

EST REPORT

Product **Trade mark** Model/Type reference

Wireless Smart Audio Module

: Linkplay

- : A98, A98M, A98M-12, A98M-22, A98MG, A98-12, A98-22, A98G
- N/A 2
- : EED32L00167701
- 2ANOG-A98XX
- Aug. 09, 2019
- 47 CFR Part 15Subpart C
- PASS

Prepared for:

Linkplay Technology Inc 8F-8036, Qianren Building, No. 7, Yingcui Road, **Jiangning District, Nanjing, China**


Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

2 Version

Version No.	Date	(C)	Description	
00	Aug. 09, 2019		Original	
		100	12	103
((2S)		(2)

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

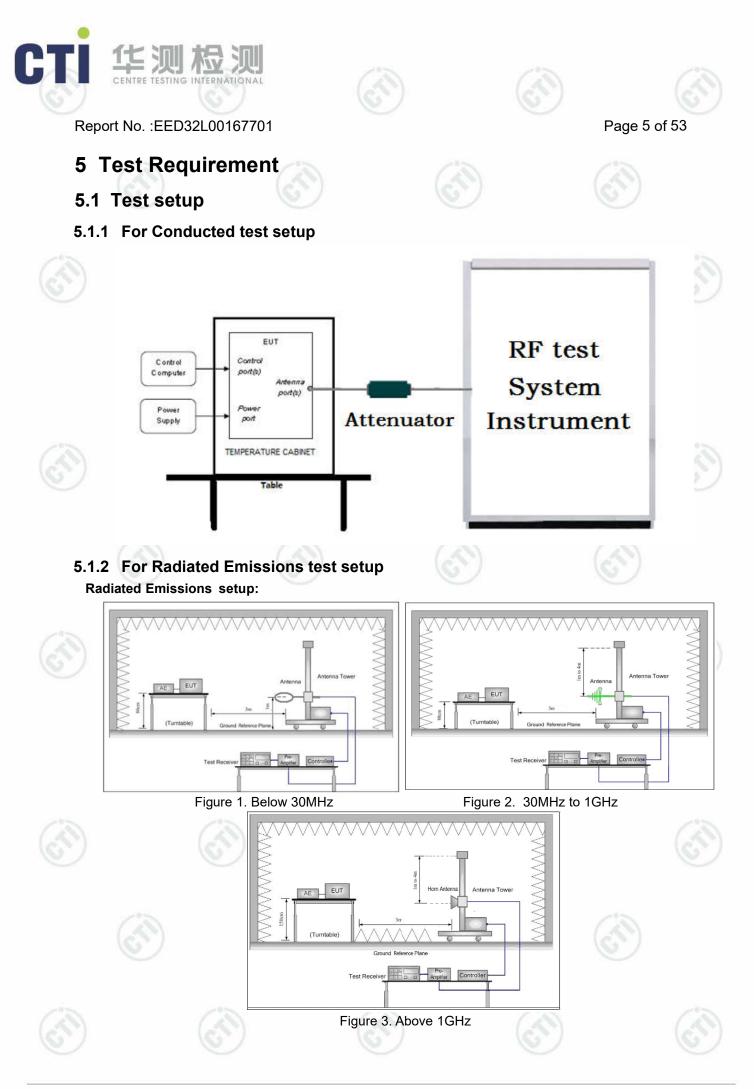

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

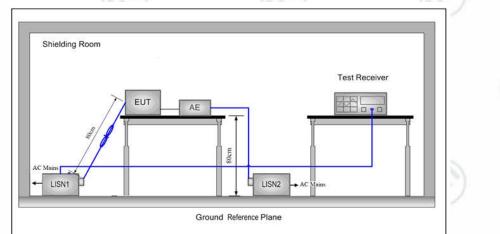
Model No.: A98, A98M, A98M-12, A98M-22, A98MG, A98-12, A98-22, A98G

Only the model A98 was tested, The difference is that ROM and RAM are different in size or customer.



Page 4 of 53

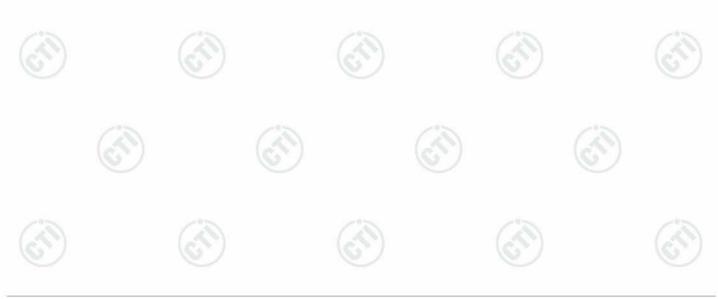
1 COVER PAGE			
2 VERSION		~	
3 TEST SUMMARY			
4 CONTENT			
5 TEST REQUIREMENT	<u>()</u>	<u> </u>	
 5.1 TEST SETUP 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test 5.1.3 For Conducted Emissions te 5.2 TEST ENVIRONMENT 5.3 TEST CONDITION 	setup st setup		
6 GENERAL INFORMATION			
 6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECT 6.4 DESCRIPTION OF SUPPORT UNITS 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD OF 6.8 OTHER INFORMATION REQUESTED 6.9 MEASUREMENT UNCERTAINTY (959) 	IVE TO THIS STANDARD CONDITIONS BY THE CUSTOMER		
7 EQUIPMENT LIST			
8 RADIO TECHNICAL REQUIREMEN			
Appendix A): 6dB Occupied Band Appendix B): Conducted Peak Ou Appendix C): Band-edge for RF C Appendix D): RF Conducted Spur Appendix E): Power Spectral Den	tput Power onducted Emissions ious Emissions sity		
Appendix F): Antenna Requirement Appendix G): AC Power Line Con Appendix H): Restricted bands are Appendix I) Radiated Spurious En	ducted Emission ound fundamental frequen	cy (Radiated)	
PHOTOGRAPHS OF TEST SETUP			
PHOTOGRAPHS OF EUT CONSTRUC			



Page 6 of 53

Report No. :EED32L00167701

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

	-			
Operating Environment:		U	V	C
Temperature:	25.0 °C			
Humidity:	57 % RH			1
Atmospheric Pressure:	1010mbar	0	0	
6.21	S. 7 1	100		

5.3 Test Condition

Test channel:

10-0	Test Mode	Tx/Rx		RF Channel	10
~	Test Mode		Low(L)	Middle(M)	High(H)
5)	0501/		Channel 1	Channel 20	Channel 40
	GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz
	Transmitting mode:	Keep the EUT in transmitting mod rate.	le with all kind of r	nodulation and a	all kind of data

6 General Information

6.1 Client Information

Applicant:	Linkplay Technology Inc
Address of Applicant:	8F-8036, Qianren Building, No. 7, Yingcui Road, Jiangning District, Nanjing, China
Manufacturer:	Linkplay Technology Inc
Address of Manufacturer:	8F-8036, Qianren Building, No. 7, Yingcui Road, Jiangning District, Nanjing, China
Factory:	Linkplay Technology Inc
Address of Factory:	8F-8036, Qianren Building, No. 7, Yingcui Road, Jiangning District, Nanjing, China

Page 7 of 53

6.2 General Description of EUT

-	
Product Name:	Wireless Smart Audio Module
Model No.(EUT):	A98, A98M, A98M-12, A98M-22, A98MG, A98-12, A98-22, A98G
Test Model No.:	A98
Trade mark:	Linkplay
EUT Supports Radios application:	BT 4.0 Dual mode, 2402-2480MHz
Power Supply:	DC 5V
Sample Received Date:	Jun. 26, 2019
Sample tested Date:	Jun. 26, 2019 to Aug. 09, 2018

6.3 Product Specification subjective to this standard

) ISS -SK	Ð	S		G
		\sim		
SK				
	13	S	13	
fault Setting	(6))	$(c^{(s)})$	
hkplay Factory To	ool For Custom	(manufacturer dec	lare)	
pe: PIFA antenna	а			
ain:2.62dBi	1 mil	-0-		- 0 %
C 5V	0			(3)
	kplay Factory To pe: PIFA antenn in:2.62dBi	kplay Factory Tool For Custom pe: PIFA antenna in:2.62dBi	kplay Factory Tool For Custom (manufacturer dec pe: PIFA antenna in:2.62dBi	kplay Factory Tool For Custom (manufacturer declare) pe: PIFA antenna in:2.62dBi

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently

6.5 Test Location

All tests were performed at: Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

None.

