

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT FCC PART 15.225 / ISED RSS-210 NFC

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea

Date of Testing:

12/18/2018, 1/22-1/29/2019

Test Site/Location:

PCTEST Lab. Columbia, MD, USA

Test Report Serial No.: 1M1812260231-03.A3L

FCC ID: A3L-EFKG975

IC: 649E-EFKG975

APPLICANT: Samsung Electronics Co., Ltd.

Application Type: Certification Model/HVIN: EF-KG975 **EUT Type: LED Back Cover**

Frequency: 13.56MHz

FCC Classification: Low Power Communications Device Transmitter (DXX)

FCC Rule Part(s): Part 15 Subpart C (15.225)

Test Procedure(s): ANSI C63.10-2013

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

FCC ID: A3L-EFKG975	PCTEST INGINEERING LAFORATORY, IAC.	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dags 4 of 20
1M1812260231-03.A3L	12/18/2018, 1/22-1/29/2019	LED Back Cover		Page 1 of 29

TABLE OF CONTENTS

1.0	Intro	oduction	3
	1.1	Scope	3
	1.2	PCTEST Test Location	3
	1.3	Test Facility / Accreditations	3
2.0	PRO	DDUCT INFORMATION	4
	2.1	Equipment Description	4
	2.2	Test Configuration	4
	2.3	EMI Suppression Device(s)/Modifications	4
3.0	DES	SCRIPTION OF TEST	5
	3.1	Evaluation Procedure	5
	3.2	AC Line Conducted Emissions	5
	3.3	Radiated Emissions	6
	3.4	Environmental Conditions	6
4.0	ΑN٦	ENNA REQUIREMENTS	7
5.0	ME	ASUREMENT UNCERTAINTY	8
6.0	TES	T EQUIPMENT CALIBRATION DATA	9
7.0	TES	T DATA	10
	7.1	Summary	10
	7.2	Occupied Bandwidth Measurement	11
	7.3	Frequency Stability Test Data	13
	7.4	In-Band Radiated Spurious Emission Measurements	16
	7.5	Radiated Spurious Emission Measurements, Out-of-Band	19
	7.6	Line Conducted Measurement Data	25
8.0	COI	NCLUSION	29

FCC ID: A3L-EFKG975	PETEST:	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 2 of 20
1M1812260231-03.A3L	12/18/2018, 1/22-1/29/2019	LED Back Cover		Page 2 of 29

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

FCC ID: A3L-EFKG975	PETEST:	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 2 of 20
1M1812260231-03.A3L	12/18/2018, 1/22-1/29/2019	LED Back Cover		Page 3 of 29

PRODUCT INFORMATION 2.0

2.1 **Equipment Description**

The Equipment Under Test (EUT) is the Samsung LED Back Cover FCC ID: A3L-EFKG975. The EUT is an NFC powered cover that snaps onto a representative mobile handset (Model: SM-G975U). The test data contained in this report pertains only to the emissions due to the NFC transmitter of the EUT.

2.2 Test Configuration

The EUT was set to continuously transmit at 13.56MHz. This was performed using manufacturer software loaded on the representative mobile handset. The software allowed for continuous transmission between the LED cover and the handset. This device was tested in accordance with the guidance of ANSI C63.10-2013. See Sections 3.2 and 3.3 of this test report for a description of the AC line conducted emissions and radiated emissions test setups, respectively.

2.3 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: A3L-EFKG975	PETEST:	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Pogo 4 of 20
1M1812260231-03.A3L	12/18/2018, 1/22-1/29/2019	LED Back Cover	Page 4 of 29

3.0 DESCRIPTION OF TEST

3.1 Evaluation Procedure

The measurement procedure described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) was used in the measurement of the EUT.

Deviation from measurement procedure......None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.6. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: A3L-EFKG975	PETEST*	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogg F of 20
1M1812260231-03.A3L	12/18/2018, 1/22-1/29/2019	LED Back Cover		Page 5 of 29

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: A3L-EFKG975	PETEST*	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 6 of 20
1M1812260231-03.A3L	12/18/2018, 1/22-1/29/2019	LED Back Cover		Page 6 of 29

ANTENNA REQUIREMENTS 4.0

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the EUT are permanently attached.
- This unit was tested with its standard battery.

Conclusion:

The EUT complies with the requirement of §15.203.

