

Global United Technology Services Co., Ltd.

Report No.: GTS201905000229F01

Test Report

Applicant:	ETI Solid State Lighting (Zhuhai) Ltd
Address of Applicant:	No.1, Zhongzhu Road South,Science & Technology Innovation Coast, High Tech District Zhuhai City Guangdong 519085 China
Manufacturer/Factory:	ETI Solid State Lighting (Zhuhai) Ltd
Address of Manufacturer/Factory:	No.1, Zhongzhu Road South,Science & Technology Innovation Coast, High Tech District Zhuhai City Guangdong 519085 China
Equipment Under Test (E	EUT)
Product Name:	LED Downlight
Model No.:	538211XX, 531993XX, 538171XX, 538181XX
Trade Mark:	ETI,Commercial Electric
FCC ID:	XZH-2019538211
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	July 02, 2019
Date of Test:	July 03-12, 2019
Date of report issued:	July 15, 2019
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

010 **Robinson Lo**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Laboratory Manager

2 Version

Version No.	Date	Description
00	July 15, 2019	Original

Prepared By:

iger. Chen

Date:

July 15, 2019

July 15, 2019

Project Engineer

Check By:

Date: binson

Reviewer

3 Contents

		Pa	age
1	COV	ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	7
	5.3	DESCRIPTION OF SUPPORT UNITS	7
	5.4	TEST FACILITY	7
	5.5	TEST LOCATION	7
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	10
7	TES 7.1	T RESULTS AND MEASUREMENT DATA	-
7	-		10
7	7.1	ANTENNA REQUIREMENT	10 11
7	7.1 7.2	ANTENNA REQUIREMENT	10 11 14
7	7.1 7.2 7.3	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED OUTPUT POWER	10 11 14 16
7	7.1 7.2 7.3 7.4	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED OUTPUT POWER CHANNEL BANDWIDTH	10 11 14 16 18
7	7.1 7.2 7.3 7.4 7.5	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED OUTPUT POWER CHANNEL BANDWIDTH POWER SPECTRAL DENSITY BAND EDGES	10 11 14 16 18 20
7	7.1 7.2 7.3 7.4 7.5 7.6	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED OUTPUT POWER CHANNEL BANDWIDTH POWER SPECTRAL DENSITY BAND EDGES Conducted Emission Method	10 11 14 16 18 20 20
7	7.1 7.2 7.3 7.4 7.5 7.6 7.6.	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED OUTPUT POWER CHANNEL BANDWIDTH POWER SPECTRAL DENSITY BAND EDGES Conducted Emission Method	10 11 14 16 18 20 20 21
7	7.1 7.2 7.3 7.4 7.5 7.6 7.6. 7.6.2	ANTENNA REQUIREMENT. CONDUCTED EMISSIONS CONDUCTED OUTPUT POWER CHANNEL BANDWIDTH POWER SPECTRAL DENSITY BAND EDGES Conducted Emission Method. Radiated Emission Method. SPURIOUS EMISSION.	10 11 14 16 18 20 20 21 26
7	7.1 7.2 7.3 7.4 7.5 7.6 7.6. 7.6.2 7.7	ANTENNA REQUIREMENT. CONDUCTED EMISSIONS CONDUCTED OUTPUT POWER CHANNEL BANDWIDTH POWER SPECTRAL DENSITY BAND EDGES Conducted Emission Method. SPURIOUS EMISSION Conducted Emission Method.	10 11 14 16 18 20 21 21 26 26
8	7.1 7.2 7.3 7.4 7.5 7.6 7.6 7.6 7.7 7.7	ANTENNA REQUIREMENT. CONDUCTED EMISSIONS CONDUCTED OUTPUT POWER CHANNEL BANDWIDTH POWER SPECTRAL DENSITY BAND EDGES Conducted Emission Method. SPURIOUS EMISSION Conducted Emission Method.	10 11 14 16 18 20 20 21 20 21 26 26 28

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency RangeMeasurement Uncertainty9kHz ~ 30MHz± 4.64dB		Notes
Radiated Emission			(1)
Radiated Emission	30MHz ~ 1000MHz ± 4.64dB		(1)
Radiated Emission	1GHz ~ 26.5GHz	± 3.68dB	(1)
AC Power Line Conducted Emission	± 3.44dB	(1)	
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of §	95%.

5 General Information

5.1 General Description of EUT

Divident Name	
Product Name:	LED Downlight
Model No.:	538211XX, 531993XX, 538171XX, 538181XX
Test model:	538211XX
	identical in the same PCB layout,electrical circuits and similar interior only difference is the model name for commercial purpose.
Test sample(s) ID:	GTS201905000229-1
Sample(s) Status:	Engineer sample
Serial No.:	N/A
Hardware Version:	V1
Software Version:	T3.01.M00.B001
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	PCB Antenna
Antenna Gain:	0dBi(Declare by applicant)
Power Supply:	AC 120V

Operation Frequency each of channel									
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz		
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz		
•	·	•			•	•			
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz		
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency		
The lowest channel	2402MHz		
The middle channel	2440MHz		
The Highest channel	2480MHz		

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None.

