
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 1 of 128

٦

	SAR TEST REPORT	
Report Reference No:	LCSA070522052EB	设份
Date Of Issue	July 20, 2022	gLab gLab
Testing Laboratory Name:	Shenzhen LCS Compliance Testing	
Address	: 101, 201 Bldg A & 301 Bldg C, Juji In Shajing Street, Baoan District, Shenz	
Testing Location/ Procedure:	: Full application of Harmonised standa	ards
	Partial application of Harmonised star	ndards 🗆
	Other standard testing method	
Applicant's Name:	Shanghai SmartPeak Technology C	Co.,Ltd.
Address:	Shanghai, China	nqiao Road, Fengxian District,
Test Specification:	ST LCS Testing	ST LCS Test
Standard	: IEEE Std C95.1, 2019/ IEEE Std 1528	8™-2013/FCC Part 2.1093
Test Report Form No	LCSEMC-1.0	
TRF Originator:	: Shenzhen LCS Compliance Testing L	aboratory Ltd.
Master TRF:	: Dated 2011-03	
material. Shenzhen LCS Compliand	g Laboratory Ltd. is acknowledged as co ce Testing Laboratory Ltd. takes norespo om the reader's interpretation of the r	opyright owner and source of the onsibility for and will not assume
Shenzhen LCS Compliance Testing material. Shenzhen LCS Compliand liability for damages resulting fro	g Laboratory Ltd. is acknowledged as co ce Testing Laboratory Ltd. takes norespon om the reader's interpretation of the r	opyright owner and source of the onsibility for and will not assume
Shenzhen LCS Compliance Testing material. Shenzhen LCS Compliance liability for damages resulting fro placement and context.	g Laboratory Ltd. is acknowledged as co ce Testing Laboratory Ltd. takes norespon the reader's interpretation of the r POS Terminal	opyright owner and source of the onsibility for and will not assume
Shenzhen LCS Compliance Testing material. Shenzhen LCS Compliance liability for damages resulting fro placement and context. Test Item Description	g Laboratory Ltd. is acknowledged as co ce Testing Laboratory Ltd. takes norespon on the reader's interpretation of the r POS Terminal SmartPeak	opyright owner and source of the onsibility for and will not assume
Shenzhen LCS Compliance Testing material. Shenzhen LCS Compliance liability for damages resulting fro placement and context. Test Item Description	g Laboratory Ltd. is acknowledged as co ce Testing Laboratory Ltd. takes norespon the reader's interpretation of the r POS Terminal : SmartPeak : P600 GSM 850 1900 WCDMA II V	opyright owner and source of the onsibility for and will not assume
Shenzhen LCS Compliance Testing material. Shenzhen LCS Compliance liability for damages resulting fro placement and context. Test Item Description Trade Mark	g Laboratory Ltd. is acknowledged as co ce Testing Laboratory Ltd. takes norespon the reader's interpretation of the r POS Terminal : SmartPeak : P600 GSM 850 1900 WCDMA II V	opyright owner and source of the onsibility for and will not assume reproduced material due to it
Shenzhen LCS Compliance Testing material. Shenzhen LCS Compliance liability for damages resulting fro placement and context. Test Item Description Trade Mark Model/Type Reference Operation Frequency Ratings	g Laboratory Ltd. is acknowledged as co ce Testing Laboratory Ltd. takes norespon om the reader's interpretation of the r POS Terminal SmartPeak P600 GSM 850,1900;WCDMA II,V; LTE2,4,7;WLAN2.4G and Bluetooth4 Input: 5V2A For Adapter Input: 100-240V~, 50/601 For Adapter Output: 5.0V2.0A, 10	epyright owner and source of the onsibility for and will not assume reproduced material due to it 4.1. Hz, 0.40A 0.0W
Shenzhen LCS Compliance Testing material. Shenzhen LCS Compliance liability for damages resulting fro placement and context. Test Item Description Trade Mark Model/Type Reference Operation Frequency Ratings	g Laboratory Ltd. is acknowledged as co ce Testing Laboratory Ltd. takes norespon in the reader's interpretation of the r POS Terminal SmartPeak P600 GSM 850,1900;WCDMA II,V; LTE2,4,7;WLAN2.4G and Bluetooth4 Input: 5V2A For Adapter Input: 100-240V~, 50/601 For Adapter Output: 5.0V2.0A, 10 DC 7.4V by Rechargeable Li-ion Batt	epyright owner and source of the onsibility for and will not assume reproduced material due to it 4.1. Hz, 0.40A 0.0W
Shenzhen LCS Compliance Testing material. Shenzhen LCS Compliance liability for damages resulting fro placement and context. Test Item Description : Trade Mark Model/Type Reference Operation Frequency	g Laboratory Ltd. is acknowledged as co ce Testing Laboratory Ltd. takes norespon om the reader's interpretation of the r POS Terminal SmartPeak P600 GSM 850,1900;WCDMA II,V; LTE2,4,7;WLAN2.4G and Bluetooth4 Input: 5V2A For Adapter Input: 100-240V~, 50/601 For Adapter Output: 5.0V2.0A, 10	epyright owner and source of the onsibility for and will not assume reproduced material due to it 4.1. Hz, 0.40A 0.0W
Shenzhen LCS Compliance Testing material. Shenzhen LCS Compliance liability for damages resulting fro placement and context. Test Item Description	g Laboratory Ltd. is acknowledged as co ce Testing Laboratory Ltd. takes norespon in the reader's interpretation of the r POS Terminal SmartPeak P600 GSM 850,1900;WCDMA II,V; LTE2,4,7;WLAN2.4G and Bluetooth4 Input: 5V2A For Adapter Input: 100-240V~, 50/60I For Adapter Output: 5.0V2.0A, 10 DC 7.4V by Rechargeable Li-ion Batter Positive	4.1. Hz, 0.40A 0.0W ery, 2600mAh
Shenzhen LCS Compliance Testing material. Shenzhen LCS Compliance liability for damages resulting fro placement and context. Test Item Description Trade Mark Model/Type Reference Operation Frequency Ratings	g Laboratory Ltd. is acknowledged as co ce Testing Laboratory Ltd. takes norespon in the reader's interpretation of the r POS Terminal SmartPeak P600 GSM 850,1900;WCDMA II,V; LTE2,4,7;WLAN2.4G and Bluetooth4 Input: 5V2A For Adapter Input: 100-240V~, 50/601 For Adapter Output: 5.0V2.0A, 10 DC 7.4V by Rechargeable Li-ion Batt	Approved by:
Shenzhen LCS Compliance Testing material. Shenzhen LCS Compliance liability for damages resulting fro placement and context. Test Item Description	g Laboratory Ltd. is acknowledged as co ce Testing Laboratory Ltd. takes norespon in the reader's interpretation of the r POS Terminal SmartPeak P600 GSM 850,1900;WCDMA II,V; LTE2,4,7;WLAN2.4G and Bluetooth4 Input: 5V2A For Adapter Input: 100-240V~, 50/60I For Adapter Output: 5.0V2.0A, 10 DC 7.4V by Rechargeable Li-ion Batter Positive	4.1. Hz, 0.40A 0.0W ery, 2600mAh
Shenzhen LCS Compliance Testing material. Shenzhen LCS Compliance Testing fro placement and context. Test Item Description	g Laboratory Ltd. is acknowledged as co ce Testing Laboratory Ltd. takes norespon in the reader's interpretation of the r POS Terminal SmartPeak P600 GSM 850,1900;WCDMA II,V; LTE2,4,7;WLAN2.4G and Bluetooth4 Input: 5V2A For Adapter Input: 100-240V~, 50/60I For Adapter Output: 5.0V2.0A, 10 DC 7.4V by Rechargeable Li-ion Batter Positive	Approved by:

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 128

Revison History

			son matory		
	一服份	一则服务	一则段份	-miles to	3
	Revision	Issue Date	Revisions	Revised By	de
WS	CS Test 000	July 20, 2022	Initial Issue	Gavin Liang	
			The L		

立讯检测版份 LCS Testing Lab

上CS Testing Lab

立讯检测股份 LCS Testing Lab

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 4 of 128

	一般制度份	一般制度份	小制股份	TT- 44	服份
T	HALL Lab	till hang Lab	立 计 訳 他 Jugar Lab	TiAl	ingLar
I. TES	T STANDARDS AND TEST I	DESCRIPTION		1001001	6
1.1.	TEST STANDARDS				6
1.2.					
1.3.					
1.4.					
1.5.					
2. TES	T ENVIRONMENT				9
2.1.	TEST FACILITY				9
2.2.					
2.3.	SAR I IMITS				0
2.4.	EQUIPMENTS USED DURING TH	е Теѕт	The second s	THE H	10
3. SAR	MEASUREMENTS SYSTEM	1 CONFIGURATIO	N H M Ming Lab	立记 Ang Lab	11
2.1	SA LCS IC	- 197	LCS	LCS IC	1.1
	SARMEASUREMENT SET-UP				11
3.2.					
3.3.					
3.4.					
3.5.					
3.6.					
3.7.	TISSUE DIELECTRIC PARAMETE	ERS FOR HEAD AND B	ODY PHANTOMS		18
3.8.					
3.9.	SYSTEM CHECK				19
3.10.	SAR MEASUREMENT PROCEDU	RE			21
3.11.	POWER REDUCTION				26
3.12.	POWER DRIFT		tab		26
4 TES	T CONDITIONS AND RESU	TS cs Testing	THIR LOS Testing Lab	NST CS Test	ing 27
4.1.					
4.2.			OSITION		
4.3.					
4.4.					
4.5.					
4.6.	GENERAL DESCRIPTION OF TES	Γ PROCEDURES			45
4.7.	MEASUREMENT UNCERTAINTY	(450MHz-6GHz)			45
4.8.	SYSTEM CHECK RESULTS				46
5. CAL	IBRATION CERTIFICATES		立 訊检测 A A A A A A A A A A A A A A A A A A A	A STATE OF STATE	59
5.1	PROBE-EPGO324 CALIBRATIC	N CERTIFICATE	THE MALAD	THE MAN Lab	59
5.2	SID835DIPOLE CALIBRATION	CERITICATE	ICS Test	NST CSTEST	
5.3	SID 1800 DIPOLE CALIBRATION	I CERTIFICATE		The second secon	80
5.4					
5.5					
5.6					
6. PHO	TOGRAPHS OF THE LIOU	[D			124
	-				
0. EU I		••••••		•••••••••••••••••••••••••••••••••••••••	140
	- 13	. 13	Ar.		

立讯检测股份 LCS Testing Lab

上CS Testing Lab

反立 此 LCS Testing Lab

EST STANDARDS AND TEST DESCRIPTION

讯检测股份 立讯检测股份 立讯检测股份 1.1. Jest Standards IEEE Std C95.1-2019: IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

IEEE Std 1528[™]-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. FCC Part 2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices

KDB447498 D01 General RF Exposure Guidance v06 : Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

KDB447498 D02 SAR Procedures for Dongle Xmtr v02r01: SAR Measurement Procedures For USB Dongle Transmitters.

KDB865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 : SAR Measurement Requirements for 100 ing Lab ting Lab ting Lab MHz to 6 GHz Tille 古洲和

KDB865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

KDB 248227 D01 802.11 Wi-Fi SAR v02r02: SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS KDB941225 D01 3G SAR Procedures: 3G SAR MEAUREMENT PROCEDURES KDB 941225 D05 SAR for LTE Devices: SAR Evaluation Considerations For LTE Devices

1.2. Test Description

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power. And Test device is identical prototype.

al Remarks 立讯检测股 ^份		立讯检测股份
Date of receipt of test sample	:	July 06, 2022
Testing commenced on	:	July 06, 2022
Testing concluded on	:	July 15, 2022

1.4. Product Description

The Shanghai SmartPeak Technology Co., Ltd.'s Model: P600 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT. - 115

(1) 月月 (1)	A TILLE IN
General Description	
EUT ST LOS TEST	POS Terminal St LCS Test
Model/Type reference:	P600
Additional Model No.	P600 Countertop
Model Declaration:	PCB board, structure and internal of these model(s) are the same, So no additional models were tested
Hardware Version	1
Firmware Version:	V0.70.7506
Power supply:	Input: 5V2A For Adapter Input: 100-240V~, 50/60Hz, 0.40A For Adapter Output: 5.0V2.0A, 10.0W DC 7.4V by Rechargeable Li-ion Battery, 2600mAh
	he POS Terminal is intended for WLAN transmission. It is equipped with WCDMA Band II,Band V; LTE 2,4,7. For more information see the following

Technical Characteristics	
Operation Band:	E-UTRA Band 2(U.SBand) E-UTRA Band 4(U.SBand) E-UTRA Band 7(U.SBand) QPSK/16QAM
Modulation Type:	QPSK/16QAM
Release Version:	R9
Power Class:	Class 3
Antenna Description:	PIFA Antenna 0.5dBi (max.) For E-UTRA Band 2 0.5dBi (max.) For E-UTRA Band 4 0.5dBi (max.) For E-UTRA Band 7
Bluetooth	
Frequency Range:	2402MHz ~ 2480MHz
Chanel Number: Mile Pa	79 channels for Bluetooth V4.1(DSS) 40 channels for Bluetooth V4.1 (DTS)
Chanel Spacing:	2MHz for Bluetooth V4.1 (DSS) 2MHz for Bluetooth V4.1 (DTS)
Modulation Type;	GFSK, π/4-DQPSK, 8-DPSK for Bluetooth V4.1(DSS) GFSK for Bluetooth V4.1 (DTS)
Bluetooth Version:	V4.1
Antenna Description:	PIFA Antenna, 0.5dBi(Max.)
WIFI 2.4G	
Frequency Range: Type of Modulation:	2412MHz-2462MHz IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK) IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK)
Channel number:	IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK) 11 Channels for 20MHz bandwidth (2412~2462MHz)
Channel separation:	11 Channels for 20MHz bandwidth (2412~2462MHz) 5MHz PIEA Antenna, 0.5dBi(Max.)
Antenna Description:	PIFA Antenna, 0.5dBi(Max.)
UMTS	
Operation Band:	WCDMA Band II (U.SBand) WCDMA Band V (U.SBand) WCDMA Band IV (U.SBand) WCDMA Band I (EU-Band) WCDMA Band VIII (EU-Band)
Modulation Type:	QPSK,16QAM
WCDMA Release Version:	R9
Antenna Description:	PIFA Antenna 0.5dBi (max.) For WCDMA Band II 0.5dBi (max.) For WCDMA Band V
GSM	
Support Band: Release Version:	□GSM 900 (EU-Band) □DCS 1800 (EU-Band) ⊠GSM 850 (U.SBand) ⊠PCS 1900 (U.SBand)
GPRS Class	R99 Class 12
EGPRS Class	Class 12
Modulation Type:	GMSK for GSM/GPRS; GMSK/8PSK for EGPRS
7 F -	PIFA Antenna 0.5dBi (max.) For GSM 850
Antenna Description:	0.5dBi (max.) For PCS 1900
GPS function	0.5dBi (max.) For PCS 1900 Support and only RX
•	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 7 of 128

Statement of Compliance

1 /2r ~ ((() 1) 2/2 ·		f SAR found during lalone SAR Summa	testing for P600 are fol	lows:) 份 在I ^{MIND} Lab resting Lab	至立研检测股份 LCS Testing Lab			
They room	Classment	Frequency	Hotspot (Report SAR _{1-g} (W/kg)	Body-worn (Report SAR _{1-g} (W/kg)	Loc			
	Class	Band	(Separation D	istance 0mm)				
		GSM 850	0.311	0.311				
		GSM1900	0.153	0.153				
		WCDMA Band V	0.337	0.337				
	PCB	WCDMA Band II	0.192	0.192				
		LTE band 2	0.194	0.194				
		LTE band 4	0.538	0.538				
		LTE band 7	0.294	0.294				
	DTS	WIFI2.4G	0.087	0.087	言思论			
	This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2019, and had							

been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

<Highest Reported simultaneous SAR Summary>

Exposure Position	Classment Class	Highest Reported Simultaneous Transmission SAR _{1-g} (W/kg)
Body-worn (hotspot open)	PCB DTS	0.625
在 LCS Testin		立讯检测股份 LCS Testing Lab

正式和检测股份 LCS Testing Lab

立讯检测股份 LCS Testing Lab

反立就检测度份 LCS Testing Lab

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 8 of 128

TEST ENVIRONMENT

2.1. Test Facility The test facility is recognized, certified, or accredited by the following organizations: LCS LCST Site Description EMC Lab. NVLAP Accreditation Code is 600167-0. FCC Designation Number is CN5024. CAB identifier is CN0071. CNAS Registration Number is L4595. Test Firm Registration Number: 254912.

小小竹

2.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

TI the MAR AD	THE THE THE AD	TI KO TI BZ I'M
Temperature:	I I Honesting La	18-25 ° C
- LCS .	-CS LCS	- LCS
Humidity:		40-65 %
Atmospheric pressure:		950-1050mbar

2.3. SAR Limits

LCS Testing Lab

		FCC Limit (1g Tissue)		_
		SAR (W/kg)		
1	EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)	则股份 ting Lab
RA I	Spatial Average(averaged over the whole body)	0.08 LCS TEST	0.4 STLCST	,
	Spatial Peak(averaged over any 1 g of tissue)	1.6	8.0	
	Spatial Peak(hands/wrists/ feet/anklesaveraged over 10 g)	4.0	20.0	

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation). 立讯检测股份 LCSTestingLab 立讯检测剧 立讯检测器 LCS Testing Lab

在市台测股份 LCS Testing Lab

PC SAR Measurement system Signal Generator Multimeter S-parameter Network Analyzer Wideband Radio Communication Tester E-Field PROBE DIPOLE 835 DIPOLE 1800 DIPOLE 1900	Lenovo SATIMO Agilent Keithley Agilent R&S MVG SATIMO SATIMO	G5005 4014_01 E4438C MiltiMeter 2000 8753ES CMW500 SSE2 SID 835 SID 1800	MY42081102 SAR_4014_01 MY49072627 4059164 US38432944 103818-1 SN 31/17 EPGO324 SN 07/14 DIP 0G835-303 SN 07/14 DIP	N/A N/A 2022-06-16 2021-11-13 2021-11-13 2021-11-20 2021-10-06 2021-09-29	N/A N/A 2023-06-15 2022-11-12 2022-11-12 2022-11-19 2022-10-05 2024-09-28
SAR Measurement system Signal Generator Multimeter S-parameter Network Analyzer Wideband Radio Communication Tester E-Field PROBE DIPOLE 835 DIPOLE 1800	Agilent Keithley Agilent R&S MVG SATIMO	E4438C MiltiMeter 2000 8753ES CMW500 SSE2 SID 835	MY49072627 4059164 US38432944 103818-1 SN 31/17 EPGO324 SN 07/14 DIP 0G835-303	2022-06-16 2021-11-13 2021-11-13 2021-11-20 2021-10-06	2023-06-15 2022-11-12 2022-11-12 2022-11-19 2022-10-05
Multimeter S-parameter Network Analyzer Wideband Radio Communication Tester E-Field PROBE DIPOLE 835 DIPOLE 1800	Keithley Agilent R&S MVG SATIMO	MiltiMeter 2000 8753ES CMW500 SSE2 SID 835	4059164 US38432944 103818-1 SN 31/17 EPGO324 SN 07/14 DIP 0G835-303	2021-11-13 2021-11-13 2021-11-20 2021-10-06	2022-11-12 2022-11-12 2022-11-19 2022-10-05
S-parameter Network Analyzer Wideband Radio Communication Tester E-Field PROBE DIPOLE 835 DIPOLE 1800	Agilent R&S MVG SATIMO	2000 8753ES CMW500 SSE2 SID 835	US38432944 103818-1 SN 31/17 EPGO324 SN 07/14 DIP 0G835-303	2021-11-13 2021-11-20 2021-10-06	2022-11-12 2022-11-19 2022-10-05
Wideband Radio Communication Tester E-Field PROBE DIPOLE 835 DIPOLE 1800	R&S MVG SATIMO	CMW500 SSE2 SID 835	103818-1 SN 31/17 EPGO324 SN 07/14 DIP 0G835-303	2021-11-20 2021-10-06	2022-11-19 2022-10-05
Communication Tester E-Field PROBE DIPOLE 835 DIPOLE 1800	MVG SATIMO	SSE2	SN 31/17 EPGO324 SN 07/14 DIP 0G835-303	2021-10-06	2022-10-05
DIPOLE 835 DIPOLE 1800	SATIMO	SID 835	EPGO324 SN 07/14 DIP 0G835-303	I DI	te)
DIPOLE 1800	151-1	Testing	0G835-303	2021-09-29	2024-09-28
	SATIMO	CS SID 1800			P
DIPOLE 1900			1G800-301	2021-09-29	2024-09-28
	SATIMO	SID 1900	SN 38/18 DIP 1G900-466	2021-09-22	2024-09-2
DIPOLE 2450	SATIMO	SID 2450	SN 07/14 DIP 2G450-306	2021-09-29	2024-09-28
DIPOLE 2600	SATIMO	SID 2600	SN 38/18 DIP 2G600-468	2021-09-22	2024-09-21
COMOSAR OPENCoaxial Probe	SATIMO	OCPG 68	SN 40/14 OCPG68	2021-11-13	2022-11-12
SAR Locator	SATIMO	VPS51	SN 40/14 VPS51	2021-11-13	2022-11-12
Communication Antenna	SATIMO	ANTA57	SN 39/14 ANTA57	2021-11-13	2022-11-12
FEATURE PHONEPOSITIONING DEVICE	CS SATIMO	MSH98	SN 40/14 MSH98	N/A ST	LCS TN/Å
DUMMY PROBE	SATIMO	DP60	SN 03/14 DP60	N/A	N/A
SAM PHANTOM	SATIMO	SAM117	SN 40/14 SAM117	N/A	N/A
Liquid measurement Kit	HP	85033D	3423A03482	2021-11-13	2022-11-12
Power meter	Agilent	E4419B	MY45104493	2021-11-15	2022-11-14
Power meter	Agilent	E4419B	MY45100308	2021-11-20	2022-11-19
Power sensor	Agilent	E9301H	MY41495616	2021-11-20	2022-11-19
Power sensor	Agilent	E9301H	MY41495234	2021-11-15	2022-11-14
Directional Coupler	MCLI/USA	4426-20	03746	2022-06-16	2023-06-1
	DIPOLE 2600 COMOSAR OPENCoaxial Probe SAR Locator Communication Antenna FEATURE PHONEPOSITIONING DEVICE DUMMY PROBE SAM PHANTOM Liquid measurement Kit Power meter Power meter Power sensor Power sensor	DIPOLE 2600SATIMOCOMOSAR OPENCoaxial ProbeSATIMOCOMOSAR OPENCoaxial ProbeSATIMOSAR LocatorSATIMOSAR LocatorSATIMOCommunication AntennaSATIMOFEATURE PHONEPOSITIONING DEVICESATIMODUMMY PROBESATIMOSAM PHANTOMSATIMOLiquid measurement KitHPPower meterAgilentPower sensorAgilentPower sensorAgilentDirectional CouplerMCLI/USA	DIPOLE 2600SATIMOSID 2600COMOSAR OPENCoaxial ProbeSATIMOOCPG 68SAR LocatorSATIMOVPS51Communication AntennaSATIMOANTA57FEATURE PHONEPOSITIONING DEVICESATIMOMSH98DUMMY PROBESATIMODP60SAM PHANTOMSATIMOSAM117Liquid measurement KitHP85033DPower meterAgilentE4419BPower sensorAgilentE9301HPower sensorAgilentE9301HDirectional CouplerMCLI/USA4426-20	DIPOLE 2450SATIMOSID 24502G450-306DIPOLE 2600SATIMOSID 2600SN 38/18 DIP 2G600-468COMOSAR OPENCoaxial ProbeSATIMOOCPG 68SN 40/14 OCPG68SAR LocatorSATIMOVPS51SN 40/14 VPS51Communication AntennaSATIMOANTA57SN 39/14 ANTA57FEATURE PHONEPOSITIONING DEVICESATIMOMSH98SN 40/14 MSH98DUMMY PROBESATIMODP60SN 03/14 DP60SAM PHANTOMSATIMOSAM117SN 40/14 SAM117Liquid measurement KitHP85033D3423A03482Power meterAgilentE4419BMY45100308Power sensorAgilentE9301HMY41495616Power sensorAgilentE9301HMY41495234Directional CouplerMCLI/USA4426-2003746	DIPOLE 2450SATIMOSID 24502G450-3062021-09-29DIPOLE 2600SATIMOSID 2600SN 38/18 DIP 2G600-4682021-09-22COMOSAR OPENCoaxial ProbeSATIMOOCPG 68SN 40/14 OCPG682021-11-13SAR LocatorSATIMOVPS51SN 40/14 VPS512021-11-13Communication AntennaSATIMOANTA57SN 39/14 ANTA572021-11-13Communication AntennaSATIMOANTA57SN 39/14 ANTA572021-11-13FEATURE PHONEPOSITIONING DEVICESATIMOMSH98SN 40/14 MSH98N/ASAM PHANTOMSATIMODP60SN 03/14 DP60N/ASAM PHANTOMSATIMOSAM117SN 40/14 SAM117N/ALiquid measurement KitHP85033D3423A034822021-11-13Power meterAgilentE4419BMY451003082021-11-20Power sensorAgilentE9301HMY414952342021-11-20Power sensorAgilentE9301HMY414952342021-11-15Directional CouplerMCLI/USA4426-20037462022-06-16

 Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evalute with following criteria at least on annual interval.

- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated values;
- c) The most recent return-loss results, measued at least annually, deviates by no more than 20% from the previous measurement;
- d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the provious measurement.
- 立讯检测股份 Network analyzer probe calibration against air, distilled water and a shorting block performed before 立讯检测的 讯检测 measuring liquid parameters. LCS Testing Lab LCS Testing Lab LCS Testing Lab LCSTesting

SAR MEASUREMENTS SYSTEM CONFIGURATION

金测股份 昭份 3.1. SARMeasurement Set-up TestingL

立讯检测股份

The OPENSAR system for performing compliance tests consist of the following items:

A standard high precision 6-axis robot (KUKA) with controller and software.

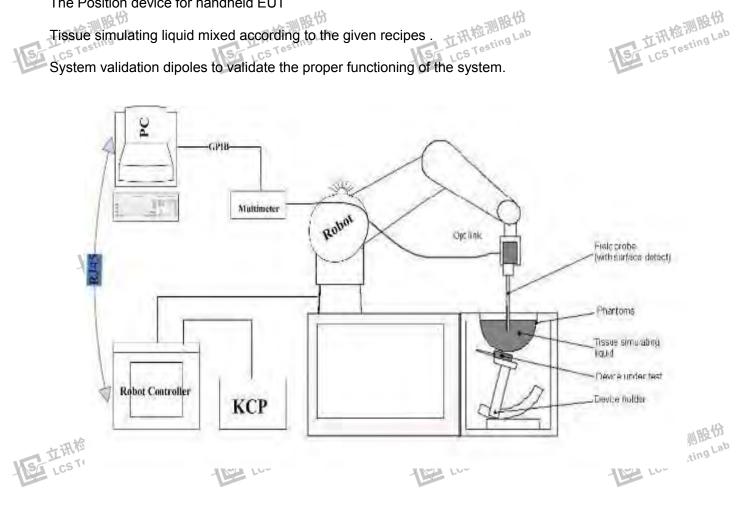
KUKA Control Panel (KCP)

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System(VPS).

The stress sensor, is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch, It sends an "Emergency signal" to the robot controller that to stop robot's LCSTest LCS Test LCS Test moves

A computer operating Windows XP.

OPENSAR software


Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

The SAM phantom enabling testing left-hand right-hand and body usage.

The Position device for handheld EUT

Tissue simulating liquid mixed according to the given recipes .

CSTesting System validation dipoles to validate the proper functioning of the system.

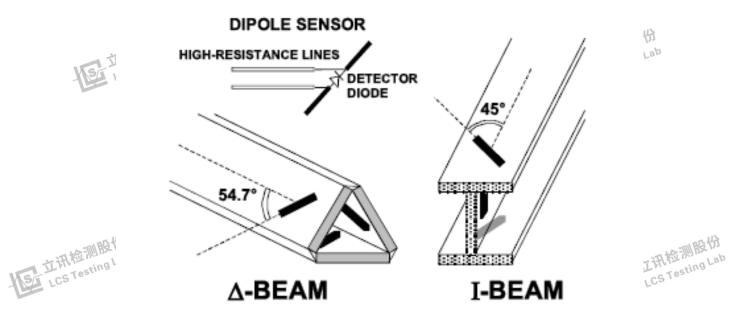
3.2. OPENSAR E-field Probe System

The SAR measurements were conducted with the dosimetric probe EPGO324 (manufactured by MVG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

esting Lab

Testing Lab


ConstructionSymmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

CalibrationISO/IEC 17025 calibration service available.

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

机检测股份

S Testing Lab

上CS Testing Lab

Phantoms

The SAM Phantom SAM117 is constructed of a fiberglass shell ntegrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE 1528 and EN62209-1, EN62209-2.The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robo

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

互立讯检测度份 LCS Testing Lab

SAM Twin Phantom

3.4. Device Holder

立讯检测 LCS Testin

In combination with the Generic Twin PhantomSAM117, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device holder supplied by SATIMO

3.5. Scanning Procedure

The procedure for assessing the peak spatial-average SAR value consists of the following steps

Power Reference Measurement The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

	\leq 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension measurement plane orientat above, the measurement res corresponding x or y dimen at least one measurement po	ion, is smaller than the olution must be \leq the sion of the test device with
CSTEPT NST CSTEPT	MST CSTEPT	NST CSTED

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Maximum zoom scan	spatial res	olution: $\Delta x_{Zoom}, \Delta y_{Zoom}$	$\leq 2 \text{ GHz}: \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$	
Maximum zoom scan spatial resolution, normal to phantom surface gra	uniform	grid: Δz _{zoom} (n)	\leq 5 mm	$\begin{array}{l} 3-4 \ \mathrm{GHz} :\leq 4 \ \mathrm{mm} \\ 4-5 \ \mathrm{GHz} :\leq 3 \ \mathrm{mm} \\ 5-6 \ \mathrm{GHz} :\leq 2 \ \mathrm{mm} \end{array}$	
	graded	$\Delta z_{Z_{COM}}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	$\begin{array}{l} 3-4 \; \mathrm{GHz:} \leq 3 \; \mathrm{mm} \\ 4-5 \; \mathrm{GHz:} \leq 2.5 \; \mathrm{mm} \\ 5-6 \; \mathrm{GHz:} \leq 2 \; \mathrm{mm} \end{array}$	
	grid	∆z _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1) \text{ mm}$		
Minimum zoom scan volume x, y, z		\geq 30 nm	3 - 4 GHz: ≥ 28 mm 4 - 5 GHz: ≥ 25 mm 5 - 6 GHz: ≥ 22 mm		

* When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 14 of 128

立讯检测股份 LCS Testing Lab

上ST LCS Testing Lab

立讯检测股份 LCS Testing Lab

Page **15** of **128**

FCC ID: 2A73S-P600

Report No.: LCSA070522052EB

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded.

3.6. Data Storage and Evaluation

Data Storage

The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

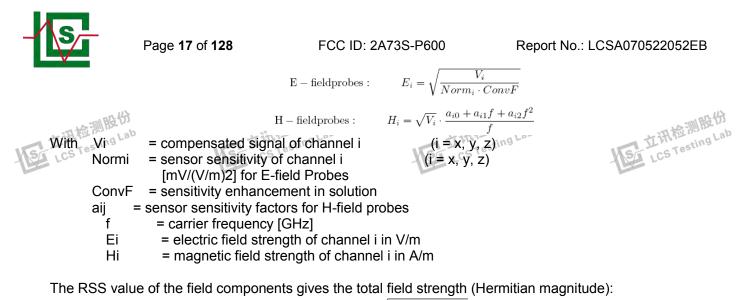
The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software: N BES 4 . m. 43

Lab the man	一田检测版が)	一田检测版は	·····································
Probe parameters:	- Sensitivity	Normi, ai0, ai	1, ai2 H A Main Lab	以 文 L CS Testing Lab
LC3	 Conversion factor 	ConvFi 🚽	LC3	-164 100
	- Diode compression poir	nt Dcpi		
Device parameters:	- Frequency	f		
-	- Crest factor	cf		
Media parameters:	 Conductivity 	σ		
	- Density	ρ		
These parameters r	nust be set correctly in the	software. The	ey can be found in the comp	onent documents or

they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.


The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi = compensated signal of channel i (i = x, y, z)

- Ui = input signal of channel i (i = x, y, z)
- cf = crest factor of exciting field
- dcpi = diode compression point

立讯检测股份 立讯检测器 esting Lab From the compensated input signals the primary field data for each channel can be evaluated:

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

支工课检测股份 LCS Testing Lab

The primary field data are used to calculate the derived field units. $SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$ with SAR = local specific absorption rate in mW/g

= total field strength in V/m Etot σ

ρ

= conductivity in [mho/m] or [Siemens/m]

= equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 17 of 128

MG

3.7. Tissue Dielectric Parameters for Head and Body Phantoms

The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case.It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

- LCS		-15	100				100			100
			The composition of the tissue simulating liquid							
Frequency (MHz)	Bactericide	DGBE	HEC	NaCl	Sucrose	1,2- Propan ediol	X100	Water	Conductivity	Permittivity
	%	%	%	%	%	%	%	%	σ	٤r
750	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
835	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
900	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
1800	/	13.84	/	0.35	/	/	30.45	55.36	1.38	41.0
1900	-mil BG	13.84	/	0.35	1	品份	30.45	55.36	1.38	份 41.0
2000	THE	Ja17.99	/	0.16	古田检查	ing Lab	19.97	71.88	1.55	Lab 41.1
2450	L CS/resting	7.99	/	0.16	ST CSTES	llus	19.97	71.88	1.88	40.3
2600 /		7.99	/	0.16		/	19.97	71.88	1.88	40.3

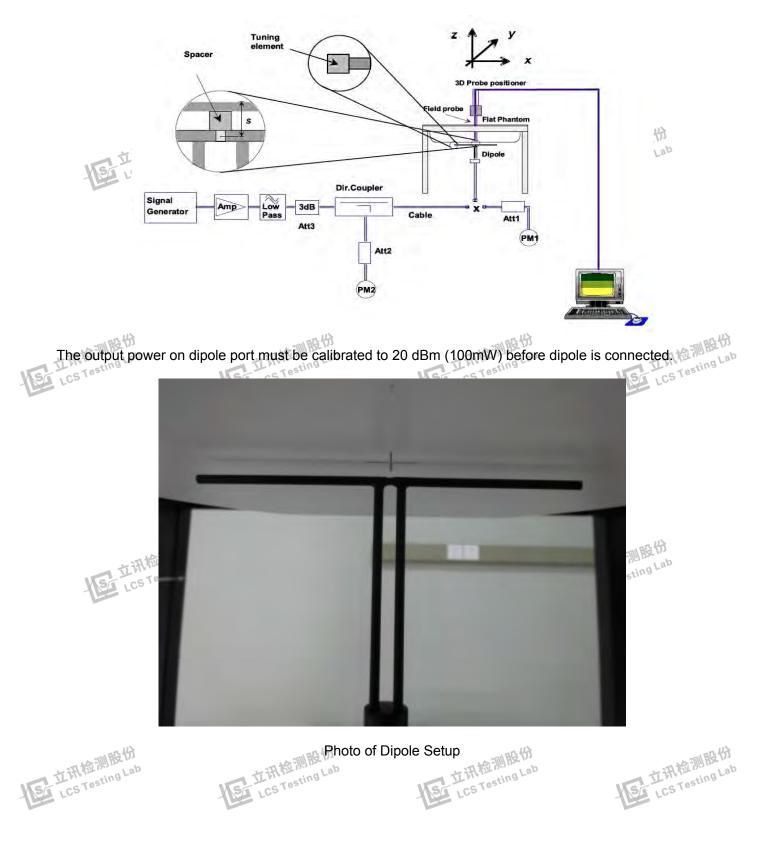
	Target Frequency	Не	ad	В	ody
	(MHz)	٤ _r	σ(S/m)	٤ _r	σ(S/m)
	150	52.3	0.76	61.9	0.80
	300	45.3	0.87	58.2	0.92
	450	43.5	0.87	56.7	0.94
	835	41.5	0.90	55.2	0.97
	900	41.5	0.97	55.0	1.05
	915	41.5	0.98	55.0	1.06
	1450	40.5	1.20	54.0	1.30
15	1610	40.3 The Test	^{ng 1} .29	53.8	1.40 mesting
	1800-2000	40.0	1.40	53.3	1.52
	2450	39.2	1.80	52.7	1.95
	2600	39.0	1.96	52.5	2.16
	3000	38.5	2.40	52.0	2.73
	5800	35.3	5.27	48.2	6.00

3.8. Tissue equivalent liquid properties

Dielectric Performance of Head and Body Tissue Simulating Liquid

Test Engineer: Jerry hu									
Tissue	Measured	Targe	t Tissue		Measure	d Tissue		Liquid	Test Data
Туре	Frequency (MHz)	σ	٤r	σ	Dev.	ε _r	Dev.	Temp.	
835H	835	0.90	41.50	0.92	2.22%	42.82	1.81%	20.2	07/06/2022
1800H	1800	1.52	53.30	1.56	-1.32%	52.11	-2.23%	22.2	07/08/2022
1900H	1900	1.40	40.00	1.37	-2.14%	38.56	-3.60%	21.4	07/11/2022
2450H	2450	1.80	39.20	1.84	2.22%	39.70	1.28%	22.1	07/13/2022
2600H	2600	1.96	39.00	1.92	-2.04%	38.43	-1.46%	22.3	07/15/2022

. -



上CS Testing Lab

3.9. System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system $(\pm 10 \%)$.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 19 of 128

Justification for Extended SAR Dipole Calibrations

Referring to KDB 865664D01V01r04, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration intervals can be extended. While calibration intervals not exceed 3 years.

Ks	LCS Testing Lat	SID835	SN 07/14 DIP 0)G835-303 Exter	35-303 Extend Dipole Calibrations			
B	Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	
	2021-09-29	-24.49		54.9		2.8		

SID1800 SN 30/14 DIP 1G800-301 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)		
2021-09-29	2021-09-29 -20.26		43.1		6.9			
SID1900 SN 38/18 DIP 1G900-466 Extend Dipole Calibrations								

SID 1900 SN 38/18 DIP 1G900-466 Extend Dipole Calibrations										
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)				
2021-09-29	-26.43		50.5		4.7					

SID2450 SN 07/14 DIP 2G450-306 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2021-09-29	-25.59		44.7		-1.1	

	而服務	SID2600	0 SN 38/18 DIP	2G600-468 Exte	end Dipole Calib	ations	-mil BB	计分
L.	Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	Lap
	2021-09-29	-29.14		49.2		3.4		

		an thi				nr. HA				nor Hi	
Mixture	Frequency	Power	SAR _{1g}	SAR _{10g}	Drift	1W Ta	1W Target		rence ntage	Liquid	Date
Туре	(MHz)	Fower	(W/Kg)	(W/Kg)	W/Kg) (%)	SAR _{1g} (W/Kg)	SAR _{10g} (W/Kg)	1g	10g	Temp	Dale
		100 mW	0.923	0.639							
Head	835	Normalize to 1 Watt	9.23	6.39	2.03	9.60	6.20	-3.85%	3.06%	20.2	07/06/2022
		100 mW	3.853	2.055							
Head	1800	Normalize to 1 Watt	38.53	20.55	1.62	38.13	20.20	1.05%	1.73%	22.2	07/08/2022
		100 mW	3.911	2.096							
Head	1900	Normalize to 1 Watt	39.11	20.96	-1.20	40.03	20.55	-2.30%	2.00%	21.4	07/11/2022
		100 mW	5.487	2.521							
Head	2450	Normalize to 1 Watt	54.87	25.21	-0.08	53.89	24.15	1.82%	4.39%	22.1	07/13/2022
- 17	检测 hab	100 mW	5.747	2.246			一田检测	Lab			用检测DALab
Head	2600 Lab	Normalize to 1 Watt	57.47	22.46	3.14	56.91	24.69	0.98%	-9.03%	22.3	07/15/2022

0. SAR measurement procedure

The measurement procedures are as follows:

3.10.1 Conducted power measurement

a. For WWAN power measurement, use base station simulator connection with RF cable, at maximum power in each supported wireless interface and frequency based LCS Testing Lab power in each supported wireless interface and frequency band.

b. Read the WWAN RF power level from the base station simulator.

c. For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously Transmission, at maximum RF power in each supported wireless interface and frequency band. d. Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power.

3.10.2 GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using CMU200 the power level is set to "5" for GSM 850, set to "0" for GSM 1900. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5. the EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. GSM voice and GPRS data use GMSK, which is a constant amplitude modulation with minimal peak to average power difference within the time-slot burst. For EDGE, GMSK is used for MCS 1 - MCS 4 and 8-PSK is used for MCS 5 – MCS 9; where 8-PSK has an inherently higher peak-to-average power ratio. The GMSK and 8-PSK EDGE configurations are considered separately for SAR compliance. The GMSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance. The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode.

3.10.3 UMTS Test Configuration

3G SAR Test Reduction Procedure

esting Lab In the following procedures, the mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.3 This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the secondary mode is wireless mode being considered for SAR test reduction by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode.

Output power Verification

立讯检测股份 LCS Testing Lab

Maximum output power is verified on the high, middle and low channels according to procedures described in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1's" for WCDMA/HSDPA or by applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPA, HSPA) are requied in the SAR report. All configurations that are not supported by the handset or cannot be measured due to technical or equipment limitations must be clearly identified.

Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's", where the second se The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

Page 22 of 128

1) Body-Worn Accessory SAR

SAR for body-worn accessory configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreaing code or DPDCHn, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the handset, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

2) Handsets with Release 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA body SAR procedures in the "Release 5 HSDPA Data Devices" section of this document, for the highest reported SAR body-worn accessory exposure configuration in 12.2 kbps RMC. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

HSDPA should be configured according to the UE category of a test device. The number of HSDSCH/ HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH shouldbe configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain aconstant rate of active CQI slots. DPCCH and DPDCH gain factors(β c, β d), and HS-DPCCHpower offset parameters (Δ ACK, Δ NACK, Δ CQI) should be set according to values indicated in theTable below. The CQI value is determined by the UE category, transport block size, numberof HS-PDSCHs and modulation used in the H-set

Table 2: Subtests for UMTS Release 5 HSDPA

	Sub-set	β _c	β_d	β _d (SF)	β_c/β_d	β _{hs} (note 1, note 2)	CM(dB) (note 3)	MPR(dB)		
	一人间的	2/15	15/15	64 20	2/15	4/15	0.0	0.0	股仍	
~	Litting 20sting	Lau 12/15	15/15	C Te64	12/15	24/15sting La	1.0	0.0 Test	ng Lab	
SA	LCSZE	(note 4)	(note 4)	S1604	(note 4)	57 2491.35	1.0	STUCSTES		
	3	15/15	8/15	64	15/8	30/15	1.5	0.5		
	4	15/15	4/15	64	15/4	30/15	1.5	0.5		
Note1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 8 \Leftrightarrow A_{hs} = β_{hs}/β_c =30/15 \Leftrightarrow β_{hs} =30/15* β_c										

Note2: CM=1 for β_c/β_d =12/15, β_{hs}/β_c =24/15.

Note3:For subtest 2 the $\beta_c\beta_d$ ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to β_c =11/15 and β_d =15/15.

HSUPA Test Configuration

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures in the "Release 6 HSPA Data Devices" section of this document, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When VOIP is applicable for next to the ear head exposure in HSPA, the 3G SAR test reduction procedure is applied to HSPA with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body-worn accessory measurements is tested for next to the ear head exposure.

Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in Table 2 and other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of this document

Sub- set	βc	β_d	β _d (SF)	βc/βd	${\beta_{hs}}^{(1)}$	β _{ec}	β_{ed}	β _{ed} (SF)	$_{(\text{codes})}^{\beta_{\text{ed}}}$	CM (2) (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} 47/15 β _{ed2} 47/15	4	2	2.0	1.0	15	92

Table 3: Sub-Test 5 Setup for Release 6 HSUPA

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 22 of 128

Page 23 of 128

FCC ID: 2A73S-P600

4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81
Note	1: AACK. A	NACK and	$\Delta_{COI} =$	8 ⇔ A _{ha} =	= Bho/Bo =	= 30/15 ⇔(3 _{hs} = 30/15 *(3.					
							combination			ссн н		CH E-	而盼份
									Den, Di	0011, 1	10- DI (JOH, L-	- Illin Isse
							1 difference.		tingLan			TITCH	ting La.
Note	3: For sub	test 1 the	βc/βd ι	ratio of 11.	15 for th	ne TFC du	ring the mea	surem	ent period	(TF1, T	F0) is a	chieved	l by
							TF1) to $\beta c =$						-
Note	4: For sub	test 5 the	βc/βd ι	ratio of 15	15 for th	ne TFC du	ring the mea	surem	ent period	(TF1, T	F0) is a	achieved	lby
settin	setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 14/15$ and $\beta d = 15/15$.												
Note	5: Testing	UE using	E-DPD	OCH Physi	cal Laye	er category	1 Sub-test	3 is not	t required	accordi	ng to TS	5 25.306	3
Figure	e 5.1g.	-		-	-				-		-		
Note	6 [.] Red car	not be se	t direc	tlv: it is se	t hv Ahs	olute Gran	t Value						

3.10.4 WIFI Test Configuration

The SAR measurement and test reduction procedures are structured according to either the DSSS or OFDM transmission mode configurations used in each standalone frequency band and aggregated band. For devices that operate in exposure configurations that require multiple test positions, additional SAR test reduction may be applied. The maximum output power specified for production units, including tune-up tolerance, are used to determine initial SAR test requirements for the 802.11 transmission modes in a frequency band. SAR is measured using the highest measured maximum output power channel for the initial test configuration. SAR measurement and test reduction for the remaining 802.11 modes and test channels are determined according to measured or specified maximum output power and reported SAR of the initial measurements. The general test reduction and SAR measurement approaches are summarized in the following:

1. The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.

2. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, an "initial test configuration" is first determined for each standalone and aggregated frequency band according to the maximum output power and tune-up tolerance specified for production units. 110

a. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band.

b. SAR is measured for OFDM configurations using the initial test configuration procedures. Additional frequency band specific SAR test reduction may be considered for individual frequency bands c. Depending on the reported SAR of the highest maximum output power channel tested in the initial test configuration, SAR test reduction may apply to subsequent highest output channels in the initial test configuration to reduce the number of SAR measurements.

