taken with the jointing plate. If all goes well, the only new items will be a few short screws.

Choose wiper No. 1 (at your friendly wreckers), Lucas type 15 AUW or 13 AUW. Try to get one with a flat metal blanking plate above the gear wheel, rather than one with a washer pump, or even with a shaft stub showing through. Get a model with three mounting legs arranged evenly on a circle 2.3 inches pitch circle diameter (not 2.8 inches).

Choose wiper No. 2, again without a washer pump (although it is not so necessary in this case). The mounting feet configuration is not important, except that these are the final mounting points for the finished product.
$\square$ Open the gearbox or wheelbox of wiper No. 1. If only a washer type could be obtained, discard the pump assembly altogether and make up a replacement blanking plate from flat sheet. If the plastic pump cam interferes with the plate, break it away from the plastic wheel with a screwdriver.

The plastic wheel must be removed intact from the output shaft to which it has been moulded (over a knurled end). Place the shaft in a 150 deg. $C$ oven for some minutes, then apply a little workshop persuasion. Discard the shaft, but preserve its dished washer.
$\square$ It is best, but not essential, to remove the outer brass bush from where the discarded output shaft left the wheelbox. This reduces alignment complications later.
$\square$ You may prefer not to open up the motor itself. If you do open it, take care removing the armature shaft through the brush assembly. On reassembly, which is a bit tricky, taken even more care not to damage the brushes too much. If warranted, the brushes can be replaced by the ones from wiper No. 2. Use side cutters and soldering iron, but do not allow solder to wet along the pigtail thus stiffening it. Note how the
springs thread onto the pigtall a little, and check they seat squarely on the bakelite pips so they do not arch when compressed. If a third brush is fitted, it (the centre one) may be deleted. (The 180 deg. pair are for slow speed, the 108 deg. pair for high speed.) The dual speed option may be an advantage, however. If the armature is stiff after reassembly, short hammer taps near the bearings will help realign them.
$\square$ Put this unit aside, and dismantle wiper No. 2, motor and wheelbox. For neatness, and if necessary, make up a blanking plate to replace the washpump section.
$\square$ Do not lose the small ball from the end of the armature. Make up a jig, or use a vice and flat punch, to drift ail the components off the armature shaft.
$\square$ The knurling must now be removed 80 that the shaft can pass through the bush remaining in wiper No. 1. A lathe will make short work of this, but a vice and file can be used if necessary. Do not damage the rest of the shaft.
$\square$ The spare plastic wheel should now be pushed onto the long shaft, so that the shaft protrudes perhaps $1 / 16$ of an inch. Loktite may be used if required to ensure a tight fit.
$\square$ Break the brushgear out of wiper No. 2. Remove the appropriate wires.
$\square$ Place the new shaft into wlper No. 1 Electrically run up motor No. 1 in each direction in turn. Check that the parking and braking contacts underneath the wheel do not object to the wheel tuming backwards from the original Lucas design. Modify or even remove if necessary. (You may find these contacts provide useful signals for your control system.)

Repeat with the other wheel in unit No. 2. (Rotate by hand).

Put the dished washer (concave to the wheel) and the little metal ball on the new shaft. Place the shaft in wiper No. 1, and cover with the blanking plate. The total washer compression is about .080 inch. Deform the plate (or shift the wheel on the shaft) to load the washer to about half its compression.
$\square$ If the correct wiper has been chosen for unit No. 1, a short section of the yoke (motor casing) from unit 2 can be used as a jointing section between unit No. 1 and unit No. 2. Place the two units together, joined by the new shaft. Check that the worm engages reasonably centrally with the wheel in unit No. 2, and measure the spacer distance to be made out of the yoke. It should be approximately half inch. Take care to cut the jointing piece quite square, otherwise the new shaft will not align correctly against the wheel. Cut a neat hole in the joint (after removing the unwanted rear bearing from it) to take the centre post of wiper No. 1. Drill 3 holes (at 2.3 inches diameter) to mount the legs of wiper No. 1.
(If a lathe is available, it will simplify cutting both ends of the jointing plate.)

Find some screws to join up the two halves. Set the end float screw on wlper No. 2 to a nominally small clearance. (This screw will absorb small errors in jointing plate thickness.)

Note that no matter where the holes are drilled in the jointing plate, unit No. 1 may be orientated within 30 deg. of any desired angle relative to the mounting position of unit No. 2.
(If by III fortune your wiper No. 1 does not have the mounting feet as described, you will have to work out a jointing plate for yourself.)

Finish assembling the whole unit, remembering that a spring washer goes under the crank lever on unit No. 2.

Apply power to the motor terminals and check the operation in both directions. If desired, dismantle and lubricate carefully (one drop of oil for the porous bushes, a grease smear over the worms and wheels), unless of course you remembered this as you went. It would pay to devise suitable weatherproofing for all joints.
Some technical comments on this machinery. The motors are falrly sturdy, being of the order of $1 / 12$ th horsepower. The current consumption for this application should only be a couple of amps, as the load through two reductions should be light on the motor. The normal llfe of these motors is many hundreds of hours on load (continuous), so for this application they should last a long time indeed if kept corrosion free. The rated voltage is 13.5 V , but for this application a variable voltage of say 4 V to 16 V could be used for speed control. Do not forget the inductive characteristics if you use some fancy control system. The motors will be an EMI problem. I have not tried to solve that yet.

On the mechanical side, there may be a risk of stripping the wheel teeth if a large antenna system is lashed in a storm. The best protection is to check that the allgnment of the new shaft holds the worm firmly against the wheel teeth. There are two slightly different tooth forms for the worm and wheel, so the best advice is do not mix the two combinations you obtain in case you do in fact have different sets. (Both have a gearing ratio of 82:2.)

That's it. The directlon control or direction indicator, and the coupling of the rotator described here to your array, are left to your ability and imagination.

# Try This 

with Ron Cook VK3AFW and Bill Rice VK3ABP

## AN AUDIO FREQUENCY NOTCH/O MULTIPLIER

notch/Q multiplier is that it is not necessary to distingulsh between USB and LSB when tuning it. Also, the setting of the frequency potentiometer is directly related to the audio frequency. One disadvantage Is that the notch does not filter out the AF harmonic distortion present in the detector. These harmonics should be relatively
small at normal signal levels, particularly If a product detector is used.

The active notch/Q multiplier (see circuit diagram) is tuned using only two resistive elements. The ratio of these resistors effects the $\mathbf{Q}$ of the $\mathbf{Q}$ multiplier, making the use of high quality potentiometers an advantage.

> AUDIO FREQUENCY NOTCH Q MULTIPLIER

Alan Bolton VK5TT
3 Illord St., Vale Park, SA 5001

Integrated circuitry has made many new circuit designs possible. The way things are going we will probably see a chip replace the circuitry inside TV sets. More modest advances are already present. Hlgh galn linear operational amplifiers mean active filters are convenient to make, partlcularly at audlo frequencles. One application for this type of filter arises when trying to avoid interference from an adjacent carrier, or when trying to dig out a weak CW signal.

One advantage of an audio frequency


[^12]A tilt-over pole is worth consideration for supporting amateur antennas. it can be used to erect VHF directional arrays without the need to climb a tower to Install and adjust. It solves the old problem of broken halyards and is much cheaper than a tower. If the stub pole is long and strong enough, guys may be dispensed with in most cases. Here is a description of a tilt-over pole erected by VK5JG.

Although a straight tree trunk (or surplus telegraph pole) of about 10" diameter would make an ideal stub pole, this is not easy to come by and deliver into a suburban garden. It was found convenient here to make the pole of reinforced concrete. The pole is set $5^{\prime}$ into the ground and the diameter below ground is $15^{\prime \prime}$. Above ground the diameter is $11 / 44^{\prime \prime}$. This diameter happens because a 3 ' wide sheet of 24 gauge iron was rolled into an $11 / 1_{4}$ " dlameter cylinder ( $1 / 2$ " overlap) and fastened with self-tapping screws to make the mould which was 4'6' long.

The pole is reinforced with $5 \times 1 / 2^{\prime \prime}$ diameter rods set to give a minimum cover of 1 " of concrete. The reinforcing rods can be held in position by fitting into $5 \times 1 / 2^{\prime \prime}$ diameter holes drilled in an 8" circle in a flat piece of wood. One such piece can be set in the bottom of the foundation hole and left in the concrete, while one or more others are slid up the rods as the concreting progresses. However, if a welder is available it will be preferable to weld several $1 / 4$ " diameter steel rings inside the 5 rod circle to make a rigid cage of the reinforcing steel Instead of using wooden plates.

After the foundation hole was filled with concrete, the mould was placed around the protruding rods and rested on the top of the concrete and another $6^{\prime \prime}$ of concrete was poured into the mould. The mould and rods were then carefully set vertical and the concrete allowed to set. A week later the mould was filled to the top, then each

(all steel preferably galvanised)
week the mould was set up with the bottom $\hat{6}^{\prime \prime}$ around the top of the previous pour and filled until the required height was reached.

Half inch steel climbing steps were fitted by setting $1 / 2^{\prime \prime}$ nuts in the concrete using the method shown in Fig. 1.

The stub pole at VK5JG projects 15' above ground. The tilt-over pole is $33^{\prime}$ long and is a relic of the crystal set days
J. A. Gazard VK5JG

39 Glenhuntley St., Woodville South, SA 5011

of the 1920's. It had been rounded and tapered from a length of $4^{\prime \prime} \times 4^{\prime \prime}$ oregon. The pole can be tilted as shown in the photograph and lifted up again in less than two minutes if guys are fitted and the lifting is done on a calm day. The pole is
> $1 \frac{1 "}{2} \times \frac{11}{2}$ bolt removed after concrete sets. Replace with $5^{\prime \prime} \times \frac{1}{2}$ bolt for step.

## FIG. 1.

STEP HOUSING.

strong enough to support a light weight 14 MHz or 21 MHz beam though some difficulty would be experienced in handling the array onto the end of the pole in the tilt-over position. The attachment of the pole to the stub pole is shown in Fig. 2.

Concrete materials required for a 15' stub are:

```
Cement - 4 bags
\(3 / 4\) " Screenings - 12 cwt .
Sand - 7 cwt .
\(1^{1 / 2}\) " reinforcing steel \(-4 \times 20^{\prime}\)
```

The concrete stub pole is round. The wooden tilting pole is square for the bottom 5' but round for the remalnder. The author's concrete pole differs at the top
from the one sketched. It has a $T$ head for an observation platform and is provided with sockets in this head so that other short masts can be attached if required.

Adhesion between pours is no problem. In reinforced concrete design the concrete is assumed to develop no tensile strength - only compressive strength. The reinforcing steal provides the tensile strength. Therefore adhesion across the pour joints is not essential.

However, to make a neat joint I reduced the proportion of stone in the mix for each flrst batch thus Increasing the proportion of mortar and preventing the formation of unsightly air holes between stones at the joint.

The fifteen foot pole could have been cast in one pour but it would have required an expensive 15' mould, a vibrator for compacting the concrete at the bottom of the deep mould, and a 15' platform erected alongside from which the concrete could be poured.
With four foot pours I placed a ladder against a piece of timber bolted to the previous set pour in the step bolt poles and worked from this.
At present the pole is supporting a 7 MHz ground plane antenna as per Fig. 3. This was attached and erected single handed in about 2 hours.

## WHATPS INSIDE THE BATTERY


#### Abstract

No electronic component is taken so much for granted as the humble but very essential battery. Many hams know the workings of the most advanced solid state device but little about the most common type of cell. The purpose of this article is to uncover the mystery of the battery and to see what makes it tick.


## 1. ELEMENTARY CHEMISTRY

It is obvious that the knowledge of chemistry possessed by readers of AR will vary greatly, and this article is Intended for all, so chemical reactions will be portrayed in words and pictures, that is in chemical names and chemical symbols.

Firstly a rapid coverage of elementary atomics. Atoms consist of one or more electrons whirling around a nucleus of the same number of positive charges; that is, each atom is electrically neutral. If an atom or group of atoms gains or loses electrons it forms a positlve or negative ion.

When a metal is dipped into a solution containing its own ions (one of its own salts), for example zinc in zinc Sulphate, positive lons of the metal leave it and pass into the solution. As defined in the prevlous paragraph these ions are metal atoms minus one or more electrons which remain on the undissolved metal so giving it a negative charge. Metals vary In this tendency, for instance Zinc tends to lonize more readily than does Copper and with the noble metal Platinum the tendency is almost non existent.

Under standard conditions each metal develops a characteristic voltage when in equllibrium concentration with one of its own salts. An electrochemical serles can be established for example, Copper is more positive than Zinc which is in turn more positive than very reactive metals, for example Sodium.

A representative series would be:
Gold, Silver, Mercury, Copper, Hydrogen, Lead, Nickel, Cadmlum, Zinc In order of decreasing positivity.

Note that Hydrogen appears in this series. As we shall see Hydrogen chemic-

ally (but NOT physically) resembles the metals and the common mineral acids Hydrochloric and Sulphuric may be considered as 'salts' of Hydrogen. Expert chemists please note, this series is in reverse to that which measures the tendency of metals to lose electrons in a chemical reaction; there Sodium is hlghly electropositive and Copper only weakly 80.

## 2. A SIAPLE PRIMARY CELL

A primary cell is one that has a single working life. It is ready to work as soon as its components are assembled and requires no initlal charging current. Let us now consider the workings of a simple battery or cell.
A Copper rod and a Zinc rod are placed in a jar of dilute Sulphuric Acid (Fig. 1).


Maurie Evered VK3AVO
13 Sage St., Oakleigh, 3166
Sulphuric acid ylelds Hydrogen lons so we have Copper, Hydrogen and ZInc in order from our series. The Zinc rod rapldly loses electrons so the rod acquires a negative potential with respect to the electrolyte in Its vicinity. For the Copper rod thls tendency is much less, in fact it acquires a layer of Hydrogen lons from the electrolyte and becomes positively charged with respect to the electrolyte in its vicinity.
It is not hard to Imagine what will happen if the rods are joined by a conductor or the voltage between them is measured. Electrons flow through the external circuit from the zinc to the copper rod.

The circult is completed in the electrolyte, the loss of electrons from the zinc rod raises its potential so allowing more zinc lons to pass into solution. The electrons gained by the copper rod through the external circuit combine with the hydrogen ions to form hydrogen atoms which escape as hydrogen gas.

Experiment shows that a potential difference exists between any palr of dissimilar conductors (here copper and zinc) immersed in an electrolyte which reacts chemically with one of them. In our example this was zinc which, as discussed, loses some of its material as ions to the solution.

FIG. 3. Weston Cadmlum cell.



There is one great practical weakness to our simple cell. If the current through a small resistor joining the positive and negative electrodes is measured, it will be found to rapidly decrease to a low value and at this time many bubbles of hydrogen gas can be seen adhering to the copper rod. The cell is said to be in a polarized state. The effect is twofold:

1. The bubbles act as an insulating shield so raising the internal resistance of the cell.
2. The cell now acts a a hydrogen-zinc cell not a copper-zinc cell. This new system has a lower EMF. (This is predicted from our serles, hydrogen ls closer to zinc than copper is to zinc.)
If the layer of hydrogen bubbles is removed by a depolarizing agent the cell will continue happily as before.

Usually this agent adds oxygen to the hydrogen to form water.

Manganese Dioxide is often used.

## 3. PRACTICAL PRIMARY CELLS

Several types of cells will now be examined in the light of the two prerequisites already mentioned, two conductors in an electrolyte which reacts with one of them and a depolarizing agent if the evolution of hydrogen gas is involved. Although many common cells are called dry they are not really dry but moist. They contain no free flowing liquid however so can be used in any position without spilling.
(a) The Leclanche Cell

Fig. 2 shows this cell in section. The zinc container is the negative electrode and the carbon rod the positive one. The latter is surrounded by a mixture of Manganese Dioxide and powdered carbon in a porous sac, the space between this and the zinc being filled with an ammonium chloride paste.

Electrode reactions are brlefly:

1. At the negative zinc-Production of zinc ions which pass into the solution leaving the electrode with excess electrons.
2. At the positive carbon - Ammonlum ions react with and gain electrons from the manganese dioxide leaving it with excess positive charge.
The exact chemistry of this cell is un-
certain but when current flows a complex compound of zinc, chloride and ammonium lons is formed in the electrolyte.

Cells of this type have an EMF of about 1.5 volts and an internal reslstance which rises with cell use very sharply, in fact near the end of its working life.
(b) The Alkaline Dry Cell

This cell differs from the Leclanche type in that a highly alkaline electrolyte, Potassium Hydroxide is used. Zinc reacts with this electrolyte so fulfilling our first battery requirement. Hydrogen gas is not formed so no depolarizer is needed. These cells have a lower internal resistance than the Leclanche cell and the EMF is about the same. They are very suitable for continuous use.


## (c) Mercury Cella

In mercury cells the negative electrode is zinc and the positive one is the mercury formed from mercuric oxide which is also the depolarizer. A strongly alkaline electrolyte of potassium hydroxide and zinc oxide is used. In use zinc ions enter the electrolyte (a familiar story by now) and displace hydrogen ions which move to the mercuric oxide. Here mercury ions are displaced and the hydrogen combines with the oxygen to form water. The mercury lons in turn accept electrons at the positive electrode (these have arrlved via the external circuit), and become mercury atoms forming the prementioned positive electrode. These cells have a very long life and are very stable, so stable that they may be used as
a voltage standard for instrument calibratlon, accurate enough at least for Amateur Radio purposes. Their terminal voltage is 1.35 volt.

## (d) The Weston Cadmium Cell (NOT a NiCad)

This cell is included in the discussion only for interest. It is used as a source of standard EMF for calibration purposes, in particular 1.01864 volt at 20 deg . C. This cell is not to supply current as such, any current exceeding about one milliamp will ruin it. The positive electrode is mercury and mercurious sulphate paste and the negative electrode cadmium amalgam (a solution of cadmium in mercury) in saturated cadmium sulphate. The mercury gains mercury ions so becoming positive to the electrolyte, the cadmium loses ions and becomes negative to the electrolyte. Electrons flow through an external clrcuit from cadmium to mercury and to maintain equilibrium the cadmium continues to lose and the mercury continues to galn lons.

## 4. SECONDARY CELLS

Before examining specific types of secondary cells, a few words on how they differ from primary cells. Primary cells do not require charging to achieve a working condition, but when their active materials are exhausted they are discarded. Secondary cells do require an initial charge to achleve working condition In the reverse direction to their discharge current.

Some specific secondary cells will now be described:

## (a) The Lead Acid Cell

The principle of the lead acid cell is shown by placing two lead plates in dllute sulphuric acid and connecting them to a source of DC, say four volts or so. Electrolysis proceeds, hydrogen is evolved at the cathode and oxygen at the anode. (Fig. 4). After some time the cathode Is unchanged but the anode is covered with a chocolate coloured layer, Lead Dioxide.

If the charger is disconnected and a voltmeter is substituted it will be found that this plate Is about 2.1 volts positive with respect to the uncoated lead plate, and that this cell will drive current through an external circuit untll ultimately current will cease and both plates are covered with a white layer of lead sulphate. This cell can

FIG.6A.


FIG.6B.

be charged again as in the original situation and recycled. This then is the principle of the lead acid cell. Originally they were made this way (the Plante Process). Today the original negative plate is lead and litharge or lead oxide and the positive plate is lead and red lead. When charged the litharge converts to spongy lead and the red lead to lead dioxide as in the original case.

During discharge lead sulphate is deposited and the sulphuric acid concentration and hence the density of the electrolyte decreases providing the familiar hydrometer test for state of charge.

The EMF of this cell may reach 2.2 volts, but drops quickly to 2.0 volts and remains steady till very near discharge. This cell has a very low internal resistance (about 0.005 ohm) permitting very large current drains, for instance to operate the starter motor of a car.

## (b) The Nickel Cadmium Cell (The Familiar NiCad)

This secondary cell uses a highly alkaline Potassium hydroxide electrolyte. The positive and negative plates are of perforated steel: the positive one is filled with Nickelic oxide hydroxide and the negative one with finely divided metallic cadmium. During discharge the positive electrode is reduced to Nickelous Hydroxide and the negative one oxidized to Cadmium Hydroxide. During charging the changes are reversed. A fully charged NiCad has an EMF of about 1.3 volts but this falls to 1.1 as discharge proceeds.

## 5. FUEL CELLS

Electric cells make the energy liberated in a chemical reaction available as increased potential energy of electric charges at the electrodes. Cells must be either discarded
when the supply of a reactant is exhausted (primary cells) or recharged from an external source (secondary cells). A fuel cell absorbs fuel continuously and produces a voltage as long as it is fed.

The operation of a fuel cell is the reverse of electrolysis. If you electrolyse water, that is pass a current through it, oxygen is liberated at the anode and hydrogen at the cathode as the hydrogen and hydroxyl ions react.

Fig. 5 represents a hydrox fuel cell. Here hydrogen and oxygen react and water and an electric current are produced. A and $B$ are porous platinum or carbon electrodes into which hydrogen and oxygen gas are forced at H and O respectively.

The electrolyte is dilute sulphuric acid. This seeps into the electrodes and meets hydrogen at $A$ and oxygen at $B$. In A oxygen atoms capture electrons from the electrode becoming oxygen ions. These ions then react with water to form hydroxyl ions which migrate through the electrolyte to B where they give up electrons and combine with hydrogen to form water.

Gaseous hydrogen and oxygen react very slowly at room temperature so hydrox cells operate at 200 deg. C and 400 p.s.i. Theoretically fuel cell efficiency is 100 per cent with 75 per cent being actually obtained. Steam driven generating plants typically operate at $\mathbf{2 5 - 3 0}$ per cent efficiency.

Other reactants have been used in fuel cells, for example methane, ammonia and hydrazine.

## 6. SOLAR CELLS

These are diodes made so that light may fall on the depletion layer of the PN Junction. The incident light photons or 'bundles of energy' create many electron-hole pairs in this region which migrate in either direc-
tion under the influence of the depletion field. This means that the junction drift current exceeds the junction diffusion current and equilibrium is disturbed. This causes a nett EMF across the diode, the P type material becoming positive because of excess holes and the $\mathbf{N}$ type negative because of excess electrons.

## 7. THE CHARGING OF SECONDARY CELLS

This is a specialised subject in itself. Only one method will be mentioned here, that of constant current. This is not only the cheapest method (requiring only a transformer, diode and resistor) but also prevents the possibility of thermal runaway. The supply voltage is made much greater than the battery voltage and the current limited by a large amount of series resistance. A half wave rectifier circuit suffices for currents up to 0.5 amp (Fig. 6a) or a bridge rectifier (Fig. 6b) for greater currents. No filtering is required as the cells have a large equivalent capacitance. The value of resistance $R$ is calculated by Ohm's Law using the desired charging current as the I value. An incandescent globe of the appropriate wattage makes an excellent resistor. The charging factor used is 1.4 , that is 1.4 times the capacity removed from the battery must be replaced. The application of the recommended 10 hour rate for an overnight period makes for charging convenience.

Well there we have it, the story of the cell or battery. This is of course a skimming of the surface of the full story but I hope it has put the more pertinent facts together and lifted the lid on a subject that gets very little coverage in the standard Amateur Textbooks. More detailed references can be given to any interested reader.

## Try This

with Ron Cook VK3AFW
and Bill Rice VK3ABP

## TWO SIMPLE ANTENNAS FOR TWO-METRE FM

Here are two different approaches to the problem of quickly and cheaply constructing simple quarter-wave vertical antennas suitable for working through your local repeater. Both use readily available "junkbox" materials. One is intended for masttop mounting, the other has a magnet base

vKJWw Simple magnetic mount antenna
to use on top of a car or, in the author's case, on the flat steel roof of the shack. Hopefully the drawings tell most of the story, but a few comments may help.

vk3ado simple 2 metre ground plane antenna

## VK3AOD Ground-Plane

1. The packing sleeve is necessary because the inside diameter of the plugtop sleeve is more than $3 / 8$ inch.
2. The coax connections should be weather-proofed with at least PVC tape. With a little ingenuity it should be possible to run the coax up inside the mast, making weather-proofing much easier.

## VK3WW Magnat Mount

1. The plastic suction-cup is a refinement, again for weather-proofing (and appearance), but is not really necessary.
2. Both speaker magnets and aerosol cans are made in a varlety of sizes, so finding a matching pair should not be too difficult.
3. Some speaker magnets (notably ferrite, and ald Alnico types using a ring magnet) are unsuitable as they are too hard to drill or tap. Even with soft iron cases, it is probably best to tap the holes (say $1 / 8$ Whit or $4 B A$ ) rather than use self-tapping screws, but the latter may do If the holes are only slightly less than clearance diameter.

## KIM antennas

They're heard when others aren't
Some well known band openers are:

- KLM's 20 METER 5 ELEMENT "BIG STICK"
- KLM's 6 METER 8 \& 11 ELEMENT
- KLM's 2 METER 12, 14 \& 16 ELEMENT
- KLM's 220 MHz 14 ELEMENT

And . . . Don't forget our NEW ECHO II

## AND NOW

Winner in the 1975 West Coast VHF-UHF Antenna Measuring Contest . .
KLM's NEW 432-16 Element Long Boom (12')
2 METER SSB/CW TRANSCEIVER \& LINEAR AMPS.

Specifically Optimized for 432 MHz ( $430-434$ )


See Your Local KLM Dealer For The New Spring ' 75 Catalog Or Write

SOLE AUSTRALIAN AGENTS
RAMAY PTY. LTD. BOX 80, BIRCHIP, VIC. 3483
Phone (054 92 3211)-192 or 264 AH


## BOOKS OF INTEREST FOR AMATEUR OPERATORS

HANDBOOK OF TRANSISTOR CIRCUITS (Allan Lytel) ..... $\$ 7.60$
RCA SOLID STATE SERVICING ..... $\$ 5.95$
TROUBLESHOOTING WITH THE OSCILLOSCOPE (Robert G. Middleton) ..... $\$ 7.00$
KNOW YOUR OSCILLOSCOPE (Paul C. Smith)
(Revised by Robert G. Middleton) ..... $\$ 6.35$
TRANSISTOR MANUAL - REVISED SEVENTH EDITION ..... $\$ 4.00$
RCA SOLID STATE HOBBY CIRCUITS ..... $\$ 4.50$
HAM NOTEBOOK (Edited by James R. Fisk) ..... $\$ 5.10$
MOS INTEGRATED CIRCUITS (National) ..... $\$ 5.75$
INTERFACE INTEGRATED CIRCUITS (National) ..... $\$ 3.85$
TEST EQUIPMENT FOR THE RADIO AMATEUR (H. L. Gibson) ..... \$6.65
TELEPRINTER HANDBOOK - FIRST EDITION (Radio Society of Great Britain) ..... $\$ 16.35$
TV SERVICING GUIDE - ARRANGED BY TROUBLE SYMPTOMS (L. D. Deane \& C. C. Young, Jr.) ..... $\$ 5.75$ADD POSTAGE: LOCAL 80c - INTERSTATE $\mathbf{\$ 1 . 5 0}$
McGILL'S AUTHORISED NEWSAGENCY

Established 1860
"The G.P.O. is opposite"

## A SDLID STATE

## 6 METRE SSB <br> 

Peter Collins VK3ZYO
5 Van-Wyk Court, Springvale South, 3172

Here is a solid atate transceiver for the VHF home brew amateur. If you cannot afford a commercial rig but have a yen for working 6 metre DX then this is the rig for you. Alternatively, if you own an HF transceiver and would like to build a modern transverter then the clicults in this article are juat what you need.

This transceiver has evolved over a number of years; the original concept was to develop a solid state 3 to 5 watt SSB 6 metre transmitter. Having achieved this,


FIG.2. PREMIXING TX.


Injection
To Rx.
FIG. 3. TUNEABLE IF.RX.


FIG.4. PREMIXING SINGLE CONVERSION TX.

it was a fairly simple task to add the receiver circuits, as only front end, IF, detector and audio stages are required.
The transceiver uses conventional frequencies: 9 MHz filter, $5-5.5 \mathrm{MHz}$ VFO, and a heterodyning frequency of 38.0 MHz .
Using these frequencies there are two ways to arrive at the final frequency of $52-52.5 \mathrm{MHz}$. The method usually chosen mixes the VFO and 9 MHz SSB frequency using the sum to obtain a $14.0-14.5 \mathrm{MHz}$ SSB signal which is then mixed with the 38 MHz signal to obtain $52-52.5 \mathrm{MHz}$ (see Fig 1). The advantage of this method is that the 14 MHz signal can be used for HF operation on 20 metres. The disadvantage of this approach is that it is virtually impossible to obtain a constant output over the 500 kHz range without an external tuning control. This adds to the complexity of construction as well as making operating more difficult due to the extra control requiring adiustment when changing frequency.

