FCC PART 15 Subpart C EMI MEASUREMENT AND TEST REPORT

For

Continental Conair Limited

35/F Standard Chartered Tower Millennium City, 388 Kwun Tong Road Kwun Tong, Kowloon, HK

FCC ID: LBBGH3100

2004-04-22

This Report Concerns:Equipment Type:☑ Original Report2.4GHz Cordless Phone

Ling Zhang/

Report No.: R0403232(Base)

Test Date: 2004-04-08

Test Engineer:

Reviewed By: Hans Mellberg/

Prepared By: Bay Area Compliance Laboratory Corporation

230 Commercial Street Sunnyvale, CA 94085 Tel (408) 732-9162 Fax (408) 732-9164

Note: This test report is specially limited to the above client company and the product model only. It may not be duplicated without prior written consent of Bay Area Compliance Laboratory Corporation. This report **must not** be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	3
SYSTEM TEST CONFIGURATION	5
DESCRIPTION OF TEST CONFIGURATION	5
EQUIPMENT MODIFICATIONS	5
CONFIGURATION OF TEST SYSTEM	5
TEST SETUP BLOCK DIAGRAM	
LOCAL SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLING LIST AND DETAILS	
SUMMARY OF TEST RESULTS	7
§ 15.207 - CONDUCTED EMISSIONS TEST DATA	8
MEASUREMENT UNCERTAINTY	
EUT SETUP	
SPECTRUM ANALYZER SETUP	
TEST EQUIPMENT LIST AND DETAILS.	
TEST PROCEDURE	
ENVIRONMENTAL CONDITIONS	
SUMMARY OF TEST RESULTS	
CONDUCTED EMISSIONS TEST DATA (MODEL: GH3150)	9
CONDUCTED EMISSIONS TEST DATA (MODEL: GH3110 & GH3100)	10 10
§15.209(A), §15.205 & §15.249 - RADIATED EMISSION DATA	
MEASUREMENT UNCERTAINTYEUT SETUP	
SPECTRUM ANALYZER SETUP	
TEST EQUIPMENT LIST AND DETAILS.	
ENVIRONMENTAL CONDITIONS	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
Summary of Test Results	
RADIATED EMISSIONS TEST RESULT DATA	
§15,249(C) – BAND-EDGE TESTING	21
STANDARD APPLICABLE	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS.	
ENVIRONMENTAL CONDITIONS	
TEST RESULTS	21

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

The Continental Conair Limited's product, model name: GH3150(XXXXX), GH3110(XXXXX), GH301WCS and GH3100(XXXXX) where 'X' may be some alphabet representing color code and packing information, the "EUT" as referred to in this report are Base, 2.4GHz Cordless Phone. The EUT was composed of two parts, one is a Handset and the other is a Base. This report is for Base only.

GH3150(XXXXX) which measures approximately 180mmL x 55mmW x 40mmH. GH3110(XXXXX) which measures approximately 122mmL x 122mmW x 110mmH. GH3100(XXXXX) which measures approximately 122mmL x 122mmW x 110mmH.

GH3150(XXXXX) and GH3110(XXXXX)'s base are identical in construction, dimensions, and electrical circuits. The main modification for GH3110(XXXXX) is the removal of additional answer machine feature, Base Main PCB and Base unit were changed and some components were removed on the base unit.

GH3100(XXXXX) and GH3110(XXXXX)'s base are identical in all design.

Objective

This document is a test report based on the Electromagnetic Interference (EMI) tests performed on the EUT. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4 - 2001.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.205, 15.207, 15.249, 15.203 and 15.209 rules.

Related Submittal(s)/Grant(s)

No Related Submittals

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4 - 2001, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp.

Test Facility

The Open Area Test site used by Bay Area Compliance Laboratory Corporation to collect radiated and conducted emission measurement data is located in the back parking lot of the building at 230 Commercial Street, Sunnyvale, California, USA.

^{*} The test data gathered are from production sample, serial number: GH3150OR1/GH3110R1/GH3100R1, provided by the manufacturer.

Test site at Bay Area Compliance Laboratory Corporation has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules and Article 8 of the VCCI regulations. The facility also complies with the test methods and procedures set forth in ANSI C63.4-2001.

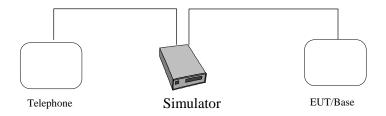
The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC file 31040/SIT 1300F2 and VCCI Registration No.: C-1298 and R-1234. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratory Corporation is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (NVLAP). The scope of the accreditation covers the FCC Method - 47 CFR Part 15 - Digital Devices, CISPR 22:1997 and AS/NZS 3548: Electromagnetic Interference - Limits and Methods of Measurement of Information Technology Equipment test methods under NVLAP Lab Code 200167-0.

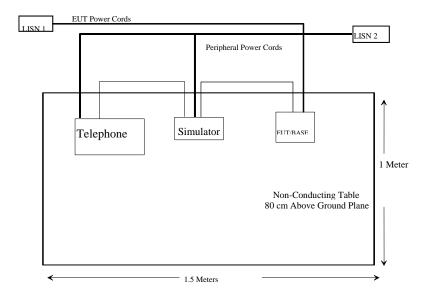
SYSTEM TEST CONFIGURATION

Description of Test Configuration

The EUT was configured for testing according to ANSI C63.4-2001.


Base being tested: The Base unit was placed on the wooden table. The Low, and high channels were tested. The base was connected to the line simulator and an AC adapter via its Tel Line and power ports, respectively. The base was transmitting and receiving from the Handset. The conducted as well as radiated data was taken in this mode of operation. All initial and final investigations were performed with the EMI receiver in manual mode scanning the frequency range continuously. The cables were bundled and routed as shown in the section of configuration of test system.

Equipment Modifications


No modifications were made to the EUT.

Configuration of Test System

Setup for Base

Test Setup Block Diagram

Local Support Equipment List and Details

Manufacturer	Description	Model	Serial Number	FCC ID
Southern Telecom	Telephone	None	None	None
Teltone Corp	Simulator	TLS-3B-01	80071	None

External I/O Cabling List and Details

Cable Description	Length (M)	Port/From	То
None-Shielded RJ-11 Cable	1.5	RJ-11 Port/EUT	Simulator RJ11Port
None-Shielded RJ-11 Cable	1.5	Support telephone	Simulator RJ11Port

Power Supply

Manufacturer	Description	Model	Serial Number	FCC ID
Southwestern Bell	AC Adaptor	DU41090045C	None	None

SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.207 (a)	Conducted Emission	Compliant
§15.249 (a)	Radiated Emission	Compliant
§15.249 (c)	Band Edge Testing	Compliant
§15.203	Antenna Requirement	Compliant
§15.205	Restricted Band of Operation	Compliant
§15.214	Cordless Telephone	Compliant

§ 15.207 - CONDUCTED EMISSIONS TEST DATA

Measurement Uncertainty

All measurements involve certain levels of uncertainties. These uncertainties are attributed to: Spectrum analyzer, Cable loss, and LISN.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the estimated uncertainty of any conducted emission measurement at BACL is ±2.4 dB.

EUT Setup

The measurement was performed in the shielded room, using the same setup per ANSI C63.4-2001 measurement procedure. The specification used was FCC 15 Subpart C limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle as required.

The Power Adapter system was connected with 120Vac/60Hz power source.

Spectrum Analyzer Setup

The spectrum analyzer was set to investigate the spectrum from 150 kHz to 30MHz.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date
Rohde &	Artificial LISN	EGII2 75	071004/020	2004 02 29
Schwarz	Artificial LISIN	ESH2-Z5	871884/039	2004-03-28
Rohde &	EMIT (D.	Edday	100176	2004.07.06
Schwarz	EMI Test Receiver	ESCS30	100176	2004-05-06
Fluke	Calibrated Voltmeter	189	18485-38	2003-07-18

^{*} **Statement of Traceability: BACL Corp.** certifies that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

During the conducted emission test, the power cord of the host system was connected to the mains outlet of the LISN-1.

Maximizing procedure were performed on the six (6) highest emissions of the EUT.

All data was recorded in the peak detection mode, quasi-peak and average. Qusi-Peak readings are distinguished with an "QP". Average readings are distinguished with an "Ave".

Environmental Conditions

Temperature:	15°C
Relative Humidity:	78%
ATM Pressure:	1016 mbar

Summary of Test Results

According to the recorded data in following table, the EUT <u>complies with the FCC</u> Conducted limit for a Class B device, with the *worst* margin reading of:

Model: GH3150

-20.9 dB at 17.9 MHz in the Neutral mode

Model: GH3110 & GH3100

-34.2 dB at 4.10 MHz in the Line mode

Conducted Emissions Test Data (Model: GH3150)

	LINE CON	FCC C	LASS B		
Frequency	Amplitude	Detector	Phase	Limit	Margin
MHz	dΒμV	Qp/Ave/Peak	Line/Neutral	dΒμV	dB
17.9	29.1	AVG	Neutral	50	-20.9
17.9	28.5	AVG	Line	50	-21.5
4.1	16.2	AVG	Line	46	-29.8
17.9	29.6	QP	Neutral	60	-30.4
4.1	14.1	AVG	Neutral	46	-31.9
17.9	27.6	QP	Line	60	-32.4
0.62	16.4	QP	Neutral	56	-39.6
4.1	16.3	QP	Line	56	-39.7
16.2	19.4	QP	Line	60	-40.6
4.1	14.0	QP	Neutral	56	-42.0
16.2	7.9	AVG	Line	50	-42.1
0.62	3.2	AVG	Neutral	46	-42.8

Conducted Emissions Test Data (Model: GH3110 & GH3100)

	Line Con	FCC C	LASS B		
Frequency	Amplitude	Detector	Phase	Limit	Margin
MHz	dBμV	Qp/Ave/Peak	Line/Neutral	dBμV	dB
4.10	11.8	AVG	Line	46	-34.2
1.35	11.6	AVG	Neutral	46	-34.4
8.10	18.9	QP	Neutral	60	-41.1
8.13	8.3	AVG	Line	50	-41.7
1.35	14.2	QP	Neutral	56	-41.8
8.10	6.8	AVG	Neutral	50	-43.2
4.10	11.2	QP	Line	56	-44.8
0.17	7.3	AVG	Line	55	-47.7
0.17	6.2	AVG	Neutral	55	-48.8
0.17	15.6	QP	Line	65	-49.4
8.13	8.5	QP	Line	60	-51.5
0.17	9.9	QP	Neutral	65	-55.1

Plot of Conducted Emissions Test Data

Plot of Conducted Emissions test data was presented hereinafter as reference.

Bay Area Compliance Laboratory Corp 08. Apr 04 12:38 Class B GH3150 GCT Telecom Normal EUT: Manuf: Op Cond: LING Operator: N Comment: Scan Settings (3 Ranges) Frequencies -- Receiver Settings -IF BW Detector M-Time Atten Preamp 9k QP+AV 20ms 15dBLN OFF Start Stop Step 150k Вk ims 15dBLN OFF QP+AV 114 BM 10k 9k QP+AV OFF ima 15dBLN 5M MOE 100k 9k Final Measurement: x QP / + AV Meas Time: 1 8 Subranges: 25 Acc Margin: 6dB ♦ Mkr : ∀ Mkr : 17.90000MHz 17.90000MHz 29.6 dBuV 29.1 dBuV dBuV 70 QPC1assB 60 AVC1assB 50 40 30 20

10

0.15

PAGE 1

1


nox-04-04

Bay Area Compliance Laboratory Corp 08. Apr 04 08: 54 Class B

6H3150 EUT: CCT Telecom Normal Manuf: Op Cond: LING Operator: Comment:

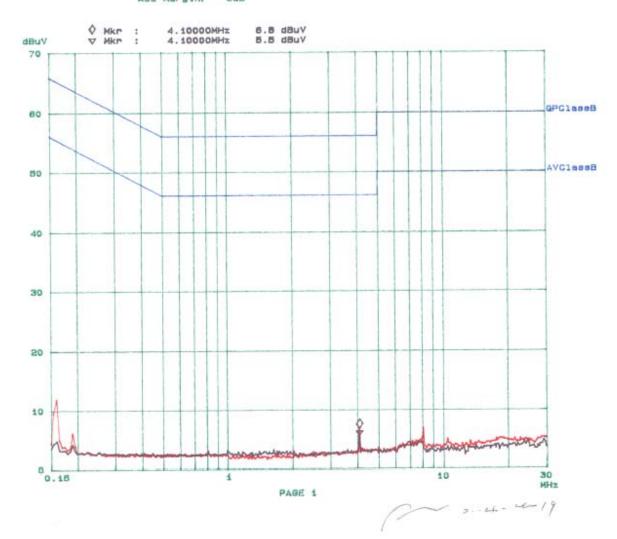
	Frequencies		-	Receiv	er Sett:	ruba	
Start 150k 1M 5M	Stop 1M 5M 30M	Step 5k 10k 100k	IF BW 9k 9k 9k	QP+AV QP+AV QP+AV	M-Time 20ms ims ims	Atten 15dBLN 15dBLN 15dBLN	Preamp OFF OFF

Final Messurement: x QP / + AV Mess Time: 1 8 25 Subranges: 6dB Acc Margin:

Bay Area Compliance Laboratory Corp 21. Apr 04 07:42 EUT: GH3110 Manuf: Normal Op Cond: Operator: Ming Comment: Scan Settings (3 Ranges) ----- Receiver Settings ----| ---- Frequencies ---IF BW Detector M-Time Atten Preamp 9k QP+AV 20ms 15dBLN QFF Start Step Stop 150k 1M OFF QP+AV 1M ME 10k 9k 1ms 15dBLN OFF QP+AV ims indelN BM MOE 100k 9k Final Measurement: x GP / + AV Meas Time: 1 8 Subranges: 25 2-1-2014-4-20 Acc Margin: 6dB ♦ Mkr : ▼ Mkr : B. 10000MHz 18.9 dBuV dBuV B.10000MHz 6.8 dBuV 70 QPC1masB 60 AVClassB 50 40 30 0.15 10 30 MHZ PAGE 1

Bay Area Compliance Laboratory Corp 21. Apr 04 08:02 Class B GH3110 EUT: Manuf: CCT Normal Op Cond: Operator: Ming Comment: Scan Settings (3 Aanges) ----- | ----- Receiver Settings ---| ---- Frequencies -IF BW Detector M-Time Atten Presmp 9k QP+AV 20ms 15dBLN OFF 9k QP+AV 1ms 15dBLN OFF 9k QP+AV 1ms 15dBLN OFF Start Stop Step 150k Bk 1M 5M 10k 5M MOE 100k Final Messurement: x GP / + AV Meas Time: pr 3-4-4-20 Subranges: SB 6dB Acc Margin: 4.10000MHz 11.2 dBuV 11.8 dBuV ♦ MKr : V Mkr : 4.10000MHz dBuV 70 QPC1assB 60 AVC1assB 50 40 30 20 10 The state of the s 0.15 30 MHZ PAGE 1

Bay Area Compliance Laboratory Corp 19. Apr 04 12:56 Class B 001EH8 EUT: CCT Normal Manuf: Op Cond: Daniel Operator: Comment: Scan Settings (3 Ranges) -- |] ------ Receiver Settings ---| ---- Frequencies --IF BW Detector M-Time Atten Preamp gk QP+AV 20ms 15dBLN OFF gk QP+AV 1ms 15dBLN OFF Start Stop Step 1M 5k EM 10k QP+AV ims 15dBLN OFF 30M 100k Bic Final Measurement: x GP / + AV Meas Time: 25 Subranges: Acc Margin: ♦ Mkr : 810.00 ▼ Mkr : 810.00 13.8 dBuV 12.5 dBuV kHz kHz dBuV 70 QPC1assB 60 AVCISSEB 50 40 30 50 10 0.15 10 Эò MHz PAGE 1


12- 2-9-4-9

Bay Area Compliance Laboratory Corp 19. Apr 04 13: 27 Class B

EUT: Manuf: Op Gend: Operator: 9H3100 CCT Normal Daniel Comment:

Scan Setti	ngs (3 Ranges						174
	Frequencies			Receiv	er Sett!	inga	
Start	Stop	Step	IF BW	Detector	M-Time	Atten	Preamp
150k	1M	5k	940	GP+AV	Soma	15dBLN	OFF
1M	5M	10k	9k	VA+9p	4ms	15dBLN	Ohh
5M	MOE	100k	94c	QP+AV	ime	15dBLN	OFF

Final Measurement: x QP / + AV Meas Time: 1 B Subranges: Acc Margin: 6dB

§15.209(a), §15.205 & §15.249 - RADIATED EMISSION DATA

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at BACL is ±4.0 dB.

EUT Setup

The radiated emission tests were performed in the open area 3-meter test site, using the setup in accordance with ANSI C63.4-2001. The specification used was the FCC 15 Subpart C limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle as required.

The host PC system was connected with 120Vac/60Hz power source.

Spectrum Analyzer Setup

According to FCC Rules, 47 CFR 15.33 (a) (1), the system was tested to 10GHz.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

Frequency Range	RBW	Video B/W
Below 30MHz	10kHz	10kHz
30-1000MHz	100kHz	100kHz
Above 1000MHz	1MHz	1MHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date	
HP	Spectrum Analyzer	8568B	2601A02165	2003-07-07	
НР	Spectrum Analyzer Display	85662A	3026A20081	2003-06-13	
HP	Quasi-Peak Adapter	85650A	3019A05393	2003-06-13	
Agilent	Amplifier	8447D	2944A10187	2003-09-23	
Electro-Metrics	Biconical Antenna	EM-6912	585	2004-04-17	
Electro-Metrics	Logperiodic Antenna	EM-6950	788	2004-04-15	
HP	Spectrum Analyzer	8565EC	3946A00131	2003-06-30	

^{*} Statement of Traceability: BACL Corp. certifies that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Environmental Conditions

Temperature:	15 ° C
Relative Humidity:	78%
ATM Pressure:	1016 mbar

Test Procedure

For the radiated emissions test, the power cord of the host system and all support equipment were connected to the AC floor outlet.

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT is compliant with all installation combinations.

All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dB of specification limits), and are distinguished with a "**Qp**" in the data table.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for applicable limits. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Applicable Limit

Summary of Test Results

According to the recorded data in following table, the EUT <u>complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209, and 15.249</u> after tested to 10th harmonics as required by FCC and had the worst margin of:

Model: GH3150

Base, 1GHz - 10GHz, 3 Meters

- -3.22 dB at 924.045 MHz in the Vertical polarization at Low Frequency
- -4.39 dB at 926.219 MHz in the Vertical polarization at High Frequency
- -5.69 dB at 266.680 MHz in the Horizontal polarization at Unintentional Emission

Model: GH3110 & GH3100

Base, 1GHz - 10GHz, 3 Meters

- -1.7 dB at 924.045 MHz in the Vertical polarization at Low Frequency
- -1.8 dB at 926.219 MHz in the Vertical polarization at High Frequency
- -8.2 dB at 261.990 MHz in the Horizontal polarization at Unintentional Emission

Radiated Emissions Test Result Data

Base Unit, 1GHz to 10GHz, 3 meters (For Model: GH3150)

Indicated		TABLE	Antenna		CORRECTION FACTOR			CORRECTED AMPLITUDE			
Frequency	Ampl.		Angle	Height	Polar	Antenna	Cable	Amp.	Corr. Ampl.	Limit	Margin
MHz	dBμV/m	Comments	Degree	Meter	H/V	dBμV/m	DB	dB	dBμV/m	$dB\mu V/m$	dB
	Low Channel										
924.045	91.67	Fund/Peak	270	1.8	V	23.4	4.03	28.32	90.78	94	-3.22
924.045	88.67	Fund/Peak	0	1	Н	23.4	4.03	28.32	87.78	94	-6.22
1848.090	44.67	Ave	45	1.5	V	25.3	2.60	37	35.57	54	-18.43
2772.135	36.83	Ave	60	1	V	29	3.68	35.64	33.87	54	-20.13
2772.135	34.50	Ave	100	1.4	Н	29	3.68	35.64	31.54	54	-22.46
1848.090	39.17	Ave	100	1	Н	25.3	2.60	37	30.07	54	-23.93
2772.135	47.50	Peak	60	1	V	29	3.68	35.64	44.54	74	-29.46
2772.135	46.17	Peak	100	1.4	Н	29	3.68	35.64	43.21	74	-30.79
1848.090	50.67	Peak	45	1.5	V	25.3	2.60	37	41.57	74	-32.43
1848.090	48.33	Peak	100	1	Н	25.3	2.60	37	39.23	74	-34.77
					Hig	h Channel					
926.219	90.5	Fund/Peak	270	2	V	23.4	4.03	28.32	89.61	94	-4.39
926.219	90.5	Fund/Peak	270	2	V	23.4	4.03	28.32	89.61	94	-4.39
926.219	87.83	Fund/Peak	0	1.1	Н	23.4	4.03	28.32	86.94	94	-7.06
926.219	87.83	Fund/Peak	0	1.1	Н	23.4	4.03	28.32	86.94	94	-7.06
1852.437	43.83	Ave	30	1.4	V	25.3	2.60	37	34.73	54	-19.27
2778.656	37.33	Ave	60	1	V	29	3.68	35.64	34.37	54	-19.63
2778.656	37	Ave	90	1.8	Н	29	3.68	35.64	34.04	54	-19.96
1852.437	38.2	Ave	100	1	Н	25.3	2.60	37	29.10	54	-24.90
2778.656	47.5	Peak	60	1	V	29	3.68	35.64	44.54	74	-29.46
2778.656	47.5	Peak	90	1.8	Н	29	3.68	35.64	44.54	74	-29.46
1852.437	50.17	Peak	30	1.4	V	25.3	2.60	37	41.07	74	-32.93
1852.437	46.5	Peak	100	1	Н	25.3	2.60	37	37.40	74	-36.60
	Unintentional Emission, 30MHz to 1000MHz										
266.680	52.67	/	80	1.4	Н	13.4	2.2	27.96	40.31	46	-5.69
262.142	51.17	/	330	1.5	Н	13.4	2.2	27.96	38.81	46	-7.19
262.112	50.50	/	100	2	V	13.4	2.2	27.96	38.14	46	-7.86
266.657	49.50	/	200	2.2	V	13.4	2.2	27.96	37.14	46	-8.86
460.680	38.33	/	30	1	V	17.5	3	28.66	30.17	46	-15.83
460.313	35.50	/	0	1.6	Н	17.5	3	28.66	27.34	46	-18.66

Ave.: Average Fund: Fundamental

Note: This test was performed by placing the handset on 3 orthogonal axis.

Base Unit, 1GHz to 10GHz, 3 meters (For Model: GH3110 & GH3100)

Indicated		TABLE	Antenna		CORRECTION FACTOR			CORRECTED AMPLITUDE	FCC 15 Subpart C		
Frequency	Ampl.		Angle	Height	Polar	Antenna	Cable	Amp.	Corr. Ampl.	Limit	Margin
MHz	dBμV/m	Comments	Degree	Meter	H/ V	dBμV/m	DB	dB	dBμV/m	dBμV/m	dB
	Low Channel										
924.045	93.2	Fund/QP	30	1.5	V	23.4	4.0	28.3	92.3	94	-1.7
924.045	89.9	Fund/QP	0	1.2	Н	23.4	4.0	28.3	89.0	94	-5.0
1848.090	50.3	Peak	45	1.5	V	25.3	2.6	37.1	41.1	74	-32.9
1848.090	48.3	Peak	100	1.6	Н	25.3	2.6	37.1	39.1	74	-34.9
1848.090	44.5	Ave	45	1.5	V	25.3	2.6	37.1	35.3	54	-18.7
1848.090	39.1	Ave	100	1.6	Н	25.3	2.6	37.1	29.9	54	-24.1
2772.135	47.3	Peak	30	1.5	V	29.0	3.7	35.6	44.4	74	-29.6
2772.135	44.7	Peak	90	1.4	Н	29.0	3.7	35.6	41.8	74	-32.2
2772.135	37.4	Ave	30	1.5	V	29.0	3.7	35.6	34.5	54	-19.5
2772.135	35.5	Ave	90	1.4	Н	29.0	3.7	35.6	32.6	54	-21.4
					Hig	h Channe					
926.219	93.1	Fund/QP	270	1.2	V	23.4	4.0	28.3	92.2	94	-1.8
926.219	89.7	Fund/QP	0	1.1	Н	23.4	4.0	28.3	88.8	94	-5.2
1852.437	50.4	Peak	310	1.5	V	25.3	2.6	37.1	41.2	74	-32.8
1852.437	48.1	Peak	120	1.0	Н	25.3	2.6	37.1	38.9	74	-35.1
1852.437	43.2	Ave	310	1.5	V	25.3	2.6	37.1	34.0	54	-20.0
1852.437	39.3	Ave	120	1.0	Н	25.3	2.6	37.1	30.1	54	-23.9
2778.656	47.4	Peak	0	1.2	V	29.0	3.7	35.6	44.5	74	-29.5
2778.656	44.9	Peak	60	1.5	Н	29.0	3.7	35.6	42.0	74	-32.0
2778.656	37.3	Ave	0	1.2	V	29.0	3.7	35.6	34.4	54	-19.6
2778.656	35.2	Ave	60	1.5	Н	29.0	3.7	35.6	32.3	54	-21.7
Unintentional Emission, 30MHz to 1000MHz											
261.990	50.2	/	60	1.8	V	13.4	2.2	28.0	37.8	46	-8.2
266.730	49.1		270	2.0	V	13.4	2.2	28.0	36.7	46	-9.3
460.520	38.7	/	120	1.5	V	17.5	3.0	28.7	30.5	46	-15.5
261.840	50.9	/	310	1.6	Н	13.4	2.2	28.0	38.5	46	-7.5
266.730	52.7	/	90	1.5	Н	13.4	2.2	28.0	40.3	46	-5.7
459.920	35.5	/	45	1.2	Н	17.1	3.0	28.6	27.0	46	-19.0

Ave.: Average Fund: Fundamental QP: Qusi-Peak

Note: This test was performed by placing the handset on 3 orthogonal axis.

§15.249(c) – BAND-EDGE TESTING

Standard Applicable

Requirements: FCC 15.249 (c), the emission power at the START and STOP frequencies shall be at least 50 dB below the level of the fundamental or to the general radiated emission limits in FCC 15.209, whichever is the lesser attenuation.

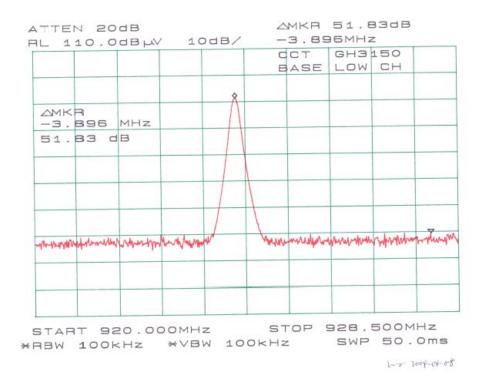
Test Procedure

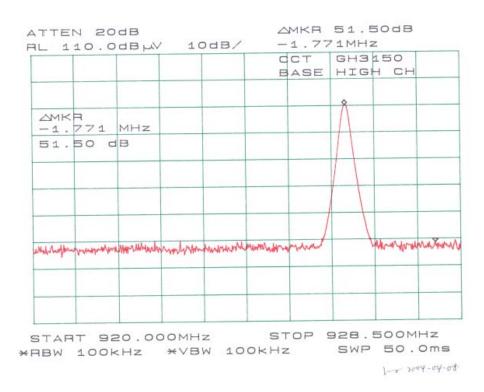
With the EUT's antenna attached, the EUT's radiated emission power was received by the test antenna which was connected to the spectrum analyzer with the START and STOP frequencies set to the EUT's operation band.

Test Equipment List and Details

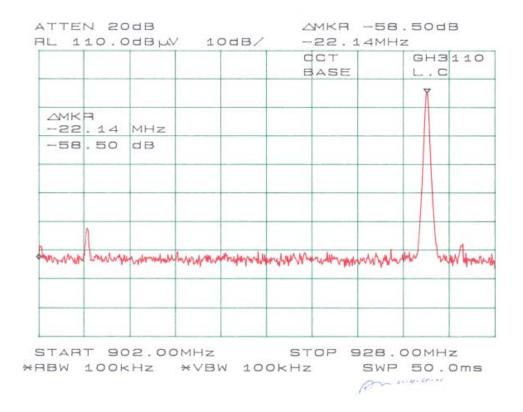
Manufacturer	Description	Model	Serial Number	Cal. Date	
HP	Spectrum Analyzer	8565EC	3946A00131	2003-06-30	

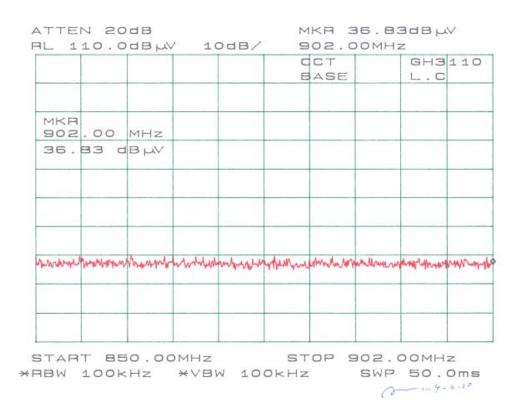
^{*} **Statement of Traceability: BACL Corp.** certifies that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

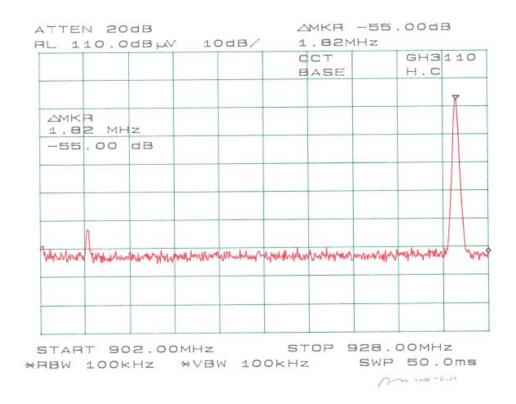

Environmental Conditions

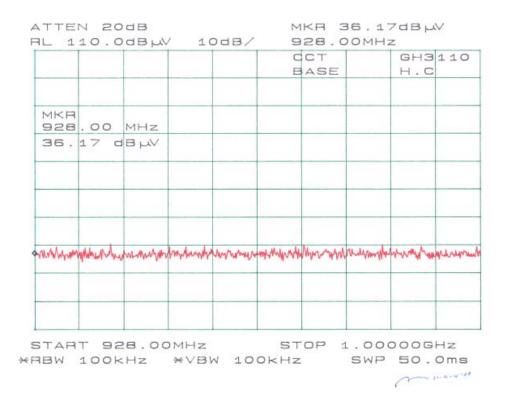

Temperature:	15 ° C
Relative Humidity:	78%
ATM Pressure:	1016 mbar

Test Results


Refer to the attached plots.


Model: GH3150





Model: GH3110 & GH3100

