


Future e o e
Begins S
Here '

intel labs IR e

Early Benchmarking Results
for Neuromorphic Computing

Mike Davie: 4 .

Labs Day 2020




Rethinking Computing Bottom-Up

Compute Efficiency (EDP)
Compute-memaory integration
Local learning rules

L=

Sparse temporal activity (aka Spikes) Loihi Characteristics

Sparse connectivity with fine-grain
parallelism
3D wiring
Temporal data coding

Compute and Memory Integrated
to spatiallyembody programmed networks

Temporal Neuron Models (LIF)
to exploit temporal correlation

Algorithmic
Distributed data representations
Integration
Sparse temparal activity (aka Spikes) I ¥ “g:m: i
Online causal adaptation ' 3 58 ¥ ; |
Very high fanout ) ,
Recurrence and feedback loops
Oscillatory interaction

Spike-Based Communication
to exploit temporal sparsity

thodubdua

Sparse Connectivity
for efficient dataflowand scaling

On-Chip Learning

without weight movement or data storage
The Brain Loihi Digital Asynchronous Implementation
1,400,000 mm? 60 mm? for power efficiency, scalability, and fast
Resource Efficiency 80B neurons 128K neurons

Self-organized growth
Autonomous healing

prototyping
No floating-pointnumbers,
No multiply-accumulators
No batching, No off-chip DRAM

Dendritic nonlinearities
Low precision
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Benchmarks for progress in neuromorphic

computing

In order for the neuromorphic research field to advance

to the mainstream of computing, it needs to start

quantifying gains, standardize on benchmarks and focus on feasible application challenges.

Mike Davies

With a mission to decipher the
multitude of secrets nature deploys to

in brain-based computing, the field faces

one of the mos( daunting challenges in all of

comput cience and engineering
Even w}. \he brain as a guide, reverse

engineering such a complex system remains

an open-ended and highly unconstrained

problem. We must reinvent our

understan

computational abstractions yet to be fully
comprehended
In order to deliver on sud\ an ambitious
agends, the neuromorphic field needs to
focus more on principles ind rigour, less
on open-ended exploration and mapping
speculative mechanistic features to silicon

on quantitative metrics, discipline and
informed pr

Not so fast?

innovation to ImageNet for convolutional
deep leaming progress more recently

A good benchmark serves to

rescarchers to solve one particular problem
chosen as a worthy representative of a
broader class of useful problem:

disproportionate attention on just one
piece of the larger puzzle. with the ef
impeding rather than accelerating broader
progr

186

An example where this is already
ng relates to measurements of
“synaptic ops’ that are commonly reported

neuromarphic chip. I
demonstrated even a single meaningfl
warkload, then such an indir

of s
suppart lm.imnglul worklaads, then it
should be measured

long as the ficld

right :rih:[c:mm

microscopic circuit properties. Fixating on
readily optimized synaptic op metrics puts
the cart before the horse.

} «concern about misdirection of

neuromorphic researchers universally
use the MNIST dataset to test pattern
classi algorithms, consensus
disappears on whether more adh
vision datasets such as CIEAR-10 and
ImageNet should immediately follow:
At root is unease with the idea that the
gua] of neuromorphic learning should
he ‘raining paradigm that starts
asa network state and
learns by ingesting a single data
one computationally intensive leap. Many

based approaches. Humans don't learn.
new concepts from hundreds of examples
presented in all conceivable contexts;
leveraging prior learning. From this
perspect v cus on datasets
that presuppose a tabula rasa approach
Another benchmarking challenge arises
in the handling of thorny environment
modelling issues present in robotics,

closed-loop control and active sensing
problems. These challenges have stymied
standardization even for conventional

neuromorphic systems

‘with real- time constants aﬂd th
can only run at one particular speed —
no slower or faster. These challenges are
surmountable, but more thought and
care must be devoted ta the problem —
for cxample, w

