
Amazon Aurora
User Guide for Aurora

Amazon Aurora: User Guide for Aurora
Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Aurora User Guide for Aurora

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not
Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or
discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may
or may not be affiliated with, connected to, or sponsored by Amazon.

Amazon Aurora User Guide for Aurora

Table of Contents
What is Aurora? 1

Aurora DB clusters ... 3
Aurora versions 5

Relational databases that are available on Aurora 5
Differences in version numbers between community databases and Aurora 5
Amazon Aurora major versions 6
Amazon Aurora minor versions 6
Amazon Aurora patch versions 7
Learning what's new in each Amazon Aurora version 7
Specifying the Amazon Aurora database version for your database cluster ... 7
Default Amazon Aurora versions 7
Automatic minor version upgrades 7
How long Amazon Aurora major versions remain available 8
How often Amazon Aurora minor versions are released 8
How long Amazon Aurora minor versions remain available 8
Long-term support for selected Amazon Aurora minor versions 9
Manually controlling if and when your database cluster is upgraded to new versions 9
Required Amazon Aurora upgrades 9
Testing your DB cluster with a new Aurora version before upgrading 10

Regions and Availability Zones 11
AWS Regions 11
Availability Zones 15
Local time zone for DB clusters ... 16

Supported Aurora features by Region and engine 19
Backtracking in Aurora 19
Aurora global databases 21
Aurora machine learning 23
Aurora parallel queries ... 26
Amazon RDS Proxy 27
Aurora Serverless v1 29
Data API for Aurora Serverless ... 31

Aurora connection management 32
Types of Aurora endpoints ... 33
Viewing endpoints ... 35
Using the cluster endpoint ... 35
Using the reader endpoint ... 35
Using custom endpoints ... 36
Creating a custom endpoint ... 38
Viewing custom endpoints ... 40
Editing a custom endpoint ... 45
Deleting a custom endpoint ... 47
End-to-end AWS CLI example for custom endpoints ... 48
Using the instance endpoints ... 52
Endpoints and high availability ... 52

DB instance classes 54
DB instance class types 54
Supported DB engines 54
Determining DB instance class support in AWS Regions 59
Hardware specifications 62

Aurora storage and reliability ... 64
Overview of Aurora storage 64
Cluster volume contents 65
How storage resizes 65
Data billing 65

iii

Amazon Aurora User Guide for Aurora

Reliability ... 66
Aurora security ... 67

Using SSL with Aurora DB clusters ... 68
High availability for Amazon Aurora 68

High availability for Aurora data 68
High availability for Aurora DB instances 68
High availability across AWS Regions with Aurora global databases 69
Fault tolerance 69

Replication with Aurora 70
Aurora Replicas 70
Aurora MySQL 71
Aurora PostgreSQL 72

DB instance billing for Aurora 72
On-Demand DB instances 74
Reserved DB instances 75

Setting up your environment 84
Sign up for AWS 84
Create an IAM user ... 84
Determine requirements 86
Provide access to the DB cluster ... 87

Getting started 89
Creating an Aurora MySQL DB cluster and connecting to it ... 89

Create an Aurora MySQL DB cluster ... 89
Connect to an instance in a DB cluster ... 94
Delete the sample DB cluster, DB subnet group, and VPC 96

Creating an Aurora PostgreSQL DB cluster and connecting to it ... 96
Create an Aurora PostgreSQL DB cluster ... 97
Connect to an instance in an Aurora PostgreSQL DB cluster ... 101
Delete the sample DB cluster, DB subnet group, and VPC 102

Tutorial: Create a web server and an Amazon Aurora DB cluster ... 103
Create a DB cluster ... 104
Create a web server ... 109

Tutorials and sample code 121
Tutorials in this guide 121
Tutorials in other AWS guides 121
Tutorials and sample code in GitHub 122

Configuring your Aurora DB cluster ... 124
Creating a DB cluster ... 125

Prerequisites ... 125
Creating a DB cluster ... 126
Available settings 137

Creating resources with AWS CloudFormation 146
Aurora and AWS CloudFormation templates 146
Learn more about AWS CloudFormation 146

Using Aurora Serverless v1 147
Advantages of Aurora Serverless v1 147
Use cases for Aurora Serverless v1 148
Limitations of Aurora Serverless v1 148
Configuration requirements for Aurora Serverless v1 149
Using TLS/SSL with Aurora Serverless v1 150
How Aurora Serverless v1 works 151
Creating an Aurora Serverless v1 DB cluster ... 161
Restoring an Aurora Serverless v1 DB cluster ... 166
Modifying an Aurora Serverless v1 DB cluster ... 170
Scaling Aurora Serverless v1 DB cluster capacity manually ... 172
Viewing Aurora Serverless v1 DB clusters ... 174
Deleting an Aurora Serverless v1 DB cluster ... 175

iv

Amazon Aurora User Guide for Aurora

Aurora Serverless v1 and Aurora database engine versions 177
Using the Data API ... 178
Logging Data API calls with AWS CloudTrail .. 202
Using the query editor ... 204

Using Aurora Serverless v2 (preview) 212
How Aurora Serverless v2 (preview) works 212
Limitations of Aurora Serverless v2 (preview) 215
Creating an Aurora Serverless v2 (preview) DB cluster ... 216
Creating a snapshot of an Aurora Serverless v2 (preview) DB cluster ... 219
Modifying an Aurora Serverless v2 (preview) DB cluster ... 220
Deleting an Aurora Serverless v2 (preview) DB cluster ... 222
Restoring an Aurora Serverless v2 (preview) DB cluster ... 223

Using Aurora global databases 225
Overview of Aurora global databases 225
Advantages of Amazon Aurora global databases 226
Limitations of Aurora global databases 226
Getting started with Aurora global databases 228
Managing an Aurora global database 249
Connecting to an Aurora global database 254
Using write forwarding in an Aurora global database 255
Using failover in an Aurora global database 266
Monitoring an Aurora global database 276
Using Aurora global databases with other AWS services 279
Upgrading an Amazon Aurora global database 280

Connecting to a DB cluster ... 281
Connecting to Aurora MySQL 281
Connecting to Aurora PostgreSQL 285
Troubleshooting connections 287

Using RDS Proxy 288
Supported engines and Region availability ... 288
Quotas and limitations 288
Planning where to use RDS Proxy 290
RDS Proxy concepts and terminology 290
Getting started with RDS Proxy 295
Managing an RDS Proxy 306
Working with RDS Proxy endpoints ... 315
Monitoring RDS Proxy with CloudWatch 324
Working with RDS Proxy events 329
RDS Proxy examples 330
Troubleshooting RDS Proxy 332
Using RDS Proxy with AWS CloudFormation 337

Working with parameter groups 339
DB cluster and DB instance parameters ... 341
Creating a DB parameter group 342
Creating a DB cluster parameter group 343
Associating a DB parameter group with a DB instance 345
Associating a DB cluster parameter group with a DB cluster ... 346
Modifying parameters in a DB parameter group 347
Modifying parameters in a DB cluster parameter group 349
Resetting parameters in a DB parameter group 351
Resetting parameters in a DB cluster parameter group 353
Copying a DB parameter group 354
Copying a DB cluster parameter group 356
Listing DB parameter groups 357
Listing DB cluster parameter groups 358
Viewing parameter values for a DB parameter group 359
Viewing parameter values for a DB cluster parameter group 360

v

Amazon Aurora User Guide for Aurora

Comparing parameter groups 362
Specifying DB parameters ... 362

Migrating data to a DB cluster ... 366
Aurora MySQL 366
Aurora PostgreSQL 366

Managing an Aurora DB cluster ... 367
Stopping and starting a cluster ... 368

Overview of stopping and starting a cluster ... 368
Limitations 368
Stopping a DB cluster ... 369
While a DB cluster is stopped 370
Starting a DB cluster ... 370

Modifying an Aurora DB cluster ... 372
Modifying the DB cluster by using the console, CLI, and API ... 372
Modify a DB instance in a DB cluster ... 373
Available settings 375
Non-applicable settings 390

Adding Aurora Replicas 392
Managing performance and scaling 396

Storage scaling 396
Instance scaling 400
Read scaling 400
Managing connections 400
Managing query execution plans 401

Cloning a volume for an Aurora DB cluster ... 402
Overview of Aurora cloning 402
Limitations of Aurora cloning 403
How Aurora cloning works 403
Creating an Aurora clone 406
Cross-account cloning 415

Integrating with AWS services 426
Aurora MySQL 426
Aurora PostgreSQL 426
Using Auto Scaling with Aurora replicas 427
Using machine learning with Aurora 442

Maintaining an Aurora DB cluster ... 443
Viewing pending maintenance 443
Applying updates 445
The maintenance window 446
Adjusting the maintenance window for a DB cluster ... 448
Automatic minor version upgrades for Aurora DB clusters ... 449
Choosing the frequency of Aurora MySQL maintenance updates 449

Rebooting an Aurora DB cluster or instance 451
Rebooting a DB instance within an Aurora cluster ... 451
Rebooting an Aurora cluster (Aurora PostgreSQL and Aurora MySQL before version 2.10) 452
Rebooting an Aurora MySQL cluster (version 2.10 and higher) ... 452
Checking uptime for Aurora clusters and instances 453
Examples of Aurora reboot operations 455

Deleting Aurora clusters and instances 467
Deleting an Aurora DB cluster ... 467
Deletion protection for Aurora clusters ... 471
Deleting a stopped Aurora cluster ... 472
Deleting Aurora MySQL clusters that are read replicas 472
The final snapshot when deleting a cluster ... 472
Deleting a DB instance from an Aurora DB cluster ... 472

Tagging RDS resources 474
Overview 474

vi

Amazon Aurora User Guide for Aurora

Using tags for access control with IAM 475
Using tags to produce detailed billing reports ... 475
Adding, listing, and removing tags 476
Using the AWS Tag Editor ... 478
Copying tags to DB cluster snapshots 478
Tutorial: Use tags to specify which Aurora DB clusters to stop 479

Working with ARNs 482
Constructing an ARN 482
Getting an existing ARN 485

Aurora updates 489
Identifying your Amazon Aurora version 489

Backing up and restoring an Aurora DB cluster ... 490
Overview of backing up and restoring 491

Backups 491
Backup window 491
Restoring data 493
Backtrack 493

Backup storage 494
Creating a DB cluster snapshot 495

Determining whether the snapshot is available 496
Restoring from a DB cluster snapshot 497

Parameter groups 497
Security groups 497
Aurora considerations 497
Restoring from a snapshot 498

Copying a snapshot 500
Limitations 500
Snapshot retention 500
Copying shared snapshots 501
Handling encryption 501
Incremental snapshot copying 501
Cross-Region copying 501
Parameter groups 502
Copying a DB cluster snapshot 502

Sharing a snapshot 510
Sharing public snapshots 510
Sharing encrypted snapshots 511
Sharing a snapshot 513

Exporting snapshot data to Amazon S3 518
Limitations 519
Overview of exporting snapshot data 519
Setting up access to an S3 bucket 520
Using a cross-account KMS key 522
Exporting a snapshot to an S3 bucket 523
Monitoring snapshot exports ... 526
Canceling a snapshot export ... 527
Failure messages 528
Troubleshooting PostgreSQL permissions errors ... 529
File naming convention 529
Data conversion 530

Point-in-time recovery 537
Deleting a snapshot 539

Deleting a DB cluster snapshot 539
Monitoring metrics in an Aurora DB cluster ... 541

Overview of monitoring 542
Monitoring plan 542
Performance baseline 542

vii

Amazon Aurora User Guide for Aurora

Performance guidelines 542
Monitoring tools ... 543

Viewing cluster status and recommendations 546
Viewing a DB cluster ... 547
Viewing DB cluster status 553
Viewing DB instance status in an Aurora cluster ... 555
Viewing Amazon Aurora recommendations 558

Viewing metrics in the Amazon RDS console 563
Monitoring Aurora with CloudWatch 587

Viewing CloudWatch metrics ... 589
Creating CloudWatch alarms 592

Monitoring DB load with Performance Insights ... 594
Overview of Performance Insights ... 594
Enabling and disabling Performance Insights ... 598
Enabling the Performance Schema for Aurora MySQL 601
Performance Insights policies ... 603
Analyzing metrics with the Performance Insights dashboard 606
Retrieving metrics with the Performance Insights API ... 628
Logging Performance Insights calls using AWS CloudTrail .. 642

Analyzing performance with DevOps Guru for RDS 644
Benefits of DevOps Guru for RDS 644
How DevOps Guru for RDS works 645
Setting up DevOps Guru for RDS 645

Monitoring the OS with Enhanced Monitoring 647
Overview of Enhanced Monitoring 647
Setting up and enabling Enhanced Monitoring 648
Viewing OS metrics in the RDS console 651
Viewing OS metrics using CloudWatch Logs 653

Aurora metrics reference 654
CloudWatch metrics for Aurora 654
CloudWatch dimensions for Aurora 670
Availability of Aurora metrics in the Amazon RDS console 670
CloudWatch metrics for Performance Insights ... 673
Counter metrics for Performance Insights ... 674
OS metrics in Enhanced Monitoring 681

Monitoring events, logs, and database activity streams 687
Viewing logs, events, and streams in the Amazon RDS console 687
Monitoring Aurora events 692

Overview of events for Aurora 692
Viewing Amazon RDS events 695
Using Amazon RDS event notification 696
Creating a rule that triggers on an Amazon Aurora event 713

Monitoring Aurora logs 716
Viewing and listing database log files 716
Downloading a database log file 717
Watching a database log file 718
Publishing to CloudWatch Logs 718
Reading log file contents using REST 719
MySQL database log files 721
PostgreSQL database log files 727

Monitoring Aurora API calls in CloudTrail .. 731
CloudTrail integration with Amazon Aurora 731
Amazon Aurora log file entries ... 731

Monitoring Aurora with Database Activity Streams 735
Overview 735
Aurora MySQL network prerequisites ... 738
Starting a database activity stream 739

viii

Amazon Aurora User Guide for Aurora

Getting activity stream status 741
Stopping a database activity stream 741
Monitoring activity streams 742
Managing access to activity streams 764

Working with Aurora MySQL 767
Overview of Aurora MySQL 767

Amazon Aurora MySQL performance enhancements 767
Aurora MySQL and spatial data 768
Aurora MySQL version 3 compatible with MySQL 8.0 769
Aurora MySQL version 2 compatible with MySQL 5.7 794

Security with Aurora MySQL 795
Master user privileges with Aurora MySQL 796
Using SSL/TLS with Aurora MySQL DB clusters ... 796

Updating applications for new SSL/TLS certificates 799
Determining whether any applications are connecting to your Aurora MySQL DB cluster using
SSL 799
Determining whether a client requires certificate verification to connect ... 800
Updating your application trust store 801
Example Java code for establishing SSL connections 802

Migrating data to Aurora MySQL 802
Migrating from an external MySQL database to Aurora MySQL 805
Migrating from a MySQL DB instance to Aurora MySQL 818

Managing Aurora MySQL 833
Managing performance and scaling for Amazon Aurora MySQL 833
Backtracking a DB cluster ... 837
Testing Amazon Aurora using fault injection queries ... 850
Altering tables in Amazon Aurora using fast DDL 853
Displaying volume status for an Aurora DB cluster ... 858

Tuning Aurora MySQL with wait events and thread states 858
Essential concepts for Aurora MySQL tuning 859
Tuning Aurora MySQL with wait events 861
Tuning Aurora MySQL with thread states 897

Parallel query for Aurora MySQL 902
Overview of parallel query 904
Planning for a parallel query cluster ... 906
Creating a parallel query cluster ... 907
Turning parallel query on and off 911
Upgrading a parallel query cluster ... 914
Performance tuning 915
Creating schema objects ... 916
Verifying parallel query usage 916
Monitoring 919
Parallel query and SQL constructs ... 922

Advanced Auditing with Aurora MySQL 935
Enabling Advanced Auditing 936
Viewing audit logs 938
Audit log details ... 938

Single-master replication with Aurora MySQL 939
Aurora replicas 939
Options 940
Performance 941
Zero-downtime restart (ZDR) 941
Monitoring 943
Replicating Amazon Aurora MySQL DB clusters across AWS Regions 943
Replication between Aurora and MySQL or between Aurora and another Aurora DB cluster
(binary log replication) ... 953
Using GTID-based replication 975

ix

Amazon Aurora User Guide for Aurora

Working with multi-master clusters ... 979
Overview of multi-master clusters ... 979
Creating a multi-master cluster ... 984
Managing multi-master clusters ... 990
Application considerations 993
Performance considerations 1002
Approaches to multi-master clusters ... 1004

Integrating Aurora MySQL with AWS services 1005
Authorizing Aurora MySQL to access AWS services 1006
Loading data from text files in Amazon S3 1018
Saving data into text files in Amazon S3 1025
Invoking a Lambda function from Aurora MySQL 1031
Publishing Aurora MySQL logs to CloudWatch Logs 1038
Using machine learning with Aurora MySQL 1041

Aurora MySQL lab mode 1053
Aurora lab mode features 1054

Best practices with Amazon Aurora MySQL 1054
Determining which DB instance you are connected to 1055
Best practices for using AWS features with Aurora MySQL 1055
Best practices for Aurora MySQL performance and scaling 1057
Best practices for Aurora MySQL high availability ... 1061
Best practices for limiting certain MySQL features with Aurora MySQL 1062

Aurora MySQL reference 1063
Configuration parameters ... 1063
MySQL parameters that don't apply to Aurora MySQL 1082
MySQL status variables that don't apply to Aurora MySQL 1083
Aurora MySQL wait events 1084
Aurora MySQL thread states 1088
Aurora MySQL isolation levels ... 1091
Aurora MySQL hints ... 1095
Stored procedures 1097

Aurora MySQL updates 1103
Version Numbers and Special Versions 1104
Preparing for Aurora MySQL version 1 end of life ... 1107
Upgrading Amazon Aurora MySQL DB clusters ... 1109
Database engine updates for Amazon Aurora MySQL version 3 1129
Database engine updates for Amazon Aurora MySQL version 2 1129
Database engine updates for Amazon Aurora MySQL version 1 1217
Database engine updates for Aurora MySQL Serverless clusters ... 1268
MySQL bugs fixed by Aurora MySQL updates 1271
Security vulnerabilities fixed in Amazon Aurora MySQL 1292

Working with Aurora PostgreSQL 1296
Security with Aurora PostgreSQL 1297

Restricting password management 1298
Securing Aurora PostgreSQL data with SSL/TLS 1298

Updating applications for new SSL/TLS certificates 1301
Determining whether applications are connecting to Aurora PostgreSQL DB clusters using SSL 1301
Determining whether a client requires certificate verification in order to connect 1302
Updating your application trust store 1302
Using SSL/TLS connections for different types of applications 1303

Migrating data to Aurora PostgreSQL 1304
Migrating an RDS for PostgreSQL DB instance using a snapshot 1305
Migrating an RDS for PostgreSQL DB instance using an Aurora read replica 1309

Babelfish for Aurora PostgreSQL 1318
Babelfish architecture 1318
Using Babelfish to migrate to PostgreSQL 1321
Creating an Aurora PostgreSQL cluster with Babelfish 1323

x

Amazon Aurora User Guide for Aurora

Connecting to a DB cluster with Babelfish turned on 1330
Querying a database for object information 1338
Querying Babelfish to find Babelfish details ... 1339
Differences between Aurora PostgreSQL with Babelfish and SQL Server ... 1342
Using Aurora PostgreSQL extensions with Babelfish 1355
Managing Babelfish error handling 1360
Configuring a database for Babelfish 1364
Babelfish collation support ... 1368
Troubleshooting for Babelfish 1374
Turning off Babelfish 1376

Managing Aurora PostgreSQL 1377
Scaling Aurora PostgreSQL DB instances 1377
Maximum connections 1377
Temporary storage limits ... 1379
Testing Amazon Aurora PostgreSQL by using fault injection queries ... 1381
Displaying volume status for an Aurora DB cluster ... 1384
Specifying the RAM disk for the stats_temp_directory 1385
Scheduling maintenance with the pg_cron extension 1387

Tuning with wait events for Aurora PostgreSQL 1393
Essential concepts for Aurora PostgreSQL tuning 1394
Aurora PostgreSQL wait events 1397
Client:ClientRead 1398
Client:ClientWrite 1401
CPU 1402
IO:BufFileRead and IO:BufFileWrite 1406
IO:DataFileRead 1412
IO:XactSync 1418
ipc:damrecordtxack 1420
Lock:advisory 1420
Lock:extend 1422
Lock:Relation 1424
Lock:transactionid 1427
Lock:tuple 1430
lwlock:buffer_content (BufferContent) ... 1432
LWLock:buffer_mapping 1434
LWLock:BufferIO 1435
LWLock:lock_manager 1437
Timeout:PgSleep 1440

Best practices with Aurora PostgreSQL 1440
Fast failover ... 1440
Troubleshooting storage issues 1448

Replication with Aurora PostgreSQL 1448
Aurora Replicas 1448
Monitoring replication 1449
Using logical replication 1449

Integrating Aurora PostgreSQL with AWS services 1454
Importing S3 data into Aurora PostgreSQL 1455

Overview of importing S3 data 1455
Setting up access to an Amazon S3 bucket 1456
Using the aws_s3.table_import_from_s3 function to import Amazon S3 data 1461
Function reference 1463

Exporting PostgreSQL data to Amazon S3 1467
Overview of exporting to S3 1467
Verify that your Aurora PostgreSQL version supports exports ... 1468
Specifying the Amazon S3 file path to export to 1468
Setting up access to an Amazon S3 bucket 1469
Exporting query data using the aws_s3.query_export_to_s3 function 1472

xi

Amazon Aurora User Guide for Aurora

Troubleshooting access to Amazon S3 1474
Function reference 1474

Managing query execution plans for Aurora PostgreSQL 1477
Enabling query plan management 1478
Upgrading query plan management 1479
Basics ... 1479
Best practices for query plan management 1482
Examining plans in the dba_plans view 1483
Capturing execution plans 1486
Using managed plans 1487
Maintaining execution plans 1490
Parameter reference for query plan management 1494
Function reference for query plan management 1497

Publishing Aurora PostgreSQL logs to CloudWatch Logs 1504
Publishing logs to Amazon CloudWatch 1504
Monitoring log events in Amazon CloudWatch 1507
Analyze Aurora PostgreSQL logs using CloudWatch Logs Insights ... 1507

Using machine learning with Aurora PostgreSQL 1511
Prequisites ... 1512
Enabling Aurora machine learning 1512
Using Amazon Comprehend for natural language processing 1514
Exporting data to Amazon S3 for SageMaker model training 1516
Using SageMaker to run your own ML models ... 1516
Best practices with Aurora machine learning 1519
Monitoring Aurora machine learning 1523
Function reference 1524
Manually setting up IAM roles using the AWS CLI ... 1526

Fast recovery after failover ... 1530
Configuring cluster cache management 1530
Monitoring the buffer cache 1533

Invoking a Lambda function from Aurora PostgreSQL 1534
Step 1: Configure outbound connections 1535
Step 2: Configure IAM for your cluster and Lambda 1535
Step 3: Install the extension 1536
Step 4: Use Lambda helper functions 1537
Step 5: Invoke a Lambda function 1538
Lambda function error messages 1541
Function reference 1541

Using oracle_fdw to access foreign data 1544
Turning on the oracle_fdw extension 1544
Example using a foreign server linked to an RDS for Oracle database 1544
Working with encryption in transit ... 1545
pg_user_mapping and pg_user_mappings permissions 1545

Managing partitions with the pg_partman extension 1547
Overview of the PostgreSQL pg_partman extension 1548
Enabling the pg_partman extension 1548
Configuring partitions using the create_parent function 1549
Configuring partition maintenance using the run_maintenance_proc function 1550

Using Kerberos authentication 1551
Availability ... 1551
Overview of Kerberos authentication 1552
Setting up 1553
Managing a DB cluster in a Domain 1562
Connecting with Kerberos authentication 1563

Aurora PostgreSQL reference 1564
Aurora PostgreSQL parameters ... 1564
Aurora PostgreSQL wait events 1587

xii

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL functions reference 1604
Aurora PostgreSQL updates 1614

Identifying versions of Amazon Aurora PostgreSQL 1614
Aurora PostgreSQL releases 1615
Extension versions for Aurora PostgreSQL 1682
Upgrading the PostgreSQL DB engine 1695
Using a long-term support (LTS) release 1704

Best practices with Aurora 1705
Basic operational guidelines for Amazon Aurora 1705
DB instance RAM recommendations 1705
Monitoring Amazon Aurora 1706
Working with DB parameter groups and DB cluster parameter groups 1706
Amazon Aurora best practices presentation video 1706

Performing an Aurora proof of concept 1707
Overview of an Aurora proof of concept 1707
1. Identify your objectives 1707
2. Understand your workload characteristics ... 1708
3. Practice with the console or CLI ... 1709

Practice with the console 1709
Practice with the AWS CLI ... 1709

4. Create your Aurora cluster ... 1710
5. Set up your schema 1711
6. Import your data 1711
7. Port your SQL code 1712
8. Specify configuration settings 1712
9. Connect to Aurora 1713
10. Run your workload 1714
11. Measure performance 1714
12. Exercise Aurora high availability ... 1716
13. What to do next ... 1717

Security ... 1719
Database authentication 1720

Password authentication 1721
IAM database authentication 1721
Kerberos authentication 1721

Data protection 1722
Data encryption 1722
Internetwork traffic privacy 1736

Identity and access management 1737
Audience 1737
Authenticating with identities ... 1737
Managing access using policies ... 1739
How Amazon Aurora works with IAM 1740
Identity-based policy examples 1743
Cross-service confused deputy prevention 1754
IAM database authentication 1756
Troubleshooting 1782

Logging and monitoring 1784
Compliance validation 1786
Resilience 1787

Backup and restore 1787
Replication 1787
Failover ... 1787

Infrastructure security ... 1789
Security groups 1789
Public accessibility ... 1789

VPC endpoints (AWS PrivateLink) ... 1790

xiii

Amazon Aurora User Guide for Aurora

Considerations 1790
Availability ... 1790
Creating an interface VPC endpoint ... 1791
Creating a VPC endpoint policy 1791

Security best practices 1792
Controlling access with security groups 1793

VPC security groups 1793
Security group scenario 1793
Creating a VPC security group 1794
Associating with a DB instance 1794
Associating with a DB cluster ... 1794

Master user account privileges 1795
Service-linked roles ... 1796

Service-linked role permissions for Amazon Aurora 1796
Using Amazon Aurora with Amazon VPC 1800

Working with a DB instance in a VPC 1800
Creating a VPC for Aurora 1806
Scenarios for accessing a DB instance in a VPC 1813
Tutorial: Create an Amazon VPC for use with a DB instance 1818

Quotas and constraints ... 1824
Quotas in Amazon Aurora 1824
Naming constraints in Amazon Aurora 1825
Amazon Aurora size limits ... 1826

Troubleshooting 1827
Can't connect to DB instance 1827

Testing the DB instance connection 1828
Troubleshooting connection authentication 1829

Security issues 1829
Error message "failed to retrieve account attributes, certain console functions may be
impaired." ... 1829

Resetting the DB instance owner password 1829
DB instance outage or reboot 1829
Parameter changes not taking effect 1830
Aurora MySQL out of memory issues 1830
Aurora MySQL replication issues 1831

Diagnosing and resolving lag between read replicas 1831
Diagnosing and resolving a MySQL read replication failure 1832
Replication stopped error ... 1833

Amazon RDS API reference 1835
Using the Query API ... 1835

Query parameters ... 1835
Query request authentication 1835

Troubleshooting applications 1836
Retrieving errors ... 1836
Troubleshooting tips ... 1836

Document history 1837
AWS glossary 1874

xiv

Amazon Aurora User Guide for Aurora

What is Amazon Aurora?
Amazon Aurora (Aurora) is a fully managed relational database engine that's compatible with MySQL
and PostgreSQL. You already know how MySQL and PostgreSQL combine the speed and reliability of
high-end commercial databases with the simplicity and cost-effectiveness of open-source databases. The
code, tools, and applications you use today with your existing MySQL and PostgreSQL databases can be
used with Aurora. With some workloads, Aurora can deliver up to five times the throughput of MySQL
and up to three times the throughput of PostgreSQL without requiring changes to most of your existing
applications.

Aurora includes a high-performance storage subsystem. Its MySQL- and PostgreSQL-compatible
database engines are customized to take advantage of that fast distributed storage. The underlying
storage grows automatically as needed. An Aurora cluster volume can grow to a maximum size of 128
tebibytes (TiB). Aurora also automates and standardizes database clustering and replication, which are
typically among the most challenging aspects of database configuration and administration.

Aurora is part of the managed database service Amazon Relational Database Service (Amazon RDS).
Amazon RDS is a web service that makes it easier to set up, operate, and scale a relational database in
the cloud. If you are not already familiar with Amazon RDS, see the Amazon Relational Database Service
User Guide.

The following points illustrate how Aurora relates to the standard MySQL and PostgreSQL engines
available in Amazon RDS:

• You choose Aurora as the DB engine option when setting up new database servers through Amazon
RDS.

• Aurora takes advantage of the familiar Amazon Relational Database Service (Amazon RDS) features for
management and administration. Aurora uses the Amazon RDS AWS Management Console interface,
AWS CLI commands, and API operations to handle routine database tasks such as provisioning,
patching, backup, recovery, failure detection, and repair.

• Aurora management operations typically involve entire clusters of database servers that are
synchronized through replication, instead of individual database instances. The automatic clustering,
replication, and storage allocation make it simple and cost-effective to set up, operate, and scale your
largest MySQL and PostgreSQL deployments.

• You can bring data from Amazon RDS for MySQL and Amazon RDS for PostgreSQL into Aurora by
creating and restoring snapshots, or by setting up one-way replication. You can use push-button
migration tools to convert your existing Amazon RDS for MySQL and Amazon RDS for PostgreSQL
applications to Aurora.

Before using Amazon Aurora, you should complete the steps in Setting up your environment for
Amazon Aurora (p. 84), and then review the concepts and features of Aurora in Amazon Aurora DB
clusters (p. 3).

Topics
• Amazon Aurora DB clusters (p. 3)
• Amazon Aurora versions (p. 5)
• Regions and Availability Zones (p. 11)
• Supported features in Amazon Aurora by AWS Region and Aurora DB engine (p. 19)
• Amazon Aurora connection management (p. 32)
• Aurora DB instance classes (p. 54)
• Amazon Aurora storage and reliability (p. 64)

1

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html

Amazon Aurora User Guide for Aurora

• Amazon Aurora security (p. 67)
• High availability for Amazon Aurora (p. 68)
• Replication with Amazon Aurora (p. 70)
• DB instance billing for Aurora (p. 72)

2

Amazon Aurora User Guide for Aurora
Aurora DB clusters

Amazon Aurora DB clusters
An Amazon Aurora DB cluster consists of one or more DB instances and a cluster volume that manages
the data for those DB instances. An Aurora cluster volume is a virtual database storage volume that spans
multiple Availability Zones, with each Availability Zone having a copy of the DB cluster data. Two types
of DB instances make up an Aurora DB cluster:

• Primary DB instance – Supports read and write operations, and performs all of the data modifications
to the cluster volume. Each Aurora DB cluster has one primary DB instance.

• Aurora Replica – Connects to the same storage volume as the primary DB instance and supports
only read operations. Each Aurora DB cluster can have up to 15 Aurora Replicas in addition to the
primary DB instance. Maintain high availability by locating Aurora Replicas in separate Availability
Zones. Aurora automatically fails over to an Aurora Replica in case the primary DB instance becomes
unavailable. You can specify the failover priority for Aurora Replicas. Aurora Replicas can also offload
read workloads from the primary DB instance.

The following diagram illustrates the relationship between the cluster volume, the primary DB instance,
and Aurora Replicas in an Aurora DB cluster.

Note
The preceding information applies to all the Aurora clusters that use single-master replication.
These include provisioned clusters, parallel query clusters, global database clusters, serverless
clusters, and all MySQL 8.0-compatible, 5.7-compatible, and PostgreSQL-compatible clusters.
Aurora clusters that use multi-master replication have a different arrangement of read/write
and read-only DB instances. All DB instances in a multi-master cluster can perform write
operations. There isn't a single DB instance that performs all the write operations, and there
aren't any read-only DB instances. Therefore, the terms primary instance and Aurora Replica
don't apply to multi-master clusters. When we discuss clusters that might use multi-master
replication, we refer to writer DB instances and reader DB instances.

3

Amazon Aurora User Guide for Aurora
Aurora DB clusters

The Aurora cluster illustrates the separation of compute capacity and storage. For example, an Aurora
configuration with only a single DB instance is still a cluster, because the underlying storage volume
involves multiple storage nodes distributed across multiple Availability Zones (AZs).

4

Amazon Aurora User Guide for Aurora
Aurora versions

Amazon Aurora versions
Amazon Aurora reuses code and maintains compatibility with the underlying MySQL and PostgreSQL DB
engines. However, Aurora has its own version numbers, release cycle, time line for version deprecation
and end of life, and so on. The following section explains the common points and differences. This
information can help you to decide such things as which version to choose and how to verify which
features and fixes are available in each version. It can also help you to decide how often to upgrade and
how to plan your upgrade process.

Topics

• Relational databases that are available on Aurora (p. 5)

• Differences in version numbers between community databases and Aurora (p. 5)

• Amazon Aurora major versions (p. 6)

• Amazon Aurora minor versions (p. 6)

• Amazon Aurora patch versions (p. 7)

• Learning what's new in each Amazon Aurora version (p. 7)

• Specifying the Amazon Aurora database version for your database cluster (p. 7)

• Default Amazon Aurora versions (p. 7)

• Automatic minor version upgrades (p. 7)

• How long Amazon Aurora major versions remain available (p. 8)

• How often Amazon Aurora minor versions are released (p. 8)

• How long Amazon Aurora minor versions remain available (p. 8)

• Long-term support for selected Amazon Aurora minor versions (p. 9)

• Manually controlling if and when your database cluster is upgraded to new versions (p. 9)

• Required Amazon Aurora upgrades (p. 9)

• Testing your DB cluster with a new Aurora version before upgrading (p. 10)

Relational databases that are available on Aurora
The following relational databases are available on Aurora:

• Amazon Aurora MySQL-Compatible Edition. For usage information, see Working with Amazon Aurora
MySQL (p. 767). For a detailed list of available versions, see Database engine updates for Amazon
Aurora MySQL (p. 1103).

• Amazon Aurora PostgreSQL-Compatible Edition. For usage information, see Working with Amazon
Aurora PostgreSQL (p. 1296). For a detailed list of available versions, see Amazon Aurora PostgreSQL
updates (p. 1614).

Differences in version numbers between community
databases and Aurora
Each Amazon Aurora version is compatible with a specific community database version of either MySQL
or PostgreSQL. You can find the community version of your database using the version function and
the Aurora version using the aurora_version function.

Examples for Aurora MySQL and Aurora PostgreSQL are shown following.

5

Amazon Aurora User Guide for Aurora
Amazon Aurora major versions

mysql> select version();
+------------------+
| version() |
+------------------+
| 5.7.12 |
+------------------+

mysql> select aurora_version(), @@aurora_version;
+------------------+------------------+
| aurora_version() | @@aurora_version |
+------------------+------------------+
| 2.08.1 | 2.08.1 |
+------------------+------------------+

postgres=> select version();

PostgreSQL 11.7 on x86_64-pc-linux-gnu, compiled by gcc (GCC) 4.9.3, 64-bit
(1 row)

postgres=> select aurora_version();
aurora_version

3.2.2

For more information, see Checking Aurora MySQL versions using SQL (p. 1105) and Identifying versions
of Amazon Aurora PostgreSQL (p. 1614).

Amazon Aurora major versions
Aurora versions use the major.minor.patch scheme. An Aurora major version refers to the MySQL or
PostgreSQL community major version that Aurora is compatible with. The following example shows the
mapping between community MySQL and PostgreSQL versions and the corresponding Aurora versions.

Community major version Aurora major version

MySQL 5.6 Aurora MySQL 1

MySQL 5.7 Aurora MySQL 2

MySQL 8.0 Aurora MySQL 3

PostgreSQL 9.6 Aurora PostgreSQL 1

PostgreSQL 10 Aurora PostgreSQL 2

PostgreSQL 11 Aurora PostgreSQL 3

PostgreSQL 12 Aurora PostgreSQL 4

PostgreSQL 13 Not applicable. Aurora versions are no longer
added to Aurora PostgreSQL version names.

Amazon Aurora minor versions
Aurora versions use the major.minor.patch scheme. An Aurora minor version provides incremental
community and Aurora-specific improvements to the service, for example new features and bug fixes.

6

Amazon Aurora User Guide for Aurora
Amazon Aurora patch versions

Aurora minor versions are always mapped to a specific community version. However, some community
versions might not have an Aurora equivalent.

Amazon Aurora patch versions
Aurora versions use the major.minor.patch scheme. An Aurora patch version includes important
bug fixes added to a minor version after its initial release (for example, Aurora MySQL 2.04.0, 2.04.1, ...,
2.04.9). While each new minor version provides new Aurora features, new patch versions within a specific
minor version are primarily used to resolve important issues.

For more information on patching, see Maintaining an Amazon Aurora DB cluster (p. 443).

Learning what's new in each Amazon Aurora version
Each new Aurora version comes with release notes that list the new features, fixes, other enhancements,
and so on that apply to each version.

For Aurora MySQL release notes, see Database engine updates for Amazon Aurora MySQL version
2 (p. 1129) and Database engine updates for Amazon Aurora MySQL version 1 (p. 1217). For Aurora
PostgreSQL release notes, see Amazon Aurora PostgreSQL releases and engine versions (p. 1615).

Specifying the Amazon Aurora database version for
your database cluster
You can specify any currently available version (major and minor) when creating a new DB cluster
using the Create database operation in the AWS Management Console, the AWS CLI, or the
CreateDBCluster API operation. Not every Aurora database version is available in every AWS Region.

To learn how to create Aurora clusters, see Creating an Amazon Aurora DB cluster (p. 125). To
learn how to change the version of an existing Aurora cluster, see Modifying an Amazon Aurora DB
cluster (p. 372).

Default Amazon Aurora versions
When a new Aurora minor version contains significant improvements compared to a previous one, it's
marked as the default version for new DB clusters. Typically, we release two default versions for each
major version per year.

We recommend that you keep your DB cluster upgraded to the most current default minor version,
because that version contains the latest security and functionality fixes.

Automatic minor version upgrades
You can stay up to date with Aurora minor versions by turning on Auto minor version upgrade for every
DB instance in the Aurora cluster. Aurora only performs the automatic upgrade if all DB instances in your
cluster have this setting turned on. Auto minor version upgrades are performed to the default minor
version. We typically schedule automatic upgrades twice a year for DB clusters that have the Auto minor
version upgrade setting set to Yes. These upgrades are started during the maintenance window that
you specify for your cluster.

For more information, see Enabling automatic upgrades between minor Aurora MySQL
versions (p. 1110) and Automatic minor version upgrades for PostgreSQL (p. 1701).

7

Amazon Aurora User Guide for Aurora
How long Amazon Aurora major versions remain available

How long Amazon Aurora major versions remain
available
Amazon Aurora major versions are made available at least until community end of life for the
corresponding community version. You can use the following dates to plan your testing and upgrade
cycles. These dates represent the minimum support period for each Aurora version. If Amazon extends
support for an Aurora version for longer than originally planned, we plan to update this table to reflect
the later date.

Database community version Aurora version Aurora version end of life no
earlier than

MySQL 5.6 1 February 28, 2023, 00:00:00
UTC

MySQL 5.7 2 February 29, 2024

MySQL 8.0 3

PostgreSQL 9.6 1 January 31, 2022

PostgreSQL 10 2 January 31, 2023

PostgreSQL 11 3 January 31, 2024

PostgreSQL 12 4 January 31, 2025

PostgreSQL 13 Not applicable January 31, 2026

Before each Aurora major version end of life, we provide a reminder at least 12 months in advance. We
do so to communicate the detailed upgrade process. Details include the timing of certain milestones, the
impact on your DB clusters, and the actions that we recommend that you take. We always recommend
that you thoroughly test your applications against new database versions before performing a major
version upgrade.

After this 12-month period, an automatic upgrade to the subsequent major version might be applied
to any database cluster still running the older version. If so, the upgrade is started during scheduled
maintenance windows.

How often Amazon Aurora minor versions are
released
In general, Amazon Aurora minor versions are released quarterly. The release schedule might vary to pick
up additional features or fixes.

How long Amazon Aurora minor versions remain
available
We intend to make each Amazon Aurora minor version of a particular major version available for at
least 12 months. At the end of this period, Aurora might apply an auto minor version upgrade to the
subsequent default minor version. Such an upgrade is started during the scheduled maintenance window
for any cluster that is still running the older minor version.

8

Amazon Aurora User Guide for Aurora
Long-term support for selected
Amazon Aurora minor versions

We might replace a minor version of a particular major version sooner than the usual 12-month period if
there are critical matters such as security issues, or if the major version has reached end of life.

Before beginning automatic upgrades of minor versions that are approaching end of life, we generally
provide a reminder three months in advance. We do so to communicate the detailed upgrade process.
Details include the timing of certain milestones, the impact on your DB clusters, and the actions that we
recommend that you take.

Long-term support for selected Amazon Aurora
minor versions
For each Aurora major version, certain minor versions are designated as long-term-support (LTS) versions
and made available for at least three years. That is, at least one minor version per major version is made
available for longer than the typical 12 months. We generally provide a reminder six months before the
end of this period. We do so to communicate the detailed upgrade process. Details include the timing of
certain milestones, the impact on your DB clusters, and the actions that we recommend that you take.

LTS minor versions include only bug fixes (through patch versions). An LTS version doesn't include
new features released after its introduction. Once a year, DB clusters running on an LTS minor version
are patched to the latest patch version of the LTS release. We do this patching to help ensure that
you benefit from cumulative security and stability fixes. We might patch an LTS minor version more
frequently if there are critical fixes, such as for security, that need to be applied.

Note
If you want to remain on an LTS minor version for the duration of its lifecycle, make sure to
turn off Auto minor version upgrade for your DB instances. To avoid automatically upgrading
your DB cluster from the LTS minor version, set Auto minor version upgrade to No on all DB
instances in your Aurora cluster.

For the version numbers of all Aurora LTS versions, see Aurora MySQL long-term support (LTS)
releases (p. 1106) and Aurora PostgreSQL long-term support (LTS) releases (p. 1704).

Manually controlling if and when your database
cluster is upgraded to new versions
Auto minor version upgrades are performed to the default minor version. We typically schedule
automatic upgrades twice a year for DB clusters that have the Auto minor version upgrade setting set
to Yes. These upgrades are started during customer-specified maintenance windows. If you want to turn
off automatic minor version upgrades, set Auto minor version upgrade to No on any DB instance within
an Aurora cluster. Aurora performs an automatic minor version upgrade only if all DB instances in your
cluster have the setting turned on.

Because major version upgrades involve some compatibility risk, they don't occur automatically. You
must initiate these, except in the case of a major version upgrade due to end of life, as explained earlier.
We always recommend that you thoroughly test your applications with new database versions before
performing a major version upgrade.

For more information about upgrading a DB cluster to a new Aurora major version, see Upgrading
Amazon Aurora MySQL DB clusters (p. 1109) and Upgrading the PostgreSQL DB engine for Aurora
PostgreSQL (p. 1695).

Required Amazon Aurora upgrades
For certain critical fixes, we might perform a managed upgrade to a newer patch level within the same
minor version. These required upgrades happen even if Auto minor version upgrade is turned off. Before

9

Amazon Aurora User Guide for Aurora
Testing your DB cluster with a new
Aurora version before upgrading

doing so, we communicate the detailed upgrade process. Details include the timing of certain milestones,
the impact on your DB clusters, and the actions that we recommend that you take. Such managed
upgrades are performed automatically. Each such upgrade is started within the cluster maintenance
window.

Testing your DB cluster with a new Aurora version
before upgrading
You can test the upgrade process and how the new version works with your application and workload.
Use one of the following methods:

• Clone your cluster using the Amazon Aurora fast database clone feature. Perform the upgrade and any
post-upgrade testing on the new cluster.

• Restore from a cluster snapshot to create a new Aurora cluster. You can create a cluster snapshot
yourself from an existing Aurora cluster. Aurora also automatically creates periodic snapshots for
you for each of your clusters. You can then initiate a version upgrade for the new cluster. You can
experiment on the upgraded copy of your cluster before deciding whether to upgrade your original
cluster.

For more information on these ways to create new clusters for testing, see Cloning a volume for an
Aurora DB cluster (p. 402) and Creating a DB cluster snapshot (p. 495).

10

Amazon Aurora User Guide for Aurora
Regions and Availability Zones

Regions and Availability Zones
Amazon cloud computing resources are hosted in multiple locations world-wide. These locations are
composed of AWS Regions and Availability Zones. Each AWS Region is a separate geographic area. Each
AWS Region has multiple, isolated locations known as Availability Zones.

Note
For information about finding the Availability Zones for an AWS Region, see Describe Your
Availability Zones in the Amazon EC2 documentation.

Amazon operates state-of-the-art, highly-available data centers. Although rare, failures can occur that
affect the availability of DB instances that are in the same location. If you host all your DB instances in a
single location that is affected by such a failure, none of your DB instances will be available.

It is important to remember that each AWS Region is completely independent. Any Amazon RDS activity
you initiate (for example, creating database instances or listing available database instances) runs only
in your current default AWS Region. The default AWS Region can be changed in the console, by setting
the AWS_DEFAULT_REGION environment variable, or it can be overridden by using the --region
parameter with the AWS Command Line Interface (AWS CLI). For more information, see Configuring the
AWS Command Line Interface, specifically the sections about environment variables and command line
options.

Amazon RDS supports special AWS Regions called AWS GovCloud (US) that are designed to allow
US government agencies and customers to move more sensitive workloads into the cloud. The AWS
GovCloud (US) Regions address the US government's specific regulatory and compliance requirements.
For more information, see What is AWS GovCloud (US)?

To create or work with an Amazon RDS DB instance in a specific AWS Region, use the corresponding
regional service endpoint.

Note
Aurora doesn't support Local Zones.

AWS Regions
Each AWS Region is designed to be isolated from the other AWS Regions. This design achieves the
greatest possible fault tolerance and stability.

11

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#using-regions-availability-zones-describe#availability-zones-describe
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#using-regions-availability-zones-describe#availability-zones-describe
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-region
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/govcloud-us/latest/UserGuide/whatis.html

Amazon Aurora User Guide for Aurora
AWS Regions

When you view your resources, you see only the resources that are tied to the AWS Region that you
specified. This is because AWS Regions are isolated from each other, and we don't automatically replicate
resources across AWS Regions.

Region availability

When you work with an Aurora DB cluster using the command line interface or API operations, make sure
that you specify its regional endpoint.

Topics

• Aurora MySQL Region availability (p. 12)

• Aurora PostgreSQL Region availability (p. 14)

Aurora MySQL Region availability

The following table shows the AWS Regions where Aurora MySQL is currently available and the endpoint
for each Region.

Region
Name

Region Endpoint Protocol

US East
(Ohio)

us-east-2 rds.us-east-2.amazonaws.com HTTPS

US East (N.
Virginia)

us-east-1 rds.us-east-1.amazonaws.com HTTPS

US
West (N.
California)

us-west-1 rds.us-west-1.amazonaws.com HTTPS

US West
(Oregon)

us-west-2 rds.us-west-2.amazonaws.com HTTPS

Africa
(Cape
Town)

af-south-1 rds.af-south-1.amazonaws.com HTTPS

Asia
Pacific
(Hong
Kong)

ap-east-1 rds.ap-east-1.amazonaws.com HTTPS

Asia
Pacific
(Jakarta)

ap-
southeast-3

rds.ap-southeast-3.amazonaws.com HTTPS

Asia
Pacific
(Mumbai)

ap-
south-1

rds.ap-south-1.amazonaws.com HTTPS

Asia
Pacific
(Osaka)

ap-
northeast-3

rds.ap-northeast-3.amazonaws.com HTTPS

12

Amazon Aurora User Guide for Aurora
AWS Regions

Region
Name

Region Endpoint Protocol

Asia
Pacific
(Seoul)

ap-
northeast-2

rds.ap-northeast-2.amazonaws.com HTTPS

Asia
Pacific
(Singapore)

ap-
southeast-1

rds.ap-southeast-1.amazonaws.com HTTPS

Asia
Pacific
(Sydney)

ap-
southeast-2

rds.ap-southeast-2.amazonaws.com HTTPS

Asia
Pacific
(Tokyo)

ap-
northeast-1

rds.ap-northeast-1.amazonaws.com HTTPS

Canada
(Central)

ca-
central-1

rds.ca-central-1.amazonaws.com HTTPS

Europe
(Frankfurt)

eu-
central-1

rds.eu-central-1.amazonaws.com HTTPS

Europe
(Ireland)

eu-west-1 rds.eu-west-1.amazonaws.com HTTPS

Europe
(London)

eu-west-2 rds.eu-west-2.amazonaws.com HTTPS

Europe
(Milan)

eu-
south-1

rds.eu-south-1.amazonaws.com HTTPS

Europe
(Paris)

eu-west-3 rds.eu-west-3.amazonaws.com HTTPS

Europe
(Stockholm)

eu-north-1 rds.eu-north-1.amazonaws.com HTTPS

Middle
East
(Bahrain)

me-
south-1

rds.me-south-1.amazonaws.com HTTPS

South
America
(São
Paulo)

sa-east-1 rds.sa-east-1.amazonaws.com HTTPS

AWS
GovCloud
(US-East)

us-gov-
east-1

rds.us-gov-east-1.amazonaws.com HTTPS

AWS
GovCloud
(US-West)

us-gov-
west-1

rds.us-gov-west-1.amazonaws.com HTTPS

13

Amazon Aurora User Guide for Aurora
AWS Regions

Aurora PostgreSQL Region availability

The following table shows the AWS Regions where Aurora PostgreSQL is currently available and the
endpoint for each Region.

Region
Name

Region Endpoint Protocol

US East
(Ohio)

us-east-2 rds.us-east-2.amazonaws.com HTTPS

US East (N.
Virginia)

us-east-1 rds.us-east-1.amazonaws.com HTTPS

US
West (N.
California)

us-west-1 rds.us-west-1.amazonaws.com HTTPS

US West
(Oregon)

us-west-2 rds.us-west-2.amazonaws.com HTTPS

Africa
(Cape
Town)

af-south-1 rds.af-south-1.amazonaws.com HTTPS

Asia
Pacific
(Hong
Kong)

ap-east-1 rds.ap-east-1.amazonaws.com HTTPS

Asia
Pacific
(Jakarta)

ap-
southeast-3

rds.ap-southeast-3.amazonaws.com HTTPS

Asia
Pacific
(Mumbai)

ap-
south-1

rds.ap-south-1.amazonaws.com HTTPS

Asia
Pacific
(Osaka)

ap-
northeast-3

rds.ap-northeast-3.amazonaws.com HTTPS

Asia
Pacific
(Seoul)

ap-
northeast-2

rds.ap-northeast-2.amazonaws.com HTTPS

Asia
Pacific
(Singapore)

ap-
southeast-1

rds.ap-southeast-1.amazonaws.com HTTPS

Asia
Pacific
(Sydney)

ap-
southeast-2

rds.ap-southeast-2.amazonaws.com HTTPS

Asia
Pacific
(Tokyo)

ap-
northeast-1

rds.ap-northeast-1.amazonaws.com HTTPS

14

Amazon Aurora User Guide for Aurora
Availability Zones

Region
Name

Region Endpoint Protocol

Canada
(Central)

ca-
central-1

rds.ca-central-1.amazonaws.com HTTPS

Europe
(Frankfurt)

eu-
central-1

rds.eu-central-1.amazonaws.com HTTPS

Europe
(Ireland)

eu-west-1 rds.eu-west-1.amazonaws.com HTTPS

Europe
(London)

eu-west-2 rds.eu-west-2.amazonaws.com HTTPS

Europe
(Milan)

eu-
south-1

rds.eu-south-1.amazonaws.com HTTPS

Europe
(Paris)

eu-west-3 rds.eu-west-3.amazonaws.com HTTPS

Europe
(Stockholm)

eu-north-1 rds.eu-north-1.amazonaws.com HTTPS

Middle
East
(Bahrain)

me-
south-1

rds.me-south-1.amazonaws.com HTTPS

South
America
(São
Paulo)

sa-east-1 rds.sa-east-1.amazonaws.com HTTPS

AWS
GovCloud
(US-East)

us-gov-
east-1

rds.us-gov-east-1.amazonaws.com HTTPS

AWS
GovCloud
(US-West)

us-gov-
west-1

rds.us-gov-west-1.amazonaws.com HTTPS

Availability Zones
An Availability Zone is an isolated location in a given AWS Region. Each Region has multiple Availability
Zones (AZ) designed to provide high availability for the Region. An AZ is identified by the AWS Region
code followed by a letter identifier (for example, us-east-1a). If you create your VPC and subnets
rather than using the default VPC, you define each subnet in a specific AZ. When you create an Aurora
DB cluster, Aurora creates the primary instance in one of the subnets in the VPC's DB subnet group, thus
associating that instance with a specific AZ chosen by Aurora.

Each Aurora DB cluster hosts copies of its storage in three separate AZs. Every DB instance in the cluster
must be in one of these three AZs. When you create a DB instance in your cluster, Aurora automatically
chooses an appropriate AZ if you don't specify an AZ. If an AWS Region has fewer than three AZs, Aurora
isn't available in that Region.

To learn how to specify the AZ when you create a cluster or add instances to it, see VPC, subnets, and
AZs (p. 125).

15

Amazon Aurora User Guide for Aurora
Local time zone for DB clusters

Local time zone for Amazon Aurora DB clusters
By default, the time zone for an Amazon Aurora DB cluster is Universal Time Coordinated (UTC). You can
set the time zone for instances in your DB cluster to the local time zone for your application instead.

To set the local time zone for a DB cluster, set the time zone parameter in the cluster parameter group
for your DB cluster to one of the supported values listed later in this section. For Aurora MySQL, the
name of this parameter is time_zone. For Aurora PostgreSQL, the name of this parameter is timezone.
When you set the time zone parameter for a DB cluster, all instances in the DB cluster change to use the
new local time zone. If other Aurora DB clusters are using the same cluster parameter group, then all
instances in those DB clusters change to use the new local time zone also. For information on cluster-
level parameters, see Amazon Aurora DB cluster and DB instance parameters (p. 341).

After you set the local time zone, all new connections to the database reflect the change. If you have any
open connections to your database when you change the local time zone, you won't see the local time
zone update until after you close the connection and open a new connection.

If you are replicating across AWS Regions, then the replication master DB cluster and the replica use
different parameter groups (parameter groups are unique to an AWS Region). To use the same local
time zone for each instance, you must set the time zone parameter in the parameter groups for both the
replication master and the replica.

When you restore a DB cluster from a DB cluster snapshot, the local time zone is set to UTC. You can
update the time zone to your local time zone after the restore is complete. If you restore a DB cluster
to a point in time, then the local time zone for the restored DB cluster is the time zone setting from the
parameter group of the restored DB cluster.

You can set your local time zone to one of the values listed in the following table. For some time zones,
time values for certain date ranges can be reported incorrectly as noted in the table. For Australia time
zones, the time zone abbreviation returned is an outdated value as noted in the table.

Time zone Notes

Africa/Harare This time zone setting can return incorrect values from 28 Feb 1903
21:49:40 GMT to 28 Feb 1903 21:55:48 GMT.

Africa/Monrovia

Africa/Nairobi This time zone setting can return incorrect values from 31 Dec 1939
21:30:00 GMT to 31 Dec 1959 21:15:15 GMT.

Africa/Windhoek

America/Bogota This time zone setting can return incorrect values from 23 Nov 1914
04:56:16 GMT to 23 Nov 1914 04:56:20 GMT.

America/Caracas

America/Chihuahua

America/Cuiaba

America/Denver

America/Fortaleza If your DB cluster is in the South America (Sao Paulo) Region and the
expected time doesn't show correctly for the recently changed Brazil time
zone, reset the DB cluster's time zone parameter to America/Fortaleza.

America/Guatemala

16

Amazon Aurora User Guide for Aurora
Local time zone for DB clusters

Time zone Notes

America/Halifax This time zone setting can return incorrect values from 27 Oct 1918
05:00:00 GMT to 31 Oct 1918 05:00:00 GMT.

America/Manaus If your DB cluster is in the South America (Cuiaba) time zone and the
expected time doesn't show correctly for the recently changed Brazil time
zone, reset the DB cluster's time zone parameter to America/Manaus.

America/Matamoros

America/Monterrey

America/Montevideo

America/Phoenix

America/Tijuana

Asia/Ashgabat

Asia/Baghdad

Asia/Baku

Asia/Bangkok

Asia/Beirut

Asia/Calcutta

Asia/Kabul

Asia/Karachi

Asia/Kathmandu

Asia/Muscat This time zone setting can return incorrect values from 31 Dec 1919
20:05:36 GMT to 31 Dec 1919 20:05:40 GMT.

Asia/Riyadh This time zone setting can return incorrect values from 13 Mar 1947
20:53:08 GMT to 31 Dec 1949 20:53:08 GMT.

Asia/Seoul This time zone setting can return incorrect values from 30 Nov 1904
15:30:00 GMT to 07 Sep 1945 15:00:00 GMT.

Asia/Shanghai This time zone setting can return incorrect values from 31 Dec 1927
15:54:08 GMT to 02 Jun 1940 16:00:00 GMT.

Asia/Singapore

Asia/Taipei This time zone setting can return incorrect values from 30 Sep 1937
16:00:00 GMT to 29 Sep 1979 15:00:00 GMT.

Asia/Tehran

Asia/Tokyo This time zone setting can return incorrect values from 30 Sep 1937
15:00:00 GMT to 31 Dec 1937 15:00:00 GMT.

Asia/Ulaanbaatar

17

Amazon Aurora User Guide for Aurora
Local time zone for DB clusters

Time zone Notes

Atlantic/Azores This time zone setting can return incorrect values from 24 May 1911
01:54:32 GMT to 01 Jan 1912 01:54:32 GMT.

Australia/Adelaide The abbreviation for this time zone is returned as CST instead of ACDT/ACST.

Australia/Brisbane The abbreviation for this time zone is returned as EST instead of AEDT/AEST.

Australia/Darwin The abbreviation for this time zone is returned as CST instead of ACDT/ACST.

Australia/Hobart The abbreviation for this time zone is returned as EST instead of AEDT/AEST.

Australia/Perth The abbreviation for this time zone is returned as WST instead of AWDT/
AWST.

Australia/Sydney The abbreviation for this time zone is returned as EST instead of AEDT/AEST.

Brazil/East

Canada/
Saskatchewan

This time zone setting can return incorrect values from 27 Oct 1918
08:00:00 GMT to 31 Oct 1918 08:00:00 GMT.

Europe/Amsterdam

Europe/Athens

Europe/Dublin

Europe/Helsinki This time zone setting can return incorrect values from 30 Apr 1921
22:20:08 GMT to 30 Apr 1921 22:20:11 GMT.

Europe/Paris

Europe/Prague

Europe/Sarajevo

Pacific/Auckland

Pacific/Guam

Pacific/Honolulu This time zone setting can return incorrect values from 21 May 1933
11:30:00 GMT to 30 Sep 1945 11:30:00 GMT.

Pacific/Samoa This time zone setting can return incorrect values from 01 Jan 1911
11:22:48 GMT to 01 Jan 1950 11:30:00 GMT.

US/Alaska

US/Central

US/Eastern

US/East-Indiana

US/Pacific

UTC

18

Amazon Aurora User Guide for Aurora
Supported Aurora features by Region and engine

Supported features in Amazon Aurora by AWS
Region and Aurora DB engine

Aurora MySQL- and PostgreSQL-compatible database engines support several Amazon Aurora and
Amazon RDS features and options. The support varies across specific versions of each database engine,
and across AWS Regions. You can use the tables in this section to identify Aurora database engine
version support and availability in a given AWS Region for the following features:

Topics
• Backtracking in Aurora (p. 19)

• Aurora global databases (p. 21)

• Aurora machine learning (p. 23)

• Aurora parallel queries (p. 26)

• Amazon RDS Proxy (p. 27)

• Aurora Serverless v1 (p. 29)

• Data API for Aurora Serverless (p. 31)

Some of these features are Aurora-only capabilities. For example, Aurora Serverless, Aurora global
databases, and support for integration with AWS machine learning services aren't supported by Amazon
RDS. Other features, such as Amazon RDS Proxy, are supported by both Amazon Aurora and Amazon
RDS.

The tables use the following patterns to specify version numbers and level of support:

• Version x.y – The specific version alone is supported.

• Version x.y and higher – The version and all minor versions are also supported. For example, "version
10.11 and higher" means that versions 10.11, 10.11.1, and 10.12 are also supported.

• - – The feature is not currently available for that particular Aurora feature for the given Aurora
database engine, or in that specific AWS Region.

Backtracking in Aurora
By using backtracking in Aurora, you return the state of an Aurora cluster to a specific point in time,
without restoring data from a backup. It completes within seconds, even for large databases. For more
information, see Backtracking an Aurora DB cluster (p. 837).

Aurora backtracking is available for Aurora MySQL only. It's not available for Aurora PostgreSQL.

Region Aurora MySQL 5.6 Aurora MySQL 5.7 Aurora MySQL 8.0

US East (Ohio) Version 5.6.10a Version 2.06 and higher -

US East (N.
Virginia)

Version 5.6.10a Version 2.06 and higher -

US West (N.
California)

Version 5.6.10a Version 2.06 and higher -

US West
(Oregon)

Version 5.6.10a Version 2.06 and higher -

19

Amazon Aurora User Guide for Aurora
Backtracking in Aurora

Region Aurora MySQL 5.6 Aurora MySQL 5.7 Aurora MySQL 8.0

Africa (Cape
Town)

- - -

Asia Pacific
(Hong Kong)

- - -

Asia Pacific
(Jakarta)

- - -

Asia Pacific
(Mumbai)

Version 5.6.10a Version 2.06 and higher -

Asia Pacific
(Osaka)

Version 5.6.10a; version 1.22
and higher

Version 2.07.3 and higher -

Asia Pacific
(Seoul)

Version 5.6.10a Version 2.06 and higher -

Asia Pacific
(Singapore)

Version 5.6.10a Version 2.06 and higher -

Asia Pacific
(Sydney)

Version 5.6.10a Version 2.06 and higher -

Asia Pacific
(Tokyo)

Version 5.6.10a Version 2.06 and higher -

Canada
(Central)

Version 5.6.10a Version 2.06 and higher -

China (Beijing) - - -

China
(Ningxia)

- - -

Europe
(Frankfurt)

Version 5.6.10a Version 2.06 and higher -

Europe
(Ireland)

Version 5.6.10a Version 2.06 and higher -

Europe
(London)

Version 5.6.10a Version 2.06 and higher -

Europe (Milan) - - -

Europe (Paris) Version 5.6.10a Version 2.06 and higher -

Europe
(Stockholm)

- - -

Middle East
(Bahrain)

- - -

South
America (São
Paulo)

- - -

20

Amazon Aurora User Guide for Aurora
Aurora global databases

Region Aurora MySQL 5.6 Aurora MySQL 5.7 Aurora MySQL 8.0

AWS
GovCloud
(US-East)

- - -

AWS
GovCloud
(US-West)

- - -

Aurora global databases
An Aurora global database is a single database that spans multiple AWS Regions, enabling low-latency
global reads and disaster recovery from any Region-wide outage. It provides built-in fault tolerance for
your deployment because the DB instance relies not on a single AWS Region, but upon multiple Regions
and different Availability Zones.

Support for this feature varies by Aurora database engine and version. The following table shows
the Regions and Aurora database versions that support this feature. For more information, see Using
Amazon Aurora global databases (p. 225).

Region Aurora
MySQL 5.6

Aurora
MySQL 5.7

Aurora
MySQL 8.0

Aurora
PostgreSQL
10

Aurora
PostgreSQL
11

Aurora
PostgreSQL
12

Aurora
PostgreSQL
13

US East
(Ohio)

Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11 and
higher

Version 11.7
and higher

Version 12.4
and higher

Version 13.3
and higher

US East (N.
Virginia)

Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11 and
higher

Version 11.7
and higher

Version 12.4
and higher

Version 13.3
and higher

US West (N.
California)

Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11 and
higher

Version 11.7
and higher

Version 12.4
and higher

Version 13.3
and higher

US West
(Oregon)

Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11 and
higher

Version 11.7
and higher

Version 12.4
and higher

Version 13.3
and higher

Africa (Cape
Town)

- - - - - - -

Asia Pacific
(Hong
Kong)

- - - - - - -

Asia Pacific
(Jakarta)

- - - - - - -

21

Amazon Aurora User Guide for Aurora
Aurora global databases

Region Aurora
MySQL 5.6

Aurora
MySQL 5.7

Aurora
MySQL 8.0

Aurora
PostgreSQL
10

Aurora
PostgreSQL
11

Aurora
PostgreSQL
12

Aurora
PostgreSQL
13

Asia Pacific
(Mumbai)

Version
5.6.10a;
Version 1.22
and higher

Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11 and
higher

Version 11.7
and higher

Version 12.4
and higher

Version 13.3
and higher

Asia Pacific
(Osaka)

Version
1.22.3 and
higher

Version
2.07.3 and
higher

Version
3.01.0 and
higher

Version
10.12 and
higher

Version 11.7
and higher

Version 12.4
and higher

Version 13.3
and higher

Asia Pacific
(Seoul)

Version
5.6.10a;
Version 1.22
and higher

Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11 and
higher

Version 11.7
and higher

Version 12.4
and higher

Version 13.3
and higher

Asia Pacific
(Singapore)

Version
5.6.10a;
Version 1.22
and higher

Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11 and
higher

Version 11.7
and higher

Version 12.4
and higher

Version 13.3
and higher

Asia Pacific
(Sydney)

Version
5.6.10a;
Version 1.22
and higher

Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11 and
higher

Version 11.7
and higher

Version 12.4
and higher

Version 13.3
and higher

Asia Pacific
(Tokyo)

Version
5.6.10a;
Version 1.22
and higher

Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11 and
higher

Version 11.7
and higher

Version 12.4
and higher

Version 13.3
and higher

Canada
(Central)

Version
5.6.10a;
Version 1.22
and higher

Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11 and
higher

Version 11.7
and higher

Version 12.4
and higher

Version 13.3
and higher

China
(Beijing)

Version
1.22.2 and
higher

Version
2.07.2 and
higher

Version
3.01.0 and
higher

Version
10.12 and
higher

Version 11.7
and higher

Version 12.4
and higher

Version 13.3
and higher

China
(Ningxia)

Version
1.22.2 and
higher

Version
2.07.2 and
higher

Version
3.01.0 and
higher

Version
10.12 and
higher

Version 11.7
and higher

Version 12.4
and higher

Version 13.3
and higher

Europe
(Frankfurt)

Version
5.6.10a;
Version 1.22
and higher

Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11 and
higher

Version 11.7
and higher

Version 12.4
and higher

Version 13.3
and higher

Europe
(Ireland)

Version
5.6.10a;
Version 1.22
and higher

Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11 and
higher

Version 11.7
and higher

Version 12.4
and higher

Version 13.3
and higher

22

Amazon Aurora User Guide for Aurora
Aurora machine learning

Region Aurora
MySQL 5.6

Aurora
MySQL 5.7

Aurora
MySQL 8.0

Aurora
PostgreSQL
10

Aurora
PostgreSQL
11

Aurora
PostgreSQL
12

Aurora
PostgreSQL
13

Europe
(London)

Version
5.6.10a;
Version 1.22
and higher

Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11 and
higher

Version 11.7
and higher

Version 12.4
and higher

Version 13.3
and higher

Europe
(Milan)

- - - - - - -

Europe
(Paris)

Version
5.6.10a;
Version 1.22
and higher

Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11 and
higher

Version 11.7
and higher

Version 12.4
and higher

Version 13.3
and higher

Europe
(Stockholm)

Version
1.22.2 and
higher

Version
2.07.0 and
higher

Version
3.01.0 and
higher

Version
10.11 and
higher

Version 11.7
and higher

Version 12.4
and higher

Version 13.3
and higher

Middle East
(Bahrain)

- - - - - - -

South
America
(São Paulo)

Version
1.22.2 and
higher

Version
2.07.1 and
higher

Version
3.01.0 and
higher

Version
10.11 and
higher

Version 11.7
and higher

Version 12.4
and higher

Version 13.3
and higher

AWS
GovCloud
(US-East)

Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11 and
higher

Version 11.7
and higher

Version 12.4
and higher

Version 13.3
and higher

AWS
GovCloud
(US-West)

Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11 and
higher

Version 11.7
and higher

Version 12.4
and higher

Version 13.3
and higher

Aurora machine learning
Aurora machine learning provides simple, optimized, and secure integration between Aurora and AWS
machine learning services without having to build custom integrations or move data around. Aurora
exposes ML models as SQL functions, so you don't need to learn new programming languages or tools.
Instead, you use standard SQL to build applications that call ML models, pass data to them, and return
predictions as query results. For more information, see Using machine learning (ML) capabilities with
Amazon Aurora (p. 442).

Region Aurora
MySQL 5.6

Aurora
MySQL 5.7

Aurora
MySQL 8.0

Aurora
PostgreSQL
10

Aurora
PostgreSQL
11

Aurora
PostgreSQL
12

Aurora
PostgreSQL
13

US East
(Ohio)

- Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11

Version 11.6
and higher

Version 12.4
and higher

Version 13.3
and higher

23

Amazon Aurora User Guide for Aurora
Aurora machine learning

Region Aurora
MySQL 5.6

Aurora
MySQL 5.7

Aurora
MySQL 8.0

Aurora
PostgreSQL
10

Aurora
PostgreSQL
11

Aurora
PostgreSQL
12

Aurora
PostgreSQL
13

US East (N.
Virginia)

- Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11

Version 11.6
and higher

Version 12.4
and higher

Version 13.3
and higher

US West (N.
California)

- Version 2.07
and higher
(SageMaker
only)

Version
3.01.0 and
higher
(SageMaker
only)

Version
10.11
(SageMaker
only)

Version 11.6
and higher
(SageMaker
only)

Version 12.4
and higher
(SageMaker
only)

Version 13.3
and higher
(SageMaker
only)

US West
(Oregon)

- Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11

Version 11.6
and higher

Version 12.4
and higher

Version 13.3
and higher

Africa (Cape
Town)

- - - - - - -

Asia Pacific
(Hong
Kong)

- Version 2.07
and higher
(SageMaker
only)

Version
3.01.0 and
higher
(SageMaker
only)

Version
10.11

Version 11.6
and higher

Version 12.4
and higher

Version 13.3
and higher

Asia Pacific
(Jakarta)

- Version 2.07
and higher
(SageMaker
only)

Version
3.01.0 and
higher
(SageMaker
only)

Version
10.11
(SageMaker
only)

Version 11.6
and higher
(SageMaker
only)

Version 12.4
and higher

Version 13.3
and higher

Asia Pacific
(Mumbai)

- Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11

Version 11.6
and higher

Version 12.4
and higher

Version 13.3
and higher

Asia Pacific
(Osaka)

- Version
2.07.3 and
higher

Version
3.01.0 and
higher

Version
10.11

Version 11.6
and higher

Version 12.4
and higher

Version 13.3
and higher

Asia Pacific
(Seoul)

- Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11

Version 11.6
and higher

Version 12.4
and higher

Version 13.3
and higher

Asia Pacific
(Singapore)

- Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11

Version 11.6
and higher

Version 12.4
and higher

Version 13.3
and higher

Asia Pacific
(Sydney)

- Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11

Version 11.6
and higher

Version 12.4
and higher

Version 13.3
and higher

Asia Pacific
(Tokyo)

- Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11

Version 11.6
and higher

Version 12.4
and higher

Version 13.3
and higher

24

Amazon Aurora User Guide for Aurora
Aurora machine learning

Region Aurora
MySQL 5.6

Aurora
MySQL 5.7

Aurora
MySQL 8.0

Aurora
PostgreSQL
10

Aurora
PostgreSQL
11

Aurora
PostgreSQL
12

Aurora
PostgreSQL
13

Canada
(Central)

- Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11

Version 11.6
and higher

Version 12.4
and higher

Version 13.3
and higher

China
(Beijing)

- Version 2.07
and higher
(SageMaker
only)

Version
3.01.0 and
higher
(SageMaker
only)

Version
10.11
(SageMaker
only)

Version 11.6
and higher
(SageMaker
only)

Version 12.4
and higher

Version 13.3
and higher

China
(Ningxia)

- Version 2.07
and higher
(SageMaker
only)

Version
3.01.0 and
higher
(SageMaker
only)

Version
10.11
(SageMaker
only)

Version 11.6
and higher
(SageMaker
only)

Version 12.4
and higher
(SageMaker
only)

Version 13.3
and higher
(SageMaker
only)

Europe
(Frankfurt)

- Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11

Version 11.6
and higher

Version 12.4
and higher

Version 13.3
and higher

Europe
(Ireland)

- Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11

Version 11.6
and higher

Version 12.4
and higher

Version 13.3
and higher

Europe
(London)

- Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11

Version 11.6
and higher

Version 12.4
and higher

Version 13.3
and higher

Europe
(Milan)

- - - - - - -

Europe
(Paris)

- Version 2.07
and higher
(SageMaker
only)

Version
3.01.0 and
higher
(SageMaker
only)

Version
10.11
(SageMaker
only)

Version 11.6
and higher
(SageMaker
only)

Version 12.4
and higher

Version 13.3
and higher

Europe
(Stockholm)

- Version 2.07
and higher
(SageMaker
only)

Version
3.01.0 and
higher
(SageMaker
only)

Version
10.11
(SageMaker
only)

Version 11.6
and higher
(SageMaker
only)

Version 12.4
and higher
(SageMaker
only)

Version 13.3
and higher
(SageMaker
only)

Middle East
(Bahrain)

- Version 2.07
and higher
(SageMaker
only)

Version
3.01.0 and
higher
(SageMaker
only)

Version
10.11
(SageMaker
only)

Version 11.6
and higher
(SageMaker
only)

Version 12.4
and higher
(SageMaker
only)

Version 13.3
and higher
(SageMaker
only)

South
America
(São Paulo)

- Version 2.07
and higher
(SageMaker
only)

Version
3.01.0 and
higher
(SageMaker
only)

Version
10.11
(SageMaker
only)

Version 11.6
and higher
(SageMaker
only)

Version 12.4
and higher
(SageMaker
only)

Version 13.3
and higher
(SageMaker
only)

25

Amazon Aurora User Guide for Aurora
Aurora parallel queries

Region Aurora
MySQL 5.6

Aurora
MySQL 5.7

Aurora
MySQL 8.0

Aurora
PostgreSQL
10

Aurora
PostgreSQL
11

Aurora
PostgreSQL
12

Aurora
PostgreSQL
13

AWS
GovCloud
(US-East)

- Version 2.07
and higher

Version
3.01.0 and
higher

Version
10.11

Version 11.6
and higher

Version 12.4
and higher

Version 13.3
and higher

AWS
GovCloud
(US-West)

- Version 2.07
and higher
(SageMaker
only)

Version
3.01.0 and
higher
(SageMaker
only)

Version
10.11
(SageMaker
only)

Version 11.6
and higher
(SageMaker
only)

Version 12.4
and higher
(SageMaker
only)

Version 13.3
and higher
(SageMaker
only)

Aurora parallel queries
Aurora parallel queries can speed up your queries by up to two orders of magnitude, while maintaining
high throughput for your core transactional workload. Using the unique Aurora architecture, parallel
queries can push down and parallelize query processing across thousands of CPUs in the Aurora storage
layer. By offloading analytical query processing to the Aurora storage layer, parallel queries reduce
network, CPU, and buffer pool contention for transactional workloads. For more information, see
Working with parallel query for Amazon Aurora MySQL (p. 902). To learn more about Aurora MySQL
versions available for parallel queries and any steps you might need to take based on that version to
support parallel queries, see Planning for a parallel query cluster (p. 906).

Aurora parallel queries are available for Aurora MySQL only. However, PostgreSQL has its own parallel
query feature that is available on Amazon RDS. The capability is enabled by default when a new
PostgreSQL instance is created (versions 10.1 and higher). For more information, see PostgreSQL on
Amazon RDS.

Region Aurora MySQL 5.6 Aurora MySQL 5.7 Aurora MySQL 8.0

US East (Ohio) Version 1.23 Version 2.09 and higher Version 3.01.0 and higher

US East (N. Virginia) Version 1.23 Version 2.09 and higher Version 3.01.0 and higher

US West (N. California) Version 1.23 Version 2.09 and higher Version 3.01.0 and higher

US West (Oregon) Version 1.23 Version 2.09 and higher Version 3.01.0 and higher

Africa (Cape Town) Version 1.23 Version 2.09 and higher Version 3.01.0 and higher

Asia Pacific (Hong Kong) Version 1.23 Version 2.09 and higher Version 3.01.0 and higher

Asia Pacific (Jakarta) - Version 2.10 and higher Version 3.01.0 and higher

Asia Pacific (Mumbai) Version 1.23 Version 2.09 and higher Version 3.01.0 and higher

Asia Pacific (Osaka) Version 1.23 Version 2.09 and higher Version 3.01.0 and higher

Asia Pacific (Seoul) Version 1.23 Version 2.09 and higher Version 3.01.0 and higher

Asia Pacific (Singapore) Version 1.23 Version 2.09 and higher Version 3.01.0 and higher

Asia Pacific (Sydney) Version 1.23 Version 2.09 and higher Version 3.01.0 and higher

Asia Pacific (Tokyo) Version 1.23 Version 2.09 and higher Version 3.01.0 and higher

26

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html

Amazon Aurora User Guide for Aurora
Amazon RDS Proxy

Region Aurora MySQL 5.6 Aurora MySQL 5.7 Aurora MySQL 8.0

Canada (Central) Version 1.23 Version 2.09 and higher Version 3.01.0 and higher

China (Beijing) Version 1.23 Version 2.09 and higher Version 3.01.0 and higher

China (Ningxia) Version 1.23 Version 2.09 and higher Version 3.01.0 and higher

Europe (Frankfurt) Version 1.23 Version 2.09 and higher Version 3.01.0 and higher

Europe (Ireland) Version 1.23 Version 2.09 and higher Version 3.01.0 and higher

Europe (London) Version 1.23 Version 2.09 and higher Version 3.01.0 and higher

Europe (Milan) Version 1.23 Version 2.09 and higher Version 3.01.0 and higher

Europe (Paris) Version 1.23 Version 2.09 and higher Version 3.01.0 and higher

Europe (Stockholm) Version 1.23 Version 2.09 and higher Version 3.01.0 and higher

Middle East (Bahrain) Version 1.23 Version 2.09 and higher Version 3.01.0 and higher

South America (São Paulo) Version 1.23 Version 2.09 and higher Version 3.01.0 and higher

AWS GovCloud (US-East) Version 1.23 Version 2.09 and higher Version 3.01.0 and higher

AWS GovCloud (US-West) Version 1.23 Version 2.09 and higher Version 3.01.0 and higher

Amazon RDS Proxy
Amazon RDS Proxy is a fully managed, highly available database proxy that makes applications more
scalable by pooling and sharing established database connections. For more information, see Using
Amazon RDS Proxy (p. 288).

Region Aurora
MySQL 5.6

Aurora
MySQL 5.7

Aurora
MySQL 8.0

Aurora
PostgreSQL
10

Aurora
PostgreSQL
11

Aurora
PostgreSQL
12

US East (Ohio) Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version 3.01.0
and higher

Version 10.11
and higher

Version 11.6
and higher

Version 12.4
and higher

US East (N.
Virginia)

Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version 3.01.0
and higher

Version 10.11
and higher

Version 11.6
and higher

Version 12.4
and higher

US West (N.
California)

Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version 3.01.0
and higher

Version 10.11
and higher

Version 11.6
and higher

Version 12.4
and higher

US West
(Oregon)

Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version 3.01.0
and higher

Version 10.11
and higher

Version 11.6
and higher

Version 12.4
and higher

27

Amazon Aurora User Guide for Aurora
Amazon RDS Proxy

Region Aurora
MySQL 5.6

Aurora
MySQL 5.7

Aurora
MySQL 8.0

Aurora
PostgreSQL
10

Aurora
PostgreSQL
11

Aurora
PostgreSQL
12

Africa (Cape
Town)

Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version 3.01.0
and higher

Version 10.11
and higher

Version 11.6
and higher

Version 12.4
and higher

Asia Pacific
(Hong Kong)

Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version 3.01.0
and higher

Version 10.11
and higher

Version 11.6
and higher

Version 12.4
and higher

Asia Pacific
(Jakarta)

- - - - - -

Asia Pacific
(Mumbai)

Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version 3.01.0
and higher

Version 10.11
and higher

Version 11.6
and higher

Version 12.4
and higher

Asia Pacific
(Osaka)

Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version 3.01.0
and higher

Version 10.11
and higher

Version 11.6
and higher

Version 12.4
and higher

Asia Pacific
(Seoul)

Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version 3.01.0
and higher

Version 10.11
and higher

Version 11.6
and higher

Version 12.4
and higher

Asia Pacific
(Singapore)

Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version 3.01.0
and higher

Version 10.11
and higher

Version 11.6
and higher

Version 12.4
and higher

Asia Pacific
(Sydney)

Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version 3.01.0
and higher

Version 10.11
and higher

Version 11.6
and higher

Version 12.4
and higher

Asia Pacific
(Tokyo)

Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version 3.01.0
and higher

Version 10.11
and higher

Version 11.6
and higher

Version 12.4
and higher

Canada
(Central)

Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version 3.01.0
and higher

Version 10.11
and higher

Version 11.6
and higher

Version 12.4
and higher

China (Beijing) - - - - - -

China
(Ningxia)

- - - - - -

28

Amazon Aurora User Guide for Aurora
Aurora Serverless v1

Region Aurora
MySQL 5.6

Aurora
MySQL 5.7

Aurora
MySQL 8.0

Aurora
PostgreSQL
10

Aurora
PostgreSQL
11

Aurora
PostgreSQL
12

Europe
(Frankfurt)

Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version 3.01.0
and higher

Version 10.11
and higher

Version 11.6
and higher

Version 12.4
and higher

Europe
(Ireland)

Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version 3.01.0
and higher

Version 10.11
and higher

Version 11.6
and higher

Version 12.4
and higher

Europe
(London)

Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version 3.01.0
and higher

Version 10.11
and higher

Version 11.6
and higher

Version 12.4
and higher

Europe (Milan) Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version 3.01.0
and higher

Version 10.11
and higher

Version 11.6
and higher

Version 12.4
and higher

Europe (Paris) Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version 3.01.0
and higher

Version 10.11
and higher

Version 11.6
and higher

Version 12.4
and higher

Europe
(Stockholm)

Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version 3.01.0
and higher

Version 10.11
and higher

Version 11.6
and higher

Version 12.4
and higher

Middle East
(Bahrain)

Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version 3.01.0
and higher

Version 10.11
and higher

Version 11.6
and higher

Version 12.4
and higher

South
America (São
Paulo)

Version
5.6.10a;
version 1.22
and higher

Version 2.07
and higher

Version 3.01.0
and higher

Version 10.11
and higher

Version 11.6
and higher

Version 12.4
and higher

AWS
GovCloud
(US-East)

- - - - - -

AWS
GovCloud
(US-West)

- - - - - -

Aurora Serverless v1
Aurora Serverless v1 is an on-demand, auto-scaling feature designed to be a cost-effective approach to
running intermittent or unpredictable workloads on Amazon Aurora. It automatically starts up, shuts

29

Amazon Aurora User Guide for Aurora
Aurora Serverless v1

down, and scales capacity up or down, as needed by your applications. For more information, see Using
Amazon Aurora Serverless v1 (p. 147).

Region Aurora MySQL
5.6

Aurora MySQL
5.7

Aurora MySQL
8.0

Aurora
PostgreSQL 10

Aurora
PostgreSQL 11

US East (Ohio) Version 5.6.10a Version 2.07.1 - Version 10.12 -

US East (N.
Virginia)

Version 5.6.10a Version 2.07.1 - Version 10.12 -

US West (N.
California)

Version 5.6.10a Version 2.07.1 - Version 10.12 -

US West
(Oregon)

Version 5.6.10a Version 2.07.1 - Version 10.12 -

Africa (Cape
Town)

- - - - -

Asia Pacific
(Hong Kong)

- - - - -

Asia Pacific
(Jakarta)

- - - - -

Asia Pacific
(Mumbai)

Version 5.6.10a Version 2.07.1 - Version 10.12 -

Asia Pacific
(Osaka)

- - - - -

Asia Pacific
(Seoul)

Version 5.6.10a Version 2.07.1 - Version 10.12 -

Asia Pacific
(Singapore)

Version 5.6.10a Version 2.07.1 - Version 10.12 -

Asia Pacific
(Sydney)

Version 5.6.10a Version 2.07.1 - Version 10.12 -

Asia Pacific
(Tokyo)

Version 5.6.10a Version 2.07.1 - Version 10.12 -

Canada (Central) Version 5.6.10a Version 2.07.1 - Version 10.12 -

China (Beijing) - - - - -

China (Ningxia) - - - - -

Europe
(Frankfurt)

Version 5.6.10a Version 2.07.1 - Version 10.12 -

Europe (Ireland) Version 5.6.10a Version 2.07.1 - Version 10.12 -

Europe (London) Version 5.6.10a Version 2.07.1 - Version 10.12 -

Europe (Milan) - - - - -

Europe (Paris) Version 5.6.10a Version 2.07.1 - Version 10.12 -

30

Amazon Aurora User Guide for Aurora
Data API for Aurora Serverless

Region Aurora MySQL
5.6

Aurora MySQL
5.7

Aurora MySQL
8.0

Aurora
PostgreSQL 10

Aurora
PostgreSQL 11

Europe
(Stockholm)

- - - - -

Middle East
(Bahrain)

- - - - -

South America
(São Paulo)

- - - - -

AWS GovCloud
(US-East)

- - - - -

AWS GovCloud
(US-West)

- - - - -

Data API for Aurora Serverless
The Data API for Aurora Serverless provides a web-services interface to an Aurora Serverless
cluster. Rather than managing database connections from client applications, you can run SQL
commands against an HTTPS endpoint. For more information, see Using the Data API for Aurora
Serverless (p. 178).

Region Aurora MySQL
5.6

Aurora MySQL
5.7

Aurora MySQL
8.0

Aurora
PostgreSQL 10

Aurora
PostgreSQL 11

US East (Ohio) Version 5.6.10a Version 2.07.1 - Version 10.12 -

US East (N.
Virginia)

Version 5.6.10a Version 2.07.1 - Version 10.12 -

US West (N.
California)

Version 5.6.10a Version 2.07.1 - Version 10.12 -

US West
(Oregon)

Version 5.6.10a Version 2.07.1 - Version 10.12 -

Africa (Cape
Town)

- - - - -

Asia Pacific
(Hong Kong)

- - - - -

Asia Pacific
(Jakarta)

- - - - -

Asia Pacific
(Mumbai)

Version 5.6.10a Version 2.07.1 - Version 10.12 -

Asia Pacific
(Osaka)

- - - - -

Asia Pacific
(Seoul)

Version 5.6.10a Version 2.07.1 - Version 10.12 -

31

Amazon Aurora User Guide for Aurora
Aurora connection management

Region Aurora MySQL
5.6

Aurora MySQL
5.7

Aurora MySQL
8.0

Aurora
PostgreSQL 10

Aurora
PostgreSQL 11

Asia Pacific
(Singapore)

Version 5.6.10a Version 2.07.1 - Version 10.12 -

Asia Pacific
(Sydney)

Version 5.6.10a Version 2.07.1 - Version 10.12 -

Asia Pacific
(Tokyo)

Version 5.6.10a Version 2.07.1 - Version 10.12 -

Canada (Central) Version 5.6.10a Version 2.07.1 - Version 10.12 -

China (Beijing) - - - - -

China (Ningxia) - - - - -

Europe
(Frankfurt)

Version 5.6.10a Version 2.07.1 - Version 10.12 -

Europe (Ireland) Version 5.6.10a Version 2.07.1 - Version 10.12 -

Europe (London) Version 5.6.10a Version 2.07.1 - Version 10.12 -

Europe (Milan) - - - - -

Europe (Paris) Version 5.6.10a Version 2.07.1 - Version 10.12 -

Europe
(Stockholm)

- - - - -

Middle East
(Bahrain)

- - - - -

South America
(São Paulo)

- - - - -

AWS GovCloud
(US-East)

- - - - -

AWS GovCloud
(US-West)

- - - - -

Amazon Aurora connection management
Amazon Aurora typically involves a cluster of DB instances instead of a single instance. Each connection
is handled by a specific DB instance. When you connect to an Aurora cluster, the host name and port that
you specify point to an intermediate handler called an endpoint. Aurora uses the endpoint mechanism to
abstract these connections. Thus, you don't have to hardcode all the hostnames or write your own logic
for load-balancing and rerouting connections when some DB instances aren't available.

For certain Aurora tasks, different instances or groups of instances perform different roles. For example,
the primary instance handles all data definition language (DDL) and data manipulation language (DML)
statements. Up to 15 Aurora Replicas handle read-only query traffic.

Using endpoints, you can map each connection to the appropriate instance or group of instances based
on your use case. For example, to perform DDL statements you can connect to whichever instance is the

32

Amazon Aurora User Guide for Aurora
Types of Aurora endpoints

primary instance. To perform queries, you can connect to the reader endpoint, with Aurora automatically
performing load-balancing among all the Aurora Replicas. For clusters with DB instances of different
capacities or configurations, you can connect to custom endpoints associated with different subsets of
DB instances. For diagnosis or tuning, you can connect to a specific instance endpoint to examine details
about a specific DB instance.

Topics

• Types of Aurora endpoints (p. 33)

• Viewing the endpoints for an Aurora cluster (p. 35)

• Using the cluster endpoint (p. 35)

• Using the reader endpoint (p. 35)

• Using custom endpoints (p. 36)

• Creating a custom endpoint (p. 38)

• Viewing custom endpoints (p. 40)

• Editing a custom endpoint (p. 45)

• Deleting a custom endpoint (p. 47)

• End-to-end AWS CLI example for custom endpoints (p. 48)

• Using the instance endpoints (p. 52)

• How Aurora endpoints work with high availability (p. 52)

Types of Aurora endpoints
An endpoint is represented as an Aurora-specific URL that contains a host address and a port. The
following types of endpoints are available from an Aurora DB cluster.

Cluster endpoint

A cluster endpoint (or writer endpoint) for an Aurora DB cluster connects to the current primary DB
instance for that DB cluster. This endpoint is the only one that can perform write operations such as
DDL statements. Because of this, the cluster endpoint is the one that you connect to when you first
set up a cluster or when your cluster only contains a single DB instance.

Each Aurora DB cluster has one cluster endpoint and one primary DB instance.

You use the cluster endpoint for all write operations on the DB cluster, including inserts, updates,
deletes, and DDL changes. You can also use the cluster endpoint for read operations, such as queries.

The cluster endpoint provides failover support for read/write connections to the DB cluster. If the
current primary DB instance of a DB cluster fails, Aurora automatically fails over to a new primary
DB instance. During a failover, the DB cluster continues to serve connection requests to the cluster
endpoint from the new primary DB instance, with minimal interruption of service.

The following example illustrates a cluster endpoint for an Aurora MySQL DB cluster.

mydbcluster.cluster-123456789012.us-east-1.rds.amazonaws.com:3306

Reader endpoint

A reader endpoint for an Aurora DB cluster provides load-balancing support for read-only
connections to the DB cluster. Use the reader endpoint for read operations, such as queries. By
processing those statements on the read-only Aurora Replicas, this endpoint reduces the overhead
on the primary instance. It also helps the cluster to scale the capacity to handle simultaneous

33

Amazon Aurora User Guide for Aurora
Types of Aurora endpoints

SELECT queries, proportional to the number of Aurora Replicas in the cluster. Each Aurora DB cluster
has one reader endpoint.

If the cluster contains one or more Aurora Replicas, the reader endpoint load-balances each
connection request among the Aurora Replicas. In that case, you can only perform read-only
statements such as SELECT in that session. If the cluster only contains a primary instance and no
Aurora Replicas, the reader endpoint connects to the primary instance. In that case, you can perform
write operations through the endpoint.

The following example illustrates a reader endpoint for an Aurora MySQL DB cluster.

mydbcluster.cluster-ro-123456789012.us-east-1.rds.amazonaws.com:3306

Custom endpoint

A custom endpoint for an Aurora cluster represents a set of DB instances that you choose. When you
connect to the endpoint, Aurora performs load balancing and chooses one of the instances in the
group to handle the connection. You define which instances this endpoint refers to, and you decide
what purpose the endpoint serves.

An Aurora DB cluster has no custom endpoints until you create one. You can create up to five custom
endpoints for each provisioned Aurora cluster. You can't use custom endpoints for Aurora Serverless
clusters.

The custom endpoint provides load-balanced database connections based on criteria other than
the read-only or read/write capability of the DB instances. For example, you might define a custom
endpoint to connect to instances that use a particular AWS instance class or a particular DB
parameter group. Then you might tell particular groups of users about this custom endpoint. For
example, you might direct internal users to low-capacity instances for report generation or ad hoc
(one-time) querying, and direct production traffic to high-capacity instances.

Because the connection can go to any DB instance that is associated with the custom endpoint,
we recommend that you make sure that all the DB instances within that group share some similar
characteristic. Doing so ensures that the performance, memory capacity, and so on, are consistent
for everyone who connects to that endpoint.

This feature is intended for advanced users with specialized kinds of workloads where it isn't
practical to keep all the Aurora Replicas in the cluster identical. With custom endpoints, you can
predict the capacity of the DB instance used for each connection. When you use custom endpoints,
you typically don't use the reader endpoint for that cluster.

The following example illustrates a custom endpoint for a DB instance in an Aurora MySQL DB
cluster.

myendpoint.cluster-custom-123456789012.us-east-1.rds.amazonaws.com:3306

Instance endpoint

An instance endpoint connects to a specific DB instance within an Aurora cluster. Each DB instance in
a DB cluster has its own unique instance endpoint. So there is one instance endpoint for the current
primary DB instance of the DB cluster, and there is one instance endpoint for each of the Aurora
Replicas in the DB cluster.

The instance endpoint provides direct control over connections to the DB cluster, for scenarios where
using the cluster endpoint or reader endpoint might not be appropriate. For example, your client
application might require more fine-grained load balancing based on workload type. In this case, you
can configure multiple clients to connect to different Aurora Replicas in a DB cluster to distribute
read workloads. For an example that uses instance endpoints to improve connection speed after
a failover for Aurora PostgreSQL, see Fast failover with Amazon Aurora PostgreSQL (p. 1440). For

34

Amazon Aurora User Guide for Aurora
Viewing endpoints

an example that uses instance endpoints to improve connection speed after a failover for Aurora
MySQL, see MariaDB Connector/J failover support - case Amazon Aurora.

The following example illustrates an instance endpoint for a DB instance in an Aurora MySQL DB
cluster.

mydbinstance.123456789012.us-east-1.rds.amazonaws.com:3306

Viewing the endpoints for an Aurora cluster
In the AWS Management Console, you see the cluster endpoint, the reader endpoint, and any custom
endpoints in the detail page for each cluster. You see the instance endpoint in the detail page for each
instance. When you connect, you must append the associated port number, following a colon, to the
endpoint name shown on this detail page.

With the AWS CLI, you see the writer, reader, and any custom endpoints in the output of the describe-db-
clusters command. For example, the following command shows the endpoint attributes for all clusters in
your current AWS Region.

aws rds describe-db-clusters --query '*[].
{Endpoint:Endpoint,ReaderEndpoint:ReaderEndpoint,CustomEndpoints:CustomEndpoints}'

With the Amazon RDS API, you retrieve the endpoints by calling the DescribeDBClusterEndpoints
function.

Using the cluster endpoint
Because each Aurora cluster has a single built-in cluster endpoint, whose name and other attributes are
managed by Aurora, you can't create, delete, or modify this kind of endpoint.

You use the cluster endpoint when you administer your cluster, perform extract, transform, load (ETL)
operations, or develop and test applications. The cluster endpoint connects to the primary instance of
the cluster. The primary instance is the only DB instance where you can create tables and indexes, run
INSERT statements, and perform other DDL and DML operations.

The physical IP address pointed to by the cluster endpoint changes when the failover mechanism
promotes a new DB instance to be the read/write primary instance for the cluster. If you use any form
of connection pooling or other multiplexing, be prepared to flush or reduce the time-to-live for any
cached DNS information. Doing so ensures that you don't try to establish a read/write connection to a
DB instance that became unavailable or is now read-only after a failover.

Using the reader endpoint
You use the reader endpoint for read-only connections for your Aurora cluster. This endpoint uses a load-
balancing mechanism to help your cluster handle a query-intensive workload. The reader endpoint is the
endpoint that you supply to applications that do reporting or other read-only operations on the cluster.

The reader endpoint load-balances connections to available Aurora Replicas in an Aurora DB cluster. It
doesn't load-balance individual queries. If you want to load-balance each query to distribute the read
workload for a DB cluster, open a new connection to the reader endpoint for each query.

Each Aurora cluster has a single built-in reader endpoint, whose name and other attributes are managed
by Aurora. You can't create, delete, or modify this kind of endpoint.

If your cluster contains only a primary instance and no Aurora Replicas, the reader endpoint connects to
the primary instance. In that case, you can perform write operations through this endpoint.

35

https://mariadb.org/mariadb-connectorj-failover-support-case-amazon-aurora/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterEndpoints.html

Amazon Aurora User Guide for Aurora
Using custom endpoints

Tip
Through RDS Proxy, you can create additional read-only endpoints for an Aurora cluster. These
endpoints perform the same kind of load-balancing as the Aurora reader endpoint. Applications
can reconnect more quickly to the proxy endpoints than the Aurora reader endpoint if reader
instances become unavailable. The proxy endpoints can also take advantage of other proxy
features such as multiplexing. For more information, see Using reader endpoints with Aurora
clusters (p. 316).

Using custom endpoints
You use custom endpoints to simplify connection management when your cluster contains DB instances
with different capacities and configuration settings.

Previously, you might have used the CNAMES mechanism to set up Domain Name Service (DNS) aliases
from your own domain to achieve similar results. By using custom endpoints, you can avoid updating
CNAME records when your cluster grows or shrinks. Custom endpoints also mean that you can use
encrypted Transport Layer Security/Secure Sockets Layer (TLS/SSL) connections.

Instead of using one DB instance for each specialized purpose and connecting to its instance endpoint,
you can have multiple groups of specialized DB instances. In this case, each group has its own custom
endpoint. This way, Aurora can perform load balancing among all the instances dedicated to tasks such
as reporting or handling production or internal queries. The custom endpoints provide load balancing
and high availability for each group of DB instances within your cluster. If one of the DB instances within
a group becomes unavailable, Aurora directs subsequent custom endpoint connections to one of the
other DB instances associated with the same endpoint.

Topics
• Specifying properties for custom endpoints (p. 36)

• Membership rules for custom endpoints (p. 37)

• Managing custom endpoints (p. 37)

Specifying properties for custom endpoints
The maximum length for a custom endpoint name is 63 characters. You can see the name format
following:

endpointName.cluster-custom-customerDnsIdentifier.dnsSuffix

Because custom endpoint names don't include the name of your cluster, you don't have to change those
names if you rename a cluster. You can't reuse the same custom endpoint name for more than one
cluster in the same region. Give each custom endpoint a name that is unique across the clusters owned
by your user ID within a particular region.

Each custom endpoint has an associated type that determines which DB instances are eligible to be
associated with that endpoint. Currently, the type can be READER, WRITER, or ANY. The following
considerations apply to the custom endpoint types:

• Only DB instances that are read-only Aurora Replicas can be part of a READER custom endpoint.
The READER type applies only to clusters using single-master replication, because those clusters can
include multiple read-only DB instances.

• Both read-only Aurora Replicas and the read/write primary instance can be part of an ANY custom
endpoint. Aurora directs connections to cluster endpoints with type ANY to any associated DB instance
with equal probability. Because you can't determine in advance if you are connecting to the primary
instance of a read-only Aurora Replica, use this kind of endpoint for read-only connections only. The
ANY type applies to clusters using any replication topology.

36

Amazon Aurora User Guide for Aurora
Using custom endpoints

• The WRITER type applies only to multi-master clusters, because those clusters can include multiple
read/write DB instances.

• If you try to create a custom endpoint with a type that isn't appropriate based on the replication
configuration for a cluster, Aurora returns an error.

Membership rules for custom endpoints
When you add a DB instance to a custom endpoint or remove it from a custom endpoint, any existing
connections to that DB instance remain active.

You can define a list of DB instances to include in, or exclude from, a custom endpoint. We refer to these
lists as static and exclusion lists, respectively. You can use the inclusion/exclusion mechanism to further
subdivide the groups of DB instances, and to make sure that the set of custom endpoints covers all the
DB instances in the cluster. Each custom endpoint can contain only one of these list types.