3. The Initial test configuration does not apply to DSSS. The 2.4 GHz band SAR test requirements and 802.11b DSSS procedures are used to establish the transmission configurations required for SAR measurement.

4. An "initial test position" is applied to further reduce the number of SAR tests for devices operating in next to the ear, UMPC mini-tablet or hotspot mode exposure configurations that require multiple test positions. a. SAR is measured for 802.11b according to the 2.4 GHz DSSS procedure using the exposure condition established by the initial test position.

b. SAR is measured for 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration. 802.11b/g/n operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel.

5. The Initial test position does not apply to devices that require a fixed exposure test position. SAR is measured in a fixed exposure test position for these devices in 802.11b according to the 2.4 GHz DSSS procedure or in 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration procedures . 6. The "subsequent test configuration" procedures are applied to determine if additional SAR measurements are required for the remaining OFDM transmission modes that have not been tested in the initial test

configuration. SAR test exclusion is determined according to reported SAR in the initial test and maximum output power specified or measured for these attact OFDM and maximum output power specified or measured for these other OFDM configurations.

2.4 GHz and 5GHz SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in section 5.2.2.

1. 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- a. When the reported SAR of the highest measured maximum output power channel (section 3.1) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- b. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 1. 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3). SAR is not required for the following 2.4 GHz OFDM conditions.

- a. When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration
- b. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 2. SAR Test Requirements for OFDM Configurations

When SAR measurement is required for 802.11 a/g/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration requirements.20 In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power should be clearly distinguished to apply the procedures.

3. OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures (section 4). When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.

- a. The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
- b. If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- c. If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- d. When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n.

After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.

- a. Channels with measured maximum output power within ¼ dB of each other are considered to have the same maximum output.
- b. When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement.

- When there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement. Initial Test Configuration Procedures
- An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth. modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required (see section 5.3.2). SAR test reduction of subsequent highest output test channels is based on the reported SAR of the initial test configuration.

For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode.23 For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration. When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. Subsequent Test Configuration Procedures

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, the procedures in section 5.3.2 are applied to determine the test configuration. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

a. When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated

band and exposure configuration.

- b. When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- c. The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.

1). SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.

2). SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the reported SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested. a) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.

- d. SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by applying the subsequent test configuration procedures in this section to the remaining configurations
- according to the following:
 - CST 1) replace "subsequent test configuration" with "next subsequent test configuration" (i.e., subsequent next highest specified maximum output power configuration)
- 2) replace "initial test configuration" with "all tested higher output power configurations.

3.11. Power Reduction

The product without any power reduction. LCS Testing Lab

3.12. Power Drift

立讯检测股份 LCS Testing Lab 立课检测度份 LCS Testing Lab To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. This ensures that the power drift during one measurement is within 5%.

医血症闲检测度份 LCS Testing Lab

这一位闲检测股份 LCS Testing Lab

正可能检测股份 LCS Testing Lab

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 26 of 128

TEST CONDITIONS AND RESULTS

4.1. Conducted Power Results

ting Lab According KDB 447498D01 General RF Exposure Guidance v06 Section 4.1 2) states that "Unless it is specified differently in the published RF exposure KDB procedures, these requirements also apply to test reduction and test exclusion considerations. Time-averaged maximum conducted output power applies to SAR and, as required by § 2.1091(c), time-averaged ERP applies to MPE. When an antenna port is not available on the device to support conducted power measurement, such as FRS and certain Part 15 transmitters with built-in integral antennas, the maximum output power allowed for production units should be used to determine RF exposure test exclusion and compliance."

<GSM Conducted Power>

General Note:

1. Per KDB 447498 D01v06, the maximum output power channel is used for SAR testing and for further SAR test reduction.

2. According to October 2013TCB Workshop, for GSM / GPRS / EGPRS, the number of time slots to test for SAR should correspond to the highest frame-average maximum output power configuration, considering the possibility of e.g. 3rd party VoIP operation for head and body-worn SAR testing, the EUT was set in GPRS (4Tx slot) for GSM850/GSM1900 band due to their highest frame-average power.

3. For hotspot mode SAR testing, GPRS should be evaluated, therefore the EUT was set in GPRS (4 Tx slots) for GSM850/GSM1900 band due to its highest frame-average power.

Conducted power measurement results for GSM850/PCS1900

		oonaa	cica pom	Ji moust		esuits in c		001000			
		Tune	Burst C	onducted (dBm)	power		Tune-	Averag	e power (dl	3m)	
GSI	VI 850	-up	Channel	/Frequen	cy(MHz)	Division	up	Channel/Frequency(MHz)			
		Max	128/ 824.2	190/ 836.6	251/ 848.8	Factors	Max	128/ 824.2	190/ 836.6	251/8 48.8	
G	SM	32.50	32.42	32.42	32.40	-9.03dB	23.47	23.39	23.39	23.37	
	1TX slot	32.50	32.31	32.28	32.28	-9.03dB	23.47	23.28	23.25	23.25	
GPRS	2TX slot	31.50	30.99	30.97	31.02	-6.02dB	25.48	24.97	24.95	25.00	
(GMSK)	3TX slot	30.00	29.51 ^{CS}	29.49	29.47	-4.26dB	25.74	25.25	25.23 CS	25.21	
	4TX slot	28.50	28.00	28.01	28.01	-3.01dB	25.49	24.99	25.00	25.00	
	1TX slot	26.50	25.97	26.02	26.01	-9.03dB	17.47	16.94	16.99	16.98	
EGPRS	2TX slot	25.00	24.48	24.49	24.47	-6.02dB	18.98	18.46	18.47	18.45	
(8PSK)	3TX slot	23.50	23.02	23.02	22.99	-4.26dB	19.24	18.76	18.76	18.73	
	4TX slot	21.50	21.47	21.50	21.47	-3.01dB	18.49	18.46	18.49	18.46	
		Tune	Burst Conducted power (dBm)				Tune-	Averag	e power (dl	3m)	
GSM	1 1900	-up	Channel/Frequency(MHz)			Division	up	Channel/	Frequency(,	
		Max	512/ 1850.2	661/ 1880	810/ 1909.8	Factors	Max.	512/ 1850.2	661/ 1880	810/ 1909. 8	
G	SM THUS	29.50	29.45	29.45	29.47	-9.03dB	20.47	20.42	20.42	20.44	
	1TX slot	29.50	29.40	29.40	29.39	-9.03dB	20.47	20.37 CS	20.37	20.36	
GPRS	2TX slot	28.00	27.99	27.98	27.97	-6.02dB	21.98	21.97	21.96	21.95	
(GMSK)	3TX slot	27.00	26.48	26.49	26.52	-4.26dB	22.74	22.22	22.23	22.26	
	4TX slot	25.50	24.99	25.02	24.99	-3.01dB	22.49	21.98	22.01	21.98	
	1TX slot	26.00	25.47	25.51	25.48	-9.03dB	16.97	16.44	16.48	16.45	
EGPRS	2TX slot	24.50	24.00	24.01	23.98	-6.02dB	18.48	17.98	17.99	17.96	
(8PSK)	3TX slot	23.00	22.50	22.52	22.50	-4.26dB	18.74	18.24	18.26	18.24	
	4TX slot	21.50	21.01	21.00	21.01	-3.01dB	18.49	18.00	17.99	18.00	
Notos											

Notes:

1. Division Factors

To average the power, the division factor is as follows:

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/1) => -9.00dB 3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.00dB LCS Testing Lab

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.00dB According to the conducted power as above, the GPRS measurements are performed with 3Txslot for GPRS850

and 3Txslot GPRS1900.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 27 of 128

c.

<UMTS Conducted Power>

The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification.A summary of these settings are illustrated below: 后立讯检测股份 LCS Testing Lab 立讯检测股份 立讯检测股份

HSDPA Setup Configuration:

- sting Lab Setup Configuration: The EUT was connected to Base Station E5515C referred to theSetup Configuration. acs
 - The RF path losses were compensated into the measurements. b.
 - A call was established between EUT and Base Station with following setting:
 - Set Gain Factors (β_c and β_d) and parameters were set according to each i.
 - ii. Specific sub-test in the following table, C10.1.4, guoted from the TS 34.121
 - Set RMC 12.2Kbps + HSDPA mode. iii.
 - iv. Set Cell Power = -86 dBm
 - Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK) v.
 - vi. Select HSDPA Uplink Parameters
 - vii. Set Delta ACK, Delta NACK and Delta CQI = 8
 - viii. Set Ack-Nack Repetition Factor to 3
 - ix. Set CQI Feedback Cycle (k) to 4 ms
 - Set CQI Repetition Factor to 2 Χ.
 - xi. Power Ctrl Mode = All Up bits
 - STestingLab The transmitted maximum output power was recorded. d.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

立讯检测股份

Ī	Sub-test	βc	βa	βd (SF)	βc/βd	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)	1
t	1	2/15	15/15	64	2/15	4/15	0.0	0.0	1
İ	2	12/15	15/15	64	12/15	24/15	1.0	0.0	1
		(Note 4)	(Note 4)		(Note 4)				
ļ	3	15/15	8/15	64	15/8	30/15	1.5	0.5	
-	4	15/15	4/15	64	15/4	30/15	1.5	0.5	調股份
I I					$_{s} = 30/15 * \beta_{c}$.				sting Lab
Rea r	I	Magnitude (E	EVM) with H	S-DPCCH te	iirement test in cla st in clause 5.13.1	A, and HSDF	PA EVM with pha	ase	
	(discontinuity	in clause 5.	13.1 АА , ∆аск	and $\Delta_{NACK} = 30/1$	5 with eta_{hs} = 3	30/15 * eta_c , and	∆ _{CQI} = 24/15	
	١	with eta_{hs} = 24	4/15 * $meta_c$.						
					. For all other com tive CM difference				
				se 6 and later			icable for only o	L5 that	
					or the TFC during	the measure	ment period (TF	1. TF0) is	
					factors for the ref				
ļ	:	= 15/15.	-						
		山田股份		Setu	p Configuration 立语 ^{论。} LCS Testing Lab	1		A - THE BE 17	
	工	Ning Lab			1 THRE Lab		工工	讯检测版 Lab CS Testing Lab	
HSUPA	A Setup Co	nfiguration	:	16	LCSTES		STL	CS 163	
а.	The EUT	was conne	cted to Bas		S CMU200 refer	red to the Se	etup Configurat	ion.	
b.					the measurement		· +		
C.					ase Station with f		ting ^ :		
					.13.2B with QPS rameters (AG Inc		t according to	aaab anaaifia a	ub toot
					rom the TS 34.12			each specific s	ub-lesi
		cell Power =		.5, quoteu li	10111 the 10 04.12	. 1			
		Channel Typ		+ HSPA					
		JE Target P							
		er Ctrl Mode		ng bits					
	vii. Set a	nd observe	the E-TFC	而服份		a mil P	设份		而服份
- 11	viii. Confi	rm that E-T	FCI is equa	al to the targ	et E-TFCI of 75 f	or sub-test 1	, and other sub	otest's E-TFCI	ting Lab
St d.	The trans	mitted max	imum outpi	ut power wa	et E-TFCI of 75 f s recorded.	LCSTestin	-	ST LCST	esting Lab

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

L. I	Sub- test	βc	βd	βd <i>(SF</i>)	βc/βd	βнs (Note1)	βec	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI	检测股份
ST LCS	1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75	位测照 Testing L
	2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67	1
	3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92	
	4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71	
	5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81	
	Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c . Note 2: CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.														
	Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.														
	Note 4	Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.													
	Note 5		e of testi 306 Tabl			E-DPDC	H Physic	al Layer categ	gory 1,	Sub-test	3 is omit	ted acco	rding to		
	Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value.											1			

General Note

1. Per KDB 941225 D01, RMC 12.2kbps setting is used to evaluate SAR. If AMR 12.2kbps power is < 0.25dB higher than RMC 12.2kbps, SAR tests with AMR 12.2kbps can be excluded.

2. By design, AMR and HSDPA/HSUPA RF power will not be larger than RMC 12.2kbps, detailed information is included in Tune-up Procure exhibit.

3. It is expected by the manufacturer that MPR for some HSDPA/HSUPA subtests may differ from the specification of 3GPP, according to the chipset implementation in this model. The implementation and expected deviation are detailed in tune-up procedure exhibit.

		Conducte		i wieasui	ement ive	suits (WODI		')	_
			FDD I	Band V res	ult (dBm)	FDD E	Band II result (dBm)	
	Item	Band		Test Chan	inel		Test Channel		
	nom	Bund	4132/	4183/	4233/	9262/	9400/	9538/	
			826.4	836.6	846.6	1852.4	1880	1907.6	
	RMC	12.2kbps	22.73	22.86	22.68	23.26	23.24	23.21	
		Subtest 1	22.49	22.89	22.65	22.53	22.59	22.52	
	HSDPA	Subtest 2	22.59	22.80	22.56	22.69	22.56	22.50	
		Subtest 3	22.60	22.65	22.56	22.59 👞	22.48	22.43	- Mà
		Subtest 4	22.58	22.75	22.57	22.34	22.45	22.60	BEIN
		Subtest 1	22.43	22.67	22.46	22.62	22.74	22.65	ngLab
ST		Subtest 2	22.38	22.61	22.56	22.43	22.42	22.37	
	HSUPA	Subtest 3	22.34	22.55	22.54	22.55	22.44	22.59	
		Subtest 4	21.64	21.04	21.66	22.47	22.34	22.52	
		Subtest 5	21.47	21.66	21.40	21.45	21.54	21.66	

Conducted Power Measurement Results(WCDMA Band II/V)

Note:1.When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/2$ dB higher than the primary mode (RMC12.2kbps) or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

SI 立讯检测度份 LCS Testing Lab

医在此能量量。 LCS Testing Lab

LTE Band2 BW	Frequency	RB Conf	iguration	Average Po	ower [dRm]
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
179 200		Size		23.16	
THE THE HELAD			0		22.19 22.57
ti研检测版切 LCS Testing Lab	LI I	ATE sting Lab	2 11111	23.19	1.4
LC2		,S \ ⁰	5 LCST	23.06	22.24
	1850.7	3	0	23.14	21.71
		3	1	23.24	22.08
		3	3	23.28	21.75
		6	0	22.28	21.62
		1	0	23.49	22.49
		1	2	23.56	22.68
		1	5	23.35	22.46
1.4	1880.0	3	0	23.39	22.35
		3	1	23.47	22.17
	- 13	3	3	23.36	22.24
	而服伤	6	~ 测度化	22.40	21 64
计形计	訓股份 esting Lab	1	Testing Lo	23.18	21.04
VST CST	estino	ST LCS	Testing 0	23.27	21.71
- Los		Lou	5	23.02	21.51
	1000.0				
	1909.3	3	0	23.07	21.75
		3	1	23.04	21.89
		3	3	23.08	21.67
		6	0	22.00	21.06
		1	0	23.25	21.97
		1	8	23.48	21.81
		1	14	23.33	22.09
	1851.5	8	0	22.11	21.29
		8	4	22.10	21.58
THAT THE BETTY		1167月188	7	22.13	21.11
宜 立 讯 检 测 股 份 LCS Testing Lab	Ĭ	England Stand	0 IIII	sting 22.18	21.11 20.95
SILCSTE	Men L	5101	O LCST	23.40	22.30
	Line	1	8	23.36	22.03
		1	14	23.30	22.13
3	1880.0	8	0	22.21	21.39
J	1000.0	8	4	22.21	21.39
		8	7	22.23	
					21.44
		15	0	22.28	21.60
		1	0	23.31	22.10
		1	8	23.15	21.53
		1	14	23.24	22.26
	1908.5	8	0428	22.07	21.49
- in the	Lab	8	A THE A	22.27	21.34
Les Let	THIRE (1908.5	8 I.I.	Testing 27	22.08	STesti29.11
-16-169		15 100	0	22.14	21.27
		1	0	23.53	22.19
		1	12	23.44	21.62
		1	24	23.24	22.12
	1852.5	12	0	22.19	21.26
		12	6	22.17	21.11
		12	13	22.04	21.09
		25	0	22.08	21.03
5		1	0	23.22	21.52
Ĭ		1	12	23.21	21.52
		an th	24	192 / 2	21.52
与立讯检测股份	1000.0				
与工作和检测版 ^{Lab} LCS Testing Lab	1880.0	12	0 THE	22.24 22.27	21.20
ST ICS TESLING	MST .	STestin 12	6 13 LCST	-	21.19
		12	15	22.12	21.26
	-	25	0	22.27 23.27	21.19 21.82
	1907.5	1	0		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 30 of 128

S/

FCC ID: 2A73S-P600

Report No.: LCSA070522052EB

		10010.1			
		1	12	23.02	21.50
		1	24	22.93	21.80
		12	0	22.01	21 27
立新检测股份		A-TIMB12	6	22.03	21.37
立讯检测的Lab		Att ing 2ab	13. 世讯作	22.12	21.24
LCSTesting	VIST I	STer 25	OT LOST	22.00	21.08
Los		1	0	23.15	22.20
		1	24	23.35	21.88
		1	49	23.11	22.17
	1855.0	25	 0	22.14	21.25
	1055.0	25	12	22.14	21.23
		25			
			25	22.18	21.10
		50	0	22.10	21.14
		1	0	23.20	21.95
		1	24	23.14	22.32
	TRE T880.0	1	49	23.26	21.87
10	1880.0	25	A THE YO	22.16	21.09
IL IL NUT	sting Lab	25 11	Testing 12	22.15	21.17
STLCST		25 ST LCS	25	22.18	21.11
		50	0	22.25	21.30
		1	0	23.31	22.13
		1	24	22.87	21.82
		1	49	23.13	22.16
	1905.0	25	0	22.01	21.20
		25	12	22.12	21.21
		25	25	22.17	21.07
		50	0	21.95	21.14
		1	0	23.03	21.98
		13	38	23.09	21.98
和你到月空门		THAT IN BEAM	74	22.88	22.33
立讯检测股份 LCS Testing Lab	1857.5	Thestin 37	O IIIII	sting 22.19	22.33
LCS Testing	195 1	37	18 LCS	21.88	21.90
		37	37	22.24	22.24
		75	0	21.95	21.14
		1	0	23.47	22.09
		1	38	23.16	22.10
		1	74	22.90	22.34
15	1880.0	37	0	22.38	22.19
		37	18	22.02	22.12
		37	37	22.22	22.14
		75	0	22.26	21.38
	115	1	0	23.26	22.34
LCST	测股份	1	38	22.98	22.02
立讯作	ting Lab	工证讯	Testing 74	23.14	22.08
ST LCST	1902.5	37 54 105	0	22.11	22.26
	1002.0	37	18	21.91	21.84
		37	37	21.99	22.03
		75		22.04	
			0		21.18
		1		23.62	22.40
		1	49	23.39	22.98
	1000.0	1	99	23.30	22.63
	1860.0	50	0	22.15	21.41
		50	25	22.13	21.35
20		50	50	22.32	21.55
而時份		100	0	22.33	21.37
立讯检测 ^{B2} Los Testing Lab	24	A the Man ab	0	23.47	23.23
CS Testing	MS	s Testing	49 1051	stin ⁹ 23.74	22.64 Testing
20 立讯检测股份 LCS Testing Lab	1880.0	1	- 99 - 100	23.58	22.72
		50	0	22.18	21.29
		50	25	22.19	21.42

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 31 of 128

S/

Report No.: LCSA070522052EB

V	-				
		50	50	22.20	21.31
		100	0	22.21	21.30
		1	0	23.46	22.08
一般一副最优		小利股初	49	23.23	22.29
立 近 新校 测 MC	T	Hing Lab	99 THE	22.97	22.15 Lab
ST LCS TEST	1900.0	50	0 LCST	22.20	21.54
		50	25	22.43	21.56
		50	50	22.26	21.30
		100	0	22.34	21.34

BW	Frequency	RB Confi		Average Po	ower [dBm]
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
		1	0	23.03	22.50
		1	2	23.20	22.48
		1		23.02	22.27
	测股件710.7	3	公司服10	23.04	21.54
立 语称	ting Lab	3 11	The sting Lab	23.03	21.64
ST LCST	500	3 ST LCS	3	23.02	21.77 21.77
		6	0	22.26	21.38
		1	0	23.26	22.87
		1	2	23.24	22.52
		1	5	23.23	22.32
1.4	1732.5	3	0	23.36	21.89
		3	1	23.25	21.87
		3	3	23.22	22.06
		6	0	22.52	21.56
		1	0	23.16	21.69
. 15		1.5	2	23.47	21.70
小而服务的		一時間間	5	23.18	21.64
立讯检测股份 LCSTesting Lab	1754.3	ALL BALLIN. AND	O THE	sting 23.00	22.31
LCSTEST	NSA I	C ^{5 105} 3	LCST	23.00	21.79
6 ⁻	Lane .	3	3	23.10	21.68
		6	0	22.26	21.14
		1	0	23.10	22.12
		1	8	22.95	21.90
		1	14	22.97	22.03
	1711.5	8	0	22.23	21.36
		8	4	22.11	21.04
		8	7	22.08	21.43
		15	0	22.11	21.15
	. 115	1	0	23.23	21.99
10	测股切	1	8	23.21	22.16
13 LCS TO	sting Lap		Testing Lap	23.23	22.03
ST LCST	1732.5	8 21 109	0	22.32	21.50
L		8	4	22.30	21.50
		8	7	22.29	21.47
		15	0	22.23	21.22
		1	0	23.04	21.90
		1	8	23.07	22.10
		1	14	22.97	22.10
	1753.5	8	0	22.21	21.32
		8	4	22.34	21.35
		8	7	22.12	21.23
a llà		15	0	22.25	21.10
立讯检测股份 LCSTesting Lab 5			0	23.00	22.02
THIN Lab	1712.0	Http://ap	12	22.94	21.41
LCS 5	17120	CS 1	24 LCST	23.23	21.35
, v	17 12.0	12	0	21.97	20.90
			~	21.07	20.00

