

SAR TEST REPORT

No. I15Z43226-SEM01

For

TCL Communication Ltd.

HSUPA/HSDPA/UMTS Tri-band/GSM Quad-band mobile phone

Model name: 4017A

With

Hardware Version: PIO

Software Version: vBL43

FCC ID: 2ACCJH039

Issued Date: 2016-01-28

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

Test Laboratory:

CTTL, Telecommunication Technology Labs, Academy of Telecommunication Research, MIIT No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District, Beijing, P. R. China100191 Tel:+86(0)10-62304633-2512,Fax:+86(0)10-62304633-2504

Email: cttl_terminals@catr.cn, website: www.chinattl.com

REPORT HISTORY

Report Number	Revision	Issue Date	Description
I15Z43226-SEM01	Rev.0	2016-01-26	Initial creation of test report
I15Z43226-SEM01	Rev.1	2016-01-28	 The GPRS Multislot Class in table 4.1 has been modified. The information of LTE MPR has been deleted. The tune up power in WIFI 802.11n(HT20) has been updated.

TABLE OF CONTENT

1 TEST LABORATORY	5
1.1 TESTING LOCATION	5
1.2 Testing Environment	5
1.3 Project Data	
1.4 Signature	5
2 STATEMENT OF COMPLIANCE	6
3 CLIENT INFORMATION	8
3.1 APPLICANT INFORMATION	8
3.2 Manufacturer Information	8
4 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	9
4.1 About EUT	9
4.2 Internal Identification of EUT used during the test	9
5 TEST METHODOLOGY	10
5.1 APPLICABLE LIMIT REGULATIONS	10
5.2 APPLICABLE MEASUREMENT STANDARDS	10
6 SPECIFIC ABSORPTION RATE (SAR)	11
6.1 Introduction	11
6.2 SAR Definition	11
7 TISSUE SIMULATING LIQUIDS	12
7.1 TARGETS FOR TISSUE SIMULATING LIQUID	12
7.2 DIELECTRIC PERFORMANCE	12
8 SYSTEM VERIFICATION	16
8.1 System Setup	16
8.2 SYSTEM VERIFICATION	17
9 MEASUREMENT PROCEDURES	18
9.1 Tests to be performed	18
9.2 GENERAL MEASUREMENT PROCEDURE	20
9.3 WCDMA MEASUREMENT PROCEDURES FOR SAR	
9.4 BLUETOOTH & WI-FI MEASUREMENT PROCEDURES FOR SAR	
9.6 Power Drift	
10 AREA SCAN BASED 1-G SAR	
10.1 REQUIREMENT OF KDB	
10.2 FAST SAR ALGORITHMS	23
11 CONDUCTED OUTPUT POWER	24
11.1 Manufacturing tolerance	24

11.3 GSM	MEASUREMENT RESULT	27
11.4 WCDMA MEASUREMENT RESULT		29
11.5 WI-FI	AND BT MEASUREMENT RESULT	29
12 SIMULT	TANEOUS TX SAR CONSIDERATIONS	31
12.1 Intro	DDUCTION	31
	SMIT ANTENNA SEPARATION DISTANCES	
	MEASUREMENT POSITIONS	
12.4 STANI	DALONE SAR TEST EXCLUSION CONSIDERATIONS	32
13 EVALU	ATION OF SIMULTANEOUS	33
14 SAR TE	EST RESULT	34
14.1 SAR I	RESULTS FOR FAST SAR	34
14.2 SAR I	RESULTS FOR STANDARD PROCEDURE	38
14.3 WLA	N EVALUATION	40
15 SAR M	EASUREMENT VARIABILITY	43
16 MEASU	JREMENT UNCERTAINTY	44
16.1 MEAS	SUREMENT UNCERTAINTY FOR NORMAL SAR TESTS (300MHz~3GHz)	44
16.2 MEAS	SUREMENT UNCERTAINTY FOR NORMAL SAR TESTS (3~6GHz)	45
	SUREMENT UNCERTAINTY FOR FAST SAR TESTS (300MHz~3GHz)	
16.4 MEAS	SUREMENT UNCERTAINTY FOR FAST SAR TESTS (3~6GHz)	47
17 MAIN T	EST INSTRUMENTS	48
ANNEX A	GRAPH RESULTS	49
ANNEX B	SYSTEM VERIFICATION RESULTS	69
ANNEX C	SAR MEASUREMENT SETUP	76
ANNEX D	POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHA	NTOM82
ANNEX E	EQUIVALENT MEDIA RECIPES	85
ANNEX F	SYSTEM VALIDATION	86
ANNEX G	PROBE CALIBRATION CERTIFICATE	87
ANNEX H	DIPOLE CALIBRATION CERTIFICATE	98
ANNEXI	ACCREDITATION CERTIFICATE	122

1 Test Laboratory

1.1 Testing Location

Company Name:	CTTL(Shouxiang)
Address:	No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District,
	Beijing, P. R. China100191

1.2 Testing Environment

Temperature:	18°C~25 °C,
Relative humidity:	30%~ 70%
Ground system resistance:	< 0.5 Ω
Ambient noise & Reflection:	< 0.012 W/kg

1.3 Project Data

Project Leader:	Qi Dianyuan
Test Engineer:	Lin Xiaojun
Testing Start Date:	January 1, 2016
Testing End Date:	January 3, 2016

1.4 Signature

Lin Xiaojun

(Prepared this test report)

Qi Dianyuan

(Reviewed this test report)

Xiao Li

Deputy Director of the laboratory (Approved this test report)

2 Statement of Compliance

The maximum results of SAR found during testing for TCL Communication Ltd. HSUPA/HSDPA/UMTS Tri-band/GSM Quad-band mobile phone 4017A are as follows:

Table 2.1: Highest Reported SAR (1g)

initio = ingreed includes a mit (i.g)				
Exposure Configuration	Technology Band	Highest Reported SAR	Equipment Class	
Exposure configuration	recrinology band	1g (W/Kg)		
	GSM 850	0.82		
Lload	PCS 1900	0.33	DCE	
Head (Soparation Distance 0mm)	UMTS FDD 5	0.60	PCE	
(Separation Distance 0mm)	UMTS FDD 2	0.85		
	WLAN 2.4 GHz	0.35	DTS	
Hotspot (Separation Distance 10mm)	GSM 850	0.69		
	PCS 1900	0.58	PCE	
	UMTS FDD 5	0.71	PCE	
	UMTS FDD 2	0.92		
	WLAN 2.4 GHz	0.15	DTS	

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1992.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and which provides a minimum separation distance of 10 mm for hotspot on and 15mm for hotspot off and speech between this device and the body of the user. Use of other accessories may not ensure compliance with FCC RF exposure guidelines. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report. The highest reported SAR value is obtained at the case of **(Table 2.1)**, and the values are: **0.92 W/kg (1g)**.

Table 2.2: The sum of reported SAR values for main antenna and WLAN

	Position	Main antenna	WLAN	Sum
Maximum reported SAR	Left hand, Touch cheek	0.85	0.24	1.09
value for Head	Right hand, Touch cheek	0.71	0.35	1.06
Maximum reported SAR value for Body	Rear	0.92	0.15	1.07

Table 2.3: The sum of reported SAR values for main antenna and Bluetooth

	Position	Main antenna	BT*	Sum
Highest reported SAR value for Head	Left hand, Touch cheek	0.85	0.23	1.08
Highest reported SAR value for Body	Rear	0.92	0.12	1.04

BT* - Estimated SAR for Bluetooth (see the table 13.3)

According to the above tables, the highest sum of reported SAR values is **1.09 W/kg (1g)**. The detail for simultaneous transmission consideration is described in chapter 13.