In the AWS Management Console, the choice is represented by the check box Attach future instances
added to this cluster. When you keep check box clear, the custom endpoint uses a static list containing
only the DB instances specified in the dialog. When you choose the check box, the custom endpoint uses
an exclusion list. In this case, the custom endpoint represents all DB instances in the cluster (including
any that you add in the future) except the ones left unselected in the dialog. The AWS CLI and Amazon
RDS API have parameters representing each kind of list. When you use the AWS CLI or Amazon RDS API,
you can't add or remove individual members to the lists; you always specify the entire new list.

Aurora doesn't change the DB instances specified in the static or exclusion lists when DB instances
change roles between primary instance and Aurora Replica due to failover or promotion. For example,
a custom endpoint with type READER might include a DB instance that was an Aurora Replica and
then was promoted to a primary instance. The type of a custom endpoint (READER, WRITER, or ANY)
determines what kinds of operations you can perform through that endpoint.

You can associate a DB instance with more than one custom endpoint. For example, suppose that
you add a new DB instance to a cluster, or that Aurora adds a DB instance automatically through the
autoscaling mechanism. In these cases, the DB instance is added to all custom endpoints for which
it is eligible. Which endpoints the DB instance is added to is based on the custom endpoint type of
READER , WRITER, or ANY, plus any static or exclusion lists defined for each endpoint. For example, if
the endpoint includes a static list of DB instances, newly added Aurora Replicas aren't added to that
endpoint. Conversely, if the endpoint has an exclusion list, newly added Aurora Replicas are added to
the endpoint, if they aren't named in the exclusion list and their roles match the type of the custom
endpoint.

If an Aurora Replica becomes unavailable, it remains associated with any custom endpoints. For example,
it remains part of the custom endpoint when it is unhealthy, stopped, rebooting, and so on. However,
you can't connect to it through those endpoints until it becomes available again.

Managing custom endpoints
Because newly created Aurora clusters have no custom endpoints, you must create and manage these
objects yourself. You do so using the AWS Management Console, AWS CLI, or Amazon RDS API.

Note
You must also create and manage custom endpoints for Aurora clusters restored from
snapshots. Custom endpoints are not included in the snapshot. You create them again after
restoring, and choose new endpoint names if the restored cluster is in the same region as the
original one.

To work with custom endpoints from the AWS Management Console, you navigate to the details page for
your Aurora cluster and use the controls under the Custom Endpoints section.

37

Amazon Aurora User Guide for Aurora
Creating a custom endpoint

To work with custom endpoints from the AWS CLI, you can use these operations:

• create-db-cluster-endpoint

• describe-db-cluster-endpoints

• modify-db-cluster-endpoint

• delete-db-cluster-endpoint

To work with custom endpoints through the Amazon RDS API, you can use the following functions:

• CreateDBClusterEndpoint

• DescribeDBClusterEndpoints

• ModifyDBClusterEndpoint

• DeleteDBClusterEndpoint

Creating a custom endpoint
Console

To create a custom endpoint with the AWS Management Console, go to the cluster detail page and
choose the Create custom endpoint action in the Endpoints section. Choose a name for the custom
endpoint, unique for your user ID and region. To choose a list of DB instances that remains the same even
as the cluster expands, keep the check box Attach future instances added to this cluster clear. When
you choose that check box, the custom endpoint dynamically adds any new instances as you add them to
the cluster.

38

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster-endpoint.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-endpoints.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-endpoint.html
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-cluster-endpoint.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBClusterEndpoint.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterEndpoints.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBClusterEndpoint.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBClusterEndpoint.html

Amazon Aurora User Guide for Aurora
Creating a custom endpoint

39

Amazon Aurora User Guide for Aurora
Viewing custom endpoints

You can't select the custom endpoint type of ANY or READER in the AWS Management Console. All the
custom endpoints you create through the AWS Management Console have a type of ANY.

AWS CLI

To create a custom endpoint with the AWS CLI, run the create-db-cluster-endpoint command.

The following command creates a custom endpoint attached to a specific cluster. Initially, the endpoint is
associated with all the Aurora Replica instances in the cluster. A subsequent command associates it with
a specific set of DB instances in the cluster.

For Linux, macOS, or Unix:

aws rds create-db-cluster-endpoint --db-cluster-endpoint-identifier custom-endpoint-doc-
sample \
 --endpoint-type reader \
 --db-cluster-identifier cluster_id

aws rds modify-db-cluster-endpoint --db-cluster-endpoint-identifier custom-endpoint-doc-
sample \
 --static-members instance_name_1 instance_name_2

For Windows:

aws rds create-db-cluster-endpoint --db-cluster-endpoint-identifier custom-endpoint-doc-
sample ^
 --endpoint-type reader ^
 --db-cluster-identifier cluster_id

aws rds modify-db-cluster-endpoint --db-cluster-endpoint-identifier custom-endpoint-doc-
sample ^
 --static-members instance_name_1 instance_name_2

RDS API

To create a custom endpoint with the RDS API, run the CreateDBClusterEndpoint operation.

Viewing custom endpoints
Console

To view custom endpoints with the AWS Management Console, go to the cluster detail page for the
cluster and look under the Endpoints section. This section contains information only about custom
endpoints. The details for the built-in endpoints are listed in the main Details section. To see the details
for a specific custom endpoint, select its name to bring up the detail page for that endpoint.

The following screenshot shows how the list of custom endpoints for an Aurora cluster is initially empty.

40

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster-endpoint.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBClusterEndpoint.html

Amazon Aurora User Guide for Aurora
Viewing custom endpoints

After you create some custom endpoints for that cluster, they are shown under the Endpoints section.

41

Amazon Aurora User Guide for Aurora
Viewing custom endpoints

Clicking through to the detail page shows which DB instances the endpoint is currently associated with.

42

Amazon Aurora User Guide for Aurora
Viewing custom endpoints

43

Amazon Aurora User Guide for Aurora
Viewing custom endpoints

To see the additional detail of whether new DB instances added to the cluster are automatically added to
the endpoint also, bring up the Edit dialog for the endpoint.

AWS CLI

To view custom endpoints with the AWS CLI, run the describe-db-cluster-endpoints command.

The following command shows the custom endpoints associated with a specified cluster in a specified
region. The output includes both the built-in endpoints and any custom endpoints.

For Linux, macOS, or Unix:

aws rds describe-db-cluster-endpoints --region region_name \
 --db-cluster-identifier cluster_id

For Windows:

aws rds describe-db-cluster-endpoints --region region_name ^
 --db-cluster-identifier cluster_id

The following shows some sample output from a describe-db-cluster-endpoints command.
The EndpointType of WRITER or READER denotes the built-in read/write and read-only endpoints
for the cluster. The EndpointType of CUSTOM denotes endpoints that you create and choose the
associated DB instances. One of the endpoints has a non-empty StaticMembers field, denoting that it
is associated with a precise set of DB instances. The other endpoint has a non-empty ExcludedMembers
field, denoting that the endpoint is associated with all DB instances other than the ones listed under
ExcludedMembers. This second kind of custom endpoint grows to accommodate new instances as you
add them to the cluster.

{
 "DBClusterEndpoints": [
 {
 "Endpoint": "custom-endpoint-demo.cluster-123456789012.ca-central-1.rds.amazonaws.com",
 "Status": "available",
 "DBClusterIdentifier": "custom-endpoint-demo",
 "EndpointType": "WRITER"
 },
 {
 "Endpoint": "custom-endpoint-demo.cluster-ro-123456789012.ca-
central-1.rds.amazonaws.com",
 "Status": "available",
 "DBClusterIdentifier": "custom-endpoint-demo",
 "EndpointType": "READER"
 },
 {
 "CustomEndpointType": "ANY",
 "DBClusterEndpointIdentifier": "powers-of-2",
 "ExcludedMembers": [],
 "DBClusterIdentifier": "custom-endpoint-demo",
 "Status": "available",
 "EndpointType": "CUSTOM",
 "Endpoint": "powers-of-2.cluster-custom-123456789012.ca-central-1.rds.amazonaws.com",
 "StaticMembers": [
 "custom-endpoint-demo-04",
 "custom-endpoint-demo-08",
 "custom-endpoint-demo-01",
 "custom-endpoint-demo-02"
],
 "DBClusterEndpointResourceIdentifier": "cluster-endpoint-W7PE3TLLFNSHXQKFU6J6NV5FHU",

44

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-endpoints.html

Amazon Aurora User Guide for Aurora
Editing a custom endpoint

 "DBClusterEndpointArn": "arn:aws:rds:ca-central-1:111122223333:cluster-endpoint:powers-
of-2"
 },
 {
 "CustomEndpointType": "ANY",
 "DBClusterEndpointIdentifier": "eight-and-higher",
 "ExcludedMembers": [
 "custom-endpoint-demo-04",
 "custom-endpoint-demo-02",
 "custom-endpoint-demo-07",
 "custom-endpoint-demo-05",
 "custom-endpoint-demo-03",
 "custom-endpoint-demo-06",
 "custom-endpoint-demo-01"
],
 "DBClusterIdentifier": "custom-endpoint-demo",
 "Status": "available",
 "EndpointType": "CUSTOM",
 "Endpoint": "eight-and-higher.cluster-custom-123456789012.ca-
central-1.rds.amazonaws.com",
 "StaticMembers": [],
 "DBClusterEndpointResourceIdentifier": "cluster-endpoint-W7PE3TLLFNSHYQKFU6J6NV5FHU",
 "DBClusterEndpointArn": "arn:aws:rds:ca-central-1:111122223333:cluster-endpoint:eight-
and-higher"
 }
]
}

RDS API

To view custom endpoints with the RDS API, run the DescribeDBClusterEndpoints.html operation.

Editing a custom endpoint
You can edit the properties of a custom endpoint to change which DB instances are associated with the
endpoint. You can also change an endpoint between a static list and an exclusion list. If you need more
details about these endpoint properties, see Membership rules for custom endpoints (p. 37).

You can't connect to or use a custom endpoint while the changes from an edit action are in progress. It
might take some minutes before the endpoint status returns to Available and you can connect again.

Console

To edit a custom endpoint with the AWS Management Console, you can select the endpoint on the
cluster detail page, or bring up the detail page for the endpoint, and choose the Edit action.

45

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterEndpoints.html.html

Amazon Aurora User Guide for Aurora
Editing a custom endpoint

46

Amazon Aurora User Guide for Aurora
Deleting a custom endpoint

AWS CLI

To edit a custom endpoint with the AWS CLI, run the modify-db-cluster-endpoint command.

The following commands change the set of DB instances that apply to a custom endpoint and optionally
switches between the behavior of a static or exclusion list. The --static-members and --excluded-
members parameters take a space-separated list of DB instance identifiers.

For Linux, macOS, or Unix:

aws rds modify-db-cluster-endpoint --db-cluster-endpoint-identifier my-custom-endpoint \
 --static-members db-instance-id-1 db-instance-id-2 db-instance-id-3 \
 --region region_name

aws rds modify-db-cluster-endpoint --db-cluster-endpoint-identifier my-custom-endpoint \
 --excluded-members db-instance-id-4 db-instance-id-5 \
 --region region_name

For Windows:

aws rds modify-db-cluster-endpoint --db-cluster-endpoint-identifier my-custom-endpoint ^
 --static-members db-instance-id-1 db-instance-id-2 db-instance-id-3 ^
 --region region_name

aws rds modify-db-cluster-endpoint --db-cluster-endpoint-identifier my-custom-endpoint ^
 --excluded-members db-instance-id-4 db-instance-id-5 ^
 --region region_name

RDS API

To edit a custom endpoint with the RDS API, run the ModifyDBClusterEndpoint.html operation.

Deleting a custom endpoint
Console

To delete a custom endpoint with the AWS Management Console, go to the cluster detail page, select the
appropriate custom endpoint, and select the Delete action.

AWS CLI

To delete a custom endpoint with the AWS CLI, run the delete-db-cluster-endpoint command.

47

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-endpoint.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBClusterEndpoint.html.html
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-cluster-endpoint.html

Amazon Aurora User Guide for Aurora
End-to-end AWS CLI example for custom endpoints

The following command deletes a custom endpoint. You don't need to specify the associated cluster, but
you must specify the region.

For Linux, macOS, or Unix:

aws rds delete-db-cluster-endpoint --db-cluster-endpoint-identifier custom-end-point-id \
 --region region_name

For Windows:

aws rds delete-db-cluster-endpoint --db-cluster-endpoint-identifier custom-end-point-id ^
 --region region_name

RDS API

To delete a custom endpoint with the RDS API, run the DeleteDBClusterEndpoint operation.

End-to-end AWS CLI example for custom endpoints
The following tutorial uses AWS CLI examples with Unix shell syntax to show you might define a cluster
with several "small" DB instances and a few "big" DB instances, and create custom endpoints to connect
to each set of DB instances. To run similar commands on your own system, you should be familiar
enough with the basics of working with Aurora clusters and AWS CLI usage to supply your own values for
parameters such as region, subnet group, and VPC security group.

This example demonstrates the initial setup steps: creating an Aurora cluster and adding DB instances
to it. This is a heterogeneous cluster, meaning not all the DB instances have the same capacity.
Most instances use the AWS instance class db.r4.4xlarge, but the last two DB instances use
db.r4.16xlarge. Each of these sample create-db-instance commands prints its output to the
screen and saves a copy of the JSON in a file for later inspection.

aws rds create-db-cluster --db-cluster-identifier custom-endpoint-demo --engine aurora \
 --engine-version 5.6.10a --master-username $MASTER_USER --master-user-password
 $MASTER_PW \
 --db-subnet-group-name $SUBNET_GROUP --vpc-security-group-ids $VPC_SECURITY_GROUP \
 --region $REGION

for i in 01 02 03 04 05 06 07 08
do
 aws rds create-db-instance --db-instance-identifier custom-endpoint-demo-${i} \
 --engine aurora --db-cluster-identifier custom-endpoint-demo --db-instance-class
 db.r4.4xlarge \
 --region $REGION \
 | tee custom-endpoint-demo-${i}.json
done

for i in 09 10
do
 aws rds create-db-instance --db-instance-identifier custom-endpoint-demo-${i} \
 --engine aurora --db-cluster-identifier custom-endpoint-demo --db-instance-class
 db.r4.16xlarge \
 --region $REGION \
 | tee custom-endpoint-demo-${i}.json
done

The larger instances are reserved for specialized kinds of reporting queries. To make it unlikely for them
to be promoted to the primary instance, the following example changes their promotion tier to the
lowest priority.

48

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBClusterEndpoint.html

Amazon Aurora User Guide for Aurora
End-to-end AWS CLI example for custom endpoints

for i in 09 10
do
 aws rds modify-db-instance --db-instance-identifier custom-endpoint-demo-${i} \
 --region $REGION --promotion-tier 15
done

Suppose that you want to use the two "bigger" instances only for the most resource-intensive queries.
To do this, you can first create a custom read-only endpoint. Then you can add a static list of members
so that the endpoint connects only to those DB instances. Those instances are already in the lowest
promotion tier, making it unlikely either of them will be promoted to the primary instance. If one of
them is promoted to the primary instance, it becomes unreachable through this endpoint because we
specified the READER type instead of the ANY type.

The following example demonstrates the create and modify endpoint commands, and sample JSON
output showing the initial and modified state of the custom endpoint.

$ aws rds create-db-cluster-endpoint --region $REGION \
 --db-cluster-identifier custom-endpoint-demo \
 --db-cluster-endpoint-identifier big-instances --endpoint-type reader
{
 "EndpointType": "CUSTOM",
 "Endpoint": "big-instances.cluster-custom-123456789012.ca-central-1.rds.amazonaws.com",
 "DBClusterEndpointIdentifier": "big-instances",
 "DBClusterIdentifier": "custom-endpoint-demo",
 "StaticMembers": [],
 "DBClusterEndpointResourceIdentifier": "cluster-endpoint-W7PE3TLLFNSHXQKFU6J6NV5FHU",
 "ExcludedMembers": [],
 "CustomEndpointType": "READER",
 "Status": "creating",
 "DBClusterEndpointArn": "arn:aws:rds:ca-central-1:111122223333:cluster-endpoint:big-
instances"
}

$ aws rds modify-db-cluster-endpoint --db-cluster-endpoint-identifier big-instances \
 --static-members custom-endpoint-demo-09 custom-endpoint-demo-10 --region $REGION
{
 "EndpointType": "CUSTOM",
 "ExcludedMembers": [],
 "DBClusterEndpointIdentifier": "big-instances",
 "DBClusterEndpointResourceIdentifier": "cluster-endpoint-W7PE3TLLFNSHXQKFU6J6NV5FHU",
 "CustomEndpointType": "READER",
 "DBClusterEndpointArn": "arn:aws:rds:ca-central-1:111122223333:cluster-endpoint:big-
instances",
 "StaticMembers": [
 "custom-endpoint-demo-10",
 "custom-endpoint-demo-09"
],
 "Status": "modifying",
 "Endpoint": "big-instances.cluster-custom-123456789012.ca-central-1.rds.amazonaws.com",
 "DBClusterIdentifier": "custom-endpoint-demo"
}

The default READER endpoint for the cluster can connect to either the "small" or "big" DB instances,
making it impractical to predict query performance and scalability when the cluster becomes busy.
To divide the workload cleanly between the sets of DB instances, you can ignore the default READER
endpoint and create a second custom endpoint that connects to all other DB instances. The following
example does so by creating a custom endpoint and then adding an exclusion list. Any other DB
instances you add to the cluster later will be added to this endpoint automatically. The ANY type means
that this endpoint is associated with eight instances in total: the primary instance and another seven
Aurora Replicas. If the example used the READER type, the custom endpoint would only be associated
with the seven Aurora Replicas.

49

Amazon Aurora User Guide for Aurora
End-to-end AWS CLI example for custom endpoints

$ aws rds create-db-cluster-endpoint --region $REGION --db-cluster-identifier custom-
endpoint-demo \
 --db-cluster-endpoint-identifier small-instances --endpoint-type any
{
 "Status": "creating",
 "DBClusterEndpointIdentifier": "small-instances",
 "CustomEndpointType": "ANY",
 "EndpointType": "CUSTOM",
 "Endpoint": "small-instances.cluster-custom-123456789012.ca-
central-1.rds.amazonaws.com",
 "StaticMembers": [],
 "ExcludedMembers": [],
 "DBClusterIdentifier": "custom-endpoint-demo",
 "DBClusterEndpointArn": "arn:aws:rds:ca-central-1:111122223333:cluster-endpoint:small-
instances",
 "DBClusterEndpointResourceIdentifier": "cluster-endpoint-6RDDXQOC3AKKZT2PRD7ST37BMY"
}

$ aws rds modify-db-cluster-endpoint --db-cluster-endpoint-identifier small-instances \
 --excluded-members custom-endpoint-demo-09 custom-endpoint-demo-10 --region $REGION
{
 "DBClusterEndpointIdentifier": "small-instances",
 "DBClusterEndpointArn": "arn:aws:rds:ca-central-1:111122223333:cluster-endpoint:small-
instances",
 "DBClusterEndpointResourceIdentifier": "cluster-endpoint-6RDDXQOC3AKKZT2PRD7ST37BMY",
 "CustomEndpointType": "ANY",
 "Endpoint": "small-instances.cluster-custom-123456789012.ca-
central-1.rds.amazonaws.com",
 "EndpointType": "CUSTOM",
 "ExcludedMembers": [
 "custom-endpoint-demo-09",
 "custom-endpoint-demo-10"
],
 "StaticMembers": [],
 "DBClusterIdentifier": "custom-endpoint-demo",
 "Status": "modifying"
}

The following example checks the state of the endpoints for this cluster. The cluster still has its original
cluster endpoint, with EndPointType of WRITER, which you would still use for administration, ETL, and
other write operations. It still has its original READER endpoint, which you wouldn't use because each
connection to it might be directed to a "small" or "big" DB instance. The custom endpoints make this
behavior predictable, with connections guaranteed to use one of the "small" or "big" DB instances based
on the endpoint you specify.

$ aws rds describe-db-cluster-endpoints --region $REGION
{
 "DBClusterEndpoints": [
 {
 "EndpointType": "WRITER",
 "Endpoint": "custom-endpoint-demo.cluster-123456789012.ca-
central-1.rds.amazonaws.com",
 "Status": "available",
 "DBClusterIdentifier": "custom-endpoint-demo"
 },
 {
 "EndpointType": "READER",
 "Endpoint": "custom-endpoint-demo.cluster-ro-123456789012.ca-
central-1.rds.amazonaws.com",
 "Status": "available",
 "DBClusterIdentifier": "custom-endpoint-demo"
 },
 {

50

Amazon Aurora User Guide for Aurora
End-to-end AWS CLI example for custom endpoints

 "Endpoint": "small-instances.cluster-custom-123456789012.ca-
central-1.rds.amazonaws.com",
 "CustomEndpointType": "ANY",
 "DBClusterEndpointArn": "arn:aws:rds:ca-central-1:111122223333:cluster-
endpoint:small-instances",
 "ExcludedMembers": [
 "custom-endpoint-demo-09",
 "custom-endpoint-demo-10"
],
 "DBClusterEndpointResourceIdentifier": "cluster-
endpoint-6RDDXQOC3AKKZT2PRD7ST37BMY",
 "DBClusterIdentifier": "custom-endpoint-demo",
 "StaticMembers": [],
 "EndpointType": "CUSTOM",
 "DBClusterEndpointIdentifier": "small-instances",
 "Status": "modifying"
 },
 {
 "Endpoint": "big-instances.cluster-custom-123456789012.ca-
central-1.rds.amazonaws.com",
 "CustomEndpointType": "READER",
 "DBClusterEndpointArn": "arn:aws:rds:ca-central-1:111122223333:cluster-
endpoint:big-instances",
 "ExcludedMembers": [],
 "DBClusterEndpointResourceIdentifier": "cluster-endpoint-
W7PE3TLLFNSHXQKFU6J6NV5FHU",
 "DBClusterIdentifier": "custom-endpoint-demo",
 "StaticMembers": [
 "custom-endpoint-demo-10",
 "custom-endpoint-demo-09"
],
 "EndpointType": "CUSTOM",
 "DBClusterEndpointIdentifier": "big-instances",
 "Status": "available"
 }
]
}

The final examples demonstrate how successive database connections to the custom endpoints connect
to the various DB instances in the Aurora cluster. The small-instances endpoint always connects to
the db.r4.4xlarge DB instances, which are the lower-numbered hosts in this cluster.

$ mysql -h small-instances.cluster-custom-123456789012.ca-central-1.rds.amazonaws.com -u
 $MYUSER -p
mysql> select @@aurora_server_id;
+-------------------------+
| @@aurora_server_id |
+-------------------------+
| custom-endpoint-demo-02 |
+-------------------------+

$ mysql -h small-instances.cluster-custom-123456789012.ca-central-1.rds.amazonaws.com -u
 $MYUSER -p
mysql> select @@aurora_server_id;
+-------------------------+
| @@aurora_server_id |
+-------------------------+
| custom-endpoint-demo-07 |
+-------------------------+

$ mysql -h small-instances.cluster-custom-123456789012.ca-central-1.rds.amazonaws.com -u
 $MYUSER -p
mysql> select @@aurora_server_id;
+-------------------------+

51

Amazon Aurora User Guide for Aurora
Using the instance endpoints

| @@aurora_server_id |
+-------------------------+
| custom-endpoint-demo-01 |
+-------------------------+

The big-instances endpoint always connects to the db.r4.16xlarge DB instances, which are the
two highest-numbered hosts in this cluster.

$ mysql -h big-instances.cluster-custom-123456789012.ca-central-1.rds.amazonaws.com -u
 $MYUSER -p
mysql> select @@aurora_server_id;
+-------------------------+
| @@aurora_server_id |
+-------------------------+
| custom-endpoint-demo-10 |
+-------------------------+

$ mysql -h big-instances.cluster-custom-123456789012.ca-central-1.rds.amazonaws.com -u
 $MYUSER -p
mysql> select @@aurora_server_id;
+-------------------------+
| @@aurora_server_id |
+-------------------------+
| custom-endpoint-demo-09 |
+-------------------------+

Using the instance endpoints
Each DB instance in an Aurora cluster has its own built-in instance endpoint, whose name and other
attributes are managed by Aurora. You can't create, delete, or modify this kind of endpoint. You might
be familiar with instance endpoints if you use Amazon RDS. However, with Aurora you typically use the
writer and reader endpoints more often than the instance endpoints.

In day-to-day Aurora operations, the main way that you use instance endpoints is to diagnose capacity
or performance issues that affect one specific instance in an Aurora cluster. While connected to a specific
instance, you can examine its status variables, metrics, and so on. Doing this can help you determine
what's happening for that instance that's different from what's happening for other instances in the
cluster.

In advanced use cases, you might configure some DB instances differently than others. In this case, use
the instance endpoint to connect directly to an instance that is smaller, larger, or otherwise has different
characteristics than the others. Also, set up failover priority so that this special DB instance is the last
choice to take over as the primary instance. We recommend that you use custom endpoints instead of
the instance endpoint in such cases. Doing so simplifies connection management and high availability as
you add more DB instances to your cluster.

How Aurora endpoints work with high availability
For clusters where high availability is important, use the writer endpoint for read/write or general-
purpose connections and the reader endpoint for read-only connections. The writer and reader
endpoints manage DB instance failover better than instance endpoints do. Unlike the instance endpoints,
the writer and reader endpoints automatically change which DB instance they connect to if a DB instance
in your cluster becomes unavailable.

If the primary DB instance of a DB cluster fails, Aurora automatically fails over to a new primary DB
instance. It does so by either promoting an existing Aurora Replica to a new primary DB instance or
creating a new primary DB instance. If a failover occurs, you can use the writer endpoint to reconnect to
the newly promoted or created primary DB instance, or use the reader endpoint to reconnect to one of

52

Amazon Aurora User Guide for Aurora
Endpoints and high availability

the Aurora Replicas in the DB cluster. During a failover, the reader endpoint might direct connections to
the new primary DB instance of a DB cluster for a short time after an Aurora Replica is promoted to the
new primary DB instance.

If you design your own application logic to manage connections to instance endpoints, you can manually
or programmatically discover the resulting set of available DB instances in the DB cluster. You can then
confirm their instance classes after failover and connect to an appropriate instance endpoint.

For more information about failovers, see Fault tolerance for an Aurora DB cluster (p. 69).

53

Amazon Aurora User Guide for Aurora
DB instance classes

Aurora DB instance classes
The DB instance class determines the computation and memory capacity of an Aurora DB instance. The
DB instance class you need depends on your processing power and memory requirements.

For more information about instance class pricing, see Amazon RDS pricing.

Topics
• DB instance class types (p. 54)
• Supported DB engines for DB instance classes (p. 54)
• Determining DB instance class support in AWS Regions (p. 59)
• Hardware specifications for DB instance classes for Aurora (p. 62)

DB instance class types
Amazon Aurora supports two types of instance classes: memory optimized and burstable performance.
For more information about Amazon EC2 instance types, see Instance types in the Amazon EC2
documentation.

The following are the memory optimized DB instance classes available:

• db.x2g – Instance classes optimized for memory-intensive applications and powered by AWS
Graviton2 processors. These offer low cost per GiB of memory.

• db.r6g – Instance classes powered by AWS Graviton2 processors. These are ideal for running memory-
intensive workloads in open-source databases such as MySQL and PostgreSQL.

• db.r5 – Latest generation instance classes optimized for memory-intensive applications. These offer
improved networking performance. They are powered by the AWS Nitro System, a combination of
dedicated hardware and lightweight hypervisor.

• db.r3 – Instance classes that provide memory optimization.

The following are the burstable performance DB instance classes available:

• db.t4g – Newest-generation burstable instance classes powered by Arm-based AWS Graviton2
processors. These deliver better price performance than previous-generation burstable performance
DB instance classes for a broad set of burstable workloads. T4g instances are configured for Unlimited
mode, which means that they can burst beyond the baseline over a 24-hour window for an additional
charge. We recommend using these instance classes only for development and test servers, or other
nonproduction servers.

• db.t3 – Next generation instance classes that provide a baseline performance level, with the ability
to burst to full CPU usage. T3 instances are configured for Unlimited mode. These instance classes
provide more computing capacity than the previous db.t2 instance classes. They are powered by the
AWS Nitro System, a combination of dedicated hardware and lightweight hypervisor. We recommend
using these instance classes only for development and test servers, or other nonproduction servers.

• db.t2 – Instance classes that provide a baseline performance level, with the ability to burst to full
CPU usage. T2 instances can be configured for Unlimited mode. We recommend using these instance
classes only for development and test servers, or other nonproduction servers.

For DB instance class hardware specifications, see Hardware specifications for DB instance classes for
Aurora (p. 62).

Supported DB engines for DB instance classes

54

https://aws.amazon.com/rds/pricing/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

Amazon Aurora User Guide for Aurora
Supported DB engines

The following are DB engine considerations for DB instance classes:

• Aurora support for db.x2g

• Aurora MySQL versions 2.09.2 and higher, 2.10.0 and higher, and 3.01.0 and higher support the
db.x2g instance classes.

• Aurora PostgreSQL versions 11.9 and higher, 12.4 and higher, and 13.3 and higher support the
db.x2g instance classes.

• Aurora support for db.r6g

• Aurora MySQL versions 2.09.2 and higher and 2.10.0 and higher support the db.r6g instance classes.

• Aurora PostgreSQL versions 13.3, 12.4 and higher and versions 11.9 and higher support the db.r6g
instance classes.

• Aurora support for db.t4g

• Aurora MySQL versions 2.09.2 and higher, 2.10.0 and higher, and 3.01.0 and higher support the
db.t4g instance classes, specifically db.t4g.large and db.t4g.medium.

• Aurora PostgreSQL versions 11.9 and higher, 12.4 and higher, and 13.3 and higher support the
db.t4g instance classes, specifically db.t4g.large and db.t4g.medium.

• Aurora support for db.t3

• Aurora MySQL supports the db.t3.medium and db.t3.small instance classes for version 1.15 and
higher, and all 2.x versions. Aurora MySQL supports the db.t3.large class in version 2.10 and higher.

• Aurora MySQL version 3 includes some changes to instance class support.

• With Aurora MySQL version 3, you can't use db.r3, db.r4, or db.t2 instance classes.

• With Aurora MySQL version 3, you can't use the db.t3.small instance class.

The smallest instance classes that you can use with version 3 are t3.medium and t4g.medium.

• For Aurora MySQL db.r5, db.r4, and db.t3 DB instance classes, no instances in the cluster can have
pending instance-level system updates. To see pending system updates, use the following AWS
Command Line Interface (AWS CLI) command.

aws rds describe-pending-maintenance-actions

• Aurora PostgreSQL version 13.3 supports db.t3 instance classes.

In the following table, you can find details about supported Amazon Aurora DB instance classes for the
Aurora DB engines.

Instance class Aurora MySQL Aurora PostgreSQL

db.x2g – memory optimized instance classes powered by AWS Graviton2 processors

db.x2g.16xlarge 2.09.2 and higher,
2.10.0 and higher,
3.01.0 and higher

13.3, 12.4 and higher,
11.9 and higher

db.x2g.12xlarge 2.09.2 and higher,
2.10.0 and higher,
3.01.0 and higher

13.3, 12.4 and higher,
11.9 and higher

db.x2g.8xlarge 2.09.2 and higher,
2.10.0 and higher,
3.01.0 and higher

13.3, 12.4 and higher,
11.9 and higher

55

Amazon Aurora User Guide for Aurora
Supported DB engines

Instance class Aurora MySQL Aurora PostgreSQL

db.x2g.4xlarge 2.09.2 and higher,
2.10.0 and higher,
3.01.0 and higher

13.3, 12.4 and higher,
11.9 and higher

db.x2g.2xlarge 2.09.2 and higher,
2.10.0 and higher,
3.01.0 and higher

13.3, 12.4 and higher,
11.9 and higher

db.x2g.xlarge 2.09.2 and higher,
2.10.0 and higher,
3.01.0 and higher

13.3, 12.4 and higher,
11.9 and higher

db.x2g.large 2.09.2 and higher,
2.10.0 and higher,
3.01.0 and higher

13.3, 12.4 and higher,
11.9 and higher

db.r6g – Memory-optimized instance classes powered by AWS Graviton2 processors

db.r6g.16xlarge 2.09.2 and higher,
2.10.0 and higher,
3.01.0 and higher

13.3, 12.4 and higher,
11.9 and higher

db.r6g.12xlarge 2.09.2 and higher,
2.10.0 and higher,
3.01.0 and higher

13.3, 12.4 and higher,
11.9 and higher

db.r6g.8xlarge 2.09.2 and higher,
2.10.0 and higher,
3.01.0 and higher

13.3, 12.4 and higher,
11.9 and higher

db.r6g.4xlarge 2.09.2 and higher,
2.10.0 and higher,
3.01.0 and higher

13.3, 12.4 and higher,
11.9 and higher

db.r6g.2xlarge 2.09.2 and higher,
2.10.0 and higher,
3.01.0 and higher

13.3, 12.4 and higher,
11.9 and higher

db.r6g.xlarge 2.09.2 and higher,
2.10.0 and higher,
3.01.0 and higher

13.3, 12.4 and higher,
11.9 and higher

db.r6g.large 2.09.2 and higher,
2.10.0 and higher,
3.01.0 and higher

13.3, 12.4 and higher,
11.9 and higher

db.r5 – latest generation memory optimized instance classes

db.r5.24xlarge 1.22 and higher, 2.06
and higher, 3.01.0 and
higher

Yes

db.r5.16xlarge 1.22 and higher, 2.06
and higher, 3.01.0 and
higher

Yes

db.r5.12xlarge 1.14.4 and higher,
3.01.0 and higher

Yes

56

Amazon Aurora User Guide for Aurora
Supported DB engines

Instance class Aurora MySQL Aurora PostgreSQL

db.r5.8xlarge 1.22 and higher, 2.06
and higher, 3.01.0 and
higher

Yes

db.r5.4xlarge 1.14.4 and higher,
3.01.0 and higher

Yes

db.r5.2xlarge 1.14.4 and higher,
3.01.0 and higher

Yes

db.r5.xlarge 1.14.4 and higher,
3.01.0 and higher

Yes

db.r5.large 1.14.4 and higher,
3.01.0 and higher

Yes

db.r4 – memory optimized instance classes

db.r4.16xlarge 1.14.4 and higher; not
supported in 3.01.0 and
higher

12.4 and higher, 11.4
and higher, 10.4 and
higher, and 9.6.3 and
higher

db.r4.8xlarge 1.14.4 and higher; not
supported in 3.01.0 and
higher

12.4 and higher, 11.4
and higher, 10.4 and
higher, and 9.6.3 and
higher

db.r4.4xlarge 1.14.4 and higher; not
supported in 3.01.0 and
higher

12.4 and higher, 11.4
and higher, 10.4 and
higher, and 9.6.3 and
higher

db.r4.2xlarge 1.14.4 and higher; not
supported in 3.01.0 and
higher

12.4 and higher, 11.4
and higher, 10.4 and
higher, and 9.6.3 and
higher

db.r4.xlarge 1.14.4 and higher; not
supported in 3.01.0 and
higher

12.4 and higher, 11.4
and higher, 10.4 and
higher, and 9.6.3 and
higher

db.r4.large 1.14.4 and higher; not
supported in 3.01.0 and
higher

12.4 and higher, 11.4
and higher, 10.4 and
higher, and 9.6.3 and
higher

db.r3 – memory optimized instance classes

db.r3.8xlarge All 1.x and 2.x versions;
not supported in 3.01.0
and higher

No

db.r3.4xlarge All 1.x and 2.x versions;
not supported in 3.01.0
and higher

No

57

Amazon Aurora User Guide for Aurora
Supported DB engines

Instance class Aurora MySQL Aurora PostgreSQL

db.r3.2xlarge All 1.x and 2.x versions;
not supported in 3.01.0
and higher

No

db.r3.xlarge All 1.x and 2.x versions;
not supported in 3.01.0
and higher

No

db.r3.large All 1.x and 2.x versions;
not supported in 3.01.0
and higher

No

db.t4g – newest generation burstable performance instance classes powered by AWS Graviton2
processors

db.t4g.2xlarge No No

db.t4g.xlarge No No

db.t4g.large 2.09.2 and higher,
2.10.0 and higher,
3.01.0 and higher

13.3, 12.4 and higher,
11.9 and higher

db.t4g.medium 2.09.2 and higher,
2.10.0 and higher,
3.01.0 and higher

13.3, 12.4 and higher,
11.9 and higher

db.t4g.small No No

db.t3 – Next generation burstable performance instance classes

db.t3.2xlarge No No

db.t3.xlarge No No

db.t3.large 2.10 and higher, 3.01.0
and higher

13.3, 11.6 and higher,
10.11 and higher

db.t3.medium 1.14.4 and higher,
3.01.0 and higher

13.3, 10.11 and higher

db.t3.small 1.14.4 and higher; not
supported in 3.01.0 and
higher

No

db.t3.micro No No

db.t2 – burstable performance instance classes

db.t2.medium All 1.x and 2.x versions;
not supported in 3.01.0
and higher

No

db.t2.small All 1.x and 2.x versions;
not supported in 3.01.0
and higher

No

58

Amazon Aurora User Guide for Aurora
Determining DB instance class support in AWS Regions

Determining DB instance class support in AWS
Regions
To determine the DB instance classes supported by each DB engine in a specific AWS Region, you can use
the AWS Management Console, the Amazon RDS Pricing page, or the describe-orderable-db-instance-
options AWS CLI command.

Note
When you perform operations with the AWS CLI, such as creating or modifying a DB cluster,
it automatically shows the supported DB instance classes for a specific DB engine, DB engine
version, and AWS Region.

Contents
• Using the Amazon RDS pricing page to determine DB instance class support in AWS

Regions (p. 59)
• Using the AWS CLI to determine DB instance class support in AWS Regions (p. 59)

• Listing the DB instance classes that are supported by a specific DB engine version in an AWS
Region (p. 60)

• Listing the DB engine versions that support a specific DB instance class in an AWS
Region (p. 61)

Using the Amazon RDS pricing page to determine DB instance
class support in AWS Regions
You can use the Amazon RDS Pricing page to determine the DB instance classes supported by each DB
engine in a specific AWS Region.

To use the pricing page to determine the DB instance classes supported by each engine in a
Region

1. Go to Amazon RDS Pricing.
2. Choose Amazon Aurora.
3. In DB Instances, open MySQL-Compatible Edition or PostgreSQL-Compatible Edition.
4. To see the DB instance classes available in an AWS Region, choose the AWS Region in Region in the

appropriate subsection.

Using the AWS CLI to determine DB instance class support in
AWS Regions
You can use the AWS CLI to determine which DB instance classes are supported for specific DB engines
and DB engine versions in an AWS Region.

To use the AWS CLI examples in this section, make sure that you enter valid values for the DB engine,
DB engine version, DB instance class, and AWS Region. The following table shows the valid DB engine
values.

Engine name Engine value in CLI
commands

More information about versions

MySQL 5.6-compatible
Aurora

aurora Database engine updates for Amazon Aurora MySQL
version 1 (p. 1217)

59

http://aws.amazon.com/rds/pricing/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-orderable-db-instance-options.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-orderable-db-instance-options.html
http://aws.amazon.com/rds/pricing/
http://aws.amazon.com/rds/pricing/

Amazon Aurora User Guide for Aurora
Determining DB instance class support in AWS Regions

Engine name Engine value in CLI
commands

More information about versions

MySQL 5.7-compatible
and 8.0-compatible Aurora

aurora-mysql Database engine updates for Amazon Aurora MySQL
version 2 (p. 1129), Database engine updates for
Amazon Aurora MySQL version 3 (p. 1129)

Aurora PostgreSQL aurora-postgresql Amazon Aurora PostgreSQL releases and engine
versions (p. 1615)

For information about AWS Region names, see AWS Regions (p. 11).

The following examples demonstrate how to determine DB instance class support in an AWS Region
using the describe-orderable-db-instance-options AWS CLI command.

Topics

• Listing the DB instance classes that are supported by a specific DB engine version in an AWS
Region (p. 60)

• Listing the DB engine versions that support a specific DB instance class in an AWS Region (p. 61)

Listing the DB instance classes that are supported by a specific DB engine
version in an AWS Region

To list the DB instance classes that are supported by a specific DB engine version in an AWS Region, run
the following command.

For Linux, macOS, or Unix:

aws rds describe-orderable-db-instance-options --engine engine --engine-version version \
 --query "OrderableDBInstanceOptions[].
{DBInstanceClass:DBInstanceClass,SupportedEngineModes:SupportedEngineModes[0]}" \
 --output table \
 --region region

For Windows:

aws rds describe-orderable-db-instance-options --engine engine --engine-version version ^
 --query "OrderableDBInstanceOptions[].
{DBInstanceClass:DBInstanceClass,SupportedEngineModes:SupportedEngineModes[0]}" ^
 --output table ^
 --region region

The output also shows the engine modes that are supported for each DB instance class.

For example, the following command lists the supported DB instance classes for version 12.4 of the
Aurora PostgreSQL DB engine in US East (N. Virginia).

For Linux, macOS, or Unix:

aws rds describe-orderable-db-instance-options --engine aurora-postgresql --engine-version
 12.4 \
 --query "OrderableDBInstanceOptions[].
{DBInstanceClass:DBInstanceClass,SupportedEngineModes:SupportedEngineModes[0]}" \
 --output table \

60

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-orderable-db-instance-options.html

Amazon Aurora User Guide for Aurora
Determining DB instance class support in AWS Regions

 --region us-east-1

For Windows:

aws rds describe-orderable-db-instance-options --engine aurora-postgresql --engine-version
 12.4 ^
 --query "OrderableDBInstanceOptions[].
{DBInstanceClass:DBInstanceClass,SupportedEngineModes:SupportedEngineModes[0]}" ^
 --output table ^
 --region us-east-1

Listing the DB engine versions that support a specific DB instance class in an
AWS Region

To list the DB engine versions that support a specific DB instance class in an AWS Region, run the
following command.

For Linux, macOS, or Unix:

aws rds describe-orderable-db-instance-options --engine engine --db-instance-
class DB_instance_class \
 --query "OrderableDBInstanceOptions[].
{EngineVersion:EngineVersion,SupportedEngineModes:SupportedEngineModes[0]}" \
 --output table \
 --region region

For Windows:

aws rds describe-orderable-db-instance-options --engine engine --db-instance-
class DB_instance_class ^
 --query "OrderableDBInstanceOptions[].
{EngineVersion:EngineVersion,SupportedEngineModes:SupportedEngineModes[0]}" ^
 --output table ^
 --region region

The output also shows the engine modes that are supported for each DB engine version.

For example, the following command lists the DB engine versions of the Aurora PostgreSQL DB engine
that support the db.r5.large DB instance class in US East (N. Virginia).

For Linux, macOS, or Unix:

aws rds describe-orderable-db-instance-options --engine aurora-postgresql --db-instance-
class db.r5.large \
 --query "OrderableDBInstanceOptions[].
{EngineVersion:EngineVersion,SupportedEngineModes:SupportedEngineModes[0]}" \
 --output table \
 --region us-east-1

For Windows:

aws rds describe-orderable-db-instance-options --engine aurora-postgresql --db-instance-
class db.r5.large ^
 --query "OrderableDBInstanceOptions[].
{EngineVersion:EngineVersion,SupportedEngineModes:SupportedEngineModes[0]}" ^
 --output table ^
 --region us-east-1

61

Amazon Aurora User Guide for Aurora
Hardware specifications

Hardware specifications for DB instance classes for
Aurora
The following terminology is used to describe hardware specifications for DB instance classes:

vCPU

The number of virtual central processing units (CPUs). A virtual CPU is a unit of capacity that you can
use to compare DB instance classes. Instead of purchasing or leasing a particular processor to use for
several months or years, you are renting capacity by the hour. Our goal is to make a consistent and
specific amount of CPU capacity available, within the limits of the actual underlying hardware.

ECU

The relative measure of the integer processing power of an Amazon EC2 instance. To make it easy
for developers to compare CPU capacity between different instance classes, we have defined an
Amazon EC2 Compute Unit. The amount of CPU that is allocated to a particular instance is expressed
in terms of these EC2 Compute Units. One ECU currently provides CPU capacity equivalent to a 1.0–
1.2 GHz 2007 Opteron or 2007 Xeon processor.

Memory (GiB)

The RAM, in gibibytes, allocated to the DB instance. There is often a consistent ratio between
memory and vCPU. As an example, take the db.r4 instance class, which has a memory to vCPU ratio
similar to the db.r5 instance class. However, for most use cases the db.r5 instance class provides
better, more consistent performance than the db.r4 instance class.

Max. Bandwidth (Mbps)

The maximum bandwidth in megabits per second. Divide by 8 to get the expected throughput in
megabytes per second.

Note
This figure refers to I/O bandwidth for local storage within the DB instance. It doesn't apply
to communication with the Aurora cluster volume.

Network Performance

The network speed relative to other DB instance classes.

In the following table, you can find hardware details about the Amazon RDS DB instance classes for
Aurora.

For information about Aurora DB engine support for each DB instance class, see Supported DB engines
for DB instance classes (p. 54).

Instance class vCPU ECU Memory (GiB) Max. bandwidth
(mbps) of local
storage

Network
performance

db.x2g – memory-optimized instance classes

db.x2g.16xlarge 64 — 1024 19,000 25 Gbps

db.x2g.12xlarge 48 — 768 14,250 20 Gbps

db.x2g.8xlarge 32 — 512 9,500 12 Gbps

db.x2g.4xlarge 16 — 256 4,750 Up to 10 Gbps

db.x2g.2xlarge 8 — 128 Up to 4,750 Up to 10 Gbps

62

Amazon Aurora User Guide for Aurora
Hardware specifications

Instance class vCPU ECU Memory (GiB) Max. bandwidth
(mbps) of local
storage

Network
performance

db.x2g.xlarge 4 — 64 Up to 4,750 Up to 10 Gbps

db.x2g.large 2 — 32 Up to 4,750 Up to 10 Gbps

db.r6g – Memory-optimized instance classes powered by AWS Graviton2 processors

db.r6g.16xlarge 64 – 512 19,000 25 Gbps

db.r6g.12xlarge 48 – 384 13,500 20 Gbps

db.r6g.8xlarge 32 – 256 9,000 12 Gbps

db.r6g.4xlarge 16 – 128 4,750 Up to 10 Gbps

db.r6g.2xlarge 8 – 64 Up to 4,750 Up to 10 Gbps

db.r6g.xlarge 4 – 32 Up to 4,750 Up to 10 Gbps

db.r6g.large 2 – 16 Up to 4,750 Up to 10 Gbps

db.r5 – latest generation memory optimized instance classes

db.r5.24xlarge 96 347 768 19,000 25 Gbps

db.r5.16xlarge 64 264 512 13,600 20 Gbps

db.r5.12xlarge 48 173 384 9,500 10 Gbps

db.r5.8xlarge 32 132 256 6,800 10 Gbps

db.r5.4xlarge 16 71 128 4,750 Up to 10 Gbps

db.r5.2xlarge 8 38 64 Up to 4,750 Up to 10 Gbps

db.r5.xlarge 4 19 32 Up to 4,750 Up to 10 Gbps

db.r5.large 2 10 16 Up to 4,750 Up to 10 Gbps

db.r4 – memory optimized instance classes

db.r4.16xlarge 64 195 488 14,000 25 Gbps

db.r4.8xlarge 32 99 244 7,000 10 Gbps

db.r4.4xlarge 16 53 122 3,500 Up to 10 Gbps

db.r4.2xlarge 8 27 61 1,700 Up to 10 Gbps

db.r4.xlarge 4 13.5 30.5 850 Up to 10 Gbps

db.r4.large 2 7 15.25 425 Up to 10 Gbps

db.r3 – memory optimized instance classes

db.r3.8xlarge 32 104 244 — 10 Gbps

db.r3.4xlarge 16 52 122 2,000 High

db.r3.2xlarge 8 26 61 1,000 High

63

Amazon Aurora User Guide for Aurora
Aurora storage and reliability

Instance class vCPU ECU Memory (GiB) Max. bandwidth
(mbps) of local
storage

Network
performance

db.r3.xlarge 4 13 30.5 500 Moderate

db.r3.large 2 6.5 15.25 — Moderate

db.t4g – Newest generation burstable performance instance classes

db.t4g.large 2 – 8 Up to 2,780 Up to 5 Gbps

db.t4g.medium 2 – 4 Up to 2,085 Up to 5 Gbps

db.t3 – Next generation burstable performance instance classes

db.t3.large 2 Variable 8 Up to 2,048 Up to 5 Gbps

db.t3.medium 2 Variable 4 Up to 1,536 Up to 5 Gbps

db.t3.small 2 Variable 2 Up to 1,536 Up to 5 Gbps

db.t2 – burstable performance instance classes

db.t2.medium 2 Variable 4 — Moderate

db.t2.small 1 Variable 2 — Low

** The r3.8xlarge instance doesn't have dedicated EBS bandwidth and therefore doesn't offer EBS
optimization. On this instance, network traffic and Amazon EBS traffic share the same 10-gigabit
network interface.

Amazon Aurora storage and reliability
Following, you can learn about the Aurora storage subsystem. Aurora uses a distributed and shared
storage architecture that is an important factor in performance, scalability, and reliability for Aurora
clusters.

Topics
• Overview of Aurora storage (p. 64)
• What the cluster volume contains (p. 65)
• How Aurora storage automatically resizes (p. 65)
• How Aurora data storage is billed (p. 65)
• Amazon Aurora reliability (p. 66)

Overview of Aurora storage
Aurora data is stored in the cluster volume, which is a single, virtual volume that uses solid state drives
(SSDs). A cluster volume consists of copies of the data across three Availability Zones in a single AWS
Region. Because the data is automatically replicated across Availability Zones, your data is highly durable
with less possibility of data loss. This replication also ensures that your database is more available during
a failover. It does so because the data copies already exist in the other Availability Zones and continue to
serve data requests to the DB instances in your DB cluster. The amount of replication is independent of
the number of DB instances in your cluster.

64

Amazon Aurora User Guide for Aurora
Cluster volume contents

What the cluster volume contains
The Aurora cluster volume contains all your user data, schema objects, and internal metadata such as the
system tables and the binary log. For example, Aurora stores all the tables, indexes, binary large objects
(BLOBs), stored procedures, and so on for an Aurora cluster in the cluster volume.

The Aurora shared storage architecture makes your data independent from the DB instances in the
cluster. For example, you can add a DB instance quickly because Aurora doesn't make a new copy of the
table data. Instead, the DB instance connects to the shared volume that already contains all your data.
You can remove a DB instance from a cluster without removing any of the underlying data from the
cluster. Only when you delete the entire cluster does Aurora remove the data.

How Aurora storage automatically resizes
Aurora cluster volumes automatically grow as the amount of data in your database increases. The
maximum size of for an Aurora cluster volume is 128 tebibytes (TiB) or 64 TiB, depending on the DB
engine version. For details about the maximum size for a specific version, see Amazon Aurora size
limits (p. 1826). This automatic storage scaling is combined with a high-performance and highly
distributed storage subsystem. These make Aurora a good choice for your important enterprise data
when your main objectives are reliability and high availability.

To display the volume status, see Displaying volume status for an Aurora MySQL DB cluster (p. 858) or
Displaying volume status for an Aurora PostgreSQL DB cluster (p. 1384). For ways to balance storage
costs against other priorities, Storage scaling (p. 396) describes how to monitor the Amazon Aurora
metrics AuroraVolumeBytesLeftTotal and VolumeBytesUsed in CloudWatch.

When Aurora data is removed, the space allocated for that data is freed. Examples of removing data
include dropping or truncating a table. This automatic reduction in storage usage helps you to minimize
storage charges.

Note
The storage limits and dynamic resizing behavior discussed here applies to persistent tables
and other data stored in the cluster volume. Data for temporary tables is stored in the local DB
instance and its maximum size depends on the instance class that you use.

Some storage features, such as the maximum size of a cluster volume and automatic resizing when
data is deleted, depend on the Aurora version of your cluster. For more information, see Storage
scaling (p. 396). You can also learn how to avoid storage issues and how to monitor the allocated
storage and free space in your cluster.

How Aurora data storage is billed
Even though an Aurora cluster volume can grow up to 128 tebibytes (TiB), you are only charged for the
space that you use in an Aurora cluster volume. In earlier Aurora versions, the cluster volume could reuse
space that was freed up when you deleted data, but the allocated storage space would never decrease.
Starting in Aurora MySQL 2.09.0 and 1.23.0, and Aurora PostgreSQL 3.3.0 and 2.6.0, when Aurora data is
removed, such as by dropping a table or database, the overall allocated space decreases by a comparable
amount. Thus, you can reduce storage charges by deleting tables, indexes, databases, and so on that you
no longer need.

Tip
For earlier versions without the dynamic resizing feature, resetting the storage usage for a
cluster involved doing a logical dump and restoring to a new cluster. That operation can take a
long time for a substantial volume of data. If you encounter this situation, consider upgrading
your cluster to a version that supports volume shrinking.

For pricing information about Aurora data storage, see Amazon RDS for Aurora Pricing.

65

https://aws.amazon.com/rds/aurora/pricing

Amazon Aurora User Guide for Aurora
Reliability

For information about how to minimize storage charges by monitoring storage usage for your cluster,
see Storage scaling (p. 396). For pricing information about Aurora data storage, see Amazon RDS for
Aurora pricing.

Amazon Aurora reliability
Aurora is designed to be reliable, durable, and fault tolerant. You can architect your Aurora DB cluster
to improve availability by doing things such as adding Aurora Replicas and placing them in different
Availability Zones, and also Aurora includes several automatic features that make it a reliable database
solution.

Topics

• Storage auto-repair (p. 66)

• Survivable cache warming (p. 66)

• Crash recovery (p. 66)

Storage auto-repair
Because Aurora maintains multiple copies of your data in three Availability Zones, the chance of losing
data as a result of a disk failure is greatly minimized. Aurora automatically detects failures in the disk
volumes that make up the cluster volume. When a segment of a disk volume fails, Aurora immediately
repairs the segment. When Aurora repairs the disk segment, it uses the data in the other volumes that
make up the cluster volume to ensure that the data in the repaired segment is current. As a result, Aurora
avoids data loss and reduces the need to perform a point-in-time restore to recover from a disk failure.

Survivable cache warming
Aurora "warms" the buffer pool cache when a database starts up after it has been shut down or restarted
after a failure. That is, Aurora preloads the buffer pool with the pages for known common queries that
are stored in an in-memory page cache. This provides a performance gain by bypassing the need for the
buffer pool to "warm up" from normal database use.

The Aurora page cache is managed in a separate process from the database, which allows the page cache
to survive independently of the database. In the unlikely event of a database failure, the page cache
remains in memory, which ensures that the buffer pool is warmed with the most current state when the
database restarts.

Crash recovery
Aurora is designed to recover from a crash almost instantaneously and continue to serve your application
data without the binary log. Aurora performs crash recovery asynchronously on parallel threads, so that
your database is open and available immediately after a crash.

For more information about crash recovery, see Fault tolerance for an Aurora DB cluster (p. 69).

The following are considerations for binary logging and crash recovery on Aurora MySQL:

• Enabling binary logging on Aurora directly affects the recovery time after a crash, because it forces the
DB instance to perform binary log recovery.

• The type of binary logging used affects the size and efficiency of logging. For the same amount of
database activity, some formats log more information than others in the binary logs. The following
settings for the binlog_format parameter result in different amounts of log data:

• ROW – The most log data

66

https://aws.amazon.com/rds/aurora/pricing
https://aws.amazon.com/rds/aurora/pricing

Amazon Aurora User Guide for Aurora
Aurora security

• STATEMENT – The least log data

• MIXED – A moderate amount of log data that usually provides the best combination of data integrity
and performance

The amount of binary log data affects recovery time. If there is more data logged in the binary logs,
the DB instance must process more data during recovery, which increases recovery time.

• Aurora does not need the binary logs to replicate data within a DB cluster or to perform point in time
restore (PITR).

• If you don't need the binary log for external replication (or an external binary log stream), we
recommend that you set the binlog_format parameter to OFF to disable binary logging. Doing so
reduces recovery time.

For more information about Aurora binary logging and replication, see Replication with Amazon
Aurora (p. 70). For more information about the implications of different MySQL replication types,
see Advantages and disadvantages of statement-based and row-based replication in the MySQL
documentation.

Amazon Aurora security
Security for Amazon Aurora is managed at three levels:

• To control who can perform Amazon RDS management actions on Aurora DB clusters and DB
instances, you use AWS Identity and Access Management (IAM). When you connect to AWS using IAM
credentials, your AWS account must have IAM policies that grant the permissions required to perform
Amazon RDS management operations. For more information, see Identity and access management in
Amazon Aurora (p. 1737).

If you are using IAM to access the Amazon RDS console, you must first log on to the AWS Management
Console with your IAM user credentials, and then go to the Amazon RDS console at https://
console.aws.amazon.com/rds.

• Aurora DB clusters must be created in a virtual private cloud (VPC) based on the Amazon VPC service.
To control which devices and Amazon EC2 instances can open connections to the endpoint and port
of the DB instance for Aurora DB clusters in a VPC, you use a VPC security group. You can make these
endpoint and port connections using Transport Layer Security (TLS)/Secure Sockets Layer (SSL). In
addition, firewall rules at your company can control whether devices running at your company can
open connections to a DB instance. For more information on VPCs, see Amazon Virtual Private Cloud
VPCs and Amazon Aurora (p. 1800).

• To authenticate logins and permissions for an Amazon Aurora DB cluster, you can take either of the
following approaches, or a combination of them.

• You can take the same approach as with a stand-alone DB instance of MySQL or PostgreSQL.

Techniques for authenticating logins and permissions for stand-alone DB instances of MySQL or
PostgreSQL, such as using SQL commands or modifying database schema tables, also work with
Aurora. For more information, see Security with Amazon Aurora MySQL (p. 795) or Security with
Amazon Aurora PostgreSQL (p. 1297).

• You can also use IAM database authentication for Aurora MySQL.

With IAM database authentication, you authenticate to your Aurora MySQL DB cluster by using an
IAM user or IAM role and an authentication token. An authentication token is a unique value that is
generated using the Signature Version 4 signing process. By using IAM database authentication, you
can use the same credentials to control access to your AWS resources and your databases. For more
information, see IAM database authentication (p. 1756).

67

https://dev.mysql.com/doc/refman/5.6/en/replication-sbr-rbr.html
https://console.aws.amazon.com/rds
https://console.aws.amazon.com/rds

Amazon Aurora User Guide for Aurora
Using SSL with Aurora DB clusters

For information about configuring security, see Security in Amazon Aurora (p. 1719).

Using SSL with Aurora DB clusters
Amazon Aurora DB clusters support Secure Sockets Layer (SSL) connections from applications using
the same process and public key as Amazon RDS DB instances. For more information, see Security with
Amazon Aurora MySQL (p. 795), Security with Amazon Aurora PostgreSQL (p. 1297), or Using TLS/SSL
with Aurora Serverless v1 (p. 150).

High availability for Amazon Aurora
The Amazon Aurora architecture involves separation of storage and compute. Aurora includes some high
availability features that apply to the data in your DB cluster. The data remains safe even if some or all
of the DB instances in the cluster become unavailable. Other high availability features apply to the DB
instances. These features help to make sure that one or more DB instances are ready to handle database
requests from your application.

Topics
• High availability for Aurora data (p. 68)
• High availability for Aurora DB instances (p. 68)
• High availability across AWS Regions with Aurora global databases (p. 69)
• Fault tolerance for an Aurora DB cluster (p. 69)

High availability for Aurora data
Aurora stores copies of the data in a DB cluster across multiple Availability Zones in a single AWS
Region. Aurora stores these copies regardless of whether the instances in the DB cluster span
multiple Availability Zones. For more information on Aurora, see Managing an Amazon Aurora DB
cluster (p. 367).

When data is written to the primary DB instance, Aurora synchronously replicates the data across
Availability Zones to six storage nodes associated with your cluster volume. Doing so provides data
redundancy, eliminates I/O freezes, and minimizes latency spikes during system backups. Running a
DB instance with high availability can enhance availability during planned system maintenance, and
help protect your databases against failure and Availability Zone disruption. For more information on
Availability Zones, see Regions and Availability Zones (p. 11).

High availability for Aurora DB instances
For a cluster using single-master replication, after you create the primary instance, you can create up to
15 read-only Aurora Replicas. The Aurora Replicas are also known as reader instances.

During day-to-day operations, you can offload some of the work for read-intensive applications by using
the reader instances to process SELECT queries. When a problem affects the primary instance, one of
these reader instances takes over as the primary instance. This mechanism is known as failover. Many
Aurora features apply to the failover mechanism. For example, Aurora detects database problems and
activates the failover mechanism automatically when necessary. Aurora also has features that reduce the
time for failover to complete. Doing so minimizes the time that the database is unavailable for writing
during a failover.

To use a connection string that stays the same even when a failover promotes a new primary instance,
you connect to the cluster endpoint. The cluster endpoint always represents the current primary
instance in the cluster. For more information about the cluster endpoint, see Amazon Aurora connection
management (p. 32).

68

Amazon Aurora User Guide for Aurora
High availability across AWS Regions

with Aurora global databases

Tip
Within each AWS Region, Availability Zones represent locations that are distinct from each
other to provide isolation in case of outages. We recommend that you distribute the primary
instance and reader instances in your DB cluster over multiple Availability Zones to improve the
availability of your DB cluster. That way, an issue that affects an entire Availability Zone doesn't
cause an outage for your cluster.
You can set up a Multi-AZ cluster by making a simple choice when you create the cluster. The
choice is simple whether you use the AWS Management Console, the AWS CLI, or the Amazon
RDS API. You can also make an existing Aurora cluster into a Multi-AZ cluster by adding a new
reader instance and specifying a different Availability Zone.

High availability across AWS Regions with Aurora
global databases
For high availability across multiple AWS Regions, you can set up Aurora global databases. Each Aurora
global database spans multiple AWS Regions, enabling low latency global reads and disaster recovery
from outages across an AWS Region. Aurora automatically handles replicating all data and updates from
the primary AWS Region to each of the secondary Regions. For more information, see Using Amazon
Aurora global databases (p. 225).

Fault tolerance for an Aurora DB cluster
An Aurora DB cluster is fault tolerant by design. The cluster volume spans multiple Availability Zones
in a single AWS Region, and each Availability Zone contains a copy of the cluster volume data. This
functionality means that your DB cluster can tolerate a failure of an Availability Zone without any loss of
data and only a brief interruption of service.

If the primary instance in a DB cluster using single-master replication fails, Aurora automatically fails
over to a new primary instance in one of two ways:

• By promoting an existing Aurora Replica to the new primary instance
• By creating a new primary instance

If the DB cluster has one or more Aurora Replicas, then an Aurora Replica is promoted to the primary
instance during a failure event. A failure event results in a brief interruption, during which read and write
operations fail with an exception. However, service is typically restored in less than 120 seconds, and
often less than 60 seconds. To increase the availability of your DB cluster, we recommend that you create
at least one or more Aurora Replicas in two or more different Availability Zones.

Tip
In Aurora MySQL 2.10 and higher, you can improve availability during a failover by having more
than one reader DB instance in a cluster. In Aurora MySQL 2.10 and higher, Aurora restarts only
the writer DB instance and the failover target during a failover. Other reader DB instances in
the cluster remain available to continue processing queries through connections to the reader
endpoint.

You can customize the order in which your Aurora Replicas are promoted to the primary instance after a
failure by assigning each replica a priority. Priorities range from 0 for the first priority to 15 for the last
priority. If the primary instance fails, Amazon RDS promotes the Aurora Replica with the better priority
to the new primary instance. You can modify the priority of an Aurora Replica at any time. Modifying the
priority doesn't trigger a failover.

More than one Aurora Replica can share the same priority, resulting in promotion tiers. If two or more
Aurora Replicas share the same priority, then Amazon RDS promotes the replica that is largest in size. If
two or more Aurora Replicas share the same priority and size, then Amazon RDS promotes an arbitrary
replica in the same promotion tier.

69

Amazon Aurora User Guide for Aurora
Replication with Aurora

If the DB cluster doesn't contain any Aurora Replicas, then the primary instance is recreated in the
same AZ during a failure event. A failure event results in an interruption during which read and write
operations fail with an exception. Service is restored when the new primary instance is created, which
typically takes less than 10 minutes. Promoting an Aurora Replica to the primary instance is much faster
than creating a new primary instance.

Suppose that the primary instance in your cluster is unavailable because of an outage that affects an
entire AZ. In this case, the way to bring a new primary instance online depends on whether your cluster
uses a multi-AZ configuration. If the cluster contains any reader instances in other AZs, Aurora uses the
failover mechanism to promote one of those reader instances to be the new primary instance. If your
provisioned cluster only contains a single DB instance, or if the primary instance and all reader instances
are in the same AZ, you must manually create one or more new DB instances in another AZ. If your
cluster uses Aurora Serverless, Aurora automatically creates a new DB instance in another AZ. However,
this process involves a host replacement and thus takes longer than a failover.

Note
Amazon Aurora also supports replication with an external MySQL database, or an RDS MySQL
DB instance. For more information, see Replication between Aurora and MySQL or between
Aurora and another Aurora DB cluster (binary log replication) (p. 953).

Replication with Amazon Aurora
There are several replication options with Aurora. Each Aurora DB cluster has built-in replication between
multiple DB instances in the same cluster. You can also set up replication with your Aurora cluster as the
source or the target. When you replicate data into or out of an Aurora cluster, you can choose between
built-in features such as Aurora global databases or the traditional replication mechanisms for the
MySQL or PostgreSQL DB engines. You can choose the appropriate options based on which one provides
the right combination of high availability, convenience, and performance for your needs. The following
sections explain how and when to choose each technique.

Topics
• Aurora Replicas (p. 70)
• Replication with Aurora MySQL (p. 71)
• Replication with Aurora PostgreSQL (p. 72)

Aurora Replicas
When you create a second, third, and so on DB instance in an Aurora provisioned DB cluster, Aurora
automatically sets up replication from the writer DB instance to all the other DB instances. These other
DB instances are read-only and are known as Aurora Replicas. We also refer to them as reader instances
when discussing the ways that you can combine writer and reader DB instances within a cluster.

Aurora Replicas have two main purposes. You can issue queries to them to scale the read operations
for your application. You typically do so by connecting to the reader endpoint of the cluster. That way,
Aurora can spread the load for read-only connections across as many Aurora Replicas as you have in
the cluster. Aurora Replicas also help to increase availability. If the writer instance in a cluster becomes
unavailable, Aurora automatically promotes one of the reader instances to take its place as the new
writer.

An Aurora DB cluster can contain up to 15 Aurora Replicas. The Aurora Replicas can be distributed across
the Availability Zones that a DB cluster spans within an AWS Region.

The data in your DB cluster has its own high availability and reliability features, independent of the
DB instances in the cluster. If you aren't familiar with Aurora storage features, see Overview of Aurora

70

Amazon Aurora User Guide for Aurora
Aurora MySQL

storage (p. 64). The DB cluster volume is physically made up of multiple copies of the data for the
DB cluster. The primary instance and the Aurora Replicas in the DB cluster all see the data in the cluster
volume as a single logical volume.

As a result, all Aurora Replicas return the same data for query results with minimal replica lag. This lag
is usually much less than 100 milliseconds after the primary instance has written an update. Replica lag
varies depending on the rate of database change. That is, during periods where a large amount of write
operations occur for the database, you might see an increase in replica lag.

Aurora Replicas work well for read scaling because they are fully dedicated to read operations on your
cluster volume. Write operations are managed by the primary instance. Because the cluster volume is
shared among all DB instances in your DB cluster, minimal additional work is required to replicate a copy
of the data for each Aurora Replica.

To increase availability, you can use Aurora Replicas as failover targets. That is, if the primary instance
fails, an Aurora Replica is promoted to the primary instance. There is a brief interruption during which
read and write requests made to the primary instance fail with an exception. When this happens, some
of the Aurora Replicas might be rebooted, depending on the DB engine version. For information about
the rebooting behavior of different Aurora DB engine versions, see Rebooting an Amazon Aurora DB
cluster or Amazon Aurora DB instance (p. 451). Promoting an Aurora Replica this way is much faster
than recreating the primary instance. If your Aurora DB cluster doesn't include any Aurora Replicas, then
your DB cluster isn't available while your DB instance is recovering from the failure.

For high-availability scenarios, we recommend that you create one or more Aurora Replicas. These should
be of the same DB instance class as the primary instance and in different Availability Zones for your
Aurora DB cluster. For more information about Aurora Replicas as failover targets, see Fault tolerance for
an Aurora DB cluster (p. 69).

When an Aurora Replica is deleted, its instance endpoint is removed immediately, and the Aurora Replica
is removed from the reader endpoint. If there are statements running on the Aurora Replica that is being
deleted, there is a three minute grace period. Existing statements can finish gracefully during the grace
period. When the grace period ends, the Aurora Replica is shut down and deleted.

You can't create an encrypted Aurora Replica for an unencrypted Aurora DB cluster. You can't create an
unencrypted Aurora Replica for an encrypted Aurora DB cluster.

Tip
You can use Aurora Replicas within an Aurora cluster as your only form of replication to keep
your data highly available. You can also combine the built-in Aurora replication with the
other types of replication. Doing so can help to provide an extra level of high availability and
geographic distribution of your data.

For details on how to create an Aurora Replica, see Adding Aurora Replicas to a DB cluster (p. 392).

Replication with Aurora MySQL
In addition to Aurora Replicas, you have the following options for replication with Aurora MySQL:

• Aurora MySQL DB clusters in different AWS Regions.
• You can replicate data across multiple Regions by using an Aurora global database. For details, see

High availability across AWS Regions with Aurora global databases (p. 69)
• You can create an Aurora read replica of an Aurora MySQL DB cluster in a different AWS Region, by

using MySQL binary log (binlog) replication. Each cluster can have up to five read replicas created
this way, each in a different Region.

• Two Aurora MySQL DB clusters in the same Region, by using MySQL binary log (binlog) replication.
• An RDS for MySQL DB instance as the source of data and an Aurora MySQL DB cluster, by creating an

Aurora read replica of an RDS for MySQL DB instance. Typically, you use this approach for migration to
Aurora MySQL, rather than for ongoing replication.

71

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL

For more information about replication with Aurora MySQL, see Single-master replication with Amazon
Aurora MySQL (p. 939).

Replication with Aurora PostgreSQL
In addition to Aurora Replicas, you have the following options for replication with Aurora PostgreSQL:

• An Aurora primary DB cluster in one Region and up to five read-only secondary DB clusters in different
Regions by using an Aurora global database. Aurora PostgreSQL doesn't support cross-Region Aurora
Replicas. However, you can use Aurora global database to scale your Aurora PostgreSQL DB cluster's
read capabilities to more than one AWS Region and to meet availability goals. For more information,
see Using Amazon Aurora global databases (p. 225).

• Two Aurora PostgreSQL DB clusters in the same Region, by using PostgreSQL's logical replication
feature.

• An RDS for PostgreSQL DB instance as the source of data and an Aurora PostgreSQL DB cluster, by
creating an Aurora read replica of an RDS for PostgreSQL DB instance. Typically, you use this approach
for migration to Aurora PostgreSQL, rather than for ongoing replication.

For more information about replication with Aurora PostgreSQL, see Replication with Amazon Aurora
PostgreSQL (p. 1448).

DB instance billing for Aurora
Amazon RDS instances in an Aurora cluster are billed based on the following components:

• DB instance hours (per hour) – Based on the DB instance class of the DB instance (for example,
db.t2.small or db.m4.large). Pricing is listed on a per-hour basis, but bills are calculated down to the
second and show times in decimal form. RDS usage is billed in one second increments, with a minimum
of 10 minutes. For more information, see Aurora DB instance classes (p. 54).

• Storage (per GiB per month) – Storage capacity that you have provisioned to your DB instance. If you
scale your provisioned storage capacity within the month, your bill is prorated. For more information,
see Amazon Aurora storage and reliability (p. 64).

• I/O requests (per 1 million requests per month) – Total number of storage I/O requests that you have
made in a billing cycle.

• Backup storage (per GiB per month) – Backup storage is the storage that is associated with automated
database backups and any active database snapshots that you have taken. Increasing your backup
retention period or taking additional database snapshots increases the backup storage consumed by
your database. Per second billing doesn't apply to backup storage (metered in GB-month).

For more information, see Backing up and restoring an Amazon Aurora DB cluster (p. 490).

• Data transfer (per GB) – Data transfer in and out of your DB instance from or to the internet and other
AWS Regions.

Amazon RDS provides the following purchasing options to enable you to optimize your costs based on
your needs:

• On-Demand Instances – Pay by the hour for the DB instance hours that you use. Pricing is listed on a
per-hour basis, but bills are calculated down to the second and show times in decimal form. RDS usage
is now billed in one second increments, with a minimum of 10 minutes.

• Reserved Instances – Reserve a DB instance for a one-year or three-year term and get a significant
discount compared to the on-demand DB instance pricing. With Reserved Instance usage, you can

72

Amazon Aurora User Guide for Aurora
DB instance billing for Aurora

launch, delete, start, or stop multiple instances within an hour and get the Reserved Instance benefit
for all of the instances.

For Aurora pricing information, see the Aurora pricing page.

Topics
• On-Demand DB instances for Aurora (p. 74)
• Reserved DB instances for Aurora (p. 75)

73

https://aws.amazon.com/rds/aurora/pricing

Amazon Aurora User Guide for Aurora
On-Demand DB instances

On-Demand DB instances for Aurora
Amazon RDS on-demand DB instances are billed based on the class of the DB instance (for example,
db.t2.small or db.m4.large). For Amazon RDS pricing information, see the Amazon RDS product page.

Billing starts for a DB instance as soon as the DB instance is available. Pricing is listed on a per-hour
basis, but bills are calculated down to the second and show times in decimal form. Amazon RDS usage
is billed in one-second increments, with a minimum of 10 minutes. In the case of billable configuration
change, such as scaling compute or storage capacity, you're charged a 10-minute minimum. Billing
continues until the DB instance terminates, which occurs when you delete the DB instance or if the DB
instance fails.

If you no longer want to be charged for your DB instance, you must stop or delete it to avoid being billed
for additional DB instance hours. For more information about the DB instance states for which you are
billed, see Viewing DB instance status in an Aurora cluster (p. 555).

Stopped DB instances
While your DB instance is stopped, you're charged for provisioned storage, including Provisioned IOPS.
You are also charged for backup storage, including storage for manual snapshots and automated
backups within your specified retention window. You aren't charged for DB instance hours.

Multi-AZ DB instances
If you specify that your DB instance should be a Multi-AZ deployment, you're billed according to the
Multi-AZ pricing posted on the Amazon RDS pricing page.

74

https://aws.amazon.com/rds/pricing

Amazon Aurora User Guide for Aurora
Reserved DB instances

Reserved DB instances for Aurora
Using reserved DB instances, you can reserve a DB instance for a one- or three-year term. Reserved DB
instances provide you with a significant discount compared to on-demand DB instance pricing. Reserved
DB instances are not physical instances, but rather a billing discount applied to the use of certain on-
demand DB instances in your account. Discounts for reserved DB instances are tied to instance type and
AWS Region.

The general process for working with reserved DB instances is: First get information about available
reserved DB instance offerings, then purchase a reserved DB instance offering, and finally get
information about your existing reserved DB instances.

Overview of reserved DB instances
When you purchase a reserved DB instance in Amazon RDS, you purchase a commitment to getting a
discounted rate, on a specific DB instance type, for the duration of the reserved DB instance. To use an
Amazon RDS reserved DB instance, you create a new DB instance just like you do for an on-demand
instance. The new DB instance that you create must match the specifications of the reserved DB instance.
If the specifications of the new DB instance match an existing reserved DB instance for your account, you
are billed at the discounted rate offered for the reserved DB instance. Otherwise, the DB instance is billed
at an on-demand rate.

You can modify a reserved DB instance. If the modification is within the specifications of the reserved
DB instance, part or all of the discount still applies to the modified DB instance. If the modification is
outside the specifications, such as changing the instance class, the discount no longer applies. For more
information, see Size-flexible reserved DB instances (p. 76).

For more information about reserved DB instances, including pricing, see Amazon RDS reserved
instances.

Offering types

Reserved DB instances are available in three varieties—No Upfront, Partial Upfront, and All Upfront—
that let you optimize your Amazon RDS costs based on your expected usage.

No Upfront

This option provides access to a reserved DB instance without requiring an upfront payment. Your
No Upfront reserved DB instance bills a discounted hourly rate for every hour within the term,
regardless of usage, and no upfront payment is required. This option is only available as a one-year
reservation.

Partial Upfront

This option requires a part of the reserved DB instance to be paid upfront. The remaining hours in
the term are billed at a discounted hourly rate, regardless of usage. This option is the replacement
for the previous Heavy Utilization option.

All Upfront

Full payment is made at the start of the term, with no other costs incurred for the remainder of the
term regardless of the number of hours used.

If you are using consolidated billing, all the accounts in the organization are treated as one account. This
means that all accounts in the organization can receive the hourly cost benefit of reserved DB instances
that are purchased by any other account. For more information about consolidated billing, see Amazon
RDS reserved DB instances in the AWS Billing and Cost Management User Guide.

75

http://aws.amazon.com/rds/reserved-instances/#2
http://aws.amazon.com/rds/reserved-instances/#2
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/consolidatedbilling-other.html#consolidatedbilling-rds
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/consolidatedbilling-other.html#consolidatedbilling-rds

Amazon Aurora User Guide for Aurora
Reserved DB instances

Size-flexible reserved DB instances

When you purchase a reserved DB instance, one thing that you specify is the instance class, for example
db.m4.large. For more information about instance classes, see Aurora DB instance classes (p. 54).

If you have a DB instance, and you need to scale it to larger capacity, your reserved DB instance is
automatically applied to your scaled DB instance. That is, your reserved DB instances are automatically
applied across all DB instance class sizes. Size-flexible reserved DB instances are available for DB
instances with the same AWS Region and database engine. Size-flexible reserved DB instances can only
scale in their instance class type. For example, a reserved DB instance for a db.m4.large can apply to a
db.m4.xlarge, but not to a db.m5.large, because db.m4 and db.m5 are different instance class types.

Reserved DB instance benefits also apply for both Multi-AZ and Single-AZ configurations. Flexibility
means that you can move freely between configurations within the same DB instance class type. For
example, you can move from a Single-AZ deployment running on one large DB instance (four normalized
units) to a Multi-AZ deployment running on two small DB instances (2*2 = 4 normalized units).

Size-flexible reserved DB instances are available for the following Aurora database engines:

• Aurora MySQL

• Aurora PostgreSQL

You can compare usage for different reserved DB instance sizes by using normalized units. For example,
one unit of usage on two db.m3.large DB instances is equivalent to eight normalized units of usage on
one db.m3.small. The following table shows the number of normalized units for each DB instance size.

Instance size Single-AZ normalized units Multi-AZ normalized units

micro 0.5 1

small 1 2

medium 2 4

large 4 8

xlarge 8 16

2xlarge 16 32

4xlarge 32 64

8xlarge 64 128

10xlarge 80 160

12xlarge 96 192

16xlarge 128 256

24xlarge 192 384

For example, suppose that you purchase a db.t2.medium reserved DB instance, and you have two
running db.t2.small DB instances in your account in the same AWS Region. In this case, the billing
benefit is applied in full to both instances.

76

Amazon Aurora User Guide for Aurora
Reserved DB instances

Alternatively, if you have one db.t2.large instance running in your account in the same AWS Region,
the billing benefit is applied to 50 percent of the usage of the DB instance.

Reserved DB instance billing example

The price for a reserved DB instance doesn't include regular costs associated with storage, backups, and
I/O. The following example illustrates the total cost per month for a reserved DB instance:

• An Aurora MySQL reserved Single-AZ db.r4.large DB instance class in US East (N. Virginia) at a cost of
$0.19 per hour, or $138.70 per month

• Aurora storage at a cost of $0.10 per GiB per month (assume $45.60 per month for this example)
• Aurora I/O at a cost of $0.20 per 1 million requests (assume $20 per month for this example)
• Aurora backup storage at $0.021 per GiB per month (assume $30 per month for this example)

Add all of these options ($138.70 + $45.60 + $20 + $30) with the reserved DB instance, and the total
cost per month is $234.30.

If you chose to use an on-demand DB instance instead of a reserved DB instance, an Aurora MySQL
Single-AZ db.r4.large DB instance class in US East (N. Virginia) costs $0.29 per hour, or $217.50 per
month. So, for an on-demand DB instance, add all of these options ($217.50 + $45.60 + $20 + $30), and
the total cost per month is $313.10. You save nearly $79 per month by using the reserved DB instance.

77

Amazon Aurora User Guide for Aurora
Reserved DB instances

Note
The prices in this example are sample prices and might not match actual prices.
For Aurora pricing information, see the Aurora pricing page.

Deleting a reserved DB instance

The terms for a reserved DB instance involve a one-year or three-year commitment. You can't cancel a
reserved DB instance. However, you can delete a DB instance that is covered by a reserved DB instance
discount. The process for deleting a DB instance that is covered by a reserved DB instance discount is the
same as for any other DB instance.

You're billed for the upfront costs regardless of whether you use the resources.

If you delete a DB instance that is covered by a reserved DB instance discount, you can launch another DB
instance with compatible specifications. In this case, you continue to get the discounted rate during the
reservation term (one or three years).

Working with reserved DB instances
You can use the AWS Management Console, the AWS CLI, and the RDS API to work with reserved DB
instances.

Console

You can use the AWS Management Console to work with reserved DB instances as shown in the following
procedures.

To get pricing and information about available reserved DB instance offerings

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Reserved instances.
3. Choose Purchase Reserved DB Instance.
4. For Product description, choose the DB engine and licensing type.
5. For DB instance class, choose the DB instance class.
6. For Multi-AZ deployment, choose whether you want a Multi-AZ deployment.

Note
Reserved Amazon Aurora instances always have the Multi-AZ deployment option set to
No. When you create an Amazon Aurora DB cluster from your reserved DB instance, the DB
cluster is automatically created as Multi-AZ. You must purchase a reserved DB instance for
each DB instance you plan to use, including Aurora Replicas.

7. For Term, choose the length of time you want the DB instance reserved.
8. For Offering type, choose the offering type.

After you select the offering type, you can see the pricing information.

Important
Choose Cancel to avoid purchasing the reserved DB instance and incurring any charges.

After you have information about the available reserved DB instance offerings, you can use the
information to purchase an offering as shown in the following procedure.

To purchase a reserved DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

78

https://aws.amazon.com/rds/aurora/pricing
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Reserved DB instances

2. In the navigation pane, choose Reserved instances.

3. Choose Purchase Reserved DB Instance.

4. For Product description, choose the DB engine and licensing type.

5. For DB instance class, choose the DB instance class.

6. For Multi-AZ deployment, choose whether you want a Multi-AZ deployment.

Note
Reserved Amazon Aurora instances always have the Multi-AZ deployment option set to
No. When you create an Amazon Aurora DB cluster from your reserved DB instance, the DB
cluster is automatically created as Multi-AZ. You must purchase a reserved DB instance for
each DB instance you plan to use, including Aurora Replicas.

7. For Term, choose the length of time you want the DB instance reserved.

8. For Offering type, choose the offering type.

After you choose the offering type, you can see the pricing information.

79

Amazon Aurora User Guide for Aurora
Reserved DB instances

9. (Optional) You can assign your own identifier to the reserved DB instances that you purchase to help
you track them. For Reserved Id, type an identifier for your reserved DB instance.

10. Choose Continue.

The Purchase Reserved DB Instances dialog box appears, with a summary of the reserved DB
instance attributes that you've selected and the payment due.

11. On the confirmation page, review your reserved DB instance. If the information is correct, choose
Order to purchase the reserved DB instance.

Alternatively, choose Back to edit your reserved DB instance.

After you have purchased reserved DB instances, you can get information about your reserved DB
instances as shown in the following procedure.

To get information about reserved DB instances for your AWS account

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the Navigation pane, choose Reserved instances.

80

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Reserved DB instances

The reserved DB instances for your account appear. To see detailed information about a particular
reserved DB instance, choose that instance in the list. You can then see detailed information about
that instance in the detail pane at the bottom of the console.

AWS CLI

You can use the AWS CLI to work with reserved DB instances as shown in the following examples.

Example of getting available reserved DB instance offerings

To get information about available reserved DB instance offerings, call the AWS CLI command
describe-reserved-db-instances-offerings.

aws rds describe-reserved-db-instances-offerings

This call returns output similar to the following:

OFFERING OfferingId Class Multi-AZ Duration Fixed
 Price Usage Price Description Offering Type
OFFERING 438012d3-4052-4cc7-b2e3-8d3372e0e706 db.m1.large y 1y 1820.00
 USD 0.368 USD mysql Partial Upfront
OFFERING 649fd0c8-cf6d-47a0-bfa6-060f8e75e95f db.m1.small n 1y 227.50
 USD 0.046 USD mysql Partial Upfront
OFFERING 123456cd-ab1c-47a0-bfa6-12345667232f db.m1.small n 1y 162.00
 USD 0.00 USD mysql All Upfront
 Recurring Charges: Amount Currency Frequency
 Recurring Charges: 0.123 USD Hourly
OFFERING 123456cd-ab1c-37a0-bfa6-12345667232d db.m1.large y 1y 700.00
 USD 0.00 USD mysql All Upfront
 Recurring Charges: Amount Currency Frequency
 Recurring Charges: 1.25 USD Hourly
OFFERING 123456cd-ab1c-17d0-bfa6-12345667234e db.m1.xlarge n 1y 4242.00
 USD 2.42 USD mysql No Upfront

After you have information about the available reserved DB instance offerings, you can use the
information to purchase an offering.

To purchase a reserved DB instance, use the AWS CLI command purchase-reserved-db-instances-
offering with the following parameters:

• --reserved-db-instances-offering-id – The ID of the offering that you want to purchase. See
the preceding example to get the offering ID.

• --reserved-db-instance-id – You can assign your own identifier to the reserved DB instances
that you purchase to help track them.

Example of purchasing a reserved DB instance

The following example purchases the reserved DB instance offering with ID 649fd0c8-cf6d-47a0-
bfa6-060f8e75e95f, and assigns the identifier of MyReservation.

For Linux, macOS, or Unix:

aws rds purchase-reserved-db-instances-offering \
 --reserved-db-instances-offering-id 649fd0c8-cf6d-47a0-bfa6-060f8e75e95f \
 --reserved-db-instance-id MyReservation

81

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-reserved-db-instances-offerings.html
https://docs.aws.amazon.com/cli/latest/reference/rds/purchase-reserved-db-instances-offering.html
https://docs.aws.amazon.com/cli/latest/reference/rds/purchase-reserved-db-instances-offering.html

Amazon Aurora User Guide for Aurora
Reserved DB instances

For Windows:

aws rds purchase-reserved-db-instances-offering ^
 --reserved-db-instances-offering-id 649fd0c8-cf6d-47a0-bfa6-060f8e75e95f ^
 --reserved-db-instance-id MyReservation

The command returns output similar to the following:

RESERVATION ReservationId Class Multi-AZ Start Time Duration
 Fixed Price Usage Price Count State Description Offering Type
RESERVATION MyReservation db.m1.small y 2011-12-19T00:30:23.247Z 1y
 455.00 USD 0.092 USD 1 payment-pending mysql Partial Upfront

After you have purchased reserved DB instances, you can get information about your reserved DB
instances.

To get information about reserved DB instances for your AWS account, call the AWS CLI command
describe-reserved-db-instances, as shown in the following example.

Example of getting your reserved DB instances

aws rds describe-reserved-db-instances

The command returns output similar to the following:

RESERVATION ReservationId Class Multi-AZ Start Time Duration
 Fixed Price Usage Price Count State Description Offering Type
RESERVATION MyReservation db.m1.small y 2011-12-09T23:37:44.720Z 1y
 455.00 USD 0.092 USD 1 retired mysql Partial Upfront

RDS API

You can use the RDS API to work with reserved DB instances:

• To get information about available reserved DB instance offerings, call the Amazon RDS API operation
DescribeReservedDBInstancesOfferings.

• After you have information about the available reserved DB instance offerings, you can use the
information to purchase an offering. Call the PurchaseReservedDBInstancesOffering RDS API
operation with the following parameters:
• --reserved-db-instances-offering-id – The ID of the offering that you want to purchase.
• --reserved-db-instance-id – You can assign your own identifier to the reserved DB instances

that you purchase to help track them.
• After you have purchased reserved DB instances, you can get information about your reserved DB

instances. Call the DescribeReservedDBInstances RDS API operation.

Viewing the billing for your reserved DB instances
You can view the billing for your reserved DB instances in the Billing Dashboard in the AWS Management
Console.

To view reserved DB instance billing

1. Sign in to the AWS Management Console.
2. From the account menu at the upper right, choose Billing Dashboard.

82

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-reserved-db-instances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeReservedDBInstancesOfferings.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_PurchaseReservedDBInstancesOffering.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeReservedDBInstances.html

Amazon Aurora User Guide for Aurora
Reserved DB instances

3. Choose Bill Details at the upper right of the dashboard.
4. Under AWS Service Charges, expand Relational Database Service.
5. Expand the AWS Region where your reserved DB instances are, for example US West (Oregon).

Your reserved DB instances and their hourly charges for the current month are shown under Amazon
Relational Database Service for Database Engine Reserved Instances.

The reserved DB instance in this example was purchased All Upfront, so there are no hourly charges.
6. Choose the Cost Explorer (bar graph) icon next to the Reserved Instances heading.

The Cost Explorer displays the Monthly EC2 running hours costs and usage graph.
7. Clear the Usage Type Group filter to the right of the graph.
8. Choose the time period and time unit for which you want to examine usage costs.

The following example shows usage costs for on-demand and reserved DB instances for the year to
date by month.

The reserved DB instance costs from January through June 2021 are monthly charges for a Partial
Upfront instance, while the cost in August 2021 is a one-time charge for an All Upfront instance.

The reserved instance discount for the Partial Upfront instance expired in June 2021, but the DB
instance wasn't deleted. After the expiration date, it was simply charged at the on-demand rate.

83

Amazon Aurora User Guide for Aurora
Sign up for AWS

Setting up your environment for
Amazon Aurora

Before you use Amazon Aurora for the first time, complete the following tasks:

1. Sign up for AWS (p. 84)

2. Create an IAM user (p. 84)

3. Determine requirements (p. 86)

4. Provide access to the DB cluster in the VPC by creating a security group (p. 87)

If you already have an AWS account, know your Aurora requirements, and prefer to use the defaults for
IAM and VPC security groups, skip ahead to Getting started with Amazon Aurora (p. 89).

Sign up for AWS
When you sign up for AWS, your AWS account is automatically signed up for all services in AWS,
including Amazon RDS. You are charged only for the services that you use.

With Amazon RDS, you pay only for the resources you use. The Amazon RDS DB clusters that you create
are live (not running in a sandbox). You incur the standard Amazon RDS usage fees for each DB cluster
until you terminate it. For more information about Amazon RDS usage rates, see the Amazon RDS
product page. If you are a new AWS customer, you can get started with Amazon RDS for free; for more
information, see AWS free tier.

If you have an AWS account already, skip to the next section, Create an IAM user (p. 84).

If you don't have an AWS account, you can use the following procedure to create one.

To create a new AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code on the
phone keypad.

Note your AWS account number, because you'll need it for the next task.

Create an IAM user
After you create an AWS account and successfully connect to the AWS Management Console, you can
create an AWS Identity and Access Management (IAM) user. Instead of signing in with your AWS root
account, we recommend that you use an IAM administrative user with Amazon RDS.

84

http://aws.amazon.com/rds
http://aws.amazon.com/rds
http://aws.amazon.com/free/
https://portal.aws.amazon.com/billing/signup

Amazon Aurora User Guide for Aurora
Create an IAM user

One way to do this is to create a new IAM user and grant it administrator permissions. Alternatively, you
can add an existing IAM user to an IAM group with Amazon RDS administrative permissions. You can then
access AWS from a special URL using the credentials for the IAM user.

If you signed up for AWS but have not created an IAM user for yourself, you can create one using the IAM
console.

To create an administrator user for yourself and add the user to an administrators group
(console)

1. Sign in to the IAM console as the account owner by choosing Root user and entering your AWS
account email address. On the next page, enter your password.

Note
We strongly recommend that you adhere to the best practice of using the Administrator
IAM user that follows and securely lock away the root user credentials. Sign in as the root
user only to perform a few account and service management tasks.

2. In the navigation pane, choose Users and then choose Add user.
3. For User name, enter Administrator.
4. Select the check box next to AWS Management Console access. Then select Custom password, and

then enter your new password in the text box.
5. (Optional) By default, AWS requires the new user to create a new password when first signing in. You

can clear the check box next to User must create a new password at next sign-in to allow the new
user to reset their password after they sign in.

6. Choose Next: Permissions.
7. Under Set permissions, choose Add user to group.
8. Choose Create group.
9. In the Create group dialog box, for Group name enter Administrators.
10. Choose Filter policies, and then select AWS managed - job function to filter the table contents.
11. In the policy list, select the check box for AdministratorAccess. Then choose Create group.

Note
You must activate IAM user and role access to Billing before you can use the
AdministratorAccess permissions to access the AWS Billing and Cost Management
console. To do this, follow the instructions in step 1 of the tutorial about delegating access
to the billing console.

12. Back in the list of groups, select the check box for your new group. Choose Refresh if necessary to
see the group in the list.

13. Choose Next: Tags.
14. (Optional) Add metadata to the user by attaching tags as key-value pairs. For more information

about using tags in IAM, see Tagging IAM entities in the IAM User Guide.
15. Choose Next: Review to see the list of group memberships to be added to the new user. When you

are ready to proceed, choose Create user.

You can use this same process to create more groups and users and to give your users access to your AWS
account resources. To learn about using policies that restrict user permissions to specific AWS resources,
see Access management and Example policies.

To sign in as this new IAM user, sign out of the AWS console, then use the following URL, where
your_aws_account_id is your AWS account number without the hyphens (for example, if your AWS
account number is 1234-5678-9012, your AWS account ID is 123456789012):

https://your_aws_account_id.signin.aws.amazon.com/console/

85

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_billing.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_billing.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html

Amazon Aurora User Guide for Aurora
Determine requirements

Enter the IAM user name and password that you just created. When you're signed in, the navigation bar
displays "your_user_name @ your_aws_account_id".

If you don't want the URL for your sign-in page to contain your AWS account ID, you can create an
account alias. From the IAM dashboard, choose Customize and enter an alias, such as your company
name. To sign in after you create an account alias, use the following URL:

https://your_account_alias.signin.aws.amazon.com/console/

To verify the sign-in link for IAM users for your account, open the IAM console and check under AWS
Account Alias on the dashboard.

You can also create access keys for your AWS account. These access keys can be used to access AWS
through the AWS Command Line Interface (AWS CLI) or through the Amazon RDS API. For more
information, see Programmatic access, Installing, updating, and uninstalling the AWS CLI, and the
Amazon RDS API reference.

Determine requirements
The basic building block of Aurora is the DB cluster. One or more DB instances can belong to a DB cluster.
A DB cluster provides a network address called the cluster endpoint. Your applications connect to the
cluster endpoint exposed by the DB cluster whenever they need to access the databases created in that
DB cluster. The information you specify when you create the DB cluster controls configuration elements
such as memory, database engine and version, network configuration, security, and maintenance periods.

Before you create a DB cluster and a security group, you must know your DB cluster and network needs.
Here are some important things to consider:

• Resource requirements – What are the memory and processor requirements for your application or
service? You will use these settings when you determine what DB instance class you will use when
you create your DB cluster. For specifications about DB instance classes, see Aurora DB instance
classes (p. 54).

• VPC, subnet, and security group – Your DB cluster will be in a virtual private cloud (VPC). Security
group rules must be configured to connect to a DB cluster. The following list describes the rules for
each VPC option:
• Default VPC — If your AWS account has a default VPC in the AWS Region, that VPC is configured to

support DB clusters. If you specify the default VPC when you create the DB cluster:
• Make sure to create a VPC security group that authorizes connections from the application or

service to the Aurora DB cluster. Use the Security Group option on the VPC console or the
AWS CLI to create VPC security groups. For information, see Step 4: Create a VPC security
group (p. 1806).

• You must specify the default DB subnet group. If this is the first DB cluster you have created in the
AWS Region, Amazon RDS will create the default DB subnet group when it creates the DB cluster.

• User-defined VPC — If you want to specify a user-defined VPC when you create a DB cluster:
• Make sure to create a VPC security group that authorizes connections from the application or

service to the Aurora DB cluster. Use the Security Group option on the VPC console or the
AWS CLI to create VPC security groups. For information, see Step 4: Create a VPC security
group (p. 1806).

• The VPC must meet certain requirements in order to host DB clusters, such as having at least two
subnets, each in a separate availability zone. For information, see Amazon Virtual Private Cloud
VPCs and Amazon Aurora (p. 1800).

• You must specify a DB subnet group that defines which subnets in that VPC can be used by the
DB cluster. For information, see the DB Subnet Group section in Working with a DB instance in a
VPC (p. 1801).

86

https://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/Welcome.html

Amazon Aurora User Guide for Aurora
Provide access to the DB cluster

• High availability: Do you need failover support? On Aurora, a Multi-AZ deployment creates a primary
instance and Aurora Replicas. You can configure the primary instance and Aurora Replicas to be in
different Availability Zones for failover support. We recommend Multi-AZ deployments for production
workloads to maintain high availability. For development and test purposes, you can use a non-Multi-
AZ deployment. For more information, see High availability for Amazon Aurora (p. 68).

• IAM policies: Does your AWS account have policies that grant the permissions needed to perform
Amazon RDS operations? If you are connecting to AWS using IAM credentials, your IAM account must
have IAM policies that grant the permissions required to perform Amazon RDS operations. For more
information, see Identity and access management in Amazon Aurora (p. 1737).

• Open ports: What TCP/IP port will your database be listening on? The firewall at some companies
might block connections to the default port for your database engine. If your company firewall blocks
the default port, choose another port for the new DB cluster. Note that once you create a DB cluster
that listens on a port you specify, you can change the port by modifying the DB cluster.

• AWS Region: What AWS Region do you want your database in? Having the database close in proximity
to the application or web service could reduce network latency. For more information, see Regions and
Availability Zones (p. 11).

Once you have the information you need to create the security group and the DB cluster, continue to the
next step.

Provide access to the DB cluster in the VPC by
creating a security group

Your DB cluster will be created in a VPC. Security groups provide access to the DB cluster in the VPC.
They act as a firewall for the associated DB cluster, controlling both inbound and outbound traffic at the
cluster level. DB clusters are created by default with a firewall and a default security group that prevents
access to the DB cluster. You must therefore add rules to a security group that enable you to connect to
your DB cluster. Use the network and configuration information you determined in the previous step to
create rules to allow access to your DB cluster.

For example, if you have an application that will access a database on your DB cluster in a VPC, you must
add a custom TCP rule that specifies the port range and IP addresses that application will use to access
the database. If you have an application on an Amazon EC2 cluster, you can use the VPC security group
you set up for the Amazon EC2 cluster.

For more information about creating a VPC for use with Aurora, see How to create a VPC for use with
Amazon Aurora (p. 1806). For information about common scenarios for accessing a DB instance, see
Scenarios for accessing a DB instance in a VPC (p. 1813).

To create a VPC security group

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc.

Note
Make sure you are in the VPC console, not the RDS console.

2. In the top right corner of the AWS Management Console, choose the AWS Region where you want
to create your VPC security group and DB cluster. In the list of Amazon VPC resources for that AWS
Region, you should see at least one VPC and several subnets. If you don't, you don't have a default
VPC in that AWS Region.

3. In the navigation pane, choose Security Groups.

4. Choose Create security group.

87

https://console.aws.amazon.com/vpc
https://console.aws.amazon.com/vpc

Amazon Aurora User Guide for Aurora
Provide access to the DB cluster

The Create security group page appears.
5. In Basic details, enter the Security group name and Description. For VPC, choose the VPC that you

want to create your DB cluster in.
6. In Inbound rules, choose Add rule.

a. For Type, choose Custom TCP.
b. For Port range, enter the port value to use for your DB cluster.
c. For Source, choose a security group name or type the IP address range (CIDR value) from where

you access the DB cluster. If you choose My IP, this allows access to the DB cluster from the IP
address detected in your browser.

7. If you need to add more IP addresses or different port ranges, choose Add rule and enter the
information for the rule.

8. (Optional) In Outbound rules, add rules for outbound traffic. By default, all outbound traffic is
allowed.

9. Choose Create security group.

You can use the VPC security group you just created as the security group for your DB cluster when you
create it.

Note
If you use a default VPC, a default subnet group spanning all of the VPC's subnets is created
for you. When you create a DB cluster, you can select the default VPC and use default for DB
Subnet Group.

Once you have completed the setup requirements, you can create a DB cluster using your requirements
and security group by following the instructions in Creating an Amazon Aurora DB cluster (p. 125). For
information about getting started by creating a DB cluster that uses a specific DB engine, see Getting
started with Amazon Aurora (p. 89).

