APPLICANT: #### **PCTEST** 18855 Adams Court, Morgan Hill, CA 95037 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com # MEASUREMENT REPORT FCC PART 15.407 / ISED RSS-247 DFS Applicant Name: Date of Testing: Apple Inc. 07/20/2020 – 07/24/2020 One Apple Park Way Test Site/Location: Cupertino, CA 95014 PCTEST Lab. Morgan Hill, CA, USA United States Test Report Serial No.: 1C2008270049-07.BCG FCC ID: BCG-A2374 IC: 579C-A2374 Application Type: Certification Model/HVIN: A2374 **EUT Type:** Client Only Device, No Radar Detection Capability Apple Inc. Max. RF Output Power: 44.668 mW (16.50 dBm) Conducted (802.11n UNII Band 2A) 44.668 mW (16.50 dBm) Conducted (802.11n UNII Band 2C) Frequency Range: 5250 – 5350 MHz (UNII-2A Band) 5470 - 5725 MHz (UNII-2C Band) FCC Classification: Unlicensed National Information Infrastructure (UNII) FCC Rule Part(s): Part 15 Subpart E (15.407) ISED Specification: RSS-247 Issue 2 Test Procedure(s): KDB 905462 D02 v02 This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 905462 D02 v02 Compliance Measurement Procedures for Unlicensed-National Information Infrastructure Devices Operating in the 5.25 – 5.35 GHz and 5.47 – 5.725 GHz Bands Incorporating Dynamic Frequency Selection. Test results reported herein relate only to the item(s) tested. I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. | FCC ID: BCG-A2374 | Proud to be part of @ element | MEASUREMENT REPORT
(CERTIFICATION) | Approved by: Quality Manager | |---------------------|-------------------------------|---------------------------------------|------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Dogo 1 of 20 | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | Page 1 of 30 | # TABLE OF CONTENTS | 1.0 | INTE | ODUCTION | 3 | |------|------------------|---|----| | | 1.1 | Scope | 3 | | | 1.2 | PCTEST Test Location | 3 | | | 1.3 | Test Facility / Accreditations | 3 | | 2.0 | PRO | DUCT INFORMATION | 4 | | | 2.1 | Equipment Description | 4 | | | 2.2 | EUT Capabilities | 4 | | | 2.3 | Antenna Description | 4 | | | 2.4 | Test Support Equipment | 5 | | | 2.5 | Master Parameters | 5 | | | 2.6 | Software and Firmware | 5 | | | 2.7 | EMI Suppression Device(s)/Modifications | 5 | | 3.0 | DES | CRIPTION OF TESTS | 6 | | | 3.1 | Evaluation Procedure | 6 | | | 3.2 | Environmental Conditions | 6 | | 4.0 | ANT | ENNA REQUIREMENTS | 7 | | 5.0 | MEA | SUREMENT UNCERTAINTY | 8 | | 6.0 | TES | T EQUIPMENT | 9 | | 7.0 | DES | CRIPTION OF DYNAMIC FREQUENCY SELECTION TEST | 10 | | | 7.1 | Applicability | 10 | | | 7.2 | DFS Detection Threshold Values | 12 | | | 7.3 | DFS Response Requirements | 12 | | | 7.4 | Parameters of DFS Test Signals | 13 | | | 7.5 | System Overview and Procedure | 14 | | | 7.6 | System Calibration: | 15 | | 8.0 | EUT | TEST SETUP | 17 | | 9.0 | TES ⁻ | T RESULTS | 20 | | | 9.1 | Summary | 20 | | | 9.2 | Channel Loading | 21 | | | 9.3 | Channel Move/ Closing Transmission Time | 24 | | | 9.3.1 | Channel Move/ Closing Transmission Time Mode 1: | 24 | | | 9.3.2 | Channel Move/ Closing Transmission Time Mode 2: | 25 | | | 9.3.3 | Channel Move/ Closing Transmission Time Mode 3: | 26 | | | 9.4 | Non-Occupancy Period | 27 | | | 9.4.1 | Non-Occupancy Period (30 Minutes) Mode 1: | 27 | | | 9.4.2 | Non-Occupancy Period (30 Minutes) Mode 2: | 28 | | | 9.4.3 | Non-Occupancy Period (30 Minutes) Mode 3: | 29 | | 10.0 | CON | CLUSION | 30 | | | | | | | FCC ID: BCG-A2374 | Proud to be part of @ element | MEASUREMENT REPORT
(CERTIFICATION) | Approved by: Quality Manager | |---------------------|-------------------------------|---------------------------------------|------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 2 of 30 | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | Page 2 of 30 | #### 1.0 INTRODUCTION #### 1.1 Scope This report has been prepared to demonstrate compliance with the requirements for Dynamic Frequency Selection (DFS) as stated in KDB 905462 D02 v02. As of July 20, 2007, all devices operating in the 5250 – 5350 MHz and/or the 5470 – 5725 MHz bands (excluding 5600-5650MHz for ISED Canada) must comply with the DFS requirements. #### 1.2 PCTEST Test Location These measurement tests were conducted at the PCTEST facility located at 18855 Adams Court, Morgan Hill, CA 95037. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014 and KDB 414788 D01 v01r01. #### 1.3 Test Facility / Accreditations Measurements were performed at PCTEST located in Morgan Hill, CA 95037, U.S.A. - PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.02 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules. - PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS). - PCTEST facility is a registered (22831) test laboratory with the site description on file with ISED. | FCC ID: BCG-A2374 | Proud to be part of @ element | MEASUREMENT REPORT (CERTIFICATION) | Approved by: Quality Manager | |---------------------|-------------------------------|------------------------------------|------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Dogo 2 of 20 | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | Page 3 of 30 | #### 2.0 PRODUCT INFORMATION # 2.1 Equipment Description The Equipment Under Test (EUT) is the **Apple Smart Speaker FCC ID: BCG-A2374**. The test data contained in this report pertains only to the emissions due to the EUT's UNII transmitter. As the EUT does not have radar detection capability it was evaluated as a Client Only Device. All test results reported herein are applicable to the sample selected for testing. #### Mode of Operation: | Master Device | | |------------------------------------|-------------| | Client Device (No radar detection) | \boxtimes | | Client Device with Radar Detection | | Test Device Serial No.: H0KD20QTPV2P # 2.2 EUT Capabilities This device contains the following capabilities: 802.11b/g/n WLAN, 802.11a/n/ac UNII, Bluetooth (1x, EDR, HDR4, HDR8, LE), UWB, Thread Band 1 | Ch. | Frequency (MHz) | | |-----|-----------------|--| | 36 | 5180 | | | : | : | | | 42 | 5210 | | | : | : | | | 48 | 5240 | | Band 2A | Ch. | Frequency (MHz) | | |-----|-----------------|--| | 52 | 5260 | | | : | : | | | 56 | 5280 | | | : | : | | | 64 | 5320 | | Band 2C | Ch. | Frequency (MHz) | | |-----|-----------------|--| | 100 | 5500 | | | : | : | | | 116 | 5580 | | | : | : | | | 144 | 5720 | | Band 3 | Ch. | Frequency (MHz) | | |-----|-----------------|--| | 149 | 5745 | | | : | : | | | 157 | 5785 | | | : | : | | | 165 | 5825 | | Table 2-1: 802.11a / 802.11n (20MHz) Frequency / Channel Operations Band 1 | Ch. | Frequency (MHz) | |-----|-----------------| | 42 | 5210 | | Ran | A | 2 | |-----|---|---| | | | | | Ch. | Frequency (MHz) | |-----|-----------------| | 155 | 5775 | Table 2-2: 802.11ac (80MHz BW) Frequency / Channel Operations # 2.3 Antenna Description Following antenna was used for the testing. | Frequency [GHz] | Antenna Gain (dBi) | |-----------------|--------------------| | 5.150 - 5.250 | 2.60 | | 5.250 - 5.350 | 3.90 | | 5.470 – 5.725 | 3.60 | | 5.725 - 5.850 | 3.30 | Table 2-3. Highest Antenna Gain | FCC ID: BCG-A2374 | PCTEST* MEASUREMENT REPORT (CERTIFICATION) | | Approved by: Quality Manager | |---------------------|--|---------------|------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 4 of 30 | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | Fage 4 01 30 | #### **Test Support Equipment** 2.4 The following equipment was used in support of the DFS testing. | Device | Manufacturer | Model | Description | S/N: | FCC ID | |--------------|--------------|-------------|-----------------|--------------|--------------| | Mostor | Annlo | A1521 | Access Point | C86L3BA8FJ1R | BCGA1521 | | IVIASIEI | Master Apple | MacBook | Controller | C02P41RZG086 | QDS-BRCM1072 | | | Olivet | MacBook | Controller | C02P41RZG086 | QDS-BRCM1072 | | Client | | Kanzi | Lightning Cable | 2092FC | N/A | | Client Apple | Apple | Phone | Smart Phone | C39Z4006NQHW | BCG-E3305A | | | Chimp | USB-C Cable | 304559 | N/A | | Table 2-4. Test Support Equipment Used #### 2.5 **Master Parameters** | Parameters of Master: | | | | |-------------------------------|---------|--|--| | Minimum Antenna Gain | 1.4 dBi | | | | EIRP Level | >23dBm | | | | Access Point Software Version | 7.7.9 | | | Table 2-5. Parameters of EUT #### 2.6 **Software and Firmware** The test was done with firmware version 18J8386 installed on the EUT. #### 2.7 **EMI Suppression Device(s)/Modifications** No EMI suppression device(s) were added and/or no modifications were made during testing. | FCC ID: BCG-A2374 | PCTEST* Proud to be part of @ element (CERTIFICATION) | | Approved by: Quality Manager | |---------------------|---|---------------|------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 5 of 30 | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | Page 5 of 50 | #### 3.0 DESCRIPTION OF TESTS #### 3.1 Evaluation Procedure The measurement procedures described in KDB 905462 D02 v02 were used in the measurement of the EUT. Conducted test methodology was used for the DFS evaluation procedure of the EUT. No deviations to the test procedure and test methods occurred during the evaluation of the EUT. Deviation from measurement procedure......None #### 3.2 Environmental Conditions The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar). | FCC ID: BCG-A2374 | PCTEST MEASUREMENT REPORT (CERTIFICATION) | | Approved by: Quality Manager | |---------------------|---|---------------|------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Dogo 