FCC ID: 2A73S-P600

Report No.: LCSA070522052EB

		12	13	21.88	20.98
		25	0	21.90	20.83
		1.	0	23.19	21.64
上 立 讯 检测股份		A TIM BE TH	12	23.08	21.39
上 LCS Testing La	b	HT ingtab	24 TH	23.11	21.51
LCS Testing	1732.5	cs ^{Test} 12	O LCST	22.18	\$21.10
- Carlos Contraction of the second se		12	6	22.15	21.30
		12	13	22.15	21.20
		25	0	22.10	21.18
		1	0	22.92	21.77
		1	12	22.86	21.45
		1	24	22.84	21.93
	1752.5	12	0	21.94	21.05
	17.52.5	12	6	21.94	21.05
		12	13	21.95	21.10
		25	0	21.95	20.96
	Rtf 測展が STosting Lab 1715.0	1	A 测度 10	23.05	21.88
5.2	A the Munchab	Till Till	101 1757 36	23.05	21.00
MSI L	STesting	ST LCS	49	23.02	21.97
	1715.0				
	1715.0	25	0	21.98	21.04
		25	12	22.04	21.04
		25	25	22.04	20.94
		50	0	21.96	20.97
		1	0	23.30	22.25
		1	24	23.07	22.35
10	(====	1	49	23.14	22.12
10	1732.5	25	0	22.17	21.20
		25	12	22.15	21.19
1 P. 43		25	25	22.06	21.10
一、开始测的之	b	50	0	22.08	21.13
LCS Testing La	Le I	MUT Testing	0 TIM	sting 23.05	Z 1300 Testing
- LCS		,c ⁵ 1	24 LCS	23.04	21.93
		1	49	22.89	21.78
	1750.0	25	0	22.08	21.13
		25	12	22.09	21.14
		25	25	22.04	21.08
		50	0	22.04	21.08
		1	0	23.08	22.12
		1	38	22.47	21.89
		1	74	23.00	22.06
	1717.5	37	0	22.06	22.13
		37	18	21.79	21.96
د برد	积检测股份 STesting Lab	37	37	22.10	22.00
US I	STasting	75 11	TestingLo	22.05	1.04
	,0	1 PC 1CS	0	23.30	22.17
		1	38	22.80	22.13
		1	74	22.90	22.14
15	1732.5	37	0	22.19	22.22
		37	18	22.10	22.14
		37	37	22.17	22.14
		75	0	22.17	21.17
		1	0	23.23	22.20
		1	38	22.68	21.93
		1	74	22.57	21.85
- 113	1747.5	37	0	22.18	22.21
119 2 12 1		5 COUL MSG 11	18	21.89	21.93
和海湖殿73	b	四位 ¹⁰¹⁸ 37 _{ab}	10	·	
上 立 訳 位 別 版 D	b IIII	Testin 37	37	sting 21.80	21.94 Testing
上 LCS Testing La					
LCS Testing La	1720.0	Testin 37	37 1	st ^{ing} 21.80	21.94 Testing

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 33 of 128 Page **34** of **128**

FCC ID: 2A73S-P600

Report No.: LCSA070522052EB

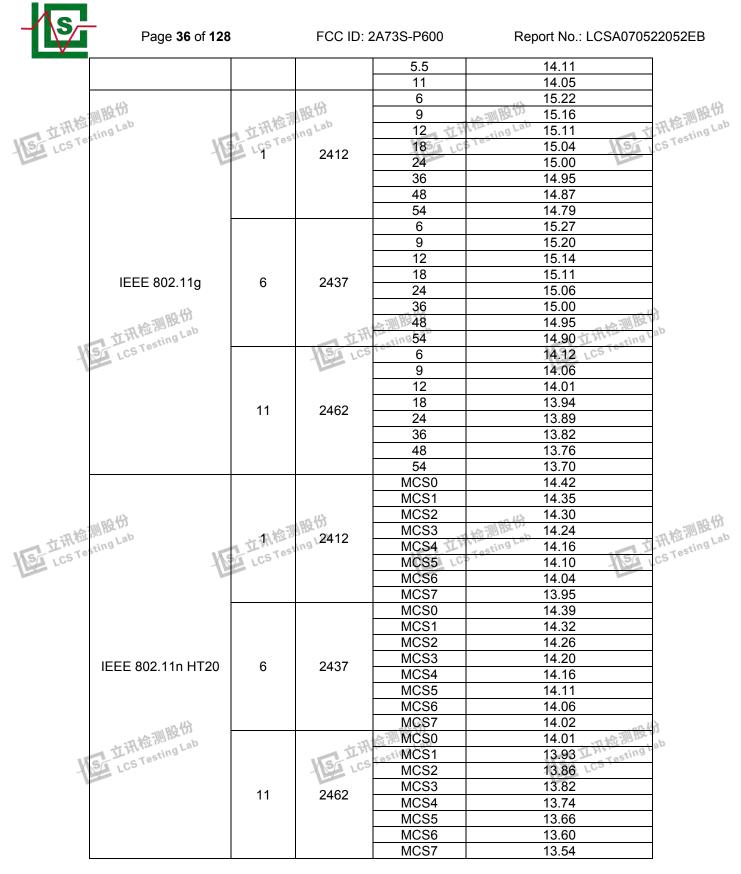
		1	99	23.01	22.17	
		50	0	21.99	21.18	
		50	25	22.00	21.28	
THE THE THE		50	50	22.05	22.22	之仍
IL if Musting Lab	工	Renatin 100	0 Till	22.23	21.34	gLab
立訊检测股份 LCS Testing Lab	STL	STEST	O LCST	23.63	22.31	
		1	49	23.35	22.14	
		1	99	22.43	22.89	
	1732.5	50	0	22.44	21.55	
		50	25	22.52	21.55	
		50	50	22.41	21.38	
		100	0	22.51	21.47	
		1	0	23.50	22.46	
		1	49	23.83	22.15	
		1	99	23.12	21.91	
	1745.0	50	0	22.48	21,47	
1	测股初	50	25	22.37	21.50	
立动	1745.0	50 111	Tosting 50	22.25	21.48	
ST LCS T	y-	1005 LCS	0	22.44	^{cs 10°} 21.45	

LTE Band 7

	BW	Frequency	RB Conf	iguration	Average Power [dBm]		
	(MHz)	(MHz)	Size	Offset	QPSK	16QAM	
			1	0	20.34	19.52	
			1	12	19.87	19.10	
	uN.		1	24	20.04	19.29	
		2502.5	12	0	19.75	19.08	
			12	6	19.71	19.04	
			12	13	19.67	10.00	
	立訊检测股份		25	0	19.63	10.00	
	THE Lab	Ĭ	PRAN asting ab	O TIME	21.83	21.03	
15	立讯检测版Lab LCS Testing Lab	STL	51021	12 LCS 1	21.06	20.30	
			1	24	20.72	19.97	
	5	2535.0	12	0	21.29	20.61	
			12	6	21.27	20.59	
			12	13	20.70	20.02	
			25	0	20.96	20.29	
			1	0	22.19	21.18	
			1	12	21.64	20.96	
			1	24	21.54	20.84	
		2567.5	12	0	21.52	20.52	
			12	6	21.11	20.32	
	- A	测股门	12	13	21.47	20.81	
	Titte	测股份 sting Lab	25	resting Loo	21.13	20.16	
	LCS !!		LCs	0	19.53	18.76	
			1	24	19.70	19.02	
			1	49	20.33	19.62	
		2505.0	25	0	19.37	18.66	
			25	12	19.33	18.62	
			25	25	19.91	19.18	
			50	0	19.58	18.89	
	40		1	0	21.32	20.64	
	10		1	24	20.56	19.91	
			1	49	19.31	18.64	
	立讯检测股份 LCS Testing Lab	2535.0	25	0	20.97	20.25	
			四位测25。	12	20.95	20.23	
		I I	Testin 25	25	sting 19.93	19.22 Testing	
18	LCS		50	- O LCS I	20.45	19.76	
		2565.0	1	0	22.34	21.21	
		2565.0	1	24	21.88	21.06	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 34 of 128 Page **35** of **128**

FCC ID: 2A73S-P600


Report No.: LCSA070522052EB

		1	49	20.74	19.87
		25	0	21.21	20.25
- 0		25	12	21.17	20 44
在试行检测股份		25	25	21.25	20.55
立讯检测http://ab	1	Rin 50	0 triffer	21.09	20.11
ST CS TESTING	NST T	CS Testing	OT LCST	19.84	19.30
		1	37	20.13	19.68
		1	74	22.02	20.90
	2507.5	37	0	19.42	19.50
	2007.0	37	18	19.75	19.79
		37	38	21.11	21.26
		75	0	20.62	19.98
		1	0	22.61	21.62
		1	37	20.94	20.55
		1	74	19.58	19.19
15	2535.0	37	0	21.96	22.06
10	2535.0	37	A THE 18	20.33	20.46
THIT	Sting Lab	37 11	EAL 1797 - 16	19.02	19.13
MSG CST	lestina	75 51 109	Testing 38 0	21.07	20.35
- Los		1	0	21.07	20.35
		1	37	21.98	20.84
		1	74	21.70	20.84
	0560 F	37		21.40	
	2562.5		0		21.14
		37	18	21.03	21.01
		37	38	20.84	20.92
		75	0	20.99	20.22
		1	0	19.60	19.50
		1	49	21.38	20.84
而服务份	0540.0	1	99	22.24	21.54
+ HA ININA Lab	2510.0	50	0 25	20.26	19.67
St. cs Testing	MSI I	STestin 50		20.18	TOLOU TASLI
立訊检測股份 LCS Testing Lab		50		20.88	20.22
	~	100	0	21.37	20.98
		1	0	22.52	21.75
		1	49	21.66	21.17
20	0505.0	1	99	19.67	19.16
-	2535.0	50	0	21.18	20.42
		50	25	21.20	20.48
		50	50	20.23	19.65
		100	0	21.02	20.18
		1	0	20.94	20.41
	計測股份 esting Lab 2560	1	49	22.82	22.44
THE	J. Jul Lab	1	99	21.36	20.87
LIGE LOST	esting 2560	50 11	Testing 0	21.09	20.13
100		50 ° LCS	25	21.08	20.30
		50	50	21.08	20.36
		100	0	21.10	20.19

<WLAN 2.4GHz Conducted Power>

	Mode	Channel	Frequency (MHz)	Data rate (Mbps)	Average Output Power (dBm)			
			2412	1	15.53	讯检测股份 cSTestingLab		
		1 1 16. Test		2	15.46			
				5.5	15.37			
	NRG (A)			11	15.28			
上讯检	制股份 sting VEEE 802.11b		2437	1	15.20			
MST STO	sting were out in the			2 1	Testing 15.12	os Testing L		
- LCO	-0			5.5	15.08			
				11	15.03	-		
		11	2462	1	14.25			
				2	14.18			

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 35 of 128

*Note:*SAR is not required for the following 2.4 GHz OFDM conditions as the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

医在注闭检测股份 LCS Testing Lab

在市代检测股份 LCS Testing Lab

医拉诺检测度份 LCS Testing Lab

在前检测度份 LCS Testing Lab

<BT Conducted Power>

Mode	channel	Frequency	Conducted AVG output power
Mode	onanner	(MHz)	(dBm)
	0	2402	-0.24
BLE	20	2442	0.99
	39	2480	0.88
	0	2402	1.03
GFSK	39	2441	1.62
	78	2480	1.68
而服份	0	2402	1.20
π/4-DQPSK	39	2441 Lab	1.47 - 方讯检 1.30
IST CS Testing	78	2480	1.515 CS Testing
	0	2402	1.30
8DPSK	39	2441	1.54
	78	2480	1.61

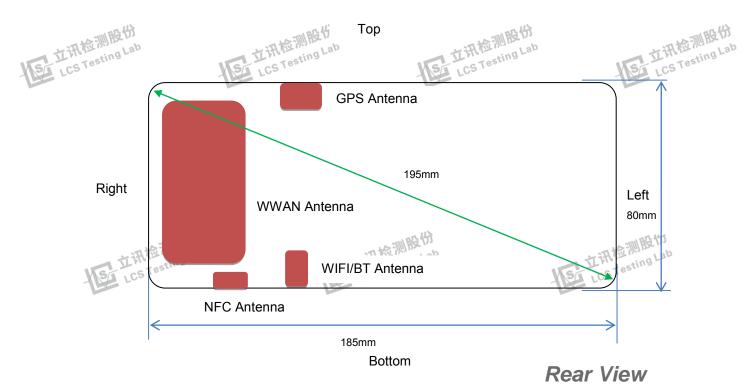
Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] [\sqrt{f} (GHz)] ≤ 3.0 for1-g SAR and ≤ 7.5 for 10-g extremity SAR

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

		e decimal place for comparison		~ TIMBE 4	3
	士 讯恒 / Lab	+ iff 1 10 Man Lab	+ HI Wand Lab	+ 讯徑 Man La	ab
NG	Bluetooth Turn up	Separation Distance	Frequency	Exclusion	
	Power (dBm)	(mm)	(GHz)	Thresholds	
	2.0	5	2.45	0.5	

Per KDB 447498 D01v06, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied todetermine SAR test exclusion. The test exclusion threshold is 0.5< 3.0, SAR testing is not required.


医在立讯检测股份 LCS Testing Lab

在市代检测股份 LCS Testing Lab

4.2. Transmit Antennas and SAR Measurement Position

Antenna information:

WLAN/BT Antenna		WLAN/BT TX/RX	
WWAN Antenna	一一股份	GSM/UMTS/LTE TX/RX	一個時份
Note	卡 訊 植 Man Lab	+ A TU Man Lab	+ A TO Non Lab

1). Per KDB648474 D04, because the overall diagonal distance of this devices is 195mm>160mm, it is considered as "POS Terminal PC" device.

2). Per KDB648474 D04, 10-g extremity SAR is not required when Body-Worn mode 1-g reported SAR < 1.2 W/Kg.

3). According to the KDB941225 D06 Hot Spot SAR v02, the edges with less than 25 mm distance to the antennas need to be tested for SAR.

4). Per KDB 616217 D04, The antennas in tablets are typically located near the back (bottom) surface and/or along the edges of the devices; therefore, SAR evaluation is required for these configurations. Exposures from antennas through the front (top) surface of the displaysection of a full-size tablet, away from the edges, are generally limited to the user's hands.

Distance of The Antenna to the EUT surface and edge (mm)												
Antennas	Antennas Front Back Top Side Bottom Side Left Side Right Side											
BT/WLAN	Testine5	<5	63	<5	109	69						
WWAN	<5	<5	<5	<5	152	<5						

Positions for SAR tests; Hotspot mode												
Antennas	Antennas Front Back Top Side Bottom Side Left Side Right Side											
BT/WLAN	Yes	Yes	No	Yes	No	No						
WWAN												

General Note: Referring to KDB 941225 D06 v02, When the overall device length and width are \geq 9cm*5cm, the test distance is 0mm, SAR must be measured for all sides and surfaces with a transmitting antenna located with 25mm from that surface or edge.

立讯检测股份 ST LCS Testing Lab

ST LCS Testing Lab

医在此被测度份 LCS Testing Lab

反立讯检测股份 LCS Testing Lab

SAR Measurement Results

The calculated SAR is obtained by the following formula:

Reported SAR=Measured SAR*10^{(Ptarget-Pmeasured))/10}

Scaling factor=10^{(Ptarget-Pmeasured))/10}

立讯检测股份 LCS Testing Lab Reported SAR= Measured SAR* Scaling factor

Where

P_{target} is the power of manufacturing upper limit;

P_{measured} is the measured power;

Measured SAR is measured SAR at measured power which including power drift)

Reported SAR which including Power Drift and Scaling factor

Duty Cycle

Test Mode		Duty Cycle
GSM		3:8
UMTS	心测度份	1:1 ~ 测股份
THE AND LAPTE	Till ang Lab	1:1 Till ting Lab
WLAN2450	SA LOSTEST	1:1 ST LCS TEST

4.3.1 SAR Results

SAR Values [GSM 850]

Ch.	Freq. (MHz)	Time slots	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results
		n	neasured / repo	rted SAR numb	pers - Body (ho	tspot opei	n, distance	10mm)		
128	824.2	4Txslots	Front	29.51	30.00	3.10	1.119	0.124	0.139	
128	824.2	4Txslots	Rear	29.51	30.00	-1.36	1.119	0.278	0.311	Plot 1
128	824.2	4Txslots	Right	29.51	30.00	0.41	1.119	0.108	0.121	检测股点
128	824.2	4Txslots	Top	29.51	30.00	-3.45	1.119	0.096	0.107	Testing
128	824.2	4Txslots	Bottom	29.51	30.00 🔺	0.87	1.119	0.077	0.086	

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. The frame average of GPRS (4Tx slots) higher than GSM and sample can support VoIP function, tested at GPRS (4Tx slots) mode for head.

3. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

SAR Values [GSM 1900]

Ch.	Freq. (MHz)	time slots	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results
measured / reported SAR numbers – Body (hotspot open, distance 10mm)										
810	1909.8	3Txslots	Front	26.52	27.00	3.41	1.117	0.092	0.103	
810	1909.8	3Txslots	Rear	26.52	27.00	0.34	1.117	0.137	0.153	Plot 2
810	1909.8	3Txslots	Right	26.52	27.00	3.41	1.117	0.073	0.082	
810	1909.8	3Txslots	Тор	26.52	27.00	2.85	1.117	0.065	0.073	
810	1909.8	3Txslots	Bottom	26.52	27.00	0.61	1.117	0.044	0.049	

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. The frame average of GPRS (4Tx slots) higher than GSM and sample can support VoIP function, tested at GPRS (4Tx slots) mode for head.

3. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest CS Testing Lab output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such csTesting test configuration(s).

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 39 of 128

mr. Hi

SAR Values [WCDMA Band V]

Ch.	Freq. (MHz)	Channel Type	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results
		me	easured / repo	orted SAR numb	ers - Body (hot	spot open	, distance ⁻	10mm)		
4183	836.6	RMC*	Front	22.89	23.00	-0.68	1.026	0.286	0.293	-
4183	836.6	RMC*	Rear	22.89	23.00	-0.73	1.026	0.329	0.337	Plot 3
4183	836.6	RMC*	Right	22.89	23.00	3.74	1.026	0.257	0.264	
4183	836.6	RMC*	Тор	22.89	23.00	-0.78	1.026	0.236	0.242	
4183	836.6	RMC*	Bottom	22.89	23.00	0.55	1.026	0.222	0.228	

Remark:

1. The value with block color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

. m. 47

3. RMC* - RMC 12.2kbps mode;

	立讯检测版 ^{IN}				es [WCDMA I	^b Band III	立讯检测版 Wat			
Ch.	Freq. (MHz)	Chan nel Type	Test Position	Condu cted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	4055	Graph Results
			measured / reporte	d SAR num	bers - Body (ho	tspot open	, distance	10mm)		
9400	1880.0	RMC	Front	22.74	23.00	-0.27	1.062	0.152	0.161	
9400	1880.0	RMC	Rear	22.74	23.00	-3.14	1.062	0.181	0.192	Plot 4
9400	1880.0	RMC	Right	22.74	23.00	3.96	1.062	0.132	0.140	
9400	1880.0	RMC	Тор	22.74	23.00	-4.44	1.062	0.125	0.133	
9400	1880.0	RMC	Bottom	22.74	23.00	3.90	1.062	0.110	0.117	

Remark:

1. The value with block color is the maximum SAR Value of each test band.

 The value with block color is the maximum SAR Value of each test band.
 Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. RMC* - RMC 12.2kbps mode;

	SAR values [LTE Band 2]											
Ch.	Freq. (MHz)	Channel Type (20M)	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results		
	measured / reported SAR numbers - Body (hotspot open, distance 10mm)											
18900	1880.0	1RB	Front	23.74	24.00	0.07	1.062	0.132	0.140			
18900	1880.0	1RB	Rear	23.74	24.00	-0.46	1.062	0.183	0.194	Plot 5		
18900	1880.0	1RB (1	Right	23.74	24.00	3.45	1.062	0.115	0.122			
18900	1880.0	HARB La	🖻 Тор	23.74	24.00	° -0.54	1.062	0.103	0.109			
18900	1880.0	cs 1RB	Bottom	23.74	c 24.00	2.85	1.062	0.088	0.093			
19100	1900.0	50%RB	Front	22.43	22.50	3.65	1.016	0.067	0.068			
19100	1900.0	50%RB	Rear	22.43	22.50	1.74	1.016	0.098	0.100			
19100	1900.0	50%RB	Right	22.43	22.50	0.88	1.016	0.057	0.058			
19100	1900.0	50%RB	Тор	22.43	22.50	-1.74	1.016	0.044	0.045			
19100	1900.0	50%RB	Bottom	22.43	22.50	3.49	1.016	0.032	0.033			

SAR Values [LTE Band 4]

Ch.	Freq. (MHz)	Channel Type (20M)	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results
		me	asured / repo	orted SAR numb		spot open	, distance	10mm)	I	
20300	1745.0	1RB	Front	23.83	24.00	2.72	1.040	0.324	0.337	Testing
20300	1745.0	1RB	Rear	23.83	24.00	-2.70	1.040	0.517	0.538	Plot 6
20300	1745.0	1RB	Right	23.83	24.00	3.44	1.040	0.316	0.329	
20300	1745.0	1RB	Тор	23.83	24.00	-2.85	1.040	0.301	0.313	
20300	1745.0	1RB	Bottom	23.83	24.00	0.54	1.040	0.286	0.297	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 40 of 128

SAR Values [] TE Band 2]

Page 41 of 128

FCC ID: 2A73S-P600

Report No.: LCSA070522052EB

			1	1					1	
20175	1732.5	50%RB	Front	22.52	23.00	1.74	1.117	0.163	0.182	
20175	1732.5	50%RB	Rear	22.52	23.00	3.55	1.117	0.262	0.293	
20175	1732.5	50%RB	Right	22.52	23.00	1.74	1.117	0.154	0.172	
20175	1732.5	^D 50%RB	Тор	22.52	23.00	0.96	1.117	0.142	0.159	心测股177
20175	1732.5	^{a0} 50%RB	Bottom	22.52	23.00	-2.22	1,117	0.122	0.136	Ing Lab
ST LO	STEEL		ST LOS TEST		ST LCS Test			ST LCS TRU		

SAR Values II TE

LCSTES

Ch.	Freq. (MHz)	Channel Type (20M)	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results
measured / reported SAR numbers - Body (I				ers - Body (hot:	spot open	, distance	10mm)			
21350 2560.0 1RB Front 22.82 23.00 -0.79 1.042 0.132 0.138										
21350	2560.0	1RB	Rear	22.82	23.00	-1.24	1.042	0.282	0.294	Plot 7
21350	2560.0	1RB	Right	22.82	23.00	3.41	1.042	0.118	0.123	
21350	2560.0	1RB	Тор	22.82	23.00	-2.52	1.042	0.101	0.105	
21350	2560.0	1RB	Bottom	22.82	23.00	1.98	1.042	0.092	0.096	
21100	2535.0	50%RB	Front	21.18	21.50	o 0.89	1.076	0.068	0.073	
21100	2535.0	50%RB	Rear	21.18	21.50	-3.33	1.076	0.147	0.158	
21100	2535.0	50%RB	Right	21.18	21.50	0.50	1.076	0.052	0.056	
21100	2535.0	50%RB	Тор	21.18	21.50	-4.74	1.076	0.043	0.046	
21100	2535.0	50%RB	Bottom	21.18	21.50	3.79	1.076	0.022	0.024	
21100	2000.0	30 /01 CD	Dottom	21.10	21.50	5.19	1.070	0.022	0.024	

SAR Values [WIFI2.4G]

				Condu	Maximum	Power		SAR1-g res	ults(W/kg)		
Ch.	Freq.	Service	Test	cted	Allowed	Drift	Scaling			Graph	
011.	(MHz)	00///00	Position	Power	Power	(%)	Factor	Measured	Reported	Results	
				(dBm)	(dBm)	(70)					
	measured / reported SAR numbers - Body (hotspot open, distance 10mm)										
1	2412	802.11b	Front	15.53	16.00	-0.32	1.114	0.044	0.049		
1	2412	802.11b	Rear	15.53	16.00	1.28	1.114	0.078	0.087	Plot 8	
1	2412	802.11b	Bottom	15.53	16.00	2.25	1,114-2	0.031	0.035	A ting Lab	
V ST	LCS Tes		ST LCS TO	2.		ST LCS	Test		Sa Los	Test	

Remark:

1. The value with blue color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements 19 If the highest reported SAR for a test configuration is \leq 1.2 W/kg. SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR.