88

Amazon Aurora User Guide for Aurora
Creating an Aurora MySQL DB cluster and connecting to it

Getting started with Amazon Aurora
In this section, you can find out how to create and connect to an Aurora DB cluster using Amazon RDS.

The following procedures are tutorials that demonstrate the basics of getting started with Aurora.
Later sections introduce more advanced Aurora concepts and procedures, such as the different kinds of
endpoints and how to scale Aurora clusters up and down.

Important
Before you can create or connect to a DB cluster, make sure to complete the tasks in Setting up
your environment for Amazon Aurora (p. 84).

Topics

• Creating a DB cluster and connecting to a database on an Aurora MySQL DB cluster (p. 89)

• Creating a DB cluster and connecting to a database on an Aurora PostgreSQL DB cluster (p. 96)

• Tutorial: Create a web server and an Amazon Aurora DB cluster (p. 103)

Creating a DB cluster and connecting to a database
on an Aurora MySQL DB cluster

The easiest way to create an Aurora MySQL DB cluster is to use the AWS Management Console. After you
create the DB cluster, you can use standard MySQL utilities, such as MySQL Workbench, to connect to a
database on the DB cluster.

Important
Before you can create or connect to a DB cluster, you must complete the tasks in Setting up your
environment for Amazon Aurora (p. 84).

There's no charge for creating an AWS account. However, by completing this tutorial, you might incur
costs for the AWS resources that you use. You can delete these resources after you complete the tutorial
if they are no longer needed.

Topics

• Create an Aurora MySQL DB cluster (p. 89)

• Connect to an instance in a DB cluster (p. 94)

• Delete the sample DB cluster, DB subnet group, and VPC (p. 96)

Create an Aurora MySQL DB cluster
Before you create a DB cluster, you must first have a virtual private cloud (VPC) based on the Amazon
VPC service and an Amazon RDS DB subnet group. Your VPC must have at least one subnet in each of at
least two Availability Zones. You can use the default VPC for your AWS account, or you can create your
own VPC. The Amazon RDS console is designed to make it easy for you to create your own VPC for use
with Amazon Aurora or use an existing VPC with your Aurora DB cluster.

In some cases, you might want to create a VPC and DB subnet group for use with your Aurora DB cluster
yourself, rather than having Amazon RDS create them. If so, follow the instructions in How to create a

89

Amazon Aurora User Guide for Aurora
Create an Aurora MySQL DB cluster

VPC for use with Amazon Aurora (p. 1806). Otherwise, follow the instructions in this topic to create your
DB cluster and have Amazon RDS create a VPC and DB subnet group for you.

You can use Easy create to create an Aurora MySQL-Compatible Edition DB cluster with the RDS console.
With Easy create, you specify only the DB engine type, DB instance size, and DB instance identifier. Easy
create uses the default settings for the other configuration options. When you use Standard create
instead of Easy create, you specify more configuration options when you create a database, including
ones for availability, security, backups, and maintenance.

In this tutorial, you use Easy create to create an Aurora MySQL-Compatible Edition DB cluster.

Note
For information about creating DB clusters with Standard create, see Creating an Amazon
Aurora DB cluster (p. 125).

To create an Aurora MySQL DB cluster with Easy create enabled

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the Amazon RDS console, choose the AWS Region in which you want to
create the DB cluster.

Aurora is not available in all AWS Regions. For a list of AWS Regions where Aurora is available, see
Region availability (p. 12).

3. In the navigation pane, choose Databases.

4. Choose Create database and make sure that Easy Create is chosen.

5. For Engine type, choose Amazon Aurora.

6. For Edition, choose Amazon Aurora with MySQL compatibility.

7. For DB instance size, choose Dev/Test.

8. For DB cluster identifier, enter a name for the DB cluster, or leave the default name.

9. For Master username, enter a name for the user, or leave the default name.

The Create database page should look similar to the following image.

90

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Create an Aurora MySQL DB cluster

10. To use an automatically generated password for the DB cluster, make sure that the Auto generate a
password box is selected.

To enter your password, clear the Auto generate a password box, and then enter the same password
in Master password and Confirm password.

91

Amazon Aurora User Guide for Aurora
Create an Aurora MySQL DB cluster

11. (Optional) Open View default settings for Easy create.

You can examine the default settings used with Easy create. The Editable after database is created
column shows which options you can change after database creation.

• To change settings with No in that column, use Standard create.

• To change settings with Yes in that column, either use Standard create, or modify the DB cluster
after it is created to change the settings.

The following are important considerations for changing the default settings:

92

Amazon Aurora User Guide for Aurora
Create an Aurora MySQL DB cluster

• If you want the DB cluster to use a specific VPC, subnet group, and security group, use Standard
create to specify these resources. You might have created these resources when you were
setting up for Amazon RDS. For more information, see Setting up your environment for Amazon
Aurora (p. 84).

• If you want to be able to access the DB cluster from a client outside of its VPC, use Standard
create to set Public access to Yes.

If the DB cluster should be private, leave Public access set to No.

12. Choose Create database.

If you chose to use an automatically generated password, the View credential details button
appears on the Databases page.

To view the user name and password for the DB cluster, choose View credential details.

To connect to the DB cluster as the master user, use the user name and password that appear.

Important
You can't view the master user password again. If you don't record it, you might have to
change it.
If you need to change the master user password after the DB cluster is available, you can
modify the DB cluster to do so. For more information about modifying a DB cluster, see
Modifying an Amazon Aurora DB cluster (p. 372).

13. For Databases, choose the name of the new Aurora MySQL DB cluster.

On the RDS console, the details for new DB cluster appear. The DB cluster and its DB instance have a
status of Creating until the DB cluster is ready to use. When the state changes to Available for both,
you can connect to the DB cluster. Depending on the DB instance class and the amount of storage, it
can take up to 20 minutes before the new DB cluster is available.

93

Amazon Aurora User Guide for Aurora
Connect to an instance in a DB cluster

Connect to an instance in a DB cluster
After Amazon RDS provisions your DB cluster and creates the primary instance, you can use any standard
SQL client application to connect to a database on the DB cluster. In the following procedure, you
connect to a database on the Aurora MySQL DB cluster using MySQL monitor commands.

To connect to a database on an Aurora MySQL DB cluster using the MySQL monitor

1. Install a SQL client that you can use to connect to the DB instance.

You can connect to an Aurora MySQL DB cluster by using tools like the MySQL command line utility.
For more information on using the MySQL client, see mysql - the MySQL command-line client in the
MySQL documentation. One GUI-based application you can use to connect is MySQL Workbench. For
more information, see the Download MySQL Workbench page.

For more information on using MySQL, see the MySQL documentation. For information about
installing MySQL (including the MySQL client), see Installing and upgrading MySQL.

If your DB instance is publicly accessible, you can install the SQL client outside of the VPC. If your
DB instance is private, you typically install the SQL client on a resource inside the VPC, such as an
Amazon EC2 instance.

2. Make sure that your DB cluster is associated with a security group that provides access to it. For
more information, see Setting up your environment for Amazon Aurora (p. 84).

If you didn't specify the appropriate security group when you created the DB cluster, you can modify
the DB cluster to change its security group. For more information, see Modifying an Amazon Aurora
DB cluster (p. 372).

3. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

4. Choose Databases and then choose the DB cluster name to show its details. On the Connectivity &
security tab, copy the value for the Endpoint name of the Writer instance endpoint. Also, note the
port number for the endpoint.

94

https://dev.mysql.com/doc/refman/8.0/en/mysql.html
http://dev.mysql.com/downloads/workbench/
http://dev.mysql.com/doc/
https://dev.mysql.com/doc/refman/8.0/en/installing.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Connect to an instance in a DB cluster

5. Enter the following command at a command prompt on a client computer to connect to a database
on an Aurora MySQL DB cluster using the MySQL monitor. Use the cluster endpoint to connect to
the primary instance, and the master user name that you created previously. (You are prompted for a
password.) If you supplied a port value other than 3306, use that for the -P parameter instead.

PROMPT> mysql -h <cluster endpoint> -P 3306 -u <myusername> -p

You should see output similar to the following.

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 350
Server version: 5.6.10-log MySQL Community Server (GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

For more information about connecting to the DB cluster, see Connecting to an Amazon Aurora MySQL
DB cluster (p. 281). If you can't connect to your DB cluster, see Can't connect to Amazon RDS DB
instance (p. 1827).

95

Amazon Aurora User Guide for Aurora
Delete the sample DB cluster, DB subnet group, and VPC

Delete the sample DB cluster, DB subnet group, and
VPC
After you have connected to the sample DB cluster that you created, you can delete the DB cluster, DB
subnet group, and VPC (if you created a VPC).

To delete a DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases and then choose the DB instance associated with the DB cluster.

3. For Actions, choose Delete.

4. Choose Delete.

After all of the DB instances associated with a DB cluster are deleted, the DB cluster is deleted
automatically.

To delete a DB subnet group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Subnet groups and then choose the DB subnet group.

3. Choose Delete.

4. Choose Delete.

To delete a VPC

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc/.

2. Choose Your VPCs and then choose the VPC that was created for this procedure.

3. For Actions, choose Delete VPC.

4. Choose Delete.

Creating a DB cluster and connecting to a database
on an Aurora PostgreSQL DB cluster

The easiest way to create an Aurora PostgreSQL DB cluster is to use the Amazon RDS console. After
you create the DB cluster, you can use standard PostgreSQL utilities, such as pgAdmin, to connect to a
database on the DB cluster.

Important
Before you can create or connect to a DB cluster, you must complete the tasks in Setting up your
environment for Amazon Aurora (p. 84).

There's no charge for creating an AWS account. However, by completing this tutorial, you might incur
costs for the AWS resources that you use. You can delete these resources after you complete the tutorial
if they are no longer needed.

Topics

96

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

Amazon Aurora User Guide for Aurora
Create an Aurora PostgreSQL DB cluster

• Create an Aurora PostgreSQL DB cluster (p. 97)
• Connect to an instance in an Aurora PostgreSQL DB cluster (p. 101)
• Delete the sample DB cluster, DB subnet group, and VPC (p. 102)

Create an Aurora PostgreSQL DB cluster
Before you create a DB cluster, make sure first to have a virtual private cloud (VPC) based on the Amazon
VPC service and an Amazon RDS DB subnet group. Your VPC must have at least one subnet in each of at
least two Availability Zones. You can use the default VPC for your AWS account, or you can create your
own VPC. The Amazon RDS console is designed to make it easy for you to create your own VPC for use
with Amazon Aurora or use an existing VPC with your Aurora DB cluster.

In some cases, you might want to create a VPC and DB subnet group for use with your Amazon Aurora
DB cluster yourself, rather than having Amazon RDS create them. If so, follow the instructions in How to
create a VPC for use with Amazon Aurora (p. 1806). Otherwise, follow the instructions in this topic to
create your DB cluster and have Amazon RDS create a VPC and DB subnet group for you.

You can use Easy create to create an Aurora PostgreSQL DB cluster with the AWS Management Console.
With Easy create, you specify only the DB engine type, DB instance size, and DB instance identifier. Easy
create uses the default settings for the other configuration options. When you use Standard create
instead of Easy create, you specify more configuration options when you create a database, including
ones for availability, security, backups, and maintenance.

In this example, you use Easy create to create an Aurora PostgreSQL DB cluster.

Note
For information about creating DB clusters with Standard create, see Creating an Amazon
Aurora DB cluster (p. 125).

To create an Aurora PostgreSQL DB cluster with Easy create enabled

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the Amazon RDS console, choose the AWS Region in which you want to
create the DB cluster.

Aurora is not available in all AWS Regions. For a list of AWS Regions where Aurora is available, see
Region availability (p. 12).

3. In the navigation pane, choose Databases.
4. Choose Create database and make sure that Easy Create is chosen.

5. For Engine type, choose Amazon Aurora.
6. For Edition, choose Amazon Aurora with PostgreSQL compatibility.

97

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Create an Aurora PostgreSQL DB cluster

7. For DB instance size, choose Dev/Test.

8. For DB cluster identifier, enter a name for the DB cluster, or leave the default name.

9. For Master username, enter a name for the master user, or leave the default name.

The Create database page should look similar to the following image.

98

Amazon Aurora User Guide for Aurora
Create an Aurora PostgreSQL DB cluster

10. To use an automatically generated master password for the DB cluster, make sure that the Auto
generate a password box is selected.

To enter your master password, clear the Auto generate a password box, and then enter the same
password in Master password and Confirm password.

11. (Optional) Open View default settings for Easy create.

You can examine the default settings used with Easy create. The Editable after database is created
column shows which options you can change after database creation.

99

Amazon Aurora User Guide for Aurora
Create an Aurora PostgreSQL DB cluster

• To change settings with No in that column, use Standard create.

• To change settings with Yes in that column, either use Standard create, or modify the DB cluster
after it is created to change the settings.

The following are important considerations for changing the default settings:

• If you want the DB cluster to use a specific VPC, subnet group, and security group, use Standard
create to specify these resources. You might have created these resources when you were
setting up for Amazon RDS. For more information, see Setting up your environment for Amazon
Aurora (p. 84).

• If you want to be able to access the DB cluster from a client outside of its VPC, use Standard
create to set Public access to Yes.

If the DB cluster should be private, leave Public access set to No.

12. Choose Create database.

If you chose to use an automatically generated password, the View credential details button
appears on the Databases page.

To view the master user name and password for the DB cluster, choose View credential details.

To connect to the DB cluster as the master user, use the user name and password that appear.

Important
You can't view the master user password again. If you don't record it, you might have to
change it. If you need to change the master user password after the DB cluster is available,
you can modify the DB cluster to do so. For more information about modifying a DB cluster,
see Modifying an Amazon Aurora DB cluster (p. 372).

13. For Databases, choose the name of the new Aurora PostgreSQL DB cluster.

On the RDS console, the details for new DB cluster appear. The DB cluster and its DB instance have a
status of Creating until the DB cluster is ready to use. When the state changes to Available for both,
you can connect to the DB cluster. Depending on the DB instance class and the amount of storage, it
can take up to 20 minutes before the new DB cluster is available.

100

Amazon Aurora User Guide for Aurora
Connect to an instance in an Aurora PostgreSQL DB cluster

Connect to an instance in an Aurora PostgreSQL DB
cluster
After Amazon RDS provisions your DB cluster and creates the primary instance, you can use any standard
SQL client application to connect to a database on the DB cluster.

To connect to a database on an Aurora PostgreSQL DB cluster

1. Make sure that your DB cluster is associated with a security group that provides access to it. For
more information, see Setting up your environment for Amazon Aurora (p. 84).

If you didn't specify the appropriate security group when you created the DB cluster, you can modify
the DB cluster to change its security group. For more information, see Modifying an Amazon Aurora
DB cluster (p. 372).

2. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

3. Choose Databases and then choose the DB cluster name to show its details. On the Connectivity &
security tab, copy the value for the Endpoint name of the Writer instance endpoint. Also, note the
port number for the endpoint.

4. If your client computer has PostgreSQL installed, you can use a local instance of psql to connect
to a PostgreSQL DB instance. To connect to your PostgreSQL DB instance using psql, provide host
information and access credentials.

The following format is used to connect to a PostgreSQL DB instance on Amazon RDS.

101

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Delete the sample DB cluster, DB subnet group, and VPC

psql --host=DB_instance_endpoint --port=port --username=master_user_name --password --
dbname=database_name

For example, the following command connects to a database called mypgdb on a PostgreSQL DB
instance called mypostgresql using fictitious credentials.

psql --host=database-1.123456789012.us-west-1.rds.amazonaws.com --port=5432 --
username=awsuser --password --dbname=postgres

For more information about connecting to the DB cluster using the endpoint and port, see Connecting
to an Amazon Aurora PostgreSQL DB cluster (p. 285). If you can't connect to your DB cluster, see Can't
connect to Amazon RDS DB instance (p. 1827).

Delete the sample DB cluster, DB subnet group, and
VPC
After you have connected to the sample DB cluster that you created, you can delete the DB cluster, DB
subnet group, and VPC (if you created a VPC).

To delete a DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases and then choose the DB instance associated with the DB cluster.
3. For Actions, choose Delete.
4. Choose Delete.

After all of the DB instances associated with a DB cluster are deleted, the DB cluster is deleted
automatically.

To delete a DB subnet group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Subnet groups and then choose the DB subnet group.
3. Choose Delete.
4. Choose Delete.

To delete a VPC

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc/.

2. Choose Your VPCs and then choose the VPC that was created for this procedure.
3. For Actions, choose Delete VPC.
4. Choose Delete.

102

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

Amazon Aurora User Guide for Aurora
Tutorial: Create a web server and

an Amazon Aurora DB cluster

Tutorial: Create a web server and an Amazon
Aurora DB cluster

This tutorial helps you install an Apache web server with PHP and create a MySQL database. The web
server runs on an Amazon EC2 instance using Amazon Linux, and the MySQL database is an Aurora
MySQL DB cluster. Both the Amazon EC2 instance and the DB cluster run in a virtual private cloud (VPC)
based on the Amazon VPC service.

Important
There's no charge for creating an AWS account. However, by completing this tutorial, you might
incur costs for the AWS resources you use. You can delete these resources after you complete
the tutorial if they are no longer needed.

Note
This tutorial works with Amazon Linux and might not work for other versions of Linux such as
Ubuntu.

In the tutorial that follows, you specify the VPC, subnets, and security groups when you create the DB
cluster. You also specify them when you create the EC2 instance to host your web server. The VPC,
subnets, and security groups are required for the DB cluster and the web server to communicate. After
the VPC is set up, this tutorial shows you how to create the DB cluster and install the web server. You
connect your web server to your DB cluster in the VPC using the DB cluster writer endpoint.

1. Complete the tasks in Tutorial: Create an Amazon VPC for use with a DB instance (p. 1818).

Before you begin this tutorial, make sure that you have a VPC with both public and private subnets,
and corresponding security groups. If you don't have these, complete the following tasks in the
tutorial:

a. Create a VPC with private and public subnets (p. 1818)

b. Create additional subnets (p. 1819)

c. Create a VPC security group for a public web server (p. 1820)

d. Create a VPC security group for a private DB instance (p. 1821)

e. Create a DB subnet group (p. 1821)

2. Create an Amazon Aurora DB cluster (p. 104)

3. Create an EC2 instance and install a web server (p. 109)

The following diagram shows the configuration when the tutorial is complete.

103

Amazon Aurora User Guide for Aurora
Create a DB cluster

Create an Amazon Aurora DB cluster
In this step, you create an Amazon Aurora MySQL DB cluster that maintains the data used by a web
application.

Important
Before you begin this step, you must have a VPC with both public and private subnets, and
corresponding security groups. If you don't have these, see Tutorial: Create an Amazon VPC for
use with a DB instance (p. 1818). Complete the steps in Create a VPC with private and public
subnets (p. 1818), Create additional subnets (p. 1819), Create a VPC security group for a public
web server (p. 1820), and Create a VPC security group for a private DB instance (p. 1821).

To create an Aurora MySQL DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the AWS Management Console, choose the AWS Region where you want
to create the DB cluster. This example uses the US West (Oregon) Region.

3. In the navigation pane, choose Databases.

4. Choose Create database.

5. On the Create database page, shown following, make sure that the Standard create option is
chosen, and then choose Amazon Aurora. Keep the default values for Version and the other engine
options.

104

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Create a DB cluster

6. In the Templates section, choose Dev/Test.

7. In the Settings section, set these values:

• DB cluster identifier – tutorial-db-cluster

• Master username – tutorial_user

• Auto generate a password – Disable the option.

• Master password – Choose a password.

• Confirm password – Retype the password.

105

Amazon Aurora User Guide for Aurora
Create a DB cluster

8. In the DB instance class section, enable Include previous generation classes, and set these values:

• Burstable classes (includes t classes)

• db.t2.small

9. In the Availability & durability section, use the default values.

10. In the Connectivity section, set these values:

106

Amazon Aurora User Guide for Aurora
Create a DB cluster

• Virtual private cloud (VPC) – Choose an existing VPC with both public and private subnets,
such as the tutorial-vpc (vpc-identifier) created in Create a VPC with private and public
subnets (p. 1818)

Note
The VPC must have subnets in different Availability Zones.

• Subnet group – The DB subnet group for the VPC, such as the tutorial-db-subnet-group
created in Create a DB subnet group (p. 1821)

• Public access – No

• VPC security group – Choose existing

• Existing VPC security groups – Choose an existing VPC security group that is configured for
private access, such as the tutorial-db-securitygroup created in Create a VPC security
group for a private DB instance (p. 1821).

Remove other security groups, such as the default security group, by choosing the X associated
with each.

• Availability Zone – No preference

• Open Additional configuration, and make sure Database port uses the default value 3306.

107

Amazon Aurora User Guide for Aurora
Create a DB cluster

11. Open the Additional configuration section, and enter sample for Initial database name. Keep the
default settings for the other options.

12. To create your Aurora MySQL DB cluster, choose Create database.

Your new DB cluster appears in the Databases list with the status Creating.

13. Wait for the Status of your new DB cluster to show as Available. Then choose the DB cluster name
to show its details.

14. In the Connectivity & security section, view the Endpoint and Port of the writer DB instance.

108

Amazon Aurora User Guide for Aurora
Create a web server

Note the endpoint and port for your writer DB instance. You use this information to connect your
web server to your DB cluster.

15. Complete Create an EC2 instance and install a web server (p. 109).

Create an EC2 instance and install a web server
In this step, you create a web server to connect to the Amazon Aurora DB cluster that you created in
Create an Amazon Aurora DB cluster (p. 104).

Launch an EC2 instance

First, you create an Amazon EC2 instance in the public subnet of your VPC.

To launch an EC2 instance

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. Choose EC2 Dashboard, and then choose Launch instance, as shown following.

109

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

Amazon Aurora User Guide for Aurora
Create a web server

3. Choose the Amazon Linux 2 AMI.

4. Choose the t2.micro instance type, as shown following, and then choose Next: Configure Instance
Details.

110

Amazon Aurora User Guide for Aurora
Create a web server

5. On the Configure Instance Details page, shown following, set these values and keep the other
values as their defaults:

• Network: Choose the VPC with both public and private subnets that you chose for the DB cluster,
such as the vpc-identifier | tutorial-vpc created in Create a VPC with private and public
subnets (p. 1818).

• Subnet: Choose an existing public subnet, such as subnet-identifier | Tutorial public
| us-west-2a created in Create a VPC security group for a public web server (p. 1820).

• Auto-assign Public IP: Choose Enable.

111

Amazon Aurora User Guide for Aurora
Create a web server

6. Choose Next: Add Storage.

7. On the Add Storage page, keep the default values and choose Next: Add Tags.

8. On the Add Tags page, shown following, choose Add Tag, then enter Name for Key and enter
tutorial-web-server for Value.

9. Choose Next: Configure Security Group.

10. On the Configure Security Group page, shown following, choose Select an existing security group.
Then choose an existing security group, such as the tutorial-securitygroup created in Create
a VPC security group for a public web server (p. 1820). Make sure that the security group that you
choose includes inbound rules for Secure Shell (SSH) and HTTP access.

11. Choose Review and Launch.

12. On the Review Instance Launch page, shown following, verify your settings and then choose
Launch.

112

Amazon Aurora User Guide for Aurora
Create a web server

13. On the Select an existing key pair or create a new key pair page, shown following, choose Create
a new key pair and set Key pair name to tutorial-key-pair. Choose Download Key Pair, and
then save the key pair file on your local machine. You use this key pair file to connect to your EC2
instance.

113

Amazon Aurora User Guide for Aurora
Create a web server

14. To launch your EC2 instance, choose Launch Instances. On the Launch Status page, shown
following, note the identifier for your new EC2 instance, for example: i-0288d65fd4470b6a9.

114

Amazon Aurora User Guide for Aurora
Create a web server

15. Choose View Instances to find your instance.

16. Wait until Instance Status for your instance reads as Running before continuing.

Install an Apache web server with PHP

Next, you connect to your EC2 instance and install the web server.

To connect to your EC2 instance and install the Apache web server with PHP

1. Connect to the EC2 instance that you created earlier by following the steps in Connect to your Linux
instance.

2. Get the latest bug fixes and security updates by updating the software on your EC2 instance. To do
this, use the following command.

Note
The -y option installs the updates without asking for confirmation. To examine updates
before installing, omit this option.

sudo yum update -y

3. After the updates complete, install the PHP software using the amazon-linux-extras install
command. This command installs multiple software packages and related dependencies at the same
time.

115

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

Amazon Aurora User Guide for Aurora
Create a web server

sudo amazon-linux-extras install -y lamp-mariadb10.2-php7.2 php7.2

If you receive an error stating sudo: amazon-linux-extras: command not found, then your
instance was not launched with an Amazon Linux 2 AMI (perhaps you are using the Amazon Linux
AMI instead). You can view your version of Amazon Linux using the following command.

cat /etc/system-release

For more information, see Updating instance software.

4. Install the Apache web server.

sudo yum install -y httpd

5. Start the web server with the command shown following.

sudo systemctl start httpd

You can test that your web server is properly installed and started. To do this, enter the public
Domain Name System (DNS) name of your EC2 instance in the address bar of a web browser, for
example: http://ec2-42-8-168-21.us-west-1.compute.amazonaws.com. If your web server
is running, then you see the Apache test page.

If you don't see the Apache test page, check your inbound rules for the VPC security group that you
created in Tutorial: Create an Amazon VPC for use with a DB instance (p. 1818). Make sure that your
inbound rules include a rule allowing HTTP (port 80) access for the IP address you use to connect to
the web server.

Note
The Apache test page appears only when there is no content in the document root
directory, /var/www/html. After you add content to the document root directory, your
content appears at the public DNS address of your EC2 instance instead of the Apache test
page.

6. Configure the web server to start with each system boot using the systemctl command.

sudo systemctl enable httpd

To allow ec2-user to manage files in the default root directory for your Apache web server, modify the
ownership and permissions of the /var/www directory. There are many ways to accomplish this task.
In this tutorial, you add ec2-user to the apache group, to give the apache group ownership of the /
var/www directory and assign write permissions to the group.

To set file permissions for the Apache web server

1. Add the ec2-user user to the apache group.

sudo usermod -a -G apache ec2-user

2. Log out to refresh your permissions and include the new apache group.

exit

3. Log back in again and verify that the apache group exists with the groups command.

116

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/install-updates.html

Amazon Aurora User Guide for Aurora
Create a web server

groups

Your output looks similar to the following:

ec2-user adm wheel apache systemd-journal

4. Change the group ownership of the /var/www directory and its contents to the apache group.

sudo chown -R ec2-user:apache /var/www

5. Change the directory permissions of /var/www and its subdirectories to add group write
permissions and set the group ID on subdirectories created in the future.

sudo chmod 2775 /var/www
find /var/www -type d -exec sudo chmod 2775 {} \;

6. Recursively change the permissions for files in the /var/www directory and its subdirectories to add
group write permissions.

find /var/www -type f -exec sudo chmod 0664 {} \;

Now, ec2-user (and any future members of the apache group) can add, delete, and edit files in the
Apache document root, enabling you to add content, such as a static website or a PHP application.

Note
A web server running the HTTP protocol provides no transport security for the data that it
sends or receives. When you connect to an HTTP server using a web browser, the URLs that
you visit, the content of web pages that you receive, and the contents (including passwords) of
any HTML forms that you submit are all visible to eavesdroppers anywhere along the network
pathway. The best practice for securing your web server is to install support for HTTPS (HTTP
Secure), which protects your data with SSL/TLS encryption. For more information, see Tutorial:
Configure SSL/TLS with the Amazon Linux AMI in the Amazon EC2 User Guide.

Connect your Apache web server to your DB instance
Next, you add content to your Apache web server that connects to your Amazon Aurora DB cluster.

To add content to the Apache web server that connects to your DB cluster

1. While still connected to your EC2 instance, change the directory to /var/www and create a new
subdirectory named inc.

cd /var/www
mkdir inc
cd inc

2. Create a new file in the inc directory named dbinfo.inc, and then edit the file by calling nano (or
the editor of your choice).

>dbinfo.inc
nano dbinfo.inc

3. Add the following contents to the dbinfo.inc file. Here, db_instance_endpoint is DB cluster
writer endpoint, without the port, and master password is the master password for your DB
cluster.

117

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/SSL-on-amazon-linux-ami.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/SSL-on-amazon-linux-ami.html

Amazon Aurora User Guide for Aurora
Create a web server

Note
We recommend placing the user name and password information in a folder that isn't part
of the document root for your web server. Doing this reduces the possibility of your security
information being exposed.

<?php

define('DB_SERVER', 'db_cluster_writer_endpoint');
define('DB_USERNAME', 'tutorial_user');
define('DB_PASSWORD', 'master password');
define('DB_DATABASE', 'sample');

?>

4. Save and close the dbinfo.inc file.

5. Change the directory to /var/www/html.

cd /var/www/html

6. Create a new file in the html directory named SamplePage.php, and then edit the file by calling
nano (or the editor of your choice).

>SamplePage.php
nano SamplePage.php

7. Add the following contents to the SamplePage.php file:

Note
We recommend placing the user name and password information in a folder that isn't part
of the document root for your web server. Doing this reduces the possibility of your security
information being exposed.

<?php include "../inc/dbinfo.inc"; ?>
<html>
<body>
<h1>Sample page</h1>
<?php

 /* Connect to MySQL and select the database. */
 $connection = mysqli_connect(DB_SERVER, DB_USERNAME, DB_PASSWORD);

 if (mysqli_connect_errno()) echo "Failed to connect to MySQL: " .
 mysqli_connect_error();

 $database = mysqli_select_db($connection, DB_DATABASE);

 /* Ensure that the EMPLOYEES table exists. */
 VerifyEmployeesTable($connection, DB_DATABASE);

 /* If input fields are populated, add a row to the EMPLOYEES table. */
 $employee_name = htmlentities($_POST['NAME']);
 $employee_address = htmlentities($_POST['ADDRESS']);

 if (strlen($employee_name) || strlen($employee_address)) {
 AddEmployee($connection, $employee_name, $employee_address);
 }
?>

118

Amazon Aurora User Guide for Aurora
Create a web server

<!-- Input form -->
<form action="<?PHP echo $_SERVER['SCRIPT_NAME'] ?>" method="POST">
 <table border="0">
 <tr>
 <td>NAME</td>
 <td>ADDRESS</td>
 </tr>
 <tr>
 <td>
 <input type="text" name="NAME" maxlength="45" size="30" />
 </td>
 <td>
 <input type="text" name="ADDRESS" maxlength="90" size="60" />
 </td>
 <td>
 <input type="submit" value="Add Data" />
 </td>
 </tr>
 </table>
</form>

<!-- Display table data. -->
<table border="1" cellpadding="2" cellspacing="2">
 <tr>
 <td>ID</td>
 <td>NAME</td>
 <td>ADDRESS</td>
 </tr>

<?php

$result = mysqli_query($connection, "SELECT * FROM EMPLOYEES");

while($query_data = mysqli_fetch_row($result)) {
 echo "<tr>";
 echo "<td>",$query_data[0], "</td>",
 "<td>",$query_data[1], "</td>",
 "<td>",$query_data[2], "</td>";
 echo "</tr>";
}
?>

</table>

<!-- Clean up. -->
<?php

 mysqli_free_result($result);
 mysqli_close($connection);

?>

</body>
</html>

<?php

/* Add an employee to the table. */
function AddEmployee($connection, $name, $address) {
 $n = mysqli_real_escape_string($connection, $name);
 $a = mysqli_real_escape_string($connection, $address);

 $query = "INSERT INTO EMPLOYEES (NAME, ADDRESS) VALUES ('$n', '$a');";

 if(!mysqli_query($connection, $query)) echo("<p>Error adding employee data.</p>");

119

Amazon Aurora User Guide for Aurora
Create a web server

}

/* Check whether the table exists and, if not, create it. */
function VerifyEmployeesTable($connection, $dbName) {
 if(!TableExists("EMPLOYEES", $connection, $dbName))
 {
 $query = "CREATE TABLE EMPLOYEES (
 ID int(11) UNSIGNED AUTO_INCREMENT PRIMARY KEY,
 NAME VARCHAR(45),
 ADDRESS VARCHAR(90)
)";

 if(!mysqli_query($connection, $query)) echo("<p>Error creating table.</p>");
 }
}

/* Check for the existence of a table. */
function TableExists($tableName, $connection, $dbName) {
 $t = mysqli_real_escape_string($connection, $tableName);
 $d = mysqli_real_escape_string($connection, $dbName);

 $checktable = mysqli_query($connection,
 "SELECT TABLE_NAME FROM information_schema.TABLES WHERE TABLE_NAME = '$t' AND
 TABLE_SCHEMA = '$d'");

 if(mysqli_num_rows($checktable) > 0) return true;

 return false;
}
?>

8. Save and close the SamplePage.php file.
9. Verify that your web server successfully connects to your DB cluster by opening a web browser

and browsing to http://EC2 instance endpoint/SamplePage.php, for example: http://
ec2-55-122-41-31.us-west-2.compute.amazonaws.com/SamplePage.php.

You can use SamplePage.php to add data to your DB cluster. The data that you add is then displayed
on the page. To verify that the data was inserted into the table, you can install MySQL on the Amazon
EC2 instance, connect to the DB instance, and query the table.

For information about connecting to a DB cluster, see Connecting to an Amazon Aurora DB
cluster (p. 281).

To make sure that your DB cluster is as secure as possible, verify that sources outside of the VPC can't
connect to your DB cluster.

After you have finished testing your web server and your database, you should delete your DB cluster
and your Amazon EC2 instance.

• To delete a DB cluster, follow the instructions in Deleting Aurora DB clusters and DB
instances (p. 467). You don't need to create a final snapshot.

• To terminate an Amazon EC2 instance, follow the instruction in Terminate your instance in the Amazon
EC2 User Guide.

120

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html

Amazon Aurora User Guide for Aurora
Tutorials in this guide

Amazon Aurora tutorials and sample
code

The AWS documentation includes several tutorials that guide you through common Amazon Aurora use
cases. Many of these tutorials show you how to use Amazon Aurora with other AWS services. In addition,
you can access sample code in GitHub.

Note
You can find more tutorials at the AWS Database Blog. For information about training, see AWS
Training and Certification.

Topics
• Tutorials in this guide (p. 121)

• Tutorials in other AWS guides (p. 121)

• Tutorials and sample code in GitHub (p. 122)

Tutorials in this guide
The following tutorials in this guide show you how to perform common tasks with Amazon Aurora:

• Tutorial: Create an Amazon VPC for use with a DB instance (p. 1818)

Learn how to include a DB cluster in an Amazon virtual private cloud (VPC) that shares data with a web
server that is running on an Amazon EC2 instance in the same VPC.

• Tutorial: Create a web server and an Amazon Aurora DB cluster (p. 103)

Learn how to install an Apache web server with PHP and create a MySQL database. The web server
runs on an Amazon EC2 instance using Amazon Linux, and the MySQL database is an Aurora MySQL DB
cluster. Both the Amazon EC2 instance and the DB cluster run in an Amazon VPC.

• Tutorial: Use tags to specify which Aurora DB clusters to stop (p. 479)

Learn how to use tags to specify which Aurora DB clusters to stop.

• Tutorial: log the state of an instance using EventBridge (p. 713)

Learn how to log a DB instance state change using Amazon EventBridge and AWS Lambda.

Tutorials in other AWS guides
The following tutorials in other AWS guides show you how to perform common tasks with Amazon
Aurora:

Note
Some of the tutorials use Amazon RDS DB instances, but they can be adapted to use Aurora DB
clusters.

• Tutorial: Aurora Serverless in the AWS AppSync Developer Guide

121

http://aws.amazon.com/blogs/database/
https://www.aws.training/
https://www.aws.training/
https://docs.aws.amazon.com/appsync/latest/devguide/tutorial-rds-resolvers.html

Amazon Aurora User Guide for Aurora
Tutorials and sample code in GitHub

Learn how to use AWS AppSync to provide a data source for executing SQL commands against Aurora
Serverless v1 DB clusters with the Data API enabled. You can use AWS AppSync resolvers to execute
SQL statements against the Data API with GraphQL queries, mutations, and subscriptions.

• Tutorial: Rotating a Secret for an AWS Database in the AWS Secrets Manager User Guide

Learn how to create a secret for an AWS database and configure the secret to rotate on a schedule.
You trigger one rotation manually, and then confirm that the new version of the secret continues to
provide access.

• Tutorial: Configuring a Lambda function to access Amazon RDS in an Amazon VPC in the AWS Lambda
Developer Guide

Learn how to create a Lambda function to access a database, create a table, add a few records, and
retrieve the records from the table. You also learn how to invoke the Lambda function and verify the
query results.

• Tutorials and samples in the AWS Elastic Beanstalk Developer Guide

Learn how to deploy applications that use Amazon RDS databases with AWS Elastic Beanstalk.
• Using Data from an Amazon RDS Database to Create an Amazon ML Datasource in the Amazon

Machine Learning Developer Guide

Learn how to create an Amazon Machine Learning (Amazon ML) datasource object from data stored in
a MySQL DB instance.

• Manually Enabling Access to an Amazon RDS Instance in a VPC in the Amazon QuickSight User Guide

Learn how to enable Amazon QuickSight access to an Amazon RDS DB instance in a VPC.

Tutorials and sample code in GitHub
The following tutorials and sample code in GitHub show you how to perform common tasks with
Amazon Aurora:

Note
Some of the tutorials use Amazon RDS DB instances, but they can be adapted to use Aurora DB
clusters.

• Creating a Job Posting Site using Amazon Aurora and Amazon Translation Services

Learn how to create a web application that stores and queries data by using Amazon Aurora, Elastic
Beanstalk, and SDK for Java 2.x. The application created in this AWS tutorial is a job posting web
application that lets an employer, an administrator, or human resources staff alert employees or the
public about a job opening within a company.

• Creating the Amazon Relational Database Service item tracker

Learn how to create an application that tracks and reports on work items using Amazon RDS, Amazon
Simple Email Service, Elastic Beanstalk, and SDK for Java 2.x.

• SDK for Go code samples for Amazon RDS

View a collection of SDK for Go code samples for Amazon RDS and Aurora.
• SDK for Java 2.x code samples for Amazon RDS

View a collection of SDK for Java 2.x code samples for Amazon RDS and Aurora.
• SDK for PHP code samples for Amazon RDS

View a collection of SDK for PHP code samples for Amazon RDS and Aurora.

122

https://docs.aws.amazon.com/secretsmanager/latest/userguide/tutorials_db-rotate.html
https://docs.aws.amazon.com/lambda/latest/dg/services-rds-tutorial.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/tutorials.html
https://docs.aws.amazon.com/machine-learning/latest/dg/using-amazon-rds-with-amazon-ml.html
https://docs.aws.amazon.com/quicksight/latest/user/rds-vpc-access.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/Creating_amazon_aurora_app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/Creating_rds_item_tracker
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/go/rds
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/rds/src/main/java/com/example/rds
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/rds

Amazon Aurora User Guide for Aurora
Tutorials and sample code in GitHub

• SDK for Ruby code samples for Amazon RDS

View a collection of SDK for Ruby code samples for Amazon RDS and Aurora.

123

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/rds

Amazon Aurora User Guide for Aurora

Configuring your Amazon Aurora DB
cluster

This section shows how to set up your Aurora DB cluster. Before creating an Aurora DB cluster, decide on
the DB instance class that will run the DB cluster. Also, decide where the DB cluster will run by choosing
an AWS Region. Next, create the DB cluster. If you have data outside of Aurora, you can migrate the data
into an Aurora DB cluster.

Topics
• Creating an Amazon Aurora DB cluster (p. 125)
• Creating Amazon Aurora resources with AWS CloudFormation (p. 146)
• Using Amazon Aurora Serverless v1 (p. 147)
• Using Amazon Aurora Serverless v2 (preview) (p. 212)
• Using Amazon Aurora global databases (p. 225)
• Connecting to an Amazon Aurora DB cluster (p. 281)
• Using Amazon RDS Proxy (p. 288)
• Working with DB parameter groups and DB cluster parameter groups (p. 339)
• Migrating data to an Amazon Aurora DB cluster (p. 366)

124

Amazon Aurora User Guide for Aurora
Creating a DB cluster

Creating an Amazon Aurora DB cluster
An Amazon Aurora DB cluster consists of a DB instance, compatible with either MySQL or PostgreSQL,
and a cluster volume that holds the data for the DB cluster, copied across three Availability Zones as a
single, virtual volume. By default, an Aurora DB cluster contains a primary DB instance that performs
reads and writes, and, optionally, up to 15 Aurora Replicas (reader DB instances). For more information
about Aurora DB clusters, see Amazon Aurora DB clusters (p. 3).

Following, you can find out how to create an Aurora DB cluster. To get started, first see DB cluster
prerequisites (p. 125).

For simple instructions on connecting to your Aurora DB cluster, see Connecting to an Amazon Aurora DB
cluster (p. 281).

DB cluster prerequisites
Important
Before you can create an Aurora DB cluster, you must complete the tasks in Setting up your
environment for Amazon Aurora (p. 84).

The following are prerequisites to create a DB cluster.

VPC, subnets, and AZs
You can create an Amazon Aurora DB cluster only in a virtual private cloud (VPC) based on the Amazon
VPC service, in an AWS Region that has at least two Availability Zones. The DB subnet group that you
choose for the DB cluster must cover at least two Availability Zones. This configuration ensures that
your DB cluster always has at least one DB instance available for failover, in the unlikely event of an
Availability Zone failure.

If you use the AWS Management Console to create your Aurora DB cluster, you can have Amazon RDS
automatically create a VPC for you. Or you can use an existing VPC or create a new VPC for your Aurora
DB cluster. Whichever approach you take, your VPC must have at least one subnet in each of at least two
Availability Zones for you to use it with an Amazon Aurora DB cluster.

By default, Amazon RDS creates the primary DB instance and the Aurora Replica in the AZs automatically
for you. To choose a specific AZ, you need to change the Availability & durability Multi-AZ deployment
setting to Don't create an Aurora Replica. Doing so exposes a drop-down selector that lets you choose
from among the AZs in your VPC. However, we strongly recommend that you keep the default setting
and let Amazon RDS create a multi-AZ deployment and choose AZs for you. By doing so, your Aurora
DB cluster is created with the fast failover and high availability features that are two of Aurora's key
benefits.

For more information, see How to create a VPC for use with Amazon Aurora (p. 1806). For information
on VPCs, see Amazon Virtual Private Cloud VPCs and Amazon Aurora (p. 1800).

Note
You can communicate with an EC2 instance that is not in a VPC and an Amazon Aurora DB
cluster using ClassicLink. For more information, see A DB instance in a VPC accessed by an EC2
instance not in a VPC (p. 1816).

If you don't have a default VPC or you haven't created a VPC, you can have Amazon RDS automatically
create a VPC for you when you create an Aurora DB cluster using the console. Otherwise, you must do
the following:

• Create a VPC with at least one subnet in each of at least two of the Availability Zones in the AWS
Region where you want to deploy your DB cluster. For more information, see How to create a VPC for
use with Amazon Aurora (p. 1806).

125

Amazon Aurora User Guide for Aurora
Creating a DB cluster

• Specify a VPC security group that authorizes connections to your Aurora DB cluster. For more
information, see Working with a DB instance in a VPC (p. 1801).

• Specify an RDS DB subnet group that defines at least two subnets in the VPC that can be used by the
Aurora DB cluster. For more information, see Working with DB subnet groups (p. 1801).

Additional prerequisites
If you are connecting to AWS using AWS Identity and Access Management (IAM) credentials, your AWS
account must have IAM policies that grant the permissions required to perform Amazon RDS operations.
For more information, see Identity and access management in Amazon Aurora (p. 1737).

If you are using IAM to access the Amazon RDS console, you must first sign on to the AWS
Management Console with your IAM user credentials. Then go to the Amazon RDS console at https://
console.aws.amazon.com/rds/.

If you want to tailor the configuration parameters for your DB cluster, you must specify a DB cluster
parameter group and DB parameter group with the required parameter settings. For information about
creating or modifying a DB cluster parameter group or DB parameter group, see Working with DB
parameter groups and DB cluster parameter groups (p. 339).

You must determine the TCP/IP port number to specify for your DB cluster. The firewalls at some
companies block connections to the default ports (3306 for MySQL, 5432 for PostgreSQL) for Aurora. If
your company firewall blocks the default port, choose another port for your DB cluster. All instances in a
DB cluster use the same port.

Creating a DB cluster
You can create an Aurora DB cluster using the AWS Management Console, the AWS CLI, or the RDS API.

Note
If you are using the console, a new console interface is available for database creation. Choose
either the New Console or the Original Console instructions based on the console that you are
using. The New Console instructions are open by default.

New console

You can create a DB instance running MySQL with the AWS Management Console with Easy create
enabled or not enabled. With Easy create enabled, you specify only the DB engine type, DB instance size,
and DB instance identifier. Easy create uses the default setting for other configuration options. With
Easy create not enabled, you specify more configuration options when you create a database, including
ones for availability, security, backups, and maintenance.

Note
For this example, Standard create is enabled, and Easy create isn't enabled. For information
about creating an Aurora MySQL DB cluster with Easy create enabled, see Getting started with
Amazon Aurora (p. 89).

To create an Aurora DB cluster using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the AWS Management Console, choose the AWS Region in which you
want to create the DB cluster.

Aurora is not available in all AWS Regions. For a list of AWS Regions where Aurora is available, see
Region availability (p. 12).

3. In the navigation pane, choose Databases.
4. Choose Create database.

126

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Creating a DB cluster

5. In Choose a database creation method, choose Standard create.

6. In Engine options, choose Amazon Aurora.

7. In Edition, choose one of the following:

127

Amazon Aurora User Guide for Aurora
Creating a DB cluster

• Amazon Aurora with MySQL compatibility

• Amazon Aurora with PostgreSQL compatibility

8. Choose one of the following in Capacity type:

• Provisioned

For more information, see Amazon Aurora DB clusters (p. 3).

• Serverless

For more information, see Using Amazon Aurora Serverless v1 (p. 147).

9. For Version, choose the engine version.

10. In Templates, choose the template that matches your use case.

11. To enter your master password, do the following:

a. In the Settings section, open Credential Settings.

b. Clear the Auto generate a password check box.

c. (Optional) Change the Master username value and enter the same password in Master
password and Confirm password.

By default, the new DB instance uses an automatically generated password for the master user.

12. For the remaining sections, specify your DB cluster settings. For information about each setting, see
Settings for Aurora DB clusters (p. 137).

13. Choose Create database.

If you chose to use an automatically generated password, the View credential details button
appears on the Databases page.

To view the master user name and password for the DB cluster, choose View credential details.

To connect to the DB instance as the master user, use the user name and password that appear.

Important
You can't view the master user password again. If you don't record it, you might have to
change it. If you need to change the master user password after the DB instance is available,
you can modify the DB instance to do so. For more information about modifying a DB
instance, see Modifying an Amazon Aurora DB cluster (p. 372).

14. For Databases, choose the name of the new Aurora DB cluster.

On the RDS console, the details for new DB cluster appear. The DB cluster and its DB instance have a
status of creating until the DB cluster is ready to use.

128

Amazon Aurora User Guide for Aurora
Creating a DB cluster

When the state changes to available for both, you can connect to the DB cluster. Depending on the
DB instance class and the amount of storage, it can take up to 20 minutes before the new DB cluster
is available.

To view the newly created cluster, choose Databases from the navigation pane in the Amazon
RDS console. Then choose the DB cluster to show the DB cluster details. For more information, see
Viewing an Amazon Aurora DB cluster (p. 547).

129

Amazon Aurora User Guide for Aurora
Creating a DB cluster

On the Connectivity & security tab, note the port and the endpoint of the writer DB instance. Use
the endpoint and port of the cluster in your JDBC and ODBC connection strings for any application
that performs write or read operations.

Original console

To create an Aurora DB cluster using the AWS Management Console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the top-right corner of the AWS Management Console, choose the AWS Region in which you want
to create the Aurora DB cluster.

3. In the navigation pane, choose Databases.

If the navigation pane is closed, choose the menu icon at the top left to open it.

4. Choose Create database to open the Select engine page.

5. On the Select engine page, choose an edition of Aurora. Choose either MySQL 5.6-compatible,
MySQL 5.7-compatible, MySQL 8.0-compatible, or PostgreSQL-compatible.

130

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Creating a DB cluster

6. Choose Next.

7. On the Specify DB details page, specify your DB instance information. For information about each
setting, see Settings for Aurora DB clusters (p. 137).

A typical Specify DB details page looks like the following.

131

Amazon Aurora User Guide for Aurora
Creating a DB cluster

8. Confirm your master password and choose Next.

9. On the Configure advanced settings page, you can customize additional settings for your Aurora DB
cluster. For information about each setting, see Settings for Aurora DB clusters (p. 137).

10. Choose Create database to create your Aurora DB cluster, and then choose Close.

On the Amazon RDS console, the new DB cluster appears in the list of DB clusters. The DB cluster
will have a status of creating until the DB cluster is created and ready for use. When the state
changes to available, you can connect to the writer instance for your DB cluster. Depending on the
DB cluster class and store allocated, it can take several minutes for the new cluster to be available.

132

Amazon Aurora User Guide for Aurora
Creating a DB cluster

To view the newly created cluster, choose Databases from the navigation pane in the Amazon RDS
console and choose the DB cluster to show the DB cluster details. For more information, see Viewing
an Amazon Aurora DB cluster (p. 547).

Note the ports and the endpoints of the cluster. Use the endpoint and port of the writer DB
cluster in your JDBC and ODBC connection strings for any application that performs write or read
operations.

133

Amazon Aurora User Guide for Aurora
Creating a DB cluster

AWS CLI
Note
Before you can create an Aurora DB cluster using the AWS CLI, you must fulfill the required
prerequisites, such as creating a VPC and an RDS DB subnet group. For more information, see DB
cluster prerequisites (p. 125).

You can use the AWS CLI to create an Aurora MySQL DB cluster or an Aurora PostgreSQL DB cluster.

To create an Aurora MySQL DB cluster using the AWS CLI

When you create an Aurora MySQL DB cluster or DB instance, ensure that you specify the correct value
for the --engine option value based on the MySQL compatibility of the DB cluster or DB instance.

• When you create an Aurora MySQL 8.0-compatible or 5.7-compatible DB cluster or DB instance, you
specify aurora-mysql for the --engine option.

• When you create an Aurora MySQL 5.6-compatible DB cluster or DB instance, you specify aurora for
the --engine option.

Complete the following steps:

1. Identify the DB subnet group and VPC security group ID for your new DB cluster, and then call the
create-db-cluster AWS CLI command to create the Aurora MySQL DB cluster.

For example, the following command creates a new MySQL 8.0–compatible DB cluster named
sample-cluster.

For Linux, macOS, or Unix:

aws rds create-db-cluster --db-cluster-identifier sample-cluster --engine aurora-mysql
 \
 --engine-version 8.0 --master-username user-name --master-user-password password \
 --db-subnet-group-name mysubnetgroup --vpc-security-group-ids sg-c7e5b0d2

For Windows:

aws rds create-db-cluster --db-cluster-identifier sample-cluster --engine aurora-mysql
 ^
 --engine-version 8.0 --master-username user-name --master-user-password password ^
 --db-subnet-group-name mysubnetgroup --vpc-security-group-ids sg-c7e5b0d2

The following command creates a new MySQL 5.7–compatible DB cluster named sample-cluster.

For Linux, macOS, or Unix:

aws rds create-db-cluster --db-cluster-identifier sample-cluster --engine aurora-mysql
 \
 --engine-version 5.7.12 --master-username user-name --master-user-
password password \
 --db-subnet-group-name mysubnetgroup --vpc-security-group-ids sg-c7e5b0d2

For Windows:

aws rds create-db-cluster --db-cluster-identifier sample-cluster --engine aurora-mysql
 ^
 --engine-version 5.7.12 --master-username user-name --master-user-password password
 ^

134

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html

Amazon Aurora User Guide for Aurora
Creating a DB cluster

 --db-subnet-group-name mysubnetgroup --vpc-security-group-ids sg-c7e5b0d2

The following command creates a new MySQL 5.6–compatible DB cluster named sample-cluster.

For Linux, macOS, or Unix:

aws rds create-db-cluster --db-cluster-identifier sample-cluster --engine aurora \
 --engine-version 5.6.10a --master-username user-name --master-user-
password password \
 --db-subnet-group-name mysubnetgroup --vpc-security-group-ids sg-c7e5b0d2

For Windows:

aws rds create-db-cluster --db-cluster-identifier sample-cluster --engine aurora ^
 --engine-version 5.6.10a --master-username user-name --master-user-
password password ^
 --db-subnet-group-name mysubnetgroup --vpc-security-group-ids sg-c7e5b0d2

2. If you use the console to create a DB cluster, then Amazon RDS automatically creates the primary
instance (writer) for your DB cluster. If you use the AWS CLI to create a DB cluster, you must explicitly
create the primary instance for your DB cluster. The primary instance is the first instance that is
created in a DB cluster.

Call the create-db-instance AWS CLI command to create the primary instance for your DB cluster.
Include the name of the DB cluster as the --db-cluster-identifier option value.

For example, the following command creates a new MySQL 5.7–compatible or MySQL 8.0–
compatible DB instance named sample-instance.

For Linux, macOS, or Unix:

aws rds create-db-instance --db-instance-identifier sample-instance \
 --db-cluster-identifier sample-cluster --engine aurora-mysql --db-instance-class
 db.r5.large

For Windows:

aws rds create-db-instance --db-instance-identifier sample-instance ^
 --db-cluster-identifier sample-cluster --engine aurora-mysql --db-instance-class
 db.r5.large

The following command creates a new MySQL 5.6–compatible DB instance named sample-
instance.

For Linux, macOS, or Unix:

aws rds create-db-instance --db-instance-identifier sample-instance \
 --db-cluster-identifier sample-cluster --engine aurora --db-instance-class
 db.r5.large

For Windows:

aws rds create-db-instance --db-instance-identifier sample-instance ^
 --db-cluster-identifier sample-cluster --engine aurora --db-instance-class
 db.r5.large

135

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora
Creating a DB cluster

To create an Aurora PostgreSQL DB cluster using the AWS CLI

1. Identify the DB subnet group and VPC security group ID for your new DB cluster, and then call the
create-db-cluster AWS CLI command to create the Aurora PostgreSQL DB cluster.

For example, the following command creates a new DB cluster named sample-cluster.

For Linux, macOS, or Unix:

aws rds create-db-cluster --db-cluster-identifier sample-cluster --engine aurora-
postgresql \
 --master-username user-name --master-user-password password \
 --db-subnet-group-name mysubnetgroup --vpc-security-group-ids sg-c7e5b0d2

For Windows:

aws rds create-db-cluster --db-cluster-identifier sample-cluster --engine aurora-
postgresql ^
 --master-username user-name --master-user-password password ^
 --db-subnet-group-name mysubnetgroup --vpc-security-group-ids sg-c7e5b0d2

2. If you use the console to create a DB cluster, then Amazon RDS automatically creates the primary
instance (writer) for your DB cluster. If you use the AWS CLI to create a DB cluster, you must explicitly
create the primary instance for your DB cluster. The primary instance is the first instance that is
created in a DB cluster.

Call the create-db-instance AWS CLI command to create the primary instance for your DB cluster.
Include the name of the DB cluster as the --db-cluster-identifier option value.

For Linux, macOS, or Unix:

aws rds create-db-instance --db-instance-identifier sample-instance \
 --db-cluster-identifier sample-cluster --engine aurora-postgresql --db-instance-
class db.r4.large

For Windows:

aws rds create-db-instance --db-instance-identifier sample-instance ^
 --db-cluster-identifier sample-cluster --engine aurora-postgresql --db-instance-
class db.r4.large

RDS API

Note
Before you can create an Aurora DB cluster using the AWS CLI, you must fulfill the required
prerequisites, such as creating a VPC and an RDS DB subnet group. For more information, see DB
cluster prerequisites (p. 125).

Identify the DB subnet group and VPC security group ID for your new DB cluster, and then call the
CreateDBCluster operation to create the DB cluster.

When you create an Aurora MySQL DB cluster or DB instance, ensure that you specify the correct value
for the Engine parameter value based on the MySQL compatibility of the DB cluster or DB instance.

• When you create an Aurora MySQL 5.7 DB cluster or DB instance, you must specify aurora-mysql for
the Engine parameter.

136

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora
Available settings

• When you create an Aurora MySQL 5.6 DB cluster or DB instance, you must specify aurora for the
Engine parameter.

When you create an Aurora PostgreSQL DB cluster or DB instance, specify aurora-postgresql for the
Engine parameter.

Settings for Aurora DB clusters
The following table contains details about settings that you choose when you create an Aurora DB
cluster.

Note
Additional settings are available if you are creating an Aurora Serverless DB cluster. For
information about these settings, see Creating an Aurora Serverless v1 DB cluster (p. 161).
Also, some settings aren't available for Aurora Serverless because of Aurora Serverless
limitations. For more information, see Limitations of Aurora Serverless v1 (p. 148).

Console setting Setting description CLI option and RDS API parameter

Auto minor version
upgrade

Choose Enable auto minor version
upgrade if you want to enable
your Aurora DB cluster to receive
preferred minor version upgrades to
the DB engine automatically when
they become available.

The Auto minor version upgrade
setting applies to both Aurora
PostgreSQL and Aurora MySQL
DB clusters. For Aurora MySQL
version 1 and version 2 clusters,
this setting upgrades the clusters to
a maximum version of 1.22.2 and
2.07.2, respectively.

For more information about engine
updates for Aurora PostgreSQL,
see Amazon Aurora PostgreSQL
updates (p. 1614).

For more information about engine
updates for Aurora MySQL, see
Database engine updates for
Amazon Aurora MySQL (p. 1103).

Set this value for every DB instance
in your Aurora cluster. If any DB
instance in your cluster has this
setting turned off, the cluster isn't
automatically upgraded.

Using the AWS CLI, run create-
db-instance and set the --auto-
minor-version-upgrade|--no-
auto-minor-version-upgrade
option.

Using the RDS API, call
CreateDBInstance and set the
AutoMinorVersionUpgrade
parameter.

AWS KMS key Only available if Encryption is set to
Enable encryption. Choose the AWS
KMS key to use for encrypting this
DB cluster. For more information,
see Encrypting Amazon Aurora
resources (p. 1722).

Using the AWS CLI, run create-db-
cluster and set the --kms-key-
id option.

Using the RDS API, call
CreateDBCluster and set the
KmsKeyId parameter.

Backtrack Applies only to Aurora MySQL.
Choose Enable Backtrack to enable
backtracking or Disable Backtrack
to disable backtracking. Using

Using the AWS CLI, run create-
db-cluster and set the --
backtrack-window option.

137

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html

Amazon Aurora User Guide for Aurora
Available settings

Console setting Setting description CLI option and RDS API parameter

backtracking, you can rewind a DB
cluster to a specific time, without
creating a new DB cluster. It is
disabled by default. If you enable
backtracking, also specify the
amount of time that you want to be
able to backtrack your DB cluster
(the target backtrack window). For
more information, see Backtracking
an Aurora DB cluster (p. 837).

Using the RDS API, call
CreateDBCluster and set the
BacktrackWindow parameter.

Copy tags to snapshots Choose this option to copy any DB
instance tags to a DB snapshot when
you create a snapshot.

For more information, see Tagging
Amazon RDS resources (p. 474).

Using the AWS CLI, run create-
db-cluster and set the --copy-
tags-to-snapshot | --no-
copy-tags-to-snapshot option.

Using the RDS API, call
CreateDBCluster and set the
CopyTagsToSnapshot parameter.

Database
authentication

The database authentication you
want to use.

For MySQL:

• Choose Password authentication
to authenticate database users
with database passwords only.

• Choose Password and IAM
database authentication to
authenticate database users
with database passwords and
user credentials through IAM
users and roles. For more
information, see IAM database
authentication (p. 1756).

For PostgreSQL:

• Choose IAM database
authentication to authenticate
database users with database
passwords and user credentials
through IAM users and roles.
For more information, see IAM
database authentication (p. 1756).

• Choose Kerberos authentication
to authenticate database
passwords and user credentials
using Kerberos authentication.
For more information, see Using
Kerberos authentication with
Aurora PostgreSQL (p. 1551).

To use IAM database authentication
with the AWS CLI, run create-db-
cluster and set the --enable-
iam-database-authentication
| --no-enable-iam-database-
authentication option.

To use IAM database authentication
with the RDS API, call
CreateDBCluster and set the
EnableIAMDatabaseAuthentication
parameter.

To use Kerberos authentication
with the AWS CLI, run create-db-
cluster and set the --domain
and --domain-iam-role-name
options.

To use Kerberos authentication with
the RDS API, call CreateDBCluster
and set the Domain and
DomainIAMRoleName parameters.

138

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora
Available settings

Console setting Setting description CLI option and RDS API parameter

Database port Specify the port for applications
and utilities to use to access the
database. Aurora MySQL DB clusters
default to the default MySQL port,
3306, and Aurora PostgreSQL DB
clusters default to the default
PostgreSQL port, 5432. The
firewalls at some companies block
connections to these default ports.
If your company firewall blocks the
default port, choose another port for
the new DB cluster.

Using the AWS CLI, run create-db-
cluster and set the --port option.

Using the RDS API, call
CreateDBCluster and set the
Port parameter.

DB cluster identifier Enter a name for your DB cluster
that is unique for your account in
the AWS Region that you chose.
This identifier is used in the cluster
endpoint address for your DB cluster.
For information on the cluster
endpoint, see Amazon Aurora
connection management (p. 32).

The DB cluster identifier has the
following constraints:

• It must contain from 1 to 63
alphanumeric characters or
hyphens.

• Its first character must be a letter.
• It cannot end with a hyphen or

contain two consecutive hyphens.
• It must be unique for all DB

clusters per AWS account, per AWS
Region.

Using the AWS CLI, run create-
db-cluster and set the --db-
cluster-identifier option.

Using the RDS API, call
CreateDBCluster and set the
DBClusterIdentifier parameter.

DB cluster parameter
group

Choose a DB cluster parameter
group. Aurora has a default DB
cluster parameter group you can
use, or you can create your own
DB cluster parameter group. For
more information about DB cluster
parameter groups, see Working with
DB parameter groups and DB cluster
parameter groups (p. 339).

Using the AWS CLI, run create-
db-cluster and set the --db-
cluster-parameter-group-name
option.

Using the RDS API, call
CreateDBCluster and set the
DBClusterParameterGroupName
parameter.

DB instance class Applies only to the provisioned
capacity type. Choose a DB instance
class that defines the processing
and memory requirements for each
instance in the DB cluster. For more
information about DB instance
classes, see Aurora DB instance
classes (p. 54).

Set this value for every DB instance
in your Aurora cluster.

Using the AWS CLI, run create-
db-instance and set the --db-
instance-class option.

Using the RDS API, call
CreateDBInstance and set the
DBInstanceClass parameter.

139

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Aurora User Guide for Aurora
Available settings

Console setting Setting description CLI option and RDS API parameter

DB parameter group Choose a parameter group. Aurora
has a default parameter group
you can use, or you can create
your own parameter group. For
more information about parameter
groups, see Working with DB
parameter groups and DB cluster
parameter groups (p. 339).

Set this value for every DB instance
in your Aurora cluster.

Using the AWS CLI, run create-
db-instance and set the --db-
parameter-group-name option.

Using the RDS API, call
CreateDBInstance and set
the DBParameterGroupName
parameter.

Enable deletion
protection

Choose Enable deletion protection
to prevent your DB cluster from
being deleted. If you create a
production DB cluster with the
console, deletion protection is
enabled by default.

Using the AWS CLI, run create-db-
cluster and set the --deletion-
protection | --no-deletion-
protection option.

Using the RDS API, call
CreateDBCluster and set the
DeletionProtection parameter.

Enable encryption Choose Enable encryption to
enable encryption at rest for this
DB cluster. For more information,
see Encrypting Amazon Aurora
resources (p. 1722).

Using the AWS CLI, run create-db-
cluster and set the --storage-
encrypted | --no-storage-
encrypted option.

Using the RDS API, call
CreateDBCluster and set the
StorageEncrypted parameter.

Enable Enhanced
Monitoring

Choose Enable enhanced
monitoring to enable gathering
metrics in real time for the operating
system that your DB cluster
runs on. For more information,
see Monitoring OS metrics with
Enhanced Monitoring (p. 647).

Set these values for every DB
instance in your Aurora cluster.

Using the AWS CLI, run create-
db-instance and set the --
monitoring-interval and --
monitoring-role-arn options.

Using the RDS API, call
CreateDBInstance and set
the MonitoringInterval and
MonitoringRoleArn parameters.

140

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Aurora User Guide for Aurora
Available settings

Console setting Setting description CLI option and RDS API parameter

Enable Performance
Insights

Choose Enable Performance
Insights to enable Amazon RDS
Performance Insights. For more
information, see Monitoring DB
load with Performance Insights on
Amazon Aurora (p. 594).

Set these values for every DB
instance in your Aurora cluster.

Using the AWS CLI, run create-db-
instance and set the --enable-
performance-insights | --no-
enable-performance-insights,
--performance-insights-kms-
key-id, and --performance-
insights-retention-period
options.

Using the RDS API, call
CreateDBInstance and set the
EnablePerformanceInsights,
PerformanceInsightsKMSKeyId,
and
PerformanceInsightsRetentionPeriod
parameters.

Engine type Choose the database engine to be
used for this DB cluster.

Using the AWS CLI, run create-
db-cluster and set the --engine
option.

Using the RDS API, call
CreateDBCluster and set the
Engine parameter.

Engine version Applies only to the provisioned
capacity type. Choose the version
number of your DB engine.

Using the AWS CLI, run create-db-
cluster and set the --engine-
version option.

Using the RDS API, call
CreateDBCluster and set the
EngineVersion parameter.

Failover priority Choose a failover priority for the
instance. If you don't choose a value,
the default is tier-1. This priority
determines the order in which
Aurora Replicas are promoted when
recovering from a primary instance
failure. For more information, see
Fault tolerance for an Aurora DB
cluster (p. 69).

Set this value for every DB instance
in your Aurora cluster.

Using the AWS CLI, run create-
db-instance and set the --
promotion-tier option.

Using the RDS API, call
CreateDBInstance and set the
PromotionTier parameter.

141

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Aurora User Guide for Aurora
Available settings

Console setting Setting description CLI option and RDS API parameter

Initial database name Enter a name for your default
database. If you don't provide a
name for an Aurora MySQL DB
cluster, Amazon RDS doesn't create
a database on the DB cluster you are
creating. If you don't provide a name
for an Aurora PostgreSQL DB cluster,
Amazon RDS creates a database
named postgres.

For Aurora MySQL, the default
database name has these
constraints:

• It must contain 1–64 alphanumeric
characters.

• It can't be a word reserved by the
database engine.

For Aurora PostgreSQL, the
default database name has these
constraints:

• It must contain 1–63 alphanumeric
characters.

• It must begin with a letter or an
underscore. Subsequent characters
can be letters, underscores, or
digits (0–9).

• It can't be a word reserved by the
database engine.

To create additional databases,
connect to the DB cluster and
use the SQL command CREATE
DATABASE. For more information
about connecting to the DB cluster,
see Connecting to an Amazon Aurora
DB cluster (p. 281).

Using the AWS CLI, run create-db-
cluster and set the --database-
name option.

Using the RDS API, call
CreateDBCluster and set the
DatabaseName parameter.

Log exports In the Log exports section, choose
the logs that you want to start
publishing to Amazon CloudWatch
Logs. For more information about
publishing Aurora MySQL logs to
CloudWatch Logs, see Publishing
Amazon Aurora MySQL logs to
Amazon CloudWatch Logs (p. 1038).
For more information about
publishing Aurora PostgreSQL logs
to CloudWatch Logs, see Publishing
Aurora PostgreSQL logs to Amazon
CloudWatch Logs (p. 1504).

Using the AWS CLI, run create-db-
cluster and set the --enable-
cloudwatch-logs-exports
option.

Using the RDS API, call
CreateDBCluster and set the
EnableCloudwatchLogsExports
parameter.

142

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora
Available settings

Console setting Setting description CLI option and RDS API parameter

Maintenance window Choose Select window and specify
the weekly time range during which
system maintenance can occur. Or
choose No preference for Amazon
RDS to assign a period randomly.

Using the AWS CLI, run create-
db-cluster and set the --
preferred-maintenance-window
option.

Using the RDS API, call
CreateDBCluster and set the
PreferredMaintenanceWindow
parameter.

Master password Enter a password to log on to your
DB cluster:

• For Aurora MySQL, the password
must contain 8–41 printable ASCII
characters.

• For Aurora PostgreSQL, it must
contain 8–128 printable ASCII
characters.

• It can't contain /, ", @, or a space.

Using the AWS CLI, run create-db-
cluster and set the --master-
user-password option.

Using the RDS API, call
CreateDBCluster and set the
MasterUserPassword parameter.

Master username Enter a name to use as the master
user name to log on to your DB
cluster:

• For Aurora MySQL, the name
must contain 1–16 alphanumeric
characters.

• For Aurora PostgreSQL, it must
contain 1–63 alphanumeric
characters.

• The first character must be a letter.
• The name can't be a word reserved

by the database engine.

Using the AWS CLI, run create-db-
cluster and set the --master-
username option.

Using the RDS API, call
CreateDBCluster and set the
MasterUsername parameter.

Multi-AZ deployment Applies only to the provisioned
capacity type. Determine if you
want to create Aurora Replicas in
other Availability Zones for failover
support. If you choose Create
Replica in Different Zone, then
Amazon RDS creates an Aurora
Replica for you in your DB cluster in
a different Availability Zone than the
primary instance for your DB cluster.
For more information about multiple
Availability Zones, see Regions and
Availability Zones (p. 11).

Using the AWS CLI, run create-
db-cluster and set the --
availability-zones option.

Using the RDS API, call
CreateDBCluster and set the
AvailabilityZones parameter.

143

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora
Available settings

Console setting Setting description CLI option and RDS API parameter

Option group Aurora has a default option group. Using the AWS CLI, run create-db-
cluster and set the --option-
group-name option.

Using the RDS API, call
CreateDBCluster and set the
OptionGroupName parameter.

Public access Choose Publicly accessible to give
the DB cluster a public IP address,
or choose Not publicly accessible.
The instances in your DB cluster can
be a mix of both public and private
DB instances. For more information
about hiding instances from public
access, see Hiding a DB instance in a
VPC from the internet (p. 1802).

To connect to a DB instance from
outside of its Amazon VPC, the
DB instance must be publicly
accessible, access must be granted
using the inbound rules of the DB
instance's security group, and other
requirements must be met. For more
information, see Can't connect to
Amazon RDS DB instance (p. 1827).

If your DB instance is isn't publicly
accessible, you can also use an AWS
Site-to-Site VPN connection or an
AWS Direct Connect connection to
access it from a private network. For
more information, see Internetwork
traffic privacy (p. 1736).

Set this value for every DB instance
in your Aurora cluster.

Using the AWS CLI, run create-
db-instance and set the --
publicly-accessible | --no-
publicly-accessible option.

Using the RDS API, call
CreateDBInstance and set the
PubliclyAccessible parameter.

Retention period Choose the length of time, from 1 to
35 days, that Aurora retains backup
copies of the database. Backup
copies can be used for point-in-time
restores (PITR) of your database
down to the second.

Using the AWS CLI, run create-db-
cluster and set the --backup-
retention-period option.

Using the RDS API, call
CreateDBCluster and set the
BackupRetentionPeriod
parameter.

Subnet group Choose the DB subnet group
to use for the DB cluster. For
more information, see DB cluster
prerequisites (p. 125).

Using the AWS CLI, run create-
db-cluster and set the --db-
subnet-group-name option.

Using the RDS API, call
CreateDBCluster and set the
DBSubnetGroupName parameter.

144

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora
Available settings

Console setting Setting description CLI option and RDS API parameter

Virtual Private Cloud
(VPC)

Choose the VPC to host the DB
cluster. Choose Create a New VPC to
have Amazon RDS create a VPC for
you. For more information, see DB
cluster prerequisites (p. 125).

For the AWS CLI and API, you specify
the VPC security group IDs.

VPC security group Choose Create new to have Amazon
RDS create a VPC security group for
you. Or choose Choose existing and
specify one or more VPC security
groups to secure network access to
the DB cluster.

When you choose Create new in the
RDS console, a new security group
is created with an inbound rule that
allows access to the DB instance
from the IP address detected in your
browser.

For more information, see DB cluster
prerequisites (p. 125).

Using the AWS CLI, run create-
db-cluster and set the --vpc-
security-group-ids option.

Using the RDS API, call
CreateDBCluster and set the
VpcSecurityGroupIds parameter.

145

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora
Creating resources with AWS CloudFormation

Creating Amazon Aurora resources with AWS
CloudFormation

Amazon Aurora is integrated with AWS CloudFormation, a service that helps you to model and set
up your AWS resources so that you can spend less time creating and managing your resources and
infrastructure. You create a template that describes all the AWS resources that you want (such as DB
clusters and DB cluster parameter groups), and AWS CloudFormation provisions and configures those
resources for you.

When you use AWS CloudFormation, you can reuse your template to set up your Aurora resources
consistently and repeatedly. Describe your resources once, and then provision the same resources over
and over in multiple AWS accounts and Regions.

Aurora and AWS CloudFormation templates
To provision and configure resources for Aurora and related services, you must understand AWS
CloudFormation templates. Templates are formatted text files in JSON or YAML. These templates
describe the resources that you want to provision in your AWS CloudFormation stacks. If you're
unfamiliar with JSON or YAML, you can use AWS CloudFormation Designer to help you get started with
AWS CloudFormation templates. For more information, see What is AWS CloudFormation Designer? in
the AWS CloudFormation User Guide.

Aurora supports creating resources in AWS CloudFormation. For more information, including examples
of JSON and YAML templates for these resources, see the RDS resource type reference in the AWS
CloudFormation User Guide.

Learn more about AWS CloudFormation
To learn more about AWS CloudFormation, see the following resources:

• AWS CloudFormation
• AWS CloudFormation User Guide
• AWS CloudFormation API Reference
• AWS CloudFormation Command Line Interface User Guide

146

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_RDS.html
http://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/what-is-cloudformation-cli.html

Amazon Aurora User Guide for Aurora
Using Aurora Serverless v1

Using Amazon Aurora Serverless v1
Amazon Aurora Serverless v1 (Amazon Aurora Serverless version 1) is an on-demand autoscaling
configuration for Amazon Aurora. An Aurora Serverless DB cluster is a DB cluster that scales compute
capacity up and down based on your application's needs. This contrasts with Aurora provisioned DB
clusters, for which you manually manage capacity. Aurora Serverless v1 provides a relatively simple, cost-
effective option for infrequent, intermittent, or unpredictable workloads. It is cost-effective because
it automatically starts up, scales compute capacity to match your application's usage, and shuts down
when it's not in use.

To learn more about pricing, see Serverless Pricing under MySQL-Compatible Edition or PostgreSQL-
Compatible Edition on the Amazon Aurora pricing page.

Aurora Serverless v1 clusters have the same kind of high-capacity, distributed, and highly available
storage volume that is used by provisioned DB clusters. The cluster volume for an Aurora Serverless v1
cluster is always encrypted. You can choose the encryption key, but you can't disable encryption. That
means that you can perform the same operations on an Aurora Serverless v1 that you can on encrypted
snapshots. For more information, see Aurora Serverless v1 and snapshots (p. 161).

Topics

• Advantages of Aurora Serverless v1 (p. 147)

• Use cases for Aurora Serverless v1 (p. 148)

• Limitations of Aurora Serverless v1 (p. 148)

• Configuration requirements for Aurora Serverless v1 (p. 149)

• Using TLS/SSL with Aurora Serverless v1 (p. 150)

• How Aurora Serverless v1 works (p. 151)

• Creating an Aurora Serverless v1 DB cluster (p. 161)

• Restoring an Aurora Serverless v1 DB cluster (p. 166)

• Modifying an Aurora Serverless v1 DB cluster (p. 170)

• Scaling Aurora Serverless v1 DB cluster capacity manually (p. 172)

• Viewing Aurora Serverless v1 DB clusters (p. 174)

• Deleting an Aurora Serverless v1 DB cluster (p. 175)

• Aurora Serverless v1 and Aurora database engine versions (p. 177)

• Using the Data API for Aurora Serverless (p. 178)

• Logging Data API calls with AWS CloudTrail (p. 202)

• Using the query editor for Aurora Serverless (p. 204)

Advantages of Aurora Serverless v1
Aurora Serverless v1 provides the following advantages:

• Simpler than provisioned – Aurora Serverless v1 removes much of the complexity of managing DB
instances and capacity.

• Scalable – Aurora Serverless v1 seamlessly scales compute and memory capacity as needed, with no
disruption to client connections.

• Cost-effective – When you use Aurora Serverless v1, you pay only for the database resources that you
consume, on a per-second basis.

• Highly available storage – Aurora Serverless v1 uses the same fault-tolerant, distributed storage
system with six-way replication as Aurora to protect against data loss.

147

https://aws.amazon.com/rds/aurora/pricing/

Amazon Aurora User Guide for Aurora
Use cases for Aurora Serverless v1

Use cases for Aurora Serverless v1
Aurora Serverless v1 is designed for the following use cases:

• Infrequently used applications – You have an application that is only used for a few minutes several
times per day or week, such as a low-volume blog site. With Aurora Serverless v1, you pay for only the
database resources that you consume on a per-second basis.

• New applications – You're deploying a new application and you're unsure about the instance size
you need. By using Aurora Serverless v1, you can create a database endpoint and have the database
autoscale to the capacity requirements of your application.

• Variable workloads – You're running a lightly used application, with peaks of 30 minutes to several
hours a few times each day, or several times per year. Examples are applications for human resources,
budgeting, and operational reporting applications. With Aurora Serverless v1, you no longer need to
provision for peak or average capacity.

• Unpredictable workloads – You're running daily workloads that have sudden and unpredictable
increases in activity. An example is a traffic site that sees a surge of activity when it starts raining. With
Aurora Serverless v1, your database autoscales capacity to meet the needs of the application's peak
load and scales back down when the surge of activity is over.

• Development and test databases – Your developers use databases during work hours but don't need
them on nights or weekends. With Aurora Serverless v1, your database automatically shuts down when
it's not in use.

• Multi-tenant applications – With Aurora Serverless v1, you don't have to individually manage
database capacity for each application in your fleet. Aurora Serverless v1 manages individual database
capacity for you.

Limitations of Aurora Serverless v1
The following limitations apply to Aurora Serverless v1:

• You can't use Aurora MySQL version 3 for Aurora Serverless v1 clusters. Aurora MySQL version 3 works
with Aurora Serverless v2, which is currently in preview.

• Aurora Serverless v1 is available in certain AWS Regions and for specific Aurora MySQL and Aurora
PostgreSQL versions only. For more information, see Aurora Serverless v1 (p. 29).

• Aurora Serverless v1 doesn't support the following features:
• Aurora global databases
• Aurora multi-master clusters
• Aurora Replicas
• AWS Identity and Access Management (IAM) database authentication
• Backtracking in Aurora
• Database activity streams
• Performance Insights

• Connections to an Aurora Serverless v1 DB cluster are closed automatically if held open for longer
than one day.

• All Aurora Serverless v1 DB clusters have the following limitations:
• You can't export Aurora Serverless v1 snapshots to Amazon S3 buckets.
• You can't save data to text files in Amazon S3.
• You can't use AWS Database Migration Service and Change Data Capture (CDC) with Aurora

Serverless DB clusters. Only provisioned Aurora DB clusters support CDC with AWS DMS as a source.
• You can't load text file data to Aurora MySQL Serverless from Amazon S3. However, you can

load data to Aurora PostgreSQL Serverless from Amazon S3 by using the aws_s3 extension with

148

Amazon Aurora User Guide for Aurora
Configuration requirements for Aurora Serverless v1

the aws_s3.table_import_from_s3 function and the credentials parameter. For more
information, see Importing Amazon S3 data into an Aurora PostgreSQL DB cluster (p. 1455).

• Aurora MySQL–based DB clusters running Aurora Serverless v1 don't support the following:

• Invoking AWS Lambda functions from within your Aurora MySQL DB cluster. However, AWS Lambda
functions can make calls to your Aurora MySQL Serverless DB cluster.

• Restoring a snapshot from a DB instance that isn't Aurora MySQL or RDS for MySQL.

• Replicating data using replication based on binary logs (binlogs). This limitation is true regardless
of whether your Aurora MySQL-based DB cluster Aurora Serverless v1 is the source or the target of
the replication. To replicate data into an Aurora Serverless v1 DB cluster from a MySQL DB instance
outside Aurora, such as one running on Amazon EC2, consider using AWS Database Migration
Service. For more information, see the AWS Database Migration Service User Guide.

• Aurora PostgreSQL–based DB clusters running Aurora Serverless v1 have the following limitations:

• Aurora PostgreSQL query plan management (apg_plan_management extension) isn't supported.

• The logical replication feature available in Amazon RDS PostgreSQL and Aurora PostgreSQL isn't
supported.

• Outbound communications such as those enabled by Amazon RDS for PostgreSQL extensions aren't
supported. For example, you can't access external data with the postgres_fdw/dblink extension.
For more information about RDS PostgreSQL extensions, see PostgreSQL on Amazon RDS in the RDS
User Guide.

• Currently, certain SQL queries and commands aren't recommended. These include session-level
advisory locks, temporary relations, asynchronous notifications (LISTEN), and cursors with hold
(DECLARE name ... CURSOR WITH HOLD FOR query). Also, NOTIFY and COPY commands
prevent scaling and aren't recommended.

For more information, see Autoscaling for Aurora Serverless v1 (p. 153).

• You can't set the preferred backup window for an Aurora Serverless v1 DB cluster.

Configuration requirements for Aurora Serverless v1
When you create an Aurora Serverless v1 DB cluster, pay attention to the following requirements:

• Use these specific port numbers for each DB engine:

• Aurora MySQL – 3306

• Aurora PostgreSQL – 5432

• Create your Aurora Serverless v1 DB cluster in a virtual private cloud (VPC) based on the Amazon
VPC service. When you create an Aurora Serverless v1 DB cluster in your VPC, you consume two (2) of
the fifty (50) Interface and Gateway Load Balancer endpoints allotted to your VPC. These endpoints
are created automatically for you. To increase your quota, you can contact AWS Support. For more
information, see Amazon VPC quotas.

• You can't give an Aurora Serverless v1 DB cluster a public IP address. You can access an Aurora
Serverless v1 DB cluster only from within a VPC.

• Create subnets in different Availability Zones for the DB subnet group that you use for your Aurora
Serverless v1 DB cluster. In other words, you can't have more than one subnet in the same Availability
Zone.

• Changes to a subnet group used by an Aurora Serverless v1 DB cluster aren't applied to the cluster.

• You can access an Aurora Serverless v1 DB cluster from AWS Lambda. To do so, you must configure
your Lambda function to run in the same VPC as your Aurora Serverless v1 DB cluster. For more
information about working with AWS Lambda, see Configuring a Lambda function to access resources
in an Amazon VPC in the AWS Lambda Developer Guide.

149

https://docs.aws.amazon.com/dms/latest/userguide/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.FeatureSupport.Extensions.101x
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html#vpc-limits-endpoints
https://docs.aws.amazon.com/lambda/latest/dg/vpc.html
https://docs.aws.amazon.com/lambda/latest/dg/vpc.html

Amazon Aurora User Guide for Aurora
Using TLS/SSL with Aurora Serverless v1

Using TLS/SSL with Aurora Serverless v1
By default, Aurora Serverless v1 uses the Transport Layer Security/Secure Sockets Layer (TLS/SSL)
protocol to encrypt communications between clients and your Aurora Serverless v1 DB cluster. It
supports TLS/SSL versions 1.0, 1.1, and 1.2. You don't need to configure your Aurora Serverless v1 DB
cluster to use TLS/SSL.

However, the following limitations apply:

• TLS/SSL support for Aurora Serverless v1 DB clusters isn't currently available in the China (Beijing)
AWS Region.

• When you create database users for an Aurora MySQL–based Aurora Serverless v1 DB cluster, don't use
the REQUIRE clause for SSL permissions. Doing so prevents users from connecting to the Aurora DB
instance.

• For both MySQL Client and PostgreSQL Client utilities, session variables that you might use in other
environments have no effect when using TLS/SSL between client and Aurora Serverless v1.

• For the MySQL Client, when connecting with TLS/SSL's VERIFY_IDENTITY mode, currently you need
to use the MySQL 8.0-compatible mysql command. For more information, see Connecting to a DB
instance running the MySQL database engine.

Depending on the client that you use to connect to Aurora Serverless v1 DB cluster, you might not need
to specify TLS/SSL to get an encrypted connection. For example, to use the PostgreSQL Client to connect
to an Aurora Serverless v1 DB cluster running Aurora PostgreSQL-Compatible Edition, connect as you
normally do.

psql -h endpoint -U user

After you enter your password, the PostgreSQL Client shows you see the connection details, including
the TLS/SSL version and cipher.

psql (12.5 (Ubuntu 12.5-0ubuntu0.20.04.1), server 10.12)
SSL connection (protocol: TLSv1.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits: 256,
 compression: off)
Type "help" for help.

Important
Aurora Serverless v1 uses the Transport Layer Security/Secure Sockets Layer (TLS/SSL) protocol
to encrypt connections by default unless SSL/TLS is disabled by the client application. The TLS/
SSL connection terminates at the router fleet. Communication between the router fleet and
your Aurora Serverless v1 DB cluster occurs within the service's internal network boundary.
You can check the status of the client connection to examine whether the connection to Aurora
Serverless v1 is TLS/SSL encrypted. The PostgreSQL pg_stat_ssl and pg_stat_activity
tables and its ssl_is_used function don't show the TLS/SSL state for the communication
between the client application and Aurora Serverless v1. Similarly, the TLS/SSL state can't be
derived from the MySQL status statement.
The Aurora cluster parameters force_ssl for PostgreSQL and require_secure_transport
for MySQL aren't supported for Aurora Serverless v1. For a complete list of parameters
supported by Aurora Serverless v1, call the DescribeEngineDefaultClusterParameters API. For
more information on parameter groups and Aurora Serverless v1, see Parameter groups and
Aurora Serverless v1 (p. 156).

To use the MySQL Client to connect to an Aurora Serverless v1 DB cluster running Aurora MySQL-
Compatible Edition, you specify TLS/SSL in your request. The following example includes the Amazon
root CA 1 trust store downloaded from Amazon Trust Services, which is necessary for this connection to
succeed.

150

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeEngineDefaultClusterParameters.html
https://www.amazontrust.com/repository/AmazonRootCA1.pem
https://www.amazontrust.com/repository/AmazonRootCA1.pem

Amazon Aurora User Guide for Aurora
How Aurora Serverless v1 works

mysql -h endpoint -P 3306 -u user -p --ssl-ca=amazon-root-CA-1.pem --ssl-mode=REQUIRED

When prompted, enter your password. Soon, the MySQL monitor opens. You can confirm that the session
is encrypted by using the status command.

mysql> status

mysql Ver 14.14 Distrib 5.5.62, for Linux (x86_64) using readline 5.1
Connection id: 19
Current database:
Current user: ***@*******
SSL: Cipher in use is ECDHE-RSA-AES256-SHA
...

To learn more about connecting to Aurora MySQL database with the MySQL Client, see Connecting to a
DB instance running the MySQL database engine.

Aurora Serverless v1 supports all TLS/SSL modes available to the MySQL Client (mysql) and PostgreSQL
Client (psql), including those listed in the following table.

Description of TLS/SSL mode mysql psql

Connect without using TLS/SSL. DISABLED disable

Try the connection using TLS/
SSL first, but fall back to non-
SSL if necessary.

PREFERRED prefer (default)

Enforce using TLS/SSL. REQUIRED require

Enforce TLS/SSL and verify the
CA.

VERIFY_CA verify-ca

Enforce TLS/SSL, verify the CA,
and verify the CA hostname.

VERIFY_IDENTITY verify-full

Aurora Serverless v1 uses wildcard certificates. If you specify the "verify CA" or the "verify CA and CA
hostname" option when using TLS/SSL, first download the Amazon root CA 1 trust store from Amazon
Trust Services. After doing so, you can identify this PEM-formatted file in your client command. To do so
using the PostgreSQL Client:

For Linux, macOS, or Unix:

psql 'host=endpoint user=user sslmode=require sslrootcert=amazon-root-CA-1.pem dbname=db-
name'

To learn more about working with the Aurora PostgreSQL database using the Postgres Client, see
Connecting to a DB instance running the PostgreSQL database engine.

For more information about connecting to Aurora DB clusters in general, see Connecting to an Amazon
Aurora DB cluster (p. 281).

How Aurora Serverless v1 works
Amazon Aurora offers two different DB engine modes aimed at two broadly different usage models.

151

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html
https://www.amazontrust.com/repository/AmazonRootCA1.pem
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToPostgreSQLInstance.html

Amazon Aurora User Guide for Aurora
How Aurora Serverless v1 works

The provisioned DB engine mode is designed for predictable workloads. When you work with Aurora
provisioned DB clusters, you choose your DB instance class size and several other configuration options.
For example, you can create one or more Aurora Replicas to increase read throughput. If your workload
changes, you can modify the DB instance class size and change the number of Aurora Replicas. The
provisioned model works well when you can adjust capacity in advance of expected consumption
patterns.

The serverless DB engine mode is designed for a different usage pattern entirely. For example, your
database usage might be heavy for a short period of time, followed by long periods of light activity or no
activity at all. Some examples are retail websites with intermittent sales events, databases that produce
reports when needed, development and testing environments, and new applications with uncertain
requirements. For cases such as these and many others, configuring capacity correctly in advance isn't
always possible with the provisioned model. It can also result in higher costs if you overprovision and
have capacity that you don't use.

By using Aurora Serverless v1, you can create a database endpoint without specifying the DB instance
class size. You specify only the minimum and maximum range for the Aurora Serverless v1 DB cluster's
capacity. The Aurora Serverless v1 database endpoint makes up a router fleet that supports continuous
connections and distributes the workload among resources. Aurora Serverless v1 scales the resources
automatically based on your minimum and maximum capacity specifications.

You don't need to change your database client application code to use the router fleet. Aurora Serverless
v1 manages the connections automatically. Scaling is fast thanks to a "warm" resources pool that's
always ready to service requests. Storage and processing are separate, so your Aurora Serverless v1 DB
cluster can scale down to zero when it's finished processing workloads. When your Aurora Serverless v1
DB cluster scales to zero, you're charged only for storage.

Topics

• Aurora Serverless v1 architecture (p. 152)

• Autoscaling for Aurora Serverless v1 (p. 153)

• Timeout action for capacity changes (p. 154)

• Pause and resume for Aurora Serverless v1 (p. 155)

• Parameter groups and Aurora Serverless v1 (p. 156)

• Logging for Aurora Serverless v1 (p. 158)

• Aurora Serverless v1 and maintenance (p. 160)

• Aurora Serverless v1 and failover (p. 160)

• Aurora Serverless v1 and snapshots (p. 161)

Aurora Serverless v1 architecture

The following image shows an overview the Aurora Serverless v1 architecture.

152

Amazon Aurora User Guide for Aurora
How Aurora Serverless v1 works

Instead of provisioning and managing database servers, you specify Aurora capacity units (ACUs). Each
ACU is a combination of approximately 2 gigabytes (GB) of memory, corresponding CPU, and networking.
Database storage automatically scales from 10 gibibytes (GiB) to 128 tebibytes (TiB), the same as
storage in a standard Aurora DB cluster.

You can specify the minimum and maximum ACU. The minimum Aurora capacity unit is the lowest ACU
to which the DB cluster can scale down. The maximum Aurora capacity unit is the highest ACU to which
the DB cluster can scale up. Based on your settings, Aurora Serverless v1 automatically creates scaling
rules for thresholds for CPU utilization, connections, and available memory.

Aurora Serverless v1 manages the warm pool of resources in an AWS Region to minimize scaling time.
When Aurora Serverless v1 adds new resources to the Aurora DB cluster, it uses the router fleet to switch
active client connections to the new resources. At any specific time, you are only charged for the ACUs
that are being actively used in your Aurora DB cluster.

Autoscaling for Aurora Serverless v1
The capacity allocated to your Aurora Serverless v1 DB cluster seamlessly scales up and down based
on the load generated by your client application. Here, load is CPU utilization and the number of
connections. When capacity is constrained by either of these, Aurora Serverless v1 scales up. Aurora
Serverless also scales up when it detects performance issues that can be resolved by doing so.

You can view scaling events for your Aurora Serverless cluster in the AWS Management Console. During
autoscaling, Aurora Serverless v1 resets the EngineUptime metric. The value of the reset metric
value doesn't mean that seamless scaling had problems, nor does it mean Aurora Serverless dropped
connections. It's simply the starting point for uptime at the new capacity. To learn more about metrics,
see Monitoring metrics in an Amazon Aurora cluster (p. 541).

When your Aurora Serverless v1 DB cluster has no active connections, it can scale down to zero capacity
(0 ACUs). To learn more, see Pause and resume for Aurora Serverless v1 (p. 155).

When it does need to perform a scaling operation, Aurora Serverless v1 first tries to identify a scaling
point, a moment when no queries are being processed. Aurora Serverless might not be able to find a
scaling point for the following reasons:

153

Amazon Aurora User Guide for Aurora
How Aurora Serverless v1 works

• Long-running queries
• In-progress transactions
• Temporary tables or table locks

To increase your Aurora Serverless DB cluster's success rate when finding a scaling point, we recommend
that you avoid long-running queries and long-running transactions. To learn more about scale-blocking
operations and how to avoid them, see Best practices for working with Amazon Aurora Serverless.

By default, Aurora Serverless v1 tries to find a scaling point for 5 minutes (300 seconds). You can specify
a different timeout period when you create or modify the cluster. The timeout period can be between 60
seconds and 10 minutes (600 seconds). If Aurora Serverless can't find a scaling point within the specified
period, the autoscaling operation times out.

By default, if autoscaling doesn't find a scaling point before timing out, Aurora Serverless v1 keeps the
cluster at the current capacity. You can change this default behavior when you create or modify your
Aurora Serverless DB cluster by selecting the Force the capacity change option. For more information,
see Timeout action for capacity changes (p. 154).

Timeout action for capacity changes
If autoscaling times out without finding a scaling point, by default Aurora keeps the current capacity.
You can choose to have Aurora force the change by enabling the Force the capacity change option. This
option is available in the Autoscaling timeout and action section of the Create database page, when you
create the cluster.

• [] Force the capacity change – By default, this option is deselected. Leave this option unchecked to
have your Aurora Serverless DB cluster's capacity to remain unchanged if the scaling operation times
out without finding a scaling point.

• [X] Force the capacity change – Choosing this option causes your Aurora Serverless DB cluster to
enforce the capacity change, even without a scaling point. Before enabling this option, be aware of the
consequences of this choice.
• Any in-process transactions are interrupted, and the following error message appears.

Aurora MySQL 5.6 – ERROR 1105 (HY000): The last transaction was aborted due to
an unknown error. Please retry.

Aurora MySQL 5.7 – ERROR 1105 (HY000): The last transaction was aborted due to
Seamless Scaling. Please retry.

You can resubmit the transactions as soon as your Aurora Serverless v1 DB cluster is available.
• Connections to temporary tables and locks are dropped.

Note
We recommend that you choose the "force" option only if your application can recover from
dropped connections or incomplete transactions.

The choices you make in the AWS Management Console when you create an Aurora Serverless DB
cluster are stored in the ScalingConfigurationInfo object, in the SecondsBeforeTimeout and
TimeoutAction properties. The value of the TimeoutAction property is set to one of the following
values when you create your cluster:

• RollbackCapacityChange – This value is set when you choose the Roll back the capacity change
option. This is the default behavior.

• ForceApplyCapacityChange – This value is set when you choose the Force the capacity change
option.

154

http://aws.amazon.com/blogs/database/best-practices-for-working-with-amazon-aurora-serverless/

Amazon Aurora User Guide for Aurora
How Aurora Serverless v1 works

You can get the value of this property on an existing Aurora Serverless DB cluster by using the describe-
db-clusters AWS CLI command, as shown following.

For Linux, macOS, or Unix:

aws rds describe-db-clusters --region region \
 --db-cluster-identifier your-cluster-name \
 --query '*[].{ScalingConfigurationInfo:ScalingConfigurationInfo}'

For Windows:

aws rds describe-db-clusters --region region ^
 --db-cluster-identifier your-cluster-name ^
 --query "*[].{ScalingConfigurationInfo:ScalingConfigurationInfo}"

As an example, the following shows the query and response for an Aurora Serverless v1 DB cluster
named west-coast-sles in the US West (N. California) Region.

$ aws rds describe-db-clusters --region us-west-1 --db-cluster-identifier west-coast-sles
--query '*[].{ScalingConfigurationInfo:ScalingConfigurationInfo}'

[
 {
 "ScalingConfigurationInfo": {
 "MinCapacity": 1,
 "MaxCapacity": 64,
 "AutoPause": false,
 "SecondsBeforeTimeout": 300,
 "SecondsUntilAutoPause": 300,
 "TimeoutAction": "RollbackCapacityChange"
 }
 }
]

As the response shows, this Aurora Serverless v1 DB cluster uses the default setting.

For more information, see Creating an Aurora Serverless v1 DB cluster (p. 161). After creating your
Aurora Serverless v1, you can modify the timeout action and other capacity settings at any time. To learn
how, see Modifying an Aurora Serverless v1 DB cluster (p. 170).

Pause and resume for Aurora Serverless v1
You can choose to pause your Aurora Serverless v1 DB cluster after a given amount of time with no
activity. You specify the amount of time with no activity before the DB cluster is paused. When you select
this option, the default inactivity time is five minutes, but you can change this value. This is an optional
setting.

When the DB cluster is paused, no compute or memory activity occurs, and you are charged only for
storage. If database connections are requested when an Aurora Serverless DB cluster is paused, the DB
cluster automatically resumes and services the connection requests.

When the DB cluster resumes activity, it has the same capacity as it had when Aurora paused the cluster.
The number of ACUs depends on how much Aurora scaled the cluster up or down before pausing it.

Note
If a DB cluster is paused for more than seven days, the DB cluster might be backed up with a
snapshot. In this case, Aurora restores the DB cluster from the snapshot when there is a request
to connect to it.

155

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html

Amazon Aurora User Guide for Aurora
How Aurora Serverless v1 works

Parameter groups and Aurora Serverless v1
When you create your Aurora Serverless v1 DB cluster, you choose a specific Aurora DB engine and an
associated DB cluster parameter group. Unlike provisioned Aurora DB clusters, an Aurora Serverless DB
cluster has a single read/write DB instance that's configured with a DB cluster parameter group only—
it doesn't have a separate DB parameter group. During autoscaling, Aurora Serverless needs to be able
to change parameters for the cluster to work best for the increased or decreased capacity. Thus, with
an Aurora Serverless DB cluster, some of the changes you might make to parameters for a particular DB
engine type might not apply.

For example, an Aurora PostgreSQL–based Aurora Serverless DB cluster can't use
apg_plan_mgmt.capture_plan_baselines and other parameters that might be used on provisioned
Aurora PostgreSQL DB clusters for query plan management.

You can get a list of default values for the default parameter groups for the various Aurora DB engines
by using the describe-engine-default-cluster-parameters CLI command and querying the AWS Region.
The following are values you can use for the --db-parameter-group-family option.

Aurora MySQL 5.6 aurora5.6

Aurora MySQL 5.7 aurora-mysql5.7

Aurora PostgreSQL 10.12 (and later) aurora-postgresql10

We recommend that you configure your AWS CLI with your AWS Access Key ID and AWS Secret Access
Key, and that you set your AWS Region before using AWS CLI commands. Providing the Region to your
CLI configuration saves you from entering the --region parameter when running commands. To learn
more about configuring AWS CLI, see Configuration basics in the AWS Command Line Interface User
Guide.

The following example gets a list of parameters from the default DB cluster group for Aurora MySQL 5.6.

For Linux, macOS, or Unix:

aws rds describe-engine-default-cluster-parameters \
 --db-parameter-group-family aurora5.6 --query \
 'EngineDefaults.Parameters[*].
{ParameterName:ParameterName,SupportedEngineModes:SupportedEngineModes} | [?
contains(SupportedEngineModes, `serverless`) == `true`] | [*].{param:ParameterName}' \
 --output text

For Windows:

aws rds describe-engine-default-cluster-parameters ^
 --db-parameter-group-family aurora5.6 --query ^
 "EngineDefaults.Parameters[*].
{ParameterName:ParameterName,SupportedEngineModes:SupportedEngineModes} | [?
contains(SupportedEngineModes, 'serverless') == `true`] | [*].{param:ParameterName}" ^
 --output text

Modifying parameter values for Aurora Serverless v1

As explained in Working with DB parameter groups and DB cluster parameter groups (p. 339), you can't
directly change values in a default parameter group, regardless of its type (DB cluster parameter group,
DB parameter group). Instead, you create a custom parameter group based on the default DB cluster

156

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-engine-default-cluster-parameters.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config

Amazon Aurora User Guide for Aurora
How Aurora Serverless v1 works

parameter group for your Aurora DB engine and change settings as needed on that parameter group.
For example, you might want to change some of the settings for your Aurora Serverless DB cluster to log
queries or to upload DB engine specific logs (p. 158) to Amazon CloudWatch.