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations: • FCC — Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter

from the FCC is maintained in files. Registration 381383.

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd. Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Rad	Radiated Emission:								
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020			
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A			
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 26 2019	June. 25 2020			
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 26 2019	June. 25 2020			
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 26 2019	June. 25 2020			
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 26 2019	June. 25 2020			
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
8	Coaxial Cable	GTS	N/A	GTS213	June. 26 2019	June. 25 2020			
9	Coaxial Cable	GTS	N/A	GTS211	June. 26 2019	June. 25 2020			
10	Coaxial cable	GTS	N/A	GTS210	June. 26 2019	June. 25 2020			
11	Coaxial Cable	GTS	N/A	GTS212	June. 26 2019	June. 25 2020			
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 26 2019	June. 25 2020			
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 26 2019	June. 25 2020			
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 26 2019	June. 25 2020			
15	Band filter	Amindeon	82346	GTS219	June. 26 2019	June. 25 2020			
16	Power Meter	Anritsu	ML2495A	GTS540	June. 26 2019	June. 25 2020			
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 26 2019	June. 25 2020			
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 26 2019	June. 25 2020			
19	Splitter	Agilent	11636B	GTS237	June. 26 2019	June. 25 2020			
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 26 2019	June. 25 2020			
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 20 2018	Oct. 19 2019			
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 20 2018	Oct. 19 2019			
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 20 2018	Oct. 19 2019			
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 26 2019	June. 25 2020			

Con	Conducted Emission								
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020			
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 26 2019	June. 25 2020			
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 26 2019	June. 25 2020			
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A			
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
7	Thermo meter	KTJ	TA328	GTS233	June. 26 2019	June. 25 2020			
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 26 2019	June. 25 2020			
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 26 2019	June. 25 2020			

RF C	RF Conducted Test:								
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 26 2019	June. 25 2020			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020			
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 26 2019	June. 25 2020			
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 26 2019	June. 25 2020			
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 26 2019	June. 25 2020			
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 26 2019	June. 25 2020			
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 26 2019	June. 25 2020			
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 26 2019	June. 25 2020			

Gene	General used equipment:								
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 26 2019	June. 25 2020			
2	Barometer	ChangChun	DYM3	GTS255	June. 26 2019	June. 25 2020			

7 **Test results and Measurement Data**

Antenna requirement 7.1

Standard requirement:	FCC Part15 C Section 15.203 /247(c)							
15.203 requirement:	15.203 requirement:							
responsible party shall be us antenna that uses a unique o so that a broken antenna car	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.							
15.247(c) (1)(i) requirement	:							
operations may employ trans maximum conducted output	(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.							
E.U.T Antenna:	E.U.T Antenna:							
	The antenna is PCB antenna, the best case gain of the antenna is 0dBi, reference to the appendix II for details.							

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C S	Section 15 207	7			
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30M	Hz				
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz, VE	3W=30KHz, S	Sweep tir	ne=auto		
Limit:				Limi	t (dBuV)	
	Frequency ra	ange (MHZ)	Qu	lasi-peak	Ave	erage
	0.15-	0.5	6	6 to 56*	56	to 46*
	0.5			56		46
	5-3	-		60		50
	* Decreases wit	h the logarith	m of the	frequency.		
	LISN AUX Equipment Test table/Insula Remarkc E.U.T. Equipment Under LISN: Line Impedence S Test table height=0.8m	Test tabilization Network	EMI Receive		oower	
Test Instruments:	Refer to section	6.0 for details	S			
Test mode:	Refer to section 5.2 for details					
Test environment:	Temp.: 25	°C Hur	mid.:	52%	Press.:	1012mbar
Test voltage:	AC120V 60Hz					
Test results:	Pass					