methodalogy

The need for compelling benchmarks
Despite the challenges and legitimate
«concerns, the ti

spiking
second, in an outward sense, problems
that quantify the value of neuromarphic
solutions compared to state-of-the-art
«conventional solutions.
On the first m:mi e ficld needs a.
ing neural
gorithms analogous to SPECint
or MLPerf. We might call this SpikeMark
Ifs important to bear in mind that different
neuromorphic architectures are far mare
n the different von Neumann
ors for which SPECint was designed
in the 1990s, and support a far more varied
set of algorithms than the numerous variants
of bad.-prc-p:ganon training that MLPerf

Nevertheless, these challenges
addressed with good written sp

and conventionally coded descriptions of
ground truth,

(Ban Ll\\ou]d'bc to
ures, flexibility,

Nature Machine Intelligence Reference
Benchmarks for Progress in Neuromorphic Computing

example, with a minimal simulatio
methodology satisfying variability bounds

The need for compelling benchmarks
Despite the challenges and legitimate
concerns, the time has nevertheless come

for the neuromorphic field to embrace an
appropriate set of benchmarks, specifically
on two fronts: first, internally oriented, as a
way to measure the capabilities of different
spiking neuromorphic architectures; and

Nature Machine Intelligence, Vol 1, Sept 2019.
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Seeking Order of Magnitude Gains

= [n energy efficiency

= In speed of processing data — especially
signals arriving in real time

= In the data efficiency of learning and
adaptation

Precision
= With programmability to span a wide
range of workloads and scales

= With long-term plans to reduce cost

[ i i ONeuromorphic
with process technology innovations uromorphi

O Conventional (unbatched)

Capaaty per dollar
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The Challenge: SNN Algorithm Discovery

“Deep Learning” /
Artificial Neural Networks

ROSCIENCE

“Neuromorphic Networks”
(Spiking, Event-Based)

Future
Begins

B intel. labs



The Challenge: Algorithm Discovery

= ANN conversion to rate-coded deep SNNs
= SNN backpropagation

=  Online SNN approximate backprop
The

I Mathematically Formalized
Future

= Neural Engineering Framework (NEF)
= Locally Competitive Algorithm for LASSO

Begins intel Ia bS
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= Stochastic SNNs for solving CSPs

= Similarity and graph search with temporal spike codes

= Hyperdimensional computing

Phasor associative memories

Dynamic neural fields and continuous attractor networks

New ldeas Guided by Neuroscience

= Qlfaction-inspired rapid learning

=  “RatSLAM” for mapping and navigation
= Cortical microcircuit models

= Evolutionary optimization of SNNs
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Deep Network Conversion for Keyword Spotting

Dynamic Energy Cost Per Inference (batchsize = 1) Average Inference Speed Average Cost Per Inference
- MOVIDIUS - MOVIDIUS

(Lower is better)
00 20 0 0.0 oo 20 40 6.0 8.0 10.0

N (# neurons = N*10°256 + 512) N (# neurons = N*10°256 + 512)

Loihi is the most energy-efficient architecture
for real-time inference (batchsize=1 case) (Higher is better) (Lower s better)

Loihi consumes 5-10x lower energy than closest conventional DNN architecture

For workloads, configurations, and results, see Blouw et al, “Benchmarking Keyword Spotting Efficiency on Neuromorphic Hardware.” arXiv:1812.01739. Results May Vary.
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s £ scaling vs
[ —.| :
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K architectures as
= network size grows
- by 50x
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Directly Trained SNNs
for Event-based Vision + Tactile Sensing

Obiject Classification

Prophesee Spikes

P

—  Tactile
Vision
Combined

Combination
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NeuTouch Spikes

o
&

>
%)
©
s
|
5]
Q
<
7]
]
(=

o
N

—— Spike Count
Weighted Spike Count

Output Spikes

Input Spikes ‘/ Refractory Loihi outperforms on all metrics vs GPU!:

Response

= 20% faster
= 45x lower power

1 For workloads, configurations, and results, see Event-Driven Visual-Tactile Sensing and Learning for Robots Tasbolat Taunyazov, Weicong Sng, Hian Hian See, Brian Lim, Jethro Kuan,
Abdul Fatir Ansari, Benjamin Tee,and Harold Soh Robotics: Science and Systems Conference (RSS), 2020. Results mayvary.
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Adaptive Control of a Robot Arm Using Loihi

e SNN adaptive dynamic controller
implemented on Loihi allows a robot arm
to adjust in real time to nonlinear,
unpredictable changes in system
mechanics?! 2

e Loihi outperforms with 40x lower power,
2x faster control rate comparedto a
GPU3

Workstation Loihi Hardware

The
Future
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1 DeWolf, T., Stewart, T. C., Slotine, J. J., & Eliasmith, C. (2016, November). A spiking neural model of adaptive am control. In
Proc. R. Soc. B (Vol. 283, No. 1843, p. 20162134). The Royal Society.

2 Eliasmith, “Building applications with next generation neuromorphic hardware." N/ICE Workshop 2018

3 DeWolff, T., Jaworski, P., Eliasmith, C. (2020). Nengo and Low-Power Al Hardware for Robust, Embedded Neurorobotics.
Frontiers in Neurorobotics. Results may vary.

intel. labs



An Example 3000x More Data Efficient than DL

Bio-inspired odor learning and recognition

Loihi’s bio-inspired algorithm
Olfactory
Bulb

Olfactory

Cortex

Loihi reaches 92%
accuracy with one
sample

Classification
performance (%)

)
c o~
O"\-u—lf
= O
®© O
O cC
= @©
)
& £
5L
O g

o

2,000 4,000 6,000
Number of training
samples per odourant

Deep Learning solution (deep
autoencoder)

Nabil Imam and Thomas Cleland, Nature Machine Intelligence, March 2020
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Optimization, Planning, Constraint Satisfaction

Sudoku Solver

Problems solved by Loihi to date: " Spikes
= LASSO regression oo
= Graph search (Dijkstra) -
= Constraint Satisfaction (CSP) 100
= Boolean satisfiability (SAT) |
Benefits: s
= QOver 10° times lower energy-delay-product -
for solving constraint satisfaction problems )
1 0 100 200 300 400 500 600 700 800
vs CPU timestep
= Up to 100x faster graph search?
= Even greater gains for LASSO
Loihi: Nahuku 32-chip system with NxSDK 0.98
CPU: Core i7-9700Kw/ 32GB RAM running ! [Task 13] Coin-or branchand cut (https://github.com/coin-or/Chc) or 2 [Task 12] NetworkX (for graph search)
See backup for additional test configuration details. Performance results are based on testing as of July 2020and may not reflectall publicly available security updates. Results may vary.
The
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https://github.com/coin-or/Cbc

Latin Squares Solver: Quantitative Results

Over 2,500x lower energy Over 40x faster

Number of Cores Number of Cores
16 30

i

—_ c
= o
— =
o, =
o (=]
@ A
= )
LL =
w

=

=

=

25 64 121 196 289 400 1 25 64 121 196 289 400
Mumber of Variables Number of Variables

(Lower is better) (Lower is better)

[Task 13]

CBC/CPU: Core i7-9700Kw/ 32 GB RAM running Coin-orbranch and cut (https://github.com/coin-or/Chc)
Loihi: Nahuku 32-chip system with NxSDK 0.98
See backupfor additional test configuration details. Performance results are based on testing as of July 2020 and may not reflectall publicly available security updates. Results may vary.