3 Client Information

3.1 Applicant Information

Company Name:	TCL Communication Ltd.
A dalua a a /D a a ta	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,
Address /Post:	Pudong Area Shanghai, P.R. China. 201203
City:	Shanghai
Postal Code:	201203
Country:	China
Contact Person:	Gong Zhizhou
Email:	zhizhou.gong@tcl.com
Telephone:	0086-21-51798260
Fax:	0086-21-61460602

3.2 Manufacturer Information

Company Name:	TCL Communication Ltd.
A dalua a a /D a a ta	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,
Address /Post:	Pudong Area Shanghai, P.R. China. 201203
City:	Shanghai
Postal Code:	201203
Country:	China
Contact Person:	Gong Zhizhou
Email:	zhizhou.gong@tcl.com
Telephone:	0086-21-51798260
Fax:	0086-21-61460602

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT

Description:	HSUPA/HSDPA/UMTS Tri-band/GSM Quad-band mobile phone
Model name:	4017A
Operating mode(s):	GSM 850/900/1800/1900, WCDMA 850/1900/2100
	BT, Wi-Fi
	825 – 848.8 MHz (GSM 850)
	1850.2 – 1910 MHz (GSM 1900)
Tested Tx Frequency:	826.4-846.6 MHz (WCDMA850 Band V)
	1852.4–1907.6 MHz (WCDMA1900 Band II)
	2412 – 2462 MHz (Wi-Fi 2.4G)
GPRS/EGPRS Multislot Class:	12
GPRS capability Class:	В
Test device Production information:	Production unit
Device type:	Portable device
Antenna type:	Integrated antenna
Accessories/Body-worn configurations:	Headset
Hotspot mode:	Support simultaneous transmission of hotspot and voice(or data)

4.2 Internal Identification of EUT used during the test

EUT ID*	IMEI	HW	SW Version
EUT1	014590000002562	PIO	vBL43
EUT2	014590000002588	PIO	vBL43
EUT3	014590000002265	PIO	vBL43
EUT4	014590000002844	PIO	vBL43

^{*}EUT ID: is used to identify the test sample in the lab internally.

Note: It is performed to test SAR with the EUT1&2 and conducted power with the EUT3&4.

4.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Battery	TLi013A7	1	Zhongshan Tianmao
ALI	Dattery	TEIO ISAT	7	Battery Co,.Ltd
AE2	Headset	CCB3160A15C1 headset	1	luwoi
AEZ	пеасѕес	reach Juwei	/	Juwei
٨٢٥	CCB3160A15C4 headset		,	Maihaa
AE3	Headset	reach Meihao	/	Meihao
AE4	Headset	CCB3160A11C1 headset	1	luuoi
AE4	пеасѕес	non-reach Juwei	/	Juwei
۸Ε۶	Hoodoot	CCB3160A11C4 headset	1	Maihaa
AE5	Headset	non-reach Meihao	1	Meihao

^{*}AE ID: is used to identify the test sample in the lab internally.

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IEEE 1528–2013: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

KDB447498 D01: General RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB648474 D04 Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets.

KDB941225 D01 SAR test for 3G SAR Procedures v03r01: SAR Measurement Procedures for 3G Devices

KDB941225 D05 SAR for LTE Devices v02r05: SAR Evaluation Considerations for LTE Devices

KDB941225 D06 Hotspot SAR v02r01: SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities

KDB248227 D01 802.11 Wi-Fi SAR v02r02: SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS

KDB865664 D01SAR measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz.

KDB865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ) . The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7 Tissue Simulating Liquids

7.1 Targets for tissue simulating liquid

Table 7.1: Targets for tissue simulating liquid

				•	
Frequency(MHz)	Liquid Type	Conductivity(σ)	± 5% Range	Permittivity(ε)	± 5% Range
835	Head	0.90	0.86~0.95	41.5	39.4~43.6
835	Body	0.97	0.92~1.02	55.2	52.4~58.0
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2
2450	Body	1.95	1.85~2.05	52.7	50.1~55.3

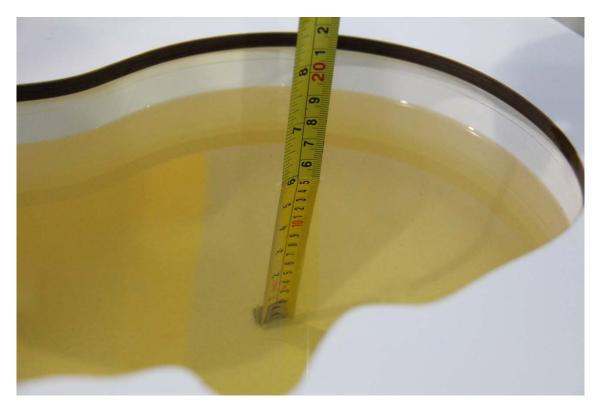
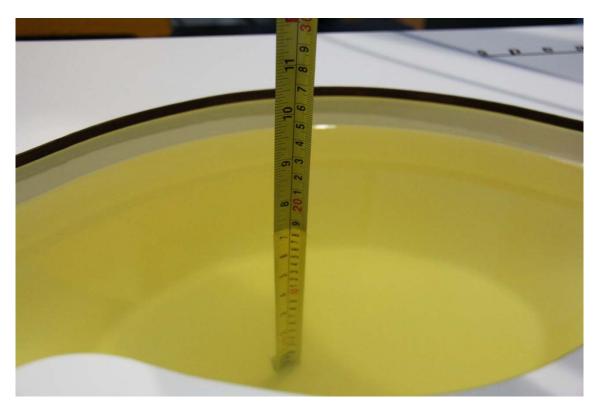

7.2 Dielectric Performance

Table 7.2: Dielectric Performance of Tissue Simulating Liquid

Measurement Date	Tuno	Eroguenov	Permittivity	Drift	Conductivity	Drift
(yyyy-mm-dd)	Type	Frequency	ε	(%)	σ (S/m)	(%)
2016 01 01	Head	835 MHz	41.13	-0.89	0.922	2.44
2016-01-01	Body	835 MHz	56.24	1.88	0.973	0.31
2016-01-02	Head	1900 MHz	39.77	-0.57	1.426	1.86
2010-01-02	Body	1900 MHz	54.04	1.39	1.549	1.91
2016 01 02	Head	2450 MHz	38.02	-3.01	1.823	1.28
2016-01-03	Body	2450 MHz	51.64	-2.01	1.975	1.28

Note: The liquid temperature is 22.0 $^{\circ}\mathrm{C}$

Picture 7-1: Liquid depth in the Head Phantom (835 MHz)

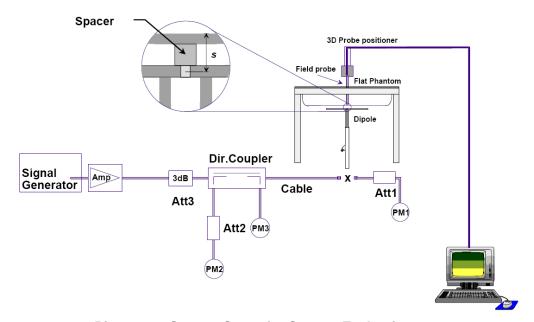


Picture 7-2: Liquid depth in the Flat Phantom (835 MHz)

Picture 7-3: Liquid depth in the Head Phantom (1900 MHz)

Picture 7-4 Liquid depth in the Flat Phantom (1900MHz)

Picture 7-5 Liquid depth in the Head Phantom (2450MHz)


Picture 7-6 Liquid depth in the Flat Phantom (2450MHz)

8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The system verification results are required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR. The details are presented in annex B.