A more suitable approach when designing a transceiver specifically for one band VHF operation is shown in Fig 2. This arrangement allows the use of bandpass circuits which, at the higher frequency, allow the output to remain relatively constant over the required range.

A further advantage is realised when the receiver circuit is considered. (See Figs 3 and 4). The 14.0 MHz approach is shown in Fig 3 and uses the tuneable IF system commonly used in VHF receivers. This requires the use of dual conversion with its inherent problems.

The arrangement used in this design is shown in Fig 4 and uses a single conversion from signal frequency to a 9 MHz IF frequency. This is a more acceptable method as it eliminates one mixer, and mixers are the main cause of poor strong signal performance, cross modulation, etc. The use of a varlable injection frequency for receive and transmit has been used with good success, as the bandpass cir-


FIG. 6. 9MHz. SSB GENERATOR CIRCUIT.


FIG. 8. CARRIER OSCILLATOR CIRCUIT.
below the 12 volt rall. The 9 volt supply is current limited at 100 mA and supplies all the oscillators.

The mains transformer supplies 15 volts DC at 2 amps and employs 3 amp diodes in a conventional bridge.

## SSB GENERATOR

The 9 MHz SSB generator uses two 2N3565s which amplify the output from the dynamic microphone to the level required by the balanced modulator. The 9 MHz carrier input is permanently connected to the module. The carrier is suppressed by the balanced modulator which uses $4 \times$ HP2800 hot carrier diodes. This circuit provides excellent carrier suppression and stability. The DSB signal is then amplified by a 2N3564, the collector circuit providing matching to the filter input. Following the suppression of the unwanted sideband by the crystal lattice filter, the SSB signal is then further amplified by a 2N3564 linear amplifier. The output of the module being approximately 0.5 volts RMS. The filter used in this rig was from an FT 200; use of an alternative filter would require the use of different terminating components as recommended by the filter manufacturer.

## VFO

The VFO used in this rig was described In AR June ' 70 and provides excellent stability with reasonably linear calibration. The VFO tunes from $5-5.5 \mathrm{MHz}$. The only modification made was the use of a PCB and alternative housing.

## CARRIER OSCILLATOR

The carrier oscillator circuit allows the use of the crystals supplied with the filter. Other circuits would not allow the 9 MHz crystals to oscillate when pulled to the correct frequency. Although switching has been used for changing between USB and LSB crystals, the facility has not been incorporated in the recelver mode switching
cuits are capable of being adjusted, with the aid of a sweep generator, for reasonably flat response over a 2 MHz bandwidth. The inclusion of auxilliary frequency crystal oscillators, on 38.5,39.0, and 39.5 MHz , in addition to the 38.0 MHz oscillator, extends the coverage to the full 6 metre band, $52.0-54.0 \mathrm{MHz}$.

## CIRCUIT DESCRIPTION

Each of the following sub-titles designates portion of the circuit, each of which is built on a separate module/PCB.

## POWER SUPPLY

The power supply is designed around two low cost 723 ICs, which feature excellent regulation with an internal current limiting facility. (Refer Fig 5). Although discrete components could be used it would not be possible to duplicate the performance without a considerable increase in size and cost. The 12 volt supply is capable of supplying the 2 amps which is required by the transmilter under full drive. Current limiting is commenced at a level slightly in excess of the required 2 amps. The 12 volt regulator IC drives a 2 N 3053 which drives a serles pass transistor type 2N3055. The input/output differential of these ICs is approximately 3 volts, therefore the second regulated voltage must be at least 3 volts



RFC. F22 Neo Slug. 8 T 33 g through alignment slot.

## FIG.10. TX CONVERTER/AMPLIFIER CIRCUIT.

as it is not necessary for VHF use. The completed module is housed in a metal shield case to provide isolation, and therefore Improved carrier suppression on transmit, and to prevent coupling into the receive IF. The carrier oscillator is also fed to the product detector for SSB demodulation. The output level is approximately 0.7V RMS.

## AUXILIARY FREQUENCY OSCILLATOR/ MIXER/BAND PASS AMPLIFIER

This module contains two auxillary frequency crystal oscillators at 38.0 and 38.5 MHz . The required oscillator is selected by the range selector switch e.g. - 52-$52.5,52.5-53.0 \mathrm{MHz}$. The output of the selected oscillator is fed to the gate of the mixer which employs a 2 N 5245 FET. The VFO output is fed to the mixer source. The mixer drain coil is tuned to the sum of the two frequencies and is mutually coupled to the coil in the gate of the subsequent stage. A dual gate FET is used as the amplifier. The amplifier tuned circuits can be tuned to cover a 2 MHz bandwidth and provide the variable frequency injection voltage for the receive and transmit mixers. The transmit mixer is supplied via a source follower to provide isolation between the mixers. The output level is approximately 0.3 volt RMS.

## TRANSMIT CONVERTER/AMPLIFIER

The transmit mixer uses a pair of 2N5245 FETs in push pull configuration. The 9 MHz SSB signal is fed to the gates in push pull via the input transformer and the 43 MHz auxiliary frequency is fed to the gates in push-push. The DC balance can be adjusted by the potentiometer in the source circuit. The subsequent linear amplifiers amplify the 52 MHz signal to approximately 150 mW into 50 ohms.

## TRANSMIT PA

The 150 mW output from the converter/ amplifier is coupled to the base of a 2N3866. The standing bias of this stage is set by the base divider and unbypassed emitter networks. The collector coil of the
amplifier is resonated by the two coupling capacitors which also provide impedance matching for the base of the following amplifier stage. The driver and PA transistors, CTC A3-12 and A25-12, are available from Varian. The bias arrangement used for these transistors is provided by forward blasing a sillicon power diode through a series divider returned to the 12 V supply rall. The resistor to ground provides protection if the diode goes open circuit. This system prevents the base/emitter junction from rectifying the drive voltage which results when a conventional divider is used. Interstage and output coupling values were arrived at by optimising the values and then substituting fixed equivalent values. The final can be driven to 24 W input which results in an output of around 10W into 50 ohms.

Anyone experimenting with transistor linear amplifiers should remember that care must be exercised when experimenting with interstage coupling capacitors, as the base is not at DC ground as with class "C" amplifiers. A short between the collector of one stage and the base of the following stage will result in the transistor being bowled for a duck from the first ball - definitely not cricket. A wise precaution is to use a DC blocking capacitor when experimenting with variable coupling capacitors.

## RECEIVER RF/IF and DETECTORS

The antenna input is tapped onto the input bandpass circuit, which is fed to gate 1 of an MPF121 RF amplifier. Gate 2 is connected to a voltage divider and the RF gain control which is returned to the AGC line. The RF amplifier drain and mixer gate coils form another bandpass circuit. The clrcuit for the mixer and source follower was taken from the VK3 VHF group 2 metre converter. This circuit was previously used in a home-brew 6 metre converter and handles the job very well In spite of TV Channel O's multi kW signal a couple of hundred kHz away. The variable injection voltage is fed to the source via the link coupling to the source coil. The output of the source follower is fed by a short shielded cable to the input of the 9 MHz crystal filter. The filter output is retumed to the receiver board and feeds a three stage IF amplifier using MPF121 dual gate FETs. Interstage coupling is obtained by using bifilar windings, tuned by a capacitator across the secondary. These If coils are constructed using Neosid formers and cans. The drain of the third IF amplifier is fed via an RFC and coupling capacitors to the AM and SSB product detector.

For Improved AGC action, the source is fed via a voltage divider. The Gate 2 voltage of the 1st and 2 nd IF amplifiers is supplied from the AGC line. The IF signal


## SIDEBAND ELECTRONICS SALES and ENGINEERING

| 'UNIDEN |  |
| :---: | :---: |
| Model 2020 de-luxe all-band AC-DC transceivers External VFO model 8010 for the 2020 <br> External speaker for model 2020 | $\begin{aligned} & \$ 550 \\ & \$ 100 \\ & \$ 25 \end{aligned}$ |
| TRIO-KENWOOD |  |
| Model TS-900 de-luxe all-band transceivers, with PS-900 AC supply-speaker unit Model TS-520 AC-DC transceivers all-band QR-666 all-band coverage receiver $170 \mathrm{KHz}-30 \mathrm{MHz}$ | $\$ 800$ $\$ 530$ $\$ 300$ |
| YAESU-MUSEN |  |
| Latest model FT-101-E AC-DC transceivers with genuine RF clipper-speech processor Model YC-355-D digital trequency counters 0.200 MHz <br> SPECTRONICS DD-1 digital counter for FT-101-B.E | $\$ 650$ $\$ 250$ $\$ 150$ |
| All UNIDEN, TRIO-KENWOOD \& YAESU MUSEN trans. ceivers come complete with original English manuals, all crystals for all available bands and a P.T.T. dynamic microphone. |  |
| HY-GAIN ANTENNAS |  |
| 14AVQ 10-40 M. verticals 19 ' tall, no guys 18 AVT.WB $10-80 \mathrm{M}$. verticals, 23 ' tall, no guys TH 3 JR 10-15-20 M. junior 3 el Yagi 12' boom TH 6 DXX 10-15-20 M. senior 6 el . Yagi 24 ' boom 204 BA 20 M. monoband 4 el. TIGER YAGI 26' boom HY-QUAD 10-15-20 M. full size Cubical Quad | \$65 $\$ 90$ $\$ 135$ $\$ 225$ $\$ 190$ $\$ 200$ |
| CDR ANTENNA ROTȦTORS |  |
| AR 22 for 2 and 6 M . and small HF beams <br> HAM-II with re-designed control box <br> Both models for 230 V AC complete with indicator units. <br> 4-conductor light cable for AR-20-22 <br> 12-conductor light cable for HAM-II <br> 8 -conductor heavy duty cable for HAM-II 75 cents p |  |

## BARLOW-WADLEY RECEIVERS

Model XCR-30 Mk II 500 KHz to 31 MHz continuous coverage portable communications receivers, crystal controlled reception of AM-USB-LSB-CW \$275

## S.W.R. METERS

Midland twin-meter model for 52 Ohms. up to 1 KW on HF

## TEN-TEC

Argonaut New Model 509 5W PEP All Band 12V SSB-CW Transceivers all solid state

POWER SUPPLIES
240V AC to 12V DC 3 A, regulated overload protected $\$ 35$

MARK MOBILE ANTENNAS
Helical 6' long
High power HW. 40 for 40 M . $\$ 18$
$\$ 25$

## ASAHI MOBILE ANTENNAS

Model AS-303A set of 5 whips 10 to 80 M .
complete with ball spring and mount
$\begin{array}{ll}\text { complete with ball spring and mount } & \$ 90 \\ \text { AS-2-DW.E } 1 / 4 \text { wave } 2 \mathrm{M} \text {. mobile whip } & \$ 8\end{array}$
AS-WW $5 / 8$ wave 2 M. mobile whip $\$ 18$
AS-GM gutter clip mount with cable and connectors $\quad \$ 10$
M-RING body mount and cap for 2 M. whips \$5

## CUSH CRAFT ANTENNAS

Model DGPA 52 to 27 MHz adjustable ground plane $\$ 25$
LAC-2 lightning arrestors \$6

Model AR-2 RINGO $5 / 8$ wave verticals $\$ 20$
AR-2X RINGO double $5 / 8$ waves verticals $\$ 35$
ARX-2 extension for AR-2 $\$ 15$
A147-20T combination vertical-horizontal
2 M . Yagis, 10 elements each
$\$ 60$
A147-1111 elements 2 M . Yagi $\$ 30$

## CRYSTAL FILTERS

9 MHz similar to FT-200 ones, with carrier xtals \$35
FDK MULTI-7
2 M. FM transceivers, 10 W output, now with 12 Aussie channels crystals, 40 to 60 , including channels 43 and 45 includes all repeaters 1 to 6 and anti-repeater use $\$ 225$ Spare Mobile Cradle and Power Cord $\quad \$ 7.50$

## KEN PRODUCTS

KP-202 2 M. hand-held transceivers with 6 channels $\$ 150$
KCP- 2 charger for KP- 202 with 10 NICAD batteries $\$ 35$
Stubby flexible whip for KP 202
KP-12A speech processor, self contained 240 V AC $\$ 100$

## KLM ELECTRONICS

Solid state 12V DC 2 M . amplifier, 12W output, automatic antenna change-over when driven, ideal for mobile use with the KP-202
$\$ 50$
COAX CABLES - CONNECTORS - SWITCHES
Amphenol PL 259-SO 239
$\$ 1.25$
3 Position Switch
RG-8 U Foam Insulation Cable $3 /{ }^{\prime \prime}$ diam. Low loss 80 cents
RG. 58 U Foam Insulation
$3 / 16^{\prime \prime}$ diam. Cable, solid core 35 cents
RG- 58 U St andard Cable 30 cents
Coax Cable Prices per yard. Add $\$ 1$ cutting-handling expenses.

## P.T.T. MICROPHONES

50 K or 600 Ohm Impedances with 4-pin Japanese plugs

All prices quoted are net SPRINGWOOD, N.S.W. on a cash with order basis, sales tax included in all cases, but subject to changes without prior notice. No terms nor credit nor C.O.D. facilities, only cash and carry, no exceptions. All-risk insurance available for 50 cents per $\$ 100$ value, minimum insurance charge 50 cents. Allow for freight, postage or carriage, excess will be promptly refunded. - Mary \& Arie Bles.

SIDEBAND ELECTRONICS SALES and ENGINEERING

## Merry Christmas, 1975, To All -.- VK2AVA

The FIVE percent discount on all items listed on the adjacent page still applies to all orders placed and pre-paid before CHRISTMAS 1975 whether for ex-stock or later delivery. Sorry, no more discounts after Christmas 1975 when we close for business until JANUARY 12, 1976.

And now the best news! A new Japanese TWO METER FM transceiver will be available around Christmas time, the all NEW synthesized KYOKUTO DENSHI model FM-144-10 SXR-II. No more crystals required but those installed and delivered with the set, LED readout of operating frequency.


FREQUENCY COVERAGE:
Receive.
144.000 to 148.895 MHz

Transmit .................... 146.000 to 147.995 MHz
All above in 5 KHz increments, 400 transmit channels.
COMMUNICATIONS MODE:
Front panel selectable simplex and duplex.
Front panel select able + and -600 KHz for duplex.
POWER CONSUMPTION:
12 to 13.8 V DC 4A transmit, 0.8 to 1 A receive.
DIMENSIONS:
$21 / 8^{\prime \prime}$ high, $61 / 2^{\prime \prime}$ wide. $71 / 2^{\prime \prime}$ deep. Weight 3 KGs.

## TRANSMITTER

RF OUTPUT:
10 W high power, 1 W low power, selected by switch on the mike.

FREQUENCY STABILITY:
0.002 per cent Deviation $\pm 5 \mathrm{KHz}$ adjustable to max. 15 KHz .

MODULATION SYSTEM:
Direct frequency modulation of VCO by varicap.
SPURIOUS RADIATON:
Less than 60 DB below carrier level.

## RECEIVER

RECEIVER CIRCUIT:
Double conversion superhet. 16.9 MHz 1st, 455 KHz 2nd.
RECEIVER SENSITIVITY:
$-6 \mathrm{DB}, 0.5$ microvolt for 20 DB quieting or better.
SELECTIVITY:
$\pm 6 \mathrm{KHz}$ at 6 DB down. $\pm 12 \mathrm{KHz}$ at 40 DB down.
AUDIO OUTPUT:
4 Watt into 4 ohm load, less than 10 per cent distortion.
STANDARD ACCESSORIES:
P.T.T. mike with Hi-Lo switch, powercable with fuse holder, 5A spare fuse, external speaker plug, car mounting bracket, operating manual with circuit diagram.

THE EXPECTED COST WILL BE ONLY $\$ 300$


FIG.13. 9 MHZ.I.E. and DETECTOR CIRCUIT.


L1 11 T Tap 3T
L2 11T
L3 9T
T- See Fig 6 Notes.
FIG. 12 - RECEIVER FRONT END/IF/DETECTOR CIRCUIT.
is picked off from the drain of the second IF amplifier and feeds an AGC amplifier stage employing another MPF121 FET. The drain circuit feeds a voltage doubler rectifier. The DC output is fed to a DC amplifier via a network which determines the time constant of the AGC voltage and provides a means of controlling the bias to the amplifier via the IF gain control. The DC amplifier is biased at cutoff. When the transistor is driven, collector current flows causing the base of the following stage to vary until under full signal input the stage is cut off. The AGC line is 12 V with no


FIG.14. A.F. AMPLIFIER.


# YAESU MEASURING EQUIPMENT 

## From the Sole Australian Agents: BAIL ELECTRONIC SERVICES



## YC-355D <br> 200 MHz FREQUENCY COUNTER

YAESU offers the active amateur 200 MHz frequency counter at an affordable price. Every complete station should include this versatile counter. The YC-355D utilises advanced IC techniques and a dual range system to provide accurate 8 digit readout to over 200 MHz . Both MHz and KHz indications are selectable over this range. Built-in AC and DC power supplies enable complete portability and double-sided epoxy circuit boards ensure stable and accurate operation with reliability for years to come. The YC-355D is another YAESU product with optimum performance at a reasonable price.
\$299

## TECHNICAL DATA

Frequency Range: 5 Hz to 35 MHz or $\mathbf{3 0}$ to 200 MHz . Accuracy: + time base stability +1 count. Display Digits: 5 digits.
Gate Time: 1 mill-sec. or 1 sec.
Indicating Time: 0.1 sec. or 1 sec. Display Units: KHz and MHz .

Input Voltage: 20mV-20V p-p continuous ( 60 V p-p for 10 sec.$), 0.5-2 \mathrm{~V} \cdot \mathrm{rms}$ in the range 30 to 200 MHz . Input Impedance: 1 m ohm or 50 ohm.
Input Capacities: 20 pF maximum.
Clock Crystal: 1 MHz .
Stability: $\pm 0.0005 \%$ at $25^{\circ} \mathrm{C}, \pm 0.0025 \%$ at $3.40^{\circ} \mathrm{C}$.

Aux. 1 MHz Output: 5 V p-p
Operatling Temperature: $0-40^{\circ} \mathrm{C}$ (approx. $30-90^{\circ} \mathrm{F}$ ).
Power Requirements: 100/110/117/200/220/234 VAC $50 / 60 \mathrm{~Hz}$ or 12 VDC .
Size: $220(\mathrm{~W}) \times 80(\mathrm{H}) \times 27(\mathrm{D}) \mathrm{m} / \mathrm{m}$.
Weight. 3.5 Kg .

## MONITOR SCOPE

Now, you, too, can maintain the cleanest sounding signal on the band with the YO-100 Monitor Scope. Compatible with virtually all transmitters and transceivers, the YO-100 features wide range inputs for all mode monitoring - even RTTY. A built-in $1500 / 1900 \mathrm{~Hz}$ tone generator adds to the versatility of this station accessory. A full compliment of front panel controls allows operator control of all key adjustments. Complete your station with the versatile YO-100 monitor scope.

## TECHNICAL DATA

VERTICAL
Sensitivity: 200m V P-p/cm.
Frequency Response: 10 Hz to $40 \mathrm{KHz}+3 \mathrm{~dB} 3180$ kHz ( 455 kHz or 9 MHz inputs optional). Direct 10 Hz to 60 MHz .
Inpul Impedance: 500 K ohm.

horizontal
Sensitivity: $\mathbf{3 0 0 m} \mathrm{V} / \mathrm{cm}$.
Frequency Response: 10 Hz to $16 \mathrm{KHz} \pm 3 \mathrm{~dB}$.
Input Impedance: 500 K ohm.
Sweep Frequency: 10 Hz to 10 KHz .


TWO TONE GENERATOR
Frequency: 1500 Hz and 1900 Hz .
Output Level: 50 m V.
Power Requirementa: 100/110/117/200/220/234 V AC $50 / 60 \mathrm{~Hz}$.
Size: $210(W) \times 150(H) \times 290(D) m / m$.
Weight: 6 Kg .

## YP-150

## DUMMY LOAD/POWER METER

The Model YP-150 can be used as dummy load and power meter within the frequency range of 1.8 MHz to 200 MHz . Three switch selected scales assure accurate power measurement in high and low power range. Built-in fan cools unit for stable measurement.
$\$ 88.50$

## TECHNICAL DATA

Frequency Range: $1.8 \mathrm{MHz}-200 \mathrm{MHz}$.
Impedance: 50 ohm unbalanced.
Power Scale: $0-6$ watts, $0-30$ watts, $0-150$ watts.
VSWR: Less than 1.2 at 145 MHz .
Maximum Error: Within $10 \%$ of maximum scale. Size: $104(W) \times 153(H) \times 280(D) m / m$.
Weight: 2 kg .

All prices include Sales
Tax. Freight and Insurance extra. Prices and specifications subject to change.

BAIL ELECTRONIC SERVICES

# ADVANCED AMATEUR COMMUNICATION EQUIPMENT FROM THE WORLD LEADERS - YAESU 



FT-101E TRANSCEIVER: 160-10 Mx, SSB, AM, CW, PA two $x$ 6JS6C, 260W PEP Input SSB. Built-in dual AC/DC power supply. BUILT-IN RF SPEECH PROCESSOR. Solid state except for Tx. PA and driver. IF noise blanker, FET Rx RF clarifier, built-ln speaker. $\$ 698$.

FT-101EE: Same as above, but without speech processor. \$649. M-101 MOBILE MOUNT for FT-101E. \$26.

FT-200 TRANSCEIVER: $80-10 \mathrm{Mx}$, PA two $\times$ 6JS6C, 260 W peak input SSB. Manual, PTT or VOX control, offset tuning, calibrator, operates from a separate power supply. FP-200: Yaesu AC power supply for FT-200, in matching cabinet with built-in speaker. Power supply and transceiver. \$448.

FT-75B TRANSCEIVER: SSB and CW. VOX, noise blanker, squelch. Very small size, transistorised, a superb little rig. 80W PEP. Microphone and five crystals included. \$295.

FT-75BS: Same as above, but low power for Novice use. Includes three crystals, 3565,21175 and 27125 kHz . $\$ 276$.

FP-75B/BS AC/DC POWER SUPPLY: 230V for FT-75B. Built-in speaker, power cable and plug. $\$ 74$.
DC-75B/BS DC POWER SUPPLY: 12V for FT-75B. Includes built-in speaker, mobile mount, power cable and plug. $\$ 80$.

FL-101 TRANSMITTER: Solid state $160-10 \mathrm{~m}_{1}$ PA two 6JS6C, all facilities. Companion unit to FR-101. \$515.

FL-101 SPEECH PROCESSOR: For installation in the FL-101, \$52.75.

FR-101D RECEIVER: All solid state, 23 bands inc. all amateur bands $160-10 \mathrm{~m}$ plus 6 and $2 \mathrm{~m}, \mathrm{FM}, \mathrm{CW}$, etc. etc. $\$ 723$.

FR-101D DIGITAL: Has all the options of the FR-101D as well as DIGITAL READOUT. \$889.

FT-501 DIGITAL READOUT TRANSCEIVER: $80-10 \mathrm{~m}$, SSB CW. 500 W peak input, Includes 2 -speed cooling fan, noise blanker, clarifier, VOX and etc. Inc. matching AC PS. \$865.
FL-2000B LINEAR AMPLIFIER: $80-10 \mathrm{~m}$ tubes, two $\times 572 \mathrm{~B}$ triodes In GG, twin fan cooled. \$435.

FL-2100B LINEAR AMPLIFIER: Similar to FL-2000B, but styled to match FT-101E. \$435.

FT-620B SIX METRE SSB AM, CW, TRANSCEIVER: 10 W solid state, Inc. calibrator and AM filter. \$468.

FT-221 TWO METRE TRANSCEIVER: Features all mode operation - SSB/FM/CW/AM - with repeater offset capability. 144148 MHz coverage using advanced phase-locked loop clrcuitry. $\$ 5{ }^{6} 8$.

M-620/221 MOBILE MOUNT for FT-620B and FT-221. \$26.
S2000R TWO METRE SYNTHESISED FM TRANSCEIVER: 200 channels. 10 W solid sla's. Simplex, repealer, and priority channel facilities. \$435.
FTV-650B SIX METRE TRANSVERTER: Converts 28 MHz . SSB to VHF, and includes receiving converter, Primarily designed for coupling with Yaesu transmitters and transceivers. \$190.
FTV-250B TWO METRE TRANSVERTER: TBA.
FT-224 TWO METRE FM TRANSCEIVER: 10W, 23 channels, PLUS one priority channel. Includes B, 50, and one repeater channel, installed (1, 2, 3 or 4). \$246.
FT-2 AUTO FM TRANSCEIVER: Similar to FT-224, but with addition of automatic scanning facility, etc. Includes B, 50 and one repeater channel (1, 2, 3 or 4). \$398.
M-2 AUTO MOBILE MOUNT, for FT-2 Auto. \$15.
YC-355D FREQUENCY COUNTER: 200 MHz . \$299.
Yo-100 MONITORSCOPE: Matches the FT-101E, but can be used with other Yaesu equipment. (IF kits 455 kHz and 9 MHz optlonal extra). \$195.
YP-150 DUMMY LOAD/POWER METER: For use over the frequency range $1.8-200 \mathrm{MHz}$. Three power ranges, $0-6 \mathrm{~W}, 0-30 \mathrm{~W}$, 0-150W with built-in cooling fan. \$88.50.
FF-50DX 3-SECTION LOW PASS FILTER for TVI reduction. \$29.50.
F-101 FAN. \$35.
MATCHING EXTERNAL SPEAKERS for FT-401, FT-101, FR-101. $\$ 38$.
OPTIONAL CRYSTAL FILTERS. \$45.
MATCHING VFOS: FV-401. FV-101B. FV-200. each $\$ 120$.
FV-50C (for FT-75B). \$71.50.
YC-601 DIGITAL READOUT for FT-101E and FT-401. TBA.
YD-844 DESK MICROPHONE: Yaesu De Luxe PTT Dynamic type with stand. PTT switch. PTT also actuated when lifted from deck. $\$ 39.50$.
RS SERIES HF GUTTER MOUNT MOBILE ANTENNAS: RS Base and Mast (doubles as $1 / 4$ wave on 2 m ). $\$ 16.00$. Coil and Tip Rods: RSL-7, \$14.00. RSL-14, \$13.00. RSL21, \$12. RSL-27/28, $\$ 11$.

As the sole authorised Yaesu agent for Ausiralla, we provide presales checking of sets, after-sales services, spares availability and 90 -day warranly.
Quote type and serial number of set when ordering spares. All prices include sales tax. Freight is extra. Prices and specifications subject to change without notice. Allow 50c per $\$ 100$ for insurance.

# COMPLETE RANGE OF ACCESS 



| SAM |
| :---: | :---: |
| NTENN |

## SCALAR ANTENNAS

## HF MONOBANDERS



HF DUO BAND
VS-22 3 element 15-11/10m .... .... .... .... .... .... .... .... .... \$118

## HF TRIBAND BEAMS

TH6DXX, 6-element trap Beam .... .... .... .... .... .... .... .... \$248
TH3Mk3, 3-element trap Beam .... .... .... .... .... .... .... ... 8199
TH3Jr, 3-element trap Beam .... .... .... .... .... .... .... .... \$148.50
HY-QUAD 2-element Quad Beam .... .... .... .... .... .... .... \$225
VS-33 (Equiv. TH3Mk3) Inc. Balun .... .... .... .... .... .... .... \$179

## NOVICE BEAMS

CB-3 3-element 11m .... .... .... .... .... .... .... .... .... .... .... \$47.50
CB-5 5-element 11m ... ... .... .... .... .... .... ... .... .... .... \$65.00
Long John 5 -element (wide spaced) 11m .... .... .... .... .... $\$ 87.50$
Eliminator II, 2-element Quad. Sw'ble polarisation, 11 m \$85.00
Big Gun II 4-element Quad. Sw'ble polarisation, $11 \mathrm{~m} . . . \$ 182.00$
SDB-6 Stacked 6-el Beam $(3+3)$
$\$ 128.00$

## HF VERTICALS



## HF MOBILE WHIPS AND FITTINGS

hY-gain novice mobile antennas

W-102 102" S.S. Whip .... .... .... .... .... .... .... .... .... .... .... \$15.55
SCALAR MOBILE WHIPS

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

## ASAHI

AS-303A HF Mobile Antenna set, centre loaded type 3.5-27/28 MHz, 400 W PEP, consists of common mast $4^{\prime} 6^{\prime \prime}$, telescoping to $\mathbf{2 '}^{\prime \prime} \mathbf{' s}^{\prime \prime}$ for convenient stowage, five Interchangeable loading colls with tip rods, and adjusting spanners inc., making a total height of approx. 7', with HD spring and ball mount. Beautifully engineered, feeds direct with 50 ohm co-ax. The complete set a steal at \$108.
AS-NK matching SS Bumper Mount Adapter, for AS303A. \$14.