Measurement data

ode:		Tra	nsmitting I	node			Probe:	Line	е	
80 70 60 50 40 30 20 10 0		V)	- VV	America Maria				ANYMMYM 12 12 12 12 12 12 12 12 12 12 12 12 12		
	5.2		.5	1	2 Frequency	(MH7)	5	10	20	30
	Freq MHz	Reading level dBuV	LISN/ISN factor dB/m	Cable loss dB	Level dBuV	Limit level dBuV	Over limit dB	Remark		
	0.18 0.31 0.31 0.84 0.84 1.80 1.80 3.84 3.84 7.25 7.25	41.02 29.16 41.77 23.18 45.56 24.97 42.23 17.80 40.96 16.19 38.89 13.92	0.40 0.39 0.39 0.23 0.23 0.20 0.20 0.20 0.20 0.20 0.20	0.09 0.09 0.10 0.10 0.14 0.14 0.14 0.17 0.17 0.17 0.18 0.18 0.19 0.19	41.51 29.65 42.26 23.67 45.93 25.34 42.60 18.17 41.34 16.57 39.28 14.31	$\begin{array}{c} 64.\ 68\\ 54.\ 68\\ 59.\ 84\\ 49.\ 84\\ 56.\ 00\\ 46.\ 00\\ 56.\ 00\\ 46.\ 00\\ 56.\ 00\\ 46.\ 00\\ 50.\ 00\\ 50.\ 00\\ \end{array}$	-23.17 -25.03 -17.58 -26.17 -10.07 -20.66 -13.40 -27.83 -14.66 -29.43 -20.72 -35.69	QP Average QP Average QP Average QP Average QP Average QP Average QP		

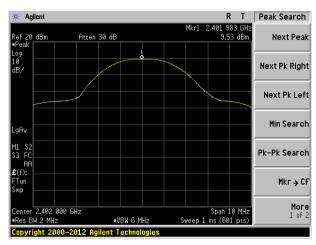
Mode:		Transmitt	ting mode			Pro	be:	Neutral		
1	80 For the second secon	V)								
	50 40	3	~~	pm	VIV	W		mmm	Marken .	_
:	30 20 10	ntan	mpro	e Marina		\sim	·///	mm	Manager .	Y
-	0 10152		.5	1	2 Frequency	(MHz)	5	10	20	30
	Freq MHz	Reading level dBuV	LISN/ISN factor dB/m	Cable loss dB	Level dBuV	Limit level dBuV	Over limit dB	Remark		
	0.18 0.32 0.32 0.84 0.84 1.73 1.73 3.80 3.80 6.49 6.49	40.69 29.41 42.68 24.32 47.26 23.99 43.33 19.15 42.16 17.82 39.80 15.15	0.40 0.40 0.39 0.23 0.23 0.20 0.20 0.20 0.20 0.20 0.20	0.09 0.09 0.10 0.14 0.14 0.14 0.17 0.17 0.17 0.18 0.18 0.18 0.18 0.18	41.18 29.90 43.17 24.81 47.63 24.36 43.70 19.52 42.54 18.20 40.18 15.53	64.59 54.59 59.80 49.80 56.00 46.00 56.00 46.00 56.00 46.00 56.00 56.00 46.00 50.00	-23.41 -24.69 -16.63 -24.99 -8.37 -21.64 -12.30 -26.48 -13.46 -27.80 -19.82 -34.47	QP Average QP Average QP Average QP Average QP Average QP Average		

Notes:

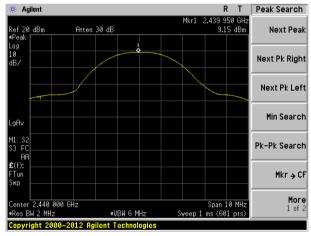
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Output Power

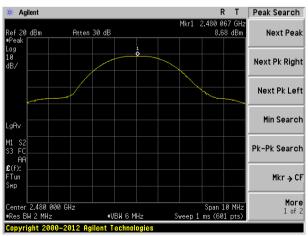
Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		


Measurement Data

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	9.53		
Middle	9.15	30.00	Pass
Highest	8.68		



Test plot as follows:


Report No.: GTS201905000229F01

Lowest channel

Middle channel

Highest channel

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02		
Limit:	>500KHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.677		
Middle	0.684	>500	Pass
Highest	0.674		

Test plot as follows:


Report No.: GTS201905000229F01

* Agilent	RT	Meas Setup
Ch Freq 2.402 GHz Occupied Bandwidth	Trig Free	Avg Number 10 On <u>Off</u>
Start 2.400500000 GHz		Avg Mode Exp Repeat
Ref 20 dBm Atten 30 dB PPeak Log 10	~~ * <u>(</u>	Max Hold On Off
dB/		Occ BW % Pwr 90.00 %
Start 2,400 500 GHz	Stop 2.403 500 GHz	OBW Span 3.00000000 MHz
•Res BW 100 kHz •VBW 300 k Occupied Bandwidth 671,5906 kHz	Hz Sweep 1 ms (601 pts) Occ BW % Pwr 90.00 % x dB -6.00 dB	x dB -6.00 dB
OTL.3900 KHZ Transmit Freq Error 5.054 kHz x dB Bandwidth 677.307 kHz		Optimize RefLevel
Copyright 2000-2012 Agilent Technolo	gies	