To create a custom DB cluster parameter group

1. Sign in to the AWS Management Console and then open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Parameter groups.

3. Choose Create parameter group to open the Parameter group details pane.

4. Choose the appropriate default DB cluster group for the DB engine you want to use for your Aurora
Serverless v1 DB cluster. Be sure you choose the following options:

a. For Parameter group family, choose the appropriate family for your chosen DB engine. Be sure
your selection has the prefix aurora- in its name.

b. For Type, choose DB Cluster Parameter Group.

c. For Group name and Description, enter meaningful names for you or others who might need to
work with your Aurora Serverless v1 DB cluster and its parameters.

d. Choose Create.

Your custom DB cluster parameter group is added to the list of parameter groups available in your AWS
Region. You can use your custom DB cluster parameter group when you create new Aurora Serverless
DB clusters, and you can modify an existing Aurora Serverless DB cluster to use your custom DB cluster
parameter group. Once your Aurora Serverless DB cluster starts using your custom DB cluster parameter
group, you can change values for dynamic parameters using either the AWS Management Console or the
AWS CLI. You can also use the Console to view a side-by-side comparison of the values in your custom DB
cluster parameter group compared to the default DB cluster parameter group, as shown in the following
screenshot.

When you change parameter values on an active DB cluster, Aurora Serverless starts a seamless scale
in order to apply the parameter changes. If your Aurora Serverless DB cluster is in a "paused" state, it

157

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
How Aurora Serverless v1 works

resumes and starts scaling so that it can make the change. The scaling operation for a parameter group
change always forces the capacity change (p. 154), so be aware that modifying parameters might result
in dropped connections if a scaling point can't be found during the scaling period.

Logging for Aurora Serverless v1
By default, error logs for Aurora Serverless are enabled and automatically uploaded to Amazon
CloudWatch. You can also have your Aurora Serverless DB cluster upload Aurora database-engine specific
logs to CloudWatch by enabling configuration parameters in your custom DB cluster parameter group.
Your Aurora Serverless DB cluster then uploads all available logs to Amazon CloudWatch, and you can
use CloudWatch to analyze log data, create alarms, and view metrics.

For Aurora MySQL, you can enable the following logs have them automatically uploaded from your
Aurora Serverless DB cluster to Amazon CloudWatch.

Aurora MySQL Description

general_log Creates the general log. Set to 1 to turn on.
Default is off (0).

log_queries_not_using_indexes Logs any queries to the slow query log that don't
use an index. Default is off (0). Set to 1 to turn on
this log.

long_query_time Prevents fast-running queries from being logged
in the slow query log. Can be set to a float
between 0 and 31536000. Default is 0 (not
active).

server_audit_events The list of events to capture in the logs.
Supported values are CONNECT, QUERY,
QUERY_DCL, QUERY_DDL, QUERY_DML, and
TABLE.

server_audit_logging Set to 1 to turn on server audit logging. If you
turn this on, you can specify the audit events
to send to CloudWatch by listing them in the
server_audit_events parameter.

slow_query_log Creates a slow query log. Set to 1 to turn on the
slow query log. Default is off (0).

For more information, see Using Advanced Auditing with an Amazon Aurora MySQL DB cluster (p. 935).

For Aurora PostgreSQL, you can enable the following logs on your Aurora Serverless DB cluster and have
them automatically uploaded to Amazon CloudWatch along with the regular error logs.

Aurora PostgreSQL Description

log_connections Enabled by default, and can't be changed. It logs
details for all new client connections.

log_disconnections Enabled by default, and can't be changed. Logs all
client disconnections.

log_lock_waits Default is 0 (off). Set to 1 to log lock waits.

158

Amazon Aurora User Guide for Aurora
How Aurora Serverless v1 works

Aurora PostgreSQL Description

log_min_duration_statement The minimum duration (in milliseconds) for a
statement to run before it's logged.

log_min_messages Sets the message levels that are logged.
Supported values are debug5, debug4, debug3,
debug2, debug1, info, notice, warning,
error, log, fatal, panic. To log performance
data to the postgres log, set the value to
debug1.

log_temp_files Logs the use of temporary files that are above the
specified kilobytes (kB).

log_statement Controls the specific SQL statements that get
logged. Supported values are none, ddl, mod, and
all. Default is none.

After you enable logs for Aurora MySQL 5.6, Aurora MySQL 5.7, or Aurora PostgreSQL for your Aurora
Serverless DB cluster, you can view the logs in CloudWatch.

Viewing Aurora Serverless v1 logs with Amazon CloudWatch

Aurora Serverless v1 automatically uploads ("publishes") to Amazon CloudWatch all logs that are
enabled in your custom DB cluster parameter group. You don't need to choose or specify the log types.
Uploading logs starts as soon as you enable the log configuration parameter. If you later disable the log
parameter, further uploads stop. However, all the logs that have already been published to CloudWatch
remain until you delete them.

For more information on using CloudWatch with Aurora MySQL logs, see Monitoring log events in
Amazon CloudWatch (p. 1041).

For more information about CloudWatch and Aurora PostgreSQL, see Publishing Aurora PostgreSQL logs
to Amazon CloudWatch Logs (p. 1504).

To view logs for your Aurora Serverless DB cluster

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. Choose your AWS Region.

3. Choose Log groups.

4. Choose your Aurora Serverless DB cluster log from the list. For error logs, the naming pattern is as
follows.

/aws/rds/cluster/cluster-name/error

For example, in the following screenshot you can find listings for logs published for an Aurora
PostgreSQL Aurora Serverless DB cluster named "western-sles." You can also find several listings
for Aurora MySQL Aurora Serverless DB cluster, "west-coast-sles." Choose the log of interest to start
exploring its content.

159

https://console.aws.amazon.com/cloudwatch/

Amazon Aurora User Guide for Aurora
How Aurora Serverless v1 works

Aurora Serverless v1 and maintenance

Maintenance for Aurora Serverless v1 DB cluster, such as applying the latest features, fixes, and security
updates, is performed automatically for you. Unlike provisioned Aurora DB clusters, Aurora Serverless
doesn't have user-settable maintenance windows. However, it does have a maintenance window that
you can view in the AWS Management Console in Maintenance & backups for your Aurora Serverless DB
cluster. You can find the date and time that maintenance might be performed and if any maintenance is
pending for your Aurora Serverless DB cluster, as shown following.

Whenever possible, Aurora Serverless performs maintenance in a non-disruptive manner. When
maintenance is required, your Aurora Serverless DB cluster scales its capacity to handle the necessary
operations. Before scaling, Aurora Serverless looks for a scaling point and it does so for up to seven days
if necessary.

At the end of each day that Aurora Serverless can't find a scaling point, it creates a cluster event. This
event notifies you of the pending maintenance and the need to scale to perform maintenance. The
notification includes the date when the Aurora Serverless can force the DB cluster to scale.

Until that time, your Aurora Serverless DB cluster continues looking for a scaling point and behaves
according to its TimeoutAction setting. That is, if it can't find a scaling point before timing out, it
abandons the capacity change if it's configured to RollbackCapacityChange. Or it forces the change
if it's set to ForceApplyCapacityChange. As with any change that's forced without an appropriate
scaling point, this might interrupt your workload.

For more information, see Timeout action for capacity changes (p. 154).

Aurora Serverless v1 and failover

If the DB instance for an Aurora Serverless v1 DB cluster becomes unavailable or the Availability
Zone (AZ) it is in fails, Aurora recreates the DB instance in a different AZ. We refer to this capability as
automatic multi-AZ failover.

160

Amazon Aurora User Guide for Aurora
Creating an Aurora Serverless v1 DB cluster

This failover mechanism takes longer than for an Aurora provisioned cluster. The Aurora Serverless v1
failover time is currently undefined because it depends on demand and capacity availability in other AZs
within the given AWS Region.

Because Aurora separates computation capacity and storage, the storage volume for the cluster is spread
across multiple AZs. Your data remains available even if outages affect the DB instance or the associated
AZ.

Aurora Serverless v1 and snapshots
The cluster volume for an Aurora Serverless v1 cluster is always encrypted. You can choose the
encryption key, but you can't disable encryption. To copy or share a snapshot of an Aurora Serverless v1
cluster, you encrypt the snapshot using your own AWS KMS key. For more information, see Copying a DB
cluster snapshot . To learn more about encryption and Amazon Aurora, see Encrypting Amazon Aurora
resources.

Creating an Aurora Serverless v1 DB cluster
When you create an Aurora Serverless v1 DB cluster, you can set the minimum and maximum capacity
for the cluster. A capacity unit is equivalent to a specific compute and memory configuration. Aurora
Serverless creates scaling rules for thresholds for CPU utilization, connections, and available memory
and seamlessly scales to a range of capacity units as needed for your applications. For more information
see Aurora Serverless v1 architecture (p. 152).

You can set the following specific values for your Aurora Serverless v1 DB cluster:

• Minimum Aurora capacity unit – Aurora Serverless v1 can reduce capacity down to this capacity unit.
• Maximum Aurora capacity unit – Aurora Serverless v1 can increase capacity up to this capacity unit.

You can also choose the following optional scaling configuration options:

• Roll back the capacity change – To cancel capacity changes if Aurora Serverless v1 can't find a scaling
point, choose this setting.

Force the capacity change – To force Aurora Serverless v1 to scale even if it can't find a scaling point
before it times out, choose this setting.

For more information, see Timeout action for capacity changes (p. 154).
• Pause compute capacity after consecutive minutes of inactivity – You can choose this setting if you

want Aurora Serverless v1 to scale to zero when there's no activity on your DB cluster for an amount
of time you specify. With this setting enabled, your Aurora Serverless v1 DB cluster automatically
resumes processing and scales to the necessary capacity to handle the workload when database traffic
resumes. To learn more, see Pause and resume for Aurora Serverless v1 (p. 155).

Before you can create an Aurora Serverless v1 DB cluster, you need an AWS account. You also need to
have completed the setup tasks for working with Amazon Aurora. For more information, see Setting
up your environment for Amazon Aurora (p. 84). You also need to complete other preliminary steps for
creating any Aurora DB cluster. To learn more, see Creating an Amazon Aurora DB cluster (p. 125).

Aurora Serverless v1 is available in certain AWS Regions and for specific Aurora MySQL and Aurora
PostgreSQL versions only. For more information, see Aurora Serverless v1 (p. 29).

Note
The cluster volume for an Aurora Serverless v1 cluster is always encrypted. When you create
your Aurora Serverless v1 DB cluster, you can't turn off encryption, but you can choose to use
your own encryption key.

161

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_CopySnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_CopySnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Overview.Encryption.html#Overview.Encryption.Enabling
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Overview.Encryption.html#Overview.Encryption.Enabling

Amazon Aurora User Guide for Aurora
Creating an Aurora Serverless v1 DB cluster

You can create an Aurora Serverless v1 DB cluster with the AWS Management Console, the AWS CLI, or
the RDS API by following the steps below.

Console

To create a new Aurora Serverless v1 DB cluster, you sign in to the AWS Management Console and
choose an AWS Region that supports Aurora Serverless v1. Choose Amazon RDS from the AWS Services
list, and then choose Create database.

On the Create database page:

• Choose Standard Create for the database creation method.

• Choose Amazon Aurora for the Engine type in the Engine options section.

You then choose Amazon Aurora with MySQL compatibility or Amazon Aurora with PostgreSQL
compatibility and continue creating the Aurora Serverless v1 DB cluster by using the steps from the
following examples. If you choose a version of the DB engine that doesn't support Aurora Serverless v1,
the Serverless option doesn't display.

Example for Aurora MySQL

Choose Amazon Aurora with MySQL Compatibility for the Edition. Choose the Aurora MySQL engine
you want for your cluster from the Version selector. The following image shows an example.

Choose Serverless for the Capacity type.

You can configure the scaling configuration of the Aurora Serverless v1 DB cluster by adjusting values
in the Capacity settings section of the page. To learn more about capacity settings, see Autoscaling for
Aurora Serverless v1 (p. 153). The following image shows the Capacity settings you can adjust for an
Aurora MySQL Serverless DB cluster.

162

Amazon Aurora User Guide for Aurora
Creating an Aurora Serverless v1 DB cluster

You can also enable the Data API for your Aurora MySQL Serverless DB cluster. Select the Data API
checkbox in the Connectivity section of the Create database page. To learn more about the Data API, see
Using the Data API for Aurora Serverless (p. 178).

Example for Aurora PostgreSQL

Choose Amazon Aurora with Postgres; Compatibility for the Edition and select the Version of Aurora
PostgreSQL available for Aurora Serverless v1. For more information, see Aurora Serverless v1 (p. 29).

163

Amazon Aurora User Guide for Aurora
Creating an Aurora Serverless v1 DB cluster

You can configure the scaling configuration of the Aurora Serverless v1 DB cluster by adjusting values
in the Capacity settings section of the page. The following image shows the Capacity settings you
can adjust for an Aurora PostgreSQL Serverless DB cluster. To learn more about capacity settings, see
Autoscaling for Aurora Serverless v1 (p. 153).

164

Amazon Aurora User Guide for Aurora
Creating an Aurora Serverless v1 DB cluster

You can also enable the Data API for your Aurora PostgreSQL Serverless DB cluster. Select the Data API
checkbox in the Connectivity section of the Create database page. See Using the Data API for Aurora
Serverless (p. 178) for more information about the Data API.

For more information on creating an Aurora DB cluster using the AWS Management Console, see
Creating an Amazon Aurora DB cluster (p. 125).

Note
If you receive the following error message when trying to create your cluster, your account
needs additional permissions.
Unable to create the resource. Verify that you have permission to create
service linked role. Otherwise wait and try again later.
See Using service-linked roles for Amazon Aurora (p. 1796) for more information.

You can't directly connect to the DB instance on your Aurora Serverless v1 DB cluster. To connect to
your Aurora Serverless v1 DB cluster, you use the database endpoint. You can find the endpoint for
your Aurora Serverless v1 DB cluster on the Connectivity & security tab for your cluster in the AWS
Management Console. For more information, see Connecting to an Amazon Aurora DB cluster (p. 281).

AWS CLI

To create a new Aurora Serverless v1 DB cluster with the AWS CLI, run the create-db-cluster command
and specify serverless for the --engine-mode option.

You can optionally specify the --scaling-configuration option to configure the minimum capacity,
maximum capacity, and automatic pause when there are no connections.

The following command examples create a new Serverless DB cluster by setting the --engine-mode
option to serverless. The examples also specify values for the --scaling-configuration option.

Example for Aurora MySQL

The following commands create new MySQL–compatible Serverless DB clusters. Valid capacity values for
Aurora MySQL are 1, 2, 4, 8, 16, 32, 64, 128, and 256.

For Linux, macOS, or Unix:

aws rds create-db-cluster --db-cluster-identifier sample-cluster --engine aurora --engine-
version 5.6.10a \
--engine-mode serverless --scaling-configuration
 MinCapacity=4,MaxCapacity=32,SecondsUntilAutoPause=1000,AutoPause=true \
--master-username username --master-user-password password

aws rds create-db-cluster --db-cluster-identifier sample-cluster --engine aurora-mysql --
engine-version 5.7.mysql_aurora.2.07.1 \
--engine-mode serverless --scaling-configuration
 MinCapacity=4,MaxCapacity=32,SecondsUntilAutoPause=1000,AutoPause=true \
--master-username username --master-user-password password

For Windows:

aws rds create-db-cluster --db-cluster-identifier sample-cluster --engine aurora --engine-
version 5.6.10a ^
--engine-mode serverless --scaling-configuration
 MinCapacity=4,MaxCapacity=32,SecondsUntilAutoPause=1000,AutoPause=true ^
--master-username username --master-user-password password

165

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html

Amazon Aurora User Guide for Aurora
Restoring an Aurora Serverless v1 DB cluster

aws rds create-db-cluster --db-cluster-identifier sample-cluster --engine aurora-mysql --
engine-version 5.7.mysql_aurora.2.07.1 ^
--engine-mode serverless --scaling-configuration
 MinCapacity=4,MaxCapacity=32,SecondsUntilAutoPause=1000,AutoPause=true ^
--master-username username --master-user-password password

Example for Aurora PostgreSQL

The following command creates a new PostgreSQL 10.12–compatible Serverless DB cluster. Valid
capacity values for Aurora PostgreSQL are 2, 4, 8, 16, 32, 64, 192, and 384.

For Linux, macOS, or Unix:

aws rds create-db-cluster --db-cluster-identifier sample-cluster --engine aurora-postgresql
 --engine-version 10.12 \
--engine-mode serverless --scaling-configuration
 MinCapacity=8,MaxCapacity=64,SecondsUntilAutoPause=1000,AutoPause=true \
--master-username username --master-user-password password

For Windows:

aws rds create-db-cluster --db-cluster-identifier sample-cluster --engine aurora-postgresql
 --engine-version 10.12 ^
--engine-mode serverless --scaling-configuration
 MinCapacity=8,MaxCapacity=64,SecondsUntilAutoPause=1000,AutoPause=true ^
--master-username username --master-user-password password

RDS API

To create a new Aurora Serverless v1 DB cluster with the RDS API, run the CreateDBCluster operation and
specify serverless for the EngineMode parameter.

You can optionally specify the ScalingConfiguration parameter to configure the minimum capacity,
maximum capacity, and automatic pause when there are no connections. Valid capacity values include
the following:

• Aurora MySQL: 1, 2, 4, 8, 16, 32, 64, 128, and 256.

• Aurora PostgreSQL: 2, 4, 8, 16, 32, 64, 192, and 384.

Restoring an Aurora Serverless v1 DB cluster
You can configure an Aurora Serverless v1 DB cluster when you restore a provisioned DB cluster snapshot
with the AWS Management Console, the AWS CLI, or the RDS API.

When you restore a snapshot to an Aurora Serverless v1 DB cluster, you can set the following specific
values:

• Minimum Aurora capacity unit – Aurora Serverless v1 can reduce capacity down to this capacity unit.

• Maximum Aurora capacity unit – Aurora Serverless v1 can increase capacity up to this capacity unit.

• Timeout action – The action to take when a capacity modification times out because it can't find a
scaling point. Aurora Serverless v1 DB cluster can force your DB cluster to the new capacity settings if

166

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora
Restoring an Aurora Serverless v1 DB cluster

set the Force scaling the capacity to the specified values... option. Or, it can roll back the capacity
change to cancel it if you don't choose the option. For more information, see Timeout action for
capacity changes (p. 154).

• Pause after inactivity – The amount of time with no database traffic to scale to zero processing
capacity. When database traffic resumes, Aurora automatically resumes processing capacity and scales
to handle the traffic.

For general information about restoring a DB cluster from a snapshot, see Restoring from a DB cluster
snapshot (p. 497).

Console

You can restore a DB cluster snapshot to an Aurora DB cluster with the AWS Management Console.

To restore a DB cluster snapshot to an Aurora DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the AWS Management Console, choose the AWS Region that hosts your
source DB cluster.

3. In the navigation pane, choose Snapshots, and choose the DB cluster snapshot that you want to
restore.

4. For Actions, choose Restore Snapshot.

5. On the Restore DB Cluster page, choose Serverless for Capacity type.

6. In the DB cluster identifier field, type the name for your restored DB cluster, and complete the other
fields.

7. In the Capacity settings section, modify the scaling configuration.

167

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Restoring an Aurora Serverless v1 DB cluster

8. Choose Restore DB Cluster.

To connect to an Aurora Serverless v1 DB cluster, use the database endpoint. For details, see the
instructions in Connecting to an Amazon Aurora DB cluster (p. 281).

Note
If you encounter the following error message, your account requires additional permissions:
Unable to create the resource. Verify that you have permission to create
service linked role. Otherwise wait and try again later.
For more information, see Using service-linked roles for Amazon Aurora (p. 1796).

AWS CLI

You can configure an Aurora Serverless v1 DB cluster when you restore from a snapshot of another DB
cluster. You can do so with the AWS CLI by using the restore-db-cluster-from-snapshot CLI command.
With your command, you include the following required parameters:

• --db-cluster-identifier mynewdbcluster

• --snapshot-identifier mydbclustersnapshot

• --engine-mode serverless

To restore a snapshot to an Aurora Serverless v1 cluster with MySQL 5.7 compatibility, include the
following additional parameters:

• --engine aurora-mysql

168

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html

Amazon Aurora User Guide for Aurora
Restoring an Aurora Serverless v1 DB cluster

• --engine-version 5.7

The --engine and --engine-version parameters let you create a MySQL 5.7-compatible
Aurora Serverless v1 cluster from a MySQL 5.6-compatible Aurora or Aurora Serverless v1
snapshot. The following example restores a snapshot from a MySQL 5.6-compatible cluster
named mydbclustersnapshot to a MySQL 5.7-compatible Aurora Serverless v1 cluster named
mynewdbcluster.

For Linux, macOS, or Unix:

aws rds restore-db-cluster-from-snapshot \
 --db-cluster-identifier mynewdbcluster \
 --snapshot-identifier mydbclustersnapshot \
 --engine-mode serverless \
 --engine aurora-mysql \
 --engine-version 5.7

For Windows:

aws rds restore-db-cluster-from-snapshot ^
 --db-instance-identifier mynewdbcluster ^
 --db-snapshot-identifier mydbclustersnapshot ^
 --engine aurora-mysql ^
 --engine-version 5.7

You can optionally specify the --scaling-configuration option to configure the minimum capacity,
maximum capacity, and automatic pause when there are no connections. Valid capacity values include
the following:

• Aurora MySQL: 1, 2, 4, 8, 16, 32, 64, 128, and 256.

• Aurora PostgreSQL: 2, 4, 8, 16, 32, 64, 192, and 384.

In the following example, you restore from a previously created DB cluster snapshot named
mydbclustersnapshot to a new DB cluster named mynewdbcluster. You set the --scaling-
configuration so that the new Aurora Serverless DB cluster can scale from 8 ACUs to 64 ACUs (Aurora
capacity units) as needed to process the workload. After processing completes and after 1000 seconds
with no connections to support, the cluster shuts down until connection requests prompt it to restart.

For Linux, macOS, or Unix:

aws rds restore-db-cluster-from-snapshot \
 --db-cluster-identifier mynewdbcluster \
 --snapshot-identifier mydbclustersnapshot \
 --engine-mode serverless --scaling-configuration
 MinCapacity=8,MaxCapacity=64,TimeoutAction='ForceApplyCapacityChange',SecondsUntilAutoPause=1000,AutoPause=true

For Windows:

aws rds restore-db-cluster-from-snapshot ^
 --db-instance-identifier mynewdbcluster ^
 --db-snapshot-identifier mydbclustersnapshot ^
 --engine-mode serverless --scaling-configuration
 MinCapacity=8,MaxCapacity=64,TimeoutAction='ForceApplyCapacityChange',SecondsUntilAutoPause=1000,AutoPause=true

169

Amazon Aurora User Guide for Aurora
Modifying an Aurora Serverless v1 DB cluster

RDS API

To configure an Aurora Serverless v1 DB cluster when you restore from a DB cluster using the RDS
API, run the RestoreDBClusterFromSnapshot operation and specify serverless for the EngineMode
parameter.

You can optionally specify the ScalingConfiguration parameter to configure the minimum capacity,
maximum capacity, and automatic pause when there are no connections. Valid capacity values include
the following:

• Aurora MySQL: 1, 2, 4, 8, 16, 32, 64, 128, and 256.

• Aurora PostgreSQL: 2, 4, 8, 16, 32, 64, 192, and 384.

Modifying an Aurora Serverless v1 DB cluster
After you configure an Aurora Serverless v1 DB cluster, you can modify its scaling configuration with the
AWS Management Console, the AWS CLI, or the RDS API.

You can set the minimum and maximum capacity for the DB cluster. Each capacity unit is equivalent to
a specific compute and memory configuration. Aurora Serverless v1 automatically creates scaling rules
for thresholds for CPU utilization, connections, and available memory. You can also set whether Aurora
Serverless v1 pauses the database when there's no activity and then resumes when activity begins again.

You can set the following specific values:

• Minimum Aurora capacity unit – Aurora Serverless v1 can reduce capacity down to this capacity unit.

• Maximum Aurora capacity unit – Aurora Serverless v1 can increase capacity up to this capacity unit.

• Autoscaling timeout and action – This section specifies how long Aurora Serverless waits to find a
scaling point before timing out. It also specifies the action to take when a capacity modification times
out because it can't find a scaling point. Aurora can force the capacity change to set the capacity to
the specified value as soon as possible. Or, it can roll back the capacity change to cancel it. For more
information, see Timeout action for capacity changes (p. 154).

• Pause after inactivity – The amount of time with no database traffic to scale to zero processing
capacity. When database traffic resumes, Aurora automatically resumes processing capacity and scales
to handle the traffic.

Console

You can modify the scaling configuration of an Aurora DB cluster with the AWS Management Console.

To modify an Aurora Serverless v1 DB cluster

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the Aurora Serverless v1 DB cluster that you want to modify.

4. For Actions, choose Modify cluster.

5. In the Capacity settings section, modify the scaling configuration.

170

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromSnapshot.html
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Modifying an Aurora Serverless v1 DB cluster

6. Choose Continue.
7. Choose Modify cluster.

The change is applied immediately.

AWS CLI

To modify the scaling configuration of an Aurora Serverless v1 DB cluster using the AWS CLI, run the
modify-db-cluster AWS CLI command. Specify the --scaling-configuration option to configure
the minimum capacity, maximum capacity, and automatic pause when there are no connections. Valid
capacity values include the following:

• Aurora MySQL: 1, 2, 4, 8, 16, 32, 64, 128, and 256.
• Aurora PostgreSQL: 2, 4, 8, 16, 32, 64, 192, and 384.

In this example, you modify the scaling configuration of an Aurora Serverless v1 DB cluster named
sample-cluster.

For Linux, macOS, or Unix:

aws rds modify-db-cluster --db-cluster-identifier sample-cluster \
--scaling-configuration
 MinCapacity=8,MaxCapacity=64,SecondsUntilAutoPause=500,TimeoutAction='ForceApplyCapacityChange',AutoPause=true

171

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Aurora User Guide for Aurora
Scaling Aurora Serverless v1 DB cluster capacity manually

For Windows:

aws rds modify-db-cluster --db-cluster-identifier sample-cluster ^
--scaling-configuration
 MinCapacity=8,MaxCapacity=64,SecondsUntilAutoPause=500,TimeoutAction='ForceApplyCapacityChange',AutoPause=true

RDS API

You can modify the scaling configuration of an Aurora DB cluster with the ModifyDBCluster API
operation. Specify the ScalingConfiguration parameter to configure the minimum capacity,
maximum capacity, and automatic pause when there are no connections. Valid capacity values include
the following:

• Aurora MySQL: 1, 2, 4, 8, 16, 32, 64, 128, and 256.
• Aurora PostgreSQL: 2, 4, 8, 16, 32, 64, 192, and 384.

Scaling Aurora Serverless v1 DB cluster capacity
manually
Typically, Aurora Serverless v1 DB clusters scale seamlessly based on the workload. However, capacity
might not always scale fast enough to meet sudden extremes, such as an exponential increase in
transactions. In such cases you can initiate the scaling operation manually by setting a new capacity
value. After you set the capacity explicitly, Aurora Serverless v1 automatically scales the DB cluster. It
does so based on the cooldown period for scaling down.

You can explicitly set the capacity of an Aurora Serverless v1 DB cluster to a specific value with the AWS
Management Console, the AWS CLI, or the RDS API.

Console

You can set the capacity of an Aurora DB cluster with the AWS Management Console.

To modify an Aurora Serverless v1 DB cluster

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.
2. In the navigation pane, choose Databases.
3. Choose the Aurora Serverless v1 DB cluster that you want to modify.
4. For Actions, choose Set capacity.
5. In the Scale database capacity window, choose the following:

a. For the Scale DB cluster to drop-down selector, choose the new capacity that you want for your
DB cluster.

b. For the If a seamless scaling point cannot be found... checkbox, choose the behavior you want
for your Aurora Serverless v1 DB cluster's TimeoutAction setting, as follows:

• Uncheck this option if you want your capacity to remain unchanged if Aurora Serverless v1
can't find a scaling point before timing out.

• Check this option if you want to force your Aurora Serverless v1 DB cluster change its capacity
even if it can't find a scaling point before timing out. This option can result Aurora Serverless
v1 dropping connections that prevent it from finding a scaling point.

172

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Scaling Aurora Serverless v1 DB cluster capacity manually

c. In the seconds field, enter the amount of time you want to allow your Aurora Serverless v1 DB
cluster to look for a scaling point before timing out. You can specify anywhere from 60 seconds
to 600 seconds (10 minutes). The default is five minutes (300 seconds). This following example
forces the Aurora Serverless v1 DB cluster to scale down to 2 ACUs even if it can't find a scaling
point within five minutes.

6. Choose Apply.

To learn more about scaling points, TimeoutAction, and cooldown periods, see Autoscaling for Aurora
Serverless v1 (p. 153).

AWS CLI

To set the capacity of an Aurora Serverless v1 DB cluster using the AWS CLI, run the modify-current-db-
cluster-capacity AWS CLI command, and specify the --capacity option. Valid capacity values include
the following:

• Aurora MySQL: 1, 2, 4, 8, 16, 32, 64, 128, and 256.

• Aurora PostgreSQL: 2, 4, 8, 16, 32, 64, 192, and 384.

In this example, you set the capacity of an Aurora Serverless v1 DB cluster named sample-cluster to
64.

aws rds modify-current-db-cluster-capacity --db-cluster-identifier sample-cluster --
capacity 64

173

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-current-db-cluster-capacity.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-current-db-cluster-capacity.html

Amazon Aurora User Guide for Aurora
Viewing Aurora Serverless v1 DB clusters

RDS API

You can set the capacity of an Aurora DB cluster with the ModifyCurrentDBClusterCapacity API operation.
Specify the Capacity parameter. Valid capacity values include the following:

• Aurora MySQL: 1, 2, 4, 8, 16, 32, 64, 128, and 256.

• Aurora PostgreSQL: 2, 4, 8, 16, 32, 64, 192, and 384.

Viewing Aurora Serverless v1 DB clusters
After you create one or more Aurora Serverless v1 DB clusters, you can view which DB clusters are type
Serverless and which are type Instance. You can also view the current number of Aurora capacity units
(ACUs) each Aurora Serverless v1 DB cluster is using. Each ACU is a combination of processing (CPU) and
memory (RAM) capacity.

To view your Aurora Serverless v1 DB clusters

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the AWS Management Console, choose the AWS Region in which you
created the Aurora Serverless v1 DB clusters.

3. In the navigation pane, choose Databases.

For each DB cluster, the DB cluster type is shown under Role. The Aurora Serverless v1 DB clusters
show Serverless for the type. You can view an Aurora Serverless v1 DB cluster's current capacity
under Size.

4. Choose the name of an Aurora Serverless v1 DB cluster to display its details.

On the Connectivity & security tab, note the database endpoint. Use this endpoint to connect to
your Aurora Serverless v1 DB cluster.

Choose the Configuration tab to view the capacity settings.

174

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyCurrentDBClusterCapacity.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Deleting an Aurora Serverless v1 DB cluster

A scaling event is generated when the DB cluster scales up, scales down, pauses, or resumes. Choose
the Logs & events tab to see recent events. The following image shows examples of these events.

Monitoring capacity and scaling events for your Aurora
Serverless v1 DB cluster

You can view your Aurora Serverless v1 DB cluster in CloudWatch to monitor the capacity allocated
to the DB cluster with the ServerlessDatabaseCapacity metric. You can also monitor all of the
standard Aurora CloudWatch metrics, such as CPUUtilization, DatabaseConnections, Queries,
and so on.

You can have Aurora publish some or all database logs to CloudWatch. You select the logs to publish by
enabling the configuration parameters such as general_log and slow_query_log in the DB cluster
parameter group (p. 156) associated with theAurora Serverless v1 cluster. Unlike provisioned clusters,
Aurora Serverless v1 clusters don't require you to specify in the DB cluster settings which log types to
upload to CloudWatch. Aurora Serverless v1 clusters automatically upload all the available logs. When
you disable a log configuration parameter, publishing of the log to CloudWatch stops. You can also
delete the logs in CloudWatch if they are no longer needed.

To get started with Amazon CloudWatch for your Aurora Serverless v1 DB cluster, see Viewing Aurora
Serverless v1 logs with Amazon CloudWatch (p. 159). To learn more about how to monitor Aurora DB
clusters through CloudWatch, see Monitoring log events in Amazon CloudWatch (p. 1041).

To connect to an Aurora Serverless v1 DB cluster, use the database endpoint. For more information, see
Connecting to an Amazon Aurora DB cluster (p. 281).

Note
You can't connect directly to specific DB instances in your Aurora Serverless v1 DB clusters.

Deleting an Aurora Serverless v1 DB cluster
When you create an Aurora Serverless v1 DB cluster using the AWS Management Console, the Enable
default protection option is enabled by default unless you deselect it. That means that you can't
immediately delete an Aurora Serverless v1 DB cluster that has Deletion protection enabled. To delete
Aurora Serverless v1 DB clusters that have deletion protection by using the AWS Management Console,

175

Amazon Aurora User Guide for Aurora
Deleting an Aurora Serverless v1 DB cluster

you first modify the cluster to remove this protection. For information about using the AWS CLI for this
task, see AWS CLI (p. 177).

To disable deletion protection using the AWS Management Console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose DB clusters.
3. Choose your Aurora Serverless v1 DB cluster from the list.
4. Choose Modify to open your DB cluster's configuration. The Modify DB cluster page opens the

Settings, Capacity settings, and other configuration details for your Aurora Serverless v1 DB cluster.
Deletion protection is in the Additional configuration section.

5. Uncheck the Enable deletion protection option in the Additional configuration properties card.
6. Choose Continue. The Summary of modifications appears.
7. Choose Modify cluster to accept the summary of modifications. You can also choose Back to modify

your changes or Cancel to discard your changes.

After deletion protection is no longer active, you can delete your Aurora Serverless v1 DB cluster by
using the AWS Management Console.

Console

To delete an Aurora Serverless v1 DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the Resources section, choose DB Clusters.
3. Choose the Aurora Serverless v1 DB cluster that you want to delete.
4. For Actions, choose Delete. You're prompted to confirm that you want to delete your Aurora

Serverless v1 DB cluster.
5. We recommend that you keep the preselected options:

• Yes for Create final snapshot?
• Your Aurora Serverless v1 DB cluster name plus -final-snapshot for Final snapshot name.

However, you can change the name for your final snapshot in this field.

If you choose No for Create final snapshot? you can't restore your DB cluster using snapshots or
point-in-time recovery.

6. Choose Delete DB cluster.

Aurora Serverless v1 deletes your DB cluster. If you chose to have a final snapshot, you see your Aurora
Serverless v1 DB cluster's status change to "Backing-up" before it's deleted and no longer appears in the
list.

176

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Aurora Serverless v1 and Aurora database engine versions

AWS CLI

Before you begin, configure your AWS CLI with your AWS Access Key ID, AWS Secret Access Key, and the
AWS Region where your Aurora Serverless v1 DB cluster resides. For more information, see Configuration
basics in the AWS Command Line Interface User Guide.

You can't delete an Aurora Serverless v1 DB cluster until after you first disable deletion protection for
clusters configured with this option. If you try to delete a cluster that has this protection option enabled,
you see the following error message.

An error occurred (InvalidParameterCombination) when calling the DeleteDBCluster
 operation: Cannot delete protected Cluster, please disable deletion protection and try
 again.

You can change your Aurora Serverless v1 DB cluster's deletion-protection setting by using the modify-
db-cluster AWS CLI command as shown in the following:

aws rds modify-db-cluster --db-cluster-identifier your-cluster-name --no-deletion-
protection

This command returns the revised properties for the specified DB cluster. You can now delete your
Aurora Serverless v1 DB cluster.

We recommend that you always create a final snapshot whenever you delete an Aurora Serverless v1 DB
cluster. The following example of using the AWS CLI delete-db-cluster shows you how. You provide the
name of your DB cluster and a name for the snapshot.

For Linux, macOS, or Unix:

aws rds delete-db-cluster --db-cluster-identifier \
 your-cluster-name --no-skip-final-snapshot \
 --final-db-snapshot-identifier name-your-snapshot

For Windows:

aws rds delete-db-cluster --db-cluster-identifier ^
 your-cluster-name --no-skip-final-snapshot ^
 --final-db-snapshot-identifier name-your-snapshot

Aurora Serverless v1 and Aurora database engine
versions
Aurora Serverless v1 is available in certain AWS Regions and for specific Aurora MySQL and Aurora
PostgreSQL versions only. For the current list of AWS Regions that support Aurora Serverless v1 and the
specific Aurora MySQL and Aurora PostgreSQL versions available in each Region, see Aurora Serverless
v1 (p. 29).

Aurora Serverless v1 uses its associated Aurora database engine to identify specific supported releases
for each database engine supported, as follows:

• Aurora MySQL Serverless
• Aurora PostgreSQL Serverless

When minor releases of the database engines become available for Aurora Serverless v1, they are
applied automatically in the various AWS Regions where Aurora Serverless v1 is available. In other words,

177

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-cluster.html

Amazon Aurora User Guide for Aurora
Using the Data API

you don't need to upgrade your Aurora Serverless v1 DB cluster to get a new minor release for your
cluster's DB engine when it's available for Aurora Serverless v1.

Aurora MySQL Serverless
If you want to use Aurora MySQL-Compatible Edition for your Aurora Serverless v1 DB cluster, you can
choose between Aurora MySQL 5.6-compatible or Aurora MySQL 5.7-compatible versions. These two
editions of Aurora MySQL differ significantly. We recommend that you compare their differences before
creating your Aurora Serverless v1 DB cluster so that you make the right choice for your use case. To
learn about enhancements and bug fixes for Aurora MySQL Serverless 5.6 and 5.7, see Database engine
updates for Aurora MySQL Serverless clusters (p. 1268).

Aurora PostgreSQL Serverless
If you want to use Aurora PostgreSQL for your Aurora Serverless v1 DB cluster, you have a single version
available to use. Minor releases for Aurora PostgreSQL-Compatible Edition include only changes that are
backward-compatible. Your Aurora Serverless v1 DB cluster is transparently upgraded when an Aurora
PostgreSQL minor release becomes available for Aurora Serverless v1 in your Region.

For example, the minor version Aurora PostgreSQL 10.14 release was transparently applied to all Aurora
Serverless v1 DB clusters running the prior Aurora PostgreSQL version. For more information about
the Aurora PostgreSQL version 10.14 update, see PostgreSQL 10.14, Aurora PostgreSQL release 2.7
 (p. 1645).

Using the Data API for Aurora Serverless
By using the Data API for Aurora Serverless, you can work with a web-services interface to your Aurora
Serverless DB cluster. The Data API doesn't require a persistent connection to the DB cluster. Instead, it
provides a secure HTTP endpoint and integration with AWS SDKs. You can use the endpoint to run SQL
statements without managing connections.

All calls to the Data API are synchronous. By default, a call times out if it's not finished processing within
45 seconds. However, you can continue running a SQL statement if the call times out by using the
continueAfterTimeout parameter. For an example, see Running a SQL transaction (p. 198).

Users don't need to pass credentials with calls to the Data API, because the Data API uses database
credentials stored in AWS Secrets Manager. To store credentials in Secrets Manager, users must
be granted the appropriate permissions to use Secrets Manager, and also the Data API. For more
information about authorizing users, see Authorizing access to the Data API (p. 179).

You can also use Data API to integrate Aurora Serverless with other AWS applications such as AWS
Lambda, AWS AppSync, and AWS Cloud9. The API provides a more secure way to use AWS Lambda. It
enables you to access your DB cluster without your needing to configure a Lambda function to access
resources in a virtual private cloud (VPC). For more information, see AWS Lambda, AWS AppSync, and
AWS Cloud9.

You can enable the Data API when you create the Aurora Serverless cluster. You can also modify the
configuration later. For more information, see Enabling the Data API (p. 182).

After you enable the Data API, you can also use the query editor for Aurora Serverless. For more
information, see Using the query editor for Aurora Serverless (p. 204).

Topics
• Data API availability (p. 179)
• Authorizing access to the Data API (p. 179)
• Enabling the Data API (p. 182)
• Creating an Amazon VPC endpoint for the Data API (AWS PrivateLink) (p. 183)
• Calling the Data API (p. 186)

178

https://aws.amazon.com/lambda/
https://aws.amazon.com/appsync/
https://aws.amazon.com/cloud9/

Amazon Aurora User Guide for Aurora
Using the Data API

• Using the Java client library for Data API (p. 199)
• Troubleshooting Data API issues (p. 201)

Data API availability
The Data API can be enabled for Aurora Serverless DB clusters using specific Aurora MySQL and Aurora
PostgreSQL versions only. For more information, see Data API for Aurora Serverless (p. 31).

The following table shows the AWS Regions where the Data API is currently available for Aurora
Serverless. To access the Data API in these Regions, use the HTTPS protocol.

Region Link

US East (Ohio) rds-data.us-east-2.amazonaws.com

US East (N. Virginia) rds-data.us-east-1.amazonaws.com

US West (N. California) rds-data.us-west-1.amazonaws.com

US West (Oregon) rds-data.us-west-2.amazonaws.com

Asia Pacific (Mumbai) rds-data.ap-south-1.amazonaws.com

Asia Pacific (Seoul) rds-data.ap-northeast-2.amazonaws.com

Asia Pacific (Singapore) rds-data.ap-southeast-1.amazonaws.com

Asia Pacific (Sydney) rds-data.ap-southeast-2.amazonaws.com

Asia Pacific (Tokyo) rds-data.ap-northeast-1.amazonaws.com

Canada (Central) rds-data.ca-central-1.amazonaws.com

Europe (Frankfurt) rds-data.eu-central-1.amazonaws.com

Europe (Ireland) rds-data.eu-west-1.amazonaws.com

Europe (London) rds-data.eu-west-2.amazonaws.com

Europe (Paris) rds-data.eu-west-3.amazonaws.com

If you require cryptographic modules validated by FIPS 140-2 when accessing the Data API through a
command line interface or an API, use a FIPS endpoint. For more information about the available FIPS
endpoints, see Federal Information Processing Standard (FIPS) 140-2.

Authorizing access to the Data API
Users can invoke Data API operations only if they are authorized to do so. You can give a user permission
to use the Data API by attaching an AWS Identity and Access Management (IAM) policy that defines their
privileges. You can also attach the policy to a role if you're using IAM roles. An AWS managed policy,
AmazonRDSDataFullAccess, includes permissions for the RDS Data API.

The AmazonRDSDataFullAccess policy also includes permissions for the user to get the value of a
secret from AWS Secrets Manager. Users need to use Secrets Manager to store secrets that they can use
in their calls to the Data API. Using secrets means that users don't need to include database credentials
for the resources that they target in their calls to the Data API. The Data API transparently calls Secrets
Manager, which allows (or denies) the user's request for the secret. For information about setting up
secrets to use with the Data API, see Storing database credentials in AWS Secrets Manager (p. 181).

179

http://aws.amazon.com/compliance/fips/

Amazon Aurora User Guide for Aurora
Using the Data API

The AmazonRDSDataFullAccess policy provides complete access (through the Data API) to resources.
You can narrow the scope by defining your own policies that specify the Amazon Resource Name (ARN)
of a resource.

For example, the following policy shows an example of the minimum required permissions for a user to
access the Data API for the DB cluster identified by its ARN. The policy includes the needed permissions
to access Secrets Manager and get authorization to the DB instance for the user.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SecretsManagerDbCredentialsAccess",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": "arn:aws:secretsmanager:*:*:secret:rds-db-credentials/*"
 },
 {
 "Sid": "RDSDataServiceAccess",
 "Effect": "Allow",
 "Action": [
 "rds-data:BatchExecuteStatement",
 "rds-data:BeginTransaction",
 "rds-data:CommitTransaction",
 "rds-data:ExecuteStatement",
 "rds-data:RollbackTransaction"
],
 "Resource": "arn:aws:rds:us-east-2:111122223333:cluster:prod"
 }
]
}

We recommend that you use a specific ARN for the "Resources" element in your policy statements (as
shown in the example) rather than a wildcard (*).

Working with tag-based authorization

The Data API and Secrets Manager both support tag-based authorization. Tags are key-value pairs that
label a resource, such as an RDS cluster, with an additional string value, for example:

• environment:production

• environment:development

You can apply tags to your resources for cost allocation, operations support, access control, and many
other reasons. (If you don't already have tags on your resources and you want to apply them, you can
learn more at Tagging Amazon RDS resources.) You can use the tags in your policy statements to limit
access to the RDS clusters that are labeled with these tags. As an example, an Aurora DB cluster might
have tags that identify its environment as either production or development.

The following example shows how you can use tags in your policy statements. This statement requires
that both the cluster and the secret passed in the Data API request have an environment:production
tag.

Here's how the policy gets applied: When a user makes a call using the Data API, the request
is sent to the service. The Data API first verifies that the cluster ARN passed in the request is
tagged with environment:production. It then calls Secrets Manager to retrieve the value of
the user's secret in the request. Secrets Manager also verifies that the user's secret is tagged with

180

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_Tagging.html

Amazon Aurora User Guide for Aurora
Using the Data API

environment:production. If so, Data API then uses the retrieved value for the user's DB password.
Finally, if that's also correct, the Data API request is invoked successfully for the user.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SecretsManagerDbCredentialsAccess",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": "arn:aws:secretsmanager:*:*:secret:rds-db-credentials/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/environment": [
 "production"
]
 }
 }
 },
 {
 "Sid": "RDSDataServiceAccess",
 "Effect": "Allow",
 "Action": [
 "rds-data:*"
],
 "Resource": "arn:aws:rds:us-east-2:111122223333:cluster:*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/environment": [
 "production"
]
 }
 }
 }
]
}

The example shows separate actions for rds-data and secretsmanager for the Data API and Secrets
Manager. However, you can combine actions and define tag conditions in many different ways to support
your specific use cases. For more information, see Using identity-based policies (IAM policies) for Secrets
Manager.

In the "Condition" element of the policy, you can choose tag keys from among the following:

• aws:TagKeys

• aws:ResourceTag/${TagKey}

To learn more about resource tags and how to use aws:TagKeys, see Controlling access to AWS
resources using resource tags.

Note
Both the Data API and AWS Secrets Manager authorize users. If you don't have permissions for
all actions defined in a policy, you get an AccessDeniedException error.

Storing database credentials in AWS Secrets Manager

When you call the Data API, you can pass credentials for the Aurora Serverless DB cluster by using a
secret in Secrets Manager. To pass credentials in this way, you specify the name of the secret or the
Amazon Resource Name (ARN) of the secret.

181

https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_identity-based-policies.html#permissions_grant-limited-condition
https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_identity-based-policies.html#permissions_grant-limited-condition
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html#access_tags_control-tag-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html#access_tags_control-tag-keys

Amazon Aurora User Guide for Aurora
Using the Data API

To store DB cluster credentials in a secret

1. Use Secrets Manager to create a secret that contains credentials for the Aurora DB cluster.

For instructions, see Creating a Basic Secret in the AWS Secrets Manager User Guide.
2. Use the Secrets Manager console to view the details for the secret you created, or run the aws

secretsmanager describe-secret AWS CLI command.

Note the name and ARN of the secret. You can use them in calls to the Data API.

For more information about using Secrets Manager, see the AWS Secrets Manager User Guide.

To understand how Amazon Aurora manages identity and access management, see How Amazon Aurora
works with IAM.

For more information about creating an IAM policy, see Creating IAM Policies in the IAM User Guide. For
information about adding an IAM policy to a user, see Adding and Removing IAM Identity Permissions in
the IAM User Guide.

Enabling the Data API
To use the Data API, enable it for your Aurora Serverless DB cluster. You can enable the Data API when
you create or modify the DB cluster.

Console

You can enable the Data API by using the RDS console when you create or modify an Aurora Serverless
DB cluster. When you create or modify an Aurora Serverless DB cluster, you do so by enabling the Data
API in the RDS console's Connectivity section.

The following screenshot shows the enabled Data API when modifying an Aurora Serverless DB cluster.

For instructions, see Creating an Aurora Serverless v1 DB cluster (p. 161) and Modifying an Aurora
Serverless v1 DB cluster (p. 170).

AWS CLI

When you create or modify an Aurora Serverless DB cluster using AWS CLI commands, the Data API is
enabled when you specify -enable-http-endpoint.

182

https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/security_iam_service-with-iam.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/security_iam_service-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon Aurora User Guide for Aurora
Using the Data API

You can specify the -enable-http-endpoint using the following AWS CLI commands:

• create-db-cluster

• modify-db-cluster

The following example modifies sample-cluster to enable the Data API.

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier sample-cluster \
 --enable-http-endpoint

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier sample-cluster ^
 --enable-http-endpoint

RDS API

When you create or modify an Aurora Serverless DB cluster using Amazon RDS API operations, you
enable the Data API by setting the EnableHttpEndpoint value to true.

You can set the EnableHttpEndpoint value using the following API operations:

• CreateDBCluster

• ModifyDBCluster

Creating an Amazon VPC endpoint for the Data API (AWS
PrivateLink)

Amazon VPC enables you to launch AWS resources, such as Aurora DB clusters and applications, into
a virtual private cloud (VPC). AWS PrivateLink provides private connectivity between VPCs and AWS
services with high security on the Amazon network. Using AWS PrivateLink, you can create Amazon VPC
endpoints, which enable you to connect to services across different accounts and VPCs based on Amazon
VPC. For more information about AWS PrivateLink, see VPC Endpoint Services (AWS PrivateLink) in the
Amazon Virtual Private Cloud User Guide.

You can call the Data API with Amazon VPC endpoints. Using an Amazon VPC endpoint keeps traffic
between applications in your Amazon VPC and the Data API in the AWS network, without using public IP
addresses. Amazon VPC endpoints can help you meet compliance and regulatory requirements related
to limiting public internet connectivity. For example, if you use an Amazon VPC endpoint, you can keep
traffic between an application running on an Amazon EC2 instance and the Data API in the VPCs that
contain them.

After you create the Amazon VPC endpoint, you can start using it without making any code or
configuration changes in your application.

To create an Amazon VPC endpoint for the Data API

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc/.

183

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/vpc/latest/userguide/endpoint-service.html
https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

Amazon Aurora User Guide for Aurora
Using the Data API

2. Choose Endpoints, and then choose Create Endpoint.
3. On the Create Endpoint page, for Service category, choose AWS services. For Service Name,

choose rds-data.

4. For VPC, choose the VPC to create the endpoint in.

Choose the VPC that contains the application that makes Data API calls.
5. For Subnets, choose the subnet for each Availability Zone (AZ) used by the AWS service that is

running your application.

To create an Amazon VPC endpoint, specify the private IP address range in which the endpoint
will be accessible. To do this, choose the subnet for each Availability Zone. Doing so restricts the
VPC endpoint to the private IP address range specific to each Availability Zone and also creates an
Amazon VPC endpoint in each Availability Zone.

6. For Enable DNS name, select Enable for this endpoint.

Private DNS resolves the standard Data API DNS hostname (https://rds-
data.region.amazonaws.com) to the private IP addresses associated with the DNS hostname

184

Amazon Aurora User Guide for Aurora
Using the Data API

specific to your Amazon VPC endpoint. As a result, you can access the Data API VPC endpoint using
the AWS CLI or AWS SDKs without making any code or configuration changes to update the Data API
endpoint URL.

7. For Security group, choose a security group to associate with the Amazon VPC endpoint.

Choose the security group that allows access to the AWS service that is running your application.
For example, if an Amazon EC2 instance is running your application, choose the security group that
allows access to the Amazon EC2 instance. The security group enables you to control the traffic to
the Amazon VPC endpoint from resources in your VPC.

8. For Policy, choose Full Access to allow anyone inside the Amazon VPC to access the Data API
through this endpoint. Or choose Custom to specify a policy that limits access.

If you choose Custom, enter the policy in the policy creation tool.

9. Choose Create endpoint.

After the endpoint is created, choose the link in the AWS Management Console to view the endpoint
details.

The endpoint Details tab shows the DNS hostnames that were generated while creating the Amazon VPC
endpoint.

You can use the standard endpoint (rds-data.region.amazonaws.com) or one of the VPC-specific
endpoints to call the Data API within the Amazon VPC. The standard Data API endpoint automatically
routes to the Amazon VPC endpoint. This routing occurs because the Private DNS hostname was enabled
when the Amazon VPC endpoint was created.

When you use an Amazon VPC endpoint in a Data API call, all traffic between your application and the
Data API remains in the Amazon VPCs that contain them. You can use an Amazon VPC endpoint for any
type of Data API call. For information about calling the Data API, see Calling the Data API (p. 186).

185

Amazon Aurora User Guide for Aurora
Using the Data API

Calling the Data API
With the Data API enabled on your Aurora Serverless DB cluster, you can run SQL statements on the
Aurora DB cluster by using the Data API or the AWS CLI. The Data API supports the programming
languages supported by the AWS SDKs. For more information, see Tools to build on AWS.

Note
Currently, the Data API doesn't support arrays of Universal Unique Identifiers (UUIDs).

The Data API provides the following operations to perform SQL statements.

Data API
operation

AWS CLI command Description

ExecuteStatementaws rds-data execute-
statement

Runs a SQL statement on a database.

BatchExecuteStatementaws rds-data batch-
execute-statement

Runs a batch SQL statement over an array of data
for bulk update and insert operations. You can run
a data manipulation language (DML) statement
with an array of parameter sets. A batch SQL
statement can provide a significant performance
improvement over individual insert and update
statements.

You can use either operation to run individual SQL statements or to run transactions. For transactions,
the Data API provides the following operations.

Data API
operation

AWS CLI command Description

BeginTransactionaws rds-data begin-
transaction

Starts a SQL transaction.

CommitTransactionaws rds-data commit-
transaction

Ends a SQL transaction and commits the changes.

RollbackTransactionaws rds-data rollback-
transaction

Performs a rollback of a transaction.

The operations for performing SQL statements and supporting transactions have the following common
Data API parameters and AWS CLI options. Some operations support other parameters or options.

Data API
operation
parameter

AWS CLI command option Required Description

resourceArn --resource-arn Yes The Amazon Resource Name (ARN) of the
Aurora Serverless DB cluster.

secretArn --secret-arn Yes The name or ARN of the secret that
enables access to the DB cluster.

You can use parameters in Data API calls to ExecuteStatement and BatchExecuteStatement, and
when you run the AWS CLI commands execute-statement and batch-execute-statement. To use

186

http://aws.amazon.com/tools/
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_ExecuteStatement.html
https://docs.aws.amazon.com/cli/latest/reference/rds-data/execute-statement.html
https://docs.aws.amazon.com/cli/latest/reference/rds-data/execute-statement.html
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_BatchExecuteStatement.html
https://docs.aws.amazon.com/cli/latest/reference/rds-data/batch-execute-statement.html
https://docs.aws.amazon.com/cli/latest/reference/rds-data/batch-execute-statement.html
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_BeginTransaction.html
https://docs.aws.amazon.com/cli/latest/reference/rds-data/begin-transaction.html
https://docs.aws.amazon.com/cli/latest/reference/rds-data/begin-transaction.html
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_CommitTransaction.html
https://docs.aws.amazon.com/cli/latest/reference/rds-data/commit-transaction.html
https://docs.aws.amazon.com/cli/latest/reference/rds-data/commit-transaction.html
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_RollbackTransaction.html
https://docs.aws.amazon.com/cli/latest/reference/rds-data/rollback-transaction.html
https://docs.aws.amazon.com/cli/latest/reference/rds-data/rollback-transaction.html

Amazon Aurora User Guide for Aurora
Using the Data API

a parameter, you specify a name-value pair in the SqlParameter data type. You specify the value with
the Field data type. The following table maps Java Database Connectivity (JDBC) data types to the data
types that you specify in Data API calls.

JDBC data type Data API data type

INTEGER, TINYINT, SMALLINT, BIGINT LONG (or STRING)

FLOAT, REAL, DOUBLE DOUBLE

DECIMAL STRING

BOOLEAN, BIT BOOLEAN

BLOB, BINARY, LONGVARBINARY, VARBINARY BLOB

CLOB STRING

Other types (including types related to date and
time)

STRING

Note
You can specify the LONG or STRING data type in your Data API call for LONG values returned
by the database. We recommend that you do so to avoid losing precision for extremely large
numbers, which can happen when you work with JavaScript.

Certain types, such as DECIMAL and TIME, require a hint so that the Data API passes String values to
the database as the correct type. To use a hint, include values for typeHint in the SqlParameter data
type. The possible values for typeHint are the following:

• DATE – The corresponding String parameter value is sent as an object of DATE type to the database.
The accepted format is YYYY-MM-DD.

• DECIMAL – The corresponding String parameter value is sent as an object of DECIMAL type to the
database.

• JSON – The corresponding String parameter value is sent as an object of JSON type to the database.

• TIME – The corresponding String parameter value is sent as an object of TIME type to the database.
The accepted format is HH:MM:SS[.FFF].

• TIMESTAMP – The corresponding String parameter value is sent as an object of TIMESTAMP type to
the database. The accepted format is YYYY-MM-DD HH:MM:SS[.FFF].

• UUID – The corresponding String parameter value is sent as an object of UUID type to the database.

Note
For Amazon Aurora PostgreSQL, the Data API always returns the Aurora PostgreSQL data type
TIMESTAMPTZ in UTC time zone.

Calling the Data API with the AWS CLI

You can call the Data API using the AWS CLI.

The following examples use the AWS CLI for the Data API. For more information, see AWS CLI reference
for the Data API.

In each example, replace the Amazon Resource Name (ARN) for the DB cluster with the ARN for your
Aurora Serverless DB cluster. Also, replace the secret ARN with the ARN of the secret in Secrets Manager
that allows access to the DB cluster.

187

https://docs.aws.amazon.com/cli/latest/reference/rds-data/index.html
https://docs.aws.amazon.com/cli/latest/reference/rds-data/index.html

Amazon Aurora User Guide for Aurora
Using the Data API

Note
The AWS CLI can format responses in JSON.

Topics
• Starting a SQL transaction (p. 188)

• Running a SQL statement (p. 188)

• Running a batch SQL statement over an array of data (p. 191)

• Committing a SQL transaction (p. 193)

• Rolling back a SQL transaction (p. 193)

Starting a SQL transaction

You can start a SQL transaction using the aws rds-data begin-transaction CLI command. The call
returns a transaction identifier.

Important
A transaction times out if there are no calls that use its transaction ID in three minutes. If a
transaction times out before it's committed, it's rolled back automatically.
Data definition language (DDL) statements inside a transaction cause an implicit commit. We
recommend that you run each DDL statement in a separate execute-statement command
with the --continue-after-timeout option.

In addition to the common options, specify the --database option, which provides the name of the
database.

For example, the following CLI command starts a SQL transaction.

For Linux, macOS, or Unix:

aws rds-data begin-transaction --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" \
--database "mydb" --secret-arn "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret"

For Windows:

aws rds-data begin-transaction --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" ^
--database "mydb" --secret-arn "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret"

The following is an example of the response.

{
 "transactionId": "ABC1234567890xyz"
}

Running a SQL statement

You can run a SQL statement using the aws rds-data execute-statement CLI command.

You can run the SQL statement in a transaction by specifying the transaction identifier with the --
transaction-id option. You can start a transaction using the aws rds-data begin-transaction
CLI command. You can end and commit a transaction using the aws rds-data commit-transaction
CLI command.

188

Amazon Aurora User Guide for Aurora
Using the Data API

Important
If you don't specify the --transaction-id option, changes that result from the call are
committed automatically.

In addition to the common options, specify the following options:

• --sql (required) – A SQL statement to run on the DB cluster.

• --transaction-id (optional) – The identifier of a transaction that was started using the begin-
transaction CLI command. Specify the transaction ID of the transaction that you want to include
the SQL statement in.

• --parameters (optional) – The parameters for the SQL statement.

• --include-result-metadata | --no-include-result-metadata (optional) – A value
that indicates whether to include metadata in the results. The default is --no-include-result-
metadata.

• --database (optional) – The name of the database.

• --continue-after-timeout | --no-continue-after-timeout (optional) – A value that
indicates whether to continue running the statement after the call times out. The default is --no-
continue-after-timeout.

For data definition language (DDL) statements, we recommend continuing to run the statement after
the call times out to avoid errors and the possibility of corrupted data structures.

The DB cluster returns a response for the call.

Note
The response size limit is 1 MiB. If the call returns more than 1 MiB of response data, the call is
terminated.
The maximum number of requests per second is 1,000.

For example, the following CLI command runs a single SQL statement and omits the metadata in the
results (the default).

For Linux, macOS, or Unix:

aws rds-data execute-statement --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" \
--database "mydb" --secret-arn "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret" \
--sql "select * from mytable"

For Windows:

aws rds-data execute-statement --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" ^
--database "mydb" --secret-arn "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret" ^
--sql "select * from mytable"

The following is an example of the response.

{
 "numberOfRecordsUpdated": 0,
 "records": [
 [
 {
 "longValue": 1

189

Amazon Aurora User Guide for Aurora
Using the Data API

 },
 {
 "stringValue": "ValueOne"
 }
],
 [
 {
 "longValue": 2
 },
 {
 "stringValue": "ValueTwo"
 }
],
 [
 {
 "longValue": 3
 },
 {
 "stringValue": "ValueThree"
 }
]
]
}

The following CLI command runs a single SQL statement in a transaction by specifying the --
transaction-id option.

For Linux, macOS, or Unix:

aws rds-data execute-statement --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" \
--database "mydb" --secret-arn "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret" \
--sql "update mytable set quantity=5 where id=201" --transaction-id "ABC1234567890xyz"

For Windows:

aws rds-data execute-statement --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" ^
--database "mydb" --secret-arn "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret" ^
--sql "update mytable set quantity=5 where id=201" --transaction-id "ABC1234567890xyz"

The following is an example of the response.

{
 "numberOfRecordsUpdated": 1
}

The following CLI command runs a single SQL statement with parameters.

For Linux, macOS, or Unix:

aws rds-data execute-statement --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" \
--database "mydb" --secret-arn "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret" \
--sql "insert into mytable values (:id, :val)" --parameters "[{\"name\": \"id\", \"value\":
 {\"longValue\": 1}},{\"name\": \"val\", \"value\": {\"stringValue\": \"value1\"}}]"

190

Amazon Aurora User Guide for Aurora
Using the Data API

For Windows:

aws rds-data execute-statement --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" ^
--database "mydb" --secret-arn "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret" ^
--sql "insert into mytable values (:id, :val)" --parameters "[{\"name\": \"id\", \"value\":
 {\"longValue\": 1}},{\"name\": \"val\", \"value\": {\"stringValue\": \"value1\"}}]"

The following is an example of the response.

{
 "numberOfRecordsUpdated": 1
}

The following CLI command runs a data definition language (DDL) SQL statement. The DDL statement
renames column job to column role.

Important
For DDL statements, we recommend continuing to run the statement after the call times out.
When a DDL statement terminates before it is finished running, it can result in errors and
possibly corrupted data structures. To continue running a statement after a call times out,
specify the --continue-after-timeout option.

For Linux, macOS, or Unix:

aws rds-data execute-statement --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" \
--database "mydb" --secret-arn "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret" \
--sql "alter table mytable change column job role varchar(100)" --continue-after-timeout

For Windows:

aws rds-data execute-statement --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" ^
--database "mydb" --secret-arn "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret" ^
--sql "alter table mytable change column job role varchar(100)" --continue-after-timeout

The following is an example of the response.

{
 "generatedFields": [],
 "numberOfRecordsUpdated": 0
}

Note
The generatedFields data isn't supported by Aurora PostgreSQL. To get the values of
generated fields, use the RETURNING clause. For more information, see Returning data from
modified rows in the PostgreSQL documentation.

Running a batch SQL statement over an array of data

You can run a batch SQL statement over an array of data by using the aws rds-data batch-
execute-statement CLI command. You can use this command to perform a bulk import or update
operation.

191

https://www.postgresql.org/docs/10/dml-returning.html
https://www.postgresql.org/docs/10/dml-returning.html

Amazon Aurora User Guide for Aurora
Using the Data API

You can run the SQL statement in a transaction by specifying the transaction identifier with the
--transaction-id option. You can start a transaction by using the aws rds-data begin-
transaction CLI command. You can end and commit a transaction by using the aws rds-data
commit-transaction CLI command.

Important
If you don't specify the --transaction-id option, changes that result from the call are
committed automatically.

In addition to the common options, specify the following options:

• --sql (required) – A SQL statement to run on the DB cluster.

Tip
For MySQL-compatible statements, don't include a semicolon at the end of the --sql
parameter. A trailing semicolon might cause a syntax error.

• --transaction-id (optional) – The identifier of a transaction that was started using the begin-
transaction CLI command. Specify the transaction ID of the transaction that you want to include
the SQL statement in.

• --parameter-set (optional) – The parameter sets for the batch operation.

• --database (optional) – The name of the database.

The DB cluster returns a response to the call.

Note
There isn't a fixed upper limit on the number of parameter sets. However, the maximum size of
the HTTP request submitted through the Data API is 4 MiB. If the request exceeds this limit, the
Data API returns an error and doesn't process the request. This 4 MiB limit includes the size of
the HTTP headers and the JSON notation in the request. Thus, the number of parameter sets
that you can include depends on a combination of factors, such as the size of the SQL statement
and the size of each parameter set.
The response size limit is 1 MiB. If the call returns more than 1 MiB of response data, the call is
terminated.
The maximum number of requests per second is 1,000.

For example, the following CLI command runs a batch SQL statement over an array of data with a
parameter set.

For Linux, macOS, or Unix:

aws rds-data batch-execute-statement --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" \
--database "mydb" --secret-arn "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret" \
--sql "insert into mytable values (:id, :val)" \
--parameter-sets "[[{\"name\": \"id\", \"value\": {\"longValue\": 1}},{\"name\": \"val\",
 \"value\": {\"stringValue\": \"ValueOne\"}}],
[{\"name\": \"id\", \"value\": {\"longValue\": 2}},{\"name\": \"val\", \"value\":
 {\"stringValue\": \"ValueTwo\"}}],
[{\"name\": \"id\", \"value\": {\"longValue\": 3}},{\"name\": \"val\", \"value\":
 {\"stringValue\": \"ValueThree\"}}]]"

For Windows:

aws rds-data batch-execute-statement --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" ^
--database "mydb" --secret-arn "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret" ^

192

Amazon Aurora User Guide for Aurora
Using the Data API

--sql "insert into mytable values (:id, :val)" ^
--parameter-sets "[[{\"name\": \"id\", \"value\": {\"longValue\": 1}},{\"name\": \"val\",
 \"value\": {\"stringValue\": \"ValueOne\"}}],
[{\"name\": \"id\", \"value\": {\"longValue\": 2}},{\"name\": \"val\", \"value\":
 {\"stringValue\": \"ValueTwo\"}}],
[{\"name\": \"id\", \"value\": {\"longValue\": 3}},{\"name\": \"val\", \"value\":
 {\"stringValue\": \"ValueThree\"}}]]"

Note
Don't include line breaks in the --parameter-sets option.

Committing a SQL transaction

Using the aws rds-data commit-transaction CLI command, you can end a SQL transaction that
you started with aws rds-data begin-transaction and commit the changes.

In addition to the common options, specify the following option:

• --transaction-id (required) – The identifier of a transaction that was started using the begin-
transaction CLI command. Specify the transaction ID of the transaction that you want to end and
commit.

For example, the following CLI command ends a SQL transaction and commits the changes.

For Linux, macOS, or Unix:

aws rds-data commit-transaction --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" \
--secret-arn "arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret" \
--transaction-id "ABC1234567890xyz"

For Windows:

aws rds-data commit-transaction --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" ^
--secret-arn "arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret" ^
--transaction-id "ABC1234567890xyz"

The following is an example of the response.

{
 "transactionStatus": "Transaction Committed"
}

Rolling back a SQL transaction

Using the aws rds-data rollback-transaction CLI command, you can roll back a SQL transaction
that you started with aws rds-data begin-transaction. Rolling back a transaction cancels its
changes.

Important
If the transaction ID has expired, the transaction was rolled back automatically. In this case, an
aws rds-data rollback-transaction command that specifies the expired transaction ID
returns an error.

In addition to the common options, specify the following option:

193

Amazon Aurora User Guide for Aurora
Using the Data API

• --transaction-id (required) – The identifier of a transaction that was started using the begin-
transaction CLI command. Specify the transaction ID of the transaction that you want to roll back.

For example, the following AWS CLI command rolls back a SQL transaction.

For Linux, macOS, or Unix:

aws rds-data rollback-transaction --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" \
--secret-arn "arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret" \
--transaction-id "ABC1234567890xyz"

For Windows:

aws rds-data rollback-transaction --resource-arn "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster" ^
--secret-arn "arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret" ^
--transaction-id "ABC1234567890xyz"

The following is an example of the response.

{
 "transactionStatus": "Rollback Complete"
 }

Calling the Data API from a Python application

You can call the Data API from a Python application.

The following examples use the AWS SDK for Python (Boto). For more information about Boto, see the
AWS SDK for Python (Boto 3) documentation.

In each example, replace the DB cluster's Amazon Resource Name (ARN) with the ARN for your Aurora
Serverless DB cluster. Also, replace the secret ARN with the ARN of the secret in Secrets Manager that
allows access to the DB cluster.

Topics
• Running a SQL query (p. 194)
• Running a DML SQL statement (p. 195)
• Running a SQL transaction (p. 196)

Running a SQL query

You can run a SELECT statement and fetch the results with a Python application.

The following example runs a SQL query.

import boto3

rdsData = boto3.client('rds-data')

cluster_arn = 'arn:aws:rds:us-east-1:123456789012:cluster:mydbcluster'
secret_arn = 'arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret'

response1 = rdsData.execute_statement(
 resourceArn = cluster_arn,
 secretArn = secret_arn,

194

https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

Amazon Aurora User Guide for Aurora
Using the Data API

 database = 'mydb',
 sql = 'select * from employees limit 3')

print (response1['records'])
[
 [
 {
 'longValue': 1
 },
 {
 'stringValue': 'ROSALEZ'
 },
 {
 'stringValue': 'ALEJANDRO'
 },
 {
 'stringValue': '2016-02-15 04:34:33.0'
 }
],
 [
 {
 'longValue': 1
 },
 {
 'stringValue': 'DOE'
 },
 {
 'stringValue': 'JANE'
 },
 {
 'stringValue': '2014-05-09 04:34:33.0'
 }
],
 [
 {
 'longValue': 1
 },
 {
 'stringValue': 'STILES'
 },
 {
 'stringValue': 'JOHN'
 },
 {
 'stringValue': '2017-09-20 04:34:33.0'
 }
]
]

Running a DML SQL statement

You can run a data manipulation language (DML) statement to insert, update, or delete data in your
database. You can also use parameters in DML statements.

Important
If a call isn't part of a transaction because it doesn't include the transactionID parameter,
changes that result from the call are committed automatically.

The following example runs an insert SQL statement and uses parameters.

import boto3

cluster_arn = 'arn:aws:rds:us-east-1:123456789012:cluster:mydbcluster'
secret_arn = 'arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret'

195

Amazon Aurora User Guide for Aurora
Using the Data API

rdsData = boto3.client('rds-data')

param1 = {'name':'firstname', 'value':{'stringValue': 'JACKSON'}}
param2 = {'name':'lastname', 'value':{'stringValue': 'MATEO'}}
paramSet = [param1, param2]

response2 = rdsData.execute_statement(resourceArn=cluster_arn,
 secretArn=secret_arn,
 database='mydb',
 sql='insert into employees(first_name, last_name)
 VALUES(:firstname, :lastname)',
 parameters = paramSet)

print (response2["numberOfRecordsUpdated"])

Running a SQL transaction

You can start a SQL transaction, run one or more SQL statements, and then commit the changes with a
Python application.

Important
A transaction times out if there are no calls that use its transaction ID in three minutes. If a
transaction times out before it's committed, it's rolled back automatically.
If you don't specify a transaction ID, changes that result from the call are committed
automatically.

The following example runs a SQL transaction that inserts a row in a table.

import boto3

rdsData = boto3.client('rds-data')

cluster_arn = 'arn:aws:rds:us-east-1:123456789012:cluster:mydbcluster'
secret_arn = 'arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret'

tr = rdsData.begin_transaction(
 resourceArn = cluster_arn,
 secretArn = secret_arn,
 database = 'mydb')

response3 = rdsData.execute_statement(
 resourceArn = cluster_arn,
 secretArn = secret_arn,
 database = 'mydb',
 sql = 'insert into employees(first_name, last_name) values('XIULAN', 'WANG')',
 transactionId = tr['transactionId'])

cr = rdsData.commit_transaction(
 resourceArn = cluster_arn,
 secretArn = secret_arn,
 transactionId = tr['transactionId'])

cr['transactionStatus']
'Transaction Committed'

response3['numberOfRecordsUpdated']
1

Note
If you run a data definition language (DDL) statement, we recommend continuing to run the
statement after the call times out. When a DDL statement terminates before it is finished

196

Amazon Aurora User Guide for Aurora
Using the Data API

running, it can result in errors and possibly corrupted data structures. To continue running a
statement after a call times out, set the continueAfterTimeout parameter to true.

Calling the Data API from a Java application

You can call the Data API from a Java application.

The following examples use the AWS SDK for Java. For more information, see the AWS SDK for Java
Developer Guide.

In each example, replace the DB cluster's Amazon Resource Name (ARN) with the ARN for your Aurora
Serverless DB cluster. Also, replace the secret ARN with the ARN of the secret in Secrets Manager that
allows access to the DB cluster.

Topics
• Running a SQL query (p. 197)
• Running a SQL transaction (p. 198)
• Running a batch SQL operation (p. 198)

Running a SQL query

You can run a SELECT statement and fetch the results with a Java application.

The following example runs a SQL query.

package com.amazonaws.rdsdata.examples;

import com.amazonaws.services.rdsdata.AWSRDSData;
import com.amazonaws.services.rdsdata.AWSRDSDataClient;
import com.amazonaws.services.rdsdata.model.ExecuteStatementRequest;
import com.amazonaws.services.rdsdata.model.ExecuteStatementResult;
import com.amazonaws.services.rdsdata.model.Field;

import java.util.List;

public class FetchResultsExample {
 public static final String RESOURCE_ARN = "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster";
 public static final String SECRET_ARN = "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret";

 public static void main(String[] args) {
 AWSRDSData rdsData = AWSRDSDataClient.builder().build();

 ExecuteStatementRequest request = new ExecuteStatementRequest()
 .withResourceArn(RESOURCE_ARN)
 .withSecretArn(SECRET_ARN)
 .withDatabase("mydb")
 .withSql("select * from mytable");

 ExecuteStatementResult result = rdsData.executeStatement(request);

 for (List<Field> fields: result.getRecords()) {
 String stringValue = fields.get(0).getStringValue();
 long numberValue = fields.get(1).getLongValue();

 System.out.println(String.format("Fetched row: string = %s, number = %d",
 stringValue, numberValue));
 }
 }
}

197

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/welcome.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/welcome.html

Amazon Aurora User Guide for Aurora
Using the Data API

Running a SQL transaction

You can start a SQL transaction, run one or more SQL statements, and then commit the changes with a
Java application.

Important
A transaction times out if there are no calls that use its transaction ID in three minutes. If a
transaction times out before it's committed, it's rolled back automatically.
If you don't specify a transaction ID, changes that result from the call are committed
automatically.

The following example runs a SQL transaction.

package com.amazonaws.rdsdata.examples;

import com.amazonaws.services.rdsdata.AWSRDSData;
import com.amazonaws.services.rdsdata.AWSRDSDataClient;
import com.amazonaws.services.rdsdata.model.BeginTransactionRequest;
import com.amazonaws.services.rdsdata.model.BeginTransactionResult;
import com.amazonaws.services.rdsdata.model.CommitTransactionRequest;
import com.amazonaws.services.rdsdata.model.ExecuteStatementRequest;

public class TransactionExample {
 public static final String RESOURCE_ARN = "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster";
 public static final String SECRET_ARN = "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret";

 public static void main(String[] args) {
 AWSRDSData rdsData = AWSRDSDataClient.builder().build();

 BeginTransactionRequest beginTransactionRequest = new BeginTransactionRequest()
 .withResourceArn(RESOURCE_ARN)
 .withSecretArn(SECRET_ARN)
 .withDatabase("mydb");
 BeginTransactionResult beginTransactionResult =
 rdsData.beginTransaction(beginTransactionRequest);
 String transactionId = beginTransactionResult.getTransactionId();

 ExecuteStatementRequest executeStatementRequest = new ExecuteStatementRequest()
 .withTransactionId(transactionId)
 .withResourceArn(RESOURCE_ARN)
 .withSecretArn(SECRET_ARN)
 .withSql("INSERT INTO test_table VALUES ('hello world!')");
 rdsData.executeStatement(executeStatementRequest);

 CommitTransactionRequest commitTransactionRequest = new CommitTransactionRequest()
 .withTransactionId(transactionId)
 .withResourceArn(RESOURCE_ARN)
 .withSecretArn(SECRET_ARN);
 rdsData.commitTransaction(commitTransactionRequest);
 }
}

Note
If you run a data definition language (DDL) statement, we recommend continuing to run the
statement after the call times out. When a DDL statement terminates before it is finished
running, it can result in errors and possibly corrupted data structures. To continue running a
statement after a call times out, set the continueAfterTimeout parameter to true.

Running a batch SQL operation

You can run bulk insert and update operations over an array of data with a Java application. You can run
a DML statement with array of parameter sets.

198

Amazon Aurora User Guide for Aurora
Using the Data API

Important
If you don't specify a transaction ID, changes that result from the call are committed
automatically.

The following example runs a batch insert operation.

package com.amazonaws.rdsdata.examples;

import com.amazonaws.services.rdsdata.AWSRDSData;
import com.amazonaws.services.rdsdata.AWSRDSDataClient;
import com.amazonaws.services.rdsdata.model.BatchExecuteStatementRequest;
import com.amazonaws.services.rdsdata.model.Field;
import com.amazonaws.services.rdsdata.model.SqlParameter;

import java.util.Arrays;

public class BatchExecuteExample {
 public static final String RESOURCE_ARN = "arn:aws:rds:us-
east-1:123456789012:cluster:mydbcluster";
 public static final String SECRET_ARN = "arn:aws:secretsmanager:us-
east-1:123456789012:secret:mysecret";

 public static void main(String[] args) {
 AWSRDSData rdsData = AWSRDSDataClient.builder().build();

 BatchExecuteStatementRequest request = new BatchExecuteStatementRequest()
 .withDatabase("test")
 .withResourceArn(RESOURCE_ARN)
 .withSecretArn(SECRET_ARN)
 .withSql("INSERT INTO test_table2 VALUES (:string, :number)")
 .withParameterSets(Arrays.asList(
 Arrays.asList(
 new SqlParameter().withName("string").withValue(new
 Field().withStringValue("Hello")),
 new SqlParameter().withName("number").withValue(new
 Field().withLongValue(1L))
),
 Arrays.asList(
 new SqlParameter().withName("string").withValue(new
 Field().withStringValue("World")),
 new SqlParameter().withName("number").withValue(new
 Field().withLongValue(2L))
)
));

 rdsData.batchExecuteStatement(request);
 }
}

Using the Java client library for Data API

You can download and use a Java client library for the Data API. This Java client library provides an
alternative way to use the Data API. Using this library, you can map your client-side classes to requests
and responses of the Data API. This mapping support can ease integration with some specific Java types,
such as Date, Time, and BigDecimal.

Downloading the Java client library for Data API

The Data API Java client library is open source in GitHub at the following location:

https://github.com/awslabs/rds-data-api-client-library-java

199

https://github.com/awslabs/rds-data-api-client-library-java

Amazon Aurora User Guide for Aurora
Using the Data API

You can build the library manually from the source files, but the best practice is to consume the library
using Apache Maven dependency management. Add the following dependency to your Maven POM file.

For version 2.x, which is compatible with AWS SDK 2.x, use the following:

<dependency>
 <groupId>software.amazon.rdsdata</groupId>
 <artifactId>rds-data-api-client-library-java</artifactId>
 <version>2.0.0</version>
</dependency>

For version 1.x, which is compatible with AWS SDK 1.x, use the following:

<dependency>
 <groupId>software.amazon.rdsdata</groupId>
 <artifactId>rds-data-api-client-library-java</artifactId>
 <version>1.0.8</version>
</dependency>

Java client library examples

Following, you can find some common examples of using the Data API Java client library. These
examples assume that you have a table accounts with two columns: accountId and name. You also
have the following data transfer object (DTO).

public class Account {
 int accountId;
 String name;
 // getters and setters omitted
}

The client library enables you to pass DTOs as input parameters. The following example shows how
customer DTOs are mapped to input parameters sets.

var account1 = new Account(1, "John");
var account2 = new Account(2, "Mary");
client.forSql("INSERT INTO accounts(accountId, name) VALUES(:accountId, :name)")
 .withParamSets(account1, account2)
 .execute();

In some cases, it's easier to work with simple values as input parameters. You can do so with the
following syntax.

client.forSql("INSERT INTO accounts(accountId, name) VALUES(:accountId, :name)")
 .withParameter("accountId", 3)
 .withParameter("name", "Zhang")
 .execute();

The following is another example that works with simple values as input parameters.

client.forSql("INSERT INTO accounts(accountId, name) VALUES(?, ?)", 4, "Carlos")
 .execute();

The client library provides automatic mapping to DTOs when a result is returned. The following examples
show how the result is mapped to your DTOs.

200

Amazon Aurora User Guide for Aurora
Using the Data API

List<Account> result = client.forSql("SELECT * FROM accounts")
 .execute()
 .mapToList(Account.class);

Account result = client.forSql("SELECT * FROM accounts WHERE account_id = 1")
 .execute()
 .mapToSingle(Account.class);

In many cases, the database result set contains only a single value. In order to simplify retrieving such
results, the client library offers the following API:

int numberOfAccounts = client.forSql("SELECT COUNT(*) FROM accounts")
 .execute()
 .singleValue(Integer.class);

Troubleshooting Data API issues
Use the following sections, titled with common error messages, to help troubleshoot problems that you
have with the Data API.

Topics
• Transaction <transaction_ID> is not found (p. 201)
• Packet for query is too large (p. 201)
• Database response exceeded size limit (p. 201)
• HttpEndpoint is not enabled for cluster <cluster_ID> (p. 202)

Transaction <transaction_ID> is not found

In this case, the transaction ID specified in a Data API call wasn't found. The cause for this issue is almost
always one of the following:

• The specified transaction ID wasn't created by a BeginTransaction call.
• The specified transaction ID has expired.

A transaction expires if no call uses the transaction ID within three minutes.

To solve the issue, make sure that your call has a valid transaction ID. Also make sure that each
transaction call runs within three minutes of the last one.

For information about running transactions, see Calling the Data API (p. 186).

Packet for query is too large

In this case, the result set returned for a row was too large. The Data API size limit is 64 KB per row in the
result set returned by the database.

To solve this issue, make sure that each row in a result set is 64 KB or less.

Database response exceeded size limit

In this case, the size of the result set returned by the database was too large. The Data API limit is 1 MiB
in the result set returned by the database.

To solve this issue, make sure that calls to the Data API return 1 MiB of data or less. If you need to return
more than 1 MiB, you can use multiple ExecuteStatement calls with the LIMIT clause in your query.

201

https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_BeginTransaction.html
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_ExecuteStatement.html

Amazon Aurora User Guide for Aurora
Logging Data API calls with AWS CloudTrail

For more information about the LIMIT clause, see SELECT syntax in the MySQL documentation.

HttpEndpoint is not enabled for cluster <cluster_ID>

The cause for this issue is almost always one of the following:

• The Data API isn't enabled for the Aurora Serverless DB cluster. To use the Data API with an Aurora
Serverless DB cluster, the Data API must be enabled for the DB cluster.

• The DB cluster was renamed after the Data API was enabled for it.

If the Data API has not been enabled for the DB cluster, enable it.

If the DB cluster was renamed after the Data API was enabled for the DB cluster, disable the Data API
and then enable it again.

For information about enabling the Data API, see Enabling the Data API (p. 182).

Logging Data API calls with AWS CloudTrail
Data API is integrated with AWS CloudTrail, a service that provides a record of actions taken by a user,
role, or an AWS service in Data API. CloudTrail captures all API calls for Data API as events, including
calls from the Amazon RDS console and from code calls to the Data API operations. If you create a trail,
you can enable continuous delivery of CloudTrail events to an Amazon S3 bucket, including events for
Data API. If you don't configure a trail, you can still view the most recent events in the CloudTrail console
in Event history. Using the data collected by CloudTrail, you can determine a lot of information. This
information includes the request that was made to Data API, the IP address the request was made from,
who made the request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Working with Data API information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in Data
API, that activity is recorded in a CloudTrail event along with other AWS service events in Event history.
You can view, search, and download recent events in your AWS account. For more information, see
Viewing events with CloudTrail event history in the AWS CloudTrail User Guide.

For an ongoing record of events in your AWS account, including events for Data API, create a trail. A
trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you create a trail
in the console, the trail applies to all AWS Regions. The trail logs events from all AWS Regions in the
AWS partition and delivers the log files to the Amazon S3 bucket that you specify. Additionally, you can
configure other AWS services to further analyze and act upon the event data collected in CloudTrail logs.
For more information, see the following topics in the AWS CloudTrail User Guide:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple Regions and Receiving CloudTrail log files from multiple
accounts

All Data API operations are logged by CloudTrail and documented in the Amazon RDS data
service API reference. For example, calls to the BatchExecuteStatement, BeginTransaction,
CommitTransaction, and ExecuteStatement operations generate entries in the CloudTrail log files.

202

https://dev.mysql.com/doc/refman/5.7/en/select.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/Welcome.html

Amazon Aurora User Guide for Aurora
Logging Data API calls with AWS CloudTrail

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or IAM user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity element.

Understanding Data API log file entries
A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that you
specify. CloudTrail log files contain one or more log entries. An event represents a single request from
any source and includes information about the requested action, the date and time of the action, request
parameters, and so on. CloudTrail log files aren't an ordered stack trace of the public API calls, so they
don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the ExecuteStatement
operation.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AKIAIOSFODNN7EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/johndoe",
 "accountId": "123456789012",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "userName": "johndoe"
 },
 "eventTime": "2019-12-18T00:49:34Z",
 "eventSource": "rdsdata.amazonaws.com",
 "eventName": "ExecuteStatement",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "aws-cli/1.16.102 Python/3.7.2 Windows/10 botocore/1.12.92",
 "requestParameters": {
 "continueAfterTimeout": false,
 "database": "**********",
 "includeResultMetadata": false,
 "parameters": [],
 "resourceArn": "arn:aws:rds:us-east-1:123456789012:cluster:my-database-1",
 "schema": "**********",
 "secretArn": "arn:aws:secretsmanager:us-east-1:123456789012:secret:dataapisecret-
ABC123",
 "sql": "**********"
 },
 "responseElements": null,
 "requestID": "6ba9a36e-b3aa-4ca8-9a2e-15a9eada988e",
 "eventID": "a2c7a357-ee8e-4755-a0d0-aed11ed4253a",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Excluding Data API events from an AWS CloudTrail trail
Most Data API users rely on the events in an AWS CloudTrail trail to provide a record of Data API
operations. The trail can be a valuable source of data for auditing critical events, such as a SQL

203

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon Aurora User Guide for Aurora
Using the query editor

statement that deleted rows in a table. In some cases, the metadata in a CloudTrail log entry can help
you to avoid or resolve errors.

However, because the Data API can generate a large number of events, you can exclude Data API events
from a CloudTrail trail. This per-trail setting excludes all Data API events. You can't exclude particular
Data API events.

To exclude Data API events from a trail, do the following:

• In the CloudTrail console, choose the Exclude Amazon RDS Data API events setting when you create a
trail or update a trail.

• In the CloudTrail API, use the PutEventSelectors operation. Add the
ExcludeManagementEventSources attribute to your event selectors with a value of
rdsdata.amazonaws.com. For more information, see Creating, updating, and managing trails with
the AWS Command Line Interface in the AWS CloudTrail User Guide.

Warning
Excluding Data API events from a CloudTrail log can obscure Data API actions. Be cautious
when giving principals the cloudtrail:PutEventSelectors permission that is required to
perform this operation.

You can turn off this exclusion at any time by changing the console setting or the event selectors for a
trail. The trail will then start recording Data API events. However, it can't recover Data API events that
occurred while the exclusion was effective.

When you exclude Data API events by using the console or API, the resulting CloudTrail
PutEventSelectors API operation is also logged in your CloudTrail logs. If Data API
events don't appear in your CloudTrail logs, look for a PutEventSelectors event with the
ExcludeManagementEventSources attribute set to rdsdata.amazonaws.com.

For more information, see Logging management events for trails in the AWS CloudTrail User Guide.

Using the query editor for Aurora Serverless
With the query editor for Aurora Serverless, you can run SQL queries in the RDS console. You can run any
valid SQL statement on the Aurora Serverless DB cluster, including data manipulation and data definition
statements.

The query editor requires an Aurora Serverless DB cluster with the Data API enabled. For information
about creating an Aurora Serverless DB cluster with the Data API enabled, see Using the Data API for
Aurora Serverless (p. 178).

Availability of the query editor
The query editor is only available for the following Aurora Serverless DB clusters:

• Aurora with MySQL version 5.6 compatibility

• Aurora with MySQL version 5.7 compatibility

• Aurora with PostgreSQL version 10.7 compatibility

The query editor is currently available for Aurora Serverless in the following AWS Regions:

• US East (Ohio)

• US East (N. Virginia)

204

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-update-a-trail-console.html
https://docs.aws.amazon.com/awscloudtrail/latest/APIReference/API_PutEventSelectors.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail-by-using-the-aws-cli.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail-by-using-the-aws-cli.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-events-with-cloudtrail.html

Amazon Aurora User Guide for Aurora
Using the query editor

• US West (N. California)

• US West (Oregon)

• Asia Pacific (Mumbai)

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• Canada (Central)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• Europe (Paris)

Authorizing access to the query editor
A user must be authorized to run queries in the query editor. You can authorize a user to run queries
in the query editor by adding the AmazonRDSDataFullAccess policy, a predefined AWS Identity and
Access Management (IAM) policy, to that user.

You can also create an IAM policy that grants access to the query editor. After you create the policy, add
it to each user that requires access to the query editor.

The following policy provides the minimum required permissions for a user to access the query editor.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "QueryEditor0",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue",
 "secretsmanager:PutResourcePolicy",
 "secretsmanager:PutSecretValue",
 "secretsmanager:DeleteSecret",
 "secretsmanager:DescribeSecret",
 "secretsmanager:TagResource"
],
 "Resource": "arn:aws:secretsmanager:*:*:secret:rds-db-credentials/*"
 },
 {
 "Sid": "QueryEditor1",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetRandomPassword",
 "tag:GetResources",
 "secretsmanager:CreateSecret",
 "secretsmanager:ListSecrets",
 "dbqms:CreateFavoriteQuery",
 "dbqms:DescribeFavoriteQueries",
 "dbqms:UpdateFavoriteQuery",
 "dbqms:DeleteFavoriteQueries",
 "dbqms:GetQueryString",
 "dbqms:CreateQueryHistory",
 "dbqms:UpdateQueryHistory",

205

Amazon Aurora User Guide for Aurora
Using the query editor

 "dbqms:DeleteQueryHistory",
 "dbqms:DescribeQueryHistory",
 "rds-data:BatchExecuteStatement",
 "rds-data:BeginTransaction",
 "rds-data:CommitTransaction",
 "rds-data:ExecuteStatement",
 "rds-data:RollbackTransaction"
],
 "Resource": "*"
 }
]
}

For information about creating an IAM policy, see Creating IAM policies in the AWS Identity and Access
Management User Guide.

For information about adding an IAM policy to a user, see Adding and removing IAM identity permissions
in the AWS Identity and Access Management User Guide.

Running queries in the query editor

You can run SQL statements on an Aurora Serverless DB cluster in the query editor.

To run a query in the query editor

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the AWS Management Console, choose the AWS Region in which you
created the Aurora Serverless DB clusters that you want to query.

3. In the navigation pane, choose Databases.

4. Choose the Aurora Serverless DB cluster that you want to run SQL queries against.

5. For Actions, choose Query. If you haven't connected to the database before, the Connect to
database page opens.

206

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Using the query editor

6. Enter the following information:

a. For Database instance or cluster, choose the Aurora Serverless DB cluster that you want to run
SQL queries on.

b. For Database username, choose the user name of the database user to connect with, or choose
Add new database credentials. If you choose Add new database credentials, enter the user
name for the new database credentials in Enter database username.

c. For Enter database password, enter the password for the database user that you chose.

d. In the last box, enter the name of the database or schema that you want to use for the Aurora
DB cluster.

e. Choose Connect to database.

Note
If your connection is successful, your connection and authentication information are
stored in AWS Secrets Manager. You don't need to enter the connection information
again.

7. In the query editor, enter the SQL query that you want to run on the database.

207

Amazon Aurora User Guide for Aurora
Using the query editor

Each SQL statement can commit automatically, or you can run SQL statements in a script as part of
a transaction. To control this behavior, choose the gear icon above the query window.

The Query Editor Settings window appears.

208

Amazon Aurora User Guide for Aurora
Using the query editor

If you choose Auto-commit, every SQL statement commits automatically. If you choose Transaction,
you can run a group of statements in a script. Statements are automatically committed at the end
of the script unless explicitly committed or rolled back before then. Also, you can choose to stop a
running script if an error occurs by enabling Stop on error.

Note
In a group of statements, data definition language (DDL) statements can cause previous
data manipulation language (DML) statements to commit. You can also include COMMIT and
ROLLBACK statements in a group of statements in a script.

After you make your choices in the Query Editor Settings window, choose Save.
8. Choose Run or press Ctrl+Enter, and the query editor displays the results of your query.

After running the query, save it to Saved queries by choosing Save.

Export the query results to spreadsheet format by choosing Export to csv.

You can find, edit, and rerun previous queries. To do so, choose the Recent tab or the Saved queries tab,
choose the query text, and then choose Run.

To change the database, choose Change database.

Database Query Metadata Service (DBQMS) API reference
The Database Query Metadata Service (dbqms) is an internal-only service. It provides your recent and
saved queries for the query editor on the AWS Management Console for multiple AWS services, including
Amazon RDS.

The following DBQMS actions are supported:

Topics
• CreateFavoriteQuery (p. 210)
• CreateQueryHistory (p. 210)
• CreateTab (p. 210)
• DeleteFavoriteQueries (p. 210)
• DeleteQueryHistory (p. 210)
• DeleteTab (p. 210)

209

Amazon Aurora User Guide for Aurora
Using the query editor

• DescribeFavoriteQueries (p. 210)
• DescribeQueryHistory (p. 210)
• DescribeTabs (p. 210)
• GetQueryString (p. 210)
• UpdateFavoriteQuery (p. 210)
• UpdateQueryHistory (p. 210)
• UpdateTab (p. 211)

CreateFavoriteQuery

Save a new favorite query. Each IAM user can create up to 1000 saved queries. This limit is subject to
change in the future.

CreateQueryHistory

Save a new query history entry.

CreateTab

Save a new query tab. Each IAM user can create up to 10 query tabs.

DeleteFavoriteQueries

Delete one or more saved queries.

DeleteQueryHistory

Delete query history entries.

DeleteTab

Delete query tab entries.

DescribeFavoriteQueries

List saved queries created by an IAM user in a given account.

DescribeQueryHistory

List query history entries.

DescribeTabs

List query tabs created by an IAM user in a given account.

GetQueryString

Retrieve full query text from a query ID.

UpdateFavoriteQuery

Update the query string, description, name, or expiration date.

UpdateQueryHistory

Update the status of query history.

210

Amazon Aurora User Guide for Aurora
Using the query editor

UpdateTab

Update the query tab name and query string.

211

Amazon Aurora User Guide for Aurora
Using Aurora Serverless v2 (preview)

Using Amazon Aurora Serverless v2 (preview)

Amazon Aurora Serverless v2 with MySQL compatibility is in preview release and is subject to change.
Aurora Serverless v2 (preview) is not covered by the Amazon RDS service level agreement (SLA). Don't
use Aurora Serverless v2 (preview) for production databases. All resources and data will be deleted
when the preview ends.

Continuously monitoring and adjusting capacity for multiple databases so that you stay within budget
can be a daunting task. You don't want to pay for more computing resources than you use. But you also
can't afford to spend a lot of time reallocating resources to achieve a better price-performance ratio.
For unpredictable workloads, multitenant, and distributed database environments that can have wide
variances in consumption, this task is especially challenging.

By using Amazon Aurora Serverless v2 (Amazon Aurora Serverless version 2), now in preview, you can
get optimal cost performance for your database clusters. Capacity is adjusted automatically based on
application demand, and you're charged only for the resources that your DB clusters consume.

Topics
• How Aurora Serverless v2 (preview) works (p. 212)

• Limitations of Aurora Serverless v2 (preview) (p. 215)

• Creating an Aurora Serverless v2 (preview) DB cluster (p. 216)

• Creating a snapshot of an Aurora Serverless v2 (preview) DB cluster (p. 219)

• Modifying an Aurora Serverless v2 (preview) DB cluster (p. 220)

• Deleting an Aurora Serverless v2 (preview) DB cluster (p. 222)

• Restoring an Aurora Serverless v2 (preview) DB cluster to a point in time (p. 223)

How Aurora Serverless v2 (preview) works

Amazon Aurora Serverless v2 with MySQL compatibility is in preview release and is subject to change.
Aurora Serverless v2 (preview) is not covered by the Amazon RDS service level agreement (SLA). Don't
use Aurora Serverless v2 (preview) for production databases. All resources and data will be deleted
when the preview ends.

Amazon Aurora Serverless v2 (preview) has been architected from the ground up to support serverless
DB clusters that are instantly scalable. The Aurora Serverless v2 (preview) architecture rests on a
lightweight foundation that's engineered to provide the security and isolation needed in multitenant
serverless cloud environments. This foundation has very little overhead so it can respond quickly. It's also
powerful enough to meet dramatic increases in processing demand.

Instant autoscaling
When you create your Aurora Serverless v2 (preview) DB cluster, you define its capacity as a range
between minimum and maximum number of Aurora capacity units (ACUs):

• Minimum Aurora capacity units – The smallest number of ACUs down to which your Aurora Serverless
v2 (preview) DB cluster can scale.

• Maximum Aurora capacity units – The largest number of ACUs up to which your Aurora Serverless v2
(preview) DB cluster can scale.

212

Amazon Aurora User Guide for Aurora
How Aurora Serverless v2 (preview) works

Each ACU provides 2 GiB (gibibytes) of memory (RAM) and associated virtual processor (vCPU) with
networking.

Unlike Aurora Serverless v1, which scales by doubling ACUs each time the DB cluster reaches a threshold,
Aurora Serverless v2 (preview) can increase ACUs incrementally. When your workload demand begins to
reach the current resource capacity, your Aurora Serverless v2 (preview) DB cluster scales the number
of ACUs. Your cluster scales ACUs in the increments required to provide the best performance for the
resources consumed.

The following screenshot shows instant autoscaling in action. It's an extract from Amazon CloudWatch
comparing processing load to the number of ACUs consumed by an Aurora Serverless v2 (preview) DB
cluster over time for a simulated "flash sale" scenario. The simulation models an order system that
processes about 10 orders per second (using 4 ACUs) during regular operations. A load testing tool
generates various increases in orders mimicking a "flash sale," until the system is processing 275 orders
per second (and 22 ACUs) at its peak.

In the screenshot, these numbers indicate this information:

1. Orders processed each second – Processing load as customers respond to a "flash sale" for a product.
The line shows the number of orders being processed each second. Order processing involves multiple
database actions. These include checking inventory, processing the new order, creating a shipment
order, adjusting the inventory amount, and initiating shipping by notifying the warehouse system.

2. Aurora capacity units (ACUs) – Memory and CPU applied over time to increasing and decreasing
demand. The line shows the surge of ACUs applied to the workload (line 1) when orders reach their
highest point, about 275 per second.

An ACU is made up of both memory (RAM) and processor (CPU). Increases in CPU utilization respond
immediately to workload demands. When the demand starts to decline from its peak, the scale down
from the maximum ACU occurs more slowly, as memory is more gradually released (than CPU). This is
a deliberate architectural choice. Aurora Serverless v2 (preview) releases memory more gradually as
demand lessens to avoid affecting the workload.

Logging with Amazon CloudWatch
As with all Aurora DB clusters, error logs for Aurora Serverless v2 (preview) are enabled by default.
However, unlike with provisioned Aurora DB clusters, you can't view the logs for Aurora Serverless v2
(preview) in the Amazon RDS console. Aurora Serverless v2 (preview) automatically uploads the error
logs to Amazon CloudWatch.

