

Report No.: SZEM161000852205

Appendix A

Detailed System Validation Results

System Performance Check for Body
System Performance Check 750MHz Body
System Performance Check 835MHz Body
System Performance Check 1800MHz Body
System Performance Check 1900MHz Body
System Performance Check 2450MHz Body
System Performance Check 2600MHz Body
System Performance Check D5.2GHz Body
System Performance Check D5.6GHz Body

Test Laboratory: SGS-SAR Lab

System Performance Check 750 MHz Body

DUT: D750V3; Type: D750V3; Serial: 1126

Communication System: UID 0, CW (0); Frequency: 750 MHz; Duty Cycle: 1:1

Medium: MSL750; Medium parameters used: f = 750 MHz; $\sigma = 0.942$ S/m; $\varepsilon_r = 56.086$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(10.41, 10.41, 10.41); Calibrated: 2015-11-27;

• Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE3 Sn569; Calibrated: 2015-11-24

• Phantom: SAM 2; Type: SAM V4.0; Serial: 1193

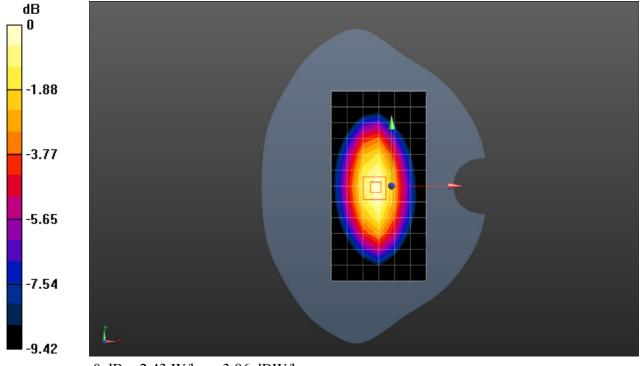
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=15mm, Pin=250mW/Area Scan (7x13x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 2.37 W/kg

Body/d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.04 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 3.33 W/kg

SAR(1 g) = 2.26 W/kg; SAR(10 g) = 1.51 W/kg

Maximum value of SAR (measured) = 2.43 W/kg

0 dB = 2.43 W/kg = 3.86 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 835 MHz Body

DUT: D835V2; Type: D835V2; Serial: 4d105

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL835; Medium parameters used: f = 835 MHz; $\sigma = 0.98$ S/m; $\epsilon_r = 55.375$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(10.16, 10.16, 10.16); Calibrated: 2015-11-27;

• Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE3 Sn569; Calibrated: 2015-11-24

• Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283

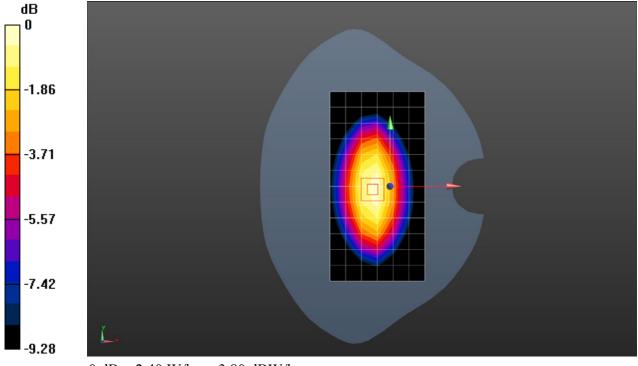
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=15mm, Pin=250mW/Area Scan (7x13x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 2.33 W/kg

Body/d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 49.88 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 3.25 W/kg

SAR(1 g) = 2.23 W/kg; SAR(10 g) = 1.5 W/kg

Maximum value of SAR (measured) = 2.40 W/kg

0 dB = 2.40 W/kg = 3.80 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 1800 MHz Body

DUT: D1800V2; Type: D1800V2; Serial: 2d070

Communication System: UID 0, CW (0); Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: MSL1750; Medium parameters used: f = 1800 MHz; $\sigma = 1.535$ S/m; $\varepsilon_r = 54.359$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(8.49, 8.49, 8.49); Calibrated: 2015-11-27;

• Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE3 Sn569; Calibrated: 2015-11-24

• Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283

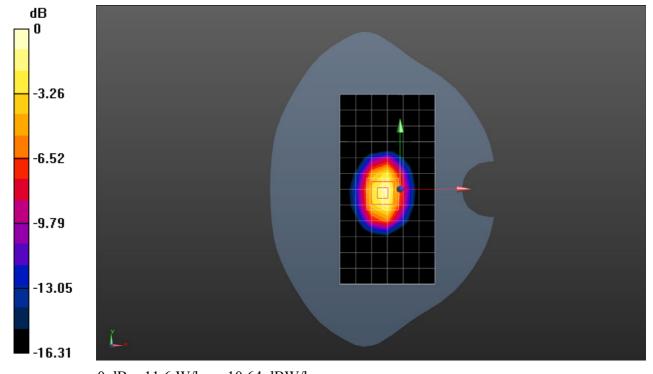
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (7x13x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 10.4 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.66 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 18.7 W/kg

SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.58 W/kg

Maximum value of SAR (measured) = 11.6 W/kg

0 dB = 11.6 W/kg = 10.64 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 1800 MHz Body

DUT: D1800V2; Type: D1800V2; Serial: 2d070

Communication System: UID 0, CW (0); Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: MSL1750; Medium parameters used: f = 1800 MHz; $\sigma = 1.525$ S/m; $\varepsilon_r = 52.9$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(8.49, 8.49, 8.49); Calibrated: 2015-11-27;

• Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE3 Sn569; Calibrated: 2015-11-24

• Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283

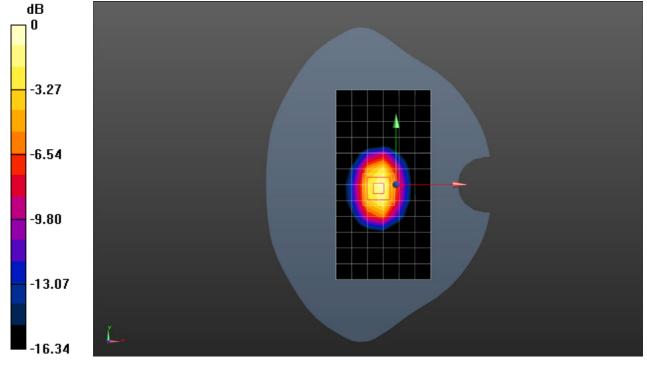
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (7x13x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 10.4 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.66 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 18.6 W/kg

SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.54 W/kg

Maximum value of SAR (measured) = 11.6 W/kg

0 dB = 11.6 W/kg = 10.64 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 1900 MHz Body

DUT: D1900V2; Type: D1900V2; Serial: 5d028

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL1900; Medium parameters used: f = 1900 MHz; $\sigma = 1.523$ S/m; $\varepsilon_r = 52.205$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(8.2, 8.2, 8.2); Calibrated: 2015-11-27;

• Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE3 Sn569; Calibrated: 2015-11-24

• Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283

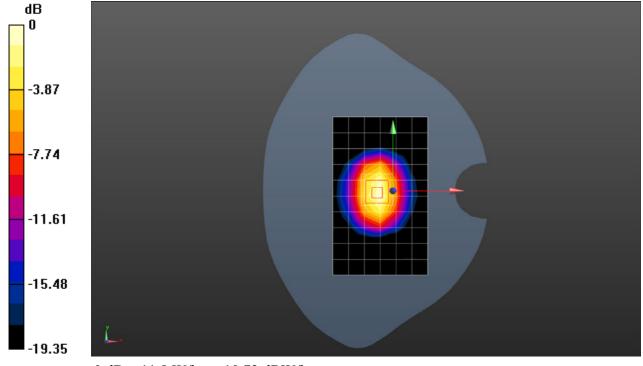
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (7x11x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 11.2 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.68 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 21.0 W/kg