6 of 20 | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | Page 6 of 30 | ## 4.0 ANTENNA REQUIREMENTS #### Excerpt from §15.203 of the FCC Rules/Regulations: "An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section." - The antennas of the EUT are permanently attached. - There are no provisions for connection to an external antenna. #### **Conclusion:** The EUT complies with the requirement of §15.203. | FCC ID: BCG-A2374 | Proud to be part of @ element | MEASUREMENT REPORT (CERTIFICATION) | Approved by: Quality Manager | |---------------------|-------------------------------|------------------------------------|------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Dogo 7 of 20 | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | Page 7 of 30 | ## 5.0 MEASUREMENT UNCERTAINTY The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance. | Parameter | Expanded Uncertainty | |-----------|----------------------| | Time | ± 0.02% | | FCC ID: BCG-A2374 | Proud to be part of @ element | MEASUREMENT REPORT (CERTIFICATION) | Approved by: Quality Manager | |---------------------|-------------------------------|------------------------------------|------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Dogo 9 of 20 | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | Page 8 of 30 | ## 6.0 TEST EQUIPMENT Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance with the requirements of ANSI C63.5-2006. | Manufacturer | Model | Description | Cal. Date | Cal. Interval | Cal. Due Date | Serial No. | |---------------------|---------|---------------------------------|------------|---------------|---------------|------------| | Aeroflex | 3025C | PXI RF Synthesizer | 7/25/2018 | Biennial | 7/25/2020 | 302570726 | | Aeroflex | 3025C | PXI RF Digitizer | 7/25/2018 | Biennial | 7/25/2020 | 302570726 | | ETS-Lindgren | 3117 | Double Ridged Guide Antenna | 4/21/2020 | Annual | 4/21/2021 | 205956 | | Keysight Technology | N9030A | PXA Signal Analyzer | 7/24/2020 | Annual | 7/24/2021 | MY55330128 | | Rohde & Schwarz | TC-TA18 | Cross Polarized Vivaldi Antenna | 11/14/2019 | Annual | 11/14/2020 | 101057 | **Table 6-1. Test Equipment List** #### Note: For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date. | FCC ID: BCG-A2374 | PCTEST* Proud to be part of element (CERTIFICATION) MEASUREMENT REPORT (CERTIFICATION) | | Approved by:
Quality Manager | |---------------------|--|---------------|---------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Dogo 0 of 20 | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | Page 9 of 30 | ## 7.0 DESCRIPTION OF DYNAMIC FREQUENCY SELECTION TEST # 7.1 Applicability The following table from KDB 905462 D02 v02 lists the applicable requirements for the DFS testing. The device evaluated in this report is considered a client device without radar detection capability. | B | Operational Mode | | | | |---------------------------------|------------------|--------------------------------|-----------------------------|--| | Requirement | Master | Client Without Radar Detection | Client With Radar Detection | | | Non-Occupancy Period | Yes | Not required | Yes | | | DFS Detection Threshold | Yes | Not required | Yes | | | Channel Availability Check Time | Yes | Not required | Not required | | | U-NII Detection Bandwidth | Yes | Not required | Yes | | Table 7-1. DFS Applicability | | Operational Mode | | | | | |-----------------------------------|------------------|--------------------------------------|-----------------------------------|--|--| | Requirement | Master | Client
Without Radar
Detection | Client
With Radar
Detection | | | | DFS Detection Threshold | Yes | Not required | Yes | | | | Channel Closing Transmission Time | Yes | Yes | Yes | | | | Channel Move Time | Yes | Yes | Yes | | | | U-NII Detection Bandwidth | Yes | Not required | Yes | | | Table 7-2. DFS Applicability During Normal Operation | Additional requirements for devices with multiple bandwidth modes | Master Device or Client with Radar Detection | Client without Radar
Detection | |---|--|--| | U-NII Detection Bandwidth and
Statistical Performance Check | All BW modes must be tested | Not required | | Channel Move Time and Channel
Closing Transmission Time | Test using widest BW mode available | Test using the widest BW mode available for the link | | All other tests | Any single BW mode | Not required | **Note:** Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency. Table 7-3. Additional Requirement for Devices with Multiple Bandwidth Modes | FCC ID: BCG-A2374 | Proud to be part of @ element | MEASUREMENT REPORT
(CERTIFICATION) | Approved by:
Quality Manager | |---------------------|-------------------------------|---------------------------------------|---------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 10 of 30 | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | rage 10 01 30 | Per KDB 905462 D02 v02 the operational behavior and individual DFS requirements associated with these modes are as follows: #### 7.1.1 Master Devices: - a) The Master Device will use DFS in order to detect Radar Waveforms with received signal strength above the DFS Detection Threshold in the 5250 5350 MHz and 5470 5725 MHz bands. DFS is not required in the 5150 5250 MHz or 5725 5850 MHz bands. - b) Before initiating a network on a Channel, the Master Device will perform a Channel Availability Check for a specified time duration (Channel Availability Check Time) to ensure that there is no radar system operating on the Channel, using DFS described under subsection a) above. - c) The Master Device initiates a U-NII network by transmitting control signals that will enable other U-NII devices to Associate with the Master Device. - d) During normal operation, the Master Device will monitor the Channel (In-Service Monitoring) to ensure that there is no radar system operating on the Channel, using DFS described under a). - e) If the Master Device has detected a Radar Waveform during In-Service Monitoring as described under d), the Operating Channel of the U-NII network is no longer an Available Channel. The Master Device will instruct all associated Client Device(s) to stop transmitting on this Channel within the Channel Move Time. The transmissions during the Channel Move Time will be limited to the Channel Closing Transmission Time. - f) Once the Master Device has detected a Radar Waveform it will not utilize the Channel for the duration of the Non-Occupancy Period. - g) If the Master Device delegates the In-Service Monitoring to a Client Device, then the combination will be tested to the requirements described under d) through f) above. #### 7.1.2 Client Devices: - a) A Client Device will not transmit before having received appropriate control signals from a Master Device. - b) A Client Device will stop all its transmissions whenever instructed by a Master Device to which it is associated and will meet the Channel Move Time and Channel Closing Transmission Time requirements. The Client Device will not resume any transmissions until it has again received control signals from a Master Device. - c) If a Client Device is performing In-Service Monitoring and detects a Radar Waveform above the DFS Detection Threshold, it will inform the Master Device. This is equivalent to the Master Device detecting the Radar Waveform and d) through f) of section 5.1.1 apply. - d) Irrespective of Client Device or Master Device detection the Channel Move Time and Channel Closing Transmission Time requirements remain the same. - e) The client test frequency must be monitored to ensure no transmission of any type has occurred for 30 minutes. Note: If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shutdown (rather than moving channels), no beacons should appear. | FCC ID: BCG-A2374 | Proud to be part of @ element | MEASUREMENT REPORT
(CERTIFICATION) | Approved by: Quality Manager | |---------------------|-------------------------------|---------------------------------------|------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 11 of 30 | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | Page 11 01 30 | #### 7.2 DFS Detection Threshold Values The DFS detection thresholds are defined for Master devices and Client Devices with In-service monitoring. These detection thresholds are listed in the following table. | Maximum Transmit Power | Value
(See Notes 1 and 2) | |---|------------------------------| | EIRP ≥ 200 milliwatt | -64 dBm | | EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz | -62 dBm | | EIRP < 200 milliwatt that do not meet the power specral density requirement | -64 dBm | Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. **Note 2**: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. Note 3: EIRP is based on the highest antenna gain. For MIMO devices, refer to KDB Publication 662991 D01. Table 7-4: Detection Thresholds for Master Devices and Client Devices with Radar Detection #### 7.3 DFS Response Requirements DFS response requirements for Master and Client Devices are listed in the following table. | Parameter | Value | |-----------------------------------|--| | Non-occupancy period | Minimum 30 minutes | | Channel Availability Check Time | 60 seconds | | Channel Move Time | 10 seconds