FCC ID: A3L-EFKG975	PETEST:	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 7 of 20
1M1812260231-03.A3L	12/18/2018, 1/22-1/29/2019	LED Back Cover	Page 7 of 29

MEASUREMENT UNCERTAINTY 5.0

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98

FCC ID: A3L-EFKG975	PETEST:	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 9 of 20
1M1812260231-03.A3L	12/18/2018, 1/22-1/29/2019	LED Back Cover		Page 8 of 29

TEST EQUIPMENT CALIBRATION DATA 6.0

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	N9020A	MXA Signal Analyzer	1/24/2018	Annual	1/24/2019	US46470561
Agilent	N9030A	PXA Signal Analyzer (44GHz)	5/25/2018	Annual	5/25/2019	MY52350166
COM-Power	AL-130R	Active Loop Antenna	8/10/2018	Annual	8/10/2019	121085
Com-Power	PAM-103	Pre-Amplifier (1-1000MHz)	9/17/2018	Annual	9/17/2019	441119
Emco	3115	Horn Antenna (1-18GHz)	3/28/2018	Biennial	3/28/2020	9704-5182
ETS-Lindgren	3816/2NM	Line Impedance Stabilization Network	6/18/2018	Biennial	6/18/2020	114451
Pasternack	NMLC-2	Line Conducted Emissions Cable (NM)	8/23/2018	Annual	8/23/2019	NMLC-2
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	5/21/2018	Annual	5/21/2019	100342
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	4/19/2018	Biennial	4/19/2020	A051107

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due

FCC ID: A3L-EFKG975	INGINEERING LAFORATORY, INC.	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 9 of 29
1M1812260231-03.A3L	12/18/2018, 1/22-1/29/2019	LED Back Cover		Fage 9 01 29

TEST DATA

7.1 **Summary**

Company Name: Samsung Electronics Co., Ltd.

FCC ID: A3L-EFKG975

Low Power Communications Device Transmitter (DXX) FCC Classification:

Frequencies Examined: 13.56MHz

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
2.1049	RSS-Gen [6.6]	Occupied Bandwidth	N/A		PASS	Section 7.2
15.225 (a)(b)(c)	RSS-210 [B.6]	In-Band Emissions	15,848µV/m @ 30m 13.553 – 13.567 MHz 334µV/m @ 30m 13.410 – 13.553 MHz 13.567 – 13.710 MHz 106µV/m @ 30m 13.110 – 13.410 MHz 13.710 – 14.010 MHz	RADIATED	PASS	Section 7.4
15.225 (d) 15.209	RSS-Gen [8.9]	Out-of-Band Emissions	Emissions outside of the specified band (13.110 – 14.010 MHz) must meet the radiated limits detailed in 15.209 (RSS-Gen [8.9])		PASS	Section 7.5
15.225 (e)	RSS-210 [B.6]	Frequency Stability Tolerance	± 0.01% of Operating Frequency	Temperature Chamber	PASS	Section 7.3
15.207	RSS-Gen [8.8]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits (RSS-Gen)	LINE CONDUCTED	PASS	Section 7.6

Table 7-1. Summary of Test Results

Note:

This unit was tested with its standard battery.

FCC ID: A3L-EFKG975	PETEST:	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dags 40 of 20
1M1812260231-03.A3L	12/18/2018, 1/22-1/29/2019	LED Back Cover		Page 10 of 29

Occupied Bandwidth Measurement

§2.1049; RSS-Gen (6.6)

Test Overview and Limit

The bandwidth is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequency.

Test Procedure Used

ANSI C63.10-2013 - Section 6.9.2

Test Settings

- 1. Spectrum analyzer frequency is set to the nominal EUT channel center frequency.
- 2. RBW = 1 5% OBW
- 3. VBW ≥ 3 x RBW
- 4. Reference level set to keep signal from exceeding maximum input mixer level for linear operation.
- 5. Detector = Peak
- 6. Trace mode = max hold
- 7. Sweep = auto couple
- 8. The trace was allowed to stabilize

Test Notes

None.

