Analog - Digital multimeters
RISH Mulfi ${ }^{\circledR}$ 12S... 185

Analog - Digital multimeters RISH Multi ${ }^{\circledR} 125$... 185

Automatic Terminal Blocking System (ABS)*

The automatic Terminal blocking system prevents incorrect connection of the test leads and incorrect selection of the measured quantity.
This reduces danger to the user, the meter and the system to a remarkable extent.

Interface and software RISH com 100

The multimeters are fitted with a serial RS-232 C interface via which the measured values can be transmitted to a PC. These values, electrically isolated, are transmitted to the attachable interface adaptor with infrared light through the case*

MIN/MAX value storage

In addition to the display of the actual measured value, the minimum or maximum value can constantly be updated and store
Indication of negative values on the analog scale
When measuring DC quantities, also negative values are shown on the analog scale so that variations of the measured value can be observed at the zero point

Root-mean-square value with distorted waveform (RISH multi 16 S \& 18S)
The measuring principle employed permits the measurement of the root-mean-square value (TRMS) of AC quantities and mixed quantities (AC and DC) regardless of the waveform.

Automatic data hold*

The DATA HOLD function makes it possible to hold the digitally displayed measured value. According to a patented method, it is ensured that no freak value but the actual measured value is held in the case of rapid changes in measured quantities. The held measured value appears on the digital display. The actual measured value continues to be shown on the analog scale.

Autoranging / Manual range selection

The measured values are selected with rotary switch. The measuring range is automatically matched to the measured value. The measuring range can also be selected manually via the AUTO/MAN push button.

Continuity test

This permits testing for short circuit and open circuit. In addition to the display, a facility of sound signal is available

Temperature measurement

It is possible to use all models of RISH multi series,
in direct connection of temperature sensor Pt 100 / Pt 1000.
The meters automatically detects the type of sensors connected to it \& displays directly measured temperature.

Overload warning

A sound signal indication violation of the overload limits.

Signalling in the case of a blown fuse

The display FUSE points to a blown fuse.

Power economizing circuit

The meter disconnects automatically when the measured value remains unchanged for about 10 minutes and no operating control was operated during this time. The disconnection facility can be disabled

Protective holster for rough duty
A holster of soft rubber with tilt stand protects the meter against damage in the case of shock and drop. The rubber material makes for the meter to stand firmly even on vibrating surface.

* Protected by patent rights

Measure, Control \& Record with a Difference

Top model RISH multi $18 S$

The top model Rish multi 18S features a $43 / 4$ digit display (31 000 digits)as well as the following additional functions : Event counter, measurement of the duration of the event, time counter (stop watch), data compare, dB measurment, wide-range capacitance measurement.

Calibration

RISH multi is automatically calibrated with respect to Fluke 5500 Wavetek 9100. Automatic calibration is done through a developed calibration software with RS232 connection to the multimeter. Every multimeter is provided with the Test Certificate which is traceable to National / International standards. All the meters can be recalibrated at the Rishabh Instruments.

Applied rules and standards :

IEC 1010-1
DIN EN 61010 part 1 VDE 0411 - 1

Safety requirements for electrical equipment for measurement, control and laboratory use.

DIN 43751 IS 13875	Digital measuring instruments
DIN EN 50081 PART 1	Generic emission standard; Residential, commercial and light industry.
	Generic immunity standard; residential, commercial and light industry.
DIN EN 50082 PART 1	

Analog - Digital multimeters RISH Multi ${ }^{\circledR}$ 12S... $16 S$

Specifications RISH multi 12S... 16 S

1) TRMS measurement
2) Direct display with clip-on transformer 1000:1
3) At 0 C C... +40 C
4) With zero setting; w/o zero setting +35 digits
5) With zero setting; w/o zero setting +50 digits
6) RISH multi 13 S (w/o 16 A fuse!) : 16A cont., 20A for 5 min

RISH multi 14S... 16S: 12A for 5 min , 16A for 30s
8) Range
$3 \mathrm{~V} \simeq \quad \mathrm{U}_{\mathrm{E}}=1.5 \mathrm{~V}_{\mathrm{ms}} \cdots \quad 100 \mathrm{~V}_{\mathrm{rms}}$
$30 \mathrm{~V} \simeq: \quad U_{\mathrm{E}}=\quad 15 \mathrm{~V}_{\mathrm{rms}} \cdots \quad 300 \mathrm{~V}_{\mathrm{rms}}$
$300 \mathrm{~V} \simeq: \quad \mathrm{U}_{\mathrm{E}}=150 \mathrm{~V}_{\mathrm{rms}} \cdots 1000 \mathrm{~V}_{\mathrm{ms}}$
9) On the range $3 \mathrm{~V}=-\mathrm{r}$ rectangular signal positive at one end $5 \ldots 15 \mathrm{~V}, \mathrm{f}=$ const. not 163.84 Hz or integer multiple.
10) Without sensor