SAR(1 g) = 10.6 W/kg; SAR(10 g) = 5.36 W/kg

Maximum value of SAR (measured) = 11.8 W/kg

0 dB = 11.8 W/kg = 10.72 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 1900 MHz Body

DUT: D1900V2; Type: D1900V2; Serial: 5d028

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL1900;Medium parameters used: f = 1900 MHz; σ = 1.501 S/m; ϵ_r = 52.597; ρ = 1000

kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(8.2, 8.2, 8.2); Calibrated: 2015-11-27;

• Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE3 Sn569; Calibrated: 2015-11-24

• Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283

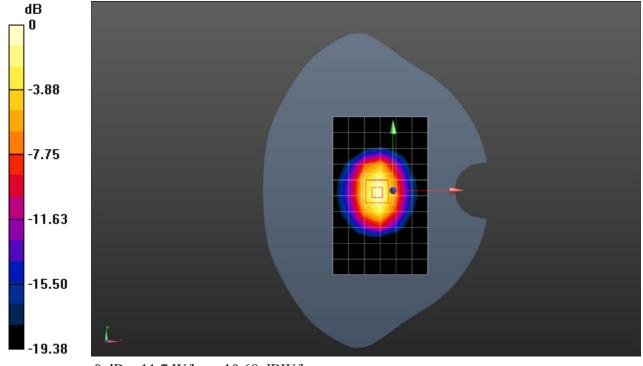
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (7x11x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 11.0 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.68 V/m; Power Drift = -0.12dB

Peak SAR (extrapolated) = 20.7 W/kg

SAR(1 g) = 10.5 W/kg; SAR(10 g) = 5.29 W/kg

Maximum value of SAR (measured) = 11.7 W/kg

0 dB = 11.7 W/kg = 10.68 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 1900 MHz Body

DUT: D1900V2; Type: D1900V2; Serial: 5d028

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL1900; Medium parameters used: f = 1900 MHz; $\sigma = 1.528$ S/m; $\epsilon_r = 52.851$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(8.2, 8.2, 8.2); Calibrated: 2015-11-27;

• Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE3 Sn569; Calibrated: 2015-11-24

• Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283

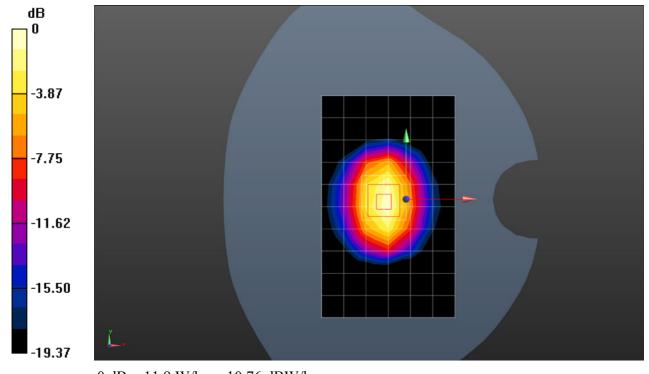
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (7x11x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 11.2 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.68 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 21.1 W/kg

SAR(1 g) = 10.7 W/kg; SAR(10 g) = 5.38 W/kg

Maximum value of SAR (measured) = 11.9 W/kg

0 dB = 11.9 W/kg = 10.76 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 2450MHz Body

DUT: D2450V2; Type: D2450V2; Serial: 733

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL2450; Medium parameters used: f = 2450 MHz; $\sigma = 1.951$ S/m; $\epsilon_r = 51.68$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(7.7, 7.7, 7.7); Calibrated: 2015-11-27;

• Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE3 Sn569; Calibrated: 2015-11-24

• Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283

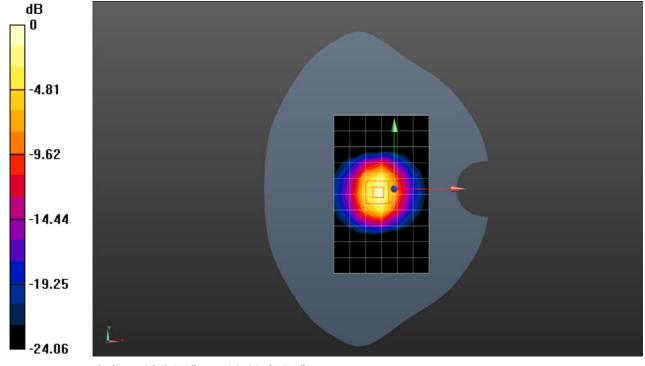
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (7x11x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 13.2 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.13 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 29.2 W/kg

SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.98 W/kg

Maximum value of SAR (measured) = 13.9 W/kg

0 dB = 13.9 W/kg = 11.41 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 2600MHz Body

DUT: D2600V2; Type: D2600V2; Serial: 1093

Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: MSL2600; Medium parameters used: f = 2600 MHz; $\sigma = 2.171$ S/m; $\varepsilon_r = 52.866$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(7.63, 7.63, 7.63); Calibrated: 2015-11-27;

• Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE3 Sn569; Calibrated: 2015-11-24

• Phantom: SAM 2; Type: SAM V4.0; Serial: 1193

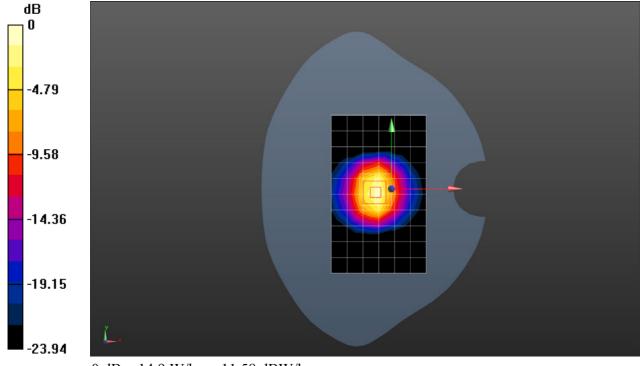
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (7x11x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 13.8 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 80.85 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 29.3 W/kg

SAR(1 g) = 13.4 W/kg; SAR(10 g) = 5.79 W/kg

Maximum value of SAR (measured) = 14.9 W/kg

0 dB = 14.9 W/kg = 11.58 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check D5.2GHz Body

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: 1165

Communication System: UID 0, CW (0); Frequency: 5200 MHz; Duty Cycle: 1:1

Medium: MSL5GHz; Medium parameters used: f = 5200 MHz; $\sigma = 5.259$ S/m; $\epsilon_r = 47.697$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(4.15, 4.15, 4.15); Calibrated: 2015-11-27;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0

• Electronics: DAE3 Sn569; Calibrated: 2015-11-24

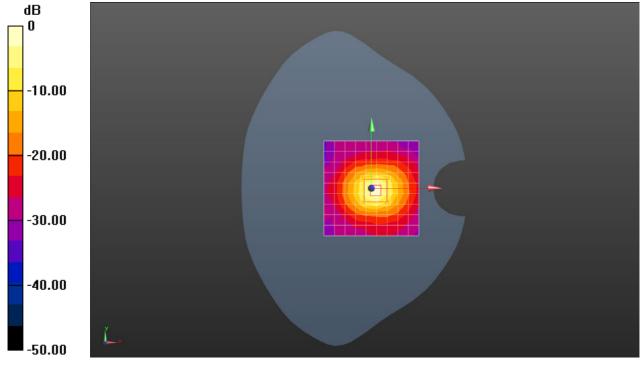
• Phantom: SAM 2; Type: SAM V4.0; Serial: 1193

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=100mW, f=5200 MHz/Area Scan (10x10x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 18.1 W/kg


Body/d=10mm, Pin=100mW, f=5200 MHz/Zoom Scan (4x4x1.4mm, graded),

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.40 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 32.3 W/kg

SAR(1 g) = 7.68 W/kg; SAR(10 g) = 2.12 W/kg

0 dB = 18.1 W/kg = 12.58 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check D5.6GHz Body