Aurora Serverless v2 (preview) also uploads your Aurora MySQL log data to CloudWatch for the types
of logs that you specify. You choose the logs for uploading by changing values for several log-related
DB cluster parameters for your Aurora Serverless v2 (preview) DB cluster. As with any type of Aurora
DB cluster, you can't modify the default DB cluster parameter group. Instead, create your own DB
cluster parameter group based on a default parameter for your DB cluster and engine type. For Aurora
Serverless v2 (preview) and Aurora Serverless v1, you use a DB cluster parameter group only.

213

Amazon Aurora User Guide for Aurora
How Aurora Serverless v2 (preview) works

We recommend that you create your custom DB cluster parameter group before creating your Aurora
Serverless v2 (preview) DB cluster, so that it's available to choose when you create a database on the
console.

You can also modify your Aurora Serverless v2 (preview) DB cluster later to use your custom DB cluster
parameter group. For more information, see Modifying your DB cluster to use a custom DB cluster
parameter group (p. 221).

For Aurora MySQL logging, you can activate the following parameters:

• general_log – Set to 1 to turn on the general log (default is off, or 0).
• slow_query_log – Set to 1 to turn on the slow query log. (default is off, or 0).
• server_audit_logging – Set to 1 to turn on server audit logging. If you turn this on, you can

specify the audit events to send to CloudWatch by listing them in the server_audit_events
parameter.

• server_audit_events – The list of events to capture in the logs.

For more information, see Using Advanced Auditing with an Amazon Aurora MySQL DB cluster (p. 935).

After you apply your modified DB cluster parameter group to your Aurora Serverless v2 (preview) DB
cluster, you can view the logs in CloudWatch.

To view logs for your Aurora Serverless v2 (preview) DB cluster

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.
2. Choose US East (N. Virginia) for the Region.
3. Choose Log groups.
4. Choose your Aurora Serverless v2 (preview) DB cluster log from the list. For error logs, the naming

pattern is as follows.

/aws/rds/cluster/cluster-name/error

For more information on viewing details on your logs, see Monitoring log events in Amazon
CloudWatch (p. 1041).

Monitoring capacity with Amazon CloudWatch

Aurora Serverless v2 (preview) introduces a new metric for monitoring Aurora DB cluster capacity,
ServerlessDatabaseCapacity. You can use CloudWatch to view your DB cluster's capacity as it scales
up and down. You can also compare ServerlessDatabaseCapacity to other metrics to see how
changes in workloads affect resource consumption.

To monitor your Aurora Serverless v2 (preview) DB cluster's capacity

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.
2. Choose the US East (N. Virginia) Region.
3. Choose Metrics. All available metrics appear as cards in the console, grouped by service name.
4. Choose RDS.

You can also use the Search box to find ServerlessDatabaseCapacity.

We recommend that you set up a CloudWatch dashboard to monitor your Aurora Serverless v2 (preview)
DB cluster capacity using this new metric. To learn how, see Building dashboards with CloudWatch. You

214

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/autoscaling/application/userguide/monitoring-cloudwatch.html

Amazon Aurora User Guide for Aurora
Limitations of Aurora Serverless v2 (preview)

can compare ServerlessDatabaseCapacity to DatabaseUsedMemory, DatabaseConnections,
and DMLThroughput to assess how your DB cluster is responding during operations.

To learn more about using Amazon CloudWatch with Amazon Aurora, see Publishing Amazon Aurora
MySQL logs to Amazon CloudWatch Logs (p. 1038).

Limitations of Aurora Serverless v2 (preview)

Amazon Aurora Serverless v2 with MySQL compatibility is in preview release and is subject to change.
Aurora Serverless v2 (preview) is not covered by the Amazon RDS service level agreement (SLA). Don't
use Aurora Serverless v2 (preview) for production databases. All resources and data will be deleted
when the preview ends.

The following limitations apply to Amazon Aurora Serverless v2 (preview):

• You can work with Amazon Aurora Serverless v2 (preview) in the preview environment only. You are
limited to working with Aurora Serverless v2 (preview) in this environment. To use any of your other
existing AWS services, such as Amazon EC2 and Amazon CloudWatch, access them through the AWS
Management Console in the US East (N. Virginia) Region.

• You can work with Amazon Aurora Serverless v2 (preview) using the console only. AWS CLI commands
and Amazon RDS API operations for creating and working Aurora Serverless v2 (preview) DB clusters
aren't currently available.

• You can create only Aurora MySQL 5.7 (2.07) DB clusters using Aurora Serverless v2 (preview). Aurora
PostgreSQL isn't currently available for Aurora Serverless v2 (preview).

• Aurora Serverless v2 (preview) clusters can be created in the Availability Zones with these zoneIds only:

• use1-az2

• use1-az4

• use1-az6

• Your Aurora Serverless v2 (preview) DB clusters have a default capacity that ranges from a minimum
of 4 Aurora capacity units (ACUs) to 32 ACUs. Each ACU provides the equivalent of approximately 2
gibibytes (GiB) of RAM and associated CPU and networking.

• You can't give an Aurora Serverless v2 (preview) DB cluster a public IP address.

• You must create your Aurora Serverless v2 (preview) DB cluster in a virtual private cloud (VPC) based
on the Amazon VPC service. You can access your Aurora Serverless v2 (preview) DB cluster only from
within a VPC based on Amazon VPC.

• Aurora Serverless v2 (preview) databases are accessible only through port 3306. Aurora Serverless v2
(preview) assigns port 3306 to any Aurora MySQL DB instances that you create. You can't change the
port number.

• Aurora Serverless v2 (preview) doesn't support the following Aurora features:

• Amazon RDS Performance Insights

• Amazon RDS Proxy

• Aurora backtracking

• Aurora cloning

• Aurora global databases

• Aurora multi-master clusters

• Aurora Replicas

• AWS Identity and Access Management (IAM) database authentication

• Data API for Aurora Serverless v1

• Exporting snapshots created from Aurora Serverless v2 (preview) DB clusters to Amazon S3 buckets

215

Amazon Aurora User Guide for Aurora
Creating an Aurora Serverless v2 (preview) DB cluster

• Importing data from Amazon S3 into Aurora Serverless v2 (preview) DB cluster tables

• Invoking AWS Lambda functions from within your Aurora Serverless v2 (preview) database

• Query editor for Aurora Serverless v1

• Restoring snapshots from Aurora provisioned DB clusters

Creating an Aurora Serverless v2 (preview) DB cluster

Amazon Aurora Serverless v2 with MySQL compatibility is in preview release and is subject to change.
Aurora Serverless v2 (preview) is not covered by the Amazon RDS service level agreement (SLA). Don't
use Aurora Serverless v2 (preview) for production databases. All resources and data will be deleted
when the preview ends.

To work with Amazon Aurora Serverless v2 (preview), you must apply for access. For more information,
see the Aurora Serverless v2 (preview) page.

After you're approved for access, you can sign in to the preview using the console. Currently, you can
create an Amazon Aurora Serverless v2 (preview) DB cluster with the console only.

To create an Aurora Serverless v2 (preview) DB cluster

1. Sign in to the preview using the AWS Management Console and open the Amazon RDS console.

2. Choose Create Database. For this preview, you see the available choices preselected for Engine
options:

• Amazon Aurora for Engine type

• Amazon Aurora with MySQL compatibility for Edition

• Aurora Serverless v2 (preview) for Capacity configuration

• Aurora (MySQL 5.7) 2.07.1 for Version

3. For Settings, do the following:

a. Accept the default DB cluster identifier or choose your own.

b. Enter your own password for the default admin account for the DB cluster, or have Aurora
Serverless v2 (preview) generate one for you. If you choose Auto generate a password, you get
an option to copy the password.

216

https://pages.awscloud.com/AmazonAuroraServerlessv2Preview.html

Amazon Aurora User Guide for Aurora
Creating an Aurora Serverless v2 (preview) DB cluster

4. For Capacity settings, you can accept the default range (4 ACUs minimum to 32 ACUs maximum). Or
you can choose other values for minimum and maximum capacity units.

For more information about Aurora Serverless v2 (preview) capacity units, see Instant
autoscaling (p. 212).

5. For Connectivity, choose the virtual private cloud (VPC) based on Amazon VPC that defines the
virtual networking environment for this DB instance. You can choose the defaults to simplify this
task.

To use your own VPC, we recommend that you create it along with related subnets, subnet group,
and security group in advance. If you do this, these are available for you to choose when you're
creating your Aurora Serverless v2 (preview) DB cluster.

To learn how, see How to create a VPC for use with Amazon Aurora.

217

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.CreateVPC.html

Amazon Aurora User Guide for Aurora
Creating an Aurora Serverless v2 (preview) DB cluster

6. For Additional configuration, enter a name for Initial database name to create a database for your
Aurora Serverless v2 (preview) cluster.

If you created a custom DB cluster parameter group, choose it for DB cluster parameter group. If
you want to view your Aurora MySQL logs in Amazon CloudWatch, make sure to use a custom DB
cluster parameter group. For more information, see Logging with Amazon CloudWatch (p. 213).

The Aurora Serverless v2 (preview) cluster volume is always encrypted. You can't disable encryption,
but you can choose your own encryption key. For more information, see Encrypting Amazon Aurora
resources.

7. Acknowledge the limited service agreement.

8. Choose Create database to create your Aurora Serverless v2 (preview) DB cluster.

You can connect to your Aurora Serverless v2 (preview) DB cluster by using its endpoint. The endpoint is
listed on the Connectivity & security tab of the console, under Endpoint & Port. For more information
about how to connect to Aurora DB clusters, see Connecting to an Amazon Aurora DB cluster (p. 281).

Aurora Serverless v2 (preview) creates your DB instance using port 3306. Make sure to configure the
security group for your Aurora Serverless v2 (preview) DB cluster to allow access to the MySQL/Aurora
port (3306).

However, you can't access the Amazon VPC configurations directly from the preview console.

To modify your security group settings

1. Sign in to your https://console.aws.amazon.com/vpc/.
2. Choose the US East (N. Virginia) Region.

218

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Overview.Encryption.html#Overview.Encryption.Enabling
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Overview.Encryption.html#Overview.Encryption.Enabling
https://console.aws.amazon.com/vpc/

Amazon Aurora User Guide for Aurora
Creating a snapshot of an Aurora
Serverless v2 (preview) DB cluster

3. For Security Group, choose the security group associated with your Aurora Serverless v2 (preview)
DB cluster.

4. Edit values for Inbound rules and Outbound rules as needed.

To learn more about configuring your VPC for Aurora, see Amazon Virtual Private Cloud VPCs and
Amazon Aurora.

Creating a snapshot of an Aurora Serverless v2
(preview) DB cluster

Amazon Aurora Serverless v2 with MySQL compatibility is in preview release and is subject to change.
Aurora Serverless v2 (preview) is not covered by the Amazon RDS service level agreement (SLA). Don't
use Aurora Serverless v2 (preview) for production databases. All resources and data will be deleted
when the preview ends.

Amazon Aurora Serverless v2 (preview) routinely creates snapshots of your DB cluster as backups. Unlike
automated backups, manual snapshots aren't subject to the backup retention period. Snapshots don't
expire. For more information about snapshots in general, see Creating a DB cluster snapshot (p. 495).

Currently, you can create an Aurora Serverless v2 (preview) DB cluster snapshot using the console only.

To create a DB cluster snapshot

1. Sign in to the preview using the AWS Management Console and open the Amazon RDS console.

2. In the navigation pane, choose Databases.

3. Choose the Aurora Serverless v2 (preview) DB cluster use for your snapshot.

4. Choose Actions, and then choose Take snapshot.

The Take DB Snapshot window appears.

5. For Snapshot name, enter the name of your Aurora Serverless v2 (preview) DB cluster.

6. Choose Take Snapshot.

219

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_VPC.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_VPC.html

Amazon Aurora User Guide for Aurora
Modifying an Aurora Serverless v2 (preview) DB cluster

Modifying an Aurora Serverless v2 (preview) DB
cluster

Amazon Aurora Serverless v2 with MySQL compatibility is in preview release and is subject to change.
Aurora Serverless v2 (preview) is not covered by the Amazon RDS service level agreement (SLA). Don't
use Aurora Serverless v2 (preview) for production databases. All resources and data will be deleted
when the preview ends.

You can change configuration settings for your Aurora Serverless v2 (preview) DB cluster at any time,
such as to do the following:

• Change your Aurora Serverless v2 (preview) DB cluster name.

• Turn on (or off) deletion protection for your Aurora Serverless v2 (preview) DB cluster.

• Modify your Aurora Serverless v2 (preview) DB cluster's capacity settings.

• Modify Additional configuration settings, such as choosing a custom DB cluster parameter group.

The only configuration option that you can't change for Aurora Serverless v2 (preview) DB cluster is its
virtual private cloud (VPC) that you chose when you created it.

Use the following procedure to modify your Aurora Serverless v2 (preview) DB cluster's configuration by
using the console.

To modify the configuration of your Aurora Serverless v2 (preview) DB cluster

1. Sign in to the preview using the AWS Management Console and open the Amazon RDS console.

2. In the navigation pane, choose DB clusters.

3. Choose your Aurora Serverless v2 (preview) DB cluster from the list.

The configuration settings for your Aurora Serverless v2 (preview) DB cluster appear. Now you can
change your cluster's name, password, credentials, and other settings.

Modifying Aurora Serverless v2 (preview) DB cluster capacity

Currently, you can modify the capacity of your Aurora Serverless v2 (preview) DB clusters with the
console only.

To modify the capacity of your Aurora Serverless v2 (preview) DB cluster

1. Sign in to the preview using the AWS Management Console and open the Amazon RDS console.

2. In the navigation pane, choose DB Clusters.

220

Amazon Aurora User Guide for Aurora
Modifying an Aurora Serverless v2 (preview) DB cluster

3. Choose your Aurora Serverless v2 (preview) DB cluster from the list, and then choose Modify to
open its configuration.

4. For Capacity settings, change the minimum number of ACUs or the maximum number of ACUs that
you now want for your Aurora Serverless v2 (preview) DB cluster.

5. Choose Continue. The Summary of modifications appears.

6. Choose Modify cluster to accept the summary of modifications. You can also choose Back to modify
your changes or Cancel to discard your changes.

To learn more about ACUs and scaling for Aurora Serverless v2 (preview), see Instant
autoscaling (p. 212).

Modifying your DB cluster to use a custom DB cluster parameter
group

To use a custom DB cluster parameter group after your Aurora Serverless v2 (preview) is running, modify
your existing Aurora Serverless v2 (preview) DB cluster.

Before you can use the following procedure, your custom DB cluster parameter group must exist. To
learn how to create a custom DB cluster parameter group, see Parameter groups and Aurora Serverless
v1 (p. 156).

To modify your Aurora Serverless v2 (preview) DB cluster to use a custom DB cluster
parameter group

1. Sign in to the preview using the AWS Management Console and open the Amazon RDS console.

2. In the navigation pane, choose DB Clusters.

3. Choose your Aurora Serverless v2 (preview) DB cluster from the list, and then choose Modify.

4. Under Additional configuration, choose your custom DB cluster parameter group.

221

Amazon Aurora User Guide for Aurora
Deleting an Aurora Serverless v2 (preview) DB cluster

5. Choose Continue. The Summary of modifications page appears.

6. Choose Modify cluster to accept the summary of modifications. Or choose Back to modify your
changes or Cancel to discard your changes.

To learn more about creating custom DB cluster parameter groups, see Parameter groups and Aurora
Serverless v1 (p. 156).

Deleting an Aurora Serverless v2 (preview) DB cluster

Amazon Aurora Serverless v2 with MySQL compatibility is in preview release and is subject to change.
Aurora Serverless v2 (preview) is not covered by the Amazon RDS service level agreement (SLA). Don't
use Aurora Serverless v2 (preview) for production databases. All resources and data will be deleted
when the preview ends.

When you create your Aurora Serverless v2 (preview) DB clusters, you can choose to disable deletion
protection or keep it as is. If the Aurora Serverless v2 (preview) DB cluster that you want to delete was
created with deletion protection, make sure to modify your DB cluster to remove deletion protection.
Otherwise, you can't delete it. To learn how do this, see Modifying an Aurora Serverless v2 (preview) DB
cluster (p. 220).

Currently, you can delete an Amazon Aurora Serverless v2 (preview) DB cluster with the console only.

To delete an Aurora Serverless v2 (preview) DB cluster

1. Sign in to the preview using the AWS Management Console and open the Amazon RDS console.

2. In the Resources section, choose DB Clusters.

3. Choose the Aurora Serverless v2 (preview) DB cluster that you want to delete.

222

Amazon Aurora User Guide for Aurora
Restoring an Aurora Serverless v2 (preview) DB cluster

4. For Actions, choose Delete. You're prompted to confirm that you want to delete your Aurora
Serverless v2 (preview) DB cluster.

5. We recommend that you keep the preselected options:

• Yes for Create final snapshot?
• Your Aurora Serverless v2 (preview) DB cluster name plus -final-snapshot for Final snapshot

name. However, you can change the name for your final snapshot in this field.

If you choose No for Create final snapshot? you can't restore your DB cluster using snapshots or
point-in-time recovery.

6. Choose Delete DB cluster.

Aurora Serverless v2 (preview) deletes your DB cluster.

Restoring an Aurora Serverless v2 (preview) DB
cluster to a point in time

Amazon Aurora Serverless v2 with MySQL compatibility is in preview release and is subject to change.
Aurora Serverless v2 (preview) is not covered by the Amazon RDS service level agreement (SLA). Don't
use Aurora Serverless v2 (preview) for production databases. All resources and data will be deleted
when the preview ends.

You can create a new Aurora Serverless v2 (preview) DB cluster by restoring an existing DB cluster to a
specific point in time. You can also use this approach to recover from a failure by recreating your Aurora
Serverless v2 (preview) DB cluster from its most recent log files.

To restore your DB cluster to a specific point in time, Aurora creates a new DB cluster. It then applies all
transactions from the logs of the existing DB cluster to the new cluster. Depending on the quantity and
scope of transactions contained in the logs, this operation might take several hours to complete. For
more information about point-in-time recovery, see Restoring a DB cluster to a specified time (p. 537).

Currently, you can restore your Aurora Serverless v2 (preview) DB cluster using the console only.

To restore an Aurora Serverless v2 (preview) DB cluster to a specified point in time

1. Sign in to the preview using the AWS Management Console and open the Amazon RDS console.
2. Choose Databases.

223

Amazon Aurora User Guide for Aurora
Restoring an Aurora Serverless v2 (preview) DB cluster

3. Choose the Aurora Serverless v2 (preview) DB cluster that you want to restore.
4. For Actions, choose Restore to point in time. The Restore DB cluster page appears.

5. Choose Latest restorable time. Or choose Custom and specify a date and time that is earlier than
the latest restorable time.

6. For Instance specifications, keep Aurora MySQL selected for the database engine.
7. For DB cluster identifier, enter the name for your newly restored DB cluster.
8. In the Capacity settings section, choose the minimum and maximum values that you want for your

restored Aurora Serverless v2 (preview) DB cluster.

9. In the Connectivity section, accept the defaults.
10. For Additional configuration, choose the encryption key that you used for the DB cluster you're

restoring. Choose the default key unless you used your own key when creating the DB cluster.
11. When you complete the settings on the page, choose Restore DB Cluster.

224

Amazon Aurora User Guide for Aurora
Using Aurora global databases

Using Amazon Aurora global databases
Amazon Aurora global databases span multiple AWS Regions, enabling low latency global reads and
providing fast recovery from the rare outage that might affect an entire AWS Region. An Aurora global
database has a primary DB cluster in one Region, and up to five secondary DB clusters in different
Regions.

Topics
• Overview of Amazon Aurora global databases (p. 225)

• Advantages of Amazon Aurora global databases (p. 226)

• Limitations of Amazon Aurora global databases (p. 226)

• Getting started with Amazon Aurora global databases (p. 228)

• Managing an Amazon Aurora global database (p. 249)

• Connecting to an Amazon Aurora global database (p. 254)

• Using write forwarding in an Amazon Aurora global database (p. 255)

• Using failover in an Amazon Aurora global database (p. 266)

• Monitoring an Amazon Aurora global database (p. 276)

• Using Amazon Aurora global databases with other AWS services (p. 279)

• Upgrading an Amazon Aurora global database (p. 280)

Overview of Amazon Aurora global databases
By using an Amazon Aurora global database, you can run your globally distributed applications using a
single Aurora database that spans multiple AWS Regions.

An Aurora global database consists of one primary AWS Region where your data is written, and up to
five read-only secondary AWS Regions. You issue write operations directly to the primary DB cluster
in the primary AWS Region. Aurora replicates data to the secondary AWS Regions using dedicated
infrastructure, with latency typically under a second.

In the following diagram, you can find an example Aurora global database that spans two AWS Regions.

You can scale up each secondary cluster independently, by adding one or more Aurora Replicas (read-
only Aurora DB instances) to serve read-only workloads.

Only the primary cluster performs write operations. Clients that perform write operations connect to
the DB cluster endpoint of the primary DB cluster. As shown in the diagram, Aurora global database uses
the cluster storage volume and not the database engine for replication. To learn more, see Overview of
Aurora storage (p. 64).

225

Amazon Aurora User Guide for Aurora
Advantages of Amazon Aurora global databases

Aurora global databases are designed for applications with a worldwide footprint. The read-only
secondary DB clusters (AWS Regions) allow you to support read operations closer to application users. By
using features such as write forwarding, you can also configure an Aurora MySQL–based global database
so that secondary clusters send data to the primary. For more information, see Using write forwarding in
an Amazon Aurora global database (p. 255).

An Aurora global database supports two different approaches to failover. To recover your Aurora
global database after an outage in the primary Region, you use the manual unplanned failover process.
With this process, you fail over your primary to another Region (cross-Region failover). For more
information about this process, see Recovering an Amazon Aurora global database from an unplanned
outage (p. 267).

For planned operational procedures such as maintenance, you use managed planned failover. With this
feature, you can relocate the primary cluster of a healthy Aurora global database to one of its secondary
Regions with no data loss. To learn more, see Performing managed planned failovers for Amazon Aurora
global databases (p. 268).

Advantages of Amazon Aurora global databases
By using Aurora global databases, you can get the following advantages:

• Global reads with local latency – If you have offices around the world, you can use an Aurora global
database to keep your main sources of information updated in the primary AWS Region. Offices in your
other Regions can access the information in their own Region, with local latency.

• Scalable secondary Aurora DB clusters – You can scale your secondary clusters by adding more read-
only instances (Aurora Replicas) to a secondary AWS Region. The secondary cluster is read-only, so it
can support up to 16 read-only Aurora Replica instances rather than the usual limit of 15 for a single
Aurora cluster.

• Fast replication from primary to secondary Aurora DB clusters – The replication performed by an
Aurora global database has little performance impact on the primary DB cluster. The resources of the
DB instances are fully devoted to serve application read and write workloads.

• Recovery from Region-wide outages – The secondary clusters allow you to make an Aurora global
database available in a new primary AWS Region more quickly (lower RTO) and with less data loss
(lower RPO) than traditional replication solutions.

Limitations of Amazon Aurora global databases
The following limitations currently apply to Aurora global databases:

• Aurora global databases are available in certain AWS Regions and for specific Aurora MySQL and
Aurora PostgreSQL versions only. For more information, see Aurora global databases (p. 21).

• Aurora global databases have certain configuration requirements for supported Aurora DB instance
classes, maximum number of AWS Regions, and so on. For more information, see Configuration
requirements of an Amazon Aurora global database (p. 228).

• Managed planned failover for Aurora global databases requires one of the following Aurora database
engines:

• Aurora MySQL with MySQL 8.0 compatibility, version 3.01.0 and higher

• Aurora MySQL with MySQL 5.7 compatibility, version 2.09.1 and higher

• Aurora MySQL with MySQL 5.6 compatibility, version 1.23.1 and higher

• Aurora PostgreSQL versions 13.3 and higher, 12.4 and higher, 11.9 and higher, and 10.14 and higher

• Aurora global databases currently don't support the following Aurora features:

• Aurora multi-master clusters

226

Amazon Aurora User Guide for Aurora
Limitations of Aurora global databases

• Aurora Serverless v1

• Backtracking in Aurora

• Amazon RDS Proxy

• Automatic minor version upgrade doesn't apply to Aurora MySQL and Aurora PostgreSQL clusters that
are part of an Aurora global database. Note that you can specify this setting for a DB instance that is
part of a global database cluster, but the setting has no effect.

• Aurora global databases currently don't support Aurora Auto Scaling for secondary DB clusters.

• You can start database activity streams on Aurora global databases running the following Aurora
MySQL and Aurora PostgreSQL versions only.

Database engine Primary AWS Region Secondary AWS Regions

Aurora MySQL 5.7 version 2.08 and higher version 2.08 and higher

version 13.3 and higher version 13.3 and higher

version 12.4 and higher version 12.4 and higher

version 11.7 and higher version 11.9 and higher

Aurora PostgreSQL

version 10.11 and higher version 10.14 and higher

For information about database activity streams, see Monitoring Amazon Aurora with Database
Activity Streams (p. 735).

• With an Aurora global database based on Aurora PostgreSQL, you can't perform a major version
upgrade of the Aurora DB engine if the recovery point objective (RPO) feature is turned on. For
information about the RPO feature, see Managing RPOs for Aurora PostgreSQL–based global
databases (p. 272). For information about upgrading an Aurora global database, see Upgrading an
Amazon Aurora global database (p. 280).

• You can't stop or start the Aurora DB clusters in your Aurora global database individually. To learn
more, see Stopping and starting an Amazon Aurora DB cluster (p. 368).

• Aurora Replicas attached to the secondary Aurora DB cluster can restart under certain circumstances.
If the primary AWS Region's writer DB instance restarts or fails over, Aurora Replicas in secondary
Regions also restart. The secondary cluster is then unavailable until all replicas are back in sync with
the primary DB cluster's writer instance. This behavior is expected, as documented in Replication with
Amazon Aurora (p. 70). Be sure that you understand the impacts to your Aurora global database before
making changes to your primary DB cluster. To learn more, see Recovering an Amazon Aurora global
database from an unplanned outage (p. 267).

• Aurora PostgreSQL–based DB clusters running in an Aurora global database have the following
limitations:

• Cluster cache management isn't supported for Aurora PostgreSQL DB clusters that are part of
Aurora global databases.

• If the primary DB cluster of your Aurora global database is based on a replica of an Amazon RDS
PostgreSQL instance, you can't create a secondary cluster. Don't attempt to create a secondary
from that cluster using the AWS Management Console, the AWS CLI, or the CreateDBCluster API
operation. Attempts to do so time out, and the secondary cluster isn't created.

We recommend that you create secondary DB clusters for your Aurora global databases by using the
same version of the Aurora DB engine as the primary. For more information, see Creating an Amazon
Aurora global database (p. 229).

227

Amazon Aurora User Guide for Aurora
Getting started with Aurora global databases

Getting started with Amazon Aurora global
databases
To get started with Aurora global databases, first decide which Aurora DB engine you want to use and
in which AWS Regions. Only specific versions of the Aurora MySQL and Aurora PostgreSQL database
engines in certain AWS Regions support Aurora global databases. For the complete list, see Aurora global
databases (p. 21).

You can create an Aurora global database in one of the following ways:

• Create a new Aurora global database with new Aurora DB clusters and Aurora DB instances – You
can do this by following the steps in Creating an Amazon Aurora global database (p. 229). After you
create the primary Aurora DB cluster, you then add the secondary AWS Region by following the steps
in Adding an AWS Region to an Amazon Aurora global database (p. 242).

• Use an existing Aurora DB cluster that supports the Aurora global database feature and add an
AWS Region to it – You can do this only if your existing Aurora DB cluster uses a DB engine version
that supports the Aurora global mode or is global-compatible. For some DB engine versions, this mode
is explicit, but for others, it's not.

Check whether you can choose Add region for Action on the AWS Management Console when
your Aurora DB cluster is selected. If you can, you can use that Aurora DB cluster for your Aurora
global cluster. For more information, see Adding an AWS Region to an Amazon Aurora global
database (p. 242).

Before creating an Aurora global database, we recommend that you understand all configuration
requirements.

Topics

• Configuration requirements of an Amazon Aurora global database (p. 228)

• Creating an Amazon Aurora global database (p. 229)

• Adding an AWS Region to an Amazon Aurora global database (p. 242)

• Creating a headless Aurora DB cluster in a secondary Region (p. 246)

• Using a snapshot for your Amazon Aurora global database (p. 248)

Configuration requirements of an Amazon Aurora global
database
An Aurora global database spans at least two AWS Regions. The primary AWS Region supports an Aurora
DB cluster that has one writer Aurora DB instance. A secondary AWS Region runs a read-only Aurora
DB cluster made up entirely of Aurora Replicas. At least one secondary AWS Region is required, but an
Aurora global database can have up to five secondary AWS Regions. The table lists the maximum Aurora
DB clusters, Aurora DB instances, and Aurora Replicas allowed in an Aurora global database.

Description Primary AWS Region Secondary AWS Regions

Aurora DB clusters 1 5 (maximum)

Writer instances 1 0

Read-only instances (Aurora
replicas), per Aurora DB cluster

15 (max) 16 (total)

228

Amazon Aurora User Guide for Aurora
Getting started with Aurora global databases

Description Primary AWS Region Secondary AWS Regions

Read-only instances (max allowed,
given actual number of secondary
Regions)

15 - s s = total number of secondary AWS
Regions

The Aurora DB clusters that make up an Aurora global database have the following specific
requirements:

• DB instance class requirements – An Aurora global database requires DB instance classes that are
optimized for memory-intensive applications. For information about the memory optimized DB
instance classes, see DB instance classes. We recommend that you use a db.r5 or higher instance class.

• AWS Region requirements – An Aurora global database needs a primary Aurora DB cluster in one AWS
Region, and at least one secondary Aurora DB cluster in a different Region. You can create up to five
secondary (read-only) Aurora DB clusters, and each must be in a different Region. In other words, no
two Aurora DB clusters in an Aurora global database can be in the same AWS Region.

• Naming requirements – The names you choose for each of your Aurora DB clusters must be unique,
across all AWS Regions. You can't use the same name for different Aurora DB clusters even though
they're in different Regions.

Before you can follow the procedures in this section, you need an AWS account. Complete the setup
tasks for working with Amazon Aurora. For more information, see Setting up your environment for
Amazon Aurora (p. 84). You also need to complete other preliminary steps for creating any Aurora DB
cluster. To learn more, see Creating an Amazon Aurora DB cluster (p. 125).

Creating an Amazon Aurora global database
In some cases, you might have an existing Aurora provisioned DB cluster running an Aurora database
engine that's global-compatible. If so, you can add another AWS Region to it to create your Aurora global
database. To do so, see Adding an AWS Region to an Amazon Aurora global database (p. 242).

To create an Aurora global database by using the AWS Management Console, the AWS CLI, or the RDS
API, use the following steps.

Console

The steps for creating an Aurora global database begin by signing in to an AWS Region that supports the
Aurora global database feature. For a complete list, see Aurora global databases (p. 21).

One of the following steps is choosing a virtual private cloud (VPC) based on Amazon VPC for your
Aurora DB cluster. To use your own VPC, we recommend that you create it in advance so it's available for
you to choose. At the same time, create any related subnets, and as needed a subnet group and security
group. To learn how, see How to create a VPC for use with Amazon Aurora.

For general information about creating an Aurora DB cluster, see Creating an Amazon Aurora DB
cluster (p. 125).

To create an Aurora global database

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Create database. On the Create database page, do the following:

• For the database creation method, choose Standard create. (Don't choose Easy create.)
• For Engine type in the Engine options section, choose Amazon Aurora.

229

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.CreateVPC.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Getting started with Aurora global databases

Then choose Amazon Aurora with MySQL compatibility or Amazon Aurora with PostgreSQL
compatibility, and continue creating your Aurora global database by using the steps from the following
procedures.

Topics

• Creating a global database using Aurora MySQL (p. 230)

• Creating a global database using Aurora PostgreSQL (p. 234)

Creating a global database using Aurora MySQL

The following steps apply to all versions of Aurora MySQL except for Aurora MySQL 5.6.10a. To use
Aurora MySQL 5.6.10a for your Aurora global database, see Using Aurora MySQL 5.6.10a for an Aurora
global database (p. 233).

To create an Aurora global database using Aurora MySQL

Complete the Create database page.

1. For Engine options, choose the following:

a. For Edition, choose Amazon Aurora with MySQL compatibility.

b. For Capacity type, choose Provisioned.

c. Leave Replication features set to the default (single-master replication).

d. Turn on Show versions that support the global database feature.

e. For Version, choose the version of Aurora MySQL that you want to use for your Aurora global
database.

230

Amazon Aurora User Guide for Aurora
Getting started with Aurora global databases

2. For Templates, choose Production. Or you can choose Dev/Test if appropriate for your use case.
Don't use Dev/Test in production environments.

3. For Settings, do the following:

a. Enter a meaningful name for the DB cluster identifier. When you finish creating the Aurora
global database, this name identifies the primary DB cluster.

b. Enter your own password for the admin user account for the DB instance, or have Aurora
generate one for you. If you choose to autogenerate a password, you get an option to copy the
password.

4. For DB instance class, choose db.r5.large or another memory optimized DB instance class. We
recommend that you use a db.r5 or higher instance class.

231

Amazon Aurora User Guide for Aurora
Getting started with Aurora global databases

5. For Availability & durability, we recommend that you choose to have Aurora create an Aurora
Replica in a different Availability Zone (AZ) for you. If you don't create an Aurora Replica now, you
need to do it later.

6. For Connectivity, choose the virtual private cloud (VPC) based on Amazon VPC that defines the
virtual networking environment for this DB instance. You can choose the defaults to simplify this
task.

7. Complete the Database authentication settings. To simplify the process, you can choose Password
authentication now and set up AWS Identity and Access Management (IAM) later.

8. For Additional configuration, do the following:

a. Enter a name for Initial database name to create the primary Aurora DB instance for this
cluster. This is the writer node for the Aurora primary DB cluster.

Leave the defaults selected for the DB cluster parameter group and DB parameter group, unless
you have your own custom parameter groups that you want to use.

b. Clear the Enable backtrack check box if it's selected. Aurora global databases don't support
backtracking. Otherwise, accept the other default settings for Additional configuration.

9. Choose Create database.

It can take several minutes for Aurora to complete the process of creating the Aurora DB instance, its
Aurora Replica, and the Aurora DB cluster. You can tell when the Aurora DB cluster is ready to use as
the primary DB cluster in an Aurora global database by its status. When that's so, its status and that
of the writer and replica node is Available, as shown following.

When your primary DB cluster is available, create the Aurora global database by adding a secondary
cluster to it. To do this, follow the steps in Adding an AWS Region to an Amazon Aurora global
database (p. 242).

232

Amazon Aurora User Guide for Aurora
Getting started with Aurora global databases

Using Aurora MySQL 5.6.10a for an Aurora global database

The following steps apply to the 5.6.10a version of Aurora MySQL only. For other versions of Aurora
MySQL, see Creating a global database using Aurora MySQL (p. 230).

To create an Aurora global database using Aurora MySQL 5.6.10a

Complete the Create database page.

1. For Engine options, choose the following:

a. For Edition, choose Amazon Aurora with MySQL compatibility.

b. For Capacity type, choose Provisioned.

c. Leave Replication features set to the default (single-master replication).

d. Turn on Show versions that support the global database feature.

e. For Version, choose Aurora (MySQL 5.6) global_10a.

2. For Templates, choose Production.

3. For Global database settings, do the following:

a. For Global database identifier, enter a meaningful name.

b. For Credentials Settings, enter your own password for the postgres user account for the DB
instance, or have Aurora generate one for you. If you choose Auto generate a password, you get
an option to copy the password.

4. For Encryption, enable or disable encryption as needed.

5. The remaining sections of the Create database page configure the Primary region settings.
Complete these as follows:

a. For DB instance class, choose db.r5.large or another memory optimized DB instance class.
We recommend that you use a db.r5 or higher instance class.

233

Amazon Aurora User Guide for Aurora
Getting started with Aurora global databases

b. For Availability & durability, we recommend that you choose to have Aurora create an Aurora
Replica in a different AZ for you. If you don't create an Aurora Replica now, you need to do it
later.

c. For Connectivity, choose the virtual private cloud (VPC) based on Amazon VPC that defines the
virtual networking environment for this DB instance. You can choose the defaults to simplify
this task.

d. For Encryption key, choose the key to use. If you didn't choose Encryption earlier, disregard this
option.

e. Complete the Database authentication settings. To simplify the process, you can choose
Password authentication now and set up IAM later.

f. For Additional configuration, do the following:

i. For DB instance identifier, enter a name for the database instance, or use the default
provided. This is the writer instance for the Aurora primary DB cluster for this Aurora global
database.

ii. For DB cluster identifier, enter a meaningful name or accept the default provided.

iii. Leave the defaults selected for the DB cluster parameter group and DB parameter group,
unless you have your own custom parameter groups that you want to use.

iv. You can accept all other default settings for Additional configuration.

g. Choose Create database.

It can take several minutes for Aurora to complete the process of creating the Aurora DB
instance, its Aurora Replica, and the Aurora DB cluster. You can tell when the Aurora DB cluster
is ready to use as the primary DB cluster in an Aurora global database by its status. When that's
so, its status and that of the writer and replica node is Available, as shown following.

This Aurora global database still needs a secondary Aurora DB cluster. You can add that now, by
following the steps in Adding an AWS Region to an Amazon Aurora global database (p. 242).

Creating a global database using Aurora PostgreSQL

To create an Aurora global database using Aurora PostgreSQL

Complete the Create database page.

234

Amazon Aurora User Guide for Aurora
Getting started with Aurora global databases

1. For Engine options, choose the following:

a. For Edition, choose Amazon Aurora with PostgreSQL compatibility.

b. For Capacity type, choose Provisioned.

c. Turn on Show versions that support the global database feature.

d. For Version, choose the version of Aurora PostgreSQL that you want to use for your Aurora
global database.

2. For Templates, choose Production. Or you can choose Dev/Test if appropriate. Don't use Dev/Test in
production environments.

3. For Settings, do the following:

a. Enter a meaningful name for the DB cluster identifier. When you finish creating the Aurora
global database, this name identifies the primary DB cluster.

b. Enter your own password for the default admin account for the DB cluster, or have Aurora
generate one for you. If you choose Auto generate a password, you get an option to copy the
password.

235

Amazon Aurora User Guide for Aurora
Getting started with Aurora global databases

4. For DB instance class, choose db.r5.large or another memory optimized DB instance class. We
recommend that you use a db.r5 or higher instance class.

5. For Availability & durability, we recommend that you choose to have Aurora create an Aurora
Replica in a different AZ for you. If you don't create an Aurora Replica now, you need to do it later.

6. For Connectivity, choose the virtual private cloud (VPC) based on Amazon VPC that defines the
virtual networking environment for this DB instance. You can choose the defaults to simplify this
task.

7. Complete the Database authentication settings. To simplify the process, you can choose Password
authentication now and set up IAM or password and Kerberos authentication later.

8. For Additional configuration, do the following:

a. Enter a name for Initial database name to create the primary Aurora DB instance for this
cluster. This is the writer node for the Aurora primary DB cluster.

Leave the defaults selected for the DB cluster parameter group and DB parameter group, unless
you have your own custom parameter groups that you want to use.

b. Accept all other default settings for Additional configuration, such as Monitoring, Log exports,
and so on.

9. Choose Create database.

It can take several minutes for Aurora to complete the process of creating the Aurora DB instance,
its Aurora Replica, and the Aurora DB cluster. When the cluster is ready to use, the Aurora DB cluster
and its writer and replica nodes display Available status. This becomes the primary DB cluster of
your Aurora global database, after you add a secondary.

236

Amazon Aurora User Guide for Aurora
Getting started with Aurora global databases

When your primary DB cluster is available, create one or more secondary clusters by following the steps
in Adding an AWS Region to an Amazon Aurora global database (p. 242).

AWS CLI

The AWS CLI commands in the procedures following accomplish the following tasks:

1. Create an Aurora global database, giving it a name and specifying the Aurora database engine type
that you plan to use.

2. Create an Aurora DB cluster for the Aurora global database.
3. Create the Aurora DB instance for the cluster.
4. Create an Aurora DB instance for the Aurora DB cluster.
5. Create a second DB instance for Aurora DB cluster. This is a reader to complete the Aurora DB cluster.
6. Create a second Aurora DB cluster in another Region and then add it to your Aurora global database,

by following the steps in Adding an AWS Region to an Amazon Aurora global database (p. 242).

Follow the procedure for your Aurora database engine.

CLI examples
• Creating a global database using Aurora MySQL (p. 165)
• Creating a global database using Aurora PostgreSQL (p. 166)

Creating a global database using Aurora MySQL

To create an Aurora global database using Aurora MySQL

1. Use the create-global-cluster CLI command, passing the name of the AWS Region, Aurora
database engine and version. Choose your parameters from those shown in the table for the version
of Aurora MySQL that you want to use.

Other options for Aurora MySQL depend on the version of the Aurora MySQL database engine, as
shown in the following table.

Parameter Aurora MySQL version
1

Aurora MySQL version
2 and 3

--engine aurora aurora-mysql

--engine-mode global -

237

https://docs.aws.amazon.com/cli/latest/reference/rds/create-global-cluster.html

Amazon Aurora User Guide for Aurora
Getting started with Aurora global databases

Parameter Aurora MySQL version
1

Aurora MySQL version
2 and 3

--engine-version 5.6.10a,
5.6.mysql_aurora.1.22.0,
5.6.mysql_aurora.1.22.1,
5.6.mysql_aurora.1.22.2,
5.6.mysql_aurora.1.22.3,
5.6.mysql_aurora.1.23.0,
5.6.mysql_aurora.1.23.1,
and later versions

5.7.mysql_aurora.2.07.0,
5.7.mysql_aurora.2.07.1,
5.7.mysql_aurora.2.07.2,
5.7.mysql_aurora.2.07.3,
5.7.mysql_aurora.2.08.0,
5.7.mysql_aurora.2.08.1,
5.7.mysql_aurora.2.08.1,
5.7.mysql_aurora.2.08.3,
5.7.mysql_aurora.2.09.0,
5.7.mysql_aurora.2.08.1,
and later versions;
8.0.mysql_aurora.3.01.0
and later versions

For Linux, macOS, or Unix:

aws rds create-global-cluster --region primary_region \
 --global-cluster-identifier global_database_id \
 --engine aurora \
 --engine-version version # optional

For Windows:

aws rds create-global-cluster ^
 --global-cluster-identifier global_database_id ^
 --engine aurora ^
 --engine-version version # optional

This creates an "empty" Aurora global database, with just a name (identifier) and Aurora database
engine. It can take a few minutes for the Aurora global database to be available. Before going to the
next step, use the describe-global-clusters CLI command to see if it's available.

aws rds describe-global-clusters --region primary_region --global-cluster-
identifier global_database_id

When the Aurora global database is available, you can create its primary Aurora DB cluster.

2. To create a primary Aurora DB cluster, use the create-db-cluster CLI command. Include the
name of your Aurora global database by using the --global-cluster-identifier.

For Linux, macOS, or Unix:

aws rds create-db-cluster \
 --region primary_region \
 --db-cluster-identifier db_cluster_id \
 --master-username userid \
 --master-user-password password \
 --engine { aurora | aurora-mysql } \
 --engine-mode global # Required for --engine-version 5.6.10a only \
 --engine-version version \
 --global-cluster-identifier global_database_id

For Windows:

238

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-global-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html

Amazon Aurora User Guide for Aurora
Getting started with Aurora global databases

aws rds create-db-cluster ^
 --region primary_region ^
 --db-cluster-identifier db_cluster_id ^
 --master-username userid ^
 --master-user-password password ^
 --engine { aurora | aurora-mysql } ^
 --engine-mode global # Required for --engine-version 5.6.10a only ^
 --engine-version version ^
 --global-cluster-identifier global_database_id

Other options for Aurora MySQL depend on the version of the Aurora MySQL database engine.

Use the describe-db-clusters AWS CLI command to confirm that the Aurora DB cluster is ready.
To single out a specific Aurora DB cluster, use --db-cluster-identifier parameter. Or you
can leave out the Aurora DB cluster name in the command to get details about all your Aurora DB
clusters in the given Region.

aws rds describe-db-clusters --region primary_region --db-cluster-
identifier db_cluster_id

When the response shows "Status": "available" for the cluster, it's ready to use.

3. Create the DB instance for your primary Aurora DB cluster. To do so, use the create-db-instance
CLI command. Give the command your Aurora DB cluster's name, and specify the configuration
details for the instance. You don't need to pass the --master-username and --master-user-
password parameters in the command, because it gets those from the Aurora DB cluster.

For the --db-instance-class, you can use only those from the memory optimized classes, such
as db.r5.large. We recommend that you use a db.r5 or higher instance class. For information
about these classes, see DB instance classes.

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-cluster-identifier db_cluster_id \
 --db-instance-class instance_class \
 --db-instance-identifier db_instance_id \
 --engine { aurora | aurora-mysql} \
 --engine-mode global # Required for --engine-version 5.6.10a only \
 --engine-version version \
 --region primary_region

For Windows:

aws rds create-db-instance ^
 --db-cluster-identifier db_cluster_id ^
 --db-instance-class instance_class ^
 --db-instance-identifier db_instance_id ^
 --engine { aurora | aurora-mysql } ^
 --engine-mode global # Required for --engine-version 5.6.10a only ^
 --engine-version version ^
 --region primary_region

The create-db-instance operation might take some time to complete. Check the status to see if
the Aurora DB instance is available before continuing.

aws rds describe-db-clusters --db-cluster-identifier sample_secondary_db_cluster

239

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types

Amazon Aurora User Guide for Aurora
Getting started with Aurora global databases

When the command returns a status of "available," you can create another Aurora DB instance for
your primary DB cluster. This is the reader instance (the Aurora Replica) for the Aurora DB cluster.

4. To create another Aurora DB instance for the cluster, use the create-db-instance CLI command.

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-cluster-identifier sample_secondary_db_cluster \
 --db-instance-class instance_class \
 --db-instance-identifier sample_replica_db \
 --engine aurora

For Windows:

aws rds create-db-instance ^
 --db-cluster-identifier sample_secondary_db_cluster ^
 --db-instance-class instance_class ^
 --db-instance-identifier sample_replica_db ^
 --engine aurora

When the DB instance is available, replication begins from the writer node to the replica. Before
continuing, check that the DB instance is available with the describe-db-instances CLI command.

At this point, you have an Aurora global database with its primary Aurora DB cluster containing a writer
DB instance and an Aurora Replica. You can now add a read-only Aurora DB cluster in a different Region
to complete your Aurora global database. To do so, follow the steps in Adding an AWS Region to an
Amazon Aurora global database (p. 242).

Creating a global database using Aurora PostgreSQL

When you create Aurora objects for an Aurora global database by using the following commands, it
can take a few minutes for each to become available. We recommend that after completing any given
command, you check the specific Aurora object's status to make sure that the status is available.

To do so, use the describe-global-clusters CLI command.

aws rds describe-global-clusters --region primary_region
 --global-cluster-identifier global_database_id

To create an Aurora global database using Aurora PostgreSQL

1. Use the create-global-cluster CLI command.

For Linux, macOS, or Unix:

aws rds create-global-cluster --region primary_region \
 --global-cluster-identifier global_database_id \
 --engine aurora-postgresql \
 --engine-version version # optional

For Windows:

aws rds create-global-cluster ^
 --global-cluster-identifier global_database_id ^
 --engine aurora-postgresql ^
 --engine-version version # optional

240

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-global-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-global-cluster.html

Amazon Aurora User Guide for Aurora
Getting started with Aurora global databases

When the Aurora global database is available, you can create its primary Aurora DB cluster.

2. To create a primary Aurora DB cluster, use the create-db-cluster CLI command. Include the
name of your Aurora global database by using the --global-cluster-identifier.

For Linux, macOS, or Unix:

aws rds create-db-cluster \
 --region primary_region \
 --db-cluster-identifier db_cluster_id \
 --master-username userid \
 --master-user-password password \
 --engine aurora-postgresql \
 --engine-version version \
 --global-cluster-identifier global_database_id

For Windows:

aws rds create-db-cluster ^
 --region primary_region ^
 --db-cluster-identifier db_cluster_id ^
 --master-username userid ^
 --master-user-password password ^
 --engine aurora-postgresql ^
 --engine-version version ^
 --global-cluster-identifier global_database_id

Check that the Aurora DB cluster is ready. When the response from the following command shows
"Status": "available" for the Aurora DB cluster, you can continue.

aws rds describe-db-clusters --region primary_region --db-cluster-
identifier db_cluster_id

3. Create the DB instance for your primary Aurora DB cluster. To do so, use the create-db-instance
CLI command.

• Pass the name of your Aurora DB cluster with the --db-instance-identifier parameter.

You don't need to pass the --master-username and --master-user-password parameters
in the command, because it gets those from the Aurora DB cluster.

For the --db-instance-class, you can use only those from the memory optimized classes,
such as db.r5.large. We recommend that you use a db.r5 or higher instance class. For
information about these classes, see DB instance classes.

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-cluster-identifier db_cluster_id \
 --db-instance-class instance_class \
 --db-instance-identifier db_instance_id \
 --engine aurora-postgresql \
 --engine-version version \
 --region primary_region

For Windows:

aws rds create-db-instance ^

241

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types

Amazon Aurora User Guide for Aurora
Getting started with Aurora global databases

 --db-cluster-identifier db_cluster_id ^
 --db-instance-class instance_class ^
 --db-instance-identifier db_instance_id ^
 --engine aurora-postgresql ^
 --engine-version version ^
 --region primary_region

4. Check the status of the Aurora DB instance before continuing.

aws rds describe-db-clusters --db-cluster-identifier sample_secondary_db_cluster

If the response shows that Aurora DB instance status is "available," you can create another Aurora DB
instance for your primary DB cluster.

5. To create an Aurora Replica for Aurora DB cluster, use the create-db-instance CLI command.

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-cluster-identifier sample_secondary_db_cluster \
 --db-instance-class instance_class \
 --db-instance-identifier sample_replica_db \
 --engine aurora-postgresql

For Windows:

aws rds create-db-instance ^
 --db-cluster-identifier sample_secondary_db_cluster ^
 --db-instance-class instance_class ^
 --db-instance-identifier sample_replica_db ^
 --engine aurora-postgresql

When the DB instance is available, replication begins from the writer node to the replica. Before
continuing, check that the DB instance is available with the describe-db-instances CLI command.

Your Aurora global database exists, but it has only its primary Region with an Aurora DB cluster made
up of a writer DB instance and an Aurora Replica. You can now add a read-only Aurora DB cluster in a
different Region to complete your Aurora global database. To do so, follow the steps in Adding an AWS
Region to an Amazon Aurora global database (p. 242).

RDS API

To create an Aurora global database with the RDS API, run the CreateGlobalCluster operation.

Adding an AWS Region to an Amazon Aurora global database

An Aurora global database needs at least one secondary Aurora DB cluster in a different AWS Region
than the primary Aurora DB cluster. You can attach up to five secondary DB clusters to your Aurora
global database. For each secondary DB cluster that you add to your Aurora global database, reduce the
number of Aurora Replicas allowed to the primary DB cluster by one.

For example, if your Aurora global database has 5 secondary Regions, your primary DB cluster can have
only 10 (rather than 15) Aurora Replicas. For more information, see Configuration requirements of an
Amazon Aurora global database (p. 228).

The number of Aurora Replicas (reader instances) in the primary DB cluster determines the number
of secondary DB clusters you can add. The total number of reader instances in the primary DB cluster

242

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateGlobalCluster.html

Amazon Aurora User Guide for Aurora
Getting started with Aurora global databases

plus the number of secondary clusters can't exceed 15. For example, if you have 14 reader instances in
the primary DB cluster and 1 secondary cluster, you can't add another secondary cluster to the global
database.

Note
For Aurora MySQL version 3, when you create a secondary cluster, make sure that the value of
lower_case_table_names matches the value in the primary cluster. This setting is a database
parameter that affects how the server handles identifier case sensitivity. For more information
about database parameters, see Working with DB parameter groups and DB cluster parameter
groups (p. 339).

Console

To add an AWS Region to an Aurora global database

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane of the AWS Management Console, choose Databases.
3. Choose the Aurora global database that needs a secondary Aurora DB cluster. Ensure that the

primary Aurora DB cluster is Available.
4. For Actions, choose Add region.

5. On the Add a region page, choose the secondary AWS Region.

You can't choose an AWS Region that already has a secondary Aurora DB cluster for the same Aurora
global database. Also, it can't be the same Region as the primary Aurora DB cluster.

6. Complete the remaining fields for the secondary Aurora cluster in the new AWS Region. These
are the same configuration options as for any Aurora DB cluster instance, except for the following
option for Aurora MySQL–based Aurora global databases only:

243

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Getting started with Aurora global databases

• Enable read replica write forwarding – This optional setting let's your Aurora global database's
secondary DB clusters forward write operations to the primary cluster. For more information, see
Using write forwarding in an Amazon Aurora global database (p. 255).

7. Add region.

After you finish adding the Region to your Aurora global database, you can see it in the list of Databases
in the AWS Management Console as shown in the screenshot.

AWS CLI

To add a secondary AWS Region to an Aurora global database

1. Use the create-db-cluster CLI command with the name (--global-cluster-identifier) of
your Aurora global database. For other parameters, do the following:

2. For --region, choose a different AWS Region than that of your Aurora primary Region.

3. Do one of the following:

• For an Aurora global database based on Aurora MySQL5.6.10a only, use the following parameters:

• --engine – aurora

• --engine-mode – global

• --engine-version – 5.6.10a

244

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html

Amazon Aurora User Guide for Aurora
Getting started with Aurora global databases

• For an Aurora global database based on other Aurora DB engines, choose specific values for the --
engine and --engine-version parameters. These values are the same as those for the primary
Aurora DB cluster in your Aurora global database.

The following table displays current options.

Parameter Aurora MySQL 5.6 Aurora MySQL 5.7 Aurora PostgreSQL

--engine aurora aurora-mysql aurora-postgresql

--engine-
version

5.6.mysql_aurora.1.22.0,
5.6.mysql_aurora.1.22.1,
5.6.mysql_aurora.1.22.2,
5.6.mysql_aurora.1.22.3,
5.6.mysql_aurora.1.23.0,
5.6.mysql_aurora.1.23.1

5.7.mysql_aurora.2.07.0,
5.7.mysql_aurora.2.07.1,
5.7.mysql_aurora.2.07.2,
5.7.mysql_aurora.2.07.3,
5.7.mysql_aurora.2.08.0,
5.7.mysql_aurora.2.08.1,
5.7.mysql_aurora.2.08.2,
5.7.mysql_aurora.2.08.3,
5.7.mysql_aurora.2.09.0
(and later)

10.11 (and later), 11.7
(and later), 12.4 (and
later)

4. For an encrypted cluster, specify your primary AWS Region as the --source-region for
encryption.

The following example creates a new Aurora DB cluster and attaches it to an Aurora global database as a
read-only secondary Aurora DB cluster. In the last step, an Aurora DB instance is added to the new Aurora
DB cluster.

For Linux, macOS, or Unix:

aws rds --region secondary_region \
 create-db-cluster \
 --db-cluster-identifier secondary_cluster_id \
 --global-cluster-identifier global_database_id \
 --engine { aurora | aurora-mysql | aurora-postgresql }
 --engine-version version

aws rds --region secondary_region \
 create-db-instance \
 --db-instance-class instance_class \
 --db-cluster-identifier secondary_cluster_id \
 --db-instance-identifier db_instance_id \
 --engine { aurora | aurora-mysql | aurora-postgresql }

For Windows:

aws rds --region secondary_region ^
 create-db-cluster ^
 --db-cluster-identifier secondary_cluster_id ^
 --global-cluster-identifier global_database_id_id ^
 --engine { aurora | aurora-mysql | aurora-postgresql } ^
 --engine-version version

aws rds --region secondary_region ^
 create-db-instance ^
 --db-instance-class instance_class ^
 --db-cluster-identifier secondary_cluster_id ^
 --db-instance-identifier db_instance_id ^
 --engine { aurora | aurora-mysql | aurora-postgresql }

245

Amazon Aurora User Guide for Aurora
Getting started with Aurora global databases

RDS API

To add a new AWS Region to an Aurora global database with the RDS API, run the CreateDBCluster
operation. Specify the identifier of the existing global database using the GlobalClusterIdentifier
parameter.

Creating a headless Aurora DB cluster in a secondary Region

Although an Aurora global database requires at least one secondary Aurora DB cluster in a different
AWS Region than the primary, you can use a headless configuration for the secondary cluster. A headless
secondary Aurora DB cluster is one without a DB instance. This type of configuration can lower expenses
for an Aurora global database. In an Aurora DB cluster, compute and storage are decoupled. Without
the DB instance, you're not charged for compute, only for storage. If it's set up correctly, a headless
secondary's storage volume is kept in-sync with the primary Aurora DB cluster.

You add the secondary cluster as you normally do when creating an Aurora global database. However,
after the primary Aurora DB cluster begins replication to the secondary, you delete the Aurora read-only
DB instance from the secondary Aurora DB cluster. This secondary cluster is now considered "headless"
because it no longer has a DB instance. Yet, the storage volume is kept in sync with the primary Aurora
DB cluster.

Warning
With Aurora PostgreSQL, to create a headless cluster in a secondary AWS Region, use the AWS
CLI or RDS API to add the secondary AWS Region. Skip the step to create the reader DB instance
for the secondary cluster. Currently, creating a headless cluster isn't supported in the RDS
Console. For the CLI and API procedures to use, see Adding an AWS Region to an Amazon Aurora
global database (p. 242).
Creating a reader DB instance in a secondary Region and subsequently deleting it could lead
to an Aurora PostgreSQL vacuum issue on the primary Region's writer DB instance. If you
encounter this issue, restart the primary Region's writer DB instance after you delete the
secondary Region's reader DB instance.

To add a headless secondary Aurora DB cluster to your Aurora global database

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane of the AWS Management Console, choose Databases.

3. Choose the Aurora global database that needs a secondary Aurora DB cluster. Ensure that the
primary Aurora DB cluster is Available.

4. For Actions, choose Add region.

5. On the Add a region page, choose the secondary AWS Region.

You can't choose an AWS Region that already has a secondary Aurora DB cluster for the same Aurora
global database. Also, it can't be the same Region as the primary Aurora DB cluster.

6. Complete the remaining fields for the secondary Aurora cluster in the new AWS Region. These are
the same configuration options as for any Aurora DB cluster instance.

For an Aurora MySQL–based Aurora global database, disregard the Enable read replica write
forwarding option. This option has no function after you delete the reader instance.

7. Add region. After you finish adding the Region to your Aurora global database, you can see it in the
list of Databases in the AWS Management Console as shown in the screenshot.

246

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Getting started with Aurora global databases

8. Check the status of the secondary Aurora DB cluster and its reader instance before continuing, by
using the AWS Management Console or the AWS CLI. For example:

$ aws rds describe-db-clusters --db-cluster-identifier secondary-cluster-id --query
 '*[].[Status]' --output text

It can take several minutes for the status of a newly added secondary Aurora DB cluster to change
from creating to available. When the Aurora DB cluster is available, you can delete the reader
instance.

9. Select the reader instance in the secondary Aurora DB cluster, and then choose Delete.

After deleting the reader instance, the secondary cluster remains part of the Aurora global database. It
has no instance associated with it, as shown following.

247

Amazon Aurora User Guide for Aurora
Getting started with Aurora global databases

You can use this headless secondary Aurora DB cluster to manually recover your Amazon Aurora global
database from an unplanned outage in the primary AWS Region (p. 267) if such an outage occurs.

Using a snapshot for your Amazon Aurora global database

You can restore a snapshot of an Aurora DB cluster or from an Amazon RDS DB instance to use as the
starting point for your Aurora global database. You restore the snapshot and create a new Aurora
provisioned DB cluster at the same time. You then add another AWS Region to the restored DB cluster,
thus turning it into an Aurora global database. Any Aurora DB cluster that you create using a snapshot in
this way becomes the primary cluster of your Aurora global database.

The snapshot that you use can be from a provisioned or from a serverless Aurora DB cluster.

Note
You can't create a provisioned Aurora DB cluster from a snapshot made from an Aurora MySQL
5.6.10a–based global database. A snapshot from an Aurora MySQL 5.6.10a–based global
database can only be restored as an Aurora global database.

During the restore process, choose the same DB engine type as the snapshot. For example, suppose that
you want to restore a snapshot that was made from an Aurora Serverless v1 DB cluster running Aurora
PostgreSQL. In this case, you create an Aurora PostgreSQL DB cluster using that same Aurora DB engine
and version.

The restored DB cluster assumes the role of primary cluster for Aurora global database when you add an
AWS Regions to it. All data contained in this primary cluster is replicated to any secondary clusters that
you add to your Aurora global database.

248

Amazon Aurora User Guide for Aurora
Managing an Aurora global database

Managing an Amazon Aurora global database
With the exception of the managed planned failover process, you perform most management operations
on the individual clusters that make up an Aurora global database. When you choose Group related
resources on the Databases page in the console, you see the primary cluster and secondary clusters
grouped under the associated global database. To find the AWS Regions where a global database's DB
clusters are running, its Aurora DB engine and version, and its identifier, use its Configuration tab.

The managed planned failover process is available to Aurora global database objects only, not for a
single Aurora DB cluster. To learn more, see Performing managed planned failovers for Amazon Aurora
global databases (p. 268).

To recover an Aurora global database from an unplanned outage in its primary Region, see Using failover
in an Amazon Aurora global database (p. 266).

Topics

• Modifying an Amazon Aurora global database (p. 249)

• Modifying parameters for an Aurora global database (p. 250)

• Removing a cluster from an Amazon Aurora global database (p. 251)

• Deleting an Amazon Aurora global database (p. 253)

Modifying an Amazon Aurora global database
The Databases page in the AWS Management Console lists all your Aurora global databases, showing
the primary cluster and secondary clusters for each one. The Aurora global database has its own

249

Amazon Aurora User Guide for Aurora
Managing an Aurora global database

configuration settings. Specifically, it has AWS Regions associated with its primary and secondary
clusters, as shown in the screenshot following.

When you make changes to the Aurora global database, you have a chance to cancel changes, as shown
in the following screenshot.

When you choose Continue, you confirm the changes.

Modifying parameters for an Aurora global database
You can configure the Aurora DB cluster parameter groups independently for each Aurora cluster within
the Aurora global database. Most parameters work the same as for other kinds of Aurora clusters. We
recommend that you keep settings consistent among all the clusters in a global database. Doing this
helps to avoid unexpected behavior changes if you promote a secondary cluster to be the primary.

For example, use the same settings for time zones and character sets to avoid inconsistent behavior if a
different cluster takes over as the primary cluster.

250

Amazon Aurora User Guide for Aurora
Managing an Aurora global database

The aurora_enable_repl_bin_log_filtering and
aurora_enable_replica_log_compression configuration settings have no effect.

Removing a cluster from an Amazon Aurora global database
You can remove Aurora DB clusters from your Aurora global database for several different reasons. For
example, you might want to remove an Aurora DB cluster from an Aurora global database if the primary
cluster becomes degraded or isolated. It then becomes a standalone provisioned Aurora DB cluster that
could be used to create a new Aurora global database. To learn more, see Recovering an Amazon Aurora
global database from an unplanned outage (p. 267).

You also might want to remove Aurora DB clusters because you want to delete an Aurora global
database that you no longer need. You can't delete the Aurora global database until after you remove
(detach) all associated Aurora DB clusters, leaving the primary for last. For more information, see
Deleting an Amazon Aurora global database (p. 253).

When an Aurora DB cluster is detached from the Aurora global database, it's no longer synchronized with
the primary. It becomes a standalone provisioned Aurora DB cluster with full read/write capabilities.

You can remove Aurora DB clusters from your Aurora global database using the AWS Management
Console, the AWS CLI, or the RDS API.

Console

To remove an Aurora cluster from an Aurora global database

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose the cluster on the Databases page.
3. For Actions, choose Remove from Global.

You see a prompt to confirm that you want to detach the secondary from the Aurora global
database.

251

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Managing an Aurora global database

4. Choose Remove and promote to remove the cluster from the global database.

The Aurora DB cluster is no longer serving as a secondary in the Aurora global database, and is no
longer synchronized with the primary DB cluster. It is a standalone Aurora DB cluster with full read/write
capability.

After you remove or delete all secondary clusters, then you can remove the primary cluster the same
way. You can't detach (remove) the primary Aurora DB cluster from an Aurora global database until after
you remove all secondary clusters.

The Aurora global database might remain in the Databases list, with zero Regions and AZs. You can
delete if you no longer want to use this Aurora global database. For more information, see Deleting an
Amazon Aurora global database (p. 253).

AWS CLI

To remove an Aurora cluster from an Aurora global database, run the remove-from-global-cluster CLI
command with the following parameters:

• --global-cluster-identifier – The name (identifier) of your Aurora global database.

• --db-cluster-identifier – The name of each Aurora DB cluster to remove from the Aurora global
database. Remove all secondary Aurora DB clusters before removing the primary.

The following examples first remove a secondary cluster and then the primary cluster from an Aurora
global database.

For Linux, macOS, or Unix:

aws rds --region secondary_region \
 remove-from-global-cluster \
 --db-cluster-identifier secondary_cluster_ARN \
 --global-cluster-identifier global_database_id

aws rds --region primary_region \

252

https://docs.aws.amazon.com/cli/latest/reference/rds/remove-from-global-cluster.html

Amazon Aurora User Guide for Aurora
Managing an Aurora global database

 remove-from-global-cluster \
 --db-cluster-identifier primary_cluster_ARN \
 --global-cluster-identifier global_database_id

Repeat the remove-from-global-cluster --db-cluster-identifier
secondary_cluster_ARN command for each secondary AWS Region in your Aurora global database.

For Windows:

aws rds --region secondary_region ^
 remove-from-global-cluster ^
 --db-cluster-identifier secondary_cluster_ARN ^
 --global-cluster-identifier global_database_id

aws rds --region primary_region ^
 remove-from-global-cluster ^
 --db-cluster-identifier primary_cluster_ARN ^
 --global-cluster-identifier global_database_id

Repeat the remove-from-global-cluster --db-cluster-identifier
secondary_cluster_ARN command for each secondary AWS Region in your Aurora global database.

RDS API

To remove an Aurora cluster from an Aurora global database with the RDS API, run the
RemoveFromGlobalCluster action.

Deleting an Amazon Aurora global database
Because an Aurora global database typically holds business-critical data, you can't delete the global
database and its associated clusters in a single step. To delete an Aurora global database, do the
following:

• Remove all secondary DB clusters from the Aurora global database. Each cluster becomes a
standalone Aurora DB cluster. To learn how, see Removing a cluster from an Amazon Aurora global
database (p. 251).

• From each standalone Aurora DB cluster, delete all Aurora Replicas.

• Remove the primary DB cluster from the Aurora global database. This becomes a standalone Aurora
DB cluster.

• From the Aurora primary DB cluster, first delete all Aurora Replicas, then delete the writer DB instance.

Deleting the writer instance from the newly standalone Aurora DB cluster also typically removes the
Aurora DB cluster and the Aurora global database.

For more general information, see Deleting a DB instance from an Aurora DB cluster (p. 472).

To delete an Aurora global database, you can use the AWS Management Console, the AWS CLI, or the
RDS API.

Console

To delete an Aurora global database

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases and find the Aurora global database you want to delete in the listing.

253

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RemoveFromGlobalCluster.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Connecting to an Aurora global database

3. Confirm that all clusters are removed from the Aurora global database. The Aurora global database
should show 0 Regions and AZs and a size of 0 clusters.

If the Aurora global database contains any Aurora DB clusters, you can't delete it. If necessary,
detach the primary and secondary Aurora DB clusters from the Aurora global database. For more
information, see Removing a cluster from an Amazon Aurora global database (p. 251).

4. Choose your Aurora global database in the list, and then choose Delete from the Actions menu.

AWS CLI

To delete an Aurora global database, run the delete-global-cluster CLI command with the name of the
AWS Region and the Aurora global database identifier, as shown in the following example.

For Linux, macOS, or Unix:

aws rds --region primary_region delete-global-cluster \
 --global-cluster-identifier global_database_id

For Windows:

aws rds --region primary_region delete-global-cluster ^
 --global-cluster-identifier global_database_id

RDS API

To delete a cluster that is part of an Aurora global database, run the DeleteGlobalCluster API operation.

Connecting to an Amazon Aurora global database
How you connect to an Aurora global database depends on whether you need to write to the database or
read from the database:

• For read-only requests or queries, you connect to the reader endpoint for the Aurora cluster in your
AWS Region.

• To run data manipulation language (DML) or data definition language (DDL) statements, you connect
to the cluster endpoint for the primary cluster. This endpoint might be in a different AWS Region than
your application.

When you view an Aurora global database in the console, you can see all the general-purpose endpoints
associated with all of its clusters. The following screenshot shows an example. There is a single cluster
endpoint associated with the primary cluster that you use for write operations. The primary cluster
and each secondary cluster has a reader endpoint that you use for read-only queries. To minimize
latency, choose whichever reader endpoint is in your AWS Region or the AWS Region closest to you. The
following shows an Aurora MySQL example.

254

https://docs.aws.amazon.com/cli/latest/reference/rds/delete-global-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteGlobalCluster.html

Amazon Aurora User Guide for Aurora
Using write forwarding in an Aurora global database

Using write forwarding in an Amazon Aurora global
database
You can reduce the number of endpoints that you need to manage for applications running on your
Aurora global database, by using write forwarding. This feature of Aurora MySQL lets secondary clusters
in an Aurora global database forward SQL statements that perform write operations to the primary
cluster. The primary cluster updates the source and then propagates resulting changes back to all
secondary AWS Regions.

The write forwarding configuration saves you from implementing your own mechanism to send write
operations from a secondary AWS Region to the primary Region. Aurora handles the cross-Region
networking setup. Aurora also transmits all necessary session and transactional context for each
statement. The data is always changed first on the primary cluster and then replicated to the secondary
clusters in the Aurora global database. This way, the primary cluster is the source of truth and always has
an up-to-date copy of all your data.

Note
Write forwarding requires Aurora MySQL version 2.08.1 or later.

Topics
• Enabling write forwarding (p. 255)
• Checking if a secondary cluster has write forwarding enabled (p. 257)
• Application and SQL compatibility with write forwarding (p. 258)
• Isolation and consistency for write forwarding (p. 259)
• Running multipart statements with write forwarding (p. 262)
• Transactions with write forwarding (p. 262)
• Configuration parameters for write forwarding (p. 262)
• Amazon CloudWatch metrics for write forwarding (p. 263)

Enabling write forwarding
By default, write forwarding isn't enabled when you add a secondary cluster to an Aurora global
database.

To enable write forwarding using the AWS Management Console, choose the Enable read replica write
forwarding option when you add a Region for a global database. For an existing secondary cluster,
modify the cluster to use the Enable read replica write forwarding option. To turn off write forwarding,
clear the Enable read replica write forwarding check box when adding the Region or modifying the
secondary cluster.

To enable write forwarding using the AWS CLI, use the --enable-global-write-forwarding option.
This option works when you create a new secondary cluster using the create-db-cluster command.
It also works when you modify an existing secondary cluster using the modify-db-cluster command.
It requires that the global database uses an Aurora version that supports write forwarding. You can turn
write forwarding off by using the --no-enable-global-write-forwarding option with these same
CLI commands.

255

Amazon Aurora User Guide for Aurora
Using write forwarding in an Aurora global database

To enable write forwarding using the Amazon RDS API, set the EnableGlobalWriteForwarding
parameter to true. This parameter works when you create a new secondary cluster using the
CreateDBCluster operation. It also works when you modify an existing secondary cluster using the
ModifyDBCluster operation. It requires that the global database uses an Aurora version that supports
write forwarding. You can turn write forwarding off by setting the EnableGlobalWriteForwarding
parameter to false.

Note
For a database session to use write forwarding, you also specify a setting for the
aurora_replica_read_consistency configuration parameter. Do this in every session
that uses the write forwarding feature. For information about this parameter, see Isolation and
consistency for write forwarding (p. 259).

The following CLI examples show how you can set up an Aurora global database with write forwarding
enabled or disabled. The highlighted items represent the commands and options that are important to
specify and keep consistent when setting up the infrastructure for an Aurora global database.

The following example creates an Aurora global database, a primary cluster, and a secondary cluster with
write forwarding enabled. Substitute your own choices for the user name, password, and primary and
secondary AWS Regions.

Create overall global database.
aws rds create-global-cluster --global-cluster-identifier write-forwarding-test \
 --engine aurora-mysql --engine-version 5.7.mysql_aurora.2.08.1 \
 --region us-east-1

Create primary cluster, in the same AWS Region as the global database.
aws rds create-db-cluster --global-cluster-identifier write-forwarding-test \
 --db-cluster-identifier write-forwarding-test-cluster-1 \
 --engine aurora-mysql --engine-version 5.7.mysql_aurora.2.08.1 \
 --master-username my_user_name --master-user-password my_password \
 --region us-east-1

aws rds create-db-instance --db-cluster-identifier write-forwarding-test-cluster-1 \
 --db-instance-identifier write-forwarding-test-cluster-1-instance-1 \
 --db-instance-class db.r5.large \
 --engine aurora-mysql --engine-version 5.7.mysql_aurora.2.08.1 \
 --region us-east-1

aws rds create-db-instance --db-cluster-identifier write-forwarding-test-cluster-1 \
 --db-instance-identifier write-forwarding-test-cluster-1-instance-2 \
 --db-instance-class db.r5.large \
 --engine aurora-mysql --engine-version 5.7.mysql_aurora.2.08.1 \
 --region us-east-1

Create secondary cluster, in a different AWS Region than the global database,
with write forwarding enabled.
aws rds create-db-cluster --global-cluster-identifier write-forwarding-test \
 --db-cluster-identifier write-forwarding-test-cluster-2 \
 --engine aurora-mysql --engine-version 5.7.mysql_aurora.2.08.1 \
 --region us-east-2 \
 --enable-global-write-forwarding

aws rds create-db-instance --db-cluster-identifier write-forwarding-test-cluster-2 \
 --db-instance-identifier write-forwarding-test-cluster-2-instance-1 \
 --db-instance-class db.r5.large \
 --engine aurora-mysql --engine-version 5.7.mysql_aurora.2.08.1 \
 --region us-east-2

aws rds create-db-instance --db-cluster-identifier write-forwarding-test-cluster-2 \
 --db-instance-identifier write-forwarding-test-cluster-2-instance-2 \
 --db-instance-class db.r5.large \
 --engine aurora-mysql --engine-version 5.7.mysql_aurora.2.08.1 \

256

Amazon Aurora User Guide for Aurora
Using write forwarding in an Aurora global database

 --region us-east-2

The following example continues from the previous one. It creates a secondary cluster without write
forwarding enabled, then enables write forwarding. After this example finishes, all secondary clusters in
the global database have write forwarding enabled.

Create secondary cluster, in a different AWS Region than the global database,
without write forwarding enabled.
aws rds create-db-cluster --global-cluster-identifier write-forwarding-test \
 --db-cluster-identifier write-forwarding-test-cluster-2 \
 --engine aurora-mysql --engine-version 5.7.mysql_aurora.2.08.1 \
 --region us-west-1

aws rds create-db-instance --db-cluster-identifier write-forwarding-test-cluster-2 \
 --db-instance-identifier write-forwarding-test-cluster-2-instance-1 \
 --db-instance-class db.r5.large \
 --engine aurora-mysql --engine-version 5.7.mysql_aurora.2.08.1 \
 --region us-west-1

aws rds create-db-instance --db-cluster-identifier write-forwarding-test-cluster-2 \
 --db-instance-identifier write-forwarding-test-cluster-2-instance-2 \
 --db-instance-class db.r5.large \
 --engine aurora-mysql --engine-version 5.7.mysql_aurora.2.08.1 \
 --region us-west-1

aws rds modify-db-cluster --db-cluster-identifier write-forwarding-test-cluster-2 \
 --region us-east-2 \
 --enable-global-write-forwarding

Checking if a secondary cluster has write forwarding enabled
To determine whether you can use write forwarding from a secondary cluster, you can check whether the
cluster has the attribute "GlobalWriteForwardingStatus": "enabled".

In the AWS Management Console, you see Read replica write forwarding on the Configuration
tab of the details page for the cluster. To see the status of the global write forwarding setting for all of
your clusters, run the following AWS CLI command.

A secondary cluster shows the value "enabled" or "disabled" to indicate if write forwarding is turned
on or off. A value of null indicates that write forwarding isn't available for that cluster. Either the cluster
isn't part of a global database, or is the primary cluster instead of a secondary cluster. The value can also
be "enabling" or "disabling" if write forwarding is in the process of being turned on or off.

Example

aws rds describe-db-clusters --query '*[].
{DBClusterIdentifier:DBClusterIdentifier,GlobalWriteForwardingStatus:GlobalWriteForwardingStatus}'
[
 {
 "GlobalWriteForwardingStatus": "enabled",
 "DBClusterIdentifier": "aurora-write-forwarding-test-replica-1"
 },
 {
 "GlobalWriteForwardingStatus": "disabled",
 "DBClusterIdentifier": "aurora-write-forwarding-test-replica-2"
 },
 {
 "GlobalWriteForwardingStatus": null,
 "DBClusterIdentifier": "non-global-cluster"
 }
]

257

Amazon Aurora User Guide for Aurora
Using write forwarding in an Aurora global database

To find all secondary clusters that have global write forwarding enabled, run the following command.
This command also returns the cluster's reader endpoint. You use the secondary cluster's reader endpoint
to when you use write forwarding from the secondary to the primary in your Aurora global database.

Example

aws rds describe-db-clusters --query 'DBClusters[].
{DBClusterIdentifier:DBClusterIdentifier,GlobalWriteForwardingStatus:GlobalWriteForwardingStatus,ReaderEndpoint:ReaderEndpoint}
 | [?GlobalWriteForwardingStatus == `enabled`]'
[
 {
 "GlobalWriteForwardingStatus": "enabled",
 "ReaderEndpoint": "aurora-write-forwarding-test-replica-1.cluster-ro-cnpexample.us-
west-2.rds.amazonaws.com",
 "DBClusterIdentifier": "aurora-write-forwarding-test-replica-1"
 }
]

Application and SQL compatibility with write forwarding
Certain statements aren't allowed or can produce stale results when you use them in a global database
with write forwarding. Thus, the EnableGlobalWriteForwarding setting is turned off by default for
secondary clusters. Before turning it on, check to make sure that your application code isn't affected by
any of these restrictions.

You can use the following kinds of SQL statements with write forwarding:

• Data manipulation language (DML) statements, such as INSERT, DELETE, and UPDATE. There are some
restrictions on the properties of these statements that you can use with write forwarding, as described
following.

• SELECT ... LOCK IN SHARE MODE and SELECT FOR UPDATE statements.
• PREPARE and EXECUTE statements.

The following restrictions apply to the SQL statements you use with write forwarding. In some
cases, you can use the statements on secondary clusters with write forwarding enabled at the
cluster level. This approach works if write forwarding isn't turned on within the session by the
aurora_replica_read_consistency configuration parameter. Trying to use a statement when it's
not allowed because of write forwarding causes an error message with the following format.

ERROR 1235 (42000): This version of MySQL doesn't yet support 'operation with write
 forwarding'.

Data definition language (DDL)

Connect to the primary cluster to run DDL statements.
Updating a permanent table using data from a temporary table

You can use temporary tables on secondary clusters with write forwarding enabled. However, you
can't use a DML statement to modify a permanent table if the statement refers to a temporary
table. For example, you can't use an INSERT ... SELECT statement that takes the data from a
temporary table. The temporary table exists on the secondary cluster and isn't available when the
statement runs on the primary cluster.

XA transactions

You can't use the following statements on a secondary cluster when write forwarding is turned
on within the session. You can use these statements on secondary clusters that don't have write
forwarding enabled, or within sessions where the aurora_replica_read_consistency setting

258

Amazon Aurora User Guide for Aurora
Using write forwarding in an Aurora global database

is empty. Before turning on write forwarding within a session, check if your code uses these
statements.

XA {START|BEGIN} xid [JOIN|RESUME]
XA END xid [SUSPEND [FOR MIGRATE]]
XA PREPARE xid
XA COMMIT xid [ONE PHASE]
XA ROLLBACK xid
XA RECOVER [CONVERT XID]

LOAD statements for permanent tables

You can't use the following statements on a secondary cluster with write forwarding enabled.

LOAD DATA INFILE 'data.txt' INTO TABLE t1;
 LOAD XML LOCAL INFILE 'test.xml' INTO TABLE t1;

You can load data into a temporary table on a secondary cluster. However, make sure that you run
any LOAD statements that refer to permanent tables only on the primary cluster.

Plugin statements

You can't use the following statements on a secondary cluster with write forwarding enabled.

INSTALL PLUGIN example SONAME 'ha_example.so';
UNINSTALL PLUGIN example;

SAVEPOINT statements

You can't use the following statements on a secondary cluster when write forwarding is turned
on within the session. You can use these statements on secondary clusters that don't have write
forwarding enabled, or within sessions where the aurora_replica_read_consistency setting is
blank. Check if your code uses these statements before turning on write forwarding within a session.

SAVEPOINT t1_save;
ROLLBACK TO SAVEPOINT t1_save;
RELEASE SAVEPOINT t1_save;

Isolation and consistency for write forwarding
In sessions that use write forwarding, you can only use the REPEATABLE READ isolation level. Although
you can also use the READ COMMITTED isolation level with read-only clusters in secondary AWS Regions,
that isolation level doesn't work with write forwarding. For information about the REPEATABLE READ
and READ COMMITTED isolation levels, see Aurora MySQL isolation levels (p. 1091).

You can control the degree of read consistency on a secondary cluster. The read consistency level
determines how much waiting the secondary cluster does before each read operation to ensure that
some or all changes are replicated from the primary cluster. You can adjust the read consistency level to
ensure that all forwarded write operations from your session are visible in the secondary cluster before
any subsequent queries. You can also use this setting to ensure that queries on the secondary cluster
always see the most current updates from the primary cluster. This is so even for those submitted by
other sessions or other clusters. To specify this type of behavior for your application, you choose a value
for the session-level parameter aurora_replica_read_consistency.

Important
Always set the aurora_replica_read_consistency parameter for any session for which
you want to forward writes. If you don't, Aurora doesn't enable write forwarding for that
session. This parameter has an empty value by default, so choose a specific value when you use

259

Amazon Aurora User Guide for Aurora
Using write forwarding in an Aurora global database

this parameter. The aurora_replica_read_consistency parameter has an effect only on
secondary clusters that have write forwarding enabled.

For the aurora_replica_read_consistency parameter, you can specify the values EVENTUAL,
SESSION, and GLOBAL.

As you increase the consistency level, your application spends more time waiting for changes to be
propagated between AWS Regions. You can choose the balance between fast response time and ensuring
that changes made in other locations are fully available before your queries run.

With the read consistency set to EVENTUAL, queries in a secondary AWS Region that uses write
forwarding might see data that is slightly stale due to replication lag. Results of write operations in the
same session aren't visible until the write operation is performed on the primary Region and replicated
to the current Region. The query doesn't wait for the updated results to be available. Thus, it might
retrieve the older data or the updated data, depending on the timing of the statements and the amount
of replication lag.

With the read consistency set to SESSION, all queries in a secondary AWS Region that uses write
forwarding see the results of all changes made in that session. The changes are visible regardless
of whether the transaction is committed. If necessary, the query waits for the results of forwarded
write operations to be replicated to the current Region. It doesn't wait for updated results from write
operations performed in other Regions or in other sessions within the current Region.

With the read consistency set to GLOBAL, a session in a secondary AWS Region sees changes made by
that session. It also sees all committed changes from both the primary AWS Region and other secondary
AWS Regions. Each query might wait for a period that varies depending on the amount of session lag.
The query proceeds when the secondary cluster is up-to-date with all committed data from the primary
cluster, as of the time that the query began.

For more information about all the parameters involved with write forwarding, see Configuration
parameters for write forwarding (p. 262).

Examples of using write forwarding

In the following example, the primary cluster is in the US East (N. Virginia) Region. The secondary cluster
is in the US East (Ohio) Region. The example shows the effects of running INSERT statements followed
by SELECT statements. Depending on the value of the aurora_replica_read_consistency setting,
the results might differ depending on the timing of the statements. To achieve higher consistency, you
might wait briefly before issuing the SELECT statement. Or Aurora can automatically wait until the
results finish replicating before proceeding with SELECT.

In this example, there is a read consistency setting of eventual. Running an INSERT statement
immediately followed by a SELECT statement still returns the value of COUNT(*). This value reflects the
number of rows before the new row is inserted. Running the SELECT again a short time later does return
the updated row count. The SELECT statements don't do any waiting.

mysql> set aurora_replica_read_consistency = 'eventual';
mysql> select count(*) from t1;
+----------+
| count(*) |
+----------+
| 5 |
+----------+
1 row in set (0.00 sec)
mysql> insert into t1 values (6); select count(*) from t1;
+----------+
| count(*) |
+----------+
| 5 |
+----------+
1 row in set (0.00 sec)

260

Amazon Aurora User Guide for Aurora
Using write forwarding in an Aurora global database

mysql> select count(*) from t1;
+----------+
| count(*) |
+----------+
| 6 |
+----------+
1 row in set (0.00 sec)

With a read consistency setting of session, a SELECT statement immediately after an INSERT does
wait until the changes from the INSERT statement are visible. Subsequent SELECT statements don't do
any waiting.

mysql> set aurora_replica_read_consistency = 'session';
mysql> select count(*) from t1;
+----------+
| count(*) |
+----------+
| 6 |
+----------+
1 row in set (0.01 sec)
mysql> insert into t1 values (6); select count(*) from t1; select count(*) from t1;
Query OK, 1 row affected (0.08 sec)
+----------+
| count(*) |
+----------+
| 7 |
+----------+
1 row in set (0.37 sec)
+----------+
| count(*) |
+----------+
| 7 |
+----------+
1 row in set (0.00 sec)

With the read consistency setting still set to session, introducing a brief wait after performing an
INSERT statement makes the updated row count available by the time the next SELECT statement runs.

mysql> insert into t1 values (6); select sleep(2); select count(*) from t1;
Query OK, 1 row affected (0.07 sec)
+----------+
| sleep(2) |
+----------+
| 0 |
+----------+
1 row in set (2.01 sec)
+----------+
| count(*) |
+----------+
| 8 |
+----------+
1 row in set (0.00 sec)

With a read consistency setting of global, each SELECT statement waits to ensure that all data changes
as of the start time of the statement are visible before performing the query. The amount of waiting for
each SELECT statement varies, depending on the amount of replication lag between the primary and
secondary clusters.

mysql> set aurora_replica_read_consistency = 'global';
mysql> select count(*) from t1;
+----------+
| count(*) |

261

Amazon Aurora User Guide for Aurora
Using write forwarding in an Aurora global database

+----------+
| 8 |
+----------+
1 row in set (0.75 sec)
mysql> select count(*) from t1;
+----------+
| count(*) |
+----------+
| 8 |
+----------+
1 row in set (0.37 sec)
mysql> select count(*) from t1;
+----------+
| count(*) |
+----------+
| 8 |
+----------+
1 row in set (0.66 sec)

Running multipart statements with write forwarding
A DML statement might consist of multiple parts, such as a INSERT ... SELECT statement or a
DELETE ... WHERE statement. In this case, the entire statement is forwarded to the primary cluster
and run there.

Transactions with write forwarding
Whether the transaction is forwarded to the primary cluster depends on the access mode of the
transaction. You can specify the access mode for the transaction by using the SET TRANSACTION
statement or the START TRANSACTION statement. You can also specify the transaction access mode
by changing the value of the Aurora MySQL session variable tx_read_only. You can only change this
session value while you're connected to a secondary cluster that has write forwarding enabled.

If a long-running transaction doesn't issue any statement for a substantial period of time, it might
exceed the idle timeout period. This period has a default of one minute. You can increase it up to one
day. A transaction that exceeds the idle timeout is canceled by the primary cluster. The next subsequent
statement you submit receives a timeout error. Then Aurora rolls back the transaction.

This type of error can occur in other cases when write forwarding becomes unavailable. For example,
Aurora cancels any transactions that use write forwarding if you restart the primary cluster or if you turn
off the write forwarding configuration setting.

Configuration parameters for write forwarding
The Aurora cluster parameter groups include settings for the write forwarding feature. Because these
are cluster parameters, all DB instances in each cluster have the same values for these variables. Details
about these parameters are summarized in the following table, with usage notes after the table.

Name Scope Type Default
value

Valid values

aurora_fwd_master_idle_timeout
(Aurora MySQL version 2)

Global unsigned
integer

60 1–86,400

aurora_fwd_master_max_connections_pct
(Aurora MySQL version 2)

Global unsigned
long integer

10 0–90

aurora_fwd_writer_idle_timeout
(Aurora MySQL version 3)

Global unsigned
integer

60 1–86,400

262

Amazon Aurora User Guide for Aurora
Using write forwarding in an Aurora global database

Name Scope Type Default
value

Valid values

aurora_fwd_writer_max_connections_pct
(Aurora MySQL version 3)

Global unsigned
long integer

10 0–90

aurora_replica_read_consistency Session Enum '' EVENTUAL,
SESSION,
GLOBAL

To control incoming write requests from secondary clusters, use these settings on the primary cluster:

• aurora_fwd_master_idle_timeout, aurora_fwd_writer_idle_timeout: The number of
seconds the primary cluster waits for activity on a connection that's forwarded from a secondary
cluster before closing it. If the session remains idle beyond this period, Aurora cancels the session.

• aurora_fwd_master_max_connections_pct, aurora_fwd_writer_max_connections_pct:
The upper limit on database connections that can be used on a writer DB instance to handle
queries forwarded from readers. It's expressed as a percentage of the max_connections setting
for the writer DB instance in the primary cluster. For example, if max_connections is 800 and
aurora_fwd_master_max_connections_pct or aurora_fwd_writer_max_connections_pct
is 10, then the writer allows a maximum of 80 simultaneous forwarded sessions. These connections
come from the same connection pool managed by the max_connections setting.

This setting applies only on the primary cluster, when one or more secondary clusters have write
forwarding enabled. If you decrease the value, existing connections aren't affected. Aurora takes the
new value of the setting into account when attempting to create a new connection from a secondary
cluster. The default value is 10, representing 10% of the max_connections value. If you enable
query forwarding on any of the secondary clusters, this setting must have a nonzero value for write
operations from secondary clusters to succeed. If the value is zero, the write operations receive the
error code ER_CON_COUNT_ERROR with the message Not enough connections on writer to
handle your request.

The aurora_replica_read_consistency parameter is a session-level parameter that enables
write forwarding. You use it in each session. You can specify EVENTUAL, SESSION, or GLOBAL for
read consistency level. To learn more about consistency levels, see Isolation and consistency for write
forwarding (p. 259). The following rules apply to this parameter:

• This is a session-level parameter. The default value is '' (empty).

• Write forwarding is available in a session only if aurora_replica_read_consistency is set to
EVENTUAL or SESSION or GLOBAL. This parameter is relevant only in reader instances of secondary
clusters that have write forwarding enabled and that are in an Aurora global database.

• You can't set this variable (when empty) or unset (when already set) inside a multistatement
transaction. However, you can change it from one valid value (EVENTUAL, SESSION, or GLOBAL) to
another valid value (EVENTUAL, SESSION, or GLOBAL) during such a transaction.

• The variable can't be SET when write forwarding isn't enabled on the secondary cluster.

• Setting the session variable on a primary cluster doesn't have any effect. If you try to modify this
variable on a primary cluster, you receive an error.

Amazon CloudWatch metrics for write forwarding

The following Amazon CloudWatch metrics apply to the primary cluster when you use write forwarding
on one or more secondary clusters. These metrics are all measured on the writer DB instance in the
primary cluster.

263

Amazon Aurora User Guide for Aurora
Using write forwarding in an Aurora global database

CloudWatch Metric

(Aurora MySQL status variable)

Units and description

ForwardingMasterDMLLatency

(–)

Milliseconds. Average time to process each forwarded
DML statement on the writer DB instance. It doesn't
include the time for the secondary cluster to forward
the write request. It also doesn't include the time to
replicate changes back to the secondary cluster. For
Aurora MySQL version 2.

ForwardingMasterOpenSessions

(Aurora_fwd_master_open_sessions)

Count. Number of forwarded sessions on the writer DB
instance. For Aurora MySQL version 2.

ForwardingMasterDMLThroughput

(–)

Count, per second. Number of forwarded DML
statements processed each second by this writer DB
instance. For Aurora MySQL version 2.

–

(Aurora_fwd_master_dml_stmt_duration)

Microseconds. Total duration of DML statements
forwarded to this writer DB instance. For Aurora MySQL
version 2.

–

(Aurora_fwd_master_dml_stmt_count)

Count. Total number of DML statements forwarded to
this writer DB instance. For Aurora MySQL version 2.

–

(Aurora_fwd_master_select_stmt_duration)

Microseconds. Total duration of SELECT statements
forwarded to this writer DB instance. For Aurora MySQL
version 2.

–

(Aurora_fwd_master_select_stmt_count)

Count. Total number of SELECT statements forwarded
to this writer DB instance. For Aurora MySQL version 2.

ForwardingWriterDMLLatency

(–)

Milliseconds. Average time to process each forwarded
DML statement on the writer DB instance. It doesn't
include the time for the secondary cluster to forward
the write request. It also doesn't include the time to
replicate changes back to the secondary cluster. For
Aurora MySQL version 3 and higher.

ForwardingWriterOpenSessions

(Aurora_fwd_writer_open_sessions)

Count. Number of forwarded sessions on the writer DB
instance. For Aurora MySQL version 3 and higher.

ForwardingWriterDMLThroughput

(–)

Count, per second. Number of forwarded DML
statements processed each second by this writer DB
instance. For Aurora MySQL version 3 and higher.

–

(Aurora_fwd_writer_dml_stmt_duration)

Microseconds. Total duration of DML statements
forwarded to this writer DB instance.

–

(Aurora_fwd_writer_dml_stmt_count)

Count. Total number of DML statements forwarded to
this writer DB instance. For Aurora MySQL version 3 and
higher.

264

Amazon Aurora User Guide for Aurora
Using write forwarding in an Aurora global database

CloudWatch Metric

(Aurora MySQL status variable)

Units and description

–

(Aurora_fwd_writer_select_stmt_duration)

Microseconds. Total duration of SELECT statements
forwarded to this writer DB instance. For Aurora MySQL
version 3 and higher.

–

(Aurora_fwd_writer_select_stmt_count)

Count. Total number of SELECT statements forwarded
to this writer DB instance. For Aurora MySQL version 3
and higher.

The following CloudWatch metrics apply to each secondary cluster. These metrics are measured on each
reader DB instance in a secondary cluster with write forwarding enabled.

CloudWatch Metric

(Aurora MySQL status variable)

Unit and description

ForwardingReplicaDMLLatency

(–)

Milliseconds. Average response time in milliseconds of
forwarded DMLs on replica.

ForwardingReplicaReadWaitLatency

(–)

Milliseconds. Average wait time in milliseconds
that a SELECT statement on a reader DB instance
waits to catch up to the primary cluster. The
degree to which the reader DB instance waits
before processing a query depends on the
aurora_replica_read_consistency setting.

ForwardingReplicaDMLThroughput

(–)

Count (per second). Number of forwarded DML
statements processed each second.

ForwardingReplicaReadWaitThroughput

(–)

Count (SELECT statements per second). Total number
of SELECT statements processed each second in all
sessions that are forwarding writes.

ForwardingReplicaOpenSessions

(Aurora_fwd_replica_open_sessions

Count. The number of sessions that are using write
forwarding on a reader DB instance.

ForwardingReplicaSelectLatency

(–)

Milliseconds. Forwarded SELECT latency, average over
all forwarded SELECT statements within the monitoring
period.

ForwardingReplicaSelectThroughput

(–)

Count per second. Forwarded SELECT throughput, per
second average within the monitoring period.

–

(Aurora_fwd_replica_dml_stmt_count)

Count. Total number of DML statements forwarded
from this reader DB instance.

–

(Aurora_fwd_replica_dml_stmt_duration)

Microseconds. Total duration of all DML statements
forwarded from this reader DB instance.

265

Amazon Aurora User Guide for Aurora
Using failover in an Aurora global database

CloudWatch Metric

(Aurora MySQL status variable)

Unit and description

–

(Aurora_fwd_replica_select_stmt_duration)

Microseconds. Total duration of SELECT statements
forwarded from this reader DB instance.

–

(Aurora_fwd_replica_select_stmt_count

Count. Total number of SELECT statements forwarded
from this reader DB instance.

–

(Aurora_fwd_replica_read_wait_duration

Microseconds. Total duration of waits due to the read
consistency setting on this reader DB instance.

–

(Aurora_fwd_replica_read_wait_count)

Count. Total number of read-after-write waits on this
reader DB instance.

–

(Aurora_fwd_replica_errors_session_limit)

Count. Number of sessions rejected by the primary
cluster due to the error conditions writer full or
Too many forwarded statements in progress.

Using failover in an Amazon Aurora global database
An Aurora global database provides more comprehensive failover capabilities than the failover provided
by a default Aurora DB cluster (p. 68). By using an Aurora global database, you can plan for and recover
from disaster fairly quickly. Recovery from disaster is typically measured using values for RTO and RPO.

• Recovery time objective (RTO) – The time it takes a system to return to a working state after a
disaster. In other words, RTO measures downtime. For an Aurora global database, RTO can be in the
order of minutes.

• Recovery point objective (RPO) – The amount of data that can be lost (measured in time). For an
Aurora global database, RPO is typically measured in seconds. With an Aurora PostgreSQL–based
global database, you can use the rds.global_db_rpo parameter to set and track the upper bound
on RPO, but doing so might affect transaction processing on the primary cluster's writer node. For
more information, see Managing RPOs for Aurora PostgreSQL–based global databases (p. 272).

With an Aurora global database, there are two different approaches to failover depending on the
scenario.

• Manual unplanned failover ("detach and promote") – To recover from an unplanned outage or to do
disaster recovery (DR) testing, perform a cross-Region failover to one of the secondaries in your Aurora
global database. The RTO for this manual process depends on how quickly you can perform the tasks
listed in Recovering an Amazon Aurora global database from an unplanned outage (p. 267). The RPO
is typically measured in seconds, but this depends on the Aurora storage replication lag across the
network at the time of the failure.

• Managed planned failover – This feature is intended for controlled environments, such as operational
maintenance and other planned operational procedures. By using managed planned failover, you
can relocate the primary DB cluster of your Aurora global database to one of the secondary Regions.
Because this feature synchronizes secondary DB clusters with the primary before making any other
changes, RPO is 0 (no data loss). To learn more, see Performing managed planned failovers for
Amazon Aurora global databases (p. 268).

266

Amazon Aurora User Guide for Aurora
Using failover in an Aurora global database

Topics
• Recovering an Amazon Aurora global database from an unplanned outage (p. 267)
• Performing managed planned failovers for Amazon Aurora global databases (p. 268)
• Managing RPOs for Aurora PostgreSQL–based global databases (p. 272)

Recovering an Amazon Aurora global database from an
unplanned outage
On very rare occasions, your Aurora global database might experience an unexpected outage in its
primary AWS Region. If this happens, your primary Aurora DB cluster and its writer node aren't available,
and the replication between the primary cluster and the secondaries ceases. To minimize both downtime
(RTO) and data loss (RPO), you can work quickly to perform a cross-Region failover and reconstruct your
Aurora global database.

Tip
We recommend that you understand this process before using it. Have a plan ready to quickly
proceed at the first sign of a Region-wide issue. Be ready to identify the secondary Region
with the least lag time. Use Amazon CloudWatch regularly to track lag times for the secondary
clusters. Make sure to test your plan to check that your procedures are complete and accurate,
and that staff are trained to perform a DR failover before it really happens.

To fail over to a secondary cluster after an unplanned outage in the primary Region

1. Stop issuing DML statements and other write operations to the primary Aurora DB cluster in the
AWS Region with the outage.

2. Identify an Aurora DB cluster from a secondary AWS Region to use as a new primary DB cluster. If
you have two or more secondary AWS Regions in your Aurora global database, choose the secondary
cluster that has the least lag time.

3. Detach your chosen secondary DB cluster from the Aurora global database.

Removing a secondary DB cluster from an Aurora global database immediately stops the replication
from the primary to this secondary and promotes it to a standalone provisioned Aurora DB cluster
with full read/write capabilities. Any other secondary Aurora DB clusters associated with the primary
cluster in the Region with the outage are still available and can accept calls from your application.
They also consume resources. Because you're recreating the Aurora global database, remove the
other secondary DB clusters before creating the new Aurora global database in the following steps.
Doing this avoids data inconsistencies among the DB clusters in the Aurora global database (split-
brain issues).

For detailed steps for detaching, see Removing a cluster from an Amazon Aurora global
database (p. 251).

