GE Electronic Tubes - World Radio History

ELECTRONIC TUBE MANUAL INDEX. All Manuals. This Index indicates the particular manual which contains com- plete data on any tube. For convenience, the tubes ...

Bli'SINESS REPLY CARD

Electronic tube manual index. All Manuals. This Index indicates the particular manual which contains com-plete data on any tube.

GE Industrial Tube Manual 45 to 58

Oct 5, 2023 — Be sure to notify us of any change in your address or of the transfer of your manual to another person. ... MICROWAVE CIRCUITS. TR. Type No. Suggested. User's.

PDF Viewing Options

Not Your Device? Search For Manuals or Datasheets below:


File Info : application/pdf, 813 Pages, 41.10MB

Document DEVICE REPORTGE Industrial Tube Manual 45 to 58
PUS

17.)P

\

INDUSTRIAL
PUBLISHED BY THE GENERAL ELECTRIC
COMPANY
ELECTRONICS DEPARTMENT

Postage
Will be Paid
By Addressee

Bli'SINESS REPLY CARD

Pint Clan, Permit. ti o.

./10, P. 1.. & Fl -Seheneenu9.,A. T.

ELECTRONICS DEPARTMENT GENERAL ELECTRIC COMPANY 1 RIVER ROAD SCHENECTADY, N. Y.
DEPT. 269-206

No Postage Stamp Necessary If Mailed in the
United States
tta® 11111111111111111111111
1111111111511=111 11111111111111110111
MINENINSYMI 11.11111MINIMII 1/11111111MIIIMI
11110111111161110
INIMINEMIN SINEEMISIME EXEMBIONMI

445 (3 Pile 883)

Postage
Will be Paid
By Addressee
BUSINESS REPLY CARD
Fin." Clan, Permit NO. 1-Sec. 510, P. L. Si. R.-Schenectady, N. 1',
ELECTRONICS DEPARTMENT GENERAL ELECTRIC COMPANY 1 RIVER ROAD SCHENECTADY, N. Y.
DEPT. 269-206

No Postage Stamp Necessary If Mailed in the
United States

CHANGE OF ADDRESS
6333 -I Manual Registration Number
My new address is , Transfer my manual to (check one)

Name

Title

Company

Address

City and State

Transferred From (Name)

Special Requests

CHANGE OF ADDRESS
633 3 -I Manual Registration Number__
My new address is , Transfer my manual to (check one)

Name

Title

Company

Address

City and State

Transferred From (Name)

Special Requests

ELECTRONIC TUBE MANUAL INDEX
All Manuals

This Index indicates the particular manual which contains complete data on any tube. For convenience, the tubes are listed in alpha -numerical order. For listings by class refer to the Table of Contents sheet in each volume.

Tube Type

Class

Manual*

Tube Type

Class

0A2 0A3 0A4 -G
OB2 OB3
0C3 OD3 OZ4 OZ4-A OZ4-G
KC -1
1A5-GT 1 A7-GT 1AD4 lAG4
1AH4 1A15 1AX2 1 B3-GT 1 DN5
1 G3-GT 1 H5-GT 1J3 1K3 1L4
1 L6 GL -1121 GL -1 L24 GL -1 L25 GL -1 L31
GL -1 L32 GL -1 L33 GL -1 L36 GL -1 L38 1 LA6
1 LH4 1 LN5
1N5-GT
GL -1 P21 GL -1 P39

Glow Tube Glow Tube Gas Triode Glow Tube Glow Tube
Glow Tube Glow Tube Diode Twin Diode Diode
Rectifier Pentode Pentagrid Converter Pentode Beam Pentode
Pentode Diode -Pentode Diode Diode Diode -Pentode
Rectifier Diode -Triode Diode Diode Pentode
Pentagrid Converter Vacuum Capacitor Vacuum Capacitor Vacuum Capacitor Vacuum Capacitor
Vacuum Capacitor Vacuum Capacitor . Vacuum Capacitor Vacuum Capacitor Pentagrid Converter
Diode -Triode Pentode Pentode Phototube Phototube

F F F F F
F F R F R
R R R R R R R R
R R R R
R
R
R R R

GL -1 P40 GL -1Q26 -A 1R5 1 S2 -A 1S4
1 S5 1T4 1U4 1U5 1V2
1V6 1X2 -A 1X2 -B 2A3 2AF4
2AF4-A GL -2B22 GL -2623 2BN4 GL -2C39 -B
GL -2C40 GL -2C40 -A GL -2C42 GL -2C43 GL -2C46
2CY5 2D21 2E24 2E26 2E30
GL -2H21 2X2 -A KC -3 3A2 3A3
3AF4-A 3AL5 3AU6 3AV6 3B2

Phototube Reference Cavity Heptode Rectifier Pentode
Diode -Pentode Pentode Pentode Diode -Pentode Diode
Triode -Pentode Diode Diode Triode Triode
Triode Diode Rectifier Triode Triode
Triode Triode Triode Triode Triode
Tetrode Thyratron Beam Pentode Beam Pentode Beam Pentode
Phasitron Diode Rectifier Diode Diode
Triode Twin Diode Pentode Duplex -Diode Triode Diode

* R= Receiving Manual F = Five -Star and Special -Purpose Manual T =Transmitting Manual
ELECTRONIC COMPONENTS DIVISION
GENERAL d ELECTRIC
Schenectady 5, N. Y.
Supersedes ET -T1216 A dated 11-56

ET-T1216B PAGE 1 6-58

Manual*

T

R

-

R

R R R R R
R R R R R

R
T
-
R T
T T
T-

R F F F F
F-
R R

R R R R R

ET-T1216B PAGE 2 6-58

Tube Type

Class

GL-3B24W 3BA6 3BC5 3BE6 3BN4
3BN6 3BU8 3BY6 3BZ6 GL -3C22
GL -3C23 3CB6 3CE5 3CF6 3CS6
3DK6 3DT6 3Q4 3Q5-GT 3S4
3V4 GL-3X2500A3 P1-4 4AU6 4BC8
4BN6 413Q7 -A 4BS8 4BU8 4BZ6
4BZ7 4CB6 4CS6 4CY5 GL -4D21/4 -125A
4DT6 GL-4X150A GL -4-1000A 5AM8 5AN8
5AQ5 5AS4 5AS8 5AT8 5AU4
5AV8 5AW4 5B8
513E8
5BK7-A
5BQ7-A 5BR8 5BT8 GL-5C21/C61 GL -5C24

Rectifier Pentode Pentode Heptode Triode
Gated -Beam Twin Pentode Heptode Pentode Triode
Thyratron Pentode Pentode Pentode Heptode
Pentode Pentode Pentode Pentode Pentode
Pentode Triode Triode Pentode Twin Triode
Gated -Beam Twin Triode Twin Triode Twin Pentode Pentode
Twin Triode Pentode Heptode Tetrode Tetrode
Pentode Tetrode Tetrode-Pentode Diode -Pentode Triode -Pentode
Beam Pentode Twin Diode Diode -Pentode Triode -Pentode Twin Diode
Triode -Pentode Twin Diode Triode -Pentode Triode -Pentode Twin Triode
Twin Triode Triode -Pentode Double -Diode Pentode Thyratron Triode

INDEX

Manual*

Tube Type

R R R R
R R R R
I
R R R R
R R R R
R
R
R R R R R
R R R R
R
R R
R R R R R
R R R R R
R R

- 5CG8
5CL8-A 5CQ8 . 5CZ5 5DH8
SEAS 5J6
5R4-GYA
- 5T8 5U4 -GA
5U4 -GB 5U8 5V3 5V4 -GA 5V6-GT
- 5X8
5Y3-GT 5Y3-WGTB 5Y4-GT 5Z3
6A7
- 6A8 - 6AB4 - 6AC5-GT
6AC7
6AC7-WA 6AC7-Y 6AD7-G 6AF3 6AF4
6AF4-A 6AG5 6AG7
- 6AG7-Y 6AH4-GT
6AH6
- 6AK5 - 6AK6
6AL5 6AL7-GT
6AM4 6AM8 6AN5 6AN8 6AQ5
6AQ5-A 6AQ6 6AQ7-GT 6AR5 6AR8
6AS5 6AS6
- 6AS7-GA - 6AS8 - 6AT6

Class

Manual*

Triode -Pentode Triode-Tetrode Triode -Pentode Beam Power Triode -Pentode

R

R

-

-

R

Triode-Pentode..R

Twin Triode

R

Twin Diode

F

Triple -Diode Triode

R

Twin Diode

R

Twin Diode Triode -Pentode Rectifier Twin Diode Pentode

R R
-
R R

Triode -Pentode Diode Service Designationt Twin Diode Diode

R

R

-

R R

Pentagrid Converter Pentagrid Converter Triode Triode Pentode
Service Designationt Pentode Triode -Pentode Diode Triode

R R R R R
-
R
R

Triode

R

Pentode

R

Pentode

R

Pentode

Triode

R

Pentode

R

Pentode

R

Pentode

R

Twin Diode

R

Electron -Ray Indicator

R

Triode

R

Diode -Pentode

R

Beam Power

R

Triode -Pentode

R

Beam Pentode

R

Beam Pentode

R

Duplex -Diode Triode

R

Duplex -Diode Triode

R

Pentode

R

Sheet Beam

R

Beam Power

R

Pentode

R

Twin Triode

R

Diode -Pentode

R

Duplex -Diode Triode

R

* I -= Industrial Manual
R = Receiving Manual F =Five -Star and Special -Purpose Manual t Because of the special nature of this type, data sheets are not maintained. Refer to the applicable Armed Service specifications for ratings.

Tube Type

Class

INDEX

Manual*

Tube Type

Class

ETT1216B PAGE 3 6-58
Manual*

6AT8 6AU4-GTA 6AU5-GT 6AU6-A 6AU6-WA
6AU8-A 6AV5-GA 6AV6 6AW8-A 6AX4-GT
6AX5-GT 6AZ8 6B8 6BA6 6BA7
6BA8-A 6BC5 6BC7 6BC8 6BD6
6BE6 6BF5 6BF6 66G6 -GA 6BH6
6BH8 6616 6617 66J8 6BK4
6BK5 66K7-6 6BL7-GTA 6BN4 6BN6
6BN8 66Q5 6BQ6-GA 6BQ6-GTB 6BQ7-A
6BR8 6BS8 6BU8 6BV8
6BW4
6BW8 6BX7-GT 6BY4 6BY5-GA 6BY6
6BY3 66Z6 66Z7 6BZ8 6C4

Triode -Pentode Diode Beam Pentode Pentode Service Designation t
Triode -Pentode Beam Pentode Duplex -Diode Triode Triode -Pentode Diode
Diode Triode -Pentode Duplex -Diode Pentode Pentode Pentagrid Converter
Triode -Pentode Pentode Triple Diode Twin Diode Pentode
Heptode Beam Power Duplex -Diode Triode Beam Pentode Pentode
Triode -Pentode Pentode Triple Diode Double -Diode Triode Beam Triode
Beam Pentode Twin Triode Twin Triode Triode Gated -Beam
Double -Diode Triode Power Pentode Pentode Beam Pentode Twin Triode
Triode -Pentode Twin Triode Twin Pentode Duplex -Diode Triode Rectifier
Duplex -Diode Pentode Twin Triode Triode Twin Diode Heptode
Pentode Pentode Twin Triode Twin Triode Triode

R

6C5

R

6C6

R

6CA5

R

- 6CB5-A 6CB6-A

R

6CD6-GA

R

6CE5

R

6CF6

R

6CG7

R

6CG8-A

R

6CH8

R

6CK4

R

6CL6

R

6CW-A

R

6CM6

R

6CM7

R

6CN7

R

6CQ8

R

6CR6

R

6CS6

R

6CS7

R

6CU5

R

6CU6

R

6CU8

R

6CX8

R

6CY5

R

6CY7

R

6CZ5

- 6D4

R

6D6

R

6DA4

R

6D65

R

6DE6

R

6DG6-GT

R

6DK6

- 6DN7 - 6DQ5

R

6DQ6-A

R

6DS5

R

6DT6

R

6E5

R

6EA8

R

6E88

R

6EH8

- 6EW6

R

6F5

R

6F6

R

6F6-GT

- 6H6

R

6J4

- 6J5

R

6J6

R

6J7

R

6K6-GT

R

6K7

Triode Pentode Beam Pentode Beam Pentode Pentode
Beam Pentode Pentode Pentode Twin Triode Triode -Pentode
Triode -Pentode Triode Pentode Triode-Tetrode Beam Pentode
Double Triode Duplex -Diode Triode Triode-Tetrode Diode -Pentode Heptode
Double Triode Beam Power Beam Pentode Triode -Pentode Triode -Pentode
Tetrode Double Triode Beam Power Thyratron Pentode
Diode Beam Pentode Pentode Beam Pentode Pentode
Double Triode Beam Power Beam Pentode Beam Power Pentode
Electron -Ray Indicator Triode -Pentode Triode -Pentode Triode -Pentode Pentode
Triode Pentode Pentode Twin Diode Triode
Triode Twin Triode Pentode Pentode Pentode

R R R R R

R R R R R
-
R R R

R

R

-

R R

-

R

R

-

R

R R

R

R

-

R

R

R

R

-

R

-

R

R

R

-

-

R

R R R R R

R R R R R

* R = Receiving Manual F =Five -Star and Special -Purpose Manual Because of the special nature of this type, data sheets are not maintained. Refer to the applicable Armed Service specifications for ratings.

ETT1216B PAGE 4 658
Tube Type

Class

INDEX

Manual*

Tube Type

Class

Manual*

6K8 6L6 616 -GB GL-C6M 6N7
6Q7 6S4 -A 6S8-GT 6SA7 6SA7-Y
6SB7-Y 6SC7 6SF5 6SF7 6SG7
6SG7-Y 6SH7 6SJ7 6SJ7-Y 6SK7
6SK7-WA 6SK7-Y 6SL7-GT 6SN7-GTB 6SQ7
6SR7 6SS7 6SV7 614 6T8
6T8 -A 6U5 6U8 6U8 -A 6V3 -A
6V6 6V6-GT 6V6-GTY 6V6 -Y 6W4-GT
6W6-GT 6X4 6X4 -WA 6X5-GT 6X8
6Y6 -G 6Y6-GT 7A4 7A6 7A7
7A8 7AF7 7AG7 7AU7 7B4

Triode-Hexode Beam Power Beam Power Thyratron Twin Triode
Duplex -Diode Triode Triode Triple -Diode Triode Pentagrid Converter Pentagrid Converter
Pentagrid Converter Twin Triode Triode Diode -Pentode Pentode
Pentode Pentode Pentode Pentode Pentode
Service Designationt Pentode Twin Triode Twin Triode Duplex -Diode Triode
Duplex -Diode Triode Pentode Diode -Pentode Triode Triple -Diode Triode
Triple -Diode Triode Electron -Ray Indicator Triode -Pentode Triode -Pentode Diode
Beam Power Pentode Beam Power Receiving Diode
Beam Pentode Twin Diode Service Designationt Diode Triode -Pentode
Beam Power Beam Pentode Triode Twin Diode Pentode
Octode Twin Triode Pentode Twin Triode Triode

R

7B5

R

7B6

R

- 7B7 7B8

R

7C5

R

7C6

R

7C7

R

GL -7C29

R

GL -7D21

- 7EY6

R

7F7

R

7F8

R

7F8 -TV

R

7117

R

7J7

- 7K7

R

7N7

R

7Q7

- 7S7

R

7Y4

- 7Z4
- 8AU8-A

R

8AW8-A

R

813Q5 .

R

8CG7

R

8CM7

R

8CN7

R

8CS7

R

8CX8

R

8EB8

R

9CL8

R

9U8 -A

R

1008

R

1 ODE7

R

11CY7

R

12A6

R

12A8-GT
- 12AB5 - 12AC6

R

I 2AD6

R

12AE6

R

- 12AF3 12AF6

R

12AJ6

R

12AL5

R

I2AL8

R

12AQ5

R

12AT6

R

12AT7

R

12AT7-WA

R

12AU6

R

12AU7

R

12AU7-A

R

12AV5-GA

R

12AV6

Pentode Duplex -Diode Triode Pentode Pentagrid Converter Beam Power
Duplex -Diode Triode Pentode Triode Tetrode Pentode
Twin Triode Twin Triode Twin Triode Pentode Triode-Heptode
Duplex -Diode Triode Twin Triode Pentagrid Converter Triode-Heptode Diode
Diode Triode -Pentode Triode -Pentode Pentode Twin Triode
Double Triode Duplex -Diode Triode Double Triode Triode -Pentode Triode -Pentode.
Triode-Tetrode Triode -Pentode Triode -Pentode Double Triode Double Triode
Beam Power Pentagrid Converter Beam Pentode Pentode Heptode
Duplex -Diode Triode Diode Pentode Duplex -Diode Triode Twin Diode
Triode-Tetrode. Beam Power Duplex -Diode Triode Twin Triode Service Designationt
Pentode Twin Triode Twin Triode . Beam Pentode Duplex -Diode Triode

R R R R R

R R
T R

R R

R R

R R R R R

R R R
-
R

R

R
-

R

-

R R R

R

R R R R R

R

R

R

R R R
-
R R R R R

* R =Receiving Manual
T =Transmitting Manual t Because of the special nature of this type, data sheets are not maintained. Refer to the applicable Armed Service specifications for ratings.

Tube Type

Class

12AV7 12AW6 12AX4-GTA 12AX7 12AY7
12AZ7 12B4 -A 12BA6 12BA7 12BD6
1213E6 12BF6
12BH7-A 12BK5 12BL6
12BN6 12BQ6-GA 12BQ6-GTB 12BR7 12BV7
12BY7-A 12BZ7 12C5 12CA5 12CN5
12CR6 12CT8 12CU5 12CU6 12CX6
12D4 12DB5 12DE8 12DK7 12DL8
12DQ6-A 12DQ7 12DV8 12DZ6 12EA6
12EG6 12F8 12H6
12.15 12J8
12K5 12K7-GT 12K8 12L6-GT 12R5
12SA7 12SA7-Y 12SC7 12SF5 12517

Twin Triode Pentode Diode Twin Triode Twin Triode
Twin Triode Triode Pentode Pentagrid Converter Pentode
Heptode Duplex -Diode Triode Twin Triode Beam Pentode Pentode
Gated Beam Pentode Beam Pentode Diode -Triode Pentode
Pentode Twin Triode Beam Pentode Beam Pentode Pentode
Diode -Pentode Triode -Pentode Beam Power Beam Pentode Pentode
Diode Beam Pentode Receiving Double -Diode Tetrode Receiving
Beam Pentode Pentode Duplex -Diode Tetrode Pentode Pentode
Receiving Duplex -Diode Pentode Twin Diode Triode Double -Diode Tetrode
Tetrode Pentode Triode-Hexode Beam Pentode Beam Pentode
Pentagrid Converter Pentagrid Converter Twin Triode Triode Diode -Pentode

* I =Industrial Manual R = Receiving Manual F =Five -Star and Special -Purpose Manual

INDEX

Manual*

Tube Type

R R R R
F

12SG7 12SG7-Y
12S1-17
12SJ7 12SK7

R

12SK7-Y

R

12SL7-GT

R

125N7-GTA

R

12SQ7

R

12SR7

R

12V6-GT

R

12W6-GT

R

12X4

R

14A7

R

14AF7

R

14B6

R

14Q7

R

14R7

R

14S7

R

17AX4-GT

R

17D4

R

17DQ6-A

R

171-13

R

- 18A5 19AU4-GTA

R

19BG6-GA

R

19J6

R

19T8

R

21EX6
- 24A

R

25AV5-GA
- 25AX4-GT

- 25BQ6-GA

- 25BQ6-GTB

- 25C5

R

25C6 -G

R

25CA5

R

25CD6-GB

R

25CU6

R

25DN6

- 25EC6

R

25L6-GT

R

25W4-GT

R

25W6-GT
- 25Z5

R

25Z6-GT

R

26

R

27

R

FG-27-A

R

28D7

R

32L7-GT

- 35A5

R

35B5

R

35C5

R

35L6-GT

ET-T1216B
PAGE 5
6-58

Class

Manual*

Pentode Pentode Pentode Pentode Pentode
Pentode Twin Triode Twin Triode Duplex -Diode Triode Duplex -Diode Triode

R

-

R

R

R

-
R R R R

Pentode

R

Beam Pentode

R

Twin Diode

R

Pentode

R

Twin Triode

R

Duplex -Diode Triode

R

Pentagrid Converter

R

Duplex -Diode Pentode

R

Triode-Heptode

R

Diode

R

Diode

R

Beam Pentode

R

Diode

R

Beam Pentode

R

Diode

R

Beam Pentode

R

Twin Triode

R

Triple -Diode Triode

R

Receiving.. ...... .......

Tetrode

R

Beam Pentode Diode Pentode Beam Pentode Beam Pentode
Beam Power Beam Pentode Beam Pentode Beam Pentode Beam Pentode

R R R R R
-
R R R R

Beam Pentode

R

Beam Pentode

R

Diode

R

Beam Pentode

R

Diode

R

Diode Triode Triode Thyratron Twin Beam Power

R R R
1
R

Diode Beam Power

R

Beam Power

R

Beam Power

R

Beam Power

R

Beam Power

R

ETT1216B
PAGE 6 6-58

Tube Type

Class

35W4 35Y4 35Z3 35Z5-GT
41
42 47 50A5 50B5 5005
50DC4. 50L6-GT 50X6 50Y6-GT 50Y7-GT
58 70L7-GT 75 78 80
FG-81-A 83 84/6Z4 FG-97 FG-98-A
GL -100TH FG-105 117N7-GT 117Z3 117Z6-GT
FG-154 FG-172 GL -207 GL -242-C GL -266-B
FG-280 SA -302 SA -350 GL -393-A FP -400
GL -411 GL -414 GL -441 502-A GL -575-A
GL -592 Z-599
01-627 01-672-A
GL -673
01-678 GL -801-A GL -802 GL -803 GL -805

Diode Diode Diode Diode Pentode
Pentode Pentode Beam Power Beam Power Beam Pentode
Diode Beam Pentode Diode Diode Diode
Pentode Diode Beam Power Duplex -Diode Triode Triode Twin Diode
Thyratron Diode Diode Thyratron Thyratron
Triode Thyratron Diode Beam Power Diode Beam Power Diode
Thyratron Thyratron Triode Triode Rectifier
Rectifier Triode Triode Thyratron Rectifier
Rectifier Thyratron Phototube Thyratron Rectifier
Triode Magnetron Thyratron Thyratron Rectifier
Thyratron Triode Pentode Pentode Triode

* I =Industrial Manual R =Receiving Manual F = Five -Star and Special -Purpose Manual T =Transmitting Manual

INDEX

Manual*

Tube Type

R

807

R

GL -809

R

GL -810

R

GL -811-A

R

GL -812-A

R

GL -813

R

GL -814

R

GL -815

R

GL -816

R

GL -828

R

GL -829-B

R

GL -832-A

R

GL -833-A

R

GL -836

R

GL -837

R

GL -838

R

GL -845

R

GL -851

R

GL -857-B

R

01-862-A

R R I

- GL -866-A
GL -868 GL -869-B
- GL -870-A GL -872-A

I R R R

- GL -880
884 885 GL -889-A
GL -889R -A

- GL -893A -R

I

--

GL -898-A GL -918 GL -919 GL -920

-

GL -921 GL -922 GL -923

I

- GL -927 01-929

-

GL -930 GL -931-A GL -1000T

F

GL -1454

I

T

1612

--

1614 GL -1616 GL -1619 1620

I

T

2050

- GL -5513 - 01-5516 - GL -5518 - GL-5528/C6L - GL -5544

Class
Beam Pentode Triode Triode Triode Triode
Pentode Beam Power Beam Power Rectifier Pentode
Pentode Beam Power Triode Rectifier Pentode
Triode Triode Triode Rectifier Triode
Rectifier Phototube Rectifier Rectifier Rectifier
Triode Thyratron Thyratron Triode Triode
Triode Triode Phototube Phototube Phototube
Phototube Phototube Phototube Phototube Phototube
Phototube Phototube Triode Phototube Heptode
Beam Pentode Rectifier Pentode Pentode Thyratron
Triode Beam Pentode Triode Thyratron Thyratron

Manual*

F--
--

-

T

I

T

T

I

T

T

I

T

T F

T T

T
-
-

--
F
F-
F F
TT-
I

Tube Type

Class

INDEX

Manual*

Tube Type

Class

ET-T1216B PAGE 7 6-58
Manual*

GL -5549 GL -5550 GL -5551-A GL -5552-A GL -5553-B

Triode Ignitron Ignitron Ignitron Ignitron

GL -5554 GL -5555 GL -5556 GL -5557 GL -5558

Ignitron Ignitron Triode Thyratron . Rectifier

GL -5559 GL -5560 GL -5561 GL -5564 GL -5581

Thyratron Thyratron Rectifier Ignitron Phototube

GL -5593 5610 GL -5620 GL -5621 GL -5623

Phasitron Triode Ballast Tube Ballast Tube Ballast Tube

GL -5624 GL -5625 GL -5626 GL -5627 GL -5628

Ballast Tube Rectifier Vacuum Switch Vacuum Switch Vacuum Gage

GL -5629 GL -5630 GL -5632/C3.1 5636 5642

Vacuum Gage Ignitron Thyratron Five -Star Diode

5651

Glow Tube

5654

Five -Star

5654/6AK5W

Service Designationt

5654/6AK5W/6096... Service Designationt

5662

Thyratron

5663 GL -5665/C16.1 5670 5670WA GL -5674

Thyratron Thyratron Five -Star Service Designationt Pentode

5686 5687 5691 5692 5693

Five -Star Twin Triode Twin Triode Twin Triode Pentode

5696 5718 5719 GL -5720 5725

Thyratron Five -Star Five -Star Thyratron Five -Star

5725/6AS6W

Service Designationt

5726

Five -Star

5726/6AL5W

Service Designationt

5726/6AL5W/6097 .. Service Designationt

5727

Five -Star

- 5727/2D21W

Service Designationt

I

GL -5728

Thyratron

I

GL -5736

Triode

I

GL -5740

Triode

I

5749

Five -Star

I

5749/6BA6W

Service Designationt

I

5750

Five -Star

I

5750/66E6W

Service Designationt

I

5751

Five -Star

I

5751 WA

Service Designationt

I

GL -5762

I

5763

I

GL -5779

I

GL -5788

- 5814-A

- 5814WA

F

GL -5820

- GL -5822-A

- 5824

- GL -5830

--

5840 5844

- GL -5855 - 5879

- 5881

- GL -5894

I

- 5896 5899

F

5902

F

GL -5948

Triode Beam Pentode Ignitron Ignitron Five -Star
Service Designationt Image Orthicon Ignitron Pentode Thyratron
Five -Star Twin Triode Thyratron Pentode Beam Pentode
Tetrode Five -Star Five -Star Five -Star Thyratron

F

5963

F

5964

- 5965

- GL -5973

F

6005

Twin Triode Twin Triode Twin Triode Rectifier Five -Star

F

6005/6AQ5W

Service Designationt

- 6005/6AQ5W/6095. .Service Designationt

F

GL -6011/710

- GL-6014/C1K

- GL -6019

Thyratron Thyratron Tetrode

I
-
F
-
F
-
F
-
F

F
..
T

F
I

F F

F F

..

..

F

..

F

F

.

F

F

F

T

..

F

-

.

-

..

-

T

F

6021

F

GL -6039

F

GL -6044

F

6046

F

6072

F F F
!
F

6080 6087 6100/6C4WA 6111 6112

- 6134

F

- 6135 6136

- 6137

F

6146

Five -Star Triode Thyratron Beam Pentode Five -Star
Twin Triode Five -Star
Service Designationt..... ..
Five -Star Five -Star
Five -Star Five -Star Five -Star Five -Star Beam Power

F T
-
F F
-
F
-
F F
-

F

-

-

* I =Industrial Manual F Five -Star and Special -Purpose Manual T =Transmitting Manual
t Because of the special nature of this type, data sheets are not maintained. Refer to the applicable Armed Service specifications for ratings.

ET-T1216B PAGE 8 6-58

Tube Type

Class

GL -6181 GL -6182 GL -6198-A 6201 6202
6203 6205 6206 6211 GL -6228
GL -6237 GL -6238 GL -6239 GL -6240 GL -6241
GL -6242 GL -6251 6265 GL -6283 GL -6299
GL -6301 GL -6346 GL -6347 GL -6348 6350
6386 6397 GL -6410 6414 GL -6442
GL -6452 6463 6485 GL -6504 GL -6509
GL -6511 GL -6512 GL -6513 GL -6514 GL -6515
6525 GL -6619 GL -6620 GL -6621 GL -6625 6660

Tetrode Tetrode Camera Tube Five -Star Five -Star
Five -Star Five -Star Pentode Twin Triode Ignitron
Klystron Klystron Klystron Klystron Klystron
Klystron Tetrode Five -Star Tetrode Triode
Reference Cavity Ignitron Ignitron Ignitron Triode
Five -Star Power Pentode Magnetron Five -Star Triode
Reference Cavity Twin Triode Pentode Ignitron Ignitron
Ignitron Ignitron Ignitron Ignitron Ignitron
Thyratron Gas -Discharge Device Gas -Discharge Device Gas -Discharge Device Klystron Pentode

* I =Industrial Manual F =Five -Star and Special -Purpose Manual T =Transmitting Manual

INDEX

Manual*

Tube Type

-
T T F F

6661 6662 6663 6669 6677

F

6678

F

6679

- 6680

F

6681

I

GL -6787

T

GL -6807

T

GL -6808

T

GL -6809

T

6829

T

GL -6849

T

GL -6855/716

T

GL -6856/740

F

GL -6857/740-P

T

GL -6858/760

T

GL -6859/760-P

T

GL-6860/C6.1/F

I

GL -6878

I

GL -6897

I

GL -6917

- 6919

F
-
T F
T

GL -6930/635-P GL -6942 GL -6958 7036 GL -7042

T

7077

F

GL -7085/356

F

GL -7151

I

GL -7171

I

GL -7179

I

GL -7180

I

GL -8000

I

GL -8002

I

GL -8002-R

I

GL -8005

F T T T T
F

GL -8008 GL -8013-A GL -8020 9001 9002 9003

Class
Pentode Pentode Twin Diode Beam Pentode Pentode
Triode -Pentode Twin Triode Twin Triode Twin Triode Magnetron
Thyratron Thyratron Thyratron Five -Star Image Orthicon
Thyratron Thyratron Thyratron Thyratron Thyratron
Thyratron Ignitron Triode Magnetron Twin Diode
Rectifier Tetrode Ignitron Heptode Ignitron
Triode Triode Ignitron Ignitron Ignitron
Ignitron Triode Triode Triode Triode
Rectifier Rectifier Rectifier Pentode Triode Pentode

Manual*

F F F F F

F

F

F

F

-

I I I
F T
-
-
I
T T F

T
I
F
-
T-
-
-

I

T

-
F F F

ELECTRONIC COMPONENTS DIVISION

GENERAL

ELECTRIC

Schenectady 5, N. Y.

TABLE

ETI-101AA PAGE 1
12-58

CONTENTS' NDUSTRIAL TUBE MANUAL

TITLE

PUBLICATION NUMBER TITLE

PUBLICATION NUMBER

Registration Page

ET-T1043B

Electronic Tube Manual Index-All Manuals ET-T1216B

TABLE OF CONTENTS-GENERAL (Tabbed Divider)

Table of Contents

ETI-101AA

INTERCHANGEABILITY CHART, BASE AND CAP DRAWINGS

(Tabbed Divider)

Interchangeability List.

ET -T1468

Bases, Caps-Power Tubes

ET -T1502

IGNITRONS (Tabbed Divider)

Application Data (Including Typical Circuits) . ETI-108

Recommended Types and Selection Chart . . ET -T1507

Ignition Service Notes

ET -T1470

Ignitron Accessories.

ET -T1379

GL -5550

ETI -114B

GL -5551-A

ET-T1219A

GL -5552-A

ET-T1220A

GL -5553-B

ET-T1221A

GL -5554

ET -T1129

GL -5555

ETI-1 10B

GL -5564

ET -T1130

GL -5630

ETI-294A

GL -5779

ET -T1376

GL -5788

ET -T1184

GL -5822-A

ET -T1351

GL -6228

ET -T 1037

GL -6346

ET -T1034

GL -6347

ET -T1035

GL -6348 GL -6504

ET -T1036 ET-T1131A

GL -6509 GL -6511

ET -T1132 ET-T1142A

GL -6512

ET -T1133

GL -6513

ET -T1134

GL -6514

ET -T1185

GL -6515 GL -6878

ET -T1135 ET-T1284A

GL -6958

ET -T1479

GL -7042

ET -T1510

GL -7151

ET -T1511

GL -7171

ET -T1512

THYRATRONS (Tabbed Divider) Application Data (Including Typical Circuits). ETI-116A Recommended Types and Selection Chart ET -T1469

THYRATRONS (Continued)
GL -3C23 FG-27-A FG-97 FG-105 FG-172 GL -393-A GL -414 GL -5544 GL -5557 GL -5559 GL -5560 GL -5720 GL -5728 GL -5830 GL -5855 GL -5948 GL -6011/710 GL -6807 GL -6808 GL -6809

ET -T1475 ETI-119C ETI-126C ETI-128B ET -T1513 ET -T1476 ET-Tl 509 ETI-282 ET -T1472 EU-122C ETI-125C ETI-120B ETI-123B En -121B ET -T1139 ET -T1121 ET -T1377 ET-T1222A ET-T1222A ET-T1222A

KENOTRONS (Tabbed Divider)

Application Data (Including Typical Circuits). ETI-140

GL -5973

ET-T1038A

PHANOTRONS (Tabbed Divider)

Application Data (Including Typical Circuits). ETI-146A

Recommended Types and Selection Chart ET -T1508

GL -575-A

ET -T1477

GL -673

ET -T1478

GL -857-B

ET -T1503

GL -869-B

ET -T1504

GL 872-A

E T -T1514

GL -5558

ETI-147C

GL -5561

En -148C

GL -8008

ETI-256A

PLIOTRONS (Tabbed Divider)

Application Data (Including Typical Circuits). ETI.156

GL -5556

ETI.158A

MAGNETRONS (Tabbed Divider)

Supersedes ETI-101Z, dated 12-57

ELECTRONIC COMPONENTS DIVISION

GENERAL

ELECTRIC

Schenectady 5, N. Y.

ETI-103

PAGE 1

MAINTENANCE AND SERVICE NOTES

4-45

TUBES

This manual on G -E electronic tubes for industry may offer the maximum of service, please advise is recorded in your name below. In order that we us promptly if this information requires correction.

. FS -
Ge r El P c t ^ic Gomparly P. 0. EOK Par t land 7. Ore.

3

6- -

The index -corner feature of the Description and or by ETI number. The first page of each DescripRating sheets enables you to locate data by tube type tion and Rating bears the following identification:

Identifying Marks

GL- 1 00
DESCRIPTION AND RATING
ETI-100 PAGE 1
4-45 -.

Tube Type Number Title
Publication Number and Page Number Date

In addition, the ETI number and date are shown on each page of the manual to provide complete indexing.
You will receive new and revised data at various times during the subscription period. Prompt insertion of these data is vital in providing you with
maximum value in the use of the technical in-
formation. This service comes to you at an annual fee of $1.00.
Your requests for lost or missing data sheets should state the tube type number and title or the publication [ ETI ] number. If you require only cer-

fain sheets of a publication [ETI] mention the page numbers desired.
Be sure to notify us of any change in your address or of the transfer of your manual to another person. The "change of address" cards included in the back of this manual are for your convenience.
When corresponding with us please state the manual registration number as this will aid us in servicing your requests promptly.
Notifications of changes or requests for supplementary data should be forwarded promptly to:

4-45 (4M) Filing No. 8850

TUBE SALES SECTION TUBE DIVISION ELECTRONICS DEPARTMENT GENERAL ELECTRIC COMPANY SCHENECTADY 5, N. Y.

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

PRICES AND ORDERING

/

INSTRUCTIONS

ETI-1041

QUICK SELECTION CHART

PAGE 1 10-50

TUBES

INDUSTRIAL TYPES

You will find the concise technical information and prices on these pages handy in quickly selecting the proper tube for your application.
The various types of tubes are shown in tabular form by class of tube and conveniently arranged

in order by key ratings and characteristics. Description and rating publication numbers for
each type of tube are listed to provide you a ready reference to these data sheets included in other sections of the manual.

Prices effective Oct. 1, 1950
IGNITRONS-high-peak-current, pool -cathode tubes

Welding Control Types*

Suggested User's Price

Kva Demand

MAXIMUM RATINGS Corresponding Maximum Average Anode Average Anode Current, Amps. Current, Amps.

Corresponding Kva
Demand

Type of Cooling

Shipping Weight in Lb

Description and
Rating

GL-5550/GL-415 GL -5822** GL -5551 /FG-271 GL -5552 /FG-235-A GL -5553 /PG -258-A

$50.00 143.00 80.50 121.00 265.00

300 424 600 1200 2400

12.1
20 30.2 75.6 192.0

22.4 70
56.0 140 355

100

Water

5

ETI-114B

188

Water

17

ETI-309

200

Water

12

ETI-113

400

Water

17

ETI-109A

800

Water

41

ETI-111B

* Ratings are for voltages of 600 volts rms and below. Ignitor requirements for all welding -control types are 200 volts and 30 amperes. ** For Frequency Changer welding control.

Power Rectifier Typest

Suggested User's Price§

D -c Volts

MAXIMUM CURRENT

Peak Amp

Average Amp

Average Amp 1 Minute

Type of Cooling

Shipping Weight in Lb

Description and
Rating

GL -5779 GL -5554 /FG-259-B
GL -5555 /FG-238-B GL -5630 GL -506

$72.00 190.00
370.00 930.00 3000.00

125 300 600 300 1 600
6000 6000

30 900 600
1800 1200 200 900

10
150 112.5 300 225 50 150

.. .
200 1 150
400 300
50 300

Air Water
Water Water Water

6

ETI-301

22

ETI-112

35

ETI-110A

44

ETI-294

170

ETI-293A

t Typical ignitor requirements for power -rectifier ignitrons are 75-125 volts, 15-20 amperes. Maximum requirements are 150 volts, 40 amperes.

THYRATRONS-grid-controlled gaseous -discharge rectifier tubes

Type No.

Suggested User's Price§

No. of Electrodes

CATHODE Volts Amp

ANODE

Peak

Peak

Inv. Volts Amp

Avg Amp

Starting T

Grid

CondensedemRange

Voltage Mercury C

SWhiepipgihntg
in Lb

Description and
Rating

GL -5662 GL -5663 GL -884 GL -885 GL -2D21 GL -2050 FG-178-A GL -502-A FG-81-A FG-98-A FG-97 GL -5557 /FG-17 GL -627 GL -3C23 GL -393-A GL -678 FG-154 FG-27-A GL -5720 /FG-33 GL -5559 /FG-57 GL -5728 /FG-67 GL -5560 /FG-95
GL -672-A GL -5632 GL -5544 GL -5545
FG-105

$2.40 1.90 1.85 2.00 2.00 1.85
24.00 1.85
16.00 24.00 22.00
7.75 17.25 12.50 13.25 40.00 42.00 23.00 21.00 19.50 23.00
25.00
26.50 12.15 27.00 35.00
48.00

FG-172

65.00

GL -5830 /FG-41 182.00

GL -414

120.00

3 4

6.3 6.3

0.15 0.15

200 Fuse tube

500

0.060

0.020 Neg

--5555--++9900*

3 3

ETI-300 ETI-284

3

6.3

0.6

350

0.300

0.075 Neg

3

ETI-136

3

2.5

1.4

350

0.300

0.075 Neg

3

ETI-137

4

6.3

0.6

1300

0.500

0.100

.

-55--1-90*

4 3

6.3

0.6

1300

2.5

2.25

500

0.500 0.500

0.100 Neg 0.125 Neg

-20-+50*

33
2

4

6.3

0.6

1300

1.0

0.100 Neg

-50-- +90#

3

3

2.5

5.0

500

2.0

0.5

Neg -20-- +50*

2

EEBEET III----- 123323744 BCB

4

2.5

5.0

500

2.0

0.5

Neg

-20--- +50*

4

ETI-127B

4

2.5

5.0

1000

2.0

0.5

Var

40-80

4

ETI-126C

3

2.5

5.0

5000

2.0

0.5

Neg

40-80

3

ETI-118C

3 3 3

2.5

6.0

2500

2.5

7.0

1250

2.5

7.0

1250

2.5 6.0 6.0

0.64 1.5 1.5

Neg Neg Neg

--442005---+7+08800

1

ETI-253

3

ETI-117A

3

ETI-132

3 4 3

5.0

7.5

15000

6.0

5.0

7.0

500

10.0

5.0

4.5

1000

10.0

1.6 2.5 2.5

Neg Neg Neg

-224050---+585000*

3 7 3

ETI-255A ETI-129 ETI-119C

3

5.0

4.5

1000

15.0

2.5

Pos

35-80

7

ETI-120A

3

5.0

4.5

1000

15.0

2.5

Neg

40-80

7

ETI-122C

3

5.0

4.5

1000

15.0

2.5

Var

40-80

3

ETI-123B

4

5 5.0
1 t55

4.5 5.0

1000

15.0

1000

40.0

2.5

Var

0.5

Var

40-80 1

7

ETI-125C

4

5.0

5.0

2500

40.0

3.2

Neg

0088000 445555 --____

7:

1% ETI-254A

3

2.5

9.0

1250

30.0

2.5

Neg

2

ETI-292

3 3

2.5

12.0

1500

40.0

2.5

21.0

1500

80.0

3.2 6.4

Neg Neg

_55-+70*

2
3

ETI-282 ETI-275B

1 5.0

10.0

2500

40.0

6.4

Var

4

15.5

11.0

750

77.0

2.5

Var

t 15.0

10.0

10000

16.0

4.0

Var

J 5.0

10.0

2000

40.0

6.4

Var

4

1 *5.5

11.0

750

77.0

2.5

Var

3

5.0

20.0

10000

75.0

12.5

Neg

4300--9850 25-50 40-80 3400--9655.1

7

ETI-128B

7

ETI-130A

8

ETI-121B

4

5.0

20.0

2000 100.0

12.5

Neg

40-80

9

ETI-133C

* These tubes are inert -gas -filled, and the temperature ratings are expressed in terms of the ambient temperature range over wh'ch the tubes will operate.
t These ratings apply only when the tube is used for ignitor firing. * These ratings apply only when the tube is used in thyratron welding -control service. # Ambient temperature
Supersedes ETI-104H dated 10.49

E T1-1041
PAGE 2
10-50

KENOTRONS-h gh-vacuum rectifier tubes

Type No.

Suggested User's Price§

No. of Electrodes

CATHODE

Volts

Amp

PLATE

Peak Volts

Peak Amp

Shipping Weight in Lb

Description and
Rating

FP -400

$24.00

2

GL -2B23

21.00

2

GL -5741 /FP -85-A

75.00

2

GL -3824

11.75

2

GL -8020

22.00

2

GL -411

225.00

2

GL -5625 /KC -4

225.00

2

4.0

2.25

100

0.025

3

6.3

0.3

150

0.030

3

10.0

5.0

20000

0.100

3

1 2.5 1 5.0

3 3

20000 20000

0.150 0.300 J

3

5.0 5.8d

6.0 6.0

40000 12500A

0.750 2.00A f

8

10

14.5

100000

0.3

9

20

24.5

150000

1.00

9

A Surge -limiting diode operation.
PHANOTRONS-gaseous-discharge rectifier tubes

ETI-143 ETI-286 ETI-142 ETI-280
ETI-145 ETI-144A ETI-141B

Type No.

Suggested
u se r's Price§

No. of Electrodes

CATHODE Volts Amp

Peak Volts

ANODE Peak Amp

Avg Amp

Temp Range Shipping

Condensed Weight

Mercury C

in Lb

Description and
Rating

GL -866-A

$ 1.95

2

FG-190

29.00

3

GL -872-A

8.20

2

GL -8008

8.20

2

GL -575-A

21.00

2

GL -673

21.00

2

GL -5558 /FG-32

14.00

2

GL -869-B

132.00

2

FG-280

56.00

2

GL -5561 /FG-104

38.00

2

GL -857-B

209.00

2

FG-166

150.00

2

Quadrature operation.

2.5

5

10000

2.5

12

175

5.0

7.5

10000

5.0

7.5

10000

5.0

10

15000

5.0

10

15000

5.0

4.5

5000

5.0

19

5 20000

5.0

10

5.0

10

5.0

30

200015000$
3000 22000

2.5

100

1500

1
5 5 5 6 6 15

0.25 1.25

-2205--+6050*

1.25

20-60

1.25

20-60

1.5

20-50

1.5

20-60

2.5

30-60

3
3 8 8 3 3 3

10

2.5 1 f

30-40

7

4015:

6.45.0$

40-80

3

40

6.4

40-80

20

5.0

30-40

3 10

40$

10.0$

75

20

20-60

6

ETI-153A ETI-150 ETI-155B ETI-256A ETI-244C ETI-2438 ETI-147B ETI-1548 ETI-151B ETI-1488 ETI-152
ETI-149A

PLIOTRONS-grid-controlled high -vacuum tubes

Control Types
GL -5691 GL -5692 GL -5693 GL -5743 /PJ-21 GL -5742 /PJ-7 GL -5556 /PJ-8
Spec. Purpose
GL -5740 /FP -54
GL -5674
GL -5739 /FP -62
Therapy Types
FP -285 FP -265
Power Triodes
GL -5610 GL -807 GL -810 GL -592 GL -833-A GL -1000-T GL -851 GL -8002 GL -8002-R GL -5549 GL -473 GL -889-A GL -889R -A GL -891 GL -891-R GL -207 GL -892 GL -892-R GL -893-A GL -893A -R GL -880 GL -895 GL -895-R GL -862-A

Suggested User's Prices

No. of Electrodes

CATHODE Volts Amp

$ 7.75 7.75 6.40
12.50 13.00
12.00

6

6.3

0.6

6

6.3

0.6

5

6.3

0.3

3

4.5

1.1

3

4.5

1.1

3

4.5

1.1

66.00 77.00 44.00

4

2.5

0.09

6

3.8

0.09

3

4.5

1.48

20.00 36.00

3

10

3

10

for high -frequency heating

1.98
2.50
14.50 33.00 49.50 125.00
300.00 132.00 160.00
275.00 144.00 210.50
285.00 223.00 362.00 242.00 223.00 362.00 630.00 1150.00
483.00 866.00 1180.00 1150.00

3

6.3

5

6.3

3

10

3

10

3

10

3

7.5

3

11

3

16

3

16

3

12.6

3

6.0

3

11

3

11

3

22

3

22

3

22

3

22

3

22

3

20

3

20

3

12.6

3

19

3

19

3

33

3.25 5.20
0.15 0.9 4.5 5.0 10.0 17.0 15.5 38.0 38.0 57.0 60.0 120.0 120.0 60.0 60.0 51.0 60.0 60.0 183.0 183.0 320.0 138.0 138.0 207.0

PLATE

Max Volts

Max Amp

275

0.010

275

0.015

300

0.010

350

0.019

350

0.040

350

0.040

Max Dis Watts
1.0 1.75 2.0 7.5 10 10

Mu
80 22 3 30
8.5

6
10
112.5
1350 1500
300 600 2000 3500 4000 7500 2500 3500 3500 8500 5000 8500 8500 12000 10000 15000 15000 12500 20000 20000 15000 ,17000 17000 20000

0.00015
0.0001
0.010
0.200 0.200
0.017 0.10 0.25 0.25 0.50 0.75 1.00 1.00 1.00 1.25 1.40 2.00 2.00 2.00 2.00 2.00 2.00 2.00 4.00 4.00 4.50 9.00 9.00 10.00

Low -grid -current measurement tube Low -grid -current measurement tube For gas -pressure
measurements

Max

Max

Input

Dis

Mu

Watts Watts

270

100

12

350

160

75

Max Dis Watts

Type

Mu

of

Cooling

3
25
125
200 400 1000
750 1200
1200
4000 2500 5000 5000 6000 4000
10000 10000 4000 20000
20000 20000 40000 20000 100000

14

8

36

24

Air

35

35

Air

20.5

2.15 Water

21.5 Air

23

Air

22

Air

21

Water

21

Air

8

Water

8

Air

20

Water

50

Water

50

Air

34.5 Water

34.5 Air

20

Water

37

Water

37

45

Water

Shipping Description

Weight

and

in Lb

Rating

3

ETI-297

3

ETI-298

3

ETI-299

3

ETI-159A

3

ETI-157A

3

ETI-158

7

ETI-160A

7

ETI-284

9

ETI-161A

Shipping Weight in Lb
6 6
Shipping Weight in Lb
2 3 8 8 9
8 5
26
7
8 52 10
10 10
25 290
21 85 455 90

Description and
Rating ETI-164 ETI-163 Description
and Rating ETI-291 ETI-165 ETI-166A ETT-245B ETI-167A ETI-314 ETI-168 ETI-175B ETI-250A ETI-283 ETI-281 ETI-171 ETI-249 ETI-172A ETI-246A ETI-162A ETI-173A ETI-247A ETI-174A ETI-248 ETI-170B ETI-251B. ETI-252B ETI-169

GLOW TUBES -cold -cathode tubes for use as voltage regulators

ETI-1041
PAGE 3
10-50

Type No.

Suggested User's Price§

Starting Supply Operating Voltage

Voltage, D -c Maintained, D -c

Min

Approx

OPERATING CURRENT, MILLIAMPERES

MM

Max

Shipping Weight in Lb

Description and
Rating

GL -0A3 GL -083 GL -874 GL -0C3 GL -0B2 GL -0D3 GL -0A2

$1.35

105

75

1.20

125

90

3.10

125

90

1.35

133

105

3.55

133

108

1.30

185

150

3.20

185

150

PHOTOTUBES-light-sensitive tubes

5

40

3

ETI-176A

10

30

3

ETI-176A

10

50

3

ETI-176A

5

40

3

ETI-176A

5

30

3

ETI-306

5

40

3

ETI-176A

5

30

3

ETI-305

Type No.

Saggested User's Price§

Gas or Vacuum

Spectral Response
RMA Standard

Anode Volts

Sensitivity in Microamperes
per Lumen

Window Dimensions in Inches

Max Amb Temp. C

GL -1P21

$50.00 Vacuum

S4

1250

i6eit1Ms

75

GL -1P29 /FJ-401

2.95 Gas

S3

100

13i6xl%

100

GL -1P37

2.85 Gas

S4

100

120

f),§x1Y

7$

GL -1P39 GL -1P40

1.75 Vacuum

S4

1.85 Gas

Si

250

45

90

135

Is 54 xl. pl's
%x1

75 100

PJ-22

2.50 Vacuum

S1

500

20

1.1/18x1%

100

FJ-405 (Use GL -935)

GL -441 GL -868 /PJ-23

4.50 Vacuum

S4

2.50 Gas

SI

250

45

100

50

i t 67,1%
it 8,,i%

50 100

GL -917

3.50 Vacuum

Si

500

20

I 6x1§4

100

GL -918

3.10 Gas

Si

100

110

14(0(15/

100

GL -919

3.50 Vacuum

Si

500

20

1%i6,i1N

100

GL -920 GL -921

4.15 Gas 2.05 Gas

Si Si

100 90

75 135

Rix/lx(e%ach unit

100 100

GL -922 GL -923

1.95 Vacuum

Si

2.05 Gas

Si

500

20

90

135

%1 yxi7,,,v

100 100

GL -927 GL -929

2.50 Gas

51

1.50 Vacuum

SI

90

125

250

45

1714466xpg

100 50

GL -930

1.65 Gas

Si

90

135

1Ksx%

100

GL -931-A

9.75 Vacuum

S4

1250 2.0 amperes

1 szi

50

GL -935

7.80 Vacuum

S5

250

30

Jeri.%

75

GL -5581

2.25 Gas

S4

100

135

BA ,, 1 346

75

BALLAST TUBES -resistor -type tubes used to maintain a constant average current

Shipping Description

Weight

and

in Lb

Rating

3

ETI-315

3

ETI-178 A

3

ETI-289

3

ETI-295

3

ETI-290

3

ETI-179

3

ETI-181

3

ETI-182 A

3

ETI-183

3

ETI-184

3

ETI-185

3

ETI-186

3

ETI-187

3

ETI-188

3

ETI-189

3

ETI-190

3

ETI-191

3

ETI-192

3

ETI-193A

3

ETI-270

3

ETI-295

Type No. GL -5620 /FB-50 GL -5622 /B25 GL -5623/B47 GL -5624/B-46 (11.-56711R-5

Suggested User's Price§ $13.00 11.00 12.00 12.00 12.00

VOLTS

MM

Max

5

8

7

16

8

18

8

18

15

21

AMPERES

Min

Max

0.225 1.07 2.05 2.70 0.95

0.275 1.16 2.35 3.25 1.01

Shipping Weight in Lb
3 3 3 3 3

Description and
Rating ETI-194A ETI-194A ETI-194A ETI-194A ETI-194A

VACUUM GAGES -to measure gas pressure

Type No. GL-5628/FA-13
GL -5629 /FA -14

Suggested User's Prices $23.50 19.00

Volts
6 6

Range in Microns
0-600
CI

Shipping Weight in Lb
3 3

Description and Rating
ETI-195A ETI-195A

*Used with GL-5628/FA-13 to compensate for temperature and voltage changes.

VACUUM SWITCHES -single -pole, double -throw

Type No.

Suggested User's Price

Max Hold -off Voltage, Peak

Max Interrupting Rating, Amperes

GL -5627 /FA -6

$24.00

700

10

GL-5626/FA-15

20.00

3000

10

GL -1521

15.50

7500

15

Shipping Weight in Lb
3 3 3

Description and Rating
ETI-197A ETI-198A ETI-287

VACUUM CAPACITORS

Type No.

Suggested User's Price§

Peak Voltage, Volts, A -c D -c or R -f

Capacitance, 5%
Micromicrofarads

Ambient Temperature

Min.

Max

Net Weight in Oz Approx

Shipping Weight in Lb Approx

Description and
Rating

GL -1L21

$12.50

7500

12

GL -1L22

26.00

16000

25

GL -1L23

26.00

16000

50

GL -1L24

49.50

16000

100

GL -1L25

14.00

16000

12

GL -1L31

14.00

16000

6

GL -1L32

12.50

7500

6

GL -1L33

30.00

7500

100

GL -1L36

12.50

7500

25

GL -1L38

22.00

7500

50

-40 -40

+65

4

+65

6

-40 --4400

+65

6

+65

8

+65

6

-40

+65

6

-40

+65

4

-40 -40

+65

6

+65

4

-40

+65

4

1

ETI-262

1

ETI-263

1

ETI-264

1

ETI-265

1

ETI-266

1

ETI-307

1

ETI-308

1

ETI-267

1

ETI-268

1

ETI-269

§ As prices shown on these pages are only corrected when regular supplements are issued, they snould not be used for quotation without further check.
Prices and other data subject to change without notice

FOR RADIO APPLICATIONS*

SUGGESTED USER'S PRICES AND CONCISE

TUBES

TECHNICAL DATA

ETI-105G PAGE 1
10-50

HIGH -VACUUM TYPES

Type No.

Suggested User's
Price/

No. of
Electrodes

CATHODE
Volts Amp

Max Volts

PLATE

MAX. FREQ. MC.

Max Max Max Input, Dissi- Max Amp Watts pation. Plate
Watts Input

@50% Max Plate Input

Mu Gm

Bulletin No.

GL -2C40 GL -2C43 GL -2E24 GL -2E26

$29.00 29.00 5.10 3.85

GL -2E30

2.45

GL -4D21/

4-125A 27.50

GL -5C24 40.00

GL -35T

9.50

GL -100TH 16.50

GL -146

24.00

GL -152

27.00

GL -159 145.00

GL -169 120.00

GL -203-A 13.75

GL -204-A 115.00

GL -211

13.75

GL -242-C 13.75

GL -800

11.50

GL -801-A 4.30

GL -802

4.75

GL -803 GL -805 GL -806

24.25 13.50 34.25

GL -809

4.00

GL -811-A 4.05

GL -812-A 4.05

GL -813

16.00

GL -814

14.25

GL -815

6.90

GL -826 GL -828

12.50 13.75

GL -829-B GL -830-B GL -832-A GL -835 GL -837 GL -838 GL -842
GL -843 GL -845 GL -849
GL -1613 GL -1614 GL -1619
GL -1623 GL -1624

16.25 11.50
12.90 19.50 5.80
13.75 4.05
2.60 13.75 138.00
2.65 2.05
2.50 4.05 4.00

3

6.3 0.75

3 6.3 0.90

5

6.3 0.65

5

6.3 0.80

5

6.0 0.65

4

5.0 6.5

3 10.0 5.2

3

5.0 4.0

3

5.0 6.3

3 10

3.25

3 10 3.25

3 10

9.60

3 10

9.60

3 10

3.25

3 11

3.85

3 10

3.25

3 10

3.25

3

7.5 3.25

3

7.5 1.25

5

6.3* 0.90

5 10

5.00

3 10

3.25

3

5 10.0

3

6.3 2.50

3

6.3 4.00

3

6.3 4.00

5 10.0 5.00

5 10.0 3.25

5 *6.3t 1.6t

3

7.5 4.0

5 10.0 3.25

*5t
3 5 3 5
3 3 3 3 3 5
5 4 3
5

6.3t
10.0 *6.3t 10.0
12.6* 10.0
7.5 2.5* 10.0 11.0
6.3* 6.3* 2.5 6.3 2.5

2.25t
2.0
1.6t 3.25
0.70 3.25 1.25
2.50 3.25 5.00 0.70 0.90 2.0 2.5
2.0

500 500 600 500 600
250
3000 1750 2000 3000 1500 1500 2000 2000 1250 2500 1250 1250 1250 600 500 600 2000 1500 3000 3300 750 1000 1250 1500 1250 1500 2000 2250 1250 1500 400 500 1000 1250 1500 750 1000
750 1250
500 1250 425
450 1250 2500 350 375
400 750 600

0.025 4.0 0.040 16.7 0.085 40 0.075 30 0.075 40 0.060 15
0.225 500 0.107 250 0.150 300 0.225 675 0.200 300 0.200 300 0.400 800 0.400 800 0.175 220 0.275 690 0.175 220 0.150 188 0.080 100
0.070 42 0.060 25 0.060 33 0.175 350 0.210 315 0.200 600 0.300 1000 0.100 75 0.100 100 0.175 175 0.175 260 0.175 175 0.175 260 0.180 360 0.225 500 0.150 180 0.150 225 0.150 60 0.150 75 0.125 125 0.160 200 0.180 270 0.240 120 0.150 150 0.090 36 0.175 220 0.080 32 0.175 220 0.028 0.040
0.175 0.350 875 0.050 17.5 0.110 35 0.075 30 0.100 75 0.090 54

6.5 3370

6.7 3370

13.5 125

10

125

13.5

10

165

125

120

160

50

100

100

125

15

125

15

250

15

250

15

100

15

250

3

100

15

100

6

35

60

20

60

10

30

13

125

20

125

30

150

30

225

25

60

30

45

30

65

45

30

65

100

30

125

50

30

65

20

125

25

60

250

70

30

80

40

200

60

15

15

200

100

20

12

20

160

30

12

15

6

75

400

3

10

45

2f

80

15

45

25

60

25

60

36 4850 ETX-123 48 8000 ETX-124 175 @ 68% 7.5 3200 ETX-223 6.5 3500 ETX-224

ETX-229A

250 @ 56%
60 60 35 35 80 30 80 30
180 @ 55%
120
100 ® 55%

6.2 2450

8 5500

39 2800

40 5500

75

25

20

85

25

.

23

12

12.5

15

8

2250

ETX-225 ETX-217 ETX-216 ETX-222 ETX-127 ETX-128 ETX-129 ETX-130 ETX-131 ETX-132 ETX-134A ETX-136A ETX-142 ETX-143 ETX-144

70

4000 ETX-145

80

ETX-146

100

12.6 . ETX-147

120

50

ETX-149

100

160

ETX-151A

100 @ 55% 29

ETX-152A

120 @ 50% 8.5 3750 ETX-153 C

75 @ 64%

3300 ETX-154

200 @ 70% 6.5 4000 ETX-155

300 @ 80% 31

ETX-157A

75 @ 65%

2700 ETX-158

250 @ 89% 60 @ 54% 250 @ 89%
100
60 @ 62%
120
30 @ 80%
30
90 @ 85% 120 @ 75% 90 @ 77%
115 125 55%

9 8500
25 7 3500
12 3600 3400

3 1250

7.7 .

5

.

19

2500

6050 4500

20

. 4000

ETX-159 ETX-160 ETX-161 ETX-163 ETX-165 ETX-166 ETX-167 ETX-168 ETX-169 ETX-170 ETX-191 ETX-192A ETX-19IA ETX-195A ETX-196

* Types shown are not included elsewhere in the Industrial Tube Manual. I As prices shown on these pages are only corrected when regular supplements are issued, they should not be used for quotation without further check.
Prices and other data subject to change without notice Prices effective Oct. 1, 1950
Supersedes ETI-105F dated, 2-48

ET! -105G
PAGE 2
10-50
HIGH -VACUUM TYPES (Cont'd)

Type No.

Suggested User's Price

CATHODE
o. of
El e c-
trodes Volts Amp

Max Volts

PLATE

Max

Max

Max Dissi-

Amp Watts pation, Watts

MAX. FREQ. MC.

qs,
Max Pl4te Input

@M5a0x% Plate Input

Mu Gm Bulletin No.lletin

GL -1625 $2.65

GL -5654

6.00

GL -5670

7.50

GL -5686

7.00

GL -5725

6.00

GL -5726

4.50

GL -5749

4.50

GL -5750

4.50

GL -5751

5.65

GL -5814

6.00

GL -5824 GL -8000 GL -8005

3.35 14.50 7.40

GL -8012-A 15.50 GL -8025-A 10.00

5
5 6 5 5
4 5 6 6
6
5

12.6*
6.3* 6.3* 6.3* 6.3* 6.3* 6.3* 6.3* 6.3* 12.6* 6.3* 12.6* 25.0*

0.450
0.175 0.350 0.350 0.175 0.300 0.300 0.300 0.350 0.175 0.350 0.175 0.300

600 0.100 750 0.100 180 0.007 300 0.018 250 0.040 180 0.0052 330 0.054 300 0.011 300 0.0026 330 0.0011
330 0.010
200 0.069

60
---75 ----

25 30
1.7 1.5 2.7 1.7
3.0 1.0 1.1
3.03t
12.5

60
--
-

125 @ 55%

-8 3-----5

6000 ETX-197

-----5000
5500

ETX-241 ETX-233 ETX-244 ETX-258 ETX-257 ETX-261 ETX-262

70 1200 ETX-245

-17

2200 ETX-24E 5000 ETX-240

3 10.0 4.500 2500 0.300 750 175

30

100

16.5 . . ETX-215

3 10.0 3.250 1250 0.200 240 75

60 100 @ 60% 20

.. ETX-210

1500 0.200 300 85

3

6.3 2.000 1000 0.080 50 40

500 600 @ 63%0 18 .... ETX-204

3

6.3 1.920 1000 0.080 50 30

500 600 @ 70% 18 .. .. ETX-214

1000 0.080 75 40

HIGH -VACUUM, FORCED -AIR-COOLED TYPES

Type No.

CATHODE
Suggested No. of
User's Elec-
Price trodes Volts Amp

GL -2C39 GL -3C22 GL-4X150A GL-4-250A/5D22 GL -5D24

$41.50 80.00
48.00 37.50
37.50

GL -7C29 GL -7D21 GL -9C22 GL -1000T
GL -5513 GL -5518 GL -5588
GL -5648

115.00
285.00 1225.00
125.00
275.00 495.00 110.00
41.50

3

6.3* 1.1

3

6.3* 2.0

4

6.0*

2.6

4

5

14.5

4

5.0 14.1

3 10.5 28.0

4 6.3 30.0

3 19.5 415

3

7.5 17.0

3

6.3 32.0

3 6.3 250.0

3

6.3

2.5

3

6.3

1.1

PLATE

MAX. FREQ. MC.

Max Max

@50%

Max Max Plate Dissi- Max Max

Volts Amp Input, pation, Plate Plate

Watts Watts Input Input

Mu

Bulletin No.

-----

350 0.045 15.8

1000 0.150 150

1250 0.250

4000 0.350

3500 0.350 600

4000 0.350 1000

3000 0.400 1200

4000 1.0

3000

17000 8.0 100000

7500 0.750 4000

4000 1.0

3600

7500 2.0 12000

1000 0.300

250

1000 1.00

50

4.8 500 125 1000
150 500
250 75 200 85 250
500 110 1200 110 20000 5 1000 50 1200 220 4000 110
200 1200 15 2500

100 40
5
120@62% 5.1 6.4
29
25 @70 % 41
87 22
100

ETX-122 ETX-126 ETX-237 ETX- 236 ETX-226 ETX-218 ETX-219A ETX-212 ETX-243 ETX-220A ETX-221A ETX-239 ETX-231

HIGH -VACUUM, WATER-COOLED TYPES

GL -8D21 GL -9C21 GL -9C24 GL -858 GL -898-A** GL -8009

$1300.00
866.00
550.00 500.00 1150.00 816.00

6

3.2 125

6000 2.0 10000 6000 300

5

3 19.5 415

17000 9.0 150000 40000 15 25 670 % 40

3

6.3 240

6500 2.0 12000 5000 220

21

3 22

52.0 20000 2.00 40000 20000 1.5 40

42

3 16.5ft 70.0tf 20000 10.00 200000 100000 1.6

45

3 12.6 320

10500 6.00 60000 20000 25

100

20

ETX- 242 ET X-211 A ETX-213 ETX-173A ETX-190 ETX-203

GASKETS FOR WATER-COOLED TYPES

Cat. No.

Suggested User's Price

Used on Tube Type

Cat. No.

Suggested User's Price

Used on Tube Type

5182028P1 5182028P2 5182028P3

$1.18
.96 .20

GL -862-A, GL -880, GL -898-A GL -858, GL -893-A GL -207, GL -891, GL -892

5182028P8 5182028P10 5182028P11

$ .42
.20
1.18

GL -889-A GL -8002 GL -8009

Figures in bold type are ICAS ratings. * Heater -type cathode. ** Credit for return, prepaid, to Schenectady -carton $5.00, tube $10.00. t Parallel operation.

if Single- or three-phase filament. Voltage is per strand, current is per strand.
cp Maximum permissible percentage of only maximum plate voltage, the minimum plate input may be 100 per cent of its rated value.

MERCURY-VAPOR RECTIFIERS

Type No.

Suggested User's Price

No. of Electrodes

CATHODE

Volts

Amp

Max Peak Inverse Volts

GL -266-B

$209.00

2

5

30

22000

GL -816

1.65

2

GL -870-A

1300.00

2

HIGH -VACUUM RECTIFIERS

2.5

2.0

7500

5

65.0

16000

Type No.

Sug-
a-Uesseter'ds Price

No. of CATHODE Electrodes Volts Amp

PLATE

Max Inv.

Max

Average

Volts

I) Amp

Voltage Drop Volts

Average Dissina
ti.on Watts

GL -2B22 $21.00

2

GL -217-C 21.50

2

GL -836

9.00

2

GL -1616

8.65

2

GL -1641

2.75

3

GL -8013-A 10.30

2

* Heater -type cathode. Quadrature operation.

6.3 10
2.5* 2.5 5.0 2.5

0.75 100 2.35 7500
5.0 5000 5.0 5500 3.0 2120 5.0 40000

0.7 0.600
1.0 0.800 0.250 0.150

0.25 0.13
0.020

0.020 210 45
75 61

PHASITRON

Type No.

Suggested User's Price

No. of Electrodes

CATHODE Volts Amp

Anode Volts

Deflector Volts

RF Output,
Volts

GL -2H21

$90.00

10

6.3

0.30

300

100

4

GL -5593

77.00

10

6.3

0.30

300

100

4

Avg.
Plate Amp
5.0 10.0¶
0.125 75.0
.
Frequency for Max
Rating, Kc
500 250

ETI-105G PAGE 3
10-50
Bulletin No.
ETX-137 ETX-156 ETX-177
Bulletin No.
ETX-232 ETX-135 ETX-164 ETX-193 ETX-199 ETX-205
Bulletin No.
ETX-125 ETX-230

TELEVISION CAMERA TUBES

IMAGE ORTHICONS
Type

Suggested User's Price

GL -5820 GL -5826

$1200.00 1300.00

CATHODE

Voltage

Current Amp

6.3

0.6

6.3

0.6

Anode Voltage
1500 1500

Photocathode Voltage

Image Size Inches

Bulletin No.

-550 -550

1.6 Diagonal ETX-259 1.6 Diagonal ETX-260

TR, A-TR, AND PRE-TR TUBES -GAS SWITCHING TUBES FOR AUTOMATIC SWITCHING SERVICE IN PULSED MICROWAVE CIRCUITS

TR Type No.

Suggested User's Price

Frequency Range Megacycles

Max. Transmitter Power -Average
Watts

Spike Leakage Energy per Pulse -Ergs

Flat Leakage Power
Milliwatts

Bulletin No.

GL -1B63 -A
A-TR Type No.

$87.00

8940-9575 Frequency Range
Megacycles

250
Equivalent Conductance

0.1
Minimum Firing Power

30
Loaded
Q

ETX-256

GL -1B35

$18.00

9000-9600

0.04

GL -1B37

21.00

8500-9000

0.04

GL -1B44

71.00

2680-2830

0.03

GL -1B56

71.00

2783-2922

0.03

PRE-TR Type No.

5

4

ETX-251

5

4

ETX-252

20

4

ETX-254

20

4

ETX-255

GL -1B38

$50.00

2700-2910

1000

Max. Leakage Energy = 1.3 x 10-4 Joules

ETX-253

CATHODE-RAY TUBES -FOR MEASUREMENT USE

Type No.

Suggested User's Price

Screen Diam, Minimum, Inches

HEATER

Volts

Amp

2BP1 3KP1 3MP1
5UP1

$9.60 14.50
14.75 17.75

6.3

0.6

6.3

0.6

6.3

0.6

6.3

0.6

Screen Fluorescence

Focusing and
Deflection

Green Green
Green Green

Electrostatic Electrostatic Electrostatic Electrostatic

High -
voltage Electrode, Max Volts
2500 2500 2500 2500

Bulletin No.
ETI-310 ETI-311 ETI-313 ETI-312

Tube Divisions, Electronics Department

GENERAL

ELECTRIC

Schenectady, N. Y.

10-50 (11M)

RECEIVING TYPES

TUBES

LIST PRICE

ETI-106C PAGE 1
4-48

The G -E electronic receiving tubes listed below industrial applications. Information on other re include only those types most commonly used in ceiving type tubes will be furnished upon request.

Type of Tube

List Price*

Type of Tube

1D8GT 1F4 1LA4 1LN5
1N5GT/G
1R5 1S4 1S5
1T4 1V 2A3 3Q4
3S4 5T4 5U4G 5V4G
5W4GT 5Y3GT
5Z3 5Z4
6A6 6AC7/1852 6AF6G 6AG7
6B7 6C5GT 6C8G 6D6

$3.20 2.20 2.65 2.65
1.80 1.80 2.20 1.65
1.80 1.80 2.65 1.80
1.80 3.20 1.35 2.20
1.25 .95
1.50 2.20
2.20 2.65 2.20 2.65
2.65 1.50 2.65 1.50

6E5 6F6GT 6F8G 6G6G
6H6GT 6J5GT 6J7GT 6K6GT
6K7GT 6K8GT 6L6G 6L7G
6N7GT 6R7GT 6SA7GT 6SC7
6SF5GT 6SG7 6SH7 6SJ7GT
6SK7GT 6SL7GT 6SN7GT 6SQ7GT
6V6GT 6X5GT 6Y6G 7C7

All prices include excise tax. All prices subject to change without notice

List Price*
$1.80 1.50 2.65 2.20
1.50 1.35 1.80 1.35
1.50 1.80 2.65 2.65
2.20 1.80 1.50 1.80
1.80 1.80 1.80 1.50
1.50 2.20 2.00 1.35
1.80 1.35 2.20 1.80

Type of Tube
7K7
10 12A7
12J5GT
12SJ7GT 12SL7GT 12SN7GT 25B6G
25L6GT 25Z5 25Z6GT
30
35/51
37 42 43
45 46 56 57
80 83 85
117N7GT
117P7GT

List Price*
$2.65 3.90 2.65 1.35
1.50 2.20 2.00 3.90
1.50 1.35 1.35 1.80
1.80 1.50 1.50 1.50
1.50 2.20 1.50 1.80
1.05 2.20 1.80 3.55
3.55

F.O.B. delivered destination in minimum quantities of 50 in one shipment.

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.
Supersedes ETI-106B dated 70-47

WHERE TO BUY

ETI-107 PAGE 1
4-45

TUBES G -E ELECTRONIC TUBES

Send your electronic tube orders, requests for quotations or for delivery estimates to your nearest G -E office, distributor or dealer. These G -E electronic tube outlets are located strategically throughout the United States and are ready to serve you. Prompt attention will be given to your orders and requests by:
Name BUSINESS ADDRESS
FIRM STREET CITY STATE TELEPHONE
HOME ADDRESS
STREET.
STATE TELEPHONE
*If not available on emergency calls ask for:

1-46 (3M) Filing No. 8850

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

INTERCHANGEABILITY LIST
Industrial Tubes
This listing includes those types for which the General Electric Company has either a direct replacement or a similar type comparable in capabilities and application.

ET -T1468 Page 1 1 2-57
TGRA-WL-17

Type No.

Class Manufacturer

Direct G -E Replacement
Type

G -E
Similar Type

Type No.

Class Manufacturer

TGRA

R

TGRB

R

CE -1 (A -D)

P

EL -C1 B

EL -C1 B/A

IH

GL -575-A

AX -3B28

R

A

IH

GL -872-A

.3B28/6277

R

T

CE

GL -868

3C23

T

GE, RCA, UE

EL

GL -3C23

NL-3C23

T

NL

EL

GL -3C23

WL-3C23

T

WL

EL -C1 J/A

EL

GL -3C23

EL-Cl K GL -1 L21

EL

GL-6014/C1K

VC

GE

GL -1L21

CE -4

P

4B32

R

GL -1 L24 GL -1 L25

VC

GE

GL -1L24

VC

GE

GL -1L25

CE -5 (A -D)

P

GL-5C21/C6J

T

EL-C6J

T

GL -1L31 GL -1 L32 GL -1 L33 GL -1 L36 GL -1 L38

VC

GE

GL -1L31

VC

GE

GL -1L32

VC

GE

GL -1L33

VC

GE

GL -1L36

VC

GE

GL -1L38

C61/5C21

T

EL-C6J/A

T

C6J-A/5685

T

EL-C6J/F

T

CE
GE, CH
CE GE EL
RCA EL RCA EL

1 P21
1P32 1P39 1 P40 2-1500
CE -2 (A -D)
2 B4 GL -2B23 2D21
WL-2D21
EL -C31
C3J/5632 EL-C3J/A
3B24 3B28

P

GE, RCA

GL -1P21

P

CE

GL -927

P

GE, RCA, S

GL -1P39

P

GE, RCA

GL -1P40

R

EM

P

CE

T

D

885

R

GE

GL -2623

GE, A, CH, NU, 2D21

RCA

WL

2D21

EL-C6J/K

T

EL-C6J/KF

T

EL-C6J/KL

T

GL -8020

EL-C6J/L

T

EL-C6L

T

GL -930,

EL -6B

R

GL -1 P40

605-G

T

CE -13

P

NL-14

T

EL-C16J

T

C16J/5665

T

EL

GL-5632/C3J

RCA

GL-5632/C3J

17

T

T

EL

GL -5632/ DR -17

T

C3J

FG-17

T

R

GE, RK

GL -3B24

TT -17

T

R

CH, RCA, UE

GL -866-A WL-17

T

EL
EL EL EL EL EL
D CE NL EL RCA
CH GES
A, NU
T
WL

* Minor dimensional and grid voltage differences exist which will not affect interchangeability in the majority of circuits. f Minor dimensional differences which will not affect interchangeability in the majority of circuits.

Direct G -E Replacement
Type
GL -866-A GL -866-A GL -3C23 GL -3C23 GL -3C23

G -E
Similar Type

GL -4332
GL-5C21/C6J GL -6807*

GL -923 GL -927

GL-5C21/C6J GL -6807* GL -6807 GL -6860/
C6J/F GL -6807t

GL -68081 GL -68091 GL -6809 GL-5528/C6L

GL -5561

884
GL-5665/C16J GL-5665/C16J

GL -868 GL -5557

GL -5557 GL -5557 GL -5557

GL -5557 GL -5557

MANUFACTURER'S IDENTIFICATION

A-AMPEREX ELECTRONIC CORPORATION CE-CONTINENTAL ELECTRIC COMPANY (CETRON) CH-CHATHAM ELECTRONICS D-ALLEN B. DuMONT LABORATORIES, INCORPORATED EE-ELECTRONIC ENTERPRISES, INCORPORATED EL-ELECTRONS, INCORPORATED
EM-EITEL-McCULLOUGH, INCORPORATED (EIMAC) F-FEDERAL TELEPHONE AND RADIO COMPANY GE-GENERAL ELECTRIC COMPANY GES-GENERAL ELECTRONICS, INCORPORATED IH-INDUCTION HEATING CORPORATION KU-KUTHE LABORATORIES

ML-MACHLETT LABORATORIES, INCORPORATED NL-NATIONAL ELECTRONICS, INCORPORATED NU-NATIONAL UNION ELECTRIC CORPORATION R-THE RAULAND CORPORATION RCA-RADIO CORPORATION OF AMERICA RK-RAYTHEON MANUFACTURING COMPANY
S-SYLVANIA ELECTRIC PRODUCTS, INCORPORATED T-TAYLOR TUBES, INCORPORATED UE-UNITED ELECTRONICS COMPANY WE-WESTERN ELECTRIC WL-WESTINGHOUSE ELECTRIC CORPORATION WT-WELTRONIC COMPANY

TUBE CLASSIFICATION
B-BALLAST I-IGNITRON P-PHOTOTUBE R-RECTIFIER RVG-RESISTANCE VACUUM GAGE T-THY RAT RON VC-VACUUM CAPACITOR VS-VACUUM SWITCH

GENERAL ELECTRIC
Supersedes ET-TI218 dated 10-55

ET-Tl 468
Page 2
1 2-57

CE-20-ML-315A

INTERCHANGEABILITY LIST

Type No. Class Manufacturer

Direct G -E Replacement
Type

G -E
Similar Type

Type No.

Class Manufacturer

Direct G -E Replacement
Type

G -E
Similar Type

CE -20

P

CE -21 (A -D)

P

RX-21A

R

CE -23 (A -D)

P

CE -25 (A -D)

P

CE

GL -927

CE

GL -920

EM

CE

GL -923

CE

GL -927

WT210-0008 1I R

WT210-0015 If T

GL -872-A WT210-0017111

T

WT210-0027 11 R

WT210-0038 11 T

WT

GL -866-A

WT

GL -5557

WT

GL -6856/740

WT

GL -872-A

WT

FG-172

CE -29 (A -D)

P

CE -30 (A -D)

P

CE -31V

P

FG-32

R

WL-32

R

CE

GL -929

WT210-0043 111

T

CE

GL -930

WT210-0044 11 R

CE

GL -919

WT210-0054 11 T

CE

GL -5558

WT210-0056 1I T

WL

GL -5558

WT210-005711 T

WT

GL-5632/C3J

WT

GL -575-A

WT

GL -5830

WT

GL -5559

WT

GL -5560

WL-33

T

CE -36 (A -D)

P

CE -41

P

WL-41

T

CE -42

P

WL
CE
CE
WL

GL -5720
GL -921 GL -5830

GL -927

WT210-00621; T WT210-0063 ll T WT210-00671 T

CE

GL -922

WT210-0069 11 T WT210-0070 ll I

R -51A

P

R

GL -927

53AWB

P

RK

GL -927

WT210-0071 If I

W L-57

T

WL

GL -5559

WT210-0072 1-1 I

R -58A

P

R

GL -927

WT210-0073 11 I

CE -59

P

CE

GL -5581

WT210-0074 1il T

R -59A SK -60 R -60A R -61-A SK -63

WT210-0077 If T

P

R

GL -868

P P P P

WL

RK

GL -920

R

GL -930

WL

GL -868 GL -918

WT210-0078 Ilf T WT210-0079 If T WT210-0106 Ilf T

WT210-0116 11. T

R -71A

P

R

GL -930, GL -1 P40

WT210-014911 I

FG-81-A

T

WL-81A

T

FG-97

T

GE

FG-81-A

WL

FG-81-A

GE

FG-97

CE -220

R

Z -225/866A

R

CE -232

R

FG-98-A

T

GE, T

FG-98-A

WT -245§1f

T

WT -246§ ¶

T

105WE-249C ML -100/5575

R

100R

R

WL-104

R

WT -T104§11

T

T

ML
EM
WL WT GE, RCA

GL -56251 GL -8020 GL -5561 See WT210-0044 FG-105

249A 249B
255-A

R R R R

WL-105

T

AX-105/FG-105 T

WT -T106§1[

T

WT-T110§1f

T

WT -T111§¶

T

WL

FG-105

A

FG-105

WT

See WT210-0043

or WT210-0106

WT

See WT210-0054

WT

See WT210-0056

255B

R

HF-255B

R

25813

R

WT262§1f

R

266B

R

WT WT WT WT WT
WT WT WT WT WT
WT WT WT WT WT
CE
NU, UE
CE
WT WT
WE T, WE
WE WE WE
A A, T, UE
WT WE

GL -5557 GL -6807 GL -393-A GL -5557 GL -5550

GL -5551-A GL -5552-A GL -5553-B FG-105 5727

FG-172 FG-105 GL-5632/C3J GL -5560 GL -5551-A

GL -5558 See WT210-0003 See WT210-0004

GL -8020 GL -866-A

GL -866-A GL -866-A GL -866-A GL -869-B GL -869-B

See WT210-0008

GL -869-B GL -866-A
GL -857-B

WT-T112§ 1f

T

WT -T117§11

T

WT-T118§1f

T

WT -T119§ ¶

T

WT -T133§11

T

WT -T139§ If

T

WT -T149¶

T

FG-154

T

172

T

FG-172

T

WT

See WT210-0057

WT

See WT210-0062

or WT210-0069

WT

See WT210-0074

WT

See WT210-0078

WT

See WT210-0067

WT

See WT210-0063

WT

FG-172

GE

FG-154

RCA

FG-172

GE

FG-172

F -266B

R

266C

R

267B

R

F -267B

R

HF-267B

R

WT -272§ ¶

T

FG-280

R

287A

T

CE -302

T

CE -305

T

F

GL -857-B

WE

GL -857-B

WE

GL -872-A

F

GL -872-A

A

GL -872-A

WT

See WT210-0015

GE

FG-280

WE

GL -5557

CE

GL -3C23

CE

GL -3C23

WL-172

T

ML -199

R

WT210-0001 ¶ T

WT210-0003 11. T

WT210-0004 11- T

WL

FG-172

ML

WT

2D21

WT

884

WT

2050

CE -309

T

CE

GL -5557

GL -5973

CE -311

T

CE

GL -3C23

315A

R

A, WE

GL -673

F -315A

R

F

GL -673

ML -315A

R

ML

GL -673

t At rated current of 1.0 ampere, the GL -5625 has a voltage drop of 4000 volts; whereas the ML -100/5575 has a voltage drop of 800 volts at 1.0 ampere.

§ Old part number. Refer to Weltronic's new part number for G -E equivalent.

¶ These are tube socket markings on equipment bearing the Weltronic trade mark.

ET -T1468
Page 3
12-57

INTERCHANGEABILITY LIST

319A -872-A

Type No.

Class Manufacturer

Direct G -E Replacement
Type

G -E
Similar Type

Type No. Class Manufacturer

Direct G -E Replacement
Type

G -E
Similar Type

319A

R

WE

F -319A

R

F

ML -319A

R

ML

321A

R

WE

HF-321A

R

A

GL -872-A GL -872-A GL -872-A GL -673 GL -673

673 ML -673 676
KU -676

GE, A, F, RCA ML
RCA
WL

ML -321A

R

323B

NL-323B

T

UE-323B

T

F -353A

R

ML

GL -673

678

CH NL UE
F

GL -872-A

GL -3C23 GL -3C23 GL -3C23

WL-678 W L-679 WL-681/686 WL-688

WL-689

F -357-B 366A F -367-A 371-B F -375A

R

F

GL -857-B

R

WE

GL -866-A

NL-710

R

F

GL -673

NL-710/6011

R

EE, UE

GL -8020

NL-714

R

GL -575-A

NL-715/5557

NL-716

393A CE -393A NL-393A UE-393A 394A

WE

GL -3C23

CE NL UE CH

GL -393-A

GL -3C23
GL -3C23 GL -627

ML -728 WL-735 WL-739 NL-740

GE, A, RCA
WL WL WL WL WL
NL NL NL NL NL
ML WL WL NL

FP -400 GL -41 1 GL -414
WL-414 WT -T439§
G L-441
502-A WL-502A 575-A DR -575-A
F -575-A ML -575-A WL-575-A UE-578 WL-578

R

GE

FP -400

R

GE

GL -41 1

T

GE

GL -414

T

WL

GL -414

WT

See WT210-0038

N L-740- P WL-741 NL-760 NL-760-L NL-760-P

P

GE

GL -441

T

GE, RCA

502-A

T

WL

502-A

R GE, A, EE, NU, RCA GL -575-A

R

GES

GL -575-A

857 857-B DR -857-B F -857-B ML -857-B
WL-857-B

R

F

GL -575-A

866

R

ML

GL -575-A

866-A

R

WL

GL -575-A

R

UE

GL -8020

DR -866-A

R

WL

GL -8020

EE -866-A

NL WL NL NL NL
RCA GE, A, RCA
GES
F
ML
WL A, RCA GE, CE, CH, EM, NU, RCA, S
GES
EE

WT -606§ NL-615 NL-618 627 KU -627

T R
R

WT
NL NL GE, RCA WL

See WT210-0001
GL -627 GL -627

GL -5558 GL -5561

FIF-866-A ML -866-A RK-866-A T -866-A UE-866-A

A ML RK
UE

KU -628

WL-630

WL-630A

W L-631

WL-632B

T

KU -634

635P

R

W L-651 /656

WL-652/657

WL-653B

WL-655/658 672 WL-672 672-A WL-672-A

WI
WL WL WL WL
WL NL WL WL WL
WL
RCA
WL GE, RCA
WL

2050 2050 GL -5559
GL -556011

GL -5559

GL -6930/635-P GL -5552-A GL -5551-A GL -5555

GL -5561

GL -5553-B GL -672-A GL -672-A GL -672-A GL -672-A

WL-866-A 866-A/866 866 -AX 866-JR 868
W L-868 GL-868/PJ-23 869-A 869-B DR -869-B
F -869-B ML -869-B WL-869-B 872 872-A

WL
RCA A NU, T GE, RCA
WL GE
RCA GE, A, RCA
GES
F
ML WL RCA GE, CE, EM, NU, RCA, 5, T

§ Old part number. Refer to Weltronic's new part number for G -E equivalent. ¶ These are tube socket markings on equipment bearing the Weltronic trade mark.
3/8 inch shorter, R. inch greater in diameter; control -grid cap extends from side of bulb instead of from base.

GL -673 GL -673
GL -678

GL -5632/ C3J
GL -5632/ C3J

GL -678 GL -5554 GL -5550 GL -5564 GL -6228

GL -6011/710 GL -6011/710
GL -5557 GL -6855/716

GL -5557

GL -5557 GL -868
GL -6856/740

GL -927

GL -6857/740-P
GL -6807 GL -6809 GL -6808

GL -923

GL -857-B GL -857-B GL -857-B GL -857-B GL -857-B

GL -857-B GL -866-A

GL -866-A GL -866-A GL -866-A

GL -866-A GL -866-A GL -866-A GL -866-A GL -866-A

GL -866-A GL -866-A
GL -868

GL -866-A GL -866-A

GL -868 GL -868 GL -869-B GL -869-B GL -869-B

GL -869-B GL -869-B GL -869-B GL -872-A

GL -872-A

ET -T1468
Page 4
12-57

DR-872-A-NL-5559/FG-57

INTERCHANGEABILITY LIST

Type No.

Class

DR -872-A

R

EE -872-A

R

F -872-A

R

RK-872-A

R

UE-872-A

R

872-A/872

R

ML -872-A/872 R

WL-872-A/872 R

872 -AX

R

EE -873

T

1-875-A

R

884

T

DR -884

T

RX-884

T

WL-884

T

885

T

RX-885

T

WL-885

T

918

P

WL-918

P

919

P

WL-919

P

920

P

WL-920

P

921

P

WL-921

P

922

P

WL-922

P

923

P

WL-923

P

927

P

WL-927

P

929

P

WL-929

P

930

P

WL-930

P

931-A

P

WL-931A

P

UE-966

R

UE-966-A

R

967

T

NU -967

T

UE-967

T

UE-972

R

UE-972-A

R

UE-973

T

975-A

R

UE-975-A

R

NL-1001

I

NL-1005

I

NL-1051

I

NL-1052

I

NL-1053

1701

T

1754

T

Manufacturer
GES
EE F RK UE
RCA ML
WL
A
EE
T
GE, A, CH, NU, RCA, S GES
RK
WL
GE, A, CH, NU, RCA, S
RK
WL GE, RCA
WL
GE, RCA WL
GE, RCA WL
GE, RCA
WL GE, RCA, S
WL GE, RCA
WL
GE, RCA WL
GE, RCA, S WL
GE, RCA, S
WL GE, RCA, S
WL
UE UE
NU NU UE UE UE
UE NU UE NL NL
NL NL NL A KU

Direct G -E Replacement
Type
GL -872-A GL -872-A GL -872-A GL -872-A GL -872-A
GL -872-A GL.872.A GL -872-A GL.872.A
GL -575-A
884 884 884 884
885 885 885 GL -918 GL -918
GL -919 GL -919 GL -920 GL -920 GL -921
GL -921 GL -922 GI -922 GL -923 GL -923
GL -927 GL -927 GL -929 GL -929 GL -930
GL -930 GL -931-A GL -931-A GL -866-A GL -866-A
GL -5557 GL -5557 GL -5557 GL -872-A GL -872-A
GL -575-A
GL -5551-A GL -5552-A GL -5553-B GL -5557 GL -5948

G -E
Similar Type

Type No.

Class Manufacturer

Direct G -E Replacement
Type

GL -678

1904

T

2050

T

WL-2050

T

RK-2050

T

2051

T

RK-2051

T

5544

T

GL -5545

T

5550

I

AX -5550

I

GL-5550/GL-

I

415

WL-5550/681/ I

686

5551

I

AX -5551/652

I

W L-5551/652

I

5551-A

I

WL-5551-A

I

5552

I

NL-5552

I

AX -5552/651

I

WL-5552/651

I

5552-A

I

WL-5552-A

I

5553

I

AX -5553/655

I

WL-5553/655 I

5553-A

I

5553-B

I

WL-5553-B

I

5554

I

RCA GE, A, CH, HY,
NU, RCA, S WL
RK
A, CH, NU, RCA
RK
GE, A GE GE, NL, RCA A
GE
WL
NL, RCA A WL
GE, A WL
NL, RCA NL A
WL GE, A, NL, RCA
WL
RCA A
WL
RCA
GE, A, NL, RCA WL
GE, RCA

GL -5728
2050 2050 2050 2050
2050 GL -5544 GL -6807 GL -5550 GL -5550
GL -5550
GL -5550
GL -5551-A GL -5551-A GL -5551-A
GL -5551-A GL -5551-A GL -5552-A GL -5552-A GL -5552-A
GL -5552-A GL -5552-A GL -5552-A GL -5553-B GL -5553-B
GL -5553-B GL -5553-B GL -5553-B GL -5553-B GL -5554

AX -5554/679

I

WL-5554/679 I

GL-5554/FG-

I

259-B

5555

I

AX -5555/653-B I

A WL GE
GE, RCA A

GL -5554 GL -5554 GL -5554
GL -5555 GL -5555

WL-5555/653B I

GL-5555/FG-

I

238-B

5556

R

GL-5556/PJ-8

R

5557

T

WL GE
GE, RCA GE
GE, RCA

GL -5555 GL -5555
GL -5556 GL -5556 GL -5557

WL-5557/17

T

AX-5557/FG-

17/1701

T

GL -5559 GL-5557/FG-

T

17

GL -575-A 5558

R

GL -5550 WI -5558/32

R

GL -5551 -A

GL-5558/FG-32 R

5559

T

AX -5559

T

GL-5559/FG-57 T

NL-5559/FG-

T

57

WL
A GE
GE, RCA WL
GE GE, RCA
A GE NL

GL -5557
GL -5557 GL -5557
GL -5558 GL -5558
GL -5558 GL -5559 GL -5559 GL -5559 GL -5559

G -E
Similar Type

ET:T1468
Page 5
12-57

INTERCHANGEABILITY LIST

WL-5559/57-8020/10OR

Type No.

Class Manufacturer

Direct G -E Replacement
Type

G -E
Similar Type

Type No.

Class Manufacturer

Direct G -E Replacement
Type

G -E
Similar Type

WL-5559/57

T

5560

T

GL-5560/FG-95 T

NL-5560/FG-

T

95

5561

R

WL GE, RCA
GE NL
RCA

GL -5559 GL -5569 GL -5560 GL -5560
GL -5561

5728

T

GL-5728/FG-

T

67

GL-5740/FP-54 R

GL -5779

I

GL -5788

I

GE, RCA GE
GE GE GE

GL -5728 GL -5728
GL -5740 GL -5779 GL -5788

GL -5561
GL-5561/FG104
WL-5561/104 F-5563 5563-A
GL -5564 GL-5564/GL507 ML -5575 /100 5581 WL-5581
GL -5620 GL-5620/FB-50 GL -5621 GL -5621 /B-6 GL -5623
GL -5623/B-47 GL -5624 GL -5624/B-46 GL -5625 GL-5625/KC-4
GL -5626 GL-5626/FA-15 GL -5627 GL-5627/FA-6 GL -5628
G L-5628/ FA -13 GL -5629 GL-5629/FA-14 GL -5630 5632
GL-5632/C3J 5662 5663 5664 WL-5664
5665 GL-5665/C16J GL -5674 5683 5685/C6J

R R
R T T
I I
R P P
B B B B B
B B B R R
VS VS VS VS RVG
RVG RVG RVG
I
T
T T T T T
T T R T T

AX-5685/C6J

T

WL-5685/C6J/ T

A

5696

T

GL -5720

T

GL-5720/FG-

T

33

NL-5720/FG-33 T

5727

T

5727/2D21 -W T

GE GE
WL
F
RCA
GE GE ML GE, RCA
WL
GE GE GE GE GE
GE GE GE GE GE
GE GE GE GE GE
GE GE GE GE
EL
GE GE GE
EL
WL
EL
GE GE
EL EL
A
WL
GE, RCA GE GE
NL GE GE

GL -5561 GL -5561
GL -5561
GL -5564 GL -5564 GL -5625. GL -5581 GL -5581

5822

I

N1-5822

I

5822-A

I

NL-5822-A

I

GL -678

GL -5830

T

GL -678

GL-5830/FG-

T

41

GL -5855

T

5948

T

5948/1754

T

GL -5973

R

GL -5620 GL -5620 GL -5621 GL -5621 GL -5623

GL -6011/710

T

WL-6011/710 T

6014

T

GL-6014/C1K

T

GL -6228

I

GL -5623 GL -5624 GL -5624 GL -5625 GL -5625

GL -6228/506

I

6228/689

I

6277/3628A

R

GL -6346

I

GL -6347

I

GL -5626 GL -5626 GL -5627 GL -5627 GL -5628

GL -6348

I

GL -6504

I

GL -6509

I

GL -6511

I

GL -6512

I

GL -5628 GL -5629 GL -5629 GL -5630 GL-5632/C3J
GL -6011/710 5662 5663
GL-5665/C16J GL-5665/C16J GL -5674

GL -3C23 GL -3C23

GL -6513

I

GL -6514

I

GL -6515

I

GL -6807

T

GL -6808

T

GL -6809

T

GL -6855/716

T

GL -6856/740

T

GL -6857/740-P T

GL -6858/760

T

GL -6859/760-P T GL-6860/C6J/ T

GL -3C23

F

GL -6860/ GL -6878

I

C6J/F

GL -6930/635-P R

8008

R

GL -6860/

C6J/F

DR -8008

R

GL -6807

EE -8008

R

ML -8008

R

5696 GL -5720

UE-8008

R

WL-8008

R

GL -5720

8020

R

DR -8020

R

GL -5720

EE -8020

R

5727 5727

W L-8020

R

8020/100R

R

A, RCA NI.
GE, A, RCA NL GE
GE

GL -5822-A GL -5822-A GL -5822-A GL -5822-A GL -5830
GL -5830

GE GE, CH, KU
CH, KU GE
GE WL
EL
GE GE
GE
WI
T
GE GE
GE GE GE GE GE
GE GE GE GE GE
GE GE GE GE GE
GE GE

GL -5855 GL -5948 GL -5948 GL -5973
GL -6011/710 GL -6011/710 GL-6014/C1K GL-6014/C1K GL -6228
GL -6228 GL -6228 GL -866-A GL -6346 GL -6347
GL -6348 GL -6504 GL -6509 GL -6511 GL -6512
GL -6513 GL -6514 GL -6515 GL -6807 GL -6808
GL -6809 GL -6855/716 GL -6856/740 GL -6857/740-P GL -6858/760
GL -6859/760-P GL-6860/C6J/F

GE

GL -6878

GE

GL -6930/635-P

GE, A, CH, RCA, T GL -8008

GES
EE
ML UE WL

GL -8008 GL -8008 GL -8008 GL -8008 GL -8008

GE, A, NU, RCA
GES
EE
WL
EM

GL -8020 GL -8020 GL -8020 GL -8020 GL -8020

At rated current of 1.0 ampere, the GL -5625 has a voltage drop of 4000 volts; whereas the ML -5575/100 has a voltage drop of 800 volts at 1.0 ampere.

This information has been carefully compiled from tube data available at the date of publication and is believed to be accurate. No responsibility, however, is assumed for errors caused by inaccuracies in tube data.

APPLICATION DATA
ETI-108 PAGE 1
4-45
IGNITRONS

ETI-108 PAGE 2
4-45

DESCRIPTION

I gnitrons are gas -discharge, pool -type cathode tubes in which the arc is started for each conducting cycle by means of a starting or ignition electrode. The tubes are of the half -wave type in which current is carried through the tube during only the positive part of the cycle. During the remainder or nonconducting part the residual ionization reaches very
low values in comparison with the ionization present
in the multi -anode type of pool tube where it is proportional to the load current carried. As a result of the so-called dark, negative half -cycle, the shielding required in half -wave tubes is greatly reduced from that in the multi -anode tube. Reduction of shielding in turn lowers the arc voltages so that tubes of this type may be efficiently applied in the
lower voltage (125 to 250 volt) fields. Mercury -pool

cathodes are capable of supplying emission currents
of many thousands of amperes. By phase control of the point in the cycle at which the ignitor is fired, the output voltage or current may be reduced from the maximum to provide voltage or current control. The ignitron, therefore, possesses many of the control characteristics of the thyratron, and in addition has emission capacity for carrying very high currents. In general, the tubes are water-cooled, but in the smaller sizes may be air-cooled. Exceptions are the GL -415 ignitron for welder control use in which temperature control is provided by clamping the cathode portion of the tube in an air or water-
cooled metal clamp, and the GL -427 ignitron which
is a small glass tube designed specifically for ignitor demonstration purposes.

GENERAL CLASS OF OPERATION AND APPLICATION

There are three main fields of applications for which ignitrons are particularly suited-resistance welding, power rectification, and power conversion or transmission.
1. In welding control applications ignitron tubes are used to control the primary current supplied to resistance welding transformers. They are used in voltage supply circuits of 220, 440, 550, 1100, and 2300 volts rms. The control is the most exact that has been developed. The tubes operate as contactors and through suitable thyratrons and other electronic control, may be arranged to provide one, two, or a dozen cycles of current. Off periods may likewise be controlled with the same exactness in line welding operations. Given weld settings may be repeated indefinitely without change in the number of cycles. As a result, very great uniformity in the welds is obtained, and losses from poor welds are reduced almost to the vanishing point.
2. In the power rectification field ignitrons are available in sizes which permit d -c outputs of 40 to
1000 kilowatts to be obtained in single units depend-

ing on the operating voltage. Usual d -c voltage levels are 125, 250, 600, and 900 volts. Such rectifiers are used to provide d -c power for machine shops, elevators, mines, electrolytic reduction plants, arc welding, and similar types of service. Suitable voltage regulating equipment may be provided to give practically constant output voltage from zero to full load. Variable voltage output and control (similar to the Thy-mo-trol) will provide speed control for d -c motors.
3. The third class of application is high -voltage d -c power transmission, or conversion of power at one frequency to power at another. In such applications the tubes are primarily for power conversion and are grouped to form units of 2000 to 20,000 kilowatt capacity. Higher capacity may, of course, be obtained by additional units. These electronic power converters provide a non -synchronous tie between two power systems and are able to transmit a constant amount of power independent of the usual variations in either the supply or receiving system frequencies and voltages.

PRINCIPLES AND FUNDAMENTALS OF OPERATION

The ignitor is a small rod of highly refractory material about the shape and size of the pointed
end of an ordinary lead pencil. This point dips into a mercury pool and by passing a current of 10 to 30 amperes through the ignitor, a cathode spot is established at the junction between the ignitor and mercury pool. The mechanism is one in which the passage of current establishes sufficient voltage gradient at the mercury pool to draw electrons from the pool and start the cathode spot. Ionization from this initial spot spreads throughout the volume of the tube and if the main anode is positive, electrons begin to flow to it. Passage of the electrons in turn ionizes the gas and establishes the conditions for the low arc drop that is characteristic of gas -filled

tubes. As the current increases above 20 amperes, the cathode spot divides and sub -divides until a sufficient number of spots exist to supply the anode
current. These spots move rapidly and indis-
criminately over the surface of the pool, tending in general to occupy a circle of given diameter for a given current, centered around the ignitor. The
cathode spots in effect remain anchored around the ignitor, and the usual insulated pools used in the multi -anode tubes to prevent the arc from wandering onto the walls of the tube, are not required. At the end of conduction when the current begins
to decrease, the number of spots decrease and
finally at zero current die out altogether. Ionization rapidly decays at this point to values which permit

the application of the inverse voltage for which
the tubes are designed without the occurrence of arc backs (that is, current conduction in the reverse
direction with the anode acting as cathode).
Mercury which is evaporated by the action of the cathode spot is condensed on the water-cooled walls of the tube. From this point it rolls back into the mercury pool to maintain the required ignitor im-

mersion. Approximately 3/1 grams of mercury are evaporated for each 100 ampere -seconds a tube conducts current. The pressure (see Fig. 1) due to this mercury must be controlled and the water cooling serves in this function as well as to remove the arc losses. The arc drop is relatively low, ap-
proximately 12 to 18 volts, and the over-all efficiency even at low output voltages is, therefore, very high.

ETI-108 PAGE 3
4-45

30 ) -
20 )-

RELATION BETWEEN MERCURY-VAPOR PRESSURE AND TEMPERATURE FOR EQUILIBRIUM CONDITIONS

1

)

8)

6)

4)

2

)
8. I 6. 4.
2. )

1
8

K-9033553

0 10 20 30 40 50 60 70 80 90 100 TEMPERATURE IN DEGREES C
Fig. 1

12-6-44

DESIGN AND CONSTRUCTION

General Electric ignitrons have a number of design and construction features (see Fig. 19,
page 11) which provide reliable operation and long trouble -free service. The tube jackets and watercooling sections are constructed of stainless steel which minimizes corrosive effects as well as provides a vacuum -tight enclosing envelope. The insulating bushings which separate the anode from the main body of the tube, as well as the ignitor seals and leads, are constructed of fernico and a high -resistance borosilicate glass. Fernico is an iron -nickel cobalt alloy which was developed in the General Electric Research Laboratories. It has the unique characteristic of having an inflection point in its temperature elongation characteristic at the same

temperature as that of certain hard glasses. The expansion of the fernico and the proper glass match very closely over the entire temperature range
encountered in manufacture and use. Such seals are strain -free under usual operating conditions and form one of the strongest glass -to -metal combina-
tions developed. The ignitor is one of the most essential parts in the tube and its manufacture requires very close control to insure uniformity of characteristics and life. Every operation in the
manufacture of these ignitors is carefully controlled
through inspection and testing. All of the welds in
the General Electric ignitrons are made by means of ignitron controlled resistance welding machines. These welds are unusually strong and vacuum tight.

ETI-108 PAGE 4
4-45

RATINGS

The ratings of ignitron tubes, in common with other electronic tubes, are defined in terms of the maximum instantaneous voltage and current conditions under which the tube may operate. Other factors are the water temperature which controls vapor pressure; and the capacity of the tube to dissipate losses, which is described in terms of the average anode current. One of the larger rectifier ignitrons, the FG-238-B for example, has an average anode current rating of 200 amperes and an arc drop of approximately 17 volts, so that the water cooling is required to dissipate approximately 3.5 kilowatts. The electrodes of ignitron tubes in common with other electronic tubes have much smaller mass than rotating machinery or other heavy electrical apparatus. The time required for welder tubes to reach equilibrium temperature is only a few seconds and is shorter than the time constant of most other electrical apparatus. The limiting factor encountered in this service is the high -current short -time peaks which rapidly increase the vapor pressure to values which may cause loss of control or arc back. The same factors govern rectifier tubes, but since the usual load is of a continuous nature with relatively low ratios between maximum and average currents, the time constant is of the order of minutes. The instantaneous capacity in either case is very high and meets the usual welder requirements, or those of rectifiers to clear fuses or breakers in case of short circuit. Minimum and maximum outlet water temperatures are other ratings. The graph in Fig. 1 shows the relation between mercury-vapor pressure and temperature for equilibrium conditions.
Roughly, mercury-vapor pressure doubles for each 10 -degree increase in temperature, so that at higher temperatures the limiting pressures may be approached rapidly. The ignitor will fire even in a pool of frozen mercury. The lower limit is usually dictated by the point of freezing water and by a vapor pressure so low that there are insufficient ions to carry the required current. Arc constriction or starvation under these conditions is very unlikely to occur in the welder tubes which are of relatively open construction. Neither does it occur in the rectifier ignitrons, which are more completely shielded, within the temperature limits given as part of the technical data. In tubes with grids, such as the pentode ignitron, the effect be-
comes more pronounced and minimum temperatures
are correspondingly higher.
Ignitor
The ignitor rating is described in terms of maxi-
mum instantaneous potential and current required for
ignition as well as maximum allowable forward and inverse
voltages. The ignitor, when not operating and cold, may have a resistance of 20 to 100 ohms. Under operating conditions, this resistance decreases to about 2 to 10 ohms. The ignitor behaves as though it were a constant resistance over any one cycle,
but due to wave motion in the mercury pool,

resistance on successive cycles may vary widely. Ignition currents likewise vary widely from cycle to cycle, and normally require much less current than the values stated. Ignitors will not stand reverse current as this may cause a cathode spot on the ignitor itself and the resulting heat and burning tends to destroy the point. Some rectifying device such as a thyratron, or a dry -plate rectifier, must be connected in series with the ignitor.
Welder Ignitrons
The capacity of these tubes is described in terms
of maximum kva demand for each type, for
voltages from 220 to 600 rms and frequencies of 25
to 60 cycles. For higher voltages, tubes of the rectifier type are used and corresponding ratings applied. Each tube has a maximum average anode current rating which represents its heat dissipating ability and which may be read on an ordinary d -c ammeter. These two ratings, in conjunction with the supply voltage and the maxi-
mum time of averaging the anode current
completely describe the necessary conditions for welder service. For example, assume a power demand of 500 kva and a supply voltage of 250 volts
(rms).

The line current demand is:

'line -

500,000 250

-= 2000 amperes (rms)

(1)

or = V2 X 2000 ---- 2800 amperes (max) (2)

Then, the demand average current per tube over any conducting cycle is:

TD.avg/tube

I max

2800 3.14

=

891

amperes

(3)

The demand kva is within the rating of the

FG-271 and at this value of kva, the tube has an

average anode current rating of 33 amperes, and

at 250 volts a maximum time of averaging the

anode current of 18 seconds as shown in the Techni-

cal Information. The maximum tube capacity,

therefore, in ampere -seconds is:

Tube Iavg, X tmax. avg. = 33 x 18 = 594 ampere seconds

The length of time the tube can conduct the demand current in any 18 -second period must be within the tube ampere -second capacity. The permissible length of conduction, or weld, may, therefore, be represented by t in the expression:

'Demand avg./tube X t = 594 ampere -seconds

t max = 589914 = .67 seconds (4)

or since we are usually interested in cycles, the

corresponding number for a 60 -cycle supply is,

n = t X 60 = 40 cycles

(4a)

A single weld using the 40 cycles is permissible or any number of welds using fewer cycles (2, 3, 4, etc.) may be made providing the total conduction
does not exceed the maximum during any 18 -
second averaging time.

The duty in percent is the ratio of the on to

total cycles in the averaging period.

Duty

=

No. of conducting cycles No. of cycles in averaging time

X 100 (5)

which for the above case is:

t max. avg. X 60

X 100 -

40
18 X 60

X 100 (5a)

= 3.7%

The maximum surge current represents a

measure of the circuit stiffness in case of fault con-

ditions. It is the maximum current that the tube

may be expected to carry under fault conditions

without immediate damage. Repeated operations

under such conditions may, of course, shorten the

tube life.

Phased -back operation ratings are determined by

the conditions at full advance (no phase retard).

That is, phase -back operation produces a greater

stress on the tubes. Therefore, the permissible cur-

rent is reduced from full -on in proportion to the

angle of retard.

Rectifier Ignitrons
Rectifier ignitron tube ratings also are given in terms of the usual circuit requirements. Most in -

dustrial rectifiers have current ratings of 100 per cent continuous, 125 per cent for two hours, and
200 per cent for one minute. The maximum
average anode current is described in these terms.
The maximum instantaneous current repre-
sents the maximum cycle -by -cycle duty for which the tube is designed to operate. Two levels of inverse voltage are given with different current ratings corresponding to output voltages of 300 and 600 volts d -c. The surge current represents the maximum forward current which the tube should carry under fault conditions. Its duration should not exceed the time given. These last two factors define the transformer and supply system impedance and the minimum operating speed of the circuit breakers. The value of the surge current is such that
rectifiers having overall regulation of 6 to 7 per cent can be obtained with practicable designs of transformers. Higher regulation tends to reduce the duty on the tube by reducing the possible short-circuit
current. In terms of d -c output, the current is simply the average current per tube times the
number of tubes employed, provided the tubes are used in the usual circuits and that the peak anode current is not exceeded.

ETI-108 PAGE 5
4.45

CLASSES OF TUBES

There are three classes of ignitron tubes espec ially designed for each type of service :
1. Welder Ignitrons
These tubes are of relatively open construction with little shielding and are designed specifically to carry the high currents encountered in resistance welding. They also may be used as rectifiers in certain welding equipment where the output voltage is usually less than 150 volts d -c. These tubes have the lowest arc drop voltage of any of the ignitrons.
2. Rectifier Ignitrons
These tubes are more highly shielded to withstand the voltage and current conditions encountered each cycle during the commutation period at the end of conduction. The arc drop is approximately 2 volts higher than that of corresponding

sizes of welder ignitrons. While used primarily for rectifier service, they are also applied in 2400 -volt welding control applications where the higher voltage requires a more shielded tube.
3. Grid -Pool Tubes
This type of tube, such as the pentode ignitron, is primarily for high -voltage rectification or inversion in power or frequency -conversion work. Grids are
added to the usual ignitron structure to provide additional control and deionization when the tube is used in inverter service. Its application requires
considerable detailed coordination between the circuit and tubes, and it is recommended that appli-
cations for this type of tube be referred to the
Electronics Department, Tube Division, Schenectady 5, N. Y.

APPLICATIO N CIRCUITS#
Ignitrons for resistance welding control are used chines. Fig. 2 shows a typical circuit with two tubes in spot, pulsation, seam, and flash welding ma- in a back-to-back connection.

Iles

TI SEC
T2 SEC
EB-E

M-5375506

(A)
F;g. 2-Power Circuit for Synchronous Control of Welding Currents

11-29-44

ETI-1 08 PAGE 6
4-45

APPLICATION CIRCUITS (CONT'D)#

One older method (for illustration) of controlling the number of on and off cycles in line welding con-
sisted of a moving tape or chain with insulated sections which supplied off -on bias to the grids of the thyratrons. The length of the conducting sections was such that at synchronous speed, the on time corresponded to the number of cycles desired; say, 3, 5, etc. The non -conducting sections were of length to give off periods of say 4, 6, etc. It is present practice to use electronic control with thyratron tubes and capcitor-resistance combinations to give the proper time constant for controlling the on -off
period. These electronic controls are comparatively
complex and requests should be sent to the General Electric Company for a detailed description. Speed of control, cycle -by -cycle response, small space requirements, lack of noise, and flexibility of appli-
cation all contribute to the success of welding
ignitron control. Ignitron contactors which operate in the same
manner but which do not have the precise control of the number of cycles are also in wide use. In effect, the ignitron units simply replace ordinary contactors with the advantage of noise reduction and decreased maintenance. Fig. 3 shows the typical
connections for this type of service.

This compares with 6 to 8 cycles for most mechanical breakers. Regular circuit breakers are still required for overall fault protection.
Typical rectifier applications include the d -c supply for lighting and power loads in buildings, elevators, d -c motor supply in machine shops, printing
presses, power for the electrolytic separation of hydrogen, oxygen, chlorates, aluminum and magnesium, plating and mining. Mining rectifiers, may
be designed with very low head room (42 inches) so
that the unit may be placed in the actual mine itself near the working source. As the mine is
worked, the ignitron rectifier may be conveniently moved to provide full voltage at the location where the mining is centered. One particular advantage of rectifier equipment in mine service is that the rectifier does not have the problem of pull-out torque encountered in synchronous machines. Most mine
IG NIT R ON S

A -C SJPPLY

L
WELDING TRANSFORMER
1

WOR.(

IAN IT R ORS

K-9033544

IGNITRONS

12-6.44

Fig. 4-Three-Phase, Double -Way Rectifier Circuit for

Three -Wire Service

9033541

INITIATING SWITCH

FUSE

WATER FLOW
SWITCH 12 6-44

Fig. 3-Electronic Welding Contactor Circuit with Manual Non -Synchronous Control

Such contactors are found in welding service where precise control is not required, and in applications where frequent opening and closing of the
circuit is required such as in temperature -regulated furnaces. Phase control which permits a gradual change of the output voltage may be obtained by a modification of the control circuit and the addi-
tion of phase shifting networks and thyratrons. Another application for this type of equipment is
the interruption of the power supply for radio transmitters. In case of arc over in the transmission line or coils, or flashing in the vacuum tubes, it is desirable to remove the plate power supply as rapidly as possible to prevent possible gassing or burning of
the transmitting tube. These contactors, when placed in each line of the primary of the rectifier,
may be controlled completely to interrupt the flow of power in one to two cycles, in case of a fault.

load stations are at a considerable distance from the power source and as a result, reactance in the supply lines is usually high. This decreases the overload that can be carried without exceeding the torque limit. Three -wire rectifiers are possible (see Fig. 4) where 125/250 volt supplies are needed. Such units have also been used for d -c arc welding
power supplies.

LL 00

RECTIFIER RECTIFIER

6000 250V
SE G SE

GOOV 250V

K-9033539

25

50

75

100

125

PER CENT LOAD

12-6-44

Fig. 5-Overall Efficiency of 300KW, 250 -and 600 -Volt Ignitron Rectifier in Comparison with Motor -Generator Sets of Same Ratings

# Circuits shown in ETT-108 are examples of possible tube applications and the description and illustration of them does not convey to the purchaser of tubes any license under patent rights of General Electric Company.

Ignitron rectifiers have all the advantages of quiet
operation, small space requirements, no special foundation requirements, ease of control, and low maintenance that are common to electronic tubes. The principal advantage from the user standpoint, how-
ever, is efficiency. Fig. 5 (see bottom of page 6) shows efficiency of the 300 kilowatt, 250 volt ignitron rectifier in comparison with other forms of conversion equipment.

ETI-108 PAGE 7
4-45
In terms of losses for this size rectifier, there is a constant kilowatt difference of approximately 10 kilowatts in favor of the ignitron rectifier over the usual load range. Therefore, if the rectifier is operated continuously during the year, there is a net power saving of approximately 10 kw X 8760 hours
X .01 = $876 at a power rate of one cent per
kilowatt hour. Such savings are more than adequate to pay for the probable tube replacement cost.

SELECTION OF TUBES
Selection of ignitron tubes for welder service de- viding the maximum tap settings have been used. pends primarily on the kilovolt -ampere demand The tube selected should have sufficient capacity to and the duty. The maximum kilovolt -ampere de- conduct the maximum current demand within the mand in terms of volts and amperes in the welding tube rating. The permissible duty is then detertransformer primary can be obtained from the man- mined by the average current capacity of the tube ufacturer. Where such data are not available, a and if this capacity is below that required, a larger clamp -on ammeter with' a pointer stop or maximum size of tube must be selected. For example, suppose swing indicator may be placed around one of the that a welder having a 1000 -ampere rms current primary leads and the secondary of the welder demand and a 20 per cent duty is required, and that shorted through well clamped copper bars or strips. the supply voltage is 500. Demand rms current for The welder is then energized for periods long enough this voltage in terms of percentage duty has been to allow equilibrium readings to be obtained on the plotted for convenience on curves included with the meter. With synchronous ignitron control, 3 or Technical Information. Reference will show that more cycles will give accurate readings. With non - the FG-235-A tube has sufficient capacity and is the synchronous control, longer periods may be neces- tube required. If the duty were less than 7 per cent sary to eliminate the probable starting transient. two FG-271 tubes could be used. This constitutes the maximum current demand pro - Selection of the size and number of tubes for

KILOWATT RATINGS

IGNITRONS

AT

125V

300V

600V

900V

D -C

D -C

D -C

D -C NO.

TYPE

40

75

100

100

3 FG-259-B

50

100

150

150

6 FG-259-B

75

150

200

200

6 FG-259-B

100

200

300

300

6 FG-238-B

150
--

-300

400 500

400

6 FG-238-B

500

6 FG-238-B

200

400

750

750 12 FG-238-B

TRANSFORMER SECTION
CONNECTIONS
Y, ZIG-ZAG DOUBLE Y DOUBLE Y DOUBLE Y DOUBLE Y DOUBLE Y
QUADRUPLE Y

PHASE OPERATION

INPUT
3 3 3 3 3 3

OUTPUT
3 6 6 6 6 6

3

6 or 12

PRINCIPLE RIPPLE COMPONENT IN OUTPUT
VOLTAGE FREQUENCY MAGNITUDE

3X INPUT

0.25E ID -C

6X INPUT

0.057E D -C

6X INPUT

0.057E ID -C

6X INPUT

0.057E D -C

6X INPUT

0.057E D -C

6X INPUT

0.057E D -C

6 or 12X INPUT

0.057E D -C or
0.014E D -C

300

500

1000

1000 12 FG-238-B QUADRUPLE Y

3

6 or 12 6 or 12X INPUT

0.057E D -C or
0.014E ID -C

Fig. 6-Ratings of Standard Sizes of General Electric Sealed Ignitron Rectifiers for Industrial Service

rectifier service to supply a given d -c output is rela- (see Useful Factors pages 9 and 10). Fig. 6 shows tively simple. Assuming that the usual overload combinations for rectifiers of 40 to 1000 kilowatts ratings apply, the average current per tube is the at d -c outputs of 125 to 900 volts. d -c load current divided by the number of phases These values correspond to standard units which

CIRCUITS FOR RECTIFIER TUBES (Figs. 7 through 16)

CIRCUITS
a HI III, E D -C
HZ
iii) db

LOAD VOLTAGE AND CURRENT WAVE FORM

TUBE CURRENT WAVE FORM

I CYCLE

I
1.4IEs IMAX

IMAX

-i CYCLE-I

/

7 BI PHASE - HALF WAVE

ETI-108 PAGE 8
4-45

the General Electric Company supplies as unit sub-
stations. They require only electrical and water connections to function as a direct -current power substation. Various combinations of tubes may be used such as shown in Figs. 7 through 16, but in

general the 3 -phase double -Y half -wave, and the 3 phase, half -wave circuits are widely used. These circuits give a 6 -phase and 3 -phase output ripple which is so low that it causes little effect on units using direct -current power.

CIRCUITS FOR RECTIFIER TUBES (CONT'D)

CIRCUITS

CLOUADRVORLTAG1EMA1ND

TUBE CURRENT WAVE FORM

E D -C

H2

a ill

8. BI PHASE -FULL WAVE

11,41 E1 s AMAX.IMAX..
I CYCLE-. i ---1 i CYCLE.

Es
9. THREE PHASE -HALF WAVE

E D -C
4111

f

I

1.41Es IMAX

It AX.

1-

I CYCLE

1

---I-kCYCLE 1----

H2
c
" H3
HI

11,
gb,

1111

ED -c

ilb

- .----.

V Y i' / \/

/\ /\

\ ). 1.2c E s

V/ / \ / \ / \ , \_ / , /

\

/ \./ V v V \/ v '

i

-7- IMAX. \/-/----\h/--'-\-,v,\./ // \ ,/ v/ \I-IIMAX

/ 1/

1 CYCLE

-I

----liCYCLE 1--

10. THREE PHASE- DOUBLE Y- HALF WAVE

H2
1..i. H,

4,

.

.,

" ,

:

fit

II

II

.
It .

: S

"c%J-,-,-Iz -\\ Epc ,.,.,,':,,,.7, y,y-----;

,, _----,c,-,

/ \,
,/ \

/ -;" /
)'y',/ A

1\

/,
\, v
I^

7/ /7iV7A/,/\-y-, -\A7</\''

1

i

1.18 Es IMAX

1

\ / 0. k /Av4\/

1 4

%
I'

.1

V

4/'

I

J

V

i

X

i

/1

\ 4- IMAX
_
1\

I

IA

I CYCLE

-IA -CYCLE I-

I. THREE PHASE -QUADRUPLE Y -HALF WAVE
I

/\ /\ ,\ /\ f\ /\ /\

/,----\\ t

' /\ /\ /\ /\ /\ /\ / X V V V \/

I
\ 1.141Es rolx. /

\ IMAX. \

I

/ I.

ii

'.-.

I------ 1 CYCLE -- --I

----I 1--- k CYCLE

12. SIX PHASE -HALF WAVE
Notes for Figs. 7 through 16: The theoretical wave forms are for a resistance load neglecting voltage reduction due to tube arc drop and current overlap at commutation.
Es = Secondary voltage, RMS value.

CIRCUITS

WI H2

*110 0

H 3 ASE:
eMie

13. THREE PHASE -FULL WAVE

OIA.
H3 A-WMIN

-C\24/IMAX _
ED

LOAD VOLTAGE AND CURRENT WAVE FORM
'-` 7.-\ /-\ r
/\ \
i A. ----L -1- / A-- / -.\- I 5 Es

TUBE CURRENT WAVE FORM

-\\

//._..\-/

\ _V

-/

X

AV

MAX.

...._.

s _..,

I CYCLE

N..."
1

3 CYCLE

_ E0_0
N

\ 7---,
\

/---\

,..---

\_ -\ / \ / \ / A__.

/
k

/ , / \

\ /

/\
\/\ / 245Es

/\

/--"-J

L/ _

\
\

i\

)\

1 1MAX.

/
__L _
IMAX.

ETI-108 PAGE 9
4-45

14. THREE PHASE -FULL WAVE -THREE WIRE

_

H2

,\ Dc
\

Hi

H3

+
15. FOUR PHASE -HALF WAVE

I CYCLE

--I

k_ -§ CYCLE

i
/

,
V \/ / A\ / \
\i/

/\ f 14 1E3

\/ /\\

\i/

1

f 1\
IMAX /
I //

f
IMAX.
I
\i

//
/

I CYCLE ------1

---1

1--..--- i CYCLE

H 2
/ \ /\ /\

Ilt. i,,i

H3

-

1

a a. a a

16. DOUBLE BIPHASE -HALF WAVE- WITH INTERPHASE TRANSFORMER

7,, e....,\ /....

/e^,

ED -c

\I V \,/ \/ \/ 1

[-

I CYCLE

H

USEFUL FACTORS

FIG. NO.
7
8
9 10
11 12

AVERAGE TUBE CURRENT LOAD CURRENT
.500
.500 .333
.167 .0833
.167

ED -C
(AVERAGE OUTPUT VOLTAGE) 0.900 Es 0.636 EM D -c 0.900 Es 0.636 Em D -C 1.170 Es 0.827 Em D -C 1.170 Es 0.955 Em D -C 1.170 Es 0.955 Em D -C 1.350 Es 0.955 Em D -c

Note: EM D,c =Maximum of D -C voltage.

// \\

/

2 AMAX.

1_._

isCYCLE--i

4

PEAK INVERSE VOLTAGE
2.282 Es 3.141 ED -C
1.414 Es 1.570 ED -c
2.450 Es 2.090 ED -c
2.450 Es 2.090 ED -C
2.450 Es 2.090 ED -C
2.280 Es 1.690 ED -c

ETI-108
PAGE 10
4-45
FIG. NO.
13
14
15
16

USEFUL FACTORS (CONT'D)

AVERAGE TUBE CURRENT LOAD CURRENT
.333

E D- c
(AVERAGE OUTPUT VOLTAGE)
2.340 Es 0.955 E m D -c

.333

2.340 Es

0.955 E m D -c

.250

1.273 Es

0.900 Em D -c

.250

0.900 Es

0.900 Eh/ D -c

PEAK INVERSE VOLTAGE
2.450 Es 1.045 ED -c 2.450 Es 1.045 ED -C 2.280 Es 1.790 ED -c 2.280 Es 2.530 ED -c

DESIGN OF CIRCUITS

Mechanical
Tube supports should be of sufficient size to carry the tube weight and should be designed to provide sufficient electrical contact. Ignitrons are mechanically very strong and will withstand moderate shock. In general, however, excess vibration should be avoided. An adequate water supply of reasonably clean water should be available. Waters that are
suitable for drinking are in general suitable for cooling tubes. In fact, such water is not contaminated in the passage through the ignitron water jacket and may be used for plant purposes. Water containing considerable acid or foreign matter which might clog the water jackets should be avoided. Stainless steel is immune to the effects of most corrosive waters, but is subject to attack by waters containing chlorides. If the chloride ion concentration exceeds 20 parts per million
the water should be considered as suspicious and an analysis made to determine its corrosiveness. An excellent reference on the subject of water supplies is the United States Department of Interior, Geological Water Supply Paper 658. In general, local experience is one of the best guides as to the corrosiveness of water. Where highly corrosive waters are encountered, such as in mines, a heat exchanger may be employed of either the water -to -water or the water -to -air type. In such installations, corrosion may be minimized by the addition of 0.1 to 0.2 per cent by weight of sodium or potassium dichromate to the circulating water-cooling system. In general, tubes are connected in series when connected directly to water supplies, and in parallel when connected to heat exchanger units. The minimum water supply temperature must be such that the outlet temperature of the hottest rectifier does not exceed the values given under Technical Information for the

voltage at which the unit is operated. The relation between water flow, temperature rise, and watts dissipated is as follows:
Kilowatts = 263.5 X gpm X A C
Electrical
Electronic tubes of the ignitron type are power devices in exactly the same sense that transformers and rotating equipment are power devices and as a result adequate circuit breaker protection must be provided. In the case of the welder, the welding transformer acts in effect as a current limiting inductance. However, back-up or line protection in the form of fuses, contactors or breakers should be provided to remove the unit from the line in case there is a fault in the primary of the transformer.
In the case of rectifiers, similar switch gear must be provided for the primary and, in addition d -c breakers are usually required in the output. The d -c breaker is required when several units are connected in parallel to form a common bus bar. In this case, arc back in one tube will permit direct current to be
fed through the tube and transformer from the remaining units. These breakers may also be adjusted to limit the permissible overloads as is the case with any conversion apparatus. The primary breaker must be capable of interrupting the maxi-
mum kilovolt -ampere of the supply system in case there is a short circuit directly across the primary terminals of the power transformer. Fig. 17 shows the schematic layout of a unit substation including circuit breaker equipment.
Special switch gear for these requirements have been developed by the General Electric Company and reference should be made through the nearest General Electric office or the General Electric Company, Schenectady, New York.

K-9033540

A-C SWITCHGEAR

POWER

TRANSFORMER

IGN ITRONS

D-C SWITCHGEAR AND DISTRIBUTION

Fig. 17-Line Diagram Showing Component Parts of Ignitron Rectifiers

12-6-44

ETI-108
PAGE 11 4-45

FERNICO METAL ALLOY AND PYREX TYPE GLASS SEAL

FLOW -DIRECTING VANES
DEIONIZATION BAFFLE SPLASH -HOOD BAFFLE
AUXILIARY ANODE WATER
CONNECTION

WATER CONNECTION
STAINLESS -STEEL WATER JACKET
MAIN GRAPHITE ANODE
STARTING IGNITORS
MERCURY POOL CATHODE

TUBE SUPPORT AND CATHODE CONNECTION

VACUUM "SEAL -OFF"

Fig. 19-Cross-Sectional View of the Sealed Ignitron for Power -Rectifier Service

ETI-10 8 PAGE 12
4-45

IGNITOR EXCITATION CIRCUITS

Ignition power is usually provided by (1) diverting a part of the load current through the ignitor or (2) by a separate -excitation system which is independent of load current.
The self or anode firing system (see Fig. 18) uses a thyratron to determine the instant of firing and to prevent reverse current from flowing through the ignitor.

THYRATRON FG-95
Ul
.00Irnf GRID CONTROL
VOLTAGE

WELDER SERVICE

ALINE

P.I0IGNITRON

22 OV 2 44 0 V 4 550V 5

OR

ing the charging period, ignitor current wave shape, and output characteristics are shown in Fig. 20B.

APACITOR VOLTAGE

CAPACITOR CHARGIN VOLTAGE

IGNITOR CURRENT

EXCITATION CIRCUIT CHARACTERISTICS
50

1..10°15°

CURRENT CONDUCTION PERIOD FOR 35.
SINGLE WAY CIRCUITS
30

6\ANODE VOLTAGE
120

400
300 0
200 2
100
0

EQUIVALENT IGNITOP RESISTANCE

2,,
11

10

20 30 40 50

IGNITOR CURRENT IN AMPERES.

K-9033542

12-6-44

Fig. 18-Self or Anode Excitation in which a Part of the Load Current is Diverted through the Ignitor

HOLDING ANODE VOLTA GE ,..,HOLDING ANODE CURRENT

A series resistor is used to reduce the duty on the
thyratron by limiting the current which passes through the thyratron during the time between
ignition and pickup of the main anode, or when misfiring occurs. The recommended value of this resistance depends upon the anode volage for which the set is designed to operate. It is usually 4 ohms for 600 volts and less, and approximately 50 ohms for 2300 volts. It is the simpler and, more direct system and is used in the majority of welder applications. In 'rectifier work the loads, even on large capacity sets, frequently reach such low values that the available current is below the required ignition current. As a result, there tends to be some flicker-
ing of the output voltage which may be objectionable
if lamps are a part of the connected load. Consequently, most rectifiers are equipped with a separate excitation system which fires the ignitor each cycle and is independent of the load. There is a small auxiliary anode near the cathode pool of each rectifier ignitron (see the cross sectional view, Fig. 19, page 11) which provides for cathode spot excitation current in case the main anode current falls below the stable value which is about 3 amperes.
Fig. 20A shows one form of separate -excitation system in which a capacitor is discharged through a phanotron during one part of the cycle and discharged through a thyratron into the ignitor at the instant it is desired to carry current. The circuit is relatively simple and direct. Complete details show -

PHA NOTRON FG-32

THYRATHON FG-105 OR FG-172

RID PEAK ER VOLTAGE
RID CURRENT
IMMO
1.10°15°

K-9033552 (Sheet 2)

PPROXIMATE USEFUL RANGE FOR SHIFTING PHASE ANGLE

12-11-44

Fig. 20B-Voltage, Current and Phase Relationships for Three -Phase Single Rectifier Circuit

In another form of separate -excitation equipment magnetic circuits in conjunction with saturating
reactors have been arranged to produce the required ignitor peak current. Fig. 21 shows the con-
nections in this system. Special reactors are required both for the saturating reactor which determines the
wave shape and for the saturable reactor which
determines the phase position.
IMPULSE FORMING NETWORK

PHASE SHFTING SATURABLE REACTOR FOR CONTROL CONTROL OF OUTPUT VOLTAGE- IGNITOR
PHASE IS CONTROLLED BY VARYING THE CONTROL DIRECT CURRENT EITHER MANUALLY OR THROUGH A VOLTAGE REGULATOR IN RESPONSE TO D-C OUTPUT VOLTAGE.
K-9033546

12-6-44

AUX. ANODE SUPPLY

Fig. 21-Magnetic Separate Excitation Circuit for Firing Diametrically Opposite Tubes

Circuit constants for welder applications have

been described previously and are essential to the

CATHODE BUS ignitron tube in so far as the demands do not exceed

K-9033552 (Sheet 1)

12-11-44 the tube ratings. The ignitrons in the back-to-back

F'g. 20A-Capacitor-Inductance Separate Excitation Circuit

connection operate simply as a switch.

ET1-108 PAGE 13
4-45

RECTIFIER CONSIDERATIONS

In the case of the rectifier, various circuit rela-

tions in terms of d -c output, voltage and current

wave shapes are given in Figs. 7 through 16. The

constants give the theoretical output voltage at no-

load conditions. Actually all rectifiers have a cer-

tain amount of regulation usually of the order of

6 to 7 per cent depending on the reactance in the

power transformer and a -c supply system. Voltage

regulation in the rectifier is due to the increase in

tube drop with increasing current, the IR drop in

the transformer and the voltage loss due to commu-

tation. During the commutation period, current is

transferred from one winding to another and for a

short time both windings conduct giving an output

voltage which is the average of the two phase volt-

ages rather than the higher. This effect is shown in

Fig. 22.

0-C VOLTAGE

/R
\
ANODE CURRENT

K-9033543

1.- COMMUTATING PERIOD

12-6-44

Fig. 22-Wave Diagram Showing Voltage Loss Due to Commutation

I = Current at the start of commutation. This is equal (essentially) to the direct current in the case of simple rectifiers, or to the proportion carried if there are several simple rectifiers in the unit.

The theoretical average or d -c output voltage of a rectifier is:

Edo = P/7 N/2 Es (sin it/P)

where

Es = the rms value of the transformer secondary line to neutral voltage

For the normal delta double - Y circuit where P = 3; Edo = 3/7A/2 Es (sin ir/3)

=

Es = 1.17E5

27r

If it is desired to find the secondary voltage required to supply a given output, the theoretical d -c
voltage is first determined by adding the resistance, commutation and tube losses to the full load output voltage.

For example, assume a 300 -kilowatt, 3 -phase
double -Y, 275 -volt rectifier. Then,

The average voltage loss due to commutation is:

E. = pfLI volts (d -c) (1)

where

p - Number of phases in each simple rectifier. Circuits shown in Figs.

7, 8, 9, 14 and 16 are simple single -
way (current conducted in only
one direction in transformer winding connected to tube) rectifiers
having 2, 2, 3, 4, and 6 phases

respectively.

Rectifiers formed of simple units such as Figs. 10 and 15 have "p" factors corresponding to the simple rectifier, i.e. p = 3 and p = 2.

f = Frequency in cycles per second.

L = Commutating inductance in henrys. It is determined from the transformer secondary reactance

(XL = 271-fL) of any two successively conducting phases in a sim-
ple rectifier, and is most easily
determined by short circuiting the

primary and determining the voltage to force rated secondary current through any two successively conducting phases. Then, the im-

pedance,

E
Z = - ohms

I

and if the resistance is known, XL may be determined from

Z = A/R2 XL2

D -c voltage at full load = 275 v

IR voltage loss in transformer Y at
545Assip

= 4.5 v

Commutation voltage

loss at 545Amp

= 10.5 v

Tube arc drop

= 15.8 v

Summation: Edo = 305.8 v

and

305.8 = 1.17 E

Or

Es = 30c.8 = 261 v (rms)

1.17

The regulation is due to the IR loss in transformer = 4.5 v

Commutation loss

= 10.5 v

Change in tube drop

(0 to 545Amp)

= 2.4 v

Total loss in voltage = 17.4 v

and the percentage regulation:

Reg =

(no load voltage - full load voltage) full load voltage

X 100

loss in voltage full load voltage

X 100 =

17.4 275

= 6.25%

Circuits other than those shown for rectifier or welder service may be desirable for a particular use. In general, the tube requirements for such circuits and service may be determined by writing to the Electronics Department, Tube Division, Schenectady 5, New York.

ET1-108 PAGE 14
4-45

MAINTENANCE AND OPERATION

There is very little maintenance in the usual sense of the word that is required for ignitron tubes. The tube should be clean and accumulations of waste should not be allowed to collect around the anode insulation bushing. (Caution: All power should, of
course, be removed prior to any cleaning operation.) In case water jackets become clogged with silt, they can, of course, be cleaned out with the usual cleaning solutions. Operational failures of ignitron tubes which are due to the tubes themselves are usually the result of air leakage, gas, or ignitor failure. Gas and air leakage most frequently result in arc back and thus is usually accompanied by severe flashing or showers of red-hot sparks in the anode seal. Such failures can be indicated in general from a visual inspection of the equipment while it is operating. Spare tubes may be checked for vacuum by means of a spark coil of the make and break type. Ignitor failure where the tip has been burned off results in
misfire. This fault can be detected by connecting an ohmmeter between the ignitor lead and cathode terminal and slightly tipping the tube to lower the mercury level on the ignitor. The normal tube may be tipped approximately 20 degrees from vertical before the ignitor -mercury contact breaks. Ignitor wetting sometimes occurs in tubes which have car-
ried excessive current. In this case, the cathode
spots form on the side walls of the tube and vaporize metal into the mercury pool to cause wetting. This
metal in turn is re -evaporated by the arc around the ignitor and since the arc starts each cycle at the ignitor, it tends to become coated with a layer of vaporized metal. This in turn is usually without an oxide for protection, and amalgamation with the mercury takes place. A simple check for this type of

failure is again to connect the ignitor and cathode terminals to a resistance analyzer. As the tube is tipped slightly to withdraw the ignitor from the mercury, there should be a gradual increase in the ignitor resistance. If the ignitor is wet, the resistance will remain constant and then suddenly jump to a new and higher value. Operation at too -high water temperatures usually results in arc back in the case of the rectifier tubes, and extra conduction cycles in the case of the welder tube.
Ignitron tubes, in common with most other electronic devices, operate under the instantaneous conditions which occur cycle by cycle. In general, the ignitron tube forms the closing switch in the circuit whether it is a welder or rectifier. Most faults, there-
fore, appear when this switch is closed, and trouble in other parts of the equipment may frequently be considered as tube trouble. The simplest initial check is to replace the tube which seems in trouble with a spare tube. If additional work is required, a cathode-ray oscilloscope will be found almost invaluable. These units permit a visual observation of the voltage wave shapes across the tube and across component parts of the circuit. A knowledge of these wave shapes under normal conditions and a comparison under fault conditions usually gives a direct solution to the trouble. The General Electric Company is preparing a cathode-ray oscilloscope particularly suited for industrial electronic use. In-
formation on this may be obtained by writing to the Electronics Department, Specialty Division, Syra-
cuse, New York. In addition to a cathode-ray
oscilloscope one of the small volt -ohm analyzers is useful in checking circuit constants.

1-46 (3M) Filing No. 8650

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

ET -T1470
Page 1 11-57

IGNITRONS
Service Notes
The anode of an ignitron operates at red heat under normal loads. To prevent overheating of the inner -envelope walls at shutdown periods, cooling -water flow should be continued after anode power is removed. In the case of temperature -controlled tubes, where the water flow is maintained by the temperature -control switch, proper water flow will be assured provided the control -switch power supply is not removed simultaneously with the anode supply.
The following table indicates the minimum time during which water flow should continue after removal of anode power:

Ignitron Type
GL -5552-A GL -5553-B GL -5554 GL -5555 GL -5564 GL -5630 GL -5822-A GL -6228 GL -6509 GL -6878

After Removal of Anode Voltage Continue Water
Flow for
15 Minutes 30 Minutes 15 Minutes 30 Minutes
1 Hour 30 Minutes 15 Minutes
1 Hour 30 Minutes
1 Hour

Temperature -Controlled Ignitron Type
GL -6346 GL -6347 GL -6348 GL -6512 GL -6513 GL -6514 GL -6515

After Removal of Anode Voltage Maintain Power on Control Switch for
15 Minutes 15 Minutes 30 Minutes 15 Minutes 30 Minutes 30 Minutes
1 Hour

ELECTRONIC COMPONENTS DIVISION
GENERAL ELECTRIC
Schenectady 5, N. Y.

Current

Average, Amperes

Peak, Amperes

0.25

35,000

22.4

...

50

200

56

700

70

1500

113

900

140

1600

1800
200 6000

207

1800

275

2000

350

2000

355

4000

IGNITRONS

Recommended Types and Selection Chart
Values listed are maximum and do not necessarily apply concurrently. Refer to data sheet for detailed technical information for a particular application.

Demand
KilovoltAmperes

.

.

Voltage

Peak Inverse,
Volts
10,000

RMS
Supply, Volts
....

300

....

600

....

20,000

600

1500

600

....

1500

....

1200

2100

2400

1200

500

600

....

2100

....

2000

20,000

500

2400

2100

2400

....

4000

....

....

4000

....

2400

1500

600

Class of Service*
Capacitor Discharge DC Short Circuiting
AC Control Capacitor Discharge
Power Rectifier Continuous Duty
AC Control Frequency -Changer
Resistance Welding
Power RectifierIntermittent Duty
Frequency -Changer Resistance Welding
Power RectifierIntermittent Duty
AC Control
Power Rectifier-
Continuous Duty
AC Control
Power RectifierIntermittent Duty
Frequency -Changer Resistance Welding
Power Rectifier Continuous Duty
(Railroad Service) AC Control Capacitor Discharge DC Short Circuiting
Power RectifierIntermittent or
Continuous Duty
AC Control
Power Rectifier-
Continuous Duty
Inverter-
Continuous Duty
Power Rectifier-
Continuous Duty Power Rectifier -
Continuous Duty (Railroad Service)
AC Control Frequency -Changer
Resistance Welding
Power RectifierIntermittent Duty

Water Temperature, Centigrade

-

Inlet

Outlet

Min 1 Max

Max

Natural Convection

10 (Clamp

75 (Clamp

-

tempera- tempera-

ture)

ture)

35

40

45

0

30

40

10

40

-

10 10

30 30

35
-

6

50

60

-15

50

0

30

40

10

40

-

30

50

60

35

40

45

6
-15 -10

50 50 55

60
-

30

45

55

10

45

55

30

45

55

0

30

40

10

40

-

ET -71507 Page 1 10-58
Tube Type
GL -7171
GL -5550
GL -5630 GL -5551-A (Tempera ture-control bracket) GL -6346 (Integral temperature control) GL -5822-A (Tempera ture-control bracket) GL -6511 (Integral temperature control) GL -5554 GL -6512 (Integral temperature control) GL -5552-A (Tempera ture-control bracket) GL -6347 (Integral temperature control)
GL -6509
GL -6228
G L-5555 GL -5788t GL -6513 (Integral temperature control) GL -6514 (Integral temperature confront GL -6958 GL -7042 (Integral temperature control)
GL -6504
GL -5553-B (Temperature control bracket) GL -6348 (Integral temperature control)
(over)

GENERAL

ELECTRIC

ET -T1507
Page 2
10-58

IGNITRONS (Coned)

Current

Average, Amperes

Peak, Amperes

Demand
Kilovolt-
Amperes

Voltage

Peak
Inverse , Volts

RMS
Supply Volts,

Class of Service*

Water Temperature, Centigrade

Inlet

Outlet

Min I Max

Max

Tube Type

670

2500

700
(Max Peak .... Anode.... Voltage)

Power Rectifier-
Continuous Duty

675

2500

....

4000

....

Power Rectifier Continuous Duty

(Railroad Service)

30

40

50

GL -7179

10

40

50

GL-7180 (Integral temperature control)

30

40

55

GL -6878

AC Control

850

3600

4800

2100

2400

Power Rectifier-

Continuous Duty

900

....

4800

....

600

AC Control

0 0

40 50

-60

GL -5564 GL -6515 (Integral -

temperature control)

0

30

40

GL -7151

* The tubes isted are rated for the classes of service shown. However, each tube is capable of operating at other classes of service not shown here For a specific application, please consult your Power Tube Department sales representative.
t Lower water pressure drop and more baffling than the GL -5555.
Lower water pressure drop and more baffling than the GL -6513.

ELECTRONIC COMPONENTS DIVISION
GENERAL ELECTRIC
Schenectady 5, N. Y.

GL-5552/FG-235-A
DESCRIPTION AND RATING
ETI-109B PAGE 1
12-50

SPECIAL DESIGN FEATURES
1. Stainless -steel, seam -welded construction 2. Uniform water cooling 3. Strong, compact design 4. Easy to install

IGNITRON
5. Copper terminals 6. Flexible anode lead 7. Mercury -pool cathode allows extremely high
instantaneous currents to be passed through the tube without damage.

DESCRIPTION
The ability of this tube to carry very high peak currents for short periods makes it especially suited to welder -control service. In this service, two tubes in the inverse -parallel connection will control 1200 kilovolt -amperes at voltages of 250 to 600 volts and over the frequency range of 25 to 60 cycles.
Ease of installation, economical use of space, and reliability of operation are assured by design features inherent in the steel -jacketed construction.
The GL-5552/FG-235-A is similar to the GL5553/FG-258-A and the GL-5551/FG-271. All of

these tubes can be used for a wide range of applications where welds are made infrequently or in rapid succession.
The current range required for the welding operation determines which tube to use. Another factor, of course, is the nature of the material to
be welded. Low -resistance materials, such as the aluminum alloys, require more current than such high -resistance metals as stainless steel.
The GL-5552/FG-235-A ignitron is equivalent to
a 600 -ampere magnetic contactor.

GENERAL

ELECTRIC

Supersedes ETI-109A dated 10-47

GL-5552/FG-235-A

ETI-10911
PAGE 2
12-50

*TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL

Electrical Data
Type cathode excitation Type cathode spot starting Number of electrodes
Main anodes Main cathodes Ignitors Arc drop at 6800 peak amperes Arc drop at 440 peak amperes Cathode excitation requirements Ignitor voltage required to fire Ignitor current required to fire Starting time at required voltage or current

cyclic ignitor
1 1 1
28 volts 14 volts
200 volts 30 amperes 100 microseconds

Mechanical Data
Envelope material Over-all length, maximum Over-all width exclusive of water connections, maximum Net Weight
(See outline drawing for details). Type of cooling Characteristic for water cooling at rated minimum flow
Water temperature rise, maximum Pressure drop, maximum
Thermal
Water cooling Maximum outlet water temperature Minimum inlet water temperature Minimum water flow
MAXIMUM RATINGS

metal
274 inches 44 inches
8 pounds
water
6 C 4.5 pounds per
square inch
40 C 10 C
1.5 gallons per minute

As Power Rectifier Tube (Intermittent Service)
Maximum peak anode voltage Inverse Forward
Maximum anode current Peak Average Maximum averaging time
Surge Maximum duration of surge current
Frequency range
As A -c Control Tube (Two Tubes in Inverse Parallel)
Voltage range Maximum demand
Average current at maximum demand Maximum average current
Demand at maximum average burrent Maximum averaging time at 600 volts rms Maximum averaging time at 250 volts rms Maximum peak surge current at 250 volts Maximum peak surge current at 600 volts

500 volts 500 volts
1600 amperes 100 amperes
6 seconds 6000 amperes 0.15 second 25-60 cycles per second
250 to 600 volts rms 1200 kilovolt -amperes 75.6 amperes 140 amperes 400 kilovolt -amperes 5.8 seconds 14.0 seconds 13450 amperes 5600 amperes

Ignitor
Maximum voltage Positive Negative
Maximum current Peak Root mean square
Average Maximum averaging time

900 volts 5 volts
100 amperes 10 amperes 1 ampere 5 seconds

Note 1-RMS demand voltage, current, and kilovolt -ampere are all on the basis of full -cycle conduction (no phase delay) regardless of whether or not phase control is used.
Note 2-For voltages below the minimum, the minimum voltage current rating applies.
Completely revised.

Note 3-With the use of log -log paper straight line interpolation between tabulated points may be used for other detailed ratings of: 1. Demand kilovolt -ampere vs average anode current. 2. Maximum averaging time vs anode voltage.

GL-5552/FG-235-A

CURVES K -69087-72A217, K -69087-72A218 AND K -69087-72A219 MUST NOT BE USED FOR INTERMITTENT RECTIFIER SERVICE

ET1-1096 PAGE 3
12 50

10000 8000
6000

I

I

I

I

I

I

I

I

11
I

1111

1

I

I

I

KILOVOLT -AMPERE VS AVERAGE CURRENT RATING
250 TO 600 VOLTS CURVE NO I

4000

yr
2000
w
a.
t-
1000 800 0
z 600
0 400

GL-5553/FG-258-A GL-5582/FG-235-A

GL-5550/GL-415GL

-271

200

100
10

\20

40

60 80 no

200

400

AVERAGE ANODE CURRENT IN AMPERES PER TUBE

K -69087-72A217 (New drawing)

FIG. 1

600 800 1000
3-31-48

10000 8000 6000 4000
2000

4,40
14/s.

DEMAND CURRENT VS PERCENT DUTY AT 250 VOLTS RMS CURVE NO 2

5'4434,60

SON GL-5553/FG-258-A
-5552/FG-23 5-A

1000
800 600
400

Os.

GL-5551/FG-271

GL-5550/GL- 415

200

100

2

4

680

20

40

DUTY IN PERCENT

2 TUBES CONNECTED IN INVERSE PARALLEL

K -69087-72A218 (New drawing)

FIG. 2

60 60 100 3-31-48

GL-5552/FG-235-A
ETI-1093 PAGE 4 12-50

1000

800

DEMAND CURRENT VS PERCENT DUTY AT 500 VOLTS RMS

CURVE NO. 3 600
WITHOUT PHASE CONTROL

400

EMIIMIIIIIIIIIIIIIMIIIIEIINIIIII..I.11I1./41fOktL. -.5553/FG-258-A

200

11111E191

4,,,

MEM ../sOL-5552/FG-235-A OS

------iii.i.i.i.i.i.i.i.ik IN M gim Nos,

MOO

mommliirdithesL4:5551/FG-271

800
600 ......

16,
...I..l.l..i.

400

Illiillos.GL-5550/GL-4111111

IMMIINIIIIIMIM

4,
1116:

ht..

1
II.

200

12-50 (11M)

IOU

2

4

6

8 10

20

40

DUTY IN PERCENT 2 TUBES CONNECTED IN INVERSE PARALLEL

K -69087-72A219 (New drawing)

FIG. 3

ALTERNATE HOLE
MANUFACTURERS OPTION

-f
4 Ic1:1AXT1"±32

3 MAX.

iNDIA. HOLE

ANODE TERMINAL

CLEARANCE FOR RADIATOR

60 80 100 3-31-48

WATER

MAX.

OUTLET

I 27 n
MAX. 1 -;PIPE

IGNITOR TERMINAL 0.250+.010" DIA.

CATHODE TERMINAL

(MAX
±32-'t
5y:1k-4

NOTE', ENVELOPE IS AT CATHODE POTENTIAL
MAXA.
EXHAUST TUBE ALTERNATEpOSITION MANUFACTURER upTION
I ,j;±
EXHAUST TUBE
90°±

25±
14" MAX.
I
122
IOW
WATER INLET
371±
7"4.f 16_32 DIA.HOLES
i6 MAX 12
MrAX+. r 2 -32
10°

K-5309175

OUTLINE GL-5552/FG-235-A

10-21-49

Tube Divisions, Electronics Deportment

GENERAL

ELECTRIC

Schenectady, N. Y.

GL-5555/FG-238-B
DESCRIPTION AND RATING
ET1.110A PAGE 1
10-50

SPECIAL DESIGN FEATURES
1. Stainless -steel, seam -welded construction 2. Uniform water cooling 3. Strong, compact design 4. Easy to install

IGNITRON
5. Copper terminals 6. Flexible anode lead 7. Mercury -pool cathode allows extremely high
instantaneous currents to be passed through the tube without damage.

DESCRIPTION
This steel -jacketed ignitron is designed for rectifier service in the 125-, 250-, 600-, and 900 -volt d -c power fields. The GL-5555/FG-238-B is used for rectifiers rated up to 1000 kilowatts depending on the number of ignitrons used, the output voltage, and the circuit.
This tube is also rated for 2400 -volt resistance welder -control service and has a capacity of 2400 kilovolt -amperes in this service. Continuous aver -

age current rating is 200 amperes per tube in
rectifiers rated up to 1000 kilowatts.
Arc losses are low. Phase control of the ignitron impulses permits voltage control of the rectified output. Excitation of the small auxiliary anode stabilizes the cathode spot for very small anode currents. Two ignitors, only one of which is used at a time, assure long life.

GENERAL ELECTRIC
Supersedes ETI-1 10 dated 4-45

GL -5555 /FG-238-13
ET1 -110A
PAGE 2
10-50

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL
Electrical Data
Cathode excitation Cathode spot starting Number of electrodes
Main anodes Main cathodes Auxiliary anodes Ignitors Arc drop at 600 peak amperes Cathode excitation requirements Ignitor voltage required to fire Ignitor current required to fire
(See curve for details) Excitation arc current required, minimum Excitation arc -drop voltage Excitation arc open -circuit voltage, minimum

cyclic ignitor
1 1 1 2
16.2 =0.5 volts
150 volts 40 amperes
8 amperes 9 =0.5 volts
55 volts a -c

Mechanical Data
Envelope material Net weight Type of cooling Characteristics for water cooling
Water temperature rise, maximum Pressure drop at 3 gallons per minute, maximum

metal 25 pounds
water
45 C
6 pounds per square inch

Thermal
Water cooling Maximum outlet water temperature Peak inverse anode voltage =900 Peak inverse anode voltage =2100 Minimum inlet water temperature Minimum water flow at continuous rated average current Minimum water flow at no load

60 centigrade 45 centigrade
6 C
3 gallons per minute
1 gallons per minute

MAXIMUM RATINGS
As Power Rectifier Tube*
Maximum peak anode voltage Inverse Forward
Maximum anode current Peak
Average Continuous 2 hours 1 minute
Surge Maximum duration of surge current Frequency range *Ratings are for zero phase -control angle.
As A -c Control Tube
Two tubes in Inverse parallel Voltage Maximum demand Average current at maximum demand Maximum average current Demand at maximum average current Maximum averaging time at 2400 volts Rms Maximum surge current

900 900
1800
200
400 12000

2100 volts 2100 volts
1200 amperes
150 amperes
300 amperes 9000 amperes 0.15 seconds 25 to 60 cycles per second

2400 Rms volts
2400 kilovolt -amperes 135 amperes 207 amperes 1105 kilovolt -amperes 1 66 seconds 6000 peak amperes

TECHNICAL INFORMATION (CONT'D)
Ignitor
Maximum voltage Positive Negative
Maximum current Peak Root mean square Average Maximum averaging time
Starting time at required voltage or current
Auxiliary Anode Maximum current Peak Average Maximum averaging time Rms Maximum peak forward voltage Maximum peak inverse voltage Main anode conducting Main anode not conducting

CL-5555/FG-238-B
ETI.110A PAGE 3
10-50
anode volts 5 volts
100 amperes 15 amperes 2 0 amperes 10 seconds 100 microseconds
20 amperes 5 amperes 10 seconds 10 amperes 160 volts
25 volts 160 volts

GL-5555/FG-238-B

21011,1111 ,1.11/

k14L 11i4111 111111411.0101111111.1.11

cazin 1.111/1111111111E. smi i1.111.1111/1111111 IMO EIRM1111111.1

211111,1:1216

GL-5555/FG-238-B
ELEMENTARY CIRCUIT FOR CAPACITOR FIRING

10:11,74/1,1

1:11.111

A AEA

/M111111MLI
IMMIEN

!WC,

ri

LIENT1 MMMMMM

1111111 ). DI

ii

OF.11.

Ii' 11 L/Ii1111:0J EFLMiLLWItINIIIEN

1111Frr

MEMi,

11111111.5
MEND.'

kil

SEMI,.
EMIL:AL 141.11MMO1

EMIL-
11111111111't
1m11o1MnIvUrii

Ir
ki
k

A ILA
a
Si
111
SIMI
"ai1dnC11PI1AIiii

AO

rorc
1111..e±

NIIIM101;

_

MMINOr.NawlVt

NEER r! ME MM

I kj

17
1-1
1.
IMMENk
II, k 111 111111i1E-
I 14.1111 I 41,

K-9033525

FIG. 1

10-25-50

GL-5555/FG-238-B
ELEMENTARY CIRCUIT FOR ANODE FIRING
FUSE

IlLY2111:11USLMIL11/3.!/Ell A
1141
MMM

THYRATRON

GNITRON

K-9033883 4New drawing.

1 r-1
MAIN MI 1.1 L LIVIC wital 1111E111 IT
FIG. 2

4411 MMMMM
6-14-45

TYPICAL VALUES OF R

ANODE VOLTAGE = 600 VOLTS OR LESS - 4 OHMS ANODE VOLTAGE = 601 TO 1000 VOLTS - 10 OHMS ANODE VOLTAGE = 1001 TO 1500 VOLTS - 20 OHMS ANODE VOLTAGE = 1501 TO 2000 VOLTS - 35 OHMS ANODE VOLTAGE = 2001 TO 2400 VOLTS - 50 OHMS

K-9033528 4Revised drawing.

FIG. 3

10-25-50

GL -5555 /FG-238-B

ETI-1 10A

22

PAGE 4

10-50

20

18
I- 16 O
0a. 14
0
5 12

10 8

6

0

200 400 600 800 1000 1200 1400

LOAD CURRENT IN PEAK AMPERES PER TUBE

FG-238-B ARC DROP, OUTLET WATER TEMPERATURE -40 C TO 60 C, WATER FLOW -3 GPM

K-6917495

FIG. 4

8-25-44

FG -238-B FG -259-B

1000
900 800 rn
700
IMk' 600 2 500 F

FC 4

404
rn
- r MF 300 rn

0

200 cC)
0

rn

0 rn

2

3

10

20 30 40 50 60708090 100 in

DUTY- PERCENTAGE

TWO TUBES CONNECTED IN INVERSE PARALLEL

FG-238-B IGNITRON; DEMAND CURRENT VS PERCENTAGE DUTY AT 2400 VOLTS RMS, MAX OUTLET WATER TEMP 30 C, MIN WATER

RATE 3 GAL/MIN, WELDER CONTROL SERVICE

K-8074661

FIG. 5

9,-26-44

t

GL -55 5 5/FG-238-13

ET1-1 10A
PAGE 5
10-50

GL-5555/FG-238-B

COMMUTATION LIMITS -1 -MINUTE LOADS

INMIIMMMEMMIMIIIIIIIIIIIMP
mmNommoommummicuirrernir .
INIMEMEMENEMMII11111111661.11144N4111 i

1 111111111111 M

11

11
1;111/11T r v

"w41c41r1n1.1r1i1e; 1m11r1rIits1c1 iIrI eYec1i1imm1i1n:1n!IIIeIIImI11m111u11111111l1i1ii1m11m111u1n119

I

II
11

1.44.11N111011111 1111441161P11414111147411454111111111411111111111111111

N 111111111111 1111 1

MINIENCI111111111111111111111111111.1.=ILnliZ. 11 a 1,1:10111

I 11!".kElIJELILILWALLIAL3al3:11111111111111

1 1 11111111111111111 1

11111111111111111111111111111111111111111111111111111 III 1111 1111111111 El 11 IMIIIIIIMMEMININIIIIM1111111111111111111 111 I III 1 111111111 1111111 1

IMINNEENNIIIIIIII1111111111111111111111111 111 11111111111111 111 IIIIIMMIIIMIIIII111111111111111111111111111111111111 1111 111111111111111111 I

NEIIIIIIIIMIIIII11111111111111111111111111111111111111111111111 1111 11 iminommiiiiimununiiiimilimii mum mum nu u II

1111111111111111111111111111111111111111111111111111111111111 1111111111 1111 1 IIIIME111111111111111111111111111111111111 111 11 11111 1111111111 1111 11 1
tunmumminummunmounim III [gm' !avail 111 11 ummomumrimilimmullumoup IIIIIIIIIIIIIIIIIIIII M

=11= .1011.MM=1 -

17177771

'' '

B_=E=E .........,...."

.............. MeammE

MMWMOIMMIOAVMM

o

, ............... .......

1111

mmmmmmmmwaimmmmmwmvma

=m- r (V IMOIMMII
INIIIIIIMIIMMIII .
UM.. lllllII111111111
IMIIMMI111111111111111M11111111111111111111 11

MM mMMMmMMmMMmMMmMMuuIMmMmIML

111

IIIIUII1MLI=1MIOMM1IM1IMMS1INIIU1MMIM1MIIN1MMI1US1M`lMMMUMIMIMEMIWII\ffMiIIMMOOMMOTMMr

. \

I%' W..M1.1..V.

1J.

; qui I

1111

l 91 cul

11 nennecu nun limsommEmmemmammunumv5 1111111 9n r

1

li U. all I

I

llll 11 11111 '7

3 -I

q

ii va

11

i, I

II I l

11111411 1.11111111; 11

MMMEMENEMMMIN11111111111111111111111111111111111111111111 WM 11111111111111111111111111111111111`,

IIMININNIIIIIIIIIMIIIIM1111111111111111111111111111111111111111111111111111111EMMEMMEN1111111111111111111111111111Ill IP MLIIIIIIIVIIVJAPi 'J MMENIMENEMMUMMINMII1111111111111111111IMM1111111111111.MBEIWMIEBIBINIIIIIIIIIIIIIII 1111111111111M13111111111141

MMUUMMEMiiiiMIEM11111IIIIIIIIIIII1111111111111111111111111 IMMEMEMINWINNOMMIEMIHNI Milli 111111111111111111411 1

INIMEN1111111111111.1111111111111111111111111 1111111111111111111111111111111111111115M1711=7,1111111111M11111111111111111111111111111
mimmisiiiiiimininiimmmo III Humom in viiimnimmosoulimmilinilacqnii ill 1111 11111HIIM11111111111

MEMENIIIIIIIIHM11111111111111111 1

1 1111111111 III III IIIIIMENIIIIIII1111111111111111111111111 1M1111111 111111i111111111111111

EIIIMMIIIIIP1111111111111111111911 1111119111!111 91 PIIIMENE1111119111111111!!!1111111119111111149110111/19111111199 -

AVERAGE ANODE CURRENT IN AMPERES PER TUBE

K -69087-72A180 New drawing.

11-29-48

GL-5555/FG-238-B

COMMUTATION LIMITS -2 -HOUR LOADS

INEM
UI

II CI .39-11111

II-

1

1 IA

3 lir111-1' I

:

3

ee -

_tk (5 Al

AMPERES

O

a. 'ME

'TM 1

1.11M .M1=
!

Nimma.
0

III NEMS:

rAti&ammmmm

= .. ........

711-

Min

-`11

,11.
"12!!'

U11W-m-W1111111L 41111 1111111 I 11111h1111111

smacm,rML-

Tri111111

AILWILR7.01W...K.11111111111 1111

111111MMUNIDW1111111 r111111111111111

MOM

TaktaliVali Ib MIN MEM

K -69087-72A181 New drawing.

111111110111.

m=mMIFIE 11111=1 sic

weirerincmr-azai

viii

MIN

411

5

AVERAGE ANODE CURRENT IN AMPERES PER TUBE

495 en 1.

11-29-48

GL-5555/FG-238-B
ET1- 110A
PAGE 6
10-50

-2" DIA.
16
SERIAL NO.

CUT -AWAY VIEW OF GL-5555/FG-238-B IGNITRON *OUTLINE GL-5555/FG-238-13 IGNITRON
1
8-32

ANODE TERMINAL
22-1"..1.14"
DIA.

WATER OUTLET CONNECTION
I"
TSEMI-FINISHED BRASS UNION,CRANE C0.4522 OR EQUIV.
k FURNISHED A WITH MALE PART ONLY

1216- 4-r
4
4 A2--11'26
IN

2783"±2
716-2174.2
1416+-8

Is
IGNITOR NO.1 TERMINAL.,
DIA
16
CATHODE TERMINAL
K-5344658 4 Revised drawing.
1050 (11M)

14.1" 4-16

MAX. VARIATION
±3° -"±3-" AUXILIARY 16 32 ANODE TERMINAL
-4-4,
IGNITOR NO.2 TERMINAL NOTE: ONE IGNITOR USED AT A TIME
9-22-48

Tube Divisions, Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

GL-5553/FG-258-A
DESCRIPTION AND RATING
ETI-111B PAGE 1
3-50

SPECIAL DESIGN FEATURES
1. Stainless -steel, seam -welded construction 2. Uniform water cooling 3. Strong, compact design 4. Easy to install

IGNITRON
5. Copper terminals 6. Flexible anode lead 7. Mercury -pool cathode allows extremely high
instantaneous currents to be passed through the tube without damage.

DESCRIPTION
The ability of this tube to carry very high peak currents for short periods makes it especially suited to welder -control service. In such service, two tubes in the inverse -parallel connection will control 2400 kilovolt -amperes at voltages of 250 to 600 volts over the frequency range of 25 to 60 cycles. It may also be used for conversion in low -power circuits.
Ease of installation, economical use of space, and reliability of operation are assured by design and construction features inherent in the steel jacketed construction.
ARevised.

The GL-5553/FG-258-A is similar to the GL5552/FG-235-A and the GL-5551/FG-271. All of these tubes can be used for a wide range of applications where welds are made infrequently or in rapid succession.
The current range required for the welding operation determines which tube to use. Another factor, of course, is the nature of the material to be welded. Low -resistance materials, such as aluminum alloys,
require more current than such high -resistance metals as stainless steel.
The GL-5553/FG-258-A ignitron is equivalent to a 1200 -ampere magnetic contactor.

GENERAL ELECTRIC
Supersedes ETI-11 1 A dated 10-47

GL-5553/FG-258-A
ETI-111B PAGE 2
3 -50

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL
Electrical Data
Cathode excitation-Cyclic Cathode spot starting-Ignitor Number of electrodes
Main anodes Main cathodes Ignitors Arc drop at 13,600 peak amperes Arc drop at 1115 peak amperes Cathode excitation requirements Ignitor voltage required to fire Ignitor current required to fire (See Curve for details) Starting time at required voltage or current

1 1 1
36 volts 17 volts
200 volts 30 amperes
100 microseconds

Mechanical Data
Envelope material-Metal Net weight Type of cooling-Water Characteristics for water cooling at rated minimum flow
Water temperature rise, maximum Pressure drop, maximum

21 pounds
9 degrees 5.1 pounds per square inch

MAXIMUM RATINGS

AS A -C CONTROL TUBE
Two tubes in inverse parallel Voltage range Maximum demand Average current at maximum demand Maximum average current Demand at maximum average current
Two tubes in inverse parallel Maximum averaging time at 250 volts rms Maximum averaging time at 600 volts rms Maximum surge current at 250 volts rms Maximum surge current at 600 volts rms

250 to 600 rms volts 2400 kilovolt -amperes 192 amperes .355 amperes 800 kilovolt -amperes
11 seconds 4.6 seconds 27,000 peak amperes 11,200 peak amperes

Note 1-RMS demand voltage, current, and kva are all on the basis of full -cycle conduction (no phase delay) regardless of
whether or not phase control is used. Note 2-For voltages below the minimum, the minimum -voltage current rating applies. Note 3-With the use of log -log paper straight line interpolation between tabulated points may be used for other detailed
ratings of: 1. Demand kva vs. average anode current. 2. Maximum averaging time vs anode voltage.

IGNITOR Maximum voltage Positive Negative Maximum current Peak Root mean square Average Maximum averaging time Thermal water cooling Maximum outlet water temperature Minimum inlet water temperature Minimum water flow
AData completely revised.

900 volts 5 volts
100 amperes 10 amperes 1 ampere 5 seconds
40 C 10 C 3 gallons per minute

10000 8000 6000
4000

1111111111111

I 1 I 1111111

KILOVOLT-AMPERE VS AVERAGE CURRENT RATING 250 TO 600 VOLTS CURVE NO I

1 2000
a.
9g 1000 800
0 600
0 400

GL-5553/FG-2584 GL -5552/F03 -235-A

200

GL -5550/GL.""\5551G -27I

GL-5553/FG-258-A
ETI-11113
PAGE 3
3-50

100

20

40

60 80 00

200

400

AVERAGE ANODE CURRENT IN AMPERES PER TUBE

K -69087-72A217 (Revised)

FIG 1

600 800 1000
3 -31 -48

10000 8000 6000
4000

DEMAND CURRENT VS PERCENT DUTY AT 250 VOLTS RMS CURVE NO 2
144,

2000

GL-5553/FG-258-A GL-5552/FG-23 5-A

1000
800 600
400

RR aeda, QS

GL-5551/FG-271 GL-5550VGL-4 15

200

100

2

4

68 0

20

40

DUTY IN PERCENT

2 TUBES CONNECTED IN INVERSE PARALLEL

K -69087-72A218 (New drawing)

60 80 100 3-31-48

GL-5553/FG-258-A
ETI-111B PAGE 4 3-50

10000 8000
6000 -
4000

DEMAND CURRENT VS PERCENT DUTY
AT 500 VOLTS RMS CURVE NO. 3

WITHOUT PHASE CONTROL

`,..
1,
/Ei 41/0._GL-5553/FG-258-A NtE.

ss
84.0

)../ GL-5552/FG-235-ANOS
S'4.,. '.04,06,

a
1000
800 600

-271 9GL-5551/FG
.94.
Oa

0z z 40
0

o GL-5550/GL-415 94b0Nos

200

3.50 (11M) Filing No. 8850

10 2
K.69087 -72A219 New drawing

4

6

8 10

20

40

DUTY IN PERCENT

2 TUBES CONNECTED IN INVERSE PARALLEL

OUTLINE
GL-5553-FG-258A IGNITRON

ALTERNATE HOLE
MANUFACTURERS OPTION

2J;m4x.

ANODE TERMINAL

48" MAX.
1.62MDAIAX..

MAX...
cl2,A. HOLE
CLEARANCE RADIATOR

60 80 100 3-31-48

WATER OUTLET

1
M8AX

DIA.

28c±i'

3" MAX. 24.1z

PIPE

55 MAX'

DIA.

17" MAX.

I0G.N2IT5O0R"T±E.R0M1IN0A"L DIA.)

1

I

WATER INLET

144

CATHOD TERMINAL

4
i" 14"-39

1 16-2

-+

EXHAUST TU :ALTERNATE POSITION
MANUFACTURERS 4 - 16 OPTION)

2.mAx

HOLES IB MAX.
4±A"

NOTE: ENVELOPE IS AT CATHODE POTENTIAL

EXHAUST TUBE
90.2 104 t.
K-5340877

90°±10°

10-29-46

Tube Divisions, Electronics Department

GENERAL

ELECTRIC

Schenectady, N. Y.

FG-259-B
DESCRIPTION AND RATING
ETI-1 12 PAGE 1
4-45

SPECIAL DESIGN FEATURES
1 Stainless -steel, seam -welded construction 2. Uniform water cooling 3. Strong, compact design 4. Easy to install

IGNITRON
5. Copper terminals 6. Flexible anode lead 7. Mercury -pool cathode allows extremely high
instantaneous currents to be passed through the tube without damage.

DESCRIPTION
This steel -jacketed ignitron is designed, as is the FG-238-B, for rectifier service in the 125-, 250-, 600-, and 900 -volt d -c power fields. The FG-259-B
is used for rectifiers rated up to 200 kilowatts depending on the number of ignitrons used, the
output voltage, and the circuit. The FG-259-B is also rated for 2400 -volt
resistance -welder -control service and has a capacity of 1200 kilovolt -amperes in this service. The FG-

259-B has a continuous average current rating of 100 amperes per tube for use in rectifiers rated
up to 200 kilowatts. Arc losses are low. Phase control of the ignitron
impulses permits voltage control of the rectified output. Excitation of the small auxiliary anode stabilizes the cathode spot for very small anode currents. Two ignitors, only one of which is used at a time, assure long life.

GENERAL 0 ELECTRIC

FG-2 5 9-B
ETI-112 PAGE 2 4-45

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS
Electrical
Voltage drop At 100 amperes instantaneous anode current At 300 amperes instantaneous anode current At 600 amperes instantaneous anode current

12.6 volts 14.4 volts 17.3 volts

Mechanical

Cathode

pool type

Number of ignitors

2

Number of main anodes .

1

Typical flow....1.5 to Number of auxiliary anodes
Type of cooling .

. 1
water 3 gallons per

minute

Pressure drop at above flow Temperature rise with lower rate of flow

2 to 5 pounds per square inch

Net weight, 150 amperes per anode. approx...13.5 pounds .6 centigrade

Shipping weight, approx

22 pounds

MAXIMUM RATINGS

Rectifier Service-For Power Supply -Frequency 25 to 60 Cycles, Phase Retard =0

Maximum inverse and forward anode voltage

900 volts

2100 volts

Maximum anode current

Instantaneous .

.900 amperes

600 amperes

Average continuous current

100 amperes

75 amperes

2 -hour -average current over any 2 -minute period

150 amperes

112.5 amperes

1 -minute -average current over any 1 -minute period .

200 amperes

150 amperes

Surge current, maximum duration 0.15 second

6000 amperes

4500 amperes

MMaxiimnuimmouutlemt waitenr tleempterwatuareter temperature...660

centigrade centigrade

45 centigrade 6 centigrade

Minimum water flow
At continuous average anode current ...

minuteminute ...... . .

.

1.5 gallons per

1.5 gallons per

At no load*. .

minuteminute 0 5 gallon per

0.5 gallon per

*For systems in which the flow of water is controlled by the load.

Welder -Control Service-Ratings are for 2400 Volts Rms, Frequency 25 to 60 Cycles
Maximum demand . Corresponding average anode current
Maximum average anode current Corresponding demand .
Maximum time of averaging anode current at 2400 volts, rms Minimum water flow
Maximum outlet water temperature . Maximum surge current Maximum duration of surge current

1200 kva 75 amperes 113 amperes 600 kva
. 1.50 seconds
1 5 gallons per minute
30 centigrade .3000 amperes .0.15 second

Ignition Requirements (Ratings are the same for both Welder and Rectifier Service)

Ignitor voltage

Maximum instantaneous allowed, ignitor positive-same as anode voltage

Maximum instantaneous allowed, ignitor negative

5 volts

Ignitor current

Maximum instantaneous allowed

100 amperes

Maximum average allowed

.2.0 amperes

Time of averaging current . . .

10 seconds

Maximum ignition time

100 microseconds

TECHNICAL INFORMATION (CONT'D)

Anode firing (See elementary circuit K-9033528)
Maximum instantaneous ignitor potential required Maximum instantaneous ignitor current required Typical resistance added to ignitor circuit for anode firing At anode voltage of 600 volts or less At anode voltage of 601 volts to 1000 volts At anode voltage of 1001 volts to 1500 volts At anode voltage of 1501 volts to 2000 volts At anode voltage of 2001 volts to 2400 volts . Separate excitation (See elementary circuit K-9033525) Minimum volt-ampere requirements for separate excitation
Firing systems are shown on K-9033529

150 volts .40 amperes
..4 ohms 10 ohms .20 ohms . .... 35 ohms 50 ohms

Auxiliary Anode Requirements (Ratings are the same for both Welder and Rectifier Service)

Maximum average current .

Maximum inverse voltage

With main anode conducting .

.....

With main anode not conducting

..5 amperes
25 volts 150 volts

FG-259-B
ETI-112 PAGE 3
4-45

FG-259-B MINIMUM VOLT-AMPERE REQUIREMENTS FOR SEPARATE -EXCITATION
FIRING SYSTEMS
500

FG-259-B ELEMENTARY CIRCUIT FOR CAPACITOR FIRING

N 400
VD

z
300
-J
z
0 200
a -
a'
0
I. -
z
(..n 100

0

10

IGNITOR
K-9033529

20

30

CURRENT IN AMPERES
FIG. 2

K-9033525

FIG. 1

11-15-44

FG-259-B ELEMENTARY CIRCUIT FOR ANODE FIRING

40

K-9033528

11-15-44

FIG. 3

I GNITRON 12-16-44

FG-259-B
ETI-112 PAGE 4
4-45

22 20

18
tIn- 16 0
0 14
cr
C.)
12
I0

8

6

0

100

K-6917493

200 300 400 500 600 700 800 LOAD CURRENT IN PEAK AMPERES PER TUBE
FG-259-B ARC DROP, OUTLET WATER TEMPERATURE -40 TO 60 C, WATER FLOW -1.5 GPM
FIG. 4

900
7-1-44

FG -238-B FG -259-B

Is..6,
%.k.c,
41,
q 2./

1000
900 0 800 rn 700
600 2 0
500 F

404
0
- MF 300 m
2SF 0 200
H
0z

3

10

20 30 40 50 60708090 100

DUTY- PERCENTAGE

TWO TUBES CONNECTED IN INVERSE PARALLEL

FG-259-B IGNITRON; DEMAND CURRENT VS PERCENTAGE DUTY AT 2400 VOLTS RMS, MAX OUTLET WATER TEMP 30 C,

K-8074661

MIN WATER RATE 1.5 GAL/MIN, WELDER CONTROL SERVICE

9-26-44

FIG. 5

"16

13"
32

DIA.

HOLE

ANODE CONNECTION ..100
10.4
i,
.r0it0O.

..,__. 9"

f

16

SERIAL NO.
WATER
iIf"SOEUMTIL-EFTINCISOHNENDECBTRIAOSNS
UNION, CRANE C0.4522 OR EQUIV.,ONLY MALE END FURNISHED.

FG-259-B
ETI-112 PAGE 5
4-45
MAX.
_- FROM
VERTICAL c_

INLET

A

Lij

fr/31111i-j
I,.
14MAX.SEA!L"M-OAFFX., 4 DIA. r

.HOLES
16

IGNITOR CONNECTION
,
14±16

K-5344767

OUTLINE
FG-259-B IGNITRON

AUXILIARY ANODE CONN.
CATHODE ..1.4_CONNECTION
8-10-44

Electronics Department
GENERAL @ ELECTRIC
Schenectady, N. Y.
1-46 (3M) Filing No. 8850

GL-5551/FG-271
DESCRIPTION AND RATING
ETI-113A PAGE 1
12-50

SPECIAL DESIGN FEATURES
1. Stainless -steel, seam -welded construction 2. Uniform water cooling 3. Strong, compact design 4. Easy to install

IGNITRON
5. Copper terminals 6. Flexible anode lead 7. Mercury -pool cathode allows extremely high
instantaneous currents to be passed through the tube without damage.

DESCRIPTION
The ability of this tube to carry very high peak
currents for short periods makes it especially suited to welder -control service. It may also be
used for conversion in low -power circuits and for intermittent rectifier service.
Ease of installation, economical use of space, and reliability of operation are assured by design features inherent in the steel -jacketed construction.
The GL-5551/FG-271 is similar to the GL-
5552/FG-235-A and the GL-5553/FG-258-A. All of
these tubes can be used for a wide range of ap-

plications where welds are made infrequently or in rapid succession.
The current range required for the welding
operation determines which tube to use. Another factor, of course, is the nature of the material to be welded. Low -resistance materials, such as aluminum alloys, require more current than such
high -resistance metals as stainless steel. The GL-5551/FG-271 ignitron is equivalent to a
300 -ampere magnetic contactor.

GENERAL

ELECTRIC

Supersedes ETI-113 dated_4-45

GL-5551/FG-271
ETI-113A PAGE 2
12 50

+TECHNICAL INFORMATION

These data are for reference only. For design information, refer to specifications.

GENERAL
Electrical Data
Cathode excitation Cathode spot starting Number of Electrodes
Main anodes Main cathodes Ignitors Arc drop at 3400 peak amperes Arc drop at 176 peak amperes Cathode excitation requirements Ignitor voltage required to fire Ignitor current required to fire Starting time at required voltage or current

cyclic ignitor
1 1 1
26 volts 13 volts
200 volts 30 amperes 100 microseconds

Mechanical Data
Envelope material Over-all length, maximum Over-all width exclusive of water connections Net weight Type of cooling Characteristics for water cooling at rated minimum flow
Water temperature rise, maximum Pressure drop
Thermal
Water Cooling Maximum outlet water temperature Minimum inlet water temperature Minimum water flow

metal 23% inches 2% inches
3.6 pounds water
4 C 1.8 pounds per square
inch
40 C 10 C 1.0 gallons per minute

MAXIMUM RATINGS
As Power Rectifier Tube
Maximum peak anode voltage Inverse Forward
Maximum anode current Peak Average Maximum averaging time
Maximum anode current Surge Maximum duration of surge current
Frequency range*
*Ratings are for zero phase -control angle-see curve for details

500 volts 500 volts
700 amperes 40 amperes 6 seconds
8000 amperes 0 15 second 25-60 cycles per second

As A -c Control Tube
Two Tubes in Inverse Parallel
Voltage range Maximum demand
Average current at maximum demand
Maximum average current Demand at maximum average current
Maximum averaging time at 250 volts rms Maximum averaging time at 600 volts rms Maximum peak surge current at 250 volts Maximum peak surge current at 600 volts

250 to 600 rms volts 600 kilovolt -amperes 30.2 amperes
56.0 amperes 200 kilovolt -amperes
18 seconds
7.5 seconds
6720 amperes 2800 amperes

GL-5551/FG-271
ET1-113A PAGE 3 12-50

TECHNICAL INFORMATION (CONT'D)

MAXIMUM RATINGS
Ignitor
Maximum Voltage Positive Negative
Maximum Current Peak RMS Average Maximum averaging time

900 volts 5 volts
100 amperes 10 amperes 1 ampere 5 seconds

Note 1-RMS demand voltage, current, and kilovolt -ampere are all on the basis of full -cycle conduction (no phase delay) regardless of whether or not phase control is used.
Note 2-For voltages below the minimum, the minimum voltage current rating applies.

Note 3-With the use of log -log paper straight line interpolation between tabulated points may be used for other detailed ratings of:
1. Demand kilovolt -ampere vs average anode current.
2. Maximum averaging time vs anode voltage.

Completely revised.

CURVES K -69087-72A217, K -69087-72A218 AND K -69087-72A219

MUST NOT BE USED FOR INTERMITTENT RECTIFIER SERVICE

10000 8000
6000

I

1

11111111

11
I

I

ill I

I

1

1I

1

KILOVOLT -AMPERE VS AVERAGE CURRENT RATING
250 TO 600 VOLTS CURVE NO I

4000

ui 2000
a. a.
-J 1000
800
0z 600
400

GL-5555/FG-258-A

GL -5551/FG 271

GL-5552/FG-235-A

GL-5550/GL-415 200

\20 100 10

40

60 80 100

200

400

AVERAGE ANODE CURRENT IN AMPERES PER TUBE

K -69087-72A217 (New drawing)

600 800 1000
3 -31 - 4 3

Note: For capacitor -corrected welder service, this curve may be used to 2000 volts rms to allow for the additional voltage caused by the presence of the capacitor.

GL-5551/FG-271
ETI-113A PAGE 4 12-50
10000 8000 6000
4000
2000
1000
800 600 400

DEMAND CURRENT VS PERCENT

41,

DUTY AT 250 VOLTS RMS

CURVE NO. 2

/.7 '94'CO+A,

kb4,0
S
GL-5553/FG-258-A
GL-5552/FG-23 5-A

22 ao

GL-5551/FG-271

GL-5550/GL- 415

200

100

2

4

6

8 10

20

40

DUTY IN PERCENT

2 TUBES CONNECTED IN INVERSE PARALLEL

K -69087-72A218 (New drawing)

60 80 100 3-31-48

1000 800 1 600
400

DEMAND CURRENT VS PERCENT DUTY
AT 500 VOLTS RMS CURVE NO. 3

WITHOUT PHASE CONTROL

...
1, ,44
Q/4,014,G, L-5553/FG-258-A

200
1000 800 600
400

Stkob

,,./ GL-5552/FG-235-A °.9

-

Sk. °04, 06.

9 GL-5551/FG-271
..94.,,
'°4,0

GL-5550/GL-415 Se
Nos

200

100

2

4

6

8 10

20

40

DUTY IN PERCENT

2 TUBES CONNECTED IN INVERSE PARALLEL

K -69087-72A219 (New drawing)

60 80 100 3.31-48

PEAK ANODE CURRENT IN AMPERES

00

0 0 0

11111111111 111111111 llllllllll 11111 lllllllllllllllllllllllllllllllllllllllllllllllll 1 11111111111111111

ill 1 11 111111111
11 111111111 11111",

llllll 1 !Tim

lllll 1 11 111111111 1111111Ii.
lll,...... ,..,,. I 11 1111M11 11:1:11111a

............ Ill Slit lllllll 1J lll 111110111....11 1 1/11 11111,111111

"" irk llllll n

O'

""IImop

mn

'

w

llll MINIMENNIN

..11
111111111111 INNI111

n111111111111111111111111 III 111111M11

lllmNionmnmeoailgiar

0ii1i1i1i1i1i1i1i0ii11i1i1i1i1ii1i1

!mum 1111111111

11111111 111 1111111111H
IIII 11011 no

. ! 3111 l IMI ill"""1111

Hymn :gtrniiiiii.i,iinslaMIIIMI
1111 11111

111
1111
lhl

lT

1111
..mutelan lll ni l - "ibl

NE ...,...................,,, llClll elwJinn'1e"i1."iH10r"1IM11..R"meil-iimilimpinap1in1ulmleuMmmieiRnunnuinru-i1"mm-nhmr.a.uH.m1r1m1.u1n.1nm1i0rn"0IuN1uu1iM1tlmMhlaMimAIrnIHmMNwuIM.mUhIlMl'NmmlI"lIIliluavul.lm.u..e..ll.ll.Nu.p.oix.ipllllluililslllat.miNl.l.lmMaunm. mummusIil..Y-IE-.1111

llll

e'lnm1il11nll1
PIIlIiIIIII Ira I tilllifi

:4

0

OD

6.1

l

ClA

V Cl lO O

O

cOo

0 OO

GL-55511/FG-271
EU-113A PAGE 6
12-50

OUTLINE GL-5551/FG-271

MAXe

I" MAX.

ANODE TERMINAL

MAX.0e;
12 DIA. 1'

32 -32DIA.HOLE

I"

tl

I-2MAX

WATER
OUTLET

DO
ti"
2-2

A

A

22

1" ÷

3"
-4

1

2

PIPE

2-34" MAX.

IGNITOR TERMINAL 0.250"±.010" DIA.

13"
MAX.

MAX

WATER
INLET

311 III
98t 2

I
MAX.
CATHODE
TERMINAL 1;2
2-1 NOTEi. ENVELOPE IS
AT CATHODE POTENTIA8L -l 2
9 0° ± I 0° -/-

2" MIN. 28t--i4"

3..
8- 8

=m..7-3"r2s DIA. HOLE
± 10° EXHAUST TUBE

K-5344676 12-50 (11M)

OUTLINE
FG-27 I IGN ITRON

10-5-44

Tube Divisions, Electronics Department

GENERAL

ELECTRIC

Schenectady, N, Y.

ti

DESCRIPTION AND RATING
ETI-1148 PAGE 1
5-49

SPECIAL DESIGN FEATURES
1. Steel, seam -welded construction 2. Uniform water cooling 3. Compact and strong design 4. Easy to install

IGNITRON
5. Copper terminals 6. Flexible anode lead 7. Mercury -pool cathode allows extremely high
instantaneous currents to be passed through the tube without damage.

DESCRIPTION
The GL-5550/GL-415 ignitron is a sealed, clamp cooled, mercury -pool tube designed primarily for Resistance Welding Control. In this service, two tubes in the inverse -parallel connection will control 300 kilovolt -amperes at voltages of 250 to 600 volts

and over the frequency range of 25-60 cycles. The tubes are also used in electrostatic energy storage types of resistance welding equipment to control the capacitor discharge.

GENERAL 0 ELECTRIC
Supersedes ETI-714 dated 4-45

GL-5550/GL-415
ETI-114B PAGE 2 5-49

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications

GENERAL
Electrical Data
Cathode excitation-Cyclic Cathode spot starting-Ignitor Number of electrodes
Main anodes Main cathodes Ignitors Arc drop at 1697 peak amperes Arc drop at 70.4 peak amperes Cathode excitation requirements Ignitor voltage required to fire Ignitor current required to fire
(See curve for details) Starting time at required voltage or current

1 1 1
30 volts 12 volts
200 volts 30 amperes
100 microseconds

Mechanical Data
Envelope material-Metal Over-all length Over-all width Net weight Type of cooling-Removable clamp Clamp contact width Clamp contact area

17,543 inches
2% inches 1.5 pounds
1 7/g N inches 9.4 square inches

MAXIMUM RATINGS

As A -c Control Tube

Two tubes in inverse parallel

Voltage range Maximum clamp temperature Minimum clamp temperature Maximum demand
Average current at maximum demand Maximum average current

250 to
75 10 150 4 86 9.0

600 RMS volts
50 C
10 C
300 kilovolt -amperes 12.1 amperes 22.4 amperes

Demand at maximum average current
Maximum averaging time at 250 volts RMS Maximum averaging time at 600 volts RMS Maximum surge current at 250 volts RMS.

50.0

100 kilovolt -amperes

27.8

22 seconds

11.6

9.2 seconds

1680 3360 peak amperes

Maximum surge current at 600 volts RMS

700 1400 peak amperes

Note 1-RMS demand voltage, current and kva are all on the basis of full -cycle conduction (no phase delay) regardless of

whether or not phase control is used.

Note 2-For voltages below the minimum, the minimum -voltage current rating applies.

Note 3-With the use of log -log paper straight line interpolation between tabulated points may be used for other detailed

ratings of:

1. Demand kva vs. average anode current. 2. Maximum averaging time vs. anode voltage and temperature. 3. Demand kva and average anode current vs. temperature.

As Capacitor Discharge Tube

Maximum number of discharges per second Maximum peak forward anode voltage

60

60

3000 6000 volts

Maximum peak inverse anode voltage Maximum peak anode current Maximum temperature of cooling clamp

3000 3000 volts

500 500 amperes

70

40

60

40 C

Corresponding maximum average anode current Maximum time of averaging anode current

3

15

3.3 0.66

2.5

8 amperes

4.0 1.25 seconds

Note 1-With the use of log -log paper straight line interpolation between tabulated points may be used for other detailed

ratings of average anode current and maximum averaging time vs. temperature.

Ignitor
Maximum voltage Positive Negative
Maximum current Peak Root mean square Average Maximum averaging time
Technical Information completely revised.

900 volts 5 volts
100 amperes 10 amperes 1 ampere 5 seconds

*000
8000 6000
4000

I 111111111111

1

I

1111111
1

KILOVOLT -AMPERE VS AVERAGE CURRENT RATING
250 TO 600 VOLTS CURVE NO I

cn
,tu 2000
a.
1000 800 600
400

GL-5553/FG-258-A GL-5552/FG-235-A

200

GL -5550/03 L\415GL-5551G 27I

GL-5550/GL-415
ET1-11413
PAGE 3
5-49

10 10
K -69087-72A217 10000 8000
6000 4000
2000
1000
800 600 400

40

60 OD 100

200

400

AVERAGE ANODE CURRENT IN AMPERES PER TUBE

600 800 *00
3-31-48

DEMAND CURRENT VS PERCENT

4i, k

DUTY AT 250 VOLTS RMS

CURVE NO 2

u. 1`4,_
.reeii

/I
St,
'04,04

C(:)4,0,

GL-5553/FG-258-A

GL-5552/FG-235-A /e

6s4b04,41,

GL-5551/FG-271 GL-5550/GL-415

200

100

2

4

6 80

20

40

60 80 100

DUTY IN PERCENT

K -69087-72A218

2 TUBES CONNECTED IN INVERSE PARALLEL

3-31-48

GL-5550/GL-415
ETI-1142 PAGE 4 5-49

1000 800 600
400
2- 200
rc
1000 800 600
40

DEMAND CURRENT VS PERCENT DUTY AT 500 VOLTS RMS CURVE NO. 3
WITHOUT PHASE CONTROL
Pei. R4
% GL-5653/FG-258-A 74,
4' . ss
SFO
,>:, 0 V5552/FG'235,A NOS
94b04,04,
9GL-5551/FG-271
.94..,,
'04,0
ii GL -5550/0L-415
66
04, °S.

200

5-49 (10M) Filing No. 8850

100

2

4

6

8 10

20

40

DUTY IN PERCENT

2 TUBES CONNECTED IN INVERSE PARALLEL

K -69087-72A219

OUTLINE GL-5550/GL-415 IGNITRON

r.2 MAX

1..-

I "MAX

60 80 100 8-25-44

2"MAX.

Kil3"+-31; DIA-HOLE

ANODE TERMINAL

^

I32 -Li

Ic MAX. DIA.
21"MAX. 4 DIA.
FLANGE (OPTIONAL)

el0
IMIIil
Ell

7I4 MAX. 4'MAX.

REFERENCE LINE

If , T.-
4 I'MAX

---A,,
t 2§ MAX

t
A_ I" MAXf

1 -E2.130" t .00" DIA.
CATHODE TERMINAL AND.,

:MI= 216it161MIN. 1 i

CLAMP -COOLED MIN. WIDTH

AREA

ke4

1

'FL---

-k----CLEARANCE LINE

1MIN

IGN TOR TERMINAL

16 ' EXHAUST TUBE

.250 " toio" DIA.

K-6912327

6-22-45

III Outline drawing revised

Electronics Department

GENERAL ELECTRIC
Schenectady, N. Y.

GL -506
DESCRIPTION AND RATING
ETI-293A PAGE 1
10-50

PENTODE-IGNITRON

SPECIAL DESIGN FEATURES
1. Stainless -steel, seam -welded construction 2. Uniform water cooling 3. Strong, compact design 4. Easy to install

5. Copper terminals 6. Flexible anode lead 7. Mercury -pool cathode allows extremely high
instantaneous currents to be passed through the tube without damage.

DESCRIPTION
The GL -506 is a sealed, stainless -steel -jacketed, service 6 tubes will rectify or invert up to 7500 water-cooled, mercury -pool tube designed primarily kilowatts at 17,500 volts. for use in electronic frequency changers. In this

GENERAL ELECTRIC
Supersedes ETI-293 dated 12-48

GL -506
En -293A PAGE 2
10-50

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS
Electrical
Cathode excitation-cyclic Cathode spot starting-ignitor Number of electrodes
Main anodes Main cathodes Auxiliary anodes Ignitors Control grids Auxiliary grids Arc drop at 450 peak amperes (See arc -drop curve for details) Cathode excitation requirements Ignitor voltage required to fire Ignitor current required to fire
(See curve for details) Grid requirements
Positive current to establish conduction Minimum voltage to establish conduction Minimum voltage to prevent conduction
(See curves for grid characteristics)
Mechanical
Envelope material-metal Over-all length Over-all width Net weight Type of cooling-water Characteristics for water cooling
Water temperature rise, maximum Pressure drop at 5 gallons per minute, maximum
Thermal
Water cooling Maximum outlet water temperature Minimum inlet water temperature Minimum water flow at continuous rated average current Minimum water flow at no load
MAXIMUM RATINGS
AS POWER RECTIFIER TUBE Maximum peak anode voltage Inverse Forward Maximum anode current Peak Average Continuous 2 hours 1 minute Surge Maximum duration of surge current Frequency range*
IGNITOR Maximum voltage Positive Negative Maximum current Peak RMS Average Maximum averaging time Starting time at required voltage or current

1 1 2
3
2 1
23 t 2 volts
450 volts 45 amperes
1 00 ampere +100 volts
-50 volts
57 2 inches 121,' t 1 inch 100 t 5 pounds
4 C 4 pounds per square
inch
45 C 35 C 5 gallons per minute 5 gallons per minute
20,000 volts 20,000 volts
900 amperes 150 amperes 200 amperes 300 amperes 5000 amperes 0 15 seconds 25-60 cycles per second
1000 volts 5 volts
100 amperes 17.5 amperes
2 5 amperes 10 seconds 100 microseconds

TECHNICAL INFORMATION (CONT'D)
AUXILIARY -ANODE
Maximum current Peak Average Maximum averaging time RMS
Maximum peak forward voltage.. Maximum peak inverse voltage
Main anode conducting Main anode not conducting

20 amperes 5 amperes 1 second 10 amperes 200 volts
25 volts 150 volts

GRID
Maximum peak forward voltage Maximum peak inverse voltage Maximum grid -current
Peak positive Peak negative Average RMS * Ratings are for zero phase -control angle

500 volts 200 volts
5 amperes 0 1 ampere 10 ampere 2.0 amperes

GL -506
ARC DROP CHARACTERISTIC FOR COOLING WATER TEMPERATURES
OF
30-60 C

35 MEMMIM MMMMM MMMMM MEMINIMMEMMMMEMEMEEMMAMMEMMEMEMMEMMEMEME MMMMMM M Mum

EEMMIEWEENEMMEM MMMMM M MMMMM EMEMOMMMEMEIMEMMIMMEMEMMNIMMEMEMMEMENIMMOME

mMIEME MMMMM M MMMMMM M MMMMM MEM MMMMM EMS nommummummiminimmmommimmummi

mummommummommummismommummmma
mgm

mummomminummmionomMmmMmMiiMnnMusMmMmMM migomupmm.

30

aiimusmmmsmmmoooummmmmmmmgooommmmmmmmguommMmmmMmuMMimMMnmMMuuMmmmMmommiusmmmMmimMmuuMmumMummMmmumummomummmsomiumummmmmmuioummmmmmmmogurmmmnmimsociimsmmmagimmsomgMm.mMmmMMioMMmmMMmmMMMmEmMmiimmmnammgousMmmmMmmiMumuMmgmMmmmommimueummmmm

g MMMMMMmMM:TACIT MMM M m

Mmmm

mng

gammommmumommmmommnmminmmegimgewmumimmon.mummmmm

mmummiilnmommummumuummmmiommmmoummmoimmummmmMmeMuMMmMMrMMMeMgnMmioum mmMmmMuomvmm.:dmMmMiiMlmmlmimigmmmmmeiimmnlmiimmmmoIugmmnmmimomgomimmommmoimmmim

25

mommamimmommummummimmimummmmiusmmmaaiimmummmiiimm.m:odirmammgmuommmmasmmmoomm m_o_m7g.l.i.m.mmom.i-mAmmommommommommmigm

MMMMMM me MMMMM mom MMMMM MEMMINAn

% MMMMMM Emmomm7:0MignimMEMMM MMMMM EMem

MSEEMI=MMMMMEMMMMMEEMIEMMMMMMMEMEIMMMMEEnMiMEEEMMPAIMAiNmIEMMMMAEIEMMEEMMMMMWIMM.MOEMMAPMtEiEEMMMMEMIEMEMMMMMMEMMEEMMEAMEMMEMEEMMMSEEME

EMMEIMMMEMMIUMMEMnMaEmEmMaCm1mMIPMEMEEMEWMEEIEEMmMiEgIBMMM.MEMMMMMMMMEMEMMMEMMMENNMEEMEMmMEMMMMMEMEEMMEMEEMMMEEMEEMMEEME

mmEEM MMMMMMMM mr.nmomroMm MMMMM MINIMPIMmOMM MMMMMMM IIIMMIIMMEM MMMMMM M MMMMMMM ME

1IIHMUMMMEIMNNIIPMnMaIlPIMMiPMMMMEOM_MIOMNEMMEMNIINMIPMINMIMMEMIEMMIONMAMMMEMMMMMEMMMOMMMMIIIMMMOOMMMMIMMOMMMMOMMMMMEMMMMIIIMMMMEEMMOMSIEMMMMOEM

20

mMMiEmMmEaMmPmtigwEnMiMgEnNiEgEnMmEgrmnmamiMwUwMiMsEmEoMmMmEuEmNmEiMnMuEmMmEiISmMaMgEgMiMmEmMiMsUmMiEsMmEgmmmmEgMmImMMmEmMeEmEm

IngliallIIIIIMMIIIIIII MMMMM IIIIIMEMEMEMMMOMMMEENNUMEMBEIIII:

EMIEMMMEEMEMMEMMEOMnMiEEmMmPM5MaEEMMEEMMMEIMEMME.MEEMEMMMEMNMNMMIEMEMMMEENEEMMMMEEMMEEMMEMEMMMMEEIEMEIMMEMMMEEMMEMEEMISMEMEMMEMMMMIEMMMME KM MMMMM EMPnaMM MMMMM MEMMMEMEME MMMMMM MEMN MMMMMMMMMMMM MMENNmEMME MMMMM MEM.

15

NOmmTmIEmiiIMlMinIiMuePmimmMmlmpEoMmuEoMmMlmEuEumMmEEmomMSmmMEoMmEMMMmoMMEmmMMMomEMEmMgMMMiIEmgSuSimmmEumioEmgmgMmmmnEiiimMnmmEoimRmmmuEomumMmommEmmmMoouEmmmmMmomMuumEmmmMEmmMuNoMimEmMnEmmMuMmoMEmgmNmmmmMouoEmMmMmmMmEmgMgIMMMMNgmmNEoioEsmummMmmiMomMmimMummmMmomomoMmomEmmMommEummHommEommoMnmne0

mommummum MMMMMM no

mommomm

it lir IIIIIIIIIIIIIIIIIIIIIIIIIIIII MMMM 111111111111 IIIIIIIiiiiillig

immmi la1 EMEME

.EmMgMmUgMmMmiEmMmEiSnE4MmggNgEiNlEm

MMMMM

EMMEMMEMMOM

MMMMM

IMAM MER.....E.AMEMME= MMMMM EMMENEMEMEME

1
mu

I.II.ImIoImImIeI-IImImIuIlI.I.IImI.ImIgImgmliommimgiilmmigogmimuommmmImIuInIiImIImIiImIaImIoIImImIiIgI.ImII.IIMIMIMIIMIImIyI

10 1 IIIIIIIIIIIIIIIIIIIIIII/IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII MMMMMM III:
1 mommommismummummimpommsm MMMMM mommummogimmummommimmummill

1MM1MmMIoMImMIIMMIMMIMMIMMIMMIMIMEIMNIEIIMMIMEIEMIMEImIMmEIEmIMEIMIMMIMEIMMMIMiimiiMiMiMMiMiMiiMiOiWEiRiiiiiiiiiiiiiiiilliiiiiiiiiiii MENEMMMEMEMMEMMEMEmmomMEMEEEN MMMMM MMMMMME MMENEEMMEMEMMEIMMM MMMMMM MEM MEMEMEMMMEMMMEMEMEEMEMMEEMEEE MMMMM MMMIEME gimmingimmoggiggimmummilimm

5 IIIIIIIIIIIIIIIIIIIIIIIIIIIIII MMMM 111111: IIIIIIIIIIIIIIIIII"..""mi
IIIIImumIIII IumII IIIwIIIIImI I IIImImmummmmmomminmummmmemIln llMiMMnMio l lImMmMmmumm
mimmummilmmMMMMM0 s
MMMMM mommommm MMMMMM m MMMMMMMM mmommummom MMMMM MENEM MMMMMMM M MMMMMMM MEM

MMMMEMEMMMUMMUMMUMMEMMIMEMEEMMMEM MMMMM EnEmmEMEME MMMMMM MMMMM IIMMIEMMEMMEM

EMMEMMEMMEmMEMMMMEMEEMMEEMEMEME MMMMMM ME MMMMM BM MMMMMM MUM MMMMM MMMEMMEMM.