## MARK MOBILE

Helical:

| HW-80-8 | $80 \mathrm{~m}, 8 \mathrm{tt}$ | \$49 | HW-15, 15m, 4ft. | \$24.00 |
| :---: | :---: | :---: | :---: | :---: |
| HW-80, | $80 \mathrm{~m}, 6 \mathrm{ft}$. | \$30 | HW-11, $11 \mathrm{~m}, 4 \mathrm{ft}$. | \$24.00 |
| HW- 40, | $40 \mathrm{~m}, 6 \mathrm{ft}$. | \$28.50 | HW-11, 11m, 6 ft . | \$25.50 |
| HW- 20, | 20m, 6ft. | \$25.50 | HW-10, $10 \mathrm{~m}, 4 \mathrm{tt}$. | \$24.00 |

FITTINGS: (Suit all makes with $3 /{ }^{\prime \prime} \times 24$ thread).
BPR, bumper mount .... .... .... .... .... .... .... .... .... .... .... .... \$15
BDYF, heavy duty adjustable body mount .... .... .... .... .... \$15
HWM-1, fixed body mount .... .... .... .... .... .... .... .... .... .... \$14
SPG, heavy duty spring .... .... .... .... .... .... .... .... .... .... .... \$11
SPGM, Ilght duty miniature spring .... .... .... .... .... ..... .... .... SB
Asahi AS-KRB, flat root mounting adapter for vertical
trap antennas .... .... .... .... .... .... .... .... .... .... .... .... .... \$15
C30-32 Ball Mount \& Spring .... .... .... .... .... ............. $\mathbf{\$ 1 8}$

## VHF ANTENNAS

## HY GAIN

23, 3-element 2m Beam

$\$ 18.00$
28. 8-element 2 m Beam .... .... .... .... .... .... .... .... .... .... .... $\$ 38.00$

215B 15-element 2m super-beam .... .... .... .... .... .... .... .... $\$ 89.00$
GPG-2 2m s/8 wave ground-plane .... .... .... .... .... .... .... \$27.50
64B 4-element 6m beam .... .... .... .... .... .... .... .... .... .... $\$ 48.00$
66B 6-element 6m beam .... .... .... .... .... .... .... .... .... .... \$79.00

## CUSH CRAFT

ARX-2 three half wave 6 dB gamma loop matched vertical $\mathbf{\$ 4 0 . 0 0}$
ARX-450, 435-450 MHz three half wave 6dB Ringo .... .... $\$ 36.00$
AR-6, 6m 1/2 wave Ringo 3.75 db .... .... .... .... .... .... .... $\$ 36.00$
A144-7, 7-element 2 m Beam .... .... .... .... .... .... .... .... .... \$25.00
A144-11, 11-element 2m Beam .... .... .... .... .... .... .... .... \$35.00
A144-20T, 20-element 2m "Twist" Beam .... .... .... .... .... \$72.00
A50-3, 3-element 6m Beam .... .... .... .... .... .... ..... .... .... .... \$37.00
A50-5, 5-element 6m Beam … .... .... .... .... .... .... .... .... .... $\$ 57.00$
A430-11, 11-element $430 \mathbf{M H z}$ Beam .... .... .... .... .... $\$ 25.00$

## VHF MOBILE ANTENNAS

HY-GAIN
265 5/b wave Magmount for 2 m , inc. co-ax $\quad \$ 41.00$
270 Double stacked 5/-wave fibreglass whip for 2 m .... $\$ 45.00$
271 Mount for 270
$\$ 6.00$

## ASAHI

AS-2HR, 5/b-wave SS 2m gutter mount, inc. co-ax. .... .... \$45.00
AS-2P40 as above, but fibreglass whip .... ... .... .... .... .... \$38.00
AS-2HRF $5 \%$-wave cowl mount type
AS-6RD 6m centre loaded SS whip with gutter mount .... \$22.50

## JIES FROM BAIL ELECTRONICS <br> 포

## STANDARD VHF TRANSCEIVERS

SR-C146A, 2m hand held 5 chan. 2W transceiver, inc.
carrying case and 3 chs.
SR-C432A, 70 cm hand held 6 chan. $2 W$ transceiver, Inc. carrying case and 1 chn ( 435 MHz )
$\$ 239.00$
SR-C430 70 cm 12 chan. 10 watt mobile transceiver inc.
1 ch ( 435 MHz )
$\$ 275.00$
STANDARD ACCESSORIES
CMP08 Hand mic. for SR-C146A and SR-C432A ........ $\$ 18.50$
CAT08 Rubber antenna (helical) for SR-C146A .... .... .... $\$ 8.00$
Heavy Duty Carrying Case for hand heid units .... .... .... \$13.50
AC Adapter and charger for hand held units .... .... .... .... $\$ 32.50$
Mobile Adapter for hand held units .... .... .... .... .... .... .... $\mathbf{\$ 1 1 . 5 0}$
AC Charger only .... .... .... .... .... .... .... .... .... .... .... .... .... \$9.00

## BALUNS

HY GAIN
BN-86, broad-band ferrite Balun, 2 kW for Beams and Doublets
$\$ 25.00$
BN-27A as above especially for 11 m

## ROTATORS

CDR
Ham II, 230 V AC .... .... .... .... .... .... .... .... .... .... .... .... \$189.50
CD-44 Medium duty rotator, 230 V .... .... .... .... .... .... .... $\$ 128.00$
AR-22L Light, low cost rotator, 230 V .... .... .... .... .... $\$ 65.00$
Cable, 8 Conductor, for Ham II CD-44 .... .... ......... 75 cents yd.

## ANTENNA ACCESSORIES

HY GAIN
LA-1, Lightning Arrestor, for installation in standard 52 or 72 co-axlal feedline, designed to MII. specs.
$\$ 39.00$
LA-2, smaller size co-ax arrestor
421A, Power meter, 3-60 MHz, reads SWR, power on 10, 100 \& 500 W scales, and AM modulation percentage. Especially made for Novice \& Marine 11m use
$\$ 48.00$
421B, Similar to above but with 20, 200W and 2 kW Scales KW TVI filter 5 Section, SO-239 connectors. A superior
job with excellent attenuation
$\$ 48.00$

## - CRAFT

Porcelain Egg insulators
WIDE RANGE of Co-axial cable and connectors in stock.
K-20 70 ohm Twin feeder .... .... .... .... .... .... .... 27 cents per yd.

## KW ELECTRONICS

Multi-band dipole traps with ceramic "T" centre insulator,
80-10m bands per pair complete with insulator
$\$ 26.50$
Co-axial cable switch, 3 positions

## B \& W

Co-àxial cable swltches, 5 position, Model 590G
$\$ 25.00$

## SWR METERS AND DUMMY LOADS

## Q CRAFT

SWFS-2, single meter type, combined SWR and FS meter, 50 ohms. Inc. FS pick-up whip, size $5^{\prime \prime} \times 2^{\prime \prime} \times 21 /{ }^{\prime \prime}$. 3-150 MHz, UHF connectors
SWR-2, dual melers, 50 ohms. Simultaneous reading of forward and reflected power, $5^{\prime} \times 2^{\prime \prime} \times 21 / 4^{\prime \prime}$.
3-150 MHz, UHF connectors
swR-200 large dual melers, switched 50-75 ohms, wlith callbration chart for direct power readings to 2 kW In three ranges. A very elegant instrument. $75 \%{ }^{\prime \prime} \times 23 / 4 \times 33 / 4$

## KW ELECTRONICS

2 Malch Antenna Couplers, 80 metres to 10 metres. Beautifully finished in communication grey (see review "QST"
July, 1972):-
$K W^{\prime \prime}$ E-Zee Match, screw terminals at rear, size $51 / 2^{\prime \prime} \times$ $6^{\prime \prime} \times 12^{\prime \prime}$
$\$ 76.50$
KW-107 Supermatch, as above with addition of SWR meter, power meter with large 50 ohm dummy load to read up to 1 kW PEP, UHF sockets at rear. A superb piece of equipment, $7^{\prime \prime} \times 8^{\prime \prime} \times 13^{\prime \prime}$
KW-109 High power version of KW-107, larger condensers and coils
$\$ 245.00$
KW-103 SWR Power Meter uses toroidal coil pick-up for continuous operation 52 ohms 1 kW max. to 30 MHz SO239 UHF sockets very accurate
$\$ 55.00$
KW Dummy Load 52 ohm Air Cooled. Will handle up to 1 kW (ideal for use in workshop or field)
$\$ 39.50$
heath Kit
HN31 Cantenna Kit 1 kW oil cooled (oil not included) $\mathbf{\$ 3 1 . 0 0}$

## OTHER ACCESSORIES

AT-3 RF actuated CW Monilor and Code Practice Audio Osc. uses 4 transistors, 2 diodes, with built-in speaker and tone control.
Requires one UM3 penllte cell. In grey metal case, 2' $\times 31 / 4^{\prime \prime} \times 31 / 2^{\prime \prime}$
EKM-1A Audio Morse CP Osc with speaker, one transistor. Headphone socket and tone control, requlres one UM3 cell, in metal case $35 /{ }^{\prime \prime} \times 21 / 2^{\prime \prime} \times 1 /{ }^{\prime \prime}$ "
TC-701 Morse Praclice Osc. with built-In key and spkr. Inc. battery and auxiliary earpiece. Copy of morse code on case. Two can be wired together to form a practice communication set
$\$ 16.50$
MC-701 Mic. Compressor, battery operated. Available with 4 pin mic. connector

## MORSE KEYS

EK-108A Electronic keyer, super quality, IC with dot memory. Built-in monitor \& paddle. Solid state "relay". 230 V AC
$\$ 79.50$
EK108D, DC, same as EK108A but takes 2 size ' $D$ ' cells $\$ 72.00$
HI-MOUND
HK-701 De luxe heavy duty morse key. Heavy base. A really beautifully constructed and finished unit.
Fitted with a dust cover, standard knob and knob plate $\$ 26.00$
HK-708 Economy key, all black ABS resin base and chromed mechanism
HK-707, Similar to above but with dust cover and standard knob
HK-808, Commerclal hand key with ball race plvots, heavy poly marble base and plastic dust cover
$\$ 45.00$
MK-701 Side Swiper key to actuate Electronic keyer
BK-100 (BUG) Seml-automatic bug key, full adjustable
$\$ 27.00$
MONITOR RECEIVERS
SC1C1, Automatic scanning receiver, 4 VHF chns., 4
UHF chns. RF stages, tuned to 146 and 435 MHz \$135, Xtals extra.
MR-2, Mini Monitor. 12 ch . pocket receiver VHF. \$98, Xtals extra
Also available: Equipment for novice and Marine use on 11 m band. Antennas, beams, Walkie Talkies, base stations, and accessories. Digital clocks, SSTV, Generator noise filters.
Servicing facililles for all Iypes of Amateur and Novice equipment. We check all sets before sale and provide a 90 day warranty.
All prices incl. S.T. Postage and freight extra. Prices and specifications subject to change without notice. Availability depends on stock position at time of ordering.

# YAESU VHF FM TRANSCEIVERS 



## Sigmasizer-200R



Prices include Sales Tax. Freight and insurance extra.
Prices and specifications are subject to change.

- 24 Channel FM Transceiver

Join the action on FM - the "Fun raise" Mode". The FT-224 is an advanced, solid state transceiver, that features 10 Watts and 23 channel flexibility plus one priority channel, all in one compact package. The FT- 224 includes a built-in tone burst for repeater actuaton and three popular channels installed. Additional plus features inclues automatic high VSWR protecdion of the final output transistor, and reverse power line polarity protection. The FT-224 comes complete with a builtin speaker, mobile mounting bracket, and dynamic microphone.

## 200 Channel Synthesized Transceiver

YAESU now offers the FM enthusiast a complete, solid-state, 200 channel 2 Meter FM transceiver. The Sigmasizer200R features advanced, synthesized circuitry for total repeater and simplex coverage of the 144 to 146 MHz or 146 to 148 MHz FM band. Frequenpies are selectable in 10 KHz indremints and front panel selectable $\pm 600$ KHz transmitter offset oscillators give complete flexibility for repeater operaion. A built. in tone burst oscillator is included for activation of tone coded repeater systems. A priority channel may be preset for instant selection of

## Solid State 2 Meter

Transceiver with Versatile SSB/FM/CW/AM Operation Features

* Complete $144-148 \mathrm{MHz}$ coverage in 8 band segments
* Dual rate, concentric VFO dial drive with better than 1 kHz readout
* Built-in AC \& DC power supplies
* SSB/CW/FM/AM operation
* Selectable $\pm 600 \mathrm{kHz}$ repeater offset
* Built-in VOX and break-in CW
* External tone input connector
* Builtin 100 kHz calibrator
* Built-in effective noise blanker
* Three way metering: S meter, power output, and FN discriminator
- 11 crystal channels per band segment $=$ Total 88 channel
* SSB output 12 watts PEP

FM/CW output 14 watts AM output 2.5 watts

* Built-in speaker

All sets are pre-checked before dispatch and are covered by our 90 Day Warranty.
Page 32 Amateur Radio December, 1975

## australian agents - BAIL ELECTRONIC SERVICES

You, too, can enjoy the action on FM with your own FT-224.

## TECHNICAL DATA

## GENERAL

Frequency Range:
146 to 148 MHz .
Number of Channels: 23 plus 1 priority channel.
Mode: FM.
Frequency Stability: $\pm 0.001 \%$.
Antenna Impedance: 52 Ohm un. balanced.
Circuitry: 30 Transistors, 23 Diodes, 4 IC, 5 FET.
Power Source: 13.5 VDC.
your favorite channel. Automatic final protection against high VSWR is another total performance feature of this outstanding transceiver.

## TECHNICAL DATA

## GENERAL

Frequency Range:
146 to 148 MHz .
Number of Channels: $200(10 \mathrm{KHz}$ intervals) Simplex and $\pm 600 \mathrm{KHz} \mathrm{TX}$ offset for Repeater operation.
Mode: FM.
Frequency Stability: $\pm 0.001 \%$.
Antenna Impedance: 52 Ohm unbalanced.

Power Requirement: 0.4 A receive, 2.2 A transmit (DC).

Size: $180(W) \times 70(H) \times 220(D) \mathrm{m} / \mathrm{m}$. Weight: 2.5 Kg .

## RECEIVER

Sencitivity: $0.3 \mu \mathrm{~V}$ for 20 dB quieting Selectivity: 15 KHz at $6 \mathrm{~dB}, 25 \mathrm{KHz}$ at 60dB.
Audio Output: 2.5 Watts at 4 Ohm

## TRANSMITTER

RF Output Power: 1 or 10 Watts.
Spurious Radiation: 60 dB better than 60 dB .
Deviation: $\pm 5 \mathrm{kHz}$ nominal.
PRICE \$246

Power Source: 13.8 V DC (negative ground).
Power Requirement: 0.45 A receive, 2.2A transmit.

Size: $220(W) \times 80(H) \times 230(D) \mathrm{m} / \mathrm{m}$. Weight: 3 Kg .

Sensitivity: $0.3 \mu \mathrm{~V}$ for 20 dB quieting Selectivity: $\pm 8 \mathrm{KHz}$ at $6 \mathrm{~dB}, \pm 16 \mathrm{KHz}$ at 60 dB .
Audio Output: 2 Watts at 4 Ohm

## TRANSMITTER

RF Output Power: 1 or 10 Watts.
Spurious Radiation: 60 dB minimum. Deviation: $\pm 5 \mathrm{KHz}$ nominal.

PRICE $\$ 435$ (two only, special at $\$ 390$ )

## TECHNICAL DATA

## GENERAL

Frequency Range: 144.00 to 148.00
MHz in eight 500 kHz segments.
Mode: SSB (selectable USB or LSB), AM, FM or CW.
Frequency Stability: Within 100 Hz during any 30 minute period after warm-up. Not more than 20 Hz with $10 \%$ line voltage variation.
Calibration Accuracy: 1 kHz maximum after 100 kHz calibration.
Backlash: Not more than 50 Hz .
Antenna Impedance: 50 ohm un balanced nominal.
Power Requirement: $100 / 110 / 117 /$ $200 / 220 / 234$ V AC. $50 / 60 \mathrm{~Hz}, 100$ VA maximum or 13.5 V DC, 3A
transmit maximum ( $11.5-16.5 \mathrm{~V} D C$ ). Size: $208(W) \times 125(H) \times 295$ (D) mm. Weight: 8.5 kg .

## RECEIVER

Sensitivity: $0.5 \mu \mathrm{~V}$ for 10 dB Noise plus Signal to Noise Ratio on SSB/CW. $1.0 \mu \mathrm{~V}$ for 10 dB Noise plus Signal to Noise Ratio with $400 \mathrm{~Hz} 30 \%$ modulation on AM. $0.75 \mu \mathrm{~V}$ for. 20 dB quiet. ing on $F M$.
Selectivity: 2.4 kHz nominal bandwidth at 6 dB down, 4.1 kHz at 60 dB down on SSB/CW/AM. $\pm 6 \mathrm{kHz}$ nominal bandwidth at 6 dB down, $\pm 12 \mathrm{kHz}$ at 60 dB down on FM .

## FP-2

## AC POWER SUPPLY FOR HOME OPERATION

The FP. 2 can be used with the FT. 224 or Sigmasizer-200R supplying regulated 13.5 V DC. Provision has been made for installation of optional colloid batteries which are automatically charged, and connected when the AC supply stops. The colloid batteries last approximately 10 hours. Contains a $80 \times 120 \mathrm{~m} / \mathrm{m}$ speaker.

Output: 13.5 V DC, 2.2 A maximum. Power Requirement: 100/110/117/ $200 / 220 / 234 \mathrm{~V}$ AC, $50 / 60 \mathrm{~Hz}, 35$ Watts.
Size: $160(W) \times 120(H) \times 230(D) \mathrm{m} / \mathrm{m}$. Weight: 4 Kg .


PRICE $\$ 69$

Harmonic \& Spurious Response: Image Ratio better than 60 dB .
Audio Output: 2 Watts to internal or external speaker at 4 ohm impedance. Squelch Threshold: Less than $0.3 \mu \mathrm{~V}$. I.F. Frequencies: SSB/AM/CW 10.7 $\mathrm{MHz}, \mathrm{FM} 10.7 \mathrm{MHz}$ and 455 kHz .

## TRANSMITTER

Spurious Radiation: -60 dB.
Frequency Response: Balanced SSB 300 to $2700 \mathrm{~Hz} \pm 3 \mathrm{~dB}$. Low power AM better than 60\%. Variable reactance $F M \pm 5 \mathrm{kHz}$ maximum.
Carrier Suppression: -50 dB .
Sideband Suppression: -50 dB .


Alignment Lines in YAESU's Fukushima Factory.
Photo shows part of the modern Fukushima plant of YAESU Co., in Japan. The same high quality service is followed through at the SOLE AUSTRALIAN AGENCY, BAIL ELECTRONIC SERVICES, where full facilities exist to give you the Warranty, Service and spare parts availability that is your entitlement when you purchase new high quality equipment. Here at B.E.S. we pre-sales check all sets to help ensure that you have trouble free operation with your purchase. And, in the event that a problem does develop, then you can be assured that your purchase gives you an equity in our service facilities and spare parts.
Write or call for information and advice about your amateur radio requirements for all bands, all modes.
THE SOLE AUSTRALIAN AGENT:-

signal input and almost zero under full signal input. With the gate 2 and source dividers values used, the resulting gate 2 voltages on the controlled stages will vary from about 4.5 V with no signal to -1.2 V under full input.

AM detection is accomplished by an envelope detector capacitively coupled from the drain of the 3rd IF amplifier. SSB demodulation is obtained by a product detector using another MPF121 dual gate FET. The 9 MHz carrier is fed to gate 2 and the IF signal to gate 1. The drain inductance is a transistor radio AF choke.

## AF AMPLIFIER

The mode selector switch feeds the required detector output to the AF volume control which is then coupled to a 2 N3565 AF pre-amplifier. The collector is capacitively coupled to the input of the $1 / C$ power amplifier (LM 380), which drives an 8 ohm speaker.

## CONSTRUCTION

Construction will largely depend on personal ideas and preferences. The author
used a Horward instrument cabinet type H84-12-VA which measures $12 \times 8 \times 4$ inches. These neat cabinets have a heavy aluminium front and rear which double as heat sinks, the power supply 2 N 3055 , transmitter driver, and P/A being mounted on the rear panel. A sub-chassis is fitted about $13 / \mathrm{in}$. up from the bottom to provide mounting of the modules etc. The following modules are mounted underneath; SSB generator receiver, front end/IF/detector, Transmit mixer and auxiliary oscillator/ amp. The VFO and power transformer are fixed to the top of the chassis. Also mounted on the top but with the boards vertical are the AF Amplifier, power supply and Tx P/A boards. The modules mounted flat on the chassis are stood off by $1 / 4$ inch stand offs.

## FINAL COMMENTS

It is not envisaged that this rig would be copied entirely as described, but provide ideas for anyone contemplating a similar project. Therefore a detailed alignment procedure is not included. However the following hints may be helpful.

Alignment of the bandpass circuits is best carried out using a sween generator. Alternatively the alignment can be carried out by varying the VFO frequency and changing ranges, carrying out alignment for a constant output voltage. As it is becoming increasingly easier to obtain access to frequency counters, the adjustment of the crystal arid VFO frequencies is best carried out by this method.

As the development of a large project such as this takes many years, new components become available which outperform others used in the early stages of development. A really dedicated experimenter would scrap circuits and components and start again! Fortunately, work on the receiver was not started before MPF121s became available, and no doubt more of these devices would have been used in other circuits had they been available earlier.

Finally, the author would like to thank those who made helpful suggestions during development, also the many who assisted during on-air testing.

## FIXED CHANNELS FDR THE FTROD

Here is an idea for FT200 enthusiasts. Fixed channel operation is often useful for:
(a) Regular net calling and listening, e.g., Zone nets, beacon frequencies, national calling frequencies.
(b) Civll Defence and Emergency use subject to approval by the relevant authorities).
(c) (Quick, accurate, eyes-on-the-road frequency changes while mobile - Ed.)
(d) Split frequency HF DX operation and VHF operation.
Although a fixed channel option kit can be purchased, readers may prefer to build their own unit for Installation inside their FT200 (earlier models), or for mounting in an external case (later models). The earlier models had provision for selection of VFO or from fixed channels via a front panel switch but later models have an Internal/ External VFO switch.

The circuit suggested (Fig. 1) is similar to that used by Yaesu and although not tested by the author, it would be easy to build and should not give any difficulties. The switch S1 may be the internal channel selector switch and one of the constructors choice. A swing of about 1 kHz when using

## OIFFERENCE FREOUENCY TABLE

| Band | Normal | Ror | AM/CW |
| :--- | ---: | ---: | ---: |
| 3.5 | 9001.5 (L) | 8998.5 (U) | 9001.5 (N) |
| 7 | 2001.5 (L) | 1998.5 (U) | 1998.5 (R) |
| 14 | 8998.5 (U) | 9001.5 (L) | 9001.5 (R) |
| 21 | 26498.5 (U) | 26501.5 (L) | 26498.5 (N) |
| 28.0 | 33498.5 (U) | 33501.5 (L) | 33498.5 (N) |
| 28.5 | 33998.5 (U) | 34001.5 (L) | 33998.5 (N) |
| 29.0 | 34498.5 (U) | 34501.5 (L) | 34498.5 (N) |
| 29.5 | 34898.5 (U) | 35001.5 (L) | 34998.5 (N) |

[^13]the clarifier may be expected when using HC-6/U type crystals (parallel resonance).

To calculate the required crystal frequency, use the Difference Frequency Table.

Example 1. Required frequency 7099 kHz using LSB. From chart below the difference frequency is 2001.5 kHz , therefore 7099
$-2001.5=5097.5$ required $x$ tal. frequency.
Example 2. If 21420 kHz is required using USB, then 26498.5 - $21420=$ 5078.5 kHz crystal required. Note bands 3.5, 21, 28, 29.5 use difference frequency minus required frequency. Bands 7 and 14 required frequency minus difference frequency.


# A BEGINNER'S GUIDE TO THE 6 MIETRE BAND <br> Geoff Wilson VK3AMK <br> 7 Norman Ave., Frankston, Vic. 3199 

Firstly, what is the Six Metre Band? It is the lowest frequency VHF band available for amateur use and in VK at present covers $\mathbf{5 2 - 5 4} \mathbf{M H z}$. This is the upper hall of the international 6 Mx band which is 50-54 MHz (as used in the USA, Japan, etc.).

Unfortunately at present the lower 2 MHz in Australia is part of TV channel 0 . In New Zealand the 6 Mx band is from 51-53 MHz with the lower $1 \mathrm{MHz}(50-51 \mathrm{MHz})$ forming part of their TV channel 1.

Being a VHF band it is different from the normal HF bands in that most of the time VHF propagation characteristics apply but it is also low enough in frequency to be influenced at times by the same factors which affect HF bands and this can produce extremely interesting VHF DX paths. Under the right conditions this can enable the Limited Licensee to work beyond VK which is normally impossible other than via Oscar on 2M.

Conditions vary considerably with the time of the year and the time of the sunspot cycle etc. but the constantly changing nature of the band is one of its most interesting aspects. There are probably more modes of propagation found in the 50 MHz region than on any other single Amateur band. From this point of view alone 6 Mx is a very useful starting point for anyone wishing to experiment with propagation or equipment.

This is one band where quite modest equipment can be very effective indeed, for example many JA stations are worked from VK (especially the northern areas such as VK4) and the power limit on the 6 Mx band in JA is 50 watts. Many of the JAs run 20 watts or less yet still produce strong signals even in the southern parts of VK when the band opens up. For working within VK even 5 or 10 watts is often adequate provided a good antenna is used but naturally higher power is helpful at times when conditions are difficult.

Currently the most popular modes used on the 6 Mx band are SSB (in the section 52.0-52.5 where tunable operation takes place) and FM (mainly on the internationally. recognised frequency of 52.525). In addition there are other FM and AM net frequencies but these are used on a regional or local basis. At present there are no FM repeaters in VK on the 6 Mx band. Simplex FM operation while useful has definite limitations especially if the band opens and many stations want to work DX. It is preferable to be able to operate tunable equipment for DX working and SSB has now become almost the exclusive mode for this although a few AM and CW stations remain active too.

Equipment can either be built or purchased ready made. There are now a number of transverters available for use with commercially built transceivers used on HF, and separate 6 Mx transceivers are available. For those interested in bullding their own equipment a 6 Mx transverter is a fairly simple and very enjoyable project which any Amateur should be able to produce. Numerous good circuits are available in the various Amateur technical publications.

In most VK call areas beacons have been established on the 6 Mx band to study propagation and indicate band openings, especially in the more remote areas where local activity is not normally very high. (Refer to the "VHF UHF an expanding world" column for the current beacon list). In addition TV channels 0 and 1 in VK, and channel 1 in ZL, despite their higher ERP, are good indicators of likely 6 Mx openings.

The most common and possibly spectacular form of propagation found on 6 Mx is Sporadic $E$ reflection. This carries the bulk of 6 Mx traffic within VK and peaks usually from November to January (summer DX "season") and to a lesser extent from May to July (winter DX "season"). It can and does occur at other times throughout the year, providing signals of varying strength, sometimes as good as summer peaks and others much weaker. Sporadic E signals are usually very strong (often DX signals will be stronger than even local stations within a mile or so) and the best skip is approximately $1,600 \mathrm{Km}$ but it may be more and it can also be considerably less. These signals are reflected from clouds in the Sporadic E layer at a height of 60 to 100 Km above the earth and may produce a path giving single or double hop from the point of transmission to the point of reception. A typlcal opening would be from say Melbourne to Brisbane or Townsville around 10 am local time during December with signals peaking to $S 9$ plus. On this path it would be likely to open perhaps two days out of three at this time but the chances of this happening vary from season to season. The actual opening may last from a few minutes to several hours or more and may be repeated late in the afternoon or early evening. In the meantime the band may have opened to many other areas in a random fashion. Often a few watts is adequate to work these openings and all VK and ZL call areas as well as the closer Pacific countries can be worked on Sporadic E.

Other forms of 6 Mx propagation include:

## Scatter

Forward scatter signals are scattered by the E layer giving paths up to 2200 Km or so or scattered by the troposphere at about

9 or 10 Km and giving paths up to 800 Km or so. Backscatter occurs where signals are reflected back Into what would normally be the skip zone, this includes paths of 500 Km or less beyond the ground wave and short of the point where the sky wave returns to earth. Most scatter signals are weak compared with Sporadic E.

## TEP (trans-equatorial propagation)

The typical path for this mode is Tokyo Rockhampton etc. where seasonal propagation occurs between places roughly equally spaced either side of the magnetic equator.

