

SAR TEST REPORT

No. I18Z60513-SEM01

For

TCL Communication Ltd.

LTE/UMTS/GSM Smartphone

Model Name: 5059J

With

Hardware Version: PIO

Software Version: 6J1QH1

FCC ID: 2ACCJB101

Issued Date: 2018-4-9

(R) TESTING NVLAP LAB CODE 600118-0

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No. 51, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504

Email: <u>cttl_terminals@caict.ac.cn</u>, website: <u>www.caict.ac.cn</u>

REPORT HISTORY

Report Number	Revision	Issue Date	Description
I18Z60513-SEM01	Rev.0	2018-4-9	Initial creation of test report

TABLE OF CONTENT

1 1		5
1.1	TESTING LOCATION	5
1.2	Testing Environment	5
1.3	Project Data	5
1.4	SIGNATURE	5
2 5	STATEMENT OF COMPLIANCE	6
3 (CLIENT INFORMATION	8
3.1	Applicant Information	
3.2	MANUFACTURER INFORMATION	
4 E	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	9
4.1	About EUT	9
4.2	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	9
4.3	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	9
5 1	TEST METHODOLOGY	10
5.1	APPLICABLE LIMIT REGULATIONS	
5.2	APPLICABLE MEASUREMENT STANDARDS	10
6 5	SPECIFIC ABSORPTION RATE (SAR)	11
6.1	Introduction	
6.2	SAR DEFINITION	
7 1	TISSUE SIMULATING LIQUIDS	12
7.1	TARGETS FOR TISSUE SIMULATING LIQUID	
7.2	DIELECTRIC PERFORMANCE	
8 5	SYSTEM VERIFICATION	20
8.1	System Setup	
8.2	System Verification	
9 N	MEASUREMENT PROCEDURES	22
9.1	TESTS TO BE PERFORMED	22
9.2	GENERAL MEASUREMENT PROCEDURE	
9.3	WCDMA MEASUREMENT PROCEDURES FOR SAR	
9.4	SAR MEASUREMENT FOR LTE	
9.5	BLUETOOTH & WI-FI MEASUREMENT PROCEDURES FOR SAR	
9.6	Power Drift	27
10	AREA SCAN BASED 1-G SAR	27
10.1	REQUIREMENT OF KDB	27
10.2	FAST SAR ALGORITHMS	27
11		
	©Copyright. All rights rese	veu by CITL.

11.1	GSM Measurement result	28
11.2	WCDMA MEASUREMENT RESULT	29
11.3	LTE MEASUREMENT RESULT	30
11.4	WI-FI AND BT MEASUREMENT RESULT	41
12	SIMULTANEOUS TX SAR CONSIDERATIONS	44
12.1	INTRODUCTION	44
12.2	TRANSMIT ANTENNA SEPARATION DISTANCES	44
12.3	SAR MEASUREMENT POSITIONS	45
12.4	STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	45
13	EVALUATION OF SIMULTANEOUS	46
14	SAR TEST RESULT	47
14.1	EVALUATION OF MULTI-BATTERIES AND SIM SLOTS	47
14.2	SAR RESULTS	48
14.3	FULL SAR	64
15	SAR MEASUREMENT VARIABILITY	65
16	MEASUREMENT UNCERTAINTY	66
16.1	MEASUREMENT UNCERTAINTY FOR NORMAL SAR TESTS (300MHz~3GHz)	66
16.2	MEASUREMENT UNCERTAINTY FOR NORMAL SAR TESTS (3~6GHz)	67
16.3	MEASUREMENT UNCERTAINTY FOR FAST SAR TESTS (300MHz~3GHz)	68
16.4	MEASUREMENT UNCERTAINTY FOR FAST SAR TESTS (3~6GHz)	69
17	MAIN TEST INSTRUMENTS	71
ANNE	X A GRAPH RESULTS	72
ANNE	X B SYSTEM VERIFICATION RESULTS	99
ANNE	X C SAR MEASUREMENT SETUP	122
ANNE	X D POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM	128
ANNE	X E EQUIVALENT MEDIA RECIPES	131
ANNE	X F SYSTEM VALIDATION	132
ANNE	X G PROBE CALIBRATION CERTIFICATE	133
ANNE	X H DIPOLE CALIBRATION CERTIFICATE	144
ANNE	XI SPOTCHECK	206
ANNE	X J ACCREDITATION CERTIFICATE	229

1 Test Laboratory

1.1 Testing Location

Company Name:	CTTL(Shouxiang)	
Address:	No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District	
	Beijing, P. R. China100191	

1.2 Testing Environment

Temperature:	18°C~25 °C,
Relative humidity:	30%~ 70%
Ground system resistance:	< 0.5 Ω
Ambient noise & Reflection:	< 0.012 W/kg

1.3 Project Data

Project Leader:	Qi Dianyuan
Test Engineer:	Lin Xiaojun
Testing Start Date:	March 1, 2018
Testing End Date:	April 6, 2018

1.4 Signature

Lin Xiaojun (Prepared this test report)

Qi Dianyuan (Reviewed this test report)

PB 20th Fi

Lu Bingsong Deputy Director of the laboratory (Approved this test report)

2 Statement of Compliance

This EUT is a variant product and the report of original sample is No.I17Z62255-SEM01. According to the client request, WCDMA1700 has been removed, we do the spotcheck for other bands except WiFi and share the test results of original report. We share the WiFi results of original sample directly. The results of spot check are presented in the annex I.

The maximum results of SAR found during testing for TCL Communication Ltd. LTE/UMTS/GSM Smartphone 5059J is as follows:

Exposure Configuration	Technology Band	Highest Reported SAR 1g (W/Kg)	Equipment Class		
	GSM 850	0.23			
	PCS 1900	0.19			
	UMTS FDD 2	0.20			
	UMTS FDD 5	0.24			
Head	LTE Band 2	0.21	PCE		
(Separation Distance 0mm)	LTE Band 4	0.21	PCE		
(Separation Distance offin)	LTE Band 5	0.21			
	LTE Band 7	0.11			
	LTE Band 12	0.18			
	LTE Band 13	0.15			
	WLAN 2.4 GHz	<0.01	DTS		
	GSM 850	0.40			
	PCS 1900	1.19			
	UMTS FDD 2	1.27			
	UMTS FDD 5	0.49			
Hotspot	LTE Band 2	1.06	PCE		
(Separation Distance	LTE Band 4	0.52	PUE		
10mm)	LTE Band 5	0.45			
	LTE Band 7	0.73			
	LTE Band 12	0.35			
	LTE Band 13	0.31			
	WLAN 2.4 GHz	/	DTS		

Table 2.1:	Highest	Reported	SAR	(1a)
	nignesi	Reported	JAN	(19)

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1992.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and which provides a minimum separation distance of 10 mm between this device and the body of the user. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report.

The highest reported SAR value is obtained at the case of **(Table 2.1)**, and the values are: 1.27 **W/kg (1g)**.

	Position	Main antenna	WiFi	Sum	
Highest reported					
SAR value for	Left hand, Touch cheek	0.24	<0.01	0.24	
Head					
Highest reported					
SAR value for	Bottom	1.27	/	1.27	
Body					

Table 2.2: The sum of reported SAR values for main antenna and WiFi

Table 2.3: The sum of reported SAR values for main antenna and BT

	Position	Main antenna	BT	Sum
Maximum reported	Left hand, Touch cheek	0.24	0.21	0.44
SAR value for Head	Left fland, fouch cheek	0.24	0.21	0.44
Maximum reported	Dettern	1.07	0.10	4 27
SAR value for Body	Bottom	1.27	0.10	1.37

[1] - Estimated SAR for Bluetooth (see the table 13.3)

According to the above tables, the highest sum of reported SAR values is 1.37 **W/kg (1g)**. The detail for simultaneous transmission consideration is described in chapter 13.

3 Client Information

3.1 Applicant Information

Company Name	TCL Communication Ltd.				
	7/F, Block F4, TCL Communication Technology Building, TCL				
Company Address	International E City, Zhong Shan Yuan Road, Nanshan District, Shenzhen,				
	Guangdong, P.R. China 518052				
Post Code	518052				
Contact Person	Zhizhou Gong				
Tel	0086-755-36611722				
Mobile	0086-18217635320				
Fax	0086-755-36612000 ext: 81722				
E-Mail	zhizhou.gong@tcl.com				
Company URL	www.alcatel-mobile.com				

3.2 Manufacturer Information

Company Name	TCL Communication Ltd.				
	7/F, Block F4, TCL Communication Technology Building, TCL				
Company Address	International E City, Zhong Shan Yuan Road, Nanshan District, Shenzhen,				
	Guangdong, P.R. China 518052				
Post Code	518052				
Contact Person	Zhizhou Gong				
Tel	0086-755-36611722				
Mobile	0086-18217635320				
Fax	0086-755-36612000 ext: 81722				
E-Mail	zhizhou.gong@tcl.com				
Company URL	www.alcatel-mobile.com				

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT

Description:	LTE/UMTS/GSM Smartphone
Model name:	5059J
Operating mode(a):	GSM 850/900/1800/1900 WCDMA850/900/1900/2100
Operating mode(s):	LTE B1/2/3/4/5/7/12/13/17/28, BT, WLAN
	825 – 848.8 MHz (GSM 850)
	1850.2 – 1910 MHz (GSM 1900)
	826.4–846.6 MHz (WCDMA 850 Band V)
	1852.4–1907.6 MHz (WCDMA1900 Band II)
	1860 – 1900 MHz (LTE Band 2)
Tested Tx Frequency:	1720 – 1745 MHz (LTE Band 4)
	824.7 – 848.3 MHz (LTE Band 5)
	2502.5 – 2567.5 MHz (LTE Band 7)
	699.7 – 715.3 MHz (LTE Band 12)
	779.5 –784.5 MHz (LTE Band 13)
	2412 – 2462 MHz (Wi-Fi 2.4G)
GPRS/EGPRS Multislot Class:	12
GPRS capability Class:	В
Test device Production information:	Production unit
Device type:	Portable device
Antenna type:	Integrated antenna
Accessories/Body-worn configurations:	Headset
Hotspot mode:	Support

4.2 Internal Identification of EUT used during the test

		U U						
EUT								
EUTID	IMEI	HW Version	SW Version					
1	354454090002834	PIO	6J1B					
2	354454090003840	PIO	6J1B					
3	354454090003212	PIO	6J1B					
4	354457090006200	DIO	6 14 0 11 4					
4	354457090006218	PIO	6J1QH1					
F	354457090007158	DIO	6 14 0 11 4					
5	354457090007166	PIO	6J1QH1					

*EUT ID: is used to identify the test sample in the lab internally.

