
' I\

The Engineering Staff of ~ .0 Di•~""'... o

TEXAS INSTRUMENTS INCORPORATED
Semiconductor Group

-.

TM 990/101M
MICROCOMPUTER

USER'S
GUIDE

MARCH 1980

TEXAS INSTRUMENTS
IN C ORPORATED

This manual contains the following revisions:

Date
02/ 18/80

Revision Change
(From - to)
C to D

IMPORTANT NOTI CES

ECN Number
454310

Texas Instruments reserves the right to make changes at any time
in order to improve design and to supply the best product possible.

TI cannot assume any responsibility for any circuits shown or
represent that tbey are free from patent infringement.

Copyright© 1980

TEXAS INSTRUMENTS INCORPORATED

•

•

SECTION

1 .

2.

3.

TABLE OF CONTENTS

TITLE

INTRODUCTION
1.1 General
1.2 Manual Organization
1.3 Product Index . ..
1.4 Board Characteristics
1.5 General Specifications
1.6 Reference Documents .
1.7 Glossary

INSTALLATION AND OPERATION OF TM990/101M-1
2.1 General .•
2 .2 Required Equipment

2. 3
2.4

2.2 .1 Power Supply
2.2.2 Terminals and Cables
2.2.3 Power Cable/Chassis
2.2.4 Parallel I/O Connector
2.2.5 Miscellaneous Equipment
Unpacking
Power and Terminal Hookup . . .
2.4.1 Power Supply Connections
2 . 4.2 Terminal Hookup
2.4.3 Five-Switch DIP and Status LED .

2.5 Operation
2.5.1 Verification .•
2.5.2 Power-Up/Reset

2.6 Sample Programs .. .
2.6.1 Sample Program 1
2.6.2 Sample Program 2

2.7 Debug Checklist .

TIBUG INTERACTIVE DEBUG MONITOR
3.1 General
3.2 TIBUG Commands

3.2.1 Execute Under Breakpoint (B)
3.2.2 CRU Inspect/Change (C) .
3.2.3 Dump Memory to Cassette/Paper Tape (D)
3.2.4 Execute Command (E)
3.2.5 Find Command (F)
3.2.6 Hexadecimal Arithmetic (H) •
3.2.7 Load Memory from Cassette or Paper Tape (L)
3.2.8 Memory Inspect/Change, Memory Dump (M) ...
3.2.9 Inspect/Change User WP, PC, and ST Registers (R)
3.2.10 Execute in Single Setp Mode (S)
3.2. 11 TI 733 ASR Baud Rate (T)
3.2.12 Inspect/Change User Workspace (W)

iii

PAGE

1-1
1-4
1-4
1-5
1-5
1-6
1-6

2-1
2-1
2-1
2-1
2-2
2- 2
2-2
2-2
2- 2
2- 3
2- 5
2-8
2-8
2-8
2-8
2- 8
2-8
2-10
2-10

3- 1
3-1
3-3
3-4
3-5
3-8
3- 8
3-9
3-9
3-10
3-11
3-12
3-13
3-1 3

SECTION

4.

5.

3.3

3.4

TABLE OF CONTENTS (Continued)

TITLE

User Accessible Utilities•...... .
3.3.1 Write One Hexadecimal Character to Terminal (XOP 8)
3.3.2 Read Hexadecimal Word from Terminal (XOP 9)
3.3.3 Write Four Hexadecimal Characters to Terminal (XOP 10).
3.3.4 Echo Character (XOP 11)
3.3.5 Write One Character to Terminal (XOP 12)
3.3.6 Read One Character from Terminal (XOP 13)
3.3.7 Write MEssage to Terminal (XOP 14) ..
TIBUG Error Message • . • . . .

TM990/101M INSTRUCTION EXECUTION
4.1 General
4.2 User Memory
4 .3 Hardware Registers

4.3.1 Program Counter (PC)
4.3.2 Workspace Pointer (WP)
4.3.3 Status register (ST)

4.4 Software Registers
4.5 Instruction Formats and Addressing Modes

4.6

4.5.1 Direct Register Addressing (T=002) . .
4.5.2 Indirect Register Addressing (T=01 2). .
4.5.3 Indirect Register Autoincrement Addressing (T=11 2).
4.5.4 Symbolic Memory Addressing, Indexed (T=102)
4.5 .5 Symbolic Memory Addressing, Indexed (T=102)
4.5.6 Immediate Addressing
4.5.7 Program Counter Relative Addressing
Instructions
4 .6 .1 Format 1 Instructions .
4.6.2 Format 2 Instructions .•
4.6.3 Format 3/9 Instructions •
4.6.4 Format 4 (CRU Multibit) Instructions
4.6.5 Format 5 (Shift) Instructions
4.6.6 Format 6 Instructions
4.6.7 Format 7 (RTWP, Control) Instructions
4.6.8 Format 8 (Immediate, Internal Register

Load/Store) Instructions
4. 6.9 Format 9 (XOP) Instructions ..•.. .

PROGRAMMING
5.1 General•. .
5.2 Programming Considerations

5.2.1 Program Organization
5.2.2 Executing TM990/100M Programs on the TM990/101M
5.2.3 Required Use of RAM in Programs .

5.3 Programming Environment .
5.3.1 Hardware Registers •••.
5.3.2 Address Space
5.3.3 Vectors (Interrupt and XOP)
5.3.4 Workspace Registers .

iv

PAG~

3-14
3- 15
3-15
3-16
3-17
3-17
3-17
3-17
3-18

4-1
4-1
4-1
4-1
4-2
4-2
4-4
4-7
4-8
4-8
4-11
4-1
4-1.
4-13
4-13
4-14
4-18
4-20
4-22
4-24
4-25
4-27
4-29

4-31
4-33

5-1
5-3
5-3
5-3
5-3
5-4
5-4
5-5
5-5
5-6

SECTION

6 .

, ..

5.4

5.5

5 .6
5.7
5.8

5.9

5. 10
5. 11
5. 12
5.13
5. 14

TABLE OF CONTENTS (Continued)

TITLE

Linking Instructions . . • . .
5.4.1 Branch Instruction (B)
5.4.2 Branch and Link (BL). . • .
5.4.3 Branch and Load Workspace Pointer (BLWP).
5 . 4. 4 Return with Workspace Pointer (RTWP).
5.4.5 Extended Operation (XOP) ..
5.4.6 Linked-Lists ..•
Communications Register Unit
5.5.1 CRU Addressing
5.5.2 CRU Timing
5 .5 .3 CRU Instructions
Dynamically Relocatable Code

(CRU)

Programming Hints . • . .
Interfacing with TIBUG . . .
5.8.1 Program Entry and Exit
5.8.2 I/O Using Monitor XOP's
Interrupts and XOPs
5.9.1 Interrupt and XOP Linking Areas
5 .9. 2 TMS 9901 Interval Timer Interrupt Program
5.9 . 3 Example of Programming Timer Interrupts for

TMS 9901 and TMS 9902 •....
Move Block Following Passing
Block Compare Subrouti ne •
Unit ID DIP-Switch ..•
CRU Addressable LED

of Parameters

Using Main and Auxiliary TMS 9902's for I/0

THEORY OF OPERATION
6 .1 General .. .•
6.2 Power Specifications
6.3 System Structure
6.4 System Buses . ..

6.5
6 . 6
6.7

6 .8
6.9

6 .4.1 Address Bus
6.4 . 2 Data Bus . •
6.4.3 CRU Bus
6.4.4 Control Bus .
System Clock . . .
Central Processing Unit
Reset/Load Logic .
6 . 7.1 Reset Function
6.7.2 Load Function .
6.7 . 3 Reset and Load Filtering
6 .7.4 CLRCRU Signal .
External Instructions
Address Decoding
6.9 .1 Memory Address Decoding
6.9.2 CRU Select

v

PAGE

5-6
5-6
5-7
5-8
5-9
5-9
5-10
5-10
5-13
5-14
5-14
5-19
5-21
5-21
5- 21
5-22
5-24
5-24
5-30

5- 32
5-50
5- 51
5-52
5-52
5-52

6-1
6-1
6- 4
6-4
6-4
6-4
6-4
6- 6
6-7
6- 8
6- 10
6-1 0
6-13
6-14
6-14
6-1 4
6-1 5
6-1 5
6-1 9

SECTION

1.

6. 10

6. 11
6. 12
6.13

6. 14
6. 15

6. 16

6. 17
6. 18
6. 19

TABLE OF CONTENTS (Continued)

Memory Timing
6. 10. 1 Ready
6. 10. 2 Wait .
6 . 1 0 . 3 MEMCYC

Signals .

Read-Only Memory
Random-Access Memory
Buffer Control ..••

TITLE

6.13.1 Address and Data Buffers ..
6.13.2 Control Buffers
6.13.3 HOLD, HOLDA, and OMA.
Interrupt Structure
Parallel I/O and System Timer • .
6. 15. 1 Parallel I/O . . .
6. 15.2 System Timer •...
Main Communications Port
6.16.1 EIA Interface
6.16.? TTY Interface •.••
6.16.3 Multidrop Interface
Auxiliary Communications Port
Unit ID Switch
Status Indicator

OPTIONS
7. 1 General •
7.2 On-Board Memory Expansion ..

1.3
7.4
7.5

7.6
7.7
7.8
1.9
7. 10
7. 11

7.2.1 EPROM Expansion
1. 2.2 RAM Expansion
Slow EPROM
Serial Communication Interrupt
RS-232-C/TTY/Multidrop Interfaces
7.5.1 TTY Interface
7.5.2 RS-232-C Interface .
7.5.3 Multidrop Interface.
External System Reset/Load.
Remote Communications .
Memory Map Change . • • . .
TM 990/402 Line-by-Line Assembler
TM 990/301 Microterminal
OEM Chassis

vi

(Main Port, P2) .

PAGE.

6-26
6-26
6-27
6-27
6-27
6-28
6-28
6-30
6-30
6-31
6-31
6-32
6-34
6-34
6-35
6-35
6-36
6-37
6-38
6-39
6-39

7-1
7-1
7-1
7-6
7-7
1-1
1-1
7-7
1-1
7-8
7-1 2
7-12
7-12
7-12
7-12
7-13

SECTION

8 .

TABLE OF CONTENTS (Continued)

APPLICATIONS
8.1 General
8.2 Off-Board RAM
8.3 Off-Board TMS 9901.

TITLE

8 . 4 Off-Board Eight-Bit I/O Port .
8.5 Extra RS-232-C Terminal Port.
8 .6 Direct Memory Access (DMA) Applicati ons

8.6.1 DMA System Timing .. .
8.6.2 Memory Cycle Timing ..
8.6.3 DMA System Guidelines. . . .
8.6.4 Multiple-Device Direct Memory Access Controller

8.7 EIA Serial Port Applications.
8.7.1 Cable Pin Assignments.
8.7.2 Modem (Data Set) Interface Signal Definitions.

APPENDICES

A WIRING TELETYPE MODEL 3320/5JE FOR TM 990/101M
B EIA RS- 232-C CABLING
C ASCII CODE
D BINARY, DECIMAL, AND HEXADECIMAL NUMBERING
E PARTS LIST
F SCHEMA TI CS
G 990 OBJECT CODE FORMAT
H CHASSIS INTERFACE CONNECTOR (P1) SIGNAL ASSIGNMENTS
I TM 990/301 MICROTERMINAL
J CRU INSTRUCTION AND ADDRESSING EXAMPLES USING TMS 9901
K EXAMPLE PROGRAMS

INDEX

vii/viii

PAGE

8- 1
8-1
8-1
8-1
8- 6
8-7
8-7
8-11
8-11
8-12
8-17
8-17
8-19

FIGURE

1-1
1-2
1- 3

2-1
2- 2
2-3
2-4
2-5

3-1
3-2
3-3

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11

5-1
5-2

5- 3
5-4
5-5
5-6
5-7
5-8

5-9

5-10

5-11
5-12
5-13

LIST OF ILLUSTRATIONS

TITLE

TM 990 / 101M Major Components •
TM 990/101M Dimensions and Component Placement
Main and Expansion EPROM and RAM

Power Supply Hookup
TM 990/101M Board In TM 990/510 Chassis
74 3 KSR Terminal Hookup
Connector P2 Connected to RS-232- Device (Model 733 ASR)
Connector P2 Connected to TTY Device

Memory Requirements For TIBUG
CRU Bits Inspected By C Command
Tape Tabs

Memory Map
Status Register
Workspace Example
TM 990/101M Instruction Formats
Direct Register Addressing Example
Indirect Register Addressing Example
Indirect Register Autoincrement Addressing Example
Direct Memory Addressing Example
Direct Memory Addressing, Indexed Example
BLWP Example
XOP Example

Sour ce Listing
Example of Separate Programs Joined By Branches

t o Absolute Addresses
Linked List Example
CRU Address In Regis ter 12 vs.
TMS 9900 CRU Interface Timing
LDCR I nstruction

Addres s Bus Li nes

STCR Instruction
Addition of Displacement and R12 Contents

to Drive CRU Bit Address .
Example of Program With Coding Added to Make

it Relocatable
Examples of Non Self-Relocating Code and

Self-Relocating Code ...
Interrupt Sequence
Six-Word Interrupt Linking Area
Seven-Word XOP Interrupt Linking Area

ix

PAGE

1-2
1-3
1-5

2-4
2- 5
2- 6
2- 6
2-1

3- 2
3-4
3-1

4-2
4- 3
4-6
4-7
4-9
4-10
4-1 0
4-1 2
4-1 3
4- 30
4- 35

5- 2

5- 7
5- 11
5- 13
5-1 5
5- 16
5-1 7

5-18

5- 19

5-20
5- 26
5-27
5-29

FIGURE

5-14
5-15
5-16
5-17
5-18
5-19
5-20

5-22
5-23

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16

7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12

LIST OF ILLUSTRATIONS (Continued)

TITLE

Enabling and Triggering TMS 9901 Interval Timer
Example of Code to Run TMS 990 1 Interval Timer
Example Program Using Timer Interrupts 3 and 4
Move Block of Bytes Example Subroutine
Compare Blocks of Bytes Example Subroutine
Reading the DIP Switch
Coding Example t o Ascertain System Configuration

Through DIP Switch Settings • . . . • .
Coding Example to Blink L.E.D. On and Off ..
Example Proglram to Converse Through Main and

Auxiliary TMS 9902's

TM 990/101M Block Diagram
Crystal-Controlled Operation
TMS 9900 Pin Functions
TMS 9900 Data and Address Flow
TMS 9900 CPU Flowchart
RESET and LOAD Logic
TM 990/101M Memory Addressing .
Memory Address Decode PROM
Decoding Circuitry for CRU I/O Addresses
TMS 9900 Memory Bus Timing
Read-Only Memory
Random Access Memory
TMS 9901
Serial I/O Port EIA Interface
Serial I/O Port TTY Interface
Multidrop Interface .

Jumper Placement
Memory and Capacitor Placement
Memory Expansion Maps . •
Four Interrupt-Causing Conditions at TMS 9902
Multidrop System
Multidrop Cabling
Master-Slave Full Duplex Multidrop System
Half-Duplex Multidrop System
Line-By-Line Assembler Output .
TM 990/301 Microterminal
TM 990/510 OEM Chassis . • • .
OEM Chassis Backplane Schematic

x

PAGE

. 5-31

. 5-33
5-38
5-50
5-51

.. 5-53

. 5-54
5- 55

5-57

6-2
.. 6-8

• • • 6-9
. . . 6-11

. 6-12
.. 6-13

6-16
. 6-18

6-20
. 6-26

6-28
6-29

. • • 6-33
. 6-35
. 6-36
. 6-37

.. 7-2
7-3

. 7-6
.• 7-8

7-9
7-9
7-10

. 7-11
7-14
7-15

. 7-1 6

. 7-17

FIGURE

8-1
8-2
8-3
8-4
8-5
8-6
8-7
8- 8
8-9
8-10
8-11
8-1 2
8-13
8-1 4

LIST OF ILLUSTRATIONS (Continued)

TITLE

Major Components Used in I/O
Off-Board Memory
Circuitry to Add TMS 9901 Off-Board
8-Bit 9905/06 Port
RS-232-C Port
DMA Bus Control
CPU HOLD and HOLDA Timing
DMA System Timing
Memory Cycle Timing
DMA System Block Diagram
DMA Device Controller
DMA Controller
DMA Controller Timing
Cable Connections ...

xi/xii

PAGE

8- 2
8-3
8- 4
8-5
8-6
8-8
8- 9
8-10
8-12
8-13
8- 13
8- 14
8-1 6
8-17

"

(

TABLE

1-1

2 -1

3-1
3-2
3-3
3-4

4-1
4-2
4-3
4-4

5-1
5-2
5-3
5-4
5- 5
5-6
5-7

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6- 9
6-10

7-1
7- 2
7-3
7-4
7- 8

8-1
8-2
8- 3
8- 4

LIST OF TABLES

TITLE

TM 990/101M Configurations .

Board Jumper Positions as Shipped

TIBUG Commands
Command Syntax Conventions
User Accessible Utilities
TIBUG Error Messages

Status bits Affected by Instructions
Instruction Description Terms
Instruction Set, Alphabetical Index
Instruction Set, Numerical Index ..

Assembler Directives Used in Examples
Register Reserved Application
TM 990/101M Predefined CRU Addresses
Preprogrammed Interrupt and User XOP Trap Vectors
Interrupt and User XOP Linking Area
Interrupt Example Program Description
ASRFLAG Values

Device Supply Voltage Pin Assignments
Bus Signals
Control Bus Functions
External Instructions
TM 990/101 CRU Map . .
Implicit Decoded CRU Bit Addresses .
On-Board Device CRU Address
Data Buffers
Interrupt Characteristics
Dedicated Interrupt Description

Master Jumper Table
Jumper Pins by Board Dash Number (Factory Installation)
Slow EPROM Table
Multidrop Jumper Table ...
Half-Duplex Multidrop System

103/113 Data Set Cable
202/212 Data Set Cable
201 Data Set Cable .
Data Terminal Cable

xiii

PAGE

1-4

2- 3

3- 1
3- 3
3- 14
3-18

4-5
4-14
4-15
4-17

5- 1
5- 6
5 - 12
5- 24
5- 25
5- 35
5- 60

6- 3
6- 5
6- 6
6-14
6- 21
6- 25
6- 25
6- 30
6- 31
6-31

7-4
7- 5
7-7
7- 10
7- 11

8- 17
8-18
8-18
8-1 9

•

SECTION 1

INTRODUCTION

1.1 GENERAL
The Texas Instruments TM 990/101M is a self-contained microcomputer on a single
printed-circuit board. The board's component side is shown in Figure 1-1, which also
highlights major features and components. Figure 1-2 shows board dimensions. This
microcomputer board contains features found on computer systems of much larger size,
including a central pr oc essing unit (CPU) with hardware multiply and divide,
programmable serial and parallel I/O lines, external interrupts, and a debug-monitor

~ to assist the programmer in program development and execution. Other features include:

• TMS 9900 microprocessor based system: the microprocessor with the minicom-
puter instruction set - software compatible with other members of the 990
family .

• 1K x 16 bits of TMS 4045 random-access memory (RAM) expandable on-board to
2K x 16 bits.

• 1K x 16 bits of TMS 2708 erasable programmable read-only memory (EPROM), ex
pandable on-board to 2K x 16 bits. Simple jumper modifications enable sub
stitution of the larger TMS 2716 EPROM's (16K bits each) for the smaller

TMS 2708's (8K bits each) . Four TMS 2716's permit EPROM expansion to 4K x 16
bits.

NOTE
Three board configurations are available. The characteristics
of each configuration are explained in paragraph 1.3.

• Buffered address, data, and control lines for off-board memory and I/O ex-
pansion; full OMA capabilities are provided by the buffer controllers.

• 3 MHz crystal-controlled clock .

• One 16-bit parallel I/O port, each bit is individually programmable.

• Modified EIA RS-232-C serial I/O interface, capable of communication to both
EIA-compatible terminals and popular modems (data sets).

• A local serial I/O port, with interfaces for an EIA terminal and either a
Teletype (TTY) or a twisted-pair balanced- line multidrop system (interface
choices are detailed in paragraph 1.3).

• Three programmable interval timers.

• 17 prioritized interrupts, including RESET and LOAD functions. Interrupt 6
is level triggered (active LOW) and edge-triggered (either polarity) and
latched on-board.

• A directly addressable five-position DIP switch and an addressable light
emitting diode (LED) for custom system applications.

• PROM memory decoder permits easy reassignment of memory map configuration;
see Figure 1-3 for memory map of the standard board .

1-1

TMS 9902 FOR MAIN PORT-------

5 SWITCH l.D. DIP TMS 9902 FOR AUXILIARY PORT ---~

RESET SWITCH S1 PARALLEL 1/0 PORT (P4)
E.D.

'"%j

~·
()Q
c
'1
<D

-'
I

>-3
3:

'° '° 0
...... I§ I
r\)

3:

3:
Pl
:......
0
'1

()
0 s
'O
0

·~ I~

CONNECTOR Pl RAM SOCKETS EPROM SOCKETS

\ 74S287 MEMORY DECODE PROM

T MS 9 900

'------TIM 9904 CLOCK DRIVER

'-----------48 MHz CRYSTAL ~---ADDRESS AND DATA BUFFERS

~ 4 •

~ "' ~
,., n (\

""

·~ ~ I :::> :::> ..

:l [Z:l ";

u

"" I~

n

N

"' :::>

.. o o :::> LJ ~ n.. n oc~ 0

w., Liii - :::> lJ ~ I w ~ ~ : N ! lo
;c:::J- c;u~ - - (h 5 ~ ~ i~

r~ L .. :ic=::JO -x L~ ~ ~D ! ~ ~
;:; ~ 91 dN; t; ., ~·:J - 0

1 ~"6 ~,. ~2 d:,'1 ; ;) , n _~~ , n _-0 ·•

o~ ~/, ... D ;· o~· ~ u u __ ~~
:: TI~:= o =·:o~cfo· u: ~ u ~ ·~·
~~- -~ o~ ff· o, U:! o.

Ill r_} I)

0 ~ I ~-,l I c~ I I •~' f 0 l fl~ I I 1 , I ~ •

~----------- 7.5 INCHES -------------~

Figure 1-2 . TM 9901_1Q1~._Dimensions and Component Placement

1-3

(/)

w
:t:
(.)

z
C!

1.2 MANUAL ORGANIZATION
Section 1 covers board specifications and characteristics . A glossary in par agraph 1.7
explains terms used throughout the manual.

Section 2 explains how to install, power-up, and operate the TM 990/10 1 microcomputer
with the addition of a data terminal, power supplies, and appropriate connect ors.

Section 3 explains how to communicate with the TM 990/ 101M using the TIBUG monitor.
This versatile monitor, complete ~lth supervisor calls and operator communication
commands, facilitates the development and execution of software.

Section 4 describes the instruction set of the TM 990/101M, giving examples of each
class of instructions and providing some explanation of the TMS 9900 architecture .

Section 5 explains basic programming procedures for the microcomputer, giving an
explanation of the programming environment and hardware-dependent features. Numerous
program examples are included for utilizing the various facilities of the TM 990/101M.

Section 6 is a basic theory of operation, explaining the hardware design configuration
and circuitry. This section provides explanations of the bus structure , the control
logic , and the various subsystems which make up the microcomputer.

Section 7 describes various options available for the microcomputer, both those
supplied on-board and those which Texas Instruments offers for off-board expansion of
the system.

Section 8 features various hardware applications which can be built using the TM
990/101M.

1.3 PRODUCT INDEX
The TM 990/101M microcomputer is avai lable in three different configurations, which
are specified by a "dash number" appended to the product name; e . g . , TM 990/101M-1.
These configurations are listed in Table 1-1. A memory map is shown in Figure 1-3.

Table 1-1. TM 990/101M Configurations

Main Serial Port
Option (EIA

TM 990/101M EPROM Terminal
Dash No. Socketed Program RAM I/F Stand)

-1 2 TMS 2708 TIBUG Monitor 4 TMS 4045 TTY
(1K x 16) (1K x 16)

-2 2 TMS 2716 Blank 4 TMS 4045 Multidrop
(2K x 16) (1K x 16)

- 3 4 TMS 2716 Blank 8 TMS 4045 TTY
(4K x 16) (2K x 16)

1-4

•

MAIN EPROM 0

EXPANSION
EPROM

EXPANSION
RAM

MAIN RAM

TM 990/ lOlM

07F F

OFFF

'EPROM's programmed w ith TIBUG monitor.

Figure 1-3. Main And Expansion EPROM and RAM

1.4 BOARD CHARACTERISTICS
Figure 1-1 shows the major portions and components of the microcomputer. The system
bus connector is P1, which is a 100-pin (50 each side) PC board edge connector spaced
on 0.125 inch centers. Connector P2 is the main serial port and P3 is the RS-232-C
auxiliary serial port. Both connectors are standard 25-position female jacks used in
RS-232-C communications. The parallel I/O port is PC board edge connector P4, which
has 40 pins (20 each side) spaced on 0.1-inch centers.

Figure 1-2 shows the PC board silkscreen markings which detail the various components
on the board; also included are the board dimensions and tolerances.

1.5 GENERAL SPECIFICATIONS

+5 v +12 v -12 v
Power Consumption TYP MAX TYP MAX TYP MAX

TM 990/101M-1 1.8 2.6 0.30 0.50 0.25 o.4o
TM 990/101M-2 1. 8 2.6 0.30 0.50 0.25 o.4o

Clock Rate: 3 MHz

Baud Rates (set by TIBUG): 110, 300, 600, 1200, 2400, 4800, 9600, 19200

1-5

Memory Size: The microcomputer is shipped with:
RAM: Four TMS 4045 (1K x 4 bits each)
EPROM: Two TMS 2708 (1K x 8 bits each), preprogrammed with TIBUG.

Total capacity is:
RAM: Eight TMS 4045's (1K x 4 bits each)
EPROM: Four TMS 2708 1 s (1K x 8 bits each)

or
Four TMS 2716's (2K x 8 bits each)

Board Dimensions: See Figure 1-2

Parallel I/O Port (P4): One 16-bit port, uses TMS 9901 programmable systems interface

Serial I/O Port (P2 and P3): Two asynchronous ports:
Main port (P2) has two interfaces: RS-232-C answer mode and either a TTY or a
balanced-line differential multidrop interface.

Auxiliary port (P3) meets RS-232-C specification interface, capable
of either originate or answer mode.

Both serial ports use TMS 9902 asynchronous communication controllers, but the
Auxiliary Port will readily accept the TMS 9903 synchronous communication
controller. Simply plug in the TMS 9903 for synchronous systems.

1.6 REFERENCE DOCUMENTS
The following documents provide supplementary information for the TM 990/101M user's
manual.

• TMS 9900 Microprocessor Data Manual
• TMS 9901 Programmable Systems Interface Data Manual
• TMS 9902 Asynchronous Communication Controller Data Manual
• TMS 9903 Synchronous Communication Controller Data Manual
• TMS 990 Computer, TMS 9900 Microprocessor Assembly Language Programmer's

Guide (P/N 943441-9701)
• TM 990/301 Microterminal
• TM 990/401 TIBUG Monitor Listing
• TM 990/402 Line-by-Line Assembler User's Guide
• TM 990/402L Line-by-Line Assembler Listing
• TM 990/502 Cable Assembly (RS-232-C)
• TM 990/503 Cable Assembly (TI Terminal 743 or 745)
• TM 990/504 Cable Assembly (Teletype)
• TM 990/506 Cable Assembly (Modem cable for /101 board)
• TM 990/510 Card Chassis
• TM 990/511 Extender Board User's Guide
• TM 990/512 Prototyping Board User's Guide

1.7 GLOSSARY
The following are definitions of terms used with the TM 990/101M. Applicable areas in
this manual are in parentheses.

Absolute Address: The actual memory address in quantity of bytes. Memory addressing is
usually represented in hexadecimal from 000016 to FFFF16 for the TM 990/101M.

Alphanumeric Character: Letters, numbers, and associated symbols.

ASCII Code: A seven-bit code used to represent alphanumeric characters and control
(Appendix C).

1-6

Assembler: Program that translates assembly language source statements into object
code.

Assembly Language: Mnemonics which can be interpreted by an assembler and translated
into an object program (paragraph 4.6).

Bit: The smallest part of a word; it has a value of either a 1 or 0.

Breakpoint: Memory address where a program is intentionally halted. This is a program
d'e bugging tool.

Byte: Eight bits or half a word.

Carry: A carry occurs when the most-significant bit is carried out in an arithmetic
operation (i.e., result cannot be contained in only 16 bits), (paragraph 4.3.3.4).

Central Processing Unit (CPU): The "heart" of the computer: responsibilities include
instruction access and interpretation, arithmetic functions, I/O memory access. The
TMS 9900 is the CPU of the 'IM 990/101M.

~: Dot-like paper particles resul~ing from the punching of paper tape.

Command Scanner: A given set of instructions in the TIBUG monitor which takes the
user's input from the terminal and searches a table for the proper code to execute.

Context Switch: Change in program execution environment, includes new program counter
(PC) value and new workspace area.

CRU (Communications Register Unit): The TMS 9900's general purpose, command-driven
input/output interface. The CRU provides up to 4096 directly addressable input and
output bits (paragraph 4.8).

Effective Address: Memory address value resulting from interpretation of an
instruction operand, required for execution of that instruction.

EPROM: See Read Only Memory.

Hexadecimal: Numerical notation in the base 16 (Appendix D) .

Immediate Addressin : An immediate or absolute value (16-bits) is part of the
instruction second word of instruction).

Indexed Addressing: The effective address is the sum of the contents of an index
register and an absolute (or symbolic) address (paragraph 4.5.3.5).

Indirect Addressing: The effective address is the contents of a register (paragraph
4.5.3.2).

Interrupt: Context switch in which new workspace pointer (WP) and program counter (PC)
values are obtained from one of 16 interrupt traps in memory addresses 0000 16 to
003E 16 (paragraph 4.9).

I/O: The input/output lines are the signals which connect an external device to the
d'ata lines of the TMS 9990.

1-7

Least Significant Bit (LSB): Bit having the smallest value (samllest power of base 2);
represented by the right-most bit.

Link: The process by which two or more object code modules are combined into one, with
cross-referenced label address locations being resolved.

Load: Transfer control to operating system using the equivalent of a BLWP instructior
~ectors in upper memory (FFFC 15 and FFFE 15). See Reset.

Loader: Program that places one or more absolute or relocatable object programs into
memory (Appendix G).

Machine Language: Binary code that can be interpreted by the CPU (Table 4-4).

Monitor: A program that assists in the real-time aspects of program execution such as
operator command interpretation and supervisor call execution. Sometimes called
supervisor (Section 3).

Most Significant Bit (MSB): Bit having the most value; the left-most bit representing
the highest power of base 2. This bit is often used to show sign with a 1 indicating
negative and a 0 indicating positive.

Object Program: The hexadecimal interpretations of source code output by an assembler
program. This is the code executed when loaded into memory.

One's Complement: Binary representation of a number in which the negative of the
number is the complement or inverse of the positive number (all ones become zeroes,
vice versa). The MSB is one for negative numbers and zero for positive. Two
representations exist for zero: all ones or all zeroes.

Op Code: Binary operation code interpreted by the CPU to execute the instruction
(paragraph 4.5.1).

Overflow: An overflow occurs when the result of an arithmetic operation cannot be
represented in two's complement (i.e . , in 15 bits plus sign bit), (paragraph 4.3.3.5).

Parity: Means for checking validity of a series of bits, usually a byte. Odd parity
means an odd number of one bits; even parity means an even number of one bits. A
parity bit is set to make all bytes conform to the selected parity. If the parity is
not as anticipated, an error flag can be set by software. The parity jump instruction
can be used to determine parity (paragraph 4.3.3.6).

PC Board: (Printed Circuit Board) a copper-coated fiberglass or phenolic board on
which areas of copper are selectively etched away, leaving conductor paths forming a
circuit. Various other processes such as soldermasking and silkscreen markings are
added to higher quality PC boards.

Program Counter (PC): Hardware register that points to the next instruction to be
executed or next word to be interpreted (paragraph 4.3.1).

~: See Read Only Memory.

Random Access Memory (RAM): Memory that can be written to as well as read from (vs.
ROH).

Read Only Memory (ROM): Memory that can only be read from (can't change contents).
Some can be prograrmned (PROM) using a PROM burner. Some PROM's can be erased (EPROM's)
by exposure to ultraviolet light.

1-8

•

Reset£ Transfer control to operating system using the equivalent of a BLWP instruction
to vectors in lower memory (000016 and 000215). See Load.

Source Program: Programs written in mnemonics that can be translated into machine
language (by an assembler).

Status Register (ST): Hardware register that reflects the outcome of a previous
instruction and the current interrupt mask (paragraph 4.3.3).

Supervisor: See Monitor

Utilities: A unique set of instructions used by differnt parts of the program to
perform the same function. In the case of TIBUG, the utilities are the I/0 XOP's
(paragraph 3.3).

Word: Sixteen bits or two bytes.

Workspace Register Area: Sixteen words, designated registers 0 to 15, located in RAM
for use by the executing program (paragraph 4.4).

Workspace Pointer (WP): Hardware register that contains the memory address of the
beginning (register o) of the workspace area (paragraph 4 . 3.2) .

1-9

"

•

SECTION 2

INST·ALLATION AND OPERATION OF TM 990/101M-1

2. 1 GENERAL
This section explains procedures for unpacking and setting up the TM 990/101M board
for operation. This section assumes (1) the TIBUG monitor is resident on EPROM's as
initially shipped from the factory, and (2) that a terminal suitable for connection to
the main communications port is used with the proper cable assembly.

CAUTION
Be sure that the correct cable assembly is used with
your data terminal. For teletypewriters (TTY), refer to
Appendix A. For RS-232-C compatible terminals, refer to
Appendix B for the signal configuration used by the
main I/O port. Most RS-232-C compatible terminals, such
as a Lear Siegler ADM-1, will require the TM 990/502
cable, or equivalent. A TI 743 or 745 must use a TM
990/503 cable, or equivalent because of the connector
on the terminal end of the cable. A TI 733 requires the
use of a TM 990/50~ cable, or equivalent. Many RS-232-C
compatible te('1ni nals come with their own cables, and
thererore will probably work with no problem.

2.2 REQUIRED EQUIPMENT
The basic equipment required, along with appropriate options, is explained in the
following paragraphs .

2 . 2.1 POWER SUPPLY
A power supply capable of meeting at least the following specification is required:

Voltage

+5 v
-12 v
+12 v

Regulation

3%
3%
3%

Current

1.8 A
0.3 A
0.4 A

A heavier duty supply is recommended, if possible, especially for supplying the +5
voltage .

2.2.2 TERMINALS AND CABLES
A 25-pin RS-232 male plug, type DB25P, is required. Ready made cables are available
from TI: see Appendix A or B.

• RS-232-C compatible terminal, including ti1e TI 733 (using its own cable):
see Appendix B to verify cabling you already have, or for" i'l -'>t'"'•Jc ti ons to
make a custom cable.

• TI 743/745: see Appendix B for special cabling required (these terminals
usually come with the correct cable).

• Teletype Model 3320/5JE (for TM 990/101M-1 and -3 microcomputer boards
only): see Appendix A for required modifications for 20 mA neutral

current-loop operation and proper cable connections.

2-1

2.2.3 POWER CABLE/CHASSIS
Use of a TM 990/510 OEM chassis greatly facilitates operation and setup. Alternately,
one of the following 100-pin, 0.125 inch (center-to-center) PCB edge connectors may be
used to interface with connector P1, such as with wire-wrap models:

• TI H321150
• Amphenol 225-804-50
• Viking 3VH50/9CND5
• Elco 00-6064-100-061-001.

2.2.4 PARALLEL I/O CONNECTOR
If the P4 parallel I/O port is used, a ribbon cable with a 40-pin, 0.1-inch center
spacing PCB edge connector is needed. (The TIBUG monitor does not use the parallel
port in its normal processing.) Wire-wrap connector examples are as follows:

e TI H311120
• Viking 3VH20/IJND5.

2.2.5 MISCELLANEOUS EQUIPMENT
• Volt-ohmmeter to measure completed/open connections and to verify power sup

ply voltages and connections.

• If any custom connections are required, a soldering iron (25-45 watt), rosin
core solder, and wire are needed. Suggested wire sizes are 18 AWG insulated
stranded wire for power connections, 24 AWG insulated stranded wire for I/O
connections.

2.3 UNPACKING
Lift the TM 990/101M board from its carton and remove the protective wrapping. Check
the board for shipping damage . If any damage is found, notify your TI distributor.

Verify that at least the following items are included:
• TM 990/101 User's Guide (this manual)
e TM 990/401 TIBUG Monitor Listing
• Data Manuals for the TMS 9900, TMS 9901, and TMS 9902

2.4 POWER AND TERMINAL HOOKUP
These procedures assume that the TIBUG monitor is resident in the required address
space (000016 to 07FF16), and that a terminal and cable of the proper type to match
the intended serial interface (TTY, EIA, multidrop) is also employed .

Check the board and verify that the jumper configuration is as described in Table 2-1.
Table 7-1 (in Section 7, Options) further defines jumper configurations.

2-2

Table 2-1. Board Jumper Positions As Shipped

Function

[nterrupt 4 source
Interrupt 5 source
Slow EPROM
2708/2716 Memory Map
EPROM Enable
HI/LO Memory Map
EIA Connector Ground
Microterminal +5-V
Microterminal +12 V
Microterminal -12 V
Main EPROM TYPE
Expansion EPROM type
Teletype

EIA/MD receive select
Multidrop Termination

Resistors and Duplex Select
P3 Port Terminal/Modem

Stake Pins Used

E1,E2,E3
E4,E5,E6
E7,E8,E53
E9,E10,E11
E12,E13,E14
E15,E16,E17
E18,E19
E20,E21
E22,E23
E24,E25
E26 through E30
E31 through E35

E36,E37

E38,E39,E40
E41 through E52

E54,E55,E56

Proper Connection & Description

E1 to E2 - pin 18, connector P1
E4 to E5 - pin 17, connector P1
EB to E53 - No WAIT state
E10 to E11 - Use TMS 2708's
E13 to E14 - On-board EPROM
E16 to E17 - EPROM low, RAM high
E18 to E19* - pin 1 of P3 grounded*
Shipped installed on -0001,3 only*
Shipped installed on -0001,3 only*
Shipped installed on -0001,3 only*
E27 to E28, E29 to E30 - TMS 2708's
E32 to E33, E34 to E35 - TMS 2708's

Shipped removed. On -0001,3 only,
if using a TTY, borrow a Micro
terminal jumper plug for use here.
E39 to E40 - EIA (and TTY) receive
Shipped installed on -0002 only*

E54 to E55 - Terminal Use*

*Jumper connection is not relevant for TIBUG operation with an RS-232-C or TTY
terminal.

CAUTION
Be very careful to apply correct voltage levels to the
TM 990/101M. Texas Instruments assumes no responsibility
for damage caused by improper wiring or voltage
application by the user.

2 . 4.1 POWER SUPPLY CONNECTIONS
Figure 2-1 shows how the power supply is connected to the TM 990/101M through
connector P1, using a 100-pin edge connector. Be careful to use the correct pins as
numbered on the board; these pin numbers may not correspond to the numbers on the
particular edge connector used. Check connections with an ohmmeter before applying
power if there is any doubt about the quality or location of a connection.

The table in Figure 2-1 shows suggested color coding for the power supply plugs . To
prevent incorrect connection, label the top side of the edge connector "TOP" and the
bottom "TURN OVER".

Figure 2-2 shows how to correctly place the TM 990/101M in the TM 990/510 card
chassis. Slot 1 of the chassis is reserved for the microcomputer because termination
resistors for the control bus signals are at the opposite end of the backplane,
according to transmission line concepts. Slide the microcomputer into the slot,
following the guides . Be sure the P1 connector is correctly aligned~in the socket on
the backplane, then gently but firmly push the board edge into th~· edge connector
socket.

2-3

o>
Z ID
C> +
2 4

TM99/101M
P1 CONNECTOR

(TOPI
>>
NN
I +

10 20 30 40 50 60 70 74 76 80 90 100

OODDDDDDDDODDDDDDDDDDDDDOODOODDDDDODOOODDDOOODODOD

A0001417

VOLTAGE

+5V

+12V

-12V

GND

EDGE CONNECTOR

BANANA PLUGS ________ ...,..

(
SUGGEST COLOR CODING)

THESE AS PER TABLE

P1 PIN•

3,4,97,98

75, 76

73,74

1, 2, 99, 100

SUGGESTED PLUG COLORS

RED

BLUE

GREEN

BLACK

*ON BOARD, ODD-NUMBERED PADS ARE DIRECTLY BENEATH EVEN-NUMBERED PADS.

Figure 2-1. Power Supply Hookup

2-4

..

'

+12 0

+5 0

GNO 0

-12 0

Figure 2-2 . TM 990/101M Board In TM 990/510 Chassis

Looking on the backside of the backplane, find the connections for each of the supply
voltages and connect them to the power supply.

CAUTION
BEFORE connecting the power supply to the microcomputer,
use a volt-ohmmeter to verify that correct voltages are
present at the power supply. After verification, switch
the power supply OFF, and then make the connections to
the chassis as shown in Figure 2-2.

2.4.2 TERMINAL HOOKUP
Figure 2-3 shows how the TM 990/101M is connected to the TI 743 KSR terminal through
connector P2. DE15S connector attaches to the terminal; a DB25P connector attached to
P2 on the board. A table of point-to-point connections between the connectors are
shown in the figure. Figure 2-4 shows a RS-232 terminal (e . g., TI 733), and Figure 2-5
shows a TTY.

All terminals connected to the microcomputer will have a similar hookup procedure and
point-to-point configuration. For the differences between terminal cables, see
Appendixes A and B. Terminals for communication directly with TIBUG must be connected
to the main communications port (connector P2) at the corner of the board.

2-5

TOP2 ON
TM9901101M

A0001418

DB25P

4 CONDUCTOR CABLE, 24 AWG
INSULATED STRANDED WIRE

CONNECTIONS

PIN ON DE15S PIN ON DB25P SIGNAL

13 2 XMIT

12 3 RECV

11 8 DCD

1 7 GND

Figure 2-3 . 743 KSR Terminal Hookup

rr~1Cf
c te: 1~1 c:c C:C

DE15S

T0743 DATA
TERMINAL

Figure 2-4. Connector P2 Connected to RS-232-C Device (Model 733 ASR)

2-6

•

Figure 2-5. Connector P2 Connected to TTY Device

The jumper marked EIA / MD, pins E38-E40, should be in the EIA position, pins E39 t o
E40, at all times unless the multidrop interface is us ed. If connecting a RS - 23 2
terminal, remove the TTY jumper at E36- E37, if connecting a Teletype terminal, t hen
insert the TTY jumper at E36-E37 .

The TIBUG monitor operates the local I/O port at one of the following baud r a tes:

110, 300, 600, 1200, 2400, 4800, 9600 or 19200 baud.

There is a 200 ms delay following a carriage return for all baud rates at or below
1200 baud. The delay allows for printhead travel .

The TMS 9902 asynchronous communication controller is initialized by TIBUG f or a
seven-bit ASCII character, even parity, and two stop bits (for compatibility with al l
terminals). At the terminal, set the baud rate of the terminal to one of t he above
speeds.

TIBUG also uses conversational mode full-duplex communicati on. Set the communications
mode of your terminal to FULL DUPLEX, and set the OFF/ON LINE swi tch to ON LINE, o r
the functional equivalents.

2-7

2.4.3 FIVE-SWITCH DIP AND STATUS LED
A five-switch DIP and a programmable LED are accessed through the Communications
Register Unit (CRU) . Programming these is further explained in subsections 5.7 and 5.8
respectively.

2 . 5 OPERATION

2.5 .1 VERIFICATION
Verify the following conditions before applying power:

• Power connected to correct pins on P1 connector.
• Terminal cable between P2 connector (NOT P3) and terminal.
• Jumpers in correct positions (see Table 2-1).
• Baud rate and communications mode are correctly set at the terminal;

terminal is ON LINE.

2 . 5.2 POWER-UP/RESET

a. Apply power to the board and the data terminal.

b. Activate the RESET switch near the corner of the microcomputer board
(see Figure 1-1). This activates the TIBUG monitor.

c. Press t he "A" key on the terminal (it may be more convenient to press the
carriage return key instead; this is also acceptable) . TIBUG measures the
time of the start bit and determines the baud rate. A carriage return time

delay of 200 ms will be provided for all baud rates at or slower than 1200
baud.

d. TIBUG prints the TIBUG banner message and, on a new line , a question mark.
This is a request to input a command to the TIBUG command scanner . Commands
ar e explained in detail in Section 3 , and the assembly language is described
in Section 4.

NOTE
If control is lost during operation, return control to
the TIBUG monitor by repeating steps b, c, and d.

2.6 SAMPLE PROGRAMS
The following sample programs can be used immediately to test the microcomputer board.
Other sample programs that can be loaded and executed are provided in Figures 5-1 5
(interrupt timer message) and 5 - 22 (L.E.D. blink). Appendix K contains example
programs that demonstrate microcomputer performance.

2.6.1 SAMPLE PROGRAM 1
The following sample program can be input using the TIBUG "M" command (paragraph
3 . 2 .8) , "R" command (paragraph 3.2.9) , and "E" command (paragraph 3 . 2.4) .

a . Enter the M command with a hexadecimal memory address of FEOOl6 ·

2- 8

•

b. Enter the following values into memory, typing the new values then using the
space bar as described in paragraph 3.2.8.

Location Enter Value Assembly Language

FEOO 2FAO XOP @ FE08, 14 PRINT MSG
FE02 FE08
FE04 0460 B @ 0080 GO TO TIBUG
FE06 0080
FE08 4849 TEXT 'HI' MESSAGE
FEOA ODOA DATA ODOA CR/LF
FEOC 0700 DATA 0700 BELL/END

Exit the M command with a ca£riage return after entering the last value
above. The monitor will print a question mark.

c. Use the R command to set the address value 'FEOO" into the P register (pro
gram counter) .

d. Use the E command to execute the program.

e. The message 'HI' will print on the printer, followed by a carriage return,
line feed, and a bell. Your terminal printout should resemble the following:

TI BUG ~· EV. Ft

?M FEOO
FE 0 O=I1:::: 0 0
FE 02=6:3 0 0
FE 04= 0:3:=: 1
FE06=23D2
FE 08= 03 0 0
FEOA=03C2
FEOC=7:300
?R

2FFtO
FE0:3
04E·O
0080
4::349
OD OA
0700

t .• J=FFC6
F'=01FtC FEOO
·?E HI

You can re-execute your program by repeating steps c. and d.

2-9

2.6. 2 SAMPLE PROGRAM 2
Using steps 1 to 5 in paragraph 2.6.1 above, enter and executa the following program
which has been assembled by the optional TM 990/402 line- by-line assembler .

,..: i=. th! .:. F H 11 c F' l ' ~ E:_ 1_1 :. • l 4

FE (12 FE o::·
F E I) 4 1) 4 ':• I) E· J! 1:1 I .. : i-1

FEOe f 10:: : i-1
FEU ::.. 4 ~: 4F f1_Cir H3F>-iT l_iL>i Ti rJti- . 1'J •_: ~ c c ry:;F!-4r·1 1.i[Jf:·f . !

FE1·18 4E47
FEOC ':0241
FEOE 5 455
FE l O 4C41
FE 12 544·:;.
FE 14 4F4E
F E 1 .;. 5 ;. 2 E
FE i:::; 2 o:.·:;.
FE 18 4F':15
F E 1 c ·:. 2 2 I)
f'E l E 5052
FE2fl 4F47
~ E22 ':0 2 41
FE24 4fl20
FE2t::. '574F
fT ,:=· ::: :.c.· -tf:
FE-.2H ':· ::: 2 1
FE2C 11 ,~ 1 :1 ~· + f1~~1).'

H : 2E 117 111_1 + 1·17 n (I

You can re-execute your program by repeating c . and d. in paragraph 2 . 6 .1 above.

2.7 DEBUG CHECKLIST
If the microcomputer does not respond correctly, turn the power OFF. Do not turn the
power ON again until you are reasonably s ure the problem has been found. The following
i s a checklist of points to verify.

• Check POWER circuits:
Proper power supply voltages and current capacity .
Proper connections from the power supply to the P1 edge connector .

Check pin numbers on P1. Check plug positions at your power supply.
Look for short circuits. Look for broken connections . ~ake ~1 1r e board
is seated in chassis or edge connector socket correctly. Be certain
that the edge connector socket (if used) is not upside down.

e Check TERMINAL circuits:
Proper cable hookup to P2 connector, and to terminal . Verify wi t h data

in Appendixes A and B. One of the most common errors is that the ter
minal cable is not plugged in .
Check for power at the terminal . This is another common error - t he
terminal is not turned ON .
Terminal is ON LINE mode, or equivalent .

Terminal is in FULL DUPLEX mode, or equivalent. If the terminal is in
HALF DUPLEX mode, it will print everything you type t wice , or it may
print garbage when you type. Put the terminal in FULL DUPLEX mode.

2-10

EIA/MD jumper in EIA position (E30).
Check BAUD RATE of terminal - it must be 110, 300, 600 , 1200, 2400,

4800, 9600, or 19200 BAUD.

• Check jumper plug positions against Table 2-1.

• Be sure TIBUG EPROM's are in place correctly (U42 and U44) .

....e Check all socketed parts for correctly inserted pins. Be sure there aren't
any bent under or twisted pins. Check pin 1 location.

If nothing happens, feel the components for excessive heat. Be careful as burns may
occur if a defeetive component is found. If the cause of inoperation cannot be found,
turn power OFF and call your TI distributor. Before calling, though, please be sure
that your power supply, terminal, and all connectors (use a volt-ohmmeter) are
working properly .

2-11

SECTION 3

TIBUG INTERACTIVE DEBUG MONITOR

1. 1 GENERAL
fIBUG is a debug monitor which provides an interactive interface between the user and
the TM 990/101M. It is supplied by the factory on assembly TM 990/101M-1 only and is
available as an option, supplied on two 2708 EPROM's.

TIBUG occupies EPROM memory space from memory address (M.A.) 008016 as shown in Figure
3-1. TIBUG uses f our workspaces in 40 words of RAM memory. Also in this reserved RAM
area are the restart vectors which initialize the monitor following single step
execution of instructions .

The TIBUG monitor provides seven software routines that accomplish special tasks.
These routines, . called in user programs by the XOP machine instruction, perform tasks
such as writing characters to a terminal. XOP utility instructions are discussed in
detail in paragraph 3.3.

All communication with TIBUG is through a 20 mA current loop or RS-232-C device. TIBUG
is initialized as follows:

• Press the RESET pushbutton (Figure 1-2). The monitor is called up through
interrupt trap O.

• Enter the character 'A' at the terminal. TIBUG uses this input to measure
the width of the start bit and set the TMS 9902 Asynchronous Communication
Controller (ACC) to the correct baud rate.

• TIBUG prints an initialization message on the terminal. On the next line it
prints a question mark indicating that the command scanner is available to
interpret terminal inputs.

• Enter one of the commands as explained in paragraph 3.2.

3.2 TIBUG COMMANDS
TIBUG commands are listed in Table 3-1.

Table 3-1. TIBUG Commands

INPUT RESULTS PARAGRAPH

B Execute under Breakpoint 3 .2.1
c CR U Inspect/Change 3.2.2
D Dump Memory to Cassette/Paper Tape 3 .2.3
E Execute 3 2.4
F Find Word/ Byte in Memory 325
H Hex Arithmetic 3.2.6
L Load Memory from Cassette/Paper Tape 3.2.7
M Memory Inspect/Change 3.2.B
R Inspect/Change User WP, PC. and ST Registers 3 2.9
s Execute in Step Mode 3 .2.10
T 1200 Baud Terminal 3 .2 11
w Inspect/Change Current User Workspace 3 2.12

3-1

RESTART VECTORS

MEMORY

ADDRESS

0000

0040

0048

0060

007E
0080

07FE

FFBO

{ FFFC

FFFE

INTERRUPT VECTOR (RESET)

INTERRUPT VECTORS 1TO15

XOP VECTORS 0 AND 1

XOP VECTOR 2 TO 7

XOP VECTORS 8 TO 15
MONITOR UTILITIES

TIBUG MONITOR

MONITOR

WORKSPACES

WP

PC

'II

TIBUG EPROM AREA

USER EPROM AREA

TIBUG EPROM AREA
USER EPROM AREA

TIBUG EPROM AREA

TIBUG RAM AREA

Figure 3-1. Minimum Memory Requirements for TIBUG

3-2

•

r

f

Conventions us ed to define command syntax i n thi s paragraph are listed in Table 3- 2.

Table 3-2. Command Syntax Conventions

CONVEN TION

SYMBOL EXPLANATION
1-------1---- ------- - -------- - - --------·---------------!

<>
I I

Items •n b .. supplied by ihP user The :p1111 ... •n1n rhe anglo h• ck,.t< ·~ J yCfl•'• 1c •r•r>n

May l.Je included or om111~tl .11 t h e use• s d 1sc11>11,Jn l1e1ns nnt 1nclucieo . n bracl-c t' .

1

: Op t ion,1 '"'"'
are rf'quuptJ

One of severa l o pllo na l it ems must tic cho>en .

C.irrrage R"turn

Spac e Bar

LF Lone F <?cd

A or Rn Register In 0 to 151

WP Cu rrent User Work sp ace Po inter content~

PC Cu• rent User Proyram Counter content~

ST Current User Status R Pgrster content ~

NOTE
Except where indicated otherwise, no space is necessary
between the parts of these commands . All numeric input
is assumed to be hexadecimal; the last four digits input
will be the value used. Thus a mistaken numerical input
can be corrected by merely making the last four digits
the correct value. If fewer than four digits are input,
they are right justified.

3 . 2 .1 EXECUTE UNDER BREAKPOINT (B)

3 . 2 .1 . 1 Syntax
B <addr ess> c(CR) >

3.2 . 1.2 Description
This command is used to execute instructions from one memory address to another (the
stopping address is the breakpoint). When e xecution is complete , WP, PC, and ST
register contents are displayed and control is returned back to the monitor command
scanner. Program execution begins at the address in the PC (set by us ing the R
command) . Execution terminates at the addres s specified in the B command, and a banner
is ou t put showing the contents of the hardware WP, PC, and ST .. registers in that order.

The address s pecified mus t be in RAM and must be the address of the firs t word of an
instruction . The breakpoi nt is controlled by a software i nterrupt, XOP 15 , wh i ch is
executed wh en program executi on is at the breakpoint address .

If no address is specified, the B command defaults to an E command, where execution
continues with no halting point specified.

3-3

EXAMPLE:
:ff
BP

FC Ot.
FFBt:1 FC l)t:i

3.2 . 2 CRU INSPECT/CHANGE (C)

3.2.2.1 Syntax

C <.. CRU <iddress > , < count >< (CR) >

3. 2.2 . 2 Description
The Communication Register Unit (CRU) input bits are displayed right justified in a
16-bit hexadecimal representation. CRU addresses of the displayed bits will be:

from " CRU Software Base Address"
to "CRU Software Base Address" + 2(Count) - 2

"CRU Software Base Address" is the contents of register 12, bits 0 to 15, as used
by the CRU i nstructions (paragraph 5.5). Up to 16 CRU bits may be displayed.
Following display of the sensed CRU input bits, corresponding CRU output bits at
that address may be specified by keying in a desired hexadecimal pattern of 1 to 16
bits, right justified. A carriage return following data display forces a return to
the command scanner . A minus sign (-) or a space causes the same CRU input bits to
be d i splayed again. Defaults are 0000 16 for "Software Base Address" and 0 (count
of 16) for "Count" (the latter is a hexadecimal value of 0 to F with 0 indicating a
decimal 16 bits).

The CRU inspect/change command displays from 1 to 16 CRU bits, right justified.
The command syntax includes the CRU software base address and the number of CRU
bits to be displayed. The CRU software base address is the 16-bit contents of R12
as explained in paragraph 5.5 (vs. the "CRU hardware base address" on bits 3 to 14
of R12); thus , the user mus t use 2 X CRU hardware base address. This is shown in
Figure 3-2 where 10016 is specified in the command to display values beginning with
CRU bit 80 16.

? c 100,7
0100= 007F

0 2 3 4 5 6

Z ERO Fl LLED

7 8 9 10 11 12 13 14

7 BITS

REQUESTED

VALUE DISPLA YED

> oo7F

80 CRU BIT

81
82
8 3
84
85

---~~~~~~~~ 86

Figure 3-2. CRU Bits Inspected By C Command

3-4

EXAMPLES:

(1) Examine eight CRU input bits. CRU software base address is 20 15.

; I- C l_I • :::

(11)21 1=(11_tFF- CARRIAGE RETURN ENTERED

(2) Set value of eight CRU output bits at CRU software base address 2016i
new value i s 02 15 .

; C c 1_1 • ::: /,--;~- CHANGE OOFF TO 0002

1) l_I c 1) = I 11_1 F F 2 - 2 FOLLOWED av CARRIAGE RETURN

(3) Check changes in CRU input bit 0.

; (I) • :=:
1) I) I) 1J = 1J l_l 1_11
(I I) I) I.I= l_I I) IJ 1
(I (1 (1 (I= (I (I I) 1
(11) O O= 1_1001
I) (1 (I (I= (1 I) (I 1

= ~
MINUS SIGN ENTERED

=~
(11) (I (I= 1) 11 (1 1 - -- CARRIAGE RETURN ENTERED

(4) Check to see if the TMS 9901 is in the interrupt mode (zero) or clock mode
(one);

; :_ 1 I.I l_I

(I l (I (l=>F"-FFE - -- ZERO IN LSB INDICATES INTERRUPT MODE

(5) Check the contents of the I / 0 ports on the TMS 9901 (bits 1 to 14) .

;c 120 ·E
0 1 2 i_I = (1 0 1) E.

3.2.3 DUMP MEMORY TO CASSETTE/PAPER TAPE (D)

3.2.3.1 Syntax
/MONITOR PROMPT

D <start address > < stop address > ' <entry address > { IDT = < name >< >

NOTE
The termination given after IDT is a space bar. A carriage
return or some other termination will cause the instruction
to function incorrectly.

3-5

3.2 .3. 2 Description
Memory is dumped from " start address" to "stop address ." "Entry address" is the
address in memory where it is desired to begin program execution. After entering a
space or comma following the entry address, the monitor responds with an "IDT=" prompt
asking for an input of up to eight characters that will identify the program. This
program ID will be output. When the program is loaded into memory using the TIBUG
loader, code will be dumped as non-relocatable data in 990 object record format with
absolute load ("start address") and entry addresses specified. When loading this code
once more, the LOAD will occur at the start address specified in the D instruction. If
a user specifies a starting address while loading the object code previously dumped,
the loader will ignore the user's input and load at the starting address specified
during the 'D' command. Object record format is explained in Appendix G.

After entering the D command, the monitor will respond with "READY YIN" and wait for a
Y keyboard entry indicating that the receiving device is ready. This allows the user
to verify switch settings, etc., before proceeding with the dump.

3 . 2.3.3 Dump to Cassette Example
The terminal is assumed to be a Texas Instruments 733 ASR or equivalent. The terminal
must have automatic device control (ADC). This means that the terminal recognizes the
four tape control characters DC1, DC2, DC3, and DC4.

The following procedure is carried out prior to answering the "READY Y/N" query
(Figure 3-3):

(1) Load a cassette in the left (No. 1) transport on the 733 ASR.

(2) Place the transport in the "RECORD" mode.

(3) Rewind the cassette.

(4) Load the cassette. If the cassette does not load, it may be write protected.
The write protect hole is on the bottom right side of the cassette (Figure
3-4) . Cover it with the tab provided with the cassette. Now repeat steps 1
through 4.

(5) The KEYBOARD, PLAYBACK, RECORD, and PRINTER LOCAL/OFF/LINE s witches must be
in the LINE position.

(6) Place the TAPE FORMAT switch in the LINE position.

(7) Answer the "READY YIN" query with a "Y"; the "Y" will not be echoed.

3-6

,..---- C ASSETTE 1 ..--- CASSETTE 2 --~

B
R ECOH O LO NTR t .

~· . - i •
fAi:.I r ... _ •WO ' ~ '~HAAA(TfR .. ,.,"'" ·' "'•

~ ~ ~
0 <j•• ••••f> B ~ tJ:lctQR

~ ll I ll ~ 0 I l
STOP q' " I TAP(FORMAT e. RASE O H

I I

~
UNl:

~ ~ /'"' ~
I

C FF I

~=Al LOC Al I
KE 'V8QAq 0 PLA.V8AC"- PAINTtq

811 1 BIT 8

Figure 3-3. 733 ASR Module Assembly (Upper Unit) Switch Panel

I AP(St'I(- .JP

0 0
Side I

\\ Rll E ! AS fl) R SHH 2

~Alff I AB r(lR SIDE I

Figure 3-4. Tape Tabs

3-7

3.2.3.4 Dump to Paper Tape
The terminal is assumed to be an ASR 33 teletypewriter. The following steps should be
completed carefully to avoid punching stray characters:

(1) Enter the command as described in paragraph 3.2.3.1. Do not answer the
"READY YIN" query yet.

(2) Change the teletype mode from ON LINE to LOCAL.

(3) Turn on the paper tape punch and press the RUBOUT key several times, placing
RUBOUTS at the beginning of the tape for correct-reading/program-loading.

(4) Turn off the paper tape punch, and reset the teletype mode to LINE. (This is
necessary to prevent punching stray characters).

(5) Turn on the punch and answer the "READY YIN" query wi th "Y". The Y will not
be echoed .

(6) Punching will begin. Each file is followed by 60 rubout characters. When
these characters appear (identified by the constant punching of all holes)
the punch must be turned off.

3.2. 4 EXECUTE COMMAND (E)

3.2.4.1 Syntax

E

3. 2 .4 . 2 Description
The E command causes task execution to begin at current values in the Workspace
Pointer and Program Counter .

Example: E

3.2.5 FIND COMMAND (F)

3.2.5.1 Syntax

F < start address > l t< stop address > { I< value > l (CR)

3.2 .5.2 Description
The contents of memory locations from "start address" to "stop address" are compared
to "value". The memory addresses whose contents equal "value" are printed out. Default
value for start address is O. The default for "stop address" is 0. The default for
"value" is O.

If th e t erminat ion character of "value" is a minus sign, the search will be from
"start address" to "stop address" for the right byte in "value". If the termination
character i s a carriage return, the search will be a word mode search .

3-8

EXAMPLE:

7 F 1) • 2 0 F FF F ----CARRIAGE RETURN ENTERED
0 o o.:.
01) (I(

(I 0 1 2

(1 1) 16
7 F I) 21) FF - - - - -- MINUS SIGN ENTERED
(1(1(16

(11)(1;-'

(1 (11)(

(1 (11) [1

01)1 2

I) (1 1 ::::

0 0 1t::.
(I 01 7

3. 2.6 HEXADECIMAL ARITHMETIC (H)

3.2 . 6.1 Syntax

H < number 1 > { .< number 2 >< (CR) >

3. 2 . 6 . 2 Description
The sum and difference of two hexadecimal numbers are output.

EXAMPLE:

7 H 2 (I (I , 1 (I (I CARRIAGE RETURN ENTERED

H 1 + H 2 = 11 ;: l_I u H 1 - H.::: = u 1 '-' I.I

3. 2.7 LOAD MEMORY FROM CASSETTE OR PAPER TAPE (L)

3.2 . 7.1 Syntax

L < bias >< (CR) >

3.2 .1.2 Description
Data in 990 object record format (defined in Appendix G) is loaded from paper tape or
cassette into memory. Bias is the relocation bias (starting address i n RAM). Its
default is 016 . Both relocatable and absolute data may be loaded into memory with the
L command . After the data is loaded, the module identifier (see tag 0 in Appendix G)
is printed on the next line.

3. 2.1 . 3 Loading From Texas Instruments 733 ASR Terminal Cassette
The 733 ASR must be equipped with automatic device control (ADC). The f ollowing
procedure is carried out prior to executing the L command:

(1) Insert the cassette in one of the two transports on the 733 ASR ~cassette 1
in Figure 3-2) .

(2) Place the transport in the playback mode.

3- 9

(3) Rewind the cassette.

(4) Load the cassette.

(5) Set the KEYBOARD, PLAYBACK, RECORD, and PRINTER LOCAL /L{NP. switches to LINE .

(6) Set the TAPE FORMAT switch to LINE.

(7) Loading will be at 1200 baud.

Execute the L command.

3.2.7.4 Loading From Paper Tape (ASR33 Teletype)
Prior to executing the L command, place the paper tape in the reader and position the
tape so the reader mechanism is in the null field prior to the file to be loaded.
Enter the l oad command. If the ASR33 has ADC (automatic device control), the reader
will begin to read from the tape. If the ASR33 does not have ADC, turn on the reader,
and loading will begin.

Each file is terminated with 60 rubouts. When the reader reaches this area of the
tape, turn it off. The loader will then pass oontrol to the command scanner .

The user program counter (P) is loaded with the entry address if a 1 tag or a 2 tag is
found on the tape.

EXAMPLE:

' L I) I) I) (1----

F' ~· D 1:; ~· t=H·l
CARRIAGE RETURN ENTERED

PROGRAM ID FROM TAPE

3.2.8 MEMORY INSPECT/CHANGE, MEMORY DUMP (M)

3.2.8 . 1 Syntax
• Memory Inspect/Change Syntax

M < start address > ~ ·' ;< star addre~s ~.< (CR) >

• Memory Dump Syntax

M < address >< (CR) >

3.2 .8.2 Description
Memory inspect/change "opens" a memory location, displays it, and gives the option of
changing the data in the location. The termination character causes the following:

• If a carriage return, control is returned to the command scanner.

• If a space, the next memory location is opened and displayed.

• If a minus sign, the previous memory location is opened and displayed.

If a hexadecimal value is entered before the termination character, the displayed
memory location is updated to the value entered.

3-10

Memory dump address directs a display of memory contents from "start address" to
"stop address". Each line of output consists of the address of the first data word
output followed by eight data words. Memory dump can be terminated at any time by
typing any character on the keyboard.

(EXAMPLF.S :

(1)

? M FE I) I) CARRIAGE RETURN ENTERED

FEOO=FFOF
FE 02= (I 012 FFFF -- NEW CONTENTS ENTERED

FE 04= 0311 MINUS SIGN ENTERED

FE 02=FFFF NEW CONTENTS

FE 04= er:;: 11
FE 06= (I 032 EEAA- CARRAGE RETURN ENTERED

(2)

"C M 20 ;:o
002o=ou20 0030 oouu oon5
f1(1 ::: O= 1_11) (1 l

UUiU UDO(I UOOO UU~4

3.2.9 INSPECT/CHANGE USER WP, PC, AND ST REGISTERS (R)

3.2.9.1 Syntax

R < (C R) >

3. 2 .9.2 Description
The user workspace pointer (WP), program counter (PC), and status register (ST) are
inspected and changed with the R command. The output letters WP, PC, and ST identify
the values of the three principal hardware registers passed to the TMS 9900
microprocessor when a B, E, or S command is entered. WP points to the workspace
register area, PC points to the next instruction to be executed (Program Counter), and
ST is the Status Register contents.

The termination character causes the following:

• A carriage return causes control to return to the command scanner.

• A space causes the next register to be opened.

Order of display is W, P, S.

3-11

EXAMPLES:

(1)

(2)

7 F:
Iii= (I (12 l_I 1 (I 0 - SPACE ENTERED

F'= 1_11) (I (I 2 Cl (1 - CARRIAGE RETURN ENTERED

-;:· F'

Iii= l~I ~ 1~1 1:1 : ---7...--- SPACE ENTERED

F'= IJC: 1_11_1 •----'·

: =I) I) 1·1 (1---- - SPACE OR CARRIAGE RETURN ENTERED

3.2.10 EXECUTE IN SINGLE STEP MODE (S)

3.2.10.1 Syntax

s

3 . 2. 10. 2 Description
Each time the S command is entered, a s ingle instruction i s executed at the address in
the Program Counter, then the contents of the Program Counter, Workspace Pointer, and
Status Register (after execution) are printed out. Successive instructions can be
executed by repeated S commands. Essentially, this command exe cut es one instruction
then returns control t o the monitor.

EXAMPLE:
-;:· F·
l.1l=FFC6
F'=FE!O
: ·=26 (IA

~ SPACES ENTERED
~ / WORKSPACE POINTER FE fl f1 \

- - ' ~PROGRAM COUNTER

? s. FFC6 FE (12__......, :::t=. OA-- STATUS REGISTER

FFC6 FE04 86 0A
FFC6
FFC6

FE o:::
FEOC

:::6 0A
:::60A

NOTE

Incorrect results are obt ai ned when the S command
causes execution of an XOP instruction (see paragraph
4.6.9) in a user program. To avoid this problem, use
the B command (breakpoint) to the XOP vectors to
execute any XOP ' s in a program (rather than the S
command) with the ap propri ate XOP parame ter
previously loaded into R11 of the XOP workspace.

3-12

3.2.11 TI 733 ASR BAUD RATE (T)

3.2.11.1 Syntax

T

3.2~11.2 Description
The T command is used to alert TIBUG that the terminal being used is a 1200 baud
terminal which is not a Texas Instruments' 733 ASR (e.g., a 1200 baud CRT). To revoke
the T command, enter it again.

3.2.11.3 Use
T is used only when operating with a true 1200 baud peripheral device . Note that T is
never used when operating at other baud rates.

In TIBUG the baud rate is set by measuring the width of the character 'A' input from a
terminal. When an 'A' of 1200 baud width is measured, TIBUG is set up to automatically
insert three nulls for every character output to the terminal. These nulls are
inserted to allow correct operation of the TM 990/101M with Texas Instruments 733ASR
data terminals.

3.2.12 INSPECT/CHANGE USER WORKSPACE (W)

3.2.12.1 Syntax

W [REGISTER NUMBER] < (CR) >

3.2.12.2 Description
The W command is used to display the contents of all workspace registers or display
one register at a time while allowing the user to change the register contents. The
workspace begins at the address given by the Workspace Pointer.

The W command, followed by a carriage return, causes the contents of the entire
workspace to be printed. Control is then passed to the command scanner.

The W command followed by a register number in hexadecimal and a carriage return
causes the display of the specified register's contents. The user may then enter a new
value into the register by entering a hexadecimal value. The following are termination
characters whether or not a new value is entered:

• A space causes display of the next register.

• A minus sign causes display of the previous register.

• A carriage return gives control to the command scanner .

EXAMPLES:

(1)

7 111-------- CARRIAGE RETURN ENTERED

F:O=F'?42
P:::=FAAO

F' 1 =(I (1:34
F"?= :::.:.I) (I

F'2=FA2A
f<·A= OE Ht·

F' :::= U 02 U
Pf:= 0 0 01)

3-13

fN=F.E:SE
f<:C= 01C0

P5= o o·::i:::
F'D= 0 0:::4

F.'6= 1 ;: (I (I
F:'E==FA3 0

F?== 1.1084
F-:F ==C.6 0 0

(2)
·;·1.1.I 2-------CARRIAGE RETURN ENTERED

R2= 02:=:4
F::3= 0 01 I:
R4= 16 o:=:
F.:5=0460
F.:6=F:=: (I (I

:~:456 ~

: : :::F I SPACE ENTERED

(I CARRIAGE RETURN ENTERED

3.3 USER ACCESSIBLE UTILITIES
TIBUG contains seven utility subroutines that perform I/O functions as listed in Table
3-3. These subroutines are called through the XOP (extended operation) assembly
language instruction . This instruction is covered in detail in paragraph 4.6.9. In
addition, locations for XOP's 0 and 1 contain vectors for utilities that drive the TM
990/301 microterminal, and XOP 15 is used by the monitor for the breakpoint facility.

XOP I
8
9

10
11
12
13
14

Table 3-3. User Accessible Utilities

FUNCTION

Write 1 Hexadecimal Character to Terminal
Read Hexadecimal Word from Terminal
Write 4 Hexadecimal Characters to Terminal
Echo Character
Write 1 Cha;acter to Terminal
Read 1 Character from Terminal
Write Message to Terminal

NOTE
All characters are in ASC II code.

NOTES

I PARAGRAPH

3 3.1
3 .3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7

1. Initially, TIBUG will conduct I/O through the TMS
9902 connected to connector P2: in this mode,
0080 15 is in TIBUG's R12 located at memory addres s
(M.A.) FFDE15. To change this configuration, change
the contents of M.A. FFDE 16 before executing the
I/O XOP . For example, to use the auxiliary TMS 9902
at P3, change M.A. FFDE 16 contents to 0180 16 . CRU
programming is discussed in paragraph 5 .5.

2. The write character XOP (XOP 12) activates the
REQUEST TO SEND signal of the TMS 9902 . This signal
is never deactivated by TIBUG so that modems may be
used.

3. Most o f the XOP format examples herein use a
register for the source address, however, all XOP's
can also use a symbolic memory address or any of
the addressing forms available for the XOP instruc
tion.

3-14

3.3.1 WRITE ONE HEXADECIMAL CHARACTER TO TERMINAL (XOP 8)

Format: XOP Rn,8

The least significant four bits of user register Rn are converted to their ASCII coded
hexadecimal equivalent (0 to F) and output on the terminal. Control returns to the
instruction following the extended operation .

EXAMPLE:

Assume user register 5 contains 203c 16 . The assembly language (A.L.) and machine
~ language (M.L.) values are shown below.

A .L . XOP RS,8 SEND 4 LSS'S OF RS TO TERMINAL

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ML. l~~~~o~~~o~~~-,-'~,~-o~~o~-o~l_o~~o·~'~o~-1~~0~-!~J > 2E05

Terminal Output : C

3.3.2 READ HEXADECIMAL WORD FROM TERMINAL (XOP 9)

Format: XOP
DATA

DATA

Rn,9
NULL

ERROR

ADDRESS OF CON TINUED EXECUTION IF
NULL IS ENTERED
ADDRESS OF CONTINUED EXECUTION IF
NON HEX NO ENTERED

(NEXT INSTRUCTION) EXECUTION CONTINUED HERE IF VALI D HEX
NUMBER AND TERMINATOR ENTERED

Binary representation of the last four hexadecimal digits input from the terminal is
accumulated in user register Rn. The termination character is returned in register
Rn+1. Valid termination characters are space, minus, comma, and a carriage return.
Return to the calling task is as follows:

• If a valid termination character is the only input, return is to the memory
address contained in the next word foll owing the XOP instruction (NULL
above).

3-15

• If a non-hexadecimal character or an invalid termination character is input,
control returns to the memory address contained in the second word following
the XOP instruction (ERROR above).

• If a hexadecimal string followed by a valid termination character is input,
control returns to tile word following the DATA ERROR statement above.

EXAMPLE

A.l.

M. L.
M.A .

XOP

DATA

DATA

0
FFBO 0

FFB2 1

FFB4 1

R6,9

'• FfCO

, FFC6

1 2 3
0 1 0

READ HEXADECIMAL WORD INTO R6

RETURN ADDRESS, IF NO NUMBER

RETURN ADDRESS, IF ERROR

4 5 6 7 8 9 10
1 1 1 0 0 1 0

0

0

11 12 13 14
0 0 1 1 ? I 111,

0 0 0 0 0 ri c·u

0 0 1 0 f. , · i,

If the valid hexadecimal character string 12C is input from the terminal foll owed by a
carriage return, control returns to memory address (M.A.) FFB6 16 with register G
containing 012c 16 and regis ter 7 containing ODOo 16 .

If the hexadecimal character string 12C is input from the terminal followed by an
ASCII plus (+) sign, control returns to location FFC6 16 . Registers 6 and 7 are
returned to the calling program without being altered. "+" is an invalid termination
character.

If the only input from the terminal is a carriage return, register 6 is r e turned
unaltered while register 7 contains 0000 16 . Control is returned to address FFC0 16 .

3.3.3 WRITE FOUR HEXADECIMAL CHARACTERS TO TERMINAL (XOP 10)

Format: XOP Rn, 10

The four-digit hexadecimal representation of the contents of user register Rn is
output to the terminal. Control returns to the instruction following the XOP call.

EXAMPLE:

Assume r egister 1 contains 2C46 16.

A.L. XOP R 1, 10 WRITE HEX NUMBER

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

· 2E81

Terminal Output: 2C46

3-16

1.3.4 ECHO CHARACTER (XOP 11)

Format : XOP Rn, 11

This is a combination of XOP's 13 (read character) and 12 (write character). A
character in ASCII code is read from the terminal, placed in the left byte of Rn, then
written (echoed back) to the terminal. Control returns to the instruction following
the XOP after a character is read and written . By using a code to determine a
character string termination, a series of characters can be echoed and stored at a
particular address :

CLR R2 CLEAR R2
LI Al, > FEOO SET STORAGE ADDRESS
XOP R2. 11 ECHO USING R2
Cl R2, -..... 0000 WAS CHARACTER A CR7

JEQ $•6 YES. EXll ROUTINE

MOVB R2 , 'R 1+ NO. MOVE CHAR TO STORAGE
JMP s 10 REPEAT XOP

3. 3.5 WRITE ONE CHARACTER TO TERMINAL (XOP 12)

Format : XOP Rn, 12

The ASCII character in the left byte of user register Rn is output to the terminal.
The right byte of Rn is ignored. Control is returned to the instruction following the
call.