## F2

This mode provides the really long haul DX by multiple hop up to distances of almost $\mathbf{2 0 , 0 0 0} \mathrm{Km}$ such as JA to LU etc mainly during solar peaks.

## Auroral reflection

By aiming the antennas at each end at the southern polar regions signals can be reflected from auroras but, as these occur oniy basicaliy in the higher latitudes on a regular basis during the sunspot peaks, the possibilities in VK are limited. Southern ZL is better situated for this particular mode which is usually characterised by rapid flutter or buzzing on the signals.

## Meteor reflection

This mode depends upon ionized areas formed as a result of meteors striking the upper layers and reflects signals for periods from fractions of a second to half a minute or more.

Provided a stable transmitter and receiver is used in conjunction with an antenna having reasonable gain located weil in the clear there is no reason why plenty of DX shouldn't be worked when conditions are right. A typical 6 Mx station today consists of a high frequency trans ceiver with an outboard transverter run ning about 50 watts PEP to a 5 element yagi about 10 Mx high.

Admittedly problems exist in Ch 0 TV areas, both with QRM from the TV transmitters and with TVI which, unlike HF TVI problems, has no simple solution. However, despite the TVI problem, Melbourne remains one of the most active areas on 6 Mx in VK and probably has more or at least as many stations active on the band as in Sydney where there is no TVI problem. Each TVI situation is different, depending upon local signal levels, antenna height above the surrounding houses, power level used etc. SSB has proved probably the best solution to TVI in as much as power levels can readily be reduced when conditions are good. This is much more desirable than running unnecessarily high power when the band is wide open, often 1 watt or less is sufficient to give very effective communication.

For those who have never operated 6 Mx

## "WILLIS" AIR WOUND INDUCTANCES

Take the hard work out of Coil Winding, use - "WILLIS" AIRWOUND INDUCTANCES

| Turns <br> Der L'gith |  |  |  |  |  |
| :--- | ---: | ---: | :--- | :--- | ---: |
| No.B \& $w$ <br> Inch <br> Equiv | Price |  |  |  |  |
| 1.08 | $1 / 2$ | 8 | 3 | No. 3002 | 99c |
| 1.16 | $1 / 2$ | 16 | 3 | No. 3003 | $99 c$ |
| 2.08 | $5 / 6$ | 8 | 3 | No. 3006 | $\$ 1.16$ |
| 2.16 | $5 / 6$ | 16 | 3 | No. 3007 | $\$ 1.16$ |
| 3.08 | $3 / 4$ | 8 | 3 | No. 3010 | $\$ 1.40$ |
| 3.16 | $3 / 4$ | 16 | 3 | No. 3011 | $\$ 1.40$ |
| 4.08 | 1 | 8 | 3 | No. 3014 | $\$ 1.56$ |
| 4.16 | 1 | 16 | 3 | No. 3015 | $\$ 1.56$ |
| 5.08 | $11 / 4$ | 8 | 4 | No. 3018 | $\$ 1.75$ |
| 5.16 | $11 / 4$ | 16 | 4 | No. 3019 | $\$ 1.75$ |
| 8.10 | 2 | 10 | 4 | No. 3907 | $\$ 2.52$ |

## Special Antenna All-Band Tuner Inductance

(equivalent to B. \& W. No. 3907, 7 Inch)
7" length, 2" dla., 10 TPI Price $\$ 4.36$ Reterence: A.R.R.L. Handbook, 1961

Willis PI-Coupler Unit - $\mathbf{\$ 1 8 . 0 0}$
Stockists of Transmission Cables, Insulators and Hard Drawn Copper Antenna Wire Write for range of Tranamlasion Cables

## THE MORSE CODE MADE EASY

An album of three Recorde produced with Ivan $R$. Hodder by the Flight Training Centre (Aust) Ply Hod. Aevolutionises the Learning of Morse Code all you need is the lamily Record Playerl The F.T.C. course has discarded the old. now out moded system of learning the Morse Code by visua means alone. Those learning the Code by this melhod rarely progiessed beyond live words per minute. This course is designed to teach aural recognition of the symbols - as the student will hear them in actual use.
The symbols are always transmitted at the same speed - otherwise their aural characteristics alter - and only the spacing between groups slowed down or spesded up as the student gains proficiency
In addition, the student is laught to "sing" the symbols with the correct rhythm, so becoming his own "iransmitier" during the mosi critical phase of his quition.
He hears an oscillator signal for the first time only afler becoming proficient at six words per minute using the "singing" technique. He then starts at four words per minule, working back up to and beyond the six words per minuts already achieved Proof of the efficiency of the system is the large in crease In passes by those who have used it.
PRICE: 3-Record Set Complete With Instructions: Post Pald $\mathbf{\$ 1 6 . 7 5}$ 3-Cassette Set Complete With Instructions: Post Paid 816.75


We send goode anywhere - any time PLEASE INCLUDE FREIGHT COSTS 14 GAUGE HARD DRAWM COPPER ANTENNA WIRE.

Long Leakage Path High Quallty Glazed Porcelain Insulators: Similar Quality also in Large Egg Type Insulator.

50 Ohm and 72 Ohm Co-Axial Cables 72 Ohm Twin Flat Transmission Line.

300 Ohm Open Wire Transmission Line (100' L)
Two-Core and Single-Core Screened Microphone and Audio Cables
Brltish O-Max Metal Hole Cutters - $7 /{ }^{\prime \prime}$ to $3^{\prime \prime}$ Diam.
Co-Axial PL259/SO239 VHF Connectors Audio Connectors.
"Electro-Boy" Time Swilch-Clocks - 24-hour.
Comprehensive Range of AF and RF valves. Die-Cast Instrument Cases.

Battery Chargers and Battery Savers
Power and Audio Transtormers.
Public Address Equipment.

## AMATEUR RADIO HANDBOOKS

| ANNUALS |  |  |
| :---: | :---: | :---: |
|  | TEURS' |  |
| 975 | American Rad |  |
| Leag |  |  |
| 378 | ITION due Apr | \$9.95 |
| WORLD RADIO T.V. H |  |  |
| 1975, complete guide to the World's Shortwave Slations $\$ 8.95$ |  |  |
|  |  |  |
| All About Cubical Quad Antannas, |  |  |
| Amateur Radio |  |  |
| Hateur Radlo DX Handbook, CQ |  |  |
| Amataur Radio Verilcal Antenna |  |  |
| A.e.L. Antenna Handbook, Amer- |  |  |
| Ican Radio Relay League, new |  |  |
|  |  |  |
| A.R.R.L F.M. and Repeatera for the Redio Amateur |  |  |
| A.f.R.L Underaianding Amateup |  |  |
|  |  |  |
|  |  |  |
| Man .... .... .... .... .... .... .... .... .... |  |  |
| R.R.L. Spectalized Communlea- |  |  |
| tlone Technlques for the Radio |  |  |
| A.R.L. Single Sideband for the |  |  |
| Aadio |  |  |
| R.R.L Hinte and Kinke for the |  |  |
|  | A |  |

TECHNICAL BOOK \& MAGAZINE CO.
289-299 SWANSTON STREET, MELBOURNE, VIC., 3000
PHONE 663-3951
why not give it a try? It can be a very rewarding, if at times frustrating, band. For those who may have operated on 6 Mx many years ago but closed down when TV started, how about building a transverter to use with your HF transceiver? There is plenty of room in which to operate as the

CW/AM/SSB section on the low end is greater than the whole of the 20 Mx band. Most activity is found around the SSB calling frequency of 52.050 and a call on that frequency will bring a reply if anyone is about.

The 6 Mx band has the reputation of
being the friendly band; most operators are only too willing to give any help or advice to the newcomer. Apart from having many enjoyable QSOs any additional stations active on the band will go a long way towards helping to retain what I consider to be our most interesting band.

## A SIMPLE TOP BAND TRANSMITTER

J. Wallich (ex VK3ANY)

36 Darnley Gve., Gordon, 2072. NSW
right value by trial and error testing, using a hot soldering Iron as a heat source. A very good degree of stability for this band can be achleved.

The VFO tuning capacitor C2 should be about 50 pF to cover the band. A slow motion drive is recommended.

The PA tank is wound on a $11 / 4$ inch diameter PVC tubing obtained from a plumber. It consists of 24 turns of 20 B\&S enamelled wire. C6 and C7 are padded with fixed value capacitors.

A crystal microphone is used to drive the speech amplifier V5. V4 runs in class A. The modulation transformer is a standard 10,000 ohm tapped secondary loud speaker transformer.
In conjunction with a whip antenna, this rig has given many hours of good service, both as a home and and portable station.

This easy to build transmitter can be built from the average junk box in two weekends. Input power can be 10 to 20 watts depending on the power supply. This is adequate to give a large signal over hundreds of miles when conditions are reasonable, even with a modest antenna.

The transmitter uses conventional circuitry with valves throughout. The current drain is sufficiently moderate for the rig to be used as a mobile or portable station. As the individual constructor will want to use the components he has on hand, detalled constructional information is not given here.

This rig is used in conjunction with the transistorised top band receiver described previously by the author.

The VFO operates on 1.8 MHz and drives the final via an RC coupled buffer. Coils L1


FIG 2 MAJOR COMPONENT LAYOUT OF TRANSMITTER
and $L 2$ are wound on $1 / 4$ inch diameter formers. They are therefore long coils. To achieve best stability of the VFO, a negative TC capacitor of $3 \times 10 \mathrm{DF}(\mathrm{C} 1)$ is enclosed in the coil can of L1. The constructor will find it fairly easy to select the


# THE GOLDEN YEARS OF AR 

 IN VKBy OOTC No. 1823, Alan Shawsmith VK4SS 35 Whynot St., West End, 4101

Most of the OOTs who have been hams since what the Novice would call 'The Dream Time', l.e. fifty or more years ago, would say that their era, that of the Spark, was the Golden Age of Wireless. No one would argue this, or altempl to take from these pathfinders the romance and glory of their achievements. It must have been a lascinating period, Indeed, when wireless and DX were being triad and proved for the firat time.

However, there are OTs, rather than OOT8, who look back with nostalgia on the immediate pre-war years, i.e. 1930-39. They say that Improved equipment, a big increase in the world-wide Ham population, good sunspot activity, fair-dinkum camaradie etc., all went to make AR a pleasant and Interesting hobby; one which had none of the undesirable features of the modern 'ratrace'.

Again, some see the post-war II period as the all-time high. Sophistlcated gear appeared, SSB, the rotary beam, the transceiver: a Contest Calendar and Awards Programme developed: IPS Charts came into being. The House of Hamdon extended its rooms, bringlng with it new clubs and societies of diverse interests. Great migration occurred to the newly acquired bands of 15 and 10. Tremendous sunspot activity of 200 plus occurred in 1958/9, the like of which may not be seen again. All bands were wide open at S9 plus. Globe trotters Danny VP2VD. Gus W4BPD and Don W9WNV set up their gear at exotic spots and caused an all-time stir All this, plus a new official status - the tag of wireless experimenter, or hobbylst was replaced by "The Amateur Service".

Be all this as it may, it is not disputed that Australia has always been prominent in wireless experimentation. Even before WW1, telegraphists and others were endeavouring to send signals through space. However, it was not until the early 20s that licensed' (the Government by this time had got into the scene) amateurs started to show themselves as a cohesive force, on the short wave bands. (They also played a tremendous part in the development of Broadcasting, which began about the same period - but that's another story).

These were the days of the now famous names of MacLurcan, Pike, Culliver, Howden, Hume, Elliot, McDowell, Coxon and others. To MacLurcan went the great honor of putting VK on the global DX map. In 1924, using only a few watts of power, he worked USA Ham Station 6EKY - a VK-W first. A few weeks later, he pulled another ace from the pack, by QSOing Gland on 20 metres. In the contact with GEKY he is reported to have said "My hand trembled so much, I could hardly work the key".

From that time on, Hams, worldwlde, showed how effective shortwave communication could be. MacLurcan continued on, working International DX whenever it appeared, until about 1928, when, like Alexander the Great who found himself with no more worlds to conquer, he pulled the big switch on DXing, as such. He had blazed the first tralis and it follows that paths which lead to somewhere worthwhile soon attract many travellers. By 1930, SW-DX was commonplace.

It should be sald here, that our Kiwi cobbers across the Tasman were right up with us as pathfinders. MacLurcan 2CM in Sydney, and Bell 24AA in Waihimo, made the first VK/ZL QSO, early in 1923. In mid-1924, O'Meara 2AC Gisbourne, worked Brazzio of Argentina Sth. America approx. $10,000 \mathrm{~km}$, to make the first ZL/SA International DX. Right on the heels of this, Bell Z4AA worked USA several times. In late 1924, he got through to UK to G2SZ on 90 Mx. Then Max Howden A3B in VK, QSOd G2OD a fow weeks later.

For this writer, the Golden Age was that of the 1930s up to WWII. The hobby stild had the "gone flshin" pace about it, which meant the quality of human relationship was better. Then, the esprit-de-corps prevailed: the bands were filled with personalities rather than with prefixes. As forty years have passed, one might naturally ask - "where are they Now?" Some, like old soldiers, have simply faded away: others, too many in fact, have made their last entry further up the log and moved to where all good Hams spiritually congregate - on a hlgher frequency. Many are still allve but only a few diehards are regularly on air.
Where now is Mr. DX (not Gus, W4BPD) of AC4YN in Lhasa, Tibet. Was his handle Stan? For many years, the only foreigner allowed into the Forbidden City: a trusted confidant of the Dalal Lama, until political unrest forced him to flee. In his era, Mr. DX was as famous and as sought after as Sir Gus was, at his peak. Working AC4YN was the pinnacle of achievement for the pre-war DXer.
Is the Voice of the Congo still making earthly nolses? Stig, the affable priest signing ON4CSL, mostly on 10 Mx and dealIng with a permanent pile-up. Another must, for the avid DX chaser.

PK6XX should be remembered by many In VK. An archaeological expedition in the Celebes; this station was on nightly, openIng 807s and exchanging banter with all and sundry. Rag chewing, rather than QSOing.
Where is Scotty, XU8CR, in Shangai China? His regular signal at S 9 plus, was impossible to miss. So was his brogue.

Pre-war, the American fone band was usually an unbroken wall of AM heterodynes, but a few calls, such as W6ITH. W6BKY and W6AM on the West coast,
always managed to crash through loud and clear, no matter what the conditions. Of these, only W6AM is still fairly regularly QRV and he needs no comment, being a legend in his own lifetime.

And how many OTs recall these regulars of the 30s - EA4EO, I1ER, PY2CK, SP7DX, SP1AR, W1FH (the big sig), ZS2A (S9 on 7 MHz ), ON4AU, G6LK, AC2RT, PK1DA, F8EX, ZL2GX (one time top of the DX world), KH6IJ and others too numerous to mention.

In the words of Shakespeare - "all the world's a stage and we are the players". The OTs were the first to be able to perform to a global audience and against the scenario of their period - but now, like all good actors, they have, in the main, spoken their last lines, done their last turn and retired to the wings. Many, in their own way, made their own particular valuable contribution to AR. Now, the new Ham with changed values and outlook is replacing them.

In the days of breadboard and busbar when rigs were xtal controlled and rocks hard to come by, the "modus operandi" was to send a CQ on your fixed frequency, say 14080 and then tune from 14000 looking for a caller. Imagine this procedure in a present day contest. Imagine too, completely homebrewing the Rx and Tx : winding all coils, trannies, resistors, making fixed caps out of fag foil, variable caps from scrounged aluminium plates, pots etc.: grinding xtals and so on. Parts were so scarce, it was a case of tackle these jobs, or stay off the air.

What of the shape of things to come; the 2000 A.D. operator? (assuming Hamdon survives). Proposals have already been put forward that will virtually end the theory and code test. Instead, the intending operator will simply buy his plug-in appliance rig, demonstrate he can use it by calling CQ into what is no longer a global village but a teeming metropolis and have his ticket issued on the spot.

Those against this say it will turn Hams Into CBers, and not even glorified ones at that, as the standard of operating and ethics will immediately begin to fall. Those in favour maintain it is the only realistic approach. They point out that already the "guts" of a modern transceiver is simply a fog In the head of $90 \%$ of the operators.
Whatever does come about, it seems that the operator of the future will bear little resemblance to the OTs of the past and the word 'Amateur' is likely to become an issue in semantics.

AR's balmy days - the Golden Years when we never had it so good will be determined at some future date by Historians looking back. Maybe the best is yet to come in the expanding world of VHF no one knows. But what is known to all or should be - is that AR's fate hangs like Nebuchadnezzar's scales - precariously

WIRE ANT ENNAS FOR RADIO AMATEURS．
 How to build efficient hurizonial，vertical，multitap． ntennas for difticult OTH＇s． 286 M quickie beams． tuners．baluns，etc

ALL ABOUT CUBICAL QUAD ANTENNAS 112 pages． 200 illustrations： $\mathbf{\$ 6 . 9 0 ~ ( p \& p ~ \$ 1 . 0 0 ) ~}$ The world lamous＂Classic＂on quads＇Gives new
dimensions，revised gaun data．Quad $V$ Yagi．Minı Quad and Monster Quad constuction，correct dimensions 6 －80M．

BEAM ANTENNA HANDBOOK
$\qquad$ （ pR p 51.00 ） 200 pages， 122 illustrations． 58.60 ．Are 40 M beams worth ihe effort＇Construction triband and compaci beams．the rruth about heighi／matching systems． bHF HANOBOOK $O$ R
VHF HANDBOOK FOR RADIO AMATEURS 336 pages， 298 illustrations， 59.95 （ $p 8$ p $\$ 2.00$ Unigue new handbook covers major VHF subjects in UHF ants DX propagation sarellites．EMAE constive tion，ple．
new releases from the radio society o GREAT bRitain Oniy limited quantities so get yout adet in quick．
Analeut Radio Techniques
Guide io Amsleur Radia
Ratho Data Reterence Book
Teraperim Handbook
Test Equipment
IVI Nanual
ligaf Manual
Allaw ISc P\＆P pet coay


## ＊（quis）

AIR DUX COILS



 low resonmice at my trenvenc，it you would like A shoto copy of these chatis belore buying smaly Alt coils ate 155 mm long $\mid 6 " 1$ and ate teright lined No Oimm．Wire Dimm．Pich per Price |  | （mml | （mm） | Turn |  |
| :---: | :---: | :---: | :---: | :---: |
| 200016 | 20 | 08 | 16 | 53.40 |
| 401016 | 40 | 1.0 | 16 | 54.60 |
| 02042 | 40 | 20 | 42 | 54.95 |
| 602042 | 60 | 20 | 42 | 5650 | HAM HIGH QUALITY LOW NOISE FET RF AMP MODULES

Thew undis dit drebgrant 10 be himply canner led 2 melie unit You cat rumn mount throm i，ght at the artal it vou require muximum pertormance Indal mmpedance 5075 onm，noise factor 56 dth gain
2030 db．operating yolinge $9-12$ VOC to 15 MA. dirmersions． 20 mm a $30 \mathrm{~mm} \times 15 \mathrm{~mm}$ Fully wireal a rested Crant supuled，only 4 connections requiraci $\underset{\text { ERB－6 }}{\text { ERS－}} \mathbf{2 7}$（CB）
ERB -2
ERB


| 2729 mHz |
| :--- |
| $50-54 \mathrm{mHz}$ |
| 144 |

HAM 6 \＆ 2 METRE FET CRYSTAL LOCKED CONVERTERS
年这e beedidul licte high pent loim ance low noive with high stability a rista to qive tunesale 1 F Outbul on $28-30 \mathrm{mH}$ I ture any communication receiver． Extrenely stable and rxcellent peest 50 I5 ohm input
 Compietety rested and pir aligneal．Howtwer esned Circuits may be simply ie Dediked ig
tap mod ol bend in ou wit to
do wo Suplied comple nith

## circuit



Pes）

JUST IN．．．Set of 2 cassotters for


MORSE CODE BY THE WORD METHOD We have searched the world in response to hundreds of has heen evolved ather years ol practical experience． It is unusual，yel is claimed to work，by starting at a moderate speed using simple material and then building up at he sume speed 10 more diflicult material．Thus the student doesn＇t have 10 increase his speed．At the end o a speed of 13 mpm －and you should have tesched that level of skill in much less time．Come on vou novices and $Z$ calls，here＇s your chance to get a full licence＇


## 原

4B
GA6020 Quarter wave 6M，5／8 2M antenna． JUST ARRIVED uses PL259 connector． Only $\$ 22,50$（P\＆P \＄2．00）Mag．Base $\$ 25.00$ Cl

## TOKAI 5WATT MICROMINI 27MH2 TRANSCEIVER TCSOA1 Thas is a laniastie litile unit which is ideal lor base station or mobile   complett with PTI mit and mounting bracknt．（P\＆P S3．00） <br> $\$ 99.00$（P\＆P \＄3．00）

DE LUXE Sideband 5Watt Transceiver Model II
Opecates fiom 12 V d．c battery 06 channel capability．Fitted with oulput e Squalch and noise limiter in recoiver．


LATEST DICK SMITH 5WATT BASE STATION



GORE HILL CENTRE IS OPEN TILL $8 p m$ IHURSDAYS UNTIL CHRISTMAS

## KENWOOD



KENWOOD TSS2O SSB TRANSCEIVER

‘SIDEBAND' Walkie Talkie CHAISTMUS TOALL

In the balance. ITU 1979 will bring our moment of truth and our day of destiny. If the fates are kind, AR could go on to bigger and better things. If decislons go badly, then our service hobby could take a blow
from which it might never recover. The only certainty is that every human activity faces abrupt and radical changes and AR can be no exception. It is wise to operate along the Confuscian maxim 'enjoy your-
self, It's later -' and ponder on an observation by the late General D. MacArthur, who said 'there is no such thing as permanent security, only opportunity'.

# EXTENDED USE FOR YOUR <br> SWR BRIDGE <br> Geoff Wilson VK3AMK <br> 7 Norman Ave., Frankston, Vic. 3199 


#### Abstract

One of the most useful liems in any shack is the SWR bridge. This article shows how one unit can be used with many transmitters without uncoupling of co-axial cables.


Apart from its normal function the SWR bridge can also serve as a relative output indicator for transmitter tuning or carrier balance, etc. Where only one transmitter Is used one SWR bridge is sufficient, but if more than one transmitter is used the need often arises to monitor outputs in several different lines. This can be done with one SWR bridge by changing it from line to line as required but at best this is inconvenient.

The other alternative is to purchase additional SWR bridges for each transmitter used but this becomes expensive and requires additional space in the operating area for each unit; much of the time the additlonal bridges remain unused.

Recently I wanted to monitor four different transmitter outputs but only one would be operational at any given time. These were (1) $160-10 \mathrm{~m}$ from a HF transceiver (2) 6 m from a transverter (3) 2 m from a transverter (4) Provision. for 70 cm from a projected transverter. Having on hand a good reliable SWR bridge I decided to investlgate ways of using this for all four applications.

The first thought was to switch the various lines but this had several drawbacks among which would have been the fact that only one could be used for receiving at any time. The usual SWR bridge consists of two main parts, a reflectometer unit in the antenna line and a suitably housed and scaled meter with calibration control and Forward-Reflected switching.


Although " S " meters are readily available from most sources it seems that calibrated SWR meters are all but unobtalnable on their own, due no doubt to the fact that many makers of meters also produce SWR bridges. I therefore decided to use the existing meter and controls to cover all my needs. This had the extra advantage of not requiring any additional space near the equipment. The meter was a 200 uA type and sensitive enough to give full scale deflection with the commercial reflectometer on 80 m so 1 left the co-ax from the H.F. transceiver connected to the SWR bridge.

Some time ago in "EA" printed circuit reflectometers suitable for VHF/UHF use were described (Electronics Australia, April, 1971). These were later made available through the WIA Disposals at a very reasonable price. I made up three of these units and placed one in each co-ax line from the VHF/UHF transverters and connected the outputs in parallel, i.e. each Fwd output connected to each other Fwd output and each Ref output connected to each other Ref output.

These outputs were then connected in parallel with that from the original reflectometer in the HF line. Now whenever a transmitter is operated the SWR bridge monitors each line and shows the SWR on the line in use, no switching or lead changing is required, the only variable being the setting of the sensitivity on the calibration control from band to band.
Another printed circuit reflectometer was also described in "QST" October, 1969, and this should also be suitable. Details of construction may be found by referring to the above articles which give adequate Information to enable anyone to make their own.

The only modification made to the original SWR bridge was to add a polarized socket on the rear panel to connect the line from the external reflectometers to the Internal circult. There is no interaction between the units and it has performed quite satisfactorily for some time. The total cost involved has been only a fraction of what separate SWR bridges would have cost.

## MAGPUBS

- THOUGHT ABOUT CHRISTMAS PRESENTS?
- A MAGAZINE SUBSCRIP. TION FOR A FRIEND THROUGHOUT 1976?
- GIVE YOURSELF A BREAK TOO?

Why not write to your Division or direct to:

## MAGPUBS

P.O. Box 150, Toorak, Vic. 3142 for lisis.

## TECRINICAL CORRESPONDENCE

## ST5 RTTY DEMODULATOR KIT

Since the article was written for AR (and published June '75), there has been a number of price rises and what with postage, the price of the Kit has had to be increased due to the above and the new prices are as follows below:-
Complete ST5 RTTY Demodulator Kit
$\$ 80.00$
Or Split as follows:-
Set of Semiconductors
Printed Circuit Board and Instructions
$\$ 5.60$
Mains Transformer to suit … .... .... $\$ 16.00$
All Metal work including case, Chassis, Panel and Decal
All prices include postage.
There will also shortly be available addltional units for ST5 to add; AUTO-START/ ANTI-SPACE FACILITY, also a 170 Hz , BANDPASS INPUT FILTER.

Page 42 Amateur Radio December, 1975

# INDEX DF AR TECHNICAL ARTICLES JANUARY 1971 - DECEMBER 1975 

## Have you searched for a Technical Article and could not recall the year it was published? <br> Continuing with the 5 -yearly lists published each December for the years 1955, 1960, 1965 and 1970, here la the 5-yearly liat for 1975.

## hf antennas

| ome Station Antenne for 160 Metres: <br> Part One - Introduction <br> Part Two - Vertical Polarleed Antenna <br> Part Three - The Balanced Horizontal <br> Part Four - Practical Applicatlona .... .. <br> Part Five - Inverted "L" \& sloping <br> Antenna |  |
| :---: | :---: |
| A vs. Tribe |  |
| he VK2AAR Specl |  |
|  |  |
| 20 Metre Mldi |  |
| Every Amataut Station Should Have One | A |
| ve Bullt a Mons | Dec |
| ractical Design of Moblle | Mar |
| mple LInear Traps - For Trl-band Beame and Verticala <br> The Rake Antenna" |  |
| The "Wipertator" | Aug |
| Conatructing an LP | Jan |
| 5RV | Jan |
| Technical Correspondence on |  |
| Technical Correspondence on LP Filtep | Mar |
| Tuning the Quad the Easy Way | Feb |
| oblle Whip Construction Detalla |  |
| y a Co-axial |  |
| A Simple 3 Band Aerial for Portable Use | May |
| Tuning and Feeding a 40 Metre Yagl .... |  |
| An Antenna for 160 Metres-Loop Antenna |  |
| bile Antenna for 40 Metrea | Nov 73 |
| fe | De |
| Feeding MF Aerials Againat Ground | Jan |
| A Broad Band Travelling Wave Dipole |  |
| Some Thoughts on the G5RV |  |
| aign of Normal Mode Helex Antenna |  |
| ther Thoughts on the Ublquitous G5 |  |
| Double Inverted V | Jun |
| A Long Wire Tuning Unit for 80-15 |  |
| gh Rlse Antenna |  |
| ased Vertical Anlennae |  |
| O Metre Quad Tuning | - |
| Rotating a 20 Melre Beam With a Stolie |  |
| The Trinity Antenna | July |
| rizontal to Vertical the Easy Way | Sep |
| p Dipole for 80 and 40 | Sept |
| nise your 14 AVO |  |
| Antenna Rotator .... .... .... .... .... .... .... |  |

## VHF ANTENNAE

Results of the 1970 Vic. 432 MHz Ant. Gein Contest

Jan 71
Feb 73
Apr 73
Dec 73
Dec 73
Dec 73
May 74 Sept 74

Apr 75

Nov 71
Feb 71
Mar 71
Oct 71
Mar 71
July 71
May 71
Apr 72
June 72
Jan 72
Apr 72

Electrical Measuring Instruments VK3AXU:
Lecture 15A
Lecture 15B
Lecture 15C
June 72
July 72
Aug 72
Sept 72
A30-40 MHz Frequency counter:
Part 1
Mar 73
App 73
Modifications to the Sakura Model TR85 UHF DIpper
FM Dlacriminator Meter Feb 74

Palec VCT Modifications .... .... .... .... .... ... Aug 74
A Monltor Scope .... .... .... .... .... .... .... Oct 74
Revamplng a VT VM .... .... .... .... .... .... .... Feb 75
A Mini Size Fleld Strength Meter .... .... .... May 75
AECEIVIMG
VK3 Six Metre Converter .... .... .... .... .... Dec 71
An Integrated Circult I.F. Strip .... .... .... Nov 72
A Solld State Amateur SSB Racelver: Part 5
The Young SWL
... July 72
Using the LM373
Varactor Tuned BFO
10 Metre Pre-amp for Oscar 6
Improving Loud Speaker Reproduction for SSB DX
A Nolse Gate Converter
Direct Conversion Receivers
A Solld Slate Front End
Pre-amp for 28 MHz
Audlo Derived AGC for SSB Recilvers
Receiver AFC for RTTY
Transiatorised Recelver for 160
What To Do With That Old Receiver
Improvements to the Loudspeaker Filter
Modifications to the VK3ABP 6 and 2

## Converters

Two Metre Pre-amplifier and Converter
TRANBMITTER8
A 20 W 578 MHz Varactor Mulifplior

## Transmitter

Flitar Type $\mathbf{\text { SSB Tianami.... .... .... .... .... Apr } 7 1}$
71
Practical VXO Deslgn .... .... .... .... .... .... Apr 71
An Approach 10 UHF SSB .... .... .... .... .... June 72
An FM Repeater:
Part 1
Part 2
After Thoughts
A VHF 25-Watt Power Amplitier .... .... .... Jan 72
Dlrect Keying of SSB Transmitters .... .... Aug 72
Tuning Linear Amplifiers
Why Not Try Double Side Band
Premixing With a 5 MHz Crystal Filter
The Unsuccessful Ham
A VFO for 5 !o 5.5 MHz
A Simple Single Side Band Transmitter
A Linear Amplifier
Novice Transmliter:
Sept 75

Part 2
Part 3
Meteor Scatter Linear Amplifier
ORP Rig for 7 MHz
Simple Top Band Transmitter
TAANBCEIVERS
A Transistorised Carphone:
Part One - The Receiver
Errate, Part One
Some After-Thoughts
Using the Plessey SL600 in Transceivers
A 2 Metre Transverter
A Visible Mule for Your Car Phone
A 6 Metre Transceiver
An SL600 Transceiver
A Digital Readout for Transcelvers
Amateur Bullding Blocks:
Part 1
Part 2
Part 3
Part 4
Part 5
Modifications to Car Phone Ior use with a
2 Pole 6 Position Switch

CW Netting the Transcelver
Oct 75 A Solid State 6 Metre SSB Transceiver EQUIPMENT REVIEWS - SPECIALS
Yaesu YD844 Desk Microphone
Barlow Wadley XCR-30 Receiver.
FT101B Transceiver
Belcom LIner 2 Mx SSB Tranaceiver
Spectronics DD-1 Dlgital Display
ICOM IC22 2 Mx FM Transceiver
Allas SSB Tranacelver
Multl 72 Mx Transcelver
Kenwood TR7200G 2 Mx Trenscalver .... .... July 75
SSTV
Slow Scan Talevision - The Australian
Way:
Part 1 .... .... .... .... .... .... .... .... .... ....
Part 2
Atter Thoughts
Part 3 ghta
SSTV Specifications
Aug 72

Generator for Australian
Standards
May 73
SSTV Scene - 1974 .... .... .... .... .... .... .... Nov 74
FT200 KINKS \& MODS
The Yaesu FT200:


FT101 KINK8 \& MODS
Modificalions to the FT101
Aug 73
Sept 73
June 73
Mar 74
Nov 74
Nov 74
Sept 75
Oct 75
May 75
Mar 75
June 75
Dec 75

Nov 71
Mar 71
Apr 72
May 72
Oct 72
Nov 72
Apr 72
Mar 72
June 72
Mar 72

June 72
July 72
Nov 72
Modifying the TCA 1648 Low Band FM Transcelver
A Noise Blanker for the Trio TS510 .... .... Jan 73
Heathkit SSB Transceivers
Improving the Eddystone 888 for SSB
Modifications in General
Servicing the FT400
June 73
Sept 73
Feb 74
Apr 74
July 74
Dec 74
June 75
Sept 75

Jan 72
May 72
Sept 72
Aug 72

Aug 72
Oct 72
Dec 72
Sept 72
June 73
Nov 73
Dec 73
July 74
Aug 74
Feb 74
Dec 74
Mar 75
July 75
July 75
Nov 75
c 75

1 Continued
FT101 Modifications
FT101 VOX Operation
Improved CW Operation for the FT101B
Looking at the FT10
More on the FT101
FT101 Audio Gislick
FTilicalions to FT101
More on the FT 101
COMMERCIAL KINKs a MODS
Modifications to the Mute Circuit of the
Pye Mk. 2
Audio Derived AGC for SSB on Old Receivers
AHer Thoughts
Conversion of A.W.A. Carphones:
Part 1
Part 2
Galaxy Recelvers
Old Receivers and SSB
Swan Transcelver
The Drake 2B Recelver
The R1155 and 160 Meires $\qquad$
rio 9R5SD Receiver:

|  | Modifying the TCA 1649 Low Band Transcelver |
| :---: | :---: |
|  | A Noise Blanker for the Trio TSS10 .... Heathkit SSB Transceivers |
|  | proving the Eddystone 888 for SSB |
|  | in |
|  | 40 |

Aug 72
Jan 73
Feb 73
Feb 73
Apr 73

Converting the Yaesu FR50 Recelver to Cover 160 Metres Trouble Shooting in the FT 100 Modifications to the R390A/URR
Part 2

## Patl 3

Mobile Linear for the FT75 Transceiver Modifications to the MRGA Carphone Transceivers Used by Amateurs Post War Wide Band Pre-amp for the FT DX4OT and FT200

## Good Quality CW from the 122 <br> Moditying the Vinten MTR13 tor 2 Mx Additional Band Coverage for Heathkit

 HW32AMulti-Channel Switching for Vinten MTR13 Modification to Vinten MTR12 to $\mathbf{5 2 . 5 2 5}$ Modification to Vinten MTR15 to 53.032 A Cradle for Ken KP202
The Ken KP202
A Drive Contiol for Older SSBs
The AR7 Part 2
The AR7 Palt 3
Operating the MR6a from AC
The Geloso 222
Heathkit SB100 and SB101
AC Power Supplies for Solid State 2 Metre Transceivers
Some Additions to Ken KP202
Parl 2
A Hellcal Whip for Ken KP202 Alignment Problems With Yeesu
Transceivers
Galaxy 300

## Keep II Clean

Ken Antenna Repairs
ModityIng the Trio JR60 Receiver
Improving the EICO 753 on 14 MHz
PROPAGATION
VHF Meteor Scatter Propagation A Bit of Light Nonsense
VHF Transequatorial Propagation:
Part 1
Part 2
12 Months Study of 20 Metres
Solar Flux and Sun Spola
Solar Flux and Sun Spots
OSCAR - AND 7
Amsat 1970 Annual Report A-0.5 Performance

## Balloon Flights:

A Preliminary Report
Equipment Recommended for Oper. with A-O-B
Prolect Australis Report
Amstralis: 1971 Annual Report
AO-C 2 to 10 Mx Repeater
AO-Q Command System
AO-C Telemetry System
Project Report
Project Repor
Satellite Track Calculator
Project Austratis Report
Using Standard Orblts for Oacar e CQ Oscar 6
Oscar 7 and lis Capablities
Telecommand and Telemetry of Oscar 6 and 7 Part 1
Telecommand and Telemetry of Oscar 8 and 7 Part 2
Telecommand and Telemetry of Oscar 6 and 7 Part 3

## miscellaneous

Circuits for All - A Simple Method of Drafting
Crystals for Carphone - and Oiher Things How Many Mlkes?
Japanese Translstors
Lectures by VK3AXU:


Osc. Kita for the Amateur PEP, Average Power, and Related Mattera A Practical VHF 8 UHF Coll-Winding Data Practical VXO Design
The "Sentinel"
The Solar LInk
"How Many Hz in Frequency
Long Path Great Cycle Map ....
More on Morse Keys
On FM Repeaters
Programmable Digital Keyer
Simpie Keyer
Solid State Electronic Keyer
Solid State Repeater Identifier
A Drop of Home-Brew
After Thoughts
CW, vOX or Seml Break-in
The Phase Lock Loop
Tracking FM-AM Demodulator uaing an ic. Jan 72
Building Modem Filters:
Part 1
Part 2
Part 3
Bullding High 0 Inductors with Ferritea ...
Historical Developments of UHF Techniques:
Part 1
Part 2
Part 3
Seen the Light - Sataty Precautions .... Mar 73
Fixed Capacitors:
Part 1
Part 2
Part 2 ...........
Part 2 continued
Part 3
Varlable Voltage From a DC Source .... .... June 73
Amateur RTTY In Australla .... .... .... .... .... June 73
Ohms Law SImpllifed
Digital Electronic Kayera
Audio Rectificatlon HInts - Interterance
Making the Most of Mercato
Making the Most of Mercator Part 2 .... Nov 73
Transceiver Reclprocity and Recelvar
Complexity
An Active Fllter
An Actuator for Electronic Kayare
A Serles Mode Cryatal Osclllator .... .... ....
Flash Back 50 Years - One Battery Radio
Altenuator Networks
Experiment With Modulation and Audio:
Part 1
Part 2
Part 3
Part 4
2 Metre RTTY Autostart
FM 2 Metre Repester Detalla (all Ausi.)
Some Thoughts on Spesch Processing
The International Fox Tango Club
A Sheet Metal Bender
Soldering for Electronics
A Keyer for VK3RTG
12 Months Study of 20 Metrea
Solar Flux and Sun Spota
Solar Flux and Sun Spota
Micro Sirip Line Data Curve
Proportional Crystal Oven
A Repeater Identifier
Power Tranatormera the Beginninga
Remote Cryatal Switching
Ploneer 8 Track Cartidge Player.
Perth 2 Metre Repeater ........ .... ....
A Simpllfied Method of Morse Code
A Simplified Method o
Message Generation
A Wide Band RF Transformer
Loud Speskers as Microphones
An Audio Frequency Notch $Q$ Filter
A Tilt Over Pole
Extended Use For Your SWR Bridge
What's Inside the Battery

## POWER SUPPLIES

Regulated Power Supply for Tranalatorised and Integrated Circult Prolecte....
Voltage Tripler Power Supply Using TV Components
Translstor Regulated Power Supply
Variable Voltage From a DC Source
A Regulated Power Supply .... .... .... .... .... July 74
Some Thoughte on Regulated Power

## Suppllea

Bench Pare Oelight Power 8upply
RFI
Two-Stub Notch Flitere for TVI .... .... .... July 71
Tackling TVI

Amateur Transmitter Interference to Tape

|  | Sept |
| :---: | :---: |
| Audio Frequency Interterence (AFI) | Sept |
| TV Interference from HF Stations | Sept |
| EMP the Ultimate EMC Problem | Sept |
| Electronic Pollution-An Impending Crlaia | Sept |
| Ignition Noise Reduction | Jan |
| Ignitlon Noise Suppresalon | Mar 75 |
| EWCOMERS NOTEEOO |  |
| Transistor Regulated Power Supply | July |
| Cheap Parts for Conalruction Projects | Aug |
| Old Domesilc Recelvers for Amateur Use | Sept |
| "Your Radio Reference Lubrary" | Oct |
| Learning Morse Code: Part 1 | Dac |
| TVI on 6 Meires | Jan |
| BFOs for Recelve | Feb |
| Learning Morse Code Part 2A | Mar |
| Learning Morse Code Part 2B | Apr |
| Learning Morse Code Part 2C | May |
| Teat Instruments for the Ham Sha | June |
| Hints for Beginners | July |
| Converting BC Recelvera to 160 | Aug |
| YRCS Tranaiator Signal Injector | Sopt |
| The Translatorised Slonal Generator | Oct |
| S Meters for Amateur Recelve | Nov 73 |
| mprovising With Readlly Avallable Hardwara | Dec 73 |
| Amateur Examinatione | n |
| TVI, BCI, and the Nelghbour | Jan |
| Product Delectors for your Recelver | Feb |
| Equipment Layout and Dasign | ar |
| Part | Apr |
| 6 Metre Interference to Channel O | May |
| Some KInks and Commenta | May |
| "Zero Beal'" the YRCS Magazine | June |
| 2 Meire FM Repeaters | July |
| 2 Metre FM Repeatera | Aug 74 |
| Audio Frequency Interference - How it Happens $\qquad$ | Sept 74 |
| Hinta on Receivar Maintenance | Oct 74 |
| Novices | Dec |
| Low Power DX | Apr 75 |
| Medium Wave Loop Antenna | June |
| Morse Code | July 75 |
| Practical Antenna Baslcs | July 75 |
| A Novice Tranamitter: |  |
| Part 1 | Sopt 75 |
| Part 2 | Oct 75 |
| Part | Nov 75 |
| Laying Out Your Novice Transmitter (and Receiver) $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ | Dec 75 |
| TRY THIS |  |

Precise Zero Beat Device Using LED's Neon Bulb Lamp Driver
Simplified Meter Swliching
A Tube Adaptor
Toothpaste Tube Cap Inaulator
Battery Connectors
Dlode Protection for Heath Probe
Thumb Groove Indexing the Handbook
Prevent Melal Fatigue In Beam Elemente
Dilling Glass
Cleaning and Keeping the Iran Clean .... ....
Blnding Magazines
A Simple HIgh Pass Fliter
Drilling Booms for Yagis ...
True Wave Length of Bands
Semiconductor Heat Sinke
Localing Earth Wires
Locating Resiators
Some Useful Workshop Hinta
A OSO Fillng Systam
Ald to Soldering
A 4 Phase Quadrature Split Beam Mixer
A Multimode Detector
Anll TVI Trapa
Antennas Can Cause Interference
KP202 RF Power Ampllfier
Subsillute Aligning Tool, Backlighting
Printed Circult Boards, Toothpaste Tube Knobs
Ignitlon Nolse Reduction
Look Ma No Hand (Collar Microphone)
Moblle Output Indlcator
Avoiding Pentagonal Holes
Extra Relay Contacia
Modificatlon to Minl Scope Soldering Iron FT101 Audlo Gislick
Two Wire Reversing for AC/DC MOTORS
Convert FT200 to 11 Matres
Ken Antenna Repalr
Lamps as Indlcators

VK3AOD Ground Plane

Sept 74
Sept 74
Sept 74
Sopt 74
ept 74
Mar 75
July 72
Aug 72
Oct 72
Dac 72
Jan
Fab
73
mar 73
Apr
May
73
June 73
July 73
Aug 73
Oct 73

Dec 73
Jan 74
Jan 74
eb 74
Apr 74
May 74
May 74
July 74
Aug 74
Sept 74
Oct 74
Apr 75
June 75
July 75
July 75
Sopt 75
Nov 75

Dec 75

Nov 73
Dec 73
Jan 74
Jan 74
Jan 74
Feb 74
Feb 74
Feb 74
Feb 74
Mar 74
Mar 74
Mar 74
Apr 74
Apr 74
Apr 74
Apr 74
May 74
June 74
July 74
Aug 74
Sept 74
Nov 74

Dec 74
Dec 74
Jan 75
Feb 75
App 75
Apr 75
Apr 75
May 75
May 75
May 75
July 75

Dec 75
Dec 75

Page 44 Amateur Radio December, 1975


## There's a place in your shack for this..

Today's Amateur! A contradiction in terms. Some of our most professional communications men are 'amateurs'.

For them, we built the bwd 504 - to take its place, along with other state-of-the-art gear, in that other misnomer, the 'shack'.

It's not an expensive instrument . . . but it has a frequency response beyond 40 MHz : bandwidth to $6 \mathrm{MHz}-3 \mathrm{db}$ : time base $0.5 \mu \mathrm{~S}$ to $1 \mathrm{Sec} / \mathrm{cm}$, with 5 Hz to 15 MHz trigger. You can check your modulation visually - and literally see what you're doing with practically everything else, including audio and RF.

Ask for the brochure.

## B.W.D. ELECTRONICS PTY LTD.

Miles St., Mulgrave, Vic. 3170 P.O. Box 54, Glen Waverley, 3150 Phone, (03) 5612888 Cables, 'Oscilloscope Melb. N.S.W.: (02) 9297452

DISTRIBUTORS
S.A.: (08) 2691244
W.A.: (092) 253144

QLD.: (072) 527255
TAS.: (002) 231843


SPECIAL
$\mathbf{S 2 5 5}$ WILLIS AUTOPHONE U 432-5 $\$ 255$

## 6 CHANNEL, 70 cm FM TRANSCEIVER

The Willis Autophone U432-5 comes complete with microphone, chrome mounting kit, 1 set of high quality crystals and 90 day factory warranty. \$255.

SPECIFICATIONS:
RF power output: 5 watts (min.)
Power requirement: 13.8 V DC, 2A (max.) negative ground
Rx Sensitivity: 0.5 uV for 20 dR quieting

| Weight: | 3.2 kg | Depth: | 20.2 cm |
| :--- | :--- | :--- | ---: |
| Width: | 19.6 cm | Height: | 4.8 cm |

HIGH POWER VERSION, 30 watt (min.) RF output, 40 watts typical. $\$ 295$.
OTHER WILLIS EQUIPMENT:

[^14]TRIPLER/AMPLIFIER, 200 mW in at $2 \mathrm{~m}, 10$ wats out at 7 Cm . $\$ 55$.

Cash with Order to:

## WILLIS COMMUNICATIONS PTY. LTD.

13 BISHOP STREET, KELVIN GROVE, Qld. 4059
Phone: (07) 3568515
Sydney Enquiries: DICK SMITH ELECTRONICS - Phone 4395311
When ordering Autophone U432-5 please state frequency required.

# NEWCDMIERS NDTEBDDK <br> with <br> Rodney Champness VK3UG and David Down VK5HP 

## Laying out your novice tRANSMITTER (AND RECEIVER) -

 Part 4The layout of most pieces of equipment is important if they are to perform satisfactorily. This transmitter is no exception, although it is not as critical as some pieces of equipment in this regard. You are referred to Newcomers Notebook for March and April 1974 which deals with the layout of equipment in general. The main points that must be considered with any equipment are (a) that inputs are kept away from outputs, and (b) that incompatible sections are kept apart. These points have been observed in the layout of this transmitter.

The original chassis size used for the complete transceiver was 11 inches by 8 Inches and this has proved to be a bit cramped due to some necessary alterations to the original design. It is suggested that the chassis size be increased to 12 inches by 9 inches so that crowding does not occur. The depth of the chassis should be 2 inches. The exact layout in fractions of inches for the various components has not been done as it is expected that you will have slightly different components to the author which will require slightly different mounting positions to the originals. The author used radio and TV components salvaged from old chassis. The PA tuning gang is one section of a dual gang recelver tuning capacitor, the relay was from an old PYE Reporter transceiver, the PA tank coil former was a plastic pill bottle, the chassis for the transceiver was made from 20 gauge galvanised sheet steel.

The layout of the transceiver can be seen in Fig 1 as viewed from above the chassis.


## FIG. 1.

The dotted lines indicate the approximate extent of the below chassis wiring of each section of the transmitter. The small arrows pointing out of each of the transmitter valve location circles indicate the largest gap between pins on each of the valve sockets.

Fig 2 shows the front panel layout used with the transceiver. It will be noted that the front panel has a "margin" of $1 / 2$ inch around it so that the complete unit can be mounted in an open fronted box using $1 / 2$ inch timber such that this metal margin covers all of the wood of the box. On the bottom of the box rubber feet can be used such as available from Clark Rubber or two wooden runners can be glued to the bottom of the wooden case. It is desirable


FIG.2. FRONT PANEL LAYOUT

CHASSIS LAYOUT
that a few holes of at least $1 / 4$ inch diameter be drilled through the bottom of the case for ventllation of the under chassis area of the equipment. A few holes can also be drilled through the chassis above heat producing components.

The back of the case should not be completely filled in; In fact the bottom $21 / 2$ inches should be open to allow ready access to controls and connectors on the rear apron of the chassis. The extra $1 / 2$ Inch allows inflow of cooling air and if a $1 / 2$ inch gap is left at the top of the back as well, the hot air can be ventilated from the cabinet. This strip of wood on the back would measure about 12 inches by $21 / 2$ inches and could be 3 ply or masonite or other thin wood. In fact most of the cabinet (case) except the base can be made of quite thin timber if you have some wood working ability.

Some people may have a receiver and so will not be contemplating building the receiver section of this transceiver. The chassis can be correspondingly reduced in size or alternatively the transmitter power supply can be built on the section that was reserved for the receiver.

The power transformer should be located approximately where the receiver tuning gang is shown and orientated so that its laminations are at right angles to those in the modulation transformer, otherwise magnetic coupling between them could put hum on the transmitted signal.

During the next two months will be described a few minor alterations to the transmitter which will permit it to operate on 160 metres and operate with a separate receiver. A fow minor component variations will also be mentioned.

## BRIGHT STAR CRYSTALS

- PROMPT DELIVERY GUARANTEED
- ALL TYPES OF MOUNTINGS

Such as HC6/U (style D) ... HC18/U (style J) . . . HC25/U (style K) . etc. . . Frequency range up to 140 MHz on 5 th overtone.


- ACCURACY
- STABILITY
- ACTIVITY
- OUTPUT


## BRIGHT STAR CRYSTALS PTY. LTD.

35 EILEEN ROAD. CLAYTON. VIC. 3168 Phone. 546-5076 (Area Code 03).
INTERSTATE CLIENTS: Contact your Local Agent.
Let us quote you for all your Crystal requirements.
OUR EASY-TO-READ CATALOGUE IS NOW AVAILABLE.
Hobart: DILMONT INSTRUMENTS - Phone: 47-9077.
Perth: W. J. MONCRIEFF PTY. LTD., 176 Wiftenoon Street, East Perth. 6000 - Phone: 25-5722.
Brisbane: FRED HOE \& SONS PTY. LTD., 246 Evans Road, Sallsbury North, 4107 - Phone: 47-4311.
Adelaide: ROGERS ELECTRONICS, P.O. Box 3. Modbury North, S.A., 5092 Phone: 264-3296 - 426666.

## SANKEN

 AUDIO```
10W
EX STOCK
TECHNOLOGY PRODUCTS
66 MILTON PARADE, MALVERN
```

$\$ 7.14$
\$14.61
$\$ 18.58$
\$28.99

Bus.: $\mathbf{2 0 7 8 3 9}$
A.H.: 538627

miniprint

AEE Manufacture a comprehensive range of professional and semi-professional capacitors in Australia. In the main these are of Epoxy Encapsulated 'Miniprint' design utilising metallized dielectrics. As the name implies 'Miniprint' capacitors are of small size and designed for printed circuit board insertion.

IF QUALITY AND RELIABILITY ARE OF PARAMOUNT IMPORTANCE THEN SPECIFY MINIPRINT.

A.E.E. CAPACITORS PTY. LTD.

202 BELL ST., PRESTON, VIC. 4801211
134 BARCOM AVE., RUSHCUTTERS BAY, NSW. 319309

Novice RECEIVER

It is not intended that the Novice Receiver will be described for a few months as a

Commercial Kinks

with Ron Fisher VK3OM
3 Fairview Ave. Glen Waverley. 3150

MORE ON THE FT101

In the October issue I touched on several aspects of the FT101 and this has brought a response from two readers.

The first was from Harry Leeming G3LLL. Harry of course is the driving force behind the famous G3LL RF speech clipper designed to go with the FT101/B.
"I noted your report on the zener diode modification for the overload problem on the FT101. I have just run a quick trial on my own FT101, and it does work really well. At first it is deceptive as the signals which were previously 59 only read about S6 after the modification, and one is tempted to think that the sensitivity has been reduced. This is not the case however, as weak signals are just as strong and presumably the effect is caused (as is the cure) by the fact that introducing the zener doubles the AGC applied to the second gate of the first transistor. I think Jack Taylor should be congratulated on a very simple modification, which I have no doubt Yaesu will eventually get round to copying'.

In the October issue I also published a hint on the 101 VOX. Roy Hartkopf VK3AOH had been having trouble with the VOX of his 101B and we had discussed the problems during a telephone conversation a fow months earlier. Roy's letter makes interesting reading as he has come up with a new cause and solution to VOX problems.
"The key trouble is that it seems impossible to get information as to what is in the IC's especially the TA 7042M, and without this one is only guessing.

Anyway I finally decided to make a mock up socket and take the board out and have a thorough look at it. I eventually found that the key to the trouble is pin 7. This goes to the mode switch S2c and in the tune and CW positions it is isolated from earth. This is OK for the mic amp, but I cannot see why it should also disconnect the 470 ohm resistor from pin 6 of the IC as this is still used for the VOX. When it does this the threshold voltage on pin one rises by a couple of millivolts, enough to cause the sensltivity to change and the
number of David Down's articles are waiting to be presented. However, just to satisfy your curiosity a very general des-

VOX to chatter. The answer is simplicity Itself. Simply take the 470 ohm resistor off the pin 7 line and ground it permanently. The VOX problem entirely disappears. There is a handy earth run down the side of the board right beside the resistor and the change can be made in five minutes. I also suspect that this generally improves the VOX stability on all modes because the slightest noise on pin 6 (and it could be caused by the emitter current from the mic amp flowing through S2c), will change the VOX sensitivity. Why on earth Yaesu ever did this I cannot imagine. I think it must be the hangover from some previous design. Personally, I would be wary of grounding the source of Q5 as this could lower the efficiency without curing the basic cause. (Commercial Kinks October 1975).

I think changing C23 to . 33 is a bit drastic. I changed it to .27 and found that plenty and I also changed C22 from . 01 to .022 to match. I have not found any front end overload troubles but have not looked Into this thoroughly.

A thing which annoys me is the fan running all the time on AC. Also the sidetone does not come on unless the heaters are on due to the fact that it is routed through S5b. So I removed the wires from S5b and permanently shorted them together and then ran a couple of wires beside the existing mains run back to the transformer. I connected the fan in series with this switch and now the fan goes on and off with the heaters and the sidetone is available without switching the heaters on.

I have also found the Yaesu XF3OB AM filter is physically and electrically compatible and I put this in the spare place where the CW filter normally goes. The Improvement in the AM reception is unbelievable but some dicey rewiring of the mode switch is needed and I would not recommend it for the inexperienced".

I have visited Roy and heard the results of his modifications. They do indeed work well.
I was most impressed with the action of the AM filter and I think it would be very useful for those using the 101 on two metres with a transverter and of course for the 160 metre AM enthusiast.

This filter is available from Bail Electronic Services and is normally used In the Yaesu FR101 recelver.
crlption of the receiver follows. The receiver is a 3 valve superheterodyne using a regenerative IF stage. The mixer/oscillator can be 6BL8/6U8/12AH8/6AN7 etc., the IF is a 6BX6 or similar, the audio section can be 6BL8/6U8/12AT7/12AU7/6AB8 etc.

The receiver is not unduly complicated, although a number of problems were encountered when the author came to use some established designs described by well respected American and Australian magazines. The only relatively critical part of the receiver is the regenerative IF coil - the windings took some time to optlmise for best performance. Fig 3 shows a block diagram of the receiver.

PROdEGT AUSTRALIS

With david hull vk3zoh

NEW OPERATING AWARD

One of the aubjects ralsed with Amsat during my Washington visit in March was the Inequality of the ARRL satellite 1000 award. This award is quite difficuit for a VK or ZL to achleve as the 2 or 3 present holders In VK will verify.

Joe Kasser. Amsats publlcity chiel, was at that time looking for suggestlons on a reasonable level of achievement for Amsats own Oacar award and the opportunity was taken to include aultable clauses for VK and ZL

The new Award will be avallable theretore for conflimed contects with 8 Australian Call areas and 2 countries. Colin Hurst VKSHI has "volunteered" to handie the applications for the award for VK on behalf of Project Australla and certificates should be avallable from him shortly on recelpt of the following requirements:-
(1) All contacts must have been made via an Oscap apacecraft uaing any valld legal mode of transmiasion.
(2) OSL cards or wiltien confirmation of contact must be auppllad and muat show that the conlact was via an Oacar satallite.
(3) All contacta muat be made from the same QTH (or within 25 miles of a particular location).
(4) Sufficlent postage must be supplied for the return of OSL cards and the certificate.
(5) The award is tree to WIA mambara and avallable to non-members on receipt of the nominal fee of 1 dollar (SA1) (payable to the WIA).
(6) Endorsemants for one mode transmiasion and additional countries (In groups of five) are avallable.
(7) Applications should be forwarded to Project Auatralis/Amsat Award Manager, Colin Hurst, 8 Arndell Rd., Sallsbury Park, South Auatralla, 5109.

Please note there may be an Initial delay whilst supplies of the certificates are oblained from the U.S.

ORAIT BOOK8 FOR 1078

If you are slck and tired of wasing out your calculator working out Oscar orblis please note that orbit books Ilsting all Oscar 6 and 7 orblis for 1976 are avallable from Skip Reyman W6PAJ, P.O. Box 374. San Dimas, Calitomia, 91773 tor \$U.S.3.00 (or 20 IRC's) poat paid. It you want it in reasonable time I would recommand including additional IRCs and aaking for Alr Mall.

8TAMDARD OREITS PREDICTION SHEETS

These standard orbita calibration sheets originally published In AR for Oct. '72. and reprinted latit year, are still avallable. It yours is getling a litile dogeared, or you've lost it and would like a replacement, send a medlum sized atamped addressed envelope to Prolect Auatralis, C/o the call book addrese of David Hull VK3ZOH and we will be glad to send you another one (while atocks last).

We apologlse for the lack of standard orblts data for January but the data was not to hand at this time. We hope to publiah the data along with February as normal in January's AR.

NEW VHF HAND HELD TRANSCEIVER

from STANDARD RADIO CORP. JAPAN

SR-C146A, 2m FM 2W output, 5 chan. Walkie-Talkie. This superior quality transceiver comes complete with a leather carrying case, and auxiliary jacks are provided for external microphone, earphone, antenna and battery charger. Whip antenna telescopes down level with top of set.

TECHNICAL DATA:

PRICE - \$158, includes carrying case and 4 Channels (2 U.S. and 2 Aust.).
Prices include Sales Tax. Allow $\$ 0.50$ per $\$ 100$ for insurance, min. $\$ 0.50$. (Freight or postage $\$ 3.50$)
(

lem No. Neg. No.

20A 30 deg. Cowl Mount Base

Cowl Mount Base $\$ 4.60$
19A M/Purpose Cowl Base, suit most whips
22A F/Male Chassis Socket for PL259
22A PL259 Coax Plug
22A F/Male Chassis Socket Belling Lee Type
22A Belling Lee Coax Plug
16A M/Purpose Adaptor PL259 to male $3 / 8$ " and $5 / 16^{\prime \prime} 24$ TPI and $1 / 4$ " Whit.
11A Discone Head Piece, $\$ 45.50$, compl. Antenna kit, 50 to 450 MHz
27A G/plane headpiece provision for 3 radials at 45 deg.
10 6A Ant. base CW coax connector, ant. input male 5/16" TPI 0.45
$\$ 3.50$

11 1A Ant. base clamp \& Solder coax input ant. input male 5/16" 24 TP
$\$ 3.70$ $\$ 8.58 \quad 12 \quad 9 \mathrm{~A} \quad$ Magnetic base coax inp. B/Lee ant. for PL259 $\$ 17.25$ $\$ 1.9613 \quad 28 A \quad$ Qual. Tx type cap., min. pF20, max. pF200. $\$ 10.00$ $\$ 1.00 \quad 1431 \mathrm{~A}$ Qual. Tx type cap., min. pF 40 , max. $\mathrm{pF} 400^{\circ} \$ 15.00$
$\$ 0.45$ "approx. 13 and 14 hay

$\$ 70.58$ NOVICE 11 Mir helical whip and cowl base F/glass 42"
$\$ 17.50$ NOVICE 11 Mir top loaded whip and Cove base aluminit

Mit, helical whip. fitted with p
Aluminium Tubing also in stock. Shop Sales only. All items include Sales Tax $\$ 5.45$ Aluminium exubing also in stock postage. Write or ring tor futher information.

RITE-BUY TRADING CO. 69-71 ARDEN STREET, NORTH MELBOURNE, 3051 - Phone 3297618

20 Years Ago

with Ron Fisher VK3OM
Amateur Radio for December 1955 contalned only one technical arlicle, part three of Hans Ruckert's 'Tranamitter With Low Harmonic Output'.

However it made up for the lack of technical articles with e superbly written atory of the work going on at the Antarcilc bases set up soon after the concluaion of the war. Naturally amateurs were well represented right from the beginning. Hans Albrecht VK3AHH told of the sclentific aspect of the work In 'Sclence In Antarctica'.

Remembrance Day Conteal resulte ware eagerly awalted and December AR announced that 'South Australia Wins Again'. The top scorers State by State were: VKSMS, VKBRU, VK2AHH, VK3ATN, VK7PM. VKAPO and VK9DE. VK5MS and VK3ATN acored the highest pointe with 1001 each.

Back to the Antarclic. Fifty Megacycles and Above reports that the Macquarle Island boys were ready 10 go on six metres. VK1ZM had been heard In New Zealand and VKilJ was ready with an automatic keyer for his transmitter. In 1855 of course VK1 was used for the Antarctic, the ACT VK1 preflx had not yat eventuated.

December 1855 Amateur Radio also contained a ten year Index of technical articles back to 1945.

Christmas 1955 saw the start of the Pan Pacific Scout Jamboures at Cliftord Park some 25 kllometres norih easi of Melbourne. The WIA Federal Slation VK3WIA was set up on the slte. They had tranamitters operating on 80,40 and 20 Into enormous V beams. I well remember that Chriatmas 1955 was one of the wetteat on record and the Jambouree site quickly lurned into a quagmire. Howevar many overseas contacta were achleved from the WIA tent on top of the hill.

LARA

Ladies amateur radio association news
This past month, LARA activities have bean moving along at a great rate. The 80 m skeds are being held each Monday night, still at 8.00 p.m. Eastern time (or summer-time), and with the DX season coming up, perhaps more Interstate contacts will start. LARA notes are now heard on VK5 broadcasta as wall as VK3.

LARA representatives at the N.S.W. South Western Zone Convention had the pleasure of doling an Interviaw for Station 2QN, Denlliquin. This gave publicity to amateur radio in general and YLs inlerasta In particular as organised YL activity la atlli fality new on the bands. YL's alao competed In the events held at the convention with moderate succese.

The Jambouree of the Alr was another event which LARA members Jolned in. Next time thls comes around we hope to have more YL operators able to Join In .

The LARA Victorian Division general meering for October was hold as an open maeting. With days like this and similar activities LARA hopes to develop a bigger group Interasted In YL activities. Guesta were welcomed to the meetling and the famous "Great Foxhunt" film was shown.

Desplte this earnest preparation by LARA enthuslastic hounds, the next LARA fox hunt, held 2 weeks later, was won by a newcomer to the field.

THE WHAT, WHERE, WHO, HASSLES \& HOW MUCH BOOK
(Oiberwise known as "The Ametaur'a Pink Pagea'), A comprehensive compendium of compantes and colleagues that collect currency for components: sell sockets and switches or suchilke for cents: arrange Arclights or Aardvarks for ardent amateurs: flog 5 F200s and $4 \times 1000 \mathrm{~s}$
In lact. If you have ever wondered where to get something, or perhaps where else, then this book is for you. It does not cater only for those who bulld lots of gaar - even if you only read about amateur radio, you need this book. It also tells you where to get the things you like to read
a palicy $\mathbf{\$ 2 . 5 0}$ plus 50c P. \& P.
AMATEUR COMNUNICAYIONS ADVANCEMENTS 47 Ballas! Polmt Road, Blichgrove, 2041, N.8.W.
(As fox on the next hunt, she won't be beginner tor vary long). The day was success as the organisers, with great intultion, picked the only eunny day in about 2 weeks of rain (filppers and enorkel are not usually regarded as necessary fox hunting requirements, but unfortunately some of the raln was stlli there).

November could be a falirly quiet month as far as LARA goes. Some members are pre-occupled with other fielda of activity (such es examinations), so as a concession to this things auch as the VK3 general meating are being held later on in the month (thle is on the 29th of November). December however should warm up a blt with Chriatmas actlvitles and the Murray Rlver Canoe Marathon in the New Year.
Now mambers are able to contact LaRA in VK3 via the Vic. Division Rooms and Myrna VKSYN and Llinda VKAVV are people to contact in their respective Divialons.

YL's are welcome on the ahads at any time. The 80 m sked on Monday night at 8.00 p.m. is on 3650 kHz and there la a VHF aked for Melbourne YL's on Tuasday nights on 2 m FM.

Intruder Watch

with Alf Chandler VK3LC
1536 High Sireet. Gian Iris. 3148
It is October 20th, 1975, and 1 have recently returned from a wonderiul four monthe tour of the United States vialting many Amatours that I have worked over the years, among them being my old Intruder Watch friend Blll KbKA at La Canada In Los Angeles.

I muat take thla opportunity of thanking and congratulating lvor VK3XB for the exceliant job he did In his handling of I.W. Co-ordination while I was away. I only wish I had more like he and Murray VK\&KX and Les VK2AFG, without whom the I.W. could not function. It is a great pity that more membere cannot aee thalr way clear to do something to help in this worthwhile endeavour because intruders are not gatting any leas.

It may be appropriate at this time to quate a sectlon from OST of September 1975: "It seems to us", and I quote - "Sometime in 1878 members of the International Telecommunication Unlon (ITU) will meel In Geneva, Switzerland, for a World Adminialralive Radio Conference (WARC). This will be the first conference aince 1959 at which the entlre table of allocations, from 10 MHz to whatever the upper IImlt may be by then. wIII be under acrutiny. There have been far reaching changes in communications technique and method elnce 1859, and as a result there may possibly be some benefite for the Amateur service but there will alao certainly be some heavy prassuras. Whether we gain or lose depends in part upon how well we prepare ahead of time'. (My underlining).
The Intruder Waich is one way to prepare, by pointing out to the conference the Intrusions that commercials have made Into our exclualve Amateur banda, but we cannot do this unless you, the active members, participate and furnish us with proof of thalr Intrualona. I ask you, how about it?

The June-July 1875 Calendar of the IARU contalna briet detalla and worda of pralse for the Hong Kong and Warsaw Conferences of Reglons 1 and 3 respectively. The commente end with the words, "Reglons 1 and 3 emerge from their itiennial conferences with aufficient agreement on WARC strategy to permit the Union to move forward with Its planning. Similar success at the Reglon 2 Conference next year (acheduled for April 11th to 15th, 1876 In Mlaml) will demonsirate that the future of amateur radio is in good hands in all three of the ITU Radio Reglona' ${ }^{\prime}$.
The Region 2 Conference will be hoated by the

ARRL and will take place during the Blcentennial celebrations in the U.S.A.

It is recognised that the overall amateur radio effiort should be co-ordinated closely $s 0$ to ensure that everything required la accompllahed and to avoid coatly duplications of effort. Consequently the President of the IARU (Noel B. Eaton VE3CN) has the intention of calling together representatives of the three IARU regions in Miami for the two days immediately following the Region 2 Conference. Observers from member socleties would be welcome but regrettably no expenses can be pald.
It had baen originally thought that a meeting of all IARU member socletles would have been dealrable In preparation for WARC 1978 but this idea was abandoned in view of sharply escalating costs of world travel being beyond the financlal capabilities of the amateur radio communlty and the fact that the accord emanating from the two reglonal conferences held this year has reduced the need for euch a world-wide conference.

On their travals to and from the Reglon 3 Conference the Unlon's President vielted amateur sociaties in Japan. Phillppines (PARA). Thalland, Srl Lanka, Indla, Paklatan and Iran before altending the Reglon 1 confarence In Waraaw. Dick Beldwin, WIRU, of the ARRL concurrently vialted amatour socletles in Malayaia, Singapore and Jakarta as well as the Region 3 conterence.
The IARU has novep had an emblem but during the year one has been deaigned. It Is conaldered uaeful In malntaining the Union's Identity is WARC is approached.
Some detalla are given about the amateur particlpation In the 1978 Olymple Gamas In Montreal during July. The apeclal atation with the call aign CZ20 will be designed to glve visitors the beat posaible impression of amateur radio.
JARL are quoted as saying that as the number of Japanese amaleur stations amounta to nearly 300,000 of the volume of OSL carde which thelr bureau handles is so enormous that they can no longer handie cards for non-members.
The August 1975 liat of IARU member soclaties has reached a total of 88 . Only 1.3 of the countries are In Reglon 3 apart from the USA, UK and French overseas representation. Thia means there are a number of countries In Region 3 not represented at all for one reason or another.
Since many of these countries possess a vote In the ITU which has a membership approaching 150, readera can rest assured that this situatlon has been noted in relation to WARC 1979 and appropriate action is going on behind the scanes wherever this is possible.
It will also be noted from WIA News In thla isaue that all appropriate stepa are being taken by the Inatitute with the Australlan Government'a preparallons for WARC 1978 as required by the Federal Councll at the 1975 Federal Convention acting upon the outcome of the Reglon 3 conterence in Hong Kong.
If forethought is any criterion nothing la being left to chance.

YRCS
 with Bob Guthberlet
 31 Bandon Terrace, Marino, S.A., 5049.

BLIND BOY IN EURWOOD, 8YDNEY NEEDA HELP 15 year old Gerald Cooke would like eomeone to start e radio club in his area. He and eaveral of his friends want to get their amateur licence but need your help. Contact him at 11 Celbor St., Burwood.
DO YOUR ACTIVITIES CONSIDER OUR ELIND

PRIEND8?

In the formation of the DX group In Sydney this was one sector of the communlty the groups alms Identified as requiring a apecial eflort. The N.S.W. Blind Soclaty and North Rocke 8chool for blind chlldren was contacted and now at each monthly meeting aeveral bilnd high achool atudents meel at the W.I.A. and engage in SWL activities and novice clasese organised by the group. They meet on the first Friday of each month at 7.30 p.m.

BUILD IT YOURSELF

THE WORLD'S MOST ADVANCED AMATEUR TRANSCEIVER HEATHKIT SB-104

SPECIFICATIONS

SB-104 SPECIFICATIONS - TRANSCEIVER SECTION - GENERAL OPERATION: Frequency Coverage: 3.5 MHz through 29.7 MHz amateur bands, 15 MHz WWV receive only. Frequency Stability: Less than $100 \mathrm{~Hz} / \mathrm{hr}$ drift after $30-\mathrm{min}$. warmup; less than 100 Hz drift for $\pm 10 \%$ change in primary voltage. Modes of Operation: Selectable upper or lower for $\pm 10 \%$ change in primary voltage. Modes of operation: Selectable upper or lower
sideband (suppressed carrier) and CW. Readout Accuracy: Within $\pm 200 \mathrm{~Hz} \pm 1$ count. sideband (suppressed carrier) and CW. Readout Accuracy: Within $\pm 200 \mathrm{~Hz} \pm 1$ count. Audio Frequency Response: 350 to $2450 \mathrm{~Hz} \pm 75 \mathrm{~Hz}$ (6 dB bandwidth). Dial Backlash: 50 Hz max. Phone Patch Impedance: 4 ohm output to speaker; high impedance output to transmitter. Power Requirements: 13.8 VDC nominal (max. 16 VOC) at: Receive: 2 amp. Transmit: low power; 3 amps.; high power: 20 amps. TRANSMITTER: RF Power output: High Power (50 ohm non-reactive lead). SSB: 100 watts PEP $\pm 1 \mathrm{~dB}$: CW: 100 watts $\pm 1 \mathrm{~dB}$. Low Power SSB: 1 watt PEP (minimum); CW: 1 watt (minimum). output Impedance: 50 ohms, less than 2:1 SWR. Carrier Suppression and Unwanted Sidetand Suppression: 55 dB down from 100 watt single.tone output at 1000 Hz reference. Harmonic Radiation: 45 dB below 100 watt output. Spurious Radiation: -50 dB within ± 3 MHz of carrier; -60 dB farther than $\pm 3 \mathrm{MHz}$ from carrier, except -40 dB at 3.39 MHz on 80 meter band. Third Order Distortion: 30 dB down from two-tone output, reference at 100 watts PEP. Transmit/Receive Operation: SSB: PTT or VOX; CW: Keyed.tone VOX or manual. CW Side-Tone; Internally switched to speaker or headphones in CW mode. Approximately 700 Hz tone. Microphone Input: High impedance with a rating of -45 to -55 dB ; approx. 25 K ohms to match Heath desk-type microphone. RECEIVER - Sen.
sitivity: Less than 1.0 microvolt for 10 dB sienal-plus-noise-to-noise ratio for SSB ope. ration. Selectivity: 2.1 kHz minimum at 6 dB down, 5 kHz maximum at 60 dB down. (2:1 nominal shape factor). CW Selectivity: (with accessory CW filter) 400 Hz at 6 dB down; 2 kHz max. at 60 dB down. Overall Gain: Less than 1 microvolt for 0.5 watt audio output. Audio Output: 2.5 watts into 4 ohms, 1.25 watts into 8 ohms, at less than 10% THO. Low impedance headphones (4.8 ohm). AGC: Less than 1 millisecond attack time: twitch selectable $100 \mu \mathrm{sec}$. and 1 msec . release, and OFF. Intermodulation Distortion: switch $\mathrm{selectable} 100 \mu \mathrm{sec}$. and 1 msec . release, and off. Intermodulation distortion:
-65 dB min.; typically -57 dB with noise blanker. Image Rejection: -60 dB min. If Re--65 dB min.; typically -57 dB with noise blanker. Image Rejection: -60 dB min . If Rejection: - 60 dB min. Internally Generated Spurious: Below 2 microvolt equivalent antenna
input, except at $3.65,3.74,14.24 \mathrm{MHz}$ and 21.2 MHz . MECHANICAL - Front Panel Controls/Switches: AGC - Oif, Slow, Fast; AF Gain; Microphone Jack; Headphone Jack; Main Tuning; Mic/CW Level; Vox Gain; Vox Delay; Band Switch. Pushbuttons: ALC (Meter); 13.8 V (Meter); Relative Power (Meter); 100 Hz (Disable); Noise Blanker (On/0ff); LSB (Mode); USB (Mode); CW (Mode); Tune; Hi/Lo (Power Select); VOX (On/Off); PWR (On/Off). Rear Panel Controls/Sockets: Anti-Trip; Sidetone Level; Linear Amplifier ALC Input; Phone Patch Input; Phone Patch Output; Key (CW) Input; Speaker (4 ohm) Output; Spare (2); Receiver Audio Input; VFO Input; VFO Output; IF Output; Driver Output; Ground Post: Power Plugi Accessory Socket (includes relay output); Antenna Input; Receiver Antenna Input; Common/Separate Antenna Switch. Dimensions: $53 / 4^{\prime \prime} \mathrm{H} \times 14 \mathrm{~S}_{2}^{\prime \prime} \mathrm{W} \times 137 \mathrm{~m}^{\prime \prime} \mathrm{D}$. (Less knobs, feet and connectors). Weight: 20 lbs.

HD-1234 CO-AXIAL SWITCH - 5 POSITION STANDING WAVE RATIO (to 250 MHz) 1.1-1 POWER CAPABILITY 1000 WATTS (2000 WATTS PEP)

HN-31 "CANTENNA" DUMMY LOAD IMPEDANCE 50 ohm

V.S.W.R. LESS THAN 1.5 up to 300 MC LESS THAN 2.0 up to 400 MC POWER DISSIPATION 1 kW SIZE 87/8" x 7" DIAMETER
$\$ 19.38$ s.t. inc.

THESE AND OVER 300 OTHER KITS ILLUSTRATED IN OUR CATALOGUE. COLLECT YOUR COPY FROM:

PLEASE SEND ME:

Cheque/Money Order for \$ enclosed
NAME:
ADDRESS
P/Code

\triangle Diakt R. L. DRAKE COMMUNICATIONS GEAR

DSR2 Digital readout communications RECEIVER $10 \mathrm{kHz}-30 \mathrm{MHz}$ continuous coverage, fully synthesised, for AM-USB-LSB-CW reception. \$3495.

SPR4 communications RECEIVER for AM-USB-LSB-CW reception. Direct frequency dialling 150 500 kHz plus any $23 \times 500 \mathrm{kHz}$ ranges between 0.5 and 30 MHz . $\$ 697$.

R4C Amateur RECEIVER covers HF ham bands plus any $15 \times 500 \mathrm{kHz}$ ranges between 1.5 and 30 MHz except 5.0 to 6.0 MHz . $\$ 640$. (Transceives with T4XC.)

SSRI Synthesised communications RECEIVER. Provides continuous coverage 500 kHz to 30.0 MHz for AM-USB-LSB reception. Operates from AC Mains or internal batteries. $\$ 425$.

TR4C sideband TRANSCEIVER full amateur band coverage 10 through 80 metres. $\$ 630$.

T4XC sideband TRANSMITTER full amateur band coverage 10 through 80 metres plus 160 metres accessory crystal plus 4 fixed frequency positions. \$609. (Transceives with R4C.)

MN4 and MN2000 MATCHING NETWORKS enable Feedline SWRs of up to $5: 1$ to be matched to the Transmitter. Built-in Wattmeter. MN4 handles 200 Watts. MN2000 handles 1000 Watts continuous and 2000 Watts PEP. MN4 \$115, MN2000 \$230.

TV - 42 - LP FILTER for Transmitters below 30 MHz - 100 Watts continuous. $\mathbf{\$ 1 1 . 5 0}$.

TV - 1000 - LP. FILTER - 1000 Watts continuous to 30 MHz - 100 Watts continuous to 6 metres. $\mathbf{\$ 2 2 . 5 0}$.

TV - 300 - HP FILTER - TV Sset protection from transmitters $6-160$ metres. $\$ 9.00$.

TV - 3300 - LP FILTER 1000 Watts continuous to 30 MHz with sharp cut off above 30 MHz . $\mathbf{\$ 2 4 . 0 0}$.

RP500 - Receiver PROTECTOR for Receiver front end protection from close proximity high power transmitters. Less than 0.5 dB Insertion Loss to 30 MHz . \$77.00.

W4 WATTMETER/SWR METER $2-30 \mathrm{MHz}$ with 200 Watt and 2000 Watt ranges. $\$ 65.00$.

WV4 WATTMETER/SWR METER 20 - 200 MHz with 100 Watt and 1000 Watt ranges. $\$ 78.00$.

AC4 POWER SUPPLY for mains operation of TR4C or T4XC. \$175.00.

DC4 POWER SUPPLY for battery operation of TR4C or T4XC. $\$ 187.00$.

PRICES SHOWN INCLUDE SALES TAX.

TR4C TRANSCEIVER

ELMEASCO INSTRUMENTS PTY. LTD.
P.O. BOX 334, BROOKVALE, N.S.W. 2100 - 939-7944.

MEL.BIDURIUE - 26-3658
ADE:LANIDE - $\mathbf{4 2 . 6 6 6 6}$
BRISBANE - 36-5061
WELLINGTON, N.Z. - 69-7566

YRCB LUNCH TIME RADIO CLUE NET ON

27.125 MHz

Meets each Monday noon illl 2 p.m. Summer conditlons ahould bring in many Interatate contacta and amateurs on the band are always welcome to Join in. High echool studenta on the net are Roger VK2beQ at Mosman. Peter VK2bWR at St. Ives, and Barry VK2FP at Bexiey. Also on the net are VK2YY Sydney Technical College, VK2BUV Unlversity of N.S.W. and VK2BSU Sydney University.
third party needs at least one month for P.M.G. APPROVAL

So the University of N.S.W. Amateur Radio Soclety is hoping 10 combine community service with traffic handling training for tis members as part of a request for communications for the Australian Tennis Federation.
amateun radio demonstration at north RANDWICK HIGH SCHOOL SYDNEY
Together with details on how to set up a YRCS Radio Club has resulted in boys and girls joining together to form a novice training club.
police govs club in north sydney needg HELP
They have many keen boys anxicua to get on the alr and need help in forming radio activities. Contact Sergeant Beacroft, Falcon St., Crows Nest, 2085. DID YOU KNOW?
A booklet is avallable which outlines how you can sat up a club, what YRCS is and how it can help you, as well es an outline of YRCS and Novice Licensing. and how to become an instructor in the YRCS. Write to the Suparvisor In your State. Thay are: VK1 (A.C.T. Dlvislon), Box 1173 Canberra Clty, 2601; VK2: R. C. Black, VK2YA, 10 David St., East Springwood, 2777; VK3: F. H. Whittom, VK3BAN, 204 Churchill Ave., Braybrook, Victoria, 3019; VK4: P. C. Aldred, VK4CA, 15 Monmouth St., Morningside, 4170; VK5: G. Preston, VK5PI, 13 McGowan Rd. Para Hills, 5096; VK6: W.I.A. (W.A. Division), G.P.O. Box N1002. Perth, 6001; VK7: R. K. Emmett, VK7KK/T, 111 New World Ave., Trevallyn. Tasmania, 7250.

Contests
 with Jim Payne, VK3AZT
 Federal Contest Manager.

Box 87. East Melbourne, Vic., 3002
CONTEST CALENDAR

December

8/7 Tops 3.5 MHz CW
8/7 ARRL 160 matre
13/14 Spaniah CW
13 Ross Hull commences
28 Hungarlan
SPANISN CW CONTE8T
2000 GMT Dec. 13 to 2000 GMT 14th. All bands 3.5 through 28 MHz . Usual RST and start 001. Conpacts with EA stations score 2 pointa. Each EA call sistrict la separate multiplier. Final ecore is total OSO points times the sum of multipliers from each band. The same stallon may be worked on each band for QSO and multiplier credit. Include summary sheet with your log. Entries to U.R.E. CONCURSO INTERNATIONAL, PO Box 220. MADRID 4. SPAIN by 14 th Jan. 1976.
TOPS CW 3.5 MHz
1800 GMT 6th Dec. ends 1800 GMT 7th Dec.
Annual contest of Tops CW Club. Frequency between 3.5 and 3.8 MHz . DX on the low end. Exchange RST report only. Contacts with own country score 1 point, atalions on same continent 2 points, other continents 5 pointa. Each call area In W/K, VE/VO. PY, UA and VK count as separate countries. Final acore is total number of OSO points multiplied by number of prefixes worked. (Same as WPX) Single or multi operator entries to reach Patar Lumb, G3IRM, 14 Linton Gardens, Bury, Salnt Edmonds, Suffolk, IP33 2DZ, England by 31at Jan. 1976.

ROS8 HULL VHF UHF MEMOAIAL CONTEST 1401 GMT 12th Dec. 1975 to 1400 GMT 18th Jan. 1976.

The rules for this contest remain unchanged from those published on page 32 of Amateur Radio for October 1974. Due to very Ilmited participation last year and subsequent correspondence from some entrante a new set of rules is being developed. Al
this time the reprinting of the old rules and the complete metric distance chart (3 full pages In all) appears to be not Justified. However a copy of the metric distance chart has been sent to the secretary of each Division.
Entrles should reach the Federal Contest Manager, Box 67. East Melbourne. 3002 by Wedneaday, 18th February. 1978.

femembrance day contest 1978

A tew late entries which arrived too late for inclusion In the resulta published laat month.

Phone

VK3AVJ
VKANV
VK5ZIM
VKSLZ
VK5OG
CW
VK2GT

278	167
248	88
101	101
31	31
12	12
240	43
1149	388

J. Vaarnela (VK2) 1149388

I hope that the centificates for the RD will be prapared and forwarded to reach you prior to the arrival of this edition of AR.

CONTEST CHAMPION TROPHY

Thls trophy has been donated, primarlly, to acknowledge the important part played by high scoring entrants In Amateur Radio Contesta, and also to provide added incentive to entrants.
Rule 1
The Radlo Amateur, who ls a member of the Wireless Institute of Australla, and holds a VK prefix, and who, undar the scoring arrangement of Rule 2 obtalns the highest aggregate of points in the contests nominated by the Federal Contest Manager, shall be declared Contest Champion for a nominated period of 12 months.

Rule 2

The Amateur obtaining the highest score in a nominated conteat shall receive 10 points towards the trophy, the next highest scorer 9 points, and so on with the person in tenth place recelving one point.
Rule 3
The Conteat Champlon for the nominated period shall hold the Contest Trophy for 12 months.
Rule 4
The Federal Contest Manager shall each year, at the time of announcement of the name of the now Contest Champlon, nominate the succeeding perlod and contests applicable to the trophy, and, logether with such of these rules as he considers necessary. publish this Information in Amateur Radio.
Rule 5
The Federal Contest Manager shall once in each year publish In Amataur Radio the names of all Conteat Champlon trophy winners with the related year/years of the conteat.

MAGATINE INDEX
 with Syd Clark, VK3ASC

CQ MAGAZINE July 1875
The Microprocessor in the Hamshack; The True Essence of Homebrewing: Modification of the Heath HW-202: The Function Generator: The Multi-Band Dipole: Measurement of Capacitance Using A VTVM; An Electronic Hidden Word Puzzle; Accuracy $\&$ Callbration of SWR Meters: Cheap Selectivity for the Hammarlund HQ-215 and other 455 KHz IF Recelvers: ORP Tranamitter: Measuring the Transmitting Frequency of the Heath HW-16.

HAM RADIO June 1975

A Phasing Type SS日 Tranamitter; Slim-Line TouchTone Conversion; HI-FI Intartarance - Causes and Cures; 500 MHz Pre-scaler; Stable Crystal Oacillators: Speech Processor for the Heath SB-102; Nolse Figure Measurements; Collins S-LIne Drift Reduction; Cosmos Intagrated Circults.
O8T August and 8eptember 1973
The Accu-Memory: A Simple Field Strength Meter and How to Calibrate It: P/p Squeak Modifications; Aadio Direction Finding Technlques; Improved Wide Band IF Responses from the Double-Balanced Mixer: The DXer's Crystal Ball, Part 2.
Harmonic TVI - A New Look at an Old Problem: An Alternatlve Method for Phasing Crossed Yagis: The DXer'e Crystal Ball, Pant 3; Coherent cw -

VHF CONVERTER KITS

Crystal locked; FET front ends, low nolse figure, wide bandwidth, simple construction and allgnment. All inatructions includad. Originally deacribed In 6UP Magazine. 28 MHz KIL, $\mathbf{s i 1}$; 52 MHz Kit. s11: 144 MHz Kit, \$14; 432 MHz Kit, \$14. Crystals not included. Add 60c P. 8 P. Send SAE for free flyer and details.

AMATEUR COMMUNICATIONS ADVANCEMENTS
47 Ballaal Polnt Road, Blichgrove, 2041, N.S.W.

Amateur Radio's New State-ot-The-Art: The Micro - To MK2 Keyer; Conatruction Hints for VHF Converters; A HIgh Performance 50 MHz Amplifier Pant 1.
RADIO COMMUNICATION August 1978
A Small Transistorlsed Power Amplifier for 2M; An Aerial Splitter Unit; A Compact Medium Powered Llnear Amplifier; A Crystal Controlled Solld-State Source for 10 GHz
SHORT WAVE MAGAZINE Aogual 1975
Going ORP On Elghty; DX from Eday la. Orkney: Nolse Bridge for Antenna Measurementa; Ten Metre Aerial Amplifler: Cheap RF Output Meter.

MORE FROM THE
 CW NET

A meating of CW Net regulars was held In Sydney on September 27th. Those present were VK4II, VK2AV. VK2AFG, VK2BWC. VK2RY, VK2SM and VK2YK.
The meeting made the following proposals: Firatly, matters concerning operation of the CW Net.
(a) Conversation with the NCS should be minimal - such liems as newsy bits and technical detalis would be better sent later.
(b) We should limit contacts to about 20 minutes to permit members to get in at least four OSOs.
(c) When a atation (say VKSXYZ) is readable to another (say VK2ABC) but not to the NCS, we suggest this procedure be tried:-
VK2ABC makes "VK2NCS de VKAABC OSO VKSXYZ AR'.
VK2NCS makes 'VKAABC and VK5XYZ OSY to 70xx K"
VK2ABC makes "VK2NCS de VK4ABC R VK5XYZ OSX 70xx OSY AR'".
The contact can then proceed normally with the NCS having it entered in his log and VK5XYZ calling VKAABC on 70xx kHz.
The next suggestion should interest most amateurs and there will be many who know II proposes really nothing new. Although this lis only a suggestion some of us have been trying it out long betore this note appears in print. In effect we are suggesting that we put a window in the 7 MHz band using 7025 kHz for calling only. The benelit to low power stations and to others who may find it difficult to break in on established QSO_{8} and for emergency calls etc. is obvious. It does not of course mean that we should not anawer calle made on other trequencies.

We intend to try It during non-DX hours and we hope It will recelve a fair trial. Calls on 7025 should be brief and use normal operating procedures. Check that your listening apot is clear. Example
"CQ CQ de VK2XYZ, Ca Ca de VK2XYZ eic. OSX 70xx OSY AR" VK2XYZ llatens on 70 xx kHz . Other statione call him there. 7025 is thus leff open for othere to use In the same way.

This should not put cryatal-control stations at a disadvantage. All they need la one crystal or or close to 7025, and another not so close, for llatening.

$$
\begin{aligned}
& \text { VK-2AV } \\
& \text { for CW Net. }
\end{aligned}
$$

IONOSPHERIC PREDICTIONS

WITH LEN POYNTER VK3ZGP

A new way of predicting solar activity discovered by G. M. Brown of University College of Wales, Aberystwyth, is reported In Wireless World, September, 1975.

It stems from his observation that there is a strong correlation between the sun's effect on the earth's magnetic field and the number of sunspots SIX YEARS LATER. The reason for this is not known, but it ho!ds good over a time span which goes back to 1885 and the correlation appears to be very close.
If it proves to be a genuine effect and not a freak of statistics then it could give radio propagation experts a valuable method of Improving their short wave propagation predictions.

The magnetic effect In question operates on the horizontal components of the earth's field. This normally goes through a minimum about 11.00 hours local time. but on "Abnormal Quiat Days'" (AQDs) the minimum is some other time. It is the AQDs which predict the sunspot numbers. Since the AQDs are most frequent at the sunspot minima, It could be that they mark the beginning of the new cycle of solar aclivity rather than the end of the old one. "If this relationship proves valid it implies that the sun "breathes'" with an 11 year period, such that the size of the solar activity maximum is determined at the very beginning of the cycle, or perhaps the very end of the preceding cycle, from the 'depth' of the solar minimum'

Well, we have another possible prediction service. I did check with our local observatory and this magnetic effect is part of the K measurement mentioned so much of late. From my recordings, and my Interpretation of AQDs. there certainly is a general quietening down of activity. The number of disturbed days have dropped considerably which I understand is fairly normal for the time of the year. However, It will be interesting to follow up on these theories and compare it along with the multitude of others. Someons will be right.

On the subject of predictions, an index. which has caught my attention ts the OF2 of Solar Flux F2 Index. This has largely been the work of Dr. M. Joachim CCIR and is featured In the Telecommunication Journal of the International Telecommuncatlon Union. Back In 1967 the Dr. published papers discussing the three basic Indices of lonospheric propagation R12 (12 monthly smoothed sunspot number) IF2 (based on the Vertical - incidence critical frequency of the F2 layer at noon from 9 stations, now 13 stations) and 0 or Solar Flux expressed in Jansky Units (1 Jansky $=10-22$ $\mathrm{W} / \mathrm{m}-2 / \mathrm{Hz}-1$), measured at 2400 MHz the effect of ionospheric "hysteresis' to be seen in the behaviour of IF2, and a new method of prediction 0 on the ITU computer. The results obtained suggest that it should now be possible to work out a new propagation index more closely related with lonospheric data and more accurately predictable than the Indices in use at the present time.

In more recent times more contributions have been added and In March 1975 published under "Long Term periodicity in lonospheric activity" was the following summary. Recent work, including Cohen and Lintz CO March 1974, Indicate that In addition to the well known cycle of 11 years, the sun-spot and ionospheric activitios have a long term periodicity, as do other activities connected with the movement of the planets around the sun. Some have applied mathematic analysis to periods up to 178 years using the values of Solar index R12 as observation data, these values have been recorded since 1749.

To enable similar analysis methods to be applled for predicting the ionospheric Index OF2, which is claimed to be more closely related with lonospheric data, the CCIR (International Radio Consultive Committee) Secretariat has extrapolated the series of OF2 values for the period 1749 to 1946 . The correlation employed the values of OF2 and R12. During this analysis it showed the existence of cycles of about 11 years and 89 years.

A further comparison beiween the computer generated indices and measured values of OF2 for

the pertod 1947 to 1974 yielded a standard devia tion of 6.6%.
For some years the ITU Journal has published basic Indices for ionospheric propagation, which attracted my attention during 1974. In that year I was closely associated with VK3WU in an attempt to produce a DXCC on 20 m within 12 months. Being new chums we probably learnt the hard way. All the gloom about poor conditions did not deter us and mid March 1974 saw the project launched. It is now history that we succeeded and the tally now stands at 235 countries worked. Confirmations stand at around 161
Our attention was directed to talk of Solar Flux and A Index but it was early 1975 before it started to dawn on us what it was all about. Not having any real evidence as to why conditions were reported to be poor, when we found it obviously to our advantage. The OF2 Index gained my attention.
For comparison purposes the index for 1974/75 measured and 75/76 predicted are displayed below. $\begin{array}{lllllllllllll}\text { Month } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$ 1974 828282828684868584868885 1975 817570747476777777777679 1976 78777678777980
Those in bold type are predictions as at July. 1975. My main interest was that so long as the monthly mean remalned above 80 conditions were In the maln from good to excellent. We were able to trace the bad periods to incidences of high geomagnétic disturbances l.e. high K figures leading to high A figures - In keeping with Jacobs Llnz and Cohen CQ articles on propagation.
Once it dropped below 80 then the change came. Early 75 saw considerable deterioration In general conditions, however in this latter part of 75 somewhat of an increase no doubt due to seasonal conditions. The interesting part is that the predicthons show a rising Index mid 1976 around the time many predict that the minima will be over and the new cycle expected to start.
As a direct comparison between R12 IF2 and OF2 here are the figures for 1974.

Month R12 IF2 OFT $\begin{array}{llllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$ only topose during the coming year to mention no sured and predicted Index for OF2 for those who like to look at indices. I hope to have further information of G. M. Brown's method of prediction to add further fuel to the firs.

ADDENDA

Sunspot data for Sept., 1975.
Provistonal mean $=14.1$ (Aug. 39.3, Jul. 28.3 June 11.4). Smoothed mean R6 March $75=21$. (Feb. 22.2, Jan. 23).
Predictions of smoothed monthly numbers Oct. 11, Nov. 10, Dec. 9, Jan. 8, Feb. 7, Mar. 6.

Unfortunately there will be no predictions in the January issue. However, should anyone require any specific data 1 would be only too pleased to help you. A SAE will help. Best of DX for 1976. trusting you all have the best during the coming festive season.
PREDICTIONS COURTESY: IPS SYDNEY OF2 DATA: TELECOMMUNICATION JOURNAL LEGEND FOR PREDICTION CHART
ALL TIMES UNIVERSAL.
TOP PORTION OF BAND CHART FROM PERTH BOTTOM PORTION OF BAND CHART FROM EASTERN AUSTRALIA
FULL LINES. BETTER THAN 50% OF THE MONTH BUT NOT EVERY DAY.
BROKEN LINES. LESS THAN 50\% OF THE MONTH
BROKEN LINES - INDICATE 2nd F LAYER
PROPAGATION
STATEMENTS APPLY TO BOTH LINES AND BLOCKS

Hy.Q International

At Hy-Q INTERNATIONAL we are on our way to a very special DXCC
 In all of these countries and many more, Hy-Q INTERNATIONAL is building an enviable reputation for quality and prompt deliveries.

For the answers to your problems with crystals, filters and packaged oscillators, see the Australian company with the International reputation.

Hy-Q INTERNATIONAL (AUSTRALIA) PTY. LTD.

1 ROSELLA STREET, P.O. BOX 256, FRANKSTON, VICTORIA, 3199 PHONE 03 - 7839611 TELEX AA 31630 HYQUE

ALSO IN SINGAPORE AND THE U.K.

SWAN TRANSCEIVERS

Cygnet 300 B (2 only)

SWAN SOLID STATE TRANSCEIVERS

SS200A SS16B and Standard 300W SSB PEP Input with VOX, Noise Blanker, CW S/T and Semi Break-In, xtal calibr. and complete VSWR Protection
MB40A 40 Mx Monobander 160W PEP Input on SSB only, $3^{\prime \prime}(\mathrm{H}) \times 8^{\prime} 5^{\prime \prime}(\mathrm{W}) \times 9^{\prime \prime}(\mathrm{D})$
MB80A 80 Mx Monobander
OSCILLATORS
508 VFO for 700 CX
510 xtal Novice \$60.00
610 xtal Novice \$60.00
Wattmeters WM 1500 0/1500 Watts in 4 steps $\$ 77.00$
SHURE Mikes 404 Hand \$30.00 444 Desk $\$ 43.00$
New SWAN VSWR Meters and Power Indicators \$20.00

LATEST RELEASE DUE SOON:

SS747 Solid State Transceiver. Digital Readout. Dual VFO Bullt-in Freq. range any 500 kHz from 3.5 to 30 MHz . 125 W output Plug-In PCBs. Broadband tuning - CW S/T and drive control.
All Prices quoted are subject to changes without notice, but are inclusive of Sales Tax. Freight and Insurance extra.
SOLE AUSTRALIAN DISTRIBUTORS FOR SWAN AMATEUR COMMERCIAL RADIO EQUIPMENT:
VK2AHK LOT 3, MIDSON ROAD, OAKVILLE, N.S.w. 2765 - PHONE: (045) 736215

VHF UHF
 an expanding world
 with Eric Jamieson vk5LP
 Forreston. S.A.. 5233
 Times: GMT

VKO	VKOMA, Mawson VKOGR, Casay	$\begin{aligned} & 53.100 \\ & 53.200 \end{aligned}$
VK1	VK1RTA, Canberra	144.475
VK3	VK3RTG, Vermont	144.700
VK4	VK4RTL, Townaville	82.600
	VKARTT, Mt. Mawbullan	144.400
VKE	VK5VF, MI. Lofty	63.000
	VKSVF. Mt. Lofly	144.800
VKE	VK6RTV. Petth	52.300
	VK8RTU, Kalgoorlie	82.350
	VK6RTW. Albany	52.950
	VK6RTW, Albany	144.500
	Vk6RTV, Perlh	145.000
VK7	VK7RTX. Devanpart	144.900
SD	3D3AA, Suva, FIJI	52.500
2 L	ZLIVHF, Auckiand	145.100
2L2	ZL2VHP, MI. 8tawart	52.500
	2L2VHF, Wellingion	145.200
	zl2viP, Paimerston North	145.250
	2L2VHP, Palmarsion North	431.850
2L3	zLsVHF, Chilaichurch	145.300
2L4	zLAVHF, Dunedin	145.400
VE	veiatn, Canada	50.050
KO6	KGBJDX, Guam	50.105
	KGBAPP, Guam	50.150
	K2IRT/KOB, Quam	50.088
da	JDIYAA, Japan	50.110

As December la likely to be the peak month for Es type of operating, an increased beacon list is submitted this month. Whilat conditions at the moment are not ideal for long diatance DX, one never knows what is available unless listening is done. Hence, why not look around the lower end of the 50 MHz band as often as you can. particularly In the mornings to mid-day, and perhaps late afternoon. Of course the next problem you have is that If you haar a station, say in Guam, how do you let him know you are receiving him - we are operating 2 MHz lurther up the band! You could phone him, or get on 20 metras and hope you can contact someone else there to pass the message along. Of course in the maantime he will probably fade outl Or you send a telex! I also know another wayl So there are various ways around the problem, the old hand at the game will organise something

For the newcomer, plenty of patience will be needed, and this can apply even to New Zealand stations. As these invariably come In on second hop tranamissions, they ganerally are not as strong as the VK stations on single hop (about 1600 Km). It is no use nowadays looking down on 51 MHz for ZLs. Those wishing to work you will be tound on the lower end of 52 MHz mixed In with all the strong VKs. Other than for exceptional conditions you will need a rally good antenna and quite a bit of power output to make it across the Tasman Sea, from VK5 anyway.

The VK6s will need everything they can muster. A good receiving converter is a prime requirement, and be on good terms with electricity authorities to ensure you have no leaky insulators on the powe lines nearby. Talking about power lines, have any of you considered what your line voltage might be at any one ilme, particularly if you live in an Industrial area, or the country where there may be many electric motors driving substantlal water pumps for irrigation purposes. At my OTH, which lis a rural area with much irrigation, I have noted voltages hovering apound 225 volts at times, and for long periods about 230 volts. This plays havoc with the output of your trenaceivers and linears. You can be losing up to 25% of your output due to reduced HT and heater voltages. I monitor the mains voltage all the time, and use a Variac to counteract this drop. Input and output AC meters are necessary for best resulte, although you could get away with one by monitoring the voltage you feed out of the Variac to your equipment.

In addition to the substantial beacon llat above, the newcomer should realise that you can use the sound transmissions of the three main Channel O television tranemitters in Australia. They are off-set 10 KHz from each other and can be found as follows: Wagga 51.740; Brisbane 51.750; and Melbourne 51.760 MHz . As they radiate 100 kW ERP they need to be heard quite strongly before you are likely to work many amateurs from the same area. Thls particularly applles to the New Zealand TV stations, which are to be found around 50.750 MHz .

Don't lose sight of likely openings on 144 MHz when atrong conditlons prevall on 52 MHz . Use the various FM repeater channels In other States as a guide, a!so Channel B on 146.000 MHz . The most likely times for 2 metre con!acts will be on Saturdays and Sundays when more operators are available, and Irom about mid-morning to mid-day. This could app:y to almost any weakend during December, and possibly early January, with the most likely a week or so before Christmas.

So go to it chaps. The more you operate the more likely you are to work something different and/ or unusual. But don't sit sllently In the shack all the time just listening. If everyone did that nobody wou!d be worked. Whllst it is a good thing to do plenty of listening. It also pays to stop listening every now and again and stant calling. Remember the recognised calling trequencles are 52.050 and 144.100. Once you have established contact however, get off those frequencles and work a few kHz higher or lower and leave the calling frequency for others, possibly in a totally difterent area from that in which you are working. See you on 61

EME OPERATIONS

Lyle VK2ALU, of the Dapto EME project, sends hla usual noles via "The Propogator". On 7/9/75 M grade reports were exchanged with PAOSSB. FSFT was then worked with good signals each way. He later tried SSB which could be heard in the nolse but could not be resolved clearly.
Repalrs and adjustments are continually being made to the 432 MHz equipment at Dapto to Improve prospects for contacts, but the group are sorely in need of further helpers to keed everything going. Same old story it seems. However, the transmitter frequency checking system, using HF signals from standard trequency stations, has been Installed.
Chris VK5MC at Hatherieigh near Millicent sends a briel report of his 144 MHz EME operations. 1/9/75 18142, JA6DR, report sent 539, received 539. Thls was a new country for Chrle. 25/9 1326Z, W7CNK, sent 549, recelved 339; W6PO, sent 549 . recelved 439. 29/9, 18562, K2RTH, "O" and Roger sent and received. Chris now has a post-amp and a preamp up in the box at the stacked rhombles antenna, and this does appear to be giving a better overall system noise figure. Thanks Chris for your Information.

GENERAL

I note trom "Blurb" of the South East Radio Group In Mt. Gambler that the Club prolects for the 1975/78 season are going to keep members busy. Such things as: Establishment of a 2 metre beacon, AND $: 2$ metre repeater; re-dratting of the Constitutlon, fund raising, new Club Rooms and partcipation in the Back to Ml. Gambier celabrations. That's quite a task. We wish them well as the Mt. Gambier boys represent the moat actlve group of rally out-of-town VHF amateurs within reach of both Adelaide and Melbourne. I also note much work has been going on upgrading and rebullding 2 melre convertars, so this augurs well for this summer period of operating. It is great that these boys think in terms of VHF when so many of them have full callsigns.
The Gold Coast Radio Club Newsletter has arrlved again, and I note they have now recelved their UHF repester from John Willis, VKAWN. It operates narrow band FM, receives on 433.100 and transmits on 434.300 MHz . It is presently not proposed to Instal It on Mt. Tamborine, the slie of the present Channel 1 repeater, until the completion of the new VHF antennae.

Winston VK7EM writes to advise he will be active again during the summer months on ATV. He la still running 30 watte input to a QQEO3/20, and a phased array 6 metres high. Transmit frequency is 426 MHz . Winston hopes for many more contacta to VK3 this year, and other areas 100 if possible.

In north-western VK7 there are many stations proparing for ATV eo it could be an Interesting year
for the cameras. Skeds can be arranged with Winston via Channel 4 repeater, Channel B, 144 MHz AM or on HF. He monitors the commerclal TV stations across the water and whan signals are reasonable listens on all 2 metre channels including the VK3 ATV group channel V.

Representing the Mackay Amateur Radio Club, a letter has arrived from Publlclty Officer Eddie VK4RR, probably better known to some as VKAZRE. He reports 2 metre activity is on the Increass in North Qld., with many large antennae being constructed. John VK4TL In Cairns started the ball rolling with four 6 elements yagis, vertical on Channel 50, and ran regular skeds with Ron VK\&ZLC in Townsville, and found contact could be made almost every night. Rlchle's OTH is 33 Km north of Mackay and about 600 Km trom Calrns, and he finally worked John In Cairns on 14/7/75 afler hearing him for several months, using two 12 el . yagis at 17 m high. with 4 watts output from the tranamitter. (Not a bad eftort 5LP). Now that he la running 60 watt it has meant quite a fow 5×9 contacts to Calins.

Richle has found in the north the same things that happen down here. When the activity increases, you suddenly find the band is open on many more occaslons than thought possible. He reported an outstanding opening on 12/10 and worked John VK4TL and Ted VK4YG in Calms, Mario VK4ZMS In Ingham, Joe VK4JH in Townsville, and Ross VK4RO In Ayr.

Longest distance contact was between Ron VK4EN In Mackay to John VK4TL in Cairns, and best contact was between Peter VK4APS operating mobile In Mackay with 2 watts to a 5/8 whip to John VK4TL In Calins. On the same night in Mackay Ron VK4EN and Peter VK4APS worked Claude VK4UX and Charlie VK4MP In Rockhampton on Channel 40
Richie further reports there la quite a deal of Interest in 2 metre SSB in the north, but the problems of lack of finance to buy commerclal equipment, and the lack of time to build it yourself seems to be delaying the commencement to any extent. One can get on FM for as little as $\mathbf{\$ 3 0}$ for used equipment, but many times that for SSB equipment.

Thanks for wrlting Richie. The above Information has been included in these notes to let the rest of VK land know that 2 metres in one form or another has not been overlooked in the north, and when the conditions are right as Christmas approaches, contacts to the south could be the order of the day, and with some of the very substantial antennae erected in the north such contacts are certainly feasible.

My old faithful, Kerry VK5SU from Ceduna, ha: writien to make sure we all know he will be around again this year, on 52 MHz to all Slates, on 144 MHz to the east, monitoring 144.050 and 144.100 . repeaters and simplex channels with calls on these trequencles especially during 6 metre openinge.

Kerry ls also taking up the cudgels for 2 metres to the West, particularly to the Perth area. He has received advice that PhII VK6ZKO and Peter VK6zDY are both keen to work long haul 2 metre DX. They both hope to be running high power to 13 element 24 toot yagis. Phil's OTH is right on top of the ranges (330 m high) east of Perth with a clear take off to the eastl (That's certainly naws for us over here - the chances of working Perth In the usual way have been rather sllm, but there are hopes for the future - 5LP).

Kerry also mentions the Perth beacons have been re-located and are now at the 40 m level of the TVW6 TV tower at Blckley, this belng 350m above sea level. Antennae have been robullt, with a halo on 145.000 . The halo for 52.300 has given some trouble and may have to be rabullt again. At the moment the 6 matre beacon is using a dipole pointing north and southl There are problems in Dointing it east and west.

The band on 6 metres opened Ior Kerry on 12/10 10 VK3, with stations in Melbourne, Geslong and Werribee being worked. What a lovely distance you are from everybody Kerry. But how lucky are we to have such a keen VHF-ar at a place like Ceduna, keeping everyone around the Continent on their toes through your generous contacta. Thanke for writing: sorry I missed you when you were in Adelaide recently.
As of this writing there have been a few short 6 metre openings to VK5. Reasonably good one to

VK6 on 1/11/75. We should all soon be having more of these openings, with the pattem laat year being for aome very strong one's early In Novamber. By the time thase notes are read the Ross Hull Conteat ahould be In full awing, so wiah you all well in that.
Chriatmas la coming, so 1 take this opportunity at once again sending greetings to all my cortespondents who keep me aupplied with notes, to all my readara who from time to time write and say "thank you" and to those of you who recognlse me on the alr and also say "thank you". If 1 can give some pleasure or create an Interest for a number of you then I am rewarded; it many of you feel these writings are generally worthwhile, then I am amply repald.

So, a Mappy Christmae to evaryone, and a vary proaparous New Year, and planty of DX.

Thought for the month: "It's a atrange life. You can akate on thin ice and end up in hot water." The Volce in the Hille.

Awards Column

wi:h BRIAN AIJSTIN VKSCA
po Bon IA Criters SA $31 \leq 2$
Conditions for the Hong Kong Firecracker Award have been amended as follows:

1. All licensed radio amateurs and SWLe throughout the world are ellgible to apply for the award.
2. Claims may be made within the following categorles:
CW only.
CW/Phone or
Phone only.
and the award will be endoraed accordingly.
3. The contacta are requirad to be made with different VS8 atatione es followa:
(a) Zonea 18, 19, 24, 25, 26, 27 and 28:

10 contacts
(b) all other Zones 6 contacts
4. Contacts may be made on any of the authorised amateur bands.
5. Contacts made on or after 1at January 1964 ONLY will be eligible for the award.
6. Contacts made during conteata will be ellgible for the award.
7. In aupport of an application for the award. OSL cards must be held for the contacte claimed. It ts not necessary to send OSL cards with the application, alternativaly a log extract, cartified by the National Club or Soclety will auffice. Detalle required are: date, time, band, mode, and aignal raporta, both given and raceived. Minimum report accepted will be readability 3 and for CW tone 8 on the RST system.
8. To cover adminiatration cosis, 10 IRCs are to be sent with the application. Postal orders, atamps or cash not acceptable.
9. Applicationa for the Hong Kong Frecracker Award are to be sent to the OSL Manager, Hong Kong Amateur Redio Tranamitting Society. P.O. Box 541, Hong Kong.

WAOY

1. The award ta avallable to licensed amateurs.
2. Contacts on and alter 11th April 1865 are valld.
3. Do not aend OSL cards. A list, glving full detalls of the contacts should be certilied by another licensed amateur.
4. Mixed mode contacta - CW to SSB etc. - and cross band contacts are not valld.
5. The fee for the award is 10 IRCe or equivalent.
6. The address for application la:

FRA.
Awarde Manager.
Post Box 184
Torshavn
Faerce lalande.
Rules: For stations outaide Europe each FRA member station counts as one point on 28, 21 and 14 and two poinis on 7 and 3.5 MHz . OYEFRA and OYBNRA count double points on each band.
Requirementa: 20 points.
DTA

1. The award is avallable to licensed amateurs.
2. Contacts on and after 1 st April, 1846 are valld.
3. Do not send OSL cards. A list, showing full detaile of the contacta should be cortifled by the Awarda Manager of a Natlonal Society.
4. The award la lasued for all CW of all phone.
5. The tee for the award Is 6 IRCe.
e. The address for application la:
M. Manatrier, FSIN

128 Avenue de la Rasisiance

10.7 MHz CRYSTAL FILTERS FOR FM SYNONYMOUS FOR QUALITY AND ADVANCED TECHNOLOGY

MATCHING CRYSTAL	
DISCRIMINATORS	
NBFM	XD107.01
WEFM	XD107.02
(1.9)	$\$ 22.10 ~ e a c h ~$

EXPORT EMQUIRIES WELCOME

SPECTRUM INTERNATIONAL BOX 1084A CONCORD MASSACHUSETTS 01742 U.S.A.

Filter Type	XF107.A	XF 107 - ${ }^{\text {B }}$	XF 107 C	XF107 D	XF107E	XF 107 SO4	XF 102
Agplication	NBFM	NBFM	WBFM	WBFM	W日FM	NBFM	NBFM
Number ol Filtel Civsials	8	8	8	8	8	4	2
Bandwidin	12.0 kHz	150 kHz	30.0 kH2	360 kH ,	400 kHz	140 kH ,	140 kH ,
Pass Band Ripple						S 118	- 2 dB
Insertion Loss	$\leqslant 35 \mathrm{~dB}$	$\leqslant 3.5 \mathrm{~dB}$	5.4 .5 dB	$=45 \mathrm{~dB}$	$\because 45 \mathrm{~dB}$	$\because 3$ d8	$=15 \mathrm{~dB}$
Input Output $\mathbf{Z t}_{\mathbf{t}}$	820 S	910Ω	2000 S2	2700 12	3000 ®	910 !2	2500 S2
Termination $\mathrm{C}_{\text {t }}$	25 of	25 pF	25 pF	$25 \omega^{5}$	25 山F	35 or	\checkmark
Shape Factor	(70 d8) 24	(70 d8) 23	170 dBl 22	170 d81 19	13 dBl 20	140 del 30	120 d8) 36
	$190 \mathrm{dB1} 28$	(90 d8) 29	$190 \mathrm{dB1} 27$	190 J 812 s	190 d ${ }^{\text {Sl }} 25$	-	(3C dB) 57
Ulitimate Attenuation	127/64** $1.3 / 64^{*} \times 3 / 4^{*}$ " 1. .9t Mounting Hardware Included					$>60 \mathrm{~dB}$	$>30 \mathrm{~dB}$
Size						Hc 6/u	$\mathrm{Hc} 18 / \mathrm{u}$
						can	can
Price (1.9)	\$40.60					9.1895	\$795

Reglatration Fee: $\mathbf{5 1 . 0 0}$; Alr Mall: 26c per $1 / 202$.
Shipping weights: Filters 202 ea., Crystals $1 / 202$ ea.
All Prices in U.S. Dollars.

93340 Le Raincy.

France.
Requirements: Confirmed contacts are required with THREE of the French Austral countries. There is also an "Excellance" DTA for confirmed contacis with all four countries.

Countrles List:

Crozet lalanda	FB8W
Karguelen Ialands	FB8X
Adelie Land	FBBY
St. Paul and New Amsterdam	FB8Z

${ }^{-}$
 Around the Trade

 Smith Electronics Piy. Lid. as Manager of the Communications Section. He will be rasponsible for Amateur gear sold by the company.Sandy has been a licensed Amateur for 18 years and is active on all bands. He has been activaly engaged in the sale of communications equipment for the past ten years and was at one time N.S.W. agent for Yaesu Musen. He was tormerly with Racal Electronics and has considerable experience in communications used in oil exploralion.

Mr. Bruce-Smith is based af the Gore HIII Electronics Centre and Amateurs may contact him there on (02) 4385311.

Spectrum International have recently added a new filter to the 8.0 MHz line. It is the XF9-NB, a narrow band unit for CW reception (and digital data) with minimum ringing characteriatica. Its specs are:

Bandwidth - 500 Hz ; No. of Crystale - 8; Rlpple - leses than 0.5 dB ; Insertion - lese than 6.5 dB ; Terminations - 500 ohme, 30 pF, eame as other 9.0 MHz fitters; Shape Factor - 6:60 dB 2.2:1, 8:80 dB 4.0:1; Ultimate Attenuation - greater than 90 dB. Price Is U.S.s63.85.

\#FERGUSON

Manufacturers of: Electrical / electronic equipment, wound components and lighting control equipment.

BRANCHES

IN
 ALL STATES

Ferguson Transformers

Pty Ltd.
Head Office
331 High Street. Chatswoud NSW 2067
PO Box 301 Chatswood.
NSW. Australia 2067
Phone: 02-407-0261

Hamads

- Elght linea tree to all WIA membera. $\$ 9$ per 3 cm for non-members.
- Copy in typescript please or in block letters to P.O. Box 150, Toorak. Vic. 3142.
- Commercial advertising is excluded.
- Closing date: 1 st day of the month preceding publication. Cancellations received after about 12th of the month cannot be processed.
- OTHR means the advertiser's name and address are correct in the current WIA Radio Amateurs Call Book.
- The current WIA Callbook is the 1975 edition.

FOR SALE

CLOCK
A clock that will operate anywhere and does not clutter up the room with a power cord It is accurately controlled by a tuning tork operating at 400 Hz and running from a single size ' D ' cell with a lite of approx one year. The alarm can be set 24 hours ahead Ivory colour.

PRICE $\$ 29.95$

MODEL 707 - AC DAY \& DATE ALARM CLOCK
A unique Desk/Table calendar model combining utility and beauty. Built-in neon lamp for ease of reading at night. 230 V 50 Hz AC Available in white.

PRICE $\$ 36.00$

MODEL 227 ECONOMY MODEL ALARM CLOCK
A desk/table clock of modern design Available in white with a built-in neon lamo for ease ol reading at night. 230V 50 Hz AC.

$$
\text { PAICE } \$ 17.95
$$

MODEL 703 REPEATER ALARM CLOCK
Modern design desk clock with an alarm which repeats until turned off Available in wary. 230 V 50 Hz . AC.

PRICE S22.50
MODEL 801 WALL MOUNT CLOCK Large, easy to read figures. 230 V 50 Hz AC Can also be used as a very large desk clock.

PRICE $\$ 68.00$

Copal Clocks come from the world's largest and most advanced producer of digital clocks and movements.
12-hour types available on order.
All prices include Sales Tax. Freight extra. Prices and specilications subject to change. Allow S2.50 for postage and insurance whin Australia.

60 SHANNON STREET, BOX HILL NORTH, 3129 Phone: 89-2213

FRED BAIL VK3YS $\operatorname{JIM}_{\text {VK3ABA }} B A 1 L$

Trio 9R59DS Communication Rx and Manual, \$120; TCA1677 60 walt carphone, 4 ch and Manual, $\$ 100$; 10-15V 8A PSU, \$45. VK2YCR, OTHR. Ph. (02) 9823707 (Tony).
Threa-Section 100 ft . Guyed Towar plus Ham-M Rotator and 3 el. beam atop. Part of deceased member's estate. Would appreciate offers with assist ance to remove. Mrs. Alhans, 76 Pascoe St., Bupwood, 3125.
AR7 with circult, S35; CRO using 5BP1, with circult. \$30; Multimeter. AVO Mod. 8, Mk3, \$80; Tradiper TE15, S20; Tape recorder, Robuk, mike and circuit, S30: Microphones with table stands 1 -Zephyr. 50 ohm. \$15 and 1-Astatic, D104, \$10. Have other meters etc. also avallable. John Sydenham, Ph. (03) 232 4637, any time.
Creed 7 Teleprinter with 3 governors, fibre box cover. PLL decoder, pair MJE340 AS magnet drive, power supp!ies, $\$ 70$. WIII separate. R. Graham. QTHR. Ph. (02) 6420122.
Yeesu FT2FB with 1, 4 and 40. As new, $\$ 145$. Solld state multi-band Rx, covers B/C 30/50, 88/108, 108/170 MHz AC or battery, \$25. AWA MR/6A 2FM, restored to new cond., S35. VK3OM, OTHR. Phone (03) 5609215.

Yaasu FT201, brand new in carton, fitted 12V DC accessory kit, complete with new mike, $\$ 500$. Matching SP101 speaker, new. Latest Katsuml elec. keyer EK-26 12V DC. 240V AC, little use, \$45. 4-Track, 4-Speed solld state Tape Recorder. Type JullCorder 999, 12V DC/240V AC, unmarked, as new, \$75, including mikes, accessories and 5 new Sony 7" tapes. J. Moyle, VK4ZT, OTHR.
Yaesu FT200 with matching heavy duty power supply, as now condition, $\$ 350$. Quad $10,15,20 \mathrm{~m}$, aluminlum spider hub, fibreglass spreaders, $\$ 100$. VK6AZ, 608 Morley Dr., Morley. 6062. Ph. (092) 764491.

FT2F FM unit, very good cond., repeater xtals 1, 2 and 4. SImplex A. 40 and 50, $\$ 135$. K. Roget VK3YQ, QTHR. Ph. (03) 853604.
FT101B with matching SP101 speaker, all accessories, $\$ 500$; VF1018 matching remote VFO, S75: Mobile mount tor FT1018, $\$ 15$. All In mint conditlon, as new. VK3TG, QTHR. Ph. (058) 521636.
FT200 Tranaceivar and Power Supply, 2 years old, as new, little used: microphone and handbook, $\$ 350$. VK2BZ, QTHR. Ph (047) 536149 , atter hours.
Galayy 5 with remote VFO mike, apeaker and power supply, exc. cond., $\$ 370$ ONO. Geloso VFO 807 final, 3.5 Ihrough 28 MHz, $\$ 25$. New Anixter Whips, 80 and 40 m with bumper ball fitting. $\$ 40$. VKSZB, QTHR. Ph. (08) 2761053.
FT101 Tranacelver (no 160 mtr), excellent condition. \$350; Sinclair stereo 60 audio pre-ampl., new condltlon, \$18. VK5PV, OTHR. Ph. (08) 381 2415, 3825851. Naw Valves: two 4-125. ea. \$9.00; one QY 3-125. \$8.00; one QB 3/300, $\$ 8.00$; one 811A, $\$ 5.00$; iwo 5763 ea. $\$ 1.00$; one QOE 03/12, $\$ 2.50$; $6 \mathrm{HF5s}$, ea. S4.00: two heavy duty variable cap's, silver plated. good for $4 \mathrm{kV}, 20-200 \mathrm{pF}$ and 20-180 pF, $160 \times 110 \times$ 85 mm , es $\mathbf{~} 7.00$; provide postage. VK2BMI, QTHR. Ph. (02) 7711657.
Gonset GSB100 Tx_{x}, mint condition, CW, AM, PM, SSB, VOX, manual, drive any linear, \$200. Homebrew Linear on Chassis with B8W 1 kW turret. 10 80 m , 3 metres, 2811 As, $\$ 100$. Palr Selsen motors, \$20. VTVM Cossor Heath Type, $\$ 20$. Asahl Moblle Ant., $10-80 \mathrm{~m}$ with spring, cost $\$ 105$, sell $\$ 75$. Tranpro VCT. \$40. BC 459A, s20. VK2DA, QTHR. Ph. (02) 941039.

Silent Keys

It is with deep regret that we record the passing of-
R. A. DUDGEON
L30259
A. ATHANS
vk3ACB

Hallicraftera 370W Tranamitter/Linear Model HT 37, AM, SSB, USB, LSB, CW on 80, 40, 20, 15, 10 , with built-In 230 V PS, VOX and remote control, $\$ 225$ or exch. for FT75B. G. Down, 3 Broome Street, Katanning. 6317.
TS500 Tranacalver, $80-10 \mathrm{~m}$ (Trio Kenwood) with 230V PS and speaker, Inst. manual Included. Used for fow months rec. only. \$375. May accept FT75B as part payment. G. Down, 3 Broome St., Katanning. 6317.

SR700A/ST700 Star SSB Recelver and Transmilter, with internal power supplies, condition as new, complete with cables, speaker, manuals and circults. Spare tubes can be supplied at cost if required, S400 ONO. Radlo Communication (RSGB), 28 copies (unmarked). from Dec. 72 to Aprll 75. \$10 the lot. VK3WQ, QTHR. Ph. (03) 2115189.
Collina Mechanical Fllter Type Fa55K 31 with Xtais \$20. Midland Twin-Meter SWR Bridge, new in box, S16. Communications desk mic. with desk stand $\$ 7$. New pair stereo phones $\$ 10$. SP400 Yaesu speaker unit $\$ 20$. Full set Asahi moblie whips 10 to 80 m with ball and spring $\$ 65$. New. unused 6KD6's $\times 2$ and 6GK6. $\$ 16$ the set. All above either brand new or mint conditlon. VK3ARZ,QTHR. Ph. (03) 9329492 A.H. only.

FT200 AC, PS and Homebrew DC PS. All 10 m Xials plus 11 m . Good cond. New 6JS6Cs. No mike. You treight. \$350. VK1MP, OTHR.
Tri Band Linea, 80, 40, $20 \mathrm{Mx}, 2 \times 813$, plus 2 spare tubes, home built, with rugged power supply. In large cabinet ($3^{\prime} 6^{\prime \prime} \times 2^{\prime}$). Work OK, needs tidying up. S75.00. B. Bathols, VK3UV. QTHR (03) 906424.
Stereo Amp. 8×8 watt RMS $\$ 59$. Stereo Amp $16 \times$ 16 watt RMS $\$ 69$. Labctalt 605 tumtable $\$ 59$ (o.n.0.). VK3ZR, OTHR. Ph. (03) 894645.

WANTED

Circuit Diagram and Servica Info for Collins trontends mod. nos. 55D2 and 55B2. These units appear to be ex-Navy and use 6SK7, 6SK7. 6SJ7 valves. VK3ZR, QTHR. Ph. (03) 894645.
Cheap Receiver wanted for school boy sitting for novice exam. 3 to 6 command, low band command. AR8 or simllar. B. E. White VK2AAB. Ph. 102 4871428.

Circult diagram for AVO Valve Characteristic Meter Mark III. Also copy of instruction book, all expenses will be paid. VK3WQ. OTHR. Ph. (03) 2115189.
Theosophlats, or similarly-inclined: Tom House, BA - VK2BTH - would welcome hearing from you. Skeds, preterably CW, eyeball OSOs or correspondence. 34 Wolsely Rd., Lindfield, 2070. Ph. (02) 4672773.

Cryatal Filter 9 MHz for SSB Tx/Rx. Consider other treq. or homebrew. VKTTA, OTHR.
Clicult Dlag. of Astor Model TV1 Oscllloscope for copying. Return and postage costs guaranteed. B. Bathols VK3UV. OTHR. Ph. (03) 906424.
CRO Single Channel for TV wark. around $\$ 400.00$. Tower, tilt-lype, 35 ft and above. Rotator for quad, e.g. (Stolle or better). Bruce R. Kendall L30578. 10 Carter Cres.. Werribee. Ph. (03) 7412382.

TO LET

Excellent OTH. Lower Blue Mountains, NSW. 2bedroom modern brick veneer house, 16.5 sq. Inc. carport, large garden, 1 mile station, last train service to Sydney. Shack $24^{\prime} \times 12^{\prime}$, built-In console. antenna system: Monoband yagls, 5 el. 10 m at 100°. 4 el. 15 m at $90^{\circ}, 5$ el. 20 m at 80°. Reply $2 / 7$ Robertson Rd., Centennial Park. NSW 2021. Ph. (02) 6634267.

HAM RADIO SUPPLIERS
 323 ELIZABETH STREET, MELBOURNE, VIC., 3000
 Phones: 67-7329, 67-4286
 ALSO AT:

 390 BRIDGE RD. RICHMOND. 425174
AMATEUR TRANSCEIVERS, RECEIVERS AND ACCESSORIES

MIDLAND 13-893 23 Channel 27 MHz Transcelver SSB and AM. 12 V DC operation.
MIDLAND 13-870D 23 Channel 27 MHz AM Transceiver. 5 watts AM. 12 V DC operation.
$\$ 99$
PONY CB74A 6 Channel Transceiver. 5 walts AM. P.M.G. approved for 27.880 MHz operatlon. Fitted with crystals for 27.880 MHz .
NC310 WALKIE TALKIES. 3 channel $27 \mathrm{MHz}, 1$ watt operation. Fitted with crystals for 27.240 MHz . $\$ 49.50$ each LAFAYETTE HA310 WALKIE TALKIES. $27 \mathrm{MHz}, 1$ watt, 3 channel. Fitted with 27.240 MHz crystals. $\$ 89.90$ each

LAFAYETTE 27 MHz Fibreglass Cowl Mount Moblle Loaded Antenna. 36' long.

27 MHz MARINE ANTENNA designed for Installation on fibreglass boats. Does not require any | metallic earthing. $\$ 51.50$ |
| :--- |

HANSEN FSS COMBINATION SWR. Bridge and Dower meter. 2 power ranges, 10 and 100 watt. 52 and 75 ohm impedance switching.
$\mathbf{\$ 2 9 . 5 0}$
$1 / 4$ WAVE STAINLESS STEEL 11 Metre Antenna with heavy spring steel base and Insulator.
$1 / 4$ WAVE ROOF MOUNT, mobile 2 metre whip and base with 11 ft . of RG58C7U coax fitted to Belling Lee Base

BARLOWWADLEY XCR-30

a truly portable communicatlons recelver, bascd on the WADLEV LOOP principle the same principle as applied in the DELTAHET and RACAL receivers. A truly crystal-controlled highly sensitive multiple-heterodyne oortable receiver of exceptional stablity with continuous, uninterrupted coverage from 500 kHz to 31 MHz .
BARLOW-WADLEY XCR-30 features include: Selectable USB/LSB, CW \& AM reception, frequency read-out 10 kHz reception, requency read-out 10 kHz throughout the entire range, calibration accuracy within 5 kHz , antenna resonator, tuning signal-strength meter, zero-set control, clarifier-vernier tuning, MHz \& KHz tuning controls, telescopic antenna. Power source: 6 type D dry cells: provision for external DC power supply. Weight 9 lbs; size. $111 / 2 \times 74 / 2 \times$ 4 in .

All for $\$ 275$ F.o.r.

When not in use or for carrying, the top meter/megahertz scale flips down flush with the case and clear of the handle.

EDGEWISE $0-1$ MA METERS. $212_{2}{ }^{\prime \prime} \times 1 / 2^{\prime \prime}$ tace. $3^{\prime \prime}$ deep. Calibrated 0.5. \$3 each

PANEL METERS $57 / 8^{\prime \prime} \times 4 y_{4}{ }^{\prime \prime}$ with $0-1$ MA movement. Various scales on meters.. (Gas Analyser etc.). $\$ 5$ each NEW OOEO6/40 CERAMIC VALVE SOCKETS
$\$ 2$ each
MORSE CODE PRACTICE KEYS $\$ 1.50$ each
BATTERY ELIMINATORS to sult transistor radios and cassate recorders, AC-DC 6 volt, 300 MA P.S. 6300.
$\$ 7.50$
SPEAKER CABLE, colour coded twinflex. 20c yard JACKSON SLOW MOTION DRIVES. 6:1 ratio. \$2.30 CIGARETTE LIGHTER ACCESSORY PLUGS.
$45 c$ each, 10 for $\$ 4$
MINIATURE SIEMENS RELAYS. 4 sets changeover contacts, 6-12 V DC operation. Type V23154 new. $\$ 3.50$ each
"PHILIPS" TYPE CONCENTRIC TRIMMERS.
Threaded stud mounting. 25PF.
75c
BRAND NEW A-TRACK STEREO CARTAMGE PLAYERS. 2.5 watts per channel at 8 ohms. 12 V DC oderation. In sealed boxes. $\$ 15$ each
"ZEPHYR" $2 K$ ROCKING ARMATURE MICROPHONES. Desk type with P.T.T. key switch in base. Brand new. Reduced to $\$ 19$

TRANSFORMERS A \& R TYPE 5509. Ex equlpment but as new. PRI 240 V secondary $2 \times 12.6 \mathrm{~V}$ at 2.5 AMP.
ss each
2N3055 TRANSISTORS
81 each
58 OHM COAX. CABLE. 100 yd. rolls. y/e in. diameter. $\$ 12$ roll 52 OHM COAX. CABLE. $y_{4} \mathrm{In}$. diameter. 45c yd., SOc malre DOW KEY COAXIAL RELAYS. 48 volt DC operalion. $\$ 15$ 3" "N" type connectors to sult s5 each SPLIT STATOR CAPACITORS with screwdriver slot drive 9PF-17PF-25PF. Brand new Eddystone type. 83.50 each

EX-ARMY HEADPHONES. Approx. 20 ohms impedance. New in sealed boxes. 82 each
2" SQUARE FACE 0-1mA METERS. Calibrated 0-60. 33 each

SCOOP PURCHASE

thousands of transistor radio circuit BOARDS. Ideal for the hobbyist and home constructor.

AM 8 TRANSISTOR CIRCUIT BOARDS. All new parts. IFs capacitors, resistors etc.
$\mathbf{\$ 1 . 5 0}$ each or 3 for $\$ 3.50$
LARGE VARIETY OF AM/FM CIRCUIT BOARDS. 10 transistors, ideal for use as FM tuner. 88-108 MHz. $\mathbf{s 2 . 7 5}$ each nf 3 for $\$ 7$

LARGE QUANTITY OF TRANSISTOR RADIOS in various stages of manufacture. $A M$ and $A M / F M$ nodels in varios stages of manulacture. Personal shoppers only.

From $\$ 2$ each

RF AMPLIFIER AM-4306/GRC
Originally used in conjunction with PRC25 which covers $30-75 \mathrm{MHz}$ FM. Requires 1.4 watts drive and gives a nominal 25 watts out. Brand new in sealed box with complete service and user manuals.
\$19 each

RF SIGNAL GENERATOR Model TE-20D

SPECIFICATIONS

Dial has 7 separate band TE-20D covers 120 kHz - 500 MHz
(6) Fundamental Bands \& 1 Harmonic Band)
Fieq. Accuracy: -or-2\%
Audio Outpul: 108 volt
Internal Modulate: 400 Hz approx.
Tube: 12日H7A, 6AR5
Power Source: $105-125 \mathrm{~V}, 220-240 \mathrm{~V}$ $A C 50 / 60 \mathrm{~Hz}, 12$ walts
TE-20D employs a xtal socket and can be used as below:
a.-Self-Calibration. b-Marker Generator

Small size - Space saving
Printed Circuit for a uniform characteristics.
Dimensions: $140 \times 215 \times 170 \mathrm{~mm}$. Weight: 2.8 kg
Price $\$ 52.50$. P\&P $\$ 2.00$

DISPOSALS EQUIPMENT

Our BULK STORE at 104 HIGHETT ST. is open 9-5 each day for sales of ex-Governmen: Disposals, Electronic Test Equid ment, Receivers, Transmitters, Oscilloscopes Valves. Cable and thousands of those hard to get components and gadgets for the hobbyist. We also open 9-12 p.m. Satur. days Telephone 42-8136.

MAIL ORDERS WELCOMED. Please allow pack and post on items listed on this page. If further information required send a stamped SAE for Immediate reply from the above address. Larger items can be sent F.O.B.

RHCMminglam

TheName Euerybody Knows
R. H. Cunningham is the name to know when it comes to superior quality communications and electronic equipment and components. Names of products that have proved themselves in the field of international electronics; products such as Sennheiser microphones and test equipment, Eddystone communications receivers.

Bulgin components.
Sonnenschein batteries, Alert fuses, Paso sound equipment, Dow-Key RF components. Stolle aerial rotators, Millbank PA equipment to name some. But let us tell you more and in detail. . . . WRITE NOW and we will register you to receive our FREE monthly Technical Library Service Bulletin.

493.499 Victoria Street, West Melbourne. 3003. P.O. Box 4533, Melbourne, Victoria.

Phone 329 9633. Cables: CUNNIG MEL.BOURNE. Telex: AA31447
N.S.W.: Sydney. Ph.: 909 2388. W.A.: Perth. Ph.: 49 4919. QLD.: L. E. Boughen \& Co. Ph.: 708097 S.A.: Arthur H. Hall Pty. Ltd. Ph.: 424506.

[^0]: TNI. 4398311

[^1]: Teleprinters and associated equipment wanted by Australian Amataur Radio Telepriniers Group. If you have a telaprinter not baing used, why not diapose of It ihrough our Group to someone anxiously walting to get slaried on RTTY. Particulara and price to: Secretary, WIA, WA Diviaion (AARTG). Box N1002, GPO. Perth, WA 6001.

[^2]: boat for a period of abnut two weeks. It is also hoped to provide good publicily for amateur radio as well as Australia's impressive Inland sea by producing a documentary movie of the expedilion. Lake Ey?c has been lull of water for about two years and looks like remaining full for some time to come.

[^3]: 27 MHz EQUIPMENT
 MIDLAND 5 W AM 23 channels transceivers, with PTT mike 12 V DC
 . $\$ 95$
 MIDLAND 5 W AM 15 W PEP SSB 23 channels transceivers PTT mike 12 V
 $\$ 175$
 SIDEBAND Brand One Watt model NC- 310 hand-held transceivers
 $\$ 50$
 SIDEBAND Brand 5 W AM 15 W PEP SSB 23 channels transceivers, with noise limiter-blanker, PTT mike, 12 VDC
 $\$ 190$

 ## 144 MH2 TWO METER EQUIPMENT

 MULTI-7 10 W output FM transceivers, 24 channels with crystals for 10 channels 40 to 60 , includes all Australian repeaters and anti-repeat er operation, with PTT mike and mobile mounting bracket, 12 V DC operation, still only \$225
 KEN PRODUCTS KP-202 2 W output FM hand-held transceivers with the hot test receiver available anywhere, 6 channels now with crystals for channels 40 and 50 and all 4 repeaters $\$ 150$; KCP-2 battery chargers and 10 NICAD batteries $\$ 35$: Leather carrying case for the KP-202\$6: Stubby flexible helical whip antennas for the KP-202\$6.
 KLM ELECTRONICS solid state 12 V DC 2 M . amplifier, 12 W out put, automatic antenna change-over when driven, ideal for mobile use with the KEN KP-202 \$50.
 All prices quoted above are net SPRINGWOOD, N.S.W., cash with orders, sales tax included in all cases, subject to changes without prior notice. No terms nor credit nor COD available, only cash and carry, no exceptions. All-risk insurance available for 50 cents per $\$ 100$ value, minimum insurance $\$ 0.50$. Allow for freight, postage or carriage, excess will be promptly refunded ... MARY \& ARIE BLES, Proprietors.

[^4]: QSP
 INFLATION EVERYWHERE
 "The unaudited accounts of the Society for the six months to 31 December 1974 show a loss of $\mathbf{\$ 6 . 9 0 0}$ (around $\$ 12,000$). The three main causes of this are" - increased cost ol the magazine, salary Increases, fall-ofl in subs income (due to admin. problems). Radio Comm. Mar '75

[^5]: Vicom now have a range ol suppression kits for the mobile enthusiast. including odc line fitters. atternator and generator kits. ignition suppression kits and electroshield kits for the tough jobs

[^6]: 27 MHz EQUIPMENT
 MIDLAND 5 W AM 23 channels transceivers, with PTT mike 12 V DC
 $\$ 95$
 MIDLAND 5 W AM 15 W PEPSSB 23 channels transceivers PTT mike 12 V
 $\$ 95$
 $\$ 175$
 SIDEBAND Brand One Watt model NC-310 hand-held transceivers
 $\$ 50$
 SIDEBAND Brand 5 W AM 15 W PEP SSB 23 channels transceivers, with noise limiter blanker, PTT mike, 12 VDC
 $\$ 190$

 ## 144 MHZ TWO METER EQUIPMENT

 MULTI-7 10 W output FM transceivers, 24 channels with crystals for 10 channels 40 to 60 , includes all Australian repeaters and anti-repeater operation, with PTT mike and mobile mounting bracket. 12 V DC operation, still only... $\mathbf{\$ 2 2 5}$ KEN PRODUCTS KP-202 2 W output FM hand-held transceivers with the hot test receiver available anywhere, 6 channels now with crystals for channels 40 and 50 and all 4 repeaters $\$ 150$; KCP. 2 battery chargers and 10 NICAD batteries $\$ 35$; Leather carrying case for the KP-202s6: Stubby flexible helical whip ant ennas for the KP-202\$6.
 KLM ELECTRONICS solid state 12 V DC 2 M . amplifier, 12 W out put, automat ic antenna change-over when driven, ideal for mobile use with the KEN KP-202 $\mathbf{\$ 5 0}$.
 All prices quoted above are net SPRINGWOOD, N.S.W., cash with orders, sales tax included in all cases. subject to changes without prior notice. No terms nor credit nor COD available, only cash and carry, no exceptions. All-risk insurance available for 50 cents per $\$ 100$ value, minimum insurance $\$ 0.50$. Allow for freight, postage or carriage, excess will be promptly refunded ... MARY \& ARIE BLES, Proprietors.

[^7]: Well, where are they? We know they exist, 80 ladies show your faces.

 Compare Australia to USA, New Zealand, or Germany - Lhese counlries have very aclive YL groups. They have YL clubs, special cerlificates for working YLs eg. DVCCYL. WACYL, and WARO awards. $O M / Y L$ contests. and special noles in emateur radio magazines.

 What do we have to boast of - nothingl We don't even know how many YLs there are in Australia.

 So ladies lel us get logether and do something to increase $Y L$ activity and interest in amateur radio. Let us at least know you exist, whether you have a call or not.

 Here is a list of the YLs we know of (malnly with

[^8]: DC control line 16 volts unloaded, 12 volts loaded.

 Component List for 10 watt 80 metre Novice Transmitter (RF Section) -
 R1 - 39k ohm $1 / 2$ watt resistor, grid leak for crystal oscillator.
 R2 - 22 ohm $1 / 2$ watt resistor, parasitic suppressor on crystal oscillator.
 R3 - 820 ohm $1 / 2$ watt, cathode bias resistor, protective bias and isolator preventing RF going along keying lines.
 R4-22k ohm $1 / 2$ watt, part of plate load for oscillator triode.
 R5 - 27 k ohm $1 / 2$ watt, grid leak resistor for power amplifier.
 R6 - 1 k ohm $1 / 2$ watt, grid drive is measured across this resistor.

[^9]: "Dear OM,
 Once agaln the RD is over. I must wish
 you all the best with your job.
 Last year I wrote and protested over the

[^10]: VICOM VICOM VICOM VICOM VICOM VICOMIVICOMIVICOM VICOMIVICOMIVICOMIVICOMIVICOMIVICOM VICOMIVICOM

[^11]: VICOM
[^12]: M 2 POLE 2 ROSITION SWITCH. POSITION A - NOTCH. POSITION B - O MULTIPLIER
 WK LM 741 (PIN CONNECTIONS FOR O LEAD METAL CAN)

[^13]: L - LSB
 U- USB
 N - NOR
 R-REV

[^14]: 2 METRE RF AMPLIFIER, 200 mW 25 watts (min.) output, $\$ 45$.