4. Reconfigure your application to send all write operations to this now standalone Aurora DB cluster
using its new endpoint. If you accepted the provided names when you created the Aurora global
database, you can change the endpoint by removing the -ro from the cluster's endpoint string in
your application.

For example, the secondary cluster's endpoint my-global.cluster-ro-aaaaaabbbbbb.us-
west-1.rds.amazonaws.com becomes my-global.cluster-aaaaaabbbbbb.us-
west-1.rds.amazonaws.com when that cluster is detached from the Aurora global database.

This Aurora DB cluster becomes the primary cluster of a new Aurora global database when you start
adding Regions to it in the next step.

5. Add an AWS Region to the DB cluster. When you do this, the replication process from primary to
secondary begins. For detailed steps to add a Region, see Adding an AWS Region to an Amazon
Aurora global database (p. 242).

267

Amazon Aurora User Guide for Aurora
Using failover in an Aurora global database

6. Add more AWS Regions as needed to recreate the topology needed to support your application.

Make sure that application writes are sent to the correct Aurora DB cluster before, during, and after
making these changes. Doing this avoids data inconsistencies among the DB clusters in the Aurora global
database (split-brain issues).

If you reconfigured in response to an outage in an AWS Region, you might be able to return your Aurora
global database to its original primary AWS Region after the outage is resolved. In this case, you use
the managed planned failover process. Your Aurora global database must use a version of Aurora
PostgreSQL or Aurora MySQL that supports managed planned failovers. For more information, see
Performing managed planned failovers for Amazon Aurora global databases (p. 268).

Performing managed planned failovers for Amazon Aurora
global databases

By using managed planned failovers, you can relocate the primary cluster of your Aurora global database
to a different AWS Region on a routine basis. This approach is intended for controlled environments, such
as operational maintenance and other planned operational procedures.

As an example, say a financial institution headquartered in New York has branch offices located in
San Francisco, the UK, and Europe. The organization's core business applications use an Aurora global
database. Its primary cluster runs in the US East (Ohio) Region. It has secondary clusters running in
the US West (N. California) Region, Europe (London) Region, and the Europe (Frankfurt) Region. Every
quarter, it relocates the primary cluster from the (current) primary AWS Region to the secondary Region
designated for that rotation.

Note
Managed planned failover is designed to be used on a healthy Aurora global database. To
recover from an unplanned outage or to do disaster recovery (DR) testing, follow the "detach
and promote" process detailed in Recovering an Amazon Aurora global database from an
unplanned outage (p. 267).

During a managed planned failover, your primary cluster is failed over to your choice of secondary
Region while your Aurora global database's existing replication topology is maintained. Before the
managed planned failover process begins, Aurora global database synchronizes all secondary clusters
with its primary cluster. After ensuring that all clusters are synchronized, the managed planned failover
begins. The DB cluster in the primary Region becomes read-only. The chosen secondary cluster promotes
one of its read-only nodes to full writer status, thus allowing the cluster to assume the role of primary
cluster. Because all secondary clusters were synchronized with the primary at the beginning of the
process, the new primary continues operations for the Aurora global database without losing any data.
Your database is unavailable for a short time while the primary and selected secondary clusters are
assuming their new roles.

To optimize application availability, we recommend that you do the following before using this feature:

• Perform this operation during nonpeak hours or at another time when writes to the primary DB cluster
are minimal.

• Take applications offline to prevent writes from being sent to the primary cluster of Aurora global
database.

• Check lag times for all secondary Aurora DB clusters in the Aurora global database. Choose the
secondary with the least overall lag time for the managed planned failover. Use Amazon CloudWatch
to view the AuroraGlobalDBReplicationLag metric for all secondaries. This metric tells you how
far behind (in milliseconds) a secondary is to the primary DB cluster. Its value is directly proportional
to the time it'll take for Aurora to complete failover. In other words, the larger the lag value, the longer
the outage, so choose the Region with the least lag.

268

Amazon Aurora User Guide for Aurora
Using failover in an Aurora global database

For more information about CloudWatch metrics for Aurora, see Cluster-level metrics for Amazon
Aurora (p. 654).

During a managed planned failover, the chosen secondary DB cluster is promoted to its new role
as primary. However, it doesn't inherit the various configuration options of the primary DB cluster.
A mismatch in configuration can lead to performance issues, workload incompatibilities, and other
anomalous behavior. To avoid such issues, we recommend that you resolve differences between your
Aurora global database clusters for the following:

• Configure Aurora DB cluster parameter group for the new primary, if necessary – You can configure
your Aurora DB cluster parameter groups independently for each Aurora cluster in your Aurora global
database. That means that when you promote a secondary DB cluster to take over the primary role,
the parameter group from the secondary might be configured differently than for the primary. If so,
modify the promoted secondary DB cluster's parameter group to conform to your primary cluster's
settings. To learn how, see Modifying parameters for an Aurora global database (p. 250).

• Configure monitoring tools and options, such as Amazon CloudWatch Events and alarms –
Configure the promoted DB cluster with the same logging ability, alarms, and so on as needed for the
global database. As with parameter groups, configuration for these features isn't inherited from the
primary during the failover process. For more information about Aurora DB clusters and monitoring,
see Overview of monitoring Amazon Aurora.

• Configure integrations with other AWS services – If your Aurora global database integrates with
AWS services, such as AWS Secrets Manager, AWS Identity and Access Management, Amazon S3, and
AWS Lambda, you need to make sure these are configured as needed. For more information about
integrating Aurora global databases with IAM, Amazon S3 and Lambda, see Using Amazon Aurora
global databases with other AWS services (p. 279). To learn more about Secrets Manager, see How to
automate replication of secrets in AWS Secrets Manager across AWS Regions.

When the failover process completes, the promoted Aurora DB cluster can handle write operations
for the Aurora global database. Make sure to change the endpoint for your application to use the
new endpoint. If you accepted the provided names when you created the Aurora global database, you
can change the endpoint by removing the -ro from the promoted cluster's endpoint string in your
application.

For example, the secondary cluster's endpoint my-global.cluster-ro-aaaaaabbbbbb.us-
west-1.rds.amazonaws.com becomes my-global.cluster-aaaaaabbbbbb.us-
west-1.rds.amazonaws.com when that cluster is promoted to primary.

You can fail over your Aurora global database using the AWS Management Console, the AWS CLI, or the
RDS API.

Console

To start the failover process on your Aurora global database

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases and find the Aurora global database you want to fail over.

3. Choose Fail over global database from Actions menu. The failover process doesn't begin until after
you choose the failover target in the next step. At this point, the failover is pending.

269

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/MonitoringOverview.html#monitoring-cloudwatch
http://aws.amazon.com/blogs/security/how-to-automate-replication-of-secrets-in-aws-secrets-manager-across-aws-regions/
http://aws.amazon.com/blogs/security/how-to-automate-replication-of-secrets-in-aws-secrets-manager-across-aws-regions/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Using failover in an Aurora global database

a. Choose the secondary Aurora DB cluster that you want to promote to primary. The secondary
DB cluster must be available. If you have more than one secondary DB cluster, you can compare
the lag amount for all secondaries and choose the one with the smallest amount of lag.

b. Choose Fail over global database to confirm your choice of secondary DB cluster and begin the
failover process.

Tip
The failover process can take some time to complete. You can cancel once the process
is underway, but it can take some time to return your Aurora global database to its
original configuration.

270

Amazon Aurora User Guide for Aurora
Using failover in an Aurora global database

The Status column of the Databases list shows the state of each Aurora DB instance and Aurora
DB cluster during the failover process.

The status bar at the top of the Console displays progress and provides a Cancel failover option.
If you choose Cancel failover, you're given the option to proceed with the failover or to cancel
the failover process.

Choose Cancel failover if you want to cancel the failover.

c. Choose Close to continue failing over and dismiss the prompt.

When the failover completes, you can see the Aurora DB clusters and their current state in the Databases
list, as shown following.

271

Amazon Aurora User Guide for Aurora
Using failover in an Aurora global database

AWS CLI

To fail over an Aurora global database

Use the failover-global-cluster CLI command to fail over your Aurora global database. With the
command, pass values for the following parameters.

• --region – Specify the AWS Region where the primary DB cluster of the Aurora global database is
running.

• --global-cluster-identifier – Specify the name of your Aurora global database.
• --target-db-cluster-identifier – Specify the Amazon Resource Name (ARN) of the Aurora DB

cluster that you want to promote to be the primary for the Aurora global database.

For Linux, macOS, or Unix:

aws rds --region aws-Region \
 failover-global-cluster --global-cluster-identifier global_database_id \
 --target-db-cluster-identifier ARN-of-secondary-to-promote

For Windows:

aws rds --region aws-Region ^
 failover-global-cluster --global-cluster-identifier global_database_id ^
 --target-db-cluster-identifier ARN-of-secondary-to-promote

RDS API

To fail over an Aurora global database, run the FailoverGlobalCluster API operation.

Managing RPOs for Aurora PostgreSQL–based global databases
With an Aurora PostgreSQL–based global database, you can manage the recovery point objective (RPO)
for your Aurora global database by using PostgreSQL's rds.global_db_rpo parameter. RPO represents
maximum amount of data that can be lost in the event of an outage.

When you set an RPO for your Aurora PostgreSQL–based global database, Aurora monitors the RPO lag
time of all secondary clusters to make sure that at least one secondary cluster stays within the target
RPO window. RPO lag time is another time-based metric.

The RPO is used when your database resumes operations in a new AWS Region after a failover. Aurora
evaluates RPO and RPO lag times to commit (or block) transactions on the primary as follows:

• Commits the transaction if at least one secondary DB cluster has an RPO lag time less than the RPO.

272

https://docs.aws.amazon.com/cli/latest/reference/rds/failover-global-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_FailoverGlobalCluster.html

Amazon Aurora User Guide for Aurora
Using failover in an Aurora global database

• Blocks the transaction if all secondary DB clusters have RPO lag times that are larger than the RPO. It
also logs the event to the PostgreSQL log file and emits "wait" events that show the blocked sessions.

In other words, if all secondary clusters are behind the target RPO, Aurora pauses transactions on the
primary cluster until at least one of the secondary clusters catches up. Paused transactions are resumed
and committed as soon as the lag time of at least one secondary DB cluster becomes less than the RPO.
The result is that no transactions can commit until the RPO is met.

If you set this parameter as outlined in the following, you can then also monitor the metrics that it
generates. You can do so by using psql or another tool to query the Aurora global database's primary
DB cluster and obtain detailed information about your Aurora PostgreSQL–based global database's
operations. To learn how, see Monitoring Aurora PostgreSQL-based Aurora global databases (p. 277).

Topics
• Setting the recovery point objective (p. 273)
• Viewing the recovery point objective (p. 274)
• Disabling the recovery point objective (p. 275)

Setting the recovery point objective

The rds.global_db_rpo parameter controls the RPO setting for a PostgreSQL database. This
parameter is supported by Aurora PostgreSQL. Valid values for rds.global_db_rpo range from 20
seconds to 2,147,483,647 seconds (68 years). Choose a realistic value to meet your business need and
use case. For example, you might want to allow up to 10 minutes for your RPO, in which case you set the
value to 600.

You can set this value for your Aurora PostgreSQL–based global database by using the AWS Management
Console, the AWS CLI, or the RDS API.

Console

To set the RPO

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose the primary cluster of your Aurora global database and open the Configuration tab to find
its DB cluster parameter group. For example, the default parameter group for a primary DB cluster
running Aurora PostgreSQL 11.7 is default.aurora-postgresql11.

Parameter groups can't be edited directly. Instead, you do the following:

• Create a custom DB cluster parameter group using the appropriate default parameter group
as the starting point. For example, create a custom DB cluster parameter group based on the
default.aurora-postgresql11.

• On your custom DB parameter group, set the value of the rds.global_db_rpo parameter to
meet your use case. Valid values range from 20 seconds up to the maximum integer value of
2,147,483,647 (68 years).

• Apply the modified DB cluster parameter group to your Aurora DB cluster.

For more information, see Modifying parameters in a DB cluster parameter group (p. 349).

AWS CLI

To set the rds.global_db_rpo parameter, use the modify-db-cluster-parameter-group CLI command.
In the command, specify the name of your primary cluster's parameter group and values for RPO
parameter.

273

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html

Amazon Aurora User Guide for Aurora
Using failover in an Aurora global database

The following example sets the RPO to 600 seconds (10 minutes) for the primary DB cluster's parameter
group named my_custom_global_parameter_group.

For Linux, macOS, or Unix:

aws rds modify-db-cluster-parameter-group \
 --db-cluster-parameter-group-name my_custom_global_parameter_group \
 --parameters "ParameterName=rds.global_db_rpo,ParameterValue=600,ApplyMethod=immediate"

For Windows:

aws rds modify-db-cluster-parameter-group ^
 --db-cluster-parameter-group-name my_custom_global_parameter_group ^
 --parameters "ParameterName=rds.global_db_rpo,ParameterValue=600,ApplyMethod=immediate"

RDS API

To modify the rds.global_db_rpo parameter, use the Amazon RDS ModifyDBClusterParameterGroup
API operation.

Viewing the recovery point objective

The recovery point objective (RPO) of a global database is stored in the rds.global_db_rpo parameter
for each DB cluster. You can connect to the endpoint for the secondary cluster you want to view and use
psql to query the instance for this value.

db-name=>show rds.global_db_rpo;

If this parameter isn't set, the query returns the following:

rds.global_db_rpo

 -1
(1 row)

This next response is from a secondary DB cluster that has 1 minute RPO setting.

rds.global_db_rpo

 60
(1 row)

You can also use the CLI to get values for find out if rds.global_db_rpo is active on any of the Aurora
DB clusters by using the CLI to get values of all user parameters for the cluster.

For Linux, macOS, or Unix:

aws rds describe-db-cluster-parameters \
 --db-cluster-parameter-group-name lab-test-apg-global \
 --source user

For Windows:

aws rds describe-db-cluster-parameters ^
 --db-cluster-parameter-group-name lab-test-apg-global *

274

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBClusterParameterGroup.html

Amazon Aurora User Guide for Aurora
Using failover in an Aurora global database

 --source user

The command returns output similar to the following for all user parameters. that aren't default-
engine or system DB cluster parameters.

{
 "Parameters": [
 {
 "ParameterName": "rds.global_db_rpo",
 "ParameterValue": "60",
 "Description": "(s) Recovery point objective threshold, in seconds, that blocks
 user commits when it is violated.",
 "Source": "user",
 "ApplyType": "dynamic",
 "DataType": "integer",
 "AllowedValues": "20-2147483647",
 "IsModifiable": true,
 "ApplyMethod": "immediate",
 "SupportedEngineModes": [
 "provisioned"
]
 }
]
}

To learn more about viewing parameters of the cluster parameter group, see Viewing parameter values
for a DB cluster parameter group (p. 360).

Disabling the recovery point objective

To disable the RPO, reset the rds.global_db_rpo parameter. You can reset parameters using the AWS
Management Console, the AWS CLI, or the RDS API.

Console

To disable the RPO

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.
3. In the list, choose your primary DB cluster parameter group.
4. Choose Edit parameters.
5. Choose the box next to the rds.global_db_rpo parameter.
6. Choose Reset.
7. When the screen shows Reset parameters in DB parameter group, choose Reset parameters.

For more information on how to reset a parameter with the console, see Modifying parameters in a DB
cluster parameter group (p. 349).

AWS CLI

To reset the rds.global_db_rpo parameter, use the reset-db-cluster-parameter-group command.

For Linux, macOS, or Unix:

aws rds reset-db-cluster-parameter-group \
 --db-cluster-parameter-group-name global_db_cluster_parameter_group \

275

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/reset-db-cluster-parameter-group.html

Amazon Aurora User Guide for Aurora
Monitoring an Aurora global database

 --parameters "ParameterName=rds.global_db_rpo,ApplyMethod=immediate"

For Windows:

aws rds reset-db-cluster-parameter-group ^
 --db-cluster-parameter-group-name global_db_cluster_parameter_group ^
 --parameters "ParameterName=rds.global_db_rpo,ApplyMethod=immediate"

RDS API

To reset the rds.global_db_rpo parameter, use the Amazon RDS API ResetDBClusterParameterGroup
operation.

Monitoring an Amazon Aurora global database
When you create the Aurora DB clusters that make up your Aurora global database, you can choose many
options that let you monitor your DB cluster's performance. These options include the following:

• Amazon RDS Performance Insights – Enables performance schema in the underlying Aurora database
engine. To learn more about Performance Insights and Aurora global databases, see Monitoring an
Amazon Aurora global database with Amazon RDS Performance Insights (p. 277).

• Enhanced monitoring – Generates metrics for process or thread utilization on the CPU.
• Amazon CloudWatch Logs – Publishes specified log types to CloudWatch Logs. Error logs are published

by default, but you can choose other logs specific to your Aurora database engine.
• For Aurora MySQL–based Aurora DB clusters, you can export the audit log, general log, and slow

query log.
• For Aurora PostgreSQL–based Aurora DB clusters, you can export the Postgresql log.

• For Aurora PostgreSQL–based global databases, you can use certain functions to check status of your
Aurora global database and its instances. To learn how, see Monitoring Aurora PostgreSQL-based
Aurora global databases (p. 277).

The following screenshot shows some of the options available on the Monitoring tab of a primary Aurora
DB cluster in an Aurora global database.

276

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ResetDBClusterParameterGroup.html

Amazon Aurora User Guide for Aurora
Monitoring an Aurora global database

For more information, see Monitoring metrics in an Amazon Aurora cluster (p. 541).

Monitoring an Amazon Aurora global database with Amazon
RDS Performance Insights
You can use Amazon RDS Performance Insights for your Aurora global databases. You enable this feature
individually, for each Aurora DB cluster in your Aurora global database. To do so, you choose Enable
Performance Insights in the Additional configuration section of the Create database page. Or you can
modify your Aurora DB clusters to use this feature after they are up and running. You can enable or turn
off Performance Insights for each cluster that's part of your Aurora global database.

The reports created by Performance Insights apply to each cluster in the global database. When you add
a new secondary AWS Region to an Aurora global database that's already using Performance Insights, be
sure that you enable Performance Insights in the newly added cluster. It doesn't inherit the Performance
Insights setting from the existing global database.

You can switch AWS Regions while viewing the Performance Insights page for a DB instance that's
attached to a global database. However, you might not see performance information immediately after
switching AWS Regions. Although the DB instances might have identical names in each AWS Region, the
associated Performance Insights URL is different for each DB instance. After switching AWS Regions,
choose the name of the DB instance again in the Performance Insights navigation pane.

For DB instances associated with a global database, the factors affecting performance might be different
in each AWS Region. For example, the DB instances in each AWS Region might have different capacity.

To learn more about using Performance Insights, see Monitoring DB load with Performance Insights on
Amazon Aurora (p. 594).

Monitoring Aurora PostgreSQL-based Aurora global databases
To view the status of a global database, use the aurora_global_db_status and
aurora_global_db_instance_status functions.

Note
Only Aurora PostgreSQL supports the aurora_global_db_status and
aurora_global_db_instance_status functions.

To monitor an Aurora PostgreSQL-based global database

1. Connect to the global database primary cluster endpoint using a PostgreSQL utility such as
psql. For more information about how to connect, see Connecting to an Amazon Aurora global
database (p. 254).

2. Use the aurora_global_db_status function in a psql command to list the primary and
secondary volumes. This shows the lag times of the global database secondary DB clusters.

postgres=> select * from aurora_global_db_status();

aws_region | highest_lsn_written | durability_lag_in_msec | rpo_lag_in_msec |
 last_lag_calculation_time | feedback_epoch | feedback_xmin
------------+---------------------+------------------------+-----------------
+----------------------------+----------------+---------------
us-east-1 | 93763984222 | -1 | -1 |
 1970-01-01 00:00:00+00 | 0 | 0
us-west-2 | 93763984222 | 900 | 1090 |
 2020-05-12 22:49:14.328+00 | 2 | 3315479243
(2 rows)

277

Amazon Aurora User Guide for Aurora
Monitoring an Aurora global database

The output includes a row for each DB cluster of the global database containing the following
columns:

• aws_region – The AWS Region that this DB cluster is in. For tables listing AWS Regions by engine,
see Regions and Availability Zones.

• highest_lsn_written – The highest log sequence number (LSN) currently written on this DB
cluster.

A log sequence number (LSN) is a unique sequential number that identifies a record in the database
transaction log. LSNs are ordered such that a larger LSN represents a later transaction.

• durability_lag_in_msec – The timestamp difference between the highest log sequence number
written on a secondary DB cluster (highest_lsn_written) and the highest_lsn_written on
the primary DB cluster.

• rpo_lag_in_msec – The recovery point objective (RPO) lag. This lag is the time difference between
the most recent user transaction commit stored on a secondary DB cluster and the most recent
user transaction commit stored on the primary DB cluster.

• last_lag_calculation_time – The timestamp when values were last calculated for
durability_lag_in_msec and rpo_lag_in_msec.

• feedback_epoch – The epoch the secondary DB cluster uses when it generates hot standby
information.

Hot standby is when a DB cluster can connect and query while the server is in recovery or standby
mode. Hot standby feedback is information about the DB cluster when it's in hot standby. For
more information, see Hot standby in the PostgreSQL documentation.

• feedback_xmin – The minimum (oldest) active transaction ID used by the secondary DB cluster.

3. Use the aurora_global_db_instance_status function to list all secondary DB instances for
both the primary DB cluster and secondary DB clusters.

postgres=> select * from aurora_global_db_instance_status();

server_id | session_id
 | aws_region | durable_lsn | highest_lsn_rcvd | feedback_epoch | feedback_xmin |
 oldest_read_view_lsn | visibility_lag_in_msec
--+--------------------------------------
+------------+-------------+------------------+----------------+---------------
+----------------------+------------------------
apg-global-db-rpo-mammothrw-elephantro-1-n1 | MASTER_SESSION_ID |
 us-east-1 | 93763985102 | | | |
 |
apg-global-db-rpo-mammothrw-elephantro-1-n2 | f38430cf-6576-479a-b296-dc06b1b1964a |
 us-east-1 | 93763985099 | 93763985102 | 2 | 3315479243 |
 93763985095 | 10
apg-global-db-rpo-elephantro-mammothrw-n1 | 0d9f1d98-04ad-4aa4-8fdd-e08674cbbbfe |
 us-west-2 | 93763985095 | 93763985099 | 2 | 3315479243 |
 93763985089 | 1017
(3 rows)

The output includes a row for each DB instance of the global database containing the following
columns:

• server_id – The server identifier for the DB instance.

• session_id – A unique identifier for the current session.

• aws_region – The AWS Region that this DB instance is in. For tables listing AWS Regions by
engine, see Regions and Availability Zones.

• durable_lsn – The LSN made durable in storage.

278

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.Overview.Availability
https://www.postgresql.org/docs/current/hot-standby.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html#Aurora.Overview.Availability

Amazon Aurora User Guide for Aurora
Using Aurora global databases with other AWS services

• highest_lsn_rcvd – The highest LSN received by the DB Instance from the writer DB Instance.
• feedback_epoch – The epoch the DB instance uses when it generates hot standby information.

Hot standby is when a DB instance can connect and query while the server is in recovery or
standby mode. Hot standby feedback is information about the DB instance when it's in hot
standby. For more information, see the PostgreSQL documentation on Hot standby.

• feedback_xmin – The minimum (oldest) active transaction ID used by the DB instance.
• oldest_read_view_lsn – The oldest LSN used by the DB instance to read from storage.
• visibility_lag_in_msec – How far this DB instance is lagging behind the writer DB instance.

To see how these values change over time, consider the following transaction block where a table insert
takes an hour.

psql> BEGIN;
psql> INSERT INTO table1 SELECT Large_Data_That_Takes_1_Hr_To_Insert;
psql> COMMIT;

In some cases, there might be a network disconnect between the primary DB cluster and the secondary
DB cluster after the BEGIN statement. If so, the secondary DB cluster's replication_lag_in_msec
value starts increasing. At the end of the INSERT statement, the replication_lag_in_msec value
is 1 hour. However, the rpo_lag_in_msec value is 0 because all the user data committed between
the primary DB cluster and secondary DB cluster are still the same. As soon as the COMMIT statement
completes, the rpo_lag_in_msec value increases.

Using Amazon Aurora global databases with other
AWS services
You can use your Aurora global databases with other AWS services, such as Amazon S3 and AWS
Lambda. Doing so requires that all Aurora DB clusters in your global database have the same privileges,
external functions, and so on in the respective AWS Regions. Because a read-only Aurora secondary DB
cluster in an Aurora global database can be promoted to the role of primary, we recommend that you
set up write privileges ahead of time, on all Aurora DB clusters for any services you plan to use with your
Aurora global database.

The following procedures summarize the actions to take for each AWS service.

To invoke AWS Lambda functions from an Aurora global database

1. For all the Aurora clusters that make up the Aurora global database, perform the procedures in
Invoking a Lambda function from an Amazon Aurora MySQL DB cluster (p. 1031).

2. For each cluster in the Aurora global database, set the (ARN) of the new IAM (IAM) role.
3. To permit database users in an Aurora global database to invoke Lambda functions, associate

the role that you created in Creating an IAM role to allow Amazon Aurora to access AWS
services (p. 1012) with each cluster in the Aurora global database.

4. Configure each cluster in the Aurora global database to allow outbound connections to Lambda.
For instructions, see Enabling network communication from Amazon Aurora MySQL to other AWS
services (p. 1017).

To load data from Amazon S3

1. For all the Aurora clusters that make up the Aurora global database, perform the procedures
in Loading data into an Amazon Aurora MySQL DB cluster from text files in an Amazon S3
bucket (p. 1018).

279

https://www.postgresql.org/docs/current/hot-standby.html

Amazon Aurora User Guide for Aurora
Upgrading an Amazon Aurora global database

2. For each Aurora cluster in the global database, set either the aurora_load_from_s3_role or
aws_default_s3_role DB cluster parameter to the Amazon Resource Name (ARN) of the new
IAM role. If an IAM role isn't specified for aurora_load_from_s3_role, Aurora uses the IAM role
specified in aws_default_s3_role.

3. To permit database users in an Aurora global database to access S3, associate the role that you
created in Creating an IAM role to allow Amazon Aurora to access AWS services (p. 1012) with each
Aurora cluster in the global database.

4. Configure each Aurora cluster in the global database to allow outbound connections to S3. For
instructions, see Enabling network communication from Amazon Aurora MySQL to other AWS
services (p. 1017).

To save queried data to Amazon S3

1. For all the Aurora clusters that make up the Aurora global database, perform the procedures
in Saving data from an Amazon Aurora MySQL DB cluster into text files in an Amazon S3
bucket (p. 1025).

2. For each Aurora cluster in the global database, set either the aurora_select_into_s3_role or
aws_default_s3_role DB cluster parameter to the Amazon Resource Name (ARN) of the new IAM
role. If an IAM role isn't specified for aurora_select_into_s3_role, Aurora uses the IAM role
specified in aws_default_s3_role.

3. To permit database users in an Aurora global database to access S3, associate the role that you
created in Creating an IAM role to allow Amazon Aurora to access AWS services (p. 1012) with each
Aurora cluster in the global database.

4. Configure each Aurora cluster in the global database to allow outbound connections to S3. For
instructions, see Enabling network communication from Amazon Aurora MySQL to other AWS
services (p. 1017).

Upgrading an Amazon Aurora global database
Upgrading an Aurora global database follows the same procedures as upgrading Aurora DB clusters.
However, following are some important differences to take note of before you start the process.

Major version upgrades
When you perform a major version upgrade of an Amazon Aurora global database, you upgrade the
global database cluster instead the individual clusters that it contains.

To learn how to upgrade an Aurora PostgreSQL global database to a higher major version, see In-place
major upgrades for global databases (p. 1701). To learn how to upgrade an Aurora MySQL global
database to a higher major version, see In-place major upgrades for global databases (p. 1122).

Note
With an Aurora global database based on Aurora PostgreSQL, you can't perform a major version
upgrade of the Aurora DB engine if the recovery point objective (RPO) feature is turned on.

Minor version upgrades
For a minor upgrade on an Aurora global database, you upgrade all of the secondary clusters before you
upgrade the primary cluster.

To learn how to upgrade an Aurora PostgreSQL global database to a higher minor version, see Manually
upgrading the Aurora PostgreSQL engine (p. 1699). To learn how to upgrade an Aurora MySQL
global database to a higher minor version, see Upgrading Aurora MySQL by modifying the engine
version (p. 1109).

280

Amazon Aurora User Guide for Aurora
Connecting to a DB cluster

Connecting to an Amazon Aurora DB cluster
You can connect to an Aurora DB cluster using the same tools that you use to connect to a MySQL or
PostgreSQL database. You specify a connection string with any script, utility, or application that connects
to a MySQL or PostgreSQL DB instance. You use the same public key for Secure Sockets Layer (SSL)
connections.

In the connection string, you typically use the host and port information from special endpoints
associated with the DB cluster. With these endpoints, you can use the same connection parameters
regardless of how many DB instances are in the cluster. You also use the host and port information from
a specific DB instance in your Aurora DB cluster for specialized tasks, such as troubleshooting.

Note
For Aurora Serverless v1 DB clusters, you connect to the database endpoint rather than to the
DB instance. You can find the database endpoint for an Aurora Serverless v1 DB cluster on the
Connectivity & security tab of the AWS Management Console. For more information, see Using
Amazon Aurora Serverless v1 (p. 147).

Regardless of the Aurora DB engine and specific tools you use to work with the DB cluster or instance,
the endpoint must be accessible. An Amazon Aurora DB cluster can be created only in a virtual private
cloud (VPC) based on the Amazon VPC service. That means that you access the endpoint from either
inside the VPC or outside the VPC using one of the following approaches.

• Access the Amazon Aurora DB cluster inside the VPC – Enable access to the Amazon Aurora DB
cluster through the VPC. You do so by editing the Inbound rules on the Security group for the VPC to
allow access to your specific Aurora DB cluster. To learn more, including how to configure your VPC for
different Aurora DB cluster scenarios, see Amazon Virtual Private Cloud VPCs and Amazon Aurora.

• Access the Amazon Aurora DB cluster outside the VPC – To access an Amazon Aurora DB cluster
from outside the VPC, use the public endpoint address of the Amazon Aurora DB cluster. You can also
connect to an Amazon Aurora DB cluster that's inside a VPC from an Amazon EC2 instance that's not
in the VPC by using ClassicLink. For more information, see A DB instance in a VPC accessed by an EC2
instance not in a VPC (p. 1816).

For more information, see Troubleshooting Aurora connection failures (p. 287).

Topics

• Connecting to an Amazon Aurora MySQL DB cluster (p. 281)

• Connecting to an Amazon Aurora PostgreSQL DB cluster (p. 285)

• Troubleshooting Aurora connection failures (p. 287)

Connecting to an Amazon Aurora MySQL DB cluster
To authenticate to your Aurora MySQL DB cluster, you can use either MySQL user name and password
authentication or AWS Identity and Access Management (IAM) database authentication. For more
information on using MySQL user name and password authentication, see Access control and account
management in the MySQL documentation. For more information on using IAM database authentication,
see IAM database authentication (p. 1756).

When you have a connection to your Amazon Aurora DB cluster with MySQL 8.0 compatibility, you can
run SQL commands that are compatible with MySQL version 8.0. The minimum compatible version is
MySQL 8.0.23. For more information about MySQL 8.0 SQL syntax, see the MySQL 8.0 reference manual.
For information about limitations that apply to Aurora MySQL version 3, see Comparison of Aurora
MySQL version 3 and community MySQL 8.0 (p. 777).

281

https://docs.aws.amazon.com/en_us/AmazonRDS/latest/AuroraUserGuide/USER_VPC.html
https://dev.mysql.com/doc/refman/5.7/en/access-control.html
https://dev.mysql.com/doc/refman/5.7/en/access-control.html
http://dev.mysql.com/doc/refman/8.0/en/index.html

Amazon Aurora User Guide for Aurora
Connecting to Aurora MySQL

When you have a connection to your Amazon Aurora DB cluster with MySQL 5.7 compatibility, you can
run SQL commands that are compatible with MySQL version 5.7. For more information about MySQL 5.7
SQL syntax, see the MySQL 5.7 reference manual. For information about limitations that apply to Aurora
MySQL 5.7, see Aurora MySQL version 2 compatible with MySQL 5.7 (p. 794).

When you have a connection to your Amazon Aurora DB cluster with MySQL 5.6 compatibility, you can
run SQL commands that are compatible with MySQL version 5.6. For more information about MySQL 5.6
SQL syntax, see the MySQL 5.6 reference manual.

Note
For a helpful and detailed guide on connecting to an Amazon Aurora MySQL DB cluster, you can
see the Aurora connection management handbook.

In the details view for your DB cluster, you can find the cluster endpoint, which you can use in
your MySQL connection string. The endpoint is made up of the domain name and port for your
DB cluster. For example, if an endpoint value is mycluster.cluster-123456789012.us-
east-1.rds.amazonaws.com:3306, then you specify the following values in a MySQL connection
string:

• For host or host name, specify mycluster.cluster-123456789012.us-
east-1.rds.amazonaws.com

• For port, specify 3306 or the port value you used when you created the DB cluster

The cluster endpoint connects you to the primary instance for the DB cluster. You can perform both read
and write operations using the cluster endpoint. Your DB cluster can also have up to 15 Aurora Replicas
that support read-only access to the data in your DB cluster. The primary instance and each Aurora
Replica has a unique endpoint that is independent of the cluster endpoint and allows you to connect to a
specific DB instance in the cluster directly. The cluster endpoint always points to the primary instance. If
the primary instance fails and is replaced, then the cluster endpoint points to the new primary instance.

To view the cluster endpoint (writer endpoint), choose Databases on the Amazon RDS console and
choose the name of the DB cluster to show the DB cluster details.

282

http://dev.mysql.com/doc/refman/5.7/en/index.html
http://dev.mysql.com/doc/refman/5.6/en/index.html
https://d1.awsstatic.com/whitepapers/RDS/amazon-aurora-connection-management-handbook.pdf

Amazon Aurora User Guide for Aurora
Connecting to Aurora MySQL

Connection utilities for Aurora MySQL
Some connection utilities you can use are the following:

• Command line – You can connect to an Amazon Aurora DB cluster by using tools like the MySQL
command line utility. For more information on using the MySQL utility, see mysql - the MySQL
command line tool in the MySQL documentation.

• GUI – You can use the MySQL Workbench utility to connect by using a UI interface. For more
information, see the Download MySQL workbench page.

• Applications – You can use the MariaDB Connector/J utility to connect your applications to your
Aurora DB cluster. For more information, see the MariaDB Connector/J download page.

Note
If you use the MariaDB Connector/J utility with an Aurora Serverless v1 DB cluster, use
the prefix jdbc:mariadb:aurora// in your connection string. The mariadb:aurora
parameter avoids the automatic DNS scan for failover targets. That scanning is not needed
with Aurora Serverless v1 DB clusters and causes a delay in establishing the connection.

283

http://dev.mysql.com/doc/refman/5.6/en/mysql.html
http://dev.mysql.com/doc/refman/5.6/en/mysql.html
http://dev.mysql.com/downloads/workbench/
https://downloads.mariadb.org/connector-java/

Amazon Aurora User Guide for Aurora
Connecting to Aurora MySQL

You can use SSL encryption on connections to an Aurora MySQL DB instance. For information, see Using
SSL/TLS with Aurora MySQL DB clusters (p. 796).

Connecting with SSL for Aurora MySQL
To connect using SSL, use the MySQL utility as described in the following procedure. If you are using
IAM database authentication, you must use an SSL connection. For information, see IAM database
authentication (p. 1756).

Note
To connect to the cluster endpoint using SSL, your client connection utility must support
Subject Alternative Names (SAN). If your client connection utility doesn't support SAN, you can
connect directly to the instances in your Aurora DB cluster. For more information on Aurora
endpoints, see Amazon Aurora connection management (p. 32).

To connect to a DB cluster with SSL using the MySQL utility

1. Download the public key for the Amazon RDS signing certificate.

For information about downloading certificates, see Using SSL/TLS to encrypt a connection to a DB
cluster (p. 1726).

2. Type the following command at a command prompt to connect to the primary instance of a DB
cluster with SSL using the MySQL utility. For the -h parameter, substitute the endpoint DNS name for
your primary instance. For the -u parameter, substitute the user ID of a database user account. For the
--ssl-ca parameter, substitute the SSL certificate file name as appropriate. Type the master user
password when prompted.

mysql -h mycluster-primary.123456789012.us-east-1.rds.amazonaws.com -u
admin_user -p --ssl-ca=[full path]rds-combined-ca-bundle.pem --ssl-verify-
server-cert

You should see output similar to the following.

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 350
Server version: 5.6.10-log MySQL Community Server (GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

For general instructions on constructing RDS for MySQL connection strings and finding the public key for
SSL connections, see Connecting to a DB instance running the MySQL database engine.

Connecting with the Amazon Web Services JDBC Driver for
MySQL (preview)

This is preview documentation for Amazon Web Services JDBC Driver for MySQL. It is subject to
change.

The AWS JDBC Driver for MySQL (preview) is a client driver designed for the high availability of Aurora
MySQL. The AWS JDBC Driver for MySQL is drop-in compatible with the MySQL Connector/J driver.

The AWS JDBC Driver for MySQL takes full advantage of the failover capabilities of Aurora MySQL. The
AWS JDBC Driver for MySQL fully maintains a cache of the DB cluster topology and each DB instance's

284

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html

Amazon Aurora User Guide for Aurora
Connecting to Aurora PostgreSQL

role, either primary DB instance or Aurora Replica. It uses this topology to bypass the delays caused by
DNS resolution so that a connection to the new primary DB instance is established as fast as possible.

For more information about the AWS JDBC Driver for MySQL and complete instructions for using it, see
the AWS JDBC Driver for MySQL GitHub repository.

Connecting to an Amazon Aurora PostgreSQL DB
cluster
You can connect to a DB instance in your Amazon Aurora PostgreSQL DB cluster using the same tools
that you use to connect to a PostgreSQL database. As part of this, you use the same public key for
Secure Sockets Layer (SSL) connections. You can use the endpoint and port information from the primary
instance or Aurora Replicas in your Aurora PostgreSQL DB cluster in the connection string of any script,
utility, or application that connects to a PostgreSQL DB instance. In the connection string, specify the
DNS address from the primary instance or Aurora Replica endpoint as the host parameter. Specify the
port number from the endpoint as the port parameter.

When you have a connection to a DB instance in your Amazon Aurora PostgreSQL DB cluster, you can run
any SQL command that is compatible with PostgreSQL.

In the details view for your Aurora PostgreSQL DB cluster you can find the cluster endpoint
name, status, type, and port number. You use the endpoint and port number in your PostgreSQL
connection string. For example, if an endpoint value is mycluster.cluster-123456789012.us-
east-1.rds.amazonaws.com, then you specify the following values in a PostgreSQL connection
string:

• For host or host name, specify mycluster.cluster-123456789012.us-
east-1.rds.amazonaws.com

• For port, specify 5432 or the port value you used when you created the DB cluster

The cluster endpoint connects you to the primary instance for the DB cluster. You can perform both read
and write operations using the cluster endpoint. Your DB cluster can also have up to 15 Aurora Replicas
that support read-only access to the data in your DB cluster. Each DB instance in the Aurora cluster
(that is, the primary instance and each Aurora Replica) has a unique endpoint that is independent of
the cluster endpoint. This unique endpoint allows you to connect to a specific DB instance in the cluster
directly. The cluster endpoint always points to the primary instance. If the primary instance fails and is
replaced, the cluster endpoint points to the new primary instance.

To view the cluster endpoint (writer endpoint), choose Databases on the Amazon RDS console and
choose the name of the DB cluster to show the DB cluster details.

285

https://awslabs.github.io/aws-mysql-jdbc/

Amazon Aurora User Guide for Aurora
Connecting to Aurora PostgreSQL

Connection utilities for Aurora PostgreSQL

Some connection utilities you can use are the following:

• Command line – You can connect to an Amazon Aurora PostgreSQL DB instance by using tools like
psql, the PostgreSQL interactive terminal. For more information on using the PostgreSQL interactive
terminal, see psql in the PostgreSQL documentation.

• GUI – You can use the pgAdmin utility to connect to a PostgreSQL DB instance by using a UI interface.
For more information, see the Download page from the pgAdmin website.

• Applications – You can use the PostgreSQL JDBC driver to connect your applications to your
PostgreSQL DB instance. For more information, see the Download page from the PostgreSQL JDBC
driver website.

286

https://www.postgresql.org/docs/current/app-psql.html
https://www.pgadmin.org/download/
https://jdbc.postgresql.org/download.html

Amazon Aurora User Guide for Aurora
Troubleshooting connections

Connecting with the Amazon Web Services JDBC Driver for
PostgreSQL (preview)

This is preview documentation for Amazon Web Services JDBC Driver for PostgreSQL. It is subject to
change.

The AWS JDBC Driver for PostgreSQL (preview) is a client driver designed for the high availability of
Aurora PostgreSQL. The AWS JDBC Driver for PostgreSQL is drop-in compatible with the PostgreSQL
JDBC Driver.

The AWS JDBC Driver for PostgreSQL takes full advantage of the failover capabilities of Aurora
PostgreSQL. The AWS JDBC Driver for PostgreSQL fully maintains a cache of the DB cluster topology and
each DB instance's role, either primary DB instance or Aurora Replica. It uses this topology to bypass the
delays caused by DNS resolution so that a connection to the new primary DB instance is established as
fast as possible.

For more information about the AWS JDBC Driver for PostgreSQL and complete instructions for using it,
see the AWS JDBC Driver for PostgreSQL GitHub repository.

Troubleshooting Aurora connection failures
Common causes of connection failures to a new Aurora DB cluster include the following:

• Security group in the VPC doesn't allow access – Your VPC needs to allow connections from your
device or from an Amazon EC2 instance by proper configuration of the Security group in the VPC. To
resolve, modify your VPC's Security group Inbound rules to allow connections. For an example, see
Create a VPC and subnets (p. 1806).

• Port blocked by firewall rules – Check the value of the port configured for your Aurora DB cluster. If a
firewall rule blocks that port, you can re-create the instance using a different port.

• Incomplete or incorrect IAM configuration – If you created your Aurora DB instance to use IAM–
based authentication, make sure that it's properly configured. For more information, see IAM database
authentication (p. 1756).

For more information about troubleshooting Aurora DB connection issues, see Can't connect to Amazon
RDS DB instance (p. 1827).

287

https://awslabs.github.io/aws-postgresql-jdbc/

Amazon Aurora User Guide for Aurora
Using RDS Proxy

Using Amazon RDS Proxy
By using Amazon RDS Proxy, you can allow your applications to pool and share database connections
to improve their ability to scale. RDS Proxy makes applications more resilient to database failures
by automatically connecting to a standby DB instance while preserving application connections. By
using RDS Proxy, you can also enforce AWS Identity and Access Management (IAM) authentication for
databases, and securely store credentials in AWS Secrets Manager.

Note
RDS Proxy is fully compatible with MySQL and PostgreSQL. You can enable RDS Proxy for most
applications with no code changes.

Using RDS Proxy, you can handle unpredictable surges in database traffic that otherwise might cause
issues due to oversubscribing connections or creating new connections at a fast rate. RDS Proxy
establishes a database connection pool and reuses connections in this pool without the memory and
CPU overhead of opening a new database connection each time. To protect the database against
oversubscription, you can control the number of database connections that are created.

RDS Proxy queues or throttles application connections that can't be served immediately from the pool
of connections. Although latencies might increase, your application can continue to scale without
abruptly failing or overwhelming the database. If connection requests exceed the limits you specify, RDS
Proxy rejects application connections (that is, it sheds load). At the same time, it maintains predictable
performance for the load that can be served with the available capacity.

You can reduce the overhead to process credentials and establish a secure connection for each new
connection. RDS Proxy can handle some of that work on behalf of the database.

Topics
• Supported engines and Region availability for RDS Proxy (p. 288)

• Quotas and limitations for RDS Proxy (p. 288)

• Planning where to use RDS Proxy (p. 290)

• RDS Proxy concepts and terminology (p. 290)

• Getting started with RDS Proxy (p. 295)

• Managing an RDS Proxy (p. 306)

• Working with Amazon RDS Proxy endpoints (p. 315)

• Monitoring RDS Proxy metrics with Amazon CloudWatch (p. 324)

• Working with RDS Proxy events (p. 329)

• RDS Proxy command-line examples (p. 330)

• Troubleshooting for RDS Proxy (p. 332)

• Using RDS Proxy with AWS CloudFormation (p. 337)

Supported engines and Region availability for RDS
Proxy
For information about database engine version support and availability of RDS Proxy in a given AWS
Region, see Amazon RDS Proxy.

Quotas and limitations for RDS Proxy
The following quotas and limitations apply to RDS Proxy:

288

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.AuroraFeaturesRegionsDBEngines.grids.html#Concepts.Aurora_Fea_Regions_DB-eng.Feature.RDS_Proxy

Amazon Aurora User Guide for Aurora
Quotas and limitations

• You can have up to 20 proxies for each AWS account ID. If your application requires more proxies, you
can request additional proxies by opening a ticket with the AWS Support organization.

• Each proxy can have up to 200 associated Secrets Manager secrets. Thus, each proxy can connect to
with up to 200 different user accounts at any given time.

• You can create, view, modify, and delete up to 20 endpoints for each proxy. These endpoints are in
addition to the default endpoint that's automatically created for each proxy.

• In an Aurora cluster, all of the connections using the default proxy endpoint are handled by the Aurora
writer instance. To perform load balancing for read-intensive workloads, you can create a read-only
endpoint for a proxy. That endpoint passes connections to the reader endpoint of the cluster. That
way, your proxy connections can take advantage of Aurora read scalability. For more information, see
Overview of proxy endpoints (p. 315).

For RDS DB instances in replication configurations, you can associate a proxy only with the writer DB
instance, not a read replica.

• You can't use RDS Proxy with Aurora Serverless clusters.
• Using RDS Proxy with Aurora clusters that are part of an Aurora global database isn't currently

supported.
• Your RDS Proxy must be in the same virtual private cloud (VPC) as the database. The proxy can't be

publicly accessible, although the database can be. For example, if you're prototyping on a local host,
you can't connect to your RDS Proxy unless you set up dedicated networking. This is the case because
your local host is outside of the proxy's VPC.

Note
For Aurora DB clusters, you can turn on cross-VPC access. To do this, create an additional
endpoint for a proxy and specify a different VPC, subnets, and security groups with
that endpoint. For more information, see Accessing Aurora and RDS databases across
VPCs (p. 319).

• You can't use RDS Proxy with a VPC that has its tenancy set to dedicated.
• If you use RDS Proxy with an RDS DB instance or Aurora DB cluster that has IAM authentication

enabled, make sure that all users who connect through a proxy authenticate through user names and
passwords. See Setting up AWS Identity and Access Management (IAM) policies (p. 297) for details
about IAM support in RDS Proxy.

• You can't use RDS Proxy with custom DNS.
• RDS Proxy is available for the MySQL and PostgreSQL engine families.
• Each proxy can be associated with a single target DB instance or cluster. However, you can associate

multiple proxies with the same DB instance or cluster.

The following RDS Proxy limitations apply to MySQL:

• RDS Proxy doesn't support the MySQL sha256_password and caching_sha2_password
authentication plugins. These plugins implement SHA-256 hashing for user account passwords.

• Currently, all proxies listen on port 3306 for MySQL. The proxies still connect to your database using
the port that you specified in the database settings.

• You can't use RDS Proxy with self-managed MySQL databases in EC2 instances.
• You can't use RDS Proxy with an RDS for MySQL DB instance that has the read_only parameter in its

DB parameter group set to 1.
• Proxies don't support MySQL compressed mode. For example, they don't support the compression

used by the --compress or -C options of the mysql command.
• Some SQL statements and functions can change the connection state without causing pinning. For the

most current pinning behavior, see Avoiding pinning (p. 312).

The following RDS Proxy limitations apply to PostgreSQL:

289

Amazon Aurora User Guide for Aurora
Planning where to use RDS Proxy

• Currently, all proxies listen on port 5432 for PostgreSQL.
• For PostgreSQL, RDS Proxy doesn't currently support canceling a query from a client by issuing a
CancelRequest. This is the case for example, when you cancel a long-running query in an interactive
psql session by using Ctrl+C.

• The results of the PostgreSQL function lastval aren't always accurate. As a work-around, use the
INSERT statement with the RETURNING clause.

• RDS Proxy doesn't multiplex connections when your client application drivers use the PostgreSQL
extended query protocol.

Planning where to use RDS Proxy
You can determine which of your DB instances, clusters, and applications might benefit the most from
using RDS Proxy. To do so, consider these factors:

• Any DB instance or cluster that encounters "too many connections" errors is a good candidate for
associating with a proxy. The proxy enables applications to open many client connections, while the
proxy manages a smaller number of long-lived connections to the DB instance or cluster.

• For DB instances or clusters that use smaller AWS instance classes, such as T2 or T3, using a proxy
can help avoid out-of-memory conditions. It can also help reduce the CPU overhead for establishing
connections. These conditions can occur when dealing with large numbers of connections.

• You can monitor certain Amazon CloudWatch metrics to determine whether a DB instance or cluster
is approaching certain types of limit. These limits are for the number of connections and the memory
associated with connection management. You can also monitor certain CloudWatch metrics to
determine whether a DB instance or cluster is handling many short-lived connections. Opening and
closing such connections can impose performance overhead on your database. For information about
the metrics to monitor, see Monitoring RDS Proxy metrics with Amazon CloudWatch (p. 324).

• AWS Lambda functions can also be good candidates for using a proxy. These functions make frequent
short database connections that benefit from connection pooling offered by RDS Proxy. You can take
advantage of any IAM authentication you already have for Lambda functions, instead of managing
database credentials in your Lambda application code.

• Applications that use languages and frameworks such as PHP and Ruby on Rails are typically good
candidates for using a proxy. Such applications typically open and close large numbers of database
connections, and don't have built-in connection pooling mechanisms.

• Applications that keep a large number of connections open for long periods are typically good
candidates for using a proxy. Applications in industries such as software as a service (SaaS) or
ecommerce often minimize the latency for database requests by leaving connections open. With RDS
Proxy, an application can keep more connections open than it can when connecting directly to the DB
instance or cluster.

• You might not have adopted IAM authentication and Secrets Manager due to the complexity of
setting up such authentication for all DB instances and clusters. If so, you can leave the existing
authentication methods in place and delegate the authentication to a proxy. The proxy can enforce
the authentication policies for client connections for particular applications. You can take advantage
of any IAM authentication you already have for Lambda functions, instead of managing database
credentials in your Lambda application code.

• RDS Proxy is highly available and deployed over multiple Availability Zones (AZs). To ensure overall
high availability for your database, deploy your Amazon RDS DB instance or Aurora cluster in a Multi-
AZ configuration.

RDS Proxy concepts and terminology
You can simplify connection management for your Amazon RDS DB instances and Amazon Aurora DB
clusters by using RDS Proxy.

290

https://www.postgresql.org/docs/current/functions-sequence.html
https://www.postgresql.org/docs/current/sql-insert.html

Amazon Aurora User Guide for Aurora
RDS Proxy concepts and terminology

RDS Proxy handles the network traffic between the client application and the database. It does so in an
active way first by understanding the database protocol. It then adjusts its behavior based on the SQL
operations from your application and the result sets from the database.

RDS Proxy reduces the memory and CPU overhead for connection management on your database.
The database needs less memory and CPU resources when applications open many simultaneous
connections. It also doesn't require logic in your applications to close and reopen connections that stay
idle for a long time. Similarly, it requires less application logic to reestablish connections in case of a
database problem.

The infrastructure for RDS Proxy is highly available and deployed over multiple Availability Zones (AZs).
The computation, memory, and storage for RDS Proxy are independent of your RDS DB instances and
Aurora DB clusters. This separation helps lower overhead on your database servers, so that they can
devote their resources to serving database workloads. The RDS Proxy compute resources are serverless,
automatically scaling based on your database workload.

Topics
• Overview of RDS Proxy concepts (p. 291)
• Connection pooling (p. 292)
• RDS Proxy security (p. 292)
• Failover (p. 293)
• Transactions (p. 294)

Overview of RDS Proxy concepts
RDS Proxy handles the infrastructure to perform connection pooling and the other features described in
the sections that follow. You see the proxies represented in the RDS console on the Proxies page.

Each proxy handles connections to a single RDS DB instance or Aurora DB cluster. The proxy
automatically determines the current writer instance for RDS Multi-AZ DB instances and Aurora
provisioned clusters. For Aurora multi-master clusters, the proxy connects to one of the writer instances
and uses the other writer instances as hot standby targets.

The connections that a proxy keeps open and available for your database application to use make up the
connection pool.

By default, RDS Proxy can reuse a connection after each transaction in your session. This transaction-
level reuse is called multiplexing. When RDS Proxy temporarily removes a connection from the
connection pool to reuse it, that operation is called borrowing the connection. When it's safe to do so,
RDS Proxy returns that connection to the connection pool.

In some cases, RDS Proxy can't be sure that it's safe to reuse a database connection outside of the current
session. In these cases, it keeps the session on the same connection until the session ends. This fallback
behavior is called pinning.

A proxy has a default endpoint. You connect to this endpoint when you work with an RDS DB instance
or Aurora DB cluster, instead of connecting to the read/write endpoint that connects directly to the
instance or cluster. The special-purpose endpoints for an Aurora cluster remain available for you to use.
For Aurora DB clusters, you can also create additional read/write and read-only endpoints. For more
information, see Overview of proxy endpoints (p. 315).

For example, you can still connect to the cluster endpoint for read/write connections without connection
pooling. You can still connect to the reader endpoint for load-balanced read-only connections. You
can still connect to the instance endpoints for diagnosis and troubleshooting of specific DB instances
within an Aurora cluster. If you are using other AWS services such as AWS Lambda to connect to RDS
databases, you change their connection settings to use the proxy endpoint. For example, you specify the
proxy endpoint to allow Lambda functions to access your database while taking advantage of RDS Proxy
functionality.

291

Amazon Aurora User Guide for Aurora
RDS Proxy concepts and terminology

Each proxy contains a target group. This target group embodies the RDS DB instance or Aurora DB cluster
that the proxy can connect to. For an Aurora cluster, by default the target group is associated with all
the DB instances in that cluster. That way, the proxy can connect to whichever Aurora DB instance is
promoted to be the writer instance in the cluster. The RDS DB instance associated with a proxy, or the
Aurora DB cluster and its instances, are called the targets of that proxy. For convenience, when you create
a proxy through the console, RDS Proxy also creates the corresponding target group and registers the
associated targets automatically.

An engine family is a related set of database engines that use the same DB protocol. You choose the
engine family for each proxy that you create.

Connection pooling
Each proxy performs connection pooling for the writer instance of its associated RDS or Aurora database.
Connection pooling is an optimization that reduces the overhead associated with opening and closing
connections and with keeping many connections open simultaneously. This overhead includes memory
needed to handle each new connection. It also involves CPU overhead to close each connection and
open a new one, such as Transport Layer Security/Secure Sockets Layer (TLS/SSL) handshaking,
authentication, negotiating capabilities, and so on. Connection pooling simplifies your application logic.
You don't need to write application code to minimize the number of simultaneous open connections.

Each proxy also performs connection multiplexing, also known as connection reuse. With multiplexing,
RDS Proxy performs all the operations for a transaction using one underlying database connection, then
can use a different connection for the next transaction. You can open many simultaneous connections
to the proxy, and the proxy keeps a smaller number of connections open to the DB instance or cluster.
Doing so further minimizes the memory overhead for connections on the database server. This technique
also reduces the chance of "too many connections" errors.

RDS Proxy security
RDS Proxy uses the existing RDS security mechanisms such as TLS/SSL and AWS Identity and Access
Management (IAM). For general information about those security features, see Security in Amazon
Aurora (p. 1719). If you aren't familiar with how RDS and Aurora work with authentication, authorization,
and other areas of security, make sure to familiarize yourself with how RDS and Aurora work with those
areas first.

RDS Proxy can act as an additional layer of security between client applications and the underlying
database. For example, you can connect to the proxy using TLS 1.2, even if the underlying DB instance
supports only TLS 1.0 or 1.1. You can connect to the proxy using an IAM role, even if the proxy connects
to the database using the native user and password authentication method. By using this technique, you
can enforce strong authentication requirements for database applications without a costly migration
effort for the DB instances themselves.

You store the database credentials used by RDS Proxy in AWS Secrets Manager. Each database user
for the RDS DB instance or Aurora DB cluster accessed by a proxy must have a corresponding secret
in Secrets Manager. You can also set up IAM authentication for users of RDS Proxy. By doing so,
you can enforce IAM authentication for database access even if the databases use native password
authentication. We recommend using these security features instead of embedding database credentials
in your application code.

Using TLS/SSL with RDS Proxy

You can connect to RDS Proxy using the TLS/SSL protocol.

Note
RDS Proxy uses certificates from the AWS Certificate Manager (ACM). If you use RDS Proxy, when
you rotate your TLS/SSL certificate you don't need to update applications that use RDS Proxy
connections.

292

Amazon Aurora User Guide for Aurora
RDS Proxy concepts and terminology

To enforce TLS for all connections between the proxy and your database, you can specify a setting
Require Transport Layer Security when you create or modify a proxy.

RDS Proxy can also ensure that your session uses TLS/SSL between your client and the RDS Proxy
endpoint. To have RDS Proxy do so, specify the requirement on the client side. SSL session variables are
not set for SSL connections to a database using RDS Proxy.

• For RDS for MySQL and Aurora MySQL, specify the requirement on the client side with the --ssl-
mode parameter when you run the mysql command.

• For Amazon RDS PostgreSQL and Aurora PostgreSQL, specify sslmode=require as part of the
conninfo string when you run the psql command.

RDS Proxy supports TLS protocol version 1.0, 1.1, and 1.2. You can connect to the proxy using a higher
version of TLS than you use in the underlying database.

By default, client programs establish an encrypted connection with RDS Proxy, with further control
available through the --ssl-mode option. From the client side, RDS Proxy supports all SSL modes.

For the client, the SSL modes are the following:

PREFERRED

SSL is the first choice, but it isn't required.
DISABLED

No SSL is allowed.
REQUIRED

Enforce SSL.
VERIFY_CA

Enforce SSL and verify the certificate authority (CA).
VERIFY_IDENTITY

Enforce SSL and verify the CA and CA hostname.

Note
You can use the SSL mode VERIFY_IDENTITY when connecting to the default proxy
endpoint. You can't use that SSL mode when you connect to proxy endpoints that you
create.

When using a client with --ssl-mode VERIFY_CA or VERIFY_IDENTITY, specify the --ssl-ca option
pointing to a CA in .pem format. For a .pem file that you can use, download the Amazon root CA 1 trust
store from Amazon Trust Services.

RDS Proxy uses wildcard certificates, which apply to a both a domain and its subdomains. If you use the
mysql client to connect with SSL mode VERIFY_IDENTITY, currently you must use the MySQL 8.0-
compatible mysql command.

Failover
Failover is a high-availability feature that replaces a database instance with another one when the
original instance becomes unavailable. A failover might happen because of a problem with a database
instance. It might also be part of normal maintenance procedures, such as during a database upgrade.
Failover applies to RDS DB instances in a Multi-AZ configuration, and Aurora DB clusters with one or
more reader instances in addition to the writer instance.

293

https://www.amazontrust.com/repository/AmazonRootCA1.pem
https://www.amazontrust.com/repository/AmazonRootCA1.pem

Amazon Aurora User Guide for Aurora
RDS Proxy concepts and terminology

Connecting through a proxy makes your application more resilient to database failovers. When the
original DB instance becomes unavailable, RDS Proxy connects to the standby database without dropping
idle application connections. Doing so helps to speed up and simplify the failover process. The result is
faster failover that's less disruptive to your application than a typical reboot or database problem.

Without RDS Proxy, a failover involves a brief outage. During the outage, you can't perform write
operations on that database. Any existing database connections are disrupted and your application must
reopen them. The database becomes available for new connections and write operations when a read-
only DB instance is promoted to take the place of the one that's unavailable.

During DB failovers, RDS Proxy continues to accept connections at the same IP address and automatically
directs connections to the new primary DB instance. Clients connecting through RDS Proxy are not
susceptible to the following:

• Domain Name System (DNS) propagation delays on failover.
• Local DNS caching.
• Connection timeouts.
• Uncertainty about which DB instance is the current writer.
• Waiting for a query response from a former writer that became unavailable without closing

connections.

For applications that maintain their own connection pool, going through RDS Proxy means that most
connections stay alive during failovers or other disruptions. Only connections that are in the middle of a
transaction or SQL statement are canceled. RDS Proxy immediately accepts new connections. When the
database writer is unavailable, RDS Proxy queues up incoming requests.

For applications that don't maintain their own connection pools, RDS Proxy offers faster connection
rates and more open connections. It offloads the expensive overhead of frequent reconnects from the
database. It does so by reusing database connections maintained in the RDS Proxy connection pool. This
approach is particularly important for TLS connections, where setup costs are significant.

Transactions
All the statements within a single transaction always use the same underlying database connection.
The connection becomes available for use by a different session when the transaction ends. Using the
transaction as the unit of granularity has the following consequences:

• Connection reuse can happen after each individual statement when the RDS for MySQL or Aurora
MySQL autocommit setting is enabled.

• Conversely, when the autocommit setting is disabled, the first statement you issue in a session
begins a new transaction. Thus, if you enter a sequence of SELECT, INSERT, UPDATE, and other data
manipulation language (DML) statements, connection reuse doesn't happen until you issue a COMMIT,
ROLLBACK, or otherwise end the transaction.

• Entering a data definition language (DDL) statement causes the transaction to end after that
statement completes.

RDS Proxy detects when a transaction ends through the network protocol used by the database client
application. Transaction detection doesn't rely on keywords such as COMMIT or ROLLBACK appearing in
the text of the SQL statement.

In some cases, RDS Proxy might detect a database request that makes it impractical to move your session
to a different connection. In these cases, it turns off multiplexing for that connection the remainder
of your session. The same rule applies if RDS Proxy can't be certain that multiplexing is practical for
the session. This operation is called pinning. For ways to detect and minimize pinning, see Avoiding
pinning (p. 312).

294

Amazon Aurora User Guide for Aurora
Getting started with RDS Proxy

Getting started with RDS Proxy
In the following sections, you can find how to set up RDS Proxy. You can also find how to set the related
security options that control who can access each proxy and how each proxy connects to DB instances.

Topics

• Setting up network prerequisites (p. 295)

• Setting up database credentials in AWS Secrets Manager (p. 296)

• Setting up AWS Identity and Access Management (IAM) policies (p. 297)

• Creating an RDS Proxy (p. 299)

• Viewing an RDS Proxy (p. 302)

• Connecting to a database through RDS Proxy (p. 304)

Setting up network prerequisites

Using RDS Proxy requires you to have a common virtual private cloud (VPC) between your Aurora DB
cluster or RDS DB instance and RDS Proxy. This VPC should have a minimum of two subnets that are
in different Availability Zones. Your account can either own these subnets or share them with other
accounts. For information about VPC sharing, see Work with shared VPCs. Your client application
resources such as Amazon EC2, Lambda, or Amazon ECS can be in the same VPC or in a separate VPC
from the proxy. Note that if you've successfully connected to any RDS DB instances or Aurora DB clusters,
you already have the required network resources.

If you're just getting started with RDS or Aurora, you can learn the basics of connecting to a database by
following the procedures in Setting up your environment for Amazon Aurora (p. 84). You can also follow
the tutorial in Getting started with Amazon Aurora (p. 89).

The following Linux example shows AWS CLI commands that examine the VPCs and subnets owned by
your AWS account. In particular, you pass subnet IDs as parameters when you create a proxy using the
CLI.

aws ec2 describe-vpcs
aws ec2 describe-internet-gateways
aws ec2 describe-subnets --query '*[].[VpcId,SubnetId]' --output text | sort

The following Linux example shows AWS CLI commands to determine the subnet IDs corresponding
to a specific Aurora DB cluster or RDS DB instance. For an Aurora cluster, first you find the ID for one
of the associated DB instances. You can extract the subnet IDs used by that DB instance by examining
the nested fields within the DBSubnetGroup and Subnets attributes in the describe output for the DB
instance. You specify some or all of those subnet IDs when setting up a proxy for that database server.

$ # Optional first step, only needed if you're starting from an Aurora cluster. Find the ID
 of any DB instance in the cluster.
$ aws rds describe-db-clusters --db-cluster-identifier my_cluster_id --query '*[].
[DBClusterMembers]|[0]|[0][*].DBInstanceIdentifier' --output text
my_instance_id
instance_id_2
instance_id_3
...

$ # From the DB instance, trace through the DBSubnetGroup and Subnets to find the subnet
 IDs.
$ aws rds describe-db-instances --db-instance-identifier my_instance_id --query '*[].
[DBSubnetGroup]|[0]|[0]|[Subnets]|[0]|[*].SubnetIdentifier' --output text

295

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html

Amazon Aurora User Guide for Aurora
Getting started with RDS Proxy

subnet_id_1
subnet_id_2
subnet_id_3
...

As an alternative, you can first find the VPC ID for the DB instance. Then you can examine the VPC to find
its subnets. The following Linux example shows how.

$ # From the DB instance, find the VPC.
$ aws rds describe-db-instances --db-instance-identifier my_instance_id --query '*[].
[DBSubnetGroup]|[0]|[0].VpcId' --output text
my_vpc_id

$ aws ec2 describe-subnets --filters Name=vpc-id,Values=my_vpc_id --query '*[].[SubnetId]'
 --output text
subnet_id_1
subnet_id_2
subnet_id_3
subnet_id_4
subnet_id_5
subnet_id_6

Setting up database credentials in AWS Secrets Manager
For each proxy that you create, you first use the Secrets Manager service to store sets of user name and
password credentials. You create a separate Secrets Manager secret for each database user account that
the proxy connects to on the RDS DB instance or Aurora DB cluster.

In Secrets Manager, you create these secrets with values for the username and password fields. Doing
so allows the proxy to connect to the corresponding database users on whichever RDS DB instances or
Aurora DB clusters that you associate with the proxy. To do this, you can use the setting Credentials for
other database, Credentials for RDS database, or Other type of secrets. Fill in the appropriate values
for the User name and Password fields, and placeholder values for any other required fields. The proxy
ignores other fields such as Host and Port if they're present in the secret. Those details are automatically
supplied by the proxy.

You can also choose Other type of secrets. In this case, you create the secret with keys named username
and password.

Because the secrets used by your proxy aren't tied to a specific database server, you can reuse a secret
across multiple proxies if you use the same credentials across multiple database servers. For example,
you might use the same credentials across a group of development and test servers.

To connect through the proxy as a specific user, make sure that the password associated with a secret
matches the database password for that user. If there's a mismatch, you can update the associated secret
in Secrets Manager. In this case, you can still connect to other accounts where the secret credentials and
the database passwords do match.

When you create a proxy through the AWS CLI or RDS API, you specify the Amazon Resource Names
(ARNs) of the corresponding secrets for all the DB user accounts that the proxy can access. In the AWS
Management Console, you choose the secrets by their descriptive names.

For instructions about creating secrets in Secrets Manager, see the Creating a secret page in the Secrets
Manager documentation. Use one of the following techniques:

• Use Secrets Manager in the console.
• To use the CLI to create a Secrets Manager secret for use with RDS Proxy, use a command such as the

following.

296

https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html
http://aws.amazon.com/secrets-manager/

Amazon Aurora User Guide for Aurora
Getting started with RDS Proxy

aws secretsmanager create-secret
 --name "secret_name"
 --description "secret_description"
 --region region_name
 --secret-string '{"username":"db_user","password":"db_user_password"}'

For example, the following commands create Secrets Manager secrets for two database users, one
named admin and the other named app-user.

aws secretsmanager create-secret \
 --name admin_secret_name --description "db admin user" \
 --secret-string '{"username":"admin","password":"choose_your_own_password"}'

aws secretsmanager create-secret \
 --name proxy_secret_name --description "application user" \
 --secret-string '{"username":"app-user","password":"choose_your_own_password"}'

To see the secrets owned by your AWS account, use a command such as the following.

aws secretsmanager list-secrets

When you create a proxy using the CLI, you pass the Amazon Resource Names (ARNs) of one or more
secrets to the --auth parameter. The following Linux example shows how to prepare a report with only
the name and ARN of each secret owned by your AWS account. This example uses the --output table
parameter that is available in AWS CLI version 2. If you are using AWS CLI version 1, use --output text
instead.

aws secretsmanager list-secrets --query '*[].[Name,ARN]' --output table

To verify that you stored the correct credentials and in the right format in a secret, use a command such
as the following. Substitute the short name or the ARN of the secret for your_secret_name.

aws secretsmanager get-secret-value --secret-id your_secret_name

The output should include a line displaying a JSON-encoded value like the following.

"SecretString": "{\"username\":\"your_username\",\"password\":\"your_password\"}",

Setting up AWS Identity and Access Management (IAM) policies
After you create the secrets in Secrets Manager, you create an IAM policy that can access those secrets.
For general information about using IAM with RDS and Aurora, see Identity and access management in
Amazon Aurora (p. 1737).

Tip
The following procedure applies if you use the IAM console. If you use the AWS Management
Console for RDS, RDS can create the IAM policy for you automatically. In that case, you can skip
the following procedure.

To create an IAM policy that accesses your Secrets Manager secrets for use with your proxy

1. Sign in to the IAM console. Follow the Create role process, as described in Creating IAM roles.
Include the Add Role to Database step.

2. For the new role, perform the Add inline policy step. Use the same general procedures as in Editing
IAM policies. Paste the following JSON into the JSON text box. Substitute your own account ID.

297

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-edit.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-edit.html

Amazon Aurora User Guide for Aurora
Getting started with RDS Proxy

Substitute your AWS Region for us-east-2. Substitute the Amazon Resource Names (ARNs) for the
secrets that you created. For the kms:Decrypt action, substitute the ARN of the default AWS KMS
key or your own KMS key depending on which one you used to encrypt the Secrets Manager secrets.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": "secretsmanager:GetSecretValue",
 "Resource": [
 "arn:aws:secretsmanager:us-east-2:account_id:secret:secret_name_1",
 "arn:aws:secretsmanager:us-east-2:account_id:secret:secret_name_2"
]
 },
 {
 "Sid": "VisualEditor1",
 "Effect": "Allow",
 "Action": "kms:Decrypt",
 "Resource": "arn:aws:kms:us-east-2:account_id:key/key_id",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "secretsmanager.us-east-2.amazonaws.com"
 }
 }
 }
]
}

3. Edit the trust policy for this IAM role. Paste the following JSON into the JSON text box.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

The following commands perform the same operation through the AWS CLI.

PREFIX=choose_an_identifier

aws iam create-role --role-name choose_role_name \
 --assume-role-policy-document '{"Version":"2012-10-17","Statement":
[{"Effect":"Allow","Principal":{"Service":
["rds.amazonaws.com"]},"Action":"sts:AssumeRole"}]}'

aws iam put-role-policy --role-name same_role_name_as_previous \
 --policy-name $PREFIX-secret-reader-policy --policy-document """
same_json_as_in_previous_example
"""

aws kms create-key --description "$PREFIX-test-key" --policy """
{

298

Amazon Aurora User Guide for Aurora
Getting started with RDS Proxy

 "Id":"$PREFIX-kms-policy",
 "Version":"2012-10-17",
 "Statement":
 [
 {
 "Sid":"Enable IAM User Permissions",
 "Effect":"Allow",
 "Principal":{"AWS":"arn:aws:iam::account_id:root"},
 "Action":"kms:*","Resource":"*"
 },
 {
 "Sid":"Allow access for Key Administrators",
 "Effect":"Allow",
 "Principal":
 {
 "AWS":
 ["$USER_ARN","arn:aws:iam::account_id:role/Admin"]
 },
 "Action":
 [
 "kms:Create*",
 "kms:Describe*",
 "kms:Enable*",
 "kms:List*",
 "kms:Put*",
 "kms:Update*",
 "kms:Revoke*",
 "kms:Disable*",
 "kms:Get*",
 "kms:Delete*",
 "kms:TagResource",
 "kms:UntagResource",
 "kms:ScheduleKeyDeletion",
 "kms:CancelKeyDeletion"
],
 "Resource":"*"
 },
 {
 "Sid":"Allow use of the key",
 "Effect":"Allow",
 "Principal":{"AWS":"$ROLE_ARN"},
 "Action":["kms:Decrypt","kms:DescribeKey"],
 "Resource":"*"
 }
]
}
"""

Creating an RDS Proxy
To manage connections for a specified set of DB instances, you can create a proxy. You can associate a
proxy with an RDS for MySQL DB instance, PostgreSQL DB instance, or an Aurora DB cluster.

AWS Management Console

To create a proxy

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Proxies.
3. Choose Create proxy.
4. Choose all the settings for your proxy.

299

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Getting started with RDS Proxy

For Proxy configuration, provide information for the following:

• Proxy identifier. Specify a name of your choosing, unique within your AWS account ID and current
AWS Region.

• Engine compatibility. Choose either MySQL or POSTGRESQL.

• Require Transport Layer Security. Choose this setting if you want the proxy to enforce TLS/SSL
for all client connections. When you use an encrypted or unencrypted connection to a proxy, the
proxy uses the same encryption setting when it makes a connection to the underlying database.

• Idle client connection timeout. Choose a time period that a client connection can be idle before
the proxy can close it. The default is 1,800 seconds (30 minutes). A client connection is considered
idle when the application doesn't submit a new request within the specified time after the
previous request completed. The underlying database connection stays open and is returned to
the connection pool. Thus, it's available to be reused for new client connections.

Consider lowering the idle client connection timeout if you want the proxy to proactively remove
stale connections. If your workload is spiking, consider raising the idle client connection timeout to
save the cost of establishing connections.

For Target group configuration, provide information for the following:

• Database. Choose one RDS DB instance or Aurora DB cluster to access through this proxy. The list
only includes DB instances and clusters with compatible database engines, engine versions, and
other settings. If the list is empty, create a new DB instance or cluster that's compatible with RDS
Proxy. To do so, follow the procedure in Creating an Amazon Aurora DB cluster (p. 125). Then try
creating the proxy again.

• Connection pool maximum connections. Specify a value from 1 through 100. This
setting represents the percentage of the max_connections value that RDS Proxy can use
for its connections. If you only intend to use one proxy with this DB instance or cluster,
you can set this value to 100. For details about how RDS Proxy uses this setting, see
MaxConnectionsPercent (p. 311).

• Session pinning filters. (Optional) This is an advanced setting, for troubleshooting performance
issues with particular applications. Currently, the only choice is EXCLUDE_VARIABLE_SETS.
Choose a filter only if both of following are true: Your application isn't reusing connections
due to certain kinds of SQL statements, and you can verify that reusing connections with those
SQL statements doesn't affect application correctness. For more information, see Avoiding
pinning (p. 312).

• Connection borrow timeout. In some cases, you might expect the proxy to sometimes use all
available database connections. In such cases, you can specify how long the proxy waits for
a database connection to become available before returning a timeout error. You can specify
a period up to a maximum of five minutes. This setting only applies when the proxy has the
maximum number of connections open and all connections are already in use.

• Initialization query. (Optional) You can specify one or more SQL statements for the proxy to run
when opening each new database connection. The setting is typically used with SET statements
to make sure that each connection has identical settings such as time zone and character set. For
multiple statements, use semicolons as the separator. You can also include multiple variables in a
single SET statement, such as SET x=1, y=2. Initialization query is not currently supported for
PostgreSQL.

For Connectivity, provide information for the following:

• Secrets Manager secrets. Choose at least one Secrets Manager secret that contains DB user
credentials for the RDS DB instance or Aurora DB cluster that you intend to access with this proxy.

300

Amazon Aurora User Guide for Aurora
Getting started with RDS Proxy

• IAM role. Choose an IAM role that has permission to access the Secrets Manager secrets that you
chose earlier. You can also choose for the AWS Management Console to create a new IAM role for
you and use that.

• IAM Authentication. Choose whether to require or disallow IAM authentication for connections to
your proxy. The choice of IAM authentication or native database authentication applies to all DB
users that access this proxy.

• Subnets. This field is prepopulated with all the subnets associated with your VPC. You can remove
any subnets that you don't need for this proxy. You must leave at least two subnets.

Provide additional connectivity configuration:

• VPC security group. Choose an existing VPC security group. You can also choose for the AWS
Management Console to create a new security group for you and use that.

Note
This security group must allow access to the database the proxy connects to. The same
security group is used for ingress from your applications to the proxy, and for egress from
the proxy to the database. For example, suppose that you use the same security group for
your database and your proxy. In this case, make sure that you specify that resources in
that security group can communicate with other resources in the same security group.
When using a shared VPC, you can't use the default security group for the VPC, or one
that belongs to another account. Choose a security group that belongs to your account. If
one doesn't exist, create one. For more information about this limitation, see Work with
shared VPCs.

(Optional) Provide advanced configuration:

• Enable enhanced logging. You can enable this setting to troubleshoot proxy compatibility or
performance issues.

When this setting is enabled, RDS Proxy includes detailed information about SQL statements in its
logs. This information helps you to debug issues involving SQL behavior or the performance and
scalability of the proxy connections. The debug information includes the text of SQL statements
that you submit through the proxy. Thus, only enable this setting when needed for debugging,
and only when you have security measures in place to safeguard any sensitive information that
appears in the logs.

To minimize overhead associated with your proxy, RDS Proxy automatically turns this setting off
24 hours after you enable it. Enable it temporarily to troubleshoot a specific issue.

5. Choose Create Proxy.

AWS CLI

To create a proxy, use the AWS CLI command create-db-proxy. The --engine-family value is case-
sensitive.

Example

For Linux, macOS, or Unix:

aws rds create-db-proxy \
 --db-proxy-name proxy_name \
 --engine-family { MYSQL | POSTGRESQL } \
 --auth ProxyAuthenticationConfig_JSON_string \
 --role-arn iam_role \
 --vpc-subnet-ids space_separated_list \

301

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html#vpc-share-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html#vpc-share-limitations
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-proxy.html

Amazon Aurora User Guide for Aurora
Getting started with RDS Proxy

 [--vpc-security-group-ids space_separated_list] \
 [--require-tls | --no-require-tls] \
 [--idle-client-timeout value] \
 [--debug-logging | --no-debug-logging] \
 [--tags comma_separated_list]

For Windows:

aws rds create-db-proxy ^
 --db-proxy-name proxy_name ^
 --engine-family { MYSQL | POSTGRESQL } ^
 --auth ProxyAuthenticationConfig_JSON_string ^
 --role-arn iam_role ^
 --vpc-subnet-ids space_separated_list ^
 [--vpc-security-group-ids space_separated_list] ^
 [--require-tls | --no-require-tls] ^
 [--idle-client-timeout value] ^
 [--debug-logging | --no-debug-logging] ^
 [--tags comma_separated_list]

Tip
If you don't already know the subnet IDs to use for the --vpc-subnet-ids parameter, see
Setting up network prerequisites (p. 295) for examples of how to find the subnet IDs that you
can use.

Note
The security group must allow access to the database the proxy connects to. The same security
group is used for ingress from your applications to the proxy, and for egress from the proxy to
the database. For example, suppose that you use the same security group for your database
and your proxy. In this case, make sure that you specify that resources in that security group can
communicate with other resources in the same security group.
When using a shared VPC, you can't use the default security group for the VPC, or one that
belongs to another account. Choose a security group that belongs to your account. If one
doesn't exist, create one. For more information about this limitation, see Work with shared VPCs.

To create the required information and associations for the proxy, you also use the register-db-proxy-
targets command. Specify the target group name default. RDS Proxy automatically creates a target
group with this name when you create each proxy.

aws rds register-db-proxy-targets
 --db-proxy-name value
 [--target-group-name target_group_name]
 [--db-instance-identifiers space_separated_list] # rds db instances, or
 [--db-cluster-identifiers cluster_id] # rds db cluster (all instances), or
 [--db-cluster-endpoint endpoint_name] # rds db cluster endpoint (all
 instances)

RDS API

To create an RDS proxy, call the Amazon RDS API operation CreateDBProxy. You pass a parameter with
the AuthConfig data structure.

RDS Proxy automatically creates a target group named default when you create each proxy. You
associate an RDS DB instance or Aurora DB cluster with the target group by calling the function
RegisterDBProxyTargets.

Viewing an RDS Proxy
After you create one or more RDS proxies, you can view them all to examine their configuration details
and choose which ones to modify, delete, and so on.

302

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html#vpc-share-limitations
https://docs.aws.amazon.com/cli/latest/reference/rds/register-db-proxy-targets.html
https://docs.aws.amazon.com/cli/latest/reference/rds/register-db-proxy-targets.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBProxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_AuthConfig.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RegisterDBProxyTargets.html

Amazon Aurora User Guide for Aurora
Getting started with RDS Proxy

Any database applications that use the proxy require the proxy endpoint to use in the connection string.

AWS Management Console

To view your proxy

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the upper-right corner of the AWS Management Console, choose the AWS Region in which you
created the RDS Proxy.

3. In the navigation pane, choose Proxies.

4. Choose the name of an RDS proxy to display its details.

5. On the details page, the Target groups section shows how the proxy is associated with a specific
RDS DB instance or Aurora DB cluster. You can follow the link to the default target group page to
see more details about the association between the proxy and the database. This page is where you
see settings that you specified when creating the proxy, such as maximum connection percentage,
connection borrow timeout, engine compatibility, and session pinning filters.

CLI

To view your proxy using the CLI, use the describe-db-proxies command. By default, it displays all proxies
owned by your AWS account. To see details for a single proxy, specify its name with the --db-proxy-
name parameter.

aws rds describe-db-proxies [--db-proxy-name proxy_name]

To view the other information associated with the proxy, use the following commands.

aws rds describe-db-proxy-target-groups --db-proxy-name proxy_name

aws rds describe-db-proxy-targets --db-proxy-name proxy_name

Use the following sequence of commands to see more detail about the things that are associated with
the proxy:

1. To get a list of proxies, run describe-db-proxies.

2. To show connection parameters such as the maximum percentage of connections that the proxy can
use, run describe-db-proxy-target-groups --db-proxy-name and use the name of the proxy as the
parameter value.

3. To see the details of the RDS DB instance or Aurora DB cluster associated with the returned target
group, run describe-db-proxy-targets.

RDS API

To view your proxies using the RDS API, use the DescribeDBProxies operation. It returns values of the
DBProxy data type.

To see details of the connection settings for the proxy, use the proxy identifiers from this return value
with the DescribeDBProxyTargetGroups operation. It returns values of the DBProxyTargetGroup data
type.

To see the RDS instance or Aurora DB cluster associated with the proxy, use the DescribeDBProxyTargets
operation. It returns values of the DBProxyTarget data type.

303

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxies.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxies.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxy-target-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxy-targets.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBProxies.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DBProxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBProxyTargetGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DBProxyTargetGroup.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBProxyTargets.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DBProxyTarget.html

Amazon Aurora User Guide for Aurora
Getting started with RDS Proxy

Connecting to a database through RDS Proxy

You connect to an RDS DB instance or Aurora DB cluster through a proxy in generally the same way as
you connect directly to the database. The main difference is that you specify the proxy endpoint instead
of the instance or cluster endpoint. For an Aurora DB cluster, by default all proxy connections have
read/write capability and use the writer instance. If you normally use the reader endpoint for read-only
connections, you can create an additional read-only endpoint for the proxy and use that endpoint the
same way. For more information, see Overview of proxy endpoints (p. 315).

Topics

• Connecting to a proxy using native authentication (p. 304)

• Connecting to a proxy using IAM authentication (p. 304)

• Considerations for connecting to a proxy with PostgreSQL (p. 305)

Connecting to a proxy using native authentication

Use the following basic steps to connect to a proxy using native authentication:

1. Find the proxy endpoint. In the AWS Management Console, you can find the endpoint on the details
page for the corresponding proxy. With the AWS CLI, you can use the describe-db-proxies command.
The following example shows how.

Add --output text to get output as a simple tab-separated list.
$ aws rds describe-db-proxies --query '*[*].{DBProxyName:DBProxyName,Endpoint:Endpoint}'
[
 [
 {
 "Endpoint": "the-proxy.proxy-demo.us-east-1.rds.amazonaws.com",
 "DBProxyName": "the-proxy"
 },
 {
 "Endpoint": "the-proxy-other-secret.proxy-demo.us-east-1.rds.amazonaws.com",
 "DBProxyName": "the-proxy-other-secret"
 },
 {
 "Endpoint": "the-proxy-rds-secret.proxy-demo.us-east-1.rds.amazonaws.com",
 "DBProxyName": "the-proxy-rds-secret"
 },
 {
 "Endpoint": "the-proxy-t3.proxy-demo.us-east-1.rds.amazonaws.com",
 "DBProxyName": "the-proxy-t3"
 }
]
]

2. Specify that endpoint as the host parameter in the connection string for your client application. For
example, specify the proxy endpoint as the value for the mysql -h option or psql -h option.

3. Supply the same database user name and password as you usually do.

Connecting to a proxy using IAM authentication

When you use IAM authentication with RDS Proxy, set up your database users to authenticate with
regular user names and passwords. The IAM authentication applies to RDS Proxy retrieving the user
name and password credentials from Secrets Manager. The connection from RDS Proxy to the underlying
database doesn't go through IAM.

304

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxies.html

Amazon Aurora User Guide for Aurora
Getting started with RDS Proxy

To connect to RDS Proxy using IAM authentication, follow the same general procedure as for connecting
to an RDS DB instance or Aurora cluster using IAM authentication. For general information about using
IAM with RDS and Aurora, see Security in Amazon Aurora (p. 1719).

The major differences in IAM usage for RDS Proxy include the following:

• You don't configure each individual database user with an authorization plugin. The database users
still have regular user names and passwords within the database. You set up Secrets Manager secrets
containing these user names and passwords, and authorize RDS Proxy to retrieve the credentials from
Secrets Manager.

The IAM authentication applies to the connection between your client program and the proxy. The
proxy then authenticates to the database using the user name and password credentials retrieved from
Secrets Manager.

• Instead of the instance, cluster, or reader endpoint, you specify the proxy endpoint. For details about
the proxy endpoint, see Connecting to your DB cluster using IAM authentication (p. 1763).

• In the direct database IAM authentication case, you selectively choose database users and configure
them to be identified with a special authentication plugin. You can then connect to those users using
IAM authentication.

In the proxy use case, you provide the proxy with Secrets that contain some user's user name and
password (native authentication). You then connect to the proxy using IAM authentication. Here, you
do this by generating an authentication token with the proxy endpoint, not the database endpoint.
You also use a user name that matches one of the user names for the secrets that you provided.

• Make sure that you use Transport Layer Security (TLS)/Secure Sockets Layer (SSL) when connecting to
a proxy using IAM authentication.

You can grant a specific user access to the proxy by modifying the IAM policy. An example follows.

"Resource": "arn:aws:rds-db:us-east-2:1234567890:dbuser:prx-ABCDEFGHIJKL01234/db_user"

Considerations for connecting to a proxy with PostgreSQL

For PostgreSQL, when a client starts a connection to a PostgreSQL database, it sends a startup message
that includes pairs of parameter name and value strings. For details, see the StartupMessage in
PostgreSQL message formats in the PostgreSQL documentation.

When connecting through an RDS proxy, the startup message can include the following currently
recognized parameters:

• user

• database

• replication

The startup message can also include the following additional runtime parameters:

• application_name

• client_encoding

• DateStyle

• TimeZone

• extra_float_digits

For more information about PostgreSQL messaging, see the Frontend/Backend protocol in the
PostgreSQL documentation.

305

https://www.postgresql.org/docs/current/protocol-message-formats.html
https://www.postgresql.org/docs/current/runtime-config-logging.html#GUC-APPLICATION-NAME
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-CLIENT-ENCODING
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-DATESTYLE
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-TIMEZONE
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-EXTRA-FLOAT-DIGITS
https://www.postgresql.org/docs/current/protocol.html

Amazon Aurora User Guide for Aurora
Managing an RDS Proxy

For PostgreSQL, if you use JDBC we recommend the following to avoid pinning:

• Set the JDBC connection parameter assumeMinServerVersion to at least 9.0 to avoid pinning.
Doing this prevents the JDBC driver from performing an extra round trip during connection startup
when it runs SET extra_float_digits = 3.

• Set the JDBC connection parameter ApplicationName to any/your-application-name to
avoid pinning. Doing this prevents the JDBC driver from performing an extra round trip during
connection startup when it runs SET application_name = "PostgreSQL JDBC Driver".
Note the JDBC parameter is ApplicationName but the PostgreSQL StartupMessage parameter is
application_name.

• Set the JDBC connection parameter preferQueryMode to extendedForPrepared to avoid pinning.
The extendedForPrepared ensures that the extended mode is used only for prepared statements.

The default for the preferQueryMode parameter is extended, which uses the extended mode for
all queries. The extended mode uses a series of Prepare, Bind, Execute, and Sync requests and
corresponding responses. This type of series causes connection pinning in an RDS proxy.

For more information, see Avoiding pinning (p. 312). For more information about connecting using
JDBC, see Connecting to the database in the PostgreSQL documentation.

Managing an RDS Proxy
Following, you can find an explanation of how to manage RDS Proxy operation and configuration. These
procedures help your application make the most efficient use of database connections and achieve
maximum connection reuse. The more that you can take advantage of connection reuse, the more CPU
and memory overhead that you can save. This in turn reduces latency for your application and enables
the database to devote more of its resources to processing application requests.

Topics
• Modifying an RDS Proxy (p. 306)
• Adding a new database user (p. 310)
• Changing the password for a database user (p. 311)
• Configuring connection settings (p. 311)
• Avoiding pinning (p. 312)
• Deleting an RDS Proxy (p. 314)

Modifying an RDS Proxy
You can change certain settings associated with a proxy after you create the proxy. You do so by
modifying the proxy itself, its associated target group, or both. Each proxy has an associated target
group.

AWS Management Console

To modify the settings for a proxy

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Proxies.
3. In the list of proxies, choose the proxy whose settings you want to modify or go to its details page.
4. For Actions, choose Modify.
5. Enter or choose the properties to modify. You can modify the following:

306

https://jdbc.postgresql.org/documentation/head/connect.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Managing an RDS Proxy

• Proxy identifier – Rename the proxy by entering a new identifier.

• Require Transport Layer Security – Turn the requirement for Transport layer Security (TLS) on or
off.

• Idle client connection timeout – Enter a time period for the idle client connection timeout.

• Secrets Manager secrets – Add or remove Secrets Manager secrets. These secrets correspond to
database user names and passwords.

• IAM role – Change the IAM role used to retrieve the secrets from Secrets Manager.

• IAM Authentication – Require or disallow IAM authentication for connections to the proxy.

• VPC security group – Add or remove VPC security groups for the proxy to use.

• Enable enhanced logging – Enable or disable enhanced logging.

6. Choose Modify.

If you didn't find the settings listed that you want to change, use the following procedure to update the
target group for the proxy. The target group associated with a proxy controls the settings related to the
physical database connections. Each proxy has one associated target group named default, which is
created automatically along with the proxy.

You can only modify the target group from the proxy details page, not from the list on the Proxies page.

To modify the settings for a proxy target group

1. On the Proxies page, go to the details page for a proxy.

2. For Target groups, choose the default link. Currently, all proxies have a single target group named
default.

3. On the details page for the default target group, choose Modify.

4. Choose new settings for the properties that you can modify:

• Database – Choose a different RDS DB instance or Aurora cluster.

• Connection pool maximum connections – Adjust what percentage of the maximum available
connections the proxy can use.

• Session pinning filters – (Optional) Choose a session pinning filter. Doing this can help reduce
performance issues due to insufficient transaction-level reuse for connections. Using this setting
requires understanding of application behavior and the circumstances under which RDS Proxy pins
a session to a database connection.

• Connection borrow timeout – Adjust the connection borrow timeout interval. This setting applies
when the maximum number of connections is already being used for the proxy. The setting
determines how long the proxy waits for a connection to become available before returning a
timeout error.

• Initialization query – (Optional) Add an initialization query, or modify the current one. You can
specify one or more SQL statements for the proxy to run when opening each new database
connection. The setting is typically used with SET statements to make sure that each connection
has identical settings such as time zone and character set. For multiple statements, use semicolons
as the separator. You can also include multiple variables in a single SET statement, such as SET
x=1, y=2. Initialization query is not currently supported for PostgreSQL.

You can't change certain properties, such as the target group identifier and the database engine.

5. Choose Modify target group.

307

Amazon Aurora User Guide for Aurora
Managing an RDS Proxy

AWS CLI

To modify a proxy using the AWS CLI, use the commands modify-db-proxy, modify-db-proxy-target-
group, deregister-db-proxy-targets, and register-db-proxy-targets.

With the modify-db-proxy command, you can change properties such as the following:

• The set of Secrets Manager secrets used by the proxy.
• Whether TLS is required.
• The idle client timeout.
• Whether to log additional information from SQL statements for debugging.
• The IAM role used to retrieve Secrets Manager secrets.
• The security groups used by the proxy.

The following example shows how to rename an existing proxy.

aws rds modify-db-proxy --db-proxy-name the-proxy --new-db-proxy-name the_new_name

To modify connection-related settings or rename the target group, use the modify-db-proxy-
target-group command. Currently, all proxies have a single target group named default. When
working with this target group, you specify the name of the proxy and default for the name of the
target group.

The following example shows how to first check the MaxIdleConnectionsPercent setting for a proxy
and then change it, using the target group.

aws rds describe-db-proxy-target-groups --db-proxy-name the-proxy

{
 "TargetGroups": [
 {
 "Status": "available",
 "UpdatedDate": "2019-11-30T16:49:30.342Z",
 "ConnectionPoolConfig": {
 "MaxIdleConnectionsPercent": 50,
 "ConnectionBorrowTimeout": 120,
 "MaxConnectionsPercent": 100,
 "SessionPinningFilters": []
 },
 "TargetGroupName": "default",
 "CreatedDate": "2019-11-30T16:49:27.940Z",
 "DBProxyName": "the-proxy",
 "IsDefault": true
 }
]
}

aws rds modify-db-proxy-target-group --db-proxy-name the-proxy --target-group-name default
 --connection-pool-config '
{ "MaxIdleConnectionsPercent": 75 }'

{
 "DBProxyTargetGroup": {
 "Status": "available",
 "UpdatedDate": "2019-12-02T04:09:50.420Z",
 "ConnectionPoolConfig": {
 "MaxIdleConnectionsPercent": 75,
 "ConnectionBorrowTimeout": 120,
 "MaxConnectionsPercent": 100,

308

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-proxy.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-proxy-target-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-proxy-target-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/deregister-db-proxy-targets.html
https://docs.aws.amazon.com/cli/latest/reference/rds/register-db-proxy-targets.html

Amazon Aurora User Guide for Aurora
Managing an RDS Proxy

 "SessionPinningFilters": []
 },
 "TargetGroupName": "default",
 "CreatedDate": "2019-11-30T16:49:27.940Z",
 "DBProxyName": "the-proxy",
 "IsDefault": true
 }
}

With the deregister-db-proxy-targets and register-db-proxy-targets commands, you
change which RDS DB instance or Aurora DB cluster the proxy is associated with through its target group.
Currently, each proxy can connect to one RDS DB instance or Aurora DB cluster. The target group tracks
the connection details for all the RDS DB instances in a Multi-AZ configuration, or all the DB instances in
an Aurora cluster.

The following example starts with a proxy that is associated with an Aurora MySQL cluster named
cluster-56-2020-02-25-1399. The example shows how to change the proxy so that it can connect
to a different cluster named provisioned-cluster.

When you work with an RDS DB instance, you specify the --db-instance-identifier option. When
you work with an Aurora DB cluster, you specify the --db-cluster-identifier option instead.

The following example modifies an Aurora MySQL proxy. An Aurora PostgreSQL proxy has port 5432.

aws rds describe-db-proxy-targets --db-proxy-name the-proxy

{
 "Targets": [
 {
 "Endpoint": "instance-9814.demo.us-east-1.rds.amazonaws.com",
 "Type": "RDS_INSTANCE",
 "Port": 3306,
 "RdsResourceId": "instance-9814"
 },
 {
 "Endpoint": "instance-8898.demo.us-east-1.rds.amazonaws.com",
 "Type": "RDS_INSTANCE",
 "Port": 3306,
 "RdsResourceId": "instance-8898"
 },
 {
 "Endpoint": "instance-1018.demo.us-east-1.rds.amazonaws.com",
 "Type": "RDS_INSTANCE",
 "Port": 3306,
 "RdsResourceId": "instance-1018"
 },
 {
 "Type": "TRACKED_CLUSTER",
 "Port": 0,
 "RdsResourceId": "cluster-56-2020-02-25-1399"
 },
 {
 "Endpoint": "instance-4330.demo.us-east-1.rds.amazonaws.com",
 "Type": "RDS_INSTANCE",
 "Port": 3306,
 "RdsResourceId": "instance-4330"
 }
]
}

aws rds deregister-db-proxy-targets --db-proxy-name the-proxy --db-cluster-identifier
 cluster-56-2020-02-25-1399

309

Amazon Aurora User Guide for Aurora
Managing an RDS Proxy

aws rds describe-db-proxy-targets --db-proxy-name the-proxy

{
 "Targets": []
}

aws rds register-db-proxy-targets --db-proxy-name the-proxy --db-cluster-identifier
 provisioned-cluster

{
 "DBProxyTargets": [
 {
 "Type": "TRACKED_CLUSTER",
 "Port": 0,
 "RdsResourceId": "provisioned-cluster"
 },
 {
 "Endpoint": "gkldje.demo.us-east-1.rds.amazonaws.com",
 "Type": "RDS_INSTANCE",
 "Port": 3306,
 "RdsResourceId": "gkldje"
 },
 {
 "Endpoint": "provisioned-1.demo.us-east-1.rds.amazonaws.com",
 "Type": "RDS_INSTANCE",
 "Port": 3306,
 "RdsResourceId": "provisioned-1"
 }
]
}

RDS API

To modify a proxy using the RDS API, you use the operations ModifyDBProxy,
ModifyDBProxyTargetGroup, DeregisterDBProxyTargets, and RegisterDBProxyTargets operations.

With ModifyDBProxy, you can change properties such as the following:

• The set of Secrets Manager secrets used by the proxy.
• Whether TLS is required.
• The idle client timeout.
• Whether to log additional information from SQL statements for debugging.
• The IAM role used to retrieve Secrets Manager secrets.
• The security groups used by the proxy.

With ModifyDBProxyTargetGroup, you can modify connection-related settings or rename the target
group. Currently, all proxies have a single target group named default. When working with this target
group, you specify the name of the proxy and default for the name of the target group.

With DeregisterDBProxyTargets and RegisterDBProxyTargets, you change which RDS DB
instance or Aurora DB cluster the proxy is associated with through its target group. Currently, each proxy
can connect to one RDS DB instance or Aurora DB cluster. The target group tracks the connection details
for all the RDS DB instances in a Multi-AZ configuration, or all the DB instances in an Aurora cluster.

Adding a new database user
In some cases, you might add a new database user to an RDS DB instance or Aurora cluster that's
associated with a proxy. If so, add or repurpose a Secrets Manager secret to store the credentials for that
user. To do this, choose one of the following options:

310

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBProxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBProxyTargetGroup.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeregisterDBProxyTargets.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RegisterDBProxyTargets.html

Amazon Aurora User Guide for Aurora
Managing an RDS Proxy

• Create a new Secrets Manager secret, using the procedure described in Setting up database credentials
in AWS Secrets Manager (p. 296).

• Update the IAM role to give RDS Proxy access to the new Secrets Manager secret. To do so, update the
resources section of the IAM role policy.

• If the new user takes the place of an existing one, update the credentials stored in the proxy's Secrets
Manager secret for the existing user.

Changing the password for a database user
In some cases, you might change the password for a database user in an RDS DB instance or Aurora
cluster that's associated with a proxy. If so, update the corresponding Secrets Manager secret with the
new password.

Configuring connection settings
To adjust RDS Proxy's connection pooling, you can modify the following settings:

• IdleClientTimeout (p. 311)
• MaxConnectionsPercent (p. 311)
• MaxIdleConnectionsPercent (p. 312)
• ConnectionBorrowTimeout (p. 312)

IdleClientTimeout

You can specify how long a client connection can be idle before the proxy can close it. The default is
1,800 seconds (30 minutes).

A client connection is considered idle when the application doesn't submit a new request within the
specified time after the previous request completed. The underlying database connection stays open
and is returned to the connection pool. Thus, it's available to be reused for new client connections. If
you want the proxy to proactively remove stale connections, consider lowering the idle client connection
timeout. If your workload establishes frequent connections with the proxy, consider raising the idle client
connection timeout to save the cost of establishing connections.

This setting is represented by the Idle client connection timeout field in the RDS console and the
IdleClientTimeout setting in the AWS CLI and the API. To learn how to change the value of the Idle
client connection timeout field in the RDS console, see AWS Management Console (p. 306). To learn
how to change the value of the IdleClientTimeout setting, see the CLI command modify-db-proxy or
the API operation ModifyDBProxy.