See Note1 | | Channel Closing Transmission Time | 200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Note 1 and 2. | | U-NII Detection Bandwidth | Minimum 100% of the U- NII 99% transmission power bandwidth. See Note 3. | **Note 1:** Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst **Note 2:** The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions. frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic. **Table 7-5: DFS Response Requirements** | FCC ID: BCG-A2374 | Proud to be part of @ element | MEASUREMENT REPORT
(CERTIFICATION) | Approved by: Quality Manager | |---------------------|-------------------------------|---------------------------------------|------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 12 of 30 | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | Fage 12 01 30 | #### 7.4 Parameters of DFS Test Signals As the EUT is a Client Device with no Radar Detection only one type radar pulse is required for the testing. Radar Pulse type 1 was used in the evaluation of the Client device for the purpose of measuring the Channel Move Time and the Channel Closing Transmission Time. Table 7-6 lists the parameters for the Short Pulse Radar Waveforms. A plot of the Radar Pulse Type 1 used for testing is included in Section 7.6 of this report. | Radar
Type | Pulse Width
(µsec) | PRI
(µsec) | Number
of Pulses | Minimum Percentage of Successful Detection | Minimum
Number of
Trials | |---------------|-----------------------|---|--|--|--------------------------------| | 0 | 1 | 1425 | 18 | See Note 1 | See Note 1 | | 1 | 1 | Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518- 3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A | Roundup $\left\{ \left(\frac{1}{360} \right) \cdot \left(\frac{19 \cdot 10^6}{PRI_{\mu sec}} \right) \right\}$ | 60% | 30 | | 2 | 1-5 | 150-230 | 23-29 | 60% | 30 | | 3 | 6-10 | 200-500 | 16-18 | 60% | 30 | | 4 | 11-20 | 200-500 | 12-16 | 60% | 30 | | Aggrega | ate (Radar Type | 80% | 120 | | | **Note 1:** Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests. Table 7-6: Parameters for Short Pulse Radar Waveforms | Radar
Type | Pulse
Width
(µsec) | Chirp
Width
(MHz) | PRI
(µsec) | Number
of Pulses
per <i>Burst</i> | Number of <i>Bursts</i> | Minimum Percentage of Successful Detection | Minimum
Number of
Trials | |---------------|--------------------------|-------------------------|---------------|---|-------------------------|--|--------------------------------| | 5 | 50 - 100 | 5 - 20 | 1000-
2000 | 1 - 3 | 8 - 20 | 80% | 30 | Table 7-7. Parameters for Long Pulse Radar Waveforms | Radar
Type | Pulse
Width
(µsec) | PRI
(µsec) | Pulses
per Hop | Hopping
Rate
(kHz) | Hopping
Sequence
Length
(msec) | Minimum Percentage of Successful Detection | Minimum
Number
of
Trials | |---------------|--------------------------|---------------|-------------------|--------------------------|---|--|-----------------------------------| | 6 | 1 | 333 | 9 | 0.333 | 300 | 70% | 30 | Table 7-8. Parameters for Frequency Hopping Radar Waveforms | FCC ID: BCG-A2374 | Proud to be part of @ element | MEASUREMENT REPORT
(CERTIFICATION) | Approved by: Quality Manager | |---------------------|-------------------------------|---------------------------------------|------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 13 of 30 | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | Page 13 01 30 | #### 7.5 System Overview and Procedure #### DFS Test Setup per KDB 905462 D02 V02: | Radiated DFS Test Setup | \boxtimes | |--------------------------|-------------| | Conducted DFS Test Setup | | KDB 905462 D02 v02 describes a radiated test setup and a conducted test setup. DFS testing was performed using radiated test setup, as seen in Figure 7-1 below. One channel was selected in Band UNII-2C, between 5470-5725 MHz, for testing. Figure 7-1. Radiated Test Setup for DFS - 1. The "Aeroflex PXI DFS Radar Simulator and Analyzer Test Suite" is setup to provide a simulated radar pulse at the frequency that the Master and Client are operating. A Type 0 radar pulse was used. - 2. The Client Device (EUT) is set up per the diagram in Figure 7-1 and communications between the Master device and the Client is established. - 3. Client (EUT) is connected to Master (AP) via WLAN network. Additional data traffic was sent from the EUT (Client) to AP (Server) using iPerf to properly load the network. - 4. The "Aeroflex PXI DFS Radar Simulator and Analyzer Test Suite" is set to record and display 12 seconds of time, starting from where the simulated radar is generated. This time domain plot captures any transmissions occurring up to and after 10sec. Aggregate time is computed to ensure compliance. (Note: the channel may be different since the Master and Client have changed channels due to the detection of the initial radar pulse.) - 5. After the initial radar burst the channel is monitored for 30 minutes to ensure no transmissions or beacons occur. A second