'llz'he
uture L]
Begine intel. labs

Here


https://github.com/coin-or/Cbc

SLAM (Simultaneous Localization and Mapping)

Fundamental task for any device (robot, AR glasses)
that needs to autonomously acquire spatial awareness

-
ity 2O
velocity, SR ('(;\.}"C" 00

Neuromorphic components:

= 1D attractorring(s) for pose estimation
= 2D position network (“place cells”)

= Map learning

= Loop closure

Demonstrated on Loihi to date:
= Basic proof-of-concept functionality

= 100x lower dynamic power vs GMappinglibrary on CPU!

1[Task 10] For workloads, configurations,and results, see Tang, G., Shah, A., & Michmizos, K. P. (2020). Spiking Neural Network on Neuromorphic Hardware
for Energy-Efficient Unidimensional SLAM. 4176—4181. https://doi.org/10.1109/iros40897.2019.8967864. Results may vary.
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https://doi.org/10.1109/iros40897.2019.8967864

Nearest Neighbor Search on Pohoiki Springs

10030) | g k-NN on Loihi:

tELHY]

pikes

. T = Novel use of fine-grain parallelismand
100 " sparse temporal matchingand searching

Z00

5

Input

= 1+ million pattern datasets

[<]K

e ston - = Up to 1k search key dimensionality

Benefits:

S I
2000+ w ool 1 = Up to 4x faster latency or 80-300x
g 1500 oty e faster index generation than state-of-
the-art CPU implementations

00

a00 AT . . .
. P iy = Supports adding new patternsonline in
’ 4UT1n1F.*51&1:n - m il I iSECO n d S

Lesser matches indicated by later spikes " 650x better energy-delay-product
compared to CPU implementation

[Task 11] For workloads, configurations, and results, see EP Frady et al, “Neuromorphic Nearest-Neighbor Search Using Intel's PohoikiSprings.” arXiv:2004.12691. Results may vary.
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For the Right Workloads, Loihi Provides Orders of
Magnitude Gains in Latency and Energy

Reference [Task 1] Keyword Spotter DNN

architecture
CPU (Intel Core/Xeon)
GPU (Nvidia)
Movidius (NCS)
TrueNorth

[Task 1] Keyword spotting (batch size = 1)
[Task 2] Image retrieval (batch size 1)
[Task 2] Image retrieval (batch size = 1)
[Task 3] Image Segmentation

[Task 4] CIFAR-10 classification

Converted with rate coding

[Task 5] DWS gesture recognition vs TrueNorth

— [Task 6] Visual-tactile sensing (SLAYER)
(Better on Loihi)

[Task 7] Seq MNIST [batch size 1)

Directly trained

[Task 7] Seq MNIST (batch size 64)

=
o
=
W
=
o
=
o
o
o
£
=
c
o
=
=
o
v

[Task 8] Adaptive arm controller [PES)
[Task 9] LASSD
[Task 10] 1D SLAM

[Task 11] k-NN GIST 1M

_(Worse on Loihi) " |

ST [Task 12] Graph search

10 100 1000 10000 100000 . ) )
[Task 13] Constraint Satisfaction

Energy Ratio (vs Loihi) Unit energy delay product (EDP) ratio

See backup for references and configuration details. Results may vary.
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Standard feed-forward deep neural networks give the
compelling gains (if gains at all)

Reference
architecture
CPU (Intel Core/Xeon)
GPU (Nvidia)
Movidius (NCS)
TrueNorth

=
o
—
wr
=
o
=
©
o
©
E
l_
c
o
g
=
=]
w1

Feed-forward

.0 DNNs
L 4

| (Worse on Ldih) | 7] ][

(Better on Loihi)

10 100 1000

Energy Ratio (vs Loihi)

See backup forreferences and configuration details. Results may vary.
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10000

100000

Converted with rate coding

Directly trained

[Task 1] Keyword Spotter DNN

[Task 1] Keyword spotting (batch size = 1)
[Task 2] Image retrieval (batch size 1)
[Task 2] Image retrieval (batch size » 1)
[Task 3] Image Segmentation