Table 8.1: System Verification of Head

Measurement		Target val	ue (W/kg)	Measured value (W/kg) Deviatio			ation
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average
2016-01-01	835 MHz	5.86	9.01	5.92	9.16	1.02%	1.66%
2016-01-02	1900 MHz	21.5	40.7	21.88	41.56	1.77%	2.11%
2016-01-03	2450 MHz	24.5	52.5	24.56	52.52	0.24%	0.04%

Table 8.2: System Verification of Body

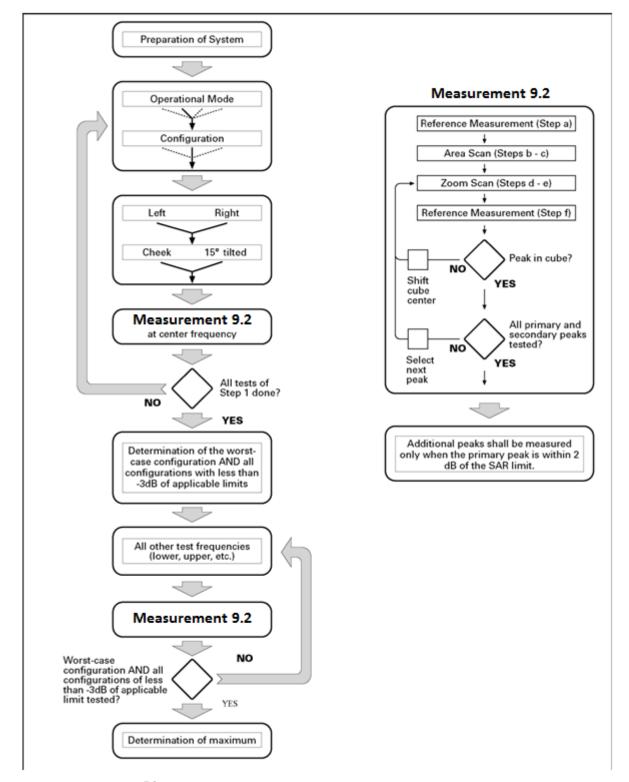
Measurement	Measurement		ue (W/kg)	Measured value (W/kg) Deviation			ation
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average
2016-01-01	835 MHz	6.12	9.29	6.20	9.36	1.31%	0.75%
2016-01-02	1900 MHz	21.7	40.4	21.96	41.36	1.20%	2.38%
2016-01-03	2450 MHz	24.4	52.1	24.00	50.84	-1.64%	-2.42%

9 Measurement Procedures

9.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in picture 9.1.

Step 1: The tests described in 9.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f_c) for:


- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in annex D),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and
- c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., $N_c >$ 3), then all frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 9.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 9.1 Block diagram of the tests to be performed

9.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2003. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

			≤ 3 GHz	> 3 GHz	
	Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface			½-5·ln(2) ± 0.5 mm	
Maximum probe angle from probe axis to phantom surface normal at the measurement location			30° ± 1°	20° ± 1°	
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.		
Maximum zoom scan sp	oatial resolut	ion: Δx _{Zoom} , Δy _{Zoom}	≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*	
	uniform g	rid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
Minimum zoom scan volume	x, y, z	1	≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based *I-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9.3 WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

For Release 5 HSDPA Data Devices:

Sub-test	$oldsymbol{eta}_c$	$oldsymbol{eta}_d$	β_d (SF)	$oldsymbol{eta}_c$ / $oldsymbol{eta}_d$	$oldsymbol{eta}_{hs}$	CM/dB
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15	15/15	64	12/15	24/25	1. 0
3	15/15	8/15	64	15/8	30/15	1. 5
4	15/15	4/15	64	15/4	30/15	1. 5

For Release 6 HSPA Data Devices

Sub- test	$oldsymbol{eta_c}$	eta_d	eta_d	$oldsymbol{eta}_c$ / $oldsymbol{eta}_d$	eta_{hs}	$oldsymbol{eta_{ec}}$	$oldsymbol{eta}_{ed}$	eta_{ed}	eta_{ed}	CM (dB)	MPR (dB)	AG Index	E-TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	3.0	2. 0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	eta_{ed1} :47/15 eta_{ed2} :47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	3.0	2. 0	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	1.0	0.0	21	81

9.4 Bluetooth & Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.6 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in section 14 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10 Area Scan Based 1-g SAR

10.1 Requirement of KDB

According to the KDB447498 D01 v05, when the implementation is based the specific polynomial fit algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-g SAR is \leq 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

10.2 Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz) and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55 wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm are 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively. The paper describing the algorithm in detail is expected to be published in August 2004 within the Special Issue of Transactions on MTT.

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.

11 Conducted Output Power

11.1 Manufacturing tolerance

Table 11.1: GSM Speech

	GSM 850						
Channel	Channel Channel 251 Channel 190 Channel 128						
Target (dBm)	31	31	31				
Tune-up (dBm)	32	32	32				
	GSN	1 1900					
Channel	Channel 810	Channel 661	Channel 512				
Target (dBm)	29	29	29				
Tune-up (dBm)	30	30	30				

Table 11.2: GPRS and EGPRS

		GSM 850 GPRS (GM		
	Channel	251	190	128
4 T . 1. (Target (dBm)	31	31	31
1 Txslot	Tune-up (dBm)	32	32	32
2 Tyclete	Target (dBm)	30	30	30
2 Txslots	Tune-up (dBm)	31	31	31
3 Txslots	Target (dBm)	28.5	28.5	28.5
3 TXSIOIS	Tune-up (dBm)	29.5	29.5	29.5
4 Txslots	Target (dBm)	27.5	27.5	27.5
4 TXSIOIS	Tune-up (dBm)	28.5	28.5	28.5
		GSM 850 EGPRS (GN	MSK)	
	Channel	251	190	128
1 Txslot	Target (dBm)	31	31	31
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tune-up (dBm)	32	32	32
2 Txslots	Target (dBm)	30	30	30
2 1 / 51015	Tune-up (dBm)	31	31	31
3 Txslots	Target (dBm)	28.5	28.5	28.5
3 1 8 5 10 15	Tune-up (dBm)	29.5	29.5	29.5
4 Txslots	Target (dBm)	27.5	27.5	27.5
4 1 X SIOLS	Tune-up (dBm)	28.5	28.5	28.5
		GSM 850 EGPRS (8F	PSK)	
	Channel	251	190	128
1 Txslot	Target (dBm)	25.5	25.5	25.5
1 1 X SIUL	Tune-up (dBm)	26.5	26.5	26.5
2 Txslots	Target (dBm)	24	24	24
Z 1 X31013	Tune-up (dBm)	25	25	25
3 Txslots	Target (dBm)	22.5	22.5	22.5
3 1 8 5 10 15	Tune-up (dBm)	23.5	23.5	23.5