Measure, Control \& Record with a Difference

Analog - Digital Multimeters RISH Multi ${ }^{\circledR} 185$

Specifications RISH multi 18 S

Meas. function	Measuring range Rishmulti 18 S		Resolution	Input impedence		Inherent deviation of the digital display $\pm(\ldots \%$ of meas. val. $+\ldots$ digits for ref. conditions		Overload capacity		Meas. function	
			=	1) $={ }^{1)}$	=-	$\sim^{1)}=^{1)}$	Overload value	Overload duration			
V	300.	00 mV		$10 \mu \mathrm{~V}$	$>10 \mathrm{G} \Omega$	$5 \mathrm{M} \mathbf{\Omega} / / /<40 \mathrm{pF}$	$0.05+3 ; 0.05+20^{3}$	$0.5+30$ (>500 D)	$\begin{gathered} 1200 \mathrm{~V} \\ \mathrm{DC} \\ \mathrm{AC} \\ \text { RMS } \\ \text { sinusoidal } \end{gathered}$	cont.	V
	3.00	00 V	$100 \mu \mathrm{~V}$	$11 \mathrm{M} \Omega$	$1 \mathrm{M} \Omega / /<40 \mathrm{pF}$	$0.05+3$	$0.3+30$ (>300 D)				
	30.0	000 V	1 mV	$10 \mathrm{M} \Omega$	$1 \mathrm{M} \Omega / /<40 \mathrm{pF}$	$0.05+3$	$0.3+30$ ($>300 \mathrm{D}$)				
	300.	00 V	10 mV	$10 \mathrm{M} \Omega$	1 M / $/ /<40 \mathrm{pF}$	$0.05+3$	$0.3+30$ (>300 D)				
	1000	0.0 V	100 mV	$10 \mathrm{M} \Omega$	$1 \mathrm{M} \mathbf{\Omega} / / 1<40 \mathrm{pF}$	$0.05+3$	$0.3+30$ (>300 D)				
dB	See table below			-	Same as with $\vee \sim$	-	$\pm 0.5 \mathrm{~dB}^{4)}$	dB			
				Voltage drop. approx.							
				=-	$\sim_{\sim}^{1)}$	=-	$\bar{\sim}^{1)}$				
mA		$300.00 \mu \mathrm{~A}$	10 nA	15 mV	15 mV	$0.2+20$	$0.5+30$ (>300 D)	0.36 A	cont.	mA	
		. 00000 mA	100 nA	150 mV	150 mV	$0.2+10$	$0.5+30$ (>300 D)				
		3.000 mA	$1 \mu \mathrm{~A}$	30 mV	30 mV	$0.05+10$	$0.5+30$ (>300 D)				
		00.00 mA	$10 \mu \mathrm{~A}$	300 mV	300 mV	$0.2+10$	$0.5+30$ (>300 D)				
A		3.0000 A	$100 \mu \mathrm{~A}$	150 mV	150 mV	$0.5+10$	$0.75+30$ ($>300 \mathrm{D}$)	124^{5}	5 min	A	
		10.000 A	1 mA	400 mV	400 mV	$0.5+10$	$0.75+30$ (>300 D)				
				No-load voltage	Short circuit current						
Ω		300.00Ω	$10 \mathrm{~m} \Omega$	max. 4.00 V	max. 1 mA	$\frac{0.1+6 ; 0.1+30^{3)}}{0.1+6}$		$\begin{gathered} 500 \mathrm{~V} \\ \mathrm{DC} \\ \text { AC } \\ \text { RMS } \\ \text { sinusoidal } \end{gathered}$	10 min	Ω	
		. $0000 \mathrm{k} \Omega$	$100 \mathrm{~m} \Omega$	max. 1.25 V	max. $100 \mu \mathrm{~A}$						
		$000 \mathrm{k} \Omega$	1Ω	max. 1.25 V	max. $10 \mu \mathrm{~A}$	$0.1+6$					
		$0.00 \mathrm{k} \Omega$	10Ω	max. 1.25 V	max. 1 HA	$0.1+6$					
		$000 \mathrm{M} \Omega$	100Ω	max. 1.25 V	max. $0.1 \mu \mathrm{~A}$	$0.1+6$					
		. $000 \mathrm{~m} \Omega$	$1 \mathrm{k} \Omega$	max. 1.25 V	max. 0.1 ¢	$1.0+6$$0.2+6$					
\rightarrow		000 V -	1 mV	max. 4.00 V	---			\rightarrow			
				Discharge resist.	$U_{0 \text { max }}$						
F	3.000 nF30.00 nF		1 pF	$1.5 \mathrm{M} \Omega$	4 V	$\frac{1.0+8 ; 1.0+60^{3)}}{1.0+8 ; 1.0+30^{3)}}$		$\begin{gathered} 500 \mathrm{~V} \\ \mathrm{DC} \\ \mathrm{AC} \\ \mathrm{RMS} \\ \text { sinusoidal } \end{gathered}$	10 min	F	
			10 pF	$1.5 \mathrm{M} \Omega$	4 V						
		300.0 nF	100 pF	$150 \mathrm{k} \Omega$	4 V	$\frac{1.0+8 ; 1.0+30^{3)}}{1.0+3}$					
		$3.000 \mu \mathrm{~F}$	1 nF	$150 \mathrm{k} \Omega$	4 V	$1.0+3$$1.0+3$					
		$30.00 \mu \mathrm{~F}$	10 nF	$15 \mathrm{k} \Omega$	2 V	$1.0+3$					
		300.0 FF	100 nF	$1.5 \mathrm{k} \Omega$	2 V	$5.0+6$					
		$3000 \mu \mathrm{~F}$	$1 \mu \mathrm{~F}$	$1.5 \mathrm{k} \Omega$	2 V	$5.0+6$					
	$10000 \mu \mathrm{~F}$		$10 \mu \mathrm{~F}$	$1.5 \mathrm{k} \Omega$	2 V	$5.0+6$					
				$f_{\text {min }}{ }^{6)}$							
Hz	300.00 Hz		0.01 Hz	10 Hz		$0.1+3^{7)}$		$\leq 3 \mathrm{kHz} ;$1200 V$\leq 30 \mathrm{kHz} ;$300 V$\leq 100 \mathrm{kHz}$30 V	cont.	Hz	
	3.0000 kHz		0.1 Hz	10 Hz							
	30.000 kHz		1 Hz	10 Hz							
	100.00 kHz		10 Hz	100 Hz							
${ }^{\circ} \mathrm{C}$	Pt100	$\begin{array}{r} -200.0 \ldots \\ +100.0^{\circ} \mathrm{C} \\ \hline \end{array}$	$0.1{ }^{\circ} \mathrm{C}$	--	---	$0.5 \text { Kelvin }+3^{8)}$		$\begin{gathered} 500 \mathrm{~V} \\ \mathrm{DC} \\ \text { AC } \\ \text { eff } \\ \text { sinus } \end{gathered}$	10 min .	${ }^{\circ} \mathrm{C}$	
		$\begin{array}{r} +100.0 \ldots \\ +850.0^{\circ} \mathrm{C} \\ \hline \end{array}$	$0.1{ }^{\circ} \mathrm{C}$			$0.5+3^{8)}$					
	$\begin{array}{\|c\|} \hline \mathrm{Pt} \\ 1000 \\ \hline \end{array}$	$\begin{array}{r} -100.0 \ldots \\ +100.0^{\circ} \mathrm{C} \\ \hline \end{array}$	$0.1{ }^{\circ} \mathrm{C}$	---	---	0.5 Kelvin $+3^{8)}$					
		$\begin{array}{r} +100.0 \ldots \\ +850.0^{\circ} \mathrm{C} \end{array}$	$0.1{ }^{\circ} \mathrm{C}$	--	---	$0.5+3^{8)}$					