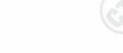
6.8 Other Information Requested by the Customer

Page 9 of 53

Report No. :EED32L00167701

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	RF power, conducted	0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-18GHz)	
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)	
4	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	



7 Equipment List

		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-28-2020
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-28-2020
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-28-2020
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002	(75)	01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-28-2020
PC-1	Lenovo	R4960d		03-01-2019	02-28-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-28-2020
BT&WI-FI Automatic est software	JS Tonscend	JS1120-2		03-01-2019	02-28-2020
emperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019

Page 11 of 53

	(Conducted dist	urbance Tes	st	
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020
Temperature/ Humidity Indicator	Defu	TH128	/	06-14-2019	06-12-2020
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
LISN	R&S	ENV216	100098	05-08-2019	05-06-2020
LISN	schwarzbeck	NNLK8121	8121-529	05-08-2019	05-06-2020
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020
Current Probe	R&S	EZ-17 816.2063.03	100106	05-20-2019	05-18-2020
ISN	TESEQ	ISN T800	30297	01-06-2019	01-15-2020
Barometer	changchun	DYM3	1188	06-20-2019	06-18-2020

Page 12 of 53

		Semi/full-anecho		Cal data	Cal Due data
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-22-2020
RILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
RILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-24-2020
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 1	07-26-2019	07-24-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-25-2021
Spectrum Analyzer	R&S	FSP40	100416	04-28-2019	04-26-2020
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020
Receiver	R&S	ESCI7	100938- 003	11-23-2018	11-22-2019
Multi device Controller	maturo	NCD/070/107 11112	\sim	01-09-2019	01-08-2020
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-28-2020
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-28-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-09-2019	01-08-2020
pand rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020
pand rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-09-2019	01-08-2020
oand rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002	$(\underline{\mathbb{C}})$	01-09-2019	01-08-2020
oand rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-09-2019	01-08-2020

Page 13 of 53

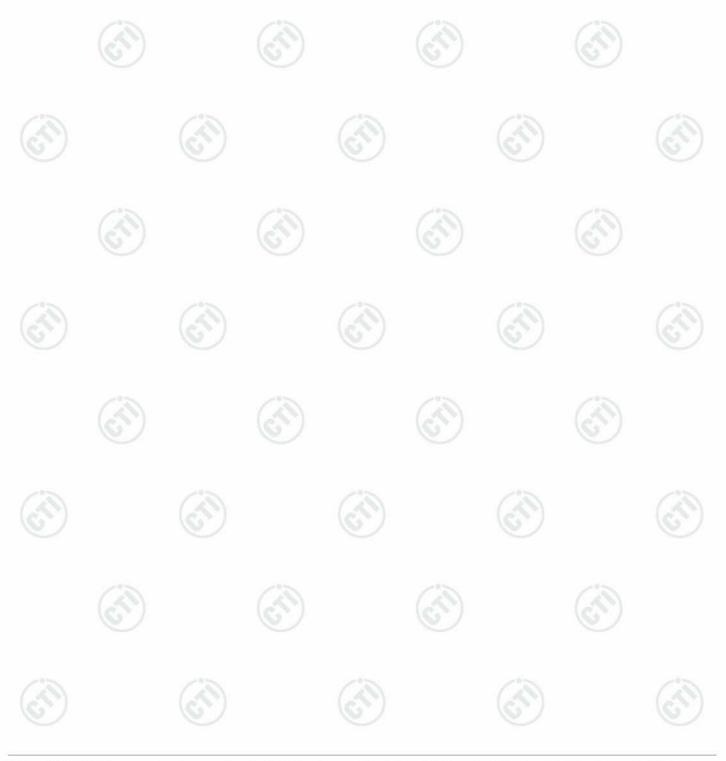
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd- yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-17-2020
Receiver	Keysight	N9038A	MY57290136	03-27-2019	03-25-2020
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-27-2019	03-25-2020
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-27-2019	03-25-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-075	04-25-2018	04-23-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-23-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-23-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-23-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-829	04-25-2018	04-23-2021
Communication Antenna	Schwarzbeck	CLSA 0110L	1014	02-14-2019	02-13-2020
Biconical antenna	Schwarzbeck	VUBA 9117	9117-381	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-08-2021
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019	5-20-2020
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
Preamplifier	EMCI	EMC001330	980563	05-08-2019	05-06-2020
Preamplifier	Agilent	8449B	3008A02425	08-21-2018	08-20-2019
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	05-01-2019	04-30-2020
Signal Generator	KEYSIGHT	E8257D	MY53401106	03-01-2019	02-28-2020
Fully Anechoic Chamber	TDK	FAC-3)	01-17-2018	01-15-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-08-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	01-09-2019	01-08-2020
Cable line	Times	EMC104-NMNM- 1000	SN160710	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	01-09-2019	01-08-2020
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020

Page 14 of 53

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Iden	tity		Document Title			
1	FCC Pa	art15C	Subpart (C-Intentional Radiators			
2	ANSI C63	.10-2013	American Devices	National Standard for Testing Ur	licesed W	/ireless	
st R	esults List:		6			(V)	
Test	Requirement	Test met	hod	Test item	Verdict	Note	
	15C Section .247 (a)(2)	ANSI C6	3.10	6dB Occupied Bandwidth	PASS	Appendix A	
	15C Section .247 (b)(3)	ANSI C6	3.10	Conducted Peak Output Power	PASS	Appendix B	
	15C Section 5.247(d)	ANSI C6	3.10	Band-edge for RF Conducted Emissions	PASS	Appendix C	
	15C Section 5.247(d)	ANSI C6	3.10	RF Conducted Spurious Emissions	PASS	Appendix D	
	15C Section 5.247 (e)	ANSI C6	3.10	Power Spectral Density	PASS	Appendix E	
	15C Section 03/15.247 (c)	ANSI C6	3.10	Antenna Requirement	PASS	Appendix F	
	15C Section 15.207	ANSI C6	3.10	AC Power Line Conducted Emission	PASS	Appendix G	
	15C Section 205/15.209	ANSI C6	3.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H	
	15C Section 205/15.209	ANSI C6	3.10	Radiated Spurious Emissions	PASS	Appendix I)	
	S) /	6	9	(Gr)	G)	

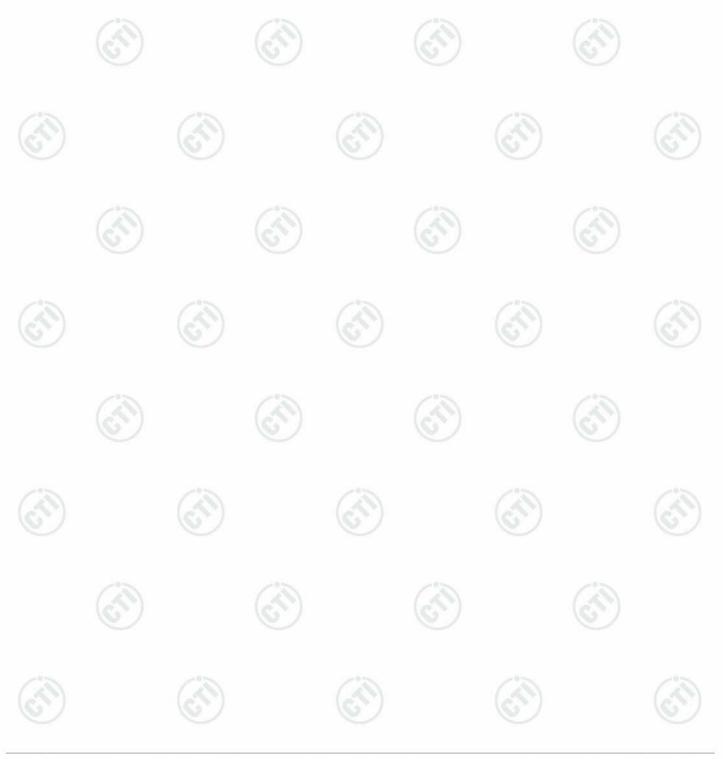


Page 15 of 53

Appendix A): 6dB Occupied Bandwidth

	Test Resu	ilt		U	
	Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
	BLE	LCH	0.6263	1.0617	PASS
3	BLE	МСН	0.6205	1.0618	PASS
Y	BLE	НСН	0.6208	1.0626	PASS