0

EMMEN

MMMMM

EMMONNEMMMEMMMMEE

MMMMMM

MMMMMMM

ME

MMMMMM

EMMEMIEMMMENIMENMMUM NEM

0

200

400

600

800

1000

1200

INSTANTANEOUS ANODE CURRENT IN AMPERES

K -69087-72A196 Revised drowino

5-2-49

GL -506
ET1.293A
PAGE 3
10-50

GL -506
ETI-293A PAGE 4
10-50

IGNITOR VOLT-AMPERE REQUIREMENTS

SEALED-IGNITRON RECTIFIERS

:AA

WIWNWORTIMMOWIRMNIPROWNIIMMEM

MMEMMEMEMEMINIMEMME MEMMEN:IMMUVIII0 ilirelfinvIlljaNAPIAPVIMAMIUMIMMI

IIMMEMEMEMEMIIMMIUMM MUMEMEMMINOWnw

IIIMMmuMPRIMEMMIMMOM

EMEMMEEEMMEMMEMRIEMMMMIEMMMEEMMEEMEMMEMNEVMIMMAMIEMCMWOIMIEVMMMAIIIMMMMAUtMUEMaElMIEFMMMREWMMMOEOMIMMEIRUMREOMMIMUMEMMEEMMEEMN

MEMMEMMEMMAMMEMEMMEMMEWIGNIMANWINAMMENMEMMEMEMMEMMERMMONEMMEMEM

MMMEEMMMMEEMMOMMUMMEEMUOMMMMEMMUMMEMMIMNIIIMMMMEEMMEMMEEMMMEMMEEMMMMIIMMMEIMEMMIMMEMMIMNEUMMOMMEMMEEMMMMIETMEMMEMMEMMEMMOOMM

MmslmEmmmuMiuimOmmmmNmOmmuMuuomMcmmmIommaRmMaanmUmmaMaakmMmmIummIomuuMmmmmMmumEmoMmuiMmmomEmmmmMouMmoEmmomMmmmmMoimuImmMommMmmiOuummMmmEummmMmmMimummmmMumImomuIpmmImuomImmMnyuMo.mEmmamMmmllImmMiimMmmIimmIEnMiaMiMEsmmEMummMEmuMMmmmEMomuMEmimEMmMmmMEEuomMMmmoEEmmmMM

MIIMEMMEMMEMEMAMMEMMIMMEMINUMMEMEMMEMOWIMMffEk NIMPWIMIMMEMMEM
MMImmIUEuoMMMmmMMMEmmEREooMMMmMImENEmmMIMoiMIMmMoNWImWnEEaAr2mMdgRaaraaikaWmemaodElmMuIlMmMiEmEmrMiRMoEuIEmMMmMMmMwMIEEUoEmNMMmMmMEmEEoMuMMmEmMImMmIMMmIMuEuMMmMMmEmMEMmuEMMumMMErEmMNaWiINAmMEmMmMMmEIoMImmEImmmmMmouiMOmmINnmmENiuiMEmmIlWm.mmMRuAmmVmIouIMmmmEMumMmEMmouMImumEImmmMM

MMIIIIMIEMMMMIIMEMCMWIEMRRPONMIP2MAPMAMPEMAMREEmMMEMMIMMEMMMIENMMIEMMMEIMEMRIMIEMIMIEMMMMEERTRIEMMEIMIMMINUEMMIMENMNMEE

MMOIMONNIOMMMMEENMIMMOAWR2PEF2AMVAEMTMAIOMMMMIEMMMEIMUIMREEMREMMIIMIfMfIlEiiiiMi1P11P4O1R11M9I11I1M1M.1M, IEIaMMmEmMoMmImNuMEmMmMuEmM

MUMMEMMEMIMM2 ridEWIMMEMIUMEMMEMM MMEMMEMMEWARMIUMMEMMOIMMEMM

mmmiuoumummmmmmumoumummmlmauaommmnamamgagapmarmmmleomiamAmmm0amwkmooopmmnlmmoooummmmmmmmiouimlmmmimmomummmmmummmuummmmmmmmoiuilmmmlmwmaumoummmNmuoLommFmwmmmmiioumlmmmwmmumuemtmmmamuimimmuummmmmummmuuummm
MENMENNIKMMEIMAIMPARAPAMMEMEMERNMEMEMMUNIMMEMEMMUNIMMEMOMMUE
MMmmEMmiMIanMMiiIArNmIMmmMMuoMImmIRmWMmMeMa2aErPWm2mWaMeWm2rWPamW2n,Waa2Imm1Me1aMm1rI1amNMlaIMcMEmMuMaEEmmMMmmOMuuMEMmmMEmmMMuoEMmmEMMmImMUouEMmmMMmEmEMioMMnmMEomMImMiUmEMmMuMmMmUmEmMMuMuMmEEmmMMmEoEoMMmmMMmImEuMoMMmmEEmmMM
MEM5;111MMEMME2M2R2E2EMERMWOMEMOMMEMEMEOMIMMEMMEMMOMMEMMEMMEMMEME MINILMEMMEMREWRERIBIERIERIMMOMMEMMEMMEMERIMMEMMEMMEMMEMEMEMEMEMEMEM
MmMoOmWmLEuMmEmNuELmPoIrRaMamnadnmaiAmMaAgIMiMaEgMaUMmMpEeMaMEmMmEoMmMImEoEmMmMEuMmEmMMuOmMmEuMEuMmImNoIMmMmEmNoNUmMmM
NOMWmgEMOOMMILWEREWIREFORWEaMUMMIUMMOMMOMMEMEMEMMEMMEMMEMMEMMEM MENIMILMUMMIRREWMFMENR2P2W2REMMEMEMINIMMEMMIMMEMEMIMMINIMMMEMME mmmmwmmmmmmmLmaeamamanammawummmmmmmmmmmmmnmmmmmmmmmmmmmmmmmmmmm 11111144.11MOMMOWROMMOMMINFAMAMMEMMEMEMEMMIMMEMMEMEHMAMMIMMEMEN IIMMIMMIMMIUMMLWRAWAgiiMaNAVE2MNOMMEMMEMMEMMEMMEMMEMEMOMMIMMEMMONME MMINKTAIMMEMMEMMAMOMEMWAR2M2MiAMEMMENIMMEMMEMMEMEMMIMMEMMEMEMMOM
MmMmEownmEmMEuMmEmMIuImMMuLmOYaAmMmWEaIgMMwOaMMmWwEmRWaOlMMtEaMMmEmMuMEmMmMEuMmMImIoMmMEmMwEMmMuEmMEmMuMEmMmMEoMmEmM
11111WAIMMEIMMENTAIMPAmiEWEIWARWOMMEMMMEMMEMMEMMEMEMIWIMMEMMEMEM
1mamm1mmuo1iomr1nmw1wcmsWmdoiAuIormMum4mMmmcuEuAmmMmmmMomEmumMoummEmmmRemmaEamemWwmEaaaWmmeEmaleNamaaEmem2maEgaai2immeMmpWwaarEelmaWaeatMmInaaaIarmMrmemMlmaOuaimMmmMgmaEmAomRommImmmmMuuoMmmEmmumMmmumEuumMmmmMmummIumUuumMmmmmMmmuuEoommMmmMmmmmEomMuomuImmmUmmmuMmoumEummMmMmmmuOmimmM
MMEEMMMIIEIMMMMEUMMMMOMMEMMEMMEMMEMMLMWOAWRNW2E/M2PMA2MMMaEWRI2MREWMEEAMMMIENMEMMEEMMMMEOMMMMIENMIMMEMMEEMMMMIEMMMIEMNMIEMMMIE MEMOn4MMEMMEMMEMOMMMIOWAMMIUMWAWM2MaMEMEMMIMMEMMENNIMMIOMMUMMEMEM
111111,GMEMEMMIMMEMMEMERMWERWARRIEWWWWMINIMMEMMEMMEMEMMEMEMMEMOMMEMM
MmOuMmEm:uAmIoMmMmEMoImMmMoEmMmMoEmMEmMoIaLnlaemamRa2EgMmCmWaWmWaWkWiWWnWcWaWuWcWlWa1umt1WiEmRuVmMmEgRmIaMMAEmMmMoMmEmM
MIUMWOMMMEMMEMMEMMENNWM2EMICOMMEWMOMMEMEMMONMEMMENIMMEMEMOMME
MlmiMuimEmmmDmuwIiTmaAammImomRmmAuuImmUmumMumoNmmImmMimMomoEmmMmmoMmuEmuMmmmMmoEwapMdnReeWaaAammNmaaWarP00AaaMpmmUraMmnaWaw2mmMeaa2amRgwpEouMamMmumEmmMuuMmmmEomMmmuEommmmMimmEmoAimmMmMummEmuiMmmMmumEmMimuEmmmMmMmoEuiMmmsEm=mM MmIoImMmMuENmImNuImMMmEoMmEmRMeMmImNoWmOM=MaEmMmOMaMnEaAmCTaOiRm2e.2mEa2tAuMmMImMoMmUmMMoEmMmMuEMmMmEoMmENmuMmEmM
1mimm1ooom1mmmm1mmm1ouu1mm1mmm1mmmm1oor11mo1m1mmmu1umum1coMmmtmMiuqEmmMmuuMmammEmvmiMovPonFmumoWmmmMmmooPmwmImPmameMaomaMiarmEfMgaatOammWmmaReagmWraRaaaImmmKmiaaOamlMmmMaeaaE00amMaMakrtAmuaMummMmmmmEmmMouooEmmMmmMmEmmmMooMoommEmmmMmmoMmooEmmmmMmmuMmmUomoMummmImmmNimoIomMmmmEmimmM mmiommmmumumummmmomummmmomomummmommmoommmimmuuommmmmmmuoummmmmmfiotmmgamamamparemaaammmmaaammmaamampmalaeegraaaumcmuommmimmmomIurmmmmmuommmommmouummmmmmooimmmmmm
MEEMMMEEMMEEMMMMEEMMMMEmIENMIMMEMMOMMIMMEMMEMMMEEMMMMEWMOWREW2EMRWEMI2BMMW2ERRWEEWWAIMEIWMOMEMMIENMIOMMMMEEMMMIEMMMINEEMIMMEM MMERMEMINIMMEMEMMEMEMMEMMEMENIMORWEWEWEWPWWIEROMMEMMEMMUMMEMMEMEME MMEMMEMMARIMMEMMEMSEMMIMMEMELM2M2RaWAWEMIPMEOUMMEMEMMEMMEMMEM MEMMOMMEMMEMIMMEMERMIUMMEMMEMMEaRigagaRralimAMMBEMIIMMEMMEMEMMEM MMEEMMMMEEMMMEEMMEMMEMMEMMEINEMMMEEMMMEEMMEMMEMMEMMEMEEKWMEMNEEMWOMNMWIENNAEWWAWRWAUWMWEWMIENMUEMMMMIEMMMMOEMMEMMEEMMM MEMMEMMEWEIMINOMMESMUMEMMONEMMUNIMOMMEMCUMMIIMMEWITMEMMOMMENEMMIN
T l INIMMEMMEMW MEMMEMEMMXAMMOWEMILITAMEMMIggAMEMIMMWOMIMMOMMEMEMMEM
MMMMMIIEIIMIMMIMOMEMMMMEEEMMIMOMEMIMMMNEEEMMMOMMMEMEMEMMMEIWMMMWMMEPMIMNEPMIEIMMMMUIMMLMILOOPN11I1LM11mTIMIMIl IMMNMI1I!PEIWt1IR1MRMNUMUPiMfP:M1PE1N(M7IM1M1E1MM,1EM1ME1EMIMMIEEMMMM

K-9033883

6-14-45

GIL-5()6
ETI.293A
PAGE 5
10-50

GL -506
STARTING CHARACTERISTIC

0

I ON ZAT ION 840 AWERES PEAK

ION ZAT ION 540 AMPERES PEAK

IONI LAI ION 240 AMPERES PEAK

E

BIAS

16

12
8 15
4

15 c\

0 C
\50C
\

5 C
11

50 C

\\ \

\\
\s\

-100 -90

-80

-70 -60

-50 -40

-30 -20

-10

0

410

GRID VOLTAGE AT START OF DISCHARGE IN VOLTS

K -69087-72A216

3-30-48

GL -506
ETI-293A PAGE 6 10.50

30°,,,2SHIELD GRID TERMINAL ANODE TERMINAL

9 m

CONTROL GRID TERMINAL
VIEW AT "A"

6 DI 14 2 MAX. (HOLE

I-MIN

16

'

14- g±32

in
4 31{._
SHIELD GRID TERMINAL
CONTROL GRID TERMINAL

IN
T-16-0"

INTERMEDIATE ANODE TERMINAL

418 - 4

13"
23"
67 DIA.
VIEW SHOWING IGNITOR 0 SHIELD GRID
TERMINALS
(t-t'
Ng 11 4 DIA.
VIEW SHOWING HOLDING ANODE S CONTROL GRID
TERMINALS

1

42"
MAX.

WATER
riOUTLET PS
WITH CAP

29 2 + I"
4

- 8 - 4

HANDLE
NAMEPLATE
-2-13 TAP
2 HOLES
5"DEEP 8
CATHODE TERMIN

IGNITOR TERMINALS

N-22002 AZ I A (11001)

4 MAX.

-4-- 9" DIA. MAX. -11P-

HOLDING ANODE TERMINALS

i;

L -iM" AX 2

'1.4-

WATER INLET

-.-...4------- --1I. P SS. 4 WITH.

_.s.''. --.4_

= _- - I =.E--_=..:.-11

i 1T

-r---1- MI"AX.

1 1" MIN.
2

OUTLINE

GL -506 IGNITRON

CAP
BOTTOM VIEW

Tube Divisions, Electronics Department

GENERAL

ELECTRIC

Schenectady, N. Y.

9-29-47

PHASE CONTROL
1.0 0.8 o.6
0.4
0.2

GL -6228/506
ET -T1037§ PAGE 7 12-58

7,0

60

80

100

VOLTAGE REDUCTION BY PHASE CONTROL IN PERCENTAGE

K -69087-72A513

9-10-52

IGNITOR VOLT-AMPERE REQUIREMENTS FOR SEPARATE EXCITATION SEALED-IGNITRON RECTIFIERS
THE IGNITOR FIRING CIRCUIT SHOULD BE DESIGNED TO OPERATE WITHIN THE SHADED AREA
800

Mr 700 /MI 1 r.,MrP
600

500

:IFIRMIngriaral VERIMPP

400
delp ..
am,

imuu

300 IIIIIIiiIF

..

unine

200

.

ii

Cii1i..

1171T1111TF1.1-

100

,,011.1 411

0

20

40

60

80

PEAK IGNITOR CURRENT IN AMPERES

K -69087-72A741 § Supersedes pages 7 and 8 dated 9-53.

12-9-55

GL -6228/506
ET.T1037 PAGE 8 12-58

5"±
32 64
0.510 *.-0.03010

4 - - 23). I" 32'64

ILL.+ .L"
16

I +3
8MWAXA. SH3E4R4 RADIUS

Id
t -I" DIA. 64
VIEW SHOWING IGNITOR 8 SHIELD -
GRID TERMINALS

1"+ I "

Tt4111- 4 64

,NL.e

I.

4 D1A- +6-4

VIEW SHOWING HOLDING -ANODE
8 CONTROL -GRID TERMINALS

3 CAPACITOR GROUNDING TERMINAL NUTS- 3/8 "-I6TP1

'4-5" MAX. -be-

J4.7-+ -8C. I i

SHIELD -GRID TERMINAL

1-1 j
A

CONTROL GRID TERMINAL

WATER OUTLET
4I.P S
3". I. WITH CAP 294 T2

25 2'+2"

/INTERMEDIATE NODE TERMINAL
80°1.10°

Oil

61'2

SHIELD

411011.14%

34RtT4

VC 0 ip 3°°±I° TER- GMRINIDAI. 40°!10°
ik CONTROL-
GRID
TERMINAL

90°t 10e

r- 41"!

VIEW AT "A"

NAMEPLATE

HOLDING ANODE TERMINALS
3"t

I" 2 -13 TAP 2 HOLES

5" DEEP MIN. TERMINALS

8 60°

60°

.+10

2 /4

R

28-4 1"-I- I"

9" DIA. MAX.
(t 4,))
7 - -1- -

CATHODE TERMINAL
I-2T- 6)-4

WATER INLET WITH GAP

C P BOTTOM VIEW

NOTE: BOTTOM END OF TUBE WILL FIT AN

ALIGNMENT RING WHOSE OUTSIDE

64

DIAMETER IS 7 I/2" MAX, INSIDE

DIAMETER 7 "MIN. FOR A

MINI MUM OF 1/4 " FROM OPEN END

N-22002AZ-Outline revised.
ELECTRONIC COMPONENTS DIVISION
GENERAL ELECTRIC
Schenectady 5, N. Y.

6-25-58

GL -5630
DESCRIPTION AND RATING
ETI-294A PAGE 1
5-51

SPECIAL DESIGN FEATURES
1. Stainless -steel, seam -welded construction 2. Uniform water cooling 3. Strong, compact design 4. Easy to install

IGNITRON
5. Copper terminals 6. Flexible anode lead 7. Mercury -pool cathode allows extremely high
instantaneous currents to be passed through the tube without damage.

DESCRIPTION
The GL -5630 ignitron is a sealed, stainless -steel jacketed, water-cooled, mercury -pool tube designed primarily for use in radio -transmitter power sup -

plies. In this service 6 tubes will rectify up to 2500 kilowatts at 17,000 volts. Use of the grid to prevent conduction gives one -cycle circuit -breaker action.

GENERAL ELECTRIC
Supersedes ETI-294 dated 12-48

GL -5630
ETI.294A PAGE 2
5-51

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS
Electrical
Type cathode excitation-cyclic Type cathode spot starting-ignitor Number of electrodes
Main anodes Main cathodes Auxiliary anodes Ignitors Control grids Auxiliary grids Arc drop at 150 peak amperes Cathode excitation requirements Ignitor voltage required to fire Ignitor current required to fire Grid requirements Positive current to establish conduction Minimum voltage to establish conduction Minimum voltage to prevent conduction

1 1 1 2 1 1
18 t 1 volts
450 volts 42 amperes
0 200 amperes +100 volts
-50 volts

Mechanical
Envelope material-metal Over-all length, maximum Over-all width, maximum Net weight Type cooling-water Characteristics for water cooling
Water temperature rise Pressure drop at 3 gallons per minute
THERMAL
Water cooling Maximum outlet water temperature Minimum inlet water temperature Minimum water flow at continuous rated average current Minimum water flow at no load
MAXIMUM RATINGS
AS POWER RECTIFIER TUBE* Maximum peak anode voltage Inverse Forward Main anode current Peak Average Continuous 2 hours 1 minute Surge Maximum duration of surge current Frequency range
* Ratings are for zero phase -control angle.

33H- 13 inches

9

inches

23 t 2 pounds

2 C maximum 4 pounds per square
inch

45 C 35 C 3 gallons per minute
3 gallons per minute

20,000 volts 20,000 volts
200 amperes
50 amperes 50 amperes 50 amperes .2000 amperes 0 15 second 25-60 cycles per second

TECHNICAL INFORMATION (CONT'D)
IGNITOR Maximum voltage Positive. Negative Maximum current Peak RMS Average Maximum averaging time Starting time at required voltage or current
AUXILIARY ANODE Maximum current Peak Average Maximum averaging time RMS Maximum peak forward voltage Maximum peak inverse voltage Main anode conducting Main anode not conducting
GRID
Maximum peak forward voltage Maximum peak inverse voltage Maximum grid -current
Peak positive Peak negative Average RMS
IGNITOR VOLT-AMPERE REQUIREMENTS

GL -5630
ETI-294A PAGE 3
5-51
1000 volts 5 volts
100 amperes 17.5 amperes
2.5 amperes 10.0 seconds 100 microseconds
20 amperes 5 amperes 1 second 10 amperes 200 volts
25 volts 150 volts
500 volts 200 volts
5 0 amperes 01 ampere 10 ampere 2 0 amperes

4,

.01,11.1

I

MOO 1.41.01040.10:410k o 4. 1,00,41:/$41.

logialebid .- .. . a:1 g ,

.

1111E11E11111111 11011111111111:11111 111111 111 11 11 III

111111111111i1911L10.1...10.1..1..1..1.,1.,.01111 1111111M11111111111111101117ARIIIMPIII

II VIII
WHIN

1111111111111111111 111111111111111/1101111i1111 1111 11111111111
mmommmulmornommom mitopm

II 111111111111111111111111111111 111111/110111ilil 111111 1111 1111
IIIIIIIIImilmilimrpmelimpivoilumImol 11111 I

K-9033883

6-14-45

GL -5630
ETI-294A PAGE 4
5-51

9" DI 16 MAX.

OUTLINE GL -5630 IGNITRON

/74-66u
4

"+
- 16
ri "
32 - 32

ANODE TERMINAL

CONTROL -GRID TERMINAL

I" + I" 2 -4 DIA.

3Is ± TIfl" DIA.
Fl

294 t 16 4

3hDIA.

-6"

//yj,

3u MAX. fl

1-Q

1111
21 TE. 2 9. +
127 -4

i"

_

- DIA

2

II

WATER
INLET

2 +
16
42--.1
± I"

511
...._ . 1-8 ...-

GRADIENT GRID TERMINAL

TOP VIEW

WATER OUTLET
K

L-1

OUTLET AND INLET

-J

CONNECTIONS 1/4" SEMI-

FINISHED BRASS UNION

CRANE CO. *522 OR

EQUIV. FURNISHED WITH

MALE PART ONLY

IGNITOR NO.1 TERMINAL

3° MAX. VARIATION

IGNITOR NO. 2 TERMINAL

,-'-MAX,"

N-22003AZ

I-1/2"MAX.
i' 5_3/16" .t. 1/4
i'

i
9/16" DIAC.P

-...

Z.'" DIA.

i 4 MAX.

ci I-i3/4' MAR

3/4"MAX.

y

CATHODE
TERMINAL

"°--lir\--101 4
\ 31.4. I' ,
I 4 - 16

_ 0

r5du+-

IN 4

AUX. ANODE TERMINAL

-2I MAX.

BOTTOM VIEW

3-26-51

Tube Divisions, Electronics Department

5-51 (UM)

GENERAL ELECTRIC
Schenectady, N. Y.

GL -5779
DESCRIPTION
AND RATING
ETI.301 PAGE 1
5-49

IGNITRON

DESCRIPTION
The GL -5779 is a small glass, air-cooled ignitron operating principles of ignitors and ignitron tubes.
tube designed primarily for demonstrating the

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL

Electrical Data
Cathode excitation-Cyclic Cathode spot starting-Ignitor Number of electrodes
Main anodes Main cathodes Auxiliary anodes Ignitors Control grids Auxiliary grids Arc drop at 15 peak amperes

1 1 1 1
0 0
13 t 2 volts

Cathode excitation requirements Ignitor voltage required to fire Ignitor current required to fire (See curve for details)

450 volts 45 amperes

GENERAL ELECTRIC

GL -5779
ETI-301 PAGE 2 5-49

TECHNICAL INFORMATION (CONT'D)

Mechanical Data
Envelope material-Glass Over-all length Over-all width Net weight Type of cooling-Air *

* An ordinary desk fan will provide sufficient cooling for most purposes.

Thermal
Air cooling
Maximum average tube temperature Minimum average tube temperature

MAXIMUM RATINGS
As Power Rectifier Tube
Maximum peak anode voltage Inverse Forward
Maximum anode current Peak Average Continuous Surge Maximum duration of surge current
Frequency range**
**Ratings are for zero phase -control angle.

Ignitor
Maximum voltage Positive Negative
Maximum current Peak RMS Average Maximum averaging time
Starting time at required voltage or current
Auxiliary Anode
Maximum current Peak Average Maximum averaging time RMS
Maximum peak forward voltage Maximum peak inverse voltage
Main anode conducting Main anode not conducting

Cathode
Maximum average current

SA inches 2% inches 1 pounds
100 C 10 C
350 volts 350 volts 30 amperes 10 amperes 300 amperes .03 second 25-60 cycles per second
Anode volts 5 volts
100 amperes 15 amperes 2 amperes 10 seconds 100 microseconds
20 amperes 5 amperes 1.0 second 10 amperes 150 volts 25 volts 150 volts
10 amperes

GL -5779 IGNITRON IGNITOR VOLT-AMPERE REQUIREMENTS
SEALED-IGNITRON RECTIFIERS

GL -5779
ETI-301 PAGE 3
5-49

OMMEMEMPIPMMMEMMEMMIIMMEMMEMEMMINIMMEMMAIMMEMMEMEMMEMOMMEMMEMEMMIMEMMEN IIMEMMEN;JAMMEMMEMMEMEMEMMEMMENEMMUMMEMEMENEMENEMMEMMEMMINIMMEM
MiMmEmMmMuOmMMmEoMmMmIoImMMmEuNmEmMoEmMMmEvMaEmMuMWuOmMpMlUaMlPWuWaWhWmPiWnWWuWmWiIiNxWMoOnRmMuIuRmEMmPoOtPuPuIdIMaMmEmMoMmMmEMoEmM
MIIEMMMEEMMMEOMMMMIINNIIMMMMIEMMEEMNEMMEEMMMEEMMMMUECMRI.WWWMWAWMWMWAWCWIWMWUMRPMUVMUMMIWMAPM4OMMMMNEPMOURRMMMEUMMEMMEMMIMNEIMMMMEIMUMM IMMEMMEMEMOMMINIMMEMMEMENEMEMMOMMEMOIMMEMEMMEMMEMEMMENIUMMOMMEMMINIMEMM MEMINAMEMEMMEMEMMIMEMEMINFIGPVUMCINVWAMMEMMEMEMMIIMMINEMMEMMEMMEMMUMM
EmmMMMouMEmmEMmMMmNIuuINmMImmIUmMkaMkmmWamaORiMAtMMnuEMuMImmENmMImoMMoIMmmIEmMMmMEuuEMmnMEmMMoEMomMEmMNmmEMuMEuEMmmMMmmEEuNMoNEmmMMmmEMuMIuMNmmIWuNOmmIMuMMmMEmoEMmmMEmEMeMEurMMmEmmMEuMMumEMmMImmMOoENmMMumMEmmEMmMMuEEomNNmENmmWIoOMoMMmmMEmmNN mimimimmoulmmmmmuimmommoummummmommommmmuammilnaagaanmmmawaakmumruamommumimmmmumomoommummmmmmmomuuummmmmmummmuumuummmmmmmomomumimommmmmmoumimmmummmmmmuEumurmmumammmmwuomnmmnormsmmaomgimmummmmmomiammomyommmumofmmmmtmuoumammlummmtmmurimumamommlmmTmuomimummmummmommmmumoommommimmmm 1mi1mm1mo11om1mm1mMoMomEmMmmEaWmAnaManMEma2maAoMtMmuImNmmImNumImMumMmEuMmmMumEMomMmmEmNuNomEmMmmMuEmMmuMwmEManWmiMmmEMmoMumEuMmMmiEmMmuEmMmbomlmioammiumllomlmmimMuMumEmmMmMoEomMmMmmE
mmmmmmmmmamammaummmmmmmmmmmmmmmmmmmmmmmmmmmmmmrmmrmmmmmmmmmmmmmmmmm
MmMoEmMoEMmCmMuCmWWm2aMg2aPAmOaMmMmEMuImNmEmMMoEmMmEuMMmEmMiMnEMuMmEmMuMEmMmEuMmENmEmMuMmEMmMuEmMmMEuMmMmEuMMmEmMoEmMEmMoEmM
MEMEMMUMMEWE2MWARAMMINIMMEMMOMMEMMEMMIPPUMIMMEMEMEMEMMEMMEMMEMIMMEMO
ImIoImMMmEuMmMEmMoMmILmWaAmWAaRnWaAUmMmMoEMmMmEMuEmMmMEoMmOmIMoMmImMMoemmmmOmkeUnOIrNwWaWWmImlwurmimMMoEmMmMEoMmEmMMuEmMmEMuEmM
MEMMEMOMMEIVE2E2R2E2KMMEMEMENMEMMEMMMEMMEMEMMEMEMEMMIMEMMEMMEMMEMMENIMME
MImmEIouMMmmMMmEmEMooMMmmEEmMMmeEMaRmEmMWaWaAnAnRaR2aOmaMmeRMmaOMaMm2EmmMMkaaMUcaEMMumMMmmEEmMuMuMMmEmEoMmMMmMmEmEMuuMNmIEmmPMmuPEuWmMWmmNWmuAWMumIWRmmMIumEFmoMMmMmIWoLmRmMuImIPmOTumRNmMoMmEmEmMMmMuMEmmEMumMMmuEMMnImEIimMMumEMNmmEEmoMM MmmmimmEmiImummmimmmMmmooonummMwmwrmumwErmu;Mommmr,omMmmumio:mImmmmimmdAmauommLmmmmgmImomaalmaWamrasnuimAmaamtMammamrmrmMmnmaaIraieaaamnMmamalmPmeammareMaamaaaiEmanmammRmmamianaRamemaAnmannemmaMamaawaaaMnmammImnmnaanMaaaaaammEkmnmmmmamMummaamMtaimouEuimummmNmmmmmmmmoNmmmmmuuEommmuuumMmmmouMmmmmmmummOummuumuMmmmuumMmmimoumImmommmmMmmmommumoMmuoommmuEmommmMummmmmmEmmmlmuuMmouomoimMmummummmmEmmmmmmMmamumomMommmimEumumoummMmmmmmmImomimoommNmmmuummIuomommMmmmmmommEmmmummmMummuomomSomoummmEmummmmuMmmmmmuEmmuemmoMomuummuomEmmmmmmmmmNmommMuoomiiEomommmmuMnmmmmmmmmM MmmEoiMmlEZmmAuoLmMmMmmIoEomRmEmmWeIoaRmWlMeeIaaEWmmPam2naM2aiPmm2aMmOmaIaMnmMaIamNrIacMmMuEmmMmmEMuoMmmImNmIouMmmMmEmMouMmEmmMmIoNomImmMmUiMunMamOMmmMmiEuMmImmImMomMmEumMmMumEmMuEmmM
EMMILIAMMEMMEMMIMMIN2R2MaN2R2EUUMEMINIMMEMMEIMMEMMOMMEMMIMMEMMUMMIMM
SmmmmmmmmmEimmmMooomammomumiooEmvmemrmromonrmrmramwlrrr.uwumto_miTrd:eamzmommlImmauammmmmmwMioommnm4mmMouummmmimEimcmoommmommmMoImuummmmmmumMummmmmmmOmomuuummmmomMmommommmoumMmmoamummmmmmmOmommmummmRomoaamummamMmmmoomrlo2munmommummmmmuEmmwiwaacm2mmaammemmmmErlaiunnmaaaaaiRmmenimmaaaEmmmcammaa2awawmrnwaMarrmmaaimaeamm2mmaaammagEmwmaeaamengm2mamraemwnaMaaaamaAaimiagammmmgrenmmlRwonaiamarEeaaaamrammmMaamammmkaamammMmremawaEummamuamramMegrmuaaaacmiMmaaaammsncmtomIamkmmmouaaNmemmumaumIcmmamoamomMomammmmnmmuuEmmmoommumuaMmmmummmmummumMwmmommmmmEmommmmmomooMmummuoumomrEmmmumummmmmurMmmmommmommEommmumumumMimmomommmmmMnmmommommuuEmumunommmmiMmmmmmumruMmommuommmmlmmUmummmmooummiMlummuomomMmmrmoAmommEmmummmoumumMmiommoommmmmMmmmumummmomuEmommommmmmmMmumomuimiEoiummmmmmmmmMnmmmmmaumumEmmuoummmuMmoumumummmouumMmmmmmmmmmmmmEmmmmiumoMimmmomomooMmmummiuimmumumEslmmmmmmnmmmMmm
IIIIMMUMNRIMMEMMEMMIIMMWE2RaM2M2WARWMUNMEMIIMMEMMEMMINIMMEMMOMMEMOMMEMME
MmImIIioNMarIMmMaUW:mTImAmSmWoOAomMtmMMmmEEouMMMmmEEmmMMooMMEmmEMmmMEiEMumMMmIuwLmiImmmMaaamRmmo2maaEmla2MmtmWaaaMmmPmmAaaMamr2gmAaaaMmmMmaEmaMmmcEauMumMmmmUmmMmuMuoEmmmMmmmEuMoiEmmmMmmMmouEumMmmMmmEmouNmmiOmIsmMoomEmmMommEmuMumMmmEuuwMmmMm
MEMMOMMEMMEMERMMIMMUMMMEREWARWEWMIPAR2AMMIMMMEMMIMEMMEMMEMMEMEMEM
MmmmmmmmmmmmmmmEamuoooooioumomMmsmmnmmmmmemmuEmmmommmmmmmmMmmooumouoMmuomumomrEmmmmmommmuommwMommmmmmmmmmMmmmmuooumEuouommoummmmnoMmmmmiimmommmMmimmmmmulEmmuoummuouoihmmmmmmoimmmdmmnmoammmmmlulmmmnmimiuoiemmmuouummmmWummmiummoOmmmmmmpnimmmMmmoummpuuimumPmmommrummmmmEmomomumummuCmmoummumimmLummimmmmmImnuuummamummuamoummmoewummRwmoammaamm2mmommonemammRoeammusmmaumWaaammneiomaamarmmmeumaamlarwmlaaaTammmmmtimmmamAmmwomaaaamgaRmaaamnemtmrema2mmgmwaMataeaareaeaoat2nammamawmrrEremamammaemmaRaamamiamaaCaanammmmammEammrammmaatMamaamaammaaEunmarmmaaymeMmmmammaaamMmmaaammamwrnuEmmmcmmumwomnMammoamummMomammmmummmumEommrmommmmaNommnmnmaomEommmmmmomiumMmmummomoomummMumomoummmmmMmmumommmmmmuEmrmmummmumMmummunmmmuMuumommmmmiuuuEmmmmmoumEusMmmmmmmmummumMmusmmouummEmmmmmmmmmmouMumommmmommoMmmmomuomuuEoumommmmmmmmmMmmmmmmmouimmEommmmmioMmmuiouomouomEummmmmmmmmmmmuMmmmmmsmmmmmmMmm mmommumummmmoinmimmwmommommmmmumMEwMoEoMMmEmMuEMmMwEmMOuImEmWEiRmImMPiAmRPm2uRm2Rm2u0m11m1u1m11m1uMmMEmMuMmMUmMoMmEMmMoEmMMmEuMmENm
MEMEMEMMEMMEMEMMEM=CAMMEMMEMLIMMEMEMEMATAIMMEMSNUIMMEMMEMEMEMMEMMEMM MMEMMOMMEMEMIIMMEMEMERNEMIWPWITPWW,MTRWMFORIMPNWITTRWAMEMMEMEMMEMMINE MMEEMMMIENMIIMMMMUMEMMMMEEMMEMNEMMEMEMMMiMdEaMrMiIANMIIRMCMIIVMIMIEMMMIMMOCM0M6I1M.M4E01M1EMMRMIIUNWIWMAMRLEIM.MWE7NMMMEEMMEMMEEMMMMIEMMMMEEMMMM

K-9033883

6-14-45

GL -5779
ETI-301 PAGE 4 5-49
4

OUTLINE GL -5779 IGNITRON
I/4"DIA.
ANODE TERMINAL

5.
7-6-
f I"
4
I" 1"
716+4

2 2 DIA

5-49 (10M) Filing No. 8850

17"t
32 16

AUXILIARY

ANODE

t

TERMINAL

-4- DIA.

.DfMAX. 8 SEAL OFF

t .750.±...A.16"
i
1/4" 11LF.-
t

IGNITOR TERMINAL
1.. MIN.
32 DIA. TUBULATION

N-22012AZ

/1-."--- TERMINAL
r.
4

BOTTOM VIEW

9-22-48

Electronics Department

GENERAL ELECTRIC
Schenectady, N. Y.

DESCRIPTION AND RATING

GL -5788
ET -T1184 PAGE 1
11-57

IGNITRON

RECTIFIER SERVICE -200 AMPERES AC CONTROL SERVICE -2400 KILOVOLT -AMPERES

AUXILIARY ANODE TWO IGNITORS

The GL -5788 is a permanently sealed watercooled rectifier ignitron similar in construction and rating to the GL -5555. Special features are reliable operation at higher water temperature and lower water pressure drop than are possible with that tube, and distinctive (larger diameter) ignitor terminals. These features make possible the use of economical water -to -air heat exchangers at higher ambient temperatures than are possible with

the other tube, the operation of six tube cooling jackets in series on normal water -supply line pressures, and assure the user against premature ignitor failures caused by connecting the auxiliary anode lead to an ignitor terminal. The tube is designed for
operation in 300-, 600-, and 900 -volt d -c industrial
rectifier circuits. The continuous average anode current rating is 200 amperes per tube in rectifiers rated up to 400 volts d -c.

GENERAL ELECTRIC
Supersedes pages OWL, 4, 7 and 8 dated 1-55

GL -5788
ET -T1184 PAGE 2 11-57

TECHNICAL INFORMATION
GENERAL
Electrical
Cathode Excitation-Cyclic Cathode Spot Starting-Ignitor Number of Electrodes
Main Anodes Main Cathodes Auxiliary Anodes Ignitors Arc Drop at 600 Peak Amperes
(See Curve K-6917495 on page four for details)
Peak Excitation Arc Current Required, minimum
(See curve K -69087-72A438 on page seven for details)
Excitation Arc -Drop Voltage Excitation Arc -Open -Circuit Voltage, minimum

1
1
1 2
16.2 =0.5

Volts

8 Amperes

9 =0.5 Volts 55 Volts AC

Mechanical
Envelope Material-Stainless Steel Net Weight, approximate

25 Pounds

Thermal

Type of Cooling-Water Inlet Water Temperature*, minimum

6 C

Outlet Water Temperature, maximum

Power -Rectifier Service Peak Inverse Anode Voltage =900 Volts Peak Inverse Anode Voltage =2100 Volts

60 C 55 C

AC Control Service Voltage = 2400 Volts RMS

45 C

Water Flow, minimum, solenoid water valve open At No Load t At Continuous Rated Average Current

1 Gallons per Minute 3 Gallons per Minute

Characteristics for Water Cooling at Rated Minimum Flow

*

Water Temperature Rise, maximum Pressure Drop at 3 Gallons per Minute, maximum Dependent upon load conditions. For substantially constant

load

6C

is

4 5
3
satisfactory. For

C
Pounds widely

per Square fluctuating

Inch loads

20C is required. t Water flow should be continued for at least thirty minutes after removal of anode power.

MAXIMUM RATINGS AND TYPICAL OPERATION

Power -Rectifier Service, Continuous Duty Ratings are for Zero -Phase -Control Angle-See curves K -69087-72A504 on page five and K -69087-72A503 on page

six for details.

Maximum Peak Anode Voltage Inverse Forward

900

2100 Volts

900

2100 Volts

Maximum Anode Current Peak

1800

1200 Amperes

Average Continuous Two-Hours-Averaged Over Any Two -minute Interval One-Minute-Averaged Over Any One -minute Interval
Fault Maximum Duration of Fault Current
Frequency Range

200
300 400 12,000 0 15 25-60

150
225 300 9000 0.15 25-60

Amperes Amperes Amperes Amperes
Seconds Cycles per Second

AC Control Service
Two Tubes in Inverse Parallel, Ratings per Tube
Voltage Maximum Demand
Average Current at Maximum Demand Maximum Average Current
Demand at Maximum Average Current Maximum Averaging Time at 2400 Volts RMS Maximum Peak Fault Current Frequency Range

2400 2400
135 207 1105 1 66
6000 25-60

Volts RMS Kilovolt -Amperes Amperes Amperes Kilovolt -Amperes
Seconds
Amperes Cycles per Second

TECHNICAL INFORMATION (CONT'D)

Ignitor Characteristics

Maximum Inverse Voltage

5

Recommended Pulse Length

800

Minimum Pulse Length, for average anode currents greater than 5 amperes

150

Maximum Pulse Length

4000

Volt -Ampere Characteristics See curve K -69087-72A803 on page four for details

Volts Microseconds Microseconds Microseconds

Auxiliary -Anode
(See Curve K -69087-72A438 on page seven for details)
Maximum Peak Forward Voltage Maximum Peak Inverse Voltage
Main Anode Conducting Main Anode Not Conducting Maximum Current Peak Average
Maximum Averaging Time Root Mean Square

160 Volts
25 Volts 160 Volts
30 Amperes 9 Amperes 10 Seconds 15 Amperes

GL -5788
ET -71184 PAGE 3
11-57

GL -5788
ET -T1184
PAGE 4
11-57
IGNITOR VOLT-AMPERE REQUIREMENTS FOR SEPARATE EXCITATION SEALED-IGNITRON RECTIFIERS
THE IGNITOR FIRING CIRCUIT SHOULD BE DESIGNED TO OPERATE WITHIN THE SHADED AREA
800

TOO
600 500 400

I IGNITOR
8000EC
RECOMMENDED PULSE WIDTH

ELEMENTARY CIRCUIT FOR CAPACITOR FIRING

300

200 100

MINI UM REOU IRED

MAXIMUM ALLOWED

K-9033525

5-25-54

0

20

40

60

80

K -69087-72A803 PEAK IGNITOR CURRENT IN AV.PERES

11-8-57

ARC DROP
22

20

18

16

14

12

10

8

60 200
K-6917495

400

600

800

1000

1200

PEAK ANODE CURRENT IN AMPERES

1400 2-14-55

AUXILIARY -ANODE REQUIREMENTS

GL -5788
ET -T1184
PAGE 7
1 1 -57

i

el..:

:i1l:a PIIIII=MEM

NMaEIMMMIIwUitl:igMlIIMIIIRM,I1I1I1I1IMIMMLI.IIFaIlk... 11...121

,

r
A.

c1:1n.1P...1A..11I11FVIF1I .I1/IlPiIs.1II1n.tIoi1Iamo1a,14rI1io4r01it.1,1ii,m,.'.0.Ti1i:T11I76mmMiPi1aii.l:,r=±ie111mIJi1l1f1d11-I.i1Ir1iMm4ii/I1Mr1imi/M1wM1r0iEiVimNilaIvi/iiii1Ii-i7IIm.M0aIIItlMI IEl7iM.6,I1I-M.4rE19i1i"O41R1,1-ZPIZIZI1

igrtIilpiaulmlumneismAr.EL-P1INL1-LJiP,l2mmg_m,O..W.PurFpdFPdrTv,RzpW0I,N.n,I;FraAw0IA1pF,Fr2IiR,:,r.F§.F.rkFtP.eF,.7r.Iim.MpPF,gPF.

RUM
MOM 11111116.11

Lt

h.6 bh.r...iiiiii6 unn1i1m1u9nn1i1n1g0e0sp1o.n4m1n0ut4q4A0i,iti:igarimailCi:6IAaLA..i.'.a1.l4.j";u.1;i-21a07-14i1a4,.1gmm.gi0gn4iitk4ea0rl1miJIilgpalvq.

n.

mom 11111I1i1i1ii1i11111111111.20LNO.WiVnAeLnWmAp"l"i1j1i1m,m ilmmmIelliiglain

%ill° man274116

II.IICIII

rrlr
lMA ip

.I .1L.FNR.J-!,I1T1I4M,,P,.T,I,.taR lkI.tr,,..,w,MiligIRu.TjaNiwNizTaWh,A.4RgRIIiiiillIiiiiii

N . .11117171.11.17140114d1.111are/.1TIISiadi.dl'Ireilnr.711 Mina Mr:MM.

iiiiiipiallikallim. ..3 :1:.Ellidim 111"

140111.1.5-4 :lel:a:414W.. 4

W.11 1.4.
dl.M7111411,11911111

LANNIIMMUMM

PHI prim NFU I ilrpm 1 IIIII

1.1I1.I11I.1I1I.WMIB1I=IMIIIIMEMLEMWIN1U1..1.1n16i0/a.01l.11k61n1AU.2a.L21L.L.%1m/aI1l4Ai-4;1O71h11,:010_0.11-_;A10TW61i1.1Mr.1IoL2.cL,_..%.r.:_,.v1o1.cimi.i,u,iqi, .iim.lMiltiA4e..hili...a1l.11.'0 Ea.ll..m.n.i.m.m.i.s.r.m

In
De

N"HeIwP grloiabirll
IIIMMEMEMMEMM MA
80 11L1.11111111.11111111111111.

u.d.g.E..n.A..F.T..T.P..T.I.T.T..I.r.. ..F.`.lk.l.e.a.] .!F.ATE iTTLaividi irMliaujirri

we um1.1n1veD1iq.nmruaiinoi1i..iA1i.llvidTrtiugi,,L,,PoOEGLILA4L.A-FnmnInVnuIkIIntInoPnrkini.nitmIrnIa_I;I5Ii4IlmI4i,i,ii.ll ..

IIIERISLOAms,

11017110Angimm...munnwm m

%Wm"
ABM

z
U)

,

- -70-Wild
MAU rid

mownLISMINMEli

meMMENSAMMEMEMMAM

I

nniMMENBEMIUMMMOWBM ILINUMBNMEEbMillilm=iIlMnffEilIl
IIIIIMI

0

iIIiIlliiiiiiiiiii 1f1i 1911`1h1og1111111.14111111.11111111A1U1T1O1W1i1l1l1a1r1a1M1a1t1i1l41151.ir..irI.iiVsi:iiU=ai1Mmi1i2Mie1Mi1_.i1iI1mMI1II1i1Iua1Mm=5M1m1I1M-IUiNmE!Mmidion..N.iM.

z

60

16.1111Eldidin like. ll . OE wrinu II '111/1111111111111.711
"KM lour!! rVighAWRI" iWgi.llinrboNroINg.U,M.1E.11r1uI1mI1I1EIN1J1IA%MVIMT FMIALMIIEP'BM,i.4.:11IW101n6";m:jfi."k'I3r,1i1INIlk

IIMMOHUIOI
TIIIIIIIL.111

MB

O

%Mir 2 I

ni

I-

MI

iinnslm111111111111111m0i4n4l:l0e1a1NtIaIlIiInIlIiIlImIPPAIIIIMIaIlP1l1=1111111111111in

41111/1/1mmamm '11111111111111 I -

50 IraOlW,

=AIM non:l1i1Mm1MeW1Om1Mi1MlI1li1mam1Ul1Ml1NaIBMmiMOlloia1MlgE1anMb0M.41I0w4Le"I.gN.y1n1or;nnnalleIaNIMlIM1Ii1i1ii1i1iri1=i1i1%11.1..1.1. 1drinE

aim%

KULtria

in IMMIIMPOMMEMMEMBE

a °,1

M

I0

ill%

ill

IOC

1111111111 11MI1II1IN1ME1MM1UAM1NM1AU1MM1EMM1E

g mom qpi....na.puponeog7r. .0lIil.E.tMm4.Mu4.EgI1Mgm2Drm01i1iWm1r.1timAmzM.aI,4E4411su1m1m1n1mm1o;M1M;OM1M1i:m1i-1_0,1I.IiM1iM1X71I4.M1III1MIMMEMMEMREIMMEM11%1mR0pE1hN1:E1W1MmImMmU"M1n1u1m1n1i1n1il1ml1mmE11M11E1M1U1M11MmE1M-

amm

1

lInn Inn11111111111111111111111111m

LLJ
ce
50

ce
'44112111111111111111111111111 Aft

hiihmoqmils imonn.i.t.c1L...i-mmmumn

11111

-11

20 11I

RI

10

LI ..mwerorn.

'IN6 mmil uinmmnEnmmminno

.; mm1.-.....0:'11:
1111111

nomm1u11noImnsmumm1""1" 1111I121on11a

ErnmIollIII MAN .Jnni1

iml1111111ACIIIPSIPAIII0

gargl numunrus suirm 1114AMMILiamfidAMM4.
mmim

11011 Ilea& AI

MMIMMEM mum CSC

" SMII

IIMUMNIMMONNMEM

mmmmmmmm 111r1m1o3dwLoImMmMdMmiUnLEmMmEmMmm:m:m,

-MI

Imm mmum

MMMMMM

WEI

Iiiiiiiiiii

mom simm

NI

1M1U1M1MM1.4M1111.1111

II,I1I1I11M1 II

GL -5788
ET -T1184
PAGE 8
57 I I
A

8
t II
2 MAX.

23"
.515"±.005"
SERIAL NO.

ANODE TERMINAL
r7-

&WATER OUTLET CQNNECTION
1/2 PIPE NIPPLE

5 1114 i"
.
I22+f
16-4
3 i2f+- _8f
INLET
r- /2" PIPE
NIPPLE

88in+±34.14
IGNITOR TERMINALS
23/64" DIA.

I"MAX.
II
IGNITOR NO.1 TERM1NAL9,,
ri DIA
CATHODE TERMINAL
NOTE: ENVELOPE IS AT CATHODE POTENTIAL
K-69087-72A685-Outline revised

3-- I4 32 16 32
f4 16 f

MAX. VARIATION

± 3° FROM CENTVI.,INE

-t- AUXILIARY

16 32 ANODE TERMINAL

t

1/4" DIA.

IGNITOR NO. 2 TERMINAL
3t1" NOTE: ONE IGNITOR USED AT A TIME
4-16

ELECTRONIC COMPONENTS DIVISION

GENERAL

ELECTRIC

Schenectady 5, N. Y.

11-14-57

GL -5822
DESCRIPTION AND RATING
ETI-309 PAGE 1
3-50

IGNITRON

DESCRIPTION
The GL -5822 ignitron is a sealed, stainless -steel jacketed, water-cooled, mercury -pool tube for control of frequency -changer resistance welders. This method of resistance welding converts three-phase 60 -cycle power to single-phase power at four to twelve cycles per second. A particular advantage of this method is the appreciable reduction of kva demand from that required in single-phase weld-
ing, with consequent saving in the amount of
power required. In addition, the three-phase circuit balances the power load and makes possible im-

proved results in welding aluminum, magnesium, and their alloys.
A feature of the GL -5822 is the use of baffles in the tube to reduce deionization time so that the tube will operate satisfactorily under the severe conditions of commutation imposed by this class
of service. Other design features are an ignitor adapted to intermittent service, and a spiral metal tube within the ignitron through which the cooling
water circulates to assure uniform cooling.

GENERA

ELECTRIC

GL -5822

ETI-309

PAGE 2
3-50

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL

Electrical Data
Cathode excitation-Cyclic Cathode spot starting-Ignitor Number of electrodes
Main anodes Main cathodes Ignitors Arc drop at 1500 amperes peak Cathode excitation requirements Ignitor voltage required to fire Ignitor current required to fire Starting time at required voltage or current

1
1
25 volts
200 volts 30 amperes 100 microseconds

Mechanical Data
Envelope material-Metal Over-all length, maximum Over-all width exclusive of water connections, maximum
Net weight Type of cooling-Water Characteristics for water cooling
Water temperature rise, maximum Pressure drop at 1.5 gallons per minute, maximum
Thermal Water cooling Maximum outlet water temperature Minimum inlet water temperature Minimum water flow at continuous rated average current Minimum water flow at no load

27% inches 434 inches
8h pounds
6 C
5 pounds per square inch
35 C 10 C 1 5 gallons per minute 0.5 gallons per minute

MAXIMUM RATINGS
MAXIMUM PEAK ANODE VOLTAGE Inverse Forward
MAXIMUM ANODE CURRENT* Peak Corresponding average Average Corresponding peak Maximum averaging time
Ratio of average to peak current, maximum averaging time 0.2 second Ratio of surge to peak current
Maximum duration of surge current Frequency range

1200

1500 volts

1200

1500 volts

1500 20
70 420 6.25
0.166 12.5 0 15 50 to 60

1200 amperes 16 amperes 56 amperes 336 amperes
6.25 seconds
0.166
12.5
0.15 second 50 to 60 cycles per second

IGNITOR

Maximum voltage Positive
Negative

Anode volts 5 volts

Maximum current Peak Rms Average Maximum averaging time

100 amperes 10 amperes 1 ampere 5 seconds

*Straight line interpolation on log -log paper is allowed between corresponding points. Ratings are for zero phase -control angle.

GL -5822 POWER RECTIFIER RATING INTERMITTENT SERVICE
MAXIMUM AVERAGING TIME=6.25 SECONDS
1 Average Maximum Averaging Time 0.2 Seconds=0.166 Maximum
1 Peak
1 Surge Maximum Duration of Fault Current 0.15 Seconds=12.5 Maximum
1 Peak

2

3

4

6

7

8 9 10

'''

r `,11 1 :1

m:

111

111111 111111

111111 1 1
111 III II I I

OMM 1 11

'''''

16V II 111

20

30

GL -5822
ETI-309 PAGE 3
3-50

40 50 60 70 80 90 00

30

11 11111 11 11

11111 1111

111111 1111

I M1U11U1111...11111111111

llllllllll 11111111 111116111

llllllllllll 111111111 1111111111 llllll I III 11111

11 111

111111111 I 1111 111

11111111

111 1111 1 1111 1111 lllll 1111111111

11111111 III 1 1111 1111 lllllllll 1 11111 20

1000

11:1 ''''ii'' 1

11111 1 11

MIN111.21111

'''''

n114
/111111:111

W'N1

ME

G3121011111.11111 11 :111111.1i

llllllll

1

11111111 1
111111 1111 II III

UIIITlMl INIIIMUR 11111111111111111111
llllllllllllllll 111111 1111111 1111 11 111 1

1:::::.....::6:i

i1 II 1

lllllllll 11111 111111111 11111111 1 1 11111111 lllll 1111 11111 111111111111 111111111 llllll 111111111 111111 minim inn lllll 11 11111111
llllllll I 111 1111 1111111111 111111 ill! lllllllll 111111 1111111111 I 111111111 lllll 1111111111 III 1111111111 11111111111 lllll 1111111111 10 9
8
7
6
5

4

l

1 II
111

IR II 1111

111 111

111

3

1111 III 1 111 II I I

llll IIIII1I1I1I1II

1111111 11
III 1111

lllllllll 111111
2

h .N111101

1111

100
1
K -69087-72A3 1 6

ii 1111111 111111111
lllllll 1 1 1 1111 111 1 1 11 III II 111111 111 1
lllllllll 1111111l 1I1ii1ii1i8ii1ill1n11illI ii lllllllllll ii i1
0
AVERAGE ANODE CURRENT IN AMPERES PER TUBE

/1111 111111n1il11
1111 1 1111 11 111111111 11111
111111111 11 111111111111111
1 111 1111111
111 11111 111111111111 Illlllllll 1111
100
2-28-50

GL -5822
EV-309 PAGE 4
3-50
3-50 (11M) Filing No. 8850

ALTERNATE HOLE
MANUFACTURERS OPTION

OUTLINE iGNITRON GL -5822
Ig1"MAX.

2
3 -12" IMffAvX1.AX

l1'+6-16

I°± L32"
'IDIA HOLE

ANUDE TERMINAL

WATER

MAX.

OUTLET

4241D4IAA.-4--

CLEARANCE FOR RADJATOR
A

27r.
MAX. 212
I.
-1P" IPE
8

IGNITOR TERMINAL
0.250u+.010" DIA.

CATHODE TERMINAL

(IMAX.-*
1"
-32

8-16 NOTE- ENVELOPE IS AT i" CATHODE POTENTIAL
MAX.

EXHAUST TUBE ALTERNATEPOSITION MANUFACTUREP OPTION
U
4- It

EXHAUST TUBE

900+ 10°

25±

14" MAX.

12-

MAX.

1043-+

5 8

WATER
INLET

2§-;±

2i ';

7+ I" DIA.HOLES

"MAX

I"

E MAX.

I" 2

++-3I2

MA 4X.
- " 90°+10°
-161VIAX

K-5309175

Tube Divisions, Electronics Department

GENERAL

ELECTRIC

Schenectady, N. Y.

10-2 1 -49

DESCRIPTION AND RATING

GL -6504
ET-T1131A PAGE 1 11-57

IGNITRON

LOCOMOTIVE RECTIFIER SERVICE -350 AMPERES

THREE IGNITORS

The GL -6504 is a double -grid ignitron designed
for railroad locomotive rectifier service. In this service twelve tubes will supply d-c power for a
4000 -horsepower locomotive.
A coaxial cathode -current return reduces magnetic fields due to tube currents. The tube also features baffles in the mercury pool to assure con -

tact between the mercury and the ignitor points

during swaying of the equipment.

A companion tube, the GL -6509 ignitron, is available to supply the auxiliary power require-

ments of applications which the main power source.

use

the

GL -6504

as

GENERAL

TECHNICAL INFORMATION

Electrical

Cathode Excitation-Cyclic

Cathode Spot Starting-Ignitor

Number of Electrodes

Main Anodes

Main Cathodes

Ignitors

Shield Grids

Control Grids

®Arc Drop at 1000 Peak Amperes

®Arc Drop at 2000 Peak Amperes

(See Curve K -69087-72A709 on page three for details)

1
1
3
1
1
.20.5 3 2 24 t 2

Volts Volts

GENERAL

ELECTRIC

Supersedes ET -T1131 dated 4-55

GL -6504
ET-T1131A PAGE 2 11-57
TECHNICAL INFORMATION (CONT'D)
Mechanical
Envelope Material-Stainless Steel Net Weight, approximate
Thermal
Type of Cooling-Water Inlet Water Temperature, minimum Outlet Water Temperature, maximum Water Flow, minimum At Continuous Rated Average Current At No Load§ Temperature Range
Characteristics for Water Cooling at Rated Minimum Flow Water Temperature Rise, maximum Pressure Drop at 10 Gallons per Minute, maximum
El Maximum Working Water Pressure Non Shock

95 Pounds
30 C 55 C
10 Gallons per Minute 1 Gallons per Minute
40 to 45 C
65 C
1.5 Pounds per Square Inch 100 Pounds per Square Inch

MAXIMUM RATINGS AND TYPICAL OPERATION
Power -Rectifier Service, Continuous Duty
Ratings are for Zero -Phase -Control Angle
Maximum Peak Anode Voltage Inverse Forward
Maximum Anode Current* Peak Average Continuous Two Hours Fifty Minutes Twelve Minutes Six Minutes Four Minutes
Fault Forward Direction Reverse Direction Maximum Duration of Fault Current
Frequency Range

Passengert 350 440 490 560 660 720

4000 Volts 100 Volts

2000 Amperes
Freight
300 Amperes 380 Amperes 420 Amperes 490 Amperes 520 Amperes 540 Amperes

15,000 30,000
0 15 25-60

Amperes Amperes Seconds Cycles per Second

Characteristics
Maximum Inverse Voltage

Recommended Pulse Length Minimum Pulse Length, for,average anode currents greater than 8 amperes

Maximum Pulse Length

Volt -Ampere Characteristics-See Curve K69087 -72A803 on page three for details.

Shiald-Grid Voltage

Minimum

Peak Forward

200

Peak Inverse,

Shield -Grid Current

Peak Forward

0.2

Peak Inverse

Control -Grid Voltage

Peak Forward

200

Peak Inverse

100

Control -Grid Current

Peak Forward

0 4

Peak Inverse

0 4

5 Volts 800 Microseconds 150 Microseconds 4000 Microseconds
Maximum 500 Volts
200 Volts
5 Amperes 0.2 Amperes
500 Volts 200 Volts
5 Amperes 1 Amperes

Service Factors Energized -50 percent of annual hours Passenger Service -80 percent Freight Service -80 percent
Short time loads applied following light load. Short time loads applied following continuous operation at full load. § Water flow should be continued for at least one hour after removal of anode power.
Denotes an addition.
ej) Denotes a change.

IGNITOR VOLT-AMPERE REQUIREMENTS FOR SEPARATE EXCITATION SEALED-IGNITRON RECTIFIER
THE IGNITOR FIRING CIRCUIT SHOULD BE DESIGNED TO OPERATE WITHIN THE SHADED AREA
800

700 600 500

I IGNITOR
800p.SEC RECOMMENDED PULSE WIDTH

400

300
200 MINI UM
REQUIRED 100

MAXIMUM ALLOWED

0

20

40

60

80

PEAK IGNITOR CURRENT IN AMPERES K -69087 -72A803 --New curve

ARC DROP
25

11-8-57

GL -6504
ET.T1131A PAGE 3
11-57

20

15

0

500

1000

K-69087-72A709-Curve revised

PEAK ANODE CURRENT IN AMPERES

1500

2000
11-8,57

GL -6504
ET-T1131A PAGE 4 11-57

4 13"
L-2634"DIA.32
VIEW SHOWING SHIELD - GRID
TERM INAL

1=-4-r 14L -
VIEW SHOWING IGNITOR 8 CONTROL -
GRID TERMINALS

ANODE TERMINAL

,
4TDIA. MAX

5"

164I-+43"

1" I"
*TRI" IAL 2-4--+ig

SHIELD -GRID TERMINAL
I-4- CATHODE TERMINAL TUBULATION
I" y9"DIA. HOLES 2

2"I 32

DIA. A

2 MAX'

oit Pfoind es

5 DIA.

45°*5°

9-2-I -D+4I IA

2"
TUBE MOUNTING -
AREA

+
278- -7
ig

WATER OUTLET 3" IPS WITH CAP
'"*1
I438"4-. I"

HANDLES 12" MAX.

55
6-4'MAX. MAX

rgD1A.

CONTROL -GRID TERMINAL
TOP VIEW

15°

-16 90°1 5°

.t10°

1"
22I +is

WATER INLET
a3'IPS WITH GAP
I" MAX. -41

9" DI A. MAX.

1
3M

2" +1/2" ' 8 -316

..v

.

0
0-_,..,_-

-=-_-

4,m=_'=i=._i_k___,,

il

I,

ii

-1

d.

14-3" iMAX
Y

e 1351 \s,
IGNITOR
TERMINALS

BOTTOM VIEW

1

7 !"MIN. DIA1P1
8

TULE MOUNTING

51 I" O.D.,-. AREA

16 8

.

N.22020AZ-Outline Revised

11-15-57

ELECTRONIC COMPONENTS DIVISION
GENERAL d ELECTRIC
Schenectady 5, N. Y.

DESCRIPTION AND RATING

GL -6511
ET-T1142A PAGE 1
12-57

IGNITRON

TEMPERATURE CONTROLLED

FREQUENCY -CHANGER WELDING SERVICE

POWER -RECTIFIER SERVICE

The GL -6511 ignitron is a sealed, stainless -steel jacketed, water-cooled mercury -pool tube for control of frequency -changer resistance welders. This method of resistance welding converts three-
phase 60 -cycle power to single-phase power at four to twelve cycles per second. A particular advantage
of this method is the appreciable reduction of kilovolt -ampere demand from that required in
single-phase welding, with consequent saving in the amount of power required. In addition, the threephase circuit balances the power load and makes possible improved results in welding aluminum, magnesium, and their alloys.
This tube is identical in ratings and characteristics to the GL -5822-A. Mechanically, it has the
additional feature of an integral thermostatic
arrangement with protective features. The arrangement includes a switch which controls a solenoid
valve in the water -supply line to the tube in
response to increasing and decreasing tube tern -

perature, thus maintaining the amount of cooling water to the minimum required by the operating conditions. It also includes an over -temperature switch which may be used to remove power from the
ignitron when its temperature exceeds a safe value. This new construction prevents excessive conden-
sation over the external parts of the tube under conditions of high humidity. Another advantage is the appreciable saving in maintenance costs over
tubes of the old design since this control feature, in addition to greatly reducing the amount of water required, eliminates the necessity for such safety devices as water -flow relays, water over -temperature relays, and water -pressure interlocks required with the older design tubes. In applications where
the cooling water flows through three tubes in
series, this tube can be used with two GL -5822 -A's since the GL -6511, in the position nearer the water drain where it receives the warmer water, can control the flow to all tubes under normal conditions.

GENERAL ELECTRIC
Supersedes ET -T1142 dated 1-55

GL -651 1
ET-T1142A PAGE 2 12-57

TECHNICAL INFORMATION

GENERAL
Electrical
Cathode Excitation-Cyclic Cathode Spot Starting-Ignitor Number of Electrodes
Main Anodes Main Cathodes Ignitors Arc Drop at 1500 Peak Amperes

Mechanical
Envelope Material-Stainless Steel Net Weight, approximate

Thermal
Type of Cooling-Water Inlet Water Temperature, minimum Inlet Water Temperature, maximum Water Flow, minimum I At Continuous Rated Average Current
Characteristics for Water Cooling at Rated Minimum Flow Water Temperature Rise, maximum Pressure Drop at 1.5 Gallons per Minute, maximum

Working Water Pressure-Non-shock

1 1 1
25 Volts
8.4 Pounds
10 C 30 C
1.5 Gallons per Minute
6C
5 Pounds per Square Inch
100 Pounds per Square Inch

MAXIMUM RATINGS AND TYPICAL OPERATION

Frequency -Changer Resistance Welding Service or Power -Rectifier Service-Intermittent Duty

Ratings are for Zero -phase Control Angle-See curve K -69087-72A316 on page four for details.

Maximum Peak Anode Voltage

Inverse

1200

1500

Forward

1200

1500

Maximum Anode Current*

Peak Corresponding Average

1500 20

1200 16

Average

70

56

Corresponding Peak Maximum Averaging Time Ratio of Average to Peak Current Maximum Averaging Time Ratio of Fault to Peak Current Maximum Duration of Fault Current

420 6.25 0.166 0.2 12.5 0.15

336 6.25 0.166 0.2 12.5 0.15

Frequency Range

50-60 50-60

Volts Volts
Amperes Amperes Amperes Amperes Seconds
Seconds
Seconds Cycles per Second

El Ignitor Characteristics
Anode Firing Maximum Inverse Voltage Maximum Positive Voltage-Anode Voltage Ignitor Voltage Required to Fire Ignitor Current Required to Fire Starting Time at Required Voltage or Current
Separate Excitation Maximum Inverse Voltage Recommended Pulse Length Minimum Pulse Length, for average anode currents greater than 20 amperes Maximum Pulse Length Volt -Ampere Characteristics-See Curve K -69087-72A741 on page three for details.

5 Volts
200 Volts 30 Amperes 100 Microseconds
5 Volts 500 Microseconds 150 Microseconds 4000 Microseconds

Temperature -Control -Switch Ratings t
Maximum Voltage Maximum Current
Over -Temperature Switch Water -Control Switch

575 Volts
6 Amperes 1.5 Amperes

GL -651 1
ET-T1142A PAGE 3
12-57

TECHNICAL INFORMATION (CONT'D)

Temperature -Control -Switch Ratingst (Cont'd)
Maximum Peak Potential of Tube Water Cylinder Above Switch Circuit
Switch -Contact Arrangement Over-Temperature-Switch-Normally Closed (Contacts Open on Temperature Rise) Water -Control Switch-Normally Open (Contacts Close on Temperature Rise)

1500 Volts

* Straight line interpolation on log -log paper is allowed between corresponding points.

t Suitable fuses should be provided in the switch circuits to prevent a power arc, should a ground occur in the switch or wiring.

t Water flow should be continued for fifteen minutes after removal of anode power.

El Denotes an addition.

IGNITOR VOLT-AMPERE REQUIREMENTS FOR SEPARATE EXCITATION SEALED-IGNITRON RECTIFIERS
THE IGNITOR FIRING CIRCUIT SHOULD BE DESIGNED TO OPERATE WITHIN THE SHADED AREA

800 1111111111111

1

11

ELEMENTARY CIRCUIT FOR CAPACITOR FIRING

700 ril

"' Vu'mAll 1

1

WilmmgmmmanaMMMMMMM

i .... ,

11111 91111111

a.11 Ammt,_

1111

YMIIIMMIgNikiiiiiill 1111

MIMPA1M.

2 600 'A MM IVIII 1

IMMEMI

1 .1

irquiliii
!milli... 1

:241t0;0111

riPlirm' pi M

500

tdadtAiCL ,
110.5151

l Imam:1MAIM
1

.IIMI E1M1- il-

:lmaiurds 1

:

1

Miran" MM '`

1691

1

nmar-m %IL uluel 400 ill A NleM 'x..M,A,

. MM Imp 11:

111111111

1

1

M 1..irwmorie

MMEI

IMMEO
11111

ourairt 300 IIIMMINMlig

111

ra MMMM up, A owl IrJr411, / 41,/uw..1 1.1. C 1 MMMMM

II1

114/51 WRIVAd

li
200 a

1MM'

aplipaw.111111

"' Onllrild1015111111

°

A Ma. MM M

1 :16

11 111 1

li

1111E1111111FA%A

AMA

Pitill

1.11

IIMMEL: MM u

M1141111111E1 MM 111111111111 il

...,,,:rma."..7 MMM I

1111111.111.1.11 1

100

, M
inta

Orli

Al

111111

111111

.m.a.m.m.a.,.,u.n.tr.A.m...4. DECD

1

0

20

40

60

80

K -69087-72A741

PEAK IGNITOR CURRENT IN AMPERES

12-9-55

K-9033525

5-25-54

SELF OR ANODE EXCITATION IN WHICH A PART OF THE LOAD CURRENT IS DIVERTED THROUGH THE IGNITOR

THYRATRON GL 5560

ELM IMII

.00Imf GRID CONTROL
VOLTAGE
OR.

WELDER SERVICE
A -C LINE R
220V 2 440V 4 550V 5

K-9033542

12-6-44

GL -651 1
ET-T1142A PAGE 4
12-57

FREQUENCY -CHANGER RESISTANCE WELDING SERVICE OR
POWER RECTIFIER RATING-INTERMITTENT SERVICE

-1-.
1E.1d1.

ll L l kagemetk/

au: ikcppR
1 " MI inrailki," "kr

111111111Ili
l

(111111 1111i0 III 1111111111H I

lilini1111114."

1 11111M.M

1

EM

llll m1u11m111

mun 110111111 H 1 111 11 11111 11111 MIIIIIIIIMMIN11111111111

".4

il'ideltd-dIelislintafilaimEr9

Tim% m.
1
11..11:111nuiliml

nqiiiiii111101111111111111111"

llemP

nHIM111111111111111 H1111 in

11111101
IIIIIIHI1

NIC'f

i S FAIJ//1
IF

""

IIM

N

111111. ..... EVIEN111.1111111.10111-114. I HEIN

1111111.IM

"'"""Lifildnian

INI111116111

1000 sammlal .:affirm IP 1" Ugh: 111 I AIME'

in 7

llll ..n

" algsmouriiiir,;

iGw11

j

. " limieeencarsu:rratit - 11111_11_11Ellk`in

lllIIJ I IIMITIN 11111 1 1111H11
111111111 II

1 11111

'IN UNIT I Ill1111

.1

1:11: 1111.
sonitor1 ;1 1111
100

....

h1 .... HI1111

pm

. 11111111111 I UM MI0111111 111111J 111 1 II 1111111

11111111111111
111111ilu1m1llI1i 1u.u..l.. 111111 I

111im11o11s1i1m11im111iii1m1 1i1l1im11i1n1

1,1

ill

1111

11

1111 II 11 1111 IM1 11 1

11111 111111111

111111111111 1

11111 882888811u11n11u11n1HeWth111I1l1lI1l1ll1l1l1l 1811 2

e

...

..... .....=an LI-

....

"

.1

'111111PR: I

m

ni1111.. °1111

I.. n 111111111111111 lllllllllllll 11111111111 111111 1
1111111111 111111111
II llllll 1111111111111 111111111 llllllll 11111 lll 11111111111 111 11111111 111111111 lllllll M I llllll

lllllll I
II llllll I 11

11 lllllllllllll MINI lll 1111 I 1111111111

11111 /11111111111, 11

1

K -69087-72A316

AVERAGE ANODE CURRENT IN AMPERES PER TUBE

11-3-54

MAXIMUM AVERAGING TIME = 6.25 SECONDS I AVERAGE
MAXIMUM AVERAGING TIME 0.2 SECOND = 0.166 MAXIMUM
I PEAK I FAULT
I PEAK MAX. MAXIMUM DURATION OF FAULT CURRENT 0.15 SECOND =12.5 MAXIMUM

25"
64

2 : -4---

16

17

MAX 32

ANODE TERMINAL (NOTE 3)
OUTLET
ve PIPE
I 2- MAX.

r_ 116 MAX.
CLEARANCE FOR RADIATOR 24 DIA. MAX.

GL -651 1
ET-T1142A PAGE 5 12-57
ENVELOPE ( NOTE I) OVER -TEMPERATURE
TERMINALS

SEAL ClrecTR2L210VER

10 37";4_5 8"

4 4 DIA. MAX. IGNITOR TERMINAL I"
7I4" DIA
I"MAX.

WATER -CONTROL TERMINALS

14" MAX.

25 "t
4

8-16
CATHODE TERMINAL ( NOTE 3 )

EXHAUST TUBE

1- 2MAX

ALTERNATE POSITION

MANUFACTURER'S OPTION

1"+ i"
T-F6

EXHAUST TUBE

str±icr

\I" n 7"+ I"

16

DIA. HOLE

+ I"

2 -32

2-4 MAX.

I- MAX.
-MAX.
90°±10°
16
MAX.

NOTES:
I. ENVELOPE IS AT CATHODE POTENTIAL.
2. CONTROL COVER IS AN ELECTRICAL INSULATOR.
3. BOTH AN ODE AND CATHODE TERMINAL SLOTTED FOR EASE OF INSTALLATION

K-69087-72A674-Outline revised.

12-20-57

ELECTRONIC COMPONENTS DIVISION

GENERAL

ELECTRIC

Schenectady 5, N. Y.

DESCRIPTION AND RATING

GL -6958
ET -T 1 479
Page 1
1 1 -57

IGNITION

POWER -RECTIFIER SERVICE

INVERTER SERVICE

TWO IGNITORS

The GL -6958 is a double -grid ignitron designed A particular design feature of this tube makes it

for industrial rectifier or inverter applications where it will operate at peak inverse voltages as high as
4000 volts. In such applications six tubes will
supply 3000 kilowatts at voltages of 1800 or 3600 volts d -c, depending upon the circuit used.

especially suitable for use where voltage control by phase retard is in excess of the amounts usually required. In addition, the tube features a coaxial cathode current return which reduces magnetic fields caused by the tube currents.

TECHNICAL INFORMATION
GENERAL
Electrical
Cathode Excitation-Cyclic Cathode Spot Starting-Ignitor Number of Electrodes
Main Anodes
Auxiliary Anodes Main Cathodes Ignitors Shield Grids Control Grids Arc Drop At 1000 Peak Amperes At 2000 Peak Amperes
(See curve K -69087-72A709 on page three for details)

1 1 1
2
1 1
20.5 t 2 Volts 24.0 t 2 Volts

GENERAL

ELECTRIC

GL -6958
ET -T1479 PAGE 2 11-57

TECHNICAL INFORMATION (CONT'D)

Mechanical
Envelope Material-Stainless Steel Net Weight

Thermal
Type of Cooling-Water Inlet Water Temperature, minimum Outlet Water Temperature, maximum Water Flow At Continuous Rated Average Current, minimum At No Load, *minimum Temperature Range
Characteristics for Water Cooling at 10 Gallons per Minute Water Temperature Rise, maximum Pressure Drop, maximum Working Water Pressure-Non Shock, maximum

95 Pounds
30 C 55 C
10 Gallons per Minute 1 Gallons per Minute 40 to 45 C
6.5 C 1.5 Pounds per Square Inch 100 Pounds per Square Inch

MAXIMUM RATINGS AND TYPICAL OPERATION

Power -Rectifier or Inverter Service, Continuous Duty

Ratings Are for Zero -Phase -Control Angle

Maximum Peak Anode Voltage

Inverse

4000 Volts

Forward

4000 Volts

Maximum Anode Current

Peak

2000 Amperes

Average

Continuous

275 Amperes

Two Hours

350 Amperes

One Minute

570 Amperes

Fault

Forward Direction

15,000 Amperes

Reverse Direction

30,000 Amperes

Maximum Duration of Fault Current

0.15 Seconds

Frequency Range

25 to 60 Cycles per Second

Ignitor Characteristics

Maximum Inverse Voltage

5 Volts

Recommended Pulse Length.

800 Microseconds

Minimum Pulse Length, average anode current greater than 8 amperes

150 Microseconds

Maximum Pulse Length .

4000 Microseconds

Volt -Ampere Characteristics-See curve K -69087-72A803 on page three for details.

Shield -Grid Voltage
Peak Forward Peak Inverse
Shield -Grid Voltage
Peak Forward Peak Inverse
Control -Grid Voltage
Peak Forward Peak Inverse
Control -Grid Current
Peak Forward Peak Inverse DC Bias

Minimum Maximum

200

500 Volts

200 Volts

0.2

5.0 Amperes

0.2 Amperes

200

500 Volts

100

200 Volts

0.4

5.0 Amperes

0.4

1.0 Amperes

-90 -110 Volts

* Water flow should be continued for one hour after removal of anode power.

IGNITOR VOLT-AMPERE REQUIREMENTS FOR SEPARATE EXCITATION SEALED-IGNITRON RECTIFIER
THE IGNITOR FIRING CIRCUIT SHOULD BE DESIGNED TO OPERATE WITHIN THE SHADED AREA
800

700 600 500

I IGNITOR
800p.SEC RECOMMENDED PULSE WIDTH

400

300
200 MINI UM
REQUIRED 100

MAXIMUM ALLOWED

0 20
K -69087-72A803

40

60

80

PEAK IGNITOR CURRENT IN AMPERES

ARC DROP
25

11-8-57

GL -6958
ET -T1479 PAGE 3
1 1-57

20
O z 0
15

0
K -69087-72A709

500

1000

PEAK ANODE CURRENT IN AMPERES

1500

2000
1 1 -8-57

32
1...7ULfb VIEW SHOWING IGNITOR AND SHIELD GRID TERMINALS

4
4.,A
VIEW SHOWING
AUXILIARY ANODE a CONTROL GRID TERMINALS

ANODE TERMINAL

44DIA. MAX

ANODE HEATER MOUNTING BRACKET

It
270

2"MIN

14 MAX

TUBE MOUNTING
AREA

r. MAX

WATER OUTLE 3-IPS WITH C

48".1.

22P1'

WATER INLET 12,'IPS WITH
CAP
I" MAX.

I 3"

41t4i ifth

jDIA

7,MAX

iMAX

VIEW AT "A"

NDIA

SHIELD -GRID TERMINAL

450150

CATHODE TERMINAL

1.01A HOLES I. 16
TUBULAT1ON
21-N N
_/

9p4DIA.

TEDIF mTG

Atit.il .111,40

HOLE CIRCLE

atkiA pay' 15°f 10°

1111W

N
AI MAX

2.
CONTROL GRID TERMINAL TOP VIEW

2 12,41' R.

16
MAX.

TI -3/16"

K69087 -72A787

7 f 'MIN. DIA
18 t;

450'110°
m°±100 AUXILIARY
ANODE TERMINAL

10° IGNITOR TERMINALS
10-30-57

ELECTRONICS DEPARTMENT
GENERAL ELECTRIC
Ignitron FG-235-A--Specifications

General Equipment using this type should be so designed that any tube within the limits
specified will operate satisfactorily. The tube shall be designed to have the average characteristics and maximum rat-
ings given in the Technical Information.

Mechanical Requirements
The tubes shall have outline drawing.

the dimensions and be

within the tolerances

shown on the

Electrical Requirements

TEST
Ignitor Resistance Peak Voltage Drop

Conduction

Time Averaging

I RMS Demand Ib Per Spot See Amp Current Amp Seconds

Time Seconds Duration

LIMITS Ep

Note Min Amp -Min Min Minimum

Max Of Test Volts Min Max

1

5 110 Ohms

2 100

16 Volts

A -c Welder Control Operation -Intermittent 3

1265

100

1

6.19

15 min. Minimum

5 Arc Backs 200 Ignitor Voltage
for Ignition 30 Ignitor Current
for Ignition 100 Ignitor Ignition
time

High Potential

4

10 sec 12000

Notes
1. With no other voltage applied, the ignitor -to -cathode resistance shall be measured with the tube mounted vertically and shall be within the limits specified.
For this test the tube temperature shall be between 15 and 35 C.
2. With the tube operating in a 60 -cycle, half -wave rectifier adjusted to give the specified peak anode current and no greater than average anode current, the peak voltage drop exclusive of starting voltage measured from anode to cathode shall not exceed the limit specified. This voltage may be observed by use of a cathode-ray oscilloscope connected directly, or through an amplifier to the tube under test.
For this test the water temperature shall be less than 15 C. Rated water
flow shall be used.
3. The tube shall be connected "back to back" with a previously tested good tube to control alternating current to an inductive load with a power factor lower than 30 per cent. The tube under test shall be in the trailing position. The ignitor of each tube shall be connected to a suitable firing control circuit in such a manner that current will flow through the ignitor in the forward direction only.

The supply voltage shall be 575 plus or minus 25 volts rms, 60 cycles. With no phase retard the minimum rms demand current, conduction time per spot, and minimum average anode current shall be as specified.
After the initial spot and for the next four spots, .the ignitor voltage for ignition shall not exceed 200 volts. During this and subsequent operation, the ignitor shall maintain control and the time required to initiate the arc shall not exceed 100 microseconds.
During the last three minutes of tube operation, the ignitor firing shall be retarded in phase so that the rms demand current is 75 plus or minus 5 per cent of the previous value. During this period, the number of arc backs shall not exceed the specified maximum. At the end of this period, the ignitor current for ignition shall not exceed 30 amperes when flowing for a time not exceeding 100 microseconds.
For this test rated water cooling shall be used at rated flow. 4. With the tube mounted in a vertical position, the specified voltage shall be applied for the specified time. During the last half of this test, there shall be no indication of current flow through the tube. Momentary flashes shall not be considered as an indication of current flow.
This test shall be given at least 15 hours after operation for those tubes which have been operated.
For this test the tube temperature shall be between 15 and 35 C.
GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

Electronics Department
GENEP 1-1.T4 ELECTRIC

ET -T513

5564-Technical Information

Type of Pool Tube - Ignitron

Principle Use - Rectification

The 5564 is a mercury -pool tube of permanently sealed, steel construction, designed for rectifier service in the 125-, 250-, 600-, and 900 -volt d -c power fields. The tube has two ignitors, only one of which is used at a time. Outputs up to 2000 kilowatts may be obtained depending on the number of ignitions, the output voltage, and the circuit. Arc losses are low. Phase control of the ignition impulse permits voltage control of the rectified output. Excitation of the small auxiliary anode stabilizes the cathode spot for very small anode currents.

GENERAL

Electrical Data

Type Cathode Excitation - Cyclic Type Cathode Spot Starting - Ignitor Number of Electrodes
Main Anodes Main Cathodes Auxiliary Anodes Ignitors Control Grids Arc Drop at 1200 Peak Amperes

1 1 1 2 1
18.8 Volts

Cathode Excitation Requirements Ignitor Voltage Required to Fire Ignitor Current Required to Fire Peak Excitation Arc Current Required, minimum Excitation Arc -Drop Voltage

150 Volts 40 Amperes 4 Amperes 12 Volts

Grid Requirements Positive Current to Establish Conduction Minimum Voltage to Establish Conduction Minimum Voltage to Prevent Conduction

0.1 Ampere 50 Volts
100 Volts

Mechanical Data

Envelope Material - Metal

Maximum Overall Length

41 Inches

Maximum Overall Width, Exclusive of Handles

and Water Connections

9 1/8 Inches

Net Weight

90 Pounds

Type of Cooling - Water

Characteristics for Water Cooling at Rated

Minimum Flow

Water Temperature Rise, maximum

5 C

Pressure Drop at 6 Gallons per Minute, maximum 1 Pound per Square

-2-
MAXIMUM RATINGS

As Power Rectifier Tube*

Maximum Peak Anode Voltage

Inverse

900

2100 Volts

Forward

900

2100 Volts

Maximum Anode Current

Peak

3600

2400 Amperes

Average

Continuous

400

300 Amperes

2 Hours

600

450 Amperes

1 Minute

800

600 Amperes

Surge

25,000

Maximum Duration of Surge Current 0.15

19,000 Amperes 0.15 Second

Frequency Range

25

60 Cycles per Second

Maximum Outlet Water Temperature

6o

50 C

Minimum Outlet Water Temperature

10

10 C

Minimum Water Flow at Continuous Rated

Average Current

6

6 Gallons per Minute

Minimum Water Flow at No Load

1

1 Gallon per Minute

Electrical ratings are for zero phase -control angle.

Ignitor

Maximum Voltage Positive Negative
Maximum Current. Peak
Average Maximum Averaging Time
Starting Time at Required Voltage or Current

Anode Volts 5 Volts
100 Amperes 15 Amperes 2 Amperes 10 Seconds
100 Microseconds

Auxiliary -Anode Maximum Current Peak Average Maximum Averaging Time RMS Maximum Peak Forward Voltage Maximum Peak Inverse Voltage Main Anode Conducting Main Anode Not Conducting

30 5
10 12.5
150

Amperes Amperes Seconds Amperes Volts

25 Volts 150 Volts

Grid Maximum Peak Forward Voltage Maximum Peak Inverse Voltage Maximum Grid -Current
Peak Positive Peak Negative Average RMS

250 Volts 250 Volts
1,..5 Amperes 0.5 Ampere 0.5 Ampere 1.0 Ampere

-6

2 -16

--Z. DIA 2 1401E5

3F

r FT.
2

3211

234 MAX.

VIEW A

GRID

T

!

WATE R
A OUT LET
S. 4

IGNITOR RMINI\LS

81 5 .3-8+.7
r--

,/2 3 -vri'D m/8 DEEP
4 -1 -IDLES ON
27/6'
IGNIT0R,zt TERMINAL

17
4 DIA. AUXILIARY ANODE
foGRID -TERMINALS
AUXILIARY ANODE
TEWIINAL IGNITOR 12 TERMINAL

II

1 II

16±

94-:
DuTSIDE. D A.

WATER INLET
3.; I. P.S.

141"
t 1-4-4 t

141"
194

TUBE SUPPORT 4CATHODE.
TERMINA1..
L

VIEW.B

ivrAx" VARIATION
ta! FRom4.

-4 MAX,

5564
OUTLINE

DESCRIPTION AND RATING

GL -7042
ET -T1510 PAGE 1
12-58

IGNITRON

POWER RECTIFIER SERVICE

INVERTER SERVICE

TWO IGNITORS

TEMPERATURE CONTROLLED

2000 AMPERES PEAK

The GL -7042 is a double -grid ignitron for industrial rectifier or inverter service at voltage levels up to 4000 volts peak inverse. This tube is particularly suitable where more than usual amounts of voltage control by phase retard are required.
The GL -7042 is identical in ratings and characteristics to the GL -6958 but it has the additional advantage of an integral thermostatic control arrangement with protective features. The arrange -

ment includes a switch which controls a solenoid valve in the water -supply line to the tube in response to increasing and decreasing tube temperature, thus maintaining the minimum amount of cooling water required by the operating conditions. It also includes an over -temperature switch which may be used to remove power from the ignitron if its temperature should ever exceed a safe value.

TECHNICAL INFORMATION

GENERAL
Electrical
Cathode Excitation-Cyclic Cathode Spot Starting-Ignitor Number of Electrodes
Main Anodes Auxiliary Anodes Main Cathodes Ignitors Shield Grids Control Grids Arc Drop At 1000 Peak Amperes At 2000 Peak Amperes (See Curve K -69087-72A709 on Page Three for Details)

1 1 1 2 1 1

20.5 2 Volts

24.0

Volts

GENERAL ELECTRIC

GL -7042
ET -T1510 PAGE 2 12-58

TECHNICAL INFORMATION (CONT'D)

Mechanical
Envelope Material-Stainless Steel Net Weight, approximate Mounting Position-Vertical, Anode Terminal Up

95 Pounds

Thermal

Type of Cooling-Water

Inlet Water Temperature, minimum*

10

Inlet Water Temperature, maximum t

45

Outlet Water Temperature, maximum

55

Water Flow, water valve open/

At Continuous Rated Average Current, minimum

10

Water flow should be continued for at least one hour after removal of anode power.

Characteristics at 10 Gallons per Minute

Water Temperature Rise, maximum

6 5

Pressure Drop, maximum

1 5

Working Water Pressure-Non-Shock, maximum

100

C C C
Gallons per Minute
C
Pounds per Square Inch Pounds per Square Inch

MAXIMUM RATINGS AND TYPICAL OPERATION

Power -Rectifier or Inverter Service, Continuous Duty
Ratings are for Zero -Phase -Control Angle Maximum Peak Anode Voltage
Inverse Forward Maximum Anode Current Peak Average
Continuous Two Hours One Minute Fault Forward Direction Reverse Direction Maximum Duration of Fault Current Frequency Range

4000 Volts 4000 Volts

2000 Amperes

275 Amperes 350 Amperes 570 Amperes

15,000 30,000
0 15 25 to 60

Amperes Amperes Seconds Cycles per Second

Ignitor Ratings, Separate Excitation

Maximum Inverse Voltage

5 Volts

Recommended Pulse Length

800 Microseconds

Minimum Pulse Length

Average Anode Current Greater than 8 Amperes

150 Microseconds

Maximum Pulse Length

4000 Microseconds

Volt -Ampere Requirements (See Curve K -69087-72A803 on Page Four for Details.)

Shield -Grid Characteristics
Voltage Peak Forward Peak Inverse

Minimum 200

Maximum
500 Volts 200 Volts

Current Peak Forward Peak Inverse

0.2

5.0 Amperes

0.2 Amperes

Control -Grid Characteristics
Voltage Peak For ward Peak Inverse

200

500 Volts

100

200 Volts

Current Peak Forward Peak Inverse
DC Bias

0.4

5.0 Amperes

0.4

1.0 Amperes

-90

-110 Volts

TECHNICAL INFORMATION (CONT'D)
MAXIMUM RATINGS AND TYPICAL OPERATION (Cont'd)

GL -7042
ET -T1510 PAGE 3
12-58

Temperature -Control Switch Ratings§

Maximum Voltage

575

Maximum Current

Over -Temperature Switch

6

Water -Control Switch

1 5

Maximum Peak Potential difference between Switch Circuit and Tube Water Cylinder. 1500

Volts
Amperes Amperes Volts

Switch -Contact Arrangement Over -Temperature Switch-Normally Closed (Contacts Open on Temperature Rise)

Water -Control Switch-Normally Open (Contacts Close on Temperature Rise)

*This value assumes that the water will be supplied through a rapid -closing solenoid valve which prevents all water flow

except when the water -control switch closes. tIf two tubes are cooled in series this value must be low enough to prevent the maximum outlet water temperature from

being exceeded. Water flow should be continued for one hour -after removal of anode power. §Suitable fuses should be provided in the switch circuits to prevent a power arc should a ground occur in the switch or

wiring.

APPLICATION NOTES

In order to realize the advantage of safe tube operation on low temperature cooling water, water must be supplied to the

tube through a rapid closing solenoid valve controlled by the water -control switch on the tube. The valve must completely stop

the water flow to the tube except when the water -control switch is closed.

The cooling water for two tubes may be connected in series provided the inlet water at the first tube is above +20 C and

the outlet water of the second tube is below 55 C. If two tubes are connected in series only one solenoid valve is required for each pair of tubes and it is only necessary to use the thermostat on the tube installed in the outgoing end of the series pair. For more complete protection two temperature -controlled tubes should be used with their over -temperature switches in series and

their water -control switches in parallel.

For inlet water temperatures below 20 C, each tube should be connected to the water supply through a rapid -closing

solenoid valve controlled by the water -control switch on the tube thermostat.

To prevent excessive condensation of mercury on the inside of the glass, heat should be externally applied to the anode

glass -seal area.

ARC DROP

25

..iiI1111111.311a

20

15

10 0
K -69087-72A709

500

1000

1500

PEAK ANODE CURRENT IN AMPERES

2000
11-8-57

GL -7042
ET 41510 PAGE 4 12-58

IGNITOR VOLT-AMPERE REQUIREMENTS FOR SEPARATE EXCITATION SEALED-IGNITRON RECTIFIER
THE IGNITOR FIRING CIRCUIT SHOULD BE DESIGNED TO OPERATE WITHIN THE SHADED AREA 800

/ 700
600 500

n I IGNITOR
800I.LSEC RECOMMENDED PULSE WIDTH

400

300
200 MINI UM
REQUIRED 100

MAXIMUM ALLOWED

0

20

40

60

80

100

PEAK IGNITOR CURRENT IN AMPERES K -69087-72A803

120

140

11-8-58

SHORT -PERIOD OPERATION RATINGS

PEAK INVERSE VOLTAGE -4000 VOLTS INLET WATER TEMPERATURE =45 C

PHASE RETARD A =ZERO B =15%, ESTIMATED C =50%, ESTIMATED

600

500

400

300

200

100

0 I MINUTE
K -69087-72A809

5 MINUTES

I HOUR
DURATION OF LOAD

2 HOURS

12 HOURS (CONTINUOUS)
1-29-58

1"
4

-6241"DIA
VIEW SHOWING IGNITOR AND SHIELD
GRID TERMINALS

VIEW SHOWING AUXILIARY ANODE 8
CONTROL GRID TERMINALS

ANODE TERMINAL

4-34" DIA MAX

45-.. MIN 8

2"MIN

BRACKET
2MAX

VIEW AT "A"

SHIELD -GRID TERMINAL

CATHODE TERMINAL
,.,

+50

a DIA HOLES

16

TUBULATION

-5 DIA
16

g DIA
16
45" 5°
NODE HEATER MTG. HOLE CIRCLE

TUBE MOUNTING
AREA

14-
It MAX r*

12" MAX DIA

J

it

I"

I

MIN

12-4

30 6-4 MAX

4
11
5
MAX

I"
278-

WATER OUTLET 4IPS WITH CAP

1# 6 -32

r SCREW
14 832+-8

8.14f

MAX

CONTROL COVER

(INSULATING MATERIAL)

HANDLES
OVER- "` TEMPERATURE
TERMINALS
WATER -CONTROL TERMINALS

3., 2-4 MAX
5'+I"D16 IA
228 16

CONTROL GRID TERMINAL TOP VIEW

16
t 5°

90.t

1091105 TERMINALS

2212 - le, 8

WATER INLET

3"
4- IPS

WITH CAP

1" MAX -4.1

- 91'MAX DIA --I.

6' -IT.
-4-

"MAX

7

3- 16" MAX

r`

1.

I

III

IL

AUXILIARY ANOOf TERMINAL

K -69087-72A815

ti

MIN DIA

--vj

TUBE MOUNTING

AREA

51.4.
8 16 - 8

135°+5°
BOTTOM VIEW

2-26-58

ELECTRONIC COMPONENTS DIVISION
GENERAL ELECTRIC
Schenectady 5, N. Y.

DESCRIPTION AND RATING

GL -7151
ET -T1511 PAGE 1
12-58

IGNITRON

THERMOSTAT BRACKET

HIGH -EFFICIENCY COOLING

AC CONTROL SERVICE -900 AMPERES

The GL -7151 is a sealed water-cooled ignitron with a stainless -steel jacket for a -c control service. In such application two tubes in an inverse -parallel connection will control 4800 kilovolt -amperes at
voltages of 250 to 500 volts over a frequency range

of 25 to 60 cycles. The water-cooling chamber is especially designed to provide high -efficiency cool ing at the bottom of the tube without increasing the water pressure drop of the cooling jacket.

GENERAL
Electrical
Cathode Excitation-Cyclic Cathode Spot Starting-Ignitor Number of Electrodes
Main Anodes Main Cathodes Ignitors

TECHNICAL INFORMATION

Mechanical
Envelope Material-Stainless Steel Net Weight Mounting Position-Vertical, Anode Terminal Up

1 1 1
70 Pounds

GENERAL

ELECTRIC

GL -7 1 5 1
ET -T1511
PAGE 2
12-58

TECHNICAL INFORMATION (CONT'D)

Thermal

Type of Cooling-Water

Inlet Water Temperature, minimum

0

Outlet Water Temperature, maximum

40

Water Flow, minimum

10

Water flow should be continued for at least one hour after removal of anode power

Maximum Working Water Pressure, Non -Shock

100

Characteristics at 10 Gallons per Minute

Water Temperature Rise, maximum

8

Pressure Drop, maximum

1 5

C C
Gallons per Minute
Pounds per Square Inch
C
Pounds per Square Inch

MAXIMUM RATINGS

AC Control Service, Two Tubes in Inverse Parallel, Ratings per Tube
Voltage Range Maximum Demand
Corresponding Average Current * Maximum Average Current*
Corresponding Demand Maximum Demand Current Below 500 Volts* Maximum Peak Fault Current at 250 Volts Maximum Peak Fault Current at 600 Volts Frequency Range

250 to 600 4800 486 900 1600 9600
54,000 22,400 25-60

Volts RMS Kilovolt -Amperes Amperes Amperes Kilovolt -Amperes Amperes RMS Amperes Amperes Cycles per Second

Ignitor Characteristics

Anode Firing Maximum Inverse Voltage Maximum Positive Voltage-Anode Voltage Ignitor Voltage Required to Fire, minimum Ignitor Current Required to Fire, minimum Starting Time at Required Voltage or Current
Separate Excitation Maximum Inverse Voltage Recommended Pulse Length Minimum Pulse Length, for average anode currents greater than 20 amperes Maximum Pulse Length Maximum Rate of Rise of Ignitor Current

5 Volts
200 Volts 30 Amperes 100 Microseconds
5 Volts 500 Microseconds 150 Microseconds 4000 Microseconds 2 5 Amperes per Micro-
second

Volt -Ampere Characteristics-See Curve K -69087-72A741 on Page Three for Details.

*A concentric current -return path from the cathode terminal to the top of this tube should be provided in installations where high -current conductors, including other ignitrons, are operating within 20 inches of it. This is necessary to prevent the magnetic field established by the high current from disturbing the arc within the GL -7151. This return path can be made by clamping the cathode connection to the top of the tube jacket; or by extending, from the cathode terminal to a bus -bar connection at the top of the tube, four or more equally spaced copper bars placed around the circumference and running the length of the tube. Clean tight connections are necessary for proper conduction of the high currents.
Control thermostats with mounting brackets are available through regular tube supply channels under the following catalog numbers:
Flying -Lead Type Water -Control Thermostat-N15272AA Over -Temperature Thermostat-N15273AA
Terminal -Block Type Water -Control Thermostat-N15286AA Over -Temperature Thermostat-N15287AA

IGNITOR VOLT-AMPERE REQUIREMENTS FOR SEPARATE EXCITATION SEALED-IGNITRON RECTIFIERS
THE IGNITOR FIRING CIRCUIT SHOULD BE DESIGNED TO OPERATE WITHIN THE SHADED AREA

800
II

.:

IIIIIIIIIIIIIIIMI.....1.1

ul

mmummunmillunnquinumumwqmpummu

ttruime-nadiiiinue""Haquiilighlidin 71 700 illimiliimi 4. leimill .5.1........... ............ . Ispdp iIsFillimaspill I moo

1;011 111111111111 1111111E4 1111 cill fi 11 III 1

"IIIMIIIMIIMEMMEMMIS

.11,...m..11

1111 1 il

I mu! IlIIim 600

IIIIIIM
ill..IAMWD1 ME

Illimplimilmr..
MI V

11

.
1. ...ill 1 UMWIMMIM

MN MU PA.AWAORI MMMMMMMM MN e....-uwer zgo 9MMEM

IIII

I F-41:04111!!!!!!!!!!&:11! °1-11!4.1..11- 1.1!II !!!!!R IIIIIIIIIIIIIIIII

alp: 500 14011/11111:11111111111111111111911 11111111 ' 1 Jim IIIIIIIIIIII 1....1.

1111101111ligimill IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII1 FIE

400 ii!'10111110101111

1111111111111111161111111111111111111 1 hill I

iigglisio:i401011 IIIIIIIIIIII1111 IIIIIIIIIIIII Nils

IIIIIAIIIIMIIIIIIIIIII MINIM Ell

iiiii old

ustimi

iniii---

1 41111 a

II 141m!mmm, 14. Alippi me11111Numalliiiiiii ..111.

111111111051100. ' s IIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIII110

' 'F'"'111.1

.... Fr 111111..1-11r11

200 11111111111110111101440111111111111110111111111111111111111111111

L

allial°110002000itii111.111. 111111:111:11:1111:1111::::;;;

iiiiillittlIPICIMIIIIPIIIIIIIII 11111111111111111111.1 .... .T71171111:-.0131 .. 1111. 100 IIIIIIIIIIIIII111010410,Pa IIIIIII 41111111111111111111111111

GL -7151
ET -T1511
PAGE 3
12.58

1111111111111111161111111111101111111111111111111 I 111 11111

20

40

60

80

PEAK IGNITOR CURRENT IN AMPERES

K -69087-72A741

12-9-55

ARC DROP
40
30

DEMAND CURRENT VS PERCENTAGE DUTY
TWO TUBES CONNECTED IN INVERSE PARALLEL
Averaging Time 250 Volts -8.9 Seconds 500 Volts -4.5 Seconds

10,000
9000 8000 7000 6000
5000

sook
4

DSO
4),ffs,

4000

3000
20
2000
10

0

2000

4000

6000

8000

mp00

PEAK ANODE CURRENT IN AMPERES

K -69087-72A847

5-1-58

1000
10

20

30 40 50 60 70 8090 IOD

DUTY IN PERCENTAGE K -69087-72A854

6-9-58

GL -7151
ET -T1511
PAGE 4
12-58

2±32
DIA.

22

-3" MAX.
8

EXHAUST SEAL -OFF

t--413M" AX.
16 DIA.
f
2 MAX.

WATER OUTLET
(-I I. P S
NIPPLE)

15-- MAX.

5 -i_n t 28
9"t 8. DIA.

3" 137 MAX.

2 - 13 THREAD

3"
-4-

DEEP

4 HOLES LOCATED
ON 2P. 64 DIA.

WATER
INLET
P S 4
NIPPLE

-2 MAX.

K -69087-72A816

(111 4 _4

3MAX

CL

-4 -11+

DIA.-

32

8 8 8 DIA.

TUBE SUPPORT a CATHODE TERMINAL

VARIATION t 3° FROM'
IGNITOR TERMINAL
.250"t .015" DIA.

BOTTOM VIEW
1-2-58
ELECTRONIC COMPONENTS DIVISION
GENERAL ELECTRIC
Schenectady 5, N. Y.

DESCRIPTION AND RATING

GL -7171
ET -T1512 PAGE 1
12-58

IGNITRON

CAPACITOR -DISCHARGE SERVICE

DC SHORT -CIRCUITING -SWITCH SERVICE

35,000 AMPERES PEAK

The GL -7171 is a sealed, stainless -steel jacketed the tube will carry peak currents up to 35,000

ignitron for use as a switch in capacitor -discharge amperes.

circuits operating up to 10,000 volts. In this service

TECHNICAL INFORMATION
GENERAL
Electrical
Cathode Excitation-Cyclic Cathode Spot Starting-Ignitor Number of Electrodes
Main Anodes Main Cathodes Ignitors Arc Drop At 4000 Amperes At 30,000 Amperes Peak Inverse Voltage, maximum
Mechanical
Envelope Material-Stainless Steel Mounting Position-Axis Vertical, Anode Lead Up Net Weight
Thermal
Type of Cooling-Convection Ambient Temperature, minimum Cathode Temperature, maximum Anode -Header Temperature, maximum*

1 1 1
20 Volts 55 Volts 10,000 Volts
2 Pounds
25 C 35 C 55 C

GENERAL ha ELECTRIC

GL -7171
ET -71512 PAGE 2 12-58

TECHNICAL INFORMATION (CONT'D)

MAXIMUM RATINGS AND TYPICAL OPERATION

Capacitor -Discharge Service, Pulse Duty, Sinusoidal Current
Peak Anode Voltage Forward Inverse
Critical Anode Starting Voltage, minimum Anode Current (See Curve K -69087-72A858 on Page Three for Details)
Peak t Average
Maximum Averaging Time Fault
Maximum Duration Rate of Rise of Current
Maximum
Minimum
Frequency of Current Conduction Periods, maximum Ionization Time
DC Short -Circuiting -Switch Service
Peak Anode Voltage Forward Inverse
Critical Anode Starting Voltage, minimum Anode Current (See Curve K -69087-72A858 on Page Three for Details)
Peak Average
Maximum Averaging:Time Fault
Maximum Duration Rate of Rise of Current
Maximum
Minimum
Frequency of Current Conduction Periods, maximum Ionization Time

10,000 Volts 10,000 Volts
100 Volts

35,000
01
1
35,000 0 002

Amperes Amperes Cycle Amperes Seconds

5600 Amperes per Microsecond
1400 Amperes per Micro second
1 Per Minute 0 5 Microseconds

10,000 Volts 10,000 Volts
100 Volts

35,000 0 25
1
35,000 0 002

Amperes Amperes Cycle Amperes Seconds

5600 Amperes per Microsecond
1400 Amperes per Microsecond
1 Per Minute 0 5 Microseconds

Ignitor Ratings
Separate Excitation Ignitor Voltage Forward Open Circuit
Inverse, maximum Ignitor Current Short Circuit Length of Firing Pulse, sine wave Anode Firing Ignitor Voltage
Forward, maximum Inverse, maximum Peak Ignitor Current

Minimum Maximum

1500

3000 Volts

5 Volts

200

250 Amperes

5

10 Microseconds

3000 Volts

5 Volts

200

250 Amperes

*To prevent mercury condensation, the anode -header temperature should be higher than the cathode temperature at all times. Mercury must be kept away from the anode and anode seals. Before tube operation, the anode seals must be warmed, with respect to the cathode, long enough to vaporize all mercury from the seal area.
Dampened oscillations are permissible provided the dampening coefficient is less than the value shown on the currentwaveform curve. The peak of the oscillation must not exceed 48,000 amperes.
Tube must be operated within the area specified on the current -waveform curve.

GL -7171
ET -T1512 PAGE 3 12-58

40,000

CURRENT -WAVEFORM CURVE
MAXIMUM PERMISSIBLE CURRENT

mmmimimmumumpimmumummpon pluming! oilmmi opmmommmummull limpommomm imiiihnoumominmommonimmommummummommmulou
30,000 1111111111111P111111111 111111111111111111111111111111111111111111111101111111111111011111111111111111111111111111111111 N
11111111111111 IINiiiiillE1111111111111111111111111111111111111111111111111111111111111111110111111111111111111111111111111 < 25,000

ce
20,00 U

11111101111111111111111111111111111111110111111111111111111011111111111111111111111111

15,000 mImmiummoimmimummummiammumwmuomunimummummumni6h..:2.1111111111111

Z 10,000

5000

100 K -69087-72A858

200

300

400

500

600

TIME IN MICROSECONDS

7-8-58

GL -7171
ET -T1512 PAGE 4 12-58

ANODE TERMINAL

I.
- MAX DIA.
16

3"± I"
8

- 20 NF -3

2.130"+.010 11 DIA.
21 MAX.

I

1"

4 - 32

t'1
MIN. 16

IGNITOR TERMINAL
250"+ .010" DIA.
K -69087-72A819

I,
u -s-
5 - 8
CATHODE TERMINAL
I MAX.
t EXHAUST TUBE
9-8-58

ELECTRONIC COMPONENTS DIVISION
GENERAL ELECTRIC
Schenectady 5, N. Y.

THYRATRONS

APPLICATION DATA
EU-116 PAGE 1
4-45
GENERAL 0 ELECTRIC THYRATRONS

ETI-116 PAGE 2
4-45

DESCRIPTION

A thyratron is a thermionic gas tube in which one or more electrodes initiate the current flow.
The gas used may be one of the inert gases such as argon, xenon, or helium, or the vapor pressure of a few drops of mercury. The presence of this gas neutralizes by ionization, the electron space -charge around the cathode created by the electrons emitted
from it. This space -charge, which is negative in effect
and tends to drive the electrons back into the
cathode, is one of the limitations on the amount of current a high -vacuum electronic tube can carry. Another limitation of high -vacuum tubes is the ability of the cathode to emit the electrons which comprise the unidirectional current flow. This factor however, can be controlled by design of an electron emitting source satisfactory for the size of the tube
required. The absence of space charge and its accompany-
ing losses in the thyratron allows larger electrode spacing and smaller -size electrodes for a given current -carrying capacity than is possible with high vacuum tubes. The elimination of space -charge also permits the use of an electron -emitting cathode of higher efficiency and much larger current -carrying capabilities than otherwise could be used. A gas -
filled tube, therefore, can carry much higher current than a high -vacuum tube of corresponding dimensions. The vapor pressure, however, is sufficiently low so that the anode can withstand, when negative, the voltage for which the tube is designed.
The construction of the thyratron is similar to that of the phanotron. In the thyratron, however, the addition of an electrode called a grid increases greatly the usefulness of the tube. Inasmuch as the action of the grid is quite different from that of the grid in the high -vacuum three -electrode tube, it is necessary to describe its action in detail.
The grid, as employed in the thyratron, controls only the starting of the discharge. After starting, under usual operating conditions, it neither modulates, limits, nor extinguishes the arc. Herein lies the fundamental difference between the thyratron as ordinarily used, and the high -vacuum tube. In a gas tube, the positive ions neutralize the space charge with the result that a prohibitively high current would have to be supplied to the grid before it could gain control with anode current flowing. In
order to enable the grid to act with practical amounts of current, the anode voltage must be
reduced substantially to zero or made negative for a period long enough for the gas or vapor to become deionized. Once this deionization takes place the grid can resume control. In a high -vacuum tube, since this ionization is not present, the grid can control the flow of current. Any change in the grid voltage of a high -vacuum tube will cause a corresponding change in the current. If an alternating voltage is applied to the anode of the thyratron, the grid has an opportunity to regain control once each cycle and can delay the starting of the arc for as long a period during the subsequent positive half cycle as the grid voltage is sufficiently negative. This

means that the grid can control the average current flowing through the tube and that this averaging can be made as fine-grained as desired by increasing the frequency of interruption.
If the grid as well as the anode is supplied with alternating current, the phase relation between the grid and anode determines the amount of average current passing through the tube. Fig. 1 shows the wave forms occuring with a shift in phase between the grid and anode. Example A shows the wave forms with the tube in an almost nonconductive condition, while E illustrates rectification throughout the entire half wave. The other diagrams show several intermediate stages of grid control.

ANODE VOLTAGE

(A sr

GRID VOLTAG

CRITICA VOLTAGE
LA,

k,,,,,,,
IC)

(D)

/3746.

CE)

K-9033592
Fig. 1-Control of Thyratron Anode Current by Variations in the Grid Voltage

1-10-45

The voltage conditions for starting the current depend largely upon the structural design of the tube. A tube may be designed so that within the normal anode voltage limits the current always starts at a negative grid voltage, always at a positive grid voltage, or at a negative voltage for high anode voltages and a postive voltage for low anode
voltages.
Negative -control tubes require relatively little grid power and are therefore suitable for use with high -impedance circuits.
Positive -control tubes are useful in applications
where it is desired that no current flow in the
absence of grid excitation.
The intermediate type of tube is often used in inverter circuits and is usually designed to ensure
as rapid deionization as possible, as the time allowed
for deionization in certain circuits is sometimes very short.

ETI-1 1 6

PAGE 3

4-45

DEFINITIONS OF RATINGS

The ratings of gas -discharge tubes are given in terms of fundamental conditions on the tube itself rather than in terms of any circuit constants. Values for a particular tube are given on the individual tube descriptive sheets, (i.e., in terms of actual anode voltage and current, grid voltage and current, etc.).
The Maximum Peak Inverse Voltage is a rating which is common to both thyratrons and phanotrons. It is the highest instantaneous voltage that
the tube will safely withstand in the direction opposite to that in which it is designed to pass current and depends upon operation within the specified
temperature range and within the surge current rating. It should be emphasized that the maximum
rating of the tube refers to the actual inverse voltage
and not to the calculated values. A cathode-ray oscilloscope or a spark gap connected across the
tube is useful in determining the actual peak inverse voltage.
The Maximum Peak Forward Voltage is a rating which applies only to thyratrons. It is the maximum instantaneous voltage that can be held back by the action of a suitable grid voltage and for mercury-vapor tubes depends particularly upon operation within the maximum temperature specified.
The Maximum Instantaneous Anode Current is
the highest instantaneous current that a tube can safely conduct under normal operating conditions in the direction of normal current flow.
The Maximum Surge Current rating is a measure of the ability of a tube to withstand extremely high transient currents ; it is also a measure of the stiffness of the anode circuit in which the tube will operate satisfactorily at rated temperature and with maximum peak inverse voltage applied.
The Maximum Average Anode Current is a rating
based on tube heating. It is the highest average current which can be carried continuously through the tube.
The grid current ratings are given in terms of the
Maximum Instantaneous Grid Current and the
Maximum Average Grid Current; the integration period is the same as that for the anode current.

In addition to the above ratings, there are a

number of other tube characteristics. The Voltage

Drop from anode to cathode is a characteristic which

becomes important when the anode supply voltage

is low, as it then becomes a large part of the working

voltage. The typical voltage drop which may be

encountered is included in the tube ratings, and the

maximum is given in the Specifications. This in-

cludes the effect of temperature change during tube

life and variation between individual tubes.

The Control Characteristic shows the relation

between grid and anode voltage for the starting of

a discharge, and gives the range of variations be-

tween tubes held at a condensed -mercury tempera-

ture of 40 C. In the case of gas tubes, temperature

is not an important factor, The control character-

istic is affected somewhat by the temperature, and

this information is also available in the form of

characteristic curves.

The Ionization Time may be defined as the

time required for conduction to occur when the

tube is operated with ample anode voltage and with

the grid or grids at a potential substantially more

positive than required for discharge.

The Deionizatoin Time is the time required

under normal conditions to bring about the deioni-

zation necessary to regain control. The time given is

based on a condition of full maximum average

anode current and condensed -mercury temperature

of 40 C.

Condensed -Mercury Temperature is the temperature

which controls the mercury-vapor pressure and

hence many of the tube characteristics. This is

measured on the bulb just

base, the

point where the mercury vapor is condensing

within the tube. Satisfactory tube operation de-

pends upon operating within the specified tempera-

ture limits. When the tube is being heated it must

be remembered that the heating time specified on

the Description and Rating sheets refers only to the

cathode. Additional heating must be allowed to

bring the condensed -mercury temperature within

limits.

CLASSES OF TUBES
Thyratrons are built in both glass and metal for ease of installation and conservation of space. envelopes. The higher voltage tubes utilize glass Mercury tubes are available where temperature construction for ease of insulation. Tubes built for can easily be controlled. Tubes with insert -gas control of large amounts of power at lower voltages filling are available for those applications where a (as for motor control and welding applications) are wide range of ambient temperatures will be enof metal construction to withstand handling and countered. Where inert gas is used the tube charshock, and are adapted for panel -mounting, whereas acteristics vary only with pressure of the gas and smaller tubes are generally socket -mounted and are essentially independent of normal temperature
may even have all electrodes connected at one end changes.

APPLICATION CIRCUITS#

The versatility of these gas -filled tubes gives plications is the control of the speed of d -c motors. them a wide field of application. One of their ap- One of the first motor speed -control applications

#Circuits shown in ETI-116 are examples of possible tube applications and the description and illustration of them does not convey to the purchaser of tubes any license under patent rights of General Electric Company.

was completed in 1929. Other trials followed and there is now a large demand for Thy-Mo-Trol (GE's trademark for motor control using electronic tubes) drives, by which d -c motors are operated from

ETI-116 PAGE 4
4-45

APPLICATION CIRCUITS (CONT'D)

constant potential a -c systems. These can provide speed control over ranges even larger than one hundred to one, operating at constant torque below basic speed by means of armature control and at constant horsepower above basic speed by means of field control. A circuit for such an application is
shown in Fig. 2 below. Some of the uses to which such a circuit may be
applied include the maintenance of the correct tension during the reeling of the wire output of
wire -drawing machines, the correlation of the speeds of various sections of rubber process conveyors to maintain a given loop of rubber sheet between the conveyor sections. It may be used to vary over wide ranges the speed of d -c motors driving frequency changers which supply power to highspeed textile
motors, and to maintain the speed of the motors within narrow limits at any given setting, in spite of wide load changes. Used in these and similar applications, the thyratron provides an efficient, dependable aid to modern industry.

obtained from a tachometer and standard source of voltage.
The use of gas -filled tubes for the control of
power flow to resistance welders has revolutionized the fabrication of high -production units by accurate timing and uniform heating; the welding of high strength aluminum alloys has been made practical by the use of thyratron control. Welders so controlled vary in size from 3 to 5 kilovolt -amperes to as high as 2000 kilovolt -amperes. A typical welder control circuit is shown in Fig. 4 below.
WELDING TRANSFORMER

A- C 0.- INPUT

'11F11111-0MITIRMSTinr. 1111.1).
00
THYRATRON

P LOT GENERATOR

D -C INPUT

SOURCE OFA-
CONSTANT VOLTAGE

KENOTRON

to

K-9033570
Fig. 2-Electron Tube Motor Control Circuit

12-30-44

Another application is the thyratron motor control circuit illustrated in Fig. 3 below. This is another circuit arrangement which can be used to operate a motor at constant speed in spite of wide load changes. The error signal may be

SHIELDED

T S2

0000000000 GRID
TRANSFORMER

K-9033516

CONTROL SWITCH
Fig. 4-Thyratron Welder -Control Circuit

11-2-44

One of the first large industrial applications of the thyratron tube was the light -draining control
board of the Chicago Civic Opera. This was followed
by that of the Radio City Music Hall where 313
lighting circuits were controlled electronically.
Many subsequent applications have proved the greater smoothness, efficiency, and flexibility of tube control, particularly with large numbers of circuits, than can be obtained with the conventional resistor board. A circuit for illumination control is illustrated in Fig. 5. The same basic scheme, using a saturable reactor may be applied to electric furnaces where thyratron rectifiers provide precision temperature control.

A -C SOURCE

MAXI MUM ADJUSTMENT

-cTN-TRCEETRANSFORMER

ZERO -ADJUSTMENT

THYRATRON

LAMP LOAD

POTENT10METER

SHIELDED

K-9033517

11-2-44

Fig. 3-Motor Control Circuit (*The Field of the D -c Motor is Supplied from a Separate D -c Source)

SATURABLE -CORE REACTOR

K-9033503

10-14.44

Fig. 5-Feed-back Circuit Used in Illumination Control

Fig. 5-Henney, Electron Tubes in Industry, P-250; McGraw-Hill Book Co., Inc., 1937

Potentiometers are provided to adjust circuits properly when the intensity control is set at maximum and at zero. These adjustments are made easily at the time of installation and are fixed thereafter.
The feed -back circuit compares the voltage on
the lamps with the voltage from the intensity control and acts on the grid of the controlled
rectifier to hold the lamp voltage constant for any one setting of the intensity control.
Gas -filled tubes may be used in inverter circuits for the conversion of d -c to a -c power, using the deionization time of the tube for commutation. Three typical inverter circuits are shown in Figs.
6, 7, and 8.

K-9033511

10-14-44

Fig. 6-Fundamental Single -Tube Inverter Circuit

GRID EXCITATION

to
THYRATRON

LOAD

ET1-116 PAGE 5
4-45

K-9033510

Fig. 9-Time-Delay Circuit

10-14-44

Another use of the thyratron is in temperature control applications. A circuit for high -temperature control is shown in Fig. 10 below.
This circuit is generally applicable at temperatures for which a resistance thermometer may be used to form one arm of the a -c Wheatstone bridge. Variation of resistance of any arm of the bridge controls the normal temperature which is obtained. The thyratron is used to control the operation of current contactors when the heater current is extremely high.
FURNACE -1 RESISTANCE THERMOMETER

D- C SUP PLY

K-9033586
Fig. 7-A Series Connection of Thyratrons for Inverter Operation
A -C OUTPUT

1-9-45

=
THYRATRON
D -C INPUT

T1 Cs

THYRATRON

K-9033512

10-14-44

Fig. 8-Self-excited Parallel -type Inverter Circuit

The time -delay circuit shown in Fig. 9 may be used for timing purposes in switching sequences for delayed applications of power, for printing presses, and for welding.

Fig. 6-Henney, Electron Tubes in Industry, P-232; McGraw-Hill Book Co., Inc., 1937
Figs. 7,8,10 and 12-Hull, A. W., General Electric Review, Vol. 32, No. 7; July 1929.

K-9033563

Fig. 10-High-temperature Control Circuit

1-1-45

The thyratron may be utilized in relaxation oscillator circuits to provide a linear time base for cathode-ray oscilloscopes. A relaxation -oscillator circuit is shown in Fig. 11 below in which R, and
C1 determine the frequency of operation.

SYNCHRONIZING
VOLTAGE
IF USED

OUTPUT VOLTAGE

K-9033506

10-14-44

Fig. 11-Relaxation Oscillator Circuit, for Time Base

Figs. 9 and 11-Maddock, A. J., Journal of Scientific Instruments,
March 1943.

ETI- 1 16 PAGE 6 4-45

APPLICATION CIRCUITS (CONT'D)

Thyratrons used with phototubes in circuits,

POWER

such as that shown in Fig. 12 provide a fast,

SUPPLY

trouble -free, automatic means for counting articles

or persons, or for operating doors. It is useful in many switching operations. The turning on of

RECTIFIED OUTPUT

lights, when daylight falls below a certain level of

intensity is an example.

K-9033502

10-14-44

Fig. 14-Variable Resistance Method of Control Producing Variation in Phase Between Resistance and Capacity Voltages

K-9033509

10-14-44

Fig. 12-Photoelectric Relay with a Thyratron (On -off Control Circuit)

Thyratrons are used to control the duration and

amount of current passing for welding, X-ray work,

or spectographic analysis using spark electrodes.

r A circuit for such applications is shown in Fig. 13. A -C eso

*---0040901)(1.

T I SPARK

WELDING

GAP

THYRATRON

JAWS

Since thyratrons are essentially rectifiers, one of their main uses is in rectifier circuits providing controlled d -c from an a -c source. Two circuits that may be used for power supply applications are shown in Figs. 14 and 15. Fig. 14 shows an arrangement designed to supply d -c power from an a -c source while Fig. 15 shows a means of supplying
a load with variable a -c power from an a -c source.

K-9033565

1-1-45

Fig. 15-Power Supply Circuit Using Thyratrons (Supplying Variable A -c Power from an A -c Source)

THYRATRON

rPHASE SHIFTING OR TIMING
CIRCUIT

K-9033524
Fig. 13-Impedance Control of Alternating Current

In general, applications of these tubes can be used to provide faster operation, reduced maintenance and more precise control than can be accom-
plished by other methods. The automatic operation, amplification of power, quiet operation, flexibility, 11-45 and saving of space, are additional features valuable for many industrial applications.

CIRCUIT DESIGN

Tubes are selected for these applications by con- should be chosen so that the grid current will be sideration of the ratings, including peak and average small and cause negligible drop in the supply. currents to be conducted, and peak inverse and Ambient temperatures should be considered and

forward voltages to be applied.

mercury tubes used only where the condensed

If very high -impedance grid -supply voltage is mercury can be held at temperatures above + 40 C.

to be used, a tube of shielded -grid construction

CIRC UITS

The circuits illustrated are examples of types that may be used in some of the applications discussed in this article. It is impossible to illustrate in any discussion reasonably brief even a fraction of the
circuits in which these tubes may be used for
specific applications. Those illustrated show a few

binations of these for the particular requirements of the task the tubes may be called upon to perform.
When a tube has been chosen for the application,
the Specifications should be consulted to determine the limits of operation. The remainder of the circuit
constants, voltages, and currents may then be

of the basic circuits for some of the major applica- checked to assure satisfactory operation of all tubes

tions. Many of the others are modifications or corn - within the specified limits.

Fig. 13-Griffith, R. C., General Electric Review, Vol. 33, No. 9,
Sept. 1930.

Fig. 14-Henney, Electron Tubes in Industry, P-798; McGraw-Hill Book Co., Inc., 1937

INSTALLATION

ETI-116 PAGE 7
4-45

Mechanical
Thyratrons should be mounted in sockets or supports of good quality with connections of sufficient current -carrying capacity. A shock absorbing mounting must be used if the tube is to be subjected to excessive vibration or sudden
shock.
Electrical
The cathode should be operated preferably from an a -c source. If alternating current is not available, a d -c source may be used.
The cathode must assume operating temperature before electron current is drawn. The delay may be accomplished either by manual or automatic
control of the anode or grid circuit. The time required for the cathode to come up to normal
operating temperature is included under Technical

Information. In the case of mercury -filled tubes, it is also necessary to bring the condensed -mercury temperature to the minimum operating value.
Thermal
When a mercury-vapor thyratron tube is first placed in operation, it is necessary to distribute the mercury properly before anode voltage is applied. This is usually accomplished by applying filament voltage to distill the mercury into the cooling chamber of the tube. The location of the
cooling chamber is indicated on the outline drawing by the words "controlling mercury temperature."
The design of equipment should allow the tube to operate within the condensed -mercury temperature limits over the range of ambient temperatures to be encountered.

OPER ATION

Four of the fundamental limits on the operation of thyratron tubes are the maximum peak inverse anode voltage, maximum peak forward anode voltage, maximum instantaneous anode current, and the maximum average anode current. These ratings were previously defined under "Definitions of Ratings."
Cathode Circuit
The cathode voltage should not deviate from the
rated value by more than five per cent and the
temperature before any other potential is applied. Filament voltage should be set so that voltage fluctuations give an average value equal to the rated filament voltage. Too low filament voltage may result in very short life or perhaps immediate failure due to loss of emission. Too high voltage will shorten the life of the cathode somewhat.
Anode Circuit Maximum Peak Inverse Voltage-The relations
between the peak inverse voltage, the direct voltage,
and the rms value of alternating voltage depend largely upon the individual characteristics of the rectifier circuit and the power supply. The presence of line surges, keying surges, or any other transient or wave -form distortion may raise the actual peak voltage to a value which is higher than that calculated from the sine -wave voltages in the trans-
former. Maximum Instantaneous Anode Current-The
ability of a given tube to conduct this instan-
taneous current without excessive voltage drop will depend upon cathode heating and the condition of the emitting surface.
Maximum Surge Current-The rating is intended to form a basis for set design in limiting the ab-
normal currents that occur during short-circuit

conditions. It does not mean that the tube can be subjected to repeated short circuits without the probability of a corresponding reduction in life and the possibility of a failure.
Maximum Average Anode Current In the case of a rapidly repeating duty cycle, this current may be measured on a d -c meter. Otherwise, it is nec-
essary to calculate the average current over a period not to exceed a definite interval of time
which is specified for each design of tube. For example, in a two -tube, 60 -cycle rectifier feeding into an inductive load (so that the tube conducts approximately half the time with a square wave) a tube with a maximum instantaneous anode current of 15 amperes, a maximum average current of
2.5 amperes, and an integration period of 15
seconds, can carry a series of 15 -ampere, 180 -degree blocks of current (half the time) for 5 seconds out
of each 15 seconds, or a series of 7.5 -ampere, 180 -degree blocks of current (half the time) for
10 seconds out of each 15 seconds.
Ionization Time This time varies with the wave form and amplitude of the impressed grid voltage. When the tube is operated under normal conditions, this time will not exceed the value given.
Deionization Time This time is dependent on temperature, grid voltage, anode voltage, and instantaneous anode current. The value under normal conditions is included under Technical In-
formation.
The ionization and deionization times place a limitation on the maximum frequency at which the tubes can operate for any set of conditions.
The Voltage Drop Where uninterrupted service is desired, the tube voltage drop should be checked
at regular intervals by means of a cathode-ray oscilloscope or other suitable means. This drop is one criterion of tube condition, and its rapid rise from one test to the next will anticipate failure.

ETI- 1 1 6
PAGE 8 4-45

Grid Circuit
Approximate Control Characteristic Since the control characteristic varies with individual tubes, only average curves can be given. In the case of mercury-vapor tubes, variation is also experienced as a function of temperature. For these reasons, and because of variable grid currents, it is always advisable in practice to supply the grid with several times the voltage apparently necessary.
Whenever possible, a phase shift or some other method of control which does not give an objectionable error due to these changes in characteristic should be used. This method permits fixing the time of starting of anode current anywhere in the positive half cycle of anode voltage.

The average value of anode current is thereby completely controlled for variations from zero to
maximum. For a strictly on -and -off control, the magnitude
method is satisfactory provided ample voltages are used on the grids. With the phase -shift method, more uniform control is obtainable since an excess of these voltages may be used at all times. This
method eliminates the effects of grid currents, variation in grid supply voltages and variation in
starting characteristic.
Note: The ratings and characteristics of a particular tube are given under Technical Information on the Description and Rating sheet for that tube.

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

1-46 (3M) Filing No. 8850

THYRATRONS
Recommended Types and Selection Chart

Peak Cathode Current in Amperes*
Average Peak Fault

Max
Peak Inverse Voltage

At 100 Volts

Control Characteristicst

Intermediate Voltage

At 1000 Volts

Cathode Volts Amperes

Max Temperature Range

0.5

2.0

40

5000 -1.0

1.0 1000 .... 25,000 ....

120

1250 -2.5

1.5

6.0

55

1250 -2.5

-1.6

2.5

15 200 30 250

1000 +1.0 1500 -1.0

3.2

40 560

1500

0

2000 +2.0 77 400 10,000 +1.0

6.4

80 112)

1500

0

-7.0 2.5

5.0

....

6.3 30.0

-5.0 2.5

7.0

-5.5 2.5

7.0

-6.5 5.0

4.5

-9.0 5.0

4.5

-5.0 2.5

9.0

-8.0 2.5 12.0

-9.0 5.0 10.0
-9.) 5.0 10.0

-6.0 2.5 21.0

+40 to +80 -50 to +75 -40 to +80 -40 to +80 +40 to +80 +40 to +80 -40 to +80 -55 to +70 +30 to +95 +25 to +95
-55 to +70

75 1500 10,000 ....
12.5
100 1500 3000 ....

18.0

160 2000

1500 ....

+1.0@l000V -6.0@8000V 0@200V
0 @300V

.... 5.0 20.0
-10.0 5.0 19.0 -3.0 2.5 34.0

+40 to +65
+40 to +80 -55 to +70

* Values listed are maximum va ues and do not apply for all types of application. Refer to data sheet for detailed information. f Grid characteristic ratings are bogey values. The screen -grid voltage is zero for four -element tubes.
1 Designed for pulse switching applications. § Designed for a high commutation factor.
Tubes identical except for bases.
11

ET -T1469 Page 1 1 2-57
Tube Type
GL -5557 GL -5948$ GL -3C23 GL -393-A GL -5559 GL -5560 GI -6011/710 GL -5544§ FG-172 FG-105 GL -6807§1I GL -6808 GL -6809 GL -5830 GL -414 GL -5855§

ELECTRONIC COMPONENTS DIVISION

GENERAL

ELECTRIC

Schenectady 5, N. Y.

DESCRIPTION AND RATING

GL -3C23
ET -T1475 PAGE 1
1 1-57

THYRATRON

TRIODE TYPE

NEGATIVE CONTROL CHARACTERISTIC

INERT -GAS AND MERCURY-VAPOR

The GL -3C23 is a 3 -electrode mercury-vapor and within wide temperature limits. The construction inert -gas -filled thyratron with negative control however, enables the tube to withstand higher

characteristic. The mixture of inert -gas and mer- voltages than many gas -filled types. cury-vapor provides constancy of characteristic

TECHNICAL INFORMATION

GENERAL

Electrical

Minimum

Bogey

Cathode-Filamentary

@Filament Voltage

2.37

2.50

®Filament Current at 2.50 Volts

6.25

7.0

Heating Time Required

15

Anode -to -Control -Grid Capacitance

1.8

Deionization Time, approximate

1000

Ionization Time, approximate

10

Anode Voltage Drop .

15

Mechanical

Type of Cooling-Convection

O Equilibrium Condensed -Mercury Temperature

Rise Above Ambient, typical

At Full Load

At No Load

Mounting Position-Vertical, Base Down

Net Weight, maximum

Maximum

2.62 Volts

.7...7.5

Amperes Seconds

Microseconds Microseconds Volts

22 C 18 C 3 Ounces

GENERAL ELECTRIC
Supersedes ETI-1175 dated 4-51

GL -3C23

ET -T1475

PAGE 2
11-57

TECHNICAL INFORMATION (CONT'D)

MAXIMUM RATINGS, Absolute Values

Maximum Peak Anode Voltage

Inverse Forward Condensed -Mercury Temperature Limits*

200

1250 Volts

200

1250 Volts

-40 to +100 -40 to +80 C

Maximum Cathode Current Peak . Average 0 Maximum Averaging Time Fault

6.0

6.0 Amperes

1.5

1.5 Amperes

5

5 Seconds

120

120 Amperes

Maximum Duration

0.1

0.1 Seconds

Maximum Negative Control -Grid Voltage Before Conduction During Conduction

500

500 Volts

10

10 Volts

Maximum Positive Control -Grid Current Average, averaging time-one cycle
Maximum Frequency

0.010 400

0.010 Amperes 400 Cycles per Second

* The tube may be started and satisfactory operation will result between -40 C and +80 C. For maximum life the condensed -mercury temperature after warm-up should be as specified.

O Denotes an addition. ® Denotes a change.

TYPICAL CONTROL CHARACTERISTICS

/ SHADED AREA SHOWS RANGE OF CHARACTERISTIC

1200

1100

1000

900

800

700

600

500

400

300

200

,..)A. 6.4A A

100

COND. Hg TEMP =-40 TO+80 C

- 0 -9
K-9033533

-8 -7 -6 -5 -4 -3 -2 -I
DC GRID VOLTAGE AT START OF DISCHARGE IN VOLTS

0
11-24-44

2rI6" DIA. MAX.

CAP
CI -5
ANODE TERMINAL

GL -3C23
ET -T1475 PAGE 3 1-57

6-I MAX.

54-+4I"
BASE
A4-10

GRID TERMINAL NO CONNECTION
K-8639392-Outline revised.

FILAMENT
TERM IN ALS
11-26-57

ELECTRONIC COMPONENTS DIVISION
GENERAL ELECTRIC
Schenectady 5, N. Y.

FG-27-A
DESCRIPTION AND RATING
ETI-119C PAGE 1
5-49

THYRATRON

DESCRIPTION

The FG-27-A is a negative -control mercuryvapor tube for use where it is desired to actuate

It requires relatively little grid power and is suitable for use in relay circuits where current flow

the tube with a change in negative grid voltage. is desired in the absence of grid excitation.

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS

Number of electrodes

Electrical

Cathode-Filamentary type

Filament voltage

Filament current, approximate

Filament heating time, typical

Peak voltage drop, typical

Approximate control characteristics

Anode voltage

60

Grid voltage

0

Anode to grid capacitance, approximate

Ionization time, approximate

Deionization time, approximate

100
-2.25

3
5 0 volts 4 5 amperes 60 seconds 16 volts
1000 volts
-8.0 volts
4.4 micromicrofarads 10 microseconds 1000 microseconds

GENERAL ELECTRIC

Supersedes ET1-119A dated 12-45

FG-27-A

ETI-1 19C PAGE 2 5-49

TECHNICAL INFORMATION (CONT'D)

Mechanical

Net weight, approximate Shipping weight, approximate Mounting position
MAXIMUM RATINGS

4 ounces 3 pounds
vertical, base down

Maximum peak anode voltage

Inverse Forward

1000 volts 1000 volts

Maximum negative grid voltage

Before conduction . During conduction

500 volts 10 volts

Maximum anode current

Instantaneous, 25 cycles and above

10.0 amperes

Instantaneous, below 25 cycles

5.0 amperes

Average

2.5 amperes

Surge, for design only

200 amperes

Duration of surge current

0 1 second

Maximum grid current

Instantaneous

1.0 ampere

Average Maximum time of averaging current

0 25 ampere 15 seconds

Temperature limits, condensed mercury
Recommended temperature,

condensed

mercury.+.4.+0 4to0+c80encetingtirgaraddee

THYRATRON FG-27-A TYPICAL CONTROL CHARACTERISTICS SHADED AREA SHOWS RANGE OF CHARACTERISTICS CONDENSED MERCURY TEMPERATURE 40 C

1000

800

600 400

200

-14 -12 -10 -8

-6

-4

-2

D -C GRID VOLTAGE AT START OF DISCHARGE OF VOLTS
K-8639303

0
7-29-43

A FG-27A RATE OF RISE OF CONDENSED MERCURY TEMPERATURE ABOVE AMBIENT

FG-27-A
ETI-119C PAGE 3
5-49

30 MMUIMMERNMEMMORMEEMMEM

U

MIMEMMIUMEMEMEMMEMEMMEMMOI

MMMEONINMMUIMIMMEMMIONIMMEINEIMMMAE=M9E1M1I4U1M1MMoMnHiNmIaMmImLoImMmMiEmMmMaImNmIuMmEMmMomMmoomm

w

11111,M1111911!"11111111111II111111111111111111111111

c
z

25

1MWMI8IM1NIM1MI1MME1MM1MI=EMM1MM,OUM1MM1EN1MMI1EM1MME.NUNMUIMMKA1A1IM1N;1I1=M1M1ME1I11111N1MO1MM1MI1EI1MM1EM1ME1MM1I1EN1ME1MM1II1MN1MM1I1EN1MI11M1EM1EM1MM1M1E=1MM1ME1E1MM1E1MM1Om1MI1Ml1Ul1M

u-)

IIIIIIIIIIIIIIIIIIIIIII

1111
II MEM WM MU

WM

=

w 20

=

1- 15
U
B 10 w 0

Id 16111111

I I

1 1 1 1

11111 111 III 1

1111111"
5
N-21539ZA
A New curve.

10

15

20

25

30

HEATING TIME IN MINUTES
A FG-27-A TYPICAL CONTROL GRID CURRENT
VS
CONTROL GRID VOLTAGE DURING CONDUCTION E1=5.0 VOLTS A -C
1000

900
111
000

z 700

q5 600

500
8 O 400
X 300

200 100

K -69087-72A136
A New curve.

0

10010

8

-6

4

-2

0

2

4

6

D C CONTROL GRID VOLTAGE IN VOLTS

35

40

3-10-47

4-30-47

FG-27-A
ETI-119C PAGE 4 5-49

OUTLINE
THYRATRON FG-27A

ANODE
TERMINAL CI -5

.566" .007"
DIA.

400" MIN.

CONTROLLING MERCURY TEMP LEVEL
BASE
A4-10

7,'A4

5-49 (10M) Filing No. 8850

FILAMENT TERMINAL

GRID a ANODE
RETURN TERMINAL FILAMENT MIDTAP
GRID TERMINAL

K-4909071
MRevised outline
Electronics Department

8-29-47

GENERAL

ELECTRIC

Schenectady, N. Y.

1000 900 800 700

GL-5728/FG-67 TYPICAL CONTROL GRID CURRENT
VS.
CONTROL GRID VOLTAGE DURING CONDUCTION Ef =5.0 VOLTS A -C

GL -5728 /FG-67
ETI-123E PAGE 5
5-49

600

500
400 1111111011111111111 1111

300

0

1

I

200

11 III
r

100

.I

111111111111111 Midi" iiiihibillifillPlig1111
-100

-5

-4

-2

-1

0

1

2

3

K -69087-72A139

D -C CONTROL GRID VOLTAGE IN VOLTS

I
4
4-8-48

GL -5728 /FG-67
ETI-123B PAGE 6 5-49

OUTLINE
GL -5728 /FG-67 THYRATRON
3" DIA. MAX
400'
MIN.

ZONE FOR CONDENSED MERCURY TEMPERATURE MEASUREMENT
4

- 6 4 4
BASE A4-10

5-49 (10M) Filing No. 8850

HEATER
TERMINALS *411
piel
-.011111wir
CATHODE TERMINALS
K-3846065
El Revised outline.

GRID 8 ANODE RETURN TERMINAL
GRID TERMINAL
4-18-48

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

FG-81-A
DESCRIPTION AND RATING
ETI.124B PAGE 1
10-49

THYRATRON

DESCRIPTION
The FG-81-A is an inert -gas -filled thyratron with a negative control characteristic.
Although inert -gas -filled tubes can be operated
in much lower ambient temperatures than mercury-vapor types, they are not rated at as
high voltages as mercury tubes of comparable size.

This tube is particularly adapted to applications where it is desired to have current flow in the absence of grid excitation, where
constancy of characteristic is required with large variations in ambient temperature and where the tube is subjected to intermittent operation.

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS

Number of electrodes

3

Electrical

Cathode-Filamentary type

Filament voltage Filament current, approx Filament heating time, typical Peak voltage drop, typical Approximate control characteristics

2 5 volts 5 0 amperes
5 seconds
16 volts

Anode voltage Grid voltage Anode to grid capacitance, approx Ionization time, approx.

25 100 500 volts
0 -3.0 -5.25 volts
4 4 micromicrofarads
10 microseconds

Deionization time, approx

1000 microseconds

GENERAL

ELECTRIC

Supersedes EP -124A dated 12-45

FG-8 1 -A
ETI.124B PAGE 2 10-49

TECHNICAL INFORMATION (CONT'D)
Mechanical
Net weight, approx Shipping weight, approx Mounting position

MAXIMUM RATINGS
Maximum peak anode voltage Inverse Forward
Maximum negative grid voltage Before conduction During conduction
Maximum anode current Instantaneous, 25 cycles and above Instantaneous, below 25 cycles Average Surge, for design only
Duration of surge current Maximum grid current
Instantaneous Average Maximum time of averaging current Ambient temperature limits

4 ounces 3 pounds
vertical, base down
500 volts 500 volts
70 volts 10 volts
2 0 amperes 10 ampere 0 5 ampere 40 amperes 01 second
0 25 ampere 0 05 ampere
15 seconds
-55 to +85 centigrade
500

400

300 200

100

-8 -7
K-6917474

-6

-5

-4

-3

-2

-1

D -C GRID VOLTAGE AT START OF DISCHARGE IN VOLTS

THYRATRON FG-81-A TYPICAL CONTROL CHARACTERISTICS SHADED AREA SHOWS RANGE OF CHARACTERISTICS

0
8-20-43

FG-8 1 -A
ETI-124B
PAGE 3
10-49

240 220 200 180 160

MEE 1M I MillE111111=11111111

mini

I

C171.111111..11111111111,11111116-11 '

iins4.1M1il

MU ., Arirrnarmorz:yzrmnin

I I
II
111111111111111ME

,E1114

I

ME11:11-/

IIIIIME11111
:11.;

-1

-ealkIIIIEIEI111

,11.1.1

1

1I IMNE

EVIIIIIMINIESIM4b/SESE.11110=MISEMEEEEEME11111111 M

EMMEN

II

W'F 1I14.11111111k1.111411,TMSEI1S\A"Ii1*,AMI IIIEILMLA7MA1/aMl 1A1111,1..11IN

-1. M 11.

.111'.11T1PrirTISECIMEEIT

I IS

111111.,1101011 1101.111111111111 NEVI

I1

- .;;L:11:111:."

MEMBI II

iffEEEEE111111111111111NEEEMBEENSIENIIIIINE MMMMMMMMMM

I

It

.r-AMmille,11S11111,lI/J El SAE%

1 M
IUI 111111111111111E1111111111111

1

NEBB
MEW

1

1 1

1 I....1 111111111111111111111111111111111111111 El EEZBEE1111111111111111

II

IIEIl!I

1

ENE111111ENNIMIENEEEEEEI II I IMIE1111111111ENNEEEMEIRMENEMBEEMMISIEN

ultMI 1
ra 1E11 KEENE:

IN I

1E11

.1-I.1 11111111.11EIu.1 man IiIsIII

poonm.
MEUNIER

III M El AIMEE MMMMM III

1111111111111EMEMEEEENEMEEEEE ERB

140 120

IIII 111111111111.11111111fEE I El ENEMIES

II I

1

1111111111111

I

11111 1111111

IIIIIMINUM111111El II Mum1E1I

Ell

MI I

1

MluIlIl

WM. 11111111N111111111111111M1111111111IMMEnn

11111E MEM
11111

11111

1oEn11I

111111111

ISEBBEEEEE

100 Minn

80
I1n1n

1
60

El

INN IMRUENNEE

I

m
U.
I

40 EINEM:
11111111EMEEI
ninninummum

1 1

ME
20 1117
Cu......

IEEEITIEMEIEMEE

0 MMMMMMM 71111:411ST N...E1NM711111.1111Send..110/

I
IIMS1/EIN MM

11,1,1111111rIst:.

-20

10

-8

-6

-4

n M RE 1E1
RI I
10111 1E11
IIIII MN NENE
IEiInIll11I NINE 1Ell MEI

MAU
1 mum...
1111111.11

imNmEMix

I
1111
IMNIr
1IN1I1I I1
NM I
/I/I
I III ram

.IAolwl/1an

IIIIII/

MU

1

/EWA

M MEV
'
A

.1

mug

lee
m
WIEN
1 11 En 111111NWISinill MMMMMMMMMMM EMENEWEBI

E11111S1 EEEINE
ME
REEMEMBER
11111111

-2

0

2

K -69086-72A140 (New drawing)

D -C CONTROL GRID VOLTAGE IN VOLTS

4-29-47

FG-8 1 -A
ETI-124B PAGE 4 10 49

400 MIN.

OUTLINE FG-81 -A THYRATRON
007" DIA
ANODE TERMINAL C I- 5

6a3H-+4I"

BASE A4-IO

10.49 (10M) Filing No. 8850

FILAMENT TERMINALS

GRID TERMINAL

K-4373365

8-20-45

Tube Divisions, Electronics Department

GENERAL ELECTRIC
Schenectady, N. Y.

FG-97
DESCRIPTION AND RATING
ETI-126C PAGE 1
10-49

THYRATRON

DESCRIPTION

The FG-97 is a mercury-vapor double -grid
thyratron designed for applications where the avail-

to actuate the grid from a high -impedance source.
It may be used in applications where the tube

able grid power is very small and where it is desired temperature can be maintained relatively constant.

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS

Number of electrodes

Electrical
Cathode-Filamentary type Filament voltage Filament current, approximate Filament heating time, typical

Peak voltage drop, typical

Approximate control characteristics

Anode voltage

100

Shield -grid voltage

0

Control -grid voltage

+0.5

Anode to control -grid capacitance, approximate

Ionization time, approximate

Deionization time, approximate

4
2 5 volts 5 0 amperes
5 seconds 16 volts
1000 volts 0 volt
-13.0 volts
0 3 micromicrofarad 10 microseconds 1000 microseconds

GENERAL

ELECTRIC

Supersedes ETI-1268 dated 10-47

FG-97
ETI-126C PAGE 2 10-49

TECHNICAL INFORMATION (CONT'D)

Mechanical
Net weight, approximate Shipping weight, approximate Operating position
MAXIMUM RATINGS Maximum peak anode voltage Inverse Forward Maximum negative control -grid voltage Before conduction During conduction Maximum negative shield -grid voltage Before conduction During conduction Maximum anode current Instantaneous, 25 cycles and above Instantaneous, below 25 cycles Average . Surge, for design only Duration of surge current Maximum control -grid current Instantaneous. Average Maximum shield -grid current Instantaneous Average Maximum time of averaging current Temperature limits, condensed mercury Recommended temperature, condensed mercury

5 ounces 4 pounds
vertical, base down
1000 volts 1000 volts
1000 volts 10 volts
300 volts 5 volts
2.0 amperes 1 0 ampere 0 5 ampere 40 amperes 0 1 second
0 25 ampere 0 05 ampere
0.25 ampere 0.05 ampere
15 seconds +40 to +80 centigrade
40 centigrade

8 00 60 0 40 0

-22 20 18 16 14 12 10 8 6 4 2 0 +2 +4 +6

K-8639317

D -C GRID VOLTAGE AT START OF DISCHARGE IN VOLTS
THYRATRON FG-97 TYPICAL CONTROL CHARACTERISTICS SHADED AREA SHOWS RANGE OF CHARACTERISTICS CONDENSED MERCURY TEMPERATURE 40 C
SHIELD GRID VOLTAGE ZERO

11-13-44

25
U Uw)
CD
20
z

RATE OF RISE OF CONDENSED MERCURY TEMPERATURE ABOVE AMBIENT
E1=2.37 VOLTS

FG-97
ETI-126C PAGE 3
10-49

w 15

Li 4.1
Li!
I- 10
-
U
Li
2LLJ
5
z 0
U

0

5

10

15

20

25

30

35

HEATING TIME IN MINUTES

N-21528ZA

240

220 200 180 160

140 120 100 80 60

40

20

0

20,5

4

-3

2

3

4

5

D C CONTROL GRID VOLTAGE IN VOLTS

K -69087-72A142 (New drawing)

4-29-47

40
3-11-47

FG-97
ET1-126C
PAGE 4
10-49

.400" MIN.

OUTLINE
FG-97 THYRATRON
1".- .566"--0D0IAA7."
-ANODE TERMINAL 01-5

/CGIR-ID5 TERMINAL

CONTROLLING MERCURY TEMPERATURE (FG- 97 ONLY )
BA SE
A4-IO
FILAMENT TERMINAL

5L- MAX. 8
N.C.
45°1' 5e

K-4955906 N Revised drawing
10-49 (10M) Filing No. 8850

SHIELD GRID TERMINAL

Tube Divisions, Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

11-12-47

FG-105
DESCRIPTION AND RATING
ETI.128B PAGE 1
10-50

THYRATRON

DESCRIPTION
The FG-105 is a double -grid, mercury-vapor thy- tions where the grid is actuated from a high-impedratron. Double -grid tubes are designed for applica- ance source and where available grid power is small.
TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS

Number of electrodes

Continuous

Electrical

Service

Cathode-Indirectly heated type

Voltage

5.0

Current, approximate

10.0

Heating time, typical.

5

Peak voltage drop, typical .

16

Approximate control characteristics

Anode voltage . . .

.

100 1000

Shield -grid voltage . Control -grid voltage

0

0

+1.0 -9.0

Anode -to -control grid capacitance,

approximate ..

.

0.3

Ionization time, approximate . . 10

Deionization time, approximate .. . 1000

.4
Intermittent Service

5.5

5.0 volts

11.0 10.0 amperes

5

5 minutes

16

16 volts

100 1000 volts

0

0 volt

+1.0 -9.0 volts

0.3

0.3 micromicrofarad

10

10 microseconds

1000 1000 microseconds

GENERAL

ELECTRIC

Supersedes ET1-128A dated 10-47

FG-105

EYI-128B PAGE 2 1 0-50

TECHNICAL INFORMATION (CONT'D)

Mechanical
Net weight, approximate Shipping weight, approximate Mounting position

.22 ounces 7 pounds
. vertical, base down

MAXIMUM RATINGS

Inverse...2500 Maximum peak anode voltage

Continuous Service

Forward

2500

Maximum negative control -grid voltage

Intermittent* Service

750

10,000 volts

750

10,000 volts

Before conduction . During conduction

.1000
10

1000
10

1000 volts 10 volts

Maximum negative shield -grid voltage

Before conduction .

500

500

500 volts

During conduction

10

10

10 volts

Maximum anode current

Instantaneous, 25 cycles and above .. ..... .. .. .. .... 40

77

16 amperes

Instantaneous, below 25 cycles

. 12.8

5.0

8.0 amperes

Average

6.4

2.5

4.0 amperes

Surge, for design only

400

400

160 amperes

Duration of surge current

0.1

0.1

0.1 second

Maximum control -grid current

Instantaneous

1.0

1.0

1.0 ampere

Average..
Maximum shield -grid current

. 0.25

0.25

0.25 ampere

Instantaneous.

2.0

2.0

2.0 amperes

Average . Maximum time of averaging current Temperature limits, condensed mercury.

. 0.50

0.50

0.50 ampere

15

5

15 seconds

. +40 to +80 +30 to +95 +25 to +50 centigrade

Recommended temperature, condensed mercury

40

40

40 centigrade

*Interpolate linearly for values of anode current and temperature for operation at voltages between 2500 and 10,000 volts.

FG-105 RATE OF RISE OF CONDENSED MERCURY TEMPERATURE ABOVE AMBIENT

030

czuj
c 25

!m!!m!!r!iSnuEmEuPmmRbEroElu!m!!m!!oMrmpilzIaKoEmIpLliFnlighWilliiiitallinI

z

ear ....

lipmproonnippplimming w
"rx 20

111111101111111111111111pommollimioro

ccW

guj 15 II Impomuim bitummmompE inummognimpliono
w

>- 10

CL2 141
1111

1111111 111 1111111

011 1111

da 11J

5

immmineiribeigmumuminumunnummuquunnumunmuuniiiiiiiinnumg
muldNEP "

TEN: h Lai

Ca

6U 0

5

nuNIFIMPIOLTE

10

15

20

25

.. ..Rhino

30

35

40

45

50

55

N21540ZA

HEATING TIME IN MINUTES

3-11-47

FG-105 RANGE OF CHARACTERISTICS VS SHIELD -GRID VOLTAGE
CONDENSED MERCURY TEMPERATURE 40 C

Ec .45 V11. TS

VOL5

I/

/ 0000
00/ ci

0//

.-30 -.0 -10

0

10

20

30

40

50

60

70.

D-C CONTROL-GRID VOLTAGE AT START OF CONDUCTION IN VOLTS

K-9033537

.FG-105
CATHODE REHEATING CURVE ANODE VOLTAGE =0

6-17-46

4
>"'

FG-105
ETI.128B PAGE 3
10-50

THYRATRON FG-105 TYPICAL CONTROL CHARACTERISTICS SHADED AREA SHOWS RANGE OF CHARACTERISTICS CONDENSED HG TEMPERATURE 40C
SHIELD -GRID VOLTAGE ZERO
2600

2400

2200

2000

1800

1600

1400

1200

1000

800

600

400

200

0 -28.26-24 22 -20 18 -16 -14 -12 -10 -8 -6 -4 2 0 .2 4.4 .6 48

D -C GRID VOLTAGE AT START OF DISCHARGE IN VOLTS

K-8639321

.FG-105
AVERAGE GRID CHARACTERISTICS BEFORE ANODE CONDUCTION

7-27-45

FG-I0

VERAGF GRID DHA AC ER ST CS

.0.6

BEFORF 421015E CON1)UITLIti

+0 4

+0 2

NE
0

CONDUC NON STARTS

-1.0

2
K -69087-72A268 New drawing

3

4

5

6

7

8

TIME OFF IN MINUTES

10
2-21-49

4 -I 6

-I 8

-1000

-800 -600 -400 -200

0

EA- C GRID VOLTAGE IN VOLTS

4200

K -69087-72A274 New drawing

3-21-49

FG- 1 05
ETI-128B PAGE 4 10-50

FG-105
TYPICAL VARIATION OF CONTROL CHARACTERISTIC WITH A HEATER PHASE VARIATION OF 180 DEGREES

2800

111111111

1111111111111111111111111111111111111111111111111111111111111111111111
il millimillimilimilloppgq111411111001411

1111111111111111111111111111111111111111111Eilliiiiiiiliiiill 2400

1

I L 2000
11111111111111111111111111111111111111111111111111111111111111111111

1600

1200
11 1111111111111111111111111111111111111111111111111111,11111!!
800

400

I1,111,11,1 1.11111,11,111,11,11.11,11il1l111111I101 1

-24

-20

K -69087-72A18

-16

-12

-8

-4

D -C GRID VOLTAGE IN VOLTS

5-13-46

*FG-105
TYPICAL CONTROL GRID CURREN
VS.
CONTROL GRID VOLTAGE DURING CONDUCTION
Ee2 = 0, Ef =5.0 VOLTS A -C

FG-105
ETI.1288 PAGE 5
1 0-50

1000

I

on 900 11111111110111111111111111111111111)601

800

700
600 1111111111111111111011

500
11111.1111111111111llllllllllllllll
400

300

1111

1111111

200
111111111111111111111111111111111111

100

01111101,11
1 I 11111101: 111111111I"111M1I1111I11I1I111114 1111111111
-100

11111110111111111111111111111111111111111111111111

-200

-10

-8

-6

-4

-2

0

2

4

6

K -69087-72A144 New drawing

D -C CONTROL GRID VOLTAGE IN VOLTS
4-29-47

FG-105
ETI-128B PAGE 6 10-50
.800,1±.007"
.795" MIN.

*OUTLINE FG-105 THYRATRON

311 DIA. MAX. -0.

ANODE TERMINAL

CAP NO. CI -15

CONTROL-GRID TERMINAL
CAP NO. CI-. IS

2-vs 2

MAX

74 -4

ZONE FOR CONDENSED-MERCURY
TEMPERATURE MEASUREMENT is
4

--I--
1 --

7 BASE NO. A4-18

HEATER TERMINAL CATHODE
a HEATER
TERMINAL SHIELD-GRID TERMINAL
K-4955972 'Revised drawing
10-50 (11M)

45°

CATHODE, GRIDSANODE RETURN
TERMINAL
9-15-50

Tube Divisions, Electronics Department

GENERAL

ELECTRIC

Schenectady, N. Y.

DESCRIPTION AND RATING

FG-172
-T151 PAGE 1
12-58

THYRATRON
The FG-172 is a double -grid, mercury-vapor pedance source and where the available grid power thyratron. Double -grid tubes are designed for appli- is very small. The all -metal construction results cations where the grid is actuated from a high-im- in a sturdy tube for industrial applications.

TECHNICAL INFORMATION

GENERAL
Number of Electrodes
Electrical
Cathode-Indirectly Heated
Voltage . Current, approximate Heating Time, typical Peak Voltage Drop, typical Control Characteristics, approximate Anode Voltage Shield -Grid Voltage Control -Grid Voltage Anode to Grid Capacitance, approximate . Ionization Time, approximate . Deionization Time, approximate

Continuous Service

5.0 10.0
5
16

100 2000

0

0

+1.0 -14

0.07

10

1000

4
Welder -Control Service

5.5 Volts 11.0 Amperes
5 Minutes 16 Volts

100
0
+1.0

2000 Volts
0 Volt
-14 Volts
0.07 p.m.f 10 Microseconds
1000 Microseconds

GENERAL tds ELECTRIC
Supersedes ETI-130A dated 10-47

FG- 1 72

ET -T1513 PAGE 2 12-58

TECHNICAL INFORMATION (CONT'D)
Mechanical
Net Weight, approximate Shipping Weight, approximate Mounting Position-Vertical, Radiator Down

22 Ounces 7 Pounds

MAXIMUM RATINGS
Maximum Peak Anode Voltage Inverse Forward
Maximum Negative Control -Grid Voltage Before Conduction During Conduction
Maximum Negative Shield -Grid Voltage Before Conduction During Conduction
Maximum Anode Current Instantaneous, 25 cycles and above . Instantaneous, below 25 cycles Average. Surge, for design only Maximum Duration
Maximum Control -Grid Current Instantaneous Average Maximum Shield -Grid Current Instantaneous. Average. Maximum Averaging Time
Temperature Limits, condensed mercury. Recommended Temperature, condensed mercury

Continuous Service
.2000 .2000

Welder -Control Service
750 Volts 750 Volts

1000

1000 Volts

10

10 Volts

300

300 Volts

5.0

5.0 Volts

40

77 Amperes

13.0

13.0 Amperes

6.4

2.5 Amperes

400

400 Amperes

0.1

0.1 Seconds

1.0

1.0 Ampere

0.25

0.25 Amperes

2.0

2.0 Amperes

0.50

0.50 Amperes

15

15 Seconds

+40 to +80 +30 to +95 C

40

40 C

TYPICAL CONTROL CHARACTERISTIC SHADED AREA SHOWS RANGE OF CHARACTERISTIC CONDENSED -MERCURY TEMP 40 C, SHIELD GRID CONNECTED TO CATHODE

24 22 20 8 16 14 12 10 8 6 4 2 0 +2 +4 +6 +8

DC CONTROL GRID VOLTAGE AT START OF DISCHARGE IN VOLTS

K-8639645

6-27-44

rRATE OF RISE OF CONDENSED MERCURY TEMPERATURE ABOVE AMBIENT Ef =4.75 VOLTS 25
20
15
10
5

FG-172
ET -T1513 PAGE 3
12-58

0

5

N-21526ZA

10

15

20

25

30

35

HEATING TIME IN MINUTES

40

45

3-10-47

RANGE OF CHARACTERISTICS VS SHIELD -GRID VOLTAGES CONDENSED MERCURY TEMPERATURE 40C

mar r MEE v°11111111111111112111111111011111131M11
MENA IIMIIIIOMNMIMEINIEINUSMEENTIMKIIENNI
111111WOU1 INIMMINIMIWASSE
r111//I/Ii 111111111111111
111111121=11111/0211111M/WAMOIN
EINIMPINIMMEINIMPAVOMINII

11111211111111MINIIIIIIIMMIMMI
111111MOINIMINIESPAINSIII
1111111112MUMENNEMINIMERINER
111111111MMERIMMEMBINIIMI 111111EMPINIMIMMIRTINIPMII
IMIEFINMERWAUMINIMMIIIM

1m11m11a1s1k11a1m1EiMOEINWIP=AINWIMIANMNII

1111111111111111MEIMIMINEEMEN

30 -20 -10

0

10

20

30

40

50

60

70

DC CONTROL -GRID VOLTAGE AT START OF CONDUCTION IN VOLTS

K-9186170

6.17-46

FG-172
ET -T1513 PAGE 4 12-58

TYPICAL VARIATION OF CONTROL CHARACTERISTIC WITH A HEATER PHASE VARIATION OF 180 DEGREES
CONDENSED -MERCURY TEMPERATURE 40 C, El = 5.0 VOLTS, E02=0

2000

1800
1111111111110111111111111111111111111111
1600

1400
ilk 1111111"111111i111111111111111111111111111111111111111111111
12 00

1111111111 III 1111111111111111111111111111111111111111111

1m1u1l1l1.11.1.11.1.1.1.1.1..II.I..1.1.1.1.1.11.1.1.1.1.1.1.11.1.1.1.1.1m1.1.11.1.1.1.1.1.1.11.1.1.1.1.1.1.1.1 1000
==IENM m0 MMM.IImIiMuMmEmIiMliMnEiMrMnEiNmWmEIRMUMSEEMrInNiMuEmMmoEmEiMiEmMmMiEmNmiITMhliimmimmEm

MNiImpNlIiMMMIMIEIM.N

11111,1101M131111MMMIMMIMMI
Elm MENEUMEMEMMEMENNEMENOMMEMENNEMEMENEMEN

800

MEEMNMNEEN MUMNMEONMEMMEENE MEEMNEEMMEEENMEEMEEMNEENMNEENNEEMWOEMNMEEMMEENNEEMMEENMEEMNEENMNEEMMEENNENMEEMNMEEMMEEMN

EMENNIIIIImENEMENEMENEEEMENNEMEMEIMMEMEMENEMEMEMENNEMENEMEM EMENEMEMEMEMENNEMENWEEEMENNEMENEMENNEMENNEENE

600

M

1I 1Maia11l'1EME1NM1NNEMENEEM1MOMMENEME,1E1ME1EM1ENE11M1N 400
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIMINIIIIIIIIIIIIIII

200

II II

HEATER VOLTAGE OUT -OF -PHASE WITH ANODE VOLTAGE CHARACTERISTIC SAME WITH D -C ANODE VOLTAGE HEATER VOLTAGE IN -PHASE WITH ANODE
-VOLTAGE

1111111111111111111 I 1111
-20 -18 -16 -14 -12 -10 -8 -6 -4

DC GRID VOLTAGE IN VOLTS

K -69087-72A22

+2
5-13-46

FG- 1 72
ET -T1513 PAGE 5 12-58

If 13"
64 ±64
ANODE
TERMINAL

vt-e3-"+

31i
32

I1-121MAX.
Ill

5+ 11 '1 -3 2 A

CONTROL GRID
TERMINAL

10 II's-+3it2s
u 1"
98 -+ 8

314
8 MAX.

is
311+
16

I" MAX.
`4

5te 1"
5- ± 8 16

RADIATOR CONTROLLING MERCURY TEMPERATURE

r-

1581
MAX.

III

V 11

+ I6

16- 1-g

S 5" 4" 5' + 16-32
1314.
16 -
HEATER TERMINAL LETTER "F"
1200±10-

4
--83-113+12'.

-

II

1 -2- MAX.

4

gt4-40 THREAD THREADED I/4" MIN.
FROM END

5otioo

HEATER a CATHODE TERMINAL LETTER "K"

174 Am le 28±4 wipp-_,4*)20.

-8 MAX.

SHIELD GRID TERMINAL ON EITHER MOUNTING BRACKET

K-5185243

3-22.48

ELECTRONIC COMPONENTS DIVISION

GENERAL

ELECTRIC

Schenectady 5, N. Y.

DESCRIPTION AND RATING

GL -393-A
ETT1476 PAGE 1
11-57

THYRATRON

TRIODE TYPE

NEGATIVE CONTROL CHARACTERISTIC

INERT -GAS AND MERCURY-VAPOR

The GL -393-A is a 3 -electrode mercury-vapor within wide temperature limits. The construction and inert -gas -filled thyratron with negative control however, enables the tube to withstand higher

characteristic. The mixture of inert -gas and mer- voltages than many gas -filled types. cury-vapor provides constancy of characteristic

TECHNICAL INFORMATION

GENERAL

Electrical
Cathode-Filamentary

Minimum

Filament Voltage

2.37

Filament Current at 2.50 Volts

6.25

Heating Time Required

15

Anode -to -Control -Grid Capacitance

Deionization Time, approximate

Ionization Time, approximate

Anode Voltage Drop

Mechanical

Type of Cooling-Convection

Equilibrium Condensed -Mercury Temperature Rise Above Ambient, typical

At Full Load

At No Load

Mounting Position-Vertical, Base Down Net Weight, maximum

Bogey
2.50 7.0
1.8 1000
10 15

Maximum
2.62 Volts 7.75 Amperes
. Seconds
tta
Microseconds Microseconds Volts
22 C 18 C
3 Ounces

GENERAL

ELECTRIC

Supersedes ETI-132 dated 4-45

GL -393-A
ET -T I 476
PAGE 2
11 -57

TECHNICAL INFORMATION (CONT'D)

MAXIMUM RATINGS, Absolute Values

Maximum Peak Anode Voltage

Inverse

200

1250 Volts

Forward Condensed -Mercury Temperature Limits*

200

1250 Volts

-40 to +100 -40 to +80 C

Maximum Cathode Current

Peak

6.0

6.0 Amperes

Average

1.5

1.5 Amperes

Maximum Averaging Time

5

5 Seconds

Fault

120

120 Amperes

Maximum Duration

0.1

0.1 Seconds

Maximum Negative Control -Grid Voltage

Before Conduction

500

500 Volts

During Conduction

10

10 Volts

Maximum Positive Control -Grid Current

Average, averaging time-one cycle

0 010

0.010 Amperes

Maximum Frequency

400

400 Cycles per Second

* The tube may be started and satisfactory operation will result between -40 C and +80 C. For maximum life the condensed

mercury temperature after warm-up should be as specified.

TYPICAL CONTROL CHARACTERISTICS
SHADED AREA SHOWS RANGE OF CHARACTERISTIC

1200

1100

1000
900
800 v,
0
700 z

600
500 z

400

300 200

COND. H g TEMP = -40° TO + 80°C

-IC -9
K-8277054

-8 -7 -6 -5 -4 -3 -2
DC GRID VOLTAGE AT START OF DISCHARGE IN VOLTS

100
0
9-26-44

15"+ 1"
16 -64

I" MAX A 9"MAXI.6DIA
16
F4-
406..

ANODE TERMINAL CAP C I- I
.360'11-.005" DIA.

GL -393-A
ET -T1476 PAGE 3
11-57

6 I1+6--5116:

BASE B7-12

r
BASING DIAGRAM

K -8271003 --Outline revised

8-17-51

ELECTRONIC COMPONENTS DIVISION

GENERAL

ELECTRIC

Schenectady 5, N. Y.

DESCRIPTION AND RATING

GL -414
ET-Tl 509 PAGE 1
12-58

THYRATRON
The GL -414 is a three -electrode, mercury-vapor, welder -control and grid -control -rectifier applicametal thyratron with negative control character- tions.
istic. This tube is designed for industrial use in

TECHNICAL INFORMATION

GENERAL
Electrical
Heater Voltage. Heater Current at 5.0 Volts . Cathode Heating Time Required Anode -to -Control Grid Capacitance Control Grid -to -Cathode Capacitance Deionization Time, approximate
Eb =120 v d -c; Ib =12.5 a d -c; Rg =1000 ohms Egg= -20 v d -c Eg= -1000 v d -c Ionization Time, approximate Eb =100 v; Ib =100 amperes
E0=+30 v
Anode Voltage Drop Critical Grid Current at EL, = 220 v a -c

Minimum 4.75
10

Bogey 5.0
19.0
0.1 6.5

2200 900

8 20

Maximum
5.25 Volts 22.5 Volts
... Minutes
Ailf
miLf
... Microseconds ... Microseconds
... Microseconds ... Volts
12 Microamperes

GENERAL ELECTRIC

GL -414
ET -T1509
PAGE 2
12-58

TECHNICAL INFORMATION (CONT'D)
Mechanical
Type of Cooling-Convection Equilibrium Condensed -Mercury Temperature Rise above Ambient
At Full Load, approximate. At No Load, approximate Mounting Position-Vertical, Radiator Down Net Weight, maximum

MAXIMUM RATINGS, Absolute Values

Maximum Peak Anode Voltage

Inverse

3000

Forward

3000

Maximum Cathode Current

Surge.....1500 Peak

100

Average

5

Maximum Averaging Time

30

Maximum Duration Maximum Negative Control -Grid Voltage
Before Conduction During Conduction Maximum Positive Control -Grid Current
Average Averaging Time
Condensed -Mercury Temperature Limits

0.1
1000 10
1.0
1
+40 to +80

3000

CONTROL CHARACTERISTIC
SHADED AREA SHOWS RANGE OF CHARACTERISTIC CONDENSED -MERCURY TEMPERATURE +40 TO +80 C
E,=4.75-5.25 VOLTS

26 C 23 C
4 Pounds
2000 Volts 2000 Volts
100 Amperes 12.5 Amperes
30 Seconds 1500 Amperes
0.1 Second
1000 Volts 10 Volts
1.0 Amperes 1 Cycle
+40 to +80 C

2000

1000

0
-30
K -69087-72A220

-26

-22 -18

-14 -10

-6

-2 0

DC CONTROL -GRID VOLTAGE AT START OF DISCHARGE IN VOLTS

6

10

4,6-48

2000 1800 1600 1400 1200 100 0
80 600 400 200
0

TYPICAL VARIATION OF CONTROL CHARACTERISTIC
WITH A HEATER PHASE VARIATION OF 180 DEGREES CONDENSED -MERCURY TEMPERATURE +40 C, Ef =5.0 VOLTS
HEATER VOLTAGE OUT OF PHASE WITH ANODE VOLTAGE CHARACTERISTICS SAME WITH DC ANODE VOLTAGE
_HEATER VOLTAGE IN PHASE WITH ANODE VOLTAGE

GL -414
ET -T1509 PAGE 3
12-58

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2

K 59087-72A19

DC GRID VOLTAGE IN VOLTS

0 +2 +4
4-2-48

GL -414
ET -T1509 PAGE 4 12-58

RATE OF RISE OF CONDENSED -MERCURY TEMPERATURE ABOVE AMBIENT
Er =4.75 VOLTS

30

..............

25

ik= Mr MEI

'
..

20

15

10

:::::rnammenuammarma pam

"

5

...............

ppomm.mommi mommonsomma

0

5

10

15

20

25

30

35

40

45

50

HEATING TIME IN MINUTES

K -69087-72A215

TYPICAL GRID CURRENT BEFORE ANODE CONDUCTION
Ef =5.0 VOLTS 0 --CONDUCTION STARTS
0.1

55

60

3-19-48

11::: imp Elm 0

LU ce LU

mom MMERMINIIMMU
smomm

-0.1

:11

0

11.

ce
U

-0 2

11

11111111

LU

ce ce

U.tammag

u -0.3 GG m mummEm. mummammmummi.

immommummemmiewonamm

0 :Mom Mamma . MEM.01,-111Nr."
0 -0 4 11

/1

nr
&mr.

1

... ,

1 SSA

-0 5 CG

Cm

-1000 K -59087-72A221

-800

-600

-400

-200

DC GRID VOLTAGE IN VOLTS

0

206

4-13-48

140 120

TYPICAL CONTROL -GRID CHARACTERISTICS DURING ANODE CONDUCTION Ef =5.0 VOLTS AC

100
mp 80
60 EMI

40 20

1111111111111110

0

-20 NOM
-40

-60

ifs

-80 101

-100

-120

WIM Eilloo NM:

.11

-140 1

-160

-10

-8

K -69087.72A214

-6

-4

-2

DC CONTROL -GRID VOLTAGE IN VOLTS

GL -4 1 4
ET-Tl 509 PAGE 5
12-58
4-13-48

GL -4 1 4
ET -T 1 509
PAGE 6
12-58
ENVELOPE IS AT CATHODE POTENTIAL

6 16 ANODE
TERMINAL
-2 7 8 1+12

I
2 32

§I MAX.

GRID TERMINAL POSITION AT MFR. OPTION

/f\-\, e.

A
5" 15"± 16
1325"+-32
II if MAX'

7-5-8

+

32

.250" ± .010"
AREA FOR CONDENSED -MERCURY
TEMPERATURE MEASUREMENT, RADIATOR MAY BE
AT HEATER POTENTIAL

9 2IN-+2I"

MAX. SPACE

2-2

RESERVED

FOR RADIATOR

.25d.±.0101.k
-t
-4 MIN.

450±I 0"

.11%
116 161

32
-16
5.. 16 16 GRID
2

8 16
HEATER & CATHODE TERMINAL
LETTER "K"
HEATER TERMINAL
LETTER "F"

N21531AZ

SPACE RESERVED FOR RADIATOR

ELECTRONIC COMPONENTS DIVISION

GENERAL

ELECTRIC

Schenectady 5, N. Y.

8-16-48

GL -502-A
DESCRIPTION AND RATING
ETI.134C PAGE 1
10-49

DESCRIPTION
The GL -502-A is a four -electrode inert -gas filled all -metal thyratron with negative control characteristics. Small in size, light in weight, and with a control characteristic independent of ambient temperature over a wide range, minus 55 to plus 90 C, the tube is designed particularly for those control applications where high peak and average currents and relatively high -frequency ratings rather than long life are desired.

THYRATRON
The metal envelope which eliminates the necessity for any external shielding together with the small size permits compact circuit design. Another feature of this tube is its high control sensitivity which is made possible by the low grid current. Since the grid -to -anode capacitance is only about two -tenths of a micromicrofarad, line -voltage surges have little effect on the GL -502-A.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL
Electrical Data
Heater voltage Heater current at 6.3 volts Cathode heating time Anode -to -control -grid capacitance *Technical information completely revised.

Minimum 5.7
10

Bogey 6.3 0.6
0.2

Maximum 7.0 0.66

volta amperes seconds uuf

GENERAL

ELECTRIC

Supersedes ETI-134B dated 3-47

GL -5():1-J%

En -134C PAGE 2 10-49

TECHNICAL INFORMATION (CONT'D)

Electrical Data (Cont'd)
Control -grid -to -cathode and shield -grid capacitance Deionization time, approximate

Minimum

II, =100 ma, R,.= 1000
Ecc= -250 v
E = -15 v

Ionization time, approximate

Anode voltage drop

Critical grid current, anode voltage = 460 RMS Ec=Cutoff

Bogey 2.5
10 150 0.5 8

Maximum
uuf
microseconds microseconds microseconds volts
2 microamperes

Mechanical Data
Type of cooling-convection Mounting position-any Net weight, maximum

2 ounces

MAXIMUM RATINGS, Absolute Values
Maximum peak anode voltage Inverse
Forward Maximum Cathode Current
Peak
Average Surge (maximum duration 0.1 second) Maximum averaging time Maximum negative control -grid voltage Before conduction During conduction
Maximum positive control -grid current Average (averaging time, one cycle)
Maximum negative shield -grid voltage Before conduction During conduction
Maximum positive shield -grid current Average (averaging time, one cycle)
Maximum heater -cathode voltage limits Ambient temperature limits

360 180
1.0 0.2 10 30
250 10
0.01
100
5
0.01
-100 to +25 -55 to +90

1300 volts 650 Volts
1.0 amperes 0.1 amperes 10 amperes 30 seconds
250 volts 10 volts
0.01 amperes
100 volts 5 volts
0.01 amperes
-100 to +25 volts -55 to +90 C

AGL-502A MAXIMUM GRID CHARACTERISTICS BEFORE ANODE CONDUCTION
SHIELD GRID VOLTAGE = 0 VOLTS = 0-650 VOLTS D -C E, = 6.3 VOLTS
0

2
-3
-4
5
-250 K -69087-72A290 aNew drawing

-200

-150

-100

-50

D- C CONTROL -GRID VOLTAGE IN VOLTS

0 5-4-49

A GL -502A TYPICAL CONTROL CHARACTERISTICS SHADED AREA SHOWS RANGE OF CHARACTERISTIC
SHIELD GRID VOLTAGE = 0
600

500
O 400
5.1
V
200

100

K -69087-72A31 ANew drawing

9 -8

5

-1

+1

D -C CCNTRO1 GRID VOLTAGE AT START OF DISCHARGE IN VOLTS

5.4-49

GL -502A

TYPICAL GRID CHARACTERISTICS

DURING ANODE CONDUCTION SHIELD GRID VOLTAGE =0 E, = 6.3 VOLTS

+1

U) 0
111
Lt
-1
-J
-2
3
6
4
(-)
0
5
-6 0
-7

b

cp E Er

C

= Lao

eon

-80

-70

K -69087-72A50 URevised drawing.

-60

-50

-40

-30

-10

-10

CONTROL -GRID VOLTAGE IN VOLTS

GL -502-A
ETI.134C PAGE 3
10-49

0

+10

5-4-49

GL -502-A
ETI.134C PAGE 4 10-49
10-49 (10M) Filing No. 8850

2 -8 -
MAX.

OUTLINE GL -502-A THYRATRON
Iu
3 MAX.

,31+

711

32

IK 32

13" I"
32- 32

5111

16

CATHODE MAX.

AND SHELL 8

1 NG

SMALL WAFER OCTAL BASE
B8 -2I

HEATER

2 HEATER

SHIELD GRID 6
CONTROL GRID

3 ANODE 4 NC

BASING DIAGRAM BOTTOM VIEW
N-21524AZ Revised drawing

2-2 8-4 9

Tube Divisions, Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

DESCRIPTION AND RATING

GL -5557
ET -T1472 PAGE 1
1 1 -57

THYRATRON

TRIODE TYPE

MERCURY-VAPOR

NEGATIVE CONTROL CHARACTERISTIC

The GL -5557 is a three -electrode mercury-vapor
thyratron with negative control characteristic.

This tube is designed for relay or control circuits where relatively little grid power is available.

GENERAL

TECHNICAL INFORMATION

Electrical
Cathode-Filamentary Filament Voltage Filament Current Heating Time
Anode -to -Control -Grid Capacitance, typical Control -Grid -to -Cathode Capacitance, typical Deionization Time, approximate Ionization Time, approximate Anode Voltage Drop, typical

Minimum
2 38 4 6 5 0

Bogey
2.5 5.0
2.5 7.0 1000 10 16

Mechanical
Type of Cooling-Convection

Mounting Position-Vertical, Base Down Net Weight, maximum

Maximum
2.62 Volts 5.4 Amperes
Seconds
Auf
Microseconds Microseconds Volts
3.5 Ounces

GENERAL

ELECTRIC

Supersedes ET1-718D dated 9-51

GL -5557

ET -T1472
PAGE 2 11-57

TECHNICAL INFORMATION (CONT'D)

MAXIMUM RATINGS
Maximum Peak Anode Voltage
Inverse Forward Maximum Cathode Current Peak
Average Maximum Averaging Time
Fault Maximum Duration
Maximum Negative Control -Grid Voltage
Before Conduction During Conduction Maximum Positive Control -Grid Current
Anode Positive Maximum Frequency Condensed -Mercury Temperature Limits..
Denotes an addition.

1250 1250

5000

10,000 Volts

2500

5000 Volts

3.0

2.0

1.0 Amperes

1.0

0.5

0.25 Amperes

15

15

15 Seconds

40

4d

40 Amperes

0.1

0.1

0.1 Seconds

500

500

500 Volts

10

10

10 Volts

0.05

0.05

0.05 Amperes

150

150

150 Cycles per Second

+40 to +90 +40 to +80 +40 to +60 C

2600

TYPICAL CONTROL CHARACTERISTIC
SHADED AREA SHOWS RANGE OF CHARACTERISTICS CONDENSED MERCURY TEMPERATURE 40 C-80 C Ef=2.37 TO 2.63 VOLTS

240v

2200

2000 1800 1600 I 400

I 200

1000 800 600

400 200

-20
K -69087-72A362

-18 - I 6 -14 -12 -10 -8 -6 -4

-2

DC GRID VOLTAGE AT START OF DISCHARGE IN VOLTS

0 1-3-51

GL -5557

ET -T1472

RATE OF RISE OF CONDENSED MERCURY TEMPERATURE ABOVE AMBIENT

PAGE 3
1 1 -57

Ef = 2.37 VOLTS
25 """--""""us
noraurnonwrinuonmuunumnnplaipomminmimimemsusuuamirpmupmulemisnimugmrpaimpmmupi oHiind
"""r 20 Mmmili°MPmIoMmMighUlrMe UPPULMPOURTffHibILlIiTiIiMffIiIliMmIIMiImNEWmIMuMmIMMmINIUuMmINMinM"N

1111101111111111 1111111111MPIIIIMIMMIMIIMPIIII

15
IIIMERINSILEIMEMMIEMPINEMINI

10 11001111011101101111101111.

primillsoll 1111111

5
N-21528ZA

10

15

20

25

30

HEATING TIME IN MINUTES

TYPICAL CONTROL GRID CURRENT VS.
CONTROL GRID VOLTAGE DURING CONDUCTION
Ef = 2 5 VOLTS AC

35

40

3-11-47

290 220 200 180 160 140 120 100
eo 60 40 20

.20 0 .2

6

4

2

0

2

DC CONTROL GRID VOLTAGE IN VOLTS

K -69087-72A135

4-29.47

GL -5557
ET -T1472 PAGE 4 11-57

400n MIN.

-.'"----'-'''1--.56611.00711 DIA
ANODE TERMINAL
C1-5

4
CONTROLLING MERCURY-TEMP. LEVEL

6 -I8M
i"
57i-4
BASE
A4-10

FILAMENT TERMINALS
K-4373365-Outline revised

GRID
TERMINAL
6-30-511

ELECTRONIC COMPONENTS DIVISION

GENERAL

ELECTRIC

Schenectady 5, N. Y.

GL-5559/FG-57
DESCRIPTION
AND RATING
ETI.122C PAGE 1
10-49

THYRATRON

DESCRIPTION
The GL-5559/FG-57 is a negative -control mer- It requires relatively little grid power and is suitcury-vapor tube for use where it is desired to actu- able for use in relay circuits where current flow is ate the tube with a change in negative grid voltage. desired in the absence of grid excitation.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL
Electrical Data
Heater voltage Heater current Cathode heating time required Anode -to -control -grid capacitance, typical Control -grid -to -cathode capacitance, typical . . Deionization time, approximate . Ionization time, approximate Anode voltage drop, typical Approximate control characteristics
Anode voltage Control -grid voltage

Minimum 4.75 300
60
0

Bogey 5.0 4.5
2.5 10 1000 10 16
100
-1.75

Maximum 5.25 4.9

volts amperes seconds uuf uuf microseconds microseconds volts

1000 volts
-6.5 volts

GENERAL ELECTRIC
Supersedes ETI-1228 dated 10-47

GL-5559/FG-57
ETI-122C PAGE 2 10-49

TECHNICAL INFORMATION (CONT'D)

Mechanical Data
Type of Cooling-Convection Mounting position-vertical, base down Net weight, maximum

4 5 ounces

MAXIMUM RATINGS, Absolute Values
Maximum peak anode voltage Inverse Forward
Maximum cathode current Peak Average Surge (maximum duration 0.1 second) Maximum averaging time
Maximum negative control -grid voltage Before conduction During conduction
Maximum positive control -grid current Anode positive
Maximum frequency Condensed -mercury temperature limits

1000 volts 1000 volts
15 amperes 2 5 amperes 200 amperes 15 seconds
500 volts 10 volts
0 25 ampere 150 cycles per second +40 to +80

THYRATRON GL-5559/FG-57
TYPICAL CONTROL CHARACTERISTICS
SHADED AREA SHOWS RANGE OF CHARACTERISTICS
CONDENSED MERCURY TEMPERATURE 40 C
/

1000

800

600

400

200

0
-12 -10 -8 -6 -4 -2

D -C GRID VOLTAGE AT START OF DISCHARGE IN VOLTS

K-8639304

8-20-45

GL-5559/FG-57

GL-5559/FG-57

ETI-122C
PAGE 3
10-49

TYPICAL VARIATION OF CONTROL CHARACTERISTIC WITH A HEATER PHASE VARIATION OF 180 DEGREES CONDENSED -MERCURY TEMPERATURE 40 C E1=5.0 VOLTS
1000

MI MMMMMMMM EMEMEMEI

REEMEMEMEME MMMMMMMMMM MEM MMMMMMMMMMMMMM MEM

MMMMM EEMINEW

rum:

mm

800

1

m MMMMMMMMMMMMMMM mmommommi

1

LI

L.
MMMMMMMMMMMMMM mommimmma

Imam MMMMMMMMM m MMMMM mmomm

MMMMMMMMM mmomml

m MMMMMMMMMMMMM mmomm ammo

mom MMMMMMMM mmommummummm

600

mmimmEMmm EEMumEm MMMMMMM MEMEL

MMEMMMMMMMMMMMMMMMMNMEMMMENMEMEMMMM EMMEN MMMMM MENEM

....