Measuring ranges	Display span at reference voltage $\mathrm{U}=0.775 \mathrm{~V}$	Display span at reference voltage $U_{\text {ret }}(V)$
300 mV ~	$-48 \mathrm{~dB} . . .8 \mathrm{~dB}$	$-40 \mathrm{~dB} . . .+110 \mathrm{~dB}$
3 V	$-38 \mathrm{~dB} . . .+12 \mathrm{~dB}$	$-60 \mathrm{~dB} . . .+100 \mathrm{~dB}$
30 V	-18 dB ... +32 dB	$-80 \mathrm{~dB} . . .+80 \mathrm{~dB}$
300 V	+ 2 dB ... +52 dB	$-100 \mathrm{~dB} . . .+60 \mathrm{~dB}$
1000 V	+ 22 dB ... +63 dB	-110 dB ... +40 dB
	Display (dB) $=$	Display (dB) $=$

1) TRMS measurement
2) $\mathrm{At}-10^{\circ} \mathrm{C} . . .+40^{\circ} \mathrm{C}$
3) With zero setting; w/o zero setting
4) At a resolution of 0.01 dB
5) 16 A for 30 s
6) Lowest measurable frequency with sinusoidal measuring signal symmetrical to zero
7) Range $3 \mathrm{~V} \simeq: \mathrm{U}_{\mathrm{E}}=1 \mathrm{~V}_{\mathrm{msm}} \ldots 10 \mathrm{~V}_{\mathrm{ms}}$
$30 \mathrm{~V} \simeq: U_{E}=10 \mathrm{~V}_{\mathrm{m}} \ldots . .100 \mathrm{~V}_{\mathrm{ms}}$
$300 \mathrm{~V} \simeq \mathrm{U}_{\mathrm{E}}=100 \mathrm{~V}_{\mathrm{ms}} \ldots \quad 1000 \mathrm{~V}_{\mathrm{ms}}$

RISHABH \mid NS IRUIM

Analog - Digital multimełers RISH Multi

Measuring voltage with resistance measurement 12S... 16S.