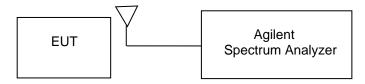


Figure 7-1. Test Instrument & Measurement Setup

FCC ID: A3L-EFKG975	PETEST:	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 11 of 20
1M1812260231-03.A3L	12/18/2018, 1/22-1/29/2019	LED Back Cover	Page 11 of 29

Frequency	Occupied Bandwidth
13.56MHz	259.71kHz

Table 7-2. Occupied Bandwidth Measurement

Figure 7-2. Occupied Bandwidth Plot

FCC ID: A3L-EFKG975	INGINEERING LAFORATORY, INC.	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 12 of 29
1M1812260231-03.A3L	12/18/2018, 1/22-1/29/2019	LED Back Cover		Fage 12 01 29

Frequency Stability Test Data 7.3

§15.225; RSS-210 (B.6)

Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.10-2013. The frequency stability of the transmitter is measured by:

- a.) Temperature: The temperature is varied from -20°C to +50°C in 10°C increments using an environmental chamber.
- b.) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 15.225, the frequency stability of the transmitter shall be maintained within ±0.01% of the center frequency.

Test Procedure Used

ANSI C63.10-2013 - Section 6.8

Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -20°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

Test Notes

None.

FCC ID: A3L-EFKG975	PETEST:	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogg 42 of 20
1M1812260231-03.A3L	12/18/2018, 1/22-1/29/2019	LED Back Cover		Page 13 of 29

Frequency Stability Test Data §15.225; RSS-210 (B.6)

OPERATING FREQUENCY: 13,560,000 Hz

REFERENCE VOLTAGE: **VDC**

DEVIATION LIMIT: $\pm 0.01 \% = 1356$ Hz

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	4.29	+ 20 (Ref)	13,559,960	0	0.0000000
100 %		- 30	13,559,987	27	0.0001991
100 %		- 20	13,560,001	41	0.0003024
100 %		- 10	13,560,080	120	0.0008850
100 %		0	13,559,856	-104	-0.0007670
100 %		+ 10	13,560,042	82	0.0006047
100 %		+ 20	13,560,074	114	0.0008407
100 %		+ 30	13,560,069	109	0.0008038
100 %		+ 40	13,559,985	25	0.0001844
100 %		+ 50	13,559,835	-125	-0.0009218
BATT. ENDPOINT	3.67	+ 20	13,560,091	131	0.0009661

Table 7-3. Frequency Stability Test Data

FCC ID: A3L-EFKG975	ENGINEERING LARGEATORY, INC.	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 14 of 29
1M1812260231-03.A3L	12/18/2018. 1/22-1/29/2019	LED Back Cover		Page 14 01 29

Frequency Stability Test Data §15.225; RSS-210 (B.6)

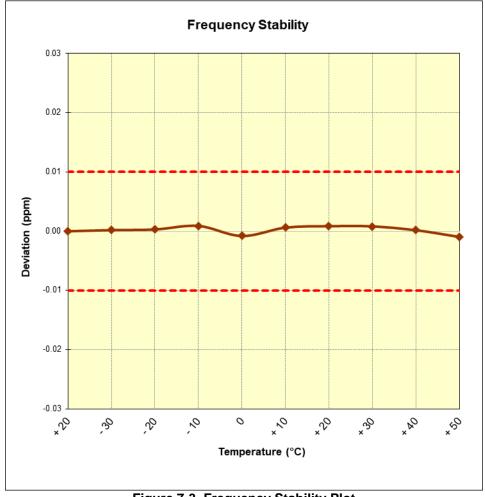


Figure 7-3. Frequency Stability Plot

FCC ID: A3L-EFKG975	PCTEST INGINEERING LEEDSFORT, INC.	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 15 of 29
1M1812260231-03.A3L	12/18/2018, 1/22-1/29/2019	LED Back Cover		Fage 15 01 29

In-Band Radiated Spurious Emission Measurements

§15.225(a)(b)(c); RSS-210 (B.6)

Test Overview and Limit

The EUT was tested from 13.110 - 14.010 MHz. All in-band radiated spurious emissions are measured with a spectrum analyzer connected to a loop antenna while the EUT is operating at appropriate frequencies. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All in-band emissions appearing in a restricted band as specified in Section 15.225 of the Title 47 CFR must not exceed the limits shown in Table 7-4.

