

MRT Technology (Taiwan) Co., Ltd Phone: +886-3-3288388 Web: www.mrt-cert.com

Report No.: 2105TW0602-U3 Report Version: V1.0 Issue Date: 03-22-2022

MEASUREMENT REPORT

FCC PART 15 Subpart C WLAN 802.11b/g/n/ax

FCC ID: **Q9DAPIN0655**

APPLICANT: Hewlett Packard Enterprise Company

- Application Type: Certification
- **Product:** ACCESS POINT
- Model No.: **APIN0655**

Trademark:

FCC Classification:

FCC Rule Part(s): Part15 Subpart C (Section 15.247)

a Hewlett Packard Enterprise company

Hewlett Packard

Test Procedure(s): ANSI C63.10-2013

September 24, 2021 ~ March 22, 2022

Digital Transmission System (DTS)

Reviewed By:

Test Date:

Paddy Chen (Paddy Chen) Amy ker

Approved By:

(Chenz Ker)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd.

FCC ID: Q9DAPIN0655

Revision History

Report No.	Version	Description	Issue Date	Note
2105TW0602-U3	V1.0	Initial Report	03-22-2022	Valid

CONTENTS

Des	scriptio	n	Page
1.	INTRO	ODUCTION	6
	1.1.	Scope	6
	1.2.	MRT Test Location	6
2.	PROD	DUCT INFORMATION	7
	2.1.	Feature of Equipment under Test	7
	2.2.	Product Specification Subjective to this Report	
	2.3.	Working Frequencies for this report	
	2.4.	Description of EUT Filter	8
	2.5.	Description of Available Antennas	9
	2.6.	Test Mode	9
	2.7.	Configuration of Test System	10
	2.8.	Duty Cycle	11
	2.9.	Applicable Standards	12
	2.10.	EMI Suppression Device(s)/Modifications	12
	2.11.	Labeling Requirements	12
3.	DESC	CRIPTION of TEST	13
	3.1.	Evaluation Procedure	13
	3.2.	AC Line Conducted Emissions	13
	3.3.	Radiated Emissions	14
4.	ANTE	ENNA REQUIREMENTS	15
5.	TEST	EQUIPMENT CALIBRATION DATE	16
6.	MEAS	SUREMENT UNCERTAINTY	18
7.	TEST	RESULT	19
	7.1.	Summary	19
	7.2.	6dB Bandwidth Measurement	20
	7.2.1.	Test Limit	20
	7.2.2.	Test Procedure used	20
	7.2.3.	Test Setting	20
	7.2.4.	Test Setup	20
	7.2.5.	Test Result	21
	7.3.	Output Power Measurement	
	7.3.1.	Test Limit	
	7.3.2.	Test Procedure Used	

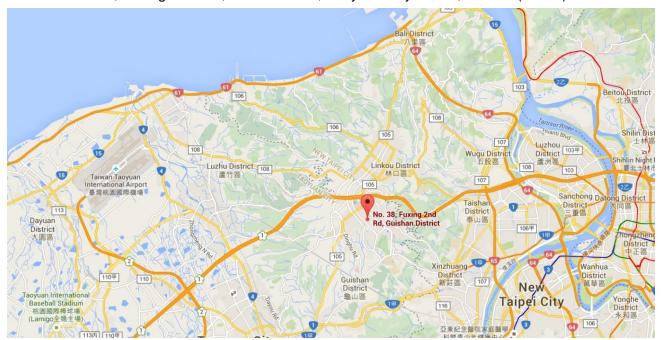
Арр	endix E	3 - EUT Photograph	307
Арр	endix A	A - Test Setup Photograph	306
8.	CONC	LUSION	305
	7.8.3.	Test Result	303
	7.8.2.	Test Setup	302
	7.8.1.	Test Limit	302
	7.8.	AC Conducted Emissions Measurement	802
	7.7.5.	Test Result 2	206
	7.7.4.	Test Setup 2	205
	7.7.3.	Test Setting 2	204
	7.7.2.	Test Procedure Used 2	204
	7.7.1.	Test Limit	203
	7.7.	Radiated Restricted Band Edge Measurement 2	203
	7.6.5.	Test Result 1	23
	7.6.4.	Test Setup 1	22
	7.6.3.	Test Setting 1	20
	7.6.2.	Test Procedure Used 1	20
	7.6.1.	Test Limit 1	20
	7.6.	Radiated Spurious Emission Measurement 1	20
	7.5.5.	Test Result	61
	7.5.4.	Test Setup	60
	7.5.3.	Test Setting	59
	7.5.2.	Test Procedure Used	59
	7.5.1.	Test Limit	59
	7.5.	Conducted Band Edge and Out-of-Band Emissions	59
	7.4.5.	Test Result	34
	7.4.4.	Test Setup	
	7.4.3.	Test Setting	32
	7.4.2.	Test Procedure Used	32
	7.4.1.	Test Limit	32
	7.4.	Power Spectral Density Measurement	32
	7.3.5.	Test Result	29
	7.3.4.	Test Setup	28
	7.3.3.	Test Setting	28

General Information

Applicant	Hewlett Packard Enterprise Company	
Applicant Address	3333 Scott Blvd, Santa Clara, CA 95054, USA	
Manufacturer	Hewlett Packard Enterprise Company	
Manufacturer Address 3333 Scott Blvd, Santa Clara, CA 95054, USA		
Test Site	MRT Technology (Taiwan) Co., Ltd	
Test Site AddressNo. 38, Fuxing Second Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C)		
MRT FCC Registration No.	291082	
FCC Rule Part(s)	Part 15.247	
Test Device Serial No.	CNMJKZ201P C Production Pre-Production Engineering	

Test Facility / Accreditations

- 1. MRT facility is a FCC registered (Reg. No. 291082) test facility with the site description report on file and is designated by the FCC as an Accredited Test Firm.
- 2. MRT facility is an IC registered (MRT Reg. No. 21723) test laboratory with the site description on file at Industry Canada.
- MRT Lab is accredited to ISO 17025 by the Taiwan Accreditation Foundation (TAF Cert. No. 3261) in EMC, Telecommunications and Radio testing for FCC (Designation Number: TW3261), Industry Taiwan, EU and TELEC Rules.


1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada and Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taoyuan City. These measurement tests were conducted at the MRT Technology (Taiwan) Co., Ltd. Facility located at No.38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan (R.O.C).

2. PRODUCT INFORMATION

2.1. Feature of Equipment under Test

Product Name	ACCESS POINT
Model No.	APIN0655
Software Version	Spf11.4cs
Wi-Fi Specification	802.11a/b/g/n/ac/ax
Bluetooth Specification	v5.0 single mode, BLE only
Zigbee Specification	802.15.4
GNSS Specification	GPS, GLONASS, Galileo
Operating Temperature	0 ~ 50 °C
Filter Information	Refer to Section 2.4
Antenna Information	Refer to Section 2.5
Power Type	AC Adapter or PoE input
Operating Environment	Indoor Use
Remark:	

The information of EUT was provided by the manufacturer, and the accuracy of the information shall be the responsibility of the manufacturer.

2.2. Product Specification Subjective to this Report

Frequency Range	802.11b/g/n-HT20/ax-HE20: 2412 ~ 2462MHz
	802.11n-HT40/ax-HE40: 2422 ~ 2452MHz
Channel Number	802.11b/g/n-HT20/ax-HE20: 11
	802.11n-HT40/ax-HE40: 7
Type of Modulation	802.11b: DSSS
	802.11g/n: OFDM
	802.11ax: OFDMA
Data Rate	802.11b: 1/2/5.5/11Mbps
	802.11g: 6/9/12/18/24/36/48/54Mbps
	802.11n: up to 600Mbps
	802.11ax: up to 1148Mbps

Note: For other features of this EUT, test report will be issued separately.

2.3. Working Frequencies for this report

Channel	Frequency	Channel	Frequency	Channel	Frequency
01	2412 MHz	02	2417 MHz	03	2422 MHz
04	2427 MHz	05	2432 MHz	06	2437 MHz
07	2442 MHz	08	2447 MHz	09	2452 MHz
10	2457 MHz	11	2462 MHz		

802.11b/g/n-HT20/ax-HE20

802.11n-HT40/ax-HE40

Channel	Frequency	Channel	Frequency	Channel	Frequency
03	2422 MHz	04	2427 MHz	05	2432 MHz
06	2437 MHz	07	2442 MHz	08	2447 MHz
09	2452 MHz				

2.4. Description of EUT Filter

Filter	Specification	Remark
Wi-Fi		
Filter 1#	Band Pass Filter (2412-2472)	Allowing any transmission on all channels
Filter 2#	Band Pass Filter (2402-2447)	Allowing any transmission on 20MHz channels 1 thru 6.
Filter 3#	Band Pass Filter (2452-2472)	Allowing any transmission on 20MHz channel 11
Bluetooth	& Zigbee	
Filter 4#	Band Pass Filter (2402-2480)	Allowing any transmission on all channels
Filter 5#	Band Pass Filter (2402-2430)	Allowing transmission on BLE channels 37 (2402MHz)
		and 38 (2426MHz) and Zigbee channel 11 (2405MHz)
Filter 6#	Band Pass Filter (2478-2482)	Allowing transmission on BLE channel 39 (2480MHz)
		and Zigbee channel 26 (2480MHz)

Working Group

Groups	Remark	
Filter 1# or Filter 4#	Filter 1# or Filter 4# can work alone	
Filter 2# and Filter 6#	Transmission simultaneously	
Filter 3# and Filter 5#	Transmission simultaneously	
Note: Filter groups on the 2.4GHz Wi-Fi and BLE/ZigBee outputs to prevent reverse IMD when both		
2.4GHz Wi-Fi and BLE/ZigBee are transmitt	ting simultaneously	

Antenna	Frequency Band	Max Peak Gain	CDD Direction	nal Gain (dBi)	BF Directional
Туре	(GHz)	(dBi)	For Power	For PSD	Gain (dBi)
Wi-Fi Intern	Wi-Fi Internal Antenna (4*4 MIMO)				
	2.4 ~ 2.5	3.26	3.26	6.23	6.23
PIFA	5.15 ~ 5.9	2.88	2.88	5.60	5.60
	5.9 ~ 7.2	3.97	3.97	6.97	6.97
Bluetooth /	Bluetooth / ZigBee Internal Antenna				
PIFA	2.4 ~ 2.5	3.60			

2.5. Description of Available Antennas

Note:

- 1. The EUT supports Cyclic Delay Diversity (CDD) mode, and CDD signals are correlated.
- 2. The EUT also supports Beam Forming mode, and the Beam Forming support 802.11n/ac/ax, not include 802.11a/b/g.
- For beamforming operation, Aruba OS automatically backs power down based on a 10log(N) factor based on CDD power.
- 4. All Wi-Fi antennas have cross polarized design, the detail information and calculation method refer to antenna specification.
- 5. 2.4GHz sample calculations:
 - Maximum uncorrelated gain: 3.26dBi = 10log(((10^(G0/10)) + (10^(G1/10)) + (10^(G2/10)) +
 - $(10^{(G3/10)})/4) = 10\log(((10^{(2.4/10)}) + (10^{(3.81/10)}) + (10^{(4.42/10)}) + (10^{(1.92/10)})/4)$
 - o 2450MHz: phi 90/theta 45

• Maximum correlated gain: 6.23dBi = 10log((((10^(2G_V/10)) + (10^(2G_H/10)))/2) =

 $10\log((((10^{(6.07/10))} + (10^{(6.38/10))})/2))$

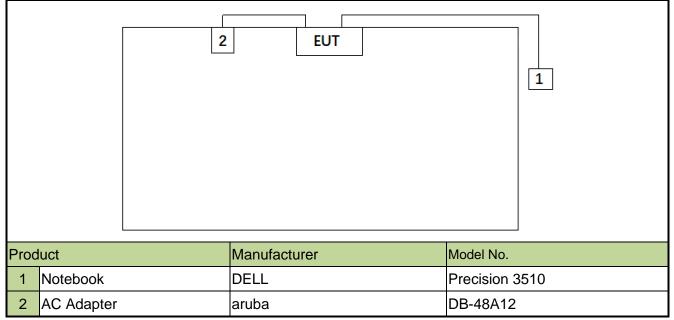
- \circ 2450MHz: phi 245 / theta 60
- 2G_V = Correlated gain of vertical antenna pairs = 6.07dBi = 10log(((10^(G2/20)) +

 $(10^{(G3/20)})^{2/2} = 10\log(((10^{(3.53/20)}) + (10^{(2.58/20)})^{2/2}))$

2G_H = Correlated gain of vertical antenna pairs = 6.38dBi = 10log(((10^(G0/20)) +

 $(10^{(G1/20)})^{2/2} = 10\log(((10^{(4.22/20)}) + (10^{(2.44/20)}))^{2/2})$

2.6. Test Mode


Test Mode	Mode 1: Transmit by 802.11b (1Mbps)
	Mode 2: Transmit by 802.11g (6Mbps)
	Mode 3: Transmit by 802.11n-HT20 (MCS0)
	Mode 4: Transmit by 802.11n-HT40 (MCS0)
	Mode 5: Transmit by 802.11ax-HE20 (MCS0)
	Mode 6: Transmit by 802.11ax-HE40 (MCS0)

2.7. Configuration of Test System

The device was tested per the guidance ANSI C63.10: 2013 was used to reference the appropriate

EUT setup for radiated emissions testing and AC line conducted testing.

Note 1: The test utility software used during testing was "QRCT", and the version was "4.0".

Note 2: Detail power setting refer to operation description.

2.8. Duty Cycle

2.4GHz WLAN (DTS) operation is possible in 20MHz and 40MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Test Mode	Duty Cycle
802.11b	92.84%
802.11g	92.85%
802.11n-HT20	95.16%
802.11n-HT40	95.38%
802.11ax-HE20	94.77%
802.11ax-HE40	94.32%

802.11ax-HE	20 (T = 5.452ms)		802.11ax-HE40 (T = 5.414ms)
Knysight Spectrum Analyzer - Swept SA N RC S0 Ω AC SENSE Marker 3 Δ 5.45200 ms FGainLow #Rttern: 24 c	Avg Type: Log-Pwr TRACE 123456	Marker Select Marker	If Knychyl Spector Mary Swegt SA Control Sector Control Sector Nor Ker 3 ∆ 5.41440 ms PNO: Fast → Trig: Free Run BrGall.cox Avg Type: Log-Pwr BrGall.cox Trig: Sector Sector Sector Sector Sector Marker
Ref Offset 17.6 dB 10 dB/div Ref 31.60 dBm	ΔMkr3 5.452 ms 1.39 dB	3*	Ref Offset 17.6 dB ΔMkr3 5.414 ms 3 10 dB/div Ref 27.60 dBm 4.45 dB
216 Januar von Pleanatur von der Staten ander 116 120	3∆42 hydrogen ar 1999 bergen an	Normal	17.6 your monor have no week and the grant of the second of the second s
.8.40		Delta	124 Detta
38.4 45.4 58.4		Fixed⊳	
Center 2.412000000 GHz Res BW 8 MHz #VBW 50 MHz IMRI MODELTRCI SCL X Y	Span 0 Hz Sweep 25.07 ms (2001 pts) FUNCTION FUNCTION VALUE	orr	Center 2.422000000 GHz Span 0 Hz Res BW 8 MHz #VBW 50 MHz Sweep 25.07 ms (2001 pts) INR MODE TR: ScJ X Y FUNCTION WOTH FUNCTION WALK -
1 Δ2 1 t (Δ) 5.753 ms (Δ) 0.45 dB1 2 F 1 t 9.387 ms 19.15 dB1 3 Δ4 1 t (Δ) 5.452 ms (Δ) 1.39 dB 4 F 1 t 9.387 ms 19.15 dB1 5.452 ms		Properties►	1 Δ2 1 1 Δ3 5744 mp (Δ) -126 dB
9 10		More 1 of 2	7 7
MSG III	, International Contraction		

2.9. Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- ANSI C63.10-2013
- FCC KDB 662911 D01v02r01
- FCC KDB 414788 D01v01r01

2.10. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.11. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

3. DESCRIPTION of TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013), and the guidance was used in the measurement.

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst-case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the device is **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion:

The unit complies with the requirement of §15.203.

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions -SR2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Two-Line V-Network	R&S	ENV 216	MRTTWA00019	1 year	2022/3/23
Two-Line V-Network	R&S	ENV 216	MRTTWA00020	1 year	2022/4/24
8-Wire ISN (T8)	R&S	ENY81	MRTTWA00018	1 year	2022/5/30
EMI Test Receiver	R&S	ESR3	MRTTWA00045	1 year	2022/5/25
Temperature/Humidity Meter	TFA	35.1083	MRTTWA00050	1 year	2022/6/3

Radiated Emissions – AC1/AC2

Instrument	Manufacturer	Туре No.	Asset No.	Cali. Interval	Cali. Due Date
Active Loop Antenna	SCHWARZBECK	FMZB 1519B	MRTTWA00002	1 year	2022/4/27
Broadband TRILOG Antenna	SCHWARZBECK	VULB 9162	MRTTWA00001	1 year	2022/10/4
Broadband Horn Antenna	SCHWARZBECK	BBHA 9120D	MRTTWA00003	1 year	2022/4/24
Broadband Horn Antenna	RFSPIN	DRH18-E	MRTTWA00087	1 year	2022/6/28
Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	MRTTWA00004	1 year	2022/4/24
Broadband Preamplifier	SCHWARZBECK	BBV 9718	MRTTWA00005	1 year	2022/4/24
Broadband Preamplifier	EMC Instruments corporation	EMC118A45S E	MRTTWA00088	1 year	2022/6/28
Broadband Amplifier	SCHWARZBECK	BBV 9721	MRTTWA00006	1 year	2022/4/24
Signal Analyzer	R&S	FSV40	MRTTWA00007	1 year	2022/3/23
EMI Test Receiver	R&S	ESR3	MRTTWA00009	1 year	2022/3/24
EXA Signal Analyzer	KEYSIGHT	N9010A	MRTTWA00012	1 year	2022/10/18
Antenna Cable	HUBERSUHNER	SF106	MRTTWE00010	1 year	2022/6/28
Cable	Rosnol	K1K50-UP026 4-K1K50-4M	MRTTWE00012	1 year	2022/6/20
Antenna Cable	HUBERSUHNER	SF106	MRTTWE00034	1 year	2022/6/28
Cable	HUBERSUHNER	EMC105-NM- NM-3000	MRTTWE00035	1 year	2022/6/28
Temperature/Humidity Meter	TFA	35.1078.10.IT	MRTTWA00032	1 year	2022/6/6

Conducted Test Equipment - SR2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
X-Series USB Peak and	KEYSIGHT	U2021XA	MRTTWA00014	1.voor	2022/4/21
Average Power Sensor	KE I SIGHT	0202174		1 year	2022/4/21
EXA Signal Analyzer	KEYSIGHT	N9010A	MRTTWA00012	1 year	2022/10/18
EXA Signal Analyzer	KEYSIGHT	N9010B	MRTTWA00074	1 year	2022/7/19
Attenuator	WTI	218FS-20	MRTTWE00027	1 year	2022/6/16
Attenuator	WTI	218FS-10	MRTTWE00028	1 year	2022/6/16
Attenuator	WTI	218FS-06	MRTTWE00029	1 year	2022/6/16
Temperature/Humidity Meter	TFA	35.1083	MRTTWA00050	1 year	2022/6/3

Test Software

Software	Version	Function
e3	9.160520a	EMI Test Software

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

AC Conducted Emission Measurement
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
150kHz~30MHz: 2.53dB
Radiated Emission Measurement
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
9kHz ~ 1GHz: 4.25dB
1GHz ~ 40GHz: 4.45dB
Conducted Power
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ± 0.84dB
Conducted Spurious Emission
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ± 2.65 dB
Occupied Bandwidth
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): 3.3%
Temp. / Humidity
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ±0.82°C/ ±3%

7. TEST RESULT

7.1. Summary

FCC	Test	Test	Test	Test	Reference
Section(s)	Description	Limit	Condition	Result	
15.247(a)(2)	6dB Bandwidth	≥ 500kHz		Pass	Section 7.2
15.247(b)(3)	Output Power	≤ 30dBm		Pass	Section 7.3
15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Conducted	Pass	Section 7.4
15.247(d)	Band Edge / Out-of-Band Emissions	≥ 30dBc (Average)		Pass	Section 7.5
15.205 15.209	General Field Strength (Restricted Bands and Radiated Emission)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	Radiated	Pass	Section 7.6 & 7.7
15.207	AC Conducted Emissions 150kHz - 30MHz	< FCC 15.207 limits	Line Conducted	Pass	Section 7.8

Notes:

 The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.

- 2) For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst-case emissions.
- 3) Determining compliance is based on the test results met the regulation limits or requirements declared by clients, and the test results don't take into account the value of measurement uncertainty.
- 4) EUT supports one configuration only in 802.11ax full RU mode.

Test Items	Filter 1#	Filter 2#	Filter 3#
6dB Bandwidth	•		
Output Power	•	•	•
Power Spectral Density	•		
Band Edge / Out-of-Band Emissions	•	•	•
Radiated Spurious Emission	•	•	•
Radiated Band Edge	•	•	•
AC Conducted Emissions 150kHz - 30MHz	•		

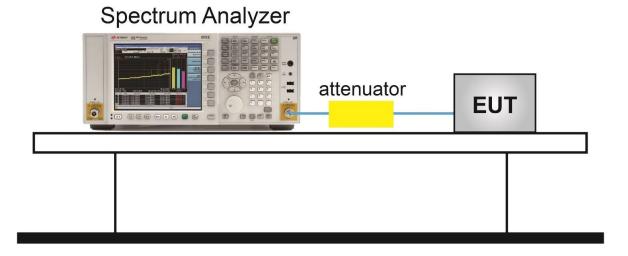
7.2. 6dB Bandwidth Measurement

7.2.1.Test Limit

The minimum 6dB bandwidth shall be at least 500 kHz.

7.2.2.Test Procedure used

ANSI C63.10 Section 11.8

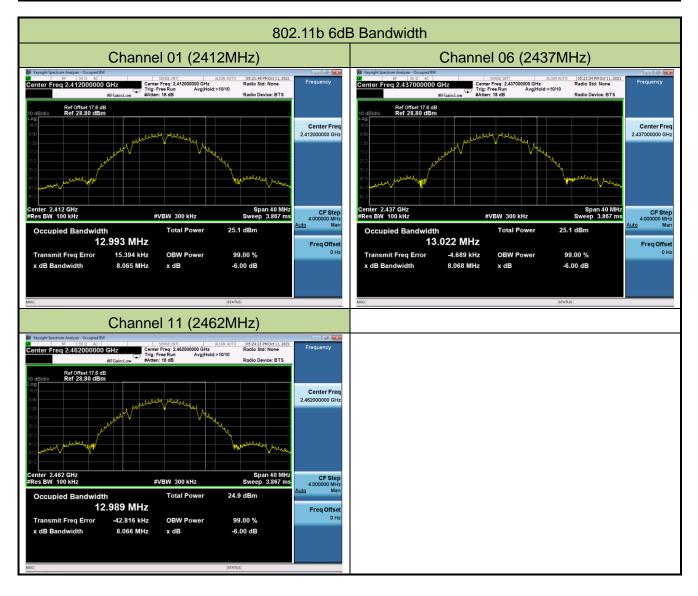

7.2.3.Test Setting

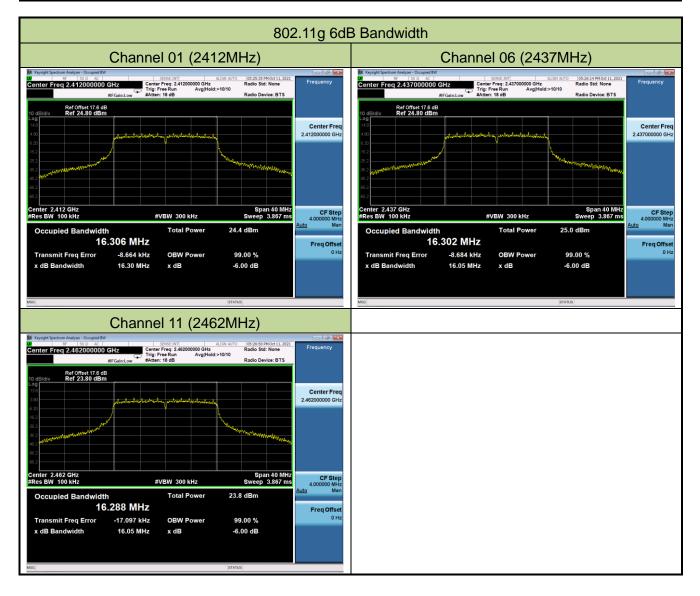
 The Spectrum's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth

measurement was not influenced by any intermediate power nulls in the fundamental emission.

- 2. Set RBW = 100 kHz
- 3. VBW \geq 3 × RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. Allow the trace was allowed to stabilize

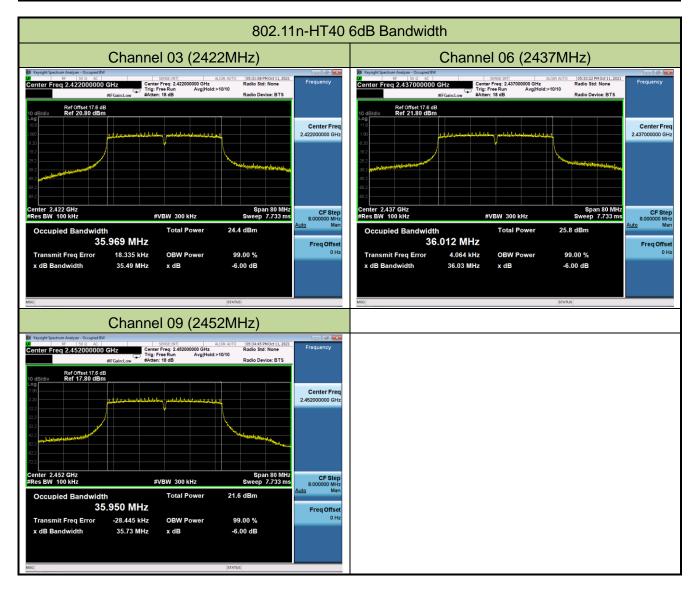
7.2.4.Test Setup




7.2.5.Test Result

Product	ACCESS POINT			Test I	Engineer	Erio	c Lin	
Test Site	SR2			Test I	Test Date 2021/10/11			
Test Mode	Data Rate /	Channel No.	Freque	ency	6dB Bandwid	dth	Limit	Result
	MCS		(MH	z)	(MHz)		(MHz)	
802.11b	1Mbps	01	241	2	8.065		≥ 0.5	Pass
802.11b	1Mbps	06	243	57	8.068		≥ 0.5	Pass
802.11b	1Mbps	11	246	2	8.066		≥ 0.5	Pass
802.11g	6Mbps	01	241	2	16.30		≥ 0.5	Pass
802.11g	6Mbps	06	243	57	16.05		≥ 0.5	Pass
802.11g	6Mbps	11	246	2	16.05		≥ 0.5	Pass
802.11n-HT20	MCS0	01	241	2	17.31		≥ 0.5	Pass
802.11n-HT20	MCS0	06	243	57	17.56		≥ 0.5	Pass
802.11n-HT20	MCS0	11	246	2	17.19		≥ 0.5	Pass
802.11n-HT40	MCS0	03	242	2	35.49		≥ 0.5	Pass
802.11n-HT40	MCS0	06	243	57	36.03		≥ 0.5	Pass
802.11n-HT40	MCS0	09	245	2	35.73		≥ 0.5	Pass
802.11ax-HE20	MCS0	01	241	2	18.90		≥ 0.5	Pass
802.11ax-HE20	MCS0	06	243	57	18.97		≥ 0.5	Pass
802.11ax-HE20	MCS0	11	246	2	18.88		≥ 0.5	Pass
802.11ax-HE40	MCS0	03	242	2	37.97		≥ 0.5	Pass
802.11ax-HE40	MCS0	06	243	57	37.97		≥ 0.5	Pass
802.11ax-HE40	MCS0	09	245	2	37.91		≥ 0.5	Pass





		802.11a	x-HE20	6dB Bandwid	th		
	Channel 01 (241	2MHz)			Channel 06 (243	37MHz)	
		ALIGN AUTO 05:36:07 PM Oct 11, 2021 Radio Std: None >10/10 Radio Device: BTS	Frequency		GHZ Center Freq: 2.437000000 GHz Trig: Free Run Avg Hold #Atten: 18 dB	ALIGN AUTO 05:38:40 PM Oct 11, 2021 Radio Std: None d:>10/10 Radio Device: BTS	Frequency
Ref Offset 17.5 dB OBM/W Ref 24.30 dBm 90 90 90 90 90 90 90 90 90 90			Center Freq 2.412000000 GHz	Ref 04.80 dBm 10 dB/dV Ref 24.80 dBm 40 - 40 - 40 - 40 - 500 - 520 - 520 - 520 - 52 - 52 -			Center Fre 2.437000000 GH
Center 2.412 GHz Res BW 100 kHz	#VBW 300 kHz	Span 40 MHz Sweep 3.867 ms	CF Step 4.000000 MHz	-65.2 Center 2.437 GHz #Res BW 100 kHz	#VBW 300 kHz	Span 40 MHz Sweep 3.867 ms	CF Ste 4.000000 MH
Occupied Bandwidth 18.1 Transmit Freq Error x dB Bandwidth	Total Power 896 MHz 6.955 kHz OBW Power 18.90 MHz x dB	25.8 dBm 99.00 % -6.00 dB	Freq Offset 0 Hz	Occupied Bandwidth 18. Transmit Freq Error x dB Bandwidth	Total Power 904 MHz -1.323 kHz OBW Power 18.97 MHz x dB	26.6 dBm 99.00 % -6.00 dB	Freq Offs 0
Report Section Analyse - Couped W enter Freq 2.46200000 G Ref 22.80 dBm 20 20 20 20 20 20 20 20 20 20 20 20 20	Channel 11 (246	410 A/10 - (43943 M/Art II, 2021 Radio Std: None Radio Device: BTS Span 40 MHz Sweep 3.867 ms	Center Freq 2.46200000 GHz 4.000000 HHz Freq Offset 0 Hz				
x dB Bandwidth	18.88 MHz x dB	-6.00 dB					

802.11a	ax-HE40	6dB Bandwid	th			
Channel 03 (2422MHz)		Channel 06 (2437MHz)				
Knydd Spethin Aufrer - Dorgell RW Strike INT Allon Aufrer Idda Stat Ref of the State Center Freq 2.422000000 GHz Center Freq: 2.42200000 GHz Radio Stat: None Br Galaciow #F Galaciow Avg/Hold>1010 Radio Stat: None Ref Offset 17.6 dB Ref 21.80 dB Avg/Hold>1010 Radio Device: BTS	Frequency	Keysight Spectrum Analyser - Occupied BW RF 35 0 AC Center Freq 2.437000000 Ref Offset 17.6 dB Ref Offset 17.6 dB 10 dB/dlv Ref 22.80 dBm Ref 28.80 dBm	GHZ Center Freq: 2.437000000 GHz FFGaint.ow #Atten: 18 dB	ALIGN AUTO 05:43-21 PMOd: 11, 2021 Radio Std: None >10/10 Radio Device: BTS	Frequency	
	Center Freq 2.42200000 GHz	C60 128 280 129 720 129 472 129 474 129 475 129 475 129 475			Center Freq 2.437000000 GHz	
Center 2.422 GHz Span 80 MHz #Res BW 100 kHz Sweep 7.733 ms	CF Step 8.000000 MHz	Center 2.437 GHz #Res BW 100 kHz	#VBW 300 kHz	Span 80 MHz Sweep 7.733 ms	CF Step 8.000000 MHz	
	Auto Man Freq Offset 0 Hz	Occupied Bandwidth 37 Transmit Freq Error x dB Bandwidth	Total Power 774 MHz 1.345 kHz OBW Power 37.97 MHz x dB	26.5 dBm 99.00 % -6.00 dB	Auto Man Freq Offset 0 Hz	
NSC IstAtus Channel 09 (2452MHz) Kryoph Spectrum Analyzer - Occupied BW SERVELINT Rought Spectrum Analyzer - Occupied BW SERVELINT Conter Freq 2.4520000000 GHz Center Freq 2.452000000 OHz Center Freq 2.452000000 GHz Center Freq 2.452000000 Hz	Frequency	MIQ		STATUS		
Control rect period Control rect period Control rect period Avg/Hold>1010 Ref Offset 17.6 dB Extent: 16 dB Ref Offset 17.6 dB Log dbd/w Ref 18.80 dB Ref 18.80 dB 130 Image: State of the stat	Center Freq 2.45200000 GHz					
Center 2,452 GHz Span 80 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 7.733 ms Occupied Bandwidth Total Power 22.1 dBm 37.681 MHz 20 20 10 kHz 00 80 %	CF Step 8.000000 MHz Auto Man Freq Offset 0 Hz					
Transmit Freq Error -29.736 kHz OBW Power 99.00 % x dB Bandwidth 37.91 MHz x dB -6.00 dB						

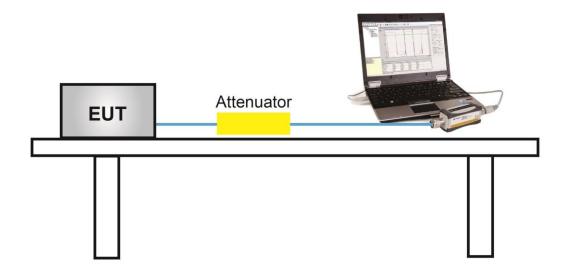
7.3. Output Power Measurement

7.3.1.Test Limit

The maximum output power shall be less 1 Watt (30dBm).

The conducted output power limit specified in paragraph FCC Part 15.247(b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs FCC Part 15.247(b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

7.3.2.Test Procedure Used


ANSI C63.10 Section 11.9.2.3.2

7.3.3.Test Setting

Average Power Measurement

Average power measurements were perform only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter.

7.3.4.Test Setup

7.3.5.Test Result

Product	ACCESS POINT	Test Engineer	Eric Lin
Test Site	SR2	Test Date	2021/09/24
Filter Configuration	Filter 1#		

Test Mode	Data Rate/	Channel No.	Freq. (MHz)	Average Power (dBm) Ant 0 Ant 1 Ant 2 Ant 3				Total Average Power (dBm)	Limit (dBm)	Result
	MCS			Ant U	Anti	Ant Z	Ant 3			
802.11b	1Mbps	01	2412	18.04	18.43	18.27	17.77	24.16	≤ 30.00	Pass
802.11b	1Mbps	06	2437	18.28	18.48	18.37	17.92	24.29	≤ 30.00	Pass
802.11b	1Mbps	11	2462	18.06	18.21	18.22	17.53	24.03	≤ 30.00	Pass
802.11g	6Mbps	01	2412	17.39	17.50	17.45	17.26	23.42	≤ 30.00	Pass
802.11g	6Mbps	06	2437	17.88	18.14	17.90	17.99	24.00	≤ 30.00	Pass
802.11g	6Mbps	11	2462	16.76	16.93	16.92	16.85	22.89	≤ 30.00	Pass
802.11n-HT20	MCS0	01	2412	17.72	17.90	17.86	17.69	23.81	≤ 30.00	Pass
802.11n-HT20	MCS0	06	2437	18.05	18.06	18.12	17.78	24.03	≤ 30.00	Pass
802.11n-HT20	MCS0	11	2462	16.21	16.32	16.48	16.18	22.32	≤ 30.00	Pass
802.11n-HT40	MCS0	03	2422	17.02	17.13	17.01	16.80	23.01	≤ 30.00	Pass
802.11n-HT40	MCS0	06	2437	18.06	18.24	17.98	17.97	24.08	≤ 30.00	Pass
802.11n-HT40	MCS0	08	2447	15.99	16.05	15.88	15.93	21.98	≤ 30.00	Pass
802.11n-HT40	MCS0	09	2452	14.03	14.14	14.06	13.91	20.06	≤ 30.00	Pass
802.11ax-HE20	MCS0	01	2412	17.50	17.72	17.50	17.55	23.59	≤ 30.00	Pass
802.11ax-HE20	MCS0	06	2437	18.33	18.29	18.23	18.08	24.25	≤ 30.00	Pass
802.11ax-HE20	MCS0	10	2457	18.01	17.97	17.86	17.98	23.98	≤ 30.00	Pass
802.11ax-HE20	MCS0	11	2462	15.12	15.20	15.11	14.99	21.13	≤ 30.00	Pass
802.11ax-HE40	MCS0	03	2422	16.73	16.74	16.70	16.51	22.69	≤ 30.00	Pass
802.11ax-HE40	MCS0	06	2437	18.26	18.41	18.13	18.14	24.26	≤ 30.00	Pass
802.11ax-HE40	MCS0	08	2447	15.64	15.79	15.55	15.65	21.68	≤ 30.00	Pass
802.11ax-HE40	MCS0	09	2452	13.70	13.79	13.71	13.62	19.73	≤ 30.00	Pass

Note: Total Average Power (dBm) = 10*log {10^{(Ant 0} Average Power /10)</sup> +10^{(Ant 1} Average Power /10)</sup> +10^{(Ant 2} Average Power /10)</sup>

+10^(Ant 3 Average Power /10)}

Product	ACCESS POINT	Test Engineer	Eric Lin
Test Site	SR2	Test Date	2021/09/24
Filter Configuration	Filter 2#		

Test Mode	Data Rate/	Channel No.	Freq. (MHz)	Av	verage Po	ower (dBr	Total Average Power (dBm)	Limit (dBm)	Result	
	MCS	NO.	(11112)	Ant 0	Ant 1	Ant 2	Ant 3	Fower (ubiii)	(ubiii)	
802.11b	1Mbps	01	2412	18.14	17.97	18.07	17.95	24.05	≤ 30.00	Pass
802.11b	1Mbps	06	2437	18.17	18.26	18.04	17.84	24.10	≤ 30.00	Pass
802.11g	6Mbps	01	2412	17.50	17.15	17.39	17.48	23.40	≤ 30.00	Pass
802.11g	6Mbps	06	2437	17.84	17.89	17.70	17.82	23.83	≤ 30.00	Pass
802.11n-HT20	MCS0	01	2412	17.46	17.33	17.31	17.47	23.41	≤ 30.00	Pass
802.11n-HT20	MCS0	06	2437	17.68	17.73	17.71	17.81	23.75	≤ 30.00	Pass
802.11n-HT40	MCS0	03	2422	16.92	16.71	16.65	16.81	22.79	≤ 30.00	Pass
802.11n-HT40	MCS0	06	2437	17.69	17.72	17.39	17.67	23.64	≤ 30.00	Pass
802.11ax-HE20	MCS0	01	2412	17.23	17.09	17.00	17.32	23.18	≤ 30.00	Pass
802.11ax-HE20	MCS0	06	2437	18.09	18.11	17.82	18.03	24.03	≤ 30.00	Pass
802.11ax-HE40	MCS0	03	2422	16.64	16.50	16.31	16.55	22.52	≤ 30.00	Pass
802.11ax-HE40	MCS0	06	2437	17.81	17.83	17.47	17.84	23.76	≤ 30.00	Pass

Note: Total Average Power (dBm) = $10*\log \left\{ 10^{(Ant \ 0 \ Average \ Power \ /10)} + 10^{(Ant \ 1 \ Average \ Power \ /10)} + 10^{(Ant \ 2 \ Average \ Power \ /10)} \right\}$

 $+10^{(Ant 3 Average Power /10)}\}$

Product	ACCESS POINT	Test Engineer	Eric Lin
Test Site	SR2	Test Date	2021/09/24
Filter Configuration	Filter 3#		

Test Mode	Data	Channel						Total Average	Limit	Result
	Rate/ MCS	NO.	No. (MHz) -		Ant 1	Ant 2	Ant 3	Power (dBm)	(dBm)	
802.11b	1Mbps	11	2462	17.93	17.91	18.08	17.60	23.90	≤ 30.00	Pass
802.11g	6Mbps	11	2462	16.66	16.81	16.77	16.64	22.74	≤ 30.00	Pass
802.11n-HT20	MCS0	11	2462	15.68	15.58	15.81	15.72	21.72	≤ 30.00	Pass
802.11n-HT40	MCS0	09	2452	10.86	10.88	10.99	10.90	16.93	≤ 30.00	Pass
802.11ax-HE20	MCS0	11	2462	13.93	13.96	14.03	13.99	20.00	≤ 30.00	Pass
802.11ax-HE40	MCS0	09	2452	10.62	10.42	10.54	10.56	16.56	≤ 30.00	Pass

Note: Total Average Power (dBm) = $10*\log \{10^{(Ant \ 0 \ Average \ Power \ /10)} + 10^{(Ant \ 1 \ Average \ Power \ /10)} + 10^{(Ant \ 2 \ Average \ Power \ /10)} \}$

+10^(Ant 3 Average Power /10)}

7.4. Power Spectral Density Measurement

7.4.1.Test Limit

The maximum permissible power spectral density is 8dBm in any 3 kHz band.

The same method of determining the conducted output power shall be used to determine the power

spectral density.

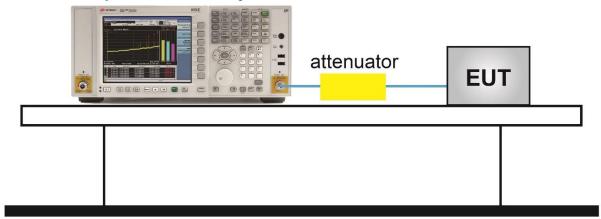
If transmitting antennas of directional gain greater than 6dBi are used, the power spectral density

shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

7.4.2.Test Procedure Used

ANSI C63.10 Section 11.10.5

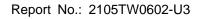
7.4.3.Test Setting


- 1. Measure the duty cycle (x) of the transmitter output signal.
- 2. Set instrument center frequency to DTS channel center frequency.
- 3. Set span to at least 1.5 times the OBW.
- 4. RBW = 10 kHz.
- 5. VBW = 30 kHz.
- 6. Detector = RMS.
- 7. Ensure that the number of measurement points in the sweep $\ge 2 \times \text{span/RBW}$.
- 8. Sweep time = auto couple.
- 9. Don't use sweep triggering. Allow sweep to "free run".
- 10. Employ trace averaging (RMS) mode over a minimum of 100 traces.
- 11. Use the peak marker function to determine the maximum amplitude level.
- 12. Add 10 log (1/x), where x is the duty cycle measured in step (a, to the measured PSD to compute

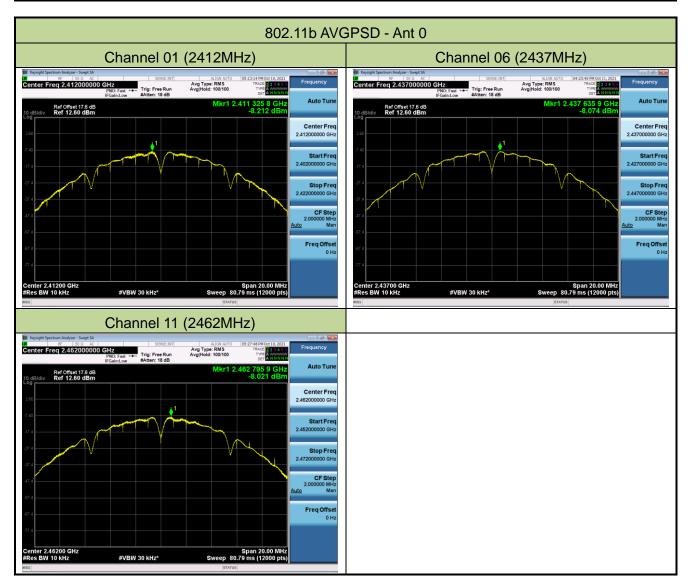
the average PSD during the actual transmission time.

7.4.4.Test Setup

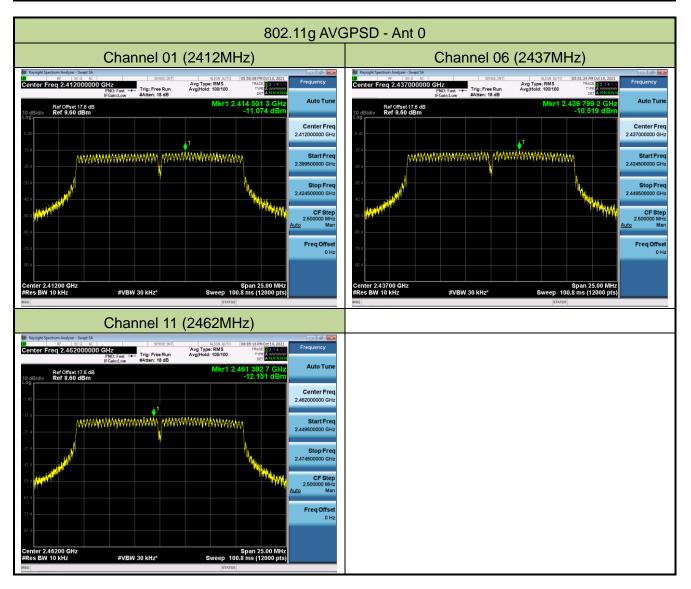
Spectrum Analyzer


7.4.5.Test Result

Product	ACCESS POINT	Test Engineer	Eric Lin
Test Site	SR2	Test Date	2021/10/10~2021/10/11


Test Mode	Data	Ch.	Freq.	P	SD (dBr	m/10kH	z)	Duty	10*log	Total PSD	Limit	Result
	Rate/	No.	(MHz)	Ant 0	Ant 1	Ant 2	Ant 3	Cycle	(1/x)	(dBm/	(dBm/	
	MCS							(%)		10kHz)	3kHz)	
802.11b	1Mbps	01	2412	-8.21	-7.83	-8.07	-8.44	92.84	0.32	-1.79	≤ 7.77	Pass
802.11b	1Mbps	06	2437	-8.07	-7.99	-8.00	-8.38	92.84	0.32	-1.76	≤ 7.77	Pass
802.11b	1Mbps	11	2462	-8.02	-7.83	-7.79	-8.57	92.84	0.32	-1.70	≤ 7.77	Pass
802.11g	6Mbps	01	2412	-11.07	-11.04	-11.05	-11.13	92.02	0.36	-4.69	≤ 7.77	Pass
802.11g	6Mbps	06	2437	-10.52	-10.06	-10.46	-10.40	92.02	0.36	-3.97	≤ 7.77	Pass
802.11g	6Mbps	11	2462	-12.15	-11.59	-11.65	-11.80	92.02	0.36	-5.41	≤ 7.77	Pass
802.11n-HT20	MCS0	01	2412	-11.26	-11.08	-11.24	-11.45	94.58	0.24	-4.99	≤ 7.77	Pass
802.11n-HT20	MCS0	06	2437	-11.07	-11.16	-11.20	-11.38	94.58	0.24	-4.94	≤ 7.77	Pass
802.11n-HT20	MCS0	11	2462	-12.96	-12.92	-12.74	-13.02	94.58	0.24	-6.65	≤ 7.77	Pass
802.11n-HT40	MCS0	03	2422	-14.98	-14.86	-15.05	-15.27	94.25	0.26	-8.76	≤ 7.77	Pass
802.11n-HT40	MCS0	06	2437	-14.17	-14.00	-14.17	-14.24	94.25	0.26	-7.87	≤ 7.77	Pass
802.11n-HT40	MCS0	09	2452	-18.10	-18.05	-18.08	-18.15	94.25	0.26	-11.82	≤ 7.77	Pass
802.11ax-HE20	MCS0	01	2412	-13.36	-12.80	-12.52	-13.30	95.17	0.21	-6.73	≤ 7.77	Pass
802.11ax-HE20	MCS0	06	2437	-12.19	-12.31	-12.56	-12.64	95.17	0.21	-6.19	≤ 7.77	Pass
802.11ax-HE20	MCS0	11	2462	-15.27	-14.67	-15.35	-15.46	95.17	0.21	-8.94	≤ 7.77	Pass
802.11ax-HE40	MCS0	03	2422	-16.58	-16.55	-16.61	-16.73	94.82	0.23	-10.36	≤ 7.77	Pass
802.11ax-HE40	MCS0	06	2437	-14.99	-14.93	-15.34	-15.21	94.82	0.23	-8.86	≤ 7.77	Pass
802.11ax-HE40	MCS0	09	2452	-19.83	-19.47	-19.79	-19.85	94.82	0.23	-13.48	≤ 7.77	Pass

Note: When EUT duty cycle \leq 98%, Total AVGPSD = 10*log {10^(Ant 0 AVGPSD/10) + 10^(Ant 1 AVGPSD/10) + 10^(Ant 2 AVGPSD/10)</sup>


AVGPSD/10 + 10^(Ant 3 AVGPSD/10)} + 10^{*}log (1/Duty Cycle).