MEMEMEMEME MMMMMMMMMMMMMM

EMMEN
MEMEMEMEIMMI

LENA

:

400

Mil 1 111 IMMEMEMEEMMEMEMEMMMMM MEMENEMEMEMEME MMMMMMMMMMM ELM MMMMMMM EMEMEMEME MMMMM ME

MMMMMMMMMMMMMMM1:1E1M1M11E1N1111.".111EMEME MEME MMMMMMMMMMM MEM MMMMMMMMMMMMMM NEE

11

1MMEMME

200

.=.SEMI

1 1

11

EMMEN SEMEN

H ATER VOLTAGE OUT -OF -PHASE WITH
..-ANODE VO TAGE
CHARACTERISTIC SAME WITH D -C ANODE

VOLTAGE

HEATER VOLTAGE IN PHASE WITH ANODE

VOLTAGE

111EMEME

-10

-8

-6

-4

-2

0

+2

D -C GRID VOLTAGE IN VOLTS

K -69087-72A24

GL-5559/FG-57

RATE OF RISE OF CONDENSED -MERCURY TEMPERATURE ABOVE AMBIENT

5-13-46

mummummommmommommummmmommmEmMwilms MMMMMmmmmommomm

mmmMMmumMmmmMmmoMmumMmmmmmmomoommmmmmmmommommmmmmommmmuommmmmommmmommmmmommmmmommummmmmmmmiuummmmoommmmmommumuommmmmommomommmmumommommummommommmmmoomommmmmmmmuoAomwmmmmmmoammgmmuammmmommtmooimmmtommLmmoommmwoimmmMmmmMoommmummmoommmmmmoommmommmuommmmmmo

25

MEMEEEMEEMEEENAMEEEMPM:imMEEEEMMEMEMEMEEMEEENEEN MUMEMEEMEMEEMEEMENEEEMEEMEEEMEEEMEEMEMEM!iMEMEEEMEMEMEEEEEMEEEMMEEESEE

EMEMMEEEEEEESEEMEEEEEMEEMMEEMEEEMEEMOMiMEEMEEMEMIENEEMEEENEEMMEMEEEEMEE

EMEMEEKEEMEEEEEEENE MMMMMmmmummummnAmmummmommmummommommmommommommommm

mom mommommommommemm MMMMMmmommommommmonimmmommommommommmummommommommmommommm
mmmmuMmMmMoMmMMmMeMmmmummMoMmMmMmMmMummmmmommmmommrm4mmummommimmommommmmmmmoummmmommummommommommummmmuommmmmmommmmommimmmmoommmmommmm

mmmommmmmommmmmommmmmmummmmmommmmmummmmmmmmummmmmummMmMmmnoMmMmommmmoommmummmmmuommmmomommimmmmoMmommmoommmmummmommommmmummumimmmmuumm

MEEEMMENEEEENEEEMEEEMEEEEEWIEEMEEEEEMEMEEEEEMEEEEMMEMMMMMMIMMEMEEMEEMME

20

EEEEEMEMEEMEMEEMEMEEEEEEMEUMEEEEEEEEEEEEEEEEEEEEEEEEEEMMEMEEEMEENEEENE MEEEEEEMEEEMENEWEEEEEEEEEFAMMIEEEEEEEMEEEMEENEEMMEEEEMMMMM EEENEEEEEMIEMEE

EMMEEEMEEEEMEEEEEME MMMMMKEEEEEEEEENEEMEMEMEEEEEEEEEEMEEEMENEEEEEMENEEM

IMEEEEEMEMEMEEEMEEEEEEEMMAIMEEEEEEEEEEEEMEEEMEMEEEEENEEMEENEEEMEEEMENEEE

MmMoMmMmMomEmEmMEoEmEmEoEmEmEoEmEmMoEmEmNmMoMnmMmMumEmEeMEmEmEuEmEmEoEmEmEmEoEmMmMmEEmNoEmEmEoEmEm

MMMMMM MEENEEEEEEENEE MMMMMMMmmmommmommiemm

mummommommummmommommAmMomMommommmmommmommommommmommmmmommommmommommm

mmommommommommommmimmonmmommommommommmmommommmommommommmommmommommommmm

mMmMoMmMmMoMmMmmommmmmommmmmommMmMmMoMmMmaummmoMmMmMiMmmmoommmmMmMoMmMmMoMmMmMmMomMmMommmoommmmoimmmmMmMoMmMmMmMmommmmoimmmmmmmommommommomm

15

MMMMMM mmummommom MMMMM rimmimmummummemomm MMMMM mmommommommm MMMMMmommummommm mmmmmmmmmmmmmmmmmm MMMMM mommommommommmommmommmommmmommommmmommommommomm

mmmommummommummmormmmummommmommmmmmmmommimmummommommmimmmmmommommomm

mmmimmommommommommmmummommmummommommummommommmommommmm MMMMMMmmummommmom

mmmommummmmoummmmommommmmommommummmmocmmmMmMmMoMmMmmm=mmmoommmmMMMMMMMMMMMMMMMMMMMmmmoommmmmoommmmMMMMMMMMMMMMMMmmmmommmmmummmmmmmommm

mmuMMmMMMMMmMmMmMommmmoommmmoummmwimmommommommmmmoummmmmoummmmmomMmMMoMmMmMoMmmmuommmmoommmmmoommmMmMoMmMmMummmmmommmmmommmmmommmmmummm

mmmmmmmmmmmmmmmmmAMnmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

10

mEEMEMMMEMMENEEMEEEEEEEEEEEEEEEEMCEEMEMMMMMEMMMMEENEEEEEEEEEEEEEEEEEEMEMEMMEMMMEMEMEEEEMEEMEEMEEEEEEMEMMMMMMMMMMMMMMMM

EEMEIMEMEEE EEMEMEEEEE

EMMEMEMMEENEEEMEEEEMEEMEEMUENEEMEEMMEEEEEEEEMNMEEEEMEEMMEEEMMEEEMEEEEMEEEMEMMIEEEEEMEMEMEEMEMEEEMEEEEMEEEEEMEMEMEMEEEEEEEEENEMENEEEEEENEMMEMME

EEMEEEEEEEEEMEEUEEEMMEEEEEEMEEEMEEEEMEEMEEEEMEMEEEEEEEEEMENEEMEMMEMEEM

MMMMM MEMEEEEMEVAMEMEMEMENEESEEEMEEEENEMEMEEENEEEMME MMMMMMMEEEMEEMEMEEE

MMMMM EEMEMEEEENEME MMMMM ENEEMENEEEEMEENEMEEEEMENEEMEE MMMMMMMM EMEMMEMEME

EMMEMEENEEEEEVMEMEEMMEMEEENEEEEMEEEEEEMEMENEEMEEEMEEMEMEMEEMEMMEMEMEEM

EUMEMEEMEMEEE,ANEEMEMEEEEEMBEEMEMEENEEMEMEEMEMEEMEEEEEEEEEEMIEEEEEMEMEEM

MEEEEEEMEEEEEMEEEEMMEEEEEEEEEMEMEEEMEEEMEEMEEEMMEEEEEEMEMEEMEEEEMEMEEM

5

MMMMMMMMMMMMIEMMMMEEMNEIMMAMEEEEEMMMMMMMMMMMMMMMMMMM

EMEEEEMEEEEEEEEEMENEEEMEEEEMEMEMEEMEMEEMEEERE MESEEEEEEMEEEMEMMEEEEMEEEEMEMEEEEMMEEEEEEMME

MMMMMM EEENIAINEEMENEMEEMENEEEEMMEEEM MMMMM EIMMEEEEEEMEEMEEEEMEMEMEEEEEEEE

EEEEEEMEEVAEEMMEEEEEEEEEEEEEEEEEEENEEEEMMEEEMMEMEMEEEENEMMEEEMEEENEEEE

MEM MM MM EEEEEEMENEMEMEENEMENEMEEEMEEMENEEEEMEEEMMMMMMMEEEMEMEEEEME

EEMEMENEFAMIEMEEMMEE MMMMM NEIMEMMEMEMEEEENEEENEEEEEEEEEEEMEIMMEEEENEEEEEMEM

MEMEMENFAMEEEEEMEEMEEMMENEEENEUEEMEEEEEEEMEMEEEEEEEEEEMMEEEEEEMEMEEEEEM

AMENEMEEMEMEEMEMEEMEEEMEEEMENMMMMM EEEEEEEEEEENEEEEEMENEMEEMEEEEE

ENE MMMMM EEEEEMMEEMMEEEEEMEEMEMEENEEEEMEEEEEEENEEMEENEEEEMEMEEEEMENEMEE

EEMPLAIMEMEMIEEEEEEEEEEMEMEEEENEEEMENEEEMEEEMMEMEMMEEEEME MMMMMIMEEMENEEEEEN

0

5

N-21529ZA

10

15

20

25

30

HEATING TIME IN MINUTES

35
4-8-48

GL -5559 /FG-57
ETI-122C PAGE 4 10-49

A GL-5559/FG-57
CATHODE REHEATING CURVE
ANODE VOLTAGE = 0

4 mompoomomplo MMMMMMM p

unman*

snoonmappppmopopmmmm moopmppgoapmmmmmoamnmoomnoonmoonsaammmoosmsmmoomnmomppaapppimpampmpoomipmopmompopnmsmaommmmiosmspoomommomsosmommmmoammMoMmMMmMoMnMmMmMoMnMsMsMmMomsmaamnmoonmammommopmopnosnpaomoommm

SURMMEUMMPMIIMMMMEEMMEMMMMAEMMEMMEMMEMMEMMEMMMMMEMMMMESiMMmMImOIuMMsMMEiIMmUEMmMMoIMrMEnMNiEEmMMmEEMiMEmMMmEUoMMmMImEXiMEnMMuMEMmMOmMMiEMMmIMmMEiMMIMMEMMEEMMMMEEMMMEEMMIMNEIMMMMEEMMIMMIMMUMMIMMEMMEEMMMEMMMIMMMEMM

mmmumomimmumomumummmuimmmimmMiuOnRmiMmmIomNmiImmMimMmiEmmMmrEmnMiMmmMEmEMmNEmIMiMMmMmEIiMNmMMmEEmMMoMEmEMmMMmEEoMmMMmMEmMMuIEmMMmEMuMEmMMmEiMMmEMmMIiMUnEMoMMmUMmMEMMMIMMNMEIMMMMIMNINMMEMEMMMMMEMIMMUMmMiommnomnominmmamomoomnmmomummmmucmmaogmcmismnooimommn

msMmoomEoonMmmaEpmmMoooMsnmEpnpMoaoMspoEmpmMnomMppoOoomMpmpMppnOmoMmpMMooMEnmMMmpMaoMMimEMnmMMooEMmmMMmpEMmoMMamMMnmMInoMNomMImmMpmmMsouEonmMnosMnmEumMmoamMnoEomMmpEpoMpmMmMpEoaoMspoMopmnEoooMomnOmpnMmoaMamnIuoMmmwMnnoIsommNmpoaoImmnUponMaouMpnmEpomMnmoOmmmMpmooMuspImspNoaoOnsoMoopMmnpEomcNnaoNnmmmImosMosaosImnmNmooMomsEMowNwsmAsp.MooMMsmJOrtp.MmoAMsoOsmMmpInoUpoMonMssEpo

mappoppoommomompsnosomornampooponmompmpoommnponommomon mmommommommoommoonsminam.s.posoonmponmonoommo

aompaploloimansonnommummapposommommasomommolmarnismMoalmsnoanmsommmmoasloalmMaMnMnMmMmMppolnonmommoonmomompormmm-n.poomPrommomMEmEnomornapon:

ommoopponnommompoomiThosaimmomommommompolompappoomppmmonommonommmommommomonnommnaMpompanuson MMMMMM

sponnonmppommailprnmamonnOnnionimoismasamEMMEMomp.mmiononommommorlimommassusaappnamonnonamnoommompom

sopmpopommommammainnnolommEMPPMEMUNNISMUMMEMOSSUMMIMMMoppononamps-ammompopossommonmonmossmnonnonappmnom

pnoomMmMoMmMmMoMMnMmMaMnosmmmaonnmommaMnampmprmnmoonrnnnnoamnMnoannMoMsUiMmMmUoMliMoOnnoamMpoomninololpornommonrri:oAmmmommamnoammpmoosnssopopmomloammmooismomnasnoammmmoonMoMaMmMmMoMMnMnMaMmM

sompoommommnponsamonnompnOMMUMMInonomMitompommommomprissmononommossomponammon unnonno MMMMM maw

MMEMMEMINIMUMMEMMEMMEMMEMMEMMEMENIUMMEMMEMMEMMEMEMMEM!AMEMMININIMMUMMEMEMMEMME MEMMEMMINIAMMEMMEMME

MEM= MMMMM ppoompmmompoppoppmnpmmompoppnommanopononomor-Ammoompanmompmmommommonommonmppommono MMMMM mono

3 mmaonMmMpMsMoMnMsMoMmMmmmomnomomsgaammoasmnoamnpoplonpoonppoapnmnmmmimnoammoMnMuMmMmMaMmmmommopn-ro:mpmomnoonsommomonmsomnaasloamnpsonsosmoanmsmupmonopronsmosonnnoonpoonMaMpMMoMoMmMpMnMMMMMMpMpM

nomponnamploomMEMMEMMEMIThammoMoMm lommonomponamorAmommonommommommommonMomprnosilismanomornlinnompoomm

snommonanomMOMMOMMEMPEPEMplamprnmEllmmommommormommommommompoompoonmommommomMasminiammoNiummompoom

samomompponpMoEmMmMuIsNmIoMmMmOsMoMmEmMaMsEiMnEnMoEMMpMlEoMMMMUMmMpMlMoMomMmo1n1v1a1n:o1m1mMoMnEsNsNaImMoMsEpMoEnMnEoMmMmUoMsEsMuMmUaMsEoNmEMMoEpMlMoEoMMMpEUMmEpNrInIiMnMaElMrMaUmMmEiMm0pooP

MMEMMEMMOMMEMOMMEMMUMM MMMMM MMONIMMEMENE MMM A MM UNIMANNEMEMMUMMEMEMMINUMMERMINIMMINIMPNNUMMINGIMPW".1.11

mommMoMnMnMoMmMosMoEmMmMmEoMmMoImNmImMmMoEmImMiMsEMMaMpEiMsEnNiUoMnMaIrNInMmPoimMpErM.EoMmMpEoMoEnMnMoEmMpEoNnIoMpEaNnEnMoImNmIoMsMoImMoMnIoMnImMiMEnMUMMEMMMEIMaM=RaO0MwMiE.MaMmMmMoEnMiMmEpMoMo

1111101111MMIMMEMEMEMMOIMMEMMEMMEMMEMMEMMEM M IA MM MMEMMEMMEMMEMEMMEMMEMMEMEMMEMMEMEMMIUM.17.AMEMMIMMAIMMEMMIR

mnpmponmpoominamnismninlimmoninnommommonoranommomommmonommommomommmmoppommmunomannommoMmissionnEmonmal

pponow.appospoop MMMMMM =ppm MMMMM MMEMMUMMIWMJilIMMEMMINIMMUM M MMMMMMMM

moommonnommonsaMMUmmommommmommposammoommomppmmomppoomommummmommommonorimansonsomanamasionsonommomon

moommommonnamonnonnnammonSmommonmsmommomommmommonommommommoVommomordommommoMmonmoomomanssommommono

mom moomommanssonmnaopmpompopnonpspOoMnEoNMMEMMMpMpMmsnrivAapnpnoooomnmaommmaannaammmnosotmompppolnooonmaMnonmmmaoiMnoimrm-risl7mmrnoommpopmopnonoomnmoommmmoommmpoonmmmpoaopmpmoMnoorlniipsmommooomnm

MEMIMMINIMMEMMEMINUMMINIMMEIMFE%M.AMMEMMEMMEMMEMEMMMMEMMMMSEMIMCOUIPPwiAUMEMMENMENMNOMMOMEMMUMMEEMMEMEMENMEUMM

num IsoIMMoMoImMpMoMpOpNoIsMpMoUuMsMoImOmaNnUiMnMsInNiMaEmMmM,E,MmWmAmMoMoImNmoInMaMmEoMnMaEmMEMMMMMEMMMMEaMnEoMrlEaMmPmIpMaInMoMmEmMoMmEpMoMnInMaMnUnoMoMmMpEoMnMaEmMmEoNmImMoMmImMmMoEnMnaMmEmMoMUEnMnIoMnM MMMMM MMEMINIMMEMEAMMERMWAREMEMEMMINIMEMEMMEMEMMPidMIMMUMIMMEMMEMMEMMEMMMEMMUMMINIMEMEMEM MMMMM MEM

MMMMMMMMMMMMMMMMMMMMMMMMM ommummommononsonnonaminn MMMMMMMMMMM moopoonsm

sompmopoloopmopmmnmoommmmoonmoommmmoommmmoomnmoommrnAsmornaonoomnanommmompoopommmoommmmonnoamnrmsoonpmnmmoumnmoommommopmrm:opmopnpmroAnnoonnoaasmmpommnuonmmomnmrooinmonnoommpmmmoopmompmmmpoaommmammpopoommmmomomommmpmmpoammmmoommnomonommoppmppmommopmnmsnoconinmsoommmoemmsmosormmppsoo.owsLss.oosmu

2

'Ammo= MMMMM MEMMOKAMEMEMM MMMMMMMMMM =MEM MMMMMMMMMMMM IMMIMMIMMILIMPIXIMME moopommmmoimspslmoossanlmTphoaolmlmoaanmomsEsrmapmooonmnmonmmmmoommommommommossrmpM:MmoomnmoannnsoopmpoomopnoplnsoomnomnmooaMnMsoammommamimlommomuosmsmnoospopmlmaomnonmoMnMnMoMw7w.7oimo.nonpoonsoammmnosnss

MNIOMMIEMIMMEMMEMMUMW4MEMMEMMEMMEMMIWAMEMMEMEMMINIMUMNIMMUMMUMMENNIMMIUMEMPAMMEMINIIM MMMMM

mom spoomparnomnommonanimNmompoononamonnor:mommommmomomonammommanonnimanommosani0Mr-L.sommmommompononmpnams
mosamponnommonomomprmommomomonn MMMMMM manomaammosommonommnpommonmpopmmoodammonsimmommommo MMMMM mmo
4111111 MMMMM MEMMEMINFAMMI MMMMMMMM ME MMMMMMMMMM MEMMEMMIIMPSAISEMMINIM MMMMMMMM MIME MMMMMMM

MEMMEEMMMMEEMMMEEMMMEEMMEMMEMMEMMEMVIAAIMIMRIMONMIMMIMMEMMIMIEMMMWEAIMMMAENMUMMEMMIINNISMMMEEMMMEEMMMMEEMMEMMEEMMEMMIEIMMEMMEMMOMwUnM4PAOMNMMIEMMMEUMMMIMNOIMMMMIINMIMMMMEEMMMMEEMMEMMMMMEMMEMMMEIMMEMMO

MMEMMEMEMMEMMEMEWAIMMEMEMMMUMMWMINEMNMEMMEMMIIMMEMMINIMMEMMEMPS4AINMUMMENNMINNIMIMMINMMEMEMEMMEMEM MMMMM

mossaspommo MMMMMM MMMMMEMMMESERMEIVAMMMEMMMMMIMNMENMIMIMIMMMMMEMMMMMEMMMMMMMEMRN1M1E1M1P1I1MMIW:.11MUMNIMMEMMEME MMMMM IIIMMMEMMENMEMMEMEMMEMEM

poonamoomalmannoramommunnopprAmmommmomponammonissasnassr7.-Ammoonmannonnmannommompsannonnommapponmponnoom

MpMIEoINoMNmMImINmIIMoMMoUMmMEaMMnIInEUMuMErM4aImAoMmMmEmMmMoEmMpEpMrMpIoVpApM1o1E1oMmEMmMMoEMmMMmMMoEMMmMImEIoMMnOMnMEoMMmEMMmOIowNriMmdPmioMdMmUMmMMoMMmMEmMMmMMoMEMmMMmMMoEmMMmEEoMMmMMEmIMmNMaIImMCoEOmMMMmMoEMmMMoEMMnMMnMEoMMMmMMmMIaMMmMmoUomMnmMooEmnpMmoMopEopMmoEspMaoInoNnmoImmNopMmm

lmaMnMnMoMmMmMoMmMoMm1m1a1n1s1aYmRmEoMmMEmMmMAEnMoMm4mMoMmImNMoEuMnEaMmEaMsMoImNMmEoMrPo.i7n4s1iMnMnEMaMmIoInMaMmImNoInMoMEmMoMnEnMoMmIpUoMsMUsMaMmAoMnMoImMmMoMmEMmEoMnMsMaMmEoMmMmIoNImMmEoMmMmoMpMoMmMpMMom

IIIMMMOMNMIMIMMMMMI/OS1MS1U1.MM1MM1OM1NM1O1M1MM1MMMIMMVMMAVMMAMMMMMIMENMMIMIMEMMEMEMMMMEMMMMMMMMIMMNgMI'MMMMMMMMMMMMMMMMMMEMMMMMMIMIMMMMMMEMMMMMMEMMM M1E1M11M1E.M1N11I1I1M1M111M1M11M1M1M1M111M1E11M1E1M1M11O1M1M11E1M1M1M11E1M1MMMEMMEMMOMMMMMIMMNMIMMIOMNNIIM

pmnompoonowimmommomp,Ammommonsosonor:pon MMMMMM momoompopponmpoompanonomponnwompsossmonommo MMMMM pompanos

poppospommrmoomonoorliammompannosorlapponan MMMMM poommosonnommompmmonomannomonommompoommonon MMMMMM ppm= snoMpopponupooppoorimmoommommopria MMMMM moommon MMMMMMMM ono MMMMMMM oppoomompsomoopmpoommononan MMMMMM mom

UMIMMEMMMMMOOMIMMMIIM,MRMEME4MMINIMEMMEWM:MAMMMMMMMMMMMMMMMMMIMEMMMMMMME

IIIMMINMEMEMEMEMMUMMEMS MMMMMMMMMMMMMMMMMM IIMMEMMIIMMEMMENEM MMMMMMMMMMMMM MMMMMMMMMM MMUMEMMININMEMNINEM MMMMMMMMMMMM MUM

mrmmmmmw4MMMMMSIAMMmmmmw",Ammmmmm MMMMMMMMMM MIEMEMMEMMEMEMIMMEMM MMMMMMMMMM INIMEENEEMMEMEMMIUMMEMMINIMNIM

ompoompapprionanapv.sommoppma MMMMMMMMMMM non MMMMMMMMMMMMMMMMMMM MMEMMEMMENNUMMEMMEMMMESSEMMEMMIN

MMEEMMMMEIWMAIINNEIMMMMEVWAAMNMNEIMMMMVKAMNMIINMEMMEIMIMMEMMEMIIMNIIMUMMENMEMMMMMMMMMMMMMMM

MOW MMMMMMMMM UMMMMEMMEMEMINIMMEMMIIMMEMEMEMIIMMINMEMMMEEMM MMEMMIONNEMEMMENNUMM MMMMM MOMMOIMEMMEMMEMMEMMEMMEMINIMMEM

IssIpnMooEowMnEoMrMMiUnIaMpMp4rANMpNMoIEnMIMnMWorIrM-MAInOoMmMmOaMnMsEIMMMMMEMMMMMEMMMEMMMEMMMEMMMMMMMMMMoMnMnMonIIMIMMMMMEMMMMMEMMMMMIMMMIMNMMEMEMMINMEMMMMMMMMMMMMMMMMMMMMMIMCO11M1M1E1M1M11E1M1MMIINNIOMMMIEMMMEIMNBOIIMMMM

MEMENVOIMMENIMMIVAMMEMMEM MMMMM MMEMMEMEMMOMEMMEMM MMMMMMMM 111.11111rn MMMMM IIMMENUMMEVAINEWNIMMEMMEM MMMMM MMIIIMMEMMEMEMEMMEMMEM MMMMMMMM IIIMMEMEMMEM

MMMMMMMMMMMMMMMMMMMIMIMIMMIMNOIMMMIINIIMMMMEEMMIINMIMMEMMEENMNMIEMM

MsaEmMpOrNoApMpMrWaAnMoMrI,liSEM MMMMM MIME MMMMMMM MEMINIMMEMEMEMEMMENMEMM MMMMM MIIMMEMINI MMMMMMMMMMMMM opooppoomppnmon

MMEMNIBMWAMIVAIM MMMMMMMMMMM MEM MMMMMMMMM MEMOMMINIMMINIMMEM MMMMMMMMM MUM MMMMMMM MMMMM MEMMINIMMEMMINIMMEMEM WMIIRMMMAMIMWMMIMNMMOMMMMMMMEMMEEMNIMOENMEMMMEEMMMMEMMMEMSMIMMEEMMOMMOMMEMIMOMMMMMMEMMMMIMNMIMMMMMEMMMMEEMMOMMEMMEMMONMMMMEMMMMMEMMMMIINIMMMEEMMIIMNMIEMMMMEUNMEEMMIMNEMMOMMIMMEMMEIMMMMMOMIMMMMEMMEEM mommamarammonnommonomppos MMMMMMMMMMM moomonnon MMMMM poopmpassonnomm MMMMMMMM onommmompannononommonommann smanivNiWa/rdipappm MMMMMMMM opponnamon MMMMMMMM monism MMMMMMMMM mmonommomp MMMMMM RIOSMORMIIMMEMMEMIMEMMINIMMEM

MMUMVArAMBEM MMMMMMMMMM MMENMEMMEMMEN MMMMMMMMMMMMMMMMM MMUMWAMOMMEMEMEMMUMMEMIOMMEMMUMMINIMEMMIMMEMEM MMMMM

MEMIIMMIMMEMMMMMMEMMMMMEMMMMMMIM1M1E11M1E1M1I1U1M1MNMIEMMMUEMMEEMMMEMMMMMIMMMMMIMIMMMMMEMMM

INIWIWMAAI,BAIMMEMEMMIIMMENEMEMMEMMEMEMMEMMEMEMMEMMEMMEMMEMEMEIMMEMMEMEM MMMMMMMMMMM MINMEMMEMMUMME MMMMMMM 1111111111

0

20

40

60

80

100

120

140

160

180

200

K -69087-72A184 ANew drawing

TIME OFF IN SECONDS

4-8-48

GL-5559/FG-57
ETI-122C PAGE 5
10-49

A GL-5559/FG-57
TYPICAL CONTROL GRID CURRENT VS.
CONTROL GRID VOLTAGE DURING CONDUCTION Efs---5.0 VOLTS A -C

1000 900

EEMMMMEENNEMMMEMNMEMEMEEMNEEMMIEEMMMEUESMEEMMEEMMEEMMEEMMMEEMEMMEMEEMMEEMMEEEMMEEMMMEMEEMMEEMEMMEMNEUEEMEEMEEMMEENEUNMEMUESMIEMMEEMMEEMEEMMEESMEEMMEBNEVMEEEMMEEMMEMEMNMMMMMMMMMMMMEMEMMMMMMMMMMM

mmomommomm MMMMM moonmmonmononommomMmEoEnMUoEmMmEoEmmMoMmEoEmMmEoMnEoMmMoMmMmMoMmMmMomnnmolMomMmMoMmMmommomoomnmomlu,nnoomomm MMMMMMMM mum=

moommoommo MMMMMMMM mommnnomonommmonnumomnoommommommummomnmmommon MEMEMEMIEMEEHMEMEM MMMMM EEMMEMENEEM

onom MMMMM onmommoimmomommomoomnoommmmoommmmomgmnmooonmomn mmgommmummommommogmmmmoommnonmoonmomommummmmonopmummomnomommomnomnoonmunmioosmomlniuomnmmoononmomnonoommmuomnnoMMMMMMMM

mnomnoooommmmooonnoommom

MMMMMM

ono MMMMM mom SEEMEMEMMEMENEM

moms EMME

mmonnmommmomn monmomommmommoomounimmi MMMMM momomnonommons EMMEMMEMEMEMEM EMEMEENEEMMEMMEMEMEEMMEMEEMEMEMEMEEMEMEMEME

OEM MMMMMM MEMMEEEEE MMMMMM SE MMMMMMM ME MEME EMEM MMMMMMM SEE MMMMMM EMEMMEMMENSIE MMMMMM MEE MMMMM EMEMMEMEE

SEMENEMEMESIMMEEMMUMMEMEMEMMMMUSEEME4MEMEMESEEME

IMEMESEMEMEMMEEMMEMEEEMME MMMMM MEME MMMMM MEMMENNEEMIEMEM MMMMMM ESE MMMMMM MEMEAMEENSENEEMENESEEEMEMEEEEEN

EIIMIEEEMMEEMMMMEMEMMMEMMEEMEMMEMNMEMMMEMMEEMMEMMMEMMMEMMMEEMMEMMMMEMMMEMMEEMMUEMMMMEEMEEEMMMEEMEEMSEEMMEEMMEMSEEMMEEMEEMMEIMlElSEMEMMIMIEIMIEIMIMIEIEINIEIMIEIININIEIEIMIEIMIEIMIMIEIIEIMIEIMISIEIEIM

800

n MMMMM momunnnonomommgmon MMMMMM EMEEEMMENSIEMENISEE

MEM EEWMEEMMEMEMMMMMEMMEEMMEMMEENEEMEMMEEMMEEMMEMMEEEMMEEMMEENMEESMEMMEEMMEEMMEEMNEOMMEMMEEMIMEEMMEEEMNMEEKEEMEIEMSEEMMMEEMRESNEEE
NM MMMMM ME MMMMM ES MMMMM EMEE MMMMM MEMMEMMEMEMMEEM EMEMEMMEM MMMMM MERE

MMEEMMEENESMIIMMEEMEMIMMIEIEMMMEEMNEEEEMMEEMMEMMEMSMEMEMEMMEEMMEO IMMENIMMEMEM MMMMM MEM= MMMMMM

NEM= MMMMMMM MMMMMMM MMMMMMMMEME MMMMMM MMENEEMEMEMEM MMMMMEMEMEMEMEME SEEMEMISEMESEMEMEMEMEMEMEMEMEEMEEE

MnoEnMnomMm0M0M0mMMMMMMEMMMEMmMEmEMMEMMMMMEMMMMMEMMNMEmMoEEmMMmEMoMnEEmMMoEEmMSoEEnEgMMmEEmMMmEmEMnMEoESmMEoEUmNMgMEoEEmMEmMMomESmEMoEEoMMmEEmNNoEMmMEmBMnEEEMMMMEEMMMMEMMMMUEMUMMEmEMmEoERoMEmEMuMMmIIoEEnMMoEmMNmEEmNoMEEEMIMIMIMIMMMgEmEmoMMMEMMMEMMMEMMMEMmoEmE

onnomon MMMMM No MMMMMMMM momomm000mmmommomomommommmlomommn MMMMM nommommoomommommmoomommonmommoomonommm

EIISMMSEEINMMEEEEMMEEERMNMEEMEEESMSEIMMEEENMEEEMMEEMMEMMMEMRMEEEMMEMMIEEMMMEMENEMEMEEEMMMEEBMEEEMSMMEEEEMMMEMENEMEEEENEMEMEEEMMSEMIMENEMEMMVMEEENMUEMEEMMEMMEEMMMEENMEEMNEEEEMEEMMEEISMEEMREEEMNCUEMMEEEMMEEMMEEMNEEMEEMNEEMMEEMMEMMEEMMEEENMMEE IMMENSE MMMMM MUMMESMEEMEMEME MMMMM MEMEMMENEEMPEMEMESEEMUMEMER MMMMM EMEMEMEMMEHMEME MMMMM MEMEMMEMEEMENE

700

MMEENMEMMEEMEMMMEMEMNMEEMREEESMEMMEEMMEEMMEEMEMMMEMMMEMMNEEMMEEMMEEMMEEMMEEMMEEMMEEMMEEMNMMEEEMMEEMMEEMMEEMMEEMMEMMMEMEMEMEMMEMEEMNMMEMMMEMMMEEEMMEEMIEIIMMEMMEEMNEEMEEMMEEMMEEMMEMNEEMEEEEMMEEMMEEMMEE NIEMEEMMEEEMMEMNEEMMEMMMEMMMEMMMSMEMEMMMMMEMMMEMMEEMMENMEMMMEMMMEMEEMMEEESNIEMSITMIETMINEEMNEEMEEMMIEEMMEEMMMEEMMEEEMEMMEBMEEEMSEEMMEEMEEMNEMMEEEMMEOMEMMMEMMMEMMMEMMMEMMMEMMMESWSIEMEEMSMEEMEEMMEE

SEREMEMEMEMMEMEEMMEMEMEMMEMEMEMEMENEMEME MESE EMEMEMEENEEEMEMEMMENEXEMEIMMENOMMEMEMEMEMEMEMEMEMMEMEM

MEM MMMMM EMEMEMMEMMEMMEMEMEME MMMMM MEMEMEMEMEMEMEMEMEMMEMMEMEMEMSEEMEMEIMUNESMEEXSEMMMEMMMMMMMMMMMMMEMMMEMMMMMEMMEEMNEEMMEMMMEMMM

NEMMMMEMEMSMEMEMMMEMMMENEEMEMMEEIMBEUMIMEENMEEMEMMEEMMEEEEMEESMSEEMEEESMEEMNEEMSESMEEMMEEEMMEESMEEEMMEBMEENMSMIMMMEMMMEMMMEMMENIMSMHMEMSMEMEMIEIHMEIMSEIIMMEESNESEESMSEEMEMEEMNEElNlEESEEMEEMEM

MEE MMMMMM momomnoummmounmommoommmmoommnoonmnmoomonmommomoomnmnEonmmnmoomommommmmooommmmoommmoMMmMmMoMoMmmmommoommommgmmoommmlmommimmummomnoumMmMoMmMmMnMoEmMmEoMmMmEoMmEoEoMmEoMmEmEE

600

MMEEME

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

MMMMMMMMMMM

MEEIMMEHMMMMM MEMEEMEME EMEMEWEEESIIMME MMMMMMMMMM

MMMMM EMEEM EEMENEEMMEM

ME smoo

MoEmEmuMmMmMuMmMonmnonmmooomlomomommngoomommmmmoommmommnmononimoomnmmnmomooommnmmmooommommmommmommMomMomMmMomMmmmmonunomsmmoMmnMooMmMMMMMMMMMMoMwMMMMmmiMonMm=M=MMMMMMMMMMMMMmMMomnoonmsamlammmnomimomomonooonmmommmmommmMmmMooMmmMmmMmooommnooommmommmoommoomnnoonmmommoo

um m MMMMMM onommmnomonommoomommmoomommmmoKoKmEoEnmMoEmMmEoUmSEMMMEMMMEMM mnmooEmMmEoMnEoMmEmEoVmEmUmMoEnMoEmMoEnoMmMoMmMmMoMmMoMnMoMnMoMmmMoEmMoEmMmMoEmMmE

500

11111E ME ME

MMMMM MMMMM

EMMEMMEENMEEEMMEEMMMMEMMMEMEMMEMMEEMMEMMMEMMMEMMEMMESMEEMNEEMEESMEEEEMMMMMEMMMEMMEEMMEMMEMMMEMMMMMMEMMMEMMM EMMEEMMEIEIMMEEMMEMIEEMNEEEMMEEMMMEMMMEMMMMEMMMEMSMEMMMEMMMEMSEEMEESR

IEMMNMSEMMMMEMMMMMEMMMMMEMMMMEMEEMSMMEEEMMMEMMMMEEMEMMMEMEMMEEMMMMEEMMMEEEMSMEEMMEEEMRMEMEMEMUEEMMMBMEEEEEEMMEMMMEEEMEMMMMMMEMMMMMEMMMEEMMNMEEMMMEEEMEEMMMMEEMMNMMEMEEMMEMEMMMEMSEMMMMMMMEMMMMMMMMEMMNMMEMMMMMEMEUUEMXUEEMMMMIIEEUMEEMEENMEEEMMEEMMEEMMEMMMEMEMMMEMEMMMMMMEMENMSEEEMESU

:SNiEEiEMMEMEMEMMMEMMMEMEMEMEMEMEEEEMSMMEMEEEMMEEEMMMEEEMEMENMMEEESMMEEEEMMMEEEMMEEEMMMMEEEMMMEEEMEEMEMEMMMEEMMMEEEEMMMEEMMMMEEMMEMEMMMMEEEMMMEEEMMSEEERMMEEMENMMEMEMMMEEMEEEMMMEEMMMEMEMEREEKMMEEESEMSMEAMEMEIMIE=EMSSAMEEEIIMMIME=EMMMEEMEMNMMEEMEMEMMMMMEEMMEEMMMMMMEEMMMMMMEMMMEMMEMMMMEMMEEMMMMMEEMEMMMMEEMEEMMMNEEMMIMEEIEEMM

SlOiMmEmmMmMoMmMoMmMoMnMoMmMoMnMnMoMMmMmoNmEoMoEmMmEoMmMmEoSoEmMmUmMoEEmSmEumMmMoMmMmMmoMmEmMoEmMmEoSmEmENoEm

MMMMMM

moom

EMESSEMEEMMEMEMEESSEURNEEMUSE MMMMM =mom= MMMMM monmoomommmmomm

400 ummoomnnooMmmMoMMnMMnMMoMmmMomMnoMnnomommMmmMooMmsMmoMommonLnmoEommMmmoEommRoomEmmoMoonEmmoMmmmEoooMnmMmmmEmmEoMmSmMoEMnMMoMMImMMSoMEmMmSmoMEomMEoMmMmEmMoMoMmEMmNMoMEnMMmoMEomMomMnommMmMooMnoMoMn=naoMmnMoMMmMMmMMoMmnMomnEoEomEmmEmuIIMMmmMUOmmMSMowEEMTmoIEImoMENomEAmmMMooEMmoEMnMmEEomEEmoMMMmnEUEmnMMMmoEEMomMmEoMMmmMREomMMomMEMnMoMMmEnoMMoEoMmMMEnEMnMSMoMEMnEMEMmWMMMEMEEM
pommosnmemonomonnomomoomoinommgmommomonmmmomm MMMMM EMMEN MMMMM EMMEMEMEUEEMMEEMEM MMMMMMM p000nmomonomon

MEM EMU mom MMMMM mmonloomommmmmommmnoMEEMSMEMMMMMMEMMMMEMMEMMEEEMMEMEMMMEMMMEMMMMSEEMEMEMMMEMMMMEMMMEMMMEMEMMEMMMEMNMEMMMEMMXM MMMMMEMEMMMEMMEMMEEUMX MMMMMM ISSEME MEER MMMMM KEW MMMMMMM ENEREMEEMEMUMENMEM MMMMM MINEEEMS NEMEWEENEEMEMENEEMMENEMEMEMESEMEME MMMMMM EEMEEME MMMMMM EMMEN MMMMMMM SENEMEUEMEMENESEEMEMMEMEEMEENEEMME OMMEMNEEMMEEMMEEMMEEMEEMEEMMEEEMRMEMMMEMEMEMMMMMEMEEMMEEMEEMEEMMEEMNEEMEEMNEEEMMEEMEEMMEEMMSEEEEMMMEEMEEMEEMMEMMEEMMEEMMEEMMEEMMMEEMSEEUEMIEENSIEUMEMMEERMMEEEEMMEMMEEMMEEEEMMEEMMEEMEEMSESME MMMMMMMMMMM

300

ESE MMMMMM a MMMMMMM NEE MMMMM EM MMMMMM EMMEN MMMMM MEME MMMMMMMMM MEEK MMMMMMM EISIEM MMMMMMM EMEMMEEN MMMMMMMMMMMMM SEMEMEMEMEEME MMMMMMMMMMMM IMMESEMEMBEEMEMMEMEMENEEMERNEEEMBEEEEREMENEM MMMMM MEMBEESEEEM MMMMMMMMMMMMM MS

MEMEMEMEME MMMMMM MEMEMEMEM E MMMMM MEMMEMENEREEMEEMMEMEMEEMEME MMMMMMMMM MEIMEENEMEEMEME MMMMMMMMMMM MUSE

SIENEEMMEEMEMEEMMEEMMEENMEEEMMEEMMEEMSMEMMMEMMMEMEEMMIEMEEMMEESMEEEMMEEEEMMEMMEEMMEEEMMEEEMEEEEEEMMEEMMEEMMEEMMMEUMMEEMNEESEEMEEEMEUMMIESEEIEAVMAEMMEEMMEEMMEEMNEEMEEMMEMMMEMEMMEEMNSEEEEMMEEMMEEMMMEEEE

EMEMEMEMENE gmonnoommomno MMMMM

noommonnonmoomommo

MMMMMMMMM

monommommoommommomom

MMMMM

nEMEM

,moowin

mum

mommornmmmomomonomonsononnomo

MMMMM

nnommmmomnoonnnMoMoMmMmMomoommomnmmonoommmoomnoonnonnoommmomnoooomnnoommnnooonmmMoMmMmMmMooMmEnMoEoMmEmMoEmMmEEMMMEMEMEMMEEMEEMEMEEPMEIMMMEE1UMMMEEMMEMMMMMMMMMMMMMENSEEMMEEMMEMMEMMEMMMEMMMMMMMMMMEMMM

200

liE MMMMMMM MEMEME MMMMMMMMMMMMM MEOW

EMERMEAMEIME

MUU

100

1M MMMMM ME MMMMMMM MEM MMMMM EEEEMEMME MMMMMMM EMEMEEMMESEESEEMESEEE MMMMM EMENEEMEEEMEMMEME MMMMM EMEMEMMEMEME

MEMOS MMMMM ME MMMMMMM MEOW MMMMMM EMMEN MMMMMMMM IMES MMMMM NEMEFEEMAEMEMEMMEMEEMEMESEMEMEM MMMMMMM

mem MINEEMMEmMMoEMnMEmEMoMEoENnMEomMoMnMMMMMMEMMMEMMEMMMEMmEoMmEEMMMEMEMEMMMEMMMEMMMEMMMEmMoEoMnENMEMnEMnMoMmMMmMmmMooMmmMmMmMMmMoEMmMMmMMoEnMmoMomEowMoEMoUMnMMlMMoUMmMMMmEMMEMMMMMMMMEMMMMMMMMMMmoMMnoMMmnMMoMMMmMMMmmMMMoMEEmMMMoEEMmMNMmEE0SmV0EoEE0nSEmnEEmoEEmoEEmMmEoMMnREmSM

MENEEMEMEMEEMEMEEMMEMEMEMEMEEEEMMEMEEME MMMMMMM ES MMMMMMMM EEMEMEMEMEELE MMMMM MEMEMEMEMMEMEMMEMEMEENEEME

SEEMEEMEMEMMEMMEMEME MMMMM EMMEN MMMMMMMMMMM MEE MMMMMMMM MEUSE MMMMM MEMAMEMEMEMEME MMMMM SEMMES MMMMM MEMO

SEW= MMMMMMM NEEMEEEMMEENE MMMMMMMMMMMMM ME MMMMMMMM NM= MMMMMMMM EV MMMMMMMMMMMMM EMEEMEMEMENEEEMEEMEEMEM

1M:1E1EMEMMEEMEMEM

MMMMM

EMEMEMEMENSEENES

MMMMMMMMMM

MEESE

MMMMMMMM

SEMAUEUMEEMMENEEMEEM MEMMIE MMMMM MEMMEMEMEM

MMMMMMM ENEMEEMENUUMM MMMMM EEMMEMENEMENREEE

'NI moomonomononommonnmmonomosgoon MMMMMMMMM EEEMMEEMEEEEEMEMEEENEWAMMESEEMEME MMMMM EMSEEMEMENMEMMEEMEE

EN MEMEMEMEMEMMEMEE MMMMM NEEMEMMEMEEEEEMEMEEMEEMESEMEESEEMEMEMANKEMEMEMEM MMMMMM MESSES MMMMM MENEM

MEEMU MMMMMMMMMMM MEM

r,
AV'

SEEM MEMMUSMEESEEMEMUESMEM

MEM MEE MMMMM EMMEMEMEMENEMEME MMMMMM SERE MMMMMMMMMM MEESE MMMMMMM EMEYWAIM MM M MM ENEEENEEMEMEMMEMEMEENEEMEMEMEME MEE M /Id MMM .

0
-100

S MMMMM EMS MMMMM E MMMMMMM EMMESEE MMMMMMMM MENEM MMMMM MMEN MMMM nrmmoomomsonoon MMMMMMMMMMMMM momonommomommo

EMMEN NmEmMoErMmEmNeInEoEmtImMuMnEaEmNzRmImIsEShAiMuAm.o

MMMMMMMMM

mmomomm

Pl.
MMMMM_M__m.m1oomnmeMmMmMeAmpMumMmEmNoEmMmoMmMmoMMMMMMMMMMEMnEMoEoMnEoMnEomommmmoEoMnnMnEoMoEmMmMoEnMoEmE

MEMESEUNEPMEPEEMP MMMM INEEMEMEMEEMEMEMEMEMEME MMM ENISIEPi

gopongonom

mon MM

.

loonmosanmnorm

14MANIUME MMMMMM *NOM

MMMMMMMMM

EMMEN

MMMMMM MEP"timE MMMMMMMMMM
MM .--.-..-0011
IMEMEEE MMMMMMM

EMMEN

MMMMMMM MEMEEEMMEEMMENMEMMEMEESE NEMEEEEMEREMUSUMMUMMEEESU MMMMMMMMMMMM NEE

SEEMEIMEESEMEEMMEMEMENEME MMMMM E MMMMM MEME MMMMMMM MIMI

EMEMEMEE MMMMMM EMMEN MMMMMM EE MMMMM M

10

8

-6

-4

-2

0

2

4

6

K -69087-72A138 New drawing

D -C CONTROL GRID VOLTAGE IN VOLTS

4-29-47

GL -5559 /FG-57
En -122C PAGE 6 10-49

OUTLINE GL-5559/FG-57 THYRATRON

400" MIN.

.566".00711DIA. ANODE TERMINAL
C 1-5

3"DIA MAX.

711+
,
e CONTROLLING
LEVEL BASE A 4-10

HEATER TERMINAL
CATHODE TERMINAL
K-4373343 ERevised drawing

a GRID ANODE
RETURN TERMINAL GRID TERMINAL
8-29-47

10-49 (10M) Filing No. 8850

Tube Divisions, Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

GL-5560/FG-95
DESCRIPTION AND RATING
ETI-125C PAGE 1
1 0 49

THYRATRON

DESCRIPTION
The GL-5560/FG-95 is a four -electrode mercury- the available grid power is very small and where it vapor thyratron with negative control character- is desired to actuate the grid from a high -impedance istic. This tube is designed for applications where source.

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL
Electrical Data
Heater voltage Heater current Cathode heating time required Anode -to -control -grid capacitance, typical Control -grid -to -cathode capacitance, typical . . Deionization time, approximate Ionization time, approximate Anode voltage drop, typical Approximate control characteristics
Anode voltage Shield -grid voltage Control -grid voltage

Minimum 4.75 300
100 0
+1.0

Bogey 5.0 4.5
0.2 4.4 1000 10 16
1000
0
-9.0

Maximum 5.25 4.9

volts amperes seconds uuf uuf microseconds microseconds volts

volts volts volts

GENERAL ELECTRIC
Supersedes ETI-125B dated 10-47

GL -5560 /FG-95
ETI-125C PAGE 2 10-49

TECHNICAL INFORMATION (CONT'D)

Mechanical Data
Type of cooling-convection Mounting position-vertical, base down Net weight, maximum

6.5 ounces

MAXIMUM RATINGS, ABSOLUTE VALUES

Maximum peak anode voltage Inverse Forward
Maximum cathode current Peak Average Surge (maximum duration 0.1 seconds) Maximum averaging time
Maximum negative control -grid voltage Before conduction During conduction
Maximum positive control -grid current Anode positive
Maximum negative shield -grid voltage Before conduction During conduction
Maximum positive shield -grid current Andoe positive
Maximum frequency
Condensed -mercury temperature limits
* These ratings apply with Heater Voltage 5.5

1000 volts 1000 volts

*30

15 amperes

*0.5

2.5 amperes

200 amperes

15 seconds

1000 volts 10 volts
0 25 amperes

300 volts 5 volts
0 25 amperes 150 cycles per:second
+40 to +80 C
.5(70 volts, only when the 5560 is used for ignitor firing.

THYRATRON GL-5560/FG-95 TYPICAL CONTROL CHARACTERISTICS
SHADED AREA SHOWS RANGE OF CHARACTERISTICS CONDENSED MERCURY TEMPERATURE 40 C SHIELD -GRID VOLTAGE ZERO
1000

800
600

400
0

-14 -12 -10 -8 -6 -4 -2 -0 +2 +4 +6 +8

D -C GRID VOLTAGE AT START OF DISCHARGE IN VOLTS

K-8639318

9-22-43

GL -5560 /FG-95
ETI-125C PACE 4 10-49

A GL-5560/FG-95
CATHODE REHEATING CURVE
ANODE VOLTAGE = 0

0

20

K -69087-72A184 ANew drawing.

40

60

80

100 120

140

160

TIME OFF IN SECONDS

A GL-5560/FG-95
AVERAGE GRID CHARACTERISTICS BEFORE ANODE CONDUCTION

180 200 4-8-48

NE =CONCUC-ION STPRTS
0

0

-0.100

00

-0.200

-0.000 0 400

0.500

-1000 -800 -600 -400 -200 0

.200

DC GRID VOLTAGE IN VOLTS

K -69087-72A283
New drawing.

4.6-49

if -6Z-1, 111111.11
Nimum inumpai
111111111M.111
MIENS
11111=
ME
MEMM
EMIR
EMMEN
NOMMR
1

(Ou!".,13 MINI IV LVZL-L9069-

S1l0A NI 39V110A 4I a9 1081N00 3-0

9

b

Z

0

Z-

t-

9 -

0 I

OZ -

RV A 018:111r5111.1 I

.1
NW A CIF 'AF, 41/ ' 11 1
I,I
I
rI
ii
I II II
1111
ICI
M

AE.64121-1 ..MM I
AR=MIM I 1

77
0

H7 77

1111111.111.11111.111.1 11111111111
Bill

1111111111111 111111111111111

IHRHINI
UiMI.N. OZ
MI
II

Op
SWHHH1O1 09

IIIII
III
11
I
11
114
Ni
MIN
NI
II I
I I
M
M M
M R H
MI II
1
in: 1 i

09 001

A

OZ

:MEMMEN

1

IMMIAMIII

MIN

Opl

MEN11.1 111H1111

......I....

091 Ulan

MU A
WEWMIII
MI
III
HI HI
r 1
AI II
I II
III 1111
NNHM
III
IiAI. sRmM
iI
N I

MENEM:
r MRRHERINIIIIHRINHEM

NEIMEIMI IllEIREEMEMIE
an=

IIM1'111171 MI4 'A MAIMINIMMIIKA
MMM
,mmiNimroe.J.7

n
1

I:11111111SH1414111 111111141 NIA. ICI. O

- 141L.AMP 441M1.1111.4.MMTEAMIL. IMI.M

4RIAT _

P

131111 IIIIIIIHMIIR AMP IL2111111114 / CHOIR IIIIHA

A4RAII4LIWM MMM ,ImucAnmommtize._111a - -

1

e HIm mp

9A

MEREEM1MAPil1.IIIPUML4RR.PAROUIMM

RP I1II4= M rUNA 4 W.EVM guu.

1

TEWT
41 :caa e nail . VP1.1-11 NJ

O 0 R.

II
A.,

'azims- CJALWAICAIIIIIII.'

091
00Z
111111HEHR
OZZ
0172

GL -5560 /FG-95
ETI-125C PAGE 6 10-49
CAP CI -5 CONTROL GRID TERMINAL

ANODE TERMINAL

CONTROLLING MERCURY TEMPERATURE

10-49 (10M) Filing No. 8850

SHIELD
GRID

CATHODE a HEATER

CATHODE, GRID & ANODE RETURN

K-495590

OUTLINE
GL-5560/FG-95 THYRATRON

9-28-45

Tube Divisions, Electronics Department

GENERAL ELECTRIC
Schenectady, N. Y.

GL-5720/FG-33
DESCRIPTION AND RATING
ETI.1208 PAGE 1
9-51

THYRATRON

DESCRIPTION
The GL-5720/FG-33 is a three -electrode mer-
cury-vapor thyratron with a positive control
characteristic. This offers the advantage of a tube that will operate only with a positive voltage on

the grid and is ideally suited for applications which require that no current flow in the absence of grid excitation.

*TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL
Electrical Data
Heater voltage Heater current at 5.0 volts Cathode heating time required
Anode -to -control -grid capacitance Control -grid -to -cathode capacitance Deionization time
E, =120 v d -c; Ib =2.5 a d -c; 12, =1000 ohms Ece= -500 v d -c
E, = 1 v d -c
Ionization time Eb =100 volts; Ib =15 amp., Ee = +15 v
Anode voltage drop Critical grid current at Es, = 220 v a -c

Minimum 4 75
300

Bogey 5.0 4.5
2.7 8.0

Maximum
5.25 volts 4.9 amperes
seconds uuf uuf

80

... microseconds

820

... microseconds

10

... microseconds

16

... volts

1000 microamperes

Revised.

GENERAL tidal ELECTRIC
Supersedes ETI-720A dated 4-48

GL -5720 /FG-33

ETI.120B
PAGE 2
9-51

TECHNICAL INFORMATION (CONT'D)

Mechanicai Data
Type of cooling Equilibrium condensed -mercury
Temperature rise above ambient At full load, approximate At no load, approximate
Mounting position Net weight, maximum Shipping weight, approximate

convection
37 C 26 C
vertical, base down 5 ounces 7 pounds

MAXIMUM RATINGS, Absolute Values

Maximum peak anode voltage

Inverse

1000 volts

Forward

1000 volts

Maximum cathode current

Peak

15.0 amperes

Average

2 5 amperes

Surge (maximum duration 0.1 second)

200 amperes

Maximum averaging time

15 seconds

Maximum negative control -grid voltage

Before conduction

500 volts

During conduction

10 volts

Maximum positive control -grid current

Average (averaging time one cycle)

0.25 ampere

Maximum frequency

150 cycles per second

r Condensed -mercury temperature limits

+35 to +80 C

GL-5720/FG-33 TYPICAL CONTROL CHARACTERISTICS SHADED AREA SHOWS RANGE OF CHARACTERISTICS
CONDENSED -MERCURY TEMPERATURE 40C - 80C E, = 4.75-5.25 VOLTS

1000

800

600

400

200
/

0
K -69087-72A186

2

4

6

8

10

12

14

16

D -C CONTROL GRID VOLTAGE AT START OF DISCHARGE IN VOLTS

18
11-11-47

GL- 5720 /FG-33
ETI-1208 PAGE 3
9-51
GL -5720 /FG-33 TYPICAL VARIATION OF CONTROL CHARACTERISTIC WITH A HEATER PHASE VARIATION OF 180 DEGREES

1000

CVN FOC vtRcuRr T.Sv±',-.RA-UPt 4C t
r -;.G 1,01.1r5

764

frpf f-cf PUS";

800

WI NAN

CHAIN'T-P. 4PLt- NE 1111N

VL' Gf

n

7

_746 - /.

1W

NOLI .1,9t TAGS

600

1

400

200

0

2

4

6

8

10

12

D -C GRID VOLTAGE IN VOLTS

K -69087-72A21

GL -5720 /FG-33

5-13.46

RATE OF RISE OF CONDENSED -MERCURY TEMPERATURE ABOVE AMBIENT

MMMMM NEMENEMENE

MEMENEMENE MMMMMMMMMM =MEM!

E=NNEENEEMEMNMEMMMEMNNEMEENNNEENMNEENMNEEMMEINNEEEMMEENMEEXNEEMNENMNEEENMNMEEENNEAMWENNENEMNJNEEWMEELNMMAEMNMEEMEENNENMEENNNNEENNENNE

NMNMEMMMEMNMNMEEMNEEMMEEMNNNEEENMEEMMEEMNEMNENEMEEENMEEEMMEENMNENNEEEENMUMMEMNENMEEMNEEMMEENNEENNNSEENNNPNm..mgm==mmimm

25

MEMENNEMENNENNEMEMENEMEN MMMMMM MENPM11.12MEMENNE MMMMM MENEMEMEME

MMMMMM EMEMENENNENEEMEMMENNEMENNMENNMENEPt:iimMENEMENEMENNIMEMENEMENENNEEN

EMMMEMNMMMEMNMNMEMEMNEEEMMEENNENMEENNEEMIMEEMMEENNENMNEEMMEENNEEMMEENNtNAEMrEiNdEEMNENEENMEEMNENNENNEENMEEMNENMEMMMEMNMEMMEENMEEMNEEENMEEENN

MMMMM MENEMEMENNEMENNEMEMENEMENEMPWINMENNENNEMENENENENNEMMENNEMENNEMEN

NE MMMMMM ENNEMENNEMENEMEEMEMENNEwnmENE MMMMMMMM EMMENSUMMENNEEMENNEMEMMEN

NNE MMMMMM MENEMENNEMENNEMEMENEMPAMEM MMMMM MMENEMENEMENNEMENEENNEMENNEMEN

MENEMEMENEEMENEMENEEEMENEEN MM MM NMEMENEMENNEENNEMENNEMENNEENNEMENNEMEN

20

N=NEMMEMNMNMEMMMEMMEENNNEEMMEENNEEMNENEENNNEEENMEMMMEMMEMNENMEENMNEENMNEENEMMEENNNNEEMMEEEMNEENMEEMNEEMMEENMEMMMMEMNMEM=EMNENNENMEENN=E EMEMENEMEMENEMENSENN MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

EMENEMENNEMENNEMENEEMENEFAMMEMENEMENNENNEEMENEMENEEMENNEENEEMEMENNENNE

EMEMENNEMENEEMENNNEMEMEMEMEMENNEMENEMENNEEMENNENEMEMENNMEEMNENEMENEMEM

NMMEMEMNMNMEMNMNENENNNNEEEMNENMEEEMMNEEENNNNEIWMEMEENNNEMEMMEEMNENEMNMNMEMMNNNNEENEEMEEMNENNNEEMEENNNMEMNMNMEMMEMNMEMMEENMEEMNENINENNEENNNEN

MMMMMMMM NNENENEMENEMEMMENEMEMENEEMEN MMMMM =MENNE= MMMMMMMM EMMEN=

NEMEMENNEENENENNEMEMENANNIMMENNENNEENNEMNEENENNENEMENENNMEMEMENNNENNEEN

MMMMMM NMENMEMEMENENNENNEMENEENNENNE MMMMMMMM EMENNENNNE MMMMM NEEMMENNENNE

MMMEMNMNMEMWMEMNMNMEMEMEEMMEEMENNNEEMEENLNAMNMNMEMNMEMMMEN=ENMEMNENNENMNMEMEMNMEENNENEMEEMNEENMNEENMEEMNMNEEMMEENNNNEEEMMEENMNEENNNEENMEENN

15 MMMMMMMMMM MENEEMEMENYA MMMMM immaimmomms MMMMM mom MMMMMM mmtommomm MMMMM

MMMMMM ENEEMENEMEMENNA MMMMM MENEM= MMMMM ENNEMENNEMENEEMENNEMENNIMMENNEN

NEMENEMENEMENENNEENFEEMENENEMEMEEMEMENEMENENNNEENNEMENN MMMMMM =MENEM

NNNEEMEMNMEMMMEMNE=NMEEENNENME=MEMNMUMMMEMMENNEENMEENMEEENMNEENEMMMMMEMNMNMEMMMEMNMEMMEENNENEEMMEMMEINNNENMEEENMEENNNEEEMMEEMNEENENMNEENN

MMMMMMMMM EMENEEMEMENNMENNMEMENNEMEMMMMMMMMMEMENEEMEMENEMENNEMEMENEMENE

mmummommoommommmuti MMMMMMM ENNEMEMEME MMMMMM NEMENNEENNENNEEMMENNEMENEMEN

NMEMNMNMEMMMEMNENmNmMuEmMmEoNmNmIMoEmNmEoMmEmMiEmMEmNtEuNmNmEuMmEEmMoEmMmEoMmEmNoNEmNmEmMoEmNmEoMmENmNuEmEuNmNmEuMEmNmNiEmNmNoEmEmN

10 MN=

MMMMMM MMMMMM

=MENA MMMMMM NEEMEMEMEMEM MMMMM NEMEMEMENEMEN MMMMMM =EMMEN= =MENNEN MMMMMM EMENNEMENEMENEEMENEMEMEMENNEEMENNEENENEMEEMENE

EMMEN MMMMM NEMENEUMMONMENNMEENNEEMEN MMMMMM MEMENEMENNEENNEMMEMMEMENNENNE

MMMMMM NEEMENNENVEMEMENNEMENEMENEMEN MMMMMMMMM NNEEMENNENEMENNNEEMENEMMEN

MMMMMMM MIENNEMINNUMENNENNIENNEENENNEMEMENEMEMENNENEMENNNENNEMENEEMENNENNE

MMMMMMMMM =EWEN MMMMM MEMINNEMENNEMEN MMMMM NEENNEEMNE MMMMMMMMMM NIMENNEENE

MMMMMMM NNEEMENNENENEMENNENNEMENNMEMENNENNENNENNENNE MMMMMMMMMM NMMINNEMEN

MMMMMMMM EMEMEMEMENNEEMENNEEMEMENENEMENNEMEMENEMENMENNENNENNNEMENMENME

MUNN MMMMMM =MUNN= MMMMM NNMENNEMENEMENNEMENNEMENENENNENEMENEMENEEMNMENE

MENNENNENNENZIMMENEMENEMENNEENNMENNEENEEMENEMENEMENEMEN MMMMMMM ENNENNEEN

5

MMMMM NENNNENAMENNEMENEMENNENNEMEMEMENNEEMENEMENEMENEMEMENNENNEMENNEEMEN WEENNENNEMENEMEMEMENEENEENNEMEMENEMEMENEMENEMEMENEMENN MMMMM MENEMENEMEM

MMEENNEMMMEMNMEMEMEFVMAEMMEENNNEMEENEMMEMMMEMNMEMEMEEMNENNENEEMMEENNENMEEMNEENMNEENEEMMEENMEEMMEENNNNEEMMEENNENMEEMNENMEEMNEEMMEENNNEEMMEENN

ENEENNENNUMEMENNEME MMMMMMM MEMEMEMENNEMENEENNEENNENNNE MMMMMMM MENEMMEMEN

MENEMENWAMENNENNEMEMENNEMINEMENNEMENNEMEMEMMEMEEMENNE MMMMMMM MENEEMENNEN

MMMMM EFAMENNEEMENEENEMENNEMENEMENEMENEMENEMENEEMENEEENNEMENNEEMEMMENEM

MENEENEMMMWAUSEMEMMMEIMIEMNMEEMMOMNEEMENMNNMEMMMEMNMEMMEMENNNEEMNENNENEEMMEENMENMEEMNEENMEENNNNEEMEMEEMNEENMNEENEEMEEMNEMEEENMNEENENNENMOEMNM

NPtEWANEMEMMENNEMENNEMENNENNEMENEMEMENNENEMENNEENNEENNENNENNENNNENNEMME

0

5

10

15

20

25

30

35

HEATING TIME IN MINUTES

N-21529ZA

4-8-48

GL- 5720 /FG-33
ETI-120B PAGE 4
9-51 4
3
2

GL-5720/FG-33 CATHODE REHEATING CURVE
ANODE VOLTAGE = 0

O K -69087-72A184

20

40

60

80

100

120

140

160

180

200

TIME OFF IN SECONDS

1-16-48

GL-5720/FG-33 AVERAGE GRID CHARACTERISTICS BEFORE ANODE CONDUCTION

0.4

0.3

0.2

0.1

0
:Oc
U ES 0.1 a
-0.2

0.3

0.4

-500 K -69087-72A185

-400

-300

-200

-100

D -C GRID VOLTAGE IN VOLTS

100
11-7-47

1000
900
MO
800
700
600 WMONEEIMM=MPE' MMMMM mmomm
500 1111

GL-5720/FG-33

ETI-120B PAGE 5

9 -5 1

GL-5720/FG-33 TYPICAL CONTROL GRID CURRENT
VS.
CONTROL GRID VOLTAGE DURING CONDUCTION

wissow mmmmmmmmm m m atm mmiNsminw

...l
m I

1

..l

1 MI I

sannumissom EOM mmmmmm I MI I

I 1

III
I.

ENO

MO

I..

111111
!WI

OIMEORM MMMMMMMM NWIIIIRSEE11111111NWII11111111MINEWIREMENNIMMENWEIINIMI

i

1

lIII 1

MMMMMMMM MUNOMMERIM

I

WEE

MOO

1

NEMER

MI1 I
MEIONWOOMMOMNOMMUMMNE1I

MIMOMEIMUROMMOMEMMIIMONMERMOMM

1
11 EMI
1

.
III IIMOM

MEMNON

MIEWIMUMOMMUEMBOON
.1
WHIM NUNN

ION OMURA
HON
1

ImN

1 W

MMMMMMMMMMMM ONSMIMMIMEMOMOMMORMI

MA

v

400
1
300 IMM 11111
1
200
MON
P
1
100
G.
IMUIONORM111
19
0
MmMmMMiMmM rmmMmmMuM_uEr.wrjrqamm, rIrvit-

RENE

MIINOAU

M 11
WAREN= MMMMMMMMMMMMMMmmmommal

WWI

1111 M
ml
11i
WOOF

MOOMMEMB MMMMMMM
1
FM
/11I
IC
Pill
1111
1,
M11/MMOM

WON
EOM

NER1
4111WIMO /

vs

m
m
MENONNEO
11111WIRWOME 111111IMMBIll

-100 IMEMMOMMIIMIMMI
INEWnEWMUNMICM.

Fr!."1".111

ENERMIE1111 NWEBEEMICII

-200

10

8

-6

-4

-2

0

2

4

6

K 69087-72A137

D -C CONTROL GRID VOLTAGE IN VOLTS

4-29-47

GL -5720 /FG-33
ETI-120B PAGE 6
9-51

.400
MIN." 11

ANODE TERMINAL
CAP
OCI-5

3" DIA. MAX.
-ADnIA7."

4-4
ZONE FOR CONDENSTEDt'i
-4- MERCURY TEMR--a..
MEASUREMENT
BASE A4-10

K-4373360 9-51 (11M)

HEATER
TERMINAL

GRID & ANODE RETURN TERMINAL

GRID TERMINAL

CATHODE TERMINAL

OUTLINE

THYRATRON GL-5720/FG-33

5-1G-48

Tube Department, Electronics Division

GENERAL

ELECTRIC

Schenectady, N. Y.

GL -5728 /FG-67
DESCRIPTION AND RATING
ETI-123B PAGE 1
5-49

THYRATRON

DESCRIPTION
The GL -5728 /FG-67 is a three -electrode mer- teristic. This tube is designed for use in inverter cury-vapor thyratron with positive control charac- circuits where a short deionization time is required.
*TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL
Electrical Data
Heater voltage Heater current at 5.0 volts Cathode heating time

Minimum Bogey Maximum

4 75

5.0 5.25 volts

4.5

4.9 amperes

300

seconds

Anode -to -control -grid capacitance
Control grid-Cathode capacitance

3 25

micromicrofarads

8 90

micromicrofarads

Deionization time, approximate Eb =120 v d -c, Ib =2.5 a d -c, Rg =1000 ohms
E= -500 v d -c
E =0
Ionization time, approximate Ebb =100 volts, lb =15 amps, eg = +35
Anode voltage drop Critical grid current at Eg = 220 v a -c . Technical Information changed throughout.

5 microseconds

850

microseconds

15

microseconds

16

volts

10 microamperes

GENERAL ELECTRIC
Supersedes ETI.123A dated 10-47

GL -5728 /FG-67
ETI-123B PAGE 2
5-49

TECHNICAL INFORMATION (CONT'D)

Mechanical Data
Type of cooling-Convection Equilibrium condensed -mercury temperature
Rise above ambient At full load, approximate At no load, approximate
Mounting position-Vertical, base down Net weight, maximum
MAXIMUM RATINGS, Absolute Values Maximum peak anode voltage Inverse Forward Maximum cathode current Peak
Average Surge (maximum duration 0.1 second) Maximum averaging time Maximum negative control -grid voltage Before conduction During conduction Maximum positive control -grid current Average (averaging time, one cycle) Condensed -mercury temperature limits

31 C 25 C
5 ounces
1000 volts 1000 volts
15.0 amperes 2.5 amperes 200 amperes 15 seconds
500 volts 5 volts
0.3 amperes +40 to +80 centigrade

GL-5728/FG-67 CONTROL CHARACTERISTICS SHADED AREA SHOWS RANGE OF CHARACTERISTIC CONDENSED-MERCURY TEMPERATURE 40 C-80 C
E, = 4.75-5.25 VOLTS
1000

900

800

700

600 500

400

300 200

100

-16 -12

-8

4

0

4

8

12

16

20

D -C CONTROL GRID VOLTAGE AT START OF DISCHARGE N VOLTS

K -69087-72A207

4-8-48

GL -5728 /FG-67 RATE OF RISE OF CONDENSED MERCURY TEMPERATURE ABOVE AMBIENT
Ef = 4.75 VOLTS

GL -5728 /FG-67
ETI.1238
PAGE 3
5-49

MMwMMEEEEoMMMmMEMEEmMMMRiMEEEMmMRMEmEMEMuMMMEmEEMMmMMEEeMEEMnMMEMiEEMEmMMMMMEEmEMMMuMEEMmEMmMEMrEMEMiEMmMEEmEMMuMEEMmEMEMmEEMEiMMMMEEpEMEMMmEEREeMMEMmEEEURmARMEJiMEEEmMWMMmEEMEELuUMMSmMEEMmEROMuVSMEEAmEMNLm-EML-oPME-mEFEEEnMRiEEMmMEEmMMMEiEMMmMMEmMMEMlERMiMMEmEEMmRME

25 MimimEmomEmmMoomMmMmuMmMmMimMuMmmMMmmsMimmnomMiumgMmmMMmiMMMomMMMmmMMMumMmmoMomuMmmomm=mmm=oooMmmmMMpMmmMoMoiMMmmnMMmmsMiommmmamummmmuu4mmmmmumimomamummmmmmtmumoi:numniimmmianimmmiilmimniilmiummtmmpslimmlumem.ommummmmmumumumomommmmmmommuuniummsmmmmmmMmooMMmmMMMmmMMMiuMMMmmMMmm=Mmuommmummommmmm

MMMMMMMMMMMM mm MMMMM mEiMmEmMuMmEmMiEnMuEmMmEiMsERMEMEMMMMEMMEEMREEMEEMEMMMEMMMEMMMEMEEMMEEMMEEMMEEMR

EMEMEMEMMEMEMEMEMEMEMEMEM MM K MM mommummimminommommommimmommiumm

imommmmuommmmeonummmiMMmMmMoMmMmEuMmEMmEoRmEMmEiWnAMiMmEmMEuMmEmMEuMmEmMoEMmEmMuE mMmMoMMmMmuREmMmoMmMMmMoMmMmUuMmMEmRoImESm'

20

MUMMER= MMMMMM EMEMEMEM MM MM MEMEMEMEMEREMEMEMEMEMEMMEMEMEMEMEMEMEME
MMEMEEEMMMMEEEEMMMMEEEEMMMEEEEMMMENMEMEEMEMMEMEEEMMMMEEEEMMMMEEEEMMMMEEEMMMMEEEERMMMEMMEMEEEMMMEMEEMEEMEMMEMEREEEMMMMEEEEMMMMEEEEEMMMMEEEEMSMMEOMEMMMMEMMEMMEMMEMMEMEMMEMMEMEMMEMMEMMEMMEMEEMMMMEEEEMMMMEEMEMMMMEEMEMMMMEEEEEMEMMEMEEMMEMEEMEMMEEMEMMEMEE

EMEMEMEMEMEMMEMEMEMERMEMEMEMEMEMEMERE MMMMM ME MMMMMM MEMEMEMEMEMEMEME

MMEEMME=MEMMMEMMMEMMMEMMEEMMEEMMEMMEEMMEEMMEMMEEMMEEMMEEMMEMEEEMMEEMEEMMEEMMEEMMEEMMEEMMEEMMEEMMEEMMEEEMMEEMREMMEEMMEE

15

MEEMMMEMRMEMMMEMEEMMMEEMMEERRMEMEMEMERERMMMEEEAMEMEMMMEEEMMEMMMMEMEMMMEMMEMEMEMEMEMEREMMMEEMMMMEEMMMMEERMMMMEMMMMMEMMMMMEMMMMEMEMMMEMEMMMEEMMREEMMMEEEMMEMEMMMEMEMMEMMMEEMMMEEEMEM MMEEMMEMMMEMMMEMMEEMMMEEMMEEMREMMFEEMEEMMEERMEESMSEEMMEEMMEEMMEEMMEEMMEEMMEEMMEMMMEMMMEMMEEMEMMMEMMMMMMEMMMEMMEEMMEEMMEEMREEMMEEMME

MEMMEMEMEMEMEMEEMEME MMMMMM EMEMEMEMEMEMMEMEMEREM MMMMMM EM MMMMMM ME

REEMMEEMNEEMMMEEMMEERMEMMMMMEMMMMEEMMEEMMEMMEEMMEEMEMMEEMMEEMMEEMMEEMEEMMEEMMEEMMEEMMEEMMEMMEEMMEMMMMMMMMMMMMMME MMMMMMMMMMMMMEM

EMEEMEMEMEMEMMEMEMEMEMEEMEMEMEMEMEMEMEMERME MMMMM MEMEMEME MMMMM MEM

MiMEEmMMmMEoEMmREmEMMuEEmMMmEEoMMmMEmEMMoEEmMMmEEMiMInEEuMMEmEMmEMiMEmEMgMEEmMMmEEuMMmEEmMMoEEMmREEmMMoEEmMMmEEoRMEmEMmMEeMMmEEmMMuEEMmMmEMoMMEmMMmMEMoMMmEmMMuEEmMmMEMuMMmEMmMMiEmMMmEE

10 EMEMEMEMEMEREMEMEM MMMMMM MEREEMEMEMEMEMEMEMEREMEMEMEM MMMMMM MUMMERIES

MEMEMEMEREMEMEMEMERMEIMEMEMEMEMEMEMEMEMEMEMEMEMEMEMEMEMEMMEME MMEEMMMMEEMMMMEEMRMEMEEEMMMEEEMMMEEEEENMMEMEVEMEMEMEMMMEEEMMEEMMEEEMMMEEEMMMEEMEMEEMEMEMEMEMEMERMEMEMEMEEMMMEMERMMEEMMMMEEMMMEEMMMEIEMMMEEM=MMEMMMMEMMMEMMMEMEMMEEEMMMEEMMMEEEMNME=E

EMMEERMEEMMEMMEEMMEEMEMMEEMMEEEMMEMMMEMMMEMMMEMMMEMMMEMMMMEMMMEMMEEMEEMMEMMMMEMMMEMMEEMMEMMEEMEMEMRMMMMMMMMMMMEMMEMMMEMMMEMMEMEE

5

MMoEmEMmMEoEMmREpEMoMEmEMmMEiEMmMEmMEuMMEmEMmMEiEMnMEuEMmMEmEMuMEmEMmMEuEMmMEMEMEMMEMMMMMEMMMMEMmRMoEEmEMmMEuEMmREmMEoEMmMEmEMoMEmERmMMoEEMmMEmEMoMEmEMmMEoEMmEMmEoMMmMEmMMoMEmMMmEiIMuSEMm MEMEMEMEMEMEMEMEMMEMEMEMEMEMEREME MMMMM REEMEMEME MMMMM MERMEREME

MMEEMMEMMMEMMMEMMUUMMEMMMEMMMEMMMEEMEMMEEMMEEMMEEMMEEMEMEEMMEEMMEEMMEEMMEEMMEEMMEERMEEMMEMMEEMMEEMMEEMMEEMMEEMMEMEEMMEEMEEM

RREEMMEMMMEMMMFMAMWMAEIMMMEMMEEMMMEUMEMMMEMMMEM MMEMMMMMMMMEMMEMREEMMEEEMMEEMMEEMMEEMMEEMMEEMMEEMEMREEMMEE MMMMMMMMMMMEEMMMMEENN.=.

EERMEEMMEEMTEArM.EERMEEMMEEMREEEMMEEMMEEMMEEMMIEIMMEEMMEIMEERMEEMMEEMMEEMMEEMMEEMMEEMMIEIMIEIMIEMMEESMIEMMEEMMEEMREEMMMEEMlEl

MEMEEEMAMMMMEIMEMMMEMMEEMMEEMMEEMMEEMMEESMSEOMMEMMEEMMEEMMEEMMEEMMEEMMEEMMEMEEMMEEMMEEMMEEMMEEMMEEMMEEMMEEMMEEMMEEMEMMMEMMMEMMENMEEMM

PT:

0

5

10

15

20

25

30

35

N-21529ZA

HEATING TIME IN MINUTES
GL-5728/FG-67

4-8-48

CATHODE REHEATING CURVE

ANODE VOLTAGE =0

4

3

2

1

0

20

40

K -69087-72A184

60

80

100

120

140

160

180

200

TIME OFF IN SECONDS

4-8-48

5110A NI 39V110A 0189 3-0

130ZVZL-L8069-)1

001

0

001-

00Z-

00£ -

0017-

008

01 -

8 -

9 -
t)

1

MEM
00"

-No

di

NCIJKY10N100 Wiym 10 18V1c 1V 1q3d6110 0 9

SleV1S '401131110NO3-0

11\

9

Ni 3na etN?WId 32.0!38
a 31)7V1-0 da_RIONV
L9 eJ/kit-19

NOLLDIIGNOD 34ONV 3210339 SDI1S12131DV2IVHD GINO 30V2I3AV

GL-5830/FG-41
DESCRIPTION AND RATING
ETI-121B PAGE 1
5-49

THYRATRON

DESCRIPTION
The GL -5830 /FG-41 is a three -electrode mercury- istic. This tube is designed for grid control rectifier vapor thyratron with negative control character - application of relatively high voltage and current.
* TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL
Electrical Data
Heater voltage Heater current at 5.0 volts Cathode heating time required

Minimum 4.75
300

Bogey 5.0 20

Anode -to -control -grid capacitance

15

Control -grid -to -cathode capacitance .. . . .......

18

Deionization time, approximate

Eb =120 v d -c, Ib =12.5 amp d -c, Rg =1000 ohms

E = -1000 v

250

E= -22 v

4000

Ionization time, approximate

Eb =100 v, Ee = -30 v, Ib =75 amp

10

Anode voltage drop

16

Technical Information changed throughout.

Maximum
5.25 volts 22.5 amperes
. seconds
micromicrofarads micromicrofarads

microseconds
.... microseconds

.... microseconds

.

.

volts

GENERAL

ELECTRIC

Supersedes ETI-121A dared 10-47

GL-5830/FG-41

ETI-12113
PAGE 2
5-49

TECHNICAL INFORMATION (CONT'D)
Mechanical Data
Type of cooling-convection Equilibirium condensed mercury temperature rise
At full load, approximate At no load, approximate Mounting position-vertical, base down Net weight, maximum

31 centigrade 25 centigrade
2.3 pounds

MAXIMUM RATINGS, Absolute Values Maximum peak anode voltage Inverse Forward Maximum cathode current Peak
Average Surge (maximum duration 0.1 second) Maximum averaging time Maximum negative control -grid voltage Before conduction During conduction Maximum positive control -grid current Average (averaging time, one cycle) Condensed mercury temperature limits

10,000 volts 10,000 volts
75 amperes 12.5 amperes 1500 amperes
30 seconds
1000 volts 15 volts
1.0 ampere +40 to +65 centigrade

GL-5830/FG-41 THYRATRON CONTROL CHARACTERISTICS SHADED AREA SHOWS RANGE OF CHARACTERISTIC CONDENSED MERCURY TEMPERATURE 40-65 C E,--= 4.75-5.25 VOLTS

10.000

8000

6000

4000 2000

0

-18

-12

-6

0

6

12

D- C CONTROL -GRID VOLTAGE AT START OF DISCHARGE IN VOLTS

K -69087-72A246
A Revised curve.

5-4-49

A GL-5830/FG-41
TYPICAL VARIATION OF CONTROL CHARACTERISTIC WITH A HEATER PHASE VARIATION OF 180 DEGREES

GL5830/FG-4
ETI-121B PAGE 3
5-49

MEM mMmMMmMoEomMmMEmEniMmMAsmENnmuMOiiMmMuImmELimmMEmuoMMmmmEMimmNEsuMIummMMmmMoMmuEmEoMmMpmMmMiUmiEmMnnMmM-uMmEwmERurMmUmaMoLmmIMmmuIiimmILromMMnmuMMwmmAEnLmuMnIumMaAmEmMMwMnAswJmoMatiUimmwMmmmmNiiaiWOmmUWmMm1mmMmUooEuWmmMAmmmMInEoiMoMmnAEnouMLommOIrMmmSmMooUaEmImTMUmmMmMoOuaWMmmrM2omaEMmmoMMmmmME 10,000

EMMEMMEMMEMMIMEMMEMMIMMEMIPTHIPOLORINMAJA4IntrellINAMWMffilWallin

MEMMEMMOMMEMMIIMMMEMMEMINILAIUMUM=W=AERW:=MABLIULALCIARCMMUIUMU5=MM/Wil

IIMMOMMINNIMMEIMMOMMITEMEMENMEIMMEMMOMMEMMEMEMEMMMEMMEMMEMMEMMEMMEMMEM

11111111MMEMMEMMERUMMEMINI MMUMMEMEMMEMEMINIMMEMMEMMEMMEMEMMUMOMMEMEMEMMIUM

MINIMMEMMEMMEMMOMMMEM MELMMWAThTPUHUMFTINT;IWIP/M7?7,11T7MMINIVW2MEMMINIMMEM MMOMMEMMIMMEM11111MMIMEMMUMMihM161WWIIailadMiMiaillMiiiiiiiiiMWAMEMERMEEM

9000

MMENIIIMMEMEMOIRMEMEMEMMEMEMEMEMMUFEMMTOMMOVAAMMEMMEMMEMEMMINIMEMMINIMMEMM

MEMMEMEMMOMMAMMINIMEMEMEMMEMEMENNWEEMANAMMilaidEMENEMMEMMEMMEMMEMMEMEMME

MMEMMOIMMEMEMMMEMMEmMEMMEMMEMOMMMEMMEMEMMEMMEMEMMUMMEMMEMEMEMMEMEMMME

MMIIMMEMMINIMMIUMMEMMEMEMSAMMIIMMEMMEMMEMMINIMEMEMEMEMMEMMEMMIMMEMMEMEM

MMIIIMMEMEMEMEMMIUMMEMEMMOMMIMMEMMEMEMOIMMENMMINIMMEMEMEMMEMMEMMEMMEMEmm

11.11111111MMEMMIUMMIMMMEMMEMMAMMIMMEMMEMOMMEMEMMEMMEMEMMEMEMMUMNOMMMINIMMM

MmmmImmuUmumMimmMmmoEmumMommImmIomiMmomMmUmmuMmumMommImmaNmuImumMmmmMomoMmomEmMmmoEmaMmimOmnmMiuuMmmmEmmmMoioMmmmEmmMmMieiOnmmAnmmMimoMmmmEmsMmgmMlmaEdwiMaMamwEvaiMramMimEanmMiwAEyrgMAnaOrniMrimMEemmMmwiErmhMaarMmawEmmmMamoEraMmvmMmIismNnmiIianMwgmMalEmsaMoimMmmmE 8000

IMMEMOMMEMIUMMEMIMMEMMIMMIMMEMMEMMEMMIMIMM2RMAWiirsrWWEIM0111111112711MMEMEM

MMINMEMMEMMEMMIUMVEMEMMMOMIMMEMMEMMEMSEMMANAMAZAULCNUUMMWAIMAMMAMMEMEM

MINIMMEMMEMMEMMEMEMAMMUMMEMERUMMIONIUMMMEMEMWWWWWWW701157MFMEMMEMEMMUMMII

MIIMMINIOMMENEMMEMEMMMEAMMEMMIMMEMMEMMEMMEMMIMMadlailigaNWQ001111111MIMMEMMMEM

MmIoMmMmEMuEmMmEMAEmMiMlEMmIoNmIRmOoMmMEmMmMmEoMImNmMuEMmMmMoOMmMmUmMoMEmNmVuIMmPrIaPMmEoMmMmUMuNaIrONtEmMeEnMMaOtMmMEuMmImMMaEmM

MOMMIIMMUMMIIMMEMMIRIMMEMEMEMILMMUMMIMaddMINMPFTEMMORNMIUMMEMEMMEMMENIMMEN

MEMEMMMIIMMIIMMEMEMMIIMMEMEMENIMEMMEMIMMEMMUEMAMUC41.10411111111MIMMEMEMMEMM

MEMOMMEMMEMMINEMEMMIMEMMEMMERMEMMUMMEMMEMIIMMEMMEMMEMMINIMMEMINIMIIMMEMMEM MMIIMMMEMMEMMEMMINIMMEMMEMMEMMMUMMEMEMMINIMMEMEMMOMMOMMEMEMMEMMEMEEMM

7000

MEMENMEMEMMOMMIIMMINWMEMMEMMIUMMEMEMMEMMOMMEMMUMMEMMEMEMINIMEMEMMMEMMEM

IMMUMMIIMMEMMEMEMMMIMMEMEMEMEVENMEMMEMMEMMEMEMSEMMEMMEMMIIMMEMMMEMMMMEM

MINIMEMEMMEMMEMMUIMMEAMMINMEMEMMEMEMOMMEMEMMEMEMMINIMMEMEMMEMEMMEMMEMMEMM

MMEMMEMMINIMMEMIUMMEMVEMEMMEMMUMMEMMEMMEMERNMEMMEMMEMMEMMEMMEMMOMMEMINI

MIIMMEMMEMMEMMEMMEMMERUMMEMMMEWEIMMEMMEMMUMMEMEMMEMMOMMEMEMMIIMMEMMEMOM

MMEIMMEMINIMMIMMEMMININIMMEMEMEMUMMIMMEMMEMOMMUMEMMEMEMEMMEMMEMEMIMMEMEM

OMMEMEMMEMMEMEMMINIMMIIMMEMINIMMIOMEMMEMMEMEMMEMEMEMEMMEMMEMMEMMEMEMMIIMMEM

millIMMEMMEMEMMOIMMOMMEMMRAMEMOMMMUMOMMEMEMMEMEMEMMIMMEMMEMMEMMEMEMEMMEN

MEMMEMMIIMMEMMEMMEMEMMOIMMINIMMEMMEMMEMMEMMUMMEMEMMEMMEMMIIMMEMMEMMENEM 6000

MMIIMINIMMEMMEMEMENSIMMEMEMEMMIIRUMMOIMMEMEMMEMEMMEMMEMMINIMMEMNIUMMEMMEMM

MmMiInmMIimMmmMmEmEomMommEmmMomMomiEmmmMmoMmumUmmmMumoEmoMmmMmmEummMuimMmmuEmmmRauMmmImEMmmrMoooImmmMmmmMauIumImmmMmmMiomInmoNimEmmoMmmMmmiEmumMimOmmmMmmMuuoEmmmMmmMmomEumoMmEmmmMummMmouImmImumMmmMmEmEomMommMmomEmmuMoEmmmMommMmuuImmMmumMnmEoiMmmmMumuInmoN

MEMMMIIMMMEMEMMMEMINIMMINEUMMEMMEMMEMEMMEMMUMMIUMOMMEMMENMEMMUMEMMEMEM

MEMEOIOMMEMMEMMEMEMMIIMMEMMAMMMEMMMUMMEMMEMEMMINIMMMEMEMMEMMEMMEMEMEMIRMI

IIIIIIIIIIIIIIIIIIIIIIIIKIIIIIIIKIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

. ......................A.......11.................................... ................m........m......m...................................

5000

MMEMMINIMMMERMOMMEMEMEMMMERMMEMEMMEMEMEMEMMEMMEMEMMEMMMOMMEMMEMMEMEMMII

MMINIMMEMMEMMEMEMEMMEMMMMIMMEMUMMOMMEMMEMIMMIMMEMEMEMEMEMMIUMMINMM

MEMMEMEMEMMINIMMEMMEMMEMEMMEMMUMMAIMMEMMINIMMIUMMOREMMOINMEMEMEMMEMEM

MmimmEmumnMomuiMmmmmEmMommMomioEmmmmMmummMimooMEumlmMmmmmImomuIumomMmmMmmEmomuMummmEmmomMmouMmEemmmMmmmoMouumEmmmmMmmWmeMoiumEmmmiMmmmmEioMommmMmuMmmmmUaoiwMmrnEommMsmueEmmMmmooMmomEmumMmmmmMiuEmonmMommmEmmoMEmoMmmomEmmMmuooMmmlOmomMommoMmmmmImmNomoUomomNmmmImmomMoomoMmmEummMmmmEeomoMmmumMmmOsmoMuiumMmmmEm

MMEMEMEMINIMMEMMEMEMMMEMMEMMEMMEMMERMINUMMEMEMMEMEMMEMMMIIMMEMEMMOMMEMM MMEMMENIIMMEMMIIMMEMMEMMEMMEMWMEMMEMEMEMEMIMEMMEMMEMMEMMEMEMMEMMEMMEMEM

4000

MUMMEMMUMMEMEMMEMMIIMMEMMMEMMUMMEMMUMMEMMEMEMMEMEMMIIMMEMMEMMIMMEMMEMM

MEIMMENIMMEMMEMMEMEMOMMENEMMEMOIMMEMMVMMEMMEMMEMEMMEMEMMEMEMEMMEMMEMME

IMIMMEMMEMMOMMIMMEIMMEMMEMMEIMIMMEMMEMMIMMEMNEIMMEMMEEMMMEEMWIEMMMOEMMMEMMMUAMMMEEMMMMEMMMMEEMMMMEMUMMEMMEMMEMMMMIESMMIEIMMMEEMMMIEIMMMMIEUMMMM

ME MEMMEMMEMMEMEMEMMEMMIMINIMMVIMMEMEMMEMMEMMEMMEMEMEMEMMEMEMEMMEMEMMINI

m

mMEuMmMnIiNmIMmMuEmMmMuEMmOmMoMmMEmMoMmEmMuMOmMmMmEoNEmMmMiImNmKMoEmMmMoImNImMuMmEmMMuEmMmMoEmMEmMuMmImNoIMmImIoMmMEmNiMlEmMmSNs
1 MEMMEMMINIMUMMEMMMEMEMEMEMEMMUMMEMMIRIMMEMEMMINMEMMINIMEMEMMEMMEMMEM

II MEMEMMEMMUMMMMEMEMOMMINNAMMIMISIMINIMEMMEMEMMINIMMEMMEMMEMEMEMMEMMEMMEM 3000

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIEIIIIIMIIIIIIIIIIIIIIIIIIIIIIIIIIII
mmoimMmm.mo..mummmlomImMuMmmEomMmEuuMmMmmImLuo.mmMmUmMuoMmmMmmEMoiMmmImmUuMoMmmEmmMoEumMmOomMmMumEmuMaEmiMmMmuEmmMuMmImoImmMoMmEumMmmEmiMEumMmmImuNiIoMmmMmmIuNomImMmmEoMmmImmNuOoMmmMmmE

IAmmnmmIuoluogmiImmmmmummImmommmemIoomiommuImmmmmumImmmommmImimomuomIusum.mmImummmImmmmmomoIommmmmmIomuuuumImmmmmmm"ioumimmm1mmmuluom:mmmimmm1oouagmm1mmmmm.ou1mumm1mmmmomoi1m.mmommm1m.oummmu1o.mmmuu1mm.mmum1mmmmoum1mmoo6mm1ommom.mo.mmomm1-ommomm4u-mmmomo1m.uummmm1i1mmmm1mml6mmai1uui-aummLmmmvlmmImmmammmiIooumnmuiImmmmIiommmmaIrimmmiomImmmiomImmomammsIummu-mmmImmommmeuImmomommImmmemmooImommImmmmumimIummummmIomuimomImmmmmmmoIummmmmuImmoi.ioImmmmm.umImummm.mmImuuuo.miImmmmImmouimmImmmmmonIooommomuImmmuommmImmmmmmumImmmmsso1s 2 000

IMMIEIMMMMEEMMOMEMMIEIMMMMEEMMMEIMIEMMMOEMMMOMNEMMEMMUEMEMMEMMEMMEENMESMIMMEMMEMMMMI0O1MMMOMI1M1M1E1L1M11M1E1M1MAEMMEOMMMEMMIENMIEMMMMMEUMMEMEIMNIM

MMMIMIEIMMMMIEIMMEIMNEIMMMMEEMMEMMIEUMMMMUEMMMMEMOIMNMIMMEMMEMMEMMEMMEEMNMIEMMMMEMMEMMEMMEMMgOMMMMMAMIEMNMIMIIMNMEIMMMMMEEMMMEEMMEEMMOEMMNIUNMIMMM

MMEMMEMMMEMMEMMIENMEIMMIUNMIMMIMNEIMMMEMMEMMMMIEMMMMEEMMMEMMEEMMMMEIMNMIMIMUEMMMMEENMRMIIMIMMEMMMMIgNMMEMMMMiOlMlMaEMMEEMMEMMMEEMMIINNIIMMMEMEMMEEMM 1000

MMEMEMMINIMMEMEMMINIMMEMMEMMINIMEMMEMEMINIMEMMEMEMMOORMMIgNMEMMEMEMMEMMUM MMMEUMMEEMMMIUNMIMMEMMUEMMMMEOMMEMNNEMMEIMIEMMMMOEMMMEUMMMMEIMNEIMMEMMMEEMMMOMISMEMMOMMEMMIEIMMMMEMMEMMMEEMgEnNMLaIiMnMUUMMMMIONMIMMIMEIMMIMNEIMMN IMOINlMmEEMMMMINIIIMMMMIEMMMMEMMMEEMMEMMEUMEMMMEEMMMMEEMMMEMMEOMIEMMEEMMNEOMMMMMEIMNMIMEMMIEIMMEMMEEMMMEMMENMIMMEMIMfEtMaETMIMMuMAmMaE=TmImMuEMm MEMMEMEMMIIMMEMEMOMMUMEMMEMMEMMEMMOIMMEMMEMEMOMMEMEMMEMMEMEMEMMIIMEMMEMEm MEMEMMUMMEMMEMMEMMOMMEMMEMMOMMEMMEMEMMEMEMMEMEMMMEMMEMMORIMMOMMINIMMEMM MMIINIIMMMMEEMMOMRIIMMIMMEMMEEMMMUEMMMMEIMNEIMMMMEAMMMMEEMMMMEEMMMMUEMMMEEMMMMEEMMEMMMEOMOMMEMMOMMEEMMEMMEMMEEMMMMEEMMMMEEMMMEOMMIMNOIMMMMEEMMMM

-8

-6

-4

-2

0

+2

+4

+6

K -69087-72A20
A New curve.

D -C GRID VOLTAGE IN VOLTS

5-4-49

GL- 5 830 /FG-4 1
ETI-121B PAGE 4 5-49

A GL-5830/FG-41 AVERAGE GRID CHARACTERISTICS
BEFORE ANODE CONDUCTION El --- 5.0 VOLTS

100 EMENEEMEN EMEMENEMEN EMENNEMENEMEMENNEMEE NM M ENE
NiOmMmEuNsNuEmNmNEsMiEmNmEoEsEmMsEMmEmMmEMsEmNsNsEmMoEmMmEiNmEmMmEmNEmMuEmNmMoEmUmSEm NNE

MENEM EMONEMEN gNmNEmMENNmEmMuEnNNsEmMoEnN

IINHEMENENNENNEMEN

M SE MEMENEMENNE OMEN =EMMEN MENNE M E ME EMEMERNMENE MEN NUMMI NI SEMMES NENE
NmE EENEMMEENNNEEEMEEMEENNNEEMMEENNENEMMEEMNEENME=MEEMEEMMEEMMEEMMENEENENwEon

M RENE NI MEN N

ENE m m

iIImEmEEMEISnMSEmMuNMEmEOmNNy

0

XII NMN EN NEM MEN

MINIMMEMMEMEMMEMEMEM OM ME= MINIMM MEIMMUM.1011,Trimlismmi2s ONNEMENEMENNEMENNEMENNEEMENEMENNEEN MEMENEWZdEv-dEN E

. '

Pil" IP'

11 IMIII 1

1111:11MINIMMOSEMMEMMOMM IIMEM mmommr.421m11n.-igii mmimm nom sworn

MEM MEN

"'iii" m
mm

EsNmEiNsNmEnSsEsMmEoNsEiEmSmEsMsEuNmmMsEnNuNmEsEmNpErEkNyNnOiMmOmMmMEmEmNmEoMmEpNoErMTE=N

ENEESMENE

mMuEmNsOMaMEN

.

pp

NEEMENNEMENNEENEUESSEMEMMEMPAAgAANNEEMEEWASEAEll SE IN NM MEM MER

NEEMENNEMENEMENESSEMEMENNEPLEMENEMENEEniNEMEMEN ON NE MENEM SE mum

'00- Pr
ii

IPIP'
.gi

iii

.1111 p, A) Al

.41

mmssmonsmnmmssimmurwnsm Airsammsmommomm mom MINE ENRINNEMENEME miasma

om M = umg mmismsnni.$a.AmdmAms _ib Ad

-A iiiiiiiiiiiiiiiiifiiiii

-100

SV MESENEENNEEMENEANREENNnSniNposommmismEMnsnN

I 11mOEMmsMmIsMnMrrKiArmsWsMmIsUmiMsrIOEMmEIIEMMMEEiMNmKAOmMmAnisvmMNEEMniMMmEiMENEMNMsEEM
on

EMElmNEmiinsMssNmEounmsuoms

11 11 VAn- .r

ill 4

II 1 11!11 1

1

EAr' rM

FAM

1M1U11M

4

V
M MIMMEMMMEMM MEMMEMMEMMOMM MIME MM MUM

DEM MMIAMAMEMEMEMPANAIdNIM MMEMMIIMMEMME pinsmnssmosimmomms m Emmons

UsNSmIsMnMmIuTrAaMmMsImNiIsMmEiMmEmFwIpMmMpImNm

insinimmnsppmmE mminmsmEn
MMEMMEMMInim 0111 MIIMEMMEME

inn=

mnsmsnummn
MEMNIMME

emomms

miomnmnuimmmmruimsmmismmmnisnmiosnssmmssmsmmoummmeummmmousismimnonmnm

mnimmns minimums mmmonnsinmsm vs

-200

snows= mminumsnm

immommorinummummumumm mum immunimmumnimmummimmummommomm

A
mmEnnmmusummEnnnsimmonnommusimmonusimmmmsmsnmennmmmmummonnsnm

-1000
K -69087-72A240
m New curve.

-600

-200

0

D -C CONTROL -GRID VOLTAGE IN VOLTS

m 200
5-4-49

A GL-5830/FG-41 RATE OF RISE OF CONDENSED MERCURY TEMPERATURE ABOVE AMBIENT
Ef =4.75 VOLTS

GI.5830 /FG-41
ETI.121B PAGE 5
5-49

30
11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
25

20

II 11111111 1111 11111

1111 11 1111111111111111111111111111111111111111111111111111111.111111111111121!!!! mm

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIMIIIIIIIIII 111111111 11111 1111111 1111111 11111111 111111111 1111 III 1111111

15 mmilmmouriowillinomiolumpli moodim

11111 11111111111 111111111:II

III 111111 111111 1111111111111111111111111111111111 111 11111111111 11111 III 1111111

10

5 11111

111 11111111111111111111111 1111 111111 1111 1111111111

1111 11

11 1111111111 1

1 11 111111

0

5

10

15

N-21532ZA

ANew curve.

20

25

30

35

40

45

50

HEATING TIME IN MINUTES

55

60

4-4-49

AGL-5830/FG-41 TYPICAL CONTROL -GRID CURRENT VS CONTROL -GRID VOLTAGE DURING CONDUCTION

600

Ef

.o VOLTS A- C

400

200 0

-200

lb G. 25

RCS

-400

lb -= 12 .5 tfiPERES

-600

-16 -14

-1,2

-10

-8

-6

-4

-2

0

2

4

K -69087-72A241
-New curve.

D -C CONTROL -GRID VOLTAGE IN VOLTS

5-4-49

GL -5830 /FG-41
ETI-121B PAGE 6 5-49

OUTLINE

GL-5830/FG-41 THYRATRON

i-----, 800" t .007"
1 ANODE

TERMINAL

.785" MIN.

CAP NO.

CI -8
.)

HOLE IN
GRID TO OBSERVE
CONDUCTION
t
13., 3.,
81--6+---2r--

In
4

1-L--

51" DIA.
16 MAX.
9 ii+ 3"
I632- 16
ZONE FOR CONDENSEDMERCURY
TEMPERATURE "'MEASUREMENT
BASE NO. A4 -75

5-49 (10M) Filine No. 8850

C AT HODE AND
HEATER TERMINAL

GRID TERMINAL HEATER TERMINAL
CATHODE TERMINAL

K-51 82056

5-4-49

III Revised outline.

Electronics Department

GENERAL

ELECTRIC

Schenectady, N. Y.

GL -5545
DESCRIPTION AND RATING
ETI-275C PAGE 1
12-50

THYRATRON

DESCRIPTION
The GL -5545 is a three -electrode, inert -gas filled thyratron with a negative control characteristic. This tube is designed primarily for all control applications. The GL -5545 combines the desirable temperature characteristic of gas tubes, maximum

ratings over a wide temperature range, with the long life of mercury tubes. Another feature useful in industrial applications is the quick -heating cathode only one minute is required for the cathode to reach operating temperature.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS

Electrical Data
Filament voltage . Filament current at 2.5 volts . Cathode heating time required Anode -to -control -grid capacitance . Control -grid -to -cathode capacitance Deionization time, approximate
E,= -250 Ec= - 12
Ionization time Anode voltage drop, typical

Minimum . 2.37
60

Bogey 2.5 21
0.8 45
50 500
10 16

Maximum
2.63 volts 23 amperes seconds micromicrofarad micromicrofarads
microseconds microseconds microseconds volts

GENERAL ELECTRIC
Supersedes ETI-2758 dated 8-48

GL -5545
ETI.275C PAGE 2 12-50
Mechanical Data
Type of cooling. Mounting position Net weight, maximum

TECHNICAL INFORMATION (CONT'D)

convection any 12 ounces

MAXIMUM RATINGS, Absolute Values
Maximum peak anode voltage Inverse. Forward
Maximum cathode current Peak. Average Surge (maximum duration 0.1 second) Maximum averaging time
Maximum negative control -grid voltage Before conduction During conduction.
Maximum positive control -grid current Anode positive . Anode negative
Commutation factor* Ambient temperature limits

1500 volts 1500 volts
80 amperes 6.4 amperes 1120 amperes 15 seconds
250 volts 10 volts
0.20 ampere .. 0.10 ampere
130
- 55 to + 70 centigrade

* Commutation factor is the product of the rate of current decay in amperes -per -microsecond just prior to commutation and the rate of inverse voltage rise in volts -per -microsecond just after commutation.

GL -5545
TYPICAL VARIATION OF CONTROL CHARACTERISTIC WITH A FILAMENT PHASE VARIATION OF 180 DEGREES

GL -5545
ETI-275C
PAGE 3 )2-50

(E1==2.5 VOLTS)

VOLTAGE OF FILAMENT TERMINAL NEAREST GRID TERMINAL IS OUT -OF -PHASE WITH ANODE VOLTAGE

(CHARACTERISTIC SAME WITH D -C ANODE VOLTAGE)

FILAMENT PHASE REVERSED

r 11r1 1

1

iii
1111110111P1il&

1

Io

mm.lmm1m 11m11111
E

I mmm1mmmmnm'mami1i11110mu11 1111

mmum

.

'& 11 I
II
s1111a111
i
II ill 1

mo1111p111111111 aI10p1111n1111m11s111111 I
EmE.=misiMipEfftgf MO' I

MMm

Iii 1ME1ME11IM111IN1M1101M1M1EM1UM11r1

I!N

11"11111111111111111011M1111 111I11 11

IWMIIP1--I11&-

I X

iiMlE

alIalli

111
111111iimiil

il

i

1

mll11:1111111iiiiiiiiiiiiiiiiiiiliiiii

Illmmlim llimtitiliiilliiiVili11111lii

m

AMlMiIbMlMliMiMEiMiMINiIi111MM1E0M1M1A3U1M1M1I1M1M1111111111

1111
M

iii

111 1111111
gu

I Iiiiiiiiiiiiiiiiiiiiii11111111111 1111111 III 11 111

IIIIIIIIIIII I 111VpilImIlilm11

1114 !il

Il1

z

.4mum11momm 111l1111111sm011 i.oi.mi.mi.io.im.imI.i.oi.mi.ia.im.i.i.l.m..E.Rm1i1g4mmapppmommom mp

MilNMME11WMM ]Ii11N1Mm1rnIM1Mm1E11md

M11Em111m11uIEkm NmI1n

Mm

M

I
II MMOOMMI

MUipMloMUl

MIIIAIMMI INIIIIII

1

e MN

OM

11111111

11MNIMEMNMMMMMEMMIMMMUMMUN

1111111

w
it-
lfle IIIIM - MOMMMOS

O IIIIIIMM11111111111610111i11i0 11

l
1mM1

I1uMO
IIII

II

I

-"-"a1,

1
J i
11MI0U

1111111n111MEW 111I .II1IIlII1I 1i II'Ull

II

14

I uONXlummil'Ill
III 1NlMiMd1M1E111

i11i 1builpT lm

I is , A 111111

11 i1u1 Im
1111l1 -
M.

1111i1l4
1111114

1114th.iMIiiMmtm .1.

.

ijI1-

1iiiili 11111Iairmtm

giaalIIIIIIIIMiMI

idilJ

IIIIIIIIIIII111111III i

11111111111111 illil

-20

-16

-12

-8

-4

0

+4

+8

D -C GRID VOLTAGE AT START OF DISCHARGE IN VOLTS

K -69087-72A86

10-1-48

GL -5545
ETI.275C PAGE 4 12-50
1600
1400

GL -5545 TYPICAL CONTROL CHARACTERISTIC
(SHADED AREA SHOWS RANGE OF CHARACTERISTIC)

1r rIrgr: ryr, dWii r

A

AA4

A pr

FrArn

4
.d

AA
ApAr A/

A
Ad

A. I

'

MOW

.4 A A 411 At.AAAA di Al

1200

r A Ag

r r A

A

A r

A

AIr

111111/111

LAIAAr ro ApprA A Ai A AA AAA A

F r AF

IA
F

A

rirliThilikina.4WHI 1000

AA

A AA

I

moommommommumomommoo

I Vr rr m mom mo mommommornmpurmmForraFmmVooFmrmormmpor rormMilmomm000mmommommoommoomoom

AA AA .A F

.4 A A .

800

r F' r r r pr r r

I 600
400

AA.AA A

r ri mommommoolmouommo

mmoummmommommoompiomoummrmo.ompmo-mmomommmrom- mommipmuummuwmommomoom

MEMMIMOMMEMMEMEMMIMMOM
MINOMMEMEMEMMEMEMUMMO

iiiiiiiiiir

mmo m

A A A Al A
ommoommommomommommokuirimomommumomompamommo m IMMEMMERRMENMERMLVAMMIRMOUM&MMIOVAMUMMEM

MOMMMEMMEMMEMMEMMMOM MEMMEMMEMMEMMIUMMMOM

itMEMIIMMEM MIIMMEMMEvAIMPVAIrRMrIVAMRM'MPA,UMrMIMM IIIMMOMMOMMIIMMEMMEMMEM

9.1111.

oommommommowimomAuAmmiro.pfiumAmAmomm MIIMMOIMUMMEMMEMEMIUM

r r um omm m MEMMEMMIIMMEMMEMMOAMU M MMVAIPANIMMEMPMEM MINMEMMIIMMIMINMEMMEMM

A

mmoommmm mmommmmmomoommoommommm4liAlmVomFi'roa.i4polpAAmmmmmommmmmoommoommoom
A
mmommommo mmoommoommomommoommmokAmirirowomumamoommmommommomommmoom NIRM MMINIMMEMMEMMEMMEMMEMMEMMEMMEMMIMARAWMWOUMEWOMMEMMEMMUMMIMIMMUMMM MOM MMMOIMMEMMEMM mummommoommmomommomeirwromompoplommmommommommoommmmm

200

AAAW A
r r rp, 11111MMEMMUMEMEMMEMEMEM MIMMEMIIMMEMEMOMMEMMOOMMEdOWMUMUMPAIAMp... 4 '1444 4

-20
K -69087-72A87

-16

-12

-8

-4

0

+4

D -C GRID VOLTAGE AT START OF DISCHARGE IN VOLTS

+8
4-13-48

MmOuMmOmMo. mMmMsMaMMmMmMaMiMmimnonnOMoMmImBuM iBmMmuNmMm=umMmOeMlMmMuMmMmMiuNmMmSoMOmMmMuAmUgMm2-1=.14.
r"- MMMMMMMM ........ ...........

., me

ii 111 1M1EM1M1M1M1M1M1M1M11MM1MM1IM1NM1UM1MM1OM1NM1ME1M1O1O1MMM1OM1MM1mMM1mO1uM.1Mm.1I.p1N.o1E.p1O.p1S.1oI.1Im.1M.mM1.U1.mM1.uS.1Mm.111111M11M1O1mM1u1Mm1E1MOMMUMU

12111 MEaNmUmiti ,m---mimlmmomno.:.._:

,c. m

Oil 1RaME1MmM1MM1MMU1MOM1MMM1MNMMI1MIMM1M1m1io1mm1mm1uo1m1mm1mu1se1mm1oi1mu1mm1u1mm1Mum1Mom1mmM1muE1omM1mMm1mO1iuI1nmM1iM1MmO1MMm1MMe1MO1IM1MMMlMOMiMMMm1UMM1MMM1UM1MM1m1MaM1MmO1MmO1MuM1MMm1MO1mMMMiM1mIMmUNoMImImMMeInNMuMOmOOmMuIMNmMEm1MOmMSOuOMmMMmMEnMMoMEmMRmEMmMOuMImMMmOurMaMmOeM1nM1mI1sI1IMINI:IMMIOIUMIIW

IIIIIIIIIIIIIIIIII

mum 1111111111111111111111111111111111111111111111111111111111111011

1101

11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

11111111111101MMEMIIIMMEMiNiliiiiiiiiMiThiliMililliirni

MMOMMINIMMLIMINIAMMNimpiumummummmumpimu

rarmim"----rmammoraumummon.................. ..........1...111:1 MMMMMMM ....... MMMM

Lit

u::n!:n!:!u1!m!!1m!:1u1m1:9m::1u=9mgMm1u1:mm1ump11:9111:91111=1r1u1am11ilMlmi1l1:o31y111m111m111I=1nMnPju:I:Um=Ml1MluI:m:IM::mP:I=MuM=m1=m111u1:1m:1:1m:1:1:o1::1u:1m:1C

..,.....;;;.Ese.....111,11:1111.111.11..1...!....................... MMMMM ...... MMMMM . MMMMMM

I!1111111111

MM

;;;::::::iimuligli 1

-MM0--"-if"

--o..w...:0iv4&1.

m1.;g:1..11-1:-armalimilimillu

iiiiiiiPINPRIMEMINIMPillibillEPHIPIIMPRIPIPRIPM

dunifiblimithhbolibmiliiimdoullliiklilighPiiiiibillidiiiiMillihil

ITIMMESIMUSIBBEFARESEEMENSIMFBUFAUSWIREISMOBIENEMBE

neummummomeaumnpunnumundllogamannoomunnunlimm

mm.!..smom MMMMM mummuummummumillimummlimmmuum.m...m.m.y._mebmuummnmsamioimimmummommommmmoonmmmuommmmuemmmmmuasuimmmuumummem

MIIIIMIMMINOMMVIMMIII

1mm1om1me!m!mu!im!em!m!m!ou!m!mm!mu!mu!m!mi!mn!o!!Im!mm!m!uo!m!um!e!n!mi!mm!o!mm!mi!i!lm!l!mi!o!im!mi!ui!m!im!re!!o!mm!im!u!um!lm!ua!s!r!im!gmiMlim m!iM_I_n_mopmmmemmuuimlmmimmoummmmuemmmimmommummmumimmummmuummmmmuuummmsmniMauMmMmMmmMiMonMiMu

.i.i.i.i.i.i.i.i.r.i.i.i.i.i.i.i.i..i.i.i.i.inliwnhrwrjuh.o,u. nipia si!ImJaumrommumuummuum EMMENIONMENIENI

mil
NumerA1 PS.1IE11T..:::=.:U..m..

isanutminiis

so Ilimtheasibib :WM 1":111410-1111"1" - ui lumpy 1111111111111111111 WEE MI UM MMM

mumm"411111IIIIIIIIIIMMIIIIIIIIIallIIIIIm, .
minmemmommummumummommummimmummysegommasmi

.
Illmili

um m"1" mumSmIUuMvUlMsUiIgCiAstsmmoanMEMMMEIMMEINIIIMMMUM

mummommu
7.6111M MMMMM

11111111.1111111111111,111111111111111111111111111 Cm

1111111.4111 1111111 111111;11111111

1i1m3m1i1n1u1m1m00e1m1m1u1m1m1o1m11m1u1s1i1i1m1m11u1m0m1u1m1m1i11g1r1o1p1m1e111

11N1U1M2U1S1M1A1S.SI1M1M1U1M1M1E1M1M1U1M1E1R1U21111

olilltillimilumm111111111111111 AS MESIIMMUM UMMONOMELWOUMEMMOM

11111111111111111 111111111 111111111111111W 11111111111111111411 IMMI PIMIIIIIIPPF1111111

MEMOMMOMMEMMMIN immumm ammo MMMMMMMMMM me OINSMOMMUMMIIMMEMMUMEMOMMONWIMM IIMMEMBEIMOMM III mr.mummommu

MUMMIIIMMEINIUMMONOMMOMMIIMMMOMMEMIMMMOMMUMMOURIMUMMOMMUMOSKNOMMIUMMOMMININIUMMUSEMEmm

0 OmmIMMIEM

IIIMOMMOMION IMMOMMOSEMMOMMEM MUMMIUMMIll MOMMEMOOMMOMMOMMWOMMMOMMOMM MISMOMMUMMUMMIONNEWOMM-11111mMEIMMIRM

nunimunmau.inump,mmom. R. tEll lippliatilL1A. 111,VFELM ......muntries.w.Lirs_a or......10..., 111111 INIMOMMIBM UM MO

11110121',1 ME II MO 11111111111MEM Light IIIIm IR II ME MUSSIMESIM MO

0

CD

0

CD

CD

CO

qD

,zi-

C)

CD

C)

0

CNI

CA

nt

CD

CD

VD

CO

CD

I

I

I

I

I
S3d3cIINV11111A1 N I 1113212 113 0189-1081NOD -a

GL -5545
ETI-275C PAGE 6 12-50
ANODE TERMINAL BASE CI -5
8+I

FILAMENT TERMINALS

NC

12-50 (11M)

N-21525AZ

CONTROL -GRID TERMINAL

BOTTOM VIEW OF BASE
OUTLINE GL -5545 THYRATRON

2-3-48

Tube Divisions, Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

GL -2D2 1
DESCRIPTION AND RATING
ETI.279 PAGE 1
4-48

THYRATRON

DESCRIPTION
The GL -2D21 is a four -electrode inert -gas -filled
thyratron with negative control characteristic
designed for use in relay applications. Features of this tube are a high control ratio essentially independent of temperature over a wide range, low grid -anode capacitance, and very low grid current. The 2D21 is not appreciably affected by line-

voltage surges because of its low capacitance, and the low grid current allows it to be used with a high value of resistance in the grid circuit with resultant high circuit sensitivity. This thyratron,
in a high -sensitivity circuit, can be operated
directly from a high -vacuum phototube.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

MAXIMUM RATINGS, Absolute Values Maximum peak anode voltage
Inverse Forward Maximum cathode current Peak Average Surge (maximum duration 0.1 seconds) Maximum averaging time Maximum negative control -grid voltage Before conduction During conduction

1300 volts 650 volts
0.5 ampere 01 ampere 10 amperes 30 seconds
-100 volts -10 volts

GENERAL ED ELECTRIC

GL -2D21

ETI-279

PAGE 2
4-48

TECHNICAL INFORMATION (CONT'D)

Maximum positive control -grid current Anode positive Anode negative
Maximum negative shield -grid voltage Before conduction During conduction
Maximum positive shield -grid current Anode positive Anode negative
Maximum heater -cathode voltage Heater negative Heater positive
Ambient temperature limits

0.01 ampere 0.01 ampere
-100 volts -10 volts
0.01 ampere 0 01 ampere
-100 volts
25 volts
-75 to +90 centigrade

GENERAL

Electrical Data

Minimum

Heater voltage

5 7

Heater current (Ef =6.3 volts)

Cathode heating time required

10

Anode -to -control -grid capacitance, typical

Control -grid -to -cathode and shield -grid capacitance, typical

Deionization time, approximate

Ebb -=125 v d -c, Ib =0.1 amp d -c (a) Eo = -100 v d -c.

(b) Ed = - 11 v d -c

Ionization time, approximate

Anode voltage drop, typical

Critical grid current, Ebb =460 v rms

Bogey 6.3
0.60
0.026 2.4
35 75 0.5
8

Maximum
6.9 volts 0.66 ampere
seconds uuf uuf
microseconds microseconds microseconds volts 0.5 microamperes

Mechanical Data
Type of cooling-Air Mounting position-Any Net weight, maximum

0.3

ounce

GL -2D21 AVERAGE CONTROL CHARACTERISTICS
Et = 6.3 VOLTS GRID RESISTOR -= 0.1 MEGOHM

800

600
.0.J
400
0O
9O
200

.8

-4

K -69087-72A152

0

4

8

D.0 CONTROL.GRID VOLTAGE IN VOLTS

12

16

10-21-47

GL -2 D21
AVERAGE GRID CHARACTERISTICS DURING ANODE CONDUCTION - 6.3 VOLTS
SHIELD -GRID VOLTS -0
2

lb 2 0'

8
0
8 0 a
4 8 O

GL -2D21
ETI.279 PAGE 3
4-48

-8

-6

-4

-2

D -C CONTROL- GRID VOLTAGE IN VOLTS

K -69087-72A153

5-15-47

GL -2D21
OPERATIONAL RANGE OF CRITICAL GRID VOLTAGE

R ES

A E F

0

1 OAC .E S

0

AEG -

AK: I

Off CRC

B

TUB S D S

U:S 0 NIT AL ES

500 400 300 200
100

-8 K -69087-72A155

-6

-4

-2

D -C CONTROL -GRID VOLTAGE IN VOLTS

0
6-19-47

GL -2D2 1
ETI.279 PAGE 4 4-48

N -I 5099AZ

OUTLINE GL -2D21

MEASURED PROM BASE SEAT TO BULB- TOP LINE AS DETERMINED BY RING GAGE OF
3-26-47

4-48 (9M) Filing No. 8850

Electronics Department
GENERAL O ELECTRIC
Schenectady, N. Y.

GL -5544
DESCRIPTION AND RATING
ETI-282 PAGE 1
8-48

THYRATRON

DESCRIPTION
The GL -5544 is a three -electrode, inert -gas filled thyratron with a negative control characteristic. This tube is designed primarily for all control applications. The GL -5544 combines the desirable temperature characteristic of gas tubes,

maximum ratings over a wide temperature range, with the long life of mercury tubes. Another feature useful in industrial applications is the quick -heating cathode-only one minute is required for the cathode to reach operating temperature.

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS Number of electrodes
Electrical Data
Filament voltage Filament current Cathode heating time required Anode -to -control -grid capacitance, typical Control -grid -to -cathode capacitance, typical Deionization time, approximate
E,= -250. E, = -12.
Ionization time, approximate. Anode voltage drop, typical.

Minimum 2 37
60

3
Bogey 2.5 12
0.8 45
40 400
10 16

Maximum
2.63 volts 13.5 amperes
seconds micromicrofarad micromicrofarads
microseconds microseconds microseconds volts

TUBE

GENERAL ha ELECTRIC

GL -5544
ETI-282 PAGE 2 8-48

TECHNICAL INFORMATION (CONT'D)

Mechanical Data
Type of cooling Mounting position Net weight, maximum

convection any 11 ounces

MAXIMUM RATINGS, Absolute Values

Maximum peak anode voltage Inverse* Forward
Maximum cathode current Peak Average Surge (maximum duration 0.1 second) Maximum averaging time
Maximum negative control -grid voltage Before conduction During conduction
Maximum positive control -grid current Average (averaging time, one cycle)
Commutation Factor*.
Ambient temperature limits

1500 volts 1500 volts
40 amperes 3.2 amperes 560 amperes 15 seconds
250 volts 10 volts
0 20 ampere
130
- 55 to +70 Centigrade

* Commutation factor is the product of the rate of current decay in amperes -per -microsecond just prior
to commutation and the rate of inverse voltage rise in volts -per -microsecond just after commutation.

GL -5544
ETI.282 PAGE 3
8-48

GL -5544 TYPICAL CONTROL CHARACTERISTICS SHADED AREA SHOWS RANGE OF CHARACTERISTICS

1600 1111111111MMEMEMEMEMEMMUMMEMEMMUMMEMMENMEMEMEMMEMEMMOMMEMEMMEMEMMEMMINME
MMRMEIUMUMMMIENMEIMINMMMNMEEMEMMMEMEMMMEIERIMMMMEEMMMMEMEMIMIMMEEMMMMEEMMMMMEEEMMEMNEMIMOUNMNMUMEMMMMEIEMMMMEEMMEIMMNMMUEMOMEMMMMEMEMMEMMEEMMMEMMMMEOEMMMEMMMMMIEEMMNEMMEMEEMMMIMMNEIEMMMMMEMEMMMMEMMEEOMMMMMOEIEMMMM
IIIMMENIMMINIMMEMMEMEMEM EMMINIMINMEMMEMMIIMMEMOIMMEMMEMIUMOMMEMEMMEMEMMEMEM ERIMMIIIIMMOMOMFAMUMWASEAVAMMIAMPAMUMFAMUMMEMEMMINIMMEMEMEMEMEMEMMEM mmommummmmmumumummimmrmonmgminimnmmemnImmommommommommommmmmmmmommmom MEMMINEMEMMERUMUMPAIMMEMPAIVANKMPAMUMMAMMUMEMMIMIMOMMOMMEMMEMMMMEMEMEMM mmummommmmmomvumnmnmmardmummmiumwramnmmlimmmmmmmsmmommmmmmommommommmmm
1400 mmmmmuommmmwoommmmoommmmuumnnmmonmmEmmopraammrnAmmonrimmuummrnaormmmmorr.wmmrtwoummmmmoommmmuommmommommommmmmmoommmmmoommmmommmoommmmumm mmmmommimmommmammmmmramumgmrAmnmmammmilmummummommommmommommommommommm

immommomumommmommmommamrmmeiromnmmummmwrmAmmummrmemmmonrmdrmArmAnmomrrmammommummummmmmoommmmommuommmmuommmoommmmmm mmmmommommommmumpAmnmgmramnommommommnmrmmommommummommmommommommommomm

ImImIiMmMMmUEoMMmMMmEEoMMmMMmEEoMMmMMmIMoWOnAWNuAUmKMgIPmMA'AWAMAmMMmIUEAMmNImWAwPMrAIiUIoMWnEARmMAEUNmMUmEMuMHmUImANgMImEMuMMmEEmMMoMEmEMMmMMoEEmMMmEEoMMmMEmIMuNMmEmMoMEmOMmMmEMmMEMmImMUoEMMmMMm

1200

mmummommmmommmmionmramumrammramnommmummalimmmummommummmommommammommm MMENIIMMOIMMEMEMERTAPANWFAMPAIPMMUMMUMPAP2AMMEMEMEMEMEMEMMEMEMMIMMUM MMEMSEMEMEMMOMMIPAMFAMEMMP2MIPAMIMMOIMPAWAINIMMUMMEMMEMOMMEMMEMMEMMEEMM

MMEMEMMEMEMMEMMEVANFAMEMIVAMPAMUERAMUMMIPAM2MMEMSEMEMIMMEMEMMEMEMMEMMEN

mmummommmommommommommummummsmswumummmguammmnrmirmAummugmmmmmumummmmoerraimmuummmmoommmmuommmmoommmmoommmmoummmmommmmmommmoommmmuomm

mmmmommommummummmigmmnmrwmummmmummairmmummilmmommommommommummommommmmm

mmommommmommmmommramnmpAmummmm2mmmrmmummsrmmommommommommummummmmumm

ImmIImImIoImImImIiImmImIoImImImImIuIrIimMu1.0m141m1m1g1m1.mMi1m1u1m2m1m:m0A1mm1i1m1m1o1m1m1m1m1om1m1m1o1m1m1o1m1m1mm1m1o1m1m1.1.1.1.

1000

INIMEMMEMM MMEMMEMEWAMUMMMUIMMEAMUMMINWEKIMAIMMMENUMMEMEMEMMIMMEMEMEME MOMMEMMEMENMEMMOMEMMUMMMIMMMOFAUUMMOVAMMFAIMMEMMEMMEMMEMMINIMMEMMOME

MmENIIMMEMMIMMEMEMMKIIMMERVEAMIMMWAIMMIAMIIIMMENUMMEMEMMEMMEMMUMMEMEM

IIMENMENNEMMEMEMEMMEILKMOWNIKMEMOIMANWIMARAWAIMMEMEMEMMINMEMMEMMUUMMEMMO

MMMMEIMIMMEMMIMNEIMMMMIEIMMEMMUMMIMIIMMMUUMMMVIRUANVKAIMMMAOMIUNNWKESWWIARMAPNWWRIAPMMUEMMKMAUMMMEOMMEIMNMIEMMMMEIMMMMEMMUEMMMEEMMEMMEINN

MMOMMEMMEMMOMMEMMEMIUKMEMMUMMIIPAWAIMANUMMMPMEMMEMMMEMMEMEMEMMINIMMEMEM

MOIMMEMMEMEMMIIMIMMIWAIMAMUMPAPWWWFAMUNKMPAVEMMEMEMMEMENUMEMMEMMIUMEM

MMMEEEMMMMEEMMEMNENMIEMMMMIINNIEMMMMMIEMMMMIVkIdRMAWTIKMMMWAMIEMWMEEAMMMPUAUIMMMIFKAAVMIIIRMMEENMNEEMMMIONMIMMEMMEMMEMMEMMEMMEEMMMMEIMNMIEMMMM

800

IMMMENNMIUMMEMMINIMMEMAUmi.AMMEWRAMPANKAWAYMIMMENNMEMEMMIMMEMEMMEMINIM MEMEMMEMEMMOMMEMMEMMUMWINAVAMMEAMMIKMEAWAMWMMINIMMEMINIMMUMMEMINIMMEMM

mommommommommummmommmorwmmramumgmramwmniummmommommmmommmommmmommmm

MMENIMUMMMEMMEMMEMMEMIMMOMMEWFAMUNKMEAVWMEVAMEMEMMEMMEMMUMMEMEMEMMEMM

1E1M1M1E1M1M1E1M1EMMMEMMEMMEEMMEMMEMMEMMEAMIMMEEMMMAEWaEWANNWRUAMMPUAMRMAMPEAAMVAMMAIWNAFIMIMMEEMMMEEMMMEEMMEEMMEMMIEMMIMMEOMMEMMEMMEEMMEMMEEMM

1 M 111111111111111111110IIIIIIIIIIIIIIIIIIM111111111111111111111111

600 !1 8118116311111111110111511111511111MIREBillEalil
IF 111111111111111111/11=1111:11111111=11111111111111111111 'IIII

1 I.
II.

1.1.1:M1A1U11M1E1N1E1M11M1E1W11M1t1r1A1M0M1A1M1I1M1U1N:KEM1P1A2S1U1M0MII0I1I1I1M1O1M1M1E1M1M1E1M1E1M1M1U1M1M1E1M1E1N IUIM

illiiiiiiiiiiiiiiiiiiiiiiiiiiM009511111111111111111111111
400 mmmmimummommommommummmmummummommommommommommommmmmummukmgmrooirmdiirriimmuummariimgirradpraummmmmommmmuommmmmmoommmmmoommmmommommommmmmm

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIM:11112121:11:1111111=IIIIIIIIIIII

UMMEMMEMIMMENNOMMEMEMMEMMMEMMIIMAWWWWWWWWWWWINEMEMMEMEMOMMEMEMMUM

MIINMEMNMUEMMMMEIMIOIIMMMIOIMMMMEEMMEMMEEMMMMMEOMMMMEIMIMMEMMEMMEMMEEEMLMWOWWPKAAMRMMEEAMAMMVAIWIAMRMEUMIMMEMMIENMIEMMMMEEMMMMEEMEMMEMMEEMMMEEMM

MMUMMEMEMMEMMOMMMUMMIMMENNIMMEMMMAKMMMIMPANWIMUMMMEMMEMMEMMOMMEMINIMM

MIIMMEMMMEMMEMEMMIMMEMEMMEMUMENNIMMAKMEMANWMUMAIIMMEMENMEMMMEMMINIMMEM

MMEMMEMEMEMMINIMMIMINIMMINIMEMIIMEMMIWIRAPAWAIMUMECEMEMMUMMEMMEMMUMMUMM

200

MMIENMEOMMMMEMMEEMMMEOMMMMEEMMMMEEMMMMEENMNOEMMMMEUMMMMEEMMMEMNNEEMNMNEWMAEPWWAWWAASSUUMMEPMAOIIMMMMEEMMMEEMMMMEINUIMMMMMEEMEMMEMMMMIIUUMM NIMMINIMMINIMMEMMEMEMEMOIMMIMMMEMEMIUMINWAMUMEAMUMKOMMINMEMEMMEMMEMEMMIO

1111111111MMEMMEMMEMMINIMMEEMOMMEMEMMEMMEMEMEMSNUMPANUMAIViMMIMMEMEMEMMINIMM

ImMMEImIMIoNMMmIEEmMMIMoEMEmMMMmEOMmMMIIoMIMMmEMOmMMMoMEMmEMEMmMMUoMMMmEEMMmMEEmEMNMmMUMuEMEmMMMmMMEEoEMMmMMMEmEIMuMUEmMMMMmEEEmMMMoMMImEENImMMMMoEMEmMEMmMIMoEWEOmMWRmEIdoMRWmMAIMmMMUIuIOMmWUMmOPiMMAgMMFaEAAmAiTwDMImAMWuMMImUMImMMIiUEMamMMrmEUiMmNmMuIpEmMAMimMMimEE;oMMmMM

MIIIIMMEMEMMIONINIMMONIMMEMEMMEMMEMEMENMEMMIUMhZ.WFIOUWAWIKMFAVAVAPIn

mmommmmummmmummmmummmmommummommommmmmommommhz_,mummrAmmimparmrwmurmin

mmummmmoommmmmmuommmmoommmmmomommommommmmoommmmoummmmmomommmmoommmmummmmoommmmoummmmmmoommmmmmoamimmmEmrmaommmmramrummrmwummwmrmiommr

-20

-16

-12

-8

-4

0

+4

+8

D -C GRID VOLTAGE AT START OF DISCHARGE IN VOLTS

K -69087-72A87

4-1 3-48

GL -5544
ETI.282 PAGE 4
8-48
ANODE TERMINAL CAP CI -5

NC

8-48 (9M) Filing No. 8850

FILAMENT TERMINALS

CONTROL -GRID
TERMINAL

BOTTOM VIEW OF BASE

K -69087-1A147

OUTLINE GL -5544 THYRATRON

10-26-48

Electronics Deportment
GENERAL ELECTRIC
Schenectady, N. Y.

GL -5632
DESCRIPTION AND RATING
ETI.292 PAGE 1
12-48

THYRATRON

DESCRIPTION
The GL -5632 is a three -electrode inert -gas -filled designed for ignitor firing, and for motor -speed and
thyratron with negative control characteristic welding control.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS

Number of electrodes

3

Electrical Data
Filament voltage Filament current, Ef = 2.5 volts Minimum cathode heating time
Anode -to -control -grid capacitance
Control grid-cathode capacitance
Deionization time, approximate Anode voltage drop

2 5 volts -
9 2 amperes 30 seconds
2 uuf 14 uuf
1 millisecond 10 volts

GENERAL ELECTRIC

GL -5632
ETI.292 PAGE 2 12-48

TECHNICAL INFORMATION (CONT'D)

Mechanical Data
Type of cooling Mounting position Net weight, maximum

convection any 6 ounces

MAXIMUM RATINGS, Absolute Values
Maximum peak anode voltage Inverse Forward
Maximum cathode current Peak Average Surge (maximum duration 0.1 second) Overload, less than 3 seconds
Maximum negative control -grid voltage Before conduction During conduction
Maximum positive control -grid current Average (averaging time, one cycle)
Commutation factor* Ambient temperature limits

1250 volts I -5- 49 750 volts

30 amperes

°

2 5 amperes -

300 amperes

3 7 amperes

100 volts 10 volts

0 1 ampere
0 67
-55 to +70 C

* Commutation factor is the product of the rate of current decay in amperes -per -microsecond just prior to commutation and the rate of inverse voltage rise in volts -per -microsecond just after commutation.

1400
//
VARIABLE RANCE
1200

GL -5632
ETI-292 PAGE 3
12-48 (Page 4 only, revised 8-50)
GL -5632 C ONT ROL CH ARA 1:TE RIS -ICS
S HAD ED AIR EA SHOWS R ONCE OF C1-IARACTERIST IC

1000 800 6 OG 400

200

77727772/4774774

-12
K -69087-72A248

-10

-8

-6

-4

-2

0

2

4

6

D -C CONTROL -GRID VOLTAGE AT START OF DISCHARGE IN VOLTS

8 7-18-48

GL -5632
ETI-292 PAGE 4 12-48 (Page 4 only, revised 8-50)

.566" -t .007"
CAP NO. CI -5
ANODE TERMINAL

KOUTLINE THYRATRON GL -5632
-*-136-74D1'IA. MAX.
.400"
MIN.

BASE NO. A4 -10

64-
MAX.

8-50 (11M)

GRID
TERMINAL
ANODE RETURN AND FILAMENT CENTER -TAP
TERMINAL

FILAMENT TERMINALS

N-15124AZ 111 Revised drawing.

4-28-50

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

DESCRIPTION AND RATING

GL -5948
ET -T1121 PAGE 1 ¶
1 2-57

HYDROGEN THYRATRON

PULSING SERVICE INTEGRAL GAS RESERVOIR

POSITIVE CONTROL TRIODE TYPE

The GL -5948 is a hydrogen thyratron for pulsing
applications which require a tube that will give dependable operation under the stringent operating conditions encountered in radar modulator and
other pulsing service. The ability of this tube to carry high peak cur-
rents and to withstand voltages as high as 25,000 volts combine with the short deionization time to assure satisfactory tube performance in the class of service for which this thyratron is designed. The tube is also suitable for operation without negative bias; a feature which adapts it for use in

service requiring zero -bias operation with positive triggering pulses. Another advantage which ensures freedom from failure due to gas cleanup is the use of a hydrogen reservoir within the tube to supply gas to compensate for what is consumed during operation. This reservoir also enables the user to adjust the pressure within the tube to the most suitable value for the service desired.
The tube ratings make it especially suitable for
pulsing magnetron and other oscillators with
power inputs up to 12.5 megawatts.

GENERAL

ELECTRIC

¶Supersedes pages 1 and 2 dated 6-54

GL -5948
ETT1121 PAGE 2 12-57

TECHNICAL INFORMATION

GENERAL

Electrical
Cathode-Indirectly Heated The Cathode is tied to the Heater Midpoint
Heater Voltage
Heater Current, Ef = 6.3 Volts Cathode and Reservoir Heating Time Reservoir Heater Voltage* Reservoir Heater Current, Ef = 4.5 Volts Direct Interelectrode Capacitance
Grid to Anode Grid to Cathode Anode Current Time Jitter Deionization Time, approximate Ionization Time, approximate t Anode Voltage Drop Grid Drive Pulse Duration

Minimum Bogey

Maximum

6

6.3

6.6 Volts

27

30

33 Amperes

15

Minutes

2.5

4.5

5.5 Volts

3

4.5

6 Amperes

45

uuf

50

uuf

0.01

0.02 Microseconds

50

Microseconds

1 Microsecond

400

Volts

10 Microseconds

Mechanical
Type of Cooling-Convection Cooling of Anode Lead by Forced Convection Permissible, but there shall be no Air Blast Directly on Bulb.
Mounting Position-Vertical, Base Down Net Weight, approximate

4% Pounds

MAXIMUM RATINGS, Absolute Values

Maximum Peak Anode Voltage

Inverse §

25,000 Volts

Forward¶, minimum supply voltage = 5,000 volts d -c

25,000 Volts

Maximum Cathode Current

Peak Average

1,000 Amperes 1.0 Amperes

Maximum Averaging Time Operation Factor A

1 Cycles 9 0 x 109

Maximum Negative Control -Grid Voltage

Before Conduction

650 Volts

Maximum Rate of Rise of Anode Current

5,000 Amperes per

Ambient Temperature Limits

Microsecond
-50 to +75 C

* The optimum reservoir voltage for operation at maximum tube voltage, maximum peak and average tube currents, and at a repetition corresponding to the rated operation factor is inscribed on the base of the tube and must be held within t 5 percent. Applications involving operation at other conditions will necessitate the redetermination of the optimum reservoir voltage.
t The time interval between the point on the rising portion of the grid pulse which is 26 percent of the peak unloaded pulse amplitude, and the start of the anode current pulse.
I Driver pulse measured at tube socket with thyratron grid disconnected: amplitude = 700 volts minimum, 2,000 volts maximum, above 0; time of rise = 0.35 microseconds maximum, measured from 26 percent to 70 percent of peak value; grid pulse duration = 2 microseconds minimum, measured between 70 percent of peak on rising side to 70 percent of peak on falling side; impedance of drive circuit = 50 to 200 ohms.
§ The minimum inverse anode voltage permissible is 5 percent of the peak forward voltage, and the maximum is 5,000 volts during the first 25 microseconds following the anode pulse exclusive of a spike of 0.05 microseconds duration.
¶ Instantaneous starting is not recommended. However, in cases where it is necessary to apply anode voltage instantaneously the maximum permissible forward starting voltage is 18,000 volts peak. The power -supply filter should be designed to limit the rate of application of this voltage to 450,000 volts per second.
AThe peak forward anode voltage x pulse repetition rate x peak anode current.

ID Denotes an addition.

X-RAY WARNING NOTICE
If the GL -5948 is operated at anode voltages in excess of 16 kilovolts, x-ray radiation shielding may be necessary to protect the user against possible danger of personal injury from prolonged exposure at close range. For further information consult the following references or other standard texts on the subject:
(a) X -Ray Protection Design, Handbook No. 50. National Bureau of Standards, Washington, D. C. (b) X -Ray Protection, Handbook No. 60. National Bureau of Standards, Washington, D. C. The above references are available from the Superintendent of Documents, Government Printing Office, Washington 25, D. C.

DESCRIPTION AND RATING

GL -6011/710
ET -T 1377
PAGE 11'
12-57

THYRATRON

TRIODE TYPE NEGATIVE CONTROL CHARACTERISTICS

QUICK -HEATING CATHODE INERT -GAS AND MERCURY-VAPOR

The GL -6011/710 is a three -electrode, inert -gas and mercury-vapor thyratron with negative control characteristics for use in all control applications. The GL -6011/710 combines the desirable temperature characteristic of gas tubes, maximum ratings over a wide temperature range, with the long life of

mercury tubes. Another feature is a quick -heating filamentary -type cathode only 20 seconds are required for the cathode to reach operating temperature. Because of these features the GL -6011/710 is
especially suitable for service in ignitor -firing, regulated -rectifier, and similar industrial applications.

GENERAL

TECHNICAL INFORMATION

Electrical
Cathode-Filamentary

Minimum

Filament Voltage

2.37

Filament Current at 2.50 Volts

7

Heating Time

20

Anode to Control -Grid Capacitance

Control -Grid to Cathode Capacitance

Deionization Time, approximate

Ionization Time, approximate

Anode Voltage Drop

Critical Grid Current, Ei,= 220 v d -c.

Bogey
2.50
9
2
12 1000
10 15

Maximum
2.63 Volts 11 Amperes Seconds
//O.
Microseconds Microseconds Volts 10 Microamperes

GENERAL ELECTRIC
tSupersedes pages 1 and 2 dated 8-56

GL -6011/710
ET -T 1 377
PAGE 2
1 2-57

TECHNICAL INFORMATION (Cont'd)
Mechanical
®Mounting Position-Any Position from Vertical, Base Down, to Horizontal Equilibrium Condensed -Mercury Temperature Rise Above Ambient At Full Load, approximate At No Load, approximate Net Weight, maximum

30 C 25 C
5 Ounces

MAXIMUM RATINGS, Absolute Values

Maximum Peak Anode Voltage Inverse Forward
Maximum Cathode Current * Peak Average Maximum Averaging Time Fault Maximum Duration
Maximum Negative Control -Grid Voltage Before Conduction During Conduction
Maximum Positive Control -Grid Current *
Average Averaging Time
Condensed -Mercury Temperature Limits

1500 Volts 1500 Volts
30 Amperes 2 5 Amperes
5 Seconds 250 Amperes 0 1 Seconds
500 Volts 10 Volts
0 25 Amperes 1 Cycle
-40 to +80 C

* The anode and grid -circuit returns should be made to pin No. 2. However, they can be made to the center tap of the filament transformer.

®Denotes a change.

ET -T515

Electronics Department
GENERAL ELECTRIC

The 5663 is a four -electrode inert -gas -filled thyratron with a negative control characteristic which is independent of ambient temperature over a wide range. The small size and lightweight construction are features which especially adapt the tube to control and relay applications where space and weight are important factors.

MAXIMUM RATINGS, Absolute Values

Maximum Peak Anode Voltage Inverse Forward

500 Volts 500 Volts

Maximum Cathode Current Peak Average Surge (maximum duration 0.1 second) Maximum Averaging Time

100 Milliamperes 20 Milliamperes 1 Ampere 15 Seconds

Maximum Negative Control -Grid Voltage Before Conduction During Conduction
Maximum Positive Control -Grid Current Average, Averaging Time One Cycle

200 Volts
10 Volts
2 Milliamperes

Maximum Negative Shield -Grid Voltage Before Conduction During Conduction
Maximum Positive Shield -Grid Current Average, Averaging Time One Cycle

100 Volts 5 Volts
2 Milliamperes

Maximum Heater -Cathode Voltage Limits Ambient Temperature Limits

-90 to +25 Volts -55 to +90 C

GENERAL
Electrical Data
Heater Voltage Heater Current, Ef = 6.3 Cathode Heating Time Required

Minimum Bogey

5.7

6.3

0.150

10

Maximum
7.0 0.180

Volts Amperes Seconds

Anode -to -Control -Grid Capaci-

tance

0.1

uuf

Control -Grid -to -Cathode -and -

Shield -Grid Capacitance

1.5

uuf

-2 -

Electrical Data (Cont'd)

Minimum

Deionization Time, E00 . -6 volts Rg : 10,000 ohms, Ib = 20 ma Ionization Time, approximate

Anode Voltage Drop, typical

Critical Grid Current, at Ebb = 220 v rms, Ec = cut-off

Mechanical Data

Type of Cooling - Convection Mounting Position - Any Net Weight, maximum

Bogey
35 0.5
11

Maximum

Microseconds Microseconds
Volts

2

Microamperes

0.3

Ounce

5663 TYP I CAL CONTROL CHA RACTEE I ST I C
SHADED AREA S HOWS RANGE 0 F CHARA TERIST C
SHIELD- GRID VOLTAGE =0V TS

500 400 300 200

100

-6

-5

-4

-3

-2

-1

0

D -C CONTROL -GRID VOLTAGE AT START OF DISCHARGE IN VOLTS

56 63
AV ERAG E :RID CH ARACTER I ST I C S
DU RING ANOD E C NDUCT I ON
SH ELD .GR I ) VC LTAGE = 0 VOLTS Ef = 6 3 V DLTS

D -C
3

VOLTAGE IN VOL TS

-4

_2

D -C AN ODE CURRENT = MA 10

20
30 40

-.4
.6
-8
-1 .0
-1.2 -1.4
1.6
-1.8 -2.0

A ER GE RI)C AR CT RI TI S
FO A OD CuND SH I LD- RIi VO TAG = Vi TS
Ef 6.: VI TS
- 05
1
15
-.2
.25
- 35
45 .5
-.55

/ MAX.
DIA

I-4 MAX

MINIATURE
BUTTON 7 -PIN BASE
E7-1

1-2" MAX

NOTE: SEATED HEIGHT MEASURED FROM BASE SEAT TO BULB -TOP
LINE AS DETERMINED BY A RING GAGE OF I D

HEAT ER

HEATER GRID* 2

0,110 CATHODE

NO CONNECTION

G RIDA-iI 0146.°0A N E

BASING DIAGRAM

OUTLINE
5663

GL -5855
DESCRIPTION AND RATING
ETI-316 PAGE 1
3-51

THYRATRON

DESCRIPTION
The GL -5855 is a three -electrode inert -gas -filled
thyratron with negative control characteristic for control applications. The high commutation factor, 200, permits this tube to be used in motor control without the need for snubber circuits and without the occurrence of gas clean-up. Other features of this tube are its ability to operate at maximum

ratings over a wide temperature range and its
quick -heating cathode. Only one minute is required
for the cathode to reach operating temperature. Because of these and other design features the GL -5855 is well suited for use in general control
circuits.

TECHNICAL INFORMATION

GENERAL
Electrical Data
Heater voltage Heater current at 2.5 volts Heating time required Anode -to -control -grid capacitance, typical
Control -grid -to -cathode capacitance, typical. . Deionization time, approximate Ionization time, approximate Anode voltage drop, typical

Minimum 2.37
60

Bogey 2.5 34
50 25 1000 10 16

Maximum
2.63 volts 37 amperes seconds uuf
uuf microseconds microseconds volts

GENERAL ELECTRIC

GL -5855

ETI-316 PAGE 2
3-51

TECHNICAL INFORMATION (CONT'D)

Mechanical Data
Type of cooling-convection Mounting position-any Net weight, maximum

2M pounds

MAXIMUM RATINGS, Absolute Values

Maximum peak anode voltage Inverse Forward

1500 volts 1500 volts

Maximum cathode current Peak Average Surge (maximum duration 0.1 second) Maximum averaging time

150 amperes 12.5 amperes 2000 amperes
15 seconds

Maximum negative control -grid voltage Before conduction During conduction

250 volts 10 volts

Maximum positive control -grid current Average (averaging time one cycle)
Commutation factor* Ambient temperature limits

0.5 ampere
200
-55 to +70 C

* Commutation factor is the product of the rate of current decay in amperes -per -microsecond just prior to commutation and the rate of inverse voltage rise in volts -per -microsecond just after commutation.

Th

GL -5855 CONTROL CHARACTERISTIC SHADED AREA SHOWS RANGE OF CHARACTERISTIC

GL -5855
ETI-316 PAGE 3
3 51

1600

1400 1200

1000

800

600

400

200

K -69087-72A388

-n - 6 -12 -8

$

+4

+8

+12

D -C GRID VOLTAGE AT START OF DISCHARGE 1 N VOLTS

10-17-50

G L- 5 8 5 5 ET16
PAGE 4
3-51

OUTLINE GL -5855
16 8
I

13"4, In
32 DIA. HOLE ANODE TERMINAL

I
4 -4
1064 -1332! GRID
TERMINAL
6 34.14!
-4 64+

3 114 DIA.

#6-32 SCREW

3".1. 32 FILAMENT TERMINALS

ENLARGED VIEW AT A SHOWING GRID TERMINAL

N21551AZ 3-51 (Mt.,

Tube Divisions, Electronics Department

GENERAL

ELECTRIC

Schenectady, N. Y.

10-20-50

DESCRIPTION AND RATING

GL -6011/710
ET -T1377 PAGE 1 fi
12-58

THYRATRON

TRIODE TYPE NEGATIVE CONTROL CHARACTERISTICS

QUICK -HEATING CATHODE INERT -GAS AND MERCURY-VAPOR

The GL -6011/710 is a three -electrode, inert -gas and mercury-vapor thyratron with negative control characteristics for use in all control applications. The GL -6011/710 combines the desirable temperature characteristic of gas tubes, maximum ratings over a wide temperature range, with the long life of

mercury tubes. Another feature is a quick -heating filamentary -type cathode-only 20 seconds are required for the cathode to reach operating temperature. Because of these features the GL -6011/710 is especially suitable for service in ignitor -firing, regulated -rectifier, and similar industrial applications.

GENERAL

TECHNICAL INFORMATION

Electrical
Cathode-Filamentary

Minimum

Filament Voltage

2.37

Filament Current at 2.50 Volts

7

Heating Time

20

Anode to Control -Grid Capacitance

Control -Grid to Cathode Capacitance

Deionization Time, approximate

Ionization Time, approximate

Anode Voltage Drop

Critical Grid Current, ED= 220 v d -c

Bogey
2.50
9
2
12 1000
10 15

Maximum
2.63 Volts 11 Amperes
- Seconds
-
- Microseconds
Microsecondsolts
10 Microamperes

GENERAL

ELECTRIC

tSupersedes pages 1 and 2 dated 12-57

GL -6011/710
Et -T1377 PAGE 2 12-58

TECHNICAL INFORMATION (Cont'd)
Mechanical
®Mounting Position-Any Position from Vertical, Base Down, to Horizontal Equilibrium Condensed -Mercury Temperature Rise Above Ambient At Full Load, approximate At No Load, approximate Net Weight, maximum

30 C 25 C
5 Ounces

MAXIMUM RATINGS, Absolute Values

Maximum Peak Anode Voltage Inverse Forward
Maximum Cathode Current * Peak Average Maximum Averaging Time Fault Maximum Duration
Maximum Negative Control -Grid Voltage Before Conduction During Conduction
Maximum Positive Control -Grid Current* Average Averaging Time
Condensed -Mercury Temperature Limits

1500 Volts 1500 Volts
30 Amperes 2.5 Amperes
5 Seconds 250 Amperes 0.1 Seconds
500 Volts 10 Volts
0.25 Amperes 1 Cycle
-40 to +80 C

* The anode and grid -circuit returns should be made to pin No. 2. However, they can be made to the center tap of the filament transformer.
®Denotes a change.

SINGLE-PHASE ELECTRONIC -WELDER RATING MAX PEAK FORWARD AND INVERSE ANODE VOLTAGE=1500 VOLTS
DEMAND CURRENT MEASURED WITH FULL CONDUCTION DURING EACH HALF CYCLE AVERAGING TIME=5 SECONDS
30
25
20

15

I0 8

6 5

AO

50

60 70 80 90 100

DUTY CYCLE IN PERCENTAGE (2 TUBES IN INVERSE PARALLEL)

K -69087-220A87

6-26-58

RECTIFIERS
Recommended Types and Selection Chart

ET-Tl 508
Page 1 10-58

Classification

Average Amperes

Anode*
Peak Amperes

Peak Inverse Volts

Cathode

Volts

Amperes

Tube Type

1.25

5.0

10,000

5.0

7.5

GL -872-A (Jumbo 4 -pin base, A4-29)

GL -8008 (Super -jumbo 4 -pin base, A4-18)

10.0

15,000

2.5

15.0

5000

Half -wave,

Mercury vapor

4.0

16.0

10,000

5.0

10.0

GL -575-A (Jumbo 4 -pin base, A4-29)

GL -673 (Super -jumbo 4 -pin base, A4-18)

5.0

4.5

GL -5558

5.0

10.0

GL -5561 (Welder -control Service)

5.0

20.0

20,000

5.0

19.0

GL -869-B

6.4

40.0

3000

5.0

10.0

GL -5561 (Continuous Service)

10.0

40.0

22,000

5.0

30.0

GL -857-B

75.0

450

16,000

5.0

65.0

GL -870-A

Half -wave, High -vacuum

1.25

5.0

75,000

16.0

19.1

GL -5973 (See Kenotron Section)

* Values listed are maximum values and do not apply for all types of application. Refer to data sheet for detailed information.

ELECTRONIC COMPONENTS DIVISION

GENERAL

ELECTRIC

Schenectady 5, N. Y.

APPLICATION DATA
ETI-140 PAGE 1
4-45
GENERAL*ELECTRIC KEN0TRONS

ETI-140 PAGE 2 4.45

DESCRIPTION

The kenotron is a high -vacuum thermionic tube mentals of operation, ratings, classes of tubes, ap-

in which no means is provided for controlling the plications, maintenance and operation as well as

unidirectional current flow.

the qualities which render these tubes particularly

The succeeding paragraphs describe the funda- useful to industry.

FUNDAMENTALS 0 F THE KENOTRON

A kenotron consists of two electrodes, an anode and a hot cathode, located in spaced relationship within an evacuated container. Due to the elevated temperature of the cathode, negatively charged electrons are emitted from its surface and will flow to the anode (or plate) only when the anode is at a
positive potential with respect to the cathode. Since the flow of electrons constitutes an electric current and takes place in one direction only in a
kenotron, this tube is particularly useful for application to rectifier circuits. When an alternating voltage is applied to a kenotron and the resulting pulsating unidirectional current is used to charge a capacitor which in turn supplies the load circuit, a nearly uniform supply of direct current is obtained.

Kenotrons have no rotating parts and are therefore quiet in operation. They occupy a relatively small space and are light in weight considering the amount of power which they are rated to handle.
Kenotrons possess advantages over gas or vapor filled tubes when very high voltages are to be rectified as the high degree of vacuum to which they are exhausted results in practically perfect insulation on the inverse cycle when the anode is nega-
tive. Since a kenotron does not depend on an internal vapor pressure for its operation, it is less
sensitive to changes in ambient temperatures than gas- or vapor -filled tubes. The use of pure -tungsten or thoriated - tungsten filaments as the source of electrons permits a minimum of delay between the application of filament voltage and plate voltage.

DEFINITIONS OF HIGH - VACUUM TUBE RATINGS

General
When the terms used in the rating of high vacuum tubes are considered, it is important to
realize that the application of the limits and values given for a particular tube depends upon the operating conditions. Any nominal rating can apply
only to one set of conditions and not to all the
conditions encountered in practice. The cathode or filament information is given in

terms of normal heating voltage. A current figure to indicate transformer rating, is also given. The filament or cathode, except in unusual cases, should always be operated at this rated voltage rather than at rated current and the voltage should be
adjusted so that the normal fluctuation in line voltage averages around this point. Normally,
when this is done, a plus or minus variation of five per cent heating voltage is allowable.

KENOTRON RATINGS

In addition to filament voltage and filament current ratings, maximum ratings are given for
peak inverse voltage, peak anode current and average anode current for rectifier operation.
The maximum peak inverse voltage is the highest instantaneous voltage that a kenotron will safely withstand in the direction opposite to that in which it is designed to pass current.
The maximum peak anode current is the highest instantaneous current which the filament is designed to deliver at full rated filament voltage.
The maximum average anode current is the highest average or d -c value of current which the tube is rated to carry at full rated filament voltage and beyond which the tube may be damaged due
to excessive plate dissipation. Some types of kenotrons are given additional

maximum ratings for surge limiting operation which include filament voltage, peak forward anode voltage, average anode dissipation, and a peak anode current minimum. Under this type of operation the tube is used to limit a surge usually of short dura-
tion. The maximum peak forward voltage is the high-
est instantaneous voltage that a kenotron will safely
withstand in the direction in which the tube is
designed to carry current. The maximum average anode dissipation is the
highest average wattage which may be expended in the anode under this type of operation.
The peak anode current minimum is intended as a guide to indicate the instantaneous anode current which may be expected under typical operating
conditions.

CLASSES OF KENOTRONS

Kenotrons may be divided into two general envelope type.

classes:

2. Water-cooled kenotrons with anodes which

1. Radiation - cooled kenotrons (sometimes are cooled externally by water circulation through

cooled by immersion in oil) usually of the glass - a water jacket surrounding the anode.

APPLICATION CIRCUITS#

ETI-1 40 PAGE 3

In general kenotrons are useful in any application ability of the tube to withstand the open circuit A-45

involving the rectification of alternating current to or inverse voltage, as well as to its ability to pass

provide a direct -current supply or for the suppression sufficient overload current in the forward direction

of intermittent high -voltage surges. The kenotron without overheating. Electrons flow to the plate

finds its greatest usefulness where the requirements with very high velocities so that time-lag effects

call for high voltage at low current or where the are negligible for rectification voltages, even at the

range of ambient temperature variations is wide. A typical example is the kenotron used in air
filter applications. The kenotrons supply the high voltages necessary to filter the air by electrical precipitation. The air is ionized and the negatively charged dust particles adhere to plates positively charged by the kenotrons.
The kenotron is less efficient at low voltages than

highest power supply frequencies used in practice.
The kenotron rectifier provides a means of obtaining a higher voltage d -c supply than can be conveniently obtained by other methods. The stability of these tubes with regard to power supply frequency and their small size and quietness of operation are added advantages.

gas- or vapor -filled rectifier tubes, but will operate A number of rectifier circuits in which kenotron

satisfactorily at peak inverse voltages far in excess tubes may be used are shown in Figs. 1-10.

of those for which gas- and vapor -filled tubes are

designed.
When selecting a tube type for a particular application, consideration must be given to the

#Circuits shown in ETI-140 are examples of possible tube applications and the description and illustration of them does not convey to the purchaser of tubes any license under patent rights of General Electric
Company.

FIGURE
1i E.I
EAVG

LOAD CURRENT
ff

WAVE FORM

TUBE CURRENT

EMAX 2

/ A RA A, IMAX

IMAX

BIPHASE HALF -WAVE TWO ANODES

ICYCLEICYCL+E---ii-1

2

ERMS

RLIM/ AXI ili C

EMAX

IMAX

/

A.

A.

AA_ T RA

EAVG

BIPHASE FULL -WAVE FOUR ANODES
VII
Aill ERMS

ICYCLE

ICYCLE

EMAX IMAX

!MAX

4 .
441

iipj C THREE-PHASE HALF -WAVE THREE ANODES

..-

g.u..,.i.

IC CLE

1=INTER .

.40

TRANSFORMER

Cd els

CO 41-

EMAX IMAX

ERMS [47-1 ; 0j, / ;0. ,,`
li

_i_

DOUBLE H

-

HALF -WAVE WITH

INTERPHASE TRANSFORMER SIX ANODES

H.
ICYCLE

30 150c
t -id
ICYCLE
I AX 2
..150.1
1CYCLE

ET1-140
PAGE 4 4 45

APPLICATION CIRCUITS (CONT'D)

ER MS

.___5,51_3 C

1.732

EMAX

991'

1MAX

I AX

THREE -PHASE FULL -WAVE SIX ANODES

ERMS

611111 W
mm 1111
Pr7

411.41
..

ti IR OP

RL

ii n

(ear

'. JZIAI i
[CYCLE

4-(C4YCLE

1.732

MAX IMAX

IMAX

ir74i ,,,yy, 1

N

28

ilaNiii r.;SE.-M1147:A41AN1P8RATEURR E

.A.W 0 WW W

1r 'P r 1 r nueaa

ENO

ERmrks

,

g gx
F iiiik vilvA skyRAppAATuR E
TElm-sgA-Tra S 5.-4,M

ERMS

at. I
. SII

en m

EVAG

24111

4 (CYCLE

t-'1
ICYCLE

ogorer

I.732EMAX IMAX
V
7

IMAX
, ,t v s I `4
,,,, ,

f
!CYCLE

t
ICYCLE

? rdikl%" EMAX 1M X

M 4 dirAdi

OA

IMAX

FOUR -PHASE HALF -WAVE FOUR ANODES
Si

HidiaaIlLl

C

+-

I NTERP E TRANSFORMER

DOUBLE -BIPHASE HALF -WAVE FOUR ANODES WITH

OUADRATURE EXCITATION

I CYitCLE

C/CLE
1

imAxEmAx

IMAX 2

L. A Ild.
+ --'1
!CYCLE

7C/CLlEill

10

rhI.s..O.2li 1 0m0i1.0..O.2R1O.11

SIX -PHASE HALF -WAVE 3 IX ANODES

EMAX IMAX
:WM
CIyN ' I' ;10.1140

IMAX
?,1 A ; \ ; \ p
I. '

'CYCLE

I C YtLE

FIG. TUBE 1 (AVG) NO. LOAD 1 (AVG)

1

0.500

2 0.500 3 0.333

4 0.167

5 0.333

6 0.333
7 0..333

8 0.250

9 0.250 10 0.167

USEFUL RATIOS

E-AVG

E- INVERSE

0.318 E -MAX
0.450E-RMS
0.636 E- MAX 0.900 E- RMS
0.827 E- MAX 1.170 E- RMS
0.827 E- MAX 1.170 E-RMS
1.650 E- MAX 2.340 E-RMS
1.650 E- MAX 2.340 E-RMS
0.955 E- MAX 1.340 E- RMS
0.900 E- MAX 1.274 E-RMS
0.318 E -MAX 0.450 E- RMS
0.955 E -MAX 1.350 E-RMS

E -MAX 3.140 E-AVG

E -MAX 1.570 E- AVG

V3 E -MAX
2.090 E-AVG

Yr E -MAX

2.090E-AVG

V-

E -MAX

1.050 E-AVG

NI E- MAX
1.050 E- AVG

E- MAX
1.050 E- AVG

2.220 E- AVG

3.140 E-AVG

2.090E-AVG

I- AVG 0.636 I -MAX 0.636 I -MAX 0.827 1 -MAX 0.827 1 -MAX 0.955 I -MAX 0.955 I -MAX 0.955 I- MAX 0.900 1- MAX 0.318 1 -MAX 0.955 1 -MAX

ETI-140 PAGE 5
4-45

APPLICATION CIRCUITS (CONT'D)

When a kenotron is placed in series with an alternating -voltage supply and the resulting pulsating current used to charge a condenser which in turn
supplies a load, only one-half of the alternating voltage is used. Such a circuit while satisfactory in some cases is not efficient. In general, multiphase circuits utilizing both half cycles of the alternating voltage (fullwave operation) yield a higher average output voltage and current for a given tube size. The variation in the d -c output voltage known as the ripple is also considerably reduced with multiphase circuits. In some circuits tubes are operated in series to obtain higher average d -c output voltages than could be obtained with a single tube

without exceeding the maximum rated peak inverse voltage of the kenotron. In other applications tubes are operated in parallel to provide greater d -c output current without exceeding the current rating of the kenetrons.
The circuits shown in Figs. 1-10 as well as variations of them will be found useful in such applications as air filters, cable testing, smoke precipitaters, radio transmitters, x-ray and other electrophysical and electro-chemical uses requiring high direct voltage at moderate currents.
Fig. 11 shows a circuit for testing high -voltage cable where extremely high voltage direct current is required.

SURGE DETECTOR

KENOTRON

INDUCTION VOLTAGE
REGULATOR

220 V. A -C

A- C

FILAMENT CONTROL RESISTOR

K-9033569

Pg. 11 -Circuit for High -Voltage Cable Tester

CABLE /UNDER
TEST
12-30-44

ETI-1 40 PAGE 6 4-45

INSTALLATION

Cooling
Free circulation of cool air around the glass bulb should be maintained. High temperature air from other apparatus should be prevented from circulating around the tubes. If desired the tubes may be immersed in a tank of oil with the transformers.
Electrical
Filament power should be supplied from a filament lighting transformer insulated for the proper voltage, and provided with a secondary midtap
for the plate circuit return lead. The filament
excitation supply must be provided with suitable

resistors or other regulating devices to apply the power to the filament gradually and to adjust it accurately during operation. The filament voltage should be measured directly at the filament terminals.
The installation of all wires and connections should be made so that they do not lie on or close
to the glass of the kenotron. An air space of approximately the length of the tube should be maintained
between the bulb and any metallic body during
operation. Otherwise, corona discharge may develop and result in puncture of the glass bulb.

OPERATION

Kenotrons should be operated within the maximum ratings given in the Technical Information* in order to obtain maximum tube life and performance.
The ratings given in the Technical Information* prescribe two limiting operating conditions. The first, the maximum peak inverse voltage, is a value determined by the insulation between electrodes of the tube. This is the highest voltage that the tube will insulate on the half cycle when no currents are passing through the tube. Line surges, circuit capacitance, wave form distortion and the maximum peak voltage of the applied alternating voltage may cause the inverse voltage to exceed the maximum peak voltage rating.
The second limiting value is the power dissipation of the anode which is determined by the d -c load current almost regardless of the voltage across the
load. As the design of the circuit especially the amount of capacitance in the circuit, is a major factor in determining the amount of current avail-
able in a given rectifier, oscilloscope measurements of this current should be made if any doubt exists as to the magnitude. If the kenotron is to be operated at full peak current ratings, it will be necessary to maintain exactly the rated filament voltage. If

the peak current to be drawn is less than the full rated value, the allowable filament voltage regulation increases as the value of the peak current

decreases. The following tabulation shows the reduction of
the maximum peak current with reduced filament

voltage :

Filament Voltage Maximum Peak Current

% of Rated

% of Rated

100

100

95

65

90

40

85

25

80

10

Excessive anode temperature is an indication of abnormal voltage drop in the tube and is usually caused by low filament temperature. Filament voltage greater than the rated value, while increasing the maximum peak current available, will result in

decreased tube life. Careful handling and conservative operation will
be amply repaid by longer and more uniform tube

life.

*Note: The ratings and characteristics of a particular tube are given

under Technica Information on the Description and Rating Sheet for that tube.

1-46 (3M) Filing No. 8850

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

DESCRIPTION AND RATING

GL -5973
ET-T1038A Page 1 12-57

KENOTRON

PLATE DISSIPATION -800 WATTS THORIATED-TUNGSTEN FILAMENT RECTIFIER AND LIMITER DIODE

LOW VOLTAGE DROP 20 AMPERES AT 75 KILOVOLTS 1.25 AMPERES DC AT 40 KILOVOLTS

The GL -5973 is a two -electrode high -vacuum tube for use as a rectifier or surge -limiting diode. Design features include a thoriated-tungsten filament and a low voltage drop which enable the tube to carry high average currents.
In rectifier service the tube will operate at average currents as high as 1.25 amperes at 40,000 volts
and one ampere at higher voltages. In limiter

service ratings as high as 20 amperes at 75,000 volts
apply. These ratings make the tube particularly suitable for use in radar as a charging diode to supply d -c power to magnetrons or as a limiter to restrict fault currents. Other applications include
high -voltage power supplies in cable -testing service and smoke precipitators.

GENERAL

TECHNICAL INFORMATION

Electrical

Minimum

Filament Voltage

15.2

Filament Current at 16 Volts

18.0

Filament Starting Current

Filament Cold Resistance

Filament Heating Time, before applying

plate voltage

30

Tube Voltage Drop, Ib =5 amperes .

850

Interelectrode Capacitance

Bogey 16
19.1
0.1
950 14

Maximum
16.8 Volts 20.2 Amperes
30 Amperes
- Ohms
- Seconds
1050 Volts

GENERAL

ELECTRIC

Supersedes ET -T1038 doted 2-53

GL -5973
ET.T1038A PAGE 2
12-57

TECHNICAL INFORMATION (Cont'd)

Mechanical
Maximum Glass Temperature* Maximum Base Temperature Mounting Position-Vertical, Base Down Net Weight, approximate

300 C 150 C
3 Pounds

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

Rectifier Service
Maximum Ratings, Absolute Values Peak Inverse Voltage Plate Current
Peak Average
Peak Inverse Voltage = 40 Kilovolts or Less Peak Inverse Voltage = more than 40 Kilovolts
Average Plate Dissipation Peak Inverse Voltage = 40 Kilovolts or Less t Peak Inverse Voltage =more than 40 Kilovolts

75 Kilovolts
5 Amperes
1 25 Amperes 1 00 Amperes
850 Watts 800 Watts

Limiter Service
Maximum Ratings, Absolute Values Peak Inverse Voltage Peak Plate Current Average Plate Dissipation

75 Kilovolts 20 Amperes 800 Watts

*Where tubes are enclosed or operated in close proximity to each other, forced -air cooling may be required to limit bulb and base temperatures to the allowable maximum. Maximum observed temperature of 1010 C at any point on the anode. Maximum observed temperature of 985 C at any point on the anode.

Denotes an addition.

X-RAY WARNING NOTICE
If the GL -5973 is operated at anode voltages in excess of 16 kilovolts, x-ray radiation shielding may be necessary to protect the user against possible danger of personal injury from prolonged exposure at close range. For further information consult the following references or other standard texts on the subject:
(a) X -Ray Protection Design, Handbook No. 50. National Bureau of Standards, Washington, D.C. (b) X -Ray Protection, Handbook No. 60. National Bureau of Standards, Washington, D.C. The above references are available from the Superintendent of Documents, Government Printing Office, Washington 25, D.C.

TYPICAL FILAMENT CURRENT CHARACTERISTIC

GL -5973
ET-T1038A PAGE 3 12-57

0

2

K -69087-72A380

4

6

8

12

14

FILAMENT VOLTAGE IN VOLTS

6 - 18

TYPICAL PLATE CHARACTERISTIC
Ef =16 VOLTS

20 12-7-50

20

16-

12

8

4

0 K -69087-72A381

idoo

2000

3000

4000

PLATE VOLTAGE IN VOLTS

3-14-52

GL -5973
ET-T1038A PAGE 4
12-57

.800"± .007"DIA.
.713" MIN.
CAP
C1-35

6-I" 8

MAX.

DIA.

2 DIA. APPROX.

ANODE TERMINAL

I9S_+ 8

BASE
A2-87

/7) 2-rDIA
APPROX.
UU

N-21009AZ

FILAMENT TERMINALS
11-25-53

ELECTRONIC COMPONENTS DIVISION

GENERAL

ELECTRIC

Schenectady 5, N. Y.

GL-5741 /FP -85-A
DESCRIPTION AND RATING
En -142A PAGE 1
5-51

KENOTRON

DESCRIPTION
The GL-5741/FP-85-A is a two -electrode tube tion-cooled. The cathode is a pure -tungsten filadesigned for use as a rectifier. The anode is radia- ment.

RECOMMENDED FOR REPLACEMENT ONLY-USE GL -8020 FOR NEW APPLICATIONS
*TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS

Number of electrodes

2

Electrical Data
Cathode-Filamentary type, pure tungsten Filament voltage Filament current
Voltage drop ( Ib =100 milliamperes) Interelectrode capacitance, plate -filament

10.0 volts 5 0 amperes 280 volts 1.8 micromicrofarads

Mechanical Data
Base-A4-10 Maximum over-all dimensions
Length Diameter Net weight, approx Shipping weight, approx Mounting position Maximum glass temperature

8 inches 2A- inches
3 ounces
3 pounds vertical, with base down
150 C

'Partially revised.

GENERAL

ELECTRIC

Supersedes ETI.142 dated 4-45

GL -5741 /FP -85-A
ETI.142A PAGE 2
5-51

TECHNICAL INFORMATION (CONT'D)

MAXIMUM RATINGS-Absolute Values

Maximum peak inverse voltage Maximum peak anode current Average anode current

300 200

FP -85-A EMISSION CHARACTERISTIC

20,000 volts 100 milliamperes 20 milliamperes

100
90 80 70 60 50 40
30
20

10 9 8 7 6 5
4
3
2

5
K-6917414

6

7

8

9

FILAMENT VOLTAGE IN VOLTS

I0
2-6-45

.5-GG

o7"vb ei,

.9-00 MIN.

*OUTLINE GL-5741/FP-85-A KENOTRON

5" MAX

I

DIA.

GL -5741 /FP -85-A
ETI-142A PAGE 3
5-51

71.

-ANODE TERMINAL

CAP NO. CI -5

BASE NO, A4-10
K-8639604 1 New drawing.

NC

FILAMENT TERMINALS

5-24-48

Tube Divisions, Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.
5-51 (11M)

SPECIFICATIONS

ETI -304
PAGE 1
SPECIFICATIONS
KENOTRON
GL -2B23

GENERAL

5-49

Equipment using this type should be so designed
that any tube within the limits specified will
operate satisfactorily. The tube shall be designed to have the average
characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-286.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS
Test methods according to IRE Standards

See

Test

Note

Test Conditions

Limits

Min.

Max

Units

Heater Current Plate Current * Plate Current

Ef = 6.3 volts a -c Eb = 100 volts d -c Field Strength = 90 gauss; Eb = 100 volts d -c ..

275

325

13

19

....

100

Field Strength Sensitivity

1

Field Strength

1, 2

Sensitivity

50 1.75

...6.0

Note 1: Eb = 100 volts d -c; the field strength is adjusted for a plate current of 8.0 milliamperes. Note 2: The sensitivity of this point is equal to Pip/ (H =field strength) for small variations of H.
* Not more than 10 per cent of the tubes may be outside the limits shown for this test.

Milliampere
a -c
Milliampere
d -c
Microampere
d -c
gauss Milliampere
per gauss

5-49 (3M) Filing No. 8850

r

APPLICATION DATA
ETI-146A PAGE 1
3-50

GENERAL ELECTRIC
Supersedes ETI-1 46 dated 4-45. Only change on page 6

PHANOTRONS

ETI-146A PAGE 2 3-50

DESCRIPTION

A phanotron is a thermionic gas tube in which no means is provided for controlling the current
flow.
The gas used may be one of the inert gases such as argon, xenon, or helium, or the vapor pressure of a few drops of mercury. The presence of this gas neutralizes, by ionization, the electron space -charge around the cathode created by the electrons emitted from it. This space -charge, which is negative in effect and tends to drive the electrons back into the cathode, is one of the limitations on the amount of current a high -vacuum electronic tube can carry. Another limitation is the ability of the cathode to emit the electrons which comprise the unidirectional current flow. This factor, however, can be controlled by design of an electron emitting source satisfactory for the size of tube required.
The absence of space -charge and its accompany-

ing losses in the phanotron allows larger electrode spacing and smaller -size electrodes for a given current -carrying capacity than is possible with high vacuum tubes. The elimination of space -charge also permits the use of an electron -emitting cathode of higher efficiency and much larger current -carrying capabilities than otherwise could be used. A gas filled tube therefore, can carry much higher current than a high -vacuum tube of corresponding dimensions. The vapor pressure, however, is sufficiently low so that the anode can withstand, when negative, the voltages for which the tube is designed.
The phanotron in its most usual form of a half wave rectifier has two electrodes, an anode and a cathode, although an additional anode may be added
if a full -wave rectifier is desired. Since the phanotron will conduct in one direction only, it is most generally used in rectifier circuits.

RATI NGS

The ratings of gas -discharge tubes are given in terms of fundamental conditions on the tube itself rather than in terms of any circuit constants. Values for a particular tube are given on the individual tube descriptive sheets, (i.e., in terms of actual anode voltage and current.)
The Maximum Peak Inverse Voltage
is a rating which is common to both phanotrons and thyratrons. It is the highest instantaneous voltage that the tube will safely stand in the direction opposite to that in which it is designed to pass current and depends upon operation within the specified temperature range and within the surge current rating. It should be emphasized that the maximum rating of the tube refers to the actual inverse voltage and not to the calculated values. A cathode-ray oscilloscope or spark gap connected across the tube is useful in determining the actual peak inverse voltage.
The Maximum Instantaneous Anode Current
is the highest instantaneous current that a tube can safely conduct under normal operating conditions in the direction of normal current flow.
The ability of a given tube to conduct this instantaneous current without excessive voltage drop will depend upon cathode heating and condition of the emitting surface.
The Maximum Surge Current rating is a measure of the ability of a tube to withstand extremely high transient currents; it is also a measure of the stiffness of the anode circuit in which the tube will operate satisfactorily at rated tempera-
ture and with maximum peak inverse voltage
applied. This rating is intended to form a basis for equipment design in limiting the abnormal currents that occur during short-circuit conditions. It does not mean that the tube can be subjected to repeated

short circuits without the probability of a reduction in life and the possibility of a failure.
The Maximum Average Anode Current
is a rating based on tube heating. It is the highest average current which can be carried continuously through the tube. In the case of a rapidly repeating duty cycle, this may be measured on a d -c meter. Otherwise, it is necessary to calculate the average current over a period not to exceed a definite interval of time which is specified for each design of tube. For example, in a two -tube, 60 -cycle rectifier feeding into an inductive load (so that the tube conducts approximately half of the time with a square wave) a tube with maximum instantaneous anode current of 15 amperes, a maximum average current of 2.5 amperes and an integration period of 15
seconds, can carry a series of 15 -ampere, 180 -degree blocks of current (half the time) for 5 seconds out of each 15 seconds, or a series of 7.5 -ampere, 180 -
degree blocks of current (half the time) for 10
seconds out of each 15 seconds.
In addition to the above ratings, there are a
number of other tube characteristics. The voltage drop from anode to cathode is a characteristic which becomes important when the anode supply voltage is low, as it then becomes a large part of the working voltage. The typical voltage drop which may be encountered is included in the tube ratings, and the maximum in the Specifications. This includes the effect of temperature, change during tube life, and variation between individual tubes.
Condensed -Mercury Temperature
is the temperature which controls the mercuryvapor pressure and hence many of the tube characteristics. This is measured on the bulb just above the base, the point where the mercury vapor is condensing within the tube.

ETI-146A
PAGE 3
3-50
Satisfactory tube operation depends upon operat- cathode. Sufficient heating must also be allowed to ing within the specified temperature limits. When bring the condensed -mercury temperature within the tube is being heated it must be remembered limits. that the heating time specified refers only to the
CLASSES OF TUBES
Phanotrons are built in both glass and metal en- Mercury-vapor phanotrons are available for velopes. The higher voltage tubes use glass construc- those applications where the temperature can easily tion for ease of insulation. Metal -envelope tubes are be controlled. Where a wide range of ambient temadapted for panel mounting whereas the smaller perature will be encountered, inert -gas -filled tubes glass tubes are designed for applications where a should be used. socket mounting is desirable.
APPLICATI ON CIRCUITS#
Phanotrons are designed to cover a very wide cuits where it is desired to supply d -c power for range of voltages and currents and as a result are other electronic tubes. Figs. 1 to 10 below illustrate suitable for use as rectifiers in many types of elec- some of the more typical rectifier circuits as well as tronic applications. In addition to electronic con- companion wave forms and useful conversion ratios. trol applications, phanotrons may be used in cir-

FIGURE

WAVE FORM

LOAD
CURRENT

TUBE CURRENT

I E.

FIL

EAVG

EMAX 2

/

/ I MAX

I M AX

BI PHASE HALF -WAVE TWO ANODES

ICY L

loci
00 ERMS

RL(MAX I il
/ C .--,

EMAX
/

E AVG

(CYCLE
Ilk AX
v
I As.

B1 PHASE FULL -WAVE FOUR ANODES

(CYCLE

I CYCL E

-3"--
ERMS
i

EMAX

/

(MAX

MAX
I
r

30 150

THREE-PHASE HALF -WAVE

00 kr.

INTER
TRANSFORMER

6-1 rts

6-e

THREE ANODES
a

(CYCLE

ARMS

EMAX
I MAX
[1*-t- e,,,, .,101, Ny\
" RL EAVV iii ,d: 2,/%

DOUBLE H -

HALF -WAVE WITH

1NTERPHASE TRANSFORMER SIX ANODES

# I CYCLE

!CYCLE
I AX 2
,
.
e 150'
# -i 1CYCLE

# Circuits shown in ETI-146 are examples of possible tube applications and the description and illustration of them does not convey to the purchaser of tubes any license under patent rights of General Electric Company.

EV-146A PAGE 4
3-50

APPLICATION CIRCUITS (CONT'D)

ERMS

4

THREE-PHASE

1

EAVG

FULL -WAVE SIX ANODES

1732
EMAX
I MAX
. .i..4
ICYGLE

I AX (CYCLE

pl.

_... ERMS
a oao_opo

Iciii ..o, .gja,

Nk_

r.'

RL
rl el 1

1.732 iimEMAX

I MAX

; deo,

i '1 I, 1APAP

V \1

N

B8

I ire XICAII:

-iru VA -I PI TRANSFORMER E

W ii A 1

a tflP

ti

11.

.

.

... .

1
ERms

.:,

P rrl rvi P
,

gx

-iI. Ftiirk- nvAii spcyRAzATuRE
EXCITATION-EE S5c.n.11

SE

ERMS

Sal

4..,,

EVAG
341

!CYCLE

!CYCLE

I.732EMAX
I MA X

I MA X

/dr ftili011ty,

,

,

z,:7;ft,sj

f
!CYCLE

h f -41 'CYCLE

EMAX IM

4 41. Kid

A

MAX

FOUR -PHASE HALF -WAVE FOUR ANODES
on_

1a 11111;:1111t1a1w1111

C

+-

1 NTERP E TRANSFORMER

DOUBLE -BIPHASE HALF -WAVE FOUR ANODES WITH

OUADRATURE EXCITATION

'CYCLE

ICICLE

EMAX
I MA X
II A A Ali;

0,rIMAX 2

A

A

HIfCY-C--L1E 1

I C CLEP1
I

10

. ,m . r.. 1.0..6..0..ii

SIX -PHASE HALF -WAVE SIX ANODES

EMAX

,

I MAX
,

10 6ree

I MAX
A,, ,, ,,n,

ICYGLE

1"11-1GYILE

USEFUL RATIOS

ETI-146A PAGE 5
3-50

FIG. TUBE I (AVG) NO. LOAD 1 (AVG)

1

0.500

2 0.500

3 0.333

4 0.167

5 0.333

6 0.333 7 0_333

8 0.250

9 Q250
10 0.167

E-AVG
0.318 E -MAX
0.450 E-RMS
0.636 E- MAX 0.900 E- RMS
0.827 E- MAX 1.170 E- RMS
0.827 E- MAX 1.170 E-RMS
1.650 E- MAX 2.340 E-RMS
1.650 E- MAX 2.340 E-RMS 0.955 E- MAX 1.340 E- RMS
0.900 E- MAX 1.274 E-RMS
0.318 E -MAX 0.450 E- RMS
0.955 E -MAX 1.350 E- RMS

E- INVERSE
E -MAX 3.140 E-AVG E -MAX 1.570 E- AVG
W E -MAX
2.090 E-AVG
NT E -MAX 2.090E-AVG -VW E -MAX 1.050 E-AVG NT E- MAX
1.050 E- AVG
E- MAX
1.050 E- AVG
2.220 E- AVG
3.140 E-AVG
2.090E-AVG

I-AVG
0.636I -MAX 0.636 I -MAX 0.827 I -MAX 0.827 I -MAX 0.955 I -MAX 0.955 I -MAX 0.955 I -MAX 0.900 I- MAX 0.318 I -MAX 0.955 I -MAX

APPLICATION CIRCUITS (CONT'D)

Another important application of the phanotron is to supply d -c power for automatic battery charging equipment designed to give voltage regulation over a wide range with a relatively constant current at a set limit. A battery charging circuit is shown in Fig. 11. In circuit design tubes are selected for

specific applications by consideration of the ratings,
including peak and average currents to be conducted and peak inverse voltages applied. When a
tube has been chosen for the application, the Speci-
fications should be consulted to determine the limits of operation.

ELECTRONIC VOLTAGE
REGULATOR

(1)BATTERY[ 1
LOAD L=1
1

SUPPLY

FG-280
P HA NOT RON TUBES

FILAMENT TRANSFORMER

K-9033806

ANODE TRANSFORMER

Fig. 11 -Circuit for Phanotron Battery Charger

2-10-45

INSTALLATION
Mechanical
Phanotrons should be mounted in sockets or sup- only in a vertical position. A shock -absorbing
ports of good quality with connections of sufficient mounting must be used if the tube is to be subjected current -carrying capacity, and should be operated to excessive vibration or shock.

ETI-1 46A PAGE 6 3-50
Electrical
The cathode should be operated preferably from an a -c source, and must assume operating temperature before electron current is drawn.
An appreciable glow, when plate voltage is not applied, is an indication that the tube is exposed to radio frequency. Such a condition should be corrected; otherwise the tube life and performance will be adversely affected.
Thermal
When a mercury-vapor phanotron is first placed in operation, it is necessary to distribute the mercury properly before anode voltage is applied. This is usually accomplished by applying filament voltage long enough to distill the mercury into the cool-

ing chamber of the tube. The location of the cooling chamber is indicated on the outline drawing by the words "controlling mercury temperature."
The design of equipment should allow the tube to operate within the condensed -mercury temperature limits over the range of ambient temperatures to be
encountered. When mercury-vapor tubes are subjected to low
ambient temperatures or when it is desired to reduce the mercury -heating time some form of heat conserving enclosure should be used. This may be provided with thermostatically controlled shutters and/or heaters to bring the condensed -mercury temperature within the operating range. Heaters should be located so that the normal condensed mercury region always remains the coolest portion of the tube enclosure.

OPERATION

Cathode Circuit
The cathode voltage should not deviate from the rated * value by more than five per cent. Filament voltage should be set so that voltage fluctuations give an average value equal to the rated filament voltage. Too low a filament voltage may result in a very short life or perhaps immediate failure due to loss of emission. Too high a voltage will shorten the life of the cathode somewhat. During stand-by periods the filament should be operated at normal voltage. A Where quadrature filament excitation is specified, the filament voltage should be 90 30 degrees out of phase with the anode voltage.
Anode Circuit
The peak inverse voltage applied to the anode should never exceed the rated* value. In the usual single-phase circuits, the peak inverse voltage, for sine -wave conditions may be taken as the total anode -transformer secondary voltage (rms value) multiplied by 1.4. The relations between the peak inverse voltage, the direct voltage, and the rms value of alternating voltage depend largely upon the individual characteristics of the rectifier circuit and the power supply. Line surges, keying surges or any other transient or wave -form distortion may raise the actual peak voltage to a value higher than that calculated from the sine -wave voltages of the transformer.
AAdditional information not previously included.

The instantaneous anode current experienced is affected largely by the characteristics of the output circuit, including a filter if one is used. The instantaneous tube current of full -wave rectifiers using a highly inductive output circuit may approach the d -c reading in the load circuit. If the output circuit is highly capacitive with respect to the tube, the instantaneous current in the tube may be many times the load current. Analysis of the individual circuit is necessary.
The average anode current must not exceed the rated value. With a steady load this may be read directly on a d -c meter. In the case of fluctuating loads, however, the reading should be averaged over a period not exceeding the time shown under *Technical Information.
The duration of the surge current shall not be greater than the time shown on the Technical In-
formation. * The voltage drop from anode to cathode is so low
that it has little effect on the complete circuit except when the anode voltage used is low; hence variations of tube voltage drop with life are not readily apparent. Where uninterrupted service is desired, the tube drop should be checked at regular intervals by means of a cathode-ray oscilloscope or other suitable means. This drop is one criterion of tube condition and a rapid rise from one test to the next may determine failure.
*Note: The Ratings And Characteristics Of A Particular Tube Are Given Under Technical Information On The Description And Rating Sheet For
That Tube.

Tube Divisions, Electronics Department

GENERAL

ELECTRIC

Schenectady. N. Y.

3-50 (11M) Filing No. 8850

DESCRIPTION AND RATING

GL -575-A
ET -T1477 PAGE 1
11-57

PHANOTRON

HALF -WAVE

MERCURY-VAPOR

The GL -575-A is a half -wave, mercury-vapor inverse voltages, and to conduct at relatively low rectifier tube designed to withstand high peak applied voltages.

TECHNICAL INFORMATION

GENERAL
Electrical
['Cathode-Filamentary Filament Voltage
Filament Current at 5.0 Volts Heating Time
Anode Voltage Drop, typical e Critical Anode Voltage

Minimum Bogey Maximum

4.75

5.0 5.25 Volts

9.0

10.0

11.5 Amperes

30

.... Seconds

10 .... Volts

100 Volts

Mechanical
Type of Cooling-Convection
Equilibrium Condensed -Mercury Temperature Rise Above Ambient At Full Load, approximate At No Load, approximate
Mounting Position-Vertical, Base Down Net Weight, maximum

20 C 12 C 13 Ounces

GENERAL ELECTRIC
Supersedes ET1-244C dated 10-50

GL -575-A

ET -T1477

PAGE 2

TECHNICAL INFORMATION (CONT'D)

11-57

MAXIMUM RATINGS, Absolute Values

Maximum Peak Inverse Anode Voltage

10,000

15,000 Volts

Maximum Cathode Current

EPeak Quadrature Operation In Phase Operation

10.0

10.0 Amperes

7.0

6.0 Amperes

El Average

Quadrature Operation

2.5

2.5 Amperes

In Phase Operation

1.75

1.5 Amperes

Fault

100

100 Amperes

Maximum Duration

0.1

0.1 Seconds

Maximum Averaging Time

20

20 Seconds

Frequency

150

150 Cycles per

Second

Condensed -Mercury Temperature Limits*

+20 to +60 +20 to +50 C

*Maximum temperature ratings for intermediate peak inverse voltages may be determined by linear interpolation. When

this is done lower current rating applies.

Denot es an addition.
®Denotes a change.

_L-
.400"
MI N.

.007" ../.":566" DIA.
ANODE TERMINAL --- CI -5 CAP

23n 10-32
MAX.
32
MIN.

MAX.
4 MIN.

2-160 MAX. O.D.

ZONE FOR CONDENSED -
MERCURY TEMP. MEASUREMENT

FILAMENT & ANODE -RETURN
TERMINAL
i"

I,
A4-29
BASE

(LAMENT TERMINAL NC
BOTTOM VIEW

N-21500AZ-Outline revised.
ELECTRONIC COMPONENTS DIVISION
GENERAL ELECTRIC
Schenectady 5, N. Y.

12-30-57

DESCRIPTION AND RATING

GL -673
ET -T1478 PAGE 1
11-57

PHANOTRON

HALF -WAVE

MERCURY-VAPOR

The GL -673 is a half -wave, mercury-vapor rec- voltages, and to conduct at relatively low applied tifier tube designed to withstand high peak inverse voltages.

GENERAL
Electrical
Cathode-Filamentary Filament Voltage
Filament Current, at 5.0 Volts Heating Time
Anode Voltage Drop, typical @Critical Anode Voltage

TECHNICAL INFORMATION

Minimum Bogey

4.75

5.0

9.0

10.0

30

10

Mechanical
Type of Cooling-Convection Equilibrium Condensed -Mercury Temperature Rise over Ambient
At Full Load, approximate
At No Load, approximate . Base-Super-Jumbo 4 -Pin Bayonet, A4-18. Cap-Medium Metal, C1-5. Mounting Position-Vertical, Base Down @Net Weight, approximate.

Maximum
5.25 Volts
--11.5 Amperes Seconds Volts 100 Volts
20 C 12 C
13 Ounces

GENERAL ELECTRIC
Supersedes ETI-2438 dated 10-50

GL -673

ET -T1478

PAGE 2

11-57
TECHNICAL INFORMATION (CONT'D)

MAXIMUM RATINGS, Absolute Values

Maximum Peak Inverse Anode Voltage

10,000

15,000 Volts

Maximum Cathode Current

DPeak

Quadrature Operation

10.0

10.0 Amperes

In Phase Operation

7 0

6.0 Amperes

D Average Quadrature Operation In Phase Operation
®Fault

2 5

2.5 Amperes

1 75

1.5 Amperes

100

100 Amperes

Maximum Duration Maximum Averaging Time Condensed -Mercury Temperature Limits*

0 1
20
+20 to +60

0.1 Seconds
20 Seconds
+20 to +50 C

Maximum Frequency

150

150 Cycles per Second

*Maximum temperature ratings for intermediate peak inverse voltages may be determined by linear interpolation. When this is done lower current rating applies.

DDenotes an addition. eDenotes a change.

1-,-/->-----L--.566"±.007" DIA.

400 MIN.

-A-ANODE TERMINAL 61-5 CAP

16
MAX.
10 I
16 MIN.

311
94
MAX.
31.
98
MIN.
ZONE FOR CONDENSED MERCURY TEMP..0 MEASUREMENT
'

FILAMENT & ANODE- RETURN
TERMINAL

FILAMENT TERMINAL

T

N.C.

N.C.

SUPER JUMBO
4- PIN BASE A4-18

BOTTOM VIEW

N-21501AZ-Outliae revised
ELECTRONIC COMPONENTS DIVISION

12.30-57

GENERAL

ELECTRIC

Schenectady 5, N. Y.

DESCRIPTION AND RATING

GL -857-B
ET -T1503 PAGE 1 11-58

PHANOTRON
The GL -857-B is a half -wave, mercury-vapor vapor tubes, together with other features of design rectifier tube for use in the high voltage field. The and construction assure maximum efficiency of low voltage drop characteristic inherent in mercury- operation in many different rectifier applications.

TECHNICAL INFORMATION

GENERAL
Electrical
Filament Voltage Filament Current at 5 Volts
Cathode Heating Time Anode Voltage Drop Critical Anode Voltage

Minimum 4.75
60

Mechanical
Type of Cooling-Convection or Forced Air P Equilibrium Condensed -Mercury Temperature Rise above Ambient
At Full Load, approximate At No Load, approximate Mounting Position-Vertical, Base Down ®Net Weight, maximum

Bogey
5
30
15

Maximum
5.25 Volts 33 Amperes
- Seconds - Volts
100 Volts
15 C 11.5 C
3.5 Pounds

GENERAL ELECTRIC

GL -857-B
ET -T1503
PAGE 2
11-58

TECHNICAL INFORMATION (CONT'D)

MAXIMUM RATINGS, Absolute Values Maximum Peak Inverse Anode Voltage ®Condensed -Mercury Temperature Limits Maximum Cathode Current
Peak Average
Maximum Averaging Time Fault
Maximum Duration Maximum Frequency

Convection 10,000
+25 to +60
40 10 30 400 0.2 150

Forced Air
22,000 Volts
+30 to +40 C
40 Amperes 10 Amperes 30 Seconds 400 Amperes 0.2 Seconds 150 Cycles per Second

EIDenotes an addition. ®Denotes a change.

CI X-RAY WARNING NOTICE

If the GL -857-B is operated at anode voltages in excess of 16 kilovolts, x-ray radiation shielding may be necessary to protect the user against possible danger of personal injury from prolonged exposure at close range. For further information consult the following references or other standard texts on the subject:
(a) X -Ray Protection Design, Handbook No. 50. National Bureau of Standards, Washington, D. C. (b) X -Ray Protection, Handbook No. 60. National Bureau of Standards, Washington, D. C. The above references are available from the Superintendent of Documents, Government Printing Office, Washington 25, D. C.

RATE OF RISE OF CONDENSED -MERCURY TEMPERATURE
Ef = 4.75 VOLTS

Ili

.......... .7u.1m1m1.11111111I 1M1I1U1NdEimll 1in11H1I1

11011111111

R-;.F.10mmihnumn mu

14

IMMINIHMIMMMIENIMN' : in

MEM
13.11311

H Atol. 12 1a11l1l1i1m1111o11m1111o011n11E111r11p11r11i1m1111a11r1namoolinjuirmilEr;-91111101p

El

1111111111111111111 1111111910111911111101111 11111190 111101 11111 1111111111

0 1111111111111MMIffill II MI II ILI I I MI 11111 Mfill

111 iuIIII

RiGit

t; t idaa wil:;;;;;!

8I
I 1111131101111111111111011111111 011111111
6 IMIIIMMEMMIMMIIIPIWIUMINIMI

I El IIII

M

MI 111 llllilli1111 1111111

4 1111111111101111111111011 111111111 IIII I

I I IIIIII 11.1111111

2 111111111111

5

1 0

15

20

K -69087-72A134

0 0 I 001

25

30

35

HEATING TIME IN MINUTES

0 I

40

45

I 0 0

50

55

60

4-10-47

CAP
NO. CI - 10
7- DIA
8 MAX..

ANODE
TERMINAL
2" DIA APPROX.

GL -857-B
ET -TI 503
PAGE 3
11-58

19121-:+811

ZONE FOR CONDENSED -
MERCURY TEMP MEASUREMENT

4 TI DIA.
APPROX.

BASE NNOO.. FO -2

FI LAMENT TERMINAL

K-4903593

APPROX

THIS LEAD
CONNECTED TO
BASE SHELL

FILAMENT &
ANODE
RE TURN TERMINAL

3 EI-i"
4

11"-i- I"
732-32

1-23-51

ELECTRONIC COMPONENTS DIVISION
GENERAL ELECTRIC
Schenectady 5, N. Y.

DESCRIPTION AND RATING

GL -869-B
ET -T1504 PAGE 1
11-58

PHANOTRON
The GL -869-B is a half -wave, mercury-vapor quired. The cathode is designed for economical, rectifier tube for use in broadcast transmitters and long -life operation. other applications where high d -c voltages are re -

GENERAL
Electrical
Filament Voltage Filament Current at 5.0 Volts Cathode Heating Time
Anode Voltage Drop Critical Anode Voltage

TECHNICAL INFORMATION

Minimum 4 75
60

Bogey 5.0 19

15

Maximum 5.25 Volts
21 Amperes . . . . Seconds
.... Volts
100 Volts

GENERAL ELECTRIC

GL -869-B
ET-Tl 504 PAGE 2 11-58

TECHNICAL INFORMATION (CONT'D)

Mechanical
Type of Cooling-Convection or Forced Air Equilibrium Condensed -Mercury Temperature Rise above Ambient
At Full Load, approximate At No Load, approximate Mounting Position-Vertical, Base Down Net Weight, maximum

20 C 15 C
1 6 Pounds

MAXIMUM RATINGS, Absolute Values Maximum Peak Inverse Anode Voltage
Condensed -Mercury Temperature Limits Maximum Cathode Current
Peak In -Phase Operation Quadrature Operation
Average In -Phase Operation Quadrature Operation Maximum Averaging Time
Fault Maximum Duration
Maximum Frequency
Denotes an addition.

10,000 15,000 20,000 Volts 30 to 60 30 to 50 30 to 40 C

10

10

10 Amperes

20

20

10 Amperes

2.5

2.5

2.5 Amperes

5

5

2.5 Amperes

30

30

30 Seconds

100

100

100 Amperes

0.1

0.1

0.1 Seconds

150

150

150 Cycles per Second

X-RAY WARNING NOTICE

If the GL -869-B is operated at anode voltages in excess of 16 kilovolts, x-ray radiation shielding may be necessary to protect the user against possible danger of personal injury from prolonged exposure at close range. For further information consult the

following references or other standard texts on the subject:

(a) X -Ray Protection Design, Handbook No. 50. National Bureau of Standards, Washington, D. C. (b) X -Ray Protection, Handbook No. 60. National Bureau of Standards, Washington, D. C.

The above references are available

of Documents, Government Printing Office, Washington 25, D. C.

RATE OF RISE OF CONDENSED -MERCURY TEMPERATURE
Ef =4.75 VOLTS

GL -869-B
ET -T1504
PAGE 3
11-58

25 20 15 10

miIu.msmmmmmmmssmmmmmmmmmmmmumimmimmmimimimumumimaunumimomunimoooimumnmomoommuunmmommmumimmmimunsalummmmomuiumimmmummmuomnmmmommmmsmtummmmmmmmummmmmmmmmumommmomeommomomuomimiuumoumommommmommoummuommmummoemmmommummmmomlmumiomuuummommmommmamummmmmmmoummmmmmmmimmmmmmmmmmmmmuwmmuimomummoomimmomuuimoommommmumomummumommmmommmoummommmmmommnammumouimmumommummmmouummmmnmmmmmumimmummammmmlmummmmummuoummommumiuumummummoumommmommuusunummumommmmummummmmummmmimummummomuummwmmimmmmmmmouommmmmmmmomuommummummmmmmmmwoommmooommmmmomiouuommmmmimimmmmmomommuummummommmuommmommmmmommummmmsummimmmmmumumouummmmmmmmmuummmmmooommmommuuosmuummummmmmmoummmoimmmoouommmmmoimommmmsommouuimmmummummmomuummmummmmmummmmommmmmmmmmmloummuommmmmmmmmmmmomomuommuummomomiummumoimoummmummsuummuuommmummmmmimmumummeimmmmmumommummmmummmmommummmomuomummmmmmmrmumemmmuummmommmsmimouommumummommomoumwmmumumuummuummmmuaummmmuomrmommmmmammiommoomummmmmimommmmimummmmmuummmuommmmmmmimmmmumommnmmmmmomuommommmmmmummuuomuommiummmmmmuamouiuummmumuuirmommmmmmmommtomMmiommmmmmmmmmmmumummmmmmismuomMummmmmogmmumuuummummummummpmimmmmmummuu.umumimumummmnmuumuiuomumlmmmnmoummmwmmmommuomumoum.immmmnmMmmoiammuoummmmmmoommmuemmmuummmmummmmuumummmmmmmmmimuuummomommgmmmmmummuumumsmmmummuuummmmumimmmmmmumomummmoowmmmmmouoiummimmmmuuammmoemoumummmmumommppmmmummmmsnmmimmmmmmmmummummmmmommammmmnuuummummomummmoummmmummmmuimuumomimume.ommmmooumomomuonmuuuommouwmommmmwmumnamummmmumummmmmmmmimmmmmemmusmmmmimmmummmmmmuommmumamumummmummmmmomomumoummummiiumuuimmmuumummoummmmmumoiiummmumuumummmnmummmmimmmmmmmmuomummmmumsmmmmummmmomimummmmmunuomumimmmmomumommuiummim-mmmmomsomomuumummoumummimEmmmimmmmmeunmmooumoimmmummommmmmmmmmulmmmemmmmniumummmmmmommommmummmTmoommoumimuoumummumomomEmmmumomumimum=ummiomoEmmumummmmmiummmmmmimmmumueim.mmmmmmnmmommmmmmmmnmmmuumimim.nmimmmummmsmoiummmimaomEmeouuuuimummumu.uomuuomommmummmiiimmmmummimmmmmmmmmmmmmmmmmummmuiommmmuumemmmmommmmmmmumumimommmmmmummuuwmmmmmmmmomuoumouuommommmuuuumuumimummmmmmmummuomimmmmmmmmommmummmmmmmummmmumouuuuumumumnmmmmmmmimmmumummmmmmmmmmmumommmmmmmmouoomuuououimumiumiumoumouommmmummmmmmmummmnmmmummmmmmmummummimmmumuummmuiouimmmmmummmmmmmommmmommmlmmmmummmmmiummmmomoummuuomouimumummmmmmomuouiummmmummmumummummmmumnmumumumoumumumrmmmmummmmmuimuumommmmmmummmmmmmmmmmmnmmomuumiimimnmmmmmuEommmimmumuonummEmoioimmmmummmmmmmmmmmwmmmoimmumummimoumummmmmummmmmommmuuoummmuummmummmmmmmmmmmmmmmoomomuummuoummmuiummommmummmummmmmummuuumumimmmmmmmmmmmnmmmmmmmouonomomummimmmummmnmmuimmmuuomiumomumumuuummummonmmmmunumounmmuoummmummimummmmnmmmmmmumiuoummummmmsmmmmmummmmnmmmumonmmmuummmmmmmmnmmmmmmommmomuomonouiunomommuumomwummmmuuioumouooommmmmmmmmmmammmmuummmmmmmmuouuummmmmmmmmemummmmsmmmmmmmmmmmmmmmmmmsmmmmmemmmmm

5

MmmimMmoumEumumRmMmmiEmomnMomoMomImmmImomMuomMummEmmMmmomMomuEmmMmmuMmuuEmumMmmmMmmonIoUiirmMmnmMmmWumuAummmMmmMuwmEoamMummEmmMmmumEmoMumomEmnMmmmMumooEmMmommMmmmEuomoMmMmmuEmmmmMumuImNmumoImmmmMmuEmuMomumOmmImmmmMmeuMuuUmmmMmmmmEmEMuooMmmmEmmmMmmuMwuEmomMmmmoMmmmEmMuoumMmmmiEmMmmmuMuomEmmMmmmEmumuMmuEomMummmMmmumOmuImuMummmMmmuEmmMmmiEumiMsmomMmmmMmMumouEmimMuimlMmmi miummmmoomommmmmmmmmmomommiumummmmmmmmmwumomiamommmnmmmmmumuoummAmnmmmmmmammumomrmmonmwmwmdommAmmimummaummmmmmimmommmmmmmsomummomummommmmmmmmimumomnmmmomommmmmmumumommmnimmummnnmmomiuummmmmmmummmmmmomuommmmmmomummmmmmouummmmmmmoammmmmmmumimmmmuumuummmmmmmummmmmmmumoumummmmummmmmmunumuimimmmmmmmmmmowummommmummimmmmmnuummumumuommmmmmmmmummmiumuommnmmmmmmmsoumuommommmmmmmmmmoommuimmmmmummimmmuuummmummmmummmemmmoummmummmmwummmummmiamm

wimimmunmrmum=wmmdmmmaaummmummmm:otxiumimwmmmuummwsumoimmmmmmmmmuoummmmmmmmmumiommmmemmmmmuummmmnummummummmmmummemmummmmmmommomammmmmmowuimmmnmmmmmuummummmmmmimumnimuummmmmmommmimommmmommmmomummmmommmmmumommmmummmmummummimmmnmmouummmmmmmmmimuummmmumummimummmmmummnmmusmmmimommmmummmmummmmmumommmummmmmmimuml

0

5

10

15

20

25

30

35

40

4S

K -69087-72A133

HEATING TIME IN MINUTES

2-17-49

GL -869-B
ET -T1504
PAGE 4
11-58

.713" BASE NO. CI -9

.eoon ±.D0I0A7. "
ANODE TERM INAL

i" 5-8

DIA.
MAX.

II" DI A. APPROX.

14l4u+-136"

ZONE FOR CONDENSED -MERCURY TEMPERATURE MEASUREMENT
BASE NO. A3-20

TUBE TYPE
MARKING

FILAMENT AND ANODE RETURN TERMINAL

FILAMENT TERMINAL

K-4909011

N.C. ELECTRONIC COMPONENTS DIVISION

9-26-50

GENERAL

ELECTRIC

Schenectady 5, N. Y.

DESCRIPTION AND RATING

GL -872-A
ET -T1514 PAGE 1
12-58

PHANOTRON
The GL -872-A is a mercury-vapor, half -wave rectifier for use in high -voltage rectifier circuits.

TECHNICAL INFORMATION

GENERAL
Electrical
Filament Voltage Filament Current at 5.0 Volts Cathode Heating Time Required Anode Voltage Drop, typical Critical Anode Voltage

Minimum 4.75
30

Bogey 5.0 7.5
15

Mechanical
Type of Cooling-Convection Equilibrium Condensed -Mercury -Temperature Rise Above Ambient
At Full Load, approximate At No Load, approximate Mounting Position-Vertical, Base Down Net Weight, maximum

Maximum
5.25 Volts 8.0 Amperes .. Seconds
Volts 50 Volts
20 C 14 C
7 5 Ounces

GENERAL

ELECTRIC

Supersedes ETI-15513 dated 3-50

GL -872-A

ET -T1514 PAGE 2 12-58

TECHNICAL INFORMATION (CONT'D)

MAXIMUM RATINGS, Absolute Values

Maximum Peak Inverse Anode Voltage Maximum Cathode Current
Peak Average
Maximum Averaging Time Surge
Maximum Duration Maximum Frequency Condensed -Mercury Temperature Limits

5000 10,000 Volts

5 0

5.0 Amperes

1.25 1.25 Amperes

15

15 Seconds

50

50 Amperes

0 2

0.2 Seconds

150 150 Cycles per Second

+20 to +70 +20 to +60C

.566"±.007" DIA.

5" MAX. r6 DIA.

ANODE TERMINAL CI -5 BASE
it. 2

ZONE FOR CONDENSED- frt
MERCURY TEMP. MEASUREMENT
BASE A4-29
NC
FILAMENT a ANODE RETURN TERMINAL
K-8639375

FILAMENT TERMINAL
NC
8-2-49

ELECTRONIC COMPONENTS DIVISION
GENERAL d ELECTRIC
Schenectady 5, N. Y.

GL-5558/FG-32
DESCRIPTION AND RATING
EU-147C PAGE 1
5-51

DESCRIPTION
The GL -5558/F G-32 is a half -wave, mercuryvapor rectifier for converting alternating current to direct current. It is adapted to applications where rectification of higher currents at lower frequencies and voltages is desired than is possible with high vacuum tubes. In comparison with high -vacuum

PHANOTRON
tubes the GL-5558/FG-32 has a relatively low and constant voltage drop which is an advantage in low voltage rectifier applications as it allows more efficient utilization of power and results in lower circuit losses.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL
Electrical Data
Cathode-Indirectly heated Heater voltage Heater current at 5 volts Cathode heating time Anode voltage drop Critical anode voltage
4 Completely revised.

Minimum Bogey Maximum

4.75

5.0 5.25 volts

4.5

4.9 amperes

5

- minutes

15 - volts

50 volts

GENERAL

ELECTRIC

Supersedes ETI-1478 dated 10-47

GL -5558 /FG-32
ETI-147C PAGE 2
5-51

TECHNICAL INFORMATION (CONT'D)

Mechanical Data
Type of cooling-Convection Equilibrium condensed -mercury -temperature rise above ambient
At full load, approximate At no load, approximate Mounting position-Vertical, base down Net weight, maximum

28 C 22 C
5 ounces

MAXIMUM RATINGS, Absolute Values
Maximum peak inverse anode voltage Condensed -mercury temperature limits
Maximum cathode current Peak Average Surge (maximum duration 0.1 second) Maximum averaging time
Maximum frequency

2000

5000 volts

+30 to +80 +30 to +60 C

15

15 amperes

2 5

2.5 amperes

200

200 amperes

15

15 seconds

150

150 cycles per sec.

GL -5558 'FG-32 RATE OF RISE OF CONDENSED MERCURY TEMPERATURE ABOVE AMBIENT

30 iiiiiiiiiiiiiimilffillinidniiiiiiMiliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitii
MEEIONLIM..I.T. PE1OPuremmuomunmnoU..N..I..E..B...E...E..M....O.. NLIMPmii
rn 25
111111111111111111ritialliMgrill
La 20 MillifilandirPh1"414111"2"rm. 1.2!1.1112121.121111111
11111110011111111101111111111011101101111

CC 15
a.
)- 011111111111101111111 11111111111111111111
cc
10 IMEDURIMPHERNINIMEMENERP
MEMO RHUIPHIMMIRIMMUIMEHIMMIHNIMI

111011111111111i 111111 011111101111

Plir "

5

10

15

20

25

30

35

40

HEATING TINE IN MINUTES

N-21534ZA

3-11-47

OUTLINE
GL-5558/FG-32 PHANOTRON

400 MIN.

.566" ± .°D?7A." ANODE TERMINAL
0I-5

GL -5558 /FG-32
ETI.147C PAGE 3
5-51

CONTROLLING MERCURY TEMPERATURE LEVEL
BASE A 4-10

63+1
44
4

FILAMENT
K-4373333

# NODE RETURN TERMINAL

10.41

CATHODE TERMINALS

). fG

10-15-45

Tube Divisions, Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.
5-51 (11M)

GL -8008
DESCRIPTION AND RATING
ETI-256A PAGE 1
10-50

PHANOTRON

DESCRIPTION
The GL -8008 is a half -wave, mercury-vapor rec- voltages. The ratings are the same as those for the tifier tube designed to withstand high peak inverse 872-A. The 8008, however, has a Super -Jumbo voltages and to conduct at relatively low applied push -type base.

TECHNICAL INFORMATION

GENERAL DESIGN

These data are for reference only. For design information refer to specifications.

Electrical Data
Filament voltage Filament current at 5.0 volts Cathode heating time required Anode voltage drop, typical Critical anode voltage

Minimum 4 75
30

Bogey 5.0 7.5
15

Maximum
5.25 volts 8.0 amperes
seconds volts 50 volts

Mechanical Data
Type of cooling-Convection
Equilibrium condensed -mercury -temperature rise above ambient At full load, approximate At no load, approximate
Mounting position-Vertical, base down Net weight, maximum Technical information completely revised.

20 C 14 C
7.5 ounces

GENERAL ha ELECTRIC
Supersedes EV-256 dated 12-45

GL -8008
ETI-256A PAGE 2
10-50

TECHNICAL INFORMATION (CONT'D)

MAXIMUM RATINGS, Absolute Values

Maximum peak inverse anode voltage Maximum cathode current
Peak Average Surge (maximum duration 0.2 second) Maximum averaging time
Maximum frequency Condensed -mercury temperature limits

5000 10,000 volts

5.0

5.0 amperes

1 25 1.25 amperes

50

50 amperes

15

15 seconds

150

150 cycles per second

+20 to +70 +20 to +60 C

OUTLINE
.GL -8008 PHANOTRON

.400"
MIN.

± .007 .566" DIA.
ANODE TERMINAL CI -5

7.34;i"

1e

I

82±4 -

2156"MAX. DIA

FILAMENT & ANODE RETURN
TERMINAL

FILAMENT TERMINAL

CONTROLLING MERCURY TEMP. LEVEL
'4
Ar.SUPER
-F JUMBO
4 PIN BASE
A4-18

N G

NC

BOTTOM VIEW

10-50 (11M)

N-21502AZ Drawing revised.
Tube Divisions, Electronics Department

9-7-45

GENERAL ELECTRIC
Schenectady, N. Y.

L -5561/D FE FT04N
AN RATING
ETI-148B PAGE 1
4-48

PHANOTRON

DESCRIPTION
The GL-5561/FG-104 is a half -wave, mercury-vapor rectifier for converting alternating current to direct current. It is suitable for applications where rectification of higher currents at lower frequencies and voltages is desired than is possible with high -vacuum

tubes. In comparison with high -vacuum tubes, the GL-5561/FG-104 has a low and constant voltage
drop which is an advantage in low -voltage rectifier applications since it allows more efficient utilization
of power and results in lower circuit losses.

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS

Number of electrodes
Electrical
Heater voltage Heater current Cathode heating time required
Anode voltage drop, typical Critical anode voltage

Minimum 4.75
300

Bogey
5.0 10.0
15

2
Maximum 5.25
10.75
50

volts amperes seconds
volts volts

Mechanical Data

Type of cooling-convection

Mounting position-vertical, base -down

Net weight, maximum

1

GENERAL 0 ELECTRIC

pound

Supersedes ET1-148A dated 10-47

GL-5561/FG-104

ETW1488 PAGE 2 4-48

TECHNICAL INFORMATION (CONT'D)

MAXIMUM RATINGS

Continuous

Welder -Control

Service

Service

Instantaneous..40 Maximum peak inverse anode voltage .
Maximum anode current

...3000

10,000 volts 16 amperes

Average anode current.

6.4

4 amperes

Surge anode current, for design only .

400

160 amperes

Duration of surge current .

0.1

0.1 second

Maximum time of averaging current

15

15 seconds

Temperature limits, condensed mercury

+40 to +80 +25 to +50 centigrade

U 30
w
c 25
z
(OW
Ft 20
ce
cc< 15

GL -5561 /FG- 1 04 RATE OF RISE OF CONDENSED MERCURY TEMPERATURE ABOVE AMBIENT

mime

11:1 Prniimpli

"gill

InikliiPkill1111 III' IN

.

1.1. I...

I

A

I

>- 10
U
CC

zU) 5 6
0

IMPIlli111111111111111111111111111111111 IMMOMMM00111 1121111!!!!!!1
ihmumumommmumomm 111111111111111111111111111111111111111111i11111111111111

5

10

15

20

25

30

35

40

45

50

55

N-21540ZA

HEATING TIME IN MINUTES

3.11.47

x-316 D IA' MAX.
CAP*r3917

ANODE TERMINAL

GL-5561/FG-104
ET1-14138
PAGE 3
4-48

CONTROLLING
MERCURY TEMPERATURE

II -4

4 SAS 04310 ------,

HEATER TERMINAL
CATHODE TERMINAL

I
45°

NOT USED

ANODE RETURN
a CATHODE TERMINAL

K-4955993

OUTLINE GL-5561/FG-104

8-5-44

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.
4-48 (9M) Filing No. 8850

FG-166
DESCRIPTION AND RATING
En -149A PAGE 1
10-50

PHANOTRON

DESCRIPTION
The FG-166 half -wave, all -metal mercury-vapor ply 125 or 250 to 600 volts in capacities of 15 to 50 rectifier is capable of carrying peak currents as high kilowatts. The sturdy all -metal construction comas 75 amperes. It is suitable for rectifiers that sup- bines mechanical strength with simplicity of design.

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS

Number of electrodes

2

Electrical

Cathode-Filamentary type

Filament voltage

2 5 volts

Filament current, approx

100 amperes

Filament heating time, typical

2 minutes

Optimum phase of filament voltage with respect

to anode voltage

90 degrees

Peak voltage drop

9 volts

Rise of tube temperature above ambient without forced -air circulation

Average anode current 0 amperes

Condensed mercury temperature

30 centigrade

Temperature of side of tube

100 centigrade

Average anode current 20 amperes

Condensed mercury temperature

35 centigrade

Temperature of side of tube

150 centigrade

GENERAL ELECTRIC
Supersedes ETI-149 dated 4-45

FG-166
ETI-149A PAGE 2
10-50

TECHNICAL INFORMATION (CONT'D)
Mechanical
Net weight, approx Shipping weight, approx Mounting position

MAXIMUM RATINGS Maximum peak anode voltage 20 to 60 C condensed mercury 20 to 70 C condensed mercury Maximum anode current Instantaneous
Average Surge, for design only Maximum time of averaging current Temperature limits, condensed mercury

CONDENSED -MERCURY

TEMPERATURE

20 C

12

40 C

10

60 C-

80 C
8

5 5 pounds 14 pounds
vertical, with radiator down
1500 volts 800 volts
75 amperes 20 amperes 750 amperes 30 seconds +40 to +60 centigrade
*OUTLINE PHANOTRON FG-166
17"
FLEXIBLE ANODE TERMINAL

6

i4x 4

2

0

20

40 60 80 100 120 140 160

PEAK ANODE CURRENT 1 N AMPERES

FG-166 PHANOTRON PEAK DROP VS PEAK ANODE CURRENT. AVERAGE VALUES MEASURED FROM FILAMENT TRANSFORMER
MIDTAP TO ANODE

K-6917484

2-10-45

Is' t -ti
15"+
I9-2 AMAX.

5" MAX. DIA.

10-50 (11M)

ZONE FOR
CONDENSED MERCURY TEMPERATURE MEASUREMENT

FILAMENT LEAD CONNECTED TO ENVELOPE

TUBULATION RADIATOR
FILAMENT TERMINAL

N21544AZ *Revised drawing

Tube Divisions, Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

8-10-49

FG- 1 90
DESCRIPTION AND RATING
ETI-150 PAGE 1
4-45

DESCRIPTION
The FG-190 is a gas -filled all -metal tube for use as a full -wave rectifier at low voltages. The use of gas imposes a voltage limitation and tubes of this type

PHANOTRON
will not carry as high a voltage as mercury tubes of comparable size. They can, however, be operated in much lower ambient temperatures.

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS

Number of electrodes

3

Electrical
Cathode-Filamentary type Heater voltage Heater current, approx Heating time, typical Voltage drop, typical Pick-up voltage, either anode, typical

2 5 volts 12 amperes
5 seconds
8 volts 14 volts

Mechanical
Net weight, approx Shipping weight, approx Mounting position

6 ounces 4 pounds
vertical, with leads down

GENERAL ELECTRIC

FG- 1 90
ETI-150 PAGE 2 4-45

TECHNICAL INFORMATION (CONT'D)
MAXIMUM RATINGS
Maximum peak inverse anode voltage Maximum instantaneous anode current
25 cycles and above Below 25 cycles Average anode current Surge anode current, for design only Duration of surge current Maximum time of averaging current Ambient temperature limits

175 volts
5 amperes 2 50 amperes 1 25 amperes
20 amperes 01 second 15 seconds -20 to +50 centigrade

TUBULATI ON
1+6
1''
2
7 MAX. 116 DIA. ,i3"MAX. T6 DIA.