Frequency [MHz]	Field Strength [μV/m]	Measured Distance [Meters]
13.553-13.567 MHz	15,848	30
13.410-13.553 MHz and 13.567-13.710 MHz	334	30
13.110-13.410 MHz and 13.710-14.010 MHz	106	30

Table 7-4. Radiated Limits

Test Procedures Used

ANSI C63.10-2013 - Section 6.4.7

Test Settings

- 1. RBW = 9kHz
- 2. VBW ≥ 3 x RBW
- 3. Detector = peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: A3L-EFKG975	PETEST INGINEERING LAFORATORY, IAC.	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 16 of 20
1M1812260231-03.A3L	12/18/2018, 1/22-1/29/2019	LED Back Cover	Page 16 of 29

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

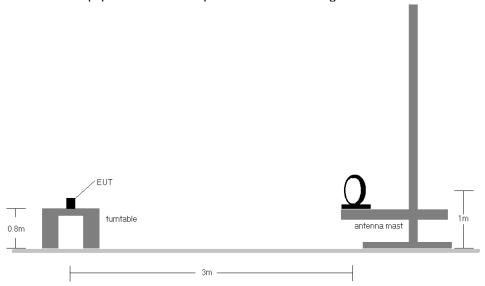


Figure 7-4. Radiated Test Setup

Test Notes:

- 1. All emissions lying in restricted bands specified in §15.225 and RSS-210 are below the limit shown in Table 7-4.
- 2. All measurements were performed using a loop antenna. The antenna was positioned in three orthogonal positions (X front, Y side, Z top) and the position with the highest emission level was recorded.
- The EUT was positioned in three orthogonal planes to determine the orientation resulting in the worst case emissions.
- 4. Measurements were performed at 3m and the data was extrapolated to the specified measurement distance of 30m using the square of an inverse linear distance extrapolation factor (40 dB/decade) as specified in §15.31(f)(2). Extrapolation Factor = 20 log₁₀(30/3)² = 40dB.
- 5. The spectrum was investigated from 9kHz up to 30MHz using the loop antenna. Only the emissions shown in the table below were found to be significant.
- 6. All measurements were recorded using a spectrum analyzer employing a quasi-peak detector.
- 7. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

Sample Calculation

- Field Strength Level [dBμV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- Margin [dB] = Field Strength Level [dBμV/m] Limit [dBμV/m]

FCC ID: A3L-EFKG975	INGINEERING LABORATORY, IAC.	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 17 of 29
1M1812260231-03.A3L	12/18/2018. 1/22-1/29/2019	LED Back Cover		Page 17 01 29

In-Band Radiated Spurious Emission Measurements §15.225(a)(b)(c); RSS-210 (B.6)

Frequency: 13.56MHz

Measurement Distance: 3 Meters

Frequency [MHz]	Ant. Pol. [X/Y/Z]	Antenna Height [cm]	Turntable Azimuth [degree]	Level [dBm]	AFCL [dB/m]	3m Field Strength [dBµV/m]	30m Field Strength [dBµV/m]	Limit [µV/m]	Limit [dBµV/m]	Margin [dB]
13.144	Х	110	350	-91.25	14.91	30.66	-9.34	106.00	40.51	-49.84
13.374	Х	110	350	-92.01	14.84	29.83	-10.17	106.00	40.51	-50.68
13.468	Х	110	350	-92.89	14.80	28.91	-11.09	334.00	50.47	-61.56
13.560	Х	110	350	-69.46	14.77	52.31	12.31	15848.00	84.00	-71.69
13.629	Х	110	350	-91.74	14.73	29.99	-10.01	334.00	50.47	-60.49
13.810	Х	110	350	-91.74	14.69	29.95	-10.05	106.00	40.51	-50.55
13.969	Х	110	350	-92.20	14.62	29.42	-10.58	106.00	40.51	-51.08

Table 7-5. In-Band Radiated Measurements

FCC ID: A3L-EFKG975	INGINEERING LAFORFORY, INC.	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 18 of 29
1M1812260231-03.A3L	12/18/2018. 1/22-1/29/2019	LED Back Cover		Fage 16 01 29

Radiated Spurious Emission Measurements, Out-of-Band 7.5 §15.209 §15.225(d); RSS-Gen (8.9)

Test Overview and Limit

The EUT was tested from 9kHz up to the 1GHz excluding the band 13.110 - 14.010 MHz. All measurements up to 960MHz were recorded with a spectrum analyzer employing a quasi-peak detector.

All out-of-band emissions appearing in a restricted band as specified in Section 15.225 of the Title 47 CFR must not exceed the limits shown in Table 7-6 per Section 15.209.