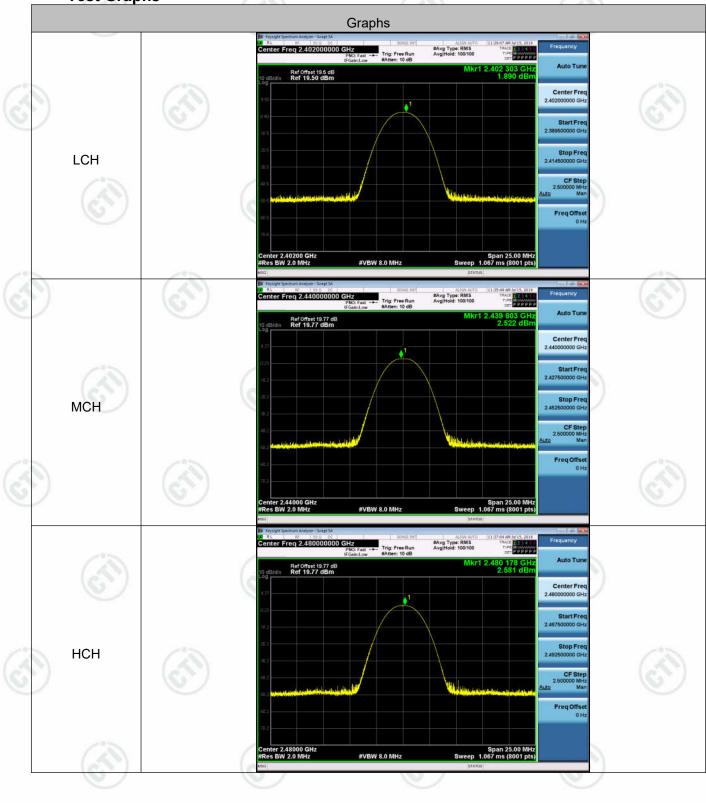
Page 16 of 53



Page 17 of 53

Appendix B): Conducted Peak Output Power

_	Test Result	V		
	Mode	Channel	Conduct Peak Power[dBn	n] Verdict
12	BLE	LCH	1.89	PASS
5	BLE	МСН	2.522	PASS
~	BLE	нсн	2.581	PASS



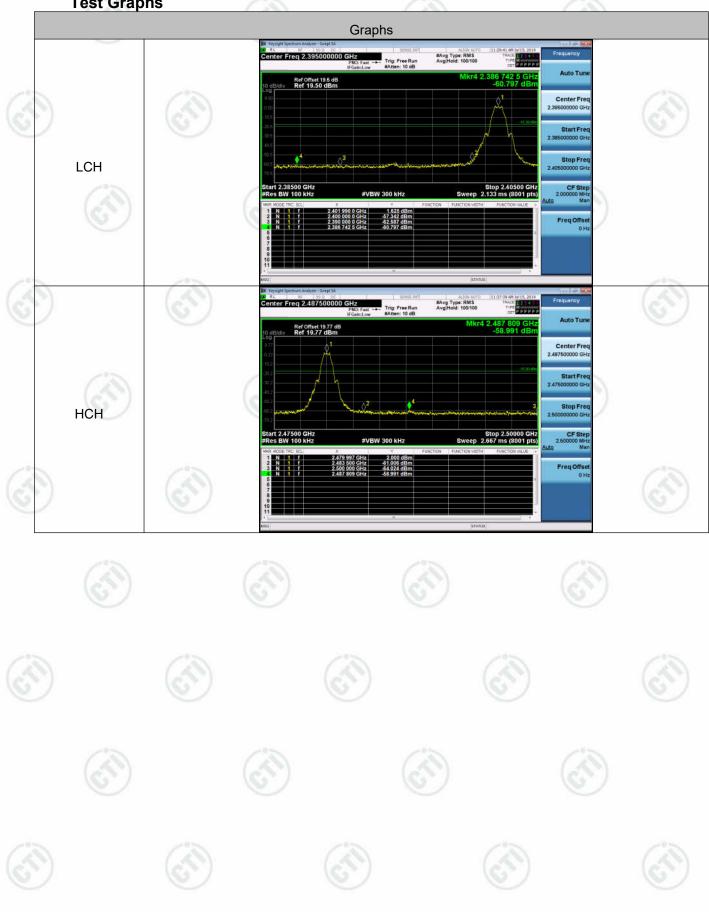
Page 18 of 53

Test Graphs

Page 19 of 53

Appendix C): Band-edge for RF Conducted Emissions

	Resu	It Table	<u> </u>		V		V	
-	Mode	Channel	Carrier Power[c	iBm]	lax.Spurious L [dBm]	_evel	Limit [dBm]	Verdict
(5)	BLE	LCH	1.625	(\mathcal{S})	-60.797		-18.38	PASS
\sim	BLE	НСН	2.000	S	-58.991	Ś	-18	PASS



Page 20 of 53

Test Graphs

Page 21 of 53

Appendix D): RF Conducted Spurious Emissions

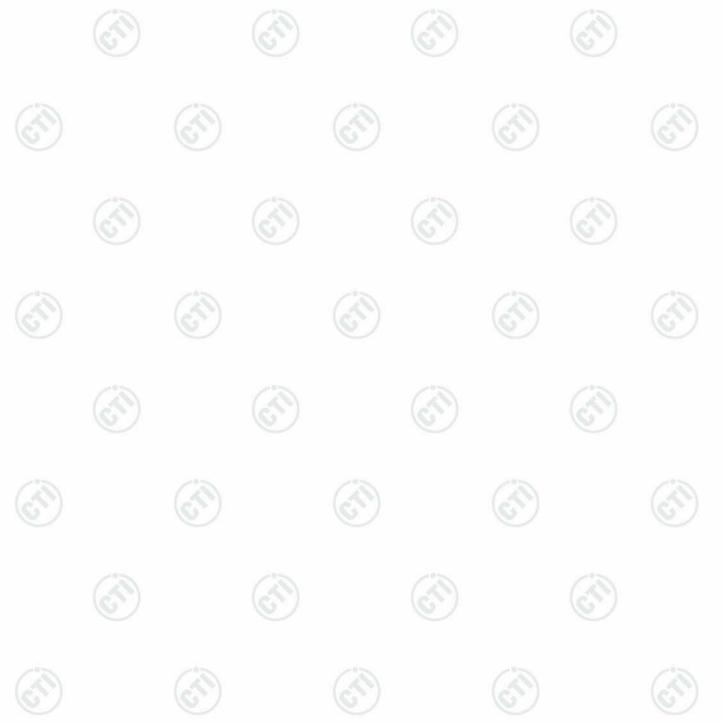
Mode	Channel	Pref [dB	m]	Puw	[dBm]	Verdict
BLE	LCH	1.416		<	_imit	PASS
BLE	МСН	1.787		<	_imit	PASS
BLE	HCH	1.834		<	imit	PASS

Test Graphs BLE_LCH_Graphs #Avg Type: RMS Avg Hold: 100/10 r Fred 2 402 Ref Offset 19.5 dB Ref 20.00 dBm Center Fr Start Fr Stop F Pref/BLE/LCH CF Freq O Span 4.000 l Sweep 1.067 ms (8001 Freq 12.515000000 GHz #Avg Type: RMS Avg|Hold: 2/100 Trig: Free Run NAtten: 20 dB Ref Offset 19.5 dB Ref 10.00 dBm Center Fr 12.515000000 G Start Fr Stop F Puw/BLE/LCH Freq Of #VBW 300 kH;

Page 23 of 53



Page 24 of 53



Appendix E): Power Spectral Density

_	Result Table			1
_	Mode	Channel	PSD [dBm]	Verdict
	BLE	LCH	-12.087	PASS
Ľ	BLE	мсн	-11.678	PASS
	BLE	НСН	-11.488	PASS

Page 26 of 53

Test Graphs

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.62dBi.

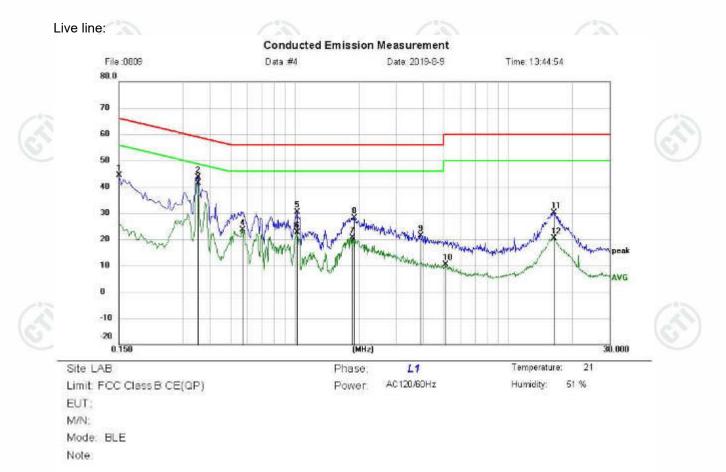
Page 28 of 53

Appendix G): AC Power Line Conducted Emission

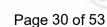
Test Procedure:	Test frequency range :150KHz	-30MHz		
	 The mains terminal disturbar The EUT was connected to Stabilization Network) whice power cables of all other u which was bonded to the g for the unit being measure multiple power cables to a s exceeded. 	AC power source thro th provides a 50Ω/50μ nits of the EUT were round reference plane d. A multiple socket of	bugh a LISN 1 (Line μ H + 5 Ω linear imper- connected to a sec in the same way as putlet strip was used	e Impedan edance. T ond LISN s the LISN d to conne
(SI)	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangem		
	 The test was performed wire EUT shall be 0.4 m from the reference plane was bonder 	e vertical ground refered to the horizontal gro	ence plane. The ve bund reference plan	rtical grou e. The LI
	1 was placed 0.8 m from to ground reference plane for plane. This distance was be All other units of the EUT an LISN 2.	or LISNs mounted or etween the closest po	n top of the groun ints of the LISN 1 a	d referen nd the EL
	5) In order to find the maximur			ment and
(ct)	of the interface cables r conducted measurement.	must be changed a		
Limit:		(c)	G	
Limit:		nust be changed a Limit (d Quasi-peak	G	
Limit:	conducted measurement.	Limit (d	BµV)	
Limit:	Conducted measurement.	Limit (d Quasi-peak	BµV) Average	
Limit:	conducted measurement. Frequency range (MHz) 0.15-0.5	Limit (d Quasi-peak 66 to 56*	BµV) Average 56 to 46*	
Limit:	conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5	Limit (d Quasi-peak 66 to 56* 56 60 with the logarithm of t	BµV) Average 56 to 46* 46 50 the frequency in the	C63.10