Voltage U_{x} across the resistance R_{x} to be measured as a function of measuring range and display.

Measuring current with diode test and / or continuity test 12S... 16 S .

Measuring current I_{x} as a function of the displayed voltage U_{x} on the device under test.

Measuring current with diode test and / or continuity test $18 S$.

Measuring current I_{\times}
as a function of the displayed voltage U_{x} on the device under test.

Reference conditions

Ambient temperature	$+23 \mathrm{C}+2 \mathrm{~K}$
Relative humidity	

Analog - Digital multimeters
 RISH Multi ${ }^{\circledR}$ 12S... $18 S$

Display
LCD field ($65 \mathrm{~mm} \times 30 \mathrm{~mm}$) with analog indication and digital display and with annunciators for unit of measurement, function and various special functions.

Analog

Indication
Scale length
Scaling

Polarity indication
Overrange indication
Sampling rate
LCD scale with pointer 55 mm on $V=$ and A-.-; 47 mm on all other ranges $\mp 5 \ldots 0 \ldots \pm 30$ with 35 scale divisions on $=-$,
$0 . .30$ with 30 scale divisions on all other ranges

With automatic reversa
By triangle
20 readings/s,

On $\Omega 10$ readings/s

Digital

Display/
height of numerals
Rish multi 12S ...16S
7 segment numerals / 15mm
Rish multi 18S:
7-segment numerals/12 mm

Number of counts Rish multi 12S...16S,
$33 / 4$ digit $\widehat{\text { 人 }} 3100$ counts
Rish multi 18S:
$43 / 4$ digit $\triangle 31000$ counts

Overange display
Polarity display

Sampling rate
"OL" is shown
"-" sign is shown,
When positive pole to " \perp "
2 readings/s,

On Ω and ${ }^{\circ} \mathrm{C}: 1$ reading/s

Display RISH multi 12S... 16 S

Display RISH multi 18 S

1. Display with low battery voltage
2. Display with sound signal on
3. Symbol for "CONTINUOUSLY ON"
4. Digital display with indication of decimal point and polarity
5. Display with manual range selection as well as with data and MIN/MAX hold
6. Display of the selected function
7. Display of the unit of measurement
8. Display with overrange
9. Pointer for analog indication
10. Scale for analog indication
11. Indication that negative analog range is exceeded
12. Display of the unit ${ }^{\circ} \mathrm{C}$ when measuring temperature
13. Display with time counter switched on

Analog - Digital multimełers RISH Mulif

Influence quantities and variations for 12S... 16S

Influence quantity quantity	Influence range	Measured quantity / measuring range	Variation 12S... 16S
Battery voltage	$\left\lvert\, \begin{gathered} 55 \\ \rightarrow 8.1 \times 7 . . . \\ >8.9 \mathrm{v} \\ \hline \end{gathered}\right.$	$\mathrm{V}=$	$\pm 2 \mathrm{D}$
		V	$\pm 4 \mathrm{D}$
		$\mathrm{A}=$	$\pm 4 \mathrm{D}$
		A-	$\pm 6 \mathrm{D}$
		$30 \Omega / 300 \Omega /{ }^{\circ} \mathrm{C}$	$\pm 4 \mathrm{D}$
		$3 \mathrm{k} \Omega \ldots 30 \mathrm{M} \Omega$	$\pm 3 \mathrm{D}$
		nF, $\mu \mathrm{F}$	$\pm 1 \mathrm{D}$
		Hz	$\pm 1 \mathrm{D}$
		\%	$\pm 1 \mathrm{D}$
Relative humidity	$75 \text { \% }$ 3 days Meter off	v 工	1 x inherent deviation
		$\mathrm{A}=$	
		Ω	
		F	
		Hz	
		\%	
DATA		${ }^{\circ} \mathrm{C}$	$\pm 1 \mathrm{D}$
MIN / MAX		V ニ, $\mathrm{A} \simeq$	$\pm 2 \mathrm{D}$

1) With temperature; Error data is per 10 K change in temperature.