3.3.6 READ ONE CHARACTER FROM TERMINAL (XOP 13)

Format: XOP Rn, 13

The ASCII representation of the character input from the terminal is placed in the
left byte of user register Rn. The right byte of register Rn is zeroed. When this
utility is called, control is returned to the instruction following the call only
after a character is input.

3 .3.7 WRITE MESSAGE TO TERMINAL (XOP 14)

Format: XOP @MESSAGE, 14

MESSAGE is the symbolic address of the first character of the ASCII character string
to be output. The string must be terminated with a byte containing binary zeroes.
After the character string is output, control is returned to the first instruction
following the call.

3-17

Assuming the following program:

MEMORY
ADDRESS

(Hex)

FEOO
FE02
FE04

FEEO
FEE2
FEE4

OPCODE
(Hex)

2FAO
FEEO

5445
5354
00

A.L. MNEMONIC

XOP @> FEE0,14

TEXT 'TEST'

BYTE 0

During the execution of this XOP, the character string 'TEST' is output on the
terminal and control is then returned to the instruction at location FE04 16 . TEXT is
an assembler directive to transcribe characters into ASCII code.

3.4 TIBUG ERROR MESSAGES
Several error messages have been included in the TIBUG monitor to alert the user to
incorrect operation. In the event of an error, the word 'ERROR' is output followed by
a single digit representing the error number.

Table 3-4 outlines the possible error conditions.

Table 3-4. TIBUG Error Messages

ERROR CONDITION

0 Invalid tag detected by the loader.
1 Checksum error detected by the loader

2 Invalid termonatoon c haoacter detected.

3 Null input fie ld detected by the dump routine.
4 Invalid command entered.

In the event of errors 0 or 1, the program load process is terminated . If the program
is being input from a 733 ASR, possible causes of the errors are a faulty cassette
tape or dirty read heads in the tape transport. If the terminal device is an ASR33,
chad may be caught in a punched hole in the paper tape. In either case repeat the load
procedure.

In the event of error 2, the command is terminated. Reissue the command and parameters
with a valid termination character.

Error 3 is the result of the user inputting a null field for either the start address,
stop address, or the entry address to the dump routine. It also occurs if the ending
address is less than the beginning address. The dump command is terminated. To correct
the error, reissue the dump command and input all necessary parameters.

3-18

,

SECTION 4

TM 990/101M INSTRUCTION EXECUTION

4. 1 GENERAL
This section covers the instruction set used with the TM 990/101M including assembly
language and machine language. This instruction set is compatible with other members
of the 990 family.

Other topics include:

• Hardware and software registers (paragraphs 4.3 and 4.4).

• CRU addressing (paragraph 4.7)

• Interrupts (paragraph 4.10)

The TM 990/101M microcomputer is designed for use by a variety of users with varying
technical backgrounds and available support equipment. Because a TM 990/101M user has
the capability of writing his programs in machine language and entering them into
memory using the TIBUG monitor, emphasis is on binary/hexadecimal representations of
assembly language statements. The assembly language described herein can be assembled
on a 990 family assembler. If an assembler is used, this section assumes that the user
will be aware of all prerequisites for using the particular assembler .

It is also presumed that all users learning this instruction set have a working
knowledge in :

• ASCII coded character set (described in Appendix C) .

• Decimal / hexadecimal, binary number system (described in Appendix D).

l Further information on the 990 assembly language is provided in the Model 990
Com uter/TMS 9900 Microprocessor Assembl Lan ua e Pro rammer's Guide (PIN
9 3 1-9701 .

~

'
r

4.2 USER MEMORY
Figure 4-1 shows the user RAM space in memory available for execution of user
programs . Note that the memory address value is the number of bytes beginning at 0000;
thus, all word addresses are even values from 0000 to FFFE 16 .

Programs in EPROM's can be read by the processor and executed; however, EPROM memory
cannot be modified (written to). Therefore, workspace register areas are in RAM where
their values can be modified. Restart vectors and TIBUG workspaces utilize the last 40
words of RAM memory space as shown in Figure 4-1.

4.3 HARDWARE REGISTERS
The TM 990/101M uses three major hardware registers in executing the instruction set:
Program Counter (PC), Workspace Pointer (WP), and Status Register (ST).

4.3.1 PROGRAM COUNTER (PC)
This register contains the memory address of the next instruction to be executed.
After an instruction image is read in for interpretation by the processor, the PC is
incremented by two so that it "points" to the next sequential memory word.

4-1

BYTE 0000

MEMORY BYTE 0001

ADDRESS

) INTERRUPT VECTORS i = FIRST

XOP VECTORS OCMO EPROM 1024
DEDICAT ED 007E TMS 2708 WORD
MEMORY

TIBUG rOIO 1KX16 EPROM

MONITOR
07FE

0800

l
SECOND

EPROM 1024
TMS 2708

\
WORD

........ 1KX16 EPROM•
INTERRUPT

OFFE

AND XOP LINK AREA
1000 l •

........

' • MEMORY

FEA

FFAE

FFBO
FFF-.,,,---~~~~.,.._~~~~~---J

........
......

') EXPANSION •
EFFE -.......

........
...... FOOO

' RAM
....... TMS4045

....... -..... USER
F7FE 1K X 16 -....... AVAILABLE

....... FBOO ' -..... RAM RAM TMS4045 ' -..... 1K X 16
-.....

......... -----------.......
FFFE

RESERVED 40 WORDS FOR
TIBUG MONITOR WORKSPACE
FILES AND RESET VECTORS
AT FFFC AND FFFE

NOT SUPPLI ED WITH

TM 990/101M-1 OR -2

DEDICATED MEMORY
ADDRESS (HEX)

0000-00JF

0040-0047

0048-005F

0060-007F

0080-07FF

FEA8-FFAF

FFBO-FFFB

FFFC-FFFF

PURPOSE

Vectors for interrupts 0 (RESTART) to 15

Vectors for XOP's 0 and 1 (Microterminal 1/0)

V ectors for XO P's 2 to 8 (Programmed by User)

Vectors for XOP's 8 to 15 (TI BUG ut il ities)

TIBUG monitor

Interrupt and XOP l i nking area

Four overlapping monitor work spaces

Restart (l oad) vectors

BOARD MEMORY M AP

ADDRESS (HEX) MEMORY TYPE ENABLE SIGNAL COMM ENT

0000-07FF" ROM (2708) ROM1 TIBUG monitor area

l
\

0000-0FFP ROM (2716) ROM1 Main EPROM, blank TMS 27 16

0800-0FFF • ROM (2708) ROM2 Expansion EPROM

SECOND
1024
WORD
RAM•

FIRST

1024
WORD
RAM

1000-1FFF" ROM (2716) ROM2 Expansion EPROM, blank TMS 2716

FOOO-F7FF RAM (4045) RAM2 Expansion RA M

F800·FFFF RAM (4045) RAM1 Standard RAM

•EPA OM pairs (e.g. , U42, U44 and U43, U45) must be of the same type - both TMS 2708's or both TMS 2716's. The

two EPAOMpairs, main and expansion, may be of different type if the appropriate jumper settings are made. T his

situation means selecting the 27 16 memory map jumper option.

Figure 4-1. Memory Map

4-2

4.3.2 WORKSPACE POINTER (WP)
This register contains the memory address of the register file currently being used by
the program under execution. This workspac e consists of 16 contiguous memory words
designated registers 0 to 15. The WP points to register 0. Paragraph 4.4 explains a
workspace in detail.

4 .3.3 STATUS REGISTER (ST)
The Status Register contains relevant information on preceding instructions and
current interrupt level. Included are:

• Results of logical and two's complement comparisons (many instructions auto
matically compare the results to zero).

• Carry and overflow.

• Odd parity found (byte instructions only).

• XOP being executed.

• Lowest priority interrupt level that will be currently recognized by the
processor.

The Status Register is shown in Figure 4-2.

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L> A > EO C OV OP)(INTERRUPT MASK

l ' LOGICALLYGREATERTHAN OV OVERFLOW
A ,, ARITHMETICALLY GREATER THAN OP ODD PARITY
EO EQUAL X XOP BEING EXECUTED
C CARRY

A0001421

Figure 4-2. Status Register

4.3 . 3.1 Logical Greater Than
This bit contains the result of a comparison of words or bytes as unsigned binary
numbers. 'fhus the most significant bit (MSB) does not indicate a positive or negative
sign . fhe MSB of words being logically compared represents 215 (32,768), and the MSB
of bytes being logically compared represents 27 (128) .

4.3.3. 2 Arithmetic Greater Than
The arithmetic greater than bit contains the result of a comparison of words or bytes
as two's complement numbers. In this comparison , the MSB of words or bytes being
compared represents the sign of the number, zero for positive, or one for negative.

4-3

4.3.3.3 Equal
The equal bit is set when the words or bytes being compared are equal.

4.3.3.4 Carry
The carry bit is set by a carry out of the MSB of a word or byte (sign bit)
during arithmetic operations. The carry bit is used by the shift operations to
store the value of the last bit shifted out of the workspace register being
shifted.

4.3.3.5 Overflow
The overflow bit is set when the result of an arithmetic operation is too
large or too small to be correctly represented in two's complement
larithmetic) representation. In addition operations, overflow is set when the
MSB's of the operands are equal and the MSB of the result is not equal to the
MSB of tne destination operand. In subtraction oper a tions, the overflow bit is
set when the MSB's of the operands are not equal, and the MSB of the result is
not equal to the MSB of the destination operand. For a divide operation, the
overflow bit is set when the most significant sixteen bits of the dividend (a
32-bit value) are greater than or equal to the divisor. For an arithmetic left
shift, the overflow bit is set if the MSB of the workspace register being
shifted changes value. For the absolute value and negate instructions, the
overflow bit is set when the source operand is the maximum negative value,
800016·

4.3.3.6 Odd Parity
The odd parity bit is set in byte operations when the parity o f the result is
odd, and is reset when the parity is even . The parity of a byte is odd when
the number of bits having a value of one is odd; when the number of blts
having a value of one is even, the parity of the byte is even .

4.3.3.7 Extended Operation
The extended operation bit of the Status Register is set to one when a
software implemented extended operation (XOP) is initiated .

4.3.3.8 Status Bit Summary
Table 4-1 lists the instruction set and the status bits affected by each
instruction.

4.4 SOFTWARE REGISTERS
Registers used by programs are contained in memory. This speeds up context
switch time because the content of only one register (WP hardware register)
needs to be saved instead of the entire register file. The WP, PC, and ST
register contents are saved in a context switch .

A workspace is a contiguous 16 word area; its memory location can be
designated by placing a value in the WP register through software or a
keyboard monitor command . A program can use one or several workspace areas,
depending upon register requirements .

More than three-fourths of the instructions can address the workspace register
file; all si1ift instructions and most immediate operand instructions use
workspace registers exclusively .

Figure 4-3 is an example of a workspace file in high-order memory (RAM) . A
workspace in ROM would be ineffective since it could not be written into. Note
that several registers are used by particular instructions.

4-4

r

•

•

Table 4-1. Status Bits Affected by Instructions

MNEMONIC L ' IA ' I ea
I

c I ov I OP I x MNEMONIC L --. I A ' I EQ
I c I ov I OP

I
x

A x x x x x - LDCR x x x - 1 -
AB x x x x x x - LI x x x - - - -
ABS x x x x x - - LIMI - - - - - -

Al x x x x x - LREX - - - - - - -
ANDI x x x - - - LWPI - - - - -
B - - - - - MOV x x x - - -
BL - - - - - - MOVB x x x - - x -
BLWP - - - - - - MPY - - - -
c x x x - - - - NEG x x x x x - -
CB x x x - - x - ORI x x x - - - -
Cl x x x - - - - RSET - - - - -
CLR - - - - - RTWP x x x x x x x
coc - - x - - - - s x x x x x - -
czc - x - - - - SB x x x x x x -
DEC x x x x x - - SBO - - - - -
DECT x x x x x - - SBZ - - - - - - -
DIV - - x - - SETO - - - - - - -
IDLE - - - - - SLA x x x x x - -
INC x x x x x - - soc x x x - - - -
INCT x x x x x - - SOCB x x x - - x -
INV x x x - - - - SRA x x x x - - -
JEO - - - - SAC x x x x - - -
JGT - - - - - - - SAL x x x x - -
JH - - - - - - - STCR x x x - - 1 -
JHE - - - - - - STST - - - -
JL - - - - - - - STWP - - - - - - -
JL E - - - - - - - SWPB - - - - - -
JLT - - - - - - - szc x x x - - - -
JMP - - - - - - - SZCB x x x - - x -
JNC - - - - - TB - - x - - -
JNE - - - - - - - x 2 2 2 2 2 2 2
JNO - - - - - - - XOP 2 2 2 2 2 2 2
JOC - - - - - - - XOR x x x - - - -
JOP - - - - - -

NOTES

When dn LDCR or STCR 1nstruct1on transfers eight bits or less, the OP bit is set or reset as on byte 111structrons. Otherwise these
onstructrons do not af feet the OP bot.

2. The X 1nstruct1on does not affect any status bot. the 1nstruct1on executed by the X rnstruct ron sets status bits normally for that

1nstru ct1on. When an XOP 1nstructron rs implemented by software, the XOP brt rs set, and the subroutine sets status bots normally .

4-5

WP REGISTER

FCOO

A0001422

MEMORY
ADDRESS

(HEXAOECIMALJ

.. FCOO

FC02

FC04

FC06

FC08

FCOA

FCOC

l'COE

FC10

FC12

FC14

FC16

FC18

FC1A

FC1C

FC1E
I

12 15

I SHIFT
COUNT RO

R 1

R2

R 3

R4

R5

R6

R7

RB

R9

R 10

R 11

R 12

R 13

R14

R 15

Figure 4-3. Workspace Example

4-6

l BITS 12-15 USED BY
SHIFT INSTRUCTIONS ,.

l USED BY XOP'S ANO BRANCH RETURN

l USED IN CRU ADDRESSING

l USED IN CONTEXT

~
SWITCHING lXOP.
BLWP. RTWPJ

t

..

4.5 INSTRUCTION FORMATS AND ADDRESSING MODES
The instructions used by the TM 990/101M are contained in 16-bit memory words and
require one, two, or three words for full definition. The first word (or the single
word) of an instruction will describe the purpose of the instruction while the
succeeding one or two words will be numbers that are referenced by the initial
instruction word. A word describing an instruction is interpreted by the Central
Processing Unit (CPU) by decoding the various fields within the 16 bits. These fields
are shown in Figure 4-4 for the 9900 instruction set which is also categorized into
nine instruction formats ~s shown in the figure.

In order to construct instructions in machine language, the programmer must have a
knowledge of the fields and formats of the instructions. This knowledge is often very
important in debugging operations because it allows the programmer to change bits
within an instruction in order to solve an execution problem.

The fields within an instruction word contain the following information (see Figure
4-4):

• Op code which identifies the desired operation to be accomplished when this

FORMAT

1

2

3

4

5

6

7

8
9

A0001423

instruction is executed.

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OP CODE f 0 T To OR Ts SR -=i
OP CODE _I SIGNED DISPLACEMENT

-~ OP CODE -+ - WR I Ts SR

OP CODE c Ts SR

OP CODE ___[c R

OP CODE Ts SR -----
OP CODE NOT USED ---E- OPCO~ OP CODE N ~-

__ R __ _J
OR Ts I SR

OP CODE OPERATION CODE

•To OR Ts

()()

01

10

11

B BYTE INDICATOR (1 BYTE)

To DESTINATION ADDRESS TYPE"

DR DESTINATION REGISTER

Ts SOURCE ADDRESS TYPE'

5R SOURCE REGISTER

c CRU TRANSFER COUNT OR SHIFT COUNT

R REGISTER

N NOT USED

ADDRESS MODE TYPE

DIRECT REGISTER

INDIRECT REGISTER

{
PROGRAM COUNTER RELATIVE, NOT INDEXED (SR OR DR = 0)

PROGRAM COUNTER RELATIVE+ INDEX REGISTER (SR OR DR> OI

INDIRECT REGI STER . AUTOINCREMENT REGISTER

Figure 4-4. TM 990/101M Instruction Formats

4-7

I

GENERAL USE

AAllHMETIC

JUMP

LOGICAL

CRU

SHIFT

PROGRAM

CONTHOL

IMMEOI/\ TE

MPV 01\1 XOP

• B code which identifies whether the instruction will affect a full 16-bit
word in memory or an 8-bit byte. A one indicates a byte will be addressed,
while a zero indicates a word will be addressed.

• T fields identified by TD for the destination T field and TS for the source
T field . The T field is a two-bit code which identifies which of five dif
ferent a ddres s ing modes will be used (direc t register, indirect register,

memory address, memory address indexed, and indirect register autoincre
mented). These modes are described in detail in paragraphs 4. 5 .1 through
4.5.5. The source T field is the code for the source address a nd the desti
nation T field is the code for the destination address. As shown in Figure
4-4, only five instruction formats use a T field.

• Source and destination regi s ter fields which contain t he number of the
r egister affected (0 through 15).

• Displacement fields that contain a bias to be added to the program counter
in program counter relative addressing. This form of addressing is further
described in paragraph 4.5 . 7 .

• Fields that contain counts for i ndica ting the number of bits that will be
shifted in a shift instruction or the number of Communication Register Unit
(CRU) bits that will be addressed in a CRU instruction.

4 . 5 .1 DIRECT REGISTER ADDRESSING (T:002)
In direct register addressing, execut ion involves data contained within one of the 16
workspace registers . In the first example in Figure 4-5, both the source and destina
tion operand s are registers as noted in the assembly language example at the top of
the figure. Both T fields contain 002 to denote direct register addressing and their
associated register fields contain the binary value of the number of the register
affected. The 11 02 in the op code-field identifies this instruction as a mov e
instruction . Since the B field contains a zero , the data moved will be the full 16
bits of the register (a byte instruction addr essing a register would address the left
byte of the register). The instruction s pecifies moving the contents of register 1 to
register 4, thus cha nging the contents of register 4 to the same value as in register
1. Note that the assembly language statement is constructed so that the source
register is the first item in the operand while the destina tion register is the second
i t em in the operand. This order is r eversed in the machine language cons truction with
the destination register a nd its T fie ld first a nd the source register and its T field
second .

4.5.2 INDIRECT REGISTER ADDRESSING (T=01 2)
In indirect register addressing, the r egiste r does not contai n the data to be affected
by the instruction; instead, the regis ter contains the address withi n memory of where
that data is stored. For example , the instruction in Figure 4-6 specifies t o move the
contents of register 1 to the address whi ch is contained in register 4 (i ndirect
register 4). Instead of moving the value in r egi s ter 1 t o register 4 as was the case
in Figure 4-5, the CPU must first read in the 16-bit value in register 4 a nd use that
value as a memory address at which location the contents of register 1 will be stored.
In the e xample, register 4 contains the value FD00 16. This instruct ion stores the
value in register 1 into memory address (M.A.) FD00 15 .

Indirect register addressing is s pecified in assembly language source code by
preceding the register number with an asterisk(*). For example, A *R1,*R2 means
to add the contents of the memory address in register 1 to the contents of the memory
address in register 2 , leaving the s um i n the memory address containe d i n regis ter 2.

4-8

In direct register addressing, the contents of a register are address ed. In indirect
register addressing, the CPU goes to the register to find out what memory location t o
address. This form of addressing is especially suited for r epeating an instruction
while accessing successive memory addre sses. For example, if you wished to add a
series of numbers in 100 consecutive memory locations, you could place the address of
the first number in a register, and execute an add indirect through that register,
causing the contents of the first memory address (s ource operand) to be added to
another register or memory address (destination operand). Then you could increment the
contents of the register containing the address of the number, loop back to the add
instruction, and repeat the add, only this time you will be adding the contents of the
next memory address to the accumulator (destination operand). This way a whole string
of data can be summed using a minimum of instructions . Of course, you would have to
include control instructions that would signal when the entire list of 100 addresses
have been added, but there are obvious advantages in speed of operation, better
utilization of memory space, and ease in programming.

EXAMPLE 1

ASSEMBLY LANGUAGE:

MOV R1 ,R4 MOVE THE CONTENTS OF R1 (SOU RC[) TO R4 (DESTINATION)

SOURCE OPE RAN~~
DESTINATION OPERAND

MA CHINE LANGUA GE

0 2 3

T CODE FOR

T CODE FOR
- DIRECT REGISTER

REGISTER 1 I
DIRECT REGISTER

/ REGISTER4

4 S ~""'6--7 ... A.. 8 9' ttJ 11 --; 2 13 A 1_4 ___ 1..._5,

li.___1 ---~1_7)_0 _._o_ ... l _o __ o__.l_o ___ o ~ro- _o_l o _ o _ o _ 1 J -:- c101

OP CODE B To DR Ts SR

M.A .

FCOO RO

FC02 Al
FC04 R2 PLACE Al BINARY

FC06 R3 IMAGE IN R4

FCOB R4

FCO.A R5

EXAMPLE 2

A SSEMBLY LANGUAGE:

A R4,R10 ADD THE CONTENTS OF R4 (SOURCE) AND RlO (DESTINATION)

MACHINE LANGUAGE:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 1 0 1 I 0 I 0 0 I 1 0 1 0 I 0 0 I 0 0 0 I > A284

Of' CODE B To DR Ts SR

A0001424

Figure 4-5. Di'rect R · egister Addressing Example

4-9

ASSEMBLY LANGUAGE:

MOV R1 ,•R4 MOVE THE CONTENTS OF RI (SOURCE) TO ADDRESS IN R4 (DESTINATION)

MACHINE LANGUAGE:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

._I _1 ___ o___._j _ o____._j _0 __ 1_..._j _o ___ o __ o~j~o--o~j_o __ o __ o -~1 j >eso1
OPCODE B To

M.A.

FCOO

FC02

FC04

FC06

FCOB

FCOA

FOOD

A0001425 FD02

Figure 4-6.

ASSEMBLY LANGUAGE
MO V R1 , .. R4 1

MACHINE LANGUA GE

0 2 3 4

~ 1 0 I 0 I 1

OP CODE B

M.A.

FCOO

FC02

FC04

FC06

FCOB

FFOO

A0001 427

OR Ts SR

RO

R1

R2

R3 PLACE Rl BINARY
R4 F 0 00

IMAGE IN MA FD001s
RS (INDIRECT R4)

Indirect Register Addressing Example

MOVE THE CONTENTS OF RI TO ADDRESS CONTAINED IN R4,
INCREMENT ADDRESS BY 2

5 6 7 8 9 10 11 12 13 14 15

1 I 0 0 0 I 0 0 I 0 0 0 ,;. COOl

To DR Ts SR

BEFORE ~

RO

Al 0000 0000

R2

RJ

R4 FFOO FF02

AAAA 0000

Figure 4-7. Indirect Register Autoincrement Addressing Example

4-10

f

l
I

4.5.3 INDIRECT REGISTER AUTOINCREMENT ADDRESSING (T: 11 2)
Indirect register autoincrement addressing is the same as indirect register addressing
(paragraph 4.5.2) except for an additional feature - automatic incrementation of the
register. This saves the requirement of adding an increment (by one or two)
instruction to increment the register being used in the indirect mode. The increment
will be a value of one for byte instructions (e.g., add byte or AB) or a value of t wo
for full word instructions (e.g., add word or A)

In assembly language , the register number is preceded by an asterisk (*) and followed
by a plus sign (+) as shown in Figure 4- 7. Note in the figure that the contents of
register 4 was incremented by two since the instruction was a move word (vs . byte)
instruction. If the example used a move byte instruction, the contents of the register
would be incremented by one so that successive bytes would be addressed (the 16-bit
word addresses in memory are always even numbers or multiples of two since each
contains two bytes). Bytes are also addressed by various instructions of the 990
instruction set.

Note that only a register can contain the indirect address .

4.5.4 SYMBOLIC MEMORY ADDRESSING, NOT INDEXED (T=102)
This mode does not use a register as an address or as a container of an address.
Instead , the address is a 16-bit value stored in the second or third word of the
instruction . The SR or DR fields will be a ll zeroes as shown for the destination
register field in the first example of Figure 4- 8. When the T field contains 102 . the
CPU retrieves the contents of the next memory location and uses these contents as the
effective address . In assembly language, a s ymbolic address is preceded by an at sign
(@) to differentiate a numerical memory address from a register number. All
alphanumeric labels must be preceded by an @ sign; numerical values preceded by an @
sign will be assembled as an absolute address (the TM 990/402 Line-By- Line Assembler
does not recognize alphanumeric symbols but does recognize absolute memory addres ses).

In the second example in Figure 4-8, both the source and destination operands are
symbolic memory addresses . In this case, the source address is the first word
following the instruction and the destination is the second word following the
instruction in machine language .

4.5.5 SYMBOLIC MEMORY ADDRESSING , INDEXED (T: 102)
Note that the T field for indexed as well as non-indexed symbolic addressing is the
same <10 2). In order to differentiate between the two different modes, the associated
SR or DR field is interrogated; if this field is all zeroes (0000 2), non-indexed
addressing is specified; if the SR or DR field is grea ter than zero, indexing is
specified and the non- zero value is the index r egister number . As a result, register 0
cannot be used as an index register .

In assembly language , the symbolic address is followed by the number of the index
register in parentheses. In the example in Figure 4-9, the source operand is
non-indexed symbolic memory addressing while the destination operand is indexed
symbolic memory addressing . In this case , the destination effective address is the sum
of the FF02 16 value in the source memory address word plus the value in the index
register (0004 16). The effective address i n this case is FF06 16 as shown by the
addition in the left part of the figure.

Note that only symbolic addressing can be indexed.

4-11

EXAMPLE 1

ASSEMBLY LANGUAGE:

MDV Rl ,@> FFOO MOVE THE CONTENTS OF RI TO ADDRESS >FFOO

NOTE

The > sign indicates hexidec1mal re presentat ion .

MACHINE LANGUAGE:

OPCODE B To

0 2 3 4 5

1st WORD 0 I 0 I 1 0 I
2nd WORD

M.A.

RO

Rl

R2

F EF E

F FOO

EX AMPLE 2

ASSEMBL Y LANGUAGE.

MDV @> FFOA,@> FF08

MACHINE LANGUA GE:

OPCODE B To

0 2 3 4 5

DR

6 7 8 9

0 0 0 0

0 0

Ts

10 11 12

I 0 0 I 0

0 0 0

PLACE RI BINARY

IMAGE IN

MA > FFOO

SR

13 14 15

0 0

0 0 0

MOVE THE CONTENTS OF > FFOA TO >FF08

DR Ts SR

6 7 8 9 10 11 12 13 14 15

'- C801

' · FFOO

1st WORD > C820 1 1 o I o I 1 o I 0 0 0 o I 1 o 1 o 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 2nd WORD > FFOA (SOURCE)

1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 3rd WORD > ff08 (DESTINATION)

A0001428

M.A.
FF08

FFOA

BEFORE AFTER

tEfil
~
~ s

Figure 4-8. Direct Memory Addressing Example

4-12

ASSEMBLY LANGUAGE.
MOV @>FFOO,@>FF02(Rl)

MACHINE LANGUAGE:

OP CODE

0

1

1

1

>FF02 ID)
- 0004 IR 11

>FF06

1

1

1

B

2 3

o I 0 I
1 1

1 1

To

4

1

1

1

M .A.

FFOO

..._ FF02

~ FF04

......._______F F06

A 0001429

5

o I
1

1

RO

Al

R2

6

0

1

1

MOVE THE CONTENTS OF > FFOO TO > FF02 +RI CONTENTS

DR Ts SR

7 8 9 10 11 12 13 14 15

0 0 1 I 1 0 I 0 0 0 0

-C860

1 0 0 0 0 0 0 0 0 ·FFOO (SOURCE)

1 0 0 0 0 0 0 1 0 >FF02 IDESTINATIONI

BEFORE AFTER

0004 0004

\ \ \ \
FFEE FFEE

0000 0000

0000 0000

0000 FFEE

Figure 4-9. Direct Memory Addressing , Indexed Example

4 .5 . 6 IMMEDIATE ADDRESSING
This mode allows an absolute value to be specified as an operand; this value is used
in connection with a register contents or is loaded into the WP or the Sta tus Register
interrupt mask. Examples are shown below:

LI

Cl

L WPI

R2. 100

R8, 100

> 3COO

LOAD 100 INTO REG ISTER 2

COMPARE RB CONT ENTS TO > 100, RES U L TS IN ST

SET WP TO MA > 3COO

4.5.7 PROGRAM COUNTER RELATIVE ADDRESSING
This mode allows a change in Program Counter contents, either an uncondi t ional change
or a change conditional on Status Register contents. Examples are shown below:

JMP

JMP

JEQ

JMP

S •6

THERE

S•4
> 3E26

JUMP T O LOCATION , 6 BYTES FORWARD

JUMP TO LOCATI ON L A BE L LED THER E

IF ST EQ BIT 1 . JUMP 4 BYTES (M A• 41

JUMP TOM A '> 3E26 IL INE ·BY·LI N E ASSEMBL ER ONLY)

The dollar symbol ($) means "from this address"; thus , $+6 means "this address plus 6
bytes."

4-13

4.6 INSTRUCTIONS
Table 4-2 lists terms used in describing the instructions of the TM 990/ 101M. Table
4-3 is an alphabetical list of instructions. Table 4-4 is a numerical list of
instructions by op code. Examples are shown in both assembly language (A.L.) and
machine language (M.L.). The greater-than sign (">)indicates hexadecimal.

Table 4-2. Instruction Description Terms

TERM DEFINITION

B By l e indicator (1 - byte, 0 = word)
c Bil count
DR Destination address register
DA Destination address

I OP Immediate operand
LSB(n) Least significant (right most) b11 of (n)

M .A . Memory Address

MSB(n) Most significant Heft most) b11 o f (n)
N Don't care

PC Program counter
Result Result o f opera ti on performed by instruct ion
SR Sou rce address register
SA Source address

ST Sta tus register
STn B it n o f sta tu s register

To Destination address modifier

Ts Source address modifier

WR or R Workspace register
WRn or Rn Wurk space register n
(n) Contents of n
a - b a 1s transferred to b

(a) - b Contents of a is t ransferred to be

ln l Absolute value of n
~ Arithmetic addition

Arithmetic subtraction

ANO Logical ANO
OR Logica l OR

G Logical exc lusive OR
n Logical complement of n

> Hexadecimal value

4-14

.::=
I _.

\Jl

ASSEMBLY
LANGUAGE
MNEMONIC

A
AB
ABS
Al
ANDI

B
BL
BLWP
c
CB

Cl
CKOF
CKON
CLR
coc
czc
DEC
DECT
DIV
IDLE

INC
INCT
INV
JEQ
JGT

JH
JHE
JL
JLE
JLT

JMP

JNC
JNE
JNO
JOC

MACHINE

LANGUAGE
OP CODE

AOOO
BOOO
0740
0220
0240

0440

0680
0400
8000
9000

0280
03CO
03AO
04CO
2000

2400
0600
0640
3COO
0340

0580
05CO
0540
1300
1500

lBOO
1400
lAOO
1200
1100

1000
1700
1600
1900
1800

STATUS REG.
BITS

FORMAT AFFECTED

1 04
1 0·5

6 02
8 0·4

8 0·2

6
6 -
6
1 02
1 0 2,5

8 02
7

7

6
3 2

3 2

6 0 ·4
6 0·4

9 4
7 -
6 0·4
6 0-4

6 ().2

2
2 -
2
2
2 -
2 -
2 -
2 -
2 -
2 -
2 -
2

- -- --

RESULT
COMPARED
TO ZERO INSTRUCTION

x Add (word)
x Add (by1e)

x Absolute Value

x Add Immediate

x AND Immedia te

Branch
Branch and Link (Rl l l
Branch , New Workspace Pointer
Compare (word)
Compare (byte)

Compare lmmed1a1 e
Use1 Defined
User Def ined
Clear Operand
Compare Oles Cori espond1ng

Compare Zeroe~ Correspo nding
x Decrement (by one)

x Decrement (by two)
Divide
Computer Idle

x Increment (by one)

x I ncrement (by two)
x Invert (One's Complemen t)

Jump Equal (ST2~ 11
Jump Greater Than IST 1 ~ 1) , Arithmetic

Jump High ISTO 1 and ST2=01. Logica l
Jump High or Equal (STO or ST2~ 1) , Logical
Jump Low (STO and ST2~0I , Logical
Jump Low or Equal (STO=O or ST2= 1) , Logical
Jump Less Than (ST 1 and ST2- 0I , Arithmetic

Jump Unconditional
Jump No Carry (ST3~01
Jump N ot Equal IST2 ~Q)

Jump No Overflow IST4 ~ 0)

Jump On Carry (ST3 - 1 I

PARAGRAPH

4 6 1
4.6 .1
4.6.6
4.6 8
4 .6 8

466
466
4 6.6
4 6 1
4.6 1

4 6 .8

4 6 7
4.6 7

4.6.6
4.6 .3

4.6 .3
4 .6 6
4.6 6
4.6.3
4.6 .7

4.6.6
4.6.6
4.6.6
4.6.2
4 6 .2

4.62
4.6.2
4 .6 .2
4 6 .2
4 6 .2

4 6 2
4 6 2
46 2
462
46 2

>--3
Ill
O"
f--'
(!)

.::=
I

w

H
::i
(/J

cT
'"l
s:::
()
cT
I-'·
0
::l

{/)
(!)
cT

:t>
f--'
'O
::J"
Ill
O'
(!)
cT
I-'·
()
Ill
f--'

H
::i
0.
(!)
x

.l:'
I
°'

ASSEMBLY
LANGUAGE

MNEMONIC

JOP
LDCR
LI
LIMI
LREX

LWPI
MOV
MOVB
MPY
NEG

OR I
RSET
RTWP
s
SB

SBO
SBZ
SETO
SLA
soc
SOCB
SRA
SAC
SAL
STCR

STST
STWP
SWPB
szc
SZCB

TB
x
XOP
XOR

MACHINE
LANGUAGE

OP CODE

lCOO
3000
0200
0300
03EO

02EO
cooo
0000
3800
0500

0260
0360
0380
6000
7000

1000
1EOO
0700
OA OO
EOOO

FOOO
0800

OBOO
0900
3400

02CO
02AO
06CO
4000
5000

1FOO
0480
2COO
2800

STATUS REG .
BITS

FORMAT AFFECTED

2 -
4 0· 2.5
8 -
8 12·15
7 12·15

8 -
1 0·2
1 0·2,5
9 -
6 ().2

8 0·2
7 12·15
7 ().15
1 0·4
1 ().5

2 -
2 -
6 -
5 0·4
1 ().2

1 0·2.5
5 0·3
5 0·3
5 0·3
4 0·2,5

8 -
8 -
6 -
1 0·2
1 0 ·2,5

2 2
6 -
9 6
3 ().2

RESULT
COMPARED

TO ZERO INSTRUCTION

Jump Odd Parity (ST5~ 1 I

x Load CRU
x Load Immediate

Load Interrupt Mask Immediate
Load and Execute

Load Immedia te to Workspace Pointer
x Move (word)
x Move (byte)

Mu ltiply
x Negate (Two's Complement)

x OR Immediate
Reset AU
Return from Context Switch

x Subtract (word)

x Subtract (byte)

Set CRU Bit to One
Set CRU Bit to Zero
Set Ones

x Shift Left Arithmetic

x Set Ones Corresponding (word)

x Set Ones Correspond ing (byte)
x Shift Right (sign ex tended)

x Shift Right Circular
x Shift R ight Logical
x Store From CRU

Store Status Register
Store Workspace Po inter
Swap Bytes

x Set Zeroes Corresponding (word)

x Set Zeroes Corresponding (byte)

Test CRU Bit
Execute
Extended Operation

x Exclusive OR

PARAGRAPH

4.6.2
4 .6.4
4 .6 .8
4 6.8
4.6.7

4.6.8
4.6 .1
4.6 .1
4 6 .3
4.6 .6

4.6.8
4.6 7
4.6 7
4.6 .1
4.6. 1

4.6 2
4.6 .2
4.6 .6
4.6 .5
4 .6.1

4 .6.1
4 .6 .5
4 .6.5
4 .6 .5
4 .6.4

4 .6.8
4 .6 8
4.6 .6
4.6.1
4 .6 .1

4.6 .2
4.6 .6
4.6.9
4 .6 .3

~
Ill
O'
CD

.l:'
I

w

H
::s
CQ
~ .,
c:
Q
~
0
::s
en
CD
~

:z:,.
......

l'O
::r
Ill
O'
CD
~
Q
Ill
H
::s
0.
CD
><

("")
0
::s
Q
......
c:
0.
CD
0.

Table 4-4 . Instruction Set, Numerical Index

MACHINE
LANGUAGE ASSEMBLY
OP CODE LANGUAGE STATUS BITS

(HEXA DECIMAL) MNEMONIC INSTRUCTION FORMAT AFFECTED

0200 u Load Immediate 8 0-2

0220 Al Add Immediate 8 0-4

0240 ANDI And Immediate 8 0-2

0260 ORI Or Immediate 8 0-2

0280 Cl Compare Immediate 8 0-2

02AO STWP Store WP 8 -
02CO STST Store ST 8 -
02EO LWPI Load WP Immediate 8 -

0300 LIMI Load Int. Mask 8 12-15

0340 IDLE Idle 7 -
0360 RSET Reset AU 7 12-15

0380 RTWP Return from Context Sw. 7 0-15

03AO CKON User Defined 7 -

03CO CKOF User Defined 7 -
03EO LREX Load & Execute 7 -

0400 BLWP Branch; New WP 6 -
0440 B Branch 6 -
0480 x Execute 6 -
04CO CLR Clear to Zeroes 6 -
0500 NEG Negate to Ones 6 ().2

0540 INV Invert 6 0-2

0580 INC Increment by 1 6 0-4

05CO INCT Increment by 2 6 0-4

0600 DEC Decrement by 1 6 0-4

0640 DECT Decrement by 2 6 0-4

0680 BL Branch and Link 6 -

06CO SWPB Swap Bytes 6 -

0700 SETO Set to Ones 6 -

0740 ABS Absolute Value 6 0-2

0800 SRA Shift Right Arithmetic 5 0-3

0900 SAL Shift Right Logical 5 0-3

OAOO SLA Shift Left Arithmetic 5 0-4

OBOO SAC Shift Right Circular 5 0-3

1000 JMP Unconditional Jump 2 -

1100 JLT Jump on Less Than 2 -

1200 JLE Jump on Less Than or Equal 2 -
1300 JEQ Jump on Equal 2 -
1400 JHE Jump on High or Equal 2 -

1500 JGT Jump on Greater Than 2 -
1600 JNE Jump on Not Equal 2 -

1700 JNC Jump on No Carry 2 -
1800 JOC Jump on Carry 2 -
1900 JNO Jump on No Overflow 2 -
1AOO JL Jump on Low 2 -
1800 JH Jump on High 2 -
1COO JOP Jump on Odd Paroty 2 -
1000 SBO Set CRU Bits to Ones 2 -
1 EOO SBZ Set CRU Bits to Zeroes 2 -
!FOO TB Test CRU Bit 2 2

2000 coc Compare Ones Corresponding 3 2

4-17

Table 4-4. Instruction Set, Numerical Index (Concluded)

MACHINE

LANGUAGE ASSEMBLY

OP CODE LANGUAGE STATUS BITS
(HEXADECIMAL MNEMONIC INSTRUCTION FORMAT AFFECTED

2400 czc Compare Zeroes Corresponding 3 2
2800 XOR Exclusive Or 3 0-2

2COO XOP Ex tended Operation 9 6
3000 LOCR Load CRU 4 0 2.5
3400 STCR Store CRU 4 0 2,5

38CO MPV Multiply 9

3COO D IV 0 1v1de 9 4

4000 szc Set Ze:oes Corresponding (Word) 1 0 2
5000 SZCB Set Ze1oes Co rresponding (Byte) 1 0 2, 5

6000 s Subtrac t Word 1 04

7000 SB Subtract Byte 1 0 -5

8000 c Compare Word 1 02
9000 CB Compare Byte 1 0 2.5
AOOO A Add Word 1 04

BOOO AB Add Byte 1 0 5

cooo MOV Move Word 1 0-2

0000 MOVB Move Byte 1 0·2,5

EOOO soc Set Ones Corresponding (Word) 1 0 2

FOOO socs Set Ones Correspond ing (Byte) 1 0 2 .5

4.6.1 FORMAT 1 INSTRUCTIONS
These are dual operand instructions with multiple addressing modes for source and
destinati on operands.

GENERAL FORMAT:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OP CODE To DR Ts SR

If B = 1, the operands are bytes and the operand addresses are byte addresses. If B =
O, the operands are words and the operand addresses are word addresses.

4-18

..

OP CO DE
r RESULT STATUS

B
MNEMONIC MEANING COMPARED B ITS l)ESCRIPTION

0 2 3

I
TOO AFFEC T E D

A 1 0 0 Arid Yes 0 4 ISAl•!DAI · IOA)

AB 1 0 1 Add hytes I Yes 0·5 ISAl•IOAI • IDAI

c 1 0 0 0 Co mpare No 0-2 Compa re (SAi to IDA I tn<I \f>I

appropriate status hots

CB 1 0 0 1 ' Compare bytes No 0·2.5 CompJ•e ISAI to IOAI .ond SPt

appropriate status h•ts

r.1ov 0 0

I
Move Yes 0·2 ISA) 'IDAI

l\1Cv8 1 1 0 1 Move bytes Yes 0 ·2,5 (SA) - IOAI
c; 0 1 0 Subtract Yes 0 -4 IDA) - (SA) _. IDA)

SB 0 1 1

I
Subtract hytes Yes 0·5 WAI - (SA) - IDAJ

50C 0 Set ones co rrespontt. ng Yes 0 ·2 (DA) OR ISAl !DAI

SOCb 1 1 I Set ones corresoondrng bytes Yes 0 ·2,5 IDA) OR (SA) -- IOAI

c;zc () 1 Q 0

I
Set teroes correspondong Yes 0 -2 IDA I AND (SAi - IOA)

szrg 0 1 0 Set 1eroes correspondonq hy tes Yes 0 ·2.5 IDAI AND ISA) - IOA)

EXAMPLES

(1) ASSEMBLY LANGUAGE:
A @> 100,R2 ADD CONTENTS OF MA >100 & R2, SUM IN R2

MACHINE LANGUAGE:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(2)

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

ASSEMBLY LANGUAGE:
CB

MACHINE

0

R1 ,R2 COMPARE BYTE Rl TO R2, SET ST

LANGUAGE:

2 3 4 5 6 7 8 9 10 ,, 12 13

0 0 0 0 0 0 0 0 0 0

NOTE

In byte instruction des1gnat1ng a register, the left byte ts used. In the above

example, t he left byte 18 MSB's) of R 1 is compared to the left byre of R 2,

and the ST set to the results.

4-19

0

0 0 ~AOAO

0 0 >0100

14 15

0 >9081

4.6.2 FORMAT 2 INSTRUCTIONS

4.6.2.1 Jump Instructions
Jump instructions cause the PC to be loaded with the value (PC +2 (signed
displacement)) if bits of the Status Register are at specified values . Otherwise, no
operation occurs and the next instruction is executed since the PC was incremented by
two and now points to the next instruction . The signed displacement field is a word
(not byte) count to be added to PC. Thus, the jump instruction has a range of -128 to
127 words (-256 to 254 bytes) from the memory address fol lowi ng the jump instruction.
No ST bits are affected by a jump instruction.

GENERAL FORMAT:

0

MNEMONIC - -0 1

JEQ 0 0

JGT 0 0

JH 0 0

JHE 0 0

JL 0 0

JLE 0 0

JLT 0 0

JMP 0 0

JNC 0 0

JNE 0 0

JNO 0 0

JOC 0 0

JOP 0 0

2

OP CODE

2 J 4 5 6

0 1 0 0 1

0 1 0 1 0

0 1 I 0 1

0 1 0 1 0

0 I 1 0 1

0 1 0 0 1

0 1 0 0 0

0 1 0 0 0

0 1 0 1 1

0 1 0 1 1

0 1 1 0 0

0 1 1 0 0

0 1 1 1 0

3 4 5 6 7 8 9 10 11 12 13 14 15

OPCODE SIGNED DISPLACEMENT (WORDSI

·-

J MEANING ST CONDITION TO CHANGE PC
7 -
I Jump equal ST2 I

1 Jump greater than STl 1

1 Jump high STO = 1 and ST2 0

0 Jump high or equal STO 1 o r ST2 " t

0 Jump low STO = 0 anc1 ST2 0

0 Jump low or equal STO = 0 or ST2 1

1 Jump less than STl 0 and ST2 0

0 Jump uncondrtronal uncond 111o nal

1 Jump no carry

I
STJ = 0

0 Jump not equal ST2 ~ 0

1 Jump no overfl ow ST4 ~ 0

0 Jump o n carry

I
STJ - 1

0 Jump odd pamy ST5 ~ 1

In assembly language, $ in the operand indicates "at this instruction". Essentially
JMP $ causes an unconditional loop to the same instruction l ocation , and JMP $+2 is
essentially a no-op ($+2 means "here plus two bytes"). Note that the number following
the $ is a byte count while displacement in machine language is in words.

4-20

EXAMPLES:

EXAMPLES

(1J ASSEMBLY LANGUAGE.
JEO S+4 IF EO BIT SET. SKIP 1 INSTRUCTION

MA CHINE LANGUAGE.

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 _ o ____ o __ o ___ ± 0 __ o __ o __ o ___ o __ o __ ,___,j ·1301

~~
PC POINTS TO-~_::)

IF STATUS REGISTER BIT 2 "' 1

SKIP NEXT INSTRUCTION

The above instruction continues execution 4 bytes (2 words) from the instruction
location or, in other words, two bytes (one word) from the Program Counter value
(incremented by 2 and now pointing to next instruction while JEQ executes). Thus, the
signed displacement of 1 word (2 bytes) is the value to be added to the PC.

(2) ASSEMBLY LANGUAGE.
JMP $ REMAIN AT THIS LOCATION

MACHINE LANGUAGE:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0 0 0 0 0 0 0 I 1 - , ~ ; lOFF

PC-1 WORD JMP $ CONTINUOUS LOOP

PC POINTS TO TO JMP $ I> FF = - 1 WORDI

This causes an unconditional loop back to one word less than the Program Counter value
(PC+ FF = PC-1 word). The Status Register is not checked . A JMP $+2 means "go to the
next instruction" and has a displacement of zero (a no-op). No-ops can substitute for
deleted code or can be used for timing purposes.

4 . 6.2.2 CRU Single-Bit Instructions
These instructions test or set values at the Communications Register Unit (CRU). The
CRU bit is selected by the CRU address in bits 3 to 14 of register 12 plus the signed
displacement value. The selected bit is set to a one or zero, or it is tested and the
bit value placed in equal bit (2) of the Status Register. The signed displacemertt has
a value of -128 to 127. NOTE

CRU addressing is discussed in detail in paragraph 5.5. CRU multibit
instructions are defined in paragraph 4.6.4.

4-21

0 2 3 4

General Format : OP CODE

MNEMONIC

SBO

SB/

TB

MEANING

__ o_P_co_o_E __ --1L
0 1 2 3 4 5 6 7

0 0 0 I 1 1

0 0 0

0 0 0 1 1

t IHI to one

1111 to Lero

St ll1 t

EXAMPLE

R12, BITS 3 TO 14 = > 100

ASSEMBLY LANGUAGE:

5 6 7 8 9 10 11 12 13 14 15

SIGNED DISPLACEMENT

I STATUS

I BITS DESCRIPTION

AFFECTED

Set the selected C R U OU tPU t b it 10 1

Set the selected CRU output IHI to 0

2 If the selected CHU input hit 1. set ST 2

SBO 4 SET CRU ADDRESS > 104 TO ONE

MACHINE LANGUAGE:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 >1D04

4.6.3 FORMAT 3/9 INSTRUCTIONS
These are dual operand instructions with multiple addressing modes for the source
operand, and workspace register addressing for the destination. The MPY and DIV
instructions are termed format 9 but both use the same format as format 3. The XOP
instruction is covered in paragraph 4.6.g.

0 2 3 4

Gen•M Format: OPCODE

OPCODE
MNEMONI C 01 2345 MEANING

coc 001 000 Compare ones
corresponding

czc 001001 Compare zeros
corr espondmg

XOR 00 101 0 E•clusive OR

MPV 0 0 1 1 1 0 Multiply

DIV 001111 0 1v1de

Exclusive OR Logic

5 6 7 8 9 10 11 12 13 14 15

I DR (REGISTER ONL YI J Ts SR

RESULT STATUS
COMPARED BITS

TO 0 AFFECTED

No 2

No 2

Yes (). 2

No

No 4

4-22

DESCRIPTION

Tnt to RI to determine 1f l ' s are in each
bit pasit1on where 1 's are 1n (SAi . If so,
set ST2.

Test (OR) to determine 11 O's are in each
bit pos1t1on where 1 's are in (SA). If so,
set ST2.

(ORI $ ISA) _. IORI

Multiply unsigned IORl by unsigned
(SA) and place unsigned 32·b11 product
in OR (most s1gn1f1cant) and OR + 1
(least s19n1f1cantl If WR 15 is OR. the
n'"t word in memory a fter WR15 will
be used for the least sign1f1can t half of
1he prod ucl

If unsigned (SA) os less 1ha n or equal to
unsigned (ORI , perlorm no operation
and set ST4 01herwise dovode unsigned
(ORI and IORI by unsigned (SA i .
Quotient - (OR I. remain<.Jer (OR 11).
If OR 15. the ne.i word on memo1y
after WR 15 woll be use<! for the
remainder

EXAMPLES

{1J ASSEMBLY LANGUAGE

MPY R2,R3 MULTIPLY CONTENTS OF R2 ANO R3. RESULT IN R3 AND R4

MACHINE LANGUAGL

0

I o
[

0

2 4

R2

R3

R4

5 6 7

0 0 0

BEFORE

l """' l 0003

f N

r

8 9 10 11 12 13 14 1 ~.

0 0 0 0 () u:, ·'

AFTER

~··~ 0000 } 32 BIT

0006 RESULT

The destination operand is always a register, and the values multiplied are 16- bits,
unsigned. The 32-bit result is placed in the destination register and des tination
register +1, zero filled on the left.

(2) ASSEMBLY LANGUAGE.
DIV @> FEOO,R5 DIVIDE CONTENTS OF R5 AND RS BY VALUE AT M.A. > FEOO

MACHINE LANGUAGE:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 I 1 0 I 0 0 0 0

I
'>3060

0 0 0 0 0 0 0 0 · FEOO

0 0 1 I o

1 0

BEFORE AFTER

M .A . > FEOO 0005

R5 0000 0003

R6 0 0 1 1 0002 - -- REMAINDER

4-23

The unsigned 32-bit value in the destination register and destination register +1 is
divided by the source operand value. The result is placed in the destination register.
The remaindewr is placed in the destination register +1.

(3) ASSEMBLY LANGUAGE:
coc R10,R11 ONES IN RlO ALSO IN Rl 1?

MACHINE LANGUAGE:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0 0 0 0 0 I 1 0 1 I 0 0 I 1 0 0 >22CA

Locate all binary ones in the source operand. If the destination operand also has ones
in these positions, set the equal flag in the Status Register; otherwise, reset this
flag. The following sets the equal flag:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RlO 0 0 0 0 0 0 0 0 0 0

I
>AAOC

Rll 0 1 1 0 0 0 > EFCO

S.. EO bit in Status R to 1.

4.6.4 FORMAT 4 (CRU MULTIBIT) INSTRUCTIONS

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gen.al Format :[
'--~~~~~~~~~~---''----~~~~~~-'--

OP CODE c Ts SR ~

The C field specifies the number of bits to be transferred. If C = O, 16 bits will be
transferred. The CRU base register (WR 12, bits 3 through 14) defines the starting CRU
bit address. The bits are transferred serially and the CHU address is incremented with
each bit transfer, although the contents of WR 12 are not affected. Ts and SR provide
multiple mode addressing capability for the source operand. If 8 or fewer bits are
transferred (C = 1 through 8), the source address is a byte address. If 9 or more bits
are transferred (C = O, 9 through 15), the source address is a word (even number)
address. If the source is addressed in the workspace register indirect autoincrement
mode, the workspace register is incremented by 1 if C = 1 through 8, and is
incremented by 2 otherwise.

NOTE

CRU addressing is discussed in detail in paragraph 5.5. CRU single bit
instructions are defined in paragraph 4.6.2.2.

4-24

OPCODE
RESULT STATUS

MNEMONIC MEANING COMPARED BITS DESCRIPTION
0 1 2 3 4 5

TO 0 AFFECTED

LDC R 0 0 1 1 0 0 Load communcat1on Yes 0 ·2.5 t Begin ning w11h LSB o f (SA i. t ransfe r t he

register specified number of bi t s from (S A) to

the CR U.

S TCR 0 0 1 1 0 1 Store commun ca11on Yes 0 -2 .st Beginning with LSB o f (SA). tran sfer t he

register spec1f1ed number of b11s from the CRU 10

(SA i. l oad unf illed b 11 p cs1t1on s with 0.

1 ST5 is a ffec t ed onl y if 1 "- C ~ 8.

EXAMPLE

ASSEMBLY LANGUAGE:
LDCR @>FE00,8 LOAD 8 BITS ON CRU FROM M.A. > FEOO

MACHINE LANGUAGE:

0 2 3 4 5 7 8 9 10 11 12 13 14 15

I ' 0 0 o I 1 0 0 o 1 1 o I o 0 0 0 >3220

0 0 0 0 0 0 0 0 0 >FEOO

NOTE
CRU addressing is discussed in detail in paragraph 5,5,

4.6.5 FORMAT 5 (SHIFT) INSTRUCTIONS
These instructions shift (left, right, or circular) the bit patterns in a workspace
register. The last bit value shifted out is placed in the carry bit (3) of the Status
Register. If the SLA instruction causes a one to be shi fted into the sign bit, the ST
overflow bit (4) is set. The C field contains the number of bits to shift.

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Geneul Format: OP CODE c R

If C = O, bits 12 through 15 of RO contain the shift count. If C = 0 and bits 12
through 15 of WRO = O, the shift count is 16.

4-25

RESULT STATUS
Of' CODE

BITS DESCRIPTION MNEMONIC MEANING COMPARED
0 1 2 3 4 5 6 7

TOO AFFECTED

SLA 0 0 0 0 1 0 1 0 Shi ft left arithmetic Yes 0-4 Shift IAI left. Fill vacated bit

positions with 0.

SRA 0 0 0 0 1 0 0 0 Shift right arithmetic Yes 0-3 Shift IRI right. Fill vacated bit

positions with origin.I MSB of (Al.

SAC 0 0 0 0 1 0 1 1 Shilt right circular Yes 0-3 Shift IA) right. Shift previous LSB

into MSB.

SAL 0 0 0 0 1 0 0 1 Shift right logical Yes 0 -J Shift IRI right. Fill v11e11ted bit

positions with O's.

EXAMPLES

(1) ASSEMBLY LANGUAGE:
SRA Rl,2 SHIFT Al RIGHT 2 POSITIONS, CARRY SIGN

MACHINE LANGUAGE:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 >0841

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Al BEFORE I 0 0 0 0 0 0 0 1 1 1 >8FOF

'< '< ' ', ' ' ' ' ' ' ' ·; ' ' '
R1 AFTER 0 0 0 0 0 0 0 >E3C3

SIGN BIT CARRIED IN

(2) ASSEMBLY LANGUAGE:
SAC R5,4 CIRCULAR SHIFT AS 4 POSITIONS

MACHINE LANGUAGE:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[0 0 0 0 0 0 0 I 0 1 0 0 0 0 >0845

•
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RS BEFORE 0 0 0 0 0 0 0 0 0 0 :_ 1 :>090F
c:::: _____ -- -- -- -------- -- ----- -;-E; RSAFTERC-~

I =.. --
0 0 0 0 1 0 0 0 0

4-26

(3) ASSEMBL Y LANGUAGE ·
SLA R1 ,0 SHIFT COUNT IN RO

SHIFT COUNT

/
A

' 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RO 0 0 0 0 0 0 0 0 ·CCC3

R1 IBEFOREI 1

R1 IAFTERI 1 0 0 0 I
~

VACATED BITS ZERO FILLED

4.6.6 FORMAT 6 INSTRUCTIONS
These are single operand instructions.

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SR

The Ts and S fields provide multiple mode addressing capability for the source operand.

RESULT STATUS
OPCODE

MNEMONIC MEANING COMPARED BITS DESCRIPTION
0 1 2 3 4 5 6 7 8 9

TOO AFFECTED

B 0 0 0 0 0 1 0 0 0 B•nnch No SA IPCJ

BL 0 0 0 0 0 1 0 1 0 Br,mch Jncl link No IPCI -+ (Rl 11 ; SA ---. (PC)

BLWP 0 0 0 0 0 0 0 0 0 B1,1nch .ind load No (SA) -+(WP) ; (SA+2) -+(PC);

WU• ksp dCP po1nlPr (old WP) · lnew WR J3l

(old PC) - I new WR 14J.

lold ST) ·(new WR 15)

the 1n1e,.uµ1 1npu1 l lNTREOI "1101

tPstc<I upon r.omple11on ol rhe

BLWP 1ns1•uc11on

CLR 0 0 0 0 0 0 0 1 1 CIP,11 UPP• 11HI No 0000 -+ (SA)

Sf TO 0 0 0 0 0 1 I 1 0 0 SPt 14 unt' \ N" FFFF15 · ISAI

INV 0 0 0 0 0 1 0 0 I lnvt•r 1 y,., 02 ISAI · ISAI (ONE'S complement)

NEG 0 0 0 0 0 1 0 0 0 Nt1q.11t• y 04 ISA l • IS A)(TWO'S complement)

ABS 0 0 0 0 0 1 1 1 0 Absolute value• No 0-4 [(SA)) ..., (SA)

SWPB 0 0 0 0 0 0 1 1 Sw.op llytl'\ No ISAI lo11s 0 th•u 7 · ISA I. I""

81h1u 1~ ISAl,l1t1~81h1111'>

I ISAl, 1111~ 0 1h1u 7

INC 0 0 0 0 0 1 0 0 lnt1f·me111 Yes 0 4 I ISA)• 1 · ISAI

INCT 0 0 0 0 0 0 1 1 l nL1f·mpn 1 hy twu Y1•s 0 4 ISAI' 2 ·ISA)

DEC 0 0 0 0 0 0 0 0 Decrrrncnr YPs 0-4 ! (SA) - 1 · ISA I

OECT 0 0 0 0 0 I 0 0 1 DPcremtinl l1y 1wr1 v •. s 0 4 ISA> - 2 • I SAI

L:: 0 0 0 0 0 0 0 1 0 Exp1 UI P No I

1
EJiCt'CUIP thp 1ns11uc11on .11 SA

l _ l
•<>p.•nd is compsed to z ... o fOI' wttint the st•tus bit li.e ., before execution).
tu additional memory words for the execute instruction are required to define the operands of the instruction located at SA, these

words w;11 be accessed from PC and the PC will be updated accordingly. The 1n1truction acquisition signal (IAQ) will not be true

when the TMS 9900 accesses the instruction at SA. Status bits are affected in the normal manner for the instruction executed.

NOTE
Jumps, branches, and XOP's are compared in Table 4-5.

4-27

EXAMPLES

(1) ASSEMBLY LANGUAGE:
B *R2 BRANCH TO M.A. IN R2

MACHINE LANGUAGE:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R2 F 0 0 0

M.A. >FOOO

F-B~~-·-R-2~---f~ PC

NEXT INSTR. ~

F 0 0 0 IAFTERI

(2) ASSEMBLY LANGUAGE:
BL @>FFOO BRANCH TO M.A. > FFOO, SAVE OLD PC VALUE (AFTER EXECUTION) IN All

MACHINE LANGUAGE:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 ·

0 0 0 0 1 0 0 I 1
0 l 0 0 0 0

I
>04AO

0 0 0 0 0 0 0 0 >FFOO

F c 0 4

BL@ >FFOO

)
PC IF F 0 0 (AFTER I

F F 0 0

,.,fC04

>FFOO NEXT INSTR .

TO RETURN
EXECUTE
B •R11

B •R11

(3) ASSEMBLY LANGUAGE:
BLWP @> FOOO BRANCH, GET NEW WORKSPACE AREA

MACHINE LANGUAGE:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 J_ 0 0 0 0 0 >0420
1-- ,- - r

1 0 0 0 0 0 0 0 0 0 >FOOD

4-28

This context switch pr ovides a new workspace register file and stores return values in
the new workspace. See Figure 4- 10 . The operand (> FDOO above) is the M.A. of a
two-wor d t ransfer vector, the first word the new WP value, the second word the new PC
value .

M.A.>FCOO

TRANSFER{

VECTORS

>FC80

>FOOO

>FFOO

RETUR N

VALUES

r
J.

BLWP@ >F DOO

N

BLWP@ >FOOO

FF 00 (NEW WP)

F F 2 0 (NEW PCI

F C 0 0 = (OLD WP)

F C 8 4 = (OLD PC)

OLD ST CONTENTS

:-FF20 NEXT INSTR .

RTWP

A0001430

J.

"

BRANCH WITH NEW WORKSPACE

RO

,.. CALLING PROGRAM

BEFORE BLWP OCCURS

FCOO WP

PC

ST

p

<\ \ OCCURS

RO I \ F F 0 0

F F 2 0 PC

WP

N ST

R13

R14

R1 5 >- NEW EX ECUTION A REA

RTWP RETU RNS EXECUTION TO CALLING

PROGRAM STARTING AT M.A. >FC84

Figure 4-10. BLWP Example

Essentially, the RTWP instruction ls a ""~i~•l • 'n t .) the next instruction that follows the
BLWP instruction (i.e. , RTWP is a return f rom a BLWP context switch, similar to the B
*R11 return from a BL instruction). BLWP provides the necessary values in registers
13, 14, and 15 (see Figure 4- 10.

4-29

Table 4-5. Comparison of Jumps , Branches, XOP's

MNEMONIC I PARAGRAPH I
JMP 4.6.2

B 4 .6.6

BL 4.6 .6

BLWP 4.6.7

XOP 4.6 .9

DEFINITION SUMMARY

One·word instruction, destination restric ted to +127, - 128 words from Program

Counter value.

Two·word instruction. branch to any memory location.

Same as B w i th PC return address in A 11.

Same as B with new wor kspace: old WP, PC and ST conten ts (return vt>ctors) are on

new R1 3, R 14. R15 .

Same as B LWP with address o f para m erer (source operand) in new R 11. S1x teEn XOP

vectors ou tside program in M A. 40 16 to 7E 16 ; can be coiled by any proyrarn

4.6.7 FORMAT 7 (RTWP, CONTROL) I NSTRUCTIONS

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Geneo-al Format: OPCODE N

External instructions cause the three most-significant address l ines (AO through A2)
to be set to the levels described in the table below and cause the CRUCLK line to be
pulsed, allowing external control functions to be interpreted during CRUCLK at AO, Al,
and A2. The RSET instruction resets the I/0 lines on the TMS 9901 to input lines; the
TMS 9902 is not affected . RSET also clears the interrupt mask in the Status Register.
The LREX instruction causes a delayed load interrupt, delayed by two IAQ cycles after
LREX execution. The lo~d operation gives control to the moni tor. ~ote, that although
included here because of its format, the RTWP instruction is not classified as an
external instruction because it does not affect the address lines or CRUCLK.

CK'5'F' and CKON can be used by monitoring pins 9 and 10 respectively of U25. See sheet 2
of the schematics in Appendix F.

STATUS ADDRESS

MNEMONIC OPCODE MEANING BITS DESCRIPTION aus•
- 012345678910 AFFECTED AOA1 A 2

IDLE 00000011010 Idle - Suspend TMS 9900 L H L

instruction execution unto! --
an interrupt , LOAD, or - -
RESET occurs

RSET 000000110 11 Reset 1/0 & SR 12- 15 0 -+ST12 thru ST15 L H H

CKOF 00000011110 User defined --- H H L

CKON 000000 111 01 User de f ined --- H L H

LRE X 0000001 11 1 1 Load on terrupt Control to TIBUG H H H

RTWP 000 0 0011100 Return from 0- 15 IR1 3) -(WP)

Subroutone (R1 4) -(PC)

(R 15) - .(ST)

·These output s from the TMS 9900 go to a SN74LS138 as shown in Figure 5·6

4-30

I.
'

..

ASSEMBLY LANGUAGE.
RTWP RETURN FROM CONTEXT SWITCH

MACHINE LA NGUAGE.

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 >0380

RTWP RETURN TO PREVIOUS WP IR13), PC IR14), ST (R15) VALUES

R13 F C 0 0

R14 F C 8 4

R15 STATUS

M.A. >FF40 RTWP

AFTER

F C 0 0 WP

FC84 PC

STATUS ST

EXECUTION BEGINS AT M.A . >FC84

WITH RO AT M.A . ">FCOO.

4.6.8 FORMAT 8 (IMMEDIATE, INTERNAL REGISTER LOAD/ STORE) INSTRUCTIONS

4 . 6.8.1 Immediate Register Instructions

0 2 3 4 5 6 7 8 9 10 11 12 13 14

Gener al form.it E_~ OP COD E I N R

IOP
-- -----

---~-

R ESULT STATUS
OP CODE

~ D ESCRIPTION M N EMON IC ME AN ING COMPARED BI TS
0 1 2 3 4 5 6 7 8 9 10 I

TO 0 A F FECTED

Al 0 0 0 0 0 0 1 0 0 0 1 Adrt 1mmP· t1.11e Yps 04 (RI I IOP -+ (R I

ANDI 0 0 0 0 0 0 1 0 0 1 0 AND 1mmt•cti.ttt Yes 02 (R) AND IOP -+(RI

15

~

-~

Cl 0 0 0 0 0 0 1 0 1 0 0 Cu mpa r.- YPs 02 Compare (R) to tOP and set

LI

ORI

AND l ogic -

0 0 0 0 0 0 1 0 0 0

000 0 0 01 0 0 l

0 .1. 1 0 0

O·O = 0

1 ·1 = 1

0

1

1mmed1utt~

Load 1mmed1,J1e YPS

OR 1mmed1dte

OR l ogic :

Yes

0 + 1, 1 I 0 1

1 t 1 ~ 1

0 + 0 = 0

4-31

appropria te s1a1us b ir s

02 IOP-tRI

02 (R) OR IOP - (Rl

4.6.8.2 Internal Register Load Immediate Instructions

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General format : OP CO DE N

IOP

OP CODE
MNEMONIC

0 3 6 7 8 9 10 1 2 4 5
MEANING DESCRIPTION

-
LWPI 0 0 0 0 0 0 1 0 1 1 1 l oJd w ur k spJcc poin ter 1mmed 1.11e IOP • (WPI . nu ST l 111 s .i ft ec tPrl

LIMI 0 0 0 0 0 0 1 I 0 0 0 LC>.1<11ntto! rr up t m,1sk IOP , hr t s 12 thru 15 · ST12

th ru ST1 5

4 .6 .8.3 Internal Register Store Instructions

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Genefal format . OP CO DE I N R

NO ST BITS ARE AFFECTED.

OP CODE

I MNEMONIC MEANING DESCRIPTION
0 1 2 3 4 5 6 7 8 9 10

STST 0 0 0 0 0 0 1 0 1 1 0 Store s 1 ,11 l1~ reqrster l IST I • (A)

STWP 0 0 0 0 0 0 1 0 1 0 I Stu• P work sp~ce po1 n 1er IWP) · (A)
- - ·-

E XAMPLES

(1 J A SSEMBLY LANGUA GE:
Al R2,>FF ADO > FF TO CONTENTS OF R2

MA CHINE LANGUAGE:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 ·1-3 ..-0222
,---

0 0 0 0 0 0 0 0 1 1 1 1 ' OOFF

BEFORE AFTER

R2 Io o o F 0 1 0 E

(2) ASSEMBLY LANGUA GE:
Cl R2,> lOE COMPARE R2 TO ,.,.JOE

MA CHINE LANGUAGE:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

p.= 0 0 0 0 0 0 0 0 0 0 0 d ..-0282

r
0 0 0 0 0 0 0 0 0 0 -OlOE 0

R2 contains " after" results I > IOE) of instruction on Example (1 I above; thus the ST equal bit becomes set .

4-32

..

(3) ASSEMBLY LANGUA GE
LWPI ,FCOO WP SET AT ·FCOO (M.A. OF RO)

MACHINE LANGUA GE.

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F. " 0 0 0 0 0 1 I 0 0 0 0 :J -02EO

0 0 0 0 0 0 0 0 0 ·FCOO

(4) ASSEMBLY LANGUAGE:
STWP R2 STORE WP CONTENTS IN R2

MACHINE LANGUAGE:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0
0 0 0 0 0 0 0 0 I 0 0 0 I >02A2

This places the M.A. of RO in a workspace register,

4.6.9 FORMAT 9 (XOP) INSTRUCTIONS
Other f ormat 9 i nstruc tions (MPY, DIV) are explained in paragraph 4. 6 .3 (format 3).

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General Format: 0 0 0 D IXOP NUMBER) Ts SA

The TS and SR fields provi de multiple mode addressing capab i l ity for the s ource
operand. When the XOP is executed, ST6 is set and the following transfers occur:

(40 , (l I 40) - (WP)

(42 10 + 40) - (PC)

SA - (new R l 1)
(old WP) - (new WR 13)

(o ld PC) - (new WR 14)

(old ST) · (new W R 15)

Fir st vec tor at 40 1 b

Each vec tor uses 4 bytes (2 words)

The TMS 9900 does no t test interrupt requ es t (INTREQ) upon c ompletion of t he XOP
instruction .

4-33

An XOP is a means of calling one of 16 subtasks available for use by any executing
task. The EPROM memory area between M.A. 40 16 and 7E16 is reserved for the transfer
vectors of XOP' s 0 to 15 (see Figure 4-1). Each XOP vector consists of two words, the
first a WP value , the second a PC value, defining the workspace pointer and entry
point for a new subtask. These values are placed in their respective hardware
registers when the XOP is executed.

The old WP, PC, and ST values (of the XOP calling task) are stored (like the BLWP
i nstruction) in the new workspace, registers 13, 14, and 15. Return to the calling
r outine is through the RTWP instruction. Also stored, in the new R11, is the M.A. of
the source operand. This allows passing a parameter to the new subtask, such as the
memory address of a string of values to be processed by the XOP-called routine. Figure
4-11 depicts calling an XOP to process a table of data; the data begins at M.A.
FFOo 16 . This XOP example uses XOP vectors that point directly to the XOP service
routine WP and PC. The TM 990/101M comes with interrupt and XOP vectors pointing to
linking areas that point to the service routine. The use of these linking areas is
explained in subsection 5.9.

XOP's o, 1 and 8 to 15 are used by the TIBUG monitor, calling software routines
(supervisor calls) as requested by tasks. This user-accessible software performs tasks
such as write to terminal, convert binary to hex ASCII, etc. These monitor XOP's are
discussed in Section 3. 3. XOP vectors 2 through 7 are programmed wi th memory vector
values, but reserved for the user. See Section 5.9 for an explanation of the
Interrupt/XOP linking area.

4-34

I

t

•
•
t

' '
•

A0001431

ASSEMBLY LANGUAGE:
XOP @>FF00,4

MACHINE LANGUAGE:

0

0 0

1

XOP

VECTORS

2 3

0

>0050
> oos2

> 001e

CALLING INSTR .

XOP4

PROGRAM

TABLE OF
VALUES TO

BE PROCESSED

> FCOO

> FC20

l > FFOO

4

\.

1

~

1

'
,).

'
~

' ~

\

5 6 7

1 I 0

1

XOP 0 WP

XOP 0 PC

F c 0 0

F C 2 0

XOP @>FF00.4

F F 0 0

OLD WP

OLD PC

OLD SR

1ST INSTR.

RTWP

8 9 10 11 12 13 14 15

0 I j 0 0 0 0 0 0 >2020

0 0 0 0 0 0 0 0 >FFOO

AFTER

~
F C 0

F C 2

N

0

0

WP

PC

ST

\

< ,).

\.
RO

' \
Rll---- PASSED PAR AMETER (SOURCE OPERAND)

R12

R13

R14

R15

,
\

'
~

I
RETURN VE CT ORS

G TASK TO CALLIN

NOTE
THIS EXAMPLED oes NOT use THE XOP

XPLAINED IN SUBSECTION
MPLE PRESUMES THE XOP
EENPROGRAMMEDINTO

LINKING AREAS E
5.9. THIS XOP EXA
VECTORS HAVE 8
MEMORY (M.A.
USER.

005016 AND 005216) BY THE

Figure 4-11. XOP Example

4-35

,,

SECTION 5

PROGRAMMING

5.1 GENERAL
This section is designed to familiarize the user with programming the TM 990/101M.
Explanations about the programming environment, using TIBUG XOP's, supporting special
features of the hardware, and certain programming practices are included. Programs are
provided as examples for the user to analyze and fol low, and possibly combi ne into
the user's system. This section is divided into, roughly, two areas: the first part
gives background information on the programming environment and shows suggested coding
practices for a variety of situations, and the second part gives specific program
examples using special features of the hardware.

For clarity, source listing examples in this section use assembler directives
recognized by larger assemblers but not recognized by the TM 990/402 Line-By- Line
Assembler (LBLA) . These directives are not explained in the section on the 990
instruction set (Section 4), but are explained in detail in the Model 990 Computer,
TMS 9900 Microprocessor Assembly Language Programmer's Guide. A synopsis of their
definitions is included here. These directives are explained in Table 5-1.

Label Opcode

AORG

DATA

DATA

END

AAAA EQU

IDT

TEXT

Table 5- 1. Assembler Directives Used In Examples

Operand

xxxx

yyyy

LABEL

BBBB

'NAME '

'ABCD123'

Meaning

Assemble code that follows so that it is loaded
beginning at M.A. XXXX. This is similar to the
absolute load (slash) request of the LBLA .

Place the value YYYY in this location (if pre
ceded by the greater-than sign () the quantity
is a hexadecimal representation) .

If LABEL represents a memory address, the memory
address value is placed at this location aligned
on an even address (word boundary) .

Signifies end of program for assembler.

Wherever the symbol AAAA is found, substitute the
value BBBB .

Program will be identified by NAME .

The ASCII value of the specified character string
is assembled in successive bytes.

5-1

SOURCE STATEMENT NO.

/;

RELATIVE ADDRESS

I
OBJECT CODE (ASSEMBLED SOURCE)

r LABEL FIELD

/OPCODE

I !OPERAND

(1••f: ' (lrY-·11 ;1Jf1 :. 1: 1 F; J.
.-.. 1»:·=· •1 ;'1•. '.:/-. .-, ::i:, :' L. [7 ., c •:::Pf.'IRM

n;" ·-::-': onr:1~· ··
1 , , ,:: 1 ..-)()·-.:·,''; ; r-··r,:~:

.. -;,-; ;·1· ()(_. ·,1:;
I)

l]

,, .
·=-·. --·

·-I , Cl f::l·Jf-'+4

• .. ·:_ - -.... 1 · ··;o~ .- ·~'7 I f '1•"1F"I l·!R I f {~ 7
.1,.: 1 ,,- _;.1 ··:-·1i°; HF :< [0
:· .. ·.·.··, 1.;r·, ntnt. r~E>'. T ., r:rmOFi

' 1 • 'lj :'

I' I ,1

I COMMENT FIELO

CL.EAR FOR DECIM()L TO HE X RllUTI
PROMPT ME::::::AOE'.3

FI Vf F'ROMPl :;:;

REGISTER 2 ()DDRESS

PROMPT LISER FUR T 1 ME \l~L l.IF

GET Il'IPUT
l\!ULL, ERFiOH r:TN !l[rR

DECIMAL CHnRS TO Bl NnRY

'-------~-------_..__ASSEMBLED OBJECT SHOWS RELATIVE

ADDRESS OF "NEXT" AT 004A16

Figure 5-1. Source Listing

Figure 5- 1 is part of a source listing used in thi s section, as assembled by Tl's
TXMIRA assembler. Unless specified otherwise by directive, the TXMIRA assembler will
begin asse mbling code relative to memory address 0000 16 (second column) . When
resolving an address for an instruction, as shown at the bottom of the fi gure, the
instruction address operator is the same as the relative address in column two of the
listing. Thus, for the label NEXT, the address 004A 16 is assembled which is the
relative address within the listing. This is useful when de terar.ining such addresses as
the destination of a labelled BLWP i ns truction. Note that the Line-By-Line Assembler
does not use label led addressing, but assembles the absolute address given.

5-2

..