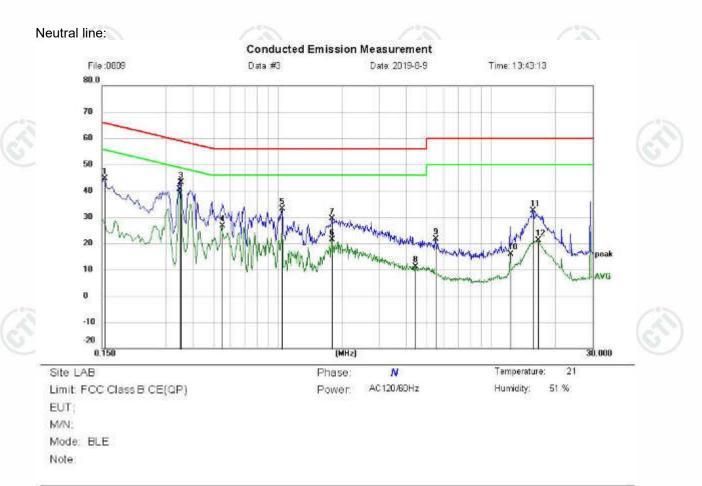
Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.


Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Page 29 of 53


Reading Correct Measure-No: Mk. Limit Margin Freq. Level Factor ment dBu'V dB dBuV dBuV άB MH₂ Detector Comment 0.1500 34.34 1 9.97 44,31 66.00 -21.69 peak 2 0.3525 10.05 -15.21 33.64 43.69 58.90 peak -7.59 AVG 3 0.3525 31.26 10.05 41.31 48.90 ्य 10.08 -22.39 4 0.5685 13.53 23.61 46.00 AVG 5 1.0230 9.91 -25.66 20.43 30.34 56.00 peak 6 1.0230 12.65 9.91 22.56 46.00 -23.44 AVG 7 1.8555 10.87 9.84 20.71 46.00 -25.29 AVG 8 1.8960 18.35 9.84 28.19 56.00 -27.81 peak 9 3.8850 11.55 9.83 21.38 56.00 -34.62 peak 5,1090 0.64 9.83 50.00 AVG 10 10.47 -39.53 16.4490 9.97 11 20.25 30.22 60.00 -29.78 peak 12 16.4490 10.44 9.97 20.41 50.00 -29.59 AVG


*:Maximum data x:Over limit I:over margin

(Reference Only

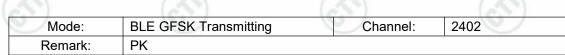
	No	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment		Margin			
3			MHz	dBu∀	dB	dBuV	dBaV	dB	Detector	Comment	<u> </u>
-	1		0.1545	34.76	9.98	44.74	65.75	-21.01	pesk		
	2	*	0.3480	30.52	10.05	40.57	49.01	-8.44	AVG		~
	3		0.3525	33.18	10.05	43.23	58.90	-15.67	peak		
	4		0.5505	16.52	10.06	26.58	46.00	-19.42	AVG		
-	5		1.0455	23.16	9.91	33.07	56.00	-22.93	peak		
	6	(1.7880	11.63	9.85	21.48	46.00	-24,52	AVG		
	7		1.7970	19.63	9.85	29.48	56.00	-26.52	peak		2
	8		4 4 2 0 5	1.27	9.83	11.10	46.00	-34.90	AVG		
3	9		5,4825	11.91	9.83	21.74	60.00	-38.26	peak		(2
5	10		12.2910	5.88	9.97	15.85	50.00	-34.15	AVG		6
	11		15.7785	22.44	9.97	32.41	60.00	-27.59	peak		- C
2	12		16.6785	11.08	9.96	21.04	50.00	-28.96	AVG		2

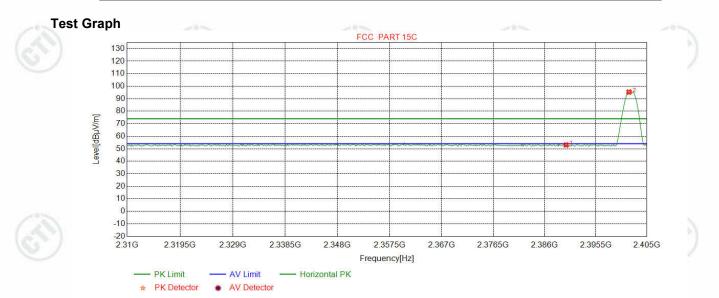
*:Maximum data x:Over limit I:over margin

(Reference Only

Notes:

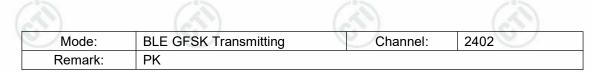
The following Quasi-Peak and Average measurements were performed on the EUT:
 Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

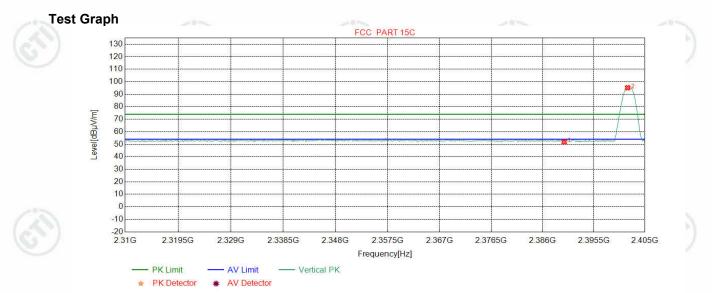

Appendix H): Restricted bands around fundamental frequency (Radiated)


Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peal	k
	Above 4011-	Peak	1MHz	3MHz	Peak	1
	Above 1GHz	Peak	1MHz	10Hz	Average	6
Test Procedure:	Below 1GHz test procedu	ure as below:	1 and 1			1
	 a. The EUT was placed of at a 3 meter semi-aner determine the position b. The EUT was set 3 meter semi-aner determine the position b. The EUT was set 3 meter semi-aner determine the maximul polarizations of the aner determine the maximul polar	choic camber. The of the highest ra- eters away from op of a variable-levaried from one m value of the fint tenna are set to mission, the EUT d to heights from prees to 360 deg em was set to Per- our Hold Mode.	he table wa adiation. the interfer neight anter meter to for eld strengtl make the r 1 was arran 1 meter to rees to find eak Detect	ence-recei nna tower. our meters n. Both hor neasureme ged to its 4 meters the maxin Function a	360 degrees iving antenna above the gr rizontal and v ent. worst case a and the rotat num reading and Specified	to a, wh roun vertio nd th able
	f. Place a marker at the frequency to show cor bands. Save the spect for lowest and highest	npliance. Also m rum analyzer plo	easure any	emission	s in the restr	
	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h Test the EUT in the le i. The radiation measure Transmitting mode, an	npliance. Also m rum analyzer plo channel ure as below: ve is the test site nber change forr 1 meter and tab owest channel , ements are perfo id found the X ap	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highesi rmed in X, kis position	v emissions for each po rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i	s in the restr ower and mo Anechoic Cl .5 meter(Ab positioning fo t is worse ca	dula haml oove or
Limit:	frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h Test the EUT in the le i. The radiation measure Transmitting mode, an j. Repeat above procedu	npliance. Also m rum analyzer plo channel ure as below: ve is the test site nber change forr 1 meter and tab owest channel , ements are perfo id found the X as ures until all freq	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highes rmed in X, kis position uencies me	v emissions for each po rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa	s in the restr ower and mo Anechoic Cl .5 meter(Ab positioning fo t is worse ca	dula haml oove or
Limit:	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h Test the EUT in the le i. The radiation measure Transmitting mode, an	npliance. Also m rum analyzer plo channel ure as below: ve is the test site nber change forr 1 meter and tab owest channel , ements are perfo id found the X ap	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me /m @3m)	v emissions for each por meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei	s in the restri ower and mo Anechoic Cl .5 meter(Ab positioning fo t is worse ca as complete. mark	dula haml oove or
Limit:	frequency to show corr bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h Test the EUT in the k i. The radiation measure Transmitting mode, an j. Repeat above procedu	npliance. Also m rum analyzer plo channel ure as below: ve is the test site nber change forr 1 meter and tab owest channel , ements are perfo id found the X as ures until all freq Limit (dBµV	e, change fi n table 0.8 le is 1.5 me the Highesi rmed in X, kis position uencies me /m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-po	s in the restrower and mo Anechoic Cl .5 meter(Ab positioning fo t is worse ca as complete.	dula haml oove or
Limit:	frequency to show corr bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h Test the EUT in the le i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz	npliance. Also m rum analyzer plo channel ure as below: ve is the test site nber change forr 1 meter and tab owest channel , ements are perfo id found the X av ures until all freq Limit (dBµV 40.	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me /m @3m) 0	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-po	s in the restriction of the sector of the se	dula haml oove or
Limit:	frequency to show corr bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Chan 18GHz the distance is h Test the EUT in the le i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz	npliance. Also m rum analyzer plo channel ure as below: ve is the test site nber change forr 1 meter and tab pwest channel , ements are perfo id found the X as ures until all freq Limit (dBµV 40.0	easure any bt. Repeat f e, change fi n table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me /m @3m) 0	v emissions for each po rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po	s in the restrower and mo Anechoic Cl .5 meter(Ab positioning fo t is worse ca as complete. mark eak Value eak Value	dula haml oove or
Limit:	frequency to show corr bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h Test the EUT in the le i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	npliance. Also m rum analyzer plo channel ure as below: ve is the test site nber change forr 1 meter and tab owest channel , ements are perfo id found the X as ures until all freq Limit (dBµV 40.0 43.1	e, change fi n table 0.8 le is 1.5 me the Highesi rmed in X, kis position uencies me /m @3m) 0 5 0	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe	s in the restriction of the second se	dula haml oove or

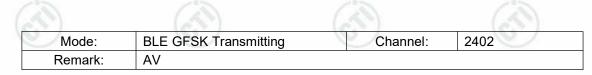
Test plot as follows:

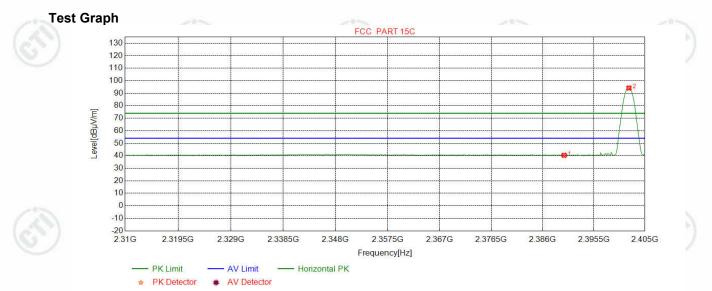
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.85	53.03	74.00	20.97	Pass	Horizontal
2	2401.6708	32.26	13.31	-42.43	92.17	95.31	74.00	-21.31	Pass	Horizontal
100	2			•			1000		•	100



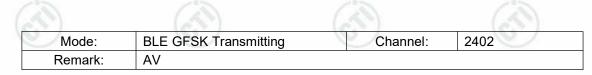


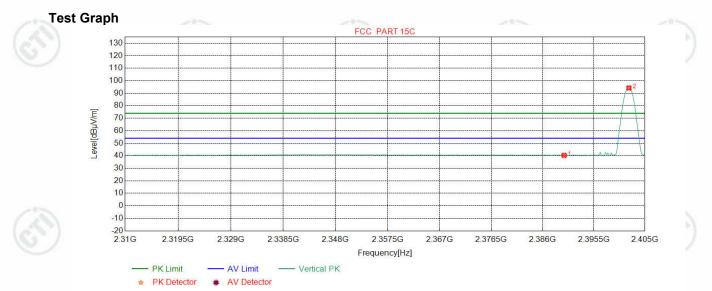
NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	48.71	51.89	74.00	22.11	Pass	Vertical
2	2401.7897	32.26	13.31	-42.43	92.02	95.16	74.00	-21.16	Pass	Vertical
1.3		1					128			1.0



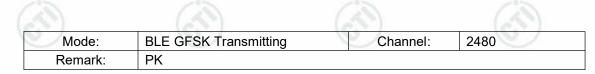


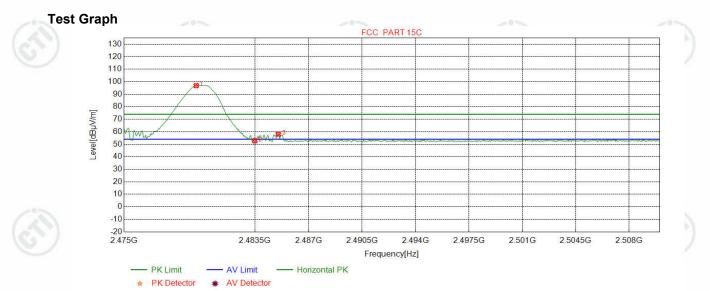
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	37.19	40.37	54.00	13.63	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	91.02	94.16	54.00	-40.16	Pass	Horizontal
1	() () () () () () () () () ()	1.1				-	120			1



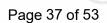


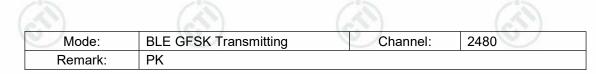
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	37.12	40.30	54.00	13.70	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	91.04	94.18	54.00	-40.18	Pass	Vertical
1		1					128			1.0

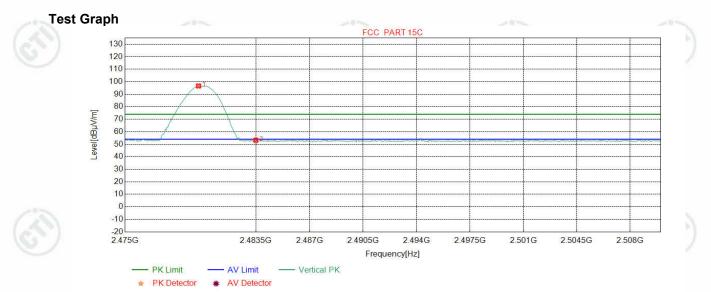




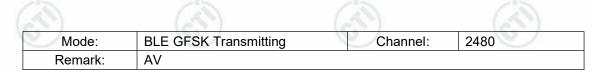
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.6871	32.37	13.39	-42.39	93.52	96.89	74.00	-22.89	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	49.46	52.82	74.00	21.18	Pass	Horizontal
3	2485.0313	32.38	13.37	-42.40	54.65	58.00	74.00	16.00	Pass	Horizontal
S.	1	S	٠J		67		(GT)			G

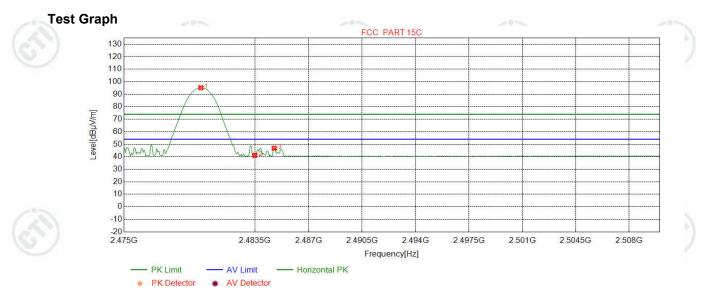






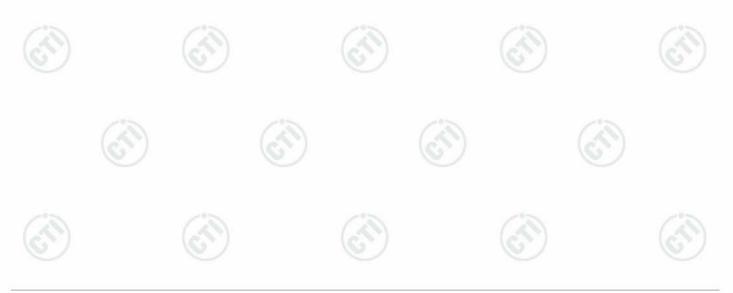
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7747	32.37	13.39	-42.39	93.23	96.60	74.00	-22.60	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.82	53.18	74.00	20.82	Pass	Vertical
1	(14					68			





NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9937	32.37	13.39	-42.39	91.83	95.20	54.00	-41.20	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	37.76	41.12	54.00	12.88	Pass	Horizontal
3	2484.7685	32.38	13.37	-42.40	43.45	46.80	54.00	7.20	Pass	Horizontal
S	<i>J.</i>	S	٠J		G		6	/		(GT)

(A)


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9499	32.37	13.39	-42.39	91.10	94.47	54.00	-40.47	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	37.39	40.75	54.00	13.25	Pass	Vertical

Note:

Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
 The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

Page 40 of 53

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
/	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(31)		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
Ta at Due as duras		•	•	•	•	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic
- camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)	
	0.009MHz-0.490MHz	2400/F(kHz)	-	-0-	300	-0-
0	0.490MHz-1.705MHz	24000/F(kHz)	-		30	
	1.705MHz-30MHz	30	-	0	30	2
	30MHz-88MHz	100	40.0	Quasi-peak	3	
	88MHz-216MHz	150	43.5	Quasi-peak	3	
	216MHz-960MHz	200	46.0	Quasi-peak	3	
	960MHz-1GHz	500	54.0	Quasi-peak	3	
	Above 1GHz	500	54.0	Average	3]
(B)	Note: 15.35(b), Unless emissions is 20df applicable to the peak emission lev	B above the maxir equipment under	num permi test. This p	itted average o	emission limit	

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

BLE GFSK Transmitting Mode: Channel: 2402 Cable Ant Pream Reading Limit Freq. Level Margin NO Result Factor loss gain Polarity [MHz] [dBµV] [dBµV/m] [dBµV/m] [dB] [dB] [dB] [dB] 7.46 55.3195 12.35 0.84 -32.07 51.42 32.54 40.00 Pass 1 Н 7.79 2 62.4983 10.95 0.91 -32.04 52.39 32.21 40.00 Pass Н 9.64 32.93 7.07 3 67.5428 0.94 -32.05 54.40 40.00 Pass Н 4 152.0382 7.62 1.45 -32.00 57.74 34.81 43.50 8.69 Pass Н 11.77 1.81 32.70 13.30 Н 5 233.4293 -31.90 51.02 46.00 Pass 6 396.0176 15.31 2.37 -31.78 47.42 33.32 46.00 12.68 Pass Н 7 42.6113 12.77 0.74 -32.12 45.33 26.72 40.00 13.28 Pass V 27.73 8 55.2225 12.36 0.84 -32.07 46.60 12.27 Pass V 40.00 9 62.0132 11.08 0.91 -32.05 48.08 28.02 40.00 11.98 Pass V 10 67.6398 9.61 0.94 -32.05 50.35 28.85 40.00 11.15 Pass V V 11 208.8859 11.13 1.71 -31.94 46.70 27.60 43.50 15.90 Pass 12 304.1494 13.29 2.07 -31.87 43.59 V 27.08 46.00 18.92 Pass

		- 0 mar			E march		10 million				
	Mode	e:	BLE GF	SK Tran	smitting		Channel:		2440		
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
_	1	55.3195	12.35	0.84	-32.07	51.32	32.44	40.00	7.56	Pass	Н
2	2	62.7893	10.87	0.91	-32.04	53.48	33.22	40.00	6.78	Pass	Н
5	3	72.0052	8.62	0.97	-32.05	55.02	32.56	40.00	7.44	Pass	Н
	4	150.4860	7.57	1.45	-32.01	57.24	34.25	43.50	9.25	Pass	Н
	5	233.4293	11.77	1.81	-31.90	52.20	33.88	46.00	12.12	Pass	Н
	6	400.4800	15.41	2.38	-31.76	46.77	32.80	46.00	13.20	Pass	Н
	7	42.4172	12.74	0.73	-32.11	45.01	26.37	40.00	13.63	Pass	V
	8	55.2225	12.36	0.84	-32.07	46.26	27.39	40.00	12.61	Pass	V
	9	64.8265	10.35	0.92	-32.05	49.20	28.42	40.00	11.58	Pass	V
	10	175.4175	8.75	1.56	-31.98	44.78	23.11	43.50	20.39	Pass	V
-	11	208.8859	11.13	1.71	-31.94	46.98	27.88	43.50	15.62	Pass	V
4	12	304.1494	13.29	2.07	-31.87	43.75	27.24	46.00	18.76	Pass	V
2	1	•									

Page 42 of 53

Mode):	BLE GF	SK Tran	smitting		Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	55.3195	12.35	0.84	-32.07	51.14	32.26	40.00	7.74	Pass	Н
2	61.9162	11.10	0.91	-32.04	52.63	32.60	40.00	7.40	Pass	Н
3	74.7215	8.10	1.01	-32.06	56.21	33.26	40.00	6.74	Pass	Н
4	152.1352	7.62	1.45	-31.99	57.59	34.67	43.50	8.83	Pass	Н
5	240.0260	11.94	1.84	-31.90	51.39	33.27	46.00	12.73	Pass	Н
6	393.8834	15.27	2.36	-31.79	47.63	33.47	46.00	12.53	Pass	Н
7	41.8352	12.63	0.73	-32.11	49.80	31.05	40.00	8.95	Pass	V
8	61.4311	11.23	0.91	-32.05	47.60	27.69	40.00	12.31	Pass	V
9	67.5428	9.64	0.94	-32.05	49.65	28.18	40.00	11.82	Pass	V
10	208.8859	11.13	1.71	-31.94	46.71	27.61	43.50	15.89	Pass	V
11	304.1494	13.29	2.07	-31.87	44.06	27.55	46.00	18.45	Pass	V
12	402.1292	15.43	2.39	-31.77	39.44	25.49	46.00	20.51	Pass	V
1		V /				•		•		

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

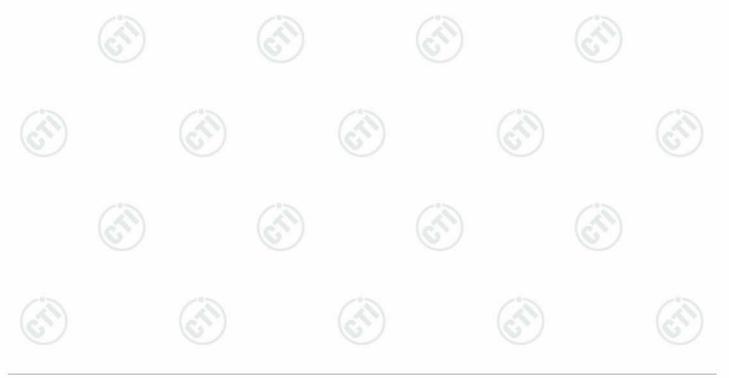
	Tran	smitter Em	ission a	above	1GHz						
	Mode	:	BLE GF	SK Tran	smitting		Channel:		2402		
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
-	1	1440.4440	28.34	2.94	-42.68	57.80	46.40	74.00	27.60	Pass	Н
d,	2	1920.4920	31.18	3.42	-42.65	57.08	49.03	74.00	24.97	Pass	Н
2	3	4804.0000	34.50	4.55	-40.66	43.42	41.81	74.00	32.19	Pass	Н
	4	7206.0000	36.31	5.81	-41.02	43.96	45.06	74.00	28.94	Pass	Н
	5	9608.0000	37.64	6.63	-40.76	42.93	46.44	74.00	27.56	Pass	Н
	6	12010.0000	39.31	7.60	-41.21	43.37	49.07	74.00	24.93	Pass	Н
	7	1436.8437	28.34	2.94	-42.68	53.84	42.44	74.00	31.56	Pass	V
	8	1919.6920	31.17	3.42	-42.65	52.44	44.38	74.00	29.62	Pass	V
	9	4804.0000	34.50	4.55	-40.66	44.46	42.85	74.00	31.15	Pass	V
	10	7206.0000	36.31	5.81	-41.02	43.32	44.42	74.00	29.58	Pass	V
-	11	9608.0000	37.64	6.63	-40.76	43.66	47.17	74.00	26.83	Pass	V
	12	12010.0000	39.31	7.60	-41.21	43.33	49.03	74.00	24.97	Pass	V
e	1		~~								