[Task 4] CIFAR-10 classification

[Task 5] DVS gesture recognition vs TrueMorth
[Task 6] Visual-tadtile sensing [SLAYER)
[Task 7] Seq MNIST [batch size 1)

[Task 7] Seq MNIST [batch size 64)

[Task 8] Adaptive arm controller (PES)
[Task 9] LASSO

[Task 10] 1D SLAM

[Task 11] k-NN GIST 1M

[Task 12] Graph search

[Task 12] Constraint Satisfaction

Unit energy delay product (EDP) ratio

intel. labs




Recurrent networks with novel bio-inspired properties

give the

Reference
architecture
CPU (Intel Core/Xeon)
GPU (Nvidia)
Movidius (NCS)
TrueNorth

=
o
-
I
=
o
=
o
[«
u
£
=
c
o
=
=
o
v

gains

(Worse on Loihi)

Recurrent
Networks

(Better on Loihi)

LY
i1 iiim 1 bbbl 1

1

See backup forreferences and configuration details. Results may vary.
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10

100

1000 10000

Energy Ratio (vs Loihi)

100000

Converted with rate coding

Directly trained

[Task 1] Keyword Spotter DNN

[Task 1] Keyword spotting (batch size = 1)
[Task 2] Image retrieval (batch size 1)
[Task 2] Image retrieval (batch size = 1)
[Task 3] Image Segmentation

[Task 4] CIFAR-10 classification

[Task 5] DWS gesture recognition vs TrueMorth
[Task 6] Visual-tactile sensing [SLAYER)
[Task 7] Seq MMIST (batch size 1)

[Task 7] Seq MMIST (baftch size 64)

[Task 8] Adaptive arm controller [PES)
[Task 9] LASSO

[Task 10] 1D SLAM

[Task 11] k-NN GIST 1M

[Task 12] Graph search

[Task 13] Constraint Satisfaction

Unit energy delay product (EDP) ratio
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Compelling scaling trends:
Larger networks give greater gains

Reference
architecture
CPU (Intel Core/Xeon)
GPU (Nvidia)
Movidius (NCS)
TrueNorth

(Better on Loihi)

=
o
-
I
=
o
=
o
[«
u
£
=
c
o
=
=
o
v

_(Worse on Loihi) " |

10 100 1000 10000
Energy Ratio (vs Loihi)

See backup for references and configuration details. Results may vary.
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100000

Converted with rate coding

Directly trained

[Task 1] Keyword Spotter DNN

[Task 1] Keyword spotting (batch size = 1)
[Task 2] Image retrieval (batch size 1)
[Task 2] Image retrieval (batch size = 1)
[Task 3] Image Segmentation

[Task 4] CIFAR-10 classification

[Task 5] DVS gesture recognition vs TrueNorth
[Task 6] Visual-tactile sensing (SLAYER)
[Task 7] Seq MNIST [batch size 1)

[Task 7] Seq MNIST (batch size 64)

[Task 8] Adaptive arm controller [PES)
[Task 9] LASSD

[Task 10] 1D SLAM

[Task 11] k-NN GIST 1M

[Task 12] Graph search

[Task 13] Constraint Satisfaction

Unit energy delay product (EDP) ratio
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What this Implies for the Technology Outlook

Scaled up systems

/""‘ Solve hard problems quickly
= Real-time pattern matching
g l = Recommendation systems
Graph analytics
Scientificcomputing, HPC

S —

-v"-u mooc-;rm

1“&4{ '}w g
SRR ?J)

Edge Computmg

Enablesnovel Al algorithms
Online adaptation +learning
Real-time temporal data
processing

* Low power + low latency

Today:
General-purpose
neuromorphic
architecture

Orders of magnitude lowerlatency and power
Re-thinking visual sensing —electronicretina
Tactile sensing —electronicskin

Active sensing

Calls for sensor-level integration with neuromorphic
processing
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Legal Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/Performancelndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Results have been estimated or simulated.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usagein trade.