Note: It is performed to test SAR with the EUT1&2&5 and conducted power with the EUT3&4.

4.3 Internal Identification of AE used during the test

AE ID	Description	Model	SN	Manufacturer
AE1	Battery	Li-Polymer	CAC2400008C1	BYD
AE2	Battery	Li-Polymer	CAC2400009C7	VEKEN
AE3	Headset	Stereo Earphone	CCB0046A10C1	JUWEI
AE4	Headset	Stereo Earphone	CCB0046A10C4	MEIHAO

*AE ID: is used to identify the test sample in the lab internally.

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IEEE 1528–2013: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

KDB447498 D01 General RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB648474 D04 Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets.

KDB941225 D01 SAR test for 3G devices v03r01: SAR Measurement Procedures for 3G Devices

KDB941225 D05 SAR for LTE Devices v02r05: SAR Evaluation Considerations for LTE Devices

KDB248227 D01 802.11 Wi-Fi SAR v02r02: SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS

KDB865664 D01SAR measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz.

KDB865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

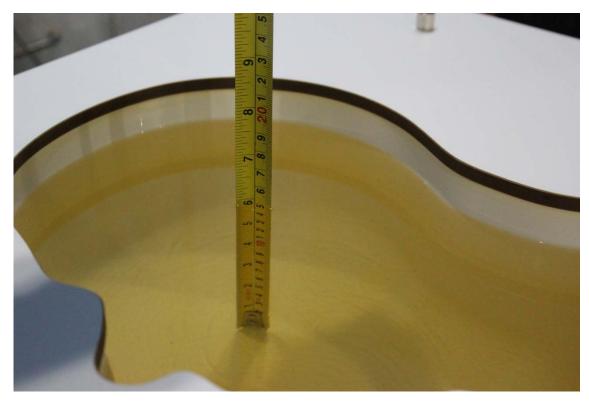
However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7 Tissue Simulating Liquids

7.1 Targets for tissue simulating liquid

Table 7.1: Targets for tissue simulating liquid

Frequency(MHz)	Liquid Type	Conductivity(σ)	± 5% Range	Permittivity(ε)	± 5% Range
835	Head	0.90	0.86~0.95	41.5	39.4~43.6
835	Body	0.97	0.92~1.02	55.2	52.4~58.0
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2
2450	Body	1.95	1.85~2.05	52.7	50.1~55.3
2600	Head	1.96	1.86~2.06	39.01	37.06~40.96
2600	Body	2.16	2.05~2.27	52.5	49.9~55.1
5250	Head	4.71	4.47~4.95	35.93	34.1~37.7
5250	Body	5.36	5.09~5.63	48.9	46.5~51.3
5600	Head	5.07	4.82~5.32	35.53	33.8~37.3
5600	Body	5.77	5.48~6.06	48.5	46.1~50.9
5750	Head	5.22	4.96~5.48	35.36	33.6~37.1
5750	Body	5.94	5.64~6.24	48.3	45.9~50.7



7.2 Dielectric Performance

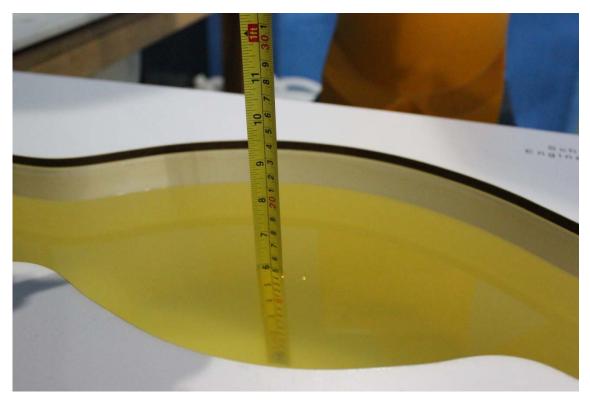
Measurement Date yyyy/mm/dd	Frequency	Туре	Permittivity ε	Drift (%)	Conductivity σ (S/m)	Drift (%)
2019/2/1	750 MHz	Head	41.35	-1.41	0.888	-0.22
2018/3/1		Body	55.95	0.81	0.955	-0.52
2018/3/2	835 MHz	Head	41.1	-0.96	0.892	-0.89
2010/3/2	055 1011 12	Body	54.29	-1.65	0.977	0.72
2018/3/3	1750 MHz	Head	40.82	1.85	1.377	0.51
2010/3/3		Body	52.58	-1.54	1.485	-0.34
2018/3/4	1900 MHz	Head	39.99	-0.02	1.428	2.00
2010/3/4	1900 1011 12	Body	53.11	-0.36	1.51	-0.66
2018/3/5	2450 MHz	Head	38.99	-0.54	1.78	-1.11
2010/3/3	2430 1011 12	Body	53.49	1.50	1.957	0.36
2018/3/6	2600 MHz	Head	39.06	0.13	1.925	-1.79
2010/3/0	2000 1011 12	Body	52.63	0.25	2.179	0.88
2018/4/1	750 MHz	Head	42.5	1.34	0.89	0.00
2010/4/1		Body	55.24	-0.47	0.97	1.04
2018/4/2	835 MHz	Head	40.69	-1.95	0.888	-1.33
2010/4/2		Body	54.43	-1.39	0.955	-1.55
2018/4/3	1750 MHz	Head	40.2	0.30	1.354	-1.17
2010/4/3		Body	53.07	-0.62	1.482	-0.54
2018/4/4	1900 MHz	Head	39.38	-1.55	1.411	0.79
2010/4/4		Body	52.85	-0.84	1.496	-1.58
2018/4/6	2600 MHz	Head	39.01	0.00	1.956	-0.20
2010/4/0	2000 1011 12	Body	52.3	-0.38	2.177	0.79

Table 7.2: Dielectric Performance of Tissue Simulating Liquid

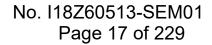
Picture 7-1 Liquid depth in the Head Phantom (750 MHz)

Picture 7-2 Liquid depth in the Flat Phantom (750 MHz)

Picture 7-3 Liquid depth in the Head Phantom (835MHz)



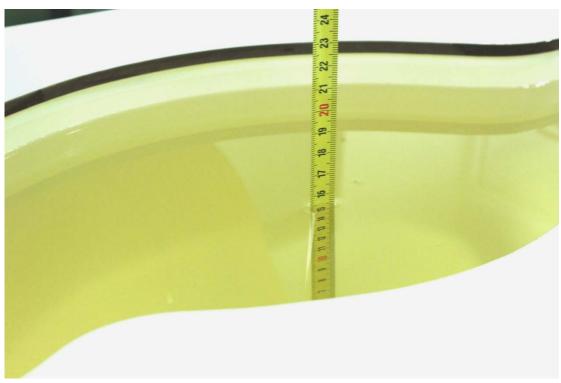
Picture 7-4 Liquid depth in the Flat Phantom (835MHz)



Picture 7-5 Liquid depth in the Head Phantom (1750 MHz)

Picture 7-6 Liquid depth in the Flat Phantom (1750MHz)

Picture 7-7 Liquid depth in the Head Phantom (1900 MHz)

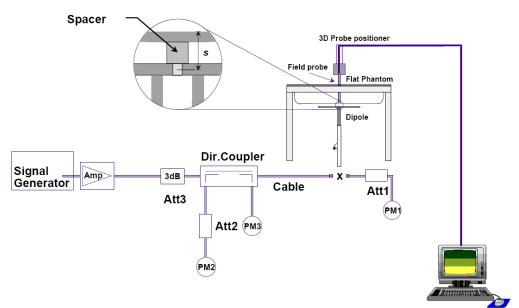


Picture 7-8 Liquid depth in the Flat Phantom (1900MHz)

Picture 7-9 Liquid depth in the Head Phantom (2450MHz)

Picture 7-10 Liquid depth in the Flat Phantom (2450MHz)

Picture 7-11 Liquid depth in the Head Phantom (2600 MHz Head)


Picture 7-12 Liquid depth in the Flat Phantom (2600MHz)

8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The system verification results are required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR. The details are presented in annex B.

