

LIA TEL MAL AD	FCC PART 22/24 TEST REPOR	TAB
	FCC Part 22H / Part 24E	
Report Reference No FCC ID	:: 2A73S-P600	
Date of Issue	: July 18, 2022	
Testing Laboratory Name	: Shenzhen LCS Compliance Testing L	aboratory Ltd.
Address	101, 201 Bldg A & 301 Bldg C, Juji Inc. Street, Baoan District, Shenzhen, 518	dustrial Park Yabianxueziwei, Shajing 000, China
Applicant's name	: Shanghai SmartPeak Technology Co.	.,Ltd.
Address	Room 1, No.3 Builiding, NO.295, Qianqi China	ao Road, Fengxian District, Shanghai,
Test specification		Lea reste
Standard	FCC Part 22H: Cellular Radiotelephor FCC Part 24E: Broadband PCS	ne Service
Test Report Form No	: LCSEMC-1.0	
TRF Originator	: Shenzhen LCS Compliance Testing Lab	ooratory Ltd.
	. Data 1 0011 00	
Master TRF		
Shenzhen LCS Compliance T This publication may be reprod Compliance Testing Laboratory Compliance Testing Laboratory the reader's interpretation of th	Testing Laboratory Ltd. All rights reserved. luced in whole or in part for non-commercial pury y Ltd. is acknowledged as copyright owner and y Ltd. takes no responsibility for and will not ass e reproduced material due to its placement and	source of the material. Shenzhen LCS sume liability for damages resulting from
Shenzhen LCS Compliance T This publication may be reprod Compliance Testing Laboratory Compliance Testing Laboratory	Testing Laboratory Ltd. All rights reserved. luced in whole or in part for non-commercial pury y Ltd. is acknowledged as copyright owner and y Ltd. takes no responsibility for and will not ass e reproduced material due to its placement and	source of the material. Shenzhen LCS sume liability for damages resulting from
Shenzhen LCS Compliance T This publication may be reprod Compliance Testing Laboratory Compliance Testing Laboratory the reader's interpretation of th	Testing Laboratory Ltd. All rights reserved. luced in whole or in part for non-commercial pury y Ltd. is acknowledged as copyright owner and y Ltd. takes no responsibility for and will not ass e reproduced material due to its placement and :: POS Terminal	source of the material. Shenzhen LCS sume liability for damages resulting from
Shenzhen LCS Compliance T This publication may be reprod Compliance Testing Laboratory Compliance Testing Laboratory the reader's interpretation of the Test item description	Testing Laboratory Ltd. All rights reserved. luced in whole or in part for non-commercial pury y Ltd. is acknowledged as copyright owner and y Ltd. takes no responsibility for and will not ass e reproduced material due to its placement and : POS Terminal : SmartPeak	source of the material. Shenzhen LCS sume liability for damages resulting from
Shenzhen LCS Compliance T This publication may be reprod Compliance Testing Laboratory Compliance Testing Laboratory the reader's interpretation of the Test item description	Testing Laboratory Ltd. All rights reserved. luced in whole or in part for non-commercial pury y Ltd. is acknowledged as copyright owner and y Ltd. takes no responsibility for and will not ass e reproduced material due to its placement and : POS Terminal : SmartPeak : P600	source of the material. Shenzhen LCS sume liability for damages resulting from I context. Iz, 0.40A .0W
Shenzhen LCS Compliance T This publication may be reprod Compliance Testing Laboratory Compliance Testing Laboratory the reader's interpretation of th Test item description Trade Mark Test Model	Festing Laboratory Ltd. All rights reserved. luced in whole or in part for non-commercial purplet of the part for non-commercial purplet. y Ltd. is acknowledged as copyright owner and y Ltd. takes no responsibility for and will not ass e reproduced material due to its placement and the produced materi	source of the material. Shenzhen LCS sume liability for damages resulting from I context. Iz, 0.40A .0W
Shenzhen LCS Compliance T This publication may be reprod Compliance Testing Laboratory Compliance Testing Laboratory the reader's interpretation of th Test item description Trade Mark Test Model Ratings	Festing Laboratory Ltd. All rights reserved. luced in whole or in part for non-commercial purplet owner and y Ltd. is acknowledged as copyright owner and y Ltd. takes no responsibility for and will not assee reproduced material due to its placement and the second materis and the second material due to its placement	source of the material. Shenzhen LCS sume liability for damages resulting from I context. Hz, 0.40A .0W ery, 2600mAh
Shenzhen LCS Compliance T This publication may be reprod Compliance Testing Laboratory Compliance Testing Laboratory the reader's interpretation of the Test item description Trade Mark Test Model Ratings	Testing Laboratory Ltd. All rights reserved. luced in whole or in part for non-commercial pury y Ltd. is acknowledged as copyright owner and y Ltd. takes no responsibility for and will not ass e reproduced material due to its placement and : POS Terminal : PG00 : Input: 5V2A For Adapter Input: 100-240V~, 50/60H For Adapter Output: 5.0V2.0A, 10 DC 7.4V by Rechargeable Li-ion Batter : / : V0.70.7506	source of the material. Shenzhen LCS sume liability for damages resulting from I context. Iz, 0.40A .0W

Compiled by:

Supervised by:

Approved by:

Gavin Liang/ Manager

140.00	nong
Vera	1

Vera Deng/ Administrator

Cary Luo/ Technique principal

(om

TEST REPORT

Test Report No. :	LCSA070522052EF	July 18, 2022
Test Report No	LCSAUTUJZZUJZLF	Date of issue

EUT	: POS Terminal			
Test Model	: P600			
Applicant	: Shanghai SmartPeak Technology Co.,Ltd.			
Address	: Room 1, No.3 Builiding, NO.295, Qianqiao Road, Fengxian District, Shanghai, China			
Telephone	:/ I III tasting Lab			
Fax				
Manufacturer	: Shanghai SmartPeak Technology Co.,Ltd.			
Address	: Room 1, No.3 Builiding, NO.295, Qianqiao Road, Fengxian District, Shanghai, China			
Telephone	:/			
Fax	: /			
Factory	: Shanghai SmartPeak Technology Co.,Ltd.			
Address	: Room 1, No.3 Builiding, NO.295, Qianqiao Road, Fengxian District,			
	Shanghai, China			
Telephone				
Fax				

Test Result:

PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revison History

	Revison History						
Report Version	Issue Date	Revision Content	Revised By				
000	July 18, 2022	Initial Issue					

Contents

	Contents	
Les Te	TEST STANDARDS	
<u>2</u>	<u>SUMMARY</u>	7
2.1	Product Description	7
2.2	Equipment under Test	9
2.3	Short description of the Equipment under Test (EUT)	9
2.4	Internal Identification of AE used during the test	9
2.5	Normal Accessory setting	10
2.6	EUT configuration	
2.7	Related Submittal(s) / Grant (s)	till the real ab 11
2.8	Modifications	NST LESTesting 11
2.9	General Test Conditions/Configurations	11
<u>3</u>	TEST ENVIRONMENT	
3.1	Address of the test laboratory	12
3.2	Test Facility	12
3.3	Environmental conditions	12
3.4	Test Description	13
3.5	Equipments Used during the Test	14
3.6	Measurement uncertainty	15
	则展切。	
4 LOSTO	TEST CONDITIONS AND RESULTS	<u>16</u>
4.1	Output Power	16
4.2	Radiated Spurious Emssion	19
4.3	Occupied Bandwidth and Emission Bandwith	22
4.4	Band Edge Compliance	24
4.5	Spurious Emssion on Antenna Port	26
4.6	Frequency Stability Test	33
4.7	Peak-to-Average Ratio (PAR)	35
<u>5</u>	TEST SETUP PHOTOS OF THE EUT	
<u>6</u>	EXTERNAL PHOTOS OF THE EUT	
<u>7</u>	INTERNAL PHOTOS OF THE EUT	

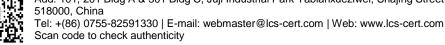
TEST STANDARDS 1

The tests were performed according to following standards:

FCC Part 22H: Cellular Radiotelephone Service.

FCC Part 24E: Broadband PCS.

TIA-603-E March 2016: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.


47 CFR FCC Part 15 Subpart B: Unintentional Radiators.

FCC Part 2: Frequency Allocations And Radio Treaty Matters; General Rules And Regulations.

ANSI C63.4:2014: Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

ANSI C63.26-2015: Compliance Testing of Transmitters Used in Licensed Radio Services.