With frequency; Error data is valid from a display of 300 digits.
2) With zero setting
3) With unknown waveform (crest factor $\mathrm{CF}>2$), the measurement must be made with manual range selection.
4) Except for sinusoidal waveform
5) From the time the symbol "- - " appears

Influence quantities and variations

 for 185| Influence quantity | Influence range | Measured quantity \mid measuring range ${ }^{1}$) | $\begin{gathered} \text { Variation }{ }^{2)} \\ \pm(\ldots \% \text { of meas. val. }+\ldots \text { digits }) \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| Temperature | $\begin{aligned} & -10^{\circ} \mathrm{C} \ldots+21^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \ldots+40^{\circ} \mathrm{C} \end{aligned}$ | $\mathrm{V}=$ | $0.05+3$ |
| | | $\mathrm{V} \mathrm{\sim} \mathrm{~V}=$, | $0.2+30$ |
| | | $300 \mu \mathrm{~A} / 3 \mathrm{~mA}$ | $0.2+3$ |
| | | $30 \mathrm{~mA}=$ | $0.1+3$ |
| | | $300 \mathrm{~mA} . .10 \mathrm{~A}=$ | $0.2+3$ |
| | | $300 \mu \mathrm{~A} . . .300 \mathrm{~mA} \overline{=}$ | $0.3+30$ |
| | | $3 \mathrm{~A} / 10 \mathrm{~A} \equiv$ | $0.5+30$ |
| | | 300Ω | $0.1+5$ |
| | | $3 \mathrm{k} \Omega \ldots 3 \mathrm{M} \Omega$ | $0.1+3$ |
| | | 30 Ms | $0.6+3$ |
| | | $30 \mathrm{nF} . . .3 \mu \mathrm{~F}$ | $0.5+3$ |
| | | $30 \mu \mathrm{~F}$ | $2.0+3$ |
| | | Hz | $0.1+3$ |
| | | $-200 . \ldots+100^{\circ} \mathrm{C}$ | 0.5 Kelvin +2 D |
| | | $+100 \ldots+850^{\circ} \mathrm{C}$ | $0.5+2$ |
| | | | |
| Frequency of the measured quantity | $15 \mathrm{~Hz} . .1<45 \mathrm{~Hz}$ | 300 mV ~ | $1.0+20$ |
| | $65 \mathrm{~Hz} . .1<200 \mathrm{~Hz}$ | | $1.0+20$ |
| | $>15 \mathrm{~Hz} . .<30 \mathrm{~Hz}$ | 3... 300 V | $1.0+20$ |
| | $>30 \mathrm{~Hz} . .1<45 \mathrm{~Hz}$ | | $0.5+20$ |
| | $>65 \mathrm{~Hz} . .400 \mathrm{~Hz}$ | | $0.5+20$ |
| | $>400 \mathrm{~Hz} \ldots . .1 \mathrm{kHz}$ | | $1.0+20$ |
| | $>1 \mathrm{k} \mathrm{Hz} \ldots 20 \mathrm{kHz}$ | | $2.0+20$ |
| | $15 \mathrm{~Hz} . . .<30 \mathrm{~Hz}$ | 1000 V | $1.0+20$ |
| | $30 \mathrm{~Hz} . . .<45 \mathrm{~Hz}$ | | $0.5+20$ |
| | $>65 \mathrm{~Hz} . . .1 \mathrm{kHz}$ | | $2.0+20$ |
| | $\frac{15 \mathrm{~Hz} . . .}{>65 \mathrm{~Hz}} 15 \mathrm{~Hz}$ | A- | $1.0+20$ |
| | $>65 \mathrm{~Hz} . .1 \mathrm{kHz}$ | | $1.0+20$ |
| | | | $\pm 1 \%$ of rdg. |
| | | | $\pm 3 \%$ of rdg. |
| Waveform of the measure quantity | The permissible cre is a function of the
 Voltage measu | st factor CF of the AC displayed value : | quantity to be measured |
| | | | |

Influence quantity	Influence range	Measured quantity / measuring range	Variation
Battery voltage	$\begin{aligned} &-5) \ldots<7.9 \mathrm{v} \\ &>8.1 \mathrm{~V} \ldots 1.0 \mathrm{~V} \end{aligned}$	$\mathrm{V}=$	$\pm 6 \mathrm{D}$
		V ~	$\pm 30 \mathrm{D}$
		$\mathrm{A}=$	$\pm 10 \mathrm{D}$
		A~	$\pm 30 \mathrm{D}$
		Ω	$\pm 10 \mathrm{D}$
		$3 \mathrm{nF} . . .30 \mu \mathrm{~F}$	$\pm 5 \mathrm{D}$
		Hz	$\pm 6 \mathrm{D}$
		${ }^{\circ} \mathrm{C}$	$\pm 5 \mathrm{D}$
Relative humidity	75% 3 days Meter off	$\begin{gathered} \mathrm{V}, \mathrm{~dB}, \mathrm{~A}, \Omega, \\ \mathrm{~F}, \mathrm{~Hz}, \\ { }^{\circ} \mathrm{C} \mathrm{C} \end{gathered}$	1x inherent deviation
DATA		$\mathrm{V}, \mathrm{dB}, \mathrm{A}, \Omega, \mathrm{Hz}$	$\pm 10 \mathrm{D}$
		F	$\pm 1 \mathrm{D}$
MIN / MAX		$\mathrm{V}, \mathrm{dB}, \mathrm{A}, \Omega, \mathrm{Hz}$	$\pm 20 \mathrm{D}$
		${ }^{\circ} \mathrm{C}, \mathrm{F}$	$\pm 2 \mathrm{D}$