5" 3"

16

16

4' ,+

0"" 3

16

42 MAX.

1-46 (3M) Filing No. 6850

4-M
LEADS WITH
TERMINALS REMOVED
FILAMENT ANODE
K-5300039

I"

-- 165"

4

7 ANODE

FILAMENT

fq FA

3"

8

.Ft,

45

64

OUTLINE FG-190 PHANOTRON

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

7-13-44

----,,

GL -869-B
DESCRIPTION AND RATING
ETI-154B PAGE 1
5-49
-,,

PHANOTRON

DESCRIPTION
The GL -869-B is a half -wave, mercury-vapor rectifier tube for use in broadcast transmitters and other applications where high d -c voltages are required. Economy of operation and high over-all efficiency result from several unique design fea-
tures incorporated in this tube. The design of
cathode allows the further advantage of operation with either in -phase or quadrature filament excita-

tion. In quadrature operation the filament and anode voltages are ninety plus or minus thirty degrees out of phase with each other. Such an arrangement, allowing uniform utilization of the
cathode, results in greater uniformity of characteristics than is possible with other methods, and in
long tube life.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL
Electrical Data
Filament voltage Filament current at 5.0 volts Cathode heating time

Minimum 4 75
60

Bogey
5
19

Maximum
5.25 volts 21 amperes seconds

Anode voltage drop Critical anode voltage
Technical Information changed throughout.

15

volts

100 volts

GENERAL 0 ELECTRIC
Supersedes ETI-154A dated 4-48

GL -869-B
ETI.154B PAGE 2 5-49

TECHNICAL INFORMATION (CONT'D)

Mechanical Data
Type of cooling-Convection or forced air Equilibrium condensed -mercury -temperature rise above ambient
At full load, approximate At no load, approximate Mounting position-Vertical, base down Net weight, maximum

15 C 20 C
1.6 pounds

MAXIMUM RATINGS, Absolute Values Maximum peak inverse anode voltage
Condensed -mercury temperature limits Maximum cathode current
Peak In -phase operation Quadrature operation
Average In -phase operation Quadrature operation
Surge (maximum duration 0.1 second) Maximum averaging time Maximum frequency

10,000 15,000 20,000 volts 30 to 60 30 to 50 30 to 40 degrees C

10

10

10 amperes

20

20

10 amperes

2.5

2.5

2.5 amperes

5

5

2.5 amperes

100

100

100 amperes

30

30

30 seconds

150

150

150 cycles per second

GL -869-B
RATE OF RISE OF CONDENSED -MERCURY TEMPERATURE
E,=4.75 VOLTS

GL -869-B
ET1.15411
PAGE 3
5-49

MIIIOIIINIIIIMIIUII MMEMEWMHIMMIIMIMINIMMIN11111101111111MEMMIMMIEIIIMIIIINIMNMIIIIIINIIMIMIHMMEIIMM1M1E1M1I1I 1M1U1M11111111111111111111M1111111111.111111111111111I1M1M1ME1M1

V)

M11U1M111II1II1II1IM11E1M11II1II1I1II1II1M1M11IM11I1II1II1II1II1M1M11I1II1II1II1II5M11IM11II1IIMIII1II1I1II1II1M1M11II1IM11I11111111M11M1M1I1II1II1M1M1I1II1II1M1I1II1II1IN1I1M1I1III1II1II1II1IM11II1III1M1I1M1M11M1E11M11111111111.11M11M.1I1M1I1M1M11I1II1M1I

0LcLeI 25

MINI NOM N111111111111111111111111111111111111111MIEMMIUM111111111111111111M111111111111MMIIIIMIIIMMIMIIIIUNIIIIIIIIMMIIII

NNW MEM 111.111111 111111111111111111111111MMIIIIIMIIIIIIIMIIIIIIM
MUM MININNUIMM11111111111111 WIN MINIM

1011111111MINIIIIMMIIIMINNI

z

NMI MEM MEM 1111111M MI111111111111111111111IMME

MIIIMINIIIM11111111111M

MEM MINIIIIIMMIMINIMION1111111111111111111111M
1U1M11M1I1M11OMM11N1E11M11M11E1M1111111111111111M11IM11M1II1II1II1II1II1M1MIIMMIIIIIIIIIIII

111111M11E1M11I1II1N1I1M1M1MIIMMIIIEIIMNMIIIIIIIIIMMMIMIIIIN=

LT, 20

MOM MUM MIIIIIIIIIIIIMMIIIIIM111111111111111111111111111IMMIIIIMMMIIIIM MEM IIIMMEN111111111111111111111111111111

MUM MIMI 11111111111111111111E1M11111111111111111IB11M111M11U11M111M11U11M111111111111111111111111111=111111111111111111111111111111M1111111IIMII1I1I1II1I1I1II1I1II1I1I1II1MMIININIIIMIIIIMIIIIIIIMMIMMINIINIIIMIMINIMINMIINMIMMIIIIIIIIIIIMII1II1I1II1I1I1II1I1I1II1I1I1M01M111II1II

MUM NNW MEM Mi

1111111111111111111111111111M11111IMMI MOM IIIIIIMIIIIMIIIIIMIIMIIIIIIMIMIIIIIIM11111111111111111M111111111111111111111MMI MEM

MEM EOii iiiiiONE NM

MIME NEM MUM 11M111111111M111111111111111111MIMIIIMMIMIIIIIIMIMIIMIIIIIIIIIMIMM111111111111111111111111M 11111111111MIIIIMI

0 11111111111111111111111111MINIIIIIIIMMMIIIIMMIUMNI IIIIIMMIIIIIIIIIIIMIIIIIIIMM111111111111111111M111111111111M11111111111111M11111111MINI

co 15 M1.11O111M1111N111I1M111I1N111IUM1 MINIMEIIIMMEMMII111111111111111MMINIIIIM

mmmmmmmmmmmmmmmmmm

LLI

MEN MUM WWII 11111111111MIIMINIMIIIIMINIIIIIIIIM1110111111111111111.1111Mn.

ce

IIMINIONIM

MEM 111111111111111111111M11111111M 1111111M111111M1111.1.: /111111111111M

MEM IIIM1111111111111111M11111111111111111111111MMIIIIIIIIMIIIMPTAMMIIIIIIIIIIIIMM

IMMINIM

MEM

MMIIIMINENIMIMIMIMIIENNMMIIMIIIIIMI IIIIIIIIIMIMMEMM

MEM MEM

Loti
LU LU

10 11miM1m111E11o11Mm111m1O11i11Mnm111n111Iu1oI1I1ImmIMIIINwmMosEmNmMmiEniMmio1nm11n1iuu11mm1MmmMEuaMnrEnnNio1m1m1m.7m.u11unMmg1B1r1nmM1i1mu=11mm.11um11m1u1muMmMmINmuMnIu1i1mm11um11u1um1m11m1m1i1mi1n1ou11mmM11ImmMmEmmm1o1mu1im1sm1em1inm1su1u1umm11mm1uo1mmnMmMnuoImIimImIMen

MIIINI1111111111111111111/415111111111111UNIMMIIIMIN 111111111111M1111111111111MMIUM IIMIKEM

>-

111111111111111111111MIUMMIIIIIIIIMINIMM 111111M1111111111M111111111IIIIIEMIUM111111111111111111111M1111111111111111111111MI MI111110111111111111M11111111111M11111111111110111=111 1111111111111MIIIIMEN

NUM NIMIIIIIIIIIIIIIIIIIIIIIIMMPAIIIMMEMIMM11111.11111111111111M11111111MINIIIIIIIIIIIIIIIIIMIMI MUM

U

MINIM 11111111111111111111111MW/111111111111MMEMIIIMINIMMIIIIIIII

LU 5

Irning 11M111111111111111ME

.....1.1.1U1U11M1IM1E111111111/4111111111111111111.1111111111111111111=1M11M111A11M111II1I1I0M111IN111I1M11E11M111M11IIIIIMMINIMIIMIIIIMIIIIIIIIIIMI

01111111111111111.111111111111111111111111111M

M=NINMIM MMOEMNMMINIKmmdlmm NM

IMIIIIIMINIM11111111111111111111111111111111111M1111111M11111111MNIMUIMME111111111111111111111111111MIM MINIIIINIMIIIII11111111111111111111111M1111M1111111111111111111111MMIIIIIIN

MINIM MIIIIIIIIrdilM111111111111111111111111111111111MIIMMIIIMNIMIIIIIIMMEIMMININIMMIIIIIIIIIIMMIII11111111111111MMIIIIIMIN

WHIM 1111111W1g11111111M 11111111111111111111111111111111IIMIIIIIIII

IMMI1111111111111111MINIIIIIIIM111111111111111111111111111111111111111111111M
MOM 111111111111111111111MOMMO11111111111111111MMINIMMI

0LU 0 11111111P "-//111111111MINEINMMUINNMEM MMIN

MIME MEM 111111111111111.11111MIIIIIN

MEIIINOM

ZO 0

5

10

15

20

25

30

35

40

45

HEATING TIME IN MINUTES

K -69087-72A1 33

2-17-49

A New curve.

GL -869-B
ETI-154B PAGE 4 5-49

800" ±D°7"
DIA.

.713" UfiJ.1

,,t

ANODE TERM INAL

IL

BASE NO. C1-9

5gIn

DIA. MAX.

11" DI A.
2-16 APPROX.

ZONE FOR

CONDENSED-MERCURY

TEMPERATURE

MEASUREMENT

-F-
4

BASE

i

NO. A3-20

144-II ± I6-
TUBE TYPE ..% MARKING
1

FILAMENT AND ANODE RETURN TERMINAL

FILAMENT TERMINAL

K-4909011
EIRevised outline.
5-49 (10M) Filing No. 8850

OUTLINE
GL -869-B PHANOTRON
Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

2-17-49

GL -872-A/872
DESCRIPTION AND RATING
ETI-155A PAGE 1
4-48

PHANOTRON

DESCRIPTION
The GL -872-A/872 is a half -wave, mercury- peak inverse voltages, and to conduct at relavapor rectifier tube designed to withstand high tively low applied voltages.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS
Number of electrodes
Electrical
Cathode-Filamentary type Filament voltage Filament current, approximate . Transformer power for design purposes Heating time, typical Peak voltage drop, typical

2
5 0 volts 7 5 amperes
50 watts 30 seconds 10 volts

Mechanical
Type of cooling Net weight Shipping weight, approximate Mounting position

convection
1/2 pound 3 pounds
vertical, base down

GENERAL ELECTRIC
Supersedes EV-155 dated 4-45

G1.43724% /872

ETI-155A PAGE 2 4-48

TECHNICAL INFORMATION (CONT'D)

MAXIMUM RATINGS
Maximum peak inverse anode voltage 150 cycles or less Corresponding condensed -mercury temperature limits
Maximum peak inverse anode voltage 150 cycles or less Corresponding condensed -mercury temperature limits
Maximum anode current Instantaneous, 25 cycles and above.
Average Surge, for design only Maximum time of averaging current Maximum time of surge anode current

5,000 volts 20-70 centigrade
10,000 volts 20-60 centigrade
5 0 amperes 1 25 amperes
50 amperes 15 seconds 0 2 second

.566 "+.00711DIA.

2

5" MAX. r6 DIA.

ANODE TERMINAL CI -5 BASE
U

CONTROLLING MERCURY LEVEL

--- Ft
TT

BASE A4 -29

U

re+ I"
4 -4
T

4-48 (9M) Filing No. 8850

FILAMENT TERMINAL

FILAMENT B FILAMEN SHIELD TERMINAL

K-8639375

OUTLINE GL -872-A/872 PHANOTRON

3-17-47

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

0-

APPLICATION DATA
ETI-156 PAGE 1
4-45
GENERAL 0 ELECTRIC PLIOTRONS

En -156 PAGE 2
4-45

DESCRIPTION

A pliotron is a high -vacuum thermionic tube in damentals of operation, ratings, classes of tubes,

which one or more electrodes are employed to con- applications, maintenance and operation as well as

trol the unidirectional current flow.

other qualities which render these tubes particu-

The succeeding paragraphs will describe the fun- larly useful to industry.

FUNDAMENTALS OF THE PLIOTRON

The pliotron is a high -vacuum tube similar to the two -electrode kenotron. The difference lies in the addition of a grid or grids to control current flow to the anode (or plate). In a kenotron rectifier the amount of current which can be passed through the tube at a given positive plate voltage is limited
by the building up of a negative space charge around
the filament or cathode, caused by the electrons which are leaving it. If a positively charged grid is now interposed between filament and plate, this negative space charge is partially neutralized and more current is allowed to flow to the plate at the
same plate potential. Conversely, if the grid is negatively charged, the current is decreased. If the grid is made sufficiently negative, the current flow can be completely cut off. Between the cutoff value of grid voltage and the maximum positive value of grid potential to which it is safe to go, the control
of the grid over the plate current is continuous. Since the grid is located closer to the filament than is the plate, a given change in grid potential has a
greater effect on plate current than an equal change of plate potential. Thus, the pliotron can be used to amplify voltage variations. If the variations of grid potential are maintained in the negative region, substantially no electrons can flow to the grid, so

that it is possible to control considerable amounts of power in the plate circuit with the expenditure of very small amounts of power in the grid circuit. The pliotron can, therefore, be used as a very sensi-
tive device. Since the pliotron can amplify power, it is pos-
sible to make it generate sustained oscillations by feeding back a fraction of the power in the plate circuit to the grid circuit. Such an arrangement is commonly termed an oscillator.
From the foregoing discussion, it can be seen that pliotrons may be used in a variety of ways. No one design is best fitted for all of these uses, each is designed for particular types of service, and a wide variety is available.
Since a pliotron is exhausted to a high degree of vacuum, its operation is not limited by the vapor pressure of a condensable medium within and the permissible range of ambient temperature is thereby
increased. Unlike gas -or vapor -filled grid -controlled
tubes, the pliotron is designed to control both the starting and stopping of plate current and may be used to generate or control very high frequencies. It is, therefore, possible to obtain continuous control of plate current even with a positive d -c plate
potential.

DEFINITIONS OF HIGH -VACUUM TUBE RATINGS

General
When the terms used in the rating of high vacuum tubes are considered, it is important to
realize that the application of the limits and values given for a particular tube depends upon the oper-
ating conditions. Any nominal rating can apply to
one set of conditions and not to all the conditions
encountered in practice.
For certain high -vacuum tubes two sets of ratings are given one designated as CCS (Continuous Commercial Service) and the other as ICAS (Intermittent Commercial and Amateur Service).
The former are for use in applications where the prime consideration is reliability of performance and long life. The latter can be used in applications where the service is intermittent in nature, i.e., where the operating period does not exceed five minutes and where this period of operation is followed by a standby period of at least the same duration. Although ICAS ratings are higher than those recommended for CCS and permit the use of greater power they do result in a decrease in tube life below what may be expected with CCS operation.

The cathode or filament information is given in terms of normal heating voltage. A current figure to indicate transformer rating is also given. The filament or cathode, except in unusual cases, should always be operated at this rated voltage rather than at rated current and the voltage should be adjusted so that the normal fluctuation in line voltage averages around this point. Normally, when this is done a plus or minus variation of five per cent heating voltage is allowable.
The maximum plate voltage of a pliotron is the highest d -c plate voltage which the pliotron can safely withstand. Equipment using these tubes should be so designed and operated that under no conditions will this value of plate voltage be exceeded. It is, therefore, desirable, when selecting a pliotron for a particular application to determine the changes in filament voltage and plate voltage that may be caused by line voltage fluctuation, load variation and manufacturing variations in the associated apparatus. Then, choose an average value of plate voltage so that under the usual operating conditions, the maximum rating will not be
exceeded.

The grid ratings are given in terms of the maximum grid voltage and grid current that may be
used for a particular class of service. The plate dissipation rating is determined by the
safe operating temperature of the plate vehich in turn is usually determined by the degree of evacuation possible with the anode material used.
In addition to these ratings there are a number of other tube characteristics. The amplification factor is the ratio of change in plate voltage to a change in control -electrode voltage under such conditions that the plate current remains unchanged and all other electrode voltages remain constant. It is a measure of the effectiveness of control -electrode voltage relative to that of the plate voltage upon the plate current.
The grid -plate transconductance is the quotient of the in -phase component of the alternating current of the plate by the alternating voltage of the

En -156 PAGE 3
-45
grid, all other electrode voltages being maintained constant.
The resonant frequency is the frequency of the grid -plate circuit with the grid and plate of the tube connected together through the shortest possible lead.
The ratings for a particular pliotron are given on the Description and Rating Sheet for that tube.
Classes of Pliotrons
There are three general classes of pliotrons:
1. Radiation -cooled pliotrons, usually of the
glass -envelope type. 2. Forced -air-cooled pliotrons which usually have
a radiator to aid in dissipating heat. Such tubes are cooled by an air flow directed against the radiator.
3. Water-cooled pliotrons in which the plate is cooled directly by a flow of water.

APPLICATIO N CIRCUITS#

Pliotrons are useful in most applications requiring the generation or amplification of audio- or radio -frequency voltages, as well as in many applications which require accurate measurement of small signal voltages and their amplification for
control purposes. The great majority of pliotron applications are
covered by six classes of operation designated as
Class A audio -frequency, Class AB audio -frequency, Class B audio -frequency, Class B radio -frequency,
Class C radio -frequency plated -modulated, and Class C radio -frequency amplifier and oscillator. All pliotrons are not necessarily recommended for each class of service. Some tubes are designed for only one or two classes of service while others may be rated for all types of service.
A Class A amplifier is an amplifier in which the grid bias and alternating grid voltages are such that plate current in a specific tube flows at all times. This class of service gives a large ratio of power amplification but with relatively low efficiency and low output. A typical single tube Class A amplifier
is shown in Fig. 1.

grid voltages are such that plate current in a specific tube flows for appreciably more than half but less than the entire electrical cycle. This class of service
produces a ratio of power amplification and an efficiency intermediate between a Class A and a
Class B amplifier. (See Fig. 2.)
A Class B audio -frequency amplifier is an amplifier in which the grid bias is equal approximately to the cutoff value so that for a specific tube, plate current flows for approximately one-half of each cycle with an alternating grid voltage applied. In this service two tubes are used in a "balanced" circuit, each tube conducting only half of the time. This class of service gives a relatively large ratio of power amplification with medium efficiency and output.
Fig. 2 illustrates a typical push-pull circuit
which may be used in Class A, AB or Class B amplifier operation.

INPUT

OUTPUT

- INPUT

OUTPUT O

K-9033526
Fig. 2-Circuit Diagram of Push-pull Amplifier

11-15-44

K-9033523

Fig. 1-Single Tube Amplifier, Class A

11-15-44

A Class AB audio -frequency amplifier is an amplifier in which the grid bias and alternating
# Circuits shown in ETI-156 are examples of possible tube applications and the description and illustration of them does not convey to the purchaser of tubes any license under patent rights of General Electric Company.

A Class B radio -frequency amplifier is an amplifier in which the plate is supplied with unmodulated direct voltage, and the grid is
excited by modulated radio -frequency voltage. Such an amplifier gives a relatively large ratio of power amplification with medium efficiency and output.
A Class C radio -frequency amplifier-plate modulated, is an amplifier with the plate supply
Fig. 2-Terman, F. E., Radio Engineering, P-30.5; McGraw-Hill Book Co., Inc., 1937

ETI-156 PAGE 4
4-45

voltage modulated so that the tube output is modulated radio -frequency. For this type of service the grid bias is approximately the same as for a Class C amplifier or oscillator. Assuming a value, P, of plate input power to be modulated, the amount of audmio frequency power to be supplied is equal to 2p where m is the modulation factor. For further in-
formation consult the Description and Rating
Sheet for the particular type tube in question. A Class C radio -frequency amplifier or oscillator
has the grid bias appreciably greater than the cutoff value so that the plate current in each tube is zero when no alternating grid voltage is applied, and so that the plate current in a specific tube flows for appreciably less than one-half of each cycle when an alternating grid voltage is applied. Such an amplifier gives high efficiency and output with a relatively low ratio of power amplification.
A typical example of a Class C amplifier is given in Fig. 3 which illustrates a direct -coupled Class C amplifier with fixed bias, capacitively coupled load and Rice neutralization (which is a method of neutralizing the effects of the interelectrode capacitance of the tube). Fig. 4 illustrates a neutralized Class C push-pull amplifier with grid -leak bias and an inductively coupled load.
PLIOTRON

K-9033524

NEUTRALIZING CAPACITOR

11-15-44

*Fig. 3-Direct-coupled Class C Amplifier with Fixed Bias, Capacitively Coupled Load and Rice Neutralization

OUTPUT

tion and Rating Sheet. The maximum ratings
should not be exceeded if satisfactory performance and life are to be realized. The typical values given are not to be considered as ratings, because the tube may be used at any suitable condition within the maximum ratings to secure the required output. The output values are approximate tube outputs, i.e., tube input minus the plate loss. When useful output is calculated, circuit losses must be subtracted from tube output. For this reason the typical values of power output are not to be considered as ratings. The approximate values of grid driving power shown under typical operating conditions are calculated values for a particular instance only and do not include power lost in the circuit or in the bias resistors.
It is advisable to provide sufficient driving power
in excess of the circuit losses plus the minimum tube requirements in order to cover the different condi-
tions of operation in the particular application. This is particularly true when the frequency is above that at which full plate input may be employed. It is of course understood that at all times the driving power must be such as not to exceed the maximum allowable peak grid voltage or the maximum d -c grid current. In general, radio -fre-
quency circuits should be arranged to prevent parasitic oscillations so that the tube will not be subjected to excessive voltages and currents. The arrangement of apparatus adjacent to the pliotrons, particularly in the case of high -power or high -frequency applications, should be such that the glass envelope is not subjected to concentrated voltage
stress. The above considerations in the design of radio -
frequency circuits, such as the electronic heating and diathermy circuits to follow, will be repaid by increased operating efficiency.
The electronic heating (or induction heating) circuits illustrated in Figs. 5 and 6 are typical of
applications in which pliotrons are used extensively. In the coupled -grid circuit, Fig. 5, the voltage is
developed across a coil inductively coupled to a portion of the resonant circuit. By proper connections this voltage can be phased nearly 180 degrees, but due to the resistance inherent in any inductance, this phasing must be corrected in many cases
by adding a phase -correcting capacitor.

r

- RECTIFIER

OSCILLATOR

K-9033527

11-15-44

*Fig. 4-Neutralized Class C Push-pull Amplifier with Grid Leak Bias and Inductively Coupled Load

When selecting a tube for a particular application and consequently a particular class of service, it is, of course, necessary to be certain that the requirements of the application are within the maximum ratings of the tube as given in the Descrip-

*Reference for Figs. 3 and 4-Terman, F. E., Radio Engineering, P-322, McGraw-Hill Book Co., Inc., 1937

LINE

K-9033804

L_
PHANOTRON

HEATER COIL
2-2-45

Fig. 5-Basic Coupled -grid Oscillator Circuit as Used for Induction Heating

In the Colpitts circuit (Fig. 6) the grid voltage is obtained by direct connection to the resonant circuit by splitting the capacitor into two series sections. If the plate -to -cathode voltage is impressed on one section (Ep), the voltage across the other

RECTIFIER
r

OSCILLATOR

LINE

K-9033803

-
PHANOTRONS HEATER COIL
2-2-45
Fig. 6-Basic Colpitts Oscillator Circuit as Used for Induction Heating

section (Eg) will always be of opposite polarity,
thus giving a 180 -degree phase angle. The Colpitts circuit of Fig. 6 has the advantage
of greater stability than that of Fig. 5 since the
capacitance ratio which determines Ep/Eg is always fixed, thus providing a "stiffer" voltage source as well as better efficiency because the phasing is more exact. However, the coupled -grid circuit of Fig. 5 affords a ready means of adjusting the amplitude of the grid voltage which is advantageous in some
cases.
Another important use of the pliotron is in diathermy. In these applications the pliotron is employed in an oscillator circuit to transmit high frequency waves which produce heat inside the
human body. A circuit illustrating the use of the pliotron in a diathermy application is shown
in Fig. 7 below.

ETI-1 56 PAGE 5
4-45

STEP UP TRANSFORMER LI
W
LINE RECEPTACLE LINE SWITCH

EARTH GROUND

FOOT SWITCH RECEPTACLE
K-9033585

(Courtesy of G. E. X -Ray Corporation)

Fig. 7-Circuit of Inductotherm Unit with Surgical Attachment

2-2-45

CONVECTION -COOLED PLIOTRONS-INSTALLATION AND OPERATION

INSTALLATION

Mechanical
Mountings must be of good quality and should be so installed as to minimize danger from impact. If the set is subject to vibration, a shock -absorbing suspension must be employed.
Sets using more than one tube should provide adequate spacing between tubes so that adjacent portions of the bulbs do not operate appreciably hotter than the other sections.
Electrical
The filament should be operated preferably from an a -c source, although a d -c supply may be used. The filament supply should be designed to allow operation at rated filament voltage. The filament transformer shall have good regulation and should be designed for at least thirty per cent above rated filament wattage.
The circuits should be arranged to prevent parasitic oscillations so that the tube will not be subjected to excessive voltages and current.

The plate circuit should be provided with a protective device such as a fuse in order to prevent overheating caused by improper circuit adjustments or overloading. This device should remove the plate voltage instantly if the direct plate current reaches a value 50 per cent above normal.
In rating pliotrons, certain values are given as maximum; that is the values beyond which it is
unsafe to go from the viewpoint of life and performance. In order not to exceed the *maximum ratings,
changes in plate and filament voltage caused by line -voltage fluctuation, load variation, and manufacturing variation of the associated apparatus must be determined. Then, an average value of plate voltage should be chosen so that under the usual operating conditions the maximum ratings will not
be exceeded. In trying out a new circuit or when adjustments are
being made, the plate voltage should be reduced in order
to prevent damage to the pliotron or associated apparatus
in case the adjustments are incorrect.

ETI-1 56 PAGE 6 4-45

OPERATION

General
Maximum ratings and typical operating conditions are given on the Description and Rating Sheet covering the individual type of pliotron. The typical values given must not be considered as ratings, because the tube may be used at any suitable conditions within the maximum ratings.
Class C Radio -Frequency Power Amplifier and Oscillator
In this service, the plate input power is keyed, i.e., is on and off alternately in accordance with the characters of some code. During the "key -down" periods, the tube functions as an unmodulated radio -frequency power amplifier. The tube may be
used also as an amplifier or oscillator without keying.

In both types of service, the ratings given are for
"Key -down" conditions. Certain methods of modulation may be applied
to this class of service provided the modulation is essentially negative and the positive peak of the audio -frequency envelope does not exceed 115 per cent of the carrier conditions.
Grid bias for Class C service may be obtained from a grid leak, from a battery, from a rectifier of good regulation, or from a self -biasing resistor by-passed with a suitable capacitor. With the grid leak method, the grid excitation must not be removed without also removing the plate voltage. Grid -bias values are not particularly critical, and correct circuit adjustment may be obtained with widely different values.

FORCED -AIR-COOLED PLIOTRONS-INSTALLATION AND OPERATION

INSTALLATION

Cooling
The air-cooling system for the anode consists of a blower with a suitable air duct leading to the fin cooler of the tube. The air flow required is specified on the Description and Rating Sheet for each type. The temperature of the incoming air should not exceed 45 C.
Proper cooling must be provided to limit the glass temperature to not more than 150 C at the hottest point. Usually deflecting vanes diverting the outgoing air toward the terminal seals provide sufficient cooling. In some cases it may be necessary to provide a separate cooling system. This system may
consist of a blower and an air duct of suitable cross-sectional area leading to a nozzle directing
the air flow. The cooling air must not contain any foreign
matter. The air-cooling systems should be properly installed to insure safe operation of the tube under all conditions and for this reason should be electric-
ally interconnected with the filament and plate supplies to prevent the application of voltages to
the tube without suitable cooling.
Electrical
Suitable meters should be provided for reading filament voltage, plate voltage and current and d -c grid current. A tube life recording meter (to read hours of operation) is also necessary.
The installation of all wires and connections must be made so that they do not lie on or close to the glass of the tube. Otherwise, severe trouble may arise from corona discharge or increased dielectric loss which will result in almost certain puncture.

The filament circuit carries a high current at low voltage. Therefore, precautions should be taken against loss of voltage and heating due to poor connections. The filament connectors particularly should be large and make good contact.
For multiphase filament tubes it is essential that the connections for each type of filament voltage
diagram*
to prevent distortion and possible failure of the
filament.
The plate circuit should be provided with protective devices to prevent the tube from drawing a heavy overload.
Plate series protective resistors should also be provided to protect the tube from excessive energy dissipation during instantaneous failure of insulation, within the tube or within the transmitter.
The grid circuit should be provided with heavy conductors, carefully connected, in order to prevent overheating of the grid terminal due to r -f currents
In Class C service, the bias voltage may be supplied by a grid leak, or by a combination of grid leak and generator, grid leak and rectifier, or grid leak and cathode -bias resistor suitably by-passed. The combination method is particularly suitable to reduce distortion, especially in plate -modulated operation. Since the grid -bias voltage for Class C service is not particularly critical, correct circuit adjustment may be obtained with values differing widely from those indicated for this service.
The circuits should be arranged to prevent parasitic ocillations so that the tube will not be subjected to excessive voltages and currents.
*Note: The ratings and characteristics of a particular pliotron are given on the Description and Rating Sheet for that tube.

OPERATION

ETI-156 PAGE 7
4-45

When a new tube is first placed in operation, it should be operated without plate voltage for fifteen minutes at rated filament voltage. After this initial preheating schedule, plate voltage can be applied. Operate for fifteen minutes at approximately onehalf the usual plate voltage. Full voltage may then be applied and the tube operated under the normal load conditions for a period of one hour or more. Every three months spare tubes should be given this preheating and initial operation schedule.
The filament should be operated at constant voltage rather than constant current. From the viewpoint of tube life, it is usually economically
advantageous to provide good regulation of the filament voltage. For example, if the filament is oper-
ated continuously at six per cent above normal voltage, the evaporation life will be reduced to
approximately one half. When a multiphase filament -supply voltage is
used, the phase voltages must all balance within

fifteen per cent during the filament starting period. During normal operation the phase voltages must
never, even momentarily, exceed ten per cent
unbalance. Maximum ratings and typical operating condi-
tions are given on the Description and Rating Sheet. The amplifier classifications used are those given in the Report of the Standards Committee of the Institute of Radio Engineers.
The output values given in the tabulation on the Description and Rating Sheet are approximate tube outputs under certain typical operating conditions. These must not be used as output ratings; circuit losses must be subtracted from the tube output in calculating the useful output.
In determining the value of plate voltage for
normal operation, the line voltage fluctuation, load variation, and maufacturing variations must be estimated so that the maximum rated values will not be exceeded.

WATER-COOLED PLIOTRONS-INSTALLATION AND OPERATION

INSTALLATION

Cooling
The water-cooling system for the anode consists, in general, of a source of cooling water, a water jacket, and a feed -pipe system which carries the water to and from the jacket.
Proper functioning of the water-cooling system is of the utmost importance. Even a momentary failure of the water flow will damage the tube. It is,
therefore, necessary to provide a method for preventing operation of the tube during such a condition. This may be accomplished by the use of water -flow circuit breakers, or interlocks, which open the filament and plate power supplies whenever the flow is insufficient or ceases.
The rate of water flow given on the Description and Rating Sheet is usually sufficient for all types of service. Under abnormal conditions an increased rate of flow may be necessary to prevent overheating.
Distilled water is recommended for cooling because it greatly reduces the probability of scale formation on the anode during life. Scale hinders proper transfer of heat from the anode to the water. The mineral content, flow, heat dissipation, temperature, etc., of undistilled water are so varied that no specific recommendations to prevent scale can be made. In general, water which shows a hardness
greater than 10 grains per gallon should not be used.
When forced -air cooling is called for on the
Description and Rating Sheet a system should be used which consists of a blower with air ducts of proper cross-sectional area which supply air to suit-
able air nozzles. In certain of the larger tubes (such as the 862-A and the 898-A both the bulb and the stem must be air cooled. In these tubes the nozzle which

supplies air to the filament stem is incorporated in the base, and the nozzle which supplies air to the bulb is part of the water jacket and acts as a combination air nozzle and electrostatic shield.
Tubes which require forced -air cooling on the stem only have an air nozzle incorporated in the cathode base.
The system should be arranged so that the temperature of the glass is not more than 150 C at the hottest point. Even when forced -air-cooling is not called for on the Description and Rating Sheet, free circulation of air must be provided to limit the temperature of the glass to this value. When there is inadequate ventilation or where a tube is used at the higher frequencies, forced -air-cooling may be required. In such cases a small blower may be used with suitable nozzles directing the air to the areas where cooling is necessary.
Electrical
Suitable meters should be provided for reading filament voltage, plate voltage and current, and d -c grid current. A tube life recording meter (to read hours of operation) should also be provided.
The installation of all wires and connections must be made so that they do not lie on or close to the glass of the tube. Otherwise, severe trouble may arise from corona discharge or increased dielectric loss which will result in almost certain
puncture. The filament circuit carries a high current at low
voltage. Therefore, the usual precautions should be taken against loss of voltage and heating due to poor connections. The filament connectors particularly should be large and make good contact.

ETI-1 56
PAGE 8
4-45
For multiphase filament tubes it is essential that the connections for each type of filament voltage supply be made according to the circuit diagram to prevent distortion and possible failure of the fila-
ment. The plate circuit should be provided with pro-
tective devices to prevent the tube from drawing a heavy overload. Plate series protective resistors should also be provided to protect the tube from excessive energy dissipation during instantaneous failure of insulation, within the tube or within the transmitter. The grid circuit should be provided with heavy conductors, carefully connected, in order

to prevent overheating of the grid terminal due to r -f currents.
In Class C service, the bias voltage may be supplied by a grid leak, or by a combination of grid leak and generator, grid leak and rectifier, or grid leak and cathode -bias resistor suitably by-passed. The combination method is particularly suitable to reduce distortion, especially in plate -modulated operation. Since the grid -bias voltage for Class C service is not particularly critical, correct circuit adjustment may be obtained with values differing widely from those indicated for this service.
The circuits should be arranged to prevent parasitic oscillations so that the tube will not be subjected to excessive voltages and currents.

OPER ATION

When a new tube is first placed in operation, it should be operated without plate voltage for fifteen minutes at rated filament voltage. After this initial pre -heating schedule, plate voltage can be applied. Operate for fifteen minutes at approximately onehalf the usual plate voltage. Full voltage may then be applied and the tube operated under the normal load conditions for a period of one hour or more. Every three months spare tubes should be given the preheating and initial operation schedule discussed above.
The filament should be operated at constant voltage rather than constant current. From the viewpoint of tube life, it is usually economically
advantageous to provide good regulation of the filamant voltage. For example, if the filament is operated continuously at 6 per cent above normal volage, the evaporation life will be reduced to approximately one-half.
When a three-phase or six -phase a -c filament supply voltage is used, the phase voltages must all balance within 15 per cent during the filament starting period. During normal operation the phase voltages must never, even momentarily, exceed 10 per cent unbalance.
Maximum ratings and typical operating conditions
for each recommended class of service are given on the Description and Rating Sheet. The amplifier

classifications used are those given in the Report of the Standards Committee of the Institute of Radio Engineers.
The output values given in the tabulation on the Description and Rating Sheet are approximate tube outputs under certain typical operating conditions. These must not be used as output ratings; circuit losses must be subtracted from the tube output in calculating the useful output.
The approximate anode dissipation may be calculated from the following expression:
n(T2 - T1) P (kilowatts) =
(4 )
in which (T1) is the known initial temperature of the cooling water in degrees centigrade, (T2) the temperature of the water at the water jacket outlet in degrees centigrade, and (n) the water flow in gallons per minute.
In determining the value of plate voltage for
normal operation, the line voltage fluctuation, load variation, and manufacturing variations must be estimated so that the maximum rated values will not be exceeded.
*Note: The ratings and characteristics of a particular pliotron are given on the Description and Rating Sheet for that tube.

1-46 (3M) Filing No. 8850

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

GL-5742/PJ-7
DESCRIPTION AND RATING
ETI-15713
PAGE 1
4-51

PLIOTRON

DESCRIPTION
The GL-5742/PJ-7 is a three -electrode tube designed for use as a class A, B, or C amplifier. The anode is capable of dissipating 10 watts, and

cooling is accomplished by radiation. The cathode is a thoriated-tungsten filament. Maximum ratings apply up to 6 megacycles.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS
Electrical
Filament voltage Filament current Amplification factor, Eb = 350 v, Ib =4.5 ma, Ef =4.5 v Interelectrode capacitances
Grid -plate Grid -cathode
Plate -cathode
Revised

4 5 volts 1 1 amperes
30
6 8 uuf 2 5 uuf 2.0 uuf

GENERAL ELECTRIC
Supersedes ETI-157A dated 12-48

GL-5742/PJ-7

ETI.157B

PAGE 2
4-51

TECHNICAL INFORMATION (CONT'D)

Mechanical

Mounting position-vertical, base down

Maximum glass temperature

Net weight, approximate

150 C
2 ounces

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS
AUDIO -FREQUENCY POWER AMPLIFIER AND MODULATOR -CLASS Al
Maximum ratings, absolute values D -c plate voltage Plate dissipation
Typical operation D -c plate voltage D -c grid voltage Peak a -f grid voltage D -c plate current Load resistance Power output

350 max volts 7.5 max watts
350 volts
-6 volts
6 volts 2.8 milliamperes 40,000 ohms 0 08 watt

AUDIO -FREQUENCY POWER AMPLIFIER AND MODULATOR -CLASS B
Maximum ratings, absolute values D -c plate voltage D -c plate current Plate input Plate dissipation
Typical operation Unless otherwise specified, values are for 2 tubes D -c plate voltage D -c grid voltage D -c plate current Power output, approximate

350 max volts 35 max milliamperes 12 max watts 10 max watts
350 volts
-10 volts
64 milliamperes 4 watts

PLATE -MODULATED RADIO -FREQUENCY POWER AMPLIFIER -CLASS C TELEPHONY

Carrier conditions per tube for use with a maximum modulation factor of 1.0

Maximum ratings, absolute values D -c plate voltage D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation
Typical operation D -c plate voltage D -c grid voltage D -c plate current D -c grid current, approximate Power output, approximate

300 max volts -100 max volts
40 max milliamperes 15 max milliamperes 12 max watts 10 max watts
300 volts
-40 volts
35 milliamperes 8 milliamperes 5 watts

RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR -CLASS C TELEGRAPHY

Key -down conditions per tube without amplitude modulations*

Maximum ratings, absolute values D -c plate voltage D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation
Typical operation D -c plate voltage D -c grid voltage D -c plate current D -c grid current, approximate Power output

350 max volts -100 max volts
40 max milliamperes 15 max milliamperes 14 max watts 10 max watts
350 volts
-25 volts
35 milliamperes 5 milliamperes 6 watts

* Modulation, essentially negative, may be used if the positive peak of the envelope does not exceed 115 per cent of the

carrier conditions.

GL-5742/PJ-7
ET1-157p,
PAGE 3
4-51

15
Nw wcc
a_
M
a_I
I0 wi..J
z I zw-
a
cn0c w
iaa_I
5
vor
K-8639682

Ecr+10

Ef. 4.5 VOLTS D-C Ec .+ 5

Ec r0

Ecr-5

Ec.-10

Ec =-I5

Ec --20

-

-

100

200

300

400

500

600

PLATE VOLTAGE IN VOLTS

GL-5742/PJ-7 AVERAGE STATIC CHARACTERISTICS

12-22-44

GL5742/PJ-7
ETI-157B PAGE 4
4-51

*OUTLINE GL-5742/PJ-7 PLIOTRON
1.625" MAX. DIA.

4 2 MAX.

BASE NO. A4-10

ANODE TERMINAL

GRID
TERMINAL

N-21216AZ /Revised
4-51 (11M)

FILAMENT TERMINALS

11-1 8-49

Tube Divisions, Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

GL-5556/PJ-8
DESCRIPTION AND RATING
ETI-158A PAGE 1
4-51

PLIOTRON

DESCRIPTION

The GL-5556/PJ-8 is a high -vacuum tube de- characteristics are particularly valuable in many signed for use in amplification and relay applica- control applications.
tions. The low grid power and uniformity of

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS

Number of electrodes .

3

Electrical

Filament voltage Filament current .

4 5 volts . 1.1 amperes

Amplification factor, Eb = 350 v, Ib =19 ma, Ec = -20 v, Ef =4.5 v ..8.5

Grid -plate transconductance Direct interelectrode capacitance

.1330 micromhos

*Grid -plate Grid -cathode .
*Plate -cathode

6 7 micromicrofarads 2 3 micromicrofarads 2 2 micromicrofarads

*Revised.

GENERAL ELECTRIC
Supersedes ETI-158 dated 4-45

GL-5556/PJ-8
ETI-158A PAGE 2
4-51

TECHNICAL INFORMATION (CONT'D)

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS
CLASS A AUDIO -FREQUENCY AMPLIFIER AND MODULATOR
Maximum ratings, absolute values D -c plate voltage Plate dissipation
Typical operation D -c plate voltage D -c grid voltage
L Peak grid swing, approx D -c plate current Plate resistance Load resistance Plate power output, 5% second harmonic

350 volts 7.5 watts 350 volts
-30 volts
30 volts 9 milliamperes 8700 ohms 18,000 ohms 0 6 watts

CLASS B RADIO -FREQUENCY POWER AMPLIFIER
Carrier conditions per tube for use with a maximum modulation factor of 1.0
Maximum ratings, absolute values D -c plate voltage D -c plate current Plate input Plate dissipation
Typical operation D -c plate voltage D -c grid voltage D -c plate current Peak r -f grid input Driving power, approx Plate power output

350 volts 40 milliamperes 14 watts 10 watts
350 volts
-40 volts
32 milliamperes 90 volts 0 1 watt
2 watts

CLASS C RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR, PLATE MODULATED
Carrier conditions per tube for use with a maximum modulation factor of 1.0

Maximum ratings, absolute values D -c plate voltage D -c grid voltage D -c plate current D -c grid current, approx Plate input Plate dissipation
Typical operation D -c plate voltage D -c grid voltage D -c plate current D -c grid current, approx Peak r -f grid input voltage, approx Driving power, approx Plate power output

350 volts -150 volts
40 milliamperes 10 milliamperes 14 watts 7 watts
300 volts -100 volts
30 milliamperes 2 milliamperes 140 volts 0 3 watts 4 watts

CLASS C RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR
Key -down conditions per tube without modulation*
Maximum ratings, absolute values D -c plate voltage D -c grid voltage D -c plate current D -c grid current, approx Plate input Plate dissipation
Typical operation D -c plate voltage D -c grid voltage D -c plate current D -c grid current, approx Peak r -f grid input voltage, approx Driving power, approx Plate power output, approx

350 volts -150 volts
40 milliamperes 10 milliamperes 14 watts 10 watts 350 volts
-80 volts
35 milliamperes 2 milliamperes 130 volts 0 25 watts 6 watts

I.

At crest of audio-frequencycycle. Modulation, essentially negative,

may

be

used

if

the

positive

peak

of

the

audio

-frequency

envelope

does

not

exceed

115

per cent of the carrier conditions.

GL-5556/PJ-8
ETI-158A PAGE 3
4-51

APPLICATION NOTES

The GL-5556/PJ-8 can be operated at frequencies as high as six megacycles, and may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum ratings are the same as shown under TECHNICAL INFORMATION). The tabulation below shows highest percentage of maximum plate voltage and power input that can be used up to thirty megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

Frequency . Max permissible percentage of max. rated plate voltage and plate input
Class B, r -f Class C, plate modulated or unmodulated

6

15

100

85

100

75

30 megacycles
70 per cent 50 per cent

The normal value of grad leak, when the GL-5556/PJ-8 is used as an oscillator or r -f power amplifier

(Class C), is in the neighborhood of 10,000 ohms, although this may be replaced by a suitable fixed bias.

If self -bias is used, the cathode should be approximately 2000 ohms.

80

GL-5556/PJ-8

AVERAGE STATIC CHARACTERISTICS

PLATE VOLTAGE-PLATE CURRENT

EF= 4.5 VOLTS D -C

/

60

Ec=+10

Ec. 0

EG.--10

E G ---20

EC---30

cn W cr W
40 &"
4 ri
-J
Z
Fz-
W20
00cif'
Vic
al
la
K-7033:57

/
/s

./.......7/PI

s

e e

30

,

PLATE VOLTAGE IN VOLTS

EG.-40
=-50

...m1 . so

EC .-6.
12-22-44

GI.5556/13.141
ETI.158A
PAGE 4
4-51

OUTLINE GL -5556 PJ-8 PLIOTRON
1.625" MAX. DIA .

4 721;MAX.

BASE NO. A4 -1O

ANODE TERMINAL

GRID
TERMINAL

N-21216AZ /Revised
4-51 (11M)

FILAMENT TERMINALS

Tube Divisions, Electronics Department

GENERAL

ELECTRIC

Schenectady, N. Y.

11 19-49

GL -5743 /13.11-21
DESCRIPTION AND RATING
ETI-159A PAGE 1
12-48

PLIOTRON
DESCRIPTION
The GL-5743/PJ-21 is a three -electrode tube accomplished by radiation. The cathode is a
designed for use as a class A amplifier. The anode thoriated-tungsten filament. is capable of dissipating 7.5 watts and cooling is

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS
Electrical
Filament voltage Filament current Amplification Factor, Eb =350 v, Ib =19.5 ma, Ef = 4.5 v Interelectrode capacitances
Grid -plate Grid -filament Plate -filament

4 5 volts 1.1 amperes
3
7 5 uuf 3.0 uuf 4 0 uuf

GENERAL ELECTRIC
Supersedes ETI-159 dated 4-45

GL -5743 /PJ-21

ETI.159A PAGE 2
12-48

TECHNICAL INFORMATION (CONT'D)

Mechanical
Mounting position-vertical, base down Maximum glass temperature Net weight, approximate

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

AUDIO -FREQUENCY POWER AMPLIFIER AND MODULATOR-CLASS A
Maximum ratings, absolute values D -c plate voltage Plate dissipation
Typical operation D -c plate voltage D -c grid voltage Peak a -f grid voltage D -c plate current Load resistance Power output

150 C 2 ounces
350 max volts 7 5 max watts
350 volts 83 volts 83 volts
19.5 milliamperes 7500 ohms
1.7 watts

GL -5743 /13J-21 AVERAGE PLATE CHARACTERISTICS =1.1 AMPERES D -C
(E1=4.5 VOLTS, APPROX.)

7
'
6,

,.,1 '`---
A, .,

,,.
°A

0

5( co

AAEI .

'--Po
4,°

,.,co
0
OA

w
a_
24
.7J
3
4

I-IIAIIIIIIMIFF i AMMEV

c0

Zv°

ACV&

IP

4,0

v/.&'
A°
0

44°*(° 53

,
sd,

A

,

= W ilIAIMPAIWAIIIIIAIIIII 4.
FMMEMIIIIIiIIVAAIIIIAVMAIIIPVrAlAi MIr
IIIYAMINVIIIIVAIIIMIAMP"

.04

A* AM
< Q

4v
0

''> 4 ,A '
Mr III

100

200

300

400

PLATE VOLTAGE

K-6966438

7-1-44

GL -5743 /'PJ-21
ETI-159A PAGE 3
12-48

II
8

BASE NO. A4-10

PLATE TERMINAL

GRID TERMINAL

FILAMENT TERMINALS

K-3846047

OUTLINE GL -5743 /PJ-21 PLIOTRON

5-25-48

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.
12-48 (9M) Filing No. 8850

GL -5739 /FP -62
DESCRIPTION AND RATING
ETI-161A PAGE 1 12-48

PLIOTRON

DESCRIPTION
The GL-5739/FP-62 is an ionization gage which will accurately and conveniently measure gas pressures over a range of from 100 microns to as low as 0.001 micron. This pliotron is not only sufficiently sturdy for general use but is designed to be sufficiently sensitive for the most delicate measurements.

Leakage in the collector circuit, the limiting feature
in some gages, has been entirely eliminated by
special construction. This gage has a high sensitivity characteristic
and, since the parts are rigidly mounted, it will hold its calibration to a very close degree.

TECHNICAL INFORMATION

GENERAL CHARACTERISTICS

Number of electrodes

3

Electrical
Filament-pure tungsten Normal voltage, approx Normal current, approx Maximum current
Normal operating conditions Collector voltage Grid voltage Grid current
Average sensitivity, collector current per micron of pressure of dry air at normal operating conditions, approximate

4 5 volts 1 48 amperes 1 68 amperes
-22.5 volts
112.5 volts 10 milliamperes
40 microamperes

GENERAL ELECTRIC
Supersedes ETI-161 dated 4-45

GL -5739 /FP -62

ETI-161A

PAGE 2

1 2 4 8

TECHNICAL INFORMATION (CONT'D)

Mechanical
Bulb material Maximum "bake -out" temperature

hard glass 500 centigrade

TYPICAL CALIBRATION

Grid voltage Collector or plate voltage Grid current

112M volts -223A volts
10 milliamperes

Collector Current in Microamperes

Gas

per Micron Pressure

Helium

5 6

Neon

9 0

*Nitrogen

39.5

Argon

54.0

* The value given for nitrogen is correct for dry air since the oxygen cleans up when the filament is lighted.

INSTALLATION AND OPERATION

INSTALLATION: The GL-5739/FP-62 is of the glass may cause the gage to read higher than hard glass and may be used on either hard- or soft- the actual pressure in the system. Before the

glass systems. When it is sealed to a soft -glass system gage is used, it should be degassed as follows : a graded seal must be used. The gage is furnished 1. Bake out with the rest of the system (do not

exhausted and sealed off and with a tubulation for exceed 500 C).
sealing it into the system. The gage should be 2. Connect the grid and plate leads to the

kept in this form until it is ready to be used. The end of the tubulation is then cut off and the gage sealed into the system, care being taken that no constriction is formed between the bulb and the system. For accurate results, the gage should be placed as near as possible to the point at which the pressure is to be measured. The gage should be mounted with its axis vertical. The stem may be either up or down, whichever is more convenient. Since, in sealing the gage into the system, the end of the tubulation is cut off and air is let in, it is necessary to exhaust and degas the gage before it can be used. For this reason the gage is furnished unbased to permit its being baked out.
Where high voltages are used in the system and where there is a possibility of a gaseous discharge to the electrodes of the gage, a wire or guard ring should be inserted in the seal when sealing to the system. This wire or guard ring should then be
well grounded. Care should be taken against shorting the leads
while anyone is working around the system. The entire collector circuit should be well insulated to prevent the introduction of external sources of leakage. The glass around the collector lead should be clean so that there will be no leakage at that
point. For working at low pressures it is necessary to
degas the gage thoroughly. At these low pressures the gas occluded from the metal parts and from

positive 500 -volt d -c supply.
3. Bombard at 1000 C plate temperature for 20 minutes. This is accomplished by regulating the filament voltage to give approximately 40 to 80 milliamperes total current.
Note: Only a d -c voltage supply should be
used in this operation. OPERATION: Measurements are taken with
the gage by placing a positive voltage on the grid and a negative voltage on the collector. The filament voltage is increased until the grid current reaches the desired value. The negative current to the collector is then a measure of the gas pressure.
The calibration curve of the gage is nearly a straight line, especially at pressures below one micron. By checking a few points of collector current and gas pressure against a McLeod gage, the curve can be plotted and extrapolated down to zero current at zero pressure. Typical calibrations
for various gases are shown on page 2. It can reasonably be expected that, as long as
the arrangement of the electrodes of the gage re mains unchanged, the calibration will also remain constant. Excessive overheating during degassing or rough handling may warp or change the relative positions of the electrodes. Leakage arising in the collector circuit can also cause a change in the calibration. This, however, can be detected by looking for a residual leakage current with the filament cold.

OPERATING NOTES

The filament should not be lighted until the pressure has been reduced to a low value. Care should be taken during bombardment that the
gas evolved does not cause the current to increase steadily until the filament burns out or the electrodes are warped. A series resistor will be found satisfactory for avoiding such trouble. As a further precaution, bombardment should not begin until the pressure is below one micron.
In taking readings at extremely low pressures,

present. The gage will clean up the gas slowly and give too low a reading. Furthermore, the rate of
flow, or rather drift of gas, at low pressure is
slow and the gage may read high or low depending on which way the pressure is changing. For best
results it is recommended that the filament be turned off and the system allowed to equalize for
several minutes. Following this period of equaliza-
tion the filament should again be lighted and a
reading taken as soon as possible.

there are two sources of inaccuracy which may be

I1163"MAX. DIA.

GL -5739 /FP -62
ETI-161A PAGE 3
12-48

7-2 MAX-
2MAX '

K-4903555

OUTLINE GL-5739/FP-62 PLIOTRON

6-9-44

Electronics Department
GENERAL d ELECTRIC
Schenectady, N. Y.
12-48 (9M) Filing No. 8850

GL -207
DESCRIPTION AND RATING
ETI-1 62B PAGE 1
9-51

PLIOTRON

DESCRIPTION
The GL -207 is a three -electrode vacuum tube designed for use as a radio -frequency power amplifier, oscillator, or Class B modulator. The plate is water-cooled and capable of dissipating

6.6 to 10 kilowatts, depending on the service in which the tube is used. The cathode is a pure tungsten filament. Maximum ratings apply up to
1.6 megacycles.

*TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS

Electrical Data
Filament voltage (A -c or D -c) Filament current Filament starting current, maximum. Filament cold resistance Amplification factor. Direct interelectrode capacitances, approximate
Grid -plate Grid -filament Plate -filament
/Revised.

22 volts 52 amperes 100 amperes 0 03 ohm
20
27 uuf 18 uuf 2.0 uuf

GENERAL ELECTRIC

Supersedes ETI-162A dated 8-48

GL -207

ETI-16213
PAGE 2
9-51

TECHNICAL INFORMATION (CONT'D)

Mechanical Data

Mounting position-vertical, filament end up

Type of cooling-water Water flow on anode Maximum outgoing water temperature

3-8 gallons per minute 70 C

Maximum glass temperature* Net weight, approximate Shipping weight, approximate

150 C 3 pounds 10 pounds

* In installations where circulation of free air is restricted, or at the higher frequencies, forced -air

cooling may be necessary to prevent this limit from being exceeded.

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

AUDIO -FREQUENCY POWER AMPLIFIER AND MODULATOR -CLASS B

Maximum Ratings, Absolute Values

D -c plate voltage

Maximum signal d -c plate current**

Maximum signal plate input**

Plate dissipation**

Typical Operation
Unless otherwise specified, values are for two tubes

D -c plate voltage D -c grid voltagex

6000
-210

Peak a -f grid -to -grid voltage

1520

Zero signal d -c plate current

0.5

Maximum signal d -c plate current

2.5

Effective load resistance, plate to plate

4200

Maximum signal driving power, approximate

190

Maximum signal power output, approximate

8

**Averaged over any audio -frequency cycle of sine -wave form.

xFor d -c filament supply.

10000
-410
2140 0.5 3.2
6400 380
20

15000 max volts 2 max amperes 20 max kilowatts
7.5 max kilowatts

12500
-575
2300 0.4 2.8
10000 400 22.5

volts volts volts ampere amperes ohms watts kilowatts

RADIO -FREQUENCY POWER AMPLIFIER -CLASS B TELEPHONY
Carrier conditions per tube for use with a maximum modulation factor of 1.0

Maximum Ratings, Absolute Values

D -c plate voltage

D -c plate current

Plate input

Plate dissipation

Typical Operation

D -c plate voltage D -c grid voltagex

6000
-225

Peak r -f grid voltage

400

D -c plate current

0.62

Driving power, approximate***

72

Power output, approximate

1

***At crest of audio -frequency cycle with modulation factor of 1.0.

xFor d -c filament supply.

15000 max volts 1 max ampere
15 max kilowatts 10 max kilowatts

10000
-440
600 0.93
16 2.5

14000
-650
730 1.0
0
4

volts volts volts ampere watts kilowatts

PLATE -MODULATED RADIO -FREQUENCY POWER AMPLIFIER -CLASS C TELEPHONY
Carrier conditions per tube for use with a maximum modulation factor of 1.0

Maximum Ratings, Absolute Values
D -c plate voltage D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation
Typical Operation
D -c plate voltage D -c grid voltage# Peak r -f grid voltage D -c plate current D -c grid current, approximate Driving power, approximate Power output, approximate #For a -c filament supply.

10000 max volts -3000 max volts
1 max ampere 0.2 max ampere 10 max kilowatts 6.6 max kilowatts

6000
-1200
1860 0.76 0.15 280
3.5

8000 10000
-1600 -2000

2300 2660

0.78 0.75

0.14 0.07

325

185

5

6

volts volts volts ampere ampere watts kilowatts

TECHNICAL INFORMATION (CONT'D)

GL -207
ETI.162B PAGE 3
9-51

RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR-CLASS C TELEGRAPHY
Key -down conditions per tube without modulation

Maximum Ratings, Absolute Values
D -c plate voltage D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation

15000 max volts -3000 max volts
2 max amperes 0.2 max ampere 30 max kilowatts 10 max kilowatts

Typical Operation

D -c plate voltage

8000 10000 12000

volts

D -c grid voltage

-1000 -1200 -1600 volts

Peak r -f grid voltage

1730

2050 2650

volts

D -c plate current

1.10

1.33 1.67

amperes

D -c grid current, approximate

0.17

0.12 0.09

ampere

Driving power, approximate

295

245

235

watts

Power output, approximate

6.5

10

15

kilowatts

¶ Modulation essentially negative may be used if the positive peak of the envelope does not exceed 115 per cent of the

carrier conditions. Obtained from fixed supply, by grid resistor, or by cathode resistor. For a -c filament supply.

APPLICATION NOTES

Maximum ratings apply up to 1.6 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced according to the tabulation below (other maximum ratings are the same as shown above). Special attention should be given to adequate ventilation of the bulb at these frequencies.

Frequency

1.6

7.5

20 megacycles

Percentage of maximum rated plate voltage and plate input

Class B

100

85

76 per cent

Class C plate modulated

100

85

75 per cent

Class C unmodulated

100

75

50 per cent

Plate series protective resistors

Series resistor

25 50 200 250 275 300 ohms

Maximum power output of rectifier

16 40 100 250 640 1600 kilowatts

GL -207 FILAMENT EMISSION CHARACTERISTICS

10.0 SO 80
70
GO
to
40
3o

20

10
9 8 7
.6 .5 4
.3
2

12
K-9033926

14

16

fa

to

FILAMENT VOLTAGE IN VOLTS

c2 8-21-45

GL -207
ETI-1 626 PAGE 4
9-51

2.5

GL - 207

PLATE GRID TRANSFER CHARACTERISTIC

TYPICAL DATA

2.0
Ef = 22 VOLTS A -G

1.5
tc 0- 1.0
7 z

it,700

t,,,, 1

(1)0

z
u-10.5

,,,,,,,,,...,.0

0
O 11,...141111,. ,......_.____ 0

200 100
300
600 5 004 0
700

0
K-6955465

2

3

4

5

6

7

8

PLATE VOLTAGE 1 N KILOVOLTS

GL -207

CHARACTERISTICS
E1=22 VOLTS A -C

10
9-26-44

1600

1E_

Hh

1230
te 0-1

800

400

0 -400

WI
r
I 1-4 Yf

-1200
5 K -69087-72A106

-4

H

4

0

15

PLATE VOLTAGE IN KILOVOLTS

SOW

EM. MM.

20

NI MI111

0.1 0
25 2-6-47

7
6
w cc 5 w
o_
z4
I -
z
cc
n3
4:1
a2
0 K-6966463

GL -207 FILAMENT CHARACTERISTIC
(COLD RESISTANCE OF FILAMENT =0.03 OHMS)
56
55

GL -207
ETI-16211 PAGE 5
9-51

54 53
Lv3 52 51
LA, 50
LLI
49 48 47

46

17

18

K-9074551

19

20

21

22

23

24

FILAMENT VOLTAGE IN VOLTS

25 12-10-45

+8010 I
+700
1- 600
V
+500

GL- 207
AVERAGE PLATE
CHARACTERISTIC

Ef- 22 VOLTS A -C

-1- 400

+ 300 + 200 r+100

GRID VOLTAGE

-100

-200

- 300
-400 -500 -600 -700

-800

_Id

-900

5

10

15

PLATE VOLTAGE IN KILOVOLTS

20
9-26-44

GL -207
ETI-162B PAGE 6
9-51

FILAMENT TERMINALS

.15691-.007"DIA7,- I" MIN.

STRANDED CABLE r -31"6 DIA. APPROX.
2
BASE 3906

I" MAX. .437"±.010" DIA.
GRID TERMINAL 7"
i-6-
STRAIGHT SIDE

, 3"MAX

34.
1-1"-

16 DIA.

f
2-2 MIN

271DIA1 I6MAX.

-1-
, 1" MAX. LENGTH 14" TUBULATION
10116+- 2
7-92116+- _321
8

.18 7"1" .015"

2. 0 0 0"-±..020" DIA.

K-5182095 9-51 (11M)

1.580"±.050" DIA.
ANODE
OUTLINE GL -207 PLIOTRON
Tube Department, Electronics Division
GENERAL ELECTRIC
Schenectady, N. Y.

7-27-45

FP -285
DESCRIPTION AND RATING
ETI-164A PAGE 1
5-51

PLIOTRON

DESCRIPTION
The FP -285 is a high -vacuum tube suitable for use as an oscillator and radio -frequency amplifier in high -frequency circuits.
This tube is especially satisfactory when used to generate the ultra -high frequencies required in
short-wave therapy equipment. The hazard of
stem puncture, a common fault in some tubes used in such applications, has been eliminated by bringing the plate and grid leads out through the side

wall of the cathode stem. Low plate -to -filament capacitance and good insulation, especially important features in tubes for high -frequency service, are
assured by the use of a special insulator which supports the mount and holds the clamp and supports away from the plate.
These, together with the other design features inherent in pliotrons of this type, result in economical, dependable operation and long life.

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL
Electrical Data
Filament voltage Filament current at bogey voltage Amplification factor, Ib = 75 ma d -c, Ec=0
and -50 volts d -c Interelectrode capacitances
Grid -plate Grid -filament Plate -filament

Minimum 9.5 3.1
10.8
11.8 5.0
3 75

Bogey 10
3.25
12.0
13.5 6.0 5.0

Maximum
10.5 volts 3.4 amperes
13.2
15.2 uuf 7.0 uuf 6.25 uuf

1Completely revised.

GENERAL ELECTRIC

Supersedes ETI-164 dated 4-45

FP -285
ETI-164A PAGE 2
5-51

TECHNICAL INFORMATION (CONT'D)
Mechanical Data
Mounting position-vertical, or horizontal with plane of electrodes vertical Net weight, approximate

8 ounces

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR-CLASS C TELEGRAPHY

Key -down conditions per tube without amplitude modulation*

Maximum ratings, absolute values A -c plate voltage, rms D -c plate voltage, filtered or pulsating D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation

1500 max volts
1350 max volts -400 max volts
200 max milliamperes
50 max milliamperes 270 max watts 100 max watts

Typical operation

D -c plate voltage, filtered or pulsating D -c grid voltage

750 1000 1250 volts
-100 -150 -200 volts

D -c plate current

200 200 200 milliamperes

D -c grid current

30

30

30 milliamperes

Power output

100

140

180 watts

* Modulation essentially negative may be used if the positive peak of the envelope does not exceed 115 per cent of the carrier

conditions.

Maximum ratings apply up to 20 megacycles. The tube may be operated at higher frequencies provided the maximum values

of plate voltage and power input are reduced according to the tabulation below (other maximum ratings are the same as shown

above). Special attention should be given to adequate ventilation of the bulb at these frequencies.

Frequency

20

50

80 megacycles

Percentage of maximum rated plate voltage and plate input

100

75

50 per cent

APPLICATION NOTES

The tube may be mounted either vertically, with base up or down, or horizontally, with the filament in a vertical plane. The metal shell must
not be connected to any part of the circuit. The normal value of grid leak, when the tube is
used as an oscillator or r -f power amplifier (Class C), is in the neighborhood of 5000 ohms, although this may be replaced by a suitable fixed bias. If self -bias is used, the cathode resistor should be

approximately 1000 ohms. In some cases, to minimize the danger of overloads, a combination of grid leak and partial self -bias may be desirable. The
values should be chosen so that the plate loss at the worst condition is limited to the maximum rating.
The following table indicates the tube output obtainable at various wavelengths when the tube is operated within the maximum allowable conditions in a properly designed circuit.

Wavelength

Meters

Megacycles

A -c Plate Voltage,
Volts

Minimum Plate
Output, Watts

Maximum Plate
Output, Approx Watts

15

20

1500

170

200

10

30

1350

150

180

7.5

40

1250

140

160

6

50

1150

110

130

5

60

1000

80

100

4

75

750

40

60

FP -285

300

ETI-164A

r-

FP -285

PAGE 3
5-51

AVERAGE CHARACTERISTICS

Ef =10 VOLTS A -C
250

0200
Cr a_
2
CrI50

cEa100

GRID VOLTS

-1-200

+175

50

+150

125

+100

75

515

0

500

-6917435

1000 PLATE VOLTS
Fig. 1

150 0

5 4-23-51

FP -285 AVERAGE PLATE CHARACTERISTICS
E f = 10 VOLTS A -C

1.5

0 . 5

0
K-69087-72A9 I

500

1000

1500

PLATE VOLTAGE IN VOLTS

Fig. 2

2000
1.20-47

FP -285
ET1-164A PAGE 4 5-51

OUTLINE FP -285 PLIOTRON
.0- 2 -52 MAX DIAL16 '

8 MAX.

5-51 (11M)

B ASE#1839

PLANE OF
ELECTRODES

GRID
FILAMENT
K-5302946

ANODE BOTTOM VIEW
OF BASE
8-7-45

Tube Divisions, Electronics Department

GENERAL

ELECTRIC

Schenectady, N. Y.

GL -807
DESCRIPTION AND RATING
ETI.165A PAGE 1
3-50 (Pages 1 thru
4 revised 5-51)

PLIOTRON

DESCRIPTION
The GL -807 is a five -electrode transmitting tube accomplished by radiation. The cathode is the for use as an amplifier, modulator, and oscillator. indirectly heated type. Maximum ratings apply up The anode can dissipate 30 watts, and cooling is to 60 megacycles.
TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL
Electrical Data
Heater Voltage Heater Current at Bogey Voltage Amplification Factor, G1-G2, Eb =
Ea = 250 v, E, = -10 v Direct Interelectrode Capacitances
Grid -Plate (With External Shield) Input Output

Minimum 5.7 0.81
10 5.3

Bogey 6.3 0.9

Maximum 6.9 0.99

8

0.2

12

14

7

8.7

volts ampere
uuf uuf uuf

Mechanical Data
Mounting Position-Any Net Weight, approximate
Technical information revised.

2.5

ounces

Supersedes ETI-165 dated 4-45

GENERAL

ELECTRIC

GL -807
ETI-165A PAGE 2
3.50 (Pages 1 thru 4 revised 5-51)

TECHNICAL INFORMATION (CONT'D)

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

AUDIO -FREQUENCY POWER AMPLIFIER AND MODULATOR -CLASS AB1 (TRIODE CONNECTED)

Maximum ratings, absolute values D -c plate and grid-No. 2 voltage Maximum signal d -c plate plus grid-No. 1 current* Maximum signal d -c plate plus grid-No. 2 input* Plate plus grid-No. 2 dissipation*
Typical operation Unless otherwise specified, values are for two tubes D -c plate and grid-No. 2 voltage D -c grid-No. 1 voltage t Peak a -f grid-No. 1 -to -grid -No. 1 voltage I Zero-signal d -c plate plus grid-No. 2 current Maximum-signal d -c plate plus Grid-No. 2 current Effective load resistance, plate to plate Maximum-signal driving power, approximate Maximum-signal power output, approximate

CCS 400 max 125 max
50 max 25 max CCS
400
-45
90 60 140 3000
0 15

ICAS 400 max volts 125 max milliamperes
50 max watts 30 max watts
ICAS

400
-45
90 60 140 3000
0
15

volts volts volts milliamperes milliamperes
ohms watts watts

AUDIO -FREQUENCY POWER AMPLIFIER AND MODULATOR -CLASS AB2

Maximum ratings, absolute values D -c plate voltage D -c grid-No. 2 voltage Maximum signal d -c plate current* Maximum signal plate input* Maximum signal grid-No. 2 input* Plate dissipation*
Typical operation Unless otherwise specified, values are for two tubes
D -c plate voltage D -c grid-No. 2 voltage D -c grid-No. 1 voltage** Peak A -F grid No. 1 to grid No. 1 voltage Zero-signal d -c plate current Maximum-signal d -c plate current Zero-signal d -c grid-No. 2 current Maximum-signal d -c grid-No. 2 current Effective load resistance, plate to plate Maximum-signal driving power, approximate*** Maximum-signal power output, approximate .

400 300
-25
78 90 240 2.0
15 3200
0.2 55

CCS
500 300
-29
86 72 240 0.9 12 4240 0.2 75

CCS 600 max 300 max 120 max 60 max 3.5 max
25 max
600 300
-30
78 60 200 0.7 16 6400 0.1 80

ICAS 750 max volts 300 max volts 120 max milliamperes 90 max watts
3.5 max watts 30 max watts
ICAS

750

volts

300

volts

-32

volts

92

volts

52

milliamperes

240

milliamperes

0.5

milliamperes

17

milliamperes

6950

ohms

0.2

watts

120

watts

RADIO -FREQUENCY POWER AMPLIFIER -CLASS B
Carrier conditions per tube for use with a maximum modulation factor of 1.0

Maximum ratings, absolute values D -c plate voltage D -c grid-No. 2 voltage

D -c plate current Plate input
Grid-No. 2 input
Plate dissipation

Typical operation

D -c plate voltage

400

D -c grid-No. 2 voltage

250

D -c grid-No. 1 voltage**

-25

Peak R -F grid-No. 1 voltage

30

D -c plate current

75

D -c grid-No. 2 current

4

D -c grid-No. 1 current, approximate

0

Driving power, approximate//

0.25

Power output, approximate

9

CCS 500 250
-25
30 75
4
0
0.25 12.5

CCS 600 max 300 max 80 max 37.5 max 2.5 max 25 max
600 250
-25
20 62.5
3
0
0.2 12.5

ICAS 750 max volts 300 max volts 90 max milliamperes
45 max watts 2.5 max watts 30 max watts

ICAS
750 300
-35
27 60
3
0
0.12 15

volts volts volts volts milliamperes milliamperes milliamperes watts watts

TECHNICAL INFORMATION (CONT'D)

GL -807
ETI.1 65A PAGE 3 3-50
(Pages 1 thru 4 revised 5-51)

PLATE -MODULATED RADIO -FREQUENCY POWER AMPLIFIER -CLASS C TELEPHONY

Carrier conditions per tube for use with a maximum modulation factor of 1.0

Maximum ratings, absolute values

D -c plate voltage

D -c grid-No. 2 voltage

D -c grid-No. 1 voltage

D -c plate current

D -c grid-No. 1 current

Plate input

Grid-No. 2 input

Plate dissipation

Typical operation

D -c plate voltage

375

D -c grid-No. 2 voltage

225

D -c grid-No. 1 voltage**

-75

Peak R -F grid-No. 1 voltage

90

D -c plate current

80

D -c grid-No. 2 current

5

D -c grid-No. 1 current, approximate

3

Driving power, approximate

0.25

Power output, approximate

17.5

CCS 400
225
-80
95
80 5.75
3.5 0.3 22.5

CCS 475 max 300 max
-200 max 83 max
5 max 40 max 2.5 max 16.5 max
475 225
-85
110 83
5
4
0.4 27.5

ICAS

600 max volts

300 max volts

-200 max volts

100 max milliamperes

5 max milliamperes

60 max watts

2.5 max watts

25 max watts

ICAS

600

volts

275

volts

-90

volts

115

volts

100

milliamperes

6.5

milliamperes

4

milliamperes

0.4

watts

42.5

watts

RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR -CLASS C TELEGRAPHY

Key -down conditions per tube without amplitude modulation ¶
Maximum ratings, absolute values D -c plate voltage D -c grid-No. 2 voltage D -c grid-No. 1 voltage D -c plate current D -c grid No. 1 current Plate input Grid-No. 2 input Plate dissipation
Typical operation D -c plate voltage D -c grid-No. 2 voltage D -c grid-No. 1 voltage** Peak r -f grid-No. 1 voltage D -c plate current D -c grid-No. 2 current D -c grid-No. 1 current, approximate Driving power, approximate Power output, approximate

CCS

600 max

300 max
-200 max

100 max

5 max

60 max

3.5 max

25 max

CCS

400

500

600

250

250

250

-45 -45 -45

65

65

65

100

100

100

7.5

6

7

3.5

3.5

3.5

0.2

0.2

0.2

25

30

40

ICAS

750 max volts

300 max volts

-200 max volts

100 max milliamperes

5 max milliamperes

75 max watts

3.5 max watts

30 max watts

ICAS

750

volts

250

volts

-45 volts

65

volts

100

milliamperes

6

milliamperes

3.5

milliamperes

0.2

watts

50

watts

*Averaged over any audio -frequency cycle of sine -wave form. tThe type of input coupling network used should not introduce too much resistance in the grid-No. 1 circuit. Transformer or impedance coupling devices are recommended. When the grid-No. 1 is operated in the negative region with fixed bias, the d -c grid-No. 1 circuit resistance should not exceed 100,000 ohms. For higher values of d -c grid-No. 1 circuit resistance, cathode bias is required. Under no circumstances should the total d -c grid --No. 1 circuit resistance exceed 0.5 megohms. The driver stage should be capable of supplying the No. 1 grids of the class AB stage with the specified driving voltage at low distortion. **When the tube is operated at its maximum ratings and the grid is driven positive, the total d -c grid-No. 1 circuit resistance should not exceed 30,000 ohms. If additional bias is required, it must be supplied by a cathode resistor or a fixed supply. When the tube is operated at less than maximum ratings, the d -c grid-No. 1 circuit resistance may be as high as 100,000 ohms. ***Driver stage should be capable of supplying the No. 1 grids of the class AB stage with the specified driving power at low distortion. The effective resistance per grid-No. 1 circuit of the class AB stage should be kept below 500 ohms and the effective impedance at the highest response frequency should not exceed 700 ohms.
//At crest of audio -frequency cycle with modulation factor of 1.0.
Modulation essentially negative may be used if the positive peak of the envelope does not exceed 115 per cent of the carrier
conditions.

GL -807

UM 65A PAGE 4
3 50 (Pages 1 thru 4 revised 5-51)

TECHNICAL INFORMATION (CONT'D)

Maicimum ratings apply up to 60 megacycles. The tube may be operated at higher frequencies provided the maximum values

of plate voltage and power input are reduced according to the tabulation below (other maximum ratings are the same as shown

above). Special attention should be given to adequate ventilation of the bulb at these frequencies.

Frequency

60

80 125 megacycles

Percentage of maximum rated plate

Voltage and plate input

Class B

100

90

75 per cent

Class C plate modulated

100

80

55 per cent

Class C unmodulated

100

80

55 per cent

GL -807
AVERAGE PLATE CHARACTERISTICS TRIODE CONNECTION
GRID NO. 2 CONNECTED TO PLATE, Ef =6.3 VOLTS

300

120

I

"411110

pummomm

mows

FAI

°

ememeimei

MMM ...1

gloom
=mom
I
II

EMOMMIMMMEMMMEMMEMEM4 100 IIIIMMEII MMEM MMMMM

200

MMMMMMMM LAMM 14

a 80

r.

MR

.3

III" MMMMMMM

M

=WM MMMMM N

MMINIMIMMMU

NOmM

100

MMEMIIMMWAMOIMM3M
KMMMVMMII/AEMMMMWAA

MMMMM

MIAMMWAIMMAlle

KMNWMINMNEMEMINKMKAMMENEMEM

MMMIMEMEMMN/MAMKAMEMONAMMMIII

MIMMKiMIAMMIWAI
MEMWMY

as

--r:

MmMmMaI0s3m.

!..

MMVVANNIMMMft

r,IMUUMN

MO,Mr.

A

int r:4"g

man= M

VTrPd
o

ig

0

100

K -69087-72A369 New Drawing,

1

AA

.y

IF

ENNA

NOMMEN

Ni

N

M mr4

A

A

Pi

pl

..-gip- .r...
P-dmommum,

ne,..Anlmioimpirm.pron ,
,..-

asignourst

vni eu-re

M 5011Kit.

MM 4-.1=1igrOnliegiraM . MM r.-M.M.MegOO!" M

200

300

PLATE VOLTAGE IN VOLTS

a 60
'TEENER MMMMMMM

MiK0 MM

MM N

40

AIM= ridIMME

AMSKIMMIM

MMMMM

20

.dismpom M

AMOMMMPA
M

400

5000

4-1 8-50

GL -807 AVERAGE PLATE CHARACTERISTICS WITH Eci AS VARIABLE
(Ef =6.3 VOLTS, SCREEN VOLTS =250) 600

GL -807
ETI-165A PAGE 5
3-50

400

MEMIEwww
121 1111
A.1
11

11 11

LIH

Ma'

200

ii

.M.E..PIII

MMEENMU
EMEAP...t

TMIZZ.
MEMP.m

EIME111.::
MEM
t.r.d1

0
K-9033996 /New Drawing.

200

400

600

PLATE VOLTAGE IN VOLTS

800
12-10-45

/GL -807 AVERAGE PLATE CHARACTERISTICS WITH Eci AS VARIABLE

(Ef=6.3 VOLTS, SCREEN VOLTS=300)

600

mEuMEmMoEmMmEoMmMEmOuMmEmMoMmERmMEuMmEmMimEmMomEmMoOmMmRuEMmmMEuEMmMEMmEMMoREMEmMMMmEEMMoMMEmENmEEmMiOMMuMMMmMMMMmMMMmMMMMuMMMmMMmEMMmMEMoMMMmMMMmMMMMMMMMMMMMMMMMmMMmMMMEMEMMMEEmRMoEEMmMEmEMiMMmEEEmMREuEMmMEmIMoRUEmMMEmEMoMEmEMmREuEMMEmEmMMmMEmMM.MEM

MEMEEMMMEOEMMEMEMMMEMMMMEEMMEACHMMEOOEMMMMEEEMMMMEEMRMMEMMEMMMMMEMMMMMEMMMMMEmMEMMEMEMMEMMEROMMEMEMMMMEMMIRMMERMMEOMMMMMMMEMMEEMMNMMEEEMMMMMEmEEMEmMRMMuEEMEmMEMmMMEmoEEMomMMEmmMEEmoMMMomMMmmMEMmoMMMumMEMmmEMmMMMMoEEMMmEMmMMrMMEMiMMMMmMMMMmMMMMuMMMmMMMmMmMmMmMMouEmMmMMmEmOMNgMEMEEMMMMMMMEMMMMEEMMMMMEEEMMRMEEMBMMMEMEMREMRENM

MEEMEMImNREmNEMEoMEMnEREMaNOEErMMWiURACmrEmMiElMEMMMMMMMMMMaMMMaEMmMMmEMiMEsmMsUEuINMmIENmMIMuEMMmEEmMMoMmMMEmMIMNMoMEMmMEMmIMMOiMEMmMMmMEEEoNMMMMEMMMMMEMMMMMMMEMMMMMMEMMMMMEWMMMEmEMMoMMmMMEMMMMMMEMMMNMMUMMMMMMMEEMMEMOMMOMmMMoMEMMMMmMMMMMMMUMMMMMMMMMMMMMMEMNMKEMMEEMMMMMEMMEEmEMMNmREMEaMMR

IMEEMEMEMEMOIMMEMRMMMMMMMMMM MENEM MMMMMMMMMM

MEMIMMEMMENNUMM MMMMMM MMENN.MMEMMEM MMMMMM MEM MMMMMMM MENEM
ME MMMMMM MENEM MMMMMMM MEMEMEMEMEMEEMMMEMMMEMMMEMMMEMMEMMEEMEMMMMMMMMMMMMMMMEMNEEMM

MEMEMEMEREMEMEMEME MMMMMM REM MMMMM V M FREMEMEMEMEMEREMEREEMEMEMEM MMMMM MENEM MMMMM EMMEN

MEMEMEEMEMMEMEMEMEM 400 mummimm......-

MMMMM

MEM MMMMMMMM11 ..2.2==imom

MM

EMMMUMME

MMMMMMMMMM

MEM

MMMM

EMEMEMEMEMEMENEMEEM

mmommimmomm

mommommuumummom MMMMMMM mu MMMMMMMMMM MERLIN

MEMEMMEECIREMEMEMEMEMEMEMEME M
REEMMENEMMEOmmmEMINEMEME

MMMMM M

=MEMO MMMMMM EMEMEMMEREMEMEMEMEMMEMEM

MMMMMMLIMMMMMMMMMMMMMMMMMMMMMMEMMOMEMMMMMMMMMMMMMMM

MMMMMMMMM MEMEMEMEMEMEME MEMEMEMONEEMENEMEMEMEMEM

MMMMM MMMMM MMMMM

MsEoRmRmEoMnEcMEMENEEMMEREMEMEMEMEMEMEMEMEM MMMMMMM
EMEMEMBCUMMEMEMEMEMEMENEMEME MMMMMMMMM MAME MMMMM D

MEMEMEMEMEMEM MMMMMMM MEM MMMMMMMM MEMMEMEMMEMEN MMMMM

MMEMHMMMEMNmwMopMmMmM=.M

I

-----

IMMEMMEINEME..mi MMMMMMMM EM MMMMMMM EMMEN MMMMMM MERE MMMMM EMMEN MMMMMMM EMMEMEMEEMEN MMMMM

E=MMEIEMMIO.M.MNMEMEMMMEMMMMEMMEMMMMEMMMEMMMEMMM MMMEMEMMMMMMMMMMMMMMMEMMMEMMEIMMEMMEEMMEEMEEKMEM4MVMEMKMEMRM NEMEMEMEMEME

MEM

EWE 200

EMEMEMMEMEMEMEM REEMEAMEMEMEM

M ME==mm

EM.ME.EM.RENVMM.POAMNMEEEMEMEMEEIMMEMEMEEMMEMMMMEMM0U1M=. MMMMM

MMMMM EINEM MMMMMM MMEMMEMMEME MMMMMMMMMMM MEM MMMMMMM 'MEMO M MMMMMMMEMMMMMEERMEEMMEEMMEERMEMMMMMMMMMEMVMEMMEwMoEmNmEEoMmEmRoEmpMMMMMMMMMMMMMEMMMO EMMMMMEMMN
MNEOMMEMMEENE=MERMEMEMMMEMMME

EEMMMUMMEMAAMEMMMEMEMMMMEE0ME.EM,MM,MMM.MEMM.MMM1EMM"MMmMEMoMMMMEMEEMMMMEEEMRmMMEEmEEEmMMlMMOMVM=AMiEtMMEE=MEEMMEE =MMMMMMEEEMRMMEEEMRMOEEEMMMMEEEMMEMMMEMRMEMMMEEEMMNEEENMMEEMEMMMEMERMMEMEEMMKEEMEEMMMEMMMEMUMMMEMMMEMMMMEMEMMMMEMMMMEEMMMMMEEEMMMMMEEMMMMMMEEEMMMMMEMMMMEEMEMMMEMEMEMMMNEMEKMMMEEME

MpmMMMEEw.MMOMAMMWEMsAEoMWnmMNdWmlimEmiimlnoaumimmimMuiEem:TmZlo_IamREmIME_.ER.MM.ME.EE.MMEMEMMMMMMEMMMMMEMMmMEmMuMEmEMmMEoEmMMmMiMEsMMMMMMEMMMMEMMMMEMMMEMMMEMMMEMMMMMImIimEmuMmmE=oMEmMMmMEuMMmIMEIMRmMOoEMM'mMEMMmREEMoEMMmMMMmMMMMMuMMMMMmMMMMmMMMMsMEMMMMMMMMEMMMMMMMMEEMMEMMMONMOM

piummumr.=-...mm MMMM im= MMMMMMM Ems MMMMMM Immommommosimmmummummwmummomomm MMMMM

REME.Mi

ERIAEMMEMEMEMEMEM MMMMM mmw....-

ERENEMEMEMEMEMEM MMMMMM REMEMEMEMMIIEMMEMEMOMEMEMEMEME

.. .-__. .T ..W.muumaNNIMIMMIMMI MMMMMM ME MMMMMMMMM MEM MMMMM EMMIUMMEMMEMENNEWER*BEMEMEMMEM

0

ERPNET-mAREEM_E.EM,M.M.M.M.M!mMuMmMMM mmammommommon ERMiElMtE7M.InE.R,EMMEMMMPMMZis MMMMM M M EMEMEMEMMEI
EMIG-

MMMMMMMMMMM =mum MMMMMMMM EMMEMEKKKAMMEMEMEME EMEREMEEM MMMMMMMMMM MEEKOMMMEMMEEMMEEEMKEMEEMMO imMSEVVRE

0

200

400

600

800

PLATE VOLTAGE IN VOLTS

K -69087-72A363 /New Drawing.

PLATE VOLTS

3.30-50

GL -807
ETI -165A PAGE 6 3-50

#GL -807 AVERAGE CHARACTERISTICS
(E0 -= 6.3 VOLTS, SCREEN VOLTS = 300)
300

250 200

I 50 100

50 '10

+30
+2)
0

80
K -69087-72A370 *Revised Drawing.

160

240

320

PLATE VOLTAGE IN VOLTS

4-20-50

4GL-807 AVERAGE CHARACTERISTICS
(Et= 6.3 VOLTS, SCREEN VOLTS =250)

cr 250

La

co I

200
2
la 50
La
er

1)
ti
L
O
r-4
N r0n
-I-
N 0 Jr tA
4- 0
0

80 160 240 320

PLATE VOLTAGE IN VOLTS

K-9033963 New Drawing.

10-8-45

GL -807 TYPICAL CHARACTERISTICS
(E0=6.3 VOLTS, SCREEN VOLTS =300)

7

TYICAL CHARACTER ST CS

F=

yorr

Eq = E.3 \ OLT

6

40

30
6 +3 20
+2.3
0 +10

0

0

5

K -69087-72A371 /Revised Drawing.

100

150

PLATE NAIOLTAGE IN VOLTS

200
4 20-50

eGL-807 TYPICAL CHARACTERISTICS
(Et =6.3 VOLTS, SCREEN VOLTS -= 250)

70

60

50

40

4o

30

tP

0'1'30

20

+25

+20

- 10 .....\\...i\---(-4

+15 +10
*5

0

50

100

150

200

PLATE VOLTAGE IN VOLTS

K-9033956 New Drawing.

10-8-45

GL -807
ETI-1 65A PAGE 7
3-50

GL -807
ETI.165A PAGE 8
3-50
ANODE TERMINAL
GAP C1-1
.360"± .005" DIA.

'OUTLINE GL -807 PLIOTRON
2r MAX. DI A. 16 11M AX. DIA. 16 13" 32

BASE A5 -II

II 5"
19
53-2- 32
3z32

K
63

3-50 (11M) Filing No. 8850

K-8639602 /Revised Drawing

BASING DIAGRAM
Tube Divisions, Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

3-30-50

GL -810
DESCRIPTION AND RATING
ETI-166A PAGE 1 10-49

PLIOTRON

DESCRIPTION
The GL -810 is a three -electrode high -mu tube with a typical power output of 575 watts (ICAS) for Class C telegraph service. Because of its high perveance the tube can be operated at high plate efficiency with low driving power and relatively
low plate voltage. The heavy duty filament, shielded at each end, conserves input power by

eliminating bulb bombardment and stray electrons. The plate and grid leads are brought out to terminals at the top and side of the bulb, respec-
tively a design which provides very short internal leads, low internal lead inductance, and permits compact high -frequency circuits. Maximum ratings apply up to 30 megacycles.

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL
Electrical Data
Filament voltage Filament current Amplification factor Interelectrode capacitances
Grid -plate Grid -filament Plate -filament

10 volts 4.5 amperes
36
4 8 uuf 8.7 uuf 12 uuf

ARatings completely revised.

GENERAL

ELECTRIC

Supersedes ETI-166 dated 4-45

GL -810
ETI-166A PAGE 2 10-49

Mechanical Data
Mounting position Net weight, approximate

TECHNICAL INFORMATION (CONT'D)
Vertical, base down; or horizontal, pins 1 and 2 in vertical plane 8 ounces

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

AUDIO -FREQUENCY POWER AMPLIFIER AND MODULATOR -CLASS B

Maximum Ratings, Absolute Values
D -c plate voltage Maximum signal d -c plate current Maximum signal plate input Plate dissipations
Typical Operation
Unless otherwise specified, values are for two tubes D -c plate voltage D -c grid voltage** Peak A -F grid -to -grid voltage Zero signal d -c plate current Maximum signal d -c plate current Effective load resistance, plate to plate Maximum signal driving power, approximate Maximum signal power output, approximate
Averaged over any audio -frequency cycle of sine -wave form. **For a -c filament supply.

CCS*
2500 max 250 max 425 max 125 max
CCS*
2000
-50
345 60
420 11000
10 590

ICASt 2750 max volts 250 max milliamperes
510 max watts 175 max watts
ICAO'
2250 volts
-60 volts
380 volts 70 milliamperes
450 milliamperes 11600 ohms
13 watts 725 watts

RADIO -FREQUENCY POWER AMPLIFIER -CLASS B

Carrier conditions per tube for use with a maximum modulation factor of 1.0
Maximum Ratings, Absolute Values
D -c plate voltage D -c plate current Plate input Plate dissipation
Typical Operation
D -c plate voltage D -c grid voltage** Peak R -F grid voltage D -c plate current D -c grid current, approximate Driving power, approximatett Power output, approximate
f tAt crest of audio -frequency cycle with modulation factor of 1.0. **For a -c filament supply.

CCS*
2000 max 185 max 185 max 125 max

CCS*

1500 2000
-50 -65

110

100

115

93

2

2

6

4

60

60

ICASt
2500 max volts 185 max milliamperes 225 max watts 175 max watts
ICASt 2250 volts
-70 volts
100 volts 100 milliamperes
2 milliamperes 4 watts 75 watts

TECHNICAL INFORMATION (CONT'D)

GL -810
ETI.166A PAGE 3
10-49

PLATE -MODULATED RADIO -FREQUENCY POWER AMPLIFIER -CLASS C TELEPHONY

Carrier conditions per tube for use with a maximum modulation factor of 1.0
Maximum Ratings, Absolute Values
D -c plate voltage D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation
Typical Operation
Dc- plate voltage D -c grid voltage
From a fixed supply of From a grid resistor of. Peak R -F grid voltage D -c plate current D -c grid current, approximate Driving power, approximate Power output, approximate

CCS*
1600 max
-500 max
210 max 70 max
335 max 85 max

ICASt
2000 max volts - 500 max volts
250 max milliamperes 75 max milliamperes 500 max watts 125 max watts

CCS*

ICAO'

1250 1600 2000 volts

-200
4000 370 210
50
17 180

-200 -350 volts
4000 5000 ohms 370 550 volts 210 250 milliamperes
50 70 milliamperes 17 35 watts 250 380 watts

RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR -CLASS C TELEGRAPHY

Key -down conditions per tube without modulation if
Maximum Ratings, Absolute Values
D -c plate voltage D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation
Typical Operation
voltage D -c grid voltage
From a fixed supply of From a grid resistor of From a cathode resistor of Peak r -f grid voltage D -c plate current D -c grid current, approximate Driving power, approximate Power output, approximate

CCS*
2000 max
-500 max
250 max 70 max 500 max 125 max

ICASt
2500 max volts -500 max volts
300 max millliamperes
75 max milliamperes 750 max watts 175 max watts

CCS*

ICAO'

1500 2000 2500 volts

-120
3000 415 280 250
40 10 275

-160 -180 volts
4000 3000 ohms 550 500 ohms 330 350 volts 250 300 milliamperes 40 60 milliamperes
12 19 watts 375 575 watts

¶Modulation essentially negative may be used if the positive peak of the audio -frequency envelope does not exceed 115 per cent of the carrier conditions.

Maximum ratings apply up to 30 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced according to the tabulation below (other maximum ratings are the same as shown above). Special attention should be given to adequate ventilation of the bulb at these frequencies.

Frequency

30

60

100 megacycles

Percentage of Maximum Rated Plate Voltage and Plate Input
Class B Class C plate modulated Class C unmodulated

100

80

100

70

100

70

80 per cent 50 per cent 50 per cent

* Continuous commercial service. f Intermittent commercial and amateur service.

GL -8 1 0
ETI-166A PAGE 4
10-49

250
200
oujc,
w
I 5 0
0
I 0 0
50

K-8639692

200 400 600 800
PLATE VOLTS GL -810 TYPICAL CHARACTERISTICS (E,---10 VOLTS D -C)

9-28-44

GL -8 1 0
ETI-166A PAGE 5
10-49

A GL -810 AVERAGE PLATE CHARACTERISTICS
Et= 10 VOLTS D -C

.. E

wU-1 UJ 1.2
a_

:an

z

MEM'

A

alga.:

MMEMMMEMM. MMMMMr1

II

'..MEN

tIF

AEON

--MP" M

r

....:

0.8

I I
r
A
EWA EN

n
. A
,

70,..[
Mr III
iM
nmmiummi

1:41111

II,

-J

AMEW.

.

CL

..ill

d!,=.11
../1

EMMEN MM '..1

A

MMEMMENEN

.

-..

iN

.

%.

, INN M av

M
m M

MMIUMME

0.4
MEMEL MMENNFAMEM MEMEIMEMEm

1

M Mar

of.".

MIMMFAMM.- -
MMEUmr:

pri.....

... .

1111M,i

!....

MNMEEEN.IERmEiEte.E-lIdEMMMIEETEME-M.MMEOEElEEEmM

.-
...11

ME0-

MoMAIrMUmPgo_g.lEmEudM/MIN..FA.M.MmI.!s.M_mEumpMill

ILE. MMMMMMMMMMM MEN EMEM

.

....__--. MMMMMM

..."".0111
n=.2
MM Ni2524. FR

MEMEIMMEMI

MENNEN
MEEMOMM

Immamummimmul

NEEMMMEISlmIA

mmiumlmmmumummimuummmumluummm

ENNMNEMIEMMM,EMIMMMMM

mum
mums.

ummumm

111111

Illiiimum1 MMMMM

IMEMEIMMIENI

:11"""'"muEMMIXuEmEMMEIuNu

Isms mu

MEI
MEE MMEENMEOM

IMMO=

immummuu IMMEEmmMsEuuMmmEmMmIEuMmmEmNm=IEuNmsEiEomTummmmismul

I

mum. MMMMMMMMM m MMMMMMMMM mmum umm MMMMM MMMMMMMMMMM ME

IMMIMM

1

Ai

mmuommmummormimmo imam

mow ammaim momm mom mom

MEMWFV" "

.....
:

Ili
ME 111

IEMEIN

1

tYA"

I

1

!MEI

_AMAMMEMEMMEMI

mg .

141111..=i

rrusal

rr..

1.4

0
K -69087-72A103 ANew drawing.

400

8000

1200

1600

PLATE VOLTAGE IN VOLTS

2000

2400
2-6-47

GL -8110
ETI.166A PAGE 6 10-49

CAP NO. C1-6
.566 it.007" DIA.

OUTLINE
GL -810
2 A" ErAx

ANODE TERMINAL
I"
2

GRID TERMINAL I"
CAP NO. CI -5 .566"±.007" DIA.
2g -8
JUMBO 4 -LARGE PIN BASE
NO. A4-29

O,3"+!-re4:

0

+ 4

10-49 (10M) Filing No. 8850

k1.867" MAX.DIA.

FILAMENT TERMINAL

t .I09"MAX.
NC
.687"

N C

FILAMENT TERMINAL

K-9033819 Revised drawing.

.971"
DIA.

8-12-48

Tube Divisions, Electronics Department

GENERAL

ELECTRIC

Schenectady, N. Y.

GL -833-A
DESCRIPTION AND RATING
En -167A PAGE 1
8-48

PLIOTRON

DESCRIPTION
The GL -833-A is a three -electrode tube designed for use as a modulator, amplifier, and oscillator.
The anode is capable of dissipating 450 watts. Forced -air cooling of the envelope is required at

maximum ratings. The tube may be operated at reduced ratings without forced -air cooling. The cathode is a thoriated-tungsten filament. Maximum ratings apply up to 20 megacycles.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL

Electrical Data
Filament Voltage Filament Current at Bogey Voltage Amplification Factor, E, = -20 v, Ib = 200 ma Interelectrode Capacitances
Grid-Plate Grid-Filament Plate-Filament

Minimum 9.5 9.4
31.5
5.5 10.1
6.4

Bogey 10 10 35
6.3 12.3
8.5

Maximum
10.5 volts 10.6 amperes 38.5
7.1 uuf 14.5 uuf 10.6 uuf

Mechanical Data

Mounting Position-Vertical, or horizontal with the plane of the electrodes vertical

Required Air Flow to Envelope Maximum Glass Temperature

40 cubic feet per min
145 C

Net Weight, approximate

1 025 pounds

GENERAL ELECTRIC
Supersedes ETI-167 dated 4-45

GL -833-A
En -167A PAGE 2 8.48

TECHNICAL INFORMATION (CONT'D)

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

AUDIO -FREQUENCY POWER AMPLIFIER AND MODULATOR -CLASS B

Maximum Ratings, Absolute Values D -c plate voltage
Maximum signal d -c plate current* Maximum signal plate input* Plate dissipation*

Natural
Cooling
CCS ICAS 3000 max 3300 max 500 max 500 max 1125 max 1300 max 300 max 350 max

Typical Operation

Natural
Cooling
CCS ICAS

Unless otherwise specified, values are for two tubes

D -c plate voltage

3000

D -c grid voltage

-70

Peak a -f grid -to -grid voltage

400

Zero -signal d -c plate current

100

Maximum signal d -c plate current

750

Effective load resistance, plate to plate.

9500

Maximum signal driving power, approximate

20

Maximum signal power output, approximate. 1650

* Averaged over any audio -frequency cycle of sine -wave form.

3300
-80
440 100
780 10500
30 1900

Forced -air

Cooling

CCS

ICAS

4000 max 4000 max volts

500 max 500 max milliamperes

1600 max 1800 max watts

400 max 450 max watts

Forced -air

Cooling

CCS

ICAS

4000
-100
480 100
800 12000
29 2400

4000
-100
510
100 900 11000
38 2700

volts volts volts milliamperes
milliamperes
ohms watts watts

RADIO -FREQUENCY POWER AMPLIFIER -CLASS B

Carrier conditions per tube for use with a maximum modulation factor of 1.0

Maximum Ratings, Absolute Values D -c plate voltage.
D -c plate current Plate input Plate dissipation

Natural

Cooling

CCS

ICAS

3000 max 3300 max

300 max 300 max

450 max 525 max

300 max 350 max

Typical Operation

CCS ICAS

D -c plate voltage D -c grid voltage

3000

3300

-70 -100

Peak r -f grid voltage

90

110

D -c plate current

150

150

D -c grid current, approximate

2

2

Driving power, approximate**

10

11

Power output, approximate

150

200

**At the crest of the audio -frequency cycle with a modulation factor of 1.0.

Force -air

Cooling

CCS

ICAS

4000 max 4000 max volts

300 max 300 max milliamperes

600 max 675 max watts

400 max 450 max watts

CCS 4000
-120
120 150
2
14 225

ICAS 4000
-120
130 150
3
21 250

volts volts volts milliamperes milliamperes watts watts

PLATE -MODULATED RADIO -FREQUENCY POWER AMPLIFIER -CLASS C TELEPHONY

Carrier conditions per tube for use with a maximum modulation factor of 1.0

Natural

Maximum Ratings, Absolute Values D -c plate voltage. D -c grid voltage
D -c plate current D -c grid current Plate input Plate dissipation

Cooling
CCS ICAS 2500 max 3000 max
-500 max -500 max
400 max 400 max 100 max 100 max 835 max 1000 max 200 max 250 max

Forced -air

Cooling

CCS

ICAS

3000 max 4000 max volts

-500 max -500 max volts

450 max 450 max milliamperes

100 max 100 max milliamperes

1250 max 1800 max watts

270 max 350 max watts

Typical Operation
D -c plate voltage. D -c grid voltage Peak r -f grid voltage. D -c plate current D -c grid current, approximate Driving power, approximate Power output, approximate

Natural

Cooling

CCS ICAS

2500
-300

3000
-240

460

410

335

335

75

70

30

26

635

800

Forced -air

Cooling

CCS ICAS

3000
-300

4000
-325

490

520

415

450

85

90

37

42

1000

1500

volts volts volts milliamperes milliamperes watts watts

GL -833-A
ETI-167A PAGE 3
8-48

RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR -CLASS C TELEGRAPHY

Key -down conditions per tube without ,mplitude modulation Maximum Ratings, Asbolute Values
D -c plate voltage D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation

Natural
Cooling
CCS ICAS 3000 max 3300 max
-500 max -500 max
500 max 500 max 100 max 100 max 1250 max 1500 max 300 max 350 max

Forced -air

Cooling

CCS

ICAS

4000 max 4000 max volts

-500 max -500 max volts

500 max 500 max milliamperes

100 max 100 max milliamperes

1800 max 2000 max watts

400 max 450 max watts

Typical Operation

CCS

ICAS

CCS ICAS

D -c plate voltage

3000

3000

4000

4000

volts

D -c grid voltage

-200 -160

-200

-225 volts

Peak r -f grid voltage

360

310

375

415 volts

D -c plate current

415

335

450

500 milliamperes

D -c grid current, approximate

55

70

75

95

milliamperes

Driving power, approximate

20

20

26

35 watts

Power output, approximate

1000

800

1440

1600 watts

¶ Modulation essentially negative may be used if the positive peak of the envelope does not exceed 115 per cent of carrier

conditions.

APPLICATION NOTES Maximum ratings apply up to 20 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and plate input are reduced according to the tabulation below (other maximum ratings are the same as shown above). Special attention should be given to adequate ventilation of the bulb at these frequencies.

Frequency

Natural Cooling

30 50

75

Forced Air Cooling 20 50 75 megacycles

Percentage of maximum rated plate Voltage and plate input
Class B Class C plate modulated Class C unmodulated

100 98 94 100 90 72 100 90 72

100 97 93 per cent 100 83 65 per cent 100 83 65 per cent

GL -833-A
En -167A PAGE 4
48

GL -833-A AVERAGE PLATE CHARACTERISTICS (Ef =10 VOLTS A -C)

MMUIMIMMMIEIMMMMEEMRMEEMMEMMMIEMNMIIMMMMEEMMUMMIONMIMMMMIEUMMMMAUNMMMEUMMEMMEEMMENEIMMMMEENNEEMMEEMMEMMEIMEMMMMIEUMMMMIINNOIMMMMEIMMMEMMEUMMIEUMMEMMEMMEMMEEMMEEMMRIEUMM

MOMMIIMMINIMMEMMOMMUMMOMMUMMEMOMMEMMEMMEMMEMEMMEMEMUMMEMMEMOMMEMMEMEMMEMMEMMEMMIMMEM

MMEMMENIONMEMEMMEMEMENWOMMINUMMIMINIMMIMMEMEMMEMEMINIMMEMEMEMMEMMEMMEMEMMUMMEMEMEMMMEN

MEMEMMEMMEMEMMEMENMEMMEMMEMEMEMMEMMEMMUMMEMEEMMEMEMMEMMEMMEMMEEMEMMEMMEMMMEMOMMOMM

MIIIIMMEMMEMMNIMIMEMMEMEMEMOMEMEMIOMMEMEMMEMEMEMMEMMEMEMMEMMIIMMIUMMEMMEMMEMMMEMEMMEMMEMM

MIIMMEMOMMEMMEMEMMIIMMEMMEMMEMMEMMEMMMEMMEMMENEMMEMERMEMMEMMEMEMMIOMMMEMEMMENNIMMEMMMEMM

EMNOMMINIMMIIMMEMEMNINIMMEMMEMMEMIMMEMIMMEMMEMEMEMEMMIIMMEMMEMMEMMEMONMEMMEMEMMEMEMEMM

MOMMEMMINIMMOMMEMEMMEMEMMIIMMINIMMEMEMMOMMEMMEMMEMMEMMEMMEMOMMEMEMEMMNINIMEMMIMMEMMEMM

EMMINIMMEMOMMEMMEMMOMMEMEMMEMMEMMEMMEMEMENEMMEMMEMEMIMMEMMINIMEMEMINIAMMEMEMIUMMEMEM

MEMINIMOMMOMMINNIMMMEMMEMEMEMMEMMEMEMEMMINIMUMMENIMMEMEMMEMEMOMMEMEMEMMINIMMEMENEMEMEMI

MmmmIuouUmmmMmmMmIuooNmmEmmmMmoMimOmnMomuMdmmImOmmNmooNummEmmMmEmoiMumMmmmEmmMooMumEmmmMmmoEoMmoEmmnMmomMemEomMmmMmuEmmmMuomMmEmoMummMommImUomMmmuMommImoNmoImoMmmMmmoEmomMomMmEmmuMummOmmNuMmomEmmmMumMmmIuuNmmmIumMmmmMmmEuMummEummMmumMmOmoIommMmmMmmoIuMommMmmEmmoMoiMmEnmmMdmuEmueMmEmm

MMEMEMMEMMEMEMIMMEMAMMINIMMEMMEMEMMEMMENWEIMMEMMENNIMMEMEMMIIMMEMOMMEMMEMEMMINIMMINMEME

INIEMMMMOEMMMMOIMIOMMMMMEIMMMMIENMMMEEMMNMIEMMMMEEMMEMMEMMIIMMMIMNEMMEEMMMMEEMMMOEMMMMEEMMMMEEMMMMEEMMMMEEMMMMEEMMMEEMMEMEMMEOMMEMMEOMMEMMMIEIMMMMEEMMOMMEMMEEMMMMEEMM

111111111MMEMEMMEMMEMMEMMEMMEMMENMMMINIMMEMMEMEMMEMMOMMEMMEMOMMEMMENEMMOMMAMMEMMEMMEMEMME

MEMMEMEMIUMIMMIMMEMMEMMIUMEMMEMMUMMEMMUMMEMMEMMEMNIMMIUMMEMEMEMMIMMMOMMUMEMMEMEMMEMOMM

MMEMMEMMIAMMEMEMIIMMINIMMEMMEMEMMEMMIOMEMMIUMMEMMEMMEMEMEMMEMMEMMEMMEMMEMMIIMMEMOMMIIMM

MEMMOMMEMEMMINIMMEMMEMEMIONIMMEMMEMMIIMMUMMEMMEMMEMEMEMMEMMINIMMIIMMEMMEMMEMMEMEMMINIMMEM

MINIMMIIMMIUMMEMEMEMMEMMINIMMEMMEMMOMMUMMEMMOMMIMMEMMOMMIMMENMEMMEMINIMMEMMEMMINIIMM MOMMEMMIMIUMMINOMMIMMEME MEMMEMEM MEMMMIIMEMMEMEMMEMEMMEMEMMINIMMEMMEMMEMMEMMEMEMMINIMIIMM MMOMMEMMOMMEMEMMEMMOIMME INIMMEMMEMMEMEMMUMMUMEMMEMMEMMEMEMEMIUMMIMMOMMUUMMEMIMMEM

MEMMEMINIMEMMEMMOMMEMMMEMMEMMEMEMINIMMEMMINIMMOMMIMMOMMOUMMEMIMMINIMMIMMEMERMEMMOIMME

MMEEMMOEMMMPEIMXMIEMMMWEEENTIIMMOMMEMEMMEEMMOMMUMMEMMEEMMMMEIMMEMMEMMIMMIMENMMEEMMEMMEEMMEOMNIMMMMEEMMMMEEMMEMNEIMMMIUMMMMEEMMMEEMMEEMREIMNMIIMNMIMEMMEMMEOMMEMMEEMM

IIMMEM63MEMPiMMOMMEMMEMMEMMEMEMEMOMMINMEMOMMEMEMMEMINIMMENNUMMEMEMMEMMEMEMMEMMEMMOMM

MEMMEREMPIAMMENEMMIWIMMEMMEMEMIMINEMMEMMEMEMMEMMEMMEMEMMEMMEMMIUMMINIMEMMEMMEMMINIMME

1111.11111MillOMMEMMiork=a1111111MMINIMMEMMEMMEMMEMMUMMMOMMEMEMEMOMMEMEMMIMMEMEMOMMINIMEMMOMME

nnmEMMomoiOmommMmmmMuomIomrWmdAtfouMon,MmmaE:omMmmmMmmEmsouMdnoPmmlEmmioiumssmmsummEumoMommMimmEmrmeMouN7mmImn:mImaMzumoMm.EmmmM.omoM.moEmMmdmmEuaumNmmuEmmMmmmEommeMmuiMmmmImummMmMmouiOmmmNmmoOmmumMuoMmmEmmmuMmimmMmuEmoMmmumMommMmmumEmoMomuEmmmMmmoaEmoMmdoMmmmnImoNsouImmmmMmoMmoomEimMmmmMmomMmmiiEomMuumuImmuNmmImumMummuMmumImmmNmuuImoMnmomMmimmE

OMMEMEMMENMEMMEMMMIUMMWMMEMMINIMMIUMMINIMMEMMEMEMMEMMEMMOMMEMEMEMEMMENMEMMEMMOMMIMEMEM

MmOiMmMMmEiMaMEmMmEMoMmImNIoMnPIkMoimdEmMuEMmMmEuMMmEmMMuEmNmOMuMmINuImMmIUoMmNImMmMuEMmImIMuMmEmMEuOmMmMEoMmMEmNuNmIMmMuEMmMmEuMMmEmMEoMmMmEMuMmEMm

3

1111111MMIIMEMEMP:MMEMEMMOMMEMMENEMMIIMMEMEMMEMMMEMMEMEMMEMOMMEMEMMEMEMEMEMEMMEMEMEMMEMMO EMMEMIAMEMPIAIMINIMMEMIIMMEMPV7AMMEMEMMEMENMINIMMEMEMEMMEMOMMEMMIIMMMEMEMIIMMEMMEMEMMOMMomM

MMEMMIMPAIMMMUMMEMMINIMMEGWOMMMEMERMEMMINIMMEMMEMMEMEMMENEMMEMMEMMMEMMEMEMEMMOMMEMEM

MEMEMPIAIMOMMEMOMMININIMMIIMEMEMMEMEMMIUMMEMEMEMMEMEMMEMOMMUMMOIMMOMMENEMMEMEMEMEMEMMEMEM

OMMEMOININIMMEMMUMMW=IMEMMIMMEMMINIMMEMMININIMMEMEMMEMMUMMIIMMEMEMMEMEMEMMEMMMOMMOMM

MmEiMnMOdMuMmIXmEoMmMEmMuEmRrmiomMmEmMuINmImMoMOmImMoMEmMmMoEMmMmEMoMmImIMuMmEmMMuEmMoMEmMmMuINmImMuMEmRmNMuEmMmMEdMmOmMMuEmMmMEuMmMmEMoMmEMmMoEmMMmEeMmM

MMINIMMOMMEMIMMEMEMIIMMEMEMEMWMMMUMMEMEMEMEMMEMMEMEMEMMEMMEMMEMMEMMEMMEMMINIMMMEMMEMMIN

MMINVIMMIIMAMEMINIMMIUMMEMEMPIIU.WIMMEMMIHIMMEMMEMEMMEMUMMINIMMEMMEMMEMOMMEMMEMMOINMEMEMMII

111111.411KAMMEMEMEMEMMINIIMFM:0111111MMEMEMEMOMMOMMEMMEMMEMMEMEMEMEMEMMEMEMMMOMMEMMEMMENIIMEM

2

EMEWAMMEMEMOIMMEMMIWT:101MMEMMEMEMMEMMEMUMMEMEMMOMOMMEMMEMMEMMEMMEMMEMEMEMMEMOMUMMEM MOMMEMMEMMINIMMIRMIMOMMEMMEMEMEMMEMMEMMUUMMEMMININIMMEMMENEMMEREMEMOMMIIMUMMOMMEMMEMM

MONNAMMEMMEMO!mINEMMEMOMMEMMEMMEMEMMITAIIMEMEMOMMEMMEMMIUMMEMMEMEMEMMEMMIMMEMEMMEMMEM

Fa__ NammEoumMdmmUirMumMdmiEimnMmEokMimwPmuiImmMduMmnmEuiMmmEmuMmmmMmuOoimMmmMmmMmuEeomMmmMwmmE=oMomMamEmdmMooEumMmmmMmdmMomEiSmogOmmWnmoe=oamamrmmldoIomMmmmMmoOumiMmmMmnuEuMmimNmmImomOumMommMmeOmmMmuEmomMimMumImmmIumuMmMumImmmMoomMmmEumMmmiMomEnmMoiMmmmOummMumMomEmmMmmoMmEomoNmmmNmumOiIumMlmmMmmoEm
MiSMIMMEMNIMMOMMEMm=limMEMMEMINWOMMEMEMMEMMIIMMOIVIMMEMEMMOMMEMMEMMEMOMMEMOIMMEMMEMOMMII MMIIIIMMUMMEMMOMM.millMEMMUMMEMMEMEMMEMMEMMEMMEMETimilIMMMEMEMEMMEMMOMMEMINIMMEMMEMMERMEMEMEM
MmImNiCmEMmMoInNdIMiPmMmZuIMmMmEiMEuMmEmMoMEmMmMiEmMMmEuMmMmUMaMmImOMlMiEmMzPEiNmmmEuMEmMmEoNmNImMmIoMMmEmMoMmMEmMoMmEmMMoImNmIuMEmMmMmIUuMmMmEuMMmEmMiMnE
1 EE nd M MMEMMEMEMEMMINIMMINIMMEMMlligliMMEMMUMMAIMMEMEMEMWOWMUMMMEMMEMMEMEMMEMEMMEMMEMM
1m1w1o1r1AMmWmMoOmMMmOoMmMmEmMoEmMmEMoEmMmMTI=UaMmMmOMiMnOuMmMmEuMmMmEMiImNmIiInMiUmMmWOoMmMwEmMm4iMlRm=ZoImOmMiMlEmMmMmINuImMmMoEmMmOuMmMEnMiMmEmMiMmEmMiEMm miammommimmmimm=ammummommummomminommimmwm=kimmimmommommummommirmimmommin
mmmuuimmmmmmosimtmmmommmomomommrmumomzmioimmdimomummmmoommmmmmuiunmmrmmiiinmnimim=mmwumimummmimmmiimnuuimmmomnmmrumimuamlmiammiuimmlmmmiumummmummmomumummmuemmminmmooummmmmmiorl_mimmmmiieru.mmlmmuumuummmmmmooommmmmm
WilIMMEMMEMMINIMMIIMMEMEMMIM-MmenSIMMEMMEMMEMMEMEMEMMEMMEMMEMM0==.11.11MEMOMMEMMEIMMEMMO

FEMMIIMMOIMMOMMIIMmT=AmOMMEMOIMMINIMMEMEMMEMEMMEMMERMIWItt=a4MOMMEMINIMMEMEMMINIMMEMMENNIMM

0

500

1000

1500

2000

2500

3000

3500

4000

PLATE VOLTAGE IN VOLTS

K -69087-72A1 09

2-6-47

GL-833-A TYPICAL CHARACTERISTICS
E, =10 VOLTS A -C

a EN N ENE EM EM ENN E NEN M MM MM M MMKNU N N I IM

NUMMIMMMMMMMMMMMMMMMMM1.1MMUMMEMENNMMMMMMMMMM1111.1...1MMMMMMENMMMMMMMMMMENEM

1.0 ....
monommommoMMMMMMMMMMMMMMMMMMMMMMEMMMMMMpM
M I NE ME NE MM EN M MMM M M\M ME MM EN MM MMM M MMM MM MMM MM I I MN EN NE EN MM MM MM M M MM MMM MM M MMM M MEM

E N. .

= MNNMENNMEMMMMMMMMMMMMmMuMmMEsMMMMEMMMMNMIM MMMMMMmoMMoMMMMMMMMMmomo

mmoommommMMMMMMMMMMMMMM1MMMMpommosonmMMMMMmMmoonmm

n m.

m

M

IM

I NE

EMNN

ENN

MM MM M MM M

I No

M

M

M

II

EN MM M

MM

MM

M

M M E NI

annommonMMMMMMMMMMMMMMmonMMMMMMMmoonMMMMMMMMKENNEENEMMMMMMNEENEEMMMMEMENEMMMMM

mmi

iommmommMMMMMMM

0.8 = mmonomommMMMMMMnkmo. myoMmM mMMomMMMMMMMMMMMMMmMmMoMmMoMoomsmmmoimmMmoMMmoMnMaMnmnnoMmMmMoMnMMMM=MmMoMnMoMmmannMiMaMMMMMMMMMMMMmMoMmmooonmomo

MMMMEMMMENMMMMMMMNMMMMMMNMMMMMMMMMMMMMMM\MMMMENNMEMENEMMEMMMMMMMMMMMMMEMMMMMMMMMMMEMMENM.E=

.........MMMMMMMMMMEW

I

E

1M

E MM IM EN N

M
1

M
I

IN M M

" O

1

IIINLII%IMEANLEMMMMMMMM1 :

EMM.MUENN

MUNNE.MENNEEMMEMNI

pm: oms:
us mm onM MM M MMM M mm mo

.

0.6 MIEN.

LAMMMMMMMMENENNEMIOMENN.MMMMMMMMMMMMMMMMMMMMMMMMMMNIEMEN..

M IO N I IME MM MMMM MM NM EMNM EM MMMM MM MM MMMM EE NN NN EM MM EM NE NN IN N. IIb

S

M

S"

C I MM EM ENN MM MM

NM
M MM C

:

ih

swim=MMMMMMMMEmmonsMMMMMMmos.!MMMMMMMMMMM=mai:MMMMMMMMMMMMMMMMMMmmmmommmom

I

mm mo

m
mm Mo Mm MmMo MmMM MM MM mMi

M MMMM MM mM MM MMMm Mo Mn Mo Mo s ns .

MM MMM M MMM M MM

mg

MM

m m MMM M MM

MMMMMMMMIMEMMMMMMMUNOMENN

MW= B

M MM MM MMM .. . ME C

o MM M MM1 10.
:MINNMMMMMMMMMMMMMMMMMMMMNEENMMEN

0.4

N MMMMM NNW=

MMM EMMEN MMMMMMMMMMMMMMMMMMM NMN MMMMMMMMMMM MENNEN. CUMIN.. MMMMMMMMM MINNEMENIO MMMMM MMMMMMM SIIIIMMNME MMMMM

...MENNE MMMMMMMMMM NNW :IIN MMMMMMMMMMM MINNIIMENE

IN= MMMMMMMMMMMMMMMMMMMMMMMMM NNMEENNINMMEL

MMMMMMMMMMM ENNEEMNIO

0.2 mom MMMMMMMMMMM m MMMMM mourn .

m

.

c,!.
. M p MMM sommoomm MMMMMMM !mosso
:

monommonh....I

....rilll MMMMMM MIIIIMMENO

MMMMM mom MMMMMMMMM mo:.nomm MMMMMM on MMMMMMMM monno..w

MIIMMOIMINIM

MMMMM NM
:

MMMMMMMMMMMMM

MIIIMMINM.7111

M.MMnMMM

111.11111111111111MO

MMMMMMM

.742M[7111111110 MMMMM WM
zgghm.soommmommm

;....

mono MMMMM mo MMMMM .

.:.onsommonno MMMMMMMMMMMM ih.mt.thommons

:Ammon MMMMMMMMMMMMMMM Rms..

m

b

..

-h-

7

...

.7.

OM MMMMM MEM MMMMMM MEM MMMMMM Mi.Z.MMEMOMMIIII MMMMMMMM MMEMIIMME.Z.

MMMMMMMMMMMMMMM MENNINNIMMMENNEN.72 MMMMMMMMMMMM 1.11MMENNOMINNMEN.i.MMEMMUI

III

m".

ft..

Z7 MMMMMM nromonom MMMMMMMM ENII.!°11.1.0 MMMMMM MENNE

smug ..".WII ..m.

ft...!MAIII4

m.r_Ulff.V:

iiiro.Commommommommmm MMMMM mu. --.mon MMMMMMMM MINNIINNEERENNEEN

1111111MMEMEMOMEMMOMM.:7='..

ZMIMMEM

0

500

1000

1500

PLATE VOLTAGE IN VOLTS

K -69087-72A107

2-6-47

GL -833-A
ETU -167A
PAGE 5
8-48

GL -833-A
En -167A PAGE 6
8-48
_5 67"+. 0,03" GRID
TERMINA
CAP
J1-7
51+ 3"
8T - 16

4,

1.125

*812"

AMAX. MIN.

ANODE TERMINAL (NOTE I)
.406"MIN.

41392"

MAX. DIA.

NOTE -I: THE ANGLE FORMED ON A

PLANE NORMAL TO THE

TUBE AXIS BY THE INTER-

SECTION OF THE PLANE

DETERMINED BY THE AXES

OF THE FILAMENT TERMINALS

WITH THE PLANE DETER-

MINED BY THE AXES OF THE

GRID AND PLATE CAPS IS

( NOT MORE THAN 5° NOTE -2: MOUNTING SHOULD PROVIDE LIBERAL CLEARANCE FOR THE SEAL -OFF TIE
NOTE -3: THE PLANE THROUGH THE

FLAT SIDE OF THE FILAMENT

TERMINAL IS 900± 70 WITH

RESPECT TO THE PLANE

MAX.

THROUGH THE AXES OF THE FILAMENT TERMINALS.

.fir" ----FILAMENT TERMINALS

.437"

±.003"
DIA.

FILAMENT TERMINALS

.375" ± .004"
PLANE OF ELECTRODES

K-6966950

GL -833-A OUTLINE

9-3-48

Electronics Department

8-48 (9M) Filing No. 8850

GENERAL

ELECTRIC

Schenectady, N. Y.

GL -851
DESCRIPTION AND RATING
ETI-168A PAGE 1
5-51

PLIOTRON

DESCRIPTION
The GL -851 is a three -electrode, general purpose oscillator, or Class B modulator. The plate of this tube designed for use as a radio -frequency amplifier, tube is capable of dissipating 500 to 750 watts.

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS

Number of electrodes

3

Electrical
Filament voltage Filament current Average characteristics Amplification factor, Ib =300 ma
Grid -plate transconductance . Direct interelectrode capacitances
Grid plate . Input Output . Frequency for maximum ratings .

.11 volts .15.5 amperes
20.5
. 15000 micromhos
47 micromicrofarads ....25.5 micromicrofarads
4 5 micromicrofarads 3 megacycles

Mechanical

Type of cooling .

convection

Maximum ambient temperature .

60 centigrade

Net weight, approx

3 pounds

Mounting position .

. vertical, filament base (large) up or

horizontal, filament in vertical plane (on edge)

Shipping weight, approx.

9 pounds

GENERAL f9 ELECTRIC

Supersedes ETI-168 dated 4-45

GL -851

ETI-168A PAGE 2
5-51

TECHNICAL INFORMATION (CONT'D)

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

CLASS A AUDIO -FREQUENCY AMPLIFIER AND MODULATOR
D -c plate voltage Plate dissipation D -c grid voltage Peak grid swing, approx D -c plate current Plate resistance . Load resistance . Plate power output, 5 per cent second harmonic

1500
-49
44 0.175 1800 3700
46

Typical Operation
2000
-65
60 0.270 1500 3100
100

2500
-92
87 0.240 1600 5000
160

D -c plate voltage...2000 2500 CLASS B AUDIO -FREQUENCY POWER AMPLIFIER (TWO TUBES)

Max signal plate current, per tube*

D -c max signal plate input, per tube*

Plate dissipation, per tube* D -c grid voltage.

-85 -111

Peak a -f grid input voltage .

250

245

Zero signal plate current

0.12 0.12

Max signal plate current

1.7

1.4

Max signal plate input*

3400 3500

Max signal driving power, approx.

20

12

Effective load resistance, plate -to -plate

2600 4000

Max signal plate power output

2200 2300

3000
-135
245 0.11
1.2 3600
6
5600 2400

CLASS B RADIO -FREQUENCY POWER AMPLIFIER
Carrier conditions per tube for use with a max modulation factor of 1.0
D -c plate voltage D -c grid voltage. D -c plate current . Plate input . Plate dissipation Peak r -f grid input voltage Driving power, approxt Plate power output

1500 2000 2500
-60 -85 -110
0.62 0.475 0.39

300

280

270

40

25

20

275

300

325

Maximum Ratings
2500 volts 600 watts
volts volts ampere ohms ohms watts
3000 volts 1 ampere
2250 watts 750 watts
volts volts ampere amperes watts watts ohms watts
2500 volts volts
0.750 ampere 1100 watts
750 watts volts watts watts

CLASS C RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR -PLATE -MODULATED

Carrier conditions per tube for use with a max modulation factor of 1.0

D -c plate voltage

1500 2000

D -c grid voltage

-250 -300

D -c plate current

0.9 0.85

D -c grid current, approx

0.15 0.125

Plate input

Plate dissipation

Peak r -f grid input voltage, approx

475

525

Plate power Driving power, approx.

output..900

1250 75

65

2000 volts
-500 volts
1 ampere 0.200 ampere 1800 watts
500 watts
volts
volts watts

CLASS C RADIO -FREQUENCY. POWER AMPLIFIER AND OSCILLATOR

Key -down conditions per tube without modulationT

D -c plate voltage .

1500

D -c grid voltage

-150

D -c plate current .

0.9

D -c grid current, approx

0.15

Plate input .

Plate dissipation .

Driving power, approx...55 Peak r -f grid input voltage, approx.

375

Plate power output .

900

2000
-200
0.9 0.12
425 50
1250

2500
-250
0.9 0.1
450 45 1700

2500 volts
-500 volts
1 ampere 0.200 ampere 2500 watts
750 watts
volts watts watts

* Averaged over any audio -frequency cycle. t At crest of audio -frequency cycle. I Modulation, essentially negative, may be used if the positive peak of the audio -frequency envelope does not
exceed 115 per cent of the carrier conditions.

GL -851

APPLICATION NOTES

ETI-168A PAGE 3
5-51

GL -851 can be operated at maximum ratings in all classes of service at frequencies as high as 3 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised. (Other maximum ratings are the same as shown under TECHNICAL

INFORMATION.) The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 15 me for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

Frequency.
Maximum permissible percentage of maximum rated plate voltage and plate input:
Class B telephony Class C telephony, plate -modulated Class C telegraphy, plate -modulated

3

7

100

88

100

75

100

75

15 megacycles
76 per cent 50 per cent 50 per cent

12

1.0

.8
w
w
Cl_

ilk cn SI

«P

-)r
0

<.6

1

-k

11\

co

,11)

oN
0

zI-
LL1
cr
4

V
-0

0100

ke

(1\ 'Po

i"0

-k

o--6
0

.2 6O
--........

0

limft,

GL -85I AVERAGE GRID PLATE
CHARACTERISTICS Ef = II V A.G.
1111411

2
K-6966442

400

800

1200

1600

2000

PLATE VOLTAGE

2400

2800

3200
9-25-44

GL -851
ETI.168A PAGE 4
5-51

GL -851

70

AVERAGE Ef . I I V.A C.

4

6.0

DIODE

LINE

E'29()
GO

cc

h°.

, 4.0 , 5 3.0 1

r

'zx ,.."7.../"41111111
2.0
Ir
1.0

,'' . '' .000

E.9!t--59---'

______---------

E.9 ''.2-5 ER' --25 ER'

64'

, \ 00
25

1141111111111111111111111.".-

O

400

800

1200

1600

2000

2400

2800

3200

3600

4000

PLATE VOLTAGE IN VOLTS

K-6966441

11-2-44

GL -851 AVERAGE PLATE CHARACTERISTICS

700

I

its NE ININ NEENNE MMMMMMMM 1111111111MINMENIMEMENEN
illiv

MEM MMMMMMMMM

/A

AN/11111111 MMMMMMM MISESNIN11071111VMEISINENNEINEENNI

A
MIIINENNEE/r

60 0

I.

VA

I

MENEM M

i/

WEENEW W I

III

r1 1/EFINMEElral

I IA

!I

JEW
NWII/

MMNINENWWN,

I I

INNEN=

)A1M1I1N1M1M1M1M1MMMMMMMMMMMMMMMMWMOWM=MMMMMMMMMMMMNMMEMNMEMM11M11M11M111M11M1 MMMMMMMMMMMMMMMMMMMMIIMIIIENENMNINENNEN
FIAME MMMMM INEININEMENNIIMMINE MMMMMMMMMMMMM MENNEN MMMMMMMMM INENNIIIIIIMMIN
r

=ECM EWIENNEMINMEMNMMM

IIMII
/

I

MMMMMM E..4/1II II

1

50 I NEE /I

EV i

UMW MEIMEli

EINIIIMMENY

..IMUM
1111/1

A

MENNE

I1NEENNMIECN111//1VI

1/111//11/ INIENEMEEll MMMMMM Lt4 MMMMMMMMMMMMMM NEEMEN MMMMMMMMMM 11111JUNIMIrnmli
111111/11111111111NENFIENNEEMENNE111111 MMMMMMMMMM 1

ININEMINEMI MMMMM ENE II

i
400 1MEE1Im1E1ll1Ill1NNEMINAV/ A

VIM AM
rM1.IIl

VINNEINISENIENNEMENIMMENIMEMI NEMENEMP7/111111 MMMMMMMMMMMM 111 MMMMMMMMMM

A

HII EEMENNIIIHIIENEEMENN/IIENENNEN6111

MMMMMMMMMMM NM= MMMMM NENE INEMENIMICEMEIMEMIIME MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

rA 11

/I

IvM1IN1M1E1N1N1E1W/1E1E1N1II1IM1E1N1E1I1M1M1IN1I1N1E1INMENN MMMMMMMMMMMMM NENE MMMMMMMMMMMM NENE

114111111111111111 MMMMMMMMMMMM NW,

flIMMINEMENI,VMINEMENEVAININEMErI MMMMMMMMM MIIIIIMIIIN MMMMMMMM 11111111WINE

I A

I I

11

WE AEI

1MEMEN

, MMMMMMMMMM 111111111111111111M111111A

!NUNN MMMMM 'MENEM

F/ENNIMENNYINNEMENINV/MENIENNIIIINEENIIIIIMMIN MMMMMMMMMMMM 11111111 MMMMMM NOME

WI I I/111/ i nil 300

III
Ii InNEoEmEVA/

A

I.

A

INA I

I A

a

II

r1

I IL AIKMIIIIII I IIIMINNIIIIII I

11151MIIIMMI I

c

I

VIIME1111111111M1111111MMMMMMMMMMM IIIIIIIIMMI

/1111111111111YINEMENNEMEMENIONIMIN

li 1II1MM. IENMA

AIM

/I

r/

IA

I I
VI

MMMMMMMr MMMM

IIIMMr ImNEoINmEMMEMNNMIVMINMIIIIINNNaIImMIJI

Tr,

A

A

1

, A

11

MIIVINEMININI NEMENIIINIE1' MMMMMM iv

I MN MMMMM NINEMIDINIENINEFEINIMINNEW

I'MINNIENNIIN M

/

V, .IIIIIIIIINIMI A

INEMEMMEENNNNIEENN!

IME1 1

200

SI EE
SW

M V All 111111111111111111111111111111MIWIMIMMIIIIMM11111111111111111111MMM/ EMINIIIINEVIIIIIIIMENENIFI

, IMMMMM M EMENNIMNEMWMMMMMMMMMM MENNIMENNIMENIMINIMENIONNOMINEENEV

4111111ENNIENV

I 111111111111111111111111111 MMMMMMMMMMMMMMMM EINEEM

I

MI All

IMEMENNIIMI

1

I I

I ,

A

'.11ONEMONIUMITICI
,1/11111111101111111n1 MMMMM I, MMMMMMMMM 111111111111111

MEI

ANNIMENV MMMMM IIII/EINENNEWEIIMMENIEMINEINNEEINIFI

I A

WINN= MMMMMMM NN/ MMMMM IONEMINEENNE

I '/.....N riNENINEN 1 ME A MMMMMMMM V ANIIMENIVANIENNEEMIM IMENENIEN/11 MMMMMM / MENIUMINWE MMMMM EIN MMMMMMM WA

II

NI ,N1111111111 I I 111111111111111MAIMIIMIIIIMI AM111111111111111 11110111111111111

MI INIIIIMIP111111 MMMMM

IIA4111111111111111,A111

Ir/

NI

IM

MI MMMMM MINEMINIIINNEN
iiI1111M111M111M111MMiMl MMMMMMMM MME

ENnI

IIMEMIENEVAI MMMMMM IIINEEMENN'FA

A

11

Y/ MMMMMMM 11//1111111111111ME MMMMMMMM ri

MININENINIENNENNIIIIIIMEEMErNIMMINIMMENIMIIIIEN /1111111111111MNIMIMENEVAIMIENNEN! MMMMMMMMMMMMMMM MENNEN MMMMM

100

I
I

FM/

,INIIINIMEINNICANNEMENIONIENNIIMINEC

AM, A

,I

MMMMMMMMMM 11111111111111,1

I .IIII I allINNIIII.

rA

rA

r1

A r1

I

mums MMM :41MMMM MENIFAINNIMMENV MMMMMMM 1114,4110111111111111U/

IriMmEy/ I I 'WAWIAN

FAININEN MMMMM IIINIIIIIIIF A
FA

IIINIIIIIIIIIIII 4
IA

FA
r1 r1
4

II
F,
r
4

1......11

'4

U

El

MEV A

,I

MIPIWA

4111111111111111In M

.111.T

0

1000

2000

3000

4000

5000

PLATE VOLTAGE IN VOLTS

K-9186105

12-10-45

GL -851
CONSTANT -CURRENT CHARACTERISTICS

MMMMMMMMMMM EMENNEMENNEMEENN MMMMMMMM ENNEENNMEMENNEN'NEMENMMPMMKMNMUMMMMMMMMMEMMNMNMEMNMMMMMMMMEMMMEMNENNEEMNNMMMEMNMEMMMENMEMMMMMMMMMMMMMMMMMEMNMMNMEM IME MMMMMMMMMM NEMEMINNNENNEINNN MMMMMMMMMMMM MENNIMMINN MMMMMMMMMMMMMM MINN. MMMMMM
40 I MMMMMMMM MENN MMMMMMMMMMMMMM MINN MMMMMMM NEMENEMENEMENNIMEN NENE MMMMM NENEEMENNEMENNEMEENNINNMNEENNEENNENEN

ENEE MMMMMMM NENEENNEMEN MMMMMM MENNE MMMMMMMMMMMM MEMENNEMENNNNENNEN MMMMMNNEMNNMMEMEMNMENNNEEMNMMMMM EENN

MMMMMMM ENNUI

NEEMMMENENNME

=NMI

IEEE=

N
30 8

MMMMMMIiMMMM

MN

MMMMMMMMMMM

=MENNEN

MMMMMMMMM

NEENNEEMMENNENENNEN

MMMMM

NENNEEMENNEMENNEMENEMENEMMEMENEMENE

MIN MMMMMMMM NENE MMMMMMMMMMM EMMEN= MMMMMMMMMM NEEMENNOMMENEMENNNEMENEMEMENEEMENENNEEMENNEMENEEN MMMMM

LIZINEZ .

IMI ME MMMMMMMMMMMM INEMENNENNNNMEN

IIMMMb M 10:"AIII%INIEEI=alMMaMmMmMaMMMMMMMMMMMMMMMMMMMMmMoMmMmEoNmEmMumMMmMoMmMMMMMMMMMNMNMiEmNmENuMmMmEoNmmMuMMmMmMumNmMaElNNlMiEfNiNlMlENiNfMfEiNlElNiEEi

ummumummiftromq.nimm..
!IONNI.1,

MM-.4-MMMM

NEEMMENEENNEN MMMMMMMMMMMMMM NNEEMENEMENNENENNEEMENNENIENIMENNE EMENNENEMENNEMENN MMMMMMMMMMMMMMMM NM

MMMMMM

NUNN

20

441Elp;'411.1111:911,111111.:-.NMENP.:=1NENNI MMMMMMMMMMMM EMENEMENNENENN MMMMMMM NOM MMMMMMMMMMMMMMM INEINEMENNMEMENEEINE

6EMETION.UEW.IIMEMENENZ.

W:f. MMMMMMMMMMMM NI MMMMMMMM EN MMMMM NMENNEENNEMMMMMMMMMM MEMENNEENNMEMENNEEN

ENENCOME.7IEN.7.

4:::FINMENhanNENENNIEZ.MA MMMMMMMMMMMMMMMMMMMMMM ENNEMEINEMEINN MMMMM ENEMMENNEEN MMMMM MENNE

NEEN4Z0AME1.71PNENZT1 M 'II MMM 117.2NEMENAft:TMENNENNZnNNMIN MMMMMMMMMMMMMMMMMMMMMEMENNEMENNNEENNE MMMMMMMMMMMMMM E

NNIONEWEINNPiZqNNEWZNENNINN.;724

..".-TPENENNft.=TENEMEMEMENNEENFT M E MMMMMMMMMMMMMMMMMMMMMM MMIMMININNEME

NOME5' A :24MEN.7W

W.T. ' .=!..NEENMNA4.-T

....tmlimmINNME MM LE MMMMMMMMMMMMMMMMMMMM NMNNMENNMENNN

emmImmuuAmmm:ufammlg.ninomwinmp.iz:wnmiuumomm0nom.lmmi.mamzmlma.lTamimzommmiMimmMlmbmmtao.lMraTM.nlzmiM.im.muxm."m5i.m.mamuw..ma..n.;=i:.-mm.a.ce..tdT.o..m7rm.omim.lmmomn.e1p4-..m..i.=a:.m=r0mnmiMimMiMmi.Mum-mMm-p.uM.M.MM.MM-MM=MPLM2MMPMMiMMmMMiMNuMNmMMmMNiMNmMEmEMNiMNmMEuMNmMNuMEMmNEMmNMuMmMMmMuMMmMEMmMMiMIMNMMIMMNMMNMMEMMMM

I0 Am M it; MMM 72.111EMEEND

A 1:=91 MMMM WENN.Z..

....11ZEN.NNIPEMI.G7"N.MNftaTMENOIMMN..-=Mw

....-....

-.TN.

M .4=TT

MM iiiiimma=nummmir MMMMMMMMMMMMMMMMMMMMMMMMMMMM

immunimmomm

gill. .m

ill...7.

Mi

11..MPE:

ii"...TUNE MMMMM P, M G-11..-...

..=-..m MMMMMMM PENNE MMMMMMMMMMMMM NNIMENENNIMMENNEE

im=6INENEM...!..

....

mi. PMEMMENNEMNINENNINEENNENNEENNMMMMMM

WilliftZ..

....

...

.=7....

._....,.... M

1...

INDir''NNEMENN.7.".

1.=._
....5NMENNEMENNEN 1....T

.=2"
.--:::: MM NINgalINNIVAMANEN MMMMMMMMMMMMM NNENNEMENNNE

nlimilEEP.G-17.^1,2E-a=m1CM=..16=7C=7=2====;47.7_71=711===E-....7.7-7.1====19MNMAMENNNOMMINENEINNININEN MMMMMMMM

r:.<41

11.=0NMEN11.1".

.7.71T

.7.=

1.=MMENNE

INNNU.=. MMMMMMMM NOMMN.Z11.0MON41.-.

....

M Z=UNMENNMEEMENNI.="11141Z=

mo.ln

NUMMI. MMMMMM NEN:N=I11NNEEWMaElN.ENMNENNMiEENNNN.EZM.ETN.NEEN.N7I.ENZNnNoNINNNZNIETE.NINN.EZN.NME.EMEN.NENiNiEiMENNMaM=MnMm ftW.T.NNEEN MMMMMMMMMMMMMMM NONNI=

i"..'.. ZIT.INMEENNIENNZ.MEN..=.T7W2O.N.1.=

ii.MNIMINENNI MMMMMMMMMMMMM EMENNEMMENNENEME
..Z=_

m4LTTNINNIN.=,

.1.=

......

...MUNE.. -PENNE= MMMMM EMMEN MMMMMMMMMMMMM IN

W..'.111SEMENWX"mNOMINNIEMENN MMMMMMMMMMMMMMMM

MMEM MMMMMMMMMMMMMM ENNEMEMENEMENN MMMMMM NEMENNENEN.W.M..

.42,UN1MNR14==o1

- I00 MEMO MMMMMMMMMMMMMMMMMMMM NIMIN MMMMMMMMMMM MENNNNOMMENNMIMMEENEN...'

4"....

.....,

NM MMMMMMM EN MMMMMMMMMMMM MENNEN MMMMMMMM NEENNEMEMENENNEMENNI

'-'..-..-.MN MMMMMMMMM liCEMENNENENNENEENNEE

Z.UN MMMMMMM MENNEN MMMMMMM NEEN

MN

Wa.

mom MMMMMM MUM. MMMMMMMMMMMMMMM ENNOMINNMENNENNNIMMENN MMMMMMMMMMMMMMMMM IIMMN MMMMMMMMMMMMMMMMMM EMMENNNENNMENNMENNEEMMEMEN MMMMMMMMMMMMM NUMMEMMEMENEN MMMMM MMMMMMMMMMMMMMMMMMM

200
MMMMMMMMMMMMMMMMMM ENNMEENNEENNEINNEEMENNEEMENEMENNEEMENNMENNNNEN NENNEENNN MMMMMMMMMMMMMMM NENE MMMMMM EMMEN MMMMMMMMMMMMMMMMMMM NENNEEMENEMENNEMEMENENNMN MMMMMMM EMMEN=

11

0

1000

2000

3000

4000

K -69087-72A404

PLATE VOLTAGE IN VOLTS

9-14-50

/New drawing.

GL -851
EU-168A
Page 6 5-51

FILAMENT TERMINAL

OUTLINE GL -851 PLIOTRON
GRID TERMINAL FILAMENT TERMINAL

BASE 3117
3" 3 -4 DIA. APPROX

i" 6 1.73- MAX.DIA.

)0.a

172÷- 81

5-51 (1151)

2 -i2" DIA-APPROX.
\-1 BASE 1902

ANODE
- TERMINAL

K-2636625
Tube Divisions, Electronics Department
GENERAL d ELECTRIC
Schenectady, N. Y.

9-23-44

GL -862-A
DESCRIPTION AND RATING
ETI-169A PAGE 1
5-51

PLIOTRON

DESCRIPTION
The GL -862-A is a three -electrode power tube cooled and is capable of dissipating 50 to 100 designed for use as a radio -frequency amplifier, kilowatts, depending upon the class of service in oscillator, or Class B modulator. The plate is water- which the tube is used.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL
Electrical Data
Filament voltage Filament current at bogey voltage Filament starting current Filament cold resistant . Amplification factor, Ib = 3 amperes, E, = -50 volts d -c Interelectrode capacitances
Grid -plate Grid -filament Plate -filament
'Completely revised.

Minimum 199

Bogey 33
207

0.018 45

54

69.5

43

53

3.0

4.5

Maximum
34.6 volts 215 amperes 360 amperes
ohms
85 uuf 63 uuf 6.0 uuf

GENERAL ELECTRIC

Supersedes ETI-169 dated 4-45

GL -862-A
ETI-169A PAGE 2
5-51
TECHNICAL INFORMATION (CONT'D)
Mechanical Data
Mounting position-vertical, anode down Type of cooling-water and forced air
Water flow on anode Maximum outgoing water temperature
Air flow To bulb To stem
Gasket-Cat. No. 5182028P1 Net weight, approximate
MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS
AUDIO -FREQUENCY POWER AMPLIFIER -CLASS B Maximum ratings, absolute values D -c plate voltage Maximum signal d -c plate current* Maximum signal plate input* Plate dissipation* Typical operation Unless otherwise specified, values are for two tubes D -c plate voltage D -c grid voltage Peak a -f grid -to -grid voltage Zero -signal d -c plate current Maximum signal d -c plate current Effective load resistance, plate to plate Maximum signal driving power, approximate Maximum signal power output, approximate

15-25 GPM 70 C
15 CFM 3 CFM
30 pounds
15,000 max volts 7.5 max amperes 100 max kilowatts 50 max kilowatts
12,000 volts 0 volts
2000 volts 3 amperes 13 amperes
1800 ohms 450 watts 90 kilowatts

RADIO -FREQUENCY POWER AMPLIFIER -CLASS B

Carrier conditions per tube for use with a maximum modulation factor of 1.0
Maximum ratings, absolute values D -c plate voltage D -c plate current Plate input Plate dissipation
Typical operation D -c plate voltage D -c grid voltage D -c plate current Peak r -f grid voltage Driving power, approximate Power output, approximate

20,000 max volts 5 max amperes
100 max kilowatts 75 max kilowatts

12,000
-100
2.8 500 0.5
11

15,000
-150
3.5
625 0.75 17.5

18,000 volts
-200 volts
4.2 amperes 750 volts 1.1 kilowatts 25 kilowatts

PLATE -MODULATED RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR -CLASS C TELEPHONY

Carrier conditions per tube for use with a maximum modulation factor of 1.0
Maximum ratings, absolute values D -c plate voltage D -c grid voltage D -c plate current D -c grid current, approximate Plate input Plate dissipation
Typical operation D -c plate voltage D -c grid voltage D -c plate current D -c grid current, approximate Peak r -f grid voltage, approximate Driving power, approximate Power output, approximate

12,000 max volts -3000 max volts
5 max amperes 1.25 max amperes
60 max kilowatts 50 max kilowatts

8000
-700
4
1
1700 1.7 24

10,000
-750
4.5
1
1850 1.85
34

12,000 volts
-800 volts
5 amperes 1 amperes 2000 volts 2 kilowatts 45 kilowatts

GL -862-A
ETI-169A PAGE 3
5-51

TECHNICAL INFORMATION (CONT'D)

RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR- CLASS C TELEGRAPHY

Key -down conditions per tube without modulationli

Maximum ratings, absolute values D -c plate voltage D -c grid voltage D -c plate current D -c grid current, approximate Plate input Plate dissipation
Typical operation D -c plate voltage D -c grid voltage D -c plate current D -c grid current, approximate Peak r -f grid voltage, approximate Driving power, approximate Power output, approximate

20,000 max volts -3000 max volts
10 max amperes 1 max ampere 200 max kilowatts 100 max kilowatts

12,000
-800
6.25 0.8 2050 1.6
50

15,000 18,000 volts

-900 -1000 volts

7.5 8.33 amperes

0.85

0.9 amperes

2300 2550 volts

2

2.4 kilowatts

75

100 kilowatts

* Averaged over any audio -frequency cycle. t At crest of audio -frequency cycle. 'Modulation essentially negative may be used if the positive peak of the audio -frequency envelope does not exceed 115
er cent of the carrier conditions.

APPLICATION NOTES

Plate Series Protective Resistors (see paragraph describing plate circuit under Installation in the Instructions.)

SMerieasxreisimstoru.m power output of rectifier....10010

20 250

40 50 ohms 640 1600 kilowatts

2000 1600

GL -862-A CHARACTERISTICS

33 VOLTS A -C)

12 00
800 400

K-6966424 f Revised.

nig MMMMMMMMMMMMMMMMMMM CNN 11111101011
PLATE VOLTAGE IN KILOVOLTS

12-10-45

GL -862-A
ETI-169A PAGE 4
5-51
225
- (r) w K-
- Wa a z
F150 Ej
sx
rr
0
- zI --w
Q
_1
Li
75

GL -862-A
Fl LAMENT CHARACTERISTICS

..-
COLD RESISTANCE OF FILAMENT= 0.014 OHMS

200
tr) 100
w < 50
0
V) 20
10
5

GL -898-A EMISSION CHARACTERISTIC

2

K-8074623

10

20

FILAMENT VOLTAGE IN VOLTS

1

30

20

25

30

35

40

9 26-44

Fl AMENT VOLTAGE IN VOLTS (SINGLE-PHASE FILAMENT EXCITATION)

K-8074655

1-9-46

30

25

cs)

.

iu 20

z
cc 15
U
1
10 0

5 I%

1500

1400 1300 1200

GL- 862-A, 898-A
AVERAGE PLATE CHARACTERISTICS E f = 3 3 VOLTS A- C

1100

1000
900

800

700 600
500

GR I D VOLTS

400 300

200
100
0

-100

-200

0
K-6966423

5

10

15

PLATE VOLTAGE - KV

20
1-9-46

1
i
I I
I
I
1

GL -862-A TYPICAL GRID -PLATE TRANSFER CHARACTERISTIC E1= 33 V. A -C

GL -862-A
ETI.169A PAGE 5
5-51

1500 GRID VOLTS
14 5
13
\LL 10
6

0

200

400 0

,ka,,,,, vps..,,a

7',0..0600

-5
0
K-6966425

5

10

PLATE VOLTAGE IN KILOVOLTS

15 9-25-44

GL -862-A
ETI-169A PAGE 6
5-51
3" 4
FILAMENT
TERMINALS 28

*OUTLINE GL -862-A PLIOTRON

7"

STRANDED CABLE

DIA. APPROX.

A
BASE 3908

FLEX. RIBBON
I4X.015 APPRO:.2F-195S"- -+2Ii-"
718111F21X6.1D
)z( o 0 0 0r---

GRID
TERMINAL

3 TI MAX.
I" MAX.

1°IMAi

13"MIN.

68i" MAX.DIA.

8

3i t3

.570"± .020"
2.,

ir+ 516-is DIA'

4116± ANODE

2FT.5i i"

5FT.1MAX.
144--116

K-3846052 +Revised.
551 (11N1)

4.125"MAX. DIA.

6-7-45

Tube Divisions, Electronics Department

GENERAL

ELECTRIC

Schenectady, N. Y.

GL -880
DESCRIPTION AND RATING
ETI-170B PAGE 1
5-49

PLIOTRON
DESCRIPTION
The GL -880 is a three -electrode tube designed and capable of dissipating 20 kilowatts. The cathfor use as a radio -frequency amplifier, oscillator, ode is a pure -tungsten filament. Maximum ratings or Class B modulator. The anode is water-cooled apply up to 25 megacycles.

*TECHNICAL INFORMATION
These data are for reference only. For design informaion refer to specifications.

GENERAL

Electrical Data

Minimum

Filament voltage

Filament current

300

Filament starting current

Filament cold resistance

Amplification factor, Ib =2.0 amp, E, -100 v 17

Interelectrode capacitances

Grid-Plate

21

Grid-Filament

28.8

Plate-Filament

1.0

Technical Information changed throughout.

Bogey 12.6 320
0.003 20
24 35 2.0

Maximum
13.2 volts 330 amperes 480 amperes
.... ohms
23
27 uuf 41.2 uuf 3.0 uuf

GENERAL

ELECTRIC

Supersedes ET/ -170A dated 12-48

GL -880
ETI-170B PAGE 2 5-49

TECHNICAL INFORMATION (CONT'D)

Mechanical Data
Mounting position-Vertical, anode down Type of cooling-Water and forced air
Water flow on anode Maximum outgoing water temperature
Air flow (to bulb and seals)* Maximum glass temperature
Gasket Type No. JTC-11 Net weight, approximate

20 gpm 70 C 20 cfm 150 C
7 pounds

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

AUDIO -FREQUENCY POWER AMPLIFIER AND MODULATOR -CLASS B

Maximum ratings, absolute values D -c plate voltage Maximum signal d -c plate current Maximum signal plate input Plate dissipation
Typical operation Unless otherwise specified, values are for two tubes D -c plate voltage D -c grid voltage
Peak a -f grid -to -grid voltage Zero signal d -c plate current Maximum signal d -c plate current Effective load resistance, plate to plate Maximum signal driving power, approximate Maximum signal power output, approximate * From a 3 -inch diameter nozzle.
t Continuous Commercial Service. Averaged over any audio -frequency cycle of sine -wave form.

CCSt
10,500 max volts 5 max amperes
40 max kilowatts 15 max kilowatts
CCSt CCSt

7500
-340
1450 1.0
6.7
2300 490 31.5

10,000 volts
-450 volts
1680 volts 1.0 amperes
7.0 amperes 3100 ohms
540 watts 46 kilowatts

RADIO -FREQUENCY POWER AMPLIFIER -CLASS B

Carrier conditions per tube for use with a maximum modulation factor of 1.0
Maximum ratings, absolute values D -c plate voltage D -c plate current Plate input Plate dissipation
Typical operation D -c plate voltage D -c grid voltage Peak r -f grid voltage D -c plate current D -c grid current, approximate Driving power, approximate§ Power output, approximate

CCSt

10,500 max volts

4.0 max amperes

32.0 max kilowatts

20.0 max kilowatts

CCSt CCSt

7500 10,000 volts

-340 -460 volts

570

595 volts

3.3

2.75 amperes

0 013 0.009 amperes

1250

900 watts

8

9 kilowatts

PLATE -MODULATED RADIO -FREQUENCY POWER AMPLIFIER -CLASS C TELEPHONY

Carrier conditions per tube for use with a maximum modulation factor of 1.0
Maximum ratings, absolute values D -c plate voltage D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation
Typical operation D -c plate voltage D -c grid voltage Peak r -f grid voltage D -c plate current
D -c grid current, approximate Driving power, approximate Power output, approximate

CCSt

10,500 max volts

-1200 max volts

3.6 max amperes

0.8 max amperes

36 max kilowatts

12 max kilowatts

CCSt CCSt

7500 10,000 volts

-1000 -1200 volts

1560 1840 volts

3.0

3.6 amperes

0.57

0.64 amperes

850 1100 watts

16.0

27.0 kilowatts

TECHNICAL INFORMATION (CONT'D)

GL -880
ETI-170B PAGE 3
5-49

RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR -CLASS C TELEGRAPHY

Key -down conditions per tube without amplitude modulation it
Maximum ratings, absolute values D -c plate voltage D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation
Typical operation D -c plate voltage D -c grid voltage Peak r -f grid voltage D -c plate current D -c grid current, approximate Driving power, approximate Power output, approximate

CCSt
10,500
-1200
6.0 0.8
60
20

CCSt
15,000 max volts -1600 max volts
4.5 max amperes 1.0 max amperes 67.5 max kilowatts 20.0 max kilowatts

CCSt
7500
-600
1250 4.8
0.79 920 24.0

CCSt
10,000
-800
1460 4.5
0.78 1000 33.0

CCSt 10,000 volts -1000 volts
1830 volts 6.0 amperes 0.8 amperes
1500 watts 40.00 kilowatts

t Continuous Commercial Service. § At crest of audio -frequency cycle with modulation factor of 1.0. 7F Modulation essentially negative may be used if the positive peak of the envelope does not exceed 115 per cent of the carrier
conditions. These ratings apply only at a frequency of 1500 kilocycles or less.

Maximum ratings apply up to 25 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced according

to the tabulation below (other maximum ratings are the same as shown above). Special attention should be given to adequate ventilation of the bulb at these frequencies.

Frequency

25

50

100 megacycles

Percentage of maximum rated plate
Voltage and plate input Class B-Maximum plate voltage Maximum plate input
Class C-Plate modulated Class C-Unmodulated

100

80

100

94

100

72

100

75

60 per cent 75 per cent 45 per cent 50 per cent

GL -880
ETI-170B PAGE 4 5-49

GL -880
CONSTANT CURRENT CHARACTERISTICS E, = 12.6 VOLTS A- C

NINNINIIIMENINMENNENNINNEINMEMBNININNNON

IIIMInuliran a 0

1600
1211.1.%1V4V:=11:=1111=Zigillialti nitailankri WM 1200
wNiru4in7a,7ki5lli14"0=I14M167P34141.VVAMNPA7RXM2II62t0i:r-1.l.11aE..MCa.dNra.aiai.n1i.ll.ia=up..n1ri1nn1i1:nIm,.nIe.N1lipiraE.s.rl1gIziVF.iul.ElR.in.aL.Il.rMlE.ai.m.LMn..uIMOllilSI..lNu.S.=.i4-l.OlqiNilm.=lMEum1Em1rT.m3.a.1u:irEmoriEpbuuiN.n-l 800

OUR RIS191111MSERTAMMUCTIJ
1111111111111NriMMINIMINOMMIMMIAMMILIMIEIfNfilItNlqINNrINiMSiInNg

i tfile.

IININNNENNII agglININININNINNEMNIMMINNINNMINN

WilNAOl MMIYIININNIIMNMININIIAIINWNOINMIN111N1IIIN1INI1M1IN.M1W1IIMNIIIMINIINIIIIIMNIIMNIIIMINIEIIIWNIIIMIIIIEMINIIINNIIIIMNNNIMMMIIIIIIIIINIIMN==OMMMNNE

IMMO tiFICZOLITMUMEME=1111:krannaallahaMUMIUMMUIT=12011112. NMI 111111111,/ ,PIIMIIIIMI1111111111111

7.11111,11111111311 Mgrinneemnimais

111111.11111MIN1111111111111111NIMINIIMWIIIIUIMWNENMI

imIN1MMnMM=mINi=MIOmoNENNmIIoM//=NpNoIm2AaNr,ANEINmiiNNAcNINNAe7iNaNNNKImuArUIIMrNMAInA,AAp,NSgNLMMaMImaMWmIPIWNKmmNoMIIiEANNoZNo'.aNPMNNNmNIIIESsNNImNmIN:&IIMN°LOu,Z4oIVM1mIIN1NNMN1LiI11msNNN1Nk:IM1MiMMIoIo1TINUMmMmnLNhI1E1IOIa_oIIu1INM7mlNIi'NsINmNNuEIoNNiIIN1NNMm1IrINNIN1NoEImI1INEONNIn1MiINN=NNNNnI9NIINNNNeNN1I1IIINEmINNMNN1NNO7INIIIuN1NIMINNN1NmNIE1NIMONNI1NNIuIN1NiNINlNN1tImiIINNl1INIIIlMNNNiI1NNIm1NINNININ1NNNIIm1NNNIN1OININNI1uIINIINN1INIINnN1NINNIN1NINnIIN1NIMININiNmNNIINNI4NIIDIN4IINNNNiNINIMNNEiOmIINII1mi1NNN1mI1e1IM1mI1N1NNI11uN1Ij11NINuI1NmMS1N11I11s1NII11mNNN111m1N111NN1Iu11N1I11N1sONm111N11Ie11NNN1EmNI1IMNN1IM1RNmNI1N1NINNN1MINN1No1II1NO1IMINm1N1NN1M1INI1N1NIIo1NMI1IM1NNI1mN1II1MINE11IN1Ni1NmI1N1NI1N1NI11NNuENN1II1ImIIININN1NN1IIINNNuMN1I1NITmI1NNINNh1IMIIINNuNNNENIIMmNNNNNNIMIIIIIImNINNMMMIINNmIPININEIm1MNMN111iINnIII0NNNI1NNMoI1INIII1NNNNmIM1ION1IIEIN1NNMmNI1NNINMIMNNEIMu1IUN0MNNIm1NNN1NMIINNNIImIOINIMIMININNMMeNNI=M=IIMMmINMNNRMNIEEMIiNNoMImIMMMMEIEwMONiI

pp 144

SIVJAI,

.711,NI12IN
wmnag:

-

plmit.NNilNmNINcIFOk,Mg.mI.N1wI1N1s1r44u;1, 4nI1mtA.o7mir-a.i.l.-a...Ai-dmiAninmaei4mnr,mr aiinnummUiummsamigninnnnmiommi smmoumamrMmnuEammNmoiusmimmmAmatlmWowamoi mmmoemmmmmiuudmimmeunoawmmnliomnmmamomwi.

liniaVrAtiltIck4ur..i..1.rialsV.A.41414,iltNes171.9.11,011191ELVESSIMENnuirhEALI

4 trigraraiggatizos41141-MrrkirezrzmllignertinabunriquanIEEPn-

:i. ..1...1.1. 1,..,wit 14. ....... aiyIgMtaI.ijMt.g-i.ZUiT.iP.Ei1IiCITiA1r.-iUN0I-A-N1.'-lr-,fl4-4iaG-l11,gC1R..l1w-i.10-a:1.-4f1w.4t7l1.l.4i_.i.i1MrLl5-1aI.1Mm1..li.aml-ili..iGi.g..a"=..=r..g9.oil1,.Ii1rtmmNM1a.io11mimm1Nl11mmA1om,I11di.ra1.I.S1--itM121z.aL1lmn61a1a.u7A.7rm7m..n..,1m1-t1aii-1ieN_4mi1niMmmn4mimIuf1aetaar4Mivmria=2i.mli;_SFaa1.mr4M.oN.4mR.mWe1IAMm1iI.ml.IV=.i4Io-N;AMr.-2ea.e-.iid5n_im_.=Arimi.,aa..hN..._miM.i.6WIa._.i-Cl.1-irI.i.4l1.ItlAiA.:kin.Mu:.r1m,1=Iu4neuNN1m1N..l1i1In.m11..1.m.2.4IN.1u1I1.Nil1=._IiN.6,mi.I1"N..i.N",.1iM1.I"Ni.1LN"m.II".NI.I'Nm.I"IEi,M,mNmMoINImAEIINmC1NEL.I.NI.EIM.N.mINE1MIVIN.NN1I.NEN4mGIm4II_--: IIIMICAMEWM"'BORPIW-tretrimmjesi ...im...p.. Kamm
....1.151s. mairisin%-em,..NriariMPIREgsI FinaniffiftMilibiLt 4 -w! -Qmati-parra..- aillima: -400 NININIINNI

. - 800 -r.N.0NI6N..NI=.NEI3N.Ir9NN.aNN.I0nOU.,NN.EgII.M.NNl0iNN.lNOImIiNlNlE-FsiLfoo4i.I.i1lN1IldrE..I-.Ie1.iIrmm1C1a1l11geR"1mNiN1rlOIN_1asu..N6_.MIrIim.Mn.IiNM..oI.I.eEIN.Er.n.iiE..1rup11aM.11gi1dnIu1L.r.Iei.m:ti-ili-rmmslI-aNni-Niilm-aM.lE..Ii.-alI.EiIiAtrItPlIloilItlNpIedIlE.iI.Yi.-ir.hm.EstoiaRIllarkiiiiNmi_riiii-.ees.m4iramg.01nee1lul.m0mi.gm,:iiroeibsr.m.i1al1l4g.1a:i

8

12

16

20

K -69087-72A244
Revised curve.

PLATE VOLTAGE IN KILOVOLTS

7-21-48

A GL -880 GRID CHARACTERISTICS
E, = 12.6 VOLTS A -C

12

01? II !I Mira .1.1 ,11.1 11111.11

10

8

6

4

2
0

0

2

K -69087-72A245
A New curve

4

6

PLATE VOLTAGE IN KILOVOLTS

8

10

7-21-48

GL -880
ETI- 170B PAGE 5
5-49

A GL -880 PLATE CHARACTERISTICS
E,=12.6 VOLTS A -C

AAIMPEJ :.MEAsEENO MWAUEREIMT.A1 .

:
EMME

=

A.MILAWEEri

MEMNNEEM

ME, AMMAEMMU

NM rSlIPA

28

N MEAMICEMEr ZIAWAIMA

/MMEN

IVAMAEMEN

NAHISMU

A

EMMEN/rAiuMU Ammramormim.

AMWA

imumummn

rA

24

MEMMCIMMliMMAEIVMMIIIIIAMMMAM ITAIVAMNMEN

!moor.

ANN 'MIAMI EFAIMEMUMW

..r.MONO4

IF/EAAMr.

IIMAWA

IA

N

20

VEAVAEN WAIN AA

IWAMN N
JWA.WAON.WA

:

MEMMIEEAnM

EMEISIMAM M

A

16

IIMEMICEIMMEEN
=EMMIIA 'EAN

'4ENNMEMEWAM A MMMMM WARM
r
1

IA
N

EMMA,

=W MEME rmour,

1

EMMEMMIMAMEUMMEMFA NA

EMMA

12

BMW MIA MMEAVA

mminimmu

MIIMSAMETAI

EMBI

o=mlmiummonr4

EMI

"1112MMMEI

8

.==.IMiimUNaMmMA
EN=MEMIMEEWMIMA

!MIMI

1rAmiummum EMMEN:
'4

MIWA

;

4 WminrIAMmMmMoOmPMmNoamArMiMmmMuEmMERLEmow'

!.-

MAME MEN,AIMME MUM

NM MO!AimmimMm IIIMAEMMEMEMP'

pgmagniiumm_.i0kmmraimppr-oAMy-ogor%

I ..r.;,axidWri.riuriale--mitila . ''..--

0

:

..

:

mull

ME MEM

=MEIN MICEMEMENIIIIM 1E1M1M11E1N111WESEMIIMMEIIIIMME

:MEI

6111MM%
MI

'MMEEMM

M

IMEMEEMEMNMEEEMNEMEMIMMIIMMEEIEMMMEEEMMMMEEMMEMMEEMMEEMM

1

1

immommamomEmMoMsEmN EummmmMoMoMmMmMMimM MMMMM

NAN

NEMMMEMM17.1.

N

N

MMEINEANM.MEEEMMEEMMEENRMIE4MMTEMEEMMM=

MMEMMMI
.mmummommommMNEmRoEm

1

: 4
ENEMAIF Armimmordmom
MEM MIEWAMMIIN AM

1

immmummumm4Kwmormsammi mmommimmummmmommmimmmemmmoummsm

EMMENEINEEE

4

EMEMEIMMEMMEMM

1

MMM

1 mEmNAmmill

Im mil

MENNEN NNEMEAS INNEN:

MEI
1, 4

REMEMEMMENO
imm wi1n1i1ElMMiEEmMMImMMEmIMuNMIMInEiMmEmMimmuommmmoEmmmoommi

Imo!i.i..rimmum.mrpoamlaimmommmimiqomimmimimioimmmmmmloimlmuommmmoommoln

IEMMWA UN

AA

I.r.mi.mmmolmm

....
0
p10 lummmol

mmuummm1 mimmimmul

MMMM mil MMMMMMMM

AmmommumiNsUMMI

FAME

MENEM:

A 4

1r

A

'Adl

rammmoummmimmaimmmmimom:
Ok

m111111
1

Aimmummr4

namemommorsA

!AMIE

!I"

"-AIMIIIImm,
-samirmiww:

ICC

A

.all

MENEM MMM _ MM MM..

AMMEEEMM4.

gyp=

=-

_.

r.._tr.

m11.-. ..- M !!!

8

12

16

I
20

PLATE VOLTAGE IN KILOVOLTS

K -69087-72A243
New curve.

7-21-48

GL -880
ETI-170B PAGE 6 5-49
FILAMENT TERMINAL
GRID TERMINAL
'56" MIN. STRAIGHT SIDE
81.+1. 16 - 16

OUTLINE
GL -880 PLIOTRON

2-er

GRID TERMINAL

FILAMENT TERMINAL

3" .4-.4379±.007" DIA.

NOTE:
THE TUBE BASE SHALL BE CAPABLE OF ENTERING TO A DISTANCE OF 5/s" IN A FLAT PLATE GAGE HAVING FOUR HOLES .536"
.001" DIA. ARRANGED ALTERNATELY ON TWO CONCENTRIC CIRCLES 2.125" t .001' AND 2.375'
.001" DIA. AT ANGLES OF 90° 10'.

,MAX. DIA.
DIA.

it

8
K-5965320
Revised outline.
5-49 (10M) Filing No. 8850

14-3.170"+.035"-4-1, II

I

DIA.

I

I

II II

I
--4.0 62'11.0 4 5 DIA.' II

APPROX.

4.1871'°32ID IA.

**MIN.

5.750032"

DIA.

I

;"ANODE

8-1 8.45
Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

GL -889-A
DESCRIPTION AND RATING
EV-171A PAGE 1
8-50

PLIOTRON

DESCRIPTION
The GL -889-A is a three -electrode power tube designed for use as a radio -frequency, amplifier,
oscillator, or Class B modulator. The plate is water-cooled and is capable of dissipating 5

kilowatts, depending upon the class of service. The
design of the mount and terminal connections minimizes lead inductance and makes the tube particularly suitable for high -frequency applications.

GENERAL

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

Electrical Data
Filament voltage Filament current at bogey voltage Filament starting current Filament cold resistance Amplification factor, at It, = 1.0 amp.
E, = -100 volts Interelectrode capacitance
Grid -plate Grid -filament
Plate -filament *Completely revised

Minimum 110

Bogey 11.0 120

0.008

Maximum
11.5 volts 128 amperes 180 amperes
- ohm

17

21

25

15

17.5

20 micromicrofarads

19.2

23.3

27.4 micromicrofarads

1.8

2.7

3.6 micromicrofarads

GENERAL

ELECTRIC

Supersedes ETI-171 dated 4-45

GL -889-A
ETI-171A PAGE 2 8-50

TECHNICAL INFORMATION (CONT'D)

Mechanical Data
Mounting position Type of cooling
Water flow on anode Maximum outgoing water temperature
Air flow* (to bulb) Maximum glass temperature
Net weight, approximate *Air to be directed at the top of tube from a 3 -inch -diameter nozzle.

vertical, anode down water and forced air 6 gallons per minute 70 centigrade 15 cubic feet per minute . 150 centigrade 2 pounds

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

AUDIO -FREQUENCY POWER AMPLIFIER AND MODULATOR -CLASS B

Maximum ratings, absolute values D -c plate voltage Maximum signal d -c plate current Maximum signal plate input Plate dissipation t
Typical operation Unless otherwise specified, values are for two tubes D -c plate voltage D -c grid voltage
Peak a -f grid -to -grid voltage Zero signal d -c plate current Maximum signal d -c plate current Effective load resistance, plate -to -plate. Maximum signal driving power, approximate Maximum signal power output, approximate Averaged over any audio -frequency cycle of sine -wave form.

5000
-180
1460 0.4 3.2
2520 170 8.8

CCS*
6000
-230
1680 0.4 3.6
3680 180
12

CCS* 8500 maximum volts
2 maximum amperes 12 maximum kilowatts 5 maximum kilowatts
7500 volts
-300 volts
1700 volts 0.4 ampere 3.2 amperes
5000 ohms 150 watts 15 kilowatts

RADIO -FREQUENCY POWER AMPLIFIER -CLASS B
Carrier conditions per tube for use with a maximum modulation factor of 1.0
Maximum ratings, absolute values D -c plate voltage D -c plate current Plate input Plate dissipation
Typical operation D -c plate voltage D -c grid voltage Peak r -f grid voltage D -c plate current D -c grid current, approximate Driving power, approximatell Power output, approximate
At crest of audio -frequency cycle with modulation factor of 1.0.

CCS* 8500 maximum volts
1.0 maximum ampere 7 5 maximum kilowatts
5 maximum kilowatts

CCS*

6000 7500 volts

-250 -300 volts

460

500 volts

0.9

0.9 ampere

0 003 0.005 ampere

95

80 watts

1.5

2 kilowatts

PLATE -MODULATED RADIO -FREQUENCY POWER AMPLIFIER -CLASS C TELEPHONY

Carrier conditions per tube for use with a maximum modulation factor of 1.0
Maximum ratings, absolute values D -c plate voltage D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation

CCS** 6000 maximum volts 1000 maximum volts 1.0 maximum ampere 0.25 maximum ampere 6 maximum kilowatts 3 maximum kilowatts

TECHNICAL INFORMATION (CONT'D)

Typical operation D -c plate voltage D -c grid voltage Peak r -f grid voltage D -c plate current D -c grid current, approximate Driving power, approximate Power output, approximate

CCS*

5000 6000 volts

-800 -900 volts

1300 1420 volts

0.9

1.0 ampere

0.12

0.1 ampere

155

140 watts

2.75

4 kilowatts

GL -889-A
ETI-171A PAGE 3 8-50

RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR -CLASS C TELEGRAPHY

Key -down Conditions Per Tube Without Amplitude Modulation

Maximum ratings, absolute values

CCS*

D -c plate voltage D -c grid voltage

8500 maximum volts -1000 maximum volts

D -c plate current

2 maximum amperes

D -c grid current

0 25 maximum ampere

Plate input

16 maximum kilowatts

Plate dissipation

5 maximum kilowatts

Typical operation

CCS*

D -c plate voltage D -c grid voltage

5000 6000 7500 volts
-500 -600 -800 volts

Peak r -f grid voltage

1200 1460 1830 volts

D -c plate current

1.5

1.8

2 amperes

D -c grid current, approximate

0.19 0.21 0.24 ampere

Driving power, approximate

220

290

400 watts

Power output, approximate

5

7

10 kilowatts

Modulation essentially negative may be used if the positive peak of the envelope does not exceed 115 per cent of the carrier

conditions.

**CCS-Continuous commercial service.

APPLICATION NOTES

*GL -889-A can be operated at maximum ratings in all classes of service at frequencies as high as 50 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised. (Other maximum ratings are the same as shown under TECHNICAL INFORMATION.)

The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 150 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

Frequency
Percentage of maximum rated plate voltage and plate input
Class B Class C plate modulated Class C unmodulated-maximum plate voltage Class C unmodulated-maximum plate input

50

100

150 megacycles

100

83

72 per cent

100

75

60 per cent

100

78

65 per cent

100

70

50 per cent

U)

0

U)

0

S32:13c114/V NI NOISSIVIS3

1JJ
-c& LLJ
0 t) 1.
> CCCO) <
--I Icaw
<4 II
0- ILI
6 0
I--

0

0

9

0

0

S3213dAV NI 114321dfl3 Uld5

messmsloommomomm
111111111111111 11111111111111 11111111111111111111 II 11111111111111111AI 1

-
0100111 I 1 1 11 1 1 I 1111111111
Piiiiiiiiiiiiiii M11M1U11M11M11E11M11A01P11O11U1R11EMEMNMAMO EmmLiAlVmEiMmEm.pmAmMmOENmXmIA
II iinallinil II MENNIMI

11011 111111011,11111111

ior iiiiiiiiiii

moo,.

...

III 11151 i! hi Ili iii IIIL iii

Il

voNowompirompollo

01:111114111011111000111001

ill

Ai,. IIIIIIIIIIIIIII1011,1112111111111116

Il

1111111111111111111111111111111111111" 1 milimilli;;;iiii:::
(0
Sa2lIelVYVKI11132181011cfld

GL -889-A AVERAGE FILAMENT CHARACTERISTICS
COLD RESISTANCE =0.008 OHM
150
100
50

GL -889-A
ETI-171A PAGE 5
8-50

0

5

10

FILAMENT VOLTAGE IN VOLTS

K-8074634
MI Not previously included

GL -889-A CHARACTERISTIC

1-9-46

1200

AdIkliIIIkaiii:IIII.Iilliflilre

1111116411114611111:11 Iiinili a

14111

1...

.

411111116111111111°"1411141111111 1111111111111 1111

1111 111115a11/i111141 Ir.

i") NH INV§

liii 11111166i-

1

800 HMI& irdr

town 171;11° 11...1.

41111111111
. pl.

1..1.1.1..1.0.1..1.111

1111111 I
mom

..I ...... :111.1i1 11 It
1.1111

11111111P!

III
111111

HINVONNISINPFIErliiid

600

..

iplliii.101111111115iitlii.,11111111111111 1111 !!!!

11111111011111111/g11111 l' 1:154111N1 I III 1/11111111111

11 1111i 111111in

ill

g2

1111921162;111111111111:11P11111111111111E1W1111111111111111111 IIIIIIII1 li 1

1111111

- -IN I 40" IiirligHliiiiiiiiliiiiiIiiiiiilgiMill "I MI -"MIMI' III I

_z

ilt.villimumwilluirlimmilli . g 14:..!! II

!L;1

u.,
it
i
.

115I"h16h1.1-1-1.11.-1,_6.811iiiiiiiiNklivililimillillip

,,..um 200 pliklairil:il6lO2g1I1ng1g1n1IP1-iAlloPiIgWliImIII.ia.._1.1_161611_".0.,:4-1-,1.1..11-141!..p-_h_ipe

- --Iil
1 iiii

rogiiiiiiimmkpantrnma....-...

ApPINUNNUOINPadodr1 ,IIIIIIIIIIMN1'411111 6111;;;I:17111111111111:1111111161111 _

1 in

11 1111 1111

; 1:111

fin MI

91-1111I!r.MI MI IN lin

Ir iii 1111

1C-807407 IRevised

200 III III 111111111 11111111114111116111111:1i1l1"l" III...-- I

-

... W

-400 III 1111 IINIIIII

tall III" 6 14 iiig" I
III u 01111ffivoldiffillirhhi.humnb 1

muomummiimummommommunuommumhomilimionglowsh Jim

-600 11111P1111111111111101111111111111111111111111111111111101101111111111111110111011110101
mIllitmhiilllliilnlill!i!k!!u!!m!!!m!!IidIIiIbI miliginummmmimummpmlipolmimmuullimmupmlimmiollimmmumunilklimmihllnimoiwllinll

11111111

11111111111111111111111111

Ill

2

1

6

8

10

PLATE VOLTAGE IN KILOVOLTS

3-5-48

GL -889-A
En -171A PAGE 6
8-50
FILAMENT TERMINAL

GRID TERMINAL

GRID TERMINAL

FILAMENT TERMINAL

MIN. STRAIGHT SIDE

NOTE: THE TUBE BASE SHALL BE CAPABLE OF ENTERING TO A
DISTANCE OF IN A
FLAT PLATE GAUGE HAVING FOUR HOLES .536"±.00I"DIA. ARRANGED ON A CIRCLE OF 2.125"+,001" DIA. AT ANGLES OF 9 0 °±I0'

TI
- 2.02211+.030 Ji-if DIA.
ANODE-'

K 534471 3
8-50 (1181

GL -889-A OUTLINE
Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

3-16-45

GL -891
DESCRIPTION AND RATING
ETI-172C PAGE 1
9-51

PLIOTRON

DESCRIPTION
The GL -891 is a three -electrode transmitting tube of the double -filament type for use as a radio frequency power amplifier, oscillator, Class A modulator and Class B modulator. The construction of the filament permits operation from two-phase or single-phase alternating -current as well as from

direct current, for all classes of service. The plate is water-cooled and is capable of dissipating 6 kilowatts, depending on the service in which the tube is used. The GL -891 can be operated at maximum ratings at frequencies as high as 1.6 megacycles and up to 20 megacycles at reduced ratings.

GENERAL

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

Electrical Data
Filament voltage Filament current at bogey voltage Filament starting current Filament cold resistance Amplification factor
E, = -500 volts, Ib = 0.75 ampere
Interelectrode capacitances: Grid -plate Grid -filament
Plate -filament

Minimum 57

Bogey 22 60
0.031

Maximum
23 volts 62 amperes 120 amperes
- ohm

7.6

8.5

9.4

24

27

31 micromicrofarads

15

19

23 micromicrofarads

1

2

3 micromicrofarads

GENERAL

ELECTRIC

Supersedes ETI-1728 dated 8-50

GL -891
ETI.172C PAGE 2
9-51

TECHNICAL INFORMATION (CONT'D)

Mechanical Data

Mounting position

Type of cooling

Water flow on anode

3

Maximum outgoing water temperature

Maximum glass temperature

Net weight, approximate

vertical, anode down water 8 gallons per minute 70 °centigrade 150 °centigrade 31/2" pounds

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

AUDIO FREQUENCY POWER AMPLIFIER AND MODULATOR -CLASS B

Maximum ratings, absolute values D -c plate voltage Maximum signal d -c plate current$ Maximum signal plate input$ Plate dissipation$

CCS* 15,000 volts maximum
2.0 amperes maximum 20,000 watts maximum 5,000 watts maximum

Typical operation (unless otherwise specified, values are for two tubes).
D -c plate voltage D -c grid voltage Peak a -f grid -to -grid voltage Zero signal d -c plate current Maximum signal d -c plate current Effective load resistance, plate -to -plate Maximum signal driving power, approximate Maximum signal power output, approximate

6,000
-630
2,060 0.5 2.5
5,000 110
8,000

CCS* 10,000
-1,100
3,060 0.5 2.4
10,000 225
16,000

12,500 volts -1,450 volts
3,760 volts 0.4 ampere 2.5 amperes
12,000 ohms 245 watts
22,000 watts

*Continuous Commercial Service. Averaged over any audio -frequency cycle of sine -wave form.

RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR -CLASS C TELEGRAPHY

(Key -down Conditions Per Tube Without Amplitude Modulation)11
Maximum ratings, absolute values D -c plate voltage D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation

CCS* 12,000 volts maximum
-3,000 volts maximum 2 0 amperes maximum 0 15 ampere maximum
18,000 watts maximum 6,000 watts maximum

Typical operation D -c plate voltage D -c grid voltage Peak r -f grid voltage D -c plate current D -c grid current, approximate Driving power, approximate Power output, approximate

CCS* 8,000 10,000 volts
-1,800 -2,000 volts
2,400 2,700 volts 1.15 1.33 amperes
0.09 0.14 ampere 215 375 watts
6,500 10,000 watts

*Continuous Commercial Service. Modulation essentially negative may be used if the positive peak of the envelope does not exceed 115% of the carrier conditions.

APPLICATION NOTES

GL -891 can be operated at maximum ratings in all classes of service at frequencies as high as 1.6 megacycles. The tube may be operated at higher frequencies provided the
maximum values of plate voltage and power input are reduced as the frequency is raised. (Other maximum ratings. are the same as shown under MAXIMUM RATINGS

and TYPICAL OPERATING CONDITIONS.) The tabulation shows the highest percentage of maximum plate voltage and power input that can be used up to 20 me for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these fre-
quencies.

Frequency

1.6

7.5

Percentage of maximum rated plate voltage and plate input, Class C,

unmodulated

100

75

20 megacycles 50 per cent

GL -891 AVERAGE PLATE CHARACTERISTICS
Er -22 VOLTS A -C SINGLE-PHASE EXCITATION

GL -891
ETI-172C
PAGE 3
9-51

8
MEMMEMMEMMEM OnMmMoImMMmIuMmMmOMoMnME

I
MUM MN MI -FEE MEMMEMMMI II =MP MAIMMEMMIMMEMIMMEMMEMEMEMMUMIMMEMEMM PM IMMIMMIMINMEM MPS mmmnommmommmummmonnommommommumminunnammommummommmonn
NilaM nnomnomms mu- mummmummommmommmm mmommommommmonnmminnommmummunnommn nmm

nm

IIIIIIIIIIN IIwoo nom mumm mmmummommm EMMIUMMMEM

nn1111111111111111111111111111
MIMMEMMEMEMMIMMEMMINMMEEMMEMMMEMMIMMEMMIMMEMMEM MEMM MIME

MOMMAIMMIMMEMMMEMM PM MINAMMEMPMEMMEMEME PM MEMMEMMAIMMMIMMMUMMPMEMEMMIMMEMMIOMMEMMEMMIMMAIMM OMMIMMMEMEMMME MMAIMMEMIMMIMMMEMMMEMEM M M Mil MEM MMMEMMEMMMEMPMENMEMMEMMEMEM IMMINNEMMEMMEMM

6

NI MI

MMIMMOIMIMMM'4O1IMAAMIMMUMNPNMIM

MIMMMMIIMEMMMEEMMMMEINMMMEEMMEMMEEMmMoEmM

ME MMEMMIMMUMMEMEMEMEMMIMMEMMEMPMEM IMM
mimmommunimmommanummmommommmummommommmummon

vanompalmmommm minammmmummumm mmommommm nummommumm mm mnimmnommommmmmunmommmmummmm

in

m

0

2
7 -

T

m m
iii

mm m
lig

go

IIIK

A

Mk, OirtA

N

4

A

1 r1 I ftN..

A

M

'

-

II1f

IIF I

r

Il r1- Ar2m

.

I 111 r

r

F

u

F, 11111
.A W4 1,

Wlb

ail!

'
I

.

V

I

nA
.
NAM
r

A

A

1 I

A MWIAr V
Ibrloe 0M

riiir r
2 ww..A ..,A .. 4

IF

br

A

/M

rr

A r

? ,-:

A

r

p'

I A

4

. A

FrA

.

.

N/1

'4

r

1

A

A

' Art, .
.4

WA 0 A 111.

N EAMMVAMMMAIMMIMYMM mumnmamorAmmoummormommuFmardnumraromnom mm mmommmmomm

morainnimm mu A MI AmmmummEcammmAmmurAmmrammnummorAmmorammorAmmannmairAnacrnmummmEmmnommum

muammrsm ram mAmmmrAmmrmmEmAmmmrm

MmuUrMmMuAr JUIN PWEmMmiumim.ArmiAnmwmIuiII mm,mmuirrmmmAMmVmAFM4 MAFmAmImM.MMmUmMoIrlMmFAmMroIaMmIImAOmWuAmImMPoMAIuPmAmPmOAmIMuPmMmMnMInFAeUmWuAm-MnMIoaiACto,-IsWuA.nCNATAg,ievrka.i1mommmm

I nimrAmmum WA MUM =rim FAmmmumurm mFammFammFAmmmrAnimmumemmunmnraimpu mpummummEmmmnom

VI

.!F.A,,AFM A

Ar

A

rrr11.Arr r

,

A

A

EWA mu.
A A
frAmmisummm

A

rumA my, Ad WA

A

A

.

mm Am I M

,A

AI

14

A

FAMMrIVAIFM MIA

AdnurAmmorimmrAim AmmrAm

A

A

.
.

r4

AM r A r ,

r
A

AA

n AP'

ir
A

P'
A

111111111111

prampramprinmmA mom mprampunimprAmprammmnommounimmn

A
up

rAiAramprummAoAnam.m1uimmrAm.ma raimmmmimmommummmon

hISMIPAMIMMIPIMIM u_mpu mrAmmorawom rummpAmmir
'Fr IF

AM AIME rAPMFMAIMPFrAMMIWAMMUMIMIMEMMIM MMIMMIMMIMMEMMM

0

i
5000

r-
10000

15000

PLATE VOLTAGE IN VOLTS

K -69087-72A104 /Revised drawing.

GL -891
ETI-172C PAGE 4
9 -51

GL -891
AVERAGE GRID -PLATE TRANSFER CHARACTERISTICS Ef = 22 VOLTS A -C
SINGLE-PHASE EXCITATION

3.0

L

2.5

2.0

1.5

1.0

F0
x

0

0.5
1

K -69087-72A445 +Revised drawing.

I000

2000

3000

PLATE VOLTAGE IN VOLTS

4000

.GL -891 AVERAGE CONSTANT -CURRENT CHARACTERISTICS
Ef =22 VOLTS A -C SINGLE-PHASE EXCITATION

IIIIIIIMM=MMIIIIMEN
1111111111111111=11111111111111111111M1

IIMEN11111111M=

M=MINIIIMMMINNIIIMENIIMMI

IIMENIMENNIMIll

rmirming= mMallE11=111I1IM111M111E111N11I1M111M111I1I1I1I1I1I1I0I1I1IIIIIIMIIIIIII

IIIIIMMENIM11111 111N11111111111111111111111
Nimmi

Egglinsirm======= 100 =mWinwMao/kuINmmiminorrauim&usmammummmommommEurlm= mmnimmi
Ell==== 1MMI1NE1IMMWIMNimrJAVMrAI.rLlNlo\vLUw/WInIo/1VrA1w1Ar1ra1IaMMnm1tla1Mm1i1lMm1il1l/iiW1sM1w1Ii1Tal1lr4s1I1sM11i11mM011m1IMI1IE=IENMNININNM

=IC

mwmWrIrAL.iuAvrrIAlatkiiNmiviIniIreIidMmroAamuImIoVnmoArIum.M.t.oMm.m.IiNarmmSnoWiuomImnImIImImIeINmooImIoImImImIImmMoMoimmmE

611111111111M11=

MLAIWWWIAMgnn111 1111 500 MU/1615117".111411b..1111111110. IIMIIMMINIIMMIIIMIONININ
I1/r1Pia1NPi1lIl0PWW1M0CI1AP0PNU110R0IM61I1l1lMi11a1EIm1\l1i11n11n1111i1b.10WiZ12.I1NOIbIt1I0Ii1I.0_.b1"41`.1141.11111=11M1=111i11r1o111m11M1Mi1llII1iINk1IIi1IiMIi1IaI.I1M!IMImNiIaNlln=i

111111111111111IMMIIIIN

10.7110111111\ MEM r_ii.TMIIINZAIMballialliiININNIII

111W7N31111111014111EM1MI111R1u1l1".40.9.111111E1M10OJIMNIIlhII:MTIMMIi6i .7.7141I . 11111111:141M1m...1==

24110111M1b01=0.511=M1114=11kb..1:51WW. I. 11111M111h\ MI

ZgiiTAIIIMIIIIIIhnINIINOJI=M101111111117.91haTIM117.1.4. IMININ"

I0ii1M11110111101111.04.1111M0ia1S1I1M1Ill0h4aM1M11IN1IMhZINiEll WMNIIiIii215M4M111110111_1111M.1O1N1M1ulMinbl.i.k..-_b.._

IIIIIIIIIIIMMIONMS11111:111MMONNOINII0111111116751b1.11111b.-'`44111M.--'411M11.-

1M1I1N1N1I1IM1.E1M11O1I1II1M1O11M11M1111111.i1L1il1l=1M11IV0i1llI1N1I0M5I1N1110111.1111111111M1G11-1b4..1-'1il1MiLnIiOb.M\INi..I.N-4I1M._N"I`i"it4u1ln1in

ri -500 MMMMIMININMMI1NIIIIIIII1M=MEIIINI1IIEIMNIMEI1IIMIII1EMIIIMMM0MEMIM1IIIMMIII1IIEIIIN1=IMMIIM1MMMWII1EIIMII1IMMIIMIMIINIMMO.MMISNINmIMaIIMIMII1hICZha1.i.ZSn.1k.N=1I.1II_11IIM1IN11`I14I.1i7I1M2I1I4N-14M"111II1I1lM1l1N'I=E11'N1Oq111li1I1n1bSDlM\17l=01IIWM4OM11M111I\MIMMNI1\1I1IIEE0Ib0CIM0IoN11ISI17M1lII11IM.a16I1b1I11I.1ir1.It2..MIE11\.1M.17141I1l111lI11lbN111k1i1111LIM1Ni1i1.l11.=.-eI0"1-.OM1111W1I11R17N111111I4\l141011Iib411N111..111b11-41-1I11.11iN-=11i1-.11-1`11-114N1"11.1u1.111.1l11"I1l1a1i1i11.,bkb14'1W1.O1l0.-i1k1.1A1Ei1i-_1.1ml.IWl1\.1bl1--i1i.-`.1.-i-1_0--7Ab'1"11hW1M11..11-i.1I1I.\N-I0141I11I1E1I1ii1I.1b.11M.\-7.1m1-5.-I1I14Nl14.iMi1O1I0I1I1N41N1.1-1\1MIMM1M1I.,M71b1E.brn._in==

1M11111 MNIM.WI.II.MII.IIMII.IIMIM.IMIEMMImIIMINEMIM_MEMEmNdM1IEBIII1IIMNI1M1EI1EII1IMI1NII1II1E=II0II1Mm1bMM,MIEMMNMIM=IIIiOMI.II'MmIIIMIIMmIIMIbIIMlIlI.I_7MI7N!Il1lIMMIWl=lkI1IaENI1Im1bMI1miIZILmMMMEmII1IMlIa1bII,\Mh.1i.-h1.iI.r1I1WIs1IM10-\IW4M-I.I1I4MI1Ii.l1IihMihi1:.:1.._.....-q1.1"1N11%11M11M11Ill7Mii1.M.-1_E11-I1'i1i4lO1.a111q1g1.l1l.111.n0.11.i11h1bb1=i..1bM..1-\.M1-1-g11I-N.l1"1iiI11I.M.l-Ml.1Mh1q11i1kEb1I.N-i.Ml-"lWIqiIaiqZiEl.IAlN"ibM1III.II-1IM'M4IM1IZIrM1...IM.WMN..1I1I1hI/I12iiIli

-1000 11111.3111====

=111111111=1111111101MINIMb.W411111\74101MMINNII7INOWS11111Mb..74111111M
IIMNMImIN1N11IM1I1N1IM11M1O1I1N1O6I\NIIN11II1IM.CM41.-1W111111111111111117..-1-'11111111f1fiM1millIbm...-.-la11h1.,1-`11111E1-17

11M1=1E1M=E1=1M1M1E=N1N1E1=1MMMIINN

I1INN1IIMI1MM1MI1NE1MI0NII0IIIIIA1N:I17141.111M1II1M11I1I11M11.1-117111~06/14\1111111111111/1/1b1.1b_`70114111=11M11Mh..:.Wb.W.I-N`,IeRNlIIlIIIiIIlIIiMIkINM..I.IMr.-7'`ii41.1.\1111M1M1M111II1I1-"1M11tMill

Ennpannerj= -1500

MENMNi=mEEMuNmNEuENmMNmIIEIoMMoINmMImNIIIiMlMlIMIEIIEIMINIIIIIINIMINIIIMmNI1I1oII1IM1n=11i11In1N11i1m11I11N1m1111N1I1I111111iI.I.M.. 1IN1N=1IM.1VM..I.PI.I.I-I.1sN,'_'.1I1-N11"11IiM1`1i1lOl'1rIi1lNMM1I1bI1I1i,1i1.i..117.M_\4m1h1Z1i1li1Pl1I1MI1G10iM1b11..I1.=I.I10N11I11li1a11l 1i.--11=

111111111111111MME

011111111111111WMINIIMMIMMIZqUNIIIIII..-MINNI.,-411INII!

4000

8000

12000

1600

K -69087-72A447 +Revised drawing.

PLATE VOLTAGE 1 N VOLTS

GL -891
ETI-172C PAGE 6
9-51

*GL -891 AVERAGE FILAMENT EMISSION CHARACTERISTIC

10

==

= =

mm ---mm- -m.1;I

8 mmmummmmumnmmmummmmmmmmgmmommummommommommmmmmommummmemaimmmmmm

1111111111111111111111111110111111111111111111P5111111111
p.

11111,11 0 I 111111111111111111111111111111111111

0 8

06
111111111111111111111111121111111111111111111111111111111111111

0.4 2

0.3

mommimmammemmEmmw:kmmmomminummommmommammimmemmmammmommEmmummmm IMMlMmEoMmMmIMNmIMMMMMEMMEMEEIMAMMEMKMAMMMMMEMMIEMMMEWMMMMEMMMMMEMMWMMEUMMMMEMMMMMEWMMMIEIMMMMEMMMEMMMMIIMMMMIMNEMMEIMMMMEMMM

0.2

11111111111111111111111111111111111111111111111111111111111111111
mmmm 0.1 11111111111111111111111111111111111111111111111111111111111 m1o1m1=1
.08 immommommmmommEmsmmommimmmimmmimmommmommummsmommimmeE!

.06 MiummommEmmEmmommommummmrnmEmmommimmmimmommommEmim Emma

mummEmmmigmmummummommommEmmmummommmummommmmmimmimum mom

.04

m=ammaw.-

=====

.03 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

.02

.01
12
K -69087-72A448 112e,r4ed drawing.

IIIIIIIIIIIIIIIIIIHIIIIII1111111111

14

16

18

20

22

FILAMENT VOLTAGE IN VOLTS

GL -891 AVERAGE FILAMENT CHARACTERISTIC
66

GL -891
ETI-172C PAGE 7
9-51

64

62

LARGE TERMINAL OF BASE

COLD RESISTANCE OF FILAMENT =-
0.031 OHM

60

58

56

FILAMENT SUPPLY

54
8
K -69087-72A441 +Revised drawing.

2

22

24

26

FILAMENT VOLTAGE I N NOLTS

WITH D -C EXCITATION
BASE TERMINALS

GL -891 FILAMENT CONNECTIONS
WITH SINGLE-PHASE A -C EXCITATION
BASE TERMINALS

WITH TWO-PHASE A -C EXCITATION
BASE TERMINALS

LARGE TERMINAL
V = 22 VOLTS A = 60 AMPERES
K-9033547

LARGE TERMINAL
V = 22 VOLTS A = 60 AMPERES

LARGE TERMINAL
V =11 VOLTS A = 60 AMPERES

12-1-44

GL -891
EV-172C PAGE 8
9 -51

FILAMENT TERMINALS

\ 120°NOMINAL FILAMENT CENTER -TAP TERM "MIN. RADIUS

9-51 (11M)

GRID TERMINAL

120°NOMINAL

--rf-74
.43 7" -1-.°°711DIA:64
1-1-7M IN 16
BASE 3232

r-.500"± .°°7 "DIA . i_
Ili MAX.
t

437"-±,007"DIA.

T
.438"MIN

2r2MDAIAX. .

3131" 1 . 2 r7e"MAX DIA

2.000 fit .020" DIA

-..! A 3" MAX.
--'-F-6" ' DIA.

121r6'k8"

7 2.74 2" 16- 8

20-15".±13"

,

Li_ 2

,
2

/ i Il tvitp.

f\ I .187f"±.015t "

1

1580" t '050"

DIA

8 _16°-t8-1"

ANODE ------49 I
OUTLINE GL -891 PLIOTRON
K-6966979

3-11-47

Tube Department, Electronics Division
GENERALO ELECTRIC
Schenectady, N. Y.

GL -892
DESCRIPTION
AND RATING
ETI-173 PAGE 1
4-45

PLIOTRON

DESCRIPTION
The 892 is a three -electrode pliotron of the
double -filament type for use as a radio -frequency power amplifier, oscillator, and Class B modulator. The construction of the filament permits operation

from two-phase or single-phase alternating current as well as from direct current, for all classes of service. The plate is water-cooled and is capable of dissipating 6.6 to 10 kilowatts.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS
Number of electrodes
Electrical
Cathode-filamentary, two -unit type
Excitation 1 -phase a -c, 2 -phase a -c, or d -c Voltage, per unit . Current . Amplification factor Direct interelectrode capacitances Grid -plate Grid -filament . . . Plate -filament Frequency for maximum ratings .

3

.11 volts .60 amperes .50

.30 micromicrofarads

.

...20 micromicrofarads

15 micromicrofarads

1 6 megacycles

TUBE

GENERAL CD ELECTRIC

GL -892
ETI-173 PAGE 2 4-45

TECHNICAL INFORMATION (CONT'D)

Mechanical
Type of cooling Maximum outlet temperature Water flow
Gasket Net weight, approximate Shipping weight, approximate

water ..70 centigrade
3 to 8 gallons per minute
cat. no. 5182028P3 3 pounds 10 pounds

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS
CLASS B AUDIO -FREQUENCY POWER AMPLIFIER (TWO TUBES)
D -c plate voltage . Max -signal d -c plate current* Max -signal plate input* Plate dissipation Typical operation:
Unless otherwise specified, values are for 2 tubes. D -c plate voltage D -c grid voltaget ... Peak a -f grid -to -grid voltage . Zero -signal d -c plate current Max -signal d -c plate current Load resistance (per tube) . Effective load resistance (plate -to -plate) Max -signal driving power, approximate Max -signal power output, approximate.

. 15000 volts 2 0 amperes 20 kilowatts 7 5 kilowatts

6000
0
1200 0.5 2.5
1050 4200
415
8

10000
-90
1620 0.5 3.2
1600 6400
525
20

12500 volts
-170 volts
1530 volts
0.4 ampere 2.8 amperes
2500 ohms
10000 ohms 420 watts 22 kilowatts

CLASS B RADIO -FREQUENCY POWER AMPLIFIER
Carrier conditions per tube for use with a maximum modulation factor of 1.0
D -c plate voltage . D -c plate current Plate input Plate dissipation Typical operation:
D -c plate voltage . D -c grid voltaget . Peak r -f grid voltage D -c plate current Driving power°, approximate Power output, approximate .

. 15000 volts 1.0 amperes
15 kilowatts 10 kilowatts

6000 10000 14000 volts

0 -100 -190 volts

300

470

510 volts

0.67 0.93 0.95 amperes

65

50

30 watts

1

2.5

4 kilowatts

CLASS C RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR -PLATE -MODULATED

Carrier conditions per tube for use with a maximum modulation factor of 1.0
D -c plate voltage D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation Typical operation:
D -c plate voltage. D -c grid voltage Peak r -f grid voltage D -c plate current . D -c grid current, approximate . Driving power, approximate Power output, approximate

10000 volts
-3000 volts 1.0 ampere 0.25 ampere 10 kilowatts
6.6 kilowatts

6000
-1000
1675 0.77 0.19 310
3.5

8000
-1300
2000 0.75 0.18 350
5

10000 volts -1600 volts
2400 volts 0.72 ampere
0.12 ampere 260 watts
6 kilowatts

GL -892

ETI-1 73

CLASS C RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR

PAGE 3 4-45

Key -down conditions per tube without modulationtt
D -c plate voltage . D -c grid voltage . D -c plate current . D -c grid current .. Plate input Plate dissipation Typical operation:

15000 volts -3000 volts
2.0 amperes 0.25 ampere
30 kilowatts 10 kilowatts

D -c plate voltage .

8000 10000 12000 volts

D -c grid voltage Peak r -f grid voltage

.....

-1000 -1300 -1600 volts 1800 2300 2800 volts

D -c plate current .

1.1

1.4 1.64 amperes

D -c grid current, approximate

0.18 0.18 0.18 ampere

Driving power, approximate

320 400 500 watts

Power output, approximate .

6.5

10

14 kilowatts

*Averaged over any audio -frequency cycle of sine -wave form.

tWith d -c filament supply.

°At crest of a -f cycle with modulation factor of 1.0.

ttModulation, essentially negative, may be used if the positive peak of the audio -frequency envelope does not

exceed 115 per cent of the carrier conditions.

APPLICATION NOTES

GL -892 can be operated at maximum ratings in all
classes of service at frequencies as high as 1.6 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised (other maximum

ING). The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 20 me for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

ratings are the same as shown under MAXIMUM RAT -

Frequency

1.6

7.5

20 megacycles

Maximum permissible percentage of maximum rated plate voltage and

plate input:

Class B telephony

100

85

76 per cent

Class C plate -modulated

100

85

75 per cent

Class C unmodulated

100

75

50 per cent

7,0

00

6

Xt

W4 4;

I,

0

wu ,c4.0

,0
xej

cwr5

2

, IP°
z4.

z

kg0°

re
cc
,r5 0 0

a. )

x200 .0.0...--
.,..._,,,,...--------------4100

1.

Ec 0

-100 -.200

0

5000

10 000

15 000

20 000

PLATE VOLTAGE I N VOLTS

GL -892 AVERAGE PLATE CHARACTERISTICS (E1= 22 VOLTS A -C)
K-8639397

25 000
9-28-44

GL -892
ET I-173 PAGE 4 4-45
2.5

2.0
a
"-
ki4.)

Eez+ 800

1.5

1 0

1.0

x

(51
0 Ir 0 (.5%
0

.5 X7

x

Cb

C.00 °0

x,,
00

11111\

N- 1i

0

2000

4000

6000

PLATE VOLTAGE IN VOLTS

GL -892 GRID -CURRENT CHARACTERISTICS (Ef = 22 VOLTS A -C)

K-8639396

9-28-44

GL -892
ETI-173 PAGE 5
4-45

I
I
111.4 I.0

+800

/ 1\ 0,6

1///1

2

/ 11 I//1

0

//

\
I

70.2

// il

GRID
-

AMPERES

ii

+400

.