2 SUMMARY

2.1 Product Description

The **Shanghai SmartPeak Technology Co.,Ltd.**'s Model: P600 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

EUT	: POS Terminal
Test Model	: P600
Additional Model No.	[:] P600 Countertop
Model Declaration	: PCB board, structure and internal of these model(s) are the same, So no
Power Supply	additional models were tested : Input: 5V2A For Adapter Input: 100-240V~, 50/60Hz, 0.40A For Adapter Output: 5.0V2.0A, 10.0W DC 7.4V by Rechargeable Li-ion Battery, 2600mAh
Hardware Version	:/
Software Version	: V0.70.7506
Bluetooth	:
Frequency Range	: 2402MHz ~ 2480MHz
Channel Number	: 79 channels for Bluetooth V4.1(DSS) 40 channels for Bluetooth V4.1 (DTS)
Channel Spacing	 1MHz for Bluetooth V4.1 (DSS) 2MHz for Bluetooth V4.1 (DTS) GFSK, π/4-DQPSK, 8-DPSK for Bluetooth V4.1(DSS)
Modulation Type	GFSK for Bluetooth V4.1 (DTS)
Bluetooth Version	: V4.1
Antenna Description	: PIFA Antenna, 0.5dBi(Max.)
WIFI(2.4G Band)	:
Frequency Range	: 2412MHz ~ 2462MHz
Channel Spacing	: 5MHz
Channel Number	: 11 Channels for 20MHz bandwidth (2412~2462MHz)
Modulation Type	: IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK) IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK)
Antenna Description	: PIFA Antenna, 0.5dBi(Max.)
2G	
Support Band	: □GSM 900 (EU-Band) □DCS 1800 (EU-Band) ⊠GSM 850 (U.SBand) ⊠PCS 1900 (U.SBand)
Release Version	: R99
GPRS Class	: Class 12
EGPRS Class	: Class 12
Type Of Modulation	: GMSK for GSM/GPRS; GMSK/8PSK for EGPRS

	Page 8 of 37	FCC ID: 2A73S-P600	Report No.: LCSA07	0522052EF
Antenna Description 3G		nna x.) For GSM 850 x.) For PCS 1900		女讯检测
Support Band Release Version		A Band II (U.SBand) A Band V (U.SBand) A Band IV (U.SBand) A Band I (EU-Band) A Band VIII (EU-Band)		
Type Of Modulation	: QPSK, 160	QAM		

Antenna Description	: PIFA Antenna 0.5dBi (max.) For WCDMA Band II 0.5dBi (max.) For WCDMA Band V	立讯检测限份
LTE	:	
Support Band	: ⊠E-UTRA Band 2(U.SBand) ⊠E-UTRA Band 4(U.SBand) ⊠E-UTRA Band 7(U.SBand) : R9	
Type Of Modulation	: QPSK/16QAM	
Antenna Description Power Class	: PIFA Antenna 0.5dBi (max.) For E-UTRA Band 2 0.5dBi (max.) For E-UTRA Band 4 0.5dBi (max.) For E-UTRA Band 7 : Class 3	
NFC		11.021.1.00
Operating Frequency	: 13.56MHz	
Modulation Type	: ASK	
Antenna Description	: Internal, 0.5dBi(Max.)	
GPS function	: Support and only RX	
Extreme temp. Tolerance	: -30°C to +50°C	
Extreme vol. Limits	: 6.4VDC to 8.4VDC (nominal: 7.4VDC)	

Equipment under Test 2.2

2.2 Equipment under	Fest						
Power supply system utilised							
Power supply voltage	:	0	120V / 60 Hz	0) 115V / 60Hz	134	
		0	12 V DC	C	24 V DC		
		•	Other (specified	in blank belov	w) 7.4V DC		

Test frequency list

Test Mode	TX/RX	RF Channel				
Test Mode		Low(L)	Middle (M)	High (H)		
	оф тх	Channel 4132	Channel 4182	Channel 4233		
WCDMA Band V		826.4 MHz	836.4 MHz	846.6 MHz		
WCDIVIA Banu V	RX	Channel 4357	Channel 4407	Channel 4458		
LCS 1	K۸	871.4 MHz	881.4 MHz 🛛 🛝	891.6 MHz		
Test Mode	TX/RX	RF Channel				
Test Mode		Low(L)	Middle (M)	High (H)		
WCDMA Band II	TX RX	Channel 9262	Channel 9400	Channel 9538		
		1852.4 MHz	1880.0 MHz	1907.6 MHz		
		Channel 9662	Channel 9800	Channel 9938		
		1932.4 MHz	1960.0 MHz	1987.6 MHz		

Short description of the Equipment under Test (EUT) 2.3

2.3.1 General Description

P600 is subscriber equipment in the BT/BLE/2.4GWIFI/GSM/WCDMA/LTE/NFC/GPS system. GSM/GPRS/EGPRS frequency band is Band II/V. The HSPA/UMTS frequency band is Band II/V. LTE frequency band is band 2/4/7. The HSPA/UMTS frequency band II and Band V test data included in this report. The P600 implements such functions as RF signal receiving/transmitting, GSM/GPRS/EGPRS/ HSPA/UMTS/LTE protocol processing, video MMS service and etc. Externally it provides SIM card interface.

Internal Identification of AE used during the test 2.4

AE ID*	Description	
AE1	Rechargeable Li-Polymer	Battery
AE2	Switching Adapter	
AE3	Power Adapter	小利股切
Till PLab	TLiff Me Lab	Tik De Mang Lab
AE1 VSA CONTRACTOR		

AE1

Battery Model: P600-18650 DC 7.4V by Rechargeable Li-ion Battery, 2600mAh AE2 Adapter Model: GLH50D2000HW Adapter Input: 100-240V~, 50/60Hz, 0.4A Adapter Output: 5.0V---2.0A, 10.0W

AE3 Adapter Model: TPA-46050200UU Adapter Input: 100-240V~, 50/60Hz, 0.3A Adapter Output: 5.0V-2.0A Note: Both sets of adapters were tested and only one set of worst modes(AE2) was recorded.

LCS Testing Lab N/A

Page 10 of 37

FCC ID: 2A73S-P600

Report No.: LCSA070522052EF

2.6 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- - supplied by the lab

0	Power Cable	Length (m) :	/
		Shield :	1
		Detachable :	1
0	Multimeter	Manufacturer :	1
		Model No. :	/

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2A73S-P600 filing to comply with FCC Part 22H, Part 24E Rules.

2.8 Modifications

No modifications were implemented to meet testing criteria.

2.9 General Test Conditions/Configurations

2.9.1 Test Modes

NOTE: The test mode(s) are selected according to relevant radio technology specifications.

Test Mode	Test Modes Description
UMTS/TM1	WCDMA system, QPSK, 16QAM modulation
UMTS/TM2	HSDPA system, QPSK, 16QAM modulation
UMTS/TM3	HSUPA system, QPSK, 16QAM modulation

Note: As WCDMA, HSDPA and HSUPA with the same emission designator, test result recorded in this report at the worst case UMTS/TM1 only after exploratory scan.

2.9.2 Test Environment

Environment Parameter	Selected Values During Tests				
Relative Humidity	Ambient				
Temperature	TN	Ambient			
	VL	DC 6.4V			
Voltage	VN	DC 7.4V			
-	VH	DC 8.4V			

NOTE: VL=lower extreme test voltage VN=nominal voltage VH=upper extreme test voltage TN=normal temperature

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.co Scan code to check authenticity

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen LCS Compliance Testing Laboratory Ltd

101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China The sites are constructed in conformance with the requirements of ANSI C63.4 (2014) and CISPR Publication 32.

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

NVLAP Accreditation Code is 600167-0.

FCC Designation Number is CN5024.

CAB identifier is CN0071.

CNAS Registration Number is L4595.