monitoring setup is used to verify that the Master and Client have both moved to different channels. | FCC ID: BCG-A2374 | Proud to be part of @ element | MEASUREMENT REPORT (CERTIFICATION) | Approved by: Quality Manager | |---------------------|-------------------------------|------------------------------------|------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Dogo 14 of 20 | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | Page 14 of 30 | V10.2 04/22/2020 #### 7.6 System Calibration: The following equipment setup was used to calibrate the Radar Waveform. A spectrum analyzer was used to establish the test signal level for each radar type. During this process, there were no transmissions by either the Master or Client Device. The spectrum analyzer was switched to the zero span (Time Domain) mode at the frequency of the Radar Waveform generator. Peak detection was utilized. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3 MHz. The signal generator amplitude is adjusted so that the power level measured at the spectrum analyzer is equal to the DFS detection threshold -64 dBm. The required conducted threshold at the antenna port is -64dBm + 0dBi + 1dB = -63 dBm (Section 7.2). Figure 7-2. Radar Waveform Calibration | FCC ID: BCG-A2374 | Proud to be part of @ element | MEASUREMENT REPORT (CERTIFICATION) | Approved by: Quality Manager | | |------------------------------|-------------------------------|------------------------------------|------------------------------|--| | Test Report S/N: Test Dates: | | EUT Type: | Dags 45 of 20 | | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | Page 15 of 30 | | | | | | | | #### **Radar Waveform Calibration Plot:** The conducted plots of the Radar Pulse Signals (Type 0) are given below after performing the system calibration as described in Section 7.7. #### **Short Pulse Radar Type 0:** Figure 7-3: 5500MHz - Radar Pulse Type 0 (20MHz) | FCC ID: BCG-A2374 | Proud to be part of @ element | MEASUREMENT REPORT
(CERTIFICATION) | Approved by: Quality Manager | |---------------------|-------------------------------|---------------------------------------|------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 16 of 30 | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | Page 10 01 30 | #### 8.0 EUT TEST SETUP The EUT was tested in 3 different test configurations. Mode 1: Regular Mode Mode 2: Proxy Mode 1 Mode 3: Proxy Mode 2 #### Mode 1: Regular Mode Client (EUT) is connected to Master (AP) via WLAN network. Additional data traffic was sent from the Client (EUT) to AP (Server) using iPerf to properly load the network. The Vivaldi antenna is adjusted so that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold. The Client (EUT) is associated and communicating with the AP and should change channels when the AP changes channels. Figure 8-1. Radiated DFS Test Setup (Mode 1) | FCC ID: BCG-A2374 | Proud to be part of @ element | MEASUREMENT REPORT (CERTIFICATION) | Approved by: Quality Manager | |---------------------|-------------------------------|------------------------------------|------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 17 of 30 | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | rage 17 01 30 | © 2020 PCTEST #### Mode 2: Proxy Mode 1 Client (EUT) is associated and connected to Master (AP) via WLAN network. Additional data traffic was sent from the Client (EUT) to AP (Server) using iPerf to properly load the network. The Vivaldi antenna is adjusted so that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold. The iPhone is unassociated with AP but is communicating with the Client (EUT). When the AP changes channels, both the iPhone and the Client (EUT) should change channels. Figure 8-2. Radiated DFS Test Setup (Mode 2) | FCC ID: BCG-A2374 | Proud to be part of @ element | MEASUREMENT REPORT (CERTIFICATION) | Approved by: Quality Manager | | |------------------------------|-------------------------------|------------------------------------|------------------------------|--| | Test Report S/N: Test Dates: | | EUT Type: | Dags 10 of 20 | | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | Page 18 of 30 | | | | | | | | #### Mode 3: Proxy Mode 2 Client (iPhone) is associated and connected to Master (AP) via WLAN network. Additional data traffic was sent from the Client (iPhone) to AP (Server) using iPerf to properly load the network. The Vivaldi antenna is adjusted so that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold. The EUT is unassociated with AP but is communicating with the Client (iPhone). When the AP changes channels, both the Client (iPhone) and the EUT should change channels. Figure 8-3. Radiated DFS Test Setup (Mode 3) | FCC ID: BCG-A2374 | Proud to be part of element | MEASUREMENT REPORT (CERTIFICATION) | Approved by: Quality Manager | |---------------------|-----------------------------|------------------------------------|------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Dama 40 of 30 | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | Page 19 of 30 | #### 9.0 TEST RESULTS ## 9.1 Summary Company Name: Apple Inc. FCC ID: BCG-A2374 FCC Classification: <u>Unlicensed National Information Infrastructure (UNII)</u> | | Mode | Parameter | Measured