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-6. Radiated Limits - Out of band

Test Procedures Used

ANSI C63.10-2013 - Section 6.5.4

Test Settings

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 9kHz for emissions below 30MHz and 100kHz for emissions between 30MHz and 1GHz
- 3. VBW ≥ 3 x RBW
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- Trace was allowed to stabilize

FCC ID: A3L-EFKG975	INSINEERING LEFORTORY, INC.	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 19 of 29
1M1812260231-03.A3L 12/18/2018, 1/22-1/29/201		LED Back Cover		Fage 19 01 29

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

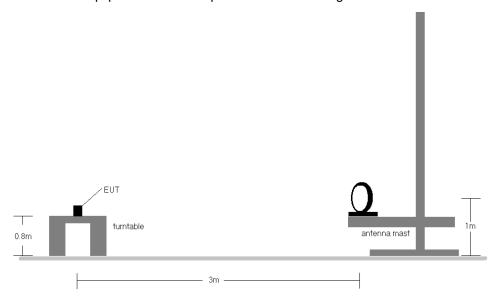


Figure 7-5. Radiated Test Setup < 30MHz

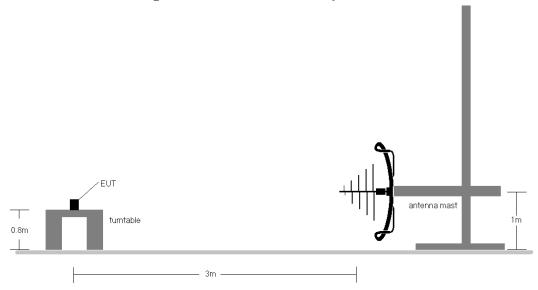


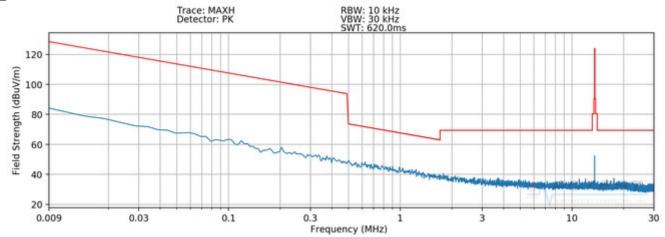
Figure 7-6. Radiated Test Setup > 30MHz

FCC ID: A3L-EFKG975	INSINEERING LAFORATORY, INC.	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 20 of 29
1M1812260231-03.A3L	12/18/2018, 1/22-1/29/2019	LED Back Cover		Fage 20 of 29

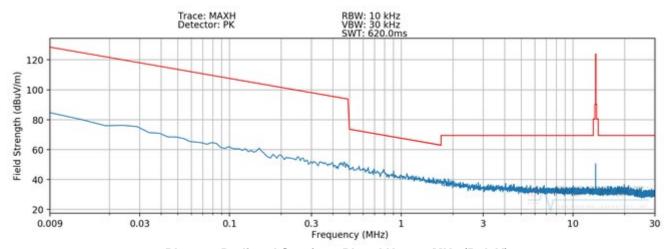
Test Notes:

- 1. All measurements were recorded using a spectrum analyzer employing a quasi-peak detector for emissions below 960MHz.
- 2. A loop antenna was used to investigate emissions below 30MHz.
- 3. Both Vertical and Horizontal polarities of the receive antenna were evaluated with the worst case emissions being reported. Below 30MHz the loop antenna was positioned in 3 orthogonal planes (X front, Y side, Z top) to determine the orientation resulting in the worst case emissions.
- 4. The EUT was positioned in three orthogonal planes to determine the orientation resulting in the worst case emissions.
- 5. The spectrum is measured from 9kHz to the 10th harmonic and the worst-case emissions are reported.
- 6. No spurious emissions levels were found to be greater than the level of the fundamental.
- 7. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

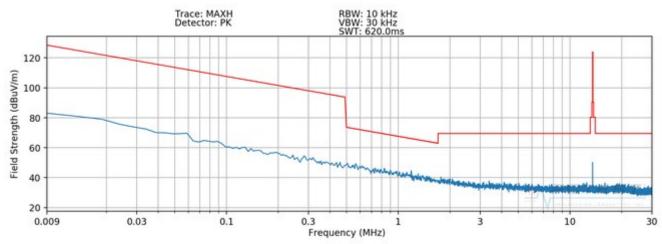
Sample Calculation


- Field Strength Level [dBμV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB] 0
- Margin [dB] = Field Strength Level $[dB\mu V/m]$ Limit $[dB\mu V/m]$