/

O

.0 8

I
0,5 0.2
-40
0 PLATE AMPERES

K-8639395

0 4000 8000 12000 16000 20000
PLATE VOLTAGE IN VOLTS
GL -892 CONSTANT CURRENT PLATE AND GRID CHARACTERISTICS (Ef = 22 VOLTS A -C)

9-28-44

GL -892
ETI-173 PAGE 6
4-45

10 8 6
4 3
2
- a_ 0.8
2 -<0.6 -- 0.4
..71 0.3
w 1E0.2

-w06
.04
- .03
.02

K-9033591

12

14

16

18

20

22

FILAMENT VOLTAGE IN VOLTS

GL -892 AVERAGE FILAMENT EMISSION CHARACTERISTIC

1-9-45

64
N Ee, 62
%a Z i- 06
LI
58
LT,.
" 'c
7_ 5 G

GL -892
ETI-173 PAGE 7
4-45

LARGE TERMINAL OF BASE

COLD RESISTANCE OF FILAMENT =
0.032 OHM

FILAMENT SUPPLY

54

I8

20

22

24

26

FILAMENT VOLTAGE IN VOLTS

K-8639398
WITH D -C EXCITATION

GL -892 AVERAGE FILAMENT CHARACTERISTICS

WITH SINGLE-PHASE A -C EXCITATION

WITH TWO-PHASE A -C EXCITATION

BASE TERMINALS

BASE TERMINALS

BASE TERMINALS

11-2-44

LARGE TERMINAL
V = 22 VOLTS A = 60 AMPERES
K-9033547

- LARGE
TERMINAL
V = 22 VOLTS A = 60 AMPERES

LARGE TERMINAL
V =11 VOLTS A = 60 AMPERES

GL -892 FILAMENT CONNECTIONS

12-1-44

GL -892
ETI-173 PAGE 8
4-45

FILAMENT TERMINALS

FILAMENT C NT ER -TAP TERM.

GRID TERMINAL

4374.005"DIA7-1

rw-. 50 0"± .005" DIA.

BASE 3232

1/N
frr

1-I8" MAX.

A

BASE 3950

1

A

/.437H+ .005"DIA.

.465" MIN.

2"MAX. DIA
6 i;MAX.

7.1
216 MAX. DIA

2 .000"±.015"D IA.

i"

41- MAX' 6DIA.

-"
1016+ 2

91 3" 716-+8

iLt 22 I 7"I MIN. 6M

20 MAX.
8

.187"+.010"

1-46 (3M) Filing No. 8850

ANODE

1.580"± .0 4 5"

DIA .

81-6I."+7- a,I"

OUTLINE GL -892 PLIOTRON

K-6966979

9-23-44

NOTE: Mounting position vertical, anode down.

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

GL -892
DESCRIPTION AND RATING
En -173B PAGE 1
12-50

PLIOTRON

DESCRIPTION
The GL -892 is a three -electrode pliotron of the double -filament type for use as a radio -frequency power amplifier, oscillator, and Class B modulator. The construction of the filament permits operation

from two-phase or single-phase alternating current as well as from direct current, for all classes of service. The plate is water-cooled and is capable of dissipating 6.6 to 10 kilowatts.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL
Electrical Data
Filament voltage Filament current at bogey voltage Filament starting current Filament cold resistance Amplification factor, Ec= -50 V, I, = 0.75 A Interelectrode capacitances
Grid -plate Grid -filament Plate -filament . Completely revised.

Minimum 57

Bogey 22 60

0.031

42.5

50.0

27

30

15

20

0.5

1.5

Maximum
23 volts 62 amperes 120 amperes
ohms 57.5
33 uuf 24 uuf 2.5 uuf

GENERAL

ELECTRIC

Supersedes ETI.173A dated 6-47

GL -892
ETI-173B PAGE 2 12-50

TECHNICAL INFORMATION (CONT'D)

Mechanical Data
Mounting position -vertical, anode down Type of cooling -water
Water flow on anode Maximum outgoing temperature Maximum glass temperature
Gasket-JTC gasket -1 Net weight, approximate

Minimum
3

Bogey

Maximum
8 gpm 70 C 150 C 3IA pounds

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS
AUDIO -FREQUENCY POWER AMPLIFIER MODULATOR -CLASS B
Maximum Ratings, Absolute Values D -c plate voltage Maximum signal d -c plate current t Maximum signal plate input t Plate dissipation t
Typical Operation Unless otherwise specified, values are for two tubes D -c plate voltage D -c grid voltage Peak a -f grid -to -grid voltage Zero signal d -c plate current Maximum signal d -c plate current Effective load resistance, plate to plate Maximum signal driving power, approximate Maximum signal power output, approximate

6,000 0.0
1,000 0.5 2.6
4,200 135
8,000

15,000 max volts 2.0 max amperes
20,000 max watts 7,500 max watts

10,000
-90
1,380 0.5 3.3
6,400 240
20,000

12,500 volts
-170 volts
1,370 volts 0.4 amperes 2.8 amperes
10,000 ohms 160 watts
22,000 watts

RADIO -FREQUENCY POWER AMPLIFIER -CLASS B
Carrier conditions per tube for use with a maximum modulation factor of 1.0
Maximum Ratings, Absolute Values D -c plate voltage D -c plate current Plate input Plate dissipation
Typical Operation D -c plate voltage D -c grid voltage Peak r -f grid voltage D -c plate current. D -c grid current, approximate Driving power, approximate// Power output, approximate

15,000 max volts 1.0 max ampere
15,000 max watts 10,000 max watts

6,000
230 0 640 0 030
77 1,000

10,000
-100
370 0.77 0.060
133 2,500

14,000 volts
-190 volts 440 volts
0.82 amperes
0.03 amperes 106 watts 4,000 watts

PLATE -MODULATED RADIO -FREQUENCY POWER AMPLIFIER -CLASS C TELEPHONY

Carrier conditions per tube for use with a maximum modulation factor of 1.0
Maximum Ratings, Absolute Values D -c plate voltage D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation
Typical Operation D -c plate voltage D -c grid voltage Peak r -f grid voltage D -c plate current D -c grid current, approximate Driving power, approximate Power output, approximate

6,000
-1,000
1,650 0.83 0.28 420 3,500

10,000 max volts -3,000 max volts
1.0 max ampere 0.3 max ampere 10,000 max watts 6,600 max watts

8,000 1,300 1,950 0.82 0.24
430 5,000

10,000 volts -1,600 volts
2,250 volts
0.78 amperes 0.23 amperes 460 watts 6,000 watts

TECHNICAL INFORMATION (CONT'D)

GL -892
ETI-1738 PAGE 3
12-50

RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR-CLASS C TELEGRAPHY

Key -down conditions per tube without amplitude modulationlf

Maximum Ratings, Absolute Values D -c plate voltage D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation

15,000 max volts -3,000 max volts
2.0 max amperes 0.4 max ampere 30,000 max watts 10,000 max watts

Typical Operation D -c plate voltage D -c grid voltage Peak r -f grid voltage D -c plate current D -c grid current, approximate Driving power, approximate Power output, approximate

8,000
-1,000
1,700 1.17 0.22 330 6,500

10,000
-1,300
2,150 1.4 0.24 495
10,000

12,000 volts -1,600 volts
2,550 volts 1.55 amperes 0.23 amperes 565 watts 14,000 watts

Averaged over any audio -frequency cycle of sine -wave form. //At crest of audio -frequency cycle with modulation factor of 1.0. ¶ Modulation essentially negative may be used if the positive peak of the envelope does not exceed 115 percent of the carrier conditions.

Maximum ratings apply up to 1.6 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced according to the tabulation below (other maximum ratings are the same as shown above). Special attention should be given to adequate ventilation of the bulb at these frequencies.

Frequency
Percentage of Maximum Rated Plate Voltage and Plate Input
Class B
Class C plate modulated
Class C unmodulated

1.6

7.5

20.0 megacycles

100

85

76 percent

100

85

75 percent

100

75

50 percent

GL -892 AVERAGE PLATE CHARACTERISTICS (Er= 22 VOLTS A -C)

1111111smom

6

Pm

P.m

v

Irk FAmm UANI

I/

Wpr

II mmisMm ME

MIM

n
II

MMMMMMMMM"Mnm"mmms"mmomummoa.mn

MMENA

'

Ns ma mir Ns GG
r_ ri

Pr

Jo"-

m MMMMMMMMMMMMM MMUnMEME

JMir!ililnlllinlililllllnuII IIIHII

MM M MI N FAMA

.

smmitMMMaMMdM mo m

M MM MMM m m

MMAAMrMMOMMt IlmP"om oImuIIuI gpmdmil

nn

E.Md

-ad'

:11r0rio"mM1ME1.R:11M SMIIMARPWMIATMeME MM:

!Illil

ImilAMJ muilrmei

MA

-

muma gMM.m.mMEM

4111MEM MEE MMIMIMmENmSMN MUM
1111114:11.

1

11

aM m nn

4!"644 MMMMM MEME M MEME

_ .p!lEmunnon!o;annlanin
P0 -

P". r 1

.fin

not m.r... --,

......

gnoonnon.oim-mms.=-

MMMMMMMin mminnonn Iminm.--

...:-.-

II._ .1.1:IIgmmliil ernnollogonn.n Main min le_inn._m. -"'

Es

WM J LL. ;JINN UM X 11 EEO ..... Am

MOM _.-.

_..mill

.m

IP

MI WM ....'..::Ammiinno inn n MMMMMM m ME M 1

5000

10000

15000

20000

PLATE VOLTAGE IN VOLTS

K -69087-72A108 Revised.

GL -892
ETI-173B PAGE 4 12-50

GL -892
AVERAGE GRID -PLATE TRANSFER CHARACTERISTICS Ef =22 VOLTS, A -C, SINGLE-PHASE EXCITATION

4.5
111111 F111111111111111

N111111111 1111111111111111 11111111111

4.0 KillSIEREIREEEFEHRS
:551:EfiniarEIEFEEETEEEnn

1111111.3111111111111111111111....IIIIIIIIIIIIIIIIIIIIIIII!!!!!!!!!
3.5 iiiiiiiiigiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

!PRIP!!!!!!!!M!!!!!!!!!
3.0 rinommoomilloil

PININIIIINIRII II 2.5 rp"immodimplumpolomomb im11111110 1 1111111111 1111111111111111 11111111111111111111111111
2.0

1u1 I11 vinummuummiunimpammum

.,. I .5
1.0

mi:,.f1,:f,:.i,o:.a,,.1wi..l...1..d,..,m.1.,..,i,l.4c.o,g.a11mm.o..6ptA.a4.,!r.m0er1.o..11.mm..tp.i.q.m..i.m.Ip.nI..Iimm..Ii.I.mI..I.mi.I.lI..uiI..moIp.ImI.m.I.i.Il..mml.m.i..mm.".mu..".i.".olu.m.i..m.mm.m.....imu.m.l.i.m.il..lii.,iil

0.5 i10f11i1r11m041mu11ilmmi1tphmnhNgeeEkiAlmiutRylwokIAFPlcPiIIzyI_I_boM_ alMoidwIiMliiaa0mi.lImi1lAj1ui1iPMiRmiUiPMiiMmiMUiMimiiiFillililOii.ni.iU.ig.ii.ri.ari.ia.il.ilgi.ii1l.ii1in11il:i
till..rrm. ."..BI.a..l.m.a"lfiulo.imimiur..ir.tT.r5.Ah1nali.io"im.nN.".m.muA..niU.mu.u.S.mun.E.E1s".1mt1.iIh.MR.i.mo.Mm. uo.Bo.n.mEr.n.aR.am.n.uI.nB.uu.uEm.m.n.Hu.r.ufE.of.im.imo.ip.u.mmr.m.t.i

-0.5 111111111111 111111111111111111111

2000

4000

6000

PLATE VOLTAGE IN VOLTS

K -69087-72A442 # New drawing.

GL -892
AVERAGE CONSTANT -CURRENT CHARACTERISTICS Ef =22 VOLTS A -C, SINGLE-PHASE EXCITATION

GL -892
ET1-173B
PAGE 5
12-50

K -69087-72A443 New drawing.

12000

4000

6000

8000

PLATE VOLTAGE IN VOLTS

0,000

12 000

14 000

GL -892
ETI.173B PAGE 6
12,50

.GL -892 AVERAGE FILAMENT EMISSION CHARACTERISTIC

iimiiiik milli NEIN 10
8

....=

..

.

=_....

........._._...=.=..=.._.=...=....1__...,

M- 6
4 3

I--M=M-OEmE=-MMmO=-MMoN=-MEm-MN=m-MU=i-MM=m=M-a=M-am=-MO-mI=-MOmg==MMmi-MM==mU-O=iM-M=lM-M-.--.----.--i-=====-E==-mE=--m-=--u-mmm--g--mm--om--m=-=-m=I-mo=I=mm=I-em=I-ru=M-.-em=m=.-M-=m=m-.-I-a.=.-i-.I=m.==i=.-.I.-==mm--M.-=n=m.--f.E==fi..==M-Alm.=l=Efm=-.if=.NM-..m.EM-..-m"A4BW.-=i...-=A=.-f.--=N=.--t.-===.N-m-.W.=-I-=.M=i-===-N.O==l.=I=M==E=M==-M=E=-"==MM--=M--Mmm=-MeN-Em

2 itilltrard iiiiiiirMEINIErair M

MINNIE11111.1. 11111111111111111 .... 0 1
0.8

am '.'.'.
m

_w_.

..

,.,,

mmfmfElaamMmMaammmm.u.a..=m.0 =a....M.mammmmrV.A=mmma-

._ _ _.________________
=MEMfEfNiNNWMEMmMM.a..gM.a.M.i.E.m.N-mW-mM-m-Mm-EM-mNM-ff-MiMMEMEMMMEEMMEMZMZMZMZE=

0.6

.==-- .s I._.i_.i_.i_=i=_=l_=l_=l__i_i.i.i._i._i.i__i_i__i_.i_.i_.i..1.,1m.1__M_1-_1__1-.1-....1.=1.1_-1_1-_1_1__1__1.1_1_1_1_1_1_11_1_1_1.1-1.1_1_1_rmm-I

0.4 0.3

mmmmm...mmmmm====mar=.=...7.0.-.-=..-=.-.-mmm=MEEEmmmmma=mmmmmmmma-lf-f=l=E-mmwOMmmummum ====MEEM=

AM 11710211i=M -'----i=MMiMMINIIIIMIMift-illii-MEN-MINII MUMNI

0.2 TITIMMIIM 1111111=111111111111111

I

IIIIIIIIIIIIIIIII 0.1 11111111111111111

1111111111 1111111111

I 11111111111111111111 I

1111111111111E111111!

1

.08
.06 mommommommommomm IiiiiiiiiIIIIIIIn
.04

------- --- -------.----------

-

immommommimm immOMMENiiiiiiiiiiiiiiiimmill

1111111111 _1_1_11_1_1_11_1_1_11_1_11111111

I

__________________-- m.

________

.03

billing Miiiiiiiiiiiiiiiiimmimi 3

.02

.01 11111 IIIIIIIIIIIII

12

14

16

18

20

22

24

FILAMENT VOLTAGE IN VOLTS

K -69087-72A448 # New drawing

GL -892 AVERAGE FILAMENT CHARACTERISTICS

66

II A

11111111111111111111 II 11111111111111111/111
64 1111111111 1 1 111111111111111111111111111511111

GL -892
ETI.173B PAGE 7
12-50

62
11111111111111111111111111111111111111111111111

LARGE TERMINAL OF BASE

11111111111111111111 1111111111111111111111111111 60
111111111111111111111III1111111111111111111111111

COLD RESISTANCE
OF FILAMENT =-
0.031 OHM

1111111111111111111 11111111111111111111111111
58

11"11111111111111111111111111111111111111
56
II 11111111111101111111111111 1011 I
11111111111111111111111111111111111111111111 '11 54

FILAMENT SUPPLY

K -69087-72A441 New drawing.

20

22

24

26

FILAMENT VOLTAGE IN VOLTS

GL -892 FILAMENT CONNECTIONS

WITH D -C EXCITATION

WITH SINGLE-PHASE A -C EXCITATION

BASE TERMINALS

BASE TERMINALS

WITH TWO-PHASE A -C EXCITATION
BASE TERMINALS

LARGE TERMINAL
V=22 VOLTS A=60 AMPERES
K-9033547

LARGE TERMINAL
V=22 VOLTS A=60 AMPERES

LARGE TERMINAL
V=11 VOLTS A=60 AMPERES

12-1-44

GL -892
ETI-17311
PAGE 8
12-50

FILAMENT TERMINALS

OUTLINE GL -892 PLIOTRON
120°NOMINAL FILAMENT CENTER -TAP TERM MIN. RADIUS
16

GRID TERMINAL
43 7" .1-.007"Dlk`4 ICM IN' 1.-
16
BASE 3232 ."-1
.43 7"-± PO7 "DIA.

120° NOMINAL ham -.500"±.0 07 "DIA .
i
1 i MAX.
t

.438 "MIN

.11111.
MAX. DIA.
3g3+" 1"
it
2 rMi AX DIA

2.000 "f .020"
DIA

ANODE

3" MAX. 41e DIA.

1216t 8

16- 8

20113"±. 3"

2L I7 2
11-6 MIJ.N.
.187"± .015"

L580" t .050"

DIA.

111+111

816 -I

12-50 (11M)

K-6966979

3-11-47

Tube Divisions, Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

GL -893-A
DESCRIPTION AND RATING
ETI-174B PAGE 1
8-50

PLIOTROil

DESCRIPTION
The GL -893-A is a three -electrode tube designed and capable of dissipating 20 kilowatts. The cathode
for use as a radio -frequency amplifier, oscillator, is a pure -tungsten filament. Maximum ratings or Class B modulator. The anode is water-cooled apply up to 5 megacycles.

*TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL

Electrical Data

Minimum

Filament voltage (single-phase excitation) * ®

Filament current at bogey voltage

(Single-phase excitation)**

175

Filament starting current

(Single-phase excitation)

Filament cold resistance

(Single-phase excitation)

Amplification factor, II, = 1.0 amp, E, =- -100 v

28

Interelectrode capacitances

Grid -plate

28.5

Grid -filament

39.5

Plate -filament

2.0

*Technical information completely revised.

Bogey 20
183
.0093 34.5
33 48 3.0

Maximum
21 volts
190 amperes
275 amperes
... ohm
41
37.5 uuf 56.5 uuf 4.0 uuf

GENERAL

ELECTRIC

Supersedes ETI-174A dated 12-45

GL -893-A
ETI-174B PAGE 2 8-50

TECHNICAL INFORMATION (CONT'D)

Mechanical Data
Mounting position Type of cooling Water flow on anode
Maximum outgoing water temperature Required air flow to stem*
Maximum glass temperature Net weight, approximate

vertical, anode down
water and forced air 15 GPM 70 C 2 CFM 150 C 12 pounds

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

AUDIO -FREQUENCY POWER AMPLIFIER AND MODULATOR-CLASS B

Maximum ratings, absolute values D -c plate voltage Maximum signal d -c plate current Maximum signal plate input I Plate dissipation
Typical operation Unless otherwise specified, values are for 2 tubes
D -c plate voltage D -c grid voltage Peak a -f grid -to -grid voltage Zero signal d -c plate current Maximum signal d -c plate current Effective load resistance, plate to plate Maximum signal driving power, approximate Maximum signal power output, approximate

12000
-260
1480 0.8 7.0
4000 220
52

CCSt
20000 max volts amperes
60 max kilowatts 20 max kilowatts

15000
-350
1560 0.8 6.0
6000 190
60

18000 volts
-450 volts
1720 volts 0.8 ampere 5.5 amperes
8000 ohms 140 watts 70 kilowatts

RADIO -FREQUENCY POWER AMPLIFIER-CLASS B

Carrier conditions per tube for use with a maximum modulation factor of 1.0
Maximum ratings, absolute values D -c plate voltage D -c plate current Plate input Plate dissipation
Typical operation D -c plate voltage D -c grid voltage Peak r -f grid voltage D -c plate current D -c grid current, approximate Driving power, approximate A Power output, approximate

12000
-250
350 1.5 35 130
6

CCSt

20000 max volts

2 0 max amperes

32 max kilowatts

20 max kilowatts

CCSt

15000 15000 volts

-340 -340 volts

395

450 volts

1.5

2.0 amperes

30

50 milliamperes

150

200 watts

7.5

10 kilowatts

PLATE -MODULATED RADIO -FREQUENCY POWER AMPLIFIER-CLASS C TELEPHONY

Carrier conditions per tube for use with a maximum modulation factor of 1.0
Maximum ratings, absolute D -c plate voltage D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation
Typical operation D -c plate voltage D -c grid voltage Peak r -f grid voltage D -c plate current D -c grid current, approximate Driving power, approximate Power output, approximate

10000
-800
1200 1.5
0.10 120
11

CCSt

12000 max volts

-3000 max volts

2.0 max amperes

0.4 max ampere

24 max kilowatts

12 max kilowatts

CCSt

10000 12000 volts

-800 -1000 volts

1280 1500 volts

2.0

2.0 amperes

0.16 0.14 ampere

210 210 watts

15

18 kilowatts

TECHNICAL INFORMATION (CONT'D)

GL -893-A
ETI-174B PAGE 3
8-50

RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR -CLASS C TELEGRAPHY

Key -down conditions per tube without amplitude modulationl

Maximum ratings, absolute values

CCSt

D -c plate voltage

20,000 max volts

D -c grid voltage

-3000 max volts

D -c plate current

4.0 max amperes

D -c grid current

0 4 max amperes

Plate input

70 max kilowatts

Plate dissipation

20 max kilowatts

Typical operation

CCSt

D -c plate voltage

12,000 15,000 18,000 volts

D -c grid voltage

-800 -900 -1000 volts

Peak r -f grid voltage

1430 1520 1630 volts

D -c plate current

3.5

3.6

3.6 amperes

D -c grid current, approximate

0.26 0.25 0.21 amperes

Driving power, approximate

360

370

340 watts

Power output, approximate

30

40

50 kilowatts

*Air flow to be directed into stem through tubing in center of base. The flow of stem cooling air must continue 5 minutes

after removal of filament and plate power.

()See drawing filament connections and excitation circuits, K-8639686.

tCCS = Continuous commercial service.

Averaged over any audio -frequency cycle of sine -wave form.

A At crest of audio -frequency cycle with modulation factor of 1.0.

11 -Modulation essentially negative may be used if the positive peak of the envelope does not exceed 115 per cent of the carrier

conditions.

Maximum ratings apply up to 5 megacycles. The tube may to the tabulation below (other maximum ratings are the be operated at higher frequencies provided the maximum same as shown above). Special attention should be given to
values of plate voltage and power input are reduced according adequate ventilation of the bulb at these frequencies.

Frequency
Class B r -f Percentage of maximum rated plate voltage Percentage of maximum rated plate input
Class C plate modulated Percentage of maximum rated plate voltage Percentage of maximum rated plate input
Class C Percentage of maximum rated plate voltage Percentage of maximum rated plate input

5

20

40 megacycles

100

85

65 per cent

100

82

73 per cent

100

80

64 per cent

100

75

64 per cent

100

80

60 per cent

100

66

50 per cent

64-L6-4
01

S110A011)1 NI 39V110A aVld

peS1AGJ 8EIVIZZ-L8069-N

9

9

01
SU

A
MVP

m..AMAIMIMIN111111In

711411

l'-= TAU" MEM. .-;72

MISEMMUSMA

. - ... .

7M4q1.5:::41.

MAIM MMEIMLOM.:rMEnblaIMMASOMMIN eumeterieurall 0

:RMOU.UMI- .°1:111;;;;PMIIMMUft

memomelr 411: AM !
M.S. AMAMI.

ZOMM.Z.
711V1rMOIMWMIITIMMME,MMOMMOIZAIRMI
a

11110

0

.

0
.
e

III
MIME
.MEAMM ASSES
.11MA
IMMI !MSS ISMS IMMO
'V
MMMUEOM
OMMAMMMMOEUMMM.OS
k MM

MUM
:MMUSMMMMM
MEM:

I

MSS

ANSI

MM

AMli

M11

MMMMMMMAMRMMMMMUM

V

AMMAMMMI

11111

M
%MIMI

MSS AMUUMM AUMOMI

sin

mem= qmaommmaimmoarmimgonmiemlommlimmm: am MOMMUMMIN

9

U

ESSUMMUMMEIIMMUM

D-' S110A OZ DI1S1213.1.DVNVHD 2134SNWil 31V1d-01E0 1VDIdAl V -C68 -1O

S1l0A01IN NI 39V110A

66VZL-18069-N

SZ

0?

SI

01

9

0

GL -893-A AVERAGE FILAMENT CHARACTERISTIC SINGLE-PHASE CONNECTION
COLD RESISTANCE = 0.0093 OHM
200

175

150

I2s

100

75 Rheum

IIIIE

1111111111 harnmerin
50 111!!!!!"."9110ee

25

5

10

15

20

25

FILAMENT VOLTAGE IN VOLT5-5INGLE-PHASE

K -69087-72A287 II1Drawing revised
GL -893-A FILAMENT CONNECTIONS

FILAMENT BASE TERMINALS

FILAMENT BASE TERMINALS

30

35

4-25-49

GL -893-A
ET! -174B PAGE 5
8-50

V= 17.3 VOLTS An 122 AMPERES THREE-PHASE A -C FILAMENT EXCITATION
FILAMENT BASE TERMINALS

V.20 VOLTS
Am183 AMPERES SINGLE-PHASE A-C FILAMENT
EXCITATION
FILAMENT BASE TERMINALS

K-8639686

VI .10 VOLTS V2. 0 VOLTS A .61 AMPERES
SIX-PHASE A -C FILAMENT EXCITATION

V=20 VOLTS A. 183 AMPERES
D -C FILAMENT EXCITATION

NOTE: TERMINALS MUST BE CONNECTED IN CORRECT PHASE RELATION AS SHOWN

4-27-49

GL -893-A
ETI-174B PAGE 6
8-50

GL -893-A
AVERAGE FILAMENT EMISSION CHARACTERISTIC SINGLE-PHASE FILAMENT CONNECTION

40
nr" .I :::I.: rirmimor: .rer.t,o... I 30

:

11
:

I.L.I.I.I..2.1..":.t.1i1hf".riI,u.hI.ImmI.aU.I:.g'.pmra. laa.il.yu.h.mmq%.l:As.ao..Lr..nr.ri.sn.ucq.Ir.prI.roi:iA:.np.nm.ie:::.:.p.A.u. I.r.o..u1raIt

SU Hi

umn.m..M1aU1LnA1M1IM1A10521T44Hn11Iu4L1lISIrw1.1u1.T"."09..""1".6-.4.9.11.-.1...1.1.7uni-T1

:

: :::::::. :

mumm:1111111111111111 mill

400

111111:m. .......... I

U/
1

inr1:
.4111
'Al

um ..... rn IIIIIIIIII'"II... ...... ! . 111iii

1

1

- al I

:::1 .41421. US

II
II

mourramoir"'s. mmummsumm

II 111110

300

rn malliimmmiumm mummumilimill 11moms ....... pm h.....dpg......

tr)

..........

. II II II 1111/11 1111111

.. IIIIIIP:01111.1.....11.11.

a' imilmiumillliiiiiiiiiiiiii .....imillimilli .. immiiiiiiim 1 1111 mumissuirmumusummulimmusum ...
:: Ims.....r...........r..r.m.:=::: :.a..-m::m.:u..m1 :a: 20 ourippr.i...rts......graw

!! ..................... Ti..:19:-... "sums:

..........muumuu:--u-mmr......31.1.11.1.1.1.1 ..I

1111111111...s.t.i.m1m1o1s1i1l1i11m1i1l1-1-1-..111:.1x11641.110121.111-1"1-1111111u.s1*1.11i1p.11.1.1.111"11 20C

a aara gas Inum...1 .1 n . ..r...i. no.
1 1::::::mr.: 11.

ammts1_

1111Follii11:111111111Imem.111 mlosewmiII II

I 111111111.

Mg! . !Bpi

:'m IIHE

pal lir""1:::"'"" .. /II' em.m. " ""Imm, . -." IIII".'"""'"IIILEJIIIIIIIIIIIIIIIIIA ASP

I
.

minu./.s."1,..01..n. II nlimigilifiliiiiiiiiinifili sommag,..nalumaramq. JIMA- . '

ivi

1 1 1 1 IC

1"11

rum miipitiummur um Hu u Eller.AUBMI IIIIII1I IIMILIII1141"I"ii1Ii.i1i1"1"611_, i NI

EMU 1194191HE MSS

I1N11.1.1.1.1.1.1.1.M11111111r11e1u11m1u11s111.1.11.1.11.E.mu

.....
um

11111111

11111111111111 ..... 1111111111111111111111111111 llllll

MIMI

l

:

111111.41111111

1

111111111111111 11111111111

IIIS r4 ll 111111114141111111111111111111111111111111

I 1111

11 0111111 1

II 1

11911111111111111111111 Mal:1111

1E1 MI M 1111

121141511

11111 IL II II 1

1

11111111111111

1 1 111111111111

100

iumniimismunimmimimmulimunnuisompAlmimismiiiiisimimumplapppium!!!!!!!!!!. 10
9
rare -ung.1:::prai - - 1IIiir r , RE"' 8 _Mg- nCrn--.V.E2ii=n1-'i.2f4i.r--l.Min!ini.i:O.51n1A2li_.nn-sMqpinI=Ps,A.:.CssE.1., .ja1p:ia.... a=2:::: ..--ia .... - -=.2 76
.d..r......... i :' , airkEINNIP .jn.:"FiFilliiaEjliign..ag..pi.iiallii al.. 5

I. .... 1=..

14.7..... jr:C71NITIMPliiiriliaLg:

°..m...2.2.. 5.5

m.b: ,,1::52.E.i.i.ii.iiill ';11111"111111:1:1:11=11111111r1.1111111::111141:2111:111.2.1'111121211l2l2l1ll 2=..:1::l:l:ll:l:l :°iIIa

gillalnirr1I1m4m1.:.:.=211:::a:..1.1....... Iiiiiiiiili::: :

kr;;KW1

...

; :

121.....::: .... Or11

ll

MK.

11:9:::..:::

.111111:::111::11::

.

I.

'11 s: inessigialiiiiiiiiii

II ".

MIRROPRROMORMAIMMIKKEM
IHMErn.-

I::

RKP

.... MARI

aes rdriMa-ar--

E118284 -2

3122481

Fiell

....-

' .

...ae-.-.rn,ta-.-.E.s.eeA..iai:.-"re

ul.'"
1..2.112. IS. 1.....

min :n
Cw.

C. .C.

us :II .malusurue

:

... .. *A: g mffMlIiN:I1M511-1-1M1M:O1I1H11N1I:M1M1S1.1.1;.

r.............1111

III 1

11.

I. 1111111111161111:1111.11

";= En

am.P.

=:--r41.-"IIQMPM311113PRIBIIA.3.0 310.8E2434011

r.-
-2r.C77,-

1

1

an.I..R.K,KE--R.-.Ia--P,BaRnMriI:m-LalV6:r1-ei-r.1ib1.4ix3r.r..:2-"V1S1:/:1.i.11i1.l.1M"la1irIt1sh=imti3.i...1Wig.1:re:i2M1lft1p=I:h.14IM1.m11Um16i1I9MIA1211A:A:12.624.,:1.:...1.s1m0.1.l..4ia.p.1.

111

90 80
70
80
50
40

kniindIMAIRMIVE:: 4 ' C

:

:Iiiii
"9111

111:11 . 11

111.1;ram"I ... :r""iiiiing"

3
I

1

ir

G

P

...

I

Iiiiiiiiillilm

HI

Hum ......n..eumj 11 1

j....... 9'.,.a.ni-r

..i7:05.111MiqUILMI01111114

li"'"'"'" 1

sm...4.......mil

Mom!

..

:

.......... .../1.1i11.1111111111111111111111111.1 11111111111011010011111111111111:0

1111111,11

111111

30

1111111111111111M

'alp iliNpidudmmuju IIIIIIIIII 1111111 .... 11

lin isiml

ii I -am 2 Mu 11.1.1.1.1.1.1.1.11111111111714,1411111111111111111111111111111111111111111111I1111111111111111111111111111111111111111111111111111111111111111111111111111111111111I1I1I11I1I1I1111111111111I1I11 II

il

III Iiii:11

:

11111

20

NS:11.1UH1RRI. ROM
- :: :

:

1

PI

'11M:K1:IrMaIiMrPlRiPgRioOmRmP.RmRaO.OmM.smum

111.00

1

' 11 .9 UL414 rifabill

11511::::::::111111:11111 11

1

1 .

i 111111111111:41:111111111:111411: 111:11:111:11,111

1 1111111 1MB

6ma
er. -`':...... .. ..... . mu mill ...... ...... NHM..I.1111111S !, ram mu: um 1

1

111 6 "a.11111111111

11111

111111"""11111111111 1111 III 1110111 11.1... III

111.1 1111 ..... 11111 III

111

1'1I11 1.111!:!1
11111111111111

11"11.1.111212111:11 1111111111111

121::i111111 1 111111111

ii1i1iii1i1i1;1!1:::i::;VI1I1I1,111111;:111::::1:111111:11,F1T, :i;:::41,111111

1111111111111 11111+1111111111111111111111111111111111 III IMMI11111111111 9.111111111111111111111IIIII 1111111111111111111111111I1111111111111 11111111111111
___....,

III I III
11:141:4111111111u1l61i1s1u1p111e1pr1a11-1--1111121.

10 9

Eilliskilditi_ErniEN .. ," in :W. lir riilnI:aIsunt DAIN .°:zion- valphfi I:

... r. 1411911-

.1III .4.

.......

-=PALlilsi

=MKomI.M0a..H..a.nnipe- l:pPm =MHUEM :..... a1 .
..::::TATIMATAnIrM.S.......... 101;:1.1.11.1...1,

.. ell .: .11:::1

CI

i

1 E.

:

it'

1

1

:

......

M'S

5-

"'-'6' ...

.-.1- 5-r"g--kmrn-W.8.1`

IMP

31 II

IlHarCITREF+44.111111

iFliddirinna/Miiiffeir:
Pil515511.41E-14-rdiliMikri

a 7

.....--424. -41 73041MIPUBE4222FIWIIBP

2 .

15 Kg: IK 6 :MO2 ;111111111111114 -

6

2t-Enn-a-: zee

cce-az ila.:ccmazgE.
BE .ame-rilc.21,.-....

VilEE gg.7ie1/W2 .a41lr. MC 4CLZE1112

21 In ...N .

.1:

21{:::

CC

:1

C.

... -Pmcgl-
III :IIIIIIIPIIiillipiii.C: i das. SEN,mu:::::-

lis! in ie ::
WA: - -rum: Ile . if FIRS liiiiiilh .1 dair -... rfiliMiga
. II 1111111.1= OBI

. 11

111111111
ab:1111:
1

: :
1 1

P;iiiiiii :::: :::: '
1:1
:
I

.41." riirdinlit 111111111111111115111 LA.:. 4
il 1

r. - Ir ItitERPlidhhirdNIECI
urranumffiallintirel - 6 11111116011 11116 II& ...I:MI:

8
1 11111

1

u II 1

1
II

11111111=1111111111111111 .:1081111111

3

011111111111' 111111111111111111 FIJI 1PM MIN 1"" 1111111111111111111 1111111 . N111111111111

"' "" .9114ffinum mu
luml iii lus il i 11 a

How
Iillprm

1111111111111111 11111118811m11 1181111111111111

JR71101610I 14il/l1If1l 111141111111111
1111111111111111116111611,1111111 1111 11 on mm 1..ummilli

ifihmii....

1 1111111M11161

II

MLiitll 911 RIMAIIINWHILL Milii ihr rm. 1:2119 12!.......ra.m...wal prAl
Olal

119111111111:1111ilkitllet 2

...Ewa; .4.1111:11:

ON& %W; I r Iiii-diti -. WIRRI

11

n nli .11.'.112511;1R.:2MI.X1Al

I

I

1

11

1

11.

1

I. 11 IA 1 :1

:1

1: . ' - le it MN .1 II: : I 11 .1

111111;111111:eliii iil: . : ..1:' 11 11 Ili . illIl

- . ..:. gl MI millin ihwunlahrli ..16.111a1.14r4111111 f 115 MIMI INI ..... MB
1141/1111111411

ri 1 Hsu _PI
MI 1111 11111111111111 h 1 AfillIMBUMBI IMMO num mu :pH

1:1a1 m:

AA

4.1

1

1111iill

1

1 11

lila 881111U IIIIIIIIIIIIIIII 111111111111,11 88111111 114111111111111114111111111i211:111111;11111111:411,

army

11.1.1811+M .1 in

I 111 1 In 1

II

11111111111111111"

1

.111111.11.111111111 1111111111M i 1

.nummummum, mmumnummummummummumumn mull u ......

MIR 111 1111111111.111 111

II III III

IIII I

mum

1111111M HIM III 11111111111111118114

fill

1111111111111111p11111111111111 .... 111.145011.8E18111111.9,811VM11111113111c11011101111111111111111111111111111118111

12

14

10

18

K -69087-72A285 IN Drawing revised

20

22

4-25-49

GL -893-A
ETI -174B PAGE 7
8 -50

GL -893-A
CHARACTERISTICS
Ef = 20 VOLTS A -C

' 1000

MM 1:::: MMMM woe

......, KINUWEEMMIEMOnee

Mime 11:11:111:::::illem C

unemilm-mnitimmunisoremellemilmems

p*-l.iMmeliOV.J.U....
v...,.....,

ii.m..n1m1e 1"1um"

MUMM,AWAMMV MMMMMM AMMO=

.,,,WIRSM0111101:

MN NIAMOMMT,MMUMAMUM01011113::: MMMM

MO MMMMMM INEMUKCIIMINemaNWINIVEMN MV.MIMIFAMUCIONMEMLIVWM.W311111MMU

lemismalemmume Mal

I_I .m...i.i.l.0l.b6g1:.:M:ev:.:VdehgSiwelMo6gliarn3d7

MMM

800 IM

MENIANUMMUMUSUMENNII

Milt /401011011101101:17011110111C

. ".""Mirlarrn.......M....c.67010415

:

Milati.....Perannmarangemallemeregaz :iii'ISF.O.W

',111110,11010101010

igelswiligiernisitipieggiumiuk:
MMMMMM

WWS

1

4054is.mwelimeuwernumejoemeammommommortre WIMOURIMEMMX

ariZOMM0401100.11VAMMUMFMErg701.010111101:10M OIMOVEV4M0:01 Agimonimmaior.mm5U

milWlHOOgMiMmUmMamUmMeMpWOUNE0 MIILMiMgUiMmmisimmMpoommasu/\p:C

INUMr.1 MM ,

U000111,00111UNWAW dwiliellimplesualernfiliammemosolim

ppm

600

MS MMMM M04 M 0 MMM 04Mftv.

TZA.WEiN KOMMIIN mummnEMMONMEOWIRENIMEMWM

IIMIMUM.E1111..17 107N1M10,40%-...,f,d i.g0/t4Z16l..a.r. 1e1:6:1:1la0n1s1iMwMnMelIlAeLrAnILAIWIMOR:::::M="2"MMEI

1:::161001

1n1u11e1e14m11m1u11m115:.40m01e1e1050.11m11u'r10z.Vy1f.5t:AArGs02e4,0-1.4B:..mfotnaiBsIMMOMB-ImM oEdMiIrIOMMPMAIIMNEUMMOMMUMSOIMImMAuNmS0mmunnlialffignagLionnal:::11111:11

1:1111i5mmnie,:agliii:pe.Z'-111m1 gi.E..5"...71-11 waimiamiwslWiiesalmlsEarmeimlinimn

1911110mmemets MEM

argreleme.m.mmiz.elna, 46-.411-mb-m9ommeMOM . '11171101RX Rs

400 amee..mm wieh.--.vIreei-er.im ..enoemeer minelesmei

eimeineeems

MM

-eneuenmemkezm.y-e,esrmeeeer.c.e..,.reMe..5.ellItMaMlfillef.t5.:1.1....5.4A-g.eI.Wn1w0l1a11110111111W11I.M11W11M12e5WAN

IN

MMMMM

slielessornomerseno
MENVIIIMMs

MOZ
MI

- 7

..A.g....110.N.sMr." be:-.mmeolMOMUKOW.lionasell 9::::1:11:::ffs

,PAWAO..01lIMIWZ.MIOSMS

......A1110..IiMUSUMWMT11 illa

Cr) I-
_J
I-

- UMW. MeneWeloe-umu.mseemrxm.emiremZa..gA,MeMmeEeMm.il.l.i.leEg0.0 ...ebt--_. ..-.wo meme,-

0

1

44- 1Ci..r

.swiew:ir:=11

.."5.11:12'"":

DOIMMIMMEMAIn..

200

seemenesieriegiv-

'-- ..

:11.-zglgepromm.X.4501=11.-

e

..mw.-

-....r.ii

47.1.....T51.-,..114111.11UPSIORmarlimelerlimi

i.l.

. inegalimmem.

._ -.a-Zinn-

.r-m4mememeimfomMMMMM

:

461.11:4W,WEI.Mw. ..... 2aWmWS.I.M.M.I.s..1-..MIN-N. .-...W.tM.r.i4m1-M1MU1MAWM,alliminm MMUS

u...-.M.mam

5U.

.MfMleMM.M.iMlMim52M5M.MM,M

muules.,_ N101....

.111MSEft ...MOM

Urnememem: MAO

-.. MMMM a M .55milmesuz-memms

lem.-..

...

isft.17.11MMUm..

1.UML10.5

0ft-.001Elliin12""'''

lillinu..

Mateft.-

..........z-....amm.a..7..i....- , 0 ...

....7M 15.51t1.

a,..;...

-.011190071702.--"' MM ; MMM M"
.........-.

-5.000.1101.1Mw MI
_....1..immiko

1
:NMI

...a........n..4..---..m.ilm! M In*

al..

a5s.s1i1MMpl.i-a.MOOMEMS.Z.NMOO

milaM5!

LT M ii MMM amisantmar"..

1110010-.00101111111101000.-501111....

..-..MIlall

V.N.

MI

.6.0......2=ellimi.E211.,016A-11 ......MMEN11.35.01101/0ft

2- 00 cr
1

MMEMNBMOMMIa"TI MUROMMEMB

..5.MM"I1MI.44U!n".."

:""anting::!!"'"...

MUUMMIN.25.11MMUIW. -..MMEMMUMme5.1110MMMft

;LA -M

Mb riaMTIVairei.

n

NOV

-400

;MEM::USEM0EMUU MMMMMMMMMMM

MMM i MM

b.-00VMM - M

-600

MIR

L.:
: 1

O

14" -800

m1o1ms"M.M2M1M1M:M1MM0MMEAMMU

lMiEnMIMMUMMMMMOMMeingEMAwMeeMme

morn

aradireusul

1: U1"11110:0 1W9I::::":01

MUM::::::1100001110USUMME SEW01001Mil:MUMMIMMI

-1000o

0UMMO:

10

15

20

PLATE VOLTAGE IN KILOVOLTS

K -69087-72A286 1111 Drawing revised

:100
25
4.25-49

GL -893-A
ETI-17413
PAGE 8
8-50

FILAMENT TERMINAL
6 - iliSTUDS

MIGL-893-A OUTLINE

.cco"-t . 3o" >,.
DIA. 3.935"
+.I25" DIA
4.687"±.0D2IA0.
3" I
316±16

BASE 6628-A
+

2-1/16" ± 3/16"

3

MIN.

STRAIGHT

SIDE

3"-i- I"
4 -16

- .50d' 66"±.007"

2.280

±.780"

GRID

14Is 2'II"

TERMINAL

BASE 3935

4- 8 258+15

.500"± .020"
94-4
ANODE
oar'.

K-5344783 Drawing revised
1-50 (11M)

Tube Divisions, Electronics Department

GENERAL

ELECTRIC

Schenectady, N. Y.

12-8-49

GL -8002
DESCRIPTION AND RATING
ETI-175A PAGE 1
12-45

PLIOTRON

DESCRIPTION
The GL -8002 is a three -electrode transmitting tube designed for use as a radio -frequency power amplifier at high frequencies. Multiple leads for both the filament and grid connectors

minimize the inductance to these electrodes.
Maximum ratings may be used up to
a frequency of 150 megacycles and reduced ratings up to 300 megacycles.

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS

Number of electrodes .

3

Electrical

Cathode-Filamentary

Filament voltage

Filament current

Average Characteristics

Amplification factor Grid voltage

f Eb = 2.4 kv, lb = 0.5 amp l l Ef = 16 volts

Direct interelectrode capacitances, approx
Plate to grid ........

Grid to filament .

Plate to filament

Frequency for maximum ratings

. 16 volts 38 amperes
. 21.5
-50 volts
..8.7 micromicrofarads 10.2 micromicrofarads 0.90 micromicrofarad 150 megacycles

GENERAL ELECTRIC
Supersedes ETI.175 dated 4-45

GL -8002
ETI-175A
PAGE 2
12-45
TECHNICAL INFORMATION (CONT'D)
Mechanical
Type of cooling Maximum outlet temperature Water flow Maximum incoming air temperature Air flow to bulb from a 1 -inch diam nozzle
Gasket Net weight, approx Shipping weight, approx Operating position

water and forced air 70 centigrade
0.5 to 1 gal per min 50 centigrade 8 cu ft per min
Cat. no. 5182028P10 1 pound
5 pounds vertical, anode down

MAXIMUM RATINGS
CLASS B RADIO -FREQUENCY POWER AMPLIFIER
Carrier conditions per tube for use with a maximum modulation factor of 1.0
D -c plate voltage D -c plate current Plate input Plate dissipation

3500 volts 0.6 ampere
1800 watts 1200 watts

CLASS C RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR, PLATE MODULATED
Carrier conditions per tube for use with a maximum modulation factor of 1.0
D -c plate voltage. D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation

2500 volts
-500 volts 0 5 ampere
0.1 ampere 1250 watts 750 watts

Ec 2Eb 4.0

14001
0

ce 3.0

a_

1,

z I- 2.0

cc

GRID VOLTAGE IN VOLTS
l0
+10.0I

J I.0
Q_
1

0
K-9033820

2

3

5

PLATE VOLTAGE IN KILOVOLTS

GL -8002 AVERAGE PLATE CHARACTERISTICS (E----16.0 VOLTS A -C)

6
2-24-45

MAXIMUM RATINGS (CONT'D)

GL -8002
ETU -175A
PAGE 3
12-45

CLASS C RADIO -FREQUENCY AMPLIFIER AND OSCILLATOR, TELEGRAPHY

Key -down conditions per tube without modulation. Essentially negative modulation may be used if the positive peak of the audio -frequency envelope does not exceed 115 per cent of the carrier conditions.

D -c plate voltage D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation

3500 volts
-500 volts
1 0 ampere
0.1 ampere 3000 watts 1200 watts

1.6
Ec E b
1.4 1.2

1.0

0.8

0.6

0.4

\\N,

S3

0.2

0
K-9033821

1

2

3

PLATE VOLTAGE IN KILOVOLTS

GL -8002 TYPICAL GRID -PLATE TRANSFER CHARACTERISTICS (Ef=16.0 VOLTS A -C)

4
2.28-45

GL -8002
ETI-175A PAGE 4
12-45
1200
1000
800
600
400
200
0
-200
-400

MMMMMmmmmMmMMWmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmwmmmmmmmmim

MEMMEMMOMMOMENMEMMEMMEMMOMMEMMOMMEMMEMOMMEMMINOMMESMIMMMEMMEmminiM

MMEMMOMMMEIMSMMMEEMMOMMVMEAMMEMmOoMmMmOiMlMMMEEMMMOEMMMMEEMMMOEMMMMOEMMMMEEMMMMEEMMMEEMMOEMmMmIuUmMmEEMMIMUiMmMmOoMmMmEoMmMmEMi

IIMMEMiwimammMUMEMMEMMEMMEMMEMMEMMOMEMMEMEMEmmEMMEMMOMMEMMINIMSMINIMM

MEM MMIIMMOMMIMMWMM MEM WillimmimmmEMMIOU

MMEMmMmEoMmMmOoNmImMiMlEMm GRID CURRENT IN AMPERES --

MEM OMMEMMMMEMMMEEEMMMMEEEMMMMMIMEOIIMNMOEWMMMMMOEEMMMMWMMOEEMMMEMEMEMMMMOMIMEIIMMMEMMMEEMMMEPLMAMTEECURRENT IN AMPERES

EMMEN
MEMO

IIMMEMMIMMWAMMMEMMEMMINIMMOMOMMEMEMMOMMEMMEMMIUMMEMENNNEMMEMEMMEMME

OMMEMMEMENEMEMUMMEMMEMEMMEMMMEMMEMMOMMMMMEMEMEMEMEaumMOMMEMMEMEME

OOOMMMMMMEEEmMMmEIMlUOiMMmMMuEUmMMMNWIIANFMEAMMMEMMMEEMMMEMMMEOMMNEOIMOMEMEMMMEEEMMMEEEWmMTeAMrMEmMMEEEMMMMMEEEWMMIIMMNMEEEMMMEOOMMMEMMmOAmMMoMEmEMmmMoEumMmmMmoMomMmmEmoMomEmmMmoMomEmmMm

IIMMEMENWOMMMUMMEMEMEwwMMEMMOMEMMEMMEMMEMEMMEMEMMEMMEMEMEMMEMEM

MEMINIMMWMOOMMMEMEMOMMEMMEMEMEMMOMMEMEMEMMEMMEMMEMEMEMOMMEMMEMMEM

MEMMEMEMMORMISMNIMEMMEMMERMEMEMMEAMMEMEMMEMMEMMEMMEMEMMEMMEMMEMEM

mmommommoommumorm0011100mmom000mg0000000smommummomommommomm000

mmiiiummmEummo0n0m1o0m1mi1xmi=smMilMimMmMum0u0m0m1immmimloimMmMo00m0m.m1m100m0m0u0o0m0mm0i0s0m000=00000101000

sm000mmommo0000m0mamorm0=00000000110000mminum000mmummommilimm

MEMMOMMIMMOOMMEMMEMMOCROMMEMEMMIUMMEMMIIMMEMiMMEEEMdalimmummilMME

MoMmEmMmMuEmNmNoMmEMoEmNmSaIsOsMaMmEMmEmMuEmMmMmEiNcOuMMmEmA0M0E0M0M0E0MM0E0M0M0E0M0M.E0M0ME0M0O0M0M0E0M0M0EM=M0O0MmM0OmI0MmMmE

OMMW0m000mbmwommommon00001100m0maZEM00mmommummommommommomm

OsimMmmoMammUmmmUoMuaoWmpmOmmmMma2MaWnrrEyniNmaZlmmIONMumIMloMEamMMImmECmoPOumOSMmmIMMmiEMauESzmMCuoEPMmmAMRmoEMumMEmmMMEmaMMiaUEmmMMEMmmMEemMMmeWMmlEEEomMMmoMZEmmEM0mUMM0iEM0nME0iMEM.aNES=mME0mMM0mE:M0o=M=m2Emm-CE0mAPMmmAM0oEMmmMM0mME

mmilera0mg0mp0mmmagmmmummaammimmemmimmmo0m00arammmummommumm0

mmasommECEMMliviaMPAMEMBECEMMIMMIEWISTIAMMIMMEMPAMOMMINTIMmAmMEMEM

inlamm.amommumma.s.-mmsmiommmmi.l-a11t1i1m0a0r.a.m-m04e0n0a1m1m.s.p-omimlm0fmfoimrpOoJw,E.N.0mmmmoemgmr.a.mmmmoummmmiaomn 46:2M0MMEMNSIMMUMEMMEMEPEOMMAULTMMOMEEZEM0OMMERMIS0OMEMMEMPA

MO MO

moommintimmgmmommmfficommmommomemmimmiiimmmummularammornifirammen ME

-MmEoMm MOMMEMMIMEMMEMEEMOMMEMENEMEMMOMM6EME0OMERWOMMEWOMMEAMENE Jo ME
limu0000m0mmummansmammomms00000mumemmnammommmonamommis MmEoMm0m0w0m0m00m1m1o1m0m1o1MmMmEuMmEmNoMEmEii0rmommmmiiigiuiarmmmmOuMmMmEoMmEmMEoNmSm-imammenmspiuam"mmimEsMsEmMoMmImNommffilm

OMMOIMOMMEMEMMEMMEMMEMMEMEMMEMEMMERMITIMSZEMOMMOMMEMMELIEmmailMwM

OMMMEMEMEMIOMMEMMEMMEMMEMMEMEMMEMEMEMMICENIMMSEEMMEMMEMEMOMMWENIMM

OMMEMEMEMOMMEMEMEMMOMMMEMMEMMEMMEMMEMMEMMIUMMOMEMMEEMINMERMEAMOMM

OMMMEMMOIMMOMMEMOMMEMMEMMEMEMEMMEmmummmommimmommosiMEEMmilimmommilim

OMMEMMEMMINIMMEMOMMUMEMMENMEMMOMMEMEMMINIMMEMMOMMEMEMMEMNPVEMMEMEM

K-9033830

1

2

3

4

5

PLATE VOLTAGE IN KILOVOLTS

GL -8002 CHARACTERISTICS E=16 VOLTS A -C

6
3-1-45

45

40

35

30

25

20

15

10

5

0

K-9033816

2

4

6

8

10

2

14

16

18

FILAMENT VOLTAGE IN VOLTS

2-22-45

GL -8002 AVERAGE FILAMENT CHARACTERISTIC (COLD RESISTANCE OF FILAMENT ==.036 OHM)

GL -8002
ETI-175A PAGE 5
12-45

10.0 9.0 8.0 7.0

----- ----- imimumummumummom
1=1I1n11M1=I1N11IM0==IM==M=111=M=1M11I11

Mm==Im=Mo=mMu1Em==MMu=MmMmOO=W=Mumimm=muM=emmmIimmWuIM=M'omm=olim=mm=im=mM'um

=mum -- ====m INIIIII=n1M1 MENEM IIII
IMMI EINEM 1M11M11M.1=M11E11M11M0 =IMNIMIMIMMIM

siiiimMIIMIN MEM
IMNIIINIIIIEMMIN.EMN

NM 11111111IMION
MENEEE NEEMNMNEENN

6.0 5.0

MUM

EMMEN

INEEMN MUM INIMNIN.
MINIMMIIMMIONIIIIMMINE

INIMMEMOMMEN MMEMOMMENIMEMMO

muMImmoiumrammo] aripaamon ME... MEM MITA 40
30
2.0

MEM MEM MIMI= MmOaM-M.:EmMaOmMmMIa
=MIME MM... 111111111111M mMMMeMnMEBUOMMMNIEOMMMMEOMMMMMMMIEBM=.MM=.I
MOM= EMMEN

MOMMIMMEMEMMEMO
&mmmoMmmMummmOimmmm.muu.mMmmTmuIumEm.Mn.: =mu mmm.. mamma
MENNENIMEIEENNEINEEINEIEEIINMIEMNEI
...MN NEM. MEENIF4

MIIMMINIOMVAIIMMIIMM
NMmOoNsmNmeMiinr.Wimv ,Am=mUmaNemiInIImoIMma
MMMWINIiArIMNN/II'1A..1M1M1I11N11M11=111E11M1111EI11M11N1M1I
FNAMN.M..EEMMMMEENNU

MI= Mai _Ma EMU MI NM MN= WI MI IN ONIIMMEMIMI
MIOMMEMMMIIIM MOMMMEMMIMMil
MMOOMEMEMMMUEMMMMOMEMMUMMOSEN

MIME MENU

ninalrean

mmiii

OMUMEMMMUMMU... MOO 1.00
smmalm. .90
.80
mmommum .70
.60
=MUMMEM MEM .50

iMMMMM.IM..M=MEM.
MOMMEMMEME
=MMEMM. M.. OMMMM.O..

MMMEINIWEMINEINMEMEN.INI.NIEMMIBNE=IEN1=NME10NE11W/1.M1.A11IE1N0IEWNI.NMPMNMIIEMNIMONINMNIINIIEOMMMINEIOMMIIMMMOINMEIMOENNM MuEmMuOmoMMEENNEEMM NNUMNENNIOENMEOMNMOEMNEMRE'MS

manam====== =IMO 522Ot ii2=MTAM Enimmium sumum=mum111m111m1111,1AI0M1M1O11IM1M1E1N1I1M1I MMOIMM M--M-.--N-M- MMMEM.'

ummommimmemo
10000001 m.

mu m mm. sou Ems m mom
MEMEMME.. NWIEIMME1I1M111M11I1I1MM=M111E11M=NEIMMMO.N.SM=inInM= NEO

=EENMNEMEEEE.NNMEEEMMMMMEEEONNMMOMMINMIAOMMMMMEINEIIMMMOMMMEEMMMMEEMMEMEMMEMMMMEEMEMMmEMomMmE

MIMI MEM
_urn NOMMINIM
wmimmmusoemummummmis MmmATirZemffainr.nere.wrasz iIimmaimiiumnmiummm
ams moue"
MMOMMOMMMO

.40 11111111111111111 MOIRMIMMOIMMOMOMMIONOMMI MMOMMOMMEN

uNimu.mmmumm.0 Ira =Mr:MT= .30

=IMMINEMME.MININIU=NMIMIM..
NiumM1111111111111

MIIMININ

N=IMMIINMIIIM1II1M1IN1N11IN1IM1MIEW

minM1I1N1I_N1M11O1MUtMMEomM: MINIONSIONIM

SWtAMMO.HMININEMMEMMEMM MMMEIIIMEMINMIMMINUIMMMI

.......... UMMEMEINNISMEEEEMEMEEEN

MOM NEMO .20
MImmtno ams .......... .10

fmrfamg2ia1=1rmmWwMA.UR.M!. MI111111.4111_11111 1111,151111
1M11I1M11EMOMINMINEWENINEIMMN

EEMMMMEENN MEEMNMEEMN NMEIMMOE MMOENNOENMEIENNNESN

====M=====
0.11110111
MENEMMEEMM
1m11e1m01o11. 1wM.1o0I1NmMIIaNMnE

=0=E=1=M==1=1==M=0m==1E1==N=1mM=oIN=mI=MsM=,M=UeImN=MRomI=ImNumImNuIEM=mWIMmmNM
NENIEENNENEEIN ME1N.1E11I1NNMENENMEEIN nmsomm InNuMmINmEe1m11=mMoIEmNs.

EMMEN EMMEN
mm:::::::: mMoIMmI .UMmWu=mMmMo. mminummom

10

12

14

16

18

A -C FILAMENT VOLTAGE IN VOLTS

K-9033617

GL -8002 AVERAGE EMISSION CHARACTERISTIC

2-22-45

GL -8002
ETI-175A PAGE 6 12-45
CENTER FILAMENT TERMINAL

FILAMENT TERMINAL GRID TERMINAL
FILAMENT TERMINAL

INDEX BOSS
13" MAX.
.1561.002"DIA. 32 DIA.
.344"+.025"
STRAIGHT SIDE---).

6 TERMINALS EQUALLY SPACED
.I25"t .002" DIA.

115"MAX. 16 DIA.

02r+ 1"

I I" MAX. 2 DIA.
I.500"± .008"Di

4
.160"±*.010"

1.125"+.010'
DI
NOTE: THE TUBE BASE SHALIYBE CAPABLE OF ENTER-
ING TO A DEPTH OF .319" A FLAT PLATE GAGE HAVING FIVE HOLES .147"*.001" DIA. AND ONE HOLE .178"*.001' DIA. ARRANGED ON A CIRCLE OF1" .001" DIA. AT ANGLES OF 60°*10'.

-ANODE

- II
216- 16

K-6912329

OUTL NE GL -8002 PLIOTRON

8-18-45

12-45 (8M) Filing No. 8850

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

GL -592
DESCRIPTION AND RATING
ETI -245B PAGE 1
10-50

PLIOTRON

DESCRIPTION
The GL -592 is a three -electrode tube designed for use as an amplifier, oscillator or Class B modulator. The anode is capable of dissipating 200 watts for CCS conditions and 300 watts for ICAS condi-

tions. Forced -air cooling of the envelope is required. The cathode is a thoriated-tungsten filament. Maximum ratings apply up to 150 megacycles.

TECHNICAL INFORMATION

These data are for reference only. For design information, see the specifications.

GENERAL

Electrical Data

Minimum

Filament voltage

9.5

Filament current at 10.0 volts

4.7

Amplification factor, Eb = 2000 volts;

I,,=50 ma d -c; Ef = 10 volts

21

Interelectrode capacitances

With external shield*

Grid -plate

2.9

Grid -filament

3.0

Plate -filament

0.22

Bogey
10.0 5.0
25
3.3 3.6 0.29

Maximum
10.5 volts 5.3 amperes
29
3.7 micromicrofarads 4.2 micromicrofarads 0.36 micromicrofarad

GENERALOELECTRIC
Supersedes ETI-245A dated 6-47

GL -592
ETI-24513 PAGE 2 10-50

TECHNICAL INFORMATION (CONT'D)
Mechanical Data
Mounting position-vertical, anode or cathode end down Required air flow to envelopet
Maximum bulb temperature Maximum seal temperature Net weight, approximate

.15 cubic feet per minute 200 centigrade 150 centigrade 6 ounces

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

AUDIO -FREQUENCY POWER AMPLIFIER AND MODULATOR -CLASS B

Maximum Ratings, Absolute Values
D -c plate voltage
Maximum signal d -c plate currentl Maximum signal plate inputt Plate dissipations

CCS**
3500 max 250 max 600 max 200 max

ICAS**
3500 max volts 350 max milliamperes 900 max watts 300 max watts

Typical Operation

CCS**

Unless otherwise specified, values are for two tubes

D -c plate voltage

2600

D -c grid voltage

-77

Peak a -f grid to grid voltage

475

ZMeroasxigniaml du-cmplatesciugrrnenat l d -c plate current..39040

Effective load resistance, plate to plate

14000

Maximum signal driving power, approximate

16

Maximum signal power output, approximate

670

ICAS**
3000 volts
-90 volts
540 volts 50 milliamperes 490 milliamperes 13250 ohms 20 watts 950 watts

PLATE -MODULATED RADIO -FREQUENCY POWER AMPLIFIER -CLASS C TELEPHONY

Carrier conditions per tube for use with a maximum modulation factor of 1.0

Maximum Ratings, Absolute Values
D -c plate voltage
D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation

CCS**
2600 max
-500 max
200 max 50 max 430 max 130 max

ICAS**
3000 max volts -500 max volts
250 max milliamperes
100 max milliamperes 750 max watts 225 max watts

Typical Operation
D -c plate voltage D -c grid voltage Peak r -f grid voltage D -c plate current D -c grid current, approximate Driving power, approximate . Power output, approximate

CCS**
2500
-360
550 158 35
19 300

ICAS**
2800 volts
-360 volts 625 volts
250 milliamperes
60 milliamperes 34 watts 503 watts

RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR -CLASS C TELEGRAPHY

Key -down conditions per tube without amplitude modulationli

Maximum Ratings, Absolute Values
D -c plate voltage D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation

CCS**
3500 max
-500 max
250 max 50 max 670 max 200 max

ICAS**
3500 max volts -500 max volts
350 max milliamperes
100 max milliamperes 1000 max watts 300 max watts

GL -592
ET1-245B PAGE 3 10-50

Typical Operation
D -c plate voltage
D -c grid voltage Peak r -f grid voltage D -c plate current D -c grid current, approximate Driving power, approximate Power output, approximate

CCS**
2600
-240
457 230
45
18
425

ICAS**
3000 volts
-250 volts 520 volts
320 milliamperes
60 milliamperes 30 watts 680 watts

* Tube located in center of a metal box 8 in. x 8 in. x 12 in. t Maximum incoming air temperature 45 C. Flow directed at the side of the bulb from 2 -inch diameter nozzle 3 inches from the center line of the tube. Center line of nozzle 1% in. down from top of plate terminal. An alternate method of cooling for many applications is the use of an 8 -inch household fan located 10 inches from the tube and blowing air directly at the tube. When operating under full ICAS rating it is necessary to use a finned anode connector. t Averaged over any audio -frequency cycle of sine -wave form. ¶ Modulation essentially negative may be used if the positive peak of the envelope does not exceed 115 per cent of the carrier conditions. ** CCS =Continuous Commercial Service. ** ICAS =Intermittent Commercial and Amateur Service.

GL -592 AVERAGE PLATE CHARACTERISTIC
(Ef=10 VOLTS A -C)

3.5

MMUMWMMEMEEMIME MMEMMO MEEWNN MMMEMMNMM MMMINEMWMN
MEMEMEMEM MMMM MEnR EMEMEMERIMEMEMMUMMIMMEMMEM EmmOM

EiMMlNMiUEmMMMMEEEMMMMMUMEMMEMESMNMENMMUIMMEMMMMEMEMEMMMEEMMMEMMNIEMNMEEMMMOMMMEMEMMNRMIMMMMUMMMEMMMEEMMMMMMMMEMMMMMOMMMMEMMMOMMIMEIMNMMMMMEMMMMMMMEMMMMMIEMMMIMMBEEMMMMMEIMENMMIEMMMMEMEMIMMMMMMEIMMOEMMMEMMMMEMEMEMMMNEIIMNMMMEMIMMMEMMMMIEMNMMIMMMNMMIEEMMWMM=EEMMMEEMMMMMMMEMEMMMMIEENMMEMM*

MEMOMMEMMEMEMINAMMIMMEMEMMEMMIUMMEMMEMEMEMMEMMEMMIIIMMOMEMM MMMMMM SMINIONMEMMEMMEMEM MMMMMMM IIMMEMMMINI

mENCOMMEMMEMNIMMEMMEMMEMMEMMEMMEMMEMEMEMMinimmommommommommommmommilEMMINISNIONMEMMINIMMEMMMEMEN

MMEMMIIMMEMMEMMEMMINIMMEMEMMEMEMEMMEMMEMMUMMEMMEMEMMEMMEMMEMEMMEMMUMMEMEMIMMEMMEMMIIMMIUMMIMMEMMEMU

3.0

MMMOMMMMMUMMEMOMMMMMEMMNMIMMMEMMMMOEIMMMMIINMIMMIMUEMMEMMEMMIPNNet'2IiMlMlAMMMMMEMMMEMMMM1I1N1I11MMMMEEMMIMIUNMIEMMMIEMNEIMMEMMEMMMIMIMMMAMMNIMMIMIIMNMEIMMMMEIMMMEMMEMMUEMMMEOMMMMEMMMMEMMEININIMEMREMMEMMEMEEMm MNIMMIIMMEMMEMMEMMIIMMOMMEMMEMENEWIIMMEMMUMMEMMEMEMMEMMEMMEMMOMMEMMEMMOMMEMEMMIIIMMENEMEMEMMRIMMEMM

IIMMEMMEMMEMEMENNEMIMMEMEMMEMPridEMEMIINNWAMMEMEMEMMMINIMUMMEMIIMMEREMMINMAMMENMMUMMEMEMEMEMMEAMMEMONIME

MMONIMMEMMIIMMEMMEMEMEMMNIMM2MMEMMEMMT.12MMEMIIMMEMMEMMEMEMIIMMEMEMMIIMEMMEMMOMMIMMOMMMEMUMMINIMEMMEMMEMME

MEMMMEEmMMMMMMIIMINNIIIiMMMmMEMmEMoEMImMMMEMMMMEMMMMMIMMMMIMMMNMIIMMMEMPEM2IMEIIMMNIEPIM2MMMOMMEEm.M1i2M1Mi1E1m11Mm112i111mMMM12nMMMaMEMmMO2mMMEoMMMPmMMLmEIuMAmmEMoMmMmIIrImMAMMoe2Imm0Nm1aI1uM1mMM1uIM1Im1MMm1MMMuMEMmMUmMmNEoIoMmMmOMmmMIomMNmEoImMAmMMmmEMiuMInmMMiMmMmIIuNNmmIIomMMmmMMmEiEmMMImIONuMImMMMmMMUoIMMmMMMmMMMOuEMMmMMMMmMEEuMMmmMMIomMMmoEMMmmEMimMEmuMMmmIEuNMumIMmmMEmMMiEMmmiIMmmmNEoIMmmMM

0mm1oo1mm1mm11oi1mm1mm1oo11rmMimMuuEmNmImmMaiMmnEmMaPomMmmAmMumMmMumMmkEmMroPa2imOniM2MmmUmMooMmImmUmiMiWmmMm2moMamOMMmMmoEimMnmEiNiMmnEmiMemEMmuEmmMomEmuMEmmMmoIomNmmIMmmMmuEumMmMmEmiMeuMmmEaMmEmuMmnMmMoMmMmMmommemwo=mmmmiommmmoommmmiimsm 2.5 minimmummummommwmammimmomwprammommummammumwAmommimmumm MMMMMMM mum MMMMM mmommommmummumminimm
MMIEIMIIMNEIMMMMEEMMMMIIIMWMEEEMMIMNMEWRHigIMMMEIMIMIEMMMPESMOMEMMM2I1U1NMIMMEMMAMMEMMMEENMPM2EdMEPMEEaMMEEMMIMWIIMMIMMEMMEEMMMMEENMMEEMMMEEMMEMMEEMMMMEEMMMEUMMMMMEOMMEMMIMIIUMMMMIUUMMMMOOIMMMMEOMNMIOMM
MEMEMMIIMMOMEN M 1112 MM MININIMM2111111111111MEMMEMMENM2IMMOMMEMEMPOMMEMMEMMM MMMMM 111111.11 MMMMMM MIIMMEMMEMMEMMOMMEMEMM
miommmmiommmmuiurnsoimwmnEinmammommimmammmammimnotmmuummmmumomniawmnmimaummmiummmmoimmwmtmvuimnlmimMmMuMmMmMimmmuommmmoummmmuummmmumomsusmommommoummmmoommmmuommumm

MIMEMMEMMHP2MOIMOM M F2 MM MMEMMEMMMIWAMMIMMEMMEMEMMMWOMWMENIMIXEMMEMMEMEMEMEMMIIMMEMIONIMIRMIMMEMEMMEMEMEMO

2.0

MMEIMENEMIMMMEMEMIMMOMINIMIESMMMMMOVEMAMMMMKMAMEMMMMaMMMOOMMTMAMEIMMNEIENMMEMMEMAMMMOMMEMMMME1dE1MM1MM1E21MO1MM1EMMMEMMNEEEMNMM2MEMEMOMMMMEMMMEIMMIMOIEMMMSM1AE1MM1EM1MMMMWMEIONMMMMMEEEMMM1IM1NIEIMMMMMIEONMMMMMIEERMMMMOEEMIMMMEEMMNEIMMMNMMIEMMMMMEEMIMEIEIMMMMSMIEOMMMMMMMMEIEMMMEMMMEMOEMNMMMIEENMMIEMMMEMMMEOEMNMME

mimMEMMUMOMMMM 2 MMEMINIMMWMIIMMORIMEMEMMEMM2MMOMMEMMEMEMINIMMI

MMMMM 1141111.11.1111MIMEMEMEMEMMEMIIMEMEMMIMMEMM

MmMuEmMmIoImMmEiMnIgNIaMmAmMoEmMmMiMrOmMMiOuMmMmIoImNmUoMmEmNIoNmImMoMmImRiPmMuWMmEmMuEmMmEeMmMaOmMMmEuMnMiEmMPMEM2MOMMMMEMIEIMMMMEMMOMMEMMMOEIMMMMEEMMMMIIIMIMMEMMEMMEEMMEEMMMMEMOEMMMMIMNEOMMMMEMME

IMIINIIMMMMIEMNWIAMMORMEMEMNAMIEMIMNMIIIMMUMMEMEMMMEAMMEEMMEMMMMEMnMaINIMMMMImMoMmAmMIoNmImMiMnEoMMwEnNiNmmMoMmMMmMiMmMiuRmImMiMmmMuOmNOmMuMmEuNmOmMiMEnMiMmEmMiEmMMmEuMmEmMoEmmMMoMmMmMomOmM

MEMMEMMEMMIIM MM n MM mommommommaimmimmommompnamum MMMMM MEMMEMEMEN20gMMEMMEMMEMMIONME MMMMM MMOMMOMIIMM

MMWUOMMMMEORMMMIMIMwMaOMMMEMMOMNEEMMEMMEEMAOMMME2MMMEEMMMEIMIMMEMMEPMEIIIMMIMMEMMEMMoMMEMMEMMEMMEEMMMMUEMMMMMEEMMMEEMMLMUMMEIMMMMOOtMaMdIIIMMMMIENMMMEMMMMMOIMMIMNEIMMMIENMIEMMMMEEMMMMIENNIMMEMMOMMMOMMEM

MmiMlElMmMOEMMMEUMMMMWMMMMEMMMEMEMMEMOMIOMMAMIENOMMEMMEEMMMEEMMMEEMMM2E/211MMMEMMMEMMMMMEMMUEMMMEMMIMMEEMMEMOEMMMMDRME2MMdEMMEOMIMMEMEMMMMEEMMMEMEMNEMEMMMMMMEMPEMMMEMUMMMEMMMSMMMMEMMMEMWMIEOMMOMMOMMMIEI

1.5 mmillIMM2111 MMMMMMPMAMMEMINIMEMMTAIMMEMMEMOIMEMMOMMEMENE2mININEMEM MMMMMMMMMM minimmatmsnmommi MMMMM milmomminum

MEMMIIMMOMMEMOMMIMEMMMEMMOM2MMEMINIMMEMEMINIMMEMPEwilIMMIIMMEMMIIMIUMMUMMEMMENSMEQMOMMONNIMMEMMEMEMMEMEMM

MONMEMMMINIMMOMMOMMENW2AMMEMIMMEMMEMMEMEMIMMMEMMEMMERMUMMORIMMUNIMR=ROMMIMIXEMEMMEMMIUMMEMMOMMMUI

MMOMMEIMEMEAMEMMIMEMPMMIMMEMMOMMEMEMMENIPM2111111MMEMMEMMINOMMEMMEMMWM=2MMEMMEMEMEMMEMMUMMIIMMWOMMEMME

MINIMMIMMEW MMMMM MMEM211111.11 MMMMM IIMMIOMMEMMIMMEMEMNIIMMINIMMENIMMOMZWOMMEMINEMM MMMMM 111,MINIMMEMMMEMMINOMMEM

MINIMMEMIIMMEMMEMMEWIIMMEMMEMMEMEMPM2dEMMEMMOMMMUMMEMMEMMEMPE20=111111MEMEMMEMMEME7MJUMME2oMMMUMMMEMMIIME

OMMOMMIMONMEMPMEIMMEMIIMM MMMMM PEROMMEMEMEMMINIMMEMEMEMMEaMMOIM MMMMM MIIIMMIIMMEMMIPM2OMMIOMMEMMEMMEMEMMM

imoimmmmismmmoommmmiainmammummummommommimmmummummwmaimnmiommmommummommommommummmmemummonmrmaommmmiommummommommmmoummmmoummmmamiMnMmMwMoMmmmuommimlommwmmmpuammeprn;eem:mmmsil

1.0

IIMEMEMP5MMEMMIMMENOMidlIMMEMMEMEMEMM MMMMM E211 -1111M MMMMMMM MIIMMEMMEMMEMMWM=RIMIOMMEMMOMMEMMEMEPEZMINIMEM MEMEMP2AMMEMMEMEMM20111111MINIMMEMMEMEMSFM2AMMIUMMEMMIIMMIIMMEMMEMMEMMM=rmIMMEMMEMMEMMEMMEMEMMELWOMMEMMEMEM

OImMIoMMmEMmMEuAMmMMmMEiINnMOaMMmUMoMimMlmIioOMmMMmMEoEMmMMmMEEMEMImMNmENaMImMMeIMmNEmIMuEPmMZmPIoEMm2Mm1Eo1MmMMmMIuEOmMMmOMMIeMMmUEmMMoMEmEMmMMuMEmEMmNMMKMEOMMMMMMMEIMMWMOMIMERMMWEAMEMEMIMMMEOMMMEEMMMIEMAMERMM=IE1UM,MM4EE1MM1MM1EE1MMME=MM2EUOMRMIOMlMEmMMOEMMMEEEMNMSREEONMMMEMEMIMMIIMmAMoMMpP

MiEmMmiMrMiMcWamMmMimmmummummmmiloimmmmael2idimmmmoommmmoummmmoMmMMmMuMmMmnUlMEiMmPmEoZmIMmOoMmMmMoUMmMmOoMmMmEuMMmEmMiImNmIMiInNsEaWmM2m0o1m11M11M1M1M1M11m11o1m11M1MMMMEMMMMEwMM!E=M.M1U1M1M.1211M1E1M

EMIMRMMEIMIEMMMMEIMIMMMMEEMMMM2E0R1210111111111111MMUEMMMMIEIMMEMMIMNEIMMEIMMMP2RmZM2EMMMMOOMMMMMEUMMEMMEMMIEUMMMMIENMIOMMMMEEMMMMEEN.EO=MRMOIMMMMIINSIMMMMEUMMMNINMIMMMMMEMMEmMoMuEnMmPaEi2mmmMuEmMmMoEmMmMuEmMmM

mmumnommomnuamlmuamimmommommommummmnonimmamrimmummamsuommmmoummmmoummmmomommimmommummuemgni2mduommmmuummmmuommmummommommomm=maommmmoemrmzoammmmMuMmMmMoMmmMoEmMmPoVm.mMi1m1p1
0.5 EMME2AMMEMMEMMEMMOM=MIMMEMEMEMMEMEMMMEMEMME=2011111MMMINIMMOMMEMMEMMEMME=asiONMEMEMEMMEMIOMM MMMMM 11111MORE2
MnMMMoUImMNmENMoOEMmMMmMEuMMImMMOmEMaMMMmOEmTMmrMamEmMuOMmMEmMMMMoIImINmMMuME=mMaImmMuiMmlElmMIMeMEmMMEaMMmUMMmIRiI=Mm2MmMEuEMMMmEEmMMEMMmEMMmMEoMMmMMmMEiMMMm:Im2N1oE1wM1EnMMrMEIaMId2M0eM1Mm1UeMMmMMiEEMMmMMmEEiMMnMMIEiNMmAMmMEMoMEmMMEmOMiMMBmERmM.Mu2EmmMomPmeIm=Mo=ma2mmIimmMomMuEmmMmgEimMmm4g4m OmMwIaSsRs2idmImMuMmOmMmMtEmMEaMmEmMoMmEm2mRiomMmMoEmNmMoEMmMmEoMmEmMlaMmMmMoMmM MIMmmMeMlMtMammmoummmmoimlmiimmniinsuommmmuumnmmoammmmnommagmgoimummommmmoommmmoimmmmuimmnisnwvyetmi

MUMUMMIMMEMmillEMEMEMEM MMMMM 11MMEMME:24111.111111111111MMEMMEMMINIMMINIMEMMEM2mOMMEMMEMMEMEMMINIMMOMMEMWM=2wOMMME

MUMME2mEMNIMMEMOIMEMSEWIRELIMmillMOMMEMMEMMEMMINIMMINIMENT=2mMMMOMMEMEMMIOMMEMEMEMMEMME=2OMMIIMOMMEMME

vummmommmmmemmmem=mzmmammmmRo.m.mmuzuwmmmmMmMmMmMmMmMmMmmmmmmmmmmmmmymmnm=.msmmemmmmmmmmmmmmmmmzmam.mMmMgMmMnM=mmiamammummmmmMmMmMmMmMmMpMmImNmOmMEmMmMmImNmImM

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

K -69087-72A113

PLATE VOLTAGE IN VOLTS

3-11-47

GL -592
ETI-24513 PAGE 4 10-50

G L- 592 CHARACTERISTIC CURVES
E,= 10 VOLTS A -C

- 1015111 MEERUMESIMIN
500 M11E04M1O1N1M1M1E1E1MMMIEONMMMkOOMMMMIIMNNOIM.CA.1M.OMM1E1MM111
IMMONINEEENOMOdEMONIIMIMEME 11111EMOMEMEU MM me MM NWEBOEME1

ME 1111MMMEmEMEgEEMiMMMm1MENmMMMmMEEmMMEmMMMmMEE1oM11N1MmMMMMmEMEiMMmMEMEmEIEMERMEEMLEIMEEMMmMMImEENmNMIImMMEmEMMaEMMmEEWMmMEMoOIEmMEEmMMMoEEMnMMEmEMNRoEEImMEmIOMNMEEEmOMKmMISoEEEmnMMEsOEmmMMmMiOEEgMMMOaMEWmENEmMMNuEENMmMUEmEMMmEUMMuNUMImMEMmEMEmMEMmEMIuMEEmEMMNmMOIeMU

MEMMOOM M

ME

MI

I OE ME sMuEuMmEmNMemEEmMImP,WuE'm4E.m1. ineMm. mMmEp4O0f11fM-m.MnOa-.m4 Esh-E'MMM4EO1MEMIMIEEIMIMEMMEOMNMNMMEMEEMMEMMMMIEEIMMEMMEEMMEMMEEMMIEUMMEMMEMEEMMEOMOEOMME1MEM1 MMEEMMEENMEEEMMMEERMMEOMMMMEEMMEMMOMMEEMEMOEMMMOEME

ME 400 mmummmoommmommmoolmgimgauua4m.tienm-nm.o-mI.1miMmoManOomOmmMm'ugnEomiM.mm-OmwuDsPa.gmmwmm.diiE.mm.MoeEnmmOMsnmWEmm,MnmoPumMnmmPvmmo1lmNIhmiMmImMIm/m:E1ooOnmRomEmoImNImmEmiEmMmuMmnEmnMmoEmmlumlmowmEmmMmmMumEEWmuMMMmmOmmMooMnmEnmOOMomMMEmomMmoEmmMooMmrEmmMiEMm1M1Mm1Mo1M1Mm1EMmMimOmo=nmMmmOmsMm.uMmaEmmMonOoOImmMHmuEImMIE

OEMENNEFEE DMAMESOEMM1.4104 MffingT94E.7141NEMEMEME EMEMEMEMENEMEMEMMEMMEEM IMEMMEMMEMEIMEM MEMEMOOMMIN

'ir" EMMEMEMOI Mtr%NINIIN.EpE.SME1NtOmmnibs.

h.II

mmimmlIMIPTIMOMMEMEMOM111111 -.2m1110111q .-

IMMEMEMMOINEMEMNMEMMEEMEM

EnMMEN

M EMEMEMOMmE

mKOmMoMImImIo1Or1o1Tm1m1o11imm-lin!mrmnmmommmmimgo-gimrmnmmomammImloimmommmmmlabmootm7mmoKmommommmmnosmmmnoommmmeommmmmmmmoommmmoommmmommommomnonmommmmmommmmmommommommommmmummommommalnn

300 nEMEoEEmMMMmOIPiM./1fmOt0Mm1Em1piE.l1El-m10Ms1M1Em02o-44sd1p1-1`EuM0W1Mhm1IM.EmO-M.mM.E.eNofOpta1Mim-.e.m.mO00mM0.MmE-mEM_N1M.-EE.n0MM1E1Iu1GOm1I-h1mMmE2Eomm4MEmn4MM.mm1E-MsMm4.E..1M_mI.tNOMI1_Epm=mNmmmOoMmmNamEmMmmEamlMmmmmoOmMmoMmmEmMmmEuMmMmEMmEuEmMmEuMElElMoEurMEaMmiMlEluMmMuElM.uEmNMuEElMMl

SIMEIME041EMME.M.SEIOMMEMMOft.REMEMIORME0m.- MOE .

mmmmmommwmoummmnuemmgnmmmmm1o0m1meMnMuOmMmMmEuMmImNMoEmMmIoCm1mMmMmEgEMmMmOoLmMmMeEmMnEMoEmMmElNmMmMmEoImMOmMuMmEmEuMmEmMoMEmMmOiMmMmEuMmEmMuMMmMmEuMmImEuMmMmMEMmEmMuMmEmEoMmNm!mMEmMm=

EMMOMPWEEMEMMEW2MEMEMIPM1

IllillilNIII

-:,44.01

62MEM-EmM.MMEEMMMEN.MMEMM-EmMmEiMOMRIhPiERRoEmME-ME-MmEmMEMONMEMEMEMMEMMEMEMMOMMIlllllli

MEE

m

MIME

200

nom

MM

n PM-M

cc
mgmmmqam.m-mmmmmMeEaMNpm.e.m.mOmMmEmN mm.i.lm=n..m.mInmmImmmigmmmmmmmmmm mmnmm.mmmmim

1

i i iOuwmmm:'sm u-mmmim--f"oIU.mMM.EWm-1u1m1.u.m41a1g11imENMmN-iOM3mMM.NOpMlENMi.EM.mM.PEoIMMmEMI-uOMmTM.EWIMmIVIm.Eu.M mMulml- mi-n-.i2m.gmuMMmIEammMOmOMummmim. MEE E

4 .. 100

EPMIU FMrMM"M-MAOPTIIIIMEM

.1214EME
: -.1.1

OMEN.-

EMEMEMEMEME EMEm.._ --41 mmommommommommusa-.
...-...............m.

Wm.._ 11111, m' .

.I.IM.M.444i-1..iM.OiO..."".0-I.N.-4.'.14--15 m11g4romMMOiuIlIaOMmmiUamN-.m1i1l111m4.1I-l1i_a111M0m.m.m,:em...I.mmeo..u,n.c.lumEt=MMraEia:NlMmIm-Em4m...-._..E ...11M.I.E0...a.ft.n..

..
mm.,.

.

moon rramiagzmomn.m.m.a.mmaimpomonmemmoammmmoanmammem-minmmi-gmmom..miimsmmmuonmemummummmiImmmommammilmwamm.m=o-m.m.o.m.mo.m.mumm.em-.m-m-onmull. _EME1211:2!

J..- i II III 0

Tommomme-nnumememinnmmommi mmomwmmimmm

. milli!

i

011 WOOMI

m -m..,

11 m..."

nummummmommmmniveimmmomm

li

EIBEEEMONEMEMOEMOOMuMMPOMMENIIImmizeL

7mm41 mMm -N _ MM

mMmI..N.-N nA.l.m.m..-_.

4TP --Zs

m. -m MI.

aMME.0Mft-I

mom mml. nmm

m.

-71," O
11
mom-
a.'....

w -mm Ell

11...

-...1111O

V '111

.M5mum.-

mi

IPME

Owi l

NN...

MEMENEE111-mmMm---md

-W-M.. M

.
m.
r.o.il.,_
M-
.rO

MM EmEnm..- RE Oft.mmEMEMa. mmOMMEMOM

m .

100

MEN

MEMEMMEMOMMUMEEMEEMMEMEMEMEMEMEMOMMEMEMEEMErnaNZMME-MmIMmEMMEMNM.MEEUMMM4i.N.0T1gA-ME4MNIMMmMNU1MMTMEM.OKUp=

E

M

Emmmmommmmommommosommmommommomommmummommmmoumnammmmmummuommmoommmommmgommmmemmogomammummmommizmmormmimemamlemarl:aummm

nommummommi mmemunimmummonommommommummommommunimmommmommommmonnommommmm ommommemsnwvaAmm. WOUMIBE

0

500

1000

1500

2000

2500

3000

3500

4000

4500

K -69087.7A116

PLATE VOLTAGE IN VOLTS

3-24.47

GL -592
ETI-245B
PAGES
10-50

GL -592 TYPICAL GRID -PLATE CHARACTERISTIC
Et= 10 VOLTS A -C

MMEMMEMMEEMMMEEMMENMIMIEMMMMEEMMMMIOIMMMMEEMMEMEMMEMMUIMIIMUUMMEMMEEMMMEOMMMMMMIMIMIMEMMEEIMMEMMOMMEMMEMMOMIEMMEMMEINNIIIMMEMMMIENMIMMEENMM1E1M1M1E1M.M1E1M1MMMUEMMMMEIMMEMMEOMMEMMEIIMMMMEEMMMMEEMMMMEEMMMM

MOMMIMMEMMEMIMEINEM

EMMEMEM NOM

UMMEMINEMNIIMMOMMEMMEMMMEMMEMEMEMMEMMEMOMINIMMMEMMEMEMMEMMINIMMEMEMMEMMEMEM

111111 MN

M

0

m

n

m

n ME
m

MEMEE =oMN

MEM

m

im

1:11:1111:::1111111111 111111111 ma m

1n1n1u1m1m1i11n1i:k1u1m1m11omlummimm mnmnmmommommommumnsommommom mnommonnummummommmummonim mommommonnumm

I

o

1
m

m

MMMErANMLEEMNE IEEMIIIIHHIEMHHIIII

1_i11111111i11I111 n11111111

MEM

MEMEMMEMEMEM

k

ii

Mbh.

MEM

.

I

'NM

'

0111

N.

110

mil

ME
M

En UM M

iii E
IIa

111

MM .M,1 III 4M MEMOMEMEMEME EMnl EEOEMOMCEMNMEAhM MME MMEMM MEmMmMENE MEEM

liiiir,.

11'4

I

'111"M1E11111111111 1111
0

MEMEMEEMEMMEMEEoMMEEME

illllll 1111
MEMEMEMEM000

MMEMMEMEMMMIW .-MOM EMMEMEM L M-.Nix

-

.

nn

0.

n I

M

zre .

11 NM

0. 0.1

mnormnsisomi-mmmuo1m11mo1m1m1l11I1ii1n1a1g:m1u1m1m1e:m:1mi!!a!1m1i:Il:1i1a1L1A1n1ia1l1a1:i1l1m11i1n:m11i1l1l1a1m1m1a1:n1i1m1:m1u1m11n1a1n1n1o1m11o1mmis m

mImomnanv,nqdn4MiMtimmorm1s1l11l1lfitmnnlr! lii1;71m17711-1=.11m,1116B16.1:.11111119
--m-

"A

.!

MMMMMMMMmmnummil

0 IIlI "

MME il

000 EN

0

500

1000

K -69087-72A117

1500

2000

2500

3000

PLATE VOLTAGE IN VOLTS

3500

4000

4500
3.11-47

5000

GL -592
ETI-245B PAGE 6 10-50

5" MINI. 16 STRAIGH

.500 ±.007' DIA.
PLATE TERMINAL

.f. II" 52 4
GRID TERMINAL

73-72"MIN.7RAIGHT .125 ±.005" DIA.
GRID TERMINAL

w.s. (im)

I"MIN. STRAIGHT
90°±5° CENTER FILAMENT
TERMINAL

6°1A °5--

FILAMENT TERMINAL

J2511.1..005"

90°'°

FILAMENT TERMINAL, FILAMENT

TERMINAL AND

TUBULATION ARE SO

ALIGNED THAT THEY

CAN BE FREELY INpERT-

ED INTO A GAGE THK.

WITH HOLE DIA.J5 5" .186"

8.350" RESPECTIVELY,

LOCATED ON THE TRUE

CENTERS BY THE GIVEN

60° DIMENSIONS.

N-21200AZ

OUTLINE GL -592 PLIOTRON

Tube Divisions, Electronics Department
GENERAL d ELECTRIC
Schenectady, N. Y.

12-7-45

GL -891-R
DESCRIPTION AND RATING
ETI-246C PAGE 1
9-51

PLIOTRON

DESCRIPTION
The GL -891-R is a three -electrode tube for use as a radio -frequency power amplifier, oscillator, Class A modulator, and Class B modulator. The construc-
tion of the filament permits operation from twophase or single-phase alternating current, as well as from direct current, for all classes of service. The plate of the GL -891-R is air-cooled by means of a

special radiator which is fitted to the tube by the manufacturer. The plate is capable of dissipating 4 kilowatts of power, depending on the service in which the tube is used. The GL -891-R pliotron can be operated at maximum ratings at frequencies as high as 1.6 megacycles and up to 20 megacycles at reduced ratings.

TECHNICAL INFORMATION

GENERAL

These data are for reference only. For design information refer to specifications.

Electrical Data

Minimum Bogey Maximum

Filament voltage

22

23 volts

Filament current at bogey voltage

57

60

62 amperes

Filament starting current Filament cold resistance

0.031

-120 amperes ohm

Amplification factor

Ee = -500 volts, Ib =0.45 amperes

7.6

8.5

9.4

Interelectrode capacitances:

Grid -plate

25

28

32 micromicrofarads

Grid -filament

15

19

23 micromicrofarads

Plate -filament

1.5

2.5

3.5 micromicrofarads

Completely revised.

GENERAL ELECTRIC
Supersedes ETI-246B dated 8-50

GL -891-R

ETI-246C PAGE 2
9-51

TECHNICAL INFORMATION (CONT'D)

Mechanical Data
Mounting position Type of cooling
Maximum incoming air temperature Required air flow on anode
Plate dissipation-kilowatts Air flow-cubic feet per minute Static Pressure-inches water
Maximum glass temperature Net weight, approximate

100% rating
450
0.5

80% rating 380
0.36

vertical, anode down forced -air
45 C
60% rating 300
0.20
150 C 46 pounds

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS
AUDIO -FREQUENCY POWER AMPLIFIER AND MODULATOR-CLASS B
Maximum ratings, absolute values D -c plate voltage Maximum signal d -c plate current Maximum signal plate input$ Plate dissipations Temperature of air cooler
Typical operation (unless otherwise specified, values are for two tubes) D -c plate voltage D -c grid voltage Peak a -f grid -to -grid voltage Zero signal d -c plate current
Maximum signal d -c plate current Effective load resistance, plate -to -plate Maximum signal driving power, approximate Maximum signal power output, approximate
*Continuous Commercial Service. Averaged over any audio -frequency cycle of sine -wave form.

CCS*

10,000 volts maximum

2.0 amperes maximum

10,500 watts maximum

3,500 watts maximum

180 C maximum

CCS*

6,000 8,000 volts
-630 -860 volts

2,060 2,260 volts

0.5

0.5 ampere

2.5 2.10 amperes

5,000 8,000 ohms

110

50 watts

8,000 10,000 watts

RADIO FREQUENCY

(Key -down Conditions Per Tube Without Amplitude Modulation)11

Maximum ratings, absolute values D -c plate voltage D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation Temperature of air cooler
Typical operation D -c plate voltage D -c grid voltage Peak r -f grid voltage D -c plate current D -c grid current, approximate Driving power, approximate Power output, approximate

CCS* 10,000 volts maximum
-3,000 volts maximum 2 0 amperes maximum
0 15 ampere maximum 15,000 watts maximum 4,000 watts maximum
180 C maximum
CCS* 8,000 10,000 volts
-1,800 -2,000 volts 2,400 2,700 volts 1.14 1.33 amperes 0.09 0.140 ampere 215 375 watts 6,500 10,000 watts

*Continuous Commercial Service. IlModulation essentially negative may be used if the positive peak of the envelope does not exceed 115% of the carrier conditions.

APPLICATION NOTES

GL -891-R can be operated at maximum ratings in all classes of service at frequencies as high as 1.6 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised. (Other maximum ratings are the same as shown under MAXIMUM RAT-

INGS and TYPICAL OPERATING CONDITIONS.)
The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 20 me for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

Frequency

1.6

Percentage of maximum rated plate voltage and plate input, Class C un-

modulated

100

7.5 20.0 megacycles

75

50 percent

Buno.la pespkazi

40 WZL-L8069-N

SEIOA NI 30V110A 31Vld

00051

00001

0005

mmim11111111111.11111111111110111MIEM

MIIIIMIPIMIIIIIIMINIMMINIIIIIIIIWABWAmu,' AMPAIIIIIIIMINOw.oNimillir-.4

AIWAIIIMIAMMIK/111110,411111WAMEr IrMITAIIIIIVAIMINIV41111111 IMF AIMMIKAIMIVAINIVAIIIIIIIIIIVAIII

/MI ANAInW4u1AA1rI1A4mI1I/11Nm11o1W1r11EA"1i4E/rm41A11lE11o1m1Vu1111IroM11a11r/w/I44iWw1Er1MAN1AP1iI1AmiM1nM1EIM11AErIIS4IP1IIAIN1MII1IMII1IIMP1III1IAKNI1NN1II"IIIIFM~MNAAMAIilIIIlINIrENMEII_IIIN_MN.TWTIMANIIVIIW1MPA1AM.1=4IEI11WAW17IM4A.A11MIIEI1NII1IAMEI1IIrIIrAMIA.NMIEMFVENA4MFMI1NI1ANAI1IPN1IIMV41IN11_MMN11WNU11IA1M1M/11EI1I1NI1MIWPIU1WA1MAMI1INIIAN,II4IIEAIV1Eil1MAEF1PNI1A.I11M.171I1.rA11Fa1II1MMm1.14m,14WMumIiMnMudIrInl.i4ns1,

E111111111EIP'IMIEWANNIF AWANINIMAIIIIM
M111111111111/411111111/411.11U/411111111.4111.11111111,41111111r

IINNIIIIIIIWININFAIIMW
r41111111WAMMAIIIIIII

AIIIEIIIIINMEFEAMIIMNIINVFAAINIIINIIINMFIANMIMMMKEIJMIIIEEINIMIIIAIAEINNrAEVMVAMiNll,

rinseI I .4MINV Ell/d5tErAk

ANNIVAIIIIIIMANAIIMIIIIMEEVAMMVAIIIMMAIII,411111WAIIMM4=1
APINIKIIIMIV.111111111,AMMTIIIIMEAMEN/EMErANININNINIMIMINIMMINEF

N_AENIall

Nr
AN

_.emu,,ucwv.r..r........w..........u._r,.........._,_..,, m,1111' _ giliErACIMMINIMPAI111111111,41111111114111111111/AMIIIINWEENWAINIWAIIWIIIIMPA

mNImAIWuAmINwEFaMm111

W401101/
AIN AIM
AMEIW/Mell

1111.111/We

AAVMIVIIK.AIIlIrII'!IIidI/AirI,Mr1IIN41V1A1.I1I 111AIIIMNFI_AAMMEIEYTANIEVAMMWAIIIIIIINIMIEMENIVANWIVAIMINIMENWAMIMLIEM' PF

ANSIMPAINI 4C11111,1111111111P II/ /1111111.11111NIVAME

Ir.

IIIIIMMINM rAANmE11W11I.

JIIIIARMPMIEFWACAII4II0N1V1A1M/4P1A1I.II0II1N1I41111/41111111111,/1/1111111111111,1411%1111E11M1I/A41M1M1.0E1N..I.N.MIMWMANIMNI/IIWMMM/ENMMIIII AIA

W AMININV II
MIINGINW MIME

NIIIMEIM1MNINFN11AMMM1EN1V1EIP1VN1I1AAKNMMIIL.I1MM1T1III1II4I1VIi.I2,AI6IIN4VA15AIri3iIMINMEAlWo.UIWmUoMARM/IENEIRWWMWUEM/ENMiEMM/lAN/l4M'E4ElE1k=WIA.1Nm1E,'II11IIwIVIN1I1III/1MM/1MW4W1MI1N1MA14I1'NA11I1NIIM111AIEI111III/I111M4INI1111, M11111I1,M111MI1111I1I11A1,I1E1A511I111//II1411NIN11I11III111I1MII1IK1I1N1M1I11IIN1IM,IMI1'IIIIIIMIM1MMNI1IOAAIINWMNWNINAAII/IIIMIMIIIIMI/IIIMIEIMIII/1IMIIMIII1M/EIINMO1IMVW1NWAEV1IW1NMU/M1WMN1OAMEW1AWNVU/EINMNINIEIIIEIII/IIIIIIMIIA"IM%IIMNIBEIMIMMIMNMEEIWMNM/I4MII1INIMI1MII1NV.1II

MMNNIMMNNI
IIIIIIIIIII MMMIE=N
IIIMI
=MMIII.I

EINWINWWA/LIi4ii0llI1N4C1I/U7M11N1W1A11N1N/E11V1IIMIIIIIINMAAINIIIII1/11/11111111111N1rMiNNINEIEIMINIINNIIMNII1N1E1E1 NM/IANNIIINAMWIIEIIIAIMll WAIIINN JIIIIIIMIMWAIIIIINIAMENAMMEIVNIENUMENEW AMIE NMI NI MIIIMIIMINMIJAIMMINIINI 'UAA1N41M1E11L1N, IAIMNAIIIIIIIIIITIIIMMMMIINAEl MWIIMIIIIIIMIIIAIIIIINIIEMIMEWINEMNIMIVI IIIMII/ IMNIa 1111111.1111111111111MNIENFAINW MENIIIIII MINI MEM ANEW MIMI NEW NM A INNEIIMIIIIMIIIIMMMMINININIIVIIIIMIMIIAIVLIINNIMIIIMMEANIMINIENM/ IMNIINMIMIEMEPNMINU1M11/1N1E.1NWEEIEMWEAMNI' AIlll
1IM11E11M11IN11EEIMNEIIMIIEIMIIIII=EMNNNINWI PEILIINMEIENMINMEINIIIIMNMAIINMINIIEMWIN IIMIIMIIM11M11I1II1I1I1NWWIIIMNINI
.MENIIINMIINIMM=IIMMIIIMIII1IIMMIIIEIEMMNMMWINEI.MMNMMMMMIIEMENMWMICNC7MMMMIMMIMENAWIIIMIIIMMIIIIIMIIIAII_MNIMIMNMMIWINIMMN1E11I 1111111111.11MMMINIMMII11111111111111111111 I ICA I 0111111111 MIMI INIMIUMIE IMIll 1

-17

111.11E
NM 111111E
WM WM

111111111111111111111111111111.1

11111111111111111LEINIIIMINIIIN IMMO MEN MI MIMI I

111111.1111111111111111111MMEEMEMNERIIIMP4INME111111111I MEM/M111/ MINIM

IIIIMMEMIII=MMENNIIIMINIIMMINMEIM EMEIMMEIMINIIIIIIIIIMMIMIN1111.11111
NMEN1111111111111111111111111111111MMIMMENN MIIIIIIMIN1111111111111111111111M=11111111

MMNItNMEENIMVNMIAAZIJMMIINIIIIINIIMNIIIIINMMNWEVEWIEIMIMINIIIIIMNNIIIEIIIIMMMMEIIMIMNMIII

IIIIIIIIIII MEM
Nom

MMNIMoIIIEmIIINNmEIIMIiInIEMuIEMmNIImIIMIMuMEmEMMMuMmMEINmIMIImMINMIuNInIIIIIiIINnII

ENE

MEM

11111.1111111111MIIIMMIEN

111111111111111111NE

INIMINIEMMIIMINIMIN MIIIIIIIMENIO

IMENIMImmE11111111.111
MMMEIIIIIII NNIMNIWNIMIENMIEEMNINIEIINNIMEI

IIIIMIIMEMII 11.111111111111111111 IIIIIIIMENIME

ME MINIMMEN

EE 11111111111 IIIIIMMMENINNEI N.IIIMMMININMEEEMMIMNEEMNNMEEMEMMMINI

IENMNIMMINEENIt.t.MPISN ZNAM.11M11B1E111m11e1o11w1.1..
=IIMmmMamrIN/i0mE21IuL1sI1Ni1vIIMIINIillEo1Iw1SM. i1Mm1I1Nm.1IM.u1i
IMIIIIIIMIIIMIMENNIIIMENIII MMEEIWallle/1r1lI1M0I1IEME1 MEMIUMMINNIMMIM IMIIIIIIIIIIImi
PAYE
MIME IIIIIIIIIMINJEMIN
MOOMM MMMEIMMMMEIMNEIMAM.E1MN.11

MmEM
1=11%MMMO.UM MO NMI MN NMI 111.1111 EMWEE ...NNNMEI NEM

== EE_

MNNMMMNMEN =EN... MImN NMMNMMMEMMEMm

IIIIIMMEEMMEMNIMMEMEMEMEIMMEM MEMINEEMEEMIMEMEEMMMMMUONNNNEOMMINMIIMNMMOMMINMEIEN

IMIIIMEMMEEMMEMEMMUMMIMMMEMOMMIMEI
N ENEMMENENNENN

MININEMMEEMNNEIMMMMEINMNMOEMEMMIMNMIMEMMIMNEIINMNMIEENMIEJIIMIMINMEIMMEEMMMMIMINMNEIMMMINIENME

I IIIINIIIIIIIIIMNIMIMIEMIENNMIMEIIIINEINIINIMIMIIIMIMIMIMMIIIIIINIIIINIIIIIIIIENIIIIIIIIIIM11I1I111M11111111M11111111I11.I101I1MM.11I.1M11I.E1I1

EMEMEINEM11111111111111111.1111111.111111111111MIE
FINE =MINEII=MINIONIIIIII NEE11111111111

EMI 111111111111E111111111111111111.111111
=II I MIN 11.1111111111111.11ININNIMME

11111111

""Illm"'" IIIIIIIIIIIIIll1..111m1..u..ss:.a..i IEEE IMMIIIIIMIN

EIIMIIIIMIIIIEIIINIINEINIMEMNIMIINIIEIME1E1I1M1.

NEN

111111=11111111.111NE

1II1111I1N1I.M11M11E11N.1I1II1I1II1I1IM11E11N1I1I

111

11N111IE111M11E1ENMI.M.I

NOLLV11DX3 3SVI-Id-310NIS D -V S110A ZZ = /3

GL -891-R
ETI-246C PAGE 4
9-51

*GL -891-R AVERAGE GRID -PLATE TRANSFER CHARACTERISTICS
Ef = 22 VOLTS A -C SINGLE PHASE EXCITATION

3.0

-5

2.5

2.0

1.5
0
1.0 0
O
0.5

0
K -69087-72A445 +Revised Drawing.

1000

2000

3000

PLATE VOLTAGE IN VOLTS

4000

GL -891-R
AVERAGE CONSTANT -CURRENT CHARACTERISTICS Ef =22 VOLTS A -C
SINGLE-PHASE EXCITATION

100

,

0-J

b61114,1

w 500 niattiiNS4a41ie:liigohiltkh1o,

11

-
0 > 0

0 iikiOleiei kilpioirip.tmsl1pI _At%il

CD

a40li414li11k1m1it4tltkthk0
mil1

AIM tlIiiiikila,iimpl0111411111kiko-

I
bli
NIb111111PEOPMMPII

mom -500 1m1u1m1m1m1u1m111m1i1l1111h1.001h1..1.1h.4..114111.11111b1h1,11111-11,1iqf$tA1,1.1_14:41;p0l0o1o6p-i-llwagmmommerim
IIIIIIIIIIIIIIIIIIIIIIMIMAMIIIIImIIImIIiIIIrIIaIMIlMIElMIiOIVnIatIliitiinMftMtIaiCgbMai44llhlaiilhrolll1ui10hl1ri1blb1i1R:u1l11b14r0ARb1iA14a14i1_04w11i11l.g_l14o1110gb6p/2.o_1irl. limil

-1000 M1IIEI1MMO1MMM1OENM1EIM1EIM1IMEI0MMEMMMEMIEMENMMMEIEMIIMIEMNINEEIEMIMMIEEINSIIMMPIImhiMliMM--lEEMl-E_iA__l_it_aIhl_AllilshOlMiMrAlNiitmhiOllaiimipiaiglIlNiIAgAnMiMmEMniiMli.li

'''

-1500

4000

041111111411iplipp#111110411111:1Mr.
411% '4 4141 111111114111111111111

8000

12000

1600

K -69087-72A447 Revised Drawing.

PLATE VOLTAGE IN VOLTS

o0

GL -891-R
ETI.246C PAGE 6
9-51

GL -891-R AVERAGE FILAMENT EMISSION CHARACTERISTIC

MMMMMMMMMMMMENEM MMMMMMMMINIIIIMM=11111111111111MMMMMMM 10
8

MMMMM MMMMNI MMMMM
,

re
4
3

2

11,

numminnumMMMMMMMMM MMMMM

MMMMMM

MMMMimmmmimminonmimi MMMMMMMM onmwmimin

1.0 211111111111MMINIEMMEMMEMIIIMINIMIIIMMENIEMNIMIMINIINKAMINIMMIMIMMISIMMIIIIIIIIMIIMMIIIIMMIMMEMMEMIMMI1111111

0 8

0.6

0.4 0.3

0.2
C

0.1 .08 .06
.04 f:L .03
.02 EC

nr1111111MIMIIIIIMIMMIN1111111MMMMMMM MMEIMMMMMMMMMMMMMMMM MIMM MMMMM
5 ==
==

MMMMMM MMIIIIIIIIMMINNINIMMINIMMIIIMMIIMMIM111111111MMMIn MMMMMMM NIM MMMMMMMM

.01 PONMEMENIIIMMIMMEMMEININIIMPIMMIMEMMINIMMIIIMMIIMMMIMMEMIIMIMMIUMMEMMIIIMMEMMEMMENIIMIIIMMI

12

14

16

18

20

22

FILAMENT VOLTAGE IN VOLTS

K -69087-72A448 Revised Drawing

GL -891-R AVERAGE FILAMENT CHARACTERISTIC

GL -891-R
ETI-246C PAGE 7
9-51

66

64

62

LARGE TERMI-

COLD RESISTANCE

NAL OF BASE

OF FILAMENT =

0.031 OHM

60

58

56

FILAMENT SUPPLY

54
8
K -69087-72A441 4Revised drawing

28

22

24

26

FILAMENT VOLTAGE IN .VOLTS

WITH D -C EXCITATION
BASE TERMINALS

WITH SINGLE-PHASE A -C EXCITATION
BASE TERMINALS

WITH TWO-PHASE A -C EXCITATION
BASE TERMINALS

LARGE TERMINAL
V = 22 VOLTS A = 60 AMPERES
K-9033547

LARGE TERMINAL
V = 22 VOLTS A = 60 AMPERES

LARGE TERMINAL
V =11 VOLTS A = 60 AMPERES

GL -891-R FILAMENT CONNECTIONS

12.1-44

GL -89 1 -R
ETU -246C
PAGE 8
9-51

FILAMENT TERMINALS

OUTLINE GL -891-10
120° NOMINAL 6"R. MAX. RADIATOR HANDLES 900 NOMINAL FROM GRID ARM
6 R.MIN.

GRID
TERMINAL "
4371 .007" DIA.
Te MIN. BASE
NO, A3 - 55
437.igr " 2E MAX. DIA.

FILAMENT CENTER -TAP TERM
120°NOMINAL
PPA7
14"MAX.

3"DIA. -Trg MAX.'

ii± it

K-6966980 Revised.
9-51 (11M)

ANODE

7 7" IN. ' 8 DIA. 71-1 I-e"DIA

MONOGRAM
161Z:+ 8
10±2
5-4

Tube Department, Electronics Division

GENERAL

ELECTRIC

Schenectady, N. Y.

11-11-48

GL -892-R
DESCRIPTION AND RATING
ETI-247 PAGE 1
8-46

PLIOTRON

DESCRIPTION
The 892-R is a three -electrode tube for use as a radio -frequency power amplifier, oscillator, and Class B modulator. The construction of the filament permits operation from two-phase or single-phase alternating current, as well as from direct current, for all classes of service. The plate of the 892-R is air-cooled by means of a special radiator which is

fitted to the tube by the manufacturer. The plate is capable of dissipating 2 to 5 kilowatts of power, depending on the service in which the tube is used. The GL -892-R pliotron can be operated at maximum ratings at frequencies as high as 1.6 megacycles and at frequencies up to 20 megacycles at reduced ratings.

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS

Number of electrodes

.3

Electrical
Cathode-Filamentary

two -unit type

Voltage per unit

11 volts

Current per unit

60 amperes

Amplification factor

50

Direct interelectrode capacitances, approximate

Grid -plate Grid -filament. Plate -filament

31 micromicrofarads 20 micromicrofarads
2 micromicrofarads

Mechanical

Mounting position

vertical, anode down

Cooling: Air flow of 450 cfm normal must be started before application of any voltages and

continue for at least 10 minutes after removal of voltages. See table on page 2.

GENERAL ELECTRIC

GL -892-R

ETI-247 PAGE 2 8-46

TECHNICAL INFORMATION (CONT'D)

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

CLASS B AUDIO -FREQUENCY POWER AMPLIFIER AND MODULATOR

D -c plate voltage Maximum signal d -c plate current Maximum signal plate input A Plate dissipation A Radiator temperature* D -c grid voltaget
Peak a -f grid -to -grid voltage Zero signal d -c plate current Radiator temperature* Load resistance (per tube) Effective load resistance, plate -to -plate Maximum signal driving power, approximate Maximum signal power output, approximate § Unless otherwise specified, values are for two tubes.

Typical Operation §
6000 2.5
0
1200 0.5 140
1050 4200
415
8

Maximum Ratings

8000 12500 volts

2.3 A 2 .0 amperes

12 kilowatts

4 kilowatts

180 centigrade

-60

volts

1000

volts

0.5

ampere

158

centigrade

1700

ohms

6800

ohms

400

watts

10.5

kilowatts

CLASS B RADIO -FREQUENCY POWER AMPLIFIER -TELEPHONY
Carrier conditions per tube for use with a max modulation factor of 1.0
D -c plate voltage D -c plate current Plate input Plate dissipation Radiator temperature* D -c grid voltaget Peak r -f grid voltage Driving power, approximatev Power output, approximate

6000 8000 12500 volts

0.67 0.71

1.0 ampere

6 kilowatts

4 kilowatts

140

160

180 centigrade

0 -40

volts

300

350

volts

65

25

watts

1

1.7

kilowatts

CLASS C PLATE -MODULATED RADIO -FREQUENCY POWER AMPLIFIER -TELEPHONY

Carrier conditions per tube for use with a max modulation factor of 1.0
D -c plate voltage D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation Radiator temperature* Peak r -f grid voltage D -c grid current, approximate Driving power, approximate Power output, approximate

6000 8000
-1000 -1300
0.77 0.75

90 1675 0.19
310 3.5

90 2000 0.18
350
5

10000 volts
-3000 volts 1.0 ampere 0.25 ampere 10 kilowatts 2.5 kilowatts 180 centigrade
volts
ampere
watts kilowatts

CLASS C RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR -TELEGRAPHY

Key -down conditions per tube without modulation ¶
D -c plate voltage D -c grid voltage . D -c plate current D -c grid current Plate input Plate dissipation Radiator temperature* Peak r -f grid voltage D -c grid current, approximate Driving power, approximate Power output approximate

8000 10000

-1000 -1300

1.1

1.4

120 1800 0.18 320
6.5

160 2300 0.18
400 10

12500 volts -3000 volts
2.0 amperes 0.25 ampere
18 kilowatts 4 kilowatts 180 centigrade
volts
ampere watts kilowatts

MAXIMUM PLATE DISSIPATION VS AIR FLOW RATE

GL -892-R
ETI-247 PAGE 3
8-46

Air flow rate Maximum plate dissipation
Class B, a -f Class B, r -f Class C, telephony Class C, telegraphy

400

450

500

600

700 cu ft per min

3700 4000 4300 4850 5300 watts 3700 4000 4300 4850 5300 watts 2300 2500 2700 3000 3300 watts 3700 4000 4300 4850 5300 watts

* Measured in thermometer well. f With a -c filament excitation.
With d -c filament excitation. A Averaged over any audio -frequency cycle. 7F At crest of a -f cycle with modulation factor of 1.0. ¶ Modulation, essentially negative, may be used if the positive peak of the audio -frequency envelope does not exceed 115 per cent of the carrier condition.

APPLICATION NOTES

GL -892-R can be operated at maximum ratings in all classes of service at frequencies as high as 1.6 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised. (Other maximum ratings are the same as shown under MAXIMUM RAT -

INGS and TYPICAL OPERATING CONDITIONS.) The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 20 me for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

Frequency

1.6

7.5

Maximum permissible percentage of maximum rated plate voltage and plate input

Class

B{

telephony telephony,

plate

modulated

Class C, telegraphy

100

85

100

75

20 megacycles
76 per cent 50 per cent

7.0

00

6

.tt.i

0O

LL.1
cr

X0 ui

x6

a2.

z

00

4.(

zI-

000

cc
ni2c3
,(30 0

x200
a. +100

EC* 0

-100 -200

0

5000

10 000

15 00 0

20 000

25 000

PLATE VOLTAGE I N VOLTS

K-8639397

GL -892-R AVERAGE PLATE CHARACTERISTICS (Ef = 22 VOLTS A -C)

9-28-44

GL -892-R
En -247 PAGE 4 8-46
2.5

2.0
W "-
itiG

Eei 800

1.5

x
0

10

x

kS0, 06100

K-8639396

.5 X

X

C30

° 0

*0/ I I kI k IL

\ . ' .* . . " \ .

..

0

2000

4000

6000

PLATE VOLTAGE IN VOLTS

GL -892-R GRID -CURRENT CHARACTERISTICS (E, = 22 VOLTS A -C)

9-28-44

GL -892-R
ETI-247 PAGE 5
8-46

1 1

111.4 I.0

/ 11
/ / / / I,i \ ,7 %./ 16

GRID AMPERES

+800

/ / i "Ir\h'4\3Kv.2

k9.2 I I 1

1

II /I ,

t// ,

.

/

1// I +400 I. /
/
/
/

7
6 4'.---------------............................. 5

4

- - - / --

-- -.0 8

0

2

I
0.5 0.2
-40
0 PLATE AMPERES

K-8639395

0 4000 8000 12000 16000 20000
PLATE VOLTAGE IN VOLTS
GL -892-R CONSTANT CURRENT PLATE AND GRID CHARACTERISTICS (E1=22 VOLTS A -C)

9-28-44

GL -892-R
ETI-247 PAGE 6 8-46

-10
8 6
4
3 2
(r)
-_wcc I 0 -0_0.8
2 -<0.6
0.4

-go.'
-0cn.08
-w.06
-.04 -.03
.02

K-9033591

12

14

16

18

20

22

FILAMENT VOLTAGE IN VOLTS

GL -892 AVERAGE FILAMENT EMISSION CHARACTERISTIC

1.9-45

GL -892-R AVERAGE FILAMENT CHARACTERISTICS

GL -892-R
En -247 PAGE 7
8-46

64

22' 62
-4(
60
cc cc
58
L'S
5G

LARGE TERMINAL OF BASE

COLD RESISTANCE
OF FILAMENT = 0.032 OHM

FILAMENT SUPPLY

54

I8

20

22

24

FILAMENT VOLTAGE IN VOLTS

K-8639398

26
11-2-44

WITH D -C EXCITATION
BASE TERMINALS

WITH SINGLE-PHASE A -C EXCITATION
BASE TERMINALS

WITH TWO-PHASE A -C EXCITATION
BASE TERMINALS

LARGE TERMINAL
V=22 VOLTS A=60 AMPERES
K-9033547

LARGE TERMINAL

LARGE TERMINAL

V=22 VOLTS
A = 60 AMPERES

V=11 VOLTS A=60 AMPERES

GL -892-R FILAMENT CONNECTIONS

12-1-44

GL -892-R
ETI-247
PAGE 8 8-46

FILAMENT TERMINAL

120°±20°

6" R. MAX.

NOTE:

TWO THERMOMETER WELLS IN

RADIATOR 5" D1A.'X tr DEEP

16

2

GRID TERMINAL

4371 .007" DIA.

416"M
3232 BASE

4371.8:2"

ILI
2E MAX.

DIA.

FILAMENT CENTER -TAP TERM I20°± 20°
007 DIA .
-- I 4"M A X.

f

.438"MIN.

3"DIA.

If

-1* MAX'

I" MIN.

8-46 (7M) Filing No. 8850

MONOGRAM

-- 77MIN. 8 DIA. 7 1"4. I DIA 2 16
ANODE

d'±f
54±q

OUTLINE GL -892-R PLIOTRON
NOTE: Mounting position vertical, anode down.
K-6966980

11-5-4.5

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

GL -892-R
DESCRIPTION AND RATING
ETI-247B PAGE 1
12-50

PLIOTRON

DESCRIPTION
The 892-R is a three -electrode tube for use as a radio -frequency power amplifier, oscillator, and Class B modulator. The construction of the filament permits operation from two-phase or single-phase alternating current, as well as from direct current, for all classes of service. The plate of the 892-R is air-cooled by means of a special radiator which is

fitted to the tube by the manufacturer. The plate is capable of dissipating 2 to 5 kilowatts of power, depending on the service in which the tube is used. The GL -892-R pliotron can be operated at maximum ratings at frequencies as high as 1.6 megacycles and at frequencies up to 20 megacycles at reduced ratings.

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL

Electrical Data

Minimum Bogey

Maximum

Filament voltage

22

23 volts

Filament current at bogey voltage

57

60

62 amperes

Filament starting current

120 amperes

Filament cold resistance

0.031

ohms

Amplification factor, E0= -50 V, Ib =0.42 A

42.5

50.0

57.5

Interelectrode capacitances Grid -plate Grid -filament Plate -filament

28

31

34 uuf

15

20

24 uuf

1.0

2.0

3.0 uuf

1Completely revised.

GENERAL

ELECTRIC

Supersedes ETI-247A dated 6-47

GL -892-R
ETI.247B PAGE 2 12-50

TECHNICAL INFORMATION (CONT'D)

Mechanical Data
Mounting position-vertical, anode down Type of cooling-forced-air
Maximum incoming air temperature Required air flow on anode
Plate dissipation-watts Air flow-cubic feet per minute Pressure-inches water Maximum glass temperature Net weight, approximate

45 C

2400

3200

4000

300

380

450

0.20

0.36

0.5

150 C

46 pounds

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS
AUDIO -FREQUENCY POWER AMPLIFIER AND MODULATOR -CLASS B
Maximum Ratings, Absolute Values D -c plate voltage Maximum signal d -c plate current* Maximum signal plate input* Plate dissipation* Temperature of air cooler
Typical Operation Unless otherwise specified, values are for two tubes D -c plate voltage D -c grid voltage Peak a -f grid -to -grid voltage Zero signal d -c plate current Maximum signal d -c plate current Effective load resistance, plate to plate Maximum signal driving power, approximate Maximum signal power output, approximate

12,500 max volts 2.0 max amperes
12,000 max watts 4,000 max watts
180 max C

6,000
1,000 0.5 2.6
4,200 135
8,000

8,000 volts
-60 volts
1,000 volts 0.5 amperes 2.3 amperes
6,800 ohms 84 watts
10,500 watts

RADIO -FREQUENCY POWER AMPLIFIER -CLASS B
Carrier conditions per tube for use with a maximum modulation factor of 1.0
Maximum Ratings, Absolute Values D -c plate voltage D -c plate current Plate input Plate dissipation Temperature of air cooler
Typical Operation D -c plate voltage D -c grid voltage Peak r -f grid voltage D -c plate current D -c grid current, approximate Driving power, approximate// Power output, approximate

12,500 max volts 1.0 max ampere
6,000 max watts 4,000 max watts
180 max C

6,000
230 0.64 0.03
77 1,000

8,000 volts
-60 volts
320 volts
0.67 ampere 0.04 ampere
150 watts 1,800 watts

PLATE -MODULATED RADIO -FREQUENCY POWER AMPLIFIER -CLASS C TELEPHONY

Carrier conditions per tube for use with a maximum modulation factor of 7.0
Maximum Ratings, Absolute Values D -c plate voltage D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation Temperature of air cooler

10,000 max volts -3,000 max volts
1.0 max ampere 0.3 max ampere 10,000 max watts 2,500 max watts 180 max C

Typical Operation D -c plate voltage D -c grid voltage Peak r -f grid voltage D -c plate current D -c grid current, approximate Driving power, approximate Power output, approximate

6,000
-1,000
1,650 0.83 0.28 420 3,500

8,000 volts -1,300 volts
1,950 volts 0.82 amperes 0.24 amperes 430 watts 5,000 watts

TECHNICAL OPERATION (CONT'D)

GL -892-R
ETI-247B
PAGE 3 12-50

RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR-CLASS C TELEGRAPHY

Key -down conditions per tube without amplitude modulationli

Maximum Ratings, Absolute Values

D -c plate voltage

12,500 max volts

D -c plate current..2.0 max ampere D -c grid voltage.

-3,000 max volts

D -c grid current

0.4 max ampere

Plate input

18,000 max watts

Plate dissipation

4,000 max watts

Temperature of air cooler

180 max C

Typical Operation D -c plate voltage D -c grid voltage Peak r -f grid voltage D -c plate current D -c grid current, approximate Driving power, approximate Power output, approximate

8,000
-1,000
1,700 1.17 0.22 330 6,500

10,000 volts -1,300 volts 2,150 volts
1.40 amperes 0.24 amperes 495 watts 10,000 watts

* Averaged over any cycle of sine -wave form. //At crest of audio -frequency cycle with modulation factor of 1.0. Modulation essentially negative may be used if the positive peak of the envelope does not exceed 115 percent of the carrier
conditions.

Maximum ratings apply up to 1.16 megacycles. The tube may be operated at higher frequencies provided the maximum values

of plate voltage and power input are reduced according to the tabulation below (other maximum ratings are the same as shown

above). Special attention should be given to adequate ventilation of the bulb at these frequencies.

Frequency

16 7.5 20.0 megacycles

Percentage of Maximum Rated Plate

Voltage and Plate Input

Class B Class C plate modulated Class C unmodulated

100 85 100 75 100 75

76 percent 50 percent 50 percent

GL 892-R AVERAGE PLATE CHARACTERISTICS Ef =22 VOLTS A -C)

mom.

mum

imm

gem Elm:

nAmm ...Km

III.

Immiammil

ill

immil

1 1

.MEMBIROYANDMINOW IMMImAXIMMEMO

1111=4::

1

1

:NM mWrillir

,,.112 MOM

WIiMmleIEuuWrimmNn.orA

MM.

MOD:. rIMPA

MMMMmMmlrIoMoMkR,cro.,

:EMI

IMMIIIIMMWA

MMMMMMM ::::::MEMMTat M

num.
MEMEMEMMR MMMMMM MI 11

OAPS.

EMI

C

MEM NMI

rile! !MIME:

MONI

MMMUEMIMMFAA 1M1I11E1N1MIVIMMEN1

la ISIMM!

MINNA

NOW:.

MMOIMMWA
U.. I

1
'.

:pr..

IIIIMUMF

M

MEI

EMI M A

.

II! MM

EMI

A ,

1:V::

1 MMMMMM :MMr.

API....

MIMEO IIIIII nuammAmpi
IISIIINFAIIMM ME

:EMImow.. .
.11111-g

% ImoMMm mmmmunmirTmmi

1

!dil

1

:

IMO

MMWIMMIKE

P'.

UNFIIMUm MMMMM ,AMM

..,m17411
mip....mmml

1

I NVIIN;

!".

1 1
1
11 IMMEm
:

alimmumm
mmilm mum
1
1

1 1
1 1

MO

MM

!Mil

1..1..1,."'".11111.11111111...n..!...ei.11 1

...::::. !::II6E1T11:111:1..1.1.1.:11:1111111111N1M1I1I1I1L1I1I11I1M1MMEMMIMMEMI

'a'

WEIMMEMEMEMEKMEMPM

gli mim

!..11MMEMMI

1

M
immiwz M

RA MMMMMM wommr-dipmmommim

m ..._-

ms

.r.dilimplumum

211P..1.mi

mm

,-.summ.mommommummainim :

P.'
mowMi

-
gammPT.I.

...MAMA

1":".

ow1 .-
--

!ft

.
11......

-.mil 0

II.1-
i _.pgrewT1-i M

111 11
Immo:

1

5,-!:':: M

G..1111=iii

1111ww. r

0

so 1 MMMMMMMMMMMMMMMMMMMMMMMM ... ..maill11111111111111119""-;;

lowww.-.a11111m1.1

,..".

.r..--..

...-n-1-.-.

.....

.1.17.7.-.

..f....

I

0

5000

10000

15000

20000

PLATE VOLTAGE IN VOLTS

K -69087-72A108 1Revised

GL -892-R
ETI.2478 PAGE 4
12-50

GL -892-R
AVERAGE GRID -PLATE TRANSFER CHARACTERISTIC E, =22 VOLTS A -C, SINGLE-PHASE EXCITATION

4.5 MERMEN PMMEIMMEEMEMEMNII ME EMEMEIMEMENE MEMESEEMMEMEME NEEMENNEEME
1111111 E II

EMINIAMEMEMMEMMIEMMEMEME MEMEMUMOVEM EMMIIMMIRMSEM M

HEMMEN MEM MEMMEMOMEMMEEN AIMMEMEMAIMEMEMEM EMMEIMMEMMEEME EMMEN EMEMEMIMOMEMEMMEMEMEMEME

4.0 MMMUEETMIRIENMIEIIMMMUEBMHEEEIMMMEEIMMEEFMEWEEMrSIMENEMIMMEOEEEMMSBEEEMEIEMMMEMMMEIIMNUMEMEMMMEEEMMEEMMEEEMMMMEEENRMINMNMEIEMEEMIMEMEEEEMMMMEEEMNMEWMNMEEMEEMMMMMEMEEMMEMMMMEEMMEMEMMMEMMMEEMMMEEEMMM

MEMMEMEAMIIEMME MEM MEM EMEEMMEMOMMEMMEMEEMEMENEMEMEMUNEMEMEEMENENE

3.5

I

ME IMEMI,EVRIMMEIMMEME

MEINEMEMEMENIMEMEMEMEMMEMEMEMIEMEMOMMEMEMEMEMEMEM

MEME
3.0

6 MA EMEMEMENEMEMMEMERMENAMEMEMEMEMEMEM MMMMM MEMEMEMMEMMEEM MEM

2.5
Iii

iniiiIILlIIiik
muniumuummums

Lim sum mommummom

2.0 ME

minimmummummummommommumm

1.5
I.0
0.5 0

k
=momIIIINIINIIIIIIIIIIIIIIIIIIIIIIIIH Emmowiltimpok
mommmimmammEL MEM EIMEMMEM k
1

k 'ma0 ek

gmmummumummEmminummommommom

mOMMIA4MWEEMEEMNIMEMEmmEIM MEMEMEMISEMEMENMEMMEMEMEMMMEMEM

MILIMEMEMbNEEMEMMEREMEMEM MEMEHIMMEMEMEMEMMEMEMMEMMEMEMEM

1

1

.1

II IIIIIIII mMM1MMuE6iiEmE1nlOMm1ilWAi1nM.qgE4uiIE1mmiEL1mg7.I1i4MMlL1EmNEMoEMEAmEINMVuIAAlOEIaMMMwMI0MM1mI11I1IwCAEmEVMhMMEEoEMENoNIMEOIVlWiIlEIWIlEJMILifOwNEfWeAMRilMMPENI1EEE1RMWM1EAE.E1EIM1NMM1EEM1EMMM1NEE.EMEMMMIEMMEMMEEMEMMMMUIMEEMMRREEMEENMMEENMEMMUMEMMMSUEUMMmMMEMMMUMEIMMMNEMMEMUMXEMEUMMMMEMEMMEMEfMMMEfMMM"EMI.NMEE"MMME1EMEM1EEM1MME:EE

MMUNINEEMLEENIMAI MEM M 11111014MER1

4 ME

4EMAL,IPX141117S1W1I4E06M1EEMMMEEEMEEEMMEMMMEMMMEEMMMEEMMEMMEMMEMMEMEMMMEEMMMEEMMEEMMEEMMEEMNE

MmEmMiI!m.o11 l 11m EWWUAMEMOWAMMPEnMINmEEsMmMiEvMoEmNmEoMOmMmMuEMmEoMmEmMEmMmEuMmEmMuEmMEuMmEmMeEmMpElM

EMMA MEWmi

111WI1EFE4L1I, M144111141bME4ELNEEMENNOMMEMMEMEMEMEMEMEMEMEMEMEME

1I1n1s1pirrhmbi.g

.4.k.4' k

b.

AIMIAMFIRWiRELMEMEEEMLEMEVEME

M EMMEMEMEMMEEMEMEMEMEMEME

111111.1911 MAE `66MEMMIOUVEWIEMMEIIMMWIA MM W MM EMEMMUMEMOMEMEMEMMENNEEMEMEM

MAW 1 1 pp1
m 4 sr,

-4111 --4.

i,Rlmmuw.1imumgimem1mulmoug

emmommummommimmummommen

III
mu

_m-miq!_.i,kmhIg.z.041,.E4-bsu2gmhmmNmmsomohiwmtiommmomhiulimmmmmeoL4u1mmohih.gmu1iilwrlmmoaommmumomimmlmulmmummmuummmmomommummmuommmmomumommmmmooommmmmm

AMER - 1115pet,t mt% Ek. b.

b

FM1I.M-E EMEME

1m1g:mg',°.4.4.".0_- 'aqwk-..".V..I..I_MiAI.."11"1W1E.E11N1M1111111111111111,111111111

Amm.---....I_WiAdAMMAINEMelem..7.1 WwaMEMEMEMEMEMENEMEMEMEMMEMEMENEMEEMEME

IIIIIIuhIIIIuIIHhIIIIIIIIIIUIIIHIIII MIME....

=mom II

ME

EMU

MEW

EMMIEMIIIMMEMEMEMMEMEMMEMEMEMEEMMEMEMEMEMEMEM MMMMM MEM=
um ma mmaimummummum MMMMM mommommommummommummomm

mommomm

M- mg mummommos MEEMMEMEMMEIMMEMEMEMEMMEMEMEMENEMEMEMEME

MENEMEME EMU MI ME MEMEMEEMEMEMEMEMMEEMMENENEMEMMEMEMEMORUMMEMEMEM MEMEMMEMEMEMEMEMUMMERIMMEMEMEM IIIMMOIEMIAMMEMEMEMEMENNINIMMEMEMEMENEMEMEMEM

-0.5 0

2000

4000

6000

PLATE VOLTAGE IN VOLTS

K -69087-72A442 $1,1 ew drawing.

1-11-51

GL -892-R
AVERAGE CONSTANT -CURRENT CHARACTERISTICS Ef =22 VOLTS A -C, SINGLE-PHASE EXCITATION

GL -892-R
ETI.247B PAGE 5
12-50

K -69087-72A443 New drawing.

12000

4000

6000

8000

PLATE VOLTAGE 1 N VOLTS

12 000

14 000

GL -892-R
ETI-24713
PAGE 6
I2-50

GL -892-R AVERAGE FILAMENT EMISSION CHARACTERISTIC

MEIMMMMM 10 8
6 zt
5-e
4
3

INI NI MMMMM 111111111IM El MMM

=MINN= MIMIMI NI

2

MI MMEIIMMII IN MI
= -e 23
Z11

0 1 0.8

NENIMMEMIIIIMMEME111111111MMENIMMIMEMINIIIIMII-I4IMMI=AMIMMI=IIIIMIMEMIUMIIIMMIMENIMINEEMINIIMIHNIIMINIMEMI

0.6 rrs

=

E

23

0.4 0.3
0 . 2 EC

E= = =

== =

==

0.1 mmimnimmnmmonmniimmmmmummmmimmmmimimmmmummmeoummnmmummmmunmmmmunmnmmimmnmmOpm
.08 .06

.04 .03

.02

.01 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

12

14

16

18

20

FILAMENT VOLTAGE IN VOLTS

K -69087-72A448 New drawing.

22

24

1-11-51

GL -892-R AVERAGE FILAMENT CHARACTERISTICS

66

-7-

GL -892-R
ETI-247B PAGE 7
12-50

64

62

LARGE TERMI-

COLD RESISTANCE

NAL OF BASE

OF FILAMENT =-

0.031 OHM

60

58
FILAMENT SUPPLY
56

54

8
K-69087-72 A44 1 New drawing.
WITH D -C EXCITATION

20

22

24

26

FILAMENT VOLTAGE IN VOLTS

GL -892-R FILAMENT CONNECTIONS
WITH SINGLE-PHASE A -C EXCITATION

BASE TERMINALS

BASE TERMINALS

WITH TWO-PHASE A -C EXCITATION
BASE TERMINALS

LARGE

W

TERMINAL

V = 22 VOLTS A = 60 AMPERES
K-9033547

LARGE TERMINAL
V = 22 VOLTS A = 60 AMPERES

LARGE TERMINAL
V =11 VOLTS A = 60 AMPERES

12-1-44

GL -892-R
ETI-24713
PAGE 8
1 2-50

BASE
NO. JI-I

fr*OUTLINE GL -892-R PLIOTRON

FILAMENT TERMINALS

120° NOMINAL 6° R. MAX.
RADIATOR HANDLES
90° NOMINAL FROM

GRID ARM

GRID TERMINAL
437-.007 DIA.
Te MIN. BASE
NO. A3-55

16 R' MIN
Dv

FILAMENT CENTER -TAP TERM
120°NOMINAL

d--750011±.(017

.

MAX.

A

22 .4378?;"

MAX.

DIA.

3"DIA.

u±

4 Is MAX.'

'14. !I

31-3.

1

12-50 (11M)

IN.
78 DIA.
r I"DIA.
7-2 ± -16
ANODE''\

K-6966980 + Revised.

11-11-48

Tube Divisions, Electronics Department

GENERAL

ELECTRIC

Schenectady, N. Y.

GL -893A -R
DESCRIPTION AND RATING
ETI-248A PAGE 1
8-50

PLIOTRON

DESCRIPTION
The GL -893A -R is a three -electrode tube de - forced -air cooled and is capable of dissipating 20
signed for use as a radio -frequency amplifier, kilowatts. The cathode is a pure -tungsten filament. oscillator, or class B modulator. The anode is Maximum ratings apply up to 5 megacycles.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL

Electrical Data

Minimum

Filament voltage (single-phase excitation)*§ .

Filament current at bogey voltage

(Single-phase excitation)*§

175

Filament starting current

(Single-phase excitation)

Filament cold resistance

(Single-phase excitation)

Amplification factor, II, = 1.0 amp, E, = -100 v . 28

Interelectrode capacitances

Grid -plate

29.8

Grid -filament

39.5

Plate -filament

2.6

Technical information completely revised.

Bogey 20
183
.0093 34.5
34 48 3.5

Maximum
21 volts
190 amperes
275 amperes
... ohm
41
38.8 uuf 56.5 uuf 4.4 uuf

GENERAL ELECTRIC
Supersedes ETI-248 dated 8-46

GL -893A -R
ETI-248A PAGE 2
8-50

TECHNICAL INFORMATION (CONT'D)

Mechanical Data
Mounting position Type of cooling
Maximum incoming air temperature Required air flow on anode
Plate dissipation-percent of rating Air flow-cubic feet per minute Static pressure-inches water Required air flow to stem * Maximum glass temperature Net weight, approximate

100 1800 1.05

80 1250 0.56

60 1000 0.38

vertical forced -air
45 C
2 CFM t 150 C 230 pounds

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS AUDIO -FREQUENCY POWER AMPLIFIER AND MODULATOR -CLASS B
Maximum ratings, absolute values D -c plate voltage Maximum signal d -c plate current/ Maximum signal plate input/ Plate dissipation
Typical operation Unless otherwise specified, values are for 2 tubes D -c plate voltage D -c grid voltage Peak a -f grid -to -grid voltage Zero signal d -c plate current Maximum signal d -c plate current Effective load resistance, plate to plate Maximum signal driving power, approximate Maximum signal power output, approximate

CCSt 20,000 max volts
4 0 max amperes 60 max kilowatts 20 max kilowatts

12,000
-260
1480 0.8 7.0
4000 220
52

CCSt
15,000
-350
1560 0.8 6.0
6000 190 60

18,000 volts
-450 volts
1720 volts 0.8 amperes 5.5 amperes
8000 ohms 140 watts
kilowatts

RADIO -FREQUENCY POWER AMPLIFIER -CLASS B
Carrier conditions per tube for use with a maximum modulation factor:of 1.0
Maximum ratings, absolute values D -c plate voltage D -c plate current Plate input Plate dissipation
Typical operation D -c plate voltage D -c grid voltage Peak r -f grid voltage
D -c plate current D -c grid current, approximate Driving power, approximates Power output, approximate
PLATE -MODULATED RADIO -FREQUENCY POWER AMPLIFIER -CLASS
Carrier conditions per tube for use with a maximum modulation factor of 1.0
Maximum ratings, absolute values D -c plate voltage D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation
Typical operation D -c plate voltage D -c grid voltage Peak r -f grid voltage D -c plate current D -c grid current, approximate Driving power, approximate Power output, approximate

12,000
-250
350 1.5 35 130
6

CCSt70

20,000 max volts

2 0 max amperes

32 max kilowatts

20 max kilowatts

CCSt

15,000 15,000 volts

-340 -340 volts

395 450 volts

1.5

2.0 amperes

30

50 milliamperes

150 200 watts

7.5

10 kilowatts

C TELEPHONY

10,000
-800
1200 1.5
0.10 120
11

CCSt.

12,000 max volts

-3000 max volts

2.0 max amperes

0.4 max amperes

24 max kilowatts

12 max kilowatts

CCS t

10,000 12,000 volts
-800 -1000 volts

1280 1500 volts

2.0

2.0 amperes

0.16 0.14 amperes

210 210 watts

15

18 kilowatts

TECHNICAL INFORMATION (CONT'D)

GL -893A -R
ETI-248A PAGE 3 8-50

RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR -CLASS C TELEGRAPHY

Key -down conditions per tube without amplitude modulation
Maximum ratings, absolute values D -c plate voltage D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation
Typical operation D -c plate voltage D -c grid voltage Peak r -f grid voltage D -c plate current D -c grid current, approximate Driving power, approximate Power output approximate

12,000
-800
1430 3.5
0.26 360
30

CCSt

20,000 max volts

-3000 max volts

4 0 max amperes

0.4 max amperes

70 max kilowatts

20 max kilowatts

CCSt

15,000 18,000 volts

-900 -1000 volts

1520 1630 volts

3.6

3.6 amperes

0.25 0.21 amperes

370

340 watts

40

50 kilowatts

*Air flow to be directed into stem through tubing in center of base. The flow stem -cooling air must continue for 5 minutes after removal of filament and plate power.
§See drawing Filament Connections and Excitation Circuits, K-8639686. tCCS = Continuous Commercial Service. Averaged over any audio -frequency cycle of sine -wave form. irAt crest of audio -frequency cycle with modulation factor of 1.0. ¶Modulation essentially negative may be used if the positive peak of the envelope does not exceed 115 percent of the carrier
conditions.

Maximum ratings apply up to 5 megacycles. The tube may be tabulation below (other maximum ratings are the same as operated at higher frequencies provided the maximum values shown above). Special attention should be given to adequate of plate voltage and power input are reduced according to the ventilation of the bulb at these frequencies.

Frequency
Percentage of maximum rated plate Voltage and plate input
Class B r -f Class C plate modulated Class C unmodulated
Percentage of maximum rated plate voltage Percentage of maximum rated plate input

5

12

25 megacycles

100

86

74 percent

100

81

65 percent

100

81

65 percent

100

75

50 percent

64-SZ-17
01

S110A011>I NI 39V110A 31V1d

8

9

paspiAJ
88DaL-L8069-N
0

immwft1
6V-LZ-1, SZ

I irs
--"
ESN
NO NE
LEM. MMMMM sum
MIMI MMMMM MEI
NESSE MMMMMM

":11 ms 1
71:'" .

11.11111

:ITFsm°112"Imi11111111111111111111111111::

tr.:!!"

u b. WM...

P0

omia. cAmmt...wans

ti0041

EMMAENA

rcA -

mminhcquommilibr.mommil IMWEIMESIS6....WE:IENNNIMSEPAM

-msmcmmmm MMMMM c

ZNEA.

,Imobcoguig

-gam

hME

CEN

MMM

ONEMEIN

MN.
ISSN

1. SIMON
OE:MMSEIMM MMUUMM.
EMMEN
....'IL......
0000.

."!11: 11'

a

MM

0

2

0

'MI

MMMMMMMMMMMM
A M SERE

ARMEN

i WNW ONES IN. V ON mum

z

ii..

-c)

AEI ENVEUE.M

rn

IMIMMI

NNEEEMNOINNEESMSIMBUMIESREEIENENgl

In

M.1111

ESZEMME a.

mEMOSSINSEEN

NI

CL

D -V S110A 0Z=3
DI1S12131DV21VHD 213ASNV21.1. 3.1.V1d-GINO 21-V£68-10

S.1.10A011A NI 30V110A 31Vld

OZ.

SI

01

b..

9

pOS!AOJBUVADJUNI 66VU-L8069-N
0

GL -893A -R AVERAGE FILAMENT CHARACTERISTIC
SINGLE-PHASE CONNECTION COLD RESISTANCE=0.0093 OHM

GL -893A -R
ETI-248A PAGE 5 8-50

K -69087-72A287 'Drawing revised
FILAMENT BASE TERMINALS

5

IO

15

20

25

30

35

FILAMENT VOLTAGE IN VOLTS- SI NGLE- PHASE

GL -893A -R FILAMENT CONNECTIONS
FILAMENT BASE TERMINALS

4-25-49

V= 17.3 VOLTS A= 122 AMPERES THREE-PHASE A -C FILAMENT EXCITATION
FILAMENT BASE TERMINALS

V=20 VOLTS A=I83 AMPERES SINGLE-PHASE A -C FILAMENT EXCITATION
FILAMENT BASE TERMINALS

K-8639686

VI = OVOLTS V2= OVOLTS A =61 AMPERES
SIX -PHASE A -C FILAMENT EXCITATION

V = 20 VOLTS A=183 AMPERES
0-C FILAMENT EXCITATION

NOTE: TERMINALS MUST BE CONNECTED IN CORRECT PHASE RELATION AS SHOWN

4-27.49

GL -893A -R

ETI -248A

PAGE 6
8-50

GL -893A- R AVERAGE FILAMENT EMISSION CHARACTERISTIC

SINGLE-PHASE FILAMENT CONNECTION

r J.474tepo,.. -, IT 1111k11:1L11r_Ii_il.i_g_iiii-1111111.1i.1.N.Iff.i-ll.i.rmaun*.......i.p:rhon...

.gm -r. pi...v-Ans - I. 30

.. 1
MIMI

nirnmi'l .. r !IN HlimIMo in

N

DINIMISI

.713Brit: aii. Mr: 1

BM ISNMIEMBMI 1 .... I

MBOMOU 11111512111111

MEN
IMO

rannmin .......... '

IC
81
1

1
AIMMal W

Tip ' """*":11 .1 IIIII1111:1111111111!!!! ' --'400

...1, .11u1l:e1:..1:....:.....1u..n.1N6..M."..M....M..iM2cMo..Mn.1.M-MMMM1 Img_ .

ia marlNiIoMMu. lmliiu..u..m.u..u. ; .. .........M.K...m.a.i...

300

IMIIIIIMMIEMMI IMIIIIMIINUMMinnn.

1111111111URN

1111111111
TRIM w"

J)
ce ILI

1111111111111111111111 .....
ir WM!...... 1111111 SIM

II lllllllllll 111111tAIII llllllll 111111 111111111111ffl 1111:11.

11111111

511111111 lllll 111/011111110114111111111111111111111111m1 ol 1 11111 1111111111 1111111111111111

mill- ---- v. : llMM ::::::::. a- 1- :::::::&::: -41igninnniliplurill ll ::-- - llllllll :: It.: ;sum nninnennininnuen:u:1n:::::! lllllllll . : : .9..nv-M.119Ma9q.gu.-i-glvtliaIalIlsIsmI.1Ip11I1Ir:I1.I1pIm1I1I:1IIaIplMl::lu.lIrlMml.l.I.:Mpa::IIIIIIIIIIM1I

211111111FMIMIIIIIIIll :

1111

1111111111

lllll

SIIIIIIIIIIIIIIIIIII! IIIIIIIIIIMIMIIII HIM 10111111111111WIIIIIM 204
lll .11.1'm' MIS IMISTA al +NH l !Elm

nm.__reau.rem.mbrar. ...... 1 :1111::1Furm ""
Win. ii mr"rn 1.11:1.Thip UM mom an llll l .. nn OHM .. sislirn 'Mill IInmma.o

...;

1

i

1 1

ii
Ilk!

iiiIIIIIIIIIIIIIIIIIIIIII II 'a" IIII I i n........911 mmussomisemnormar HUM WM

,..

I

mm III'

MMBOESIMX 10MW. 0.. V
III I Um III I 1

In I

IL l "OIM"snlneiiinstliunnm'smeiilsnnislriiiamenintmisIMilaninMsainnnIaMniinlnIlHUlnIlmIliMlnlmPnUiIllIuiP.InmMInmniMinul. mniMmqtiinuliminen

lllll

n

lllll

t MIMI
mums

IIIIIIIE Unillintiplirmi "'lin'.

mg innmili llllll ini 111111119111 1

I1II111I1I0I1I11m11u1

IMP 111111111111111 ill

11111111111 1 1 IIIIIIMIlmil

III

1 11111.1.111111111111

= -E! I() 11111111111119.11M11111111 lllll ! l !IIMIIIII 1101 lllll 1111111111/11,111112111!!1!!!11121111111! 11111114111111 II PIIIIMIPHI-.. 'MOP IP NIVIIIIIIIIII" I 06

:11.+:11;..]:=11111;:i.:1.1..- i

'.

wilirdli.iiiiiiiii:...... 9 ...IliiiIIWAIIIIIIIIII..... Ilipiiiiii111111111611111...:.

ss 3:

8761-I1Z1ZA1iM:.=umIA-uiEl.ii.g_..a..'.,x=.g=.==.l.l==.w..g..w1aw1..w1......112-.l..-C1-,L.1.-U.n.M-1Mi.o..:1,:.:1..:1..l..l.2.l...1-1a!"liF.i4i.

i.
..

.-12-11,:=

"

I

;

III.I.IMIIII:II1Ilhl =..r

....... .3_.r".n.-.,-......=.-..L..,.... lll or e-

.L--

llllllllll :1-221:.::na : n._

5 Faa

isiiiiiii 'UM Mani p

Lien:Pki" 4

1

'Mum" &L - _iiii:::__

aZ. .m.'1111 `1.11.111.* 1!
r:Onldin II 1 .11IIIIIIII"1111111..1 1
L:::

ird"Il - 1 i/01..1F1.0. trirr . illiriln II Fp 3 0

am

gue u

uUmn

-

111211116111911111111111111111111104111111111112 II
: flee l'51111:=1A1111111111iiiiiriblii

m....inl d.-

90

:....1

1..1..

.widb_I..P.AIIaIiillimrimliwmm e

19

i
.11

80 70

:_i I i'a fit EV: iW-L.W 1 ETI Pi a Pip ES ....M

k7Zinfti.s WI-JilinfiiP

60

- INIPNE5122 WU"

"ail 111111112711.11111r

50

I 'MI

pirwhilim: wpm :19tanczn

"

l
jimi

Binnur611n.7i:!0:44:."1i .-.1r1i,po1ann1-uvrfaifljip-mkH'a.1l:1dm

ri

&mei gm mg lainwl Om mamMI

dni ifitilliif11
... WM nu

40 90

1- ' :-.4 WWI I: :: r -: HIV ppm' HIM vin udnpuunmnImSunSenFmuerinldffuillrmmil nilplpom inn ...u..... I gam.. IIIII Migin ur wall 1:::r41::::.1... 2

I n
1111111111111

1 nn

1111111
ulmummilm

"Ilml mulmmurnimm1ir 1m61u1m11m11m1irlmlMilmILo"r1m11l11111111121111111111;1111111111111111 1111

HMI llllll g

lll IMII lllll MI MINH IIIIHMI nal MIMI: IIIII 1111119 IIIIIIII IIIIIIIIIHM Mid

I MIMI 111111111111111111111111111111111111111

ll

!

ll

1111111111111111111111111111111;.1.1111111..1.1F!.4BE2I2M1I1!!1!:IrIilIh!a! liMgUr

I 1114.1111 11111.1!!!!!!.

In

1

MOM

SWEN219

20

I" 1 MUM lllll nagaBliblii" Ml 1 m nn h.lllllll /MM. .1

ISMR.

. llllllll SMIMMIMMMM. BM

li 11111111 1111 n" III in WI .11 1111111111iiiill

I

M ...,
. llllllllllll Ilk an
umgm

MMiORmMIsMtMU
IFIll mlammognammmialliiil

11"1 AMIPPSIL i: "4""lindImAnM18P1U11b--r-enirl; lll 19"I IH1IE6TO'11

Iii11 1"9111116unpui "4 - ummuguliirigni

r1...0

io

1.1.1... mum i 1 1111111 96 s 011

'

quSailulBgu"Uilrf"il"Hi 1 VII II IlIislliidmliiln'ilrli-d

PA:. ZIP 113 WIIIIMIMIIIIIIIIIIIIIaMI.I.I.I.UI!:M1MI1HIM4IIIIIIIIlIIilImIlIlmIlIeM1..1M.1.1U11M111E111=1iImI2pI.1IMI1.I-811I1I. 1M111O11I11M11111191I1.I1I1M118I70:13:1M111h111z11,1.211MM lBlEILIMIIIAII1IIL2IE1IIE5ImI1d4eal4hilI.l1PePh:I1lIeI1mI.I4eIzI1eN1dIE1IlI8em7.1e4nI1ISIi9lim1e1rgtRiilIihiMlaM1L1e1Ll1l1T' 1A--II,Nl!!sEm!!!!:!

10
I

....!thheallitiliairfflr, 81 --s . . lirfalenghlismows:1 o..n.min..1,...

erl-"a '
rill

, .11 III

- 11:1111.

'

1I

E.v...---;iir... ffew angitotior.ortibmdec- liv:ftre2F.E.1111-rr

I

I 1 lll llll ' llllllpll.l..."1rap ..... -iii mod - u 1 :-11 naiiiiiiiilileilliiiiii--

::::11;10 -LI no c

1.-1"..EE

,--s-

sal :111111.11,.1M11111
"MP II111-4.1=1111I4LN

1111:11141::::::
L=igwhorm..

eM.e.Wir.e=:a11l3

-I II
Si

-4: A.-"-l..E.1P-NrilikRIP4sz.nk... j

itr il In .ilik., 410.1... - hIS . gjilEs..........

Niii. 1.3 .m1 ......11...

Elin 1 gin hilki

5

..ds 111'1.....1
ARIL.- Inallibliti r IngUrAt

era1iR1.7il1m:.9..in:

...nn4;:::

manIrEcat. - .. us : - "tlmiraag.grrI4.1m1 7 . "16E9

2.1:yL a rupp.1

LiFt11111
1
' :: '

n :HERM INIBIWIl

4

:

1;lii.:1111.1111111111111:1111:;! 1111111:::ii!

... LI mu. aomm
" 6wqramprdnuoupponhin MO MU Ph 1 IIIr

I

1

t -2

:

amw

rig ........ i 0

II

In

II/
11111.

1191.11111

low

mawmmOm

1 NW kb MI IIMUMI IMP

MMMO1 OMMNI

. ....... . P, A 1 Ii

Plifinli in ip ,., marks Him Annum mimmumamilimi

NI 111111111 1

1:1111911111111,

IIIIIImIna1111.1111111I MI .. 1111

1111111 1 11_I1________

IIIIIIIIIIIIIal

1iii1111I1111111:14 1111 ii r.nosimmum.. EI1m11111111 110inii

1111111111

11111

111U "III 11'111111-

111111111111

1111

I1
111'1 II

III II411 I

1111111.11.111111111111111111E11111111111101111111111t11111 1111111111111 11111111111111101111 ..... 111111.11.1..a.11111110.1.1. 1.1.1..111111111111.1.1

II III III III 1111,11111111

114114 II 111111111

1111 1E111111 1111111111111in

I 11111 111111111
I li 1!1111111 2

ragep::. IIN IS I: -.:
1

.l.

gi

--mi. ,:.w...,..011. ;.;.;.;;.1. .........................41 - u.::c:1m1:.-1... -111.. g.m,n:il .. :: 4 so

we

ww.. .....

.

E

wAlawwm ww

111111111110 '1

111

1iEEi ;

1114111111111 1"

iri .mn lid 1" 1.1il ....) id: . lir- idittillei.. ..... milit.i: : .::1:x11 i_i_T.._1

laical

:

In

1. II..

. Eilwwwli

mils is
..iiiiiiiii ;...duroJimarommlluthindlinin......0 i Min MI IIIM M I

mon UMW

1 ;NM NI 1 IIIIII1 ... 114111:61
Mil MO 1111

IIIMMIwwwwwWIMIWWM mil li IMMI

11" ....... ""1

Ilimillim

iWmIism1i1u1m

1W1i11n 9i0111E1_1_111

i

a
puffin!

Him

itigi

... II
IIIME..

rmrinn.asidunn..nr uninsnilintlimil I le

1

0111111111

..... n ..... IIIIIIIIIIIIIiiiiiiiiiiiiii11111111111

II III 11111 11111111111m1111111111111111111111111.1.1.1.1..l.lllll.FAMIIKIU IL LITIIEW

11 1111111111111111111 ON 1111111111"1" II' 191111 ' 111

II IIIIIIMI I IIIII1 llllllll

. 1111

II A1111 ll 1 l 11 l 11111111 l I lllll 11111111 1.11JIII14511111111 11111111111111;111 lllll

milleml 1 m

1

14

1

18

20

22

K-69087 -72A285 II Drawing revised

4-25-49

GRID VOLTAGE IN VOLTS

I

I

I

i

ocoo

oa0l

o0.rN

No03

0

00

00

Sal

a00)

1

ilViiiitataedia.,..r.r"7""1"44212-111111

MU
"Mar 1 IIIIIIIIII
a ....we.:
LAIL 'm
iiiiiiiillillil

1

1114"1111/ 1MO 6ii,M:7:=5FoAwKeIkPlA"I.R.21h.a4n1C11..,1Ag1!R!

MOILFITIE,147,.'4,-,,,,,,...,v,;, IIIIVIMitwAreiPsar .s.4r.p

CME. op

i.., mr

"mmmm11611TE0416416110111511111111wm

IIIIIIII

il rl'Air1eEirlAimEmtrBi' mrloiinfeiinlnlAlintgI,lOgrlil. y,A:1q91te42M1M1I0N1IN1C1It111111

!Air :"1.16ma".iIlIlI.iIi.Im.ISIIM° EMIIIIpIIiItIi0l 1

1 il -!Aemrri'N"1ia1,ra1!kr"'riAIIt"y7""4W1e1VApAAPAnPqINrNsIyMm"pmyalpipmalol
Immemorm ImillinliElE111: 1115M40F*44:101i0121:::
prwillnirlir/OFAIWI Any I
liqiitMEIHRIMPOIMIIN 1111.116111 "7!!:

::.:::'l

1

1

1.116mI2el1l.1arar..i.1r1i2lmli6r1c1um1rm4m1mmm6ir4iis1mf:iAmlrllmLapirriFomRioOp1V.Immtmii%lrimiiililninceillliineOlrlpiiln

MA. "MMMMUMMIIIIIII .2"..MMISTIVITIPIIiiiiiiMAingillirMillillii::

11111P1 :rpm
....

111:.... ..... IlidiriEhilinir,..,ArkiWare, ialutuiiilloilidali
4 AO 1114.114MME 4111 ?slalom. up

ImmAill

rA..h.l. :r r:110....rrriall.0111.;141111111111111....

.11:

:

rimolerldm 741:4=1,111111.1gairrimil milibildie

rill

0

1

titiri"31:1111111iiiiiiiililliiiiiiii

1

ImmImumlnir thillm,

"IIILICIALIII rommilliallim 1 millIa

Imo.

im"""711711E1Pluilluare011111111111111111:1111i116.1mir

:

:

a

1......4.ullumumurmir ::::::o.1,0-1...4. .1:111::::::e

PallinmigliFIMIs.,11211%111,1...11M.v.wirrIBTMILIIIC

......1611filliiiitilifiliiiiimiiiiiiiiiiiii: ::112:::,..

i

Imismil

N"""&ifillWar

"'WlikilliiiiiIIIIIIIIIIIIIIIES"

1 ""IIITIMATIE1141FIBIIIIIIVIIIII iilliiii'lmlblaili

Im""11111MBIF ill 2

r": domppqr019,114.1ii

1

imudeirin:Aliffilm

I...

'i 1211.4211111t ""V

mnritiallifirigrapprohuh intim OVIIMIEN"A

::::

MUM :..1L.S1,d,mMIuurlS?wr.i:IaIw;.nl"e7nn7smu,opmi:ojulpion&ollrrhdlBmpEiaai.em.rlndmE"m:eiI.Mln6mio4gomm1mu.pm.ro.Ml1e.um.Slo.1m.I1lS111.I1R. mSmIwMd-iPilullOsimrlS.lmPimiiHmimiOiilMiIiiPiiiiImIgIui"ilVii4i"t1ii1Il1i

1

IMIIN

.......riril
MI MU mmmmm riig A

a

AllIw

al

AOMAMMI4Mir

NO10.1.14.11411.41., moan

Imummilliiiiii
I
EORMArn

nmmorI igirpool AIMOMMOM6U mmmmm IS

Ismammumigmmaspgom

IIIII

UnESIUMN410.4.1J AMOMI4o.

I.n.in.nMliOniM.

In

0

1.21.11,normAAWAUSIIr AMOA.41111/0.11. mormomi

Jimmamiuemtimmraw, imm

i

:

I VAIIIIVII

il

u NAM X

r4

IA

AlliMI,

noising OM4

,N

Mina

u

Amman,

BMEOCUM

mm a

GL -893A -R
EM248A PAGE 8
8-50
16-4 -4
DIA.

111GL-893A-12 OUTLINE
- t 16i
16 DIA.
THERMOMETER WELLS 5" D1A.X Ig DEER

1.500"± -035R.-
MONOGRAM
2.0001 .±.035"

1.50-±.035"

3.3 45± .035

n

5-

FILAMENT

.625 DIA-.

TERMINALS
6- -83-"STUDS

`Atillkre

BASE 6628A

09
32

"-43.2ir
DIA.

6.000-±D.1I3A0."

.250" 11:° 35"

3" I "
±16

liP119 DIA. 1-

GRID
BASE 3935

7 " I"
261F ±17§

MEM 7" I
123"±16

0 Irsime

:,

01' I. I
187

8-50 (11M)

6"-±g

ANODE

K-6966982 Drawing revised

Tube Divisions, Electronics Department

GENERAL ELECTRIC
Schenectady, N. Y.

1-31-47

GL -889R -A
DESCRIPTION AND RATING
ETI-249A PAGE 1 8-50

PLIOTRON

DESCRIPTION
The GL -889R -A is a three -electrode power tube designed for use as a radio -frequency amplifier, oscillator, or Class B modulator. The plate is fitted with a special radiator and cooling is obtained by forced air. The design of the mount and terminal

connections minimizes lead inductance and makes the tube particularly suitable for high -frequency applications. The GL -889R -A can be operated at maximum ratings at frequencies as high as 40 mega-
cycles and up to 100 megacycles at reduced ratings.

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL

Electrical Data

Minimum Bogey Maximum

Filament voltage

11.0

11.5 volts

Filament current at bogey voltage

110

120

128 amperes

Filament starting current Filament cold resistance

180 amperes

0.008

- ohm

Amplification factor, at Eb =1.0 amp. E, = -100 volts

17

21

25

Interelectrode capacitance

Grid -plate

15.8

18.5

21.2 micromicrofarads

Grid -filament

19.2

23.3

27.4 micromicrofarads

Plate -filament Completely revised.

2.0

3.0

4.0 micromicrofarads

GENERAL ELECTRIC
Supersedes ETI-249 dated 8-46

GL -889R -A

ETI-249A PAGE 2 e-50

TECHNICAL INFORMATION (CONT'D)

Mechanical Data
Mounting position Type of cooling
Maximum incoming air temperature

vertical, anode down forced air 45 centigrade

Required air flow on anode Plate dissipation-kilowatts Air flow-cubic feet per minute Static pressure-inches water

5.0

4.0

3.0

500

390

300

0.7

0.5 0.35

Required air flow to bulb* Maximum glass temperature
Net weight, approximate

15 cubic feet per minute
150 centigrade 35 pounds

*Air to be directed at the top of tube from a 3 -inch -diameter nozzle. Cooling air may be obtained by directing the required air flow at the top of the glass envelope through a 3 -inch -diameter nozzle, or by deflecting air at the top of the bulb from the

radiator -cooling -air stream.

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

AUDIO -FREQUENCY POWER AMPLIFIER AND MODULATOR -CLASS B

Maximum ratings, absolute values D -c plate voltage Maximum signal d -c plate currents Maximum signal plate inputs Plate dissipationt
Typical operation Unless otherwise specified, values are for two tubes
D -c plate voltage D -c grid voltage Peak a -f grid -to -grid voltage Zero signal d -c plate current Maximum signal d -c plate current Effective load resistance, plate -to -plate Maximum signal driving power, approximate Maximum signal power output, approximate
tAveraged over any audio -frequency cycle of sine -wave form.

5000
-180
1460 0.4 3.2
2520
170 8.8

CCS** 8500 maximum volts 2 maximum amperes 12 maximum kilowatts 5 maximum kilowatts
CCS*

6000
-230
1680 0.4 3.6
3680
180
12

7500 volts
-300 volts
1700 volts
0.4 amperes
3.2 amperes
5000 ohms 150 watts
15 kilowatts

RADIO -FREQUENCY POWER AMPLIFIER -CLASS B

Carrier conditions per tube for use with a maximum modulation factor of 1.0
Maximum ratings, absolute values D -c plate voltage D -c plate current Plate input Plate dissipation
Typical operation D -c plate voltage D -c grid voltage Peak r -f grid voltage D -c plate current D -c grid current, approximate Driving power, approximatell Power output, approximate
1l At crest of audio -frequency cycle with modulation factor of 1.0.

CCS**

8500 maximum volts

1.0 maximum ampere

7 5 maximum kilowatts

5 maximum kilowatts

CCS**

6000 7500 volts
-250 -300 volts

460

500 volts

0.9

0.9 ampere

0.003 0.005 ampere

95

80 watts

1.5

2 kilowatts

PLATE -MODULATED RADIO -FREQUENCY POWER AMPLIFIER -CLASS C TELEPHONY

Carrier conditions per tube for use with a maximum modulation factor of 1.0
Maximum ratings, absolute values D -c plate voltage D -c grid voltage D -c plate voltage D -c grid current Plate input Plate dissipation

CCS** 6000 maximum volts
-1000 maximum volts 1.0 maximum ampere
0 25 maximum ampere 6 maximum kilowatts
3 maximum kilowatts

TECHNICAL INFORMATION (CONT'D)

Typical operation D -c plate voltage D -c grid voltage Peak r -f grid voltage D -c plate current D -c grid current, approximate Driving power, approximate Power output, approximate

CCS**

5000 6000
-800 -900

1300 1420

0.9

1.0

0.12

0.1

155

140

2.75

4

RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR -CLASS C TELEGRAPHY

GL -889R -A
ETI-249A PAGE 3
8-50
volts volts volts ampere ampere watts kilowatts

Key -down conditions per tube without amplitude modulation

Maximum ratings, absolute values D -c plate voltage D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation

CCS**
8500 maximum volts -1000 maximum volts
2 maximum amperes 0.25 maximum ampere
16 maximum kilowatts 5 maximum kilowatts

Typical operation D -c plate voltage D -c grid voltage Peak r -f grid voltage D -c plate current D -c grid current, approximate Driving power, approximate Power output, approximate

5000
-500
1200 1.5
0.19 220
5

CCS** 6000
-600
1460 1.8
1.21 290
7

7500
-800
1830
2
0.24 400
10

volts volts volts amperes amperes watts kilowatts

Modulation essentially negative may be used if the positive peak of the envelope does not exceed 115 per cent of the carrier conditions.

**CCS-Continuous Commercial Service.

APPLICATION NOTES

*The GL -889R -A can be operated at maximum ratings in all classes of service at frequencies as high as 40 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced as the frequency is raised. (Other maximum ratings are the same as shown under TECHNICAL

INFORMATION.) The tabulation below shows the highest percentage of maximum plate voltage and power input that can be used up to 100 megacycles for the various classes of service. Special attention should be given to adequate ventilation of the bulb at these frequencies.

Frequency
Percentage of maximum rated plate voltage and plate input Class B Class C plate modulated Class C unmodulated-maximum plate voltage Class C unmodulated-maximum plate input

40

65 100 megacycles

100

85

72 per cent

100

78

60 per cent

100

87

65 per cent

100

73

50 per cent

1\3

0)

co

1 Ill
IIII
1

111111 ;iiiiiiiW1W19I.1\1I4M1II1II1M1.1O11119111111111111111111111111111111111111111

k

II 1

1,

IN

1,

1, I. 1. 1, ofterM1111111111111111MINIUMHUMMI

!IIIIIIIMIONNIMPINIMININERMI11111

iRummwiseirrn-u-imi1min,mhmuiummimgnmaagsiailiuiiomiiriiwamMmuipnmeimiinimiinieiiuilieimmMmi.oli.ink.km.iR.a..ygm:i.o.li.oSe.l.ocrmmamNpopataIeidLimnaMudm,mulIi

1 11.;1m1u1l-11'''1''''1illa1p1ra1.12111,1=111.01111111.a1lli0alw1r,1r.1..116.01.5611MendratEran

inisiestin I1O111UWH1EM11111i1111E1UM1E1II1IIN11111111E"ll1ik1tM14I 111111111111 i summionu mum 111111111.111111111 ammo millummummoin
IIIIIIIMMINIGIVIIIMININIIIME

111111111111111111101111

iiiliiimiiiipiiliuiiiiilnloiimihurkiniir1M1E1"1d1io1n1o1w1nTsmINsmEaNfimNmiiiniii RM..

OM ME MIMMINIIIIIMIMIMIISMIOOINNIAVIRE MMMMINEMINMIMNNMIIIUEMMMNINI1Er!9/IEWNI1NNI12IMMI1IIIE1MNM1EEIE1EM=N1MEIMM10MI1IE1M.11N1I1BI11IMN111I1IN1M1E11EMM1ME11NM1IO1N11NM1IIM1N1MN1IIM.INI1IMMI1IINN1N1IENU1=IM1MM1MNE1IIN1NII1EIEM1MM1MI

1

111

'1

ilk IL nhaffarar: I1I1II1I1II1N11O11l1ll1ll1l1l 1s1a1n11a1l1limEllLEiIlNkAHTOAMTMMINIIMIMNBIIMllII1M01MIEMRiNnAi rl 11

1

11111111 IIIII

ti 11111016111116

HE

gillIMOMPIMIN MEI1NH 611011111111111
11111111111111111111111 11111111MUMEMIUMMIIM MINUMIUMMINI1111111111111111

GRID CURREN O

MIME mmiNKFMEM MEMNIRMEMMUMWILEM IMMIMMENWOMMAiiMM

.MMEMMEMEMNIINAMM

MMEMMEROMMEHEMEM

MMIMMEMMUMWIM MINAMMUMEMEME

I1M"ND`2

FA

mom moommmonMMMMMM monisionoorol MM

XM..MMEMMEMMEMMEIMSMIIAMRMME4M

iMMEM,MIUMMOUVIMME

MMEMEMMIN

MMMMMnommon

iiiiiiiiiIIIE

milummor M ill M

OMMEMEMEMMIR MMMM A M MINNEMMONVIIMIMI

KNEMMEMMERIMI M.MOMMEMM.Ell

AMIN

.MEMEMOMMXIM, M

IIIIIIIIIIIIIIINIMA

r

MIIMM.MMOMMIf MMMMMM MIIIIIIIIIIIMINEMIA

MOW

MMMAMMMMMMAMMMMMMMMnM M

WIRMEMMEMMO miommmmoommmmoommmm.ammn
lilluiiuiiuini:

MMMMMMMMMMMMM M

IIs, amommommum IIIIIIIllifir

iiiillEF
millusce
muural........1.

iiiiiiiinf."11151.2/

NW ANOW

111111111d..1 f MANAMMEMMIIMM MMMMM MAIMMEMMIMI MEMEMMEMMIlfl.
MIME. MMMEIMREMMAMWAINMAMMVA

X92"'

IIMMEMEMMIM MEMMEMMIll MMEMMINIM

ilififfir

S.

IIIIIIII

MOMMEMMMEMEMMUMEMMIMMEM

EMISS
0
O
co

0

GL -889R -A AVERAGE FILAMENT CHARACTERISTICS
COLD RESISTANCE=0.008 OHM

GL -889R -A
ETI.249A PAGE 5
8-50

1200 1000 800 600 400 200
0 -200
400
-600
K-8074637 URevised

K-8074634 2

5

10

FILAMENT VOLTAGE IN VOLTS

GL -889R -A CHARACTERISTIC

1-9-46

4

6

8

10

PLATE VOLTAGE IN KILOVOLTS

3-5-48

GL -889R -A
En -249A PAGE 6
8-50
t.OF THIMBLE SEALS TO BE WITHIN± 15° OF t OF HANDLE
FILAMENT TERMINAL

- 16
GRID TERMINAL FILAMENT TERMINAL
w5 DIA. SCREW

16 - 16
GRID
TERMINAL

NOTE:

THE TUBE BASE

SHALL BE CAPABLE

OF ENTERING TO A

I"

8

4.3711+ .007" - DIA.

r's

-6 -41

MIN.

STRAIGHT SIDE

4 MIN
EOM 1.

753 -MIN.

DISTANCE OF IN A
FLAT PLATE GAUGE HAVING FOUR HOLES
536"±.001DIA. ARRANGED ON A
CIRCLE OF 2.125" ± .001" DIA. AT ANGLES OF 90°± 10'

STRAIGHT SIDE

31"MAX .DIA.

111"-±i"

A

28IV O
1
34:4" 61"±i"

10
8"+-a-1-"DIA
±i!i. DIA.

K-6966908 8-50 (1 IM)

OUTLINE GL -889R -A PLIOTRON
Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

3-16-45

GL -8002-R
DESCRIPTION AND RATING
ETI-250 PAGE 1
8-46

PLIOTRON

DESCRIPTION
The GL -8002-R is a three -electrode tube designed for use as a radio -frequency power amplifier at high frequencies. Multiple leads for both the filament and grid connectors minimize the inductance to these electrodes. The anode is

fitted with a special hub and cooling is obtained by forced air. Maximum ratings may be used up to a frequency of 120 megacycles and reduced ratings up to 200 megacycles. The GL -8002-R plate is capable of dissipating 750 to 1200 watts.

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS

Number of Electrodes

3

Electrical
Cathode-Filamentary, tungsten

Filament voltage

Filament current

Average characteristics, Eb = 2.4 kilovolts, Ib = 0.5 ampere

Grid voltage

Ef = 16 volts

Amplification factor

Direct interelectrode capacitances, approximate

Plate to grid

Grid to filament

Plate to filament

Frequency for maximum ratings

16 volts 38 amperes
50 volts
21.5
8 9 micromicrofarads 10.2 micromicrofarads 1 0 micromicrofarads 120 megacycles

GENERAL ELECTRIC

GL -8002-R

ET1-250 PAGE 2 8-46

TECHNICAL INFORMATION (CONT'D)

Mechanical
Type of cooling

forced air

Maximum incoming air temperature*

45 centigrade

Maximum glass temperature

150 centigrade

Air flow to radiator

100 cu ft per min

Net weight, approximate

pounds

Shipping weight, approximate

pounds

Mounting position

vertical, anode down

* Ordinarily, deflecting vanes diverting the outgoing air toward the terminal seals provide sufficient cooling

MAXIMUM RATINGS

CLASS B RADIO -FREQUENCY POWER AMPLIFIER

Carrier conditions per tube for use with maximum modulation factor of 1.0

Plate voltage, d -c

3500 volts

Plate current, d -c Plate input.

0 6 ampere 1800 watts

Plate dissipation

1200 watts

CLASS C RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR, PLATE MODULATED

Carrier conditions per tube for use with a maximum modulation factor of 1.0

Plate voltage, d -c

2500 volts

Grid voltage, d -c

-500 volts

Plate input..1250 watts Plate current, d -c
Grid current, d -c .

0 5 ampere 0 1 ampere

Plate dissipation

750 watts

CLASS C RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR, TELEGRAPHY

Key -down conditions per tube without modulation. Essentially negative modulation may be used if the positive peak of the audio -frequency

envelope does not exceed 115 per cent of the carrier conditions.

Plate voltage, d -c

3500 volts

Grid voltage, d -c

-500 volts

Plate current, d -c

1 0 ampere

Grid current, d -c .

0 1 ampere

Plate input.

3000 watts

Plate dissipation

1200 watts

IIII
Ec Eb
4.0

.,aCKE1

00

GRID VOLTAGE IN VOLTS

3.0

If

IV

2.0 I IC 0I

I.0

0 K-9033820

2

3

5

PLATE VOLTAGE IN KILOVOLTS

GL -8002-R AVERAGE PLATE CHARACTERISTICS (E,=16.0 VOLTS A -C)

6 2-24-45

GL -8002-R
ETI-250 PAGE 3
8-46

1.6 1.4 1.2
w cwe 1.0
w 0.8
ce ce
O
0E 0.6
0.4 0.2

Ems,=Eb
4

0
K-9033821

1

2

3

PLATE VOLTAGE IN KILOVOLTS

GL -8002-R TYPICAL GRID -PLATE TRANSFER CHARACTERISTICS (Ef=16.0 VOLTS A -C)

4
2-28-45

GL -8002-R
ETI-250 PAGE 4 8-46

1200 1000 800 600 400 200
0
-200 -400

00000000mwmmumMUMMEMEMMIIMMEMEMMEMEmmommommommummmmimmumm

IIMEMEMMEMNIMENIIMMEMEMMEM0=0111110MMEMEMEMMEMEMEMMEMEMEMMEM0M0010.01M

MEM MMOMMOMIIMMOMMAMMEMEMEMMEMMEMMEMEMMEMMEMMINNOMMIMMEMMUMMEMMEM00000M EVEMEMEMEMMEMEMMEMEMEMMOMMEMEMEMMEMMEMMEMMEMMEMMOMmumm

OEM. MEMEM

MMEMMEMMEMEMMIMMEMMEMMEMMEMMEMEMEMOMMEMMENEMMEMINIIMEMM

OMMEMENEMMIVAM
MMIIMMEMMEMEEMIA

MEMEEMMMMIEIMMMEEMMEEMMEOMI GRID CURRENT IN AMPERES

0.0.M.

mmimusrmiimmmmmm IIMMEMEMBOMOVIEMEMEL01111=000M0MM
IIMINIAMMEMMEMOMMOMMMOMMEMEMMUM

PLATE CURRENT

IN AMPERES

0MMEMM
0m.i1l1m0o0m.m

MMEMEMEMMOMMEMMMEMOMMEMOMMEMMEMMEMEMEMMEMMOMMEMEM MEMMEMMEMMM

MMOMMEMEMMEMEMUMMEMMEMEMMEMMEMEMEMMINIMMEMMEMMEMMInnumEMMEMMOMMOMM

MMEEMMMEEMMMMEIMMMMAOUWMMFMAWMOMMEMMEEMMMEEMMMEEMMMEIMIMMEEMMMIUMMMOEMMMOMSMIMEMMEOMOEMMMMEAMMMMEEMMEMMEMMEMMEMMEOMMMMEEMMM

MMEMMEMEWAMEMMEMMEMMOMMEMMERAMMEMMMAMMEMEMENIMMEMMEMMEMMEMEMMEMM

EMMEMEMMEMMWMMEMEMEmmaMMIIMMME0MMENIMMEMMINIEMOMEMEMEMMEMEMMEMMEMM

EMEMMEMWMONMOIMMEMMIUMMEMEMMEM000MMIMEMEGMEMOMMEMMEMEMEMMEMMEMM

0MMEMMEMMEMMOMMEMPWAMEMMMMEMM01000A00=00MEEM000MMEMEMM0M0000000001

0MMEMEMEMOMMUMMOMOMMMENMEMEMMUMMMEMEMEMMEMEMMOMMEMEMEMMMEMMOMM

EMMMEEMNEIMMMAEMMMMEOOMMMMEMMEPMEMMOEMMMEEMMEEMMMEEMMIOIMMMMOMMIMMEMMEEMMEMMOMAEMMMPEIMMMMEEMMMMEEMMMEEMEEEMMEOMMMMEEMmEmMiEmMm

EMEMMUMOMMOMOMMOMMIOMMEMMEMMMENIMMEMMEMOMMIMPMEMMIIMMEMMEMMEMMEMEMO

MimmEomoMmmmMmowEomoMmMmm7mwm1amoEsmmEmMomoOmaOzmmMarwMsEsmmMmooEomMmmm0mMmmoComm7momEmmMoimOmMmomMmmmEimaMmo1mEmmnMummMemeEmmaMMmo.E!mmMmmmMmmmEoMoimMmuEmmmMuimImmeMmMmroEumEmmmEmmoMoCommDmmmOmoOoumMmMmmmMmooEimmMmmMmEmmuMummMmmmE

momcomiammommammommomommommummommommulam.-mmummommummimmomm

ImmmNowmImmwMmgmMNoaaEmmsRmmmMagMuIrmmNmEmImmoMmmMsAam-MrmnMmgUouqEmEmmmPmpOoaoMmmmMgMemaEmi=mooMpm-OoMmmMmom0mmu0mmm01mim0mo-0-imM.mmEMImiEmamMmmmMieEoMlmm0mmm0mo0.omMmMmipmmouiu-immmimimmoiooimmm:mimolmolemmismipommiammmmmommEmoommmn

00nBmialgSlOmIsONzts-gLaMIiETMlEWiRrMmiaemiglmaeMrPmAPuMmOmOaMiErEaMEnMrMnMmEoMdirSCaZm1Em1P10iO1.nwM.:gMsIEmWawArmTaAm.MemOsMm.Miemammo2mmmiaumlmmlaMONmIEmM

ANEEMPIMMEMMEMLIMMOMMiliftENMEMMAM229010Miii.EMMOMMilimERP001111araME 00

Waimmilim2Ymmilmmilmarammommea..mmEMEMmaMLIEMEMma0MEMMEMMWR.OmmOM ME

EMMEMEMMIEMINNWOPIMM00011Miiiiim2PMEMMIEEMPOMMUMR:MITIMMMiaLTME

OM

EMEMMEMMEMOMOMMOZPIAMEMEMOMMEMINAII.EUMEMOSZEPOIMEMMEEMMEIMM0

--"mmill-mmINOM011000--mENNO--m2POIMMEM 0M0000

IINIMMMMWMMMMIIIMiIMiiilEN0.7...IMEIMMIIMMMiiiirml.IPME:::!.EIPMM019E11

ummmumommmmomomommmmimmmuommommmmmooommmmmmooommmmmmmooommmmmmmuiummmmmmuoilmlammmmuommmmmmaoosmmmmmmwuomammmmoemummmaimamemmmaoummmmmamsruaaummmmmmooamm@imim=mmmmmm

0MMEMMEMEMEMMEMEMMEMMOIMMEMOIMMIMEMEMMEMMEM011010=100MEMUMIWNEMMEMEM

0MMEMMEMMOAN100110MMEMMEMMEMMEMMEOMMMEMMEMEMEMMEMMEMEMMMMOPMMMMI1001M

K-9033830

2

3

4

5

PLATE VOLTAGE IN KILOVOLTS GL -8002-R CHARACTERISTICS Ef =16 VOLTS A -C

6
3-1-45

45

40 35 30 25 20
15

10

5

0

2

4

6

8

10

12

14

16

18

K-9033816

FILAMENT VOLTAGE IN VOLTS

1-2-46

GL -8002-R AVERAGE FILAMENT CHARACTERISTIC (COLD RESISTANCE OF FILAMENT =.036 OHM)

GL -8002-R
ETI-250 PAGE 5
8-46

10.0

9.0

Mai= 8.0
7.0 6.0
MMEEMM MIMI EMU MIN 5.0

111111111111111=111111111111111111111=MION ineMi MN
MINEMMIMINIEN IMOMMMEEMIMEM1.1.111111M1E11.11.11.1101..1.1...

m2Ia;mi;oi;i;i;miOuimmimsiwiineiwwilsRi.imnimoiomimmimiiso

EMMEN 1.1.11110 MENEM UMW d 41111111MMION

1111.1110.101111110 MEMO MEM NEBO

NMI snow 4.0

...

3.0 .I=NIm.IN.MNu.i.lN.mIM.MM..EmI..III.INI.u.MN1mIM.IM1IIImI1IINI1NIIuII1IIImMIM1IMI0mIIMN1IMNm1IIM1IIEmI1EEI1nIS=1I=I1mII.=II.1IIMa=I1IIiMEImIIII=INIIeINIIMIEnIIIIINoIIMMNImIMIII.NEI.mEMIMNMEoOIEoM1IImNMN1M1IiEI1lEMo1EMoI1INI1NmM=1IIN1m=IMI1MIEi1InI1E1Ms-1-1iI1InMI11IM0E1PEEIl=lrW'al4l4=/lNlIIOEUNE11E.1E1.MIMN1MEI1MDIEM1EII11MNW01EE1I1EEE1NI.NNEOaNMElNIMENMMENNEeMIE=IENNEMNeEN=lEi1mMI=I1IOMI1gIII.m1lNPlMi1NE=I1sMmMI1uNI1miM=nMEmiEMmIENNNu=Ni

.1.1.....11.111 .1.1.11111.11.1.1111.11.11111111%.... MENU MEMO MM..

2.0 1m11a21n1g11s1E11s11s1i1m11m1.11o1s11io11n11i1s..n..iEmarnp..u.WlA'AMmINHMOMEMIEEMMMIEZN MZIMiiEi.i.lIIiIlMiIrMd11i1li1i1

mmismm.i.s...o.iMnMeEeNmi NnIOENOmMnMiNa=mNoiilmeiMoMwBi=mII nMoIMEm' IiMN=ZWEMI NmI =oMmI WMM=aiimIIIMaMiInNVilIiViiIiIIMZIEEBNMiENaSll

MINEENNEEN=MIEME. MEINNIMINMEEEEMMMEINM1I1=11N14I1E11M11E11N11EMNEONM EMNMEMEIMMEMEE11N111M11N11E11N11E111E11M11M11E11N111E1M111M11E11NE

MEMO. MENEM EMMA 11.111M. 'AMEN. IMMIMINIM MEN NUMMIN MEMO

1.00 .90

1Im.1m11o...m....u1m11=1.a1m0.1I.M11M11M1IMUMMIAM1I1N1I1I1II1II1I1IMME=INMIIIUIIMEMINI MMUEMiINMIEINNNEI1E1 =SEMI ZEE= ralla: =EWE MAU CZ I= 221:1:22 OVSOMMOZ
.:1....rnmum ammonsone am immummilm miuMeramiliniMMIMIMMI IIIIIIIMINIMMI=11111111111INIM IMMIIIIIIIIIM.U=.

....................................... ..... MM.= .80
.70

1111111MINNIIIMENIIMME11111111111IIIMIIMINI WIMP AMMO NIMIIIIIIMOM laimmomwomumemeinuo.imenamossismoupsweisma.,

MMIONIMM
NM

MMIONOINMIMININONINIIII

1II1II1II1M1I1NMII=IIMIIIINIMI=O/AraMllMIMOMINinIMiiMMmNiIiMmEillNi =ImNIoOmN=MsMwUimMmMiUniM

mMEmNe

.1.1111111.1MIONI
EMINIANAMINNommom

.60 .50

.M1..1..1M..1,.1....1.11M1111E111N1111N1111E11111I1I1I11M1111IMIN411E111FI1II1I1I1I1M11P111A11I1N11I1I1IMM11I1MN1I1NEOMNMNEERNIIN=NEOEI"INIMINMMEEiMNNmIIEIiIEllIiIMmNiEmMMimIINNJIMIIMNIINEM,E1111M1N1111i1n.11.1o1.1.1n1.1E. .
IIIIIIMMIM MEMMINIIIIIMIIIIIIM111111111111111EM MEM MEM= OMB

Mara MOO M=EWNMEM: MIEN MINIM MEM: ="2":212:1112.11=5.122252122 .40
ra'N'AM: mama =MEM. NEM MM. M.... ME IMMMIIMIN1M15II1I1M11I1M11I1N1N11I1II1I1I1MMIN111II1I1L1A1/AMMMIIIIIIII=I MINIIMNEIM.=MiINIINIIIIMIMIIIIIIIIMMIINNMIMI MIMEMMO 01111111111111111111 IMIIMMMIN MINIMIIIII.
worm= romizum: ;mum= mizrariz_am._._;.w....raz;zzaz....z., .30

.....M111111.1111111 AIM= IIIIMMIN MIIIIIIIIIM MI NM M 111111111011111111111EN IIIIIIIMMIN
MIIIMIIIIIIIIIMMK IIIIMIIIIIIIIIIIIIIIIIIIIIIIIIMIMMIOMOMMIIIIIIMMIMII MIOMIIII

0111111111MMINIIIIIWA MENEM EMINIIIIIIIMINEll IIIIMENOMMINIIII IMMOMOMIMMION

.20 E.iT..m1.2.1.1.7....2.,m.E.M..I.T,.m.g.r.a..:..E..mT....T.2.2.,.1.1.:..:.:.=.:.:.:..:.:.:.:.:.:.:..:.:.:.:.
mM=oMlIImiINMIwi-iM-ioiMIuNinmIOEiIl.M=.l.E.MCI.I.VI.IIIAM.M.N.MIM.I.INIImIIIMIIMIiIImOIIIOIIeI.M1NliM.m0EIM1ImINI1III1iIIIII1=OI.IIM1MII.III1MIIIII.II1II.II1MImII1IoIINwM1P1EIMI0IIEIM1IIMI1ENM11I1N.M11II11MN11I1MI01EE11I10NE1.I11INI1.IM10E1I.N11Oa111111I11I111M1=111M01E111NM1111EI1I-1I-MI1MM1I1MIO1N4E1MOOM1MI1NM1M1EI1!O1MN1O1IN1'1MEI1IM1MM1M1IM1M=1I1ENM1IMNIEMM
IMMO INIAMINN MIIIIIIIIIIIIIIMIIIIIIMIMINIIIIIIII NMI MOM IMIIIIIIIIIIIII MIIMIN 111111111111111
.10 Esmiimiii1IoN.E1mM1in1aimImIImMsINMmIsMINmINNsIMisMMaIEImINIMaIIIsIIIsIIMIIwIIIMiNliMmIIIIIaMIIsIIINIuIIImMMIEMMI M1M1EI1MM1ME1I1MIMNUIMMM0E1M1N1a1O1llM11M1I,E0IIIEMMININMNE1IEM11N1I

10

12

14

16

18

A -C FILAMENT VOLTAGE IN VOLTS

K-9033817

GL -8002-R AVERAGE EMISSION CHARACTERISTIC

2 22 5

GL -8002-R
ETI-250 PAGE 6 8-46

Aialft04 INDEX BOSS .140

CENTER FILAMENT TERMINAL
GRID TERMINAL

6 TERMINALS EQUALLY SPACED

RiOg* THETETUBE BASE SHALL \NO: BE CAPABLE OF ENTER_ ING TO A DEPTH OF .319" A FLAT PLATE HAVING FIVE HOLESGAGE 147.±.0 01"DIA. AND I HOLE .178°1: .0 0 I DIA. ARRANGED ON A CIRCLE OF I" -.t.001" DIA. AT ANGLES OF 60°±10
FILAMENT TERMINAL

n13"MAX. .15611±.0021

DIA.

DIA.

.344"±o25"
STRAIGHT SIDE

.12511.±.o02" DIA.

A

I -Lie MIN

irg MAX. DIA.

5" I"
232±T3-

3"146.-1166 DIA.
NAME PLATE

3.415-± 035"
DIA

K-6912385
8-46 (7M) Filing No, 8850

OUTLINE GL -8002-R PLIOTRON
Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

3-4- ±T-6-
10-9-45

GL -895
DESCRIPTION AND RATING
ETI-251C PAGE 1
9-51

TRIODE

DESCRIPTION
The GL -895 is a water-cooled transmitting tube power amplifier, or oscillator. The plate is capable for use as a Class B modulator, radio -frequency of dissipating up to 40 kilowatts.

TECHNICAL INFORMATION

GENERAL

Electrical Data

Minimum Bogey Maximum

Filament voltage, to neutral*

19

20

volts

Filament current, per phase

128

138

146

amperes

Filament starting current** Filament cold resistance (per phase to Y

210 amperes

center) Amplification factor, E, -100 volts,

0.013

ohm

Ib =1 amp

30

37

43

Interelectrode capacitances

Grid -plate Grid -filament Plate -filament

32

40

48

uuf

64

80

96

uuf

5

8

11

uuf

*When the load conditions are lower than maximum, the tube may usually be operated with reduced filament voltage. **Starting current must never exceed, even momentarily, a value of 210 amperes.

GENERAL ELECTRIC
Supersedes ETI-2512 dated 4-48

GL -895
ETI-251C PAGE 2
9-51

TECHNICAL INFORMATION (CONT'D)

Mechanical Data

Mounting position Type of cooling

vertical, glass -end up
water and forced

air***

Water flow on anode Maximum outgoing water temperature
Air flow to filament and grid thimbles

20-25 GPM 70 C 5 CFM

Maximum glass temperature Net weight, approximate

150 C 25 pounds

***Water flow of 20 to 25 gallons per minute must start before application of any voltage and continue

for at least 5 minutes after removal of voltage. Water temperature must not exceed 70 C under any

conditions of operation. Air flow of 5 cubic feet per minute directed on filament and grid thimbles is re-

quired before application of any voltage, and for 5 minutes after all voltage is switched off, to limit

temperature of grid and filament seals to a maximum of 150 C.

AUDIO -FREQUENCY POWER AMPLIFIER AND MODULATOR -CLASS B

Maximum ratings, absolute values D -c plate voltage Maximum signal d -c plate current t Maximum signal plate input t
Plate dissipation t Typical operation
Unless otherwise specified, values are for two tubes
D -c plate voltage Zero signal d -c plate current Maximum signal d -c plate current
D -c grid voltage Peak a -f grid -to -grid voltage Effective load resistance, plate to plate Maximum signal driving power, approximate Maximum signal power output, approximate f Averaged over any audio -frequency cycle of sine -wave form.

12,500 1.50 10.80
-250
1300 2700
700 90,000

17,000 max volts 9 max amperes
100,000 max watts 40,000 max watts

10,000 2.00 10.80
-200
1200 2100
600 70,000

10,000 volts 2.00 amperes 5.10 amperes
-200 volts
800 volts 3600 ohms
75 watts 30,000 watts

PLATE -MODULATED RADIO -FREQUENCY POWER AMPLIFIER -CLASS C TELEPHONY

CARRIER CONDITIONS PER TUBE FOR USE WITH A MAXIMUM MODULATION FACTOR OF 1.0

Maximum ratings, absolute values D -c plate voltage D -c plate current Plate input Plate dissipation D -c grid voltage. D -c grid current
Typical operation D -c plate voltage D -c plate current D -c grid voltage Peak r -f grid voltage Driving power, approximate Power output, approximate

12,500 max volts 5 max amperes
62,500 max watts 27,000 max watts -3000 max volts
1.5 max amperes

12,500 2.5
-1400
1810 780 25,000

12,500 4.40
-1500
2080 1700 45,000

10,000 volts 3.35 amperes
-1500 volts 2000 volts 1300 watts
25,000 watts

RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR -CLASS C TELEGRAPHY

KEY -DOWN CONDITIONS PER TUBE WITHOUT MODULATION****

Maximum ratings, absolute values

D -c plate voltage

17,000 max volts

D -c plate current

9 max amperes

Plate input

140,000 max watts

Plate dissipation

40,000 max watts

D -c grid voltage

-3000 max volts

D -c grid current

1.5 max amperes

****Modulation, essentially negative, may be used if the positive peak of the audio envelope does not exceed 115 per

cent of carrier conditions.

TECHNICAL INFORMATION (CONT'D)

Typical operation D -c plate voltage D -c plate current D -c grid voltage Peak r -f grid voltage D -c grid current, approximate Driving power, approximate Power output, approximate

17,000 7.50
-1000
1700 1.00 1700 100,000

15,000 8.60
-700
1400 1.15 1500 95,000

12,000 7.20
-1000
1700 1.15 1900 60,000

10,000 volts
7.15 amperes
-1000 volts
1700 volts 1.15 amperes 1900 watts 50,000 watts

GL -895
ETI-251C PAGE 3
9-51

APPLICATION NOTES
Maximum ratings apply up to 6 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced according to the tabulation below (other maximum ratings are the same as shown above). Special attention should be given to adequate ventilation of the bulb at these frequencies.

Frequency
Percentage of maximum rated plate voltage and plate input Class C plate modulated olb Class C unmodulated

6

12

100

90

100

85

25 megacycles
81 per cent 70 per cent

GL -895 AVERAGE PLATE CHARACTERISTICS
70 iiiiiiiiiiiiiiiiiiiiiiiirMilifiliiiiffir iiiiiiiiipiliffirrid HIIIIMMENIERPAKTERPOMELSMINBALJP.MELIEN
60
1mg1mm11Bm1Eu1n1E1ru1Nm11Em1m11p1Er1gm1o1igm11no1o1rwm11ao1n1ud1ri0zto0at0ml1ig1pg1oe1n1n1nu1um1m1o1u1mr1ou1u1mn1
50 ;;;;;;I:;;;;INIAME:bijiii!!!!!!!!"!!!:!!!!!!!!!!!"! ismouforsnesrioiksautiillmdhainuommpoasiiiioiisiioMmPmRoIbmilmliioiiimiiipiiii
40 Migniallhall1111011101110
30

20 11111111111111111111111111111111111

m! r0911111111i41""1111111111111:

ill 10 illig111111111110

nig
0111111b'

5

10

15

PLATE VOLTAGE IN KILOVOLTS

K-9186087

6-18-47

GL -895
ETI-251C PAGE 4
9-51

GL -895 CHARACTERISTICS

MUCMC74=1447117NrIMEMMEMMEMMIN
MOM LIAMMIMULLILIMEAMM441&LWIMMIMMIIMMIM

I

UN1

100

MIIIMIMMEMMLIMIMMEMIEW MMMM b

0111

ME M

MI MM

A

.zommmonsmmhimh.ner

wommommimplow4

namungh

awilma

-

'

IIIME1712:! MMMMM OD

u6mh.m4i4rMaOmmREMN!-MMMMEMM4M

worumamo M m M

04

IMMNPNEVAININIOMM4=1.41114.,.

.MM M

MWOMINMILMOW M Or

440

NEUMEM&MMO

ENFIVIONFAMMN M UN MM 4441.4 MM ,AN MCMMMIUINOMMEMIMRCMW

ON

MLNAMWMALUMN ,

44404

:s

am 75

,mm MMM X M 41,40MbNMA EMENAMIL4kOM

MEM4111n,NhInMoM rrioggrmws

MMEMAM&W,OONGANIMPANMMO.N r

41414114VWMOWMANMMIN MM M

04,141424,

4411,4:4,04i
EMIVMOMOMMU

OME

ZNIMM4M
.... MM r.0.MUMMIM

EIMANOA0.402NEW7ENW.5.

ITOrMilF4UM

MMEMNeN4,C40M/M0O2M0440kWNhWNON.IAMIN

MM,0MWWW M V4 N

50
4M4A00E1.
MIFi%N
MMAL MUNN'

25

-250

-500 0
K-9186074

2.5

5

7.5

10

PLATE VOLTAGE IN KILOVOLTS

12.5

15 12-10-45

GL -895 TYPICAL GRID -PLATE TRANSFER CHARACTERISTICS

15

0 K-9186088

5

10

PLATE VOLTAGE IN KILOVOLTS

15 12-10-45

GL -895 FILAMENT CHARACTERISTICS
140
120
.(.2 100 ce w° 80
o-60
cc CJ CJ
40
20

K-9186073

5

10

15

20

FILAMENT VOLTAGE VOLTS TO NEUTRAL

12-10-45

70 50
0)30 wcc 20

GL -895 AVERAGE FILAMENT EMISSION

z 10

z0-

7
5

cr)

w 3

<- 2
0
I-
10

K-9186072

11

12

13

14

15

16

17

18

19

FILAMENT VOLTAGE TO NEUTRAL IN VOLTS

20
1-9-46

GL -895
ETI-251C PAGE 5
9-51

GL -895
ETI-251C PAGE 6
9-51

GL -895 FILAMENT CONNECTIONS

V1 =19 VOLTS V2 =33 VOLTS A=139 AMPERES

TUBULATION TIP OFF
BLACK 2, 4, 6 -FILAMENT TERMINALS RED 1, 3, 5 -GRID TERMINALS

K -69087-72A193

12-10-47

GL -895
ETI.251C PAGE 7
9-51

TERMINALS 1,3115 GRID MARKED RED
TERMINALS 2,481 6 THREEPHASE Y FILAMENT MARKED BLACK
11
I- MAX.-'
P.,. I"
232

6 .1I-" DIA

BASE 1869
3,1+ IA
238- -

5.687"---
1-.010"
DIA.

4.5 00" -1-.040"
' DIA.

12 115161+-1A-r

0.e PLATE

K-9186157

OUTLINE GL -895 PLIOTRON

12-12-47

Tube Department, Electronics Division
GENERAL ELECTRIC
Schenectady, N. Y.
9-51 (1SM)

GL -895-R
DESCRIPTION AND RATING
ETI-252C PAGE 1
9-51

TRIODE
DESCRIPTION
The GL -895-R is a forced -air cooled transmitting quency power amplifier, or oscillator. The plate is tube for use as a Class B modulator, radio-fre- capable of dissipating up to 20 kilowatts.

TECHNICAL INFORMATION

GENERAL

Electrical Data

Minimum

Filament voltage, to neutral*

Filament current, per phase

128

Filament starting current

Filament cold resistance (per phase to Y

center)

Amplification factor, E, = -100 volts,

Ib = 1. amp

30

Interelectrode capacitances

Grid -plate

32

Grid -filament

64

Plate -filament

5

Bogey 19
138
0.013
37
40 80
8

Maximum

20

volts

146 amperes

210 amperes

ohm

43

48

uuf

96

uuf

11

uuf

GENERAL ELECTRIC
Supersedes ETI-2528 dated 9-48

GL -895-R
ETI-252C PAGE 2
9-51

TECHNICAL INFORMATION (CONT'D)

Mechanical Data

Mounting position

vertical, radiator

down

Type of cooling

forced air

Maximum incoming air temperature

45 C

Required air flow on anode t

Plate dissipation-kilowatts

20

16

12

Air flow-cubic feet per minute

1800

1550

1300

Pressure-inches water

1 5

1.1

0.8

Required air flow on filament and grid thimbles

5 CFM

Maximum temperature of filament seals

150 C

Net weight, approximate

225 pounds

*When the load conditions are lower than maximum, the tube may usually be operated with reduced filament voltage.

Temperature of anode seal must not exceed 180 C.

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS
AUDIO -FREQUENCY POWER AMPLIFIER AND MODULATOR -CLASS B
Maximum ratings, absolute values D -c plate voltage Maximum signal d -c plate current Maximum signal plate input$ Plate dissipation Temperature of air cooler**
Typical operation Unless otherwise specified, values are for 2 tubes D -c plate voltage Zero signal d -c plate current Maximum signal d -c plate current D -c grid voltage Peak a -f grid -to -grid voltage Effective load resistance, plate to plate Maximum signal driving power, approximate Maximum signal power output, approximate Averaged over any audio -frequency cycle of sine -wave form.