© Intel Corporation. Intel, the Intellogo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may
be claimed as the property of others.
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References and System Test Configuration Details

[Task 1] P Blouw et al, 2018. arXiv:1812.01739
[Task 2] TY Liu et al, 2020, arXiv:2008.01380

[Task 3] KP Patel et al, “A spiking neural network for image segmentation,”
submitted, in review, Aug 2020.

[Task 4] Loihi: Nahuku system running NxSDK 0.95. CIFAR-10 image
recognition network trained using the SNN-Toolbox (code available at

). CPU: Core i7-9700K with 32GB
RAM, GPU: Nvidia RTX 2070 with 8GB RAM. OS: Ubuntu 16.04.6 LTS, Python:
3.5.5, TensorFlow: 1.13.1. Performance results are based on testing as of July
2020 and may not reflect all publicly available security updates.

[Task 5] Loihi: Nahuku system running NxSDK 0.95. Gesture recognition
network trained using the SLAYER tool (code available at

). Performance results are based
on testing as of July 2020 and may not reflect all publicly available security
updates. TrueNorth: Results and DVS Gesture dataset from A. Amir et al, “A
low power, fully event-based gesture recognition system,” in IEEE Conf.
Comput. Vis. Pattern Recog. (CVPR), 2017.

[Task 6] T. Taunyazov et al, 2020. RSS 2020

[Task 7] Bellec et al, 2018. arXiv:1803.09574. Loihi: Loihi: Wolf Mountain
system running NxSDK 0.85. CPU: Intel Core i5-7440HQ, with 16GB running
Windows 10 (build 18362), Python: 3.6.7, TensorFlow: 1.14.1. GPU: Nvidia
Telsa P100 with 16GB RAM. Performance results are based on testing as of
December 2018 and may not reflect all publicly available security updates.
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[Task 8] T. DeWolf et al, “Nengo and Low-Power Al Hardware for Robust,
Embedded Neurorobotics,” Front. in Neurorobotics, 2020.

[Task 9] Loihi Lasso solver based on PTP Tang et al, “Sparse coding by spiking
neural networks: convergence theory and computational results,”
arXiv:1705.05475, 2017. Loihi: Wolf Mountain system running NxSDK 0.75.
CPU: Intel Core i7-4790 3.6GHz w/ 32GB RAM running Ubuntu 16.04 with
HyperThreading disabled, SPAMS solver for FISTA,

[Task 10] G Tang et al, 2019. arXiv:1903.02504
[Task 11] EP Frady et al, 2020. arXiv:2004.12691

[Task 12] Loihi graph search algorithm based on Ponulak F.,, Hopfield J.J. Rapid,
parallel path planning by propagating wavefronts of spiking neural activity.
Front. Comput. Neurosci. 2013. Loihi: Nahuku and Pohoiki Springs systems
running NxSDK 0.97. CPU: Intel Xeon Gold with 384GB RAM, running
SLES11, evaluated with Python 3.6.3, NetworkX library augmented with an
optimized graph search implementation based on Dial’s algorithm. See
also

[Task 13] Loihi: constraint solver algorithm based on G.A. Fonseca Guerra and
S.B. Furber, Using Stochastic Spiking Neural Networks on SpiNNaker to Solve
Constraint Satisfaction Problems. Front. Neurosci. 2017. Tested on the
Nahuku 32-chip system running NxSDK 0.98. CPU: Core i7-9700K with 32GB
RAM running Coin-or Branch and Cut ( ).
Performance results are based on testing as of July 2020 and may not reflect
all publicly available security updates.

intel. labs


https://snntoolbox.readthedocs.io/en/latest
https://github.com/bamsumit/slayerPytorch
http://spams-devel.gforge.inria.fr/
https://arxiv.org/abs/1903.02504
http://rpg.ifi.uzh.ch/docs/CVPR19workshop/CVPRW19_Mike_Davies.pdf
https://github.com/coin-or/Cbc