4. When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR.

国立讯检测超份 LCS Testing Lab

4.3.2 Standalone SAR Test Exclusion Considerations and Estimated SAR

Per KDB447498 requires when the standalone SAR test exclusion of section 4.3.1 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion;

• (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [\dot f(GHz)/x] W/kg for test separation distances \leq 50 mm; SA LCS

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

• 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm Per FCC KD B447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the transmitting antenna in a specific a physical test configuration is ≤ 1.6 W/Kg. When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

$$(SAR_1 + SAR_2)^{1.5} < 0.04$$

Ratio= (peak location separation,mm)

Estimated stand alone SAR								
Communication Frequency (MHz)		Configuration	Maximum Power (dBm)	Separation Distance (mm)	Estimated SAR _{1-q} (W/kg)			
Bluetooth*	2450	Hotspot	2.0	10	0.066			
Bluetooth*	2450	Body-worn	2.0	10	0.066			

Remark:

- Bluetooth*- Including Lower power Bluetooth 1.
- Maximum average power including tune-up tolerance; 2.
- When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine 3 SAR test exclusion
- 4. Body as body use distance is 10mm from manufacturer declaration of user manual

4.4. Simultaneous TX SAR Considerations Testing Lab

立讯检测股份 LCS Testing Lab

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmiting antenna. The device has 4 antennas, WWAN main antenna, WWAN diversity antenna(RX only), and WiFi antenna supports 2.4Wi-Fi. The 2 TX antennas can always transmit simultaneously. The work mode combination is showed as below table.;

Application Simultaneous Transmission information:

	Combination No.	Mode	
	1	WWAN+WIFI	
	2、前版切	WWAN+BT	山田田竹
T.	H Mu Lab	THR Ing Lab	TLifteringLal
4.4.2 Evalu	uation of Simultaneous SAR	I ICS TEST	ST ICS Test

Body Hotspot Exposure Conditions

Simultaneous transmission SAR for WiFi and GSM

		Unita	tuneous tit						
	Test Position	GSM850 Reported SAR1-g (W/kg)	GSM1900 Reported SAR1-g (W/kg)	WiFi2.4G Reported SAR1-g (W/kg)	MAX. ΣSAR1- g (W/kg)	SAR1- g Limit (W/kg)	Peak location separation ratio	Simut Meas. Required	
	Front	0.139	0.103	0.049	0.188	1.6	no	no	
	Rear	0.311	0.153	0.087	0.398	1.6	no	no	1
	Left	/	/	1	1	1.6	no	no	1
-11-	Right	0.121	0.082	u> /	0.121	1.6	no	no	- Alla
A THE	Bottom	0.086	0.049	0.035	0.121	1.6	no	no	THA TUBEL
Title	^{La} Тор	0.107	1 0.073	Lan	0.107	11.6	ing ^{Lan} o	no	1 Dill Insting Lab
立讯检测版 LCS Testing		Si	LCSTEST		- Si	LCSTES			立讯检测股份 LCS Testing Lab

Simultaneous transmission SAR for WiFi and UMTS

测服 sting	Test Position	UMTS Band V Reported SAR1-g (W/kg)	UMTS Band II Reported SAR1-g (W/kg)	WiFi2.4G Reported SAR1-g (W/kg)	MAX. ΣSAR1- g (W/kg)	SAR1- g Limit (W/kg)	Peak location separation ratio	Simut Meas. Required	立訊检测股份 LCS Testing Lab
	Front	0.293	0.161	0.049	0.342	VC7.6	no	no	LC2
	Rear	0.337	0.192	0.087	0.424	1.6	no	no 💆	
	Left	1	/	1	/	1.6	no	no	
	Right	0.264	0.140	/	0.264	1.6	no	no	
	Bottom	0.228	0.117	0.035	0.263	1.6	no	no	
	Top	0.242	0.133	/	0.242	1.6	no	no	

SAR for WiFi and LTE

Benerted SAB1 g(M/kg)			Test F	Position		
Reported SAR1-g(W/kg)	Front	Rear	Left	Right	Bottom	Тор
LTE Band2	0.140	0.194	/	0.122	0.093	0.109
LTE Band4	0.337	0.538	品(分)	0.329	0.297	0.313
LTE Band7	0.138	0.294	hocab	0.123	0.096	0.105
WiFi2.4G	0.049	0.087	ng	1	0.035 sti	19
MAX. ΣSAR1-g (W/kg)	0.386	0.625	/	0.329	0.332	0.313
SAR1-g Limit (W/kg)	1.6	1.6	1.6	1.6	1.6	1.6
Peak location separation ratio	no	no	no	no	no	no
Simut Meas. Required	no	no	no	no	no	no

Simultaneous transmission SAR for BT and GSM

	Test Position	GSM850 Reported SAR1-g (W/kg)	GSM1900 Reported SAR1-g (W/kg)	BT Estimated SAR1-g (W/kg)	MAX. ΣSAR1-g (W/kg)	SAR1-g Limit (W/kg)	Peak location separation ratio	Simut Meas. Required	
	Front	0.139	0.103	0.066	0.205	1.6	no	no	
	Rear	0.311	0.153	0.066	0.377	1.6	no	no	alla
	Left	/	一会测路			1.6	no	no	12 VS
	TI Rightng La	0.121	0.082	Lab	0.121	stin1.6ª	no	TINO	gLap
NS/	Bottom	0.086	0.049	0.066	0.152 cS	1.6	no 🚺	SA LOO LOO	
Les	Тор	0.107	0.073	1	0.107	1.6	no	no	

Simultaneous transmission SAR for BT and UMTS

Test Position	UMTS Band V Reported SAR1-g (W/kg)	UMTS Band II Reported SAR1-g (W/kg)	BT Estimated SAR1-g (W/kg)	MAX. ΣSAR1-g (W/kg)	SAR1-g Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Front	0.293	0.161	0.066	0.359	1.6	no	no
Rear	0.337	0.192	0.066	0.403	1.6	no	no
Left	1	/	1	/	1.6	no	no
Right	0.264	0.140	/	0.264	1.6	no	no
Bottom	0.228	0.117	0.066	0.294	1.6	no	no
Top	0.242	0.133	till's	0.242	1.6	no	no ab
LCS LCS	LCS	(est.					

Simultaneous transmission SAR for BT and LTE

Departed SAD1 a(M//kg)			Test P	osition						
Reported SAR1-g(W/kg)	Front	Rear	Left	Right	Bottom	Тор				
LTE Band2	0.140	0.194	/	0.122	0.093	0.109				
LTE Band4	0.337	0.538	/	0.329	0.297	0.313				
LTE Band7	0.138	0.294	/	0.123	0.096	0.105				
BT Estimated SAR1-g (W/kg)	0.066	0.066	1	1	0.066	1				
MAX. ΣSAR1-g (W/kg)	0.403	0.604	/	0.329	0.363	0.313				
SAR1-g Limit (W/kg)	1.6	1.6	1.6	1.6	1.6	1.6				
Peak location separation ratio	no	no	no	no	no	no				
Simut Meas. Required	no	no	no	no	no	no				
Simut Meas. Required no no <t< td=""></t<>										

1. The WiFi and BT share same antenna, so cannot transmit at same time. 2. The value with block color is the maximum values of standalone 3. The value with blue color is the maximum values of ΣSAR_{1-g}

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 43 of 128

4.5. SAR Measurement Variability

According to KDB865664, Repeated measurements are required only when the measured SAR is \geq 0.80 W/kg. If the measured SAR value of the initial repeated measurement is < 1.45 W/kg with \leq 20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. A second repeated measurement is required only if the measured result for the initial repeated measurement is within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties. The following procedures are applied to determine if repeated measurements are required. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.19 The repeated measurement results must be clearly identified in the SAR report. All measured SAR, including the repeated results, must be considered to determine compliance and for reporting according to KDB 690783.Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

- 3) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 4) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 5) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 6) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20

Froquency		RF		Popoatod	Highest	First Re	epeated	
Frequency Band (MHz)	Air Interface	Exposure Configuration	Test Position	Repeated SAR (yes/no)	Measured SAR _{1-g} (W/Kg)	Measued SAR _{1-g} (W/Kg)	Largest to Smallest SAR Ratio	
850	GSM 850	Standalone	Body-Rear	no	0.278	n/a	n/a	5
000	WCDMA Band V	Standalone	Body- Rear	no	0.329	n/a	n/a	ab
1 1800 stin	LTE Band 4	Standalone	Body- Rear	no	stin0.517	n/a	卫 n/a sting	
LCS .	GSM 1900 🔍	Standalone	Body-Rear	noves	0.137	n/a	l ∟ ^c n/a	
1900	WCDMA Band II 🕨	Standalone	Body-Rear	no	0.181	n/a 🦊	n/a	
	LTE Band 2	Standalone	Body-Rear	no	0.183	n/a	n/a	
2450	2.4GWLAN	Standalone	Body-Rear	no	0.078	n/a	n/a	
2600	LTE Band 7	Standalone	Body-Rear	no	0.282	n/a	n/a	

Remark:

1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the orignal and first repeated measurement is not > 1.20 or 3 (1-g or 10-g respectively)

医立机检测股份 LCS Testing Lab

上CS Testing Lab

General description of test procedures

- 1. Test positions as described in the tables above are in accordance with the specified test standard. 2. Tests in body position were performed in that configuration, which generates the highest time based 立讯检测 averaged output power (see conducted power results).
- ngLab 3. According to IEEE 1528 the SAR test shall be performed at middle channel. Testing of top and bottom channel is optional.
 - 4. According to KDB 447498 D01 testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

• \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz • \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz

- \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz
- 5. IEEE 1528-2003 require the middle channel to be tested first. This generally applies to wireless devices that are designed to operate in technologies with tight tolerances for maximum output power variations across channels in the band. When the maximum output power variation across the required test channels is > $\frac{1}{2}$ dB, instead of the middle channel, the highest output power channel LCS must be used.
- 6. When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements.19 If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR.
- 7. When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is \leq 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration: otherwise, each band is tested independently for 至 LCeT SAR. 立讯检测股份 讯检测股份

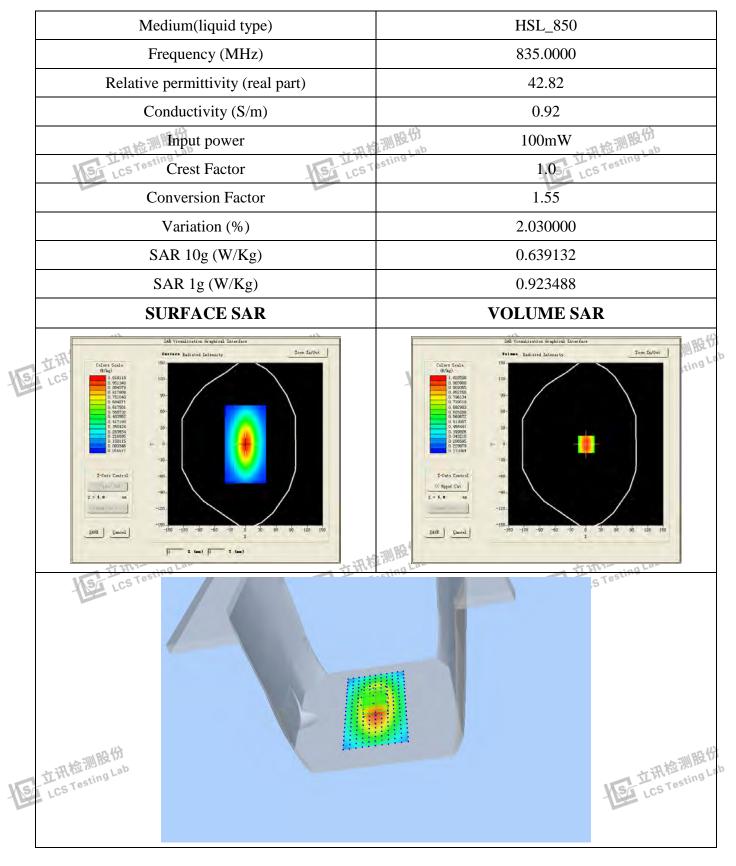
讯检测的 aLab a Lab 4.7. Measurement Uncertainty (450MHz-6GHz)

LCS Testing Lab Not required as SAR measurement uncertainty analysis is required in SAR reports only when the highest measured SAR in a frequency band is ≥ 1.5 W/kg for 1-g SAR accoridng to KDB865664D01.

G 立讯检测股份 LCS Testing Lab

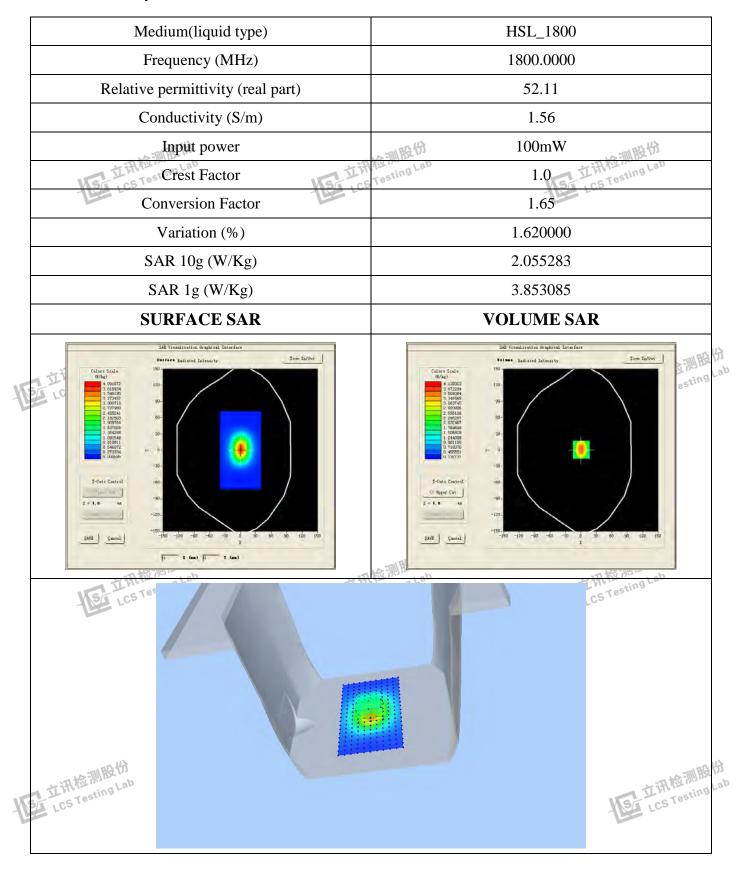
后立讯检测股份 LCS Testing Lab

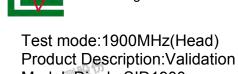
LCS Testing Lab

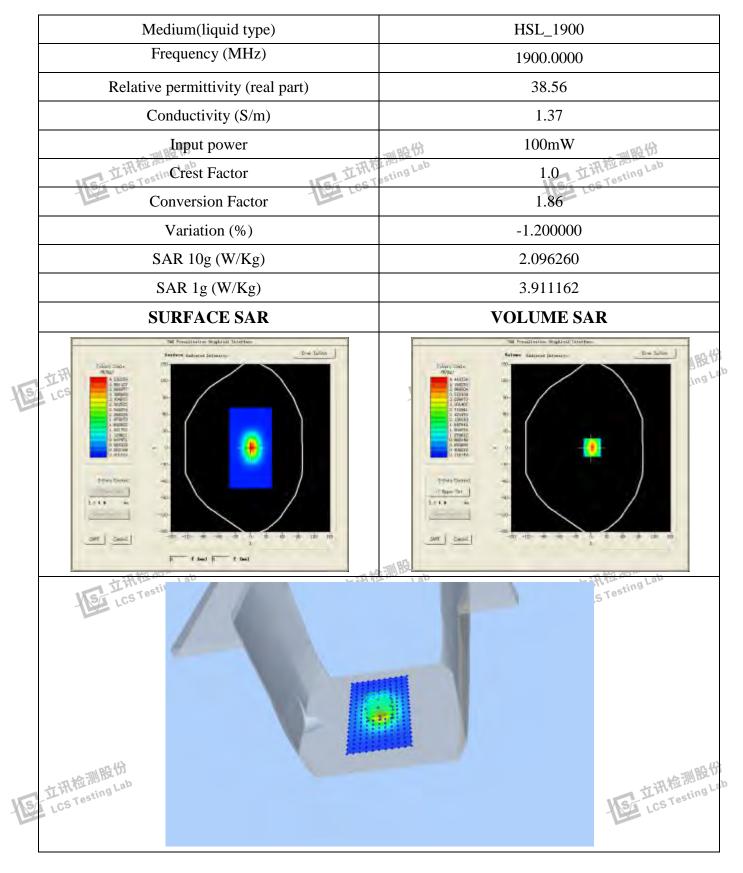

这一位闲检测股份 LCS Testing Lab

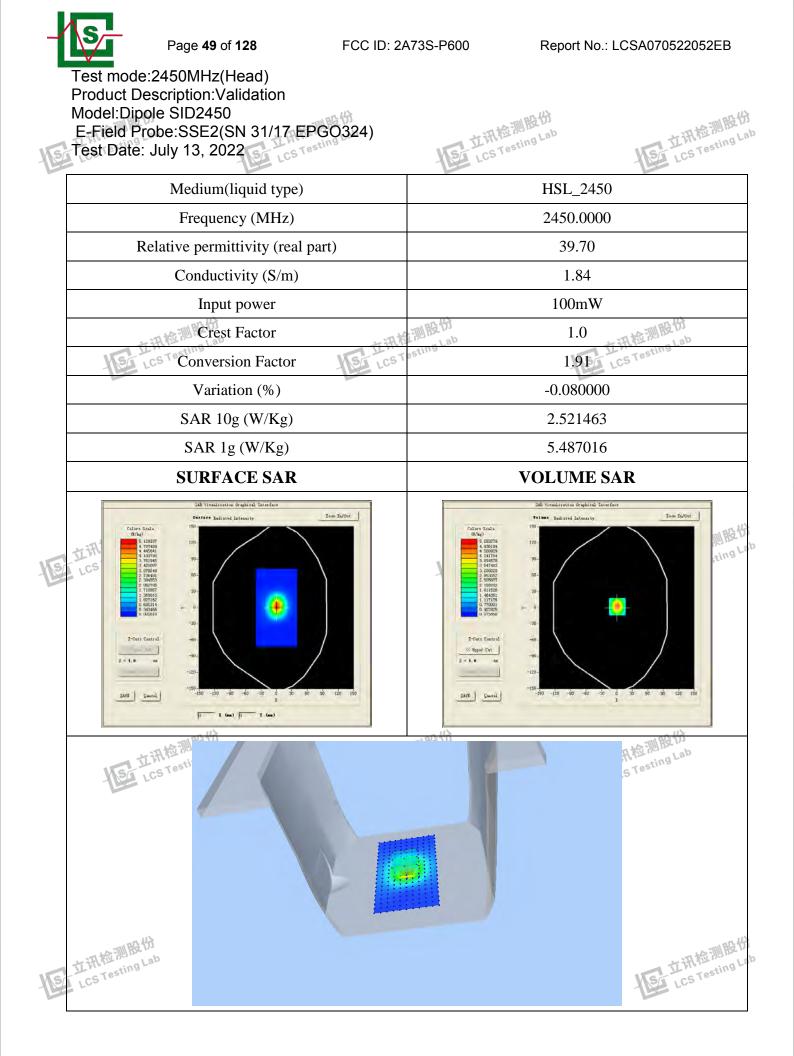
4.8. System Check Results

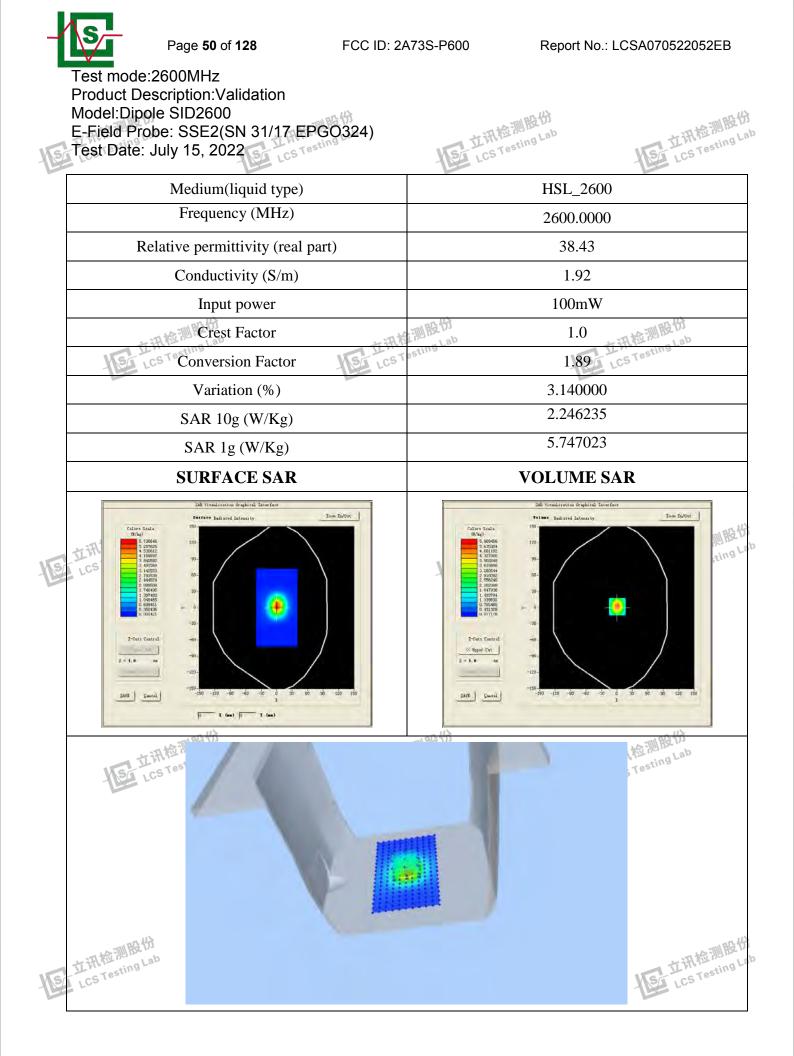
Test mode:835MHz(Head) Product Description:Validation Model:Dipole SID835 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: July 06, 2022