Lowest channel

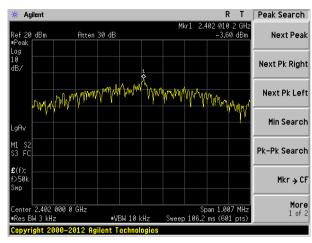
🔆 Agilent R T	Meas Setup
Ch Freq 2.44 GHz Trig Free Occupied Bandwidth	Avg Number 10 On <u>Off</u>
	Avg Mode Exp Repeat
Ref 20 dBm Atten 30 dB ■Peak Log • • • • • • • • • • • • • • • • • • •	Max Hold Off
dB/	Occ BW % Pwr 90.00 %
Center 2.440 000 GHz Span 3 MHz Res BW 100 kHz VBW 300 kHz Sweep 1 ms (601 pts)	OBW Span 3.00000000 MHz
Occupied Bandwidth Осс вн % Риг 90.00 % 672.4653 kHz х dB -6.00 dB	x dB -6.00 dB
Transmit Freq Error 3.480 kHz x dB Bandwidth 683.574 kHz Copyright 2000-2012 Agilent Technologies	Optimize RefLevel

Middle channel

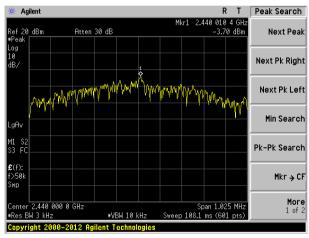
Highest channel

7.5 Power Spectral Density

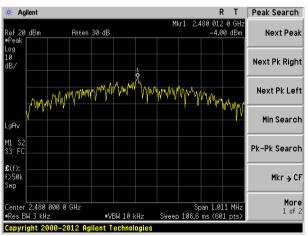
Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02		
Limit:	8dBm/3kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		


Measurement Data

Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result
Lowest	-3.60		
Middle	-3.70	8.00	Pass
Highest	-4.00		



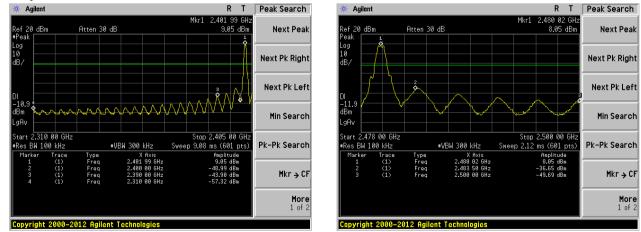
Test plot as follows:


Report No.: GTS201905000229F01

Lowest channel

Middle channel

Highest channel



7.6 Band edges

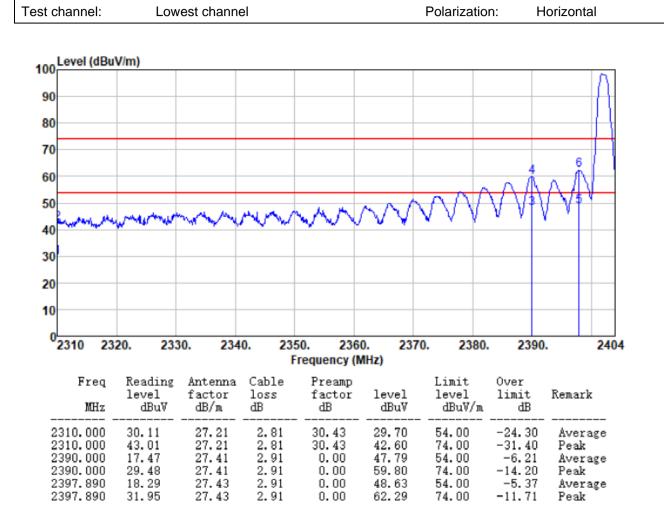
7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Test plot as follows:

Lowest channel

Highest channel



7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.20	9 and 15.205			
Test Method:	ANSI C63.10:20	013				
Test Frequency Range:	All of the restric 2500MHz) data			the wors	st band's (2	310MHz to
Test site:	Measurement D	Distance: 3m				
Receiver setup:	Frequency	Detector	RBW	VBW	, V	alue
	Above 1GHz	Peak	1MHz	3MHz	z P	eak
	Above IGHZ	RMS	1MHz	3MHz	z Av	erage
Limit:	Freque	ency	Limit (dBuV	/m @3m) V	alue
	Above 1		54.0	00	Ave	erage
	Above	IGHZ	74.0	00	P	eak
Test setup:		<	< 3m >**	*		
Test setup:	Tum Table- <150cm>		Test	Antenna- n 4m >v	nplifier ²	
Test setup: Test environment:		A	Test < ln	n 4m >	nplifier+)	1012mbar
	<150cm>	°C Hur	Test < In Receiver nid.: 52%	n 4m >	AR	1012mbar
Test environment:		°C Hur n 6.0 for detail	Test < In Receiver- nid.: 52% S	n 4m >	AR	1012mbar