5 . 2 PROGRAMMING CONSIDERATIONS

5.2.1 PROGRAM ORGANIZATION
Programs should be organized into two major areas:

• Procedure area of executable code and data constants (never modified)

• Data area of program data and work areas whose contents will be modified.

The executable code and constant data section can be debugged as a separate entity,
and then programmed into EPROM. The work area can be placed at any other address in
RAM, and that address does not have to be contiguous with the program code area, and
can even be dynamically allocated by a Get Memory supervisor call of some kind. Even
if the program parts are loaded and executed together, the organization and debug ease
are enhanced.

In this programming section, all example programs are coded, with one exception, in
this manner . The only work area is the register set, which is arbitrarily fixed to a
RAM address. The one exception, the Two-Terminal routine, is coded to reside entirely
in RAM because the workspace is a part of the contiguous extent of code. This method
of coding is used in RAM-intensi~e systems because the operating system need not
manage workspaces as might be necessary in a system with very little RAM.

5.2.2 EXECUTING TM 990/100M PROGRAMS ON THE TM 990/101M
Programs developed on the TM 990/100M board use a different interrupt and XOP trap
configuration than the TM 990/101M. This must be taken into consideration when
executing programs on the TM 990/101M that were developed for running on TM
990/lOOM. On the TM 990/lOOM, interrupt vectors are programmed into PROM for INT3 and
INT4 (vectors FF68 15 and FF88 15 for INT3 and FFAC15 and FFAC15 for INT4). This allows
immediate use of these interrupt traps such as with the TMS 9901 and TMS 9902 interval
timers . XOP vectors on the TM 990/100M are programmed for XOP's 0, 1 and 8 to 15 for
use by TIBUG. User XOP's (XOP 2-7) are not programmed.

On the TM 990/101M board, however, all interrupt and XOP vectors are programmed , and
the linking scheme in RAM is different . Consult the interrupt linking section
(paragraph 5 .9) for the scheme used. The TM 990/100M scheme is described in the User's
Guide for that microcomputer .

5.2.3 REQUIRED USE OF RAM IN PROGRAMS
All memory locations that will be written to must be in RAM- type memory (this is
important to consider when the program is to be programmed into ROM). Areas-to be
located in RAM include all registers as well as the destination operands of format 1
instructions and the source operands of most format 6 instructions .

For example, in the following source lines :

MOV @>0700, @">FCOO MOVE DATA
CLR @ >FCOO CLEAR MEMORY ADDRESS
ABS @ >FCOO SET TO ABSOLUTE VALUE
INCT @ > FCOO INCREMENT BY TWO
s R1 ,@> FCOO (>FCOO) - R 1 , ANSWER IN >FCOO

the address FCoo 16 will be written to; thus, it has to be in RAM.

5-3

5.3 PROGRAMMING ENVIRONMENT
The programming environment of a computer is loosely defined as the set of conditions
imposed on a programmer by either or both the hardware and systems software, but it is
also the facilities available to the programmer because of the design of the hardware
and software. The environment in which a program resides usually determines how that
program is coded. This section gives explanations of the major areas of the TM
990/101M design from a programmer' s point of view. Note all program examples given are
for a full assembler (e.g., PXRASM, TXMIRA, or SDSMAC vs. the Line-By-Line Assembler)
so that labels can be used for reader comprehension.

5.3.1 HARDWARE REGISTERS
The TMS 9900 family of processors are designed around a memory-to-memory architecture
philosophy; consequently, the only hardware registers inside the processor affecting
the programmer are the Workspace Pointer (WP) register, the Program Counter (PC)
register and the Status (ST) register. There are no accumulators or general purpose
registers which reside physically inside the microprocessor. All manipulations of data
are accomplished by using these three registers as described below.

5.3.1.1 Workspace Pointer (WP) Register
The Workspace Pointer is a register which holds the address of a sixteen word area in
memory; this memory area serves as a general purpose register set. A memory area is
designated as a workspace or general purpose register set by loading the address of
the first word (register O) of the 16-word space into the WP register. Thus the
programmer's register set is in memory, and can be referred to with register
addressing, or if the WP value is known, with memory addressing. The registers are
simply a data area in a program with the special privileges usually given to processor
registers. This approach has several advantages for the programmer.

1. Register save areas need no longer be kept in programs, since the actual
program registers are already in memory, and are maintained by the hardware
during program linking by the use of a special class of instructions.

2. Program debugging is greatly heightened since the registers of a question-
able program remain intact in memory during debugging. The debug monitor has
its own set of registers, in memory, and there is no question of which of

many program modules has tampered with the processor registers , since each
program in question can have its own registers.

3. Recursive, re-entrant, and ROM resident code is much easier to write since
program calls are handled by special instructions, and new workspace areas,
linked together by the hardware, are available for use at each program call.

4. Linked-list structuring of workspaces is automatically done by the hardware,
reducing system software overhead.

5. Very fast interrupt handling is possible since only three processor regis-
ters (WP, PC, ST) are stored by the hardware during the inter rupt (instead
of a whole register set) usually by a software instruction or routine.

5.3.1.2 Program Counter (PC) Register
The Program Counter (PC) register holds the address of the next instruction to be
executed by the processor. As such, it is no different than the PC in any other
processor and is incremented while fetching instructions unless modified by a program
branch or jump, or during an interrupt sequence.

5-4

5.3.1.3 Status (ST) Register
The Status Register holds the processor status and is the only one of the three
processor registers which has nothing to do with memory, directly . It is divided into
two parts: the status bits, which are set to reflect the attributes of data being
handled by the processor, and the interrupt mask, which governs the priority structure
of i nterrupt processing. The ST is organized as shown in Figure 4-2.

5.3.2 ADDRESS SPACE
The TMS 9900 microprocessor addresses 65,536 (64K) bytes (8-bits each). Although the
data bus is 16 bits wi de, and the instruction set is mainly word (16-bits) oriented,
the basic unit of address is a byte. The actual memory architecture is 32,768 (32K)
words of two bytes each, and byte processing is accomplished within the processor
afte r fetching a wo r d f rom memo r y . Because the instruction set is mainly
arithmet ically oriented, and usually operates on 16- bit words, it is probably best to
view the address space as a collection of words, each containing, usually for I/O
purposes, two bytes.

NOTE
This subsection covers the interrupt and XOP environments
in general; programming of interrupts and XOPs is covered
in detail in subsection 5.9.

5.3 . 3 VECTORS (INTERRUPT AND XOP)
Interrupt and XOP vectors are located beginning with address 000016 and extend through
007F16· The first half, addresses 000016 through 003F15, contain the interrupt
vectors . There are 16 prioritized interrupts. Level 0 is the highest priority, with a
vector pair at 000016 and 000216 · Level 15 is the lowest priority, with its vector
pair at 003C16 and 003E16· Level 0 interrupt is synonomous with the RESET function. A
vector pair consists of a workspace pointer and a program counter, both values
identifying the interrupt program environment.

Before an interrupt can occur, the processor must recognize it as having an equal or
higher priority than the interrupt mask in the Status Register. After a valid
interrupt has occurred the interrupt vector values are retrieved from memory, and the
hardware equivalent of a BLWP instruct ion takes place.

There is one additional vector pair, at FFFC16 and FFFE15, for the LOAD function. When
signaled, this interrupt always occurs and cannot be disabled by the Status Register
interrupt mask. Note also that RESET being level zero, cannot be disabled, since it s
Status Register priority value of zero is always equal to or higher than any value in
the interrupt mask field.

The XOP vectors work in a similar manner. Vector location begins at 004016 and extend
through 007F16· These vectors are triggered by execution of the XOP instruction, wi th
a number from 0 to 15. There is no prioritizing; these are software-triggered
i nterrupts, and XOP service routines may freely execute other XOP's. One additional
event happens during the vector action: the source operand of the XOP instruction is
evaluated as an address and placed in the~ Workspace Register 11. This provides a
parameter to the XOP routine.

The TIBUG monitor uses several XOP's for I/O service from the terminal; some of these
are available for the user as explained in subsection 3.3 . In addition, the programmer
may wish to program interrupt and XOP vectors for special functions.

5-5

5.3.4 WORKSPACE REGISTERS
The actual workspace registers, in memory, provide general working areas for a

.Program. Some registers can also be used for special purposes; these are listed in
Table 5-2.

Table 5-2 . Register Reserved Application

Register Application

O:

11 :

12:

13:

14:

15:

Bits 12-15 (least significant half-byte) provide the shift count for
shift instructions coded to refer to this register. This register can
not be used for indexed addressing.

Holds return address following execution of a BL instruction. Dur
ing XOP service routine, it holds resolved memory address of argument
in XOP instruction.

CRU Base Address .

During BLWP, RTWP, interrupts, and XOP's: holds old WP contents .

During BLWP, RTWP , interrupts, and XOP's: holds old PC contents.

During BLWP, RTWP, interrupts, and XOP's: holds old ST contents.

In general, then, registers 1 to 10 are avai lable for unrestricted use , although the
programmer can use the reserved registers for other purposes, if proper consideration
is given.

One advantage of the workspace concept is that one program can request an almost
unlimited number of register sets, or, alternatively, every little module in a program
system can have at least one set of its own registers. Programs are usually written to
take advantage of the benefits associated with program operands in registers.

5. 4 LINKING INSTRUCTIONS
These are of vital interest to a programmer for they answer the all important question
of how to get in and out of a program. These instructions are:

• B (paragraph 5 .4.1) Branch
• BL (paragraph 5.4.2) Branch with return link in R11
• BLWP (paragraph 5 .4.3) Branch, new workspace, return link in R13 to R15
• RTWP (paragraph 5 .4.4) Return, use vectors in R13 and R14
• XOP (paragraph 5. 4.5) Branch, new workspace, vectors in low memory

5.4.1 BRANCH INSTRUCTION (8)
Though not normally considered a program linking instruction, the branch instruction
can be us ed to link to programs in a known location, such as TIBUG. Since the
Workspace Pointer is not affected by the instruction, program systems using this
convention usually delegate the responsibility for establishing workspaces to each
program. Thus we may have branches to various programs as shown in Figure 5-2. Note
that each program sets up i ts own WP (LWPI instruction). The AORG and EQU directives
are explained in paragraph 5.1.

5-6

*PGMA PROGRAM *PGMB PROGRAM *PGMC PROGRAM
AORG >0800 AORG >OAOO AORG >1000

PGMB EQU >OAOO PGMA EQU >0800 PGMA EQU >0800
PGMC EQU >1000 PGMC EQU >1000 PGMB EQU >OAOO
PGMA LWPI >FF90 PGMB LWPI >FF70 PGMC LWPI >FF50

B @PGMB _/ B @PGMC_/ B @PGMA

B @>0080

Figure 5-2 . Example of Separate Programs Joined By Branches to Absolute Addresses

5.4.2 BRANCH AND LINK (BL)
The BL instruction is designed mainly for the calling of subprograms with a convenient
means of returning back to the calling program. Since the processor puts the address
of the next instruction in register 11 (it effectively transfers the PC to R11) before
branching, the return path is established . To return (using the same workspace) simply
execute a B *R11 (or RT instruction).

Note, though, that only one level of subroutine call is possible if only one workspace
area is used, unless register 11 is saved by the first subroutine wishing to branch
and link to a second subroutine.

CALLING PROGRAM
BL @FEOO FEOO ______,,

FIRST LINK
LI R6,47 FDOO

MOV R11,R1~
BL @>FDOO

~

!

SECOND LINK
CI

B

R5,22

*Rl 1

The BL subroutine can include XOP instructions to provide special services needed to
accomplish the subroutine function, as in the following example:

CALLING PROGRAM
RDNUM

BL @RDNUM
XOP
CI
JL
CI
JH
XOP
B

5-7

SUBROUTINE
R1, 13
Rl ,?3000
RDNUM
R1, > 3900
RDNUM
R1, 12
• 11

READ A CHARACTER
IS IT BELOW A ZERO?
YES, GO BACK
IS IT ABOVE A NINE?
YES, GO BACK
ECHO THE CHARACTER
RETURN

The very simple routine shown above reads a character from the terminal and checks for
a decimal digit 0-9. If the character is acceptable, it is echoed back to the
terminal, and then control is returned to the calling program. If the character is
unacceptable, the routine drops it and requests another; the bad character is not
echoed to show the user that another character must be typed.

5.4.3 BRANCH AND LOAD WORKSPACE POINTER (BLWP)
This is the most sophisticated linking instruction in that it causes a complete
program environment change (context switch), and automatically links the old workspace
to the new, also preserving the old processor status. As such, it behaves in the same
way as the interrupt sequence or XOP sequence, and it is therefore possible to vector
to an interrupt or XOP service routine without actually causing an interrupt or
executing an XOP. For example, executing a BLWP @O will vector to the RESET interrupt
handler, which if TIBUG is resident, causes the user to set the baud rate and start
TIBUG again.

Since the TMS 9900 is a linked-list rather than a stack machine, those used to a stack
for systems programming may need some readjustment, but the superior flexibility of
linked-lists is simplified by the fact that the programmer can move nodes around,
whereas in a stack, the nodes are fixed in Last-In First-Out (LIFO) order. The
transition is made painlessly since the hardware completes program linking with the
execution of one instruction, and very little effort is required on the part of the
programmer.

There are two immediate possibilities to discuss in using the BLWP instruction. For
simple subroutine linking, the following is an example :

CALLING PROGRAM

ENTRY

SUBA

BLWP @SUBA

DATA WPSUBA
DATA PCSUBA

SUBROUTINE

PCSUBA ENTRY POINT

RTWP
WPSUBA

Note the double word vector pointed to by the BLWP operand, the values WPSUBA and
PCSUBA. These two DATA statements provide the memory addresses of these vectors. The
latter (PCSUBA) is the entry point, and is well defined. However , the WP value is ~
shown here without a definition. This raises a fundamental question: if there are many
programs operating together, such as TIBUG, possibly a user-written monitor, and a
collection of application programs and subroutines, who is responsible for managing
the workspaces? If each individual program is responsible, then the following
definition would be added to the above subroutine:

WPSUBA EQU

Note this defines WPSUBA as M.A. FF70 16 and ties down one area of memory to the
subroutine; thus, no other program in the system can call this subroutine without
chancing some conflict by using the same workspace. Thus, it is reserved for one
subroutine.

5-8

A s econd approach is to code a value which is designated as a common workspace for
whoever is in control at the time. In the EQU statement above, the value could be, by
agreement, the common workspace. This implies that there are now two entities - the
reserved workspace, which must be carefully mapped out ahead of time so there is no
overlap, and the common workspace, of which there may be one or more, and whose status
is such that any program can use it, but if control leaves that program, then that
workspace is no longer considered needed, and thus can be used by another program.

Note the previous discussion assumes that the program code is in EPROM. If the code is
to be executed from RAM, then writing the program is simple; put the workspace at the
end of the program as a data area.

In either case, the user is responsible for partitioning his memory such that
workspaces do not overlap or interfere with TIBUG or the XOP's defined by TIBUG, along
with any user defined workspaces.

5.4.4 RETURN WITH WORKSPACE POINTER (RTWP)
The RTWP instruction can be used to both return from a program, and to link to a
program. Since the instruction reloads the processor WP, PC, ST registers from
workspace registers 13, 14, and 15, then the contents of these registers governs where
control will go. If those registers were initialized by a BLWP instruction, then the
action can be seen as a return, but if special values are placed in these registers,
the action can be viewed as a subroutine call. Actually, program calls are not
limited to a nesting structure, as in stack architectures, but are generalized so that
chains and even rings may be formed. The TIBUG monitor uses the RTWP instruction in
this manner. Using the "R" command, the user fills TIBUG's registers 13, 14, and 15.
Using the "E" command causes TIBUG to execute a RTWP instruction using the values in
these registers.

Since the RTWP does not affect the new workspace at all, there is no way for the
called program to return to the caller unless the caller had initialized the new
workspace registers before executing the RTWP. This type of program transfer is thus
in a "forward" direction only, and is usually suitable only for a monitor program in a
fixed location such as TIBUG .

5.4.5 EXTENDED OPERATION (XOP)
The XOP instruction works almost like a BLWP instruction, except that the address
containing the double-word vector area is between 004016 and 007F16, and is selected
by an argument of from 0 to 15, and that the new workspace register 11 is initialized
with the fully resolved address of the first operand of the XOP instruction. This
means that if the operand is a register, the actual memory address is computed and
placed in the new register 11.

The XOP instruction is meant as a "supervisor call" or special function operation. As
such, a programmer might wish to implement routines which perform some standard
process such as a character string search or setting the system timer, on the next
page.

5-9

CALLING PROGRAM

LI
XOP

RO, 11719
R0,2

*AT M.A.
*AT M.A.

*AT M.A.

0048:
004A:

10AE:
ENTRY

XOP TRAPS AND SUBROUTINE
FF903 TIMER ROUTINE WP
10AE3 TIMER ROUTINE PC

IDT
MOV
LI
SLA
ORI
LDCR
SBZ
SBO
RTWP

'TIMER'
•11,11
12' > 0100
11 ' 1
11 ' 1
11 '15
0
3

XOP 2
VECTORS

GET VALUE
ADDRESS 9901
SHIFT CLOCK COUNT
SET CLOCK MODE
START CLOCK
SET INTERRUPT MODE
ENABLE INT3 MASK

The main program requests 11719 clock counts, which is a desired time of 0.25 second.
This number is found by taking the system clock frequency, dividing it by 64 to find
the timer frequency, then reciprocating that to give the timer interval, then dividing
the desired time delay by the timer interval to find the clock counter value. It is
assumed here that XOP 2 is available for this function. The timer routine translates
the request and starts the system timer. One quarter second later, an interrupt
through INT3 will be generated.

TIBUG supplies definitions for XOPs O, 1, and 8 through 15, leaving 2 through 7
available for the user. XOP's 2 through 7 are programmed according to a scheme
described in subsection 5.9.

5.4.6 LINKED-LISTS
A linked list is a data organization where a collection of related data, called a
node, contains information which links it to other nodes. The prime example here is a
workspace register set, it contains sixteen words of data. If there are many
workspaces present at one time connected by BLWP instructions, then every register 13
contains the address of the previous workspace, forming a linked list. At the same
time, the BLWP also places the previous program counter value in register 14,
providing a means of returning back to the previous program environment.

For example, the E or execute TIBUG command uses the RTWP instruction to begin program
execution at the WP, PC, and ST values in current registers 13, 14, and 15. The R or
register inspect/change TIBUG command can be used to set up these registers prior to
the execute command. In the example in Figure 5-3, program PGMA is executed using the
TIBUG E command; it later gives control to program PGMB using the BLWP command. In
doing so, the processor forges links back to PGMA by placing return WP, PC, and ST
values in registers 13, 14, and 15 of PGMB. Likewise, PGMB branches to PGMC with
return links to PGMB forged into R13 to R15 of PGMC. Each can return to the previous
program by executing an RTWP instruction, and the processor can travel up the linked
list until PGMA is reached again.

5.5 COMMUNICATIONS REGISTER UNIT (CRU)
Input and output is mainly done on the TM 990/101M using the Communications Register
Unit or CRU. This is a separate hardware structure with its own data and control
lines. Thus the TMS 9900 microprocessor has one address bus, but two sets of control
and data busses. One set, the memory set, has a 16-bit parallel bidirectional data bus
and three control lines, MEMEN, OBIN, and WE.

The other set the CRU I/O set, uses two lines, one line for input (CRUIN), and one for
output (CRUOUT). There is one control line, CRUCLK, used to strobe a bit being output
on CRUOUT . A bit being input on CRUIN has no strobe and is simply sampled by the
microprocessor at its discretion.

5-10

CRU devices are run on one phase of the system clocks, and therefore, the rate of data
transfer on the CRUIN line is a function of the system clock. Since the CPU also uses
this system clock, it will sample the CRUIN line at a rate that is a function of the
system clock when doing a CRU read operation (executing a CRU read instruction - STCR
or TB).

PGMA

BLWP

PGMC

RTWP

RETURN

LINKS TO
PGMB

R13-15

R13-15

R13-15

CALL PGMB

PGMB

BLWP

RTWP

RETURN

LINKS TO
PGMA

Figure 5-3. Linked List Example

5-11

CALL

PGMC

Thus, the CRU data group consists of three lines - CRUIN, CRUOUT, and CRUCLK . The
address bus supplies CRU addresses as well as memory addresses; which operation being
performed is determined by the presence of the proper control signals. Memory
operations use address bits 0 through 14 externally, bit 15 is used inside the
microprocessor for byte operations. CRU operations, however, use only bits 3 through
14; bits O, 1, and 2 are set to zero, and bit 15 of an address is totally ignored.

When CRU instructions are executed, data is written or read through the CRUOUT or
CRUIN pins, respectively, of the TMS 9900 to or from designated devices addressed
via the address bus of the microprocessor.

The CRU software base address is maintained in register 12 (bits O to 15) of the
workspace register area. Only bits 3 to 14 of the register are interpreted by the CPU
for the CRU address, and this 12-bit value is called the CRU hardware base address .
When the displacement is added to the hardware base address, the result is the CRU bit
address further explained in paragraph 5 . 5.1.

The CRU address is maintained in register 12 of the workspace register area. Only bits
3 through 14 of the register are interpreted by the CPU for the desired CRU address,
and this 12-bit value is called the CRU bit address.

TM 990/101M devices driven off of the CRU interface include the TMS 9901 parallel
interface and the TMS 9902 serial interface, which are accessed through the CRU
addresses noted in Table 5-3. This table also lists the functions of the other CRU
addresses which can be used for on-board or off-board I/O use. Addressing the TMS 9901
and TMS 9902 for use as interval timers is explained, along with programming examples,
in subsections 5.9 .3 and 5.9 . 4. Further detailed informati on on these two devices can
be obtained from their respective data manuals.

Table 5-3. TM 990/101M Predefined CRU Addresses

CRU Hardware CRU Software
Function Base Address Base Address

(R12, bi ts 3-14) (R12, bits 3-14)

Status L.E .D 0000 0000
Unit I.D. Switch 0020 0040
TMS 9902, Main I/0 (Lower Half) 0040 0080
TMS 9902, Main I/O (Upper Half) 0050 OOAO
TMS 9901 Interrupt Mask, Sys tem Timer 0080 0100
TMS 9901 Parallel I/O 0090 0120
RESET Interrupt 6 OOA6 014C
TMS 9902, Auxiliary I/O (Lower Half) ooco 0180
TMS 9902, Auxiliary I/O (Upper Half) OODO 01AO
RS-232 Handshaking Signals OOEO 01CO
Offboard CHU 0100 0200

NOTES

1. Besides theexamples used herein, Appendix J contains examples
of the various CRU instructions programmed to drive the on-board
TMS 9901 or monitor signals to the TMS 9901.

2. The CRU software base address is equal to 2X the hardware base
address, or the hardware base address is 1/2 the software base
address.

5-12

-

t

5.5.1 CRU ADDRESSING

The CRU software base address is contained in the 16 bits of register 12 .
From the CRU softwa r e base address, the processor is able to determine the CRU
hardware base address and t~e resulting CRU bit address. These concepts are
illustrated in Figure 5-4 .

5.5.1 . 1 CRU Addr ess
The CRU bit address i s the address that will be placed on the address bus at
the beginning of a CRU instruction. This is the address bus value that ,
when decoded by hardware attached to the address bus, will enable the device
so that it can be driven by the CRU 1/0 and clock l ines. The CRU bit
address is the sum of the displacement value of the CRU instruction
(displacement applies to single- bit instructions TB, SBO, and SBZ only) and
the CRU hardware base address in bits 3 to 14 of R12 . Note that the sign
bit of the eight- bit di splacement is extended to the left and added as part of
the address. The r esulting CRU hardware bi t address is then placed on address
lines A3 to A14 ; address lines AO to A3 will always be zeroes i n CRU
instruction execution.

5 . 5. 1.2 CRU Hardwa r e Base Address
The CRU hardware base address is the value in bits 3 to 14 of R1 2 . For
instructions that do not specify a displacement (LDCR and STCR do not) , the
CRU hardware base address is the same as the first CRU bit address (see
above) . An important aspect of the CRU hardware base address is that it does
not use the least significant bit of register 12 (bit 15); this bit is ignor ed
i n der iving the CRU bit address .

5 . 5.1 . 3 CRU Software Base Address
The CRU software base address is the entire 16-bit contents of R1 2 . In
essence, this is the CRU hardware base address divided by t wo . Bits O, 1 ,
2, and 15 of the CRU software base addre ss are i gnored in deriving the CRU
hardware base address and the CRU bit address .

CRU SOFTWARE BASE ADDRESS (CONTENTS OF R12)
..........

~ ~
ADDRESS

A l A4 AS A6 A7 AB A9 A 10 A 11 A 12 A13 At 4 --- LINES

R12 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I
____....,_ '---

~
../ + ZEROES IGNOR E

CRU HARDWARE BASE ADDRESS

SIGN 0 0 0 0 0 1 0 0 0 0 0 + D ISPLACEMENT"

EXTENDED
0 0 0 0 0 0 0 0 0 0 0 0

----'--- ~
../

ALL ZEROES FOR
CRU BIT ADDRESS CRU OPERATIONS

'The d isplacement added to the C RU hardware base address is a signed e ight-bit value,
with sign extended, used only when executing one of the single-bi t CRU instruct ions

(TB, SBO, and SBZI.

FI GURE 5- 4 . CRU BASE AND BIT ADDRESSES

5-13

Because bit 15 of R12 is not used, some confusion can result in programming.
Instead of loading the CRU address in bits 0 to 15 of register 12 (e.g., LI
R12,>80 to address the TMS 9901 at CRU address 80 15), the programmer must
shift the base address value one bit to the left so that it is in bits 3 to 14
instead of in bits 4 to 15. Several programming methods can be used to ensure
this correct placement, and all of the following examples place the TMS
9901 bit address of 8015 correctly in R12.

LI R12,>100 PLACES >80 IN BITS 3 TO 14
or

LI R12,>80*2 MULTIPLY BASE ADDRESS BY 2 (NOT RECOGNIZED BY LINE-BY-
LINE ASSEMBLER)

or
LI R12 ,>80 BASE ADDRESS IN BITS 4 TO 15
SLA R12, 1 SHIFT BASE ADDRESS ONE BIT TO THE LEFT

From a programming standpoint, it may be best to view addressing of the CRU
through the entire 16 bits of R1 2. In this context, blocks of a maximum of 16
CRU bits can be addressed, and in order to address an adjacent 16-bit block, a
value of 002015, must be added or subtracted from R12. For example, with R12
containing 0000 15, CRU bits 0 to F15 can be addressed. By adding 002015 to
R12, CRU bits 10 15 to 1F16 can be addresses, etc .

5.5.2 CRU Timing
CRU timing is shown in Figure 5-5. Timing phases (¢1 to .¢4) are shown at the
top of the figure. The CRU address is valid on the address bus beginning at
the start of of ¢2, and stays valid for eight timing phases (two clock
cycles). At the start of the next ¢2 phase, CRUCLK at the TMS 9900 goes high
for two phases to provide timing for CRUOUT sampling. Note that for LDCR and
STCR instructions, the address bus is incremented for each data bit to be
output or input . For input operations, the address is placed on the address
bus at the beginning of phase ~2, and the input is sampled between phases ~4
and .¢1.

5.5.3 CRU Instructions
The five instructions that program the CRU interface are:

• LDCR Place the CRU hardware base address on address lines A3 to A14.
Load from memory a pattern of 1 to 16 bits and serially
transmit this pattern through the CRUOUT pin of of the TMS
9900. Increment the address on A3 to A14 after each CRUOUT
transmission.

• STCR Place the CRU hardware base address on lines A3 to A14. Store
into memory a pattern of 1 to 16 bits obtained serially at the
CRUIN pin of the TMS 9900. Increment the address on A3 to A14
after each CRUIN sampling.

e SBO

• SBZ

e TB

Place the CRU hardware base address plus the instruction's
signed displacement on address lines A3 to A14. Send a logical
one through the CRUOUT pin of the TMS 9900.

Place the CRU hardware base address plus the instruction's
signed displacement on address lines A3 to A14. Send a logical
zero through the CRUOUT pin of the TMS 9900.

Place the CRU hardware base address plus the instruction's
signed displacement on address lines A3 to A14. Sample the

5-14 .

•

GROIN pin of the TMS 9900 and place the bit read into ST2, the
Equal Bit of the Status register.

NOTE

Examples of single- and multi-bit CRU instruction execution using
the TMS 9901 are presented graphically in Appendix J.

5,5,3,1 CRU Multibit Instruction
The two multibit instructions, LDCR and STCR, address the CRU devices by
placing bits 3 through 14 (hardware base address) of R12 on address lines A3
through A14. AO, Al, and A2 are set to zero for all CRU operations. The first
operand is the source field address and the second operand is the number of
bits in the operation.

If the length is coded as from 1 through 8 bits, only the left byte of the
source or recei ving field takes part in the operation, and bits are shifted in
or out from the least significant bit of that left byte. Thus a LDCR R2, 1
outputs bit 7 of R2 to the CRU at the address derived from register 12. An
STCR R5,2 would receive two bits of data serially and insert them into bit 7
and then bit 6 of register 5. The CRU address lines are automatically
incremented to address each new CRU bit, until the required number of bits are
transferred. In an STCR instruction, unused bits of the byte or word are
zeroed. In this last example, bits 0-5 are zeroed, the right byte is
unaffected.