1) With zero setting
2) With temperature; Error data is per 10 K change in temperature

With frequency; Error data is valid from a display of 10% of the measuring range.
3) With unknown waveform (crest factor CF > 2), the measurement must be made with manual range selection.
4) Except for sinusoidal waveform
5) From the time the symbol "-1-" appears.

Analog - Digital multimeters RISH Mulfi 12S... 18S

Influence quantity	Influence range	$\begin{array}{\|c} \hline \text { Meas. range } \\ 12 \mathrm{~S} . .16 \mathrm{~S} \\ \hline \end{array}$	Damping
$\left\lvert\, \begin{array}{c\|} \text { Common } \\ \text { mode voltage } \end{array}\right.$	Disturbance variable max. 1000 V	$\mathrm{V}=$	$>120 \mathrm{~dB}$
	Disturbance variable max. 1000 V ~ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ sinusoidal	$\begin{aligned} & 3 \mathrm{~V} \sim \\ & 30 \mathrm{~V} \sim \end{aligned}$	$>80 \mathrm{~dB}$
		300 V ~	$>70 \mathrm{~dB}$
		1000 V	$>60 \mathrm{~dB}$
$\left\lvert\, \begin{gathered} \text { Normal } \\ \text { mode voltage } \end{gathered}\right.$	Disturbance variable V nom. value of meas, range at a time, max. $1000 \mathrm{~V} \sim, 50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ sinusoidal	$v=$	$>50 \mathrm{~dB}$
	Disturbance variable max. 1000 V --	V	$>110 \mathrm{~dB}$

Response time
Response time for 12S... 16 (after manual range selection)

Measured quantity measuring range	$\begin{aligned} & \text { Respon } \\ & \text { of analog } \\ & \text { indication } \\ & \hline \end{aligned}$	e time of digital display	$\begin{array}{\|c\|} \hline \text { Leap function of } \\ \text { the measured quantity } \end{array}$
$\begin{aligned} & V=V_{A \sim}^{A \sim} \\ & A= \end{aligned}$	0.7 s	1.5 s	\qquad
$30 \Omega \ldots 3 \mathrm{M} \Omega$	1.5 S	2 S	$\begin{aligned} & \text { from } \infty \text { to } 50 \% \\ & \text { of the upper range limit } \end{aligned}$
$30 \mathrm{M} \Omega$	4 S	5 S	
\rightarrow	0.7 S	1.5 S	from 0 to 50\% of the upper range limit
${ }_{\text {nF, }} \mathrm{\mu F},{ }^{\circ} \mathrm{C}$		max. $1 . .3 \mathrm{~S}$	
$300 \mathrm{~Hz}, 3 \mathrm{kHz}$		max. 2 S	
$30,100 \mathrm{kHz}$		max. 0.7 S	
\% (1 Hz)		max. 9 S	
\% ($\geq 10 \mathrm{~Hz}$)		max. 2.5 S	

Power supply

Battery

Operating time

Battery test

Fuses

9-V flat cell battery:
manganese-dioxide cell according to IEC 6 F 22.
alkaline Manganese cell according to IEC 6 LR 61
or corresponding NiCd storage battery
With alkaline-manganese cell:
RISH multi 12...16S
Approx. 750 hours on $V=, A=$
Approx. 200 hours on $\mathrm{V} \sim, \mathrm{A} \sim$
(12S...15S)
approx. 150 hours on $\mathrm{V} \sim, \mathrm{A} \sim(16 \mathrm{~S})$
with interface operation times $\times 0.7$
RISH multi 18 S:
approx. 300 hours on $V=$
approx. 150 hours on $V \sim, A \sim A=$ Automatic display of the " $-\mid$ " symbol, when the battery voltage drops below approximately 7 V .