20MHz Bandwidth | Limit | Result | |--------------------|-------------------------------------|---|--|--|--------| | - | | Channel Move
Time | 5.103s | 10 seconds | Pass | | MHz fo | Regular Mode
(Mode 1) | Channel Closing
Transmission
Time | < 200ms
+ 18.809ms (aggregate) | 200 ms + aggregate of
60ms over remaining
10 second period | Pass | | 0-5650
Band | | Non-Occupancy
Period | Monitored for 30 minutes with no client transmission | 30 minutes | Pass | | | | Channel Move
Time | 4.183 s | 10 seconds | Pass | | cluding
a) UNII | SED Canada) UNII. SED Canada UNII. | Channel Closing
Transmission
Time | < 200ms
+ 18.207ms (aggregate) | 200 ms + aggregate of
60ms over remaining
10 second period | Pass | | Hz (ex
Canad | | Non-Occupancy
Period | Monitored for 30 minutes with no client transmission | 30 minutes | Pass | | 5725 M
ISED | | Channel Move
Time | 4.089 s | 10 seconds | Pass | | - 57
 | Proxy Mode 2 (Mode 3) | Channel Closing
Transmission
Time | < 200ms
17.208 ms (aggregate) | 200 ms + aggregate of
60ms over remaining
10 second period | Pass | | 5470 | | Non-Occupancy
Period | Monitored for 30 minutes with no client transmission | 30 minutes | Pass | **Table 9-1. Summary of Test Results** #### Notes: - 1) The EUT was found to be compliant with the requirements for DFS as required for a Client Device per Part 15.407(h), RSS-247 and KDB 905462 D02 v02. - 2) Automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The list is given below: - DFS threshold count v1.1 - DFS Radar Simulator and Analyzer v2.8 (Aeroflex Inc.) - iPerf Software | FCC ID: BCG-A2374 | PCTEST* Proud to be part of element (CERTIFICATION) MEASUREMENT REPORT (CERTIFICATION) | | Approved by: Quality Manager | |---------------------|---|---------------|------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 20 of 30 | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | rage 20 01 30 | # 9.2 Channel Loading ## 9.2.1 Channel Loading Mode 1: #### **Channel Loading Notes:** Per KDB 905462 D02 v02, timing plots are required with calculations demonstrating a minimum channel loading of approximately 17% or greater. Channel loading can be estimated by setting the spectrum analyzer for zero span and approximate the transmission time. Figure 9-1. 5500MHz - Channel Loading - Mode 1 (20MHz) Figure 9-2. 5500MHz – Channel Loading Calculation – Mode 1 (20MHz) | | • | • | ` , | | |-----------|--------------|-----------------------------|------------------------------------|------------------------------| | FCC ID: I | BCG-A2374 | Proud to be part of element | MEASUREMENT REPORT (CERTIFICATION) | Approved by: Quality Manager | | Test Rep | ort S/N: | Test Dates: | EUT Type: | Page 21 of 30 | | 1C20082 | 70049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | Fage 21 01 30 | © 2020 PCTEST V10.2 04/22/2020 #### 9.2.2 Channel Loading Mode 2: Figure 9-3: 5500MHz - Channel Loading - Mode 2 (20MHz) Figure 9-4: 5500MHz - Channel Loading Calculation - Mode 2 (20MHz) | FCC ID: BCG-A2374 | Proud to be part of @ element | MEASUREMENT REPORT (CERTIFICATION) | Approved by: Quality Manager | |---------------------|-------------------------------|------------------------------------|------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 22 of 30 | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | raye 22 01 30 | © 2020 PCTEST V10.2 04/22/2020 #### 9.2.3 Channel Loading Mode 3: Figure 9-5: 500MHz - Channel Loading - Mode 3 (20MHz Figure 9-6: 5500MHz - Channel Loading Calculation - Mode 3 (20MHz) | FCC ID: BCG-A2374 | Proud to be part of @ element | MEASUREMENT REPORT (CERTIFICATION) | Approved by: Quality Manager | | |---------------------|-------------------------------|------------------------------------|------------------------------|--| | Test Report S/N: | Test Dates: | EUT Type: | Dags 22 of 20 | | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | Page 23 of 30 | | | C 4444 BOTTOT | | | | | #### 9.3 Channel Move/ Closing Transmission Time #### 9.3.1 Channel Move/ Closing Transmission Time Mode 1: #### Result | Parameter | Measured | Limit | |---------------------------------|--------------------------------|---| | Farameter | 20MHz Bandwidth | Lillit | | Channel Move Time | 5.103s | 10s | | Channel Close Transmission Time | < 200ms + 18.809ms (aggregate) | 200ms + aggregate of 60ms over remaining 10s period | #### Notes: - 1. The pulses shown in the plots below have been determined to be from the Master AP. - 2. Marker Info and Aggregate time results are shown on the right side of the plots below. Figure 9-7. 5500MHz - Channel Move/ Closing Transmission Time - Mode 1 (20 MHz) | FCC ID: BCG-A2374 | Proud to be part of @ element | MEASUREMENT REPORT