Measurement Date	Frequency	Target value (W/kg)		Measure (W/	ed value kg)	Deviation	
(yyyy-mm-	riequelley	10 g	1 g	10 g	1 g	10 g	1 g
dd)		Average	Average	Average	Average	Average	Average
2018/3/1	750 MHz	5.42	8.32	5.52	8.36	1.85%	0.48%
2018/3/2	835 MHz	6.06	9.37	6.08	9.24	0.33%	-1.39%
2018/3/3	1750 MHz	19.4	36.7	19.44	36.76	0.21%	0.16%
2018/3/4	1900 MHz	21.0	40.0	21.32	40	1.52%	0.00%
2018/3/5	2450 MHz	24.7	52.2	25	51.28	1.21%	-1.76%
2018/3/6	2600 MHz	25.8	57.9	25.68	56.76	-0.47%	-1.97%
2018/4/1	750 MHz	5.42	8.32	5.32	8.48	-1.85%	1.92%
2018/4/2	835 MHz	6.06	9.37	6	9.48	-0.99%	1.17%
2018/4/3	1750 MHz	19.4	36.7	19.76	36.56	1.86%	-0.38%
2018/4/4	1900 MHz	21.0	40.0	20.92	40.36	-0.38%	0.90%
2018/4/6	2600 MHz	25.8	57.9	25.88	57.72	0.31%	-0.31%
		Table 8.2:	System Ve	rification of	f Body		

Table 8.1:	Svstem	Verification	of Head

	Table 8.2: System Verification of Body										
Measurement Date		Target val	ue (W/kg)	Measure (W/	ed value kg)	Deviation					
(yyyy-mm- dd)	Frequency	10 g Average	1 g Average	10 g Average	1 g Average	10 g Average	1 g Average				
2018/3/1	750 MHz	5.68	8.66	5.6	8.56	-1.41%	-1.15%				
2018/3/2	835 MHz	6.12	9.41	6.2	9.56	1.31%	1.59%				
2018/3/3	1750 MHz	19.8	37.1	19.72	37.72	-0.40%	1.67%				
2018/3/4	1900 MHz	21.5	40.5	21.4	40.8	-0.47%	0.74%				
2018/3/5	2450 MHz	23.8	50.4	23.68	49.52	-0.50%	-1.75%				
2018/3/6	2600 MHz	24.8	55.5	24.56	55.36	-0.97%	-0.25%				
2018/4/1	750 MHz	5.68	8.66	5.68	8.64	0.00%	-0.23%				
2018/4/2	835 MHz	6.12	9.41	6.12	9.52	0.00%	1.17%				
2018/4/3	1750 MHz	19.8	37.1	19.6	37.56	-1.01%	1.24%				
2018/4/4	1900 MHz	21.5	40.5	21.88	40.76	1.77%	0.64%				
2018/4/6	2600 MHz	24.8	55.5	25.08	55.6	1.13%	0.18%				

9 Measurement Procedures

9.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in picture 9.1.

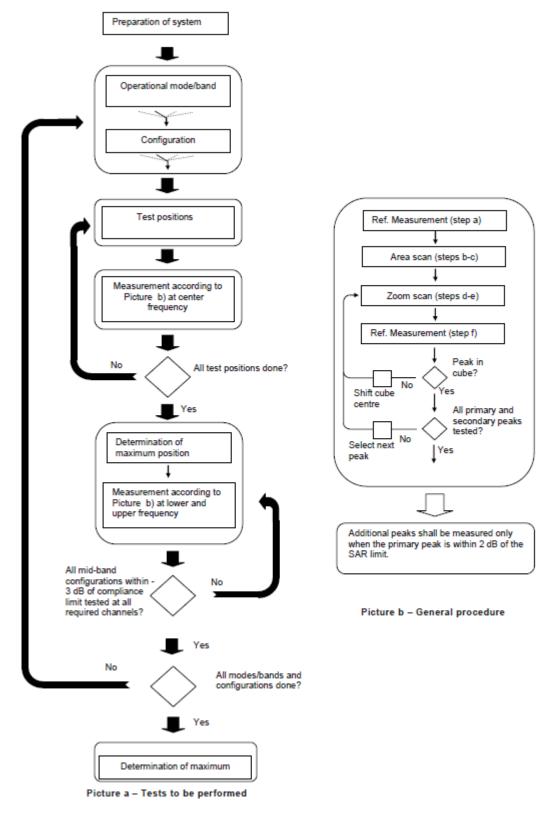
Step 1: The tests described in 9.2 shall be performed at the channel that is closest to the center of

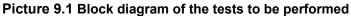
the transmit frequency band (f_c) for:

a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in annex D),

b) all configurations for each device position in a), e.g., antenna extended and retracted, and

c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.


If more than three frequencies need to be tested according to 11.1 (i.e., N_c > 3), then all


frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 9.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

9.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

			\leq 3 GHz	> 3 GHz		
Maximum distance from (geometric center of pro			5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$		
Maximum probe angle f normal at the measurem			30°±1°	20° ± 1°		
			$\leq 2 \text{ GHz:} \leq 15 \text{ mm}$ 2 – 3 GHz: $\leq 12 \text{ mm}$	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$		
Maximum area scan spa	atial resoluti	on: Δx _{Ares} , Δy _{Area}	When the x or y dimension of t measurement plane orientation measurement resolution must b dimension of the test device with point on the test device.	, is smaller than the above, the \leq the corresponding x or y		
Maximum zoom scan sp	patial resolu	tion: Δx _{Zoom} , Δy _{Zoom}	$\leq 2 \text{ GHz} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	3 – 4 GHz: ≤ 5 mm [*] 4 – 6 GHz: ≤ 4 mm [*]		
Ø	uniform g	rid: Δz _{Zoom} (n)	≤ 5 mm	$3 - 4 \text{ GHz} \le 4 \text{ mm}$ $4 - 5 \text{ GHz} \le 3 \text{ mm}$ $5 - 6 \text{ GHz} \le 2 \text{ mm}$		
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz} \le 3 \text{ mm}$ $4 - 5 \text{ GHz} \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz} \le 2 \text{ mm}$		
surface	grid	∆z _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$			
Minimum zoom scan volume	x, y, z	1	≥ 30 mm	$3 - 4 \text{ GHz}: \ge 28 \text{ mm}$ $4 - 5 \text{ GHz}: \ge 25 \text{ mm}$ $5 - 6 \text{ GHz}: \ge 22 \text{ mm}$		

* When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9.3 WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

Sub-test	eta_{c}	eta_{d}	eta_d (SF)	eta_c / eta_d	$eta_{\scriptscriptstyle hs}$	CM/dB
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15	15/15	64	12/15	24/25	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

For Release 5 HSDPA Data Devices:

For Release 6 HSPA Data Devices

Sub- test	eta_{c}	eta_{d}	β _d (SF)	eta_c / eta_d	$eta_{\scriptscriptstyle hs}$	$eta_{\scriptscriptstyle ec}$	$eta_{_{ed}}$	eta_{ed}	eta_{ed}	CM (dB)	MPR (dB)	AG Index	E- TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	1.5	1.5	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	1.5	1.5	12	67
3	15/15	9/15	64	15/9	30/15	30/15	$egin{aligned} η_{ed1}{}^{:47/15} \ η_{ed2}{}^{:47/15} \end{aligned}$	4	2	1.5	1.5	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	1.5	1.5	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	1.5	1.5	21	81

Rel.8 DC-HSDPA (Cat 24)

SAR test exclusion for Rel.8 DC-HSDPA must satisfy the SAR test exclusion requirements of Rel.5 HSDPA. SAR test exclusion for DC-HSDPA devices is determined by power measurements according to the H-Set 12, Fixed Reference Channel (FRC) configuration in Table C.8.1.12 of 3GPP TS 34.121-1. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to qualify for SAR test exclusion.

9.4 SAR Measurement for LTE

SAR tests for LTE are performed with a base station simulator, Rohde & Rchwarz CMW500. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. All powers were measured with the CMW 500.

It is performed for conducted power and SAR based on the KDB941225 D05.

SAR is evaluated separately according to the following procedures for the different test positions in each exposure condition – head, body, body-worn accessories and other use conditions. The procedures in the following subsections are applied separately to test each LTE frequency band.

1) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

- QPSK with 50% RB allocation
 The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.
- 3) QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

9.5 Bluetooth & Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.6 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in section 14 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10 Area Scan Based 1-g SAR

10.1 Requirement of KDB

According to the KDB447498 D01 v05, when the implementation is based the specific polynomial fit

algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-g SAR is \leq 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

10.2 Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz) and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55 wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm are 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively. The paper describing the algorithm in detail is expected to be published in August 2004 within the Special Issue of Transactions on MTT.

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.

11 Conducted Output Power

11.1 GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

GSM850 #1											
		Meas	ured Power	(dBm)		Frame B	urst Power	(dBm)			
Config	Tung up	CH251	CH190	CH128	Caculation	CH251	CH190	CH128			
Config	Tune-up	848.8 MHz	836.6 MHz	824.2 MHz		848.8 MHz	836.6 MHz	824.2 MHz			
GSM Speech	34.00	33.09	33.08	32.99							
GPRS 1 Txslot	34.00	33.12	33.09	32.99	-9.03	24.09	24.06	23.96			
GPRS 2 Txslots	30.50	29.72	29.65	29.51	-6.02	23.70	23.63	23.49			
GPRS 3 Txslots	28.50	27.66	27.59	27.47	-4.26	23.40	23.33	23.21			
GPRS 4 Txslots	28.00	27.06	27.02	26.86	-3.01	24.05	24.01	23.85			
EGPRS GMSK 1 Txslot	34.00	33.09	33.07	32.98	-9.03	24.06	24.04	23.95			
EGPRS GMSK 2 Txslots	30.50	29.70	29.63	29.50	-6.02	23.68	23.61	23.48			
EGPRS GMSK 3 Txslots	28.50	27.64	27.57	27.46	-4.26	23.38	23.31	23.20			
EGPRS GMSK 4 Txslots	28.00	27.04	27.00	26.85	-3.01	24.03	23.99	23.84			
EGPRS 8PSK 1 Txslot	27.00	26.27	26.06	25.95	-9.03	17.24	17.03	16.92			
EGPRS 8PSK 2 Txslots	26.00	25.06	25.37	25.22	-6.02	19.04	19.35	19.20			
EGPRS 8PSK 3 Txslots	25.50	24.46	24.45	24.29	-4.26	20.20	20.19	20.03			
EGPRS 8PSK 4 Txslots	24.25	23.19	23.11	23.02	-3.01	20.18	20.10	20.01			