4 Txslots	Target (dBm)	21	21	21
4 1 XSIOIS	Tune-up (dBm)	22	22	22
		GSM 1900 GPRS (G	MSK)	
	Channel	810	661	512
1 Txslot	Target (dBm)	29	29	29
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tune-up (dBm)	30	30	30
2 Typloto	Target (dBm)	28	28	28
2 Txslots	Tune-up (dBm)	29	29	29
2 Tycloto	Target (dBm)	26	26	26
3 Txslots	Tune-up (dBm)	27	27	27
4 Tyoloto	Target (dBm)	25	25	25
4 Txslots	Tune-up (dBm)	26	26	26
	(SSM 1900 EGPRS (G	SMSK)	
	Channel	810	661	512
1 Tyolot	Target (dBm)	27.5	27.5	27.5
1 Txslot	Tune-up (dBm)	28.5	28.5	28.5
2 Txslots	Target (dBm)	27	27	27
2 1 XSIOIS	Tune-up (dBm)	28	28	28
3 Txslots	Target (dBm)	25.5	25.5	25.5
3 1 XSIOIS	Tune-up (dBm)	26.5	26.5	26.5
4 Txslots	Target (dBm)	24.5	24.5	24.5
4 1 X SIOLS	Tune-up (dBm)	25.5	25.5	25.5
	(GSM 1900 EGPRS (8	BPSK)	
	Channel	810	661	512
1 Txslot	Target (dBm)	24.2	24.2	24.2
1 1 X SIOL	Tune-up (dBm)	25.2	25.2	25.2
2 Txslots	Target (dBm)	23.2	23.2	23.2
Z TXSIOIS	Tune-up (dBm)	24.2	24.2	24.2
3 Txslots	Target (dBm)	21.2	21.2	21.2
S EXSIDES	Tune-up (dBm)	22.2	22.2	22.2
4 Typloto	Target (dBm)	20	20	20
4 Txslots	Tune-up (dBm)	21	21	21

Table 11.3: WCDMA

	WCDMA 850 CS									
Channel	Channel 4233	Channel 4182	Channel 4132							
Target (dBm)	22	22	22							
Tune-up (dBm)	23	23	23							
	HSUPA (st	ub-test 1/2/4)								
Channel	Channel 4233	Channel 4182	Channel 4132							
Target (dBm)	18.5	18.5	18.5							
Tune-up (dBm)	19.5	19.5	19.5							

©Copyright. All rights reserved by CTTL.

	HSUPA	(sub-test 3)	
Channel	Channel 4233	Channel 4182	Channel 4132
Target (dBm)	19.5	19.5	19.5
Tune-up (dBm)	20.5	20.5	20.5
	HSUPA	(sub-test 5)	
Channel	Channel 4233	Channel 4182	Channel 4132
Target (dBm)	20.5	20.5	20.5
Tune-up (dBm)	21.5	21.5	21.5
	WCDM	A 1900 CS	
Channel	Channel 9538	Channel 9400	Channel 9262
Target (dBm)	22	22	22
Tune-up (dBm)	23	23	23
	HSUPA (s	ub-test 1/2/4)	
Channel	Channel 9538	Channel 9400	Channel 9262
Target (dBm)	18.5	18.5	18.5
Tune-up (dBm)	19.5	19.5	19.5
	HSUPA	(sub-test 3)	
Channel	Channel 9538	Channel 9400	Channel 9262
Target (dBm)	19.5	19.5	19.5
Tune-up (dBm)	20.5	20.5	20.5
	HSUPA	(sub-test 5)	
Channel	Channel 9538	Channel 9400	Channel 9262
Target (dBm)	20.5	20.5	20.5
Tune-up (dBm)	21.5	21.5	21.5

Table 11.4: Bluetooth

	GI	FSK	
Channel	Channel 0	Channel 39	Channel 78
Target (dBm)	6.5	6.5	6.5
Tune-up (dBm)	7.5	7.5	7.5

Table 11.5: WiFi

802.11b

Channel\ rate	1Mb	ps	2Mb	ps	5.5M	bps	11M	ops
	dBm	±	dBm	±	dBm	+1	dBm	±
1	15	1	15	1	15	1	15	1
6	15	1	15	1	15	1	15	1
11	15	1	15	1	15	1	15	1

802.11g

Channel\ rate	6Mb	ps	9Mb	ps	12M	bps	18MI	bps	24M	bps	36MI	bps	48M	bps	54MI	bps
	dBm	±	dBm	±	dBm	±	dBm	±	dBm	±	dBm	±	dBm	±	dBm	±
1	11	1	11	1	11	1	11	1	11	1	11	1	11	1	11	1
6	13	1	13	1	13	1	13	1	13	1	13	1	13	1	13	1
11	11	1	11	1	11	1	11	1	11	1	11	1	11	1	11	1

802.11n-20M

Channel\ rate	MCS	80	MCS	S1	МС	S2	MC	S3	MC	S4	MC	S5	MC	S6	MC	S7
	dBm	+	dBm	±	dBm	±	dBm	+1	dBm	+1	dBm	+1	dBm	+1	dBm	±
1	11.7	1	11.7	1	11.7	1	11.7	1	11.7	1	11.7	1	11.7	1	11.7	1
6	11.7	1	11.7	1	11.7	1	11.7	1	11.7	1	11.7	1	11.7	1	11.7	1
11	11.7	1	11.7	1	11.7	1	11.7	1	11.7	1	11.7	1	11.7	1	11.7	1

802.11n-40M

Channel\ rate	MCS	SO	MCS	S1	МС	S2	MC	S 3	MC:	S4	MC	S5	MC:	S6	MC	S7
	dBm	±	dBm	±	dBm	±	dBm	±	dBm	±	dBm	±	dBm	±	dBm	±
3	11.7	1	11.7	1	11.7	1	11.7	1	11.7	1	11.7	1	11.7	1	11.7	1
6	12	1	12	1	12	1	12	1	12	1	10	1	10	1	10	1
9	11.7	1	11.7	1	11.7	1	11.7	1	11.7	1	11.7	1	11.7	1	11.7	1

11.3 GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

Table 11.6: The conducted power measurement results for GSM850/1900

GSM		Conducted Power (dBm)	
850MHz	Channel 251(848.8MHz)	Channel 190(836.6MHz)	Channel 128(824.2MHz)
OSUMINZ	31.56	31.44	31.40
CCM		Conducted Power (dBm)	
GSM 1900MHz	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel 512(1850.2MHz)
I SOUMINZ	29.71	29.53	29.22

Table 11.7: The conducted power measurement results for GPRS and EGPRS

GSM 850	Meası	red Power	(dBm)	calculation	Avera	ged Power	(dBm)
GPRS (GMSK)	251	190	128		251	190	128
1 Txslot	31.61	31.49	31.33	-9.03	22.58	22.46	22.30
2 Txslots	30.96	30.82	30.62	-6.02	24.94	24.80	24.60
3 Txslots	29.32	29.11	28.93	-4.26	25.06	24.85	24.67
4 Txslots	28.04	27.82	27.68	-3.01	25.03	24.81	24.67

GSM 850	Measi	ured Power	(dBm)	calculation	Avera	ged Power	(dBm)
EGPRS (GMSK)	251	190	128		251	190	128
1 Txslot	31.58	31.47	31.30	-9.03	22.55	22.44	22.27
2 Txslots	30.93	30.78	30.58	-6.02	24.91	24.76	24.56
3 Txslots	29.30	29.07	28.91	-4.26	25.04	24.81	24.65
4 Txslots	28.02	27.79	27.65	-3.01	25.01	24.78	24.64
GSM 850	Meası	ured Power	(dBm)	calculation	Avera	ged Power	(dBm)
EGPRS (8PSK)	251	190	128		251	190	128
1 Txslot	25.98	25.72	25.43	-9.03	16.95	16.69	16.40
2 Txslots	24.97	24.78	24.49	-6.02	18.95	18.76	18.47
3Txslots	23.06	22.87	22.61	-4.26	18.80	18.61	18.35
4 Txslots	21.84	21.70	21.46	-3.01	18.83	18.69	18.45
PCS1900	Measi	ured Power	(dBm)	calculation	Avera	ged Power	(dBm)
GPRS (GMSK)	810	661	512		810	661	512
1 Txslot	29.70	29.50	29.19	-9.03	20.67	20.47	20.16
2 Txslots	28.55	28.37	28.15	-6.02	22.53	22.35	22.13
3Txslots	26.66	26.40	26.15	-4.26	22.40	22.14	21.89
4 Txslots	25.49	25.55	24.89	-3.01	22.48	22.54	21.88
PCS1900	Meası	ured Power	(dBm)	calculation	Avera	ged Power	(dBm)
EGPRS (GMSK)	810	661	512		810	661	512
1 Txslot	28.38	27.74	27.09	-9.03	19.35	18.71	18.06
2 Txslots	27.77	27.09	26.43	-6.02	21.75	21.07	20.41
3Txslots	26.27	25.49	24.78	-4.26	22.01	21.23	20.52
4 Txslots	25.07	24.25	23.53	-3.01	22.06	21.24	20.52
GSM 1900	Meası	ured Power	(dBm)	calculation	Avera	ged Power	(dBm)
EGPRS (8PSK)	810	661	512		810	661	512
1 Txslot	25.03	24.31	23.48	-9.03	16.00	15.28	14.45
2 Txslots	24.01	23.31	22.43	-6.02	17.99	17.29	16.41
3Txslots	22.03	21.14	20.29	-4.26	17.77	16.88	16.03
4 Txslots	20.67	19.93	19.03	-3.01	17.66	16.92	16.02