Measurement Data

2310.000

2310.000 2390.000 2390.000

2397.890

2397.890

32.79

44.45

15.09

29.95

19.83

33.11

Report No.: GTS201905000229F01

est channel:	Low	est channe				Polarizati	on:	Vertical	
100 Level (dBu	iV/m)								Δ
90									Д.
80									11
70									H
60							4	6 . (h)	
						~ ~ ($\sim \Lambda A$	A	
50	hand the and the second	itestime water	mar white	mm	\sim	$\nabla \nabla V$	V V¥	¥ ¥	
40									
30									
20									
10									
0									
°2310 23	20. 233	0. 234		50. 23 Frequency		70. 2380). 239	0.	2404
Freq	Reading level	Antenna factor	Cable loss	Preamp factor	level	Limit level	Over limit	Remark	
MHz	dBuV	dB/m	dB	dB	dBu∛	dBuV/m	dB	Nemark	

30.43

30.43

0.00

0.00

0.00

0.00

54.00

74.00

54.00

74.00

54.00

74.00

32.38

44.04

45.41 60.27

50.17

63.45

-21.62

-29.96

-8.59 -13.73 -3.83

-10.55

Average

Average

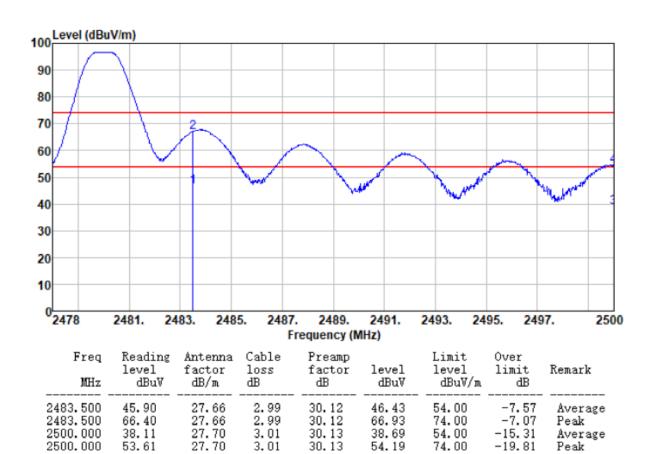
Average

Peak

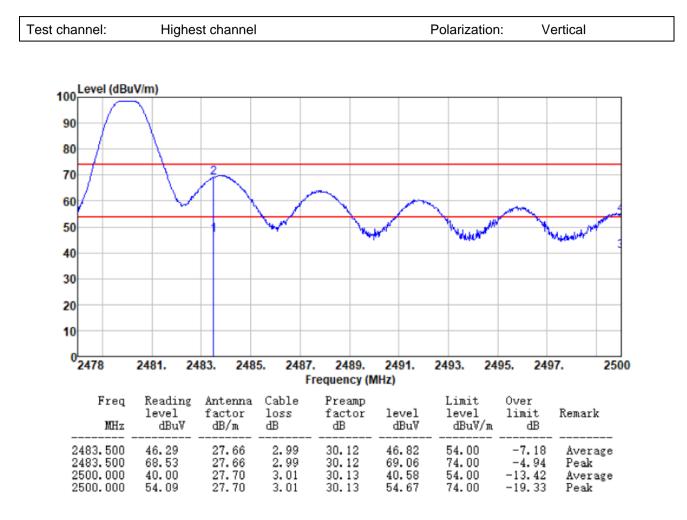
Peak

Peak

2.81 2.81 2.91 2.91 2.91 2.91 2.91


27.21 27.21 27.41

27.41 27.43


27.43

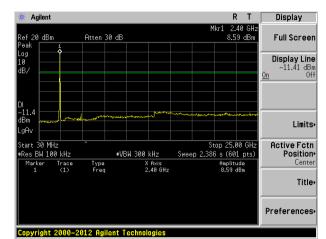
Test channel: Highest channel	Polarization:	Horizontal	
-------------------------------	---------------	------------	--

Remarks:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

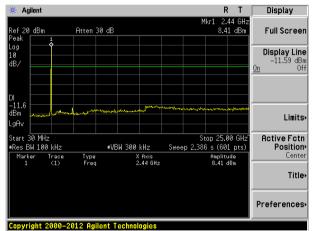
7.7 Spurious Emission

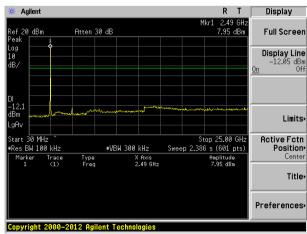
7.7.1 Conducted Emission Method


Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Test plot as follows:

Lowest channel

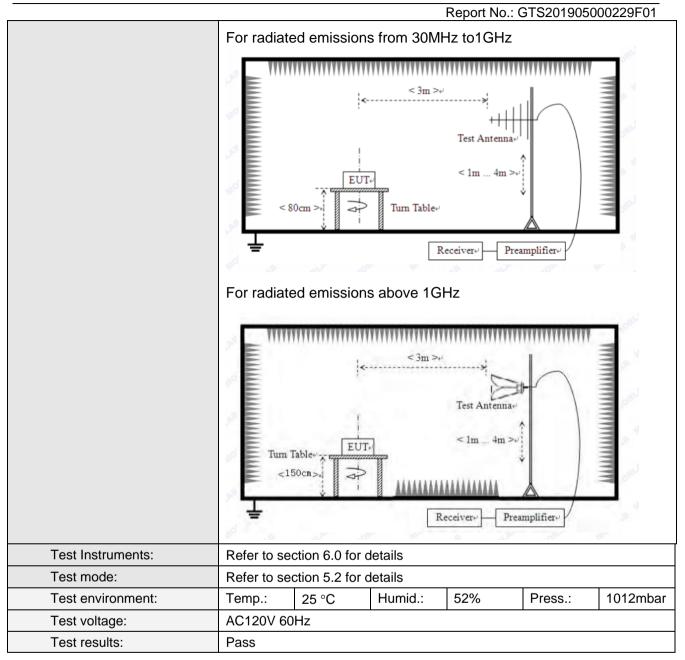

Report No.: GTS201905000229F01


30MHz~25GHz

Middle channel

Highest channel

30MHz~25GHz



7.7.2 Radiated Emission Method

FCC Part15 C Section 15.209					
ANSI C63.10:2013					
9kHz to 25GHz					
Measurement Distar	nce: 3m				
Frequency	Detector	RBW	VBW	Value	
9KHz-150KHz	Quasi-peak	200Hz	600Hz	z Quasi-peak	
150KHz-30MHz	Quasi-peak	9KHz	30KHz	z Quasi-peak	
30MHz-1GHz	Quasi-peak	120KHz	300KH	z Quasi-peak	
Above 1GHz	Peak	1MHz	3MHz	Peak	
Above TOTIZ	Peak	1MHz	10Hz	Average	
Frequency	Limit (u\	//m)	Value	Measurement Distance	
0.009MHz-0.490M	Hz 2400/F(ł	(Hz)	QP	300m	
0.490MHz-1.705M	Hz 24000/F(KHz)	QP	30m	
1.705MHz-30MH	z 30		QP	30m	
30MHz-88MHz	100		QP		
			QP		
216MHz-960MH	z 200			3m	
960MHz-1GHz				•	
Above 1GHz			-		
	5000)	Peak		
For radiated emiss	<	>+ 	+z		
	FCC Part15 C Section ANSI C63.10:2013 9kHz to 25GHz Measurement Distan Frequency 9KHz-150KHz 150KHz-30MHz 30MHz-1GHz Above 1GHz 0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MH 30MHz-88MHz 88MHz-216MHz 216MHz-960MH 960MHz-1GHz For radiated emiss	ANSI C63.10:2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector 9KHz-150KHz Quasi-peak 150KHz-30MHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz Peak Peak Peak 0.009MHz-0.490MHz 2400/F(H) 0.490MHz-1.705MHz 2400/F(H) 0.490MHz-1.705MHz 2400/F(H) 1.705MHz-30MHz 30 30MHz-88MHz 100 88MHz-216MHz 150 216MHz-960MHz 200 960MHz-1GHz 500 Above 1GHz 500 Above 1GHz 500 Above 1GHz 500 For radiated emissions from 9kH 500	FCC Part15 C Section 15.209 ANSI C63.10:2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector RBW 9KHz-150KHz Quasi-peak 200Hz 150KHz-30MHz Quasi-peak 9KHz 30MHz-1GHz Quasi-peak 120KHz Above 1GHz Peak 1MHz Peak 1MHz Peak 1MHz 0.009MHz-0.490MHz 2400/F(KHz) 0 1 0.490MHz-1.705MHz 24000/F(KHz) 1 1 0.490MHz-1.705MHz 24000/F(KHz) 1 1 1.705MHz-30MHz 30 3 3 30 3 30MHz-18BMHz 100 88MHz-216MHz 150 2 1 216MHz-960MHz 200 2 5000 A Above 1GHz 500 A 5000 A For radiated emissions from 9kHz to 30MH	FCC Part15 C Section 15.209 ANSI C63.10:2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector RBW VBW 9KHz-150KHz Quasi-peak 200Hz 600Hz 150KHz-30MHz Quasi-peak 9KHz 30KHz 30MHz-1GHz Quasi-peak 120KHz 300KHz Above 1GHz Peak 1MHz 10Hz Frequency Limit (uV/m) Value 0.009MHz-0.490MHz 2400/F(KHz) QP 0.490MHz-0.490MHz 24000/F(KHz) QP 0.490MHz-1.705MHz 24000/F(KHz) QP 1.705MHz-30MHz 30 QP 30MHz-88MHz 100 QP 30MHz-88MHz 100 QP 216MHz-960MHz 200 QP 216MHz-960MHz 200 QP 200 QP 260MHz-1GHz 500 Average Above 1GHz 500 Average 5000 Peak For radiated emissions from 9kHz to 30MHz	