Table 11-1 GSM850 #1

Table 11-2 PCS1900 #1

			PCS19	00 #1				
		Measu	ured Power	(dBm)		Frame B	(dBm)	
Config	Tune-up	CH810 1909.8 MHz	CH661 1880 MHz	CH512 1850.2 MHz	Caculation	CH810 1909.8 MHz	CH661 1880 MHz	CH512 1850.2 MHz
GSM Speech	31.00	30.11	30.16	30.25				
GPRS 1 Txslot	31.00	30.13	30.16	30.25	-9.03	21.10	21.13	21.22
GPRS 2 Txslots	28.00	27.04	27.05	27.13	-6.02	21.02	21.03	21.11
GPRS 3 Txslots	26.00	24.98	24.99	25.06	-4.26	20.72	20.73	20.80
GPRS 4 Txslots	25.00	23.90	23.91	23.98	-3.01	20.89	20.90	20.97
EGPRS GMSK 1 Txslot	31.00	30.08	30.14	30.23	-9.03	21.05	21.11	21.20
EGPRS GMSK 2 Txslots	28.00	27.00	27.03	27.13	-6.02	20.98	21.01	21.11
EGPRS GMSK 3 Txslots	26.00	24.95	24.97	25.05	-4.26	20.69	20.71	20.79
EGPRS GMSK 4 Txslots	25.00	23.87	23.88	23.97	-3.01	20.86	20.87	20.96
EGPRS 8PSK 1 Txslot	26.50	25.39	25.46	25.49	-9.03	16.36	16.43	16.46
EGPRS 8PSK 2 Txslots	25.80	24.81	24.76	24.79	-6.02	18.79	18.74	18.77
EGPRS 8PSK 3 Txslots	25.50	24.23	24.16	24.18	-4.26	19.97	19.90	19.92
EGPRS 8PSK 4 Txslots	25.00	23.52	23.54	23.61	-3.01	20.51	20.53	20.60

NOTES:

Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 1Txslot for 850MHz and 1900MHz GPRS&EGPRS.

11.2 WCDMA Measurement result

	WCDMA1900-BII #1											
Measured Power (dBm)												
ltom	Item		CH9538	CH9400	CH9262							
Item			1907.6 MHz	1880 MHz	1852.4 MHz							
WCDMA	RMC	24.00	22.95	22.89	22.84							
	subtest1	21.00	19.80	19.82	19.77							
	subtest2	21.00	19.76	19.83	19.71							
HSUPA	subtest3	22.00	20.79	20.81	20.75							
	subtest4	21.00	19.30	19.33	19.26							
	subtest5	22.00	20.64	20.73	20.69							
HSPA+	١	22.00	20.69	20.63	20.55							
	subtest1	22.00	21.52	21.48	21.42							
DC-HSDPA	subtest2	22.00	21.53	21.49	21.41							
DC-HSDFA	subtest3	22.00	21.51	21.50	21.39							
	subtest4	22.00	21.51	21.49	21.43							

	WCE	DMA850-BV#	#1									
	Measured Power (dBm)											
ltom		Tune-up	CH4233	CH4182	CH4132							
item	ltem		846.6 MHz	835.4 MHz	826.4 MHz							
WCDMA	RMC	24.50	23.18	23.13	23.23							
	subtest1	21.50	19.96	19.89	20.06							
	subtest2	21.50	19.99	19.91	20.04							
HSUPA	subtest3	22.50	20.98	20.90	21.05							
	subtest4	21.00	19.46	19.39	19.57							
	subtest5	22.00	20.83	20.89	20.94							
HSPA+	١	22.00	20.76	20.73	20.82							
	subtest1	22.00	21.63	21.55	21.65							
DC-HSDPA	subtest2	22.00	21.64	21.56	21.67							
DU-115DPA	subtest3	22.00	21.63	21.55	21.68							
	subtest4	22.00	21.65	21.54	21.67							

11.3 LTE Measurement result

Table 11-3 LTE1900-FDD2 #1

		LTE	1900-FDD2 #						
N				Measured Power (dBm) & MPR QPSK 16QAM					
BandWidth	RB No./Start	Channel	Tungun		'SK		AM		
Bandwidth	RB NO./Start	Channel	Tune-up	Measured Power	MPR	Measured Power	MPR		
		19193	24	22.92	0	21.89	1		
	1H	18900	24	22.91	0	22.24	1		
		18607	24	22.90	0	21.91	1		
		19193	24	23.00	0	21.99	1		
	1M	18900	24	23.10	0	22.37	1		
		18607	24	23.50	0	22.06	1		
		19193	24	22.84	0	21.88	1		
	1L	18900	24	22.87	0	22.23	1		
		18607	24	22.90	0	21.89	1		
		19193	24	22.94	0	21.88	1		
1.4MHz	зн	18900	24	22.98	0	22.10	1		
		18607	24	22.90	0	22.12	1		
		19193	24	22.96	0	21.95	1		
	зм	18900	24	22.97	0	22.14	1		
		18607	24	22.99	0	22.16	1		
		19193	24	22.90	0	21.90	1		
	3L	18900	24	22.94	0	22.10	1		
		18607	24	22.84	0	22.10	1		
		19193	24	22.80	1	21.02	2		
	6	18900	24	21.90	1	20.91	2		
		18900	24	21.99	1	20.91	2		
		10007	24	21.01		21.10	2		
	_	10105	24	22.02	0	01.74	1		
	1H	19185	24	22.93	0	21.74	1		
		18900	24	22.94	0	22.26	1		
		18615	24	22.90	0	21.89	1		
		19185	24	23.08	0	21.86	1		
	1M	18900	24	23.06	0	22.41	1		
		18615	24	23.09	0	22.09	1		
		19185	24	22.68	0	21.76	1		
	1L	18900	24	22.71	0	22.28	1		
		18615	24	22.90	0	21.96	1		
		19185	24	21.92	1	20.98	2		
3MHz	8H	18900	24	21.97	1	21.01	2		
		18615	24	21.93	1	21.01	2		
		19185	24	21.89	1	21.03	2		
	8M	18900	24	21.97	1	21.06	2		
		18615	24	21.91	1	21.00	2		
		19185	24	21.89	1	20.98	2		
	8L	18900	24	21.92	1	21.06	2		
		18615	24	21.93	1	20.98	2		
		19185	24	21.85	1	20.94	2		
	15	18900	24	21.91	1	20.98	2		
		18615	24	21.87	1	20.90	2		
		19175	24	22.81	0	21.86	1		
	1H	18900	24	22.92	0	21.98	1		
		18625	24	22.83	0	22.28	1		
		19175	24	23.05	0	22.08	1		
	1M	18900	24	23.18	0	22.21	1		
		18625	24	23.07	0	22.59	1		
		19175	24	22.79	0	21.81	1		
	1L	18900	24	22.93	0	21.96	1		
		18625	24	22.85	0	22.31	1		
		19175	24	21.79	1	20.89	2		
5MHz	12H	18900	24	22.02	1	20.92	2		
		18625	24	21.83	1	21.10	2		
		19175	24	21.90	1	20.98	2		
	12M	18900	24	21.91	1	21.02	2		
		18625	24	21.92	1	21.14	2		
		19175	24	21.88	1	20.97	2		
	12L	18900	24	21.89	1	20.98	2		
		18625	24	21.85	1	21.07	2		
		19175	24	21.87	1	20.83	2		
	25	18900	24	21.93	1	20.89	2		

©Copyright. All rights reserved by CTTL.

No. I18Z60513-SEM01 Page 31 of 229

		19150	24	22.80	0	21.84	1
	1H	18900	24	22.90	0	21.84	1
		18650	24	22.96	0	22.23	1
		19150	24	22.92	0	21.88	1
	1M	18900	24	23.00	0	21.83	1
		18650	24	23.02	0	22.36	1
		19150	24	22.87	0	21.82	1
	1L	18900	24	22.89	0	21.79	1
		18650	24	22.90	0	22.21	1
		19150	24	21.79	1	20.86	2
10MHz	25H	18900	24	21.97	1	20.97	2
	2011	18650	24	21.94	1	21.00	2
	L					20.94	
	0514	19150	24	21.89	1		2
	25M	18900	24	21.94	1	20.98	2
		18650	24	21.92	1	21.00	2
		19150	24	21.91	1	20.99	2
	25L	18900	24	21.94	1	20.95	2
		18650	24	21.90	1	20.96	2
		19150	24	21.91	1	20.87	2
	50	18900	24	21.89	1	20.89	2
		18650	24	21.89	1	20.89	2
		0000	24	21.89	-	20.90	2
	1.000	19125	24	22.76	0	22.10	1
	1H	18900	24	22.75	0	21.73	1
		18675	24	22.86	0	22.13	1
		19125	24	22.94	0	22.21	1
	1M	18900	24	22.92	0	21.82	1
		18675	24	22.97	0	22.25	1
		19125	24	22.84	0	22.22	1
	1L	18900	24	22.84	0	21.69	1
		18675	24	22.86	0	22.14	1
		19125	24	21.86	1	20.86	2
15MHz	36H 36M	18900	24	21.97	1	20.98	2
		18675	24	21.92	1	21.05	2
		19125	24	21.89	1	20.87	2
		18900	24	21.97	1	20.99	2
		18675	24	21.93	1	20.98	2
	1000	19125	24	21.89	1	20.90	2
	36L	18900	24	21.99	1	20.99	2
		18675	24	21.90	1	20.99	2
		19125	24	21.86	1	20.81	2
	75	18900	24	21.96	1	20.96	2
		18675	24	21.94	1	20.97	2
	1	19100	24	22.56	0	21.99	1
	1H						
		18900	24	22.59	0	22.03	1
	L	18700	24	22.67	0	22.13	1
		19100	24	23.03	0	22.39	1
	1M	18900	24	23.04	0	22.38	1
		18700	24	23.05	0	22.53	1
		19100	24	22.59	0	22.05	1
	1L	18900	24	22.62	0	21.95	1
		18700	24	22.61	0	22.08	1
		19100	24	21.62	1	20.66	2
20MHz	50H	18900	24	21.02	1	20.80	2
ZUMITZ	501						
	L	18700	24	21.90	1	20.90	2
		19100	24	21.87	1	20.88	2
	50M	18900	24	21.92	1	20.89	2
		18700	24	21.91	1	20.94	2
		19100	24	21.86	1	20.86	2
	501	18900	24	21.96	1	20.92	2
50L			24	21.84	1	20.89	2
				21.04		20.00	4
		18700			4	20.75	0
		19100	24	21.78	1	20.75	2
	100				1 1 1	20.75 20.96 20.93	2 2 2