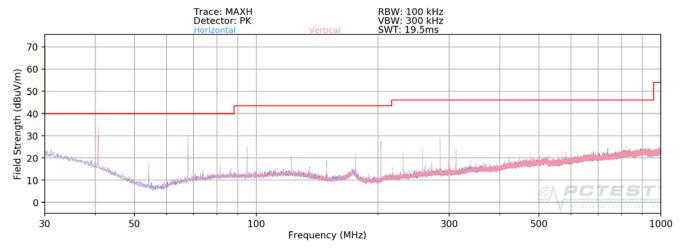
FCC ID: A3L-EFKG975	PETEST:	MEASUREMENT REPORT (CERTIFICATION)	G	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogg 24 of 20	
1M1812260231-03.A3L	12/18/2018, 1/22-1/29/2019	LED Back Cover		Page 21 of 29	



Radiated Spurious Emission Measurements, Out-of-Band


§15.209 §15.225(d); RSS-Gen (8.9)

Plot 7-1. Radiated Spurious Plot 9kHz – 30MHz (Pol. X)


Plot 7-2. Radiated Spurious Plot 9kHz – 30MHz (Pol. Y)

Plot 7-3. Radiated Spurious Plot 9kHz - 30MHz (Pol. Z)

FCC ID: A3L-EFKG975	PETEST:	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 22 of 29
1M1812260231-03.A3L	12/18/2018, 1/22-1/29/2019	LED Back Cover	Fage 22 01 29

Plot 7-4. Radiated Spurious Plot 30MHz - 1GHz (Pol. H/V)

FCC ID: A3L-EFKG975	INGINEERING LAFORATORY, INC.	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 23 of 29
1M1812260231-03.A3L	12/18/2018, 1/22-1/29/2019	LED Back Cover		Fage 23 01 29

Radiated Spurious Emission Measurements, Out-of-Band §15.209 §15.225(d); RSS-Gen (8.9)

Tx Frequency 13.56MHz

Measurement Distance: 3 Meters

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level [dBm]	AFCL [dB/m]	3m Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
27.12	Х	-	-	-91.18	33.62	49.44	69.54	-20.11
40.68	٧	106	199	-66.85	-12.67	27.48	40.00	-12.52
54.24	٧	358	40	-58.66	-21.02	27.32	40.00	-12.68
67.80	V	331	18	-59.90	-18.06	29.04	40.00	-10.96
81.36	٧	247	205	-63.21	-16.18	27.61	40.00	-12.39
94.92	V	281	224	-63.30	-15.95	27.75	43.52	-15.78
108.48	V	320	207	-63.94	-15.24	27.82	43.52	-15.70

Table 7-7. Radiated Measurements

FCC ID: A3L-EFKG975	INGINEERING LEGGETORY, INC.	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 24 of 29
1M1812260231-03.A3L	12/18/2018, 1/22-1/29/2019	LED Back Cover		Page 24 01 29

7.6 Line Conducted Measurement Data

§15.207; RSS-Gen (8.8)

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207 and RSS-Gen (8.8).

Frequency of emission	Conducted Limit (dB _μ V)			
(MHz)	Quasi-peak	Average		
0.15 – 0.5	66 to 56*	56 to 46*		
0.5 – 5	56	46		
5 – 30	60	50		

Table 7-8. Conducted Limits

Test Procedures Used

ANSI C63.10-2013, Section 6.2

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: A3L-EFKG975	INGINEERING LARGERTORY, INC.	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 25 of 29
1M1812260231-03.A3L	12/18/2018, 1/22-1/29/2019	LED Back Cover		Fage 25 01 29

^{*}Decreases with the logarithm of the frequency.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