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: 1165

Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1

Medium: MSL5GHz; Medium parameters used: f = 5600 MHz; $\sigma = 5.859$ S/m; $\varepsilon_r = 46.881$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(3.61, 3.61, 3.61); Calibrated: 2015-11-27;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0

• Electronics: DAE3 Sn569; Calibrated: 2015-11-24

• Phantom: SAM 2; Type: SAM V4.0; Serial: 1193

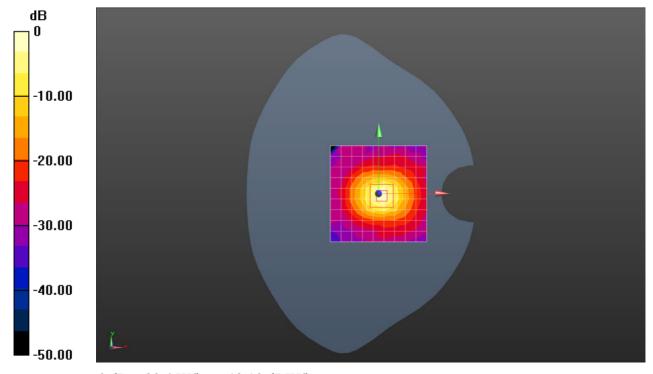
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=100mW, f=5600 MHz/Area Scan (10x10x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 18.4 W/kg

Body/d=10mm, Pin=100mW, f=5600 MHz/Zoom Scan (4x4x1.4mm, graded),


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.17 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 36.3 W/kg

SAR(1 g) = 8.21 W/kg; SAR(10 g) = 2.23 W/kg

Maximum value of SAR (measured) = 20.4 W/kg

0 dB = 20.4 W/kg = 13.10 dBW/kg

Report No.: SZEM161000852205

Appendix B

Detailed Test Results

1. WCDMA
WCDMA Band 2 for Body
WCDMA Band 4 for Body
2. LTE
LTE Band 2 for Body
LTE Band 4 for Body
LTE Band 12 for Body
LTE Band 17 for Body
LTE Band 25 for Body
LTE Band 26 for Body
LTE Band 41 for Body
3. WIFI
WI-FI 802.11a for Body
WI-FI 802.11b for Body
WI-FI 802.11n for Body

Test Laboratory: SGS-SAR Lab

601HW WCDMA Band 2 RMC 9262CH Right Side 10mm

DUT: 601HW; Type: Mobile WiFi; Serial: NA

Communication System: UID 0, WCDMA (0); Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium: MSL1900; Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.504$ S/m; $\varepsilon_r =$

53.544; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(8.2, 8.2, 8.2); Calibrated: 2015-11-27;

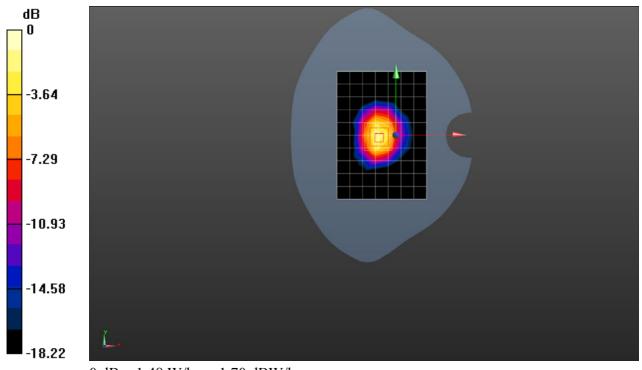
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn569; Calibrated: 2015-11-24
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.11 W/kg

Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 28.18 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 1.79 W/kg

SAR(1 g) = 1.11 W/kg; SAR(10 g) = 0.624 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.48 W/kg

0 dB = 1.48 W/kg = 1.70 dBW/kg

Test Laboratory: SGS-SAR Lab

601HW WCDMA Band 4 RMC 1513CH Right Side 17mm-sensor off-repeat

DUT: 601HW; Type: Mobile WiFi; Serial: NA

Communication System: UID 0, WCDMA (0); Frequency: 1752.6 MHz; Duty Cycle: 1:1

Medium: MSL1750; Medium parameters used: f = 1753 MHz; $\sigma = 1.508$ S/m; $\epsilon_r = 53.057$; $\rho = 1000$

kg/m³

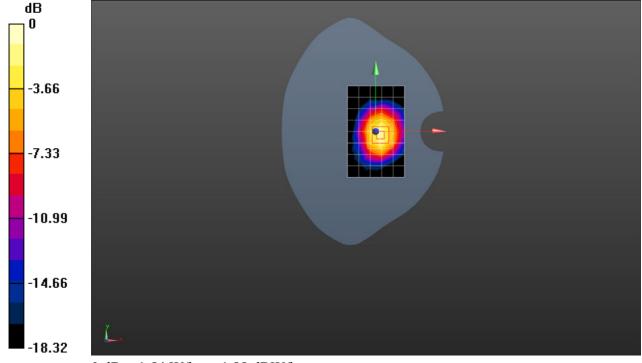
Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(8.49, 8.49, 8.49); Calibrated: 2015-11-27;

- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn569; Calibrated: 2015-11-24
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (6x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.18 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.47 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.85 W/kg

SAR(1 g) = 1.18 W/kg; SAR(10 g) = 0.688 W/kg

Maximum value of SAR (measured) = 1.54 W/kg

0 dB = 1.54 W/kg = 1.88 dBW/kg

Test Laboratory: SGS-SAR Lab

601HW LTE Band2 20MHz bandwidth QPSK 1RB0 Offset 18700CH Right Side 10mm

DUT: 601HW; Type: Mobile WiFi; Serial: NA

Communication System: UID 0, LTE-FDD BW 20MHz (0); Frequency: 1860 MHz; Duty Cycle: 1:1

Medium: MSL1900; Medium parameters used: f = 1860 MHz; $\sigma = 1.518$ S/m; $\epsilon_r = 53.378$; $\rho = 1000$

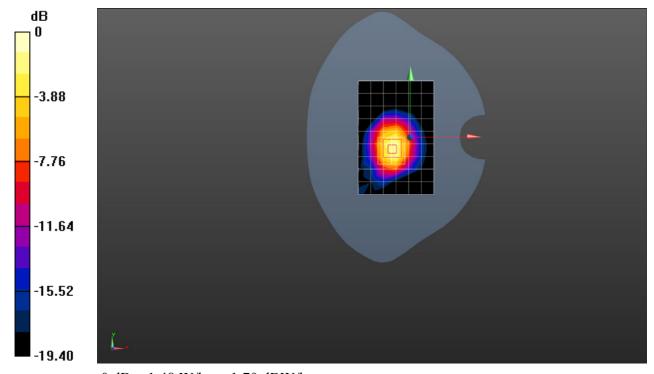
 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3962; ConvF(8.2, 8.2, 8.2); Calibrated: 2015-11-27;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn569; Calibrated: 2015-11-24
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.22 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.38 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.82 W/kg

SAR(1 g) = 1.11 W/kg; SAR(10 g) = 0.614 W/kg

Maximum value of SAR (measured) = 1.48 W/kg

0 dB = 1.48 W/kg = 1.70 dBW/kg

Test Laboratory: SGS-SAR Lab

601HW LTE Band4 20MHz bandwidth QPSK 1RB0 Offset 20300CH Right Side 17mm-sensor off-repeat

DUT: 601HW; Type: Mobile WiFi; Serial: NA

Communication System: UID 0, LTE-FDD BW 20MHz (0); Frequency: 1745 MHz; Duty Cycle: 1:1

Medium: MSL1750; Medium parameters used: f = 1745 MHz; $\sigma = 1.505$ S/m; $\epsilon_r = 53.204$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3962; ConvF(8.49, 8.49, 8.49); Calibrated: 2015-11-27;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn569; Calibrated: 2015-11-24
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.42 W/kg

Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.56 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 1.99 W/kg

SAR(1 g) = 1.28 W/kg; SAR(10 g) = 0.764 W/kgMaximum value of SAR (measured) = 1.67 W/kg

-3.21 -6.43 -9.64 -12.86

0 dB = 1.67 W/kg = 2.23 dBW/kg

-16.07

Test Laboratory: SGS-SAR Lab

601HW LTE Band12 10MHz bandwidth QPSK 1RB0 Offset 23095CH Back Side 10mm

DUT: 601HW; Type: Mobile WiFi; Serial: NA

Communication System: UID 0, LTE-FDD BW 10MHZ (0); Frequency: 707.5 MHz; Duty Cycle: 1:1

Medium: MSL750; Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.901$ S/m; $\varepsilon_r =$

56.51; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(10.41, 10.41, 10.41); Calibrated: 2015-11-27;

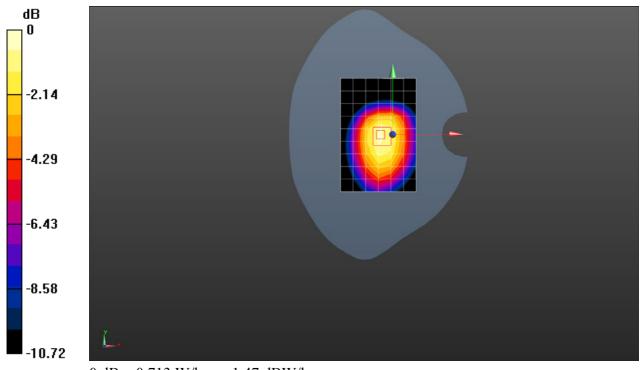
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn569; Calibrated: 2015-11-24
- Phantom: SAM2; Type: SAM; Serial: 1913
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.630 W/kg

Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 26.63 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 0.825 W/kg

SAR(1 g) = 0.599 W/kg; SAR(10 g) = 0.435 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.713 W/kg

0 dB = 0.713 W/kg = -1.47 dBW/kg

Test Laboratory: SGS-SAR Lab

601HW LTE Band17 10MHz bandwidth QPSK 1RB0 Offset 23790CH Back Side 10mm

DUT: 601HW; Type: Mobile WiFi; Serial: NA

Communication System: UID 0, LTE-FDD BW 10MHZ (0); Frequency: 710 MHz; Duty Cycle: 1:1

Medium: MSL750;Medium parameters used: f = 710 MHz; $\sigma = 0.903$ S/m; $\varepsilon_r = 56.484$; $\rho = 1000$ kg/m³

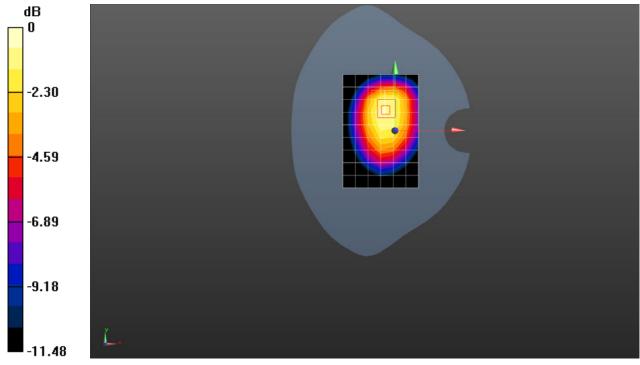
Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(10.41, 10.41, 10.41); Calibrated: 2015-11-27;

- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn569; Calibrated: 2015-11-24
- Phantom: SAM2; Type: SAM; Serial: 1913
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.640 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.32 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.839 W/kg

SAR(1 g) = 0.624 W/kg; SAR(10 g) = 0.448 W/kg

Maximum value of SAR (measured) = 0.737 W/kg

0 dB = 0.737 W/kg = -1.33 dBW/kg

Test Laboratory: SGS-SAR Lab

601HW LTE Band25 20MHz bandwidth QPSK 1RB0 Offset 26365CH Right Side 10mm with SCUD battery

DUT: 601HW; Type: Mobile WiFi; Serial: NA

Communication System: UID 0, LTE-FDD BW 20MHz (0); Frequency: 1882.5 MHz; Duty Cycle: 1:1

Medium: MSL1900; Medium parameters used (interpolated): f = 1882.5 MHz; $\sigma = 1.54$ S/m; $\varepsilon_r =$

53.286; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

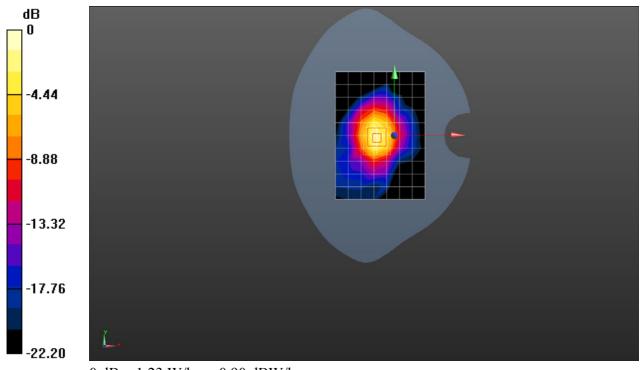
- Probe: EX3DV4 SN3962; ConvF(8.2, 8.2, 8.2); Calibrated: 2015-11-27;
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn569; Calibrated: 2015-11-24
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.944 W/kg

Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 24.46 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 1.53 W/kg

SAR(1 g) = 0.934 W/kg; SAR(10 g) = 0.519 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.23 W/kg

0 dB = 1.23 W/kg = 0.90 dBW/kg

Test Laboratory: SGS-SAR Lab

601HW LTE Band26 15MHz bandwidth QPSK 1RB0 Offset 26965CH Back Side 17mm-sensor off

DUT: 601HW; Type: Mobile WiFi; Serial: NA

Communication System: UID 0, LTE-FDD BW 15MHz (0); Frequency: 841.5 MHz; Duty Cycle: 1:1

Medium: MSL835; Medium parameters used (interpolated): f = 841.5 MHz; $\sigma = 0.988$ S/m; $\varepsilon_r =$

54.109; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

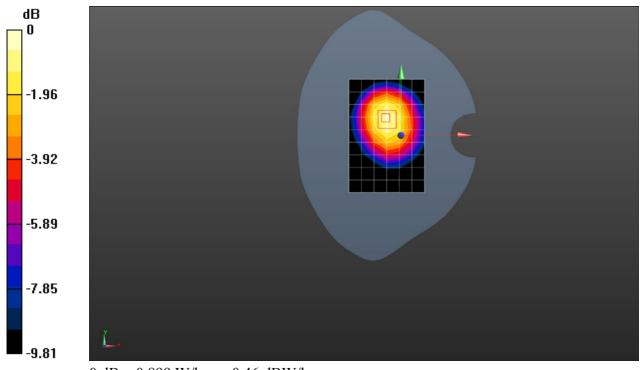
- Probe: EX3DV4 SN3962; ConvF(10.16, 10.16, 10.16); Calibrated: 2015-11-27;
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn569; Calibrated: 2015-11-24
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.819 W/kg

Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 25.85 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 1.03 W/kg

SAR(1 g) = 0.761 W/kg; SAR(10 g) = 0.549 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.899 W/kg

 $\frac{1}{0 \text{ dB}} = 0.899 \text{ W/kg} = -0.46 \text{ dBW/kg}$

Test Laboratory: SGS-SAR Lab

601HW LTE Band41 20MHz bandwidth QPSK 1RB0 Offset 41490CH Back Side 10mm

DUT: 601HW; Type: Mobile WiFi; Serial: NA

Communication System: UID 0, LTE-TDD BW 20MHz (0); Frequency: 2680 MHz; Duty Cycle: 1:1.57906

Medium: MSL2600;Medium parameters used: f = 2680 MHz; σ = 2.221 S/m; ϵ_r = 52.007; ρ = 1000

kg/m³

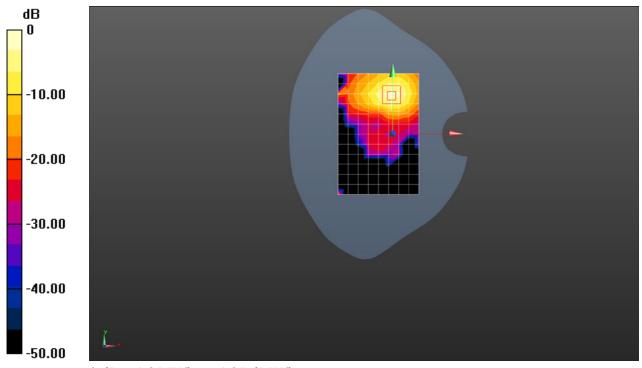
Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(7.63, 7.63, 7.63); Calibrated: 2015-11-27;

- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection), z = -19.0, 31.0
- Electronics: DAE3 Sn569; Calibrated: 2015-11-24
- Phantom: SAM2; Type: SAM; Serial: 1913
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (9x13x1): Measurement grid: dx=12mm, dy=12mm


Maximum value of SAR (measured) = 0.875 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.804 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 1.88 W/kg

SAR(1 g) = 0.898 W/kg; SAR(10 g) = 0.401 W/kg Maximum value of SAR (measured) = 1.37 W/kg

0 dB = 1.37 W/kg = 1.37 dBW/kg

Test Laboratory: SGS-SAR Lab

601HW WIFI 802.11b 1CH Bottom Side 10mm

DUT: 601HW; Type: Mobile WiFi; Serial: NA

Communication System: UID 0, WI-FI(2.4GHz) (0); Frequency: 2412 MHz; Duty Cycle: 1:1.01

Medium: MSL2450; Medium parameters used: f = 2412 MHz; $\sigma = 1.931$ S/m; $\varepsilon_r = 51.975$; $\rho = 1000$

kg/m³

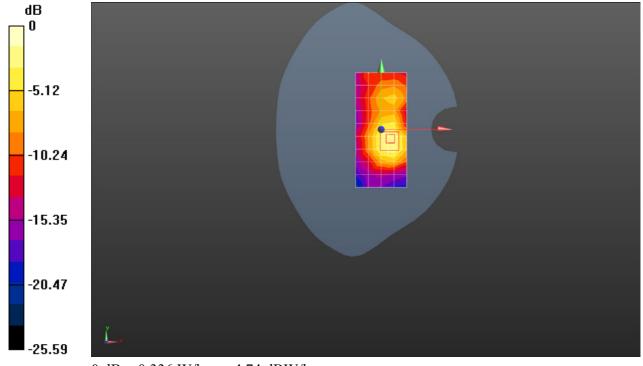
Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(7.7, 7.7, 7.7); Calibrated: 2015-11-27;

- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn569; Calibrated: 2015-11-24
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (5x10x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.229 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.605 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.504 W/kg

SAR(1 g) = 0.246 W/kg; SAR(10 g) = 0.135 W/kg

Maximum value of SAR (measured) = 0.336 W/kg

0 dB = 0.336 W/kg = -4.74 dBW/kg

Test Laboratory: SGS-SAR Lab

601HW WIFI 802.11n MIMO 1CH Left side Side 10mm with SCUD

DUT: 601HW; Type: Mobile WiFi; Serial: NA

Communication System: UID 0, WI-FI(2.4GHz) (0); Frequency: 2412 MHz; Duty Cycle: 1:1.07

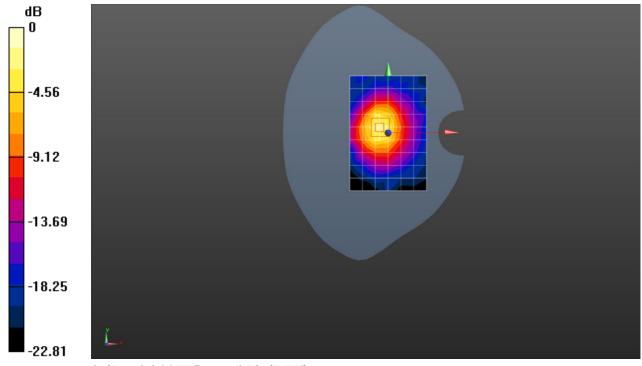
Medium: MSL2450; Medium parameters used: f = 2412 MHz; $\sigma = 1.931$ S/m; $\varepsilon_r = 51.975$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3962; ConvF(7.7, 7.7, 7.7); Calibrated: 2015-11-27;
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn569; Calibrated: 2015-11-24
- Phantom: SAM1; Type: SAM; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (7x10x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.157 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.715 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.311 W/kg

SAR(1 g) = 0.172 W/kg; SAR(10 g) = 0.091 W/kg

Maximum value of SAR (measured) = 0.244 W/kg

0 dB = 0.244 W/kg = -6.13 dBW/kg

Test Laboratory: SGS-SAR Lab

601HW WIFI 802.11a 40CH Bottom Side 10mm

DUT: 601HW; Type: Mobile WiFi; Serial: NA

Communication System: UID 0, WI-FI(5GHz) (0); Frequency: 5200 MHz; Duty Cycle: 1:1.07

Medium: MSL5G;Medium parameters used: f = 5200 MHz; $\sigma = 5.259$ S/m; $\varepsilon_r = 47.697$; $\rho = 1000$

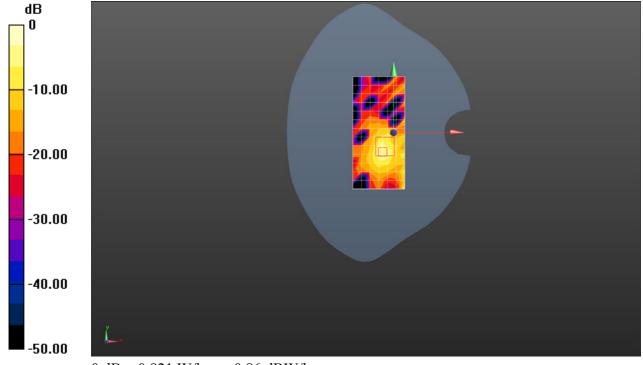
kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3962; ConvF(4.15, 4.15, 4.15); Calibrated: 2015-11-27;
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn569; Calibrated: 2015-11-24
- Phantom: SAM2; Type: SAM; Serial: 1913
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (7x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.361 W/kg


Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 8.609 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 1.24 W/kg

SAR(1 g) = 0.429 W/kg; SAR(10 g) = 0.114 W/kg

Maximum value of SAR (measured) = 0.821 W/kg

0 dB = 0.821 W/kg = -0.86 dBW/kg

Test Laboratory: SGS-SAR Lab

601HW WIFI 802.11n MIMO 44CH Bottom Side 10mm

DUT: 601HW; Type: Mobile WiFi; Serial: NA

Communication System: UID 0, WI-FI(5GHz) (0); Frequency: 5220 MHz; Duty Cycle: 1:1.06

Medium: MSL5G;Medium parameters used: f = 5220 MHz; $\sigma = 5.323$ S/m; $\epsilon_r = 47.633$; $\rho = 1000$ kg/m³

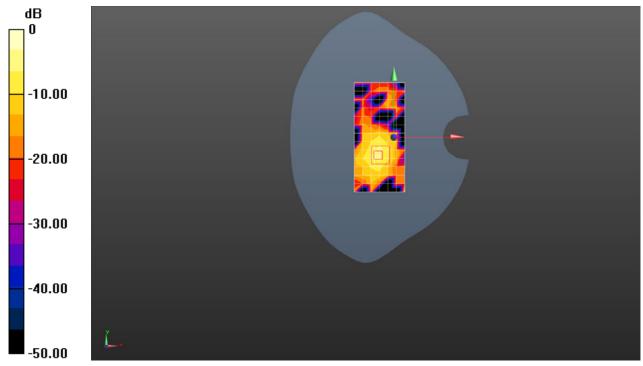
Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(4.15, 4.15, 4.15); Calibrated: 2015-11-27;

- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn569; Calibrated: 2015-11-24
- Phantom: SAM2; Type: SAM; Serial: 1913
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (7x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.129 W/kg


Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 3.998 V/m; Power Drift = 0.04dB

Peak SAR (extrapolated) = 0.857 W/kg

SAR(1 g) = 0.147 W/kg; SAR(10 g) = 0.047 W/kg

Maximum value of SAR (measured) = 0.394 W/kg

0 dB = 0.394 W/kg = -4.05 dBW/kg

Report No.: SZEM161000852205

Appendix C

Calibration certificate

1. Dipole
D750V3 -SN 1126(2014-09-19)
D835V2-SN 4d105(2013-11-25)
D1800V2-SN 2d070(2013-11-27)
D1900V2-SN 5d028(2013-11-27)
D2450V2-SN 733(2013-11-26)
D2600V2-SN 1093(2014-09-23)
D5GHzV2-SN 1165(2013-12-11)
2. DAE
DAE3-SN 569(2015-11-24)
3. Probe
EX3DV4-SN 3962(2015-11-27)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Lenovo (Auden)

Accreditation No.: SCS 108

Certificate No: D750V3-1126 Sep14

CALIBRATION CERTIFICATE

Object

D750V3 - SN: 1126

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

September 19, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-13 (No. ES3-3205_Dec13)	Dec-14
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Calibrated by:

Name Michael Weber Function

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: September 22, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D750V3-1126_Sep14

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage C

Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)",

February 2005

c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.

Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.

Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.

Electrical Delay: One-way delay between the SMA connector and the antenna feed point.

No uncertainty required.

SAR measured: SAR measured at the stated antenna input power.

SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.

SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D750V3-1126_Sep14

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.0 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.26 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.41 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.0 ± 6 %	0.98 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.20 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.65 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.46 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.76 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.1 Ω - 1.4 jΩ	
Return Loss	- 29.5 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.7 Ω - 3.2 jΩ
Return Loss	- 29.1 dB

General Antenna Parameters and Design

CAMPACTE CAMPACT TO THE CONTROL OF THE CAMPACT THE CAM		
Electrical Delay (one direction)	1.034 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 23, 2014

Certificate No: D750V3-1126_Sep14

DASY5 Validation Report for Head TSL

Date: 19.09.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1126

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.91 \text{ S/m}$; $\varepsilon_r = 42$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.37, 6.37, 6.37); Calibrated: 30.12.2013;

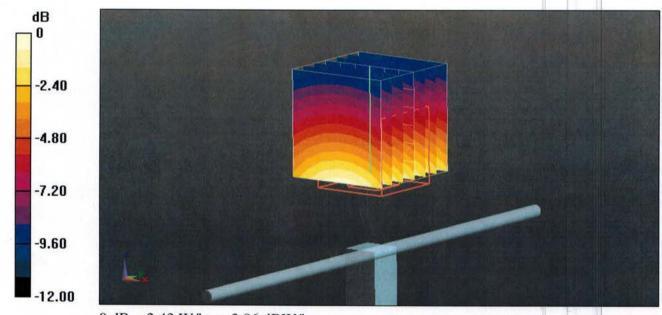
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

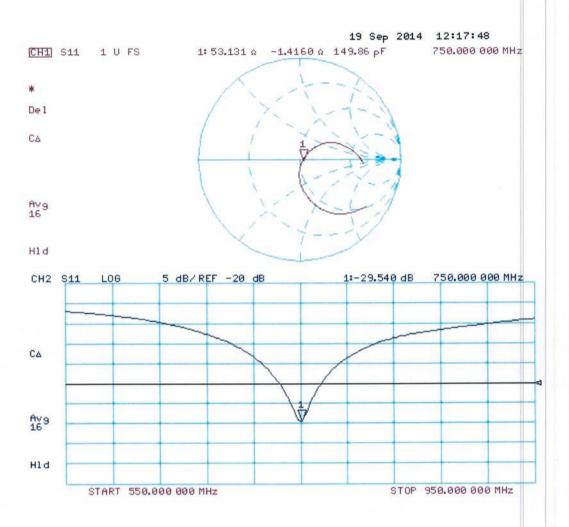
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.42 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.12 W/kg


SAR(1 g) = 2.1 W/kg; SAR(10 g) = 1.37 W/kg

Maximum value of SAR (measured) = 2.43 W/kg

0 dB = 2.43 W/kg = 3.86 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 19.09.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1126

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.98 \text{ S/m}$; $\varepsilon_r = 55$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.13, 6.13, 6.13); Calibrated: 30.12.2013;

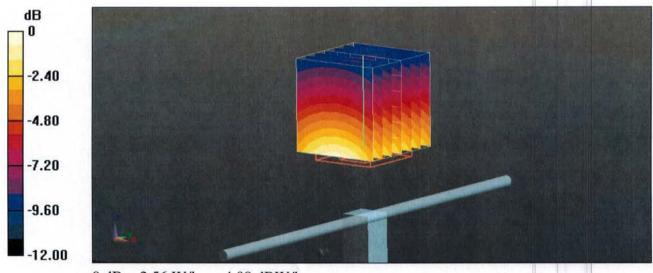
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

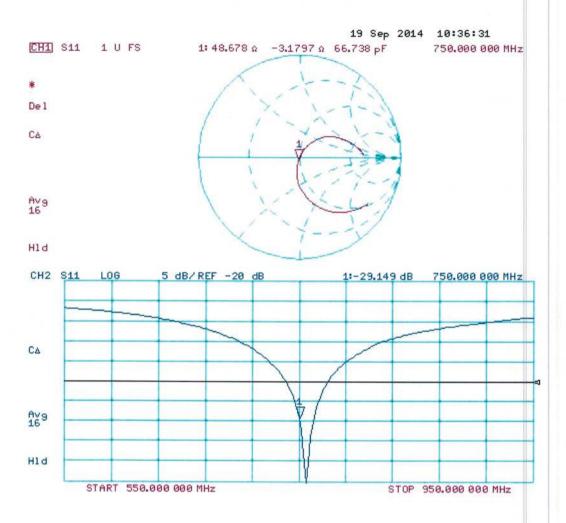

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.03 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.20 W/kg

SAR(1 g) = 2.2 W/kg; SAR(10 g) = 1.46 W/kg

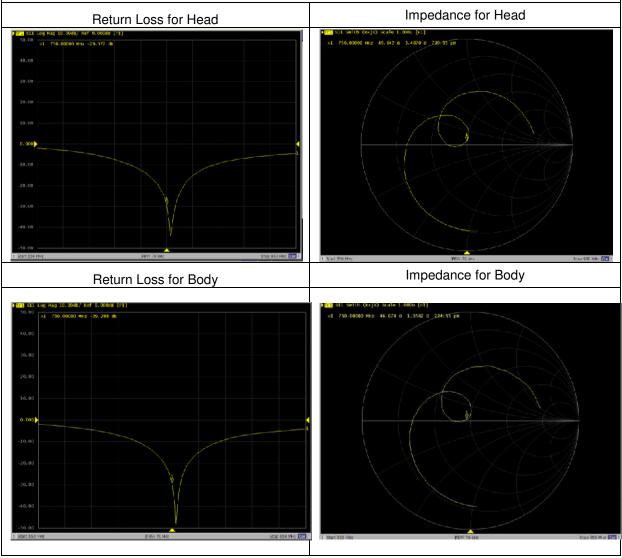
Maximum value of SAR (measured) = 2.56 W/kg



0 dB = 2.56 W/kg = 4.08 dBW/kg

Certificate No: D750V3-1126_Sep14

Page 7 of 8


Impedance Measurement Plot for Body TSL

Dipole Calibration for Impedance and Return-loss						
Model NO.:	D750V3	Serial NO.:	1126	Measurement Date:	2015-09-18	
	Target V	alue:	Measured Value:			
Liquid Type	Impedance	Return Loss	Impedance	Return Loss	verdict	
Head	53.1Ω-1.4jΩ	-29.5dB	49.6Ω+3.5jΩ	-29.4dB	Complied	
Body	48.7Ω-3.2jΩ	-29.1dB	46.7Ω+1.1jΩ	-29.3dB	Complied	

Remark: According to KDB 865664 D01,instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements:

- 1) The most recent return-loss result, measured at least annually, deviates by less than 20% from the previous measurement and meeting the required 20 dB minimum return-loss requirement.
- 2) The most recent measurement of the real and imaginary parts of the impedance, measured at least annually, deviates by less than 5 Ω from the previous measurement.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

SGS-SZ (Auden)

Certificate No: D835V2-4d105_Nov13

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object D835V2 - SN: 4d105

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: November 25, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards

Power meter EPM-442A GB37480704 09-Oct-13 (No. 217-01827) Oct-14 Power sensor HP 8481A US37292783 09-Oct-13 (No. 217-01827) Oct-14 Power sensor HP 8481A MY41092317 09-Oct-13 (No. 217-01828) Oct-14 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-13 (No. 217-01736) Apr-14 Type-N mismatch combination SN: 5047.3 / 06327 04-Apr-13 (No. 217-01739) Apr-14	
Power sensor HP 8481A MY41092317 09-Oct-13 (No. 217-01828) Oct-14 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-13 (No. 217-01736) Apr-14	
Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-13 (No. 217-01736) Apr-14	
Type-N mismatch combination SN: 5047.3 / 06327 04-Apr-13 (No. 217-01739) Apr-14	
Reference Probe ES3DV3 SN: 3205 28-Dec-12 (No. ES3-3205_Dec12) Dec-13	
DAE4 SN: 601 25-Apr-13 (No. DAE4-601_Apr13) Apr-14	
Secondary Standards ID # Check Date (in house) Schedu	lled Check
RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house	e check: Oct-15
Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-13) In house	e check: Oct-14
Name Function Signate	ure
Calibrated by: Israe El-Naouq Laboratory Technician	Concuery
Approved by: Katja Pokovic Technical Manager	ens

Cal Date (Certificate No.)

Issued: November 26, 2013

Scheduled Calibration

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

Certificate No: D835V2-4d105_Nov13

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.50 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.64 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR measured	250 mW input power	1.61 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	6.26 W/kg ± 16.5 % (k=2)	

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.7 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.39 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.28 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.55 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.06 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d105_Nov13 Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.4 Ω - 4.1 jΩ	
Return Loss	- 27.3 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.9 Ω - 6.0 jΩ	
Return Loss	- 23.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.395 ns
Electrical Delay (one direction)	1.333 115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	May 26, 2010	

Certificate No: D835V2-4d105_Nov13 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 25.11.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d105

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.94 \text{ S/m}$; $\varepsilon_r = 40.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.05, 6.05, 6.05); Calibrated: 28.12.2012;

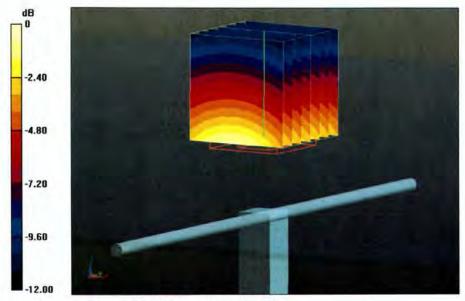
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.324 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 3.80 W/kg

SAR(1 g) = 2.5 W/kg; SAR(10 g) = 1.61 W/kg

Maximum value of SAR (measured) = 2.92 W/kg

0 dB = 2.92 W/kg = 4.65 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 25.11.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d105

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.007$ S/m; $\varepsilon_r = 54.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 28.12.2012;

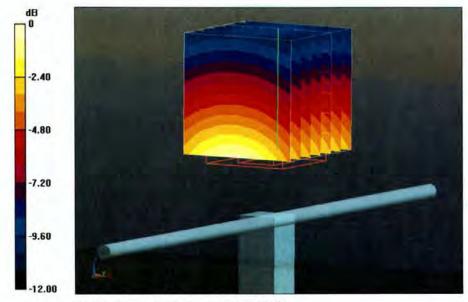
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

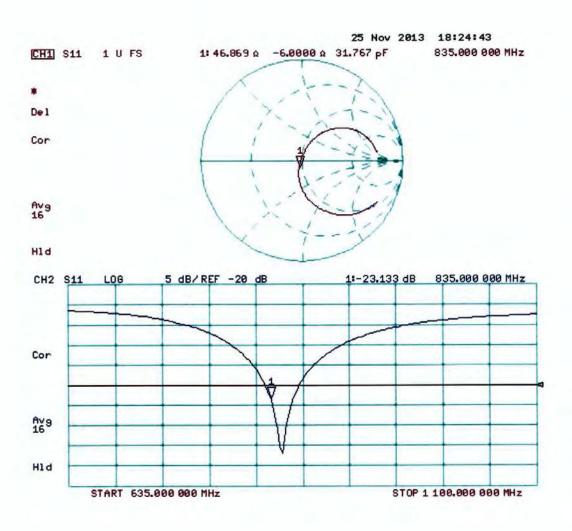
DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.53 V/m; Power Drift = 0.00 dB

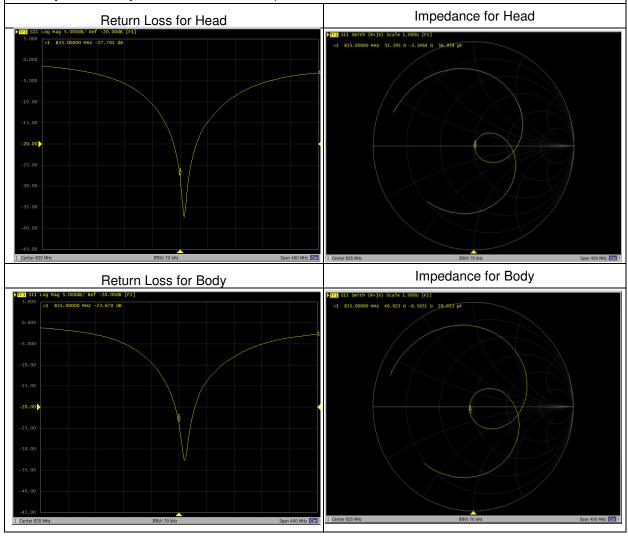
Peak SAR (extrapolated) = 3.53 W/kg


SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.55 W/kg

Maximum value of SAR (measured) = 2.78 W/kg

0 dB = 2.78 W/kg = 4.44 dBW/kg

Impedance Measurement Plot for Body TSL



SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

	Dipole Calibration for Impedance and Return-loss						
Model NO.:	D835V2	Serial NO.:	4d015	Measurement Date:	2015-11-25		
	Target Value:		: Value: Measured Value:				
Liquid Type	Impedance	Return Loss	Impedance	Return Loss	verdict		
Head	51.4Ω-4.1jΩ	-27.3dB	51.4Ω-3.3jΩ	-27.7dB	Complied		
Body	46.9Ω-6.0jΩ	-23.1dB	46.9Ω-6.6jΩ	-23.7dB	Complied		

Remark: According to KDB 865664 D01, instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements:

- 1) The most recent return-loss result, measured at least annually, deviates by less than 20% from the previous measurement and meeting the required 20 dB minimum return-loss requirement.
- 2) The most recent measurement of the real and imaginary parts of the impedance, measured at least annually, deviates by less than 5 Ω from the previous measurement.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

SGS-SZ (Auden)

Accreditation No.: SCS 108

Certificate No: D1800V2-2d070_Nov13

CALIBRATION CERTIFICATE

Object D1800V2 - SN: 2d070

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: November 27, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-15
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	110=
Approved by:	Katja Pokovic	Technical Manager	Manu

Issued: November 27, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1800 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.42 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.79 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	38.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.8 ± 6 %	1.53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C))	1444

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.72 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	38.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.4 W/kg ± 16.5 % (k=2)

Certificate No: D1800V2-2d070_Nov13

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.4 Ω - 5.0 jΩ	
Return Loss	- 25.5 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.3 Ω - 4.3 jΩ	
Return Loss	- 23.5 dB	

General Antenna Parameters and Design

	2 N As **
Electrical Delay (one direction)	1.212 ns
Licetifical Bellay (erre all cellerity	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG		
Manufactured on	May 26, 2003		

Certificate No: D1800V2-2d070_Nov13

DASY5 Validation Report for Head TSL

Date: 27.11.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d070

Communication System: UID 0 - CW; Frequency: 1800 MHz

Medium parameters used: f = 1800 MHz; $\sigma = 1.42 \text{ S/m}$; $\varepsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.04, 5.04, 5.04); Calibrated: 28.12.2012;

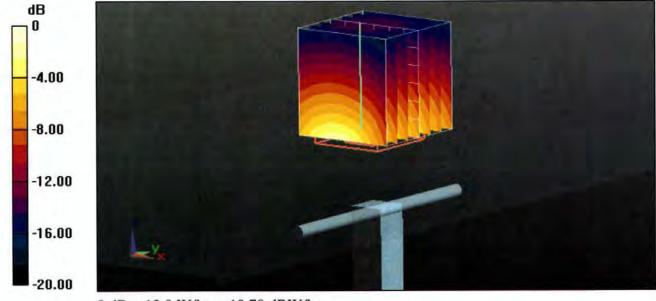
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

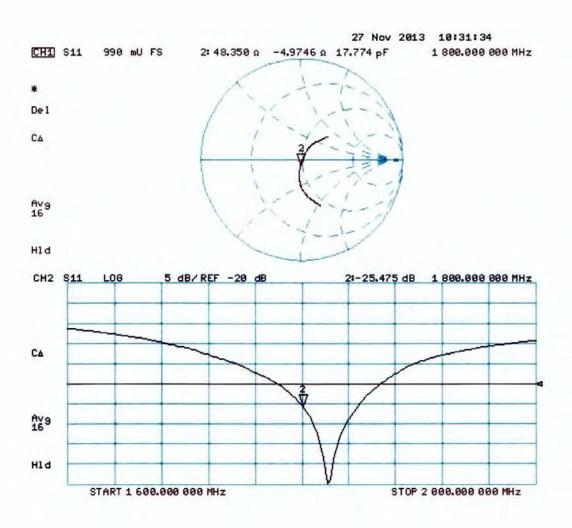
DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.789 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 17.9 W/kg


SAR(1 g) = 9.79 W/kg; SAR(10 g) = 5.11 W/kg

Maximum value of SAR (measured) = 12.0 W/kg

0 dB = 12.0 W/kg = 10.79 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 25.11.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d070

Communication System: UID 0 - CW; Frequency: 1800 MHz

Medium parameters used: f = 1800 MHz; $\sigma = 1.53 \text{ S/m}$; $\varepsilon_r = 52.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.73, 4.73, 4.73); Calibrated: 28.12.2012;

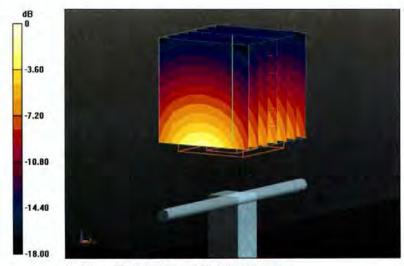
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

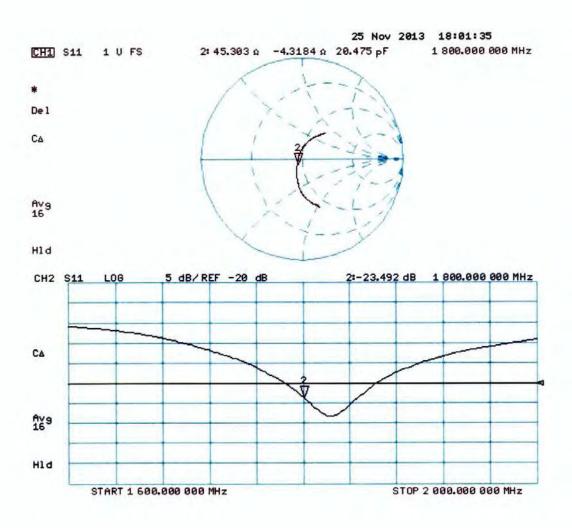
DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.707 V/m; Power Drift = 0.01 dB

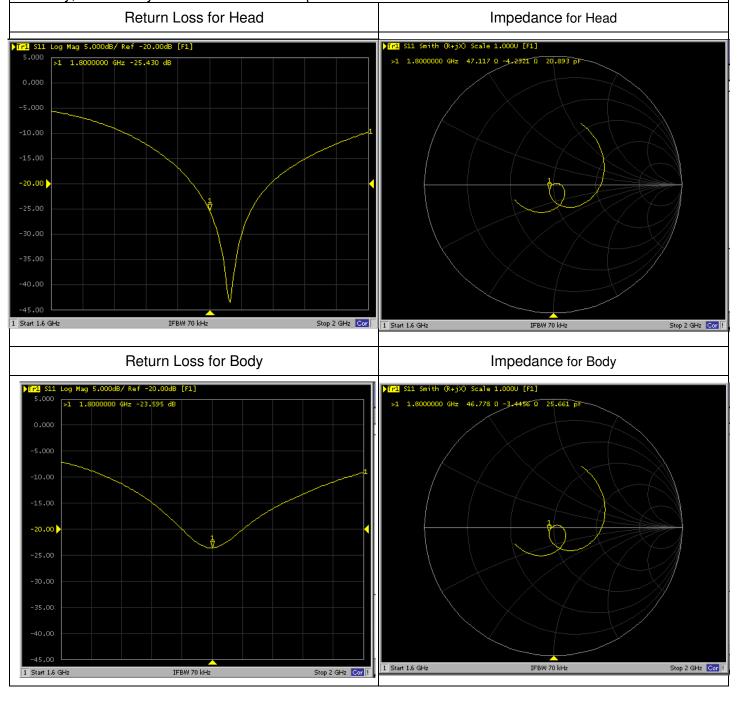
Peak SAR (extrapolated) = 17.3 W/kg


SAR(1 g) = 9.72 W/kg; SAR(10 g) = 5.13 W/kg

Maximum value of SAR (measured) = 12.2 W/kg

0 dB = 12.2 W/kg = 10.86 dBW/kg

Impedance Measurement Plot for Body TSL



SGS-CSTC Standards Technical Services Co., Ltd.

Dipole Calibration for Impedance and Return-loss						
Model NO.:	D1800V2	Serial NO.:	2d070	Measurement Date:	2015-11-25	
Liquid Type	Target Value:		Measured Value:		verdict	
	Impedance	Return Loss	Impedance	Return Loss	verdict	
Head	48.4 Ω -5.0j Ω	-25.5dB	47.1 Ω -4.2 j Ω	-25.4dB	Complied	
Body	45.3 Ω -4.3 j Ω	-23.5dB	46.8 Ω -3.4 j Ω	-23.6dB	Complied	

Remark: According to KDB 865664 D01,instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements:

- 1) The most recent return-loss result, measured at least annually, deviates by less than 20% from the previous measurement and meeting the required 20 dB minimum return-loss requirement.
- 2) The most recent measurement of the real and imaginary parts of the impedance, measured at least annually, deviates by less than 5 Ω from the previous measurement.