Table 11-4 LTE1700-FDD4 #1

		LTE	1700-FDD4 #	#1					
SN		Measured Power (dBm) & MPR							
				QP	SK	160	16QAM		
BandWidth	RB No./Start	Channel	Tune-up	Measured	MPR	Measured	MPR		
				Power		Power			
		20393	24	23.00	0	21.92	1		
	1H	20175	24	22.41	0	21.92	1		
		19957	24	22.56	0	22.23	1		
		20393	24	23.12	0	22.07	1		
	1M	20175	24	23.16	0	22.13	1		
		19957	24	23.06	0	22.42	1		
	11	20393	24	22.95	0	21.90	1		
	1L	20175	24	22.89 22.86	0	21.94	1		
		19957 20393	24 24	22.80	0	22.24 22.13	1		
1.4MHz	зн	20393	24	22.94	0	22.13	1		
1.40012	31	19957	24	22.92	0	21.34	1		
		20393	24	23.03	0	22.10	1		
	ЗM	20333	24	23.00	0	21.98	1		
	0111	19957	24	22.99	0	22.17	1		
		20393	24	22.96	0	22.10	1		
	3L	20333	24	22.90	0	21.93	1		
		19957	24	22.95	0	22.13	1		
		20393	24	22.00	1	21.14	2		
	6	20000	24	21.95	1	21.06	2		
		19957	24	21.95	1	20.85	2		
	1 1								
		20385	24	22.57	0	21.89	1		
	1H	20175	24	22.34	0	21.74	1		
		19965	24	22.58	0	22.32	1		
		20385	24	23.17	0	22.12	1		
	1M	20175	24	23.10	0	21.92	1		
		19965	24	23.08	0	22.46	1		
		20385	24	22.77	0	21.97	1		
	1L	20175	24	22.97	0	21.79	1		
		19965	24	22.90	0	22.27	1		
		20385	24	22.01	1	21.01	2		
3MHz	8H	20175	24	21.94	1	21.01	2		
		19965	24	21.90	1	21.03	2		
		20385	24	22.02	1	21.07	2		
	8M	20175	24	21.99	1	21.08	2		
		19965	24	21.95	1	21.10	2		
		20385	24	22.00	1	21.04	2		
	8L	20175	24	21.94	1	21.06	2		
		19965	24	21.96	1	21.06	2		
		20385	24	21.95	1	20.95	2		
	15	20175	24	21.92	1	20.95	2		
		19965	24	21.94	1	20.97	2		
		20375	24	22.92	0	21.97	1		
	1H	20175	24	22.83	0	21.93	1		
		19975	24	22.98	0	22.35	1		
		20375	24	23.13	0	22.20	1		
	1M	20175	24	23.13	0	22.23	1		
		19975	24	23.09	0	22.62	1		
		20375	24	22.87	0	21.98	1		
	1L	20175	24	22.88	0	21.99	1		
		19975	24	22.84	0	22.37	1		
<i></i>		20375	24	21.90	1	20.98	2		
5MHz	12H	20175	24	21.85	1	20.95	2		
		19975	24	21.88	1	21.09	2		
		20375	24	22.00	1	21.08	2		
	12M	20175	24	21.96	1	21.04	2		
		19975	24	21.96	1	21.15	2		
	401	20375	24	21.89	1	20.97	2		
	12L	20175	24	21.86	1	20.96	2		
		19975	24	21.90	1	21.08	2		
	0.5	20375	24	21.95	1	20.90	2		
	25	20175	24	21.86	1	20.90	2		
		19975	24	21.91	1	20.99	2		

No. I18Z60513-SEM01 Page 33 of 229

		20350	24	22.20	0	22.24	1
	1H	20175	24	22.35	0	21.81	1
		20000	24	22.73	0	21.85	1
		20350	24	23.05	0	22.35	1
	1M	20175	24	23.04	0	21.97	1
		20000	24	23.06	0	21.97	1
		20350	24	22.99	0	22.26	1
	1L	20175	24	22.16	0	21.92	1
		20000	24	22.92	0	21.88	1
		20350	24	21.92	1	20.97	2
10MHz	25H		24		1		2
TOWINZ	251	20175		21.88		20.95	
		20000	24	21.95	1	21.00	2
	Transaction of the	20350	24	21.95	1	21.00	2
	25M	20175	24	21.97	1	21.04	2
		20000	24	22.01	1	21.05	2
		20350	24	21.94	1	21.00	2
	25L	20175	24	21.92	1	20.99	2
	LOL	20000	24	21.97	1	20.98	2
	1.04003	20350	24	21.91	1	20.94	2
	50	20175	24	21.88	1	20.92	2
		20000	24	22.01	1	20.99	2
		20325	24	22.90	0	22.23	1
	1H	20325					-
			24	22.84	0	21.68	1
		20025	24	22.88	0	22.10	1
	3	20325	24	23.07	0	22.43	1
	1M	20175	24	23.02	0	21.86	1
		20025	24	23.08	0	22.38	1
		20325	24	22.94	0	22.30	1
	1L	20175	24	22.92	0	21.81	1
		20025	24	22.97	0	22.26	1
		20325	24	21.97	1	20.98	2
15MHz	36H 36M	20175	24	21.96	1	20.96	2
		20025	24	21.95	1	21.03	2
		20325	24	22.04	1	21.03	2
		20175	24	22.01	1	21.03	2
		20025	24	21.98	1	21.07	2
		20325	24	22.04	1	21.02	2
	36L	20175	24	21.98	1	20.98	2
		20025	24	21.98	1	21.08	2
		20325	24	22.02	1	21.01	2
	75	20175	24	21.95	1	20.95	2
		20025	24	21.98	1	21.02	2
	1		2.				
		20220	24	00.74	0	00.40	4
		20300	24	22.71	0	22.13	1
	1H	20175	24	22.58	0	21.97	1
		20050	24	22.64	0	22.08	1
		20300	24	23.14	0	22.55	1
	1M	20175	24	23.11	0	22.44	1
		20050	24	23.12	0	22.64	1
	L						1
		20300	24	22.76	0	22.14	
	1L	20175	24	22.73	0	22.17	1
	L	20050	24	22.72	0	22.26	1
		20300	24	21.93	1	20.93	2
20MHz	50H	20175	24	21.87	1	20.82	2
		20050	24	22.03	1	21.06	2
		20300	24	22.00	1	21.02	2
	50M	20300	24	21.99	1	20.99	2
	5000						
	L	20050	24	22.04	1	21.09	2
		20300	24	22.09	1	21.11	2
	50L	20175	24	21.93	1	20.92	2
		20050	24	22.05	1	21.09	2
		20300	24	22.05	1	21.05	2
	100	20300	24	21.90	1	20.88	2
	100						
		20050	24	22.03	1	21.07	2

No. I18Z60513-SEM01 Page 34 of 229

Table 11-5 LTE850-FDD5 #1

		LTE	850-FDD5 #					
		Me						
		Channel	T	L	SK	16QAM		
BandWidth	RB No./Start	Channel	Tune-up	Measured Power	MPR	Measured Power	MPR	
		20643	24	22.74	0	21.81	1	
	1H	20525	24	22.71	0	21.97	1	
		20407	24	22.72	0	21.70	1	
		20643	24	22.75	0	22.03	1	
	1M	20525	24	22.78	0	21.92	1	
		20407	24	22.85	0	21.80	1	
		20643	24	22.63	0	21.80	1	
	1L	20525	24	22.65	0	22.00	1	
		20407	24	22.13	0	21.68	1	
		20643	24	22.72	0	21.84	1	
1.4MHz	ЗН	20525	24	22.69	0	21.94	1	
		20407	24	22.71	0	21.83	1	
		20643	24	22.83	0	21.87	1	
	3М	20525	24	22.79	0	21.93	1	
		20407	24	22.78	0	21.86	1	
		20643	24	22.77	0	21.84	1	
	3L	20525	24	22.77	0	21.90	1	
	+	20407	24	22.71	0	21.87	2	
	6	20643 20525	24 24	21.73	1	20.91 20.66	2	
	, v	20525	24	21.71 21.75	1	20.66	2	
	++	20407	24	21.75	1	20.09	2	
	++	20635	24	22.83	0	22.21	1	
	1H	20035	24	22.03	0	22.21	1	
		20325	24	22.87	0	21.00	1	
		20635	24	22.73	0	21.75	1	
	1M	20035	24	22.73	0	21.85	1	
		20325	24	22.78	0	21.83	1	
		20635	24	22.74	0	22.15	1	
	1L	20525	24	22.72	0	21.79	1	
		20415	24	22.75	0	21.69	1	
	8H 8M	20635	24	21.73	1	20.91	2	
3MHz		20525	24	21.76	1	20.81	2	
		20415	24	21.72	1	20.89	2	
		20635	24	21.75	1	20.95	2	
		20525	24	21.78	1	20.84	2	
		20415	24	21.85	1	20.98	2	
		20635	24	21.75	1	20.91	2	
	8L	20525	24	21.73	1	20.79	2	
		20415	24	21.81	1	20.92	2	
		20635	24	21.78	1	20.84	2	
	15	20525	24	21.76	1	20.74	2	
		20415	24	21.77	1	20.79	2	
		20625	24	22.66	0	21.82	1	
	1H	20525	24	22.64	0	21.76	1	
		20425	24	22.73	0	22.19	1	
		20625	24	22.90	0	22.06	1	
	1M	20525	24	22.91	0	22.08	1	
		20425	24	22.97	0	22.44	1	
		20625	24	22.67	0	21.78	1	
	1L	20525	24	22.70	0	21.87	1	
		20425	24	22.70	0	22.15	1	
EN 11		20625	24	21.80	1	20.92	2	
5MHz	12H	20525	24	21.70	1	20.86	2	
		20425	24	21.76	1	20.89	2	
	1014	20625	24	21.76	1	20.90	2	
	12M	20525	24	21.76	1	20.91	2	
		20425	24	21.82	1	21.03	2	
	1	20625	24	21.75	1	20.90	2	
	4.01		24	21.67	1	20.83	2	
	12L	20525				00.00	~	
	12L	20425	24	21.74	1	20.92	2	
	12L 25				1 1 1	20.92 20.80 20.77	2 2 2	

No. I18Z60513-SEM01 Page 35 of 229

		20600	24	22.78	0	21.86	1
	1H	20525	24	22.88	0	21.65	1
		20450	24	22.83	0	22.19	1
		20600	24	22.86	0	21.81	1
	1M	20525	24	22.91	0	21.82	1
		20450	24	22.90	0	22.28	1
		20600	24	22.73	0	21.67	1
	1L	20525	24	22.76	0	21.75	1
		20450	24	22.75	0	21.84	1
		20600	24	21.85	1	20.96	2
10MHz	25H	20525	24	21.79	1	20.83	2
		20450	24	21.93	1	20.97	2
		20600	24	21.88	1	20.96	2
	25M	20525	24	21.85	1	20.88	2
		20450	24	21.89	1	20.96	2
		20600	24	21.97	1	21.02	2
	25L	20525	24	21.77	1	20.85	2
		20450	24	21.95	1	21.02	2
		20600	24	21.93	1	20.97	2
	50	20525	24	21.79	1	20.75	2
		20450	24	21.93	1	20.99	2

No. I18Z60513-SEM01 Page 36 of 229

Table 11-6 LTE2500-FDD7 #1

		LTE	2500-FDD7 #							
						Measured Power (dBm) & MPR				
				<u> </u>	SK	16QAM				
BandWidth	RB No./Start	Channel	Tune-up	Measured Power	MPR	Measured Power	MPR			
		21425	24	23.29	0	22.31	1			
	1H	21100	24	23.25	0	22.28	1			
		20775	24	23.21	0	22.56	1			
		21425	24	23.47	0	22.47	1			
	1M	21100	24	23.46	0	22.43	1			
		20775	24	23.41	0	22.77	1			
		21425	24	23.31	0	22.25	1			
	1L	21100	24	23.29	0	22.24	1			
		20775	24	23.24	0	22.57	1			
		21425	24	22.23	1	21.26	2			
5MHz	12H	21100	24	22.18	1	21.25	2			
		20775	24	22.21	1	21.32	2			
		21425	24	22.29	1	21.30	2			
	12M	21100	24	22.21	1	21.24	2			
		20775	24	22.25	1	21.35	2			
		21425	24	22.31	1	21.27	2			
	12L	21100	24	22.13	1	21.17	2			
		20775	24	22.16	1	21.24	2			
		21425	24	22.27	1	21.16	2			
	25	21100	24	22.19	1	21.18	2			
		20775	24	22.23	1	21.24	2			
		21400	24	23.36	0	22.24	1			
	1H	21100	24	23.28	0	22.14	1			
		20800	24	23.25	0	22.50	1			
		21400	24	23.60	0	22.33	1			
	1M	21100	24	23.36	0	22.21	1			
		20800	24	23.36	0	22.61	1			
		21400	24	23.44	0	22.19	1			
	1L	21100	24	23.35	0	22.13	1			
		20800	24	23.32	0	22.56	1			
		21400	24	22.25	1	21.31	2			
10MHz	25H	21100	24	22.29	1	21.27	2			
		20800	24	22.34	1	21.35	2			
		21400	24	22.33	1	21.35	2			
	25M	21100	24	22.27	1	21.26	2			
		20800	24	22.26	1	21.28	2			
		21400	24	22.37	1	21.38	2			
	25L	21100	24	22.28	1	21.22	2			
		20800	24	22.18	1	21.20	2			
		21400	24	22.27	1	21.25	2			
	50	21100	24	22.25	1	21.21	2			
		20800	24	22.22	1	21.22	2			
		21375	24	23.24	0	22.47	1			
	1H	21100	24	23.23	0	22.49	1			
		20825	24	23.08	0	21.88	1			
		21375	24	23.43	0	22.54	1			
	1M	21100	24	23.33	0	22.56	1			
		20825	24	23.29	0	22.09	1			
		21375	24	23.33	0	22.47	1			
	1L	21100	24	23.29	0	22.44	1			
		20825	24	23.22	0	22.06	1			
	12000	21375	24	22.33	1	21.28	2			
15MHz	36H	21100	24	22.32	1	21.28	2			
		20825	24	22.32	1	21.27	2			
	10000	21375	24	22.46	1	21.41	2			
	36M	21100	24	22.34	1	21.30	2			
		20825	24	22.32	1	21.29	2			
		21375	24	22.45	1	21.44	2			
	36L	21100	24	22.40	1	21.26	2			
		20825	24	22.27	1	21.21	2			
		21375	24	22.41	1	21.33	2			
	75	21100	24	22.33	1	21.27	2			
		20825	24	22.29	1	21.25	2			

No. I18Z60513-SEM01 Page 37 of 229

				1			
		21350	24	23.04	0	22.36	1
	1H	21100	24	23.02	0	22.27	1
		20850	24	22.99	0	22.27	1
		21350	24	23.56	0	22.71	1
	1M	21100	24	23.43	0	22.67	1
		20850	24	23.44	0	22.78	1
		21350	24	23.10	0	22.38	1
	1L	21100	24	23.08	0	22.24	1
		20850	24	23.08	0	22.46	1
		21350	24	22.12	1	21.06	2
20MHz	50H	21100	24	22.28	1	21.21	2
		20850	24	22.14	1	21.12	2
		21350	24	22.28	1	21.22	2
	50M	21100	24	22.25	1	21.22	2
		20850	24	22.23	1	21.22	2
		21350	24	22.25	1	21.25	2
	50L	21100	24	22.22	1	21.14	2
		20850	24	22.04	1	21.04	2
		21350	24	22.19	1	21.15	2
	100	21100	24	22.28	1	21.23	2
		20850	24	22.10	1	21.12	2

Table 11-7 LTE700-FDD12 #1

		LTE	700-FDD12 #					
				Measured Power (dBm) & MPR QPSK 16QAM				
BandWidth	RB No./Start	Channel	Tupe-up		SK		AM	
Banuvviun	RB NO./Start	Channel	Tune-up	Measured Power	MPR	Measured Power	MPR	
		23173	24	22.55	0	21.64	1	
	1H	23095	24	22.60	0	21.72	1	
		23017	24	22.62	0	21.62	1	
		23173	24	22.76	0	21.70	1	
	1M	23095	24	22.77	0	21.85	1	
		23017	24	22.76	0	21.74	1	
		23173	24	22.52	0	21.59	1	
	1L	23095	24	22.62	0	21.70	1	
		23017	24	22.59	0	21.60	1	
		23173	24	22.64	0	21.84	1	
1.4MHz	ЗН	23095	24	22.62	0	21.67	1	
		23017	24	22.73	0	21.83	1	
		23173	24	22.67	0	21.86	1	
	3М	23095	24	22.68	0	21.76	1	
		23017	24	22.70	0	21.87	1	
		23173	24	22.60	0	21.90	1	
	3L	23095	24	22.61	0	21.71	1	
		23017 23173	24	22.66 21.74		21.79 20.84	2	
	6	23173	24 24	21.74	1	20.84	2	
	, v	23095	24	21.67	1	20.81	2	
	+ +	23017	24	21.07		20.76	2	
		22165	24	22.66	0	21.64	1	
	1H	23165 23095	24 24	22.66 22.62	0	21.64	1	
		23095	24	22.02	0	21.55	1	
		23025	24	22.72	0	21.75	1	
	1M	23105	24	22.72	0	21.73	1	
		23035	24	22.85	0	22.18	1	
		23165	24	22.64	0	21.63	1	
	1L	23095	24	22.59	0	21.58	1	
		23025	24	22.69	0	21.98	1	
		23165	24	21.72	1	20.71	2	
3MHz	8Н	23095	24	21.71	1	20.77	2	
		23025	24	21.73	1	20.77	2	
		23165	24	21.77	1	20.76	2	
	8M	23095	24	21.79	1	20.83	2	
	1 1	23025	24	21.77	1	20.82	2	
		23165	24	21.75	1	20.72	2	
	8L	23095	24	21.71	1	20.80	2	
		23025	24	21.71	1	20.77	2	
		23165	24	21.69	1	20.61	2	
	15	23095	24	21.70	1	20.70	2	
		23025	24	21.71	1	20.73	2	
		23155	24	22.56	0	21.66	1	
	1H	23095	24	22.60	0	21.69	1	
		23035	24	22.57	0	22.08	1	
		23155	24	22.85	0	21.89	1	
	1M	23095	24	22.88	0	21.94	1	
		23035	24	22.82	0	22.33	1	
		23155	24	22.51	0	21.57	1	
	1L	23095	24	22.61	0	21.74	1	
		23035	24	22.49	0	22.02	1	
-		23155	24	21.60	1	20.63	2	
5MHz	12H	23095	24	21.66	1	20.75	2	
		23035	24	21.65	1	20.80	2	
	1011	23155	24	21.75	1	20.76	2	
	12M	23095	24	21.72	1	20.80	2	
		23035	24	21.74	1	20.84	2	
		23155	24	21.70	1	20.69	2	
	12L		24	21.65	1	20.73	2	
	12L	23095				00.75	6	
	12L	23035	24	21.65	1	20.79	2	
	12L 25				1 1 1	20.79 20.61 20.69	2 2 2	

No. I18Z60513-SEM01 Page 39 of 229

		23130	24	22.68	0	22.00	1
	1H	23095	24	22.56	0	21.58	1
		23060	24	22.62	0	21.54	1
		23130	24	22.73	0	22.04	1
	1M	23095	24	22.69	0	21.75	1
		23060	24	22.73	0	21.70	1
		23130	24	22.64	0	21.99	1
	1L	23095	24	22.59	0	21.64	1
		23060	24	22.58	0	21.52	1
		23130	24	21.60	1	20.63	2
10MHz	25H	23095	24	21.73	1	20.79	2
		23060	24	21.77	1	20.79	2
		23130	24	21.68	1	20.67	2
	25M	23095	24	21.74	1	20.82	2
		23060	24	21.76	1	20.74	2
		23130	24	21.65	1	20.64	2
	25L	23095	24	21.72	1	20.76	2
		23060	24	21.73	1	20.70	2
		23130	24	21.65	1	20.61	2
	50	23095	24	21.75	1	20.73	2
		23060	24	21.77	1	20.74	2

No. I18Z60513-SEM01 Page 40 of 229

Table 11-8 LTE750-FDD13 #1

		LTE	750-FDD13 #	± 1		· · · ·	
				Mea	asured Pow	er (dBm) & MF	۳R
				QPS	SK	16Q/	AM
BandWidth	RB No./Start	Channel	Tune-up	Measured Power	MPR	Measured Power	MPR
		23255	24	22.65	0	21.68	1
	1H	23230	24	22.71	0	21.76	1
		23205	24	22.66	0	22.11	1
		23255	24	22.87	0	21.91	1
	1M	23230	24	22.95	0	21.96	1
		23205	24	22.88	0	22.31	1
		23255	24	22.67	0	21.71	1
	1L	23230	24	22.73	0	21.73	1
		23205	24	22.60	0	22.04	1
		23255	24	21.66	1	20.77	2
5MHz	12H	23230	24	21.72	1	20.84	2
		23205	24	21.70	1	20.91	2
		23255	24	21.72	1	20.81	2
	12M	23230	24	21.74	1	20.86	2
		23205	24	21.74	1	20.94	2
		23255	24	21.66	1	20.77	2
	12L	23230	24	21.68	1	20.84	2
		23205	24	21.66	1	20.82	2
		23255	24	21.67	1	20.64	2
	25	23230	24	21.73	1	20.75	2
		23205	24	21.75	1	20.80	2
		Н	24		0		1
	1H	М	24		0		1
		23230	24	22.74	0	21.98	1
		H	24		0		1
	1M	М	24		0		1
		23230	24	22.90	0	22.23	1
		H	24		0		1
	1L	M	24	00.74	0	04.00	1
		23230	24	22.74	0	21.96	1
10MHz	0511	H	24		1		2
	25H	M 23230	24 24	21.79	1 1	20.83	2
				21.79		20.03	
	25M	<u>Н</u> М	24 24		1 1		2
	ZOIVI	23230	24	21.75	1	20.86	2
		 H	24	21.75	1	20.00	2
	25L	M	24		1		2
	ZJL	23230	24	21.69	1	20.78	2
		H	24	21.03	1	20.70	2
	50	M	24		1		2
50	111	L - T				4	

No. I18Z60513-SEM01 Page 41 of 229

11.4 Wi-Fi and BT Measurement result

The output power of BT antenna is as following:

Table 11-9 Bluetooth Power

Bluetooth Power									
Mode	Channel	Frequence	Tune-up	Measured					
	78	2480 MHz	7	6.3					
GFSK	39	2441 MHz	7	6.92					
	0	2402 MHz	7	6.52					
	78	2480 MHz	6	4.95					
EDR2M-4_DQPSK	39	2441 MHz	6	5.71					
- 1919 -	0	2402 MHz	6	5.22					
and the second second	78	2480 MHz	6	5.04					
EDR3M-8DPSK	39	2441 MHz	6	5.82					
	0	2402 MHz	6	5.35					

The average conducted power for Wi-Fi is as following:

Table 11-10 WLAN2450 #1

Band	Mode	Channel	Frequence	Data Rate	Tune-up	Measured
		11	2462 MHz		10.00	9.78
		6	2437 MHz	1Mbps	11.00	10.89
		1	2412 MHz		10.00	9.09
		11	2462 MHz		1	1
		6	2437 MHz	2Mbps	11.00	10.56
	000 441	1	2412 MHz		1	1
	802.11b	11	2462 MHz		1	1
		6	2437 MHz	5.5Mbps	11.00	10.57
		1	2412 MHz		1	1
		11	2462 MHz		1	1
		6	2437 MHz	11Mbps	11.00	10.54
		1	2412 MHz		1	1
		11	2462 MHz		8.50	8.44
		6	2437 MHz	6Mbps	8.50	8.39
		1	2412 MHz		8.50	7.09
		11	2462 MHz		8.50	6.67
		6	2437 MHz	9Mbps	1	1
		1	2412 MHz		1	1
		11	2462 MHz		8.50	7.46
		6	2437 MHz	12Mbps	1	1
		1	2412 MHz		1	/
		11	2462 MHz		8.50	7.45
		6	2437 MHz	18Mbps	1	1
	002.110	1	2412 MHz		1	1
	802.11g	11	2462 MHz	24Mbps 36Mbps	8.50	6.61
		6	2437 MHz		1	1
		1	2412 MHz		1	1
		11	2462 MHz		8.50	6.54
		6	2437 MHz		1	1
WLAN 2.4G		1	2412 MHz		1	1
20M		11	2462 MHz		8.50	7.37
2000		6	2437 MHz	48Mbps	1	1
		1	2412 MHz		1	1
		11	2462 MHz		8.50	7.36
		6	2437 MHz	54Mbps	1	1
		1	2412 MHz		1	1
		11	2462 MHz		8.00	7.73
		6	2437 MHz	MCS0	8.00	6.95
		1	2412 MHz		8.00	6.51
		11	2462 MHz		8.00	7.62
		6	2437 MHz	MCS1	1	1
		1	2412 MHz		1	1
		11	2462 MHz		8.00	7.68
		6	2437 MHz	MCS2	1	1
		1	2412 MHz	1.00	1	1
		11	2462 MHz		8.00	7.42
		6	2437 MHz	MCS3	1	1
	802.11n	1	2412 MHz	1	1	1

No. I18Z60513-SEM01 Page 43 of 229

	20M	11	2462 MHz		8.00	7.59
	1 [6	2437 MHz	MCS4	1	/
	1 [1	2412 MHz		1	/
	- I - I	11	2462 MHz		8.00	6.56
	1 1	6	2437 MHz	MCS5	1	/
	1 1	1	2412 MHz		1	1
	I [11	2462 MHz	e e	8.00	6.59
	1 1	6	2437 MHz	MCS6	1	/
	1 1	1	2412 MHz		1	1
	I [11	2462 MHz		8.00	6.31
	1 1	6	2437 MHz	MCS7	1	/
	1 1	1	2412 MHz		1	1
	2 2	9	2452 MHz	6	8.00	7.75
	1 F	6	2437 MHz	MCS0	8.00	7.26
	1 I	3	2422 MHz		8.00	6.99
	1 F	9	2452 MHz	MCS1	8.00	7.72
	1 F	6	2437 MHz		/	1
	1 F	3	2422 MHz		1	1
		9	2452 MHz		8.00	7.69
	1 F	6	2437 MHz	MCS2	/	/
	1 1	3	2422 MHz		1	/
	1 F	9	2452 MHz		8.00	7.63
		6	2437 MHz	MCS3	/	1
WLAN 2.4G	802.11n	3	2422 MHz		1	1
40M	40M	9	2452 MHz		8.00	7.37
		6	2437 MHz	MCS4	/	1
		3	2422 MHz		1	1
		9	2452 MHz		8.00	6.39
		6	2437 MHz	MCS5	/	/
		3	2422 MHz		/	1
	I F	9	2452 MHz		8.00	6.43
		6	2437 MHz	MCS6	/	/
		3	2422 MHz		1	1
	1 F	9	2452 MHz		8.00	6.38
		6	2437 MHz	MCS7	/	/
	1 F	3	2422 MHz		1	

12 Simultaneous TX SAR Considerations

12.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. For this device, the BT and Wi-Fi can transmit simultaneous with other transmitters.

12.2 Transmit Antenna Separation Distances

Picture 12.1 Antenna Locations

12.3 SAR Measurement Positions

According to the KDB941225 D06 Hot Spot SAR v01, the edges with less than 2.5 cm distance to the antennas need to be tested for SAR.

SAR measurement positions								
Mode Front Rear Left edge Right edge Top edge Bottom edge								
Main antenna	Yes	Yes	Yes	Yes	No	Yes		
WLAN	Yes	Yes	No	Yes	Yes	No		

12.4 Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

			SAR test	RF outp	ut power		
Band/Mode	F(GHz)	Position	exclusion threshold (mW)	dBm	mW	SAR test exclusion	
Pluotooth	2.441	Head	9.6	7	5.01	Yes	
Bluetooth		Body	19.2	7	5.01	Yes	
2.4GHz WLAN 802.11 b	2.45	Head	9.58	11	12.59	No	
	2.45	Body	19.17	11	12.59	Yes	

Table 12.1: Standalone SAR test exclusion considerations

Note: The result of WLAN Head is lower than 0.01

13 Evaluation of Simultaneous

Table 13.1: The sum of reported SAR values for main antenna and WiFi

	Position	Main antenna	WiFi	Sum
Highest reported				
SAR value for	Left hand, Touch cheek	0.23	<0.01	0.23
Head				
Highest reported				
SAR value for	Bottom	1.27	/	1.27
Body				

Table 13.2: The sum of reported SAR values for main antenna and BT

	Position	Main antenna	BT	Sum	
Maximum reported	Left hand, Touch cheek	0.23	0.21	0.44	
SAR value for Head		0.23	0.21	0.44	
Maximum reported	Bottom	1.27	0.10	1.37	
SAR value for Body	Bottom	1.27	0.10	1.37	

[1] - Estimated SAR for Bluetooth (see the table 13.3)

Mode/Band	F (GHz)	Position	Distance	Upper limit	Estimate d _{1g}	
WOUE/Ballu	F (GHZ)	POSICION	(mm)	dBm	mW	(W/kg)
Bluetooth	2.441	Head	5	7	5.01	0.21
Bluetooth	2.441	Body	10	7	5.01	0.10
WLAN	2.441	Head	5	11	12.59	0.52

* - Maximum possible output power declared by manufacturer

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

Conclusion:

According to the above tables, the sum of reported SAR values is<1.6W/kg. So the simultaneous transmission SAR with volume scans is not required.

14 SAR Test Result

It is determined by user manual for the distance between the EUT and the phantom bottom. The distance is 10 mm and just applied to the condition of body worn accessory.

It is performed for all SAR measurements with area scan based 1-g SAR estimation (Fast SAR). A zoom scan measurement is added when the estimated 1-g SAR is the highest measured SAR in each exposure configuration, wireless mode and frequency band combination or more than 1.2W/kg.

The calculated SAR is obtained by the following formula:

Reported SAR = Measured SAR $\times 10^{(P_{Target} - P_{Measured})/10}$

Where P_{Target} is the power of manufacturing upper limit;

P_{Measured} is the measured power in chapter 11.

Mode	Duty Cycle
Speech for GSM850/1900	1:8.3
GPRS&EGPRS for GSM850/1900	1:8.3
WCDMA<E	1:1

14.1 Evaluation of multi-batteries and SIM slots

Note: B1: CAC2400008C1 B2: CAC2400009C7

We'll perform the head measurement in all bands with the primary battery depending on the evaluation of multi-batteries retest on highest value point with other battery. Then, repeat the measurement in the Body test.

frequency		Mode/Band	Side	Position	BatteryType	1g SAR	PowerDrift	
MHz	Channel	WOUE/Danu	Side	FOSILION	BatteryType	(W/kg)	FowerDint	
1880	661	PCS1900	Right	Cheek	CAC2400008C1	0.139	0.08	
1880	661	PCS1900	Right	Cheek	CAC2400009C7	0.154	0.15	

Note: According to the values in the above table, the battery, B2, is the primary

battery. We'll perform the head measurement with this battery and retest on highest value point

with others.

frequency		Mode/Band	Position	Pottom/Turno	1g SAR	BoworDrift	
MHz	Channel	woue/banu	Position	BatteryType	(W/kg)	PowerDrift	
836.6	190	GSM850	Rear	CAC2400008C1	0.292	0.11	
836.6	190	GSM850	Rear	CAC2400009C7	0.307	-0.17	

Note: According to the values in the above table, the battery, B2, is the primary

battery. We'll perform the Body measurement with this battery and retest on highest value point with others.

14.2 SAR results

Note: H1: CCB0046A10C1 H2: CCB0046A10C4

GSM850 #1 Head									
Ambient T	emperature:		22.	2		Liquid Temperature:		22.1	
	Device	SAR		sured SAR [Rep	orted SAR [N	V/kg]	
Mode		measurement	CH251	CH190	CH128	CH251	CH190	CH128	
								824.2 MHz	
	Tur	ne-up	34.00	34.00	34.00		Scaling factor	*	
	Slot Average	e Power [dBm]	33.09	33.08	32.99	1.23	1.24	1.26	
		1g SAR	0.189	0.178	0.18	0.23	0.22	0.23	
	Left Cheek	10g SAR	0.142	0.135	0.14	0.18	0.17	0.18	
		Deviation	0.14	0.09	0.1	0.14	0.09	0.10	
	Left Tilt	1g SAR		0.105			0.13		
GSM		10g SAR		0.081			0.10		
GSIVI		Deviation		-0.04			-0.04		
	Right Cheek	1g SAR		0.159			0.20		
		10g SAR		0.123			0.15		
		Deviation		0.13			0.13		
		1g SAR		0.135			0.17		
	Right Tilt	10g SAR		0.105			0.13		
		Deviation		-0.07			-0.07		
GSM		1g SAR	0.163			0.20			
B1	Left Cheek	10g SAR	0.117			0.14			
вт		Deviation	0.15			0.15			

Table 14-1 GSM850 #1 Head

Table 14-2 GSM850 #1 Body

			GS	M850 #1 Bod	y				
Ambient Temperature: 22.2						Liquid Temperature: 22.1			
	Device	SAR		sured SAR		Rep	orted SAR [V	V/kg]	
Mode		measurement	CH251	CH190	CH128	CH251	CH190	CH128	
								824.2 MHz	
		ne-up	34.00	34.00	34.00		Scaling factor		
	Slot Average	e Power [dBm]	33.09	33.07	32.98	1.23	1.24	1.26	
		1g SAR		0.163			0.20		
	Front	10g SAR		0.125			0.15		
		Deviation		0.09			0.09		
		1g SAR	0.267	0.307	0.294	0.33	0.38	0.37	
	Rear	10g SAR	0.204	0.232	0.223	0.25	0.29	0.28	
GPRS 1		Deviation	-0.09	-0.17	-0.1	-0.09	-0.17	-0.10	
Txslot	Left edge	1g SAR		0.187			0.23		
TASIO		10g SAR		0.125			0.15		
		Deviation		0.15			0.15		
		1g SAR		0.154			0.19		
	Right edge	10g SAR		0.107			0.13		
		Deviation		0.04			0.04		
		1g SAR		0.076			0.09		
	Bottom edge	10g SAR		0.049			0.06		
		Deviation		0.08			0.08		
	Tur	ne-up	34.00	34.00	34.00	Scaling factor*		r*	
EGPRS	Slot Average	e Power [dBm]	33.09	33.07	32.98	1.23	1.24	1.26	
GMSK 1		1g SAR		0.282			0.35		
Txslot	Rear	10g SAR		0.218			0.27		
	140010-0-000A	Deviation		0.02			0.02		
GPRS 1		1g SAR		0.292			0.36		
Txslot	Rear	10g SAR		0.225			0.28		
B1		Deviation		0.11			0.11		

©Copyright. All rights reserved by CTTL.

B1

0.08

PCS1900 #1 Head Ambient Temperature: 22.2 Liquid Temperature: 22.1 Measured SAR [W/kg] 310 | CH661 | CH512 Reported SAR [W/kg] CH810 | CH661 | CH512 Device SAR CH810 Mode orientation measurement 1909.8 1850.2 1909.8 1880 MHz 880 MHz 1850.2 Tune-up 31.00 31.00 31.00 Scaling factor* Slot Average Power [dBm] 30.16 30.25 1.23 1.21 1.19 30.11 1g SAR 0.109 0.13 Left Cheek 10g SAR 0.072 0.09 Deviation 0.02 0.02 1g SAR 0.083 0.10 Left Tilt 10g SAR 0.053 0.06 GSM Deviation 0.16 0.16 1g SAR 0.13 0.14 0.19 0.15 0.118 0.154 **Right Cheek** 10g SAR 0.075 0.094 0.081 0.09 0.11 0.10 Deviation 0.09 0.15 0.1 0.09 0.15 0.10 1g SAR 0.067 0.08 **Right Tilt** 10g SAR 0.044 0.05 Deviation -0.14 -0.14 1g SAR 0.139 0.17 GSM Right Cheek 10g SAR 0.072 0.09

Table 14-3 PCS1900 #1 Head

Table 14-4 PCS1900 #1 Body

0.08

Deviation

			PC	CS1900 #1 Bod	у			
Ambient T	emperature:	22.2				Liquid Te	mperature:	22.1
	Device	SAR	Measured SAR [W/kg]				orted SAR [M	//kg]
Mode		measurement	CH810	CH661	CH512	CH810	CH661	CH512
			1909.8	1880 MHz	1850.2	1909.8	1880 MHz	1850.2
		ne-up	31.00	31.00	31.00		Scaling factor	
	Slot Average	e Power [dBm]	30.13	30.16	30.25	1.22	1.21	1.19
		1g SAR		0.247			0.30	
	Front	10g SAR		0.135			0.16	
		Deviation		0.04			0.04	
		1g SAR		0.607			0.74	
	Rear	10g SAR		0.305			0.37	
GPRS 1		Deviation		0.13			0.13	
Txslot	Left edge	1g SAR		0.08			0.10	
TASIO		10g SAR		0.047			0.06	
		Deviation		0.06			0.06	
		1g SAR		0.098			0.12	
	Right edge	10g SAR		0.055			0.07	
		Deviation		0.15			0.15	
		1g SAR	0.615	0.76	0.998	0.75	0.92	1.19
	Bottom edge	10g SAR	0.317	0.395	0.524	0.39	0.48	0.62
		Deviation	0.09	0.12	0.03	0.09	0.12	0.03
	Tur	ne-up	31.00	31.00	31.00	3	Scaling factor*	
EGPRS	Slot Average	e Power [dBm]	30.08	30.14	30.23	1.23	1.22	1.19
GMSK 1		1g SAR			0.976			1.16
Txslot	Bottom edge	10g SAR			0.505			0.60
		Deviation			0.05			0.05
GPRS 1		1g SAR			0.876			1.04
Txslot	Bottom edge	10g SAR			0.441			0.52
B1		Deviation			0.08			0.08