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 46 of 128

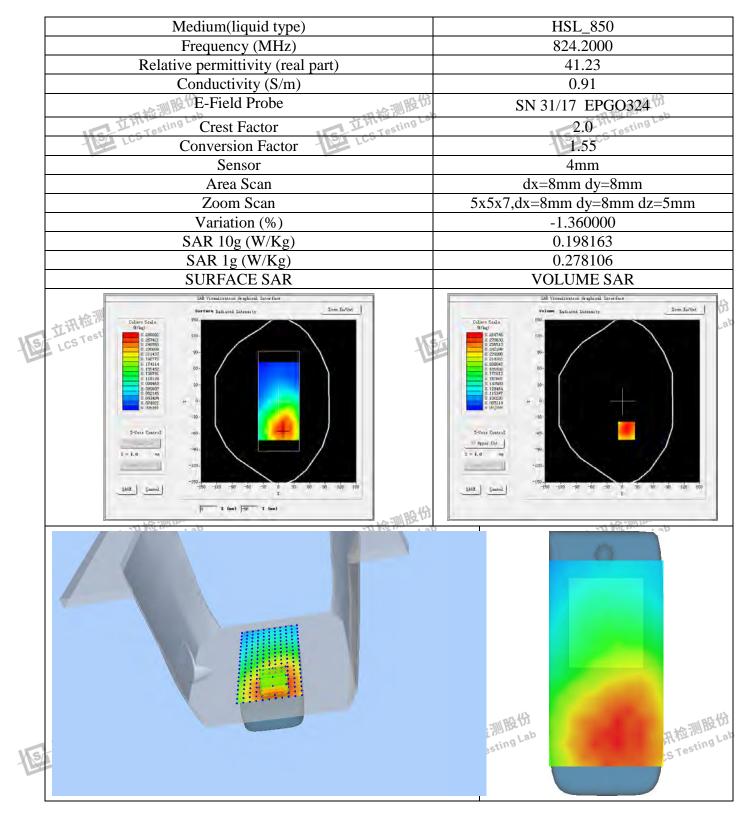

Product Description:Validation Model :Dipole SID1800 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: July 08, 2022


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laborator y Ltd. Page 47 of 128

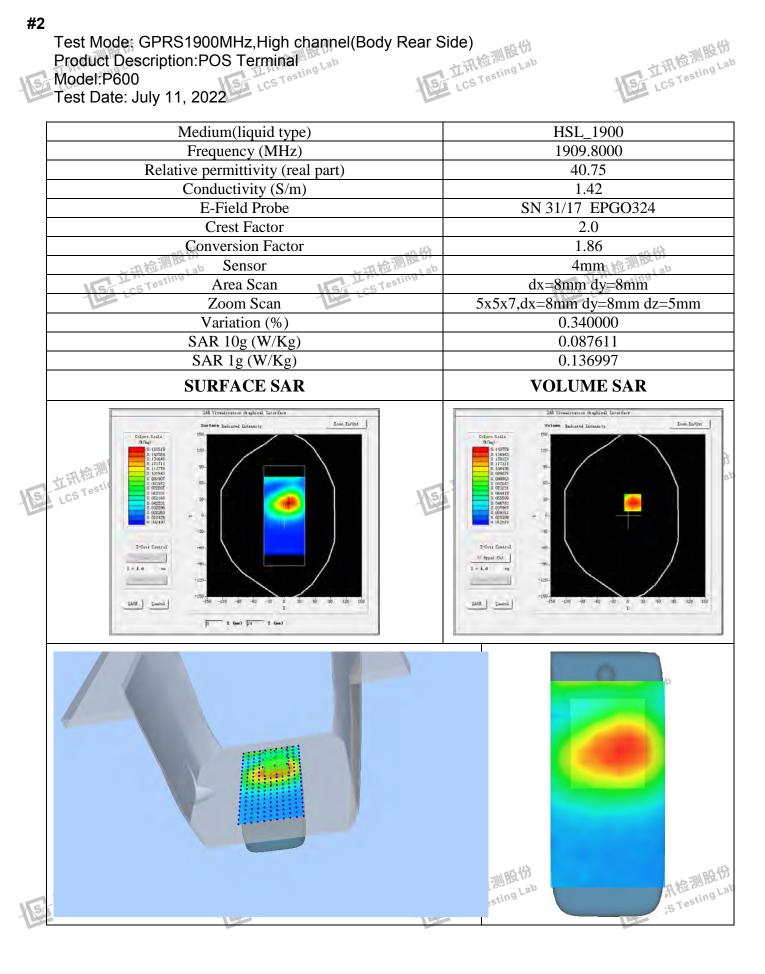

Product Description:Validation Model :Dipole SID1900 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: July 11, 2022



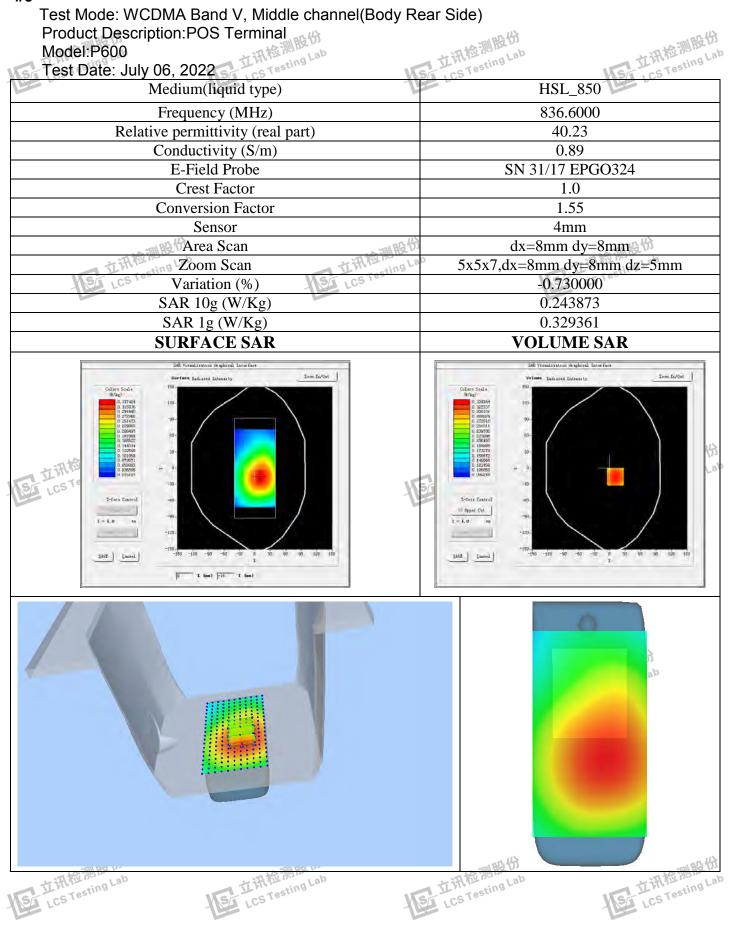
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 48 of 128

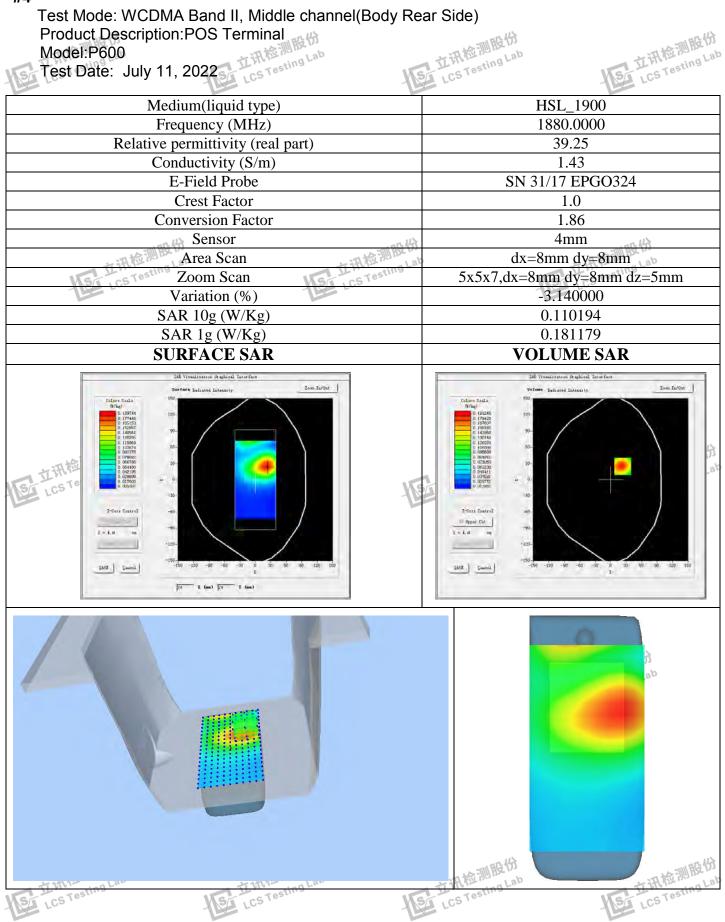

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 49 of 128

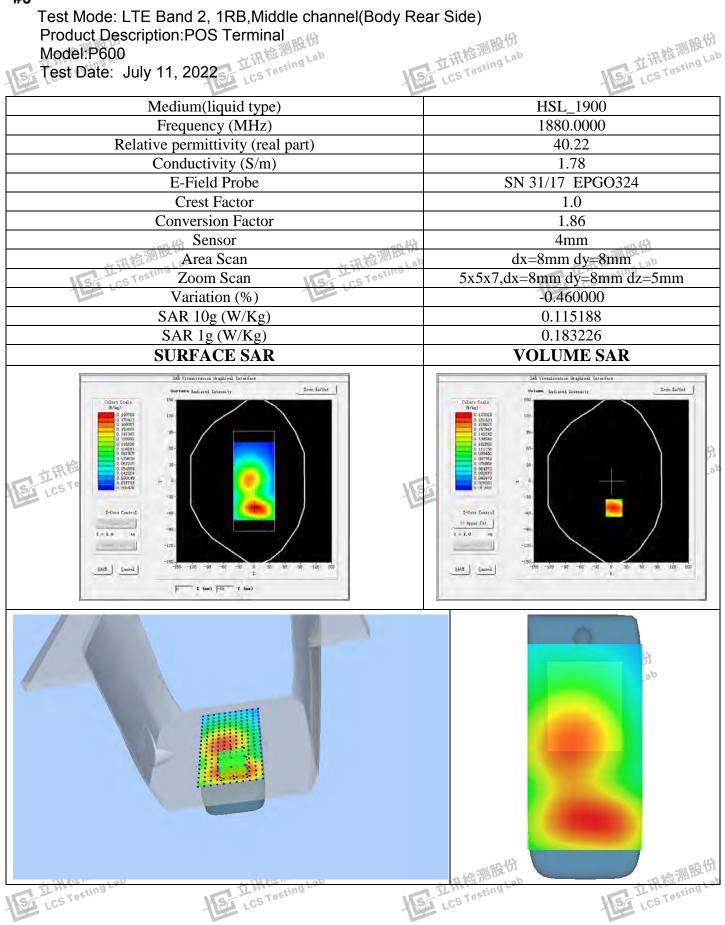
4.9. SAR Test Graph Results

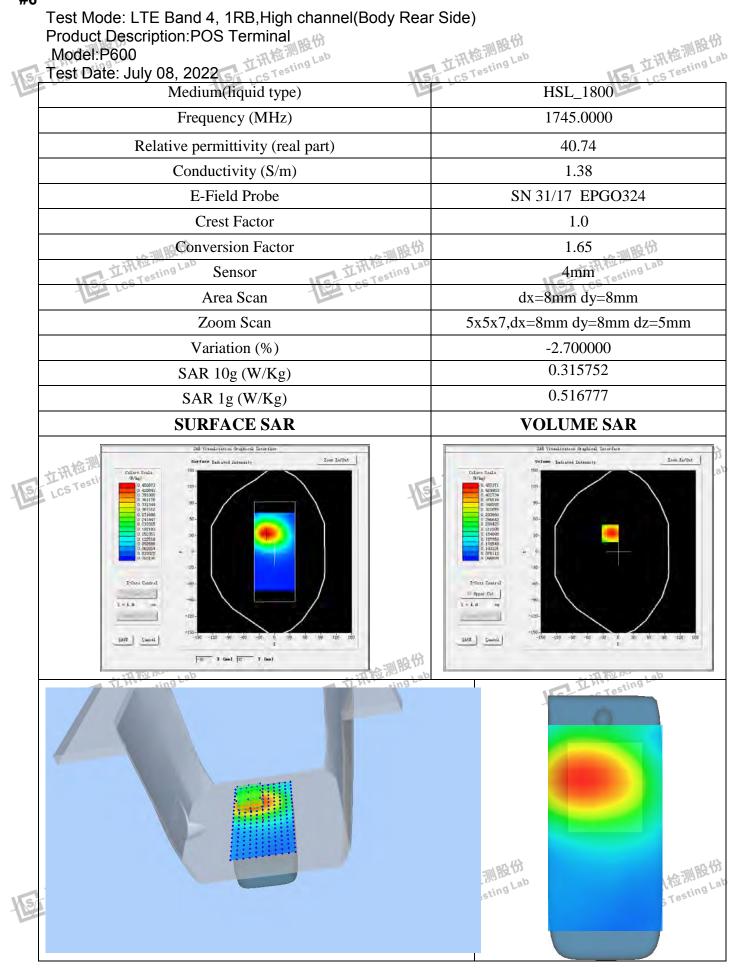

SAR plots for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination #1 Test Mode: GSM850MHz, Low channel/Body Rear Side

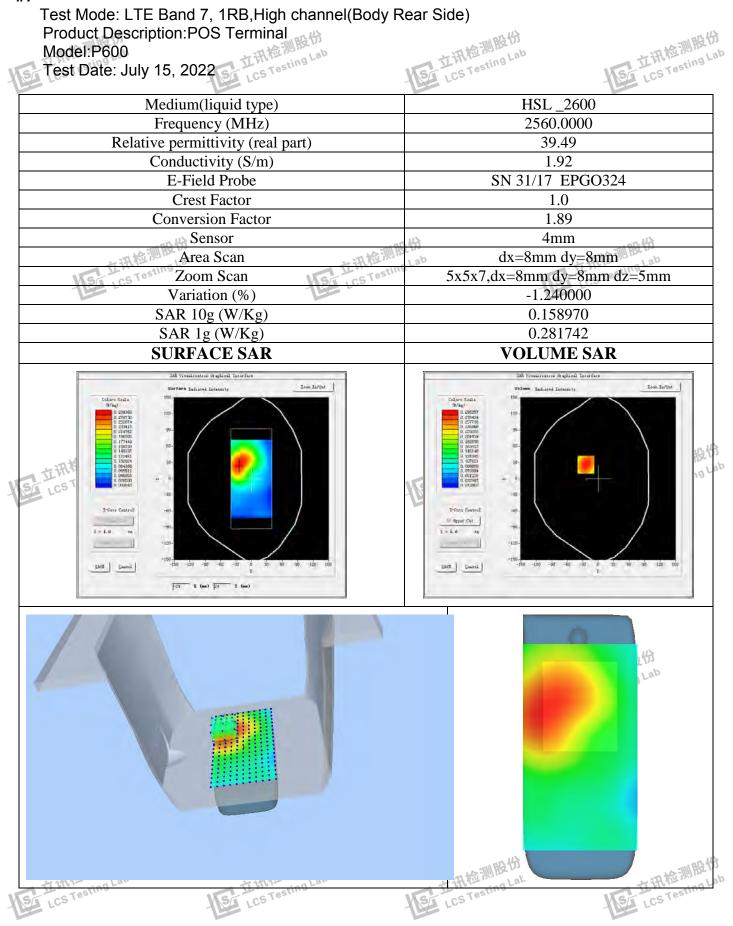
#1 Test Mode: GSM850MHz, Low channel(Body Rear Side) Product Description:POS Terminal Model:P600 Test Date: July 06, 2022

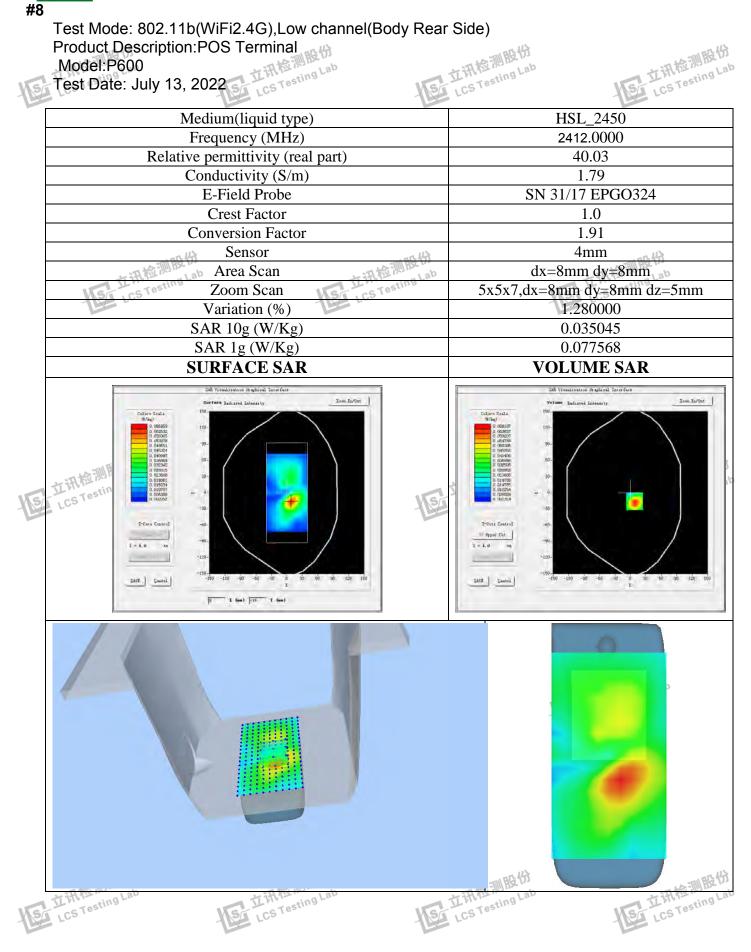

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 51 of 128




This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 52 of 128







This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 56 of 128

Reli ACR 281.2.18.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/6/2021	Jes .
Checked by :	Jérôme LUC	Product Manager	10/6/2021	Ja
Approved by :	Kim RUTKOWSKI	Quality Manager	10/6/2021	- Kalenshi

	Customer Name
Distribution ;	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Mod.fications
A	10/6/2021	Initial release

Page: 2/10

TABLE OF CONTENTS

I	Dev	rice Under Test4	
2	Pro	duct Description4	
	2.1	General Information	_4
3	Mc	asurement Method4	
	3.1	Linearity	4
	3.2	Sensitivity	5
	3.3	Lower Detection Limit	5
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	Me	asurement Uncertainty	
5	Cal	ibration Measurement Results	
	5.1	Sensitivity in air	6
	5.2	Lincarity	7
	5.3	Sensitivity in liquid	7
	5.4	Isotropy	8
6	List	of Equipment	

Page: 3/10

1

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR 281.2.18.SATU A

DEVICE UNDER TEST

Device	e Under Test
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE
Manufacturer	MVG
Model	SSE2
Serial Number	SN 31/17 EPGO324
Product Condition (new / used)	New
Frequency Range of Probe	0.15 GHz-6GHz
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.189 MΩ
	Dipole 2: R2=0.203 MΩ
	Dipole 3: R3=0.218 MΩ

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEE/IEC 62209 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

S

Page: 4/10

REFACE 281.2.18 SATUA

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0° -180°) in 15° increments. At each step the probe is rotated about its axis (0° -360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

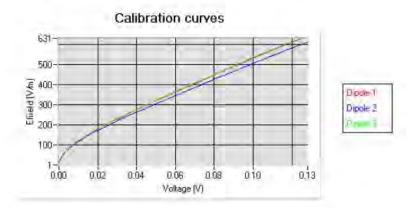
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	√3	Ì	1.732%
Reflected power	3.00%	Rectangular	√3	Ĵ,	1.732%
Liquid conductivity	5.00%	Rectangular	√3	î.	2.887%
Liquid permittivity	4.00%	Rectangular	√3	Ĵ.	2.309%
Field homogeneity	3.00%	Rectangular	√3	>-0 -	1.732%
Field probe positioning	5.00%	Rectangular	5	1	2.887%

Page: 5/10

Ref: ACR.281.2.18.SATU:A

Field probe linearity	3.00%	Rectangular	√3	1	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

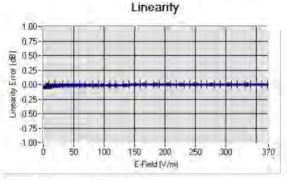

Calibration Parameters			
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

5.1 SENSITIVITY IN AIR

	Normy dipole $2 (\mu V/(V/m)^2)$	
0.80	0.83	0.68

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
95	90	93

Calibration curves ci-f(V) (i=1,2,3) allow to obtain H-field value using the formula: $E = \sqrt{E_1^2 + E_2^2 + E_3^2}$

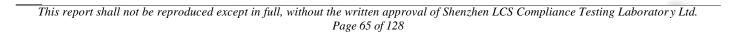


Page: 6/10

Ref: ACR.281.2.18.SATU:A

5.2 LINEARITY

Linearity:0+/-1.13% (+/-0.05dB)


5.3 SENSITIVITY IN LIQUID

Liquid	Frequency (MHz +/- 100MHz)	Permittivity	Epsilon (S/m)	ConvF
HL450	450	42.17	0.86	1.56
BL450	450	57.65	0.95	1.60
HL750	750	40.03	0.93	1.45
BL750	750	56.83	1.00	1.50
HL850	835	42.19	0.90	1.55
BL850	835	54.67	1.01	1.59
HL900	900	42.08	1.01	1.54
BL900	900	55.25	1.08	1.60
HL1800	1800	41.68	1.46	1.65
BL1800	1800	53.86	1.46	1.68
HL1900	1900	38.45	1.45	1.86
BL1900	1900	53.32	1.56	1.93
HL2000	2000	38.26	1.38	1.83
BL2000	2000	52.70	1.51	1.89
HL2300	2300	39.44	1.62	1.95
BL2300	2300	54.52	1.77	2.01
HL2450	2450	37.50	1.80	1.91
BL2450	2450	53.22	1.89	1.95
HL2600	2600	39.80	1.99	1.89
BL2600	2600	52.52	2.23	1.94
HL5200	5200	35.64	4.67	1.50
BL5200	5200	48.64	5.51	1.56
HL5400	5400	36.44	4.87	1.44
BL5400	5400	46.52	5.77	1.47
HL5600	5600	36.66	5.17	1.48
BL5600	5600	46.79	5.77	1.53
HL5800	5800	35.31	5.31	1.50
BL5800	5800	47.04	6.10	1.55

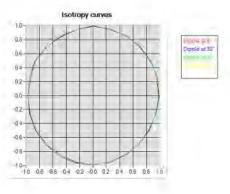
LOWER DETECTION LIMIT: 9mW/kg

Page: 7/10

Ref: ACR.281.2.18.SATU.A

5.4 ISOTROPY

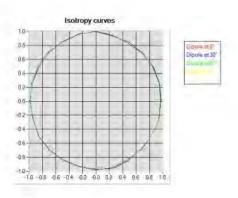
HL900 MHz


mvg

- Axial isotropy:
- Hemispherical isotropy:

0.05 dB 0.07 dB

0.06 dB


0.07 dB

HL1800 MHz

- Axial isotropy:

- Hemispherical isotropy:

Page: 8/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. ,b

jb

V

COMOSAR E-FIELD PROBE CALIBRATION REPORT

0.06 dB

0.10 dB

Ref: ACR.281.2.18.SATU.A

HL5600 MHz

- Axial isotropy:
- Hemispherical isotropy:

Isotropy curves

,b

Page: 9/10

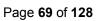
Refi ACR 281.2.18.SATU.A

jb.