	Mode	e:	BLE GF	SK Tran	smitting		Channel:		2440		
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
Ī	1	1442.0442	28.34	2.94	-42.67	57.76	46.37	74.00	27.63	Pass	Н
Ī	2	1920.0920	31.17	3.42	-42.65	56.74	48.68	74.00	25.32	Pass	Н
<u>.</u>	3	4880.0000	34.50	4.80	-40.60	43.42	42.12	74.00	31.88	Pass	Н
4	4	7320.0000	36.42	5.85	-40.92	43.03	44.38	74.00	29.62	Pass	Н
2	5	9760.0000	37.70	6.73	-40.62	41.84	45.65	74.00	28.35	Pass	Н
	6	12200.0000	39.42	7.67	-41.17	44.49	50.41	74.00	23.59	Pass	Н
Ī	7	1917.6918	31.16	3.42	-42.65	52.57	44.50	74.00	29.50	Pass	V
Ī	8	3363.0242	33.35	4.53	-41.91	50.20	46.17	74.00	27.83	Pass	V
	9	4880.0000	34.50	4.80	-40.60	43.36	42.06	74.00	31.94	Pass	V
Ī	10	7320.0000	36.42	5.85	-40.92	43.49	44.84	74.00	29.16	Pass	V
Ī	11	9760.0000	37.70	6.73	-40.62	42.38	46.19	74.00	27.81	Pass	V
Ī	12	12200.0000	39.42	7.67	-41.17	42.90	48.82	74.00	25.18	Pass	V
-			245			245		20-			10-

Page 44 of 53

		- 0			C Property Control of		107		201		
	Mode	e:	BLE GF	SK Tran	smitting		Channel:		2480		
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	1440.6441	28.34	2.94	-42.67	57.81	46.42	74.00	27.58	Pass	Н
2	2	1919.4919	31.17	3.42	-42.65	56.51	48.45	74.00	25.55	Pass	Н
	3	4960.0000	34.50	4.82	-40.53	44.98	43.77	74.00	30.23	Pass	Н
-	4	7440.0000	36.54	5.85	-40.82	44.15	45.72	74.00	28.28	Pass	Н
	5	9920.0000	37.77	6.79	-40.48	41.22	45.30	74.00	28.70	Pass	Н
	6	12400.0000	39.54	7.86	-41.12	43.51	49.79	74.00	24.21	Pass	Н
	7	1441.6442	28.34	2.94	-42.67	53.91	42.52	74.00	31.48	Pass	V
	8	2014.3014	31.72	3.50	-42.61	51.51	44.12	74.00	29.88	Pass	V
	9	4960.0000	34.50	4.82	-40.53	44.18	42.97	74.00	31.03	Pass	V
	10	7440.0000	36.54	5.85	-40.82	43.30	44.87	74.00	29.13	Pass	V
12	11	9920.0000	37.77	6.79	-40.48	42.30	46.38	74.00	27.62	Pass	V
5	12	12400.0000	39.54	7.86	-41.12	44.63	50.91	74.00	23.09	Pass	V
	1				•		·		•		

Note:


1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

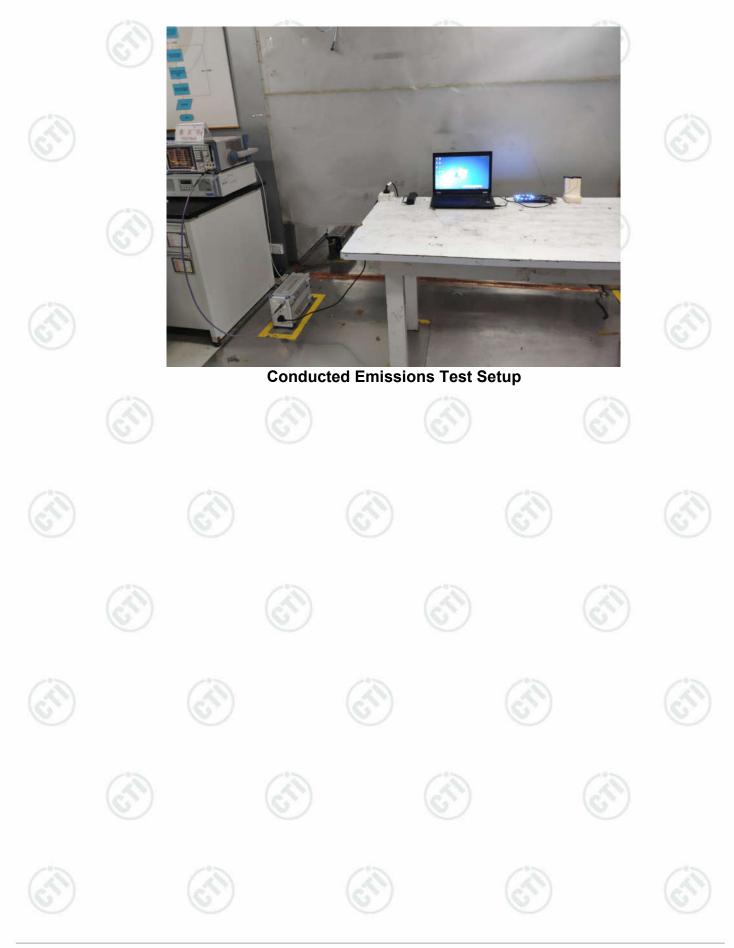
3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 45 of 53

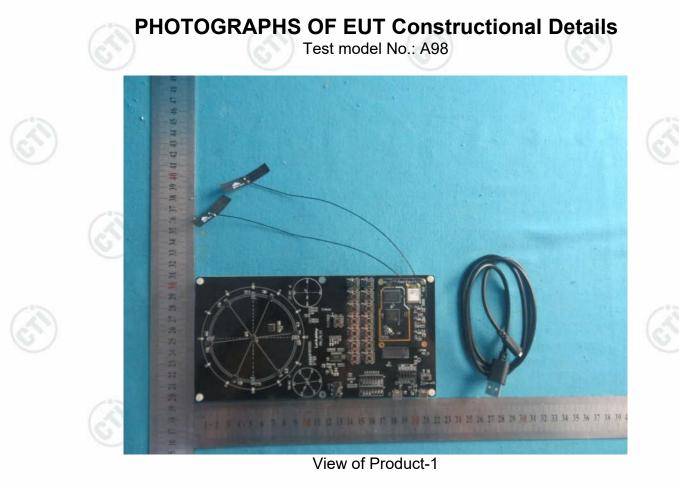
PHOTOGRAPHS OF TEST SETUP

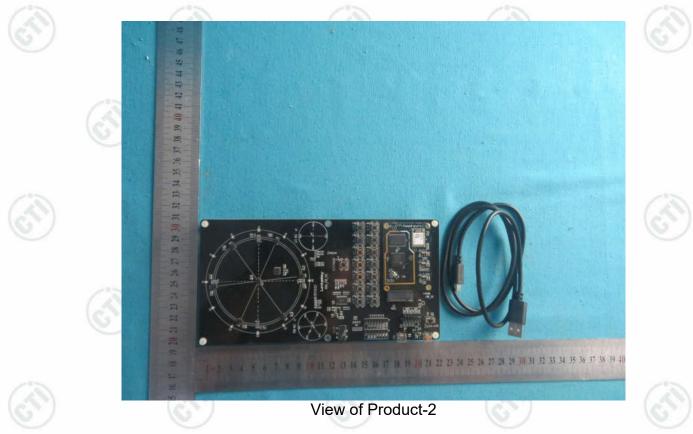
Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