NOTES:

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 3Txslot for GSM850 and 2Rxslot for GSM1900.

¹⁾ Division Factors

11.4 WCDMA Measurement result

Table 11.8: The conducted Power for WCDMA

Item	band		FDDV result	
item	ARFCN	4233 (846.6MHz)	4182 (836.4MHz)	4132 (826.4MHz)
WCDMA	\	22.21	22.23	22.41
	1	18.42	18.90	19.07
	2	18.42	18.91	19.07
HSUPA	3	19.41	19.89	20.06
	4	17.89	18.36	18.54
	5	20.37	20.85	21.03
Item	band		FDDII result	
item	ARFCN	9538 (1907.6MHz)	9400 (1880MHz)	9262 (1852.4MHz)
WCDMA	\	22.16	22.14	22.18
	1	18.66	18.81	18.68
	2	18.66	18.79	18.67
HSUPA	3	19.63	19.77	19.66
	4	18.13	18.26	18.14
	5	20.67	20.82	20.71

11.5 Wi-Fi and BT Measurement result

The output power of BT antenna is as following:

Mode		Conducted Power (dBm)	
Mode	Channel 0 (2402MHz)	Channel 39 (2441MHz)	Channel 78 (2480MHz)
GFSK	5.90	6.70	7.17

The average conducted power for Wi-Fi is as following: 802.11b (dBm)

Channel\data rate	1Mbps	2Mbps	5.5Mbps	11Mbps
1	15.40	/	/	15.57
6	15.67	15.62	15.68	15.69
11	15.47	/	/	15.45

802.11g (dBm)

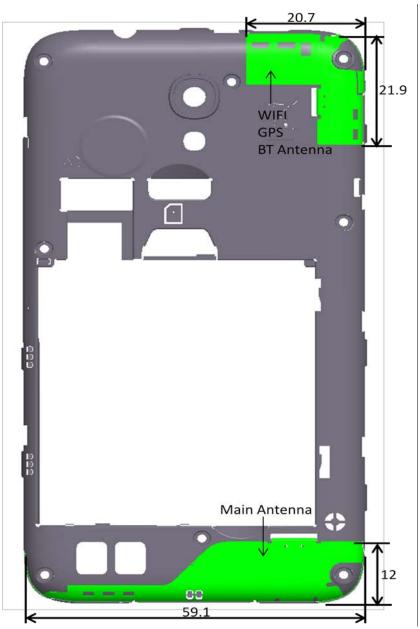
Channel\data rate	6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps
1	11.63	11.55	/	/	/	/	/	/
6	13.28	13.52	13.33	13.23	13.03	12.90	12.31	12.27
11	11.38	11.48	/	/	1	/	/	/

802.11n (dBm) - HT20 (2.4G)

Channel\data rate	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
1	11.59	/	/	/	/	/	/	/
6	12.54	12.26	12.12	12.11	11.97	10.91	10.86	10.80
11	11.40	/	/	/	/	/	/	/

802.11n (dBm) - HT40 (2.4G)

Channel\data rate	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
3	11.62	/	/	/	/	/	/	/
6	12.99	12.68	12.47	12.42	12.20	10.42	10.22	10.06
9	11.60	/	/	/	/	/	/	/



12 Simultaneous TX SAR Considerations

12.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. For this device, the BT and Wi-Fi can transmit simultaneous with other transmitters.

12.2 Transmit Antenna Separation Distances

Picture 12.1 Antenna Locations

12.3 SAR Measurement Positions

According to the KDB941225 D06 Hot Spot SAR v01, the edges with less than 2.5 cm distance to the antennas need to be tested for SAR.

SAR measurement positions									
Mode Front Rear Left edge Right edge Top edge Bottom edge									
Main antenna	Yes	Yes	Yes	Yes	No	Yes			
WLAN antenna Yes Yes No Yes No									

12.4 Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Table 12.1: Standalone SAR test exclusion considerations

Band/Mode	F(GHz) Position		SAR test exclusion	RF output power		SAR test exclusion
			threshold (mW)	dBm	mW	
Pluotooth	2 444	Head	9.60	7.5	5.62	Yes
Bluetooth	2.441	Body	19.20	7.5	5.62	Yes
2.4GHz WLAN 802.11 b	Hea		9.58	16	39.81	No
2.4GHZ WLAN 602.11 D	2.45	Body	19.17	16	39.81	No

13 Evaluation of Simultaneous

Table 13.1: The sum of reported SAR values for main antenna and WLAN

	Position	Main antenna	WLAN	Sum
Maximum reported SAR	Left hand, Touch cheek	0.85	0.24	1.09
value for Head	Right hand, Touch cheek	0.71	0.35	1.06
Maximum reported SAR value for Body	Rear	0.92	0.15	1.07

Table 13.2: The sum of reported SAR values for main antenna and Bluetooth

	Position	Main antenna	BT*	Sum
Highest reported SAR value for Head	Left hand, Touch cheek	0.85	0.23	1.08
Highest reported SAR value for Body	Rear	0.92	0.12	1.04

BT* - Estimated SAR for Bluetooth (see the table 13.3)

Table 13.3: Estimated SAR for Bluetooth

Position	F (GHz)	Distance (mm)	Upper limi	Estimated _{1g}	
	r (GHZ)	Distance (mm)	dBm	mW	(W/kg)
Head	2.441	5	7.5	5.62	0.23
Body	2.441	10	7.5	5.62	0.12

^{* -} Maximum possible output power declared by manufacturer

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

Conclusion:

According to the above tables, the sum of reported SAR values is < 1.6W/kg So the simultaneous transmission SAR with volume scans is not required.

14 SAR Test Result

It is determined by user manual for the distance between the EUT and the phantom bottom.

The distance is 10mm and just applied to the condition of body worn accessory.

It is performed for all SAR measurements with area scan based 1-g SAR estimation (Fast SAR). A zoom scan measurement is added when the estimated 1-gSAR is the highest measured SAR in each exposure configuration, wireless mode and frequency band combination or >1.2W/kg.

The calculated SAR is obtained by the following formula:

Reported SAR = Measured SAR \times 10^{(P_{Target} -P_{Measured})/10}

Where P_{Target} is the power of manufacturing upper limit;

P_{Measured} is the measured power in chapter 11.