17,000 max volts 9 max amperes
50,000 max watts 20,000 max watts
180 max C

10,000 2.00 10.80
-200
1200 2100
600 70,000

10,000 volts 2.00 amperes 5.10 amperes
-200 volts 800 volts
3600 ohms 75 watts
30,000 watts

PLATE -MODULATED RADIO -FREQUENCY POWER AMPLIFIER -CLASS C TELEPHONY

CARRIER CONDITIONS PER TUBE FOR USE WITH A MAXIMUM MODULATION FACTOR OF 1.0
Maximum ratings, absolute values D -c plate voltage D -c plate current Plate input Plate dissipation D -c grid voltage D -c grid current Temperature of air cooler**

12,500 max volts 5 max amperes
62,500 max watts 13,500 max watts -3000 max volts
1.5 max amperes 180 max C

Typical operation D -c plate voltage D -c plate current D -c grid voltage Peak r -f grid voltage Driving power, approximate Power output, approximate

12,500 2.50
-1400
1810 780
25,000

12,500 4.40
-1500
2080
1700 45,000

10,000 volts 3.35 amperes
-1500 volts 2000 volts 1300 watts
25,000 watts

TECHNICAL INFORMATION (CONT'D)

GL -895-R
En -252C PAGE 3
9-51

RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR -CLASS C TELEGRAPHY

KEY -DOWN CONDITIONS PER TUBE WITHOUT MODULATION***

Maximum ratings, absolute values D -c plate voltage D -c plate current Plate input Plate dissipation D -c grid voltage Grid current Temperature of air cooler**
Typical operation D -c plate voltage D -c plate current D -c grid voltage D -c grid current, approximate Driving power, approximate Power output, approximate Peak r -f grid voltage

17,000 6.0
-1800
0.9 2200 84,000 2500

15,000 6.4
-1500
1.0 2100 75,000 2200

17,000 max volts 9 max amperes
110,000 max watts 20,000 max watts -3000 max volts
1.5 max amperes 180 max C

12,000 7.20
-1000
1.15 1900 60,000 1700

10,000 volts 7.15 amperes
-1000 volts
1.15 amperes
1900 watts 50,000 watts
1700 volts

**Temperature is measured in thermometer well. The normal forced air of 1800 cubic feet per minute requires a static pressure of 1.5 inches of water and must be started before application of any voltage and continue for at least 5 minutes after removal of voltages. Temperature or anode seal must not exceed 180 C. An air flow of at least 5 cubic feet per minute through a nozzle directed at filament bases is required before and during application of any voltages to limit temperature of filament seals to 150 C. ***Modulation, essentially negative, may be used if the positive peak of the audio frequency envelope does not exceed 115 per cent of the carrier conditions.

APPLICATION NOTES

Maximum ratings apply up to 6 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced according to the tabulation below (other maximum ratings are the same as shown above). Special attention should be given to adequate ventilation of the bulb at these frequencies.

Frequency
Percentage of maximum rated plate voltage and plate input Class C plate modulated Class C unmodulated

6

12

100

90

100

85

25 megacycles
81 per cent 70 per cent

GL -895-R
ETI-252C PAGE 4
9-51

GL -895-R AVERAGE PLATE CHARACTERISTICS

70 umummIIRICINELTENNEUEN11. HOUFRIONNEMEd
iiiiiiiiiiiiiiiiplirradirMIBILITMENEWIMmudimp
60 mmuiummmmilmulmlpli 191111111111111111111111
1111.111 1111
50 h::o::m:PnMPAPRINPIoMidlitiakbiledlilkEigligiitEilnlittii
40

1111111111

30 20

nue1dm1111u11n11i51u11m1111.1.1.1m111-m111i1dd1iid0g1lid1mi1t11ui1rlal0i.

011111011111111110111111111111
10

Gil 111111111111111111111111_.1. 111111 milan5nohotramoso10....,__ 15

K-9186087

PLATE VOLTAGE IN KILOWATTS

6-18-47

GL -895-R CHARACTERISTICS

LEMMEMOOMMMEAMEEMM .....IN

1...

.NN

100 mioMMEmMMmMwmI.iMoI-1mIrI11mImWVa1maIMlMUmmEktMmWaMaIMlWolMLEpMknM.m0LOeS.E'MurMOwrMMMEafM.MMNNSMEWMMFMW'MAMIME4OMIAMMMMMM4MEEMM1pMNMI1MNM1LU.LEEMMAMMMMOMMMIM2IMI1NLAMUmIRRWmMNoEREUMTMMM.oMUMMMAIMMIE.oO.,MMumMMM.,mOAO,mouWMMnomUMM0Mum.M4m.M4r.mIMMouEMOeuPNaAmMwoINmMgmM0iEamMmmM,EM4moms .......

MILPIMMOMMEUM'I

75

gplomh MM um M 'mmisiwomw
IMMMMIEMLMAKMOEMWMVOOMMMOAIGEMMEOU0

AMMEM,MMEMb..AMSEh!MMEMIOMMAMMEft-
,hmMa.m0m6M.iO1rM1eMEMnKESEsEiMnN,IM0SLNMEUMMMWEOM.._

ummwaiww, M m

MMMBIATOMMOOM EMU

MtIbli I.

MMI 1.16

MM.Ve

50

Iii4OWE emmeuzmima.

irirWl. 1: ViN .2...i,

250

0

-250

-500

0

2.5

K-9186074

5

7.5

10

PLATE VOLTAGE IN KILOVOLTS

12.5

15

12-10-45

GL -895-R TYPICAL GRID -PLATE TRANSFER CHARACTERISTICS

15

10

5

0

0 K-9186088

5

10

PLATE VOLTAGE IN KILOVOLTS

15 12-10-45

GL -895-R
ETI-252C PAGE 5
9-51

GL -895-R
ETI-252C PAGE 6
9-51

140 120 100 80 60 ccrr
8
40 20

GL -895-R FILAMENT CHARACTERISTICS

70 50
30
w
LCCi 20
2a_
z i°
7
5
3
2

0

5

10

15

20

K-9186073

FILAMENT VOLTAGE VOLTS TO NEUTRAL

12-10-45

GL -895-R AVERAGE FILAMENT EMISSION

1
10
K-9186072

II

12

13

14 15

16

17

18

19

20

FILAMENT VOLTAGE TO NEUTRAL IN VOLTS

1-9-46

OUTLINE GL -895-R PLIOTRON

GL -895-R
ETI-252C PAGE 7
9-51

TERMINALS 1,3 &5
GRID -MARKED RED
TERMINALS 2,4 a 6 THREE-
PHASE Y FILAMENT -

MARKED BLACK

TERMINAL 7 FILAMENT MID TAP -

MARKED BLACK

BASE
1869

6 4-"DIA.
(

24 +-12-

ll16 DIA.
K-9033945

12-12-47

Tube Department, Electronics Division

GENERAL

ELECTRIC

Schenectady, N. Y.

9-51 (111\4)

GL -473
DESCRIPTION AND RATING
En -281 PAGE 1
8-48

PLIOTRON

DESCRIPTION
The GL -473 is a three -electrode tube designed is forced -air cooled and is capable of dissipating 2.5 for use as a Class B power amplifier and modulator kilowatts. The cathode is a thoriated-tungsten filaor Class C power amplifier or oscillator. The anode ment. Maximum ratings apply up to 60 megacycles.
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS

Number of electrodes

3

Electrical
Cathode-Filamentary
Voltage Current Average characteristics Amplification factor Direct interelectrode capacitances Grid -plate
Grid -filament Plate -filament

6 volts 60 amperes
22
15 micromicrofarads 17 micromicrofarads 0.6 micromicrofarad

GENERAL

ELECTRIC

GL -473
ETI-281 PAGE 2 8-48

TECHNICAL INFORMATION (CONT'D)

Mechanical
Mounting position Type of cooling Maximum incoming air temperature Net weight, approximate

vertical forced air* 45 centigrade 3% pounds

* The required forced air flow (see curve) must be started with the application of filament voltage and may be shut off at the same time as removal of all voltage.

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

AUDIO -FREQUENCY POWER AMPLIFIER AND MODULATOR -CLASS B

Maximum Ratings, Absolute Values
D -c plate voltage Maximum signal d -c plate currents Maximum signal plate inputt Plate dissipations

3000 max volts 1.4 max ampere
4200 max watts 2500 max watts

Typical Operation

Unless otherwise specified, values are for two tubes

D -c plate voltage D -c grid voltaget
Peak a -f grid -to -grid voltage Zero signal d -c plate current Maximum signal d -c plate current Load resistance, per tube Effective load resistance, plate to plate Maximum signal driving power, approximate Maximum signal power output, approximate

3000
-160
820 0.66 2.80 765 3060 140 4350

volts volts volts ampere amperes ohms ohms watts watts

Averaged over any audio -frequency cycle of sine -wave form.

t Grid voltages are given with respect to midpoint of filament operated on a -c. If d -c is used each stated value of grid voltage should be decreased by 4.25 volts and the circuit returns connected to the negative end of the filament.

RADIO -FREQUENCY POWER AMPLIFIER -CLASS B
Carrier conditions per tube for use with maximum modulation factor of 1.0
Maximum Ratings, Absolute Values
D -c plate voltage D -c plate current Plate input Plate dissipation
Typical Operation
D -c plate voltage D -c grid voltage Peak r -f grid voltage D -c plate current D -c grid current, approximate Driving power, approximate Power output, approximate

3000 max volts -1.4 max ampere 3300 max watts 2500 max watts

3000
-160
280 1.1 50 15 800

volts volts volts ampere milliamperes watts watts

PLATE -MODULATED RADIO -FREQUENCY POWER AMPLIFIER -CLASS C TELEPHONY
Carrier conditions per tube for use with a maximum modulation factor of 1.0

Maximum Ratings, Absolute Values
D -c plate voltage D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation

3500 max volts -1000 max volts
1.4 max ampere 500 max milliamperes 4000 max watts 2500 max watts

GL -473
ETI-281 PAGE 3
8-45

TECHNICAL INFORMATION (CONT'D)
Typical Operation
D -c plate voltage D -c grid voltage Grid resistor Peak r -f grid voltage D -c plate current D -c grid current, approximate Driving power, approximate Power output, approximate
RADIO -FREQUENCY POWER AMPLIFIER -CLASS C TELEGRAPHY
Key -down conditions per tube without amplitude modulations
Maximum Ratings, Absolute Values
D -c plate voltage D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation

3500
-600
2150 950 1.14 280
270 3200

volts volts ohms volts ampere milliamperes watts watts

5000 max volts -1000 max volts
1.4 max ampere 500 max milliamperes 5000 max watts 2500 max watts

Typical Operation
D -c plate voltage D -c grid voltage Grid resistor Peak r -f grid voltage D -c plate current D -c grid current, approximate Driving power, approximate Power output, approximate
¶ Modulation essentially negative may be used if the positive 115 per cent of the carrier conditions.

@60 5000
-850
400000
1.0 210 250 4100

@110
3500
-600
2400 940 1.0 250 235
2800

@110
3500
-300
1950 555 1.0 155 85
2550

megacycles
volts volts ohms volts ampere milliamperes watts watts
not exceed

RADIO -FREQUENCY POWER OSCILLATOR -CLASS C TELEGRAPHY
Key -down conditions per tube without modulation
Maximum Ratings, Absolute Values
D -c plate voltage D -c grid voltage D -c plate current D -c grid current Plate input Plate dissipation

5000 volts
-1000 volts 1.4 ampere 500 milliamperes 5000 watts 2500 watts

Typical Operation
D -c plate voltage D -c grid voltage Grid resistor Peak r -f grid voltage D -c plate current D -c grid current, approximate Power output, approximate

5000 volts
-850 volts
4000 ohms 1200 volts
1.0 ampere 210 milliamperes 3900 watts

Maximum ratings apply up to 60 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced according to the tabulation below (other maximum ratings are the same as shown above). Special attention should be given to adequate ventilation of the bulb at these frequencies.

Frequency
Percentage of maximum rated plate voltage and plate input Class B Class C plate modulated Class C power amplifier unmodulated Class C oscillator unmodulated

60 110 megacycles
100 - per cent 100 - per cent
100 70 per cent
100 - per cent

GL -473
ETI-281 PAGE 4 8-48

GL -473 QUANTITY OF AIR REQUIRED
VS
ALLOWABLE PLATE DISSIPATION

2.8 11111111111111111111
2.4

IIIIIIIIIIIIIIIIIIIIIIII

GL -473 TOTAL RESISTANCE PRESSURE OF AIR COOLER
FOR VARIOUS QUANTITIES OF AIR

1.8
IIIIIIIIIIIIIM MEMIIMM"

IIIIIIMM EMMA

A

Lossromo

1.6

IA VA

14

2.0 111:111:11111111
16

12 EGG
10 El
1

IA TA IA
IA

1111111111111100100011 08
1.2
1 11111111111111111111111111111111111111111 0
M 111111111101111MIIIIIINIMMIll 06
G8
1
0.4
GG
0.4 11111111111110111111111110111111 IIIIIIIIIIIIIIIIIIIII NI 111111111111111110 IIII
0.2

74 80 K -69087-72A163

100

120

140 50 16

CFM OF AIR TFRJ AIR COOLER

8-4-47

70

90

K -69087-72A164

110

130

150

170

CFM OF AIR THRU.A1R COOLER

8-4-47

GL -473
ETI-281
PAGE 5
8-48

GL -473 CONSTANT CURRENT CHARACTERISTICS

1000

omigmdmmummimm m g2

ummMsIPERMENMEMSEMEMMOMMEMM

1

MillIk511110111, ' .. .1m11m251211111111 .........mgmEvumumAug......m.mmurmnommmum

ZERIEMMO

0

IMMPM

m'a MMM ME

800

OMMBMEMUIHLEdaii=m =HEN A0EMEMEMMEG2 MMMMMMMMM 111111111MING....

9

..

221021002 M A MM 0

7

milipeam MMMMM MEMMENYMMINNOMMUM

MREMR

IMAM

MENMEEMUM MMMM 0 MM romminumm

MR

.

UMMLIONNEVq1

n

M4AANMNMEMERM.MMadMIMMEMMEMMIN MM

.01

M.MM

MM

E

MM

anomie's
.. M

MMMMMMMMMMM

mom

mmimmummil memrimmmu
HIIMMINIMMMEEWN AM MENEM

. 'V/ M g MMM REM hOSOMMOIENAMMIMMIEMINEMMEEMmilIMME

M '"11119941111MMUMMIIIIIIIIIIIIIMil

MIMEO MMMMM NW

;LIE

MTIEMW111§

--- ;Z.

MEMMINIUMMIRIMINMMEMMENba_ EMEZMIlliaMMEMMEIMMOMmillimagegrE MMMMMMMM EOM-

VIMMailhaMEMERMIMOREWEEEEN

MMEEMNMIAMNUMIEDNOW2UMIli,

77 mom.4 .-._

2...P.5 M
w.....

:mum:

!..'
67-mmil..

mEMM

MEMIUM4UMO

w.mwri mgmewimmom.nrommsommeft.r.

m

MWMPMEIMINW M Ul M MMGMEMIlgallEndim

an

._

2229221112221:91 -

A -NO MMEMMER22000m.-mMilig..

.2

.nn

°W-dai gilimPAPPLE imciim

..-..muliamimmm-,e.g'lumni.u..tmZ. imgn.

600 rainummenimmwm.:

WM 21.216M2_

Erag2N

2

2..malgaraliniAll

Mra19109202,70120:20,240011 2202112218.2020120211021211201211211.22!

PAM191011MPWN MMMMM zaiimmemp mmommommowmmommummummmimm..nomEm

..-021R21160102214PaiigaUgg

milmcsAunimmartmlimmumagn =um

mammougnn

mrftnn

112022e2g2,222meammelmal

umwmammummu

--ammow..

mummw.n.

m

.' !

2i2PL.2%2220001 i

.22

wimmimmei

"" MMM 0 1111111111=ww".EMM

m.quilegmm

.22

IMATMKOMAW240 MMMM 10191g..,.2.

MMOMMEMIWO7T.

.22

22020.22M

.EZ;!ROIEZMEMmigi=7,-ORWE'llgailE1 2200,2 MMMM g M c...01001gdMMEft. N2444202 ....I. EWE:WONG MMMMMM ;......INTIggivalin

220,12000022205 MMMM 2 MM MMEMO..-

..20002 MMEMME..AMOINMism.=!winnAMMIVAR

EgMA221001'

10 M

...EEMXIMa

--num= M 1 MM R MMM R2R2ri

400

2 MM K M 1000.41Mig.-41

MN

NWAMIMMNIWN/M0g202201022g22

M

2P1111 MMMMM 11611111Mdmia:_5411.75142 Waln:FMENg MMM lignipM0Wm -_N1

.M.. m. ..100120ead

1".°711r0 - -. mnilmsoumman

1511210 MM 0

NM..

"7.01:111111171411..2P0MNIBMPEaMigiplainn

mmmwm.w.m.l-awmowea-

gne--

.2,
gLi220004gra0012 MMMM li MMM Immiramm_

Mr ." "MIMI!". 200

012WIN

M

N

MMM

111022mg-ft0-0202.2w1i2l0iM.m.p.mEar2akMi

m0m00.1122021,20.D.,-
.wmm MMM 1 M w.". ..

m2wiMlmMI MM MEE

mmq;:::-.:-5111111Mailftwmii6=MF_

ralimmilM=._

.M..2 EVE*

0..._ _

e

.11-1.

wmgaw..,:m

121215E:CIIIIIiii

.-.-..-.._._.-.

w um 20
222-.91612E

MEV

:RlingiaTTLXEREMEMAMMEMInemm wow.

PUMO0mEeliEWM MMMMMMMMM Pm=012

g==.1.41b.6.7.mi

MM g M M

MMMM 11114T. .11MENIAINIIIIiilli

w.....C-

IIIMMon.mi

ir".

-
..7...11

:.:..:..:t.:e.:i-:e:N:E:M:-

I''.
MMMM w.X.T.mmomORAINOMMUMmu

o. 1

-=-1.iiimm MMMMM -ilm=mm.mmin

Piiiihign=m111:11ranilledilintimffirm_=.____Im --se-selrami!..-.. -.. L::::;;;;;;;:21111111

0

&" MMMMMMMM
ilig....

imm"'"""mmillItAPoimmagiir-mummimm MMMMMM
EMmAIIMMENNIlin.:-__

Iiii;

...._

- iimmmommeromma.-

.

M "" MM SIIIIIIwwwwwmummummuliiimw.-.. M

=. ,

Win

02..

MMMMMMMMMMMMM mommommommommummum.m..enno.+ 200

22 gMN

....-

magmmomm.- mmougs

g=

""' "'MI:I:11114

Iiiig:M_ MMMMM IMIIIMIIIIIIIIMM

M....
....m
won

" m"!"11141211111

.12"

mmang n 00.111
202000mg

.- M

Ms

eialingli
112

1111

-409, 0

5

1

1.5

2

gra..! MM

'..."40111"111
:1910

2 5

3

3.5

4

4.5

5

PLATE VOLTAGE IN KILOVOLTS

K -69087-72A165

8-4.47

GL -473
ETI-281 PAGE 6 8-48

OUTLINE GL -473

T7g"MIN. .1 8 8"± .007 " .25011+ .007"
I"

MAX.

V'-I L

7-it 4 MAX

II
3 8-- MAX.

I"
2g ±32

3 7 - 32

1

<-3-71,1_ 3
- 6
NC

I16- 8

0m.a0r1k.) 30*+ 3°
wk. ,oeti 30°+3°

GRID
TERMINALS

40FILAMENT
NC TERMINALS

VIEW AT "A"

8-48 (9M) Filing No. 8850

N15102AZ

8-6-47

Electronics Department

GENERAL

ELECTRIC

Schenectady, N. Y.

01-5610
DESCRIPTION AND RATING
ETI-291 PAGE 1
12-48

PLIOTRON
DESCRIPTION
The GL -5610 is a 7 -pin miniature triode amplifier for industrial application where small size is a factor.
TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS
Number of electrodes
Electrical
Cathode-coated unipotential Heater voltage Heater current
Mechanical
Mounting position-any Envelope-T-5 glass Base-Miniature glass button 7 -pin Maximum diameter Maximum over-all length Maximum seated height

4
6 3 volts 0 15 ampere
% inch 2 N inches 1% inches

GENERAL

ELECTRIC

GL -5610
ETI-291 PAGE 2 12-48

TECHNICAL INFORMATION (CONT'D)

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS Maximum ratings, design center Plate voltage
A -c heater -cathode voltage Plate dissipation Typical operation Class A amplifier
Heater voltage Plate voltage Grid bias voltage Grid voltage for plate current =10 microamperes, approximate Plate current Transconductance Plate resistance Amplification factor

300 volts 117 volts 3 0 watts
6 3 volts 90 volts
-1.5 volts -15 volts
17 milliamperes 4000 micromhos 3500 ohms
14

30

NONE

MUMMMMMMOMM1U1MM"IMMA

AW N

MI:WM

=WM MAR MMMMMMMMIMUUMMUWMOMMEMERMMMMIMNMKMNMIMIMMMMMMMMMMIMU1MM1M1I111L01101410UMIV

25

MMEUMJBIEIMMENERNMEEMMMNIEKMEMMOMMUMUEMNMEEMMAMNIUMRMEEMMEOMMMMUMMMMF0 AM 'A

MUMNIMMWEER

MENNIMMEMUMINIMERMAMEMM

il

NwOwMwMiUmMmBwNmUiMlEmRmNwMwMwImNuEmRaEnMoEmMUmMwMwEwMwBwEwMwEwNwUiBmMmIoMmImMwMmUwMwMwIOaNn

WuAMIPANEU

MEM!!
MM[110
WOE

KNOMMEROMMOMUMMEMMUMMENE IIMMEMNEMIIMMXIMMMIUMME

.

WAMENUMM ''

UM MEM 20

111111111.0MMUNNEMBANNUMMEMBIONME

REMMEMMIIMENUMMEMMINNEMERM

swwwww.

wwwwwwwww

KnUowumwmNownsAmMnMMAMMMMM

EMINVAIN

r.

IIIMIIII011

MUNN

MMUMMEMMINMMMMMMM 111111EMMIL

n

MmMuUmMmMuEMmMOMmMMaMMnMMUMAMENEU

AMMUMIN nUMM no
WA

r

us

A

rA

r.,
FA

%MOM= 15
MUNE=Mgr= r r 10

MMMMMMMIEmEnMNMOImMMMwiIIUMIuMMMmaIUNMMMMUluMnMIMMMMMmMiMMEMMMWmmEIEMMMMEwNNMmMMMMMRNwEIIEMEUKMmwMMIMMM0IMEMM@NiIMUMEMimIIlMmMMUMIwMMMEImMuMMUUwMWmMUUEMmmMMwIIUMUMMMwMMIImnME1MMmUEMoMiM1EuMaM1M01wE1MmmOM0E1Mw11EwMUM11MmwI1Ww0UMMMNw0A1wiEMI0EM1nr=I1I1MwSRMUMmI1s10RMIIuM1UIEOII1,m1iMMOIMMImYMNMMn14MMwAIUIIUE1MmEPIMi0M1mNIUMNmMEIMoMAM11HRIMMmMMIM1MwIPMIImEMNEM1EwMMMIsAIMNI1URUKIPrNoRINrN0MIMUUIAPIAEas.IaM0IMIfNAUuF4IWIwEwfMIPMI1IKAmMmiNEiII1A&EUAlMrIMN1anM'mMWlNII1UFsMuWAWMWMIArUAMwmMAIMAM.MIMMoEII.mMK'MM1BMWNsuM1MIAAtENM,mErNM'MNUMMaAMIwMI4M1MPW0NMMm1MMMAAV1KMUMIMK1iAA.MIIar0EMMNWMA1AMrIMVMAEw14mMAMaMP1EMImn1rMMEMMu1aoMMFMWIiIimMMA'PANMmFmuAA4MMAwMrMMuMMMIO.wI1wm1MNMmwOwm1UMwMmN'1wuMwMEAIo=1wmMm.MMWIMmw0FEMwnAwm4wAMMM1MwomwMM1MEMwnwEMEuNUMwwNMwEs,wUMMWwNw4wMnUUA1wOwi.1MMrPwim1MFA1wsUoA1Man1rMwM1omMsM0meM1MmKsMMOmsMMnVmoBuMUrrMm4AmwFwMmmAIomoMO,m.w.UWmrImMpM.MErMrEN4iMMMWMmmMMAMMwMMMnEMmMIWwMMAIMMMM!MAKIMNAMMEIMMIMmrM.,aAImuNuImlwMrMoEmMmEoRmM1

MMUNMIUUMMNMEEKMEWMAVMAMMEMRUWMIMIIAIUKAIMWAMMXIMMUMMMMM fr..

win .

!A
n

..d

.

.

nM. r.i rumor mei AEI 5

I11I11M1M11U1M1MNIIngFMAMMMMMINWOAMVWIAIIIKWA,I-AIMmMeEmMPwAmR.MMEMMMMMVMA
MERMIIIMP41111111111,411W,W'
MERIAMMEBREAMICAMWAIME

.M-4MMMMMM.MFMMAMWMMHMMIMENMMIIPNAIKIAIIIIIMIIMMMMEEMWMIArKMMAMnMIIMMWMAAurIM- MdEVMA

AMMO :ON= MUFAIIMEMMIMOMMIll
AMMINEWAIMABWAIUMIRMWAIMMINT

M

:If

:I

SAMMPAMMEM0:111

WOMB

''

amonminardigommisrAig....,...duingimpownigwriniW' orno

r411111101101P"
MMMMMMM

AmmonnMMMM FM iMMXIMPliMMOMS

AIMMOW: EM0titMMMMMPIAPAIIPAMMEMPAINIMF.W...

.41111MlniMMEN,AMMOW ,MAIIIIMMiTORMMIPM

... I. M
2.1

..:
MAMMENUM
..

!A'

0

0

50

100

150

200

PLATE VOLTAGE IN VOLTS

K -69087-72A247

GL -5610 PLATE CHARACTERISTICS

7-22 -48

TERMINAL CONNECTIONS
PIN 1 -PLATE PIN 2 -CATHODE PIN 3 -HEATER PIN 4 -HEATER PIN 5 -PLATE PIN 6 -GRID PIN 7 -NO CONNECTION

GL -5610
ETI-291 PAGE 3
12-48

...._ 43"
MAX.

2 -e -
MAX.

1-8111 MAX.
Gls
2 - 32

MINIATURE BUTTON
7-PIN
BASE NO. E7- I

BASING DIAGRAM

N-15123AZ

6CG
OUTLINE PLIOTRON GL -5610

6-7-48

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.
12-48 (9M) Filing No. 8850

GL -5691
DESCRIPTION AND RATING
ETI.297 PAGE 1
5-49

PLIOTRON

DESCRIPTION
The GL -5691 is a high -mu twin triode, highvacuum tube for industrial use. It is designed particularly for use as a voltage amplifier in industrial applications where uniformity and stability of characteristic and resistance to shock and vibra-

tion are required. In addition to these features the 5691 has its heaters for the two triode units con nected in series with the result that failure of either heater in bridge circuits makes both units inopera-
tive.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL

Electrical Data

Cathode-Indirectly heated Heater voltage (A -C or D -C)
Heater current

6 3 5%* volts 0.6 ampere

Direct interelectrode capacitances with no external shield

Triode Unit No. 1Grid to plate Grid to cathode Plate to cathode

Minimum Average Maximum

3.1

3.6

4.1 uuf

1.9

2.4

2.9 uuf

1.8

2.3

2.8 uuf

Triode Unit No. 2Grid to plate Grid to cathode Plate to cathode

3.1

3.6

2.2

2.7

2.1

2.6

4.1 uuf 3.2 uuf 3.1 uuf

Plate of Triode Unit No. 1 to Plate of Triode Unit No. 2-

2.7

3.2

3.7 uuf

GENERAL

ELECTRIC

GL -5691

ETI.297

PAGE 2

5-49

Th

Mechanical Data
Mounting position -any Net weight, approximate

TECHNICAL INFORMATION (CONT'D)

3 ounces

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS
Values are for each Unit
Maximum ratings, absolute values D -c plate voltage D -c plate supply voltage Grid voltage Negative bias range Negative peak value D -c grid current D -c cathode current Plate dissipation Peak heater -Cathode voltage Heater negative with respect to cathode Heater positive with respect to cathode Ambient temperature range
Maximum circuit value (for any operating condition) Grid -circuit resistance
Characteristics and range values Heater voltage Plate voltage Grid voltage

275 max volts 330 max volts
-1** min to -100 max volts -200 max volts 2 max milliamperes 10 max milliamperes 1 max watt
100 max volts 100 max volts
55 - to +90 C
2 max megohms
6 3 volts 250 volts
-2 volts

Heater current

Minimum Average Maximum

0.55

0.6 0.65 amperes

Heater -cathode current with heater -cathode voltage of 100 volts Plate current Plate current for grid voltage of -5.5 volts

5 microamperes

1.7

2.3

2.9 milliamperes

15 microamperes

Difference in plate current between triode units Reverse grid current Amplification factor Plate resistance

0.9 milliampere

0.2 microampere

60

70

80

44000 .... ohms

Transconductance

1300 1600 1900 micromhos

Typical operation -resistance -coupled amplifier (each triode unit)

Plate -supply voltage

90

180

300

volts

Plate load resistor

0.1 0.22 0.47

0.1 0.22 0.47

0.1 0.22

0.47 megohms

Grid resistor (of following stage) 0.22 0.47 1.0

Cathode resistor

4700 7400 14400

Cathode bypass capacitor*** 2.1 1.3 0.7

Blocking capacitor***

0.014 0.0065 0.0035

0.22 0.47 1.0

2600 4600 9000

2.8

1.6

0.9

0.014 0.0065 0.0035

0.22 2180
3.1 0.014

0.47 3970
1.8 0.0065

1.0 megohms 7550 ohms
1 uf 0.0035 uf

Peak output voltage****

9

13

17

30

37

44

59

76

88 volts

Voltage gain

27f 35$ 40$ 331 421 461 361 451

501

*May deviate 10 per cent from rated value provided such deviation occurs for less than 2 per cent of the operating time. **For resistance -coupled amplifier applications, the negative bias may be as low as -0.5 volt. ***The cathode by-pass capacitors and blocking capacitors have been chosen to give output voltages at 100 cycles per second (ft) which are equal to 0.8 of the mid -frequency value. For any other value of (ft), multiply the values of cathode by-pass and blocking capacitors by 100/f1. ****This peak output voltage is obtained across the grid resistor of the following stage at any frequency within the flat region of the output vs frequency curve, and is for the condition where the signal level is adequate to swiing the grid of the resistance coupled amplifier tube to the point where its grid starts to draw current. tAt an output voltage of 3 volts rms. $At an output voltage of 4 volts rms. ¶At an output voltage of 5 volts rms.

GL -5691 AVERAGE CHARACTERISTICS

GL -5691
ETI-297 PAGE 3
5-49

ummomormom

70 6

ashomrsommomumm

60
50

-1"
-

6

40 tj

0.5

0.4

11

11

0.3 oulmomulon lummiim 2000

0.2
11101111101111111111111111111111011
0.1 immummoommoimmillorammuoimmp 1500

11111110111111111111111111111111111111110111
IMPIPNIMMIIMP11119111lirk
WHIIIIMEINIMMINIMMIVIIIRMINIWIMIIMMEI 1000

1 0 0 EIJI rig11101 qmunrumumuummummumnumumuy /1111111111111111111111111111111011 500

11111111111111110PIEllimmimmil!lIIi1iInr

III
II

111111, Pio

-8

-7

-6 -5

-4 -3

-2

GRID VOLTAGE IN VOLTS

K -69087-72A226

0
5-17-48

GL -5691
ETI-297 PAGE 4 5-49

GL -5691 AVERAGE PLATE CHARACTERISTICS EACH TRIODE UNIT E1=6.3 VOLTS

2 0

:1111.1,

I

II

ui

Er

r
EAIMMENUMMEMEMPII
1111

1

1

15

,1

I
I

IIIIMENEEF A

II

A

II rlarIVI

nai

1 ::::::.,,

FE a
r
::::m1111

IMEE.111

1

11

MEW'

IMM

INN

AM:

1

1,

MERE:

11
ia

1.0

1

rj
ri
A r,

0.5 Ii MMEONEMM
:Ur I
EMEI
EMU EA v.
°o

1'4
aoor.
11A1M.EMEMO WIEN MiMM pow4
MEN:
100

K -69087-72A225

Fr MMM EMMEN,/

I

1,

1

A M

um

I I

I

a

a

'ANEMIA

ME%
II
r.
1. EMU

li

1

I

,

I

EWEN,

FM

A

/EWA

IMMMY'/,IFMMEIMIMMEMMMMMM

MMM I

AMR/

FA

MN

WEEMS/

MA MMMMMMM nEEEEE,a

NEb MMNI;1 MM

II 4

riENNE.v.

r1

MM

am pmmuEmrimmoimp.smimmm4m r

MMMMMMM

ismscommi
M

r

A

dL.
AVAd

AM LENNIE
1.

r,

RENNER

/

AMMMEMEMM MMMMM

1 N MMMMMMMM MUIPMFA

OMM, .MMVAIMMEMMEn MMMMM

MM 1111:1:11m

200

300

400

PLATE VOLTAGE IN VOLTS

500
5-17-48

OUTLINE GL -5691 PLIOTRON

116 MAX.

N-15120AZ
5-49 (00M) Filing No. 8850

SHORT INTERMEDIATE -
SHELL OCTAL 8 -PIN BASE

MAX. MAX.

11
132
MAX.

BASING DIAGRAM

GT1

1E1

PT!
0

KT)

o o 2 4we G H
8BD
Electronics

PIN 1: PIN 2: PIN 3: PIN 4: PIN 5: PIN 6: PIN 7: PIN 8:

GRID OF TRIODE UNIT NO. 2 PLATE OF TRIODE UNIT NO. 2 CATHODE OF TRIODE UNIT NO. 2 GRID OF TRIODE UNIT NO. 1 PLATE OF TRIODE UNIT NO. 1 CATHODE OF TRIODE UNIT NO. 1
HEATER
HEATER

Department

5-17-48

GENERAL ELECTRIC
Schenectady, N. Y.

GL -5692
DESCRIPTION AND RATING
ETI-298 PAGE 1
5-49

PLIOTRON

DESCRIPTION
The GL -5692 is a medium -mu twin triode, high -
vacuum tube designed particularly for use in industrial applications as a balanced d -c amplifier, multivibrator, blocking oscillator, and resistance -
coupled amplifier. The heaters for the two triode units of the 5692

are connected in series so that failure of either heater in bridge circuits makes both units inoperative. Other features of this tube are stability and uniformity of characteristics, resistance to
shock and vibration, and long life.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL

Electrical Data
Cathode-Indirectly heated Heater voltage (a -c or d -c) Heater current Direct interelectrode capacitances, with no external shield

6.3 5%* volts 0.6 ampere

Triode Unit No. 1Grid to plate Grid to cathode Plate to cathode
Triode Unit No. 2Grid to plate Grid to cathode Plate to cathode
Plate of Triode Unit No. 1 to Plate of Triode Unit No. 2

Minimum Average Maximum

3.0

3.5

4.0 uuf

1.8

2.3

2.8 uuf

2.0

2.5

3.0 uuf

2.8

3.3

2.1

2.6

2.2

2.7

3.8 uuf 3.1 uuf 3.2 uuf

2.7

3.2

3.7 uuf

GENERAL ELECTRIC

GL -5692
ETI-298 PAGE 2 5-49
Mechanical Data
Mounting position -any Net weight, approximate

TECHNICAL INFORMATION (CONT'D)

3 ounces

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

Values are for each Unit
Maximum ratings, absolute values D -c plate voltage D -c plate supply voltage Grid voltage Negative bias value Negative peak value D -c grid current D -c cathode current Plate dissipation Peak heater -cathode voltage Heater negative with respect to cathode Heater positive with respect to cathode Ambient temperature range
Maximum circuit value (for any operating condition)
Grid -circuit resistance Characteristics and range values
Heater voltage Plate voltage Grid voltage

275 max volts 330 max volts
-1** min to -100 max volts -200 max volts
2 max milliamperes 15 max milliamperes 1.75 max watts
100 max volts 100 max volts
-55 to +90 C
2 max megohms
6 3 volts 250 volts
-9 volts

Heater current Heater -cathode current with heater -cathode voltage of t 100 volts

Plate current Plate current for grid voltage of -24 volts

Difference in plate current between triode units

Reverse grid current

Amplification factor

Plate resistance

Transconductance Typical operation -resistance -coupled amplifier (each triode unit)

Plate -supply voltage

90

180

Plate load resistor

0.05 0.1 0.25 0.05 0.1

Grid resistor (of following stage) 0.1 0.25 0.5 0.1 0.25

Cathode resistor Cathode by-pass capacitort Blocking capacitort Peak output voltaget

2070 2.66 0.029
14

3940 1.29 0.012
17

9760 0.55 0.007
18

1490 2.86 0.032
30

2830 1.35 0.012
34

Voltage gain P

12

13

13

13

14

Minimum Average Maximum

0.55

0.6 0.65 amperes

5 microamperes

4.8

6.5

8.2 milliamperes

15 microamperes

2.0 milliamperes

0.2 microampere

18

20

9100

22
.... ohms

1825 2200 2575 micromhos

0.25 0.5 7000 0.62 0.007 36 14

300

volts

0.05 0.1 0.25 megohms 0.1 0.25 0.5 megohms

1270 2440 5770 ohms

2.96 1.42 0.64 uf

0.034 0.0125 0.0075 uf

51

56

57 volts

14

14

14

*May deviate t 10 per cent from rated value provided such deviation occurs for less than 2 per cent of the operating time.

**For resistance -coupled amplifier applications, the negative bias may be as low as -0.5 volt. tThe cathode by-pass capacitors and blocking capacitors have been chosen to give output voltages at 100 cycles per second (f1) which are equal to 0.8 of the mid -frequency value. For any other value of (f1), multiply the values of cathode by-pass and

blocking capacitors by 100/f1. $This peak output voltage is

obtained

across

the

grid

resistor

of

the

following

stage

at

any

frequency

within

the

flat

region

the output vs frequency curve, and is for the condition where the signal level is adequate to swing the grid of the resistance -

coupled amplifier tube to the point where its grid starts to draw current.

At an output voltage of 5 volts rms.

81, LL -g
0

Sil0A NI 39V110A 0189

9-

8-

01-

ZI- t1-

91-

8 Z Z ',;,'ZL-L8069-)1
81 - OZ-

MIME

-411
r

AMINE

005

....I.D17
IIMAMAAMMIYAMI111121111111MAll111211111Y.1;0112111111111121112121

Ft

MMMMMM I mom MMMMMMM 000 t

Y.
r,
PI

MAAMANAMMLAMAAMAAMMAAMAAAANAMMAAY

MARNA

MAMMINIAAAANAIMMIMAAANAAMS,4 MMMMM AMAIIMAIIMAMAII

oog t

11

SIMAIWA

000Z

3

OA

AMMAN MAMMA
0052

O

iummiumm.

A A
A

000£

.

1

..111

..AMMAMANIIMMAR

A 1111111111IIIMMIM1111111111111SIMMIN1111AN
'A

AAA

A
NC:F.
!AN-

1.7
00S£
INAMANAMMAI, :MAMA
1
MMAMMAMAMEMMImIIM1 mlA2
UMMARA
1
OMM1
II II II
IA'
SA
1

AMMAMMAKMAI

I VAL
."110

1M

MAMMA

WMA1 NAMA

AMA

1

ARA

MAMA.

MAMMAMAMMI

1

1M

211111111

1
AMMOMMAAAMMAKAMO

AMAMI IMMAAMMAAM MAMMANAI

MAANAMMAAMAUMAIMIMAMA MMMMMMMM 1MM

1

111.1 AlMIIMEMEAMMIMIMAMAMMAMAMMMAMMMMMM AM

:3 M
dim IIIIIIMAIMIMM MAMA
1.

s '740111111 2IMW
MAAMMAMMESAMAZIAAM MIAMI

KAMAN

MMOMMAMEMAMA MMMMMM AMMAIIIIMAMMEMA

SI
OZ
.11

I. MMAARMANAMMAMAMMAMMMMM MAMMAL!AMA
I110MwMary WAEINAMMAA

AMMAN

I

SZ MAMMA

O

.....AM
MAMAMAMA

MAMA MMMMMM EMAMONMAMMANMAMMAA MMMMMMAIMAMMMAAMMNAMOMA.MA.EMAWMM0AA.IM0RIMMIEMMAIM3MAAMMMEM=MAMAAIIANNMMAAMMAM
4

I..MMEMO4MNIAMPJAW ABIENCIEZROLLAW2AMME7MMAt

AMMEMAAAMMAAll I
0
0100

OZTO

I I

0E0'0

OVO*0

00.0

MIA

Tws

,

GL -5692
ETI-298 PAGE 4 5-49

GL -5692 AVERAGE PLATE CHARACTERISTICS EACH TRIODE UNIT E,=6.3 VOLTS

E MEN NOMMEN MENEM.
16 NOON

ENIIIE
IME1

CCU

111111

ENMNEEMNEMEENMME..NNEEMJ

11
INEEMENNE W1
MNEWN,EMOf

U n U
1

MEEMMM,ENMMNMMMIMMMMMMMMMM ENEMA:MI

MEMNON

1

EMMEN.

A

MIME NENE!

12
"SENN SEMEN

I I
A
MmoEmNEM
A

M
A
wq FAMMI
MMMI
A

1

LENT.= MIME

11E4

ME111111

111,

11111111111

11111

AIMMECI A r

I MEME1621

A

ME!

E
u1A
MEmMMMmENE MsNMEMMMm

'

A

1E1

I
1 NM M MENU

m.IImmNmEN
n

Mommumum mono
irminiNMEEMNMEENMM

NMNEAmm
MmognmommommM
mNEON

mmEng .... 8

Vl
Imnommommu gam MMMMMMMM /MENNEMEA
nommm.mmri FENUMMENY

r
A
=MOW'

"."MMMMMM111:11i1111111 1

1

VENN
MEET= WIEN

MEEMNEALEMMENEIriIaNlN

U

iEMMEmENmNN.EUWmEEigMmMEmENoNMmEENUNEMNOMMEMmAAMNiMNsEEMmMEEoEMNrNEEWWA7NAUnTiEuNmSmMiOMEENNE

MMEEMM EMMEEMNM NMMEEMMOMENEMMMEIMEMMMMMMEMEMMmE

mord AMENNINEF

EWA

r

MENNEN",

ASSESSES
MEW II,MEMMEN A

I

1%

MENE USUI MMEM EIIENMEM6-.

r

M

MMEENMEMEIMNMEMMENIISMSEINMNIIMEMNIESEMNs

EM,

OMMMEI MMMmMMM
IImM MEW

Amommmim
OMENMEWE

iSuOmImIEIgIImENWIAT

/MMNNEN AMVMEEMEENENYES

i

0 AMEN MEMO

I ONEE

4

r
11r

MM
mu

:NON:NONE..,,.OENMMOMMMMMMMMM

IE SMMEESNMMEENMNShAE WM:FEAMNMENM,

1r11 1EM::

EMMEN OF

EM MEN

EMNEENEMEEMNNANEENE

In

imr

F MMMMMMM innmnrowima

Um

1

A

INF

A

A
All

1

'I

AMEME7.19111

1
MMEM

EONNOMEMEEEN.WMOAMWEN./'A

MEWS MA A

UN E.

UINNNENVA MMMMM r MM

IN

EMN'JM

NM

A

A EMI M ,M MONM'.1

no

MMEENEET'ASM.EEMENEMMANIMNNUEAEENNEMNEEMOMOWY

MN MINEMMIIIEr
UMWWO/

A

A 1.1.

.

AMEN.:

,M/AMENENO

0 EEEmVWMuAWMAmNAANE1.INpmIWoIEoIMwuNHEEIM_/MMMgAEEMuMUEiWTNIMEuVIErAIMrMIiMmITpIIMrWEoIMmNEm

A

MICkillICOMM.1

M Ingirmdigim

0

100

200

300

400

500

K -69087-72A227

PLATE VOLTAGE IN VOLTS

5-17-48

OUTLINE GL -5692 PLIOTRON

3" 116
MAX.

SHORT INTERMEDIATE-
SHELL OCTAL 8-PIN BASE

..
2-g
MAX.

21-78'1
MAX.

132
MAX.

N-15120AZ
5-49 (10M) Filing No. 8850

8BD

Electronics

PIN 1: PIN 2: PIN 3: PIN 4: PIN 5: PIN 6: PIN 7: PIN 8:

GRID OF TRIODE UNIT NO. 2 PLATE OF TRIODE UNIT NO. 2 CATHODE OF TRIODE UNIT NO. 2 GRID OF TRIODE UNIT NO. 1 PLATE OF TRIODE UNIT NO. 1 CATHODE OF TRIODE UNIT NO. 1
HEATER
HEATER

Department

5-17-48

GENERAL ELECTRIC
Schenectady, N. Y.

GL -5693
DESCRIPTION AND RATING
ETI.299 PAGE 1
5-49

PLIOTRON

DESCRIPTION
The GL -5693 is a sharp cut-off five -electrode, high vacuum tube for use as a high -gain, resistance coupled amplifier in industrial applications.
A grid No. 1 resistor with a value as high as 40 megohms can be used with this tube depending upon the operating conditions as given on the curve

"Operational Characteristics." In addition, the 5693 is characterized by uniformity and stability
of characteristic, resistance to shock and vibration, and long life features especially desirable in industrial service.

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

Electrical Data
Cathode-Indirectly heated Heater voltage (a -c or d -c)
Heater current Direct interelectrode capacitances, with
shell connected to cathode Grid to plate Input Output

6 3 E 5%* volts 0.3 ampere

Minimum Average Maximum
.... 0.005 uuf

4.8

5.3

5.8 uuf

5.6

6.2

6.8 uuf

Mechanical Data
Mounting position-Any Net weight, approximate

3 ounces

GENERAL

ELECTRIC

GL -5693
ETI.299 PAGE 2 5-49

TECHNICAL INFORMATION (CONT'D)

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

Maximum ratings, absolute values

ID -c plate voltage D -c plate supply voltage

300 max volts 330 max volts

D -c grid No. 3 (suppressor) voltage

Negative bias value

0 min -100 max volts

D -c grid No. 2 (screen) voltage

125** max volts

D -c grid No. 2 supply voltage

330 max volts

Grid No. 1 (control -grid) voltage

Negative bias range

1*** min to -50 max volts

Negative peak value

-50 max volts

D -c cathode current

10 max milliamperes

Plate dissipation

2 max watts

Grid No. 2 dissipation

0.3 max watt

Peak heater -cathode voltage

Heater negative with respect to cathode

100 max volts

Heater positive with respect to cathode Ambient temperature range

100 max volts
-55 to +90 C

*May deviate t 10 per cent from rated value provided such deviation occurs for less than 2 per cent of the operating time.

**The 5693 may be operated at a grid No. 2 voltage as high as the maximum rated grid No. 2 supply voltage (330 volts)

when the grid No. 2 dissipation is not exceeded for any signal conditions and when a resistor is used in series with the grid No.

2 and its supply voltage.

***For resistance -coupled amplifier applications, the negative grid No. 1 bias may be as low as -0.5 volt.

Maximum circuit value (see curve K -69087-72A224)

Characteristics and range values

Heater voltage, 6.3; plate voltage, 250; grid No. 3 voltage, 0; grid No. 2 voltage, 100; grid No. 1 voltage, -3

Minimum

Heater current

0.275

Heater -cathode current with heater -cathode voltage of t 100 volts

Plate current

2.3

Plate current for grid No. 1 voltage of -7.5 volts

2

Plate current for grid No. 3 voltage of -70 volts

150

Grid No. 2 current

0.60

Reverse grid No. 1 current

Average 0.3
3.0 30 450 0.85

Maximum
0.325 amperes 5 microamperes
3.7 milliamperes 80 microamperes 750 microamperes 1.10 milliamperes 0.1 microamperes

Plate resistance

1.0

.

megohms

Transconductance

1400

1650

1900 micromhos

Typical operation -resistance -coupled amplifier

Plate and grid No. 2 supply voltage

90

180

300

volts

Plate load resistor

0.1 0.25 0.5 0.1 0.25 0.5 0.1 0.25 0.5 megohms

Grid No. 1 resistor Grid No. 2 resistor

0.25 0.5 0.29 0.92

1 0.25 0.5 1.7 0.31 0.94

1 0.25 0.5 2.2 0.37 1.10

1 megohms 2.2 megohms

Cathode resistor

880 1700 3800 800 1060 2180 530 860 1410 ohms

Grid No. 2 bypass capacitor t . 0.085 0.045 0.03 0.09 0.06 0.04 0.09 0.06 0.05 uf

Cathode bypass capacitor t .

7.4 4.5 2.4

8 6.6 3.8 10.9 7.4 5.8 uf

Blocking capacitor t

0.016 0.005 0.002 0.015 0.004 0.002 0.016 0.004 0.002 uf

Peak output voltage t

23

18

22

60

47

44

96

88

79 volts

Voltage gain A

68

93 119

82 131 192

98 167 238

tThe cathode and grid No. 2 bypass capacitors and blocking capacitors have been chosen to give output voltages at 100 cycles per second (f1) which are equal to 0.7 of the mid -frequency value. For any other value of (f1), multiply the values of cathode bypass, grid No. 2 bypass, and blocking capacitors by 100/f1.
IThis peak output voltage is obtained across the grid resistor of the following stage at any frequency within the flat region of the output vs frequency curve, and is for the condition where the signal level is adequate to swing the grid of the resistance coupled amplifier tube to the point where its grid starts to draw current.
AAt an output voltage of 5 volts rms.

GL -5693
DESCRIPTION AND RATING
ETI-299 PAGE 1
5-49

PLIOTRON

DESCRIPTION
The GL -5693 is a sharp cut-off five -electrode, high vacuum tube for use as a high -gain, resistance coupled amplifier in industrial applications.
A grid No. 1 resistor with a value as high as 40 megohms can be used with this tube depending upon the operating conditions as given on the curve

"Operational Characteristics." In addition, the 5693 is characterized by uniformity and stability
of characteristic, resistance to shock and vibration, and long life features especially desirable in in-
dustrial service.

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

Electrical Data
Cathode-Indirectly heated Heater voltage (a -c or d -c)
Heater current Direct interelectrode capacitances, with
shell connected to cathode Grid to plate Input Output

6 3 5%* volts 0.3 ampere

Minimum Average Maximum

0.005 uuf

4.8

5.3

5.8 uuf

5.6

6.2

6.8 uuf

Mechanical Data
Mounting position-Any Net weight, approximate

3 ounces

GENERAL

ELECTRIC

GL -5693
ETI-299 PAGE 2 5-49

TECHNICAL INFORMATION (CONT'D)

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

Maximum ratings, absolute values

D -c plate voltage

300 max volts

D -c plate supply voltage

330 max volts

D -c grid No. 3 (suppressor) voltage

Negative bias value

0 min -100 max volts

D -c grid No. 2 (screen) voltage.

125** max volts

D -c grid No. 2 supply voltage

330 max volts

Grid No. 1 (control -grid) voltage

Negative bias range

1*** min to -50 max volts

Negative peak value

-50 max volts

D -c cathode current

10 max milliamperes

Plate dissipation

2 max watts

Grid No. 2 dissipation

0.3 max watt

Peak heater -cathode voltage

Heater negative with respect to cathode

100 max volts

Heater positive with respect to cathode

100 max volts

Ambient temperature range

-55 to +90 C

*May deviate 10 per cent from rated value provided such deviation occurs for less than 2 per cent of the operating time.

**The 5693 may be operated at a grid No. 2 voltage as high as the maximum rated grid No. 2 supply voltage (330 volts)

when the grid No. 2 dissipation is not exceeded for any signal conditions and when a resistor is used in series with the grid No.

2 and its supply voltage.

***For resistance -coupled amplifier applications, the negative grid No. 1 bias may be as low as -0.5 volt.

Maximum circuit value (see curve K -69087-72A224)

Characteristics and range values

Heater voltage, 6.3; plate voltage, 250; grid No. 3 voltage, 0; grid No. 2 voltage, 100; grid No. 1 voltage, -3

Minimum

Heater current

0.275

Heater -cathode current with heater -cathode voltage of 1100 volts

Plate current

2.3

Plate current for grid No. 1 voltage of -7.5 volts

2

Plate current for grid No. 3 voltage of -70 volts

150

Grid No. 2 current

0.60

Reverse grid No. 1 current

Plate resistance

1.0

Average 0.3
3.0 30 450 0.85

Maximum
0.325 amperes 5 microamperes
3.7 milliamperes 80 microamperes 750 microamperes 1.10 milliamperes 0.1 microamperes
megohms

Transconductance Typical operation -resistance -coupled amplifier

1400

1650

1900 micromhos

Plate and grid No. 2 supply voltage

90

180

300

volts

Plate load resistor Grid No. 1 resistor Grid No. 2 resistor

0.1 0.25 0.25 0.5 0.29 0.92

0.5 0.1 0.25 1 0.25 0.5
1.7 0.31 0.94

0.5

0.1 0.25

1 0.25 0.5

2.2 0.37 1.10

0.5 megohms 1 megohms
2.2 megohms

Cathode resistor

880 1700 3800 800 1060 2180 530 860 1410 ohms

Grid No. 2 bypass capacitor t Cathode bypass capacitor t . Blocking capacitor t Peak output voltage

0.085 7.4
0.016
23

0.045 4.5
0.005 18

0.03 2.4
0.002 22

0.09 8
0.015 60

0.06 6.6 0.004 47

0.04 3.8
0.002 44

0.09 10.9 0.016
96

0.06 7.4
0.004 88

0.05 uf 5.8 uf 0.002 uf
79 volts

Voltage gain A

68

93 119

82 131 192

98 167 238

tThe cathode and grid No. 2 bypass capacitors and blocking capacitors have been chosen to give output voltages at 100 cycles per second (f1) which are equal to 0.7 of the mid -frequency value. For any other value of (f1), multiply the values of cathode bypass, grid No. 2 bypass, and blocking capacitors by 100/f1.
This peak output voltage is obtained across the grid resistor of the following stage at any frequency within the flat region of the output vs frequency curve, and is for the condition where the signal level is adequate to swing the grid of the resistance coupled amplifier tube to the point where its grid starts to draw current.
AAt an output voltage of 5 volts rms.

GL -5693 OPERATIONAL CHARACTERISTICS E,=6.3 VOLTS PLATE VOLTAGE = 300 GRID NO. 3 VOLTAGE =0

GL -5693
ETI-299
PAGE 3
5-49

CURVE
1
2 3
4

GRTD-NO.2 RESISTOR
0 MEG. 0.25 MEG. 0.5 MEG. 0.75 MEG.

GRID -N0.2 SUPPLY VOLTAGE
100 300 300 300

CURVES BASED ON FOLLOWING VALUES:

nIK = 300AAMP

= 0. 1 gAMP

EXPRESSING THESE VALUES AS A RATIO:

.6.11(
AIg,

300 OR 3000
0.1

FOR APPLICATIONS PERMITTING OTHER VALUES OF

A NEW RATIO oF-A2KAIZ

CAN PE CALCULATED. THE VALUES OF Rib AS READ FROM THE CURVE MUST BE MULTIPLIED

BY A FACTOR WHICH IS THE QUOTIENT OF THE NEW RATIO DIVIDED BY THE OLD RATIO.

FOR EXAMPLE . IF THE NEW RATIO IS 6000 THE MULTIPLYING FACTOR IS 6000/3000. OR 2.

AND VALUES OF Rg, AS READ FROM THE CURVE ARE THEREFORE MULTIPLIED BY 2.

NOTE: TRANSCONDUCTANCE CURVES WERE OBTAINED WITH GRID-NO.2 RESISTOR AND CATHODE RESISTOR SUITAPLY BYPASSED.

50

2500

TRANSCONDUCTANCE

CURVES

10
40

0

2000

2

k0 30 0

0 1500

0

1000

20

411111110.

00

10

0

500

0
K -69087-72A224

2000

4000

6000

CATHODE RESISTOR IN OHMS

8000
8-26-48

GL -5693
ETI-299
PAGE 4
5-49
GL -5693 AVERAGE SUPPRESSOR CHARACTERISTICS
E,=6.3 VOLTS PLATE VOLTAGE = 250 GRID NO. 1 VOLTAGE= -3
4
11

3

tee

GL -5693 AVERAGE SUPPRESSOR CHARACTERISTICS
E1=6.3 VOLTS PLATE VOLTAGE=250
GRID NO. 1 VOLTAGE= -3

90

2

2

Ec2 =75 NM IIMIMIENNESENIEllin

1

0

ioo

80

K -69087-72A229

60

40

GRID -N0.3 VOLTAGE IN VOLTS

60

20

0

8-26-48

11111N1o1m1:h1.1m24:o5m61il;l

0 11

100

80

60

40

20

GRID -N0.3 VOLTAGE IN VOLTS

K -69087-72A230

8-26-48

GL -5693 AVERAGE PLATE CHARACTERISTICS
PENTODE CONNECTION E,=6.3 VOLTS
GRID NO. 2 VOLTAGE=100 GRID NO. 3 VOLTAGE=0

10

ME ME r .

111

ME

EMMEMIMMIMMEMEMEMMEMMINIMMENEE MIMI= MMIUMMIMMUMNIM mm mmmmmmmm MMEMMOIMMOMMEMEMEMMEMMEMMEM MEMMEMMINIM

P111.""'"-

II!!!!: MEMMEMMI IIIII

II ME

8

M
1

M
M

M

Es

I

MEMIMMIMISMIMM

MEMMUMEMMUMITOMMINIMMIIMMUMMIIMMEMEMEMMIMMEMMEMEMMEMEMMUMMEMEMINIMMEMMIXMIMMIMMIMEMINIMMEMMEMEM OM

1

MW= 4w-
U 6 MmEuMiEWpAmReEEmMmEuMEmMmommEommomImMoMmUmMMuEmMmMuEMmEmMuEmMmEMoEmMmEoMMmEmMoEmEMMmEuMmEmMMoEmMmMoEMmMmEoNmMMmMuImImMuNmEmMmEMmEuMmMEmMmMomMmEuMm=II

m

MMOMMEMIMMIMMEMEMMOMMEMMOIMMEMMEM MMEM II

-.m

IIIMMUMMEMMOMMEMMINIMMIIIMMEMMEMEMEMM MUM ME

MMIAMIMMEMMIIMIMMEMEMMEMEM MIIMEMIIIIMMIMMEMMEMEMMINIMMIUMMEMOMMMMEMMINIMMEMMEMEMMEMMEIUMMEMIIMEN =ME=

4

111,

momusimmummommoommumm mommommmommummommommommommmmommommommumunnummummamms mu w=

MEM mm N mm MMEMEMIIMMEMMEM IMMEMMINIMMEMEMMEMMOMMEMMEMMIMMIUMMEMOMMOMMEMMEMMEMMIMMMEMMIIMMEMEMEM NOMUMEM

IIIME I

AIIIIMmiliii===.2nETmwom MMMMMMMMMMMMM IMMEMMINUMMIUMIMMEMMEMEMMOIMMEMMEMMEMIIMMUMMVIMMEMMEMEMMEM
MmUiOlMPmAmImMMoUmMoBEmImIoMMmEmMmMEoMmEmMMeEmMmMUoNmNmOMuMmEmMEaMsEMtsMuMMmMuMmMMuMmMmMMoMmMuMMmMmMommmmiolmmmmmmliommmmimommR6mmummimoam'ma=o=m=m==m=i=n==o"mMr_IO
2 IV A

gamin mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm mommonmommommummulummommommmommommommi

m

ME

iilii!

E

MEE I!:!li::iiiiiiiiiiii MI 1M

UrAMMIEMMEMEMEEMMEMENOMMIIMMEMMEMMEEMM

... MEMEMEMMEMEMEEMMMEMMEEMMEMEMEMMEMMEMMEMMEMEEME

MEM

0
K -69087-72A231

100

200

300

PLATE VOLTAGE IN VOLTS

400

500
5-17-48

GL -5693 AVERAGE CHARACTERISTICS

, 4

RRRR
n!wa...121:

tt

Gno

12 _1 3
z

=

a

10

6 =
8O

8

orarence:::.:

6 6

e

10 .. m.:
4 -.1.111
8 ulltr.
cL
2

GL -5693
ETI-299 PAGE 5
5-49

2500

ce
2000

O

-J

2

z 1500 -z

z

cc=

1000 z
cc to"
0
500 r_-1

10

-43

K -69087-72A232

-6 CONTROL -GRID VOLTAGE IN VOLTS

0 5-17-48

GL -5693 AVERAGE CHARACTERISTICS

PENTODE CONNECTION E1=6.3 VOLTS PLATE VOLTAGE=250 SUPPRESSOR VOLTAGE -0 SCREEN VOLTAGE=100

muriummomm umwinsn 11:11.. 0
1

MIRMERNEMEMMME

INIMEREMINIMMUMMOUWZOMEMS

MMMMM MEMMEIMaMM

n

.,5 rwwuw'oppArmmrnsmI==I ..III

mom

1 p

A

11 1

1

II' 11

11111

1

A

1

1

a1111 1111111111
...BM
MIME.
aMnEM1.41M1M1.

!I:ANNEXE!

-10

-8

K -69087-72A234

11.-a

....0111111
-6

-
-4

CONTROL-GRID VOLTAGE IN VOLTS

wpm= m.
MMMMMMMMMMMMMMM

Immommilmpmumumm

ommumm

-2

C,

5-17.48

GL -5693
ETI-299
PAGE 6 5-49

GL -5693 AVERAGE CHARACTERISTICS
3000

2000 6
z
8
O
Zfn
1000

N-15119AZ
5-49 (10M) Filing No. 8850

10

-8

-6

-4

-2

0

CONTROL -GRID VOLTAGE IN VOLTS

K -69087-72A233
OUTLINE GL -5693 PLIOTRON
isu
132 -"I MAX.

itI5-17-48

BASING DIAGRAM

0 G 3e

K
o G2

tz)0 1/61
0ew

8N

SMALL -WAFER OCTAL
8 -PIN BASE
NO. 138-21

PIN 1: PIN 2: PIN 3: PIN 4:

SHELL HEATER GRID NO. 3 GRID NO. 1

Electronics Department

PIN 5: PIN 6: PIN 7: PIN 8:

CATHODE GRID NO. 2 HEATER
PLATE 5-17-48

GENERAL

ELECTRIC

Schenectady, N. Y.

0L -1000T
DESCRIPTION AND RATING
ETI-314 PAGE 1
8-50

PLIOTRON

DESCRIPTION
The GL -1000T is a three -electrode tube designed for use as a Class B audio -frequency power amplifier and modulator or as a Class C radio -frequency power amplifier and oscillator. The anode is capable of dissipating 1000 watts. Forced -air cooling of the envelope is required under all conditions of

operation and forced -air cooling of the seals,
through the tube in the base, is necessary when the GL -1000T is operated at maximum conditions. The cathode is a thoriated-tungsten filament. Maximum ratings apply up to a frequency of 50 megacycles.

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL

Electrical Data
Filament voltage Filament current

7.5 volts 17.0 amperes

Amplification factor Direct interelectrode capacitances
Grid -plate Grid -filament Plate -filament Transconductance, In = 750 ma, Eb =6000, E, = -62

35
5.1 uuf 9.3 uuf 0 5 uuf
9050 micromhos

Mechanical Data

Mounting position

vertical, base down

Type of cooling

forced air

Forced -air cooling of the seals is necessary under maximum conditions

of operation. Each seal requires approximately 2 cubic feet per minute.

The bulb must be cooled with air equivalent to that supplied by an

8 -inch electric fan 12 inches from the bulb. Net weight, approximate

1.25 pounds

GENERAL

ELECTRIC

GL -1000T
En -314 PAGE 2
8 -50

TECHNICAL INFORMATION (CONT'D)

MAXIMUM RATINGS AND TYPICAL OPERATION CONDITIONS AUDIO -FREQUENCY POWER AMPLIFIER AND MODULATOR-CLASS B

Maximum ratings, absolute values

D -c plate voltage Maximum signal d -c plate current Plate dissipation*

Typical Operation Unless otherwise specified, values are for two tubes

D -c plate voltage

4000

D -c grid voltage, approximate

-70

Peak a -f grid input voltage

490

Zero Signal d -c plate current

.300

Maximum signal d -c plate current

1.25

Maximum signal driving power, approximate

28

Effective load resistance, plate to plate

6350

Maximum signal power output, approximate

3000

7500 max volts 750 max milliamperes 1000 max watts

5000
-105
530 .240 1.14
31 9250 3700

6000 volts
-135 volts
600 volts .200 amperes 1.11 amperes
35 watts 12200 ohms 4600 watts

RADIO -FREQUENCY POWER AMPLIFIER AND OSCILLATOR-CLASS C TELEGRAPHY

Key -down conditions per tube without modulation**

Maximum ratings, absolute values D -c plate voltage D -c plate current D -c grid current Plate dissipation
Typical operation D -c plate voltage D -c grid voltage Peak r -f grid input voltage, approximate D -c plate current D -c grid current Plate dissipation Driving power, approximate Plate input Power output, approximate

3000
-150
350 750
90 900
30 2250 1350

4000
-150
365 713 100 1000
33 2850 1850

7500 max volts 750 max milliamperes 125 max milliamperes 1000 max watts

5000
-225
420
667
87 1000
33 3333 2333

6000 volts
-350 volts 610 volts
667 milliamperes 110 milliamperes 1000 watts 60 watts 4000 watts 3000 watts

*Averaged over any audio -frequency cycle of sine -wave form. **Modulation essentially negative may be used if the positive peak of the envelope does not exceed 115 per cent of the carrier conditions.
GL -1000T
DRIVING POWER VS POWER OUTPUT
PLATE VOLTAGE = 4000

1 Inn

6

MEW uniqmporiem

' mmmmm

mmmmmm

mar

50

mmm

m121m 1
/MU

INN

40

1/IM a

/11
FAA 1

MAIMED.AINEWarrourgrumn.sm
FIMIF/S

:CCCAVMEMF 3Q

GpGGG

1

gmAlair.T

paw'nMAME, ICIPAI

20

4.....G

..11MMIMARYM IMEMEMMUMM.

/A

"m!Airlitli"3"

WWOM=W IFII

m norm a

111....1

10

mm = m

111

iMpASPAII MN MEN

=in
0
K -69087-72A336

1 000

2000

POWER OUTPUT IN WATTS

IMMEAMMOM MMMMMMMM 3000
1-5.50

GL -1000T
DRIVING POWER VS POWER OUTPUT PLATE VOLTAGE = 5000

GO

MEM.

MESE

11

50

40
1
30 mImmmi

LIME......

ALONSIIIA ammo,

11:1

20 se

amp.

MEI 10

.MLAIHMSEIPA AAA

PP AWN.' A

INPaME!
.,Orm

nPrs5irm.Jararm..,

Lam -
MEMS AA
'V A

1000

ors

POWER OUTPUT IN WATTS

K -69087-72A337

11

11

simemporrimmi MENNEMEMENEM
3000
1-5-50

GL -1000T
DRIVING POWER VS POWER OUTPUT PLATE VOLTAGE = 6000

60
:r
50
40

Lim.=
M M

nmesimmspmamm.mmard
NEmmMooESwmES" ENENSANNNI

M MEM

INNEN

mom

KornMI

NI

MMENEMEESE

1

INU

30 IMSIMMMMI mom mmml

mmi

20

ammmoom
U.

rI
A V

ILMENCI

: 1
A

IEmu

°1111

MMEENEMM

mom

FERNNE

I:iii

-mamNEmMa
,411mmum

Cr

Immetamacma MMMMMMM Im."2

IINNEIL ENCIIII

'PENAIMANASESI

IENNMENNI IIINEENEEP

10

MENUS MMMMMM MEM
:

-.ALAMEIN/Una

M IN MENNEN

ft.
I.

IMMENSE:

O

1000

2000

3000

POWER OUTPUT IN WATTS

K -69087-72A338

1-5-50

GL -1000T
ETI-314 PAGE 3
8-50

GL -1000T
ETI.314
PAGE 4
8-50

GL -1000T CHARACTERISTIC

1
.. IIIMMEMENNERMENMENNEN E

NEMENEMMNEEMEMMEMMNEm

WIMMEMEMMEMIMENMMER

MNMMMNUMEONEMNMNEMEEMEMUEMEMEMEMNEME EMEEEENN
I

800 MNOENNEMSMUMENEPMNEMO EENNONNNIMMUmME. mMMoEMMmM NEIMERxRNE MEEMMMEEMENMMEEMMMEEMMEMMMmEM=MIEMMMEEEMMNEUNMEESNNINMNEERENMMMEEIMNNNN MEENMNNEEMNNENUEMMMNEME

F 'i`iIl
wommumma uI mmw,mmem

MEM

EMI= MEMEMEMSE MMMMMM =111111111111111MMEMMEMMUMMINIMENI NM II

600 1MM1EE11MM1 mom

A 1 SflII

1

IMM11.11 111010111.115119f114011

I IIIMMEM....-9114111/01

II

"IlltIrElMno...INIEnid

Mall
NEEN

MEENNNMEMNMOIEMMMMIEINNMEMMIEEMMNEIMMIEEIMNMENEMUUMMMMUEEMMOMEIMIIINMME1EI1MM1OM1ENME1SR=SM=EE=II=M=EE=MN=IE=N=

uHIFs 400

MMNEENMM==fESVIEINEIEEMMNWZMZM.IT-1PEN7lIMMb4TwPMN,EIO-EMGZMrA=EI,.MM_NORMnZ.ri..-iMmfMMmgEtE%N.MNiMOVo.E..ME:MMM:M;.!EInZN'NMSESIUNWN,MR4.IEa.NMI_-EIMEmNINsMINI4EEEN=WINENUPI=MNENIIMlNl NEMMBIEIMN SMEMMSMEM IUMNMEMENNIMINOMMEM

EIME

millo. EmImiMlkA..ArIaNI.P"IIm'I1Mw1?P1mM1-.nE.4.I.R:.M21---11E1PNMP.mSMmUr.iEltn-im-ioi"`mmIim1Mmi1oo1Mm0ofI.t1.i.1.1_l.1!.4ri1r1.omo1tm1V1rp1m1.2m1;1.:-i91;u1.:11.m1M.0M.oMnPi.WgNcMM-i.MfftIl.iMt=oP.m7Iw11EA1A1,I1M1_1M1-=1U1ItM:mMiMEUPeUIMMMmANMEEmIUMIZIMEuI-MIEiMlAAMliMmIMIEMNMiMaMMIIzMUEN.MM_EMSE_NSMU_MEMeMMIlEIMEiIuMMSIMmMEMMMiMnMEuMIMNmMMOmMWaMjMaNMli

NEMIMM-MMEIRoga.WAN MMMMM EN.Z..T.M2EMMEMM=nr.. MMM V! M omomM.-,72PENESIMAImmmo.Z=MISIERMENEM

...my 200 MMmMMMIiAEEAIMrNMNINImCSNIiiPMIIM.AEEPMMN.ME.ELMiNM.SoZgEININMUMmEMEEEENFMGMIEEMZISnNN.IAPPPI1IEMMM=NEMfIM2.MtNmMZ=IEIM5WNNOIMIIMMIEMaUMMMWlMEMElO-EEMiNNNmMMPS=EETMMMMIMIEMSEM.NENSM..EEIE-GMER..IM...PMM-I.EMRMLMU=TIMNULPN=NoZSMMaWEIMANMUMm.NEMlEiMmgZiN.=-l.N.m'mE4MiIMM=MEEvEMMmaMEuEr.MNm.MM.UuIi.EmTmIgRaNE=nMiMMTMummmEInNm.wEgm=M.79M21MM..E1.EaM1.MMEmMEMIaMRMMIM-MEMIMNENMiOONIMmNNMNMmEEEMMMMMMEEEM

NREPEMP.p-koRM n5mAIIP.Mms.--.

NOMWEME MMMMM 1.02TMEMMEMI=NEM.ggnmEMMEMMEM§MENE. -OREM=

rimaimummiummEmmm =TIP MMMMMMMMM EmmESME --""mmIMMEM

'''

8

=MEM MW-E,A41M1P11=1i1 ne-MMiInUaMmiMlUlM,m1111m111m111iiiiEWMmMAMEME.LTF.M1M1U1N1IMnUiM=EMME.MmUMKEIRMEMMUEmMiIllil.i.l.-lIiIMMEMMEmMiM.O3M7M:ImlEmMMIMMMOMUMMMMEEMMEOM=
0 n-0g.4g.m.1l,b4iz4b71m1r.1-m1!e'Mm1M6m#U1o,M=sAMMIIlNMlIl.aNeagor*n._.a=n=m=Miq.UZ=1I,=6M"=-!M;=M-=IM!MmM!M.MnI,MoE=EiM_MU_EMAE-.O.NMF.I.m=II"iIM.I=wME_McM1p-.El.mEi.tDn.nImn.mMm.uiMm.Irm.MimMEemFMsMNcIIMmNIo6mWMEIiMMPn.MInOENoMMMmVEE_mMTNmmHIinInMMiEIaISmINM.Ei-Rm.m1u.m-Mm=MiiEm1NmR1oEm1M1M::M:E

EEIMMMIMNMUIMINNMI.MU.MM.MVEIMNMMEIENMEMIMMMEIIENNmNEm-ZoE-=mE.iM..RMZ.E.RMMPEM.oIME..UMINENIM.M.I.Z:-R=O.PMPIMO.lEISoMo.M.I.II-.NI--EI.-NI47Io1M2.iE:,iM7PiM2Ei4ErS.m.E"0-E.1-M-12NL12_I1ME=INN1XEM.IMM7EII=mIITEIMEGMERME=INMRMNMEEuIIMmINT-NMImIEMoINMMSN.ISZMEI..MN-MIE1TN9SEE1ES9IEI1MNM1S1EE1EM1NMI1EM1E1=M1=XE1

=M -

200

=NM um

MMMMMMMMNMMMMMEUMEE.NN.IUIMMMMUMMMUElEMEMiMMEmRIUmNEEuMMEMm.MMMm.NEUEu.ONmN.MMmUI.EoEM.MmNM.UMmM.NMEuENEmMN=E-NEE-MNMS.MUErMImEM.MoSIMZMmMM.EmMMIiMIEMNEmENrMSM.EEnEM,EENN.E,NmM.MMIMm.EEiN.MEEMs.MMM.mENMMEMIoEMIEMmWMEiMNMMMEM=.EMIMWN.MEEM.Mm:MMEIi.o.lNEEE-Nf..tES.M.UT-MMMaIEMloIm_MSmMMM.EMM.M.N-IMM.E--EzMEENg.mM_.MmEIOrmEMoI$.oI1MEmmEZmmNoEwNr=omEmiMImEnIuEnMmMiNEmmMoEMmmMoOEMmEm

II
- 4000

MEER MMMMMMMM MUM IMMENE MMMMM NEMESES= 1111M11111111111.11111111MIMEINIM MMMMMMM MEM=

=MINN MEMEMMINMENIMEMEMMEMMUM 111 MMMMMMMMMM

1M11M11M1M11M1MMIMMMMEMIMMEMMMNMIMMMMMEMMMMEMMEENSEEMMINMSUONINMSMEINEIMMEMNIN1IU1MMMIETIMINIMMEMMEMMUMMOMM

2000

4000

6000

8000

K -69087-72A335

PLATE VOLTAGE IN VOLTS

1-5-50

OUTLINE GL -1000T
(563.,005.

rl
PLATE TERMINAL CAP NO. 4004 C

5g MA)C---.
814 DM. '

GRID TERMINAL CAP NO. 4005 C
//
.563.t005" > 31"
MAX. 2

BASE
NO.
5004 B

12r-s7e

r 34

8-50 (i1m)

N15163AZ

FILAMENT TERMINAL
FILAMENT g)ONINETED
INTERNACLLY TO PIN NO.4)

FILAMENT (CONNECTED INTERNALLY
TO PIN NO. 2)

FILAMENT TERMINAL

1-5-50

Tube Divisions, Electronics Department

GENERAL

ELECTRIC

Schenectady, N. Y.

ET -T510

Electronics Department
GENERAL ELECTRIC
Pliotron 5659 --Preliminary Technical Information

The 5659 is a beam power amplifier pentode similar to the 12A6 designed for reliable performance under conditions of severe vibration and intermittent operation.

TECHNICAL INFORMATION

GENERAL

Electrical Data

Cathode - Indirectly Heated
Heater Voltage (A -C or D -C) Heater Current

1206 Volts 0,150 Ampere

Mechanical Data

Envelope - MT -8 Base - Small Wafer Octal 7 -Pin Maximum Diameter Maximum Overall Length Maximum Seated Height

1 5/16 Inches 3 1/4 Inches
2 1/16 Inches

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

Maximum Ratings, Design Center Plate Voltage Screen Voltage Plate Dissipation Screen Dissipation

250 Volts 250 Volts 7,5 Watts 1.5 Watts

Typical Operation Class Al Amplifier
Heater Voltage Plate Voltage Screen Voltage Grid Voltage** Peak A -F Signal Voltage Transconductance Plate Resistance, approximate 'Zero Signal Plate Current Zero Signal Screen Current, Nominal Maximum -Signal Plate Current Maximum -Signal Screen Current, Nominal Load Resistance Total Harmonic Distortion Power Output

12.6 250 250
-12.5 12.5 3000
70000 30
3.5 32
5.5 7500
7
3.4

Volts Volts Volts Volts Volts Micromhos Ohms Milliamperes Milliamperes Milliamperes Milliamperes Ohms Per Cent Watts

-2-
** The D -C resistance in the grid circuit, under rated maximum conditions, should not exceed 0.5 megohm for self -bias operation and 0.1 megohm for fixed bias operation.
*** HMS voltage measured across a load resistor of 2,000 ohms when tube is vibrated with a total sinusoidal motion of .08 inches at 25 cycles per second. Grid voltage = -22 volts. Average output is less than value shown.

TERMINAL CONNECTIONS
Pin 1 - Shell Pin 2 - Heater Pin 3 - Plate Pin 4 - Grid #2 Pin 5 - Grid #1 Pin 7 - Heater Pin 8 - Cathode and beam plates

BASING DIAGRAM 7AG

ET -T511

Electronics Department
GENERAL ELECTRIC
Pliotron 5660 --Preliminary Technical Information

The 5660 is a duplex -diode pentode similar to the 12C8 designed for reliable performance under conditions of severe vibration and intermittent operation.

TECHNICAL INFORMATION

GENERAL

Electrical Data

Cathode - Indirectly Heated

Heater Voltage (A -C or D -C) Heater Current

12.6 Volts 0.150 Ampere

Mechanical Data

Envelope - MP -8 Cap - Miniature Base Small Wafer Octal 8 -Pin Mounting Position - Any Direct Interelectrode Capacitances*
Grid to Plate Input Output

0.005 Maximum uuf 6 uuf 9 uuf

* Shell connected to cathode.

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

Maximum Ratings, Design Center Plate Voltage Screen Supply Voltage Screen Voltage Plate Dissipation Screen Dissipation Minimum External Grid Bias Voltage Maximum Diode Current per Plate for Continuous Operation

300 300 125 2.25 0.3
0 1.0

Volts Volts Volts Watts Watts Volts Milliamperes

Typical Operation Pentode Section: Class Al Amplifier
Heater Voltage Plate Voltage Screen Voltage Grid Voltage Plate Resistance, approximate

12,6 250 125 -3 0.6
1325

Volts Volts Volts Volts Megohm Micromhos

Typical Operation Pentode Section: Class Al Amplifier
Plate Current Screen Current Grid Bias For Cathode Current Cut -Off, approximate Vibration Output, maximum**

10 Milliamperes 2.3 Milliamperes -21 Volts
25 Millivolts

Diode Sections: Minimum Diode Current per Plate With 10 Volts D -C Applied 0.8 Milliamperes

* * R voltage measured across a load resistor of 10,000 ohms when tube is vibrated with a total sinusoidal motion of .08 inches at 25 cycles per second. Average output is less than value shown.

TEPMINAL CONNECTIONS

Pin 1 - Shell

Pin 2 - Heater

pin 3 - Pentode Plate

Pin 4 - Diode Plate #2

Pin 5 - Diode Plate #1

Pin 6 - Grid #2

Pin 7 - Heater

Pin 8 - Cathode and Grid #3

Cap

Grid #1

RASM DIAGRAM
8E

ET -T512

Electronics Department
GENERAL ELECTRIC
Pliotron 5661 --Preliminary Technical Information

The 5661 is a voltage amplifier pentode similar to the 12SK7 designed for reliable performance under conditions of severe vibration and intermittent operation*

TECHNICAL INFORMATION

GENERAL

Electrical Data

Cathode - Indirectly Heated

Heater Voltage (A -C or D -C) Heater Current

12.6 Volts 0.150 Ampere

Mechanical Data

Envelope - NT -8 Base - Small Wafer Octal 8 -Pin Mounting Position - Any Direct Interelectrode Capacitances*
Grid to Plate Input Output

0003 Maximum uuf 6.0 uuf 7,0 uuf

* Shell connected to cathode.

MAXEOM RATINGS AND TYPICAL OPERATING CONDITIONS
Maximum Ratings, Design Center Plate Voltage Screen Supply Voltage Screen Voltage Plate Dissipation Screen Dissipation Minimum External Control Grid Bias Voltage

Typical Operation Class Al Amplifier

Heater Voltage

12.6

Plate Voltage

100

Screen Voltage

100

Control Grid Voltage

-1

Suppressor - Connected to Cathode at Socket

Plate Resistance, approximate

0,12

Transconductance

2350

Control Grid Voltage for Transcon-

ductance = 10, approximate

-35

300 Volts 300 Volts 125 Volts
4.0 Watts
0,4 Watts 0 Volts

12.6 250 100 -3
0.8 2000
-35

Volts Volts Volts Volts
Megohm Micromhos
Volts

-2 -

Typical Operation Class Al Amplifier (Cont'd)
Plate Current Screen Current Vibration Output, maximum**

13

9,2

Milliamperes

4

2,6

Milliamperes

---

15

Millivolts

** RMS voltage measured across a load resistor of 2,000 ohms when tube is vibrated with a total sinusoidal motion of .08 inches at 25 cycles per second, Average output is less than value shown.

TERMINAL CONNECTIONS
Pin 1 - Shell and internal shield Pin 2 - Heater Pin 3 - Grid W3 Pin 4 - Grid #1 Pin 5 - Cathode Pin 6 - Grid #2 Pin 7 - Heater Pin 8 - Plate

BASING DIAGRAM

APPLICATION DATA
ETI-176A PAGE 1
12-50
GENERAL ELECTRIC GLOW TUBES Supersedes ETI-776 dated 4-45

ETI.176A PAGE 2 12.50

DESCRIPTION

A glow tube is a cold -cathode, gas -discharge tube in which no means is provided for controlling the
unidirectional current flow. (NEMA definition). This type of tube is also known as a voltage -regulator tube, a name which describes its principal appli-
cation. Fundamentally, a glow tube consists of two elec-
trodes, an anode and a cold cathode, in a partial

atmosphere of inert gas or vapor. The emission is obtained from the cold cathode by virtue of a potential gradient at the cathode surface. This gradient literally pulls electrons out of the cathode. For this reason cathodes are sometimes coated with some material which has a low work function so that electrons are given off with comparative ease.

GENERAL OPERATION

Two types of discharge are possible in a glow tube. A glow discharge, which is a uniform glow covering all or part of the cathode surface, will occur when the current carried by the tube is low. Under these conditions the tube drop is essentially independent of the current. This is the condition
under which glow tubes normally operate. The exact
voltage drop across the tube depends upon the electrode spacing and the type and amount of gas used.
If the current through the tube is increased be-

yond a certain point the tube will go into a so-called
arc discharge. Under these conditions a cathode spot rather than a uniform cathode glow appears on the cathode and the tube drop decreases to a rather
low value (10-20 volts). Although some glow tubes are designed to operate as arc -discharge tubes, the majority of glow tubes must not be operated so that an arc discharge takes place, as the life of the tube will be materially shortened.

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS
Tube Type Number
Type of voltage -regulator tube Cathode Maximum over-all length Maximum seated height
Maximum diameter Base Net weight, approx. Shipping weight, approx

GL -0A3, GL -0B3 GL -0C3, GL -0D3
Glow discharge Cold type 4% inches 3946 inches 194 inches Small shell octal 6 -pin 2 ounces 3 pounds

GL -874
Glow discharge Cold type 5% inches 4% inches
2146 inches
Medium 4 -pin bayonet 2 ounces 3 pounds

MAXIMUM RATINGS

TUBE TYPE NUMBER

GL -0A3

GL -0B3

GL -0C3

GL -0D3

GL -874

Min Bogey Max Min Bogey Max Min Bogey Max Min Bogey Max Min Bogey Max

Electrical Data
D -c anode -supply voltage* 105 D -c operating voltage

130

133 -

185 -

-130 90

volts volts

Anode voltage drop

68 75 85 77 90 104 103 108 116 142 153 165

volts

- - - - Anode breakdown voltage . . -100 105 - 105 130 - 115 133 - 160 185 - 115 130 volts

Regulation

5 6.5

5

9

2

4

4 5.5

7

volts

Mechanical Data

Mounting position

any

Net weight, maximum

1.3

1.3

1.3

1.3

1.3

ounces

Maximum Ratings, Absolute Values

Maximum average starting current 100

Maximum averaging time

10

D -c Cathode Current

Maximum

40

Minimum

5

Maximum frequency.
Ambient temperature limits -55 to +90

100 10
30
5 0
-55 to +90

100 10
40
5 0
-55 to +90

100 10

40
S
0
-55 to +90

50 10
-55 to +90

* To assure starting throughout tube life not less than the specified supply voltage should be provided. t C operation only.

milliamperes seconds
milliamperes milliamperes

DEFINITIONS OF RATINGS

ETI-176A PAGE 3 12.50

D -c Anode Supply Voltage, Minimum
This is the minimum value of voltage that the voltage supply must be capable of applying to the
glow tube.
D -c Operating Current
These values of maximum and minimum current indicate the range over which the glow tube will operate satisfactorily. Operation below the minimum current will cause erratic regulation and operation above maximum current will result in short life and erratic regulation.

Regulation
The regulation voltage is the maximum variation in voltage drop across the glow tube. It is calculated as the difference between the voltage drop obtained at the maximum current and the voltage drop obtained at the minimum current.
Ambient Temperature Range
This temperature range indicates the maximum and minimum temperatures at which satisfactory operation may be obtained.

*OUTLINE GL -0A3, OB3, 0C3, OD3
rg-IF6- "MAX. DIA.

OUTLINE GL -874 GLOW TUBE
Erg MAX. DIA.

4-1 MAX
B
K-8065597 *Revised

SMALL -SHELL
OCTAL 6 -PIN BASE NO. B6-3

4-3" 4

MAX.

BASE NO. A4-10

11-22-50 K-8065596 *Revised

CATHODE TERMINAL
CONNECT TO PIN NO. 2

CONNECT TO PIN NO. 4

ANODE TERMINAL

11-22-50

ETI.176A PAGE 4
12-50

APPLICATION CIRCUITS #
The most common use of the glow tube is as a voltage regulating device.

fie 1 I

JUMPER

A -C 60 K-8639684

IISERIES RESISTANCE

Fig. 1-Voltage-Regulated Power Supply Circuit

9-25-44

*Most glow tubes are provided with a jumper wire connected internally. This is usually employed as a switch, and is wired in series with the primary of the transformer supplying power to the glow tube. When the tube is removed from the socket the power supply circuit is automatically shut off.

Fig. 1 above illustrates a voltage -regulated power supply circuit incorporating a glow tube as a voltage
stabilizer. Such a circuit is an inexpensive means of provid-
ing a regulated voltage within the capabilities of a tube for such applications. The series resistance
must be of a value that will limit the current
through the glow tube to the maximum rated current. It is also desirable to furnish a high enough voltage from the d -c supply so that the current through the glow tube does not drop below the

minimum rating.
Glow tubes may be used in series to provide higher regulated voltages than are available from one tube. These tubes need not be the same type, the only requirement being that the current must be limited so that it falls within the operating range of the combination. For example, if a GL 0A3 and a GL -0B3 are used in series, the current must be limited to 30 milliamperes maximum. Operation of glow tubes in parallel is not recom-
mended.

A second application of the glow tube is the relaxation oscillator illustrated in Fig. 2.

GLOW TUBE

RESISTOR

D.C. VOLTAGE

K-8639685

Fig. 2-Relaxation Oscillator Circuit

9-25-44

In this type of circuit, a current charges a
capacitor. In parallel with the capacitor is a glow tube, which will break down when the voltage on
the capacitor reaches the voltage breakdown point
of the glow tube. The frequency of this action may

be varied by changing the capacitance or type of
glow tube.
#Circuits shown in ETI-176 are examples of possible tube applications and the description and illustration of them does not convey to the purchaser of tubes any license under patent rights of General Electric Company.

INSTALLATION A ND OPERATION

Sufficient resistance must always be used in series with each of these tubes to limit the current through the tube to the maximum rated value under continuous (steady state) operating conditions. During the
interval of 5 to 10 seconds which may be required for the regulated tubes in associated equipment to warm
up and draw plate current, a maximum current of 100 milliamperes is permissible provided each such starting period is followed by a steady-state operating period of at least several minutes. Unless this pre -

caution is observed,tube performance will be impaired.
In voltage -regulator tubes of the glow -discharge type, regulation is somewhat dependent on past operating conditions. For example, the regulation value of a tube operated for a protracted period at 5 milliamperes and then changed to 35 millliamperes may be somewhat different from the value that will be obtained after a long period of operation at 35 milliamperes. Likewise, the regulation value may change somewhat after a long idle period.

Tube Divisions, Electronics Department

12 -50 (115.1)

GENERAL ELECTRIC
Schenectady, N. Y.

GL -0A2
DESCRIPTION AND RATING
ETI-305 PAGE 1
10-49

DESCRIPTION

GLOW TUBE

The GL -0A2 is a miniature two -electrode inert -gas -filled cold -cathode tube for use as a voltage regulator.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL

Electrical Data
D -c Anode -supply Voltage* Anode voltage drop Anode breakdown voltage Shunt capacitor Regulation

Minimum
185 140

Bogey

.

.

151

156

2

Maximum
168 185
0.1 6

volts volts volts microfarad volts

Mechanical Data

Mounting position-any

Net weight, maximum

0.3

Ounce

*To assure starting throughout tube life not less than the specified supply voltage should be provided.

GENERAL ha ELECTRIC

GL -0A2
ETI-305 PAGE 2 10-49

TECHNICAL INFORMATION (CONT'D)

MAXIMUM RATINGS, Absolute Values
Maximum average starting current Maximum averaging time
D -c cathode current Maximum Minimum
Maximum frequency

Ambient temperature limits

75 milliamperes 10 seconds
30 milliamperes 5 milliamperes 0 cycles per second
-55 to +90 C

APPLICATION NOTES
Pw The base of the GL -0A2 fits the miniature 7 -pin socket which may be mounted to hold the tube in any position. No connection'should be made to pins 3 and 6 which extend into the interior of the tube since any potentials applied to these pins may cause erratic tube performance. The three pin terminals for the cathode and the two for the anode offer the designer several different possibilities for connection so as to provide protection for the associated components in case the regulator tube is removed from its socket.
Sufficient resistance must always be used in series with the GL -0A2 to limit the current through the tube. The value for the series resistor is dependent on the maximum anode -supply voltage and the ratio of the current through the load to the operating current of the GL -0A2, and should be chosen to limit the operating current through the tube to 30 milliamperes at all times after the starting period.
The maximum load current that can be regulated is determined by the minimum and maximum values of the supply voltage. The value of series resistor for the maximum supply voltage should be calculated as indicated above. The user should then determine whether this value will permit adequate starting voltage when the supply voltage falls to its minimum value. If adequate starting voltage is not obtained, a new load current of lower value must be used and the calculations repeated. It will be apparent from such calculations that the higher the minimum supply voltage and the smaller the difference between its minimum and maximum values, the higher will be the load current that can be regulated.
In order to handle more load current, two or more GL-0A2's may be operated in parallel, but such parallel operation requires that a resistor be used in series with each regulator tube in order to equalize division of the current between the paralleled tubes. Approximately a 100 -ohm resistor for each tube should be used. The disadvantage of this method is that the use of resistors impairs the regulation which can be obtained.
When equipment utilizing the GL -0A2 is turned on, a starting current in excess of the average operating current is permissible as indicated under Maximum Ratings. When the tube is subjected to such high starting currents, the regulated voltage may require up to 20 minutes to drop to its normal operating value. This performance is characteristic of voltage -regulator tubes of the glow -discharge type. Similarly, the regulation voltage is affected by changes in current within the operating current range. For example, the regulation value of a tube operated for a protracted period at 5 milliamperes and then changed to 25 milliamperes, may be somewhat different from the value that will be obtained after a long period of operation at 25 milliamperes. Likewise, the regulation value may change somewhat after a long idle period.
If the associated circuit has a capacitor in shunt with the GL -0A2, the capacitor should be limited in value to 0.1 microfarad. A larger value may cause the regulator tube to oscillate and thus give unstable regulation performance.

TYPICAL CIRCUITS FOR
GLOW TUBE GL -0A2

GL -0A2
ETI-305 PAGE 3
10-49

SERIES RESISTOR
FILTER (D -C
VOLTAGE SUPPLY)

GL -
0A2 OR OB2

-FB
REGULATED SUPPLY VOLTAGE
TO LOAD

TYPE VOLTS (APPROX)

0A2

150

082

I08

CIRCUIT TO PROVIDE REGULATED SUPPLY VOLTAGE OF APPROXIMATELY 150 OR 108 VOLTS TO LOAD. REMOVAL OF TUBE FROM SOCKET REMOVES VOLTAGE FROM LOAD.
K -69087-72A280

4-5-49

RSEESRIISETSOR

GL 042 OR

OB2

TO CATHODE OF TUBE

-C
BIAS SUPPLY
+-BC

+
REGULATED BIAS VOLTAGE

TYPE VOLTS (APPROX)

0A2

150

OB2

- 108

TO GRID OF TUBE

CIRCUIT FOR BIAS -SUPPLY REGULATION. REMOVAL OF TUBE FROM SOCKET OPENS B -SUPPLY CIRCUIT OF REGULATED TUBES.
K -69087-72A282

4-6-49

GL -

SERIES RESISTOR

0A2 OR 0132

+-4-1--M/V0---

0

+82

TO FILTER (D -C VOLTAGE SUPPLY)
NNW

TYPE
0A2 082

+ s I

t

vocrs
TYPE I APPROX 0A2 150
082 108

VOLTS APPROX
300 216
-B

REGULATED SUPPLY VOLTAGE
TO LOAD

CIRCUIT USING TWO 0A2'S OR TWO 082'S TO PROVIDE
REGULATED SUPPLY VOLTAGES OF APPROXIMATELY 300 OR 216 VOLTS AND 150 OR 108 VOLTS TO LOAD. SOCKET CONNECTIONS ARE SO MADE THAT VOLTAGE ON LOAD IS REMOVED WHEN EITHER TUBE IS TAKEN FROM ITS SOCKET.

K -69087-72A281

4-6-49

GL -0A2
ETI-305 PAGE 4 10-49

285"
MAX.

OUTLINE
GLOW TUBE GL -0A2
3., MAX.
218
MAX.

CATHODE

MINIATURE BUTTON 7 -PIN BASE, E7- I
ANODE

DO NOTI USE

DOICNOT USE

CATHODE ANODE

CATHODE

BASING DIAGRAM

N15146AZ

4-6-49

10-49 (IOM) FilingNo..8850

Tube Divisions, Electronics Department
GENERAL ha ELECTRIC
Schenectady, N. Y.

GL -062
DESCRIPTION AND RATING
ETI-306 PAGE 1
1 0-49

GLOW TUBE

DESCRIPTION
The GL -0B2 is a miniature two -electrode inert -gas -filled cold -cathode tube for use as a voltage regulator.
TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL

Electrical Data
D -c anode -supply voltage* Anode voltage drop Anode breakdown voltage Shunt capacitor Regulation

Minimum 133 101

Bogey
108 115

1

Maximum
114 133 0.1 4

volts volts volts microfarad volts

Mechanical Data

Mounting position-any

Net weight, maximum

0.3

ounce

*To assure starting throughout tube life not less than the specified supply voltage should be provided.

GENERAL ELECTRIC

GL -062

ETI-306

PAGE 2
10-49

TECHNICAL INFORMATION (CONT'D)

MAXIMUM RATINGS, ABSOLUTE VALUES

Maximum average starting current Maximum averaging time
D -c cathode current Maximum Minimum
Maximum frequency

Ambient temperature limits

75 milliamperes 10 seconds
30 milliamperes 5 milliamperes 0 cycles per
second
-55 to +90 C

APPLICATION NOTES
The base of the GL -0B2 fits the miniature 7 -pin socket which may be mounted to hold the tube in any position. No connection should be made to pins 3 and 6 which extend into the interior of the tube since any potentials applied to these pins may cause erratic tube performance. The three pin terminals for the cathode and the two for the anode offer the designer several different possibilities for connection so as to provide protection for the associated components in case the regulator tube is removed from its socket.
Sufficient resistance must always be used in series with the GL -0B2 to limit the current through the tube. The value for the series resistor is dependent on the maximum anode -supply voltage and the ratio of the current through the load to the operating current of the GL -0B2, and should be chosen to limit the operating current through the tube to 30 milliamperes at all times after the starting period.
The maximum load current that can be regulated is determined by the minimum and maximum values of the supply voltage. The value of series resistor for the maximum supply voltage should be calculated as indicated above. The user should then determine whether this value will permit adequate starting voltage when the supply voltage falls to its minimum value. If adequate starting voltage is not obtained, a new load current of lower value must be used and the calculations repeated. It will be apparent from such calculations that the higher the minimum supply voltage and the smaller the difference between its minimum and maximum values, the higher will be the load current that can be regulated.
In order to handle more load current, two or more GL-0B2's may be operated in parallel, but such parallel operation requires that a resistor be used in series with each regulator tube in order to equalize division of the current between the paralleled tubes. Approximately a 100 -ohm resistor for each tube should be used. The disadvantage of this method is that the use of resistors impairs the regulation which can be obtained.
When equipment utilizing the GL -032 is turned on, a starting current in excess of the average operating current is permissible as indicated under Maximum Ratings. When the tube is subjected to such high starting currents, the regulated voltage may require up to 20 minutes to drop to its normal operating value. This performance is characteristic of voltage -regulator tubes of the glow -discharge type. Similarly, the regulation voltage is affected by changes in current within the operating current range. For example, the regulation value of a tube operated for a protracted period at 5 milliamperes and then changes to 25 milliamperes, may be somewhat different from the value that will be obtained after a long period of operation at 25 milliamperes. Likewise, the regulation value may change somewhat after a long idle period.
If the associated circuit has a capacitor in shunt with the GL -0B2, the capacitor should be limited in value to 0.1 microfarad. A larger value may cause the regulator tube to oscillate and thus give unstable regulation performance.

TYPICAL CIRCUITS FOR
GLOW TUBE GL -082

GL -0B2
ETI-306 PAGE 3
10-49

SERIES RESISTOR
FILTER (D -C
VOLTAGE SUPPLY)

G L -
0A2 OR OB2

-1-13
REGULATED SUPPLY VOLTAGE
TO LOAD

TYPE VOLTS (APPROX)

042

150

OB2

I08

CIRCUIT TO PROVIDE REGULATED SUPPLY VOLTAGE OF APPROXIMATELY 150 OR 108 VOLTS TO LOAD. REMOVAL OF TUBE FROM SOCKET REMOVES VOLTAGE FROM LOAD.
K -69087-72A280

4-5-49

SERIES

GL -

RESISTOR 0A2 OR 0B2

-C

D -C
BIAS
SUPPLY

+-BC

TO CATHODE OF TUBE

REGULATED BIAS VOLTAGE

TYPE VOLTS (APPROX)

0 A2

ISO

OB2

108

TO GRID OF TUBE

CIRCUIT FOR BIAS -SUPPLY REGULATION.
REMOVAL OF TUBE FROM SOCKET OPENS 9 -SUPPLY CIRCUIT OF REGULATED TUBES.

K -69087-72A282

4-6-49

SERIES RESISTOR
TO FILTER (D -C VOLTAGE SUPPLY)
=Mr

GL-
0A2 OR OB2

,

T +92

TYPE
0A2 082

VOLTS APPROX
300 216

+B1

vocrs

TYPE I APPROX

0A2 150

082 4, 108

B

REGULATED SUPPLY VOLTAGE
TO LOAD

CIRCUIT USING TWO 0A2'S OR TWO 082'S TO PROVIDE
REGULATED SUPPLY VOLTAGES OF APPROXIMATELY 300 OR 216 VOLTS AND 150 OR 108 VOLTS TO LOAD. SOCKET CONNECTIONS ARE SO MADE THAT VOLTAGE ON LOAD IS REMOVED WHEN EITHER TUBE IS TAKEN FROM ITS SOCKET.

K -69087-72A281

4-6-49

GL -0B2
ETI-306 PAGE 4 10.49

511
2-8
MAX.

OUTLINE
GLOW TUBE GL -0B2
3.,
4 MAX.
2 -311 8 MAX.

CATHODE IC
DO NOT USE

MINIATURE BUTTON 7 -PIN BASE, E7- I
ANODE IC
DO NOT USE

CATHODE ANODE

CATHODE

BASING DIAGRAM

N-1 514 6AZ

Tube Divisions, Electronics Department

4-6-49

GENERAL ELECTRIC
Schenectady, N. Y.

10-49 (10M) Filing No. 8850

PH OTOTU B ES

APPLICATION DATA
ETI-177 PAGE 1
4-45
GENERAL 0 ELECTRIC PHOTOTUBES

ETI-177 PAGE' 2
4-45

DESCRIPTION

The phototube is an electronic device that controls a flow of electrons by means of changes in light. Technically, a "phototube is a vacuum tube in which one of the electrodes is irradiated for the purpose of causing electron emission." (IRE Definition).
When a voltage in series with a resistance is

applied to the anode and cathode of a phototube
and the cathode is illuminated by some light
source, a current will flow in this circuit proportional to the amount of light striking the cathode.
A phototube may be used in any application where a current change due to a light intensity
change can be utilized for control purposes.

FUNDAMENTALS

Phototubes consist essentially of two electrodes in an evacuated container in which there may be either a vacuum or an inert gas at low pressure.
There are three general types of phototubes, vacuum, gas, and electron multiplier. The last
mentioned tube consists of the two usual electrodes, cathode and anode, as well as a series of electrodes called dynodes which amplify the electron current
from the cathode by means of secondary emission. The cathode has the property of emitting elec-
trons under the action of light. A potential of from 15 to 25 volts applied to the anode is sufficient to attract all the electrons emitted from the
cathode by the action of the light. An increase of anode voltage above this value
will cause little or no increase in current in the vacuum -type tube. However, when a low pressure of an inert gas is present, the original current is
increased by the ionization of the gas. The amount of ionization increases rapidly as the
anode voltage is increased, until a point is reached at which the discharge breaks into a glow. Since
this glow discharge will destroy the tube, it is

always necessary to limit the anode voltage to a
point well below this value. In the multiplier -type tube, increases in anode
and dynode voltages cause greater electron flow due to secondary emission than in either of the
other types. In general, the vacuum types are the more stable
in their characteristics and give an output directly
proportional to the light flux incident on the
cathode. The gas -filled tubes have the advantage of greater output per unit of light flux because of the ionization of the gas.
The color sensitivity of phototubes, which varies depending upon the type of light-sensitive material and glass envelope used, is quite different from that of the human eye. General Electric manufactures phototubes covering the following color ranges: Red -infrared, violet -green, blue, ultraviolet -blue,
ultraviolet, violet -red. Whenever it is desirable to have a device with a
special color sensitivity, a standard phototube should be used in conjunction with a light filter
with the proper transmission characteristics.

RATINGS

Phototubes are rated in terms of the following: Spectral Response-expressed as a symbol composed of the letter "S" followed by a number, as S-1, S-2, etc. These symbols represent various curves of output versus light wavelength, and are standardized in accordance with RMA standards.
Luminous Sensitivity-usually expressed as the current in microamperes per lumen of light flux. Measurements are usually made at 0.1 lumen, the light source being a tungsten lamp operating at 2870° K. The ultraviolet -sensitive tubes are tested by means of ultraviolet lamps rather than the tungsten lamp.

Leakage Resistance or Dark Current-a measure of
the output impedance of the phototube. It is
given either as a resistance in megohms or a current in microamperes through a given resistance. In the latter case, the cathode is in complete darkness.
Gas Ratio-the ratio of the current when ionization exists, to the current due to primary electrons alone. This ratio is obtained by comparing the luminous sensitivities at two voltages, usually 90 and 25 volts.
Maximum Anode Voltage-the maximum instantaneous value of voltage that should be impressed on the tube.

Static Sensitivity-the ratio of anode direct cur-
rent to a constant luminous flux.
Dynamic Sensitivity-the ratio of the variation in anode current to the variation of a varying lumi-
nous flux.

Maximum Anode Current-the maximum instantaneous value of current that should be allowed to pass through the tube.
Maximum Ambient Temperature-the maximum temperature to which the tube should be subjected.

CLASSES OF PHOTOTUBES

Although phototubes are made in a variety of styles and sizes, there are two general methods of classification-by size and by style. There are two
general sizes: large PJ-22 small-GL-929
There are several special sizes, of which the

F J-405 is one example. The size classes may be divided into three styles, vacuum, gas, and multiplier, the second method of classification. All styles do not exist in each size, as the multiplier type comes in only one size. In the large size tubes,
GL-868/PJ-23 is the gas tube and the PJ-22
the vacuum tube.

ETI-177
PAGE 3 4.45

APPLICATIONS

Phototubes can be divided into three general classes of use: control and safety, amusement and
sound reproduction, inspection and measurement. Under control and safety come such applications
as: 1. Opening doors automatically 2. Burglar alarm systems 3. Automatic switching of street -lighting systems
Amusement and sound reproduction includes:
1. Pin -ball games 2. Theater sound systems 3. Horse race timers Inspection and measurement uses include: 1. Color temperature pyrometers 2. Pinhole detection in sheet metal 3. Daytime measurements of cloud heights
These are but a few of the many applications in each of these categories and are given merely as an indication of some of the better known uses to which phototubes have been applied.

For most control applications ample illumination is provided by a lamp used as a source of light. In these cases, it is desirable to use a gas phototube of
high sensitivity. This obviates the necessity of
high -gain amplifier stages following the phototube.
For measurement applications, where a very small amount of light is available, a fairly high output impedance is desirable. Leakage currents become important in this case. Phototubes with
low leakage are the GL -917 and GL -919. In applications requiring a stable phototube, the
vacuum phototube is recommended. For best operation the anode voltage should be kept below 25 volts. It is also desirable to illuminate as much of the cathode area as possible, to avoid minor differences in sensitivity of various sections of the
cathode.
Where extreme amplification is required the multiplier tube should be used. In comparison to a vacuum phototube, the multiplier phototube has an amplification factor approaching 1,000,000.

APPLICATION CIRCUITS#

Fig. 1 shows an elementary circuit diagram of a phototube and amplifier. P is any phototube and T any triode. Changes in light on the phototube will cause a change in the current through the
load resistance R3.

vides an on -off arrangement, actuated by a photo tube and is particularly suitable for applications requiring a high speed of response, where the values
of current required are within the rating of the thyratron tube.

K-8639699

Fig. 1-Elementary Circuit Diagram of a Phototube and Amplifier

10-14-44

A variation of the elementary diagram is shown in Fig. 2. Here the phototube controls a double grid thyratron, the thyratron conducting when the light level on the phototube decreases. The GL-
868/PJ-23 phototube and the FG-97 thyratron are used in this circuit. This type of circuit pro -

#Circuits shown in ETI-177 are examples of possible tube applications and the description and illustration of them does not convey to the purchaser of tubes any license under patent rights of General Electric
Company.

K-8639691

Fig. 2-Phototube Double -Grid Thyratron Relay Control Circuit

9-28-44

The circuit in Fig. 3 demonstrates the use of
the GL-868/PJ-23 phototube as an audio -frequency
pickup tube. Any audio -fluctuation of a light

ETI-177 PAGE 4
4-45

APPLICATION CIRCUITS (CONT'D)

source will be picked up on the phototube and
amplified. This type of circuit is used commercially
in talking motion pictures, to change the variations along the sound track on the film, back into actual sound and music as heard in our modern theatres. Such a circuit is also suitable for use in "Narrowcasting" with a beam of light where it is desirable to focus the direction of signals to make sure they are not read from other sources.

high temperatures where the heat is at a visible temperature.
The circuit shown in Fig. 5 has a high impedance input and is adapted for use where the
continuous recording of small currents is desired.

MPLIFIER CONTROL. TUBES

PHOTOT UBE CI

54

cif

R

90V.

e-1C43 -0
c,Thr- OUD il SPEAKER Li

AMPLIFIER CONTROL TUBE

PHOTOTUBE

ARE,AN,9,0v.
C;i

25V.

RECTIFIER3"

.25 V.
D3

K-8639687

R 004
To ICIC°"5-69110VOL
60 CYCLE LINE
Fig. 3-High-Gain Phototube Amplifier Circuit

1-26-45

K-9033504

10-14-44

Fig. 5-Recorder Circuit Using Phototubes, Rectifier

and High -Vacuum Amplifier

Fig. 6 is a circuit used for the measurement of illumination. This circuit may be employed in applications which require the measurement of the output of different light levels.

AMPLIFIER CONTROL TUBE

A,;,C
00050005jpjj 8)

Figs. 4 through 10 illustrate some of the
many circuits for specific applications where photo tubes are particularly advantageous for measure-
ment and control work. The circuit shown in Fig. 4 may be used for measuring and recording
HOT BODY
LENS METER

K-9033501

IIRJMIM
Fig. 6-Phototube Circuit for the Measurement of Illumination

RECTIFIER
10-14-44

PHOTOTUBE
AMPLIFIER CONTROL
TUBE

The circuit shown in Fig. 7 is suitable for
counting, for on -off operation and similar uses. The voltage source in this circuit is a -c rather than d -c.

K-9033554

CALIBRATION CONTROL
*Fig. 4-Phototube Pyrometer Circuit

12-11-44

*Fig. 4-King, W. R., General Electric Review, Vol. 39 tFig. 5-Henney, Electron Tubes in Industry, P-418 McGraw-Hill Book
Co. Inc., 1937 IFig. 7-Reich, H. J., Theory and Application of Electron Tubes, P-508
McGraw-Hill Book Co ., 1939

K-9033500

grninliliA-73MT611 ^-4
t Fig. 7-Thyratron Phase -Control Circuit Employing a Phototube

10.14-44

APPLICATION CIRCUITS (CONT'D)

A circuit for regulating the voltage output from a generator by changing the field supply voltage PHOTOTUBE is shown in Fig. 8.

AMPLIFIER CONTROL TUBE
RELAY

LOAD

A -C

LIGHT SOURCE METER PHOTOTUBE

AMPLIFIER TUBE

ETI-177 PAGE 5
4-45

K-9033507

10-14-44

Fig. 8-Voltage Regulation Circuit Using Hole in Meter

RECTIFIER L

K-8639696

10-14-44

Fig. 9-Forward D -c Photoelectric Relay Circuit

AMPLIFIER TUBE

The circuits illustrated in Figs. 9 and 10 are used for operating relays, for counters, or for on off and limit -control applications. The circuit shown in Fig. 9 is applicable in cases where relay
operation is desired with an increase in light level.

A -c
1,000071-90 IL001

The circuit in Fig. 10 may be used in applica-

tions where it is desired to operate the relay with a decrease in light level.

K-9033505

10-14-44

Fig. 10-Reverse D -c Photoelectric Relay Circuit

INSTALLATION AND OPERATION

Phototubes may be mounted in any position, but a shock -absorbing mounting must be used if the tubes are to be subjected to vibration or shock.
Tubes should never be used in an ambient temperature higher than that given under the Technical Information for the specific tube.
Care should be exercised in wiring to insure high
insulation resistance and low capacitance in all parts of the circuit.
It is desirable to operate phototubes at as low a voltage and illumination as possible, as the life will be increased and better stability of operation will result. A high light level is harmful when the tube is disconnected as well as when it is in operation.

For high -frequency operation it is important that leads be kept short to reduce output capaci-
tance. The average amplifier circuit employing a photo -
tube makes use of standard radio receiver tubes. These radio tubes are rated for approximately 10 megohms maximum d -c resistance between grid and cathode. Therefore 10 megohms is recommended as the maximum phototube load resistance.
If it is necessary to use a higher output impedance for the phototube, it is requisite to operate the radio tube at greatly reduced voltages. By using low plate and screen voltages, and a reduced filament voltage, gas ionization is decreased, and the radio tube will be comparatively stable.

PHOTOMETRIC TERMS AND FORMULAS

Some photometric terms often used in phototube per unit solid angle emitted by that source in that

work are given below for reference.

direction.

Luminous Flux-The rate of passage of radiant energy evaluated by reference to the luminous
sensation produced by it is luminous flux.
Lumen-The unit of luminous flux is the lumen. It is equal to the flux emitted in a unit solid angle by a uniform point source of one international
candle.

Point Source of Light-The flux emanating from a light source whose dimensions are negligible in comparison with the distance from which it is observed may be considered as coming from a point.
International Candle-The unit of luminous in-
tensity is the international candle.

Luminous Intensity-The luminous intensity, of a Illumination-The illumination at a point of a
point source in any direction is the luminous flux surface is the density of the luminous flux incident

ETI-177 PAGE 6 4-45

PHOTOMETRIC TERMS AND FORMULAS (CONT'D)

at that point or the quotient of the incident flux by the area of the surface when the latter is uniformly illuminated.
Foot-Candle-Taking the foot as the unit of length, the unit of illumination is the lumen per
square foot; it is known as the foot-candle.
Brightness-The brightness in a given direction of a surface emitting light is the quotient of the luminous intensity measured in that direction by the area of this surface projected on a plane perpendicular to the direction considered.

Unit of Brightness-The practice recognized internationally is to express brightness in international candles per unit area of surface.

1 Candle Power = 47r Lumens

1 Foot Candle =1 Lumen per square foot

1 Lumen

Candle Power (Area) (Distance)2

1 Lumen

=Foot Candle (Area)

Foot Candle

Candle Power (Distance)2

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

1-46 (3M) Filing No. 8850

GL -1P29 /FJ-401
DESCRIPTION AND RATING
ETI-178A PAGE 1
10-50

DESCRIPTION
This gas -filled, two -electrode phototube is use-
ful in photoelectric control apparatus where a high degree of output per unit of light flux is

PHOTOTUBE
required. The GL-1P29/FJ-401 has a high sensitivity in the visible range of the spectrum and reaches its maximum output in the blue portion.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL
Electrical Data
Spectral response Luminous sensitivity at 100 volts, 0 cycles Relative luminous sensitivity at 100 volts
5000 cycles. 10,000 cycles
Wavelength of maximum response Sensitivity at maximum response Dark current at 90 volts Gas amplification . Interelectrode capacitance.

Minimum Bogey Maximum

S-3

20

40

70 microamperes per lumen

87

per cent

78

per cent

4200 angstroms

0.010 microampere per microwatt

0.1 microampere

9.0

3.0 micromicrofarads

GENERAL Edda ELECTRIC
Supersedes ETX-778 dated 4-45

GL -1P29 /FJ-401
ETI-178A PAGE 2
10-50

TECHNICAL INFORMATION (CONT'D)

Mechanical Data
Window Dimensions Seated height to center of useful cathode area Mounting position-any
MAXIMUM RATINGS Anode voltage, d -c or peak a -c Averaging time. Cathode -current density Peak cathode current Ambient temperature

:Y8 by 1X inches 21,4 t A inches
100 max volts 30 max seconds 152 max microamperes per square inch 20 max microamperes 100 max C

CATHODE

*OUTLINE GL -1 P29/FJ401 PHOTOTUBE
I"MAX.
Ile DIA7
5" MIN.
"-(4-'" (------4---.\

I MIN. -1--,
-1
DWARF-SHELL,v,
SMALL 4 -PIN

MAX.

2TI,-332"

MAX.

CATHODE TERMINAL

XmDAIxA7'
DIRECTION OF LIGHT NO

NC
N15125AZ 'Drawing revised

CATHODE

ANODE TERMINAL

8-4.48

120 mmmmmmNiioouonummmmmmjmmmmmmioooupnummmmrummmmmmmoomuumommmmmopmmmmmummuoummmmmmmumummmmunmuumommmmmommummmwmumomumormmimmmsmmmpummumumeoPmummmmamumimmmmoumummommmumunmmmmmmmumoommmmmmmooummmmmmmmummmmommoooumummmmmmmmmmmmmuoimoommnmummmmimmnmoommmommnmumummummmmuummimnmmmiuommummmmmummmmmumnoEummmimmmmummmmmumuaummssmlm MMWOMMIUMMEMMEME_ZALWOREMWEMEMMEMMEMIMMEMMOMMIMMEMEMEM
I 00 MmmmmmuwOmouimouimmnmmm1lmm1uumm1moimmoi1omlmmmv1mmm1momimom1umum1imwnmmm1umdMiumim.uMmmimmI.mmmsmMo.mMiimom.iEspommmsMmlmoMmmoEoimmoomMmmommmmMmmmumoEuMiammommEmumommmMummmmiMumWmomunmOmimomimMammnmmOoiomUuommmTmsmmoNmsmommmTmuomMoummmEmmmmoiMmmEmmmMgmomEommuummMmomaEmommmumSummMommmmmoImomomoNmmmomIommMmmmmmmMuouommEEmmcmoMummmMummmmEuumommuMmmmmeomMmmEummsmuMomimooImmmnommCmmOummmmmMiuumomuMmmmmmoUmmmmMummm
MMEMMINIMMOMMEMMUMMAMEMEMINIMMEMMEMMEMMEMEMMINIMMEMEMMOMMOMMO
80 MmmmmmImiommIilmuoMsmmmmMoEmummMmuloiMmmimlEummmMmmMomiomEmommMommmMmmimoEumMmomomMmmmmEmimiMmumimMumLpmmmUmomumMlmmmoMimomElmMumkuNmmmsmIommomMmMoiomEmmmmmMmmmouMuoommEmMmmmmEmmmuuMoiommEmmmmMmmMmmmouEioumMmnmmMmmmmmEioMouummOmmmmImmmmMououoMmmEmmmmmMmmmoMououEmmMmmmmmMmmmiEmiuumMimmmmEnMummmMumouoEmmmmmM
MMEMWOMMEMEMMIIMMEMINIMMEMOMMEMMEMMEMMEMEMEMMEMEMMUMMEMEMEMEMM MIIIIMMOMMMEMMIMMEMMEMMEMMINEMMEMMEMMEMMEMMEMMEMMOMMIIMMEMM MMMMEIMIEMNMMIEMMMMEIMMMMIEIMMMMEEMMMEEMMMMEIMMMIEMNMWEOMMMMEEMMMMIENMIIMOMMEMMEMMIMIEMMMMEEMMMMEIMMEMMEEMMMIITMEMMBE MMININIMMUIMMEMEMMEMEMMEMMOMMEMMINIMMEMMEMMINMEMEMEROMM EWE IIMMEMIMMIMMEMIMMEMMIMMINIMMEAMMEMEMMAMMEMEMMEMEMMUMINIMMEM
60 MmMIEoNNmImMmMeoImmMiMEimMmmMmmEuMomMmuEmMmEumMomMmmEmMuoEmmMmMmiEMuMEMmMmIoLonIkMuMMEmMimMmuMmMmoEmMmoMmEmoMmmMmoEoMmmMmEmuMumMmEmmMouSmmMmEmMiuMnmEuMumAmmM MMsmmEooiINmmnImmiMNoimMMmmmEmmoMMomOMImmmMMoEmiEmMolmMmmooEmommMommmEmmmuMmuoEmunmMmmiOmoImmomMmommMmmuiOammnImomMimmuEmummMmmimOiaMnomlMhmmlElmooMuomMmmmmOmmmmMuomoMmmmEmmmuMmuOomumMmmmMmmmiEmoorNummoImmmmMimomMuumuImmmmNmuIouoMmmmmMummmEuuioMmmlmM

40 ImimIimoImmmImumIumoImmmIImumImmiIumuimomimmmioimoimemimmmiumoimomimimmiomuimomimmmiomoimomimimmimmoioumimmmimmoiiiommimmiumoimomimmmfoimimloaimmmiommimuoimimmminmoiiuimmmimmiiiunimimomimmuiomimmoimmmioiommimsmi

MIIMMIIMMEMMEMMEMEMEMMMEMMMEMMEMEMMEMMIIMMEMLWMEMMEMEMIIMMEMEMM

20 MmmommioEmomuwmMmmimOomuimMmooMmimmmmEmmmiMmomimmMomomErimMummmnmEmumoosMmmommmMummEmommMomumumEmomnomNommnmMmmmomiEumMommumMmoummmEmrmumMoonmmoEmmmMimmmmEEmomoMmmmmomMmoomEmmommMiommmImmmimUEmomnoMommMmmmmmmEmusmMooommuEmmmmmmMmmmmMouiiuEimmuMksnmmOmlwlaIMmmmNomMmoEgciMimMeumMsMNmmmEmmmIMmimeEIoimowMMmmnmEmMmmMgogEMolmiMMmimMmImEmioMnoimNMmn

MIIMMEMMEMMEMEMMEMMEMMEMEMMEMMOMMEMMEMEMMMEMMEMEMMM .11 MM

EM

1IMMIE1MIM1UME1MMM1IEMMIMIMMENEMMUMEMMMMEMEMEEMMMMIMMMNEEEIMMMMMEMMEMEEMEMMNMEEEIMMMNIEMINMMMIEEMMMMIMMMEMMMMIMMMIEEEMNMIMEMNEIMIMNMMMIEMEMMEMMMMEMEMMEMMMMIEIMIMIAMMMMMEMMEMEEMMEMEEMMMMEEIMMMMEMEMMEMIEMEMMEMEMIMMIOMMUNOMIMON:MMIIMMMNEMUIMMMMEMMEMEUN

mmmiooommmmmmmmuuiilmmlmmmimooiummmmmmmiuooummmmmmmmuuoommmmmmmmuioummmmmmmmiuoummmmmmmmioiommmmmmmmoomummmmumommmoommmmoimmmnoemimmommmmmoomomrmmmnmmimuimmsnmmguioimmmmmmmmmiiiommmmmmomiemno

3000

4000

5000

6000

7000

8000

9000

WAVELENGTH IN ANGSTROM UNITS

WAVELENGTH ANGSTROM UNITS
K69087 -72A405

9-19-50

10-50 (11M)

Tube Divisions, Electronics Department

GENERAL

ELECTRIC

Schenectady, N. Y.

PJ-22
DESCRIPTION AND RATING
ETI-179 PAGE 1
4-45

PHOTOTUBE

DESCRIPTION
This two -electrode vacuum phototube is designed for use in photoelectric apparatus requiring reliable and accurate control. Although it will pass some current in the visible region, the PJ-2 2 is designed
primarily for use in the red and infrared region

of the spectrum. The tube is especially useful
where a high degree of stability of characteristic is required and where it is desirable to have
the output directly proportional to the light flux incident on the cathode.

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS

Number of electrodes

2

Electrical
Spectral response Luminous sensitivity at 90 volts, 0 cycles Maximum gas amplification Interelectrode capacitance Maximum dark current at 90 volts Wavelength of maximum response Sensitivity at maximum response

S-1
20 microamperes per lumen
1 1
3 0 micromicrofarads 0 1 microampere 7500 angstroms 0 0020 microampere per microwatt

TUBE

GENERAL ELECTRIC

PJ-22
ETI-179 PAGE 2 4-45

TECHNICAL INFORMATION (CONT'D)
Mechanical
Window dimensions Seated height to center of useful cathode area Maximum over-all height Maximum seated height Maximum diameter. Base Mounting position Net weight, approx Shipping weight, approx
MAXIMUM RATINGS Anode voltage, d -c or peak a -c Cathode current density
Ambient temperature

is x 19,(3 inches 2% d inches
4N inches 3 j2 inches
13A inches M8-074
Any IA ounce
3 pounds
500 volts 152 microamperes
per square inch 100 centigrade

CATHODE. 158"

I" MAX. 116 DIA.
n
r
II
U

BASE*M8-074

32 MAX.

2W;

4-8 MAX

CATHODE TERMINAL

3" MAC
16 DIA. DIRECTION OF LIGHT

CATHODE ANODE TERMINAL

OUTLINE

PJ-22 PHOTOTUBE

K-8639391

8-10-44

160
IIII
140
I1
I1

S -I PHOTOSURFACE
SPECTRAL SENSITIVITY CHARACTERISTIC FOR EQUAL VALUES OF RADIANT FLUX AT ALL
WAVELENGTHS

I

80
I-
z 60 w
0)
I-
40 w
CC

20 4000
K-8638626

5000

6000

7000

8000

WAVELENGTH -ANGSTROM UNITS

9 00 0

10000

4-17-44

1-46 (3M) Filing No. 8850

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

GL -441
DESCRIPTION AND RATING
ETI-181 PAGE 1
4-45

PHOTOTUBE
DESCRIPTION
The GL -441 is a high -vacuum, two -electrode of its excellent stability, and high sensitivity, it phototube which has high sensitivity to light is particularly suitable for measurement and sources predominating in blue radiation. Because relay applications.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS
Number of electrodes .
Electrical
Spectral response Luminous sensitivity at 250 volts, 0 cycles Maximum gas amplification Interelectrode capacitance Maximum dark current at 250 volts Wavelength of maximum response Sensitivity at maximum response

2
S-4
45 microamperes per lumen 12 3 0 micromicrofarads 0 1 microampere 4000 angstroms 0 040 microampere per microwatt

GENERAL ELECTRIC

GL -441
ETI-181 PAGE 2 4-45

TECHNICAL INFORMATION (CONT'D)

Mechanical

Window dimensions

iefi x 1%8' inches

Maximum over-all Seated height to center of useful area

height.....4%

2

inches yg

inches

Maximum seated height

3 inches

Maximum diameter

1 inches

Base

M8-074

Mounting position

Any

Net weight, approx

1/3 ounce

Shipping weight, approx

pounds

MAXIMUM RATINGS Anode voltage, d -c or peak a -c Cathode current density
Ambient temperature

250 volts 102 microamperes
per square inch 50 centigrade

CATHODE

10
S-4 PHOTOSURFACE

SPECTRAL SENSITIVITY CHARACTER STIC

FOR
AT

AEQLLUALWVAAVLUEELSENOGF"HRASDIANT

FLUX

81

15"

r

8

d

tJ

3 MAX.

)

2ft4;

4i MAX.

1BASE*M8-074

CATHODE TERMINAL

3"MAX.,-
1-6 DIA
DIRECTION OF LIGHT

CATHODE ANODE TERMINAL

OUTLINE

PHOTOTUBE GL -441

K-8639391

8-10-44

K-8639625

WAVELENGTH -ANGSTROM UN ITS

-8-0-00-
4-27-44

1-46 (3M) Filing No. 8850

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

GL -868 /PJ-23
DESCRIPTION AND RATING
ETI-182A PAGE 1
10-50

DESCRIPTION
This gas -filled two -electrode phototube is designed for photoelectric control apparatus where a high degree of output per unit of light flux is re-

PHOTOTUBE
quired. While the GL-868/PJ-23 will pass some cur rent in the visible region, it is designed primarily for use in the red and infrared region of the spectrum.

TECHNICAL INFORMATION
These data ore for reference only. For design information refer to specifications.

GENERAL
Electrical Data
Spectral response Wavelength of maximum response Sensitivity at maximum response Dark current at 90 volts Gas amplification Interelectrode capacitance

S-1
8000 angstroms 0 009 microampere per microwatt
0 1 microampere
8
3 micromicrofarads

GENERAL ELECTRIC
Supersedes ETI-182 doted 4-45

GL -868 /13J-23
ETI-182A PAGE 2
10-50

TECHNICAL INFORMATION (CONT'D)

Mechanical Data
Window dimensions, minimum Seated height to center of window Mounting position-any
MAXIMUM RATINGS Anode voltage, d -c or peak a -c Average cathode current 5 ua Average cathode current 10 ua Averaging Time Peak cathode -current density Peak cathode current Ambient temperature

% by 114 inches 2A t A inches
100 max volts 100 max volts 80 max volts 30 max seconds 100 max microamperes per square inch 20 max microamperes 100 max C

CHARACTERISTICS Sensitivity Luminous At 0 cycles At 5000 cycles At 10,000 cycles Gas amplification Factor.

Minimum
50

Bogey
90 77 67

Maximum

145

microamperes per lumen

microamperes per lumen

microamperes per lumen

8

OUTLINE GL-868/PJ-23 PHOTOTUBE
, I" MAX._
16 DIA.
CATHODE

I -I MIN.
LJ
DWARF..SHELL__--w* SMALL 4 -PIN

2I3" 23

MAX. 4-8 MAX.

CATHODE TERMINAL

'-.0, 7"DMIAAXT.
DIRECTION OF LIGHT NC

N-15125AZ
Outline revised.

CATHODE

ANODE TERMINAL

8-4-48

60

MAMMEIMI MM

M

m" MILMI

MAI l

1 NAM

AIN IMIIMMXIMME

140

IMMIMAIIMMA

AAEEIU

ISIIMMIII

II&

1

..IIIi
MAUI
mMmAMisMAMIMMMEPm /
120 KAM AMA

I 00

mmgimmiammmmoommm mem V

mmmummg

MARAAE NO

AMAMI

MIAMI

MIA

r

A

UMMU

MIAMI MMMMM 1

rI

80 MIAMI , MAWNIAR AMMII MIMMINNIMEMM AMMEMAM ME

I ri
MASAI

60

I
/mummy

mommgmmmomm

Immmommomm

1.

AIIII

IAMINUAmMUMMEMMEAMMIEAAAAMMMMAEBA

IAMMILAMIMMEM

UMMAnAMAMMUMWAM

HAM 40

UmMAIMMAIENAMOIE UM

I

IIAMAIII

NI UMMI

r

AM, M 1
IME

EIN EM/

IMA

20 OAI IMILAoMwEr

I

1 EMMEMMEMImPEIllMmAEIMMMEMA
1
L.1 :MU
GG J1AUMAIIAM

I
II
MI

I
I
a
IV
I
I

1

/

1

I
I
1

1

1
gum
IMME

mmimmmml mm mmmm
1

3000

5000

K -69087-72A406

7000

9000

006

1300e

WAVELENGTH IN ANGSTROM UNITS

11111111""m"

500

1700 i

9-19-50

10-50 (11M)

Tube Divisions, Electronics Department

GENERAL

ELECTRIC

Schenectady, N. Y.

GL -917
DESCRIPTION AND RATING
ETI-183 PAGE 1
4-45

PHOTOTUBE

DESCRIPTION
The GL -917 is a two -electrode high -vacuum
phototube for measurement and relay applica-
tions. It has high sensitivity in the red and infrared regions of the spectrum. Construction affords high resistance to leakage current between electrodes, with resultant stability of operation and permanence

of calibration. The anode of the GL -917 is connected to the top cap, while in the GL -919 the cathode is connected to the top cap. As a result of this reversal of connections, the GL -917 may be used in series with the GL -919 with resultant very small leakage current and high overall sensitivity.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS

Number of electrodes .

2

Electrical

Spectral response

S-1

Luminous sensitivity at 250 volts, 0 cycles

20 microamperes per lumen

IWntearevlecetrloedne gcatphaciotanfcemaximum

2 0
response..8000

micromicrofarads angstroms

Sensitivity at maximum response

0 0020 microampere per microwatt

GENERAL 0 ELECTRIC

GL -917
ETI-183 PAGE 2 4.45

TECHNICAL INFORMATION (CONT'D)
Mechanical
Window dimensions Seated height to center of useful cathode area Maximum over-all height Maximum seated height . Maximum diameter Cap Base . Mounting position. Net weight, approx Shipping weight, approx..

MAXIMUM RATINGS Anode voltage, d -c or peak a -c . Cathode current density
Ambient temperature

16 DIA. CAP .360.4,005"DIA. CATHODE
1*4101 BA SE

32
4K±-
al+A"
8- 32 31g+

,3" 16 DIA.
DIRECTION OF LIGHT

160

A

140

li

II

c0120
3-
< 100

80 3-
I -
z 60
w
cn
E-
-140
er

is x 1% inches
inches 4,A inches 314 inches 13.A. inches M8-125 M8-074 Any VI ounce
3 pounds
500 volts 152 microamperes
per square inch 100 centigrade
S -I PHOTOSURFACE
SPECTRAL SENSITIVITY CHARACTERISTIC FOR EQUAL VALUES OF RADIANT FLUX AT ALL
WAVELENGTHS

PIN GL -917 GL -919

I

2

ANODE

3

4 CATHODE
TCA"P ANODE CATHODE

OUTLINE

PHOTOTUBE GL -917

K-8277038

6-30-44

20 4000
K-8639626

5000

6000

7000

8000

WAVELENGTH -ANGSTROM UNITS

1-46 (3M) Filing No. 8850

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

9000 100004-17-44-

GL -918
DESCRIPTION AND RATING
ETI-184A PAGE 1
12-50

PHOTOTUBE

DESCRIPTION

The GL -918 is a two -electrode, gas -filled photo -
tube and is designed for use in measurement

used in this tube has a high sensitivity to red radiation and is designed particularly for use

and relay applications. The S-1 photosurface where the illumination on the phototube is low.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL
Electrical Data
Spectral response Relative luminous sensitivity
0 cycles 5,000 cycles 10,000 cycles Wavelength of maximum response Sensitivity at maximum response
Dark current at 90 volts Gas amplification factor Direct interelectrode capacitance . Completely revised.

Minimum Bogey Maximum S-1

120

150

120

105

8000 t 1000

0.015

3

220 microamperes per lumen microamperes per lumen microamperes per lumen Angstroms microamperes per microwatt
0.1 microamperes
10.5
micromicrofarads

GENERAL

ELECTRIC

Supersedes ETI-184 dated 4-45

GL -918

ETIA 84A

PAGE 2

12-50

TECHNICAL INFORMATION (CONT'D)

--\

Mechanical Data
Window dimensions, minimum Seated height to center of window Mounting position-any

.5A by 11/i inches
214, as inches

MAXIMUM RATINGS
Anode voltage (d -c or peak a -c) Average cathode current 5 ua Average cathode current 10 ua
Averaging time Peak cathode -current density Peak cathode current Ambient temperature

90 max volts 70 max volts 30 max seconds 100 max microamperes per square inch 20 max microamperes 100 max C

S-1 PHOTOSURFACE SPECTRAL SENSITIVITY CHARACTERISTIC FOR EQUAL VALUES OF RADIANT FLUX AT ALL WAVELENGTHS
160

OUTLINE GL -918 PHOTOTUBE

140
1111111111111111111111111111111111111111111111111111111111111111111111
113111111111111111161111111111111Allppflffillandlm
120

0 100 Brun

DWARF -SHELL SMALL 4 -PIN

1111111111111111111111111111111111111111111111111111111111111111111 80
I 111111111111111111111111111111111111111111111111111111111111111
60

CATHODE TERMINAL
NC
N -15125A2 I Revised.

,DIRECTION OF LIGHT NC

CATHODE
ANODE TERMINAL

8-4-48

40

20 111"1"11111"11111111111111111111111i1l1l11111111111111111111111111""
iiiiiiiiiiiiiii i ii iiiiiiiii:i ii iiiiii iiiiiiiiiiiiiiiiii

IIII21111 I

3000

5000

7050

9000 %

1100

1300

1500

1700

WAVELENGTH IN ANGSTROM UNITS K -69087-72A406 (Revised)

9-19-50

12-50 (1IM)

Tube Divisions, Electronics Department
GENERAL ELECTRIC
Schenectady, N. V.

GL -919
DESCRIPTION AND RATING
ETI-185 PAGE 1
4-45

PHOTOTUBE

DESCRIPTION

The GL -919 is a two -electrode vacuum photo tube for measurement and relay applications. It has high sensitivity in the red and infrared regions of the spectrum. Construction affords high resistance to leakage current between electrodes, with resultant stability of operation and permanence of

calibration. The cathode of the GL -919 is connected to the top cap, while in the GL -917 the anode is connected to the top cap. As a result of this rever-
sal of connections, the GL -919 may be used in series with the GL -917 with resultant very small leakage current and high over-all sensitivity.

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS
Number of electrodes .
Electrical
Spectral response Luminous sensitivity at 250 volts, 0 cycles. Interelectrode capacitance Maximum dark current at 250 volts Wavelength of maximum response Sensitivity at maximum response

2
S-1
20 microamperes per lumen 2 0 micromicrofarads 0.1 microamperes 8000 angstroms 0 0020 microamperes per microwatt

GENERAL *ELECTRIC

GL -919
ETI-185 PAGE 2 4-45

TECHNICAL INFORMATION (CONT'D)
Mechanical
Window dimensions Seated height to center of useful cathode area Maximum over-all height Maximum seated height Maximum diameter Cap Base Mounting position Net weight, approx Shipping weight, approx
MAXIMUM RATINGS Anode voltage, d -c or peak a -c Cathode current density.
Ambient temperature .

x 1% inches 2% t32 inches
.41%-, inches
3N inches 1* inches
M8-125 M8-074
Any ounce
3 pounds
500 volts 152 microamperes
per square inch 100 centigrade

,1' MAX 86 DIA CAP
.360'.005"DIA.

S -I PHOTOSURFACE

160

SPECTRAL SENSITIVITY CHARACTERISTIC

FOR EQUAL VALUES OF RADIANT FLUX AT ALL WAVELENGTHS

140

CATHODE

I6

i"

W4101 BASE

- 13" MAX._,.
16 DI A.
DIRECTION OF LIGHT

(0 120
I-
z
cr Q 100 cr 1-
CC
80
I-
czo 60

-J40
Lai CC

PIN GL -917 GL -919

I

2

ANODE

3

4 CATHODE

"CPAP ANODE CATHODE.

OUTLINE PHOTOTUBE GL -919

K-8277038

6-30-44

20 4000
K-8639626

5000

6000

7000

8000

WAVELENGTH -ANGSTROM UNITS

1-46 (3M) Filing 4o. 8850

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

9000 10000 4-17-44

GL -920
DESCRIPTION AND RATING
ETI- 1 86 PAGE 1
4-45

PHOTOTUBE

DESCRIPTION

The GL -920 is designed for sound reproduction applications. The S-1 photosurface used in this tube

Two separate phototube units are mounted in the envelope with the cathode and anode of each

has high sensitivity in the red and infrared region. unit brought out to separate base connections.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS
Number of electrodes
Electrical
Spectral response. Luminous sensitivity at 90 volts, 0 cycles Maximum gas amplification. Interelectrode capacitances,
between cathode and anode of each unit

4
S-1
75 microamperes per lumen
9 0
1 5 micromicrofarads

GENERAL ELECTRIC

GL -920

ETI-186

PAGE 2 4-45

TECHNICAL INFORMATION (CONT'D)

M

Mechanical
Window dimensions Seated height to center of useful cathode area Maximum over-all height. Maximum seated height Maximum diameter Base Mounting position Net weight, approximate . Shipping weight.

4 inch by 1 inch

214

inches

4 inches

3% inches

1-h- inches

A4-5

Any

1 ounce

3 pounds

MAXIMUM RATINGS Anode voltage, d -c or peak a -c Cathode current density
Ambient temperature

90 volts 20 microamperes
per square inch 100 centigrade

BASE A4-5

38"
MAX.

216II"
MIN.

4" MAX

160
A
140

LO 120

1-

1

Z

I

100

et

I

1

4

80

111

>-

S -I PHOTOSURFACE
SPECTRAL SENSITIVITY CHARACTERISTIC FOR EQUAL VALUES OF RADIANT FLUX AT ALL
WAVELENGTHS

CATHODE TERMINAL UNITWI

165" MAX.DIA.
f- DIRECTION OF LIGHT
CATHODE TERMINAL UNIT*

ANODE TERMINAL

UNIT *I

3

ANODE TERMINAL UNIT*2

OUTLINE

GL -920 PHOTOTUBE

K-9033562

12-16-44

z 60
111
1:
<-J 40
CC
20
4000
K-8639626

5000

6000

7000

8000

WAVELENGTH -ANGSTROM UNITS

9 000

10000

4-17-44

1-46 (3M) Filing No. 8850

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

GL -921
DESCRIPTION AND RATING
ETI-187 PAGE 1
4-45

PHOTOTUBE
DESCRIPTION
The GL -921 is a cartridge -type, two -electrode infrared radiation. The double-edged design, with a gas -filled phototube for relay- and light -measure- terminal at each end, provides a compact photo ment applications. It is highly sensitive to red and tube useful in applications where space is restricted.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS

Number of electrodes .

2

Spectral Electrical response..S-1

Luminous sensitivity at 90 volts, 0 cycles

135 microamperes per lumen

Maximum gas amplification

10

Interelectrode capacitance

1 0 micromicrofarad

Maximum dark current at 90 volts..

0 1 microampere

Wavelength of maximum response

8000 angstroms

Sensitivity at maximum response

0 013 microampere per microwatt

GENERAL *ELECTRIC

GL -921
ETI-187 PAGE 2 4-45

TECHNICAL INFORMATION (CONT'D)
Mechanical
Window dimensions Seated height to center of useful cathode area Maximum over-all height Maximum seated height. Maximum diameter Mounting position Net weight, approx. . Shipping weight, approx
MAXIMUM RATINGS Anode voltage, d -c or peak a -c Cathode current density
Ambient temperature .

ANODE TERMINAL

SECTIONAL VIEW OF ANODE TERMINAL

13'+ I"
,'224T1s" 132-16

4
CATHODE TERMINAL

.375
±.0 0"

CATHODE
16-16
5"
8 32

DIRECTION OF LIGHT

160
A
140
(/) 120
z
< 100
CC ao
ce
80
z 60
LLI 17-
0

x 7A inches inches
1.11 inches 1.32 inches 0 890 inch Any IA ounce
3 pounds
90 volts 152 microamperes
per square inch 100 centigrade
S -I PHOTOSURFACE
SPECTRAL SENSITIVITY CHARACTERISTIC FOR EQUAL VALUES OF RADIANT FLUX AT ALL
WAVELENGTHS

.375"±.010"

SDI CA. IODE

32
.890"
MAX. DIA.

CATHODE -END VIEW

OUTLINE PHOTOTUBE GL -921 K-8277039

7-1-44

20

4000 K-8639626

5000

6000

7000

8000

WAVELENGTH -ANGSTROM UNITS

9000 10000 4-17-44

1-46 (3M) Filing No. 8850

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

GL -922
DESCRIPTION AND RATING
ETI-1 88 PAGE 1
4-45

PHOTOTUBE

DESCRIPTION
The GL -922 is a cartridge -type, two -electrode phototube for relay- and light -measurement applications. It is highly sensitive to red light and infra -

red radiation. The double-edged design, with a
terminal at each end, provides a compact phototube useful in many applications where space is restricted.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS
Number of electrodes
Electrical
Spectral response Luminous sensitivity at 250 volts, 0 cycles Interelectrode capacitance Wavelength of maximum response Sensitivity at maximum response

S-1
20 microamperes per lumen 0 5 micromicrofarad 8000 angstroms 0 0020 microampere per microwatt

GENERAL ELECTRIC

GL -922
ETI-188 PAGE 2 4-45

TECHNICAL INFORMATION (CONT'D)
Mechanical
Window dimensions Seated height to center of useful cathode area Maximum over-all height Maximum seated height Maximum diameter Mounting position Net weight, approx Shipping weight, approx.
MAXIMUM RATINGS Anode voltage, d -c or peak a -c Cathode current density
Ambient temperature

x inches inches
134 inches 132 inches 0.890 inch Any
ounce
3 pounds
500 volts 152 microamperes
per square inch 100 centigrade

.380'1-.004"

ANODE TERMINAL
5" 13"1" 8 '32-16

3"
16
SECTIONAL VIEW OF ANODE TERMINAL

F

IITi

CATHODE

II

II

II

5..

11

L

4
II" 4. i"
16 -16

CATHODE
TERMINAL

30
----f- 32
.375"+.ow"

DIRECTION OF LIGHT

CATHODE

1"
32 .37541.010"
1"
32

.890"MDAIXA.. CATHODE END VIEW

OUTLINE

GL -922 PHOTOTUBE

K-8639380

6-30-44

S -I PHOTOSURFACE

160

SPECTRAL SENSITIVITY CHARACTERISTIC

FOR EQUAL VALUES OF RADIANT FLUX AT ALL

WAVELENGTHS

140

0120
I-

1
100 cc
I-

I

I

)'- so
I.-

zcs) 60

--.15 140
LU

20

4000 K-8639626

5000

6000

7000

8000

WAVELENGTH -ANGSTROM UNITS

9000 10000 4-17-44

1-46 (3M) Filing No. 8850

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

GL -923
DESCRIPTION AND RATING
ETI-1 89 PAGE 1
4-45

p37PC4 e7t--

_, )(cpp 71-

e

PHOTOTUBE

DESCRIPTION

The GL -923 is a two -electrode, gas -filled photo - high sensitivity to red radiation and is detube used in measurement and relay applications. signed particularly for use where the illuminaThe S-1 photosurface used in this tube has a tion on the phototube is low.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS
Number of electrodes.
Electrical
Spectral response. Luminous sensitivity at 90 volts, 0 cycles Maximum gas amplification Interelectrode capacitance . Maximum dark current at 90 volts. Wavelength of maximum response. Sensitivity at maximum response

2
S-1
135 microamperes per lumen
10.0
2 6 micromicrofarads 0 1 microampere 8000 angstroms 0 0130 microampere per microwatt

GENERAL 0 ELECTRIC

GL -923
ETI-189 PAGE 2 4-45

TECHNICAL INFORMATION (CONT'D)

Mechanical

Window dimensions

x inches

Seated height to center of useful cathode area.

inches

Base..M8-071 Maximum over-all height
Maximum seated height Maximum diameter

3* inches
2f inches 116 inches

Mounting position Net weight, approx Shipping weight, approx

Any
3/I ounce
3 pounds

MAXIMUM RATINGS Anode voltage, d -c or peak a -c Cathode current density
Ambient temperature

90 volts 102 microamperes
per square inch 100 centigrade

we" DIA.
. 16MAX.-""
m11"

ET
CATHODE

410 8

BASE

,we

3"
116 DI A.

-n
27165" V MAX
32-32 39-' MAX. 16

DIRECTION OF LIGHT

CATHODE

PIN CONNECTION

I

NO CONNECTION

2 ANODE

3

NO CONNECTION

4 CATHODE

OUTLINE

GL -923 PHOTOTUBE

K-8065599

6-30-44

S -I PHOTOSURFACE

160

SPECTRAL SENSITIVITY CHARACTERISTIC

FOR EQUAL VALUES OF RADIANT FLUX AT ALL WAVELENGTHS

140

i
W/- 120
z
>-
CC
.1 100
CC
33-
' so 3-
I-

Z 60
LL1
U)
17-
< 40
cr

20 4000
K-8639626

5000

6000

7000

8000

WAVELENGTH -ANGSTROM UNITS

9000 10000 4-17-44

1-46 (3M) Filing No. 8850

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

GL -927
DESCRIPTION
AND RATING
ETI-190 PAGE 1
4-45

PHOTOTUBE
DESCRIPTION
The GL -927 is a two -electrode, gas -filled photo- tube has a high sensitivity to red radiation tube which is used in measurement and relay and is designed particularly for use where the applications. The S-1 photosurface used in this illumination on the phototube is low.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS
Electrical
Number of electrodes Spectral response Luminous sensitivity at 90 volts, 0 cycles Interelectrode capacitance Wavelength of maximum response Sensitivity at maximum response

2
S-1
125 microamperes per lumen 2 0 micromicrofarads 7500 angstroms 0 0150 microampere per microwatt

GENERALOELECTRIC

GL -927
ETI-190 PAGE 2
4-45

TECHNICAL INFORMATION (CONT'D)
Mechanical
Window dimensions Seated height to center of useful cathode area Maximum over-all height Maximum seated height Maximum diameter Base Mounting position Net weight, approx Shipping weight, approx

MAXIMUM RATINGS Anode voltage, d -c or peak a -c Cathode current density
Ambient temperature

160
A
140

is x 7A inch

14

inches

232 inches

2 inches H. inch

3313

Any

ounce

3 pounds

90 volts 101 microamperes
per square inch 100 centigrade
S -I PHOTOSURFACE
SPECTRAL SENSITIVITY CHARACTERISTIC FOR EQUAL VALUES OF RADIANT FLUX AT ALL
WAVELENGTHS

ANODE

TERMINAL

.344"± .007"DIA.

AT PIN TIPS

2

DIRECTION OF LIGHT ALL PINS .0 9 3"-± .003"

vs,

122"

NO CONNECTION 1 OP 3 CATHODE TERMINAL

K-8277040

OUTLINE GL -927 GAS PHOTOTUBE

8-18-44

0)120 1-
I I
I I
>.1 100 I
CC 1 -
re
' so
5
z 60

-4 40
CC

20 4000
K-8639626

5000

6000

7000

8000

WAVELENGTH -ANGSTROM UNITS

9000 10000 4-17-44

1-46 (3M) Filing No. 8850

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

GL -929
DESCRIPTION AND RATING
ETI-191A PAGE 1
1 2-50

PHOTOTUBE

DESCRIPTION
The GL -929 is a high -vacuum, two -electrode phototube which has extraordinarily high sensitivity to light sources predominating in blue radia-

tion. Because of its excellent stability, and high sensitivity, the GL -929 is particularly suited for measurement and relay applications.

*TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL

Electrical Data
Spectral response Luminous sensitivity at 250 volts, 0 cycles. Relative luminous sensitivity at 250 volts
10,000 cycles Wavelength of maximum response Sensitivity at maximum response Leakage resistance Gas amplification factor . Interelectrode capacitance
40 Completely revised.

Minimum Bogey Maximum

S-4

25

45

70 microamperes per lumen

3500 20000

100 4000 0.037
2.6

per cent 4500 Angstroms
microamperes per microwatt megohms
1.25
micromicrofarads

GENERAL ELECTRIC
Supersedes ETI-191 dated 4-45

GL -929
ETI.191A PAGE 2 12-50

TECHNICAL INFORMATION (CONT'D)

Mechanical Data
Window dimensions Seated height to center of window Mounting position-any
MAXIMUM RATINGS
Anode voltage (d -c or peak a -c) Averaging time Peak cathode-current density Average cathode current
Averaging time 30 seconds, maximum Peak cathode current Ambient temperature

N by H. inches 15A A inches
250 max volts 30 max seconds 100 max microamperes per square inch
5 max microamperes
20 max microamperes 75 max C

*OUTLINE
GL 929 PHOTOTUBE
,1" MAX,. '16 DIA
73- MI

13" 16 MIN
CATHODE BASE
NO. B5-10

22MAX ' 5'+3" 8-32

1
3:M AX. 16

5-4 PHOTOSURFACE SPECTRAL SENSITIVITY CHARACTERISTIC

.11- I- MAX 16 DIA.
CATHODE TERMINAL CATHODE

NC
NC
ANODE TERMINAL

DIRECTION OF LIGHT

K-8070703 112evised drawing.

8-4-48

WAVELENGTH IN ANGSTROM UNITS
K -69087-72A373 (Revised)

4-27-50

12-50 (11M)

Tube Divisions, Electronics Department

GENERAL

ELECTRIC

Schenectady, N. Y.

GL -930
DESCRIPTION AND RATING
ETI-192A PAGE 1
12-50

PHOTOTUBE
DESCRIPTION
The GL -930 is a two -electrode, gas -filled photo - tube has a high sensitivity to red radiation.
tube which is used in measurement and relay The GL -930 is designed particularly for use applications. The S-1 photosurface used in this where the illumination on the phototube is low.

*TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL
Electrical Data
Spectral response Luminous sensitivity at 90 volts, 0 cycles Relative luminous sensitivity at 90 volts
10,000 cycles Wavelength of maximum response Sensitivity at maximum response Leakage resistance Gas amplification factor. Interelectrode capacitance
Completely revised.

Minimum Bogey Maximum
S-1
90 135 205 microamperes per lumen

75 7000 8000
0.0135 900
2.4

per cent 9000 Angstroms
microamperes per microwatt megohms
10
micromicrofarads

GENERAL ELECTRIC
Supersedes ETI-192 dated 4-45

GL -930
En -192A PAGE 2
12-50

TECHNICAL INFORMATION (CONT'D)

Mechanical Data
Window dimensions Seated height to center of window Mounting position

.54 by 4 inches as tl% inches
any

MAXIMUM RATINGS
Anode voltage (d -c or peak a -c) Average cathode current 3 ua Average cathode current 6 ua
Averaging time Average cathode-current density
Below 70 volts Above 70 volts Peak cathode current Ambient temperature

90 max volts 70 max volts 30 max seconds
10.0 max microamperes per square inch 5 max microamperes per square inch 20 max microamperes
100 max C

S-1 PHOTO SURFACE SPECTRAL SENSITIVITY CHARACTERISTIC FOR EQUAL VALUES OF RADIANT FLUX AT ALL WAVELENGTHS
160

*OUTLINE GL -930 PHOTOTUBE
1"MAX 116 DIA. IT MIN

13"
MIN
CATHODE BASE
NO. B5-10

2i MAX.
2
3" -32

3-MAX. 16

CATHODE TERMINAL

r

-o_

I

5"MAX 16 DIA.

CATHODE

NC
NG ANODE
TERMINAL

I 11111..1 .11.1111111111.1111111111111111111111111111111111111111111
140

I 20 1

11111111111111111

100

1 11111111111111111111111111111111111111111111111111111111111111
80

I 111111111111111111111111111111111111111111111111111111111111111

.

WW1

6

40

rill jimmIlmm" I

I'

20 i I iill II 11111111111111 11 1 11 11 III III 1111111111 iiiiiiiiiiiiiiiiiiiiiiiii il 1111111011111111111 IIIIIIIIIIIIIIIIII

DIRECTION OF LIGHT

K-8070703 IRevised.

8-4-48

3000

5000

K -69087-72A406 (Revised)

7000

9000

1100

1300

WAVELENGTH IN ANGSTROM UNITS

1500

1700 9-19-50

12-50 (11M)

Tube Divisions, Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

GL -931-A
DESCRIPTION AND RATING
ETI-193A PAGE 1
8-50

PHOTOTUBE

DESCRIPTION
The GL -931-A is a multiplier phototube predominately sensitive to blue radiation. The photo current produced at the cathode is, in tubes of the multiplier type, multiplied many times by second-
ary emission occurring at successive dynodes within

the tube. This tube can multiply feeble currents
produced by weak illuminations as much as 200,000 times. To this feature is added high sensitivity, low noise level, low dark current, and freedom from dis-
tortion.

+TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS

Number of electrodes
Electrical
Spectral response-S-4 Luminous sensitivity
At 1000 volts, 0 cycles At 750 volts, 0 cycles Relative luminous sensitivity at 1000 volts, 10,000 cycles Technical information completely revised.

Minimum

Bogey

11 Maximum

4.5

10

300 amperes per lumen

1.5

amperes per lumen

100

per cent

GENERAL ELECTRIC
Supersedes ETI-193 dated 4.45

GL -931-A
ETI-193A PAGE 2 8-50

TECHNICAL INFORMATION (CONT'D)

Electrical (Cont'd)
Wavelength of maximum response Sensitivity at maximum response Dark current at 1000 volts Current Amplification
At 1000 volts At 750 volts Interelectrode Capacitances Anode to Dynode No. 9 Anode to all other electrodes
Mechanical
Window dimensions, minimum Seated height to center of window Mounting position
MAXIMUM RATINGS
Anode voltage, d -c or peak a -c Averaging time Peak anode current Average anode current Ambient temperature

3500

4000

9300

1,000,000 150,000
4 6.5

4500 angstroms microamperes per microwatt
0.25 microampere
micromicrofarads micromicrofarads

IA by ft inches

111.

inches

any

1250 volts 30 seconds 10 milliamperes 1 milliampere 75 C

GL -931-A AVERAGE ANODE CHARACTERISTICS
VOLTAGE PER STAGE= 100

2 . 5 2 . 0

-2.00

I .5 I .0 0 . 5

LG

X MI C r 0 L UME114-

0

50

K -69807-72A384

I00

150

200

250

300

VOLTAGE BETWEEN ANODE AND DYNODE NO.9 IN VOLTS

350

400

6-12-50

Og-L1-9
t

S1 :10A N I 39V1S 8351 3 9 V.1. 10A

5Z1

001

5L

Og

BUVADJI3 paqA011,
g8£VEZ-Z8069-N

001 0001
000'01 000'001 000 '000 '1

I 00* 0
10 ' 0
0 1
r
0' I
0 0I

NOL1V213d0 D-03 SDLLS12131DV2IVHD 3OV213AV

GL -931-A
ET1.193A PAGE 4
8-50

*OUTLINE GL -931-A MULTIPLIER PHOTOTUBE

CATHODE

11-63" MAX. DIA.
5"
16

T165-"MIN.
SMALL SHELL SUBMAGNAL II -PIN BASE

3.
MAX.
I - - 15'4.3" 16-32

*S-4 PHOTOSURFACE SPECTRAL SENSTIVITY CHARACTERISTIC

Irof 100
80 60 40

Al TA

A ,20)M_

AT

I

ii"
316 MAX.

20

3000

5000

5' MAX. 41- 'IC DIA.

K -69087-72A373 ,Revised drawing

f -DIRECTION OF LIGHT

DY6

DY6 A 0 @1 DY7

DY4O

ODYB

DY3©
DY2

ODY9

DV!

4

BOTTOM VIEW OF BASE

DIRECTION OF LIGHT
BASING DIAGRAM

OF BULB WILL NOT DEVIATE MORE THAN e IN ANY DIRECTION FROM THE PERPENDICULAR ERECTED AT CENTER OF BOTTOM OF BASE.

K-8277037 # Revised drawing

4-28-50

70 0

30 0

WAVELENGTH IN ANGSTROM UN ITS

00 4-27-50

8-50 (I1M)

Tube Divisions, Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

GL -935
DESCRIPTION AND RATING
ETI-270A PAGE 1
3-51

PHOTOTUBE

DESCRIPTION
The GL -935 is a high -vacuum phototube which has extraordinarily high sensitivity to light sources predominating in blue and ultraviolet radiation. This tube will respond in the region down to about

2000 angstroms. Because of its excellent stability, consistency of spectral response and extremely high sensitivity, the 935 is suited for use in measuring ultraviolet absorption of gases and liquids.

+TECHNICAL INFORMATION
These data are for reference only. For design information see the Specifications.

GENERAL
Electrical Data
Spectral response-S-5 Luminous sensitivity*
Wavelength of maximum response Sensitivity at maximum response
Dark current at 250 volts Direct interelectrode capacitance Completely revised.

Minimum

Bogey Maximum

18

35

3400 500 0.032

0.6

70 microamperes per lumen angstroms
microamperes per microwatt
0.0005 microamperes micromicrofarads

GENERAL E ELECTRIC
Supersedes ETI-270 dated 11-46

GL -935
ETI.270A PAGE 2
3-51

TECHNICAL INFORMATION (CONT'D)
Mechanical Data
Window dimensions, minimum Seated height to center of window Mounting position-any

% by lA inches 2 t A inches

MAXIMUM RATINGS

Anode voltage (d -c or peak a -c) Peak cathode -current density

250 max volts 100 max microamperes per
square inch

Average cathode current

*10 max microamperes

Maximum averaging time 30 seconds Peak cathode current Ambient temperature

30 max microamperes 75 max C

* Light source consists of Mazda projection lamp operating at filament color temperature of 2870 K. A steady light input of 0.1 lumen is used together with a d -c anode -supply voltage of 250 volts and a 1-megohm load resistor.

OUTLINE GL -935 PHOTOTUBE

ANODE TERMINAL
CAP
CI -3 .250"±.005"
DIA.
CATHODE
If
MIN.

OUTLINE GL- 935

MAX. DIA.

.281"

3 1±2. 16 8

BASE B5-10

e' MAX 132 DIA.
BASING DIAGRAM DIRECTION OF INCIDENT RADIATION
NC ANODE TERMINAL (1-1 NC
NC

N15078AZ +Revised.

C KEY

CATHODE TERMINAL (-)

1-3-51

LS S PECTRA

ENS

TIV IT)

PHO TOT JBE HA' IN

FOR E QUA L V AEU

)F R AD A N1

CI- AR ACTOR IS TIC OF S - 5 F ES PONSE
FL UX AT ALL WA /EL :NG- HS

100

90 80 70 60

50 40 30

20 10
Apo

3000

4000

5000

WAVELENGTH IN ANGSTROM UNITS

6000

Abo

K -69087-72A162 (New)

6-11-47

(3-51 11M)

Tube Divisions, Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

GL- 1 P37
DESCRIPTION AND RATING
ETI-289 PAGE 1
12-48

PHOTOTUBE

DESCRIPTION
The GL -1P37 is a gas phototube with high sen-
sitivity to light sources predominating in blue radiation and negligible sensitivity to infrared radiation. It is, therefore, particularly suitable for use in sound reproduction involving a dye -image sound track in conjunction with an incandescent light source. It may also be used in measurement
and color -control applications. Because the GL -1P37 has little response in the
infrared region where dye -image sound tracks have marked transparency, masking of the dye -image

modulation by infrared transmitted through the film is avoided, and the dye -image modulation of
either variable -area or variable -density sound
tracks is reproduced essentially to its full degree. The luminous sensitivity, anode characteristics,
and structure of the GL -1P37 are comparable with the same properties of Types GL -868 and GL -918 to permit use of the GL -1P37 without circuit modification in motion picture equipment designed to use the two older types.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS

Number of electrodes

2

GENERAL ELECTRIC

GL -1 P37
ETI-289 PAGE 2 12-48

TECHNICAL INFORMATION (CONT'D)

Electrical
Spectral response Sensitivity at 4000 angstroms
Luminous sensitivity At 0 cycles
At 5000 cycles.
At 10,000 cycles
Wavelength of maximum response Maximum gas amplification factor Direct interelectrode capacitance Maximum dark current at 90 volts
Mechanical
Mounting position-any

S-4
0 125 microampere per microwatt
135 microamperes per lumen
124 microamperes per lumen
108 microamperes per lumen
4000 t 500 angstroms
5 5
3 uuf 0 05 microampere

MAXIMUM RATINGS, ABSOLUTE VALUES Anode voltage, d -c or peak a -c Average cathode current* Peak cathode current Peak cathode current density
Ambient temperature

100 max volts 5 max microamperes 20 max microamperes
100 max microamperes per square inch
75 max C

MINIMUM CIRCUIT VALUES
D -c load resistance With anode -supply voltage of 75 volts or less for d -c currents above 3 microamperes
D -c load resistance With anode -supply voltage of 75 volts or less for d -c currents below 3 microamperes
With anode -supply voltage of 90 volts For d -c currents above 3 microamperes For d -c currents below 3 microamperes

0.1 megohm no minimum
2 5 megohms 0.1 megohm

* Averaged over any interval of 30 seconds maximum. Average current may be doubled when anode -supply voltage is limited to 80 volts.

GL -1 P37 FREQUENCY -RESPONSE CHARACTERISTICS
ANODE VOLTAGE =90 VOLTS ANODE VOLTAGE = 110 VOLTS

z 0
lll
ffi VI
-4 10

l'i I' 1 1'111111 1

1°01

lllll ll 1 II

I1 1

I II II

I

I

1111111 I I

1 MI 11 1111

II

II 1

11

1

1111 1 I 1 11

1111 1

x

ll NE
E

11111111 I

1111 I I 1

1

lllllll 1111111111111111111 II 111111111 II

1111111111111111 111111111111
111111111111111M IRIIIIIIIIIII ininnun 1111111
III 111111111 inn 1111111

11111111111
11111 II
III II
11 1 11111

11111111 1 11 1

llllllmum. ..... III 111111111 II

1

111111 1

I,

I

I

-111111111111n1

1

111111111111 1

umn 1111111111 I

1
I

1111111m1 I in II

1

1

llll!1:11.11"
l ....III 1111111

III 111111 1 111 F. ; l : 1

III m

llllllll16 llllllllllll 1111m1 u111m1
11111111111111

1 l 11
HhHi-4I .11III V
II n Inn di-,n.
II 11I 11111

II

11

lllll 111111 1 1 I IV

II 1111111 I
11111111111 1

III 171

ii
Mil l ..! 111
lllll 11CIIII

11111 no i llllll 1111111 II
11111111 1
..__ 1111111111111 II I
111 1
11111 .
Ill 11111111 I II

111111111
I 1111111111 I 1 11111 II
11111 11 rmn 1111 11
11111 11

1
111 1 1 I I

II II o

r

llll II

llllll 111

llllllllll

1 1

I I

11111 I III

111

II 111111 11111 III
11111PM

1111111 II II 1 III
"ImIre,1 ""11

11111111111

II III
1

1111

llllll num.. 11111111111

1

11

1111

1

I

, II 1111111111111 III

112111..""tiI411111111111111 II 11
III 1;19 I 11 1

411111 II II II IlkIIIII I 111111 I' 1

llllll NI

III III I 1

1111111 I 1
1111111111 lllllll 1111 1 1 II 1111

llllll 1 1111111 111111 I 11 111111 11111 II I I

llllllllllllll 11111111111 11111 III I I I 1111111111111111 I iniminnim

II 11111111 I

111111 111111

/111111 11 II

1

11111

lllllll 11111111 I 111111

111111111 11111

111111111 11111

1111 1 I I

1111 I 1 1

1111 11111 11

1

I

I

11111111111 II

1111111 1111 II

1111 II 1111 II I

1111 II 1111 I I II 11111 11 I 1

11 111 1 111

1 11111 IN 11

1

11

1

111111

1

1

1111111111 III 111

1111 11 I I III

11111 1111111111111
lllllllllllll 111111 111111111111 111111111 1 1 1111111 I 1 1111111 I

I

1

11

I III 1

I

I

I

1

1

II II

11111 11111111

1

1

1

I

II 1

I

II 1

I

1

1111 111 1

I III I

llI1 1 lllll IIIIMIII I

III I I

III 111 llll 11111 1111 1

111111111 I m

in 111 1

n11111111 11 1

1

1 111 111 1111 111111111 1

111

1 II in I III 1111 1111

11111111 I
1111 III

III 11 11111 1111 I II II 111111 1111 1111111

III III 11111111111111111 1111111

I

1111

1011111x111111 .11

1 111 I II

1

lllll 1111111 11111 1 11

.1 III

I

1111111111
1111 I II 111111 II
III II II II

III I

1111111111111111
1 111 1 1111 1 II
"11111 II II

k: EMMEN lllllll I 111111111 1 11 x11111 1

h.. II II 1

I

111111" 11111111 11111111I

111 I

ll11111111 i I

I

1

11 1111111111

1111111111

111111111

1111111

1111111 11

: EMMA UM
Notion

l

111

III

IllIllIII

.0111111111111 If '11:111: lllllll 111

111111111 II 1 1111111 11 11 I

II 1111

unni III, lllllll 11111111 I 1

RI 1111 11111 I 11111

1111111111111111111 111111111111111111

III 1111111111 1111 1 111

II 111 11111

11111111
11nnniu " "'""1,1 111111111
III 111111111
lll 111 llllll 111111111
lll 111111111

1
MI1
MB II

II 1111 11111 I

111111111 1111

111111 I

1

1

11111 I I I

III

lllll 111111111111111 R111

II 1 111

I

lllll 1111111111111111111 111111 1 111

111 IMEINI111 llllll 1111111111111 111111 1111 1111111111

111111111111
lllll 11111 11111

I III 1111111111

I

II I 1

11111
III II
II 11M M

lll 111111111
lll II II I I I

1
1111

1111 I

1

111111111111

llllllllI I I I 11 II lllllll I lllllll III I III I II 1

I 11111 1111 II I

1111 11 1111

II

1111111111111 II IMMII I I

I

1

1

1

II I

1111111 II

ll 11111 1111 I 111111111 I 111111111 II
111111111111
III II
III 1111 II

111 11

I

IN

I 11

1I

II

II RI 1111

1 11111111 III

II III 111111 1 I

I

I

I

III

innU I 1111 1 III III l 1111111 1 1
III III II HI III lllllll IIIIIIII

11111111 III II
nun 1 1111
91.

III 1111 II
1111111111 I 1 11111

i

,

III

1111
II
LI

1 Ul III I m11111111 I. 1 1 II

1111 1 II 1111111
111 1 11 111 1111111111 1
I 11111111 1111111 II 1111111 II I
1111 III 1111 III I II 1
111 1111 II

11

1111111 III

n

II I

111111

I 11'1

1

1

RIM I 11111 I III

1111111 I

11111 11 I

II

11111 11

I

11111 II 1 111

1

11111 11 II Ill

IIIU II

1

1

111 Ill 111

'1111 II qii

111111 I I

I

Ild 111111

H Il

I

I

1IIIIII
1 II 111 11 1 I
I
l I lllll 111 11111

11
ll k

I

1

I

20

40

100

200

400

1000

2000

4000

10000 20000

LIGHT NCOULATION FREQUENCY IN CYCLES PER SECCP0

K -69087-72A251

8-18-48

10
8
z
6C >-
cr
cc
F-
1-40
Ftn
> < 20
Lai CC

S-4 PHOTOSURFACE

SPECTRAL SENSITIVITY CHARACTERISTIC

FOR
AT

AEQLLUALWVAAVLEUE_SENOGF-RHASDIANT

FLUX

S-4 PHOTOSURFACE SPECTRAL SENSITIVITY CHARACTERISTIC
TO TUNGSTEN LIGHT AT 2870 K
140

GL- 1 P37
En -289 PAGE 3
12-48

120

100
S
so

60 40

20

--- ---- ----
WAVELENGTH -ANGSTROM UNITS

3000

5000

K-8639625

4-27-44

K -69087-72A249

GL -1 P37
AVERAGE ANODE CHARACTERISTICS

14
EIMUNINNOMM IMMEMMEUMMERTMEMSTIO minlIMMMEMMMEMMUlft WPM
1XIMOVAIIII3161MOOMNFIMhnONSMILMtil UU M

7000

9000

WAVELENGTH IN ANGSTROMS

12

11000

13000

8-18-48

10

4

2

Inn
P"

0

25

K -69087-72A250

"a-Akar.....
50 ANODE VOLTAGE IN VOLTS

75

100

8.18-48

GL- 1 P37
ETI-289 PAGE 4 12-48

I" MAX 16 DIA.
5" MIN.

CATHODE

-1
14 MI

32I"
MAX,

DWARF.. SHEL
SMALL 4 -PIN

Ise
-8MAX.

CATHODE
TERMINAL

'I" MAX.
I -8 DIA. DIRECTION OF LIGHT
NC

CATHODE

NC

ANODE

TERMINAL

N-15125AZ

OUTLINE PHOTOTUBE GL -1 P37

8-4-48

Electronics Deportment

12-48 (9M) Filing No. 8850

GENERAL

ELECTRIC

Schenectady, N. Y.

GL- 1 P40
DESCRIPTION AND RATING
ETI-290A PAGE 1
9-51

PHOTOTUBE

DESCRIPTION
The GL -1P40 is a gas phototube with high response to red and near -infrared radiation. Be-
cause of its high sensitivity, it is recommended for use in sound reproduction, light -operated relays, and light -measurement applications utilizing an incandescent light source.
The GL -1P40 is similar to the GL -930 except

that it is provided with a non -hygroscopic base which insures a value of resistance between anode and cathode pins about 10 times higher than conventional bases under adverse operating conditions of high humidity. As a result, more output for a given light input is obtainable under high -humidity
conditions.

+TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS

Number of electrodes

2

Electrical

Spectral response

S-1

Completely revised.

GENERAL ELECTRIC
Supersedes En -290 dated 12-48

GL- 1 P40
ETI-290A PAGE 2
9-51

TECHNICAL INFORMATION (CONT'D)

Luminous sensitivity* 0 cycles 5000 cycles.
10000 cycles Wavelength of maximum response Sensitivity at maximum response
Dark current at 90 volts Gas amplification Direct interelectrode capacitance

Minimum 90
7000

Bogey Maximum

135 205 microamperes per lumen

111

microamperes per lumen

101

microamperes per lumen

8000 9000 angstroms

0 0135

microamperes per microwatt

0.1 microampere

10

2.4

micromicrofarads

Mechanical Data
Window dimensions, minimum Seated height to center of window Mounting position-any

H. by inch h. inches

MAXIMUM RATINGS, ABSOLUTE VALUES
Anode voltage, d -c or peak a -c Peak cathode -current density Peak cathode current Average cathode current** Ambient temperature

90 max volts 100 max microamperes per square inch 10 max microamperes
3 max microamperes 100 max C

MINIMUM CIRCUIT VALUES

D -c load resistance

With anode -supply voltage of 75 volts or less For d -c currents above 3 microamperes

01 megohm

For d -c currents below 3 microamperes

no minimum

With anode-supply voltage of 90 volts

For d -c currents above 2 microamperes For d -c currents below 2 microamperes

2 5 megohms 1 megohm

*Given for conditions where a Mazda projection lamp operated at a filament color temperature of 2870 K is used as a light source. The method for determining sensitivity employed a 90 -volt supply and a 1.0-megohm resistor. For the 0 -cycle measurements, a light input of 0.1 lumen was used. For the 5000- and 10,000 -cycle measurements, the light input was varied sinusoidally about a mean value of 0.015 lumen from zero to a maximum of twice the mean.

**Averaged over any interval of 30 seconds maximum. Average current may be doubled when anode -supply voltage is limited to 70 volts.

GL -1 P40
AVERAGE ANODE CHARACTERISTICS

GL -1 P40
ETI-290A PAGE 3
9-51

16
14
12 ffi
to
e
R
6
4
2

0

20

40

60

80

100

ANODE VOLTACE IN VOLTS

K -69087-72A253

8-18-48

S-1 PHOTOSURFACE SPECTRAL SENSITIVITY CHARACTERISTIC FOR EQUAL VALUES OF RADIANT FLUX AT ALL WAVELENGTHS

160

140

120
III III I 111111111111111111111111111111111111 1111
100

80

60
11.11111111111111111111111111111"
40

20

11111111111'111 1 1 1

11 111111 1L1I II1I1

1

111111111111111 111111111111111111 III 411111111

41

3000

5000

7000

9000

IWO

1300

WAVELENGTH IN ANGSTROM UNITS

K -69087-72A406 'Revised drawing.

9-19-50

GL -1 P40
ETI-290A PAGE 4
9-51

I31-6"MDAIAX.
5"
f -T MIN.
A

13"
16 MIN.
CATHODE BASE
NO. B5-10 k A

2-21 MAX.

3r

J

16MAX.

511 3"
8-32

tz._1
.' 5" MAX
'me -I16 DI A CATHODE
TERMINAL
NC
CATHODE
NC
ANODE
TERMINAL

K-8070703

DIRECTION OF LIGHT
Outline Phototube GL -1P40

8-4-48

9-51 (I1M)

Tube Department, Electronics Division
GENERAL d ELECTRIC
Schenectady, N. Y.

GL -1 P39
DESCRIPTION AND RATING
ETI-295 PAGE 1
5-49

PHOTOTUBE

DESCRIPTION
The GL -1P39 is a high -vacuum phototube with high sensitivity to light sources predominating in
blue radiation, and negligible sensitivity to in-
frared radiation. It is useful in light -operated relay, measurement, and color -control applications.
The GL -1P39 is similar to the GL -929 except that it is provided with a non -hygroscopic base which

insures a value of resistance between anode and cathode pins about 10 times higher than conventional bases under adverse operating conditions of high humidity. As a result, more output for a given light input is obtainable under high -humidity
conditions.

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL
Electrical Data
Spectral response-S-4 Sensitivity at 4000 angstroms
Luminous sensitivity* Wavelength of maximum response Direct interelectrode capacitance Maximum dark current at 250 volts

0.042 microamperes per microwatt 45 microamperes per lumen
4000 500 angstroms 2.6 uuf
0.005 microampere

Mechanical Data
Mounting position-any

GENERAL

ELECTRIC

GL -1P39
ETI-295 PAGE 2
5-49

TECHNICAL INFORMATION (CONT'D)

MAXIMUM RATINGS, Absolute Values

Anode voltage. d -c or peak a -c Average cathode current** Peak cathode current Peak cathode current density Ambient temperature

250 max volts 5 max microamperes 20 max microamperes
100 max microamperes per square inch 75 max C

MINIMUM CIRCUIT VALUES

D -c load resistance

1 megohm

*Given for conditions where a Mazda projection lamp operated at a filament color temperature of 2870 K is used as a light

source. The method for determining sensitivity employed a 250 -volt supply, a 1.0-megohm load resistor and a light input of

0.1 lumen. With daylight, value is several times higher; to light from a high-pressure arc, many times higher.

**Average over any interval of 30 seconds maximum.

GL -1 P39 AVERAGE ANODE CHARACTERISTICS

5 MMINIMMEMEMEMMIMMEMEMMUMMMUMMEMMEMEMEMMEMMEMMEMMINIMMEMMINIMME MOIMMOMMOMMEMMEMMUMMUMMIIMMIUMMUMMEMMEMINIMMEMMOMMOOMMEMMIN MMENEMMOMMOMMEMEMOMMEMEMMUMMAIMMEMMUMMIIMUMMERIOMMOMMOMMII
MmEoMmEmMuMmEmLMoOmMmMiEnMuOMmMmEoMmEmMoMEmMmMuEmMuMqEMrMsEuMmOwMaMOmMvMoOoNmIkMoPMmPmUuPmOmMoOMmMmEuMmImN mimmmmmummmmmmummmmummmnmmimwmTmm-mm1m1mw...m.m.m!o.m.mmatimmummummmoommmmmonmOiMnMEuMmMmIoIMmMmO minnommilimmmiimmummummvumwommunnimmummommimmummumm
4 mmmmmmmimmmlwioouummialmmmmommmimmmmnmmmmumgroiomummmammmumauwmmmmmmAmmumuommom:msmmommmmmmmommieommommummmomimmmmmmmnomoimmuummmiummummm5mmmmmmiu.ummumuim.mmumimmio.mmmmmmmmmumumummmuummmmu.ommmmm.mmmammuo_umolmusmvmumomimmmmiimmmulmnmimmmioumruummsmmimommammammmuvmommmumoummummmmmmumimommmmumumumommmmmmmummuumommmmmovmuwmmummrmmmssmumaumoomommmmmlmmmumummammmummuumummmummmummmmmmmmuummimommmmiumomummmslmmmmm
3 mmummlinmiuwiummmvimmimmmarummumnlm.momu;iimmmmmmmnumommmmwmmomumomrmmmmommmmmummmm,momumom-umummmo.mmmmmmm.mmumuu.mommumm.oummmmmm..momoom..omommm..mmmmmwm.mupomoummomommmmmmmmmmomumommmmumuommmmmmmmumomummmmmimmiwmmsm.mmmmamao.mavmvvx.uaimaaixmyommmm.mammmmmu.mumuoom.mmummmm.wumummmm.ummiuaw.mumnmummmmumuwxmmommmmuuommmuiammmummlmmummumlmmmmumouummmmmmmmmuummmmmmmmmuuouommmmmmmmuummmmmmmmm iimmrmpatm;miuammmmmwuommmmuommmmiunmmuummmmoommmmoommmmuommmmamxissuummmmummummunmAmmummimsoammmmomt
2 Iwrcnimaiuormmmimmummmmummomummmmommmummmummomummmmsmmnumomismommunmmmumommmommuommummmmmmummimmummommmmmmmuumommmmmimummnummuummmmmmoo.mmmv,oornmmmsmummsommummmmmomommmommimmmmnamvavurAi1maaam.mmmmm.momoum.mmmm.mmmom.muunu.wmmnmmmmmmummoommuimmmwmmmmmmmummnuumumummmmmmmmmmms
mimimnigrswtm-iimmmimsomommmMuImNImMuMmIHmNuImMmMOuMmMmEMwSmEoMmOUmMuMmIMmMaVxImIMiMnEoMMmUmMuMEmMmMuImIMmMuEsM
1111,AMMEMINIMMOMMEMEMMEMMEMMEMIMMIUMMOMINIMMOV1601111MMUMEMEMMEEMM
NAMMOMMONOMMUMMOMMMUMMEMEMMEMEMOMOMMEMERIOIUMMITAIMMEMEMOM
FIMIMMEMMEMMIONMEMMEMMINIMMEMMUMMININUMEMOMMIUMWW1MMOV.DOMMEMEMUM
UMMOMMIIMMEMEMMEMOMMOMMINIMMIUMMEMMINWOMMEMAMUMMUMMEMMEMEM 1 UMMINIMUMMEMMEMOMMOMMEMEMEMEMMOMMEMMOMMUOMMEMWOOMMUMEMEMERMEM
41111111111MMEMMIMMMEMMMINIMMMEMOIMEMESIMMUNILUAMMOMERMAMEMIMUMEMMEMEM mm immokmimmiliMMIMMMUMMEMEM
SniMMEMMEMMERMOMMUMMEMMOMMUUMEMUMMOMMUMMUOURRAMWOMMEMONMEM IAMMEMMEMMEMEMINIMMINIMMUNEMMUMMEMMEMMEMMEMMEMOOMMOIMMEMMEMMUM AMMOOMMEMMEMEMINIUMMEMEMMMEMINIMMOMOMMUMMEMMOURIMIIIMMIMMEMME MEMMININIMEMMINIMEMMEMOMMEMEMEMMEMEMMINIMMEMEMMMOULMIMMEMEMEMEM MINIMMENMEUMEMMEMMUMMEEMEMMEMIMMEMOMMENSINIMMMOMIOMMEMEMMEME MEMEMMEMMEMOMUMMINIMMEMMEMMUMMEMMEMOMMERMINIMMOMMOLVEMMEMMEEMM MIMMINIMMEMMOMEMMUMMEMEMMMINIUMMINIMMENUMMUMEMOMMIWISIMMEMMERNM MMUMOMMEMOMMMEMAMMEMMUMMOMMUMMEMMEMMUMMIOUNNEUMWORMUNUMENO

0

50

100

150

200

250

300

ANODE VOLTAGE IN VOLTS

K -69087-72A252

8-18-48

GL -1P39
ETI-295 PAGE 3
5-49

S-4 PHOTOSURFACE SPECTRAL SENSITIVITY CHARACTERISTICS
FOR EQUAL VALUES OF RADIANT FLUX AT ALL WAVELENGTHS

100

il

S-4 PHOTOSURFACE

SPECTRAL SENSITIVITY CHARACTERISTIC

,FOR AT

ELQLUAWL AVVALEUESENOGF

RADIANT HS

FLUX

80

F-
z
D 60
>-
I -
cc
)-
1- 40
wz(75
U)
<17_
20 cr

Annn

4000

5000

6000

WAVELENGTH -ANGSTROM UN ITS

K-8639625

7000

6000
4-27-44

GL -1P39
ETI-295 PAGE 4 5-49
CATHODE BASE
NO. B5-10

OUTLINE GL -1 P39 PHOTOTUBE
13" MAX DIA.
5IT16MIN.

2-2 MAX.

3= MAX.
16

18-32

CATHODE
TERMINAL CATHODE
NC

15"MAX 16 DIA.
NC NC ANODE
TERMINAL

5-49 (10M) Filing No. 8850

DIRECTION OF LIGHT

K-8070703

8-4-48

Electronics Department

GENERAL

ELECTRIC

Schenectady, N. Y.

GL -5581
DESCRIPTION AND RATING
ETI.296 PAGE 1
5-49

PHOTOTUBE

DESCRIPTION
The GL -5581 is a gas phototube with high sensitivity to light sources predominating in blue radia-
tion, and no response to infrared radiation. It is therefore, particularly suitable for use in sound reproduction involving a dye -image sound track in conjunction with an incandescent light source. The tube may also be used in measurement and
color -control applications.
Because the GL -5581 has no response in the
infrared region where dye -image sound tracks have marked transparency, masking of the dye -image

modulation by infrared transmitted through the film is avoided, and the dye -image modulation of either variable -area or variable -density sound tracks is reproduced essentially to its full degree.
The luminous sensitivity, anode characteristics, and structure of the GL -5581 are comparable with the same properties of Type GL -930 to permit use of the GL -5581 with minor circuit changes in motion picture and other equipment designed to use
the older type.

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL
Electrical Data
Spectral Response-S-4 Wavelength of maximum response Direct interelectrode capacitance

4000 t 500 angstroms 2 6 uuf

GENERAL

ELECTRIC

GL -5581
ETI-296 PAGE 2 5-49

TECHNICAL INFORMATION (CONT'D)
These data are for reference only. For design information refer to specifications.

GENERAL
Sensitivity at 4000 angstroms Luminous sensitivity
At 0 cycles At 5000 cycles At 10,000 cycles Gas amplification factor Dark current at 90 volts
Mechanical Data
Mounting position-any

Min Avg

Max

0.125

microamperes per microwatt

75 135 205 microamperes per lumen

124

microamperes per lumen

108

microamperes per lumen

5.5

0.050 microampere

MAXIMUM RATINGS, Absolute Values
Anode voltage, d -c or peak a -c Average cathode current* Peak cathode current Peak cathode current density Ambient temperature

100

volts

3 max microamperes

10 max microamperes

100 max microamperes per square inch

75 max C

*Average over any interval of 30 seconds maximum. Average current may be doubled when anode -supply voltage is limited to 80 volts.

MINIMUM CIRCUIT VALUES
D -c load resistance With anode -supply voltage of 80 volts or less For d -c currents above 3 microamperes For d -c currents below 3 microamperes With anode -supply voltage of 100 volts For d -c currents above 1 microampere For d -c currents below 1 microampere

0 1 megohm no minimum
2.5 megohms 0 1 megohm

GL -5581 PHOTOTUBE AVERAGE ANODE CHARACTERISTICS

GL -5581
ETI-296 PAGE 3
5-49

12

IMMEMEMMEMEMMEMMUMMIMMEMMUSEMMINIMMMEMMIUMM MMMMMMM MMINIMMIM MMMMM MMEMVOIAMMEMEMEMMUTAMOMMIIMMEMEMEWQW MMOIINMIMMWMOEMMMEIMNEEMMEMMIOMMMMOOMMMMMEMMMWOIMIMMIMNEIMMMUEMMEEMMMEIMIEMMMMEEMMEMMOMMOMMEMMEEMMEMMENMIMUOMMMIMOEMMMMEMMMMMIUMMMIEUMMAMIIPMAMMIEMMEMMOISIIMOMNEOMM7M0U4WMAMNIMIEMMMMIEMMMEMMIMUEMLMCIVWAAMXM

=MWMMINMIMMMMMMEMMMEMMEMMMMMOMMMMMEMMOMMEMMMEEMMMEMMMEMMMMMMIM1M1E.M1M1E1M11M1U1M1MMUEMMMMUOMMMMEEMNMNOOMMMMMUMMMMMEMMMMMEMMIMMEIMtOiMAUMMMOEIMMMMIOOMNMMOMMMI&MMUMMMMIMNMMIMUEMMMMIMIIMNMEIMMFMAOMWMNIINM

MIIMMEMMEMIIMMEMMEMMON MMMMMMM EINEM MMMMM MOW MMMMMM IIIMMEMOMMEM MMMMM uarmim
mommommommummummommommommumummommammommommummummetwasommommurimmommummommrammomm
MMUMMEMMEMEMMIMMEMEMMINIMMUMEMMEMMEMMEREMMEMMESSIMMIMMEMMEMEMMOAMMEMOMMIMMVAMIUMMEMMUMNFAMMOMEM

10

MEWOMMWIMIUMMMMEMMMMEMMMMEIMMMMMMMIUIIMMIEIMIMEMIMIOMNNEIOMMMMMIOMRMIEMNMEI1M1MM1M1IE1NM1I1MM1EE1MM1M1MO1U1MM1UM1ME1MM1EM11EM1ME1ER1MM1I1MN1U1IM1MM1ME1E1MM.ME1E1MM1EM1MEMMMUMMMMIMMMNUNIEIMmMMmMEoKmMmOMuWAmAUmMwMErIMiNEmWmMOuEmMMmMEiUMmMMmMIMNEMVWAAuMMMMMEMEmMMoEMmMUmEiMMlMMiEmEMmMMiEmEMOWPUAAMMMMEMMMIENMMIMMMEMMMMMEE
mimuimmmmmmoaummmmmmuuimmmaummmemummoummmommmoummmmmmooummmmmmmuumummmmimmmoummmummmoommmommmoimimnumimummmmumomommmmumomommmmmmmueumtmmwmsAonmmummruaamrmmmmonoummMmuMmmunnmimnMeiMmmmmmmooummmmmmauommmmmmouimnlmimnnraiimmmmmmomomemmmmomumsmm

mIMMOMmmMIumMNmoMMoEEmMSMmMEMIMUMNMmIIMmMSMiMMMmEOmMMiMMIElNMMIEMMMEMMMEEMEMMMOEMMINIMNINMINIMMIMMMMMEMIEMIIUMMMNMEMIEMEOMMMMMUEMINMMEEMMMMIMMMMMEMMUMMIMEOMEMMEMIEMIMMMMMMIMIENINMIMMMMMEMEEMEMMMMIEMENMEMISMEMMMMMMEMEVMMUAMMOIMEMWMMMAPIMIANMIIMOMMMMEMMSIXEMOMMMMMEMMIMEMIOMMMVMMMAEIEMMMrIIMiNNIuIINMmMIMmMMEIOEMOMMMMMMMEEMEMMMMMEMEImEMVImMAArMMMAOEmMMMmEMEMoMMMmIMEUEmNMMiMMMlEEEiMMMEmMMMmEIMMNm

8

EMEMEMENUMMMEMMMMEMMEMMIUNMMMEEMMMMIONNIMMEMMEMMIMNEIMMMIINIMMEMMEMMMEEMMMSEMMMMUMMMMMIMNMIMMMEMMMMOINIIMUMMEUrMMMEMEEMMOEMMMEOIMMFIAKMAMMEMMEMMEMMEMMEMMIInMiMmImArMAmMmEuMmMuMmEmMuMmUmMmMiOmMmMu muommmeMmMmMoMmMmMuMmMmummimmoemmMiMmMmMoMmMmEmmommmoimummommimuummmmoimmmmoommmnuimmmmoommnmieummuMmMMMnMMMMM MMIOAMMMIEMMEMMMMMIMIMMMMEMAIMOMMEMFMAMMMMEMMMMOIMIMMEMMEEMMMEEMNMREUMMM

IMMEMMIOMMNIMMIMMEMMENEMMEMEMMIMMIMMINEMMEMEMOMMEM MM MM ummumminsmomm MMMMM MM MM IlinimmummoMminnWoor

iMmMmMiMlMiMiMmImIiMlMmImMuEmMmEOMMMMOMMOMMEMMUMNEEMmMmEuMmMmEuMnMiEmMMMEEMMMMIEUNMOMMEMMIMNIINKKAAMMMMIINIIMMMMEIMMMMOONrUAMMMMEOMMOMMEMMMMEMMMNMIMIMiPmAuMmMmEiMmMmIoNmImMoMmImNEImMmMoEmMOMIMNMTMwMASm

milimummommommorn MMMMMMM MMIOMMINNMEMMENOMMEM MMM n MM mom MM MM mommommini MM MM mom MMMMMM immorummm

w

mmummimloimmmionmiummmioamlMlMIOMMMMEOMOMMIMNUIMMMEEMMMOUMMMMIMNOINMMMEEMMEMMEEMMMMUEMMMEEMMEMMEPMAMIEIWMAEMMMMOEIMMMEEMMMFIAMMMMIENMMMMMINMIMMOIMIMMOEIrMAMMEMMEMMEMSIIMOMMUMmEmrMnMmMinArAMlMlimmm NMMEMMMMMMMMMMMMMMMMMMMImmmoommmMoimnmuimnmiEmMmEoMmMEMMMEMMMMMOMMMMEmMorMnIOMN VMAM MMMM OOWM=MOMMMMiMlMlMrMaMiMnMiMIMIOMMEMEMNEMMMMIMMAMMIMMMEMMIMMMEMMMMOMMMMEWrAUIdMMiImNmIoNmmMMiMlMlM

a

6 MmiomEmMmmMuoOmmMmmMooUmmMmmoMimImNmmIoMumUmmMimEEnoMronmMmmEmMMuuMEmmMMmmMuEuMMuMmmMmmMEuuMEmmMMmmMIMiiEMMnMEIiIMMMmEMmnMUoMMMmMMMEmMMemEEmoMMmIMMmNMoFmLMmAMMMMMMmIMMNiMIMsMMEmMMoEmMmuEMmmMMmiEmnrMidlMMimMmiMMuMMMmMErmM:oM1MmO1MMmMMuMEMmMInmNMriIIAmNMmSmAmEuAuMmmNMmImOiIEunMMmiMMmmImMoMiOEmuMMmmAPmiLIrAmMM:MmMsPoErumAMmmMImoIMMmuMMmmEEMEmMEMiEMbMrMrPsINiAoIoMms!MmA

mimmininlimmummommim MMMMMM muninirnmerAMMEImmilmpuilimMilini MMMMM WirUMMEMMEMMIlimmmorAmmummommorAmms

nb zd

mrnimilMMEMMMMMIMuMmmMEMMIMMMEENNIUMMmmuimmlmioMmmMmEMMPMUMrMAIMIMMIMmMEUMMEMMIPEUrOAMMMMEEMMMEEMMEMMEEMMMMEMMrdmPoAmmMiM MmMoMmMmMMmMuMmMmurmiplMaMmoMOmMmmoummmmuimnntAimrAmlolmimmommomm mimmmmmummmmmwMmMmMmMmMmmmmommmmmommwmmommmmmmommmmmimmnmmmmomrmAmmmmmummmmmomMmnMmmMimMMdmMmaMmmmmimummmmmimrmuumm-nmdaOommnmmAowmmmmmmoimmnmmummmmmMmMummmnmmreM:nMmM:MmmMmmmummommmmmmuommmmmmmrum:.msnpo:nmamdommmmmmumommmmummmmimmrmmmm

4 mom MMMMMMMMM mommommumnAmmom MMMMMMM ..dmommummommr:sem MMMMMM MIIIMMOMd MMMMMM MOMMOPM MMMMMMM 1111111MMITILM,

MOMMEMEMEMMUMUMMIMMOMMI!diMMEMEMEMEMPnAMEMEMMENMEWAMMOMAMMOMMEWOMAMMINEMMIIMMEMPliMISMEMMEMMEMOMMINgOliil MEMO MMMMM 111111111MMEMMEMZEMEMMUWLIAMMEMMEMMEMP!ANNMAMMIMMEMEMPidEMMEMMINIMMIMAMME MMMMM MMINNOMMIMidOMM

MMEMMINIMMEMEMEMMIAMMMMOMMMEMP!iAREMEMMEMOMPIAIMMEMMUMEMMEMOMAMEMMEMMEMMP!mliMMOMMEMMEMEMMOIMillIMMIONM

IMIMMUMMMMIMIMPM!M:M-M.M-Mmmwi!l=lmMMEEMMEEMMMMIIUIMMMMME.M=P.-M.M1EMMEMMMMMIMNImMmEiMmOmMoirdAEmMmEuMmImNiIlMiMrEnMMMiOlRmMrAnMAEmMmEuMmMmEoMmOmPiMv.r1AgMsMmMoMmMmiMlMmOiMlEMMMMEEMMMMMIMMOWrAUMAMMEMMUMMENMIEMMMEiMmE

MIIMMEMMFPAiMdMIIMMUOMMMOEIRMIMMEMMOUMMMMEIMMIUNNIIUMMMMOIPMMM.OMMMMEiMOMMIMNEUMMIMIIMMMOEMMIMOMMIMIXMIMMAMMEMMEPM!M1I.N-IAMMPMMEMMOMIUMMEMMEMMIENMIMMIMIMIMN=ImV1OIIMMEMMiIlNlIIMMMMEEMMMMEEMMMMEEMMMMIOIMMM

INWAMMPI....wOMMIIMINIMMINNIMMOMMIINOXIIMMUMMUMMEMPT:milMMEMMUMWMalIMUMMORMOMEMPUMWmigIUMIMMEMMEMEMMERRIGIVM 2 IWAMVMAUIMMWMANMIMMMMMMEMIMMIMUMMOmr-:imMMEMMMEMMMMEMMMMEliMmMOEMMMEMMOIMMMMWMMEoNdUOMMMMIIMPM=OM.MdIMAIMOUMMMM=E.M01M1E1MMMMEMMMOMNMOIMNMIOMIMEMMEMMMMMOMMMMO11M1M1E1M1M11M1E1MPMM1I.L-MmWON.EM
MIFAMPM MMMMM MMEMEMMIIMUMUMNIMMEMMIMIUM-.7:00111111111MMMMUMMIAMMUMMINIMMOMMEMMINUMWOMMOM-ZidOMMEMEM

WsVtAiIrII:1111111M1111111111111111MI.N.IB.IBAMI-7M.'IMmMiIniNMIMMIImMAMImNuOMmmMm.U'MMMAEAMIMMEIMNEEAMAEImNm-..oM..Mr11M1m1M1M1i11m1m11mm11i1o1l1m1m11wm1m11ow11m111e11-1m11.m11A1o1IM1mI11m1M11AM11Ir111MA11M1A1E1A11M1mMMmOoMMmOmMoMmEmMuMEmMmMoUmNmI.M

limmommr-=

MMM__m-i.n.u.m.m.oAmmmm.UmM=M.E.M.MnImIaMmEmmMiuElmMlmOIiwMm0Mm"Io=Nm=Im.M..M,EAMtMMM-EiMa.OmAMM.MEEEMMMIMMNiMIlEMmMEmMMEoEMmMMmMEoEMmEMmMMiEOlMMlMMiIErNMnIEUaMMmOMpmOumMpaMpmElmMuoEpmMpmEiiMlmSlMmUimlml

,=.011MMEMMEMINIM MMMMMMMMMMMMMMMMUONINMUEMMMEENMINSIMuUmMMOMIMMMMMMIMNMIMMMUIM'OMMMMUMMMMMIMIOMMMOMIMMMMMMOMMMMMOMMMMMIMMUMMMEMMMMMOMOMMUMNEIMMEMMOMIMEMMOMMEMMIMMOMOMMMMEEMME

0

10

20

30

40

50

60

70

80

90

100

ANODE VOLTAGE IN VOLTS

K -69087-72A254

8-15-48

GL -5581
ETI-296 PAGE 4 5-49
5-49 (DOM)
Filing No. 8850

S-4 PHOTOSURFACE SPECTRAL SENSITIVITY CHARACTERISTIC
FOR EQUAL VALUES OF RADIANT FLUX AT ALL WAVELENGTHS
100
S-4 PHOTOSURFACE
SPECTRAL SENSITIVITY CHARACTERISTIC FOR EQUAL VALUES OF RADIANT FLUX AT ALL 9/AVE ,ENG 'HS
80

z
60
>cc cr
cc
>I-- 40
wz(75
(r)
w
.4 20
w

3000

4000

5000

6000

K-8639625

WAVELENGTH -ANGSTROM UNITS
OUTLINE

GL -5581 PHOTOTUBE

,r MAX
'16 DIA 5" MIN

7000

8000 4-27-44

13°
M. MIN
CATHODE BASE
NO. B5-10

22MAX

3 -MAX. 16

8-32

CATHODE TERMINAL CATHODE
NC

5"MAX 16 DIA.
NC NC ANODE
TERMINAL

DIRECTION OF LIGHT
K-807070E3 lectronics Department 8-4-48
GENERAL ELECTRIC
Schenectady, N. Y.

GL -1P21
DESCRIPTION AND RATING
ETI-31$ PAGE 1
10-50

PHOTOTUBE

DESCRIPTION
The GL -1P21 is a high -vacuum multiplier photo tube characterized by extremely high sensitivity,
very small d -c dark current, freedom from distortion, and an equivalent noise input of only 5 X10-13 lumen at 25 C-features which adapt it particularly to applications employing a collimated light beam such as photoelectric spectrometers, astronomical telescopes, and scintillation counters with "light piping."
In phototubes of the multiplier type the photo current produced at the cathode is multiplied many times by secondary emission occurring at successive dynodes. The GL -1P21 can multiply feeble currents produced under weak illumination by an average value of 2,000,000 times when operated at 100 volts per stage.
Since maximum spectral response occurs at approximately 4,000 angstroms, the tube has negli-

gible response to infrared radiation and high sensitivity to blue -rich light. The sensitivity to incandescent light depends on the color temperature of the source. Under normal operating conditions the output current of the GL -1P21 is a linear function of the exciting illumination. The frequency response, since secondary emission occurs almost instantaneously, is flat up to frequencies at which transit time and capacitance effects become the limiting factor.
In addition to those mentioned the GL -1P21 is recommended for all other specialized scientific applications where very low light levels are involved. The requirements of such service ex tremely low equivalent noise input, high photosensitivity, very high secondary -emission amplification, and very small d -c dark current are all features of this tube.

GENERAL

ELECTRIC

GIL-11321
ETI-315 PAGE 2 10-50

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL

Electrical Data
Spectral response-S4 Wavelength of maximum response Dark current at 1000 volts Interelectrode capacitances
Anode to dynode No. 9 Anode to all other electrodes
Mechanical Data
Cathode dimensions, minimum* Seated height to center of useful cathode area Mounting position-any

4000 t 500 angstroms 01 microampere
4 uuf 6.5 uuf
is by is inches 1 is A inches

MAXIMUM RATINGS
Anode -supply voltage, d -c or peak a -c** Supply voltage between dynode No. 9 and anode, d -c or peak a -c Peak anode current Average anode current
Averaging time, maximum Ambient temperature

1250 volts 250 volts 1 0 microamperes 0.1 microamperes 30 seconds
75 C

CHARACTERISTICS

100 volts per dynode stage and 100 volts between dynode No. 9 and anode

Minimum Average Maximum

Anode dark current, d -c

0.1 microamperes

Sensitivity

At 4000 angstroms

74,000

microamperes per microwatt

Luminous#

40

80

amperes per lumen

Current amplification * * *

2,000,000

input

75 volts per dynode stage and 50 volts between dynode No 9 and anode

Sensitivity

At 4000 angstroms Luminous#

11,000 .. . microamperes per microwatt
12 ... . amperes per lumen

Current amplification * * *

300,000

*On plane perpendicular to indicated direction of incident light.
* *Referred to cathode. -I-Dark current due to thermionic emission and ion feedback may be reduced by the use of refrigerants. For maximum signal-to-noise ratio, operation below 1,000 volts is recommended. #For conditions where a Mazda projection lamp operated at a filament color temperature of 2870 K is used as a light source. A light flux of 10 microlumens from a rectangular aperture approximately 0.8 inch long and 0.2 inch wide is projected normal to the center of the castode. The load resistor has a value of 0.01 megohm. The applied voltages are as indi-

cated. The sensitivity is independent of frequency up to frequencies at which transit time becomes the limiting factor.
***Ratio of anode sensitivity to cathode sensitivity. ****Defined as the value where the rms output current is equal to the rms noise current determined under the following conditions: 100 volts per stage, 25 C tube temperature, a -c amplifier bandwidth of one cycle per second, tungsten light source 2870 K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period. The output current is measured through a filter which passes only the fundamental frequency of the pulses.

0
EQUIVALENT NOISE INPUT IN LUMENS

0

0

0

.40,, .1 ril , '

.1

.