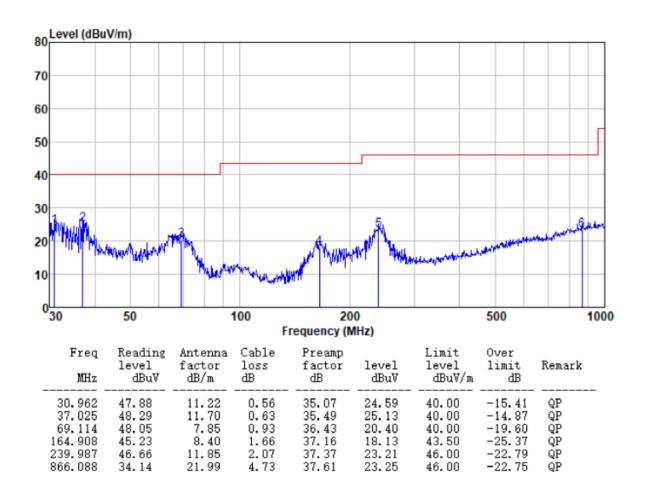
Measurement data:

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

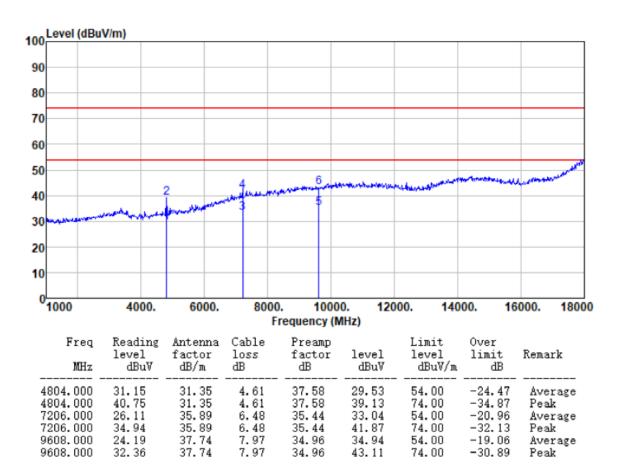
■ 9kHz~30MHz

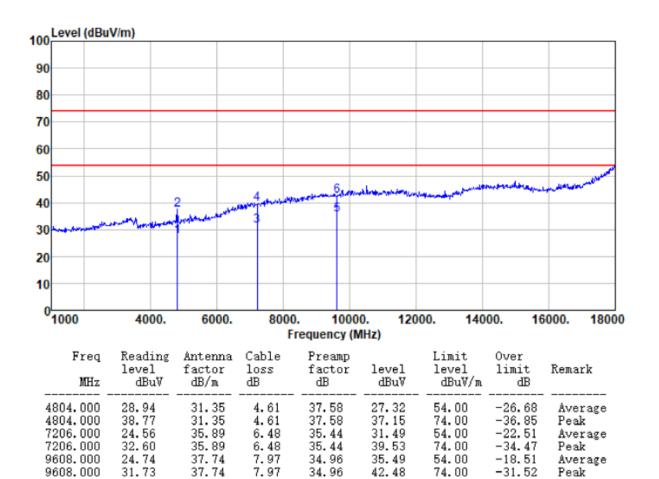
The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.