Table 14.1: Duty Cycle

Duty Cycle								
Speech for GSM850/1900	1:8.3							
GPRS&EGPRS for GSM 850	1:2.67							
GPRS for GSM 1900	1:4							
EGPRS for GSM 1900	1:2							
WCDMA	1:1							

14.1 SAR results for Fast SAR

Table 14.1-1: SAR Values (GSM 850 MHz Band - Head)

			Am	bient Te	mperature: 2	23.0 °C	Liquid Temp	erature: 22	.5°C		
Frequency			Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
		Side	Position	No.	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		1 03111011	140.	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)	
848.8	251	Left	Touch	/	31.56	32	0.458	0.51	0.668	0.74	-0.18
836.6	190	Left	Touch	/	31.44	32	0.470	0.53	0.679	0.77	-0.17
824.2	128	Left	Touch	Fig.1	31.40	32	0.525	0.60	0.714	0.82	-0.01
836.6	190	Left	Tilt	/	31.44	32	0.259	0.29	0.375	0.43	0.03
836.6	190	Right	Touch	/	31.44	32	0.432	0.49	0.626	0.71	-0.08
836.6	190	Right	Tilt	/	31.44	32	0.218	0.25	0.312	0.35	0.07

Table 14.1-2: SAR Values (GSM 850 MHz Band - Body)

			Ambie	nt Temp	erature: 23.	0°C Liq	uid Tempera	ture: 22.5°0	2		
Frequ	encv	Mode	Test	Eiguro	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
	, 	(number of	Position	Figure No.	Power	ver ·	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	timeslots)	Position	INO.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
836.6	190	GPRS (3)	Front	/	29.11	29.5	0.263	0.29	0.377	0.41	-0.03
848.8	251	GPRS (3)	Rear	Fig.2	29.32	29.5	0.480	0.50	0.662	0.69	-0.19
836.6	190	GPRS (3)	Rear	/	29.11	29.5	0.406	0.44	0.590	0.65	-0.06
824.2	128	GPRS (3)	Rear	/	28.93	29.5	0.395	0.45	0.573	0.65	0.02
836.6	190	GPRS (3)	Left	/	29.11	29.5	0.204	0.22	0.303	0.33	0.11
836.6	190	GPRS (3)	Right		29.11	29.5	0.223	0.24	0.330	0.36	-0.01
836.6	190	GPRS (3)	Bottom	/	29.11	29.5	0.030	0.03	0.046	0.05	-0.06
848.8	251	EGPRS (3)	Rear	/	29.32	29.5	0.479	0.50	0.661	0.69	-0.17

Table 14.1-3: SAR Values (GSM 1900 MHz Band - Head)

	Table 14:1 of OAR Values (Colli 1000 III Iz Balla Ticaa)													
	Ambient Temperature: 23.0 °C Liquid Temperature: 22.5 °C													
Freque	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power			
MHz	Ch.	Side	Position	No.	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift			
IVITIZ	CII.				(dBm)	, ,	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)			
1909.8	810	Left	Touch	/	29.71	30	0.153	0.16	0.268	0.29	0.05			
1880	661	Left	Touch	/	29.53	30	0.155	0.17	0.271	0.30	0.11			
1850.2	512	Left	Touch	Fig.3	29.22	30	0.170	0.20	0.276	0.33	0.19			
1880	661	Left	Tilt	/	29.53	30	0.064	0.07	0.115	0.13	0.11			
1880	661	Right	Touch	/	29.53	30	0.122	0.14	0.208	0.23	-0.08			
1880	661	Right	Tilt	/	29.53	30	0.050	0.06	0.090	0.10	-0.01			

Table 14.1-4: SAR Values (GSM 1900 MHz Band - Body)

			Ambier	nt Tempe	erature: 23.0)°C Liqu	ıid Tempera	ture: 22.5°C	7		
Freque	ency	Mode (number of	Test	Figure	Conducted Power	Max. tune-up	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Power Drift
MHz	Ch.	timeslots)	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1880	661	GPRS (2)	Front	/	28.37	29	0.170	0.20	0.279	0.32	-0.06
1909.8	810	GPRS (2)	Rear	/	28.55	29	0.308	0.34	0.519	0.58	-0.05
1880	661	GPRS (2)	Rear	/	28.37	29	0.280	0.32	0.497	0.57	0.01
1850.2	512	GPRS (2)	Rear	Fig.4	28.15	29	0.279	0.34	0.481	0.58	-0.05
1880	661	GPRS (2)	Left	/	28.37	29	0.100	0.12	0.176	0.20	-0.17
1880	661	GPRS (2)	Right	/	28.37	29	0.062	0.07	0.111	0.13	0.09
1880	661	GPRS (2)	Bottom	/	28.37	29	0.086	0.10	0.151	0.17	-0.06
1909.8	810	EGPRS (4)	Rear	/	25.07	26	0.296	0.37	0.472	0.58	-0.03

Table 14.1-5: SAR Values (WCDMA 850 MHz Band - Head)

			Aml	oient Ter	mperature: 2	23.0 °C L	iquid Temp	erature: 22	.5°C		
Frequ	iency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
		Side	Position	No.	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		1 03111011	140.	(dBm)	1 ower (dbill)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
846.6	4233	Left	Touch	/	22.21	23	0.345	0.41	0.502	0.60	0.04
836.4	4182	Left	Touch	/	22.23	23	0.349	0.42	0.505	0.60	0.16
826.4	4132	Left	Touch	Fig.5	22.41	23	0.390	0.45	0.527	0.60	-0.07
836.4	4182	Left	Tilt	/	22.23	23	0.211	0.25	0.304	0.36	-0.08
836.4	4182	Right	Touch	/	22.23	23	0.335	0.40	0.485	0.58	0.12
836.4	4182	Right	Tilt	/	22.23	23	0.242	0.29	0.348	0.42	-0.03

Table 14.1-6: SAR Values (WCDMA 850 MHz Band - Body)

	Table 14.1-0. SAR values (WCDIMA 650 MITZ Ballu - BOUY)												
			Ambien	t Temperatu	re: 23.0 °C	Liquid Te	mperature:	22.5°C					
Frequ	iency	Test	Figure	Conducted Power	Max. tune-up	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Power Drift			
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)			
836.4	4182	Front	/	22.23	23	0.345	0.41	0.484	0.58	0.03			
846.6	4233	Rear	/	22.21	23	0.376	0.45	0.534	0.64	0.12			
836.4	4182	Rear	/	22.23	23	0.366	0.44	0.525	0.63	0.05			
826.4	4132	Rear	Fig.6	22.41	23	0.444	0.51	0.623	0.71	0.02			
836.4	4182	Left	/	22.23	23	0.280	0.33	0.410	0.49	0.11			
836.4	4182	Right	/	22.23	23	0.210	0.25	0.304	0.36	0.03			
836.4	4182	Bottom	/	22.23	23	0.034	0.04	0.051	0.06	-0.06			

Table 14.1-7: SAR Values (WCDMA 1900 MHz Band - Head)

	Ambient Temperature: 23.0 °C Liquid Temperature: 22.5 °C													
Frequ	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power			
		Side	Position	No.	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift			
MHz	Ch.		1 03111011	140.	(dBm)	1 ower (dBill)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)			
1907.6	9538	Left	Touch	/	22.16	23	0.321	0.39	0.547	0.66	0.05			
1880	9400	Left	Touch	/	22.14	23	0.323	0.39	0.548	0.67	0.13			
1852.4	9262	Left	Touch	Fig.7	22.18	23	0.428	0.52	0.702	0.85	0.11			
1880	9400	Left	Tilt	/	22.14	23	0.132	0.16	0.247	0.30	0.06			
1880	9400	Right	Touch	/	22.14	23	0.251	0.31	0.427	0.52	-0.01			
1880	9400	Right	Tilt	/	22.14	23	0.111	0.14	0.205	0.25	-0.03			

Table 14.1-8: SAR Values (WCDMA 1900 MHz Band - Body)

		А	mbient [*]	Temperature	e: 23.0 °C	Liquid Ter	mperature:	22.5°C		
Frequ	ency	Test	Figure	Conducted Power	Max. tune-up	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Power Drift
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1880	9800	Front	/	22.14	23	0.206	0.25	0.332	0.40	-0.05
1907.6	9938	Rear	/	22.16	23	0.305	0.37	0.534	0.65	-0.19
1880	9800	Rear	/	22.14	23	0.319	0.39	0.554	0.68	-0.07
1852.4	9662	Rear	Fig.8	22.18	23	0.449	0.54	0.763	0.92	-0.02
1880	9800	Left	/	22.14	23	0.122	0.15	0.214	0.26	-0.10
1880	9800	Right	/	22.14	23	0.079	0.10	0.140	0.17	-0.05
1880	9800	Bottom	/	22.14	23	0.114	0.14	0.204	0.25	0.01

14.2 SAR results for Standard procedure

There is zoom scan measurement to be added for the highest measured SAR in each exposure configuration/band.