¢ 2

,PJ

AO AIS

CRUCLK

CRUOUT

~ ... -::> ...
~ = C RUIN

- ~

I I

UNKNOWN IX CRU BIT ADDR ESS n ix CRU ADDRESS n. t Ix: :;...,__ _ __,
I I I I I

~~~~1~~~r-l I ll.__~1~~---J:1--~-+-~~~~+-~~ 
I I I I 

I I 
I 

I I I 
UNKNOWN ~ CRU DATA OUT n :x CRU DATA OUT n • 1 y :;,_ __ -f' 

I I I 
I I 

~o?~1f~~E~Jo:xl"O'l7l"!~~OOOl:'10\r""f-

CRU OUTPUT CRU INPUT 

FIGURE 5-5. TMS 9900 CRU INTERFACE TIMING 

5-15. 



An LDCR loads the CRU devi ce serially from memory over CRUOUT timed by CRUCLK. An STCR 
stores data into memory obtained serially through CRUIN from the addressed CRU device . 
Figures 5-6 and 5-7 show this operation graphically. The TMS 9901 i s used in the 
example as the CRU device because it most simply shows the bit transfers involved. 

LI Rl 2,> 200 

LDCR R5,6 

LOAD CRU BASE ADDRESS > 100 IN BITS 3 TO 14 OF R12 

6 BITS TO CRU 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 0 0 0 0 1 0 0 0 0 0 I 1 1 0 0 

I I 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 1 1 0 0 r 0 1 1 0 r 0 0 I 0 1 0 1 

0 2 7 8 15 

RS ----~I ----~0~1 __.__[ _o ..___I 1__._1 _._I ____.o _ 1 ___.___[ _o ...__J o__._J _ 1 __.____J _1 ..__1___._J _ 1 _,__[ ___..o I --IGNORE 

8 BITS OR LESS - BYTE ADDRESS 

9 BITS OR MORE - WORD ADDRESS 

NOTE: EXAMPLES OF CRU INSTRUCTIONS ADDRESSING THE 

AOOOl 434 TMS 9901 ARE SHOWN IN APPENDIX J. 

Figure 5-6. LDCR Instruction 

5--1-6 

'-020C 

-0200 

' ·3185 

0 • CRU Address > 100 

2 

3 

4 

5 • CRU Address ',105 

6 

7 

8 

9 

A 

B 

c 
D 

E 

F 

10 

11 

12 



I 

, 
• 

LI 

STCR 

R12,> 120*2 

R4, 10 

LOAD CRU BASE ADDRESS > 120 IN BITS 3 TO 14 OF R12 

10 BITS FROM CRU TO R4 

0 

R4 0 

NOTES: 

0 2 3 

0 0 0 0 

0 0 0 0 

0 0 1 1 

0 0 0 0 

ZERO FILL 
UNUSED LEFT-SIDE BITS 

8 BITS OR LESS - BYTE ADDRESS 
9 BITS OR MORE - WORD ADDRESS 

4 5 6 7 8 

0 0 1 0 0 

0 0 1 0 
I 

0 

0 1 j 1 0 1 

6 

0 

THE MULTIPLICATION IN THE DESTINATION OPERAND !> 120*2) 
IS NOT RECOGNIZED BY THE TM 990/402 LINE-BY-LINE ASSEMBLER. 
THIS MULTIPLICATION IS AN EXAMPLE OF THE RELATIONSHIP OF 
THE CONTENTS OF THE CRU BASE ADDRESS TO THE CONTENTS 
OF REGISTER 12. -

EXAMPLES OF CRU INSTRUCTIONS ADDRESSING THE 

TMS 9901 ARE SHOWN IN APPENDIX J. 

9 

0 

1 

0 I 

10 11 12 13 14 15 

0 o I 1 , 
0 0 0 0 

0 0 I 0 1 

15 

0 

0 

0 

0 >020C 

0 >0240 

0 >3684 

0 -CRU Address >120 

1 

2 

3 

4 

5 

6 

7 

8 

9 -<:RU Address >129 

A 

B 

c 
D 

E 

F 

10 

Figure 5-7. STCR Instruction 

5-17 



5.5.3.2 CRU Single-Bit Instructions 
The three single-bit instructions are SBZ (set bit to zero), SBO (set bit to one), and 
TB (test bit). The first two are output instructions, and the last one is an input 
instruction. All three instructions have only one operand, which is assembled into an 
eight-bit signed displacement to be added to the CRU hardware base address to provide 
the CHU bit address. The SBZ instruction sets the addressed bit to zero (zero on 
CRUOUT), and the SBO instruction sets the addressed bit to one (one on CRUOUT). The TB 
instruction reads the logical value on the CRUIN line and places this value in bit 2 
(EQ) of the status register; the test can be proven by using the JEQ or JNE 
instructions. 

The operand value is treated as a signed, eight-bit number, and thus has a range of 
values of -128 to +127. This number is added to the CRU hardware base address derived 
from bits 3 to 14 of R12, and the result is placed on the address lines. This process 
is illustrated in Figure 5-8. 

Notice that after execution of a TB instruction, a JEQ instruction will cause a jump 
if the logic value on CRUIN was a one, and JNE will cause a jump if the logic value 
was a zero. 

SOFTWARE BASE ADDRESS 

HARDWARE BASE ADDRESS 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

x x x I x I W12 

DON'T CARE 

+ 
8 9 10 11 12 13 14 15 

I I I I SIGNED 

,,~, DISPLACEMENT 
7 

BITS SIGN u EXTENDED 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

I 0 I 0 I 0 I .1 I I .1 I I I I ADDRESS BUS 

' v I 

SET TO ZERO EFFECTIVE CRU BIT ADDRESS 
FOR ALL CRU 
OPERATIONS 

Figure 5-8 . Addition Of Displacement And R12 Contents To Drive CRU Bit Address 

5-18 



5.6 DYNAMICALLY RELOCATABLE CODE 
Most programs written for the TM 990/101M will contain references in memory. These 
references are given by means of a symbolic name preceded by an at (@) sign. Examples 
are @>FEOO (M.A . FE0016 1 recognized by the LBLA) or @SUM (recognized by a 
symbol-reading assembler, not the LBLA). 

For example, a short program, located at M. A. 090016 to 090F16 , adds t wo memory 
addresses then branches to the monitor: 

M.A. 
0900 
0904 
0908 
090C 
090E 

MOV 
A 
B 
DATA 
DATA 

@>090C,R1 
@>090E,R1 
@>0080 
100 
200 

MOVE VALUE AT M.A. 090C TO R1 
ADD VALUE AT M.A . 090E TO R1 (R1:ANSW) 
RETURN TO MONITOR 
FIRST NUMBER 
SECOND NUMBER 

In this program, a number in EPROM is moved to a register in RAM, and another number 
in EPROM is added to that register (the destination of an add must be in RAM in order 
for the sum to be written into it). If it is desired to move this entire program to 
another address (such as to RAM for debugging purposes to allow data changes as 
desired), then the locations in the code must be changed to reflect the new addresses. 
For example, to relocate the above example to start at address FC0015 1 each of the 
addresses of the numbers must be changed before the program can execute; otherwise, 
the program will try to access numbers in M.A. 090C16 and 090E16 when they have been 
relocated to M.A. FCOC16 and FCOE16 respectively . 

For a variety of reasons, it may be advantageous to have code that is 
"self-relocating," that is, it can be relocated anywhere in memory and execute 
correctly. Such "position-independent" or "dynamic-relocating" code is of great 
advantage when the code is programmed into EPROM. In this manner, the EPROMs can be 
installed in any socket, responding to any address, and the program will still execute 
correctely. Such programs are possible with the TM 990/101M by merely beginning the 
program with the code segment shown below (register 10 i s used i n the following 
examples). Thereafter, memory addresses can be indexed, relative to t he beginning of 
the program (using R10 at the index register, in this case ) . This code i s shown in 
Figure 5-9. 

Base 
Reg. 
Setup 

Relo-
eatable 
Program 

M.A. 
0000 
0004 
0008 
OOOA 
oooc 
OOOE 
0012 
0014 
0018 I 001E 0012 
0016 
001A 
001C 

Fi sure 

OPCODE/OPERANDS COMMENTS 
START LWPI FEOO RO AT M.A. FEOO 

LI R10,START LOOK AT START ADDR. 
JEQ RELOC IF NOT BIASED, NEED RELOCATING 
CLR R10 LOADER HAS BIAS, CLEAR BASE REG. 
JMP STARTX GO TO PROGRAM 

RELOC LI R10,>045B B *R11 OPCODE IN R10 
BL R10 PC VALUE TO R11 

RELOCX AI R11,START-RELOCX PC-10 =PROGRAM START 
MOV R11,R10 PROGRAM START TO R10 

STARTX MOV @>001A(R10),R1 MOVE FIRST NUMBER TO R1 
A @>001C(R10),R2 ADD 20 NO. TO R1, ANSW IN R1 
B @>0080 RETURN TO MONITOR 
DATA 100 FIRST NUMBER 
DATA 200 SECOND NUMBER 

5-9. Exam21e Of Prosram With Co dins Added to Make it Relocatable 

5-19 



This coding first sets up a program base register which computes the address of the 
beginning of the program. This is accomplished by: 

• establishing the beginning workspace register address with LWPI 

• placing the opcode for the instruction B *R11 in the designated index 
register address (R10 above) 

• execute a branch and link to R10; this places the address of the next in
struction following BL R10 into register 11; a branch to R10 means a return 
indirect through R11 

• compute the beginning address of the program by subtracting 1016 from the 
address in register 11. 

• move this beginning address to R10, allowing R11 to be further used as a 
linking register. 

• Index all future relocatable addresses using R10. 

There are several considerations. Absolute addresses (e . g., beginning of monitor at 
008016) need not be indexed, and other types of memory indexing should consider the 
contents of the base register; it may be necessary to add the contents of the base 
register to another indexing register. Also, an immediate load of an address into a 
register will require that the base address in the index register be added to the 
register also . For example: 

LI 
A 

R2, >0980 
R10,R2 

ADDRESS OF VALUES IN R2 
ADD BASE ADDRESS 

Figure 5-10 is an example of a program that searches a table of numbers for a value. 
The example is shown in both relocatable and in non-relocatable code, for comparison. 
Symbolic addressing is used. 

*NON SELF-RELOCATING 
iNO BASE REGISTER USED 

LI R3,TABLE POINT TO TABLE 

* 
*REMAINDER OF CODE NOT INDEXED 

MOV @COUNT,R2 GET COUNT 
SEARCH C R1.,*R3+ (R1) IN TABLE? 

JEQ FOUND YES 
DEC R2 NO, DEC COUNTER 
JNE SEARCH LOOK AGAIN 

COUNT DATA 6 
TABLE DATA 12,15,59,62,73,92 

*SELF-RELOCATING 
*R10 IS BASE REGISTER 

LI R3, TABLE 
A R10,R3 

*REMAINDER OF CODE INDEXED 

POINT TO TABLE 
ADD BASE REG. 

MOV @COUNT(R10),R2 GET COUNT 
SEARCH C R1,*R3+ (R1) IN TABLE? 

COUNT 
TABLE 

JEQ FOUND YES 
DEC R2 NO, DEC COUNTER 
JNE SEARCH LOOK AGAIN 

DATA 6 
DATA 12,15,59,62,73,92 

Figure 5-10. Examples of Non Self-Relocating Code and 
Self-Relocating Code 

5-20 



Great care must be taken with B, BL, and BLWP. If linking to other modules is needed, 
these modules must be part of a system which is linked together by the linker program 
(e.g., TXLINK on the FS990 system), and all modules must be coded as self-relocating. 

When programming the EPROM's, the code must be loaded such that the address START has 
the value~' i.e. The code must appear biased at location 000016 . 

5.7 PROGRAMMING HINTS 
In any programming environment there are several ways to accomplish a task. Table 5-4 
contains alternate coding practices; some have an advantage over conventional coding. 

Table 5-4. Alternate Programming Conventions 

CONVENTIONAL ALTERNATE ALTERNATE CODE 
PURPOSE CODE CODE ADVANTAGE 

Compare Register Contents to o CI RX,O MOV RX,RX Saves one word 
Increment A Register by 4 INCT RX c *RX+,*RX+ Saves one word 

INCT RX 
Access old workspace MOV @N (R13), R1 N is twice the 

registers number of the 
old register 
wanted 

Swap two registers MOV RX,RHOLD XOR RX,RY Saves a regis-
MOV RY,RX XOR RY,RX ter: "RHOLD" 
MOV RHOLD,RY XOR RX,RY Not needed 

Clear a register CLR RX XOR RX,RX (None) 
CLR RX SUB RX,RX (None) 

5.8 INTERFACING WITH TIBUG 
The TIBUG monitor provides a starting point for the programmer to consider when 
looking for program examples. The monitor contains some basic user facilities, and the 
user will probably enter and exit programs through TIBUG. 

5.8.1 PROGRAM ENTRY AND EXIT 
To execute a program under TIBUG, use the "R" and "E" commands as explained in Section 
3 of this manual. 

Exit from a program to TIBUG can be through: 

B @>0080 

TIBUG will print the prompting question mark. Note that the power-up initialization 
routine is not entered; instead, control goes directly to TIBUG's command scanner. 

5-21 



5.8.2 I/0 USING MONITOR XOP's 

5.8.2.1 Character I/O 
Four XOP's deal specifically with character I/O: 

• Echo Character XOP 11 

• Write Character XOP 12 

• Read Character XOP 13 

• Write Message XOP 14 

The echo XOP (11) is a read character XOP (13) followed by a write character XOP (12). 
The following code reads in a character from a terminal. If an A or E is found, the 
character is writen back to the terminal and program execution continues; otherwise, 
the program loops back waiting for another keyboard entry. 

GETCHR XOP R1, 13 READ CHARACTER 
CI R1 , >4 100 COMPARE R1 to ASCII "A II 
JEQ OK IF "A" FOUND JUMP 
CI R1 ,>4500 COMPARE R1 TO ASCII "E" 
JEQ OK IF "E" FOUND, JUMP 
JMP GETCHR RETURN TO READ ANOTHER CHARACTER 

OK XOP R1, 12 WRITE CHARACTER AS ECHO 

XOP 14 causes a string of characters to be written to the terminal. Characters are 
written until a byte of all zeroes is found. 

XOP 13 reads one character and stores it into the left byte of a work; the right byte 
is zero filled. The previous coding example could also have been completed with the 
following: 

OK XOP R1, 14 

Instructions are written in uninterrupted form; thus, messages should be grouped in a 
block separated from the continuous executable code. Each message must be delimited by 
a byte of all zeroes: 

**MESSAGES 
CRLF BYTE 
LF BYTE 
MSG1 TEXT 

BYTE 
MSG2 TEXT 

BYTE 
MSG3 TEXT 

BYTE 
MSG4 TEXT 

BYTE 
MSG5 TEXT 

BYTE 

>OD 
>OA,>00 
'BEGIN PGMA' 
0 
'END PGMA' 
0 
'#ERRORS (IN HEX):' 
0 
'ERROR EXP VALUE=' 
0 
',RCV VALUE=' 
0 

5-22 



Note in the preceding example, that if it is desired to send a carriage return and a 
line feed, use the following: XOP @CRLF,14. But if only a line feed is wanted, use : 
XOP @LF, 14. 

5.8.2.2 Hexadecimal I/0 
Three XOP's handle hexadecimal numbers. 

• 
• 
• 

Write one hexadecimal character 
Read a four-digit hexadecimal word 
Write four hexadecimal characters 

XOP 8 
XOP 9 
XOP 10 

Using the message block in paragraph 5.8.2.1, an example code segment might be: 

*ERROR 
ERROR 

ROUTINE 
XOP 
XOP 
XOP 
XOP 
XOP 
XOP 

@MSG4, 14 
R1, 10 
@MSG5, 14 
R2, 10 
@CRLF, 14 
@LF, 14 

START ERROR LINE 
PRINT CORRECT EXPECTED VALUE 
MORE ERROR LINE 
PRINT ERRORED RCV VALUE 
DO CARRIAGE RETURN/LINE FEED 
ONE MORE LF FOR DOUBLE SPACE 

XOP 8 is actually called four times by XOP 10, after positioning the next digit to be 
written into the least significant four bits of the work register. 

The following shows how to input values to a program by asking for inputs from the 
terminal. 

GET XOP R4,9 CALL TO GET HEX # ROUTINE 
DATA NULL,ERROR NO INPUT/BAD INPUT ADDRESSES 

OK A R3,R4 ADD OLD NUMBER IN 
JMP xxx CONTINUE PROGRAM 

NULL LI R4,>3AF1 LOAD DEFAULT VALUE 
XOP @DEFMSG, 14 PRINT DEFAULT MESSAGE 
JMP OK 

ERROR XOP @ERRMSG,14 PRINT ERROR MSG 
JMP GET TRY AGAIN 

DEFMSG TEXT 'DEFAULT USED' 
BYTE 0 

ERRMSG TEXT 'ERROR: USE 0-9, A-F ONLY' 
BYTE 0 

Note that the XOP 9 routine stores only the last four digits typed before the 
termination character (delimiter) is typed . This means if a wrong number is entered, 
continue typing until four correct digits are entered; then type a delimiter (space, 
carriage return, or minus sign). Typing fewer than four digits total (but at least one 
digit) causes leading zeroes to be inserted. Typing only a delimiter gives control to 
the first address following the XOP, and typing an illegal character at any time 
causes control to go to the address specified in the second word following the XOP 
call. 

5-23 



5.9 INTERRUPTS AND XOPS 

5.9.1 INTERRUPT AND XOP LINKING AREAS 
When an interrupt or XOP instruction is executed, program control is passed to WP and 
PC vectors located in lower memory. In t errupt vectors are contained in M.A. 0000 16 to 
003F 16 ; and XOP vectors are contained in M.A. 0040 16 to 007F 16 . User-available 
i nterrupt and XOP vectors are preprogrammed in the EPROM chip with WP and PC values 
that allow the user to implement interrupt service routines (I SR's ) and XOP service 
routines (XSR's). This includes programming an intermediate linking area as well as 
the ISR or XSR code. 

When an interrupt or XOP is execut ed, it first passes control to the vector s which 
point to the linking area. The linking area directs execution to the actual !SR or 
XSR. The linking areas are shown in Table 5-5. The linking area is designed to leave 
as much space free as possible when not using all the interrupts. That is , the most 
frequently used areas are butted up against TIBUG area, the least frequently used 
areas extend downward into RAM. 

Return fr om the ISR or XSR is through return vectors in R13, R14, and R15 at the ISR 
or XSR workspace and at the linking area workspace. 

How to program these linking areas is explained in the following paragraphs. 

M.A. 

0000 
0004 
0008 
oooc 
0010 
0014 
0018 
001A 
0020 
0024 
0028 
002C 
0030 
0034 
0038 
003C 

NOTE 
Interrupts 3 and 4 are used by the timers at the TMS 
9901 and TMS 9902 respectively. 

Table 5-4. Preprogrammed Interrupt And User XOP Trap Vectors 

VECTORS VECTORS 
Int. WP PC M.A. XOP WP 

INTO TIBUG TIBUG 0048 XOP2 FF48 
INT1 FF5A FF7A 004C XOP3 FF3A 
INT2 FF4E FF6E 0050 XOP4 FF2C 
INT3 FF8A FFAA 0054 XOP5 FF1E 
INT4 FF7E FF9E 0058 XOP6 FF10 
INT5 FF72 FF92 005C XOP7 FF02 
INT6 FF66 FF86 
~NT7 FEEE FFOE 
INT8 FEE2 FF02 
INT9 FED6 FEF6 
INT10 FECA FEEA 
INT11 FEBE FEDE 
INT1 2 FEB2 FED2 
INT13 FEA6 FEC6 
INT14 FE9A FEBA 
INT15 FE8E FEAE 

5-24 

PC 

FF5A 
FF4C 
FF3E 
FF30 
FF22 
FF14 



Table 5-5. I nter rupt and User XOP Linki ng Areas 

BYTE 
M. A. 0-1 2-3 4-5 6-7 8-9 A-B C-D E-F 

FET90 I USER RAM AREA 

FEAO INT15 INT15 INT15 INT15 
FEBO INT1 5 INT15 INT14 INT14 INT14 INT14 INT14 INT14 
FECO INT13 INT13 INT13 INT13 INT13 INT13 INT12 INT12 
FEDO INT12 INT12 INT12 INT12 INT11 INTl 1 INT11 INT11 
FEEO INT11 INT11 INT10 INT10 INT10 INT10 INT10 INT10 
FEFO INT9 INT9 INT9 INT9 INT9 INT9 INT8 INT8 
FFOO INT8 INT8 INT8 INT8 INT7 INT7 INT7 INT7 
FF10 INT7 INT7 XOP7 XOP7 XOP7 XOP7 XOP7 XOP7 
FF20 XOP7 XOP6 XOP6 XOP6 XOP6 XOP6 XOP6 XOP6 
FF30 XOP5 XOP5 XOP5 XOP5 XOP5 XOP5 XOP5 XOP4 
FF40 XOP4 XOP4 XOP4 XOP4 XOP4 XOP4 XOP3 XOP3 
FF50 XOP3 XOP3 XOP3 XOP3 XOP3 XOP2 XOP2 XOP2 
FF60 XOP2 XOP2 XOP2 XOP2 INT2 INT2 INT2 INT2 
FF70 INT2 INT2 INT1 INT1 INTl INT1 INT1 INT1 
FF80 INT6 INT6 INT6 INT6 INT6 INT6 INT5 INT5 
FF90 INT5 INT5 INT5 INT5 INT4 INT4 INT4 INT4 
FFAO INT4 INT4 INT3 INT3 IN'f3 INT3 INT3 INT3 
FFBOI 
FFFB TIBUG WORKSPACE 

5.9.1.1 Interrupt Linking Areas 
When one of the programmable interrupts (INT1 to INT15) is executed, it traps to an 
interrupt linking area in RAM. Each linking area consists of s ix words (12 bytes) as 
shown in Figures 5-11 and 5-12. The first three words contain the last three registers 
of the called interrupt vector workspace (R13, R14, and R15), and the second three 
words, located at the interrupt vector PC address, are intended to be programmed by 
the user to contain code for a BLWP instruction, a second word for the BLWP 
des tina.~ion address, and an RTWP instructi on code (all three words to be entered by 
the user). When the ISR is completed, control returns to this linking area where the 
return values (to the interrupted program) are loaded into the linking area's three 
registers (R13 to R15), then the BLWP instruction (at the PC vector address) is 
executed using the M.A. provided by the user (the BLWP instruction consists of two 
words, the BLWP operator and the destination address; the destination address points 
to a two-word area also programmed by the user). 

Return from the interrupt service r outine is through the RTWP instruction (routine's 
last instruction). This places the (previous) WP and PC values at the time of the BLWP 
instruction (in the six-word linking area) into the WP and PC registers. Thus, the 
RTWP code that follows the BLWP instruction will now be executed, causing a second 
return routine to occur, this time to the interrupted program using the return values 
in R13, R14, and R15 of the interrupt link area. This is shown graphically in Figure 
5-11 . 

5-25 



INTERRUPT NO. 1 
RECOGNIZED 

FF5A RO •----FIRST REGISTER 
IN WORKSPACE 

7 
M.A. 0000 WP 

0002 PC 
0004 FF5A 
0006 FF7A 

{ 

~-R_1_3_1_o_L_D_w_P_l___. 
Rl4 (OLD PC) 

I &WORD INTERRUPT LINK AREA 

LERRUPT 
VECTORS IN 
EPROM 

INTERRUPTED 
PROGRAM 

1,2 INTERRUPT EXECUTION TRAPS TO 6-WORD INTERRUPT LINK AREA. 
3.4 BLWP EXECUTED TO 2-WORD VECTORS TO INTERRUPT SERVICE ROUTINE ( ISR) 

5 RTWP FROM ISR TRAPS BACK TO 6-WORD LINK AREA. 

6 RTWP FROM LIN K AREA RETURNS BACK TO INTERR UPTED PROGRAM. 

~ = LI NKAGE PROGRAMMED BY USER 

Figure 5-11. Interrupt Sequence 

5-26 

zzzz 

R13 FF5A 

R1 4 FF7E 

R15 !O LD ST) 

• • • 

RTWP 

INTERRUPT SERVICE ROUTINE 



Each interrupt linking area is set up so that it can be programmed in this manner. In 
summary, each six-word linking area can be programmed as follows: 

• · Determine the location of the linking area as shown by the WP and PC vectors 
in Table 5-4. 

• The PC vector will point to the last three words of the six-word area. The 
user must program these three words respectively with 042016 for a BLWP in
struction, the address (BLWP operand) of the 2-word vector pointing to the 

interrupt service routine, and 038016 for an RTWP instruction as shown in 
Figure 5-12. 

• At the vector address for the BLWP operand, place the WP and PC values 
respectively of the interrupt handler. 

EXAMPLE USING INT1 LINKING AREA (WP = FF5A. PC = FF7A) 

TO BE l PROGRAMMED 
BY USER 

M .A. 

FF5 A 

FF 

FF 

74 

76 

78 FF 

FF7 

FF7 

FF7 

A 

c 
E 

• 
• 
• 

R13 (OLD WP) 

R14 (OLD PC) 

R15 (OLD STI 

0420 (BLWP) 

xx xx 
0380 (RTWPI 

) 
-

~ 

NOTE 

(ACTUAL ADDRESS OF RO OF INTERR UPT V ECTOR 

WP) 

USED TO SAVE RETURN VALUES (TO 
INTERRUPTED PROGRAM) 

INT1 VECTOR PC ADDRESS !CONTAINS BLWPI 

ADDRESS OF 2 - WORD VECTOR POINTING TO 
WP AND PC VALUES OF ISR 

RETURN PC VALUE IN ISR POINTS TO THIS 
RTWP INSTR . 

· DO NOT USE RO-R12 OF THE LINKING AREA WORKSPACE, 
BECAUSE THE OVERLAPPING STRUCTURE WILL DESTROY 
THE CONTENTS OF A LINKING AREA FOR ANOTHER INTER
RUPT OR XOP. 

Figure 5-12. Six-Word Interrupt Linking Area 

5-27 



Example coding to program the linkage to the interrupt service routine for INT1 is as 
follows: 

*PROGRAM POINTER TO INT1 
AORG >FF7A 
DATA >0420 
DATA >FAOO 
DATA >0380 

SERVICE ROUTINE FOLLOWING BLWP INSTRUCTION 
INT1 PC VECTOR ADDRESS 
HEX VALUE OF BLWP OP CODE 
LOCATION OF 2-WORD VECTORS TO ISR (EXAMPLE) 
HEX VALUE OF RTWP OP CODE 

*PROGRAM POINTER TO 2-WORD VECTORS TO INTERRUPT SERVICE ROUTINE (EXAMPLE) 
AORG >FAOO 
DATA :>FBOO 
DATA >FA04 

WP OF INTERRUPT SERVICE ROUTINE (EXAMPLE) 
PC OF INTERRUPT SERVICE ROUTINE (EXAMPLE) 

*INT1 ISR FOLLOWS (BEGINS AT M.A. FA04) 

The interrupt service routine which begins at M. A. FA04 16 will terminate with an RTWP 
instruction. 

5.9.1.2 XOP Linking Area 
The XOP linking area contains seven words (14 bytes), of which the first two and the 
fourth words must be programmed by the user. Each XOP vector pair contains the pointer 
to the new WP (in the first word) and a pointer to the new PC (in the second word) 
which points to the first instruction to be executed. 

In the seven-word XOP linking area, the first word is the destination of the XOP PC 
vector. The last three words are the final three registers (R13, R14, and R15) of the 
linking area workspace which will contain the return vectors back to the program that 
called the XOP. The third word of the seven-word area is R11, which contains the 
parameter being passed to the XOP service routine. This is shown in Figure 5-13. 

For example, when XOP2 is executed, the PC vector points to the BLWP instruction shown 
at M.A. FF5A 16 in Figure 5-13. This executes, transferring control to the 
preprogrammed WP and PC values at the address in the next word (YYYY as shown in 
Figure 5-13). To obtain the parameter passed to R11 of the vector WP (M.A . FF5E 15 in 
Figure 5-13), use the following code in the XOP service routine: 

t-K)V *R14+,R1 MOVE PARAMETER TO R1 

This moves the parameter to R1 from the old R11 (the old PC value in R14 was pointing 
to this address following the BLWP instruction immediately above it, effectively to 
R11), and increments the XOP service routine PC value in its R14 to the RTWP 
instruction at M. A. FF60 15. Thus an RTWP return from the XOP service routine will 
branch back to the RTWP instruction at FF60 15 which returns control back to the 
instruction following the XOP . 

5-28 



EXAMPLE USING XOP 2 LINKll\/G AREA !WP FF48, PC FF5A) 

TO BE 
PROGRAMMED 

BY USER 

M 

FF 

A 

48 

[ 

FF5 A 

c FF5 

FF5 

FF6 

FF6 

FF6 

FF6 

E 

0 

2 

4 

6 

• 
• 
• 

-
0420 (BLWP) 

YYYY 

Rl 1 IPARAMETERI 

0380 IRTWPI 

R13 (0LDWPI 

R 14 (OLD PCI 

Rl5 IOLD STI 

~ 

(ACTUAL ADDRESS OF RO OF XOP2 

WPI VECT OR 

14--· - -

XOP2 VECTOR PC POINTS TO HERE 

POINTS TO XSR WP & PC VECTORS 

XOP SOURCE ADDA PARAMETER 

l 
RTWP BACK TO CALLING PROGRAM 

USED TO SAVE RETURN VALUES 
ITO INTERRUPTED PROGRAM) 

Figure 5-1 3. Seven-Word XOP Interrupt Linking Area 

In summary, the seven-word XOP linking a rea can be programmed as follows : 

• Determine the value of the PC vector for the XOP as shown in Table 5-4. 

• The PC value will point to the first word of the seven-word linkage area . 
The user must program three of the first four words of this area 
respectively with 0420 16 for a BLWP instruction, the address of the two-word 
vector that points to the XOP service routine, ignore the third word, and 
0380 16 for an RTWP instruction in the fourth word . 

• At the address of the BLWP destination in the second word, place the WP and 
PC values respectively to the XOP service routine. 

5-29 



An example of coding to program the XOP linkage for XOP 2 as shown in Figure 5-13 i: 
as follows: 

*PROGRAM POINTER TO 
AORG >FF5A 
DATA >0420 
DATA >FAOO 
DATA 0 
DATA >0380 

XOP SERVICE ROUTINE AT XOP2 LINK AREA 
XOP2 PC VECTOR ADDRESS 
HEX VALUE OF BLWP CODE 
LOCATION OF 2-WORD VECTORS TO XSR (EXAMPLE) 
IGNORE 
HEX VALUE OF RTWP CODE 

*PROGRAM POINTER TO 2-WORD VECTORS TO XOP2 SERVICE ROUTINE (EXAMPLE) 
AORG >FAOO LOCATION OF VECTORS 
DATA >FBOO WP OF XOP SERVICE ROUTINE (EXAMPLE) 
DATA >FA04 PC OF XOP SERVICE ROUTINE (EXAMPLE 

*XSR CODE FOLLOWS (BEGINS AT M.A. FA04) 

At the XOP service routine, the following code uses the PC return value (i~ R14 of the 
XOP service routine workspace) to obtain the parameter in R11 (in the link area) a~ 
well as set the r et urn PC value in R14 (in the XOP service routine workspace) to the 
RTWP in the link area: 

MOV *R14+,R1 MOVE OLD R11 CONTENTS TO Rl OF XOP SERVICE ROUTINE 

Now R14 points to the RTWP ins truction in the link area. The last instruction in the 
XOP service routine is RTWP. RTWP execution causes a return to the link area where a 
second RTWP executes, returning control to the next instruction following the XOP. 

5.9 . 2 TMS 9901 INTERVAL TIMER INTERRUPT PROGRAM 
A detailed discussion of the TMS 9901 interval timer can be found in the TMS 9901 dat 
manual. There are several possible sequences of coding that can program and enable th~ 
interrupt 3 i nterval timer, and s ince the timer has a maximum per iod of 349 
milliseconds before issuing an interrupt , the programmer must decide whether to set 
the interval period in the calling program or in the code handling the interrupt. If 
the interrupt period desired is longer than 349 milliseconds, then it may be 
advantageous to reset the timer in the interrupt subroutine which also triggers the 
interrupt and returns control back to the interrupted program. In any case, the timer 
must be initially set and triggered following the general sequence below: 

1. Set the CRU address of the TMS 9901 in bits 3 to 14 of R12. 

2 . Set up the interrupt 3 linking area. 

3. Enable the c l ock interrupt at the TMS 9901 (interrupt 3). 

4. Set the Status Register interrupt mask to a value of 3 or greater. 

5. Set a register to the value of the interval desired (bits 1 to 14) with bit 
15 se t to one to enable the clock as shown in Figure 5-14. This figure shows 
the code and a representation of the CRU for setting a time of 250 milli
seconds and for setting the TMS 9901 to the clock mode. The first bit 
serially brought in on the CRU will be a value of one in bit 15 of the 
register which sets the TMS 9901 to the clock mode; successive bits (1 to 
14) then set the clock interval value. The final bit brought in triggers the 
timer. 

5-30 



. , 

0 

6. When the interrupt occurs, the interrupt handler must reset the i~terrupt at 
the TMS 9901 before returning to the interrupted program . 

0 

R1 N 

A0001436 

LI A12, > 100 

LI Al, >seaF 

LDCFI R1. 16 

2 3 .. 5 8 7 

0 0 

CRU ADDRESS OF TMS 990 1 12 x > so= > 1001 

CLOCK, >2DC7 COUNTS, AND SET CLOCK MODE BIT 

SET CLOCK VALUE AT CLOCK REGISTER 

8 9 10 11 12 13 14 15 

0 0 0 > sasF 

CLK1 TO CLK14 • > 2DC7 • 11. 719 

11,719/46,875Hz • 250MS 

NOTE: 

THE FIRST SERIAL INPUT FROM CRU IA ONE IN BIT 15 OF Rll SETS CLOCK MODE. 

LAST INPUT TO CLOCK REGISTER ICLK1 TO CLK141 STARTS THE CLOCK . 

CAU 

ADDA 

80 

81 

82 

TMS 9901 

ASSIGNMENT 

1 • CLOCK MODE 

CLKl 

CLK2 

• 
• 
• 

SE CLK14 

SF 

Figure 5-14. Enabling and Triggering TMS 9901 Interval Timer 

5-31 



The clock decrements the value set in step 5 at the rate of o/64 (approximately 46,875 
Hz with a 3 MHz clock) . The maximum interval register value of all ones in 14 bits 
(16,383) takes approximately 349 milliseconds to decrement to zero. 

The code in Figure 5-15 is an example of a code to set up and call the TMS 9901 
interval timer and also the code of the interrupt handling subroutine . Note that the 
calling program first clears the counting register (RO) of the interrupt workspace. 
Then it sets up the interrupt masks at the TMS 9901 and TMS 9900 after setting the TMS 
9901 address i n R12. Then the calling program sets an initial value in the timer 
register (CLK1 to CLK 14 as shown in the TMS 9901 data manual) . Because the desired 
output on the terminal is a message every 15 seconds, a minimum interval is set in the 
calling program while the interrupt handler is responsible for setting the time and 
clearing the interrupt after it occurs . The handler keeps a count of the intervals to 
determine the 15 seconds. 

At the bottom of the figure is the interrupt linking area. Since all the code in this 
figure is loaded as if at absolute memory address values (using the AORG assembler 
directive) data statements are used here at the appropriate memory address. This 
program can be loaded and executed by placing the machine-language assembler output 
in the third column at the address shown in the second column. Then execute with the 
program start a t M.A. FD0016· 

The TMS 9901 can also be used as an event timer by starting the counter at the 
beginning of an interval and reading the counter after the event has occurred. To read 
the current value in the counter, the TMS 9901 must be taken out of the clock mode and 
put into the interrupt mode for at least 21 .4 usec (1 TMS 9901 clock period). After 
that, putting the 9901 back into clock mode and reading the clock/int mask bits gives 
the current clock value (elapsed bit count divided by 46,875 equals elapsed time in 
seconds). 

5.9.3 EXAMPLE OF PROGRAMMING TIMER INTERRUPTS FOR TMS 9901 AND TMS 9902 
This subsection explains how to use the interrupt vector scheme to program the TMS 
9901 a nd TMS 9902 timers. These timers use , respectively, interrupts 3 and 4 to trap 
to interrupt service routines following timer countdown. 

The progr a m described in the following paragraphs is an example that does the 
following: 

• Initializes the interrupt linking areas for the TMS 9901 and TMS 9902 timers 
(interrupts 3 and 4 respectively). 

• Loads the timers with interval values. 

• Triggers the timers which cause interrupts when the countdown is complete . 

• Contains interrupt service routines (ISR's) which execute when interrupts 3 
or 4 are executed. 

• Provides modules that perform hexadecimal-to-decimal conversions and 
decimal-to-hexadecimal conversions. 

The individual modules of this program are summarized in Table 5- 6. Please read these 
descriptions before continuing . The listing of this example program is provided in 
Figure 5-16, sheets 1 to 12. 

5-32 



I 

~ 

, 

• 

e-

TIMER 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
000'? 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
001 s 
001'? 
0020 
0021 
0022 
0023 FDOO 
0024 FDOO 

FD02 
0025 FD04 

F006 
0026 FD08 

FDOA 
0027 FDOC 
0028 FDOE 
0029 FD 10 

FD12 
0030 FD14 

FD16 
0031 FD18 
0032 FDlA 
0033 
0034 
00:35 
0036 FEOO 
0037 FEOO 
0038 FE02 
003'? FE04 

FE06 
0040 FEOB 

FEOA 
0041 FEOC 
0042 FEOE 
0043 FE10 

FE12 
004'1 FE14 

FE16 
0045 FE18 

TXMIRA 936227 ** 09:08:10 122178 PAGE 0001 

0000 
0001 
oooc 

02EO 
FD20 
04EO 
FE60 
020(: 
0100 
1EOO 
1D03 
0300 
0003 
0201 
(1003 
33Cl 
10FF 

FE60 
FE04 
0:300 
00(1(1 
0280 
00:3C 
130B 
0580 
020C 
0 100 
0201 
5B9F 
33C1 

* * * * * * * * * * * * * * * * * * * * * THIS PROGRAM CAUSES AN INTERRUPT THROUGH INT3 * 
* EVERY 15 SECONDS USING THE INTERVAL TIMER IN THE * 
* TMS 9901. THE AORG DIRECTIVE CAUSES THE CODE TO BE * 
* ASSEMBLED BY THE TXMIRA ASSEMBLER BEGINNING AT THE * 
* ADDRESS SPECIFIED (SAME ns SLASH COMMAND ON THE * 
* LINE-BY-LINE ASSEMBLER>. THIS PROGRAM CAN BE EXE- * 
* CUTED BY LOADING THE PROGRAM WITH THE TIBUG "M" * 
* COMMAND AND EXECUTING WITH THE "E" COMMAND AT PC * 
* ADDRESS >FDOO. LOAD OBJECT IN THIRD COLUMN OF * 
* THIS LISTING AT nDDRESS IN 2D COLUMN. J.WALSH * 
* * * * * * * * * * * * * * * * * * ~ IDT "TIMER '. 

* 
* REGI STER EOUATE:=; 

* RO EC!U (I 

Rl EOU 1 
R12 EOU 12 

* * PROGRAM CALLING THE INTERRUPT 

* 

* 
* 
* 

AORG :>FDOO 
LWPI >FD20 

CLR @>FEC.0 

LI R12, >0100 

SBZ 0 
:3BO 3 
LIMI 3 

LI Rl, 3 

LDCR Rl, 15 
._IMP $ 

INTERRUPT SUBROUTINE 

AORG >FEOO 
DATA >FE60 
DATA >FE04 
LIMI 0 

CI R0,60 

,JH~ >FE24 
INC RO 
LI R12, } 100 

LI Rl, >5B9F 

LDCR R1, 15 

BEGIN ASSEMBLY AT M.A. >FDOO 
DEFINE WORKSPACE ADDRESS 

CLEAR INTERRUPT REG 0 

9901 CRU ADDRESS IN R12 

9901 TO INTERRUPT MODE 
ENABLE INTERRUPT 3 
ENABLE INT3 AT TMS 9900 

2 ONES TO TMS 9901 

ENABLE CLOCK AT 9901 
LOOP HERE, WAIT FOR INTERRUPT 

BEGIN ASSEMBLY AT M.A. >FEOO 
BLWP WP VECTOR FOR INT 
BLWP PC VECTOR FOR INT 
DISABLE INTERRUPTS 

COUNT = 60 = 1~ SECONDS? 

YES, PRINT MESSAGF 
NO, INCREMENT COUNTER 
9901 CRU ADDRESS 

CLOC~ COUNT OF 11, 719 

APPLY COUNT, START COUNTER 

Figure 5-15. Example of Code to Run TMS 9901 Interval Timer (Sheet 1 of 2) 

5- 33 



TIMER TXMIRA 9 :36227 ** 09: 08: 1 (I 122178 PAGE 0002 

004~. FE1A 1EOO SBZ 0 ':>'901 TO INTERRUPT MODE 
0047 FElC 1[103 SBO :3 CLEAR INTERRUPT AFTER EXECUTE[1 
0048 FE1E 0300 LIMI 'J 

~· RESET INT MAS~< (H TM~; 9900 
FE20 000:3 

0049 FE22 0380 RTWF' RETURN TO CALL ING PROGRAM 
0050 FE24 2FAO XOP @:>FE2E,14 WRITE ME:::::3AGE 

FE26 FE2E 
0051 FE28 04CO CLR RO RESET TIMER COUNT 
0052 FE2A 0460 B @>FE04 BEGIN AT INTERRUPT START 

FE2C FE04 
0053 FE2E 3 1 TEXT / 15 SECOND:3 HAVE Elf\F'SED. ··· 

FE2F 35 
FE30 20 
FE31 53 
FE32 45 
FE33 4:3 
FE34 4F 
FE35 4E 
FE36 44 
FE37 53 
FE38 20 
FE39 48 
FE3A 41 
FE38 56 
FE3C 45 
FE3 D 20 
FE3E 45 
FE3F 4C 
FE40 41 
FE41 50 
FE42 53 
FE4:3 45 
FE44 44 
FE45 2E 

0054 FE46 0707 DATA :>0707,}0707 BELLS 
FE48 0707 

0055 FE4A 00 BYTE 0 END OF MESSAGE DELIMITER 
0056 * 0057 * INTERRUPT LI NK AREA PROGRAMMING 
0058 * 0059 FFAA AORG )·FFAA BEGIN ASSEMBLY AT M.A. 
0060 FFAA 0420 DATA )0420 BLWP INSTRUCTION CODE 
0061 FFAC FEOO DATA >FEOO BLWP VECTORS LOCATION 
0062 FFAE 0380 DATA ::>0380 RTWP I NSTRlJCT I ON 
0063 END 

0000 ERRORS 

NOTE: As an exercise, the user can load and execute this code : (1) load the machine code values shown 
in column 3 into the memory locat ions shown in column 2, or (2) reassemble : if the L i ne-By-
line Assembler (LBLA) is used, substitute the slash command for th e AORG directive and follow 
the DATA and TEXT statement conventions for the LBLA. Execute using the E TIBUG command. 

CODE 

>FFAA 

Figure 5-15. Example of Code to Run TMS 9901 Interval Timer (Sheet 2 of 2) 

5-34 



I 
Module 

Interrupt Link 

User Start 

Timer, TMS 9901 

Timer, TMS 9902 

Real Time Clock ISR 

Keyboard Initialization 

Keyboard Scan ISR 

Hex/Decimal Conversions 

Table 5-6. Interrupt Example Program Description 

Sheet Number 
of Figure 5-16 

2 to 4 

5 

6 

7 and 8 

8 

9 and 10 

11 and 12 

5-35 

Program Description 

This module sets up the interrupt linkage 
areas for interrupts 3 and 4, loads vectors 
pointing to Module REALCK for interrupt 3 
and to Module KYBDSC for interrupt 4. This 
is the first program called, and it calls 
Module User Start. 

"User Start" routine; this is the start of 
the general user control program . This 
contains mainline code to the timers, and 
calls KYINIT before starting the timers. 

This module sets TMS 9901 timer to specified 
value, starts countdown (countdown 
completion causes interrupt through 
interrupt level 3) . 

This module sets TMS 9902 timer of local I/O 
port to specified value, starts countdown 
(countdown completion causes inter rupt 
through interrupt 4). 

This Real-Time Clock routine is the 
Interrupt Service Routine (ISR) for 
interrupt 3. It accumulates counts at 
one- fifth second intervals to keep a real 
time clock count; time values are 
initialized by User Start. 

This module initializes I/O buffer for 
keyboard input . 

This is the Keyboard Scan Routine ISR for 
interrupt 4. It polls the keyboard unit for 
a new character, and then puts the character 
in buffer. Backspace and delete monitoring 
is provided. 

These modules convert decimal numbers to 
hexadecimal equivalents (sheet 11) and 
hexadecimal numbers to decimal equivalents 
(sheet 12) . 



5.9 . 3.1 Interrupt Linking Area Set-Up (Figure 5-16, Sheet 1) 
This module sets up the interrupt linking areas that point to the two interrupt 
service routines for the timers in the TMS 9901 and TMS 9902. The workspace for this 
module is the space just below the INT3 and INT4 linking areas. Since this example 
uses only interrupts 3 and 4, the linking areas for interrupts 1, 2, and 5 through 15 
are free space . 

5.9.3.2 User Start Program (Figure 5-16, Sheets 2 , 3 , 4) 
This module organizes the other modules into a user program. It sets up control 
functions and calls other modules in a prescribed sequence. This program receives 
control after the interrupt linking areas are initialized as described in paragra ph 
5.9.2.1. It then sets the timing values for the TMS 9901 timer and begins the 
countdown by a BLWP @TIME01. It also calls the keyboard initialization module (BLWP 
@KYINIT) which calls the TMS 9902 set and execute module (BLWP @TIME02). 

NOTE 
This User Start Program is for example purposes, and is 
intended only as a vehicle to demonstrate usage of the 
following subroutine modules. 

5.9.3 . 3 TMS 9901 Timer Set Routine (Figure 5-16, Sheet 5) 
This module sets and executes the interval timer of the TMS 9901. The calling routine 
specifies the number of 21.333-microsecond periods (at 3 MHz) to be counted by loading 
its own register 0. The TIME01 routine then picks this number (limited to 14 bits) by 
indirect addressing through R13 ( return WP value =RO). It shifts it while in R9, 
supplies the correct control bit (bit 0 = 1 by ORing), starts the timer (LDCR 
instruction) and enables the interrupt. Control returns to the calling program, which 
will be interrupted by the timer interrupt when the count reaches zero. The calling 
sequence to the timer set routine is: 

LI 
BLWP 

R0,9375 
@TIME01 

1/5TH SECOND INTERVALS 
SET TIMER 

The interrupt service routine for interrupt 3 is in paragraph 5 .9.3. 5 . 

5.9.3 .4 TMS 9902 Timer Set Routine (Figure 5-16, Sheet 6) 
This module sets and executes interval timer of the TMS 9902. The calling routine 
specifies (in its own register 0) the number of 64 microsecond periods (at 3 MHz, with 
the TMS 9902's CLK4M control bit zeroed) to be counted before generating the 
interrupt. This routine then picks this number up (through WP return value in R13, old 
RO), puts it in the left byte of R9, sets the LDIR (Load Interval Register) flag to 
enable loading of the timer value, resets LDCTRL (Load Control Register) to bypass 
loading the control register, loads the timer which begins the count, and then enables 
interrupt 4 on the TMS 9901. Notice that the user must have a jumper plug between pins 
E2 and E3 for an interrupt to occur. Control returns to the calling program which will 
be interrupted by the timer sometime later (called I SR described in paragraph 
5.9 .3.6). 

5-36 

, 



5.9.3 . 5 TMS 9901 24- Hour Real-Time Clock Service Routine (Figure 5- 16, Sheet 7) 
In this module, the TMS 9901 timer is used as a real time clock; an interrupt occurs 
every fifth of a second and a fractions counter is updated. The calling program 
initially sets the second- interval counter (R1) to 5. Every five counts, the seconds 
counter is updated; every sixty seconds the minutes counter is updated, etc. Note that 
since the initial period (one-fifth second) is long, the execution time of this 
service routine is trivial from a system throughput standpoint. Note also that because 
this timer is associated with interrupt 3, it has higher priority than the TMS 9902 
timer, which will be used for miscellaneous timing purposes in this example. This 
ensures the integrity of the real time clock recording the elapsed time from system 
initialization. 

5 . 9 . 3.6 TMS 9902 Used To Poll Keyboard Service Routine (Figure 5-16, Sheets 9 and 10) 
In this module, the TMS 9902 timer is being used as a general purpose delay timer. The 
service routine samples an ASCII encoded keyboard's output , and if a set time has 
elapsed and a strobe change occurred, it reads the character. The time delay and 
strobe change ensure a new character has been sent from the keyboard . The strobe for 
any one character is assumed to last longer than the interval set in the timer for 
scanning, and a flag is used in the software to simulate an edge - triggered data 
capture condition. The ASCII encoded keyboard is assumed to be connected to the TMS 
9901 through connector P4. 

When the strobe goes from high to low, data is read, and the flag turned on. Only when 
the strobe goes high again is the flag reset and a new character can be received. 

5.9 . 3.7 Decimal To Hexadecimal Conversion (Figure 5-16, Sheet 11) 
This module is a sample decimal-to hexadecimal-conversion routine. The calling program 
places the least significant four digits in its register O, and the most significant 
(fifth) digit is right-justified in its register 1. A BLWP @DECHEX instruction gives 
control to the conversion routine. 

The called routine isolates each decimal digit and uses it to index a loop which adds 
the proper place value ( 10,100,1000, etc.) to the result register . As each digit is 
isolated, a table pointer is bumped through the decimal powers. The resultant 
hexadecimal number is returned to the caller routine's register 0. The caller's 
register 1 is not disturbed. 

5 . 9.3 . 8 Hexadecimal To Decimal Conversion (Fi gure 5- 16 , Sheet 12) 
This module is a sample hexadecimal to decimal conversion routine . The calling routine 
places the hexadecimal number in its own register O, then performs a BLWP @HEXDEC. The 
converted result is placed back in the caller's register 0 (through address in R13), 
with a fifth digit (most significant) in register 1 of the calling program. Both 
registers in the calling program are always altered. 

The routine repeatedly divides the number by 10, and collects the remainders. These 
remainders, properly collected by the shift and SOC instructions, form the decimal 
number. 

5-37 



TX MIRA ?36227 ** 

t)(H) t 
(11) (>:2 

0003 
0004 
0005 
(J r)O(:. 

0(107 
<)(H):;:: 
OOr)•;:-1 

001 (I 
0011 
0012 
001 3 0 1)00 02EO 

0002 FF?:=: 
(>(l 14 (>(H)/j 0300 

00 15 
(H) 1 (:, 
0017 

qo 1 :=: 

00 1 ·;1 

0020 

0021 

002:::: 
002'1 
0025 
1)02/=, 
0027 
(>02S 
002·;1 
oo::::o 
003 1 
00::::::::: 
00:::: :::: 
00::::4 
00::::5 
0 036 
00::::7 

<)(H)(:, 0(1(>(! 

(H)r">:;:: C060 
(H)t)A OOOE 
(J(l(l( COfl(> 
OOOE (H) 1 2 
0010 020:::: 
001 ·2 0 4 2 1) 

0014 0'.:'!04 
001 6 o ::::=:o 
001::: 0205 
001() 0 14::: .. 
(>01 c (1.2(>(:. 

001E OlA::::··· 

0020 cc4·3 
002:2 CC45 
002'1 CC44 

0026 c:c:?. :3 
002::: cc::::6 
002A cc~::: '!· 

002C (l :::oo 
002E 0004 

IDT ·· TE'3T ·· 
~-------------------------------------------------------- -·--

* 
* 
* 
* 
* 
* 
* 

I NTERR UPT LINKING nREA INIT i nL IZATION ROUTINE. 
THI':: F:OUTJNE INITIAL.I ZE·:. THE INTERRUPT LIN• '. INC, 
nREA IN HIGH RAM FOR INTERRUPTS 3 nND 4 . 
A "BLWP" IN'.::TRUC:TION I'.::: BUIL.L ~JITH THE 
ADDRESS OF THE PARTICU~AR INTERRUPT SERVICE 
ROUTINE WHICH WILL THEN RECEIVE CONTROL 
WHEN THE INTERRUPT IS ACTIVnTED. TO COMPLETE 
THE RETURN PATH, A "RTWP" IN:=:TRUCTION I :=: 
BUILT IN RAM ALSO. 

*-----------------------------------------------------------
ENTRY LWPI >FF78 GET WORKSPACE 

* 
4j. 

~ 

* 
* 
* 
* 
* 

* 

* 

LIM! 0 CUT OFF INTERRUPTS 

THE FOLLOWING CODE LOAD:=: THE RECiU:.TERt· WITH THE 
PROPER VALUES FOR INITIALIZING THE RAM AREA . 
MOV @>OOOE,1 GET INT 3 PC PTR 

MOV @:··0 1:> 1 2, 2 CiET INT 4 PC F'TF: 

LI 3, >04-20 1. orrn BL~JP OPCODE 

LOA[t RTVJP OPCODE 

LI 5, INT3VC ADDR OF 9·:101 TIMER F:OUT INE 

LI l·., J NT 4VC r1DDR OF 99CC: TIMER F·n1.1T I l'JE 

THE FOL.LO~JINO CODE TAf<E::: THE INFORMATION IN THE 
REGI STERS AND MOVES IT OUT TO INITIALI ZE THE 
RAM LINK ING AREA . FIRST INTERRUPT 3 AREA I S 
INITIALIZED, THEN THE INTERRUPT 4 AREA . 

INTERRUPT 3 - TMS 990 1 TIMER 
MOVE "BLl-JP " OPCODE MOV 3 ,*1+ 

MOV 5,*1+ MOVE SERVICE ROUTINE ADDRESS 
MOV 4 I * 1 + MOVE ,, RT\~F·" OPCODE 
INTERRUPT 4 - TMS 9902 TIMER 
MOV ·~:. *2+ MOVE "BLl~P" OPCODE 
MOV 6.,*2+ MOVE ·:::ERV ICE ROUTINE ADf•RE:::::_:; 
MOV 4 ,*2 + MOVE "RTWP" OPCODE 
RET:::ORE I NTERRl..IF'T'=.:: 
LIMI 1 TURN INTERRUPT·::: BAb=' ON 

Figure 5-1 6. Example Program Using Timer Interrupts 3 and 4 (Sheet 1 of 12) 

5-38 

.. 



•• 

TE·::T 

0<:>-:::·=1 
0040 
004 1 
00'12 
(H) 'l '3 
004'l 
0045 
0046 
0047 
004::: 
004 '? 
0050 
0051 
0052 
0053 
0054 
(H)55 

005,:. 
0057 
0(15:::: 
005·=1 

006(> 
0061 
0062 
006:::: 
(>064 
0065 
0066 
0067 
006:3 
0069 
0070 
0071 
0072 
0073 
0074 
0075 
0076 
0077 
0078 0030 

00:32 
0079 0034 
oo:::o 00:36 

003:::: 
0081 003A 

003C 
0082 003E 

0040 
0083 0042 
0084 0044 
0085 0046 

004:3 
0086 004A 

004C 

TXMIRA 936227 ** <)f::: ()5: 22 PAGE (H)02 

*------------------------------------------------------------
* MAIN ROUTINE 
* THIS ROUTINE IS A SMALL SAMPLE OF WHnT TYPE 
* OF CODE SHOULD BE USED TO CONTROL THE FUNCTIONS 
* OF THE VARIOUS PARTS OF THE SYSTEM BEING 
* USED IN THIS EXnMPLE. PLEnSE KEEP IN MIND 
* THAT THIS ENTIRE PROGRAMMING EXAMPLE IS 
~ STILL ONLY AN E~AMPLE OF HOW THE FACILITIES 
* OF THE MICROCOMPUTER CAN BE USED: IT IS NOT 
* INTENDED TO SERVE AS A SOFTWARE BASE FOR 
* A USER APPLICATION PROGRAM. 
·-----------------------------------------------------------
* THIS MAIN ROUTINE RECEIVES CONTROL AFTER 
* THE INTERRUPT LINKING AREA IS INITIALIZED. 
* IT CALLS THE KEYBOARD INITIALIZATION 
* ROUTJNE. AND STARTS BOTH TIMERS GOING. 
• IT THEN INTERROGATES THE NEW-LINE FLAG 
* AND "[II::wo:3E:::;" OF THE u::::ER DATA BY 
* PRINTING IT. <OF COURSE. AN APPLICATION 
* PROGRAM WOULD DO MORE WITH THE DATA>. 
~-----------------------------------------------------------

* * WORK nREn DEFINITIONS 

* FF 1 ::: KYBDWP Ef.!U >FF1 -::: 
>FEF3 
>FF :~:8 

>FF78 
>FF58 

KEYBOARD ROUTINE WOR~SPACE 
l<EYBOARD BUFFER FEF'3 f<YBUF EOU 

FF::::::: CLKWP Er~iu 

FF7:3 COMRG E@_I 

FF58 MAJ NF:G EC!U 

* * XOP DEFINITIONS 
* DXOF' READ. 11 

DXOP WRIT, 14 
DXOP HEXI ,9 
DXOP HEXO. 10 

* 
* ENTRY POINT 
* 

02EO USER~:T LWPI CU::WP 
FF:38 
04C1 CLR 1 
0207 LI 7,Cl<PARM 
OOBC"' 
0208 LI 8,5 
0005 
0209 LI 9,CU<WP+4 
FF3C 
2F97 LOOP1 WRIT *7 
2E40 HEX! 0 
004A·' DATA NEXT.ERROR 
0086 -' 
0420 NEXT BLWP @DECHEX 
020A ·' 

REAL-TIME CLOCK WORKSPACE 
TRANSIENT ROUTINE COMMON WOR~S 
MAIN REGS FOR THIS ROUTINE 

READ ONE CHARACTER 
WRITE A :3TRING 
HEX # INPUT 
HEX tt OUTPUT 

CLOCK REGS FOR INITIALIZATION 

CLEAR FOR DECIMAL TO HEX ROUTI 
PROMPT ME::::SAIJES 

FIVE PROMPTS 

REGISTER 2 ADDRESS 

PROMPT USER FOR TIME VALUE 
GET INPUT 
NULL, ERROR RTN ADR 

DECIMAL CHARS TO BINARY 

Figure 5-16. Example Program Using Timer Interrupts 3 And 4 (Sheet 2 of 12) 

5-39 



TEf;T TXMIRA 936227 ** 

00:37 004E CE40 
oo:=::=: 0050 2F AO 

0052 0100-· 
0089 0054 0227 

0056 oooc 
0090 0058 0608 
0091 005A 1(:.F:3 
0092 005C 2F97 
(>1)9·3 005E 2EC9 
0094 0060 2FAO 

0062 0100 ·' 
0095 0064 0200 

0066 249F 
0096 (>(>(:.:::: 04 20 

006A 0104 ... 
0097 006C 0201 

006E 0005 
009:::: 0070 02EO 

0072 FF58 
009';-J 0074 0420 

007 6 01 ::H ·" 
0100 0078 C820 WAIT 

007A FFt:::: 
007C FF18 

0101 007E 1 ::::FC 
0 1 02 00:30 :3:320 

0082 FEF3 
00:34 OOFE ". 

01 o:::: 00:3(:. 1305 
0104 (H):3:3 2FAO 

oo::::A o 1 oo ·" 
0105 oo:=:c 2F AO 

008E FEF3 
01 06 0090 1 OF:::: 
0107 0092 0207 TIME 

0094 OOBC ". 
01 o:::: 0091.:. 020:3 

0098 0005 
0109 009A 0209 

OO'?C FF3C 

MOV O, •·::1+ 
\.JRIT @CRLF 

AI 7 , 12 

DEC .-. 
·=-

,.JNE LOOF' 1 
WRIT *7 
READ 9 
WRIT @CRLF 

LI 0 ,9375 

BLWP @Tl MEO 1 

LI 1, 5 

LWP I MA I NR1J 

BLWP @t:'.YINIT 

MOV @KYBDWP,@KYBDWP 

.JEQ ~JAI T 
C @l<YBUF,eTl 

.JEC! TIME 
l.JRI T @CRLF 

\.IRI T @t<YBUF 

.JMP \.JA IT 
LI 7, Cl<:F'ARM 

LI 

LI ?, cu:::wP+4 

0110 009E 2F97 LOOP2 WRIT *7 
0 11 1 OOAO C039 MOV •9+ ,0 
0112 OOA2 0420 BLWP @HEXDEr 

OOA4 0252 ·' 
011 :::: OOA6 2E80 
0114 OOA::: 2F~O 

OOAA 0100 " 
0115 OOAC 0227 

OOAE OOOC 
011 (:. OOBO 0608 
0117 0082 16F5 
0118 0084 10El 
0119 OOB6 2FAO ERROR 

OOBS 0100 ·' 

HEXO 0 
WRIT @CRLF 

AI 7,12 

DEC ::;: 
.JNE LOOP 2 
.JMP l-Jr\ IT 
WRIT @CRLF 

PAGE OOO:::: 

PUT VllLUE IN CLOCt< REG I STER·:; 
DO CARRIAGE RETURN I LINE FEED 

NEXT PROMPT IN TABLE 

ONE LE::;::; TO 00 
GO Bnc~ IF NOT DONE 
READY, GET SET. GO ! 
USER RESPONSE ST11RT3 CLOCI< 
NEW LINE 

ONE-FIFTH ::=:ECOND I NTERVAL:3 

::;;ET TIMER 

INTERRUPTS I SECOND 

NOW USE THIS ROUTINE ' S REGS 

STnRT SCANNING KEYBOnRD 

LOO~ AT LINE FLAG 

NOT COMPLETE LINE YET 
TI ME REC!UE::::T? 

GO PRINT REAL TIME 
FINJ ·:;H LINE 

·:.PI LL THE BUFFEF: 

WAIT FOR MORE TYPED STUFF 
PROMPT :::> TR I NG·::: r-!Clt·J HEAD I Ni:;:;:: 

-ti OF ITEM::; 

CLOCK REGISTERS 2,3,4,5,(:. 

PRINT HEADINC; 
GET TIME PARM FRnM CLOCK 
CONVERT BINARY TO DECIMAL 

PRINT TIME 
FINJ·::H LINE 

NE XT HE?lDING 

ONE LE·:;~; TO GO 
GO BACK IF NOT DOt·IE 
DONE, GO \.Jr\ IT 
DO CR I LF 

Figure 5-16. Example Program Using Timer Interrupts 3 and 4 (Sheet 3 of 12) 

5-40 



TE:::n TX MIRA 936227 ** ():=!: 05: :22 122 17:=: F'()GE 000'1 

01 20 OOBA 1oc-;: ._IMF' LOCtF't 
0121 * 0122 * [IATA CON:=:T ANT':: 
012:3 * 
0124 OOBC 5 :3 CKF'ARM TEXT ' ·::ECOND3 ~ 

" 0125 OOC7 00 BYTE (I 

0126 OOC8 4[1 TEXT "' MINUTE ... 

0127 0003 (le) BYTE 0 
0128 (10[14 4c· ·-· TEXT ·' HOUR 
0129 OODF 00 BYTE 0 
0130 OOEO 44 TEXT .·· D()Y NUMBER 
0131 OOEB 00 BYTE 0 
01 ::::2 OOEC ~9 TEXT ··' YEAR ·' 

013:;: OOF7 00 BYTE 0 
0134 OOFE: 47 TEXT ·' (;(I °7' 

,, 

0135 OOFD 00 BYTE 0 
0136 OOFE 54 TI TEXT ' Tl ,. 
01:37 0100 OD CRLF BYTE >O, ) A, O 

0101 OA 
0102 00 

Figure 5-16. Example Program Using Timer Interrupts 3 and 4 (Sheet 4 of 12) 

5-41 



0139 
0140 
0141 
0142 
0143 
0144 
0145 
0146 
0147 
0148 0104 

0106 
0149 o 1 or::: 

010A 
0150 010C 
0151 OtOE 

0110 
0152 0112 
0153 0114 

01 l.6 
0154 0118 
0155 01 lA 
015{:. 011C 
0157 011E 

0120 
015:::: 0122 

TXMIRA 936227 ** o::::: 05: 22 122/78 PAGE 0005 

FF7:=: 
o 1 oa ··· 
o::::oo 
0000 
C25D 
020C 
0100 
OA19 
0269 
0001 
3 ::::c:·? 
lEOO 
l DO:~: 

o::::oo 
0004 
o::::::::o 

·-----------------------------------------------------------
* TMS 9901 TIMER SET ROUTINE 
* THI S ROUTINE SETS THE INTERVAL TIMER ON THE TMSQ901 
* WITH A VALUE PASSED BY THE CALLING PROGRAM. THE 
* VALUE PASSED IS SIMPLY AN INTEGER COUNT OF THE 
* NUMBER OF 21.333 MICROSECOND PERIODS DESIRED. THI S 
* ROUTINE TAKES CARE OF LOADING THE TIMER REGI STER 
* PROPERLY, AND ENABLING THE TIMER INTERRUPT. 
·-----------------------------------------------------------
TI ME01 DATA >FF78.ENT01 

ENTOl LIM! 0 

MOV •1::::, 9 
LI 12, :>0100 

SLA 9, 1 
ORI 9, 1 

LDCR 9 , 15 
:=:BZ 0 
:=:Bo :: 
LIM! 4 

RTWP 

TUR~ OFF INTERRUPTS 

GET TIMER VALUE 
ADDRE:3S 9901 

SHIFT CLOCK COUNT 
:3ET CLOCK MODE 

:=:TART CLOCI< 
INTERRUPT MODE 
ENABLE I NT 3 REG! MA :=.f : 
TURN INTERRUPTS BACK ON 

RETURN TO CALLER 

Figure 5-16. Example Program Using Timer Interrupts 3 and 4 (Sheet 5 of 12) 

5-42 



TEST 

0160 
016 1 
0162 
0163 
0164 
0165 
0166 
0167 012~ 

0126 
0168 0128 

012A 
0169 012C 
0170 0 12E 
0171 0130 

0132 
0172 0134 
0173 0136 
0174 0138 
0175 013A 
0176 013C 
0177 013E 
0178 0140 
0179 0142 

0144 
0180 0146 

TXMIRA 936227 ** 122/ 78 PAGE 0006 

FF78 
0128 ~ 

0300 
0000 
C25D 
ObC9 
020C 
0080 
!DOD 
lEOE 
3209 
1Dl4 
OAlC 
1EOO 
1D04 
0300 
0004 
0380 

*-----------------·------------------------------------------
* TMS 9902 INTERVAL TIMER SET ROUTINE 
* THIS PROGRnM SETS THE INTERVAL TINER OF THE TMS 990~ 
* USING THE VALUE PASSED BY THE CALLING PROGRnM. 
* THE PROGRAM LOADS THE VALUE PROPERLY nND ENnBLES 
* THE APPROPRIATE INTERRUPT . 
*-----------------------------------------------------------
TIME02 DATA >FF78.ENT02 

ENT02 LIMI 0 

MOV *13.9 
SWPB Q 

LI 12, ) 0080 

SBO 13 
SBZ 14 
LDCR 9,8 
SBO 20 
SLA 12 . 1 
SBZ 0 
SW 4 
LIMI 4 

RTWP 

CUT OFF INTERRUPTS 

GET TIMER VnLUE 
PUT IN LEFT BYTE FOR LDCR 
POINT TO 9902 

SET LD IR TO LOAD VALUE 
RESET LDCTRL, BYPASS C0NTROL R 
LOAD TIMER, BEGIN COUNT 
SET TIMENB FOR INTERRUPT 
POINT TO 9901 
SET INTERRUPT MODE 
ENABLE INT 4 MASK 
GIVE BACK INTERRUPTS 

RETURN 

Figure 5-16 . Example Program Using Timer Interrupts 3 and 4 (Sheet 6 of 12) 

5- 43 



TEST 

0182 
0183 
0184 
0185 
0186 
0187 
0188 
0189 
0190 
0191 
0192 
0193 
0194 

0195 

0196 
0197 
0198 
0199 
0200 
0201 

0202 
0203 

0204 
0205 
0206 
0207 
0208 

0209 
02 10 
02 11 
02 12 
0213 

02 14 
02 15 
02 16 
02 17 

0218 
02 19 

0148 
014A 
014C 
014E 
0150 
0152 
0154 
0 156 

0158 
015A 
015C 
015E 
0 160 
0162 

0 164 
0166 
0 168 
0 16A 
0 16C 

0 16E 
0 170 
0172 
0 17 4 
0 176 

0 178 
0 17A 
0 17C 
0 17E 

0 180 
0 182 

TX MI RA 936227 ** 08 : 05 : 22 122/78 PAGE 0007 

FF38 
014C~ 

020C 
0 100 
lEOO 
1D03 
0601 
1615 

0201 
0005 
0582 
0282 
003C 
160F 

04C2 
0583 
0283 
003C 
160A 

04C3 
0584 
0284 
0018 
1605 

0585 
0285 
0 16E 
1601 

0586 
0380 

*------------------------------------------------------------
* TMS 9901 REAL TIME CLOCK ROUTINE 
* THIS ROUTINE I S ACTIVATED WHEN THE TMS 9901 

* 
* 
* 
* 

INTERV~L TIMER COUNTS DOWN TO ZERO, cnusING 
INTERRUPT 3 . THI S ROUTINE COUNTS THE NUMBER 
OF ONE-FIFTH SECOND INTERVALS OCCURRING AND 
UPDnTES THE nPPROPRIATE COUNTER. AT THE END 

* OF A SECOND, THE MINUTE COUNTER IS CHECVED, 
* AND UPDATED IF NECESSARY . THI S PROCEDURE IS 
* REPEATED FOR EnCH SUCCESSIVELY LARGER TIME 
* UNIT, UP TO A YEAR. LEAP YEARS DON ' T COUNT. 
·-----------------------------------------------------------
INT3VC DATA CLKWP,IN3PC 

IN3PC LI 12, >0100 

SBZ 0 
SBO ~ 

~ 

DEC 1 
JNE RETURN 

* NEW SECOND 
LI 1.5 

I NC ~ 
k 

CI 2.60 

J~ RETURN 

* NEW MI NUTE 
CLR ~ 

L 

INC 3 
CI 3.60 

JNE RE TURN 

* NEW HOUR 
CLR ~ 

~ 

INC 4 
CI 4 ,24 

JNE RETURN 

* ~w DAY 
INC c 

~ 

CI 5.366 

JNE RETURN 

* NEW YEAR 
INC 6 

RETURN RTWP 

POINT TO 9901 

INTERRUPT MODE 
ACKNOWLEDGE INTERRUPT 
DOCK FRACTION COUNTER 
NOT DONE WITH A SECOND YET 

NEW SECOND COUNTDOWN 

AD D ONE SECOND TO CLOCK 
60 SECONDS YET? 

NO, GO RETURN 

NEW MINUTE: CLEAR SECONDS 
ADD ONE MINUTE 
60 MINUTES YET? 

NO, RETURN 

NEW HOUR : CLEAR MINUTES 
ADD ONE HOUR 
MIDN IGHT YET? 

NO 

ADD ONE DAY 
END OF YEAR? 

NO , RETURN 

Figure 5-16. Example Program Using Timer Interrupts 3 and 4 (Sheet 7 of 12) 

5-44 



TEST TXMIRA 936227 ** 08:05:22 122/ 78 PAGE 0008 

0223 *------------------------------------------------------------
0224 * KEYBOARD INITIALIZATION ROUTINE 
o~~e 
~'~ * THIS ROUTINE INITIALIZES THE WORK AREA IJSED BY THE 

0226 * KEYBOARD SCANNING ROUTINE WHEN THE TMS 9902 TIMER 
0227 * TIMES OUT. THE TMS 9902 TIMER IS DEDICATED TO TIMING 
0228 * THE INTERVAL BETWEEN KEYBOARD SCANS. IT IS SET 
0229 * IN THIS ROUTINE, AND THE KEYBOARD CHARACTER BUFFER 
0230 * . IS CLEARED OUT, AS WELL AS THE APPROPRIATE FLAGS RESE 
0231 *-----------------------------------------------------------
0232 0184 FF18 KYI NIT DATA KYBDWP,KYENT 

0186 0138 ' 
0233 0188 0209 KYE NT LI 9,37 # WORDS IN BUFFER 

018A 0025 
0234 OlSC 0208 LI 8.KYBUF KEYBOARD INPUT BUFFER 

018E FEF3 
0235 0190 04F8 LOOP CLR •8+ WIPE TWO BYTES OUT 
0236 0192 0609 DEC 9 # OF WORDS LEFT 
0237 0194 16FD JNE LOOP GO BACK 
0238 0196 04C2 CLR 2 CLEAR INDEX PTR: NEW LINE 
0239 0198 04C3 CLR ~ 

~ CLEAR STROBE FLAG 
0240 019A 04CO c~ 0 CL EAR NEW-LINE FL AG 
0241 019C 04Cl CLR 1 CLEAR DATA AREA 
0242 01 9 E 0200 LI 0.208 75 SCANS I SECOND 

OlAO OODO 
0243 01A2 0420 BLWP @TIME02 GO START TIMER 

01A4 0124 ' 
0244 01A6 0380 RTWP DONE 

Figure 5-16. Example Program Using Timer Interrupts 3 and 4 (Sheet 8 of 12) 

5-45 



TE·:.T TXMIRA 936227 *~ 

<Y.? 46 
02'17 

o 211 ·~1 
1) 2:.;o 
(l :::r:. 1 

() ·~··5 ·~: 

0254 
o .. -~55 
')2r_:i(:, 

n2s:=: 
I) ::::5·::-1 
o:.::·t'.:.o 
026 1 
0262 
n.:-:63 
O.::"t'.:Jl 
021~.5 

(1.?6(:. 
0267 
0.26:.:: OlN:: FFl:.:: 

01.AA ntAC 
() ;2(:::1 

r)270 0 1AC o·:::oc 
•) lAE o o:::::ci 

t) ',27 1 0180 1[114 
o.-:7:::: 
i)27:~: 0 1 B:.::· 020C 

01B4 0 120 
( 1274 018(:. coc:::: 
0275 01 B:.:: l ·:::011-
027(:. OlBA l FO:.:: 
0277 01 BC 16 17 
027:.:: 01BE 04C:;: 
0:::79 OlCO 1(> 1 5 
c12:.::o 
02:::::i o 1 c~:: 1 FOE: 
(>2::::2 01C4 1:::: 1 :::: 
0 2:.:::::: 0 1C6 070:::: 
02:.::4 0 1 c:::: ::::t.01 
<)2:=:5 OlCA 024 1 

01CC 7FOO 
02:.::6 01CE 02::: 1 

01 DO o:=:oo 
02:::7 01[12 1 ::::OD 
02:: ::;:: 01[14 02::: 1 

0 1 [I(:. 7 FOO 
')2::::9 0 1 [I:.:: 1::.::oc 
i:r2·:11) r) 1 DA [!:::::::: 1 

0 1 DC FEF ::: 
(1 :~ ·:11 0 1 DE 0~~::::2 

0292 01EO 0 2:.::2 

-«- ------ ---- -- -· --·----- ---···--- -------------------- --------- ------------
* ~EYBOARD scnNNING ROUT INE 
* TH I ·::: ROUT J NF. ·::.cr,w:: {\N ~r::::c 1 I - FNC Ctf lf-TI f L YBOtiF'fl 
'I- CONNECTED ['lRECfLY T1·1 THE F'r-'1Rr'tLLEI_ l / r) PnR T , F'·1. 
• 1 / 0 [-11T':C: 0-7 r'1RE f\::::CII L1f\T{L /:11\ifl £<1T ::: 13 r:l' l 
• F DGE-TR IGGERED !HIGH- TO-LOW> STROBE . 
.0. TH I·.:; F:nUT l l\!E l ·:.: ENTEREfl ~JHFN -r HE I Nl EF:Vfll. TI nER 
,~ HI THE TM·~: ·;1·;11y;:: TI ME·.:: OUT. THE I N TE'1;·p1JF'T I :: 
* f\Oo'NCtl0JLEDC£[1 , MW THE ':::Tr'tTE. (1F THE ·.:.TROBE rL {';1:, 

* 
* 
* 

1·::: ::::EN·:;E[I. 1F F·F:EVIOU:.::LY Il'H-lCTIVE r,r-,m f\J(il.J :'1CTI\IE 
f\ NEl-J CH(IR()CTER f-1()•;:: {\F'F'Er'tRED ON THE I / 0 F'CIF'T, 
l.JHlCH 1:::. F:EAD IMMEDI ATELY. IF THE ·:nw1BE 1·:::. 

* INf\CTIVF, OR I F PREVIOUSLY ACTIVE nND STILL nCTIVE, 
* THEN rHE I / 0 p1)RT r ::. IC·NORED . WHEN A NEl..-1 CHr1R(1CTER 
* I ::: F:EA[I, THE ';::TROBE FLJ.\C, I·;:: ·:.ET, {)Nlt I·~: RE·.:.!:· T 
* ONLY AFTER THE STROBE GO~S INACTI VE . 
* r H{)RArTERS ARF COLLECTED IN THE VFYBOnRfl BUFFER 
* AND l·JHEN A C('IF:R I Af'1E RETURN I ·;:. I NF'IJ r , (1R l·IHEN 
* THF BUFF~R JS FULL , THE NEW- LINE F l nG IS SET. 
3 If 1S ASSUMED THERE IS~ ROUTINE SOMEWHFRE 
~ l>JH J CH I ~-l=· r'EC T':. THE Nr::W--l I NE FL()C;' (\N[I u·::E:::: 
4 THE COLLEC TED DATA FOR SOME PURPOSE . 
INT4VC [!{)TA t YBDWP ,IN~F'C 

* 
I N41-'C 

..,. 

* 
·::CAl\l 

f'.)DDF:E·:.·~: THE TM·.:: 
I_ I 12, :. •)1):::0 

TUF\r·I OFF I f\HERF\l IF'T 
PO I NT TO ·;:-r;:-10::;· 

SBO 2n RESET INTERRUPT 
ADDF:E·.:::;. THE TM:.:. ·-;·:10 1, AND POLL THE t EYBOrcF'D ·::T1',Tll·: . 
L I 1:::: I } (l 1 :20 F'{IFi(\LLEL I I (I ·:1-=-•o 1 

MDV 3 1 3 CHECK STROBE FLA~ 
JEQ SCAN RESET : SCAN ~EYBOr'tRD 

TB 8 LOQ~ {)T STROBE 
.JNE GU BAO ·:.TI LL LOW FROM LA:.:.T ( H()R 
CLR 3 HIGH: flONE WITH OLD CHnR 
~MP GOBACK SINCE NO CHAR , RETURN 
STROBE FLAG WAS RE SET, SO SCAN KEYBOARD 
TB 8 LOOK AT STROBE 
JEQ GOBnCK HIGH: NO CHAR YET 
SETO 3 SET STROBE FLnG, NEW CHAR 
STCR 1. 8 GRAB BYTE FROM KEYBOARD 
ANDI 1 ,)7FOO STR1P PARITY BIT 

.JEQ B·:: 
C I 1. > 7 FOO 

.JEQ [1EL 
MOVB 1, @VYBIJF(2) 

INC ·-:· 
CI 2.72 

BAC~.:: ·:::PACE? 

C;O [10 BAC:t::S PACE 
DELETE LI NE? 

i30 [1ELETE LI NE 
PUT CHAR IN BUFFER 

CHnR PTR TO NXT LOC 
END OF BUFFER? 

Figure 5-16. Example Program Using Timer Interrupts 3 and 4 (Sheet 9 of 12) 

5-46 



TXMIRA 936227 ** o:=:: C>5: 22 122/78 F'AOE 00 10 

0 1E2 004:=: 
029~: 01E4 1 ~:0::: .JEO LINE YES, FORGE LINE DONE 
02'?4 01E6 0281 CI 1 I >ODOO Cr'.'.\RRIAGE RETURN -;. 

01 Ef:: 0000 
0295 OlEA 1 :~:0:3 ,.JEC! LINEX YE'.=:, SET END-OF-LINE 
02'?6 OlEC 0:380 GO BACK RHJF' DONE 
0297 * :::F'ECI AL CHARACTER HllN[tL I NC. ROUTINE'.3 
02·;13 OlEE 0602 B·~ ·=- DEC 2 MOVE INDEX BACf< 
029':1 OlFO 1 OFD ._IMF' GOBACV 
0300 01F2 04C2 DEL CLR .-, .... CLEAR INDEX 
0301 01F4 10C6 .._IMF' RETURN 
0302 * BUFFER OVERFLOW HANDLING ROUTINE 
0303 01F&. D8AO LINE MOVB @CRX,@KYBUFC2> FCtRCE <CR> 

01F:3 0208 '" 
OlFA FEF:3 

0304 OlFC (>582 LINEX INC 2 BUMP POINTER FOR NULL BYTE 
(1:305 OlFE [l:=:AO MOVB @CRX+1,@KYBUF(2) NULL OIJT END OF LINE 

0200 020~1 -' 

0202 FEF3 
0306 0204 0700 CR SETO 0 TURN LINE FLA[; (tN 
o:~:07 020(:. 108[1 ._IMF' F:ETURN 
03(Jf:: 020::: ODOO CRX DATA >ODOO 

Figure 5-16. Example Program Using Timer Interrupts 3 and 4 (Sheet 10 of 12) 

5-47 



TEST TXMIRA 936227 ** os:os:22 122/78 PAGE 0011 

0310 
0311 
0312 
0313 020A FF78 

020C 020E ·' 
0314 020E C03D 
0315 0210 COSD 
0316 0212 0640 
0317 0214 0202 

0216 0004 
0318 0218 0203 

021A 0243 " 
0319 021C 04C4 
0320 021E C173 
0321 0220 C180 
0322 0222 0246 

0224 OOOF 
0323 0226 C186 
0324 0228 1303 
0325 022A A105 
0 :326 022C 0606 
0327 022E 16FD 
0323 0230 0940 
0329 0232 0602 
0330 0234 16F4 
0331 oz::6 0241 

023:3 OOOF 
0332 023A 1304 
0333 023C C 15:3 
0334 023E A105 
0335 0240 0601 
0336 0242 16FD 
0337 0244 C744 
0338 0246 0380 
0339 0248 0001 

024A OOOA 
024C 0064 
024E 03E8 
0250 2710 

*-----------------------------------------------------------
* DECIMAL TO HEXADECIMAL CONVERSION ROUTINE 
*-----------------------------------------------------------
DECHEX DATA >FF78,DECH1 

DECH1 MOV 
MOV 
DECT 
LI 

LI 

*13+,o 
•13, 1 
1 ':• ~· 

2.4 

3,MULT 

CLR 4 
DECH2 MOV •3+,5 

MOV 0,6 
ANDI 6,}F 

DECH3 

DECH4 

DECH5 

DECH6 

MOV 
.JEG! 
A 
DEC 
... INE 
~3RL 

DEC 
.JNE 
ANDI 

6,6 
DECH4 
5~4 

6 
DECH3 
0.4 

DECH2 
1 » F 

DECH6 
•3.5 
5,4 
1 
DECH5 
4.•13 

GET 4 LSD "S 
GET l MSD 
RESTORE OLD WP 
SET UP COUNTER 

ADDRESS OF MULTIPLY TABLE 

CLEAR SUM 
GET MULTIPLIER 
COPY OVER INPUT 
STRIP WANTED DIGIT 

IS NEW DIGIT ZERO ? 
YES, SKIP ADDITIONS 
ADD INTO SUM 
DECREMENT COUNTER 
IF NOT DONE, JUMP BACK 
MOVE NEXT DIGIT OVER 
DECREMENT DIGIT COUNTER 
IF NOT ALL DIGITS , JUMP 
LOOK AT MSD ONLY 

IF ZERO, EX IT 
GET 10 K VALUE 
ADD IT ON 
DECREMENT THE COUNTER 
IF NOT ZERO, JUMP 
PUT DATA IN OLD REGS. 
RETURN 

MULT 

,.JEQ 
MOV 
A 
DEC 
,JNE 
MOV 
RTWP 
DATA 1.10.100,1000. 10000 

Figure 5-16 . Example Program Using Timer Interrupts 3 and 4 (Sheet 11 of 12) 

5-48 



r 

• 

TEST TXMIRA 936227 ** 122/78 PAGE 001..2 

0:341 
0342 
0:343 
0344 0252 FF78 

0254 0256 ·' 
0345 0256 COBD 
0346 0258 04CO 
0347 025A 0204 

025C 0004 
0348 025E 0205 

0260 OOOA 
0349 0262 OB40 
0:350 0264 C082 
0351 0266 130C 
0352 0268 COC2 
0353 02t.A 04C2 
0:354 026C 3C85 
0355 026E E003 
0:356 0270 0604 
0357 0272 16F7 
0358 0274 0840 
0359 027f:.. (:042 
0360 0278 C741 
0361 027A 064[1 
0362 027C C740 
0363 027E 0380 
0364 0280 0840 
0365 0282 0604 
0366 0284 16FD 
0367 02E:6 10F7 
0 :368 
0369 
0370 
0371 

0000 ERRORS 

*-----------------------------------------------------------
* HEXADECIMAL TO DECIMAL CONVERSION ROUTINE 
*-----------------------------------------------------------
HEXDEC DATA >FF78.HEXD1 

HEXD1 MOV *13+,2 
CLR 0 
LI 4,4 

LI 5, 1 (I 

HEXD2 SRC 0,4 
MOV 2.2 
,.JEQ HEXD3 
MOV 2 .3 
CLR 2 
DIV 5.2 
soc ~:. 0 
DEC 4 
.JNE HEXD2 
SRC 0,4 

HEXD4 MOV 2.1 
MOV 1.*13 
DECT 13 
MOV 01*13 
RTWP 

HEXD3 SRC 0,4 
DEC 4 

* 

.JNE HEX D3 
'-IMP HEXD4 

* PROGRAM END 

* END 

GET HEX VALUE 
CLEAR RETURN VALUE 
~;ET UP COUNTER 

DIVISOR IS 10 

MAKE ROOM FOR NEW DATA 
IS QUOTIENT > 0 ? 
I F NO I .JUMP 
SET UP FOR NEXT DIVIDE 
CLEAR UPPER HALF OF DOUBLEWORD 
DIVIDE BY 10 
PUT NEW DATA IN 0 
DECREMENT COUNTER 
IF NOT DONE, JUMP BACK 
MOVE DATA OVER 1 NIBBLE 
SET UP MSD 
PUT DATA IN CALLER REG.1 
OLD WP ADDRESS 
PUT DATA IN CALLER REG.O 
EXIT 
MOVE DATA OVER 
DECREMENT COUNTER 
IF NOT DONE, CONTINUE SHIFTING 
GO XFER DATA AND EXIT 

Figure 5-16. Example Program Using Timer Interrupts 3 and 4 (Sheet 12 of 12) 

5-49 



5-10 MOVE BLOCK FOLLOWING PASSING OF PARAMETERS 
The coding in Figure 5-17 is an example of a called subroutine that will move a block 
of data from one location to another. The three parameters of (1) move-from address, 
(2) move-to address, and (3) length of block are provided to the subrout i ne either 
through registers 0 to 2, or by the three words following the calling program's BLWP 
insruction, or by a combination of both. The block move subroutine first interrogates 
the words following the calling program ' s BLWP instruction; if a zero is found, it 
looks in a register for the parameter. In Figure 5-17, the calling program provides 
the move-from and block length parameters in registers, and the move-to parameter in 
the second word following the BLWP instruction. 

LI RO,>F100 MOVE -FROM ADDRESS 
LI R2, 125 MOVE 125 BYTES 
BLWP @MVBLK BRANCH TO SUBROUTINE 
DATA 0 MOVE-FROM ADDR IN RO 
DATA >-F200 MOVE-TO ADDRESS 
DATA 0 BYTE COUNT IN R2 

(a) Calling Program 

MVBLK DATA .:>FF90,MVBLK1 WP, PC OF SUBROUTINE 
MVBLK1 MOV 13' 12 SAVE WP 

MOV * 14+' 1 GET "FROM" ADR 
JNE MVBLK2 NON-ZERO: PARM IN-LINE 
MOV * 13+' 1 PICK UP FROM REG INSTEAD 

MVBLK2 MOV *14+,2 GET "TO" ADR 
JNE MVBLK3 PARM IN IN-LINE CODE 
MOV *13+,2 GET FROM REGS 

MVBLK3 MOV *14+,3 GET LENGTH 
JNE MVBLK4 IN-LINE PARM 
MOV *13,3 GET FROM REGS 

MVBLK4 MOVB *1+,*2+ MOVE BYTE 
DEC 3 ONE LESS TO GO 
JNE MVBLK4 NOT DONE YET 
MOV 12' 13 RESTORE WP 
RTWP RETURN TO CALLING PROGRAM 

(b) Move Block Subroutine 

Figure 5-17 . Move Block of Bytes Example Subroutine 

5-50 



.. 

5.11 BLOCK COMPARE SUBROUTINE 
Figure 5-18 shows a sample block-compare subroutine which accepts three parameters 
from the calling program, in the same manner as the block-move subroutine (paragraph 
5.10.1). This compare subroutine inspects two strings, comparing successive bytes 
until an unequal byte is found or until the specified string length is exhausted. The 
Status Register bits in register 15 are updated accordingly, and the subroutine 
returns to the calling routine with the altered status bits, which may be used 
immediately for conditional jumps. 

The sample calling program is at the top of Figure 5-18. Note that the conditional 
jumps follow directly after the calling code, so the calling program simply compares 
(through the subroutine) and jumps, in the normal programming manner. 

LI RO,>F100 FIRST BLOCK START ADDRESS 
LI R1 ,>F200 SECOND BLOCK START ADDRESS 
BLWP @CMBLK BRANCH TO SUBROUTINE 
DATA 0 START ADDR. IN RO (1ST BLOCK) 
DATA 0 START ADDR. IN R1 (2ND BLOCK) 
DATA 100 COMPARE 100 BYTES 
JLE $+10 IF LESS THAN OR EQUAL, JUMP 
JGT IF GREATER THAN, JUMP 

(a) Calling Program 

CMBLK DATA >FF90,CMBLK1 WP, PC OF SUBROUTINE 
CMBLK1 MOV 13' 12 SAVE WP 

MOV * 14+' 1 GET "A" ADR 
JNE CMBLK2 
MOV * 13+' 1 GET IN CALLER REG 

CMBLK2 MOV *14+,2 GET "B" ADDR 
JNE CMBLK3 
MOV *13+,2 GET FROM IN CALLER REG 

CMBLK3 MOV *14+,3 GET LENGTH 
JNE CMBLK4 
MOV *13,3 GET FROM REG 

CMBLK4 CB *1+,*2+ LOOK AT STRINGS 
JNE CMBLK5 FOUND UNEQUAL 
DEC 3 ONE LESS BYTE 
JNE CMBLK4 STILL MORE TO LOOK AT 

CMBLK5 STST 15 STORE FINAL STATUS 
RTWP RETURN TO CALLING PROGRAM 

(b) Compare Block Subroutine 

Figure 5-18. Compare Blocks of Bytes Example Subroutine 

5-51 



5.12 UNIT ID DIP-SWITCH 
The Unit ID switch is a very versatile piece of hardware. The practical uses of this 
small device are limited only by the imagination. The proper way to read the switch 
settings is shown in Figure 5-19 . 

One example use of the switch is in a multidrop environment where each board on the 
communications line is assigned an ID number through the settings on the switch. The 
same software can be used in all the boards in the system, instead of having to 
maintain up to 32 separate copies, each unique only in an I.D . field. Figure 5-20 
shows an example program segment in a communications routine. 

Another example for use is in systems configuration. Whereas the main communications 
port (P2) is designed for use specifically for a terminal, the auxiliary 
communications port (P3) is a general purpose RS-232 port and can be connected to 
modems, serial line printers, device interfaces s uch as cassette or floppy disk 
controllers, etc., as well as terminals. The switch can be set to indicate the nature 
and baud rate of the device attached to the remote port. Figure 5-21 shows a program 
segment example. 

5.13 CRU ADDRESSABLE LED 
The light-emitting diode (LED ) DS1 on the TM 990/101M is addressable through the CRU 
at software base address 0000 15. Writing a zero t o the LED turns it on and writing a 
one turns it off. Figure 5-22 shows a sample routine to blink the LED on and off once 
a second, using the TMS 9901 timer. The LED is on for one-quarter second and off for 
three-quarters of a second. 

5.14 CRU ADDRESSABLE LED 
The TIBUG XOP routines (XOP 8 to 14) are written to accomplish input and output 
through a TMS 9902. When the TIBUG monitor is entered, the address for all 1/0 
is directed to the main TMS 9902 (through connector P2). Any time a user program 
branches back into TIBUG at address 0080 15 or when a RESET function is activated, the 
CRU address is set to the main TMS 9902. However, a user program may use all of the 
above-mentioned XOP calls to program any TMS 9902 in the system by first moving the 
software base address of the desired TMS 9902 into R12 of the 1/0 routines; this 
register is located at M.A. FFDEi6· In other words, move the software base address 
for the TMS 9902 (board addresses shown in Table 5-3) into memory address FFDE 15. 
Figure 5-23 is an example where both serial I/O ports of the TM 990/101M are activated 
for conversation to each other. Two terminals are assumed to be connected, one to each 
port, and the operators may type messages to each other. This principle can be 
expanded to support any of a number of TMS 9902-controlled serial I/O ports. (A 
variety of custom line interfaces may be used with a TMS 9902.) 

The write character XOP servi·ce routine first ensures that the Request-to-Sent signal 
is active. This signal is not deactivated by TIBUG so that modem users will retain 
their data carrier. If a modem user wishes to drop the data carrier, the affected TMS 
9902 must be addressed by the user program, and then the Request-to-Send signal is 
deactivated through the CHU. 

Only the main TMS 9902, at CHU software base address 0080 15 is initialized by TIBUG; 
other TMS 9902 's in a system must be initialized by the user. Note the f irst portion 
of the example program in Figure 5-23. Part of TIBUG's initialization is to sense the 
baud rate of the attached terminal. If the baud rate is 110, 300, or 12 00 baud, then 
the XOP routine waits 200 milliseconds after transmitting a carriage return. In 
addition, 1200 baud causes every character transmitted to be f ollowed by 25 
milliseconds of delay time . Only at 2400 and 9600 baud are charac ters transmitted 
without delays. 

5-52 

.. 



For 110, 300, and 1200 baud, the monitor ASRFLAG is set to one to cause a wait state 
following writing of a carriage return. If the TIBUG I/O XOP routines are used for 
other I/O ports, the state of the monitor's ASRFLAG will also govern delay loops used 
by the Write Character XOP. The user should then swap out the contents of the ASRFLAG 
(memory address FFF4 16 ) with one of the three values of ASRFLAG as listed in Table 
5-7. 

SWITCH 5 LSB WHEN READ - --. 

~-- SET TO ON , ZERO READ (GROUNDED) 

0 
N 

0 
F 
F 

1 2 3 4 

SET TO OFF . ONE READ--~ 

SWITCH 1 MSB WHEN READ 

NOTE 
If all five switch settings are stored (using CRU), 
switch 1 would be the MSB and switch 5 would be the LSB. 
For example, if switch 1 was set to OFF, and the others 
set to ON, storage of the five settings would be 
represented by 1016 or 100002. Code to store the switch 
contents in register 0 is shown below: 

*READING THE 
CLR 

DIP SWITCH 
RO CLEAR HOLDING AREA 

DIP SWITCH ADDRESS LI 
STCR 

R12 ,>40 
R0,5 SWITCH VALUES IN REGISTER 0 

Figure 5-19. Reading the DIP Switch 

5-53 



~ MULTIDROP SYSTEM WITH DIP SWITCH 
* REGISTER 1 CONTAINS DESIRED ID VALUE 

CLR RO CLEAR HOLDING AREn 
LI R12 .>40 DIP SWITCH ADDRESS 

:::TCF FW, ~_::; 

C RO,Rl 
.JEC! PROCE::: 
BLWP @C LRBUF 

RHJF' 

SWITCH VALUES IN REG. 0 
IS MESSAGE FOR ME? 
YES. GO PROCESS IT 
NO, CL.EAR Bl..IFFEr7\ 

Figure 5-20. Example Code The Check Board ID at DIP Switch 
for Multidrop Environment 

* SYSTEMS CONFIGURATION EXAMPLE 
CLR RO 
LI R1'2, >40 

:3TCR R0,5 
L I Rl ,> 10 

czc Rl , RO 
,.JNE NOTUZD 
~:RL Rl, 1 
czc Rl, RO 
.JEG! TERMNL.. 
:::RL RL 1 
czc R1, RO 
.JEO MODEM 
SRL R1. 1 
czc R1 ,RO 
.JEG! IODEV 
::::RL Rl, 1 
czc F:l, RO 
.JEO PRNTR 
XOP @SYSERR,14 

CLEAR HOLDING AREn 
DI p :;:;i..n TCH CF:IJ rlDDRE::::::: 

SWITCH vnLUES IN REG. 0 
LOAD "1 " BIT FOR t.ir1LL I MG ciJMr:·r, 

I S REMOTE PORT USED? 
NO , ,_l lJMP OUT OF ROIJT I NE 
SET TO >08 FOR CHECK 
ID2: IS TERMIN~L CONNECTED? 
YE::::, I [1:3 , I D4 ., IDS c. BAUD Rr:TE 
NO, SET TO >04 FOR CHECK 
ID3: MODEM CONNECTED? 
YES, ID4, ID5 ~ MODEM TYPE 
NO, SET TO >02 TO CHECK ID~ 

ID4: t/O DEVICE CONTROLLER? 
YES, 105, 1 ~ TAPE, 0 = FLOPPY 
NO , SET TO >01 TO CHECK ID4 
ID5: SERIAL LINE PRINTER? 
YE:::: 
NO, PRINT ERROR MESSAGE 

* BECAUSE WRONG SWITCH SETTINGS 

Figure 5-21. Coding Example to Ascertain System Configuration 
Through DIP Switch Settings 

5-54 



BLINK 

0001 
0002 
0003 
0004 
0005 
00Ct6 
0007 
0008 
0009 
0010 
0011 
0012 
001:3 
0014 
0015 
001~. FCOO 
0017 
0018 FCOO 

FC02 
0019 FC04 

FC06 
0020 FCOE: 

FCOA 
0021 FCOC 
0022 FCOE 

FC10 
0023 FC1 2 
0024 FC14 

FC16 
0025 FCl::'.: 
0026 
0027 FClA 

FClC 
0028 FClE 

FC20 
002'? FC22 

FC24 
0030 FC26 

FC2:3 
00:::: 1 FC2A 

FC2C 
0032 FC2E 
0033 FC:30 
0034 FC:32 
00:35 FC34 
0036 FC36 

FC:3:3 
00::::7 FC::::A 

TXMIRA 936227 ** 16:02:28 121178 PAGE 0001 

02EO 
FFOO 
(:(1(:.0 
OOOE 
0202 
0420 
CC42 
0202 
FDOO 
CC42 
0202 
0380 
C442 

o::::oo 
0000 
020(: 
0 100 
020:::: 
(1:300 
0204 
0:300 
0205 
000:3 
3104 
:30:33 
04CC 
1[100 
o::::oo 
(l(H):3 
lOFF 

I[IT " BLINK ·' 

* * * * * * * * * * * * * * * * THIS PROGRAM SETS UP THE INTERRUPT LINKING AREA AND THE 
* TIMER AT THE TMS 9901 . IT EXECUTES THE TIMER. WHEN THE 
* THE TIMER COUNTS DOWN, AN INTERRUPT IS EXECU TED THROUGH 
* INTERRUPT TRAP 3 WHICH TRANSFERS CONTROL TO THE ISR AT 
* THE BOTTOM OF THIS LISTING. THE CALLING PROGRAM ANU I SR 