(CERTIFICATION) | Approved by:
Quality Manager | |---------------------|-------------------------------|---------------------------------------|---------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 24 of 30 | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | Page 24 01 30 | #### 9.3.2 Channel Move/ Closing Transmission Time Mode 2: #### Result | Parameter | Measured 20MHz Bandwidth | Limit | |---------------------------------|--------------------------------|---| | Channel Move Time | 4.183s | 10s | | Channel Close Transmission Time | < 200ms + 18.207ms (aggregate) | 200ms + aggregate of 60ms over remaining 10s period | Figure 9-8: 5500MHz - Channel Move/ Closing Transmission Time - Mode 2 (20 MHz) | FCC ID: BCG-A2374 | Proud to be part of @ element | MEASUREMENT REPORT
(CERTIFICATION) | Approved by:
Quality Manager | |---------------------|-------------------------------|---------------------------------------|---------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 25 of 30 | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | Fage 25 01 30 | © 2020 PCTEST # 9.3.3 Channel Move/ Closing Transmission Time Mode 3: #### Result | Parameter | Measured | Limit | | |---------------------------------|--------------------------------|---|--| | Farameter | 20MHz Bandwidth | | | | Channel Move Time | 4.089s | 10s | | | Channel Close Transmission Time | < 200ms + 17.208ms (aggregate) | 200ms + aggregate of 60ms over remaining 10s period | | Figure 9-9: 5500MHz - Channel Move/ Closing Transmission Time - Mode 3 (20 MHz) | FCC ID: BCG-A2374 | Proud to be part of @ element | MEASUREMENT REPORT
(CERTIFICATION) | Approved by:
Quality Manager | |---------------------|-------------------------------|---------------------------------------|---------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 26 of 30 | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | Page 20 01 30 | © 2020 PCTEST V10.2 04/22/2020 ## 9.4 Non-Occupancy Period # 9.4.1 Non-Occupancy Period (30 Minutes) Mode 1: Notes: 1. No frequency transmission detected during the Non-Occupancy Period of 30 minutes monitoring. Figure 9-10. 5500MHz - Non-Occupancy Period (30 Minutes) - Mode 1 (20MHz) | FCC ID: BCG-A2374 | Proud to be part of @ element | MEASUREMENT REPORT
(CERTIFICATION) | Approved by:
Quality Manager | |---------------------|-------------------------------|---------------------------------------|---------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 27 of 30 | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | Page 27 01 30 | # 9.4.2 Non-Occupancy Period (30 Minutes) Mode 2: Figure 9-11: 5500MHz - Non-Occupancy Period (30 Minutes) - Mode 2 (20MHz) | FCC ID: BCG-A2374 | Proud to be part of @ element | MEASUREMENT REPORT
(CERTIFICATION) | Approved by: Quality Manager | |---------------------|-------------------------------|---------------------------------------|------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 28 of 30 | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | Fage 26 01 30 | # 9.4.3 Non-Occupancy Period (30 Minutes) Mode 3: Figure 9-12: 5500MHz - Non-Occupancy Period (30 Minutes) - Mode 3 (20MHz) | FCC ID: BCG-A2374 | Proud to be part of @ element | MEASUREMENT REPORT
(CERTIFICATION) | Approved by:
Quality Manager | |---------------------|-------------------------------|---------------------------------------|---------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 29 of 30 | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | Fage 29 01 30 | ## 10.0 CONCLUSION The data collected relate only to the item(s) tested and show that the **Apple Smart Speaker FCC ID: BCG-A2374** is in compliance with the DFS requirements for a Client Device without radar detection in accordance with Part 15.407 of the FCC Rules and RSS-247 of the Innovation, Science and Economic Development Canada Rules. | FCC ID: BCG-A2374 | PCTEST° Proud to be part of @ element | MEASUREMENT REPORT (CERTIFICATION) | Approved by: Quality Manager | |---------------------|---------------------------------------|------------------------------------|------------------------------| | Test Report S/N: | Test Dates: | EUT Type: | Page 30 of 30 | | 1C2008270049-07.BCG | 07/20/2020 - 07/24/2020 | Smart Speaker | rage 30 01 30 |