Table 14.2-1: SAR Values (GSM 850 MHz Band - Head)

			Am	bient Te	mperature: 2	23.0 °C	Liquid Temp	erature: 22	.5°C		
Frequ	iency	0:4-	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Side	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
824.2	128	Left	Touch	Fig.1	31.40	32	0.525	0.60	0.714	0.82	-0.01

Table 14.2-2: SAR Values (GSM 850 MHz Band - Body)

			Ambie	ent Temp	erature: 23.	0°C Liq	uid Tempera	ture: 22.5°0			
Frequency Mode Test Figure Conducted Max. tune-up Measured Reported SAR(40s)							Measured	Reported	Power		
	,	(number of		0	Power		SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	timeslots)	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
848.8	251	GPRS (3	Rear	Fig.2	29.32	29.5	0.480	0.50	0.662	0.69	-0.19

Table 14.2-3: SAR Values (GSM 1900 MHz Band - Head)

						•			,		
			Am	bient Ter	mperature: 2	23.0°C I	Liquid Temp	erature: 22.	.5°C		
Freque	ency		Test	Figure	Conducted	May tupo up	Measured	Reported	Measured	Reported	Power
		Side	Position		Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1850.2	512	Left	Touch	Fig.3	29.22	30	0.170	0.20	0.276	0.33	0.19

Table 14.2-4: SAR Values (GSM 1900 MHz Band - Body)

			Ambier	nt Tempe	erature: 23.0)°C Liau	id Tempera	ture: 22.5°0	7		
Frequ	ency	Mode	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
		(number of	Position	No.	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	timeslots)	i USILIUII	INO.	(dBm)	i ower (dbill)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1909.8	810	GPRS (2)	Rear	/	28.55	29	0.308	0.34	0.519	0.58	-0.05

Table 14.2-5: SAR Values (WCDMA 850 MHz Band - Head)

		14450 11450 1													
				Aml	oient Ter	mperature: 2	23.0 °C L	iquid Temp	erature: 22	.5°C					
	Frequ	Test Figure				Conducted	May tupo up	Measured	Reported	Measured	Reported	Power			
F			Side			Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift			
	MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)			
-	826.4	4132	Left	Touch	Fig.5	22.41	23	0.390	0.45	0.527	0.60	-0.07			

Table 14.2-6: SAR Values (WCDMA 850 MHz Band - Body)

			Ambien	t Temperatu	re: 23.0 °C	Liquid Te	mperature:	22.5°C		
Frequ	uency	Test	Figure	Conducted Power	Max. tune-up	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Power Drift
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
826.4	826.4 4132 Rear Fig.6 22.41 23		0.444	0.51	0.623	0.71	0.02			

Table 14.1-7: SAR Values (WCDMA 1900 MHz Band - Head)

	Ambient Temperature: 23.0 °C Liquid Temperature: 22.5 °C										
Frequ	ency	C: 4 -	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Side	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1852.4 9262 Left Touch Fig.7 22.18 23 0.428 0.52 0.702 0.85 0.11										0.11	

Table 14.2-8: SAR Values (WCDMA 1900 MHz Band - Body)

		А	mbient ¹	Temperature	e: 23.0 °C	Liquid Temperature: 22.5°C				
Conducted						Measured	Reported	Measured	Reported	Power
Tiequi	I	Test	Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1852.4	9662	Rear	Fig.8	22.18	23	0.449	0.54	0.763	0.92	-0.02

14.3 WLAN Evaluation

According to the KDB248227 D01, SAR is measured for 2.4GHz 802.11b DSSS using the <u>initial test</u> <u>position</u> procedure.

Head Evaluation

Table 14.3-1: SAR Values (WLAN - Head) – 802.11b 1Mbps (Fast SAR)

	Ambient Temperature: 23.0 °C Liquid Temperature: 22.5 °C													
Frequency Test Figure Max. tune-up											Power			
		Side			Power	•	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift			
MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)			
2437	6	Left	Touch	/	15.69	16	0.119	0.13	0.223	0.24	0.08			
2437	6	Left	Tilt	/	15.69	16	0.096	0.10	0.181	0.19	-0.14			
2437	6	Right	Touch	/	15.69	16	0.166	0.18	0.306	0.33	0.14			
2437	6	Right	Tilt	/	15.69	16	0.126	0.14	0.243	0.26	0.07			

As shown above table, the <u>initial test position</u> for head is "Right Touch". So the head SAR of WLAN is presented as below:

Table 14.3-2: SAR Values (WLAN - Head) - 802.11b 1Mbps (Full SAR)

	Ambient Temperature: 23.0 °C Liquid Temperature: 22.5 °C										
Frequ	ency	C:da	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Side	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
2437	6	Right	Touch	Fig.9	15.69	16	0.160	0.17	0.325	0.35	15.69

Note1: When the <u>reported SAR</u> of the <u>initial test position</u> is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the <u>initial test position</u> using subsequent highest estimated 1-g SAR conditions determined by area scans, on the highest maximum output power channel, until the <u>reported SAR</u> is ≤ 0.8 W/kg.

Note2: For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required channels are tested.

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. A maximum transmission duty factor of 99.62% is achievable for WLAN in this project and the scaled reported SAR is presented as below.

Table 14.3-3: SAR Values (WLAN - Head) – 802.11b 1Mbps (Scaled Reported SAR)

		Ambier	nt Temperat	ure: 23.0 °C	0 °C Liquid Temperature: 22.5 °C				
Freque	ency	Side	Test	Actual duty	maximum	Reported SAR	Scaled reported SAR		
MHz	Ch.		Position	factor	duty factor	(1g) (W/kg)	(1g) (W/kg)		
2437	6	Left	Touch	99.62%	100%	0.24	0.24		
2437	2437 6		Touch	99.62%	100%	0.35	0.35		

SAR is not required for OFDM because the 802.11b adjusted SAR $\, \leq \,$ 1.2 W/kg.