6 LIST OF EQUIPMENT

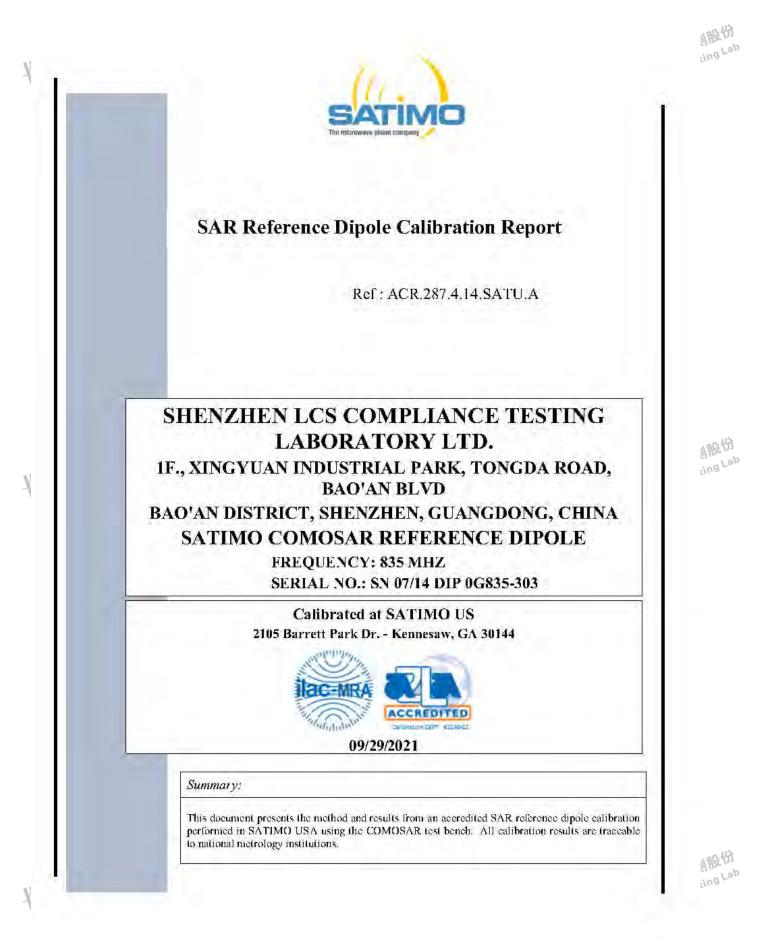
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2019	02/2022	
Reference Probe	MVG	EP 94 SN 37/08	10/2019	10/2021	
Multimeter	Keithley 2000	1188656	01/2020	01/2023	
Signal Generator	Agilent E4438C	MY49070581	01/2020	01/2023	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required	
Power Meter	HP E4418A	US38261498	01/2020	01/2023	
Power Sensor	HP ECP-E26A	US37181460	01/2020		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required	
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.	
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Temperature / Humidity Sensor	Control Company	150798832	11/2020	11/2023	

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.


Page: 10/10

1 1

,b


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.

Page 68 of 128

FCC ID: 2A73S-P600

V

SAR REFERENCE DIPOLE CALIBRATION REPORT

REF ACR 287.4.14.SATU A

10

1 1

ŝ

,b

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/12/2021	73
Checked by :	Jérôme LUC	Product Manager	10/12/2021	Jz
Approved by :	Kim RUTKOWSKI	Quality Manager	10/12/2021	an Automach

	Customer Name
Distribution ;	Shenzhen LCS Compliance Testing
	Laboratory Ltd.

Issue	Date	Modifications
A	10/12/2021	Initial release

Page: 2/11

INC

SAR REFERENCE DIPOLE CALIBRATION REPORT

REF ACR.287.4.14.SATU.A

3

,b

j jb

TABLE OF CONTENTS

J,	Intr	oduction	
2	Dev	vice Under Test	
3	Pro	duct Description4	
	3.1	General Information	4
4	Mc	asurement Method	
	4.1	Return Loss Requirements	Š
	4.2	Mechanical Requirements	5
5	Mc	asurement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	_5
6	Cal	ibration Measurement Results	
	6.1	Return Loss and Impedance	6
	6.2	Mechanical Dimensions	_6
7	Val	idation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	7
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	
8	Lis	of Equipment	

1

Page: 3/11

1

SAR REFERENCE DIPOLE CALIBRATION REPORT

REF ACR 287.4.14.SATU.A

INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 835 MHz REFERENCE DIPOLE	
Manufacturer	Satimo	
Model	SID835	
Serial Number	SN 07/14 DIP 0G835-303	
Product Condition (new / used)	New	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

,b

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO. l jb

d,

REF ACR 287.4.14.SATU: A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

 Frequency band	Expanded Uncertainty on Return Loss		
400-6000MHz	0.1 dB		

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length	
3 - 300	0.05 mm	

5.3 VALIDATION MEASUREMENT

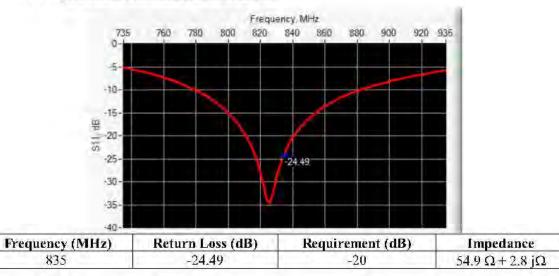
The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

Page: 5/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO. 1 1

b


SATIMO

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE

6.2 MECHANICAL DIMENSIONS

Frequency MHz	Ln	nm	h m	ນກ	d r	ากก	
	required	measured	required	measured	required	measured	
300	420.0 ±1 %.		250.0 ±1 %.	1	6.35 ±1 %.		
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.		
750	176.0 ±1 %.	T	100.0 ±1 %.		6.35 ±1 %.	1	
835	161.0 ±1 %.	PASS	89.8 ±1 %.	PASS	3.6 ±1 %.	PASS	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.		
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	1	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.		
1640	79.0 ±1 %.	11.1	45.7 ±1 %.		3.6 ±1 %.		
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.		
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.		
1900	68.0 ±1 %.	2	39.5 ±1 %.		3.6 ±1 %.		
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.		
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.		
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.		
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.		
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	1	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.		
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.		
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	1	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.		

Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO. ip 1

jb jb

ł.

TIM

SAR REFERENCE DIPOLE CALIBRATION REPORT

REF. ACR 287.4.14.SATU: A

,b

VALIDATION MEASUREMENT 7

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

HEAD LIQUID MEASUREMENT 7.1

Frequency MHz	Relative per	mittivity (ɛ,')	Conductiv	ity (σ) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %	PASS	0.90 ±5 %	PASS
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	1
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %	-	1.49 ±5 %	1
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %		1.80 ±5 %	
2600	39.0 ±5 %	-	1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

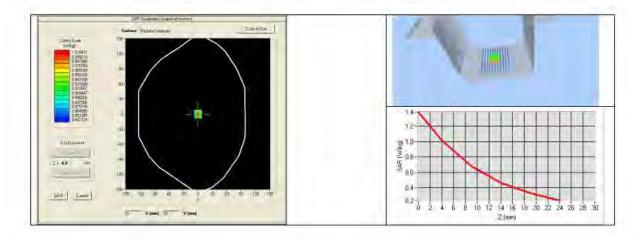
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 42.3 sigma : 0.92
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm

Page: 7/11

V


SATIMO

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

Zoon Sean Resolution	dx=8mm/dy=8m/dz=5mm	
Frequency	835 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	7.
450	4.58	1.1.1.1	3.06	
750	8.49		5,55	1. T
835	9.56	9.60 (0.96)	6.22	6.20 (0.62
900	10.9	-	6.99	1.00
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19,3	
1800	38.4		20.1	
1900	39.7		20.5	1
1950	40.5		20.9	1
2000	41.1		21.1	1
2100	43.6		21.9	
2300	48.7		23,3	
2450	52.4		24	
2600	55.3		24.6	1
3000	63.8		25.7	
3500	67.1		25	

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 76 of 128 ŝ

,b

3

REF ACR 287.4.14.SATULA

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (s,')	Conductivity (ơ) S/m	
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	1.2
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %	PASS	0.97 ±5 %	PASS
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

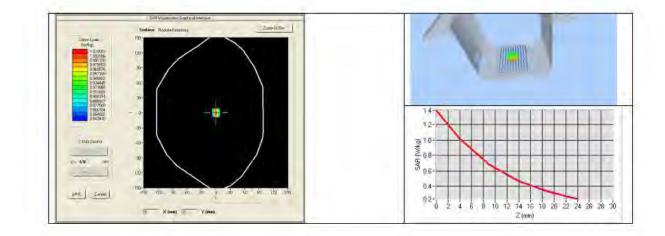
7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4	
Phantom	SN 20/09 SAM71	
Probe	SN 18/11 EPG122	
Liquid	Body Liquid Values: eps*: 54.1 sigma: 0.97	
Distance between dipole center and liquid	15.0 mm	
Area sean resolution	dx=8mm/dy=8mm	
Zoon Sean Resolution	dx=8mm/dy=8m/dz=5mm	
Frequency	835 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %i	

Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO. 3

Y


V

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

j jb

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)	
	measured	measured	
835	9.90 (0.99)	6.39 (0.64)	

ip 1

ŝ

,b

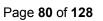
TIMC

8

SAR REFERENCE DIPOLE CALIBRATION REPORT

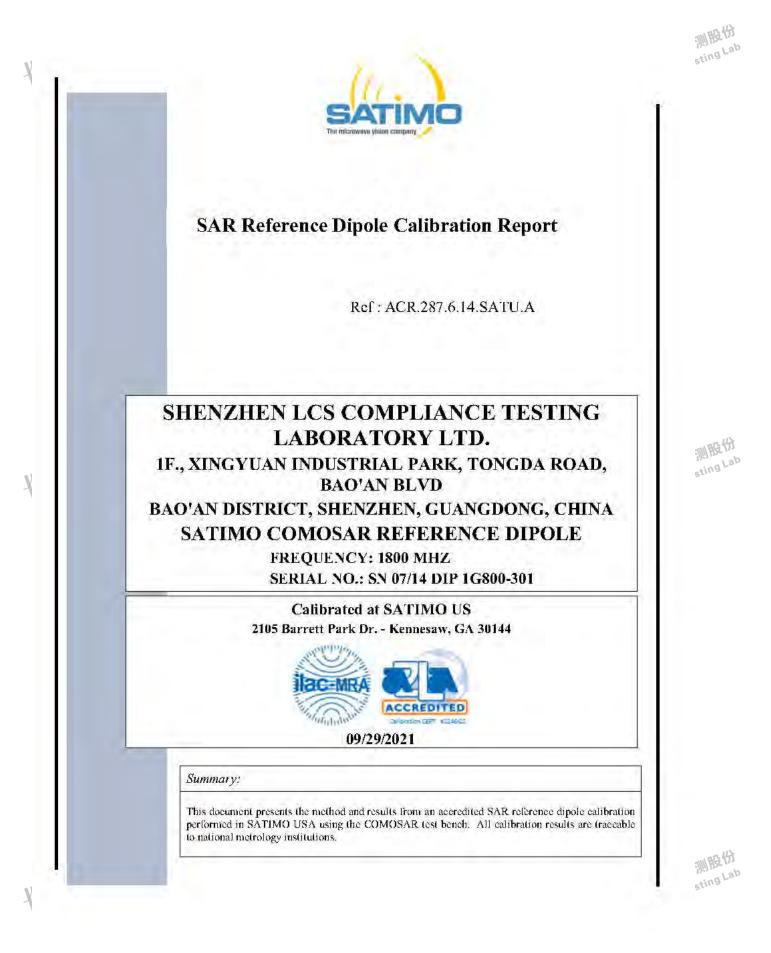
REF ACR 287.4.14.SATU.A

ŝ


,b

LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
SAM Phantom	Satimo	SN-20/09-SAM71		Validated. No ca required.		
COMOSAR Test Bench	Version 3	NA	TERMINERS WIE CARL	Validated. No ca required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2021	02/2024		
Calipers	Carrera	CALIPER-01	12/2018	12/2021		
Reference Probe	Satimo	EPG122 SN 18/11	10/2021	10/2022		
Multimeter	Keithley 2000	1188656	12/2018	12/2021		
Signal Generator	Agilent E4438C	MY49070581	12/2018	12/2021		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	12/2018	12/2021		
Power Sensor	HP ECP-E26A	US37181460	12/2018	12/2021		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Temperature and Humidity Sensor	Control Company	11-661-9	8/2021	8/2024		


Page: 11/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

FCC ID: 2A73S-P600

SATINO

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.6.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/12/2021	73
Checked by :	Jérôme LUC	Product Manager	10/12/2021	Jes
Approved by :	Kim RUTKOWSKI	Quality Manager	10/12/2021	to Auctionsch

	Customer Name
	Shenzhen LCS
Distribution ;	Compliance Testing
	Laboratory Ltd.

			-	4
15	r	7	7	_
	ß	3	2	Δ.
_	U	2	E	

Issue	Date	Modifications
A	10/12/2021	Initial release
		2 · · · · · · · · · · · · · · · · · · ·

Page: 2/11

TIMO

SAR REFERENCE DIPOLE CALIBRATION REPORT

REF ACR 287.6.14.SATU A

TABLE OF CONTENTS

1	Intr	odaction4	
2	Der	vice Under Test	
3	Pro	duct Description	
	3.1	General Information	4
4	Mc	asurement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mc	asurement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Ca	libration Measurement Results	
	6.1	Return Loss and Impedance	6
	6.2	Mechanical Dimensions	6
7	Val	lidation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	7
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	9
8	Lis	t of Equipment	

ST

Page: 3/11

Ref: ACR 287.6.14.SATU A

INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 1800 MHz REFERENCE DIPOLE	
Manufacturer	Satimo	
Model	SID1800	
Serial Number	SN 07/14 DIP 1G800-301	
Product Condition (new/used)	New	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

REF ACR 287.6.14 SATU A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
) g	20.3 %
10 g	20.1 %

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 287.6.14.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE

6.2 MECHANICAL DIMENSIONS

Frequency MHz	Ln	m	h m	ນາກ	d r	nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.	· · · · · · · · · · · · · · · · · · ·	6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.	à	89.8 ±1 %.		3.6 ±1 %.	1
900	149.0 ±1 %.		83.3±1%.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	1
1500	80.5 ±1 %.		50.0 ±1 %.	1	3.6 ±1 %.	
164D	79.0 ±1 %.	1.1.1	45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.	· · · · · · · · · · · · · · · · · · ·	42.9 ±1 %.		3.6 ±1 %.	1
1800	72.0 ±1 %.	PASS	41.7 ±1 %.	PASS	3.6 ±1 %.	PASS
1900	68.0 ±1 %.	· · · · · · · · · · · · · · · · · · ·	39.5 ±1 %.		3.6 ±1 %.	1-
1950	66.3 ±1 %.		38.5 ±1 %.	1.1	3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.	1	3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

Page: 6/11

REF ACR 287.6.14.SATU A

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

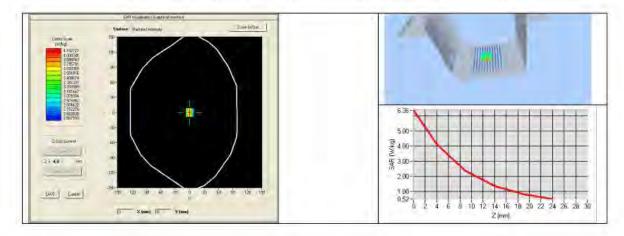
Frequency MHz	Relative per	mittivity (ɛ,')	Conductiv	ity (ơ) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87±5%	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	-
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %	PASS	1.40 ±5 %	PASS
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %		1.80 ±5 %	1
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 41.3 sigma : 1.38
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm

Page: 7/11



Ref: ACR.287.6.14.SATU.A

Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm	
Frequency	1800 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

Frequency MHz	1 g SAR	(W/kg/W)	10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49	· · · · · · · · · · · · · · · · · · ·	5,55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19,3	1
1800	38.4	38.13 (3.81)	20.1	20.20 (2.02)
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	

Page: 8/11

INC

SAR REFERENCE DIPOLE CALIBRATION REPORT

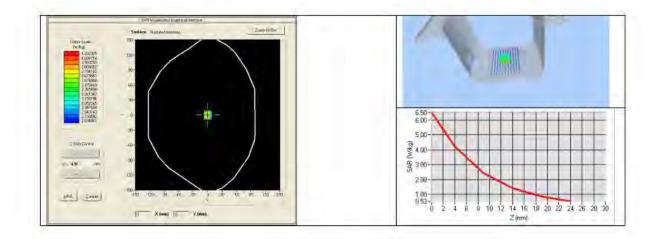
REF ACR 287.6.14.SATU A

7.3 BODY LIQUID MEASUREMENT

Frequency MHz Relative per		Rolative normittivity le 1	Conductivi	ity (ơ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	1
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	1
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %	PASS	1.52 ±5 %	PASS
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73±5%	
3500	51.3 ±5 %		3.31±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps*: 53.3 sigma: 1.51
Distance between dipole center and liquid	10.0 mm
Area sean resolution	dx=8mm/dy=8mm
Zoon Sean Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	1800 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

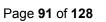


Page: 9/11

Ref: ACR.287.6.14.SATU.A

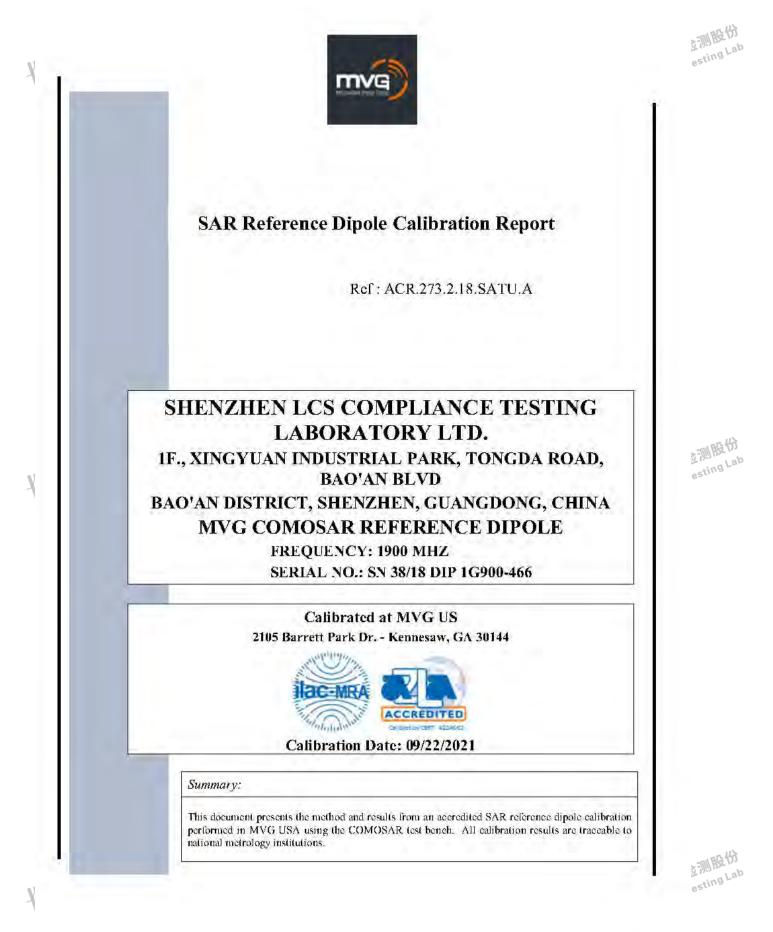
Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
1800	39.03 (3.90)	20.65 (2.07)

Page: 10/11


REE ACR 287.6.14.SATU.A

8 LIST OF EQUIPMENT

	Equi	pment Summary S	lheel	
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2021	02/2024
Calipers	Carrera	CALIPER-01	12/2018	12/2021
Reference Probe	Satimo	EPG122 SN 18/11	10/2021	10/2022
Multimeter	Keithley 2000	1188656	12/2018	12/2021
Signal Generator	Agilent E4438C	MY49070581	12/2018	12/2021
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required,
Power Meter	HP E4418A	US38261498	12/2018	12/2021
Power Sensor	HP ECP-E26A	US37181460	12/2018	12/2021
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	11-661-9	8/2021	8/2024



Page: 11/11

FCC ID: 2A73S-P600

5.4 SID1900 Dipole Calibration Certificate

Ref: ACR.273.2.18.SATU.A

ŝ

,b

5 10

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	09/28/2021	25
Checked by :	Jérôme LUC	Product Manager	09/28/2021	J3
Approved by :	Kim RUTKOWSKI	Quality Manager	09/28/2021	and to sure he

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Mod.fications
A	09/28/2021	Initial release

Page: 2/11

V

nvg

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.273.2.18.SATU.A

ŝ

,b

j jb

10

TABLE OF CONTENTS

I	Intr	oduction	
2	Der	vice Under Test	
3	Pro	duct Description	
	3.1	General Information	4
4	Mc	asurement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
S	Mc	asurement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cal	ibration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	_6
	6.3	Mechanical Dimensions	
7	Val	lidation measurement	
	7.1	Head Liquid Measurement	_7
	7.2	SAR Measurement Result With Head Liquid	
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	Lis	t of Equipment	

Page: 3/11

2

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.273.2.18.SATU.A

d,

,b

,b

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 1900 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model	SID1900	
Serial Number	SN 38/18 DIP 1G900-466	
Product Condition (new/used)	Used	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Page: 4/11

Refi ACR 273.2.18.SATU:A

b

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Leng		
3 - 300	0.05 mm		

5.3 VALIDATION MEASUREMENT

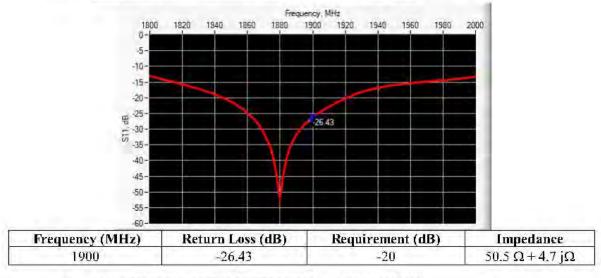
The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
lg	20.3 %

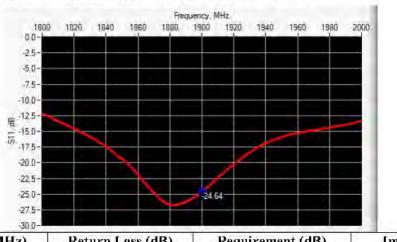
Page: 5/11

Ref: ACR.273.2.18.SATU.A

,b


ŝ

,b


10 g	20.1 %
10 6	20021

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
1900	-24.64	-20	$46.2 \Omega + 4.4 j\Omega$