'41'1-* 0 MN.Eo...sMmisMummIIuIiImmIIImmIIIiImuImIIuImImIMImNIMmMI IIIiIIiIM,I u1I0nM1o1M1m1U11uN1m1II1M1m1M1o1I1uI1In1I1IwI1M1o1M1u1I1InI1Iu1IIMmIIMIImWIIM1u11IuM11nM1u1I1mN11IuM1111IM1111M11M1I11II11I11M1111MI1IIMI1NMMIIIMNMliIMIMMIINIMIIMNIMIIMIMEINMMMMIIMIEMIIMMIMEINMMIMMIIMIMIIIIIMIIIMIIIMMIMIINMINIMNIINIM, IMIIIMMI IPINIEMmNM

11111111111111111111111M111111111 N I 111011MINIMMIIIIIMMIMMINMIIIIIIIIIIMMUNI IIIIIIMMENIMMIMMIIMMIIIIMMIMMINIMIMMININMIMIIIMM

IMUNIME11111111111111M11 li I 11111011111111111MIIIIMMINI1111111111111111111111111111111111111111111MEM1111111111011111111191M1111111111111111

"""."1"1"""1""Mill I IMMW11141m" """9" 9111111111111111ffimo 111010111111111101"911111101111111117111

iNiiIMiiiMiiIiI1II1II1II1II1IM1M11IN1IfIfiIIII'

I 1111111111111111111111111111M111110 1111111111111111011111111111111116111111111011111111

MINIUM M I PIM AIIMMISIIIIIIIIMINMMIA

IIIIIIMIMI1111111111

111111111111111111111111111 II I NIMBI I 11111112111111111111111111111111111111111111 1111101111111111111111111111011111111111111011111111

111111111111111111100111110 III 11111110111 11111 111011111111111111111111111101111111111 1111M111111111111111111111111111111111111111111111111

1111111111111111111111111111 I H Nigh I ill 111111011111111111111111111 I IIIIIIRMIN1111611111111111111111111111111111111111111 1111
co
0

11111011111111111 0 111111 111111111110 1 III 1 1 11111111110111111111

111,111011111011 111111111111111,11111,11111111111111111111111111111111111111111110011111
limisimmuummurnompowinummulummoillmbionranumummullripmE

1111111111111111111111111 II

11

._ I

ma.

1,

0
1111111111011111,!11111.111110111111111111111,111111111111

0 11101

III II iIl III 1 11 'lb ,

1

1

003

1111

[

111111

1

1

ilillilliONIMINAPINiiiiiiiiiiillillilliiiiiinl MIllii iiIIIIIIIIIIiiiiiillilli

irliiinummommuiphippippioliqpinuommillffill1111111 immumpili.immummmuummoug11,1111

N

0.

0

GL -1P21
ETI.315 PAGE 4 W-50

GL -1 P21
AVERAGE CHARACTERISTICS

100 0101111110101

10000000

11111111111111111111111100111111110111111011111111101111110111111101111111

1 0.0 1 11111

Z
M 0
J

CC

W IL

Q0_1C-DC w<

CCCr

aU2<J. au2.j

1.0

H

-- CC

H -

O
0

C)

H

110101

I

pillopouPPP
1)1
111111111011

1111

11111111 III 1000000

100000

0.1

11111111111 ALAI1

10000

0.01 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 1000

11111111111111111111111111111111111111111111111111111111111111111111111111
4111111111111011111111111111111111111111111111111111111111111111111 11111111 111111111111111111111111111111111111111

0.0012
K -69087-72A376

75

100

VOLTAGE PER STAGE IN VOLTS

14, 00 125
5-4-50

S-4 PHOTOSURFACE SPECTRAL SENSITIVITY CHARACTERISTIC

GL -1P21
ETI-315 PAGE 5
10-50

il 100 II III I lipmplibmimmplirnom
80

nl VIII
0

111111111111111111111111111111111111111111111

111I11 11111111111

II VIII 11111111 111111111111111

2,5

40

1111111111111111111111111111111111111111111111111111111111111111111
11
11111111,11,1111. 11,11 1,1

!!!

3000

5000

K -69087-72A373

70s

3000

WAVELENGTH IN ANGSTROM UNITS

, iii

0

000

4-27-50

GL -1 P21
AVERAGE ANODE CHARACTERISTICS VOLTAGE PER STAGE= 100

1111111111 111111111111111 2 0

1 11111111111111111111_1111

I .5 110111111

logooligiii III

I .0

morminumumm
0 . 5

11111

11111111111110111110111 1111111111111111111111111

K -69087-72A375

100

200

300

400

VOLTAGE BETWEEN ANODE AND DYNODE NO.9 IN VOLTS

4-27-50

GL -1P21
ET1-315 PAGE 6 10-50

OUTLINE GL -1P21 MULTIPLIER PHOTOTUBE

CATHODE

1-316" MAX.DIA. 5"
16

15" -T-6 MIN.
SMALL SHELL SUBMAGNAL II-PIN BASE

71" MAX.
t
15'.:1. 3"
' 16-32
if"
3T -6 -
MAX.
V

11 EX:

FDIRECTION OF LIGHT
DY5 DY4

DY6

DYE DY8

CY3

DY9

DY2

P

DY1 4 WK

BOTTOM VIEW OF BASE

DIRECTION OF LIGHT
BASING DIAGRAM

OF BULB WILL NOT DEVIATE MORE THAN 2° IN ANY DIRECTION FROM THE PERPENDICULAR ERECTED AT CENTER OF BOTTOM OF BASE.

K-8277037

4-28-50

8-50 (11 M)

Tube Divisions, Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

a

APPLICATION DATA
ETI-194A PAGE 1
4-48
GENERALOELECTRIC BALLAST TUBES

ETI-1 94A PAGE 2 4-48

DESCRIPTION

A ballast tube is essentially a constant -current device. It is a resistor whose resistance, at a certain critical temperature, varies with temperature so rapidly that, as the voltage across the tube varies, the current remains practically constant. The operation is the same on either alternating or direct current. Its function is to maintain a constant average current.
All ballast tubes now manufactured have been

designed for a specific application and, as a result have non -uniform ratings. Because of the wide range of voltage and current ratings possible, no attempt has been made to manufacture a standard line. Ballast tubes may, however, be used in parallel
or with shunting resistors across the load to increase
or decrease the current rating, or with series re-
sistors to increase the voltage rating. These methods are described under the section titled "Operation."

RATINGS AND DATA
In rating a ballast tube, the voltage range over may be as much as two per cent above or below which the current is nearly constant is given to- the average current of the entire production. Theregether with a maximum and minimum current. fore, considering change of current with life and The upper limit of the voltage range is to be con- any other factors which may enter, the variation sidered the maximum voltage at which the tube of current in a circuit using ballast tubes may be may be operated. Over the voltage range the current as much as five per cent above or below the average. may vary two per cent above or below its average The limits given in the tube ratings cover these value. The average current of individual tubes factors.

TUBE TYPE
NO.
GL -5621/B-6 GL -5622/B-25 GL -5624/B-46 GL -5623/B-47 GL-5620/FB-50

VOLTAGE RANGE IN VOLTS

MINIMUM
15
7 8 8 5

MAXIMUM
21 16 18 18
8

CURRENT IN AMPERES

MINIMUM
0.95 1.07 2.70 2.05 0.225

MAXIMUM
1.01 1.16 3.25 2.35 0.275

3" 3-4 MAX.

Outline GL -5621/B-6 Ballast Tube

N-24800AZ

4-22-47

BASE4G2-2

Outline GL -5622/B-25 Ballast Tube

N-24801AZ

4-22-47

Outline GL -5624/B-46, GL5623/B-47
Ballast Tube

N-24801AZ

4-22-47

Outline GL-5620/FB-50 Ballast Tube

N-24804AZ

4-22-47

INSTALLATION

ETI.194A PAGE 3 4-48

The ballast tube should be mounted, with the base down, in an enclosure rigid enough to stop flying glass since, should the tube develop an air leak, the mixture of oxygen with the hydrogen contained in the tube might become of the right
proportion to explode. The envelope becomes quite
hot during operation, and free circulation of air

must be allowed in order to keep the temperature
of the air near the tube below 150 F. Marked
changes in env elope temperature will cause a change
in the current. Since the entire load current must pass through the ballast tube, the socket and connections to it must be clean and make good contact to prevent heating at these points.

OPER ATION

The operation of the tube is shown by the characteristic curves in Fig. 1. As the voltage across the filament rises from zero, the resistance of the tube increases slowly in the same manner as most metals. As the lower end of the operating range is reached, the resistance of the filament increases quite rapidly with temperature, so that further increase in voltage causes practically no further increase in current. As the upper end of the operating range is reached, the resistance again becomes nearly constant. A still further increase in voltage causes an almost proportional increase in current as illustrated in the curves of Fig. 1.
This operation of the tube can be seen by observing the filament. As the voltage across the tube is increased from zero and approaches the lower end of the operating range, a small section in the

middle of the filament will become red hot. As the voltage is increased further, the length of this redhot section increases until the entire filament is visibly hot. This represents the end of the operating range and any increase in voltage will overheat and damage the tube. Operating the tube above the upper limit of voltage will result in excessive ex-
pansion and contraction of the filament as the voltage varies; this will cause the wire to stretch out the coils of the filament or to knot, which will increase the current and speed up the destructive process already started, resulting, shortly, in fila-
ment burn -out.
If a steady voltage of a value in the middle of the operating range is applied to the tube continuously, its life will be tens of thousands of hours. Opening and closing the circuit with the resulting lengthen-

UPPER CURRENT
LIMII\

HIGH CURRENT TUBE
AVERAGE TUBE
f/LOW CURRENT TUBE

1-

zI-

-4- VOLTAGE RANGE

b -

w

0

LOWER CURRENT LIMIT

------------..----'

//

K-9033589

VOLTAGE
Fig 1-Typical Ballast Tube Characteristics

1-9-45

ETI-194A
PAGE 4
4-48
ing and shortening of the filament greatly reduces the life of the tube. If full voltage is applied to the tube, the circuit may be opened and closed only a few hundred times before the current is outside the limits or the filament is burned out. Thus the life of the tube will be determined entirely by its duty cycle.
Because of the large thermal inertia of the tube,
the temperature does not reach its final value
immediately when the circuit is closed or when the voltage changes. Since the cold resistance of the filament is quite low, when the circuit is first closed the initial current may be several times the final value.
After a few seconds, however, the current will have fallen to within 25 per cent of the final value, and from 15 seconds to several minutes, depending upon the size of the tube, will be required for the current to reach a steady state. The real function of a ballast tube is to maintain a constant average current.
In Fig. 1 three curves are given to show the variation to be expected between tubes of a given rating. By choosing the proper coordinates, these curves are approximate for any ballast tube. Individual tubes may maintain the current to less than the range shown, but in any particular application variations up to plus or minus five per cent of the average may be expected. Typical
characteristic curves indicating the limits of ballast action for the various types of ballast tubes are shown in Fig. 1A at the right.

BALLAST TUBES
CHARACTERISTIC CURVES
GL -5624/B-46
3.0

I

I

GL -5623/B-47

1141

2.0

1
p Fr fil 1.0 I

GL -5622/13-25 GL -5621/8-6
RECTANGULAR AREAS INDICATE THE LIMIT S OF BALLAST ACTION

GL- 5620/F8-50

0

III

0

10

20

VOLTAGE IN VOLTS

K-9033550

Fig. IA

E
4-13-48

APPLICATION CIRCUITS#

The commonest use of the ballast tube is to place it directly in series with the load as shown
in Fig. 2 and Fig. 3. The graphical representation of the current and
voltages in the circuit is shown in Fig. 4. When voltage is applied, the current which flows
is determined by the intersection of the load characteristic and the tube characteristic. As the supply

voltage varies the current remains practically constant. The load voltage remains practically constant because the tube voltage varies by an amount proportional to the supply -voltage variation. The tube
used should have a voltage range equal to the
variation in supply voltage.
#Circuits shown in ETI-194A are examples of possible tube application and the description and illustration of them does not convey to the purchaser of tubes any license under patent right.: of General Electric Company

BALLAST TUBE

BALLAST TUBE

K-9033575

Fig. 2-Connection for A -c or D -c Circuit

12-30-44 K-9033578

Fig. 3-Connection Using a Transformer

BALLAST TUBE
VOL AGE RANGE

H HI I
6 I 8 % CuRRENT VARIATION

04

I

i

1

I

SUPPLY I

.'11111 VOLTAGE VA RIAT ON

04 -.4.1. 437%

1210/...._12L2%.

'?4Si 1.4 C

-mu

K-9033579

VOLTAGE
Fig. 4-Ballast Tube in Series with Load

1-1-45

1-1-45

C B A

TUBE VOLTAGE

ETI-1 94A PAGE 5 4-48

JO SUPPLY VOLTAGE

0 CURRENT G H J
K-9033580
Fig. 5-Vector Diagram for Inductive Load

1-1-45

A ballast tube may be used with inductive loads as well as with pure -resistance loads. Fig. 5 shows the vector diagram for such a load. The vector OE represents the normal supply voltage, while the vectors OB and BE represent the normal load and ballast -tube voltages, respectively. OH is the normal current. As the supply voltage decreases to OD or increases to OF, the ballast -tube voltage decreases to AD or increases to CF. This maintains the load voltage between OA and OC and the current between OG and 0J.
If it is necessary to use a tube whose current rating is too high or too low, either the load or the tube, as the case may be, may be bridged with a resistor to carry the excess or additional current.
Figs. 6 and 7 show these two connections. The operation of the circuit shown in Fig. 6 is
identical with that shown in Fig. 2, the resistor being considered part of the load. This circuit is also recommended where close adjustment of the

load voltage or current is required. The circuit shown in Fig. 7 is similar in operation except that the shunt current through the resistor, as shown in Fig. 8 increasing directly with voltage, spoils somewhat the regulation of the tube.
In the latter case, the higher the value of shunt resistors used across the ballast tube, the better the regulation. This connection is not recommended except in cases where close regulation is un-
necessary.

K-9033577

12-30-44

Fig. 6-Circuit Using Tube with Too Large a Current

BALLAST TUBE

K-9033576

12-30-44

Fig. 7-Circuit Using Tube with Too Small a Current

(Not recommended)

I

I

I

I

TOTAL CURRENT

BALLAST TUBE CURRENT

z1--

UJ

1011 ce
ce

VOLTAGE RANGE

lJ

CUR RE NS

=EMI RESISTOR

K-9033581

VOLTAGE
Fig. 8-Resistor Across Ballast Tube

1-1-45

ETI-194A PAGE 6 4-48

APPLICATION CIRCUITS (Contd.)

The ballast tube may be used to maintain constant current in a circuit requiring variation of the load. A suggested circuit is shown in Fig. 9.
Since the voltage across the ballast tube will vary with both the line voltage and load resistance (the potentiometer being considered part of the load) a greater voltage range will be required, and the ballast tube will use a greater percentage of power
See Fig. 10 below.
The minimum voltage across the ballast tube will occur with minimum supply voltage and with the load adjusted to the minimum point on the potentiometer. The maximum voltage across the ballast tube will occur with the maximum supply voltage and with the load adjusted to the maximum point on the potentiometer. Since this circuit draws a constant current from the line, varying the potentiometer will not cause a variation in supply voltage to other apparatus on the line.
Ballast tubes may be used in parallel provided their voltage ranges are equal or nearly so. If their voltage ranges are unequal, good ballasting will occur only over that part of the voltage range which is included by both tubes. The current for any

BALLAST TUBE

K-9033582

Fig. 9-Circuit for Varying Load Voltage

1-9-45

voltage will be the sum of the currents in both tubes at that voltage.
Ballast tubes cannot be used in series unless their current -voltage characteristics are identical. This can be shown by referring to Fig. 1. If two tubes,
one having the maximum current and one the
minimum for a particular rating, are used in series the current will be the same in both tubes at all times. At the value at which the higher -current tube starts to ballast, the lower -current tube is operating above its ballasting range and hence is over -loaded. Thus, the safe operating range of the combination is only that of the lower current tube.

I: III I

I

I

I

VOLTAGE RANGE_

B

C

D

K-9033583

MINIMUM POINT ON
POTENTIOMETER

lillkiglik

MAXIMUM POINT ON POTENTIOMETER
VOLTAGE
Fig. 10-Ballast Tube in Series with Potentiometer, Load Across Potentiometer

ilk

'4IN

E

F

1-9-45

4-48 (9M) Filing No. 8850

Electronics Department
GENERAL 0 ELECTRIC Schenectady, N. Y.

r-

GENERAL 4y ELECTRIC

APPLICATION DATA
En -195A PAGE 1
8-48
RESISTANCE VACUUM GAGES

Supersedes ETI-195 dated 4-45

En -195A PAGE 2
8-48

DESCRIPTION

The GL-5628/FA-13 and GL-5629/FA-14, used in a resistance vacuum gage possess features especially useful in providing a convenient method for measuring low gas pressures. With suitable associated apparatus, these tubes will provide a fast, continuous, direct reading. As the vacuum system is pumped down, a meter in the bridge cir-
cuit reads the unbalancing of the bridge, thus providing an uninterrupted and instantaneous
reading and enabling the observer to determine at

all times the exact conditions in the system. The resistance vacuum gage differs from the Mc-
Leod gage in that it gives an electrical, rather than mechanical, indication. Unlike the McLeod gage, it is also possible with this gage to take readings of condensable vapor, such as water vapor.
These tubes should be used in pairs since in combination they provide a much more stable and reliable reading than if the GL-5628/FA-13 is used
alone.

TECHNICAL INFORMATION

GENERAL CHARACTERISTICS (Indicator Tube GL-5628/FA-I3*)

Number of Electrodes

1

Electrical
Recommended range Maximum d -c voltage Resistance of average tube at 25 C.

0-600 microns 6 volts 7 ohms

Characteristics of an average tube at 3 volts -25 C, ambient temperature:

0 microns pressure, dry air 75 microns pressure, dry air 195 microns pressure, dry air 1000 microns pressure, dry air Atmospheric pressure

180 milliamperes 226 milliamperes 271 milliamperes 327 milliamperes 353 milliamperes

Mechanical Splice tubing Net weight, approx Shipping weight, approx

inches diam. lime glass 1 ounce 3 pounds

*It is recommended that this tube be used in a bridge circuit in combinations with the GL-5629/FA-14 Compensator Tube.

GENERAL CHARACTERISTICS (Compensator Tube GL-5629/FA-14) Number of Electrodes
Electrical Maximum d -c voltage Resistance of average tube at 25 C.
Characteristics of an average tube at 25 C, ambient temperature: 1 Volt 2 Volts 3 Volts 4 Volts
Mechanical Net weight, approx Shipping weight, approx

1
6 volts 7 ohms
90 milliamperes 140 milliamperes 180 milliamperes 218 milliamperes
1 ounce 3 pounds

OPERATING NOTES

ETI-195A PAGE 3
8-48

The GL-5628/FA-13 is used to measure the gas pressure. The GL-5629/FA-14, which has a filament identical with that of the GL-5628/FA-13, is sealed off under very high vacuum and is used to compensate for temperature and voltage changes.
The GL-5628/FA-13 and GL-5629/FA-14 are usually sold in matched pairs since there is some variation from time to time in manufacture. For this reason single tubes purchased separately and at different times may not match.
With the GL-5628/FA-13 the pressure indication

is obtained as a function of the change in resistance
of a heated tungsten filament caused by the cooling, by convection current, of the gas being measured. Since different gases have different factors for convection cooling, the calibration of the gage will not be the same for all gases. For example, the gage is much more sensitive to hydrogen than to nitrogen. Since the response of the gage is a current change,
it may be used for recording and for controlto start and stop a pump-as well as for indica-
tion.

INSTALLATION

The GL-5628/FA-13 and GL-5629/FA-14 may be mounted in any position, but should be pro-
tected from excessive shock or vibration. It is
recommended that the connection to the base of the GL-5629/FA-14 be clamped solidly or soldered to avoid difficulty with contact resistance. The GL-5628/FA-13 is provided with connection leads

instead of a base and glass connection tubing
for splicing to the exhaust system. This connection
may be cemented on, or sealed to, another glass tube.
Greater stability will be obtained if tubes are protected from heat and direct light rays. If used in pairs it is advisable to place the tubes together
so that their temperatures will vary simultaneously.

OPERATION

GL-5629/FA-14 COMPENSATOR
TUBE

GL-5628/FA-13 INDICATOR
TUBE

Although the GL-5628/FA-13 connected in series with a milliammeter, may be used for rough meas-
urements, it is recommended that an ordinary
bridge circuit be provided with the GL-5628/FA-13 in one arm, the GL-5629/FA-14 compensator tube in the opposite arm, and variable resistances in the two adjacent arms. The bridge arrangement gives greater sensitivity than the GL-5628/FA-13 alone and the use of a compensator tube results in substantial independence from ordinary voltage varia-
tion.

3" MAX. 116 DIA.

4V511

+ I"

8

16
DIA.

LIME GLASS

The characteristics shown by the curves are

MAX.

approximate. Where a high degree of accuracy is

required, the individual gage must be calibrated

against a standard. In Fig. 2, of page 4, the dotted

curves are the compensator characteristics plotted BASE in reverse. The distance between the origins repre- NO. A4 -3

sents the total voltage on the bridge; the inter-

sections give the voltage division for various pres-

sures.

With the bridge balanced at zero pressure, the horizontal distances between the zero intersection and the intersection for other pressures furnishes a rough calibration for corresponding measurement taken on the bridge with a high -resistance volt-
meter.
These curves supply a convenient method for estimating the bridge sensitivity at various voltages. The calibration may change with wide variations in ambient temperature. Fig. 1 on page 4 illustrates the variation in current with pressure for two
different voltages.

FILAMENT TERMINALS
.020" DIA. COPPER LEADS
K-5302958 OUTLINE RESISTANCE VACUUM GAGES

e MAX.
I2 -I-
MIN. 5-20-48

ETI.195A
PAGE 4
8-48

300
2 200
FZ
100

GL-5628/FA-I3 APPROXIMATE PRESSURE -CURRENT CHARACTERISTIC
VOI TS
VOL

K-8639661 300 200

100

200

300

400

500

600

700 800

900

1000

1100

PRESSURE IN MICRONS OF DRY AIR

Fig. 1
GL-5628/FA-I3, GL-5629/FA-I4

APPROXIMATE CURRENT -VOLTAGE CHAR I =OR VARIOUS PRESSURES OF 1)RY AIR

----

&P\4')
't:' ,,..3
63X°
,10
SO
23

5-20-48

....,
\,,
100
0 K-8639660
8-48 (9M) Filing No. 8850

"..,r
NS 1,
Nai

.........- --- ----... --s --- --"*".

NOT-

ONLY THE ZERO PRESSURE CURVE APPLIES 10 HE CONI-ENSA1OH TUEE. SEE NST,LLATION 8( OPEPATION FOR b<PLANAT ON DE DOT1ED OURV:S.

?-s P4/.
e.,,i
..., 40_,
N...
Ns

\6F

2

3

4

VOLTAGE ACROSS TUBE IN VOLTS

Fig. 2
Electronics Department

5-20-48

GENERAL ELECTRIC

Schenectady, N. Y.

r
la

APPLICATION DATA
ETI-261 PAGE 1
7 1 -46
GENERAL ELECTRIC VACUUM CAPACITORS

ETI-261 PAGE 2 11-46

DESCRIPTION
The vacuum capacitor is a high -voltage, vacuum capacitors are specially suited for high small -size vacuum -dielectric capacitor designed voltage circuits where stability of operation and for use on d -c, a -c or radio -frequencies. G -E small size are important factors.

MECHANICAL ADVANTAGES

Vacuum -tightness and strong mechanical joints are assured by the use of glass to metal
seals. (The fernico is imbedded in the glass which adheres permanently to both inside and outside of the fernico cup.) Mechanical sturdiness is realized by using metals of sufficient strength and thickness to withstand vibrations
of 20 G. The compactness of design required for high mechanical strength results in a vacuum capacitor which best utilizes the inside space and

avoids long leads. Constructional features of a typical 7500 -volt capacitor are shown in the cross-sectional view of Fig. 1. The bell -shaped construction of the 16,000 -volt capacitor (see Fig. 2) minimizes circuit loss and also affords high -frequency operation.
All G -E vacuum capacitors are provided with terminals which fit a standard 30 -ampere fuse clip, allowing rapid capacitor changes when desired.

COPPER TERMINAL CAP
(SILVER PLATED)

SPOT WELD
CARBON STEEL DISC
(COPPER PLATED)

STEEL TUBING

4

FERNICO HEADER

.N

NICKEL WIRE RING

GLASS TO METAL SEAL

COPPER CYLINDERS

\

SPOT WELD
COPPER BRAZING RING

STEEL TUBING

GL-IL38
Fig. 1-Cross-sectional View._of a 7500 -volt Capacitor

\SPOT WELD
CARBON STEEL DISC (COPPER PL TE)

COPPER TERMINAL CAP
(SILVER PLATED)
STEEL TUBING
FERNICO HEADER NICKEL WIRE RING GLASS TO METAL SEAL
COPPER CYLINDERS

ETI-261 PAGE 3
11-46

SPOT WELD
COPPER BRAZING RING

STEEL TUBING

GL -1L31
Fig. 2-Cross-sectional View of a 16,000 -volt Capacitor

ETI-261 PAGE 4 11-46

ELECTRICAL ADVANTAGES

G -E vacuum capacitors are designed with sufficiently great internal spacing that d -c

CAPACITANCE
illlF

voltages up to the maximum voltage rating may

be applied. No de -rating is required for d -c

applications with G -E vacuum capacitors.
Similarly, capacitors may be placed in any series

5020

or parallel combination for use on d -c, a -c or

radio frequencies. The coaxial cylinders which are brazed to the 5010
fernico headers introduce into an electrical

circuit a minimum value of inductance, resulting

in a high Q vacuum capacitor.

50 00

The vacuum construction allows operation at

high altitudes and minimizes maintenance.

Conditions of high humidity have no effect on 49.90 the capacitance of G -E vacuum capacitors.

Moisture can cause a slight leakage current

across the outside surfaces of the capacitor but this is usually only a momentary condition. With the capacitor operating the surface dries
in a few seconds and external breakdown
potential returns to normal.

49 80

-100

-50

0

50

100

150

TEMPERATURE DEG 0

K-9033913

8-8-45

Fig. 3-Temperature Coefficient Curve for a GL -

G -E vacuum capacitors have a low tempera-

1L38 Vacuum Capacitor

ture coefficient as is shown from the following curve. The temperature coefficient of the GL 1L38, as shown in the curve, from -50 C to +100 C is 27 X 10-6 mmf/mmf/°C.

either direct current or radio -frequencies, over voltages may cause a discharge to take place internally. In most cases, this discharge is not
injurious to the G -E vacuum capacitor, and

The G -E vacuum capacitor does not depend when the overvoltage is removed, the capacitor

upon a solid dielectric for its voltage insulation. will function as usual. Overvoltages should be

For that reason, there is no dielectric to puncture avoided if there is sufficient power in the source
if overvoltages are accidentally applied. On to cause melting of the electrodes.

RATI NGS

Vacuum capacitors are rated in terms of the may be applied to the G -E vacuum capacitor at

following characteristics:

various frequencies. This radio -frequency volt-

Capacitance All G -E vacuum capacitors are rated at a
nominal capacitance 5%. Voltage Rating
G -E vacuum capacitors are rated to operate at a given peak voltage which may not be exceeded for continuous operation. Transient

age may be impressed upon a d -c voltage, if the
sum of the two voltage does not exceed the
voltage rating of the capacitor. The current -frequency curve indicates the
radio -frequency current which will flow through
the capacitor when the maximum radio -fre-
quency voltage is applied.

voltages in excess of rated voltage are allowable up to the voltage breakdown limit given in the specifications.
The total voltage across the vacuum capacitor
(excluding transient voltages) shall be considered to be the sum of the d -c and a -c peak
voltages.

Operating Temperature
G -E vacuum capacitors may be operated from -40 C to +65 C. However, if the ca-
pacitor is carrying high radio -frequency currents, it is recommended that the ambient temperature be less than 50 C.
Type of Vacuum Capacitors

Voltage -frequency, Current -frequency Character-
istics
The voltage -frequency curve on the particular description and rating sheet shows the maximum

G -E vacuum capacitors are made in two voltage ranges, 7500 peak volts and 16,000 peak volts. They are available in capacitance values from 6 micromicrofarads to 100 micromicro-

allowable peak radio -frequency voltage which farads in both voltage ranges.

APPLICA TIONS*

For the most part vacuum capacitors are used in applications where their particular characteristics result in the greatest benefit to
the user. Because of their compact size they are

*Circuits shown on this page and those following are examples of possible tube applications and the description and illustration of them does not convey to the purchaser of tubes any license under patent rights of General Electric Company.

PLIOTRON

PLIOTRON

L
LI RIR2

APPLICATIONS (CONT'D)
O VACUUM CAPACITORS
L3
O
L4

VACUUM CAPACITOR

En -261 PAGE 5
11-46

C
L55

K-9033970

10-20-45

Fig. 4-Electronic-heater Circuit Using Vacuum Capacitors

specially suited for use as tank -circuit capacitors,
and blocking and by-pass capacitors in diathermy and electronic heating equipment.
Fig. 4 illustrates the use of four GL -1L33 capacitors as grid -blocking capacitors in a 1200 watt Electronic Heater for dielectric heating. In this circuit the B+ voltage is grounded in order to minimize hazard to the operator.

* RESISTANCE AND INDUCTANCE PARASITIC COMBINATION

K-9033966

10-20-45

Fig. 5-Oscillator Connection of Electronic -heater Circuit

(Showing D -c Blocking Capacitor)

Another example of the use of vacuum capacitors in electronic heating equipment is shown in Fig. 5. Shunt feed is used to supply the plate voltage, and a vacuum capacitor is used as a d -c blocking capacitor to keep the plate voltage from the plate coil. The capacitor em-
ployed is a GL -1L23. In diathermy applications, vacuum capacitors
may be used as in Fig. 6. The capacitors C5, C2, C3, C4 and C5 are employed as resonating and by-pass capacitors.

STEP UP TRANSFORMER LI

CI

C5

NEON LAMP

LINE RECEPTACLE LINE SWITCH

W

II

L9

c21 L6

o PLIOTRON

C

C3
EARTH GROUND

FOOT SWITCH RECEPTACLE
K-9033585

C4 RELAY

INTENSITY
CONTROL R2

F2 FILAMENT WINDING

Fig. 6-Typical Circuit of Inductotherm Unit with Surgical Attachment

T C7
CASE
1-2-45

INSTALLATION AND OPERATION

in general, the exact method of mounting G -E force to hold the capacitor firmly in applications vacuum capacitors will depend upon the circuit where vibrations will be encountered.

in which it is used. There are, however, several G -E vacuum capacitors may be identified

rules to be followed for maximum efficiency of readily as to proper capacitance by examining

operation.

the letter stamped in the header on one end.

Symbols indicate capacitance as follows:

Mechanical

A

6 micromicrofarads

The capacitor may be mounted in any posi- B

12 micromicrofarads

tion. Mounting terminals should exert sufficient

C

25 micromicrofarads

ETI-261 PAGE 6
11 -46

INSTALLATION AND OPERATION (CONT'D)

50 micromicrofarads

E

100 micromicrofarads

The marked end of the capacitor is connected

internally to the inner cylinder. For this reason

it is advisable to connect the unmarked end to

ground potential in those applications where a

ground is permissible. This type of connection

allows the outer cylinder of the capacitor to act

as a shield to minimize the effects of nearby

objects on the net capacitance of the unit.

Electrical
Vacuum capacitors should be mounted in such a way that the connections have ample current -
carrying capacity. Fuse clips are not recom-
mended for connectors if the current exceeds 10
amperes. A satisfactory connector may be made by drilling a hole approximately 0.550

inch in diameter in a block of copper or brass, splitting one side to allow the capacitor terminal to be inserted, and clamping the split sides together with a machine screw.
To prevent overheating, it is recommended that the vacuum capacitor be mounted so that it is as far as possible from any direct radio -
frequency field.
Thermal
;1-1 cases where capacitors are connected to sources of heat, such as a hot radio -frequency coil, it is advisable to make the connectors of a large enough mass of material so that maximum heat radiation is obtained.
Applications using air-cooled tubes may
provide for venting a portion of the air so that it flows over the vacuum capacitor in the circuit.

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

11-46 (8M) Filing No. 8850

GL- 1 L21
DESCRIPTION AND RATING
En -262 PAGE 1
11 -46

VACUUM CAPACITOR

DESCRIPTION
The GL -1L21 vacuum capacitor is designed for
circuits where the peak voltages range up to
7500 volts. It is useful as a plate -tank and by-pass capacitor in radio -frequency oscillators or amplifiers. The GL -1L21 also serves as a neutralizing capacitor in radio -frequency amplifiers in conjunction with small, low -capacitance padding capacitors.
The small size and compact construction of the vacuum capacitor permits circuits to be designed more compactly, allowing shorter leads than with
air capacitors. Some of the more important
advantages, in the design of high -frequency circuits, are listed below:
1. Vacuum capacitors are comparatively loss-

free, since there are no losses in the vacuum dielectric and because the total capacitance is lumped into a size about 1 cubic inch. 2. Dust and other foreign matter have no effect on vacuum capacitors. 3. In communication applications, vacuum capacitors are extensively used as antenna coupling capacitors especially in aviation radio installations, where constant internal voltage breakdown is an essential requirement. 4. Internal voltage breakdown is constant and is independent of altitude, temperature, humidity and other factors because of the vacuum construction.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS
Electrical
Capacitance t 5 per cent Maximum peak voltage

12 micromicrofarads 7500 volts

GENERAL CD ELECTRIC

GL -1 L21

ETI-262

PAGE 2 11-46

Ambient temperature Minimum Maximum

TECHNICAL INFORMATION (CONT'D)
-40 centigrade +65 centigrade

Mechanical
Maximum over-all length Maximum diameter Net weight, approx Shipping weight, approx

3% inches 1% inches
4 ounces 1 pound

VOLTAGE AND CURRENT VS. FREQUENCY

The curves of page 3 show the maximum allowable peak r -f voltage and maximum rms current
for G -E vacuum capacitors when operated at various frequencies. An additional d -c voltage is permissible so long as the total voltage (d -c plus
r -f) does not exceed the maximum allowable peak voltage as indicated by the dotted line shown on the curve.
These curves apply when the capacitors are operated at an ambient temperature of 50 C and for normal operating conditions with natural air
cooling.
The correction curve below indicates the percentage increase or decrease in r -f voltage and current when G -E vacuum capacitors are operated at ambient temperatures above or below 50 C. (Note that the allowable peak voltage (r -f plus

d -c) at any ambient temperature should not exceed the maximum as indicated by the dotted line of the curve shown on page 3.)
Example Assume a GL -1L21 is to be used at a frequency of 30 megacycles and at an ambient temperature of 40 C. The correction curve indicates a correction of 118 per cent. The curves of page 3 indicate a maximum r -f voltage of 4600 volts peak and a maximum current of 10 amperes. Applying the correction factor of 118 per cent to these values indicates an allowable maximum peak r -f voltage of 5428 volts and a maximum current of
11.8 amperes.
For operation at frequencies higher than those indicated, consult the Electronics Department, General Electric Company, Schenectady 5, New
York.

VACUUM CAPACITORS
GL -1L21, 32, 33, 36, 38, 22, 23, 24, 25 AND 1L31 CORRECTION CURVE (PERCENTAGE VOLTAGE OR CURRENT VS AMBIENT TEMPERATURE)

150

140 130

Lcil 100
cOc L, 90
O
so
U CC
70

60

50 K -69087-72A7

10

20

30

40

50

60

AMBIENT TEMPERATURE IN DEGREES C

70 4-5-46

VOLTAGE AND CURRENT VS FREQUENCY
(FOR OPERATION AT 50 C AMBIENT TEMPERATURE)

GL -1 L21
E T I -262
PAGE 3
11-46

_WM Mil ME M= MMEMMEREMMEMMEMMEMMEMMEM

IIII ....Imp. Hilmuminmdllo iiiiiiiiiiiiiii III BIM Ili li

1111 II 11111111111 111111111111111111111111

3AiMNm1MEEM1EmME1MEmME1EMuEE1EMmm1EMEmE1EMMom1EEMmE1EEEm1NNEMm1EEEE1EEmEM1MEoEU1EEEmM1EEE1MNrEm1MO.E1E.ME1MEME1moMEEImiEME1mmMMI1.mEEM1.MuME1.EmEM1.NmMM1.EuEE1.EmMM1.EM1-MEmEI1-Emu1MmmM1EEmE1mMMmM1mMEaEE=MNEMEIMMMMEEEMEMMMAMEEEEENMMEEEMMEEEE6MMREmIEM.EME.MMEmEEM.MEMmEMEM.EEME.mME.E=.MN=E.IE=MmNmMEmIMMmM=EEEMMmM.OEmEMmmuMMmmmEEEmmEMMEMM.MmEMEEmMUEmmEMEEmMMEMMREmEEEMMMEgEEaMEMMmEEMMmEMEEiEMMRiEEMWmEMpEAEuMRmMEMmmEMEouEEMmm

iiiiiiiiiiiiffililliiiiiiiiiiiiiiiiiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII III mENEEEMMEMOUEMEME BEM =MENEM EMEMEMEMENUMEEMEMEMEMMEN _MM. Millrnriumalsjimp_d,mi_p mmmmm

:III= : 11111011N I 1111111111 11111111111 EMIIIIIIIII9111111

MINIYAN EMIIIMM I1..M.11 I X....

____Iw

g Iii I

Am1MmE1EM1mNm1Er1Fi1AmM1mEE4mM1mM1EEn1Wd1AE1EEME1E1NIqIE1EII111i1vPem1e1xg1m1E1M1E1EM= iEdMimEloMlamE1mMi1EgM1mE1eE1m1NmE1mE1i1l1mMo1EmM1mE11=m1Eo1MmM0E1mN1u=1m1pElm1EummEmmu1E1mm1mm1i1m1Em1mo1m1ma1p1sm1ou1mm1

EElNmEEEMVEAMAEME MmEm W!A".MMmmEEMEMMM.E!MAM,I.EM.EMfNEEEMEB_MEEEMEMMMEEMMIEMMIMIEIMIEEMMEIIIIImImRmIIgImImIuIMlEMmImIIIII.MMEN_EMEMEMIELU2MmEmIiFsEnCmE NMEENEEE

al 0m1iEEmWEmAo1IvmAm1MimuEi1mWUmEmmWmErmrMrAEpAmmimmP.iA:lumuImmmMlunEmaMAmmEommEmrpEuP..Mm_E.:mag.u...imm..gmrrmAmggmEmmimomElnpi-s.oA11g1m11mI2,g-!r-!p.!m...o..m1!m..:.=1r11:i6g0"n11Mi1Mm11p-1um1mn1i1im1f1NIf1.m1moo1.mrm1gm1m1oiu1mmn1mm1g1oem1mm1umm1mm1go1euri1nu1orm1mmm1iEr1on1emI1uFmMmoo1A1mimM1mmo=1

415A0m2014E:01-:m1.21-1-1.1.!.!m!m!!u!m!mIoimimim11m1o1m111m1o1w1 I1ImImIuImImIuImIImImIoImLmAmIIoImImIsImIoImImIoImImIoImImIoImImImIImIoImI

rt7.1:inggiliiiiiiiiiiiiiiiilliiiiiiiiiiiii 1111111111 111111 1111111111111111111111111

1mo1m11E1M1E1E1M1E/M1E1M11M1E1M1E1E1M1MEMIMIEIMIBI'IEIMIETMIllraliiiiiiiiiiiiiiilliiiiiiTilliiiiIiiiiiiiiii

..... ........................ E...

EN EIETSEEELT 1! M!E;4MM!EMeItMtM.ERME .IIIIIMAITell I

.

.

..ME1.M.1E.M.1M.E.1..1MIE.MEMM..MEEE..MMMM..MEIM..MmIE..mI..M.EI...EMI...EIM..mIM..mIE..MI.M..EI.E..EE.MM..MM.EM..EM.N.E.EE..EE.ME..MM.EE.....EE...M.EEM.E.MMMM.M.EEME.E.E!MME.M.EIMME.E.EME.MM.mM.E.mEE.EMEMEMmMMME.EEEE.NMMM.EIM..m:M..E..MM..E..EE.MEME.E.EE.MMN.EE.E.E.Mm..m..EE..M.M..MEM.M.EMM.E.NEM.M.EMME..EEM..MNME..MEME..EEEM.MEMEIE.Nm.M.MEE.M.BEM.E.ESMEB.EENE.MMN...EE.MIMMEpE:I.MiJ.EEI.l.NM.iN.E.mE.mM.M.i.ME.m.EM.m.EMu..Mm.EmI....MME..MEM..MEE..MER.M.

OmmEEE MMMMM mEMEMEEMEMEFrimiwngniia2m0m1a1n/1g1uEluaimram4ni2ntnrmipEm2iMmEmMiMriMMMMEEEMMWEAEpMmEEMEVnIuEmREMAIMNE.lEilnu/mEumrEEmSEIMEMEEMMEEMMEEEMmEmMm

it 7

MImmoanEimMolmEwmoEmommmmmpmomE.mmmnoNmooiumE.mmmmmE.mmmiM.mmuuE.ylaMmHmmmmuEwmmmAamRsiou.mM.mummmEmmmmmemm_M.mimuE.mmM.mmommM.mooumeEmomrmmmM.mE.mmms=mmumumlmmkEmmmmsoE.mmoMo=mmouMomm.mEmmmmmmMmommmEmmamuom5miiomgc.urmuFo.smhmmM,umoumMomooaEmMummCimwMmLmmmmmM.mumuuElMmmnoVMsimto_mmuoemmommmmmomomomommmorommimrmowmmum.emmmmmm1soumoo1mmmmo.mmeum.mmmrwmousooMrmmom.mM6mm.mmMmMomwmgMuimMwos.amMMmmmmouMosrmmgMm.msmgm.mMmourmamuMmomzmemmMmusnommmououmimmmmmmmamEuimmommmrommmmmmmomsuummmmgmmmimmmommmuoemmommmmmuammommmm=mmommoommmoummoummmmmmm
LI IniirailreliPiMPSHEMINHOOMPUMMUNNIUMPFULErinfin

II. 11111111171 111111111111111111111910114111111111111141111111111111111111111111

1 pnium

;1; al ;;;;;hitkin&ikl.lIialIlMIeEME:; 1" 1;!!' ;-;1;04111:1-.' a

11119;11I:1;"146";!!!!!i'

mum 1 IIIIIIII1 illommilli

iimmilliiismiiii-swilimillimillim

.. I=NNEIENEFmmIELmmIEAPI.mNNm eImMmmIomNmuIm MMMOIMMINSBNIIIIMMEMININ

"il.l.i.i.ii.ii.ii.i.N.i.gi.il.ui......:1iEimimiuimimiiiginimioimiiilNlisioimimioimimimioimimiuiliiioiiiiimioimirieimimioimimiuimim

m1EmmmummEmmm"...Limmmummmmliipiliiiillilliiiiminrgleirriliiil

iiiiiill111111111iil.l..i:iN.i..i..i.i.iiNiiiMiEiiimEimimiENliiEio9klMilEmMipiiliiiEmEEiENnEMiEMmEmiEiEmaEElMiEMmEM
4 .1111..1.....i....imm .1 ..IlM ,.m.ill. .ili... .liimil....ilim ..lim.

..11111111EMINIMENIMIIIMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

larnmpumenomommmummommmommunommopm 1111111111111111111101111111111011111111111111111111111111111111111111111111

I 111i1m1m1m1i1s1s1m1o1m1m11m:o1m1m1u1m1m1o1m1m11M0M11m11M1M11E1M1M1E1EE1M0E9M1E1M1E1m1a1I1M1E1M1E1M1M1E1M1M1E1M1E1M1E1M1E1E1M1E1M1E1M11M1E1N1E1M1M1E1N1E1M1 MMEMEMUMMMEIMENMEIIMMNEMIEEMMMEMEMMMEEMMMIMMMEMMMEUEMMNMMMEIEIMMMEMEWEMEMEEMMEIMECIMAOMMMEMMEMEMEMEEMNEIOEMMMMMEMEMEMMMME:EMnNEmNMEEERIMIMMZUE9ZEUINMMIMEMEMMMEEEMMMMMMEEEMMMEMMMEUEMMEMEEMMEIMMNEEIMMMMEEMMMEMMEEMENEMIMEMMMMEEEMMMMEEUEMM

lmmoimmmmIimImImuImmMmmImoImmImImInmImmImmImIMmIEmIMmEIMmIEmIMMmEImMImEIMmIEmMImEImNImEIMmIMmIEmIEmIMmEI.lIkzM,qIMmSMImEImMIEmEImEImEImMImEImIEnMm1EmM1mE1mM1Em1Mm1Em=MmME1mM1mmi1m41m1g121:1:1:1:1:1:1,1-1e:1P:11m1:4:1

..
MB um gm mom

1Ms1oIE1mEmE1oMmM1moEEmm1EE1MmE1IuMM1TmE1EmME1II1MUIEMmE'oWMm.=E.mEI.MuMEmME.EMM.MEm.MIMmMEmMommMumMumMmMmMmEuMmoEmM=mummmEoMueMMmmMEmmmMEmoMiEoMEmlmEmuEMmmmEMouNmEElmoMMmEimEEmoNmEemoMEammMmrumMm4EMmi1mMm1nM1.MiE1.E.E1m.mR1Mn.1iMm.1mMp1mmM.1um.E1mi-1mlM1omm1.Emm1.Emo1N1umIm1mmMo1MmmmrMuonImmImmIIIMomIEmuIMmmIMomIEmIoMImmEIugmIim.IemImMIo.MImmEImmMI

ImmIE1MM1EU1MM1Em1ME1EM1NE11M1E1MM1EI1MM1MM1EE1MM1EM1E1EMM1EM1ME1EM1ME1EM1EE1MM1EEM1ME1EM1ME1EE1MM1ME1ENM1EM1ME1EM1EM1ME1EE1MM1EM1EE1MM1ME1EE1MM1EE1MME1MM1EE1MM1EE1MM1EE1MM1EE1MM1EE1ME1EE1EK1EM1EEM1EO1MME1MM1EE0EE1EM1ME1EE1ME1ME1EM1ME1EE1EE1ME1EE1EM1EE mmEEEMEMME EMEEMEMEE EMEMEMEMEMEMEMEEEEMEMEEEEREMEMEMEENEMEMENEEMEMEMMEmEEMEMEMEmEmEm EMEE 1111111111 111111111 11111 11111111111111111111111111111111111111111111111111111111 1111

K -69087-72A8

12

16

20

24

28

FREQUENCY IN MEGACYCLES

32
4-5-46

GL -1 L21
ET1-262 PAGE 4
11-46
UNMARKED END NORMALLY GROUNDED
t"
e

+.010.
.562" -.005'
DIA
2t"4. 32 -32

i4r+-16"
25"+ 1" 32 -32

MARKED END

CAPACITANCE SYMBOL

11-46 (8M) Filing No. 8850

K-5964469

GL -1L21 OUTLINE

10-2 9-4 5

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

GL -1 L22
DESCRIPTION AND RATING
ETI-263 PAGE 1
11-46

VACUUM CAPACITOR

DESCRIPTION
The GL -1L22 vacuum capacitor is designed for
circuits where the peak voltages range up to
16,000 volts. It is useful as a plate -tank and by-pass capacitor in radio -frequency oscillators or amplifiers. The GL -1L22 also serves as a neutralizing capacitor in radio -frequency amplifiers in conjunction with small, low -capacitance padding capacitors.
The small size and compact construction of the vacuum capacitor permits circuits to be designed more compactly, allowing shorter leads than with
air capacitors. Some of the more important
advantages, in the design of high -frequency circuits, are listed below:
1. Vacuum capacitors are comparatively loss -

free, since there are no losses in the vacuum dielectric and because the total capacitance is lumped into a size about 1 cubic inch. 2. Dust and other foreign matter have no effect on vacuum capacitors. 3. In communication applications, vacuum capacitors are extensively used as antenna coupling capacitors especially in aviation radio installations, where constant internal voltage breakdown is an essential requirement. 4. Internal voltage breakdown is constant and is independent of altitude, temperature, humidity and other factors because of the vacuum construction.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS
Electrical
Capacitance ±5 per cent Maximum peak voltage

25 micromicrofarads 16,000 volts

GENERAL ELECTRIC

GL -1 L22

ETI-263

PAGE 2 11-46

Ambient temperature Minimum Maximum

TECHNICAL INFORMATION (CONT'D)
-40 centigrade +65 centigrade

Mechanical

Maximum diameterinches Maximum over-all length

4? -6- 1/8 inches

Net weight, approx Shipping weight, approx

6 ounces 1 pound

VOLTAGE AND CURRENT VS. FREQUENCY

The curves of page 3 show the maximum allow- d -c) at any ambient temperature should not exceed

able peak r -f voltage and maximum rms current the maximum as indicated by the dotted line of

for G -E vacuum capacitors when operated at the curve shown on page 3.)

various frequencies. An additional d -c voltage is Example Assume a GL -1L22 is to be used at

permissible so long as the total voltage (d -c plus a frequency of 30 megacycles and at an ambient

r -f) does not exceed the maximum allowable peak temperature of 40 C. The correction curve indicates

voltage as indicated by the dotted line shown on a correction of 118 per cent. The curves of page 3

the curve.

indicate a maximum r -f voltage of 4500 volts peak

These curves apply when the capacitors are and a maximum current of 15.5 amperes. Applying

operated at an ambient temperature of 50 C and the correction factor of 118 per cent to these

for normal operating conditions with natural air values indicates an allowable maximum peak r -f

cooling.

voltage of 5310 volts and a maximum current of

The correction curve below indicates the per- 18.3 amperes.

centage increase or decrease in r -f voltage and For operation at frequencies higher than those

current when G -E vacuum capacitors are operated indicated, consult the Electronics Department,

at ambient temperatures above or below 50 C. General Electric Company, Schenectady 5, New

(Note that the allowable peak voltage (r -f plus York.

VACUUM CAPACITORS
GL -1121, 32, 33, 36, 38, 22, 23, 24, 25 AND 1L31 CORRECTION CURVE (PERCENTAGE VOLTAGE OR CURRENT VS AMBIENT TEMPERATURE)

150

140
130
120
110
I-
I=c 100
O Li 90
-4r
80
Ua-
70

60

50

10

20

30

40

50

60

K -69087-72A7

AMBIENT TEMPERATURE IN DEGREES C

70 4-5-46

GL -1 1.22

ETI-263

7--

VOLTAGE AND CURRENT VS FREQUENCY

PAGE 3
1-461

(FOR OPERATION AT 50 C AMBIENT TEMPERATURE)

00 32 ummummommsmommesmown...mmommimmaillibmwmz,!*m mmmomrms m mom mmommuummungsms

IE
CD

o

28111l.i1.n.1r.1m.1.1.i1n.1.n1.1i.a1.PrlEA..1P.1.O1.1.M1.1.M1.1.1.IW.1 .O..M. MENNICEMMIEEMnMMaEgNNrEaMEbNiNiElaMEAMENMMIEPMEENIPMM1IN1I1fitl1al7I1MM1ME1NME1NI1NME1E1MIM1MEN1EM1MMilEEfMfMilMElMinMIM

NEM =NM= M MMENNENNEMMENMENNEEMEMEMENNIM MENNINIftr.MENNM MMEMMEMMENNMEM

< IMPIIMMIll 24 min mmimilimmm..m11m1o1m1m1o1m11n1u1m11g1m1m1u1m1m1o1m1m1o11m1m1u1m1m1o1m1m1o1m11m1e1n1gs11m1m1u1m11m1o1m1m0u3m1m1o1m01m1u1m1m1u1m1m1 uomprAnquommommmompaimil ..:

.

__.1= mom milmummommor-mmommummommlimmimmommin mil =MENNEN= MN= =======NEENN

< - "M M"""M"M""M"M"m""11".11111111.111111=11111111 M111 11111111111111"111 1111

[--
um LDZ
"5 uJ
--Ch

11261iMMEn1EMmiME1rmMN1ssESn1iMImM1mMuEi1mEMmrN1NiNA1AnWMmd1AIm1NNu1NmmMM1EoNNmmMNeEmErMms1Nm=1IM.M4E.M1N.ME1.EM9N.1NMEE1-MM1.M9.M1o.=m1.NM1m=m1-oo.1iw.m1mlmm1mom=1oMumMm1Eumm1Mmmi1E.ulNlmN-imM;Elu-Nlm.Eim.Em.uMm.Em.mNmToNiMm.mEm.Mmo.mmimnIimIuElIuNmIlNPmmmEumMmNmooNmMEmmoEmmMMmelMmmuIEoi:NmmNIuNElmuMAlmuEsNimmMmmoNus=mIm

mu < = >.< 12

MMIENMIAMMUMMSIWEABI NEN mwmruimssirrAmmumimmmm

PnMamMumEmmmMu.P.mMmm.mNomMommEmmMuoMmmEmNmEoNmmNuEmmimsmoommmomsmi.mguuimmgmmuomsmiimlmummmuolmmimnmmeuummmmmommimmmom.m7l:emmpArBiUnRiEmMmEALrEtZ.mMmNo=m

C.)

81111E1111 4111111111111111 11111111111111ME=Psi

1111111111

11111 1

1,p1N1E1M1FP0i1M11m1o1m1m1o1m1m1,1=1=1i1m11m1i1lEmM.N.R.Og1i1m1m1u1l1i1m1u1m1m1111i111 11111111111111.1211111 11

WW1 I 4 1mupWgmrArm,IAi.mIl.mP.m.S.o..1m..1m.:1o.:m-.1m-.1o..1m1.Em..:.i.a.m.1.m.1.E.1.m.1.m!1.om.1mm.1mz.1m..1u..1.m.1.p.1.l1.i.0".m1..m..i:.mn:..s:..m:..o:,.v1om1mi.ms..l.1ii1mmm1.1o=1m1s1.N1.M.1.E.1.N.1.N1m.P1o.M1m.E1.NI.mW.mM..=I s1u11m1m.o.m.m.i!l.m.Mm=.o1mE1N1sN1uE1M1mI1mN.uM.mE.mN.

()UNA 111111111111111111111111111a3111161111

1111111

INN KMME

=NM EME.MMEENIMMANNUMMEMOM`MMEMMEEMPPIIMMENNEEMENNEN

1111 1111111111111;GIAEMI NMEICIIMMIUMBEll GlIGIRIVIIIDI A111111111 I
16 M.'.M....."1.M1.M.T. A11I1I1II1m11m111umMMMmMMi2I1I"I.II"I2I"II1I6I2I4m11a4l1l1n1i1li1m:1m24=il1l0im10m112il1i0m11m11i4t1a::o! m1m14u1l11l1i11m1

'""'"'"' II° "M. 111 MM. IMMMM1911 1111 ME1 AM ENNIMMINENIM11 Mill MmENMEB=MMENNE

1 5 Filinriliaill
EMENNIMUMN INO...1

iMl1dMribMlEidMiNl=iMaNlMlEM11M1E1NI:E1N1E11N1EEM1E1N1E1M1E1N1N1E1M1EN

=N11NE

11111111111111

k impummo non mumpmonourg mommm illimall kriellimil 1 IIIIIIIIIIIJII IIIIIIIIIIIIIIIIIII 1111
V2 1-4 I 111MIL

"111111111111

11111111131111A1011111 11111111111 1111E111 11111 III 1111 III I III 111111111 1111 ,s, 13 pqmp,inimpapip IIIIIIIIIp mom III! III 1111 ill 1 111111111111 1111

---1 11111111111010112111111111111gROMME1111111111111111hEMBEIMIE

11 21111110M111111111111111111111.111111111111

1E15'

1111111111111113111M1121100111111111111111111111111111111111111111111111111111111111111

i_'_,_I 10 PIIIII11111111211101VH. 291111111111111111181111111111111111111111111111111111...11

cc !!'r
x

9 milillilmiiipiiimiiipi.liii,g,i,i,i,,i,,i,,,i,,i.i.iimi.iiii.il,im.i.l.,l...1....1...,.1...1....1...1....1....1..1..t1...1...1....1.1.1...0....1..

c<o 67 1111111111111111WHIN1111111111111111111

C_DJ _J

5 1 1111101111111111MEOPEOPMEEMINFILS mo

:::c .11111PitilliiiiiiiiIIIIMENAM1001111111111111d

BillibaNEMPE 7D

X P111W111I1II0I0II1m11m111il1if1i0ll1ii1i1II1I1II1I1I1II1IfIfIIiIlIiIIfIfIIiIlIlIIiIfIiIISIIII1i1iiii014..."

MM

:E
2 11111 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 1111111111111111111111111111111

1

'3'0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

K -69087-72A6

FREQUENCY N MEGACYCLES

4.5-46

GL -1 L22
ET1-263 PAGE 4 11-46
UNMARKED END NORMALLY GROUNDED\
1

A1.562"

D IA.

4
25"+1"
32 32

3"+.L"
-16
49"+ l" 16

MARKED END

2" MAX.DIA.

25.'4.
32 -32
CAPACITAN OE
SYMBOL

11-46 (8M) Filing No. 8850

K-8639363

GL -1L22 OUTLINE
0 Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

10-29-45

GL -1 L23
DESCRIPTION AND RATING
ETI-264 PAGE 1
11-46

VACUUM CAPACITOR

DESCRIPTION
The GL -1L23 vacuum capacitor is designed for
circuits where the peak voltages range up to
16,000 volts. It is useful as a plate -tank and by-pass capacitor in radio -frequency oscillators or amplifiers. The GL -1L23 also serves as a neutralizing capacitor in radio -frequency amplifiers in conjunction with small, low -capacitance padding capacitors.
The small size and compact construction of the vacuum capacitor permits circuits to be designed more compactly, allowing shorter leads than with
air capacitors. Some of the more important
advantages, in the design of high -frequency circuits, are listed below:
1. Vacuum capacitors are comparatively loss -

free, since there are no losses in the vacuum dielectric and because the total capacitance is lumped into a size about 1 cubic inch. 2. Dust and other foreign matter have no effect on vacuum capacitors. 3. In communication applications, vacuum capacitors are extensively used as antenna coupling capacitors-especially in aviation radio installations, where constant internal voltage breakdown is an essential requirement. 4. Internal voltage breakdown is constant and is independent of altitude, temperature, humidity and other factors because of the vacuum construction.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS
Electrical
C§pacitance t 5 per cent Maximum peak voltage

50 micromicrofarads 16,000 volts

GENERAL 0 ELECTRIC

GL -1 L23

ETI-264

PAGE 2
11.46

Ambient temperature Minimum Maximum.

TECHNICAL INFORMATION (CONT'D)
-40 centigrade +65 centigrade

Mechanical
Maximum over-all length Maximum diameter Net weight, approx Shipping weight, approx

4* lA inches
.2 inches
6 ounces 1 pound

VOLTAGE AND CURRENT VS. FREQUENCY

The curves of page 3 show the maximum allowable peak r -f voltage and maximum rms current
for G -E vacuum capacitors when operated at various frequencies. An additional d -c voltage is permissible so long as the total voltage (d -c plus
r -f) does not exceed the maximum allowable peak voltage as indicated by the dotted line shown on the curve.
These curves apply when the capacitors are operated at an ambient temperature of 50 C and for normal operating conditions with natural air
cooling.
The correction curve below indicates the percentage increase or decrease in r -f voltage and current when G -E vacuum capacitors are operated at ambient temperatures above or below 50 C. (Note that the allowable peak voltage (r -f plus

d -c) at any ambient temperature should not exceed the maximum as indicated by the dotted line of the curve shown on page 3.)
Example-Assume a GL -1L23 is to be used at a frequency of 30 megacycles and at an ambient temperature of 40 C. The correction curve indicates a correction of 118 per cent. The curves of page 3 indicate a maximum r -f voltage of 3000 volts peak and a maximum current of 20.5 amperes. Applying the correction factor of 118 per cent to these values indicates an allowable maximum peak r -f voltage of 3540 volts and a maximum current of
24.2 amperes.
For operation at frequencies higher than those indicated, consult the Electronics Department, General Electric Company, Schenectady 5, New
York.

VACUUM CAPACITORS
GL -1L21, 32, 33, 36, 38, 22, 23, 24, 25 AND 1131 CORRECTION CURVE (PERCENTAGE VOLTAGE OR CURRENT VS AMBIENT TEMPERATURE)

150

140
130
120
cc
110

cc 100
cc
cOc 90
O 80
u..
70

60

50

10

20

30

40

50

60

K -69087-72A7

AMBIENT TEMPERATURE IN DEGREES C

70 4-5-46

GL- 1L23

ETI-264

. ....

VOLTAGE AND CURRENT VS FREQUENCY
(FOR OPERATION AT 50 C AMB ENT TEMPERATURE)
. MN

PAGE 3 I1-46

add* Imo 32

711 101111111111111
mmul...._ nu

cc wV) 28 1.....e .... r .difgluinlluunraim-sos=hAoMulIsNen....:.:.:.::u::l:u::nfiini.-..r.a..l1im:4m55il.n4immumnuumrrna

_1 cc

<co LIJ 24 IniiiiIiiilialiiiiiiii.liiiiiiiiiiiiiiiiiiiiiiiiiiiiiildigilkiiiii

< pliiiiiiiiiiIiiiiiiiiiiiiiiimikulniMiiininallPailmsdpammim

< 20 IlliirAiumnp!Inimmundmumumiliiilliflininhifillihommuliii

M= Iz-
< (2

16 12
8

IMIIIIIIIIIMM*1111MIIIMIMINIIIMPI11111111111MIIMMEMP/101111
MilimitiiiiiiiiiiliiiiiIkPiihnibm-RE-Siiiiiiiimumuminniiiiniiii
mIIstMNaaireImIrMdI,IpiVImI.pMiInPI.7I-PoI.N-oI.P.om.A.wM.rm.-i.m.if".luf.i-l.umm-i..mn--m.mrnN-Po.ioli..lii.!upr.L:mlhmki.aa..i.Ei.wp.i..fr-.l.iI-.ilI,mulmM.il.maiainlI.II.iRa.nM._.i.l.nd0Pi....Fi,-.Hf,.-.mfuiI.ul.Lu..kn...1Mm..i1.l..1i-.I1Mp-.I1r.aI.u1.I1im.IMr1.In1-.MmP.Im.NoN.M1,g1e.iI1.LIE1.nsI.1Im.r1NI41IeoI.a.MAnm..I

M,iiiiinqamgpotiliilgimuMniImMuIImMmIIIItIhVipIIrIIaIPtoIuCpIaIIrIsIMuIsIiIaI qHu0a1u11u1m11m1w11m1mMuIMmI

11111:111118101111dIPPAIMIIMIIM111101111111i1HEIMIMIKAMIIMINII

- 16
15

nYII.`uIIMrimdmIunNmm'Iael"irli-qlanniuPmmrLimimlIphuilmuiEprnalpiumraomtliliaamlcinkmi-ulill.ipiAiiiLniIrZiiilIiniIimIMLiLniu.eI.Pu.NrI.aM.mIm.II.LI.imV..i.i.A.i.i.oMi.i.mlIuIdVmmAimHulMiummpmmiumiiuuimInMmrai

iiiiiiiiiiqugilinindliiiiiiIIMI MI iiiiiiiiiiiiiiiiiiiiiiiiiim "liiiiiiiiili
ILI) 14 1E1111111K kletipunuminiumuninumunnumninunnummumim

0 imumanimadmpunommonmpomiumpiimmommimi

13

- 12 1111111:11511111111111lih11111110111MLIMININIMMI

111111111ibilIng 111111111P1111111111111111111M1111111111111111111111

11

Imill111110illilliNsl 111111111b11111111111110111011111111111111111111111111
10 IPIIIIEHEIMILMIERIMIIIIIIMERMIMINEHEMPLIMMUNII
9 " ' ;;;;;;;;;;;imaiggq;;;;;;;;;;;;;;;;;;;;;;;I;;;;I;;;;;;N;

8 iimiiiiiiiiiiiiiimiiullsoimgiglimpoiiririiktoizr,0i1p.p90i1im11u1.l=i,m. . mellio.m.. ..o..o..,m....m....o..m....i.

7 6

pLiumm"-m....i.uprmoIm.m.miism... '.p..i`.1r1.u.1.m.1.`m"o...u...i.p.m.h":;o1,2o,,1m11m11.1.i.1l.1ip11i1i1i-Mmi.l.IbIEMiorManEmd1l1om1o1im1p1

5 1.me74I 11611ll1ie1lu1mlluiimiiniioMliniinni.g..I-N10I9M111M11I1R8M1mEalNinnMingEiiNiiiEm

Iinlili.umInmoiulirmemmlimn i.muiniiumruniuliniiriiintrti9li-E.9hl-ii;i.iiniiiiaiidiiEiiMiimINiiiIiMPIE

2 mlniunombrurmonuimurkmunuuommmummmuummninu. mnmumu..md..imbuiliirnm. .mi.i.m.u..mm..uinimuiinimiiiouiMwmIEurmmNlFnhIloMllaniEmimRmEiiiPmliTmmEi

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

K -69087-72A6

FREQUENCY IN MEGACYCLES

4-5-46

GL -1 L23
ETI-264 PAGE 4 11-46

UNMARKED END

IR.

NORMALLY GROUNDED\

6 2 "

D IA.

25.'4. I "
32 -32

3u+1"
-16
49"+ I" 16

/--4 2" MAX.DIA.
MARKED END

25"+ 1 "
32 -32
CAPACITANCE
SYMBOL

11-46 (8M) Filing No. 8850

K-8639363

GL -1123 OUTLINE

10-29-45

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

GL -1 L24
DESCRIPTION AND RATING
ETI-265 PAGE 1
11-46

VACUUM CAPACITOR

DESCRIPTION
The GL -1L24 vacuum capacitor is designed for
circuits where the peak voltages range up to
16,000 volts. It is useful as a plate -tank and by-pass capacitor in radio -frequency oscillators or amplifiers. The GL -1L24 also serves as a neutralizing capacitor in radio -frequency amplifiers in conjunction with small, low -capacitance padding capacitors.
The small size and compact construction of the vacuum capacitor permits circuits to be designed more compactly, allowing shorter leads than with
air capacitors. Some of the more important
advantages, in the design of high -frequency circuits, are listed below:
1. Vacuum capacitors are comparatively loss -

free, since there are no losses in the vacuum dielectric and because the total capacitance is lumped into a size about 1 cubic inch. 2. Dust and other foreign matter have no effect
on vacuum capacitors. 3. In communication applications, vacuum ca-
pacitors are extensively used as antenna coupling capacitors especially in aviation radio installations, where constant internal voltage breakdown is an essential require-
ment. 4. Internal voltage breakdown is constant and
is independent of altitude, temperature, humidity and other factors because of the vacuum construction.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS
Electrical
Capacitance 5 per cent Maximum peak voltage.

100 micromicrofarads 16,000 volts

GENERAL CD ELECTRIC

GL -1 L24

ETI-265

PAGE 2 11-46

TECHNICAL INFORMATION (CONT'D)

Maximum rms current At 1.0 megacycle.
At 50.0 megacycles

20 amperes 7 0 amperes 20 amperes

Ambient temperature Maximum Minimum

+65 centigrade
-40 centigrade

Mechanical
Maximum over-all length

inches

Maximum diameter Net weight, approx Shipping weight, approx

2% inches
8 ounces 1 pound

VOLTAGE AND CURRENT VS. FREQUENCY

The curves of page 3 show the maximum allow- d -c) at any ambient temperature should not exceed able peak r -f voltage and maximum rms current the maximum as indicated by the dotted line of
for G -E vacuum capacitors when operated at the curve shown on page 3.) various frequencies. An additional d -c voltage is Example Assume a GL -1L24 is to be used at

permissible so long as the total voltage (d -c plus a frequency of 30 megacycles and at an ambient r -f) does not exceed the maximum allowable peak temperature of 40 C. The correction curve indicates voltage as indicated by the dotted line shown on a correction of 118 per cent. The curves of page 3

the curve.

indicate a maximum r -f voltage of 1900 volts peak

These curves apply when the capacitors are and a maximum current of 24.5 amperes. Applying

operated at an ambient temperature of 50 C and the correction factor of 118 per cent to these

for normal operating conditions with natural air values indicates an allowable maximum peak r -f

cooling.

voltage of 2240 volts and a maximum current of

The correction curve below indicates the per- 28.9 amperes.

centage increase or decrease in r -f voltage and For operation at frequencies higher than those current when G -E vacuum capacitors are operated indicated, consult the Electronics Department, at ambient temperatures above or below 50 C. General Electric Company, Schenectady 5, New

(Note that the allowable peak voltage (r -f plus York.

VACUUM CAPACITORS GL -1121, 32, 33, 36, 38, 22, 23, 24, 25 AND L31 CORRECTION CURVE (PERCENTAGE VOLTAGE OR CURRENT
VS AMBIENT TEMPERATURE)

150

140
130
w
120
F -
w
110
F -
CCcc 100
cr
O
90
O
80
LL Cc
70

60

50

10

20

30

40

50

60

K -69087-72A7 AMBIENT TEMPERATURE IN DEGREES C

70 4-5-46

VOLTAGE AND CURRENT VS FREQUENCY
(FOR OPERATION AT 50 C AMBIENT TEMPERATURE)

GL -1 L24
ETI-265 PAGE 3
1 I -4 6

uOnMimMMmMmMuMmMmMOmToOmMMmTIIIIIMnMUiFlFlWimOMMmIIIMIuIIIMlMuIOMirMmIMM agilladilimilliplimillimallullimilig

1111.1111MILIBEIfillkuni_m_Milink___rnalum.1101MAISI__MMum=0111MbutiiiIMOMMHir 11113150111MmuMMMIMed

32 1.1.1.1.1.1.1.1.1.1.1.1.1.11......1.1.1..1.1.1101w...'........1.14.1911e=n111111....111111.....mis mmilliiiiiii

IIIIIIIIIIIIIgaillatilowillimillimmillic LE

1"'"""" .1911111 'I.. .111111/..411111111 111111111 1111

12
28

5, 111111111 1111N111111111

MOMMOMMOMMOMPAI WI 'III 1M IMMeMMIMMUMMAIIMMISMIIMII MIIMI:MEWIIMMEIIMOMMIIIIII

LLJ

_J

111111111111110 molm mem 01111mIlmillmilmilleimmmilmilmmigg milddikjurrah 191111

CO L_LJ 24

MBE III =MOM < 0_

.. ..... mum..1.1.MOJMIMIMIMIMIMIMIMIMIIMIEIMIOIIIMIOIINIOIIIIIIIIIIIIIIIIIMiOiM .mM.O..w.Mi.O.lM11lM1iU11gM:6Mm0Oi1Ml..M.m.Oa1Mi..lO.lM.i1

0< 11111111AI 11111111111111111111111111111111111Iiiiiii mum'

- - 20 iMiOi:iMiMnIiMiIiFiIiEiiFiiqliIiNiEiiOiMiiiMiEiMiiMiIiUiMiMiEiiMiMiUiMrMilliiiiiMiEiiMiiiOIRrlilMNiiiMiiOiMii=iiiFiMiiiiiAiriiIimiimii

M 16 1111111111111W1111

111111111111111

I

IIIIIIIII1____ IIIIIMICM11 1111

iilliplaiiii1111111111111111111NOVETT=1"1-1111111111111111111 1111 Nil

-- CC 12

druilipiapp, azialimilli . NMI& ><OL CD immiliglITIirihgralan (-)

MlNamI.umpoimm1omm.m.-r.s..a.m1o1m11mL_mimiiil iiMEaMl1p16..1.1..1,1m.i.li.M.M1=.M1mm.i1l

g 1

illimiliiiiiiiiiiiiiiiiiliiii

M.....Mm

Aqm.....g...11

geggomm

8 1AI 111111,41111111111

INNT:wa MMM

"MOP W.,- dfamnmt.l.k.a,r-l-i1n.o1nmnmkiiilii1n0s1.1.1.1u1n1a1g1.1.1.1.1.1.1.1.1.1.1111111111111111111L1IZ1U1M1W1M1E1N.U111M1E

..... AIIR:111 PrZINIMIMMIffilliaitorn111111111111111-1 D1111111111111111111111
Milt/gigl""iiiirll 1111111MAP.4.11Allifill 1E11111 IILII.I..I.I.I.I.I.IIIIIII.I.I.I..I.I.

LIIiiiiIii1111111111111111111111111b111111411

Uhl almism

1111,1111111111111

mum 11m1i1l1Il1mlu1i1m11l11m1l11u1:19m111m:1111u111l1l11a11.1u1.11c1M11Eu11W1m115p11,r11E1iM11Ea11M1lLiaWiAmiNmmFieiirpliridiUiiirieiiciifieiiRiEiiMiiAiiKiiSiHiiIiMiiaiririiiniiilliIMiiIi

16

.1...R1.1.1.1.0.1i1.11W.11m111' E. =Nam. Iglu...

Iiiiiiiiiiiiiiiiimll ... ..v... .... .....

111111111111111111111111111 ..._ms. .....i.........

1.1.1.1.11M1M1O1M1F1I1N1II1

15 Millar MO

=MAMIE lial OM IIIIIIIIIIIIIIIIIIIIIIIIYM 111111111:11..

Hum mmoommpommommpuma 111 IIIII1 1k1C II II 1111 110 111_111 III 111111111111111 111111111 111111111111

14

OMMMII.EI.MI.MI.MVI.II.M.O0.I1M11A1,I11V0,O14A1M4111I.M.F

II1 IIII MOMMEMOIIIIIMMOMMEMEI

MOIMIMMEIIMOMMEMEM

EMOMMEMMOMMEMEMff

MMIMMOM

13

MINIIaM miliMEMO""i=lIliPmilitrillik91,1111111111111-111111

12

1 III III 1111 i ill 111 11 1 mu 1111

11 11111111111111111111111141 1i1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiil iiiiiiiiiiiiiiiii

10 im miiiiiiiiiiiiiihigiliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

9 :: mmi::::::::::::3212! illill::::10::::::::::1::::::::111::::::::::
1M11 8 1 11111111111111111111I11111111111111 mImIoIm mrnIImIIsIoImIImIoIImImIuImIImImIuIImIoIImaaliMiiiMINIMEEMEGEMPPI
7 IMMEMIgLMPMoOMMnEo OZOoMmommommomuormnmmmoommmmuacmmmm,m1m1umnmuimmm.7.mmmommP R.Imom-mummommmom.m NIII mmEmmummrnms mm MONOMMMOMMEM:MOMMOMMEMOOMMOMMEMMONEMMEMM.Z!MMOMMEMMOMMOMMEMEMMEMMO

11am111m1um1m1u11m1um111o1mu1m1mo1m1mo1m11mu11ki21..6m2um11m1i11n1m1m11om11a1m1.1z11.m11m1i11ll11i1m11Iu1Il/1li11m1il1i1m1i1l

.5 mXiM1E1m1M1Wm1m1M1m1M11U1M1M1E1M1M1OM1O1M1M1E1M1O1M1M1U1M1M1MM111M0O1M1M1M1M1M1M0E:N1MM1I1R1M1E1M1E1M1E1M1M1NW1E1E1MmEiWmOaM.M=ErMnEMWMMNnMMWMEuMnMnWeNmMm

...1, 1111111II111PIEHIMMEMINIMINSINIIIMINENIMMII

iii iii iiiiial illiMMMININFIilliiinsiusrurillffilid

2 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

11111111111Iii

1

0

0

4

K -69087-72A6

10 12 14 16 18 20 22 24 26 28 30 FREQUENCY IN MEGACYCLES

4-5-46

GL -1 L24
ETI-265 PAGE 4
11-46

II

UNMARKED END

8 R.

NORMALLY GROUNDED

.5621'1- ioogi, DIA. 21%. I" 32 - 32

I I1
311+.
4- -II 6 -8

MARKED END

u
22M AX. DIA.

25" I"
32 - 32

CAPACITANCE SYMBOL

11-46 (8M) Filing No. 8850

K-9033852

GL -1L24 OUTLINE
Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

10-29-45

GL -1 L25
DESCRIPTION AND RATING
ETI-266 PAGE 1
11-46

VACUUM CAPACITOR

DESCRIPTION
The GL -1L25 vacuum capacitor is designed for
circuits where the peak voltages range up to
16,000 volts. It is useful as a plate -tank and by-pass capacitor in radio -frequency oscillators or amplifiers. The GL -1L25 also serves as a neutralizing capacitor in radio -frequency amplifiers in conjunction with small, low -capacitance padding capacitors.
The small size and compact construction of the vacuum capacitor permits circuits to be designed more compactly, allowing shorter leads than with
air capacitors. Some of the more important
advantages, in the design of high -frequency circuits, are listed below:
1. Vacuum capacitors are comparatively loss -

free, since there are no losses in the vacuum dielectric and because the total capacitance is lumped into a size about 1 cubic inch. 2. Dust and other foreign matter have no effect on vacuum capacitors. 3. In communication applications, vacuum capacitors are extensively used as antenna coupling capacitors especially in aviation radio installations, where constant internal voltage breakdown is an essential require-

ment.

4.

Internal voltage breakdown is constant and is independent of altitude, temperature,

humidity and other factors because of the

vacuum construction.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS
Electrical
Capacitance t 5 per cent Maximum peak voltage

12 micromicrofarads 16,000 volts

GENERAL 0 ELECTRIC

GL -1 L25

ETI-266

PAGE 2
11-46

Ambient temperature Minimum Maximum

TECHNICAL INFORMATION (CONT'D)
-40 centigrade +65 centigrade

Mechanical
Maximum over-all length Maximum diameter Net weight, approx Shipping weight, approx

41%. Y8' inches .2 inches 6 ounces 1 pound
VOLTAGE AND CURRENT VS. FREQUENCY

The curves of page 3 show the maximum allowable peak r -f voltage and maximum rms current
for G -E vacuum capacitors when operated at various frequencies. An additional d -c voltage is permissible so long as the total voltage (d -c plus
r -f) does not exceed the maximum allowable peak voltage as indicated by the dotted line shown on the curve.
These curves apply when the capacitors are operated at an ambient temperature of 50 C and for normal operating conditions with natural air
cooling.
The correction curve below indicates the percentage increase or decrease in r -f voltage and current when G -E vacuum capacitors are operated at ambient temperatures above or below 50 C. (Note that the allowable peak voltage (r -f plus

d -c) at any ambient temperature should not exceed the maximum as indicated by the dotted line of the curve shown on page 3.)
Example-Assume a GL -1L25 is to be used at a frequency of 30 megacycles and at an ambient temperature of 40 C. The correction curve indicates a correction of 118 per cent. The curves of page 3 indicate a maximum r -f voltage of 5800 volts peak and a maximum current of 9.5 amperes. Applying the correction factor of 118 per cent to these values indicates an allowable maximum peak r -f voltage of 6845 volts and a maximum current of
11.2 amperes.
For operation at frequencies higher than those indicated, consult the Electronics Department, General Electric Company, Schenectady 5, New
York.

VACUUM CAPACITORS
GL -1L21, 32, 33, 36, 38, 22, 23, 24, 25 AND 1L31 CORRECTION CURVE (PERCENTAGE VOLTAGE OR CURRENT
VS AMBIENT TEMPERATURE)

150

140 130

100 16'2'
CC
90
CD
O
SO LL
70

60

50

10

20

30

40

50

60

K -69087-72A7 AMBIENT TEMPERATURE IN DEGREES C

70 4-5-46

VOLTAGE AND CURRENT VS FREQUENCY
(FOR OPERATION AT 50 C AMBIENT TEMPERATURE)

..

NUNN WEN MI

GL -1 L25
ETI-266 PAGE 3
11-46

32

EMEMMEMEMMOMMEMMEMEME011.MOMMEMMEMEMEMMEMIEWMMEmL7.. MEWIMMEM MMEMEMMONWEIMMEMEMEMMESMEINI

IningraraniMignraPOLIECERFAMMIS0211111111111011011111EUEMEMI

28

INMEMMEMMEMEEMM,AMMEWOMME MMEMMEMMEMEMM 'AMMINIMMMUMMMEMEMMEMEMEMEMMEMBUMEMEMEMEMEMEMINIIM

...

IMEMEMMEMWMAMIMMEMINIMMOIMEMOMMEMMEMEMMIENTIMUMEMEMMEMEMEM

24 immMEolMldlmgamariigl oimnnnoiianllinlnaamienmaeMmMaErnRitaEnNinTiaIraMinMinErMinIinMuaMnIinSinEomITmEomMmE

11111111i111111 11111111111dMilmMimiiiiiimmimpoupommum
20

lilliniiiiiilliqi11111111111111111111111111111111111111111111111111111111111111111111
16 11MM1.11UI 11111A101111111M1E11111111111111111M1U11 MEM 1M4E111111_ 111111411113/011111

H.,,,,A1.0imiroramm pi! 12 1111111141111111111111111111111 111"="91112111111111111111111 111111111111111

8 liffiliiiigAiiiiiiiimilliiiiiirilirii e..I:'!!!!!!!111911111111111111111811

wNhuigmnimilimplimuml---m 221 !

111111 II I 1111 III III1

imaliniiiiiiIIIIIIIIIIIIIIIIIIIIIIIIIIM::::::::111111:11111111

VA:Mii°"9161111 111111111111111111 111N1 1,1111111111111111101111111111111111111
ulmis Iii1111611111 IIIIIIIImiiiiIIII4 ,iimpilliallimplImpliiiiimilli

11 11 11111111111111111 11111111111111111111111111111111111111111141111111111111111

1111 1111111111111==ffi IgEMITIARIMI 4111411411410141L2 M111111111111

16 m1em11M11M1M1M1M1M11m1om1:1111111i11m1u11m11m1i1tnIpMIrMAiIrVEmLp14i11rM2MILMAJ111111141!!!!!!!!!!!!!

IIIIIIMILWILIIIIIIIMIIIMMIMMEMIIIIIIMM

i 111111111111111111111111 11111111111111 MEMm.M...mMEMM.MEMMWENWWwWWIEM MMINImMINIMMEMME

15 11111111101011 1111111111111111111 1111 .. IiIii111111111111111111111 11111111111111

14 PhibiLINtrilideldal ANNIMMEMMINIINAMMI

13

MIIIMMIV4MIIMEMIMPIEMEMEE ,

12 11

Imbidalloom

ppm

10 ,,,,! millgolimillimmilimilimil

9

8 7

.i'm.l..u...m.....m.....i..l.i1iim116i1l1l:9i11m1' ,i,l,IlImiiiiiiiiiiil,l..,i.,i.iim,,,,,,m,,,,,om, Iil"liii

I

5 .11111111111111111111111111011101111111111WEIIIINIMPIIIIIIII!

.. mullallipluniummullumamplummallualmasslarammull

IIIIIIIIIIIIIIIIIIIIIIMINNIMMINI911111111111111111111111111111
IINIMEMMIIIIMIREMIMINWIN06911MON
imilimmullualumplumullummullummultamiliiiiiiimpligi ill
2 1111111111111111111111111i1111 11111111111111111111111111111111111111 inagiiiiiiii i
1

0.
0
K -69087-72A6

8 10 12 14 16 18 20 22 24 26 28 30

FREQUENCY IN MEGACYCLES

4-5-46

GL -1 L25
ETI-266 PAGE 4
1 1 -46
UNMARKED END
NORMALLY GROUNDED\

D I A.
25"+ I " 32 32

311-+IF1..
49"+ I" 68

/'11 2" MAX.DIA. MARKED END

A
25".1.1:1
32 -32
CAPACITANCE
SYMBOL

11-46 (8M) Filing No. 8850

K-8639363

GL -1L25 OUTLINE

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

10-29-45

GL -1 L33
DESCRIPTION AND RATING
ETI-267 PAGE 1
11-46

VACUUM CAPACITOR

DESCRIPTION
The GL -1L33 vacuum capacitor is designed for
circuits where the peak voltages range up to
7500 volts. It is useful as a plate -tank and by-pass capacitor in radio -frequency oscillators or amplifiers. The GL -1L33 also serves as a neutralizing capacitor in radio -frequency amplifiers in conjunction with small, low -capacitance padding capacitors.
The small size and compact construction of the vacuum capacitor permits circuits to be designed more compactly, allowing shorter leads than with
air capacitors. Some of the more important
advantages, in the design of high -frequency circuits, are listed below:
1. Vacuum capacitors are comparatively loss -

free, since there are no losses in the vacuum dielectric and because the total capacitance is lumped into a size about 1 cubic inch. 2. Dust and other foreign matter have no effect
on vacuum capacitors. 3 In communication applications, vacuum ca-
pacitors are extensively used as antenna coupling capacitors-especially in aviation radio installations, where constant internal voltage breakdown is an essential require-
ment. 4. Internal voltage breakdown is constant and
is independent of altitude, temperature, humidity and other factors because of the vacuum constructio

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS

Electrical
Capacitance t 5 per cent Maximum peak voltage

100 micromicrofarads 7500 volts

GENERAL 0 ELECTRIC

GL -1
ETI-267 PAGE 2
11-46

TECHNICAL INFORMATION (CONT'D)

Ambient temperature Minimum Maximum

-40 centigrade +65 centigrade

Mechanical
Maximum over-all length Maximum diameter Net weight, approx Shipping weight, approx

IA inches 1% inches
6 ounces 1 pound

VOLTAGE AND CURRENT VS. FREQUENCY

The curves of page 3 show the maximum allowable peak r -f voltage and maximum rms current
for G -E vacuum capacitors when operated at various frequencies. An additional d -c voltage is permissible so long as the total voltage (d -c plus
r -f) does not exceed the maximum allowable peak voltage as indicated by the dotted line shown on the curve.
These curves apply when the capacitors are operated at an ambient temperature of 50 C and for normal operating conditions with natural air
cooling.
The correction curve below indicates the percentage increase or decrease in r -f voltage and current when G -E vacuum capacitors are operated at ambient temperatures above or below 50 C. (Note that the allowable peak voltage (r -f plus

d -c) at any ambient temperature should not exceed the maximum as indicated by the dotted line of the curve shown on page 3.)
Example-Assume a GL -1L33 is to be used at a frequency of 30 megacycles and at an ambient temperature of 40 C. The correction curve indicates a correction of 118 per cent. The curves of page 3 indicate a maximum r -f voltage of 1300 volts peak and a maximum current of 25 amperes. Applying the correction factor of 118 per cent to these values indicates an allowable maximum peak r -f voltage of 1534 volts and a maximum current of
29.5 amperes.
For operation at frequencies higher than those indicated, consult the Electronics Department, General Electric Company, Schenectady 5, New
York.

VACUUM CAPACITORS

GL -1L21, 32, 33, 36, 38, 22, 23, 24, 25 AND 1131 CORRECTION CURVE (PERCENTAGE VOLTAGE OR CURRENT VS AMBIENT TEMPERATURE)

150

140 130 120 110

100 90 80 70

60

50

10

20

30

40

50

60

K -69087-72A7

AMBIENT TEMPERATURE IN DEGREES C

70 4-5-46

MAXIMUM ALLOWABLE PEAK R -F VOLTAGE IN KI LOVOLTS

MAXIMU
CURRE

mill... .6....1110.:.. ... al M OM JM M=

'
g'iq IIMM1

niiiiiiiiiiihmiiiihiiiiiiiiiiNiii Mii iiiiiMIiIiIIiMlIElai..l,a.lpililiii

1111111111111111111111 11111111111111111111111111111111111111111111111111111111111111i111111X11101111

11111111011111111110 1111111111111111111111111111111FINISMIMMIIMINUMM1

EIHNINIMINLNINIMMIIINIMMONMEMORRIPAREHIMILVINIMN

fPiliti !h 11111111 1111111111111111111111111111111111111111111111111111 III 1111111111111 on
mounmil :::::::::::::::::3::::::7:::::::::::::::::::4p5ma5imm.u0mm moms mommummulam.mm

0) !"E!mu!mm!u!ll!il!lU!1!11!11!11!1!n1!11!1!11!11!11!1!11E11g11M1P11E1gEiSllEi"m'Mu"mPr3`5.11T11.h%F1iA1lT1A1l-m6.i14imoiimnmI.omIrmmPimMumm1um1iln1inm1ial1mm4m 1'1II1I1

Ishogionemplimp 111111111111111111111A111111111/1111111111111111111111/111111101111U111101, 1111111101111111111
IIIIIIIIIIIIIIIIIIIImilligiumulimplimpul IIIIIIImptimillik imillosimmill
11111111111111Er11111111g1111111111i111111111140111 IIIIIParmigelo Im

illiiii
11111111

........................................01.11WEIMIEWIIIMIIIIIIII5104111111110111 11111111101111111111111111

iiiiiiiiiiiiiiiini1616111111111,111111115iiiillifillgilliiiiiiiiIIIIII 11111111111111111111111 HI 11 IIIIIIIIIIIIIIIIrmillimill 11111111111111111111111,4111U1111111111111111; 11111111111111111111011 1111111
=mm, !MiMm!Mm!Mo!Mmm!mi!om!mmmu!.m!.m!mumImomIruInmIuumImmIuumAmmImwoImmiImmIlmuIommInmMsuMmAmmEumNrNimEulIWummIooEmNmiNlIFrAPiTnAEu=PmImiimImmIIIIIIMIPmmAoPrEILIIIIIIINIEIIEI I1IiiIiI=ICImIiInsolmumimnilim NIMMINIMPOMMINEMEdidregiglaffilibilifillE R. *NNW 111

iIililisiioiilioiiwiiiiililioiMmMmIuIMmMmIiflflmirliilliliiimiPuAmPAplIiImINilIiMmMmEuMmIpNlOimffiillliidtdliilMlIiNnb
ommortheomduffumummenlehmodudimemmurippl lipl

RIMILINA !m!!m!u!m!m!m!m!!c!n!mMmErNIrImImImImIImImImIrItIImImImImImIIlImImImImIIrIeNfNtImIIImIo!m!m!!u!m!m!o!m!m!!mIiIlIlI1II1I1I1!1!!!m!o!m!m!o!!m!!i!n!1-1-1-5-mmum---mm,m Immo

i li

I

I

!I

GL -1 L33
ETI-267 PAGE 4 11-46
UNMARKED END NORMALLY GROUNDED
I

ir---M562" +oo" DIA. 25 -32

MARKED END

31'1-4"

49'1+- 182

25 "I. I "
32 -32
T

CAPACITANCE SYMBOL

K-5964459
11-46 (8M) Filing No. 8850

GL -1L33 OUTLINE
Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

10-29-45

GL- 1 L36
DESCRIPTION AND RATING
ETI-268 PAGE 1
11-46

VACUUM CAPACITOR

DESCRIPTION
The GL -1L36 vacuum capacitor is designed for
circuits where the peak voltages range up to
7500 volts. It is useful as a plate -tank and by-pass capacitor in radio -frequency oscillators or amplifiers. The GL -1L36 also serves as a neutralizing capacitor in radio -frequency amplifiers in conjunction with small, low -capacitance padding capacitors.
The small size and compact construction of the vacuum capacitor permits circuits to be designed more compactly, allowing shorter leads than with
air capacitors. Some of the more important
advantages, in the design of high -frequency circuits, are listed below:
1. Vacuum capacitors are comparatively loss-

free, since there are no losses in the vacuum dielectric and because the total capacitance is lumped into a size about 1 cubic inch. 2. Dust and other foreign matter have no effect on vacuum capacitors. 3. In communication applications, vacuum capacitors are extensively used as antenna coupling capacitors especially in aviation radio installations, where constant internal voltage breakdown is an essential requirement. 4. Internal voltage breakdown is constant and is independent of altitude, temperature, humidity and other factors because of the vacuum construction.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS
Electrical
Capacitance t 5 per cent Maximum peak voltage

25 micromicrofarads 7500 volts

GENERAL ELECTRIC

GL -1 L36

EV-268

PAGE 2
11-46

Ambient temperature Minimum Maximum

TECHNICAL INFORMATION (CONT'D)
-40 centigrade +65 centigrade

Mechanical
Maximum over-all length Maximum diameter Net weight, approx Shipping weight, approx

3% inches 1% inches
4 ounces 1 pound

VOLTAGE AND CURRENT VS. FREQUENCY

The curves of page 3 show the maximum allowable peak r -f voltage and maximum rms current
for G -E vacuum capacitors when operated at various frequencies. An additional d -c voltage is permissible so long as the total voltage (d -c plus
r -f) does not exceed the maximum allowable peak voltage as indicated by the dotted line shown on the curve.
These curves apply when the capacitors are operated at an ambient temperature of 50 C and for normal operating conditions with natural air
cooling.
The correction curve below indicates the percentage increase or decrease in r -f voltage and current when G -E vacuum capacitors are operated at ambient temperatures above or below 50 C. (Note that the allowable peak voltage (r -f plus

d -c) at any ambient temperature should not exceed the maximum as indicated by the dotted line of the curve shown on page 3.)
Example-Assume a GL -1L36 is to be used at a frequency of 30 megacycles and at an ambient temperature of 40 C. The correction curve indicates a correction of 118 per cent. The curves of page 3 indicate a maximum r -f voltage of 3500 volts peak and a maximum current of 16.8 amperes. Applying the correction factor of 118 per cent to these values indicates an allowable maximum peak r -f voltage of 4130 volts and a maximum current of
19.8 amperes.
For operation at frequencies higher than those indicated, consult the Electronics Department, General Electric Company, Schenectady 5, New
York.

VACUUM CAPACITORS GL -1121, 32, 33, 36, 38, 22, 23, 24, 25 AND 1131 CORRECTION CURVE (PERCENTAGE VOLTAGE OR CURRENT
VS AMBIENT TEMPERATURE)

150

140 130 120 110

100 90 80 70

60

50

10

20

30

40

50

60

K -69087-72A7 AMBIENT TEMPERATURE IN DEGREES C

70 4-5-46

VOLTAGE AND CURRENT VS FREQUENCY
(FOR OPERATION AT 50 C AMBIENT TEMPERATURE)

GL -11.36
ETI-268 PAGE 3
1 1 -46

-57
...................m.............. ninum....suum.......morammum u..1

MEMO 111 MMMMMMMM

M

118111111111111111111111111WE

MIIMIIIIIIIIIMINIWIN MN

MIMIN111111111111111111111M111111

0 in11111111111111111111111IMIMIE

EN IIIMEmN11E11E1N11I1IMIIIMIIEMMEIIVIIIMIIELNINIIIIIMIIIEINLNIIIMIIIIEII MM1I=I
NEMN10M11E1I1M1I1N1N1I1U1M11M1E1I1M1=1M11M1I1IMIIIIMMNNIMIMINMIIIEM=IIWIIIMII MN
IMIIIIMME11101111111MMIIMIIMIIIIMIIIMNIMMINEMIIMMIN11111111

=m7.-. irmmisn.-.-..-.o.-.n-mn-i-m...m.............."..m...=s..m......m.......... L2-_-!1 ,12411111111111111111111111

......m.......m.m. < 2 .I.I..IAII.IEII.I..IwIg.a..l.lmimirmi CD 0-
-- 1Z_
CD

ma'am MMMMM Emma=

1sm1i1n1o1UgmNuII=MmMm1111o11sI1Ii1MMm11=m11M11u1E1m1N1=mN101Im1E11N1u11Im1N11oI1N1m11I1I1mI1IMIoIMNmI=I1I1mM111iI1r1I1MmEoMw

MN= immismommismosmimulmagon- nom= MEMININIMENIMINIII 111111EMMIEMMEN

MENIIIIIIIIIINIIIIIMIIMMININM==ffi N-

weiggicw;r

mil.mfi .....mm....... --I z iiii.MMMENFAMEME MEILiiiiiiiiiniMin

,:c j_ . mgmmmummumma

ar---_ --...ramm

1Nm.uI9Im1ImI1ImM0a9mM-m.!E.=M.i1.1.1mm1am1mu1m.ma:Mml.oZ.r.EaNmU-m_iL_i,1-i1.2i.-,7,-#1"11111.11er-

I--
7.2 z
L_Li .7.-
->.<C:=c
imsmr Mumormrum .....W. WWI lSX"=agarliiill - - C;. C.)

i 44mmumMmU14m11Vm1mmNmom1IMIor1mImimL/1mMmim1Amatma1WmmTM1ammu'mm/A/rImmmAmM/aIRmIm.maAaRINrMKaMomIrMMIaEmIImAMiIEMOamwmmNNI'nimumNoLIMwamum1KaIMm1mmpI.im.PII1aAmmImI="1mMr.VmmNW.a1.a-imE1NarnAmAmm1pEmI.mIm1IlNma.Iie6Iu=nmo1IamNr.0mAm.am.aIi.mIm._tmAmImamaImmm'ImgNmgIamaaIg.EaMmnIi.Mmmamam.taIEmIi.mma4InNamin....1-s.1-i.6m1-mmmA-1-aum.71mI.ma.Mm1-a.mo1M-m1Emam-MSMmmmi-Oam-mMIm.ammIM.maIim.iNI.IImIi.m..I.mIimN_MoIL.LmNamIMm1uL1amM.oEm,1mNnInm1mIaN1iu1oi1Ii9m1mmE1u1i1im1m9Mam1ii11mm1t1.i"0iil'mlU1M.rm1aamn11iImmm0aa11mm1lma0lmm11ia=mm.lM1n.1..mm..g1=""'1m1i1m1a1m.a1m=m,1oM-m/m)IN3?I-

ME INEM...7--......mmamiNEEMEHNIENEMINIMMEEMEMEMI

mmoommiummuusimrammommas vs vium:n'omaysosim EVW.MEMPralEFEEPnsigE

IVrAIAWPAWRIF,=II=MmM0EM.Mmisi.lEM..E.:jM..

I

'

":-......0111111111EMIIMME111

ri=MMENOIMN 1

11111111111111111MMEM milimill1111111rIMMEIIIMEN
MAMMON NEINIMMINNIMIIIIMMIINMI EINMMENIEIIM1E1N11E1Mw=mMIMllEENM1M1=11EM11=11MM111I1II1IN1M11I1NIIIMNINMI

NIMIMMIIIIEIIMMMEMMMMEMMMEM MEEMEMEEMESEEMIIIMMENCEIG, ino,NaUMn11i1m1111m1111m11111u11mP111ilmommorinz

mumtummummonmemummunimmi

CCU M

If

111111ENIIIIMMIIIMMINAMMENNE=CiiilirinNvillIMIX 1 MIWAKIIP- MUM aMMIIIINNINE

MMIMMIMlMmMEMEM ERENMIIMMMMMINMANMNIIEM=AMNMNNE 1NEMMM1IUUEI1EEINM1EII.I1I1IMIMKIMM1IMMM1U1M11EM1MI1M1M1M1I1I1NMNI1N11N1H11MIIM1IIIMMI1MMI1MIArIMInMINNIIIMIEIImIMIiImMOm1EM1INi1lIIl1N1NI1I1.IIIM1IMIW1IE1IMEI1IE1NMEL1NVMUIsNIiINmINIIoIIIIIlMIIIlaIIRiMIMlIMlO1MM1ISN1I1IMIMI1UM1ImI1EI1IEMM1IMI1II1IE1II1II1IEMI1MmI1MMM1M1iEIl1lHNII1ILIIINIIIIIIIIIIIIIIIIMIIIIIIIIIIMMIINIM1II1IMI1IIM1M1OM1I1ENIE1M=1NE11M1IE1l1MlM11I1NW1N1EI=MNINNE1

1

l.. M1M11111MMI 11..91.1OIMMMUE=M MRN=

MN= MLES 11mAMNNUM
NB

ilirainnIMMIC . 111111111111111111".11

Krarall
41

N9ME1IMR2NEfMf/ i1Er1O81/W/1aS11IIM,l9lKn,aIMt1eISl6iK1tI5V4rS1.El1iIVg4Ri1tIaI1IlF1l/ai"tlmf1il1llk=0Md1Ki1fVi0InE1iWs,1l4l14iMg4=.a0l/111M.../,1117/41_11

111111MMI1111111111 UMW 1p

1111111111111011M.11110111111MVIAMMIIIMMFIESIMMINI9

oFo-
-CD
c)
_J

1.111.1.161.11L1111..1.....m....16.1=1..... "Ehrimmuurando

sho..... A_ . IF mum.. mil. 0

=EN

7 III MIIIIILIES'IMEILVamr"u".".r.i0b.'...........E..m....s... ME MEMMEMENE1El

E

MMEIMII=MM1I1M11I1I1M111I1NIMISIIIMMIOI

MME_J IlEk MEMIIIIMIIK M=MEIVIIIIIIMI1011111INMENNIIIIIIIIIIIM=
NIMINININ1111111111M11011MENNOIMMINIIIIIMMEME=MMI

M1M.11I11EI1M:1N:1MNMIIIIM.IIUI9IMIM.IIM9MMM.I.IEM.IN.M.SImNMIAEIrMLrdInEMa.mi.m.i.smaril.nll.il

6

111111111MINE

NIMMINENNIMINIMEMNINIIIIMIZEIIIIIIIIMINIIIME I11l1a111m111M11111E11N111EWIE=LMITE1N1N11IM11I1K1R3I1M_M01I1II=IIM01I1L1Z1o.MmImIIIINIIIEIIMNE MEI

111.2.11111111E 11111111111111111111

Rik 169611119111ZNEM190OHNIIIIIMIIIIISI MIWIIIIIIIIMMEMMNBE111111111%0IMM=MIN

111111111111111MIMINIUM MN 11 1111111111=ME

1111111WOMMII=MIINIIMINI=MMORIMMIIIIIIIIII

UNE 111111111MIMIIIIIIIIMM 111111MommE111M111

IIIIMI=MIMIIIIIMMmi1111

V

IIENMOMMEMIIIIIII MiZIIMIII11111111b21111q= 11M111110111111111111111 MIIIIIMINIMIIIIIM16.... UM

IIMIIIM MMMMMM MIIIIMIIIIMMI

MIEMIIIIIMMIIIMIIMINNIIIIIIIINIZIIMIIIIINNIft:

5

11IIMM11E1I1NM111IEI11MM10E1IMIE1IM1IEI1ME1SEI1MSNMEIIMMMMIEIINMMEIEIIWIMIEIMMLIMVIMIMMIIIKIMIIMIIEIEIIIIIMIINIINIMNUEMNMMIEMRIETIIEMIIMIIIIMIIMENIIUIlNElMMMEIMIM1ML1IIE1.N1L1MI11II1E1IMI11MI1N11ME1I1IM11III1EEIN.I7MMI1III=NMIIM1II1EIIM1IIMI1III1NIII1EII11MIM11I1MEMM1M11O11=E11MMM1111MEM1IM1ZIO0NP4IIMW1II11III=MN1E=1II1II..I._II=MINEWEIM

MEMOINENIMENMEEMEMEMEIVIIME

ME

MEMIEMIEMEMEMBOMMEEMEMEEMEMEMEMO

EMEMIMEEMEMENEEMEMEL ME

IME=MEMEMEMEMILMEMEMEMENEMEMEMEMEb..

ImMuEmNCIuImIMmIZ..O...L,.V.0I.I ...............0............m.o..- LvIoMwII.

.......m.... MM lb: MM Mina.....=./Male0airfiiMiiiiirgi
INUMIMMINININIIMIIIIIMI11011MIIIIIIMIIIIIIMIIIIIINI

MICILOLVELI:=`, mom ...........E............... 1111111=11111111111111MMINIM

.................. 4

MIIIMIIIIIIMIIIMMIIIIIIIM 1111MIMMINIIIIIPIIIMME

LM.

111111=1.11111111.1111111111111111 IMINIIIIMIIIIIIII.111111111111=1111111111111111MWMIIIII

MI\ IIIIIIMM=ENkMEINIIMMEMMINIIIIIIMMENIMINHININIMMOIN

IIIIIIMMEININENW=1111111

IMMEMMIIIIIIIIIII61111ffil MmUl11111111111111111111111111111111EMO111

IIIMEI1=1111111NOMMIIIIIIII

MIN111111111111111111111MmEMMIIIIIMIIIMIIMIIIIIIM=MMIIIIIIIIIIII.:

lanIMIIIIIIMENIIMIIIIIIIINIM
NomMERMINNIMIIIIII1111111

ImmilIMI1N0I1II1I1II1M1MEMINI01111.71411111011111I1N=mE=1IINNIINII IIIIMII1I1N11I1M11I1N11I1I1I1111111111111111M=11ft..-

WIWAIIIMIIMIL

=MNEMRMENNIMIIIMIIMMEMIMMINSIUMNIN=

MI

311111111111111111111111

:UIMNWS
NIMINIMOI

MMOIIIIIIIMMEMMEN11111MMINI1111111111177 1111111111114MEMEMINIIIIIIMIIM11111111111111MIN = IIMMIN1h..111111111111MMMIIMIIIIIIIMI=ME Nil
MIIIIIIIIMWNEM111111111111M11111s=1111111111M11111111IMI IMEN111211=11011M111111111111MMEIMMIIIIMMENIIIMM

p91191111MMIIIMMIMIIIIMIIIIIIIIIIIIIIIIIIWINIIIIIIMMIMINEMINIIIIMIIIIMILIIMMININIIIIMEN11111111.1

..........................................................................................,....i.............n................................,............................E.,......,..i....l...i......a.........l......i....i.....i...i.....l....i.....i....i.....i...,i....l.....l...i.....i....i....i.....i.....i...I.,...I......i.....m...............m.............m.m.mg 2.sNi . ...M..M..M.mMM..m...m....E............=.nurmon

1mmmaMmmUm1auMam1mommm.mm.omm.oao1mummm1mmmm,moau1aammm1mmmmm1mmmam1mammo1ammmm1iaommNmimmmmmEmaammakmomrmmm.am.a9ammmm0mmomom0amaammmsmm

-ILMaMOIRmMESmIMWaSEiEmMmEmMMEMmmUmoMmEmmMmmEMmaMoiWmmMmmINamE

WM imam

IMMENMEMINIMME

MMEMMEMNIMMEMEMMEM

WmmmomMa=mamMmmiMlMmmaMamMmmamNmmUoaaMmimMmmmEamMmmaMaOmMmMImM

mom= MMMMMMMM mum

Ill

1==MWMm1aEIEM1ImMMMN:mU1UENEa1
MmmmaEmNmaEamMsm

.lmu.a.mm.a...m...mm.o..m..m......m.-m...a_.m..1i1.z1.1nM.a1.1.m11.m1.1m1.1a.11.m1.1mMmammENm.I

mmoommmmoammmmamammmm mmammmmammmmm.m=mmmammaammmmimmmm

mamaoommmmmmmmaouammmmmmmaaommmmammmm

mmmummmmmommmmmammmmmmamammzm= ---,mammas
MEMEMEMENUMMENEMIMI=E111111111'L
MIIIMOMMUMMMEMIIMMEMMN

-,

MEMNON= MUMNIMMUMMEMMUMNIMMEM

MmmEMuEmMmEaMmMIIIMMMMEIMIIMMMEENMMEEMMMMEMEEMMMMEEMMEMMEMM

IIMMEMMEMOMM MIUMIMMIIMMEMEMEMEMEM

EMMUMMMEMMOI MMEMMEMMIIIMMEMMEMEMM

MEMOMMIIIIMMEM MEMMEMEMMEMEMMIMINEN

MmmmMoamImmaIImImmMaaEmmMmmMmmaMoamEmMmmmM MmmmMuamUmmuMmmMmaoUmaImMmmmMommEmmMaamMaaEamMmmMmmmEaoMommEmmMm

1111MIMMIMINIMIN 111111110111EMBIN11111.111111M=

0

4

8

12

16

20

24

28

32

K -69087-72A8

FREQUENCY IN MEGACYCLES

4-5-46

GL -1 L36
ETI-268 PAGE 4
11-46
UNMARKED END NORMALLY GROUNDED

+.010" .56211 - .005"
DIA
25" 1"
32 - 32

MARKED END

25" 1"
32 -32
IfiliMAX.DIA:"N-
CAPACITANCE SYMBOL

K-5964469
11-16 (em) Filing No. 8850

GL-1L36 OUTLINE
Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

10-29-45

GL -1 L38
DESCRIPTION AND RATING
ETI-269 PAGE 1
11-46

VACUUM CAPACITOR

DESCRIPTION
The GL -1L38 vacuum capacitor is designed for
circuits where the peak voltages range up to
7500 volts. It is useful as a plate -tank and by-pass capacitor in radio -frequency oscillators or amplifiers. The GL -1L38 also serves as a neutralizing capacitor in radio -frequency amplifiers in conjunction with small, low -capacitance padding capacitors.
The small size and compact construction of the vacuum capacitor permits circuits to be designed more compactly, allowing shorter leads than with
air capacitors. Some of the more important
advantages, in the design of high -frequency circuits, are listed below:
1. Vacuum capacitors are comparatively loss -

free, since there are no losses in the vacuum dielectric and because the total capacitance is lumped into a size about 1 cubic inch. 2. Dust and other foreign matter have no effect on vacuum capacitors. 3. In communication applications, vacuum capacitors are extensively used as antenna coupling capacitors-especially in aviation radio installations, where constant internal voltage breakdown is an essential requirement. 4. Internal voltage breakdown is constant and is independent of altitude, temperature, humidity and other factors because of the vacuum construction.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS
Electrical
Capacitance 5 per cent Maximum peak voltage

50 micromicrofarads 7500 volts

GENERAL 0 ELECTRIC

GL -1 L38

ETI-269

PAGE 2 11-46

Ambient temperature Minimum Maximum

TECHNICAL INFORMATION (CONT'D)
- 40 centigrade +65 centigrade

Mechanical
Maximum over-all length Maximum diameter Net weight, approx Shipping weight, approx

3% inches 1 inches
4 ounces 1 pound

VOLTAGE AND CURRENT VS. FREQUENCY

The curves of page 3 show the maximum allow- d -c) at any ambient temperature should not exceed

able peak r -f voltage and maximum rms current the maximum as indicated by the dotted line of

for G -E vacuum capacitors when operated at the curve shown on page 3.)

various frequencies. An additional d -c voltage is Example Assume a GL -1L38 is to be used at

permissible so long as the total voltage (d -c plus a frequency of 30 megacycles and at an ambient

r -f) does not exceed the maximum allowable peak temperature of 40 C. The correction curve indicates

voltage as indicated by the dotted line shown on a correction of 118 per cent. The curves of page 3

the curve.

indicate a maximum r -f voltage of 2050 volts peak

These curves apply when the capacitors are and a maximum current of 20 amperes. Applying

operated at an ambient temperature of 50 C and the correction factor of 118 per cent to these

for normal operating conditions with natural air values indicates an allowable maximum peak r -f

cooling.

voltage of 2419 volts and a maximum current of

The correction curve below indicates the per- 23.6 amperes.

centage increase or decrease in r -f voltage and For operation at frequencies higher than those

current when G -E vacuum capacitors are operated indicated, consult the Electronics Department, at ambient temperatures above or below 50 C. General Electric Company, Schenectady 5, New

(Note that the allowable peak voltage (r -f plus York.

VACUUM CAPACITORS GL -1L21, 32, 33, 36, 38, 22, 23, 24, 25 AND 1L31 C ORRECTION CURVE (PERCENTAGE VOLTAGE OR CURRENT
VS AMBIENT TEMPERATURE)

150

140
130
1_1.1
120
C .)
110
I-
Cc 100
Cc
90
CD
- '80
70

60

50

10

20

30

40

50

60

K -69087-72A7 AMBIENT TEMPERATURE IN DEGREES C

70 4-5-46

VOLTAGE AND CURRENT VS FREQUENCY
(FOR OPERATION AT 50 C AMBIENT TEMPERATURE)

GL -1L38
ETI-269 PAGE 3
1 1 -46

(,), mumps llopmm III Ellp im op idempaggimm
c, (,) 2 3

Lij 2 CD a-

1ih1m0i1n0n0o1w0il1iii0m0m11inPiM,11u1n1n1o1m1m11im11u:m11mu11m1p1u1m11n1p5u1m1MmMuEn

a 2 111111111111MMIIMI11h111111111EMEMIIIIIMEIMIELOpe11111111,111111111111111111

.<-1 ---- 1. aINrIdMiIUllMaMdIrIIaMlEiNnIiP.i.IiL.lL.l.iiii7iniii.1i.l1.l1.i1.n1:1d11if1lf1lri1uf1iM-r-1g-1i-1:-12=171-14-1-51w11-i.1i.1..1..d..T.Pm"1m,0m11m1m11

7- t. 119111FAIIIIIIPMEMIIIIIIREssillIMEREMEMMINI111111111111111111111

* cci-LI 11111NINIMIP111111111...m .119IIMPAP111101.1.111.1111,911141
hall n# - - --r- - i 8 IA!lEdliiti.g..l..i.i.r..i.l.i..r.e..l.l..m...o...r.m....i.n...r.L;.F.e..W:. "9""" m .m...m---p; o. .p..m.-..-m..maunm.iL-uaFm1-1m1-1 mmmmmmmm ......... .......... FTV;eIi iR..=.;:E,a;;i;lP;l"IiIi7ilI:"I"M"111I1R1I1I1I1P1.1S1I1S.1A1.1l1l1iiiIkllipalfl.l1i1.0.1.1Mti1o1.n...mM..I..MI.aNA.iMrMp.mM.I.MOp..NeI.Ir.1Mf.1i.g1I.I1u.I1rMr1n.1.Mi1.p.1mI.1R1m.1M.1.in1.I

aromplipollommipirphopposphdirgpmmipm
.. pi .1,..160.1...:111 1 u..n..d..o..m.. miluNMmIpEOluMsu1m1111m1111u11n11d11rmI inuMmIIMmeBrMaErRaMnIIMuImIIIIImIMUaMdIUinMEuIMmINmIUMoMr,I
9111111111111111,111TIMUNILLWAIMOVIHMIINICILIMIE4211111111111

(,)

i suneffemkuus ...................... innummuounum

111u11,11111111111111111111111111 -,5sumpi1mi1um1m1iu1mm11mu1am1k1mm11mp1oo1w11m1i0smp1mum1lo4mmm1o1mmu1omm1sm1uu1ssm1pm1inn1on1moio1mmm1m1uuMmamm.M.u.m.I.nMim.n.IuiNNtnmNm..InomIeImrmIImIpuMinminiEumnmNaummEm1mu1mmo1mm1l 11.9111.16.111.1111 2. 111:1111111111.96118110111111.1.91.11111.1MIRMIEllr1

41i11n1m110i1li1d11i1m11i1l1im111i1li1o11N11N11I1F11i1b11li1m111i1m11m11i0l1i1i1r1s1o11m11m11i1l1i1r1m11
mum boll 11..1....1,...a1.1..1":.11.111.11.1.1.1..1.1..1..A..1..M..1...1.P..1...R1..1.PM.m..E.a.....mP..a...Ul.pl.a..i..lI..P.....I.M.C...a....nU...i.a.L...a...Ta...l.lA..a..a...I...aM.k...i...CM....a..a.U.l...a..Ma...a.,.lPl..a...T.M....I.I,.MI..I.E.I....MM....O..IM.ML...Zia..lal...1lTa..1aW..a1..ila1..I.I...11M..11...1I.a.N.1l.a.a.I1.Ll.l1i.a..1.l.....1.......M.....a...l.Ml.1..a..a..I.l..Nl.a...r.Ei...ll
2 111111111111 1111111111111111111111111111011111111111111111111111110E1118M11111
lipmpro impommommumimbinsmommmgmmmommu Lel ""1:::: :::::::::::::::::sompuniumormsubuipiiiiiiiiiiim
111111111111111111111111111111111111110EMILINIIINNII

0

4

K -69087-72A8

8

12

16

20

24

28

FREQUENCY I N MEGACYCLES

32
4-5-46

GL -1 L38
ETI-269 PAGE 4 I1-46
UNMARKED END NORMALLY GROUNDED
8

+.olou ,56211 -.005"
DIA
g5" I" 32 -32

MARKED END

32 -32
I-1MAX. DIA;b--
CAPACITANCE SYMBOL

K-5964469
11-46 (8M) Filing No. 8850

GL-1L38 OUTLINE
Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

10-29-45

GL- 1 L31
DESCRIPTION AND RATING
ETI-307 PAGE 1
8-50

VACUUM CAPACITOR

DESCRIPTION
The GL -1L31 vacuum capacitor is designed for
circuits where the peak voltages range up to
16,000 volts. It is useful as a plate -tank and bypass capacitor in radio -frequency oscillators or amplifiers. The GL -1L31 also serves as a neutralizing capacitor in radio -frequency amplifiers in conjunction with small, low -capacitance padding capacitors.
The small size and compact construction of the vacuum capacitor permits circuits to be designed more compactly, allowing shorter leads than with air capacitors. Some of the more important advantages, in the design of high -frequency circuits, are listed below:
1. Vacuum capacitors are comparatively loss-

free, since there are no losses in the vacuum dielectric and because the total capacitance is lumped into a size about 1 cubic inch. 2. Dust and other foreign matter have no effect on vacuum capacitors. 3. In communication applications, vacuum capacitors are extensively used as antennacoupling capacitors especially in aviation radio installations, where constant internal voltage breakdown is an essential requirement.
4. Internal voltage breakdown is constant and is independent of altitude, temperature, humidity and other factors because of the vacuum construction.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS

Electrical
Capacitance 5 per cent Maximum peak voltage

6 micromicrofarads 16,000 volts

GENERAL ELECTRIC

GL -1 L31

ETI-307 PAGE 2 8-50

TECHNICAL INFORMATION (CONT'D)

Ambient temperature Minimum Maximum

-40 centigrade +65 centigrade

Mechanical
Maximum over-all length Maximum diameter Net weight, approx Shipping weight, approx

4iet% inches
2 inches 6 ounces 1 pound

VOLTAGE AND CURRENT VS. FREQUENCY

The curves of page 3 show the maximum allow- d -c) at any ambient temperature should not exceed

able peak r -f voltage and maximum rms current the maximum as indicated by the dotted line of

for G -E vacuum capacitors when operated at the curve shown on page 3.)

various frequencies. An additional d -c voltage is Example Assume a GL -1L31 is to be used at

permissible so long as the total voltage (d -c plus a frequency of 30 megacycles and at an ambient

r -f) does not exceed the maximum allowable peak temperature of 40 C. The correction curve indicates

voltage as indicated by the dotted line shown on a correction of 118 per cent. The curves of page 3

the curve.

indicate a maximum r -f voltage of 6500 volts peak

These curves apply when the capacitors are and a maximum current of 5.4 amperes. Applying

operated at an ambient temperature of 50 C and the correction factor of 118 per cent to these

for normal operating conditions with natural air values indicates an allowable maximum peak r -f

cooling.

voltage of 7670 volts and a maximum current of

The correction curve below indicates the per- 6.4 amperes.

centage increase or decrease in r -f voltage and For operation at frequencies higher than those

current when G -E vacuum capacitors are operated indicated, consult the Electronics Department,

at ambient temperatures above or below 50 C. General Electric Company, Schenectady 5, New

(Note that the allowable peak voltage (r -f plus York.

VACUUM CAPACITORS
GL -1 L21, 32, 33, 36, 38, 22, 23, 24, 25 AND 1 L31 CORRECTION CURVE (PERCENTAGE VOLTAGE OR CURRENT VS AMBIENT TEMPERATURE)

150

140
130
UJ
120
LL.J
L.>
110 LL.1
1-
100
O(2C
LU 90
(.5
O
80
lY
70

60

50
K -69087-72A7

10

20

30

40

50

6Q

AMBIENT TEMPERATURE IN DEGREES C

70
4-5-46

MAXI MUM ALLOWABLE PEAK R-F VOLTAGE IN KILOVOLTS

MAXI M CURRE

OCD

kx)

A(

CO CO 0 I--' \,

-F. 01 IO-4

CD -4.

CO

I \.)

NMOMENMMNIMMNMOMEMMMEEMNNMNNNEEMMEMMEENMMNHEAENMNNEENNONENNEAMINMMNNMMEUOMNMNMRNNEEMIMIMMMNMIUNEMNMMNIEIMMNENMMEMEMNEMEEMNENNMMEEEENNNMMENEMMWMEI=NIMMNNMMNIIMMENMEJNMMNMEEMENNMONMEMNMIMENONIMNMIMNNIEEIIMNMIOM=MNNOMMFENEEEMEMMINNONNMNNNENMOEMWINEMONNNENNINMNENEINMNNNEEEIMMNNMNMEEMIMMEOEEMNNNMNNNMMNEEMEEEMMMEMMENONMNEIMPNINIPNNNMMNUN:MUNEmMNMEMMNEMmEMMNMIMMEMSEMNIMEMMUMMNMINMEMNMEEIM1NNINNNCEEUaEEVEMlMMMNMOiVIEMS1.INMMZ4:MVI-V7IL-IsE,Pm1W.Ommi.MNN0.s.OMILs-NME.m4EIMMNfsChNItnAEZMNIMME4ENE.MPMMNZEMIEmmMNmsOOMNZMIME.MNIIMNNN.MO..;

MMINEENMENEMMONMENNEMENNINN MINEEMENNIMMENINELEMEMMINENNMIMMOMMI

ENENEENNENNASSMINNEEMMENNN M1INNEMENSIMMINNOININENNNENNEN MMMMMMMM M

NEMENENNENNINNENNUNNNEERINNEEN

M MMMMMMM NUM

NEMMINEMENINNEMMENMENNEINAMIMMIENNIMENNIMMINM NEMEINMIIIIIIIIIIIIIIIIMIVIIIIINIIIIIWIIIIII

rn

IMENMNMMEEIENNNNNEMIEENNENNENINEENMNMMMEMMMNMMEMMNNNNNENNEINEMMIMININNNNEEINMMEmMNEFENEINNNONEIEENNENEEENNMEESNNNNIMEINNENNIIEENNNNENNNEENNENEMEEEENNNNNENMNEMNMEMNMMMMMMMMFMMS:MMaMFN"N.MN;MI.EOMNNEI1EMN0EN-4NOONP.E7N.NMEMENNP.p.P.rMMMEINNENEIMMMMIINNNNEENNNMNENVNANNNWMMNM=INMNMEMMMOISN MENENENNEpNNMEMNMNMEMNMmEmoMmImNuNnENMEMEMMNMNMEMNMNMEEmNmMumIpNuEmNmNoEmNmEomNmNuNmEmEsNnNoNmEmoNFmN":mE.n0M1rP1:0:A11MmMMmMEmEMoINPn!.s:...0-tSn4asPIwFM.mMISm'MNaoINlnSEiaFsNmt.M'-Ni.oNMSE'NNiPUMFmN-mIEIMENNMENIMONMIENNSEEMUNNINNNNNIIESININNUENNNIIVNIE1NLNEMENENEMNNNEMEEI

MEM co M=MMIMEMNMNENMINEMONNNENNENMEEENNNMESNMMMMMMMMMMMMMMMMMMMMMMNMMMNMEEMMNNMEEEMNNNEEEEMNENMNNNIENNEMNMNEEENNNMNEMEEMNNMNMNMNUMMMNMIMMIMNMMMENMEININMEMEMMNIENNNEEMNMIENEMiNNINEPMNS:EIFMMNAEMNINEIN.NNMN1EPONNN:ENNWSNMNEFFIEN:%MNEAaPEEMNFNFMElA:EaNWdNMNWFFMFPi:IAINANIMFNINMiFNFIlAFeNMIIrNA:iMEMMNEMIUIBEFMNN..EEMN=EMNENINEINNEMMEEMMINNIMENImNMNMNmEMMsMoNMEEnENMNLnNIMC:oVEME9nONMNMnNNMIoONMMNmNEEmNNNPWoEEPE2mEENMmMMENIoNMNENmINNMmENEEUAEMmIMmIMEINmNNNLiRUFIlIINmEMSNoMNSMmMNIEmMENNmMNNIoENELmOIINIeNMIEmMMNMpIENMNMMMIEEMN

nn pi

CD

mmmummnim mommommom NENENNIEN

MMMMMMMMMMMMMMMMMMMMMmMMuEmNmmNooEmmNmmMoMmmMmpMoMnMmMoMmMmoMmImNmmNrmIormFm,oArrN.iNapImmNmmNooNmmOmmFmrA:M:mMaoMmmMnmmEpRMiMFm:MMaEmM1NMm.WMi1AwI-MFr.MAilImoFNmniNaoNEmtMMmMEMoENMmEMNmNMEMoNNMNNmMEIMNMmMNMmMNEeNNmEENNmNIEoNMNmNIEmENEEmIEMNNuEENnNMNzNGImF.NpMNFmNIiEmNNNoNEUNMmkEEiTpNsmUaaEMpNmmUEiMmMEnNImNNmISoNEmNMpsImpOioNlpSmImNmN

,CD c= rn
C")

MMNIEIMMEMNENMEMEONMNMNEEMNEMNMNMNMIMMMMEEMMEMMMIMNMEMMMIMNMEONNMFAMMMENMIMONMFIiNMEMNIFNAINMNMEFNANNFAMINPNAFAMKAAINMNMMNENMNMIUNMNMEUMMMWIONMEMNINIEEMNEEMOMMEMMIMNREILM.E-EiMN

I
MINOMMOMMIKOMMEIMMIMMEMM

MmnMMEoEEoMmNMmEmImNoMMENmOMmmNMpMomMMmoEMmMmNmMNEmoMEMumMNEmmMNNmoMINmoMMImmMNMmmEMmNEIORNMMMNEMMMENMMENNMMENEMMNENMNmNMMMmMMMMMMMMMMMMMMMMMMAMMMFMMFMKM.MMMMEMMNMMmMWmiAEmnmNNinoNNrmIEAMmEEmMFmNmMEmmMIMuoMNMmMmNmMmNArrEANNaMmEFmMmFAmMoAImrFMwriIIirNANrrFAMMAimMMKmmMMAmuMMNomMMmmNEommINmpoNmEomuEMmmmNNmmmNoImmEmMmmNmEouoNNmMmmNMmMmpEEmMuMNmMmENoMmNNmMoUImMnNpEmNmNNmEmEIoNoNMmNmMNpmmIomMNmiMNnmMEmMoNeMmNnmM,,NPulmENinmMWn-MmmimImEmNpuNmmNmoNmmEmmEmoNoMmomnIpmmmeommM=moaMmpmnMmmmMvAuuuHpmHmmNmmImNmAaNiIummNnMmmUmOimENNmmNNMNmmNEMOWpNmMNIuNMpNNAmMlOSMmNiIMnoNmNIomI

NMmNuMEmMEMNMMMMMEMMNMMMMMMMMMMMmMMoMMnMMnMMoMmMNmMIoMMmMImMNoMNmENMWEMAMNIrrNMA'MMnAMMMmMMIeMMNmMNmEMNrNMM.EMFNmMAEMmNWMuNAMmENMNmEMEoMNWMuNAM.NNMmNNMmUNmNEANoFVIrAAOmNMNnEEsMNmENmMNpEmMNmMNmNMmEMNMmNmIImMIoMMmIMmNEmNMmEMOpNINmNIEuIMOXmMNEmINMEIENMmMmMEIeMNnMEEMmMMNmMMNoEMEmPNm2=gm.WSa4N5m:IEm5IN1mINEuIPmWMWipMIneNT=sEEmNImENSaNNmIMmSNmENuMNMmOIEmEMNu.NmNNEmmENioUNmmMEmpHMmNmE

=Wm.. rn
X> C,
C)
rni CO

FA Cr)
CO
CD N.)

mMMmmmMNomoMEmumMNmmmMIomoMmmmmEmomoNummmEmmNoMMNMMmMEMMmMNMMoMEMMmMMNMmMNMmMmEoMoNNmMmENmmNENwoENNivNEMmAUNmEmMiEEmNnFNuWmArMNAMFNmMAIrmMM.MmMmEAMAoNMMmmNEomENNmmENEmrENFMoo/AENmmrNNmmOMNuiNMmmWMrmMAmMMmnoMmnrAM/nomNMAmArMNm=mNmNmEEMoo=EMmmNMmMEMmMNMMmMNMMoMEMMmMNMMpNMMMmIMMMMmMMEmmMMNmmMNoMoMOmMmENmNmNmoEommMNmomMNmmpMmImpmMoNooMmmNmmmmEpmoEmnuNpmamNmpmmEmNmmNEommoENmuumEEmmNmmNomEpmEmNwomNpImmmNNmpNpmGiEEnp.tW".pom!AmammMIpnimTNmaeoENmmwmmMppEuImpmMNnommMmmuIE4mrNnWgepiNqmwrrEmoEmMNmmEuMImmNMniNEnMilNNpMnmINmmEuUunNmNmoNmmmmpmNmOommNmmlNoimIInmuNommE
mMMMMmMMmEmEENMMEmIMNNmMmoNMMEmNMNEoMomEMMNmEMNEmMmmNMMNmRMENmMmoNIuMEEIoomIEMmMMMNNMmmmmNOMmMMNMNmmmuMNMoMMIENmmmmMEEmMNNOouoImNNNmMMEMMmmmmINEmMENMmmmEoENMEMNUNommNrNMMMNIEmmmNnMEMMANAMEmmuMmNMNENMEoumEMmNmNMNMFmmmENMmsMNNMNmeuNoM,mEMENYMANmmrmrIAIaYENMMWmmmmmNNNmANNENMmiNmr'mEmEMANNEEP,mNNoamNEoNEAENMAAmEmmoFNNmEMNNINmoMmmmFEEmMENmmW,NAAmmMMMmMNmmMWNmomNMMMuAEoMMNmmiMMMmMMMnMEMmmmMMMMmAMmMNMMoumMMMoNMmMMNmmmMMMNMomMEVMMmmoWEMmmmNMMErommINmmoEMENnmmVNmEmoruNrmNNNmmuNwWormMUmmEEIMommiJmmIMm4nNMMNOmuwEmwlmNaNuEAINmCoimmmImmEVmMNMoNrrowmnNAmMEmAMNmMoonmoWNEomENMIwMmmopmANAumUNMMiMmnmmNNmMMIMmEnMeImmmNnNEMNoNiMNmNooomEMNNmNmMNmmEmmmNMEREEmmoommmNMENNmnmmmppmMmNEENNuomemMoNmoINREooEmmmoMNEmmmNNNmmmmmmNMNEmomNMouNomMNMNmmoMMmmMEMomMENIommMmMMMmmMEINmomMoMEMMmMoNMNmmmNMmMMMomNMEINompmMMMmEmNNMMNoMmmmMmMMNEoMmMMmmmmMImINEmEmMmMommMNmNEEmoNoMmoomMNmENNmEmMommmEmoNmNEMNmmNpmmmmmmNONumiooopMEoNEmommmMmNmmENEmNmmMmmmmEmNmNmNNoMmEmsMoNNoEiuEmMnommmmEMEmNNmmmMumpoNmMNmNiIMmmNmmNmmmoNEoEmMpiIImmmmmEmNRMmNpNmnMeMuommMoNNmNmEmNoMnNmmiiMEImmmENmMmNmmEmmEomImNEoEmomNmUmmmmMoNmNNmNNmiMmmopmMmNEEoNmMMmmmomoEmmNNNmNmoIpMmpmmEEmNNmNEmNoNmmmoEOmEENmNnumommNNNBNImnommmupmNNmEmNIOommmmmEmmEEUeNUNmwmeiMNmmrNNmmMMIpy1ammeigItOwNOu.4g'eilomNaM2pN...moa,,acmCMuNMM!mmmimGooaaTMPAgmPmliMnmmIMmmIlNmSmimAnmNmEpTmiNmNllNoNNmmoEmomnNEmNnWNmmomenmauUMoiNEmNpmmsmMMmnMmNmwmSopIEEEmmCmroM,miM.WoMmEWmAamAoemNNME.me.SpNmemmemWNmM=mmmN:NommammEImEmEnMMomuipmoIMomMNMNmiElmopMImmmmA''EmIEWnmiinIImpsMNaNIMNnmmNmmNuoMEomNNmNiMEOmmNmmmmmNEmWEMlaMmAmNmEiemmIImMINimINmmmImumuMNalmuNNNNummNEMmNNmmnIIEEmMmpOmNNEEmmmaSNEm=oMMmMmMMmomEONmuMEEnIMMImNNINEEEmUNENNmpANENmmNIoNMONOmmENNEHmmNlIUINoqIMAilNi

NO.)
N.) OD

NNmMmNNmNMEmIoEENoNmINNmNNmEEmEEoNNMmNmNEIEomEENNmImNENNoNmMEEErEoNNNNmINmMNoNIMmEUmEMMaNEmINMNNmmNEMENmlMWMNFEopEqIENmoNMNMMmMnIIEUoEmNNOMmNmNNNMmEENEoEiMNENmNri MFNVWmafEANMIm,oNIMMmrNEOMEomENNMmMNNMmNmEMEAEonIMNNImmMMEYNMmoAUAWMIorNNMEINnmNNINMNmUNTn,INNm.AIoNENoNMIwMOmEMOEnMNmNINMNIooNMMEMMmmNMMIImmMMmNENMIooNnMEMNmmEoOMEEmNmmMMNEmEMmoMNNNeMoimEENmmmEmNEOmmmIINNuooOiMNmmmNMmEMpmNmMiENoEumMNlNEmmMmENiEmoMmNNiEomMNuMMmIpIEmEMNmNmNNEmINomINNMomoMMIEEmmmMMNNMmmmMEENMoMoNENEMMmNNmNMNmNEmEEMUoEMmmEMmMNNsmNMmEIIEpNmMMNNmmpMIEoEmNEmNmeNNMmEmmMEEiNomENMNnmoIEMEmmmNNNEmmIINIMmmNMMMuEmMEEmNmMNNmNiMNNmPlMIPiEMl2MMlM.iEAiIUnatmgNNNmmmINmNMmuNEoEEomNNmENmEmINmmEeMaoNIrNmmNENNUmmNNMMNomNNUNMmuIIMNmMMmOEImOmMNnIuMuMNNNmMmAIEmINmMmNmNNNmNmmBNmIEHuMOiNMgmENNmEmI:NEmNIE1NEpNmNunNoEoIoNmmNmMIpmNMmIm

mmmommumnommmummommmmammmmormmmampmmm MMMMM Immo MMMMM mmmmommummmminummm immmimmiumpooNmSWmmommmlimmmmilmmommmm

O\JJ mNMEMNMMImENENNoMMENINmMNEImIENNMEoINEOmENEIONmENNNoNMMNNmNVNNmNEMNEoNMENmMNMMIENmINEuIENMNEmMNMNmMEMNNEoOFMMmNNMEIMrNNMMoCMMNMMmNIIIm2MMDINoUNNmEEMMINEmMNmNMNMOEUmMEMfMNMMNEMMMrIiMESMNNAM5aNmMZMENNMW4mNmIMOMENMNmEoMEMNMMEmEmNMNMINENmMmNMMNMNENNmNoIMMEMNNNNnMImMMEMENEMMFmM,EMMMMEFiUNNMWMMNiMmNEHMMMNMEmINMMMEIMINoNEMMMMNINmUNMNINNNEmMmINNEzUImENLrNNEaMIMmNIMiSOMEmNMEmEEmONMNEmENoMNmNENEYrLWrENwSENMMaEZmNmE2I2UNmMoMmENNNMImEmNEoMNEEMoNmONmZENNMmNINmMNEEIMmENNnNENNNMmNEoENENMMuOMEmNENEMMmNMNmEENRMMmEMEmNNEEMNoMNmENNNmMMNmSiEEoNNMMEmImNNmNENoNNmNmENNMmEIooNENMEmNOmEmWNEEMNoNNmNmNONNMNmEEoEoENEMEmMmEmENNNMMoMmEmNNNNMMMmNoEEEEmMMMmMNNmNMNmMMMMmEImNINMEMMMoKOuNNMNMMMEmNmINEENMMMNmEEmNNNEMEoNNNoNNENmN§mMEmEEMNmENmEEmNNEEgENmNMONNNpNMVOMMEENmEEMNMMENIMmMNMIMONMMoMIMMMMSMMmMINMOMNMmIMINNMMoNMNMMNNNMpNONEMNIEmNEEmMNMNNmmENmMINNiiNmNuEEMEmmNNmNRMINpmEmEmNNMUmNmNiEEENeOmNuNEONmMeNNmNNEEmImNNNmINNMoNmEEEoEENMmNoMMEmNUMmEmNANmNsINMmSNmINuENNMIoENoNEmMaNNIMmMmNOmE2ENIImNmENuNNEIMNiWmEmNNNONNmONMmANENEEMEmNEoNNNNMMMmiWIMmNNOaunNOWmINMMNmNNEMOEMIMNMmMmMNMNINIIEomNMNNNUNNmmMNIEEINNMONMEEIwmMNMN'LzNEMmIZIIAOmMIIMNmCEtNmMNENNeENoNIMECMmMNmNENMMEEOmEEOENIINmm.NNNIEE"NEiuE.NMFNNXWmNmIMISNNMNNMENNNmNNMENMEEImMENENNINNNmMNMENNNNGNmMNIN

UNNNNMEEINENNNNNNENMIENOMNENEENENNNNNEININONNMMMMMMEMMMNMMM&MMMMMMMNMEMNNNNNNEEENEENNMNEEMOMMNEMMEMMEMMMMMMMIMMMMMMMMMMIMNMNNMEMEMEENEMNNMMEEMMMMEEMNNNMNEMEEEMNNNMNNNMEEEMNNMMINMMOOEMNMNMNMNMEIOMMNMMIEINNNNEMNEMMINMMNMMEEMMNNMNNMMIMMMNEMIENNNEINEMNIMEMEEMENNMMEEMMENMMMNMMMNIMUNMMMMNEIENNNNNSNNEEEENNNNNONIMNIMIENNMNNMMINEIENNENNENEENIJMNNNEENONNNEAEINNNMMENNEINOENNENMNNMNNEEENENENINNNNMNMMNMMMEMMMNMMMMNMMMNMMMmEMMCNMINNMNMMESMIEMUNNMMMNMIEMNNMENMENMMEMI

NENNINEEM

GL -1 L31
ETI-307 PAGE 4 8-50

GL -1 L31 OUTLINE
r-,1.562".t.S05' DIA.

Is.
UNMARKED END NORMALLY GROUNDED\

A
25"+ 1 "
32 -32

3"+L
-16

)

4" 16

8

/.2" MAX.DIA.
MARKED END

25"+ 1 "
31 -32
CAPACITANCE
SYMBOL

8-5o (11M)

K-8639363

10-29-45

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

GL -1 L32
DESCRIPTION AND RATING
ETI.308 PAGE 1
8-50

VACUUM CAPACITOR

DESCRIPTION
The GL -1L32 vacuum capacitor is designed for
circuits where the peak voltages range up to
7500 volts. It is useful as a plate -tank and by-pass capacitor in radio -frequency oscillators or amplifiers. The GL -1L32 also serves as a neutralizing capacitor in radio -frequency amplifiers in conjunction with small, low -capacitance padding capacitors.
The small size and compact construction of the vacuum capacitor permits circuits to be designed more compactly, allowing shorter leads than with air capacitors. Some of the more important advantages, in the design of high -frequency circuits, are listed below:
1. Vacuum capacitors are comparatively loss -

free, since there are no losses in the vacuum dielectric and because the total capacitance is lumped into a size about 1 cubic inch. 2. Dust and other foreign matter have no effect on vacuum capacitors. 3. In communication applications, vacuum capacitors are extensively used as antenna coupling capacitors especially in aviation radio installations, where constant internal voltage breakdown is an essential requirement. 4. Internal voltage breakdown is constant and is independent of altitude, temperature, humidity and other factors because of the vacuum construction.

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS

Electrical
Capacitance 5 per cent Maximum peak voltage

6 micromicrofarads 7500 volts

GENERAL

ELECTRIC

GL -1L32

ETI.308

PAGE 2
8-50

Ambient temperature Minimum Maximum

TECHNICAL INFORMATION (CONT'D)
-40 centigrade +65 centigrade

Mechanical
Maximum over-all length Maximum diameter Net weight, approx Shipping weight, approx

3% inches 1% inches
4 ounces 1 pound

VOLTAGE AND CURRENT VS. FREQUENCY

The curves of page 3 show the maximum allow- d -c) at any ambient temperature should not exceed

able peak r -f voltage and maximum rms current the maximum as indicated by the dotted line of

for G -E vacuum capacitors when operated at the curve shown on page 3.)

various frequencies. An additional d -c voltage is Example-Assume a GL -1L32 is to be used at

permissible so long as the total voltage (d -c plus a frequency of 30 megacycles and at an ambient

r -f) does not exceed the maximum allowable peak temperature of 40 C. The correction curve indicates

voltage as indicated by the dotted line shown on a correction of 118 per cent. The curves of page 3

the curve.

indicate a maximum r -f voltage of 5320 volts peak

These curves apply when the capacitors are and a maximum current of 6.4 amperes. Applying

operated at an ambient temperature of 50 C and the correction factor of 118 per cent to these

for normal operating conditions with natural air values indicates an allowable maximum peak r -f

cooling.

voltage of 6278 volts and a maximum current of

The correction curve below indicates the per- 7.6 amperes.

centage increase or decrease in r -f voltage and For operation at frequencies higher than those

current when G -E vacuum capacitors are operated indicated, consult the Electronics Department,

at ambient temperatures above or below 50 C. General Electric Company, Schenectady 5, New

(Note that the allowable peak voltage (r -f plus York.

VACUUM CAPACITORS
GL -1121, 32, 33, 36, 38, 22, 23, 24, 25 AND 1131 CORRECTION CURVE (PERCENTAGE VOLTAGE OR CURRENT VS AMBIENT TEMPERATURE)

150

140 130

120
L.)
110

cc 100
f2
Ocff
90
C.7
-O1
80
cc
cc
70

60

50

10

20

30

40

50

60

70

K -69087-72A7

AMBIENT TEMPERATURE IN DEGREES C

4-5-46

C4r, 8

0

J P C,
a.

. J
0

mmmmm imommumammummom mmmmmmmmmm m ammo Ili Es
mimmommumminammammommrnmmommo En mum

mmommmummmlmmmmmommammammmmmommmmmmmmimmmumnmmmmmmmmmmmummmmoummmmmaummmiommammonmimmmommmmmmmmammmmmmmmmmmummmmmogmmmmm=mmommmmmmmmmammm

mmummummmommammEmsammmmammommorm

EN mmmmmm PimmEEMEmEM

EWEN OMAMMIEL!NE

V II

IM

etMME

r

1mMmM1mMXmMmMEmMMmMMmMmMEwMMmMmMUmMMrMMmMmMImMMmMEMMiMEmMi=mKamEUE EM

I

WEEMEMP2 '4

m

=IaMtR IC

MEM
mmm

EX IIMIMMEMMUMEMMTEIMENMEM MMEEMMOMMEMBEEMMEEMEMOMMEMMEMMEMEMENEMENmiumMEMME

2m

IL El NM

N

V

ma

,r NW

1;1 9 II
22111 ME

le

MI
li

NUMEMEMMEME

1 . MMMEMIEWEmmmmm

IM 2.1

ft

mal

IMEMSWEIMMEIRMI

MIII 1
22 mmmmmmmmm ME= PM

UM MMM1M.2M1 M

WM

MN E

,N

ig

D'

ga

I

iii

NME1MEH MAE En iM M1MM1MOE1MM1EMEMMMMRMEommMEMEMMuEENIEMImMMmUEEMMMMNMBEEEMMEEEMuNMEMEMEMmMmuAEmMMEMM=mMMEMMEMmEmMEEMmmMNMmAamMIMIEmMMmLMmUeMMAMMm2mMMmmMmuMMEMEIMESMMEmMMEE0MNEMIMMM4e2EMAAOmMMmEuEmEWMMnEMrEMEMmM1mMEMMOIIMMNMMEumEMMmUMEMMMOMMmMMMNMMEmMlW11MEMEMNMUIMMMM2MMMM1lM

MEWNI

=mM iVrm

MEMMEMMMEmE11MmMEWANA2t

,

ME MUMM

1

ME

I MUM ME iuimii mom= mum Immo Ella

AI
mm'immilmm

Nm PM V
millimminu.m2mon2 #

ummimm

m y
I
mmin,iA mwdetimmiumm

r N1NE.

rM; E EnumummumummutmmilimOmmo

M NEE EMOVNIMMIMMIMMIMMEM MIMIkl IIMM mammmmmmmmmmmmmm ma.,mz-r.o..mommmomm mmormampm mmommmammairmmommmummammummummummErammommum

,

4 IN

IN

C

EMEMELEIME IMIEMEMIMEMME=1:11 MMUM ME imam UMMI

ME
l'

EMI

u

mMUMMEIMM , IIMENVAME

,mmmoAormA mimmmummummuummAmwommumPmImmAmo

MEMMUINIIIIIIIIMINIEUMMIXIKENEMMIMAIITAIIMAMMEWAIIIMEMEMMUNIMMIMMINEME KEENE
mammas
ENT . MENEM

EAlMmaEMmMiEmmEAMmImNAEmWmmIMmImNmEoEmLmoMm
'OM REEMI3Em3MEME EMEMEMESE

1 112MMWMEIMEMME mimmammumnmmorAm

MEM

PM

MT ENiTmIiMtuImImMoFmmAoMrEmMomMmEu1mM M

um nm
RE CAM MN ME

. Pa

Ammo,

111W.

5

u 11111111 mmmsmmrmam11 mmmmm

r-

r -

mu mi aI mmisimmuIm Am m EMIIIIIIm MEM

A

4A

F
1

INIIIIIMUNP: Iligir'"'' Imiurl ISM IrMINNEMMAIMIENOM1
=NMEEEER EMEEMIINMEMMIMEME III:

MMMiMt-MinrinilhIrMsAPlIiImIIiInImIiIgIlMiIgTaIgMeMlIlEidldliiltiEailrl4I1I2I1I1I1I1I1I1I1IIIIUITI'III9005121V11M1E11E0M1E1:M1M11E1M1E11M

EmmmKiERIoiMouMEMmiMmmEMmiEMIiiMmrEMmiAmoNMmiImmEEunIlmaMmNIlaIiMMImmiMsmmDMuiMMMmmoiEMEmumiMMMummiMEMmmuiUMOmumiMOuMmiiMNmEmlIVINiiIIMmImIIMuIMCuIIEmMIMomEmMImmMuUUmmorMeMmosmMEsusI.n1 tiIaiIiusImmiwuImuimuImmlmIoml2mmIomm2imIga1mpmiI2ummmI.mumg02mImAM.rmNImEa1mmMIMam1omI12mmSm1m.MuomiIm1mgiEeEMmMMeml2PEomUmoMbNmmj:UmmVERmIorMoNmmAE=.mEmmM4MEAIuiM_IoIAmMmEMmlrSmEriiAPma'llmmMiM1mmrMHomA1mIMuAm1ETloMAmEIImNmIMiMMlMMMMiIMEIEmNMMMEmMIMIMEumTMuEMmEmEIEEmMMMMmMAmIErMIMsMEPaEA.MmI.MmMMmMEiMAAEmLmPmOmMriNIoIImmMImIM%ErmAMmVmi.AAmAEmMMmEImEMrMEKmMMMmEEA mMImEIMrMMmBMmEMmMMuEMMmMMmEMmEmMMmEmR

E22 modmEmurMmEammomammr MEM mUmNMMruIIIamMNmmLMNmuOIImmMNumIMNmuEEIumIIMmiIEMImmSMMMumMmuIEEmmMMomrM=MmoEMasmOMEmmnMMRamInEEmoE=EmmMnMmmMIMaaEOmmnMVmmMEIarmWMMaigEMmuMMlumMImmEEEOmuMMIamRMMamMOAmuMMEmmTMUImEIIaIMmMMMMmMMMIuUNUmIMImMMEoMMMmFMEmEuUMMm1MMNmIM1uEMmMMMm=MuRMMmIEmMMoMIMmENmME2NMEMmOImUMmMiLEaTmMmIIEuMMOmMMmEMEuMMMOmAmINUMoEImPWMmLMEoEUmImMmoMMmmEaPIMr,I1Ma1MAPMMMMEUREMEMMEEM'EMMMEMEEMVIPNR:dIEVMEEMRUMEMMRIMMEUM MUPEON RI

PP

EWMrMrENMMrMUMM.OiMEEM MEEMMEOMMEMMMINMMIMAM EMME

MN

KIM MEM=

SEMP":4 Pr.

m

,,I1

anammormr:.-- um mi am ammoMMMMM mmummommemon ummmi mum

,.

1

.....11

-1101

62Z7ML2W MEMEMEMMEINESM EMMUMEmMoMmE= MIMS mg mrimmummu iMUmmIMMmMmaIMuMmmMMmMOmmoMMImJwEmMioMMEmmmNMWmmm0MME.mmoMM1uMmMmMMmMmMMmmMMmu0oMa,MmE,1mmMMMmNmmMM6EmuM0osmWmI-M.r1EmMUmMnmMMooIEMmnmMMUmC,:msE-M.MIz,uEM:E.-mm6MMnimMhOMmmEoE.MzE.mM7mMuMMmmEMmmiMmMmEmu1mMmAMe1IoLm.OMZMmOmAmMMmRumEM,iMMxWmo1iiOWlIznnmMNCEhmImoMMomMEmIlMEmBuNmMEEmmmMmir.mlm=imMlMmEEOimMrMmmOnmMEMomMillEllmEuM1mmmE1moN1MU1MmAmamM1lMmmmM1aImEM1M=mMMNmmIEi.MM.MEmim.IamElMmMm=NEImuEEMMgmmMmmMEMEoMmEmMNMEmMEmMocMNMMommEMOmmMmMIMAMEmeMMMrmIEnrMMmIumMMommoEIMmmImMNMmmuIEMmuNRmMMmmEMuNMmiuMEMmmMmMEmMuEmMmmM=omMsumEmEmmMMMlAEIUiMu=mMEmsMmNoMElMEmoMEMmEmEMmNuMimnmEmumEommMoEIiNMmMUmuIMmINmNCMIIoEAUUmMmEMMMMmmEMEMoMMoEMMMRmMNEEEsMMMMmEEUEmM

S3d 3d INV NI' IN32:1:1110
SVId 318 VM011V VON I AN

S110A011A N I 35V110A A -a NV3d 318VM011V HAN I XV

GL -1 L32
ETI-308 PAGE 4 8-50
UNMARKED END NORMALLY GROUNDED

+.010"
.562- -.005'
DIA

MARKED END

CAPACITANCE SYM BOL

K-5964469
8-50 (iim)

GL -1 L32 OUTLINE
Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

10-29-45

r

GL-2BP 1
DESCRIPTION AND RATING
ETI-310 PAGE 1
3-50

CATHODE-RAY TUBE

DESCRIPTION
The GL-2BP1 is a small cathode-ray tube with a small, brilliant, focused spot and high deflection sensitivity. The two-inch, medium -persistence, green -fluorescence screen provides high contrast. The tube is designed for use as an indicator and is also recommended for use in general oscillographic applications where compactness is an essential consideration.
With separate base -pin connections provided for each of the four deflecting electrodes, the 2BP1 is intended primarily for use in balanced electrostatic deflection circuits and gives best definition when so used. However, it is also well suited for use with unbalanced deflection because of design features

which minimize the spot and pattern distortion characteristic of such operation.
The spot in this tube can be focused sharply on the screen, both at the center and at the edges, and remains sharp when beam current is varied over a wide range. This feature results from the electron gun used in the 2BP1 in which the Grid No. 2 operates at voltage high enough to keep the beam current from being affected by changes in the anode -No. 1 voltage. Another feature, the very small current taken by Anode No. 1, permits the use of a low -current voltage -divider system and hence the use of a small filter capacitor.

GENERAL ELECTRIC

GL-2BP 1
ETI-310 PAGE 2 3-50

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL
Electrical Data
Heater voltage (A -C or D -C) Heater current Focusing method-Electrostatic Deflecting method-Electrostatic
Phosphor-Pi Fluorescence-Green Persistence-Medium
Direct interelectrode capacitances, approximate Grid No. 1 to all other electrodes D1 to D2 D3 to D4 Dl to all other electrodes D2 to all other electrodes D3 to all other electrodes D4 to all other electrodes

6.3 t 1()% volts 0 6 ampere
8 uuf 2 uuf 2 uuf 11 uuf 8 uuf 7 uuf 8 uuf

Mechanical Data
Mounting position-Any Over-all length Greatest diameter of bulb Minimum useful screen diameter Base No. B12-43, small -shell duodecal 12 -pin

7%8' A inches
2 inches
14 inches

MAXIMUM RATINGS Design Center Values
Anode No. 2 voltage* Anode No. 1 voltage Grid No. 2 voltage . Grid No. 1 voltage
Negative -bias value Positive -bias value Positive -peak value Peak heater -cathode voltage Heater negative with respect to cathode Heater positive with respect to cathode Peak voltage between anode-No. 2 and any deflection electrode

2500 max volts 1000 max volts 2500 max volts
200 max volts 0 max volts 2 max volts
125 max volts 125 max volts 500 max volts

EQUIPMENT DESIGN RANGES
For any anode No. 2 voltage (Eb2) between 500** and 2500 volts Anode No. 1 voltage Grid No. 1 voltage for visual cutoff, maximum Anode No. 1 current for any operating condition Deflection factors
Dl and D2 D3 and D4

15% to 28% of Eb2 volts 6.75% of Eb2 volts -15 to +10 microamperes
115 to 155 volts D -C per inch per kilovolt of Eb2 74 to 100 volts D -C per inch per kilovolt of Eb2

EXAMPLES OF USE OF DESIGN RANGES
For anode No. 2 voltage of Anode No. 1 voltage Grid No. 1 voltage for visual cutoff Deflection factors
D1 and D2 D3 and D4

1000 150 to 280
-67.5
115 to 155 74 to 100

2000 volts 300 to 560 volts
-135 volts
230 to 310 volts D -C per inch 148 to 200 volts D -C per inch

MAXIMUM CIRCUIT VALUES

Grid No 1-Circuit resistance Resistance in any deflecting -electrode circuitt

1 5 max megohms 5 0 max megohms

*Anode No. 2 and Grid No. 2 which are connected together within the tube are referred to herein as Anode No. 2.

**Brilliance and definition decrease with decreasing Anode No. 2 voltage. A value as low as 500 volts is recommended only

for low -velocity deflection and low room -light levels.

tIt is recommended that the deflecting -electrode -circuit resistance be approximately equal.

GL -213R1
AVERAGE CHARACTERISTIC ANODE NO, 1 VOLTAGE ADJUSTED FOR FOCUS
ANODE NO. 2 VOLTAGE =1000 E,.=6.3 VOLTS

GL-2BP1
ETI.310
PAGE 3
3-50

0O0
n
0
ron
0 u0i
!
01
I1
I. I MM
MMIkO
MO Mi- M
m=noino
0LA UMWMC
0
O

RELATIVE LINE BRIGHTNESS

0

(37

0N.3

ummummilowlmml m
urn, "mil immiiiiiiiii a
mmiiiiim WiIlllil a. MEWNIUNMEE
mom
omEmuWmEgmNmlommomm

Molmlim Inglis m

i
momm

MMMmiMomMmammmms

mommI1ll1i1iiIiimimiomm

imumumiliumummimirm
illiiiiiiiiiiii M:IS

1 iii

Ilia

WU IIIIMIUMAIIIIMMIIMAITANSI

ill ommmiiiii

'm mmuomm

nom

immumgmmmmmoosmnmmmmmmoommmomsonmommgmmommmommommm.lomMmoOmmmlEmmMomMmEmNnsoMIMIMMMIMNMNUmmMmmE:insomnm

WIIIIIIIMUILMIUMMUMMENNIMENSIIM 111.11...."88MIIIIIIIMMIIMMWIWEUNMUMMMIE"N.N

ammoniiiiMi

m.ma.um.mmMioanmu.smommoommommononsmmgm

mum

mm

mum

NEWEMIIMMENNUMMEN MMMMMMMMMM MENUM mamma

mMI mnionmsmoemnm!mmognmommommsmsommmmusilloinlomlmuomnmuMmMmMMmMmioln

immmoommmmummommommmmmmegmiimionsmommmoomnmgonmommemmmm

mm mg

mom iingliiiiiiiisomomomiiiiiiiiii
MEMEME MMMMMMMM smommonmplmmosommmo
. mommommimmummummo MMMMM mmoommonnms

mmommo

mmommmons

MMMMM mgmommonsmmons MMMM mmoons

imoimimioinisioiii

milminingliaimmimmommommmummonmsoonmos
IMUUMMEMORMEMMEMBEW

imgmemmossm
MOMMEMBrealla

mmommmosomm gmmommompums

i

III 11111 MMEMEIN MUMMENNWEIMEMEMEM

mmmunausluolra-E UMMUMMIUMMENUMME MIWURIMM mmilissmii

U. mmum m

mmommmontmomommommmg m I

MERE:

MoMmEmMnEsNmNoUmMmWoEmSoEmMmMoENNIN

mmillifilims momnoommmmuomnsomm memo

mommummilm MMMMMMMMM mmissmommoommnmoommMmmoommmmmmoommomom mmmommmomoummmmoomsmommosnmImmgm

mom mom
mEomommam

"Millililln illmumsmiimmgmmmm En

.....11112

SUMMUMM

IIIIIIIIIMMEMU MMMEMMMMMUINNNUWMEMSEENNMIMMEEMMMMUMMMMMEIMNENSWIMILIMMENOMI:11111:111111111011

IMMION

MEMEMEMEMUMUMEMEN

IlmoniiiiIIII monsogsmommmomommormonsmillm immmommonommm

muiiii=iiiiimmm

mmmgmmunmsmogmmmmoimmmommmmm

i

nosing

mommoms=

mmommm

mon

mom..

mmmlnimmommmomm MMMMMM n

if

mamma MMMMMMM es immill

mummil

i

mil:

:MI no

MMUESMHEMNMUMMMMMINMNMA1MMENUMIMI 141:1111

li WIZ

111111. IIMMENNIMES MMMMMMM MilinglIENNEUENNIMM MEME

Emma mommos MMMMMMMMMMMMM immummummummmosn.nmommummmoommmmiulilmlg,m1l1m1il1l :Immomme

4111111 mummumms MMMMM mom=

mainummum MMMMMMMMMM millil

MEM

..

JIM= ..."

m MMMMMMMMMMMMMM manonsmmonsommposonnommonnommosso ommonommomm MMMMMMMMMMMMMMM mmmommonommomman

onommongssompumms nommo

ka...ini

m

'...1.

II:mammonism:1111WWWWW

Imsooonms

`Man= MMMMMM :...

M '.
... MUM

bZqUENSIONSE MMMMMMM INNEW MMMMM BM MMMMMM MANNI
M Z.

MB 1 ME

...4111%10

.....

s'IllkINOWIP Ella

..'. -.

01111.:.

MIOURJ

....:!..

ZAIrdi

IRENE

Innft-4.nmmmmoamnau

ft.7.7.11111.WII/In,

WASIN

.7.

w MF.F.MMUMMUft.-.MUMUMZIAIZM MMMMMM WNW

[ISAAC:

1...:7°.14.4WWINENNMS

.7.7.

mimm mmmoral om

imams
moms
m:1110 Ilamm mom
MUSW.

mmommon m
:ILI mg
EMEM mmi

is
MMMMMM mongol
dmgigmumummmiiiiliimimiiiiiiiimumml

CD

-

7-

cn

0

cn

ANODE -N0.2 CURRENT IN MILLIAMPERES

K -69087-72A322

N.)
O
12-9-49

64-6-ZL

CUVU-L8069-)1

Si10A NI 39V110A Z 'ON-30ONV

00SZ

000Z

0051

0001

00S

MUM

111

1111 MI I

mom
111111PWIIIPW111111

11111'11111111111 11111111111111111111111111 INIMIIIIM1111111111

IIIIII IIIIIIIIII1

ill11.12111111111111

01
1111111111 .M.E.M.E..M.M.I.N1. 1111111111

11111111i 'III
IIIIII II MI I Nmi

1111111M11111111111111111411111111MIWAIMIIIIIIIIMIIIMINFAIIM

OZ 111111111111 lip 11111111111111i12411111115111111111111111111111 I

m

......m .1......1. ms

WilhipORMULIAROUSIBIppped

!!!!!!!!!IMIIII 1111111111111112

m
m

of

1111111.11II

II

11111111111115111111114111111111111111 "11111

IIIIIIIIIIIMIIIIIIIIIME11.1111111111
II NOWNIONFAMMEMMUMMITMEMMEMENOMMUMM IAN

II
II

1110m111111pilinr1111W INNIMIIINuMWAIIIIIIIIIhmid.MIN

Hz 111111111111111 m
017 1111111111111

OS

09

9

1111.111.11111Mil

olimmilipoimmoOmmuipmumuliimi

11111111111111111111111111111 IIIIIIIIIIIIIIIIIIIII
III1111111111
SI1OA E*9= snDod dO3 allsnrav 30V110A L 'ON 3C1ONV
SD11SIN31JV2IVI-0

PERSISTENCE CHARACTERISTIC P1 PHOSPHOR
IOC)

80

x3

60 R;.
40

30

20

MMMEMMNMEMNMLMMMOMMMMMMMEHNMMNMEMMMMIMMUMMMMMMMEMMMMEMNMMEMMMMMMMIMMNMMMEMMNMWMMOIMMMMMMEMMMMEMNMMUMMMMMMOEINM

MEMMEMEMEMMMEMMEMMEMMOMMEMEMMEMMEMEMEMMEMMEMEMMEMEMOMMEMMEMMEMMEMEMOMM

MEMMUMMEMIMMEMMEMMEMMEMMEMEMMEMMMOMMEMEMEMOAMMEMMMEMMEMMEMMEMEMEMMINE

MEMEMMEMEMLIMEMMEMEMMEMEMMEMMEMOMMMMEMEMOMMEMMEMMEMMEMONEMMOMMINIMMMEMM

IMMEMEMEMEMIUMEMEMMEMMEMMOMMUMEMMOMMEMEMEMOMMINMEMEMMUMMEMOMMEMMEMME

10 IMMIMMIMMIIMMEMOMMIIMMIIMIIMMONNOMMIIMMONIIMMINOMMOMIMMINEMMEMMIN

= E

n

8

63

St

rs
==

4 cs=

r.1

3

GL-2BP1
ETI-310
PAGE 5
3-50

2

K -69087-72A326

111111111MEMEMMEMM MMMMMMMM MUMM MMMMM IIMMEMMEMMEMEMEMMOMMEM MMMMM MEMMEMEMMEMEME MEMMIEMINEMMEMMEMMEMMEMEMIMMEMEMEMEMEMEMMEMEME MM MM MMEMEMMEMMEMMMEMMEMM
MEMEMMEMEMMEMMEMMEMEMEMMEMEMMEMEMMEMMEMMEMEMMEM6MMMEMMEMMEMMEMMEMEMME MMINIMMEMMEMMEMMIMMEMMEMEMEMINIMMEMMEMMEMEMEMMOMMEMMOMMEMMEMMEMEMEMMEMMII EMENUMMEMMEMOMMMEMOMMEMOMMEMMUMMEMEMEMEMOMOMMUMINOMMUMMOMMEMMEMMN

UNOMMEMMEMMUMMOMISMIMMUMMOMMINIMMOMMUMMUSONOMMINEWMINOMMUMEMEMEMEM io1.1111.111111111111111110111111111111111MM1MINIIIIIIIIII11IMMON1IMMIMISIIII

0 02

0 04

0.06

TIME AFTER EXCITATION is REMOVED IN SECONDS

SPECTRAL -ENERGY EMISSION CHARACTERISTIC P1 PHOSPHOR
100

AMMEMI

80

11111

:1

MEREMI

K -69087-72A327

60 111111

1'E

1111111.V

I

LI

Midi il illiiill ' 1:1:el."1

1111::::::11:111111:......11111111111110111:

EEL

:

1

la:::::::

4 'IiIlI
.t..o.......:
20 IF

10:111:1111"61

1

rall

11111111iiini

1...1::::::1
imum:111
1im11e1lp11e1l 11i9ii1iii:i:i:i: 1

m:Ppmi .epi1 1I:

::::LC:

1..1...1

numb=

3500

4000

4500

5000

5500

6000

6500

WAVELENGTH IN ANGSTROMS

12-13-49 12-13-49

GL-2BP1
ETI-310 PAGE 6 3-50
SCREEN RADIUS -g MIN.
3
16
r 3..
I ±16
SMALL SHELL DUODECAL I2 -PIN BASE NO. B12-43

OUTLINE CATHODE-RAY TUBE GL-2BP1

D3 D4

IC O O G2 P2

Pi AL

D2

GI H

IC
H

BASING DIAGRAM

t OF BULB WILL NOT DEVIATE MORE THAN 2° IN ANY DIRECTION FROM THE PERPENDICULAR ERECTED AT THE CENTER OF BOTTOM OF THE BASE.

THE PLANE THROUGH THE TUBE AXIS AND PIN NO.4 MAY VARY FROM THE TRACE PRODUCED BY DI AND D2 BY AN ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF 104% ANGLE BETWEEN DI - D2 TRACE AND D3- D4 TRACE
IS 900130.

DI AND D2 ARE NEARER THE SCREEN; D3 AND D4 ARE NEARER THE BASE. WITH DI POSITIVE WITH RESPECT TO D2, THE SPOT WILL BE DEFLECTED TOWARD PIN NO.4; LIKEWISE, WITH D3 POSITIVE WITH RESPECT TO D4, THE SPOT WILL BE
DEFLECTED TOWARD PIN NO. I.

N 15160AZ

1 2 -9-.49

Tube Divisions, Electronics Department

3-50 (11M) Filing No. 8850

GENERAL ELECTRIC
Schenectady, N. Y.

GL-3KP1
DESCRIPTION AND RATING
ETI-31 1
PAGE 1 3-50

CATHODE-RAY TUBE

DESCRIPTION
The GL-3KP1 is an electrostatic -focus -and deflection cathode-ray tube for oscilloscope applications. A medium -persistence green -fluorescence screen provides high contrast. The tube has a small brilliant focused spot and high deflection sensitivity.
The anode No. 1 takes negligible current. Changes in the voltage of this anode will not
affect the beam current because of the high voltage
at which anode No. 2 operates. These features allow the spot to be focused sharply on the screen and to remain sharp even when the beam current

is varied over a wide range. The small anode No. 1 current permits the use of a low -current voltage divider system and hence a small filter capacitor.
With separate base -pin connections for each of the four deflecting electrodes, the GL-3KP1 is intended primarily for use in balanced electrostaticdeflection circuits and gives best definition when so used. The tube, however, can be used with unbalanced deflection because the design features
minimize spot and pattern distortion usually
characteristic of such operation.

GENERAL ELECTRIC

GL-3KP1
ETI.311 PAGE 2 3-50

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL
Electrical Data
Heater voltage Heater current Focusing method Deflecting method Phosphor-P1
Fluorescence Persistence Direct interelectrode capacitances, approximate Grid No. 1 to all other electrodes D1 to D2 D3 to D4 Dl to all other electrodes D2 to all other electrodes D3 to all other electrodes D4 to all other electrodes

6 3 volts 0.6 ampere
electrostatic electrostatic
green medium
8 uuf 25 uuf 2 5 uuf 11 uuf
8 uuf 7 0 uuf
8 uuf

Mechanical Data
Mounting position Over-all length Greatest diameter of blub Minimum useful screen diameter Base
Basing

any 11 IA t y, inches
3 c inches
2% inches medium shell mag-
nal 11 -pin
11M

MAXIMUM RATINGS Design Center Values
Anode No. 2 voltage* Anode No. 1 voltage
Grid No. 1 voltage Negative-bias value Positive-bias value Positive peak value
Peak heater-cathode voltage Heater negative with respect to cathode Heater positive with respect to cathode
Peak voltage between anode No. 2 and any deflecting electrode

2500 max volts d -c 1000 max volts d -c
200 max volts d -c 0 max volts d -c 2 max volts d -c
125 max volts d -c 125 max volts d -c 500 max volts

EQUIPMENT DESIGN RANGES

For any anode No. 2 voltage between recommended minimum** and 2500 volts

Anode No. 1 voltage

16 to 30% of Eb2 volts

Grid No. 1 voltage for visual cutoff, maximum

4 5% of Eb2 volts

Anode No. 1 current

-15 to +10 microamperes

Deflection factors D1 and D2
D3 and D4

50 to 68 volts d -c per inch
per kv of Eb2
38 to 52 volts d -c per inch per kv of Eb2

Spot position***

Examples of Use for Design Ranges
For anode No. 2 voltage of Anode No. 1 voltage Grid No. 1 voltage for visual cutoff

1000

2000

160-300 320-600
-45 -90 volts

Deflection factors D1 and D2 D3 and D4

50 to 68 100 to 136 volts d -c per inch 38 to 52 76 to 104 volts d -c per inch

MAXIMUM CIRCUIT VALUES
Grid No. 1 circuit resistance Resistance in any deflecting-electrode circuit t

1 5 max megohms 5.0 max megohms

*Anode No. 2 and grid No. 2 which are connected together within the tube are referred to herein as anode No. 2. The product of anode No. 2 voltage and average anode No. 2 current should be limited to 6 watts.
**Brilliance and definition decrease with decreasing anode No. 2 voltage. Recommended minimum is 1000 volts in general service, but a value as low as 500 volts may be used under conditions of low -velocity deflection and low ambient -light conditions.
***The center of the undeflected, focused spot will fall within a circle having 7.5 -mm radius concentric with the center of the
tube face. fIt is recommended that the deflecting -electrode -circuit resistances be approximately equal.

SS3N1H9168 3N11 3AIIV1321

0

8

mommimmummimmumumummmumwmoomp 110111111011111111111111111111100011111111

i

11 1 4 11111111111

11111

111111111111111111111110011110

"11
11111 114111111m
11111 1111111111 111111111111111111111111111111111 100:1111111, 111
tiv 111111 111111111111111111111111111111111111111111111111111111111111111111111111111111

S32l3dNV1111A NI 1N3218110 Z'ON Old9

Z'ON-300%,

GL-3KP1
E11-311
PAGE 4
3-50

GL-3KP1 AVERAGE CHARACTERISTICS
Ef =6.3 VOLTS ANODE NO. 1 VOLTAGE ADJUSTED TO FOCUS

20OOMMIMMINIMMMOIMMOINMEMMEMMEMEMMMEM mmmmm MMEMMEMMEMEM mmmmm II mmmmmmmmmm ME mmmmm

MOMMEMMINIMMINEMMENMEMEMMEMMIIMMEMOMMIIMMINUMMEMMIMMEMMOMMEMEMUMEMMEMEMM MMIIMMEMMEMMEMMINIMMINIMMEMMEMMIIMINMENE!MMMEMEMOMMMEMOMMMEMMESIMMOMMENEM

IMIEMMMEENMOMMINMIEMMMMOEMMMUEMMEEMMMEENMEEMMMOIMMIMMI2ONNMOIMRMMIIAMCEIRAAMOMMMUOMOMOMSIIOMMKPIOMMMOMEMMOMMIMMEMMMIOUMNMMOEMMMEOMMMEURMMEEMM SEMMEMEMMEMMUMMEMMEMMOMISOMMOIMMIUMARENdialiMIUMMEMMOMMEMIMMMENMEMMM MIIIMMENIMMINAMMISMEMEMMEMMEMEMMEORMNOMMDIPPOOMMEMMEMMEMEMMEMIONOMMEMOMMOM MIUMMEMEMOMMEMEMMEMEMEMMEMMEM2MMER991.4111WURIPINMEMMIMINIUMMOMMIMMEMOMMEMM MMEIMNMMEEMMMEISNMSIUNMMIEMMMMEIMNEIMVMNITWWOIAWRVRIEARMWErHoUmMMV4PARPMAWMOIMMMMIOWlAtMOPOMRWMAEIRRIMF,IARMKOMEMMMMMIVOONMAIMNEIMMMEEMMMMEMMUMM

MEMMIUMMOIMMEMMUMMEMMOMMEMEMOIMMEMINIMMEMMEMMINMEMMEMEMOMMEMEMIOMMEMEMMINOM MEMMEMMIIMMINIMMEMEMINIMMEMMEMINIMMEMMOMMEMMEMEMMEMMMONIMMIWAMMINIMEMEMME
MMmMImEMmMMMiOIMnMMuMEUmMMmMMEEEMMmMMmOEaIMMMiMImEOmMNMmMOEuUMNmMImEMmMIMMuMEmEMmMMMoOEMmMMmOIMnIMiMOMmMUMmMIoMIMmIUMmMMoMEImRNmMIEuMNMmOOuMMmMMEOmMMuMMmOIMUmMMuMMmMEEmMMMmEEMoNEmOMmMMIMoMEmMMmSM

MMIEISMIMMOAMMMMEEMMMEEMMMMMEEMMEMMOEMMMMEEMMOOMMMMEOMMEMMEOMMMMEEMMEMMIMMEMMEIMMMMOMUMMEMMIMMEMMEEMMMOERNIIMMIMMUMMINIIMMMMOMEEMMEEMMMM IIMMAIMMEMEMEMMEMOMMMEMMUMMEMEMEMMEMMOMMIUMMEMIMMEMEMEMEMEAMMOMMEMMENEM MMMEIMNMIEMMMMEEMMMEIMMSMEEMMOMMEMMEEMMMOEMMMEEMMEMMEMRMMESMMUIMIMMEMMIENMIEMMMEMMEMMEEMMMOOSMIMMIEIMMEMMIMNOIMMMMIIMNMMOEMMMMMEOMMMMOIONMIUMMMM

1600 MMIIMMIIMMEMMEMMUMMINIMMEMOMMEMMIIMMOMMIIMMOMMEMMEMEMEMMEWINIMMOMMOMMEMOME OMMIIMMEMEMMEMEMMEMMIMMEMMUMMEMOMMIIMMEMMMOMMIOMMIMMEMEMECM4MOMMIIMMOMMOMM MMEMMIIMMEMINAMEMEMMEMMUMMEMEMENEMMOMMEMOMMMEMMOMMEMMED4MAIMOMMEMMEMEMIN MMIMIEIMMMMIONMIMNIINRIEMMMEEMMMMEIMNMIMNEENMMEEMMEMMMMUEMMSMOMmMmUmMmMmEMMMOENMOEMMMMEIMNMIEMMUMMEMMOMMOMMMMAOJMIMMAMIEMMMMOENMMMEEMMMMEIMNMIUMM

MMEMSUMMOMMIMMEMEMIOMMEMEMMINIMMOMMEMMEMEMINIMMEIMMEMMINUMISEMEMEMEMMIIMMM

WW

SIONEMEMMOOMMIIMMEMOMMINIMMIMMEMMEMEMOMMEMEMINOMMEMOMEMMEAMMOMEMMEMMMINAM
MmIiMuMEmMmMuIImMmMEuMmMmINoImMMmEmMuMOmMmMEoMmMmEMuMmINuImMmMEuSmOmMMuEmMMmIoMmIMmMoOMmMmIiIMnMwUNaIyMmMIuUmMMmIiNnINuImMmIMuMmE

IIMMIIMMEMMEMMEMENEMEMMEMMEMMINIMMIIMEMEMNINMEMEMMEMMOMMUMMINIMMEMMEMMEMM

Ffj

ISEMMEMMEMOMMMEMMMEMMINEMEMMIMMEMMOMMEMMEMMOMMEMEMMMMASUMMOMMEMMOMMEM

IIMMEAMMOMMEMMEMMEMMINIMMEMMEMEMMINIMMEMMEMEMSMOMMEMMNIIMEMMESSEMMEMMIIMM

MINMEMMEMEMMEMOMMUMMMOIMMEMMEMMIMMEMMEMMEMEMSMINIMMUMCWMOMMEMEMMOMMEMM

&u

MmIuImMmMEoMmImMoMEmMmMoEmMMmEuMnMEiMmMmUuMMmOmMuMmEMmMoOmMMmIoMmMmEMuEmMmSoMEmMmEiMSmUmMaMmOMmMoHmEmMEoMmOmMMoOmMmMuEMmMmM
MEMEMEMMENIMMEMMEMEMIIMMEMMIIMMEMMENIIMMEMMIIMMEMMEMMEMOWIENEMMOMMEMEMMEMM MMINIMMIUMMEMMUMEMMIIMMEMEMMINIMMEMORMEMEMMIMMEMMEMMERFEMOMMEMEMINIMMEMME

MIIMMIIMMEMINIMMIMINIMMOMMEMMEMNIMMOMMIIMMUMMOMMEMMOMMPtiNMEMMIIMMOMONEMMEMO

z

11211111MMEMEMEMOMMEMEMEMMINIMMIUMMOMMENEMMMOMMOWOMMEMMEMAMMEMEMOMMEMMEMMEM 1200 IMMEMMEMEMINIMUMOMMOMMOMMENNEMMUMEMOMMEMINIMMEMEMMIMRSMUMMEMMEMMIIMINIMMOO

MIEMEMMEMMIMMOMMEMMIMMESIMMEMMIXEMEMINIMMEMEMMIMAMMIMINIMMENMEMOMMEMM

MINIMMEMEMMEMMEMINIMMEMINIMMEMEMMOMMINIMEMOMMEMEMMEMMEUUMMOMMEMMINEMMEMEM

1--
6

MMmEImMNuMImIMIMmMIuMMmEMMEeEMmMOmMMuEMMEmOMuMMmMIENmMIoMMmMMmEEMMiMMmEUmMMOMuMEmMMmEMoMOEMmSOmMMoEMMEmMMmEEoMNmENMImIMoNMmIEMMmMMoEMmMOmEMMMuPImINnAIMNiMImOMmMMMEiEMmMMmMEuOMMMmMOmIMoNMIEmMMmEOoMMmEMMSm

MEMEMMIMMEMMOMMEMMINIMEMEMMEMENMOMMEMEMINIMMINIOMMEMMIMIIIMMEMMOSIMMEMOMMO

CC

MEMMINIMMEMMINIMMOMMOMMINIMMEMMOMMEMOMMORIMMEMNOMMEMAMMONIMMIMMEMMOMMON

a

WIMMIIMMUMMMEMMIMMOMMEMOMMINIMOMEMMONMMEMMOMMIMMIMMMOMMINIMOMMOMIMMOM IMINSIMMEMOMMEMMENMENMENNOMMEMIIMMEMMEMMEMMESMEMMENIUMMOMMIMMEMMEMEMM

MMOMMEMMINIMMOMMUMMEMMEMEMIIMMOMUMMMIUMMUMMEMMUMUMAMMOMMIUMEMOMMISOMMMEN

MEMOMMEMMOMMEMMONMEMMMEMEMMEMMEMMEMOMMEMMINIMMEMMISMOMMEMEMINIMMEMMEMEMM

MNIIMMMEMOMMEMEMEMMMEMOMMIUMMOMMOMMOMMEMONMEMEMMENXIIMMOMMEMOMMEMMINIMM

IIIIMMOMEMMOMMEMMUMMUMEMMEMENEMMINIMMEMEMEMMIIMMEMMOVIMMEMEMMINIMMINIMENOINNEM MUMMIIMMIUMMEMMEMEMEMMUMMEMMOMMEMNOMMEMMENEMMIUMMIUMMOMMEMMOMMMEMMENM IIMMEMMEMMOMMEMEM mmmmm MOMMEMMOMMEMEMOMMEMMINIMMMINSOMMOMMEMEMMEMIIMMEMMEM

IIIIMMEMEMOIMMEMMENIIMMEMMOMMENINIMMEMMIMMEMMUMMEMMICAMMIIMMEMMEMMOMMINMEMMEM IMMINIMMIUMEMMEMMINIMMIUMMUMMEMEMMIIMMMEMOMMIMMIMMOOMMIMMUMMEMMEMEMIIMMO MMIIMMEMMEMISMOMMEMMINIMMINIMORIMMIMMEMMINIMMEMEMMIIIIMMMEMEMOMMEMEMOMMIMMUM 11111111111MMINIMMEMMOMMEMENEMMEMOMMEMEMINIMMINEWORMEMMEMSMINIMOMUMMEMMEM 800 MEMEMOMMEMOMMIIMMEMMEMMEMERMUMMEMOMMUMMUMMIIMMOVEMMEMOMOMMOMMIIMMEMEMMMOM MMINMIIMMEMINIMMEMINIMMEMMENOMMMUMEMMEMMIMMOMUMMUMMEMMEMMEMMEMMINIMMIOMME SMEMMOMMEMMMENEMENEMMOMMIIMMEMMOMMIIMMESEMMEMMEAMMUMMEMMOMMEMMONMEMMENOM MINNIMMEMEMOMMEMMMENMEMIIMMEMMUMEMEMMUNIMUMMIAMMIMMEMMUMMOMMOMMIMMEMOM IMMEMEMEMOINIMMEMMIMEMMMONMEMMOMMEMMEMMEMSEMWMOMMEMEMINIMMEMMIMIMMEMS IMMNIEIMMMMMMIOIIMNMMIMEMEMMMMMIEEMMMMMMIIEINMMIMMMEEMMMEEEMMMMMMIIIMIOMMMIMMNEEIMMMMMEIEMNMMIEOMMMMOEEMMMMMMEEEMMMMMOUMMMOMEMEMMNMVMUAEMMMFMMOEEMMMMMSEOMMMOMMMUMMM1IM1II1MN11MI1EM1MM.MU10EM1MN1OIMOMMMMMMOEEMMNMMNIEINEMMM MOMMMEIRNNIIMMMMEEMMMMEEMMMMIEMMMEEMMSMIKRIMIEMMEMMIEIMMmEmMmMmEmNMMOMMUMMMIINIUMMMMEWMAVIANMMMEEMMEOMMMMXEM1NOMOOMMEMMEMMEOMNMIOMMMMEEMMMOOMMM
lmmuiumrmmmumimuummmommmiummmummmoimmlummmomimonmmiumumummmmumomummmmomomimmmimmmuommmommmmmmrummnisrnaiimmmmmmomimummmmumumiomnmimmmoummmimmmmumumummmmumiomlmmmmuemmm

mia IIMMEMEMMUMMUMEMMIMMEMMOMMEMMINIMMEMMINFAMMEMMOMMIUMMEMMEMIMMEMMMEMO 1I1M1M.E1M1MMOMMEMMIMIIMMOMMUMMEIMMMIEMNMIEUMMMMEEMMIONMEMMEEMMMMEMIEMMMMUUMMMWEAMMOMMEOMMEMMEEMNMOEIMMMMEEMMOMMEMMIMMEMMUMMIMNIIIMMMMEIMM

1111111111MMEMEMINIMEMSMOMMEMMENEMMEMEMMEMOMMVAMOMMEMEMMOMMMEMMEMEMMUMEMM MOMMIIMMEMEMEMMIIIIMMEMOOMMOMMESMEMMEMOMPAMMOMMEMMEMOMEMMOMMEMMEMMOMMINIMM MEMMEMMIIMMENOMMEMMEMMEMOMMEMESMOMMEMOVMMIMMOMMOSIIMMEMMEMMEMMOMOMMEMOMM INEMERMINIMMINIMMEMMIUMMIMOMMEMICIMMEMUM/MMOOMMUNIMMINIMOUNEMOMMIMMMEMM 4,01MIMMIIMMEMMEMMEMMINIMMEMOMMOMMEMMEMErEMINIMMEMMEMMUMMEMEMMOMMEMEMMEMMEM

MEMMEMEMMEMMEMIOMMINIMEMINIMEMEMEMEMMEVAIIMMEMEMOMMOMMEMMEMEMMEMMEMEMIMMOM RIMMINIMMIMMOMMEMEMOMMEMIIMMEMOMSEMINMUMMEMMEMMIMMEMMINIMMEMOSEMMEMMINIM INIMMEMMEMMOMMIIMMEMMUMMEMMIMEMOMMIArlIMIMMINIMMIIMMEMMIMMUMMOMMEMOMUM MEMMEMMEMEMMOMMERMMEMIMMEMMEMMIRPAMINIMMEMMEMMMEMEMMOMMOMMINMOMMIUMOMMO MINIUMOMMIUMNIMMOMMIMMUMMINIMMIWAMMEMMEMMMOMMEMMEMMEMMOMMEMNIMMIIMMEMO MEMEMMIIMMEMMEMMEMOMMEMMIUMMEMMIPAIMOMMIONEMOMEMMOMMOMMMINIMEMOMMEMUMM
ImmmIumuInumIimMmmEmmiMiuMsmmEmiMuoMmmmOmmmMioMunMmmOumMmmuMmuImsmUmMMmoIMoMrEMmmWEuAmMMsMuMEAmOMmMMueOMrMmEMmMmVSuuAEmImMImmMuMoMElOuMMumMMmOOmeMMuMmMEImmSNimIIlMuMMiMmEmEMmMmMoEUuMMmmIEmmMMuuEMMImmMMmmIOeOiMMmMnMmOEuMoMMmMmEMmmMEuuMMmMOm

MimImuMmmMomOmoMmmMEomMmiMmmEumMmuNmImMuuMnmEimMmuEmMmiImNuImmMmmMmIiNIIndVgAimMuEmmMmMiEimMmmMmUioMumMmmEmMouEmMmmMmuEouMmmEmMmOuuMmmMmmOoiImNmUmmMuuMmmMmmOooMMmmImmMoiOmmMmuMoMmEmmM

MEMEMEMMMOMMEMEMOMMOMM mm r mm MEMIMUMMINIMMEMIMMEMONMEMMEMMEMOMMOMMMOMMEMO
MUmIMmNWuIOmUMmMMMoEEmMMmMMuOOmMMMmOOMoMMmMEmMMeEEMnME:OMiMMmPImMrAiAMMmMMmIIoIMmMMnEsuImmMooMmEmNmmMiuEmmMmmMioEmNmmEmuMumMmEmmMoMimImnUiuMlmMiEmmMomMmuEmMmuOmMmuMmmOuuMmmMmmEuMumMm

WOMMEMMINIMMEMMOIrMaMMOMMEMEMMEMMEMMOMMIUMMEMSIOMMINAMSOMMEMIMMEMEMOMMINIMM IMMIMOMMOVorMOMMINIMMEMMEMMEMOMMEMMUMMEMOMMUMEMMMINIMMEMMIMOMMIMMIMINE
orlym.r=...millIMEMEMEMMUMEMNIMMEMOSSIBMEMIMMEMMOMMMEMMEMENESSEMOMMEMINIMMIM

-so

-40

-20

0

GRID-NO.I VOLTAGE IN VOLTS

K -69087-72A271

3-17-49

I00

a

80

60
a=e=s ===
40 EZ,
30

PERSISTENCE CHARACTERISTIC PI PHOSPHOR
==
===.

20

\ I

10 8

WssIIEf=aIMimIanMIIIINmIIuIMIMIImIiMIIMsMMIMmImMIIMkIMoMohMwIiIMMIMImMIi=iiImUmUoI-IImI-MImM-oMMiu=MmmIMiUMnmEmMiIuRmMsUm1=mmm1MM-M1o=om1IiMiImW1iMm=1imINumCMmMWimwm=UIEuIoMoMmMNmmEmIUMMEmmmMiIMuMIiuIsmMImIImmMMIIoIMIiaIrmIIMIMmI=MIIImMIIMImMMMMuoMIMImIImUMIIII5IImIMIiNIMmIIMEMoUNIOmMEEmMMI=oMUIoIMMmI=ImIMMI_IMEI=mM=_Mi--IMMMm==UuMM-_mM=MuII_MMI=mIIMI=INIIIIIIIINIoMuIIIEMIImmMIINE0II

a

6a

=g 4a

3

--
2

MMMMM
M1II1IIIN1M1EI1NM1EO1UMMMIMIMNEMIMMIMNMEEI1IMM1M1I1EM1MM1EMUNINENMIESMMEEE..MMEIIMMIENMEEMMMEIIMIIIEIINIIIIMOEMMMIENMEMMEIMEINLBIEMUMMMMIIEII

11011111111111111111111111111111111111mmuMIUMMINIMINIMUIMI11111111111101

0 02

0 04

0.06

TIME AFTER EXCITATION.1S REMOVED IN SECONDS

K-69087-72A326

12-13-49

SPECTRAL -ENERGY EMISSION

CHARACTERISTIC

P1 PHOSPHOR
100

MMM INE 1

80 rise

211
21

111 ..1
60

211

mem

iiiiiiiiiiIIII MMMMM

40 ":"'PliMITIMPRIBilingil

r.

CE

20

. i ee...111211
edeirneemese re s

1

2112:15'Na11

3500 4000 K -69087-72A327

11111k U4

4500

5000

5500

6000

WAVELENGTH IN ANG5TRONS

:::::::Fain
6500 12-13-49

GL-3KP 1
ETI.31 1
PAGE 5
3-50

GL-3KP 1
ETI-311 PAGE 6 3-50

OUTLINE CATHODE-RAY TUBE GL-3KP1

.350"

SCREEN RADIUS 1-3/8" MIN.
A

3-50 (11M) Filing No. 8850

MEDIUM -SHELL
MAGNAL
II -PIN BASE

D4

D3

2

P1

D2

K

D

G1"

IC

H KEY H

BASING DIAGRAM

CENTER LINE OF BULB WILL NOT DEVIATE MORE THAN 2 DEGREES IN ANY DIRECTION FROM PERPENDICULAR ERECTED AT CENTER OF BOTTOM OF BASE.

N-15145AZ

3-17-49

Tube Divisions, Electronics Department

GENERAL

ELECTRIC

Schenectady, N. Y.

GL-5UP1
DESCRIPTION AND RATING
ETI-312 PAGE 1
3-50

CATHODE-RAY TUBE

DESCRIPTION
The GL-5UP1 is a cathode-ray tube with a small brilliant focused spot and high deflection sensitivity. The green -fluorescence medium -persistence screen has exceptionally good brightness contrast between the scanned line and the background, and
high visual efficiency even at an anode No. 2
voltage as low as 1000 volts. The tube is designed particularly for general oscillographic applications where recurrent wave phenomena are to be observed visually.
Design features of this tube include a bulb face with a minimum curvature consistent with bulb strength, a large useful screen surface in relation to bulb diameter, and separate base -pin connections for each of the four deflecting electrodes. Balanced deflecting -electrode input capacitances minimize cross -talk and eliminate the necessity for neutralizing circuits.

The 5UP1 is intended primarily for use in balanced electrostatic -deflection circuits and gives best definition when so used. However, it is also well suited for use with unbalanced deflection because of design features which minimize the spot and pattern distortion characteristic of such opera-
tion. The spot in the 5UP1 can be focused sharply on
the screen and will remain sharp when the beam current is varied over a wide range. This feature results from the electron gun used in which the grid No. 2 operates at voltage high enough to keep the beam current from being affected by changes in the anode No. 1 voltage. Another feature, the very small current taken by anode No. 1, permits the use of a low -current voltage -divider system and hence the use of a small filter capacitor.

GENERAL ELECTRIC

GL-5UP1
ETI-312 PAGE 2 3-50

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL
Electrical Data
Heater voltage (a -c or d -c) Heater current Focusing method Deflecting method
Phosphor-P1
Fluorescence Persistence Direct interelectrode capacitances, approximate Grid No. 1 to all other electrodes D1 to D2 D3 to D4 Dl to all other electrodes D2 to all other electrodes D3 to all other electrodes D4 to all other electrodes

6 3 t 10% volts 0.6 ampere electrostatic electrostatic
green medium
8.0 uuf 2.5 uuf 2.5 uuf 11.0 uuf 8.0 uuf 7.0 uuf 8.0 uuf

Mechanical Data
Mounting position Over-all length Greatest diameter of bulb Minimum useful screen diameter Base No. B12-43, small -shell duodecal 12 -pin Anode No. 2 voltage* Anode No. 1 voltage Grid No. 1 voltage
Negative -bias value Positive -bias value Positive -peak value Peak heater -cathode voltage Heater negative with respect Heater positive with respect to cathode Peak voltage between anode No. 2 and any deflection electrode

any

14%

inches

514 t 32 inches

4% inches

2500 max volts 1000 max volts

200 max volts 0 max volts 2 max volts

125 max volts 500 max volts

EQUIPMENT DESIGN RANGES
For any anode No. 2 voltage (Eb2) between 1000 and 2500 volts Anode No. 1 voltage Grid No. 1 voltage for visual cutoff Anode No. 1 current for any operating condition Deflection factors
Dl and D2
D3 and D4
EXAMPLE OF USE OF DESIGN RANGES
For anode No. 2 voltage of Anode No. 1 voltage Grid No. 1 voltage for visual cutoff, maximum Deflection factors
D1 and D2 D3 and D4

17% to 32% of Eb2 volts 4 5% of Eb2 volts -15 to +10 microamperes
28 to 38.5 volts d -c per inch
per kv of Eb2
23 to 31 volts d -c per inch
per kv of Eb2

1000

2000 volts

170 to 320 340 to 640 volts

-45

-90 volts

28 to 38.5 56 to 77 volts d -c per inch 23 to 31 46 to 62 volts d -c per inch

MAXIMUM CIRCUIT VALUES
Grid No. 1 circuit resistance Resistance in any deflecting -electrode circuit t

1.5 max megohms 5 0 max megohms

*Anode No. 2 and grid No. 2, which are connected together within the tube, are referred to herein as anode No. 2. tit is recommended that the deflecting -electrode -circuit resistances be approximately equal.

GL-5UP1 CHARACTERISTICS ANODE NO. 1 VOLTAGE ADJUSTED FOR FOCUS
Ef =6.3 VOLTS

1 00 EMMEmmummommornammimmEMINNIMMENEmmommummom MMMMMMMMMMM FA

msmmmmmmmmmmmmmmmmmmmmmmmmmmvamnqsnlsmmmmmmmmmmmmmmmmmmmummmmmmmmmm

MiEmMmEoMmMmEoMmMmEuMmMmIuNmUmMoUmMMmEuMmMmIiMrMrEoMfEfMaLaUrMlMiOpLaIMrMsIaMiMlIlMwMiEmMmMiImMmMiEmMmIuNImMmAiMnMoEmMmMoEmMmEuMmO

OMMEMMEMMEMMEMIIMMUMMEMMEMMEAULLAMMILICAAAMIMMEMMEMEMMEMMEMAMMEMMOIMMIIMM

MEMEMMMEMMEMMIIMMEMMEMEMEMMEMINIMMOMEMMEMMEMEMINIMEMMEMMEMEMVAMMMMEMEMEMM

111111111MINIMMEMMINIMMM.NliftiENMIMMIMIIMeAMOCINIMIALifellflairdmiallUMMMUMEMMINIMMINIMM

MINIMMEMMEMEMEMMIUMMIMENNIMMENIMMANIMEMOdeabilMNENSMNIMMMOMOMIAMMEMMEMMEMM MOIMEMMEMMEMEMMINIMMMEMMEMMEMIMACEVNMIVAMILAMMEMMIUMMMIAMMOMMMEMMEMM

90

MEMMEMMEMENEMMEMEMMEMMINIMEMEMMEMEMINIMMOMOMMEMMEMEMINIMEMMAMMOMMMEMMEMOM MEMEMMEMMEMMEMMEMIIMMEMMEMMEMMEMMEMMEMEMMUMENEMMEMMINIEMMIMMEMMEMMEMMEMM

MMEMMIUMMEMMEMEMMEMEMMMEMMEMMEMMEMMEMMEMEMOMMEMMEMMOMMUMMNIMUMMIIMMOMM

MIMIMMINMEMMEMEMMINIMMMEMMEMMINIMMEMMEMMEMEMEMEMINIMMMEMMIMMEMMIUMMIIMMEMM

MEMMUMMINIMMEMMEMMEMMIUMIUMMEMMEMMOMMUNIMMEMMEMMEMMIAMMINIMMEMMEMMEM

MMENIMINIMMEIMMINIMMEMMEMMEMMOMMMEMMEMMEMMIMMMEMEMEMMEMMAMMEMENOMMOIMMEMIN

MINIMMEMMEMMEMEMMEMMENIIMMEMEMEMMINIMMMEMMEMMEMEMEMMIMINMI MMMMM MEMOMMEMMEM

MIOMMMOMMIIMMIMEMMEMMUMMIIMMEMMEMMEMEMMEMNIUMMEMOIMMEMMMUMEMEMMIIMEMMEMMUM

IIIMMIUMMIMMWROMMEMMEMEMENEMEMEMMEMEMMEMMIMMENMOMMIIMIAMMIUMIMMEMMOMMO

80

MEMNIMMIMMIMMINIMMINIMMWOMMEMINIMMEMEMOMMEMOMUMINISMEMMANIOMMEMMOMMEMMEMM IIMMEMMEMIMMINIEMMOMMMISOMMEMEMMIMMOMMEMESIIMMMINIMEMEMAMMEMMUMMMEMEMINIMM

MIONMENMEMEMMIUMMIUMMMMEMEMMIIMMINIMMEMMEMMINIMMINIMMIMMVXMEMMEMMOIMOOMMOMOI

MUMMEMMEMEMMEMMINIMMIUMMEMMEMINIMMIMMINIMMOMMIMMOMMWAMMEMMEMMOMMMOMMOMM

MMEMMEMMEMEMMIMMIUMOMMEMEMEMMINMEMMOMMIMMEMMEMMOIMMIIIIMMIIMMEMEMMEMOMMIM

MIRMEMINIMMEMMINIMMOOMMUMMINIMMEMMIUMMUMMEMMEMEMMINIVAIMMOMEMMEMEMMEMMENO

111111111MEMEMMEMMEMMIUMUMMEMMUMMEMEMENUMEMMEMMEMEMIMAMEMUMMEMMMEMMEMMEMM

MINOMMMEMEMIIMMEMIIMMEMMEMMEMMEMMEMKIIMMEMENEMMEMMEMFAMMEMERMEMMEMEMMOMMO

MMINEMMEMINIMMMEMEMMIMMMOMMIIMMEMEMMIMMOMMENIUMMEMMMAMMISMOMMINIMMEMMEM

70

SlIiMmImNiMlEMiMmImIuMmMuIImMmEoMmMmEMoMmImUoMmEmMEoRmMmMoEmMmMEiNnOuMmMmEMoMmEmMoMmEmMMrYiMmMmIiMlMOiMmMmIuUmMMmIoImMmMoEmMMmMiEmM
IIMMEMEMMUMMEMEMENMEMEMMINIMMIUMMIMMEMMEMMEMMEMMTIVIMMEMEMOMMINIMMIMMIMM

MAIMMEMMEMEMMEMMEMEMMUMMEMOIMMEMEMMEMEMMOMMEMMEMUMEMMEMMUMMUMMMEMMEMMEM

IMMEMEMMEMMUMMOMIMMEMMEMEMMINIMMIMMOMMEMOMMIWAMMEMMEMMOMMOMMIUMMEMM

MEMMOMMOMMEXIMMEMMMEMEMMEMEMNIMMEMMOMMINIMSPCNIIMMEMBEMIIMMEMEMMEMMOMEM

IMMIUMMIUMMIONMEMINIMEMEMEMMOMMEMMEMMEMSIMMEWAMMEMEMOMMIUMMOMMEMMEMIN

IMMEMMEMEMEMMUMMEMMOMMIIMMEMUMEMMEMMIIMMEMEMIUMAMMEMOMMENMEMEMMOMMIIMEMEM

EXIMMEMEMMINMSSIMMEMMEMEMEMMINIMMEMMMEMMEMMEMMINAMOIMMEMMEMEMMEMMIMMEMMEM

MIUMMMEMMIIMMOMMUMMEMMEMMEMEMOMMEMEMMOMMERENNIMMEMEMEMMIMMIUMINMEM

MUNIUMMOIMMEMMEMMEMEMEMMEMMIMEMMEMMIIMEMMEMNAMMOMOMMEMEMMEMMEMINIMMONM

so

MINSEMMEMMEMMINIMMMEMMMEMEMIIMMIUMMEMEMEMNTAMOMMEMMOMMOMMEMMEMEMONMS SIIIIMMOMMEMMEMEMMEMMEMMEMMEMEMMOMMMEMMEMINIMMASEMMINIMMEMMEMMMMMEMMEMOMMO

IIMMOMMEMMEMMOMMEMMOMMIUMMEMMEMMEMMEMEMEME7AMMINIMINIMEMMEMMEMMEMMIONENME

MMOMMMOMMINIMMINIMEMMEMMEMMEMMESMEMMEMMENIMMIUMMEMEMEMMEMEMOMMEMEMOMMOMM

MEMMEMMEMMEMNIMMOMMEMMEMINIMMICOMMEMMEMMEMOMIIMMOMEMMEMMEMEMMEOMMIIMMORM

MEMMOMMINOMMOMMEMOMMEMMEMMIIMMINEMEMENONAMMEMOMEMMUMMEMIUMMEMMIIMMEM

MEMEMMOMMEMEMMINIMOMEMMIUMMUMINAMMEMEMMUNWAMMEMMINMEMEMEMEMMMOMEMMESEMEM

MMEMEMOMMEMINIMMEMMEMMMEMEMMINIMMIMMEMEMOWAMMIIMMEMEMMEMEMMINIMMEMMEMMEINIS

5-4.) mMiimEomumMmummMmmmiIomIumMmemmMmmmoEoioMmmmMmmOmmmiMoolnMmmOiommMmmoMummMmniEmmiMmuomMmmmMmmEmmuuMoumMmmmmEmmmMoauMmoEmmmmMmnomMiiImumnUmmMmuimMomsEummMmmmuEcmiWacuMnwoMmmmEmwuMmmmuMiiOmmumMommMmmoEoumMmmmoEmmmMmooOummMmmoMmmmmOoooMmmMmmoImmmmNuuomIummMoMmummEmmmoMiummEmmoMmMmmomEoemmMmmmsE

MMIMMMMEEMMMMEEMMMMEEMMNMIEIMMOMMOMMEMMEOMMMMEIMNMIEUMMOMMIMNIIRMMMWIJMAMMEMMIMNIINMUIMMIMNEIMMMMMEOMIMMOEMMMOUMNMIEMMMEEMMMEEMMEMME

MMISMOMMEMMMEMEMEMMEMEMEMMOMMEMMEMOWYANNEMEMMEMMEMNOMEMMEMOMMIMAMMEMEM

MMEMOMMINIMMIIMMIMMOMMXIMMIMEMMINIMMANMEMMEMMEMMEMEMMMEMMONOMMEMMEMMEMEM

MEMMINMEMEMOMMEMMEMEMMEMMINIMMEMMWMEMMOMMEMEMMIIMMINIMMMEMMEMOMMOMMEM

MMEMMINIMMUMSMEMMIMMEMMEMMEMEMMEMMIMMEMMEMEMMEMMEMEMIUMMEMMMINIUMAIMM

IIMMEMMIMMOMMEMMMOMMUUMMINIMEMMENCIIIMINIMMEMMIMMEMEMMEMEMMUMMINIMMIONMUUMM

MEMEMMOMMEMIMMEMMIIMMIMMIMMEMNIMAMMIIMMEMINIMMEMEMMEMMONOMMMEMMEMOMMIIMM

40 MimmmmmMmEMmmiioiuMIimnmmlnEImiimmiiMMmumiMoMmmEommEmmmmMMmmimmuiUMmuniuMmuEimumMmMmmnEmmmEmumMiomMuumoMmMmummImmMmmmmNmOomoemMoMomomImomMmNmmmimOmmIoumMumoMomMmommMmmUmmmEmumMmuMumumuMMmimummImEmsNmommMmimPIomummmAoOmmmimIpMrmomrMuMAmorMuaOmmaErmRmmmmMmMmoummiENmommouMmUomeEmMmmmmmmMMuimmImEimmmuuUMunummMEmmmmnouMMmmoimMEmmmummIuMmmmmMMmmmuoMIumuimmmEMmumuouMmMmmmmMmmEeEomumMmmmMMmimrmimMImmmAinEromniMuMiMmivngMrmOmcaUvlAmMMitmAimMuMkrmBmmmmIuwAAmmMumMmamMuomiMmmmOmmEnmmMmuMummuIuumEmmiuNmMmmImmmmMmmmMoUommuouMMmmoumOmmMmmmnMmmmE

IIMMEMOMMINIAMMEMMEMOMUMMIPAMMMMEMMINIMMEMEMIIMMMMIAM EMMIIMMIIMMEXIIMMEM

30

MUNINIMMOMMMEMINIMEMMEMMUMMUMEMENEMMEMMINIMMEMMMEMMIAMMUMMIMUMEMEMMIOMMEMM
1MimmmE1omoiM1mmmsE1mimMm1oE1uoimM1mmmnM1mmIms1MsmoMEuMmMiEmmmEnMmMooEoaImsMmOmMmsNmmIMumiMuEmvoMSmauOmImmMmNmmMIumoMiMuunEMmmmMVymMMmpmmMUauumEMmmmMiEmEmMmcMuEoooMmMmImmIuMmOmmmENimuuMOmEmmMMMmmMmMMiEioOMmMmm'MmMu.EmIo.mMNumMMmmImMEuImMumMMmmMmMiiiEIlrm.MnuMimMumMmmMmmoIUmoumAMuMmMsumMUiimmIMmmmNMommIoEimMMommmEEmmmMuMmoAEummoINmmUImmuiMMomMMmnmoEEmmuMMmoumMEmmMmUmmmMMmmuoME

mmuumommmmumimilmnmiiommmummmoommmommmuommmmrmiiinmrimmmuoimmlmmmioonmmummmoommmommmosmmomumummnaormArmmaummmimmnuoimmmmmmuyimmmmmmmommuummmupmmlomumimmnmoiunmimmmuumlm

2 OMmmiMEmMumMmEmoEuMmMmMmuMmImImuNIumImIMmumIMnmMmEaMmMumEiOmMmrMEumMaMmIMmomOAimmVMnoAEmumMMmmMMmuEuUmmMMmmuMMmEuIMMmNmMMoIMmOmEAuNmMMmMMEEMmMMMMErOMMMAMMM!EmEMIMmMMVMuEMAIMAmMMmuMEMuEmMMmMEmMmMmImEuiNMmumAOmmMmoMMoumEEmmMMmmuMMmmuEOmMmMmOuMomMmEuuMmMmIoMsUmmEiMmoMMomMmEmImmMoIMoumMEmmmMMomEEmmuMMmiMEmiEsMmsM

10

mimiMmMimmomEgmomMmImimmuIomomMmrMmmoElmmumMi!mmmMmdmorMmmuwAoPmmAImmimmmMumomMimmmonmMmmuEiooMmmmmE.umMmmnMmeouOommmMmmMpmmImpnuuRuiMm:lmMompmEmnMwmoiEsiiMmmul!lmdmumwMomomIAmoNmsmImmmMmiomuMoEnunmMmmonsMmmImimNoimmIomumMmmmmmuooommmmmmMommiOmmeuMmmoMmmMoomomEmmmmMuMmmummEuumMmumMnmoEmmuuMmuuEmmmMmmmmoMmoOmumMimmmMommIammmNimoIummMmmmmEumuMmiMmumomEmmmmMm
MmmmmmMmiiiiunmuu!mimmmmmuumMammmMomomMmnmniiolismnmimomwmmmmi:oomAmimmmipmmmmaioomumnmmommgmmmomolummomimpummm!mmomm"mumo.oummm.mmumaummmmumumommmmuomummmmmmoommuuommommmmmmmmuimuuimmommnmmmmmuumumummoommmmmmumoommmmmuummimmmmommioummummmmommmmummumumumimmmMmmmoMmmiumMoommmMmmmmmMimuiulmommmmmmmommoummoommmimmmmommmiummimommmmmummoummuommmmmms

liPmmiummimminummommommumummommommommuummommummommommimmi

AmiMmuEmmMiMmlIumUmmMMmoOmuMmmMoEmmMomUmoMMmmImoNomImMmmIooNmImMmoEumMmmMrOmnMimMmOoMmmMumMmmEiMmmMoImmNiImmMomMmmEEMmmMiOmmMmMmuIumUmmMiMuImmNmmIuMumMmmIioNmImMmmMoiEmMnmMiiOmnNMmiEmuMmmO

1000

1500

2000

2500

ANODE-NO.2 VOLTAGE IN VOLTS

K -69087-72A328

12-22-49

GL-5UP1
ETI-312 PAGE 3
3-50

GL-5UP1
ETI.312
PAGE 4
3-50
100 80 60 40 30 20
10 8
6
3

PERSISTENCE CHARACTERISTIC
PI PHOSPHOR

K-69087-72A326

0 02

0.04

TIME AFTER EXCITATION IS REMOVED IN SECONDS

SPECTRAL -ENERGY EMISSION CHARACTERISTIC P1 PHOSPHOR
100 IBM UM.E.M

0.06

80 11

1.19.n...n

il

iI1

Hike: Lem
60 1.1...111. 1

.11

HII

AR

M
ennew....1.1111,...

he11111
1....1 1-1

eon
1...11101

40
mum
20
3500

1-11111.111
0-n1.