Test Firm Registration Number: 254912.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
	103 100
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar
· · · · · · · · · · · · · · · · · · ·	

(1) expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Test Description 3.4

3.4.1 Cellular Band (824-849MHz paired with 869-894MHz) (Band V)

Test Item	FCC Rule No.	Requirements	Verdict	
Effective(Isotropic) Radiated Output Power	§2.1046, §22.913	FCC: ERP ≤ 7W.	Pass	
Modulation Characteristics	§2.1047	Digital modulation	N/A	
Bandwidth	§2.1049	OBW: No limit. EBW: No limit.	Pass	
Band Edges Compliance	§2.1051, §22.917	≤-13dBm/1%*EBW, in 1MHz bands immediately outside and adjacent to The frequency block.	Pass	
Spurious Emission at Antenna Terminals	§2.1051, §22.917	≤ -13dBm/100kHz, from 9kHz to 10 th harmonics but outside authorized operating frequency ranges.	Pass	
Field Strength of Spurious Radiation	§2.1053, §22.917	≤ -13dBm/100kHz.	Pass	
Frequency Stability	§2.1055, §22.355	≤ ±2.5ppm.	Pass	
Peak-Average Ratio	§24.232	≤13dB denotes "not applicable", the "N/T" de notes "n	Pass	

3.4.2 PCS Band (1850-1910MHz paired with 1930-1990MHz) (Band II)

3.5 Equipments Used during the Test

em	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
_1 ⁵]	Power Meter	R&S	NRVS	100444	2022-06-16	2023-06-15
2	Power Sensor	R&S	NRV-Z81	100458	2022-06-16	2023-06-15
3	Power Sensor	R&S	NRV-Z32	10057	2022-06-16	2023-06-15
4	LTE Test Software	Tonscend	JS1120-1	N/A	N/A	N/A
5	RF Control Unit	Tonscend	JS0806	158060009	2021-11-25	2022-11-24
6	MXA Signal Analyzer	Agilent	N9020A	MY512509 05	2021-11-16	2022-11-15
7	WIDEBAND RADIO COMMUNICATION TESTER	R&S	CMW 500	103818	2022-06-16	2023-06-15
8	DC Power Supply	Agilent	E3642A	N/A	2021-11-25	2022-11-24
9	EMI Test Software	AUDIX	E3	/	N/A	N/A
10	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03- HY	2022-06-16	2023-06-15
11	Positioning Controller	MF	MF7082	MF780208 03	2022-06-16	2023-06-15
12	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2021-07-25	2024-07-24
13	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2021-07-25	2024-07-24
14	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D- 1925	2021-07-01	2024-06-30
15	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2020-09-20	2023-09-19
16	Broadband Preamplifier	SCHWARZBECK	BBV9745	9719-025	2022-06-16	2023-06-15
17	EMI Test Receiver	R&S	ESR 7	101181	2022-06-16	2023-06-15
18	RS SPECTRUM ANALYZER	R&S	FSP40	100503	2021-11-16	2022-11-15
19	Broadband Preamplifier	/	BP-01M18G	P190501	2022-06-16	2023-06-15
20	6dB Attenuator	/	100W/6dB	1172040	2022-06-16	2023-06-15
21	3dB Attenuator	/	2N-3dB	/	2021-11-16	2022-11-15
22	Temperature & Humidity Chamber	GUANGZHOU GOGNWEN	GDS-100	70932	2021-10-07	2022-10-06
23	EMI Test Software	Farad	EZ	N/A	N/A	N/A
24	RADIO COMMUNICATION TESTER	R&S	CMU 200	105988	2021-11-16	2022-11-15

3.6 Measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to ETSI TR 100 028 " Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics" and is documented in the Shenzhen LCS Compliance Testing Laboratory Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

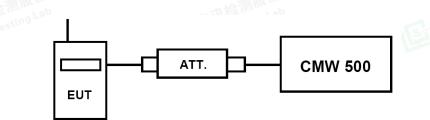
Hereafter the best measurement capability for Shenzhen LCS Compliance Testing Laboratory Ltd. is reported:

Test	Range	Measurement Uncertainty	Notes	
Radiated Emission	30~1000MHz	3.10 dB	(1)	
Radiated Emission	1~18GHz	3.80 dB	(1)	
Radiated Emission	18-40GHz	3.90 dB	(1)	
Conducted Disturbance	0.15~30MHz	1.63 dB	(1)	
Conducted Power	9KHz~18GHz	0.61 dB	(1)	
Spurious RF Conducted Emission	9KHz~40GHz	1.22 dB	(1)	
Band Edge Compliance of RF Emission	9KHz~40GHz	1.22 dB	(1)	
Occuiped Bandwidth	9KHz~40GHz	-	(1)	

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Shenzhen LCS Compliance Testing Laboratory Ltd.

4 TEST CONDITIONS AND RESULTS


4.1 Output Power

TEST APPLICABLE

During the process of testing, the EUT was controlled via R&S WIDEBAND RADIO COMMUNICATION TESTER (CMW 500) to ensure max power transmission and proper modulation. This result contains output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

4.1.1. Conducted Output Power

TEST CONFIGURATION

TEST PROCEDURE

Conducted Power Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a CMW 500 by an Att.
- c) EUT Communicate with CMW 500 then selects a channel for testing.
- d) Add a correction factor to the display CMW 500, and then test.

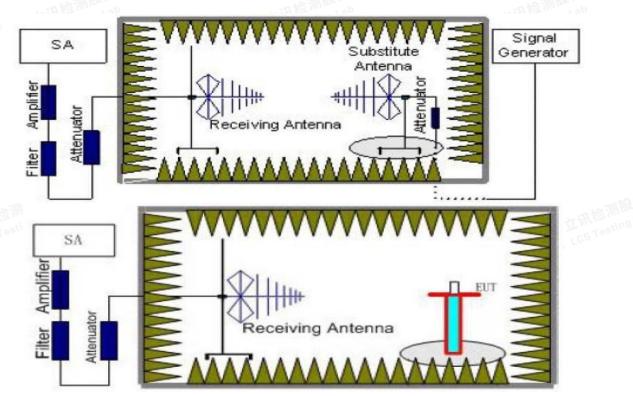
WCDMA Band II result (dBm) WCDMA Band V result (dBm) band Channel/Frequency(MHz) Channel/Frequency(MHz) Item 4132/ 9262/ 9400/ 4182/ 9538/ 4233/ sub-test 1852.4 1880 1907.6 826.4 836.4 846.6 RMC 12.2kbps RMC 23.26 23.24 22.73 22.86 22.68 23.21 Sub -Test 1 22.53 22.59 22.52 22.49 22.89 22.65 22.56 22.50 Sub –Test 2 22.69 22.59 22.56 22.80 **HSDPA** 22.59 22.48 22.43 22.60 22.56 Sub - Test 3 22.65 Sub –Test 4 22.34 22.45 22.60 22.58 22.75 22.57 Sub –Test 1 22.62 22.74 22.65 22.43 22.67 22.46 Sub –Test 2 22.43 22.42 22.37 22.38 22.56 22.61 **HSUPA** Sub – Test 3 22.55 22.44 22.59 22.34 22.55 22.54 Sub – Test 4 22.47 22.34 22.52 21.64 21.04 21.66 Sub -Test 5 21.45 21.54 21.66 21.47 21.66 21.40

TEST RESULTS

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.con Scan code to check authenticity

4.1.1 Radiated Output Power


TEST DESCRIPTION

This is the test for the maximum radiated power from the EUT.

Rule Part 24.232(c) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(e) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."

Rule Part 22.913(a) specifies "The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

TEST CONFIGURATION

TEST PROCEDURE

- EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=10MHz,VBW=10MHz, And the maximum value of the receiver should be recorded as (P_r).

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Scan code to check authenticity

- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) ,the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below: Power(EIRP)=P_{Mea}+ P_{Ag} - P_{cl} + G_a
- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST LIMIT

According to 22.913(a)(5), 24.232(c)the ERP(EIRP) should be not exceeding following table limits:

	Burst Average EIRP
UMTS Band II	FCC: ≤33.01dBm (2W)
	Burst Average ERP
UMTS Band V	FCC: ≤38.45dBm (7W)

TEST RESULTS

Remark:

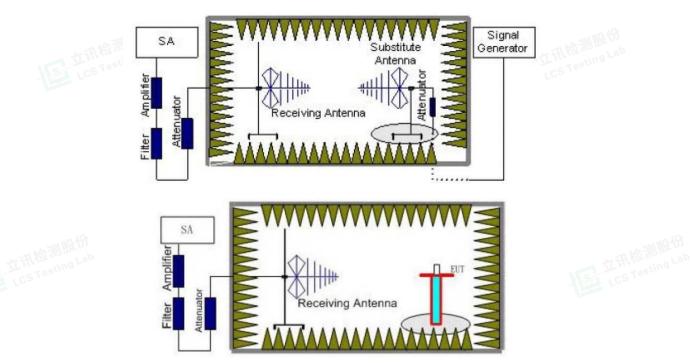
- 1. We were tested all Configuration refer 3GPP TS134 121.
- 2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Ag}(dB)+G_{a}(dBi)$
- 3. ERP = EIRP 2.15dBi as EIRP by subtracting the gain of the dipole.
- 4. Margin = Emission Level Limit
- 5. We tested the worst-case records for H and V directions, and only the worst-case records for V direction were recorded in the report.