Fuse link for the
ranges up to 300 mA

Fuse link for ranges up to 10A

FF 1.6A/500V $6.3 \mathrm{~mm} \times 32 \mathrm{~mm}$; Switching capacity 20 kA on $500 \mathrm{~V} \sim$ and ohmic load; in connection with power diodes protects all current measuring ranges up to 300 mA

16 A / 600 V or 15 A / 600 V $10 \mathrm{~mm} \times 38 \mathrm{~mm}$, Switching capacity 100 kA on 600 V ~ and ohmic load; protects the 3 A and 10 A ranges up to 600 V

Influence quantity	Influence range	$\begin{gathered} \text { Meas. range } \\ 18 \mathrm{~S} \\ \hline \end{gathered}$	Damping
$\left\lvert\, \begin{gathered} \text { Common } \\ \text { mode voltage } \end{gathered}\right.$	Disturbance variable max. 1000 V -	$v=$	$>120 \mathrm{~dB}$
	Disturbance variable max. 1000 V ~ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ sinusoidal	$\begin{aligned} & \begin{array}{l} 00 \mathrm{mV} \\ 30 \mathrm{~V} \sim \end{array} \\ & \hline \end{aligned}$	$>80 \mathrm{~dB}$
		300 V ~	$>70 \mathrm{~dB}$
		1000 V ~	$>60 \mathrm{~dB}$
$\begin{array}{\|c\|} \text { Normal } \\ \text { mode voltage } \end{array}$	variable V ~ nom. value of meas, range at a time, $\max .1000 \mathrm{~V} \sim, 50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ sinusoidal	$v=$	$>48 \mathrm{~dB}$
	Disturbance variable max. 1000 V --	V	$>110 \mathrm{~dB}$

Response time for 18 S (after manual range selection)

Measured quantity measuring range	$\begin{gathered} \text { Respo } \\ \text { of analog } \\ \text { indication } \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { ise time } \\ \text { of digital } \\ \text { display } \\ \hline \end{array}$	Leap function of the measured quantity
$\begin{aligned} & V \equiv V_{A \sim}^{2} \\ & A== \end{aligned}$	0.7 S	$\begin{gathered} 1.5 \mathrm{~S} \\ 300 \mathrm{mV}=: 8 \mathrm{~S} \\ \hline \end{gathered}$	$\begin{aligned} & \text { from } 0 \text { to } 80 \% \\ & \text { of the upper range limit } \end{aligned}$
$30 \Omega \ldots 3 \mathrm{M} \Omega$	1.5 S	2 S	from ∞ to 50% of the upper range limit
$30 \mathrm{M} \Omega$	4 S	5 S	
\rightarrow	0.7 S	1.5 S	
$3 \mathrm{nF} . . .300 \mu \mathrm{~F}$	max. 2 S	max. 2 S	from 0 to 50\% of the upper range limit
3000 ¢F	max. 7 S	max. 7 S	
$10000 \mu \mathrm{~F}$	max. 14 S	max. 14 S	
$>10 \mathrm{~Hz}$	max. 1.5 S	max. 1.5 S	
C		max. 3 S	

Electrical Safety

Protection class
Overvoltage category
Nominal voltage
Degree of pollution
Nominal
Insulation voltage
Test Voltage
according to IEC 348/DIN VDE 0411 and IEC 1010-1/EN 61010-1/VDE 0411-1
II III
$\begin{array}{ll}1000 \mathrm{~V} & 600 \mathrm{~V} \\ 2 & 2\end{array}$
1000 V acc. to IEC 348/DIN VDE 0411 6kV~ acc. To IEC 348/DIN VDE 0411

Electromagnetic compatibility EMC	
Emission	EN 50081-1:1992/
	EN 55022:1987 class B
Immunity	EN 50082-1: 1992
	/IEC 801-2:1991 8 kV
	/IEC 801-3:1984 $3 \mathrm{~V} / \mathrm{m}$
	/IEC 801-4:1988 0.5 kV

Date interface

Type
Data transmission
Baud rate

RS-232C, serial, according to DIN 19241 Optical, with infrared light through the case 8192 bit/s

Measure, Control \& Record with a Difference

Analog - Digital multimeters
 RISH Multi ${ }^{\circledR}$ 12S... $18 S$

Warranty

Operating controls 12S... 18S

1 year against defects in materials and workmanship \& calibration from the date of purchase.

RISH Multi SI 232

Dafa Storage adapter

Storage adapter SI232

The storage adapter RISH multi SI 232 which is attachable to the hand-held Rishmulti series multimeters permits direct transmission of measured data of a single or several RISH multi to a PC as well as on-site data storage without PC and their later transmission to the PC. The data is synchronized by a integrated clock. Memory: 128kB (corresponds to approx. 100000 meas. Values)

Sampling

Sampling is dependent upon the selected signal hysteresis setting This sampling method results in an expansion of virtual memory which is dependent upon measurement signal dynamics
and the selected signal hysteresis. Thus storage capacity can be substantially increased (10 to 100-fold)
With a selected sampling rate of upto maximum 500 ms . an arithmetic mean value is ascertained for the measurement values which are received at a pulse rate of 50 ms . Within a range of 1 s to 60 s , the signal sampling rate remains at a constant 500 ms (10 measurement values). The integrated closed-circuit system causes the storage module to enter the standby mode for the
remainder of the sampling cycle after signal acquisition is complete, and thus lengthens battery service life. Signal acquisition is interrupted during the rest period for this reason. Thus the functional principal can be compared to that of point recorder. Sampling rate adjustable from: 50ms... 1 min

Sampling period

operational life (battery service life)
0.05...0.5s
> 30days
10 s
20 s
60 s
9 months
12 months
18 months

Interface packs

An interface pack can connect one or more RISH multi S with a PC. It contains all hardware and software components required to configure a PC measurement system.