* USE THE SAME WORKSPACE C>FFOO>. THIS PROGRAM IS CODED 
* AT ABSOLUTE ADDRESSES USING THE AORG ASSEMBLER DIRECTIVE 
* THUS, IT CAN BE CODED USING THE LINE-BY-LINE ASSEMBLER 
* WITH THE SLASH COMMAND USED INSTEAD OF THE AORG COMMAND. 

* 
* 

* * * 
* CALLING PROGRAM 

* AORG >FCOO 

* * 

** SET UP INT3 LINKING AREA 
LWPI >FFOO 

MOV @} OOOE,1 

LI 2,>0420 

MOV 2,*1+ 
LI 2. >FDOO 

MOV 2,• 1+ 
LI 2, >O:~:::::o 

* * * * * * 

BEGIN CODE AT M.A. >FCOO 

WORKSPACE ADDR <FOR BOTH PGMS> 

INT3 PC VECTOR TO Rl 

PLACE BLWP MACH. CODE IN R2 

MOVE BLWP CODE TO LINK AREA 
nDDRESS OF VECTORS TO ISR 

MOVE VECTOR ADDR TO LIN~ nREA 
PLACE RTWP MACHINE CODE IN R3 

MOV 2,• 1 MOVE RTWP TO LINV AREn 
** LOAD AND EXECUTE TIMER AT TMS 9901 

LIM! 0 DI SABLE INTERRUPTS 

LI 

LI 

LI 

LI 

LDCR 
LDCR 
CLR 
'.380 
LIM! 

,_IMP 

12.>0100 

3, :>0~:00 

4, >o::::oo 

5,, ·3 

4,4 
:3 , 2 
12 
0 
3 

$ 

TMS 9'?01 CRU ADDRESS 

CLOC¥ MODE, COUNT ~ 1 

INTERRUPT MODE, ENnBLE INT3 

INITIALI ZE TIMER COUNTER 

ENABLE INT3 AT 9901 
STnRT CLOCK AT 9901 
POINT TO L. E.D. 
TURN L.E.D. OFF 
ENABLE INT~: AT TM·::~ 9900 

WAIT HERE FOR INTERRUPT 

Figure 5-22. Coding Example to Blink L. E.D. On and OFF (Sheet 1 of 2) 

5-55 



BLINI< 

0039 
0040 
0041 
0042 FDOO 
0043 FDOO 

FD02 
0044 FD04 

FD06 
0045 FD08 

FDOA 
0046 FDOC 
0047 FDOE 

FD 10 
0048 FD12 
0049 FD14 

FD16 

TXMIRA 936227 ** 

* 
* INTERRUPT '=:EF:VI CE ROUTINE 

* AOR(; >FDOO 
FFOO DATA >FFOO, ) FD04 
FD04 
0300 LIM! 0 
0000 
020C LI 12 ,)0100 
0100 
lDO:::: SBO :3 
0209 LI 9, 15625 
3D09 
OA19 SU\ 9, 1 
0269 ORI 9, 1 
0001 

12 1 /7:"3 PnGE (lf)02 

BEGIN CODE nT M.A. >FDOO 
lo-JP , PC OF I 3F: 

DISABLE INTERRUPTS 

TMS 990 1 CRU ADDRESS 

CLEAR INTERRUPT AT 9901 
1/4 SECOND COUNT FOR TMS 990 1 

SHIFT CLOCK COUNT 
:?.ET CLOC~< MODE 

0050 FD18 33(:9 LDCR 9, 15 START CLOCK 
0051 FD1A lEOO SBZ 0 SET INTERRUPT MODE AT 9901 
0052 FD1C 04CC CLR 12 L.E . D. CRU ADDRESS 
0053 FD1E 0605 DEC 5 DECREMENT COUNTER 
0054 ** SET L. E. rf. TO ON OR OFF '=:TfHU'=: 
0055 FD20 C145 MOV 515 
0056 FD22 1606 . JNE >Frc~:o 

0057 FD24 1EOO SBZ (l 

0058 FD2(:. 0205 LI 5, :;: 
FD28 0003 

0059 FD2A 0300 LIMI :3 
FD2C 0003 

0060 FD2E ·03so RTWP 
0061 FD:30 1000 SBO 0 
0(1(:.2 FD32 o::::oo LIMI ·-:-·-· 

FD34 0003 
006:::: FD36 o::::::::o RTWP 
0064 END 

0000 ERROR~: 

NOTE: As an exMcise, the user can load and execute this code: 
( 11 load the machine code values shown in column 3 into 
the memory locations shown in column 2, or (2) reassemble; 
if the Line-By-Line A-'>I ... (LBLAI is used, substitute the 
slash command for the AORG directive and follow the 
DATA and TEXT statement conventions for the LBLA. Ex· 
acute using the E TIBUG command. 

REG . 5 "= ZERO? 
NO, TURN OFF L.E.D . 
YES, TURN ON L.E . D. 
RELOAD INTERRUPT COUNT 

ENABLE I NT:::: 

RETURN TO PROGRAM 
TURN OFF L.E.D 
ENABLE INT3 

RETURN TO PROGRAM 

Figure 5-22 . Coding Example to Blink L.E.D. On and Off (Sheet 2 of 2) 

5-56 



TWOTRM 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
000'? 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
001'? 
0020 
0021 
0022 
002:3 

0024 

0025 
0026 
0027 
0028 

0029 
0030 
0031 
0032 
0033 
0034 
0035 
00:36 
0037 

0038 
003'? 
0040 
0041 
0042 
0043 
0044 
0045 
0046 

0047 
0048 
0049 

0000 
0002 
0004 
0006 

000::: 
OOOA 
oooc 
OOOE 
0010 
0012 
0014 
0016 
0018 
001A 
001C 
001E 
0020 
0022 

0024 
0026 
0028 
002A 
002(: 
002E 
0030 
00:32 
0034 
0036 
0038 

TXMIRA 936227 ** 08:11:39 122/78 PAGE 0001 

02EO 
oocc ·' 
020C 
0180 

1D1F 
1000 
3220 
OOB6·" 
lEO[I 
04CO 
04C2 
1FOF 
13FE 
0580 
1FOF 
16F[I 
0201 
OOA2 ·' 

8C40 
1202 
05C1 
lOFC 
3811 
C051 
0281 
OlAO 
1103 
1 (:.0:3 
0702 

IDT ~ TWOTRM ~ 

*-----------------------------------------------------------* TWO TERMINAL PROGRAM EXAMPLE 
* THIS ROUTINE INITIALIZES THE AUXILIARY I/O PORT 
* OF THE TM990/101M MICROCOMPUTER. BOTH SERIAL 
* PORTS ARE THEN USED IN A CONVERSATIONAL MODE 
* WITH EACH OTHER. THE PROCEDURE IS TO INSPECT 
* THE RECEIVE BUFFER BIT IN THE ADDRESSED TMS9902 
* TO SEE IF A CHARACTER HAS BEEN ASSEMBLED 
* IN THE UART. IF SO, IT IS ECHOED TO THE 
* ORIGINATING TERMINAL, AND THEN TRANSMITTED 
* TO THE OTHER TERMINAL. THEN THE OTHER 
* TERMINAL IS INSPECTED FOR A CHARACTER, ETC. 
* THE POINTS TO NOTE ARE: 
* 1> THE AUXILIARY TMS9902 MUST BE INITIALIZED. 
* 2> THE OLD "ASR"-FLAG MUST BE SAVED, 
* AND A NEW ONE DETERMINED FOR THE 
* NEW TERMINAL <AUXILIARY PORT>. 

* 
* 

3) EVERY WRITE OPERATION CONSISTS OF 
MOVING THE DESIRED ADDRESS TO TIBUG, 

* AND MOVING THE DESIRED "ASR"-FLAG TO TIBUG. 
·-----------------------------------------------------------

* 

T::HSP 

~3PLOOP 

LWP I REGS USE SPARE SPACE AT END OF PROG 

LI 12. >0180 

INITIALIZE AUXILIARY 
SBO 31 
NOP 
LDCR @CTL,:3 

SBZ 13 
CLR 0 
CLR -, ..... 
TB 15 
,.JEQ TS TSP 
INC 0 
TB 15 
._INE SPLOOP 
LI 1. TABLE 

AUXILIARY PORT ADDRESS 

SERIAL PORT 
RESET UART 
RESET TIMING DELAY 
LOAD CONTROL CHARACTER 

BYPASS INTERVAL REGISTER 
BAUD RATE LOOP COUNTER 
ASR FLAG FOR THIS PORT 
LOOI< AT RIN 
WAIT FOR USER TO TYPE SOMETHIN 
UP BAUD LOOP COUNTER 
RIN NOW HAS A SPACE: 
DROP OUT ON A MARK 
BAUD RATE TABLE 

* NOW INSPECT BAUD RATE TABLE FOR A LOOP 
* COUNT WHICH MATCHES, THEN LOAD BAUD RATE. 
BDLOOP f" 0.•1+ LOOK AT ATBLE LOOP COUNT 

.JLE MATCH IF <: OR == WE HAVE A MATCH 
INCT 1 SKIP BAD BAUD RATE, NEXT LOOP 
.JMP BDLOOP LOOK AT NEXT LOOP COUNT 

MATCH LDCR •1. 12 LOAD BAUD RATE CONTROL VALUE 
MOV •1·1 GET VALUE ITSELF 
CI 1,>01AO 1200 BAUD ? 

,JLT HIRATE NO, HIGHER BAUD RATE 
.JNE BEGIN NO, LOWER BAUD RATE 
SETO -, ..... SET LOCAL ASR FLAG 

Figure 5-23. Example Program to Converse Through 
Main and Auxiliary TMS 9902's (Sheet 1 of 3) 

5-57 



TWOTRM TXMIRA 936227 ** 1):3: 11: 39 122/78 PAGE 0002 

0050 00::'.:A 1001 
0051 003C 0582 
0052 
0053 00'.3E C:320 

0040 OOAO·' 
0042 FFOE 

0054 0044 COEO 
0046 FFF4 

0055 004s c::.:02 
004A FFF4 

0056 004C 2F40 
0057 004E 2FAO 

0050 OOB7 ·' 
0058 0052 C820 

0054 OO'?E ·' 
0056 FFDE 

0059 0058 c:::o:.:: 
OOSA FFF4 

0060 005C 2FA'O 
005E 0087 ,. 

0061 
0062 
0063 0060 C320 

0062 009E ·' 
0064 0064 1F15 
0065 0066 1608 
0066 (1(168 c::.:oc 

006A FFDE 
0067 006(: (:803 

006E FFF4 
001S8 0070 2ECO 
006'? 0072 C820 

007 4 OOAO ·' 
0076 FFDE 

0010 oo7s c:=:o2 
007A FFF4 

0071 007C 2FOO 

JMP BEGIN AND PRINT BEGIN MESSAGE 
HIRATE INC 2 MARK NO <CR> DELAY 
* THE AUXILIARY PORT IS NOW UP. PRINT GREETING. 
BEGIN MOV @X180,@XOPCRU AUX. PORT ADR. TO TIBUG 

* 
* LOOP 

MDV @A:=:RFLG, ;::: 

MOV 2,@ASRFLG 

XOP O, 13 
XOP @BGNM:::G , 14 

MOV @XBO . @XOPCRU 

MOV 3,@ASRFLG 

XOP @BGNMSG , 14 

THIS IS THE MAIN LOOP. 

SAVE MAIN PORT ASR-FLAG 

AUX. PORT ASR-FLAG 

READ BY OLD !NIT. CHAR. 
PRINT BEGIN MESSAGE 

MAIN PORT ADR TO TIBUG 

MAIN PORT ASR-FLAG 

PRINT BEGIN MESSAGE HERE, TOO 

FIRST ADDRESS MAIN PORT, THEN THE AUXILIARY PORT 
MOV @XB0,12 ADDRESS FOR MAIN PORT 

TB 2 1 
,.JNE NEXT 
MOV 12,@XOPCRU 

MDV 3, @A:=:RFLG 

XOP C» 11 
MOV @X180,@XOPCRU 

MOV 2, @A:=:RFLG 

XOP 0,12 

CHARACTER TYPED HERE ? 
NO, TRY OTHER PORT 
YES, GIVE ADDRESS TO TIBUG 

MOVE A:=:R-FLAG 

REnD / ECHO CHAR TO ORIGINATING 
AUXILIARY PORT ADDRESS 

AUXILinRY PORT ASR-FLAG 

0072 007E C320 NEXT MOV @X180,12 
WRITE CHARACTER TO OTHER TERM! 
ADDRESS FOR AUXILIARY PORT 

0080 OOAO ,. 
0073 0082 1F15 
0074 0084 16ED 
0075 008c, C80C 

0088 FFDE 
0076 008A C802 

008C FFF4 
0077 008E 2ECO 
0078 0090 C820 

0092 009E ·' 
0094 FFDE 

0079 0096 C803 
00'?8 FFF4 

0080 009A 2FOO 
0081 009C 10E1 
0082 

TB 21 
JNE LOOP 
MDV 12,@XOPCRU 

MOV 2.@ASRFLG 

XOP 0,11 
MOV @X80,@XOPCRU 

MOV 3.@ASRFLG 

XOP 0.12 
JMP LOOP 

CHARACTER TYPED HERE ? 
NO, TRY MAIN PORT 
YES, GIVE ADDRESS TO TlBUG 

MOVE ASR-FLAG 

READ/ECHO CHAR TO ORIGINATING 
MAIN PORT ADDRESS 

MAIN PORT ASR-FLAG 

WRITE CHARACTER TO MAIN TERMIN 

*-----------------------------------------------------------

Fi ure 5-23 . Example Pro ram to Converse Throu h 
Main and Auxiliary TMS 9902's (Sheet 2 of 3 

5-58 



TWOTRM TXMIRA 9 :36227 ** 08: 11 : :39 122/78 PAGE (l(H):3 

0083 * DATA AREA 
0084 * 0085 009E 0080 X80 DATA >0080 MAIN PORT R12 BA~;E ADDRESS 
0086 OOAO 0180 X180 DATA :>0180 AUXILIARY PORT R12 BASE ADORES 

• 0087 FFF4 ASRFLG EQU >FFF4 TI BUG ASR FLAG ADDRESS 

~ 
0088 FFDE XOPCRU EQU >FFDE TI BUG XOP R12 ADDRESS 
0089 OOA2 0010 TABLE DATA >10,>34 9600 BAUD 

• 
OOA4 00:34 

0090 OOA6 0040 DATA } 40,}DO 2400 BAUD 
OOA8 OODO 

0091 OOAA 0070 DATA :>7C» >lAO 1200 BAUfl 
OOAC 01AO 

I ... 0092 OOAE 0200 DATA )·20(1, )-4[10 300 BAUD 
0080 0400 

0093 0082 0400 DATA >400.>638 110 BAUD 
0084 0638 

I 
(1094 OOB6 62 CTL BYTE >62 9902 CONTROL 
0095 0087 OD BrJNMSG BYTE }OD, >OA 

OOB8 OA 
0096 0089 42 TEXT ·' BEGIN OPERATION ·' 
0097 OOC8 OD BYTE >OD,>OA.>OO 

00(:9 OA 
OOCA 00 

0098 oocc 0000 REGS DATA o.o.o.o,o.o,o,o,o.o.o,o.o.o.o.o 
OOCE 0000 
OODO (l(l(l(l 

0002 0000 
0004 0000 
0006 0000 
OOD8 0000 

t 
OODA 0000 
OODC 0000 
OODE 0000 

r 

OOEO 0000 
OOE2 0000 
OOE4 0000 
OOE6 0000 
OOE8 0000 
OOEA 0000 

0099 END 

0000 ERRORS 
'· 

Converse Through 
Main and Auxiliary Sheet 3 of 3 

5-59 



Table 5-7. ASRFLAG Values 

ASRFLAG 
Value* Recommended Baud Rate Description/Recommendations 

Positive No . 2400, 9600 No delays. Use for CRT's, modems. 

Zero 110' 300 Carriage Return Delay only. Use for hard copy 
terminals . 

. 
Negative No. 1200 Carriage Return and Character padding delays. 

Use with "T" command if terminal is not a 
TI 733. 

*ASRFLAG located in RAM at M.A. FFF4 16 

5-60 



SECTION 6 

THEORY OF OPERATION 

6. 1 GENERAL 
This section presents the theory of operation of the TM 990/101M microcomputer. 
Information in the following manuals can be used to supplement material in this 
section: 

• TMS 9900 Microprocessor Data Manual 

• TMS 9901 Programmable Systems Interface Data Manual 

• TMS 9902 Asynchronous Communications Controller Data Manual 

• TTL Data Book, Second Edition 

• Bipolar Microcomputer Components Data Book 

• The MOS Memory Data Book. 

Figure 6-1 shows a block diagram of the TM 990/101M, highlighting the four major 
buses: 

• Address bus 

• Control bus 

• Data bus 

• Communications register unit (CRU) bus 

In normal operation the TMS 9900 microprocessor commands the address bus and most of 
the control bus; the data bus is bidirectional, driven by both the microprocessor and 
the memory devices. The two-line CRU bus is not bidirectional; the serial output line 
is microprocessor driven and the serial input line is driven by the CRU device. 

The major features of the TM 990/101M microcomputer board are the clock driver, the 
microprocessor, the TMS 9901, the two TMS 9902 ' s and peripheral circuitry, the 
bidirectional and normal backplane buffers, the EPROM, the RAM, the additional CRU 
devices, and the miscellaneous signals. These features are discussed in the fol l owing 
paragraphs of this section . 

6 . 2 POWER SPECIFICATIONS 
Approximate power values required by the TM 990/101M-1 are listed in the following 
table: 

Current 

-12V +5V +12V Watts 

Typical 0.2A 1.8A 0.25A 15.0W 

Maximum 0.35A 2.5A 0.3A 19.7W 

6-1 



• ' 
~ 

2 K BYTE 2 K BYTE 
TMS J, TMS 

4046'1 v 4046'1 

y (four> lfour) 

MEMORY A 
AD RESS I 
DECODE , 

J TMS l.-1\ 
TMS 

2708 2708 

v / 2716 IV / 2716 

Ill 

"%] 
I-'• 

::l f f "' ~ -'-
0 

JQ 
c: 
"l 
Cl> 

"' I _. . 

cc 
!Z ,___ ]\ TMS ~ TMS 0 

MEMORY u 
~ 

2708 2708 
48MHz CONTROL ,____ 

/2716 r-v /2716 

~1-i -- n 
16 • 

3M Hz DATA BUS 

1-3 
3: 
l.O 

ld TIM CLOCK 
CONTROL BUS r----9904 

I R.SEi ADDRESS BUS 15 

"' I~ I 
I'\) 

TMS 

9900 , 
0 CRU BUS _. 
3: 
o:l 
...... 
0 

LOAD 
- ._____ 

Q 
~ 

t::I 
I-'· 
Ill 
)q 
"l 
Ill s 

.I 
RESET + / LREX 

INTERRUPTS 

CJ INT1·1NT15 14 TMS 

/ 9901 

EDGE 
INT6 

6+ TRIGGER 
LOGIC 

; -

L 

1/9 7 

SHARED 1/0 DEDICATED 1/0 

I EDGE CONNECTOR I 
PARALLEL PORT 

A--
v-

,_.... 
-v 

/'2'11111 
.J711 

L/\ 
r-v 

,2708 Vt I\ 

,.2711 ~ y 

~ 
r--v 
~ 

) 
v 

L 
CRU 

ADDRESS 
DECODE 

-
-

-
-

~ 

L.E.D. 

BUFFER 
CONTROL 

1 •• ' 

~ ~ MISC 
CONTROL 

DATA ADDRESS SIGNAL 

•nd BUFFERS BUFFERS 
CRU 

n BUFFERS 

--" 

"" 
lC /"-::... 

lJ I • 
MISC. 

CONTROL . .., ~ 

~ 
Ml~. v! CNTL 

! 

~ RS·232 ,-
TERMINAL 

cc SERIAL 0 ... PORT 
TMS u ... A 
9902 

HTTYor r- z 
ULTIDROP z 

0 

h 
u 
~ 

"' 
MICROTER-1---

MINAL 
.....__ 

TMS 

9902 ~I RS·ZI! L-/9903 TERMINAL 

cc 
0 

r-f l-
... SERIAL u 

DTR "' PORT z 
z B • 0 
u 

DIP 
<( 

iii 
SWITCH 

'--

cc 
0 .... 
u 

"' z 
z 
0 
u ... 
" 0 

"' :E 

"' ... 
Ill 

> 
Ill 



The supply - 5V is derived on the board by the UA7905 regulator from the -1 2V line 
supplied from off board. The - 5V supply is used primarily by the TMS 9900 
microprocessor and the TMS 2708/2716 EPROM's for back-biasing the substrate, and by 
the multidrop interface as a supply voltage. The -12V supply is used for the EIA line 
drivers as well as for supplying the voltage to the - 5V regulator. 

The +12V supply is used by the TMS 9900 microprocessor and the TMS 2708/2716 EPROM's 
as the main voltage supply since these are MOS parts. The +12V also is used for the 
EIA line drivers. 

All integrated circuits on the board, except the EIA line drivers, use the +5V supply, 
and because of the heavy load this voltage is not derived by an on-board regulator but 
must be supplied from off the board . The MOS parts use this supply for TTL 
compatibility, and, in fact, the TMS 9901, 9902, 9903, and 4045 use only this voltage 
for supply since they contain internal charge pumps, eliminating the need for - 5 or 
+12V in their operation. 

Table 6-1 lists the pin assignments of each integrated circuit for the supply voltages 
each uses . 

Table 6-1. Device Supply Voltage Pin Assignments 

SUPPLY VOLTAGES TO PIN NUMBER 
Device -12V - 5V GND +5V +12V 

TMS 9900 1 26 , 40 2,59 27 
TMS 9901 16 40 
TMS 9902 9 18 
TMS 9902/03 socket 9 20 
TMS 9904 3 , 10 20 13 
TMS 4045 9 18 
TMS 2708/2716 21 12 24 19 
74LS241, 74LS245 10 20 
75188 1 7 14 
75189 1 14 
75154 8 15 
75107 13 7 14 
75112 11 7 14 
74LS138, 153, 251 , 259; 74S287 8 16 
74LSXX 7 14 

6-3 



6.3 SYSTEM STRUCTURE 
The block diagram in Figure 6-1 shows the system structure of the TM 990/101M 
microcomputer board. The microcomputer design centers around five buses: power, 
control, address, data, and CRU . The major blocks of the system are the processor, the 
miscellaneous control signals, address decoding, on-board memory, the TMS 9901, and 
two TMS 9902 serial ports, and the miscellaneous CRU devices. 

Functionally, these major blocks represent the processing, memory and 1/0 portions of 
the microcomputer. 

Throughout the remainder of this section, each block's function is discussed, grouping 
the explanations into three categories: processing, memory, and 1/0. The first subject 
is the buses since the buses tie all the blocks together. 

The power bus is explained in paragraph 6 . 2 above, so the following paragraph deals 
with the remaining buses. 

6.4 SYSTEM BUSES 
The four major buses are subdivided by function in Table 6-2. By referring to the 
schematics in Appendix G, each random logic line as well as the bus lines can all be 
traced. All bus signals appear on connector P1. 

6.4.1 ADDRESS BUS 
The 16-line address bus consists of lines AO through A15. Only 15 of these, AO through 
A14, are normally used for addressing memory. Memory access deals with a 16-bit word, 
and A1 5 , the byte address bit, is not brought out of the TMS 9900 since byte 
operations are handled by fetching a 16-bit word into the processor, and modifying the 
addressed byte, rewriting the 16-bit word back to memory if necessary. Therefore, A15 
appears only on connector P1 and is grounded to show a zero off-board, thereby 
fetching words on even address boundaries. 

On the board the address lines are routed to the address decoding PROM which, with 
MEMEN, selects on-board memory if the address presented lies within the limits of the 
memory map programmed into the PROM. 

Lines AO, A1, and A2 also are routed to the 74LS138 external instruction decoder 
where, upon a CRUCLK pulse, the state of the address lines determines whether a CRU 
operation (AO, A1, A2 = 0) or an external instruction is occurring. This leaves A3 
through A14 for CRU addressing; A3 through A14 are routed to the I/O decode logic and 
the CRU devices. 

6 . 4.2 DATA BUS 
The data bus consists of 16 bidirectional lines which are routed from the processor to 
the on-board memory and to the bidirectional buffers for off-board use . DO is the most 
significant bit, and D15 is the least significant bit . 

6 . 4.3 CRU BUS 
The three lines in the CRU bus are CRUIN, CRUOUT, and CRUCLK. Whenever an address is 
present on the address bus and MEMEN is not also active, a CRU operation is 
assumed. Note that even if some CRU device responds to the address bus while it 
changes value or is in any way invalid, no harm is done because the data presented to 
CRUlN by the addressed device will be i gnored by the processor. Since the processor 
will poll CRUIN only when required, CRU address decoding is simplified . 

6-4 

II' 



Table 6-2. Bus Signals 

Signal Functional Device Connections 

Address Bus 
AO' A 1 I A2 Address decode PROM, external instruction decode 
A3, A4 Address decode PROM, CRU decode logic, TMS 2716 EPROM 
A5, A6, A7, AB, A9 CRU decode logic, all memory devices 
A10, A11 , A12 All memory devices, TMS 9901 , TMS 9902/3, one 74LS251 
A13, A14 All memory devices, TMS 9901 , TMS 9902/3, both 74LS251's 
(A15.B) Byte indicator : always zero, off- board signal onl~ 

c 
Data Bus 
D0- 07 Most significant byte, 1 EPROM/byte, 2 TMS 4045/byte 
DB- 015 Least significant byte, 1 EPROM/byte, 2 TMS 4045/byte 

CRU Bus 
CRUIN CRU input line , TMS 9901, TMS 9902/3, 74LS251 (TIM9905) 
CRUOUT CRU output line, TMS 9901, TMS 9902/3 74LS259 (TIM9906) 
CRUCLKB CRU clock, TMS 9901, TMS 9902/3, 74LS251 (TIM9905) I 

74LS259 (TIM9906 ), Edge- triggered logic 

Control Bus 
HEMEN Memory control: address decode PROM 
DBIN Memory control: RAM decode logic, data bus buffer control 
WE Memory control: RAM decode logic , all TMS 4045 RAM's 
MEMCYC Memory control: off- board only 
READY Memory control: slow EPROM logic, off-board WAIT state 

Auxiliary Control 
¢1, ¢3 Clock : TMS 9901, TMS 9902/3 , RESET/LOAD logic 
.EXTCLK . B, CIT. B Clock: off- board only 
~.B , RESTART.B, 

RST, LUII5, IORST.B RESET/LOAD logic, TMS 9900, TMS 9901 
INT1-INT6 Interrupt Control: dedicated TMS 9901 
INT7-INT15 Interrupt Control: shared I/O, TMS 9901 
HOLD, HOLDA Address, Data, Memory Control for DMA: TMS 9900 
IAQ Miscellaneous: TMS 9QOO 

6- 5 



When an address is present on the address bus and MEMEN is not active and if AO, A1, 
and A2 are all zero, the CRUCLK pulse is gated through the external instruction 
decoder, and any data on CRUOUT is strobed into the addressed CRU device. This is a 
CRU output operation, and it is distinct from an input operation in that CRUCLK is 
active during output; whereas, it is inactive upon input. 

As mentioned above , CRU input is achieved by the processor asserting an address while 
keeping the MEMEN signal inactive , and then polling CRUIN at the appropriate time . 

6.4.4 CONTROL BUS 
This bus is not as homogenous as the other buses; therefore it is divided into groups 
as shown in Table 6-2. Table 6- 3 gives a brief explanation of each function. 

Signal 

MEMEN (memory enable) 

DBIN (data bus input) 

WE (write enable) 

MEMCYC (memory cycle) 

READY 

WAIT 

HOLDA 

Table 6- 3. Control Bus Functions 

Active State 

Low 

Higb 

Low 

Low 

High 

High 

Low 

High 

Group 

Memory 

Memory 

Memory 

Memory 

Memory 

Memory 

Processor 
Activity 

Processor 
AC'tivity 

6- 6 

Purpose 

Enables memory devices, address 
on address bus is for memory 

Shows state of processor's data 
bus: high is input to proc
essor, low is output. 

Strobe to memory devices for 
writi ng data to memory. 

Indicates beginning and end of 
one memory cycle. For succes
sive memory cycles, MEMEN can 
be active continuously, MEMCYC 
goes inactive between each 
separate memory cycle. 

Indicates memory is ready with 
read data on next clock, or has 
disposed of data on write 
cycle . Wait states are gene
rated by pulling this line low. 

Acknowledges that memory is not 
ready, indicating a wait state. 

Requests processor to give up 
control of address, data buses 
and MEMEN, WE, and DBIN. 

Acknowledges that processor has 
given up control of buses given 
above , and has suspended 
activity. 



r. 

Signal 

EXTCLK.B 

CLK.B 

PRES . B 

RST 

RESTART.B 
IOiiD 

INT 1- 15 

IAQ 

6.5. SYSTEM CLOCK 

Table 6-3. Control Bus Functions (Concluded ) 

Active State 

Low 

Low 

Low 

Low 

Low 

Low 

Low 

Low 
Low 

Low 

High 

Group 

Clock 

Clock 

Clock 

Reset/Load 

Reset/Load 

Reset/Load 

Reset/Load 
Reset/Load 

Interrupt 

Miscellaneous 

Purpose 

TTL level clocks 

External TTL clock input to 
TIM 9904. 

Output of internal oscillator of 
TIM 9904. 

Causes reset interrupt 

Reset interrupt input, TMS 9900 

External instruction, causes IORST 

I/O reset to TMS 9901's. Does not 
cause reset interrupt 

Causes load function delayed by two 
IAQ or idle pulses. (LOAD is name 
of external instruction and load 
function pulse) 

Request for interrupt to TMS 9901 

Signifies this memory cycle to be 
an instruction fetch. 

The system clock is generated by a crystal and tank circuit tuned to 16 times the 
desired system frequency. This network is attached to the TIM 9904 clock driver, which 
counts down the input signal from the tank and crystal into four non-overlapping clock 
phases at MOS signal levels for the TMS 9900. The inverse of these phases is output to 
TTL levels for the remainder of the system . 

Also on the TIM 9904, the reset function is latched and synchronously presented to the 
TMS 9900; this ensures synchronization with the correct phase . 

The crystal is a third overtone series/parallel- resonant crystal, set in an HC-18U 
bolder (see Figure 6-?) . 

The TTL clocks are routed to the RESET/LOAD and MEMCYC logic, as well as to the 
P1 - connector and the TMS 9901 and TMS 9902/9903 ' s . 

r: CAUTION l 
I f pins 11 and 12 of the TMS 9904 (¢1 and ¢2) are shorted, the de
vice wil l overheat and go i nto thermal runaway almost instantly. 

6-7 



XTAL 1 ,,.,, R 
11>1 

QUARTZ 
18 12 8 

CRYSTAL CJ 
XTA L 2 2 

9 TMS9900 19 'LS362 11 

~TIM99041 R MICROPROCESSOR 
TANK 1 ~;J Q3 

CLOCK 8 2 8 

O.l3µH 18 pF DRIVER 
R •:A o 4 

TANK2 9 25 
2 

OSCIN 
17 

R = 10H 

ct.7 K .n 20 

Vee 

~ 

+sv +12V 

Figure 6- 2. Crystal-Controlled Operation 

6.6 CENTRAL PROCESSING UNIT 
The TMS 9900 microprocessor is the central processing unit (CPU) for the TM 990/101M. 
The responsibilities of the CPU include : 

• Memory, CRU and general bus control 

• Instruction acquisition and interpretation 

• Timing of most control signals and data 

• General system initialization. 

Figure 6-3 groups the TMS 9900 pins by function . The address bus addresses memory and 
the CRU devices, and provides the codes for the external instructions. The data bus 
carries all memory data, including instruction code as well as program data ~nd 
addresses. Interrupt requests are encoded as a binary number by the TMS 9901 for 
presentation to the TMS 9900 microprocessor. 

Memory operations are initiated by placing an address on the address lines along with 
MEMEN, OBIN , and eventually, WE. If the memory cycle is an instruction fetch, IAQ goes 
active also. READY is sampled and the memory cycle is ended one clock cycle after 
READY is active . 

6-8 



GOES TO { 
RESET/LOAD 
LOGIC 

CONTROL BUS GOES 

TO MEMORY DECODER, 
MEMORY, EXPANSION 
BUFFERS. 

FROM SYSTEM CLOCK ! 

FROM TMS 9901 

INTERRUPT CONTROL 

- 5V 

+5V 

+-12V 

RESET 6 
--
LOAD 4_ -

7 -

&t -

- 5 

62_ -
- 3 

61 -
63 

- ')Q 

8_ 
-

9 -,._ 

7'i -

31 

'In 

60 

32 

36 

35 -
34 -
33 -

1 

- 2 

T s9 

27 

26 

IMSBI DO 
41 

- 42 
TMS 9900 Dl -

IAO D2 
43 -

D3 
44 -

04 
45 -

HOLD -
HOLDA 05 

46 -

READY 06 -
47 

-
WAIT 

48 -07 - -- - 49 
WE D8 
--- 50 -MEMEN 09 

OBIN DlO 
51 

011 52 .. 
0 1 D12 

1;."l 

o2 
54 -013 - -

o3 014 
55 --

04 
56 

D15 

24 
eRUIN (MSBI AO 

23 
eRUOUT Al 

22 
e RUeLK A2 ;.. 

21 
A3 

--- 20 
INTREO A4 -

19 
teO AS -

18 
1e1 A6 

17 
le2 A7 -

16 
IC3 A8 --

15 
A9 -

14 
Vee A10 -

13 -Vee All -
Vee 

12 -A12 
11 

Voo A13 -
10 

Vss A14 -

Vss 

l 40 
]_' 

Figure 6-3. TMS 9900 Pin Functions 

6-9 

DATA BUS GOES TO 

MEMORY, EXPANSION 
BUFFERS 

ADDRESS BUS GOES TO 
MEMORY ANO 1/0 DECODER, 

MEMORY, EXPANSION 
BUFFERS, TMS 9901. 
TMS 9902, WIRE·WRAP AREA. 



CRU operations are initiated by placing an address on the address bus. CRUIN is 
sampled for an input operation; otherwise it is ignored, and for an output operation 
the datum is placed on CRUOUT and strobed with CRUCLK. Aside from I/O purposes, CRU 
operations also program the operation of such devices as the TMS 9901, 9902, and 9903 . 

Figures 6 - 4 and 6 - 5 show the data flow and operational flowchart of the 
microprocessor. Figure 6-6 shows the decoding of the external instructions. For more 
information , refer to the TMS 9900 Microprocessor Data Manual. 

6.7 RESET/LOAD LOGIC 
After the clock and the CRU, the next block most clos~associated with microcomputer 
operation is the random logic dealing with RESET and LOAD. This block initializes the 
system and is also used to return control to TIBUG when using single- step operation 
(refer to Figure 6-6). 

6.7.1 RESET FUNCTION 
The RESET pushbutton feeds a latch formed from back-coupled inverters for debouncing. 
The PRES.B signal f'rom connector P1 joins the RESET pushbutton signal in a Schmitt 
trigger gate to assure that multiple reset pulses due to noise or bounce do not affect 
the microcomputer . After being inverted again, the reset signal is routed to the TIM 
9904 which then synchronizes it with ¢3 and then presents the signal to the 
microprocessor. 

The RESET signal also goes to two flip-flops which generate the IORST signal, which 
clears TMS 9901's and any other devices attached to it off-board. This IORST signal is 
also generated by the external instruction RSET, but it is important to realize that 
the RSET instruction in a program generates only IORST and not a full RESET interrupt. 
IORST can be active for up to two o3 clock periods. 

Reset causes the following to occur: 

• Clears 1/0 devices on IORST line (on board TMS 9901) 

• Inhibits memory write and CRU operations 

• Sets TMS 9900 status register interrupt mask to 0000 

• Processor traps to vectors at 0000 and 0002 

Reset is caused by: 

• Actuating the RESET switch on the PC board 

• Setting tbe PRES.B signal to a logic ZERO state on connector P1 . 

6- 10 



.. .. 

HOCi5 
HO LOA 

COAD 
wr 

READY 

"IAll 
Mmn; 

OBIN 
Rf SET 

11\0 

CRUC:L I< 

(f> l - '1>4 

CONTROL 
ROM 

l 
() 
N 
T 
R 
0 
L 

CONT ROL 
LOGIC 

DO 01!> 

Tl 

12 

PROl'ORA M COUNTE R 

l'llOR KSPACF REl'OISTER 

f\ 

~••If ' 
I OllM l f 1-l 

l\L II 

~·" 1.-r.r 1111111 
Ill 1;" IT 11 

n 

iNfREO ICO IC3 

INTfRRUPT 
REGISTER 

l'IWIN 

Figure 6-4 . TMS 9900 Data and Address Flow 

6-11 

AO- A14 

MEMORY 
ADDRESS 
REGISTE R 

CRUOUT 



RESET SIGNAL 
CAUSES IMMEDIATE 

ENTRY HERE 

GET RESET VECTOR 

!WP ANO PCI 

FROM LOCATION 0 , 2 

STORE PREV IOUS PC, 

WP. ANO ST IN NEW 

WORKSPACE. SET 

INTERRUPT MASK 
(ST12- STl 51 ~ o 

y 

y 

GET LOAD VECTOR 

(WP AND PCI FROM 

LOCATION FFFC 16, 

FFFE 16 

STORE PR EV IOUS PC, 

WP. ANO S f IN NEW 

WORKSPACE . SET 

INTERRUPT MASK 

IST12 ST 151 , 0 

y 

INSTRUCTION 

ACQUISITION 

INSTRUCTION 

GET INTERRUPT LEVEL 

VECTOR IWf' ANO l'CI 

STORE PREVIOUS PC, 

WP. ANO ST IN NEW 

WORKSPACE. SE T 
INTER RUPT MASK (ST12 
- ST 151 TO LEVEL -1 

Figure 6-5. TMS 9900 CPU Flowchart 

6-12 

y 

N 

N 



·~V 

PRU 8 ' I K 
114 w 

!Ill . 
Pt !M _ -'VI,.,,._+--- - ---' 

- --.--, 

I r-· I I ELEClROL VllC I 
L~ __ _ J 

. ,. 
114 ¥1 

---~ 

I I JU I 
j ELECrROL YltC I 
L~ __ _ J 

6.7.2 LOAD FUNCTION 

·~" 
.~ 

I~ 
« 

l•lS IJ2 

•W 
L_ 

·~V 

D Clfl 0 

l4LSl4 

LK p 
IJ 

1------1 D CLA O t--t----1 n ClR O 

14lS7• 

CL K , 0 0 LOAD 

O CLR O t------i I' Cl.A O 1-"' ""A.._,T _____ _ 

14LS74 

LK o 
p 

14LSOI 

.---+---M"'-'E'--M=EN'-------ID PA O 

t-----~16"-------ICK 0 
CLA 

Fl'l01114 PROCHSO,_ 
CtACUll 

Figure 6- 6 . RESET and LOAD Logic 

l 4LSIO 

0 RSTt 

o •II O 

14LS14 

c~ o 
ClR 

1oorr soano 
10 

TO ON ~OARD 
110 

74LS14 

0 

The LOAD function is triggered by either activating RESTART.B or executing the 
external instruction LREX. Both of these are combined in the same way the RESET 
function is. The first flip- flop presents the LOAD request to the second, and the 
second and third flip-flops count two IAQ or IDLE pulses and then present the LOAD 
function request to the microprocessor. The second flip- flop clears the first one so 
that only one LOAD is generated even though, for instance, the RESTART.B signal may be 
continuously active. 

RESET overrides LOAD because a RESET signal clears the LOAD flip- flops. This is 
important when both requests occur simultaneously . 

Load causes the following to occur: 

• LOAD function is delayed two instructions (IAQ) or idle pulses (IDLE), then 
triggered 

6- 13 



• Processor traps to vectors at M.A. ~FFFC and >FFFE 

Load is caused by the following if RESET is inactive: 

• Executing the software instruction LREX 

• Setting RESTART.B to logic ZERO state on connector P1. 

6 . 7 . 3 RESET AND LOAD FILTERING 
Installing a 39 microfarad capacitor at C18 will debounce the "'P'R"E'S.B signal. This 
would be adequate for manual actuation by an SPST pushbutton to ground. 

A 39 microfarad capacitor at C23 debounces the RESTART.B signal, suitable f or 
connection to a manually actuated switch in the same way as above. 

These capacitors are user options, and these values are suggested values . 

6.7. 4 CLRCRU SIGNAL 
The CLRCRU (clear CRU) signal is a power-up IORST which resets the edge- triggered 
interrupt 6, the status LED, and remote serial port Data Terminal Ready signal . The 
status LED is lighted and Data Terminal Ready is inactive. 

6.8 EXTERNAL INSTRUCTIONS 
The so-called external instructions are those which, when executed by the processor, 
cause address lines AO, A1, and A2 to be set to a state, and CRUCLK to become active. 
The instructions and descriptions are listed in Table 6-4. 

Table 6-4 . External Instructions 

I nstruction Opcode AO A1 A2 Description 

IDLE 0340 0 1 0 Suspends processor until RESET, LOAD, 
or interrupt occur 

RSET 0360 0 1 1 Zeroes TMS 9900 interrupt mask, 
generates IORST 

CKON 03AO 1 0 1 Not used on TM 990/101M 

CKOF 03CO 1 1 0 Not used on TM 990/101M 

LREX 03EO 1 1 1 Causes LOAD, delayed by two IAQ or 
IDLE pulses 

6-1 4 



The CKON and CKOF instructions are used by other 990-family systems to control the 
system timer. On the TM 990/101M the system timer is incorporated into the TMS 9901; 
hence, these instructions are not used. 

The RSET instruction generates the IORST signal to clear all I/O devices (on board TMS 
9901) attached to it~ It also clears out the status register interrupt mask, which 
allows only a RESET interrupt or a LOAD function to be granted. 

The LREX instruction causes a LOAD function request to be presented to the processor 
after two IAQ or IDLE pulses. This means that the LOAD function occurs after two 
instructions are executed following the LREX. TIBUG uses this function to do single 
step by executing the LREX, a RTWP to the user, then one user instruction. The LOAD 
function becomes active and vectors back to TIBUG, which then prints the processor 
register.-s. 

IDLE causes the processor to suspend operation; it is, in essence, a HALT instruction. 
An interrupt or LOAD terminates the idle state. 

In all cases, note that AO, A1 , and A2 are nonzero values so that these instructions 
are differentiated from a CRU output operation. 

6.9 ADDRESS DECODING 
This subsection explains address decoding for both memory and CRU I/O along with their 
memory maps. The memory address map configurations are shown in Figure 6- 7. 

6.9.1 MEMORY ADDRESS DECODING 

6.9.1.1 Memory Address Decoding PROM 
The memory map is programmed in a 74S287 PROM as shown in Figure 6-8. The PROM is a 
256 x 4 bit memory, and each four-bit word (D04 to D01) is used to determine memory to 
be enabled . The most significant bit of the PROM word, D04, is tbe RAM enable control 
line. Programming a ZERO on D04 will cause RAM to become active. Since there are two 
banks of RAM on the board and since there is no room on the PROM to decode the two 
banks separately, each bank is enabled by the state of address line A4. Therefore, all 
RAM is decoded by the PROM as a complete block and cannot be separated. 

The next two bits of the PROM word (D03 and D02) enable each EPROM bank separately and 
directly. EPROM ' s are enabled by programming a zero . 

The least significant bit of the PROM word (D01) is a negative- logic "OR" of the other 
three bits of the PROM word. If any of the other three bits are zero, this bit must be 
zero also. This signal indicates to data bus buffer control whether memory addressed 
is on- board or off-board; a zero state indicates on-board memory . 

6- 15 



0000 

'"Z] ...... 
0800 ~ 

~ 
"'l 
Cl> 1000 

°' I 
--.1 . 
"""3 
3: 
l.O 
l.O 

°' I~ I 
~ 

°' .... 
3: FOOO 

3: 
(l) 
8 F800 
0 
"S 
'< 
:i:-
Q. 
Q. 
"'l 
(l) 
(/.I 
(/.I ...... 
:;$ 

EPROM 1 
tTMS 2708) 07FE 

EPROM 2 
ITMS 2708) 

OFFE 

OFF ·BOARD 
MEMORY 

EFFE 
RAM2 

TMS 4045 
F7FE 

RAM 1 
TMS 4045 

FFFE 

a) 2K EPAOM (2708's) 

2K RAM 

0000 

1000 

2000 

FOOO 

F800 

EPROM 1 
TMS 2716 

OFFE 

EPROM 2 
TMS 2716 

1FFE 

OFF ·BOARO 
MEMORY 

EFFE 
RAM 2 

TMS 4045 
F7FE 

RAM 1 
TMS 4045 

FFFE 

b) 4K EPROM (2708's ) 

2K RAM 

NOTES 

1. All acldresses on hexadecimal. 

0000 EPROM 1 
TMS2708 07FE 

0800 EPROM 1 
TMS 2708 

OFFE 
1000 

EPROM 2 
TMS 2716 

lFFE 
2000 

OFF·BOARD 
MEMORY 

EFFE 
FOOO RAM 2 

TMS 4045 
F7FE 

F800 RAM 1 
TMS 4045 

FFFE 

c) 3K EPROM (2708 & 2716) 

2K RAM 

2. EPROM solectoon 1n each bank 1s a iumper option 

0000 

EPROril 1 
H .1S 2716 

OFFE 
1000 

EPROM 2 
TMS 2708 17FE 

1800 EPROM 2 
TMS 2708 .__ 

2000 
1FFE 

OFF -BOARD 
M EMORY 

EFF E 
FOOO RAM 2 

TMS 4045 
F7FE 

F800 RAM 1 
TMS 4045 

FFFE 

d) 3K EPROM (2708 & 27161 

2K RAM 



The memory address decoding PROM is enabled by MEMEN when active low, and the lower 
five input bits are the most significant bits of the 3ddress bus (AO to A4). The PROM 
thus selects memory in blocks of 1K words . The upper three address bits of the PROM 
have jumper options to choose between TMS 2708's and TMS 2716 ' s and to select-or 
deselect on-board EPROM, and to configure the memory map either with EPROM in low 
addresses and RAM in high addresses, or RAM low and EPROM high. There are thus eight 
different address maps in the PROM controlled by the three jumpers (23 = 8). Each 
address map consists of 32 four- hit words, showing the state of each lK word block in 
memory. 

When MEMEN is inactive , the PROM is disabled. 

6.9.1 .2 EPROM Selection 
There are two basic memory maps for the EPROM - one for the TMS 2708 1 s and the other 
for TMS 2716 ' s. These correspond to cases (a) and (b) of Figure 6- 7. Each bank of 
EPROM actually consists of two EPROM devices, one for bits 0 to 7 of the addressed 
word, and the other for bits 8- 15. Beginning addresses are shown to the left of the 
figure; ending addresses are shown to the right. Each EPROM bank is separate and can 
be programmed into any location by reprogramming the address decode PROM. 

Case (c) and (d) of the memory map in Figure 6-7 show what happens if the jumper is 
configured to "2716" position, and TMS 2708 1s ace used. Case (c) shows that if a word 
at address 0000 is accessed, that same word can be read at 0800. Likewise, both 0002 
and 0802 will address the same word, etc. 

On the board, the jumper next to the EPROM's selects the proper pin configuration for 
the particular EPROM in use. Note that address line A4 is routed to the EPROM when the 
jumper is in the "2716" position. 

To deselect, or ignore , on- board EPROM, move the EPROM select jumper to connect pin 
E12 to E13. This causes on-board EPROM sockets to disappear completely from the memory 
map. 

6.9.1.3 RAM Selection 
The RAM is treated as one block, since it is decoded with only one output line from 
the address decode PROM, There are four RAM ' s per bank and two banks in the block. The 
selection of a specific bank of RAM is decided by the state of address line A4. 
Selection is accomplished by the gate array shown in Figure 6- 8, Each RAM select is 
set up by the PROM and A4, and becomes valid when WE goes low for a write, or OBIN 
goes high for a read. Note that DBIN will assert at the same time MEMEN goes low 
during a read cycle, reference Figure 6-10, but WE will not assert until some time 
after MEMEN goes to 0. The user should be aware that a chip select will not occur 
during a write cycle until after WE drops. This is to prevent fast RAMs, which sample 
WE as soon as they are selected, from sampling WE before it goes low during a write 
cycle. 

At this point, the second jumper option becomes meaningful. This option selects where 
EPROM and RAM appear in the memory map. In the normal "RAM HI" position, the RAM bank 
address begins at F00016 and EPROM begins at 000016 · Moving the jumper plug to the 
alternate position causes "2708 " EPROMs to be at F00016 ( 11 2716 11 EPROM ' s begin at 
E00015), and RAM to be at 000016· 

6- 17 



A4 

WE 

R23 OBIN 

E11 4 IK 

"' ( 
15 v 

-- 1: 10 
0 -
N E9 

GAT E ARRAY 0 
0 
~ 
.... E17 
0 

( 
270812716 15 

r- ADH 
0 El6 RAM HI U19 
~ ADG 
<{ 

EPROMSEL 2 9 RAM ::E E15 ADF 0 04 
r- AO 3 10 ROM2 u ADE 003 UJ 
....J E1 4 A l 4 11 ROM1 
uJ ADD 002 (/) 

( (/) A2 7 12 ONBOARDMEM 
a: f13 AOC 001 
w 
~ A3 6 

ADB :i= 
=i E12 A4 5 ...., ADA 

S2 

14 745287 
- MEMEN PROM 

TABLE A . ADDRESS IN/ DATA OUT 

ADDRESS 
INPUT 

ADH TO 
ADA (LSB) MAP PROM OUTPUT (4 BITS EACH) 

00 0 66FF FFFF FFFF FFFF HFF FFFF FFFF FFFF 
20 66FF FFFF FFFF FFFF FFFF FFFF FFFF CCAA 
40 2 FFFF FFFF FFFF F FFF FFFF FFF F FFFF FF66 
60 3 CCAA FFFF FFFF FFFF FFF F FFFF FFFF FF66 
80 4 66FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
AO 5 66FF FFFF FFFF FFFF FFFF FFFF FFFF FFCA 
co 6 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FF66 
eo 7 CAFF FFFF FFFF FFFF FFFF FFFF FFFF FF66 

TABLE B. MAP CONF IGURATION (SET BY JUMPERS) 

2708 OR LOW OR 
READ EPROM7 

2716 USED? HIGH RAM? 

MAP O = TMS 2716 Low RAM No EPROM 
Map 1 = TMS 2716 Low RAM High EPROM 
Map 2 = TMS 2716 High RAM No EPROM 
Map 3 = TMS 2716 High RAM Low EPROM 
Map 4 = TMS 2708 Low RAM No EPROM 
Maµ 5 = TMS 2708 Low RAM High EPROM 
Map 6 c TMS 2708 High RAM No EPROM 
Map 7 : TMS 2708 High RAM Low EPROM 

Figure 6-8. Memory Address Decode PROM 

6-18 



6.9.1.4 Memory Mapping 
The memory map can be changed by the user substituting another user programmed PROM 
in the address decoder socket. (The 743287 PROM's are available from your Texas 
Instruments distributor.) Using the guidelines in paragraph 6.9 . 1 1 the user can 
produce many different memory maps. In general, if active output is desired for any 
particular input combination, the bit code is set to zero . Starting at the initial 
input address to the PROM, the outpu~ states desired are determined. ADA is th~ 
least-significant address input, and ADH is the most - significant. D01 is the least 
significant output bit 1 and 004 is the most- significant . 

CAUTION 
When planning a memory map , or when using any memory 
off- board (such as a TM 990/201 or TM 990/206 memory 
board), the memory devices on the TM 990/101M board must 
not overlap in address space either with each other or 
with devices off- board. On- board memory devices MUST be 
mapped into unique locations , and no other off- board 
devices may respond to addresses intended for any 
on-board memory device. 

The 745287 PROM's are field - programmable, fusible-link devices . The PROM ' s are 
delivered in a state of all binary ONE ' s . By blowing a fuse link during programming, n 

ZERO is programmed . Once a bit is programmed as ZERO, there is no way to restore the 
bit to a ONE. Be careful to program the device completelyj partially programmed 
devices have been known to have random bits revert back to the O~E state because the 
fuse link was not blown completely . 

MSB and LSB conventions are those used by the 990 - family systems hardware and software 
for PROM and EPROM programming. 

6.9.2 CRU SELECT 
The CRU I/0 decoding is done by a gate array and a 74LS138 decoder as shown in Figure 
6- 9. Address lines A3 through A9 are decoded, providing eight on-board select lines , 
each line addressing a block of 32 CRU bits. These select lines, ISELO through ISEL7, 
go to the various on- board CRO devices, with the exception of the ISEL3 line which is 
reserved for future use. The INTCRU/EXTCRU line is defined by the upper four address 
bits (A3-A6 ) and MEMEN ; the line activates the 74LS138 decoder and deactivates the 
74LS241 buffer with CRUIN.B and CRUOUT.B when an on- board CRU address is asserted. At 
all other times the buffer is enabled, and the on- board decoder is disabled, allowing 
some off-board CRU device to respond. Because of this manner of decoding, overlapping 
CRU addresses off-board will be ignored if they are mapped into on- board CRU space. 
On- board CRU address space thus is reserved; and because there is no PROM, the CRU 
address map cannot be changed. 

6- 19 



ME MEN 

A3 3 

A4 2 

A5 8 

AG 9 

74LS02 

INT CRU1EXTCRU 
U52 15 ISELO 

6 14 ISEL 1 
G1 '( 1 

4 13 ISEL2 
G2A Y2 

- 5 12 tSEL3 - G2B Y3 
A7 3 11 ISEL4 

c v 4 
AB 2 10 ISEL5 

A9 
B YS 

9 ISEL6 
A 

~ 7 
ISEL? 

/ 4L S138 J 8 D[CODER 

SIGNAL ENAl:lll:S 

ISELO l l: D C11uJ1t 
ISELI DIP Sw11ch 
ISE L2 Md1n fMS 9902 11'21 
ISEL3 Nol UsPd 
ISEL4 TMS 990 1 
ISEL5 RESE r E<l11t; ·Tr194e1eo 1n1errup1 
ISELG Aux1l1dry TMS 9902 (P31 
ISEL 7 Aux illury EIA S1gnc1ls 

Figure 6-9 . Decoding Circuitry for CRU I/O Addresses 

6- 20 



Table 6- 5 . TM 990/101 CRU Map 

I CRU Software Base Bit 
Address <Hex) Address (Hex) F'unction Input Output 

000016 0000 STATUS LED 
0001 RESERVED 

I 
i 

001F RESERVED 
004016 0020 UNIT ID 4 (LSB) INPUT ONLY 

0021 UNIT ID 3 
0022 UNIT ID 2 
0023 UNIT ID 1 
0024 UNIT ID 0 (MSB) INPUT ONLY 
0025 GROUNDED 
0026 GROUNDED 
0027 GROUNDED 
0028 RESERVED 

TO t 
003F RESERVED 

008016 0040 SERIAL I/O RBRO CTR LO 
0041 PORT A P2 RBR1 CTRL1 
0042 TMS 9902 RBR2 CTRL2 
0043 RBR3 CTRL3 
0044 RBR4 CTRL4 
0045 RBR5 CTRL5 
0046 RBR6 CTRL6 
0047 RBR7 CTRL7 
0048 0 CTRL8 
0049 RCVERR CTRL9 
004A RPER CTRL10 
004B ROVER LXDR 
004C RFER LRDR 
004D RFBD LDIR 
004E RSBD LDCTRL 
004F RIN TSTMD 
0050 RB INT RT SON 
0051 XBINT BRKON 
0052 0 RIENB 
0053 TI MINT XBIENB 
0054 DSC INT TIMENB 
0055 RBRL DSCENB 
0056 XBRE NOT USED 
0057 XSRE I NOT USED 
0058 TIMERR NOT USED 
0059 TIME LP NOT USED 
005A RTS NOT USED 
0058 DTR NOT USED 
005C CTS NOT USED 
0050 DSCH NOT USED 
005E FLAG NOT USED 
005F ,. INT RESET 

6- 21 



I CRU 
Software Base 
Address (Hex) 

010016 

Bit 
A duress 

0060 

007F 
0080 
008 1 
0082 
0083 
0084 
0085 
0086 
0087 
0088 
0089 
008A 
OOBB 
008C 
OOBD 
008E 
008F 
0090 
0091 
0092 
0093 
0094 
0095 
0096 
0097 
0098 
0099 
009A 
009B 
009c 
0090 
009E 
0091:" 
OOAO 

OOA5 
00A7 

TO 
OOBF 

Table 6-5. TM 990/101 C1U MAP (Continued) 

(Hex) 

I 

I 

I 

Function 

RESERVED 

i 
RESERVED 
TMS 9901 

PSI 

I 
I 

l 

I 
i 

TMS 9901 
PSI 

RESERVED 

I 
' RESET INT6 

RESERVED 

+ RESERVED 

6- 22 

I 

I 

Input 

CONTROL BIT 
INT1 /CLK1 
INT2 /CLK2 
INT3 /CLK3 
INTI.; /CLK4 
INT5 /CLK5 
INT6 /CLK6 
INT7 /CLK7 
INT8 /CLK8 
INT9 /CLK9 
INT10/CLK10 
INT11/CLK11 
INT 12/CLK12 
INT13/CLK13 
INT14/CLK14 
INT 15 IINTREQ 
PO INPUT 
P1 INPUT 
P2 INPUT 
P3 INPUT 
P4 INPUT 
PS INPUT 
P6 INPUT 
P7 I NPUT 
PB INPUT 
P9 INPUT 
P10 INPUT 
P 11 INPUT 
P12 INPUT 
P13 INPUT 
P14 INPUT 
P15 INPUT 

Output 

CONTROL BIT 
MASK1 /CLK1 
MASK2 /CLK2 
MASK3 /CLK3 
MASK4 /CLK4 
MASKS /CLKS 
MASK6 /CLK6 
MASK7 /CLK7 
MASKS /CLK8 
MASK9 /CLK9 
MASK10/CLK10 
MASK1 1 /CLK1 1 
MASK12/CLK12 
MASK 13/CLK13 
MASK14/CLK14 
MASK1S/RST2 
PO OUTPUT 
P1 OUTPUT 
P2 OUfPUT 
P3 OUTPUT 
P4 OUTPUT 
PS OUTPUT 
P6 OUTPUT 
P7 OUTPUT 
PB OiJ fPUT 
P9 OUT?UT 
P10 OUTPUT 
P11 OUTPUT 
P12 OJTPUT 
P13 OUTPUT 
P14 OUTPUT 
P15 OUT?UT 



Table 6-5. TM 990/1 01 CRU Map (Continued) 

CRU 
Software Base Bit 
Address <Hex) Address (Hex) Function Input Out put 

018016 ooco SERIAL I/O RBRO CTR LO 
OOC1 PORT B P3 RBR1 CTRL1 
OOC2 (TMS 990?) RBR2 CTRL2 
OOC3 RBR3 CTRL3 
OOC4 RBR4 CTRL4 
OOC5 RBR5 CTRL5 
OOC6 RBR6 CTRL6 
OOC1 RBR7 CTRL7 
ooca 0 CTRL8 
OOC9 RCVERR CTRL9 
OOCA RPER CTRL10 
OOCB ROVER LXDR 
oocc RFER LRDR 
OOCD RFBD LDIR 
OOCE RSBD LDCTRL 
OOCF RIN TSTMD 
OODO RB INT RT SON 
0001 XBINT BR KON 
0002 0 RIENB 
0003 TIMINT XBIENB 
0004 DSCINT TIME NB 
OOD5 RBRL DSCENB 
0006 XBRE NOT USED 
OOD7 XSRE 
OOD8 TIMERR 
OOD9 TIMELP 
OODA RTS 
OODB DCD (NOT DSR) 
OODC CTS 
OODD DSCH 
OODE FLAG NOT USED 
OODF INT RESET 

01C015 OOEO DTR DTR 
OOE1 DSR 
OOE2 RI 
OOE3 
OOE4 I 
OOE5 
OOE6 RI 
OOE7 0 DTR 
OOE8 RESERVED RESERVED 
OOE9 
OOEA 
OOEB 
OOEC 
OOED 
OOEE 

, , 
OOEF PORT B 0 RESERVED 

6-23 



CRU 
Software Base 
Address (Hex) 

01co16 

0200,6 

Table 6-5. TM 990/101 CRU Map (Concluded) 

i it 
Addre3s (Hex) Function Input 

OOFO RESERVED 
TO ~ 

OOFF RESERVED 

0100 OFF BOARD 
ro CRU 

0 ~r 

CAUTION 
Although CRU addresses are decoded into 32-bit blocks, 
not all CRU devices use or completely decode the entire 
32 bits. This can result in a CRU device being enabled 
by addresses other than those specified. Note the 
alternate addresses in Table 6-6 . This condition may be 
referred to as implicit decoding, and should be 
considered where it is necessary to debug a CRU scheme. 

Output 

Note that address lines AO, Al, and A2 do not enter into the decoding. If an external 
instruction is being executed , it is true that some CRU device may be addressed by the 
lines A3 through A14, but since CRUCLK is trapped in the external instruction decoder, 
no CRU output can be done. Therefore, since CRUCLK is absent from the addressed 
device, it will assume a CRU input operation, and present a datum to CRUIN, which the 
processor will ignore . No harm is done in either case, so lines AO, Al, and A2 are 
don 't care conditions. 

6- 24 



r 

' 

Table 6-5. Implicit Decoded CRU Bit Addresses 

Normal Address Range 
Device (R12. Bits 3 to 14) Alternate Address Ranges 

Status LED 0000 0001 - 001F 
Unit ID Switch 0020-0027 0028 - 002F, 0030 - 0037, 

0038 - 003F 
Edge Trig INT6 Clear OOA6 OOAO - OOBF 
DTR (Input) OOEO OOE4, OOE8, OOEC, OOFO, OOF4, 

OOF8, OOFC 
DTR (Output) OOEO OOE1 - OOFF 
DSR (Input ) OOE1 OOE5, OOE9, OOED, OOFl, OOF9 

OOFD 
RI (Input) OOE2 OOE6, OOEA, OOEE, OOF2, OOF6, 

OOFA, OOFE 

NOTES 

1. The above are CRU bit addresses, not R12 contents. 

2. Response to an alternate address (right column) will be the 
same as to using the normal address (middle column); however, 
the user sbnuld program using only the normal address. 

Table 6- 6 gives nominal address values for all on-board CRU devices. These are the 
nominal values which should be used in programs. 

Table 6- 6. On-Board Device CRU Address 

CRU Address Maximum CRU Bit Address Range 
(R12, Bits 0- 15) Displacement (R12, Bits 3- 14) 

Device (Hexadecimal) (Decimal) (Hexadecimal) 

Status LED 0000 0 0000 
!Unit ID Switch 0040 4 0020 - 0024 
Local TMS 9902 0080 31 0040 - 005F 
TMS 9901, 

Interrupt/Timer 0100 15/31* 0080 - 008F 
TMS 9901, Parallel 1/0 0120 15/31* 0090 - 009F 
Reset Interrupt 6 014C 0 OOA6 
Remote TMS 9902 0180 31 ooco - OODF 
IDTR, DSR, RI 01CO 2 OOEO - OOE2 

*The TMS 9901 is shown split into its two separately functional parts; each has a 
maximum displacement of 15. Together, the device has a maximum displacement of 31. 

6- 25 



6.10 MEMORY TIMING SIGNALS 
The three memory timing signals are READY, WAIT, and MEMCYC. These are arbitrarily 
grouped together for a discussion of their theory of operation. 

6.10.1 READY 
The READY signal is an input to the TMS 9900 microprocessor which indicates that 
during a memory cycle, the memory devices addressed will be ready at the next ~1 clock 
phase for successful disposition of data. 

The READY signal is sampled by the processor during 01, after MEMEN has gone low. If 
READY is high when sampled, the 9900 CPU will continue the memory operation in 
progress as shown by the READ cycle part of Figure 6-10. During a read cycle if READY 
is sampled and found to be high, the processor will read data from the selected memory 
device(s) on the leading edge of the next ~1. During a write cycle , if READY is 
sampled on the leading edge of 13'1 and found high, the CPU will assume that data has 
successfully been stored in the selected memory device(s) by the time the next leading 
edge of ~1 occurs. If the selected memory device(s) cannot meet this timing 
constraint , the READY signal can be pulled low, which puts the TMS 9900 CPU into a 
wait state. The WAIT signal will go high to signify that the processor is in a wait 
state, and CPU operations will be suspended until READY is sampled high. When READY 
goes high again, WAIT will drop and the CPU will continue execution from the point 
where it stopped. (Refer to the write cycle portion of Figure 6-10.) 

ME MEN 

Oll lN 

WE 

AU A 14 

tl EA D'< 

WAii 

D0015 

IAi/ 

-.J l--- 333 ns WITH 3MHl CLOCK 

I I 

------4~ VAi 10 ~OORfSS : x ~ VALID ADDRESS ~------
xx§~~{ ~Af! 'XlJli '<XXX)0¢§~9~·~ ~~R:~ /i;.-: -.....,'<YY:JXJ,....,m...-S,...,oir-..~ ....... T ....,P,,..,R~""e)OO(~ 

I I I - ''"-- I 

CPU DRIVFN INl'UT MODE 

------- SHOWN ASSUMING THIS 
CYCLE IS AN INSTRUCTION 

, j ACOUISITION CYCLE I 

~ v 
MF MORY RFAO CYCLE WITH NO WAITS 

I 
INPUT CPU DRIVEN CPU WR ITE DATA 

MEMORY WRITE CYCLE WITH ONE WAIT 

CPU DRIVEN 

nn RfAOOATA 

Figure 6- 10. TMS 9900 Memory Bus Timing 

6- 26 



The READY line can be held low for any amount of time, so the user can utilize memory 
devices with very slow access times. As an example, consider the memory cycle times 
for the TMS 4045 memories resident on the CPU board. With a system clock frequency of 
3 MHz, the total time is about 600 nsec between (1) assertion of DBIN, MEMEN and valid 
address and (2) the actual processor read. When rise and fall times for these 
signals plus setup times for the data are computed, the memory device should have an 
access time of 490 nsec or less from valid address. For processor write operations , 
counting rise and fall times plus data hold times, the cycle time should be less than 
600 nsec from valid address. TMS 4045 devices will have data available for the 
processor to read a maximum of 450 nsec after receiving a valid address. For write 
operations , the data must be held valid for at least 200 nsec before the WE signal 
goes high. If Figure 6-10 is examined, the user will notice these constraints are 
easily met. If the memory devices do not meet these times, wait states can be inserted 
to hold control, address and data lines valid until the timing criteria for the device 
is met. Each wait state extends valid control, address and data information by 333 
nsec. 

For 3 MHz operation, data must be available during a read cycle 490 nanoseconds after 
the start of the cycle. For a write operation data must be captured by the memory 
devices 600 nanoseconds after the start of the cycle. If these times cannot be met the 
processor can be put in a wait state by forcing READY.Blow for as long as necessary 
(indefinitely, if need be) . After READY . a becomes high, the memory cycle will occupy 
one more clock cycle and then be completed . Refer to Figure 6-10. 

6.10.2 WAIT 
The WAIT signal is output by the processor to acknowledge that addressed memory 
devices are not ready and that the processor is in a wait state . 

Note that if one wait state is required, as is specified by the SLOW jumper, WAIT can 
be connected to READY. At the start of the cycle, WAIT is inactive and thus low. When 
the processor samples READY, it sees that memory is not ready because the READY line 
is low. The processor acknowledges by raising WAIT to high, and being connected to 
READY , when the processor samples READY again, it finds it high and therefo£e 
completes the memory cycle. The SLOW jumper must be inserted for memories which cannot 
meet the speed requirements listed in paragraph 6. 10.1. 

6 . 10.3 MEMCYC 
It is possible for the TMS 9900 microprocessor to activate MEMEN and accomplish many 
fetches from memory by shifting the address bus, all while MEMEN is still active. The 
MEMCYC signal is synchronized to the ~3 clock edge after the beginning of the memory 
cycle, and goes inactive just before the instant the address bus could change. This 
signal thus delimits one complete memory cycle and differentiates between separate 
memory cycles . 

The MEMCYC signal is used by dynamic memories which must be able to intervene between 
memory cycles for burst refresh, if necessary. 

6.11 READ- ONLY MEMORY 
The two EPROM blocks, shown in Figure 6- 11 each contain two devices. Each device 
provides an eight- bit output ; the t wo in parallel in each block thus provide a 16- bit 
word. TMS 2708 EPROM's contain 1K x 8 bits; therefore, each block is 1K words. Using 
TMS 2716 EPROM's, capacity is expanded to 2K words per block. A fully expanded EPROM 
section thus contains 4K words or BK bytes of addressability . Each block is separately 
mapped into the address space as explained in paragraph 6. 9. 1.2. 

6- 27 



6. 12 RANDOM ACCESS MEMORY 
Tbe two RAM blocks , RAM 1 and RAM 2 , each contain four TMS 4045 devices. Each device 
provides four-b it storage; four devices in paralle l in each block provide a 16-bit 
word. Each TMS 4045 device contains lK x 4 bits ; therefore, each block is 1K words. A 
fully expanded RAM section thus consists of 2K words. Both blocks are mapped into 
contiguous address space , and are selected as explained in paragraph 6 .9.1.3. Block 
RAM 2 is shown in Figure 6-1 2. 

6.13 BUFFER CONTROL 
Connector P1 is the system bus edge connector. It contains , in approximate order by 
pins: t he system power , interrupt, data, address , and control signals. Table H-1 lists 
pi ns and their functions. Power lines are detailed in paragraph 6.2 , and interrupts 
are detailed in paragraph 6 . 14. This discussion covers the address bus buffers, the 
data bus buf f er s , control bus buffers, and a short discussion of HOLD , HOLDA, and 
direct memory access {DMA) . 

• !> v 

.......--... 1 ~· A44 ' <) I) 

1:-29 E:11 4 7K I 26 E27 t ?8 -Jvl 
l~OMI · 

--
A5 '22 20 A!1 2:> :w 

A9 -
A6 13 

A8 
18 A6 23 18 

A7 1 11 DO A/ 1 1 / OR 
Al 08 

AS 2 16 D I All 2 16 U9 
A6 07 

M J U44 IS 02 All 3 U4 :1 15 D IU 
AS 06 

A lO 4 14 03 Aln 4 14 0 11 
A4 0 5 

A ll 5 lJ 0 4 A11 !> 13 [J 1'2 
AJ 04 

A 12 6 11 05 A1 7 G 11 OIJ 
A"1 OJ 

A 13 1 10 06 ., 13 7 10 0 14 
A l 02 

Al4 8 9 DI A1 4 8 9 Il l !> 
AD 01 

TMS 770812716 rMS ?.708 '2 116 

,,,..--... ,,.,--... 
R45 ) c c ( 

> oJ!>l EJI E::J2 E33 lJ4 
4 , .... 

A A 
VVY 

A4 -::" HOM2 

A 5 ?2 :?O Ao " 20 

A6 23 18 A6 23 18 

A7 1 7 00 "' 17 DB 

AS 2 16 01 AB 2 16 09 

A!! 1!> 02 1\9 3 15 010 

A 10 
V dr1 

14 03 AIU 4 
U43 

14 011 

A11 ~ 13 0 4 Al I ~· l:J 012 

A12 6 11 O!> A17 c; 11 OIJ 

AH 10 l.J6 AIJ 10 1•1 4 

A 14 8 9 U7 ~ 14 8 9 Olo 

TMS 27(18 '7716 TMS 2 108/71 16 

Figure 6-11. Read-Only Memory 

6-28 



" 

AS 1S 11 
A9 1/04 

DO AS 15 11 OS 

AS 1S 12 
AS 1/03 

0 1 AS 1S 12 na 

A7 17 13 02 A7 17 13 010 
A7 1/02 

AS 1 14 03 A8 1 14 011 
A6 1/01 . 

A9 2 A9 2 
AS U36 U34 

AlO 3 A10 3 
A4 

All 4 
A3 

A 11 4 

A12 7 
A2 

A12 7 

A13 6 cs Al 
8 A13 6 8 

A14 s 10 A14 s 10 
AO WE .__ -

WE· TMS 404S TMS 404S 

RAM2· 

AS 15 11 0 4 AS 15 11 012 

A6 16 12 05 AS 16 12 013 

A7 17 13 06 A7 17 13 01 4 

A8 1 14 07, A8 1 14 01S, 

A9 2 A9 2 

A10 3 U30 A10 3 U28 

A11 4 A 11 4 

A12 7 A12 7 

A13 s 8 A13 6 s 
A14 5 10 A14 5 10 

TMS 4045 TMS 4045 

Figure 6-1 2. Random Access Memory 

6- 29 



6.13.1 ADDRESS AND DATA BUFFERS 
The address buffers consist of two 74LS245 octal bus transceivers. The address lines 
normally flow off-board. Upon a HOLDA signal, the direction reverses, allowing a OMA 
controller to input an address onto the board for disposition by the address decoder 
section. Address and data buffers are shown on sheet 3 of the schematics (Appendix F, 
page F-3). 

The same devices are used as the data bus buffers. Direction data flow, however, is 
governed by the 74LS153 decoder using the states of ONBDMEM and HOLDA (listed in Table 
6-8 ) . 

Table 6-8. Data Buffers 

Data Flow 
BOLDA ONBDMEN Bus Command (READ) (WRITE) Operation 

Low Low OBIN On-board Off- board Normal off-board 
Low High Low Off-board Off-board Normal on-board 
High Low High On-board On-board DMA off-board 
High High DBIN Off- board On-board DMA on-board 

Note that during normal off-board operation, the direction is as expected. During 
normal on-board operation, the direction of data flow is always off-board so that 
off- board data will not interfere with the on-board operation. This also permits an 
external logic system to monitor on-board activities for debugging purposes. For 
example, illegal op codes can be caught by monitoring the data bus during IAQ time . 
Followin~ the same logic, data flow is always on-board during an off-board DMA 
operation so that no interference occurs . Finally, on- board DMA requires that the 
buffers be in a state opposite that normally expected since the controller is 
off-board. 

6 .13.2 CONTROL BUFFERS 
Three types of enabling are used on control line buffers: HOLDA, CRU, and always 
enabled. The lines that are always enabled are those whose source .is always on- board, 
such as the clocks, IAQ, IORST, CRUCLK, and HOLDA. 

The second type, the CRU signals, are governed by the INTCRU/EXTCRU signal derived by 
the CRU address decoder (see paragraph 6.9.2). Normally enabled, CRUIN.B and CRUOOT.B 
are disabled for on-board operation to prevent possible interference during address 
and CRU data stabilization. 

The third type of control buffer is the _!ype directly affected by CPU or DMA 
operations: the memory contr ol signals MEMEN, WE, and OBIN. Normally enabled flowing 
off-board, these lines reverse direction when flowing on- board for DMA operations so 
that the OMA controller can command on- board memory. These lines are keyed on the 
state of HOLDA. 

6-30 



6.13.4 HOLD, HOLDA, and OMA 
When an off- board direct memory access controller (DMAC) wishes to initiate operation, 
it asserts a low state onto the HOLD line. After finishing the current memory cycle , 
the microprocessor responds by floating its address, data, MEMEN, DBIN, and WE lines, 
and then forces HOLDA (HOLD acknowledge) high. 

The DMAC is now free to use the system buses to transfer data directly in and out of 
memory as it wishes. For a more detailed discussion of DMA operations, refer to 
Section 8 of the manual, Applications. 

6 . 14 INTERRUPT STRUCTURE 
The TM 990/101M provides total of 17 interrupts. The characteristics of each are 
listed in Table 6-9. 

Table 6-9 . Interrupt Characteristics 

Interrupt Types Maskable Prioritized Characteristics 

RESET Dedicated No Yes INT 0, resets I/O, 
TMS 9900 mask 

1-5 Dedicated Yes Yes Level triggered, all 
defined* 

6 Dedicated Yes Yes Level or edge-
triggered* 

7-15 Shared 1/0 Yes Yes Level- triggered, 
undefined 

LOAD Dedicated No No Level triggered, will 
always occur unless 
locked out by a RESET 

*Definitions in Table 6-10 

Table6-10. Dedicated Interrupt Description 

Interrupt 
Level Purpose 

1 Power ~ail interrupt, brought out on OEM chassis 
2 Reserved for future use 
3 System timer: TMS 9901 
4 Main I/O port: TMS 9902 
5 Auxiliary I/O port: TMS 9902/03 
6 External device - edge (positive or negative) triggered or level 

sensitive. 

6-31 



All interrupts except RESET and LOAD are processed by the TMS 9901 Programmable 
Systems Interface device. This device handles both parallel I/O and interrupt 
requests . Because of the pinout limitation on the package, the TMS 9901 must share 
INT7 through INT15 (interrupt requests 7 through 15) with the parallel I/O lines P15 
through P7, respectively. This reverse arrangement provides contiguous I/O and 
interrupt lines if some of the shared lines are used for interrupts and others for I/O 
(see Figure 6-13). 

The basic operation of the interrupt facility must be initialized by the 
microprocessor through the CRU. The 15-bit interrupt mask is set under program control 
to allow interrupt requests by writing a ONE state into those mask register positions. 
The mask bits that contain ZERO will not honor interrupt requests. Note that the 
condition of the processor's Status Register priority mask is irrelevant if the TMS 
9901's Interrupt Mask Register is a ZERO for a particular interrupt: the request will 
not even be presented to the processor. 

When one or more interrupt requests are presented on the INT1 to INT15 lines, only 
those whose corresponding mask bits are ONE are considered. The highest priority 
request present is encoded onto lines ICO through IC3 , and INTREQ becomes active 
(low). 

The TMS 9900 receives the coded request and compares its value to the interrupt mask 
in its status register. If equal or higher priority, (a lower interrupt number) the 
interrupt is honored, the mask is set to one less than the current interrupt number, 
and the vector process begins. Note that level 0 is the highest priority, and cannot 
be masked out since it is a number that is always equal to or lower than any number 
which can be in the mask register of the processor . The lowest priority is 15 . 

There is extra logic for INT6 to be triggered either in the normal manner by 
presenting a low level to Pl pin 20, or in an edge- triggered manner. A low-to-high 
transition should be presented to P4-8, and a high-to-low transition on P4-6. These 
edge-triggered signals are converted to level-sensitive signals, and are latched by a 
pair of flip-flops. The interrupt request line can be set inactive by the interrupt
service routine by writing a bit, either a ONE or a ZERO, to CRU bit address OOA6 
(R12 base address 014C15). These flip-flops are automatically cleared by the CLRCRU 
signal. 

6.15 PARALLEL I/O AND SYSTEM TIMER 
The TMS 9901 provides sixteen lines of parallel I/O . The TM 990/101M user can read or 
write to any single bit of this parallel port because it is under CRU control. For 
example, eight bits can be used for output at the same time the eight other bits are 
used for input. This allows applications such as scanning a custom keyboard for input, 
or outputting multiplexed signals to a seven-segment display device; all under program 
control. A timer is also integrated into this device . 

6-32 



• 5V 
I 

El ) 

(. Pl 18 
,> > ;. > ~ '> :>All 10 k n ,> . 

E2 

~ > . 
TMS9901 

INTI 
P1· 16 re iNi'RE'O 11 INTI 17 iNr'REQ 

E3 INTZ 
P1-13 ----- Nf-

15 
INTZ 18 

:25 ~a: 

ICO 
ICO 

a>ON INT3 
Pl-15 

011-
(/)C..c.. INT3 9 

~~ :Eu. 
IC1 14 

IC1 

f-0 iNT4 

(: E4 
Pl -18 

8 IC2 13 
IC2 INT4 

INT5 12 
l"NTs 7 IC3 

ICJ 
E5 

t 

INT6 

··~ff" 
INT6 6 

I z 0 a: 
I OR Sf 1 

RSTI 

:Eo 8lo..., 34 
Pl -6 011- (/)c..c.. a:z :E ... 

J 10 - INT7/P15 

P4-40 u._ fo-0 33 
P1·5 

CRUIN 4 
iNTs1P14 CRUIN 

P4-38 
32 

P1-8 
CRUOUT 2 

CRUOUT INT9/ P13 
l p4.36 

31 - P1·7 
CRUCLKG 3 

e RUeLK i"Nf'1iilP12 
T P4-34 EDGE TRIGGER 

P1-10 -
LOGIC 

JO 

T 
I SEL4· s cr !NT11/P11 

P4-32 29 
P1 ·9 

P1 ·20__J r 
J 

AlO 39 
'iC INT12/P10 

T 
P4-30 
Pl 12 

P4-6 
'28 

1 
All 36 

INT13/P9 

1'4·28 

"1 

P4-8 P1-11 INT14/P9 
27 

T 
A12 35 

P4-26 
52 

23 
Pl- 14 

AlJ 25 
S3 INT15/P7 

1 p4.24 
19 

P4-12 
A14 24 

Pti S4 

•SV 40 20 
Vee P5 P4-10 

P4-18 
21 16 

GNO P4 

l 22 
P4-16 PJ -

P2 26 
P4-14 

Pl 
37 

P4-22 

38 
P4-20 PO 

,> .> : : . > . . ,> 
> ALL 10kn 

. 
' > > '> . > > ) r > , 

A0001 4 SO 

•5V 

Figure 6-1 3. TMS 9901 

6-33 



6.15.1 PARALLEL I/O 
Lines PO through P6 are dedicated I/0 lines , wh ile P7 through P15 are shared with 
INT15 through INT7, respectively. When a user system is configured, it must be decided 
how to allocate these shared lines between interrupts and I/O. When written to, each 
parallel line remains in the same state until written to again. The parallel 1/0 lines 
are initialized by resetting the 9901. This may be done in 3 ways; by 

(1) Activating the RESET switch or pulling PRESET.B to 0 

(2) executing a RSET instruction 

(3) Putting the TMS 9901 in the clock mode and then writing a 0 to CRU bit 15 
(refer to Table 1, TMS 9901 manual). Instructions to accomplish this for the 
TMS 9901 on the /101M CPU board are : 

LI R12 , >100 
SBO 0 
SBZ 15 

After initialization of the 9901, all I/O lines are in the input mode, and aJl I/O 
lines are pulled high. Writing to a specific CRU bit programs that bit as an output , 
and that bit will remain an output until the TMS 9901 is initialized again. 

6.15.2 SYSTEM TIMER 
The TMS 9901 has an internal real time clock which may be used as an interval timer by 
the user. It is a decrementer which generates an interrup t when it decrements to 0 . To 
load a value into the 9901 clock register on the 101 board, the user must: 

(1) put the 9901 in the clock mode by writing a 1 to the control bit (CRU bit O) 

(2) load a 14-bit count value into the counter register (CRU bits 1 through 14) 

The counter will start decrementing the counter register value immediately after it is 
loaded at a rate of 0/64. For a 101 running at 3 MHz, this computes to a decrement 
every 21. 33 microseconds (rounded off). Writing all ones to the counter register gives 
the maximum time interval of 349.525 milliseconds (rounded off value). An example of 
loading and starting the timer is: 

LI R12, >100 
LDCR R 1, 15 

Rl contains the 14-bit timer value, plus a one in the least significant bit pos1tion. 
This least significant one gets loaded first and puts the TMS 9901 in the clock mode. 
If the least significant bit is a O, the user will be loading the TMS 9901 interrupt 
mask register instead of the counter register. Refer to the TMS 9901 manual for more 
details. 

When the TMS 9901 timer decrements to 0, a. level 3 ( INT3) interrupt is generated. For 
this interrupt to cause a context switch , the 990 1 must be in the interrupt mode (CRU 
bit 0 = 0), the INT3 mask bit must be 1 (CRU bit 3 = 1), and the TMS 9900 interrupt 
mask must be set to accept a level 3 or higher priority interrupt (LIMI 3). Cnde to do 
this would look like the following: 

6-34 



• 

•• 

LI 
SBZ 
SBO 
LIMI 

R12,>100 
0 
3 
3 

SET CRU BASE ADDRESS OF 9901 ON 101 
PUT 9901 INTO INTERRUPT MODE 
ENABLE INT3 
SET 9900 INTERRUPT MASK FOR LEVEL 3 
OR HIGHER PRIORITY INTERRUPT. 

After the interrupt has occurred and a context switch has taken place, the user should 
disable the timer interrupt at the 9901 by writing a 0 to CRU bit 3. This will prevent 
INT3 from occurring during the Interrupt Service Routine and possibly cause an 
infinite loop to the Interrupt Service Routine. Several items of interest regarding 
the 9901 timer are 

(1) after decrementing to O, the timer reloads itself with the start value and 
starts decrementing again 

(2) when the 9901 timer is being utilized, it generates INT3. Any signals on the 
INT3 pin (pin 9) of the 9901 are ignored. 

(3) if the timer is used for measuring elapsed time or as an event counter, the 
contents of the counter register must be read. To do this, the 9901 must be 
put in the interrupt mode (CRU bit 0 = 0) for at least 21 .33 microseconds, 
then placed back in the clock mode (CRU bit 0 = 1) and CRU bits 1- 14 are 
read. 

(4) to stop the timer, the 9901 must be put in the clock mode and the counter 
register (CRU bits 1- 14) must be loaded with zeroes. 

6 . 16 MAIN COMMUNICATIONS PORT 
The main communications serial I/O port (P2) has two options, depending on the "dash 
number" ordered by the customer. (Refer to paragraph 1.3, "Product Index, " to 
determine whether the Teletype (TTY) or multidrop (MD) interface circuitry is included 
on this serial port.) The main I/O port uses the TMS 9902 Asynchronous Communications 
Controller and is intended for operation with either the "console device" or mas ter 
terminal for the TM 990/101M user, or with an automated control device using the 
multidrop interface. For detailed operation instructions for the TMS 9902, refer to 
the data manual for this device. When pin E2 is connected via jumper to pin E3, the 
INT pin of U46 is connected to the INT4 pin of the TMS 9901. The TMS 9902 will 
generate an interrupt on 4 separate conditions, and so if the 9902 at P2 does generate 
an interrupt, it will appear as INT4. 

6.16.1 EIA INTERFACE 
The EIA interface consists of 75188 line drivers and 75189A line receivers. The 
receive-data line goes to P3-2 and the transmit-data line to P3-3. This configuration 
forms a port suitable for connection to an RS-232-C compatible terminal. A data
terminal-ready (DTR) signal is supplied as an input for handshaking use with a device 
requiring it. Request-to-send RTS) and clear-to-send (CTS) signals are tied together 
and brought out to P2-8, which functions as the data-carrier-detect (DCD) signal to 
the terminal. 

6-35 



A 14 10 TO INT4 0N 9901 
S4 I NT 

A13 11 2 XOUT 
S3 XOUT TTY OUTPUT 

A 12 1? 5 RTS 
S2 HTS 

All 13 6 
S1 CTS • EIA ( •bVI 

A ID 14 7 so DSR 
CRUCLKG 15 

CRUCLK R IN 
3 

LOCOCO 
CRUOUT 8 P2 8 

CRUOUT 
CRUIN 4 

CRUIN 

93 16 
¢ LOCO TR 

P2 20 ISEL2 17 
CE 

•5V 18 E38 MU L T I DROP R ECE IVER INPUT 
Vee 

9 E39 GND 
( EI A & TTY I NPUT 

TMS 9902 E40 -

Figure 6-14. Serial I/O Port EIA Interface 

6.16.2 TTY INTERFACE 
A t r ansistor and 560-ohm resistor form the transmit loop for the 20-rnA current loop, 
TTY interface. The transistor conducts current while the line driver connected t o its 
base is at a mark state. As the line driver goes to the space state , the posi tive 
voltage output is clamped to ground through the signal diode on the transistor base, 
thereby turning off the transistor and the current loop (refer to Figure 6-15). 

The receive circuit consists of a line receiver which monitors the receive loop formed 
by the TTY transmit circuitry and the tw o s up ply resistors. The values of these 
resistors is such that during a mark state, th e input to the l i ne receiver is held 
very close to - 12 volts. When the TTY transmit circuitry cuts the loop, the receiver 
input is pulled up to +12 by the 2 . 7 kohm resistor . 

Note that the TTY jumper must be in place so that the line receiver can monitor the 
l oop voltage . An EIA terminal shoul d not be connected when the TTY jumper is in place. 

6-36 



., 

12 v 

,J ~ TTY RCV RTN 
., P2 23 

tl2 v 

I RIN 
E39 LOCRCD E37 t36 TTY RCV 

E40 
0 .. P2 18 

I .' V 

xour Tl'r' XMl fHN 

TTY XMT 
P2 25 

TMS 9902 

•5 v 
)N:/90!JA 

1N91 4B 

Figure 6-15. Serial I/O Port TTY Interface 

6-16.3 MULTIDROP INTERFACE 
The multidrop interface (Figure 6-16) may be used for board- to- board communications 
over long distances. Generally, on ly a twisted pair line is required between the 
boards. One pair is necessary for transmitting, and another pair for receiving when in 
full duplex mode. Connecting the two half-duplex jumpers will loop the transmitter 
back to the receiver for test or half-duplex applications and only one pair is then 
required. 

More than two boards may be linked together, each one is just "dropped" in place, 
hence the term multidrop. If more than two boards are used, the boards not at the 
extreme ends of the twisted pair line (i.e., those "dropped in the middle") are 
considered nonterminating boards, and the termination resistor jumper plugs should be 
removed to prevent standing wave patterns which might occur, mostly at the higher baud 
rates. The two boards at the extremes of the line, regardless of whether additional 
boards exist in between, should have these resistor jumper plugs installed. Refer to 
Section 7, Options, for jumper configuration information. 

6-37 



~IUl TIDHOP 
RH.EIVEH /blO/ 

INPU T I NPU$11 
I\ IA 

INPUI l 
lh 

'" ·~ 
r1 y ~ 

11\jP llT 
V1 <. -=- -=-
V<.;C 5 

·~ 
·A 

-=-l1f\/l.J 

HIN 

' '•V~ 
EbO,.---.,.. E49 P/ .'3 

f 4 / 

-=-
E48 ( 

sv~ 
E52 ..---... - P~ I ll 

E51 

-=- I 43 

,,, 11.' I 44 

xour uurPUI I 
2~ n ~ r"} i!J 

11 rs OU TPUSH 
P~1 7 4 

i IS 2(. ' Y 

rMS 9907 VL<"• 

D 

rffl":" w 
!J V( I 

IC I/ 

i ;NtJ I' 

-:- -
·~ v " \ 

Fie;ure 6-1 6 . MultidroE Interface 

The multidrop system, also called t he Erivate wire inter face , uses a dual set, twisted 
pair wiring, with operation of t hese lines i n an unbal anced , differential mode . As 
such, it is a differential line driver/receiver pair which offers higher current drive 
capability and the noise-free advantages of a balanced line . 

6 . 17 AUXILIARY COMMUNICATIONS PORT 
The auxiliary RS-232-C compatible port logic is shown in sheet 6 of the Schematics • 
(Appendix F). All signals for RS-232-C operation are provided. Both terminal and modem 
communication can be used by proper programming and cable assemblies. Devices such as 
terminals, modems, and serial line printers, such as the TI 810, all can be attached 
to this port. Using a TMS 9902, communications are asynchronous. By substituting a TMS 
9903 Synchronous Communications Controller, for example, 1200-baud synchronous modems 
can be used. 

This port uses a modified EIA-standard co nfig uration for direct use with 
RS-232-C-compatible terminals. Signals required by modems are brought out to spare pin 
positions, which are then rearranged in the special modem cable, the TM 990/506 cable 
assembly, to the positions required by the modem . 

6-38 



• 

• 

" 

All TMS 9902/9903 signals are brought out to line drivers or receivers. Port. P3 may be 
configured as either a modem or EIA type interface in the following manner : 

(1) If E54 and E55 are jumpered together (terminal position), the RTS and CTS 
signals from the TMS 9902/9903 are tied together to form DCD (Data Carrier 