MaxConnectionsPercent

You can limit the number of connections that an RDS Proxy can establish with the database. You specify
the limit as a percentage of the maximum connections available for your database. The proxy doesn't
create all of these connections in advance. This setting reserves the right for the proxy to establish these
connections as the workload needs them.

For example, suppose that you configured RDS Proxy to use 75 percent of the maximum connections for
your database that supports a maximum of 1,000 concurrent connections. In that case, RDS Proxy can
open up to 750 database connections.

This setting is represented by the Connection pool maximum connections field in the RDS console
and the MaxConnectionsPercent setting in the AWS CLI and the API. To learn how to change the
value of the Connection pool maximum connections field in the RDS console, see AWS Management
Console (p. 306). To learn how to change the value of the MaxConnectionsPercent setting, see the
CLI command modify-db-proxy-target-group or the API operation ModifyDBProxyTargetGroup.

311

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBProxy.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-proxy-target-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBProxyTargetGroup.html

Amazon Aurora User Guide for Aurora
Managing an RDS Proxy

For information on database connection limits, see Maximum connections to an Aurora MySQL DB
instance and Maximum connections to an Aurora PostgreSQL DB instance.

MaxIdleConnectionsPercent

You can control the number of idle database connections that RDS Proxy can keep in the connection
pool. RDS Proxy considers a database connection in it's pool to be idle when there's been no activity on
the connection for five minutes.

You specify the limit as a percentage of the maximum connections available for your database. The
default value is 50 percent and the upper limit is the value of MaxConnectionsPercent. With a high
value, the proxy leaves a high percentage of idle database connections open. With a low value, the proxy
closes a high percentage of idle database connections. If your workloads are unpredictable, consider
setting a high value for MaxIdleConnectionsPercent so that RDS Proxy can accommodate surges in
activity without opening a lot of new database connections.

This setting is represented by the MaxIdleConnectionsPercent setting of DBProxyTargetGroup
in the AWS CLI and the API. To learn how to change the value of the MaxIdleConnectionsPercent
setting, see the CLI command modify-db-proxy-target-group or the API operation
ModifyDBProxyTargetGroup.

Note
RDS Proxy closes database connections some time after 24 hours when they are no longer in
use. The proxy performs this action regardless of the value of the maximum idle connections
setting.

For information on database connection limits, see Maximum connections to an Aurora MySQL DB
instance and Maximum connections to an Aurora PostgreSQL DB instance.

ConnectionBorrowTimeout

You can choose how long RDS Proxy waits for a database connection in the connection pool to become
available for use before returning a timeout error. The default is 120 seconds. This setting applies when
the number of connections is at the maximum, and so no connections are available in the connection
pool. It also applies if no appropriate database instance is available to handle the request because, for
example, a failover operation is in process. Using this setting, you can set the best wait period for your
application without having to change the query timeout in your application code.

This setting is represented by the Connection borrow timeout field in the RDS console or the
ConnectionBorrowTimeout setting of DBProxyTargetGroup in the AWS CLI or API. To learn how
to change the value of the Connection borrow timeout field in the RDS console, see AWS Management
Console (p. 306). To learn how to change the value of the ConnectionBorrowTimeout setting, see
the CLI command modify-db-proxy-target-group or the API operation ModifyDBProxyTargetGroup.

Avoiding pinning
Multiplexing is more efficient when database requests don't rely on state information from previous
requests. In that case, RDS Proxy can reuse a connection at the conclusion of each transaction. Examples
of such state information include most variables and configuration parameters that you can change
through SET or SELECT statements. SQL transactions on a client connection can multiplex between
underlying database connections by default.

Your connections to the proxy can enter a state known as pinning. When a connection is pinned, each
later transaction uses the same underlying database connection until the session ends. Other client
connections also can't reuse that database connection until the session ends. The session ends when the
client connection is dropped.

RDS Proxy automatically pins a client connection to a specific DB connection when it detects a session
state change that isn't appropriate for other sessions. Pinning reduces the effectiveness of connection

312

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.Performance.html#AuroraMySQL.Managing.MaxConnections
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.Performance.html#AuroraMySQL.Managing.MaxConnections
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Managing.html#AuroraPostgreSQL.Managing.MaxConnections
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-proxy-target-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBProxyTargetGroup.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.Performance.html#AuroraMySQL.Managing.MaxConnections
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.Performance.html#AuroraMySQL.Managing.MaxConnections
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Managing.html#AuroraPostgreSQL.Managing.MaxConnections
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-proxy-target-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBProxyTargetGroup.html

Amazon Aurora User Guide for Aurora
Managing an RDS Proxy

reuse. If all or almost all of your connections experience pinning, consider modifying your application
code or workload to reduce the conditions that cause the pinning.

For example, if your application changes a session variable or configuration parameter, later statements
can rely on the new variable or parameter to be in effect. Thus, when RDS Proxy processes requests to
change session variables or configuration settings, it pins that session to the DB connection. That way,
the session state remains in effect for all later transactions in the same session.

This rule doesn't apply to all parameters you can set. RDS Proxy tracks changes to the character set,
collation, time zone, autocommit, current database, SQL mode, and session_track_schema settings.
Thus RDS Proxy doesn't pin the session when you modify these. In this case, RDS Proxy only reuses the
connection for other sessions that have the same values for those settings.

Performance tuning for RDS Proxy involves trying to maximize transaction-level connection reuse
(multiplexing) by minimizing pinning. You can do so by doing the following:

• Avoid unnecessary database requests that might cause pinning.

• Set variables and configuration settings consistently across all connections. That way, later sessions are
more likely to reuse connections that have those particular settings.

However, for PostgreSQL setting a variable leads to session pinning.

• Apply a session pinning filter to the proxy. You can exempt certain kinds of operations from pinning
the session if you know that doing so doesn't affect the correct operation of your application.

• See how frequently pinning occurs by monitoring the CloudWatch metric
DatabaseConnectionsCurrentlySessionPinned. For information about this and other
CloudWatch metrics, see Monitoring RDS Proxy metrics with Amazon CloudWatch (p. 324).

• If you use SET statements to perform identical initialization for each client connection, you can do so
while preserving transaction-level multiplexing. In this case, you move the statements that set up the
initial session state into the initialization query used by a proxy. This property is a string containing
one or more SQL statements, separated by semicolons.

For example, you can define an initialization query for a proxy that sets certain configuration
parameters. Then, RDS Proxy applies those settings whenever it sets up a new connection for that
proxy. You can remove the corresponding SET statements from your application code, so that they
don't interfere with transaction-level multiplexing.

Important
For proxies associated with MySQL databases, don't set the configuration parameter
sql_auto_is_null to true or a nonzero value in the initialization query. Doing so might
cause incorrect application behavior.

The proxy pins the session to the current connection in the following situations where multiplexing
might cause unexpected behavior:

• Any statement with a text size greater than 16 KB causes the proxy to pin the session.

• Prepared statements cause the proxy to pin the session. This rule applies whether the prepared
statement uses SQL text or the binary protocol.

• Explicit MySQL statements LOCK TABLE, LOCK TABLES, or FLUSH TABLES WITH READ LOCK cause
the proxy to pin the session.

• Setting a user variable or a system variable (with some exceptions) causes the proxy to pin the session.
If this situation reduces your connection reuse too much, you can choose for SET operations not
to cause pinning. For information about how to do so by setting the SessionPinningFilters
property, see Creating an RDS Proxy (p. 299).

• Creating a temporary table causes the proxy to pin the session. That way, the contents of the
temporary table are preserved throughout the session regardless of transaction boundaries.

313

Amazon Aurora User Guide for Aurora
Managing an RDS Proxy

• Calling the MySQL functions ROW_COUNT, FOUND_ROWS, and LAST_INSERT_ID sometimes causes
pinning.

The exact circumstances where these functions cause pinning might differ between Aurora MySQL
versions that are compatible with MySQL 5.6 and MySQL 5.7.

Calling MySQL stored procedures and stored functions doesn't cause pinning. RDS Proxy doesn't
detect any session state changes resulting from such calls. Therefore, make sure that your application
doesn't change session state inside stored routines and rely on that session state to persist across
transactions. For example, if a stored procedure creates a temporary table that is intended to persist
across transactions, that application currently isn't compatible with RDS Proxy.

For PostgreSQL, the following interactions also cause pinning:

• Using SET commands
• Using the PostgreSQL extended query protocol such as by using JDBC default settings
• Creating temporary sequences, tables, or views
• Declaring cursors
• Discarding the session state
• Listening on a notification channel
• Loading a library module such as auto_explain
• Manipulating sequences using functions such as nextval and setval
• Interacting with locks using functions such as pg_advisory_lock and pg_try_advisory_lock
• Using prepared statements, setting parameters, or resetting a parameter to its default

If you have expert knowledge about your application behavior, you can skip the pinning behavior for
certain application statements. To do so, choose the Session pinning filters option when creating the
proxy. Currently, you can opt out of session pinning for setting session variables and configuration
settings.

For metrics about how often pinning occurs for a proxy, see Monitoring RDS Proxy metrics with Amazon
CloudWatch (p. 324).

Deleting an RDS Proxy
You can delete a proxy if you no longer need it. You might delete a proxy because the application that
was using it is no longer relevant. Or you might delete a proxy if you take the DB instance or cluster
associated with it out of service.

AWS Management Console

To delete a proxy

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Proxies.
3. Choose the proxy to delete from the list.
4. Choose Delete Proxy.

AWS CLI

To delete a DB proxy, use the AWS CLI command delete-db-proxy. To remove related associations, also
use the deregister-db-proxy-targets command.

314

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-proxy.html
https://docs.aws.amazon.com/cli/latest/reference/rds/deregister-db-proxy-targets.html

Amazon Aurora User Guide for Aurora
Working with RDS Proxy endpoints

aws rds delete-db-proxy --name proxy_name

aws rds deregister-db-proxy-targets
 --db-proxy-name proxy_name
 [--target-group-name target_group_name]
 [--target-ids comma_separated_list] # or
 [--db-instance-identifiers instance_id] # or
 [--db-cluster-identifiers cluster_id]

RDS API

To delete a DB proxy, call the Amazon RDS API function DeleteDBProxy. To delete related items and
associations, you also call the functions DeleteDBProxyTargetGroup and DeregisterDBProxyTargets.

Working with Amazon RDS Proxy endpoints
Following, you can learn about endpoints for RDS Proxy and how to use them. By using endpoints, you
can take advantage of the following capabilities:

• You can use multiple endpoints with a proxy to monitor and troubleshoot connections from different
applications independently.

• You can use reader endpoints with Aurora DB clusters to improve read scalability and high availability
for your query-intensive applications.

• You can use a cross-VPC endpoint to allow access to databases in one VPC from resources such as
Amazon EC2 instances in a different VPC.

Topics
• Overview of proxy endpoints (p. 315)

• Using reader endpoints with Aurora clusters (p. 316)

• Accessing Aurora and RDS databases across VPCs (p. 319)

• Creating a proxy endpoint (p. 319)

• Viewing proxy endpoints (p. 321)

• Modifying a proxy endpoint (p. 322)

• Deleting a proxy endpoint (p. 323)

• Limits for proxy endpoints (p. 324)

Overview of proxy endpoints
Working with RDS Proxy endpoints involves the same kinds of procedures as with Aurora DB cluster and
reader endpoints and RDS instance endpoints. If you aren't familiar with Aurora endpoints, find more
information in Amazon Aurora connection management (p. 32).

By default, the endpoint that you connect to when you use RDS Proxy with an Aurora cluster has read/
write capability. As a consequence, this endpoint sends all requests to the writer instance of the cluster,
and all of those connections count against the max_connections value for the writer instance. If
your proxy is associated with an Aurora DB cluster, you can create additional read/write or read-only
endpoints for that proxy.

You can use a read-only endpoint with your proxy for read-only queries, the same way that you use the
reader endpoint for an Aurora provisioned cluster. Doing so helps you to take advantage of the read
scalability of an Aurora cluster with one or more reader DB instances. You can run more simultaneous

315

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBProxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBProxyTargetGroup.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeregisterDBProxyTargets.html

Amazon Aurora User Guide for Aurora
Working with RDS Proxy endpoints

queries and make more simultaneous connections by using a read-only endpoint and adding more reader
DB instances to your Aurora cluster as needed.

Tip
When you create a proxy for an Aurora cluster using the AWS Management Console, you can
choose for RDS Proxy to automatically create a reader endpoint. For information about the
benefits of a reader endpoint, see Using reader endpoints with Aurora clusters (p. 316).

For a proxy endpoint that you create, you can also associate the endpoint with a different virtual private
cloud (VPC) than the proxy itself uses. By doing so, you can connect to the proxy from a different VPC,
for example a VPC used by a different application within your organization.

For information about limits associated with proxy endpoints, see Limits for proxy endpoints (p. 324).

In the RDS Proxy logs, each entry is prefixed with the name of the associated proxy endpoint. This name
can be the name you specified for a user-defined endpoint, or the special name default for read/write
requests using the default endpoint of a proxy.

Each proxy endpoint has its own set of CloudWatch metrics. You can monitor the metrics for all
endpoints of a proxy. You can also monitor metrics for a specific endpoint, or for all the read/write or
read-only endpoints of a proxy. For more information, see Monitoring RDS Proxy metrics with Amazon
CloudWatch (p. 324).

A proxy endpoint uses the same authentication mechanism as its associated proxy. RDS Proxy
automatically sets up permissions and authorizations for the user-defined endpoint, consistent with the
properties of the associated proxy.

Using reader endpoints with Aurora clusters
You can create and connect to read-only endpoints called reader endpoints when you use RDS Proxy
with Aurora clusters. These reader endpoints help to improve the read scalability of your query-intensive
applications. Reader endpoints also help to improve the availability of your connections if a reader DB
instance in your cluster becomes unavailable.

Note
When you specify that a new endpoint is read-only, RDS Proxy requires that the Aurora cluster
has one or more reader DB instances. If you change the target of the proxy to an Aurora cluster
containing only a single writer or a multi-writer Aurora cluster, any requests to the reader
endpoint fail with an error. Requests also fail if the target of the proxy is an RDS instance
instead of an Aurora cluster.
If an Aurora cluster has reader instances but those instances aren't available, RDS Proxy waits
to send the request instead of returning an error immediately. If no reader instance becomes
available within the connection borrow timeout period, the request fails with an error.

How reader endpoints help application availability

In some cases, one or more reader instances in your cluster might become unavailable. If so, connections
that use a reader endpoint of a DB proxy can recover more quickly than ones that use the Aurora reader
endpoint. RDS Proxy routes connections to only the available reader instances in the cluster. There isn't a
delay due to DNS caching when an instance becomes unavailable.

If the connection is multiplexed, RDS Proxy directs subsequent queries to a different reader DB instance
without any interruption to your application. During the automatic switchover to a new reader instance,
RDS Proxy checks the replication lag of the old and new reader instances. RDS Proxy makes sure that the
new reader instance is up to date with the same changes as the previous reader instance. That way, your
application never sees stale data when RDS Proxy switches from one reader DB instance to another.

If the connection is pinned, the next query on the connection returns an error. However, your application
can immediately reconnect to the same endpoint. RDS Proxy routes the connection to a different reader

316

Amazon Aurora User Guide for Aurora
Working with RDS Proxy endpoints

DB instance that's in available state. When you manually reconnect, RDS Proxy doesn't check the
replication lag between the old and new reader instances.

If your Aurora cluster doesn't have any available reader instances, RDS Proxy checks whether this
condition is temporary or permanent. The behavior in each case is as follows:

• Suppose that your cluster has one or more reader DB instances, but none of them are in the
Available state. For example, all reader instances might be rebooting or encountering problems. In
that case, attempts to connect to a reader endpoint wait for a reader instance to become available. If
no reader instance becomes available within the connection borrow timeout period, the connection
attempt fails. If a reader instance does become available, the connection attempt succeeds.

• Suppose that your cluster has no reader DB instances. In that case, RDS Proxy returns an error
immediately if you try to connect to a reader endpoint. To resolve this problem, add one or more
reader instances to your cluster before you connect to the reader endpoint.

How reader endpoints help query scalability

Reader endpoints for a proxy help with Aurora query scalability in the following ways:

• As you add reader instances to your Aurora cluster, RDS Proxy can route new connections to any reader
endpoints to the different reader instances. That way, queries performed using one reader endpoint
connection don't slow down queries performed using another reader endpoint connection. The queries
run on separate DB instances. Each DB instance has its own compute resources, buffer cache, and so
on.

• Where practical, RDS Proxy uses the same reader DB instance for all the queries issue using a particular
reader endpoint connection. That way, a set of related queries on the same tables can take advantage
of caching, plan optimization, and so on, on a particular DB instance.

• If a reader DB instance becomes unavailable, the effect on your application depends on whether
the session is multiplexed or pinned. If the session is multiplexed, RDS Proxy routes any subsequent
queries to a different reader DB instance without any action on your part. If the session is pinned, your
application gets an error and must reconnect. You can reconnect to the reader endpoint immediately
and RDS Proxy routes the connection to an available reader DB instance. For more information about
multiplexing and pinning for proxy sessions, see Overview of RDS Proxy concepts (p. 291).

• The more reader DB instances you have in the cluster, the more simultaneous connections you can
make using reader endpoints. For example, suppose that your cluster has four reader DB instances,
each configured to allow 200 simultaneous connections. Suppose that your proxy is configured to use
50% of the maximum connections. Here, the maximum number of connections that you can make
through the reader endpoints in the proxy is 100 (50% of 200) for reader 1. It's also 100 for reader 2,
and so on, for a total of 400. If you double the number of reader DB instances in the cluster to eight,
the maximum number of connections through the reader endpoints also doubles to 800.

Examples of using reader endpoints

The following Linux example shows how you can confirm that you're connected to an Aurora MySQL
cluster through a reader endpoint. The innodb_read_only configuration setting is enabled. Attempts
to perform write operations such as CREATE DATABASE statements fail with an error. And you can
confirm that you're connected to a reader DB instance by checking the DB instance name using the
aurora_server_id variable.

Tip
Don't rely only on checking the DB instance name to determine whether the connection is read/
write or read-only. Remember that DB instances in an Aurora cluster can change roles between
writer and reader when failovers happen.

$ mysql -h endpoint-demo-reader.endpoint.proxy-demo.us-east-1.rds.amazonaws.com -u admin -p
...

317

Amazon Aurora User Guide for Aurora
Working with RDS Proxy endpoints

mysql> select @@innodb_read_only;
+--------------------+
| @@innodb_read_only |
+--------------------+
| 1 |
+--------------------+
mysql> create database shouldnt_work;
ERROR 1290 (HY000): The MySQL server is running with the --read-only option so it cannot
 execute this statement

mysql> select @@aurora_server_id;
+---------------------------------------+
| @@aurora_server_id |
+---------------------------------------+
| proxy-reader-endpoint-demo-instance-3 |
+---------------------------------------+

The following example shows how your connection to a proxy reader endpoint can keep working even
when the reader DB instance is deleted. In this example, the Aurora cluster has two reader instances,
instance-5507 and instance-7448. The connection to the reader endpoint begins using one of
the reader instances. During the example, this reader instance is deleted by a delete-db-instance
command. RDS Proxy switches to a different reader instance for subsequent queries.

$ mysql -h reader-demo.endpoint.proxy-demo.us-east-1.rds.amazonaws.com
 -u my_user -p
...
mysql> select @@aurora_server_id;
+--------------------+
| @@aurora_server_id |
+--------------------+
| instance-5507 |
+--------------------+

mysql> select @@innodb_read_only;
+--------------------+
| @@innodb_read_only |
+--------------------+
| 1 |
+--------------------+

mysql> select count(*) from information_schema.tables;
+----------+
| count(*) |
+----------+
| 328 |
+----------+

While the mysql session is still running, the following command deletes the reader instance that the
reader endpoint is connected to.

aws rds delete-db-instance --db-instance-identifier instance-5507 --skip-final-snapshot

Queries in the mysql session continue working without the need to reconnect. RDS Proxy automatically
switches to a different reader DB instance.

mysql> select @@aurora_server_id;
+--------------------+
| @@aurora_server_id |
+--------------------+
| instance-7448 |
+--------------------+

318

Amazon Aurora User Guide for Aurora
Working with RDS Proxy endpoints

mysql> select count(*) from information_schema.TABLES;
+----------+
| count(*) |
+----------+
| 328 |
+----------+

Accessing Aurora and RDS databases across VPCs
By default, the components of your RDS and Aurora technology stack are all in the same Amazon VPC.
For example, suppose that an application running on an Amazon EC2 instance connects to an Amazon
RDS DB instance or an Aurora DB cluster. In this case, the application server and database must both be
within the same VPC.

With RDS Proxy, you can set up access to an Aurora cluster or RDS instance in one VPC from resources
such as EC2 instances in another VPC. For example, your organization might have multiple applications
that access the same database resources. Each application might be in its own VPC.

To enable cross-VPC access, you create a new endpoint for the proxy. If you aren't familiar with creating
proxy endpoints, see Working with Amazon RDS Proxy endpoints (p. 315) for details. The proxy itself
resides in the same VPC as the Aurora DB cluster or RDS instance. However, the cross-VPC endpoint
resides in the other VPC, along with the other resources such as the EC2 instances. The cross-VPC
endpoint is associated with subnets and security groups from the same VPC as the EC2 and other
resources. These associations let you connect to the endpoint from the applications that otherwise can't
access the database due to the VPC restrictions.

The following steps explain how to create and access a cross-VPC endpoint through RDS Proxy:

1. Create two VPCs, or choose two VPCs that you already use for Aurora and RDS work. Each VPC should
have its own associated network resources such as an Internet gateway, route tables, subnets, and
security groups. If you only have one VPC, you can consult Getting started with Amazon Aurora (p. 89)
for the steps to set up another VPC to use Aurora successfully. You can also examine your existing VPC
in the Amazon EC2 console to see what kinds of resources to connect together.

2. Create a DB proxy associated with the Aurora DB cluster or RDS instance that you want to connect to.
Follow the procedure in Creating an RDS Proxy (p. 299).

3. On the Details page for your proxy in the RDS console, under the Proxy endpoints section, choose
Create endpoint. Follow the procedure in Creating a proxy endpoint (p. 319).

4. Choose whether to make the cross-VPC endpoint read/write or read-only.
5. Instead of accepting the default of the same VPC as the Aurora DB cluster or RDS instance, choose a

different VPC. This VPC must be in the same AWS Region as the VPC where the proxy resides.
6. Now instead of accepting the defaults for subnets and security groups from the same VPC as the

Aurora DB cluster or RDS instance, make new selections. Make these based on the subnets and
security groups from the VPC that you chose.

7. You don't need to change any of the settings for the Secrets Manager secrets. The same credentials
work for all endpoints for your proxy, regardless of which VPC each endpoint is in.

8. Wait for the new endpoint to reach the Available state.
9. Make a note of the full endpoint name. This is the value ending in

Region_name.rds.amazonaws.com that you supply as part of the connection string for your
database application.

10.Access the new endpoint from a resource in the same VPC as the endpoint. A simple way to test this
process is to create a new EC2 instance in this VPC. Then you can log into the EC2 instance and run the
mysql or psql commands to connect by using the endpoint value in your connection string.

Creating a proxy endpoint

319

Amazon Aurora User Guide for Aurora
Working with RDS Proxy endpoints

Console

To create a proxy endpoint

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Proxies.

3. Click the name of the proxy that you want to create a new endpoint for.

The details page for that proxy appears.

4. In the Proxy endpoints section, choose Create proxy endpoint.

The Create proxy endpoint window appears.

5. For Proxy endpoint name, enter a descriptive name of your choice.

6. For Target role, choose whether to make the endpoint read/write or read-only.

Connections that use a read/write endpoint can perform any kind of operation: data definition
language (DDL) statements, data manipulation language (DML) statements, and queries. These
endpoints always connect to the primary instance of the Aurora cluster. You can use read/write
endpoints for general database operations when you only use a single endpoint in your application.
You can also use read/write endpoints for administrative operations, online transaction processing
(OLTP) applications, and extract-transform-load (ETL) jobs.

Connections that use a read-only endpoint can only perform queries. When there are multiple
reader instances in the Aurora cluster, RDS Proxy can use a different reader instance for each
connection to the endpoint. That way, a query-intensive application can take advantage of Aurora's
clustering capability. You can add more query capacity to the cluster by adding more reader DB
instances. These read-only connections don't impose any overhead on the primary instance of the
cluster. That way, your reporting and analysis queries don't slow down the write operations of your
OLTP applications.

7. For Virtual Private Cloud (VPC), choose the default if you plan to access the endpoint from the
same EC2 instances or other resources where you normally access the proxy or its associated
database. If you want to set up cross-VPC access for this proxy, choose a VPC other than the default.
For more information about cross-VPC access, see Accessing Aurora and RDS databases across
VPCs (p. 319).

8. For Subnets, RDS Proxy fills in the same subnets as the associated proxy by default. If you want to
restrict access to the endpoint so that only a portion of the address range of the VPC can connect to
it, remove one or more subnets from the set of choices.

9. For VPC security group, you can choose an existing security group or create a new one. RDS Proxy
fills in the same security group or groups as the associated proxy by default. If the inbound and
outbound rules for the proxy are appropriate for this endpoint, you can leave the default choice.

If you choose to create a new security group, specify a name for the security group on this page.
Then edit the security group settings from the EC2 console afterward.

10. Choose Create proxy endpoint.

AWS CLI

To create a proxy endpoint, use the AWS CLI create-db-proxy-endpoint command.

Include the following required parameters:

• --db-proxy-name value

• --db-proxy-endpoint-name value

320

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-proxy-endpoint.html

Amazon Aurora User Guide for Aurora
Working with RDS Proxy endpoints

• --vpc-subnet-ids list_of_ids. Separate the subnet IDs with spaces. You don't specify the ID of
the VPC itself.

You can also include the following optional parameters:

• --target-role { READ_WRITE | READ_ONLY }. This parameter defaults to READ_WRITE.
The READ_ONLY value only has an effect on Aurora provisioned clusters that contain one or more
reader DB instances. When the proxy is associated with an RDS instance or with an Aurora cluster that
only contains a writer DB instance, you can't specify READ_ONLY. For more information about the
intended use of read-only endpoints with Aurora clusters, see Using reader endpoints with Aurora
clusters (p. 316).

• --vpc-security-group-ids value. Separate the security group IDs with spaces. If you omit this
parameter, RDS Proxy uses the default security group for the VPC. RDS Proxy determines the VPC
based on the subnet IDs that you specify for the --vpc-subnet-ids parameter.

Example

The following example creates a proxy endpoint named my-endpoint.

For Linux, macOS, or Unix:

aws rds create-db-proxy-endpoint \
 --db-proxy-name my-proxy \
 --db-proxy-endpoint-name my-endpoint \
 --vpc-subnet-ids subnet_id subnet_id subnet_id ... \
 --target-role READ_ONLY \
 --vpc-security-group-ids security_group_id]

For Windows:

aws rds create-db-proxy-endpoint ^
 --db-proxy-name my-proxy ^
 --db-proxy-endpoint-name my-endpoint ^
 --vpc-subnet-ids subnet_id_1 subnet_id_2 subnet_id_3 ... ^
 --target-role READ_ONLY ^
 --vpc-security-group-ids security_group_id

RDS API

To create a proxy endpoint, use the RDS API CreateProxyEndpoint action.

Viewing proxy endpoints

Console

To view the details for a proxy endpoint

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Proxies.
3. In the list, choose the proxy whose endpoint you want to view. Click the proxy name to view its

details page.
4. In the Proxy endpoints section, choose the endpoint that you want to view. Click its name to view

the details page.
5. Examine the parameters whose values you're interested in. You can check properties such as the

following:

321

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBClusterParameterGroup.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Working with RDS Proxy endpoints

• Whether the endpoint is read/write or read-only.
• The endpoint address that you use in a database connection string.
• The VPC, subnets, and security groups associated with the endpoint.

AWS CLI

To view one or more DB proxy endpoints, use the AWS CLI describe-db-proxy-endpoints command.

You can include the following optional parameters:

• --db-proxy-endpoint-name

• --db-proxy-name

The following example describes the my-endpoint proxy endpoint.

Example

For Linux, macOS, or Unix:

aws rds describe-db-proxy-endpoints \
 --db-proxy-endpoint-name my-endpoint

For Windows:

aws rds describe-db-proxy-endpoints ^
 --db-proxy-endpoint-name my-endpoint

RDS API

To describe one or more proxy endpoints, use the RDS API DescribeDBProxyEndpoints operation.

Modifying a proxy endpoint

Console

To modify one or more proxy endpoints

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Proxies.
3. In the list, choose the proxy whose endpoint you want to modify. Click the proxy name to view its

details page.
4. In the Proxy endpoints section, choose the endpoint that you want to modify. You can select it in

the list, or click its name to view the details page.
5. On the proxy details page, under the Proxy endpoints section, choose Edit. Or on the proxy

endpoint details page, for Actions, choose Edit.
6. Change the values of the parameters that you want to modify.
7. Choose Save changes.

AWS CLI

To modify a DB proxy endpoint, use the AWS CLI modify-db-proxy-endpoint command with the
following required parameters:

322

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxy-endpoints.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBProxyEndpoints.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-proxy-endpoint.html

Amazon Aurora User Guide for Aurora
Working with RDS Proxy endpoints

• --db-proxy-endpoint-name

Specify changes to the endpoint properties by using one or more of the following parameters:

• --new-db-proxy-endpoint-name

• --vpc-security-group-ids. Separate the security group IDs with spaces.

The following example renames the my-endpoint proxy endpoint to new-endpoint-name.

Example

For Linux, macOS, or Unix:

aws rds modify-db-proxy-endpoint \
 --db-proxy-endpoint-name my-endpoint \
 --new-db-proxy-endpoint-name new-endpoint-name

For Windows:

aws rds modify-db-proxy-endpoint ^
 --db-proxy-endpoint-name my-endpoint ^
 --new-db-proxy-endpoint-name new-endpoint-name

RDS API

To modify a proxy endpoint, use the RDS API ModifyDBProxyEndpoint operation.

Deleting a proxy endpoint
You can delete an endpoint for your proxy using the console as described following.

Note
You can't delete the default endpoint that RDS Proxy automatically creates for each proxy.
When you delete a proxy, RDS Proxy automatically deletes all the associated endpoints.

Console

To delete a proxy endpoint using the AWS Management Console

1. In the navigation pane, choose Proxies.
2. In the list, choose the proxy whose endpoint you want to endpoint. Click the proxy name to view its

details page.
3. In the Proxy endpoints section, choose the endpoint that you want to delete. You can select one or

more endpoints in the list, or click the name of a single endpoint to view the details page.
4. On the proxy details page, under the Proxy endpoints section, choose Delete. Or on the proxy

endpoint details page, for Actions, choose Delete.

AWS CLI

To delete a proxy endpoint, run the delete-db-proxy-endpoint command with the following required
parameters:

• --db-proxy-endpoint-name

The following command deletes the proxy endpoint named my-endpoint.

323

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBProxyEndpoint.html
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-proxy-endpoint.html

Amazon Aurora User Guide for Aurora
Monitoring RDS Proxy with CloudWatch

For Linux, macOS, or Unix:

aws rds delete-db-proxy-endpoint \
 --db-proxy-endpoint-name my-endpoint

For Windows:

aws rds delete-db-proxy-endpoint ^
 --db-proxy-endpoint-name my-endpoint

RDS API

To delete a proxy endpoint with the RDS API, run the DeleteDBProxyEndpoint operation. Specify the
name of the proxy endpoint for the DBProxyEndpointName parameter.

Limits for proxy endpoints
Each proxy has a default endpoint that you can modify but not create or delete.

The maximum number of user-defined endpoints for a proxy is 20. Thus, a proxy can have up to 21
endpoints: the default endpoint, plus 20 that you create.

When you associate additional endpoints with a proxy, RDS Proxy automatically determines which DB
instances in your cluster to use for each endpoint. You can't choose specific instances the way that you
can with Aurora custom endpoints.

Reader endpoints aren't available for Aurora multi-writer clusters.

You can connect to proxy endpoints that you create using the SSL modes REQUIRED and VERIFY_CA.
You can't connect to an endpoint that you create using the SSL mode VERIFY_IDENTITY.

Monitoring RDS Proxy metrics with Amazon
CloudWatch
You can monitor RDS Proxy by using Amazon CloudWatch. CloudWatch collects and processes raw data
from the proxies into readable, near-real-time metrics. To find these metrics in the CloudWatch console,
choose Metrics, then choose RDS, and choose Per-Proxy Metrics. For more information, see Using
Amazon CloudWatch metrics in the Amazon CloudWatch User Guide.

Note
RDS publishes these metrics for each underlying Amazon EC2 instance associated with a proxy.
A single proxy might be served by more than one EC2 instance. Use CloudWatch statistics to
aggregate the values for a proxy across all the associated instances.
Some of these metrics might not be visible until after the first successful connection by a proxy.

In the RDS Proxy logs, each entry is prefixed with the name of the associated proxy endpoint. This name
can be the name you specified for a user-defined endpoint, or the special name default for read/write
requests using the default endpoint of a proxy.

All RDS Proxy metrics are in the group proxy.

Each proxy endpoint has its own CloudWatch metrics. You can monitor the usage of each proxy endpoint
independently. For more information about proxy endpoints, see Working with Amazon RDS Proxy
endpoints (p. 315).

You can aggregate the values for each metric using one of the following dimension sets. For example,
by using the ProxyName dimension set, you can analyze all the traffic for a particular proxy. By using
the other dimension sets, you can split the metrics in different ways. You can split the metrics based on

324

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBProxyEndpoint.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html

Amazon Aurora User Guide for Aurora
Monitoring RDS Proxy with CloudWatch

the different endpoints or target databases of each proxy, or the read/write and read-only traffic to each
database.

• Dimension set 1: ProxyName
• Dimension set 2: ProxyName, EndpointName
• Dimension set 3: ProxyName, TargetGroup, Target
• Dimension set 4: ProxyName, TargetGroup, TargetRole

Metric Description Valid period CloudWatch dimension
set

AvailabilityPercentageThe percentage of time
for which the target
group was available
in the role indicated
by the dimension. This
metric is reported
every minute. The most
useful statistic for this
metric is Average.

1 minute Dimension set
4 (p. 325)

ClientConnections The current number
of client connections.
This metric is reported
every minute. The most
useful statistic for this
metric is Sum.

1 minute Dimension set
1 (p. 325), Dimension
set 2 (p. 325)

ClientConnectionsClosedThe number of client
connections closed. The
most useful statistic for
this metric is Sum.

1 minute and above Dimension set
1 (p. 325), Dimension
set 2 (p. 325)

ClientConnectionsNoTLSThe current number
of client connections
without Transport
Layer Security (TLS).
This metric is reported
every minute. The most
useful statistic for this
metric is Sum.

1 minute and above Dimension set
1 (p. 325), Dimension
set 2 (p. 325)

ClientConnectionsReceivedThe number of client
connection requests
received. The most
useful statistic for this
metric is Sum.

1 minute and above Dimension set
1 (p. 325), Dimension
set 2 (p. 325)

ClientConnectionsSetupFailedAuthThe number of
client connection
attempts that failed
due to misconfigured
authentication or
TLS. The most useful
statistic for this metric
is Sum.

1 minute and above Dimension set
1 (p. 325), Dimension
set 2 (p. 325)

325

Amazon Aurora User Guide for Aurora
Monitoring RDS Proxy with CloudWatch

Metric Description Valid period CloudWatch dimension
set

ClientConnectionsSetupSucceededThe number of
client connections
successfully established
with any authentication
mechanism with or
without TLS. The most
useful statistic for this
metric is Sum.

1 minute and above Dimension set
1 (p. 325), Dimension
set 2 (p. 325)

ClientConnectionsTLSThe current number
of client connections
with TLS. This metric
is reported every
minute. The most
useful statistic for this
metric is Sum.

1 minute and above Dimension set
1 (p. 325), Dimension
set 2 (p. 325)

DatabaseConnectionRequestsThe number of requests
to create a database
connection. The most
useful statistic for this
metric is Sum.

1 minute and above Dimension set
1 (p. 325), Dimension
set 3 (p. 325),
Dimension set
4 (p. 325)

DatabaseConnectionRequestsWithTLSThe number of requests
to create a database
connection with TLS.
The most useful
statistic for this metric
is Sum.

1 minute and above Dimension set
1 (p. 325), Dimension
set 3 (p. 325),
Dimension set
4 (p. 325)

DatabaseConnections The current number of
database connections.
This metric is reported
every minute. The most
useful statistic for this
metric is Sum.

1 minute Dimension set
1 (p. 325), Dimension
set 3 (p. 325),
Dimension set
4 (p. 325)

DatabaseConnectionsBorrowLatencyThe time in
microseconds that it
takes for the proxy
being monitored
to get a database
connection. The most
useful statistic for this
metric is Average.

1 minute and above Dimension set
1 (p. 325), Dimension
set 2 (p. 325)

DatabaseConnectionsCurrentlyBorrowedThe current number of
database connections
in the borrow state.
This metric is reported
every minute. The most
useful statistic for this
metric is Sum.

1 minute Dimension set
1 (p. 325), Dimension
set 3 (p. 325),
Dimension set
4 (p. 325)

326

Amazon Aurora User Guide for Aurora
Monitoring RDS Proxy with CloudWatch

Metric Description Valid period CloudWatch dimension
set

DatabaseConnectionsCurrentlyInTransactionThe current number of
database connections
in a transaction. This
metric is reported
every minute. The most
useful statistic for this
metric is Sum.

1 minute Dimension set
1 (p. 325), Dimension
set 3 (p. 325),
Dimension set
4 (p. 325)

DatabaseConnectionsCurrentlySessionPinnedThe current number of
database connections
currently pinned
because of operations
in client requests that
change session state.
This metric is reported
every minute. The most
useful statistic for this
metric is Sum.

1 minute Dimension set
1 (p. 325), Dimension
set 3 (p. 325),
Dimension set
4 (p. 325)

DatabaseConnectionsSetupFailedThe number of
database connection
requests that failed.
The most useful
statistic for this metric
is Sum.

1 minute and above Dimension set
1 (p. 325), Dimension
set 3 (p. 325),
Dimension set
4 (p. 325)

DatabaseConnectionsSetupSucceededThe number of
database connections
successfully established
with or without TLS.
The most useful
statistic for this metric
is Sum.

1 minute and above Dimension set
1 (p. 325), Dimension
set 3 (p. 325),
Dimension set
4 (p. 325)

DatabaseConnectionsWithTLSThe current number of
database connections
with TLS. This metric
is reported every
minute. The most
useful statistic for this
metric is Sum.

1 minute Dimension set
1 (p. 325), Dimension
set 3 (p. 325),
Dimension set
4 (p. 325)

MaxDatabaseConnectionsAllowedThe maximum
number of database
connections allowed.
This metric is reported
every minute. The most
useful statistic for this
metric is Sum.

1 minute Dimension set
1 (p. 325), Dimension
set 3 (p. 325),
Dimension set
4 (p. 325)

327

Amazon Aurora User Guide for Aurora
Monitoring RDS Proxy with CloudWatch

Metric Description Valid period CloudWatch dimension
set

QueryDatabaseResponseLatencyThe time in
microseconds that
the database took
to respond to the
query. The most useful
statistic for this metric
is Average.

1 minute and above Dimension set
1 (p. 325), Dimension
set 2 (p. 325),
Dimension set
3 (p. 325), Dimension
set 4 (p. 325)

QueryRequests The number of queries
received. A query
including multiple
statements is counted
as one query. The most
useful statistic for this
metric is Sum.

1 minute and above Dimension set
1 (p. 325), Dimension
set 2 (p. 325)

QueryRequestsNoTLS The number of queries
received from non-TLS
connections. A query
including multiple
statements is counted
as one query. The most
useful statistic for this
metric is Sum.

1 minute and above Dimension set
1 (p. 325), Dimension
set 2 (p. 325)

QueryRequestsTLS The number of queries
received from TLS
connections. A query
including multiple
statements is counted
as one query. The most
useful statistic for this
metric is Sum.

1 minute and above Dimension set
1 (p. 325), Dimension
set 2 (p. 325)

QueryResponseLatencyThe time in
microseconds between
getting a query
request and the proxy
responding to it. The
most useful statistic for
this metric is Average.

1 minute and above Dimension set
1 (p. 325), Dimension
set 2 (p. 325)

You can find logs of RDS Proxy activity under CloudWatch in the AWS Management Console. Each proxy
has an entry in the Log groups page.

Important
These logs are intended for human consumption for troubleshooting purposes and not for
programmatic access. The format and content of the logs is subject to change.
In particular, older logs don't contain any prefixes indicating the endpoint for each request. In
newer logs, each entry is prefixed with the name of the associated proxy endpoint. This name
can be the name that you specified for a user-defined endpoint, or the special name default
for requests using the default endpoint of a proxy.

328

Amazon Aurora User Guide for Aurora
Working with RDS Proxy events

Working with RDS Proxy events
An event indicates a change in an environment. This can be an AWS environment or a service or
application from a software as a service (SaaS) partner. Or it can be one of your own custom applications
or services. For example, Amazon Aurora generates an event when you create or modify an RDS Proxy.
Amazon Aurora delivers events to CloudWatch Events and Amazon EventBridge in near-real time.
Following, you can find a list of RDS Proxy events that you can subscribe to and an example of an RDS
Proxy event.

For more information about working with events, see the following:

• For instructions on how to view events by using the AWS Management Console, AWS CLI, or RDS API,
see Viewing Amazon RDS events (p. 695).

• To learn how to configure Amazon Aurora to send events to EventBridge, see Creating a rule that
triggers on an Amazon Aurora event (p. 713).

RDS Proxy events
The following table shows the event category and a list of events when an RDS Proxy is the source type.

Category RDS event ID Description

Configuration
change

RDS-EVENT-0204 RDS modified the DB proxy (RDS Proxy).

Configuration
change

RDS-EVENT-0207 RDS modified the endpoint of the DB proxy (RDS
Proxy).

Configuration
change

RDS-EVENT-0213 RDS detected the addition of the DB instance and
automatically added it to the target group of the DB
proxy (RDS Proxy).

Configuration
change

RDS-EVENT-0214 RDS detected the deletion of the DB instance and
automatically removed it from the target group of the
DB proxy (RDS Proxy).

Configuration
change

RDS-EVENT-XXXX RDS detected the deletion of the DB cluster and
automatically removed it from the target group of the
DB proxy (RDS Proxy).

Creation RDS-EVENT-0203 RDS created the DB proxy (RDS Proxy).

Creation RDS-EVENT-0206 RDS created the endpoint for the DB proxy (RDS
Proxy).

Deletion RDS-EVENT-0205 RDS deleted the DB proxy (RDS Proxy).

Deletion RDS-EVENT-0208 RDS deleted the endpoint of DB proxy (RDS Proxy).

The following is an example of an RDS Proxy event in JSON format. The event shows that RDS modified
the endpoint named my-endpoint of the RDS Proxy named my-rds-proxy. The event ID is RDS-
EVENT-0207.

{
 "version": "0",

329

Amazon Aurora User Guide for Aurora
RDS Proxy examples

 "id": "68f6e973-1a0c-d37b-f2f2-94a7f62ffd4e",
 "detail-type": "RDS DB Proxy Event",
 "source": "aws.rds",
 "account": "123456789012",
 "time": "2018-09-27T22:36:43Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:rds:us-east-1:123456789012:db-proxy:my-rds-proxy"
],
 "detail": {
 "EventCategories": [
 "configuration change"
],
 "SourceType": "DB_PROXY",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:db-proxy:my-rds-proxy",
 "Date": "2018-09-27T22:36:43.292Z",
 "Message": "RDS modified endpoint my-endpoint of DB Proxy my-rds-proxy.",
 "SourceIdentifier": "my-endpoint",
 "EventID": "RDS-EVENT-0207"
 }
}

RDS Proxy command-line examples
To see how combinations of connection commands and SQL statements interact with RDS Proxy, look at
the following examples.

Examples

• Preserving Connections to a MySQL Database Across a Failover

• Adjusting the max_connections Setting for an Aurora DB Cluster

Example Preserving connections to a MySQL database across a failover

This MySQL example demonstrates how open connections continue working during a failover, for
example when you reboot a database or it becomes unavailable due to a problem. This example
uses a proxy named the-proxy and an Aurora DB cluster with DB instances instance-8898 and
instance-9814. When you run the failover-db-cluster command from the Linux command line,
the writer instance that the proxy is connected to changes to a different DB instance. You can see that
the DB instance associated with the proxy changes while the connection remains open.

$ mysql -h the-proxy.proxy-demo.us-east-1.rds.amazonaws.com -u admin_user -p
Enter password:
...

mysql> select @@aurora_server_id;
+--------------------+
| @@aurora_server_id |
+--------------------+
| instance-9814 |
+--------------------+
1 row in set (0.01 sec)

mysql>
[1]+ Stopped mysql -h the-proxy.proxy-demo.us-east-1.rds.amazonaws.com -
u admin_user -p
$ # Initially, instance-9814 is the writer.
$ aws rds failover-db-cluster --db-cluster-identifier cluster-56-2019-11-14-1399
JSON output
$ # After a short time, the console shows that the failover operation is complete.

330

Amazon Aurora User Guide for Aurora
RDS Proxy examples

$ # Now instance-8898 is the writer.
$ fg
mysql -h the-proxy.proxy-demo.us.us-east-1.rds.amazonaws.com -u admin_user -p

mysql> select @@aurora_server_id;
+--------------------+
| @@aurora_server_id |
+--------------------+
| instance-8898 |
+--------------------+
1 row in set (0.01 sec)

mysql>
[1]+ Stopped mysql -h the-proxy.proxy-demo.us-east-1.rds.amazonaws.com -
u admin_user -p
$ aws rds failover-db-cluster --db-cluster-identifier cluster-56-2019-11-14-1399
JSON output
$ # After a short time, the console shows that the failover operation is complete.
$ # Now instance-9814 is the writer again.
$ fg
mysql -h the-proxy.proxy-demo.us-east-1.rds.amazonaws.com -u admin_user -p

mysql> select @@aurora_server_id;
+--------------------+
| @@aurora_server_id |
+--------------------+
| instance-9814 |
+--------------------+
1 row in set (0.01 sec)
+---------------+---------------+
| Variable_name | Value |
+---------------+---------------+
| hostname | ip-10-1-3-178 |
+---------------+---------------+
1 row in set (0.02 sec)

Example Adjusting the max_connections setting for an Aurora DB cluster

This example demonstrates how you can adjust the max_connections setting for an Aurora
MySQL DB cluster. To do so, you create your own DB cluster parameter group based on the default
parameter settings for clusters that are compatible with MySQL 5.6 or 5.7. You specify a value for the
max_connections setting, overriding the formula that sets the default value. You associate the DB
cluster parameter group with your DB cluster.

export REGION=us-east-1
export CLUSTER_PARAM_GROUP=rds-proxy-mysql-56-max-connections-demo
export CLUSTER_NAME=rds-proxy-mysql-56

aws rds create-db-parameter-group --region $REGION \
 --db-parameter-group-family aurora5.6 \
 --db-parameter-group-name $CLUSTER_PARAM_GROUP \
 --description "Aurora MySQL 5.6 cluster parameter group for RDS Proxy demo."

aws rds modify-db-cluster --region $REGION \
 --db-cluster-identifier $CLUSTER_NAME \
 --db-cluster-parameter-group-name $CLUSTER_PARAM_GROUP

echo "New cluster param group is assigned to cluster:"
aws rds describe-db-clusters --region $REGION \
 --db-cluster-identifier $CLUSTER_NAME \
 --query '*[*].{DBClusterParameterGroup:DBClusterParameterGroup}'

echo "Current value for max_connections:"
aws rds describe-db-cluster-parameters --region $REGION \

331

Amazon Aurora User Guide for Aurora
Troubleshooting RDS Proxy

 --db-cluster-parameter-group-name $CLUSTER_PARAM_GROUP \
 --query '*[*].{ParameterName:ParameterName,ParameterValue:ParameterValue}' \
 --output text | grep "^max_connections"

echo -n "Enter number for max_connections setting: "
read answer

aws rds modify-db-cluster-parameter-group --region $REGION --db-cluster-parameter-group-
name $CLUSTER_PARAM_GROUP \
 --parameters "ParameterName=max_connections,ParameterValue=$
$answer,ApplyMethod=immediate"

echo "Updated value for max_connections:"
aws rds describe-db-cluster-parameters --region $REGION \
 --db-cluster-parameter-group-name $CLUSTER_PARAM_GROUP \
 --query '*[*].{ParameterName:ParameterName,ParameterValue:ParameterValue}' \
 --output text | grep "^max_connections"

Troubleshooting for RDS Proxy
Following, you can find troubleshooting ideas for some common RDS Proxy issues and information on
CloudWatch logs for RDS Proxy.

In the RDS Proxy logs, each entry is prefixed with the name of the associated proxy endpoint. This name
can be the name you specified for a user-defined endpoint, or the special name default for read/
write requests using the default endpoint of a proxy. For more information about proxy endpoints, see
Working with Amazon RDS Proxy endpoints (p. 315).

Topics

• Verifying connectivity for a proxy (p. 332)

• Common issues and solutions (p. 333)

Verifying connectivity for a proxy

You can use the following commands to verify that all components of the connection mechanism can
communicate with the other components.

Examine the proxy itself using the describe-db-proxies command. Also examine the associated target
group using the describe-db-proxy-target-groups Check that the details of the targets match the RDS
DB instance or Aurora DB cluster that you intend to associate with the proxy. Use commands such as the
following.

aws rds describe-db-proxies --db-proxy-name $DB_PROXY_NAME
aws rds describe-db-proxy-target-groups --db-proxy-name $DB_PROXY_NAME

To confirm that the proxy can connect to the underlying database, examine the targets specified in the
target groups using the describe-db-proxy-targets command. Use a command such as the following.

aws rds describe-db-proxy-targets --db-proxy-name $DB_PROXY_NAME

The output of the describe-db-proxy-targets command includes a TargetHealth field. You can
examine the fields State, Reason, and Description inside TargetHealth to check if the proxy can
communicate with the underlying DB instance.

• A State value of AVAILABLE indicates that the proxy can connect to the DB instance.

332

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxies.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxy-target-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxy-targets.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-proxy-targets.html

Amazon Aurora User Guide for Aurora
Troubleshooting RDS Proxy

• A State value of UNAVAILABLE indicates a temporary or permanent connection problem. In
this case, examine the Reason and Description fields. For example, if Reason has a value of
PENDING_PROXY_CAPACITY, try connecting again after the proxy finishes its scaling operation. If
Reason has a value of UNREACHABLE, CONNECTION_FAILED, or AUTH_FAILURE, use the explanation
from the Description field to help you diagnose the issue.

• The State field might have a value of REGISTERING for a brief time before changing to AVAILABLE
or UNAVAILABLE.

If the following Netcat command (nc) is successful, you can access the proxy endpoint from the EC2
instance or other system where you're logged in. This command reports failure if you're not in the same
VPC as the proxy and the associated database. You might be able to log directly in to the database
without being in the same VPC. However, you can't log into the proxy unless you're in the same VPC.

nc -zx MySQL_proxy_endpoint 3306

nc -zx PostgreSQL_proxy_endpoint 5432

You can use the following commands to make sure that your EC2 instance has the required properties. In
particular, the VPC for the EC2 instance must be the same as the VPC for the RDS DB instance or Aurora
DB cluster that the proxy connects to.

aws ec2 describe-instances --instance-ids your_ec2_instance_id

Examine the Secrets Manager secrets used for the proxy.

aws secretsmanager list-secrets
aws secretsmanager get-secret-value --secret-id your_secret_id

Make sure that the SecretString field displayed by get-secret-value is encoded as a JSON
string that includes username and password fields. The following example shows the format of the
SecretString field.

{
 "ARN": "some_arn",
 "Name": "some_name",
 "VersionId": "some_version_id",
 "SecretString": '{"username":"some_username","password":"some_password"}',
 "VersionStages": ["some_stage"],
 "CreatedDate": some_timestamp
}

Common issues and solutions
For possible causes and solutions to some common problems that you might encounter using RDS Proxy,
see the following.

You might encounter the following issues while creating a new proxy or connecting to a proxy.

Error Causes or workarounds

403: The security
token included in
the request is
invalid

Select an existing IAM role instead of choosing to create a new one.

333

Amazon Aurora User Guide for Aurora
Troubleshooting RDS Proxy

You might encounter the following issues while connecting to a MySQL proxy.

Error Causes or workarounds

ERROR 1040
(HY000):
Connections rate
limit exceeded
(limit_value)

The rate of connection requests from the client to the proxy has exceeded
the limit.

ERROR 1040
(HY000): IAM
authentication
rate limit
exceeded

The number of simultaneous requests with IAM authentication from the
client to the proxy has exceeded the limit.

ERROR 1040
(HY000): Number
simultaneous
connections
exceeded
(limit_value)

The number of simultaneous connection requests from the client to the
proxy exceeded the limit.

ERROR 1045
(28000): Access
denied for user
'DB_USER'@'%' (using
password: YES)

Some possible reasons include the following:

• The Secrets Manager secret used by the proxy doesn't match the user
name and password of an existing database user. Either update the
credentials in the Secrets Manager secret, or make sure the database user
exists and has the same password as in the secret.

ERROR 1105
(HY000): Unknown
error

An unknown error occurred.

ERROR 1231
(42000): Variable
''character_set_client''
can't be set to
the value of value

The value set for the character_set_client parameter is not valid. For
example, the value ucs2 is not valid because it can crash the MySQL server.

ERROR 3159
(HY000): This RDS
Proxy requires TLS
connections.

You enabled the setting Require Transport Layer Security in the proxy
but your connection included the parameter ssl-mode=DISABLED in the
MySQL client. Do either of the following:

• Disable the setting Require Transport Layer Security for the proxy.
• Connect to the database using the minimum setting of ssl-
mode=REQUIRED in the MySQL client.

ERROR 2026
(HY000): SSL
connection error:
Internal Server
Error

The TLS handshake to the proxy failed. Some possible reasons include the
following:

• SSL is required but the server doesn't support it.
• An internal server error occurred.
• A bad handshake occurred.

ERROR 9501
(HY000): Timed-
out waiting to

The proxy timed-out waiting to acquire a database connection. Some
possible reasons include the following:

334

Amazon Aurora User Guide for Aurora
Troubleshooting RDS Proxy

Error Causes or workarounds

acquire database
connection

• The proxy is unable to establish a database connection because the
maximum connections have been reached

• The proxy is unable to establish a database connection because the
database is unavailable.

You might encounter the following issues while connecting to a PostgreSQL proxy.

Error Cause Solution

IAM authentication is
allowed only with SSL
connections.

The user tried to connect
to the database using IAM
authentication with the setting
sslmode=disable in the
PostgreSQL client.

The user needs to connect to the
database using the minimum
setting of sslmode=require in
the PostgreSQL client. For more
information, see the PostgreSQL
SSL support documentation.

This RDS Proxy requires
TLS connections.

The user enabled the option
Require Transport Layer
Security but tried to connect
with sslmode=disable in the
PostgreSQL client.

To fix this error, do one of the
following:

• Disable the proxy's Require
Transport Layer Security
option.

• Connect to the database
using the minimum setting
of sslmode=allow in the
PostgreSQL client.

IAM authentication
failed for user
user_name. Check the IAM
token for this user and
try again.

This error might be due to the
following reasons:

• The client supplied the
incorrect IAM user name.

• The client supplied an
incorrect IAM authorization
token for the user.

• The client is using an IAM
policy that does not have the
necessary permissions.

• The client supplied an expired
IAM authorization token for
the user.

To fix this error, do the
following:

1. Confirm that the provided
IAM user exists.

2. Confirm that the IAM
authorization token belongs
to the provided IAM user.

3. Confirm that the IAM policy
has adequate permissions for
RDS.

4. Check the validity of the IAM
authorization token used.

This RDS proxy has no
credentials for the role
role_name. Check the
credentials for this
role and try again.

There is no Secrets Manager
secret for this role.

Add a Secrets Manager secret for
this role.

RDS supports only IAM or
MD5 authentication.

The database client being used
to connect to the proxy is using
an authentication mechanism
not currently supported by the
proxy, such as SCRAM-SHA-256.

If you're not using IAM
authentication, use the MD5
password authentication only.

335

https://www.postgresql.org/docs/current/libpq-ssl.html
https://www.postgresql.org/docs/current/libpq-ssl.html

Amazon Aurora User Guide for Aurora
Troubleshooting RDS Proxy

Error Cause Solution

A user name is missing
from the connection
startup packet. Provide
a user name for this
connection.

The database client being used
to connect to the proxy isn't
sending a user name when
trying to establish a connection.

Make sure to define a user name
when setting up a connection to
the proxy using the PostgreSQL
client of your choice.

Feature not supported:
RDS Proxy supports
only version 3.0 of the
PostgreSQL messaging
protocol.

The PostgreSQL client used
to connect to the proxy uses a
protocol older than 3.0.

Use a newer PostgreSQL client
that supports the 3.0 messaging
protocol. If you're using the
PostgreSQL psql CLI, use a
version greater than or equal to
7.4.

Feature not supported:
RDS Proxy currently
doesn't support
streaming replication
mode.

The PostgreSQL client used to
connect to the proxy is trying
to use the streaming replication
mode, which isn't currently
supported by RDS Proxy.

Turn off the streaming
replication mode in the
PostgreSQL client being used to
connect.

Feature not supported:
RDS Proxy currently
doesn't support the
option option_name.

Through the startup message,
the PostgreSQL client used
to connect to the proxy is
requesting an option that isn't
currently supported by RDS
Proxy.

Turn off the option being
shown as not supported from
the message above in the
PostgreSQL client being used to
connect.

The IAM authentication
failed because of too
many competing requests.

The number of simultaneous
requests with IAM
authentication from the client to
the proxy has exceeded the limit.

Reduce the rate in which
connections using IAM
authentication from a
PostgreSQL client are
established.

The maximum number
of client connections
to the proxy exceeded
number_value.

The number of simultaneous
connection requests from the
client to the proxy exceeded the
limit.

Reduce the number of active
connections from PostgreSQL
clients to this RDS proxy.

Rate of connection
to proxy exceeded
number_value.

The rate of connection requests
from the client to the proxy has
exceeded the limit.

Reduce the rate in which
connections from a PostgreSQL
client are established.

The password that was
provided for the role
role_name is wrong.

The password for this role
doesn't match the Secrets
Manager secret.

Check the secret for this role in
Secrets Manager to see if the
password is the same as what's
being used in your PostgreSQL
client.

The IAM authentication
failed for the role
role_name. Check the IAM
token for this role and
try again.

There is a problem with
the IAM token used for IAM
authentication.

Generate a new authentication
token and use it in a new
connection.

IAM is allowed only with
SSL connections.

A client tried to connect using
IAM authentication, but SSL
wasn't enabled.

Enable SSL in the PostgreSQL
client.

336

Amazon Aurora User Guide for Aurora
Using RDS Proxy with AWS CloudFormation

Error Cause Solution

Unknown error. An unknown error occurred. Reach out to AWS Support to
investigate the issue.

Timed-out waiting
to acquire database
connection.

The proxy timed-out waiting to
acquire a database connection.
Some possible reasons include
the following:

• The proxy can't establish a
database connection because
the maximum connections
have been reached.

• The proxy can't establish a
database connection because
the database is unavailable.

Possible solutions are the
following:

• Check the target of the RDS
DB instance or Aurora DB
cluster status to see if it's
unavailable.

• Check if there are long-
running transactions and/or
queries being executed. They
can use database connections
from the connection pool for a
long time.

Request returned an
error: database_error.

The database connection
established from the proxy
returned an error.

The solution depends on the
specific database error. One
example is: Request returned
an error: database
"your-database-name"
does not exist. This means
the specified database name,
or the user name used as a
database name (in case a
database name hasn't been
specified), doesn't exist in the
database server.

Using RDS Proxy with AWS CloudFormation
You can use RDS Proxy with AWS CloudFormation. Doing so helps you to create groups of related
resources, including a proxy that can connect to a newly created Amazon RDS DB instance or Aurora
DB cluster. RDS Proxy support in AWS CloudFormation involves two new registry types: DBProxy and
DBProxyTargetGroup.

The following listing shows a sample AWS CloudFormation template for RDS Proxy.

Resources:
 DBProxy:
 Type: AWS::RDS::DBProxy
 Properties:
 DBProxyName: CanaryProxy
 EngineFamily: MYSQL
 RoleArn:
 Fn::ImportValue: SecretReaderRoleArn
 Auth:
 - {AuthScheme: SECRETS, SecretArn: !ImportValue ProxySecret, IAMAuth: DISABLED}
 VpcSubnetIds:
 Fn::Split: [",", "Fn::ImportValue": SubnetIds]

 ProxyTargetGroup:
 Type: AWS::RDS::DBProxyTargetGroup
 Properties:
 DBProxyName: CanaryProxy

337

Amazon Aurora User Guide for Aurora
Using RDS Proxy with AWS CloudFormation

 TargetGroupName: default
 DBInstanceIdentifiers:
 - Fn::ImportValue: DBInstanceName
 DependsOn: DBProxy

For more information about the Amazon RDS and Aurora resources that you can create using AWS
CloudFormation, see RDS resource type reference.

338

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_RDS.html

Amazon Aurora User Guide for Aurora
Working with parameter groups

Working with DB parameter groups and DB cluster
parameter groups

Database parameters specify how the database is configured. For example, database parameters can
specify the amount of resources, such as memory, to allocate to a database.

You manage your database configuration by associating your DB instances and Aurora DB clusters with
parameter groups. Amazon RDS defines parameter groups with default settings.

Important
You can define your own parameter groups with customized settings. Then you can modify your
DB instances and Aurora clusters to use your own parameter groups.
For information about modifying a DB cluster or DB instance, see Modifying an Amazon Aurora
DB cluster (p. 372).

A DB parameter group acts as a container for engine configuration values that are applied to one or
more DB instances. DB parameter groups apply to DB instances in both Amazon RDS and Aurora. These
configuration settings apply to properties that can vary among the DB instances within an Aurora cluster,
such as the sizes for memory buffers.

A DB cluster parameter group acts as a container for engine configuration values that are applied
to every DB instance in an Aurora DB cluster. For example, the Aurora shared storage model
requires that every DB instance in an Aurora cluster use the same setting for parameters such as
innodb_file_per_table. Thus, parameters that affect the physical storage layout are part of
the cluster parameter group. The DB cluster parameter group also includes default values for all the
instance-level parameters

If you create a DB instance without specifying a DB parameter group, the DB instance uses a default DB
parameter group. Likewise, if you create an Aurora DB cluster without specifying a DB cluster parameter
group, the DB cluster uses a default DB cluster parameter group. Each default parameter group contains
database engine defaults and Amazon RDS system defaults based on the engine, compute class, and
allocated storage of the instance. You can't modify the parameter settings of a default parameter group.
Instead, you create your own parameter group where you choose your own parameter settings. Not all
DB engine parameters can be changed in a parameter group that you create.

If you want to use your own parameter group, you create a new parameter group and modify the
parameters that you want to. You then modify your DB instance or DB cluster to use the new parameter
group. If you update parameters within a DB parameter group, the changes apply to all DB instances
that are associated with that parameter group. Likewise, if you update parameters within a DB cluster
parameter group, the changes apply to all Aurora clusters that are associated with that DB cluster
parameter group.

You can copy an existing DB parameter group with the AWS CLI copy-db-parameter-group command.
You can copy an existing DB cluster parameter group with the AWS CLI copy-db-cluster-parameter-group
command. Copying a parameter group can be convenient when you want to include most of an existing
parameter group's custom parameters and values in a new parameter group.

Here are some important points about working with parameters in a parameter group:

• Database parameters are either static or dynamic. When you change a static parameter and save
the DB parameter group, the parameter change takes effect after you manually reboot the DB
instance. You can reboot a DB instance using the RDS console, by calling the reboot-db-instance
CLI command, or by calling the RebootDBInstance API operation. The requirement to reboot
the associated DB instance after a static parameter change helps mitigate the risk of a parameter
misconfiguration affecting an API call, such as calling ModifyDBInstance to change DB instance class
or scale storage.

339

https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-cluster-parameter-group.html

Amazon Aurora User Guide for Aurora
Working with parameter groups

When you change a dynamic parameter and save the DB parameter group, the change is applied
to the parameter group immediately regardless of the Apply Immediately setting. If you use the
pending-reboot setting in the AWS CLI or RDS API, the change is still applied to the parameter
group immediately. However, applying the parameter change to DB instances that use the parameter
group requires a reboot.

If a DB instance isn't using the latest changes to its associated DB parameter group, the AWS
Management Console shows the DB parameter group with a status of pending-reboot. The pending-
reboot parameter groups status doesn't result in an automatic reboot during the next maintenance
window. To apply the latest parameter changes to that DB instance, manually reboot the DB instance.

• When you associate a new DB parameter group with a DB instance, the modified static and dynamic
parameters are applied only after the DB instance is rebooted. However, if you modify dynamic
parameters in the newly associated DB parameter group, these changes are applied immediately
without a reboot. For more information about changing the DB parameter group, see Modifying an
Amazon Aurora DB cluster (p. 372).

Note
After you change the DB cluster parameter group associated with a DB cluster, reboot the
primary DB instance in the cluster to apply the changes to all of the DB instances in the
cluster.
To determine whether the primary DB instance of a DB cluster must be rebooted to apply
changes, run the following AWS CLI command:
aws rds describe-db-clusters --db-cluster-identifier
db_cluster_identifier
Check the DBClusterParameterGroupStatus value for the primary DB instance in the
output. If the value is pending-reboot, then reboot the primary DB instance of the DB
cluster.

• You can specify integer and Boolean parameters using expressions, formulas, and functions.
Functions can include a mathematical log expression. For more information, see Specifying DB
parameters (p. 362).

• Set any parameters that relate to the character set or collation of your database in your parameter
group before creating the DB instance and before you create a database in your DB instance. This
ensures that the default database and new databases in your DB instance use the character set and
collation values that you specify. If you change character set or collation parameters for your DB
instance, the parameter changes are not applied to existing databases.

For some DB engines, you can change character set or collation values for an existing database using
the ALTER DATABASE command, for example:

ALTER DATABASE database_name CHARACTER SET character_set_name COLLATE collation;

For more information about changing the character set or collation values for a database, check the
documentation for your DB engine.

• Improperly setting parameters in a parameter group can have unintended adverse effects, including
degraded performance and system instability. Always exercise caution when modifying database
parameters and back up your data before modifying a parameter group. Try out parameter group
setting changes on a test DB instance before applying those parameter group changes to a production
DB instance.

• For an Aurora global database, you can specify different configuration settings for the individual
Aurora clusters. Make sure that the settings are similar enough to produce consistent behavior if you
promote a secondary cluster to be the primary cluster. For example, use the same settings for time
zones and character sets across all the clusters of an Aurora global database.

• To determine the supported parameters for your DB engine, you can view the parameters in the DB
parameter group and DB cluster parameter group used by the DB cluster. For more information, see

340

Amazon Aurora User Guide for Aurora
DB cluster and DB instance parameters

Viewing parameter values for a DB parameter group (p. 359) and Viewing parameter values for a DB
cluster parameter group (p. 360).

Topics

• Amazon Aurora DB cluster and DB instance parameters (p. 341)

• Creating a DB parameter group (p. 342)

• Creating a DB cluster parameter group (p. 343)

• Associating a DB parameter group with a DB instance (p. 345)

• Associating a DB cluster parameter group with a DB cluster (p. 346)

• Modifying parameters in a DB parameter group (p. 347)

• Modifying parameters in a DB cluster parameter group (p. 349)

• Resetting parameters in a DB parameter group to their default values (p. 351)

• Resetting parameters in a DB cluster parameter group (p. 353)

• Copying a DB parameter group (p. 354)

• Copying a DB cluster parameter group (p. 356)

• Listing DB parameter groups (p. 357)

• Listing DB cluster parameter groups (p. 358)

• Viewing parameter values for a DB parameter group (p. 359)

• Viewing parameter values for a DB cluster parameter group (p. 360)

• Comparing parameter groups (p. 362)

• Specifying DB parameters (p. 362)

Amazon Aurora DB cluster and DB instance
parameters
Aurora uses a two-level system of configuration settings, as follows:

• Parameters in a DB cluster parameter group apply to every DB instance in a DB cluster. Your data is
stored in the Aurora shared storage subsystem. Because of this, all parameters related to physical
layout of table data must be the same for all DB instances in an Aurora cluster. Likewise, because
Aurora DB instances are connected by replication, all the parameters for replication settings must be
identical throughout an Aurora cluster.

• Parameters in a DB parameter group apply to a single DB instance in an Aurora DB cluster. These
parameters are related to aspects such as memory usage that you can vary across DB instances in the
same Aurora cluster. For example, a cluster often contains DB instances with different AWS instance
classes.

Every Aurora cluster is associated with a DB cluster parameter group. Each DB instance within the cluster
inherits the settings from that DB cluster parameter group, and is associated with a DB parameter group.
Aurora assigns default parameter groups when you create a cluster or a new DB instance, based on the
specified database engine and version. You can change the parameter groups later to ones that you
create, where you can edit the parameter values.

The DB cluster parameter groups also include default values for all the instance-level parameters from
the DB parameter group. These defaults are mainly intended for configuring Aurora Serverless clusters,
which are only associated with DB cluster parameter groups, not DB parameter groups. You can modify
the instance-level parameter settings in the DB cluster parameter group. Then, Aurora applies those
settings to each new DB instance that's added to a Serverless cluster. To learn more about configuration

341

Amazon Aurora User Guide for Aurora
Creating a DB parameter group

settings for Aurora Serverless clusters and which settings you can modify, see Parameter groups and
Aurora Serverless v1 (p. 156).

For non-Serverless clusters, any configuration values that you modify in the DB cluster parameter
group override default values in the DB parameter group. If you edit the corresponding values in the DB
parameter group, those values override the settings from the DB cluster parameter group.

Any DB parameter settings that you modify take precedence over the DB cluster parameter group
values, even if you change the configuration parameters back to their default values. You can see
which parameters are overridden by using the describe-db-parameters AWS CLI command or
the DescribeDBParameters RDS API. The Source field contains the value user if you modified that
parameter. To reset one or more parameters so that the value from the DB cluster parameter group takes
precedence, use the reset-db-parameter-group AWS CLI command or the ResetDBParameterGroup
RDS API operation.

The DB cluster and DB instance parameters available to you in Aurora vary depending on database
engine compatibility.

Database engine Parameters

Aurora MySQL See Aurora MySQL configuration parameters (p. 1063).

For Aurora Serverless clusters, see additional details in Parameter
groups and Aurora Serverless v1 (p. 156).

Aurora PostgreSQL See Amazon Aurora PostgreSQL parameters (p. 1564).

Creating a DB parameter group
You can create a new DB parameter group using the AWS Management Console, the AWS CLI, or the RDS
API.

Console

To create a DB parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.
3. Choose Create parameter group.

The Create parameter group window appears.
4. In the Parameter group family list, select a DB parameter group family.
5. In the Type list, select DB Parameter Group.
6. In the Group name box, enter the name of the new DB parameter group.
7. In the Description box, enter a description for the new DB parameter group.
8. Choose Create.

AWS CLI

To create a DB parameter group, use the AWS CLI create-db-parameter-group command. The
following example creates a DB parameter group named mydbparametergroup for MySQL version 5.6
with a description of "My new parameter group."

Include the following required parameters:

342

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBParameters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/reset-db-parameter-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ResetDBParameterGroup.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-parameter-group.html

Amazon Aurora User Guide for Aurora
Creating a DB cluster parameter group

• --db-parameter-group-name

• --db-parameter-group-family

• --description

To list all of the available parameter group families, use the following command:

aws rds describe-db-engine-versions --query "DBEngineVersions[].DBParameterGroupFamily"

Note
The output contains duplicates.

Example

For Linux, macOS, or Unix:

aws rds create-db-parameter-group \
 --db-parameter-group-name mydbparametergroup \
 --db-parameter-group-family aurora5.6 \
 --description "My new parameter group"

For Windows:

aws rds create-db-parameter-group ^
 --db-parameter-group-name mydbparametergroup ^
 --db-parameter-group-family aurora5.6 ^
 --description "My new parameter group"

This command produces output similar to the following:

DBPARAMETERGROUP mydbparametergroup aurora5.6 My new parameter group

RDS API

To create a DB parameter group, use the RDS API CreateDBParameterGroup operation.

Include the following required parameters:

• DBParameterGroupName

• DBParameterGroupFamily

• Description

Creating a DB cluster parameter group
You can create a new DB cluster parameter group using the AWS Management Console, the AWS CLI, or
the RDS API.

Console

To create a DB cluster parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

343

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBParameterGroup.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Creating a DB cluster parameter group

2. In the navigation pane, choose Parameter groups.

3. Choose Create parameter group.

The Create parameter group window appears.

4. In the Parameter group family list, select a DB parameter group family

5. In the Type list, select DB Cluster Parameter Group.

6. In the Group name box, enter the name of the new DB cluster parameter group.

7. In the Description box, enter a description for the new DB cluster parameter group.

8. Choose Create.

AWS CLI

To create a DB cluster parameter group, use the AWS CLI create-db-cluster-parameter-
group command. The following example creates a DB cluster parameter group named
mydbclusterparametergroup for MySQL version 5.6 with a description of "My new cluster parameter
group."

Include the following required parameters:

• --db-cluster-parameter-group-name

• --db-parameter-group-family

• --description

To list all of the available parameter group families, use the following command:

aws rds describe-db-engine-versions --query "DBEngineVersions[].DBParameterGroupFamily"

Note
The output contains duplicates.

Example

For Linux, macOS, or Unix:

aws rds create-db-cluster-parameter-group \
 --db-cluster-parameter-group-name mydbclusterparametergroup \
 --db-parameter-group-family aurora5.6 \
 --description "My new cluster parameter group"

For Windows:

aws rds create-db-cluster-parameter-group ^
 --db-cluster-parameter-group-name mydbclusterparametergroup ^
 --db-parameter-group-family aurora5.6 ^
 --description "My new cluster parameter group"

This command produces output similar to the following:

DBCLUSTERPARAMETERGROUP mydbclusterparametergroup mysql5.6 My cluster new parameter
 group

344

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster-parameter-group.html

Amazon Aurora User Guide for Aurora
Associating a DB parameter group with a DB instance

RDS API

To create a DB cluster parameter group, use the RDS API CreateDBClusterParameterGroup action.

Include the following required parameters:

• DBClusterParameterGroupName

• DBParameterGroupFamily

• Description

Associating a DB parameter group with a DB instance
You can create your own DB parameter groups with customized settings. You can associate a DB
parameter group with a DB instance using the AWS Management Console, the AWS CLI, or the RDS API.
You can do so when you create or modify a DB instance.

For information about creating a DB parameter group, see Creating a DB parameter group (p. 342). For
information about modifying a DB instance, see Modify a DB instance in a DB cluster (p. 373).

Note
When you associate a new DB parameter group with a DB instance, the modified static and
dynamic parameters are applied only after the DB instance is rebooted. However, if you modify
dynamic parameters in the newly associated DB parameter group, these changes are applied
immediately without a reboot.

Console

To associate a DB parameter group with a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance that you want to
modify.

3. Choose Modify. The Modify DB Instance page appears.
4. Change the DB parameter group setting.
5. Choose Continue and check the summary of modifications.
6. (Optional) Choose Apply immediately to apply the changes immediately. Choosing this option can

cause an outage in some cases.
7. On the confirmation page, review your changes. If they are correct, choose Modify DB instance to

save your changes.

Or choose Back to edit your changes or Cancel to cancel your changes.

AWS CLI

To associate a DB parameter group with a DB instance, use the AWS CLI modify-db-instance
command with the following options:

• --db-instance-identifier

• --db-parameter-group-name

The following example associates the mydbpg DB parameter group with the database-1 DB
instance. The changes are applied immediately by using --apply-immediately. Use --no-apply-
immediately to apply the changes during the next maintenance window.

345

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBClusterParameterGroup.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Aurora User Guide for Aurora
Associating a DB cluster parameter group with a DB cluster

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier database-1 \
 --db-parameter-group-name mydbpg \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier database-1 ^
 --db-parameter-group-name mydbpg ^
 --apply-immediately

RDS API

To associate a DB parameter group with a DB instance, use the RDS API ModifyDBInstance operation
with the following parameters:

• DBInstanceName

• DBParameterGroupName

Associating a DB cluster parameter group with a DB
cluster
You can create your own DB cluster parameter groups with customized settings. You can associate a DB
cluster parameter group with a DB cluster using the AWS Management Console, the AWS CLI, or the RDS
API. You can do so when you create or modify a DB cluster.

For information about creating a DB cluster parameter group, see Creating a DB cluster parameter
group (p. 343). For information about creating a DB cluster, see Creating an Amazon Aurora DB
cluster (p. 125). For information about modifying a DB cluster, see Modifying an Amazon Aurora DB
cluster (p. 372).

Note
After you change the DB cluster parameter group associated with a DB cluster, reboot the
primary DB instance in the cluster to apply the changes to all of the DB instances in the cluster.
To determine whether the primary DB instance of a DB cluster must be rebooted to apply
changes, run the following AWS CLI command:
aws rds describe-db-clusters --db-cluster-identifier
db_cluster_identifier
Check the DBClusterParameterGroupStatus value for the primary DB instance in the
output. If the value is pending-reboot, then reboot the primary DB instance of the DB cluster.

Console

To associate a DB cluster parameter group with a DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then select the DB cluster that you want to modify.

346

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Modifying parameters in a DB parameter group

3. Choose Modify. The Modify DB cluster page appears.

4. Change the DB cluster parameter group setting.

5. Choose Continue and check the summary of modifications.

The change is applied immediately regardless of the Scheduling of modifications setting.

6. On the confirmation page, review your changes. If they are correct, choose Modify cluster to save
your changes.

Alternatively, choose Back to edit your changes, or choose Cancel to cancel your changes.

AWS CLI

To associate a DB cluster parameter group with a DB cluster, use the AWS CLI modify-db-cluster
command with the following options:

• --db-cluster-name

• --db-cluster-parameter-group-name

The following example associates the mydbclpg DB parameter group with the mydbcluster DB cluster.

Example

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier mydbcluster \
 --db-cluster-parameter-group-name mydbclpg

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier mydbcluster ^
 --db-cluster-parameter-group-name mydbclpg

RDS API

To associate a DB cluster parameter group with a DB cluster, use the RDS API ModifyDBCluster
operation with the following parameters:

• DBClusterIdentifier

• DBClusterParameterGroupName

Modifying parameters in a DB parameter group
You can modify parameter values in a customer-created DB parameter group; you can't change the
parameter values in a default DB parameter group. Changes to parameters in a customer-created DB
parameter group are applied to all DB instances that are associated with the DB parameter group.

Changes to some parameters are applied to the DB instance immediately without a reboot. Changes to
other parameters are applied only after the DB instance is rebooted. The RDS console shows the status
of the DB parameter group associated with a DB instance on the Configuration tab. For example, if the
DB instance isn't using the latest changes to its associated DB parameter group, the RDS console shows

347

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora
Modifying parameters in a DB parameter group

the DB parameter group with a status of pending-reboot. To apply the latest parameter changes to that
DB instance, manually reboot the DB instance.

Console

To modify a DB parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. In the list, choose the parameter group that you want to modify.

4. For Parameter group actions, choose Edit.

5. Change the values of the parameters that you want to modify. You can scroll through the
parameters using the arrow keys at the top right of the dialog box.

You can't change values in a default parameter group.

6. Choose Save changes.

348

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Modifying parameters in a DB cluster parameter group

AWS CLI

To modify a DB parameter group, use the AWS CLI modify-db-parameter-group command with the
following required options:

• --db-parameter-group-name

• --parameters

The following example modifies the max_connections and max_allowed_packet values in the DB
parameter group named mydbparametergroup.

Example

For Linux, macOS, or Unix:

aws rds modify-db-parameter-group \
 --db-parameter-group-name mydbparametergroup \
 --parameters "ParameterName=max_connections,ParameterValue=250,ApplyMethod=immediate" \

 "ParameterName=max_allowed_packet,ParameterValue=1024,ApplyMethod=immediate"

For Windows:

aws rds modify-db-parameter-group ^
 --db-parameter-group-name mydbparametergroup ^
 --parameters "ParameterName=max_connections,ParameterValue=250,ApplyMethod=immediate" ^

 "ParameterName=max_allowed_packet,ParameterValue=1024,ApplyMethod=immediate"

The command produces output like the following:

DBPARAMETERGROUP mydbparametergroup

RDS API

To modify a DB parameter group, use the RDS API ModifyDBParameterGroup operation with the
following required parameters:

• DBParameterGroupName

• Parameters

Modifying parameters in a DB cluster parameter
group
You can modify parameter values in a customer-created DB cluster parameter group. You can't change
the parameter values in a default DB cluster parameter group. Changes to parameters in a customer-
created DB cluster parameter group are applied to all DB clusters that are associated with the DB cluster
parameter group.

Console

To modify a DB cluster parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

349

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBParameterGroup.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Modifying parameters in a DB cluster parameter group

2. In the navigation pane, choose Parameter groups.

3. In the list, choose the parameter group that you want to modify.

4. For Parameter group actions, choose Edit.

5. Change the values of the parameters you want to modify. You can scroll through the parameters
using the arrow keys at the top right of the dialog box.

You can't change values in a default parameter group.

6. Choose Save changes.

7. Reboot the primary DB instance in the cluster to apply the changes to all of the DB instances in the
cluster.

AWS CLI

To modify a DB cluster parameter group, use the AWS CLI modify-db-cluster-parameter-group
command with the following required parameters:

• --db-cluster-parameter-group-name

• --parameters

The following example modifies the server_audit_logging and server_audit_logs_upload
values in the DB cluster parameter group named mydbclusterparametergroup.

Example

For Linux, macOS, or Unix:

aws rds modify-db-cluster-parameter-group \
 --db-cluster-parameter-group-name mydbclusterparametergroup \
 --parameters
 "ParameterName=server_audit_logging,ParameterValue=1,ApplyMethod=immediate" \

 "ParameterName=server_audit_logs_upload,ParameterValue=1,ApplyMethod=immediate"

For Windows:

aws rds modify-db-cluster-parameter-group ^
 --db-cluster-parameter-group-name mydbclusterparametergroup ^
 --parameters
 "ParameterName=server_audit_logging,ParameterValue=1,ApplyMethod=immediate" ^

 "ParameterName=server_audit_logs_upload,ParameterValue=1,ApplyMethod=immediate"

The command produces output like the following:

DBCLUSTERPARAMETERGROUP mydbclusterparametergroup

RDS API

To modify a DB cluster parameter group, use the RDS API ModifyDBClusterParameterGroup
command with the following required parameters:

• DBClusterParameterGroupName

• Parameters

350

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBClusterParameterGroup.html

Amazon Aurora User Guide for Aurora
Resetting parameters in a DB parameter group

Resetting parameters in a DB parameter group to
their default values
You can reset parameter values in a customer-created DB parameter group to their default values.
Changes to parameters in a customer-created DB parameter group are applied to all DB instances that
are associated with the DB parameter group.

When you use the console, you can reset specific parameters to their default values, but you can't easily
reset all of the parameters in the DB parameter group at once. When you use the AWS CLI or RDS API,
you can reset specific parameters to their default values, and you can reset all of the parameters in the
DB parameter group at once.

Changes to some parameters are applied to the DB instance immediately without a reboot. Changes to
other parameters are applied only after the DB instance is rebooted. The RDS console shows the status
of the DB parameter group associated with a DB instance on the Configuration tab. For example, if the
DB instance isn't using the latest changes to its associated DB parameter group, the RDS console shows
the DB parameter group with a status of pending-reboot. To apply the latest parameter changes to that
DB instance, manually reboot the DB instance.

351

Amazon Aurora User Guide for Aurora
Resetting parameters in a DB parameter group

Note
In a default DB parameter group, parameters are always set to their default values.

Console

To reset parameters in a DB parameter group to their default values

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.
3. In the list, choose the parameter group.
4. For Parameter group actions, choose Edit.
5. Choose the parameters that you want to reset to their default values. You can scroll through the

parameters using the arrow keys at the top right of the dialog box.

You can't reset values in a default parameter group.
6. Choose Reset and then confirm by choosing Reset parameters.

AWS CLI

To reset some or all of the parameters in a DB parameter group, use the AWS CLI reset-db-
parameter-group command with the following required option: --db-parameter-group-name.

To reset all of the parameters in the DB parameter group, specify the --reset-all-parameters
option. To reset specific parameters, specify the --parameters option.

The following example resets all of the parameters in the DB parameter group named
mydbparametergroup to their default values.

Example

For Linux, macOS, or Unix:

aws rds reset-db-parameter-group \
 --db-parameter-group-name mydbparametergroup \
 --reset-all-parameters

For Windows:

aws rds reset-db-parameter-group ^
 --db-parameter-group-name mydbparametergroup ^
 --reset-all-parameters

The following example resets the max_connections and max_allowed_packet options to their
default values in the DB parameter group named mydbparametergroup.

Example

For Linux, macOS, or Unix:

aws rds reset-db-parameter-group \
 --db-parameter-group-name mydbparametergroup \
 --parameters "ParameterName=max_connections,ApplyMethod=immediate" \
 "ParameterName=max_allowed_packet,ApplyMethod=immediate"

For Windows:

352

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/reset-db-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/reset-db-parameter-group.html

Amazon Aurora User Guide for Aurora
Resetting parameters in a DB cluster parameter group

aws rds reset-db-parameter-group ^
 --db-parameter-group-name mydbparametergroup ^
 --parameters "ParameterName=max_connections,ApplyMethod=immediate" ^
 "ParameterName=max_allowed_packet,ApplyMethod=immediate"

The command produces output like the following:

DBParameterGroupName mydbparametergroup

RDS API

To reset parameters in a DB parameter group to their default values, use the RDS
API ResetDBParameterGroup command with the following required parameter:
DBParameterGroupName.

To reset all of the parameters in the DB parameter group, set the ResetAllParameters parameter to
true. To reset specific parameters, specify the Parameters parameter.

Resetting parameters in a DB cluster parameter
group
You can reset parameters to their default values in a customer-created DB cluster parameter group.
Changes to parameters in a customer-created DB cluster parameter group are applied to all DB clusters
that are associated with the DB cluster parameter group.

Note
In a default DB cluster parameter group, parameters are always set to their default values.

Console

To reset parameters in a DB cluster parameter group to their default values

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.
3. In the list, choose the parameter group.
4. For Parameter group actions, choose Edit.
5. Choose the parameters that you want to reset to their default values. You can scroll through the

parameters using the arrow keys at the top right of the dialog box.

You can't reset values in a default parameter group.
6. Choose Reset and then confirm by choosing Reset parameters.
7. Reboot the primary DB instance in the DB cluster to apply the changes to all of the DB instances in

the DB cluster.

AWS CLI

To reset parameters in a DB cluster parameter group to their default values, use the AWS CLI reset-
db-cluster-parameter-group command with the following required option: --db-cluster-
parameter-group-name.

To reset all of the parameters in the DB cluster parameter group, specify the --reset-all-
parameters option. To reset specific parameters, specify the --parameters option.

353

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ResetDBParameterGroup.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/reset-db-cluster-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/reset-db-cluster-parameter-group.html

Amazon Aurora User Guide for Aurora
Copying a DB parameter group

The following example resets all of the parameters in the DB parameter group named
mydbparametergroup to their default values.

Example

For Linux, macOS, or Unix:

aws rds reset-db-cluster-parameter-group \
 --db-cluster-parameter-group-name mydbparametergroup \
 --reset-all-parameters

For Windows:

aws rds reset-db-cluster-parameter-group ^
 --db-cluster-parameter-group-name mydbparametergroup ^
 --reset-all-parameters

The following example resets the server_audit_logging and server_audit_logs_upload to their
default values in the DB cluster parameter group named mydbclusterparametergroup.

Example

For Linux, macOS, or Unix:

aws rds reset-db-cluster-parameter-group \
 --db-cluster-parameter-group-name mydbclusterparametergroup \
 --parameters "ParameterName=server_audit_logging,ApplyMethod=immediate" \
 "ParameterName=server_audit_logs_upload,ApplyMethod=immediate"

For Windows:

aws rds reset-db-cluster-parameter-group ^
 --db-cluster-parameter-group-name mydbclusterparametergroup ^
 --parameters
 "ParameterName=server_audit_logging,ParameterValue=1,ApplyMethod=immediate" ^

 "ParameterName=server_audit_logs_upload,ParameterValue=1,ApplyMethod=immediate"

The command produces output like the following:

DBClusterParameterGroupName mydbclusterparametergroup

RDS API

To reset parameters in a DB cluster parameter group to their default values, use the RDS
API ResetDBClusterParameterGroup command with the following required parameter:
DBClusterParameterGroupName.

To reset all of the parameters in the DB cluster parameter group, set the ResetAllParameters
parameter to true. To reset specific parameters, specify the Parameters parameter.

Copying a DB parameter group
You can copy custom DB parameter groups that you create. Copying a parameter group is a convenient
solution when you have already created a DB parameter group and you want to include most of the

354

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ResetDBClusterParameterGroup.html

Amazon Aurora User Guide for Aurora
Copying a DB parameter group

custom parameters and values from that group in a new DB parameter group. You can copy a DB
parameter group by using the AWS Management Console, the AWS CLI copy-db-parameter-group
command, or the RDS API CopyDBParameterGroup operation.

After you copy a DB parameter group, wait at least 5 minutes before creating your first DB instance that
uses that DB parameter group as the default parameter group. Doing this allows Amazon RDS to fully
complete the copy action before the parameter group is used. This is especially important for parameters
that are critical when creating the default database for a DB instance. An example is the character set
for the default database defined by the character_set_database parameter. Use the Parameter
Groups option of the Amazon RDS console or the describe-db-parameters command to verify that your
DB parameter group is created.

Note
You can't copy a default parameter group. However, you can create a new parameter group that
is based on a default parameter group.
Currently, you can't copy a parameter group to a different AWS Region.

Console

To copy a DB parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.
3. In the list, choose the custom parameter group that you want to copy.
4. For Parameter group actions, choose Copy.
5. In New DB parameter group identifier, enter a name for the new parameter group.
6. In Description, enter a description for the new parameter group.
7. Choose Copy.

AWS CLI

To copy a DB parameter group, use the AWS CLI copy-db-parameter-group command with the
following required options:

• --source-db-parameter-group-identifier

• --target-db-parameter-group-identifier

• --target-db-parameter-group-description

The following example creates a new DB parameter group named mygroup2 that is a copy of the DB
parameter group mygroup1.

Example

For Linux, macOS, or Unix:

aws rds copy-db-parameter-group \
 --source-db-parameter-group-identifier mygroup1 \
 --target-db-parameter-group-identifier mygroup2 \
 --target-db-parameter-group-description "DB parameter group 2"

For Windows:

aws rds copy-db-parameter-group ^

355

https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-parameter-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CopyDBParameterGroup.html
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameters.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-parameter-group.html

Amazon Aurora User Guide for Aurora
Copying a DB cluster parameter group

 --source-db-parameter-group-identifier mygroup1 ^
 --target-db-parameter-group-identifier mygroup2 ^
 --target-db-parameter-group-description "DB parameter group 2"

RDS API

To copy a DB parameter group, use the RDS API CopyDBParameterGroup operation with the following
required parameters:

• SourceDBParameterGroupIdentifier

• TargetDBParameterGroupIdentifier

• TargetDBParameterGroupDescription

Copying a DB cluster parameter group
You can copy custom DB cluster parameter groups that you create. Copying a parameter group is a
convenient solution when you have already created a DB cluster parameter group and you want to
include most of the custom parameters and values from that group in a new DB cluster parameter group.
You can copy a DB cluster parameter group by using the AWS CLI copy-db-cluster-parameter-group
command or the RDS API CopyDBClusterParameterGroup operation.

After you copy a DB cluster parameter group, wait at least 5 minutes before creating your first DB cluster
that uses that DB cluster parameter group as the default parameter group. Doing this allows Amazon
RDS to fully complete the copy action before the parameter group is used as the default for a new
DB cluster. You can use the Parameter Groups option of the Amazon RDS console or the describe-db-
cluster-parameters command to verify that your DB cluster parameter group is created.

Note
You can't copy a default parameter group. However, you can create a new parameter group that
is based on a default parameter group.

Console

To copy a DB cluster parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. In the list, choose the custom parameter group that you want to copy.

4. For Parameter group actions, choose Copy.

5. In New DB parameter group identifier, enter a name for the new parameter group.

6. In Description, enter a description for the new parameter group.

7. Choose Copy.

AWS CLI

To copy a DB cluster parameter group, use the AWS CLI copy-db-cluster-parameter-group
command with the following required parameters:

• --source-db-cluster-parameter-group-identifier

• --target-db-cluster-parameter-group-identifier

• --target-db-cluster-parameter-group-description

356

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CopyDBParameterGroup.html
https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-cluster-parameter-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CopyDBParameterGroup.html
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-parameters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-parameters.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-cluster-parameter-group.html

Amazon Aurora User Guide for Aurora
Listing DB parameter groups

The following example creates a new DB cluster parameter group named mygroup2 that is a copy of the
DB cluster parameter group mygroup1.

Example

For Linux, macOS, or Unix:

aws rds copy-db-cluster-parameter-group \
 --source-db-cluster-parameter-group-identifier mygroup1 \
 --target-db-cluster-parameter-group-identifier mygroup2 \
 --target-db-cluster-parameter-group-description "DB parameter group 2"

For Windows:

aws rds copy-db-cluster-parameter-group ^
 --source-db-cluster-parameter-group-identifier mygroup1 ^
 --target-db-cluster-parameter-group-identifier mygroup2 ^
 --target-db-cluster-parameter-group-description "DB parameter group 2"

RDS API

To copy a DB cluster parameter group, use the RDS API CopyDBClusterParameterGroup operation
with the following required parameters:

• SourceDBClusterParameterGroupIdentifier

• TargetDBClusterParameterGroupIdentifier

• TargetDBClusterParameterGroupDescription

Listing DB parameter groups
You can list the DB parameter groups you've created for your AWS account.

Note
Default parameter groups are automatically created from a default parameter template when
you create a DB instance for a particular DB engine and version. These default parameter
groups contain preferred parameter settings and can't be modified. When you create a custom
parameter group, you can modify parameter settings.

Console

To list all DB parameter groups for an AWS account

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

The DB parameter groups appear in a list.

AWS CLI

To list all DB parameter groups for an AWS account, use the AWS CLI describe-db-parameter-
groups command.

Example

The following example lists all available DB parameter groups for an AWS account.

357

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CopyDBClusterParameterGroup.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameter-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameter-groups.html

Amazon Aurora User Guide for Aurora
Listing DB cluster parameter groups

aws rds describe-db-parameter-groups

The command returns a response like the following:

DBPARAMETERGROUP default.mysql5.6 mysql5.6 Default parameter group for MySQL5.6
DBPARAMETERGROUP mydbparametergroup mysql5.6 My new parameter group

The following example describes the mydbparamgroup1 parameter group.

For Linux, macOS, or Unix:

aws rds describe-db-parameter-groups \
 --db-parameter-group-name mydbparamgroup1

For Windows:

aws rds describe-db-parameter-groups ^
 --db-parameter-group-name mydbparamgroup1

The command returns a response like the following:

DBPARAMETERGROUP mydbparametergroup1 mysql5.6 My new parameter group

RDS API

To list all DB parameter groups for an AWS account, use the RDS API DescribeDBParameterGroups
operation.

Listing DB cluster parameter groups
You can list the DB cluster parameter groups you've created for your AWS account.

Note
Default parameter groups are automatically created from a default parameter template
when you create a DB cluster for a particular DB engine and version. These default parameter
groups contain preferred parameter settings and can't be modified. When you create a custom
parameter group, you can modify parameter settings.

Console

To list all DB cluster parameter groups for an AWS account

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

The DB cluster parameter groups appear in the list with DB cluster parameter group for Type.

AWS CLI

To list all DB cluster parameter groups for an AWS account, use the AWS CLI describe-db-cluster-
parameter-groups command.

358

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBParameterGroups.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusterparameter-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusterparameter-groups.html

Amazon Aurora User Guide for Aurora
Viewing parameter values for a DB parameter group

Example

The following example lists all available DB cluster parameter groups for an AWS account.

aws rds describe-db-cluster-parameter-groups

The command returns a response like the following:

DBCLUSTERPARAMETERGROUPS arn:aws:rds:us-west-2:1234567890:cluster-
pg:default.aurora5.6 default.aurora5.6 aurora5.6 Default cluster parameter
 group for aurora5.6
DBCLUSTERPARAMETERGROUPS arn:aws:rds:us-west-2:1234567890:cluster-
pg:mydbclusterparametergroup mydbclusterparametergroup aurora5.6 My new cluster
 parameter group

The following example describes the mydbclusterparametergroup parameter group.

For Linux, macOS, or Unix:

aws rds describe-db-cluster-parameter-groups \
 --db-cluster-parameter-group-name mydbclusterparametergroup

For Windows:

aws rds describe-db-cluster-parameter-groups ^
 --db-cluster-parameter-group-name mydbclusterparametergroup

The command returns a response like the following:

DBCLUSTERPARAMETERGROUPS arn:aws:rds:us-west-2:1234567890:cluster-
pg:mydbclusterparametergroup mydbclusterparametergroup aurora5.6 My new cluster
 parameter group

RDS API

To list all DB cluster parameter groups for an AWS account, use the RDS API
DescribeDBClusterParameterGroups action.

Viewing parameter values for a DB parameter group
You can get a list of all parameters in a DB parameter group and their values.

Console

To view the parameter values for a DB parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

The DB parameter groups appear in a list.

359

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterParameterGroups.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Viewing parameter values for a DB cluster parameter group

3. Choose the name of the parameter group to see its list of parameters.

AWS CLI

To view the parameter values for a DB parameter group, use the AWS CLI describe-db-parameters
command with the following required parameter.

• --db-parameter-group-name

Example

The following example lists the parameters and parameter values for a DB parameter group named
mydbparametergroup.

aws rds describe-db-parameters --db-parameter-group-name mydbparametergroup

The command returns a response like the following:

DBPARAMETER Parameter Name Parameter Value Source Data Type Apply
 Type Is Modifiable
DBPARAMETER allow-suspicious-udfs engine-default boolean static
 false
DBPARAMETER auto_increment_increment engine-default integer dynamic
 true
DBPARAMETER auto_increment_offset engine-default integer dynamic
 true
DBPARAMETER binlog_cache_size 32768 system integer dynamic
 true
DBPARAMETER socket /tmp/mysql.sock system string static
 false

RDS API

To view the parameter values for a DB parameter group, use the RDS API DescribeDBParameters
command with the following required parameter.

• DBParameterGroupName

Viewing parameter values for a DB cluster parameter
group
You can get a list of all parameters in a DB cluster parameter group and their values.

Console

To view the parameter values for a DB cluster parameter group

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

The DB cluster parameter groups appear in the list with DB cluster parameter group for Type.

3. Choose the name of the DB cluster parameter group to see its list of parameters.

360

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBParameters.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Viewing parameter values for a DB cluster parameter group

AWS CLI

To view the parameter values for a DB cluster parameter group, use the AWS CLI describe-db-
cluster-parameters command with the following required parameter.

• --db-cluster-parameter-group-name

Example

The following example lists the parameters and parameter values for a DB cluster parameter group
named mydbclusterparametergroup, in JSON format.

The command returns a response like the following:

aws rds describe-db-cluster-parameters --db-cluster-parameter-group-
name mydbclusterparametergroup

{
 "Parameters": [
 {
 "ApplyMethod": "pending-reboot",
 "Description": "Controls whether user-defined functions that have only an xxx
 symbol for the main function can be loaded",
 "DataType": "boolean",
 "AllowedValues": "0,1",
 "SupportedEngineModes": [
 "provisioned"
],
 "Source": "engine-default",
 "IsModifiable": false,
 "ParameterName": "allow-suspicious-udfs",
 "ApplyType": "static"
 },
 {
 "ApplyMethod": "pending-reboot",
 "Description": "Enables new features in the Aurora engine.",
 "DataType": "boolean",
 "IsModifiable": true,
 "AllowedValues": "0,1",
 "SupportedEngineModes": [
 "provisioned"
],
 "Source": "engine-default",
 "ParameterValue": "0",
 "ParameterName": "aurora_lab_mode",
 "ApplyType": "static"
 },
...

The following example lists the parameters and parameter values for a DB cluster parameter group
named mydbclusterparametergroup, in plain text format.

aws rds describe-db-cluster-parameters --db-cluster-parameter-group-
name mydbclusterparametergroup --output text

The command returns a response like the following:

361

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-parameters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-parameters.html

Amazon Aurora User Guide for Aurora
Comparing parameter groups

PARAMETERS 0,1 pending-reboot static boolean Controls whether user-defined functions
 that have only an xxx symbol for the main function can be loaded False allow-suspicious-
udfs engine-default SUPPORTEDENGINEMODES provisioned
PARAMETERS 0,1 pending-reboot static boolean Enables new features in the Aurora
 engine. True aurora_lab_mode 0 engine-default SUPPORTEDENGINEMODES provisioned
...