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Ln	กกา	hm	m	d r	nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	

Page: 6/11

mvg

SAR REFERENCE DIPOLE CALIBRATION REPORT

Refi ACR 273.2.18.SATU A

450	290.0 ±1 %.	-	166.7 ±1 %.		6.35 ±1 %.	-
750	176.0±1%.		100.0 ±1 %.		6.35 ±1 %.	
835	161,D ±1 %.		89.8±1%.		3.6 ±1 %.	1
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	-
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6±1%.	12.14
1900	68.0 ±1 %.	PASS	39.5 ±1 %.	PASS	3.6±1%.	PAS
1950	66.3 ±1 %.		38.5 ±1 %.		3.6±1%.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6±1%.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6±1%.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	÷
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	}
2600	48.5 ±1 %.		28.8 ±1 %.		3.6±1%.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6±1%.	
3700	34.7±1 %.		26.4 ±1 %.		3.6±1%.	_

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (s/)		Conductivity (a) S/m	
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	1
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %	· · · · · · · · · · · · · · · · · · ·	1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	1

Page: 7/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.273.2.18.SATU.A

'p

,b

	40.0 ±5 %		1.40 ±5 %	
	40.0 ±5 %	PASS	1.40 ±5 %	PASS
	40.0 ±5 %		1.40 ±5 %	
	40.0 ±5 %	_	1.40 ±5 %	
1.1	39.8 ±5 %		1.49 ±5 %	
	39.5 ±5 %		1.67 ±5 %	
	39.2 ±5 %	_	1.80±5 %	
1	39.0 ±5 %		1.96 ±5 %	
-1	38.5 ±5 %		2.40 ±5 %	
1.1	37.9 ±5 %		2.91±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Head Liquid Values: eps' : 38.5 sigma : 1.45		
Distance between dipole center and liquid	10.0 mm		
Area sean resolution	dx=8mm/dy=8mm		
Zoon Sean Resolution	dx=8mm/dy=8mm/dz=5mm		
Frequency	1900 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

Frequency MHz	1 g SAR (1 g SAR (W/kg/W)		(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5,55	
835	9.56		6.22	
900	10.9		6.99	4
1450	29		16	
1500	30.5		16.8	
1640	34.2	1	18.4	
1750	36.4		19.3	
1800	38.4		20.1	

Page: 8/11

Ref: ACR.273.2.18.SATU A

1900	39.7	40.03 (4.00)	20.5	20.55 (2.06)
1950	40.5		20.9	1
2000	41,1		21.1	1
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	_	24	1
2600	55.3		24.6	1
3000	63.8		25,7	
3500	67.1		25	
3700	67.4		24.2	15

7.3 BODY LIQUID MEASUREMENT

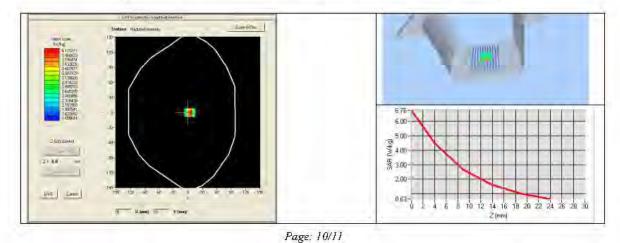
Frequency MHz	Relative per	Relative permittivity (ϵ_r')		ity (σ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	1
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	·
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	1
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %	PASS	1.52 ±5 %	PASS
2000	53.3 ±5 %		1.52 ±5 %	1
2100	53.2 ±5 %		1.62 ±5 %	

Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. ŝ

V

SAR REFERENCE DIPOLE CALIBRATION REPORT


Ref: ACR.273.2.18.SATU.A

2300	52.9 ±5 %	1.81 ±5 %
2450	52.7 ±5 %	1.95 ±5 %
2600	52.5 ±5 %	2.16 ±5 %
3000	52.0 ±5 %	2.73 ±5 %
3500	51.3 ±5 %	3.31 ±5 %
3700	51.0 ±5 %	3.55 ±5 %
5200	49.0 ±10 %	5.30 ±10 %
5300	48.9 ±10 %	5.42 ±10 %
5400	48.7 ±10 %	5.53 ±10 %
5500	48.6 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

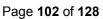
7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps': 53.3 sigma: 1.56
Distance between dipole center and liquid	10.0 mm
Area sean resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
1900	40.91 (4.09)	21.40 (2.14)

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. ŝ

REE ACR 273.2.18.SATU.A


8 LIST OF EQUIPMENT

	equi	pment Summary 3	Sheet		
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	M∀G	SN-20/09-SAM71	Provide a control of the section	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	06/2021	06/2024	
Calipers	Carrera	CALIPER-01	01/2020	01/2023	
Reference Probe	M∀G	EPG122 SN 18/11	08/2021	08/2022	
Multimeter	Keithley 2000	1188656	01/2020	01/2023	
Signal Generator	Agilent E4438C	MY49070581	01/2020	01/2023	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	11/2020	11/2023	
Power Sensor	HP ECP-E26A	US37181460	01/2020	01/2023	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature and Humidity Sensor	Control Company	150798832	11/2020	11/2023	

Page: 11/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. ip 1

,b

FCC ID: 2A73S-P600

5.5 SID2450 Dipole Calibration Ceriticate

REE ACR 287.8.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/12/2021	75
Checked by :	Jérôme LUC	Product Manager	10/12/2021	Jes
Approved by :	Kim RUTKOWSKI	Quality Manager	10/12/2021	an Automach

	Customer Name
Distribution ;	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Mod.fications
A	10/12/2021	Initial release

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO. ŝ

,b

ţ

'p

TIMO

V

SAR REFERENCE DIPOLE CALIBRATION REPORT

REF ACR 287.8.14.SATU A

TABLE OF CONTENTS

J,	Intr	oduction	
2	Dev	rice Under Test	
3	Pro	duct Description	
	3.1	General Information	4
4	Mc	asurement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mc	asurement Uncertainty	
	5.1	Return Loss	5
	5.2		5
	5.3	Validation Measurement	5
6	Cal	ibration Measurement Results	
	6.1	Return Loss and Impedance	
	6.2	Mechanical Dimensions	6
7	Val	idation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	7
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	9
8	Lis	of Equipment	

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

Page: 3/11

1 10

ŝ

jb

ţ

'p

1p

,b

1

SAR REFERENCE DIPOLE CALIBRATION REPORT

REF ACR 287.8.14.SATU A

INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

D	evice Under Test
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE
Manufacturer	Satimo
Model	SID2450
Serial Number	SN 07/14 DIP 2G450-306
Product Condition (new / used)	New

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

,b

REF ACR 287.8.14.SATU A

b

b

,b

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

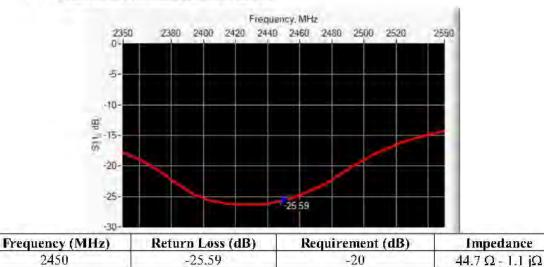
Expanded Uncertainty on Length
0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

Page: 5/11



REF ACR.287.8.14.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE

6.2 MECHANICAL DIMENSIONS

Frequency MHz	L mm		h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	1
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	· · · · ·
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	-
164D	79.0 ±1 %.		45.7 ±1 %.	1	3.6 ±1 %.	
1750	75.2 ±1 %.	· · · · · · · · · · · · · · · · · · ·	42.9 ±1 %.		3.6 ±1 %.	· · · · · · · · · · · · · · · · · · ·
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	I
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	1
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	1.
2450	51.5 ±1 %.	PASS	30.4 ±1 %.	PASS	3.6 ±1 %.	PASS
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	÷
3500	37.0±1 %.	-	26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6±1%.	

Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO. ,b

ŝ

b

jb

1b

,b

b

SAR REFERENCE DIPOLE CALIBRATION REPORT

REF ACR 287.8.14.SATU A

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ɛ,')	Conductivity (σ) 5/m		
	required	measured	required	measured	
300	45.3 ±5 %		0.87±5 %		
450	43.5 ±5 %		0.87 ±5 %		
750	41.9 ±5 %		0.89 ±5 %		
835	41.5 ±5 %		0.90 ±5 %	-	
900	41.5 ±5 %		0.97 ±5 %		
1450	40.5 ±5 %		1.20 ±5 %		
1500	40.4 ±5 %		1.23 ±5 %		
1640	40.2 ±5 %		1.31 ±5 %		
1750	40.1 ±5 %		1.37 ±5 %		
1800	40.0 ±5 %		1.40 ±5 %		
1900	40.0 ±5 %		1.40 ±5 %		
1950	40.0 ±5 %		1.40 ±5 %		
2000	40.0 ±5 %		1.40 ±5 %		
2100	39.8 ±5 %		1.49 ±5 %		
2300	39.5 ±5 %		1.67 ±5 %		
2450	39.2 ±5 %	PASS	1.80 ±5 %	PASS	
2600	39.0 ±5 %		1.96 ±5 %		
3000	38.5 ±5 %		2.40 ±5 %		
3500	37.9 ±5 %		2.91 ±5 %		

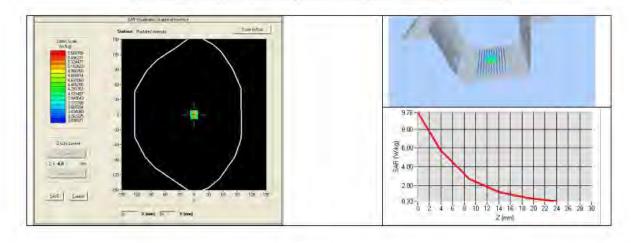
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4		
Phanton)	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Head Liquid Values: eps': 39.0 sigma : 1.77		
Distance between dipole center and liquid	10.0 mm		
Area scan resolution	dx=8mm/dy=8mm		

Page: 7/11

V


SATIMO

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.8.14.SATU.A

Zoon Sean Resolution	dx=8mm/dy=8m/dz=5mm	
Frequency	2450 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	1
450	4.58		3.06	
750	8.49		5,55	
835	9.56		6.22	-
900	10.9		6.99	
1450	29		16	li
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19,3	
1800	38.4		20.1	s
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	53.89 (5.39)	24	24.15 (2.42
2600	55.3	1	24.6	
3000	63.8		25.7	1
3500	67.1		25	

Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the putpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO. l b

ŝ

jb

ţ

'p

INC

ţ

'p

SAR REFERENCE DIPOLE CALIBRATION REPORT

REF ACR 287.8.14.SATU A

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (\boldsymbol{s}_{r}')		Conductivity (ơ) S/	
	required	measured	required	measured
150	61.9 ±5 %	-	0.80 ±5 %	1
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %	· · · · · · · · · · · · · · · · · · ·	1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	1
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %	PASS	1.95 ±5 %	PASS
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73±5%	
3500	51.3 ±5 %		3.31±5 %	
5200	49.0 ±10 %		5,30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5,65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

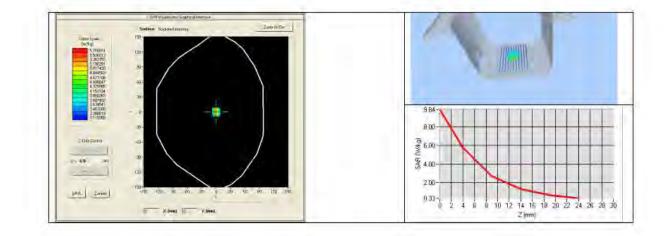
7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps*: 53.0 sigma : 1.93
Distance between dipole center and liquid	10.0 mm
Area sean resolution	dx=8mm/dy=8mm
Zoon Sean Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %i

Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO. ,b

Y


V

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.8.14.SATU.A

l di

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
2450	54.65 (5.46)	24.58 (2.46)

l b

ŝ

jb

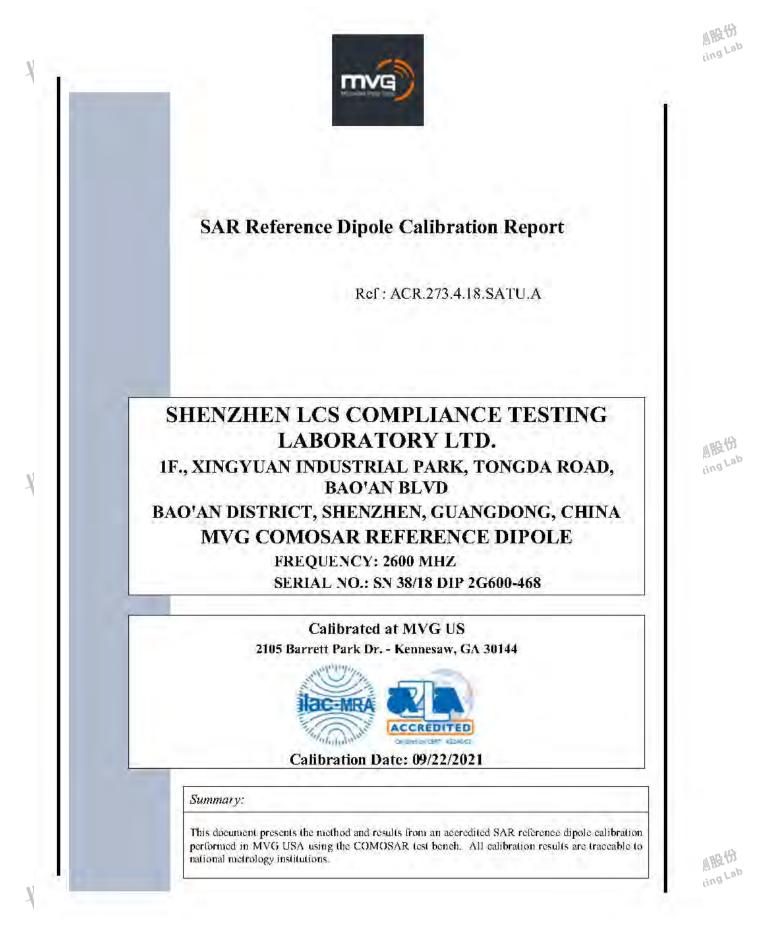
Page: 10/11

REF ACR 287.8.14.SATU A

支份 g Lab

8 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2021	02/2024
Calipers	Carrera	CALIPER-01	12/2018	12/2021
Reference Probe	Satimo	EPG122 SN 18/11	10/2021	10/2022
Multimeter	Keithley 2000	1188656	12/2018	12/2021
Signal Generator	Agilent E4438C	MY49070581	12/2018	12/2021
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	12/2018	12/2021
Power Sensor	HP ECP-E26A	US37181460	12/2018	12/2021
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required,
Temperature and Humidity Sensor	Control Company	11-661-9	8/2021	8/2024


Page: 11/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO. 支份 g Lab

FCC ID: 2A73S-P600

ţ

,b

1 1

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.273.4.18.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	09/28/2021	JS
Checked by :	Jérôme LUC	Product Manager	09/28/2021	J&
Approved by :	Kim RUTKOWSKI	Quality Manager	09/28/2021	Sec. 1. Jun hi

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.

X

Issue	Date	Modifications
A	09/28/2021	Initial release
		3. /

Page: 2/11

ţ

d,

1 10

V

mvg

SAR REFERENCE DIPOLE CALIBRATION REPORT

TABLE OF CONTENTS

I	Intr	oduction	
2	De	vice Under Test	
3	Pro	duct Description	
	3.1	General Information	_4
4	Mc	asurement Method	
	4.1	Return Loss Requirements	5
	4.2	Mcchanical Requirements	5
S	Mc	asurement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cal	ibration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	
7	Val	lidation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	Lis	t of Equipment	

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. 10

2

mve

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.273.4.18.SATU.A

d,

,b

,b

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR 2600 MHz REFERENCE DIPOLE		
Manufacturer	MVG		
Model	SID2600		
Serial Number	SN 38/18 DIP 2G600-468		
Product Condition (new/used)	Used		

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Page: 4/11

Ref: ACR 273.4.18.SATU: A

10

b

,b

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

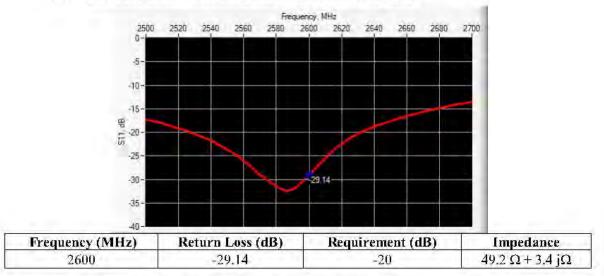
Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

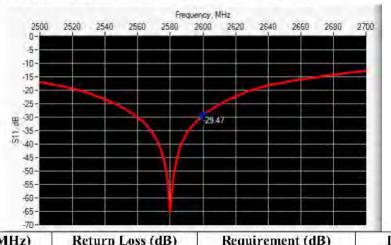
The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
lg	20.3 %

Page: 5/11



Ref: ACR.273.4.18.SATU.A


10 g	20.1 %	11

6 CALIBRATION MEASUREMENT RESULTS

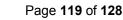
6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
2600	-29.47	-20	$47.5 \Omega + 2.2 j\Omega$

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Ln	ากก	hm	m	d r	nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.	-	250.0 ±1 %.		6.35 ±1 %.	1.6


Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 118 of 128

,b

d,

Refi ACR 273.4.18.SATU.A

450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0±1%.		100.0 ±1 %.		6.35 ±1 %.	
835	161,D ±1 %.		89.8±1%.		3.6±1%.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.	-	50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6±1%.	-
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6±1%.	-
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6±1%.	
2600	48.5 ±1 %.	PASS	28.8 ±1 %.	PASS	3.6 ±1 %.	PAS
3000	41.5 ±1 %.		25.0 ±1 %.	_	3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6±1%.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (s [,] ')		Conductivity (o) S/m	
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	1
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	1

Page: 7/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. 10

,b

10

d,

IIIV/C

SAR REFERENCE DIPOLE CALIBRATION REPORT

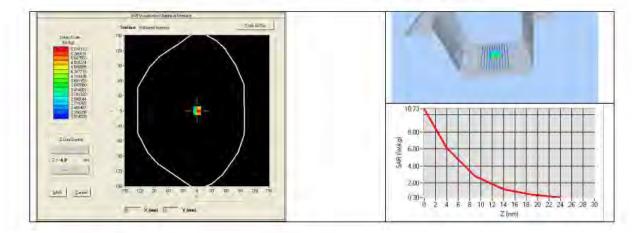
REF ACR 273.4.18.SATU.A

	1.40 ±5 %		40.0 ±5 %	1800
	1.40 ±5 %		40.0 ±5 %	1900
	1.40 ±5 %		40.0 ±5 %	1950
	1.40 ±5 %		40.0 ±5 %	2000
	1.49 ±5 %		39.8 ±5 %	2100
	1.67 ±5 %		39.5 ±5 %	2300
	1.80 ±5 %		39.2 ±5 %	2450
PASS	1.96 ±5 %	PASS	39.0 ±5 %	2600
100	2.40 ±5 %		38.5 ±5 %	3000
	2.91±5%		37.9 ±5 %	3500

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Head Liquid Values: eps' : 39.8 sigma : 1.99		
Distance between dipole center and liquid	10.0 mm		
Area sean resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=5nm/dy=5mm/dz=5mm		
Frequency	2600 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature 21 °C			
Lab Humidity	45 %		


Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5,55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	

Page: 8/11

Ref: ACR.273.4.18.SATU.A

1900	39.7		20.5	1
1950	40.5		20.9	
2000	41,1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	1	24	the search
2600	55.3	56.91 (5.69)	24.6	24.69 (2.47)
3000	63.8		25.7	1
3500	67.1		25	
3700	67.4		24.2	15

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ɛ,')	Conductiv	ity (σ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	1
450	56.7 ±5 %	12	0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	1
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	

Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. ŝ

d,

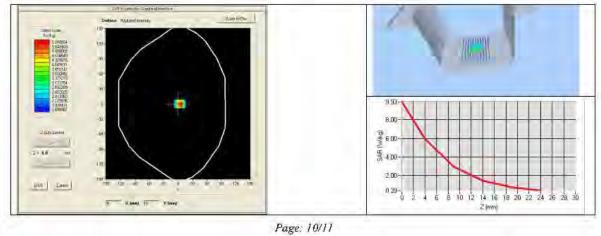
ţ

,b

,b

V

SAR REFERENCE DIPOLE CALIBRATION REPORT


Ref: ACR.273.4.18.SATU.A

2300	52.9 ±5 %		1.81 ±5 %	
2450	52.7 ±5 %	-	1.95 ±5 %	
2600	52.5 ±5 %	PASS	2.16 ±5 %	PASS
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
3700	51.0 ±5 %		3.55 ±5 %	-
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %	-	5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Body Liquid Values: eps': 52.5 sigma: 2.23		
Distance between dipole center and liquid	10.0 mm		
Area sean resolution	dx=8mm/dy=8mm		
Zoon Sean Resolution	dx=5mm/dy=5mm/dz=5mm		
Frequency	2600 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)	
	measured	measured	
2600	54.14 (5.41)	24.13 (2.41)	

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. 'p

Refi ACR.273.4.18.SATU.A

良份 g Lab

8 LIST OF EQUIPMENT

Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	06/2021	06/2024	
Calipers	Carrera	CALIPER-01	01/2020	01/2023	
Reference Probe	M∀G	EPG122 SN 18/11	08/2021	08/2022	
Multimeter	Keithley 2000	1188656	01/2020	01/2023	
Signal Generator	Agilent E4438C	MY49070581	01/2020	01/2023	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	11/2020	11/2023	
Power Sensor	HP ECP-E26A	US37181460	01/2020	01/2023	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature and Humidity Sensor	Control Company	150798832	11/2020	11/2023	

Page: 11/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

安份 gLab

支份 g Lab

6. PHOTOGRAPHS OF THE LIQUID

立讯检测股份 LCS Testing Lab

)股份 ing Lab

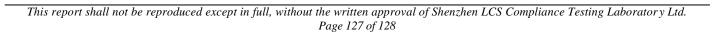
Photograph of the depth in the Body Phantom (1900MHz, 16.0cm depth)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 125 of 128

FCC ID: 2A73S-P600

22 立讯检测股份 LCS Testing Lab 上的 LCS Testing L 53 5 12 19 20 2 AV OCTOR NO. 则股份 ting Lab ST 1

Photograph of the depth in the Body Phantom (2600MHz, 15.5cm depth)



立讯检测股份 LCS Testing Lab

是立讯检测股份

ST LCS Testing Lab

反立訊检测股份 LCS Testing Lab

在前他测度份 LCS Testing Lab

7. PHOTOGRAPHS OF THE TEST

Please refer to separated files for Test Setup Photos of SAR.

ST LOSTE

测股份

LCS TO

则股份

FCC ID: 2A73S-P600

Report No.: LCSA070522052EB

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 128 of 128