Detect). The DCD signal is brought out to P3- 8. In this configuration, the 
P3 port appears as a modem to the terminal device. If the user wishes to 
send characters to a terminal device through the P3 port, he must first make 
the RTS signal to the terminal go low. This is done by writing a 1 to CRU 
bit 16 of the 9902. By making RTS go to O, the user is also pulling CTS to 
O, whit~ is the same as asserting DCD. DCD will then be available for 
terminal5 requiring that signal for communications. 

(2) If E55 and E56 are jumpered together (modem position), RTS and CTS are 
distinct signals, both of which are brought out to P3. In this 
configuration, the P3 port looks like a terminal to the modem connected to 
P3. 

Provisions are made also for Data-Terminal-Ready (P3-21) and Data-Set-Ready (P3-1 9) 
and Ring Indicator (P3- 22) . These three signals are CRU-addressable, outside the range 
of the TMS 9902/03. DTR is a latched output and the other two are inputs. Use of all 
signals provided can result in a completely automated communications system. Section 
8, App lications, describes several examples for the use of this port, and gives the 
modem cable configuration as well. 

The TMS 9902/9903 at Port P3 can be configured to generate an interrupt at the TMS 
9901 by connecting E5 to E6 with the INT5 jumper. If the TMS 9902 is configured in 
this manner and does generate an interrupt, the interrupt will appear at the TMS 9901 
as INT5. Refer to the TMS 9902 or 9903 data manuals for proper interrupt-causing 

• conditions. 

• 
r 

.. 

.. 

6.18 UNIT ID SWITCH 
The ID s witch is a set of five SPST switches mounted in a DIP packing and connected to 
a 74LS251 CRU device. Each switch position corresponds to one CRU bit and, in the open 
or OFF position, represents a logic ONE state. Closing a switch to ground produces a 
logic ZERO state. Five switches can be set to provide 32 unique codes. 

The DIP switch has many applications. Used to pass information to a program, it can 
function as a "programmer's front panel". Automatic communications sys terns may have 
the same software in EPROM for every board in the system: the polling ID for each 
board is set uniquely in the DIP switch. Alternately, it can be used to pass baud rate 
and device type information about the auxiliary port to the service programs. The uses 
for fixing system configuration in the switch, and having one set of standard 
software, is limited only by the imagination. 

6 .19 STATUS INDICATOR 
The status indicator is a CRU-addressable light emitting diode (LED). Writing a ZERO 
to CRU address 000016 causes the LED to light; writing a ONE, turns off the LED. 

Uses for this feature are again limited only by the imagination. Initialization 
software can turn it off once initialization is complete. A system error can cause the 
LED to come on. Test software can blink the LED during execution. 

The CLRCRU signal turns the LED ON upon power-up. 

6-39 





SECTION 7 

OPTIONS 

7. 1 GENERAL 
This section explains the various options available to the user of the TM 990/101M. 
These options include: 

e Use of TMS 2716 EPROM's (2K x 8 bits each) instead of TMS 2708 EPROM's (1K 
x 8 bits each) 

• On-board expansion of EPROM and RAM 

• Asynchronous serial interrupt from one or both of the TMS 9902's 

• RS - 232 - C/TTY/Multidrop interfaces with the Local Serial Port 

• Use of slow access time EPROM's by insertion of one WAIT state. 

• Use of TM 990/30 1 Microterminal 

• External switch actuation of a RESET or RESTART signal 

• Power-up RESET or LOAD 

• Memory Map change by reprogramming of the PROM 

e Line-by-Line Assembler in EPROM. 

Figures 7-1 and 7-2 show board locations applicable to this section. Table 7-1 is a 
summary of jumpers and capacitors used with these options. 

7.2 ON-BOARD MEMORY EXPANSION 

7. 2 .1 EPROM EXPANSION 
EPROM memory can be expanded on-board in two ways. 

• Add two more TMS 2708 EPROM chips ( 1K x 8 bits each) , for a total of four, 
to provide an additional 1K words of memory. 

• Use two or four TMS 2716 EPROM chips (2K x 8 bits each) to provide 2K or 4K 
words of memory. 

Figure 7-3 shows placement of EPROM chips and corresponding memory addresses (in 
bytes). The board silkscreen designators identify the necessary jumper placement at 
E9/E10/E11, E26-E30, and E31-E35. 

NOTE 
Check the jumper placements on your board against Table 
7-2 for proper configuration of your board. 

In general, for TMS 2708 use, jumpers are placed as shown in line 1 of Table 7-2; for 
TMS 2716, they are placed as shown in line 2. These jumpers switch the chip enable and 
A4 signals as required for the memory device used. Location of RAM and EPROM in 
opposite ends of memory can be reversed by jumpering E16 to E15 (instead of E16-E17); 
this starts RAM at M.A. 0000 15 and EPROM starts in upper memory. In addition, EPROM 

7-1 



"%] 
I-'· 
)q 
c: 
'1 
(1) 

-.:i 
I -. 

-..J 
~ I 
c: N 
8 
'O 
(1) 

'"l 

'"'d 
...... 
Ill 
Q 
CD 
8 
CD 
::i 
cT 

E13/ E14 

SELECTS 
ON-BOARD 
EPROM· 

E12/E13 
DESELECTS 
ON-BOARD 
EPROM 

E9/E10 
SELECTS 
2716 MODE 
ADDRESS MAP 

SELECTS 
2708 MOD E 
ADDRESS MAP• 
E1o:E11 

E15i E16 
RAM IN LOW 
MEMORY 
EPROM IN HIGH 

CONNECTS INT 5 TO P1 .17• 

E4/ E5 

CONNECTS 
INT4TOP1- 1B • 

E1 / E2 

E7/E8 
ONE WAIT 
STATE FOR 
ON -BOARD 
EPROM 

E8/ E53 
NO WAIT 
STATE FOR 
ON-BOARD 
EPROM · 

CONNECTS INT4 TD 
MAIN TMS 9902 

E21E3 

NOTES· "THIS POSITION IS THE NORMAL POSITION ON ALL BOAR DS 
.. NORMAL POSITION FOR -1 AND -3 BOARDS ALSO • 
... NORMAL POS ITION FOR -2 BOARDS ALSO . 

'II 

E54/ E55 
SELECT PORT p3 E20/ E21. E22/E23; E24/ E25 
FOR USE WITH POWER TO TM 990,'301 
A TERMINAL • MICROTERMINAL •• 

E55/ E56 I 
SELECT PIN P3 FOR 
USE WITH A MODEM . 

.. •E43/ E44 

MULTI DROP 
INTERFACE 

U43, U45 ARE 
TMS 2716 
E31/ E32 
E33 'E34 

HALF DUPLEX 
SE LECTORS 
E47/ E48 

CONNECTS 
MULTIDROP 
INTERFACE 
TO TMS 9902 
E38i E39 

ENABLES 
TTY INTER· 
FACE 
E36.'E37 

U43, U45 
ARE 
TMS 2708 

E39/E4o• 
CONNECTS 
EIA AND TTY 
INTERFACE 
TO TMS 9902 



lL 
lL 
u. 
D 

"' 0 D ,... I-
N 

D 
D 

"' D 

Figure 7-2. Memory and Capacitor Placement 

7-3 

"' lL 
lL 
u. 

0 
"' I-,... 
N "' 0 

D 
D 

0 
I-

"' 0 
0 
0 
u. 

"' "' u. lL 
u. lL ,... u. 
D D 

"' 0 ~o 

co I- ~ I-0 ..... "' "' N 
D D 
D D 
0 D 
0 D 



No. 
Pins Staked 

3 

3 

3 

3 

3 

3 

2 

2 

2 

2 

5 

5 

2• 

3 

Table 7-1. Master Jumper Table 

Pins Connected 
Together 

E1-E2 

E2-E3 

E4-E5 

E5-E6 

E7-E8 

E8-E53 

E9-E10 

E10-E11 

E12-E13 

E13-E14 

E15-E16 

E16-E17 

E18-E19 

E20-E21 

E22-E23 

E24-E25 

E27-E28; E29-E30 

E26-E27; E28-E29 

E32-E33 ;_ E34-E35 

E31-E32; E33-E34 

E36-E37 

E38-E39 

E39-E40 

Function When Connected 

Connects INT 4 to pin 18 of P1 edge connector 

Connects INT4 to TMS 9902 of LOCAL I/O port 

Connects INT5 to pin 17 of P1 edge connector 

Connects INT5 to TMS 9902 of REMOTE I/O port 

Causes 1 WAIT state when on-board EPROM is 
accessed 

Causes no WAIT state: memory cycles are full 
speed 

Selects memory map for TMS 2716 EPROM's 

Selects memory map for TMS 2708 EPROM's 

On-board EPROM is disabled from memory map 

On-board EPROM is enabled into memory map 

EPROM at high addresses, RAM in low 

EPROM at low addresses, RAM in high 

Pin 1 of P3 is connected to GROUND 

Microterminal: +5 volts to P2-14 

Microterminal power: +12 volts to P2-12 

Microterminal power: -12 volts to P2-13 

Main EPROM is TMS 2708 

Main EPROM is TMS 2716 

Expansion EPROM is TMS 2708 

Expansion EPROM is TMS 2716 

Teletype ·terminal connected to P2 

Multidrop Interface in use with LOCAL I/O port 

EIA or TTY interface in use with LOCAL I/O 
port 

7-4 



• 

Table 7-1. Master Jumper Table (Concluded) 

No. 
Pins Staked 

2 each** 

2 each** 

3 

Pins Connected 
Together 

E41-E42,E45-E46 
E49-E50,E51-E52 

E43-E44, E47-E48 

E54-E55 

E55-E56 

*On TM 990/101M-1 and -3 only 
**On TM 990/101M-2 only 

Function When Connected 

Multidrop termination resistors connected 

Multidrop Half Duplex operation enabled 

Connects TMS 9902 RTS to CTS for port P3 to 
communicate with an EIA compatible terminal. 

Connects TMS 9902 CTS to port P3 directly for 
communication with an EIA modem. 

Table 7-2. Jumper Pins by Board Dash Number (Factory Installation) 

Board Jumper Installation at 
Dash No. Positions Staked Factory (Positions) 

-1' - 3 E1-E40, E53-E56 E1-E2 E4-E5 E10-E11 E13-E14 
E16-E17 E18-E19 E20-E21 E22-E23 
E24-E25 E27-E28 E29-E30 E32-E33 
E34-E35 E39-E40 E8-E53 E54-E55 

- 2 E1-E35, E38-E56 E1-E2 E4-E5 E10-E11 E13-E14 
E16-E17 E18-E19 E27-E28 E29-E30 
E32-E33 E34-E35 E39-E40 E41-E42 
E43-E44 E45-E46 E47-E48 E49-E50 
E51-E52 E8-E53 E54-E55 

7-5 



can be disabled from the memory map {in effect, it no longer exists) using jumper 
E12-E13 (jumper placement E13-E14 enables it onto the memory map). 

7.2.2 RAM EXPANSION 
Four additional TMS 4045-2 RAM chips can be added as shown in Figure 7-3. This will 
provide an additional 1K words of RAM. Location of RAM and EPROM at opposite ends of 
memory can be reversed by jumpering E16 to E15 {instead of E16-E17); this will place 
RAM starting at M.A. 0000 16 and EPROM starting in upper memory. 

M.A. 
(HEXI 

0000 
BANK 1 

2 TMS2708'S 
U42,U44 

(1K XS EACH) 

0800 
BANK2 

2TMS2708'S 

U43, U45 (1K X 8 EACH) 

(EXPANSION) 
Of FE 

U28, U30, U34, U36 

U29, U31, U35, U37 

M.A. 
(HEXI 

FOOO 

F800 

M.A. 
JUMPERS (HEXI 

E10/E11 
0000 

E13/E14 
E27/E28 BANK 1 
E29/E30 2 TMS2716'S 

E10/E11 U42, U44 
(2K X 8 EACH) 

E13/E14 
E32/E33 
E341E36 

1000 

BANK2 

2 TMS2716'S 
(2K X 8 EACH) 

U43,U45 (EXPANSION) 

1FFE ..._ _____ __. 

(A) EPROM EXPANSION 

BANK2 
(EXPANSION) 

BANK 1 

(EACH 1K X 4 WITH 

JUMPERS 

E9/E10 
E26/E27 
E28/E29 

E9/E10 
E31/E32 
E33/E34 

FFEE-. _____ __. I 
TMS4045 

. 4 IN EACH BANK. TOTAL 
EXPANSION TO 2K X 16 

BITS) 

(Bl RAM EXPANSION 

Fi gure 7-3 . Memory Expansion Maps 

7-6 

I 



r 

7.3 SLOW EPROM 
Slow EPROM's can be used with the TM 990/101M by using a jumper between pins E7 and 
E8. This connects WAIT to READY when on-board EPROM is addressed. Refer to Table 7-3. 

Table 7-3. Slow EPROM Table 

System Speed EPROM Type Access Time Jumper E7-E8 E8-E53 

3 MHz TMS 2708 450 ns Installed 
3 MHz TMS 2708 650 ns Installed 
3 MHz TMS 2716 450 ns Installed 
3 MHz TMS 2716 650 ns Installed 

7.4 SERIAL COMMUNICATION INTERRUPT 
Either or both serial ports (TMS 9902's) can be interrupt driven. 

• Main Communications Port (EIA/TTY/MD) at P2: interrupt 4. 

• Auxiliary Communications Port (EIA) at P3: interrupt 5 . 

As shown in Figure 7-4, any of four conditions at either TMS 9902 can cause an 
interrupt condition (change in data set mode, character received, character 
transmitted, or TMS 9902 timer counted down to zero). An interrupt service routine can 
check the TMS 9902 bits through the CRU to establish cause of the interrupt, then take 
appropriate action. Further information is available in the TMS 9902 Asynchronous 
Controller Data Manual. 

7.5 RS-232-C/TTY/MULTIDROP INTERFACES (MAIN PORT, P2) 

7.5.1 TTY INTERFACE 
Appendix A covers cabling for a Teletype Mode l 3320/ 5JE . To use this terminal (20 mA 
current loop), connect pins E36 and E37 with a jumper plug . 

CAUTION 
Verify correct voltage levels at connector P2 before 
attaching a teletypewriter type terminal. 

Connect the cable to the terminal and t o the mi crocomputer board. The EIA/MD jumper 
plug must be connected between pins E39 and E40. 

7.5.2 RS-232-C INTERFACE 
Appendix B covers cabling for an RS-2 32-C compatible terminal. To use this type of 
terminal, disconnect the TTY jumper and make sure the EIA/MD jumper is in the EIA 
position. Connect the cable to the t erminal and to the microcomputer board. 

7-7 



INTERRUPT 
CAUSING 

CONDITION 

DATA SET CHANGE { 

RECEIVE BUFFER { 
LOADED, ENABLED 

TRANSMIT BUFFER { 
EMPTY 

TIMER ELAPSED { 

A0001459 

DSCH 

DSCENB 

RBRL 

RIENB 

XBRE 

XIENB 

TIMELP 

TIMENB 

PIN INSTALLATIONS TO ENABLE INTERRUPTS: 
- INTERRUPT 4: E2/E3 
- INTERRUPT 5: E5/E6 

DSC INT 

RBINT 

XBINT 

Figure 7-4. Four Interrupt-Causing Conditions At TMS 9902 

7.5.3 MULTIDROP INTERFACE 

9902 
CRU 

fill. 

16 

17 

TO INT4 OR INT5 AT 

E2/E3 

Figure 7-5 shows the multidrop interface in use with a system of TM 990/100-series 
microcomputer boards. The two boards at the extreme ends of the lines are considered 
"terminating" boards; whereas , the boards in the middle a r e non-terminat i ng. 
Half-duplex operation requires one twisted-pair line (i.e., two wires), and 
full-duplex operation requires two twisted pairs (i.e., four wires). Refer to Figure 
7-6 for cabling. 

Table 7-4 shows the jumper configuration for the various configurations . As an 
example, a common system requirement is for a full duplex board-to-board communication 
between only two boards. This requirement is fulfilled by the jumper configuration 
shown on line 4 of the table. 

7.5.3.1 Full Duplex Master-Slave 
This communications setup is used when there is only one master station and several 
slave stations. The system setup is shown in Figure 7-7. The advantage of this 
approach is that one station is in command and control of communication is thus 
centralized, and also each master-slave communication is full duplex. The half duplex 
jumpers are removed . 

7-8 

' 



' 

t 

• 

TWISTED 
PAIR 
CAB LING 
(SEE FIGURE 7-6) 

OUTPUSH 

OUTPULL 

IN PUSH 

INPULL 

TERMINATING 
BOARDS 

Figure 7-5. Multidrop System 

P2 P2 

24 24 OUTPUSH 
25 25 OUTPULL 

23 23 INPUSH 
18 18 INPULL 

NOTE: ALWAYS CONNECT A "PUSH" LINE TO A "PUSH" 
LINE AND A " PULL" LINE TO A "PULL" LINE 

Figure 7-6. Multidrop Cabling 

7-9 



Table 7-4. Multidrop Jumper Table 

Mode 

Half Duplex , non-terminating 

Full Duplex, non-terminating 

Half Duplex, terminating 

Full Duplex, terminating 

All 

OUT 24 

25 

23 

IN 18 

MASTER 

Install 

E43-E44, E47-E48 

None 

All E41-E52 

E41-E42, E45-E46, 
E49-E50, E51-E52 

E38-E39 

24 24 

25 25 

23 23 

18 18 

SLAV El SLAVE2 

N 
'<t 
w 

0 0 0 

0 0 0 

..... C"l I.Cl 
'<t '<t '<t 

w w 

0 0 

0 0 

,..... Ol 
'<t '<t 
w w 

MASTER AND SLAVE "N" 
JUMPER ARRANGEMENT. 
(OTHERS HAVE NO JUMPERS) 

Remove 

E41-E42, E45-E46, 

24 

25 

23 

18 

SLAVE3 

N 
I.Cl 
w 

0 

0 

..... 
I.Cl 
w 

E49-E50, E51-E52 

All E41-E52 

None 

E43-E44, E47-E48 

24 

25 

0 0 0 
23 

18 

SLAVE"N" 

Figure 7-7. Master-Slave Full Duplex Multidrop System 

7-10 



The output of the master station is routed to the input of each slave station. The 
output of each slave is routed together to the one input of the master. The control 
codes provided by the master should insure that only one slave transmits at one time . 
Note four wires total are needed: one pair receive and one pair transmit. 

7 .5.3.2 Half- Duplex Operation 
This configuration is used when only two wires - one pair - is desired . The half 
duplex jumpers are installed and the one twisted pair is connected at either pins 18 
and 23 or pins 24 and 25 of the P2 connector, on all stations. See Figure 7- 8 . 

Pr otocol must be determined carefully for this configuration to prevent many stations 
becoming "l ive" on the lines at once. One station may be appointed master and send 
contr ol codes, or a round robin technique may be used where control passed from one to 
another. Conversations are always half-duplex, so when a master station requests a 
message, it must wait for the addressed station to finish its transmission. This means 
that control is given up periodically, and a malfunctioning slave station can "hang 
up " the whole system . This approach does enjoy the advantage of two wires instead of 
f our, t hough. 

r 

(H ALF ri 
DUPLEX \-! 
JUMPERS) I L 

L _ 

24 

25 

23 

18 

UNIT 1 

24 24 

25 25 
I I 

I I I 

L 23 IL 23 
I I 
L -- 18 L- - 18 

UNIT 2 UNIT 3 

N ..,. 
LU 

0 

0 

..,. 

0 

0 

(") ..,. 
LU 

0 

0 

in ..,,. 
LU 

0 

0 

,..... ..,. 
LU 

N 
in 
LU 

0 0 

0 0 

Cl ..,. in 
LU LU 

UNIT 2 THROUGH UNIT "N-1'' 
JUMPER ARRANGEMENT. 

(UN IT 1 AND UNIT "N" HAVE 
ALL JUMPE RS CONNECTED) 

0 

Figure 7-8. Half-Duplex Mul tidrop Syst em 

7-11 

24 

25 

0
1

1 0 IL 23 

L-- 18 

UNIT "N" 



7.6 EXTERNAL SYSTEM RESET/LOAD 
The RESET function is activated from off-board by the assertion of a low state on the 
PRES.Bline, pin 94 on connector P1. An SPST pushbutton to ground can be connected to 
this line, and should be debounced by a 39 uf tantalum capacitor at C18. 

The LOAD function can be activated by asserting a low state on the RESTART.B line, pin 
93 of connector P1. An SPST pushbutton to ground, with attendant C23 for debouncing, 
can be used for external actuation. 

7.7 REMOTE COMMUNICATIONS 
Jurnpering pin E18 to E19 connects pins 1 and 7 of connector P2 to ground. Removi ng 
this jumper leaves only pin 7 at ground. In some applications, it is not desirable to 
have signal ground connected to chassis ground, to prevent ground loops or keep an 
isolated chassis isolated. In these cases, remove the jumper. In most cases, though, 
there is no special consideration needed, and the jumper may be left in place. 

Serial Port P3 can be used to directly communicate with an EIA compatible terminal . 
This type of operation requires that a jumper plug be installed between E54 and E55, 
which connects RTS to CTS of the TMS 9902, enabling operation of this device. The 
terminal with its proper cable (see Appendix B) may be plugged directly into connector 
P3. 

If communications with an EIA compatible modem (see Section 8, Applications, under EIA 
Serial Port Applications) is desired, insert the jumper plug between pins E55 and E56. 
This connects CTS of the TMS 9902 to the line receiver on the P3 connector. The TM 
990/506 modem cable, or equivalent, must be used. 

7.8 MEMORY MAP CHANGE 
The entire system memory map is divided into two categories - on-board and off-board. 
This division as well as the enable lines to on-board blocks of memory, are controlled 
by a PROM, a 74S287. 

Blank PROM's may be programmed by the user to reconfigure the memory map. For a 
discussion of the pattern generating process, refer to Section 6, Theory of 
Operations, under Addressing Decoding. 

7.9 TM 990/402 LINE-BY-LINE ASSEMBLER 
A line-by-line assembler is available, programtned on two TMS 2708 EPROM's. It will 
assemble each instruction as it is input by the user. The resulting machine code will 
be printed on the terminal and placed in continuous memory locations. The TIBUG 
monitor must be present to use the assembler. 

No relocatable labels can be used. Jump instructions use dollar-sign plus or minus 
byte displacements, and symbolic addresses are input as absolute locations. Error 
codes identify syntax errors (illegal op code), displacement errors (jump 
instructions), and range errors (e.g., R33). Figure 7-9 is an example of assembly 
output using the line-by-line assembler. 

7.10 TM 990/301 MICROTERMINAL 
An alternate to a hard-copy terminal is a TM 990/301 microterminal for user 
communication to and from the TM 990/101M. The size of a hand-held calculator, the TM 
990/301 uses its light-emitting diode (LED) display to show hexadecimal or decimal 
values. Features of the TM 990/301 include: 

• Hexadecimal to signed decimal and signed decimal to hexadecimal conversion 
of displayed value. 

7-12 



• Display and change contents of Workspace Pointer, Program Counter, Status 
Register, or CRU ports. 

• Increment through memory displaying contents. 

• Display and change contents of memory addresses. 

• Halt or single step user program execution. 

• Begin program execution. 

• Keyboard values 0 through F16. 

This microterminal comes with its own cable which attaches to the 25- pin connector P2. 
To supply power to the microterminal, place jumpers at E20/E21 E22/E23 and E24/E25. 
When the microterminal is not connected, make sure that these jumpers are 
disconnected. Jumper E39/E40 must be in (EIA position) for microterminal operation . 
See Figure 7-2. 

Figure 7-9 shows the microterminal and cabling to the TM 990/101M . 

7.11 OEM CHASSIS 
An original equipment manufacturer (OEM) chassis is available . It features slots for 
four boards, a motherboard backplace interfacing to P1 on the board, and a terminal 
strip for power, PRES . B, INT1 . B, and RESTART.B. A dimensional drawing of the OEM 
chassis is shown in Figure 7-10. A schematic of the backplace is shown in Figure 7-11. 
P1 pin assignments are listed in Hable H- 1 of Appendix H. 

NOTE 
Dimension between card slots is one inch. 

7-13 



MEMORY ADDRESS 

/~ASSEMBLER MACHINE CODE 

/ ~USER INPUT SOURCE CODE 

FDOO 
FEOO 2FAO 
FE02 FE OC 

/ FE (I I) CHANGE MEMORY ADDRESS 

;:.:: OP ;i1 > FE OC ~ 14 

FE 04 '.,.'• :~: ---- ---- SYNTAX ERROR 

FE04 0460 B ~> 0080 

FE06 
FE o::: / FE OC CHANGE MEMORY ADDRESS 

FEOC 
FEOE 
FE10 
FE12 
FE14 

434F :J;coni::;F:ATULAT I or·~ ::: . \ 'DUF: F'F:o1;;F:AM 1 •. 10F:v ~: ! ------ - TEXT sTATEMENT 

4E47 
5241 
5455 
4C41 

FE16 5449 
FE1 ::: 4F4E 
F.E 1 A 5 :~:2E 

FElC 2059 
FE1E 4F55 
FE20 5220 
FE22 5052 
FE24 4F47 
FE2t· 5241 
FE2::: 4D20 
FE2A 574F 
FE2C 524B 
FE2E 5 3 21 
FE3 0 0707 + >0707 
FE32 07 00 + > 07 00 

Figure 7-9. Line-By-Line Assembler Output 

7-14 



( 

----------··-------· 

Figure 7-10. TM 990/301 Microterminal 

7-15 



5.0 

BACKPLANE 

0 .40I 

0 

J [ ) 

CJ CJ 
0 CJ [ZJ 
~ CJ 

) ! J 

NOTES: 
1. DIMENSIONS IN INCHES 
2 . DISTANCE BETWEEN SLOTS 

IS 1 INCH 
3. ALL DIMENSIONS ± 0 .010. 

0 

( LJ 

LJ 
CJ 
CJ 
c 

Figure 7-11. TM 990/510 OEM Chassis 

7-16 

1 



I'. 
£ 
. . ~ "' " 
.., 

~ ~ 

1: 

'"' 

r .• oB ... - I 
>.PP, > j ' ', 0 J 

J;'jl> 4 

l. ,. . . I ... B. 
iiiii':f lJ ' 

17¥71 4 -<9R 

t11 t:rNr a _, 

TERMINAL STRIP 
IN BACI( OF CHASSIS 

Figure 7-12. 

.. .. 
H 
• > 

~ ~ 
E I" I" 

"" 
~ )Ii )ll )ll b E ~ r. 

a kJ la Ir. la lg la ~ ~ ~ 

I I I 
I 1 i 1 I 
~j" 
eJ " 

I I 

I I 
''<.,. ~ x x ~ ~ , x 'C ~ lL i:ia. 

" ,.,, " k I< In "" i .... 1 . , .. " " 
., . , .. I 

~ 
r&1 

~ 

I 
I 

~· 
~<I; • rat 

\ 

I -

- ,---- - Jo J;l ··R ·~ g 0 

~ " ~ c 
~ ~ · ~ ...... ' • - 1\ ~ - ' . ~ . "' - 9 , - ~ • . '< • " . -r :~ ~1 . . . " ' 

- _J__ __ ~:~ 

NOTE: BACKPLANE PIN ASSIGNMENTS LISTED 

IN TABLE H-1 (APPENDIX H). 

OEM Chassis Backplane Schematic 

7-17 



0 



SECTION 8 

APPLICATIONS 

8.1 GENERAL 
This section covers various methods of com.~unicating to applications hardware external 
to the TM 990/101M. Figure 8-1 shows board locations applicable to this section. 

8.2 OFF-BOARD RAM 
Figure 8-2 shows a logic diagram for adding additional RAM off-board. The buffers are 
controlled by the same logic that is used on board the TM 990/101M. The dual 
flip-fl ops are used to generate one wait state whenever the memory is enabled. The 
74LS155 decodes the five most significant address lines. The AO and A1 lines select 
~his memory board, and A2, A3 and A4 select one of six banks of expansion RAM . The 
outputs of the 74LS155 select 1K word banks, starting with the 1Y1 output, which 
corresponds to an address range of E800 15 to EFFF 15. Lines 1Y2 and 1Y3 are not used 
since they respond to the address range of Fooo 16 to FFFF15, which are on- board the TM 
990/101M. Additional 1K word banks connec t to 1YO, and so on up to 2YO, which responds 
to the lowest address in this application, C00015. 

Alternatively, if the user wishes to address eight banks of RAM on this memory board, 
using 1Y2 and 1Y3, then the on-board memory can be moved to BOOo 16 to BFFF16 , or some 
o th e r address, by reprogramming the Memory Address Decoder PROM on board the TM 
991/101M. 

7he 74LS08 bringing ¢1B onto the memory board is used to buffer the system bus , in 
keeping with the practice that only one LS load per board should appear for a system 
bus signal. It may easily be omitted. The two 7438's with pull- up resistors attached 
are used instead of a 74LS04 and 74LSOO to keep down the parts count . 

8.3 OFF-BOARD TMS 9901 
Figure 8-3 shows the wiring of an off-board TMS 9901 at the CRU bit address OFE016 . 
Only the programmable I/0 section is used; the clock and interrupt section is ignored. 
The R12 bit address is 1FC0 15. 

Connection is made through the system bus, P1. The CRUIN, CRUOUT, and CRUCLKB signals 
are gated by the 1G signal. Chip enable is performed by one 74LS30 . Other addresses 
are not so easy to decode; the use of the various decode chips would enable a bank of 
TMS 9901's. 

8.4 OFF-BOARD EIGHT-BIT I/0 PORT 
Figure 8-4 shows the wiring of an I /O port with separate 8-bit inputs and outputs. The 
input is a 74LS251 selector, also known as a TIM 9905 . The output is an addressable 
latch array, a 74LS259 (or a TIM 9906). Address decoding is done by random logic, and 
the R12 CRU address is 020016 . Note that MEMEN is not used in actress decoding, so this 
circuit is active even during memory cycles . Again this does no harm since CRUCLKB is 
inactive and CRUIN is ignored by the processor. 

8-1 



TMS 9902 FOR MAIN PORT P2 ~ 

TMS 9902 FOR AUXILIARY PORT P3 

'">l 
I-'· 

()Q 
c: 
"'3 
Cl> 

00 
I _.. . 
3: 
Ill 

c...... 
0 
"'3 

00 I ~ I 
I\) 

'O 
0 
::s 
Cl> ::s 
cT 
(/) 

c 
(/) 
Cl> 
0. 

I-'• 
::l 

H 
....... 
0 

~ 



( READY90 -

ol B 22 

74LSOB 
¢j' B 

POINT ·x 
TOALLPIN -

10'5 OF TMS 4045's 

74LS74 

•S 

..----.... J v j ~~K L A 74LS1SJ 

IB -2 ~ 
4 10 7438 B 

OBIN B B2 - 74LS243 •S --..-- !CJ 

MEMEN BBQ ~ 9 L IC7 

r 

Y-

LSOO 

I 

A0~8 

Al }--

A2 

A3 

A4 

? 4 7K 
7• 3B S •;w 

LS02 
'D-~>--------~--...., ,.-_...___...:>--

1S 2C 

'11c 
3 B 
13 

}YO 10 
2Yl t-- ---

11 
1Y2t----
7y3,_1_2 _ _ _ 

lYo._7 ___ _ 

TO ADD l 
<.HIP 
~ELECTS 

ON 1K WORD 
BLO~KS 

lYl ._6 ____ ___, LSOO 

HOLDAB ~ B l!Cl •~---------~ A 

5 
1v2~.----+--1~-}-
•v3 

~.__---..,__.1co 

01S B 4B 2 -
0148 47 -----2 
013 B 46 4 
D 17 B 45 -----S -

1B 

17 

16 

lS 

0 11 B 44 6 74LS245 14 
-

D 10 B 43 7 13 -09 B 42 B 12 -
DB B 41 

G 

9 -- 11 
OIRl-----..1 

+5 

19 ~ ll~------11---1----. 

07 B 

06 B 
05 B 

0 4 B 

03 B 

02 B 

0 1 B 

DOB 

40 2 -
39 -----2 
38 4 

37 --2 
36 ~ 
35 ___}_ 

34 __!! 

33~ 

lS 

17 

16 

IS 
74LS245 14 

13 

12 
11 

DIR1--- -

19 ~ 11~-------~ 

A14 0 71 

A 13 B 70 

A 12 B 69 

All B 68 

AlO B 67 

A9 B 66 

2 -
3 -
4 

5 
74LS245 

6 
-

7 

ABB 6S B 

18 

17 

16 

lS 
14 

13 

12 
DIR t---~1 

G 

19 "*" ·~1 ____ ___,,__ ... 

Al B 64 2 
A6 B 

AS B 

A4 B 

AJ B 

A2 B 

AlB 

-
63 ----1 
62 4 

-
61 5 
SO ----S 74LS245 

S9-, 
-SB 8 
-AO B 57 9 
-G DIR 

lB 

17 

16 

15 

14 

13 

12 

11 

19 J. I~'-----~ 

'----.J 

AS 15 

A6 16 

A/ 17 

AS 

A9 2 

A10 3 

All 

A 12 

A13 6 
A1 4 

AS 1S 

A6 16 

Al 17 

AB 

A9 

AlO 

Al l 

A12 
A13 6 

A1 4 5 

11 DO 

12 0 1 
13 02 

14 03 

DI O[ 
TMS t-----
4045 

- 8 
s-

DI 0[ t-:-~--~-:'1 
14 07 

TMS 
4045 "' 10 'WI: 

··~ 
- B s -

Figure 8-2. Off-Board Memory 

8- 3 

AS 15 

A6 lf 

A7 17 

AS 

A9 

AlO 3 

A 11 

Al2 

A13 6 

A14 s 

AS 15 

A6 16 
Al 17 

AS 

A9 

AlO 

All 

A12 

AlJ 6 

A1 4 

74LS155 

j .~ 
1' 08 

DI 0[ 12 09 

13 010 
t----1 

1 4 01 1 
T'llS t-- --

4045 10 WC 
W- " 

01 D[ 
11 

12 01 3 
13 01 4 

t--1-4 ----,0-1'1 § ,__ __ _ 
T"~S _ 
4045 - 10 WE 

W- > , 



;;: 
a: 
0 .... 
u 
w 
z 
z 
0 
u 
~-

8 
0 
O> 
O> 

"' ~ 

30 

87 

88 

24 

80 

01 

62 

63 

64 

65 

66 

67 

68 

69 

70 

7 1 

I I eRUIN.B 

eRUOUT .B I 

e RUeLK.B I 

IORST.B I 

' 3.e I 
MEMEN.B I 

' 
I 

I 

I I 
+SV I 

' I •SV 

GNO I 

I GND I 

I 
I 
I A3.B I 

A4.B I 
I 

' 
AS.B I 

A6.B I 

A7.B I 

A8.B I 

I 
I 

I 
I 

I 
I 
I 

I 
A9.B I 

I 
A10.B I 

I 
I A l l.B I 
r 

A12.B I I 
I 

I A13.B 

f-
A14.B I 

I 
I 

I 
I 

I 

74LS367 

3 2 

4 5 

6 7 

10 9 

12 11 

14 13 

2(; ic 
15 11 

·-

74LS367 

2 3 

4 5 

6 7 

10 9 

12 11 

14 13 

iG iG 

.LJ L 
74LS367 

2 3 

4 5 

6 7 

10 9 

12 11 

14 13 

iG 2f. 

L_ 

-

Fi gure 8-3 . 

OTY 

4 
1 

3 

LS04 

1V2 

~ 

_}----
74LS30 

~ 

to ~ S 11ol1s 

LIST OF MATERIALS 

PART 

14 · PIN DIP SOCKET' 

16 · PIN DIP SOCKET' 

40 · PIN DIP SOCKET 
74LS367 
74LS04 

74LS30 
Tl\llS 990 1 

'AN O 'IYIRE · 'IYRA P PINS AS R EQUIR ED 

TMS9901 

2 eRUOUT EE 
~ eRUeLK eRUIN 

1 
RsT 1 PO 

10 0 Pl 
39 so P2 
36 

St P3 

35 
S2 P4 

25 
PS SJ 

24 S4 P6 
40 P7 .--- Vee 
16 

GNO PS 

P9 

PlO 

Pl 1 

P12 

P13 

P14 

P15 

Circui try To Add TMS 9901 Off-Board 

8-4 

J 
4 

I---

38 -
37 ......_ 
26 

22 ......_ 
2 1 ,_____ 

~ 

~ 
,lL_ 

2___ 

d!..__ 

~ 
.lQ__ 

J.2_ _ 

,E.__ 

..ll--
~ 



( 

74LS04 74LS259 

CRUCLK B A12 3 c 00 
4 

A13 2 
B 01 5 

A1 4 A 02 6 

A3 CRUOUT B 13 D 03 
7 

A4 14 
G 0 4 9 

A5 IORST B 15 
CLR 05 

10 

A7 11 
06 

A8 
07 12 

A9 

AlO 16 8 

All lOKn 
r--------- - -, 

A6 - I 
I 

+5 
I 
I I 

74LS251 
I I 

A12 9 4 L - - - - - - - _J 

c DO 
A13 10 B Dl 3 

A1 4 11 A D2 2 

CRUIN B 5 y DJ 
7 s D4 15 

D5 14 

D6 
13 

D7 12 

16 8 

-

Figure 8-4. 8-Bit 9905/06 Port 

8-5 



8.5 EXTRA RS-232-C TERMINAL PORT 
Figure 8-5 shows a diagram of a serial I/O port suitable for most RS-232-C terminals . 
. The handshaking signals used are DATA CARRIER DETECT, which is generated from the 
REQUEST-TO-SEND tied back to CLEAR-TO-SEND on the TMS 9902, and DATA TERMINAL READY, 
which is brought into the TMS 9902 for program interrogation. The two 3 .3K resistors 
supply a "fake" CLEAR-TO-SEND and DATA-SET-READY to those terminals requiring them. 

Since only half of the packages are used on the 75188 and 75189 devices , another TMS 
9902 may be added for an additional serial port. The R1 2 CRU address is 1FC016· 

+-5 

CRUCLK.B 

93 B 

AJ 

A4 

AS 
74LS30 

A7 

A8 

A9 

A6 

+5 

TMS 9902 

CRUIN.B 4 

CRUOUT.B 8 

CRUCLK.B 15 

16 

A 10 14 

A11 13 

A12 12 

A 13 11 

A1 4 10 

17 
cs 

18 9 

-+-5 

75188 pin 1 ·12, ptn 7 = GND. pin 14 = +12 
75189: pin 7 = GND, pin 14 = +5 

INT 

2 XOUT 

5 RTS 

6 CTS 

+5 

7 DSR 

3 RIN 

Figure 8-5. RS-232-C Port 

8-6 

f 12 

C : 
3.JK 

~----- 3 

u------ 8 

1-------- 20 

2 



8.6 DIRECT MEMORY ACCESS (DMA) APPLICATIONS (FIGURES 8-6 AND 8-7) 
The microcomputer controls CRU-based I/O transfers between the memory and peripheral 
devices. Data must pass through the CPU during these program-driven I/O transfers, and 
the CPU may need to be synchronized with the I/O device by interrupts or status-bit 
polling . 

Some I/O devices, such as disk units, transfer large amounts of data to or from 
memory. Program driven I/O can result in relatively large response times, high program 
overhead, or complex programming techniques . Consequently, direct memory access (DMA) 
is used to permit the I/0 device to transfer data to or from memory without CPU 
intervention. DMA can provide faster I/O response time and higher system throughput, 
especially for block data transfers. The DMA control circuitry is somewhat more 
expensive and complex than the economical CRU I/O circuitry and should therefore be 
used only when required. 

Microcomputer direct memory access occurs in block and cycle stealing modes, using the 
CPU hold capability. The I/O device drives HOLD active (low) when a DMA transfer needs 
to occur. At the beginning of the next available non-memory cycle, the CPU enters the 
hold state and raises HOLDA to acknowledge the hold request. The maximum latency time 
between the hold request and the hold acknowledge is equal to three clock cycles plus 
three memory cycles. The minimum latency time is equal to one clock cycle. A 3-MHz 
system with no wait cycles has a maximum hold latency of nine clock cycles or 3 
microseconds and a minimum hold latency of one clock cycle or 333 nanoseconds. 

When HOLDA goes high, the CPU address bus, data bus, DBIN, MEMEN, and WE are held in 
the high-impedance state to allow the I/O device to use the memory bus. The I/O device 
must then generate the proper address, data, and control signals and the proper timing 
to transfer data to or from the memory as shown in Figure 8-6. Thus the DMA device has 
control of the memory bus when the CPU enters the hold state (HOLDA= 1), and may 
perform memory accesses without intervention by the microprocessor. Because the lines 
shown in Figure 8- 6 go into high impedance when HOLDA= 1, the DMA controller must 
drive these signals to the proper levels . The I/O device can use the memory bus for 
one transfer (cycle- stealing mode) or for multiple transfers (block mode). At the end 
of the DMA transfer, the I/O device releases HOLD and normal CPU operation proceerts. 
TMS 9900 HOLD and HOLDA timing are shown in Figure 8-7. 

8.6.1 DMA SYSTEM TIMING (FIGURE 8-8) 
The Direct Memory Access (DMA) process can be divided into three distinct phases 
(shown in Figure 8-8): 

• Acquisition of memory control from the system. 

• Memory control by the DMA device, and 

• Release of memory control to the system. 

In systems with multiple DMA devices, the memory control phase can be shared by the 
devices on a priority basis; however, the acquisi tion and r~lease phases must remain 
distinct in that the release phase must end before another acquisition phase beings. 
This is necessary to avoid any memory access conflict resulting from the hold 
acknowledge signal (HOLDA) delay which occurs when the hold signal (HOLD) is released. 

8-7 



CRU 

A0-A 14 
/ 

0 0-0 15 

'"'] MEMEN 
f-'· 
)q 
c: OBIN 

"l 
ct> WE MEMORY 

CD 
I 

WA IT 
O'I 

CD I~ I 
CD 

til 
c: 
en 
(") 
0 
:::3 
cT 
'1 
0 

READY 

MICROCOM PUTER 

HcITi5 REQUEST 

~ IT rr Ii Ii Ii ,..... 
ADDRESS DATA MEM'EN DBIN WE OMA CC 

GRANT 
HOLDA 

DMA3~TATECONTROL 

DMA CONTROLLER 

~ 



.. 

Figure 8-7. 

"' 
~ I~ 
0 

z 
al 
0 

>-
0 
<( 
LU 
cc 

- -- ---r 
:.:: LU 
u....1 
Ou 
....I>-

- ' - - - -~( 

CPU HOLD and HOLDA Timing 

8-9 



"%'.! 
t-'· 
)q 
c .., 
CD 

Q) 

I 
Q) . 

Q) 

I 0 __. 
~ 0 

(/) 

< en 
~ 
CD a 
>-3 
t-'· 
a 
t-'· 
::;, 

9 1 
(FROM CPU I 

c3 
(FROM CPU! 

ACQUISITION 

MIN 1 CLOCK 
MAX 9+3W CLOCKS 

I • • I 
I I 

I 

I 
MEMORY 

READ --I 

MEMORY CONTROL RELEASE 
I I 

MEMORY WRITE J_ REASSERTING HOLD J 
__L (1 WAIT STATE) 

DURI NG THIS PERIOD 
NOT RECOMMENDED 

I I 

AR (n) I I I 
(FROM 110 0Ev1cE1 v z 11 , 1 ..,v~z-z...--.z-z-z~11----------------

H'C5i]f I 1 I I 

(TO CPU) 1 I I --------------

HOLDA I I I I I 
(FR~Ul I I I I 

AG in) I I o I 
(TO 1/0 DE VICE) 1 

MEMEN I HI 2 I I I 
(TO SYSTEM) I I .--------------

H12 

I i5MAc:c I Hl ·Z I I 1 
(TO SYSTEM) 1 L-..----H_1_2 _______ _ 

WE I HI 2 I ' I 
(TO SYSTEM) I I ~----H....;l....;2;__ _____ _ 

OBIN I Hl -2 I 
1 

I 
(FROM 1/ 0 DEVICE) II r _____ H_1_.z ______ _ 

AO·A 14 I Hl-2 I I 
(FROM l/ ODEVICE) 

1 
t------H.;.:.1...:2;__ _____ _ 

DO·D15 1 Hl -2 fl------~----------...J 
(TO/FROM 1/ 0 DEVICE 1 

1 

HI Z r-~~~...:....::.~~~~~-

( F R~~~e~TEM/ z z z z z I z z z z z z z z z z z I z /1 v z z > z z 1 e z 11 v z z > z z z z z z z z z z z z z z 
STARTO 

MEMENQ 
I 

I I I I 
I I I ,.--------------......, ,_ __ _ 
I I I I ;,...... ___ _ 

RELEASEQ 

MFIRSTO 

MW A I TO 
I I I I 

MLASTO 
I I 



The acquisition of memory control from the system begins when the HOLD signal is 
asserted by the OMA device. This signal is driven by an open-collector circuit and 

· must be synchronized to the trailing edge of clock phase one (¢1). The acquisition 
phase ends at the first trailing edge of o1 following the receipt of HOLDA . Round-trip 
timing delays between the DMA device and the CPU must be considered during device 
controller design . 

The control of memory by the OMA device begins at the completion of the acquisition 
and continues for as many memory cycles as required. The device controller must 
provide the memory cycle timing signals MEMEN, OBIN, WE, and DMACC (TM 990 bus signal) 
as well as the memory address and data signals . The memory cycle timing must duplicate 
the microcomputer memory cycle timing with respect to minimum setup and hold times and 
also to synchronization to o1 and o3 clocks. The device controller must monitor the 
READY signal and wait as required by the memory. The device controller must not 
require unnecessary wait states (wait states not required by the microcomputer) 
because of device controller setup timing; however, the device controller can delay 
the start of a memory cycle to allow setup time for the OBIN, DATA, and address 
signals. 

The release of memory control to the system begins when HOLD is released by the DMA 
device and is complete when the CPU releases HOLDA . Since the CPU requires two ¢1 
clock cycles for the release of HOLDA, resumption of memory access during the release 
phase can cause a memory access conflict when the OMA device responds to HOLDA just 
prior to HOLDA being released . This conflict will cause loss of data and possibly 
modification of random memory locations. 

8 . 6 . 2 MEMORY CYCLE TIMING (FIGURE 8-9) 
As shown in Figure 8- 9, a memory cycle consists of two states, MFIRSTQ and MLASTQ, 
plus wait states MWAITQ as required by memory. Each state is one o1 clock cycle long . 
If additional OBIN, data or address setup time is required, a setup state can be 
inserted before the MFIRSTQ state . The MLASTQ states marks the end of a memory cycle . 
Read data will be stable at the end of MLASTQ. The control signals MEMEN and HOLD 
which are static during a memory cycle are allowed to change at the end of MLASTQ. In 
a mult ichannel-OMA contro l ler, t he device access granted signals are allowed to change 
at the end of MLASTQ. 

8 . 6 . 3 OMA SYSTEM GUI DELINES 
1 . OMA and CPU memory cycle timing should be identical . 

2 . OMA memory cycles can include memory-dependent wait sta tes. 

3. OMA devices must not require memory to i ns ert wait states. 

4. OMA devices mus t a l low HOLDA to drop after rel easing HOLD pr i or to r easser t 
i ng HOLD . 

5. Three-stat e bus conflicts must be avoided . 

6 . Multiple OMA devices must not attempt simul t aneous memory access . 

7. Sufficient data and addres s setup times prior t o WE must be mai ntained . 

8. Most OMA device timi ng problems will occur at the first and last memory ac
cesses and at device to device changeover i n systems with mult i ple devices. 

8-11 



I 
MEMORY CYCLE I 

MEMORY CYCLE 
I 

WITH l WAIT STATE I WITH SETUP ST A TE 
I I I 

NORMAL 
I MEMORY 

I CYC LE 

n n n n n n n n n n 
I I 

\?3 

MSETUPO 

MFIRSTO 

MLASTO 

Figure 8-9. Memory Cycle Timing 

8.6.4 MULTIPLE-DEVICE DIRECT MEMORY ACCESS CONTROLLER 
This section outlines the design of an eight-device, priority-access controller for 
the direct memory access system shown in Figure 8-10. The controller accepts access 
requests from the device controllers, acquires memory from the CPU, grants memory 
access to the highest-priority device switching from device to device as required, and 
generates all necessary memory cycle timing signals . 

The OMA controller interfaces with the device controllers (shown in Figure 8-11) 
through a DMA control bus consisting of access request (ARO through AR7), access 
granted (AGO through AG7), and memory cycle complete (MCOMP) signals. To access memory 
a controller asserts access request and waits for access granted. The controller then 
drives the address bus (AO through A15), and the data bus (DO through D15) as 
required, and t he DBIN signal . The MCOMP signal indicates that the memory cycle will 
be complete and read data will be stable on the data bus at the trailing edge of the 
o1 cl ock. A device can request multiple memory cycles by continuously asserting access 
request . Access request is released during the first clock cycle of the last required 
memory cycle. 

8-12 



OMA CONTROL BUS 

I I l I 
I I I I 

OMA OMA OMA 

CONTROLLER DEVICE DEVICE 

SYSTEM BUS 

CPU MEMORY 

Figure 8-10. DMA System Block Diagram 

DOthruD15 ,____ -
- --

OM A CONTROL { BUSTO .. OMA CONTROLLER 

ARO thru AR7 AO thru A 15 
- - -

AGO thru AG7 OBIN 

MCOMP INTn 
DEVICE 

CONTROLLER 
CRU IN 

- - --
OMA CONTROL { BUSTO 
NEXT DEVICE 

ARO thru AR7 _ CRUOUT 

AGO thru AG7 CRUC LK 
- - --

MCOMP 91 -
IORST 

Figur e 8-11. DMA Device Controller 

8-13 

: 

-

OMA 
DEVICE 

SYSTEM 
BUS 



The DMA controller (shown in Figure 8-12) provides memory access control, memory cycle 
,timing, and priority-based access of memory by the device controllers. Access requests 
a re synchronized to system clock, then prioritized using a priority encoder followed 
by a decoder. The priority encoder also provides the signal DMAR which indicates if 
any device is requesting access. Memory access is granted to the highest-priority 
device when HOLDA is received from the CPU and at the end of each memory cycle. This 
is done by loading a register with the decoder outputs . If no device is requesting 
access, the decoder is disabled and the register is loaded thus disabling all access 
grant~d signals. Loading of the register is inhibited from the time HOLD is released 
by the DMA controller until HOLDA is released by the CPU in order to avoid an access 
conflict between the DMA and the CPU due to the HOLDA response time. 

OMA CONTRO L 
BUS TO 
DEVICE 
CONTROLLERS 

-

-

ARO thru AR7 

8 
' 
' 

REG </>1 
(74LS374} 

-- -- • 8 
AROQ thru AR7Q ,, 

PRIORITY 
ENCODER OMAR 

(74148) 

, 3 , 

DECODER 
(74LS138} ~ 

8 
I; 

' 

--
REG ACCLK 

-

(74LS374} 

8 
- -- , 
AGO thru AG7 

MC~P 

Figure 8-12. DMA Controller 

8-14 

HOLD 

---MEMEN 

WE 

DMACC 

DMOUT 

CONTROL 
DMIN 

LOGIC HOLDA 

OB IN 

. READY 

q;f 

'q53 

. TqjfST 

-
-

-

SYSTEM 
BUS 



• 

The DMA controller timing with priority contention is shown 
equations for the DMA controller are: 

DMAR 

STARTQJ 

STARTQK 

MEMENQJ 

MEMENQK 

RELEASEQJ 

RELEASEQK 

HOLD 

MFIRSTQD 

MWAITQ0 

MLASTQD 

DMACC 

ACGATE 

ACCLK 

MCOMP 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 
= 

= 

= 

= 

= 
= 

AROQ + AR1Q + + AR7Q 

DMARQ • MEMENQ e RELEASEQ 

HOLDA • STARTQ 

HOLDA • STARTQ = STARTQ 

DMARQ • MLASTQ 

DMARQ • MLASTQ = MEMENQ 

HOLDA • RELEASEQ 

DMAR • RELEASEQ + STARTQ + MEMENQ 

HOLDA e STARTQ + DMAR e MLASTQ 

MFIRSTQ • READY + MWAITQ • READY 

MFIRSTQ READY + MWAITQ e READY 

OBIN • MFIRSTQ + WEQ MWAITQ 

MFIRSTQ + MWAITQ 

HOLDA e STARTQ + MLASTQ 

ACGATE • ¢1 

MLASTQ 

in Figure 8-13 . The logic 

where signals ending with the letter Q are flip-flop outputs and signals with 
subscripts are the corresponding flip-flop inputs. All flip-flops are 
code-triggered on the trailing edge of ~1 except WEQ (¢1 leading edge). 

8-15 



Ii I~ I~ 
<i 

~ I~ ~ 
a 

I~ lt$E 
M -' ... ... 

0 
J: 

Figure 8-13. DMA Controller 

8-16 

ll 

w 
u 
> 
w 
a 

0 
w 
u 
> w 
a 

0 
<J) 
<J) 
w 
u 
u 
<i 

Timine; 

0 
0 
w w .... <J) I-

a: <i <i 
<i w <..? 
I- -' u 
<J) w <i a: 



.. 

8.7 EIA SERIAL PORT APPLICATIONS 
This section describes the cable configurations and connector pin assignments used 
with the microcomputer EIA serial port (connector P3). Interconnection information is 
included for 103-, 202-, and 20 1- series modems and EIA data terminals. A typical 
system configuration is shown in Figure 8-14. TI offers a ready-made cable for use 
with all of the above modems, the TM 990/506 . 

Pl 

P2 P3 P4 

Figure 8-14. Cable Connections 

8.7.1 CABLE PIN ASSIGNMENTS 
Tables 8-1, 8-2, 8-3, and 8-4 provide pin assignment information for interface cables. 

Table 8-1. 103/113 Data Set Cable 

101 Pin Modem Pin 
On P3 103/113 RS-232-C 

(Male) (Male) Circuit Func tion 

1 1 AA Protective Ground 
3 2 BA Transmitt er Data 
2 3 BB Receiver Data 
8 4 CA Request to Send 

16 5 CB Clear to Send 
19 6 cc Data Set Ready 
7 7 AB Signal Ground 

20 8 CF Received Line Signal Detector (DCD) 
21 20 CD Data Terminal Ready 
22 22 CE Ring Indicator 

8-17 



Table 8-2. 202/212 Data Set Cable 

101 Pin Modem Pin 
On P3 202/2 12 RS-232-C Function 

(Male) (Male) Circuit 

1 1 AA I Protective Ground 
3 2 BA Transmitter Data 
2 3 BB Receiver Data J 
8 4 CA Request to Send 

16 5 CB Clear to Send 
19 6 cc Data Set Ready I 

I 
7 7 AB I Signal Ground 

20 8 CF I Received Ling Signal Detector (DCD ) 
21 20 CD I Data Terminal Ready 
22 22 CE Ring Indicator 

Note: Pins 11 and 12 (reverse channel on 202) are not connected 

Table 8-3. 20 1 Data Set Cable 

101 Pin Data Set 
On P3 Pin 201 Circuit Function 

(Male) (Male) 201 

1 1 AA Protective Ground 
3 2 BA Transmit Data 
2 3 BB Receive Data 
8 4 CA Request to Send 

16 5 CB Clear to Send 
19 6 cc Data Set Ready 
7 7 AB Signal Ground 

20 8 CB Data Carrier Detect 

I 15 15 DB Transmitter Signal Element Timing 
17 17 DD Receiver Si gnal Element Timing 
21 20 CD Data Terminal Ready 
22 22 CE Ring Indicator 

Note: Pin 14 (new synchronization) is not connected 

8-18 



Table 8-4. Data Terminal Cable 

Data 
I Terminal 

101 Pin Pin RS-232-C Function 
On P3 (Female) Circuit 

1 1 AA Protective Ground 
2 2 BA Transmi tter Data 
3 3 BB Receiver Data 
4 4 CA Request to Send 
5 5 CB Clear to Send 
6 6 cc Data Set Ready 
1 1 AB Signal Ground 
8 8 CF Data Carrier Detect 

20 20 CD Data Terminal Ready 

8.7.2 MODEM (DATA SET) INTERFACE SIGNAL DEFINITIONS 

8.7.2.1 Pin 1 (AA) Protective Ground 
This interface lead is connected to signal ground of the microcomputer by connecting 
pin E18 to E19 with a jumper. 

8.1.2.2 Pin 2 (BA) Transmitter Data 
The interface lead provides the electrical connection from the microcomputer to the 
associated data set for the purpose of transferring a bit- by-bit serialization of the 
data which is to be transmitted across the communication channel. In the time domain , 
character information presented on this lead will appear l east significant bit first 
through most significant data bit. In asynchronous systems, each character 
serialization will be preceded by a start bit and followed by one or more stop bits. 

8 . 7.2 . 3 Pin 2 (BB) Receiver Data 
This interface lead provides the electrical connection from the associated data set to 
the microcomputer for the purpose of transferring a bit-by-bit serialization of the 
data which has been received from the remote end of the associated communications 
channel. The received character format is the same as the format t ransmitted . 

8.7.2.4 Pin 4 (CA) Request t o Send 
This circuit originates in the microcomputer and is utilized to condition the 
asociated data set into the transmit mode. In half-duplex facilities this interface 
signal is also utilized by the associated data set to contr ol the direction of 
transmission and to aid in the performance of the call turnaround function. Some full
duplex facilities s uch as the Bell System 103- and 212-type data sets do not actually 
require this circuit for normal operation but it will continue to function as if it 
were required. Once the microcomputer has asserted the REQUEST TO SEND interface 
signal its transmit logic must remain in an idle state until the associated data set 
has responded with the CLEAR TO SEND interface signal described i n the next paragraph. 

8-19 



8.7.2.5 Pin 5 (CB) Clear to Send 
The CLEAR TO SEND interface signal originates on the associated data set and indicates 
to the microcomputer that serial data transmission may proceed across circuit BA on 
pin #2. Some full-duplex facilities such as the Bell System 10 3- type data sets 
actually hold this circuit asserted once the communications channel has been 
establis hed but the microcomputer must ignore this constant status indication if 
circuit CA on pin #4 is not asserted. 

8.7.2.6 Pin 6 (CC) Data Set Ready 
This interface lead originates in the associated data set and indicates to the 
microcomputer that all prerequisite conditions are satisfied and therefore data 
communications may now proceed. It is to be noted that the DATA SET READY lead is 
indicative of the status of the local data set only and in no way can be used to infer 
anything about the status of the remote data set. 

8.7.2.7 Pin 7 (AB) Signal Ground 
This interface lead provides the common ground reference potential for all interchange 
circuits except circuit AA on pin #1. In addition, this circuit is e lectrically in 
common with the logic signal ground of the microcomputer. A jumper provides electrical 
commonality with circuit AA to minimize the introduction of noise into the electronic 
circuitry. The jumper may be removed at installation time if necessary. 

8.7.2.8 Pin 8 (CF) Received Line Signal Detector 
More commonly known as DATA CARRIER DETECT, this interface lead originates in the 
associated data set and is utilized to indicate to the microcomputer that a signal 
suitable for demodulation i s being received on the communications channel. 
Communications interfaces utilize this signal to prepare for data reception and 
therefore all internal receiver logic must be held in an idle state until circuit CF 
is asserted. 

8.7.2.9 Pins 9 to 14 Not Used 

8.7.2.10 Pin 15 (DB) Transmission Signal Element Timing 
The DB circuit originates on an associated synchronous data set and is utilized to 
provide the driving clock for all of the internal transmit l ogic on the microcomputer. 
The microcomputer will present serial data to circuit BA on pin #2 synchronously with 
the negative-to-positive transition of the clocking signal on circuit DB. An 
associated synchronous data set samples the data bit presented on circuit BA 
synchronously with the positive-to-negative transition of the clocking signal on 
circuit DB. 

It is worthwhile to note at this point that most synchronous data set provide an 
external transmitter clock option by which the user can provide its own clock to the 
modem across circuit DA on pin #24 of the EIA standard RS-232-C. Under thes 
conditions the modem will synchronize circuit DB on pin #15 with the previouslj 
mentioned external transmitter clock. This method of supplemental clocking is not ~ 

supported by the microcomputer. Accordingly, the microcomputer is capable of 
interfacing only to synchronous data sets which have the standard factory-wirec 
internal transmitter clock circuit installed. 

8-20 



&.7.2.11 Pin 16 Not Used 

8.7.2 . 12 Pin 17 (DD) Receiver Signal Element Timing 
The DD circuit originates on an associated synchronous data set and is utilized to 
provide the driving clock for all of the internal receiver logfc on the microcomputer. 
An associated synchronous data set will present serial data to circuit BB on pin #3 
synchronously with the NEGATIVE-TO-POSITIVE transition of the clocking signal on the 
circuit DD. The microcomputer samples the data bit presented on circuit BB 
synchronously with the POSITIVE-TO-NEGATIVE transition of the clocking signal on 
circuit DD. 

8 . 7.2.13 Pin 18 And 19 Not Used 

8.7 . 2 . 14 Pin 20 (CD) Data Terminal Ready 
This circuit originates in the microcomputer and is utilitzed to prepare the 
associated data set for connection once a call has been established. The actual 
connection can be initiated by either a manual or automatic answering procedure in 
addition to either a manual or automatic call origination procedure. Circuit CD is 
dropped to terminate a completed call ~nd should not be raised again until the 
associated data set has responded by dropping circuit CC on pin #6 . 

8.7.2.15 Pin 21 Not Used 

8.7.2.16 Pin 22 (CE) Ring Indicator 
This interface signal originates on the associated data set and indicates to the 
microcomputer that an incoming call is pending on the communications channel. Note 
that the microcomputer incorporates an integrator circuit on the RING INDICATOR signal 
to protect against the spikes and false-rings normally associated with circuit CE due 
to the inductive coupling effects inherent in the cables used to connect the 
microcomputer with external data sets. 

8.7.2.17 Pins 23 to 25 Not Used 

8-21 





r 

APPENDIX A 

WIRING TELETYPE MODEL 3320/5JE FOR TM 990/101M 

A- 1 GENERAL 
Figure A- 1 shows the wiring configuration required to connect a 3320/SJE 
Teletype in a 20 mA current loop with a TM 990/101M. Other teletypewriter 
models may require different connections; therefore, consult the 
manufacturer for correct wiring of other models . Teletypewriters can be 
used with Assembly No . 999211 - 0001 only. 

CAUTION 
Note the 117 Vac connection at pins 1 and 2. Be sure 
that this voltage is not accidently wired to the TM 
990/101M board. 

A-2 CONNECTIONS 

A- 3 

The following assumes that the teletypewriter is wired as it came from the 
factory. 

(1) Locate the 151411 terminal block at th~ left rear (viewed from the 
rear) of the machine (Figure A-1). 

(2) Move the white/blue wire from terminal 4 to terminal 5 on the terminal 
block. 

(3) Move the brown/yellow wire from terminal 3 to terminal 5 on the 
terminal block. 

(4) Move the purple wire from terminal 8 to terminal 9 on the terminal 
block (for 20 mA neutr al signaling). 

(5) Locate the power resistor behind the teletype power supply . Remove the 
blue wire from the 750 ohm tap and connect it to the 1450 ohm tap, as 
shown in Figure A-2 . 

(6) Check pins 3 , 4, 6, and 7 at terminal strip 151411. Voltage to ground 
must be zero with power applied. If not , do not connect to th~ TM 
990/101M. 

NOTE 
For teletypewriter operation jumper E36/E37 must be 
installed and E39/E~O must be in the EIA position. 

TROUBLESHOOTING 
If the printer continues to chatter after the RESET switch on the TM 
990/101M h~s been activated, reverse connections 6 and 7 at the terminal 
strip . 

A- 1 



PRINTER { 

KEYBOARD { 

A0001412 

TELETYPE MODEL 3320/5JE 

TM 990/101M TERMINAL 
STRIP 

P2 P2 151411 

.·.·.·.·.· .·. 
?~}.,__ ___________ _ OUTP'ULL 

2S 

9 
VIOLET(PURPLE) 

YELLOW .·.·.·.·.·.·. -:-:-:-:-:-:· 
~)f~ 
~?if~1---------

OUTP'USH 

111 

24 

INf'ULL 

8 
BLACK/GREEN 

::::::::::::; 
.{~r .. · ------23 

INPUSH 
7 WHITE/BROWN 

* ...... ·.·.·.· 
::::::::::::: RED/GREEN 

WHITE/YELLOW 

* 
WHITE/BLACK 

WHITE/BLUE 

BROWN/YELLOW 

GREEN/ORANGE 

* 
RED 

GRAYtSILVERI 

" 
WHITE/RED 

2 117 VAC 

117 VAC 

LEFT REAR VIEW OF TELETYPEWRITER 

DETAIL A *N0.6 SPACE LUGS 

FIGURE A·1. TELETYPEWRITER TERMINAL STRIP CONNECTIONS 

A -2 



FRONT II' 

1450 OHM TAP 

A0001413 

DETAIL A 

FIGURE A·2 . TELETYPEWRITER RESISTOR CONNECTION 

A-3 





APPENDIX B 

EIA RS- 232-C CABLING 

Figure B- 1 shows the wiring for the 743 KSR cable attached between connector P2 
on t he TM 990/ 101M and a 743 KSR data terminal. Also shown is the relationship 
between cable wires and signals to the serial interface, the TMS 9902. Figure B- 2 
shows the cable configuration for the 733 data terminal. 

NOTE 
When using an RS- 232- C device , disconnect jumper E36/E37 
and insert jumper E39/E40 (EIA position) . See Figure 
7- 2 . 

TM 990/ 101M 

( 

TMHI02 
P2 P2 

PROTECTIVE GND 
1 

3 RECEIVED DATA 
RIN 2 2 

2 TRANSMITTED DATA 
XOUT 3 3 

RTS 
5 OCD - II 8 

~ CTS 
OTA 

I 
20 

- 7 SIGNAL GNO 
OSR 7 7 

NOTE Suggested EIA cable connec1or< !ITT Cannon or TRW Conch) 

P2 OB 25P 

P l OE 155 
A0001"'114 

EIA CABLE 

TRA NSMIT DATA 

RECEIVE DATA 

REQUEST TO SEND 

SIGNAL GND 

FIGURE 8 -1. EIA RS.232·C CABLING FOR 743 DATA TERMINAL 

B- 1 

' 
Pl ,.._ 

... 
13 
•W 

12 

--
11 

1 
..___ 

743 DATA 

TERMINAL 



TM99'181M 
EIA CABLE 

RIN~3-------------~ 
xouT~2'---..;..;..'---'--__;.;.;;;__:;__c ___ _ ~ 

TMSl902 
P2 

PROTECTIVE GROUND 

RECEIVED DATA 
2 

TRANSMITTED DATA 
3 

+12V ~.lK 14W 
5 

T 
vv. 

l. ... l4W 6 vv. 

P1 ....--

PROTECTIVE GROUND 

TRANSMIT DATA 
2 

RECEIVE DATA 3 

CTS 
733 

5 DATA 
OSR 

6 TERMINAL 

P2 

1111:i~:11.------------1 
SIGNAL GND 

1 
SIGNAL GND 

1 
DCf' 

8 
REQUEST TO SEND 8 

~r:~~~ . ._..::;D;.;.A.;..;T-"A"'-'-T""'E"""R"""M""'l"""N"""A'"'L'"'R"'"E""A~D-V---i 
.::::::::::::· ······.· 

20 

-

FIGURE B-2. EIA RS.232-C CABLING FOR 733DATA TERMINAL 

B-2 



APPENDIX C 

ASCII CODE 

TABLE C-1 •ASCII CONTROL CODES 

CONTROL 
BINARY HEXADECIMAL 
CODE CODE 

NUL - Null ()()() 0000 00 
SOH - Start of heading ()()() 0001 01 
STX - Stan of text 000 0010 02 
ETX End of text 000 0011 03 
EQT - End of transmission 000 0100 04 
ENO - Enquiry 000 0101 05 
ACK - Acknowledge 000 0110 06 
BEL - Bell 000 0111 07 
BS - Backspace 000 1000 08 
HT - Horizontal tabulation 000 1001 09 
LF - Line feed 000 1010 OA 
VT - Vertical tab 000 1011 OB 
FF - Form feed 000 1100 oc 
CR - Carnage return 000 1101 OD 
so - Shift out 000 1110 OE 
SI - Shift in 000 1111 OF 

OLE - Data ltnk escape 001 0000 10 
DC1 - Device control 1 001 0001 11 
DC2 - Device control 2 001 0010 12 
DC3 - Device control 3 001 0011 13 
DC4 - Device control 4 (stop) 001 0100 14 
NAK - Negative acknowledge 001 0101 15 
SYN - Synchronous tdle 001 0110 16 
ETB - End of transmission block 001 0111 17 
CAN - Cancel 001 1000 18 
EM - End of medium 001 1001 19 
SUB - Substitute 001 1010 1A 
ESC - Escape 001 1011 1B 
FS - File separator 001 1100 lC 
GS - Group separator 001 1101 10 
RS - Record separator 001 1110 1E 
us - Unit separator 001 1111 1F 

DEL - Delete. rubout 111 1111 7F 

•Amerocan Standards lns111u1e Pubhca11on X3 4- 1968 

C-1 



TABLE C-2. ·Asen CHARACTER CODE 

CHARACTER 
BINARY HEXAOECIMAl BINARY HEXADECIMAL 
CODE CODE 

CHARACTER 
CODE CODE 

Space 010 0000 20 p 101 0000 50 
I 010 0001 21 a 101 0001 S1 
" (dbl. quotel 010 0010 22 A 101 0010 S2 
# 010 0011 23 s 101 0011 S3 
$ 010 0100 24 T 101 0100 S4 
% 010 0101 2S u 101 0101 S5 
8i 010 0110 26 v 101 0110 S6 
· (sgl. quote) 010 0111 27 w 101 0111 S7 
( 010 1000 28 x 101 1000 S8 
I 010 1001 29 y 101 1001 S9 
• (ashlrisk) 010 1010 2A z 101 1010 SA 
+ 010 1011 28 [ 101 1011 S8 
• (comma) 010 1100 2C \ 101 1100 SC 
- (minus) 010 1101 20 I 101 1101 50 
. (pet"iodl 010 1110 2E .\ 101 1110 SE 
I 010 1111 2F _ (underlinel 101 1111 SF 

0 011 0000 30 110 0000 60 
1 011 0001 31 a 110 0001 61 
2 011 0010 32 b 110 0010 62 
3 011 0011 33 c 110 0011 63 
4 011 0100 34 d 110 0100 64 
5 011 0101 3S e 110 0101 6S 
6 011 0110 36 I 110 0110 66 
7 011 0111 37 g 110 0111 67 
8 011 1000 38 h 110 1000 68 
9 011 1001 39 I 1101001 69 

011 1010 3A I 110 1010 6A 
: 011 1011 38 .. 110 1011 68 
< 011 1100 JC I 1101100 6C 

011 1101 30 m 110 1101 60 

> 011 1110 JE n 110 1110 6E' 
? 011 1111 3f 0 110 1111 6F 

@ 100 0000 40 p 111 0000 70 
A 100 0001 41 q 111 0001 71 
8 100 0010 42 r 111 0010 72 
c 100 0011 43 s 111 0011 73 
D 100 0100 44 t 111 0100 74 
E 100 0101 45 u 111 0101 75 
F 100 0110 ~ Ii 111 0110 76 
G 100 0111 47 w 111 0111 77 
H 100 1000 48 " 111 1000 78 
I 100 1001 49 y 111 1001 79 
J 100 1010 4A l 111 1010 7A 
K 100 1011 48 { 111 1011 78 

L 100 1100 4C 
I 111 1100 1C I 

M 100 1101 40 J 111 1101 70 
N 100 1110 4E - 111 1110 7E 
0 100 1111 4F 

•American S1andards lns111u1e Pub41ca11on X3 4 . 1 968 

C-2 



APPENDIX 0 

BINARY. DECIMAL AND HEXADECIMAL NUMBERING 

0 -1 GENERAL 
This appendix covers numbering systems to three bases (2, 10, and 16) which are used 
throughout this manual. 

0 -2 POSITIVE NUMBERS 

0-2.1 DECIMAL (BASE 10). When a numerical quantity is viewed from right to left, the right
most digit represents the base number to the exponent 0. The next digit represents the base 
number to the exponent 1, the next to the exponent 2. then exponent 3, etc. For example, using 
the base 1 O (decimal): 

106 105 1o4 1o3 102 101 1oO 
X, X X X. X X X 

or 

, ,000,000 

I , o.ooo ! 100,000 

' t 1000 100 10 1 x. xx x x x x 

For example. 75,264 can be broken down as follows· 

75, 264 

L4x10" 4 x 1 4 

6 x 101 6 x 10 60 

2 x 10~ 2 x 100 200 

5 x 103 5>e1000 5000 

7 x 10' 7 x 10.000 +70CX>0 
7526410 

D-1 



D-2.2 BINARY (BASE 2). As base 10 numbers use ten digits, base 2 numbers use only 0 and 
1. When viewed from right to left, they each represent the number 2 to the powers 0, 1, 2, etc., 
respectively as shown befow: 

215 

(32,768) ••• 
x ••• 

-fa 25 z4 i3 
(64) (32) (16) (8) 

x x x x 

21 

(2) 
x 

For example, 110112 can be translated into base 10 as follows: 

or 110112 equals 2710. 

1 0 

t L .. '° ~ .• . ~ , 
~1 x 21 = 1 x 2 = 2 

_____ .... , x 22 .. 0 x 4 = 0 

-------1x23 = 1x8 = 8 

,__ ___ _____ 1 x z4 = 1 )( 16 = +16 

2'l 
( 1) 

x 

Binary is the language of the digital computer. For example, to place the decimal quantity 23 
(23111) into a 16-bit memory cell, set the bits to the following: 

0 15 

which is 1 + 2 + 4 + 16 "' 2310. 

D-2.3 HEXADECIMAL (BASE 16). Whereas binary uses two digits and decimal uses ten 
digits, hexadecimal uses 16 (0 to 9, A, B, C, 0, E, and F). 

. . 

The lelt•s A through Fare used to represent the decimal numbers 10 through 15 as shown on 
the fonowing page. 

D-2 



• 

N,, N ,~ N iu N 1& 

0 0 8 8 
1 1 9 9 
2 2 10 A 
3 3 11 B 
4 4 12 c 
5 5 13 D 
6 6 14 E 
7 7 15 F 

When viewed from right to left, each digit in a hexadecimal number is a multiplier of 16 to the 
powers 0, 1. 2. 3, etc., as shown below: 

163 152 151 150 

(4096) (256) 116) (1) 

x x x x 

For example, 7 B A 5 16 can be translated into base 10 as follows: 

7 B A 5 

T "L 5 x , so = s x , 
L_10 X 151 = lOX16 

, 1 x 152 = 11 x 256 

7 x 163 = 7 x 4096 

or 7 BA 5 1i. equals 31 ,653 111. 

5 

160 

2 816 

28672 

31 65310 

Because it would be awkward to write out 16-digit binary numbers to show the contents of a 
16-bit memory word, hexadecimal is used instead. Thus 

003E16 or > 003E ( > indicates hexadecimal) 

1s used instead of 

0000 0000 0011 1110: 

to represent 6210 as computed below: 

0-3 



BASE 2 BASE 10 

t l_Sx20 

6 t_ 
0 ~2X 11/l 2 

, x 21 2 6 x 101 60 
1 x 22 4 

1 x 2-1 8 
6210 

, x i4 16 

x 25 32 BASE 16 

6210 

3 E16 

~14X 160 

3 x 15 l 

Note that separating the 16 binary bits into four-bit parts facilitates recognition and t ranslation 
into hexadecimal. 

or 

c 
~ 

7 

• 
B 

+ 
0000 

• 
0000 0011 

+ + 
0 0 3 1100 0111 1011 11112 

Table 0 -1 is a conversion chart for converting decimal to hexadecimal and vice versa. Table D-2 
shows binary, decimal and hexadecimal equivalents for numbers 0 to 15. Note that Table D-1 is 
divided into four parts. each part representing four of the 16-bits of a memory cell or word (bits 
Oto 15 with bit 0 being the most significant bit (MSB) and bit 15 being the least significant bit 
(LSB). Note that the MSB is on the left and represents the highest power of 2 and the LSB on the 
right represents the 0 power of 2 (2° 1 ). As eJCPlained later, the MSB can also be used to signify 
number polarity (+ or - ). 

NOTE 
To convert a binary number to decimal or hexadecimal, convert 
the positive binary value as described in Section 0-4. 

D-4 

14 

48 

6210 



TABLE D-1. HEXADECIMAUDECIMAL CONVERSION CHART 

MSB LSB 

163 162 161 16° 

BITS 0 1 2 3 4 5 6 7 8 7 8 1 1 12 13 14 15 

HEX DEC HEX DEC HEX DEC HEX DEC 

0 0 0 0 0 0 0 0 
1 4 096 1 256 1 16 1 1 
2 8 192 2 512 2 32 2 2 
3 12 288 3 768 3 48 3 3 
4 16 384 4 1 024 4 64 4 4 
5 20 480 5 1 280 5 80 5 5 
6 24 576 6 1 536 6 96 6 6 
7 28 672 7 1 792 7 112 7 7 
8 32 768 8 2 048 8 128 8 8 
9 36 864 9 2 304 9 144 9 9 
A 40 960 A 2 560 A 160 A 10 
B 45 056 B 2 816 8 176 B t l 
c 49 152 c 3 072 c 192 c 12 
D 53 248 D 3 328 D 208 D 13 
E 57 344 E 3 584 E 224 E 14 
F 61 440 F 3 840 F 240 F 15 

I 
To convert a number from hexadecimal. add the decimal equivalents for each hexadecimal 
digit. For example, 7A8216 would equal in decimal 28.672 + 2.560 + 128 + 2. To convert 
hexadecimal to decimal. find the nearest decimal number in the above table less than or equal 
to the number being converted. Set down the hexadecimal equivalent then subtract this 
number from the nearest decimal number. Using the remainder(s). repeat this process. For 
example: 

31 ,362111 700016 + 269010 7000 
2,69010 A001~ + 1 3010 AOO 

130w 8016 + 21 0 80 
2111 2 1 ~ 2 --

7A82 16 

0-5 



TABLE D -2. BINARY, DECIMAL. AND HEXADECIMAL EQUIVALENTS 

BINARY DECIMAL HEXADECIMAL 
(N2) (N10) (N 16) 

{)()()() 0 0 
0001 1 1 
0010 2 2 
0011 3 3 
0100 4 4 
0101 5 5 
0110 6 6 
0111 7 7 
1000 8 8 
1001 9 9 
1010 10 A 
1011 11 B 
1100 12 c 
1101 13 D 
1110 14 E 
1111 15 F 

10000 16 10 
10001 17 11 
10010 18 12 
10011 19 13 
10100 20 14 
10101 21 15 
10110 22 16 
10111 23 17 
11000 24 18 
11001 25 19 
11010 26 lA 
11011 27 18 
11100 28 1C 
11101 29 10 
11 110 30 1E 
11111 31 1F 

100000 32 20 

0 -6 



.. 

D-3 ADDING ANO SUBTRACTING BINARY 
Adding and subtracting in binary uses the same conventions for decimal: carrying over in 
addition and borrowing in subtraction. 

Basically, 

0 

+ 1 

1 

t 1 

10 

~ } 
+ 1 

(the carry. 1, 1s carried to the left) 

0 + carry 1 

0 (from above) + 1 1 

11 

Lcarry carry 1 + 1 

1

1 } 0 + 1 carry 

+ 
11 } = 0 + 1 carry 

100 ~ 
11-o + o = o 

carry 1 + carry 1 

1~ 
--=..!. ( Borrow the 1 

0111 ' 

0-7 

1 
~ 0110 

l 0~1 : 

10 

- , 
01 ( 1 is borrowed from 

top leftl 

11 

+ 1 

101 

10__;-



D-4 POSITIVE/ NEGATIVE CONVERSION (BINARY). To compute the negative equivalent 
of a positive binary or hexadecimal number, or interpret a binary or hexadecimal negat ive 
number (determine its positive equivalent) use the two's complement of the binary number. 

NOTE 
To convert a binary number to decimal. convert the positive binary 
value (not the negative binary value) and add the sign. 

Two's complementing a binary number includes two simple steps: 

a. Obtain one's complement of the number (1 's become O's, O's becomes 1 's) (invert 
bits). 

b. Add 1 to the one's complement. 

For example, with the MSB (left -most bit) being a sign bit: 

101 Invert 

+ 1 Add 1 

000 Invert 

+ 1 Add 1 

001 {+12) 

001 Invert 

+ 1 Add 1 

This can be expanded to 16-bit positive numbers: 

(=39F615l 0011' 1001 1111 0110 (39F615 

1100 0110 0000 1001 Invert 

+1 Add 1 

(=C60A15) 1100 0110 0000 1010 (C60A15 

~SIGN BIT(- ) 

And to 16-bit negative numbers: 

(=C60A15l 1100 0110 0000 1010 (C60A15 

0011 1001 1111 0101 Invert 

+l Add 1 

{=39F615) 0011 1001 1111 0110 (39F615 

L s1GN BIT(+l 

0 ·8 

010 Invert 

+ 1 

+ 14,838101 

- 14,838101 Two's Complement 

14,838101 

"' +14,838101 Two's Complement 



Symbol 

C 1-C8, C 11 , 
C13- C17, 
C19-C22, C24 
C26-C39, C41-C44 

C9, C12, C25, C40 

C10 

C45-C48 

CR1, CR2 

CR3 

DS1 

E1 - E40, E53-E56 

E1 - E35, E38- E56 

All Jumpers 

L1 

P2, P3 

Q1 

R 1 , R2 , R4 , R5 , R7 , 
RB, R11 , R23, R26, 
R44, R45 

R3, R12 

R6 

R9 , R 10 ' R 14 I R 15 

R13, R16, R17 

R18, R24, R25 

APPENDIX E 

PARTS LIST 

Table E-1. Parts For all Dash Numbers 

Description -0001 

Capacitor, 0.047 pF x 

Capacitor, 22 mFd x 

Capacitor, 18 pFd x 

Capacitor 0.047 mFd, 10% x 

Diode, IN5333B 

Diode, IN914B 

Diode (L.E.D., CM 4-43) 

Pin, Jumper (BE! 75481 - 002) 

Pin, Jumper (BE! 75481-002) 

Plug, Jumper (BE! 65474-004, 

x 

x 

R 530153- 002) x 

Coil, RF , 033 µH x 

Connector, 25 pin (AMP 206584- 2) x 

Transistor, PNP x 

Resistor, 4.7K ohm x 

Resistor, 2.2K ohm x 

Resistor, 1. 0K ohm x 

Resistor, 10.0 ohm x 

Resistor, 2 .2 ohm x 

Resistor, 68.0 ohm x 

E-1 

-0002 - 0003 

x x 

x x 

x x 

x x 

x 

x 

x x 

x 

x 

x x 

x x 

x x 

x 

x x 

x x 

x x 

lC x 

x x 

x x 



Table E-1. Parts For All Dash Numbers (Continued) 

Symbol Description -0001 -0002 -0003 

R19, R21, R39 Resistor, 330 ohm, 1/4 w x x x 

R34, R40, R41, R43 Resistor, 330 ohm, 1/4 w x 

R20, R22 Resistor, 220 ohm x x x 

R27 Resistor. 3.9K ohm x x x 

R28 Resistor, 2.7K ohm x x 

R29 Resistor, 330 ohm, 1/2 w x x 

R30 Resistor 33K ohm x x 

R31-R33, R42 Resistor, 27K ohm x 

R35, R36, R46, R47 Resistor, 3.3K ohm x x x 

R37 Resistor, 3.3K ohm x x 

R38 Resistor, 560 ohm x x 

S1 Switch, toggle x x x 

S2 Switch, 5 position DIP x x x 

U1 IC, TMS 9901 x x x 

(]2' ua Resistor, 10 . 0K ohms pkg. x x x 

U3, U26, U32 IC, SN74LS241N, Line Drivers x x x 

U4, U18 Network, SN74LS08N x x x 

U5, U6, U10 , U17, U20 Network, SN74LS74N x x x 

U7, U27 Network, SN74LS04N x x x 

U9, U39 Network, SN74LS251 x x x 

U11 Network, SN74LS132N x x x 

U12 Network, SN74LS14N x x .)( 

U13, U14 1 U22, U23 IC, SN74LS245N, 
Octal Buffer x x x 

E-2 



Table E-1. Parts For All Dash Numbers (Continued) 

Symbol Description - 0001 - 0002 -0003 

U15 TMS 9900 x x x 

U16 TIM 9904, clock driver x x x 

019 PROM, 74S287, memory decode x x x 

U21 Network, SN74LS02N x x x 

U24 Network, SN74LS153N x x x 

U25, U52 Network, SN74LS138N x x x 

U28, U30, U34, U36 TMS 4045 1024 x 4 RAM x 

U29, U31, U35, U37 TMS 4045 1024 x 4 RAM x x 

U33, U49 IC, SN75188N, Line Drivers x x x 

U38 Network, SN74LS10N x x x 

U40 I 041 Network, SN75189AN x x x 

U42 TMS 2708, EPROM, TI BUG 
byte 1 x 

U44 TMS 2708, EPROM, TIBUG 
byte O x 

U42, U44 TMS 2716, 2048 x 8 EPROM x 

U42-U45 TMS 2716, 2048 x 8 EPROM :< 

U46, U47 TMS 9902 Asynchronous 
Communication Controller x x x 

U48 IC, SN75112N x 

U50 Network, SN74LSOON x x x 

U51 IC, SN74LS259N, low power 
Schottky x x x 

U53 Network, SN75154N x x x 

U54 Network, SN751074N, 
Interface x 

E- 3 



Table E-1. Parts For All Dash Numbers (Concluded) 

Symbol Description - 0001 - 0002 -0003 

VR1 IC, UA 7905C/MC 7905CP , 
Voltage Regulator x x x 

XU1 Socket, 40 pin x x x 

XU15 Socket , 64 pin x x x 

XU16, XU47 Socket , 20 pin x x x 

XU19 Socket, 16 pin x x x 

XU28-XU31, XU34-XU37 Socket, 18 pin x x x 
XU46 

XU42- XU45 Socket, 24 pin x x x 

Xl Crystal, 48 MHz, 
3rd overtone, 5%, HC-18U x x x 

8- 4 



APPENDIX F 
SCHEMATICS 





• ., 

- - - • - I <><>47'7 1-1 I 
~ f '••••o"' • 

flO(S lNJ55 Ch.Jl';rf.¥ Sf(J I~ ) lll't1C'l 
-- , ... t -· · · -· .. .. w.::_,_ .... 

l c.APACtTAf'\iCC VAL..UC.S ,.A£ •"I ·U' v ... "9 .. y •U'I A IUVISCO TO AS.JI~£ t/11/ .. JS~ I .s/l' /I I u...s-
MIC&lOC-AC?aos ""'"" I ,. 1 " 6 j <M4,00lll .;i#Mt'~l16/lt l~/14 

2 i:'f£StSTANC£ °""'L.UCS AQC •.., CHMS """°l ll "' .f I 0 1<1,J"S!fl ~~~ I -./.,.•A• ,...,..._,..._...__...::..-... _ 
' " ,J Al-L PESIST'OR5 .A~C '• w, .S ~ T!llS 9'imJOS IOOU . ~ 

~ C.18 A NO C 2 3 .AQL v5£R S OP'T!ON ''""°' l.IO "' " """"' ' II 

0 

[!] PIN NUMt::fEQ AbS1GNMfNT'S ~OR T!ISll'llnlli II II ,, .. 
UH APPLY TO 1"',_.C: 20 PIN SOCM'E:"T' 

"l.Y•t. ht.$7.,t, 

" 
,. 

ro E:N .. BI.£ US£Q TO !NT~QC,....,.cv.iGE mN ' I• 
T'H~ 7 MS 9Q02 ''8P1"1S1 WtT"l-!I A '"" ' 1M$'q903 ( 20 P 1 '.J l cvsc~ s OPT·ONl rsn .. ! .. 

~ ..AJ""P£R PLUVS ...lR[' , "ISTAL.~EO C'\ E~O-(: t, ,, . ., I , I• 
£11-£ l3, CZ4 ·£ZS A S suOwN CiAJ -000· Q#'IJ~V -~U1 .. , II 

( 

0 TH[$£ C~t:JOIVC VTS A~E 
1.UUf' , l\l, l\J 1 l'HJ ... , I 

NS! ... LL£0 ""' ''''lYI I .. 
-0001 ONLV ./II~ 

l!JrM£5£ CO~PO~LNTS ' I• 
.:.t.RE: 11'/STA~O 0,..,. """' ' ... 000 2 O'IJl,..Y ''""' , 

" 9. NC 0£"'JOTES NO CONNECT'IO,.,_ !•UIO .. 
hl.5111 I " 1lll:S1'6 I " 101.SUI I .. 

~ 
•r2V ,!P l• ..,..5 • .,...;,,. 

c .. e I ] ~11. ~ ..t~ C :Je 
0 •7 O • ':' 

. ., l v«-<q -~., i 
• Pt l 4 , f;7 qt! 

<:1• ci-..c•t ~ 

" I"' fzs (~:-.~::J ' •"l c 9 l• 22 C .U,1.•··C+.t C4 0 . z.z f +C5C31 
0 4 1 tl .... O • > 

'G.NO Pl ~~ a,z, ZJ,J!J.2.,11. 

+· C•2 ::: c;..,,~, 
.,., e 1. el,8~ eo.•1,90 100 
04 - ~ 7, 9 1. l ,L'.: 19 . l 23 

22 .04 1 
ZS_ l"1 ZQ Ji '. 1 .S J_..,_,, ->• 

•1tv 7 c - •;, •4 

5"A F?E:S 
lJ 40 U 4 t 

r· • .., ,, "''' J• '~i I l T->V ~- ~ 11t.""'.'t c:;..J:t 11 V2 I 

i (~-}. ! 
''~:..o .. 7•LS>C.C. 1 i:::::: I :lrl~l~l~lsl61?1 "!J SQ.A 7~•89A 

• O 
V'"' V33 

-·ii--·-
u •q 

1. t• J31?J>•Z. .. 2u- -qy. .• 1 :· ·- ... ····--- -· .. -···-- l -,--T 1-· ... ~ ...... 
" <f L.t\,i .. 

,5ee 
1~189• 

?~ B9 ... ,,, , 
·- -~ - .,. - ........ -

. ,_.._ ___ 
~J/ll -·l"2 .0. H ~ lh•'.!~.~'.~i.~'"1._ .. . ....... i ~!·~!:'~~!.: ' h•/llf ....... , ... 

~ ~#.i~€~j¥_~;~~7=-~ ~ 
...._11.J, r 

DIAGRAM, LOGIC, DE TAIL ED - "' 
.. , . ,._ 

9'!4726 "117 _ ............ , ~-~71~ TM990/IOIM 
~'.)r- . fo. ·ttO\ I .:":' ·I--'- ~~· .... , 99<118 8 ,17 T ·: ·=· :: ~·· :" .• 994 727 QI f "•• ••f • r ·Ol't ..... .... ... ...... .": C:..- c. '-$ ._: 

. , ,."'O 0 1962141 
- ... T ... ·- ,,,..,._ 

-· .......... - .Ul - · -~·°'lll, • ~•Ol!ol ~ . •· ~ -••m 
& . -



8 7 6 5 4 3 2 
<5V 

0 

o, .. q,.. 

r~ • Fii.~ 
$I u7 • ~Sv' 4 

+S V r$;•!!'v 7"-~ ~ .~ a..~ f-._-7K_.~ .. ~5 r:::,::l'U'.)<JI!., I ,,.. 7•LS04- uu u1 9 '° ro 10 . I'1 I .ir; _ 

l X·~.. .:~.,._, II ',,..,.!~ -"s IZ " ""'" 17 PQ(9 12 " "Eo -= .. Ko .. ~;ai. 4 C~<>CRV-
f""-' .....- -4(..$08 0 C 0 Q 0 0 ,'K,, ~(; D Q 

Y 14LSl32 14 LSo• ~•O rtf'O Ul7 ifil:I 7•<.SOZ I ""o 11t-... 1 3 I( 0 •.IC i 1 "" s a u w 0 s NC :1~ LO RS'T'-

-=- :s7 ... tev !.74 CUf ? At.!>?• Ct_Q 1• i.$1 4 t,:S74 '"~'4 ,,.DL DA 

74t..5g~ 13 13 +SV J J tJ11 HOLOA -

02• 4.1;.( R'ST- .c::t"Ser- 74!;c,,l 
PR-£5 a - 68 H 01.. o -

' S~I~ ~ 
_ •SV 

Q2S - ~ f~ i ~I 
P[S'T.O.CIT e- ~-9 ~ JO Ult ~ .3 74L5 •.J& ~ -

~5.61 D 

SJ..13,,, 
S'<.3 

S Ml , 7 

S._,3 

5" 3 

5 1-13,6 
P l-- "'! 

SHS.4 

c 

'T1 

N 

B B 

~ "' 74.1..574 ' IO ---:; C YZ 12 41 00 
, z i:;>RE $ 2 pp .. ~ I Z PRF O p GZA V3 11 6Z DO ,z. Dr 

' u~ v~ otJ£ - G2• ~~ ?0- l Ne.. ~ ':!~;'-: ~~ 43 oz 
~ 3 a• ~ "'o~Nc 11 .o >e. ..:...!. c1 .... ,~( ~ Moi..c.o. 03 ,.,,_ -~ 

CLR' Ct_R CLq Ul.5 Y1 p?_ 04 4 .5 04. 
.5 __,.....__. 1 1 13 lJl5 oe "" cs 

U? .. ,v •:>V - T"MS9900 06 47 0' 
'?'<fL.S04 07 48 07 

~WE- 08 49 po 
09 ~ ~o 

IAQ OIO 5 1 n,~ 

~--------.+---'29~08/N O tt ~z ~II 
• 5 v t..OA.C- 4 Cl ::: Ot3 

~RS 3 ~~- ~~3 :"-"' 0 14 

k~,-Cl.. 1<8 - *-4, 7 K 0~ •3 MEM£N - O +-' 9' 01~ 

~:; .JL;_, rrd: T~~I ~~Q; ::: ',~ r ~f T - 3; ~ ~~ 
LU.l TANK2: ¢3 8 Q9 10 28 CZ'.3 A• ZO A 4 

~ a>• 9 Q fO IQ I~ 0'4 A.a 9 A !I 

VI _r X'TALI 14 .J? A4 ~; ;~ 
40MHR c::I ifiT 3C. !N'Tt:l£G- A? i i&. AS 

-r .• ICO A6 ~1&-----"'-"'---
L....!.?.. XTAL2 02. ~l<JC 3~ C. t 49 1.5 ..A9 

CL.re- t6 OSCOVT ¢3 ? X l.f IC2 .40 1• AIO 
6 d J-3 1C3 A ll 13 A ll 

U 16 ~~NC ~ ~ CAVIN A /2 t ::J : !! 
TIM Q904 \J 60 ~~; ~~! 10 A t• 

{ ~ g ... 
.., " ... J ll' z 5 

.:, t ~ l - - 1- I ~ - "' ., 5 ) ~ 'Sl ~~ ~ " 2·!JUU\JIXQ > 
.C. .J- c -I "" 1-4 "°4 "1 \JU > 

I 
c 

Slol:J,'4 

) ~·· 
l SJ.13•. 

.5,•.7 

P2·1"" 

5U3 

P f·ZB 

P l-27 

5,.3 

Al ~~· ,..."' "1 ,... .._____..;. • • to. IA 
"' 'if> u ~ i' ~ ::1 "\ ~· 
0 ~ ~ ~i ~ 

j ...... ~ ....... 1t-illEP]ol¥:fl14li-"'gg4727 IC: 
·~.;· .e..... I 1-•· 2 

a I 7 I s I !5 f A I 3 z 1 ru1r 

~ 



0 I 

- ~:r.~~~:it:;S 
- ....... ' ' 
r<) 

l l l 

jfrr·t ., .... 
,... 

L~~ "' "' Cl •110 "! "' ,.._ 
~ 

ii~ 3 . t ~:; 

; ·~ 
I I 

II g C"'I II ... lil l J ,... m., 
- C" 1f'I <Cf ., ... r- "° 
<<<~•<• 

- - '! 
:> -- iii~ ~i ai~~ 

- ~ r:- ~ '!! . ~ ., = 

-

.... 

-
-

: Q • ~1 ~ ~i ~~ ~r I• l ~ I 
!: 

I.lo I.II ~ w I.ii t.i \.II w ·rs '- ~ 

~ ~ ~ 
... 

ID .. .; '~ .. 
1 i 111 • . .. ' 

0 I 

u 

~ ... 
~ 
~ 

,. 
. 
l 

"' 

u T 

F-3 

~ ~ ~ ~ ;; : ¥1 
t--- t 
"'~'" · "" "' ' 

• r -

~ 

I < 