111ffleI
01:1111:111

1
AnnthemonnenhilPfelurnd al1111.111 11.41 : mil

iniiii111111141:1

ire sm."

IIIIIIIIIIII1

4000

4500

5000

5500

6000

6500

K -69087-72A327

WAVELENGTH IN ANGSTROMS

12-13-49

12-13.49

GL-5UP1
ETI-31 2 PAGE 5
3-50

SCREEN RADIUS 2-1/4" MIN,

OUTLINE CATHODE-RAY TUBE GL-5UP1

SMALL -SHELL DUODECAL
12 -PIN BASE
NO. BI2-43
(NOTE I)

14 -4LI:
3"
30
iT.

flD3 D4

IC

G2p2

PI

D2

K
GI H

DI
IC H

BASING DIAGRAM

OF BULB WILL NOT DEVIATE MORE THAN 2° IN ANY DIRECTION FROM THE PERPENDICULAR ERECTED AT THE CENTER OF BOTTOM OF THE BASE.
THE PLANE THROUGH THE TUBE AXIS AND PIN 4 MAY VARY FROM THE TRACE PRODUCED BY DI AND D2 BY AN ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF 10°. ANGLE BETWEEN DI - D2 TRACE AND D3 -D4 TRACE IS 90't 3°.
DI AND D2 ARE NEARER THE SCREEN; D3 AND D4 ARE NEARER THE BASE. WITH DI POSITIVE WITH RESPECT TO D2, THE SPOT WILL BE DEFLECTED TOWARD PIN NO. 4; LIKEWISE, WITH D3 POSITIVE WITH RESPECT TO D4, THE SPOT WILL BE DEFLECTED TOWARD PIN NO. I.

NOTE I: THIS BASE MAY BE SUPERSEDED BY AN ALTERNATE BASE WHICH WILL FIT THE SAME SOCKET BUT WHICH WILL HAVE A FLARED SHELL INDICATED BY THE DASHED LINES AND DIMENSIONED APPROXIMATELY AS FOLLOWS: As 1.85" MAX., B s 0.500", C s 0.200" MIN., D =

N-15161AZ

12-22-49

Tube Divisions, Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.
3-50 (11M) Filing No. 8850

GL-3MP 1
DESCRIPTION AND RATING
ETI-313 PAGE 1
3-50

CATHODE-RAY TUBE
DESCRIPTION
The GL-3MP1 is an electrostatic focus and inch diameter tube adapts it for use in small port deflection type of cathode-ray tube intended for able equipment. oscillograph use. The short length of this three -

TECHNICAL INFORMATION

These data are for reference only. For design information refer to specifications.

GENERAL

Electrical Data

Heater voltage Heater current Focusing method-Electrostatic

6.3 volts 0 6 10% amperes

Deflecting method-Electrostatic Phosphor-P1
Fluorescence-Green

Persistence-Medium

Direct interelectrode capacitances, approximate

Cathode to all other electrodes Grid No. 1 to all other electrodes D1 to D2 D3 to D4 Dl to all other electrodes except D2

2 2 uuf 10.3 uuf 1 3 uuf
1 2 uuf 4.4 uuf

GENERAL ELECTRIC

GL-3MP1
ETI.313 PAGE 2 3-50

TECHNICAL INFORMATION (CONT'D)
D2 to all other electrodes except Dl D3 to all other electrodes except D4 . D4 to all other electrodes except D3 .

5 6 uuf .5.0 uuf 4 5 uuf

Mechanical Data
Over-all length Greatest diameter of bulb Minimum useful screen diameter Base, small -shell duodecal-12 pin Basing, 12F Base alignment
Dl -D2 trace aligns with pin No. 4 and tube axis Positive voltage on Dl deflects beam approx toward pin No. 4 Positive voltage on D3 deflects beam approx toward pin No. 1

.8 inches
3 t inches ..2% inches
10 degrees

MAXIMUM RATINGS Design Center Values
Anode No. 1 voltage Anode No. 2 voltage Grid No. 1 voltage
Negative -bias value Positive -bias value Peak heater cathode voltage* Heater negative with respect to cathode
During equipment warm-up period not exceeding 15 seconds . After equipment warm-up period not exceeding 15 seconds . Heater positive with respect to cathode Peak voltage between anode No. 2 and any deflection electrode

1000 max volts d -c 2500 max volts d -c
200 max volts d -c 2 max volts d -c
410 max volts d -c 140 max volts d -c 140 max volts d -c 500 max volts

EQUIPMENT DESIGN RANGES Anode No. 1 voltage Grid No. 1 voltage for visual cut-off of spot Anode No. 1 current for any operating condition . Deflection factors Dl and D2
D3 and D4

20% to 35% of Eb2 volts 0% to 6.3% of Eb2 volts
-15 to +10 microamperes
115 to 145 volts d -c per inch
per kv of Eb2
110 to 140 volts d -c per inch
per kv of Eb2

EXAMPLES OF USE OF DESIGN RANGES For anode No. 2 voltage of Anode No. 1 voltage Grid No. 1 voltage for visual cut-off Deflection factors Dl and D2 D3 and D4

1000 200 to 350
0 to 63
115 to 145 110 to 140

2000 volts 400 to 700 volts
0 to 126 volts
230 to 290 volts d -c per inch 220 to 280 volts d -c per inch

MAXIMUM CIRCUIT VALUES
Grid No. 1 circuit resistance Resistance in any deflecting-electrode circuit

t15 max megohms 5.0 max megohms

*Cathode should be returned to one side or to the mid -tap of the heater transformer winding. tIt is recommended that the deflecting -electrode -circuit resistance be approximately equal.

PERSISTENCE CHARACTERISTIC P1 PHOSPHOR
100

80

60

I

40

30

20

GL-3MP 1
ETI413 PAGE 3
3-50

10

8 ME

6
4

-.=.=

IMM 3

2

0 K -69087-72A326

0 02

0 04

TIME AFTER EXCITATION s REMOVED IN SECONDS

SPECTRAL -ENERGY EMISSION CHARACTERISTIC P1 PHOSPHOR
103

0.06

12-13-49

80
(.5 CC
zw I- 60
I
cc
> 40
CC
20

2500 4000 K -69087-72A327

4500

5000

5500

6000

WAVELENGTH IN ANGSTROMS

6500 12-13-49

GL- 3MP 1
En -313 PAGE 4 3-50

OUTLINE CATHODE-RAY TUBE GL-3MP1
3.000± I-" 16 4.

3u 2 LT USEFUL SCREEN DIA.

3.875"

8'±

SMALL -SHELL --4.
12 -PIN
DUODECAL BASE
NO. BI 2-43

1U 1JJ

I- DIA
16

3-50 (I.1M) Filing No. 8850

N-15084AZ

Tube Divisions, Electronics Department

GENERAL

ELECTRIC

Schenectady, N. Y.

1-23-47

VACUUM SWITCHES

APPLICATION DATA
ETI-196 PAGE 1
4-45
GENERAL ()ELECTRIC VACUUM SWITCHES

ETI-196 PAGE 2
4-45

DESCRIPTION

The vacuum switch is a vacuum device incorporating movable and fixed contacts, arranged so that a mechanical motion of the movable contact makes or breaks the switch circuit. The motion of the movable contact is obtained by means of a
flexible diaphragm mounted on a metal cup to which the glass or metal body of the switch is attached. The fixed contact leads are mounted on the body

of the switch. Vacuum switches are useful in any application
requiring the control of high voltages or high currents where space requirements are stringent. Since the contacts are mounted in a vacuum, they are relatively free from the effects of corrosion and arcing, are unaffected by dust or oxidation, and will
give longer wear than exposed contacts.

MECHANICAL ADVANTAGES

Because General Electric vacuum switches oper-
ate mechanically, a variety of actuating means may be used. The flexible diaphragm used eliminates the necessity for an external fulcrum. This transmits movement to the contacts and acts as a natural fulcrum for the operating arm. Movement is obtained from the mechanism to be controlled, or from other apparatus to suit the application.
This movement is often provided by a slow moving cam or by the movement of a thermostat.
Air or liquid bellows, a rod -linkage system, an electrically operated relay, or almost any other means

can be used to operate the vacuum switch. This is possible because a very small force is required to achieve the switching motion. There are several advantages which result from this feature.
The vacuum switch is capable of being operated over a wide range of speed. Operation from several
cycles an hour to several thousand cycles per
minute are permissible. The contacts of the switches close without vibra-
tion, enabling them to be mounted on or near
delicate instruments.

ELECTRICAL ADVANTAGES

The vacuum construction of the switch allows the use of close spacings between fixed and movable contacts, with the result that it is possible to interrupt high voltages although the movable contact travels only a few thousandths of an inch. This small movement brings about an economy of space that is possible only with vacuum switches.
In air -break switches, the breaking of the switch contact is accompanied by an ionization of the air present around the contacts. This ionization causes an arc to occur, with subsequent heat loss, and the switch is unable to break the circuit rapidly.
In vacuum switches, there being no gas present as a source of ions, a very rapid break is made. (See under "Installation and Operation.")
Under some conditions an arc or spark will occur, but this condition will exist only when the switch
is handling high currents. If such currents were

broken by an equivalent air switch, welded contacts might easily result.
The fact that arcs rarely occur, or, if they occur, are not in air, brings up two important advantages of vacuum switches over air switches. Because of the enclosed construction, G -E switches are especially valuable for use in flour mills, magnesium finishing rooms, and similar dust -laden atmos-
pheres. In addition to operating under the adverse condi-
tions described above, G -E vacuum switches are capable of operating under any liquid which provides sufficient insulation for the leads so that an external short is obviated. Some liquids, such as transformer oil, will actually increase the external voltage breakdown allowable, and thus reduce maintenance to a minimum.

RATINGS

Vacuum switches are rated in terms of the follow- cence is a phenomenon which will not affect the

ing characteristics:

operation of the switch.

Internal Hold -Off Voltage
This is the maximum voltage that the vacuum switch can hold off internally; that is, when the movable contact is held against one stationary contact and the voltage is applied across the two stationary contacts. This voltage is usually expressed as an rms value.
The criterion of proper operation is absence of gas discharge. With the test voltage applied, there should be no evidence of a gas discharge. Fluores-

External Hold -Off Voltage
This is the maximum voltage that the vacuum switch should be called upon to hold off externally; that is, from stationary contact to stationary contact, or from stationary contact to movable contact. This rating must specify an ambient humidity and assumes that the external surface of the switch is moderately clean. It is also necessary to provide corona shields of some sort in order to achieve the hold -off voltage stated for this rating.

This test is normally made at some external pressure lower than that encountered at sea level. This pressure is stated in terms of altitude in feet
above sea level.
Interrupting Rating
This is a measure of the life expectancy of the vacuum switch. The life of the switch will depend upon the application in which it is used. Low -current, high -voltage applications cause no perceptible contact wear, and the life depends upon the mechanical strength of the switch diaphragm. Highcurrent, low -voltage applications cause vaporization of the contact material, with subsequent shortening of life. Interrupting ratings are usually given on the basis of a certain number of allowable operations for several conditions of voltage and current.
Initial Tension
Initial tension is the force required on the movable contact to open the circuit, if the movable contact is touching one of the stationary contacts. This force is usually measured on the operating arm N" from the switch diaphragm.

Operating Force
Operating force is the energy required to move the movable contact from one stationary contact to the other, including initial tension. The measurement is usually made on the operating arm at a point N" from the diaphragm.

ETI-196 PAGE 3
4-45

Arm Travel
The travel of the operating arm is the motion required to move the movable contact from one stationary contact to the other. The measurement is usually made on the operating arm 5A" from the
diaphragm.

Maximum Continuous Current
This is the maximum current that may be carried safely by the switch for an indefinite period of time.

Maximum Allowable Force on Operating Arm This is maximum force which may be applied to
any point on the operating arm. This rating is important in that it dictates the design of the
actuating mechanism. This rating must be observed carefully, as a value higher than that recommended will result in decreased life.

TYPES OF SWITCHES

Vacuum switches are made in two general types. The first type, exemplified by the FA -6 and FA -15, is an all-purpose switch for general switching applications. The second type, of which the GL -1S21* is an example, was designed with particular em-

phasis on external voltage breakdown. This results in a switch which is extremely useful at greatly reduced air pressures, such as are encountered in aircraft applications.

APPLICATIONS#

There are six properties switch which enable it to be used with extreme advantage in many applications.
1. Vacuum Construction

practically no gas present. This means that by proper actuator design a very rapid break may be achieved, and a very high induced voltage may be obtained as a consequence of this rapid break.

The fact that the switch contacts are enclosed in a vacuum contributes in general to all the various advantages found in the use of these switches.
Operation of other switches at extremely high altitudes is complicated by the fact that the distance between contacts having a given voltage impressed across them must be greatly increased due to the lowered air pressure. For example, if a given distance is able to hold off 30 kilovolts at sea level, it will arc over at approximately 7 kilovolts at an altitude of 50,000 feet.
Vacuum switches are unaffected internally by high -altitude operation. Externally, it is comparatively easy to provide a sufficiently long path so that the external voltage breakdown is adequate.
Applications made possible by the vacuum construction also take advantage of the fact that an arc cannot be sustained easily in a vacuum. When a circuit is broken by a vacuum switch, the arc produced by ionization of gas is minimized, inas-
"Write to General Electric Company, Electronics Department, Tube Sales Section for bulletin.

2. Enclosed Construction
It is very often necessary to operate switches in
the presence of gases, oil spray, heavy dust concentrations, or under conditions that adversely affect the operation of electrical equipment. The sealed construction of vacuum switches causes them to work most efficiently under such conditions.
The enclosed construction also minimizes the hazard of switching in an explosive atmosphere, as
for example, in a flour mill.
3. Small Size and Weight Inch -for -inch and ounce -for -ounce the vacuum
switch will handle higher voltages at higher currents than any other type of switch. For example, a 20 -ampere circuit -breaker for 600 volts alternating current may be approximately 2 cubic feet in
volume. The FA -15 vacuum switch will break 10 amperes
at 600 volts alternating current and is only one
# Circuits shown in ETI-196 are examples of possible tube applications and the description and illustration of them does not convey to the purchaser of tubes any license under patent rights of General Electric Company.

E TI- 1 96
PAGE 4 4-45

five -hundreth the volume. The vacuum switch will not operate at the above
current for too many operations, but in any application where size or weight is the prime consideration, the vacuum switch can be used to advantage.

4. Low Operating Force
There are many applications where the force available for actuating a switch is very small. Among these are thermostats used in air-conditioning control. With the use of a vacuum switch, it is possible to handle the full load current without the use of auxiliary devices between the actuating force and the circuit to be controlled.
The circuit shown in Fig. 1 illustrates the vacuum

ACTUATING COIL

INDICATOR

ns
GA SAMPLING
STREAM

VACUUM SWITCH

110V

K-9033508

10-14-44

Fig. 1-Wheatstone Bridge Circuit for Sampling Gases

Dissolved in Liquid

Electronics Engineering Manual, Vol. 111, P-73, McGraw-Hill Book Co., Inc.

switch used in a Wheatstone Bridge method of sampling gases dissolved in liquid. The vacuum switch is used as one arm of the bridge. In such an application the amount of power that can be used is very small. This circuit acts as a sensitive switching relay. It is useful in applications where there is a minimum of power available and where the indicating force is small in magnitude.
5. High -Speed Operation
Vacuum switches are constructed with the moving parts so light in weight that the speed at which they are capable of operating is limited more by the actuating equipment used than by the switch
itself.
Vacuum switches are capable of being operated at several thousand cycles per minute and will accommodate a motion produced by an actuator when the rate of operation is changed rapidly over a period of a second or two.
6. Low -Speed Operation
The vacuum switch is so designed that there is no definite resting point or on -off position. For this reason the switch may be used in any application where the motion available for switching is ex-
tremely slow.
An application such as this is the operation of the switch by means of a cam, where the cam might be operated by some searching or hunting mech-
anism.

INSTALLATION AND OPERATION

Mechanical
Installation of G -E vacuum switches is simplified by their compact construction and by the fact that they can be mounted in any position.
Mounting may be accomplished by clamping to any portion of the body of the metal switch, FA -6, but glass -body switches must be mounted by clamping to the cylindrical metal cup. Suggested mounting arrangements will be found at the end of this article.
The clamping should be uniform, not unduly tight, and care should be used not to damage glass parts and seals. It is important that the clamp does
not come closer than to the glass seal on the cup.
The actuator design must allow for overtravel of the operating mechanism so that sufficient contact pressure is applied to the switch. If this
provision is not made, the maximum force allowable on the operating arm will be exceeded and serious damage to the diaphragm may result.
The pressure required to make good contact is much less than the rated safe pressure. Pressure in excess of the rated safe pressure imposes undue strains on the insulating glass as well as on the diaphragm.
Any connections made to the fixed contact leads should be flexible enough so that no part of the mounting strain is carried on the leads themselves.
When a vacuum switch is mounted in a holder

it will be noticed that there is a great deal of
freedom of movement of the operating arm. It is therefore necessary to design the actuator so that it holds the operating arm in position between the two stationary contacts.
Electrical
Electrical connection must be made either to the lead wire which is welded to the body in the case of the metal switch, or to the cap in the case of the glass switches.
As explained previously, the quick break given by a vacuum switch causes high induced voltages.
It is desirable to use a small capacitor (about 0.01 to 0.05 microfarad) across the contacts or across the load on non -inductive circuits when the current is more than 5 amperes. With inductive
circuits the sum of the normal and transient voltages
must be limited by a capacitor to a value not greater than the maximum voltage rating of the
switch.
It is also advisable, in highly inductive circuits, to limit the value of capacitance required by use of a shunt resistance across the load. This resistance, while increasing the total current in the circuit will reduce greatly the amount of capacitance required. Too large a capacitance will cause unnecessary wear and welding at the contacts. When it is necessary to use a capacitance greater than 0.5 microfarad

a small amount of series resistance may be used to slow up the discharge but care must be taken that the capacitor -resistance combination limits properly the voltage peak. Since failure of the switch will
leave the load circuit closed, this switch is not recommended for applications where a closed cir-

ETI- 1 96
PAGE 5
4-45
cuit would result in failure of the apparatus unless an auxiliary means of opening the circuit is provided.
For high -voltage circuits, it is important that adequate precautions be taken to prevent corona.

VACUUM SWITCH MOUNTINGS

VACUUM SWITCH

.030"

I" FELT PAD

CLAMP

to 4

!"-.1.3"
Fr
I

K.9033568 K-9033568

SPRINGS TO GIVE DESIRED CONTACT PRESSURE FOR GIVEN MOVEMENT OF SWITCHING
MECHANISM

K-9033568

Fig 3

Fig 2

12-12-44

BOLTS OR SET SCREWS

FELT PAD

25DIA.HOL

O15"COPPER STRIP

12.12-44

Fig. 4

HOLE FOR SUPPORTING BOLT.
7"
16

K-9033568 12.12-44

NOTE: DRLL 25/32" DIAM. HOLE IN 3/8" X I I/4 ''X 13/4'' BAKELITE THEN CUT THE BAKELITE IN HALF.
12-12-44
Fig. 5

ETI-196 PAGE 6 4-45

S" .030
16
K-9033568

9.,

19" 32 37

32

32

16"

1"

ti

.16

32

IF36" 116
Fig. 6

12-12-44

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

1-46 (3M) Filing No 8850

GL -5627 /FA -6
DESCRIPTION AND RATING
ETI-197A PAGE 1 12-48

VACUUM SWITCH

DESCRIPTION
The GL-5627/FA-6 single -pole double -throw metal -clad vacuum switch is designed to perform switching operations at high speed with low operating pressure and long contact life.
The totally enclosed, vacuum -sealed construction offers many advantages; protection from dust, weather, and other corrosive influences which may affect adversely the life of switch elements; the

contacts retain a low contact resistance suitable for low -voltage use with very little heating, and require very little power to operate.
Although the spacing between contacts is only 0.070 inch (approx) there is no arc -over inside the switch. Changes in air pressure and humidity have no effect on the breakdown because the contacts are in vacuum.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS
Electrical
Hold -off voltage Internal External*, at sea level
Interrupting rating, resistive load For total life of 1000 operations at 550 volts a -c rms For total life of 1,000,000 operations at 550 volts a -c rms For total life of 500,000,000 operations at 550 volts a -c rms

550 volts rms 550 volts rms
10 amperes a -c rms 2 amperes a -c rms 0.1 ampere a -c

GENERAL ha ELECTRIC
Supersedes ETI-197 dated 4-45

GL -5627 /FA -6
ETI.197A PAGE 2 12-48

TECHNICAL INFORMATION (CONT'D)

Mechanical
Net weight, approximate Shipping weight, approximate

MAXIMUM RATINGS Internal hold -off voltage Maximum continuous current Ambient temperature range Maximum allowable force on operating arm
* At 50 per cent humidity.

11A ounces 3 pounds
550 volts rms 10 amperes rms
-40 to +100 C
500 grams

12-48 (9M) Filing No. 8850

MAX. DI A
CENTER POLE

\\\
InAP PROX.

"MAX .850 DIA

769 MAXD.

FLEXIBLE

IL

DIAPHRAGM\

PINCHED a WELDED MAX. DIA..200"

OPERATING ARM

I" 116-16
MAX.
16

4f in 16-4

-.3126.
9" DIA. 64 MAX.

OUTLINE
GL-5627/FA-6 VACUUM SWITCH
K-518.8108

6-4-48

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

GL-5626/FA-15
DESCRIPTION AND RATING
ETI.198A PAGE 1
8-48

VACUUM SWITCH

DESCRIPTION
The GL -5626/FA -15 single -pole double -throw vacuum switch is designed for operation in highspeed relay construction, in d -c circuits involving
high inductance, and in installations that require the circuit to be opened by a slow movement.
Since the switch is enclosed in a vacuum, its operation is unaffected by atmospheric conditions, con-

tacts are free from contamination, and resistance re-
mains low. The construction minimizes arcing at the contacts. Only a few thousandths of an inch move-
ment is required to interrupt rated current. This
feature coupled with low operating pressure and light weight of the moving parts enables the GL -5626/ FA -15 to be operated by a small amount of power.

TECHNICAL INFORMATION
These data are for reference only. For design information refer to specifications.

GENERAL CHARACTERISTICS
Electrical
Hold -off voltage Internal External*, at sea level
Interrupting rating, resistive load For total life of 1000 operations at 3000 volts a -c rms For total life of 100,000 operations at 3000 volts a -c rms For total life of 1,000,000 operations at 3000 volts a -c rms For total life of 500,000,000 operations at 3000 volts a -c rms

3000 volts rms 3000 volts rms
10 amperes a -c rms 3 amperes a -c rms 1 ampere a -c rms 0 1 ampere a -c rms

GENERAL ELECTRIC
Supersedes ETI-198 dated 4-45

GL-5626/FA-15
ETI-198A PAGE 2 8-48

TECHNICAL INFORMATION (CONT'D)

Mechanical
Net weight, approximate Shipping weight, approximate

1 ounce 4 ounces

MAXIMUM RATINGS
Internal hold -off voltage Maximum continuous current Ambient temperature range Maximum allowable force on operating arm
* At 50 per cent humidity.

3000 volts rms
15 amperes rms
-40 C to +100 C
500 grams

FLEXIBLE CABLE

32-32 + 3"
8-16

8-48 (9M) Filing No. 8850

13" MAX
Ti DIA.

COMMON TERMINAL CLAMP HERE

DEGREE OF TAPER LESS THAN

M9"MIN.
7.. re MAX.

PINCHED a WELDED -0 TO .200" MAX. DIAM.

3" MAX.

6i32 MAX. .747.1--..000044"'. DIA.

FLEXIBLE DIAPHRAGM
.769" MAX. DIA.

23312"-+1I6"

OPERATING ARM

K-5340821

M A X,j
64 DIA.
OUTLINE
GL-5626/FA-15 VACUUM SWITCH

6-4-48

Electronics Department

GENERAL

ELECTRIC

Schenectady, N. Y.

INTERCHANGEABILITY

/

CHART

SOCKET INFORMATION

INTERCHANGEABILITY CHART

TUBES

INDUSTRIAL TYPES

ETI-199A PAGE 1
10-49

The tubes listed below under "other types" are arranged in numerical order and the G -E equivalent types, which are completely interchangeable, are shown in the adjacent column. Where types of other manufacturers are omitted, there are, to our knowl-

edge, no G -E types completely interchangeable.
For information on types not included in this
listing, consult your nearest G -E dealer, distributor, or write to the Electronics Department, General Electric Company, Schenectady 5, N. Y.

Other Types

G -E
Equivalent Type No.

CE -1**
CE-lt
CE -11V CE -20 CE -21 CE -31V CE -306
EL-C3J EL-C6J
EL -5685
NL-710 NL-715/5557 RK-25 RK-25B RK-28A RK-30 RK-31 RK-36 RK-39 RK-44
RK-47 RK-57 RK-58 RK-60 HF-60 T-155 HF-130 HF-130 203-A 204-A
207 211 211C 211C 211D 217C 242A 242B 242C 250T

PJ-22 GL-868/PJ-23
GL -917 GL -827 GL -920 GL -919 GL -5545 GL -5632 GL -5545 GL -5545
GL -5632 GL-5557/FG-17 GL -802 GL -802 GL -803 GL -800 GL -830-B GL -806 GL -807 GL -837
GL -814 GL -805 GL -838 GL -1641 GL -8005 GL -806 GL -835 FP -285 GL -203-A GL -204-A
GL -207 GL -211 GL -835 FP -285 FP -285 GL -217-C GL -242-C GL -242-C GL -242-C GL -806

**Vacuum -type phototube

Other Types
250 -TL 261-A 266-B 276-A 295-A 303-A 304-A F -307-A KU -627 311
311CT 311CT 311T
VR-105 VR-150 WE -319-A WE -322-A 331-A 342-B 342-C
F -353-A F -357-A 358-A 361-A 376-A WL-33 WL-41 WL-414 WL-469 WL-473
WL-469 WL-473 WL-502-A WL-616 WL-672-A WL-678 575-A WT -606 WL-734 WL-735

G -E
Equivalent Type No.
GL -806 GL -835 GL -266-B GL -276-A GL -203-A GL -203-A GL -204-A GL -207 GL -627 GL -211
GL -835 FP -285 GL -211
GL -0C3 GL -0D3 GL -872-A GL -803 GL -805 GL -242-C GL -242-C
GL -872-A GL -857-B GL -858 GL -835 GL -276-A GL-5720/FG-33 GL-5830/FG-41 GL -414 FP -285 GL -473
FP -285 GL -473 GL -502-A GL-5625/KC-4 GL -672-A GL -678 GL -575-A GL -2D21 PJ-22 GL-868/PJ-23

Supersedes ETI-199 dated 4-45

Other Types
800 801 802 803 805 806 807 809 810 811-A
812-A 813 814 815 816 826 828 829-B 833-A 835
836 837 838 842 843 845
849 851 857-B 858
862 866 866-A 866-A/866 868 869-B 870-A 872 872-A 872-A/872

G -E
Equivalent Type No.
GL -800 GL -801-A GL -802 GL -803 GL -805 GL -806 GL -807 GL -809 GL -810 GL -811-A
GL -812-A GL -813 GL -814 GL -815 GL -816 GL -826 GL -828 GL -829-B GL -833-A GL -835
GL -836 GL -837 GL -838 GL -842 GL -843 GL -845
GL -849 GL -851 GL -857-B GL -858
GL -862-A GL -866-A GL -866-A GL -866-A GL-868/PJ-23 GL -869-B GL -870-A GL -872-A GL -872-A GL -872-A
1 -Gas -type phototube

ETI-199A PAGE 2 10-49

n

Other Types

G -E
Equivalent Type No.

Other Types

G -E
Equivalent Type No.

Other Types

G -E
Equivalent Type No.

880 889 889-A 889-R 889 -R -A 891 891-R 892 892-R 893
893-A 893 -A -R 895 895-R WL-896 898 898-A 905 930-B 938 942

GL -880 GL -889-A GL -889-A GL -889 -R -A GL -889 -R -A GL -891 GL -891-R GL -892 GL -892-R GL -893-A
GL -893-A GL -893 -A -R GL -895 GL -895-R GL-5620/FB-50 GL -898-A GL -898-A GL -805 GL -830-B GL -838 GL -842

945 949 951 966 966-A 967 972 972-A 975-A
1613 1614 1616 1619 1623 1624 1625 1701 2050 WL-5550/681 WL-5551/652 WL-5552/651

GL -845 GL -849 GL -851 GL -866-A GL -866-A GL-5557/FG-17 GL -872-A GL -872-A GL -575-A
GL -1613 GL -1614 GL -1616 GL -1619 GL -1623 GL -1624 GL -1625 GL-5557/FG-17 GL -502-A* GL-5550/GL-415 GL-5551/FG-271 GL-5552/FG-235-A

WL-5553/655 WL-5554/679 WL-5555/653-B 5556 WL-5557/17 WL-5558/32 WL-5559/57 WL-5561/104
WL-5685 5691 5692 5693 8002 8002-R 8005 8008 8009 8012-A
8013-A 8020

GL-5553/FG-258-A GL-5554/FG-259-B GL-5555/FG-238-B GL-5556/PJ-8 GL-5557/FG-17 GL-5558/FG-32 GL-5559/FG-57 GL-5561/FG-104
GL -5545 GL -5691 GL -5692 GL -5693 GL -8002 GL -8002-R GL -8005 GL -8008 GL -8009 GL -8012-A
GL -8013-A GL -8020

* Metal tube-shell connected to cathode.
NOTE: In general, tubes of the same class (i.e., gas -filled control tubes, high -vacuum rectifiers, phototubes, etc.) that have the same type numbers but different letter prefixes are completely interchangeable; e.g., RX-884, GL -884, etc.

10-49 (10M) Filing No. 8850

Tube Divisions, Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

FOR INDUSTRY
BASING AND SOCKET CHART

ETI-200A PAGE 1
1-47

The outline drawings and dimensions of electronic tube bases included in this section of the manual are for your convenience in determining the size or style of tube sockets or connectors required for your particular application. The proper choice of socket or connector usually depends upon the

requirements of the particular equipment design. The sockets and connectors listed here are some
of those commonly used for industrial tubes. In addition to those included in this chart, there are other variations of tube sockets and connectors available for special requirements.

Notes for Sockets

Note 1. Angle -type sockets listed below for medium and super jumbo 4 -pin bases can be furnished with or without bayonet -locking device.
Note 2. Angle -type sockets for super -jumbo, 4 -pin bases, can be supplied to accommodate either front or back panel wiring.
Note 3. Angle -type sockets for jumbo 4 -pin bases are not included in the tables below but can be supplied upon request.

Note 4. The wafer or ceramic type of socket listed has the metal mounting plate soldered to the ceramic
part of the socket to avoid cracking of the
ceramic base in mounting. Note 5. Sockets listed as "Industrial types" are furnished
with screw -driver connections for ease of installation and maintenance. Consult your local G -E office, distributor or dealer for your socket requirements, or write to:

COMPONENT & UNIVERSAL PARTS SECTION SPECIALTY DIVISION
ELECTRONICS DEPARTMENT GENERAL ELECTRIC COMPANY
SYRACUSE, NEW YORK

TUBE TYPE

DESCRIPTION
OF BASE, CAP OR TERMINAL

OUTLINE REFERENCE

DESCRIPTION OF SOCKET OR CAP CONNECTOR

G -E SOCKET
NUMBER

IGNITRONS

FG-235-A

Anode, Cathode & Ignitor Terminal Leads

ETI-109 Tube Outline

.

FG-259-B.... FG-238-B
FG-258-A

Anode, Cathode & Ignitor Terminal Leads
Anode, Cathode & Ignitor Terminal Leads
Anode, Cathode & Ignitor

ETI-110 Tube Outline
} ETI-111 Tube Outline
} ETI-112

.......

Terminal Leads

Tube Outline

FG-271

Anode, Cathode & Ignitor Terminal Leads

} ETI-113 Tube Outline

. ..

GL -415

(Anode & Ignitor Terminal Leads

)

ETI-114 Tube Outline f

Cooling Clamp (Hex Hd. Rt.) or Cooling Clamp (Hex Hd. Left)

See sheet
CR7503 P-543
dated 8/7/44

GL -427

{Anode, Cathode & Ignitor Terminal Leads

ETI-115 JTube Outline

Supersedes ETI-200 dated 4-45

ETI-200A PAGE 2
1-47

TUBE TYPE

DESCRIPTION
OF BASE, CAP OR TERMINAL

OUTLINE REFERENCE

DESCRIPTION OF SOCKET OR CAP CONNECTOR

G -E
SOCKET NUMBER

THYRATRONS (cont.)

GL -3C23

Medium 4 -Pin Bayonet

GL -3C23 FG-17

Anode Cap, Medium Medium 4 -Pin Bayonet

FG-17 FG-27-A

Anode Cap, Medium Medium 4 -Pin Bayonet

FG-27-A FG-33

Anode Cap, Medium Medium 4 -Pin Bayonet

FG-33 FG-41 FG-41 FG-57

Anode Cap, Medium Special 4 -Pin Anode Cap, Skirted Large Medium 4 -Pin Bayonet

FG-57 FG-67

Anode Cap, Medium Medium 4 -Pin Bayonet

FG-67 FG-81-A

Anode Cap, Medium Medium 4 -Pin Bayonet

FG-81-A

Anode Cap, Medium

ETI-201, Fig. 17

Shell Type or j Wafer Type or 1 High -voltage Type or
( Angle Type

{ ETI-201, f Medium Cap Connector

Shell Type or { ET1-201, )1 Wafer Type or
Fig. 17 High -voltage Type or Angle Type

{ ETI-201, } Medium Cap Connector

Shell Type or f ETI-201, I Wafer Type or 1 Fig. 17 1 High -voltage Type or
Angle Type

ETI-201, } Medium Cap Connector

I ETI-201, Fig. 17

Shell Type or Wafer Type or High -voltage Type or Angle Type

{ ETI-201, f Medium Cap Connector
{ E1, 1 FTI-20 Special 4 -Pin Socket

ETI-201, Fig. 11

1
t

Large

Cap

Connector

J

1 Shell Type or
{ ETI-201, j Wafer Type or Fig. 17 High -voltage Type or Angle Type

{

ETI-201, Fig. 3

1i Medium Cap Connector
)

ETI-201, Fig. 17

Shell Type or ) Wafer Type or
High -voltage Type or Angle Type

I ETI-201, 1 Medium Cap Connector

{ ETI-201, Fig. 17

Shell Type or 1. Wafer Type or
High -voltage Type or Angle Type

{

ETI-201, Fig. 3

Medium Cap Connector
)

103J516 or 103J165 or 102J305 or 104J50
102J300
103J516 or 103J165 or 102J305 or 104J50
102J300
103J516 or 103J165 or 102J305 or 104J50
102J300
103J516 or 103J165 or 102J305 or 104J50
102J300
103,1522
102J299
103J516 or 103J165 or 102J305 or 104J50
102J300
103J516 or 103J165 or 102J305 or 104J50
102J300
103J516 or 103J165 or 102J305 or 104J50
102J300

TUBE TYPE

DESCRIPTION
OF BASE, CAP OR TERMINAL

OUTLINE REFERENCE

DESCRIPTION OF SOCKET OR CAP CONNECTOR

G -E
SOCKET NUMBER

ETI-200A PAGE 3
1-47

THYRATRONS (cont.)

FG-95

Medium 4 -Pin Bayonet

FG-95 FG-95 FG-97

Anode Cap, Medium Grid Cap, Medium Medium 4 -Pin Bayonet

FG-97 FG-97 FG-98-A

Anode Cap, Medium Grid Cap, Medium Medium 4 -Pin Bayonet

FG-98-A FG-98-A FG-105

Anode Cap, Medium Grid Cap, Medium Super -Jumbo, 4 -Pin

FG-105 FG-105 FG-154 FG-154 FG-154 FG-172 FG-172

Anode Cap, Large
Control Grid Cap, Large
Medium 4 -Pin Bayonet
Anode Cap, Medium
Grid Cap, Medium {Anode, Filament, Shield
Grid, Terminal Leads {Control Grid 84 Cathode
Terminal Leads

ETI-201, Fig. 17

r Shell Type or j Wafer Type or
High -voltage Type or Angle Type

{

ETI-201, Fig. 3

Medium Cap Connector
)

{

ETI-201, Fi g. 3

e Medium Cap Connector
)

Shell Type or
{ ETI-201, Jr Wafer Type or Fig. 17 High -voltage Type or Angle Type

f ETI, 201, 1 Medium Cap Connector

103J516 or 1033165 or 1023305 or 104J50
1023300
102J300
103J516 or 1033165 or 102J305 or 104350
1023300

{

ETI-201, Fig. 3

1 e

Medium Cap Connector

)

Shell Type or { ETI-201, j Wafer Type or
Fig. 17 1 High -voltage Type or Angle Type

{

ETI-201, Fi g. 3

'e Medium Cap Connector

I

{ ETI-201, Fig. 3
fETI-201,
1 Fig. 20

I, Medium Cap Connector
j
1 Shell Type or i Angle Type or
Angle Type (Back Wired)

{

ETI-201, Fig. 7

1 ,

Large

Cap

Connector

)

-

ETI-201, 1 Large Cap Connector Fig. 7
Shell Type or { ETI-201, ji Wafer Type or
Fig. 17 High -voltage Type or Angle Type

{

ETI-201, Fig. 3

1 e

Medium Cap Connector

)

{

ET I-20 Fig. 31,

} Medium Cap Connector

f ETI-130 `Tube Outline
{ ETI-130 Tube Outline

1
Special Mount, 2 Required

1023300 1033516 or 103J165 or 102J305 or 104J50
102J300
102J300 104352 1033173 or 1033174
102J299
1023299 103J516 or 103J165 or 1023305 or 104J50 102J300
102J300
102J304

ETI-200A PAGE 4
1-47

TUBE TYPE

THYRATRONS
FG-178-A FG-178-A GL -393-A
GL -393-A GL -414 GL -502-A GL -546 GL -627
GL -627 GL -672
GL -672 GL -678
GL -678 GL -884 GL -885 GL -2050 GL -2051
KENOTRONS
KC -4
KC -4
FP 85 A

FP -85-A

DESCRIPTION
OF BASE, CAP OR TERMINAL

OUTLINE REFERENCE

DESCRIPTION OF SOCKET OR CAP CONNECTOR

G -E
SOCKET NUMBER

Small 4 -Pin

{ ETI-201, Wafer Type or Fig. 15 Angle Type

Anode Cap, Small Medium -Shell Octal 5 -Pin

f
1

ETI-201, Fig. 1

} Small Cap Connector

ETI-201, 1 Wafer Type, Octal or Fig. 26 f Industrial Octal

Anode Cap, Small

{

ETI-201, Fie. 2

} Small Cap Connector

(Anode, Filament, Control -Grid, { ETI-133 and Cathode Terminal Leads Tube Outline)

Special Mount, 2 Required

Small -Wafer Octal 8 -Pin

ETI-201, 1 Wafer Type, Octal or { Fig. 27 f Industrial Octal

Miniature Button, 7 -Pin

{

ETI-201, Fig. 28

1 Industrial 7 -Pin Miniature

Small Shell Super -Jumbo 4 -Pin

ETI-201, Shell Type or Fig. 21 Angle Type

Anode Cap, Medium Large Shell Super -Jumbo 4 -Pin {

ETI-201, Fig. 3
ETI-201, Fig. 22

1
f

Medium

Cap

Connector

} Shell Type or Angle Type

Anode Cap, Skirted Medium

f
1

ETI-201,

1f Medium Cap Connector

Special 4 -Pin

f ETI-201, 1 1 Fig. 36 f

'

Anode Cap, Skirted Medium Small -Shell Octal 6 -Pin Small 5 -Pin Small -Shell Octal 8 -Pin Small -Shell Octal 8 -Pin

{

ETI-201 Fig. 6

1 Medium Cap Connector
1

f ETI-201, 1 Wafer Type, Octal or Fig. 24 f Industrial Octal

{

ETI-201, Fig. 16

} Wafer Type

f ETI-201, 1 Wafer Type, Octal or 1 Fig. 23 f Industrial Octal

ETI-201, Wafer Type, Octal or { Fig. 23 Industrial Octal

103J165 or 104J50
102J302 103J164 or 103358
1023302
1023304 1033164 or 103358 103J172 104352 or 1033173
1023300
103452 or
1033173
102J300
....
1023300 103364 or 103358 1033166
103J164 or 103358 1033164 or 103358

Special 2 -Pin Anode Cap, Skirted Large Medium 4 -Pin Bayonet Anode Cap, Medium

{

ETI-201, Fig. 34

1, Special 2 -Pin Socket, Shell Type 1033523
)

( ETI-201, } Large Cap Connector Fig. 12

ETI-201, { Fig. 17

Shell Type or Wafer Type or High -Voltage Type or Angle Type

1023299
1033516 or 1033165 Of 1023305 or 104350

f ETI-201, } Medium Cap Connector 1 Fig. 3

1023300

TUBE TYPE

DESCRIPTION
OF BASE, CAP OR TERMINAL

OUTLINE REFERENCE

I

DESCRIPTION OF SOCKET OR CAP CONNECTOR

G -E
SOCKET NUMBER

KENOTRONS (cont.)

FP -400

Medium 4 -Pin Bayonet

GL -411 GL -411

Special 2 -Pin Anode Cap, Skirted Large

GL -8020

Medium 4 -Pin Bayonet

GL -8020

Anode Cap, Medium

i Shell Type or f ETI-201, J Wafer Type or
Fig. 17 High -Voltage or
Angle Type

1033516 or 1033165, or 1023305 or 104350

f
1

ETI-201, Fig. 34

1 Special 2 -Pin Socket, Shell Type 1033523

I EFTi I-201

1

g. 12

Large Cap Connector

f Shell Type or f ETI-201, i Wafer Type or 1 Fig. 17 1 High -Voltage Type or
Angle Type

I ETI-201 , 1flMedium Cap Connector

102J299
1033516 or 103J165 or 1023305 or 104350
1023300

PHANOTRONS
FG-32
FG-32 FG-104 FG-104 FG-166 FG-190 FG-280 GL -575:A GL -575-A GL -673 GL -673 GL -857-B GL -857-B

Medium 4 -Pin Bayonet Anode Cap, Medium Super -Jumbo 4 -Pin

i Shell Type or f ETI-201, J Wafer Type or 1 Fig. 17 1 High -Voltage Type or
Angle Type

f
1

E T- 201, FigI. 3

} Medium Cap Connector

ETI-201, Fig. 20

Shell Type or Angle Type or Angle Type (Back Wired)

Anode Cap, Large

f EFTigI-2. 70 1, 1 Large Cap Connector

f Anode and Filament 1Terminal Leads {'Anode and Filament
Terminal Leads {Anode and Filament
Terminal Leads
Jumbo, 4 -Large Pin, Bayonet
Anode Cap, Medium

f(TuEbTeIO-1u4t9line)1, Special Mount, 2 Required

f1TuEbTeIO-1u5t0line)1, Special Mount, 2 Required

ETI-151 ,Tube Outline

1
f

Special

Mount,

2

Required

f

ETI-201,

1 (

Shell

Type

or

) Wafer Type

f
1

ETI -2031,

1 Medium Cap Connector

Super Jumbo 4 -Pin, Bayonet Anode Cap, Medium 2 -Terminal Base

ETI-201, I

Fig. 20

( She 11 Typeor ) Angle Type

I i

ETI-201,

)
J

Medium

Cap

Connector

{

ETI-201, Fig. 37

} Panel Type Mounting

Anode Cap, Skirted Large

{ ETI-201, J Large Cap Connector

1033516 or 1033165 or 1023305 or 104350 1023300 104J52 or 103J173 or 1033174
101361
1023304
1023304
1023304
104351 or 1033162 1023300
104352 or 1033173 1023300
P-7765662
102J299

ETI-200A PAGE 5
1-47

ETI-200A PAGE 6
1-47

TUBE TYPE

DESCRIPTION
OF BASE, CAP OR TERMINAL

OUTLINE REFERENCE

DESCRIPTION OF SOCKET OR CAP CONNECTOR

G -E
SOCKET NUMBER
,..

PHANOTRONS (cont.)
GL -866-A/866 GL -866-A/866 GL -869-B GL -869-B GL -872-A/872 GL -872-A/872
PLIOTRONS
PJ-7
PJ-8
PJ-21
FP -54
FP -54 FP -62
-207 GL -207 GL -207 FP -265 FP -265

Medium 4 -Pin Bayonet

{Anode Cap, Medium (with Insulating Collar)
Special 2 -Terminal Base

Anode Cap, Skirted Large

Jumbo 4 -Pin

'

Anode Cap, Medium

Medium 4 -Pin Bayonet

Medium 4 -Pin Bayonet

Medium 4 -Pin Bayonet
Medium 4 -Pin Bayonet
Control Grid Cap, Small Flexible Leads Water -Cooled Anode Filament Terminal Leads Grid Terminal Super -Jumbo 4 -Pin Anode Cap, Large

1 3hel1 Type or

1 ETI-201, j Wafer type or

Fig. 17 1 High -Voltage Type or

j Angle Type

-

{

ETI-201, Fig. 3

} Medium Cap Connector

{

ETI-201, Fig. 32

}Cathode Mounting

ETI-201, ) Anode Mounting or { Fig. 8 Large Cap Connector
{ ETI-201, } 3he1l Type or Fig. 19 Wafer Type

{

ETI-201, Fig. 3

1 Medium Cap Connector
)(

103J516 or 103J165 or 102J305 or 104J50
102J300
7651887G3
7651887G5 or 1023.299 104J51 or 103J162
102J300

1 Shell Type Of

f

ETI-201, Fig. 17

Wafer Type or
I
High -Voltage Type or I Angle Type

Medium Cap Connector

Shell Type or

f ETI-201 , Fig. 17

Wafer Type or High -Voltage Type or Angle Type

t Medium Cap Connector

f ETI-201, 1 Fig. 17

Shell Type or Wafer Type or High -Voltage Type or Angle Type Medium Cap Connector

Shell Type or f ETI-201, jr Wafer Type or
Fig. 17 High -Voltage Type or Angle Type

103J516 or 103J165 or 102J305 or 104J50 102J300
103J516 or 103J165 or 102J305 or 104J50 102J300
103J516 or 103J165 or 102J305 or 104J50 102J300
103J516 or 103J165 or 102J305 or 104J50

{

ETI-201, Fig. 1

} Small Cap.Connector

102J302

ETI-161 Tube Outline}

ETI-162 {GL Tube Outline)

Water Jacket

ML ..... 74-74287G1

f ETI-162 1Tube Outline

....

f ETI-162 ) Tube Outline

.....

f ETI-201, Shell Type or

Fig. 20 Angle Type .

f
1

ETI-201, Fig. 7

} Large Cap Connector

....
104J52 or 103J173
102J299

TUBE TYPE
PLIOTRONS (cont.)
FP -285 GL -592 GL -592 GL -592 GL -807 GL -807 GL -810 GL -810 GL -810 GL -833-A GL -833-A GL -851 GL -851 GL -862-A GL -862-A GL -862-A GL -880 GL -880 GL -880 GL -889-A GL -889-A GL -889-A

DESCRIPTION
OF BASE, CAP OR TERMINAL

OUTLINE REFERENCE

DESCRIPTION OF SOCKET OR CAP CONNECTOR

G -E
SOCKET NUMBER

ETI-200A PAGE 7
1-47

Jumbo 4 -Pin Anode Terminal (Special) Grid Terminals Filament Terminals Medium 5 -Pin Anode Cap, Small Jumbo 4 -Pin Anode Cap, Skirted Medium Grid Cap, Medium Anode lis Grid Terminals Filament Terminals Grid 85 Filament Terminals Anode Cap, Skirted Large Water -Cooled Anode Grid Terminal Filament Terminal Leads Water -Cooolleedd Anode Filament Terminals Grid Terminals Water -Cooled Anode Filament Terminals Grid Terminals

ETI-201, 1 Shell Type or Fig. 19 f Wafer Type

I ETI-245 Tube Outline)

Cloverleaf Cap Connector

ETI-2451i
Tube Outline)

Grid

Cap

Connectors

(2)

{ ETI- 245 } Tube Outline

Wafer

Type

1 ETI-201, 1 Fig. 18

Wafer Type

f 1

ETI-201, Fig. 1

} Small Cap Connector

{ ETI-201, Shell Type or

Fig. 19 1 Wafer Type

{

ETI-201,Medium
Fig. 4

Cap Connector

{ ETI-201, 5 Medium CapConnector

ETI-167 Tube Outline f

Anode

8s

Grid

Connectors

f ETI-167 Tube Outlinef

Filament

Connectors

1

ETI-201, Fig. 30

1 Cathode Mounting
-)?

ETI-201, 1 Anode Mounting or

Fig. 10 j Large Cap Connector

1. { ETI-169 } Tube Outline

Water

Jacket

f ETI-169

Tube Outline'

.

...

f ETI-201,

Fig. 35 J

f ETI-170 1 (Tube Outline''

Water

Jacket

TuEbTeI-O17u0tline}Flialammeenntt Connectors (2)

{ ETI-170 Tube Outline)

Grid Connectors

(2)

I ETI-171 Tube Outline

Water Jacket

{ ETI-171 1 Tube Outline

Filament

Connectors

(2)

f ETI-171 Tube Outline}

Grid

Connectors

(2)

104J51 or 1013162
1023301

1023307

1023306 103J166

102J302 104J51 or 1013162
1023300

1023300
....

.. ..
7651887G3
7651887G5 or 1023299 ML 7663852G1

'

'

.. ..

776769461
....

ML 7473962G1

ETI-200A PAGE 8
1-47

TUBE TYPE

PLIOTRONS (cont.)
GL -889R -A GL -889R -A GL -889R -A GL -891 GL -891 GL -891 GL -891-R GL -891-R GL -891-R GL -892 GL -892 GL -892 GL -892-R GL -892-R GL -892-R GL -893-A GL -893-A GL -893-A GL -893A -R GL -893A -R GL -893A -R

DESCRIPTION
OF BASE, CAP OR TERMINAL

OUTLINE REFERENCE

DESCRIPTION OF SOCKET OR CAP CONNECTOR

G -E
SOCKET NUMBER

Forced -Air -Cooled Anode

f ETX-181 1Tube Outline'

Filament Terminals

f
1

ETX-209, Fig. 12

1
f

Filament

Connectors

Grid TerminalsFig. '

ETX-209,
10

}

Grid Connectors

Water -Cooled Anode

{Tube

Water Jacket

M -
7474287G1

Grid Terminal

ETI-172 t Tube Outline'

''''''' "

Filament Terminals

r ETI-201, 1 1 Fig. 31 J

''

Forced -Air -Cooled Anode

{ ETX-183 Tube Outline

Grid Terminal

{ ETX-209, 1 Fig. 12 j

Filament Terminals Water -Cooled Anode

ETX-209, 1 { Fig. 30 f

....

Tube ETI-173 1OWautetrJlaciknete'747428M7LG- 1

Grid Terminal

ETI-173 Tube Outline'

Filament Terminals

ETI-201, 1 { Fig. 31 j

''

Forced -Air -Cooled Anode

ETX-185 1 {Tube Outline)

Grid Terminal

ETX-209, , Fig. 12 1

' "

Filament Terminals Water -Cooled Anode

{ ETX-209, Fig. 30 5

''

ETI-174 (Tube Outline

Water Jacket

ML 7651761

Grid Terminal

ETI-174 Tube Outline }

Filament Terminals Forced -Air -Cooled Anode

{ ETI-201, Fig 38 j
ETX-187 Tube Outline

Grid Terminal

f ETX-187 1Tube Outline

... ..

....

Filament Terminals

{ ETX-209, Fig. 34

....

TUBE TYPE

DESCRIPTION
OF BASE, CAP OR TERMINAL

OUTLINE REFERENCE

DESCRIPTION OF SOCKET OR CAP CONNECTOR

G -E
SOCKET NUMBER

ETI-200A PAGE 9
1-47

GL -895-R GL -895-R GL -895-R GL -8002

Forced -Air -Cooled Anode Grid Terminals Filament Terminals Water -Cooled Anode

GL -8002

Filament Terminals

GL -8002 GL -8002-R

Grid Terminals Force -Air -Cooled Anode

GL -8002-R

Filament Terminals

GL -8002-R
GLOW TUBES
GL-0A3/VR75

Grid Terminals Small -Shell Octal 6 -Pin

GL-0B3/VR90 Small -Shell Octal 6 -Pin

GL-0C3/VR105 Small -Shell Octal 6 -Pin

GL-0D3/VR150 Small -Shell Octal 6 -Pin

GL -874
PHOTOTUBES
PJ-22

Medium 4 -Pin Bayonet Tapered Small 4 -Pin

FJ-405

Medium 4 -Pin Bayonet

GL-868/PJ-23 Tapered Small 4 -Pin

GL-1P29/FJ-401 Tapered Small 4 -Pin

GL -441

Tapered Small 4 -Pin

GL -917

Tapered Small 4 -Pin

GL -917

Anode Cap, Small

f ETX-189 } t Tube Outline

f ETX-189 1Tube Outline f

ETX-189 1 Tube Outlinef

.....

ETI-175 {Tube Outlineft

Water

Jacket

fl ETI-175 1 Tube Outlinef

..... ....

ETI-175 t Tube Outlinef

... .

f ETX-201 t t Tube Outlinef

{ ETX-201 t Tube Outlinef

..

f ETX-201 t ITube Outlinef

ETI-201, 1 Industrial Octal or { Fig. 24 f Wafer Type, Octal

f ETI-201, Industrial Octal or t Fig. 24 Wafer Type, Octal

ETI-201, Industrial Octal or Fig. 24 Wafer Type, Octal

f ETI-201, Industrial Octal or Fig. 24 Wafer Type, Octal

ETI-201, Fig. 17

I Shell Type or
J Wafer Type or High -Voltage Type or
Angle Type

ETI-201, Wafer Type or Fig. 14 Angle Type
Shell Type or f ETI-201, f Wafer Type or t Fig. 17 High -Voltage Type or
Angle Type
ETI-201, Wafer Type or {' Fig. 14 }Angle Type
ETI-201, Wafer Type or Fig. 14 Angle Type
{ ETI-201, } Wafer Type or Fig. 14 Angle Type
{ ETI-201, } Wafer Type or Fig. 14 Angle Type

{

ETI-201, Fig. 1

} Small Cap Connector

....
....
L7473098G1
....
.. , .
....
103358 or 1033164 103358 or 103J164 103358 or 103J164 103J58 or 103J164 1033516 or 1033165 or 1023305 or 104350
1033165 or 104J50 103J516 or 1033165 or 102J305 or 104350 1033165 or 104J50 1033165 or 104350 103J165 or 104350 1033165 or 104J50
102J302

ETI-200A PAGE 10
1-47

TUBE TYPE

DESCRIPTION
OF BASE, CAP OR TERMINAL

OUTLINE REFERENCE

DESCRIPTION OF SOCKET OR CAP CONNECTOR

G -E
SOCKET NUMBER

PHOTOTUBES (cont.)
GL -918 GL -919
GL -919 GL -920 GL -921
GL -921 GL -922
GL -922 GL -923 GL -927 GL -929 GL -930 GL -931-A GL -935
GL -935
BALLAST TUBES
B-6 B-25 B-46 B-47 FB-50
RESISTANCE VACUUM GAGES
FA -13
FA -14

Tapered Small 4 -Pin Tapered Small 4 -Pin

ETI-201, Fig. 14
I
ETI-201, Fig. 14

Wafer Type or Angle Type
Wafer Type or Angle Type

Cathode Cap, Small Small 4 -Pin Anode Terminal

{

ETI-201, Fig. 1

} Small Cap Connector

ETI-201, Wafer Type or Fig. 15 Angle Type

{ ETI-187 } Tube Outline)

Anode

Connector

Cathode Terminal Anode Terminal

{ ETI-187 ' Tube Outline)

Cathode Socket

{ ETI-188 } Tube Outline

Anode

Connector

Cathode Terminal Small 4 -Pin Peewee 3 -Pin Intermediate -Shell Octal 5 -Pin Intermediate -Shell Octal 5 -Pin Small -Shell Submagnal 11 -Pin Intermediate -Shell Octal 5 -Pin

f ETI-188 1Tube Outline

Cathode Socket

ETI-201, Wafer Type or Fig. 15 Angle Type

{ ETI-201, Fig. 13

Special Peewee 3 -Pin

1 ETI-201, Wafer Type, Octal or
Fig. 25InJ dustrial Octal

{ ETI-201, 1 Wafer Type, Octal or Fig. 25 5 Industrial Octal

ETI-201, 1 Fig. 29 f

{

ETI-201, Fig. 25

1 Wafer Type, Octal or Industrial Octal

Anode Cap, Miniature

{ ETI-201 } Tube Outline

St'd Medium Lamp Base St'd Medium Lamp Base St'd Medium Lamp Base St'd Medium Lamp Base St'd Medium Lamp Base

{ ETI-201, } Screw Base Type Fig. 40

f

ETI-201, Fig. 39

} Screw Base Type

I
1

ETI-201,It
Fig. 39 )

Screw

Base

Type

{

ETI-201, Fig. 39

1
i

Screw

Base

Type

)

{

ETI-201, Fig. 39

} Screw Base Type

Filament Leads Tapered Small 4 -Pin

{ ETI-195 Tube Outline}
ETI-201, Wafer Type or Fig. 14 Angle Type

103J165 or 104350 1033165 or 104350 1023302 103J165 or 104350
1 1023303
102J303
1033165 or 104350 1133130 1033164 or 103358 1033164 or 103358
....
1033164 or 103358
....
" '
103J165 or 104J50

TUBE TYPE

DESCRIPTION
OF BASE, CAP OR TERMINAL

OUTLINE REFERENCE

DESCRIPTION OF SOCKET OR CAP CONNECTOR

G -E
SOCKET NUMBER

VACUUM SWITCHES

FA -6

Terminal Leads and Actuator

FA -15

Terminal Leads and Actuator

VACUUM CAPACITORS

{ ETI-197 } See Special Suggested Mountings Tube Outline on Application Data, ETI-196
{ ETI-198 ) See Special Suggested Mountings Tube Outliner on Application Data, ETI-196

GL -1L21*

Cap Type Terminals (Two)

f ETI- 262 } (Tube Outline

Connector

* GL -1L22, -23, -24, -25, -33, -36 and -38 use same connector, ML -7477177G2.

ML 7477177G2

ETI-200A PAGE 11
1-47

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.
1.47 (8M) Filing No. 8850

TUBES

FOR INDUSTRY
OUTLINES CAPS AND BASES

SMALL No. 3907, RMA No. C1-1

CAP OUTLINES

SMALL

ETI-201A PAGE 1 1-47

.360"Dy-

K-4903591

42d±.00 "
Fig. 1

MEDIUM No. 3903, RMA No. C1-5

.437111,015"

3-10-45 K-9033841

Fig. 2
SKIRTED MEDIUM No. 3904, RMA No. C1-6

- 566"
DIA.
K-6966486

K-9033573 3-10-45 Supersedes ETI-201 dated 4-45

Fig. 4

3-10-45

ETI -201A PAGE 2
1-47

SKIRTED MEDIUM No. 3995

CAP OUTLINES

SKIRTED MEDIUM No. 3985

.566"
+.0 07"

.500"
1.093"

-

1.625"

- 566"

1
:
,,,,, . . i . *1' "
.11 1
,1

i .500..t.0l0"

''''"......

4000"t.010"

..,

*.
i

1.670" 4.:Nz;'

Fig. 5
LARGE No. 3917, RMA No. C1-8

N-15093AZ

Fig. 6

SKIRTED LARGE No. 3905-A, RMA_No. C1-9
.8 cetr"

10-31-46

H 8 0ut_i_

.

= .00

DIA.

.8 3" ±.0i7"
1.813" ±.017"

K-4955973

Fig. 7

81211
f.0I7"

3-10-45

K-6966485

1.406" ±.(ZifiA* Fig. 8

p
3-10-45

SKIRTED LARGE No. 1904, RMA No. C1-10

CAP OUTLINES

SKIRTED LARGE No. 1902

.80o -IF .00 DIA,
0
.8I 3 +.017"

2.2 81 " .1.017 "

-.180 Ot°14-
DIA,
f
.813' ±017"

ETI-201A PAGE 3
1-47
F
2.750 "
.017 "

---2.230"

-.017"
DIA.

K-6966488

Fig. 9

SKIRTED LARGE No. 3909
, :Ii.007"
1-.800 DI

.813" 2%017"

1.25o"
-.063 "

K-6966482

2.656..1-n2"
Fig. 11

3.10-45

K-9033522

J
2.658" ... 17"
DIA.

Fig. 10
SKIRTED LARGE No. 3912

3-19-45

..s,.........1111..11j

.800.4-,3014 DIA.

I
,875"
1.017"
L.-

2:062"

3-19-45

K-4373344

2.375" -1D'0IA17. " Fig. 12

3-21-45

ETI-201A PAGE 4
1-47

BASE OUTLINES

PEEWEE 3 -PIN No. 3313, RMA No. A3-1

14-.610", 6551'471

1.5t00'
t.oie
.937+
.-....017
.1 MAX
tIi.

J 1----

.045" -MAX.
t
.365"Mti.

.., ....,

344" DIA.

,'DA.
1"MAX.

ALL PINS

A01W41 .122"
Ivim ..au
A Iiire

.093"-± .003"

DIA.

.24e

TAPERED SMALL 4 -PIN No. 4101, RMA No. A4-3

1.436" ±. 22"
i
.596"MAX.

.065 .-.,
MAX. 4
I

r
/150' MIN.

.1271.R03" C10),.. --------Z__.:

-'"----.-.....

64d 'PIT"
i Ir. x trie),

43 I
11

I ,a4 3" 'LS:
2 PINS
.1661.°°3'DIA.

K-9033572

Fig. 13

3-19-45

K-4903590

Fig. 14

3-25-45

SMALL 4 -PIN No. 4108, RMA No. A4-5

SMALL 5 -PIN No. 5108, RMA No. A5-6

1
.843" .022"

.065"M

1.436" ia.0¢2-

.450"M1N

.59C
7

DIA.-, .,,,___. 1. 15 1".t.o14"

2 PINS doe..."'

.125"1-w

V ., _,,, 4

.437 "

Ia

0,

2 PINS 15d. It .0 03" DIA.
I
.468 "
--1-

41..............0.°

.64d'oix

K-4909060

Fig. 15

3-21-45

K-9033571

1
1.436" 1 022"

1=1,M111.1.M=F

.84.,..-.022" w- .007 "
.065" MAX.

II

It

14M5I N0. "

. 596MAX.'
i

-'--1151" ±'0141

5 PINS .12 --Ig2"

.010p Vi'''

446

V., .75e

2

DIA.

0I
Itire

4 AVVirA,
5

C

60°

allirlri-tsi/O°

30° 30

Fig. 16

3-19-45

BASE OUTLINES

ETI-201A PAGE 5
1-47

MEDIUM 4 -PIN WITH BAYONET *No. 4102 and 4103, RMA No. A4-10

075.t..004"
1".00S. .077. DIA
-Ii-

1.236102d _t__

1.680"
x.022"

065 MAX

45 "MI

1'
596"MAX
1

PINS .125"--.003-
DIA.

1357"1-0,H..

aillftaN 0640' DIA.

5.1,,I4.g03.,

-"Milk 41

MMIIPP..--

DIA

W .437' ,,,, In /24

6 1
1 468"

MEDIUM 5 -PIN No. 5106, RMA No. A5-11

t

5 PINS .12 5" t .003"
DIA.

1 680"3.on

r .065"MAX

.--.

t

t

UH H.450" MIN. .PAF;

1.3520311: 'biA --...-1

.75 O'DIA

Al
#.

110

(iiil

30 °

Illi.)

K-6966493

Fig. 17

3-19-45

K-6966487

Fig. 18

3-21-45

JUMBO 4 -PIN WITH BAYONET No. 1839, RMA No. A4-29

.094"3.015'

1.855"±nteDIA.-

DIA. N .0130"3.002"
1
1.165" 3.01,"
1

1
1.6703.034"

.255 ±.02e ,

$0
a

4eet s

IA

3-003"

.687"
:VW Pr

SUPER -JUMBO 4 -PIN WITH BAYONET No. 4310, RMA No. A4-18

H2.187"- 2.219"DIA. H .094"t'015"

1
1.438"

.073"MM.

±.054

f ,718"MAX.

1.546" ±.020°
-1-
_175"MIN.

IifLi:likk 4 PINS

187 "1-.003 DIA.

75e

I 562

vgljj \lima
i .000" DIA.

K-6966492

.687" Fig. 19

3-21-45

K-4955974

Fig. 20

3-28-45

*4102-Composition Shell 4103-Metal Shell

ETI-201A PAGE 6
1-47

BASE OUTLINES

SMALL -SHELL, SUPER -JUMBO 4 -PIN

SUPER -JUMBO 4 -PIN

yIN. No. 411, RMA No. A4-15

1
1.187" 1.875"
,580"

F.062' MAX.

r -I
.280" MAX.

H tf
.700"MAX.
i

1. 422'-

No. 3982 2.172°- 2. 2,3 4 1---..--1

1.453"

2.125'

4 PINS
140;"

T

.750" MAX.

1.469'

i1

ALL PINS .186"±.003"

.562

AN
1/4s.i.v.
vo,.',-7.

(Qi
e 11

0 j l diffr

.750"

0 d .011=1111,/

1

1.000"0

.562"

000"

Fig. 21

Fig. 22

SMALL -SHELL OCTAL 8 -PIN No. 8529, RMA No. B8-1

SMALL -SHELL OCTAL 6 -PIN No. 6529, RMA No. B6-3

1

843"

+.022" -.001"

t

-

1
560°

i35'' Max. om.

'..r

MAX. 490"

.317" MAX.

---- 1151" t g 144'

_'.022'.035" 035

1
1.393"

1
; 8o4n3,

MAX.

mAx.

1
1t.o39n3""

i

i

MIN. MAX.m.5g" I'

i

.355" .437

1

.135'

.490 DIA.

095"MAx *ON FINISHEDF,3 sToul,RA D 0

317" MAX.

I it I 1 III
,,,,,,...oi4"
DIA.

t
.355"
MIN.

t 437" MAX

.095" MAX
. ON FINISHED TUBE, ADD 0030" FOR SOLDER.

ALL PINS .093"±.003tDIA.

ALL PINS 093' ±.003" DIA 45°

055" 45° 0...''..*4 5'

0 4 0 " R

,oilpi* MAX.

kg, .0,

firalt4 45°

ism
Wr© 44 OP Old

\ 01priJlAIllb

......W.' 45°

4

22

45°

45°

005" mAx ---

Al I P -P, 5

...........4110P 45°

..

oil btiap4r.,-1i4a.1m"l..ii,lgpi-e0-plw .

45° Viripri Cr I Fi

140 tii0A I b

...............
4 ° 222,

45

040"R. .687"

K-9033851

Fig. 23

3-24-45

K-9033848

Fig. 24

3-24-45

BASE OUTLINES

ETI-201A PAGE 7
1-47

INTERMEDIATE -SHELL OCTAL 5 -PIN

No. 5437, RMA No. B5-10

r

-,

I

-.007

MAX.

1393" 1-.022"

' 1 / .1135"__.1-14r' ,-f '
5,60. 4I 0.!AAX.DIA.

MAX

L- k_.

i

3155" 437 MIN. MAX.

1

1

1

.317" MAX.
.055" MAX.

....
1235'1275"DIA. ALL' PINS .093"T .003" DIA
45°
4

.095"MAX. ON FINISHED TUBE,ADD .030" FOR SOLDER
.040"R.

trodsui . . I Wf411I1A1I11152,' I Al

imi 45° "MP VA ill

45°

.687 "

tiliV \.. l.4 IrirMAh.

45.

45°

2 L

r '-I' +.F K-9033849

45°
Fig. 25

SMALL -WAFER OCTAL 8 -PIN No. 8540, RMA No. B8-21

I001 i.

I

1

I

135'2-I 147

1 .(I)013AX'.'
'-'

MAX.
1
.490*

3m55N". 'MAX.

MAX'

1

1

i

3-24-45

.317VAX.

.286°1;F:

.095"MAX.
ON FINISHED TUBE, ADD 0.030° FOR SOLDER.

114
MAX.

* 45*
45° Alliellipo 5°

ALL PINS .093ut.003" DIA,
.040"R

AditkiP2,.W...PpAAoilrik.

IVirl r4.ff Ak 45°

.:4 Calt 45° .687"

*ilk a (1141616.,

41101VW

45*

450

45°

K-9033847

Fig. 27

3-24-45

MEDIUM -SHELL OCTAL 5 -PIN No. 5433, RMA No. B5-15

1
..1002827""

.035' MAX.

i
1.637" ± 022"

5I60..,' .490' M3.1X"71

H

MAX,

i

- / 1

1

f

1

t

MIN lAX.

.PA1ZX" .

-. .
1.352"218R "DIA.

.095"MAX.
ON FINISHED TUBE, ADD 0.030" FOR SOLDER.

5°

ALL PINS .093"3.003 "DIA.

45° '0M5A5X"
*/41P*Ilk -.
1 v&iWmin 45°

....."'...... 45* 040"R.
4.4,16.,.)......_
45. .687"

IV ofircigilk.,-
45° Ng* ........... 45°

2

45°

K-9033850

Fig. 26

3-24-45

MINIATURE BUTTON 7 -PIN
II.RMANo. E7-1 9"
M. MAX.

11 1 11

MIN.
.1-6

. 3'MAX.DIA.

7 PINS

45°

50 .040"±.002"
DIA.

ir - 450 .:..iit...i 8

45°

5.

K-9033845

Fig. 28

3-19-45

ETI-201A PAGE
1-47

BASE OUTLINES

SMALL -SHELL SUBMAGNAL 11 -PIN No. 11343, RMA No. B11-33
I
,.,,,,L,:

035"

- MAX.

...-

.....

I

1.

4

II' 560...4 0II II

4
.356'
MIN.

437" MAX.

.090'

I

+

317",,T.3

1 300

MAX DIA

1ST

I

0111....ver.,

PIN NO .I

111166.

.055" MAX

ei4iA6rD41 -

ICAll_reor0s ALL PINS
.093"1..00

040" R
.750" IL .007" AT PIN TIPS

V4111k eVlW, t...,43111

i

K-9033574

.135" MAX
Fig. 29

3-27-45

T.05.3"
I .9:9.
11011;"1
K-6966474

BASE 3232-11
120"

BASE 3117 RMA No. A3-23
3 93IctD22.

1111 1
iil

.668" .688"

312" 11:," 2 618

411.1en

F.7. 50"

.063"
.125'
_J__4,
t ..,
1

Fig. 30
BASE 3502 RMA No. A3-20

3-21-45

(Mgetrt0/

1.250"

120*

1082"

4.125" 4-rx

.500.3-.0--0-5-"-_

437,±.005"

r-ir 1 r 1

CENTER TAP PIN CONNEC TED TO BASE SNELL

_i80 __0MAAINX
.104.011/11

I 2125"
MAX

2 625"10g:

2094"

3.125" 3.064"

.100" MA

, 031" 49;"
1,025"-
i
.126.±010,.

......
11 11

.668"

6138"

Jillibb.
063"

.125"

7501-1

125"

TWO PINS

K-9033548

Fig. 31

I

3-26-45

K.6966478

Fig. 32

3-27-45

BASE 3601 2.625"zir

3i.244""

-- -won=

I 1219"
0±

1
'IV" 025"

4 PINS 312"-tga'

1

1

1.375' ±.017.
DIA

* Allh
VILIF

BASE OUTLINES

BASE 3701

2.438"...:A3.3'

2.875" =.064"

M=MME..

ll . 1"MIN

111

PouIltEMRit.i

IN INA rah is

2.192" MX.
.625"t"2'
.31;.IN.t.S007 DIA. "

ETI.201A PAGE 9
1-47

K-3846066 K-6966483

.469"t0= \:_- _.215,ti.010 °
Fig. 33

3-27-45

K-4373346

Fig. 34

BASE 3908

00 lik ti#
4---,
IIIP
' .,

-..-1 1-7625't.0l0' DIA.
Ill 1.,500"

313..1.5.-i05r Ill

A.

111

finmr a-. oncl

2.125.125'

i 2.000+'.W5+
I

II

Fig. 35

3-26-45

BASE 3985 RMA No. A4-30
MAX.

MINIMMI

.080"
....002"

.094" t .015"

969"

65"/
T020
1_ .078

L
0"
N.

1
1874-4
±.003" 4 PINS.

I.867"MAX.

2.308"
zg.
I

45°

() *

687"

o)
AIM/ 45° MO

.971"

Fig. 36

3-27-45

ETI-201 A PAGE 10
1-47

BASE 3911

BASE OUTLINES

BASE 6628

1.50(51.1.-

0,A
0

6- 3/8
G DIA.

D DIA.

K-9033549

-1-em. 250"MAX
XXV'
BASE SHELL IS ONNEGTED TO ONE FILAMENT LEAD WITHIN BASE

A DIA

E

MAXIUM SPACE FOR CONNECTOR BETWEEN WING NUT AND LOCK NUT IS 3/16"

DIMENSIONS IN INCHES MIN. MAX.

A 3.310. 3.300.

B 1965" 2035"

C D

1.465"
6250

1.535" 6.375"

E 1.875" 2.250" F 0215" 0285"
G 0.590" 0.660

Fig. 37

3-26-45

K-5188125

Fig. 38

3-26-45

MEDIUM LAMP BASE No. 102

MEDIUM LAMP BASE No. 118

K-5185217
5-46 (7M) Filing No. 8850

INSULATOR
.938"

1062"+2117--.1
STANDARD MEDIUM LAMP BASE AS PER NEMA SUPPLY STANDARD
234-252

Fig. 39

3-27-45

STANDARD MEDIUM LAMP BASE AS PER NEMA SUPPLY STANDARD
234-252

K-5182057

Fig. 40

3-27-45

Electronics Department
GENERAL 0 ELECTRIC
Schenectady, N. Y.

TUBES

FOR INDUSTRY
OUTLINES --CAPS AND BASES

SMALL Used on GL -393-A

CAP OUTLINES

SMALL /No. 3907, RTMA No. C1-1

ETI.201 B PAGE 1 12-50

K-9033841

.437'11.015"
1

+.00511
.406"
-----
-01 .420

.35911±.015"

DI A.

Fig. 1

12-18-50

No. 4004C Used on GL -1000T

K -69087-97A129 /Revised.

0101114

Fig. 2
No. 4005C Used on GL -1000T
0,00111%

12-6-46

-1.563115:
13" 16

#
-63M41"IN.

-"1.5631gi.4--

13" 16

31"
64

MIN.

K -69087-72A433 /New.

i

7"

8

Fig. 3

12-11-50

K -69087-72A434
New.

Supersedes ET1-201A dated 1-47

i---- 7 --1.1 13Fig. 4

12-11-50

ETI-20113
PAGE 2
12-50

MEDIUM . No. 3903, RTMA No. Cl -5
ilnk

CAP OUTLINES

SKIRTED MEDIUM
. No. 3904, RTMA No. Cl -6

566"-4-.D0I0A.7

400
MIN.

."500

.400
MIN.

-.566" I.od-
DiA.

K-6966486 1Revised.

-,..1 .576 " DIA.
Fig. 5

I .500
11

12-18-50

K-9033573 +Revised.

1'156" DIA.
Fig. 6

1.312"
12-18-50

. No. 3935

005" 566"-f.DIA.

t

ti 311+

t'
1

el. .500"
MIN.
111

4 - 16

SKIRTED MEDIUM No. 3995

.566" +_ .007"

.500"
1.093"

1.625"

K -69087-72A428 New.

Fig. 7

12-22-50

Fig. 8

SKIRTED MEDIUM
. No. Cl -27

CAP OUTLINES

*No. C1-29

566" ±.007°

400"
M I N.

r%"- ,.....
g,

P g
-,,di
"

!

i

500

1

.. ... I

1.000"

.782"

ri:On77-1
t .400" MIN.
t

1.670"

1".

ON FINISHED TUBE ADD 0.040" FOR SOLDER TO LENGTHS AFFECTED

N-15093AZ 4 Revised.

Fig. 9

12-18-50

N-15001 TC IONew.

1.625" Fig. 10

ET1-201 B PAGE 3 12-50

.500"
i

i
.125"

.I

6-15-48

K-4955973

LARGE No. 3917, RTMA No. C1-15
800±.00"ii
DIA.

I
N .785"
pn I

LARGE
. No. C1-8

..*

.800"

±.007"

DIA.

-

1
1.000"

Fig. 11

812" :f.027"

9-15-50

K-9186042 New.

,I
woo"
DIA.
Fig. 12

.
12-18-50

ETI-201B PAGE 4
12-50

CAP OUTLINES

SKIRTED LARGE
. No. 3905, RTMA No. CI -9
---.800' ,t01007",

713"
MIN.
i

.8 3" 1.813"

SKIRTED LARGE No. 1904, RTMA No. Cl -10

&800+.007
DIA.

f
.813

-i# .713" 1 MIN.

2.2 81 "

K-6966485 4Revised.

4 06"
1
Fig. 13
SKIRTED LARGE No. 3912

"-2,230" DIA-
ON FINISHED TUBE ADD 0.060" FOR SOLDER TO LENGTHS AFFECTED

12-18-50

K-6966488 Revised.

Fig. 14

SKIRTED LARGE No. 1902, RTMA No. C1-30

12-18-50

1ff%

NW

-.I BOdt0101041

.713"M .
i

t .813"
1

2.062" ±.034"

-0. 80(5±.00i L D A.
i
.813'
-.1.-.017"

2.750 " +.017 "

-*--- 2.375" ±b(117. "

K-4373344 Revised.

Fig. 15

2.658" -.81A:1

8-16-48

K-9033522

Fig. 16

12-18-50

*No. J1-1

TERMINAL OUTLINES

*No. J1-8

ETI-20113 PAGE 5 12-50

437"
MIN.
937"
MAX_

.625"
MIN.
1.093" MAX.

K-9186044 New.

007
\43711D1D-I.A10. A0"

Fig. 17

12-18-50

K-9186039 4N ew.

*No. J1-9

\mit ±.007"
DIA.

Fig. 18

12-18-50

*No. J1-10

.812" MIN.

1.125" MAX.

.375" 4 ±.004"
1.125" MAX.

K -69087-72A430 ew.

Fig. 19

12-18-50

K -69087-72A431 Clew.

Fig. 20

12-18-50

ETI-201 B PAGE 6 12-50

TERMINAL AND BASE OUTLINES

*No. J1-13
.5351, +.00 711
D IA.

No. J1-7
-1. .*67 4 .0v....,II .4-
- DIA.

t
.625"
MIN.
ilr

1 .827"
MAX.

.406"
MIN.

t
.656"
MAX.

MINIM

K -69087-72A432
New.

Fig. 21

12-18-50

K -69087-72A429
New.

--4011111111
Fig. 22

12-18-50

BASE 3701

2.438" ' OD,An'

i
2.675"

ME

it . 2 .19 2" PE,

=.064"

-111.111.1-

II I" MIN
i

II .6250tooe

IN i.i

t2. A
VY

2 PINS 312" t 007'
C4A

BASE 3502 . RTMA No. A3-20
2.625" DIA.

209 4"

125" .000"-
.100'1'
,

.969
1.031"

-82°"
MIN.
i

.125+.005"

-4

id .) .411111im.

''.-194)('

.063"

_E.125"

.750"

,25..

-.- .688"-. ..- .688"4-

.312'1 .003D1A TWO PINS

K-4373346

Fig. 23

3-27-45

K-6966478 Revised.

Fig. 24

12-18-50

BASE 3117 . RTMA No. A3-23

BASE OUTLINES

BASE 3911 RTMA No. FO -2

En -201B PAGE 7
12-50

' 9 3 eO IA.

2.625

3.656'

..1)(°:IC?:-

.969'y.{L-.594" {

IFFFHFw

WORM

1.031"

*Mi.'

MAX.

1
- --i
151- ..

--
\3,a. 3t3"
2 PINS

AMOR MUM
( J
t 7

L5015 II,"

500,97.
NA

4'11.1161t1rMallak

Vall4g=Il Nwtit

500,:.;%07?,16.

1\

1111p47 /

4.125"-g; .:5§"
Mii Ed loR

---T- 250 MAX .875" t.17. i

BASE SHELL IS ONNECTED TO ONE FILAMENT LEAD WITHIN BASE

K-6966474 'Revised.

Fig. 25

12.18-50

K-9033549

Fig. 26

9.26.50

PEEWEE 3 -PIN No. 3313, RTMA No. A3-1
610"-.651cA-N-1

1 .500"
.937u
447"
MAX.

.../ .,

.04 5'
MAX.
.340"
MIN.

.344"

DIA.

..ii

I "DIA.
35MAX.

"Aii) .122"

Ai

gar
wire

ALL PINS

.0930±.003"

DIA.

.24e

K-9033572 "Revised.

Fig. 27

12-18-50

BASE 3908 . RTMA No. FO -3
1.812"

0411

q.,r3 vi)

BOT BUSHINSM
INSULH ATED FRGO
SHELL
,

I.

v

\

I'

BAND

-v-I 1-,625'4.010" DIA.

INSULATED

mm I

FROM SHELL Mil 1.--,-,-"

313"±i031 1111
II
COM C,11 Mil"

.3...

_..1,.
2.125r-.125'

zoocit TR::

II.

K-6966483 'Revised.

Fig. 28

12-18-50

ETI-201 B PAGE 8 12-50

BASE 3232-L1 * RTMA No. A3-80
120

DWARF -SHELL 4 -PIN BASE RTMA No. A4-26

2 PINS .I25"+.003" 2 PINS .I56"+.005*

CENTER TAP PIN
CONNECTED TO BASE SHELL

K-9033548 *Revised.

OUTLINE
BASE NO. A3-80 Fig. 29
SMALL 4 -PIN No. 4108, RTMA No. A4-5

12-18-50

FOR PIN ALIGNMENT USE GAGE NO. GA4-I
K -69087-72A426 fNew.

*ON FINISHED TUBE, ADD .030" FOR SOLDER
TO LENGTHS AFFECTED

Fig. 30

12-18-50

MEDIUM 4 -PIN WITH BAYONET No. 4102 and 4103, RTMA No. A4-10

.195"-
MAX.

ON FINISHED TUBE, ADD 0.030" FOR SOLDER TO LENGTHS AFFECTED

468"

.437" I

I

I,087"

.065" MAL

1690"

4,

.450" t .59t6"

MIN.

MAX.

ON FINISHED TUBE, ADD 0.030" FOR SOLDER TO LENGTHS AFFECTED

1 ,468"

K -69087-97A114 *Revised.
*4102-Composition Shell 4103-Metal Shell

Fig. 31

12-30-46

K -69087-97A116 *Revised.

.640"
Fig. 32

12-30-46

BASE OUTLINES

JUMBO 4 -PIN WITH BAYONET No. 1839, RTMA No. A4-29

.094"±.015"

1.840'=1.867 DIA.---

082" MAX.
DIA,

1

I

t

1.165"±020"

I

-ART---' k-

f.
1.395-

I

1.670"

030" MAX.

.250 MIN. 4 i m,"
+

4PINS

3

4

45"

n^r

no,

.187" ±.00 3" DIA.

688"

mf,

.....

_i_

K-6966492 fRevised.

.971"
Fig. 33

ON FINISHED TUBE ADD 0.060" FOR SOLDER TO LENGTHS AFFECTED
1 2-1 8-50

SUPER -JUMBO 4 -PIN WITH BAYONET No. 4310, RTMA No. A4-18

H- 2.I77"-2.219"DIA.

.094.1'015"

I 1.438"

"
.
.T

2,125"

.073"
f ,7I8" MAX.

mm
II .260" ..-
MAX.

....

1.546" .t.020"

..._

ON FINISHED TUBE ADD .our FOR SOLDER TO

_t575 ,^111 LENGTHS AFFECTED

4r.111111.411-.4111*11k

4 Pals ..
.187 "-F.00 3 DIA.

.75f I Ar,s,

1- 562"

1.000" DIA.

SMALL -SHELL, SUPER -JUMBO 4 -PIN No. 411, RTMA No. A4-15

1.187" 1.875"
.580" M N.

.280" MAX.
1. 4 22"1.469"

062' MA X.
i .700"MAX.
i

ALL PINS .186"±.003"

.562"

itiFIN
.2.Y/
4-t
lis-.

..4

rOA
"ff....:.Y IF

.750"

1.000

Fig. 34

SUPER -JUMBO 4 -PIN No. 3982
2.234" 2.1 7 2"

I
1.453"

.750"
MAX.
i

iNf
+.,010863""-.1 I-ALL PINS

" t.010"I

t080"-.002DIA.
2.1 25"

tin
1.578"
MIN.

7077"" I
t .003
flg?:
.093" MAX.

1,000"

.750"

L.!'#- .562"

e.

IiINV

ET 1-20 1B
PAGE 9
12-50

K-4955974 fRevised.

Fig. 35

9-15-50

11-1 5000TC fRevised.

Fig. 36

8-6-48

ETI-201B PAGE 10 12-50

No. 4260, RTMA No. A4-69

BASE OUTLINES

No. 5004B USED ON GL -1000T

.082"
MAX.
.250" MIN. .260" MAX.
90*

2.230"
I DIA.

.094"

+

±.015"

I 969" 'I

.030li

II MAX. 1.250" i

2-250"

.18ri.00r .32ou MAX.

i101 ,74A ......k

%..._......._74

4

-P1.971"14-

.oaz" MAX.

0 C3

i

t 4,109"

MAX7.1

*1,165"

*17" 64
MAX.

I1

15" "

64
MIN.

4

II111

1.86T" MAX.

+ i

a

I.§::

2-2811"

is.,

I.

32 -MAX.

ortal& 716

1,413

.187"i'.002" DmV. ,,7,t3.:E. likAT "

MAX.

4 PINS

11.11111157

32

n iiir

*ON FINISID TUBE ADD .060 FOR SOLDER

K -69087-72A427 +New.

Fig. 37

12-18-50

K -69087-72A423 +New.

Fig. 38

12-18-50

*BASE 3601 2.62511'

SMALL 5 -PIN No. 5108, RTMA No. A5-6

3.219" 064"

1
'j 25"

INIM 111111.11MIIM It g0"

.3412PIIA .t.t 007"

1

1

K-3846066 Revised.

I 37 5 ' -1.017"
01A.

e
1/4..
A\ AIN
q." VP
emi0o.

.469"°7

\____.219..±.007"

Fig. 39

6-24-48

.843".065"

1.436" IIMI/WW=11,

i i , MAX. 7":.

I'll! 4

.450" .596"

_ M_ItN_.

MAX.

ON FINISHED TUBE, 4-1.13e-1.165.2*. ADD 0.030" FOR SOLDER
TO LENGTHS AFFECTED

.195"
MAX.

PINS .125"f. '0' " .01:0:tt

0 .750" /' 0I -

I

,

VZeili -

(t."...-'

'................

6 0°

300 30

K -69087-97A117 +Revised.

Fig. 40

12-30-46

BASE OUTLINES

ET1-201B PAGE 11
12-50

MEDIUM 5 -PIN No. 5106, RTMA No. A5-11

No. 6102 11.352"±-0I0" DIA.

I *"_' 1.680"

1.037"
I, 065"
..... -+"--F +

5- .l

+.00y c .oso""

L0871..-0.002.00"7

oo o
-:003"

DIA.

V

i.seo± "

11111 ta?" MIX.1.230.°15" -4-1.537 - .377 '-'''

ON FINISHED TUBE, ADD 0.030" FOR SOLDER TO LENGTHS AFFECTED

I 54 MAX.195".

5 PINS .125"±.003"
el.
ci 3

6 PINS EQUALLY SPACED
0

*ON FINISHED TUBE ADD .060' FOR SOLDER
60"

Or

2 PINS .156",.00rD IA.

,r, 2

4

0 , (61 60°

`/4,(

0

4171

PINS .125"±-°°2DIA.

".....

30° 30

'75°4°1

K -69087-97A118 fRevised.

Fig. 41

12-30-46

K -69087-72A425 el ew.

Fig. 42

12-18-50

. BASE 6628 RTMA No. FO -6

MINIATURE BUTTON 7 -PIN . RTMA No. E7-1

2" 4.%94"

ell
704, I-, 1 ak -i0dW "

0.1

V4 1A, _

6-3I8' STUDS
3

. 6_
-f- 035 DIA

41
lim,..1
SI I

6.313"
5.063"
DIA.

-..12.°°°'±.°35 ...1 500"t .035
R.
3345'1.035" DIA.

i.5oo" * .035" R.
H 250'1%035
___... 2.0625" + .1875.
MAXIMUM SPACE FOR CONNECTOR BETWEEN WING NUT AND LOCK NUT IS 0.188"

N-15047TA Revised.

Fig. 43

12-18-50

211 I I I II VI I 3" MAX.

9.,
-3M2 AX.
MIN.

45°

45°

4 5°

, 3-

45°

2

5

450
K -69087-97A134 f Revised.

I
44%....
8

45°
7 PINS
.040"+ .002"
DIA.

Fig. 44

12-30-46

ETI-201 B PAGE 12 12-50

BASE OUTLINES

MEDIUM 7 -PIN WITH BAYONET * RTMA No. A7-14
r----1.337:377*

me .03'
i
wl."'"
.

1.087" 1.660"

51203O:

,451041.NM. A" X.

51° 52°

.125,±.003" 5 Pm DIA. 51"

; 0 5 P6

2: iliOW

51°

(93

fi) 1 '

1

C7)

'156" ±.0512." 2 PINS
.
26°

51°
855"

2°
FOR PIN ALIGNMENT USE GAGE NO. GA7-2

K-9186047 New.

OUTLINE
Fig. 45

8-4-48

* SMALL -SHELL OCTAL 8 -PIN

17 ill I .843"

1

.560 MAX. .490"

MAX''

No. B8-1 .0 M3AXX.. MIN

i_____

___. _______

L393"
*
iMAX.

.300"-.3I7"-

1.136-1.175"-0

.075 "- .09F"
*ON FINISHED TUBE, ADD 0.030" FOR SOLDER

.040"-.055"

ALL PINS .093"±."m

454

45°

45°

(ItirtIM s.
,L;1411PAr#I

taintip 450
5. WO WO 1/40 1
i glitt)

-- , 450 221

450

040"R.
.
687"

/ 450

K -69087-97A124 Revised.

Fig. 46

12-30-46

No. 88-6 No. B7-7

* INTERMEDIATE-SHELL OCTAL

8 Pins 7 Pins

No. B6-8 No. B5-10

6 Pins 5 Pins

No. B8.11 No. B7-12

* MEDIUM-SHELL OCTAL

8 Pins 7 Pins

No. B6-13 No. B5-15

6 Pins 5 Pins

843"

tl

+

} .135"

560"

, MAX.

MAX. .480,

.035"
MAX.

1 1.393"

s.a

_ __ ..-1..A.--1

-3140-"
MIN.

-F. , .437"MAX. t

-H 1.-

.075"-095" *
ON FINISHED TUBE, ADD 0.030" FOR SOLDER

I
Loer

.055"
MAX.

1.637"

. 360MAX,

.4 0

I I;1
MAX.61 1411

i _t__

4
.340"MIN. 1127),.:*

.30 0.'. .317"

1

5" -.095 "

-6-1.337"- 1.577" -0. *.O0N7 FINIS2HvETDUBE,

ALL PINS .093"x.003"

ALL PINS .095"=,003"

45°

45. /

.040"-.055"

450 ..........--...t 450
VIIIIPAIL\ ....4
a,....

.040"R.

Itt0 .0 4 0"-.055"

45°

.......0.145°

liiik7

45 0160....... KM tigreaa\
430 kW vikv, i .5. .687-

43 .

,.....-....,

4 . 1 (=1.M*7 1

k

.r 1 rfi 117 1 I Ft

45°

45.

2

2*

45°

45°

.040. R . .6E17"

K -69087-97A125 Revised.

Fig. 47

12-30-46

K -69087-97A1 26 Revised.

Fig. 48

12-30-46

BASE OUTLINES

ETI.201 B PAGE 13
12-50

SMALL -WAFER OCTAL 8 -PIN No. B8-21

.loo"-Th

.035"
MAX.

.ssow ' MAX. .490-
I -L-
.300"-.51T"

1.271"-I.312"

.340"YIN. '4MA5X7. " *
075"-.095"
*ON FINISHED TUBE, AC
0.030" FOR SOLDER

040"-.055"

ALL PINS 093'1..005"

\ 45°

45°

45°

411-1.4100_4V0,-.1/"7"-p1"!P4l1a?11i1li9k. -.At

45° gi4rlgitiaI0rli-kFlFl_4it0iIrVLVeOie,ily 45°

lairr-1.1

45°

45°

22/2

45°

.040" R. .687"

SMALL -SHELL SUBMAGNAL 11 -PIN No. 11343

0082Z7 "
1
"
-:007"

.560".4§0'
MAX.

.035"
MAX,

_4

t_

II ill 1

.355"
MIN.

437" MAX.

090 AX

161
.055" MAX.

1.300" MAX DIA
AP'

ALL PINS
.093"5.003 DIA.

Vo "

7"DN"
PIN N0.1
040 R
,
.750" t.007"
AT PIN TIPS

.135 MAX

K -69087-97A127 *Revised.

Fig. 49

12-30-46

K-9033574

Fig. 50

12-18-50

MEDIUM -SHELL MAGNAL 11 -PIN
*No. 11248
-1.1,61e-1.656" DIA.

SMALL -SHELL DUODECAL 12 -PIN RTMA No. B12-43
11.5001:MAX.D 14451 MIN.DIA.

1,437"

.135"

MAX.

M1A13 X.

14-

mem *A37" MAX.1,45a:1-

.095" MAX.

.040" R.

-.317" MAX.
4
1611
3211

.560"
MAX.

.055" MAX.

II PINS
EQUALLY SPACED
.093"±.003"

K -69087-72A424 *N ew.

1.063" ±.007"4.1 AT PIN TIPS
Fig. 51

*ON FINISHED TUBE, ADD .030" FOR SOLDER.
12-18-50

.872"
.530" .430" I I
MAX. MIN. U

1.372"
+
320" .4I0"*
U UU MIN. MAX.

.598"-.635"
.085%=.075"

.I45"-.165"
"01A. -"-
ALL PINS .093"°311

1.063"

K -69087-72A422 New,

150
Fig. 52

12 BARRIERS
12-18-50

ETI-201 B PAGE 14 12-50

MEDIUM LAMP BASE No. G2-2

BASE OUTLINES

MEDIUM LAMP BASE No. G2-7

1" 4_

INSULATOR

INSULATOR

--+-1I: DIA 16
1.034"DIA.

SCREW THREADS CONFORM TO ASA STANDARD C44-1931

K-5185217 +Revised.

Fig. 53

5-13-47

K-5182057 +Revised.

SCREW THREADS CONFORM TO ASA STANDARD C44 -1931
Fig. 54

11-6-47

Tube Divisions, Electronics Department
GENERAL tidy ELECTRIC
Schenectady, N. Y.

12-50 (11M)

BASES, CAPS

ET -T1502 PAGE 1 10-58

POWER TUBES
This listing includes the bases and caps used on all tubes included in the Industrial and Transmitting Tube Manuals. The bases are arranged in order by number of contacts. Following these, the caps are arranged by size.
The number references are the standard Electronic Industries Association numbers. These numbers are referenced on the tube outline drawings included with the technical data, enabling ready reference to the detailed drawings included here. In a few instances, the outline drawings on the data sheets have not been changed to show the EIA designation. In these cases the old General Electric identification is included in paranthesis with the EIA number.

BASES

2 -PIN EIA No. A2-87
(3701)
2.457"DIA:'

2.187" DIA.

2 -PIN WITH CENTER STUD EIA No. A3-20
2 625" DIA.

2.875"

DIA-.1

MAX.
ft
MIN. I" MAX.
625"
2 PINS 312' 2.007"
DIA.

2:094"

3.125"

zoo" .too"

.969" .1320..

1.031"

MIN.

.12gi.005"

-i
4)k, `-.594fi,063" MAX. _025"

750"

.125"

.312"± .003 DIA. TWO PINS

K-4373346

2 -PIN WITH CENTER STUD EIA No. A3-23 (3117)

11-25-53

K-6966478
.075" 1..003"

MEDIUM 4 -PIN WITH BAYONET EIA No. A4-10

12-18-50

.078"
1.43$32"
1.230" + .02 0"

1.087"
.065"
I MAX,

1.680"+

.450" t .596"

MIN.

MAX.

.195" MAX.

-I.537"-1.377

ON FINISHED TUBE,
ADD 0.030" FOR SOLDER TO LENGTHS AFFECTED

2 PINS .125"± .003"

2 PINS .156" ± .003"

ir-
.437"

.468"

K-6966474

12-18-50

K -69087-97A116

.640"

GENERAL ELECTRIC
Supersedes ETI-2018 dated 12-50 and ETX-209A dated 3-51

12-30-46

ET -T1502
PAGE 2
10-58

SUPER -JUMBO 4 -PIN WITH BAYONET EIA No. A4-18 (4310)

BASES

JUMBO 4 -PIN WITH BAYONET EIA No. A4-29

.260" MAX._ j

082" MAX.
DI A.

1.646" 3.020"
ON FINISHED TUBE ADD SOLDER TO
.575 MIN LENGTHS AFFECTED

1.165.±.020"

4PINS .187" ±00s" DIA.

K-4955974

4 -PIN EIA No. A4-75
2.625"Vr

3.219" 3.064°

9-15-50

K-6966492

ON FINISHED TUBE ADD 0.060' FOR SOLDER TO LENGTHS AFFECTED
12-18-50
SMALL H -WAFER OCTAL, 6 -PIN EIA No. B6-108

I 2 71 "- I. 312 "

F-
.340MIN. .447 MAX.

K-3846066

6-24-48

K -69087-97A189

10-9-58

MEDIUM -SHELL OCTAL, 7 -PIN HA No. B7-12

BASES

SMALL -BUTTON DITETRAR, 8 -PIN EIA No. E8-11

ET -T1502
PAGE 3
10-58

1.637"
.075"-.095"
ON FINISHED TUBE, ADD 0.030" FOR SOLDER ALL PINS .093"=.003" 450

.368"MIN.
1
.503"MAX.

8 PINS .050"i.00042" DA.
-.0

.600' MAX

INDEX LOCATION ( SHORT PIN)
INDEX LOCATION ( SHORT PIN)

PIN CONTOUR

.050"DIA.PIN

MIN. 5°
H.0 4 0 " M A X FLAT. NOT TO BE BROUGHT TO A SHARP POINT.

FOR PIN ALIGNMENT USE GAUGE NO. G E8 -2

K -69087-97A126

12-30-46

K -69087-97A187

10-8-58

SMALL -SHELL DI HEPTAL, 14 -PIN EIA No. B14-45

1.087"
.050" MIN. .070"MAX. .0931-.00301A. 14 PINS

-F.

.515 MAX.

.340"MI N.

1.9 85"- 2.031"

K -69087-97A188

10-8-58

ET-TI502 PAGE 4 10-58

SMALL CAP EIA No. C1-1
.360" L
.005 "
1
.406"
.420nt.02dt

CAPS

K -69087-97A129
LARGE CAP EIA No. C1-8
.800"
±.007"
DIA.

10-9-58

K-6966486

MEDIUM CAP EIA No. C1-5

.500

.576"DIA. 14-

12-18-50

SKIRTED LARGE CAP EIA No. C1-9

K-9186042

12-18-50

K-6966485

10-9-58

SKIRTED LARGE CAP EIA No. C1-10 (1904)

CAPS

LARGE CAP EIA No. C1-15
(3917)

ET -T11502
PAGE 5 10-58

-2.230" D I A.
ON FINISHED TUBE ADD 0.060" FOR SOLDER TO LENGTHS AFFECTED
K-6966488
EIA No. C1-30 (1902)

10-9-58

K-4955973

EIA No. C1-35 (3912)

9-15-50

.713"MIN.

K-9033522

10-9-58

K-4373344

10-9-58

ET -T1502
PAGE 6
10-58

TERMINAL -SUPPORT SHELL EIA No. FO -2 (3911)

TERMINAL -SUPPORT SHELL EIA No. FO -3 (3908)
1.812"

1.50611,;" 250

4.125"

=MIIV" lota [0.]

I 250"MAX.1
,Olt.

BASE SHELL IS ONNEOTE0 TO ONE FILAMENT LEAD WITHIN BASE

BOTH BUSHINGS INSULATED FROM SHELL

BAND

-^1

NSULATED

FROM SHELL

313".r.031"
DIA.

H625",.010" DIA. 500"

21252 I 2e

MEI 2006+ Tg:

K-9033549

9-26-50

K-6966483

12-18-50

TERMINAL -SUPPORT SHELL EIA No. FO -6 (6628)

+-.00"94"

6- 3/8" STUDS
31;
2.03_5"

63 3" 2.063"
DIA.

1.500"1...035
3345'1.035" DIA.

1.500" t °35*B. 2501.035"
2.0625" .1875"
MAXIMUM SPACE FOR CONNECTOR BETWEEN WING NUT AND LOCK NUT IS 0.188"

N-15047TA

12-18-50
ELECTRONIC COMPONENTS DIVISION
GENERAL (g) ELECTRIC
Schenectady 5, N. Y.

V'

SPECIFICATIONS
ETI-202 PAGE 1
4-45

ELECTRONIC TUBES FOR INDUSTRY

INTRODUCTION TO SPECIFICATIONS

Specifications in this section are a form of electronic tube data, the significance of which has not been fully appreciated by those who design tube equipment. They are equally as important as the Description and Rating Sheets when tube applications are being considered since their purpose is
to serve as a guide to the interpretation of the
ratings given on that sheet. If equipment in which an electronic tube is to be used is to be designed correctly, it is essential that the Specifications be used. The Specification is a detailed exposition of how the tube will operate under given sets of con-
ditions.
There are two main sections, one covering Mechanical Requirements, the other Electrical Requirements. The former refers to the Outline
Drawing where all essential dimensions, bases, caps,
and basing connections are shown. The second section "Electrical Requirements" is the more detailed. This portion lists all electrical tests with their conditions and maximum and minimum limits. The electrical tests cover all relevant tube characteristics. A study of these conditions and the limits given will provide the tube application engineer with a clear understanding of what can be

expected in normal operation. The Specifications are particularly important
when one considers that the Description and Rating Sheet is designed to assist in preliminary selection of a tube whereas the Specifications are then to be
used for determining proper design of the equipment in which the tube is to be used.
The Description and Rating Sheet will enable the designer to estimate quickly the power output capabilities and power supply requirements of a particular tube whereas the Specifications will serve to indicate what variation may be expected during the life of the tube or what deviation there may be between individual tubes.
Equipment should not be designed from the
Description and Rating Sheet which gives only the
maximum ratings and, in some cases, typical opera-
ting conditions. Use of the Specifications as a guide to equipment design assures the user that any tube of a given type will operate within its ratings, and thus is a prerequisite to satisfactory performance of the apparatus.
The following list of IRE letter symbols is included for your convenience. These symbols will appear throughout the specification data sheets.

IRE SYMBOLS

ec

Instantaneous total grid voltage

Eg Effective or maximum value of varying

eb

Instantaneous total plate voltage

component of grid voltage

ic

Instantaneous total grid current

Ep Effective or maximum value of varying

ib

Instantaneous total plate current

component of plate voltage

Ec

Average or quiescent value of grid voltage /g

Effective or maximum value of varying

Eb

Average or quiescent value of plate voltage

component of grid current

IC

Average or quiescent value of grid current /p

Effective or maximum value of varying

Ib

Average or quiescent value of plate current

component of plate current

eg

Instantaneous value of varying component Er

of grid voltage

If

Filament or heater terminal voltage Filament or heater current

ep

Instantaneous value of varying component Is

Total electron emission

of plate voltage

gi

Conductance of electrode j

Zg

Instantaneous value of varying component r,

Resistance of electrode j

of grid current

gp

Plate conductance

Zp

Instantaneous value of varying component rp

Plate resistance

of plate current

gg

Grid conductance

GENERAL ELECTRIC

ETI-202 PAGE 2 4-45
rg
gn, gn
god
Cgp Cgk Cpk Cgh Cph

IRE SYMBOLS (Continued)

Grid resistance
Transconductance from electrode k to
electrode j (-gpg) Grid -plate transconductance (mu-
tual conductance) (=_-gpg) Plate -grid transconductance (in-
verse mutual conductance) /.4 factor, electrodes j and k with respect to
the current of electrode 1 Amplification factor Grid -plate capacitance
Grid -cathode capacitance Plate -cathode capacitance Grid -heater capacitance
Plate -heater capacitance

Cg
Cp
Ck
EitIV
Efwd eifwd ec@eb ic@eb th
nig
td
tk Po
Pi
Pp

Grid capacitance Plate capacitance
Cathode capacitance Peak (or crest) inverse voltage Peak (or crest) forward voltage Instantaneous tube voltage drop Critical grid voltage Critical grid current Tube heating time Temperature of mercury condensate Deionization time Cathode heating time Power output Power input Anode dissipation

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

445 (750) Filing No. 885U

ETI-203A
PAGE 1
SPECIFICATIONS
IGNITRON
FG-258-A

SPECIFICATIONS
12-45

GENERAL
Equipment using this type should be so designed that any tube within the limits specified will operate satisfactorily.
The tube shall be designed to have the average characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-111.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS

Test
Ignitor Resistance Peak Voltage Drop A -c Welder Control
Operation -Intermittent
High Potential

See Note

I,
Amp Min

- 1
2 100
3

Test Conditions

Conduc-

RMS

tion Averag-

Demand II, Time ing

Current Amp per Spot Time

Amp- Min Seconds Seconds

Min

Mini- Max

mum

-- -- -- -

2600 250

1

4.89

Duration of Test

Eo
Volts

- -- 20 min.
Minimum

- - - - - 4

10 sec 12000

Test Limits

Min Max

Units

-5 110 Ohms 16 Volts
--
20 Arc Backs 200 Ignitor Voltage
for Ignition 30 Ignitor Current
for Ignition
- - - 100 Ignitor Ignition time

NOTES
1. With no other voltage applied, the ignitor to -cathode resistance shall be measured with the tube mounted vertically and shall be within the limits specified.
For this test the tube temperature shall be between 15 and 35 C.

2. With the tube operating in a 60 -cycle, half wave rectifier adjusted to give the specified peak anode current and no greater than average anode current, the peak voltage drop exclusive of starting voltage measured from anode to cathode shall not exceed the limit specified. This voltage may be

12-45 (2M) Filing No. 8850
114;r4Ai<14101<gt

Supersedes ETI-203 dated 4-45
GENERAL *ELECTRIC

A'61."%1M506

En -203A
PAGE 2
12-45
observed by use of a cathode-ray oscilloscope connected directly, or through an amplifier to the tube under test.
For this test the water temperature shall be less than 15 C. Rated water flow shall be used.
3. The tube shall be connected "back to back"
with a previously tested good tube to control alternating current to an inductive load with a power factor lower than 30 per cent. The tube under test shall be in the trailing position. The
ignitor of each tube shall be connected to a suitable firing control circuit in such a manner that current will flow through the ignitor in the forward direction only.
The supply voltage shall be 575 plus or minus 25 volts rms, 60 cycles. With no phase retard the minimum rms demand current, conduction time per spot, and minimum average anode current shall be as specified.
After the initial spot and for the next four spots, the ignitor voltage for ignition shall not exceed 200 volts. During this and subsequent operation, the
ignitor shall maintain control and the time required to initiate the arc shall not exceed 100

microseconds. During the last three minutes of tube operation,
the ignitor firing shall be retarded in phase so that the rms demand current is 75 plus or minus 5 per cent of the previous value. During this period, the number of arc backs shall not exceed the specified maximum. At the end of this period, the ignitor current for ignition shall not exceed 30 amperes when flowing for a time not exceeding 100 micro-
seconds.
For this test rated water cooling shall be used at rated flow.
4. With the tube mounted in a vertical position, the specified voltage shall be applied for the speci-
fied time. During the last half of this test, there shall be no indication of current flow through the tube. Momentary flashes shall not be considered as an indication of current flow.
This test shall be given at least 15 hours after operation for those tubes which have been oper-
ated.
For this test the tube temperature shall be
between 15 and 35 C.

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

ETI-235 PAGE 1 SPECIFICATIONS
IGNITRON
FG-271

SPECIFICATIONS
12.45

GENERAL
Equipment using this type should be so designed that any tube within the limits specified will operate satisfactorily.
The tube shall be designed to have the average characteristics and maximum ratings given on the

Description and Rating Sheet, ET I-113.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS

Test Conditions

Test Limits

Test

MinMin Conduc-

RMS

tion Averag-

See Note

I'
Amp Min

Demand Current Amp-

Ib Time Amp per Spot Min Seconds

ing Time Seconds

Duration of Test

E Volts

Max

Min

Mini- Max

Units

mum

Ignitor Resistance 1 Peak Voltage Drop 2 100

-

-

-

--

-5 110 Ohms 16 Volts

A -c Welder Control

Operation-Inter-

mittent

3

-

635

40

1

- - - 7.82 10 min

Minimum

2 Arc Backs

200 Ignitor Voltage

for Ignition

30 Ignitor Current

for Ignition

High Potential

4--

- - - 10 sec 12000

100 Ignitor Ignition Time

NOTES
1. With no other voltage applied, the ignitor to -cathode resistance shall be measured with the tube mounted vertically and shall be within the limits specified.
For this test the tube temperature shall be between 15 and 35 C.
2. With the tube operating in a 60 -cycle, half -

wave rectifier adjusted to give the specified peak anode current and no greater than average anode current, the peak voltage drop exclusive of starting voltage measured from anode to cathode shall not exceed the limit specified. This voltage may be observed by use of a cathode-ray oscilloscope connected directly, or through an amplifier to the tube under test.

12 -45 (2M) Filing No. 8850

GENERAL ELECTRIC

ETI-235
PAGE 2
12-45
For this test the water temperature shall be
less than 15 C. Rated water flow shall be used.
3. The tube shall be connected "back to back"
with a previously tested good tube to control alternating current to an inductive load with a power factor lower than 30 per cent. The tube under test shall be in the trailing position. The
ignitor of each tube shall be connected to a suitable firing control circuit in such a manner that current will flow through the ignitor in the forward direction only.
The supply voltage shall be 575 plus or minus 25 volts rms, 60 cycles. With no phase retard the minimum rms demand current, conduction time per spot, and minimum average anode current shall be as specified.
After the initial spot and for the next four spots, the ignitor voltage for ignition shall not exceed 200 volts. During this and subsequent operation, the ignitor shall maintain control and the time required to initiate the arc shall not exceed 100 microseconds.

During the last three minutes of tube operation, the ignitor firing shall be retarded in phase so that the rms demand current is 75 plus or minus 5 per cent of the previous value. During this period, the number of arc backs shall not exceed the specified maximum. At the end of this period, the ignitor current for ignition shall not exceed 30 amperes when flowing for a time not exceeding 100 micro-
seconds.
For this test rated water cooling shall be used at rated flow.
4. With the tube mounted in a vertical position,
the specified voltage shall be applied for the specified time. During the last half of this test,
there shall be no indication of current flow through
the tube. Momentary flashes shall not be con-
sidered as an indication of current flow. This test shall be given at least 15 hours after
operation for those tubes which have been operated.
For this test the tube temperature shall be
between 15 and 35 C.

Electronics Department
GENERAL ) ELECTRIC
Schenectady, N. Y.

ETI-236A
PAGE 1
SPECIFICATIONS
IGNITRON
GL -5552 FG-235-A

SPECIFICATIONS

10-45

GENERAL
Equipment using this type should be so designed that any tube within the limits specified will operate satisfactorily.
The tube shall be designed to have the average characteristics and maximum ratings given on the

Description and Rating Sheet, ET I-109.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS

Test Conditions

Test Limits

Conduc-

RMS

tion Averag-

Test

See
Note

IP
Amp Min

Demand Current Amp-

II, Time Amp per Spot Min Seconds

ing Time Seconds

Duration of Test

E VolPts

Min Max

Units

Min

Mini- Max

mum

Ignitor Resistance

1

-

Peak Voltage Drop 2 100

--

-- --

A -c Welder Control

Operation-Inter-

mittent

3

- 1265 100

1

High Potential

4-- --

-

--

-5 110 Ohms 16 Volts

- - - 6.19 15 min

Minimum

5 Arc Backs

200 Ignitor Voltage

for Ignition

30 Ignitor Current

for Ignition

- - - 10 sec 12000

100 Ignitor Ignition time

NOTES
1. With no other voltage applied, the ignitor to -cathode resistance shall be measured with the tube mounted vertically and shall be within the limits specified.
For this test the tube temperature shall be
between 15 and 35 C.
2. With the tube operating in a 60 -cycle, half -

wave rectifier adjusted to give the specified peak anode current and no greater than average anode current, the peak voltage drop exclusive of starting voltage measured from anode to cathode shall not exceed the limit specified. This voltage may be observed by use of a cathode-ray oscilloscope connected directly, or through an amplifier to the tube under test.

Supersedes ETI-236A dated 12-45

GENERAL ELECTRIC

ETI-236A
PAGE 2
10-49
For this test the water temperature shall be less than 15 C. Rated water flow shall be used.
3. The tube shall be connected "back to back"
with a previously tested good tube to control alternating current to an inductive load with a power factor lower than 30 per cent. The tube under test shall be in the trailing position. The
ignitor of each tube shall be connected to a suitable firing control circuit in such a manner that current will flow through the ignitor in the forward direction only.
The supply voltage shall be 575 plus or minus 25 volts rms, 60 cycles. With no phase retard the minimum rms demand current, conduction time per spot, and minimum average anode current shall be as specified.
After the initial spot and for the next four spots, the ignitor voltage for ignition shall not exceed 200 volts. During this and subsequent operation, the ignitor shall maintain control and the time required to initiate the arc shall not exceed 100 microseconds.

During the last three minutes of tube operation, the ignitor firing shall be retarded in phase so that the rms demand current is 75 plus or minus 5 per cent of the previous value. During this period, the number of arc backs shall not exceed the specified maximum. At the end of this period, the ignitor current for ignition shall not exceed 30 amperes when flowing for a time not exceeding 100 micro-
seconds.
For this test rated water cooling shall be used at rated flow.
4. With the tube mounted in a vertical position,
the specified voltage shall be applied for the specified time. During the last half of this test,
there shall be no indication of current flow through the tube. Momentary flashes shall not be considered as an indication of current flow.
This test shall be given at least 15 hours after
operation for those tubes which have been operated.
For this test the tube temperature shall be
between 15 and 35 C.

Tube Divisions, Electronics Department

GENERAL

ELECTRIC

Schenectady, N. Y.

10-49 (3M) Filing No. 8850

ETI-237 PAGE 1 SPECIFICATIONS
IGNITRON
GL -41 5

SPECIFICATIONS

12-45

GENERAL
Equipment using this type should be so designed that any tube within the limits specified will operate satisfactorily.
The tube shall be designed to have the average characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-114.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS

Test Conditions

Test Limits

Conduc-

RMS

tion Averag-

Test

See Note

IP
Amminp

Demand Ib Time

CAumrrpe_nt

Amp Min

per Spot Seconds

ing Time Seconds

Duration of
Test

E, Volts Min Max

Units

Min

Mini- Max

mum

Ignitor Resistance 1 Peak Voltage Drop 2 100

- 110 Ohms 16 Volts

A -c Welder Control

- Operation-Inter-

mittent

3

317

16

0.5

9.56

- 10 min

-

Minimum

2 Arc Backs

200 Ignitor Voltage

for Ignition

30 Ignitor Current

for Ignition

100 Ignitor Ignition

High Potential

4

- - time
10 sec 12000

NOTES
1. With no other voltage applied, the ignitor to -cathode resistance shall be measured with the tube mounted vertically and shall be within the limits specified.
For this test the tube temperature shall be
between 15 and 35 C.
2. With the tube operating in a 60 -cycle, half -

wave rectifier adjusted to give the specified peak anode current and no greater than average anode current, the peak voltage drop exclusive of starting voltage measured from anode to cathode shall not exceed the limit specified. This voltage may be observed by use of a cathode-ray oscilloscope connected directly, or through an amplifier to the tube under test.

12 -45 (2M) Filing No. 8850

GENERAL ELECTRIC

ETI-237
PAGE 2
12-45
For this test the water temperature shall be less than 15 C. Rated water flow shall be used.
3. The tube shall be connected "back to back"
with a previously tested good tube to control alternating current to an inductive load with a
power factor lower than 30 per cent. The tube under test shall be in the trailing position. The ignitor of each tube shall be connected to a suitable firing control circuit in such a manner that current will flow through the ignitor in the forward direction only.
The supply voltage shall be 575 plus or minus 25 volts rms, 60 cycles. With no phase retard the minimum rms demand current, conduction time per spot, and minimum average anode current shall be as specified.
After the initial spot and for the next four spots, the ignitor voltage for ignition shall not exceed 200 volts. During this and subsequent operation, the ignitor shall maintain control and the time required to initiate the arc shall not exceed 100 microseconds.

During the last three minutes of tube operation, the ignitor firing shall be retarded in phase so that the rms demand current is 75 plus or minus 5 per cent of the previous value. During this period, the number of arc backs shall not exceed the specified maximum. At the end of this period, the ignitor current for ignition shall not exceed 30 amperes when flowing for a time not exceeding 100 microseconds.
For this test rated water cooling shall be used
at rated flow.
4. With the tube mounted in a vertical position,
the specified voltage shall be applied for the specified time. During the last half of this test,
there shall be no indication of current flow through the tube. Momentary flashes shall not be considered as an indication of current flow.
This test shall be given at least 15 hours after
operation for those tubes which have been operated.
For this test the tube temperature shall be between 15 and 35 C.

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

SPECIFICATIONS

ETI-205 PAGE 1 SPECIFICATIONS
KENOTRONS
KC -4, FP -85-A
GL -41 1
4-45

GENERAL
Equipment using any of these types should be so designed that any tube within the limits specified will operate satisfactorily. The tube shall be de-
signed to have the average characteristics and maximum ratings given on the Description and

Rating sheets, ETI-141, 142, and 144.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS
Test methods according to IRE Standards

TEST

TYPE OF
TUBE

Operation * Emission Filament
Current

KC -4 FP -85-A GL -411
KC -4 FP -85-A GL -411
KC -4 FP -85-A GL -411

Er Volts
20 10 10
17 8 9
20 10 10

TEST CONDITIONS IRE Symbols

Eb

Ib Ma

150 kv peak inverse 20 kv peak inverse 100 kv peak inverse
3000 volts d -c 200 volts rms, a -c
3000 volts d -c
---

150 25 80
Read Read Read
---

Time Minutes
5 5 5
-t ---

TEST LIMITS

Min. Max. Unit

--- --

200
5

-- Ma Ma

80

Ma

23

26

Amp

4

5.3 Amp

13

16

Amp

*For the operation test the tubes are operated in pairs under the conditions given above in a single-phase, full wave, 60 -cycle circuit. Capacitance of approximately 0.0025 mfd connected across load, and each tube protected by sphere gap adjusted to 30 kv peak. If either electrode vibrates excessively reject tube.
t Operate until plate current stabilizes (about 30 sec).

4-45 (750) Filing No. 8850

GENERAL 0 ELECTRIC

SPECIFICATIONS

ETI-206
PAGE 1
SPECIFICATIONS
KENOTRON
GL -8020

4.45
GENERAL

Equipment using this type should be so designed
that any tube within the limits specified will
operate satisfactorily. The tube shall be designed to have the average
characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-145.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS
Test methods according to IRE Standards

TEST CONDITIONS IRE Symbols

Limits

Test

See

Ef

Note Volts

Eb
Volts

Ib

Time

Amperes Minutes

Min

Max Units

Operation Emission Plate current Filament current End of life

1

5 40,000 Peak Inverse 0.100

5

3 5

500 d -c 200 d -c

read read

IA

30 75

- Ma Ma

5

5.5

6.5

Amp

2

3

500 d -c

read

15

Ma

NOTES
1. Half -wave rectifier circuit without filter. 2. Life test conditions per Operation Test.

4.45 (750) Filing No. 8850

GENERAL ELECTRIC

En -234A PAGE 1
SPECIFICATIONS
THYRATRON
GL -502-A

SPECIFICATIONS

3-47

GENERAL
Equipment using this type should be so designed that any tube within the limits specified will operate satisfactorily.
The tubes shall be designed to have the average characteristic and maximum ratings given on the

Description and Rating Sheet, ETI-134.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS
For the electrical tests, the cathode must reach steady state operating temperature before any other potential is applied.
Except where otherwise specified, rated heater voltage will be applied, and the shield grid shall be connected to the cathode.

TEST CONDITIONS

TEST LIMITS

Test

See Note

Efwd

E,,

I,,E,

Min

Max

Units

Heater Current Tube Voltage Drop Characteristic Operation

1

2

125 d -c

0.3A d -c

3

A Read

0

B 650 a -c

Read

4

650 a -c

1300 0.1A d -c

0.54

0.66

Ampere

14

Volts

-5.0

60
-1.5

-Volts
Volts

NOTES
1. With no other voltage applied to the tube, the heater current shall not exceed the limits
specified.
2. An anode voltage of 125 volts d -c shall be applied, with sufficient series resistance to limit the average anode current to the specified value. The control grid shall be connected to the anode through a resistance of 1000 to 10,000 ohms.
The tube drop is measured from the anode to the cathode by calibrated cathode-ray oscilloscope or other suitable means, and shall not exceed the limit
specified.
3. An anode resistor shall be used to limit the anode current to within rated average value. A

resistor not exceeding 0.1 megohm shall be in
series with the control grid. A. With the control grid voltage zero, the d -c anode voltage necessary to start a discharge shall not be greater than the limit specified.
B. With the specified anode voltage applied and a sufficiently negative d -c grid voltage applied to prevent conduction, the control grid supply voltage shall gradually be made more positive until conduction occurs to the anode. The grid supply voltage at which conduction occurs shall be within the limits
specified.
4. Two tubes shall be operated in a rectifier circuit with a resistance load without a filter.

Supersedes ETI-234 dated 12-45

3-47 (3M) Filing No. 8850

GENERAL ELECTRIC

ETI-234A PAGE 2
3-47
The control grid shall be supplied with an a -c voltage of not more than 120 volts, through a resistance of 0.1 megohm.
The tubes shall be operated for five minutes under the conditions specified without arc back.

At the end of the period, the current of each tube shall be reduced from the rated current to zero by varying only the phase of the applied grid voltage from zero to 180 electrical degrees lagging with respect to the anode voltage.

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

SPECIFICATIONS

EV-207
PAGE 1
SPECIFICATIONS
PHANOTRONS
FG-32, FG-104 FG-280

4-45

GENERAL
Equipment using these types should be so designed that any tube within the limits specified will operate satisfactorily.
The tubes shall be designed to have the average characteristics and maximum ratings given in the

Description and Rating Sheets, ETI-147, 148 and 151.
MECHANICAL REQUIREMENTS
The tubes shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS

For the electrical tests, the filament or cathode carries anode current for periods of not more than

must reach steady state operating temperature one -tenth second and preferably for only one-half

before any other potential is applied. The anode cycle. These periods shall be spaced at a maximum

and grid returns shall be made to the midtap of rate of one pulse per second.

the filament transformer for filamentary tubes, or In testing mercury tubes, the condensed -mercury

to the cathode connection for indirectly heated temperature shall be held at 40 t 2 C.

cathodes. The filament or heater voltage shall be The peak voltage drop, exclusive of the starting

in phase with the anode voltage and the cathode voltage, is measured from the anode to the anode

end of the heater shall be negative when the anode return by a calibrated cathode-ray oscilloscope or

is positive.

other suitable means, and shall not exceed the

Except where otherwise specified, rated filament limit specified.

or heater voltage shall be applied. See Page 3 for detailed values and limits referred

3.

Operation Test

to in the following description of tests.

Two tubes shall be operated in a bi-phase full wave (4 -anode) rectifier circuit with a resistance

1. Filament or Heater Current Test
With no other voltage applied to the tube, the filament or heater current shall not exceed the
limits specified.
2. Peak Voltage Drop Test (Emission)

load and without a filter in the load circuit. The over-all regulation of the anode supply voltage shall be less than 10 per cent.
For this test, the ambient temperature shall be held between 20 and 40 C.
After the mercury (when mercury tubes are tested) has been properly distributed, the tubes

An anode voltage of 110 volts a -c at 60 cycles shall be operated for five minutes with specified shall be applied, with sufficient series resistance to peak inverse voltage, and rated average current limit the peak anode current to the rated value. per tube without arcback or apparent sputtering

A circuit shall be employed such that the tube of the cathode.

4-45 (750) Filing No. 8850

GENERAL ELECTRIC

ETI-207 PAGE 2 4-45

Type of
Tube
FG-32 FG-104 FG-280§

TEST-Phanotrons

1. Filament Current
1 5 Amperes-

Min

Max

2. Peak Voltage Drop Max

4.3

4.9

20

9.25

10.75

20

9.25

10.75

20

3. Operation
Env
1000 3000 2000

§Before any tests are made, the filament must be operated for 15 minutes in the case of the FG-280 to condense properly the mercury in the radiator.

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

ETI-208
PAGE 1
SPECIFICATIONS
PHANOTRON
FG-190

SPECIFICATIONS
4-45

GENERAL
Equipment using this tube should be so designed
that any tube within the limits specified will
operate satisfactorily. The tube shall be designed to have the average
characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-150.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL R EQUIREMENTS
For the electrical tests, the filament must reach other potential is applied. The anode return shall steady state operating temperature before any be made to the midtap of the filament transformer.

TEST CONDITIONS

TEST LIMITS

Test

See
Note

E f

E lm/

ip

ib

(Peak) (Average)

Min

Max

Units

Filament current Emission Operation

1 2

2.5

2.5

2.5

190

5.0

-
1.25

-11.0

13.0

Amperes

12

Volts

1. Peak Voltage Drop Test (Emission)
An anode voltage of 110 volts a -c at 60 cycles shall be applied, with sufficient series resistance to
limit the peak anode current per anode to the
specified value. A circuit shall be employed such that one anode carries current for periods of not more than one -tenth second and preferably for only one-half cycle. These periods shall be spaced at a maximum rate of one pulse per second.
The peak voltage drop, exclusive of the starting voltage, is measured from each anode to the center tap of the filament transformer by a calibrated cathode-ray oscilloscope or other suitable means,

and shall not exceed the value specified.
2. Operation Test
The tube shall be operated in a rectifier circuit with a resistance load and without a filter in the load circuit. The over-all regulation of the anode supply voltage shall be less than 15 per cent.
The tube shall be operated for five minutes at the peak inverse voltage specified and with the average
current specified per anode without arcback or apparent sputtering of the cathode.
For this test, the ambient temperature shall be between +20 and +40 C.

4-45 (750) Filing No. 8850

GENERAL CD ELECTRIC

ETI-209
PAGE 1
SPECIFICATIONS
PHANOTRON
GL -857-B

SPECIFICATIONS
4-45

GENERAL
Equipment using these types should be so
designed that any tube within the limits specified will operate satisfactorily.
The tubes shall be designed to have the average characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-152.
MECHANICAL REQUIREMENTS
The tubes shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL R EQUIREMENTS
For the electrical tests, the cathode must reach The filament voltage shall be in phase with the steady state operating temperature before any anode voltage and the filament shield shall be other potential is applied. The anode return shall negative when the anode is positive. be made to the midtap of the filament transformer.

TEST CONDITIONS

TEST

See Note

Filament Ef Heating Time E10
(Min)

ir,

Filament current

1

5.0

Peak voltage drop 2

5.0

(emission)

Operation

3

5.0

1
30

- 40 - 22000

TEST LIMITS

Ib Temp C Min Max Units

- -27 30-40

10

30-40

33

Amp

20

-Volts

1. With filament voltage specified and no other voltage applied to the tube, the filament or heater current shall not exceed the limits indicated.
2. An anode voltage of 110 volts a -c at 60
cycles shall be applied, with sufficient series resistance to limit the peak anode current to the specified value. A circuit shall be employed such that the tube carries anode current for periods of not more than one -tenth second and preferably for only one-half cycle. These periods shall be spaced
at a maximum rate of one pulse per second. The peak voltage drop, exclusive of the starting
voltage, is measured from the anode to the anode return by a calibrated cathode-ray oscilloscope or other suitable means, and shall not exceed the

limit specified. The condensed -mercury shall be within the limits specified.
3. The tubes shall be operated in a 60 -cycle rec-
tifier circuit with a resistance load and without a filter in the load circuit. The over-all regulation of the anode supply voltage shall be less than 10 per cent.
After the mercury has been properly distributed, half the peak inverse voltage specified shall be applied and increased within one minute to the full value. The tubes shall then be operated with
the specified average current per tube for five minutes without arcback or apparent sputtering of the cathode. The ambient temperature shall
be within the limit specified. Artificial cooling may be used.

4-45 (750) Filing No. 8850

GENERAL ELECTRIC
S

SPECIFICATIONS

ETI-211
PAGE 1
SPECIFICATIONS
PH ANOTRON
GL -869-B

4-45

GENERAL
Equipment using these types should be so
designed that any tube within the limits specified will operate satisfactorily.
The tubes shall be designed to have the average characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-154.
MECHANICAL REQUIREMENTS
The tubes shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL R EQUIREMENTS
For the electrical tests, the cathode must reach The filament voltage shall be in phase with the steady state operating temperature before any anode voltage and the filament shield shall be other potential is applied. The anode return shall negative when the anode is positive. be made to the midtap of the filament transformer.

TEST CONDITIONS

TEST

See
Note

Filament current

1

Peak voltage drop 2

Ef
5.0 5.0

Filament Heating Time
-(Min) 1

Epp,
-

ip 15

(emission)

Operation

3

5.0

30

20000

TEST LIMITS

Ip Temp C Min Max Units

-

17
30-40

2.5

30-40

21

Amp

20

Volts

1. With filament voltage specified and no other voltage applied to the tube, the filament or heater current shall not exceed the limits indicated.
2. An anode voltage of 110 volts a -c at 60
cycle shall be applied, with sufficient series resistance to limit the peak anode current to the specified value. A circuit shall be employed such that the tube carries anode current for periods of not more than one -tenth second and preferably for only one-half cycle. These periods shall be spaced at a maximum rate of one pulse per second.
The peak voltage drop, exclusive of the starting voltage, is measured from the anode to the anode return by a calibrated cathode-ray oscilloscope or other suitable means, and shall not exceed the

limit specified. The condensed -mercury temperature shall be within the limits specified.
3. The tubes shall be operated in a 60 -cycle rectifier circuit with a resistance load and without a
filter in the load circuit. The over-all regulation of the anode supply voltage shall be less than 10 per cent.
After the mercury has been properly distributed, half the peak inverse voltage specified shall be applied and increased within one minute to the full value. The tubes shall then be operated with the specified average current per tube for five minutes
without arcback or apparent sputtering of the
cathode. The ambient temperature shall be within the limits specified.
Artificial cooling may be used.

4-45 (750) Filing No. 8850

GENERAL ELECTRIC

SPECIFICATIONS

ETI-212 PAGE 1 SPECIFICATIONS
PHANOTRON
GL -872-A 872
4-45

GENERAL
Equipment using these types should be so designed that any tube within the limits specified will operate satisfactorily.
The tubes shall be designed to have the average characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-155.
MECHANICAL REQUIREMENTS
The tubes shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS

For the electrical tests, the cathode must reach steady state operating temperature before any

The filament voltage shall be in phase with the anode voltage and the filament shield shall be

other potential is applied. The anode return shall negative when the anode is positive.

be made to the midtap of the filament transformer.

TEST CONDITIONS

TEST LIMITS

TEST

See
Note

Filament Er Heating Time Epp, ip
(Min)

Ib Temp C Min

Max

Units

Filament current

1

5.0

Peak voltage drop 2

5.0

(emission)

Operation

3

5.0

1
30

- - 5.0

10000

1.25

6.25 30-45
20-60

8.0 Amp

20

Volts
-

1. With filament voltage specified and no other voltage applied to the tube, the filament or heater current shall not exceed the limits indicated.
2. An anode voltage of 110 volts a -c at 60
cycles shall be applied, with sufficient series resistance to limit the peak anode current to the specified value. A circuit shall be employed such that the tube carries anode current for periods of not more than one -tenth second and preferably for only one-
half cycle. These periods shall be spaced at a
maximum rate of one pulse per second. The peak voltage drop, exclusive of the starting
voltage, is measured from the anode to the anode return by a calibrated cathode-ray oscilloscope or

other suitable means, and shall not exceed the limit specified. The condensed -mercury tempera-
ture shall be within the limits specified. 3. The tubes shall be operated in a 60 -cycle rec-
tifier circuit with a resistance load and without a fil-
ter in the load circuit. The over-all regulation of the anode supply voltage shall be less than 10 per cent.
After the mercury has been properly distributed, the tubes shall be operated for five minutes with specified peak inverse voltage, and average current per tube without arcback or apparent sputtering of the cathode. The ambient temperature shall be
within the limits specified. Artificial cooling may be used.

4-45 (750) Filing No. 8850

GENERAL 0 ELECTRIC

ETI-238
PAGE 1
SPECIFICATIONS
PHANOTRON
GL -8008

SPECIFICATIONS

12-45

GENERAL
Equipment using these types should be so designed that any tube within the limits specified will operate satisfactorily.
The tubes shall be designed to have the average characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-256.
MECHANICAL REQUIREMENTS
The tubes shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS
For the electrical tests, the cathode must reach steady state operating temperature before any other potential is applied. The anode return shall be made to the midtap of the filament transformer. The filament voltage shall be in phase with the anode voltage and the filament shield shall be negative when the anode is positive.

TEST

TEST CONDITIONS

See
Note

Filament E1 Heating Time Eiv
(Min)

i

TEST LIMITS Ib Temp C Min Max Units

Filament current 1

5.0

Peak voltage drop 2

5.0

(emission)

Operation

3

5.0

6.25

8.0 Amp

1

5.0

30-45

20

Volts

30

10000

1.25

20-60

NOTES
1. With filament voltage specified and no other voltage applied to the tube, the filament or heater current shall not exceed the limits indicated.
2. An anode voltage of 110 volts a -c at 60 cycles shall be applied, with sufficient series resistance to limit the peak anode current to the specified value. A circuit shall be employed such that the tube carries anode current for periods of not more than one -tenth second and preferably
for only one-half cycle. These periods shall
be spaced at a maximum rate of one pulse per
second.
The peak voltage drop, exclusive of the starting voltage, is measured from the anode to the anode return by a calibrated cathode-ray oscilloscope or

other suitable means, and shall not exceed the limit specified. The condensed -mercury temperature shall be within the limits specified.
3. The tubes shall be operated in a 60 -cycle rectifier circuit with a resistance load and without a filter in the load circuit. The over-all regulation of the anode supply voltage shall be less than 10 per cent.
After the mercury has been properly distributed, the tubes shall be operated for five minutes with specified peak inverse voltage, and average current per tube without arcback or apparent sputtering of the cathode. The condensed -mercury temperature shall be within the limits specified. Artificial cooling may be used.

12-45 (2M) Filing No. 8850

GENERAL ELECTRIC

FTI-242 PAGE SPECIFICAU ONS
PHANOTRON
GL -673

SPECIFICATIONS

12-45

GENERAL
Equipment using these types should be so
designed that any tube within the limits specified will operate satisfactorily.
The tubes shall have the average characteristics and maximum ratings given on the Description

and Rating Sheet, ETI-243.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS
For the electrical tests, the cathode must reach steady state operating temperature before any other potential is applied. The anode return shall be made to the midtap of the filament transformer. The filament voltage shall be in phase with the anode voltage and the filament shield shall be negative when the anode is positive.

Test

See

Note

TEST CONDITIONS

Filament

Heating Time

I,,

(Min)

TEST LIMITS

IL, Temp C Min

Max Units

Filament Current

1

5.0

Peak Voltage Drop

2

5.0

(Emission)

Operation

3

5.0

0.5

30

15000

-6.0

- 30-45
1.5 20-60

9.0

11.5 Amperes

20

Volts

NOTES
1. With filament voltage specified and no
other voltage applied to the tube, the filament or heater current shall not exceed the limits indi-
cated.
2. An anode voltage of 110 volts a -c at 60
cycles shall be applied, with sufficient series resistance to limit the peak anode current to the specified value. A circuit shall be employed such that the tube carries anode current for periods of not more than one -tenth second and preferably for only one-
half cycle. These periods shall be spaced at a
maximum rate of one pulse per second. The peak voltage drop, exclusive of the starting
voltage, is measured from the anode to the anode return by a calibrated cathode-ray oscilloscope or other suitable means, and shall not exceed the

limit specified. The condensed -mercury temperature shall be within the limits specified.
3. The tubes shall be operated in a 60 -cycle rectifier circuit with a resistance load and without a filter in the load circuit. The over-all regulation of the anode supply voltage shall be less than 10 per cent.
After the mercury has been properly distributed, half the peak inverse voltage specified shall be applied and increased within one minute to the full value. The tubes shall then be operated with the specified average current per tube for five minutes
without arcback or apparent sputtering of the
cathode. The condensed -mercury temperature shall
be within the limits specified.
Artificial cooling may be used.

12-45 (2M) Filing No. 8850

GENERAL ELECTRIC

ETI-274
PAGE 1
SPECIFICATIONS
PHANOTRON
GL -575-A

SPECIFICATIONS
1 1.46

GENERAL
Equipment using this type should be so designed
that any tube within the limits specified will
operate satisfactorily. The tubes shall have the average characteristics
and maximum ratings given in the Description and

Rating sheet, ETI-244.
MECHANICAL REQUIREMENTS
The tubes shall have the dimensions and be
within the tolerances shown on the outline drawing.

ELECTRICAL REQUIREMENTS
For the electrical tests, the cathode must reach The filament voltage shall be in phase with the steady state operating temperature before any anode voltage and the filament shield shall be other potential is applied. The anode return shall negative when the anode is positive. be made to the midtap of the filament transformer.

Test Filament Current Peak Voltage Drop
(Emission) 3peration

See
Note
1 2
3

TEST CONDITIONS

TEST LIMITS

Fil.

El

Heating Time

(Min)

ip Ib Temp C Min Max Units

5.0 5.0
5.0

0.5 30

15,000

-6

- 38-42
1.5 20-60

9.0

11.5 Amperes 20 Volts

NOTES
1. With filament voltage specified and no other voltage applied to the tube, the filament current shall not exceed the limits indicated.
2. An anode voltage of 110 volts a -c at 60
cycles shall be applied, with sufficient series resistance to limit the peak anode current to the specified value. A circuit shall be employed such that the tube carries anode current for periods of not more than one -tenth second and preferably for only one-half cycle. These periods shall be spaced at a maximum rate of one pulse per second.
The peak voltage drop, exclusive of the starting voltage, is measured from the anode to the anode return by a calibrated cathode-ray oscilloscope or other suitable means, and shall not exceed the limit specified. The condensed mercury tempera-

ture shall be within the limits specified.
3. The tubes shall be operated in a 60 -cycle rectifier circuit with a resistance load and without a filter in the load circuit. The over-all regulation of the anode supply voltage shall be less than 10 per cent.
After the mercury has been properly distributed, half the peak inverse voltage specified shall be applied and increased within one minute to the full value. The tubes shall then be operated with the specified average, current per tube for five minutes
without arcback or apparent sputtering of the cathode. The condensed mercury temperature
shall be within the limits specified. Artificial cooling may be used.

GENERAL*ELECTRIC

ETI-213A
PAGE 1
SPECIFICATIONS
PLIOTRON
GL -5740 /FP -54

SPECIFICATIONS

GENERAL

1 2 -4 8

Equipment using this type should be so designed Description and Rating Sheet, ETI-160A.

that any tube within the limits specified will

operate satisfactorily.

MECHANICAL REQUIREMENTS

The tube shall be designed to have the average The tube shall have the dimensions and be with-

characteristics and maximum ratings given on the in the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS

(Test Conditions-IRE Symbols)

Limits

Test

Ef

Eb

Ect

Ec2

Ib

LI

Min Max Units

Plate Current
Grid -plate Transconductance
Grid Current Filament Current

2.5
2.5
2.5
2.5

6.0
6.0 6.0

4.0
-4.0
4.0

-4.0
--4.0
-4.0

Read
-- Calculate

20
-15
75

-150
5x10-15 105

µA µmhos Amp Ma

(Filament current test methods according to IRE Standards.)

The GL -5740 /FP -54 is a low grid current tube requiring special technique and equipment for proper testing. Details of the testing equipment are shown on the circuit diagrams K-5344693 and K-8074613.
All wiring, meters, controls, and batteries of this equipment should be mounted in a grounded, metallic test set to eliminate stray electromagnetic effects. The capacitance of the grid disconnecting switch must be negligible compared to the input
capacitance of the GL -5740 /FP -54. The following outlines the procedure to be fol-
lowed in conducting the specified tests. Thoroughly clean and dry the bulb before inserting the tube into the test set.
1. Plate Current
With the amplifier input switch in short-circuit position and the grid switch closed, adjust electrode voltages to specified values and read plate current.
2. Grid -plate Transconductance
With amplifier input switch in short-circuit

position and grid switch closed read plate current

with grid voltage at -3.8 and - 4.2 volts. Cal-

culate the gridplate transconductance from the

G. - ' formula,

I 1- I 2micromhos.

4

3. Grid Current

A. Adjust GL-5740/FP-54 circuit as -in test 1.
B. Open amplifier input switch and turn on Vernier grid voltage supply SW3. Adjust amplifier bias and screen voltage to obtain 5.0 to 10 milliamperes amplifier plate current and an output current of approximately
70 to 80 microamperes. C. Adjust the GL-5740/FP-54 plate voltage to
obtain the same plate current as on test 1. D. The stability of the amplifier, as determined
by the rate of drift of the output current, is affected by the amplifier screen voltage. Therefore, the above settings must be varied
to obtain a drift of less than 0.5 micro-

amperes per minute.

12-48 (3M) Filing No. 8850

GENERAL

ELECTRIC

ETI-213A PAGE 2 12-48

The values of amplifier plate current and output current and the GL-5740/FP-54 plate current must be maintained as specified in B
and C. This procedure may take several hours.
E. Calibrate the amplifier by noting the output current before and after changing the GL5740/FP-54 grid voltage 10 millivolts.
F. Ad just the grid voltage to a value at which
the output current is approximately 15
microamperes greater than the highest value noted in E.

R1-10,000 Ohms, 5 w

R2-10,000 Ohms, 5 w

R3-200 Ohms

R4-200 Ohms, 5 w

R5-200 Ohms

R5-200 Ohms, 5 W

R7-20,000 Ohms

SEE K-5344693

R8-2,000 Ohms, 5 w

SW3

R9-2,000 Ohms, 5 w

SW3-DPDT Shorting

Switch (Input)

1

µA2-0-20-200 Microam-

meter D -c

mA2-0-15 Panel Milliam-

meter D -c

SW4- DPST Switch

G. Open the grid disconnecting switch and time to the nearest second the interval required for the output current to drift between the two points noted in E (dis-
regard initial transients).
H. Repeat G until three successive readings
agree within 5 per cent.
I. The grid current is calculated from the
following formula:
I. - 6 x 10-14amperes
where t = time in seconds obtained from G.
Z.3) AMPLIFIER PLATE CURRENT
6AC7

1111.111
90V.

sw4

OUTPUT CURRENT

Schematic Diagram of Connections for GL-5740/FP-54 Test Set
K-8074613 2-13-42

6AC7

R,-400 Ohms R2-400 Ohms R3-400 Ohms R4-400 Ohms R5-100 Ohms R6-7 Ohms B1-2 V Storage Cell B2-6 V Storage Battery B3-8 V Storage Battery V1-0-7.5 Panel Voltmeter D -c V2-0-7.5 Panel Voltmeter D -c V3-0-7.5 Panel Voltmeter D -c V4-0-7.5 Panel Voltmeter D -c V5-0-200 Millivoltmeter D -c SW1-1400 L Switch, Yaxley
1 Stage, 5 Position Circuit Selector Switch
SW2-Low Capacity Switch
(Grid Disconnector) µA,-0-100 Microammeter D -c MA1-0-1 Panel Milliammeter
D -c
SW3-DPST Mercury Contact
Switch
SW4-TPST Mercury Contact
Switch

SWE

FP -54

-3
rt R2

SW,

SWt

R

NOTE: Five GL-5740/FP-54 positions with separate grid switches are selected by means of SW1 for measuring space charge grid current and plate current.

(4ilfSW4

1B,

Ba B3

Schematic Diagram of Connections for GL-5740/FP-54 Test Set

K-5344693 7-16-45

Electronics Department

GENERAL

ELECTRIC

Schenectady, N. Y.

ETI-214
PAGE 1
SPECIFICATIONS
PLIOTRON
GL -207

SPECIFICATIONS

4-45

GENERAL
Equipment using this type should be so designed
that any tube within the limits specified will
operate satisfactorily. The tube shall be designed to have the average
characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-162.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS
Test methods according to IRE Standards

Test
See
Note

Capacitance (Cg -p) Capacitance (Cg -f) Capacitance (Cp-f)

-

Amplification factor 3

Operation

1

Emission

Grid voltage

2

Plate voltage

2

Plate voltage

2

Reverse grid current 4

Filament current

Ef Volts
-
22 15 22 22 22 22 22

TEST CONDITIONS IRE Symbols

Eb

Ec,

Ib

LI

Kv Volts Amp Amp

--

15
2
10
read read

2000
read
-300
0

2.33
read total
0.02
0.75
0.75

-0.2 ---
--

10

adjust

0.75

read

TEST LIMITS

Time

Min Max Units

--
5 min. Inst. Inst. Inst.
-Inst.
5 min

24

30

15

21

1.5 18 22

-2.5
22

0.35

0.65

-450 -650

-9

11

3.5

4.5

-100

49

53

mPf
µµf
µµF
kw amp volts kv kv µa amp

Notes
1. Self-excited oscillator, grid leak approx 15,000 ohms
2. Grid voltage measured from filament trans -

former centertap 3. Calculate from plate voltage readings 4. Read Ici, at end of 5 minutes operation

4 -45 (750) Filing No. 8850

ELECTRIC

ETI-21 5
PAGE 1
SPECIFICATIONS
PLIOTRON
GL -851

SPECIFICATIONS

4-45

GENERAL
Equipment using this type should be so designed that any tube within the limits specified will operate satisfactorily.
The tube shall be designed to have the average characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-168.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS
Test methods according to IRE Standards

TEST CONDITIONS IRE Symbols

TEST LIMITS

Test

See

Ef

Eb

Ec,

Ib

Note Volts Volts Volts Ma

Ie,
Ma

Time Minutes

Min

Max Units

Capacitance Cgp Cgk

--

Cpk

Amplification factor

5

Operation

1

Emission check

2

Grid characteristic

Plate characteristic Plate characteristic

--

Reverse grid current 3

Reverse grid current 4

Filament current

--
11
read
11 11 11 11
0 11

----2500

------

----
-1000

2000 read

10

read -60

300

-- - read

0

2000 adjust

--300
400

------180 --read

--5 -5

41 21
3.4 18.5 1600
-90
1700
-55-014.7

53 30
5.6 22.5
9.8
-125
2060 750
-550 -50
16.3

PAr
-Allf
mg
watts volts volts volts volts
ma
ga amp

Notes
1. Self-excited oscillator, frequency below 3 mc, grid leak approximately 3000 ohms.
2. After operation test, reduce filament voltage until power output reduces 10 per cent.
3. Read - at end of 5 minutes' operation.

4. After preceding reverse grid current test, open filament circuit, allow electrodes to cool below visible color, reclose filament circuit, and read - Ia immediately.
5. Calculate from plate characteristic tests.

4.45 (750) Filing No. 8850

GENERAL ELECTRIC

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

ETI-216
PAGE 1
SPECIFICATIONS
PLIOTRON
GL -862-A

SPECIFICATIONS

4-45

GENERAL
Equipment using this type should be so designed
that any tube within the limits specified will
operate satisfactorily. The tube shall be designed to have the average
characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-169.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawings.

ELECTRICAL REQUIREMENTS
Test methods according to IRE Standards

Test

See

E,

Note Volts

Capacitance Cgp

-

Cgk

Cpk

Amplification factor Operation Emission

-1 2

33 22

Plate characteristic

3

33

Plate characteristic

3

33

Grid characteristic

3

33

Reverse grid current 4

33

Filament current

33

TEST CONDITIONS IRE Symbols

Eb

E0,

Ib

Kv

Volts

Amp

Ici
Amp

-

20
3

- 10

1.0

3000 read total

read -100

3.0

read

0

3.0

18

read

0.1

20 adjust

2.5

read

TEST LIMITS

Time Minutes

Min

Max

-

54

85

43

63

3

40

5

115

-6
50

Inst.

1.4

2.7

Inst.

18

23

Inst.
-Inst. 5

-14
-280
199

18
-370 -500
215

Units
AO AO Atlf
kw amp kv kv volts µa amp

NOTES
1. Calculate from plate characteristic readings.
2. Self-excited oscillator 1.5 Mc, grid leak
approximately 1600 ohms.

3. Grid voltage measured from filament transformer centertap.
4. Read Id at end of 5 minutes' operation.

4-45 (750) Filing No. 8850

GENERAL ELECTRIC

En -217
PAGE 1
SPECIFICATIONS
PLIOTRON
GL -880

SPECIFICATIONS
4-45

GENERAL
Equipment using this type should be so designed
that any tube within the limits specified will
operate satisfactorily. The tube shall be designed to have the average
characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-170.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS
Test methods according to IRE Standards

Test

See

Ef

Note Volts

Capacitance Cgp Cgk Cpk

--- -

Amplification factor Operation Emission

-1 2

12.6
7

Plate characteristic

3

12.6

Plate characteristic

3

12.6

Grid characteristic Reverse grid current Filament current

-3 4

12.6 12.6 12.6

TEST CONDITIONS IRE Symbols

Eb

Eci

Ib

Ici

Kv Volts Amp Amp

----

---

----

--

10
2
read read
-10
10

2000
-200
0
read

4.5
read total
2.0
2.0 0.02

---0.80

adjust

2.0

read

TEST LIMITS

Time Minutes

Min

Max

---5

21

27

28.8

41.2

1.0 18 28

-3.0
22

Inst.

0.2

0.5

Inst.

6.5

8.1

Inst.
-Inst. 5

-2.8

3.6

-460 -690

-250

300

330

Units
AO
-iska-
AO kw amp kv kv volts µa amp

NOTES
1. Calculate from plate characteristic readings. 2. Self-excited oscillator, grid resistor approx
1600 ohms.

3. Grid voltage measured from filament transformer centertap.
4. Read Id at end of 5 minutes' operation.

4.45 (750) Filing No. 8850

GENERAL 0 ELECTRIC

ETI-218
PAGE 1
SPECIFICATIONS
PLIOTRON
GL -889-A

SPECIFICATIONS

4-45

GENERAL

Equipment using this type should be so designed
that any tube within the limits specified will
operate satisfactorily. The tube shall be designed to have the average
characteristics and maximum ratings given on the

Description and Rating Sheet, ET I -171.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS
Test methods according to IRE Standards

Test See Note

Capacitance

Cgp

Cgk

Cpk

Amplification factor

1

Operation

2

Emission

Plate characteristic

3

Plate characteristic

3

Grid characteristic

3

Reverse grid current 4

Filament current

Ef Volts
11 8
11 11 11 11 11

TEST CONDITIONS IRE Symbols

Eb

E0

Ib

Kv Volts Amp

TEST LIMITS

let Amp

Time Minutes

Min

Max Units

10
1
read read
7.5 7.5

- 2.0

0.30

1000 read total

-200

1.0

0

1.0

read

0.02

-

adjust

1.0

read

15.0

20.0 blilf

19.2

27.4 µkif

1.8

3.6 µµf

5

18.9
12

-23.1 kw

Inst.

0.3

0.8 amp

Inst.

6.5

8.5 kv

- Inst.

2.8

3.8 kv

Inst. -325 -475 volts

5

-100 µa

120

128 amp

NOTES
1. Calculate from plate characteristic readings. 2. Self-excited oscillator, grid leak approx
6000 ohms.

3. Grid voltage measured from filament transformer centertap.
4. Read Li at end of 5 minutes' operation.

4.45 (750) Filing No. 8850

GENERAL ELECTRIC

ETI-219
PAGE 1
SPECIFICATIONS
PLIOTRON
GL -891

SPECIFICATIONS

4-45

GENERAL
Equipment using this type should be so designed
that any tube within the limits specified will
operate satisfactorily. The tube shall be designed to have the average
characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-172.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS
Test methods according to IRE Standards

Test

See

Ef

Note Volts

Capacitance

Cgp

Cgk Cpk Amplification factor

1

-

Operation

2

22

Emission

15

Plate characteristic

3

22

Plate characteristic

3

22

Grid characteristic

3

22

grid current 4

22

Filament current

22

TEST CONDITIONS IRE Symbols

Ei,

Eel

Ib

Kv

Volts

Amp

Icr

Time

Amp Minutes

TEST LIMITS

Min

Max Units

17
2
read read
12

2000
-1000
0
read

2.2
read total
0.75
0.75 0.020

0.----16

10

adjust

0.75

read

5
Inst. Inst. Inst. Inst.
5

24

31

15

23

1.0 7.6
14

-3.0 9.4

0.35

0.85

9.5

11.5

1.6

2.2

-1500 -1950

-100

57

62

µµf
-libti
µ./..tf
kw amp kv kv volts
i.La
amp

NOTES
1. Calculate from plate characteristic readings.
2. Self-excited oscillator, 1.5 mc. Grid leak
approx 17,500 ohms.

3. Grid voltage measured from filament transformer centertap.
4. Read Ij at end of 5 minutes' operation.

4-45 (750) Filing No. 8850

GENERAL ELECTRIC

ETI-220
PAGE 1
SPECIFICATIONS
PLIOTRON
GL -892

SPECIFICATIONS

4-45

GENERAL
Equipment using this type should be so designed
that any tube within the limits specified will
operate satisfactorily. The tube shall be designed to have the average
characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-173.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS
Test methods according to IRE Standards

Test
See
Note

Capacitance Cgp

-

Cgk

Cpk

Amplification factor

1

Operation

2

Emission

Plate characteristic

3

Plate characteristic

3

Grid

Reverse grid current 4

Filament current

Ef Volts
-
22 15 22 22
22 22

TEST CONDITIONS IRE Symbols

TEST LIMITS

Eb
Kv

Eel
Volts

Ib
Amp

Ict
Amp

Time Minutes

MM

Max Units

----

---- ----

15 2.0
read read

-- 2.0

0.25

2000 read total

-100

0.75

0

0.75

-15

read adjust

-0.50

read

--
5

27

33

µµf

15 0.5
42.5 20

- - 24 µµf
2.5 µµf
57.5 kw

Inst.

0.35

0.85 amp

Inst.

12

16.5 kv

- Inst.

7.5

11.0 kv

Inst. -240 -400 volts

5

-100 µa

57

62 amp

NOTES
1. Calculate from plate characteristic readings.
2. Self-excited oscillator, 1.5 mc. Grid leak
approx 5000 ohms.

3. Grid voltage measured from filament transformer centertap.
4. Read Ia at end of 5 minutes' operation.

4-45 (750) Filing No. 8850

GENERAL ELECTRIC

ETI-221 PAGE 1
SPECIFICATIONS
P L I OT R 0 N GL -893-A

SPECIFICATIONS

4-45

GENERAL
Equipment using this type should be so designed that any tube within the limits specified will operate satisfactorily.
The tube shall be designed to have the average characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-174.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS
Test methods according to IRE Standards

Test

See

Ef

Note Volts

Capacitance (Cg -p) Capacitance (Cg -f) Capacitance (Cp-f)

-

Amplification factor

3

Operation

1

20

Emission

14

Grid voltage

2

20

Plate voltage

2

20

Plate voltage

2

20

Reverse grid current 4

20

Filament current

20

TEST CONDITIONS IRE Symbols

Eb

E

Ib

Ic,

Kv

Volts Amp

Amp

-
20
2
20
read read

-- --

-4

2000 read total

read

0.02

-200

1.0

0

1.0

-0----.6

20 adjust

1.0

read

Time
-
5 min Inst. Inst. Inst. Inst. 5 min

TEST LIMITS Min Max Units

28.5 39.5
2.0 32.4 50
1.5
-530
-9.2 3
175

37.5 56.5
-4.0
39.6
4.0
-770
13.2
5
-250
190

µµf
AO
-µId
kw amp volts kv kv µa amp

NOTES
1. Self-excited oscillator, grid leak approx 6000 ohms.
2. Grid voltage measured from filament trans -

former centertap. 3. Calculate from plate voltage readings. 4. Read Id at end of 5 -minute operation.

4 -45 (750) Filing No. 8850

GENERAL 0 ELECTRIC

ETI-239
PAGE 1
SPECIFICATIONS
PLIOTRON
GL -8002

SPECIFICATIONS
12-45

GENERAL
Equipment using this type should be so designed
that any tube within the limits specified will
operate satisfactorily. The tube shall be designed to have the average
characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-175.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS
Test methods according to IRE Standards

TEST CONDITIONS IRE Symbols

TEST LIMITS

Test

See

Ef

Eb

Eel

Note Volts Kv Volts

Ih
Amp

Ici Time Amp Minutes

Min

Max Units

Capacitance Cgp Cgk

-

-

-

7.6

9.8

PIZ

8.4

12.0

1.9.d.

Cpk Amplification Factor Operation Emission Plate Characteristic Plate Characteristic Grid Characteristic Reverse Grid Current Filament Current

1 2
3 3 3 4

16 11 16 16 16 16 16

4.0
1
Read Read
3.0 3.0

1.0

1000 Read total

-50

0.5

0

0.5

Read

0.02

Adjust 0.5

0----.10 -Read

5
Inst. Inst.
-Inst.
Inst.

0.6 17.2 2.0 0.25 1.8 1.2
-160
35

-1.2
25.8
0.75 2.8 1.8
-270 -125
40

mbds
kw amp kv kv volts ga amp

NOTES
1. Calculate from plate characteristic readings.
2. Self-excited oscillator, grid resistor approx
1600 ohms.

3. Grid voltage measured from filament transformer centertap.
4. Read Ia at end of 5 minutes' operation.

12-45 (2M) Filing No. 8850

GENERAL 0 ELECTRIC

ETI-240
PAGE 1
SPECIFICATIONS
PLIOTRON
GL -8002-R

SPECIFICATIONS
12-45

GENERAL
Equipment using this type should be so designed that any tube within the limits specified will operate satisfactorily.
The tube shall be designed to have the average characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-250.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS
Test methods according to IRE Standards

TEST CONDITIONS IRE Symbols

TEST LIMITS

Test

See

Ef

Eb

Eel

Ib

Ici Time

Note Volts Kv Volts

Amp Amp Minutes

Max Units

Capacitance Cgp Cgk Cpk
Amplification Factor Operation Emission Plate Characteristic Plate Characteristic Grid Characteristic Reverse Grid Current Filament Current

-1 2
3 3
-3 4

-
16 11 16 16 16 16 16

-- -

-
4.0
1
Read Read
3.0 3.0

-

-
1.0

1000 Read total

-50

0.5

0

0.5

Read

0.02

Adjust

0.5

----0.10
-Read

-5
Inst. Inst.
--Inst.
Inst.

7.7 8.4 0.7 17.2 2.0 0.25 1.8 1.2
-160
35

10.1 12.0
-1.3
25.8
0.75 2.8 1.8
-270 -125
40

ililf Nuf
Ahtf
kw amp kv kv volts pa amp

NOTES
1. Calculate from plate characteristic readings.
2. Self-excited oscillator, grid leak approx 4000 ohms.

3. Grid voltage measured from filament transformer centertap.
4. Read IC, at end of 5 minutes' operation.

12-45 (3M) Filing No. 8950

GENERAL 0 ELECTRIC

ETI-257
PAGE 1 SPECIFICATIONS
PLIOTRON
GL -889R -A

SPECIFICATIONS

12.45

GENERAL
Equipment using this type should be so designed
that any tube within the limits specified will
operate satisfactorily. The tube shall be designed to have the average
characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-249.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS
Test methods according to IRE Standards

TEST CONDITIONS IRE Symbols

TEST LIMITS

Test

See Ef Note Volts

Eb
Kv

Eel
Volts

Ib
Amp

Id

Time

Amp Minutes

Min

Max Units

Capacitance
Cg -p
Cg -k
Cp-k

-- -

Amplification Factor Operation Emission

-1 2

11 8

Plate Characteristic

3

11

Plate Characteristic 3

11

- Grid Characteristic

3

Reverse Grid Current 4

Filament Current

11 11 11

- ---

10 1.0

1.5
1000 read total

-.30

read -200

1.0

read

0

1.0

7.5 read

0.02

5.0 adjust

1.0

read

5
Inst. Inst. Inst. Inst.
5

15.8 19.2
2
18.9 10
0.5 6.5
-2.8
-325
110

21.2 27.4
-4
23.1
1.4 8.5 3.8
-475 -100
128

ktµf µIA'
Ai-tf
kw amp kv kv volts iia amp

Notes
1. Calculate from plate characteristic readings. 2. Self-excited oscillator, grid leak approxi-
mately 6000 ohms.

3. Grid voltage measured from filament transformer centertap.
4. Read I at end of 5 minutes' operation.

12-45 (3M) Filing No. 8850

GENERAL 0 ELECTRIC

ETI-258
PAGE 1
SPECIFICATIONS
PLIOTRON
GL -891-R

SPECIFICATIONS

!2-45

GENERAL
Equipment using this type should be so designed
that any tube within the limits specified will
operate satisfactorily. The tube shall be designed to have the average
characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-246.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS
Test methods according to IRE Standards

TEST CONDITIONS IRE Symbols

TEST LIMITS

Test

See Ef Note Volts

Eb

Ed

Kv Volts

Ib
Amp

Id

Time

Amp Minutes

MM

Max Units

Capacitance
Cg -p Cg -k
Cp-k Operation Emission

---1

--
--
22 15

Plate Characteristic 2

22

- Grid Characteristic

2

Reverse Grid Current 3

Filament Current

22 22 22

-
13.5 2.0 read
-12
10

----
2000
0
-read
adjust

1.0
read total
0.75 0.02
0.45

-
---0.075
read

--

-
5

27

33 µpi

15
1.5 8.5

-21

AO'

2.5 kutf

kw

Inst.

0.35

0.65 amp

Inst.
-Inst.
5

-1.6

2.2

-1450 -1950

-100

58

61

kv volts
µa
amp

Notes
1. Self-excited oscillator, 1.5 mc. Grid leak
approx 25,000 ohms. 2. Grid voltage measured from filament trans -

former centertap. 3. Read lc, at end of 5 minutes' operation.

12 -45 (3M) Filing No. 8850

GENERAL 0 ELECTRIC

ETI-259
PAGE 1
SPECIFICATIONS
PLIOTRON
GL -892-R

SPECIFICATIONS
12-45

GENERAL
Equipment using this type should be so designed
that any tube within the limits specified will
operate satisfactorily. The tube shall be designed to have the average
characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-247.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS
Test methods according to IRE Standards

TEST CONDITIONS IRE Symbols

TEST LIMITS

Test

See

E1

Note Volts

Eb
Kv

Eel
Volts

Ib
Amp

Li
Amp

Time Minutes

Min

Max Unit

Capacitance
Cg -p

--

Cg -k

Cp-k

Amplification Factor 4

Operation Emission

-1

22 15

Plate Characteristic

2

22

Plate Characteristic 2

22

Grid Characteristic

2

22

Reverse Grid Current 3

22

Filament Current

22

--

----

12.5 2.0
read read
-15
12.5

2000
0
-100 read adjust

2.0
read total
.42 0.42 0.020
0.42

---0.25
-
read

5
Inst.
Inst.
5

28

34

15

24

- 1.0

3.0

42.5 -57.5

15

0.35

.85

5.0

7.4

-9.2 13.2
-240 -400 -100

57

62

Pmf mi.if
jAft.if
kw amp kw kv volts
mu a amp

Notes
1. Self-excited oscillator, 1.5 mc. Grid leak
approx 5000 ohms. 2. Grid voltage measured from filament trans-

former centertap. 3. Read I,, at end of 5 minutes' operation. 4. Calculate from plate characteristics.

12 -45 (3M) Filing No. 8850

GENERAL ELECTRIC

ETI-260
PAGE 1
SPECIFICATIONS
PLIOTRON
GL -893A -R

SPECIFICATIONS
12-45

GENERAL
Equipment using this type should be so designed
that any tube within the limits specified will
operate satisfactorily. The tube shall be designed to have the average
characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-248.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS
Test methods according to IRE Standards

TEST CONDITIONS IRE Symbols

TEST LIMITS

Test

See Ef
Note Volts

Eb
Kv

Ed Volts

Ib
Amp

Id

Time

Amp Minutes

Min

Max Units

Capacitance (Cg -p) Capacitance (Cg -f) Capacitance (Cp-f)

---

Amplification Factor Oscillation Emission

-3 1

-
-
20 14

Grid Voltage

2

20

Plate Voltage

2

20

- Plate Voltage

2

Reverse Grid Current 4

Filament Current

20 20 20

-

-

--
20
2
20
read
-read 20

-
2000
read -200
-0
adjust

---
--
4.0
read total
0.02 1.0
-1.0
1.0

-0.6
--read

---

29.8 39.5
2.6 32.4

5 min 50

38.8 Aid

56.5
-4.4
39.6

-',Lauf
plif kw

Inst.

1.5

4.0 amp

Inst. -530 -770

volt

Inst.
-Inst.
5 min

-9.2
3 175

13.2
5
-250
190

kv kv
/-ta
amp

Notes
1. Self-excited oscillator, grid leak approx 6000 ohms.
2, Grid voltage measured from filament trans -

former centertap. 3. Calculate from plate voltage readings. 4. Read lc, at end of 5 -min. operation.

12 -45 (3M) Filing No. 8850

GENERAL ELECTRIC

ETI-288 PAGE 1 SPECIFICATIONS
PLIOTRON
FP -265

SPECIFICATIONS

8-48

GENERAL
Equipment using this type should be so designed that any tube within the limits specified will operate satisfactorily.
The tube shall be designed to have the average characteristics and maximum ratings given on the

Description and Rating Sheet, ET I-163.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS
Test methods according to IRE Standards

TEST CONDITIONS IRE Symbols

Test

See

Ef

Eb

Eel

Ib

Note Volts Volts Volts Ma

Capacitance Cgp
Cgk Cpk Amplification factor Operation Emission check Plate current Reverse grid current (a) Reverse grid current (b) Filament current

--1
-2 3
--4

-

-

--

--

10 10
read
10 10
10
10

- -- read vary
1500

-90
200

1500 1500
1500

-5
-adjust
-5

-read 200

TEST LIMITS

Ici
Ma

Time Minutes MM

Max Units

-

9.5

12.5 µµf

-4-----5

-2 -5

6.4 2.9
-67.5
180
--20

10.2
-4.7
82.5

-yid
µµf watts

-8.5
60

volts ma µa

15

µa

5.0

5.5 amp

Notes
1. Read Eb for E = zero and +10 volts. 2. Self-excited oscillator, frequency approxi-
mately 8 megacycles, grid leak approximately 5000 ohms.

3. After operation test, decrease E, until power output reduces 10 per cent.
4. Grid current to be read within three seconds maximum after switching over from condition "a."

8-48 (3M) Filing No. 8850

GENERAL ELECTRIC

ETI-302
PAGE 1
SPECIFICATIONS
GLOW TUBES
GL -0D3 /VR150

SPECIFICATIONS

5.49

GENERAL
Equipment using this type should be so designed
that any tube within the limits specified will
operate satisfactorily. The tube shall be designed to have the average
characteristics and maximum ratings given on the

Description and Rating Sheet, ETI -176.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS
Test methods according to IRE Standards

Limits

Test

See Note

MM Max Units

Starting voltage Anode voltage at 5 milliamperes anode current Anode voltage at 40 milliamperes anode current Regulation (5-40 milliamperes)

1

180 volts

2

145

volts

2

162 volts

5.5

volts

NOTES: 1. Sufficient resistance is placed in series with the anode -supply voltage to limit the anode current to 30 milliamperes. The d -c anode -supply voltage is increased until complete breakdown occurs. Starting voltage is read just before breakdown. 2. The anode current specified is obtained by adjusting the d -c anode -supply voltage, the resistor in series with the anode, or both the voltage and resistor. 3. The regulation (5-40 milliamperes) is equal to the difference between the anode voltage at 5 milliamperes and the anode voltage at 40 milliamperes.

5-49 (3M) Filing No. 8850

GENERAL t ELECTRIC

ETI-303 PAGE 1
SPECIFICATIONS
G LOWTU B ES
GL -0C3 /VR105

SPECIFICATIONS

5-49

GENERAL

Equipment using this type should be so designed
that any tube within the limits specified will
operate satisfactorily. The tube shall be designed to have the average
characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-176.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS
Test methods according to IRE Standards

Limits

Test

See

Note

Min

Max

Units

Starting voltage Anode voltage at 5 milliamperes anode current Anode voltage at 40 milliamperes anode current Regulation (5-40 milliamperes)

1

127

Volts

2

105

Volts

2

112

Volts

3

4

Volts

NOTES:
1. Sufficient resistance is placed in series with the anode -supply voltage to limit the anode current to 30 milliamperes. The d -c anode -supply voltage is increased until complete breakdown occurs. Starting voltage is read just before breakdown.
2. The anode current specified is obtained by adjusting the d -c anode -supply voltage, the resistor in series with the anode, or both the voltage and resistor.
3. The regulation (5-40 milliamperes) is equal to the difference between the anode voltage at 5 milliamperes and the anode voltage at 40 milliamperes.

5-49 (3M) Filing No. 8850

GENERAL t ELECTRIC

SPECIFICATIONS

ETI-222A
PAGE 1
SPECIFICATIONS
PHOTOTUBES
GL-1P29'FJ-401

5.49

GENERAL
Equipment using these tubes should be so
designed that any tube within the limits specified will operate satisfactorily.
The tube shall be designed to have the average characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-178.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS
For all tests the anode voltage shall be applied through a resistance of one megohm.

Test Monochromatic
Sensitivity(S,)

Type of Tube
GL-1P29/FJ-401

TEST CONDITIONS

See

NEMA SYMBOLS

Note

E

X, A

---

90

4000

90

4500

90

5000

90

7000

TEST LIMITS

Min

Max

Unit

4.75
-3.75
2.75

-
1/2 Sv at

µa/watt µa/watt µa/watt µa/watt

4000

5-49 (3M) Filing No. 8850

Supersedes ETI-222 dated 4-45

GENERAL

ELECTRIC

ETI-223
PAGE 1
SPECIFICATIONS
PHOTOTUBE
GL -9 1 7

SPECIFICATIONS

4-45

GENERAL
Equipment using these tubes should be so
designed that any tube within the limits specified will operate satisfactorily.
The tube shall be designed to have the average characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-183.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS

TEST CONDITIONS

TEST LIMITS

Test

See
Note

Light Flux

12,,

Ebb

Lumens

Meg

Min

Max

Units

Emission

1, 5

25

0.1

1.0

1.0

µa

Sensitivity

1, 5

250

0.1

1.0

1.2

3.2

µa

Leakage

2

250

0

1.0

0.1

µa

A -K resistance

3

0

50,000

Meg

Gas ratio

4

1.3

NOTES
1. Light source: Mazda projection lamp operated at 2870 K. It shall be replaced or photometered every 100 hours. Use diaphragm opening IA in. in diameter. Center the light beam on the center of cathode. Pins 3 and 4 nearest light source.
2. This test is made in absolute darkness. 3. Use high resistance ohmmeter. 4. Gas ratio: Sensitivity/emission.

5. Preheat tubes for one hour with EH, =250 v, R0=1.0 meg. Light source: 125 v-25 w inside frosted Mazda lamp, operated at 117-127 v, rms. Phototube cathode located approx 6.5 in. from center of lamp filament. Center the light
beam on center of cathode. Pins 3 and 4 nearest the light source. Adjust lamp voltage to give II, = 9 µa.

4-45 (750) Filing No. 8850

GENERAL ELECTRIC

ETI-224
PAGE 1
SPECIFICATIONS
PHOTOTUBE
GL -919

SPECIFICATIONS

4-45

GENERAL
Equipment using these tubes should be so
designed that any tube within the limits specified will operate satisfactorily.
The tube shall be designed to have the average characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-185.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS

TEST CONDITIONS

TEST LIMITS

Test

See
Note

Light Flux

R,

Ebb

Lumens

Meg

Min

Max

Units

Emission

1, 4

25

Sensitivity

1, 4

250

Leakage

2

250

A -K resistance

5

Gas ratio

3

0.1

1.0

1.0

µa

0.1

1.0

1.2

3.2

µa

0 0

1.0

-50,000

0.1 1.3

µa Meg

NOTES
1. Light source: Mazda projection lamp operated 2870 K. It shall be replaced or photometered every 100 hours. Use diaphragm opening lA in. in
diameter. Center the light beam on center of
cathode. Pins 3 and 4 nearest light source. 2. Use high resistance ohmmeter. This test is
made in absolute darkness. 3. Gas ratio: Sensitivity/emission.

4. Preheat tubes for 1 hour with E,,,, = 250 v, R0= 1.0 meg light source: 125 v 25 w inside frosted Mazda lamp, operated at 117-127 v rms. Phototube cathodes located approx 6.5 in. from center of lamp filament. Center the light beam on the center of cathode. Pins 3 and 4 nearest to the light source. Adjust lamp voltage to give = 9 µa.
5. This test is made in absolute darkness.

4-45 (750) Filing No. 8850

GENERAL ELECTRIC

ETI-225
PAGE 1
SPECIFICATIONS
PHOTOTUBE
GL -921

SPECIFICATIONS

4-45

GENERAL
Equipment using these tubes should be so
designed that any tube within the limits specified will operate satisfactorily.
The tube shall be designed to have the average characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-187.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS

TEST CONDITIONS

TEST LIMITS

Test

See
Note

Ebb

Light Flux

12,

Lumens

Meg

Min

Max

Units

Emission

1

25

0.1

1.0

1.0

µa

Sensitivity

1

90

0.1

1.0

7.5

20.5

µa

Gas amplification

2

10

Leakage

3

90

0

1.0

0.1

µa

NOTES
1. Light source: Mazda projection lamp operated at 2870 K. It shall be replaced or photometered every 100 hours. Use diaphragm opening in. in diameter. Center the light beam on the center of

cathode. 2. Gas amplification: Sensitivity/emission. 3. This test is made in absolute darkness.

4-45 (750) Filing No. 8850

ETI-226
PAGE 1
SPECIFICATIONS
PHOTOTUBE
GL -922

SPECIFICATIONS
4-45

GENERAL
Equipment using these tubes should be so designed that any tube within the limits specified will operate satisfactorily.
The tube shall be designed to have the average characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-188.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS

TEST CONDITIONS

TEST LIMITS

Test

See
Note

Ebb

Light Flux Lumens

R.,
Meg

Min

Max

Units

Emission

1, 5

25

Sensitivity

1, 5

250

Leakage

2

250

A -K resistance

3

Gas ratio

4

0.1

1.0

1.0

µa

0.1
0 0

-1.0
1.0

1.2 50,000

3.2 0.1

µa µa Meg

1.5

NOTES
1. Light source: Mazda projection lamp operated at 2870 K. It shall be replaced or photometered every 100 hours. Use diaphragm opening in. in diameter. Center the light beam on the center of cathode.
2. This test is made in absolute darkness. 3. Use high resistance ohmmeter.

4. Gas ratio: Sensitivity/emission. 5. Preheat tubes for one hour with E,,, = 250 v, R =1.0 meg. Light source: 125 v 25 w inside frosted Mazda lamp, operated at 117-127 v rms. Phototube cathode located approx 6.5 in. from center of lamp filament. Center of lamp filament is to be on same plane as center of cathode. Adjust lamp voltage to give I,, = 4 µa.

4-45 (750) Filing No. 8850

GENERAL ELECTRIC

ET1-227
PAGE 1
SPECIFICATIONS
PHOTOTUBE
GL -923

SPECIFICATIONS
4-45

GENERAL
Equipment using these tubes should be so
designed that any tube within the limits specified will operate satisfactorily.
The tube shall be designed to have the average characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-189.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS

Test Dark Current Emission Sensitivity Gas Amplification Interelectrode Capacitance

TEST CONDITIONS

See Note

Light Flux R,

Ebb

Lumens Megohms

1

90

0

1.0

2 2 3

-25
90

0.1

1.0

0.1

-1.0

TETS LIMITS

Min

Max

Units

-

0.1

µa D -c

1.0

µa D -c

7.5

20.5

µa D -c

10

1.5

2.5

1-1/2f

Note 1 This test is made in absolute darkness. 2 Test made in a light -tight compartment with a Mazda projection lamp operated
at 2870 K as a source of light. A dia-

phragm with an opening 1A -inch in diameter is located so that the light beam is centered on the cathode. 3-Gas amplification: Sensitivity/Emission.

4-45 (750) Filing No. 8850

ETI-228
PAGE 1
SPECIFICATIONS
PHOTOTUBE
GL -927

SPECIFICATIONS
4-45

GENERAL
Equipment using these tubes should be so
designed that any tube within the limits specified will operate satisfactorily.
The tube shall be designed to have the average characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-190.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS

Test

NoteLEumbbenMs eg TEST CONDITIONS

See

Light Flux

Rp

TEST LIMITS

Min

Max

Units

Emission

1

Sensitivity

1

Gas amplification

2

25 90

0.1 0.1

1.0 1.0

.9

6.0

18.5

10

-pa
µa

Leakage

3

90

0

1.0

0.1

/la

NOTES
1. Light source: Mazda projection lamp operated at 2870 K. It shall be replaced or photometered every 100 hours. Use diaphragm opening of 17 mm by 7.5 mm rectangular aperture. Center the

light beam on center of cathode. Pin 2 nearest the light source.
2. Gas amplification: Sensitivity/emission. 3. This test is made in absolute darkness.

4-45 (750) Filing No. 8850

GENERALOELECTRIC

SPECIFICATIONS

ETI-229
PAGE 1
SPECIFICATIONS
PHOTOTUBE
GL -929

4-45

GENERAL
Equipment using these tubes should be so
designed that any tube within the limits specified will operate satisfactorily.
The tube shall be designed to have the average characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-191.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS

TEST CONDITIONS

TEST LIMITS

Test

See Note

Ebb

Light Flux R, Lumens Megohms

Min

Max

Units

Dark Current Emission Sensitivity Gas Amplification Interelectrode Capacitance

1

250

0

1.0

0.0125

µa D -c

2 2 3

25
-250

0.1
-0.1

-1.0
1.0

-2.5

7.0 1.25

1.9

3.3

µa D -c µa D -c
i-tµf

Note 1 This test is made in absolute darkness. 2 Test made in a light -tight compartment with a Mazda projection lamp operated
at 2870 K as a source of light. A dia-

phragm with an opening 1A -inch in diameter is located so that the light beam is centered on the cathode.
3 Gas amplification: Sensitivity/Emission.

4-45 (750) Filing No. 8850

GENERAL ELECTRIC

ETI-230
PAGE 1
SPECIFICATIONS
PHOTOTUBE
GL -930

SPECIFICATIONS

4-45

GENERAL
Equipment using these tubes should be so
designed that any tube within the limits specified will operate satisfactorily.
The tube shall be designed to have the average characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-192.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS

TEST CONDITIONS

TEST LIMITS

Test

See Note

Ebb

Light Flux R ,, Lumens Megohms

Min

Max

Units

Dark Current Emission Sensitivity Gas Amplification Interelectrode Capacitance

1

90

0

1.0

0.1

µa D -c

2
-2 3

25 90

-0.1
0.1

1.0 1.0

1.0

µa D -c

7.5

20.5

µa D -c

10

1.8

3.2

µPcf

Note 1 This test is made in absolute darkness. 2-Test made in a light -tight compartment with a Mazda projection lamp operated
at 2870 K as a source of light. A dia-

phragm with an opening 1A -inch in diameter is located so that the light beam is centered on the cathode. 3 -Gas amplification: Sensitivity/Emission.

4-45 (750) Filing No. 8850

GENERAL0ELECTRIC

ETI-231
PAGE 1
SPECIFICATIONS
PHOTOTUBE
GL -931-A

SPECIFICATIONS
4-45

GENERAL
Equipment using these tubes should be so
designed that any tube within the limits specified will operate satisfactorily.
The tube shall be designed to have the average characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-193.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS

TEST CONDITIONS

TEST LIMITS

Test

See
Note

Volts per Stage

Light

Ebb

Flux Lumens

12p
Meg

Min

Avg

Max Units

Anode current Cathode current Anode leakage Cathode leakage Amplification

1, 2

100

100

0.001

0.01

450

2000

µa

2, 3
1
1
4

100 100

0.001

100

0

100

0

0.01 0.01 0.01

-0.006
75000

0.010
0.1 200000

0.25
-5.0

µa µa
-µa

NOTE
1. E, voltage is measured between ninth
dynode and the anode. 2. Light source: MAZDA projection lamp oper-
ated at 2870 K. Lighted cathode area shall not be less than 7 square millimeters (approximately 3 millimeter -diameter aperture).

Adjust tube position to give the maximum sensitivity. 3. 100 volts applied between pins 1 and 2 and
the cathode. 4. Amplification: Anode current/cathode cur-
rent.

4-45 (750) Filing No. 8850

GENERAL ELECTRIC

ETI-241 PAGE 1
SPECIFICATIONS
PHOTOTUBE
GL -918

SPECIFICATIONS
12-45

GENERAL
Equipment using these tubes should be so
designed that any tube within the limits specified will operate satisfactorily.
The tube shall have the average characteristics and maximum ratings given on the Description

and Rating Sheet, ETI-184.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS

TEST CONDITIONS

TEST LIMITS

Test

See
Note

Ebb

Light Flux

Rp

Volts

Lumens

Meg

Min

Max

Units

Dark Current

1

90

Emission

2

25

Sensitivity

2

90

Gas Amplification

3

Interelectrode Capacitance

0

1.0

0.1

µa D -c

0.1

1.0

1.8

µa D -c

0.1

1.0

10.0

20.5

µa D -c

10.5

1.9

3.5

i-cµf

NOTES
1. This test made in absolute darkness. 2. Test made in a light -tight compartment with a Mazda projection lamp operated at 2870 K as a
source of light. A diaphragm with an opening 2-

inch in diameter is located so that the light beam

is centered on the cathode.

3.

Gas Amplification:

Sensitivity Emission

12-45 (2M) Filing No. 8850

GENERAL 0 ELECTRIC

En -276 PAGE 1
SPECIFICATIONS
PHOTOTUBE
PJ-22

SPECIFICATIONS

3-47

GENERAL
Equipment using these tubes should be so
designed that any tube within the limits specified will operate satisfactorily.
The tube shall have the average characteristics and maximum ratings given on the Description

and Rating Sheet, ETI-179.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS

TEST CONDITIONS

TEST LIMITS

Test

See
Note

Ebb

Light Flux

R.,

Volts

Lumens

Meg

Min

Max

Units

Dark Current

1

90

Emission

2

90

Sensitivity

2

200

Gas Amplification

3

Interelectrode Capacitance

0

1.0

0.1

µa D -c

0.5

1.0

3.5

µa D -c

0.5

1.0

µa D -c

1.1

1.9

3.5

µµf

NOTES
1. This test made in absolute darkness. 2. Test made in a light -tight compartment with a Mazda projection lamp operated at 2870 K as a source of light. A diaphragm with an opening IA -

inch in diameter is located so that the light beam

is centered on the cathode.

3.

Gas Amplification:

Sensitivity Emission

Supersedes in part ED -222 dated 4-45

3 -47 (3M) Filing No. 8850

GENERAL ELECTRIC

EV-277 PAGE 1 SPECIFICATIONS
PHOTOTUBE
GL -441

SPECIFICATIONS

3-47

GENERAL

Equipment using these tubes should be so
designed that any tube within the limits specified will operate satisfactorily.
The tube shall have the average characteristics and maximum ratings given on the Description

and Rating Sheet, ETI-181.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS

TEST CONDITIONS

TEST LIMITS

Test

See
Note

EH,

Light Flux

R.,

Volts

Lumens

Meg

Min

Max

Units

Dark Current

1

250

0

1.0

0.1

µa D -c

Emission

2

25

0.1

1.0

2.1

µa D -c

Sensitivity

2

250

0.1

1.0

2.5

7.0

ma D -c

Gas Amplification

3

1.25

Interelectrode Capacitance

1.9

3.5

µµf

NOTES
1. This test made in absolute darkness. 2. Test made in a light -tight compartment with a Mazda projection lamp operated at 2870 K as a source of light. A diaphragm with an opening M-

inch in diameter is located so that the light beam

is centered

3.

Gas Amplification:

Sensitivity Emission

Supersedes in part ETI-222 dated 4-45

3-47 (3M) Filing No. 8850

GENERAL ELECTRIC

ETI-278 PAGE 1
SPECIFICATIONS
PHOTOTUBE
GL -868 PJ-23

SPECIFICATIONS

3.47

GENERAL
Equipment using these tubes should be so
designed that any tube within the limits specified will operate satisfactorily.
The tube shall have the average characteristics and maximum ratings given on the Description

and Rating Sheet, ETI-182.
MECHANICAL REQUIREMENTS
The tube shall have the dimensions and be within the tolerances shown on the tube outline drawing.

ELECTRICAL REQUIREMENTS

TEST CONDITIONS

TEST LIMITS

Test

See
Note

Ebb

Light Flux

Rp

Volts

Lumens

Meg

Min

Max

Units

Dark Current

1

90

Emission

2

25

Sensitivity

2

90

Gas Amplification

3

Interelectrode Capacitance

0

1.0

-

0.1

µa D -c

0.1 0.1

1.0 1.0

-0.7
5.0

µa D -c

14.5

µa D -c

8.0

1.9

3.5

kt,uf

NOTES
1. This test made in absolute darkness. 2. Test made in a light -tight compartment with a Mazda projection lamp operated at 2870 K as a source of light. A diaphragm with an opening IA -

inch in diameter

so that the light beam

is centered on the cathode.

3.

Gas Amplification:

Sensitivity Emission

Supersedes in part ETI-222 dated 4-45

3 -47 (3M) Filing No. 8850

GENERAL 0 ELECTRIC

SPECIFICATIONS

ETI-271 PAGE 1
SPECIFICATIONS
VACUUM CAPACITORS
GL -1L22, 1L23, 1L24 AND 1L25
1 1 -46

GENERAL
Equipment using these types should be so designed that any capacitor within the limits specified will operate satisfactorily.
The capacitor shall be designed to have the
average characteristics and maximum ratings given on Description and Rating sheets, ETI-263, 264,

265 and 266.
MECHANICAL REQUIREMENTS
The capacitor shall have the dimensions and be within the tolerances shown on the outline.

ELECTRICAL REQUIREMENTS

Test

Test Condition

LIMITS

Min

Max

Capacitance
GL -1L22 GL -1L23 GL -1L24 GL -1L25

23.75 47.5 96.0 11.4

26.25 Micromicrofarads 52.5 Micromicrofarads 104.0 Micromicrofarads 12.6 Micromicrofarads

R -F Voltage Breakdown
GL -1L22 GL -1L23 GL -1L24 GL -1L25

1.8 Megacycles 1.8 Megacycles 1.8 Megacycles 1.8 Megacycles

20,000 Volts peak 20,000 Volts peak 20,000 Volts peak 20,000 Volts peak

Vibration-High Voltage
GL -1L22 GL -1L23 GL -1L24 GL -1L25
For Notes see page 2

20,000 volts peak Capacitor shall not indicate a prolonged short. 60 cycles a -c applied during vibration

GENERAL ELECTRIC

En -271 PAGE 2 11-46

NOTES
R -f Voltage Breakdown
The test set consists of a self-excited oscillator operating on 1.8 megacycles. The capacitor is connected in series with an r -f ammeter and connected in parallel with the plate inductance of the oscillator.
With a peak voltage of 20,000 volts applied across the capacitor, there shall be no evidence of
internal discharge.
Vibration-High Voltage
For this test the capacitor is fixed in a test set that vibrates the capacitor at a rate of approxi-

mately 20 cycles per second. The capacitor is fixed so that it is shaken in the plane at right angles to
the capacitor axis. The throw is approximately
inch.
While the vibration is taking place, an a -c 60 cycle voltage of 20,000 volts peak is applied to the tube. In series with this circuit is a 50,000 -ohm resistor and a 2 -watt neon lamp shunted with a
10,000 -ohm resistor.
The vibration shall not cause the capacitor
cylinder to be deformed sufficiently to pass a current through the neon lamp which will light both sections of the lamp for five seconds or more.

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

11-46 (3M) Filing No. 8850

SPECIFICATIONS

ETI-272 PAGE 1
SPECIFICATIONS
VACUUM CAPACITORS
GL -1L21, 1L33 1L36 AND 1L38
1 1 -46

GENERAL
Equipment using these types should be so designed that any capacitor within the limits
specified will operate satisfactorily.
The capacitor shall be designed to have the average characteristics and maximum ratings

given on Description and Rating sheets, ETI-262, 267, 268 and 269.
MECHANICAL REQUIREMENTS
The capacitor shall have the dimensions and be within the tolerances shown on the outline.

Test
Capacitance
GL -1L21 GL -1L33 GL -1L36 GL -1L38
R -F Voltage Breakdown
GL -1L21 GL -1L33 GL -1L36 GL -1L38
Vibration-High Voltage
GL -1L21 GL -1L33 GL -1L36 GL -1L38
For Notes see page 2

ELECTRICAL REQUIREMENTS

Test Condition

LIMITS

Min

Max

11.4
95.0 23.75
47.5

12.6 Micromicrofarads 105.0 Micromicrofarads
26.25 Micromicrofarads 52.5 Micromicrofarads

1.8 Megacycles 1.8 Megacycles 1.8 Megacycles 1.8 Megacycles

9000 Volts peak 9000 Volts peak 9000 Volts peak 9000 Volts peak

10,000 volts peak Capacitor shall not indicate a prolonged short. 60 cycles a -c applied during vibration

GENERAL ELECTRIC

ETI-272 PAGE 2 11-46

NOTES
R -f Voltage Breakdown
The test set consists of a self-excited oscillator operating on 1.8 megacycles. The capacitor is connected in series with an r -f ammeter and connected in parallel with the plate inductance of the oscillator.
With a peak voltage of 9000 volts applied across the capacitor, there shall be no evidence of internal discharge.
Vibration-High Voltage
For this test the capacitor is fixed in a test set that vibrates the capacitor at a rate of approximate -

ly 20 cycles per second. The capacitor is fixed so that it is shaken in the plane at right angles to the capacitor axis. The throw is approximately
1/4 inch.
While the vibration is taking place, an a -c 60 cycle voltage of 10,000 volts peak is applied to the tube. In series with this circuit is a 50,000 -ohm resistor and a 2 -watt neon lamp shunted with a
10,000 -ohm resistor.
The vibration shall not cause the capacitor
cylinder to be deformed sufficiently to pass a current through the neon lamp which will light both sections of the lamp for five seconds or more.

Electronics Department
GENERAL ELECTRIC
Schenectady, N. Y.

11 -46 (3M) Filing No. 8850

ETI-232 PAGE 1 SPECIFICATIONS
VACUUM SWITCH FA -6

SPECIFICATIONS

12-45

GENERAL
Equipment in which these switches are used should be so designed that any switch within the
limits specified will operate satisfactorily. The switch shall be designed to have the average
characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-197.
MECHANICAL REQUIREMENTS
The switch shall have the dimensions and be within the tolerances shown on the outline drawing.

MECHANICAL TEST REQUIREMENTS

TEST LIMITS

Test

See Note

Min

Max

Units

Arm Travel Initial Tension Force
Voltage

1

0.007

2

3

ELECTRICAL REQUIREMENTS

4

2100

0.017 120 300

inches grams grams
volts a -c rms

NOTES
1. Arm travel is the motion required to move the operating arm paddle from one stationary contact to the other. The measurement shall be made on the operating arm at a point 5% inch from the diaphragm.
2. Initial tension is the force required to open the moving contact, if it is initially closed on one
side. The measurement shall be made on the operating arm at a point 5% inch from the dia-
phragm.

3. Force is the force required to move the
operating arm paddle from one stationary contact to the other, including initial tension. The measure-
ment shall be made on the operating arm at a
point 5A inch from the diaphragm.
4. With the operating arm in the neutral position there shall be no external arcing when the voltage specified is applied between the common
terminal and the two contact terminals for a
period of one second.

12-45 (2M) Filing No. 8850

0 GENERAL ELECTRIC

ETI-233 PAGE 1 SPECIFICATIONS
VACUUM SWITCH
F A - 1 5

SPECIFICATIONS
12-45

GENERAL
Equipment in which these switches are used should be so designed that any switch within the
limits specified will operate satisfactorily. The switch shall be designed to have the average
characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-198.
MECHANICAL REQUIREMENTS
The switch shall have the dimensions and be within the tolerance shown on the outline drawing.

MECHANICAL TEST REQUIREMENTS

TEST LIMITS

Test

See Note

Min

Max

Units

Arm Travel Initial Tension Force
Voltage

1

0.005

2

3

ELECTRICAL REQUIREMENTS

4

3000

0.009 100 300
-

inches grams grams
volts a -c rms

NOTES

1. Arm travel is the motion required to move 4. The switch shall withstand the application the operating arm paddle from one stationary of the specified voltage, applied across the station-

cmoandteacotntothtehoepoetrhaetirn.gTahremmateaaspuorienmt e5ntinschhalflrobme

ary contacts, for 10 seconds with no visible arcing or flashing. For the purpose of this test fluorescent

the diaphragm.

spots on the glass envelope of the switch shall not

2. Initial tension is the force required to open the moving contact, if it is initially closed on one
side. The measurement shall be made on the operating arm at a point N inch from the dia-
phragm.

be construed as arcing or flashing. The test shall be made with the moving contact
held firmly against one stationary contact for five seconds. The test shall be repeated with the moving contact held firmly against the other stationary contact for five seconds.

3. Force is the force required to move the The power supply shall be capable of supplying

operating arm paddle from one stationary contact at least one milliampere of current, and the wave-

to the other, including initial tension. The measure- form of the voltage shall be essentially a sine wave
ment shall be made on the operating arm at a with no transient voltage peaks.

point 5A inch from the diaphragm.

The testing shall be conducted in semi -darkness.

12-45 (21,0 Filing No. 8850

GENERAL ELECTRIC

ETI-232A PAGE 1
SPECIFICATIONS
VACUUM SWITCH
GL -5627 /FA -6

SPECIFICATIONS

12-48

GENERAL
Equipment in which these switches are used should be so designed that any switch within the
limits specified will operate satisfactorily. The switch shall be designed to have the average
characteristics and maximum ratings given on the

Description and Rating Sheet, ET I -197A.
MECHANICAL REQUIREMENTS
The switch shall have the dimensions and be within the tolerances shown on the outline drawing.

MECHANICAL TEST REQUIREMENTS

TEST LIMITS

Test

See Note

Min

Max

Units

Arm Travel Initial Tension Force
Voltage

1 2

-0.007

3

ELECTRICAL REQUIREMENTS

4

2100

0.017 120 300

inches grams grams volts a -c rms

NOTES
1. Arm travel is the motion required to move the operating arm paddle from one stationary contact to the other. The measurement shall be made on the operating arm at a point N inch from the diaphragm.

3. Force is the force required to move the
operating arm paddle from one stationary contact to the other, including initial tension. The measure-
ment shall be made on the operating arm at a
point % inch from the diaphragm.

2. Initial tension is the force required to open 4. With the operating arm in the neutral posi-

the moving contact, if it is initially closed on one tion there shall be no external arcing when the

side. The measurement shall be made on the voltage specified is applied between the common

operating arm at a point N inch from the dia- terminal and the two contact terminals for a

phragm.

period of one second.

12-48 (3M) Filing No. 8850

GENERAL ELECTRIC

ETI-233A PAGE 1
SPECIFICATIONS
VACUUM SWITCH
GL -5626 IFA-15

SPECIFICATIONS
12-48

GENERAL
Equipment in which these switches are used should be so designed that any switch within the
limits specified will operate satisfactorily. The switch shall be designed to have the average
characteristics and maximum ratings given on the

Description and Rating Sheet, ETI-198A.
MECHANICAL REQUIREMENTS
The switch shall have the dimensions and be within the tolerance shown on the outline drawing.

MECHANICAL TEST REQUIREMENTS

TEST LIMITS

Test

See Note

Min

Max

Units

Arm Travel Initial Tension Force
Voltage

1 2
3

-0.005

ELECTRICAL REQUIREMENTS

4

3000

0.009 100 300
-

inches grams grams
volts a -c rms

NOTES
1. Arm travel is the motion required to move the operating arm paddle from one stationary contact to the other. The measurement shall be made on the operating arm at a point N inch from the diaphragm.
2. Initial tension is the force required to open the moving contact, if it is initially closed on one
side. The measurement shall be made on the operating arm at a point N inch from the dia-
phragm.
3. Force is the force required to move the
operating arm paddle from one stationary contact to the other, including initial tension. The measure-
ment shall be made on the operating arm at a point N inch from the diaphragm.

4. The switch shall withstand the application of the specified voltage, applied across the stationary contacts, for 10 seconds with no visible arcing or flashing. For the purpose of this test fluorescent spots on the glass envelope of the switch shall not be construed as arcing or flashing.
The test shall be made with the moving contact held firmly against one stationary contact for five seconds. The test shall be repeated with the moving contact held firmly against the. other stationary contact for five seconds.
The power supply shall be capable of supplying at least one milliampere of current, and the waveform of the voltage shall be essentially a sine wave
with no transient voltage peaks. The testing shall be conducted in semi -darkness.

12-48 (3M) Filing No. 8850

GENERAL ELECTRIC


MP Navigator EX PdfCompressor 6.5.985

Search Any Device: