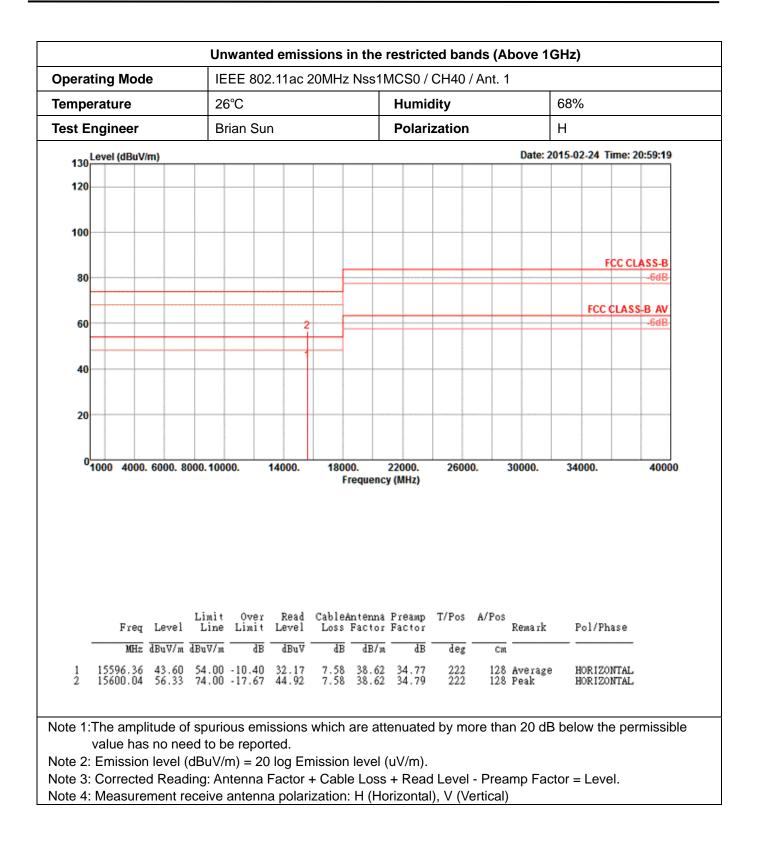
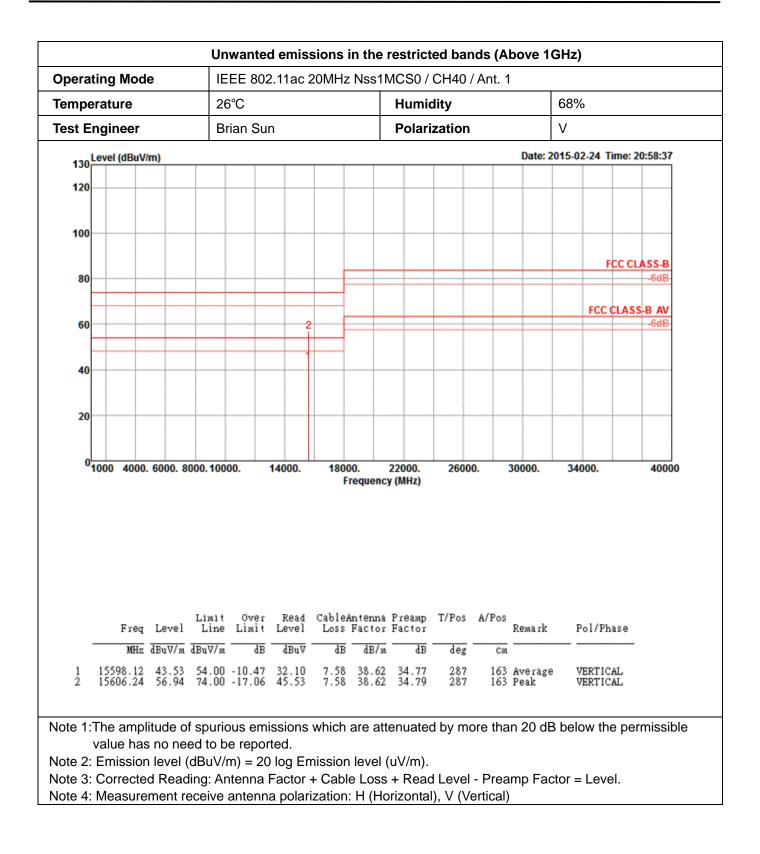
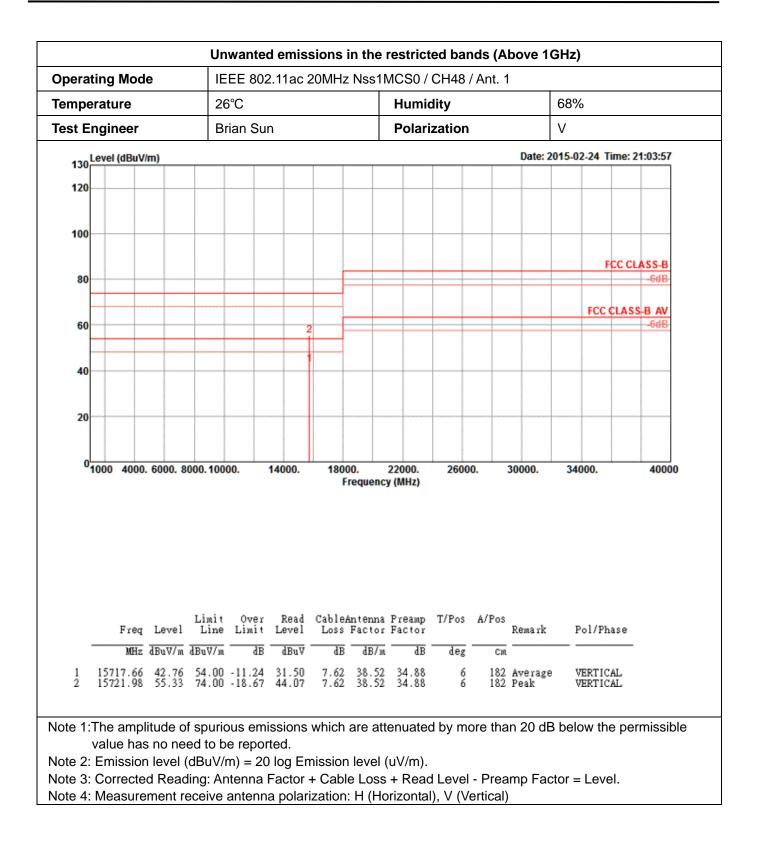

## FCC TEST REPORT

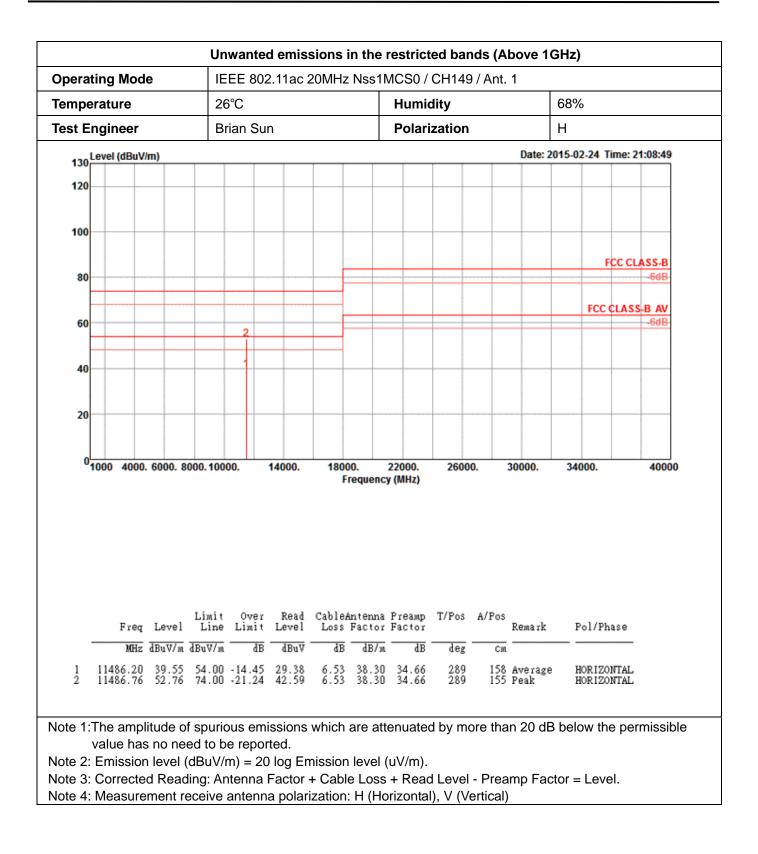

| perating Mode                                                                                            |                                                                                        | IEEE 802.11a 6Mbps / CH157 / 1S3T, CDD                         |                                                   |                                                  |                                                              |                            |                           |                         |                       |              |          |  |  |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|----------------------------|---------------------------|-------------------------|-----------------------|--------------|----------|--|--|
| emperature                                                                                               | 2                                                                                      | 26°C                                                           |                                                   |                                                  | Hui                                                          | nidity                     | (                         | 68%<br>V                |                       |              |          |  |  |
| est Engineer                                                                                             | E                                                                                      | Brian Su                                                       | n                                                 |                                                  | Pol                                                          | arizatio                   | Ņ                         |                         |                       |              |          |  |  |
| Level (dBuV/m)                                                                                           |                                                                                        |                                                                |                                                   |                                                  |                                                              |                            |                           | Date: 20                | 15-03-05              | Time:        | 20:26:12 |  |  |
| 20                                                                                                       |                                                                                        |                                                                |                                                   |                                                  |                                                              |                            |                           |                         |                       |              |          |  |  |
| .0                                                                                                       |                                                                                        |                                                                |                                                   |                                                  |                                                              |                            |                           |                         |                       |              |          |  |  |
|                                                                                                          |                                                                                        |                                                                |                                                   |                                                  |                                                              |                            |                           |                         |                       |              |          |  |  |
| 0                                                                                                        |                                                                                        |                                                                |                                                   |                                                  |                                                              |                            |                           |                         |                       |              |          |  |  |
|                                                                                                          |                                                                                        |                                                                |                                                   |                                                  |                                                              |                            |                           |                         |                       | FCC C        | LASS-B   |  |  |
|                                                                                                          |                                                                                        |                                                                |                                                   |                                                  |                                                              |                            |                           |                         |                       |              | -6dB     |  |  |
|                                                                                                          |                                                                                        |                                                                |                                                   |                                                  |                                                              |                            |                           |                         | FC                    | C CLAS       | S-B AV   |  |  |
| 0                                                                                                        |                                                                                        |                                                                |                                                   |                                                  |                                                              |                            |                           |                         |                       |              | -6dB     |  |  |
|                                                                                                          |                                                                                        |                                                                |                                                   |                                                  |                                                              |                            |                           |                         |                       |              |          |  |  |
| 0                                                                                                        | - 2                                                                                    |                                                                |                                                   |                                                  |                                                              |                            |                           |                         |                       |              |          |  |  |
|                                                                                                          |                                                                                        |                                                                |                                                   |                                                  |                                                              |                            |                           |                         |                       |              |          |  |  |
| 0                                                                                                        |                                                                                        |                                                                |                                                   |                                                  |                                                              |                            |                           |                         |                       |              |          |  |  |
|                                                                                                          |                                                                                        |                                                                |                                                   |                                                  |                                                              |                            |                           |                         |                       |              |          |  |  |
|                                                                                                          |                                                                                        |                                                                |                                                   |                                                  |                                                              |                            |                           |                         |                       |              |          |  |  |
| 01000 4000. 6000. 8000.                                                                                  | . 10000.                                                                               | 14000.                                                         | 1800<br>Fr                                        | 0. 2<br>requency                                 | 2000.<br>(MH7)                                               | 26000                      | . 3                       | 0000.                   | 34000.                |              | 400      |  |  |
| Li<br>Freq Level L                                                                                       | mit Over<br>ine Limit                                                                  | : Read                                                         | Fr<br>CableA                                      |                                                  | (MH7)                                                        | <b>26000</b><br>T/Pos      | A/Pos                     | <b>:0000.</b><br>Remark |                       | Phase        | 400      |  |  |
| Li                                                                                                       | mit Over<br>ine Limit                                                                  | Read<br>Level                                                  | Fr<br>CableA                                      | requency<br>ntenna l                             | (MH7)                                                        |                            | A/Pos                     |                         |                       | Phase        | 400      |  |  |
| Li<br>Freq Level L                                                                                       | mit Over<br>ine Limit<br>V/m dE                                                        | Read<br>Level                                                  | Fr<br>CableA<br>Loss<br>dB                        | ntenna I<br>Factor I                             | (MHz)<br>Preamp<br>actor<br>dB -                             | T/Pos                      | A/Pos<br>                 |                         |                       | ICAL         | 400      |  |  |
| Li<br>Freq Level L<br>MHz dBuV/m dBu<br>11570.00 51.39 74<br>11570.00 38.51 54                           | mit Over<br>ine Limit<br>V/m dE<br>1.00 -22.61<br>1.00 -15.49                          | Read<br>Level<br>dBuV<br>41.20<br>28.32                        | CableA:<br>Loss dB<br>6.55<br>6.55                | ntenna I<br>Factor I<br>dB/m -<br>38.33<br>38.33 | (MH7)<br>Preamp<br>Sactor<br>dB<br>34.69<br>34.69            | T/Pos<br>deg<br>298<br>298 | A/Pos<br>Cm<br>171<br>171 | Remark<br>              | Pol/J<br>VERT<br>VERT | ICAL<br>ICAL |          |  |  |
| Li<br>Freq Level L<br>MHz dBuV/m dBu<br>11570.00 51.39 74<br>11570.00 38.51 54<br>ite 1:The amplitude of | mit Over<br>ine Limit<br>V/m dE<br>.00 -22.61<br>.00 -15.49<br>spurious 0              | Read<br>Level<br>dBuV<br>41.20<br>28.32<br>emission            | CableA:<br>Loss dB<br>6.55<br>6.55                | ntenna I<br>Factor I<br>dB/m -<br>38.33<br>38.33 | (MH7)<br>Preamp<br>Sactor<br>dB<br>34.69<br>34.69            | T/Pos<br>deg<br>298<br>298 | A/Pos<br>Cm<br>171<br>171 | Remark<br>              | Pol/J<br>VERT<br>VERT | ICAL<br>ICAL |          |  |  |
| Li<br>Freq Level L<br>MHz dBuV/m dBu                                                                     | mit Over<br>ine Limit<br>V/m dE<br>00 -22.61<br>00 -15.49<br>spurious o<br>ed to be re | Read<br>Level<br>dBuV<br>41.20<br>28.32<br>emission<br>ported. | CableA<br>Loss 1<br>dB<br>6.55<br>6.55<br>s which | ntenna I<br>Factor I<br>dB/m -<br>38.33<br>38.33 | (MH7)<br>Preamp<br>actor<br>dB -<br>34.69<br>34.69<br>enuate | T/Pos<br>deg<br>298<br>298 | A/Pos<br>Cm<br>171<br>171 | Remark<br>              | Pol/J<br>VERT<br>VERT | ICAL<br>ICAL |          |  |  |

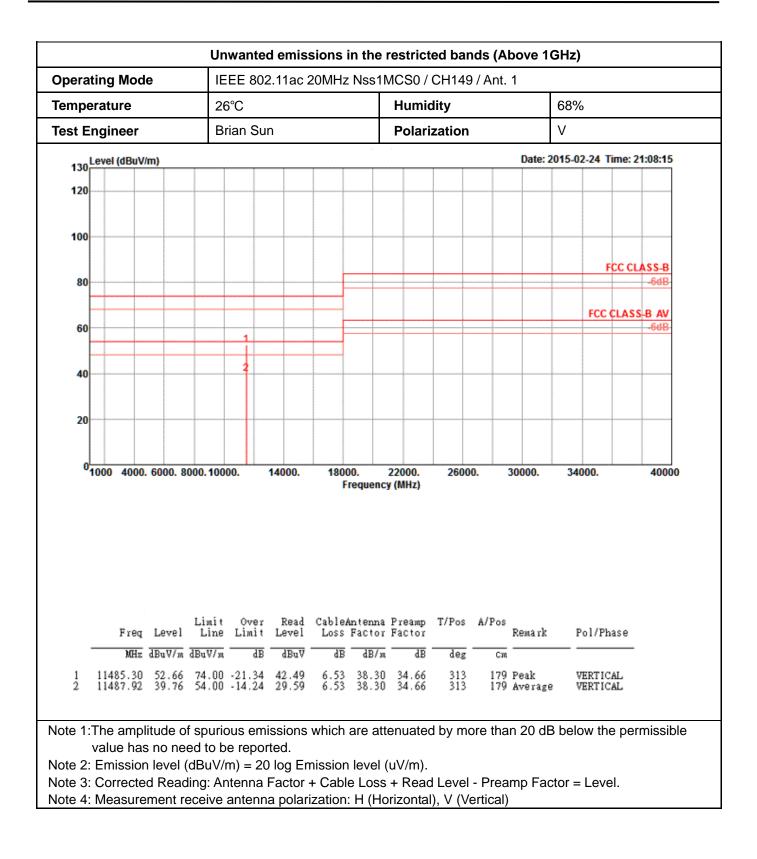




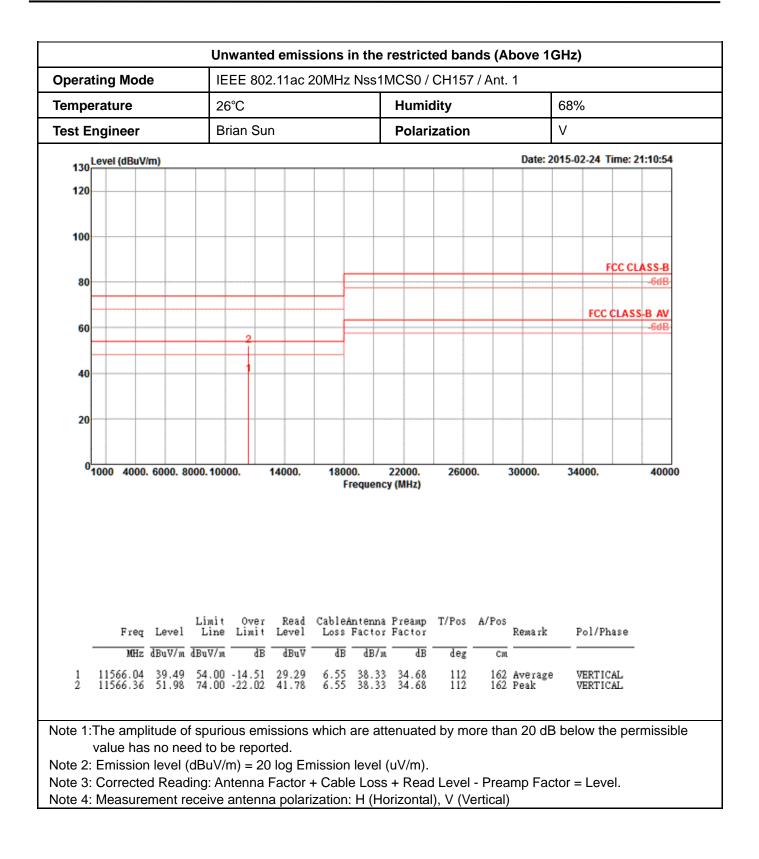


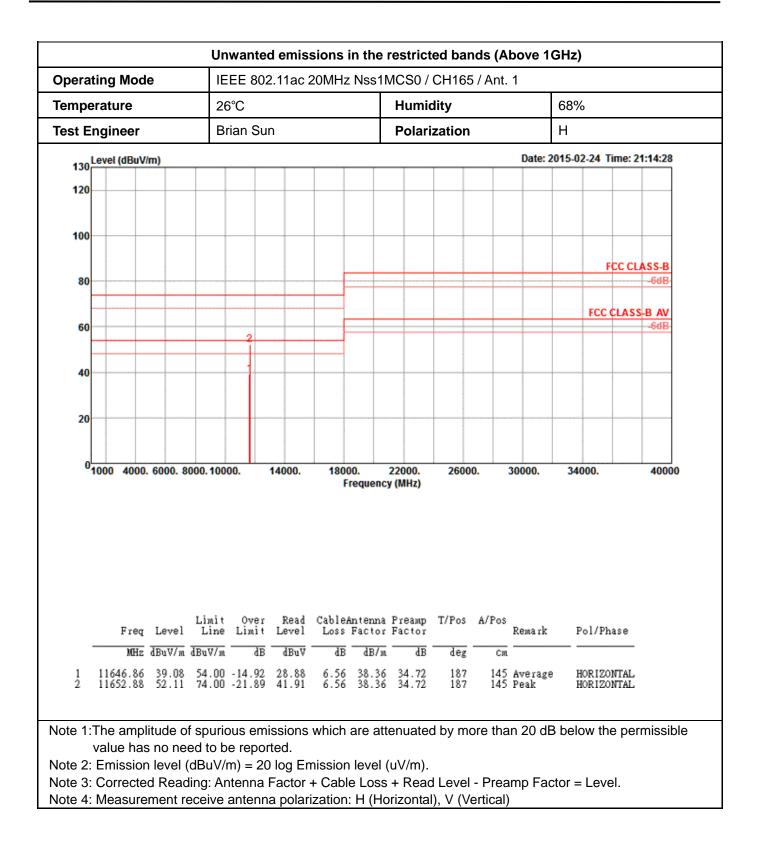


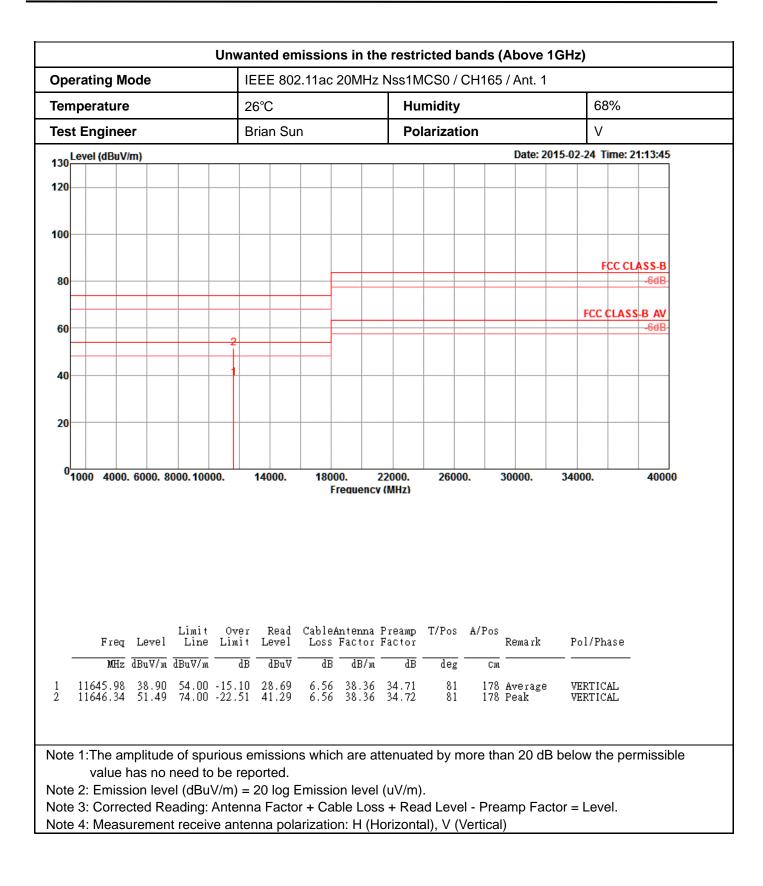



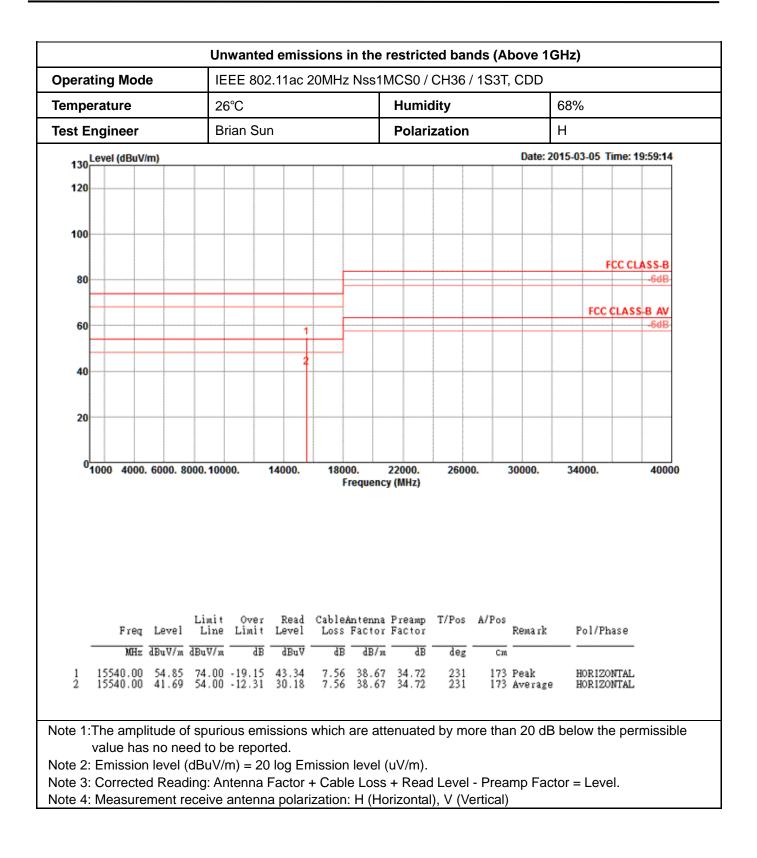


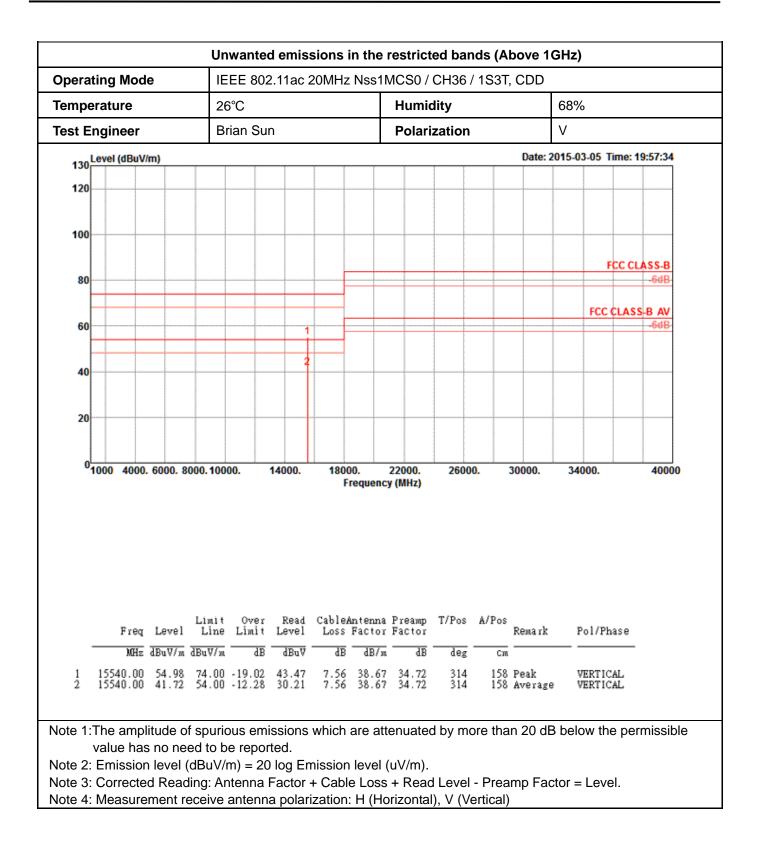



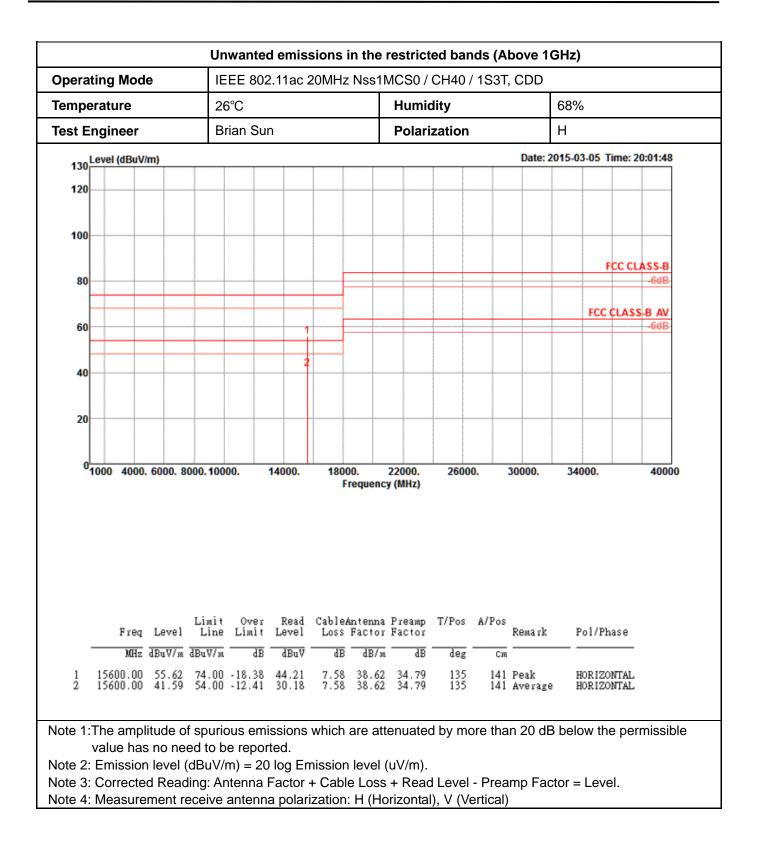





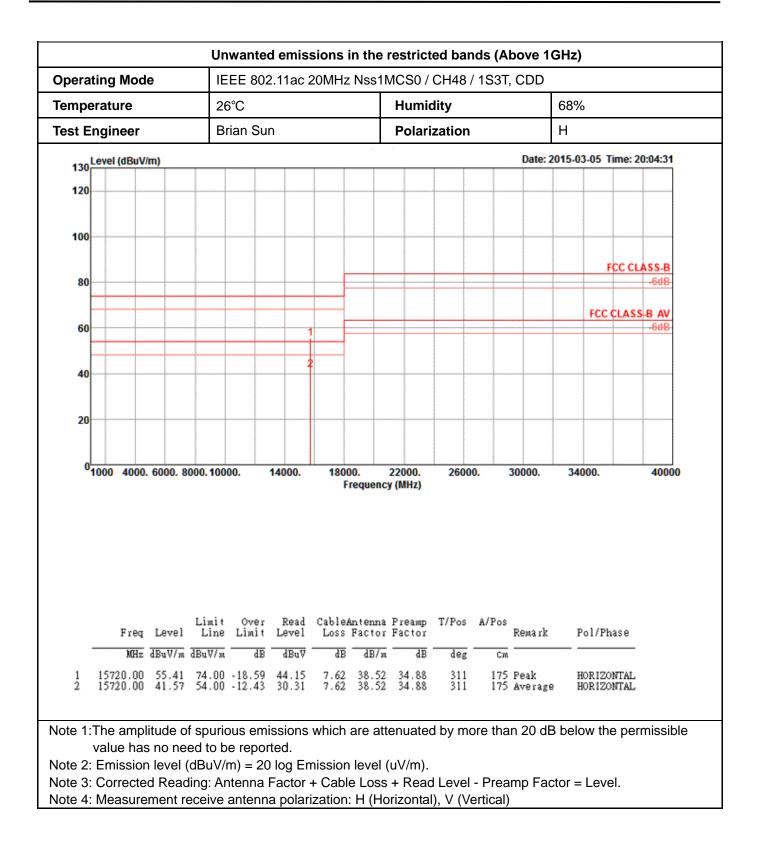



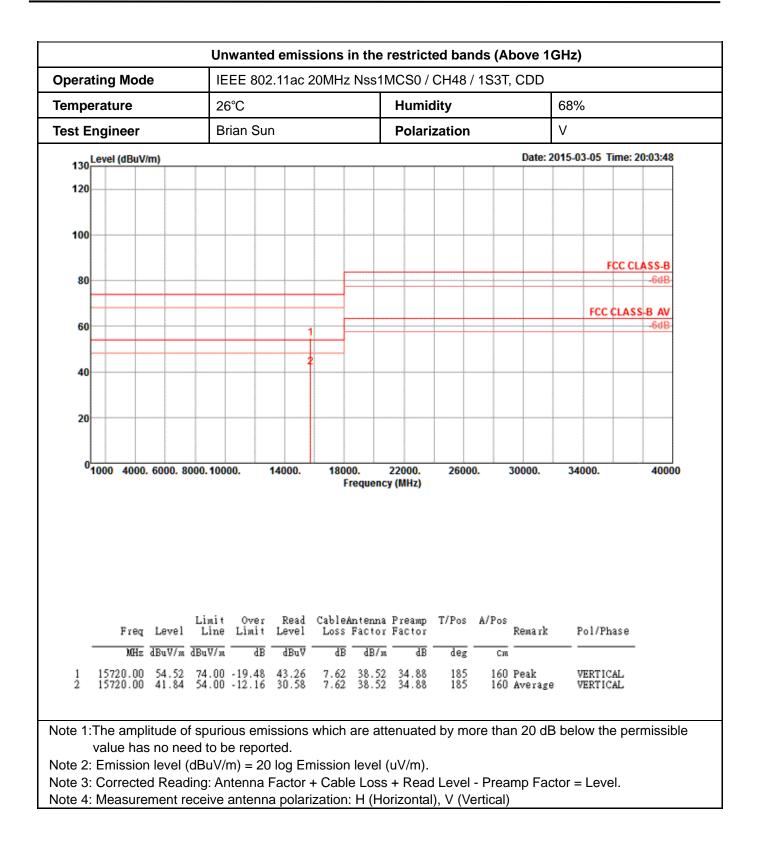


|               | ating Mod                   | e               | IE      | IEEE 802.11ac 20MHz Nss1MCS0 / CH157 / Ant. 1 |               |            |                 |             |            |           |          |              |                    |  |  |
|---------------|-----------------------------|-----------------|---------|-----------------------------------------------|---------------|------------|-----------------|-------------|------------|-----------|----------|--------------|--------------------|--|--|
| emp           | erature                     |                 | 26      | S°C                                           |               |            |                 | Humi        | dity       |           | 689      | %            |                    |  |  |
| lest Engineer |                             |                 | B       | rian Su                                       | n             |            |                 | Polari      | zation     |           | Н        |              |                    |  |  |
| 130           | Level (dBuV/                | m)              |         |                                               |               |            |                 |             |            |           | Date: 20 | 15-02-24 Tim | ne: 21:11:30       |  |  |
| 120           |                             |                 |         |                                               |               |            |                 |             |            |           |          |              |                    |  |  |
| 100           |                             |                 |         |                                               |               |            |                 |             |            |           |          |              |                    |  |  |
|               |                             |                 |         |                                               |               |            |                 |             |            |           |          |              |                    |  |  |
| 80            |                             |                 |         |                                               |               |            |                 |             |            |           |          | FCC          | C CLASS-B<br>-6dB- |  |  |
|               |                             |                 |         |                                               |               |            |                 |             |            |           |          |              |                    |  |  |
| 60            |                             | _               |         |                                               |               |            |                 |             |            |           |          | FCC CL       | ASS-BAV<br>-6dB    |  |  |
|               |                             |                 |         | 2                                             |               |            |                 |             |            |           |          |              |                    |  |  |
| 40            |                             |                 |         | -                                             |               |            |                 |             |            |           |          |              | -                  |  |  |
|               |                             |                 |         |                                               |               |            |                 |             |            |           |          |              |                    |  |  |
| 20            |                             | _               |         |                                               |               |            |                 |             |            |           |          |              |                    |  |  |
|               |                             |                 |         |                                               |               |            |                 |             |            |           |          |              |                    |  |  |
| 0             | 1000 4000.                  | 6000. 8         | 000.100 | 00.                                           | 14000.        | 180        | 00.<br>requency | 22000.      | 2600       | 0.        | 30000.   | 34000.       | 40000              |  |  |
|               |                             |                 | Limit   |                                               | Read          |            |                 |             | T/Pos      | A/Pos     |          |              |                    |  |  |
|               | -                           |                 |         | Limit                                         |               |            |                 |             |            |           | Rema rk  | Pol/Phas<br> | :e                 |  |  |
|               | 2477                        | dBuV/m<br>29 25 |         |                                               | dBu∀<br>29.15 | dB<br>6 55 | dB/m<br>38.33   | dB<br>34 68 | deg<br>173 | Cm<br>142 | Average  | HORIZONT     | TAT.               |  |  |
| 1             |                             |                 | 74.00   | -21.92                                        | 41.89         | 6.55       | 38.33<br>38.33  | 34.69       | 173<br>173 | 142       | Peak     | HORIZONI     | TAL                |  |  |
| 12            | MHz<br>11566.70<br>11570.96 | 52.08           |         |                                               |               |            |                 |             |            |           |          |              |                    |  |  |

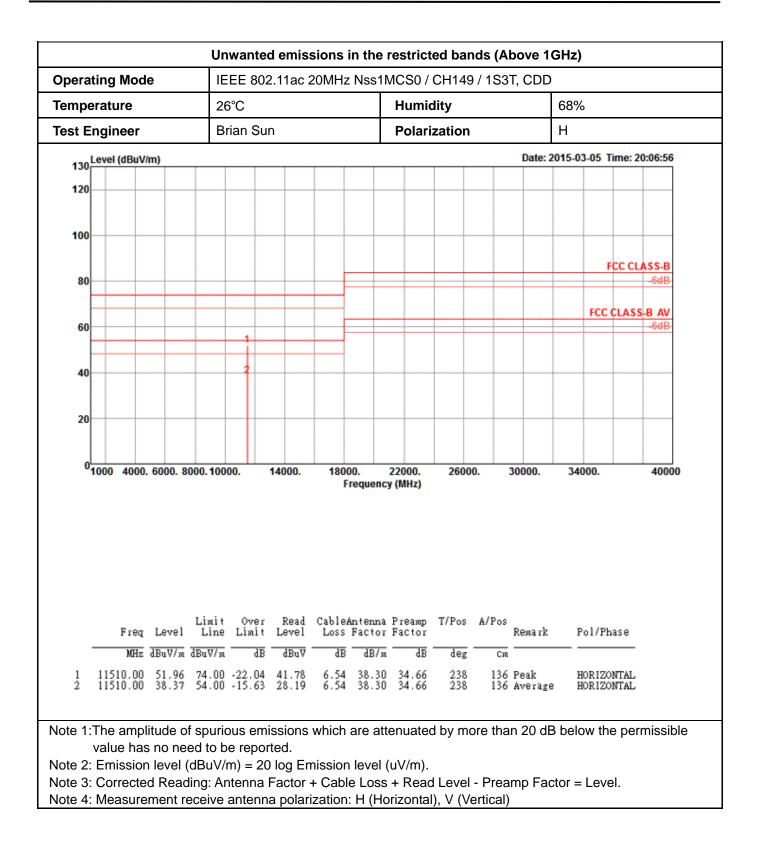


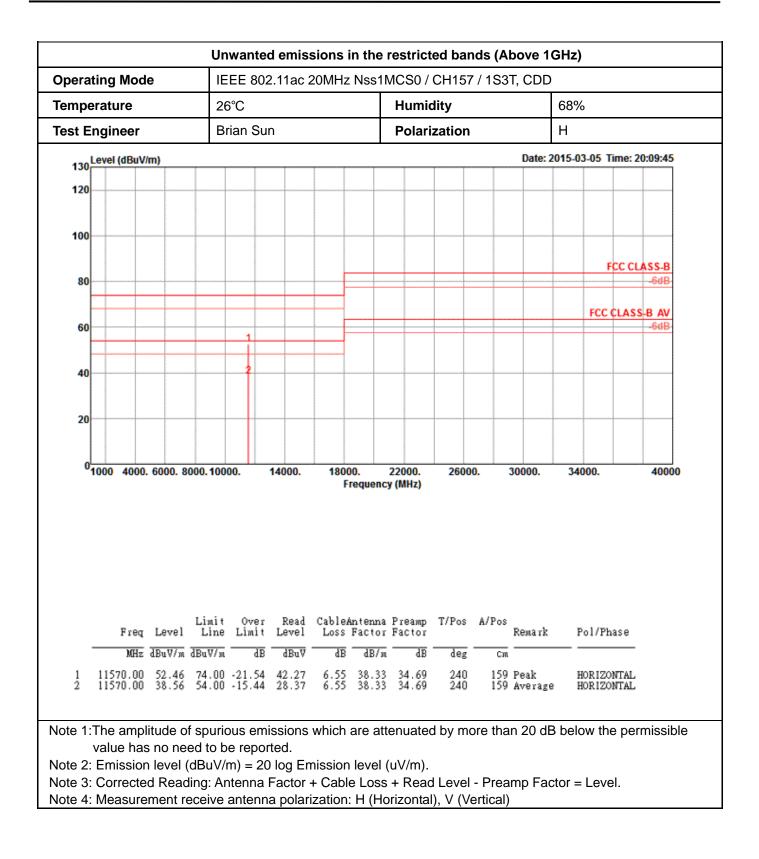

## FCC TEST REPORT



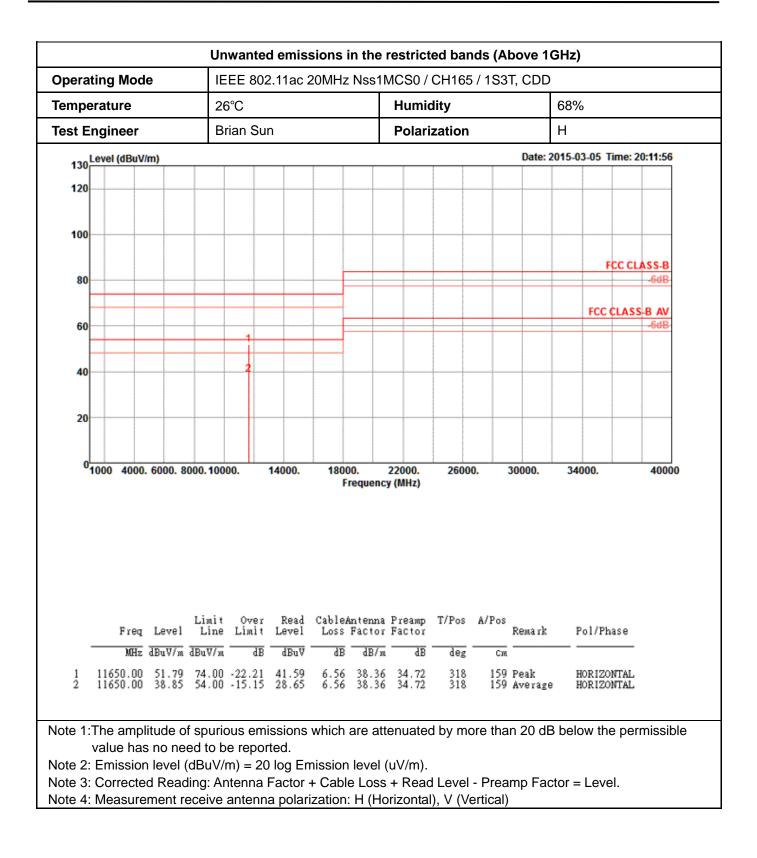



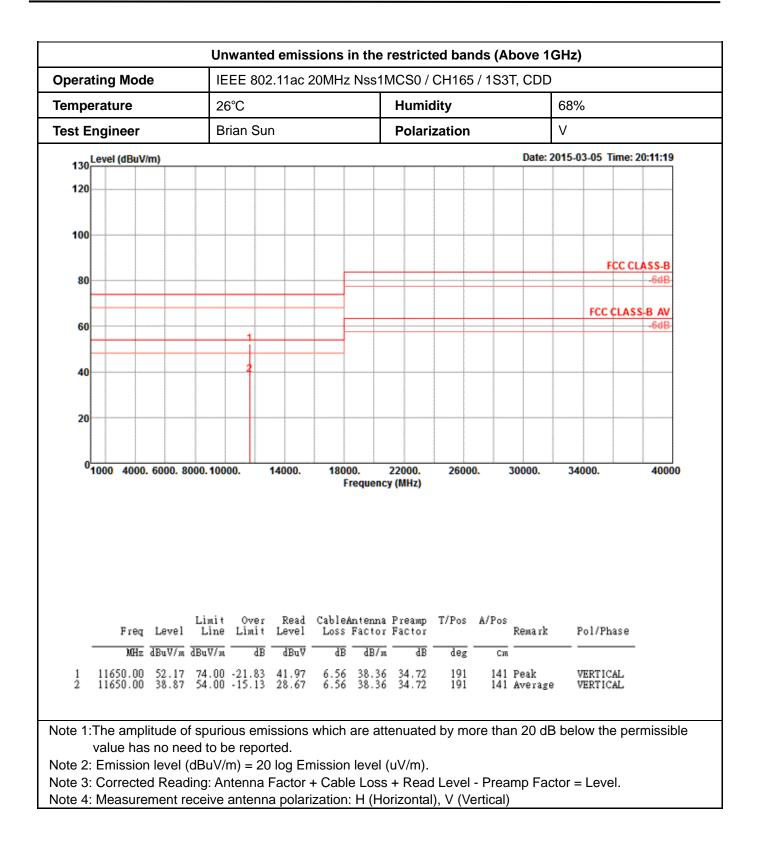





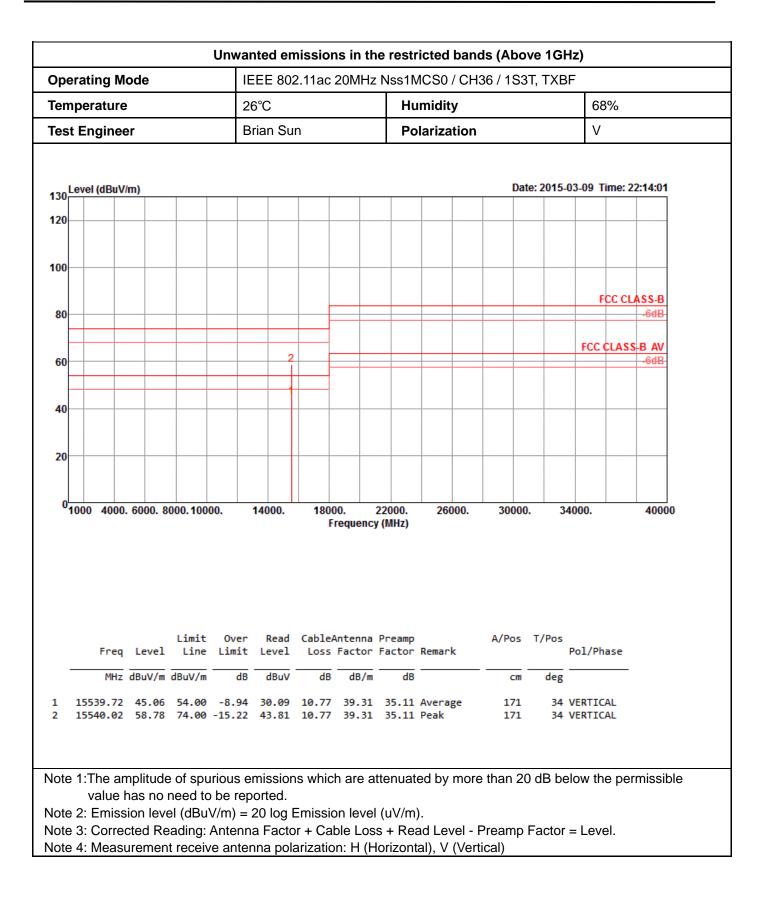


| pere   | ating Mode   | 9        | IE      | IEEE 802.11ac 20MHz Nss1MCS0 / CH40 / 1S3T, CDD |               |                |                   |                  |        |       |         |        |           |                |  |
|--------|--------------|----------|---------|-------------------------------------------------|---------------|----------------|-------------------|------------------|--------|-------|---------|--------|-----------|----------------|--|
| emp    | erature      |          | 26      | S°C                                             |               |                |                   | Humi             | dity   |       |         | 68%    |           |                |  |
| est E  | Engineer     |          | Br      | rian Su                                         | n             |                |                   | Polari           | zation |       |         | V      |           |                |  |
| 130    | Level (dBuV/ | m)       |         |                                                 |               |                |                   |                  |        |       | Date: 2 | 015-03 | -05 Time: | 20:01:12       |  |
| 120    |              |          |         |                                                 |               |                |                   |                  |        |       |         |        |           |                |  |
|        |              |          |         |                                                 |               |                |                   |                  |        |       |         |        |           |                |  |
| 100    | )            |          |         |                                                 |               |                |                   |                  |        |       |         |        |           |                |  |
|        |              |          |         |                                                 |               |                |                   |                  |        |       |         |        | FCC C     | LASS-B         |  |
| 80     |              |          |         |                                                 |               |                |                   |                  |        |       |         |        |           | -008           |  |
| 60     | ,            |          |         |                                                 |               |                |                   |                  |        |       |         |        | FCC CLAS  | SS-BAV<br>-6dB |  |
|        |              |          |         |                                                 |               |                |                   |                  |        |       |         |        |           |                |  |
| 40     | )            |          |         |                                                 | 2             |                |                   |                  |        |       |         |        |           |                |  |
|        |              |          |         |                                                 |               |                |                   |                  |        |       |         |        |           |                |  |
| 20     | )            |          |         |                                                 |               |                |                   |                  |        |       |         |        |           |                |  |
| C      | 1000 4000.   | 6000. 80 | 000 400 | 00                                              | 14000.        | 180            |                   | 22000.           | 2600   |       | 30000.  | 340    | 00        | 40000          |  |
|        |              |          |         |                                                 |               |                |                   |                  |        |       |         |        |           |                |  |
|        |              |          | Linit   | Over<br>Limit                                   | Read<br>Level | Cable.<br>Loss | Antenna<br>Factor | Preamp<br>Factor | T/Pos  | A/Pos | Remark  | Po     | l/Phase   |                |  |
|        | Freq         | Level    | Line    |                                                 | 10.11         | dB             |                   |                  | deg    | Cm    |         |        |           | -              |  |
|        | MHz          | dBuV/m   | dBuV/m  | dB                                              | dBu∛          |                |                   | 2.4 20           | 179    | 155   | Peak    | VE     | RTICAL    |                |  |
| 1<br>2 | -            | dBuV/m   | dBuV/m  |                                                 |               | 7.58<br>7.58   | 38.62<br>38.62    | 34.79<br>34.79   | 179    | 155   | Average | VE     | RTICAL    |                |  |



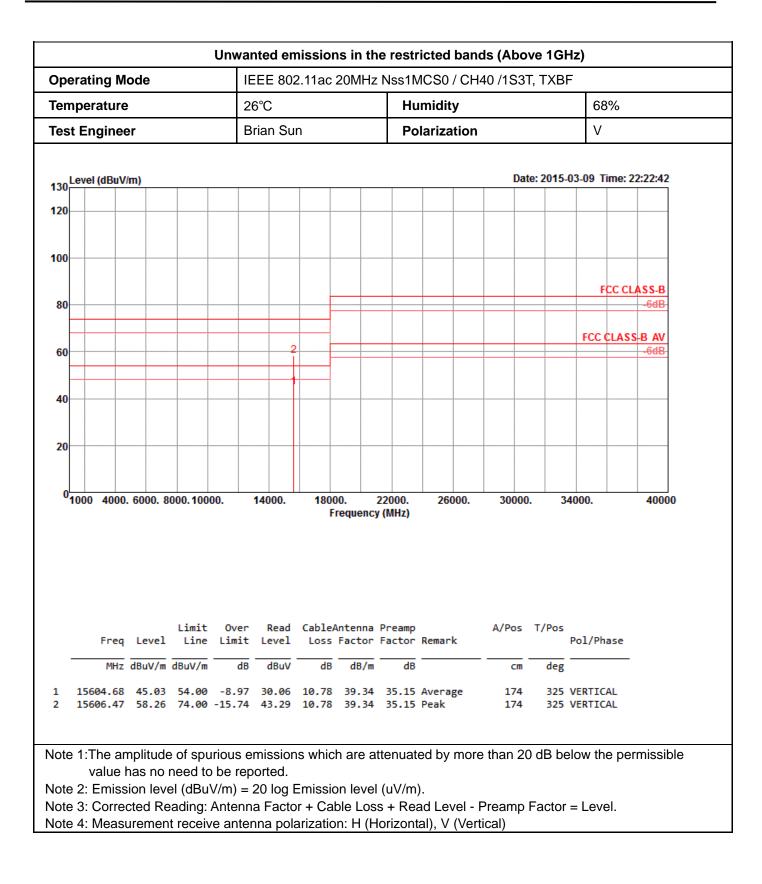




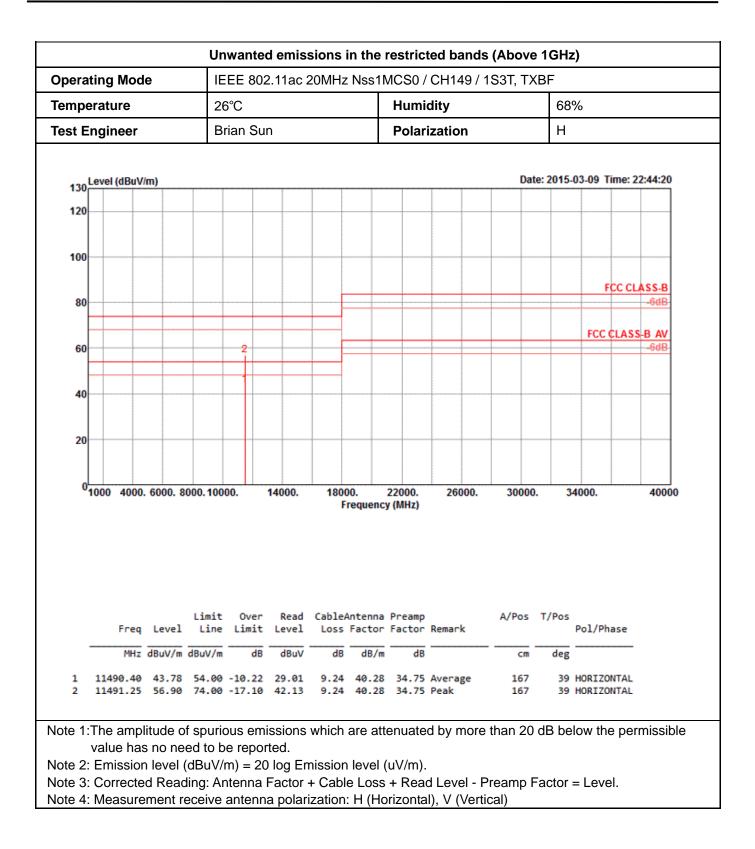




| mne    | ting Mode            |                |                | S°C              |                |              |                   | Humio             |            |            | T, CDD          | 68%        |                  |           |
|--------|----------------------|----------------|----------------|------------------|----------------|--------------|-------------------|-------------------|------------|------------|-----------------|------------|------------------|-----------|
| -      | ngineer              |                |                | rian Sui         | n              |              |                   | zation            |            |            | V               |            |                  |           |
|        | -                    | (ma)           |                |                  |                |              | i oluli           | Zation            |            | Date: 2    |                 | 05 Time: 3 | 20:00:10         |           |
|        | Level (dBuV/         | <u>m)</u>      |                |                  |                |              |                   |                   |            |            | Date. 2         | 010-03     | -05 Time. 1      | 20.03.10  |
| 120    |                      |                |                |                  |                |              |                   |                   |            |            |                 |            |                  |           |
| 400    |                      |                |                |                  |                |              |                   |                   |            |            |                 |            |                  |           |
| 100    |                      |                |                |                  |                |              |                   |                   |            |            |                 |            |                  |           |
| 80     |                      |                |                |                  |                |              |                   |                   |            |            |                 |            | FCC C            | -6dB      |
|        |                      |                |                |                  |                |              |                   |                   |            |            |                 |            | 100 01 10        | C D 414   |
| 60     |                      |                |                |                  |                |              |                   |                   |            |            |                 |            | FCC CLAS         | -6dB      |
|        |                      |                |                |                  |                |              |                   |                   |            |            |                 |            |                  |           |
| 40     |                      |                |                |                  |                |              |                   |                   |            |            |                 |            |                  |           |
|        |                      |                |                |                  |                |              |                   |                   |            |            |                 |            |                  |           |
| 20     |                      |                | -              |                  |                |              |                   |                   |            |            |                 |            |                  |           |
|        |                      |                |                |                  |                |              |                   |                   |            |            |                 |            |                  |           |
| -      | 1000 4000.           | 6000. 80       | 00.100         | 00.              | 14000.         | 180<br>F     | 00.<br>Trequenci  | 22000.<br>y (MHz) | 2600       | 0.         | 30000.          | 3400       | 00.              | 40000     |
|        |                      |                |                |                  |                |              |                   |                   |            |            |                 |            |                  |           |
|        |                      |                |                |                  |                |              |                   |                   |            |            |                 |            |                  |           |
|        | Freq                 | Level          | Limit<br>Line  | Over<br>Limit    | Read<br>Level  |              | Antenna<br>Factor |                   | T/Pos      | A/Pos      | Rema rk         | Po         | l/Phase          |           |
|        |                      | dBuV/m         |                | dB               | dBuV           | ₫B           |                   | dB                | deg        | Cm         |                 |            |                  |           |
| 1<br>2 | 11570.00<br>11570.00 | 51.72<br>38.61 | 74.00<br>54.00 | -22.28<br>-15.39 | 41.53<br>28.42 | 6.55<br>6.55 | 38.33<br>38.33    | 34.69<br>34.69    | 204<br>204 | 140<br>140 | Peak<br>Average |            | RTICAL<br>RTICAL |           |
| to 1.  | The ampl             | itude of       | spurio         | ous emi          | ssions         | which        | are att           | enuated           | d by mo    | ore tha    | n 20 dB         | belov      | w the pe         | rmissible |
| ιe ι.  | •                    |                | •              | e repor          |                |              |                   |                   | -          |            |                 |            | •                |           |

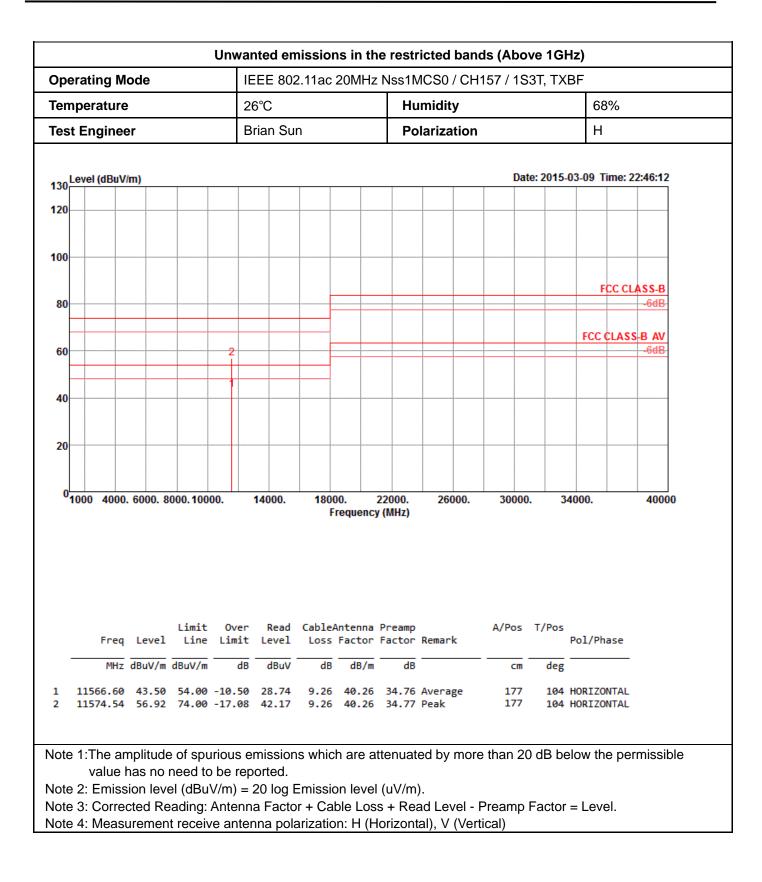





| pera   | ting Mod                          | е       | IE            | EE 802        | 2.11ac 2 | 20MHz | z Nss1N           | ACS0/   | CH36 / 18 | ЗЗТ, ТХВ   | F        |                          |          |
|--------|-----------------------------------|---------|---------------|---------------|----------|-------|-------------------|---------|-----------|------------|----------|--------------------------|----------|
| empe   | erature                           |         | 26            | S°C           |          |       |                   | Humi    | dity      |            | 68       | %                        |          |
| est E  | ngineer                           |         | В             | rian Sui      | n        |       |                   | Polar   | ization   |            | Н        |                          |          |
|        | l aval (dBu)//                    |         |               |               |          |       |                   |         |           | Date       | a: 2015. | 03-09 Time: 2            | 2-12-42  |
|        | Level (dBuV/                      | ,       |               |               |          |       |                   |         |           |            |          |                          |          |
| 120    |                                   |         |               |               |          |       |                   |         |           |            |          |                          |          |
| 100    |                                   |         |               |               |          |       |                   |         |           |            |          |                          |          |
|        |                                   |         |               |               |          |       |                   |         |           |            |          | FCC CL                   | ASS-B    |
| 80     |                                   |         |               |               |          |       |                   |         |           |            |          |                          | -6dB     |
|        |                                   |         |               |               |          |       |                   |         |           |            |          | FCC CLASS                |          |
| 60     |                                   |         |               |               | 2        |       |                   |         |           |            |          |                          | -6dB     |
|        |                                   |         |               |               | 1        |       |                   |         |           |            |          |                          |          |
| 40     |                                   |         |               |               |          |       |                   |         |           |            |          |                          |          |
| 20     |                                   |         |               |               |          |       |                   |         |           |            |          |                          |          |
|        |                                   |         |               |               |          |       |                   |         |           |            |          |                          |          |
| 0      | 1000 4000.                        | 6000. 8 | 000 100       | 0             | 14000.   | 180   | 00                | 22000.  | 26000.    | 30000.     | 3        | 4000.                    | 40000    |
|        |                                   |         |               |               |          | F     | requenc           | y (MHz) |           |            |          |                          |          |
|        | Freq                              | Level   | Limit<br>Line | Over<br>Limit |          |       | Antenna<br>Factor |         | Remark    | A/Pos      | T/Pos    | Pol/Phase                |          |
|        | MHz                               | dBuV/m  | dBuV/m        | dB            | dBuV     | dB    | dB/m              | dB      |           | cm         | deg      |                          |          |
| 1<br>2 | 15538.10<br>15541.46              |         |               |               |          |       |                   |         |           | 166<br>166 |          | HORIZONTAL<br>HORIZONTAL |          |
|        | The ampl<br>value has<br>Emissior | s no ne | ed to b       | e repor       | ted.     |       |                   |         |           | than 20    | dB be    | low the per              | missible |

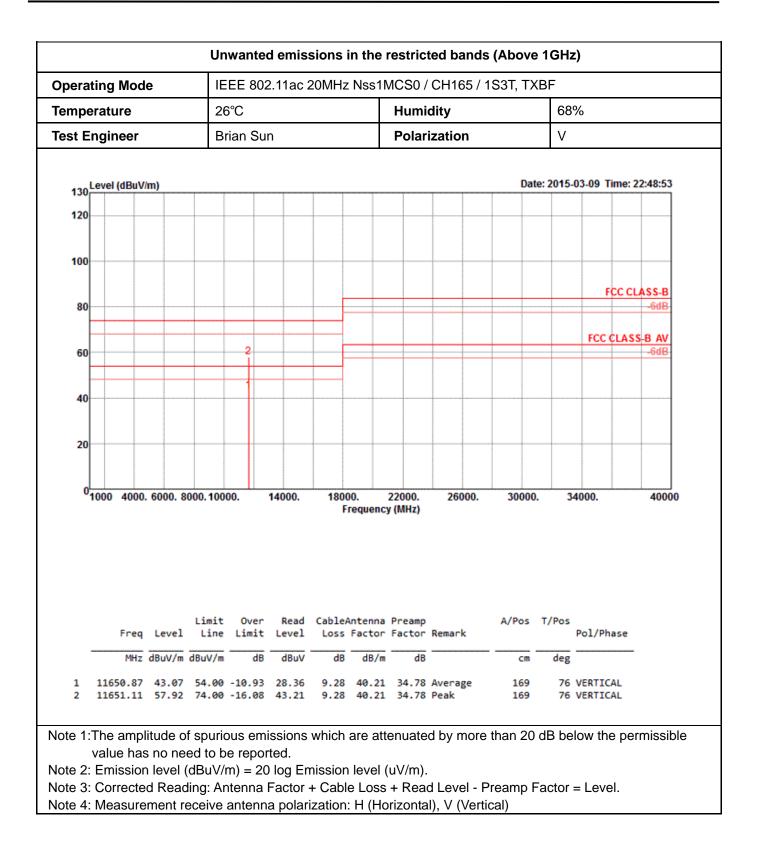


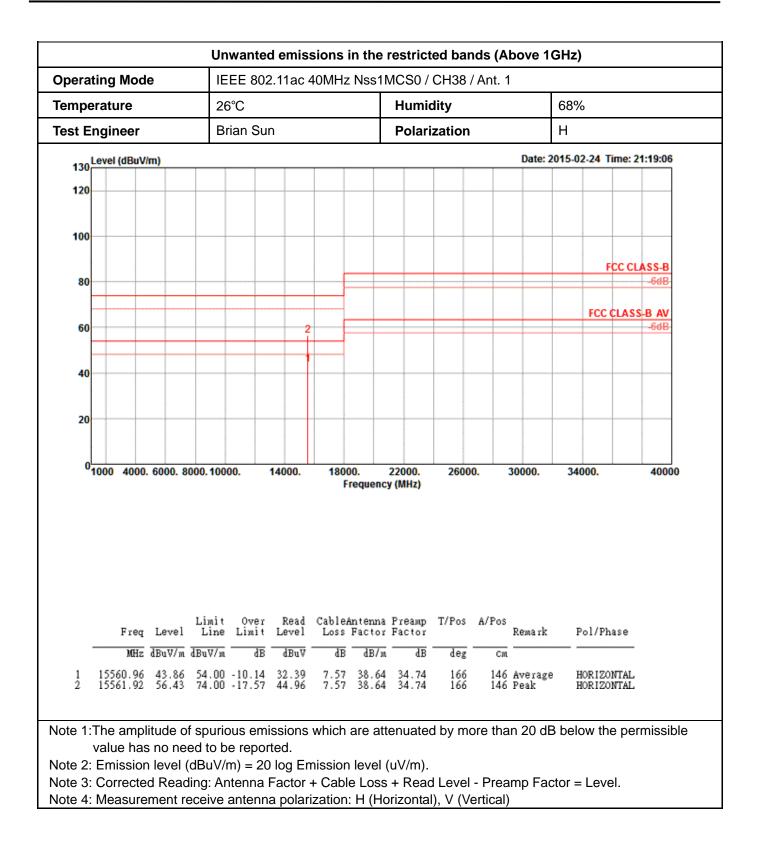

| pera   | ting Mod             | е       | IE      | EE 802        | 2.11ac 2 | 20MHz    | Nss1N           | /ICS0/            | CH40 / 18 | S3T, TXE   | 3F       |                          |          |
|--------|----------------------|---------|---------|---------------|----------|----------|-----------------|-------------------|-----------|------------|----------|--------------------------|----------|
| empe   | erature              |         | 26      | S°C           |          |          |                 | Humi              | dity      |            | 68       | %                        |          |
| est E  | ngineer              |         | Ві      | ian Su        | n        |          |                 | Polar             | ization   |            | Н        |                          |          |
|        | Level (dBuV          | m)      |         |               |          |          |                 |                   |           | Dat        | e: 2015- | -03-09 Time: 2           | 2:23:16  |
|        |                      |         |         |               |          | -        |                 |                   |           |            |          |                          |          |
| 120    |                      |         |         |               |          | -        |                 |                   |           |            |          |                          |          |
|        |                      |         |         |               |          |          |                 |                   |           |            |          |                          |          |
| 100    |                      |         |         |               |          |          |                 |                   |           |            |          |                          |          |
|        |                      |         |         |               |          |          |                 |                   |           |            |          | FCC CL                   | ASS-B    |
| 80     |                      |         |         |               |          |          |                 |                   |           |            |          |                          | -008     |
|        |                      |         |         |               | 1        |          |                 |                   |           |            | _        | FCC CLASS                | -6dB     |
| 60     | _                    |         | _       |               |          |          |                 |                   |           |            |          |                          | -outs    |
| 40     |                      |         |         |               | 1        |          |                 |                   |           |            |          |                          |          |
| 40     |                      |         |         |               |          | -        |                 |                   |           |            |          |                          |          |
| 20     |                      |         |         |               |          |          |                 |                   |           |            |          |                          |          |
| 20     |                      |         |         |               |          |          |                 |                   |           |            |          |                          |          |
|        |                      |         |         |               |          |          |                 |                   |           |            |          |                          |          |
| Ŭ      | 1000 4000.           | 6000. 8 | 000.100 | 00.           | 14000.   | 180<br>F | 00.<br>requency | 22000.<br>/ (MHz) | 26000.    | 30000      | . 3      | 4000.                    | 40000    |
|        | Free                 | Level   | Limit   | Over<br>Limit | -        |          | Antenna         |                   |           | A/Pos      | T/Pos    | Pol/Phase                |          |
|        |                      | dBuV/m  |         |               |          |          | Factor          |                   |           |            |          |                          |          |
|        |                      |         |         | dB            | dBuV     | dB       | dB/m            | dB                | Deals     | cm         | deg      |                          |          |
|        | 15600.99<br>15609.62 |         |         |               |          |          |                 |                   |           | 186<br>186 |          | HORIZONTAL<br>HORIZONTAL |          |
| 1<br>2 |                      |         |         |               |          | which    | oro ott         | anuata            | d by more | than 20    | dB be    | low the per              | missible |



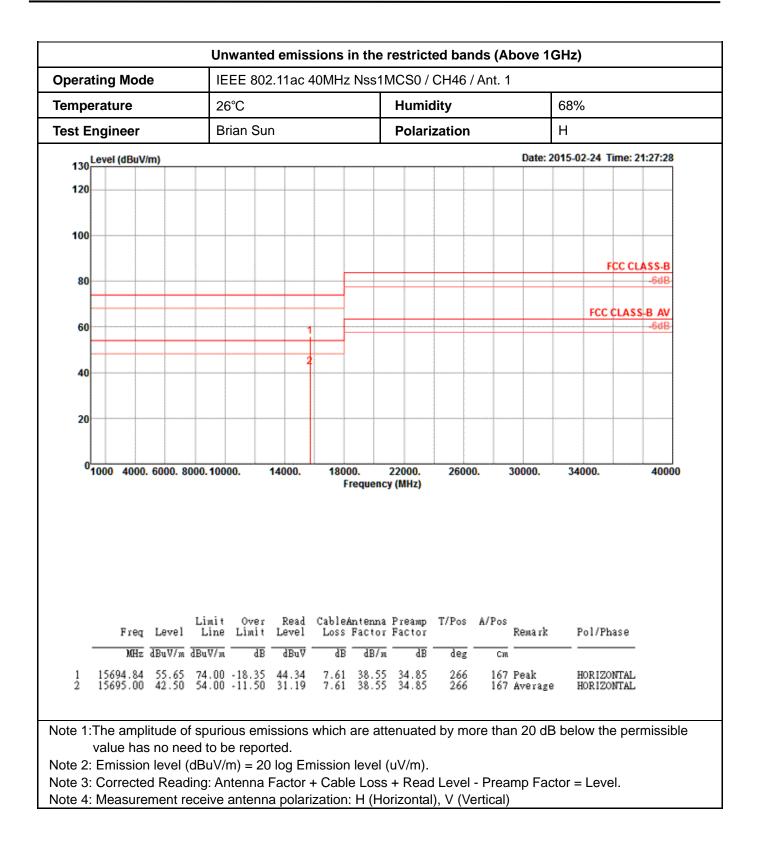

|        | ting Mod                    | е                        | IE                               | EE 802    | 2.11ac 2               | 20MHz          | z Nss1N           | ACS0/          | / CH48 /1S      | 3T, TXB    | F          |                          |               |
|--------|-----------------------------|--------------------------|----------------------------------|-----------|------------------------|----------------|-------------------|----------------|-----------------|------------|------------|--------------------------|---------------|
| empe   | erature                     |                          | 26                               | S°C       |                        |                |                   | Humi           | dity            |            | 68         | %                        |               |
| est E  | ngineer                     |                          | В                                | rian Sui  | n                      |                |                   | Polar          | ization         |            | Н          |                          |               |
|        | Level (dBuV/                | /m)                      |                                  |           |                        |                |                   |                |                 | Dat        | e: 2015-   | 03-09 Time: 2            | 2:29:04       |
|        |                             |                          |                                  |           |                        |                |                   |                |                 |            |            |                          |               |
| 120    |                             |                          |                                  |           |                        |                |                   |                |                 |            |            |                          |               |
| 400    |                             |                          |                                  |           |                        |                |                   |                |                 |            |            |                          |               |
| 100    |                             |                          |                                  |           |                        |                |                   |                |                 |            |            |                          |               |
| 80     |                             |                          |                                  |           |                        |                |                   |                |                 |            |            | FCC CL                   | ASS-B         |
|        |                             |                          |                                  |           |                        |                |                   |                |                 |            |            |                          | -000          |
| 60     |                             |                          |                                  |           |                        | 2 [            |                   |                |                 |            |            | FCC CLASS                | -B AV<br>-6dB |
|        |                             |                          |                                  |           |                        |                |                   |                |                 |            |            |                          |               |
| 40     |                             |                          |                                  |           |                        |                |                   |                |                 |            |            |                          |               |
|        |                             |                          |                                  |           |                        |                |                   |                |                 |            |            |                          |               |
| 20     |                             |                          |                                  |           |                        |                |                   |                |                 |            |            |                          |               |
|        |                             |                          |                                  |           |                        |                |                   |                |                 |            |            |                          |               |
| 0      | 1000 4000.                  | 6000. 8                  | 000.100                          | 00.       | 14000.                 | 180            | 00.               | 22000.         | 26000.          | 30000      | . 3        | 4000.                    | 40000         |
|        |                             |                          |                                  |           |                        | F              | requency          | y (MHz)        |                 |            |            |                          |               |
|        |                             |                          |                                  |           |                        |                |                   |                |                 |            |            |                          |               |
|        |                             |                          |                                  |           |                        |                |                   |                |                 |            |            |                          |               |
|        |                             |                          |                                  | Over      |                        |                | Antenna<br>Factor |                |                 | A/Pos      | T/Pos      | Pol/Phase                |               |
|        | Freq                        | Level                    | Limit<br>Line                    | Limit     | rever                  |                |                   |                |                 |            | deg        |                          |               |
|        |                             | Level                    | Line                             |           | dBuV                   | dB             | dB/m              | dB             |                 | Cm         |            |                          |               |
| 1      | MHz<br>15711.51             | dBuV/m<br>45.10          | Line<br>dBuV/m<br>54.00          | Limit<br> | dBuV<br>30.12          | 10.79          | 39.38             | 35.19          | Average         | 164        | 360        | HORIZONTAL               |               |
| 1<br>2 | MHz                         | dBuV/m<br>45.10          | Line<br>dBuV/m<br>54.00          | Limit<br> | dBuV<br>30.12          | 10.79          | 39.38             | 35.19          | Average         |            | 360        | HORIZONTAL<br>HORIZONTAL |               |
| 2      | MHz<br>15711.51<br>15725.45 | dBuV/m<br>45.10<br>58.16 | Line<br>dBuV/m<br>54.00<br>74.00 | Limit<br> | dBuV<br>30.12<br>43.17 | 10.79<br>10.79 | 39.38<br>39.39    | 35.19<br>35.19 | Average<br>Peak | 164<br>164 | 360<br>360 | HORIZONTAL               | missible      |
| 2      | MHz<br>15711.51<br>15725.45 | dBuV/m<br>45.10<br>58.16 | Line<br>dBuV/m<br>54.00<br>74.00 | Limit<br> | dBuV<br>30.12<br>43.17 | 10.79<br>10.79 | 39.38<br>39.39    | 35.19<br>35.19 | Average<br>Peak | 164<br>164 | 360<br>360 |                          | missible      |

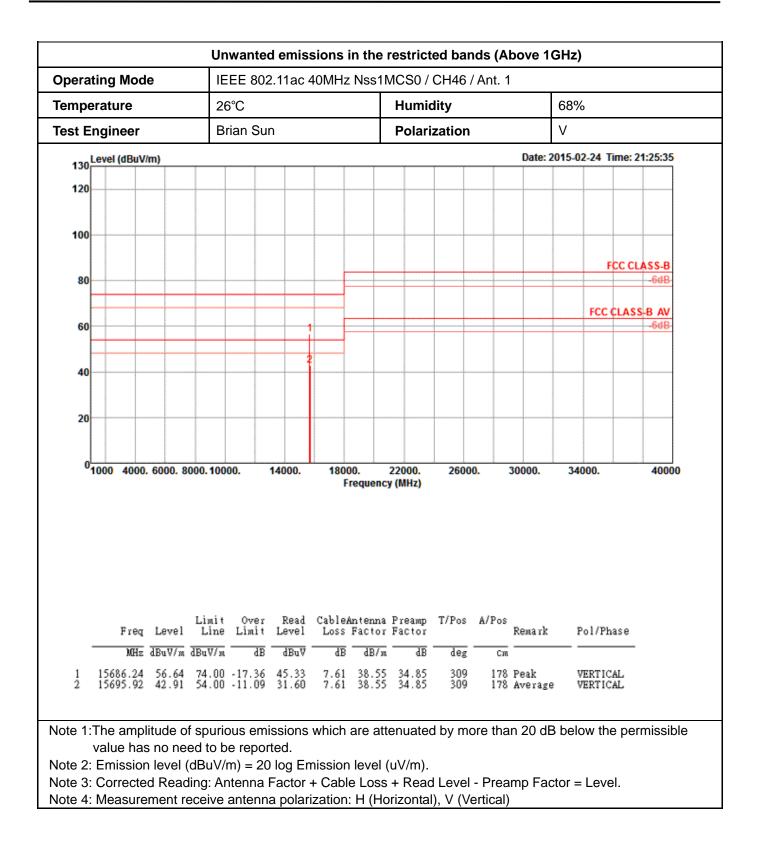
| pera   | ting Mod                          | е       | IE            | EE 802        | 2.11ac 2 | 20MHz | z Nss1M           | ACS0/  | ′ CH48 /1S | 3Т, ТХВ    | F        |                      |           |
|--------|-----------------------------------|---------|---------------|---------------|----------|-------|-------------------|--------|------------|------------|----------|----------------------|-----------|
| empe   | erature                           |         | 26            | S°C           |          |       |                   | Humi   | dity       |            | 68       | %                    |           |
| est E  | ingineer                          |         | Ві            | rian Sui      | n        |       |                   | Polar  | ization    |            | V        |                      |           |
|        | Level (dBuV/                      | m)      |               |               |          |       |                   |        |            | Dat        | e: 2015- | 03-09 Time:          | 22:27:07  |
|        |                                   | ,       |               |               |          |       |                   |        |            |            |          |                      |           |
| 120    |                                   |         |               |               |          |       |                   |        |            |            |          |                      |           |
| 100    |                                   |         |               |               |          |       |                   |        |            |            |          |                      |           |
|        |                                   |         |               |               |          |       |                   |        |            |            |          | FCC C                | ASS-B     |
| 80     |                                   |         |               |               |          |       |                   |        |            |            |          |                      | -6dB      |
|        |                                   |         |               |               |          |       |                   |        |            |            |          | FCC CLAS             |           |
| 60     |                                   |         |               |               |          | ļ     |                   |        |            |            |          |                      | -6dB      |
|        |                                   |         |               |               | -        |       |                   |        |            |            |          |                      |           |
| 40     |                                   |         |               |               |          |       |                   |        |            |            |          |                      |           |
| 20     |                                   |         |               |               |          |       |                   |        |            |            |          |                      |           |
| 20     |                                   |         |               |               |          |       |                   |        |            |            |          |                      |           |
| 0      | 1000 4000.                        | 6000 0  | 000.100       |               | 14000.   | 180   | 00                | 22000. | 26000.     | 30000      |          | 4000.                | 40000     |
|        |                                   |         |               |               |          |       | requenc           |        |            |            |          |                      |           |
|        | Freq                              | Level   | Limit<br>Line | Over<br>Limit |          |       | Antenna<br>Factor |        | Remark     | A/Pos      | T/Pos    | Pol/Phase            |           |
|        | MHz                               | dBuV/m  | d8uV/m        | dB            | dBuV     | dB    | dB/m              | dB     |            | cm         | deg      |                      |           |
| 1<br>2 | 15711.67<br>15720.67              |         |               |               |          |       |                   |        |            | 163<br>164 |          | VERTICAL<br>VERTICAL |           |
|        | The ampl<br>value has<br>Emission | s no ne | ed to b       | e repor       | ted.     |       |                   |        |            | than 20    | dB be    | low the pe           | rmissible |

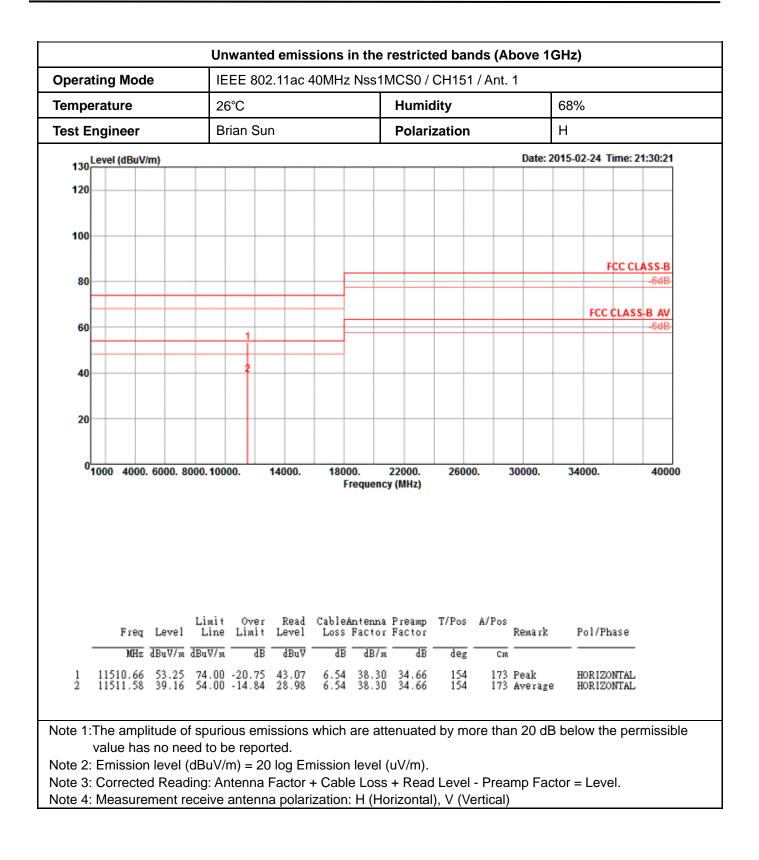


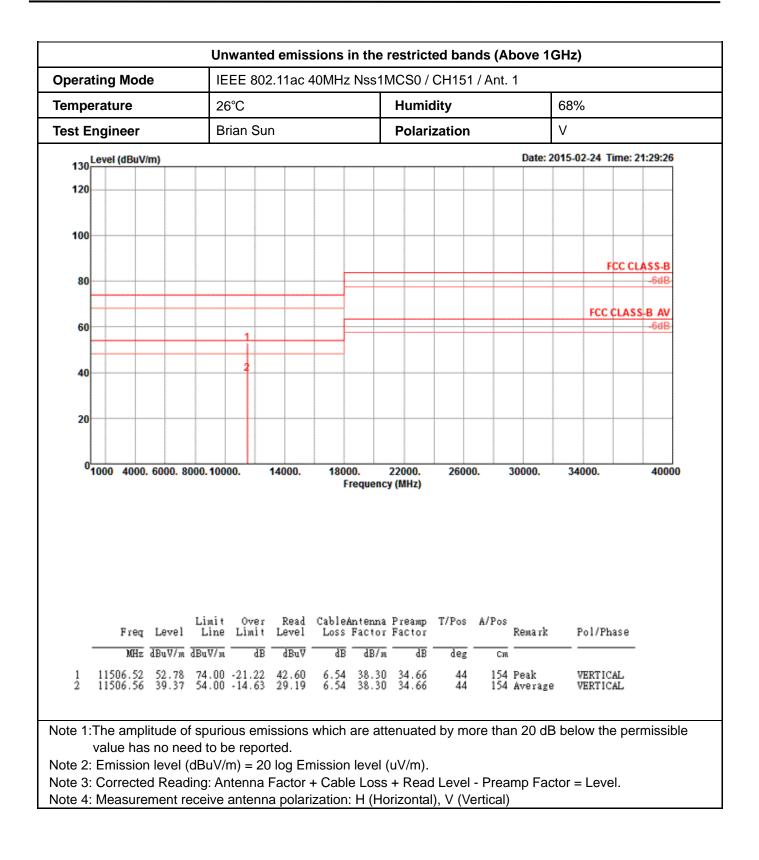


| pera   | ting Mod                          | е        | IE            | EE 802        | 2.11ac 2 | 20MHz | z Nss1N           | ACS0/   | CH149 / 1       | IS3T, TX   | BF      |                      |                 |
|--------|-----------------------------------|----------|---------------|---------------|----------|-------|-------------------|---------|-----------------|------------|---------|----------------------|-----------------|
| empe   | erature                           |          | 26            | S°C           |          |       |                   | Humi    | dity            |            | 68      | %                    |                 |
| st E   | ngineer                           |          | В             | rian Sur      | า        |       |                   | Polar   | ization         |            | V       |                      |                 |
|        |                                   | <b>1</b> |               |               |          |       |                   |         |                 | Date       | 2015    | 03-09 Time: 2        | 00-42-40        |
| 130    | Level (dBuV/                      | m)       |               |               |          | -     |                   |         |                 |            | 5. 2015 | 03-03 mile. 2        | 2.43.12         |
| 120    |                                   |          |               |               |          |       |                   |         |                 |            |         |                      |                 |
| 100    |                                   |          |               |               |          |       |                   |         |                 |            |         |                      |                 |
| 80     |                                   |          |               |               |          |       |                   |         |                 |            |         | FCC CI               | ASS-B           |
|        |                                   |          |               |               |          |       |                   |         |                 |            |         |                      |                 |
| 60     |                                   |          |               | 1             |          |       |                   |         |                 |            |         | FCC CLAS             | S-B AV<br>-6dB- |
|        |                                   |          |               |               |          |       |                   |         |                 |            |         |                      |                 |
| 40     |                                   |          |               | 2             |          |       |                   |         |                 |            |         |                      |                 |
|        |                                   |          |               |               |          |       |                   |         |                 |            |         |                      |                 |
| 20     |                                   |          |               |               |          |       |                   |         |                 |            | _       |                      |                 |
|        |                                   |          |               |               |          |       |                   |         |                 |            |         |                      |                 |
| 0      | 1000 4000.                        | 6000. 8  | 000.100       | 00.           | 14000.   | 180   | 00.               | 22000.  | 26000.          | 30000.     | 3       | 4000.                | 40000           |
|        |                                   |          |               |               |          | F     | requenc           | y (MHz) |                 |            |         |                      |                 |
|        | Freq                              | Level    | Limit<br>Line | Over<br>Limit |          |       | Antenna<br>Factor |         |                 | A/Pos      | T/Pos   | Pol/Phase            |                 |
|        | MHz                               | dBuV/m   | dBuV/m        | dB            | dBuV     | dB    | dB/m              | dB      |                 | cm         | deg     |                      |                 |
| 1<br>2 | 11492.21<br>11494.65              |          |               |               |          |       | 40.28<br>40.28    |         | Peak<br>Average | 150<br>150 |         | VERTICAL<br>VERTICAL |                 |
|        | The ampl<br>value has<br>Emissior | s no ne  | ed to b       | e repor       | ted.     |       |                   |         | -               | than 20    | dB be   | low the pe           | rmissible       |

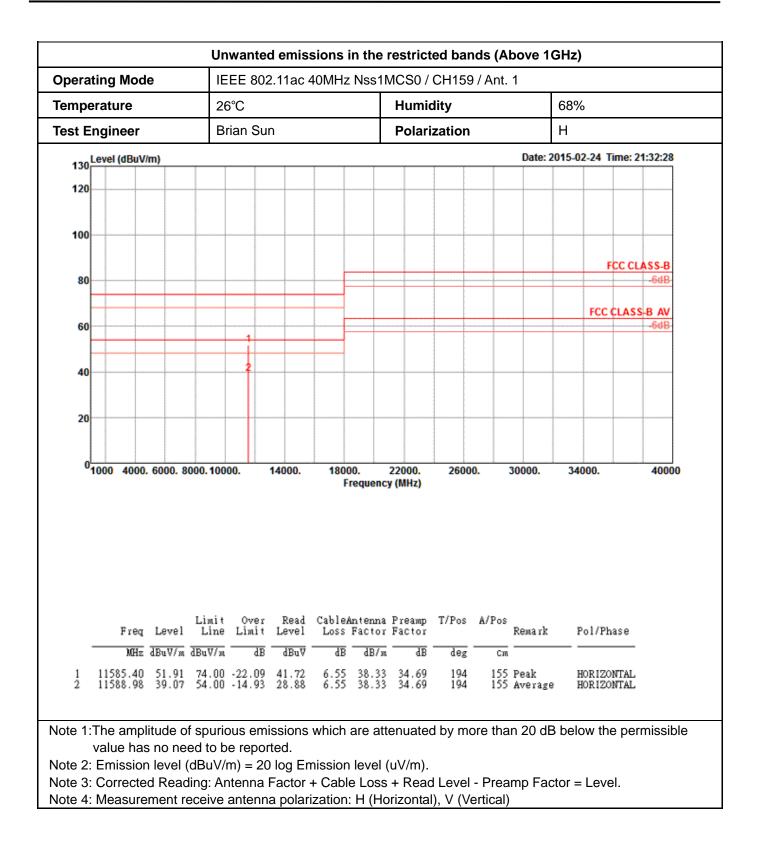


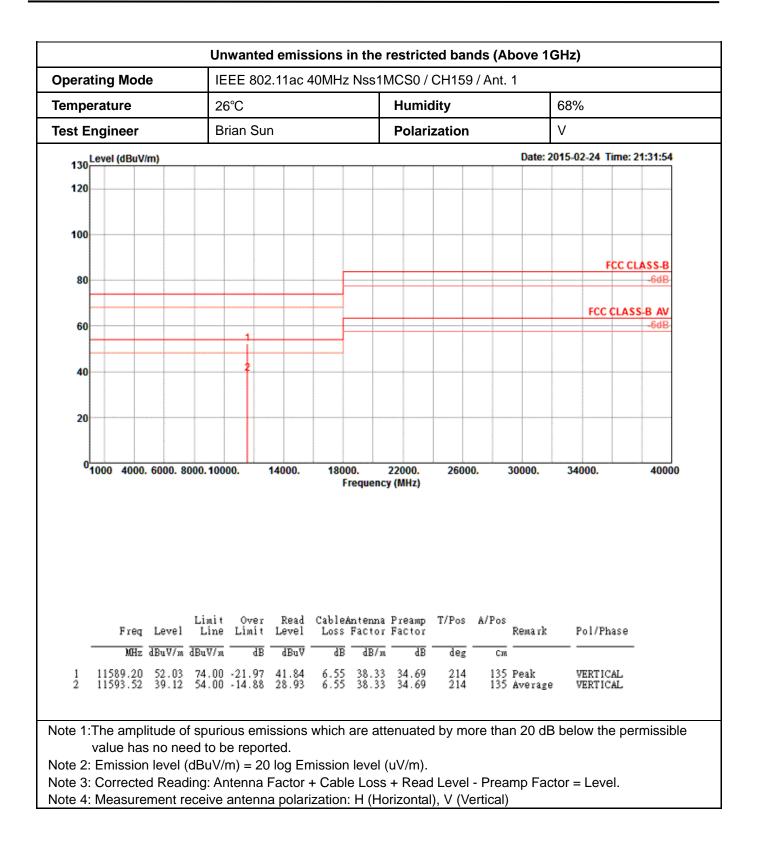

| pera  | ting Mod   | е         | IE      | EE 802   | 2.11ac 2 | 20MHz    | Nss1N    | ACS0/  | CH157 / <sup>-</sup> | 1S3T, TX | BF      |               |                 |
|-------|------------|-----------|---------|----------|----------|----------|----------|--------|----------------------|----------|---------|---------------|-----------------|
| empe  | erature    |           | 26      | S°C      |          |          |          | Humi   | dity                 |          | 68      | %             |                 |
| est E | ngineer    |           | В       | rian Sui | n        |          |          | Polar  | ization              |          | V       |               |                 |
| 120   | evel (dBuV | /m)       |         |          |          |          |          |        |                      | Dat      | e: 2015 | 03-09 Time: 2 | 22:45:26        |
| 120   |            |           |         |          |          |          |          |        |                      |          |         |               |                 |
| 120   |            |           |         |          |          |          |          |        |                      |          |         |               |                 |
| 100   |            |           |         |          |          |          |          |        |                      |          |         |               |                 |
|       |            |           |         |          |          |          |          |        |                      |          |         | FCC CI        | ASS-B           |
| 80    |            |           |         |          |          |          |          |        |                      |          |         |               | -000            |
| 60    |            |           |         | 2        |          |          |          |        |                      |          |         | FCC CLAS      | S-B AV<br>-6dB- |
| 00    |            |           |         | <u> </u> |          |          |          |        |                      |          |         |               | -000            |
| 40    |            |           |         |          |          |          |          |        |                      |          |         |               |                 |
| 70    |            |           |         |          |          |          |          |        |                      |          |         |               |                 |
| 20    |            |           |         |          |          |          |          |        |                      |          |         |               |                 |
|       |            |           |         |          |          |          |          |        |                      |          |         |               |                 |
| 0     | 1000 4000  | . 6000. 8 |         |          | 14000.   | 400      |          | 22000. | 26000.               | 20000    |         | 4000          |                 |
| 1     | 1000 4000  | . 0000. 8 | 000.100 | 00.      | 14000.   | 180<br>F | requency |        | 26000.               | 30000    |         | 4000.         | 40000           |
|       |            |           |         |          |          |          |          |        |                      |          |         |               |                 |
|       |            |           |         |          |          |          |          |        |                      |          |         |               |                 |
|       |            |           |         |          |          |          |          |        |                      |          |         |               |                 |
|       |            |           | Limit   | Over     | Read     | Cable    | Antenna  | Preamp |                      | A/Pos    | T/Pos   |               |                 |
|       | Freq       | Level     | Line    | Limit    | -        |          | Factor   |        |                      |          |         | Pol/Phase     |                 |
|       | MHz        | dBuV/m    | dBuV/m  | dB       | dBuV     | dB       | dB/m     | dB     |                      | cm       | deg     |               |                 |
| 1     | 11566.44   |           |         |          |          |          |          |        | Average              | 186      |         | VERTICAL      |                 |
| 2     | 11566.49   | 56.90     | 74.00   | -17.10   | 42.14    | 9.26     | 40.26    | 34.76  | Реак                 | 186      | 82      | VERTICAL      |                 |
|       | The amp    | litude o  | fsourie | ous emi  | issions  | which    | are att  | enuate | d by more            | than 20  | dB he   | low the pe    | rmissihle       |
| te 1  |            |           |         | e repor  |          | Willow   | are all  | ondato |                      |          |         |               |                 |
|       | value nas  |           |         |          |          |          |          |        |                      |          |         |               |                 |

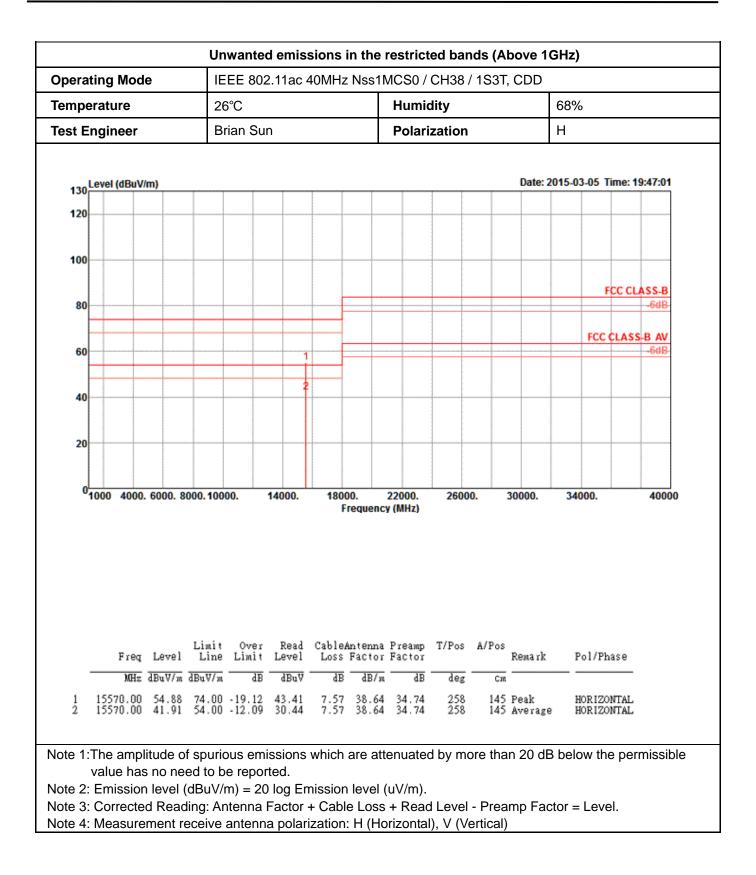

| 26°C<br>Brian Sun |                                                                                                             | Imidity                                                                                                                                                                                          | Date: 2015                                                                                                                                                                                                                                                                                                | -03-09 Time: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2:50:23                                                                                                                                                                                                                                                                                                                 |
|-------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Brian Sun         | Pc                                                                                                          |                                                                                                                                                                                                  | Date: 2015                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2:50:23                                                                                                                                                                                                                                                                                                                 |
|                   |                                                                                                             |                                                                                                                                                                                                  | Date: 2015                                                                                                                                                                                                                                                                                                | -03-09 Time: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2:50:23                                                                                                                                                                                                                                                                                                                 |
|                   |                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                         |
|                   |                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                         |
|                   |                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                         |
|                   |                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                         |
|                   |                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           | FCC CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ASS-B<br>-6dB                                                                                                                                                                                                                                                                                                           |
|                   |                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           | FCC CLASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -B AV                                                                                                                                                                                                                                                                                                                   |
|                   |                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -6dB                                                                                                                                                                                                                                                                                                                    |
|                   |                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                         |
|                   |                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                         |
|                   |                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                         |
|                   |                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                         |
|                   |                                                                                                             | 26000. 3                                                                                                                                                                                         | 0000. 3                                                                                                                                                                                                                                                                                                   | 34000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4000                                                                                                                                                                                                                                                                                                                    |
|                   |                                                                                                             |                                                                                                                                                                                                  | Pos T/Pos                                                                                                                                                                                                                                                                                                 | Pol/Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                         |
| dB dBuV dB        | dB/m dB                                                                                                     |                                                                                                                                                                                                  | cm deg                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                         |
|                   |                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                         |
|                   | F<br>Read Cable/<br>t Level Loss<br>B dBuV dB<br>4 41.74 9.28<br>4 28.45 9.28<br>emissions whic<br>eported. | Frequency (MHz)<br>r Read CableAntenna Preamp<br>t Level Loss Factor Factor<br>B $dBuV$ $dB$ $dB/m$ $dB$<br>4 41.74 9.28 40.22 34.78<br>4 28.45 9.28 40.21 34.78<br>emissions which are attenuat | Frequency (MHz)<br>Tr. Read CableAntenna Preamp A/<br>t Level Loss Factor Factor Remark<br>$B \overline{dBuV} \overline{dB} \overline{dB/m} \overline{dB} \overline{dB}$<br>4 41.74 9.28 40.22 34.78 Peak<br>4 28.45 9.28 40.21 34.78 Average<br>Temissions which are attenuated by more that<br>eported. | Frequency (MHz)Frequency (MHz)T Read CableAntenna Preamp<br>Loss Factor Factor Remark $A/Pos T/Pos$ The second deget $dB \sqrt{dB} $ | Frequency (MHz)   Int Read CableAntenna Preamp A/Pos T/Pos   t Level Loss Factor Factor Remark Pol/Phase   B dBuV dB dB/m dB cm deg   4 41.74 9.28 40.22 34.78 Peak 164 133 HORIZONTAL   4 28.45 9.28 40.21 34.78 Average 164 133 HORIZONTAL   emissions which are attenuated by more than 20 dB below the perceported. |

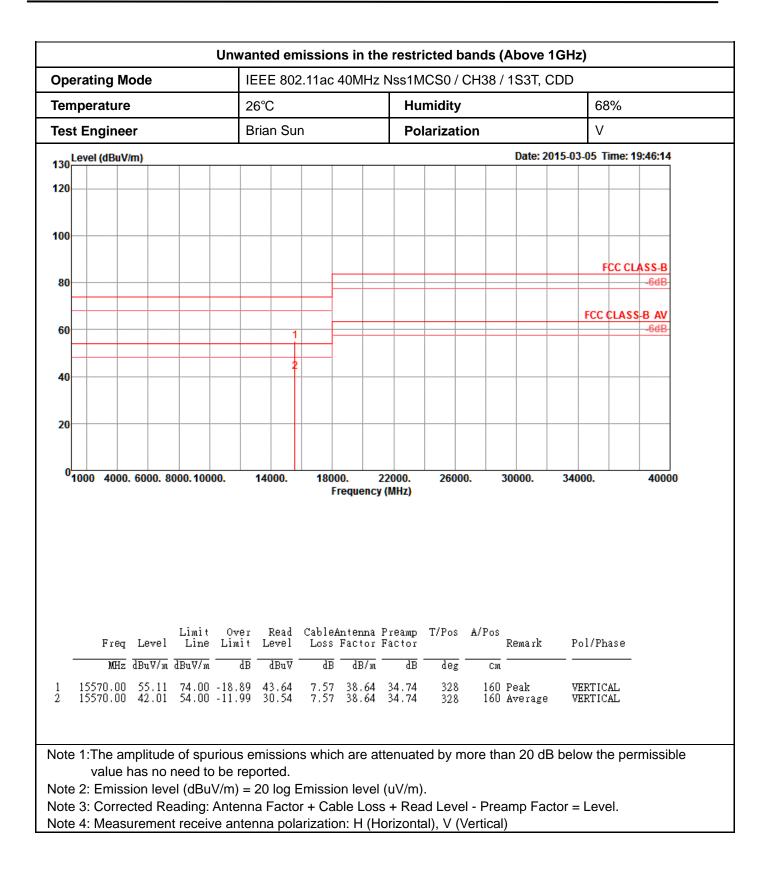


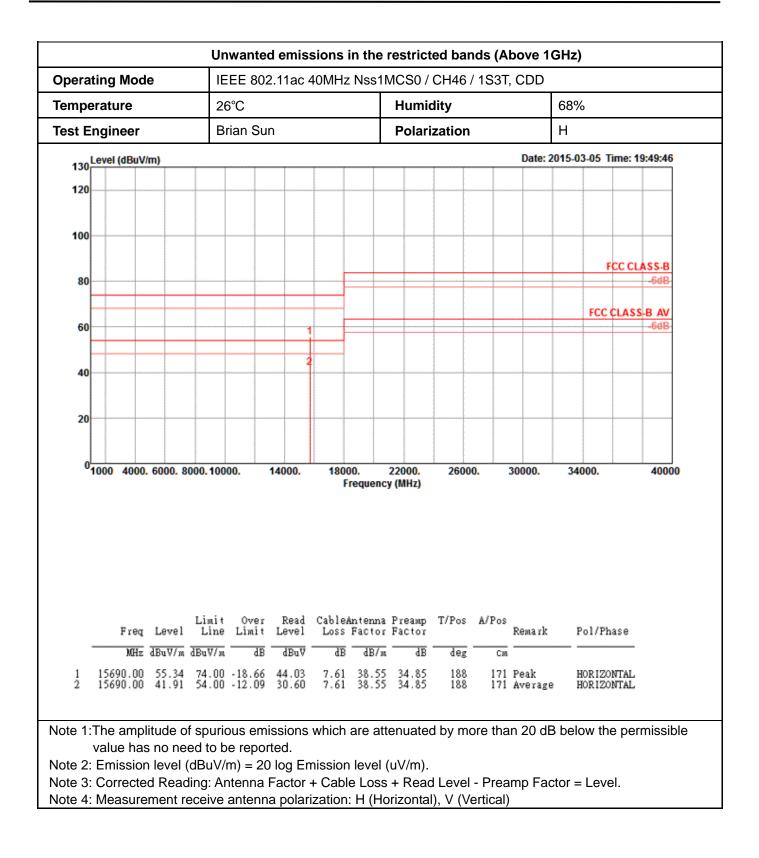



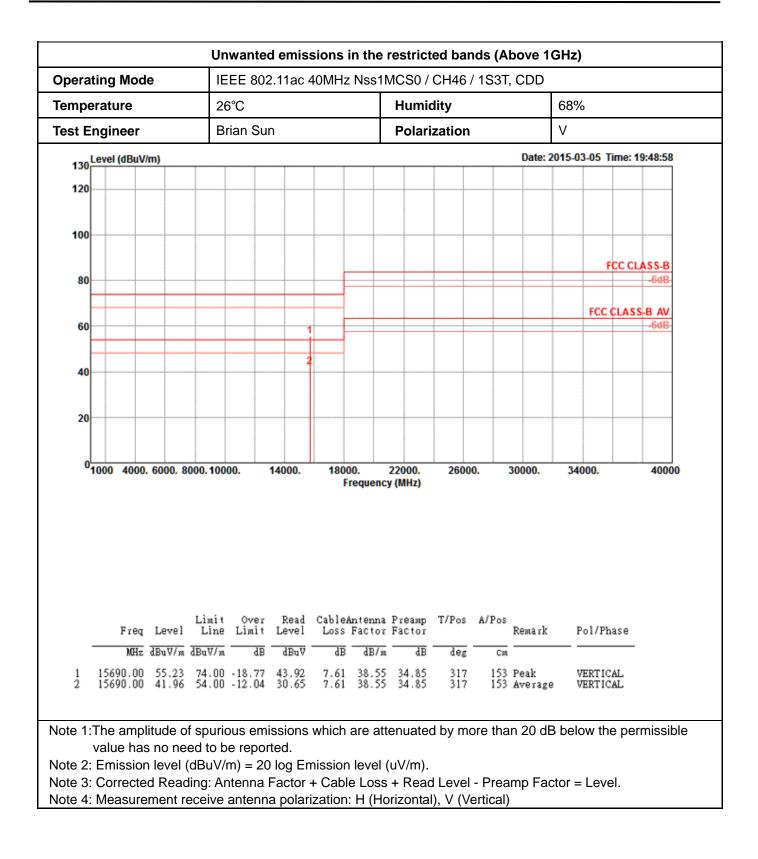


|        | ating Mod            | е              | IE             | EE 802          | 2.11ac 4       | 40MHz        | Nss1N               | ACS0 /         | CH38       | / Ant. 1   |                 |                |         |           |
|--------|----------------------|----------------|----------------|-----------------|----------------|--------------|---------------------|----------------|------------|------------|-----------------|----------------|---------|-----------|
| emp    | erature              |                | 26             | S°C             |                |              |                     | Humi           | dity       |            |                 | 68%            |         |           |
| est E  | Engineer             |                | Bi             | ian Su          | n              |              |                     | Polari         | ization    |            |                 | V              |         |           |
| 130    | Level (dBuV          | /m)            |                |                 |                |              |                     |                |            |            | Date: 20        | 015-02-24      | Time: 2 | 1:18:13   |
| 120    |                      |                |                |                 |                |              |                     |                |            |            |                 |                |         |           |
| 100    |                      |                |                |                 |                |              |                     |                |            |            |                 |                |         |           |
|        |                      |                |                |                 |                |              |                     |                |            |            |                 |                |         |           |
| 80     | )                    |                |                |                 |                | [            |                     |                |            |            |                 |                | FCC CL  | -6dB      |
|        |                      |                |                |                 |                |              |                     |                |            |            |                 | FCC            | CLAS    | S-B AV    |
| 60     |                      |                |                |                 | 2              |              |                     |                |            |            |                 |                |         | -6dB      |
| 40     |                      |                |                |                 |                |              |                     |                |            |            |                 |                |         |           |
| 40     |                      |                |                |                 |                |              |                     |                |            |            |                 |                |         |           |
| 20     | )                    |                |                |                 |                |              |                     |                |            |            |                 |                |         |           |
|        |                      |                |                |                 |                |              |                     |                |            |            |                 |                |         |           |
| 0      | 1000 4000            | 6000. 8        | 000.100        | 00.             | 14000.         | 180          | 00.<br>requency     | 22000.         | 2600       | 0.         | 30000.          | 34000.         |         | 40000     |
|        | Frea                 | Level          | Limit<br>Line  | Over<br>Limit   | Read<br>Level  | Cable        | An ten na<br>Factor | Preamp         | T/Pos      | A/Pos      | Remark          | Pol/P          | hase    |           |
|        | -                    | dBuV/m         |                | dB              | dBuV           | dB           |                     | dB             | deg        | Cm         |                 |                |         |           |
|        | 15568.40<br>15571.04 | 44.01<br>56.57 | 54.00<br>74.00 | -9.99<br>-17.43 | 32.54<br>45.10 | 7.57<br>7.57 | 38.64<br>38.64      | 34.74<br>34.74 | 347<br>347 | 128<br>128 | Average<br>Peak | VERTI<br>VERTI | CAL     |           |
| 1<br>2 |                      |                |                | ous emi         | issions        | which        | are att             | enuate         | d by m     | ore tha    | ın 20 dB        | below th       | ne pe   | rmissible |



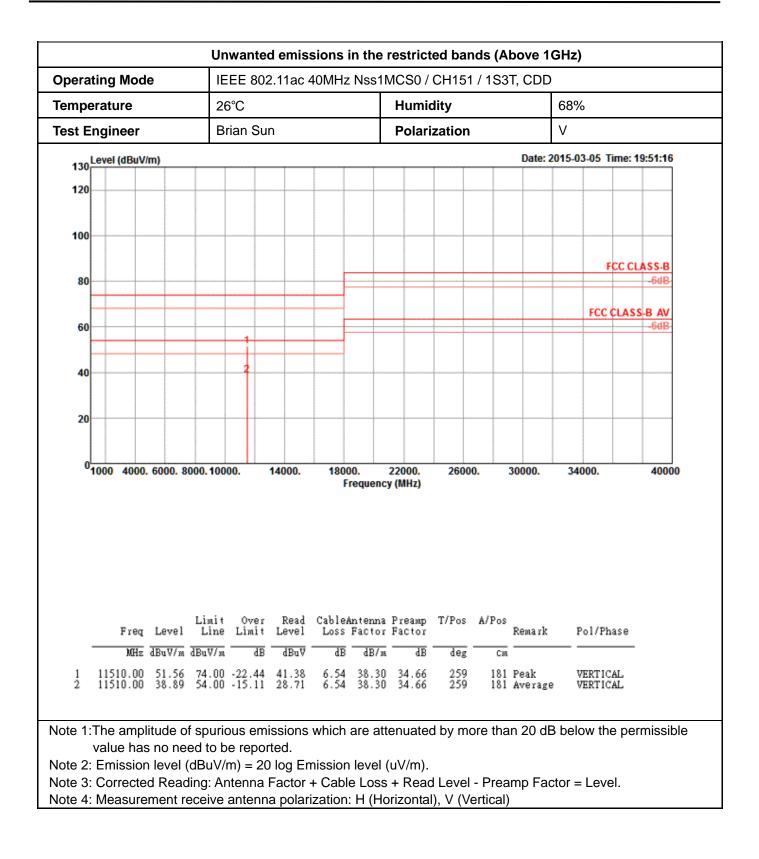



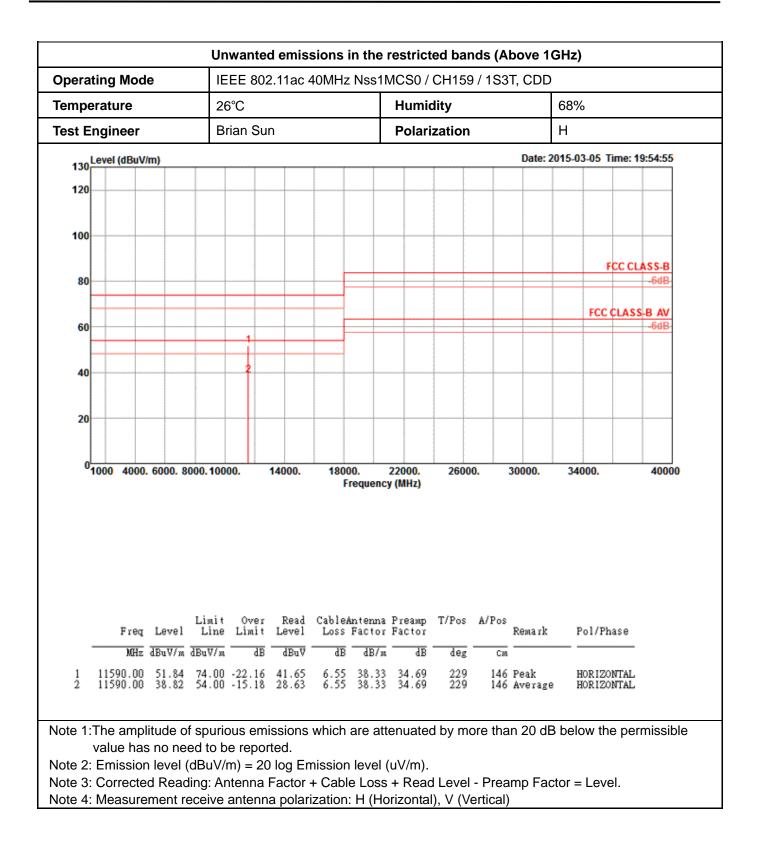



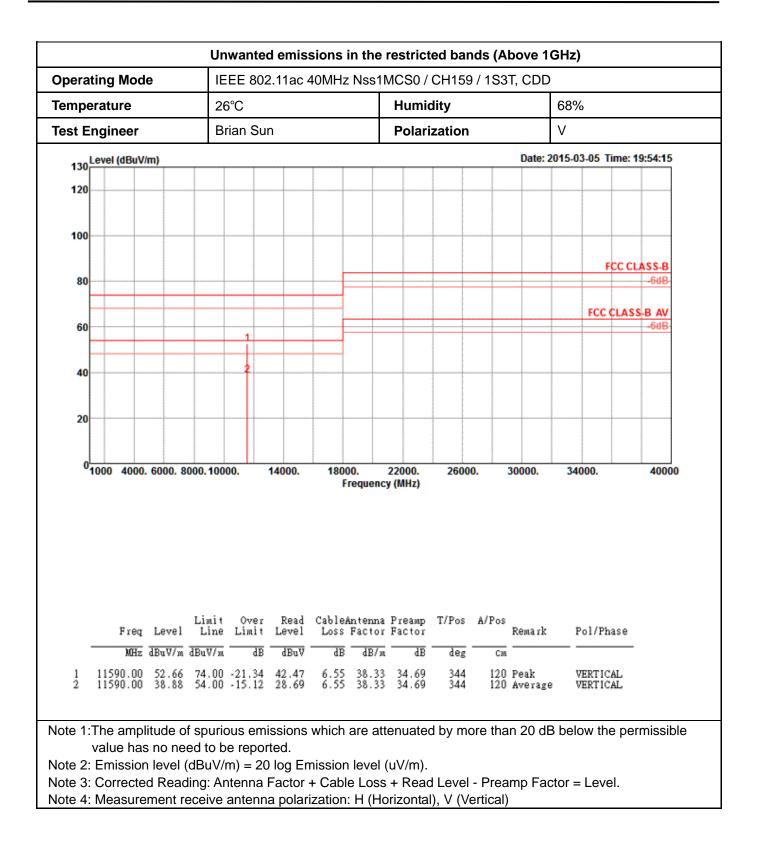



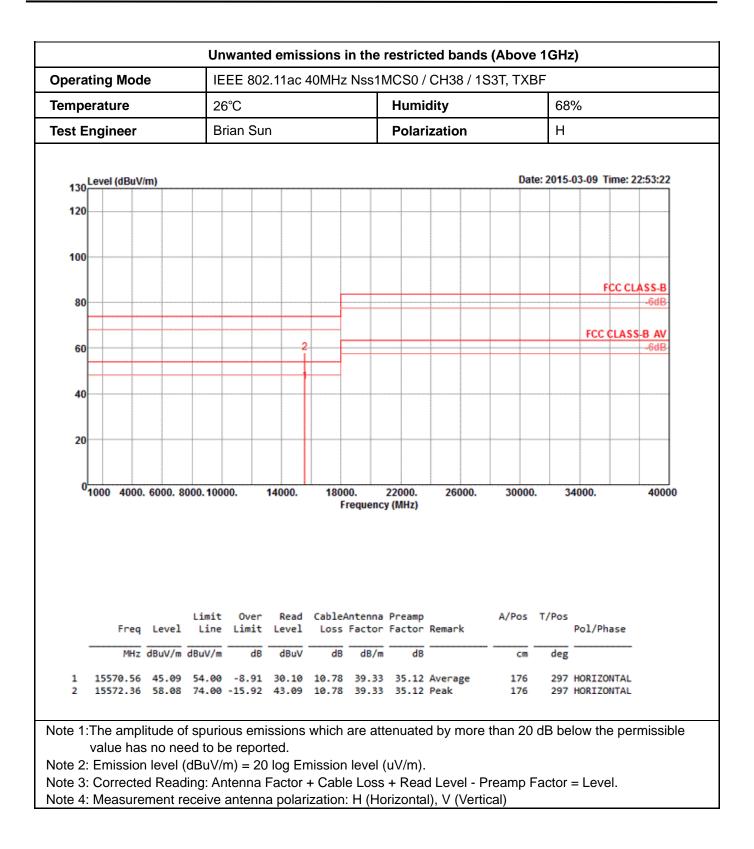



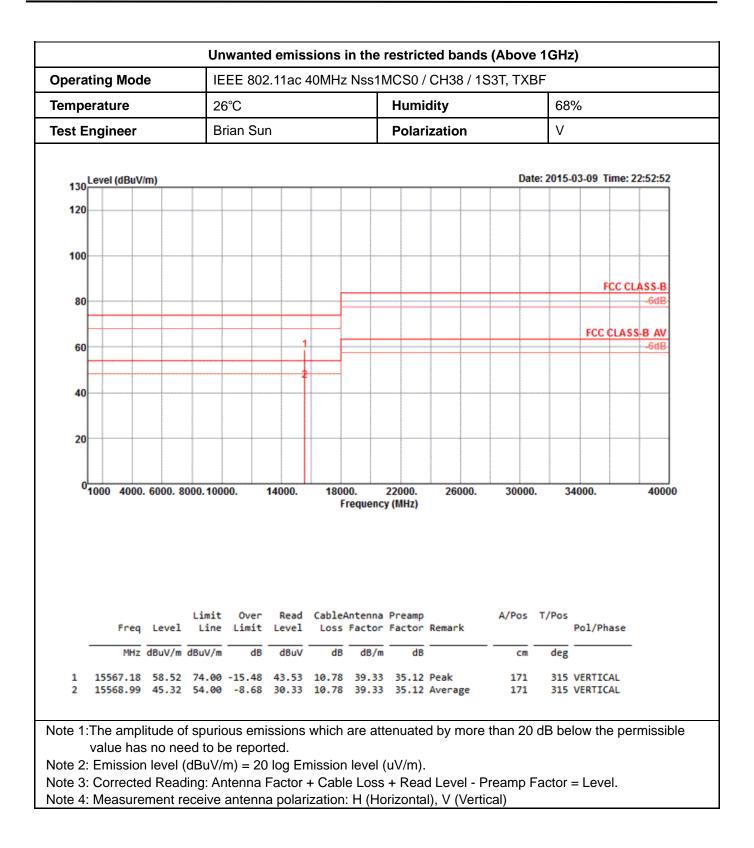


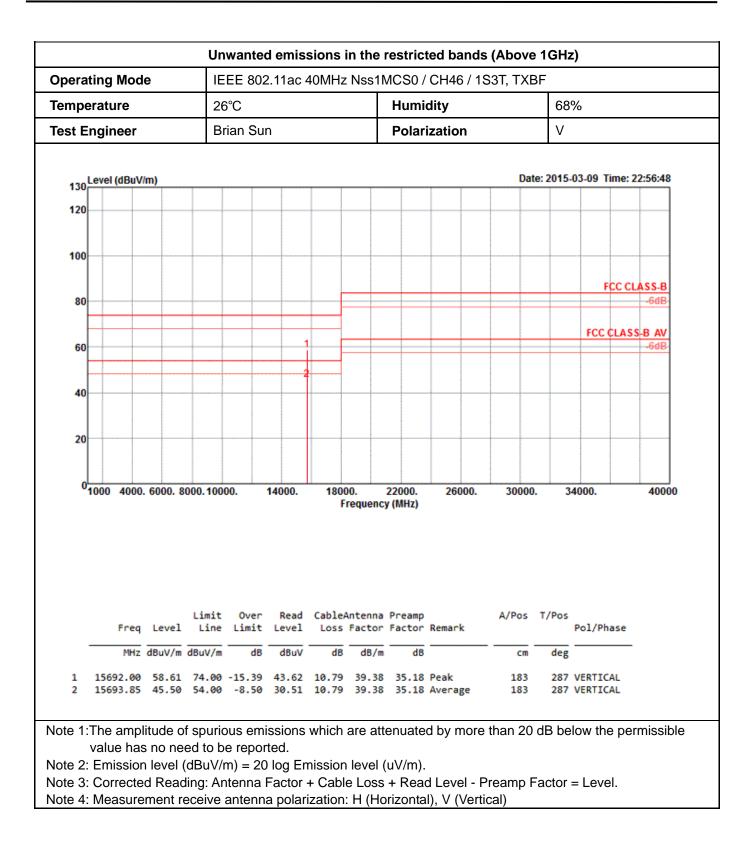



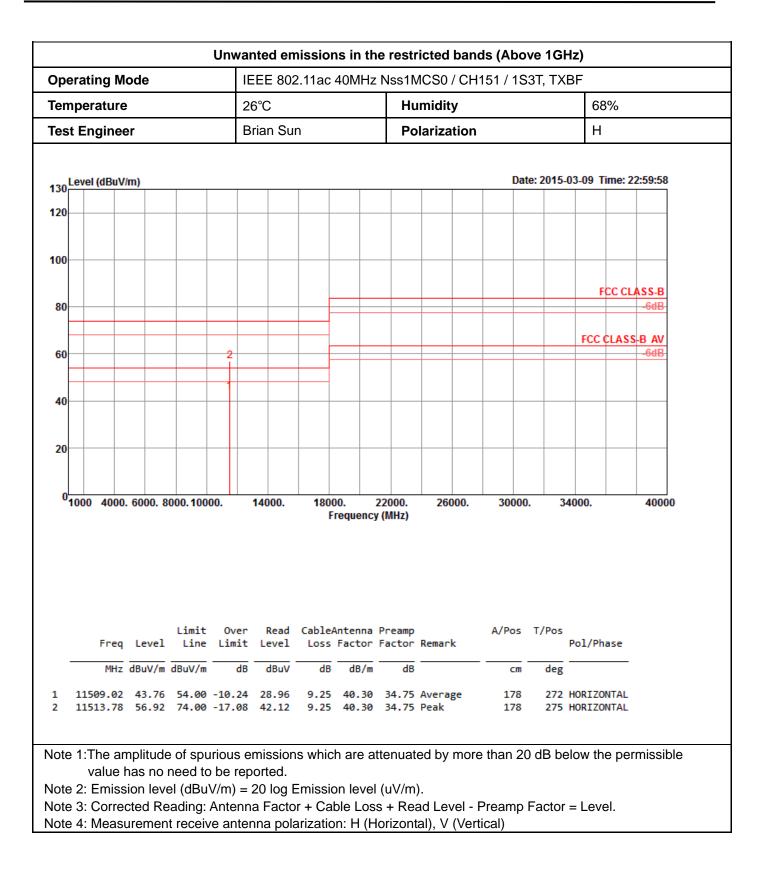



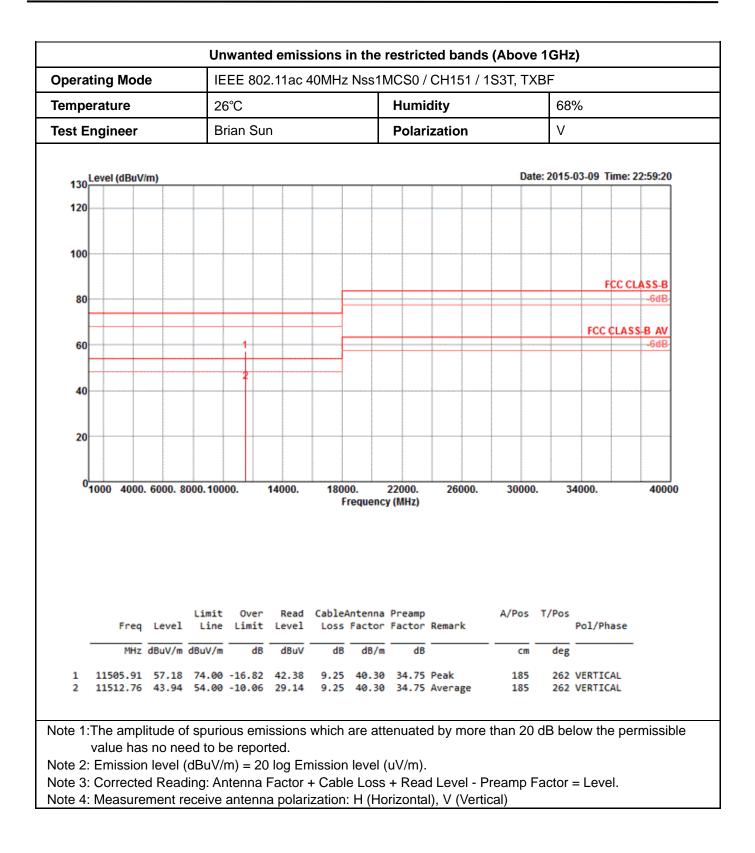



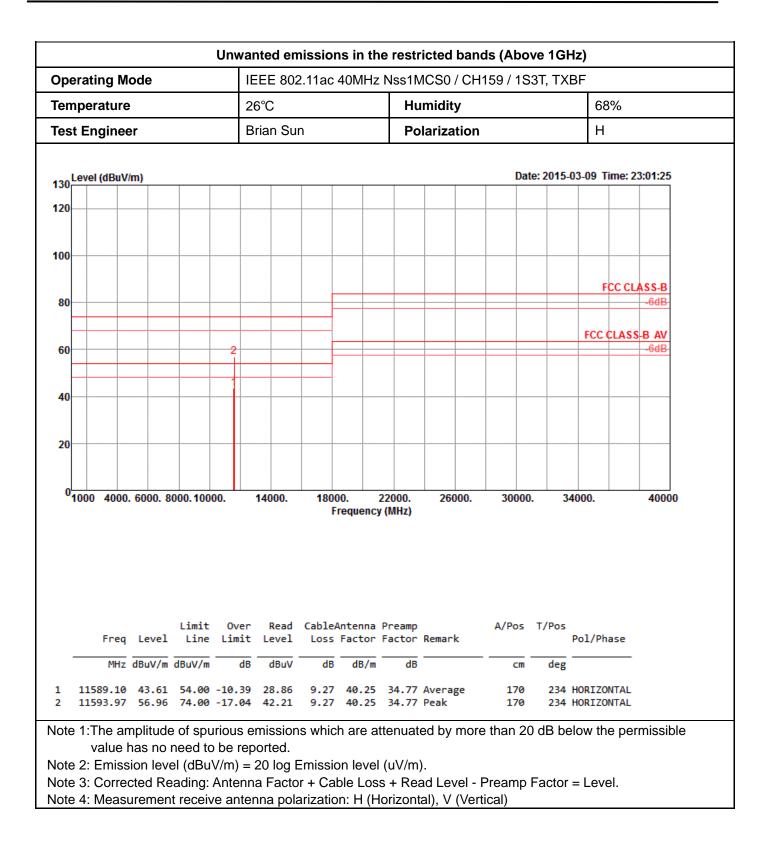


|        | ting Mod     | e               | IE             | EE 802        | 2.11ac -      | 40MHz          | z Nss1N                   | ACS0/                      | CH151   | l / 1S3 | T, CDD  |        |            |            |
|--------|--------------|-----------------|----------------|---------------|---------------|----------------|---------------------------|----------------------------|---------|---------|---------|--------|------------|------------|
| emp    | erature      |                 | 26             | S°C           |               |                |                           | Humi                       | dity    |         |         | 68%    | )          |            |
| est E  | Ingineer     |                 | В              | rian Su       | n             |                |                           | Polari                     | ization |         |         | Н      |            |            |
| 420    | Level (dBuV/ | m)              |                |               |               |                | <b>L</b>                  |                            |         |         | Date: 2 | 015-03 | 3-05 Time: | : 19:52:08 |
|        |              |                 |                |               |               |                |                           |                            |         |         |         |        |            |            |
| 120    |              |                 |                |               |               |                |                           |                            |         |         |         |        |            |            |
| 400    |              |                 |                |               |               |                |                           |                            |         |         |         |        |            |            |
| 100    |              |                 |                |               |               |                |                           |                            |         |         |         |        |            |            |
|        |              |                 |                |               |               |                |                           |                            |         |         |         |        | FCC (      | CLASS-B    |
| 80     |              |                 |                |               |               |                |                           |                            |         |         |         |        |            | -988-      |
|        |              |                 |                |               |               |                |                           |                            |         |         |         |        | FCC CLA    | SS-B AV    |
| 60     |              |                 |                | 1             |               |                |                           |                            |         |         |         |        |            | -008       |
|        |              |                 |                | -             |               |                |                           |                            |         |         |         |        |            |            |
| 40     |              |                 |                |               |               |                |                           |                            |         |         |         |        |            |            |
| 20     |              |                 |                |               |               |                |                           |                            |         |         |         |        |            |            |
| 20     |              |                 |                |               |               |                |                           |                            |         |         |         |        |            |            |
|        |              |                 |                |               |               |                |                           |                            |         |         |         |        |            |            |
| U      | 1000 4000.   | 6000. 8         | 000.100        | 00.           | 14000.        | 180            | 00.                       | 22000.                     | 2000    | -       | 30000.  | 240    | 000.       | 4000       |
|        |              |                 |                |               |               | F              | requenc                   |                            | 2600    | 0.      | 50000.  | 340    |            | 4000       |
|        |              | Level           | Limit<br>Line  | Over<br>Limit |               | Cable          |                           | <b>y (MHz)</b><br>Preamp   |         |         | Rema rk |        | ol/Phase   |            |
|        | Freq         | Level<br>dBuV/m | Line           |               |               | Cable          | Antenna<br>Factor         | <b>y (MHz)</b><br>Preamp   |         |         |         |        |            |            |
| 1<br>2 | Freq         | dBu∀/m          | Line<br>dBuV/m | Limit<br>dB   | Level<br>dBuV | Cable.<br>Loss | Antenna<br>Factor<br>dB/m | y(MHz)<br>Preamp<br>Factor | T/Pos   | A/Pos   |         | P.     |            | -<br>L     |

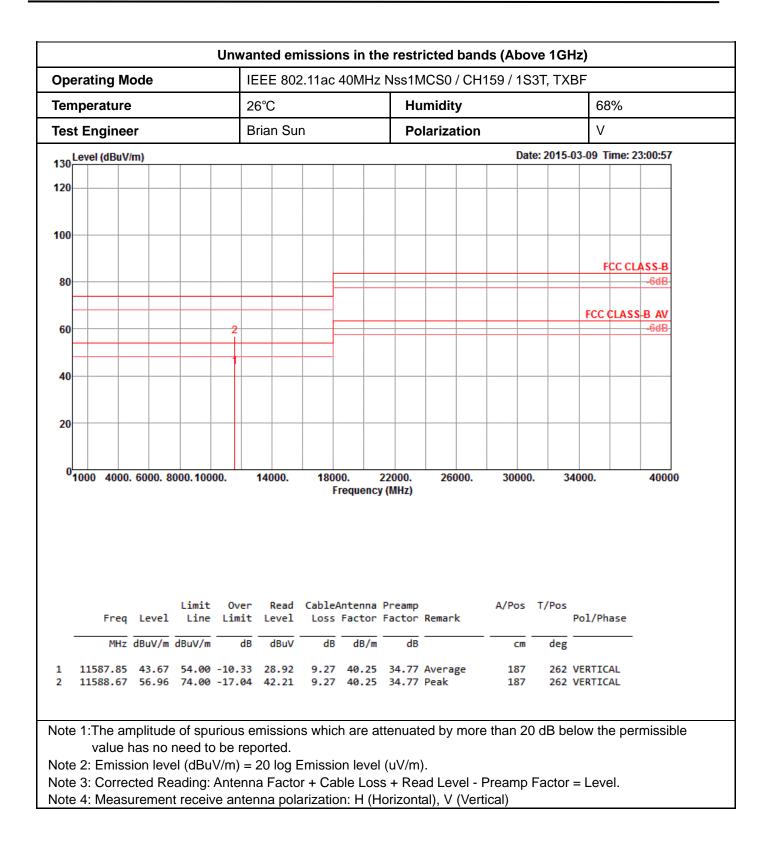


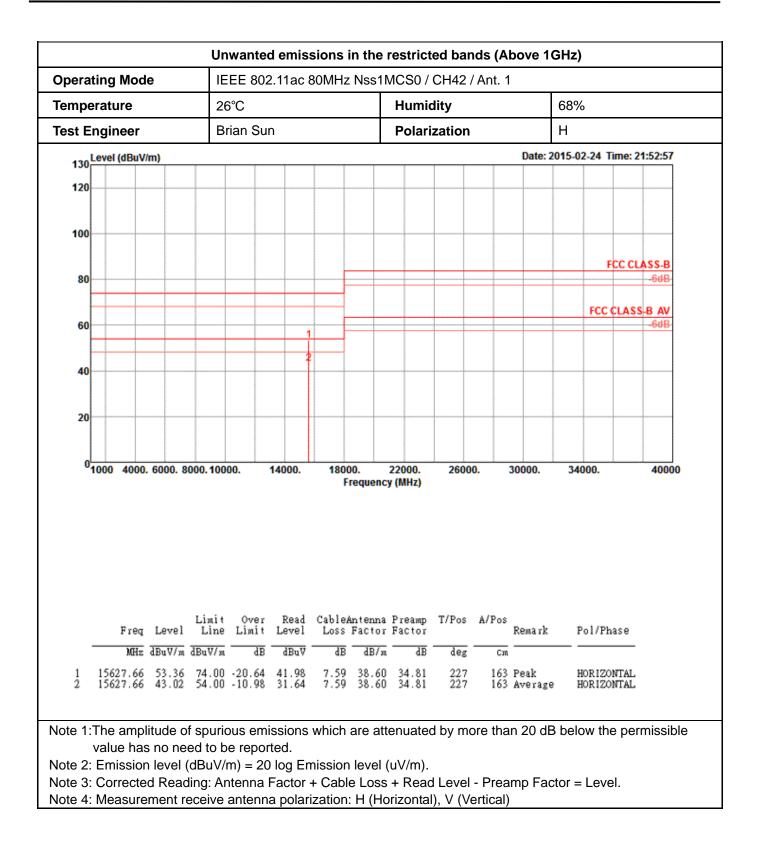


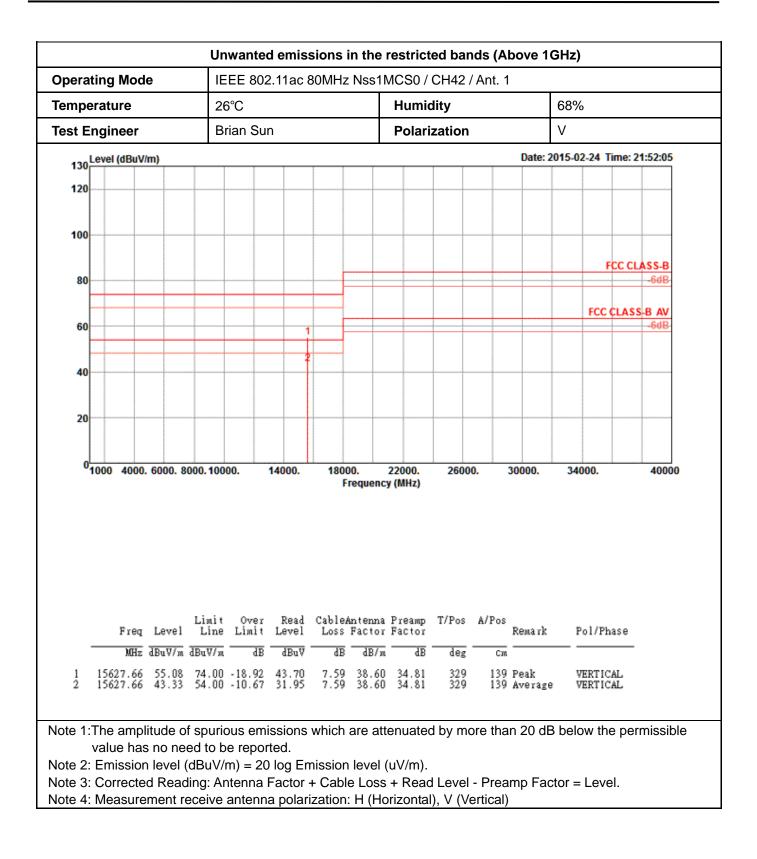



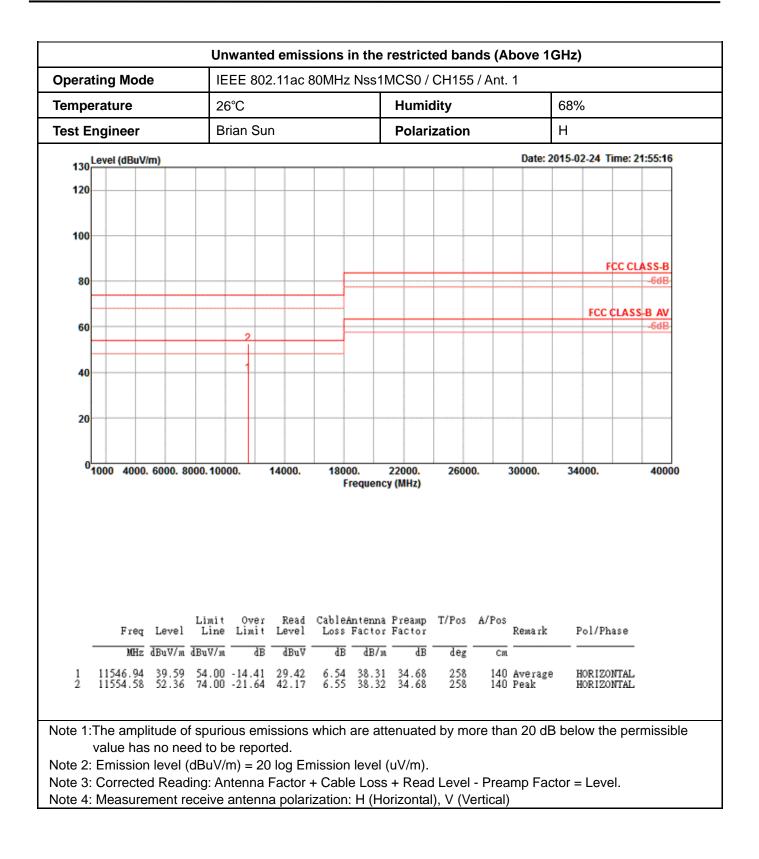



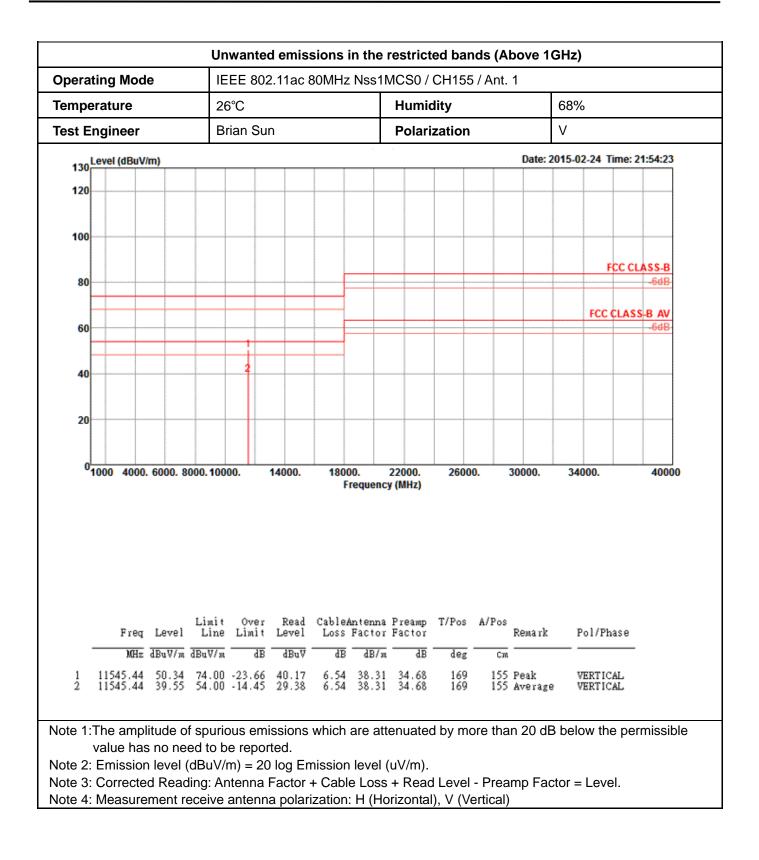



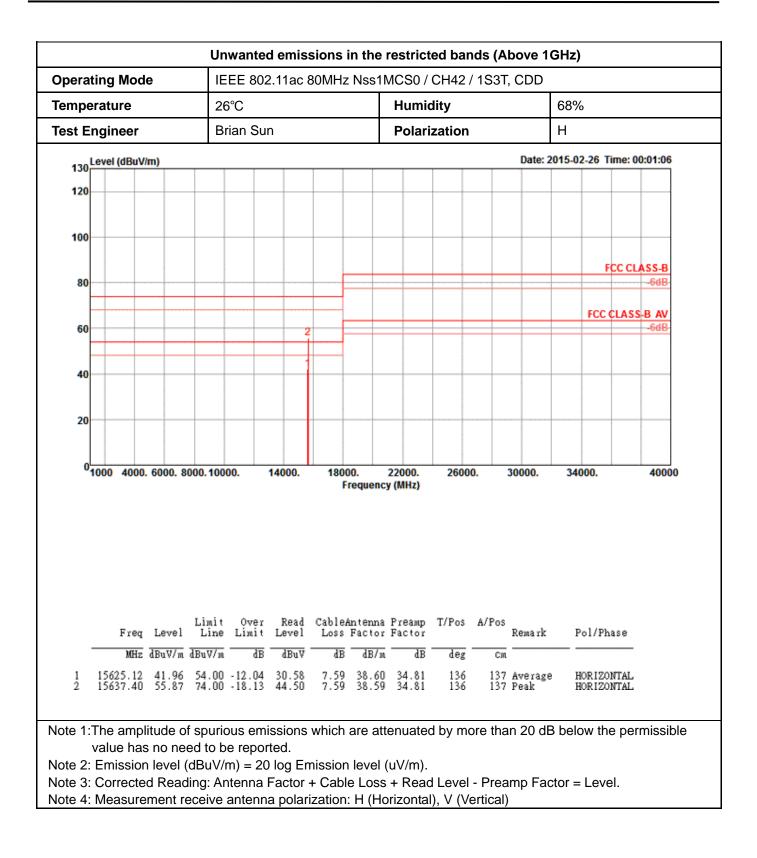


| pera   | ting Mod             | е       | IE       | EE 802        | 2.11ac - | 40MHz | z Nss1N           | ACS0/   | CH46 / 1  | S3T, TXE   | BF       |                          |          |
|--------|----------------------|---------|----------|---------------|----------|-------|-------------------|---------|-----------|------------|----------|--------------------------|----------|
| emp    | erature              |         | 26       | S°C           |          |       |                   | Humi    | dity      |            | 68       | %                        |          |
| est E  | ingineer             |         | В        | rian Sui      | n        |       |                   | Polar   | ization   |            | Н        |                          |          |
|        | Level (dBuV          | /m)     |          |               |          |       |                   |         |           | Dat        | e: 2015- | 03-09 Time: 2            | 2:57:24  |
|        |                      |         |          |               |          |       |                   |         |           |            |          |                          |          |
| 120    |                      |         |          |               |          |       |                   |         |           |            |          |                          |          |
| 400    |                      |         |          |               |          |       |                   |         |           |            |          |                          |          |
| 100    |                      |         |          |               |          | -     |                   |         |           |            |          |                          |          |
| 80     |                      |         |          |               |          |       |                   |         |           |            |          | FCC CL                   | ASS-B    |
|        |                      |         |          |               |          |       |                   |         |           |            |          |                          |          |
| 60     |                      |         |          |               | -        |       |                   |         |           |            |          | FCC CLASS                | -6dB     |
|        |                      |         |          |               | _        |       |                   |         |           |            |          |                          |          |
| 40     |                      |         |          |               |          |       |                   |         |           |            |          | -                        |          |
|        |                      |         |          |               |          |       |                   |         |           |            |          |                          |          |
| 20     |                      |         |          |               |          |       |                   |         |           |            | _        |                          |          |
|        |                      |         |          |               |          |       |                   |         |           |            |          |                          |          |
| 0      | 1000 4000            | 6000. 8 | 000.100  | 00.           | 14000.   | 180   | 00.               | 22000.  | 26000.    | 30000      | . 3      | 4000.                    | 40000    |
|        |                      |         |          |               |          | ,     | requenc           | y (wnz) |           |            |          |                          |          |
|        |                      |         |          | Over<br>Limit |          |       | Antenna<br>Factor |         |           | A/Pos      | T/Pos    | Pol/Phase                |          |
|        | MHz                  | dBuV/m  | dBuV/m   | dB            | dBuV     | dB    | dB/m              | dB      |           | cm         | deg      |                          |          |
| 1<br>2 | 15688.41<br>15692.13 |         |          |               |          |       |                   |         |           | 192<br>192 |          | HORIZONTAL<br>HORIZONTAL |          |
|        |                      |         |          |               |          |       |                   |         |           |            |          |                          |          |
|        | The ampl             | itude o | f spurio | ous emi       | ssions   | which | are att           | enuate  | d by more | than 20    | dB be    | low the per              | missible |

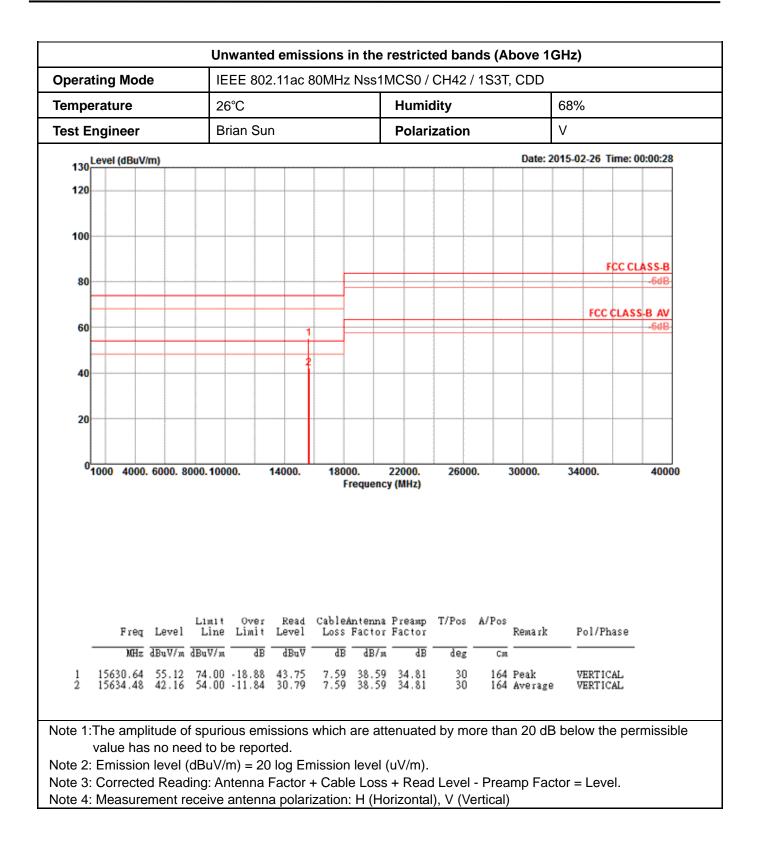


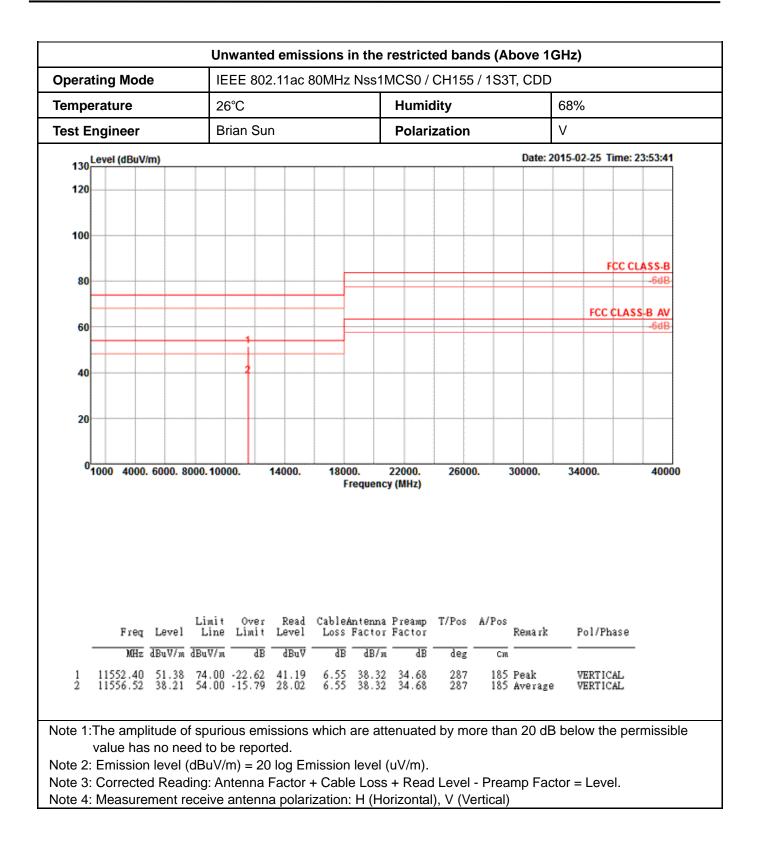



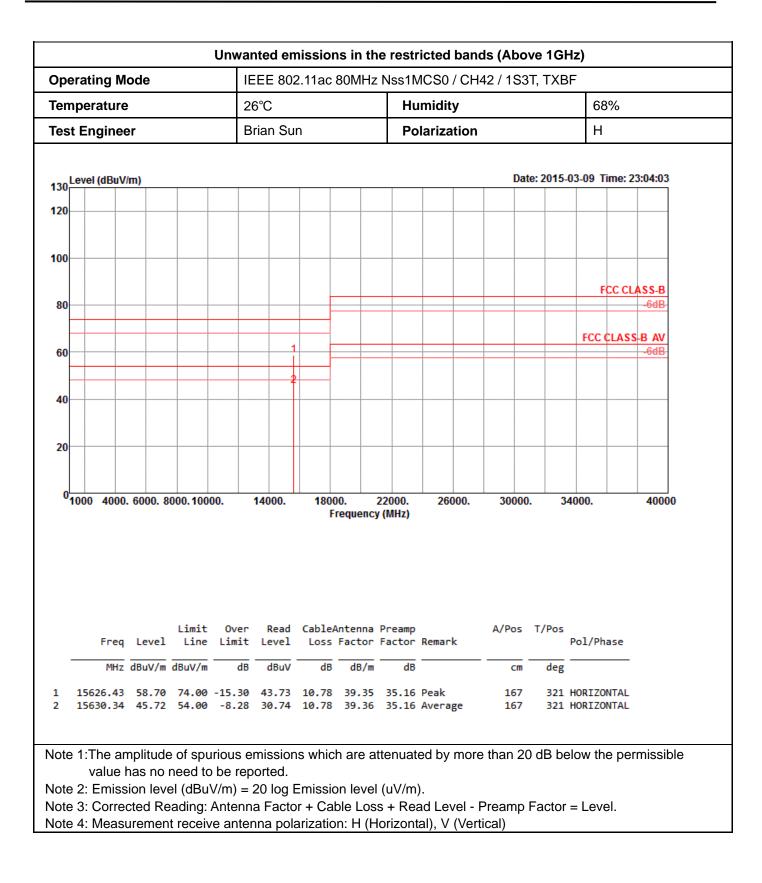



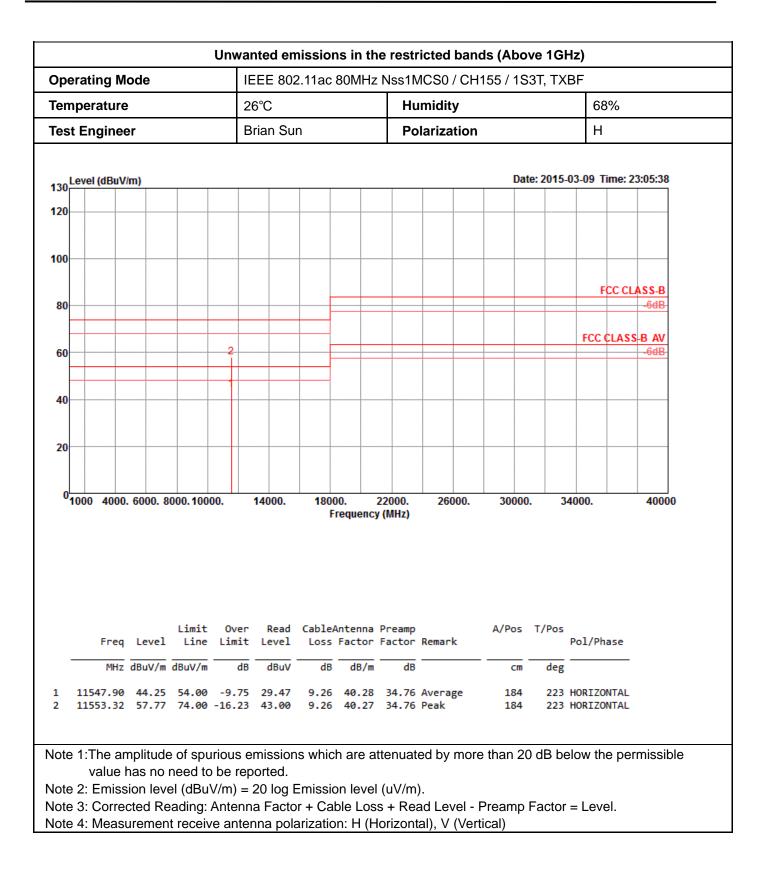


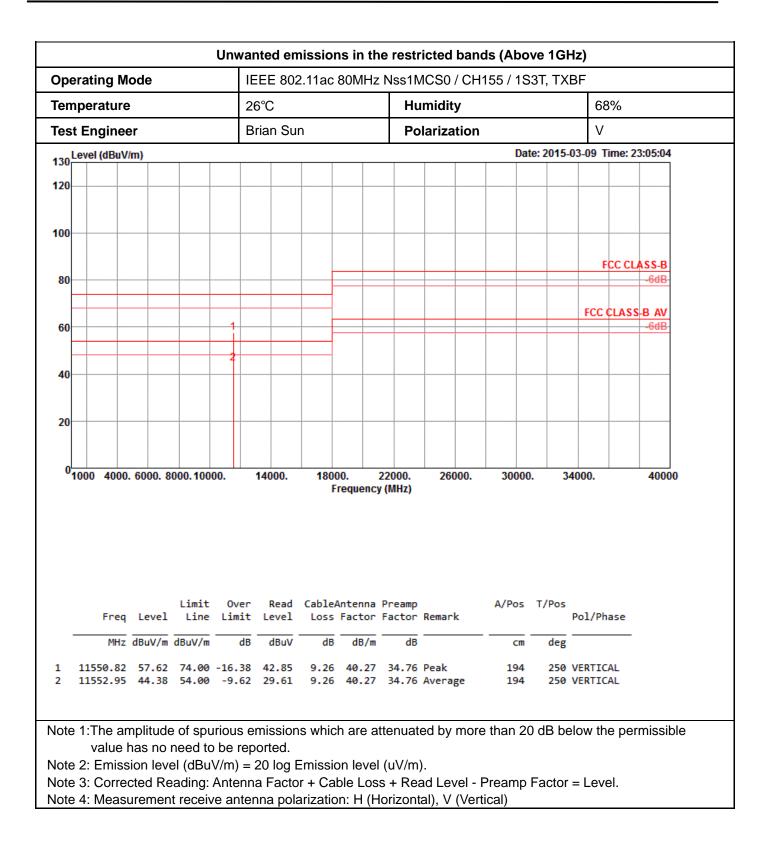







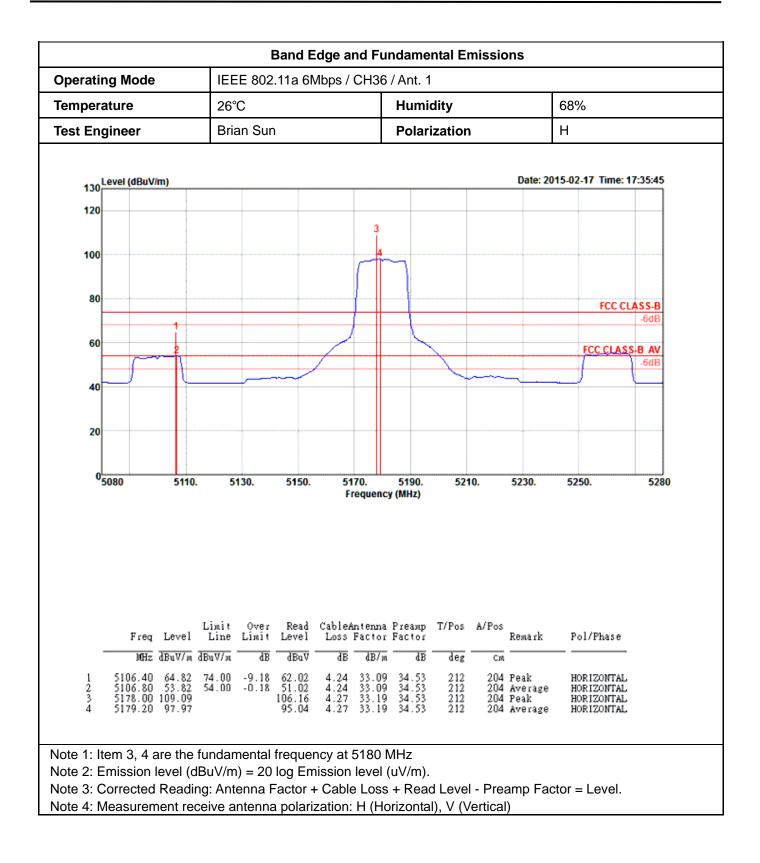


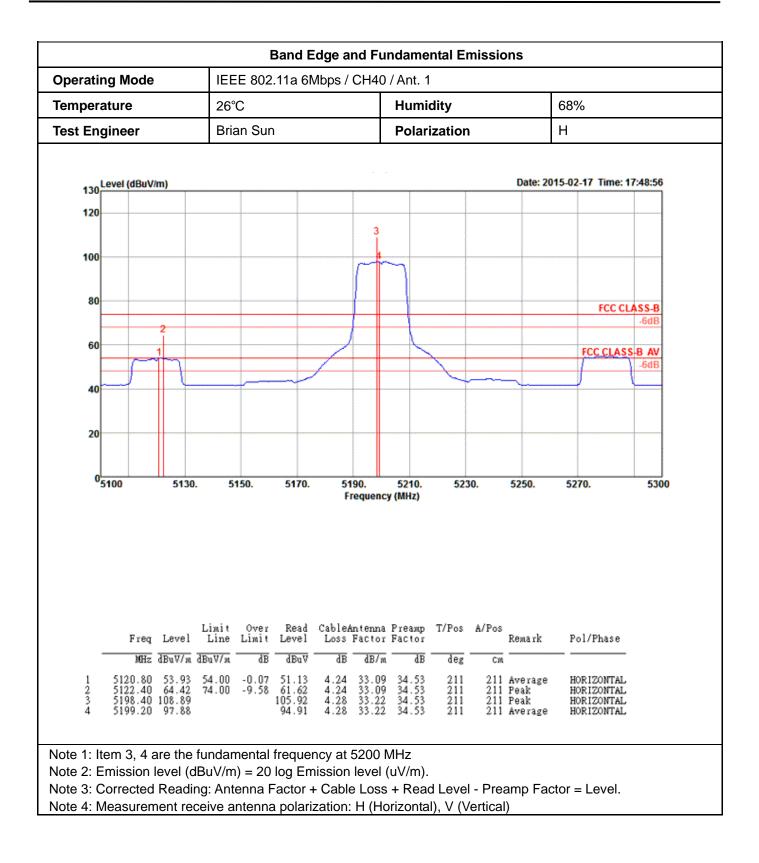


|               | ting Mode                               | IE                                                                       | EE 802                                                        | 2.11ac 8                                           | 80MHz                               | Nss1N                                        | ACS0 /                                    | CH155             | 5/1S3            | T, CDD                           |          |                                 |           |  |
|---------------|-----------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|-------------------------------------|----------------------------------------------|-------------------------------------------|-------------------|------------------|----------------------------------|----------|---------------------------------|-----------|--|
| Temperature   |                                         |                                                                          | 26°C                                                          |                                                    |                                     |                                              | Humio                                     | dity              |                  |                                  | 68%      |                                 |           |  |
| Test Engineer |                                         | В                                                                        | Brian Sun                                                     |                                                    |                                     |                                              |                                           | Polarization      |                  |                                  |          | н                               |           |  |
| 130           | Level (dBuV/m)                          |                                                                          |                                                               |                                                    |                                     |                                              |                                           |                   |                  | Date: 2                          | 015-02-  | 25 Time: 2                      | 23:54:57  |  |
| 120           |                                         |                                                                          |                                                               |                                                    |                                     |                                              |                                           |                   |                  |                                  |          |                                 |           |  |
| 100           |                                         |                                                                          |                                                               |                                                    |                                     |                                              |                                           |                   |                  |                                  |          |                                 |           |  |
|               |                                         |                                                                          |                                                               |                                                    |                                     |                                              |                                           |                   |                  |                                  |          |                                 |           |  |
| 80            |                                         |                                                                          |                                                               |                                                    |                                     |                                              |                                           |                   |                  |                                  |          | FCC CI                          | -6dB      |  |
|               |                                         |                                                                          |                                                               |                                                    |                                     |                                              |                                           |                   |                  |                                  |          | FCC CLAS                        | S D AV    |  |
| 60            |                                         |                                                                          |                                                               |                                                    |                                     |                                              |                                           |                   |                  |                                  |          | FUELAS                          | -6dB      |  |
|               |                                         |                                                                          |                                                               |                                                    |                                     |                                              |                                           |                   |                  |                                  |          |                                 |           |  |
| 40            |                                         |                                                                          | -1                                                            |                                                    |                                     |                                              |                                           |                   |                  |                                  |          |                                 |           |  |
|               |                                         |                                                                          |                                                               |                                                    |                                     |                                              |                                           |                   |                  |                                  |          |                                 |           |  |
| 20            |                                         |                                                                          |                                                               |                                                    |                                     |                                              |                                           |                   |                  |                                  |          |                                 |           |  |
| 0             | 1000 4000. 600                          | ). 8000.100                                                              | 00                                                            | 14000.                                             | 1800                                | 0                                            | 22000.                                    | 2600              | 0                | 30000.                           | 3400     | 0                               | 40000     |  |
|               |                                         |                                                                          |                                                               |                                                    | F                                   | requency                                     | y (MHz)                                   |                   |                  |                                  |          |                                 |           |  |
|               |                                         |                                                                          |                                                               |                                                    |                                     |                                              |                                           |                   |                  |                                  |          |                                 |           |  |
|               |                                         |                                                                          |                                                               |                                                    |                                     |                                              |                                           |                   |                  |                                  |          |                                 |           |  |
|               |                                         |                                                                          |                                                               |                                                    |                                     |                                              |                                           |                   |                  |                                  |          |                                 |           |  |
|               | Freq Let                                | Limit<br>el Line                                                         | Over<br>Limit                                                 | Read<br>Level                                      | Cable/<br>Loss                      | Antenna<br>Factor                            | Preamp<br>Factor                          | T/Pos             | A/Pos            | Remark                           | Po       | l/Phase                         |           |  |
|               |                                         | Limit<br>el Line<br>7m dBuV/m                                            | Limi t                                                        | Read<br>Level<br>dBuV                              | Cable/<br>Loss<br>dB                | Factor                                       | Preamp<br>Factor<br>dB                    | T/Pos<br>deg      | A/Pos<br>        | Rema rk                          | Po       | l/Phase                         |           |  |
| 1<br>2        |                                         | el Line<br>7m dBuV/m                                                     | Limi t<br>dB                                                  | Level<br>dBuV                                      | Loss<br>dB                          | Factor                                       | Factor<br>dB                              |                   | Cm<br>157        | Remark<br>———<br>Peak<br>Average |          | l/Phase<br>RIZONTAL<br>RIZONTAL |           |  |
| 2             | MHz dBuy                                | el Line<br>/m dBuV/m<br>11 74.00<br>34 54.00                             | Limit<br>dB<br>-22.89<br>-15.66                               | Level<br>dBuV<br>40.93<br>28.15                    | Loss<br>dB<br>6.54<br>6.55          | Factor<br>dB/m<br>38.31<br>38.32             | Factor<br>dB<br>34.67<br>34.68            | deg<br>355<br>355 | Cm<br>157<br>157 | Peak<br>Average                  | HO<br>HO | R IZONTAL<br>R IZONTAL          | rmissible |  |
| 2<br>te 1:    | MHz dBuv<br>11541.44 51.<br>11555.80 38 | el Line<br>/m dBuV/m<br>11 74.00<br>34 54.00<br>e of spurie<br>need to b | Limit<br><u>dB</u><br>-22.89<br>-15.66<br>Dus emi<br>pe repor | Level<br>dBuV<br>40.93<br>28.15<br>issions<br>ted. | Loss<br>4B<br>6.54<br>6.55<br>which | Factor<br>dB/m<br>38.31<br>38.32<br>are atte | Factor<br>dB<br>34.67<br>34.68<br>enuated | deg<br>355<br>355 | Cm<br>157<br>157 | Peak<br>Average                  | HO<br>HO | R IZONTAL<br>R IZONTAL          | rmissible |  |

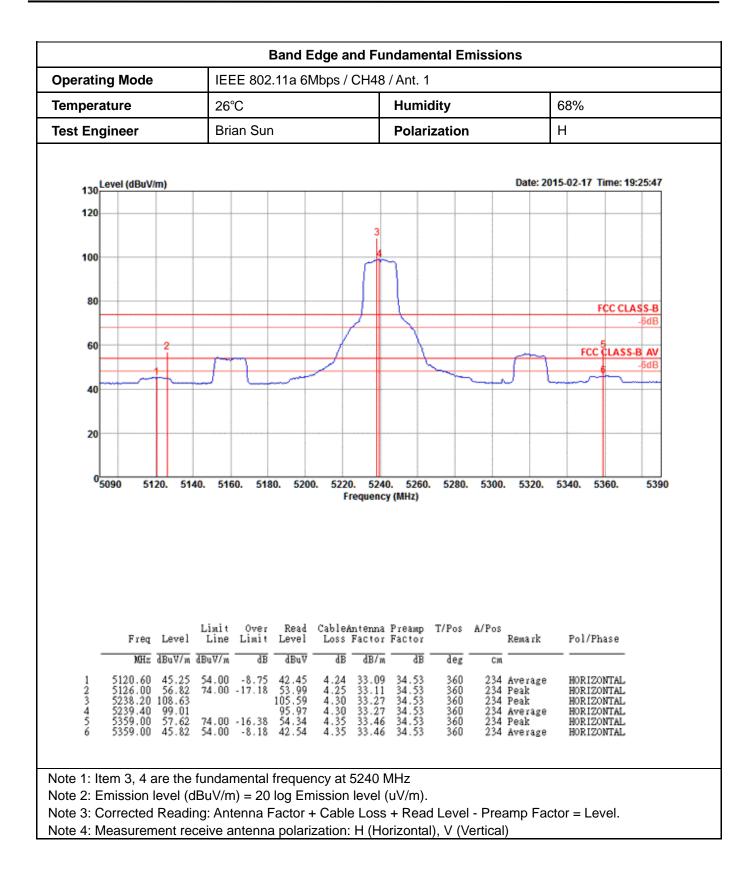


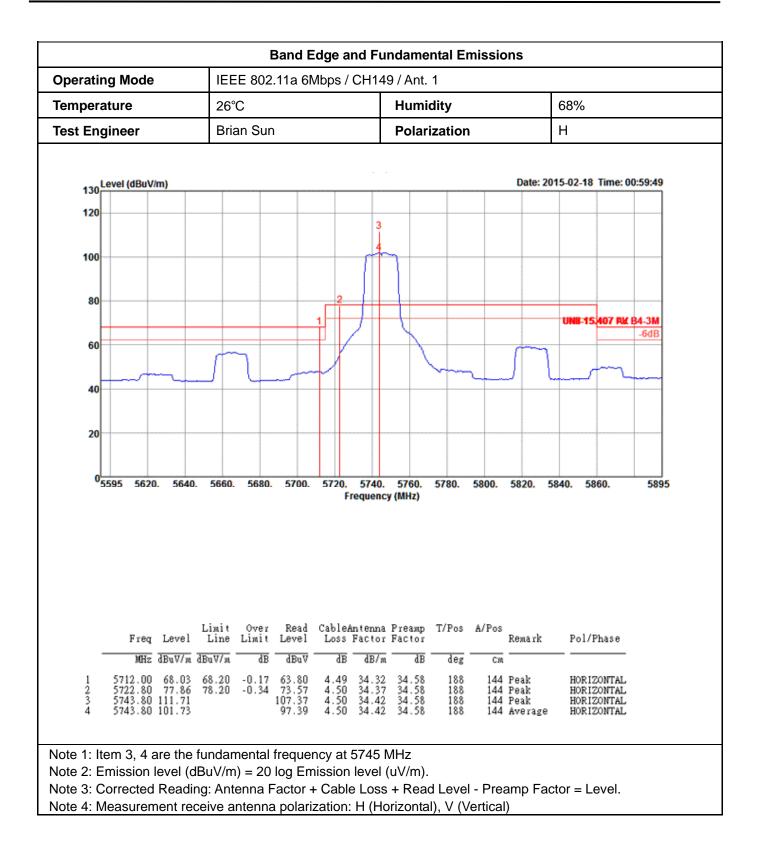


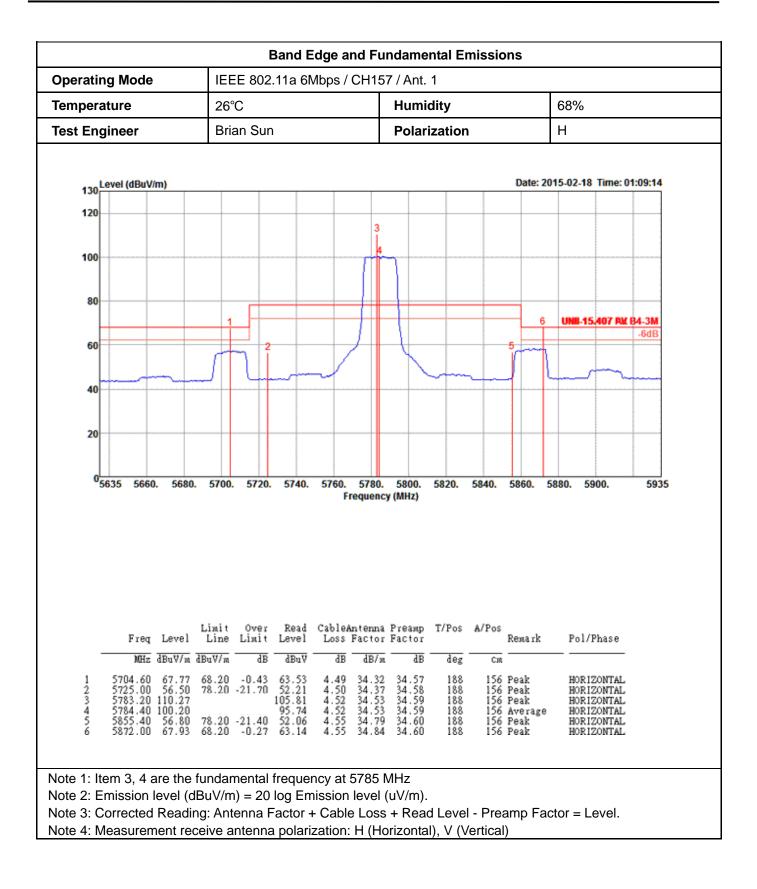


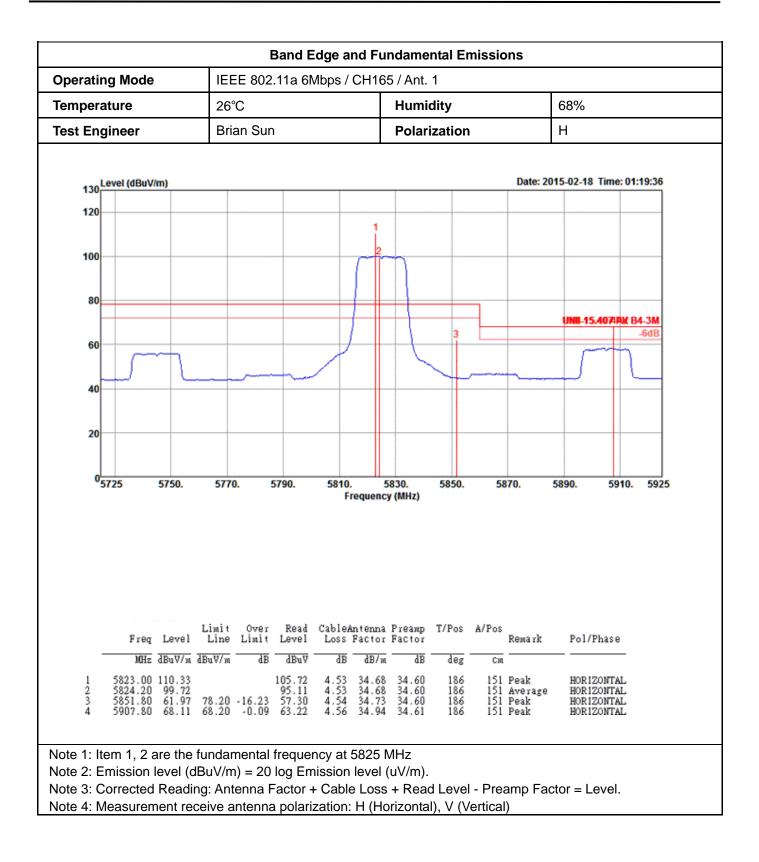


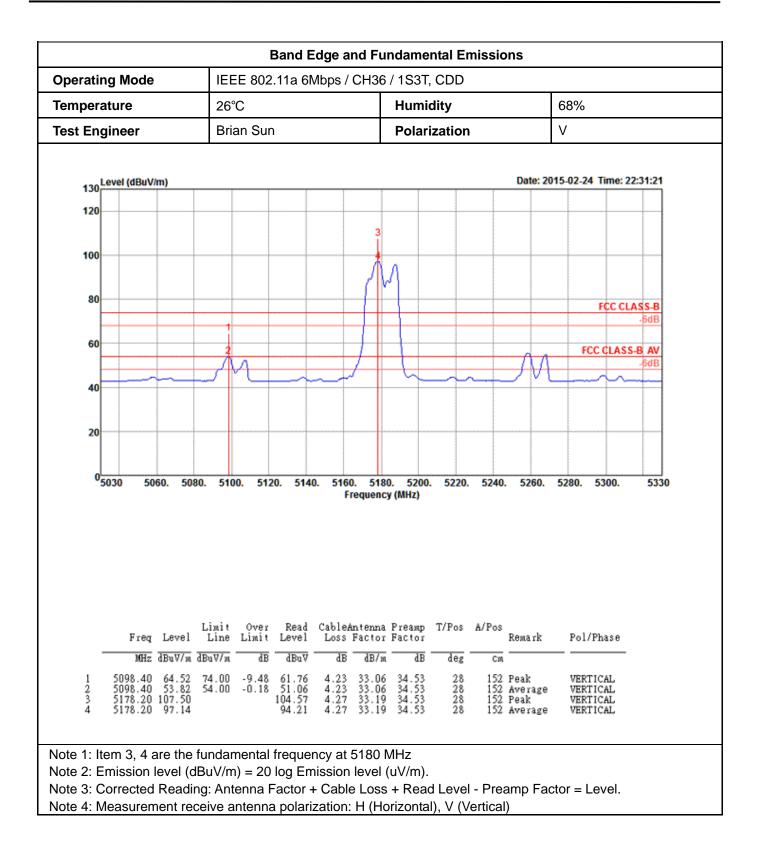





#### 3.5.11 Test Result of Band Edge and Fundamental Emissions


| Mode           | TX Antenna | Test Channel                | Modulation<br>Technology | Modulation<br>Type | Data Rate<br>(Mbps) |
|----------------|------------|-----------------------------|--------------------------|--------------------|---------------------|
| 802.11a        | Ant.1      | 36, 40, 48<br>149, 157, 165 | OFDM                     | BPSK               | 6                   |
| 802.11a        | 1S3T, CDD  | 36, 40, 48<br>149, 157, 165 | OFDM                     | BPSK               | 6                   |
| 802.11ac 20MHz | Ant.1      | 36, 40, 48<br>149, 157, 165 | OFDM                     | BPSK               | Nss1MCS0<br>(6.5)   |
| 802.11ac 20MHz | 1S3T, CDD  | 36, 40, 48<br>149, 157, 165 | OFDM                     | BPSK               | Nss1MCS0<br>(6.5)   |
| 802.11ac 20MHz | 1S3T, TXBF | 36, 40, 48<br>149, 157, 165 | OFDM                     | BPSK               | Nss1MCS0<br>(6.5)   |
| 802.11ac 40MHz | Ant.1      | 38, 46<br>151, 159          | OFDM                     | BPSK               | Nss1MCS0<br>(13.5)  |
| 802.11ac 40MHz | 1S3T, CDD  | 38, 46<br>151, 159          | OFDM                     | BPSK               | Nss1MCS0<br>(13.5)  |
| 802.11ac 40MHz | 1S3T, TXBF | 38, 46<br>151, 159          | OFDM                     | BPSK               | Nss1MCS0<br>(13.5)  |
| 802.11ac 80MHz | Ant.1      | 42<br>155                   | OFDM                     | BPSK               | Nss1MCS0<br>(29.5)  |
| 802.11ac 80MHz | 1S3T, CDD  | 42<br>155                   | OFDM                     | BPSK               | Nss1MCS0<br>(29.5)  |
| 802.11ac 80MHz | 1S3T, TXBF | 42<br>155                   | OFDM                     | BPSK               | Nss1MCS0<br>(29.5)  |

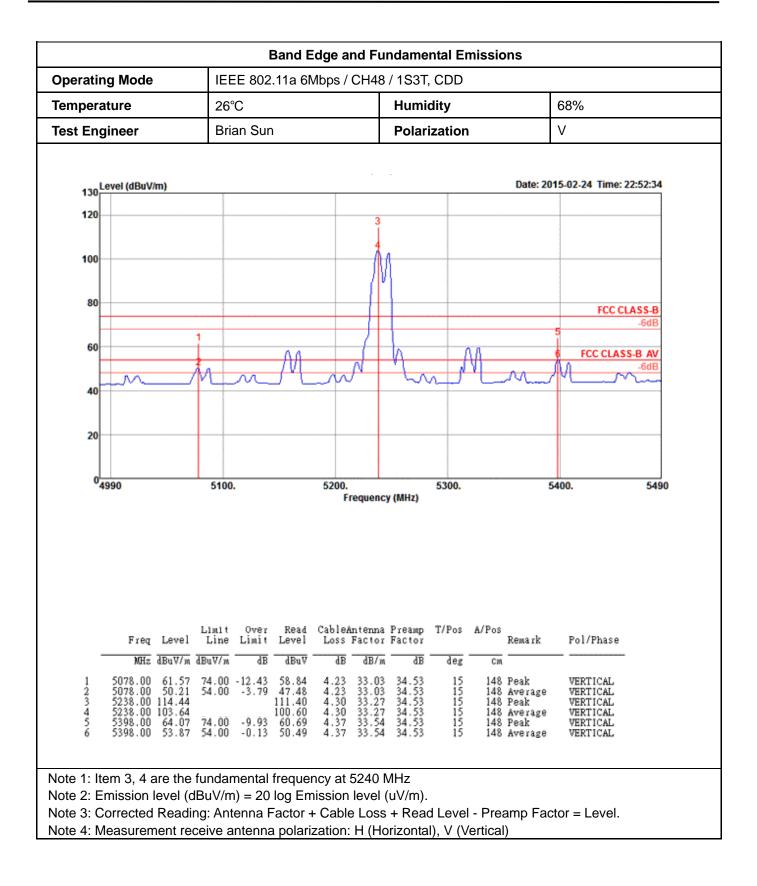

Following channel(s) was (were) selected for the final test as listed below.

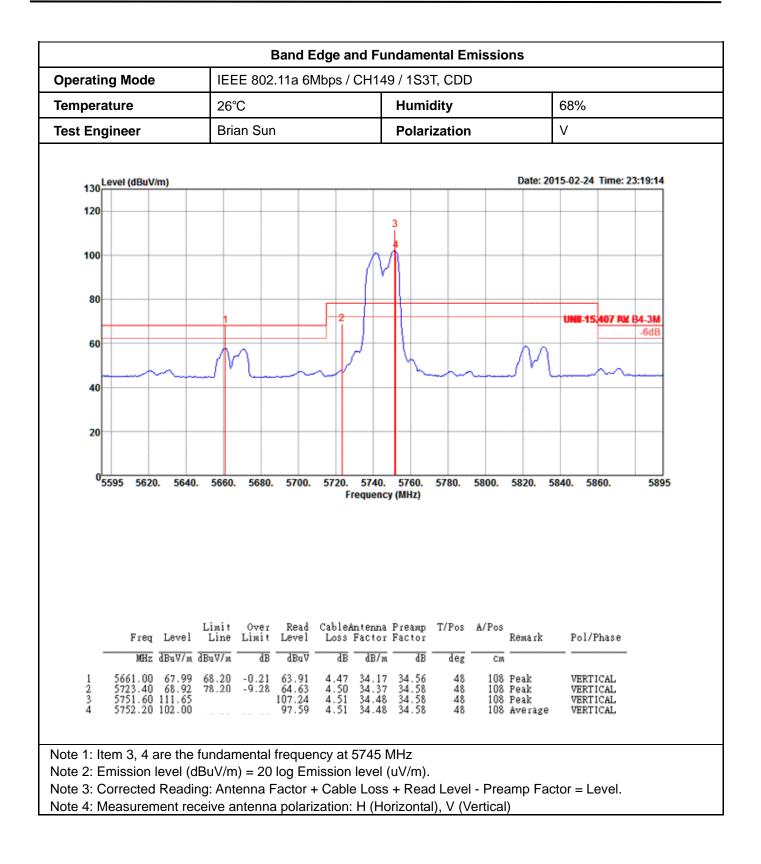


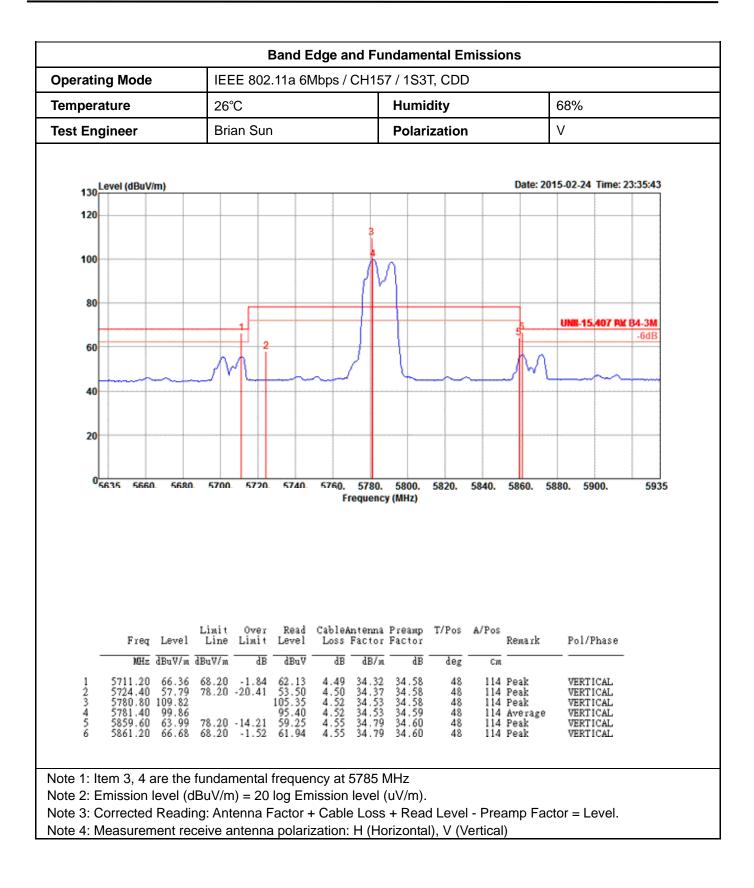



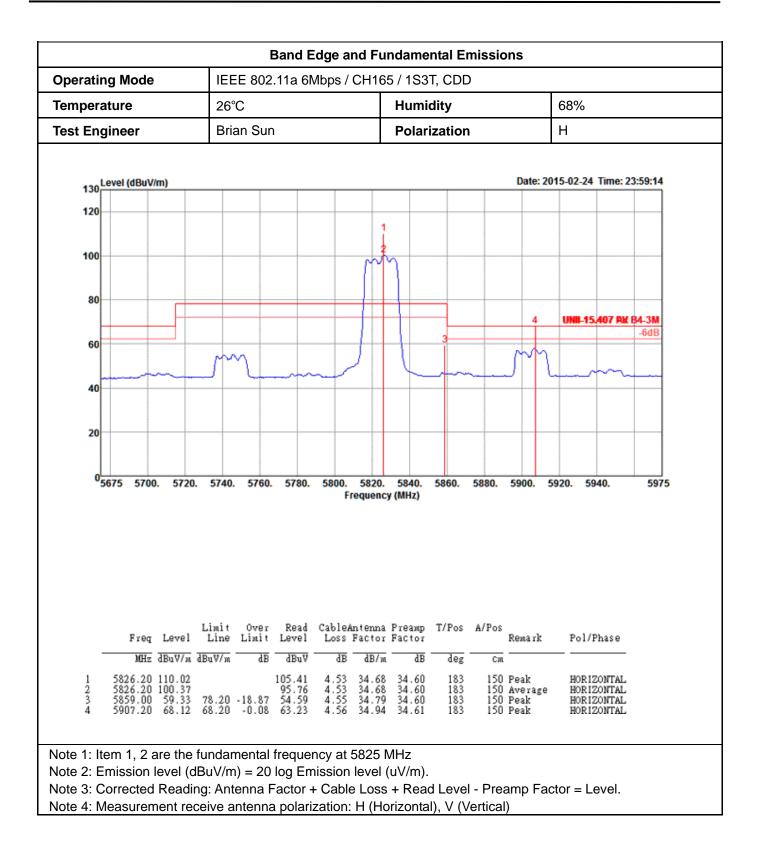


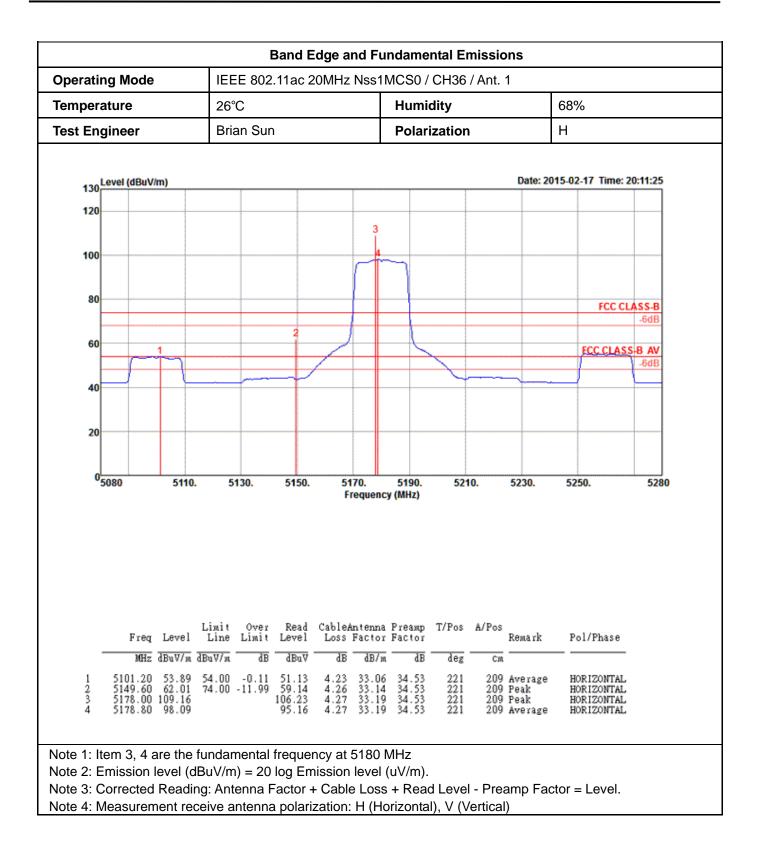


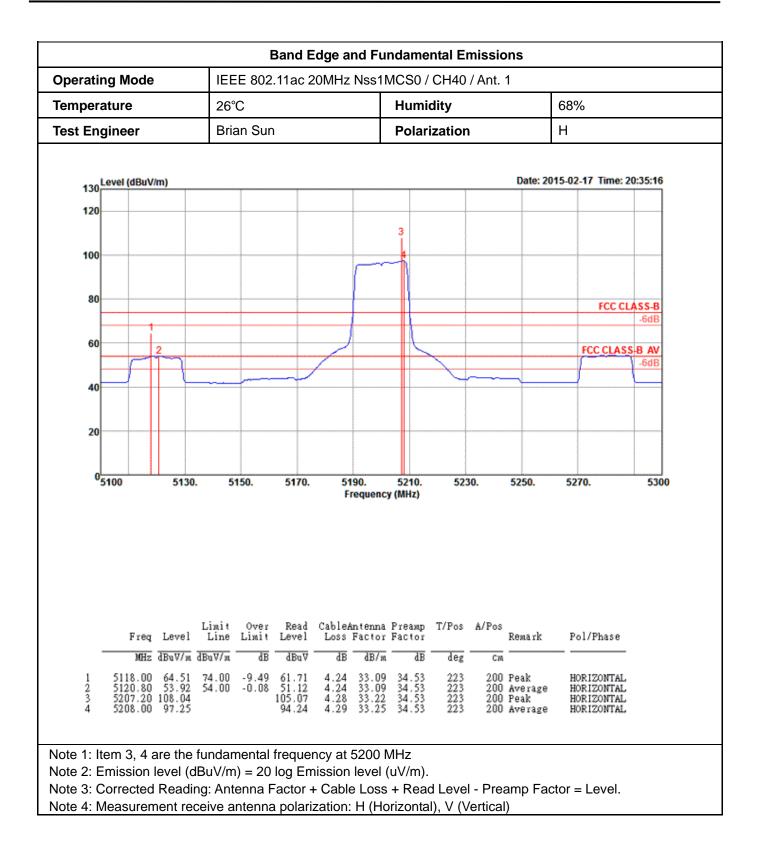



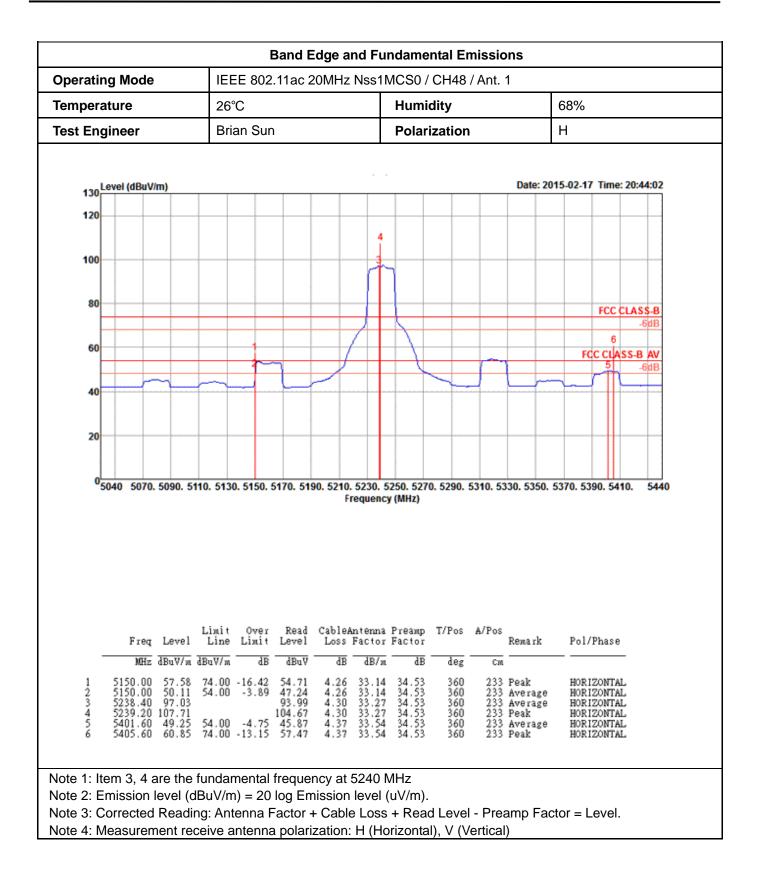



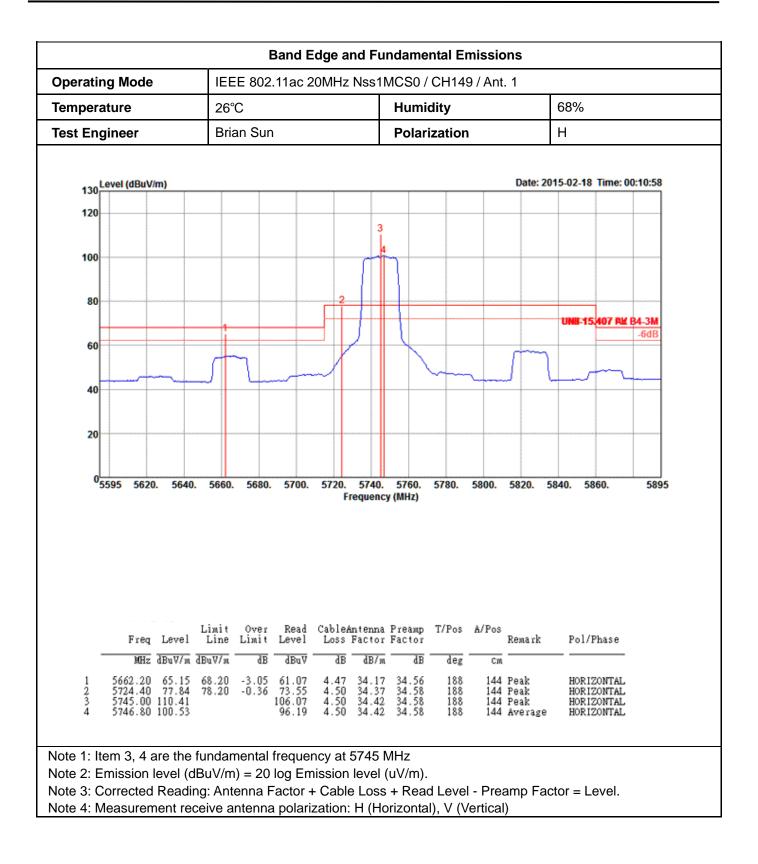



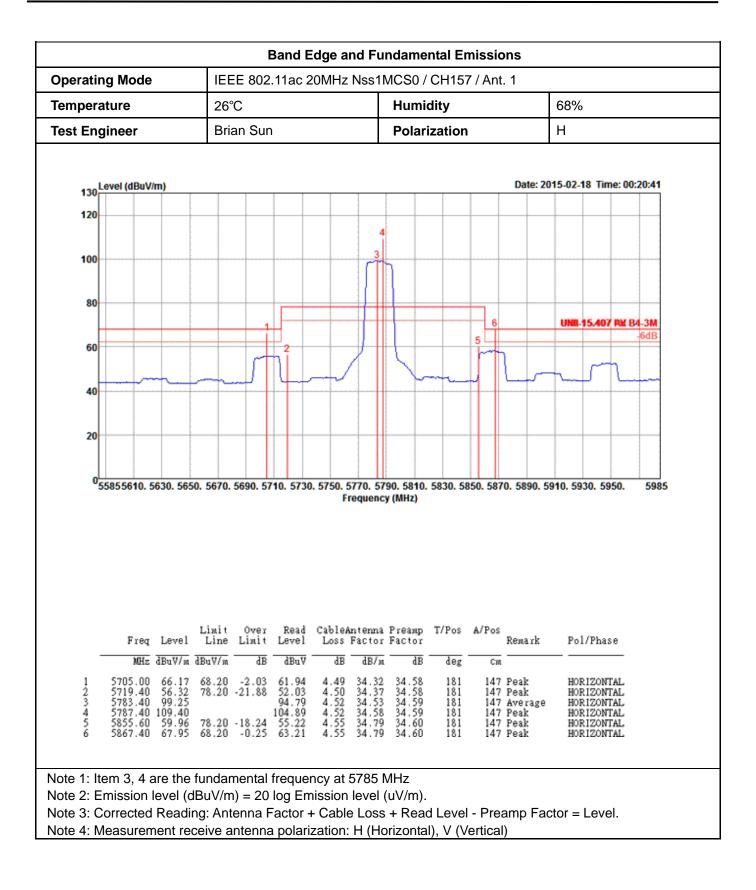


#### Report No.: FR510501AB

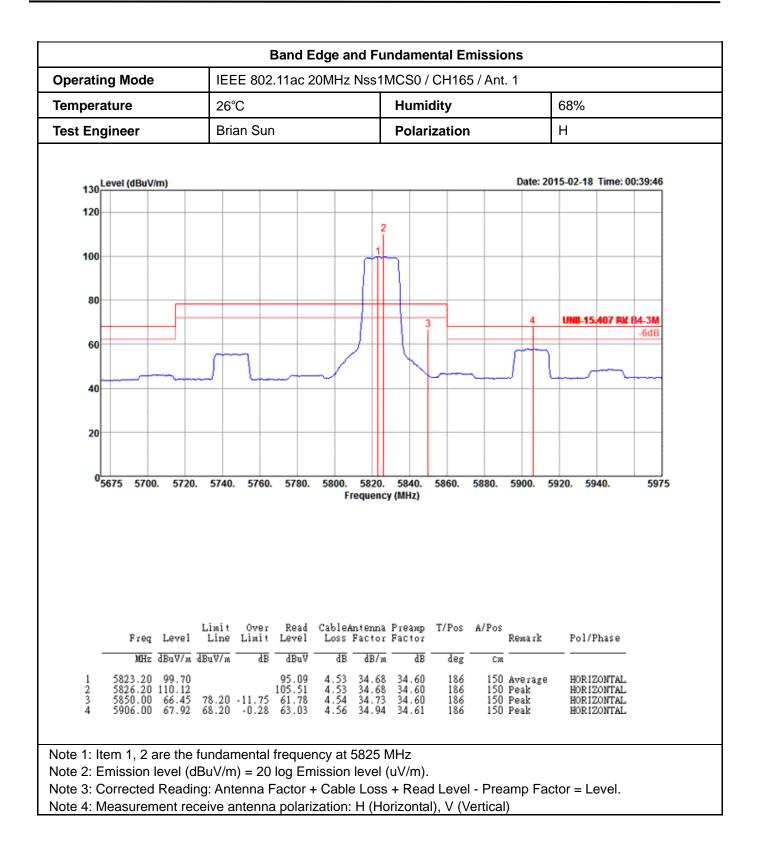

| perating                     | g Mode               |                |                  | IEEE           | 802.11          | la 6Mb       | ops / C           | H40 / 1        | S3T, C     | DD    |                 | <u>.</u>                                       |           |       |
|------------------------------|----------------------|----------------|------------------|----------------|-----------------|--------------|-------------------|----------------|------------|-------|-----------------|------------------------------------------------|-----------|-------|
| Temperature<br>Test Engineer |                      |                | 26℃<br>Brian Sun |                |                 |              | Hum               | idity          |            |       | e               | 68%                                            |           |       |
|                              |                      |                |                  |                |                 |              | Pola              | rizatio        | n          |       | ١               | J                                              |           |       |
|                              |                      |                |                  |                |                 |              |                   |                |            |       |                 |                                                | _         |       |
| 130                          | .evel (dBuV/m        | n)             |                  |                |                 |              |                   |                |            |       | Date: 20        | 15-02-24                                       | Time: 22: | 39:20 |
| 120                          |                      |                |                  |                |                 |              |                   | •              |            |       |                 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |           |       |
|                              |                      |                |                  |                |                 |              | 3                 |                |            |       |                 |                                                |           |       |
| 100                          |                      |                |                  |                |                 |              | D                 |                |            |       |                 |                                                |           |       |
|                              |                      |                |                  |                |                 |              | 11                |                |            |       |                 |                                                |           |       |
| 80                           |                      |                |                  |                |                 |              | -                 |                |            |       |                 |                                                | FCC CLA   |       |
| ŀ                            |                      |                |                  |                |                 |              |                   | _              |            |       |                 |                                                |           | -6dB  |
| 60                           |                      |                |                  |                |                 |              |                   |                |            |       | ~~              | FC                                             | C CLASS-  |       |
|                              |                      | ~              | JV               | h              | _               |              | $\checkmark$      | $\rightarrow$  | h          |       | JYL             |                                                |           | -6dB  |
| 40                           |                      |                |                  |                |                 |              |                   |                |            |       |                 |                                                |           |       |
|                              |                      |                |                  |                |                 |              |                   |                |            |       |                 |                                                |           |       |
| 20                           |                      |                |                  |                |                 |              |                   |                |            |       |                 |                                                |           |       |
|                              | 5050 508             |                |                  |                |                 |              |                   |                |            |       |                 |                                                |           |       |
|                              | Freq                 | Level          |                  | Over<br>Limit  | Read<br>Level   | Cable        | Antenna<br>Factor | Preamp         | T/Pos      | A/Pos | Remark          | Pol/J                                          | Phase     |       |
| -                            | MHz d                | BuV/m          | dBuV/m           | dB             | dBuV            | dB           | dB/m              | dB             | deg        | Cm    |                 |                                                |           |       |
| 1                            | 5122.00<br>5122.00   | 64.81<br>53.90 | 74.00<br>54.00   | -9.19<br>-0.10 | 62.01<br>51.10  | 4.24<br>4.24 | 33.09<br>33.09    | 34.53<br>34.53 | 286<br>286 |       | Peak<br>Average | VERT<br>VERT                                   |           |       |
| 234                          | 5202.40 1<br>5202.40 | 08.87          | 2.100            |                | 105.90<br>95.16 | 4.28<br>4.28 | 33.22<br>33.22    | 34.53<br>34.53 | 286<br>286 | 196   | Peak<br>Average | VERT                                           | ICAL      |       |
| á                            | 5202.40              | 98.13          | undam            | ental fr       | 95.16           |              |                   |                | 286        |       |                 |                                                |           |       |

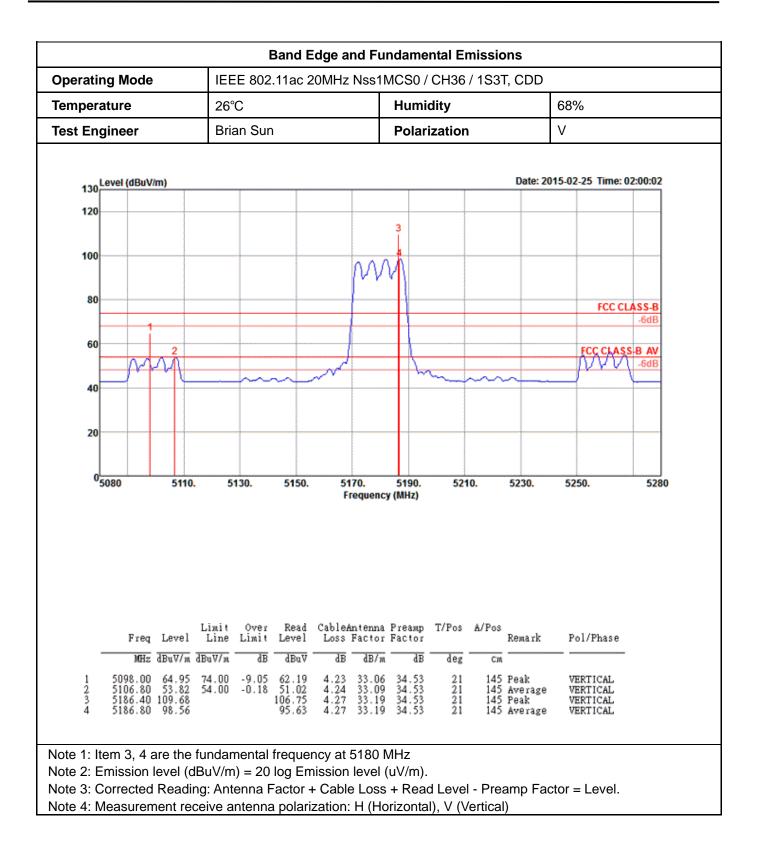


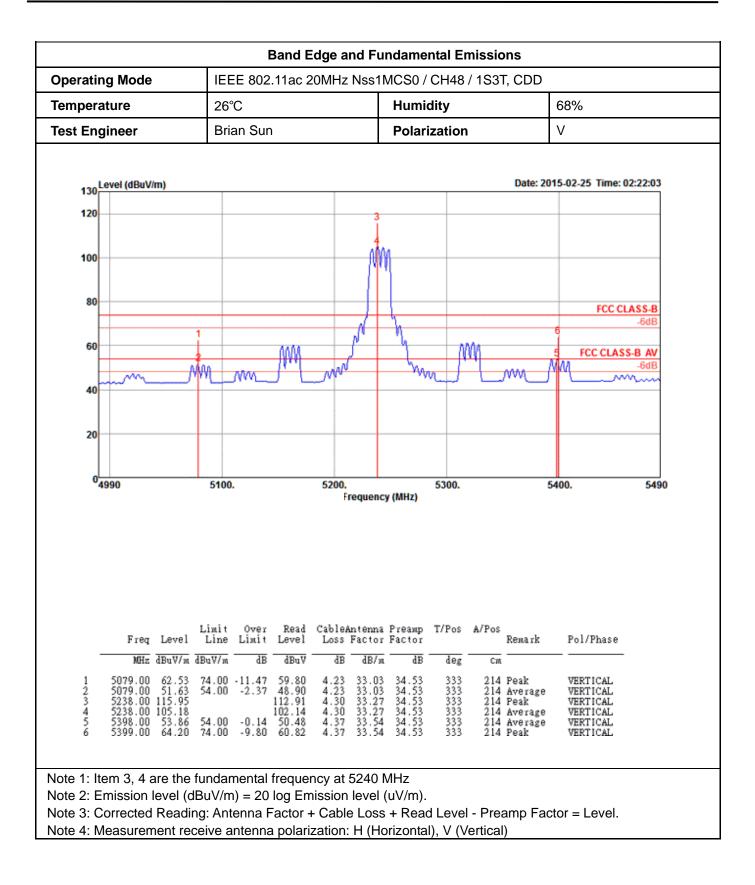



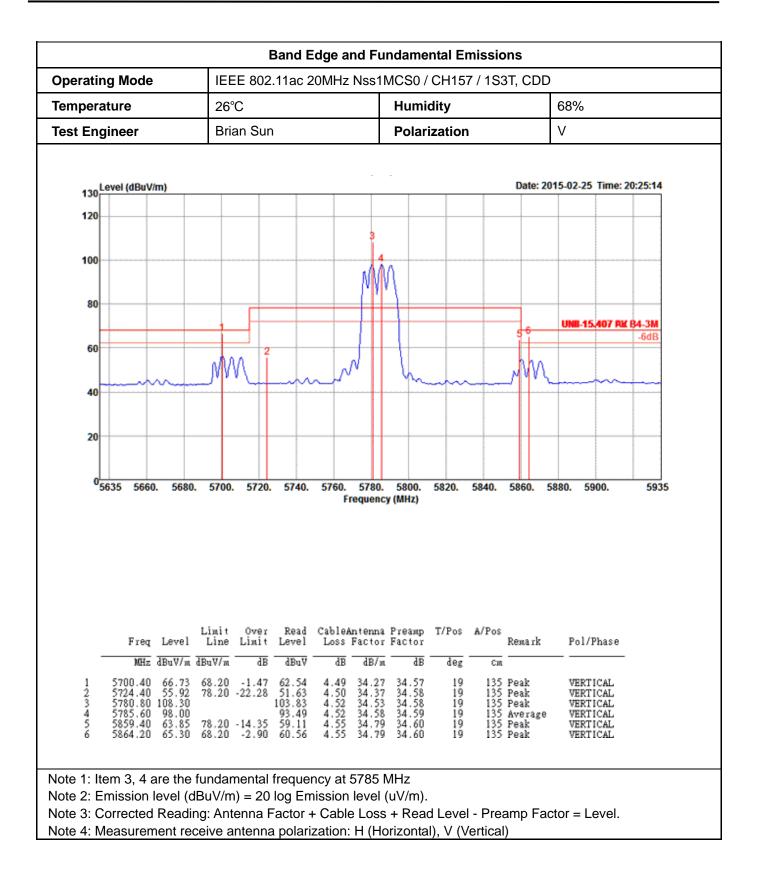



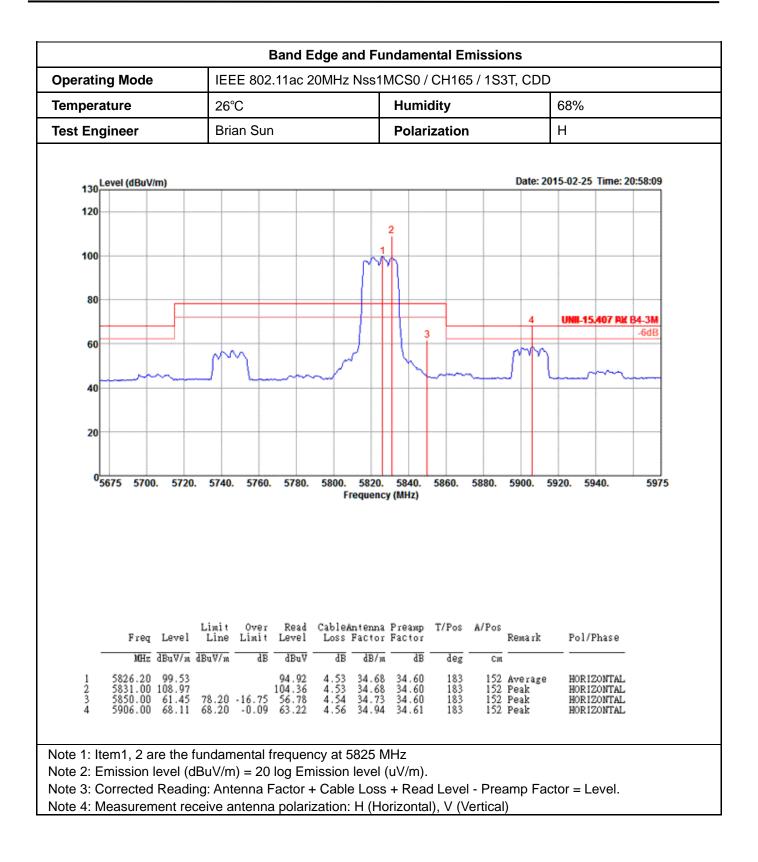



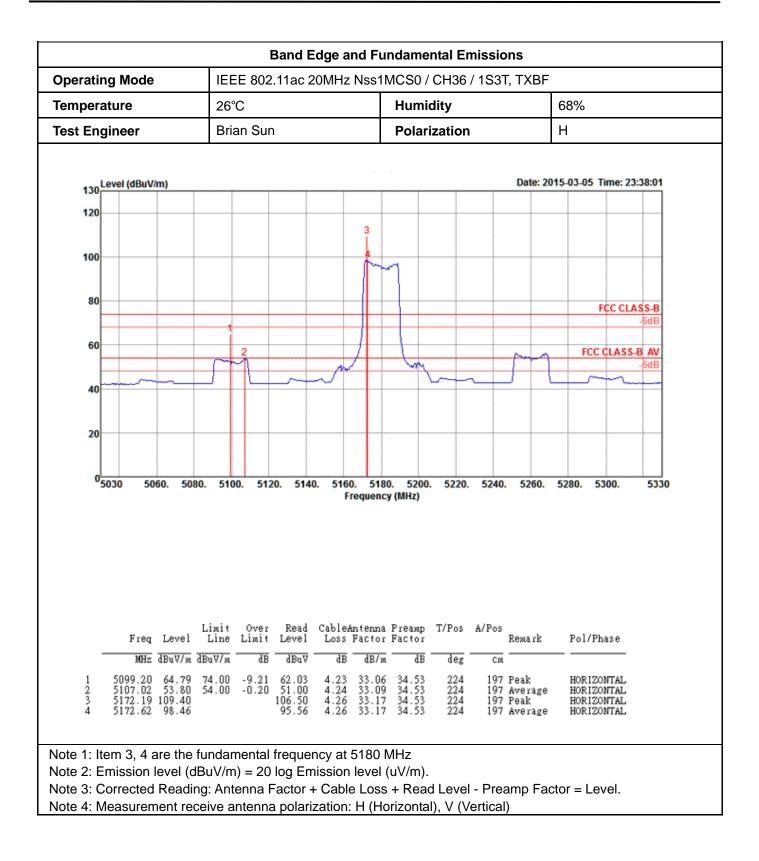






| perating Mode                                       | IEEE 802.11ac 20        | IEEE 802.11ac 20MHz Nss1MCS0 / CH40 / 1S3T, CDD |                                           |             |  |  |  |  |  |  |
|-----------------------------------------------------|-------------------------|-------------------------------------------------|-------------------------------------------|-------------|--|--|--|--|--|--|
| emperature                                          | 26°C                    | Humidity                                        | 68%                                       |             |  |  |  |  |  |  |
| est Engineer                                        | Brian Sun               | Polarizatio                                     | n V                                       |             |  |  |  |  |  |  |
| 130 Level (dBuV/m)                                  |                         |                                                 | Date: 2015-02-25 Time                     | e: 02:08:46 |  |  |  |  |  |  |
| 120                                                 |                         |                                                 |                                           |             |  |  |  |  |  |  |
|                                                     |                         | 3                                               |                                           |             |  |  |  |  |  |  |
| 100                                                 |                         |                                                 |                                           |             |  |  |  |  |  |  |
|                                                     |                         | [////\                                          |                                           |             |  |  |  |  |  |  |
| 80                                                  |                         |                                                 | FCC                                       | CLASS-B     |  |  |  |  |  |  |
|                                                     | 2                       |                                                 |                                           | -6dB        |  |  |  |  |  |  |
| 60                                                  | 1                       |                                                 | FCC CLA                                   | SS-B AV     |  |  |  |  |  |  |
| 40                                                  |                         | m hm                                            | n d''l min                                |             |  |  |  |  |  |  |
|                                                     |                         |                                                 |                                           |             |  |  |  |  |  |  |
| 20                                                  |                         |                                                 |                                           |             |  |  |  |  |  |  |
|                                                     |                         |                                                 |                                           |             |  |  |  |  |  |  |
| 05050 5080.                                         | 5100. 5120. 5140. 5160  |                                                 | 0. 5260. 5280. 5300. 5320.                | 5350        |  |  |  |  |  |  |
|                                                     |                         | Frequency (MHz)                                 |                                           |             |  |  |  |  |  |  |
|                                                     |                         |                                                 |                                           |             |  |  |  |  |  |  |
|                                                     |                         |                                                 |                                           |             |  |  |  |  |  |  |
|                                                     |                         |                                                 |                                           |             |  |  |  |  |  |  |
|                                                     |                         |                                                 |                                           |             |  |  |  |  |  |  |
| Freq Leve                                           |                         | CableAntenna Preamp T/Pos<br>Loss Factor Factor | A/Pos<br>Remark Pol/Phase                 | ,           |  |  |  |  |  |  |
| MHz dBuV                                            | /m dBuV/m dB dBuV -     | dB dB/m dB deg                                  | Cm                                        | _           |  |  |  |  |  |  |
| 1 5122.00 53.9<br>2 5126.80 64.9<br>3 5201.80 109.1 | 90 74.00 -9.10 62.07    | 4.24 33.09 34.53 25<br>4.25 33.11 34.53 25      | 142 Average VERTICAL<br>142 Peak VERTICAL |             |  |  |  |  |  |  |
| 3 5201.80 109.1<br>4 5201.80 98.3                   | 15 106.18<br>39 95.42   | 4.28 33.22 34.53 25<br>4.28 33.22 34.53 25      | 142 Peak VERTICAL<br>142 Average VERTICAL |             |  |  |  |  |  |  |
|                                                     |                         |                                                 |                                           |             |  |  |  |  |  |  |
|                                                     | ne fundamental frequen  | ncy at 5200 MHz                                 |                                           |             |  |  |  |  |  |  |
|                                                     | $(dBuV/m) = 20 \log Em$ | -                                               |                                           |             |  |  |  |  |  |  |

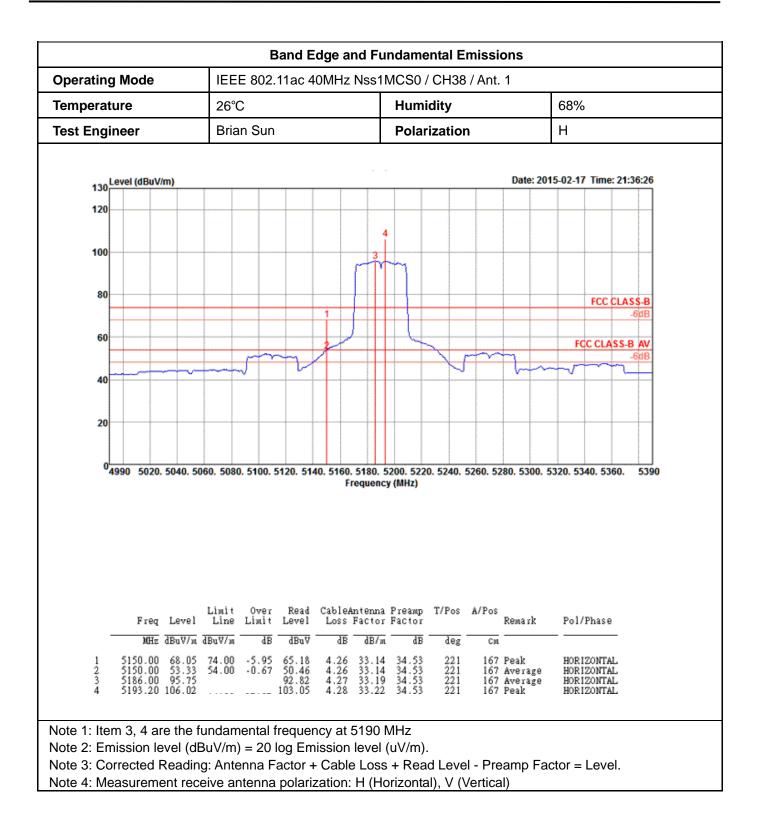


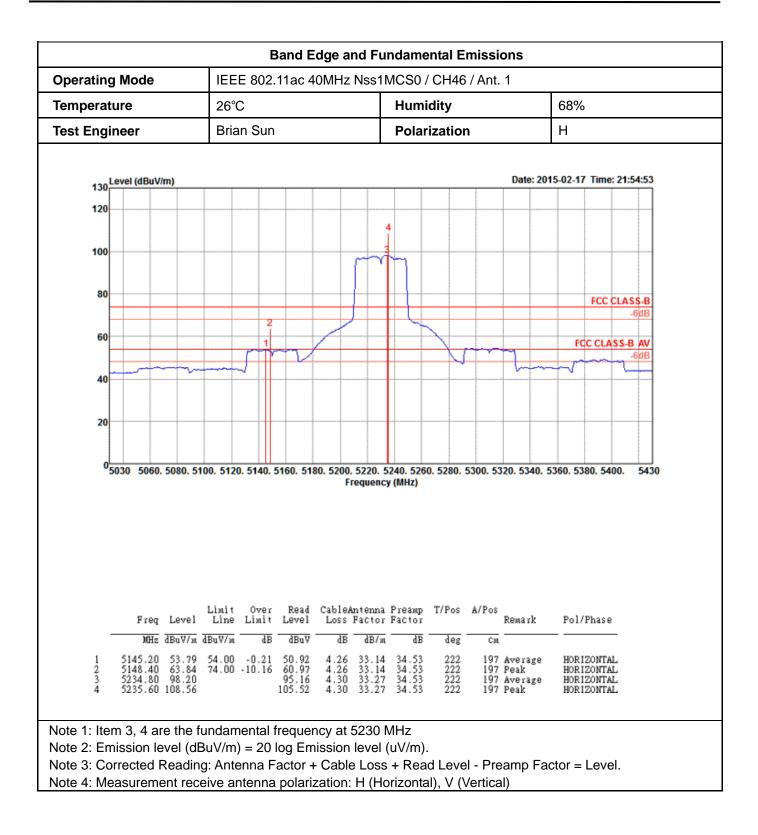
| perating Mode                                                              | IEEE 802.11ac 20MHz Nss1MCS0 / CH149 / 1S3T, CDD |                                                      |                                                                                       |                                                 |                                              |  |  |  |  |
|----------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------|--|--|--|--|
| mperature                                                                  | 26°C                                             |                                                      | Humidity                                                                              |                                                 | 68%                                          |  |  |  |  |
| st Engineer                                                                | Brian Sun                                        |                                                      | Polarization                                                                          |                                                 | V                                            |  |  |  |  |
| 130_Level (dBuV/m)                                                         |                                                  |                                                      |                                                                                       | Date: 20                                        | 15-02-25 Time: 20:13:31                      |  |  |  |  |
| 120                                                                        |                                                  |                                                      |                                                                                       |                                                 |                                              |  |  |  |  |
| 100                                                                        |                                                  | 3                                                    | Ĵ                                                                                     |                                                 |                                              |  |  |  |  |
| 100                                                                        |                                                  | NVV                                                  |                                                                                       |                                                 |                                              |  |  |  |  |
| 80                                                                         |                                                  | 2                                                    |                                                                                       |                                                 | UNII-15.407 PM B4-3M<br>-6dB                 |  |  |  |  |
| 60                                                                         |                                                  |                                                      |                                                                                       |                                                 |                                              |  |  |  |  |
|                                                                            |                                                  |                                                      | - m                                                                                   | ~~~~~                                           |                                              |  |  |  |  |
| 40                                                                         |                                                  |                                                      |                                                                                       |                                                 |                                              |  |  |  |  |
| 20                                                                         |                                                  |                                                      |                                                                                       |                                                 |                                              |  |  |  |  |
|                                                                            |                                                  |                                                      |                                                                                       |                                                 |                                              |  |  |  |  |
| <sup>0</sup> 5645 5670.                                                    | 5690. 5710.                                      | 5730. 57<br>Frequency                                | 750. 5770.<br>(MHz)                                                                   | 5790. 5                                         | 5810. 5830. 5845                             |  |  |  |  |
|                                                                            |                                                  |                                                      |                                                                                       |                                                 |                                              |  |  |  |  |
|                                                                            |                                                  |                                                      |                                                                                       |                                                 |                                              |  |  |  |  |
|                                                                            |                                                  |                                                      |                                                                                       |                                                 |                                              |  |  |  |  |
| Freq Level                                                                 | Limit Over Read C<br>Line Limit Level 1          | ableAntenna I<br>Loss Factor I                       | Preamp T/Pos<br>Factor                                                                | A/Pos<br>Remark                                 | Pol/Phase                                    |  |  |  |  |
| MHz dBuV/m                                                                 | dBuV/m dB dBuV −                                 | dB dB/m                                              | dB deg                                                                                | Cm                                              |                                              |  |  |  |  |
| 1 5665.40 68.11<br>2 5725.00 76.77<br>3 5745.80 101.80<br>4 5751.00 110.98 | 78.20 -1.43 72.48                                | 4.47 34.17<br>4.50 34.37<br>4.50 34.42<br>4.50 34.42 | 34.56   22     34.58   22     34.58   22     34.58   22     34.58   22     34.58   22 | 136 Peak<br>136 Peak<br>136 Average<br>136 Peak | VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL |  |  |  |  |
|                                                                            |                                                  |                                                      |                                                                                       |                                                 |                                              |  |  |  |  |
|                                                                            |                                                  |                                                      |                                                                                       |                                                 |                                              |  |  |  |  |



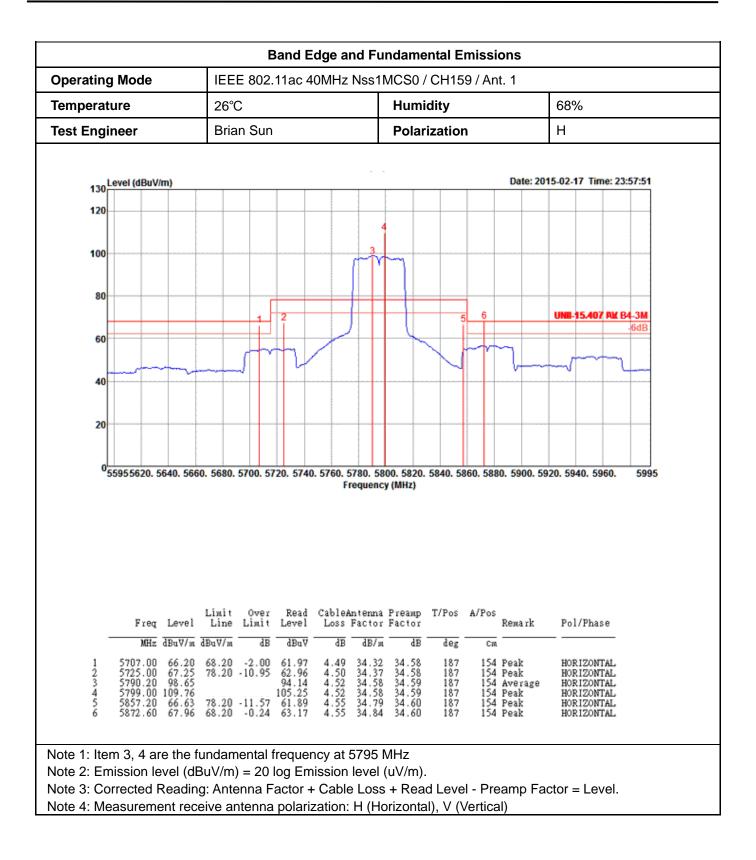


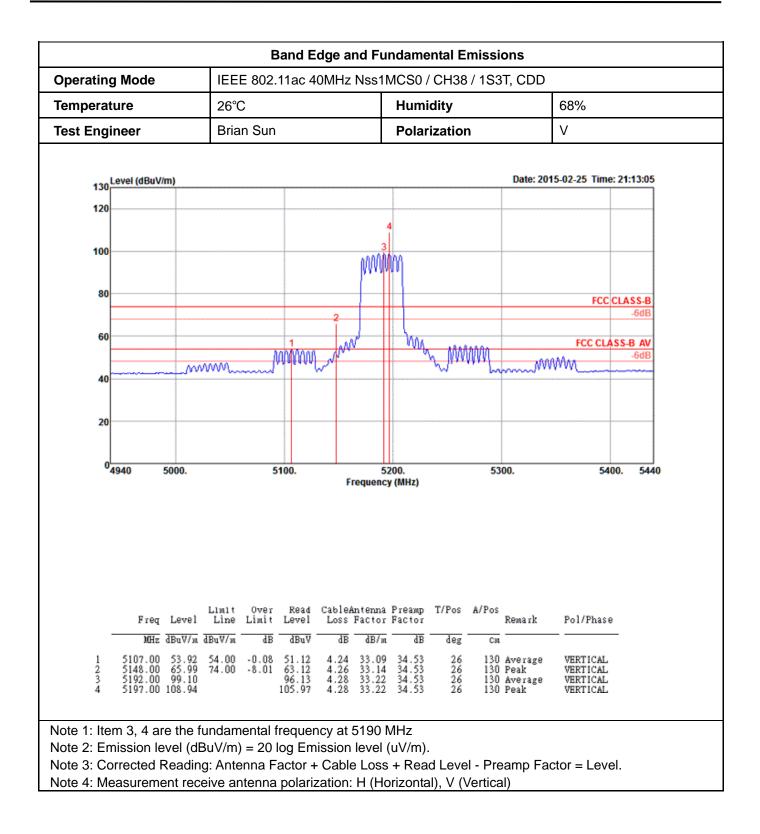


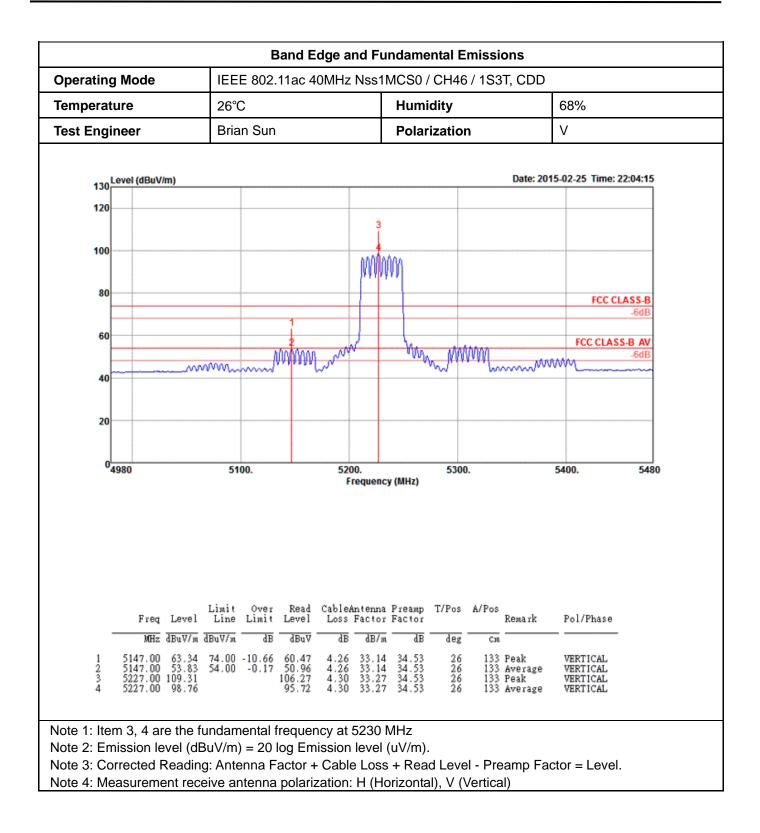

| perating Mode                                                                                           | IEEE 802.11ac 20MH                             | Hz Nss1MCS0 / CH40 / 1S3                                                                                                                                                          | T, TXBF                           |            |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------|
| emperature                                                                                              | 26°C                                           | Humidity                                                                                                                                                                          | 68%                               |            |
| est Engineer                                                                                            | Brian Sun                                      | Polarization                                                                                                                                                                      | V                                 |            |
|                                                                                                         |                                                |                                                                                                                                                                                   | Date: 2015-03-05 Time: 23:5       | 2.46       |
| 130 Level (dBuV/m)                                                                                      |                                                |                                                                                                                                                                                   | Date: 2013-03-03 Time: 23.3       | 2.10       |
| 120                                                                                                     |                                                | 4                                                                                                                                                                                 |                                   |            |
| 100                                                                                                     |                                                |                                                                                                                                                                                   |                                   |            |
|                                                                                                         |                                                |                                                                                                                                                                                   |                                   |            |
| 80                                                                                                      |                                                |                                                                                                                                                                                   | FCC CLAS                          | <b>6 B</b> |
|                                                                                                         |                                                |                                                                                                                                                                                   |                                   | 5dB        |
| 60                                                                                                      | 2                                              |                                                                                                                                                                                   | FCC CLASS-B                       | AV         |
|                                                                                                         |                                                | 2 Martin                                                                                                                                                                          |                                   | 6dB        |
| 40                                                                                                      |                                                |                                                                                                                                                                                   |                                   |            |
| 20                                                                                                      |                                                |                                                                                                                                                                                   |                                   |            |
|                                                                                                         |                                                |                                                                                                                                                                                   |                                   |            |
| 0 5050 5080.                                                                                            | 5100. 5120. 5140. 5160. 5                      | 180. 5200. 5220. 5240. 5260                                                                                                                                                       | . 5280. 5300. 5320.               | 5350       |
|                                                                                                         |                                                | Frequency (MHz)                                                                                                                                                                   |                                   |            |
|                                                                                                         |                                                |                                                                                                                                                                                   |                                   |            |
|                                                                                                         |                                                |                                                                                                                                                                                   |                                   |            |
|                                                                                                         |                                                |                                                                                                                                                                                   |                                   |            |
|                                                                                                         |                                                |                                                                                                                                                                                   |                                   |            |
|                                                                                                         |                                                |                                                                                                                                                                                   |                                   |            |
| Freq Lev                                                                                                |                                                | leAntenna Preamp T/Pos A/Pos<br>ss Factor Factor                                                                                                                                  | Remark Pol/Phase                  |            |
|                                                                                                         | el Line Limit Level Los<br>/m dBuV/m dB dBuV ( | ss Factor Factor<br>dB dB/m dB deg Cm                                                                                                                                             | Remark Pol/Phase                  |            |
| MHz dBuV                                                                                                | el Line Limit Level Los<br>/m dBuV/m dB dBuV ( | ss Factor Factor<br>dB dB/m dB deg Cm                                                                                                                                             | Remark Pol/Phase                  |            |
| MHz dBuV<br>1 5127.86 63.                                                                               | el Line Limit Level Los<br>/m dBuV/m dB dBuV ( | ss Factor Factor<br>dB dB/m dB deg cm<br>25 33.11 34.53 22 148<br>25 33.11 34.53 22 148<br>29 33.25 34.53 22 148                                                                  | Remark Pol/Phase                  |            |
| MHz dBuV<br>1 5127.86 63.<br>2 5127.86 53.<br>3 5207.81 99.                                             | el Line Limit Level Los<br>/m dBuV/m dB dBuV ( | ss Factor Factor<br>dB dB/m dB deg Cm                                                                                                                                             | Peak VERTICAL<br>Average VERTICAL |            |
| MHz dBuV<br>1 5127.86 63.<br>2 5127.86 53.<br>3 5207.81 99.<br>4 5208.25 108.<br>te 1: Item 3, 4 are th | el Line Limit Level Los<br>/m dBuV/m dB dBuV ( | ss Factor Factor<br>dB dB/m dB deg cm<br>25 33.11 34.53 22 148<br>25 33.11 34.53 22 148<br>29 33.25 34.53 22 148<br>29 33.25 34.53 22 148<br>29 33.25 34.53 22 148<br>at 5200 MHz | Peak VERTICAL<br>Average VERTICAL |            |

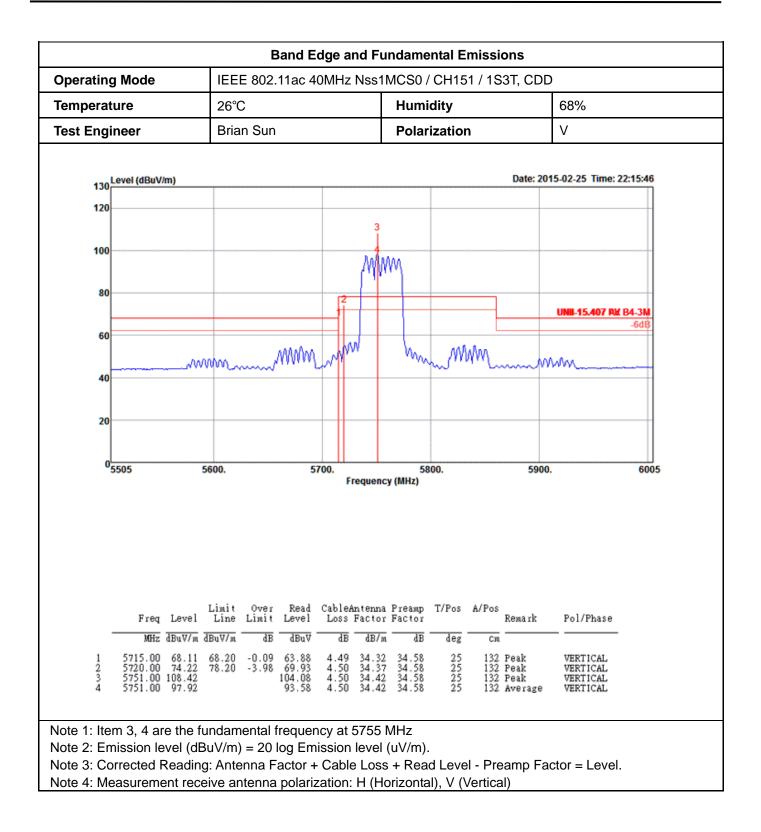

|                    | IEEE 802.11                     | ac 20MHz Nss1                                                      | MCS0 / CH48                      | 3 / 1S3T, TXBF |                        |
|--------------------|---------------------------------|--------------------------------------------------------------------|----------------------------------|----------------|------------------------|
| mperature          | 26°C                            |                                                                    | Humidity                         |                | 68%                    |
| st Engineer        | Brian Sun                       |                                                                    | Polarizatio                      | n              | V                      |
| 130 Level (dBuV/m) |                                 |                                                                    | 4                                | Date: 201      | 5-03-06 Time: 00:05:   |
| 100                |                                 | ~                                                                  | 3                                |                |                        |
| 80                 |                                 |                                                                    |                                  |                | FCC CLASS-             |
| 60                 | 1                               | ~ /                                                                |                                  | 1              | -6d<br>5 FCC CLASS-B A |
| 40                 |                                 |                                                                    |                                  |                | -6d                    |
|                    |                                 |                                                                    |                                  |                |                        |
| 20                 |                                 |                                                                    |                                  |                |                        |
| 20<br>00<br>0      | 5100.                           | 5200.<br>Frequenc                                                  | 5300.<br>:y (MHz)                | 54             | 400. 5                 |
| 04990              | Limit Över                      |                                                                    | <b>y(MHz)</b><br>.Preamp T/Pos   | A/Pos          | 100. 5<br>Pol/Phase    |
| 0<br>0<br>Freq La  | Limit Over<br>evel Line Limit L | Frequence<br>Read CableAntenna<br>evel Loss Factor<br>dBuV dB dB/m | Preamp T/Pos<br>Factor<br>dB deg | A/Pos          |                        |

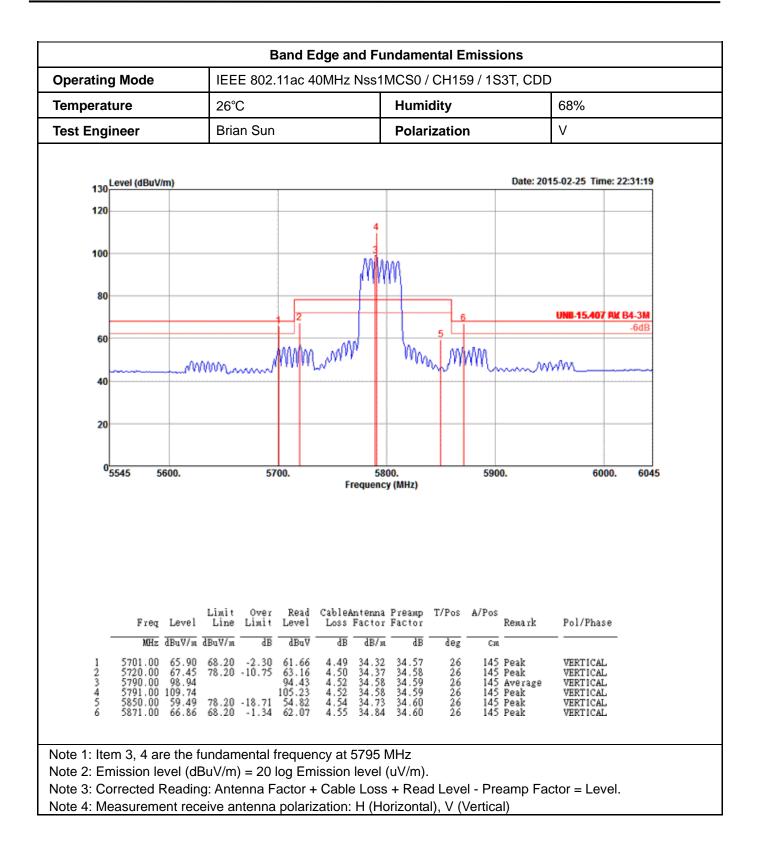
|                                                    | IEEE 802.11ac 20MHz Nss | 31MCS0 / CH149 / 1S3T, T                  | XBF                       |
|----------------------------------------------------|-------------------------|-------------------------------------------|---------------------------|
| emperature                                         | 26°C                    | Humidity                                  | 68%                       |
| est Engineer                                       | Brian Sun               | Polarization                              | н                         |
| 130 Level (dBuV/m)<br>120<br>100<br>80<br>60<br>40 |                         | Date                                      | 2015-03-06 Time: 00:24:40 |
| 20<br>0 <u>5595 5620. 564</u>                      |                         | 40. 5760. 5780. 5800. 5820.<br>2ncy (MHz) | 5840. 5860. 5895          |
|                                                    |                         |                                           |                           |
| Freq Leve                                          |                         |                                           | k Pol/Phase               |

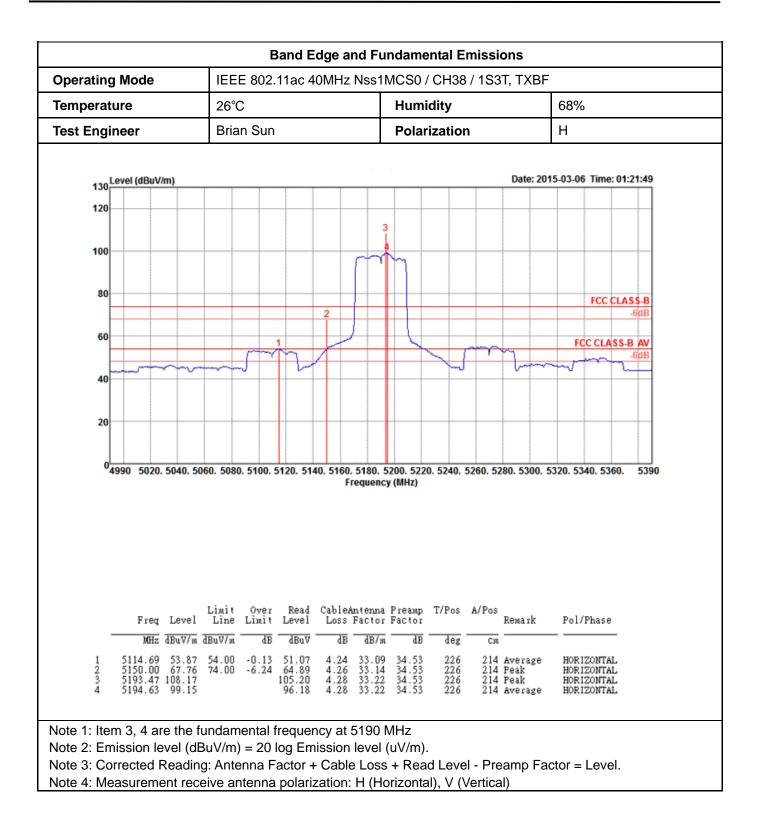

| rating Mode                                                                      | IEE                                                               | E 802.′                          | 11ac 2                                                     | 0MHz                 | Nss1                               | MCS0                                                       | / CH15       | 57/18     | ЗТ, ТХВ                | F                       |         |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------|------------------------------------------------------------|----------------------|------------------------------------|------------------------------------------------------------|--------------|-----------|------------------------|-------------------------|---------|
| perature                                                                         | 26°(                                                              | С                                |                                                            |                      |                                    | Humi                                                       | idity        |           |                        | 68%                     |         |
| Engineer                                                                         | Bria                                                              | ın Sun                           |                                                            |                      |                                    | Polar                                                      | rizatio      | n         |                        | Н                       |         |
|                                                                                  |                                                                   |                                  |                                                            |                      |                                    |                                                            |              |           |                        |                         |         |
| 130 Level (dBuV/m)                                                               |                                                                   |                                  |                                                            | -                    |                                    | [                                                          |              |           | Date: 20               | 15-03-06 Time: 0        | 0:40:11 |
| 120                                                                              |                                                                   |                                  |                                                            |                      |                                    | 4                                                          |              | _         |                        |                         |         |
|                                                                                  |                                                                   |                                  |                                                            |                      |                                    | 3                                                          |              |           |                        |                         |         |
| 100                                                                              |                                                                   |                                  |                                                            |                      | 1 m                                | 1                                                          |              |           |                        |                         |         |
| 80                                                                               |                                                                   |                                  |                                                            |                      |                                    |                                                            |              |           |                        |                         |         |
|                                                                                  | 1                                                                 |                                  |                                                            |                      |                                    |                                                            |              |           | 56                     | UNII-15,407 PM          | B4-3M   |
| 60                                                                               |                                                                   | 2                                |                                                            |                      | $\downarrow \downarrow$            |                                                            |              |           | m                      |                         | -6dB    |
|                                                                                  | $\square$                                                         | 71                               |                                                            | ~/~                  |                                    | $\mathbb{N}$                                               |              | ~         | ]][ \                  |                         |         |
| 40                                                                               |                                                                   |                                  |                                                            |                      |                                    |                                                            |              |           |                        |                         |         |
|                                                                                  |                                                                   |                                  |                                                            |                      |                                    |                                                            |              |           |                        |                         |         |
|                                                                                  |                                                                   |                                  |                                                            |                      |                                    |                                                            |              |           |                        |                         |         |
| 20                                                                               |                                                                   |                                  |                                                            |                      |                                    |                                                            |              |           |                        |                         |         |
| 0                                                                                |                                                                   |                                  |                                                            |                      |                                    |                                                            |              |           |                        |                         |         |
| 20<br>0<br>5635 5660. 56                                                         | 80. 5700.                                                         | 5720.                            | 5740.                                                      | 5760.<br>F           | 5780.<br>requenc                   |                                                            | 5820.        | 5840.     | 5860. 5                | 880. 5900.              | 5935    |
| 0                                                                                | 80. 5700.                                                         | 5720.                            | 5740.                                                      |                      |                                    |                                                            | 5820.        | 5840.     | 5860. 5                | 880. 5900.              | 5935    |
|                                                                                  | 80. 5700.                                                         | 5720.                            | 5740.                                                      |                      |                                    |                                                            | 5820.        | 5840.     | 5860. 5                | 880. 5900.              | 5935    |
|                                                                                  | 80. 5700.                                                         | . 5720.                          | 5740.                                                      |                      |                                    |                                                            | 5820.        | 5840.     | 5860. 5                | 880. 5900.              | 5935    |
| 0                                                                                | 80. 5700.                                                         | . 5720.                          | 5740.                                                      |                      |                                    |                                                            | 5820.        | 5840.     | 5860. 5                | 880. 5900.              | 5935    |
| 0                                                                                |                                                                   |                                  |                                                            | F                    | requenc                            | y (MHz)                                                    |              |           |                        | 880. 5900.              | 5935    |
| 0 <mark>5635 5660. 56</mark>                                                     | Limit<br>1 Line                                                   | Over<br>Limit                    | Read<br>Level                                              | F<br>Cable#<br>Loss  | intenna<br>Factor                  | <b>у (МН2)</b><br>Preamp<br>Factor                         | T/Pos        |           |                        | 880. 5900.<br>Pol/Phase | 5935    |
| 0<br>5635 5660. 56<br>Freq Leve<br>MHz dBuV/                                     | Limit<br>1 Line<br>m dBuV/m                                       | Over<br>Limit<br>dB              | Read<br>Level<br>dBuV                                      | Cable#<br>Loss<br>dB | ntenna<br>Factor<br>dB/m           | y(MHz)<br>Preamp<br>Factor<br>dB                           | T/Pos<br>deg | A/Pos     | Remark                 | Pol/Phase               | 5935    |
| 0<br>5635 5660. 56<br>Freq Leve<br>MHz dBuV/<br>1 5701.98 67.3<br>2 5721.09 58.2 | Limit<br>1 Line<br>m dBuV/m<br>9 68.20<br>9 78.20                 | Over<br>Limit                    | Read<br>Level<br>dBuV<br>63.15<br>54.00                    | Cable#<br>Loss<br>dB | antenna<br>Factor<br>dB/m<br>34 32 | Preamp<br>Factor<br>dB<br>34.57<br>34.58                   | T/Pos<br>    | A/Pos<br> | Remark<br>Peak<br>Peak | Pol/Phase<br>           | 5935    |
| 0<br>5635 5660. 56<br>Freq Leve<br>MHz dBuV/<br>1 5701.98 67.3                   | Limit<br>1 Line<br>m dBuV/m<br>9 68.20<br>9 78.20<br>1<br>2 78.20 | Over<br>Limit<br>-0.81<br>-19.91 | Read<br>Level<br>dBuV<br>63.15<br>54.00<br>97.10<br>107.10 | Cable#<br>Loss<br>dB | antenna<br>Factor<br>dB/m<br>34 32 | Preamp<br>Factor<br>dB<br>34.57<br>34.58<br>34.59<br>34.59 | T/Pos<br>    | A/Pos<br> | Remark<br>Peak         | Pol/Phase<br>HORIZONTAL | 5935    |


| rating Mode                  | IEEE 802.11ac 20MHz N                                                      | ss1MCS0 / CH165 / 1S3                                       | Γ, TXBF                                               |
|------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|
| perature                     | 26°C                                                                       | Humidity                                                    | 68%                                                   |
| Engineer                     | Brian Sun                                                                  | Polarization                                                | Н                                                     |
|                              |                                                                            |                                                             |                                                       |
| 130 Level (dBuV/m)           |                                                                            |                                                             | Date: 2015-03-06 Time: 00:49:03                       |
| 120                          |                                                                            | 2                                                           |                                                       |
| 100                          |                                                                            |                                                             |                                                       |
| 100                          |                                                                            |                                                             |                                                       |
| 80                           |                                                                            |                                                             |                                                       |
|                              |                                                                            | 3                                                           | 4 UNII-15,407 PM 84-3M<br>-6dB                        |
| 60                           | m                                                                          |                                                             |                                                       |
| 40                           |                                                                            | harman                                                      | Landrad                                               |
|                              |                                                                            |                                                             |                                                       |
| 20                           |                                                                            |                                                             |                                                       |
|                              |                                                                            |                                                             |                                                       |
| <sup>0</sup> 5675 5700. 5720 | 0. 5740. 5760. 5780. 5800. 5                                               |                                                             | 900. 5920. 5940. 597                                  |
|                              | Freq                                                                       | uency (MHz)                                                 |                                                       |
|                              | Limit Over Read CableAnt                                                   | enna Preamp T/Pos A/Pos                                     |                                                       |
| Freq Level                   | Limit Over Read CableAnt<br>Line Limit Level Loss Fa                       | enna Preamp T/Pos A/Pos<br>Ctor Factor Re                   | mark Pol/Phase                                        |
| Freq Level<br>               | Limit Over Read CableAnt<br>Line Limit Level Loss Fau<br>dBuV/m dB dBuV dB | enna Preamp T/Pos A/Pos<br>ctor Factor Re<br>dB/m dB deg Cm | verage HORIZONTAL                                     |
| Freq Level<br>               | Limit Over Read CableAnt<br>Line Limit Level Loss Fa<br>dBuV/m dB dBuV dB  | enna Preamp T/Pos A/Pos<br>Ctor Factor Re<br>dB/m dB deg Cm | verage HORIZONTAL<br>Pak HORIZONTAL<br>Pak HORIZONTAL |





|                    | IEEE 802.11ac 40MHz I                                  | Nss1MCS0 / CH151 / Ant. 1    | 1                               |
|--------------------|--------------------------------------------------------|------------------------------|---------------------------------|
| mperature          | 26°C                                                   | Humidity                     | 68%                             |
| st Engineer        | Brian Sun                                              | Polarization                 | Н                               |
|                    |                                                        |                              |                                 |
| 130 Level (dBuV/m) |                                                        |                              | Date: 2015-02-17 Time: 23:37:49 |
| 120                |                                                        |                              |                                 |
| 100                |                                                        | 3                            |                                 |
|                    |                                                        |                              |                                 |
| 80                 | 2                                                      |                              |                                 |
| 60                 |                                                        |                              | UNII-15.407 AV B4-3M<br>-6dB    |
|                    |                                                        |                              |                                 |
| 40                 |                                                        |                              |                                 |
|                    |                                                        |                              |                                 |
| 20                 |                                                        |                              |                                 |
| 0                  | 0. 5620. 5640. 5660. 5680. 5700. 5720. 57              | 740 5760 5700 5000 5020 5040 | 5860, 5880, 5900, 5920, 5955    |
|                    |                                                        |                              |                                 |
| Freq L             | evel Line Limit Level Loss F                           |                              | mark Pol/Phase                  |
| MHz dB             | evel Line Limit Level Loss F<br>uV/m dBuV/m dB dBuV dB |                              |                                 |



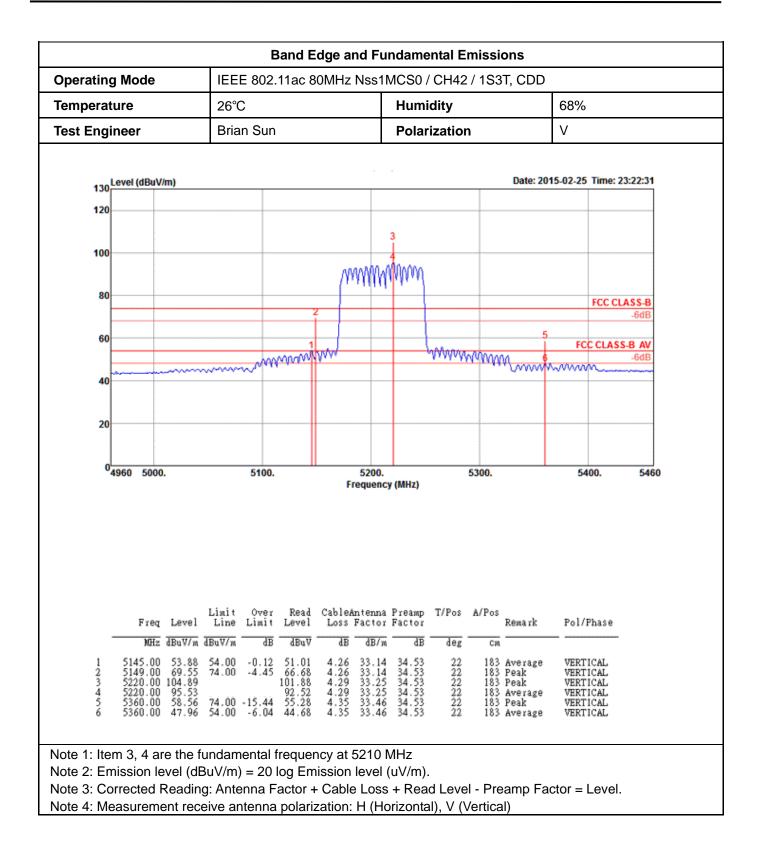


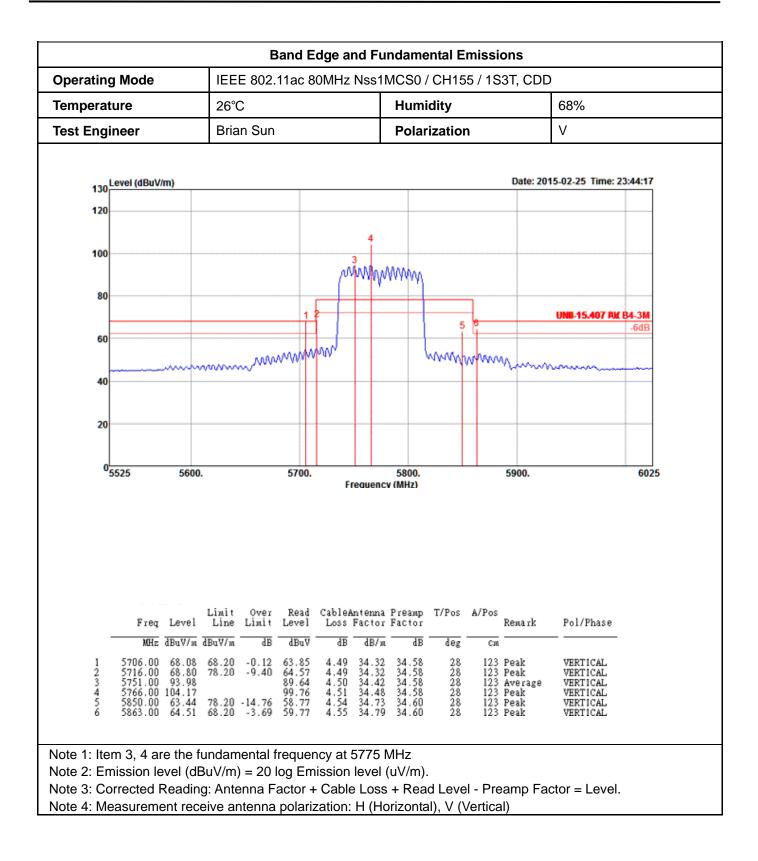


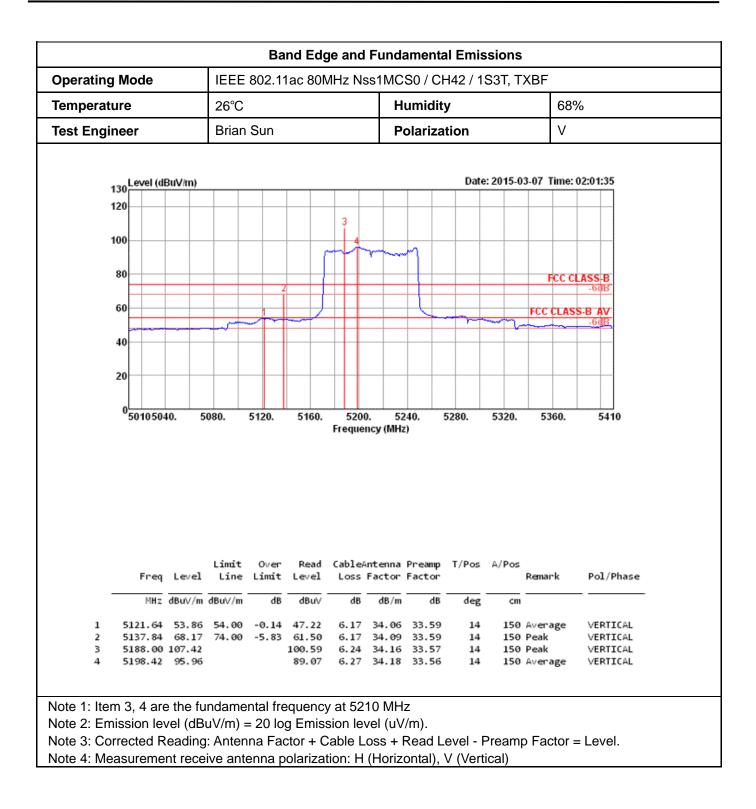








|                    | IEEE 802.11ac 40MHz N                      | ss1MCS0 / CH46 / 1S3                   | T, TXBF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------|--------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| nperature          | 26°C                                       | Humidity                               | 68%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| st Engineer        | Brian Sun                                  | Polarization                           | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 130_Level (dBuV/m) |                                            |                                        | Date: 2015-03-06 Time: 01:34:34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 120                |                                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                    |                                            | 3                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 100                | r                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 80                 |                                            |                                        | FCC CLASS-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                    | 2                                          |                                        | -6dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 60                 | - In /                                     | 1 V pr                                 | FCC CLASS-B AV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 40                 |                                            |                                        | hand the second se |
|                    |                                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 20                 |                                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 05030 5060 508     | 80. 5100. 5120. 5140. 5160. 5180. 5200. 52 | 20, 5240, 5260, 5280, 5300, 53         | 20. 5340. 5360. 5380. 5400. 5430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Freq Le            | evel Line Limit Level Loss Fa              | enna Preamp T/Pos A/Pos<br>ctor Factor | Remark Pol/Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                            | dB/m dB deg cm                         | American IRPORTAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                    | 7.09 J4.00 -0.11 J1.02 4.20 J              | 3.14 34.53 318 214                     | Average VERTICAL<br>Peak VERTICAL<br>Peak VERTICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |


|                                                                              | l                                                                                   | IEEE 802.11                                                        | 1ac 40N                                                             | /Hz Ns                                                       | s1MC                                                                  | S0 / CI                                  | H151 /                                                 | 1S3T, <sup>-</sup>                                    | TXBF                                  |                                              |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|---------------------------------------|----------------------------------------------|
| emperature                                                                   | :                                                                                   | 26°C                                                               |                                                                     |                                                              | н                                                                     | umidit                                   | у                                                      |                                                       |                                       | 68%                                          |
| est Engineer                                                                 |                                                                                     | Brian Sun                                                          |                                                                     |                                                              | Р                                                                     | olariza                                  | tion                                                   |                                                       | ,                                     | V                                            |
| 130 Level (d<br>120<br>100<br>80<br>60<br>40<br>20                           | BuV/m)                                                                              |                                                                    |                                                                     |                                                              | 3 4                                                                   |                                          |                                                        |                                                       |                                       | ne: 01:21:32                                 |
| 05605 5                                                                      | 630. 5650.                                                                          | 5670. 5690.                                                        | 5710. 57                                                            | 730. 575<br>Frequer                                          |                                                                       |                                          | 5810. 5                                                | 830. 58                                               | 50. 587                               | 70. 5905                                     |
|                                                                              | L                                                                                   | Limit Over                                                         |                                                                     | Frequer                                                      | ncy (MH2                                                              | :)                                       | 5810. 5                                                |                                                       | 50. 587<br>Remark                     |                                              |
| Freq                                                                         | L                                                                                   | Limit Over<br>Line Limit                                           | Read                                                                | Frequer                                                      | ncy (MH2                                                              | Preamp<br>Factor                         |                                                        |                                                       |                                       |                                              |
| Freq<br>                                                                     | Level<br>dBuV/m<br>67.78                                                            | Limit Over<br>Line Limit<br>BuV/m dB<br>68.20 -0.42                | Read<br>Level<br>dBuV<br>59.68                                      | CableA<br>Loss<br>6.81                                       | ntenna<br>Factor<br>dB/m<br>34.68                                     | Preamp<br>Factor<br>dB<br>33.39          | T/Pos<br>deg<br>288                                    | A/Pos<br>                                             | Remark<br>                            | <pre>Pol/Phas<br/></pre>                     |
| Freq<br>                                                                     | Level<br>dBuV/m dB<br>67.78 6<br>73.79 7                                            | Limit Over<br>Line Limit<br>BuV/m dB<br>68.20 -0.42<br>78.20 -4.41 | Read<br>Level<br>dBuiv<br>59.68<br>65.64                            | CableA<br>Loss<br>dB<br>6.81<br>6.83                         | ntenna<br>Factor<br>dB/m<br>34.68<br>34.69                            | Preamp<br>Factor<br>dB<br>33.39<br>33.37 | T/Pos<br>                                              | A/Pos<br>cm<br>226<br>226                             | Remark<br><br>Peak<br>Peak            | VERTICAL                                     |
| Freq<br>MHz<br>1 5688.52<br>2 5724.13<br>3 5753.26                           | Level<br>dBuV/m<br>67.78                                                            | Limit Over<br>Line Limit<br>BuV/m dB<br>68.20 -0.42<br>78.20 -4.41 | Read<br>Level<br>dBuV<br>59.68                                      | CableA<br>Loss<br>dB<br>6.81<br>6.83<br>6.86                 | ntenna<br>Factor<br>dB/m<br>34.68<br>34.69<br>34.70                   | Preamp<br>Factor<br>dB<br>33.39          | T/Pos<br>                                              | A/Pos<br>                                             | Remark<br>                            | VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL |
| Freq<br>MHz<br>1 5688.52<br>2 5724.13<br>3 5753.26<br>4 5759.78<br>5 5850.00 | Level<br>dBuV/m<br>dBuV/m<br>dB<br>67.78<br>73.79<br>710.48<br>100.44<br>67.24<br>7 | Limit Over<br>Line Limit<br>BuV/m dB<br>68.20 -0.42<br>78.20 -4.41 | Read<br>Level<br>dBuV<br>59.68<br>65.64<br>102.28<br>92.22<br>58.88 | CableA<br>Loss<br>dB<br>6.81<br>6.83<br>6.86<br>6.88<br>6.95 | ntenna<br>Factor<br>dB/m<br>34.68<br>34.69<br>34.70<br>34.70<br>34.70 | Preamp<br>Factor<br>                     | T/Pos<br>deg<br>288<br>288<br>288<br>288<br>288<br>288 | A/Pos<br>cm<br>226<br>226<br>226<br>226<br>226<br>226 | Remark<br>———<br>Peak<br>Peak<br>Peak | VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL |


|                                              | IEEE 8                                  | 802.11ac 40N   | /Hz Nss1M                     | CS0 / CH             | H159 /  | 1S3T, <sup>-</sup> | TXBF               |                      |
|----------------------------------------------|-----------------------------------------|----------------|-------------------------------|----------------------|---------|--------------------|--------------------|----------------------|
| mperature                                    | 26°C                                    |                |                               | Humidity             | у       |                    | 6                  | 8%                   |
| st Engineer                                  | Brian                                   | Sun            |                               | Polariza             | tion    |                    | Н                  |                      |
| 130 Level (0<br>120<br>100<br>80<br>60<br>40 | BuV/m)                                  | 2              | 4                             |                      | Date    |                    | 3-07 Time          | e: 01:44:15          |
| 20<br>0<br>5645 5                            | 570. 5690. <b>5710</b> .                | 5730. 5750. 57 | 770. 5790. 58<br>Frequency (M |                      | 5850. 5 | 870. 58            | 90. 5910           | 9. 5945              |
| 05645 5                                      | 570. 5690. 5710.<br>Limit<br>Level Line | Over Read      |                               | Hz)<br>a Preamp      |         |                    | 90. 5910<br>Remark | 9. 5945<br>Pol/Phase |
| 0_5645_5                                     | Limit                                   | Over Read      | Frequency (M<br>CableAntenn   | a Preamp<br>r Factor |         |                    |                    |                      |

|           | lode                                                                                |                                                                                      | IEEE                                               | E 802.                                                      | 11ac 8                                                                        | 0MHz                                                                   | Nss1N                                                                 | ACS0 /                                                                      | ′ CH42                                               | / Ant.                                       | 1                                          |                                           |                                                |         |
|-----------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------------|---------|
| mperatur  | е                                                                                   |                                                                                      | 26°C                                               | )                                                           |                                                                               |                                                                        |                                                                       | Humi                                                                        | dity                                                 |                                              |                                            | 68%                                       |                                                |         |
| st Engine | er                                                                                  |                                                                                      | Bria                                               | n Sun                                                       |                                                                               |                                                                        |                                                                       | Polar                                                                       | izatior                                              | า                                            |                                            | Н                                         |                                                |         |
| Low       | el (dBuV/r                                                                          | m)                                                                                   |                                                    |                                                             |                                                                               |                                                                        |                                                                       |                                                                             |                                                      |                                              | Date: 201                                  | 5.02.17                                   | Time: 2                                        | 3-14-04 |
| 130       | ei (ubuvi                                                                           | 10                                                                                   |                                                    |                                                             |                                                                               |                                                                        |                                                                       |                                                                             |                                                      |                                              | Date: 201                                  | 0-02-11                                   |                                                |         |
| 120       |                                                                                     |                                                                                      |                                                    |                                                             |                                                                               |                                                                        |                                                                       |                                                                             |                                                      |                                              |                                            |                                           |                                                |         |
| 100       |                                                                                     |                                                                                      |                                                    |                                                             |                                                                               |                                                                        |                                                                       | 4                                                                           |                                                      | _                                            |                                            |                                           |                                                |         |
|           |                                                                                     |                                                                                      |                                                    |                                                             |                                                                               | ~                                                                      |                                                                       | ᢪ                                                                           |                                                      |                                              |                                            |                                           |                                                |         |
| 80        |                                                                                     |                                                                                      |                                                    |                                                             |                                                                               |                                                                        |                                                                       |                                                                             |                                                      |                                              |                                            |                                           | FCC CL/                                        | ASS-B   |
|           |                                                                                     |                                                                                      |                                                    |                                                             |                                                                               | 2                                                                      |                                                                       |                                                                             |                                                      |                                              |                                            |                                           |                                                | -6dB    |
| 60        |                                                                                     |                                                                                      |                                                    |                                                             | 1                                                                             | J                                                                      |                                                                       |                                                                             | have                                                 |                                              | 5                                          |                                           | C CLASS                                        |         |
|           |                                                                                     |                                                                                      |                                                    | ~~~~~                                                       |                                                                               |                                                                        |                                                                       |                                                                             |                                                      | T                                            | 7                                          | 6                                         | - <u> </u>                                     | -6dB    |
| 40        |                                                                                     |                                                                                      |                                                    |                                                             |                                                                               |                                                                        |                                                                       |                                                                             |                                                      |                                              |                                            |                                           |                                                |         |
| 20        |                                                                                     |                                                                                      |                                                    |                                                             |                                                                               |                                                                        |                                                                       |                                                                             |                                                      |                                              |                                            |                                           |                                                |         |
|           |                                                                                     |                                                                                      |                                                    |                                                             |                                                                               |                                                                        |                                                                       |                                                                             |                                                      |                                              |                                            |                                           |                                                |         |
| 0496      | 0 5000.                                                                             |                                                                                      |                                                    | 5100.                                                       |                                                                               |                                                                        | 5200.                                                                 |                                                                             |                                                      | 5300.                                        |                                            | 54                                        | 100.                                           | 5460    |
|           |                                                                                     |                                                                                      |                                                    |                                                             |                                                                               | F                                                                      | requency                                                              | y (MHz)                                                                     |                                                      |                                              |                                            |                                           |                                                |         |
|           |                                                                                     |                                                                                      |                                                    |                                                             |                                                                               |                                                                        |                                                                       |                                                                             |                                                      |                                              |                                            |                                           |                                                |         |
|           |                                                                                     |                                                                                      |                                                    |                                                             |                                                                               |                                                                        |                                                                       |                                                                             |                                                      |                                              |                                            |                                           |                                                |         |
|           | Freq                                                                                | Level                                                                                | Limit<br>Line                                      | Over<br>Limit                                               |                                                                               |                                                                        |                                                                       | Preamp<br>Factor                                                            | T/Pos                                                | Å/Pos                                        | Remark                                     | Pol/                                      | Phase                                          |         |
| _         | MHz                                                                                 | Level<br>dBuV/m d                                                                    | Line<br>iBuV/m                                     | Limi t<br>dB                                                | Level<br>dBuV                                                                 | Loss<br>dB                                                             | Factor<br>dB/m                                                        | Factor<br>dB                                                                | deg                                                  | A/Pos                                        | Rema rk                                    | Pol/)                                     | Phase                                          |         |
| 1 2 2 2   | MHz                                                                                 | Level<br><u>dBuV/m</u> d<br>53.45<br>66.98                                           | Line                                               | Limi t<br>dB                                                | Level<br>dBuV<br>50.58<br>64.11                                               | Loss<br>dB                                                             | Factor<br>dB/m                                                        | Factor<br>dB                                                                | deg<br>223<br>223                                    |                                              | Åverage<br>Peak                            | HORI:                                     | ZONTAL<br>ZONTAL                               |         |
| 2345      | MHz                                                                                 | Level<br>dBuV/m d<br>53.45<br>66.98<br>92.68<br>102.14<br>57.82                      | Line<br>HBuV/m<br>54.00<br>74.00                   | Limit<br>dB<br>-0.55<br>-7.02                               | Level<br>dBuV<br>50.58<br>64.11<br>89.67<br>99.10                             | Loss<br>dB<br>4.26<br>4.26<br>4.29<br>4.30<br>4.36                     | Factor                                                                | Factor                                                                      | deg                                                  | Cm<br>208<br>208<br>208<br>208<br>208<br>208 |                                            | HORI:<br>HORI:<br>HORI:<br>HORI:<br>HORI: | ZONTAL                                         |         |
| 2345      | MHz<br>5146.00<br>5150.00<br>5219.00<br>5225.00<br>5364.00                          | Level<br>dBuV/m d<br>53.45<br>66.98<br>92.68<br>102.14<br>57.82                      | Line<br>HBuV/m<br>54.00<br>74.00                   | Limit<br>dB<br>-0.55<br>-7.02                               | Level<br>dBuV<br>50.58<br>64.11<br>89.67<br>99.10<br>54.50                    | Loss<br>dB<br>4.26<br>4.26<br>4.29<br>4.30<br>4.36                     | Factor<br>dB/m<br>33.14<br>33.25<br>33.27<br>33.49                    | 34.53<br>34.53<br>34.53<br>34.53<br>34.53<br>34.53<br>34.53                 | deg<br>223<br>223<br>223<br>223<br>223<br>223        | Cm<br>208<br>208<br>208<br>208<br>208<br>208 | Åverage<br>Peak<br>Åverage<br>Peak<br>Peak | HORI:<br>HORI:<br>HORI:<br>HORI:<br>HORI: | ZONTAL<br>ZONTAL<br>ZONTAL<br>ZONTAL<br>ZONTAL |         |
| 2 5 5 5   | MHz 5<br>5146.00<br>5150.00<br>5219.00<br>5225.00<br>5364.00<br>5381.00<br>3, 4 are | Level<br>dBuV/m d<br>53.45<br>66.98<br>92.68<br>102.14<br>57.82<br>46.92<br>e the fu | Line<br>1BuV/m<br>54.00<br>74.00<br>54.00<br>54.00 | Limit<br>dB<br>-0.55<br>-7.02<br>-16.18<br>-7.08<br>ental f | Level<br>dBuV<br>50.58<br>64.11<br>89.67<br>99.10<br>54.50<br>43.57<br>requer | Loss<br>dB<br>4.26<br>4.26<br>4.29<br>4.30<br>4.37<br>4.37<br>hcy at s | Factor<br>dB/m<br>33.14<br>33.25<br>33.27<br>33.49<br>33.51<br>5210 M | Factor<br>dB<br>34.53<br>34.53<br>34.53<br>34.53<br>34.53<br>34.53<br>34.53 | deg<br>223<br>223<br>223<br>223<br>223<br>223<br>223 | Cm<br>208<br>208<br>208<br>208<br>208<br>208 | Åverage<br>Peak<br>Åverage<br>Peak<br>Peak | HORI:<br>HORI:<br>HORI:<br>HORI:<br>HORI: | ZONTAL<br>ZONTAL<br>ZONTAL<br>ZONTAL<br>ZONTAL |         |

| erating Mode                                                                                                    | IEEE 802                                                                                                                           | .11ac 80MHz                                                                                                 | Nss1MCS0 /                                                                                                                        | CH155 / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ant. 1                                                                 |                                                                                  |         |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------|
| nperature                                                                                                       | 26°C                                                                                                                               |                                                                                                             | Humi                                                                                                                              | dity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                        | 68%                                                                              |         |
| st Engineer                                                                                                     | Brian Sur                                                                                                                          | 1                                                                                                           | Polar                                                                                                                             | ization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        | Н                                                                                |         |
|                                                                                                                 |                                                                                                                                    |                                                                                                             |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                        |                                                                                  |         |
| 130 Level (dBuV/m)                                                                                              |                                                                                                                                    |                                                                                                             |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date: 201                                                              | 5-02-17 Time: 23                                                                 | 3:24:09 |
| 120                                                                                                             |                                                                                                                                    |                                                                                                             |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                        |                                                                                  |         |
|                                                                                                                 |                                                                                                                                    |                                                                                                             | 4                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                        |                                                                                  |         |
| 100                                                                                                             |                                                                                                                                    | ~                                                                                                           | -m-                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                        |                                                                                  |         |
| 80                                                                                                              |                                                                                                                                    |                                                                                                             |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                        |                                                                                  |         |
| 80                                                                                                              |                                                                                                                                    | 1                                                                                                           |                                                                                                                                   | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                        | UNII-15.407 PM 8                                                                 | 34-3M   |
| 60                                                                                                              |                                                                                                                                    | =                                                                                                           |                                                                                                                                   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                  | -6dB    |
|                                                                                                                 |                                                                                                                                    |                                                                                                             |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                        |                                                                                  |         |
| 40                                                                                                              |                                                                                                                                    |                                                                                                             |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                        |                                                                                  |         |
|                                                                                                                 |                                                                                                                                    |                                                                                                             |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                        |                                                                                  |         |
| 20                                                                                                              |                                                                                                                                    |                                                                                                             |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                        |                                                                                  |         |
|                                                                                                                 |                                                                                                                                    |                                                                                                             |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                        |                                                                                  |         |
| 0'5525 50                                                                                                       | 500.                                                                                                                               | 5700.                                                                                                       | 5800.<br>requency (MHz)                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5900.                                                                  |                                                                                  | 6025    |
|                                                                                                                 |                                                                                                                                    |                                                                                                             |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                        |                                                                                  |         |
| Freq Lev                                                                                                        | Limit Over<br>el Line Limit                                                                                                        |                                                                                                             | Antenna Preamp<br>Factor Factor                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | °os<br>Remark                                                          | Pol/Phase                                                                        |         |
|                                                                                                                 |                                                                                                                                    | Level Loss                                                                                                  |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                        | Pol/Phase                                                                        |         |
| MHz dBuV<br>1 5707.00 67.                                                                                       | el Line Limit<br>/m dBuV/m dB<br>69 68.20 -0.51                                                                                    | Level Loss                                                                                                  | dB/m dB                                                                                                                           | deg<br>184 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Remark                                                                 | Pol/Phase<br>                                                                    |         |
| MHz dBuV<br>1 5707.00 67.<br>2 5720.00 71.<br>3 5765.00 94.                                                     | el Line Limit<br>/m dBuV/m dB<br>69 68.20 -0.51<br>95 78.20 -6.25<br>10                                                            | Level Loss<br>dBuV dB<br>63.46 4.49<br>67.66 4.50<br>89.69 4.51                                             | dB/m dB                                                                                                                           | deg<br>184 1<br>184 1<br>184 1<br>184 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Remark<br>Cm<br>57 Peak<br>57 Peak<br>57 Average<br>57 Peak            | HORIZONTAL<br>HORIZONTAL<br>HORIZONTAL<br>HORIZONTAL                             |         |
| MHz dBuV<br>1 5707.00 67.<br>2 5720.00 71.<br>3 5765.00 94.                                                     | el Line Limit<br>/m dBuV/m dB<br>69 68.20 -0.51                                                                                    | Level Loss<br>dBuV dB<br>63.46 4.49<br>67.66 4.50<br>89.69 4.51                                             | dB/m dB                                                                                                                           | deg<br>184 1<br>184 1<br>184 1<br>184 1<br>184 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cm Remark<br>Cm 57 Peak<br>57 Peak<br>57 Average                       | HORIZONTAL<br>HORIZONTAL<br>HORIZONTAL                                           |         |
| MHz dBuV<br>1 5707.00 67.<br>2 5720.00 71.<br>3 5765.00 94.<br>4 5766.00 103.<br>5 5859.00 68.<br>6 5866.00 67. | el Line Limit<br>/m dBuV/m dB<br>69 68.20 -0.51<br>95 78.20 -6.25<br>10<br>70<br>34 78.20 -9.86<br>21 68.20 -0.99                  | Level Loss<br>dBuV dB<br>63.46 4.49<br>67.66 4.50<br>89.69 4.51<br>99.29 4.51<br>63.60 4.55<br>62.47 4.55   | Factor Factor<br>dB/m dB<br>34.32 34.58<br>34.37 34.58<br>34.48 34.58<br>34.48 34.58<br>34.48 34.58<br>34.79 34.60<br>34.79 34.60 | deg<br>184 1<br>184 1<br>184 1<br>184 1<br>184 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Remark<br>Cm<br>57 Peak<br>57 Peak<br>57 Average<br>57 Peak<br>57 Peak | HORIZONTAL<br>HORIZONTAL<br>HORIZONTAL<br>HORIZONTAL<br>HORIZONTAL<br>HORIZONTAL |         |
| MHz dBuV<br>1 5707.00 67.<br>2 5720.00 71.<br>3 5765.00 94.                                                     | el Line Limit<br>/m dBuV/m dB<br>69 68.20 -0.51<br>95 78.20 -6.25<br>10<br>70<br>34 78.20 -9.86<br>21 68.20 -0.99<br>e fundamental | Level Loss<br>dBuV dB<br>63.46 4.49<br>67.66 4.50<br>89.69 4.51<br>63.60 4.55<br>62.47 4.55<br>frequency at | Factor Factor<br>dB/m dB<br>34.32 34.58<br>34.48 34.58<br>34.48 34.58<br>34.48 34.58<br>34.79 34.60<br>34.79 34.60<br>5775 MHz    | deg<br>184  <br>184  <br>184 | Remark<br>Cm<br>57 Peak<br>57 Peak<br>57 Average<br>57 Peak<br>57 Peak | HORIZONTAL<br>HORIZONTAL<br>HORIZONTAL<br>HORIZONTAL<br>HORIZONTAL<br>HORIZONTAL |         |







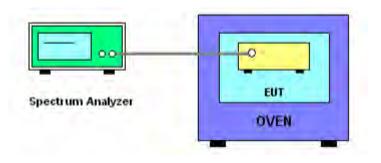
| -           | Mode                                                    |                                                               | IEEE                                               | 802.1                                           | 1ac 801                                                            | /Hz Ns                                                       | ss1MC                                                                             | S0 / CI                                                    | H155 /                                          | 1S3T,                                                 | TXBF                                      |                                                           |
|-------------|---------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------|
| mperatu     | ure                                                     |                                                               | 26°C                                               |                                                 |                                                                    |                                                              | н                                                                                 | umidit                                                     | у                                               |                                                       | 68%                                       | 6                                                         |
| st Engir    | neer                                                    |                                                               | Brian                                              | Sun                                             |                                                                    |                                                              | Р                                                                                 | olariza                                                    | tion                                            |                                                       | V                                         |                                                           |
| 1           | 30 Level (df                                            | BuV/m)                                                        | 1 1                                                |                                                 |                                                                    | 1                                                            |                                                                                   |                                                            | Date                                            | : 2015-0                                              | 13-07 Time: (                             | 02:15:47                                                  |
| 1           | 20                                                      |                                                               |                                                    |                                                 |                                                                    | 3                                                            |                                                                                   |                                                            |                                                 |                                                       |                                           |                                                           |
| 1           | 00                                                      |                                                               |                                                    |                                                 |                                                                    |                                                              | -                                                                                 |                                                            |                                                 |                                                       |                                           |                                                           |
|             | 80                                                      |                                                               |                                                    |                                                 | 1 2                                                                |                                                              | ·····                                                                             |                                                            |                                                 |                                                       | III- 15.407 RM                            | 314 D4                                                    |
|             | 60                                                      |                                                               |                                                    |                                                 | $\exists \mathcal{V}$                                              |                                                              |                                                                                   |                                                            | 5 6                                             |                                                       | 10.107 HA                                 | -60B                                                      |
|             | 40                                                      |                                                               |                                                    |                                                 |                                                                    |                                                              |                                                                                   |                                                            |                                                 |                                                       |                                           |                                                           |
|             | 20                                                      |                                                               |                                                    |                                                 |                                                                    |                                                              |                                                                                   |                                                            |                                                 |                                                       |                                           |                                                           |
|             | 05575                                                   |                                                               |                                                    |                                                 |                                                                    |                                                              |                                                                                   |                                                            |                                                 |                                                       |                                           |                                                           |
|             | 5575                                                    | 5620.                                                         | 5660.                                              | 570                                             | 0. 57                                                              |                                                              | 5780.<br>ncy (MH                                                                  | 5820.<br>z)                                                | 5860                                            | . 59                                                  | 00. 5940                                  | 0. 5975                                                   |
|             |                                                         | 5620.<br>Level                                                | Limit                                              | 0ver                                            |                                                                    | Freque                                                       | ncy (MH                                                                           | z)<br>Preamp                                               | 5860<br>T/Pos                                   |                                                       | 00. 5940<br>Remark                        | 0. 5975<br>Pol/Phase                                      |
| -           | Freq                                                    |                                                               | Limit<br>Line                                      | 0ver                                            | Read                                                               | Freque                                                       | ncy (MH                                                                           | Preamp<br>Factor                                           |                                                 |                                                       | Remark                                    |                                                           |
| 1 2 3       | Freq<br>MHz<br>5709.79<br>5723.84                       | Level<br>dBuV/m<br>67.92<br>70.89                             | Limit<br>Line<br>dBuV/m<br>68.20                   | Over<br>Limit<br>dB<br>-0.28                    | Read<br>Level<br>dBuv<br>59, 79<br>62, 74                          | CableA<br>Loss<br>dB<br>6.83<br>6.83                         | antenna<br>Factor<br>dB/m<br>34.68<br>34.69                                       | Preamp<br>Factor<br>dB<br>33.38<br>33.37                   | T/Pos<br>                                       | A/Pos<br>                                             | Remark<br><br>Peak<br>Peak                | Pol/Phase<br>VERTICAL<br>VERTICAL                         |
| 2<br>3<br>4 | Freq<br>MHz<br>5709.79<br>5723.84<br>5743.16<br>5784.26 | Level<br>dBuV/m<br>67.92<br>70.89<br>107.15<br>95.41          | Limit<br>Line<br>dBuV/m<br>68.20<br>78.20          | Over<br>Limit<br>dB<br>-0.28<br>-7.31           | Read<br>Level<br>dBuV<br>59.79<br>62.74<br>98.96<br>87.15          | Cable#<br>Loss<br>dB<br>6.83<br>6.83<br>6.83<br>6.86<br>6.90 | antenna<br>Factor<br>dB/m<br>34.68<br>34.69<br>34.70<br>34.71                     | Preamp<br>Factor<br>dB<br>33.38<br>33.37<br>33.37<br>33.37 | T/Pos<br>deg<br>282<br>282<br>282<br>282        | A/Pos<br>cm<br>229<br>229<br>229<br>229               | Remark<br>Peak<br>Peak<br>Peak<br>Average | Pol/Phase<br>VERTICAL<br>VERTICAL<br>VERTICAL<br>VERTICAL |
| 2<br>3      | Freq<br>MHz<br>5709.79<br>5723.84<br>5743.16            | Level<br>dBuV/m<br>67.92<br>70.89<br>107.15<br>95.41<br>65.83 | Limit<br>Line<br>dBuV/m<br>68.20<br>78.20<br>78.20 | 0ver<br>Limit<br>dB<br>-0.28<br>-7.31<br>-12.37 | Read<br>Level<br>dBuv<br>59,79<br>62,74<br>98,96<br>87,15<br>57,47 | Cable4<br>Loss<br>dB<br>6.83<br>6.83<br>6.86<br>6.90<br>6.95 | ncy (MH<br>antenna<br>Factor<br>dB/m<br>34.68<br>34.69<br>34.70<br>34.71<br>34.74 | Preamp<br>Factor<br>                                       | T/Pos<br>deg<br>282<br>282<br>282<br>282<br>282 | A/Pos<br>cm<br>229<br>229<br>229<br>229<br>229<br>229 | Remark<br><br>Peak<br>Peak<br>Peak        | Pol/Phase<br>VERTICAL<br>VERTICAL<br>VERTICAL             |

### 3.6 Frequency Stability Measurement

#### 3.6.1 Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emissions is maintained within the band of operation under all conditions of normal operation as specified in the user's manual or ±20ppm (IEEE 802.11n specification).

#### 3.6.2 Measuring Instruments and Setting


Please refer to section 4 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

| Spectrum Parameter | Setting                                          |
|--------------------|--------------------------------------------------|
| Attenuation        | Auto                                             |
| Span Frequency     | Entire absence of modulation emissions bandwidth |
| RBW                | 10 kHz                                           |
| VBW                | 10 kHz                                           |
| Sweep Time         | Auto                                             |

#### 3.6.3 Test Procedures

- 1. The EUT was placed inside the environmental test chamber and powered by nominal DC voltage.
- 2. The EUT was programmed to be in continuously un-modulation transmitting mode.
- 3.Set the spectrum analyzer span to view the entire un-modulation emissions bandwidth.
- 4. Turn the EUT on and couple its output to a spectrum analyzer.
- 5.Turn the EUT off and set the chamber to the highest temperature specified.
- 6.Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 minutes.
- 7.Extreme temperature rule is -20°C~50°C.
- 8.Repeat step 4 and 5 with the temperature chamber set to the lowest temperature.
- 9. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

#### 3.6.4 Test Setup Layout



#### 3.6.5 Test Deviation

There is no deviation with the original standard.

#### 3.6.6 EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

#### 3.6.7 Test Result of Frequency Stability

| Test date     | Mar. 17, 2015~Mar. 25, 2015 | Test Site No. | TH01-CB |
|---------------|-----------------------------|---------------|---------|
| Temperature   | <b>20</b> ℃                 | Humidity      | 60%     |
| Test Engineer | Mars Lin                    | Mode          | 20MHz   |

#### **Operating frequency: 5200 MHz**

#### Voltage vs. Frequency Stability

| Voltage              | Measurement Frequency (MHz) |           |           |
|----------------------|-----------------------------|-----------|-----------|
| voltage              | Ant. 1                      | Ant. 2    | Ant. 3    |
| (V)                  | 5200                        | 5200      | 5200      |
| 126.50               | 5199.9527                   | 5199.9535 | 5199.9537 |
| 110.00               | 5199.9527                   | 5199.9527 | 5199.9526 |
| 93.50                | 5199.9527                   | 5199.9527 | 5199.9526 |
| Max. Deviation (MHz) | 0.047320                    | 0.047320  | 0.047400  |
| Max. Deviation (ppm) | 9.1000                      | 9.1000    | 9.1154    |

| Temperature          | Ме        | Measurement Frequency (MHz) |           |  |
|----------------------|-----------|-----------------------------|-----------|--|
| remperature          | Ant. 1    | Ant. 2                      | Ant. 3    |  |
| (°C)                 | 5200      | 5200                        | 5200      |  |
| -20                  | 5199.9921 | 5199.9921                   | 5199.9921 |  |
| -10                  | 5199.9952 | 5199.9947                   | 5199.9939 |  |
| 0                    | 5200.0026 | 5200.0017                   | 5200.0008 |  |
| 10                   | 5199.9947 | 5199.9930                   | 5199.9926 |  |
| 20                   | 5199.9527 | 5199.9527                   | 5199.9526 |  |
| 30                   | 5199.9626 | 5199.9600                   | 5199.9600 |  |
| 40                   | 5199.9613 | 5199.9557                   | 5199.9531 |  |
| 50                   | 5199.9565 | 5199.9574                   | 5199.9583 |  |
| Max. Deviation (MHz) | 0.047320  | 0.047320                    | 0.047400  |  |
| Max. Deviation (ppm) | 9.1000    | 9.1000                      | 9.1154    |  |

### **Operating frequency: 5785 MHz**

#### Voltage vs. Frequency Stability

| Voltage              | Measurement Frequency (MHz) |           |           |
|----------------------|-----------------------------|-----------|-----------|
| voltage              | Ant. 1                      | Ant. 2    | Ant. 3    |
| (V)                  | 5785                        | 5785      | 5785      |
| 126.50               | 5784.9500                   | 5784.9480 | 5784.9474 |
| 110.00               | 5784.9583                   | 5784.9475 | 5784.9479 |
| 93.50                | 5784.9544                   | 5784.9475 | 5784.9500 |
| Max. Deviation (MHz) | 0.050000                    | 0.052530  | 0.052600  |
| Max. Deviation (ppm) | 8.6430                      | 9.0804    | 9.0925    |

| Tomporaturo          | Measurement Frequency (MHz) |           |           |
|----------------------|-----------------------------|-----------|-----------|
| Temperature          | Ant. 1                      | Ant. 2    | Ant. 3    |
| (°C)                 | 5785                        | 5785      | 5785      |
| -20                  | 5784.9917                   | 5784.9917 | 5784.9917 |
| -10                  | 5784.9926                   | 5784.9926 | 5784.9921 |
| 0                    | 5784.9908                   | 5784.9080 | 5784.9904 |
| 10                   | 5784.9930                   | 5784.9917 | 5784.9913 |
| 20                   | 5784.9583                   | 5784.9475 | 5784.9479 |
| 30                   | 5784.9552                   | 5784.9561 | 5784.9583 |
| 40                   | 5784.9474                   | 5784.9479 | 5784.9483 |
| 50                   | 5784.9531                   | 5784.9518 | 5784.9509 |
| Max. Deviation (MHz) | 0.052600                    | 0.092000  | 0.052100  |
| Max. Deviation (ppm) | 9.0925                      | 15.9032   | 9.0061    |

| Test date     | Mar. 17, 2015~Mar. 25, 2015 | Test Site No. | TH01-CB |
|---------------|-----------------------------|---------------|---------|
| Temperature   | <b>20</b> ℃                 | Humidity      | 60%     |
| Test Engineer | Mars Lin                    | Mode          | 40MHz   |

### **Operating frequency: 5190 MHz**

### Voltage vs. Frequency Stability

| Voltage              | Measurement Frequency (MHz) |           |           |
|----------------------|-----------------------------|-----------|-----------|
| voltage              | Ant. 1                      | Ant. 2    | Ant. 3    |
| (V)                  | 5190                        | 5190      | 5190      |
| 126.50               | 5189.9544                   | 5189.9544 | 5189.9544 |
| 110.00               | 5189.9536                   | 5189.9540 | 5189.9544 |
| 93.50                | 5189.9531                   | 5189.9527 | 5189.9544 |
| Max. Deviation (MHz) | 0.046890                    | 0.047320  | 0.045590  |
| Max. Deviation (ppm) | 9.0347                      | 9.1175    | 8.7842    |

| Temperature          | Measurement Frequency (MHz) |           |           |
|----------------------|-----------------------------|-----------|-----------|
| Temperature          | Ant. 1                      | Ant. 2    | Ant. 3    |
| (°C)                 | 5190                        | 5190      | 5190      |
| -20                  | 5189.9921                   | 5189.9921 | 5189.9921 |
| -10                  | 5189.9921                   | 5189.9921 | 5189.9921 |
| 0                    | 5189.9921                   | 5189.9921 | 5189.9921 |
| 10                   | 5189.9926                   | 5189.9921 | 5189.9921 |
| 20                   | 5189.9536                   | 5189.9540 | 5189.9544 |
| 30                   | 5189.9613                   | 5189.9600 | 5189.9596 |
| 40                   | 5189.9535                   | 5189.9531 | 5189.9531 |
| 50                   | 5189.9561                   | 5189.9574 | 5189.9583 |
| Max. Deviation (MHz) | 0.046500                    | 0.046900  | 0.046900  |
| Max. Deviation (ppm) | 8.9595                      | 9.0366    | 9.0366    |

#### **Operating frequency: 5755 MHz**

#### Voltage vs. Frequency Stability

| Voltago              | Measurement Frequency (MHz) |           |           |
|----------------------|-----------------------------|-----------|-----------|
| Voltage              | Ant. 1                      | Ant. 2    | Ant. 3    |
| (V)                  | 5755                        | 5755      | 5755      |
| 126.50               | 5754.9483                   | 5754.9483 | 5754.9483 |
| 110.00               | 5754.9479                   | 5754.9487 | 5754.9488 |
| 93.50                | 5754.9479                   | 5754.9488 | 5754.9488 |
| Max. Deviation (MHz) | 0.052100                    | 0.051700  | 0.051700  |
| Max. Deviation (ppm) | 9.0530                      | 8.9835    | 8.9835    |

| Temperature          | Ме        | Measurement Frequency (MHz) |           |  |
|----------------------|-----------|-----------------------------|-----------|--|
| remperature          | Ant. 1    | Ant. 2                      | Ant. 3    |  |
| (°C)                 | 5755      | 5755                        | 5755      |  |
| -20                  | 5754.9913 | 5754.9913                   | 5754.9908 |  |
| -10                  | 5754.9913 | 5754.9917                   | 5754.9917 |  |
| 0                    | 5754.9921 | 5754.9926                   | 5754.9926 |  |
| 10                   | 5754.9965 | 5754.9982                   | 5754.9995 |  |
| 20                   | 5754.9479 | 5754.9487                   | 5754.9488 |  |
| 30                   | 5754.9548 | 5754.9557                   | 5754.9578 |  |
| 40                   | 5754.9479 | 5754.9479                   | 5754.9483 |  |
| 50                   | 5754.9539 | 5754.9531                   | 5754.9513 |  |
| Max. Deviation (MHz) | 0.052100  | 0.052100                    | 0.051700  |  |
| Max. Deviation (ppm) | 9.0530    | 9.0530                      | 8.9835    |  |

| Test date     | Mar. 17, 2015~Mar. 25, 2015 | Test Site No. | TH01-CB |
|---------------|-----------------------------|---------------|---------|
| Temperature   | <b>20</b> ℃                 | Humidity      | 60%     |
| Test Engineer | Mars Lin                    | Mode          | 80MHz   |

### Operating frequency: 5210 MHz

### Voltage vs. Frequency Stability

| Voltago              | Measurement Frequency (MHz) |           |           |  |  |
|----------------------|-----------------------------|-----------|-----------|--|--|
| Voltage              | Ant. 1                      | Ant. 2    | Ant. 3    |  |  |
| (V)                  | 5210                        | 5210      | 5210      |  |  |
| 126.50               | 5209.9540                   | 5209.9540 | 5209.9540 |  |  |
| 110.00               | 5209.9544                   | 5209.9544 | 5209.9540 |  |  |
| 93.50                | 5209.9549                   | 5209.9549 | 5209.9548 |  |  |
| Max. Deviation (MHz) | 0.046020                    | 0.046020  | 0.046020  |  |  |
| Max. Deviation (ppm) | 8.8330                      | 8.8330    | 8.8330    |  |  |

| Tomporature          | Measurement Frequency (MHz) |           |           |  |  |
|----------------------|-----------------------------|-----------|-----------|--|--|
| Temperature          | Ant. 1                      | Ant. 2    | Ant. 3    |  |  |
| (°C)                 | 5210                        | 5210      | 5210      |  |  |
| -20                  | 5210.0386                   | 5210.0395 | 5210.0395 |  |  |
| -10                  | 5210.0351                   | 5210.0351 | 5210.0351 |  |  |
| 0                    | 5210.0434                   | 5210.0477 | 5210.0416 |  |  |
| 10                   | 5209.9917                   | 5209.9917 | 5209.9917 |  |  |
| 20                   | 5209.9544                   | 5209.9544 | 5209.9540 |  |  |
| 30                   | 5209.9604                   | 5209.9591 | 5209.9591 |  |  |
| 40                   | 5209.9531                   | 5209.9526 | 5209.9526 |  |  |
| 50                   | 5209.9574                   | 5209.9583 | 5209.9887 |  |  |
| Max. Deviation (MHz) | 0.046900                    | 0.047700  | 0.047400  |  |  |
| Max. Deviation (ppm) | 9.0019                      | 9.1555    | 9.0979    |  |  |

#### **Operating frequency: 5775 MHz**

#### Voltage vs. Frequency Stability

| Valtara              | Measurement Frequency (MHz) |           |           |  |  |
|----------------------|-----------------------------|-----------|-----------|--|--|
| Voltage              | Ant. 1                      | Ant. 2    | Ant. 3    |  |  |
| (V)                  | 5775                        | 5775      | 5775      |  |  |
| 126.50               | 5774.9518                   | 5774.9518 | 5774.9518 |  |  |
| 110.00               | 5774.9509                   | 5774.9509 | 5774.9509 |  |  |
| 93.50                | 5774.9505                   | 5774.9505 | 5774.9505 |  |  |
| Max. Deviation (MHz) | 0.049490                    | 0.049490  | 0.049490  |  |  |
| Max. Deviation (ppm) | 8.5697                      | 8.5697    | 8.5697    |  |  |

| Tomporatura          | Measurement Frequency (MHz) |           |           |  |  |
|----------------------|-----------------------------|-----------|-----------|--|--|
| Temperature          | Ant. 1                      | Ant. 2    | Ant. 3    |  |  |
| (°C)                 | 5775                        | 5775      | 5775      |  |  |
| -20                  | 5775.0547                   | 5775.0542 | 5775.0542 |  |  |
| -10                  | 5775.0538                   | 5775.0538 | 5775.0534 |  |  |
| 0                    | 5775.0521                   | 5775.0516 | 5775.0512 |  |  |
| 10                   | 5775.0499                   | 5775.0494 | 5775.0499 |  |  |
| 20                   | 5774.9509                   | 5774.9509 | 5774.9509 |  |  |
| 30                   | 5774.9548                   | 5774.9548 | 5774.9561 |  |  |
| 40                   | 5774.9479                   | 5774.9479 | 5774.9479 |  |  |
| 50                   | 5774.9548                   | 5774.9544 | 5774.9531 |  |  |
| Max. Deviation (MHz) | 0.054700                    | 0.054200  | 0.054200  |  |  |
| Max. Deviation (ppm) | 9.4719                      | 9.3853    | 9.3853    |  |  |

### 3.7 Antenna Requirements

#### 3.7.1 Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

#### 3.7.2 Antenna Connector Construction

Please refer to section 2.3 in this test report; antenna connector complied with the requirements.

# **4 LIST OF MEASURING EQUIPMENTS**

| Instrument        | Manufacturer    | Model No.        | Serial No.  | Characteristics | Calibration Date | Remark                   |
|-------------------|-----------------|------------------|-------------|-----------------|------------------|--------------------------|
| EMI Test Receiver | R&S             | ESCS 30          | 100355      | 9kHz ~ 2.75GHz  | Apr. 23, 2014    | Conduction<br>(CO01-CB)  |
| LISN              | F.C.C.          | FCC-LISN-50-16-2 | 04083       | 150kHz ~ 100MHz | Dec. 02, 2014    | Conduction<br>(CO01-CB)  |
| LISN              | Schwarzbeck     | NSLK 8127        | 8127647     | 9kHz ~ 30MHz    | Dec. 02, 2014    | Conduction<br>(CO01-CB)  |
| COND Cable        | Woken           | Cable            | 01          | 150kHz ~ 30MHz  | Dec. 03, 2014    | Conduction<br>(CO01-CB)  |
| Software          | Audix           | E3               | 5.410e      | -               | N.C.R.           | Conduction<br>(CO01-CB)  |
| BILOG ANTENNA     | Schaffner       | CBL6112D         | 22021       | 20MHz ~ 2GHz    | May 26, 2014     | Radiation<br>(03CH01-CB) |
| Loop Antenna      | Rohde & Schwarz | HFH2-Z2          | 100315      | 9 kHz~30 MHz    | Jul. 28, 2014    | Radiation<br>(03CH01-CB) |
| Horn Antenna      | EMCO            | 3115             | 00075790    | 750MHz~18GHz    | Oct. 28, 2014    | Radiation<br>(03CH01-CB) |
| Horn Antenna      | Schwarzbeck     | BBHA 9170        | BBHA9170252 | 15GHz ~ 40GHz   | Aug. 22, 2014    | Radiation<br>(03CH01-CB) |
| Pre-Amplifier     | Agilent         | 8447D            | 2944A10991  | 0.1MHz ~ 1.3GHz | Nov. 15, 2014    | Radiation<br>(03CH01-CB) |
| Pre-Amplifier     | Agilent         | 8449B            | 3008A02310  | 1GHz ~ 26.5GHz  | Jan. 12, 2015    | Radiation<br>(03CH01-CB) |
| Pre-Amplifier     | MITEQ           | TTA1840-35-HG    | 1864479     | 18GHz ~ 40GHz   | Apr. 22, 2014    | Radiation<br>(03CH01-CB) |
| Spectrum Analyzer | R&S             | FSP40            | 100056      | 9kHz ~ 40GHz    | Nov. 06, 2014    | Radiation<br>(03CH01-CB) |
| EMI Test Receiver | Agilent         | N9038A           | MY52260123  | 9kHz ~ 8GHz     | Jan. 21, 2015    | Radiation<br>(03CH01-CB) |
| EMI Test Receiver | R&S             | ESR26            | 101289      | 9kHz~26GHz      | Aug. 22, 2014    | Radiation<br>(03CH01-CB) |
| Turn Table        | INN CO          | CO 2000          | N/A         | 0 ~ 360 degree  | N.C.R.           | Radiation<br>(03CH01-CB) |
| Antenna Mast      | INN CO          | CO 2000          | N/A         | 1 m - 4 m       | N.C.R.           | Radiation<br>(03CH01-CB) |
| RF Cable-low      | Woken           | Low Cable-1      | N/A         | 30 MHz - 1 GHz  | Nov. 15, 2014    | Radiation<br>(03CH01-CB) |
| RF Cable-high     | Woken           | High Cable-40G-1 | N/A         | 1 GHz - 40 GHz  | Nov. 15, 2014    | Radiation<br>(03CH01-CB) |
| RF Cable-high     | Woken           | High Cable-40G-2 | N/A         | 1 GHz - 40 GHz  | Nov. 15, 2014    | Radiation<br>(03CH01-CB) |
| Spectrum analyzer | R&S             | FSV40            | 100979      | 9kHz~40GHz      | Dec.12, 2014     | Conducted<br>(TH01-CB)   |
| RF Power Divider  | Woken           | 2 Way            | TH01-DV-02  | 1GHz ~ 6GHz     | Jan. 10, 2015    | Conducted<br>(TH01-CB)   |
| RF Power Divider  | Woken           | 4 Way            | TH01-DV-01  | 1GHz ~ 6GHz     | Jan. 10, 2015    | Conducted<br>(TH01-CB)   |

### Report No.: FR510501AB

| Instrument    | Manufacturer | Model No. | Serial No.    | Characteristics  | Calibration Date | Remark                 |
|---------------|--------------|-----------|---------------|------------------|------------------|------------------------|
| RF Cable-high | Woken        | RG402     | High Cable-7  | 1 GHz – 26.5 GHz | Nov. 15, 2014    | Conducted<br>(TH01-CB) |
| RF Cable-high | Woken        | RG402     | High Cable-8  | 1 GHz – 26.5 GHz | Nov. 15, 2014    | Conducted<br>(TH01-CB) |
| RF Cable-high | Woken        | RG402     | High Cable-9  | 1 GHz – 26.5 GHz | Nov. 15, 2014    | Conducted<br>(TH01-CB) |
| RF Cable-high | Woken        | RG402     | High Cable-10 | 1 GHz – 26.5 GHz | Nov. 15, 2014    | Conducted<br>(TH01-CB) |
| RF Cable-high | Woken        | RG402     | High Cable-6  | 1 GHz – 26.5 GHz | Nov. 15, 2014    | Conducted<br>(TH01-CB) |
| Power Sensor  | Agilent      | U2021XA   | MY53410001    | 50MHz~18GHz      | Nov. 03, 2014    | Conducted<br>(TH01-CB) |

Note: Calibration Interval of instruments listed above is one year.

N.C.R. means Non-Calibration required.

| SPORTON International Inc. | Page No.    | : 342 of 343    |
|----------------------------|-------------|-----------------|
| TEL : 886-3-327-3456       | Issued Date | : Apr. 17, 2015 |
| FAX : 886-3-327-0973       | FCC ID      | : G95-TC8737C   |
|                            |             |                 |

# **5 MEASUREMENT UNCERTAINTY**

| Test Items                           | Uncertainty | Remark                   |
|--------------------------------------|-------------|--------------------------|
| Conducted Emission (150kHz ~ 30MHz)  | 2.4 dB      | Confidence levels of 95% |
| Radiated Emission (30MHz ~ 1,000MHz) | 3.6 dB      | Confidence levels of 95% |
| Radiated Emission (1GHz ~ 18GHz)     | 3.7 dB      | Confidence levels of 95% |
| Radiated Emission (18GHz ~ 40GHz)    | 3.5 dB      | Confidence levels of 95% |
| Conducted Emission                   | 1.7 dB      | Confidence levels of 95% |