Body Evaluation

Table 14.3-4: SAR Values (WLAN - Body) – 802.11b 1Mbps (Fast SAR)

		Aı	mbient T	emperature:	23.0 °C	Liquid Temperature: 22.5 °C				
Freque	encv	Tost	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
· .	Test Figure Position No.		Power		SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
MHz	Ch.	Position	INO.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
2437	6	Front	/	15.69	16	0.039	0.04	0.071	80.0	0.11
2437	6	Rear	/	15.69	16	0.079	0.09	0.143	0.15	0.04
2437	6	Left	/	15.69	16	0.059	0.06	0.114	0.12	-0.07
2437	6	Тор	/	15.69	16	0.046	0.05	0.091	0.10	-0.12

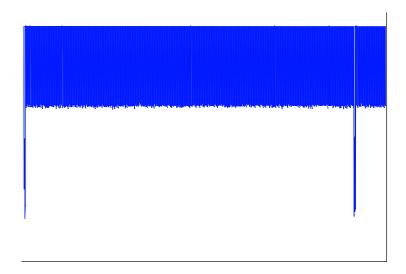
As shown above table, the <u>initial test position</u> for body is "Rear". So the body SAR of WLAN is presented as below:

Table 14.3-5: SAR Values (WLAN - Body) – 802.11b 1Mbps (Full SAR)

		Ar	mbient Te	emperature:	23.0 °C	Liquid Tem	perature: 2	2.5 °C		
Frequ	encv	Toot	Figure	Conducted	Measured	Reported	Measured	Reported	Power	
	J	Test	Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
2437 6 Rear Fig.10 15.69 16						0.079	0.09	0.143	0.15	0.04

Note1: When the <u>reported</u> SAR of the <u>initial test position</u> is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the <u>initial test position</u> using subsequent highest estimated 1-g SAR conditions determined by area scans, on the highest maximum output power channel, until the <u>reported</u> SAR is ≤ 0.8 W/kg. Note2: For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required channels are tested.

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. A maximum transmission duty factor of 99.62% is achievable for WLAN in this project and the scaled reported SAR is presented as below.


Table 14.3-6: SAR Values (WLAN - Body) – 802.11b 1Mbps (Scaled Reported SAR)

		Ambient Tem	perature: 23.0	°C Liquid	d Temperature: 22	.5°C						
Freque	Frequency Test Position Actual duty Test Position											
MHz	Ch.		factor	factor	(1g) (W/kg)	(1g) (W/kg)						
2437	6	Rear	99.62%	100%	0.15	0.15						
2437 6 Top 99.62% 100% 0.10 0.10												

SAR is not required for OFDM because the 802.11b adjusted SAR \leq 1.2 W/kg.

Date: 11.MAR.2003 02:57:28

Picture 14.1 The plot of duty factor

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

10.	1 Measurement Ui	icerta	illity for No	illiai SAK	16212	(SUUI	VITZ~	JUNZ	<u>, </u>	
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Mea	surement system									
1	Probe calibration	В	5.5	N	1	1	1	5.5	5.5	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
			Test	sample related	i	•				
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phan	tom and set-u	p					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521

Combined standard uncertainty	u' _c =	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					9.25	9.12	257
nded uncertainty fidence interval of)	ı	$u_e = 2u_c$					18.5	18.2	
2 Measurement Ui	ncerta	inty for No	rmal SAR	Tests	(3~6	GHz)			
Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
		value	Distribution		1g	10g	Unc.	Unc.	of
							(1g)	(10g)	freedo
surement system									m
	В	6.5	N	1	1	1	6.5	6.5	∞
									∞
	В				1	1			∞
<u> </u>						1			∞
-	В		R	-	1	1			∞
Readout electronics	В	0.3	R	1	1	1	0.3	0.3	∞
Response time	В	0.8	R		1	1	0.5	0.5	∞
Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞
Probe positioned mech. restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	∞
Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
		Test	sample related	i					
Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
•		Phan	tom and set-uj	p					
Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
	uncertainty Inded uncertainty Idence interval of Idence interval of Image: Interval of Integration Isotropy Boundary effect Linearity Detection limit Readout electronics Response time Integration time RF ambient conditions-noise RF ambient conditions-reflection Probe positioned mech. restrictions Probe positioning with respect to phantom shell Post-processing Test sample positioning Device holder uncertainty Drift of output power Phantom uncertainty Liquid conductivity (target) Liquid conductivity	nided uncertainty fidence interval of) 2 Measurement Uncerta Error Description Probe calibration B Boundary effect Linearity Detection limit Readout electronics Response time Integration time RF ambient conditions-noise RF ambient conditions-reflection Probe positioned mech. restrictions Probe positioning with respect to phantom shell Post-processing B Test sample positioning with respect to phantom shell Post-processing B Test sample positioning with respect to phantom shell Post-processing B Test sample positioning With respect to phantom shell Post-processing B Test sample positioning With respect to phantom shell Post-processing B Test sample positioning With respect to B Phantom uncertainty B Liquid conductivity (target) Liquid conductivity (target) Liquid conductivity (target) Liquid conductivity	uncertaintyinded uncertaintyidence interval of of output power $u_e = 2u_e$ 2 Measurement Uncertainty for NoError DescriptionTypeUncertainty valueSurement systemTypeUncertainty valueProbe calibrationB6.5IsotropyB4.7Boundary effectB2.0LinearityB4.7Detection limitB1.0Readout electronicsB0.3Response timeB0.8Integration timeB2.6RFambient conditions-noiseB0RFambient conditions-reflectionB0Probe positioned mech. restrictionsB0.8Probe positioning with respect to phantom shellB6.7Post-processingB4.0Test sample positioningA3.3Device holder uncertaintyA3.4Drift of output powerB5.0Phantom uncertaintyB4.0Liquid conductivity (target)B5.0	Inded uncertainty indence interval of probe positioning with respect to phantom shell positioning with respect to phantom shell positioning between the probe power between the probe power between the probe power between the probe power between the phantom uncertainty between the probable	inded uncertainty idence interval of or interval or interval of or interval or interval of or interval of or interval of or interval o	Viel $u_e = 2u_c$ 2 Measurement Uncertainty for Normal SAR Tests (3~60) Error Description Type Uncertainty Probably value Div. (Ci) Error Description Type Uncertainty Probably Distribution Div. (Ci) Surement system Probe calibration B 6.5 N 1 1 Isotropy B 4.7 R $\sqrt{3}$ 0.7 Boundary effect B 2.0 R $\sqrt{3}$ 1 Linearity B 4.7 R $\sqrt{3}$ 1 Detection limit B 1.0 R $\sqrt{3}$ 1 Readout electronics B 0.3 R $\sqrt{3}$ 1 Response time B 0.8 R $\sqrt{3}$ 1 Response time B 0.8 R $\sqrt{3}$ 1 RF ambient conditions-noise B 0 R $\sqrt{3}$ 1 RF ambient conditions-reflection B 0.8 R $\sqrt{3}$ 1	Machine Mac	Test Superint State Interval of the probability inded uncertainty inded uncertainty in the probability of the	Mache Mac

20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	$u_c^{'} =$	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.8	10.7	257
_	inded uncertainty fidence interval of	ι	$u_e = 2u_c$					21.6	21.4	

16.3 Measurement Uncertainty for Fast SAR Tests (300MHz~3GHz)

	3 Measurement U			l				T -	I	
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Mea	surement system			I	1	1	1	1	1	
1	Probe calibration	В	5.5	N	1	1	1	5.5	5.5	8
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
14	Fast SAR z-Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	8
			Test	sample related	l				•	
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8

Phantom and set-up										
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty		$u_{c}' = \sqrt{\sum_{i=1}^{22} c_{i}^{2} u_{i}^{2}}$						10.1	9.95	257
Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$						20.2	19.9	

16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree	
			value	Distribution		1g	10g	Unc.	Unc.	of	
								(1g)	(10g)	freedo	
										m	
Measurement system											
1	Probe calibration	В	6.5	N	1	1	1	6.5	6.5	∞	
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞	
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞	
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞	
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞	
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞	
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞	
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞	
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	&	
11	Probe positioned mech. Restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞	
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	œ	
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
14	Fast SAR z-Approximation	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	∞	

©Copyright. All rights reserved by CTTL.