Single channel storage pack

1 Storage adapter SI 232
1 RS-232 bus cable, 1.5 m long
1 Rishcom 100 program disk 3 ½" 1.44 Mbyte
1 copy of instruction manual of Rishcom 100

Four-channel storage pack

4 Storage adapters SI 232
1 RS-232 bus cable, 2 m long
1 Rishcom 100 program disk 3 ½" 1.44 Mbyte
1 copy of instruction manual of Rishcom 100

Configuration of a multi-measurement system

 (on-line and off-lineTo configure a powerful multi-measurement system up to six RISHmulti SI 232 can be interconnected and connected to a PC on-line via a standard interface cable (RS-232C) and/or up to en devices can be operated off-line.
Each adapter can manually be provided with a specific contact address.

1) Four Rishmulti multimeters with storage adapters are cascaded
2) Each of the measurement values is transmitted via infrared light to the SI 232 storage adapter through the closed, electrically isolated RISH multi housing.
3) This pack can be connected to a PC through RS 232 interface.
4) The Rishcom 100 software then comprise a multiple measurement system on PC.

Software

Rishcom 100

Rishcom 100 software

Rishcom 100 software (can be run with DOS or WINDOWS) is used for the processing and representation of measurement data on a PC Sampling in the on-line mode can be performed manually with an ad justable sampling interval, or dependent upon signal dynamics (with adjustable signal hysteresis). Storage in the ASCII format is controlled with two trigger thresholds per measurement channel, as well as with the internal clock.

(4)

Data logger (1)

The acquired data is continuously shown on the screen in the form of clear table.

Multimeter (2)

Transmitted measurement values from a maximum of 4 freely selectable channels are digitally displayed at the monitor, and represented in an analog /digital or analog + digital Format during on-line operation.

Y(t)recorder (3)

The acquired measured values are shown on the screen as time diagram with horizontal time axis and measured with a cursor. Stored signals can be zoomed in amplitude and the time axis and/or compressed ("zoom"). The time scale can be presented in absolute time or relative measuring time.

Scanning

Scanning can optionally be performed manually (mouse click), automatically with selectable interval ($50 \mathrm{~ms} \ldots 1 \mathrm{~min}$) or signal depending with settable signal hysteresis ($0 \ldots 500$ digits). The data can be controlled by time and window trigger and stored automatically as multiple files.

Data processing

The measured data can further be processed by means of a powerful computer function and by linearization functions.

Thus it is possible, for example, to present mA signals from sensors or transformers directly in print values as active power, and many more.

Parameterization of the S1232 storage adapters

The storage adapters can be set manually via the front keys or via the serial interface of the PC. By transmission, of the time from the computer, as many as ten memories can acquire measured values synchronous with time. Values for minimum and maximum trigerring, recording time and post-trigger time can easily be set. Also the beginning of the measurement is controlled via the crystal clock of the memory, just as is scanning rate and signal hysteresis.

X-Y recorder (4)

The acquired data are shown on the screen on-line as X-Y diagram and measured with the cursor. Same as in all other form of presentation, all scales can be freely selected.

Math function with powerful arithmetics can analyze, link and display measured data on-line and off-line.

RISHABH NSTRUMENTS

Measure, Control \& Record with a Difference

Ordering Information RISH Multi 12S... $18 S$

Order Code

Designation	Type	Order code
Multimeter	RISH multi 12s	33001
	RISH multi 13s	33002
	RISH multi 14s	33003
	RISH multi 15s	33005
	RISH multi 16s	33006
	RISH multi 18s	33007
Cable set	KS 17	42126
Carrying Bag	F 389	42179
Voltage probe upto 3 KV	HV 3	42115
Voltage probe upto 30 KV	HV 30	42123
Clip on current transformer 1000A, 1mA/A	Z3512	42119
Shunt 100 A / 100mV	GE 4277	42178
Temperature sensor pt 100	Z 3409	42116
Temperature sensor pt 1000	Z 3408	42122
Single channel storage pack including memory adapter SI 232, Cable \& Software RISHcom 100	1 CH pack	33021
Four channel storage pack including 4 nos memory adapter SI 232 Cable \& Software RISHcom 100	4 CH pack	33023

Measure, Control \& Record with a Difference