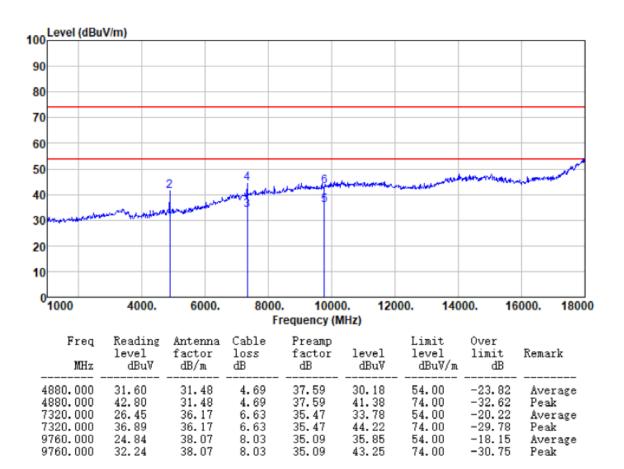
Below 1GHz

de:		Tran	smitting	mode			Polarizati	on:	Horizontal
L	evel (dBu)	V/m)							
80									
70								_	
60									
50									
40									
30	1								
									6
								5	day allow
20	بمر بس	An			2	Å	للعيود المعدول م	unin	- and a selfur
20 10	han	my	MUM	2 martine	with a fill where	with the second	Land and	Harrowald	- and the settler of
M	0 0	50		2 100 F	20 requency (h		and and survey of the second	500	1000
10				F	requency (N			500	
10	0 Freq MHz	50 Reading level dBuV					Limit dBuV/m		
10 03	Freq MHz 31.399	Reading level dBuV 52.04	Antenna factor dB/m 11.23	F Cable loss dB 0.57	Frequency (N Preamp factor dB 35, 11	1evel 	Limit level dBuV/m 40.00	500 Over limit dB -11.27	1000 Remark
10 03	Freq MHz	Reading level dBuV	Antenna factor dB/m	F Cable loss dB	Frequency (N Preamp factor dB	MHz) level dBu∛	Limit level dBuV/m	500 Over limit dB	1000 Remark

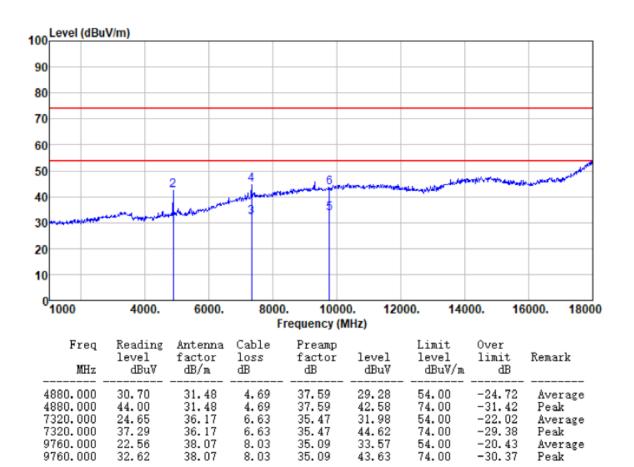

Mode:	Transmitting mode	Polarization:	Vertical
	5		


Above 1GHz

Test channel:	Lowest channel	Polarization:	Horizontal	
---------------	----------------	---------------	------------	--



Test channel: Lowest channel	Polarization:	Vertical	
------------------------------	---------------	----------	--



Test channel:	Middle channel	Polarization:	Horizontal	
Test charmer.		Polanzation.	TIONZONIA	

Test channel: Middle channel	Polarization:	Vertical	
------------------------------	---------------	----------	--

est channel:	nannel: Highest channel						n: H	Horizontal	
100	V/m)								
90									
80									
70									
60									
50		_	4	6.		م موجود الم	alfed-strawn		
40		2	marfalow	standard and a standard and a Standard and a standard and a standa	antendi a Madalina Jaya	A Start St			
30	and the property of the second								
20									
10									
01000	4000.	6000.	8000 F). 1000 requency (N		00. 140	00. 16	5000. 1800	
Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBu∛	Limit level dBuV/m	Over limit dB	Remark	
4960.000 4960.000 7440.000 7440.000 9920.000	30.87 42.46 24.22 35.72 21.99 31.52	31.63 31.63 36.46 36.46 38.42 38.42	4.79 4.79 6.77 6.77 8.09 8.09	37.60 37.60 35.49 35.49 35.23	29.69 41.28 31.96 43.46 33.27 42.80	54.00 74.00 54.00 74.00 74.00 54.00 74.00	-24.31 -32.72 -22.04 -30.54 -20.73 -31.20	Average Peak Average Peak Average	

Test channel:

Report No.: GTS201905000229F01

Vertical

Polarization:

0								
0								
0								
0								
0		2						
0		Î.	4 martinet	- And a start of the	frank when	- allow and a second	Alexander and the second s	and an address of the second
-	سدة بر المعصمات	and a second	3	5				
0	AND AND ALL							
0								
0								
01000	4000.	6000.	8000			00. 140	00. 16	000. 18
			Fr	equency (N	(Hz)			
Freq	Reading	Antenna	Cable	Preamp		Limiț	Over	
	Reading level dBuV	Antenna factor dB/m			1Hz) level dBu∛	Limit level dBuV/m	Over limit dB	Remark
Freq MHz 4960.000	level dBu∛ 33.01	factor dB/m 31.63	Cable loss dB 4.79	Preamp factor dB 	level 	level dBu∛/m 54.00	limit dB 	Average
Freq	level dBuV	factor dB/m	Cable loss dB	Preamp factor dB	level dBu∛	level dBuV/m	limit dB	Remark Average Peak Average

Remarks:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Highest channel

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

8 Test Setup Photo

Reference to the **appendix I** for details.

9 EUT Constructional Details

Reference to the **appendix II** for details.

-----End------