~~~S\;~:;~ 
o I

~ 0
/' . . """f'"'

~ ~JJ ... I ...
·~~:~~~~

~ § I!

.. ;:a~:::at -
! r;!~ ~~"-

~ 1 I d
j ;;~ 'i ~nn ~~~

...
... .. "
T <ti 1 ~ "'.,

J ..
..
l:
Ill

I

.._
'--

" ;;;
ID

~3
f

....

-
I

!::?-.. -

~
o.)::

- . !'I

- !'I

-

-

,...

-

D

I

C I

,,
.;:,.

B

"

8

a

S"'..J

s,.,t,_.

r
»UJ

SHZ, 1

5..,7

S><2.3

7 6 5 4 3 4727 4

R44 ,,,....---... r - r "'· r '·

+5V ~ EZC. •rt £26 E29 E3i EJI Ell tJJl U< EJi :.~; +5V

AOM , _ I .,, -= r-"""'"
A4 I I S\OM2-

5 >< 3

D

- rJ -~ H ·-~ 2l ·~ A tO A~ Z2 ... :1 Ul A~ H ., A O
AC. ·~ j l M g Mf A~ 2• 18 Alo 1! 16 A" 2 S All CS I
.Al Al n 08 17 DO .Al I 1 DB Al t 11 DO Al I 1(1 oe 17 M 08
A" A#. Ab 01 I• 01 A! t " ' °' Al. 2. t" DI AA 1: A" ., .. JH 1,;;, M n q
,_,ca A." O I~ 0 2 A'J 3 I~ DIO A't ?. 15 0? A~ "' ~~ IC. Dlt't ntO

'"" All) :.!l,j4.lQ~ 14 03 AtO 4 \J4'2 14 0 11 AIO 4 l.MS 14 D~ Ail I ::. O'S "'- t'lll 0 11
Al All A~ 041.!UL .1\11 ._. l ::i\ 017 Al 1"'- n. .a.11 lo. A!i 04 i' ni? 01?
A.12. .&11 _ A, 'l. O~ J.!.,._Q1_ Ali 6 11 0!3 Al7 I Mi Al' A'2 O !t OJ~ 0 1!
A~ A l ' -' I O 10 OCD Al "l tn nj4 AIA !J' 10 O<o ... 1, l Al 02 10 0 14 Ol4
A.14 Al.A li A,O O~~ A l 4 & 9 0!~ A.I.& A , 07 .t. t.a A AO O t Q n 1<. DIS

S>-42,3

c
'-- - i..-_.._

. ... ~uoe1n16 l "l .. 210&/n•.. TM~U0&/27tlo T"lS110e/l 11C.

-..,

... ~ ~ ~ •I oo ~ 1~ u o-a M ,~ - u oo •is. I'!.~ ~

... ·" .. , l/O~ ~I " " I" I, M " " 1.:.. t? 01 4" ,. -'6 '°' !l G9
A't ll Al I/OZ ! 0'2 AT l'T 13 OtO Al '7 13 02 A1 if r4 l 1/0Z ' ' I'll()

.t.A /4:. 110 I ,. 1.6 • 1• 0 11 Al I " ~ AA I 14 l/OI '4 Qll
..... • A~ A• t ~'! A' 1 A!.
.aio ., M u'" ,t. \,(l l u~• .a-o ,. UOl •to ' M U,!5
..._U 4 ,U .Al I .. A H 4 A H • A)
41~ 1 A2 A JZ 1 4 11 7 Al? f At

Al ~ t. Al t~ ...!..___ "~~ " 6 4i~ 4> & Al' ti Al e\ b RAM •-
M 4 ~ AO Wl: 10 4 \4 " 10 A.1 '4 !» n A. 14 5 AO Wf; ~

Wf - ~ 1 TM5 ~0 ~l ~5 I ~5
5'< 1 8

RAM?-

~ '~ ~ ~!..L!!!........ 115. IS,----1_! Cll AS 4~- [)I .a'i.. ... ~1 0t1

~ M... ""' ~ f/O '!a J!-£L .A~ ' 1> ~ A' tC. •1 05 At.. 11.. Al "°' ,, m a.
o'1 .A1 11 • 1 JIOZ I~ D" A, 11 ~' rt~ A1 11 S °" A.7 I AT U02 I) OlA
~ AS I Ac. l/OI ~ •e I I.& 01!t • & I J4 07 .&.A t A'°' J/OI I.& O'S
------.._ ,t't l •'l At ' A'f l ._, 2 ·~
~ ·~ .S A,.A ..1 30 .Ai0 3 tJ'26 A.JO ,, U" AIO J Ult
0 5 .A.f 4 A.~ All 4 A. II 4 A U 4 A~

--=-=------.., ~t_'Z.. J.. A'? ~ Al 1 Al" l At

~ ~!I 6 4 , (s 4 ,_,, '- A 411' " lo Al~ '9 Al C~ La-~
~ _ }... s Al) Wt: 1n A.14 ~ 10 ••• -. •o A1• 5 40 wt £ ,.,

~5 ~ ~5 ~5

.994727 A

7 6 e 4 3 f'llll'

0

SH2

A

e 3 5 i '
~ ,,Q

l' ~ r ~ (~ ;)
ILS8 .o ·

I - -

7 6

I~ : ~ ~ l: I

.--
'""

sz
~-,~

.,-v Vt ~~ E• l Co

-7~1-io !!:
7P• 13 I I iM§@I I 1

-?i:>•-1.fi

: ~tuel;l-~ffi!o:;~--_l_. •·
I' I ~j

7 ' I' J I r ~· .. j,, ~ "r:""1-~~ ~!.'4 ..

[;:~-- :~ ~ b~::. "§1\:. R 111 p I f I "
JC 2.

1
JCZ lNT~

tC 3 '2 tc..:. 3 l N"T6 -

-- 3 " - • INT~ t p4.z4

~·9 w'- NC

~ °"''c"'-"-1----''-I
l - _J ~ C-RUjN

•!>'I

---r-------z:~--~

1ze f t

d!!..-1.--.. " pd - '°
~Po-O

I u 11 I f):~.-;z
I I t 5"•·3 •

)P1•8 ~ul 1-.-r - r-r ~;:.~·: ..
f 111 I I I I ~:7:: r· 111 I 11 r t ~~=~:

1 11 111 11,. !~~ ~
Po ~3~?~'"-i'"-1~'-"'-"1--1--1--1--1--1--1--o--~
P0~38""--1--1--l--l--l--l--l--l--l--l--l--l--1-~-"

I
I
• ·~v
I

/

--
4 U• . ---...:,.~~ l• .. ~ue.-><& ~ ~---·-- H

St-t2,lil ~A~·-'Z
iAL'50& ,, '~li.~- ~3 I

-= ., 02.

SM 2.6 C1.A.C.P.u-

e 7 6 !5

•.:>V

~4-G. '
vol

7 .. l..Si•

~·5(... .? I
U7 -= ut?_ ,.,...

1;L'!IC4 P• ·t. ~~$14 ,.
t'{K. . , v

I .,..tS?• .. "
'--..------J Pl• iO

ue- -1
10 1(. I

~ _z_..,.._ -

"'" lt

•5V

•12'./~P4 1

"'' 't V1w
·•2•~P4·2

'116 t. ... , Z;') P4 'l

<>--------> p 4 ... 4

r !~ 1~";3'''·' .. @¥.~1141- .. 994727

4 3 2

0

c

e

"

A

0

c

"T1
• O'>

B

A

8

SMl.>,4.J
$.' l

IS'<t . .. '

S"UF
s .. ~1s,1
·~z.i.•

8

7

s-17
£ rA ._

'"I== "'"' (19 ~ • .., ..

";

U4 7

@]

P.!•21 "

p3-1q M00£M-0S~

P3• 2'2 "'° ,.._R

1

7

6 s

"'-"' •>

6

£~5

C56 .

• ••

DSj:1 -

~ " -

6 s

4 3

T'l?ANt:f:"'I~£'0
p3 3 •12V

R•<.o
T£P- • JI'< t.. -~ TO ,;:r;.M~":~1£Q-

P_4•IJ
OCT"£Cr

NAL
~ P.J·S

0 ..,,.L.
M00£M QEADY '\P.J·f.1

<:L.£.AO- TC
S£NO

) Cl.J·f•

T£.RM1r.11AL L
Q .0.TA. ""r£P~'-I•

QJ9 ~ 3JO

~
Ct> 4

C£AC v

CM 4' - •.3B ~EC:.CIVEO

P.J - 3. CATA

•$V

MOD£Msc.R
P.J•t '1 c

MOOEM SC T D4• tlt

5,.. 3 B

A

,. .., .. J~: 1 ..
""'·'0196214 994727 c.

4 3 2 Jlf'.

0

c

"T1,

B

A

B

I "; ... 5 {lOCCTS

p; .. ;; .;. lOCO>!.R

si..• fl.A. •

S--5
INT A

!~ A.3

SM/,J • . ,;.oz
.5, 6 A H

I ~

•

7

"'' J,.)K.

~
d~I

----+·

6 5 4

n''.'.~~-: -1 -~
• "'\ !

CQI r ~.., /' -1
,1"''"' I

I T - j •• ,

r - - L ~q - - - - ,~,l
l•t<V-~~ tf'("Q(.~4-,. I I f · ,p_ ·, l

I · •Z~ . -j LI
_l Pl: I 1 '

-l T l"(1' •-' I I
~- c~~ -,,oe ... _

t - -_.,... - 111 PZ· ,;._
.. J& I ' I

I
... ,~" !!"O - 1 •

~ ~w

~ 1 __ --'Wl..-!.!.l::!!-1.I.'!l"~P Z J~ . I
,, llXC.lt=" "\ I T l - I

~ 1..1 t: ~;: · · -- r ~ --l Z!.

•
• ,J_..J"
J!<;.

15154

l ·:~· ~ ,o~--

f

!~~

b

S 2V

.:&
l A

v ••
1 ,: 10 ~

(.4 7 '

I .,

3

..... :_

4 ,._, -'"'''"

t .. .:

.......-c;.~ • - -

....
··~ · !.~ _.._ .. .

..£~ \._,~£5

~·.,(#

~~

~ 1-1;2
Q.JO ~,.~
.;+o

I
I

sv

l
I
I
I
I
I

,, ~ "'-"~ I ~, ., ~"""' -,-1
~ ~... 0 • , I -'-l::.7- I ZN~'""::.5 ...

~" I ' $'"" I I

I ----. ,' I SMJ

I
5'<2.J S•D•-
p , ~.t

t •-79
Pl· 7 7

"'' p ,.,.80<

e2 (.i;.e.,_.6 •

.. c
s..;2 ~....-c-

~7.J~
-si-.z.,3 -!:::.Q:!_CN -

swz.• _ "!"'!l_E;_-

SM Z.l, 4 ~"'°'4 __ _
SM~ .B.A~ --- ------

08 'V •

8 7

' I l ?~~P2•J ,c.R3 -
'~·•" ••9••e I I

I T T Y INTS~,::-A.:.£. I I
L_ -- _!D __ _ J I

~J'';~,~J'Y'ik - .;. : o~-t:I
-sv

. ~z ~ ,

~~_;M)
c ~.J•
< >JO

w• Z j .,., ,,,,
2 73.30 ~

--'--l
· ~v ·tw

MUL T l - O Q O P INTEfi'~ ___]fil __ _j

·~ ,.·- 1 I I I)"•·B•
~Po-•

,-
' -·~· L*-~ * I £?Le ~.,.t:l_3 - - _-_j PZ·•Z

~

IN •

va1
? .. 1.~CM

........
6 5

--.S~4

3

1• i..500

e ~AM Z- 5..,,

~ .. <;,c
U27 •6

7•1..50 4

"2 • •w

.. ,,2
74 1..fll<t

4

· ~v El• ElO ~P~· 4

.. , ... G fl~ ,__[z,11 i P2·t3

2· 1

-. - P~·?

~z1 1z

0

c

B

A

,,

APPENDIX G

990 OBJECT CODE FORMAT

G.1 GENERAL
In order to correctly load a program into memory using a loader, the program in hexadecimal
machine code must be in a particular format called object format. Such a format is required by
the TIBUG loader (paragraph 3 .2. 7 explains loader execution). This object format has a tag
character for each 16-bit word of coding which flags the loader to perform one of several
operations. These operations include:

• load the code at a user-specified absolute address and resolve relative addresses.
(Most assemblers assemble a program as if it was loaded at memory address 0000 1 ~:

thus, re lative addresses have to be resolved.)

• load entire program at a specific address

• Set the program counter to the entry address after loading.

• Check for checksum errors that would indicate a data error in an object record.

G.2 STANDARD 990 OBJECT CODE
Standard 990 object code consists of a string of hex.adecimal digits. each representing four
bits, as shown in Figure G-1.

,---TAG CHARACTER

r LENGTH OF RELOCATABLE CODE TAG CHARACTERS 7
~ llll/lllllll
OOO~CBLINK AOOOOBFF70C0004B0 4CCBC06(18000EBCC6(lC0048 B0202C002(:7F 1FCF
AOO l 2BCC42BCC60C004AB0200 8 3 009 8 0 420BOOOOB0 3 00B0003 80201 BOO<X37F300F
A0028B1DOOB10FFBFF70C00 308020 CB01 0081D03B0 4CCB0601 B1 604BlEOO{F2 AFF1
A003EB020l800038038081DOOB038080420803807F760F _/-y--
3 001ETI ME0150000BL INK 7FAABF
: BLINK TXMI RA

"'---END OF OBJECT CHECKSUM FIELD

FIGURE G-1. OBJECT CODE EXAMPLE

G-1

0 001
0002
0003
0004
(1005
0006

The object record consists of a number of tag characters, each followed by one or two fields as
defined in Table G-1 . The first character of a record is the first tag character, which tells the
loader which field or pair of fields follows the tag. The next tag character follows the end of the
field or pair of fields associated with the preceding tag character. When the assembler has no
more data for the record, the assembler writes the tag character 7 followed by the checksum
field, and the tag character F, which requires no fields. The assembler then fills the rest of the
record with blanks, and begins a new record with the appropriate tag character .

Tag character 0 is followed by two fields. The first field contains the number of bytes of
relocatable code, and the second field contains the program identifier assigned to the program
by an IDT assembler directive. When no IDT directive is entered, the field contains blanks. The
loader uses the program identifier to identify the program, and the number of bytes of
relocatable code to determine the load bias for the next module or program. The PX9ASM
assembler is unable to determine the value for the first field until the entire module has been
assembled, so PX9ASM places a tag character 0 followed by a zero field and the program
identifier at the beginning of the object code file. Atthe end of the file, PX9ASM places another
tag character zero followed by the number of bytes of relocatable code and eight blanks.

Tag characters l and 2 are used with entry addresses. Tag character 1 is used when the entry
address is absolute. Tag character 2 is used when the entry address is relocatable. The
hexadecimal field contains the entry address. One of these tags may appear at the end of the
object code file. The associated field is used by the loader to determine the entry point at which
execution starts when the loading is complete.

Tag characters 3 and 4 are used for external references. Tag character 3 is used when the last
appearance of the symbol in the second field is in relocatable code. Tag character 4 is used
when the last appearance of the symbol is absolute code. The hexadecimal field contains the
location of the last appearance. The symbol in the second field is the external reference. Both
fields are used by the linking loader to provide the desired l inking to the external reference.

For each external reference in a program, there is a tag character in the object code, with a
location, or an absolute zero, and the symbol that is referenced. When the object code field
contains absolute zero. no location in the program requires the address that corresponds to the
reference (an IDT character string, for example). Otherwise. the address corresponding to the
reference will be placed in the location specified in the object code by the linking loader. The
location specified in the object code similarly contains absolute zero or another location. Wh~m
1t contains absolute zero, no further linking is required. When it contains a location, the addr£ ;s
corresponding to the reference will be placed in that address by the linking loader. The locat, '"
of each appearance of a reference in a program contains either an absolute zero or anotl er
location into which the linking loader will place the referenced address.

G-2

!

I

TABLE G-1 . OBJECT OUTPUT TAGS SUPPLIED BY ASSEMBLERS

TAG
CHARACTER

0

2

3

4

5

6

7

8

9

A

8

c
D

F

G

H

• No1 sopplted by assembler

HEXADECIMAL FIELD
tFOUR CHARACTERS)

Length of all relo-
eatable code

Entry address

Entry address

location of last
appearance of
symbol

Location of last
appearance of
symbol

Location

Location

Checksum for
current record

Ignore checksum

Load address

Load address

Data

Data

Load bias value•

None

Location

location

SECOND AELD MEANING

8-character program Program start
identifier

None Absolute emry
address

None Relocatable entry
address

6-character symbol External reference
last used in relo
eatable code

6-character symbol External reference
last used in absolute
code

6-character symbol Relocatable external
definition

6 -character symbol Absolute external
defm1t1on

None Checksum

None Do not checkS'\Jm for
error

None Absolute load
address

None Relocatable load
address

None Absolute data

None Relocatable data

None Load point spec1f1er

None End-of- record

6 -character symbol Relocatable symbol
def mu ion

6-character symbol Absolute symbol
definition

Tag characters 5 and 6 are used for external definitions. Tag character 5 is used when the
location is relocatable . Tag character 6 is used when the location is absolute. Both fields are
used by the linking loader to provide the desired linking to the external definition. The sec-rnd
field contains the symbol of the external definition.

G-3

Tag character 7 precedes the checksum, which is an error detection word. The checksur 1s
formed as the record is being written. It is the 2's complement of the sum of the 8-bit A SCII
values of the characters of the record from the first tag of the record through the checksum mg
7 . If the tag character 7 is replaced by an 8, the checksum will be ignored. The 8 tag can be u~ed
when object code is changed in editing and it is desired to ignore checksum.

Tag characters 9 and A are used with load addresses for data that follows. Tag character 9 is
used when the load address is absolute. Tag character A is used when the load address is
relocatable. The hexadecimal field contains the address at which the following data word is to
be loaded. A load address is required for a data word that is to be placed in memory at some
address other than the next address. The load address is used by the loader.

Tag characters Band C are used with data words. Tag character Bis used when the data 1s
absolute; an instruction word or a word that contains text characters or absolute constants, for
example. Tag character C is used for a word that contains a relocatable address. The
hexadecimal field contains the data word. The loader places the word in the memory location
specified in the preceding load address field, or in the memory location that follows the
preceding data word.

To have object code loaded at a specific memory address, precede the object program with the
0 tag followed by the desired memory address (e.g., DFDOOJ.

Tag character F indicates the end of record. It may be followed by blanks.

Tag characters G and H are used when the symbol table option is specified with other 990
assemblers. Tag character G is used when the location or value of the symbol is relocatable,
and tag character His used when the location or value of the symbol is absolute. The first field
contains the location or value of the symbol. and the second field contains the symbol to which
the location is assigned.

The last record of an object code file has a colon(:) in the first character position of the rP1 ·1,rcJ .
followed by blanks. This record is referred to as an end-of-module separator record.

Figure G-2 is an example of an assembler source listing and corresponding object code. A
comparison of the object tag characters and fields with the machine code in the source listing
will show how object code is constructed for use by the loader.

G-4

LOCATION COUNTER !ADDRESS RELATIVE TO FIRST OBJECT BVTEI

I MACHINE CODE

SOSMAC 945278

I PAGE 0IZnI1.l

1(1T ' SAMPLE'
•02 0000 1)0(1€. DATA l•JSPACE
03 0002 c;:10sA DATA START

(1004 00134 ~000 DATA 0
0005 0006 WSPACE 855 32
13006 0026 TABLE 855 100
0097 0ei3A START
0088 008A 04((CLR 12
0009 008C 'J4CO CLR 0
001.0 008E 821;:1 ,!. Ll 2,TABLE

0090 0~26
l;.\011 0092 C8£l1J 110V 0, @TABLE+2

0034 IZ.•"1:28'
001.2 0096 10(11. JMP t+4
001l 0098 LOOP
001.4 0098 O:iH Lt 4,:>1234

009A 12:i4
001.~ 009<: 0244 ANDI 4, >FEED

0EJ9E FEED
001.6 00A0 DC:84 M0'./8 4 · •2+
0017 130R2 020"3 LI 5 ..)5~55

f.10A4 555'5
0018 00A6 Cl305 MOV 5 , @TABLE

130A8 0026'
0019 END

NO ERRORS

0 0 ORA !: AMPLE H II 11(1 (IC (I (11)..;. c fll)t:A B 0 0 (J (•H 1111·.:.H r . 04 (c r : 0 41" (If: I II I 11 to..:,':· [· I°.:: OO?F 20 ftF II ll IJ
•: O 028B l O O lI' (t2 0-1E•1 2 34 E: u.::4 4f:.F EE Dr: f1C ~ 4 f: 02 051 ·:-.555 I C::: o-=.i _ 1111..:.r:· :-F sC 1 F 1_11.1 I)

SAMPLE 00 , 00 00 08:14:23 ~D:M8C ~ -15 278 ••

FIGURE G-2. SOURCE CODE AND CORRESPONDING OBJECT CODE

I

r
G-b

APPENDIX H

Pl , P2, AND P4 PIN ASSIGNMENTS

TABLE H-1. CHASSIS INTERFACE CONNECTOR (P1) SIGNAL ASSIGNMENTS

P1 SIGNAL
Pl

SIGNAL
P1 SIGNAL

PIN PIN PIN

33 00.B 71 A14.B 12 INT13.B I

' 34 01 .B 72 Al5.B 11 INT14.B
35 02.B 22 .0'1 .B 14 INT15.B
36 03.B 24 .03.B 28 EXTCLK.8
37 04.B 92 HOLO.B 3 +SV
38 05.B 86 HOLOA.B 4 +sv
39 06.B 82 OBIN.B 97 +sv
40 07.B 26 CLK.B 98 +SV
41 08.B 80 MEMEN.B 75 +12V
42 09.B 84 MEMCYC.B 76 + 12V
43 010.8 78 WE.8 73 - 12V
44 011 .B 90 REAOY.B 74 -12V
45 012.B 87 CRUCLK.8 1 GNO
46 013.B 30 CRUOUT.B 2 GNO
47 014.B 29 CRUIN.8 21 GNO
48 015.B 19 IAO.B 23 GNO
57 AO.B 94 ~.B 25 GNO
58 Al.B 88 IORST.B 27 GNO
59 A2.B 16 iNfl.B 31 GND
60 A3.B 13 fITTTB 77 GND
61 A4.B 15 iNl'J.B 79 GNO
62 AS.B 18 fNT4.B 81 GNO
63 A6.B 17 INTS".B 83 GND I
64 A7.B 20 INT6.B 85 GND
65 A8.B 6 INT7.B 89 GNO
66 A9.B 5 ffrnr.B 91 GND
67 A10.8 8 i'NT§:B 99 GND
68 A11 .B 7 INT10.B 100 GNO
69 A12.B 10 INT11 .B 93 RESTART.B
70 A13.B 9 INT12.B

H· 1

TABLE H-2. SERIAL 1/0 INTERFACE (P2) PIN ASSIGNMENTS

P2
SIGNAL DESCRIPTION

PIN

1 GND

7 GNO

3 RS232 XMT RS232 Seria l Data Out

2 RS232 RCV RS232 Serial Data In

5 CTS Clear to Send
(3.JKn pull-up to + 12 V)

6 DSR Data Set Ready
(3 .3KO pull -up to + 12 V)

8 DCD Carrier Detect

20 DTR Data Terminal Ready

18,23 TTY XMT TIY Receive Loop/ Private
Wi re Receive Pair

24,25 TTY RCV TIY Transmit Loop/ Private
Wire Transmit Pair

17 ACV CLK Receive Clock

15 XMT CLK Transmit Clock

12• +12 v Jumper Option for M icroterminal

13• - 12 v Jumper Option for Microterminal

14* +5 v Jumper Option for Microterminal

16 RESTART Invokes the Load
Interrupt to the TMS 9900 CPU

'Wheri using the Microterminal. these voltages are 1umpered to the corresoond•ng 01n in connector P2 Else. the voltaqes are not cnnn1.tctert

H-2

L

I

r

TABLE H.3 SERIAL 1/0 INTERFACE (P3) PIN ASSIGNMENTS

P3 PIN SIGNAL
--

1 OPTIONAL GND
7 GNO
2 RS232 RCV
3 RS232 XMT
5 CTS-Terminal
6 DSR-Terminal
8 DCD-Terminal

16 CTS-Modem
19 DSR-Modem
20 DTR-Terminal

DCD-Modem
21 DTR-Modem
15 SCT
17 SCR
22 RI

--
·used with TM 990/ 506 Modem Cable Only.

DESCRI PTION

GROUND IF JUMPER AT E18, E19
GROUND
RS232 Serial Data In
RS232 Serial Data Out
Terminal Clear to Send (3.3 k!1 pull-up to + 12 V)
Terminal Data Set Ready (3.3 k!1 pull-up to +12 V)
Terminal Data Carrier Detect
(activated by TMS 9902 Request to Send)
Modem Clear to Send•
Modem Data Set Ready•
Terminal Data Terminal Ready
Modem Data Carrier Detect•
Modem Data Terminal Ready•
Synchronous Transmit Clock
Synchronous Receive Clock
Ring Indicator

H-3

J

TABLE H-4. PARAL LEL 1/0 INTERFACE (P4) SIGNAL ASSIGNMENT

P4 PIN SIGNAL P4 PIN SIGNAL

20 PO 17 GND
22 P1 15 GND
14 P2 13 GND

16 P3 11 GND
18 P4 9 GND
10 PS 39 GND
12 P6 37 GND
24 INT15 or P7 35 GND
26 iNTT4 or PB 33 GND
28 INT13 or P9 31 GND
30 INT12 or PlO 29 GND
32 INT11 or P11 27 GND
34 INT10 or P12 25 GND
36 1N1'9 or P13 23 GND
38 INT8 or P14 21 GND
40 mi1 or P15 19 GND
7 GND 1 +12 v
8 POSITIVE EDGE TRIGGER INT6 2 - 12 v

3 +5 v
4 SPARE

5 GND
6 NEGATIVE EDGE TRIGGER INT6

H-4

r

APPENDIX I

TM 990/301 MICROTERMINAL

1.1 GENERAL

1.2

1.3

The Texas Instruments Mic1oterminal offers all of the features of a minicomputer front panel at reduced cost

The Microterminal, intanded primarily to support the Texas Instruments TM 990/1.XXM microcomputers. al

lows the user to do the following:

• Read from ROM or read/write to RAM

• Enter/display Program Counter

• Execute user program in free running mode or in single instruction mode

• Halt user program execution

• Enter/display Status Register

• Enter/display Workspace Pointer (this term is unique to the Texas Instruments 9900

microprocessor)

• Enter/display CRU data (this term is unique to the Texas Instruments 9900 microprocessor)

• Convert hexadecimal quantity to signed decimal quantity

• Convert signed decimal quantity to hexadecimal quantity

SPECIFICATIONS

• Power Aequ irements
+12V (±3%), 50 mA

- 12V (±3%). 50 mA
+5V (±3%), 150 mA

• Operating Temperature : O"C to 50° C {+32'' to +t22° F)

• Operat ing Humidity : 0 to 95 percent. non·condensing

• Shock : Withstand 2 toot vertical drop

INSTALLATION AND STARTUP

To install the Microterminal onto a TM 990/ 1XX microcomputer. do the following ;

• Attach jumpers to :

On TM 990/ lOOM. J13, Jl4, and J15, and set J7 to EIA position

On TM 990/ 101M . E20-E21, E22-E23, and E24-E25

On TM 990/ 180M: J4, J5, and J6, and set J13 to EIA position.

• Attach the EIA cable from the Microterminal to connector P2 . Signals between the Microterm1nal
and the microcomputer are lasted as in Table t.

• To ini tialize the system, actuate the microcomputer RESET switch , then press the m1crotermtnal
[CLAlkev.

NOTE
If the user has installed the oprtonal filter capacitor on the RESTART input, this
capacitor must be removed for proper operation (e.g., if CS is installed on the
TM 990/100M o r TM 990/1 BOM microcomputer , this capacitor must be
removed).

1-1

..

FIGURE 1-1. TM 990/301 MICROTERMINAL

TABLE 1-1. EIA CABLE SIGNALS

EIA Connector Interface ~T TM 990/100M/180M/101M

Pin Signal P2 Pin Signal

2 TERMINAL DATA OUT - 2 RS232 RCV

3 TERMINAL DATA IN - 3 RS232 XMT

7 GND - 7 GND

12 +12V - 12 +12V

13 - 12V - 13 - 12V

14 + 5V - 14 + 5V
--

16 HALT - 16 RESTART

1-2

CAUTION

Before attaching the M1croterminal to a power source, verify voltage

levels between ground and EIA connector pins 12, 13, and 14
at connector P2 on the board. Voltage should not exceed values 1n

Table 1-1.

1.4 KEY DEFINITIONS

1.4.1 DATA KEYS

Clear Key - Depressing this key blanks display, Initializes and sends in itialization message (ASCII code
for A and ASCII code for ZI to host microcomputer.

He.xadecimal Data Keys - Depressing any one of these keys shifts that value mto the rifllt ·hand display

digit. All digits already in the data display are left shifted. For all operations other than decimal to

hexadecimal conversion, the fourth digit from the rif/lt is shifted off the end of the right-hand display

field when a data key 1s depressed. For a decimal to hexadecimal conversion, the fifth display digit from
the rif/lt. rather than the fourth, 1s shifted off the end of the data field.

1.4.2 INSTRUCTION EXECUTION

~ Pressing this key while a program is runnmg (run displ11yed) will halt pr0!7am execution The address of

the next instruction will be displayed in the four left ·hand display d igits, and the contents of that

address wi ll be d isplayed in the fou r rifllt hand d igits. Pressing ttiis key while the program is halted, will
execute a single 1nstruc t1on using the values in the Workspace Poi nter (WP), Program Counter (PC) , and

Status Register (ST), and the displays will be updated to the next memory address and contents at that

address

I RUNI Pressing this key initiates program execution at the current values m the WP. PC: run is displayed in the

three right-hand display digits.

1,4.3 ARITHMETIC

I H -DI The s1yned hexadecimal data r.ontamed in the four r 1ght·hand display digits is converted ta signed

decimal data No te that the four th d1snlay d igit from the right IS the sign bit (1 negative). The

convN\1on l1m115 are minus 32. 76810 (8000161 to plus 32. 767 (7FFF15I. Two H-D key depressions are
1 equ11 ed The sequence is

1 Dt·111css IH - DI
2 Entrr data via hex datd key depressions.

J Dt•pre•ss jH ·DJ . Tlw 1ernl1s of the convcr~1on are d1sptayrd In the fiv e right hand d1splJy

chy1ts

[IT:::]] Thi· d"rtmal llJt;i co11ta1111'd 111 th1· 111/f• 11ql11 hand d1~ploy digits is converted to hex;idec1mal Tlw
11111v1·1~1rn1 l111111~ Jrt· tilt' samr d' lrn hr·'<ad1•c1mal to denmal conversion. The seq11~11r1• 1s .

1 Dr•p1 r·ss IT) ·HJ
2 E•1t1•1 d.i1.1 VIJ ht·~ d.11.1 \..1·y rl1·11t1'\'.llll\\

01 p1 • \\ f!? ·Hl l 111 11 \ 1111' 111 1111• • onv1·1\1on c11 l displayed m the four 11gh 1 hJml d•~trlJy
d1q1h

1-3

1.4.4 REGISTER ENTER/DISPLAY

[EWP I Pressing this key causes the value displayed in the four right-hand digits to be entered Into the WP

[DWP I Pressing this key causes the WP contents to be displayed in the four right -hand display digits.

[EPC I Pressing this key causes the value displayed in the four right hand digits to be entered into the PC.

! DPC [Pressing t his key causes the PC contents to be displayed in the four right-hand display digits.

I EST I Pressing this key causes the value displayed in the four right-hand digits to be entered into the ST.

I OST I Pressing this key causes the ST contents to be displayed in the four right·hand display digits

1.4.5 CRU DISPLAY/ENTER

[DCRU I Pressing this key causes the data at the designated Communications Register Unit (CR Ul addresses to
be displayed. Designate from one to 16 CRU bits at a specified CRU address by using four hexadecimal
digits. The first digit is the count of bits to be displayed. The next three digits are the CRU address
(equal to bits 3 to 14 in register 12 for C RU addressing) . When I DC RU I is depressed. the bit coun t and
address are shifted to the left-hand display, and the right·hand display will contain the values at the
selected CRU output addresses. The output value will be zero-fi lled on the left, depending upon bit
count entered. If less than nine bits, the value will be contained in the left two hexadecimal digits. If
nine or more, the value will be right justified in all four hexadecimal digits.

I ECA U I Pressing this key enters a new value at the CR U addresses and bit count shown in the left display after

depressing I OCR U I. The new value is entered from the keyboard and displayed in the right-hand
display. Pressing IECRUI enters this value onto the CRU at the address shown in the left display.

CAUTION

Avoid setting new values a t the TMS 9902 on the TM 990/ 100M/
180M/ 101M through the CRU (TMS 9902 is at CRU address 004015),
as this device controls 1/ 0 functions.

1.4.6 MEMORY ENTER, DISPLAY, INCREMENT

IEMAl Pressing this key will cause (1) the memory address (MA) in the right-hand display to be shif ted to the
left-hand display and (2) the contents of that memory address to be displayed in the right-hand display.

[EMO I Pressing this key causes the value in the right-hand display to be entered into the memory address
contained in the left-hand display. The contents of that location wilt then be displayed in the four
right-hand display digits (entered then read back) .

I EMDll Pressing this key causes the same action as described tor the lEMD] key; it also increments the memory
address by two and displays the contents at that new address. The memory address is displayed on the
left and the contents at that address is displayed on the right.

1.5 EXAMPLES

1.5.1 EXAMPLE 1, ENTER PROGRAM INTO MEMORY

Enter the following program starting at RAM location FE0015. Set the workspace pointer to FF0015 and the
status register to 200015. Single step through the program and verify execution. Then execu1e the program 111

free run mode and verify execution. Then halt program execution

1-4

Clear Display

Enter PC Value

Enter 1n10 PC

Display PC

Enter ST Value

Enter into ST

Display ST

Enter WP Value

Enter Into WP

Display WP

Enter MA Value

Enter Into MA

Enter CLR 0 Opcode

Enter data,
increment MA

Enter INC 0 Opcode

Enter Data,
Increment MA

Enter Cl Opcode
Enter Data,
Increment MA

NOTE
In the following examples, XXXX indicates memory contents at
current value in Memory Address Register.

OPCODE INSTRUCTIONS

04CO CLR AO CLEAR WORKSPACE REGISTER 0
0580 INC AO INCREMENT WORKSPACE REGISTER 0
0280 Cl RO, > OOFF CHECK FOR COUNT 255
OOFF
16FC JNE $-6 JUMP TO INC RO IF NOT DONE
lOFF JMP $-0 STAY HERE WHEN FINISHED

KEY ENTRIES DISPLAY

Depress jCLA)

Depress [£ZJ [fil (QJ rg IFeool

Depress I EPC I IFEool

Depress IDPCI IFEool

Depress [IJ@]@]@l 120001

Depress !EST I 120001

Depress I DST! 120001

Depress @] (Fl- j@J@J jFFool

Depress !ewPI IF Fool

Depress lowPI jFFool

Of' press 0~121@1 IFeooJ

Depre's !EMAi jFEajxxxxl

Depress @] @]@]@] IFEool 04col

0Ppress IEMDll jF E02]xxxxl

Depress @] ~~@] IFE02lossol

Oep11·~~ IEMOI] [ff04[maj

()1'1111·~' @]~~@] IFE04jo28ol

DrorP~\ I f.MOll f FE06lxxxxl

KEY ENTRI E~ !;) !SPLAY

Enter Cl
Immediate Operand 0Ppress @]@] ~~ I FEoslooF FI
Enter Data,
Increment MA Depress jEMDll IF Eoalxxxx I
Enter JNE $·6
Opcode Depress ITJ~[EJ(g IFEDBl16FC I
Enter Data,
Increment MA Depress IEMOij I FED~)()(XX I
Enter
JMP $-0 Opcode Depress ID&J~[J jFEOAj lOFFI
Enter Data,
Increment MA Depress IEMDll jFEOC!xxxx)

The progtam has now been entered into RAM. Since the PC, ST and WP values have been previously set. the
pro!Jam can be executed in single step mode by depressing the H/S key.

DISPLAY EXECUTES
(AFTER) INSTRUCTION

Oi:?press I HIS! l FE02losao I CLA RO

Depress !HtSj I FE04I0280 I INC AO

Depress lH/Sj jFE08j16FC I Cl RO,> OOFF

Depress jH/Sj I FE02!05ao I JNE $- 6

This cycle will continue until RO reaches the count of 255 at which point the program will continuously
execute at location FEOA15 because it is a jump to itself.

To verify this, depress : DI SPLAY

j run J

The program should now be "looping to self" at location FEOAt6· To verify this, depress :

I H/S I IFEoJgloFF I
Now examine the memory location corresponding to Register 0.

Depress fI] [[] @) []] !FEOAIFFOO I
Depress lFFOO looFFI

This illustrates that FF1s did become the final contents of WPO. Note that, when the program was being
entered into RAM, !EMO 11 was used rather than I EMO! because of the rather desirable feature of automatic
address incrementing. The advantage of using I EMDj is that the actual contents o f the addressed memory
location are displayed after key depression (echoed back after be1nq entered).

1·6

1.5.2 EXAMPLE 2, HEXADECIMAL TO DECIMAL CONVERSIONS
Convert 800016 to a decimal number

Depress

Depress

Depress

Depress

I CLR I

I H-DI

m [QJ w w
I H-DI

Convert 0020 16 to a decimal number

Depress I CLA I

Depress I H-"'D I

Depress [II@]

Depress I H-..D I

laooo I

- 312168 I

1.5.3 EXAMPLE 3, DECIMAL TO HEXADECIMAL CONVERSIONS
Convert 4510 to he><

Depress

Depress

Depress

Depress

ICLRI

ID-HI

[3][!]

ID-HI

Convert - 1024 10 to hex

Depress

Depress

Depress

Depress

I CLR I

I D_,.H I

I Ft- I IT1 [Q] OJ w
Io-HI

1.5.4 EXAMPLE 4, ENTER VALUE ON CRU

45 I

- 11024 I

IFCOO I

Send a bit pattern to the CRU at CRU address (bits 3 to l4 of R 12) OE016 with a bit count of 9 containing a
value of 5 (0000001Ol2). ·

1·7

Depress lcLR I

Depress [I] @] []] @] l90EO I

Depress f DCRUJ I 9oEolvvvvl

Depress [QJ @] @] [ill j 9oEolooo5 I

Depress !ECRU I

YYYY indicates value at the current CRU address. No1e that alDCAUloperation is always required to

specify bit count/CRU address.

1.5.5 EXAMPLE 5. ENTER, VERIFY VALUE AT MEMORY ADDRESS

E.nter 004016 1nto locatt0n F E20 and verify that i1 got there.

Depress jCLR I

Depress [j ®
Depress IEMAJ

Depress @] @]

Depress lEMDI

jFE2ol

I FE20lxxXJC I

I FE2op040 I

l FE20p040 I

_ The contents of address FE20 are verified by an echo of data from memory to display following the
pressing of~ If it is desired to view and enter data at address FE22, depresslEMOJ

1·8

APPENDIX J

CRU INSTRUCTION AND ADDRESSING EXAMPLES USING TMS 9901

The following figures 1 J-1 to J-6, are examples of addressing the TMS 9901 through
the CRU, pointing out in graphic form:

• External I/O in parallel tmultibit) and serial (single bit) forms,

• The relationship betweeo the CRU bits addressed and the bits in the source
operand of the S'fCR instructions,

• The relationship between the CRU bit addressed and the displacement in
single-bit instructions.

The TMS 9901 occupies 32 bit positions of CRU space with the low 16 bits at CRU
software base address 0100 16 and the high 16 bits at CRU software base address 012016·
To access the low 16 bits of the TMS 9901 through the CRU, load 0100 into register 12 .

The high 16 bits at CRU software base address 012015 are the parallel I/O bits, shown
in the accompanying figures . These may be set, reset, or read in any order or in any
combination of 1 to 16 bits . Since CRU operations are serial, data from the
microprocessor (either serial or parallel) is transmitted serially to the TMS 9901,
which outputs it in parallel. Likewise, during input, data present at the TMS 9901 I/O
pins (in parallel) is shifted serially to the microprocessor using the CRU. It is
necessary only to load register 12 with 0120 16 and use either the LDCR or STCR
instructions . Bear in mind that the CRU operations of 1 to 8 bits affect the left byte
(more significant half) of a word (registers take up a full memory word).

The lower 16 bits of the TMS 9901 at CRU software base address 010016 are used for
control of interrupts and the timer function, and to restore the I/O lines to the
input mode with output buffers disabled and floating. Interrupt requests are presented
to the TMS 9901, each on its own line, and are compared against an internal mask. If
the internal interrupt mask allows, the particular interrupt request is encoded into
TMS 9901 output lines ICO to IC3 (going to interrupt input lines ICO to IC3 at the
TMS 9900) as explained on page 6 of the TMS 9900 data manual and page 8 of the TMS
9901 data manual. The TMS 9901 also pulls the INTREQ- line low on interrupt requests
(not during RESET), which goes to INTREQ- at the TMS 9900.

J-1

(1) ASSEMBLY LANGUAGE:

LI R1 2 , >0120
LDCR RO, 15

(2) SOURCE ADDRESS IN MEMORY:

0 3 4 7 8

RO : 0 0 , 0 0

I
Ignored

(3) ADDRESSING :

Address lines at operation start

R12: 1o 0 0 0 0 0 0 0 0

I I
Ignored

0 0 0 0 0 0 0 1 0 0

11 12

0 1

0 0 0 0

15

(LSB of RO)

0 I Bit 15
Ignored

0 0 0 0 ------"'--11-i
110

DECODE

ROLSB I
...-------. ;

PO
Pl
P2
P3
P4
PS

PG
P7
PS
pg

PIO

Pl l
P12
P13
P14
P15

ADDRESS

SELECT

TMS9901

0

1

0

1

0

1

0

0

1

0

Ao------~------------~-~-------------- A14
L~~~~~~~-.-~~~~~~~~ PJS STATE REMAINS UNCHANGED

ADDRESS LINES

Figure J- 1. LDCR Word Execution To TMS 9901

J-2

(1) ASSEMBLY LANGUAGE :

LI R12, > 0128
LDCR R2,2

PO

(2) SOURCE ADDRESS IN MEMORY: Pl

P2

0 3 4 7 8 11 12 15 P3

I P4 • R2 0 0 0 0 0 0 P5
P6

I TWO BITS TRANSFERRED P7

LEFT BYTE USED - P8 0
pg

P10

Pl 1

(3) ADDRESSING : P12

P13

R12: I 1 0 0 0 0 0 0 0 0 0 0 ol Bit 15 P14
Ignored P15

Ignored I ADDRESS
SELECT

0 0 0 0 0 0 0 1 0 0 0 0 0 0
1/0

DECODE

Ao -------------------------------------- A14

ADDRESS LINES

Figure J-2. LDCR Byte Execution To TMS 9901

J-3

(1) ASSEMBLY LANGUAGE :

LI R12, >120
STCR R3,11

(2) SOURCE ADDRESS IN MEMORY :

0 34 78 11 12 15

R3: 1 0 1 0 0 0 1 0 0 1 Before

0 0 0 0 0 0 0 0 0 1 0 O 0 After

ZEROED

(3) ADDRESSING:

Address lines at operation start

R12: 1~1·~-o~~-o_'_o~-o~-o~~-o~o~~-o~'-o~-o-~o~-0--'r-Bit 15 - Ignored

I
Ignored

ZEROES - ,=i_,
0 0 0 0 0 0 0 1 0 0

I
Ao -------------------------------------- A14

ADDRESS LINES

1/0
DECODE

Figure J-3. STCR Word Execution To TMS 9901

J-4

+5 v

PO
Pl
P2
P3
P4
P5
P6
P7

PS
pg

PlO
P11 -
P12
P13
P14
P15

ADDRESS

SELECT

TMS 9901

I
r

(1) ASSEMBLY LANGUAGE:

LI
STCR

R 12, ::> 120
Rl ,6

(2) SOURCE ADDRESS IN MEMORY :

0 3 4

R1 1 0 0

7 8

0 0

0 0 0 0 0 0

ZEROED

(3) ADDRESSING:

R12 :1o 0 0 0 I 0 O O

~II Ignored

0 0 0 0 0 0 0

I
1 0 0

l
0 0

ADDRESS LINES

1, 12 15

0 0 0 Be.fore

0 0 0 After

UNCHANGED

0 I 0 0 0 0 I Bit 15
Ignored

0 0 0 0 --~'----i
1/0

DECODE

Figure J - 4. STCR Byte Execution To TMS 9901

J- 5

PO

Pl

P2

P3

P4
PS
P6

+-5 v
P7

PS
pg

PIO

Pll

P12

P13

P14
P15

- ADDRESS

SELECT

TMS 9901

(1) ASSEMBLY LANGUAGE:

LI R12,>140
TB - 3

(2) ADDRESSING:

I
Bit 15

R 12 I O O O O O o O 1 O O O 1 O O O O __ is

.__~~~~~~~~~~~~~~--'! ignored
ignored----'

1
sign extend

0 ~-3 Displacement
Added to Addr~ss

ZEROES--~

I I
0 0 0 0 0 0 0 0 0

(3) STATUS REGISTER:

BIT NO . 0

EQUAL _ ______,/
BIT

3

ADDRESS LINES

0 1-~

15

NOTE

1/0
DECODE

If a JEQ (jump on equal) instruction follo ws a TB
instruction, a 'I found will cause a jump, and a 0 found
will not cause a jump (1 = EQUAL state).

Figure J-5 . Test CRU Bit At TMS 9901

J-6

P1
P2

TMS
P3

9901
P4

P5
P6
P7
PB
pg

PlO

P11
P12

P13

P14
P15

ADDRESS

SELECT

I

'

•

\'

(1) ASSEMBLY LANGUAGE:

LI R12,> 0120
SBZ 7

(2) ADDRESS ING:

R12 0 0 0 0 0 0 0

Ignored---'

0 0 0 0 0 0 0 I Bit 15
Ignored

+ 0 0 0 0 0 0 0 0 0 + -.- + 7 Displacement
Added to Address

Sign extend

,000,0000 0 0 0

ZEROES __ __,

Figure J - 6. Set CRU Bit At TMS 9901

J- 7

110
DECODER

PO

Pl

P2

PJ
P4

PS
P6
P7 ZERO

PS
pg

PlO
Pl 1
P12

P13

P14
P15

ADDRESS

SELECT

,

.,

K. 1 MASTERMIND GAME

K. 2 HI-LO GAME

APPENDIX K

EXAMPLE PROGRAMS

•

APPENDIX K

EXAMPLE PROGRAMS

This appendix contains listings of programs that can be loaded into memory or
reassembled into memory for demonstration or entertainment purposes. These
listings are commented to provide ancillary data and explain the individual
programming techniques. Assembly listing format is as follows:

1J(l2C'/ FEOO 02EO
FE02 FF9/:.

(l(l ::o FE04 0200
FE06 OOOA

(lfl3j fE1:>8 (14C9
00::::2 FEOA 04C{'i
O(r::3 FEC1C o::·oc

FE1)E oo:::o
00'3'1
(Jt):3':; FElO '2F()O

FE1 2 FEr1r.i

,------ASSEMBLED OBJECT CODE (HEXADECIMAL)

OP CODE MNEMONIC

OPERAND

COMMENT FIELD

7
·:;TART U.JPI WSP s~r WORKSPACE POINTER

LI RO, 10

CLR n·~

CLR R 10
L 1 R12,>8C>

1~ CtUTPUT OPENING ME·:;::;Af,'";E
XOP @ME'.381 ~ 14

RO~ T~NS MULTIPLIER

R9 - NO. OF TRIES
R10 = NO . OF TRIES
TMS 9902 CRU ADDR .

OPEN ING MESSr.GE

~--FULL-LINE COMMENT BEGINS WITH ASTERISK

ADDRESS OF LABEL MESS1 IS M.A. FEDA 16

K-1

The code can be reassembled and loaded with the L TIBUG comma nd, OP the change
memory command (M) can be used to insert assembled object code at the memory
addresses shown in the listing (beginning at FEoo 16 , program start). The
assembled object code is listed in column 3 of the isting, opposite th e
corresponding memory address in column 2. It is important that the programs be
entered at the addresses noted, or that proper consideration be given t o th e
labelled addresses which have been assembled into absolute addresses relati ve t o
the beginning of the program (address f'E00 16). This consideration is importa nt
when entering the code using the enter memory (M) command with program start not
at address FE0016.

If the code i s to be loaded beginn i ng at an address other than FE00 16 a s a
programstartaddress, i t must berefigured to the new program bias. For example , i f
the program was to be loaded beginning at FC00 16, labelled addresses must be
decreased by 20016 (FE0016 - FC00 16 ~ 20016). Note that jump instructions c r ea t e
a d i splacement va l ue and not a memory address; thus, jump instructions using
labels are not affected by a new program start address.

At the back of each listing is a cross-reference of labels and number of the
source statement i n which they are used (column one of the listing contai ns
source statement numbers).

If the Line-By-Line Assembler (LBLA) is used, an absolute address must be
substituted for l abelled addresses. These hexadecimal va lues are in t he fi r st
column of the cross-reference table of labels.

K-2

K. 1 MASTERMIND GAME

The printout of this game in execution (below) illustrates game rules and
objective. The program generates a five- digit number . To win, you must deduct which
five digits make up the number, and their correct order. Only digits 1 to 8 are
used . After each guess, the program prints the letters X and 0 for each correct
digit entered. In addition, each X indicates a digit is in the correct column . You
are given only 12 tries to win .

r·1Ft:TEPMHW •• GUE·s·s r-HH·mn r-l=l-:3 12 TP.IE ·s
YO U GET X FOP A MATCH, 0 FOP A HIT

1..11111 ;:<
2 .. 12222 0
?. • • ::::: 1 ·3 ::::: ;: 0

4 • • 41 - --------CONTROL-H CAUSES ENTRY TO BE IGNORED, ALLOWS ENTRY REPEAT
4 •• 44144 ;:.m
5 •• 55415 DO
t. • . t.4166 :.;:,m
? . . 46177 ODDO

1. . 11111

3 • • 2 3 3 ~: ·::: .:-. ... :.O
4 . . 32434 DOD
s •• 25353 :,-::;;-,::=-mo
6 •• ----------- --CR RESTARTS PROGRAM

f1A ~ TEPM ttrn •• GUE:s:s t·jf-it·H·H-J t·j= 1-t: 12 TP I ES
·,·ou GET ~-: FOP A MATCH, 0 FDR A HIT

1. . 11111

DD
4 .. 32444
5 . • ,3425':! >::OD

.---------ESC KEY RETURNS CONTROL TO MONITOR

K-3

(•(;•)1,.

(l(l(•::::

(l(J(l 11

()(1(15

(l(i06

(J()(l/

0008
000·;1
0011)
(l (l l 1
·~·, ri 12
(lt)l "3

1)0 1 ·1
1-1r11 r.;

l)I) 16
(10 l 7
00 1:3
(1<) j ~i

1)1)'2(_i

00::.:· 1

1~11) .23
(;1):/·1

Cl(l2'3
01)2,_:.
(11)27

(l(i"2E:

(l(l:29

(! 1):;;: ~I

1)(1 ~:~-:-::

oo·:::::::
1)1:>34
1yy:::c::;
()()~:1=.,

(>():::i7

0(1:3:::
00:::: ·~1

1)(;1j.1)

(I(!,~ J.
OO'l2
001.l ::::

(11)111.J

1)04~

(l(l11 (:.

(H)/l 7
()(14:.::

l")i)(l(l

(l (H) l
r_,oo :~~

1:i(1(i::)

OOO·l
•)(!(15
0006
00Ci7
(H)():'.::

fJ(l(l9

OOOA
(lt)l) B

t)(H)(

(l(>f•[I

FE(•O

F-EOO 02EO
FE02 FED 1~.

FEC1 <.'J '.:::F (10
FE01~. FFOC

PEO:::: :?FAO
FEOA FF7 ·::-~

FE" 01." 011 co
FE•)E C(1 •1o::-i

. ' , .. ,
I, C ·.· , ;

l- .;~ ~7 4• ~' ~ -

i' TH .i, ·::. FFOGf7.:t11"1 F'L.1'":1'r"3 Mt1::::TF::i.:::~·1 I Mn Oi·l Tr i i ~ i :'I ,_,.~·'t:l .-' t .. -~ M ti~ i~:t ~ I ·.

~~ C'f'l t'1Pl_ITFF<:::;. THE: OF:, IECl (•f- THF 13(,ME ·1·::, -r1 1 1 :.i1r:;.·~:·.:,, F.: 1'

-:~ 1_• 11:,r c:r:,1._ DEDUcrri-n·J i ;~1 ':1 - UTCi[r Nut·1l:.~f.:-J:: GtJ· IE l'~ :'"'iT F. D f!';' P !t-:'.
~' CC•MF'l_ITf:f.:. IHE" COMPUTER 11·-=:[·;. Ot·ll .l' n1E [1}1 - n·:. 1 ·r11 · : • . ,.,,,_,
·~ H1".'t \IE 1 ? (,t_iE·:::·::.r. ;. TO :'"1Cl:"C:rlf-I 1·::.H THC::: . fliE (.OMP1_1Tt.= ii '·') i -'-

* I M[I I (r1TF ('; c l)f-:F:FCT ri l (", 1 -1 ,_,I IF ~~:·-:· E .P f:Y 1' 1 Lt T n : F ·~· i".t~t"i

-.- INJ.tI ((.frE THE \:IJG(T I'°:: 1_.1 .. 11 -.: r::i:-J Tl. .. Y F'l..('tef· D !HTHlN rHr::
~~ ~. ~· J.1 Hi I T l\IUMfJFF·· t·H l H T Hf l t:-.T I ER); • OTHt:F: FUL. E:~. 11 1,·, 1 (:F"PL. Y ~
, , ;' ' 1 Ci'.'117\R I AUE F:t-~r ur~: l\1 r~:c":: T {1Fa·::; TH!::: c;t,MC:
~~ - tir'l E<:=;C{:,F'(Ll y] l'. !r:"I 11 Fi:F T!JRt-! :?. YCtl I rn HlE t·1i JtH Tl if\:
"._ - CONTPOL H VEY {IL U.1W :. Y0: 11_1 TtJ :::1 Ht.f·· F'F:E·~;t;MT I INE UF
..::..

iJ.

~;.

~~

~

-!t-

~

R(I

FU
FC:
R·:· ...
R•1·
RS
Rt.
FO
R::::
R-=1
Rl.(,
F:.1. l
Rl.2
Rt -. .-.

{~

E.NTFn E":· (:I'll[! F<Fl:-. f'n E· F' t·IE-\,J L ·rn1-
TH 1 ·:: (3AME l:. r'.J·;·::El'IBLE[I ·ru BE LJ";(,[IF[I i"1T tl.11. -· FE·) ·"·, Li1'
I 1::::F OF -r HE ('1Uh:c.1 (~:::·:::E MFll .E: r: 1.1 ., f- :FCT I VE • IH I-::. F·'F\(11:.r:t ti·1 c ('d"I l'l~
(',:3:::.F..M8l...E T:I PY THE LBL ;'.l f1T rHE (1DDRF:::.::::1:·::_:. ·:::.HO~Jn HJ 1.:·ou_1t·1 t,1
T WO nr THF.'. L 1 ·::;·1 J Nt'. cc1f~· r~·~>:F'UHL1 r , .. ,c, oi::i .. rf ,. .. 1 c ciri[~ • 11 . 11 a ;q:

t1 DD1·;·t.: ·:.:.::f: ·::: [·.:. · :·HOt·Jl'I l M (:nu r:·1N THF:c E. .:.on o 1_ 1_:i-i 1

·-
F C•U
FOi.i
Et)U
EO U
EC!IJ
EC:!U
EC!U
EC!U
Ef~!U

El7!1.1
L7.0U
FC1l.I
EC!U
f~ C!l. 1

~~. ...
_ ... ,
~·

·'1
r ·
'

,~.

•:,•

1'\0Rf~ >FEOu
+- ~, {"

·-

~:

N1:1. , •<= , ~1 .11 . ·=· :. r:·::.
r:f':NDCrM t·lt 1. (if-<f\t1't' ()!"1J 1Rf ·:.·:.
r;·{'tHDuM f..li). CCtt .. 1f.'UTt't Tr l ~lt• I I J'::~:.:

i:-:;r•:1,~nc1M "'' I. COMF'l..IT(',-r J 1..11\J l_l'~:E.
t U CON:::TtiNT F 11R DEC IMt rl 1:Ul"ll·:.·1_q
' nr,n {;It·~·:.: t:·:=.1_ 1 r 1

CONTAINS nsr11 0
(':l•tiHE·:::::.. or }" . ·~: ~'. (I .• ·::- E'UF FEF:

r::f'IN[l('ll'1 Ml). (~F: f-·:t'YY t :C1J1m · '::.:~:.

r\(.)N[!W1 t•J!'J. ,·11:.:i;:(,y nDDF.::r::::;·::·1-·;
r-r.Nr.•u1·1 w'. ·:-EE:T1
r.i·::;C(J 1 c:· ::;: t•)1; ;
I · {)·~~T 01_11 c Hr.f-::r-.1.: I H.; l'l()f-'

i .Ot1D r-·, T M. A. ···1=t(11)

~ F'F'. Ct(F[ll_IF;E t 1RE(.\ nF F.XF Cl.IT t1~?.LE CODE

*
-!' l'-

::::T {\RT

>: OP t~RUL..f. ":. , :L ll PH I l\IT F:l.JLl· ·-:;

MO(l"i

XOF' (~(:F'l_F ' 1 1 Pf·: J Nl t F:·· l ~

CLR Rn t_ IJ l.ll'ff·;:.. l _.. 1_,l JE·: .:::£:. ':'..
MOI/ F·~i I 1:· .l ,~: l r=·1J r NT':. 1 (1 F;(·1MU1Jt1 i"'1F'f;-(, y

K-4

- f· I

! 1i''f:.; T EFM I 1 .. Lr r:r.;-:· ("!-! ':"" -.'i .. ··1 • 1 -' '\ MI CFr -'' CtrlF'U ., 1::.F:

oo·.:.c1

(1o)':; 1
•:11_1-:;2 FE l \:1 i)L'(•:~

FE1.2 i)1FD
·.··)~ ::: FE 1 '1 ;.::=::~:p

r)(i'3'1 FE 11;. 0:22 .. ::
F~J.:::: 01 -:··:::

onr::•.:. FE J ri c :?r::
r)1f.~/.:.

('i(1i:;- FE 1 C ,-,.:;~ :::

• 1 : 1 ~ .::: FE 1 E BOf C
1)•.•'.3':1 FE.2(· DC>1 .:·
•:i•:i.-:.1) FE2;.· :;:::2::: l
')•:11;. 1 FF.: ·:~·! 1 tcF'-::0
(1(\r~ . ,2

<11)1~. '1
._1(11;.';:1

')(·r~.I,

'-" 11'.·.- rE.-'.'.:· r)'.J:::r1
r)i)(:,::::

00 7 (, FE~:::: 1::•):=:7
;:11)71 FE.Lrr (1.'! F2
r)(>72 FE:'21:: i:··<H-":2
OC:·:·:: rL'2E ;)I.! fl2
1:"'1°7 'l
1)0-:-r; rE:.:o r:-i:1:;:0

">76 Fc:·:.:2 0'1-Cl
.-.77 FE"-::'! :;:c,~ 11

0:11)7::: FE36 1)1.'.::.C l
C107 :, rE ;-:~.:: F 1):::· 1
1V1::·(· FF3i'~ l ::·=• ~:
iv.:::] F- t.·:::r (i::-::f:O::?

FE3E -:;:o·::r)

- r OMF't.J rF r:t1Hf10t1 t 1: .ltlliE r , r-111l 'F 1 o t r 11 , , T "-'i 1 i-::.
t1(1 1 •··

Ll

MF'Y pl J I F: :.~

(·, .f ~: 3 . ::::: ·:' 1

t·iC11/ F.; ~. r-,· 1 J
'• 1: t il.l'3E r t"H·fft1~1M [IT c, IT·:. (1_1 1~E

·::F'L F ::: . 5
(1B FL~·,F::::

l·10l/B E :::· . "-·F' 1 ·r

(Fl , F: I 1:1

... il. Mt'; 1 (i

n.--J r ,·. -·'- •. 1 • 1--, .1 ''-·l- i ...
i'.:·u r 1 i.i :~. ii • -'":Ori ;".r-·Pt, r
! 7':::1 ~ •:if-' f- t•!L• i_ + LI ·11 ff

'..10 Ut-lfll .:1 Fi: 111

-'- r1t-"TF~W1lt-'E l•ll.Jt·l:RF.1--: ••F l_IF·C• 11'1 11'!1 ;. 1_,!_1t;·:;;;·::·
,~ l;'F l l·ll IJF'C:OM I t.Jt:, t.;;U:'.:.·=· ::_:; t·IUMJ?E~· l 0 !-'Rl)t1F' l 1_1 ·::1-: 1-:

ltlC r-·.i
"~ ' 1 t: Ar· t'tF'F'r1 ,, THr'IT lilJLD·:. ,y:.(r I >. ::: f'it 1u o ·=·
-·- Ii:- I ,-,r !TF'Ctl H FF'F ·=.·~ .r 11 , •:;;T :"1FT HEPE
i-:;E--=. rF:T MO~) rr . R'.:" { C·B 11[10t•' r u ;:::: ::

·~t F' .;." F~2+

r·: t .R '·-F'.:2+ "'·
t..I .. Fi' -l'~ H -:,:- :~

~,. 1 1~1t-J\.'EF: r r;11E·~;·:;; NUMBEF· r=··rr;: 1_11_1n.·1.1 r
MO\.}
CL.F:
[IIV
·:;;1-JF'B

F:O., Fe::·
R1
F:-1 , F' l
Rl

:= ,-,C-8 F: 1 , FL
JE:.1 ·1 l'l1Y2l)
f'IF: 1 P 2 . ·:-.. • -;· '

'' i u J l'E: r 1 r ~ r; 1 1 ·_1

UIJU T l :.::t.J f J. t·I L Er T 8 ·r rt-
Mt.F 1_,l- 1.r: It • I l Fi·H ~- U.: 1t. _I tfil. r·
:=-u r 11 1 ·:, \",1 ,=. _ ;= F I n·...::T 1:1 (i-. 1 T · ·.
1-1,:.1 E { ':Y i l TI J ,-,). T ·=.·

(1(1:::··2 MO.: i I

00~-:: :;.: FE ·1 1) •J:2c.2
FE·~ 2 ·20·::1)

(1n:=:-1 FE'l 11 c-:::o:.?
FE4(:. FEF·1

n..-:1:::::i:; rE11::: ::·F P;.J
FE·1r, FEF2

F'UT "fi'! F+:J.I !T £!l_WTEF:

K- 5

MMIND TXMIR~ 036227 ~~ 00 : ~5:i8

M0STERMIND FOR THE TM 990/lXX MI CROCOMPUTER

• 1 0 ·~1 .:-) FE ·1 C (:;;:·t;•c-.-
01·1 '.::;· 1 FC.4 E (' i)<17

fV)·~:::.;: F E'::.Cl ,-; .2•)2
Ff:·:J~.: FT.-:;,n,

*

M0:3;)

MCtl/ F:9 , p;:;;
MO'.,-' Rl, Rl
LI H2, lNF·UT

CLF< F: 1 ·:::

F~n.NDOM l\IUME-iEF\ (:DDR J. ~ i f. ·::
X & 0 BUFF ADDR I N Rt
INF'IJT BUFFEf.: rrnDF; H! f : ~·

009~ FE56 2F~3 xor R~.13 READ DIGIT
0006 * w~s CR, ESCAPE. OR CONTROL-H KEY PRESSED?
(l•. ; ·:."7 Ff.~8 ;~· '/:-~-::; cl p :;: 7 > (•[tOO CfiF:. HCr. f:.NTEF:En ··::·

F r-1-:-r .. r:. .'i • I

(ll'l~1 :;; FE':";C i 3 [11
(F-, '~ '~1 FE::::;E ·)~~:~~ ~::

Fb::.O .i. BOO
(' F •(I FE1:-:.:2 ~t S 1 C
' • .1 1 : . l FE1~. ;l r.):;_::·33

F~t:"".:: .. ~ . ."l:3t)(~

(~ J. •X2 FF::-.:=:: 1. ".,'::[1F

0 j.i,y:: FE/;:, :"''1 ·~1 :::: (; :~:

O .IJ;;I· FEi·.C U:r •1
O l • i'::; FE··'.:.t: ;~c::: ;:

FE~:'I) :::8(l(~

C1 1 Ci/:. FE72 1 Bf l
01(;7 FE?·t ::.:'.F•Y?::
(i l ci::::
01 o·:j FE7 6 9E o·:::
o 11 o ri:·,; ;~: :1 .:;.03
011 1 FE7i:'.1 06C:3
(1J.:i.2 FE7C [IC.IJ·S
011 :::: FE7E ui::;:;::n
Ol 14
(i 1 l:; FE80 r.:n::::::·:::
011 (.-. FE:::::,: OB 1 [I
011 l FE:SIJ ::,;2::1::;:
O l 1 :3 FE:3(:. 1 f~E7
01 j, ·;: FE8f: C):281

FEi::() FFOB
r~q ::? (1 FEE: C l A (1 ·~1

0121 FE:3E 2F(.)(l
FE90 FFO,l

t•Ln FE92 2Fti0
Fl?. 9·1 FF:~.(l

O L~ll
c'.>L\S
':> 1. ::·~:, FE'?t::· :::F:-t,<)

FE"?:;:: fr?F1'.\
(>J.27

.,;.: I·~· ... •

MOl.l·O

. .JEC~ ·:::T i'"\F:T
(" I I:;;.:: , .> 1 BC1<'.i

.. JEC1 r·11 ·1N I TE
CI f-.;-:: , >o·:;:;)(i

.JET! f.._E":;; I' r·(T
CB R":::, F~ 1::?
.JL. ~Ji: • .::::;:1

cl h:J: >:3:::(;•)

,JH
XOP

[11 Ol T
CB
,JNE
'.::l·JF'B
MOVB
I NC

MOVB
~3RC:

c
._IL
CI

._IL

XOP

(';

r·10·:::0

F: :3' 1 :::~
M(ffCH mm

R~: ., -i;.f.:E:+
MOli(l
Fi'.-. '"\ ·.:·
F:51 -;-:Rl+
F: 1 ·~::

F~~: l *F:2+
R 1:.::, 1
RE: -, F:lO
M0:30
Rl ., XOB+5

MO~~iO

~XOBP,14

XOF' ~i,.JI Nl\!ER, l-'l·

XCiF' ~::NUMBER I 1'1

(> L~' ::: FE0=-1r:·1 1 C•f!1=. ._IMF' t•'i(H)~:;

01 "~·q FE'i!C ()i.~60 MON I TP r:: @~·: · (H)::;:o

FE9E 008(>

K-6

ve..;::;;;, FJ:.·::;T t-'iFT C~i'.',t ·ff'.