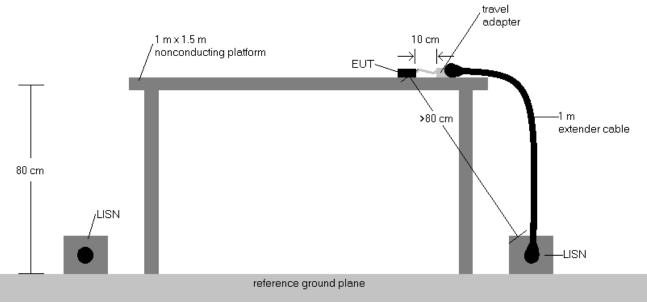
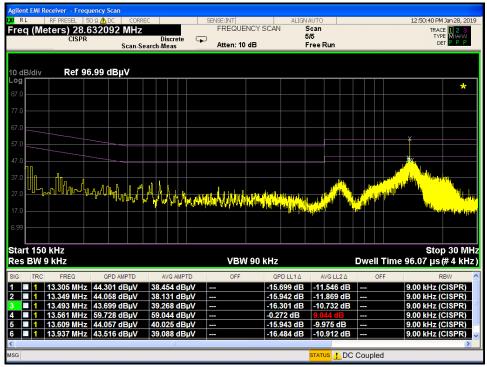
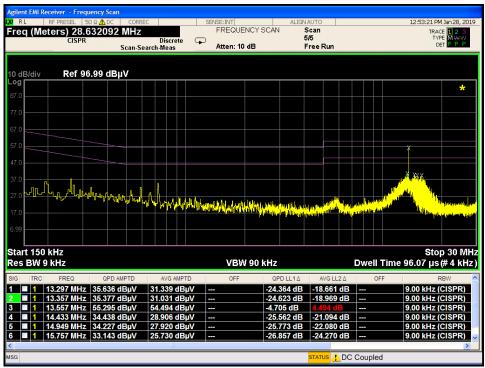


Figure 7-7. Test Instrument & Measurement Setup

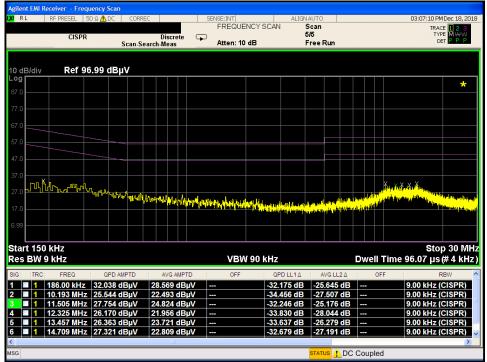

Test Notes

- 1. All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in 15.207 and RSS-Gen (8.8).
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Corr. (dB) 4.
- Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V) 5.
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.
- EUT was tested with the antenna terminated. 8.

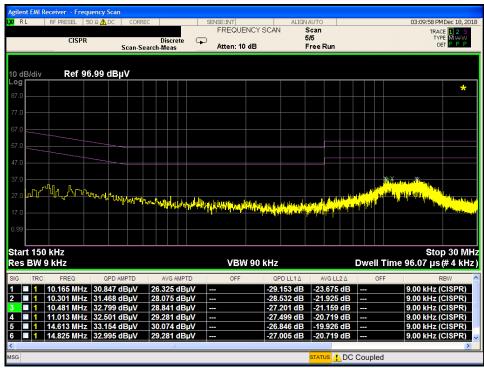

FCC ID: A3L-EFKG975	INSINEERING LAFORATORY, INC.	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 26 of 29
1M1812260231-03.A3L	12/18/2018, 1/22-1/29/2019	LED Back Cover		Fage 26 01 29

Line Conducted Measurement Data with Antenna

Plot 7-5. Line-Conducted Test Plot with Antenna (L1)



Plot 7-6. Line-Conducted Test Plot with Antenna (N)


FCC ID: A3L-EFKG975	INGINEERING LATERATORY, INC.	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 27 of 29
1M1812260231-03.A3L	12/18/2018, 1/22-1/29/2019	29/2019 LED Back Cover		Page 27 01 29

Line Conducted Measurement Data with Antenna Terminated in 50Ω

Plot 7-7. Line-Conducted Test Plot (L1) – with Antenna Terminated in 50Ω

Plot 7-8. Line-Conducted Test Plot (N) – with Antenna Terminated in 50Ω

FCC ID: A3L-EFKG975	INGINEERING LATORATORY, INC.	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 28 of 29
1M1812260231-03.A3L	12/18/2018, 1/22-1/29/2019	LED Back Cover		Fage 26 01 29

CONCLUSION 8.0

The data collected relate only to the item(s) tested and show that the Samsung LED Back Cover FCC ID: A3L-EFKG975 has been tested to show compliance with Part 15 Subpart C (15.225) of the FCC and RSS-210 of the Innovation, Science and Economic Development Canada Rules..

FCC ID: A3L-EFKG975	PETEST:	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 20 of 20	
1M1812260231-03.A3L	12/18/2018, 1/22-1/29/2019	LED Back Cover		Page 29 of 29	