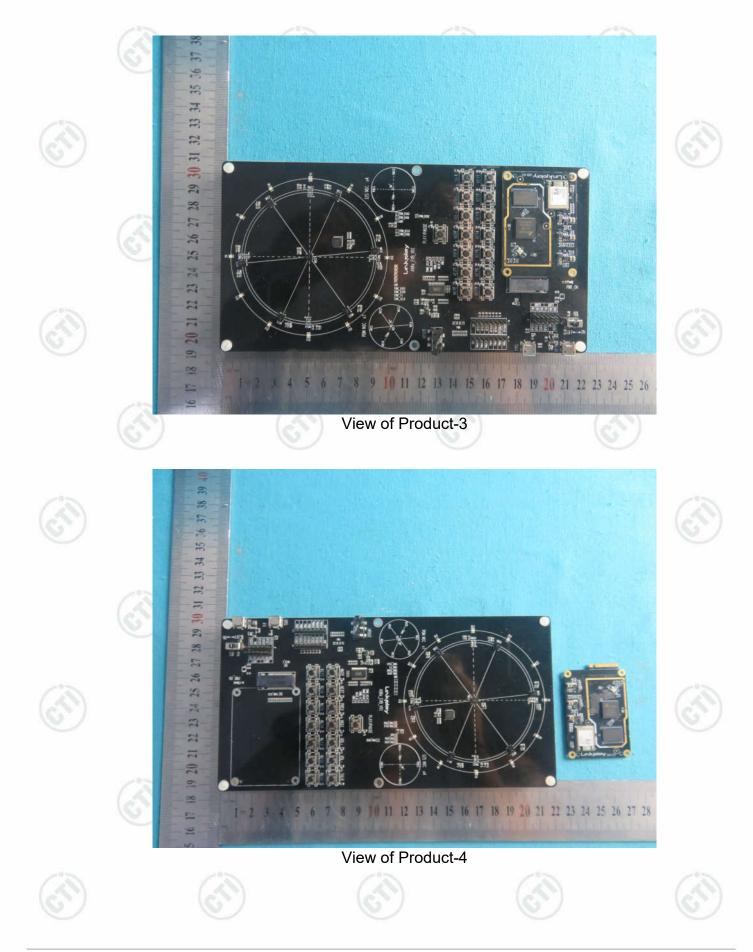


Page 46 of 53

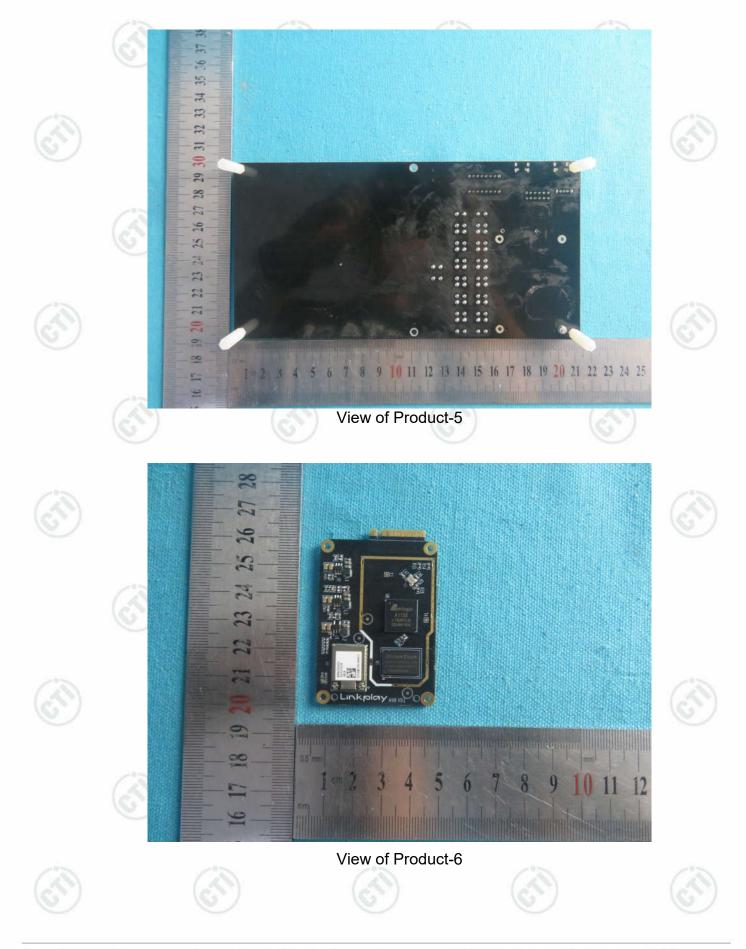




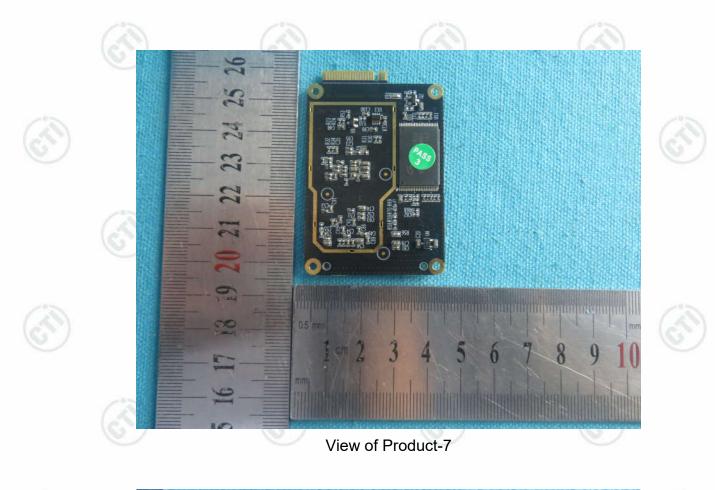
Page 47 of 53

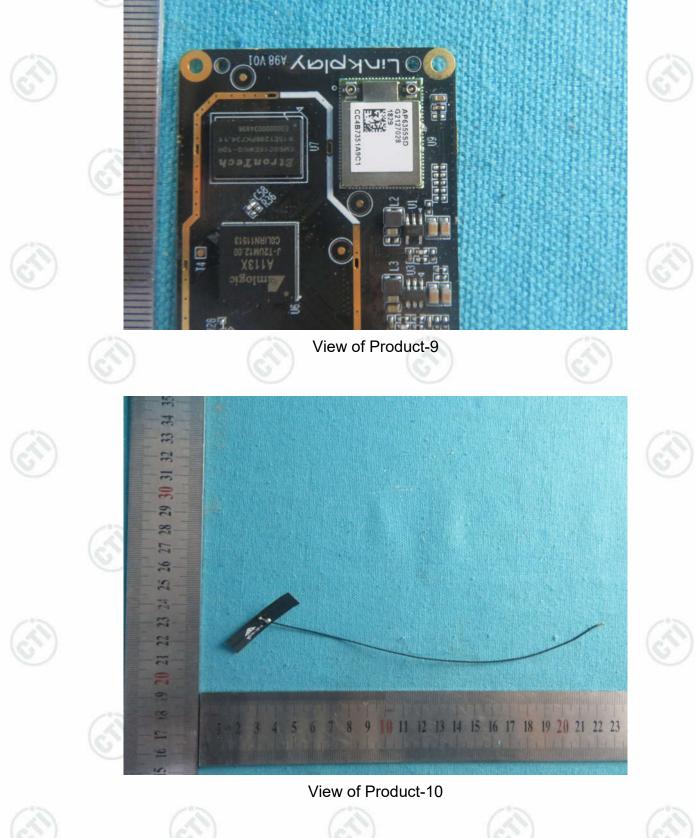


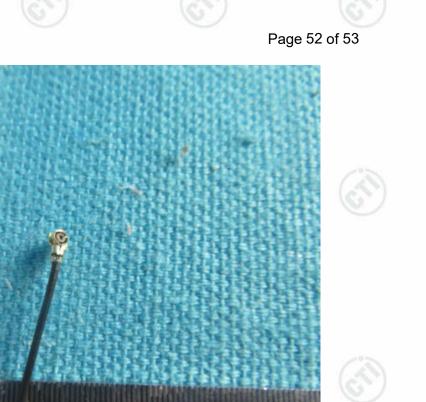
Page 48 of 53

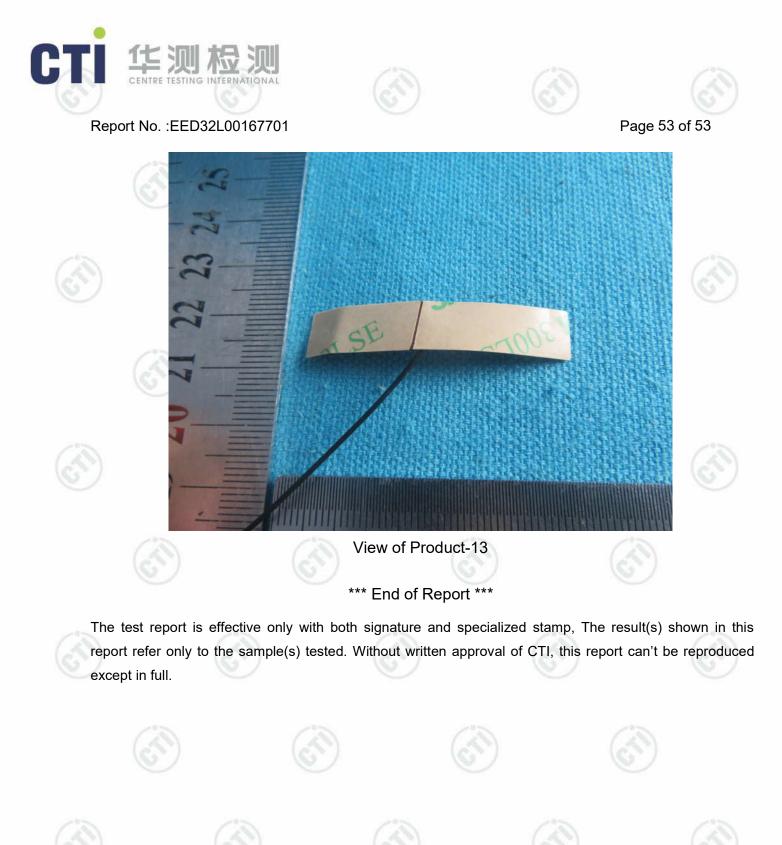


Page 49 of 53









View of Product-11