E·:::crwE 1·:EY l:'..NTEF:r:-:n·::·

YE8, RETURN TO MON -rT•_if·:
CONTF~OL--H r:· r~:E:::: :;:;fry>

YES , F<E'.;·rr.rn THE: E't i-f r· ,
IS NO. LESS TH~N 1 ~
YEf.: ., F:E(';D r~t.;()THET:

IS Ne. IJREtHER THtir·I :?-

\IE'.:;, F:E?\D {:1NCITHE'F:
NO . IN RANGE, ECHO

IN Rit3HT COLUMN?
DIGIT IN RIGHT COUJMt•i:·
l\!O, PUT CHt1F\ HI Ci-!U< L •_!f"F EF:
YE·:;; , PUT BI N(.lfff 0 HI M'7:Ei i")i7" '

PUT {';N X IN THE >:O J>ili ~· ;:::::F:

MAP CAST OUT CHAR

ZERO OR C HN;: TO li'JF !YJ' f:-';l_IFFEr:
PUT BIT IM Mf1F'
FIFTH NUMBEF.; 1 NF'UT ?
NO, READ ANOTHER GUESS
YES, IS ~O BUFFER FULL'

NO, NO WINNER YET
YES. PR1NT XO BUFF

PR I NT l\ll_lt·1Bf'_R

F'L.fY't' P1NOTHEF; C•t'1ME.
r:ETURN TO M(1N I TOF:

\I . •,:.:)

r

11M n 1u 1 '-: r·1 n ·...: t1 .-. ·: .~:=:? -···<- .-... · ~ .. ~,: ·1 ::·:
n.·\·:=:T1'.:f=Mihl[I Fl)F' rfi(- Tl1 ..•. : .. . ,;, l,; "' n1.:·r::1 . .)i"l)i'IF"iJTEI.;:

(11 -:. 1
,-, 1 : ·· .
_11 :: -:

1 ~ I

,-,J ":'· F E(.v ._1:··:1.:.:

rt.:. ,. FF':;, 1

-1-

''t.:··.· t1•1r, •.
11- tl .·

• I ••

0: 1 1 · _., FF. (-1:':. J · ~:. "
f I l ~ ,-•; r E: !1 ::• J _;,_'I '•,. I

• 1 1 !1 F~-:1.1i'1 ·· "·'i-1[;

11 ' ..
; 11 .:! . ~- f I 1 I ' -It J J LI

•:..t 1'1 F· F. ('tE ·:·17.' · -.
1 l J l':.1 FEl-···1 !, .:-. · 1' 1

I~ 1 ~ t~, ::.·E~l~ .~ i ,~. · .l ·l
·.'1 :! 7 FEB 1 fit" ii:-.
Ii 1,1 :-.:: f ::-_B;:· · ,_:.l t

f· r f'::: ;·~· .. :1• •• -.

€.•J 1:·-:· FEf!(i (')I-

,-, I •-;r ,

r• l · ~ 1 r F •H :~:.:":".
;·11-:=;:: Fc.t~L , ·~.:

··1 r-, rL i_ .-i '· .. ··:: ...
r=r:, -· n .::.F

.-.1•:·, ffi- I t.E I-
·, ! :;.:. FE-f ' ..-.F : ,._.

FE 1. ·- H ·.J ·1
(• 1 '.:"· -. F FI I ,-.::_::::·: ·

F Fl~ .-. 1:11 II,,-
..... 1 1 ·-

• _1, ·'

I l l /:,." 1

rt:f~. i11'°"::-:
F ED·:• . ..::i· ,·,.,,
~Tlt~,· Fr ': t;
FTI 1-1 1 ·.+ .-,

t 11 1') p·.. •· .-
. ;-:.L F l -. l I

·:: t-- c n 1 - . 1
I. e f.:: :; - r:::::: 1-

._ l(I(M· •' ;7

. lt·if:- M•."'.) :.-
r1!"1' .. ' 1-: Ft:· · ··· F' 1 +

111::• ! i ~'. J : ~ I " ')

,.,f:

F-:=:: FI·•
'ii

I I r:.:::·, l l·lr'' 1r-·-'J

,, I ,._.' I.:'

,-,F '"' • ·~• Bf- .. I ·l

I I

IMP

I ii.11 ·:.
·~~·::::OF'n' , 1 ·1

K-7

1 E·:n BYTE Fr'Orl l NF'I ,-! ; ·_;; T ~ :.•
PYTE cr.·:n 01_:T r F F.uu.'.1 : •::• • r:.t ·.·'
E:~· PO I MT~: TO \..!OF:~ ?'1F"f .,-
F'O'.:: IT I ON (.;i·~: T (11_1T 1~:1 1'1;'1 r:

TE":.;T Fm·· Cti::::T Ol_IT 1:·Hd·:
DOE-:::: BYTE Mt:TCH \.JORf i\F!•i'· r
IF C~ST GUT , MOS:
·r r- NOT Et~·!l_1r1L.. M0~7

01'1 ~Ir T F'UT 1::1 Ti"! ~: 0 ~ 'JF F ~: F'
Mt1r=· CA:::.T OUT CHi~F:

TE'.:.1 r m;: L(:'.~. r DI 1:;, l T
r F iJ1~.J DO l:;N1)THEP r: u::; 1 T

l'!CI DO i·l t"""n [1 I G l T
YE·:. I r-· r: [t.JT "0 BUFF

t-ir1 , Mr·1i:;:f 1-:.uE. ·::::~:r.-::. 1-•f::.M·' ·.: '
YES, PRINT SOPRY

MM HID

(! 1 ,;.::::
0 1~.tt

Olt·5
01 {:./.:.
0167
016:::

..) 16 9
0 170

(> 1 71

01.7'2
017::::
O l 7 ·1·
(> 1 7'5
0 1-: 1;.

0 177
lji 7~:

0 17':1

0 1 ::::0
1) 1:;:::1
(1 1 :::<2
01:3::;:
(!1, ::::•l
01::::'.:::;

01:;::7
I) t::::::;

0 189

01 ·:;,1

FEri.::.
FED:=!
FEDfl
FEDC
FEDE
FEEO
FEE1
FEE:2
FEE·~:

FEE•l
FEE6
FE Ee~:
FEE i~

FEEC'
FEEE
rEF(l

FEF2
FEF-4
FEF(:,
FEF7
FEF::::
FEF·~

FEFA
FEi=B
FEFC
FEFD
FEFE
FFO(>
FF 1:;2

FF0 1
FF':'! '.~
FF(i (:.

FFO;~;

FFOt1

r) (>('l (l

(il) (F)
(1(1(1(>

r:10l)O

1)(11)('1

t58
.?(1

'': F
:~ 1)

fT·r:i t:.
0 ') 0 0
FEF'E
FF' 1'>.'::
c ·· c:-r - c -
~ • ._ I • f ~.I

'3 1 (1o)

oor•n

ODC•(\
()()(1(1

:;:E
:::·f"
r. 7

00

~~)

2(>
,1.E
3 J.'t

(>(l(i(l

r')\)()()

(l (H) t)

~~ ')

~()

oono
r)(l•'.l()

(\i)(\ 1':\

0 1·~1 '.:J FF(ir: (1 [1 (1~\

(• l'.:/1::. FF·-;E lD
FFf"F '!- 1
FFl·:' '..:.;;:
FFJ 1 ' ~'I
FF i.-: ·1:;

.;;..

~'

* Dt'iT(I '3 ECTIOM
-I:'

i~ * ~;. ~ ,,
* l.JC11i~:: ·:::P('1CE

hi:::: CIATt1 (J , 0 , '.l, (!

ll(\1 t r J •)
f EXT

"'
TE XT ·" 1.J ·'

D(i T t1 XOF>
[l,:~l';') r)

[l(:;l{l l\IN
Dr:1T:~ NN+':.
DATA :··· fo!~~~ic·:

[l()T1-·1 - 31 ('') -
Dt,Tt; ()

.;L

-- "!' t:X T '.'..-T r';TEME t·'T ·:::
~ -

·"' L H IF: t·!UMBEF~ (If;- T H I ·:: c:ur.: :::.:;.::

f -. ft ..
t:·~ ,., _,

p 1 ·:·
r::: J -~ ·, :r·!DC•i'1 Nl_ IME~r::r: -:::r Eli
Fl2
F J :::· r ,·,·::· T (11 IT C Ht 1R i'11 -~ F'

,.31..1;:: ·:: ~~0 rnYrA >1) DOr 1 CR . ;_HIE FF.::ED
1:;(' [I r 1rn (\ ~; .. $ i.:.1JN\.'FF: rt:D CiUE':=: ~:; t · !l.ll''l BE~:

TE:n

BYTE 7, (1

~ F:rit-.!DOM r·JIJl'1B[R UF- c UMPl_l'f EH) ~ ! r, ':::CI l
NUMBER TEXT . N ~·

I'll\! fi(;Ttr (1 , (l . (1

~- ;,: "~: (:ND C• 'S: E<1JF'FEF~ ::: HOt·!INi3 1-11 T':· 8: MI::::·::.E:::.
XOBP TE XT . 3PAC~S FOR PRINTING

y ii}-! Dr:T r: c•. o. ·.::•

" RIJL c:: OLrr r:.·r.11 ('; I b E(i [hlf\i l hlCi OF '..'1 '1MI:
F:UU?.·::

P1'=..-T t"1 · · • U •~1 (',

TEXT · M(',·:.n: r::: r-11 rn' -

K-8

MMIND TXMIRn °36227 ~~ ~~:25~48
MASTERMIND FOR THE TM 9·:-n)l lXX MJt.ROCOMF'U rER

FF1 ::: .--.
-·~

FFl'l •l [I
FF 1 ':· '19
FF16 4E
FF 17 4.4

(1 197 FFt:::: 2E TE>:T •• 1.'1 l.IE8·:.: l'INNNf\I N-' 1-1:: 12 TRIE.S '
FF19 2E
FF1() IJ 7
FFlB 55
FF1C 45
FF1D C" ")

·-'"-'
FF1E c--. -•....:·
FF1F 20
FF20 4E
FF21 'lE
FF22 4E
FF23 'lE
FF21J 4E
FF25 20
FF26 4E
FF27 ·:::o
FF28 31
FF29 '20
FF2A ~::::

FF2B 20
FF2C 31
FF2D ·32
FF2E 2(1

FF2F 54
FF3(1 r= -, ._,._,
FF31 49
FF:;:2 L! 5
FF:3:::: 5~t

0198 FF'.'.::4 00(){) IlllTA :··(1[11)A

0 199 FF36 59 TEXT ·vou GET x FOR () M()TCH. 0 FOR n HIT '
FF'.;:7 4F
FF:::::::: 55
FF'.;:S-1 2(>
FF:;:A IJ.7
FF:3B 45
FF3C 54
FF3D 20
FF~:E 58
FF:;:F 20
FF40 46
FF41 4F
FF42 C"•")

1-•~

FF <l:;: 20
FF44· 41
FF45 2C>
FF46 40
FF47 41
FF48 54
FF49 4 ·:·

~·

K-9

MMIND TXMlRn 936227 ** 09 : 25 :~ 8
MASTERMIND FOR THE TM 990/lXX MICROCOMPUTER

FF4·(1 '!-:::
FF<lB 2C
FF •1C 20
FF4D 4F
FF.l.l·E 20
FF11F 41.:.
FF50 4F
FF51 52
FF52 20
FF5:::: lH
FF3/l. 2(>
FF55 4:3
FF51S 4 ·=-1

FF57 5 4
0200 FF58 (I() BYTE 1)

K-10

f'(iCiE (1(1(l7

MM IND TXMIR() '=/3l~.2:::7 ·H~ n'=) : -..:·r_:,: 11::::
MASTERMIND FOR THE TM 990/lXX MICROCOMPUTER

021)2 1' BUFFER OF MUMBERS T NF'l IT
020:3 FF5A 0000 I NF'UT D(Hf-1 0 I 0' 0

0204
020~

0206

02()7

0209

0210
021 1

FF5C OOO(l
FF!3E 0000

FF (:,O 20
FF6 1 '21)

FF62 5'1
FF/.:. :::: ·1- "7'
FF1'.-A 4E
FF65 '1 E
FF6(-, .1.15
FFt:.7 52
FF(-.{::: 21
FF69 (ll)

FFM ·i 20
FF68 t='•'""'•

,_ 1 • .=,1

FF/.:.C 4F
FF6D 32
FFf.'.:.E t - ,

._1..::,

FF,~.F ~j·~,r

FF70 00
FF71 (lr)

FF72 OD
FFT3 0{'1

FF74· (>(1

FF73 00

t,JINl\IER TEXT ··· WINl'!ER '

BYTE >21,0

SORRY TEXT ~ SORRY'

BYTE O,O

CF:LF

K-11

TXXREF 9:375112 ·HI c~,;·, ~ .-.r.., •
.j~ ·=· lo Vi' 1 1:::;17::: Pr.Cit:. {i('J(i:t.

CRLF 0209 f)(>-16
GCD 0184 00:3 4
GUE:::NO CllS:::: () (>::::i
INF'UT <)2(>:;: •Jo·::-12 0 136 () l. ~i'I-
MO()~ 0045 1) 12:::
MOlO 00~1 0061
M015 (1019:· 0158
M020 00::::2 00:30
M0:30 0094 0104 1) 106 () 1 1 ·:::
MOiJ.O 01 14 01 1 0
M045 0125 i) 160
1'1050 0 l :?.5 0120
r1os2 01 '37 0155
MO~i'5 0142 01 ,~2

M057 0150 0145 !) 1 4(:.

M01.:.o (l i ~:::: 0 139
MONITR (1129 0100
NN 01 :3·;1 01.71.! 0175
NUMBER 01 ::::;:: 0 1 26
RO 0022 OO.l!7 (1(167 0 07S 0157
F: 1 002'3 004:3 OO~J9 OU1.SO 0076 0077 007:::: 007'7' 0091 01 1 "7

01 19 Ol.47
R10 O<X32 !) () (:.() Ol. 17 (J 1'.) 1
R1 1 00:3:::: (i()~:;: oo~.::.::-;

R12 0034 OO':;::: (J 10:3
F:1 :::: 00:35 009'3 01 1 ·~: Ol 1(; .. o ir.n !) 1 L!.::: 014E':
R2 0024 0052 005:3 0070 0071 (>(>72 007'3 0075 0079 (1\) :31

(l(>f;3 (>(1 ::;:4 009:::: (l 1 1 '::; (i 1 ::::6 01 ·::: :?, (11 ~ 11

R·"'· . .:;. 0025 0 0Ci4 0055 0057 t)(l ~3:5 0(139 009'3 0097 009·;:1 01(1 1
010:~: 01VJ 0 1 07 (lj (>S) 01 1l 0 1 • c

J. ·-' (! 1. ::::::: 011.11.l 0 14 9
014':'!

r.;;.4 0026 0077
R5 (l(J'.,"'.':7 (l 1 L2
R6 002:3 01'-P
R7 002·~1 007(> (1(19 1.

R-=-'..) 00:30 0090 0109 01 1 7 0 :I. ·lO (l t 4 ·l 01 : i1
F:9 0031 CH)!J.(-< 0090 0 1'l1)
RE'.=::TRT 0070 010:2
RULE~:: 0194· (i<) IJ I.I·
'.30RRY 0207 0159
:3i?'IRT (H)f!.2 (.>(>';J:::: 02) l
l·J Il'INER 0:203 t) 1 :2 :~~

~JS (> 1,~,::;: (l(lf.!,::::
XOB 0192 01 19 0172
XOBF' 01'i1 0 1. 21 Ol~t.

THERE ARE 0041 SYMBOLS

K- 12

K.2 HI-LO GAME
The printout of this game in execution (below) illustrates game rules and
objectives. The program generates a number between 0 and 999. You have unlimited
guesses to find the number, but you can be an expert , above average, average, or a
turkey depending upon how many guesses used.

~ L FE OO
GUEZ:S

LOAD AND EXECUTE PROGRAM
ld=FFB 0
F'=01 :32 FEOU
7E

CAr·l \'DU GUE.S .~ r1 Y tKlf'lf:EP ' (I

INPUT A NUMBEP & PRE SS THE
500 TDD LOlol• TF'Y AGAHi ! !
7' 0 0 TDD LDl.11, TF''f' AGA I tl ! !
900 TOO HIGH• TRY AGAIN !
850 TDD LOlol· TF."·t AGAHH !
::::--:1 roo HIGH. T F."'f AGR ItH

:::6 0 roo HIGH· TF'Y AGAIN!
85? TDD HIGH · TRY AGAIN !

TO ·::i·:;.·~n ;
:5 F'RC E BRP.

CONTROL H PRESSED TO IGNORE ENTRY

S54 CORPE CT! YOU ' RE ABOVE AVERAGE BECAU:E IT TOO~ YOU 08 TRIE~ !

c Ari · ,'ou GUE s ~· w,· tKIM BEF.: i: o To 999 • '
Itff'UT A NUt·H:EP ~: - PF.·E:S::S THE SPACE BRP.
500 TOO LOI.ii, TF.:Y AGR I M! !
7 00 TOO HIGH · TRY AGAIN !
650 TOO HIGH• TRY AGAIN!
575 CORRECT ! YOU ' RE AN EXPERT BECAUSE IT TDD~ YOU 04 TRIE S!

CAt·i YOU GUE :~ ::. MY ~WM BER i:' 0 TD 99·:;.) :
H~PUT A HUMf:ER :~, PRE ::~s THE SPACE BAR.
900 TOO HIGH· TRY AGAIN !
::: 0 0 TOO rl I GH • TR'/ AGAIN ! ---------

CA ti YOU GUES ~. M'r' r·H_lf'lf:EP. (0 TO 99"?" 7

IHPIJT A tKIMBEF.' t PF.'.E:SS THE S:PAC.E BAR .
500 TOO HIGH , TRY AGAIN!
400 TOO HIGH, TRY AGAIN!
30 0 TOO HIGH • TRY AGAIN !
200 TOO HIGH · TF.'Y AGAIM!------

K-13

CR PRESSED TO START NEW GAME

ESC PRESSED TO RETURN TO MONITOR

...... ,.)...::
t .r>,, ~'.

I .• -, • . I

,·· .. ;' 1(1 '.·

...... ·-
I ,It t l...,.I =•
1" 1r' j I \ •.:.

(.,· .1. I

I)" I ;..:
'.") l ::
1)1) J •l
,""\1, l 1 :;
I)1". l 1.":.

\ 11:1 J. :::.:
,-,;-·, 1 •:1

,~,.-,. t

·.'(· ·- ·1
.·~r·. :.:':.

,··, (i ~::· ··~

•)(ii) ')
1~1nn1

<)1)1~ · 2

(1!1(13

<)•'>(·:~·
.. ,(J(t·'-·,

f);"J;:;()

>:;(;();·

·>· .. '!:: .:.~ .. ·: ~ :· l.] ? . ~. ;

~ ... ~:,_ ,. ...,.. * ~ -1:~ 4_... J*:. <· ..;;.

.c TH1·:: GUE·:.·::IM•J ,-,r,ME Ci"1N BE RUt~ l) t>j ()TM C:•i:o.:1;.: ·.- :: .i.: i·:-:1

,-,-,l·ff"-l_l"!" Ef:: k'l TH .'!'::~! L ·· lf<(!) !,JOF;D·:.. C•F 1,1..'.'.Fh: t;\.'{'1 .[L(1f-:I F
·• l~t1M MEMORY. TT; ·_; ~ffHTTEM TO 8E L(11"tOFJ.1 t 1f fl. 1·1. ··r.t:.,· ...
.I" t1 t·li"f t."(';t\J BE t6":.F: MBU: D rd THf'1T t:IJJ.1RF·;..'::· I :·:.n ~!i::O n I[L 1~.1 ,-,
;~ OF~ B'r UJ1c1D 1f~;:; THE fJ8 .JEC T (COL.Ur-IN ·::) t1 T THE ~ : Et1Uf'..· 1

,w1rrF-:E::::~: E ::.· .: ·~:·o t 1..11'1t·! : :: ' • THE CtFi.JECT or TH J ··... F F:·1 .i r:.F,·:i"i J. ·.. , i. '
... tJUE:~ ·~: l.JHICH t·lUM8ER THE COMF"UTEF~ Ht, ~: Ci:::i'.IERt1rt-T1 , 1'1r·l!) l•J
,_ [11, 1 "IHI 3 ~.1 ·n1-1uUT t'1Er ·r.1MING r·, ·n1m<EY . FCILL1XJHlt) f ;: 1[F'· , ;, ;·: ~·~

.• i-_·,.)f~F: I 14f3E f\FTI JF:N BR.l NG·::: YOU ro 1-·F:1.1(1R1 '11'1 FE ~. i': "1 •'

- E-":.Cf':PE VE i BP 1 NG~::: YOU TO t·1l JIH TfJF:
.,.. - (:UNTR1JL·-H t "FY i:r.NOF:F:::; TH E: ENTRY
•· -- '::- r-·r:•_·f I t= Y CONT I f\11.JE:=; Gf"iME
.. , <• ·r:• u.wv. ·-'. l~r.L·~:H

IJH

' FEC1 I ·::TEF:
I'~:•) EC!l.J
F" J F:.OU
1\2 EC!IJ
I ;:-:: EC!U
p .:: EOU
F\o:J EOIJ
F' 1 •) 1-::1~il J
!'·'] -, fr!l 1

'"

' GUE·::·~ .
t: 1 •. !U(HF·: :

r)

·--=·
.-
=·

•..::· ,_ .

..
TEI'!:?.: MUI_ T '(PL T. Fr~
C:i l 1E·?.:::;. 1\!o . t ;1.:CUMUL. t1 r' •f··
MIJL.T IF'LY (~N'::a~EF:

ENTFf.J. fl [JI Ci IT
CONT1"t UIS (IJMF'IJTEF: :~: i fl.it1' : .~·
t·ICt . TF: I E .. :::.t l u
t·llJ . TR Jc=:

l .:: CF:U f'1 Df1RE.~ ·:-: ·:: \ Tl"·r:: ·~· :'(i - J

:,. OB. tl;=: CT CODE t1T :"1f<.~. :~1LU1'E 1itl [tl'~E'.3 "::: 8F.i";It,lt\1Ir-I(; 1,..JI r H > r--E(1 1~·

(i•''.l ;? ·~·· :·,. ~· ... -.. ~= .. ":;.. ... - ...,.. 4~ ~ ..t; .;-!. ~' i" * ~~ ~,;. t'

:1i·, -.;"1 ·~ f"·'F'Ot .. F.PU!;'E :·)HF ('1 ~ f·. X ECUTt1BLE COOE
.·.(1 ~· I

I • t I

(' j I) '~: t~;.

.~,,~ , :,;::;:
(J I ··:;·'::1

<1(1·1 ()

1)(1/f 1
(11VJ2

OiH3
(~(,") \11/11
r)(11.f •::;

1)()'16
(1(),, 7
(lr),1 :;;:

(11)11- ';;

(H)':.(I

01)51

FE(•\;
FEt:2
FE:i \~·!
~T.i"•/.:.

F EC•!:::
FE<.> 11
F'f::.C1C
FEC•E

FE 1·:·
FE L::

FE1 ·1
FE 1 ~:·
FE1::=.:
FE1 1~

f•'.:":En
FF(,•)
,-l·::·t'•(•

000(\
(1·1c ·;-1
O·~·C::°)

020C
(j(l;j(l

~"2 F1-;(l

FEF10

(l/f c:::
1Fl'3
1-:-::07
0~:3::::

' .IN IT ltlLI :?:E F.'FGl •;..;TER·~.
.- T(!RT 1.1-Wl 1_,J·:::F'

L I

CL f.; F·:9
CLR F:10
L.I R12, :>::=.:Cl

~: ltl, 11f·'UT CIF"FN I NC\ MF·::~-=: (';GE

:< OP ·~ME:::: ·:: 1 , 1 'l·

<'- "' .t:. '* ~:. . .

RO TEN': Ml IL Tl PL Ii-F"

R0 ~ N0. OF lRlf S
R10 :~ NU. OF TRIF.· ::
TM~:.: ·~1i;:10::;- CF<U r"d:1Df;· ..

. ..

~ THI S ROUTINE I~ A NUMBER GENERATOR THAT G~~fRnTE~
.;:. ll NUMBER PROM (I TO '?S'19 BASED ON THE TI ME TO F: E': F'nr JI.I ·r IJ THE
"' ('IF'EN J.NC; MEs-=:r.:GE. l T CHECf·:: :~; r: PIT ()T THE Tt-i ''.-· ·~1 • 1 :··;~· ·=r-: 1.::.:; ,-.L
~ .. INTERF:"cCE TH:~T ·::. ICi NI F I E·::: TH('1 T A DIGIT Hr,·::: P.F. E-. N PECE"(".:1.::D FF.
..t' ·r HE TERM lt\lt.1L IN F:E:::POf\l ~::E T(I THE OF'E.N I l\!C; 1"1FS·:-·t"11A: . ~~EC [r F'T Ci
;f. TH I·:: D .[13 .n 1'1E(.'1~J'.3 A NIJMBEF: E: BET l\!G Cil . .lt: .. ::·::;EJ:t . L~H I u =: W1

1 n It,f(i
,.. F(lf".; 1 HJ ::;: FI F::::T l\l'JMBf.F:, p:::: I '=; COf\!T 1 Ml IOI 1·::: 1. Y I f\!(:F\f: l'lt:l\l"I f,[1 FRCtl'l
"1- o ro ·:1·79 .
NE\.-JNO CLF:
.IMCNO TB

,JEC!
CI

F::?.
21
ECH02
R:?. I ·:19'"i'

K-14

R::: TO c nf\!TfiI N c: CIMF'UTER .• ·~: r·!(I.
DIGIT RECEIVED?
YES . ErHO rHARA~T~R
NO . INCREMENTED TO 0qQ~

1./_it ·- · T · M JR(~ ·~: ::,:.:.::.::·7 · --- ' " .. ~ :;.:;;· : (1 ;~ F 1 I t~ ',.•I.
Hr~u·1 1.:i: i1 -11;-- Fc1r-· n-1 ·=-... 7,,-, ·1,x 1"11i-pni 1:iMF'lllEF:·:·

n-~ J 1 " :=r'I
• ,.v,~ Ft=- 1 F.: 'i ·:-r,··;
• .r .·,:; ~: FE.~ ··_, 1~l i::::::::

t(i:_,·::::
1)1··,· ·:'t

._i tf• l!E-1,Jjfl i YF.'=: , CLE10:F' 1n ,. .. , Fr r,,r;-1
I t·11 · R:~: NO, I NC liEMEIH Mt:•. 111 I·"·:
,lf lr" JN1- r·!U l.OCIP , RECHEi. ~ FtJF; T·il n ·1:; llj'

-~ ;''1F TER f" f I:\:'. r [I"[1:1 ! T I·::. ENTEl:;:E-:[1 } (~ 1Jr·1F·t.J Tf.F~ ·=; t~(I. i - 1 t·I r~· .: .
4- r. F rrn 1 N 1,ut:. ·::::.E:·=-. ,-:1:,1r1 c oNVFfn THESE To Hl- :- , ·;r •E c 1 r·1ti1 • ·- ' 1M
1< FIJR CClt'iPtit~: [· _.1--:1~ 1 TO C'OMF'UTEF: .· ·;:; i\JO. I l'I F:::.:; . ;y:: fllFl•J M1 . .it·1BFF:
,. 1:.. F-'Ei~ f l l1L[1 v1--;l.llF r·:: MUL.TIF;'L!f.D BY 1(1 ~·'tr -![I Mf-1·1 ''(:l .. llf
;. (1 J:rDED Tft FTiCIUUr~ T TC1 ~::EEF' (UMl . ..ll. .. f:1T I \IE rnT(1I,_ or l) ' . ' ("f ·:;

~- I:: l•!TF:REfl .
''" 1,· I f"l:·.~· [: .. ~· F~-·~· E CHiin \ 1.1F· U_Fr·f·', t ' ' [10 L It'IE'-·FEE:Lt., I h

F F?1~. FF:.:kl
i)O.-:-.,,;: FE' ::>:: (•·11.. 1 ETHO ;::" 1·1 F: F J
1 :1;_ ,,.:·~ F~~:"'i :~r-~c::·

..-. 1~1 .\·1 Fl:-•• -:1_ r1t 1 .-.

··~1 (• 6(. Ff.? E r;:: :;::-.=:

(•(li'.:-7

0 •)1:.:::

FF. ::o c .. -, .?1)

F !:- :::,,: J ·::::I J
FE..::'·l C:«·::: . . :.
FE- .i{: ,_1,:1111'1

FF'?::=-: .t ::i::·:::
~t.: :•/'\
1 I .. ~ '1 ' I

FE :::c t}i 11 P.
·:1·..i / 1 F c:::E 1 -:· 1~1

l)t1 {'.~ r.:1:::~lr) 1:•.:: ::: ::;::
f· F-'12 ; ,,· , c , :~:

(ily7 ·:;: FE .i ·' t :::EF
(ii)7'l FEI~(:. 024·~:

FE ·1 ::: n\•OF
(1(17<~, FE 'l (I ::~-:: . .-l(i

007 ·~· FE ·lC 1ViC"2
•. 1\i-:-1 Fl::J!E 1_1) .~ :=::

(i(J';:::: FE'.:.O 1 (·EC
n.:,;c, F- £-- ·_. ::::: t1 fl.i:.o

FE'.°.l 'l (1(1::;:1)

I~(HO 1 /'(IF' F' :. , .t 1
·:::.t·IFB F:-=:

'I l·Jt6 ··::: r:·r1Cf::1 CR, E·~: 1-i'1F'E OF:

f r R:: .. = nu:2•J

. II- I •

e r

• IF(.1

CI

r;UMF·f"E.
r~· ~: _ 1)(\!IJ I

·T t=iF.:T
~'..~:I :: · t-i(i 1 8

.1 ~1 1 MCrNITR
I .. T R.::, >OO<J :~

. IE G! EC HOri
t'1ND I R':::, ::· (ii)(1F

MF Y

.JMF'
l·IONITF· l;:

F:O,R1
R~ I F ·: :

v=:, FU
ECH01

cL EnF: r-,cc 1.1MMULJ1,. '· 1i:
ECHU CH(1i:;:. I F'I. r''tC E [T
F·LP;s:'E Vtll Ut- J t-.1 f~· r (,; :·1

CONTROL-H PP~SSED~
'.=:F'(';CE 8('1R FF:E'3':.f'i .. 1 •

YE·:: I C0~1F'{~F-;·~ \ l()l_l_JI" ·:

C1".)Rf;'. I (~CiF. F:ET. F'RE''... ·:;'...JI

YE~:;, t\EST(1f=.: l F'F;C11H·:I1r·i
E·:.::C(.)PE PF:E·::·:,Eu ":·

TH r;·
f;; -, F

YE-:::., RETURt'! 111 WrN t I (if'\
r_.Jry:; COM m1.1L·-H p;.;:E-;-::=:F.:.1.1-·

[10 u :cR -, F:E::nnF:T c;1_1r ·:=.·~.

~II), :;::('ll.JE 0-.:; DIGIT Clt'-IL Y

PF:EV I OU:'.: t'!O . >: l. \ •
MEW NO . + ('1BOVE PF·1-1[1l_ICT
r~1N::::t.·JR T 1:1 (':CCUMMIJl t : ·1 OF:
GET NE :<T DTCil r
GO 10 MDM l TOF:

OO:::o t; COMF't1RF MUMF:Ef:::: I f\!F'UT Tn COMF'UTEF: ·· ·::: NIJMBE-"F;
(Ii):::: .t FE.3e. o:.;:.::r, COMF'RE ItK F.: 10 Ul('REMENT N1"J:::. (i i IF·::.•:;EIJ
· 1(1:;::..2 FT'~,::;. ::<;:·o 1
nu::.::·-;: FEi:;r1 11 0.2
(!(1:::11 FE':.iC 1 -::;,_111
1/1:::'3 FE':;E 1 ·_::o,;.
(}(1:~:(-.

(HJ:::7 FE60 ::?Ft10
FE::.2 FFr)(•

(F):~::::: FE1.'-.fl 1•JE1

C F.: l , F::::
.JLT IJ1l,.J
1r;T HI C·H

.JEC1 EC:Ui'!I_
~ MFSnGES FOR 100 HIGH .
1J11...J xoF' ~Lm·JM, 1 ,1

. ..Jl·11-' r:1-:·Ho2
0080 FE66 2Fno HIGH ;.: l]F' ~HI GHM I 14

FE:!:.:::: Fr 1(1

oo·~~(l FE6f'.'1 lODE .. JMF' ECHO::?

K-15

COMF'('1F:F-~ TO CCll·ll-'1. 1: f-· r:· ·- t·fl 1.

1\10 . I·;:; LE:::::: THAH 1 ~ f.t l"lPUTER · ~;

NO . I·;:; MOPE TH(l~·I ,- 1 1tfr I 11 E- P
1\10 . I·::: CORF'E(r 1/1-.il_IJE

TOO LOW
TOO-LOl·J ME·:::::(..1C.iE

GET MEXT NI IMf~EF'
TOO-HIGH MESSnGE

CilJE·::;:.
HI · -L 0 1,1 r!E

(1()';1 ·~:

(1()9:-=:
(H)';/•l

009(:.
0097

OOS't:
009·;1

(11 (1(1

0 l 01

0102
0 l 0 :3

(1 J (l,1
01 (l'5

(1).(>6

0107

1:1 H>:::
<1 109
(l 11 (!

0111

Ol 1.:2
0 113
011 '!

01 lS

01 l./:.

F--E~.:.i::

FEt..E
FE70
FE7'2
FE7'1
FE71S
FE?:::
F£='7(.;
FE7C
FE7E
FE80
FE:~: ~~

FE:::::!!
FE::::t.
FE:3:::
FE:::A
FE:::c.
FE:3E
F'E '?°'0
FE92
FE9 ·1
FE·;'(~.

FE-? :3
FE·:·•r:
FE9C
F'E S/E
FEAO
FEA:?
FEAIJ
FEf-"16
FE:'1:3
FE1lr1
FE(.)('

FEAE

• i .·:-... · ,.

F·:·P I I 1 · ~ • · ' i , :: I; l 1. ·F<C11: PMf-'l il EF'".-.

2F()0
FF3E::
o::::·::::r,
1)1)07

1 ·.~o~:

·:.::F {'if)
FF,1F
:1.00E
C)2::::"1
(1()()•;1

1 ':j(1 ":;:

2 Ft''i')
FF'.:Of1
1 c10::::
(>2:::A
(>(l(l[I

1 '3(>·;:
'2FAO
FF/.:.9
1002
:2F()0
FF7::::'.

:;:E'lr)
(;2,~~·;)

i)1):30

(l :? (:.{~
00":.:o
('~bC: '?-'

t ,2:=:·:1

c 80t1
FF'?2
2 Ff.;0
FF7D
]Jlf1:::

"~ c IJRREJ.: T i'Jl..IMBER l-Jrr:: 1~1,JE ::;:3ED

{; FiriD CIUT HOW M1":M' r' lF(J.E': \,it"';';. ll '~· i;:n (;r·l!t f_ili-fF'l.IT ME::.:::·r,uE-
[G!U(-il_ XOF' •'.E!COF:ECT, J ·'.! COHRECT ,_-,i_;i:: ·::·:: l'IF ::::·~:(·1 (iF

CI

. ICiT :t -1-::;: YE::, CHn-: • 1":1·.; r1 (t I
x c'F ·e-:::E \.Jf::t ' , t ·1 N1) Pl) O· '.-: TF: IE'::: Mt=s·-=:t,l;F

c.IMF' C-OUt"ll' !~(1 C:d'.:'l C 01_q,q
I: I R:li) I ·=1 rRv-couNr GRE~TER r HnN °?

.xn 1'+:? '1E·=:, 1··Ht=rt · ,~:,:;(llN

vop @MLNF I ·1 NG. no 8-~ lRIES MESS nGE

._IMP C'UUl,.1·1 (-a) CiET C(li INT
('I P10, l .::: TRY-COi l tHF.f~: CiF:E(HER rHi"IN 1 J ?

._l(;T ~;+f~: YE·=' f)i_ITF'l IT Tl 1m:EY ME·:::·:.·r·.i >E:
,; (Ip QTHif;'TN , 1 I M•:1' nu l • 1- 1 :: TR [F·::: MES::.{jl} E

' 1~1F' CI, tl_lj\ I f c:;o f.'ET c OUNT
xnF· @TURn-~Y, l,il 01. ITPUT >). 3 (T l JR~<EY) MES'3 :'"1Ci C

~' JF CURRETT l'!UMD!:R FC1l..IND , 111.ITPl.IT t .. lf ·1. !'IF l 'H![':'.;
COUNT DI '·1 RO, R·=-1 DIV l DE rr:Y-MO . BY 1 1)

OF\l p·:;' :- .. · ,.-1·;:1.1 OP IN .'··'3(1 FCIR r,-=:cT T 1'10.

·:::t,~F'B FO
f1 R':-> , F: 11:1
t10V F: 1 0 . 0NUMBR

!'OP ~C-NT J 'l

. IMf' ·:::T M·(f

K-16

f::EM('; J t·IDER l' I'! L.EF 'I 8 'fl E
2-T:ITGIT DEC.Jt1i41. . .IN RlO
MfWE '~! rY ro Mt- ~=:::~r11;;E

i1l ITF'UT NO. 11F TRJ E·:;

G0 TO BEGINNING OF PROGR~M

GUE'38 T:\MIF:i"I ~·31.;. .. ::_·7 -·-, 1)·-·· : .2::. : r)·.::
HI-LO GnME FOR TM 9?0/ 1XX MlCROfOMPUTFRS

0 11 8 ;~ * ~~ * ~~ ,. _._;;. ~)~ ~:~ :~
.,

~~ .;;. ,, ~t. ~~· .;J. -· .\}.

011 q >,t [I(\ T ('; ~\RF(\: [ti\ TA ·::nrnEMFNT:~ . • TE.Xl ·~ T(-iTEMErqr:;. l Ti' .
(•12(1 .-,

*
:~ ~· .;i- ~j. ~ i> * ~. ;~ :~ : ,,. ~ .:.:. ,~ ., ~

01:21 ~ ME'.=:·::;AnE"·:;;
0 1·22 FEBO ()(\r)[r ME:::;::::t DATr''l > (\(.'i(1[1 I: ·i)()11f'1

FEB2 (l{) (l()

t)12';: FEB4 '1 3
FE85 •l 1
FEBt. ~· E
FE87 2~)

FEB~:: 5'?1
FEB'~' ·~·F

FEB{) cc-
-'-'

FEBB :'.:~(j

FEP.C 'I 7
FEBD ':) '3
FEBE I)'=·
FEBF "3~:

FECO ..- ~.

.... t .. :\

FECl 20
FEC-2 II D
FEc·::: '.3 •:J

FECI! 2.'"l

FEC5 •1E
FECt:. r.r:-._. _,
FEC'7 'l [I
FECf: /] 2
FEC9 il r:;
FEC{) t).2

FECB 2 0
FECC ·~ ·=· 1 .. ,1

FECD ·:::o
FECE ::_;.1:·1

FECF 5 11
FEDO 'lF
FED! 20
FEfl2 -:::·;1
FED:::: ::·=>
FF.D·1 ·~::}

FED5 :2~

i. FED6 :.::F~

FED? .21)

012·1 FED:::: (l{\(l[f Di"1T{i ·•)(;r1[1 L lHE' FEE[t , l" f.:
012':.:i FEDf't ll'?' TEXT lNPIJT {) NIJMBEF: ~~ PRE:::;·::;; THE '3F't"!t: E BAR .

FEDB 'IE
FEDC 50
FEDD '::i5
FEDE ":i .,.

FELIF 20
FEEO 4 1
FEE1 20
FEE2 l.JE
FEE3 ~55
FEE4 4D

K- 17

GUESS TVMIRn 936227 ** 00:22 :02 11 :=:;7:=: PAGE 1':-"0Cl':""1

HI ·-LO G(it1E FOR TM c191)/ 1X\'. MICROCf)MPt.tTER'.3

FEE5 .. ,~

FEE6 ·15
FEE7 '32
FEE E: 2(i

FEE9 ·""':•/ .. - ·-·
FEEr1 21)

FEEB f.,(l
FEEC 52
FEED '!5
FEEE ,..- .-. _,;.

FEEF 5 .3
FEFO 20
FEF1 Sil
FEF~2 .1.::::
FEF ".:: "Ir:·
FEFl.l· 20
FEFS ;:.~:

FEF 1.'.:. 50
FEF7 ,11
FEF:::: IJ - · .,:.

FEF9 4,..,. ·-'
FEFA ·20
FEFB IJ .-. ..::.
FEFC '11.
FEFD 52
FEFE 2E
FEFF ~'20

(i 1 ~::l-. FFOO 2C>~'.C, LO~JM flflTA :>2020 LIOUBLE :;:;PAC:E
()127 FF02 5·1 TE XT ' TOO LOW, TRY nGAIN! ! ~

FFO::'.: ·1F
FF0·1 4F
FF<i':! :·o
FFi)6 ·lC
FF07 11 F
FFO:::: :::;7
FFr~19 :2c:
FF0{'1 20
FFOB "..ill·
FFOC r,.-. .. •..:.:..

FFOD 13·~1

FFO~ 21)

FFOF 111
FFlO 4-7
FF11 '11.
FF12 fl. •::'1

FFl~: I.IE
FF 1 '1· 2 1
FF15 21

·: 112::: FF1:.'.;. (1A(>[t L.INE FEED1 CR, ENf1 M'::: c;
FF1:3 0000

012;1 FFH'l 20.20 HIGHM DATA ~2020 TWO SPACES
0 1:30 FF1C 54 TEXT ~ roo HIGH. TRY AGAIN!'

FF1D I.IF
FFlE 4F

K-18

,

,-,uE.: ~; T '/MI R?'1 '7' ~.~.22' -< - ~' (,•;;: ::...: : o::·
HI -L 0 ,-,.-1ME FUR TM ·::190 / 1 '(·'. t1 IC Ruf. OMPUTEF ·::;

FF !F :;·;_1
FF 20 •1 :~:

FF'2J ·~ ·~·

FF 2 -~ ·'.17
FF.:::·;: '18
FF2·1 7:'.C
FF.2'.:_i 20
FF26 ~3 ·~

FF'.27 '32
FF .2::::: 5·7·
FF29 2('
FF -.::() 41
FF:.? B ·~7
FF:::C
FF 2 f1
FF2E •lE
FF 2F 21

01':31 FF ;::1) f'1()C1[1 {1('\"l {~ =--~»(\(ID I ()

LFCR [l('JT() :>Otl''.'l[I

J J :::: 17::.

I INE FEE:"ll , CR,

LI l\!E FEE:.[1 , CF:
FF:::::: 1)01)')

(1132 FF ·::. '! (>()(l[I

013 3 rF·::6 00
01Yl FF3~: 0707

BYTE (I END OF ME::::·:: AGE

FF:;::, 0707
0 1 ·::::'-=i FF·:::c 20:20
01 ?.:.:: FF:=:E 4::;:

FF3 F ,1 F
FF:}.(; '32
FF'it ~2

FFA~? 4~
FF ·~1 ·:::: ,; ::=:
FF41 !J·'.!
FF,1' • ::::1
FF4:.::. 20
FF'! 7 i::;·:-;

FF<'1.:::: 4F
FF'l '?
FF4()
FFl!B
FF•1C
FF•1(•

r::r-
··'·-'

4:~

:20
i)i)

COREC:T

(1 L::7 FF/IE
01 ·:::?. FF 11 F

FF~:. r.1

FF':':i 1
FF".12
FF':i""::

•11 SEVE l\I

FF':. 'I
FF5':.
FF5•.::·
FF57
FF':·f:

1) '· ·;:·;1 FFs·::
(>140 FF~ {)

FF~B

·1E

r=-.-.
·-•C•

'5t)

45

S4
20
(10
Ill NIME
42

D1'H('l > 1)7 07. >0707 BEL L3

DnTA >2020 SP('ICES
TEXT ' CORF:ECT ~ YOl_I . ·· RE ...

BYTE ;)
Tcy~ '-" I " r'1N EXPERT '

BYTE 0
TEXT ABOVE AVERAGE

K- 19

ft·!rt M·.:.; r ~

GUESS l'XMIRn ° 3 6 227 *~ 0 9 :22:02
HI-LO GAME FOR TM 990/ l XX MICR080MPUTERS

FF'3C
FF5D
F' F~::iE

FF5F
FFC.O
FFl:..1
FF62
FF6·:::
t=F (:.11
FF65
FFf.:./:..
FF67

0111.1 FF6:::
0 142 FFl:.:i

FFt:.(i
FFl.:·B
FF6C
FF6D
FF6E
FF6F
FF70

014 :~: FF71
0141.l FF72

FF7:3
FF7 ·~

FF7;.j
FF76
FF77
FF7:?.
FF79
FF7r1
FF7B

n 1 'l·~:; FF7C
01.:.11:.. FF7D

FF7E
FF7F
FF:?.O
FFSl
FFf:2
FF::::;3
FFf.:11
FF85
FF::::6
FF:37
FF:?.:8
FF89
FF8()
FF8B
FF::::c
FF8D
FFSE
FF:3F
FF90
FF91

4F
•-J. .,),,:•

/l !'.:~
2(1

'1.1.
3,;,.
115
5~~
1.1 l
/J.7
,,,,.... . _,
:20
00
'11
:.-;(·.
4~

52
.q.1
!] 7
·'.j.3
:t.'.(!

00
!j. l,

2()

5/J.

~53
r-~-.

·~.'..:.

118
1.15
5 ':.J
2()

;:c>
00
2~)

.f.!. ~·

/j :s
~ "~· . ·, .•

41
~~i ~~

3::::
1·-'.:,,

20
'19
5 1!·
2(>

5 4
'l·F
'1F
4B
2 0
l'::" •:J
.) ,

'1F
r .. ·r.-
· ... '·-'
20

BYTE (1

TH IR HI TEXT ·" f":'\lJERN:-SE

P.YTE 0
TURKEY TEXT -~ TURVEY

CNT
fl"n E o
TEXT BEC~USE IT TOOK YOU

K-20

F't;G[0007

(iUE:::;::;; "I' X i'11 i-:1r 1 ·:·1 ~; <'· .:· - · ··· .·,-:, : : -, : ; , -.

HI -LO Gf1t·1E For:: TM 9 9 0 i 1 ';< v MI I~ j;,(I(Ul'H:·u ri::F:·=.

Ol ·17 fF92 onoo
!) 14:;:: FF9<1 · .. ~n
0111·;' FF'?':! :. <']

FF96 52
FF97 I.! q

FF·?:3 4'3
FF'i':.·' ":,:::
FF·::-1(\ 21

0 1 <.=iO FFS"B 07
FF'?C 07
FF'?."D 07
FF'?E (l(i

0151
0152

0(10(1 EF:RCIRE:

TXXF:FF 9·::7r:J 11;2 4<-(l

CNT 011.J/.:,
COMF'F:E (\():;:: 1
CORECT () 1 3 •1
COUNT 0109
ECHOr) 00(:.1
ECH01 oo&.::::
ECH02 !)(l(:.2

EC!UAL 00911
HlOH 00::::9
HIGHM <)129
IMCNO 0049
LFCR 01:32
u:n . .J 00:::7
L.OWM 0 126
t1ESS1 0 1:22
MON I TR 0079
NEvJf'IO (H)I).:;::

t'II NE (i 1 11'0
NIJMBR 1)147
FW 00 1 9
Rl 0020

NI IMBF:

(tJ~::p

0 115
(1(1(:.7

009 'I

JJ()T () (l

BYfE >20
TL XT ' THIE·: . I

BYTE 7,7.7 .. 0

EVEN
Er·~D

oo:i::=: 0102 (I 1 (I r~.

00 7 ·~:

00:~:·1

c;n:s:1
005 ·1
(l(!(:. j

(i (I:::::::
on:::;
1)<):39
0071
00~.32

0101
011 1.1
oo.:.:'1 007:.; n 1 o·::-1

0062 1~)()75 0077 (H):~:2

1 • "." , ~, ! .. -. l - ·-::

WOR~SP0CE STARl CR0 LOC)

R 10 0025 oo::::~. oo::: 1 o o 9':i 0(6•·:·, o ~. o :::: o 1 J 1 o 11 :~: o 11 1:

R12
R2
R-:·

~·

R:3
F:9
SEVEN
START
THIRTN
TURVEY
1-J~;p

0026
0021
0022
0023
002'l
013:3
oo:::c:::
i) 1 '12
(> 14·'1·
0151

()1)::::7

0076
006::::
004:3
(1035
(10';'7

(H)6/!.

0051
0109

00/.:.9 01l6
(J 1 05
0107
00::::::::

THERE nRE 0032 SYMBOLS

oo,::,6 (~()~.:::: 0070 (>072 007'1 007 &,. 0077
1)05:3 00;::2
O l 10 01 1 ·-;-, (I J. 1 ~::;

K-21

..

INDEX

f

INDEX

Addition of Displacement and R12 Contents to Drive CHU Bit Address .
Address and Data Buffers •••••••••• •••• • ••••• ••.•••• .••••...••• •• •••
Address Bus••.•. . . •.....••.. • .. . •.....•. • ..•••.•••.
Address Decoding • •.........
Address Space • . • • . •.•..•.•.••.••....•.••••.••. •.• ..•.• •••
APPLICATIONS , •...••..•..
ASCII CODE • . , •
ASRFLAG Values •. .•..••..•.....• •. ...• • ••. .• .. ••.•• • .•.
Ass em bl er Di rec ti ves Used in Examples • . ••• • • ••••••• • .. • •• • •••••• •••
Auxiliary Co!lllllun ica tions Port ••.••••• . •• • ••• . . . • . • • . .••.••••••
BINARY, DECIMAL, AND HEXADECIMAL NUMBERING ••••••••••.• • •• ••• .• •••••
Block Compare Subroutine ••••• • •••••.••• • ••.••..• • ••• • • •• ••• • .••• •••
BLWP Example •• ••..•.•••.•..•.••.• •.. .•.... • . • . . ••.
Board Character is tics •••. •. •• ••• •• . ..•• . .•• • •••••• . .• • •••.••••• • •••
Board Jumper Positions as Sh ipped •• •.•• ••• • • ••. ••••• ••.•• • • • .. •.•• .
Branch and Link (BL) •• • ••••••••• . ••• • •• • ••.••••••• ••••.••.••.•.•. • •
Branch and Load Workspace Pointer (BLWP) •••••••••• •••. ••••••••• • • • •
Branch Instructions (B) • .. . • ••••.•••.••••..•.•.•••• •• . . ••••• . •• • •••
Buffer Control
Bus Signals
Cable, 103/113 Data Set • •• ••••••. ••• ••••••.••.••• •. • •••..• •••••••••
Cable, 201 Data Set •..•.•.. . •..•..•.....••.. • ..••••.•..••.• • •••••••
Cable, 202/212 Data Set • •.. • •• •• •••••• .•••. •• •.•.••. •..••.••. ..•.••
Cable Pin Assignments •••••.••••••• ••• •.• • •• • • . • • •••• . .•••• • .••
Cable Connections
Central Processing Unit •••.•.•••.•.... . .•• •. .. . •••••.• •• .•• •• ••
CHASSIS INTERFACE CONNECTOR (Pl) SIGNAL ASSIGNMENTS •• • ••• •• ••••••••
Circuitry to Add TMS 1:1901 Off - Board • •• . •••• ••••. ••••••.• .• •.••••• ••
CLRCRU Signal . .•.. •. . • •..•..•. • •. . • . ••• ..••.• • .••. ••.. .••.•. .
Coding Example to Ascertain System Configuration Through DIP Switch
Coding Example to Blink L . E. D. On and 0 ff.
Command Syntax Conventions • . ••• • ••••••••• •• ••. • ••••...••• •. .•••••• •
Communications Register Unit (CRU) ••••••••••.. • ••••••••••• •• • • • . •. •
Compare Blocks of Bytes Example Subroutine•••. •• .•• • • • • • ••• •• •.
Connector P2 Connected to RS- 232- C Device (Model 733 ASR) ••.•••.••.
Connector P2 Connected to TTY Device • ••• • •• •.• ••• . ••••••••••••.••.•
Control Buffers
Control Bus Functions •.•••••••••• . ••. •••••• .•• • •• • • .. ••• •• . •••. • •••
Control Bus
CPU HOLD and HOLDA Timing • •• •••••••• • •.•••••••••••. .• ..•••••••.• ..•
CRU Addressable LED ••••••••••• •••••.•••••.. •. . •• •••••• •••• • ••••••••
CRU Addressing •••.• ... •..••..•. . ••.•.... .•..... . •...• . •
CRU Bus • .••. • ••..••..•.••••..•..••...•..•• • · • • • · • • · · • • • • • · • •
CRU Inspect/Change (C) • • ••• . •• ••• • • . • ••••.••••••••• •••• •...• •••• .•.
CRU Base and Bit Addresses •• • •••••• •• • ••• . •••••• •••• •••• • •• ••••••.•
CHU Bits I nspected by C Command •• ••• •• •••.••••• . ••••.•••• . •••••••••
CRU INSTRUCTION AND ADDRESSING EXAMPLES USING TMS 9901 ••• •• ••••••••
CRU Instructions •••• ••••••• ••• .• •• .•. ••... •••• • . • . •. • •••..• . •.••• • •
CRU Select •..
CRU Timing•.•
Crystal - Controlled Operation •• •• ••.••• •• • ••. •••••••••••••.••.••••••
Data Buffers
Data Bus
Data Terminal Cable •••••••.••• • • . •. •••••.•• •• • ••. , ••••••. • •• ••••.••
Debug Checklist

INDEX-1

(f) 5-18
6- 30
6- 4
6 - 15
5- 5
Section 8
Appendix c
(T) 5- 60
(T) 5- 1
6- 38
Appendix D
5- 51
(F) 4-30
1- 5
(T) 2-3
5·-7
5- 8
5 - 6
6-28
(T) 6-5
(T) 8- 17
(T) 8-18
(T) 8-18
8 - 17
(F) 8-17
6 - 8
Appendix H
(F) 8- 4
6- 14
5- 54
(f) 5- 55
(T) 3- 3
5- 10
(F) 5- 51
(F) 2-6
(F) 2- 7
6- 30
(T) 6- 6
6- 6
(F)8-9
5- 52
5- 13
6- 4
3- 4
(F) 5- 13
(F) 3- 4
Appendix J
5- 14
6-1 9
5 - 14
(F) 6-8
(T) 6- 30
6-4
(T) 8-19
2- 10

I NDEX (CONTINUED)

Decoding Circuitry f or CRU I/O Address es • . . • • . • • . • . . • . . (F) 6- 20
Dedicated I nterrupt Descri pt i on . • • • • • •. •• • . • •• . .• • . •.. • •. • (T) 6- 31
Device Supply Voltage Pi n Ass i gnments •••• ••• •••. . . • . .• . •. • • • . (T) 6- 3
Direct Memory Access (OMA) Applications .• . ••. . .•••. . . . • • • . . .• . ..•• . 8- 7
Di r ect Register Addressing (T = 002) .• . • . •. •. . ••• . •..• .. 4-8
Direct Regis ter Addressing Example . . . • • • . . • • • • . . • • . . . • . • . (F) 4- 9
Direct Memor y Addressing Example . • . •. • ••.• •.. (F) 4-12
Direct Memory Addressing , I ndexed Example •• . •. • • .. . • . •. • • . •. • • . • .. . (F) 4-13
DMA Bus Contr ol • . .• ... • •• • •••.•• . .• .• •••• • . . . • .• ... (F) 8-8
DMA Con t ro l l er. • . (F) 8- 14
DMA Controller Timing .. • .• • . . • . ..• . • . ••.. . • . • •.• . . . • (F) 8-16
OMA Device Controller •••... • .• •• •.. .. •.•.. . .•... . (F) 8-13
OMA System Biock Diagram• • •......• • ••••. . • . .• (F) 8-13
OMA System Guidelines . . •...• • .• . • .. .•• •. • 8- 11
OMA System Timing •..• • • . •• . ..• .. • . .. 8- 7
DMA System Timing • • • . . • • . . . • . . • . . . • • • • (F) 8-10
Dump Memory to Cassette/Paper Tape (0) . ••.• ••• .• • .. .•. • •... • 3-5
Dynamically Relocatable Code ••..•• ••. • . •.. . . • •• • 5-19
Echo Character (XOP 11) •. •. .. •• •.. .•. .• • . .•. 3- 17
EIA Inter face . 6- 35
EIA RS-232- C CABLING • • • . . . • • • • • • • Appendix B
EIA Serial Port Applications . •...• . . . • • .. . • • . ••... . .•• • . . ••.. 8-17
Enabling and Tr iggering TMS 990 1 I nterva l Timer ..••. . •• .• . . • . (F) 5-31
EPROM Expansion ..•..•.•... • • . . •.. . .•.•.•. • • .. •..•.. 7 - 1
Example of Code to Run TMS 9901 Interval Timer • • .•. •.•..... (F) 5- 33
Example of Programming Timer Interrupts for TMS 9901 and TMS 9902 •. 5- 32
Example of Program With Coding Added to Make it Relocatable • (F) 5-19
Example of Separate Programs Joined by Branches to Abs . Addrresses . (F) 5-7
Example Program to Converse Through Main/ Aux . TMS 9902 ' s ..•. (F) 5- 57
Example Program Using Timer I nterrupts 3 and 4 ..•..•• • .••. (F) 5-38
EXAMPLE PROGRAMS . .• • ••. • .• . • • . . •. . .••. . .••• •. • .. .• • • ••. • • . Appendix K
Examples of Non Self-Relocating Code/Self - Relocating Code • .. . (F) 5-20
Execute Command (EJ ••• • •• • •• •• • • • • •• • •• ••• ••• • • • • ••• •• •• ••• •••• ••• • 3-8
Execute in Single Step Mode (S)•. •• ...•.•.••• . . • • . .• 3- 12
Execute Under Breakpoint (8) •• • •••.• . •• • . • • • ••• • • •• ••• ••• • •. • . •• ••• 3- 3
Executing TM 9'.10/lOOM Pr ograms on the TM 990/101M• •.• 5-3
Extended Operation (XOP) . • ••. •. • .•• ..•.•. . • ••• • 5-9
External Instruct ions••... . •• • .• •. . • .• . • ,• .. . •. 6-14
External Instructions •. . . •..•• ... • ••... •..••.... (T) 6-14
External System Reset/Load •..• •• •. . ..• . .. •. 7 - 12
Extr a RS-232- C Terminal Port ..• . .• . .. ••• •••• • ..•.• ••. . • • . 8- 6
Find Command (F) .• .•. . .• .. •••• . .. • • ..• .. . • • . .• 3-8
Five-Switch DIP and Status LED •.. • •• •. . • .. . •• .. . •• 2-8
F'ormat 1 I ns tructions . • . .•• • •. . .. ••.. • .•.. • 4-1 8
Format 2 Instructions . • . •. • . • • .. •• • • •.. • .• . • •.... • .•... .• 4-20
Format 3/9 Ins true tions . . • . • . • • . . • . . . • . • • • • 4- 22
Format 4 (C.:RU Multi bit) Ins true tions . • • . • • • . • . . • • • . . . • • . • • . . 4- 24
Format 5 (Shift) Instructions• . . . • ..• • . ..• • . •. .. . • . .•• 4- 25
Format 6 Ins true t ions • . . • • • . . • • • . • • • • • • 4- 27
Format 7 (RTWP, Cont r ol) Instruc t ions •. •... .••.•••. . .• • .• • •..•.. . .. • 4- 29
Format 8 (Immediate , Internal Regist er Load/Stor e) I nstructions . •• • 4-31
Format 9 (XOP) I nstruc t ions •.• . • •.••. . • •. . . • . • • • ..•. . • • . .•.• 4- 33
Four Interrupt- Causing Condi tions at TMS 9902 •..• • ..• . . •• • . • • (F) 7-8
General Specifications .• . . •. . • . •.•.• . • • ••• • • .. • • • •. • • ••• • • •.. . . 1- 5
General , I n troduction . . • •..• • •. ...• • •• • •• • • • . . • • . • • 1- 1

I NDEX-2

ii

INDEX (CONTINUED)

General, Installation and Opera tion of the TM 990/101M .•.• •• •• 2- 1
General, TIBUG Interactive Debug Monitor •..•.•...••.•••....•.• .. ••. 3- 1
General, TM 990/101M Instruction Execution •• • ..•••• ••. •.•..••• 4- 1
General, Prograrmning. • • . • . . • • . • . . . • • • • • . • • • • • • . . • • • • • • • . • • • • 5- 1
General , Theory of Operation •....• • • . .• ..• ••••.••.••• ..• • •••• . . •• •• 6-1
General, Options.. 7-1
General , Applications . •••.•••.•.••..•...•••••. ...• •• •• •.•••• ..•.• •• 8- 1
Glossary . . • . • • . • . • • • . . • . • . . . • • . • • . . • • • • • • • • . . • . • • • . • • • . • . • . • • 1-6
Half- Duplex Mult1drop System • ••. •. ...• ••• • •••• ..••..•••••...••..••. (F) 7-11
Half-Duplex Multidrop System •. •..• ...•....•••.. ... •• ••.•.• •. •. ..•.. (T) 7- 11
Hardware Registers . • • . . . • . • . • • . • . • • • . • • • • • • • • • . . • . . • . . . • . • . • . . • . • • • 4- 1
Hardware Registers •.•.•••.•••..•...•... . . •..... ••• • . ••. . .•..•. . .•. . 5- 4
Hexadecimal Arithmetic (H) ..••.•.•••. • • . •••• •• .•••. • •.•.••• 3- 9
HOLD , HOLDA, and OMA •••.•••. • . . • .•.•• •• ••.• • .•• .. .•• . .•• •.••. 6- 31
I/0 Using Monitor XOP' s • . • . . • • • • • • . • • • • • . . • . . . • • . 5- 22
Immediate Addressing .•......•••• • •••.••••••.••.•• •. •• .. •..•••.. 4- 13
Implicit Decoded CRU Bit Addresses.. .. • • • . (T) 6- 25
Indirect Register Addressing (T = 01 2) 4-8
Indirect Register Addressing Example • • . • • .. • .. • .. • . • . • . • .. (F) 4- 10
Indirect Register Autoincrement Addressing Example . •••.•.•.•..•..•• (F) 4-10
Indirect Register Autoincrement Addressing (T = 112) .•••••....••••. 4- 10
Inspect/Change User Workspace (W) •••• •• • •••.• •.. ••.••.. .•• •.• 3- 13
Inspect/Change User WP, PC, and ST Registers (R) . ••••..••••.... . ••. 3- 11
INSTALLATION AND OPERATION OF THE TM 990/101M-1 ••••.••• . .••• Section 2
Instruction Description Terms ••••.•• .• •.••••••••••• • .. .•. •. . ••..... (T) 4-14
Instruction Formats and Addressing Modes •.•• • ••..•.• • •••••. . •••.••• 4- 7
Instruction Set, Alphabetical Index (T) 4-15
Instruction Set, Numerical Index ••...•..•.•••.. ••. . •...••• (T) 4- 17
Ins true tions . • • • . • • • • • • • • • . . • • • • • . • • . • • . • • • • • • • • • • • • • • • • • • . • • • . • • • . 4- 1 4
Instructions 4- 31
Interfacing with TIBUG • •.• . •••••••.•......••. • ••• • .•••..••.••••.•.• 5- 21
Interrupt and User XOP Linking Area . • • • • • • • . • • . . • • . • • • . . . • (T) 5-25
Interrupt and XOP Linking Areas •••.••. .• ••• • ••..•••••..•••..•.•.••• 5- 24
Interrupts and XOP ' s .•••• . •••.••...••.• • ••••.•...••. 5- 24
Interrupt Characteristics .• . •••••.••.••.•• . • ••..••.•••.••• ..• • •.••• (T) 6- 31
Interrupt Example Program Description. (T) 5- 35
Interrupt Sequence • • . •••••••••••••••••••••••••••••••••••••...• (F) 5- 26
Interrupt Structure • . •••.•••• ..•.. .• .• . .. •••••• . ••••••..•.......• • . 6- 31
INTRODUCTION. . • . . . • • . . . • • • • . • • • • . . • . • • • • • • • • . • • • Sec ti on
Jumper Pins by Board Dash Number (Factory Installation) • ..• (T) 7- 5
Jumper Placement (F) 7- 2
LDCR Instruction •••••.•••••••.• •••• •.••••••• . •••• .••.•. • • .. • •. (F) 5- 16
Line- by- Line Assembler Output ••.••••••••.•••••••••••••....••••.•..• (F) 7 - 14
Linked Li st Example. • . • • . . • • . . • • . • • . . • • . • • • • . . . • . • • • • . . . • • . . • • . . . • . (F) 5- 11
Linked- Lists 5-10
Linking Instructions ••••.•••••.•.••••••••.••••.••••••• .• •. . .••• . .•• 5- 6
Load Function 6-13
Load Memory From Cassette or Paper Tape (L) •.• • . .••.••• • ••• .• •••••• 3- 9
Main and Expansion EPROM and RAM ••••• •.•.••.....•.•••..•....•..• .•• (F) 1- 5
Main Communications Port •.••..•...•••.••.•.•..••••....• . •••.•••.•.. 6-35
Major Components Used in I/O •.••.•• • .•..••.••••.•••• •• •••• • .••••••• (F) 8 - 2
Manual Organization. 1- 4
Master Jumper Table •• ••.•.•••••..•.••••••••••• •••..••• ..•• . •••• (T) 7-4
Master-Slave Full Duplex Multidrop System •••••...•••••.•••••• • (F) 7- 10
MEMCYC. • • . • • • • • • . • • • • • • . . • • • • • • • . . • • . • • • . • • • • • . • • • • • • • • . . • • • • • • • • • • 6- 27

INDEX-3

INDEX (CONTINUED)

Memory Address Decode PROM •.•
Memory
Memory
Memory
Memory
Memory
Memory

Address Decoding •
and Capacitor Placement •••.
Cycle Timing
Cycle Timing .••• •
Expansion Maps ..
Inspect/Change, Memory Dump

Memory Map .•••. .•• .
Memory
Memory

Map Change.
Requirements for TIBUG . .

Memory Timing Signals . ••.•.•.••
Miscellaneous Equipment ••• . .•.•..

(M) ••

Modem (Data Set) Interface Signal Definitions • .
Move Block Following Passing of Parameters . .
Move Block of Bytes Example Subroutine.
Multidrop Cabling • . ..•.... .
Multidrop Interface . •••.•.
Multi drop
Multidrop

Interface .•
Jumper Table .•

Multidrop System•. .

. ..

Multiple-Device Direct Memory Access Controll er .•
Multidrop Inter face
OEM Chassis • •..••.............•.••
OEM Chassis Backplane Schematic •..
Off-Board Eight-Bit I/O Port.
Off-Board Memory .•.•..••.•.••
Off- Board RAM•
Off-Board TMS 9901
On-Board Device CRU Address.
On-Board Memory Expansion.
Opera ti on .••••••.•••••...•
OPTIONS •...• . .••..• . •.
Parallel I/O and System Timer .
Parallel I/O Connector •... . •• .
Parallel I/O.
PARTS LIST . . .
Preprogrammed Interrupt and User XOP Trap Vectors •.
Port, 8-Bit 9905/06 .•....•.
Power and Terminal Hookup.
Power Cable/Chassis ..
Power Specifications .•• • •...
Power Supply Connections ..
Power Supply••. .
Power Supply Hookup.
Power- Up/Reset •.•• •.
Product Index • ••...•...••••••••.

Counter (PC) •.•... . • Program
Program
Program

Counter Relative Addressing •.. ••
Entry and Exit .•• •• •• .

Program Organization ..••....
Programming Considerations •.••••.••..
Programming Environment •. •..•.••
Programming Hints •..
PROGRAMMING ••.
RAM Expansion •.

INDEX-4

...

.... ..

......

(F) 6-18
6-15
(F) 7-3
8-11
(F) 8-12
(F) 7-6
3-10
(F) 4-2
7-1 2
(F) 3-2
6- 26
2- 2
8-19
5-50
(F) 5-50
(F) 7-9
(F) 6-37
7- 8
(T) 7-10
(F) 7-9
8- 12
6- 37
7-13
(F) 7-17
8-1
(F) 8-3
8-1
8-1
(T) 6-25
7-1
2- 8
Section
6- 32
2- 2
6-34
Appendix
(T) 5-21.1
(F) 8-5
2-2
2-2
6-1
2-3
2-1
(F) 2-4
2-8
1-4
4-1
4-13
5-21
5-3
5- 3
5-4
5- 21
Section
7-6

7

E

5

INDEX (CONTINUED)

Random Access Memory •. • .. • • .. .•.. •.•....
Random Access Memory • •.. . . •. •.
Read Hexadecimal Word from Terminal (XOP 9).
Read One Character from Terminal (XOP 13) ••
Read-Only Memory • ••
Read-Only Memory . • . • ...
Reading the DIP Switch .
Ready • ••• .•• • . , .••• • .. .
Reference Documents •• • •
Register Reserved Applications . •
Remote Communications ..
Required Equipment .•.•.
Required Use of RAM in Programs •.
Reset and Load Filtering .••• .•
RESET and LOAD Logic ..
Reset Function •. .
Reset/Load Logic.
Return with Workspace Pointer (RTWP) .•
RS-232-C Interface
RS-232-C Port • .. • • • • •
RS-232- C/TTY/Multidrop Interfaces (Main Port,
Sample Program 1 . • .
Sample Program 2 ••.
Sample Programs .••.
SCHEMATICS .. • • .• .• •
Serial
Serial

Communication Interrupt .••
I/O Port EIA Interface.
I/O Port TTY Serial

Seven-Word
Interface .

Interrupt Linking Area.
Six- Word Interrupt Linking Area ..•
Slow EPROM Table . • .
Slow EPROM • . . •. •••
Software Registers.
Source Listing ..• • •
Status Bits Affected by Instruction •.

Indicator . • . . .
(ST) .

Status
Status
Status

Register
Register .•

STCR Instruction .
Indexed (T = 102).

P2) ••

Symbolic Memory
Symbolic Memory
System Buses . .
System Clock ••

Addressing,
Addressing, Not Indexed (T = 102) .

System Structure .
System Timer ••
Tape Tabs ••• .•
Terminal Hookup •. • .
Terminals and Cables •••. •
Terminal Hookup, 743 KSR •.•• •.
THEORY OF OPERATION • .•• •• •• . .
TI 733 ASR Baud Rate (T) •. •••
TIBUG Commands .••
TIBUG Colllllands •••••
TI BUG Error Messages .•.
TIBUG Error Messages •.

INDEX-5

..... .

(F) 6- 29
6- 28
3- 15
3- 17
(F) 6- 28
6-27
(F) 5-53
6-26
1-6
(T) 5- 6
7- 12
2- 1
5-3
6- 14
(F) 6-13
6- 10
6- 10
5-9
7-7
(F) 8-6
7- 7
2- 8
2- 10
2- 8
Appendix F
7- 7
(F) 6-35
(F) 6- 36
(F) 5- 29
(F) 5- 27
(T) 7- 7
7- 7
4-4
(F) 5- 2
(T) 4-5
6- 39
4- 2
(F) 4- 3
(F) 5- 17
4-1 1
4-11
6- 4
6-7
6-4
6- 34
(F) 3- 7
2-5
2- 1
(F) 2- 6
Section 6.
3- 13
(T) 3-1
3-1
(T) 3- 18
3-18

INDEX (CONCLUDED)

TIBUG INTERACTIVE DEBUG MONITOR •••
TM 990 OBJECT CODE FORMAT •••.••
TM 990/101 CRU Map • • ••••.•••••••
TM 990/101M Block Diagram •.•••.
TM 990/101M Board in TM 990/510 Chassis.
TM 990/101M Configurations ..•.•••.••••••••••••••
TM 990/10 1M Dimensions and Component Placement.
TM 990/101M INSTRUCTION EXECUTION ..• •
TM 990/101M
TM 990/101M

Instruction Formats ••••••
Major Components .••••••••

TM 990/101M Memory Addressing • • •• ••••
TM 990/101M Predefined CHU Addresses ••
TM 990/301 Microterminal ..•••••..
TM 990/301
TM 990/301

Microtermioal .
MICROTERMINAL.

TM 990/402 Line-By-Line Assembler •.••
TM 990/510 OEM Chassis •••••••
TMS 9900 CPU Flowchart •..•.•.

Interface Timing ••
Data and Address Flow ••

TMS 9900 CRU
TMS 9900
TMS 9900 Memory Bus Timing ••

Pin Functions •• TMS 9900
TMS
TMS
TTY
TTY

990 1 .••.••.••..••...
9901 Internal Timer Interrupt Program •••
Interface •••
Inter face •.•

Unit ID DIP-Switch ••. ••••• •••.•
Unit ID Switch ••
Unpacking •••.••.
User Accessible Utilities ••
User Accessible Utilities ••••••••••••••

. ..
User Memory • ••• • .••..••.......•..•. . •... ••. •..••.. .
Using Main and Auxiliary TMS 9902's for 1/0 ••
Vectors (Interrupt and XOP) ••••
Verification •• • •••••.
Wait • •• .
WIRING TELETYPE MODEL 3320/SJE FOR TM 990/10 1M •..
Workspace
Workspace

Example .•..•••.•...••
Pointer (WP) ••..••.•.

Workspace Registers .•••• • ••.•••
Write Four Hexadecimal Characters to Terminal
Write Message to Terminal (XOP 14) ••.•• •••• ••.

(XOP 12)

. . .
(XOP

.

. ...

. ...
10) •.•••

Write
Write

One Character to Terminal
One Hexadecimal Character to Terminal (XOP 8) •••••

XOP Example . •••..•.•••••••.••.••••••••••• •••••• •••.•••••.•.••

INDEX-6

Section 3
Appendix G
(T) 6-21
(F) 6- 2
(F) 2-5
(T) 1-4
(F) 1-3
Section 4
(F) 4-7
(F) 1-2
(F) 6-16
(T) 5- 12
(F) 7-15
7-12
Appendix I
7-12
(F) 7-16
(F) 6-12
(F) 5-15
(F) 6-11
(F) 6-26
(F) 6-9
(F) 6-33
5-30
6-36
7-7
5-52
6-39
2- 2
3-14
(T) 3-14
4-1
5-52
5-5
2- 8
6-27
Appendix A
(F) 4-6
4-2
5-6
3-1 6
3-17
3-17
3- 15
(F) 4-35

TM 990/ 101 1\1 MICROCOMPUTER
USER RESPONSE SHEET

It 1s O\Jr desire to provide our customers wi th the besr documentation possible. After using this manual. please

complete this sheet and mail it. postpaid, to us. Your comments wilt be given every consideration.

1. Is the manual well organized? Yes ___ No ___ Comments : - - ---------------

2. Is text clearly presented and adequately illustrated? Yes _ No

Comments: ____ _ __________________________________ _

3. What subject matter could be expanded or clanfied? __

4. Is the instruction set adequately covered? Yes __ No __ _

Comments:--~

5. Do you wish more data that would clarify an instruction? Yes ___ No __ _

Comments:---------------------~

6. Do you wish more data to ciJrify an application? Yes ___ No ___ _

Comments:----------

7. Please explain the application intended for your board :

School Course ___ _ Home __ _ Evaluation ___ _ OEM Application ___ _ Other ___ _

If OEM Application, please describe:-------------------------------

8. Other comments concerning the TM 990/ 101M and this manual:-----------------

Name: __ _

Address ____________ .. ________ _ State _ ______ _ ZIP ____ _

School (if applicable) ______________ _ Major --------- Year _____ _

REV . D

FOLD

BUSINESS AEPL V MAIL

No postage necessary 11 mailed 1n the United States

Poet- - be peld by

TEXAS INSTRUMENTS INCORPORATED
SEMICONDUCTOR GROUP

P.O. BOX 1443 HOUSTON, TEXAS 77001

ATTENTION: MICROCOMPUTER PRODUCTS DEPARTMENT

MIS 6750, COMMERCE PARK

FOl.O

FIRST CLASS

Permit No. 6189
Houston, Texas

-,
•

..

MP337 REV. D
1602001-9701

..

~TEXAS INSTRUMENTS
~ INCORPORATEO

Semiconductor Group
Post Office Box 1443 Houston, Texas 77001

Prlnted In U.S.A.