UMTS/TM1/UMTS Band II

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain (dB)	P _{Aq} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1852.4	-16.70	4.03	8.38	35.51	23.16	33.01	-9.85	V
1880.0	-16.91	4.08	8.33	35.56	22.90	33.01	-10.11	V
1907.6	-17.44	4.14	8.26	35.63	22.31	33.01	-10.70	V Jenny

UMTS/TM1/UMTS Band V

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain (dB)	Correction (dB)	P _{Aq} (dB)	Burst Average ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
826.4	-13.38	3.45	8.45	2.15	33.79	23.26	38.45	-15.19	V
836.4	-13.58	3.49	8.45	2.15	33.85	23.08	38.45	-15.37	V
846.6	-13.64	3.55	8.36	2.15	33.88	22.90	38.45	-15.55	V



4.2 Radiated Spurious Emssion

TEST APPLICABLE

According to the TIA-603-E:2016 and FCC Part 2.1033 test method, The Receiver or Spectrum was scanned from lowest frequency frequency generated within the equipment to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. The resolution bandwidth is set as outlined in Part 24.238, Part 22.917, The spectrum is scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of WCDMA Band II and WCDMA Band V.

TEST CONFIGURATION

TEST PROCEDURE

- EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50 m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) ,the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test.

The measurement results are obtained as described below:

 $Power(EIRP) = P_{Mea} + P_{Aq} - P_{cl} + G_{a}$

- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.
- 8. In order to make sure test results more clearly, we set frequency range and sweep time for difference frequency range as follows table:

Working Frequency	Subrange (GHz)	RBW	VBW	Sweep time (s)
上:A校 WIDA	0.00009~0.15	1KHz	3KHz	30
IL St os Testing	0.00015~0.03	10KHz	30KHz	10
	0.03~1	100KHz	300KHz	10
UMTS/TM1/ WCDMA Band V	1~2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~10	1 MHz	3 MHz	3
	0.00009~0.15	1KHz	3KHz	30
	0.00015~0.03	10KHz	30KHz	10
	0.03~1	100KHz	300KHz	10
	1~2	1 MHz	3 MHz	2
UMTS/TM1/	2~5	1 MHz	3 MHz	3
WCDMA Band II	5~8	1 MHz	3 MHz	3
A the man Lab	8~11	₀⊳ 1 MHz	3 MHz	3
STestiny	11~14	1 MHz	3 MHz	3
	14~18	1 MHz 🗇 📂	3 MHz	3
	18~20	1 MHz	3 MHz	2

TEST LIMITS

According to 24.238, 22.917, specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Frequency	Channel	Frequency Range	Verdict
UMTS/TM1/ WCDMA	Low	9KHz - 10GHz	PASS
Band V	Middle	9KHz - 10GHz	PASS
Ballu V	High	9KHz - 10GHz	PASS
	Low	9KHz - 20GHz	PASS
UMTS/TM1/ WCDMA Band II	Middle	9KHz - 20GHz	PASS
Danu II	High	9KHz - 20GHz	PASS

TEST RESULTS

Remark:

- 1. We were tested all Configuration refer 3GPP TS134 121.
- 2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Aq}(dB)+G_{a}(dBi)$
- 3. ERP = EIRP 2.15dBi as EIRP by subtracting the gain of the dipole.
- 4. Margin = EIRP Limit

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

UMTS/TM1/ WCDMA Band II _ Low Channel

01/11/3/11/11/	WCDIVIA Da	nu n _ Low	Channel			115		
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3704.8	-39.90	5.26	3.00	9.88	-35.28	-13.00	-22.28	Н
5557.2	-45.70	6.11	3.00	11.36	-40.45	-13.00	-27.45	Н
3704.8	-44.71	5.26	3.00	9.88	-40.09	-13.00	-27.09	V
5557.2	-48.23	6.11	3.00	11.36	-42.98	-13.00	-29.98	V

UMTS/TM1/ WCDMA Band II _ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3760.0	-38.13	5.32	3.00	10.03	-33.42	-13.00	-20.42	Н
5640.0	-43.94	6.19	3.00	11.41	-38.72	-13.00	-25.72	THE CH
3760.0	-43.25	5.32	3.00	10.03	-38.54	-13.00	-25.54	V
5640.0	-47.57	6.19	3.00	11.41	-42.35	-13.00	-29.35	V

UMTS/TM1/ WCDMA Band II _ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3815.2	-43.55	5.36	3.00	9.62	-39.29	-13.00	-26.29	Н
5722.8	-51.51	6.24	3.00	11.46	-46.29	-13.00	-33.29	Н
3815.2	-46.41	5.36	3.00	9.62	-42.15	-13.00	-29.15	V
5722.8	-53.47	6.24	3.00	11.46	-48.25	-13.00	-35.25	V

UMTS/TM1/ WCDMA Band V _ Low Channel

UMTS/TM1/	WCDMA Ba	nd V_Low	Channel			和服份		A INIT A	日子
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization	g La
1652.8	-48.06	3.86	3.00	8.56	-43.36	-13.00	-30.36	Н	1
2479.2	-48.89	4.29	3.00	6.98	-46.20	-13.00	-33.20	Н	1
1652.8	-43.94	3.86	3.00	8.56	-39.24	-13.00	-26.24	V	1
2479.2	-45.06	4.29	3.00	6.98	-42.37	-13.00	-29.37	V	1

UMTS/TM1/ WCDMA Band V _ Middle Channel

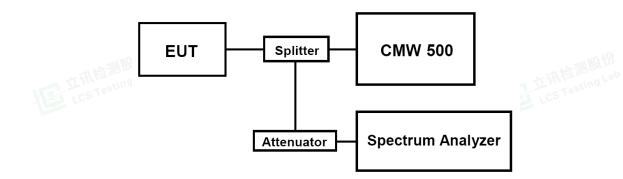
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1672.8	-49.43	3.9	3.00	8.58	-44.75	-13.00	-31.75	HUSH
2509.2	-50.97	4.32	3.00	6.8	-48.49	-13.00	-35.49	H
1672.8	-44.91	3.9	3.00	8.58	-40.23	-13.00	-27.23	V
2509.2	-45.60	4.32	3.00	6.8	-43.12	-13.00	-30.12	V

UMTS/TM1/ WCDMA Band V _ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization	
1693.2	-52.19	3.91	3.00	9.06	-47.04	-13.00	-34.04	Н	
2539.8	-54.44	4.32	3.00	6.65	-52.11	-13.00	-39.11	Н	
1693.2	-49.59	3.91	3.00	9.06	-44.44	-13.00	-31.44	V	
2539.8	-51.11	4.32	3.00	6.65	-48.78	-13.00	-35.78	V	

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity



4.3 Occupied Bandwidth and Emission Bandwith

TEST APPLICABLE

Similar to conducted emissions; occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. The table below lists the measured 99% Bandwidth and - 26dBc Bandwidth.

TEST CONFIGURATION

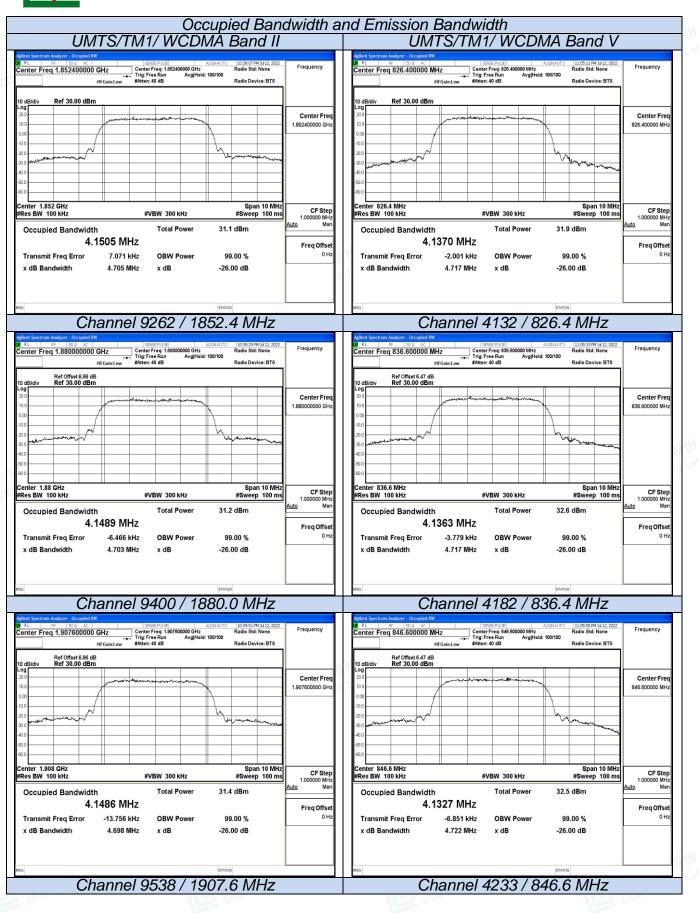
TEST PROCEDURE

- 1. The EUT was set up for the max output power with pseudo random data modulation;
- 2. The Occupied bandwidth and Emission Bandwidth were measured with Aglient Spectrum Analyzer N9020A (peak);
- 3. Set RBW=100KHz,VBW=300KHz,Span=10MHz,SWT=Auto;
- 4. Set SPA Max hold and View, Set 99% Occupied Bandwidth/ Set -26dBc Occupied Bandwidth
- 5. These measurements were done at 3 frequencies for WCDMA band II/V. (low, middle and high of operational frequency range).

Test Mode	Channel	Frequency (MHz)	Occupied Bandwidth (99% BW) (MHz)	Emission Bandwidth (-26 dBc BW) (MHz)	Verdict
UMTS/TM1/	9262	1852.4	4.1505	4.705	PASS
WCDMA Band II	9400	1880.0	4.1489	4.703	PASS
in the	9538	1907.6	4.1486	4.698	PASS
UMTS/TM1/	4132	826.4	4.1370	4.717	PASS
WCDMA Band	4182	836.4	4.1363	4.717	PASS
V	4233	846.6	4.1327	4.722	PASS

TEST RESULTS

Remark:

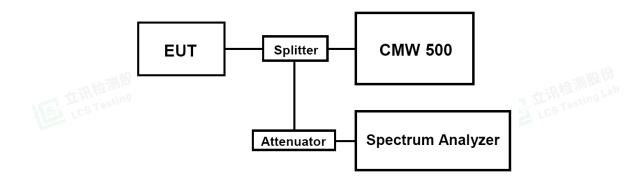

- 1. Test results including cable loss;
- 2. Please refer to following plots;

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

 Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China



Band Edge Compliance 4.4

TEST APPLICABLE

During the process of testing, the EUT was controlled via R&S WIDEBAND RADIO COMMUNICATION TESTER (CMW 500) to ensure max power transmission and proper modulation.

TEST CONFIGURATION

TEST PROCEDURE

- The EUT was set up for the max output power with pseudo random data modulation; 1.
- The power was measured with Spectrum Analyzer N9020A; 2.
- 3. Set RBW=100KHz,VBW=300KHz,Span=2MHz,SWT=Auto,Dector: RMS;

These measurements were done at 2 frequencies for WCDMA band II/V. (low and high of operational frequency range).

TEST RESULTS

Test Mode	Channel	Frequency (MHz)	Band Edg Compliance (dBm)	Limits (dBm)	Verdict
UMTS/TM1/WCDMA	9262	1852.4	<-13dBm	-13dBm	PASS
Band II	9538	1907.6	<-13dBm	-13dBm	PASS
		UMTS/TM1/WC	DMA Band V		
Test Mode	Channel	Frequency (MHz)	Band Edg Compliance (dBm)	Limits (dBm)	Verdict
UMTS/TM1/WCDMA	4132	826.4	<-13dBm	-13dBm	PASS
Band V	4233	846.6	<-13dBm	-13dBm	FA33

Remark:

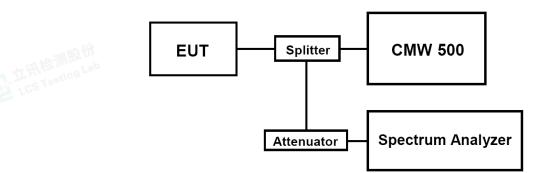
1. Test results including cable loss;

2. Please refer to following plots;

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Scan code to check authenticity

						and-edge	Com									
U	IMTS/T	M1/W	/CDM	IA B	and I	1		-	MTS/1	ΓM1/	WC	DM	IA B	and	IV	
glient Spectrum Analyzer - Swept RL RF 50.0 J Center Freq 1.850000	AC 000 GHz	SBNSE:PULSE Trig: Free Run #Atten: 40 dB	#Avg Type: Avg Hold: 1	RMS 00/100	10:40:15 PM Jul 12, 2 TRACE 1 2 3 TYPE A WWW DET A A A J	456 Frequency	LX RL	rum Analyzer - Swept SA RF 50.9 AC req 824.000000		SENSE:F Trig: Free F #Atten: 40 c	Run	AL #Avg Type: Avg Hold: 10	RMS 00/100	DET	123456 A 4 4 4 4 4	Frequency
Ref Offset 6.95 (0 dB/div Ref 30.00 dB	dB m			Mkr1 1	.850 000 G -23.250 dE		10 dB/div	Ref Offset 5.92 dB Ref 30.00 dBm					Mkr1	824.00 -21.074	0 MHz 4 dBm	Auto Tun
20.0						Center Freq 1.85000000 GHz	20.0									Center Fre 824.000000 MH
1.00						Start Freq 1.849000000 GHz	0.00							~~~~~		Start Fre 823.000000 MH
0.0		1			-13.0	1.851000000 GHz	-10.0			•	1				-13.00 dBm	Stop Fre 825.000000 MH
0.0	~					CF Step 200.000 kHz <u>Auto</u> Man	-30.0		~							CF Ste 200.000 kH Auto Ma
80						Freq Offset 0 Hz	-50.0									Freq Offse 0 H
enter 1.850000 GHz Res BW 100 kHz					Span 2.000 N	ЛНZ		24.000 MHz						Span 2.0	000 MHz	
G		300 kHz*		Sweep 10 STATUS	10.0 ms (601 p	pts)	#Res BW			/ 300 kHz*			Sweep 10 Status	10.0 ms (6		
C	Channe			Sweep 10 STATUS	10.0 ms (601 p	pts)	MSG	C	Chann		132		STATUS	10.0 ms (6		
G	Channel	9262		Sweep 10 STATUS 52.4 IGNAUTO IGNAUTO IGNAUTO IGNAUTO IGNAUTO	10:00 ms (601 p MHz 10:40:37 PM Jul 12, 2 TRACE [] 2 3 4 TYPE A 44 DET A A A	1022 4 5 6 A A A	Agilent Spect		Chann	el 41	PULSE		STATUS 26.4 IGNAUTO	00.0 ms (6 MH 11:06:40PM J TRACE TYPE DET	Z 123456 AAAAAA	Frequency
g jlent Spectrum Analyzer - Swept	SA ≈ 0000 GHz PHO: Wide → IF GaintLow dB	9262	2 / 18	Sweep 10 STATUS 52.4 IGNAUTO IGNAUTO IGNAUTO IGNAUTO IGNAUTO	10:0 ms (601 p MHz 10:40:37 PM 3J 12, 21 TRACE [1 2 3 4 TYPE 6 A WW	222 455 Frequency	Aplent Spect	rum Analyzer - Swept SA	Chann D MHz PNO: Wide ↔		PULSE	/ 82	STATUS 26.4 IGNAUTO	10.0 ms (6 MH	12,2022 123456 AAAAAA 0 MHz	
directions Analyzer - Serger RL or ISSO enter Freq 1.9100000 dB/div Ref 30.00 dB	SA ≈ 0000 GHz PHO: Wide → IF GaintLow dB	9262	2 / 18	Sweep 10 STATUS 52.4 IGNAUTO IGNAUTO IGNAUTO IGNAUTO IGNAUTO	10:00 ms (601 p 10:00:37 PM M 12, 2 TRACE 12 3 TRACE 12 3 TRACE 12 4 TRACE 12 4 TRAC	222 455 Frequency	Agtent Spect Agtent Spect Of RL Center F 10 dB/div Log 20.0	rum Analyzer - Swept SA № 50 9 . Ac req 849.000000 Ref Offset 6.47 dB	Chann D MHz PNO: Wide ↔		PULSE	/ 82	STATUS 26.4 IGNAUTO	00.0 ms (6 MH 11:06:40PM 3 TRACE TYPE DET 849.00	12,2022 123456 AAAAAA 0 MHz	Auto Tur Center Fre
a	SA ≈ 0000 GHz PHO: Wide → IF GaintLow dB	9262	2 / 18	Sweep 10 STATUS 52.4 IGNAUTO IGNAUTO IGNAUTO IGNAUTO IGNAUTO	10:00 ms (601 p 10:00:37 PM M 12, 2 TRACE 12 3 TRACE 12 3 TRACE 12 4 TRACE 12 4 TRAC	Frequency Frequency As 6 As 0 Frequency As 0 Center Freq Center Freq	Adlent Spect	rum Analyzer - Swept SA № 50 9 . Ac req 849.000000 Ref Offset 6.47 dB	Chann D MHz PNO: Wide ↔		PULSE	/ 82	STATUS 26.4 IGNAUTO	00.0 ms (6 MH 11:06:40PM 3 TRACE TYPE DET 849.00	12,2022 123456 AAAAAA 0 MHz	Auto Tur Center Fre 849.000000 MH Start Fre
G Slent Spectrum Analyzer - Swept RL RF 500 enter Freq 1.9100000 Ref Offset 6.86 6 b dBidly Ref 30.00 dB	SA ≈ 0000 GHz PHO: Wide → IF GaintLow dB	9262	2 / 18	Sweep 10 STATUS 52.4 IGNAUTO IGNAUTO IGNAUTO IGNAUTO IGNAUTO	10:00 ms (601 p 10:00:37 PM M 12, 2 TRACE 12 3 TRACE 12 3 TRACE 12 4 TRACE 12 4 TRAC	Frequency Frequency A 5 0 Frequency A 5 0 Frequency A 5 0 Center Freq 1.91000000 GHz Start Freq 1.90900000 GHz	Adlent Speci	rum Analyzer - Swept SA № 50 9 . Ac req 849.000000 Ref Offset 6.47 dB	Chann D MHz PNO: Wide ↔		PULSE	/ 82	STATUS 26.4 IGNAUTO	00.0 ms (6 MH 11:06:40PM 3 TRACE TYPE DET 849.00	12,2022 123456 AAAAAA 0 MHz	Frequency Auto Tur Center Fre 849.000000 MH Start Fre 848.000000 MH Stop Fre 850.000000 MH
a Intri Sectrum Audyzer / Seegt RC RF 1000 Benter Freq 1.9100000 addidiv Ref 30.00 dB addidiv Ref 30.00 dB addidi Ref 30.00 dB addidiv Ref 30.00 dB	SA ≈ 0000 GHz PHO: Wide → IF GaintLow dB	9262	2 / 18	Sweep 10 STATUS 52.4 IGNAUTO IGNAUTO IGNAUTO IGNAUTO IGNAUTO	0.0 ms (601 p MHZ 10-0.57 PM AI 12, 2, 2 10-0.57 PM AI 12, 2 10-0	Image: state	4000 5000 5000 5000 5000 5000 5000 5000	rum Analyzer - Swept SA № 50 9 . Ac req 849.000000 Ref Offset 6.47 dB	Chann D MHz PNO: Wide ↔		PULSE	/ 82	STATUS 26.4 IGNAUTO	00.0 ms (6 MH 11:06:40PM 3 TRACE TYPE DET 849.00	2 123456 AAAAA 0 MHz 8 dBm	Auto Tur Center Fre 849.000000 Mi Start Fre 848.00000 Mi Stop Fre 850.00000 Mi
All Antiparties Analyzer / Serger RL 162 1230 enter Freq 1.910000/ dB/div Ref 30.00 dB 00 00 00 00	SA ≈ 0000 GHz PHO: Wide → IF GaintLow dB	9262	2 / 18	Sweep 10 STATUS 52.4 IGNAUTO IGNAUTO IGNAUTO IGNAUTO IGNAUTO	0.0 ms (601 p MHZ 10-0.57 PM AI 12, 2, 2 10-0.57 PM AI 12, 2 10-0	022 13 5 6 A A A A Hz Frequency Hz Auto Tune Bm Center Freq 1.91000000 GHz Start Freq 1.91000000 GHz Start Freq 1.91000000 GHz Center Stop Freq 1.91000000 GHz Center Stop Freq 1.91000000 GHz Center Stop Freq 1.91000000 GHz Center Stop Freq 1.91000000 GHz	Mode Actinal Speech Actinal Speech R.C. Center F 10 dBidity 20.0	rum Analyzer - Swept SA № 50 9 . Ac req 849.000000 Ref Offset 6.47 dB	Chann D MHz PNO: Wide ↔		PULSE	/ 82	STATUS 26.4 IGNAUTO	00.0 ms (6 MH 11:06:40PM 3 TRACE TYPE DET 849.00	2 123456 AAAAA 0 MHz 8 dBm	Auto Tur Center Fr 849.000000 MI Start Fr 848.000000 MI Stop Frr 450.00000 MI CF Stt 200.000 M M Freq Offs
Image: Section Analysis Section An	SA SA PHO: Wide →→→ IF Galiciow→→ dB m	I 9262	2 / 18	Sweep 10 status 52.4 SNAUTO Mkr1 1 Mkr1 1	0.0 ms (601 p MHZ 10-0.57 PM AI 12, 2, 2 10-0.57 PM AI 12, 2 10-0	Image: Start Frequency A = 0 A = 0 A = 0 Image: Start Freq 1.91000000 GHz Image: Start Freq 1.91100000 GHz Image: Start Freq 1.91100000 GHz Image: Start Freq Image: Start Freq <td>Affinit System 10 dB/div 20.0 10.0 20.0 10.0 30.0 400.0 30.0 400.0 50.0 60.0 60.0</td> <td>190 0 MHz</td> <td>Chann PHC Wide IF CalcLow</td> <td>el 41</td> <td>PULSE</td> <td>/ 82</td> <td></td> <td>00.0 ms (6 MH 11:06:40PM 3 TRACE TYPE DET 849.00</td> <td>12.002 11.00 des</td> <td>Auto Tur Center Frr 849.00000 Mi Start Frr 848.00000 Mi Stop Frc 850.0000 Mi CF Ste 200.000 ki Muto Freq Offs</td>	Affinit System 10 dB/div 20.0 10.0 20.0 10.0 30.0 400.0 30.0 400.0 50.0 60.0 60.0	190 0 MHz	Chann PHC Wide IF CalcLow	el 41	PULSE	/ 82		00.0 ms (6 MH 11:06:40PM 3 TRACE TYPE DET 849.00	12.002 11.00 des	Auto Tur Center Frr 849.00000 Mi Start Frr 848.00000 Mi Stop Frc 850.0000 Mi CF Ste 200.000 ki Muto Freq Offs
Image: Section Analysis:	SA SA PHO: Wide →→→ IF Galiciow→→ dB m	9262	2 / 18: Arg Type: AvgHold: 1	Sweep 10 starus 52.4 SNAUTO RMS SOV100 Mkr1 1	0.0 ms (601 p	000 Frequency A 5 6 Frequency A 4 5 Auto Tune A A 6 Auto Tune Intra 1,91000000 GHz Start Freq 1.91000000 GHz 1.91000000 GHz 000 Start Freq 1.91000000 GHz CF Step 200,000 KHz Man Freq Offset 0 Hz Intz NHz	Model Animal Specific Spec	190 0 MHz	Chann PHC Wide IF CalcLow		PULSE	/ 82		110:-00 M (t 110:-00 M M 110:-00 M M 110:	12 002 12 2 4 5 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Auto Tur Center Fre 849.000000 MH Start Fre 848.000000 MH Stop Fre 950.000000 MH CF Ste 200.000 kH


4.5 Spurious Emssion on Antenna Port

TEST APPLICABLE

The following steps outline the procedure used to measure the conducted emissions from the EUT.

- Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the equipment of WCDMA band II, this equates to a frequency range of 9 KHz to 19GHz, data taken from 30 MHz to 19 GHz. For WCDMA Band V, this equates to a frequency range of 9 KHz to 9 GHz,data taken from 30 MHz to 9 GHz.
- 2. The sweep time is set automatically by instrument itself. That should be the optimal sweep time for the span and the RBW. If the sweep time is too short, that is sweep is too fast, the sweep result is not accurate; if the sweep time is too long, that is sweep is too low, some frequency components may be lost. The instrument will give an optimal sweep time according the selected span and RBW.
- The procedure to get the conducted spurious emission is as follows: The trace mode is set to MaxHold to get the highest signal at each frequency; Wait 25 seconds; Get the result.
- 4. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was set up for the max output power with pseudo random data modulation;
- 2. The power was measured with Spectrum Analyzer N9020A;
- 3. These measurements were done at 3 frequencies for WCDMA band II/V. (low, middle and high of operational frequency range).

TEST LIMIT

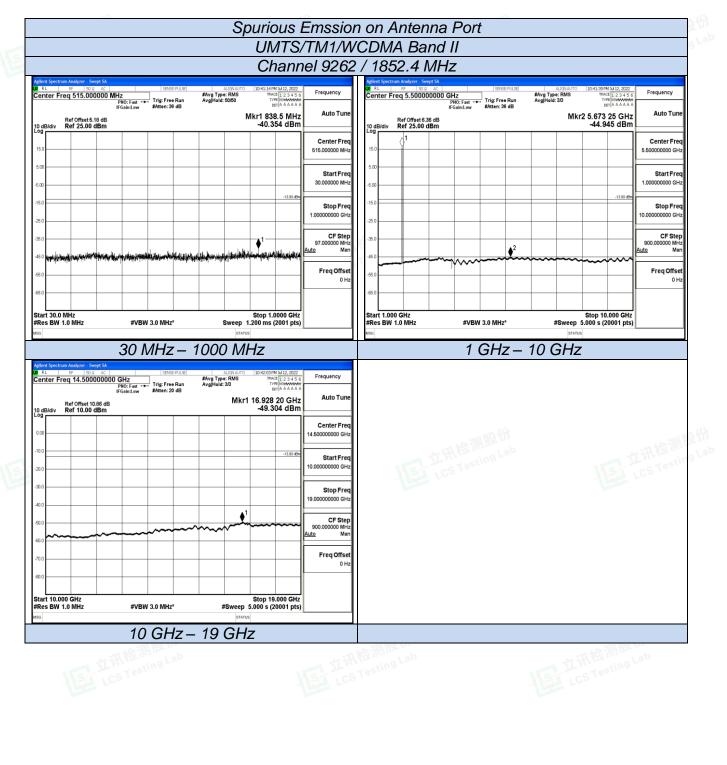
Part 24.238, Part 22.917, specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

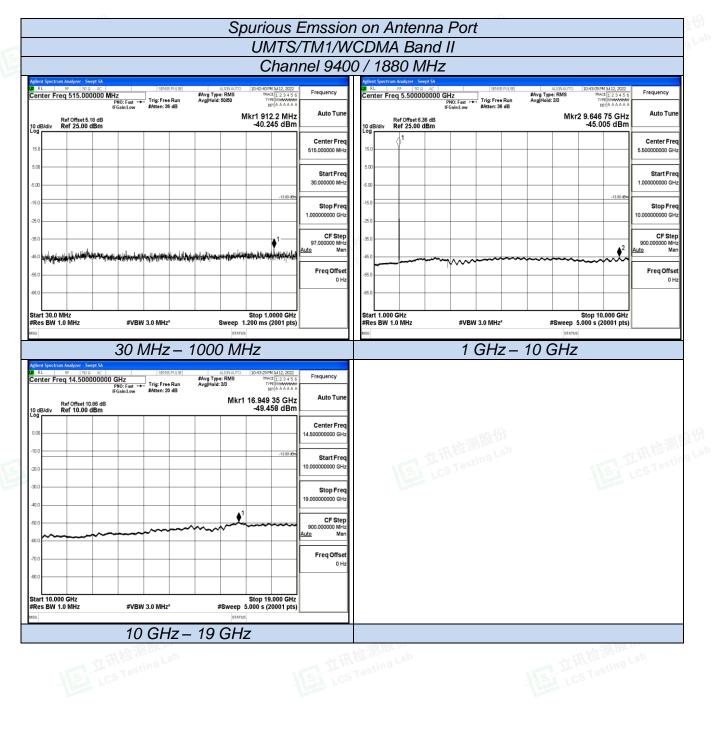
TEST RESULTS

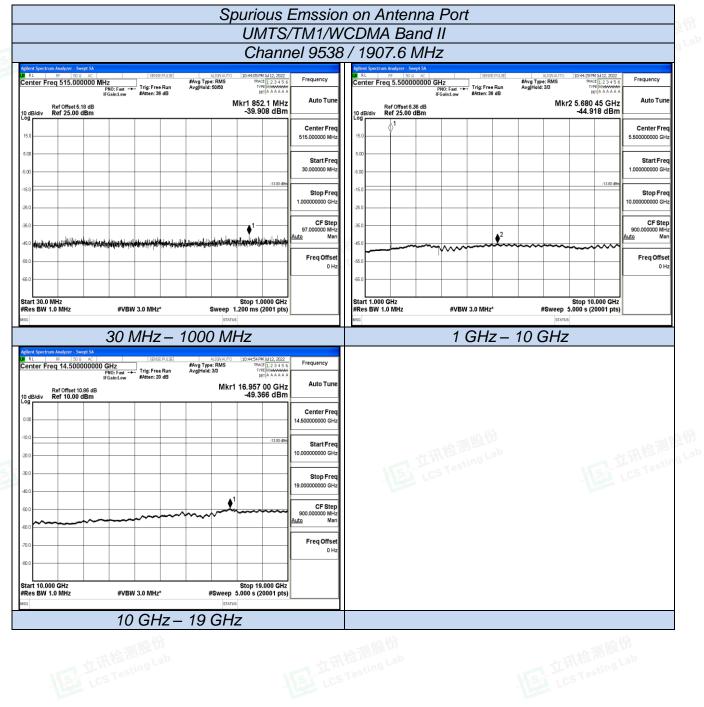
Test Mode	Channel	Frequency (MHz)	Spurious RF Conducted Emission (dBm)	Limits (dBm)	Verdict
UMTS/TM1/WCDMA	9262	1852.4	<-13dBm	-13dBm	
Band II	9400	1880.0	<-13dBm	-13dBm	PASS
Banu II	9538	1907.6	<-13dBm	-13dBm	
UMTS/TM1/WCDMA	4132	826.4	<-13dBm	-13dBm	
Band V	4182	836.4	<-13dBm	-13dBm	PASS
Danu v	4233	846.6	<-13dBm	-13dBm	

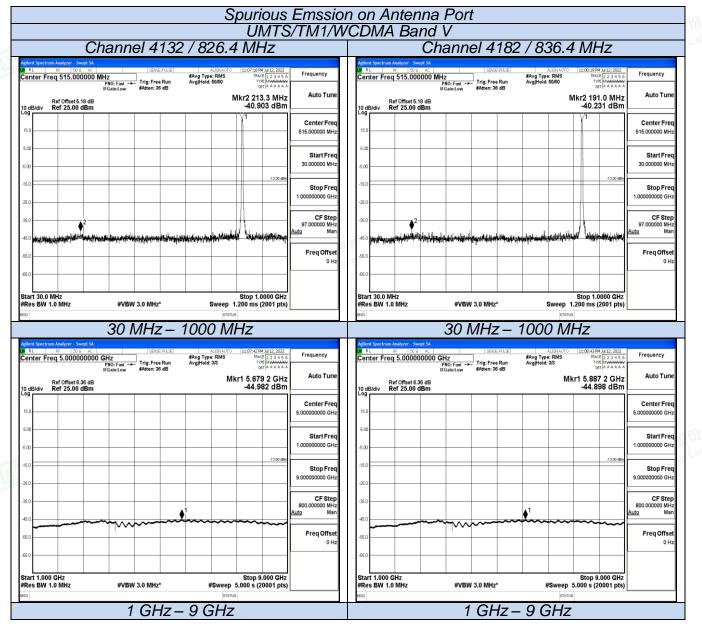
Remark:

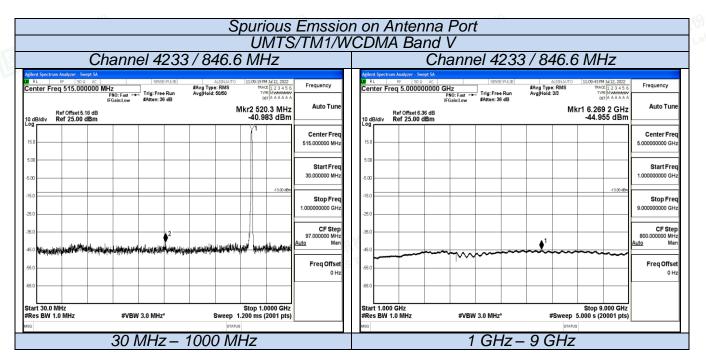
- 1. Test results including cable loss;
- 2. Please refer to following plots;
- 3. Not reorded test plots from 9 KHz to 30 MHz as emission levels 20dB lower than emission limit;





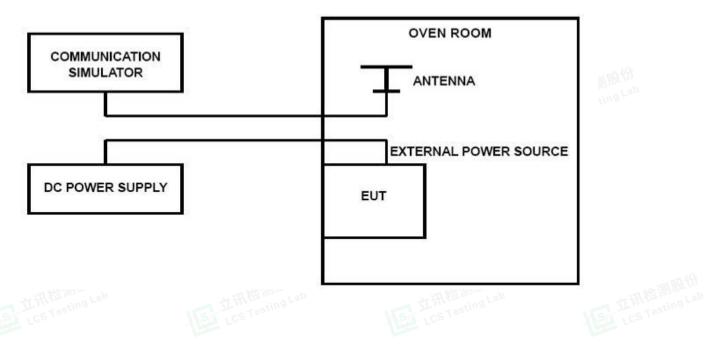






4.6 Frequency Stability Test

TEST APPLICABLE


- 1. According to FCC Part 2 Section 2.1055 (a)(1), the frequency stability shall be measured with variation of ambient temperature from -30°C to +50°C centigrade.
- 2. According to FCC Part 2 Section 2.1055 (e)(2), for battery powered equipment, the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point, which is specified by the manufacture.
- 3. Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried voltage equipment and the end voltage point was 3.3V.

TEST PROCEDURE

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S WIDEBAND RADIO COMMUNICATION TESTER (CMW 500).

- 1. Measure the carrier frequency at room temperature;
- 2. Subject the EUT to overnight soak at -30°C;
- 3. With the EUT, powered via nominal voltage, connected to the CMW 500 and in a simulated call on middle channel of WCDMA band II/V, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming;
- 4. Repeat the above measurements at 10[°]C increments from -30[°]C to +50[°]C. Allow at least 0.5 hours at each temperature, unpowered, before making measurements;
- Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for 0.5 hours unpowered, to allow any self-heating to stabilize, before continuing;
- 6. Subject the EUT to overnight soak at $+50^{\circ}$ C;
- 7. With the EUT, powered via nominal voltage, connected to the CMW 500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming;
- Repeat the above measurements at 10[°]C increments from +50[°]C to -30[°]C. Allow at least 0.5 hours at each temperature, unpowered, before making measurements;
- 9. At all temperature levels hold the temperature to +/- 0.5 °C during the measurement procedure;

TEST CONFIGURATION

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

TEST LIMITS

For Hand carried battery powered equipment

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.40VDC and 4.30VDC, with a nominal voltage of 3.80DC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of -10 % and +12.5 %. For the purposes of measuring frequency stability these voltage limits are to be used.

For equipment powered by primary supply voltage

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For this EUT section 2.1055(d)(1) applies. This requires varying primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

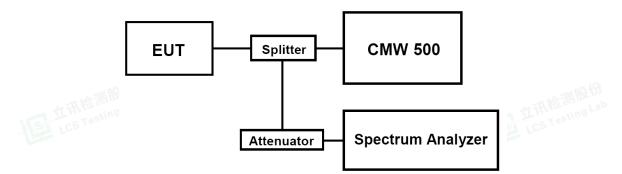
TEST RESULTS

UMTS/TM1/WCDMA Band II								
DC Power	Temperature (℃)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict			
6.4	25	16	0.009	2.50	PASS			
7.4	25	7	0.004	2.50	PASS			
8.4	25	-2	-0.001	⁰⁹ 2.50	PASS			
7.4	-30	11	0.006	2.50	PASS			
7.4	-20	23	0.012	2.50	PASS			
7.4	-10	-20	-0.011	2.50	PASS			
7.4	0	12	0.006	2.50	PASS			
7.4	10	10	0.005	2.50	PASS			
7.4	20	11	0.006	2.50	PASS			
7.4	30	-10	-0.005	2.50	PASS			
7.4	40	11	0.006	2.50	PASS			
7.4	50	-8	-0.004	2.50	PASS			

DC Power	Temperature (℃)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict
6.4	25	-29	-0.035	2.50	PASS
7.4	25	3	0.004	2.50	PASS
8.4	25	-18	-0.022	2.50	PASS
7.4	-30	18	0.022	2.50	PASS
7.4	-20	24	0.029	2.50	PASS
7.4	-10	1	0.001	2.50	PASS
7.4	0	8	0.010	2.50	PASS
7.4	10	-16	-0.019	2.50	PASS
7.4	20	-27	-0.032	2.50	PASS
7.4	30	7	0.008	2.50	PASS
7.4	40	-29	-0.035	2.50	PASS
7.4	50	6	0.007	2.50	PASS

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China



4.7 Peak-to-Average Ratio (PAR)

LIMIT

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;
- Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 3. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 4. Set the measurement interval as follows:
 - 1). for continuous transmissions, set to 1 ms,

2). for burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.

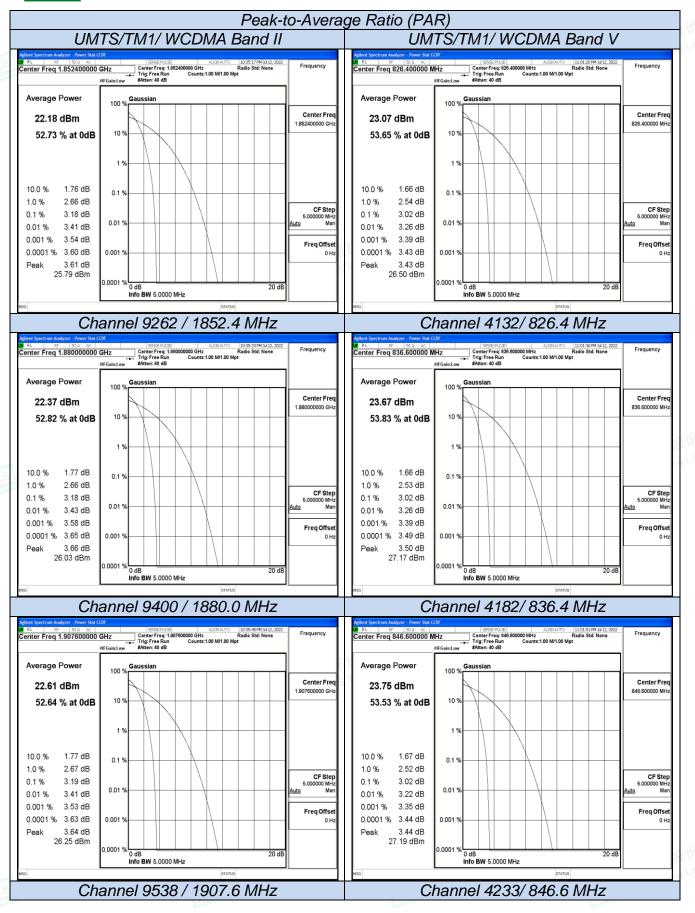
5. Record the maximum PAPR level associated with a probability of 0.1%.

TEST RESULTS

Test Mode	Channel	Frequency (MHz)	PAPR Value (dB)	Limits (dB)	Verdict
UMTS/TM1/ WCDMA Band II	9262	1852.4	3.18	13.0	PASS
	9400	1880.0	3.18	13.0	PASS
	9538	1907.6	3.19	13.0	PASS
UMTS/TM1/ WCDMA Band V	4132	826.4	3.02	13.0	PASS
	4182	836.4	3.02	13.0	PASS
	4233	846.6	3.02	13.0	PASS

Remark:

1. Test results including cable loss;


2. Please refer to following plots;

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

I el: +(86) 0/55-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cer Scan code to check authenticity

Shenzhen LCS Compliance Testing Laboratory Ltd.

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

5 Test Setup Photos of the EUT

Please refer to separated files for Test Setup Photos of the EUT.

6 External Photos of the EUT

Please refer to separated files for External Photos of the EUT.

7 Internal Photos of the EUT

Please refer to separated files for Internal Photos of the EUT.

.....End of Report.....