RDS API

To view the parameter values for a DB cluster parameter group, use the RDS API
DescribeDBClusterParameters command with the following required parameter.

• DBClusterParameterGroupName

Comparing parameter groups
You can use the AWS Management Console to view the differences between two parameter groups for
the same DB engine and version.

To compare two parameter groups

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.
3. In the list, choose the two parameter groups that you want to compare.
4. For Parameter group actions, choose Compare.

Note
If the items you selected aren't equivalent, you can't choose Compare. For example, you
can't compare a MySQL 5.6 and a MySQL 5.7 parameter group. You can't compare a DB
parameter group and an Aurora DB cluster parameter group.

Specifying DB parameters
DB parameter types include the following:

• Integer
• Boolean
• String
• Long
• Double
• Timestamp
• Object of other defined data types
• Array of values of type integer, Boolean, string, long, double, timestamp, or object

You can also specify integer and Boolean parameters using expressions, formulas, and functions.

Contents
• DB parameter formulas (p. 363)

• DB parameter formula variables (p. 363)
• DB parameter formula operators (p. 363)

• DB parameter functions (p. 364)

362

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBParameters.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Specifying DB parameters

• DB parameter log expressions (p. 364)
• DB parameter value examples (p. 365)

DB parameter formulas
A DB parameter formula is an expression that resolves to an integer value or a Boolean value. You
enclose the expression in braces: {}. You can use a formula for either a DB parameter value or as an
argument to a DB parameter function.

Syntax

{FormulaVariable}
{FormulaVariable*Integer}
{FormulaVariable*Integer/Integer}
{FormulaVariable/Integer}

DB parameter formula variables

Each formula variable returns an integer or a Boolean value. The names of the variables are case-
sensitive.

AllocatedStorage

Returns an integer representing the size, in bytes, of the data volume.
DBInstanceClassMemory

Returns an integer for the number of bytes of memory available to the database process. This
number is internally calculated by taking the total amount of memory for the DB instance class and
subtracting memory reserved for the operating system and the RDS processes that manage the
instance. Therefore, the number is always somewhat lower than the memory figures shown in the
instance class tables in Aurora DB instance classes (p. 54). The exact value depends on a combination
of instance class, DB engine, and whether it applies to an RDS instance or an instance that's part of
an Aurora cluster.

EndPointPort

Returns an integer representing the port used when connecting to the DB instance.

DB parameter formula operators

DB parameter formulas support two operators: division and multiplication.

Division operator: /

Divides the dividend by the divisor, returning an integer quotient. Decimals in the quotient are
truncated, not rounded.

Syntax

dividend / divisor

The dividend and divisor arguments must be integer expressions.
Multiplication operator: *

Multiplies the expressions, returning the product of the expressions. Decimals in the expressions are
truncated, not rounded.

363

Amazon Aurora User Guide for Aurora
Specifying DB parameters

Syntax

expression * expression

Both expressions must be integers.

DB parameter functions
You specify the arguments of DB parameter functions as either integers or formulas. Each function must
have at least one argument. Specify multiple arguments as a comma-separated list. The list can't have
any empty members, such as argument1,,argument3. Function names are case-insensitive.

IF

Returns an argument.

Syntax

IF(argument1, argument2, argument3)

Returns the second argument if the first argument evaluates to true. Returns the third argument
otherwise.

GREATEST

Returns the largest value from a list of integers or parameter formulas.

Syntax

GREATEST(argument1, argument2,...argumentn)

Returns an integer.
LEAST

Returns the smallest value from a list of integers or parameter formulas.

Syntax

LEAST(argument1, argument2,...argumentn)

Returns an integer.
SUM

Adds the values of the specified integers or parameter formulas.

Syntax

SUM(argument1, argument2,...argumentn)

Returns an integer.

DB parameter log expressions
You can set an integer DB parameter value to a log expression. You enclose the expression in braces: {}.
For example:

364

Amazon Aurora User Guide for Aurora
Specifying DB parameters

{log(DBInstanceClassMemory/8187281418)*1000}

The log function represents log base 2. This example also uses the DBInstanceClassMemory formula
variable. See DB parameter formula variables (p. 363).

DB parameter value examples
These examples show using formulas, functions, and expressions for the values of DB parameters.

Note
DB Parameter functions are currently supported only in the console and aren't supported in the
AWS CLI.

Warning
Improperly setting parameters in a DB parameter group can have unintended adverse effects.
These might include degraded performance and system instability. Use caution when modifying
database parameters and back up your data before modifying your DB parameter group. Try out
parameter group changes on a test DB instance, created using point-in-time-restores, before
applying those parameter group changes to your production DB instances.

Example using the DB parameter function LEAST

You can specify the LEAST function in an Aurora MySQL table_definition_cache parameter value.
Use it to set the number of table definitions that can be stored in the definition cache to the lesser of
DBInstanceClassMemory/393040 or 20,000.

LEAST({DBInstanceClassMemory/393040}, 20000)

365

Amazon Aurora User Guide for Aurora
Migrating data to a DB cluster

Migrating data to an Amazon Aurora DB cluster
You have several options for migrating data from your existing database to an Amazon Aurora DB cluster,
depending on database engine compatibility. Your migration options also depend on the database that
you are migrating from and the size of the data that you are migrating.

Migrating data to an Amazon Aurora MySQL DB
cluster
You can migrate data from one of the following sources to an Amazon Aurora MySQL DB cluster.

• An RDS for MySQL DB instance
• A MySQL database external to Amazon RDS
• A database that is not MySQL-compatible

For more information, see Migrating data to an Amazon Aurora MySQL DB cluster (p. 802).

Migrating data to an Amazon Aurora PostgreSQL DB
cluster
You can migrate data from one of the following sources to an Amazon Aurora PostgreSQL DB cluster.

• An Amazon RDS PostgreSQL DB instance
• A database that is not PostgreSQL-compatible

For more information, see Migrating data to Amazon Aurora with PostgreSQL compatibility (p. 1304).

366

Amazon Aurora User Guide for Aurora

Managing an Amazon Aurora DB
cluster

This section shows how to manage and maintain your Aurora DB cluster. Aurora involves clusters of
database servers that are connected in a replication topology. Thus, managing Aurora often involves
deploying changes to multiple servers and making sure that all Aurora Replicas are keeping up with the
master server. Because Aurora transparently scales the underlying storage as your data grows, managing
Aurora requires relatively little management of disk storage. Likewise, because Aurora automatically
performs continuous backups, an Aurora cluster does not require extensive planning or downtime for
performing backups.

Topics
• Stopping and starting an Amazon Aurora DB cluster (p. 368)
• Modifying an Amazon Aurora DB cluster (p. 372)
• Adding Aurora Replicas to a DB cluster (p. 392)
• Managing performance and scaling for Aurora DB clusters (p. 396)
• Cloning a volume for an Aurora DB cluster (p. 402)
• Integrating Aurora with other AWS services (p. 426)
• Maintaining an Amazon Aurora DB cluster (p. 443)
• Rebooting an Amazon Aurora DB cluster or Amazon Aurora DB instance (p. 451)
• Deleting Aurora DB clusters and DB instances (p. 467)
• Tagging Amazon RDS resources (p. 474)
• Working with Amazon Resource Names (ARNs) in Amazon RDS (p. 482)
• Amazon Aurora updates (p. 489)

367

Amazon Aurora User Guide for Aurora
Stopping and starting a cluster

Stopping and starting an Amazon Aurora DB
cluster

Stopping and starting Amazon Aurora clusters helps you manage costs for development and test
environments. You can temporarily stop all the DB instances in your cluster, instead of setting up and
tearing down all the DB instances each time that you use the cluster.

Topics

• Overview of stopping and starting an Aurora DB cluster (p. 368)

• Limitations for stopping and starting Aurora DB clusters (p. 368)

• Stopping an Aurora DB cluster (p. 369)

• Possible operations while an Aurora DB cluster is stopped (p. 370)

• Starting an Aurora DB cluster (p. 370)

Overview of stopping and starting an Aurora DB
cluster
During periods where you don't need an Aurora cluster, you can stop all instances in that cluster at once.
You can start the cluster again anytime you need to use it. Starting and stopping simplifies the setup
and teardown processes for clusters used for development, testing, or similar activities that don't require
continuous availability. You can perform all the AWS Management Console procedures involved with only
a single action, regardless of how many instances are in the cluster.

While your DB cluster is stopped, you are charged only for cluster storage, manual snapshots, and
automated backup storage within your specified retention window. You aren't charged for any DB
instance hours. Aurora automatically starts your DB cluster after seven days so that it doesn't fall behind
any required maintenance updates.

To minimize charges for a lightly loaded Aurora cluster, you can stop the cluster instead of deleting
all of its Aurora Replicas. For clusters with more than one or two instances, frequently deleting and
recreating the DB instances is only practical using the AWS CLI or Amazon RDS API. Such a sequence of
operations can also be difficult to perform in the right order, for example to delete all Aurora Replicas
before deleting the primary instance to avoid activating the failover mechanism.

Don't use starting and stopping if you need to keep your DB cluster running but it has more capacity
than you need. If your cluster is too costly or not very busy, delete one or more DB instances or change
all your DB instances to a small instance class. You can't stop an individual Aurora DB instance.

Limitations for stopping and starting Aurora DB
clusters
Some Aurora clusters can't be stopped and started:

• You can't stop and start a cluster that's part of an Aurora global database (p. 225).

• For a cluster that uses the Aurora parallel query (p. 902) feature, the minimum Aurora MySQL
versions are 1.23.0 and 2.09.0.

• You can't stop and start an Aurora Serverless cluster (p. 147).

• You can't stop and start an Aurora multi-master cluster (p. 979).

368

Amazon Aurora User Guide for Aurora
Stopping a DB cluster

If an existing cluster can't be stopped and started, the Stop action isn't available from the Actions menu
on the Databases page or the details page.

Stopping an Aurora DB cluster
To use an Aurora DB cluster or perform administration, you always begin with a running Aurora DB
cluster, then stop the cluster, and then start the cluster again. While your cluster is stopped, you are
charged for cluster storage, manual snapshots, and automated backup storage within your specified
retention window, but not for DB instance hours.

The stop operation stops the Aurora Replica instances first, then the primary instance, to avoid activating
the failover mechanism.

You can't stop a DB cluster that acts as the replication target for data from another DB cluster, or acts as
the replication master and transmits data to another cluster.

You can't stop certain special kinds of clusters. Currently, you can't stop a cluster that's part of an Aurora
global database, or a multi-master cluster.

Console

To stop an Aurora cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose a cluster. You can perform the stop
operation from this page, or navigate to the details page for the DB cluster that you want to stop.

If an existing cluster can't be stopped and started, the Stop action isn't available from the Actions
menu on the Databases page or the details page. For the kinds of clusters that you can't start and
stop, see Limitations for stopping and starting Aurora DB clusters (p. 368).

3. For Actions, choose Stop.

AWS CLI

To stop a DB instance by using the AWS CLI, call the stop-db-cluster command with the following
parameters:

• --db-cluster-identifier – the name of the Aurora cluster.

Example

aws rds stop-db-cluster --db-cluster-identifier mydbcluster

RDS API

To stop a DB instance by using the Amazon RDS API, call the StopDBCluster operation with the following
parameter:

• DBClusterIdentifier – the name of the Aurora cluster.

369

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/stop-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_StopDBCluster.html

Amazon Aurora User Guide for Aurora
While a DB cluster is stopped

Possible operations while an Aurora DB cluster is
stopped
While an Aurora cluster is stopped, you can do a point-in-time restore to any point within your specified
automated backup retention window. For details about doing a point-in-time restore, see Restoring
data (p. 493).

You can't modify the configuration of an Aurora DB cluster, or any of its DB instances, while the cluster
is stopped. You also can't add or remove DB instances from the cluster, or delete the cluster if it still
has any associated DB instances. You must start the cluster before performing any such administrative
actions.

Stopping a DB cluster removes pending actions, except for the DB cluster parameter group or for the DB
parameter groups of the DB cluster instances.

Aurora applies any scheduled maintenance to your stopped cluster after it's started again. Remember
that after seven days, Aurora automatically starts any stopped clusters so that they don't fall too far
behind in their maintenance status.

Aurora also doesn't perform any automated backups, because the underlying data can't change while the
cluster is stopped. Aurora doesn't extend the backup retention period while the cluster is stopped.

Starting an Aurora DB cluster
You always start an Aurora DB cluster beginning with an Aurora cluster that is already in the stopped
state. When you start the cluster, all its DB instances become available again. The cluster keeps its
configuration settings such as endpoints, parameter groups, and VPC security groups.

Console

To start an Aurora cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose a cluster. You can perform the start
operation from this page, or navigate to the details page for the DB cluster that you want to start.

3. For Actions, choose Start.

AWS CLI

To start a DB cluster by using the AWS CLI, call the start-db-cluster command with the following
parameters:

• --db-cluster-identifier – the name of the Aurora cluster. This name is either a specific cluster
identifier you chose when creating the cluster, or the DB instance identifier you chose with -cluster
appended to the end.

Example

aws rds start-db-cluster --db-cluster-identifier mydbcluster

RDS API

To start an Aurora DB cluster by using the Amazon RDS API, call the StartDBCluster operation with the
following parameter:

370

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/start-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_StartDBCluster.html

Amazon Aurora User Guide for Aurora
Starting a DB cluster

• DBCluster – the name of the Aurora cluster. This name is either a specific cluster identifier you chose
when creating the cluster, or the DB instance identifier you chose with -cluster appended to the
end.

371

Amazon Aurora User Guide for Aurora
Modifying an Aurora DB cluster

Modifying an Amazon Aurora DB cluster
You can change the settings of a DB cluster to accomplish tasks such as changing its backup retention
period or its database port. You can also modify DB instances in a DB cluster to accomplish tasks such
as changing its DB instance class or enabling Performance Insights for it. This topic guides you through
modifying an Aurora DB cluster and its DB instances, and describes the settings for each.

We recommend that you test any changes on a test DB cluster or DB instance before modifying a
production DB cluster or DB instance, so that you fully understand the impact of each change. This is
especially important when upgrading database versions.

Modifying the DB cluster by using the console, CLI,
and API
You can modify a DB cluster using the AWS Management Console, the AWS CLI, or the RDS API.

Note
For Aurora, when you modify a DB cluster, only changes to the DB cluster identifier, IAM DB
authentication, and New master password settings are affected by the Apply immediately
setting. All other modifications are applied immediately, regardless of the value of the Apply
immediately setting.

Console

To modify a DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then select the DB cluster that you want to modify.
3. Choose Modify. The Modify DB cluster page appears.
4. Change any of the settings that you want. For information about each setting, see Settings for

Amazon Aurora (p. 375).

Note
In the AWS Management Console, some instance level changes only apply to the current
DB instance, while others apply to the entire DB cluster. For information about whether a
setting applies to the DB instance or the DB cluster, see the scope for the setting in Settings
for Amazon Aurora (p. 375). To change a setting that modifies the entire DB cluster at
the instance level in the AWS Management Console, follow the instructions in Modify a DB
instance in a DB cluster (p. 373).

5. When all the changes are as you want them, choose Continue and check the summary of
modifications.

6. To apply the changes immediately, select Apply immediately.
7. On the confirmation page, review your changes. If they are correct, choose Modify cluster to save

your changes.

Alternatively, choose Back to edit your changes, or choose Cancel to cancel your changes.

AWS CLI

To modify a DB cluster using the AWS CLI, call the modify-db-cluster command. Specify the DB cluster
identifier, and the values for the settings that you want to modify. For information about each setting,
see Settings for Amazon Aurora (p. 375).

372

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Aurora User Guide for Aurora
Modify a DB instance in a DB cluster

Note
Some settings only apply to DB instances. To change those settings, follow the instructions in
Modify a DB instance in a DB cluster (p. 373).

Example

The following command modifies mydbcluster by setting the backup retention period to 1 week (7
days).

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier mydbcluster \
 --backup-retention-period 7

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier mydbcluster ^
 --backup-retention-period 7

RDS API

To modify a DB cluster using the Amazon RDS API, call the ModifyDBCluster operation. Specify the DB
cluster identifier, and the values for the settings that you want to modify. For information about each
parameter, see Settings for Amazon Aurora (p. 375).

Note
Some settings only apply to DB instances. To change those settings, follow the instructions in
Modify a DB instance in a DB cluster (p. 373).

Modify a DB instance in a DB cluster
You can modify a DB instance in a DB cluster using the AWS Management Console, the AWS CLI, or the
RDS API.

When you modify a DB instance, you can apply the changes immediately. To apply changes immediately,
you select the Apply Immediately option in the AWS Management Console, you use the --apply-
immediately parameter when calling the AWS CLI, or you set the ApplyImmediately parameter to
true when using the Amazon RDS API.

If you don't choose to apply changes immediately, the changes are deferred until the next maintenance
window. During the next maintenance window, any of these deferred changes are applied. If you choose
to apply changes immediately, your new changes and any previously deferred changes are applied.

Important
If any of the deferred modifications require downtime, choosing Apply immediately can cause
unexpected downtime for the DB instance. There is no downtime for the other DB instances in
the DB cluster.
Modifications that you defer aren't listed in the output of the describe-pending-
maintenance-actions CLI command. Maintenance actions only include system upgrades that
you schedule for the next maintenance window.

Console

To modify a DB instance in a DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

373

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Modify a DB instance in a DB cluster

2. In the navigation pane, choose Databases, and then select the DB instance that you want to modify.
3. For Actions, choose Modify. The Modify DB Instance page appears.
4. Change any of the settings that you want. For information about each setting, see Settings for

Amazon Aurora (p. 375).

Note
Some settings apply to the entire DB cluster and must be changed at the cluster level. To
change those settings, follow the instructions in Modifying the DB cluster by using the
console, CLI, and API (p. 372).
In the AWS Management Console, some instance level changes only apply to the current
DB instance, while others apply to the entire DB cluster. For information about whether a
setting applies to the DB instance or the DB cluster, see the scope for the setting in Settings
for Amazon Aurora (p. 375).

5. When all the changes are as you want them, choose Continue and check the summary of
modifications.

6. To apply the changes immediately, select Apply immediately.
7. On the confirmation page, review your changes. If they are correct, choose Modify DB Instance to

save your changes.

Alternatively, choose Back to edit your changes, or choose Cancel to cancel your changes.

AWS CLI

To modify a DB instance in a DB cluster by using the AWS CLI, call the modify-db-instance command.
Specify the DB instance identifier, and the values for the settings that you want to modify. For
information about each parameter, see Settings for Amazon Aurora (p. 375).

Note
Some settings apply to the entire DB cluster. To change those settings, follow the instructions in
Modifying the DB cluster by using the console, CLI, and API (p. 372).

Example

The following code modifies mydbinstance by setting the DB instance class to db.r4.xlarge. The
changes are applied during the next maintenance window by using --no-apply-immediately. Use --
apply-immediately to apply the changes immediately.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --db-instance-class db.r4.xlarge \
 --no-apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --db-instance-class db.r4.xlarge ^
 --no-apply-immediately

RDS API

To modify a MySQL instance by using the Amazon RDS API, call the ModifyDBInstance operation. Specify
the DB instance identifier, and the values for the settings that you want to modify. For information about
each parameter, see Settings for Amazon Aurora (p. 375).

374

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora
Available settings

Note
Some settings apply to the entire DB cluster. To change those settings, follow the instructions in
Modifying the DB cluster by using the console, CLI, and API (p. 372).

Settings for Amazon Aurora
The following table contains details about which settings you can modify, the methods for modifying the
setting, and the scope of the setting. The scope determines whether the setting applies to the entire DB
cluster or if it can be set only for specific DB instances.

Note
Additional settings are available if you are modifying an Aurora Serverless DB cluster. For
information about these settings, see Modifying an Aurora Serverless v1 DB cluster (p. 170).
Also, some settings aren't available for Aurora Serverless because of Aurora Serverless
limitations. For more information, see Limitations of Aurora Serverless v1 (p. 148).

Setting and
description

Method Scope Downtime notes

Auto minor version
upgrade

Whether you want the
DB instance to receive
preferred minor engine
version upgrades
automatically when
they become available.
Upgrades are installed
only during your
scheduled maintenance
window.

For more information
about engine
updates, see Amazon
Aurora PostgreSQL
updates (p. 1614)
and Database
engine updates for
Amazon Aurora
MySQL (p. 1103). For
more information about
the Auto minor version
upgrade setting for
Aurora MySQL, see
Enabling automatic
upgrades between
minor Aurora MySQL
versions (p. 1110).

Note
This setting
is enabled
by default.
For each
new cluster,
choose the
appropriate
value for
this setting
based on its
importance,
expected
lifetime, and
the amount
of verification
testing that
you do after
each upgrade.

When you change this
setting, perform this
modification for every
DB instance in your
Aurora cluster. If any
DB instance in your
cluster has this setting
turned off, the cluster
isn't automatically
upgraded.

Using the AWS
Management Console,
Modify a DB instance in
a DB cluster (p. 373).

Using the AWS CLI, run
modify-db-instance

The entire DB cluster An outage doesn't
occur during this
change. Outages do
occur during future
maintenance windows
when Aurora applies
automatic upgrades.

375

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Aurora User Guide for Aurora
Available settings

Setting and
description

Method Scope Downtime notes

and set the --auto-
minor-version-
upgrade|--no-auto-
minor-version-
upgrade option.

Using the RDS API, call
ModifyDBInstance
and set the
AutoMinorVersionUpgrade
parameter.

Backup retention
period

The number of days
that automatic backups
are retained. The
minimum value is 1.

For more information,
see Backups (p. 491).

Using the AWS
Management Console,
Modifying the DB
cluster by using the
console, CLI, and
API (p. 372).

Using the AWS CLI, run
modify-db-cluster
and set the --backup-
retention-period
option.

Using the RDS API, call
ModifyDBCluster
and set the
BackupRetentionPeriod
parameter.

The entire DB cluster An outage doesn't occur
during this change.

376

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora
Available settings

Setting and
description

Method Scope Downtime notes

Backup window (Start
time)

The time range during
which automated
backups of your
database occurs. The
backup window is a
start time in Universal
Coordinated Time
(UTC), and a duration in
hours.

Aurora backups
are continuous and
incremental, but the
backup window is
used to create a daily
system backup that
is preserved within
the backup retention
period. You can copy it
to preserve it outside of
the retention period.

The maintenance
window and the backup
window for the DB
cluster can't overlap.

For more information,
see Backup
window (p. 491).

Using the AWS
Management Console,
Modifying the DB
cluster by using the
console, CLI, and
API (p. 372).

Using the AWS CLI,
run modify-db-
cluster and set
the --preferred-
backup-window
option.

Using the RDS API, call
ModifyDBCluster
and set the
PreferredBackupWindow
parameter.

The entire DB cluster. An outage doesn't occur
during this change.

Certificate Authority

The certificate that you
want to use.

Using the AWS
Management Console,
Modify a DB instance in
a DB cluster (p. 373).

Using the AWS CLI,
run modify-db-
instance and set the
--ca-certificate-
identifier option.

Using the RDS API, call
ModifyDBInstance
and set the
CACertificateIdentifier
parameter.

Only the specified DB
instance

An outage occurs
during this change. The
DB instance is rebooted.

377

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora
Available settings

Setting and
description

Method Scope Downtime notes

Copy tags to snapshots

Select to specify that
tags defined for this DB
cluster are copied to
DB snapshots created
from this DB cluster. For
more information, see
Tagging Amazon RDS
resources (p. 474).

Using the AWS
Management Console,
Modifying the DB
cluster by using the
console, CLI, and
API (p. 372).

Using the AWS CLI, run
modify-db-cluster
and set the --copy-
tags-to-snapshot or
--no-copy-tags-to-
snapshot option.

Using the RDS API, call
ModifyDBCluster
and set the
CopyTagsToSnapshot
parameter.

The entire DB cluster An outage doesn't occur
during this change.

Data API

You can access Aurora
Serverless with
web services–based
applications, including
AWS Lambda and AWS
AppSync. This setting
only applies to an
Aurora Serverless DB
cluster.

For more information,
see Using the Data
API for Aurora
Serverless (p. 178).

Using the AWS
Management Console,
Modifying the DB
cluster by using the
console, CLI, and
API (p. 372).

Using the AWS CLI, run
modify-db-cluster
and set the --enable-
http-endpoint
option.

Using the RDS API, call
ModifyDBCluster
and set the
EnableHttpEndpoint
parameter.

The entire DB cluster An outage doesn't occur
during this change.

378

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora
Available settings

Setting and
description

Method Scope Downtime notes

Database
authentication

The database
authentication you
want to use.

For MySQL:

• Choose Password
authentication
to authenticate
database users with
database passwords
only.

• Choose Password
and IAM database
authentication
to authenticate
database users with
database passwords
and user credentials
through IAM users
and roles. For
more information,
see IAM database
authentication (p. 1756).

For PostgreSQL:

• Choose IAM database
authentication
to authenticate
database users with
database passwords
and user credentials
through IAM users
and roles. For
more information,
see IAM database
authentication (p. 1756).

• Choose Kerberos
authentication
to authenticate
database passwords
and user credentials
using Kerberos
authentication. For
more information,
see Using Kerberos
authentication
with Aurora
PostgreSQL (p. 1551).

Using the AWS
Management Console,
Modifying the DB
cluster by using the
console, CLI, and
API (p. 372).

Using the AWS CLI,
run modify-db-cluster
and set the following
options:

• For IAM
authentication, set
the --enable-
iam-database-
authentication|--
no-enable-
iam-database-
authentication
option.

• For Kerberos
authentication, set
the --domain and
--domain-iam-
role-name options.

Using the RDS API,
call ModifyDBCluster
and set the following
parameters:

• For IAM
authentication,
set the
EnableIAMDatabaseAuthentication
parameter.

• For Kerberos
authentication, set
the Domain and
DomainIAMRoleName
parameters.

The entire DB cluster An outage doesn't occur
during this change.

379

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora
Available settings

Setting and
description

Method Scope Downtime notes

Database port

The port that you want
to use to access the DB
cluster.

Using the AWS
Management Console,
Modifying the DB
cluster by using the
console, CLI, and
API (p. 372).

Using the AWS CLI, run
modify-db-cluster
and set the --port
option.

Using the RDS API, call
ModifyDBCluster and
set the Port parameter.

The entire DB cluster An outage occurs
during this change. All
of the DB instances
in the DB cluster are
rebooted immediately.

DB cluster identifier

The DB cluster
identifier. This value is
stored as a lowercase
string.

When you change the
DB cluster identifier,
the DB cluster endpoint
changes, and the
endpoints of the DB
instances in the DB
cluster change.

Using the AWS
Management Console,
Modifying the DB
cluster by using the
console, CLI, and
API (p. 372).

Using the AWS CLI, run
modify-db-cluster
and set the --new-db-
cluster-identifier
option.

Using the RDS API, call
ModifyDBCluster
and set the
NewDBClusterIdentifier
parameter.

The entire DB cluster An outage doesn't occur
during this change.

DB cluster parameter
group

The DB cluster
parameter group that
you want associated
with the DB cluster.

For more information,
see Working with DB
parameter groups and
DB cluster parameter
groups (p. 339).

Using the AWS
Management Console,
Modifying the DB
cluster by using the
console, CLI, and
API (p. 372).

Using the AWS CLI, run
modify-db-cluster
and set the --db-
cluster-parameter-
group-name option.

Using the RDS API, call
ModifyDBCluster
and set the
DBClusterParameterGroupName
parameter.

The entire DB cluster An outage doesn't occur
during this change.
When you change
the parameter group,
changes to some
parameters are applied
to the DB instances
in the DB cluster
immediately without
a reboot. Changes to
other parameters are
applied only after the
DB instances in the DB
cluster are rebooted.

380

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora
Available settings

Setting and
description

Method Scope Downtime notes

DB instance class

The DB instance class
that you want to use.

For more information,
see Aurora DB instance
classes (p. 54).

Using the AWS
Management Console,
Modify a DB instance in
a DB cluster (p. 373).

Using the AWS CLI, run
modify-db-instance
and set the --db-
instance-class
option.

Using the RDS API, call
ModifyDBInstance
and set the
DBInstanceClass
parameter.

Only the specified DB
instance

An outage occurs
during this change.

DB instance identifier

The DB instance
identifier. This value is
stored as a lowercase
string.

Using the AWS
Management Console,
Modify a DB instance in
a DB cluster (p. 373).

Using the AWS CLI,
run modify-db-
instance and set the
--new-db-instance-
identifier option.

Using the RDS API, call
ModifyDBInstance
and set the
NewDBInstanceIdentifier
parameter.

Only the specified DB
instance

An outage occurs
during this change. The
DB instance is rebooted.

381

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora
Available settings

Setting and
description

Method Scope Downtime notes

DB parameter group

The DB parameter
group that you want
associated with the DB
instance.

For more information,
see Working with DB
parameter groups and
DB cluster parameter
groups (p. 339).

Using the AWS
Management Console,
Modify a DB instance in
a DB cluster (p. 373).

Using the AWS CLI, run
modify-db-instance
and set the --db-
parameter-group-
name option.

Using the RDS API, call
ModifyDBInstance
and set the
DBParameterGroupName
parameter.

Only the specified DB
instance

An outage doesn't occur
during this change.

When you associate
a new DB parameter
group with a DB
instance, the modified
static and dynamic
parameters are applied
only after the DB
instance is rebooted.
However, if you modify
dynamic parameters in
the newly associated
DB parameter group,
these changes are
applied immediately
without a reboot.

For more information,
see Working with DB
parameter groups and
DB cluster parameter
groups (p. 339) and
Rebooting an Amazon
Aurora DB cluster or
Amazon Aurora DB
instance (p. 451).

Deletion protection

Enable deletion
protection to prevent
your DB cluster from
being deleted. For
more information,
see Deletion
protection for Aurora
clusters (p. 471).

Using the AWS
Management Console,
Modifying the DB
cluster by using the
console, CLI, and
API (p. 372).

Using the AWS CLI,
run modify-db-
cluster and set
the --deletion-
protection|--
no-deletion-
protection option.

Using the RDS API, call
ModifyDBCluster
and set the
DeletionProtection
parameter.

The entire DB cluster An outage doesn't occur
during this change.

382

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora
Available settings

Setting and
description

Method Scope Downtime notes

Engine version

The version of the
DB engine that you
want to use. Before
you upgrade your
production DB cluster,
we recommend that
you test the upgrade
process on a test DB
cluster to verify its
duration and to validate
your applications.

Using the AWS
Management Console,
Modifying the DB
cluster by using the
console, CLI, and
API (p. 372).

Using the AWS CLI, run
modify-db-cluster
and set the --engine-
version option.

Using the RDS API, call
ModifyDBCluster
and set the
EngineVersion
parameter.

The entire DB cluster An outage occurs
during this change.

Enhanced monitoring

Enable enhanced
monitoring to enable
gathering metrics
in real time for the
operating system that
your DB instance runs
on.

For more information,
see Monitoring OS
metrics with Enhanced
Monitoring (p. 647).

Using the AWS
Management Console,
Modify a DB instance in
a DB cluster (p. 373).

Using the AWS CLI,
run modify-db-
instance and set
the --monitoring-
role-arn and
--monitoring-
interval options.

Using the RDS API, call
ModifyDBInstance
and set the
MonitoringRoleArn
and
MonitoringInterval
parameters.

Only the specified DB
instance

An outage doesn't occur
during this change.

383

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora
Available settings

Setting and
description

Method Scope Downtime notes

Log exports

Select the log types
to publish to Amazon
CloudWatch Logs.

For more information,
see Aurora MySQL
database log
files (p. 721).

Using the AWS
Management Console,
Modifying the DB
cluster by using the
console, CLI, and
API (p. 372).

Using the AWS CLI,
run modify-db-
cluster and set the
--cloudwatch-
logs-export-
configuration
option.

Using the RDS API, call
ModifyDBCluster
and set the
CloudwatchLogsExportConfiguration
parameter.

The entire DB cluster An outage doesn't occur
during this change.

384

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora
Available settings

Setting and
description

Method Scope Downtime notes

Maintenance window

The time range
during which system
maintenance occurs.
System maintenance
includes upgrades,
if applicable. The
maintenance window is
a start time in Universal
Coordinated Time
(UTC), and a duration in
hours.

If you set the window to
the current time, there
must be at least 30
minutes between the
current time and end of
the window to ensure
any pending changes
are applied.

You can set the
maintenance window
independently for the
DB cluster and for each
DB instance in the DB
cluster. When the scope
of a modification is
the entire DB cluster,
the modification is
performed during the
DB cluster maintenance
window. When the
scope of a modification
is the a DB instance,
the modification is
performed during
maintenance window of
that DB instance.

The maintenance
window and the backup
window for the DB
cluster can't overlap.

For more information,
see The Amazon
RDS maintenance
window (p. 446).

To change the
maintenance window
for the DB cluster using
the AWS Management
Console, Modifying
the DB cluster by using
the console, CLI, and
API (p. 372).

To change the
maintenance window
for a DB instance using
the AWS Management
Console, Modify a
DB instance in a DB
cluster (p. 373).

To change the
maintenance window
for the DB cluster
using the AWS CLI,
run modify-db-
cluster and set
the --preferred-
maintenance-window
option.

To change the
maintenance window
for a DB instance
using the AWS CLI,
run modify-db-
instance and set
the --preferred-
maintenance-window
option.

To change the
maintenance window
for the DB cluster
using the RDS API, call
ModifyDBCluster
and set the
PreferredMaintenanceWindow
parameter.

To change the
maintenance window
for a DB instance
using the RDS API, call
ModifyDBInstance
and set the
PreferredMaintenanceWindow
parameter.

The entire DB cluster or
a single DB instance

If there are one or
more pending actions
that cause an outage,
and the maintenance
window is changed
to include the current
time, then those
pending actions are
applied immediately,
and an outage occurs.

385

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora
Available settings

Setting and
description

Method Scope Downtime notes

New master password

The password for
your master user.
The password must
contain from 8 to
41 alphanumeric
characters.

Using the AWS
Management Console,
Modifying the DB
cluster by using the
console, CLI, and
API (p. 372).

Using the AWS CLI, run
modify-db-cluster
and set the --master-
user-password
option.

Using the RDS API, call
ModifyDBCluster
and set the
MasterUserPassword
parameter.

The entire DB cluster An outage doesn't occur
during this change.

Performance Insights

Whether to enable
Performance Insights,
a tool that monitors
your DB instance load
so that you can analyze
and troubleshoot your
database performance.

For more information,
see Monitoring DB
load with Performance
Insights on Amazon
Aurora (p. 594).

Using the AWS
Management Console,
Modify a DB instance in
a DB cluster (p. 373).

Using the AWS CLI, run
modify-db-instance
and set the --enable-
performance-
insights|--
no-enable-
performance-
insights option.

Using the RDS API, call
ModifyDBInstance
and set the
EnablePerformanceInsights
parameter.

Only the specified DB
instance

An outage doesn't occur
during this change.

386

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora
Available settings

Setting and
description

Method Scope Downtime notes

Performance Insights
AWS KMS key

The AWS KMS key
identifier for encryption
of Performance Insights
data. The KMS key
identifier is the Amazon
Resource Name (ARN),
key identifier, or key
alias for the KMS key.

For more information,
see Enabling and
disabling Performance
Insights (p. 598).

Using the AWS
Management Console,
Modify a DB instance in
a DB cluster (p. 373).

Using the AWS CLI,
run modify-db-
instance and set the
--performance-
insights-kms-key-
id option.

Using the RDS API, call
ModifyDBInstance
and set the
PerformanceInsightsKMSKeyId
parameter.

Only the specified DB
instance

An outage doesn't occur
during this change.

Performance Insights
retention period

The amount of time,
in days, to retain
Performance Insights
data. Valid values are 7
or 731 (2 years).

For more information,
see Enabling and
disabling Performance
Insights (p. 598).

Using the AWS
Management Console,
Modify a DB instance in
a DB cluster (p. 373).

Using the AWS CLI,
run modify-db-
instance and set the
--performance-
insights-
retention-period
option.

Using the RDS API, call
ModifyDBInstance
and set the
PerformanceInsightsRetentionPeriod
parameter.

Only the specified DB
instance

An outage doesn't occur
during this change.

Promotion tier

A value that specifies
the order in which
an Aurora Replica
is promoted to the
primary instance in a
cluster that uses single-
master replication, after
a failure of the existing
primary instance.

For more information,
see Fault tolerance
for an Aurora DB
cluster (p. 69).

Using the AWS
Management Console,
Modify a DB instance in
a DB cluster (p. 373).

Using the AWS CLI,
run modify-db-
instance and set the
--promotion-tier
option.

Using the RDS API, call
ModifyDBInstance
and set the
PromotionTier
parameter.

Only the specified DB
instance

An outage doesn't occur
during this change.

387

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora
Available settings

Setting and
description

Method Scope Downtime notes

Public access

Publicly accessible to
give the DB instance
a public IP address,
meaning that it's
accessible outside the
VPC. To be publicly
accessible, the DB
instance also has to be
in a public subnet in the
VPC.

Not publicly accessible
to make the DB
instance accessible only
from inside the VPC.

For more information,
see Hiding a DB
instance in a VPC from
the internet (p. 1802).

To connect to a DB
instance from outside
of its Amazon VPC,
the DB instance must
be publicly accessible,
access must be granted
using the inbound rules
of the DB instance's
security group, and
other requirements
must be met. For more
information, see Can't
connect to Amazon RDS
DB instance (p. 1827).

If your DB instance is
isn't publicly accessible,
you can also use an
AWS Site-to-Site VPN
connection or an
AWS Direct Connect
connection to access it
from a private network.
For more information,
see Internetwork traffic
privacy (p. 1736).

Using the AWS
Management Console,
Modify a DB instance in
a DB cluster (p. 373).

Using the AWS CLI,
run modify-db-
instance and set
the --publicly-
accessible|--
no-publicly-
accessible option.

Using the RDS API, call
ModifyDBInstance
and set the
PubliclyAccessible
parameter.

Only the specified DB
instance

An outage doesn't occur
during this change.

388

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora
Available settings

Setting and
description

Method Scope Downtime notes

Scaling configuration

The scaling properties
of the DB cluster. You
can only modify scaling
properties for DB
clusters in serverless
DB engine mode. This
setting is available only
for Aurora MySQL.

For information about
Aurora Serverless, see
Using Amazon Aurora
Serverless v1 (p. 147).

Using the AWS
Management Console,
Modifying the DB
cluster by using the
console, CLI, and
API (p. 372).

Using the AWS CLI,
run modify-db-
cluster and set
the --scaling-
configuration
option.

Using the RDS API, call
ModifyDBCluster
and set the
ScalingConfiguration
parameter.

The entire DB cluster An outage doesn't occur
during this change.

Security group

The security group you
want associated with
the DB cluster.

For more information,
see Controlling
access with security
groups (p. 1793).

Using the AWS
Management Console,
Modifying the DB
cluster by using the
console, CLI, and
API (p. 372).

Using the AWS CLI, run
modify-db-cluster
and set the --vpc-
security-group-ids
option.

Using the RDS API, call
ModifyDBCluster
and set the
VpcSecurityGroupIds
parameter.

The entire DB cluster An outage doesn't occur
during this change.

389

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora
Non-applicable settings

Setting and
description

Method Scope Downtime notes

Target Backtrack
window

The amount of time
you want to be able
to backtrack your DB
cluster, in seconds.
This setting is available
only for Aurora MySQL
and only if the DB
cluster was created with
Backtrack enabled.

Using the AWS
Management Console,
Modifying the DB
cluster by using the
console, CLI, and
API (p. 372).

Using the AWS CLI,
run modify-db-
cluster and set the
--backtrack-window
option.

Using the RDS API, call
ModifyDBCluster
and set the
BacktrackWindow
parameter.

The entire DB cluster An outage doesn't occur
during this change.

Settings that do not apply to Amazon Aurora
The following settings in the AWS CLI command modify-db-instance and the RDS API operation
ModifyDBInstance do not apply to Amazon Aurora.

Note
The AWS Management Console doesn't allow you to modify these settings for Aurora.

AWS CLI setting RDS API setting

--allocated-storage AllocatedStorage

--allow-major-version-upgrade|--no-
allow-major-version-upgrade

AllowMajorVersionUpgrade

--copy-tags-to-snapshot|--no-copy-
tags-to-snapshot

CopyTagsToSnapshot

--domain Domain

--db-security-groups DBSecurityGroups

--db-subnet-group-name DBSubnetGroupName

--domain-iam-role-name DomainIAMRoleName

--multi-az|--no-multi-az MultiAZ

--iops Iops

--license-model LicenseModel

--option-group-name OptionGroupName

--processor-features ProcessorFeatures

390

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora
Non-applicable settings

AWS CLI setting RDS API setting

--storage-type StorageType

--tde-credential-arn TdeCredentialArn

--tde-credential-password TdeCredentialPassword

--use-default-processor-features|--no-
use-default-processor-features

UseDefaultProcessorFeatures

391

Amazon Aurora User Guide for Aurora
Adding Aurora Replicas

Adding Aurora Replicas to a DB cluster
An Aurora DB cluster with single-master replication has one primary DB instance and up to 15
Aurora Replicas. The primary DB instance supports read and write operations, and performs all data
modifications to the cluster volume. Aurora Replicas connect to the same storage volume as the primary
DB instance, but support read operations only. You use Aurora Replicas to offload read workloads from
the primary DB instance. For more information, see Aurora Replicas (p. 70).

Amazon Aurora Replicas have the following limitations:

• You can't create an Aurora Replica for an Aurora Serverless v1 DB cluster. Aurora Serverless v1 has
a single DB instance that scales up and down automatically to support all database read and write
operations.

• You can't create Aurora Replicas for an Aurora multi-master cluster. By design, an Aurora multi-master
cluster has read-write DB instances only.

We recommend that you distribute the primary instance and Aurora Replicas of your Aurora DB cluster
over multiple Availability Zones to improve the availability of your DB cluster. For more information, see
Region availability (p. 12).

To remove an Aurora Replica from an Aurora DB cluster, delete the Aurora Replica by following the
instructions in Deleting a DB instance from an Aurora DB cluster (p. 472).

Note
Amazon Aurora also supports replication with an external database, such as an RDS DB instance.
The RDS DB instance must be in the same AWS Region as Amazon Aurora. For more information,
see Replication with Amazon Aurora (p. 70).

You can add Aurora Replicas to a DB cluster using the AWS Management Console, the AWS CLI, or the
RDS API.

Console

To add an Aurora replica to a DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then select the DB cluster where you want to add the
new DB instance.

3. Make sure that both the cluster and the primary instance are in the Available state. If the DB cluster
or the primary instance are in a transitional state such as Creating, you can't add a replica.

If the cluster doesn't have a primary instance, create one using the create-db-instance AWS CLI
command. This situation can arise if you used the CLI to restore a DB cluster snapshot and then view
the cluster in the AWS Management Console.

4. For Actions, choose Add reader.

The Add reader page appears.
5. On the Add reader page, specify options for your Aurora Replica. The following table shows settings

for an Aurora Replica.

For this option Do this

Availability zone Determine if you want to specify a particular Availability
Zone. The list includes only those Availability Zones

392

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora
Adding Aurora Replicas

For this option Do this

that are mapped by the DB subnet group you specified
earlier. For more information about Availability Zones, see
Regions and Availability Zones (p. 11).

Publicly accessible Select Yes to give the Aurora Replica a public IP address;
otherwise, select No. For more information about hiding
Aurora Replicas from public access, see Hiding a DB
instance in a VPC from the internet (p. 1802).

Encryption Select Enable encryption to enable encryption at
rest for this Aurora Replica. For more information, see
Encrypting Amazon Aurora resources (p. 1722).

DB instance class Select a DB instance class that defines the processing and
memory requirements for the Aurora Replica. For more
information about DB instance class options, see Aurora
DB instance classes (p. 54).

Aurora replica source Select the identifier of the primary instance to create an
Aurora Replica for.

DB instance identifier Enter a name for the instance that is unique for your
account in the AWS Region you selected. You might
choose to add some intelligence to the name such as
including the AWS Region and DB engine you selected, for
example aurora-read-instance1.

Priority Choose a failover priority for the instance. If you
don't select a value, the default is tier-1. This priority
determines the order in which Aurora Replicas are
promoted when recovering from a primary instance
failure. For more information, see Fault tolerance for an
Aurora DB cluster (p. 69).

Database port The port for an Aurora Replica is the same as the port for
the DB cluster.

DB parameter group Select a parameter group. Aurora has a default parameter
group you can use, or you can create your own parameter
group. For more information about parameter groups,
see Working with DB parameter groups and DB cluster
parameter groups (p. 339).

Enhanced monitoring Choose Enable enhanced monitoring to enable gathering
metrics in real time for the operating system that your DB
cluster runs on. For more information, see Monitoring OS
metrics with Enhanced Monitoring (p. 647).

Monitoring Role Only available if Enhanced Monitoring is set to Enable
enhanced monitoring. Choose the IAM role that you
created to permit Amazon RDS to communicate with
Amazon CloudWatch Logs for you, or choose Default to
have RDS create a role for you named rds-monitoring-
role. For more information, see Monitoring OS metrics
with Enhanced Monitoring (p. 647).

393

Amazon Aurora User Guide for Aurora
Adding Aurora Replicas

For this option Do this

Granularity Only available if Enhanced Monitoring is set to Enable
enhanced monitoring. Set the interval, in seconds,
between when metrics are collected for your DB cluster.

Auto minor version upgrade Select Enable auto minor version upgrade if you want
to enable your Aurora DB cluster to receive minor DB
Engine version upgrades automatically when they become
available.

The Auto minor version upgrade setting applies to both
Aurora PostgreSQL and Aurora MySQL DB clusters. For
Aurora MySQL 1.x and 2.x clusters, this setting upgrades
the clusters to a maximum version of 1.22.2 and 2.07.2.

For more information about engine updates for
Aurora PostgreSQL, see Amazon Aurora PostgreSQL
updates (p. 1614).

For more information about engine updates for Aurora
MySQL, see Database engine updates for Amazon Aurora
MySQL (p. 1103).

6. Choose Add reader to create the Aurora Replica.

AWS CLI
To create an Aurora Replica in your DB cluster, run the create-db-instance AWS CLI command. Include
the name of the DB cluster as the --db-cluster-identifier option. You can optionally specify an
Availability Zone for the Aurora Replica using the --availability-zone parameter, as shown in the
following examples.

For example, the following command creates a new MySQL 5.7–compatible Aurora Replica named
sample-instance-us-west-2a.

For Linux, macOS, or Unix:

aws rds create-db-instance --db-instance-identifier sample-instance-us-west-2a \
 --db-cluster-identifier sample-cluster --engine aurora-mysql --db-instance-class
 db.r5.large \
 --availability-zone us-west-2a

For Windows:

aws rds create-db-instance --db-instance-identifier sample-instance-us-west-2a ^
 --db-cluster-identifier sample-cluster --engine aurora-mysql --db-instance-class
 db.r5.large ^
 --availability-zone us-west-2a

The following command creates a new MySQL 5.6–compatible Aurora Replica named sample-
instance-us-west-2a.

For Linux, macOS, or Unix:

aws rds create-db-instance --db-instance-identifier sample-instance-us-west-2a \
 --db-cluster-identifier sample-cluster --engine aurora --db-instance-class db.r5.large
 \

394

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora
Adding Aurora Replicas

 --availability-zone us-west-2a

For Windows:

aws rds create-db-instance --db-instance-identifier sample-instance-us-west-2a ^
 --db-cluster-identifier sample-cluster --engine aurora --db-instance-class db.r5.large
 ^
 --availability-zone us-west-2a

The following command creates a new PostgreSQL-compatible Aurora Replica named sample-
instance-us-west-2a.

For Linux, macOS, or Unix:

aws rds create-db-instance --db-instance-identifier sample-instance-us-west-2a \
 --db-cluster-identifier sample-cluster --engine aurora-postgresql --db-instance-class
 db.r5.large \
 --availability-zone us-west-2a

For Windows:

aws rds create-db-instance --db-instance-identifier sample-instance-us-west-2a ^
 --db-cluster-identifier sample-cluster --engine aurora-postgresql --db-instance-class
 db.r5.large ^
 --availability-zone us-west-2a

RDS API
To create an Aurora Replica in your DB cluster, call the CreateDBInstance operation. Include the name of
the DB cluster as the DBClusterIdentifier parameter. You can optionally specify an Availability Zone
for the Aurora Replica using the AvailabilityZone parameter.

395

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Aurora User Guide for Aurora
Managing performance and scaling

Managing performance and scaling for Aurora DB
clusters

You can use the following options to manage performance and scaling for Aurora DB clusters and DB
instances:

Topics
• Storage scaling (p. 396)
• Instance scaling (p. 400)
• Read scaling (p. 400)
• Managing connections (p. 400)
• Managing query execution plans (p. 401)

Storage scaling
Aurora storage automatically scales with the data in your cluster volume. As your data grows, your
cluster volume storage expands up to a maximum of 128 tebibytes (TiB) or 64 TiB. The maximum size
depends on the DB engine version. To learn what kinds of data are included in the cluster volume, see
Amazon Aurora storage and reliability (p. 64). For details about the maximum size for a specific version,
see Amazon Aurora size limits (p. 1826).

The size of your cluster volume is evaluated on an hourly basis to determine your storage costs. For
pricing information, see the Aurora pricing page.

Even though an Aurora cluster volume can scale up in size to many tebibytes, you are only charged for
the space that you use in the volume. The mechanism for determining billed storage space depends on
the version of your Aurora cluster.

• When Aurora data is removed from the cluster volume, the overall billed space decreases by a
comparable amount. This dynamic resizing behavior happens when underlying database files are
deleted or reorganized to require less space. Thus, you can reduce storage charges by deleting tables,
indexes, databases, and so on that you no longer need. Dynamic resizing applies to certain Aurora
versions. The following are the Aurora versions where the cluster volume dynamically resizes as you
delete data:
• Aurora MySQL 3 (compatible with MySQL 8.0), all minor versions
• Aurora MySQL 2.09 (compatible with MySQL 5.7) and higher
• Aurora MySQL version 1.23 (compatible with MySQL 5.6) and higher
• All Aurora PostgreSQL 13 versions
• Aurora PostgreSQL version 12.4 and higher
• Aurora PostgreSQL version 11.8 and higher
• Aurora PostgreSQL version 10.13 and higher

• In Aurora versions lower than those in the preceding list, the cluster volume can reuse space that was
freed up when you deleted data, but the volume itself never decreases in size.

• This feature is being deployed in phases to the AWS Regions where Aurora is available. Depending on
the Region where your cluster is, this feature might not be available yet.

Dynamic resizing applies to operations that physically remove or resize data files within the cluster
volume. Thus, it applies to SQL statements such as DROP TABLE, DROP DATABASE, TRUNCATE TABLE,
and ALTER TABLE ... DROP PARTITION. It doesn't apply to deleting rows using the DELETE
statement. If you delete a large number of rows from a table, you can run the Aurora MySQL OPTIMIZE

396

https://aws.amazon.com/rds/aurora/pricing

Amazon Aurora User Guide for Aurora
Storage scaling

TABLE statement or use the Aurora PostgreSQL pg_repack extension afterward to reorganize the table
and dynamically resize the cluster volume.

Note
For Aurora MySQL, the innodb_file_per_table affects how table storage is organized.
When tables are part of the system tablespace, dropping the table doesn't reduce the size of the
system tablespace. Thus, make sure to use the setting innodb_file_per_table=1 for Aurora
MySQL clusters to take full advantage of dynamic resizing.

These Aurora versions also have a higher storage limit for the cluster volume than lower versions do.
Thus, you can consider upgrading to one of these versions if you are close to exceeding the original 64
TiB volume size.

You can check how much storage space a cluster is using by monitoring the VolumeBytesUsed metric in
CloudWatch.

• In the AWS Management Console, you can see this figure in a chart by viewing the Monitoring tab on
the details page for the cluster.

• With the AWS CLI, you can run a command similar to the following Linux example. Substitute your own
values for the start and end times and the name of the cluster.

aws cloudwatch get-metric-statistics --metric-name "VolumeBytesUsed" \
 --start-time "$(date -d '6 hours ago')" --end-time "$(date -d 'now')" --period 60 \
 --namespace "AWS/RDS" \
 --statistics Average Maximum Minimum \
 --dimensions Name=DBClusterIdentifier,Value=my_cluster_identifier

That command produces output similar to the following.

{
 "Label": "VolumeBytesUsed",
 "Datapoints": [
 {
 "Timestamp": "2020-08-04T21:25:00+00:00",
 "Average": 182871982080.0,
 "Minimum": 182871982080.0,
 "Maximum": 182871982080.0,
 "Unit": "Bytes"
 }
]
}

The following examples show how you might track storage usage for an Aurora cluster over time using
AWS CLI commands on a Linux system. The --start-time and --end-time parameters define the
overall time interval as one day. The --period parameter requests the measurements at one hour
intervals. It doesn't make sense to choose a --period value that's small, because the metrics are
collected at intervals, not continuously. Also, Aurora storage operations sometimes continue for some
time in the background after the relevant SQL statement finishes.

The first example returns output in the default JSON format. The data points are returned in arbitrary
order, not sorted by timestamp. You might import this JSON data into a charting tool to do sorting and
visualization.

$ aws cloudwatch get-metric-statistics --metric-name "VolumeBytesUsed" \
 --start-time "$(date -d '1 day ago')" --end-time "$(date -d 'now')" --period 3600
 --namespace "AWS/RDS" --statistics Maximum --dimensions
 Name=DBClusterIdentifier,Value=my_cluster_id
{
 "Label": "VolumeBytesUsed",

397

Amazon Aurora User Guide for Aurora
Storage scaling

 "Datapoints": [
 {
 "Timestamp": "2020-08-04T19:40:00+00:00",
 "Maximum": 182872522752.0,
 "Unit": "Bytes"
 },
 {
 "Timestamp": "2020-08-05T00:40:00+00:00",
 "Maximum": 198573719552.0,
 "Unit": "Bytes"
 },
 {
 "Timestamp": "2020-08-05T05:40:00+00:00",
 "Maximum": 206827454464.0,
 "Unit": "Bytes"
 },
 {
 "Timestamp": "2020-08-04T17:40:00+00:00",
 "Maximum": 182872522752.0,
 "Unit": "Bytes"
 },
... output omitted ...

This example returns the same data as the previous one. The --output parameter represents the data
in compact plain text format. The aws cloudwatch command pipes its output to the sort command.
The -k parameter of the sort command sorts the output by the third field, which is the timestamp in
Universal Coordinated Time (UTC) format.

$ aws cloudwatch get-metric-statistics --metric-name "VolumeBytesUsed" \
 --start-time "$(date -d '1 day ago')" --end-time "$(date -d 'now')" --period 3600 \
 --namespace "AWS/RDS" --statistics Maximum --dimensions
 Name=DBClusterIdentifier,Value=my_cluster_id \
 --output text | sort -k 3
VolumeBytesUsed
DATAPOINTS 182872522752.0 2020-08-04T17:41:00+00:00 Bytes
DATAPOINTS 182872522752.0 2020-08-04T18:41:00+00:00 Bytes
DATAPOINTS 182872522752.0 2020-08-04T19:41:00+00:00 Bytes
DATAPOINTS 182872522752.0 2020-08-04T20:41:00+00:00 Bytes
DATAPOINTS 187667791872.0 2020-08-04T21:41:00+00:00 Bytes
DATAPOINTS 190981029888.0 2020-08-04T22:41:00+00:00 Bytes
DATAPOINTS 195587244032.0 2020-08-04T23:41:00+00:00 Bytes
DATAPOINTS 201048915968.0 2020-08-05T00:41:00+00:00 Bytes
DATAPOINTS 205368492032.0 2020-08-05T01:41:00+00:00 Bytes
DATAPOINTS 206827454464.0 2020-08-05T02:41:00+00:00 Bytes
DATAPOINTS 206827454464.0 2020-08-05T03:41:00+00:00 Bytes
DATAPOINTS 206827454464.0 2020-08-05T04:41:00+00:00 Bytes
DATAPOINTS 206827454464.0 2020-08-05T05:41:00+00:00 Bytes
DATAPOINTS 206827454464.0 2020-08-05T06:41:00+00:00 Bytes
DATAPOINTS 206827454464.0 2020-08-05T07:41:00+00:00 Bytes
DATAPOINTS 206827454464.0 2020-08-05T08:41:00+00:00 Bytes
DATAPOINTS 206827454464.0 2020-08-05T09:41:00+00:00 Bytes
DATAPOINTS 206827454464.0 2020-08-05T10:41:00+00:00 Bytes
DATAPOINTS 206827454464.0 2020-08-05T11:41:00+00:00 Bytes
DATAPOINTS 206827454464.0 2020-08-05T12:41:00+00:00 Bytes
DATAPOINTS 206827454464.0 2020-08-05T13:41:00+00:00 Bytes
DATAPOINTS 206827454464.0 2020-08-05T14:41:00+00:00 Bytes
DATAPOINTS 206833664000.0 2020-08-05T15:41:00+00:00 Bytes
DATAPOINTS 206833664000.0 2020-08-05T16:41:00+00:00 Bytes

The sorted output shows how much storage was used at the start and end of the monitoring period.
You can also find the points during that period when Aurora allocated more storage for the cluster. The
following example uses Linux commands to reformat the starting and ending VolumeBytesUsed values
as gigabytes (GB) and as gibibytes (GiB). Gigabytes represent units measured in powers of 10 and are

398

Amazon Aurora User Guide for Aurora
Storage scaling

commonly used in discussions of storage for rotational hard drives. Gibibytes represent units measured
in powers of 2. Aurora storage measurements and limits are typically stated in the power-of-2 units, such
as gibibytes and tebibytes.

$ GiB=$((1024*1024*1024))
$ GB=$((1000*1000*1000))
$ echo "Start: $((182872522752/$GiB)) GiB, End: $((206833664000/$GiB)) GiB"
Start: 170 GiB, End: 192 GiB
$ echo "Start: $((182872522752/$GB)) GB, End: $((206833664000/$GB)) GB"
Start: 182 GB, End: 206 GB

The VolumeBytesUsed metric tells you how much storage in the cluster is incurring charges. Thus, it's
best to minimize this number when practical. However, this metric doesn't include some storage that
Aurora uses internally in the cluster and doesn't charge for. If your cluster is approaching the storage
limit and might run out of space, it's more helpful to monitor the AuroraVolumeBytesLeftTotal
metric and try to maximize that number. The following example runs a similar calculation as the previous
one, but for AuroraVolumeBytesLeftTotal instead of VolumeBytesUsed. You can see that the free
size for this cluster reflects the original 64 TiB limit, because the cluster is running Aurora MySQL version
1.22.

$ aws cloudwatch get-metric-statistics --metric-name "AuroraVolumeBytesLeftTotal" \
 --start-time "$(date -d '1 hour ago')" --end-time "$(date -d 'now')" --period 3600 \
 --namespace "AWS/RDS" --statistics Maximum --dimensions
 Name=DBClusterIdentifier,Value=my_old_cluster_id \
 --output text | sort -k 3
AuroraVolumeBytesLeftTotal
DATAPOINTS 69797193744384.0 2020-08-05T17:52:00+00:00 Count
DATAPOINTS 69797193744384.0 2020-08-05T18:52:00+00:00 Count
$ TiB=$((1024*1024*1024*1024))
$ TB=$((1000*1000*1000*1000))
$ echo "$((69797067915264 / $TB)) TB remaining for this cluster"
69 TB remaining for this cluster
$ echo "$((69797067915264 / $TiB)) TiB remaining for this cluster"
63 TiB remaining for this cluster

For a cluster running Aurora MySQL version 1.23 or 2.09 and higher, or Aurora PostgreSQL 3.3.0 or
2.6.0 and higher, the free size reported by VolumeBytesUsed increases when data is added and
decreases when data is removed. The following example shows how. This report shows the maximum
and minimum storage size for a cluster at 15-minute intervals as tables with temporary data are created
and dropped. The report lists the maximum value before the minimum value. Thus, to understand how
storage usage changed within the 15-minute interval, interpret the numbers from right to left.

$ aws cloudwatch get-metric-statistics --metric-name "VolumeBytesUsed" \
 --start-time "$(date -d '4 hours ago')" --end-time "$(date -d 'now')" --period 1800 \
 --namespace "AWS/RDS" --statistics Maximum Minimum --dimensions
 Name=DBClusterIdentifier,Value=my_new_cluster_id
 --output text | sort -k 4
VolumeBytesUsed
DATAPOINTS 14545305600.0 14545305600.0 2020-08-05T20:49:00+00:00 Bytes
DATAPOINTS 14545305600.0 14545305600.0 2020-08-05T21:19:00+00:00 Bytes
DATAPOINTS 22022176768.0 14545305600.0 2020-08-05T21:49:00+00:00 Bytes
DATAPOINTS 22022176768.0 22022176768.0 2020-08-05T22:19:00+00:00 Bytes
DATAPOINTS 22022176768.0 22022176768.0 2020-08-05T22:49:00+00:00 Bytes
DATAPOINTS 22022176768.0 15614263296.0 2020-08-05T23:19:00+00:00 Bytes
DATAPOINTS 15614263296.0 15614263296.0 2020-08-05T23:49:00+00:00 Bytes
DATAPOINTS 15614263296.0 15614263296.0 2020-08-06T00:19:00+00:00 Bytes

The following example shows how with a cluster running Aurora MySQL version 1.23 or
2.09 and higher, or Aurora PostgreSQL 3.3.0 or 2.6.0 and higher, the free size reported by
AuroraVolumeBytesLeftTotal reflects the higher 128 TiB size limit.

399

Amazon Aurora User Guide for Aurora
Instance scaling

$ aws cloudwatch get-metric-statistics --region us-east-1 --metric-name
 "AuroraVolumeBytesLeftTotal" \
 --start-time "$(date -d '4 hours ago')" --end-time "$(date -d 'now')" --period 1800 \
 --namespace "AWS/RDS" --statistics Minimum --dimensions
 Name=DBClusterIdentifier,Value=pq-57 \
 --output text | sort -k 3
AuroraVolumeBytesLeftTotal
DATAPOINTS 140515818864640.0 2020-08-05T20:56:00+00:00 Count
DATAPOINTS 140515818864640.0 2020-08-05T21:26:00+00:00 Count
DATAPOINTS 140515818864640.0 2020-08-05T21:56:00+00:00 Count
DATAPOINTS 140514866757632.0 2020-08-05T22:26:00+00:00 Count
DATAPOINTS 140511020580864.0 2020-08-05T22:56:00+00:00 Count
DATAPOINTS 140503168843776.0 2020-08-05T23:26:00+00:00 Count
DATAPOINTS 140503168843776.0 2020-08-05T23:56:00+00:00 Count
DATAPOINTS 140515818864640.0 2020-08-06T00:26:00+00:00 Count
$ TiB=$((1024*1024*1024*1024))
$ TB=$((1000*1000*1000*1000))
$ echo "$((140515818864640 / $TB)) TB remaining for this cluster"
140 TB remaining for this cluster
$ echo "$((140515818864640 / $TiB)) TiB remaining for this cluster"
127 TiB remaining for this cluster

Instance scaling
You can scale your Aurora DB cluster as needed by modifying the DB instance class for each DB instance
in the DB cluster. Aurora supports several DB instance classes optimized for Aurora, depending on
database engine compatibility.

Database engine Instance scaling

Amazon Aurora MySQL See Scaling Aurora MySQL DB instances (p. 833)

Amazon Aurora PostgreSQL See Scaling Aurora PostgreSQL DB instances (p. 1377)

Read scaling
You can achieve read scaling for your Aurora DB cluster by creating up to 15 Aurora Replicas in a DB
cluster that uses single-master replication. Each Aurora Replica returns the same data from the cluster
volume with minimal replica lag—usually considerably less than 100 milliseconds after the primary
instance has written an update. As your read traffic increases, you can create additional Aurora Replicas
and connect to them directly to distribute the read load for your DB cluster. Aurora Replicas don't have
to be of the same DB instance class as the primary instance.

For information about adding Aurora Replicas to a DB cluster, see Adding Aurora Replicas to a DB
cluster (p. 392).

Managing connections
The maximum number of connections allowed to an Aurora DB instance is determined by the
max_connections parameter in the instance-level parameter group for the DB instance. The default
value of that parameter varies depends on the DB instance class used for the DB instance and database
engine compatibility.

400

Amazon Aurora User Guide for Aurora
Managing query execution plans

Database engine max_connections default value

Amazon Aurora MySQL See Maximum connections to an Aurora MySQL DB
instance (p. 834)

Amazon Aurora PostgreSQL See Maximum connections to an Aurora PostgreSQL DB
instance (p. 1377)

If your applications frequently open and close connections, or have long-lived connections that approach
or exceed the specified limits, we recommend using Amazon RDS Proxy. RDS Proxy is a fully managed,
highly available database proxy that uses connection pooling to share database connections securely and
efficiently. To learn more about RDS Proxy, see Using Amazon RDS Proxy (p. 288).

Managing query execution plans
If you use query plan management for Aurora PostgreSQL, you gain control over which plans
the optimizer runs. For more information, see Managing query execution plans for Aurora
PostgreSQL (p. 1477).

401

Amazon Aurora User Guide for Aurora
Cloning a volume for an Aurora DB cluster

Cloning a volume for an Aurora DB cluster
By using Aurora cloning, you can quickly and cost-effectively create a new cluster that uses the same
Aurora cluster volume and has the same data as the original. The new cluster with its associated data
volume is known as a clone. Creating a clone is faster and more space-efficient than physically copying
the data using other techniques, such as restoring a snapshot.

Aurora supports many different types of cloning. You can create an Aurora provisioned clone from a
provisioned Aurora DB cluster. You can create an Aurora Serverless v1 clone from an Aurora Serverless v1
DB cluster. But you can also create Aurora Serverless v1 clones from Aurora provisioned DB clusters, and
you can create provisioned clones from Aurora Serverless v1 DB clusters. When you create a clone using a
different deployment configuration than the source, the clone is created using the latest minor version of
the source's Aurora DB engine.

A cloned Aurora Serverless DB cluster has the same behavior and limitations as any Aurora Serverless v1
DB cluster. For more information, see Using Amazon Aurora Serverless v1 (p. 147).

When you create clones from your Aurora DB clusters, the clones are created in your AWS account—the
same account that owns the source Aurora DB cluster. However, you can also share provisioned Aurora
DB clusters and clones with other AWS accounts. For more information, see Cross-account cloning with
AWS RAM and Amazon Aurora (p. 415)..

Cross-account cloning currently doesn't support cloning Aurora Serverless v1 DB clusters. For more
information, see Limitations of cross-account cloning (p. 415).

Topics
• Overview of Aurora cloning (p. 402)
• Limitations of Aurora cloning (p. 403)
• How Aurora cloning works (p. 403)
• Creating an Amazon Aurora clone (p. 406)
• Cross-account cloning with AWS RAM and Amazon Aurora (p. 415)

Overview of Aurora cloning
Aurora uses a copy-on-write protocol to create a clone. This mechanism uses minimal additional space to
create an initial clone. When the clone is first created, Aurora keeps a single copy of the data that is used
by the source Aurora DB cluster and the new (cloned) Aurora DB cluster. Additional storage is allocated
only when changes are made to data (on the Aurora storage volume) by the source Aurora DB cluster or
the Aurora DB cluster clone. To learn more about the copy-on-write protocol, see How Aurora cloning
works (p. 403).

Aurora cloning is especially useful for quickly setting up test environments using your production data,
without risking data corruption. You can use clones for many types of applications, such as the following:

• Experiment with potential changes (schema changes and parameter group changes, for example) to
assess all impacts.

• Run workload-intensive operations, such as exporting data or running analytical queries on the clone.
• Create a copy of your production DB cluster for development, testing, or other purposes.

You can create more than one clone from the same Aurora DB cluster. You can also create multiple
clones from another clone.

After creating an Aurora clone, you can configure the Aurora DB instances differently from the source
Aurora DB cluster. For example, you might not need a clone for development purposes to meet the same

402

Amazon Aurora User Guide for Aurora
Limitations of Aurora cloning

high availability requirements as the source production Aurora DB cluster. In this case, you can configure
the clone with a single Aurora DB instance rather than the multiple DB instances used by the Aurora DB
cluster.

When you finish using the clone for your testing, development, or other purposes, you can delete it.

Limitations of Aurora cloning
Aurora cloning currently has the following limitations:

• You can't create a clone in a different AWS Region than the source Aurora DB cluster.

• You can't create an Aurora Serverless v1 clone from a nonencrypted provisioned Aurora DB cluster.

• You can't create a Aurora Serverless v1 clone from a MySQL 5.6-compatible provisioned cluster, or a
provisioned clone of a MySQL 5.6-compatible Aurora Serverless v1 cluster.

• You can't create more than 15 clones based on a copy or based on another clone. After creating 15
clones, you can create copies only. However, you can create up to 15 clones of each copy.

• You can't create a clone from an Aurora DB cluster without the parallel query feature to a cluster
that uses parallel query. To bring data into a cluster that uses parallel query, create a snapshot of the
original cluster and restore it to the cluster that's using the parallel query feature.

• You can't create a clone from an Aurora DB cluster that has no DB instances. You can only clone Aurora
DB clusters that have at least one DB instance.

• You can create a clone in a different virtual private cloud (VPC) than that of the Aurora DB cluster. If
you do, the subnets of the VPCs must map to the same Availability Zones.

How Aurora cloning works
Aurora cloning works at the storage layer of an Aurora DB cluster. It uses a copy-on-write protocol that's
both fast and space-efficient in terms of the underlying durable media supporting the Aurora storage
volume. You can learn more about Aurora cluster volumes in the Overview of Aurora storage (p. 64).

Topics

• Understanding the copy-on-write protocol (p. 403)

• Deleting a source cluster volume (p. 406)

Understanding the copy-on-write protocol

An Aurora DB cluster stores data in pages in the underlying Aurora storage volume.

For example, in the following diagram you can find an Aurora DB cluster (A) that has four data pages, 1,
2, 3, and 4. Imagine that a clone, B, is created from the Aurora DB cluster. When the clone is created, no
data is copied. Rather, the clone points to the same set of pages as the source Aurora DB cluster.

403

Amazon Aurora User Guide for Aurora
How Aurora cloning works

When the clone is created, no additional storage is usually needed. The copy-on-write protocol uses the
same segment on the physical storage media as the source segment. Additional storage is required only
if the capacity of the source segment isn't sufficient for the entire clone segment. If that's the case, the
source segment is copied to another physical device.

In the following diagrams, you can find an example of the copy-on-write protocol in action using the
same cluster A and its clone, B, as shown preceding. Let's say that you make a change to your Aurora
DB cluster (A) that results in a change to data held on page 1. Instead of writing to the original page 1,
Aurora creates a new page 1[A]. The Aurora DB cluster volume for cluster (A) now points to page 1[A], 2,
3, and 4, while the clone (B) still references the original pages.

404

Amazon Aurora User Guide for Aurora
How Aurora cloning works

On the clone, a change is made to page 4 on the storage volume. Instead of writing to the original page
4, Aurora creates a new page, 4[B]. The clone now points to pages 1, 2, 3, and to page 4[B], while the
cluster (A) continues pointing to 1[A], 2, 3, and 4.

405

Amazon Aurora User Guide for Aurora
Creating an Aurora clone

As more changes occur over time in both the source Aurora DB cluster volume and the clone, more
storage is needed to capture and store the changes.

Deleting a source cluster volume
When you delete a source cluster volume that has one or more clones associated with it, the clones aren't
affected. The clones continue to point to the pages that were previously owned by the source cluster
volume.

Creating an Amazon Aurora clone
You can create a clone in the same AWS account as the source Aurora DB cluster. To do so, you can use
the AWS Management Console or the AWS CLI and the procedures following.

To allow another AWS account to create a clone or to share a clone with another AWS account, use the
procedures in Cross-account cloning with AWS RAM and Amazon Aurora (p. 415).

By using Aurora cloning, you can do the following types of cloning operations:

• Create a provisioned Aurora DB cluster clone from a provisioned Aurora DB cluster.
• Create an Aurora Serverless v1 cluster clone from an Aurora Serverless v1 DB cluster.
• Create an Aurora Serverless v1 DB cluster clone from a provisioned Aurora DB cluster.
• Create an Aurora provisioned DB cluster clone from an Aurora Serverless v1 DB cluster.

Aurora Serverless v1 DB clusters are always encrypted. When you clone an Aurora Serverless v1 DB
cluster into a provisioned Aurora DB cluster, the provisioned Aurora DB cluster is encrypted. You can

406

Amazon Aurora User Guide for Aurora
Creating an Aurora clone

choose the encryption key, but you can't disable the encryption. To clone from a provisioned Aurora DB
cluster to an Aurora Serverless v1 cluster, you need an encrypted provisioned Aurora DB cluster.

Console

The following procedure describes how to clone an Aurora DB cluster using the AWS Management
Console.

Creating a clone using the AWS Management Console results in an Aurora DB cluster with one Aurora DB
instance.

These instructions apply for DB clusters owned by the same AWS account that is creating the clone. If the
DB cluster is owned by a different AWS account, see Cross-account cloning with AWS RAM and Amazon
Aurora (p. 415) instead.

To create a clone of a DB cluster owned by your AWS account using the AWS Management
Console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose your Aurora DB cluster from the list, and for Actions, choose Create clone.

The Create clone page opens, where you can configure Instance specifications, Connectivity, and
other options for the Aurora DB cluster clone.

4. In the Instance specifications section, do the following:

a. For DB cluster identifier, enter the name that you want to give to your cloned Aurora DB
cluster.

407

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Creating an Aurora clone

b. For Capacity type, choose Provisioned or Serverless as needed for your use case.

You can choose Serverless only if the source Aurora DB cluster is an Aurora Serverless v1 DB
cluster or is a provisioned Aurora DB cluster that is encrypted.

• If you choose Provisioned, you see a DB instance size configuration card.

You can accept the provided setting, or you can use a different DB instance class for your
clone.

• If you choose Serverless, you see a Capacity settings configuration card.

408

Amazon Aurora User Guide for Aurora
Creating an Aurora clone

You can accept the provided settings, or you can change them for your use case.

c. For Additional configuration, choose settings as you usually do for your Aurora DB clusters.

Additional settings include your choice for the database name and whether you want to use
many optional features. These features include backup, Enhanced Monitoring, exporting logs to
Amazon CloudWatch, deletion protection, and so on.

Some of the choices displayed depend on the type of clone that you are creating. For example,
Aurora Serverless doesn't support Amazon RDS Performance Insights, so that option isn't shown
in this case.

Encryption is a standard option available in Additional configuration. Aurora Serverless DB
clusters are always encrypted. You can create an Aurora Serverless clone only from an Aurora
Serverless DB cluster or an encrypted provisioned Aurora DB cluster. However, you can choose
a different key for the Aurora Serverless clone than that used for the encrypted provisioned
cluster.

When you create an Aurora Serverless clone from an Aurora Serverless DB cluster, you can
choose a different key for the clone.

409

Amazon Aurora User Guide for Aurora
Creating an Aurora clone

d. Finish entering all settings for your Aurora DB cluster clone. To learn more about Aurora DB
cluster and instance settings, see Creating an Amazon Aurora DB cluster (p. 125).

5. Choose Create clone to launch the Aurora clone of your chosen Aurora DB cluster.

When the clone is created, it's listed with your other Aurora DB clusters in the console Databases section
and displays its current state. Your clone is ready to use when its state is Available.

AWS CLI

Using the AWS CLI for cloning your Aurora DB cluster involves a couple of steps.

The restore-db-cluster-to-point-in-time AWS CLI command that you use results in an empty
Aurora DB cluster with 0 Aurora DB instances. That is, the command restores only the Aurora DB cluster,
not the DB instances for that cluster. You do that separately after the clone is available. The two steps in
the process are as follows:

1. Create the clone by using the restore-db-cluster-to-point-in-time CLI command. The parameters that
you use with this command control the capacity type and other details of the empty Aurora DB cluster
(clone) being created.

2. Create the Aurora DB instance for the clone by using the create-db-instance CLI command to recreate
the Aurora DB instance in the restored Aurora DB cluster.

The commands following assume that the AWS CLI is set up with your AWS Region as the default. This
approach saves you from passing the --region name in each of the commands. For more information,
see Configuring the AWS CLI. You can also specify the --region in each of the CLI commands that
follow.

Topics
• Creating the clone (p. 410)
• Checking the status and getting clone details (p. 413)
• Creating the Aurora DB instance for your clone (p. 413)
• Parameters to use for cloning (p. 414)

Creating the clone

The specific parameters that you pass to the restore-db-cluster-to-point-in-time CLI
command vary. What you pass depends on the engine-mode type of the source DB cluster—Serverless or
Provisioned—and the type of clone that you want to create.

Use the following procedure to create an Aurora Serverless clone from an Aurora Serverless DB cluster,
or to create a provisioned Aurora clone from a provisioned Aurora DB cluster.

410

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html

Amazon Aurora User Guide for Aurora
Creating an Aurora clone

To create a clone of the same engine mode as the source Aurora DB cluster

• Use the restore-db-cluster-to-point-in-time CLI command and specify values for the
following parameters:

• --db-cluster-identifier – Choose a meaningful name for your clone. You name the clone
when you use the restore-db-cluster-to-point-in-time CLI command. You then pass the name of
the clone in the create-db-instance CLI command.

• --restore-type – Use copy-on-write to create a clone of the source DB cluster. Without
this parameter, the restore-db-cluster-to-point-in-time restores the Aurora DB cluster
rather than creating a clone.

• --source-db-cluster-identifier – Use the name of the source Aurora DB cluster that you
want to clone.

• --use-latest-restorable-time – This value points to the latest restorable volume data for
the clone.

The following example creates a clone named my-clone from a cluster named my-source-cluster.

For Linux, macOS, or Unix:

aws rds restore-db-cluster-to-point-in-time \
 --source-db-cluster-identifier my-source-cluster \
 --db-cluster-identifier my-clone \
 --restore-type copy-on-write \
 --use-latest-restorable-time

For Windows:

aws rds restore-db-cluster-to-point-in-time ^
 --source-db-cluster-identifier my-source-cluster ^
 --db-cluster-identifier my-clone ^
 --restore-type copy-on-write ^
 --use-latest-restorable-time

The command returns the JSON object containing details of the clone. Check to make sure that
your cloned DB cluster is available before trying to create the DB instance for your clone. For more
information, see Checking the status and getting clone details (p. 413).

To create a clone with a different engine mode than the source Aurora DB cluster

• Use the restore-db-cluster-to-point-in-time CLI command and specify values for the
following parameters:

• --db-cluster-identifier – Choose a meaningful name for your clone. You name the clone
when you use the restore-db-cluster-to-point-in-time CLI command. You then pass the name of
the clone in the create-db-instance CLI command.

• --engine-mode – Use this parameter only to create clones that are of a different type than the
source Aurora DB cluster. Choose the value to pass with --engine-mode as follows:
• Use provisioned to create a provisioned Aurora DB cluster clone from an Aurora Serverless DB

cluster.
• Use serverless to create an Aurora Serverless DB cluster clone from a provisioned Aurora

DB cluster. When you specify serverless engine mode, you can also choose --scaling-
configuration.

• --restore-type – Use copy-on-write to create a clone of the source DB cluster. Without
this parameter, the restore-db-cluster-to-point-in-time restores the Aurora DB cluster
rather than creating a clone.

411

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora
Creating an Aurora clone

• --scaling-configuration – (Optional) Use only with --engine-mode serverless to
configure the minimum and maximum capacity for the clone. If you don't use this parameter,
Aurora creates the clone using a minimum capacity of 1. It uses a maximum capacity that matches
the capacity of the source provisioned Aurora DB cluster.

• --source-db-cluster-identifier – Use the name of the source Aurora DB cluster that you
want to clone.

• --use-latest-restorable-time – This value points to the latest restorable volume data for
the clone.

The following example creates an Aurora Serverless clone (my-clone) from a provisioned Aurora DB
cluster named my-source-cluster. The provisioned Aurora DB cluster is encrypted.

For Linux, macOS, or Unix:

aws rds restore-db-cluster-to-point-in-time \
 --source-db-cluster-identifier my-source-cluster \
 --db-cluster-identifier my-clone \
 --engine-mode serverless \
 --scaling-configuration MinCapacity=8, MaxCapacity=64 \
 --restore-type copy-on-write \
 --use-latest-restorable-time

For Windows:

aws rds restore-db-cluster-to-point-in-time ^
 --source-db-cluster-identifier my-source-cluster ^
 --db-cluster-identifier my-clone ^
 --engine-mode serverless ^
 --scaling-configuration MinCapacity=8, MaxCapacity=64 ^
 --restore-type copy-on-write ^
 --use-latest-restorable-time

These commands return the JSON object containing details of the clone that you need to create the
DB instance. You can't do that until the status of the clone (the empty Aurora DB cluster) has the status
Available.

Note
The restore-db-cluster-to-point-in-time AWS CLI command only restores the DB cluster, not the
DB instances for that DB cluster. You must invoke the create-db-instance command to create
DB instances for the restored DB cluster, specifying the identifier of the restored DB cluster
in --db-cluster-identifier. You can create DB instances only after the restore-db-
cluster-to-point-in-time command has completed and the DB cluster is available.

For example, suppose you have a cluster named tpch100g that you want to clone. The following Linux
example creates a cloned cluster named tpch100g-clone and a primary instance named tpch100g-
clone-instance for the new cluster. You don't need to supply some parameters, such as --master-
username reinvent and --master-user-password. Aurora automatically determines those from
the original cluster. You do need to specify the DB engine to use. Thus, the example tests the new cluster
to determine the right value to use for the --engine parameter.

$ aws rds restore-db-cluster-to-point-in-time \
 --source-db-cluster-identifier tpch100g \
 --db-cluster-identifier tpch100g-clone \
 --restore-type copy-on-write \
 --use-latest-restorable-time

$ aws rds describe-db-clusters \
 --db-cluster-identifier tpch100g-clone \

412

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora
Creating an Aurora clone

 --query '*[].[Engine]' \
 --output text
aurora

$ aws rds create-db-instance \
 --db-instance-identifier tpch100g-clone-instance \
 --db-cluster-identifier tpch100g-clone \
 --db-instance-class db.r5.4xlarge \
 --engine aurora

Checking the status and getting clone details

You can use the following command to check the status of your newly created empty DB cluster.

$ aws rds describe-db-clusters --db-cluster-identifier my-clone --query '*[].[Status]' --
output text

Or you can obtain the status and the other values that you need to create the DB instance for your
clone (p. 413) by using the following AWS CLI query.

For Linux, macOS, or Unix:

aws rds describe-db-clusters --db-cluster-identifier my-clone \
 --query '*[].
{Status:Status,Engine:Engine,EngineVersion:EngineVersion,EngineMode:EngineMode}'

For Windows:

aws rds describe-db-clusters --db-cluster-identifier my-clone ^
 --query "*[].
{Status:Status,Engine:Engine,EngineVersion:EngineVersion,EngineMode:EngineMode}"

This query returns output similar to the following.

[
 {
 "Status": "available",
 "Engine": "aurora-mysql",
 "EngineVersion": "5.7.mysql_aurora.2.09.1",
 "EngineMode": "provisioned"
 }
]

Creating the Aurora DB instance for your clone

Use the create-db-instance CLI command to create the DB instance for your clone.

The --db-instance-class parameter is used for provisioned Aurora DB clusters only.

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-instance-identifier my-new-db \
 --db-cluster-identifier my-clone \
 --db-instance-class db.r5.4xlarge \
 --engine aurora-mysql

For Windows:

413

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora
Creating an Aurora clone

aws rds create-db-instance ^
 --db-instance-identifier my-new-db ^
 --db-cluster-identifier my-clone ^
 --db-instance-class db.r5.4xlarge ^
 --engine aurora-mysql

For an Aurora Serverless clone created from an Aurora Serverless DB cluster, you specify only a
few parameters. The DB instance inherits the --engine-mode, --master-username, and --
master-user-password properties from the source DB cluster. You can change the --scaling-
configuration.

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-instance-identifier my-new-db \
 --db-cluster-identifier my-clone \
 --engine aurora-postgresql

For Windows:

aws rds create-db-instance ^
 --db-instance-identifier my-new-db ^
 --db-cluster-identifier my-clone ^
 --engine aurora-postgresql

Parameters to use for cloning

The following table summarizes the various parameters used with restore-db-cluster-to-point-
in-time to clone Aurora DB clusters.

Parameter Description

--source-db-cluster-
identifier

Use the name of the source Aurora DB cluster that you want to clone.

--db-cluster-identifier Choose a meaningful name for your clone. You name your clone with the
restore-db-cluster-to-point-in-time command. Then you pass this
name to the create-db-instance command.

--engine-mode Use this parameter to create clones that are of a different type than the
source Aurora DB cluster. Choose the value to pass with --engine-mode as
follows:

• Use provisioned to create a provisioned Aurora DB cluster clone from
an Aurora Serverless DB cluster.

• Use serverless to create an Aurora Serverless DB cluster clone from
a provisioned Aurora DB cluster. When you specify serverless engine
mode, you can also choose --scaling-configuration

--restore-type Specify copy-on-write as the --restore-type to create a clone of the
source DB cluster rather than restoring the source Aurora DB cluster.

--scaling-configuration Use this parameter with --engine-mode serverless to configure
the minimum and maximum capacity for the clone. If you don't use this
parameter, Aurora creates the Aurora Serverless clone using a minimum
capacity of 1 and a maximum capacity of 16.

414

Amazon Aurora User Guide for Aurora
Cross-account cloning

Parameter Description

--use-latest-restorable-
time

This value points to the latest restorable volume data for the clone.

Cross-account cloning with AWS RAM and Amazon
Aurora
By using AWS Resource Access Manager (AWS RAM) with Amazon Aurora, you can share Aurora DB
clusters and clones that belong to your AWS account with another AWS account or organization. Such
cross-account cloning is much faster than creating and restoring a database snapshot. You can create
a clone of one of your Aurora DB clusters and share the clone. Or you can share your Aurora DB cluster
with another AWS account and let the account holder create the clone. The approach that you choose
depends on your use case.

For example, you might need to regularly share a clone of your financial database with your
organization's internal auditing team. In this case, your auditing team has its own AWS account for the
applications that it uses. You can give the auditing team's AWS account the permission to access your
Aurora DB cluster and clone it as needed.

On the other hand, if an outside vendor audits your financial data you might prefer to create the clone
yourself. You then give the outside vendor access to the clone only.

You can also use cross-account cloning to support many of the same use cases for cloning within the
same AWS account, such as development and testing. For example, your organization might use different
AWS accounts for production, development, testing, and so on. For more information, see Overview of
Aurora cloning (p. 402).

Thus, you might want to share a clone with another AWS account or allow another AWS account to
create clones of your Aurora DB clusters. In either case, start by using AWS RAM to create a share object.
For complete information about sharing AWS resources between AWS accounts, see the AWS RAM User
Guide.

Creating a cross-account clone requires actions from the AWS account that owns the original cluster, and
the AWS account that creates the clone. First, the original cluster owner modifies the cluster to allow
one or more other accounts to clone it. If any of the accounts is in a different AWS organization, AWS
generates a sharing invitation. The other account must accept the invitation before proceeding. Then
each authorized account can clone the cluster. Throughout this process, the cluster is identified by its
unique Amazon Resource Name (ARN).

As with cloning within the same AWS account, additional storage space is used only if changes are made
to the data by the source or the clone. Charges for storage are then applied at that time. If the source
cluster is deleted, storage costs are distributed equally among remaining cloned clusters.

Topics
• Limitations of cross-account cloning (p. 415)
• Allowing other AWS accounts to clone your cluster (p. 416)
• Cloning a cluster that is owned by another AWS account (p. 418)

Limitations of cross-account cloning
Aurora cross-account cloning has the following limitations:

• You can't clone an Aurora Serverless cluster across AWS accounts.

415

https://docs.aws.amazon.com/ram/latest/userguide/
https://docs.aws.amazon.com/ram/latest/userguide/

Amazon Aurora User Guide for Aurora
Cross-account cloning

• You can't view or accept invitations to shared resources with the AWS Management Console. Use
the AWS CLI, the Amazon RDS API, or the AWS RAM console to view and accept invitations to shared
resources.

• You can't create new clones from a clone that's been shared with your AWS account.

• You can't share resources (clones or Aurora DB clusters) that have been shared with your AWS account.

• You can't create more than 15 cross-account clones from any single Aurora DB cluster. Each of these
15 clones must be owned by a different AWS account. That is, you can only create one cross-account
clone of a cluster within any AWS account.

• You can't share an Aurora DB cluster with other AWS accounts unless the cluster is in an ACTIVE state.

• You can't rename an Aurora DB cluster that's been shared with other AWS accounts.

• You can't create a cross-account clone of a cluster that is encrypted with the default RDS key.

• You can't create nonencrypted clones in one AWS account from encrypted Aurora DB clusters that
have been shared by another AWS account. The cluster owner must grant permission to access the
source cluster's AWS KMS key. However, you can use a different key when you create the clone.

Allowing other AWS accounts to clone your cluster

To allow other AWS accounts to clone a cluster that you own, use AWS RAM to set the sharing
permission. Doing so also sends an invitation to each of the other accounts that's in a different AWS
organization.

For the procedures to share resources owned by you in the AWS RAM console, see Sharing resources
owned by you in the AWS RAM User Guide.

Topics

• Granting permission to other AWS accounts to clone your cluster (p. 416)

• Checking if a cluster that you own is shared with other AWS accounts (p. 418)

Granting permission to other AWS accounts to clone your cluster

If the cluster that you're sharing is encrypted, you also share the AWS KMS key for the cluster. You can
allow AWS Identity and Access Management (IAM) users or roles in one AWS account to use a KMS key in
a different account.

To do this, you first add the external account (root user) to the KMS key's key policy through AWS KMS.
You don't add the individual IAM users or roles to the key policy, only the external account that owns
them. You can only share a KMS key that you create, not the default RDS service key. For information
about access control for KMS keys, see Authentication and access control for AWS KMS.

Console

To grant permission to clone your cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB cluster that you want to share to see its Details page, and choose the Connectivity &
security tab.

4. In the Share DB cluster with other AWS accounts section, enter the numeric account ID for the AWS
account that you want to allow to clone this cluster. For account IDs in the same organization, you
can begin typing in the box and then choose from the menu.

416

https://docs.aws.amazon.com/ram/latest/userguide/working-with-sharing.html
https://docs.aws.amazon.com/ram/latest/userguide/working-with-sharing.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Cross-account cloning

Important
In some cases, you might want an account that is not in the same AWS organization as your
account to clone a cluster. In these cases, for security reasons the console doesn't report
who owns that account ID or whether the account exists.
Be careful entering account numbers that are not in the same AWS organization as your
AWS account. Immediately verify that you shared with the intended account.

5. On the confirmation page, verify that the account ID that you specified is correct. Enter share in the
confirmation box to confirm.

On the Details page, an entry appears that shows the specified AWS account ID under Accounts that
this DB cluster is shared with. The Status column initially shows a status of Pending.

6. Contact the owner of the other AWS account, or sign in to that account if you own both of them.
Instruct the owner of the other account to accept the sharing invitation and clone the DB cluster, as
described following.

AWS CLI

To grant permission to clone your cluster

1. Gather the information for the required parameters. You need the ARN for your cluster and the
numeric ID for the other AWS account.

2. Run the AWS RAM CLI command create-resource-share.

For Linux, macOS, or Unix:

aws ram create-resource-share --name descriptive_name \
 --region region \
 --resource-arns cluster_arn \
 --principals other_account_ids

For Windows:

aws ram create-resource-share --name descriptive_name ^
 --region region ^
 --resource-arns cluster_arn ^
 --principals other_account_ids

To include multiple account IDs for the --principals parameter, separate IDs from each other
with spaces. To specify whether the permitted account IDs can be outside your AWS organization,
include the --allow-external-principals or --no-allow-external-principals
parameter for create-resource-share.

AWS RAM API

To grant permission to clone your cluster

1. Gather the information for the required parameters. You need the ARN for your cluster and the
numeric ID for the other AWS account.

2. Call the AWS RAM API operation CreateResourceShare, and specify the following values:

• Specify the account ID for one or more AWS accounts as the principals parameter.
• Specify the ARN for one or more Aurora DB clusters as the resourceArns parameter.
• Specify whether the permitted account IDs can be outside your AWS organization by including a

Boolean value for the allowExternalPrincipals parameter.

417

https://docs.aws.amazon.com/cli/latest/reference/ram/create-resource-share.html
https://docs.aws.amazon.com/ram/latest/APIReference/API_CreateResourceShare.html

Amazon Aurora User Guide for Aurora
Cross-account cloning

Recreating a cluster that uses the default RDS key

If the encrypted cluster that you plan to share uses the default RDS key, make sure to recreate the
cluster. To do this, create a manual snapshot of your DB cluster, use an AWS KMS key, and then restore
the cluster to a new cluster. Then share the new cluster. To perform this process, take the following
steps.

To recreate an encrypted cluster that uses the default RDS key

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Snapshots from the navigation pane.
3. Choose your snapshot.
4. For Actions, choose Copy Snapshot, and then choose Enable encryption.
5. For AWS KMS key, choose the new encryption key that you want to use.
6. Restore the copied snapshot. To do so, follow the procedure in Restoring from a DB cluster

snapshot (p. 497). The new DB instance uses your new encryption key.
7. (Optional) Delete the old DB cluster if you no longer need it. To do so, follow the procedure in

Deleting a DB cluster snapshot (p. 539). Before you do, confirm that your new cluster has all
necessary data and that your application can access it successfully.

Checking if a cluster that you own is shared with other AWS accounts

You can check if other users have permission to share a cluster. Doing so can help you understand
whether the cluster is approaching the limit for the maximum number of cross-account clones.

For the procedures to share resources using the AWS RAM console, see Sharing resources owned by you
in the AWS RAM User Guide.

AWS CLI

To find out if a cluster that you own is shared with other AWS accounts

• Call the AWS RAM CLI command list-principals, using your account ID as the resource
owner and the ARN of your cluster as the resource ARN. You can see all shares with the following
command. The results indicate which AWS accounts are allowed to clone the cluster.

aws ram list-principals \
 --resource-arns your_cluster_arn \
 --principals your_aws_id

AWS RAM API

To find out if a cluster that you own is shared with other AWS accounts

• Call the AWS RAM API operation ListPrincipals. Use your account ID as the resource owner and the
ARN of your cluster as the resource ARN.

Cloning a cluster that is owned by another AWS account
To clone a cluster that's owned by another AWS account, use AWS RAM to get permission to make the
clone. After you have the required permission, use the standard procedure for cloning an Aurora cluster.

You can also check whether a cluster that you own is a clone of a cluster owned by a different AWS
account.

418

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/ram/latest/userguide/working-with-sharing.html
https://docs.aws.amazon.com/cli/latest/reference/ram/list-principals.html
https://docs.aws.amazon.com/ram/latest/APIReference/API_ListPrincipals.html

Amazon Aurora User Guide for Aurora
Cross-account cloning

For the procedures to work with resources owned by others in the AWS RAM console, see Accessing
resources shared with you in the AWS RAM User Guide.

Topics
• Viewing invitations to clone clusters that are owned by other AWS accounts (p. 419)
• Accepting invitations to share clusters owned by other AWS accounts (p. 419)
• Cloning an Aurora cluster that is owned by another AWS account (p. 420)
• Checking if a DB cluster is a cross-account clone (p. 423)

Viewing invitations to clone clusters that are owned by other AWS accounts

To work with invitations to clone clusters owned by AWS accounts in other AWS organizations, use the
AWS CLI, the AWS RAM console, or the AWS RAM API. Currently, you can't perform this procedure using
the Amazon RDS console.

For the procedures to work with invitations in the AWS RAM console, see Accessing resources shared with
you in the AWS RAM User Guide.

AWS CLI

To see invitations to clone clusters that are owned by other AWS accounts

1. Run the AWS RAM CLI command get-resource-share-invitations.

aws ram get-resource-share-invitations --region region_name

The results from the preceding command show all invitations to clone clusters, including any that
you already accepted or rejected.

2. (Optional) Filter the list so you see only the invitations that require action from you. To do so, add
the parameter --query 'resourceShareInvitations[?status==`PENDING`]'.

AWS RAM API

To see invitations to clone clusters that are owned by other AWS accounts

1. Call the AWS RAM API operation GetResourceShareInvitations. This operation returns all such
invitations, including any that you already accepted or rejected.

2. (Optional) Find only the invitations that require action from you by checking the
resourceShareAssociations return field for a status value of PENDING.

Accepting invitations to share clusters owned by other AWS accounts

You can accept invitations to share clusters owned by other AWS accounts that are in different AWS
organizations. To work with these invitations, use the AWS CLI, the AWS RAM and RDS APIs, or the AWS
RAM console. Currently, you can't perform this procedure using the RDS console.

For the procedures to work with invitations in the AWS RAM console, see Accessing resources shared with
you in the AWS RAM User Guide.

Console

To accept an invitation to share a cluster from another AWS account

1. Find the invitation ARN by running the AWS RAM CLI command get-resource-share-
invitations, as shown preceding.

419

https://docs.aws.amazon.com/ram/latest/userguide/working-with-shared.html
https://docs.aws.amazon.com/ram/latest/userguide/working-with-shared.html
https://docs.aws.amazon.com/ram/latest/userguide/working-with-shared.html
https://docs.aws.amazon.com/ram/latest/userguide/working-with-shared.html
https://docs.aws.amazon.com/cli/latest/reference/ram/get-resource-share-invitations.html
https://docs.aws.amazon.com/ram/latest/APIReference/API_GetResourceShareInvitations.html
https://docs.aws.amazon.com/ram/latest/userguide/working-with-shared.html
https://docs.aws.amazon.com/ram/latest/userguide/working-with-shared.html
https://docs.aws.amazon.com/cli/latest/reference/ram/get-resource-share-invitations.html
https://docs.aws.amazon.com/cli/latest/reference/ram/get-resource-share-invitations.html

Amazon Aurora User Guide for Aurora
Cross-account cloning

2. Accept the invitation by calling the AWS RAM CLI command accept-resource-share-
invitation, as shown following.

For Linux, macOS, or Unix:

aws ram accept-resource-share-invitation \
 --resource-share-invitation-arn invitation_arn \
 --region region

For Windows:

aws ram accept-resource-share-invitation ^
 --resource-share-invitation-arn invitation_arn ^
 --region region

AWS RAM and RDS API

To accept invitations to share somebody's cluster

1. Find the invitation ARN by calling the AWS RAM API operation GetResourceShareInvitations,
as shown preceding.

2. Pass that ARN as the resourceShareInvitationArn parameter to the RDS API operation
AcceptResourceShareInvitation.

Cloning an Aurora cluster that is owned by another AWS account

After you accept the invitation from the AWS account that owns the DB cluster, as shown preceding, you
can clone the cluster.

Console

To clone an Aurora cluster that is owned by another AWS account

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

At the top of the database list, you should see one or more items with a Role value of Shared from
account #account_id. For security reasons, you can only see limited information about the
original clusters. The properties that you can see are the ones such as database engine and version
that must be the same in your cloned cluster.

3. Choose the cluster that you intend to clone.

4. For Actions, choose Create clone.

5. Follow the procedure in Console (p. 407) to finish setting up the cloned cluster.

6. As needed, enable encryption for the cloned cluster. If the cluster that you are cloning is encrypted,
you must enable encryption for the cloned cluster. The AWS account that shared the cluster with you
must also share the KMS key that was used to encrypt the cluster. You can use the same KMS key to
encrypt the clone, or your own KMS key. You can't create a cross-account clone for a cluster that is
encrypted with the default KMS key.

The account that owns the encryption key must grant permission to use the key to the destination
account by using a key policy. This process is similar to how encrypted snapshots are shared, by
using a key policy that grants permission to the destination account to use the key.

420

https://docs.aws.amazon.com/cli/latest/reference/ram/accept-resource-share-invitation.html
https://docs.aws.amazon.com/cli/latest/reference/ram/accept-resource-share-invitation.html
https://docs.aws.amazon.com/ram/latest/APIReference/API_GetResourceShareInvitations.html
https://docs.aws.amazon.com/ram/latest/APIReference/API_AcceptResourceShareInvitation.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Cross-account cloning

AWS CLI

To clone an Aurora cluster owned by another AWS account

1. Accept the invitation from the AWS account that owns the DB cluster, as shown preceding.

2. Clone the cluster by specifying the full ARN of the source cluster in the source-db-cluster-
identifier parameter of the RDS CLI command restore-db-cluster-to-point-in-time, as
shown following.

If the ARN passed as the source-db-cluster-identifier hasn't been shared, the same error is
returned as if the specified cluster doesn't exist.

For Linux, macOS, or Unix:

aws rds restore-db-cluster-to-point-in-time \
 --source-db-cluster-identifier=arn:aws:rds:arn_details \
 --db-cluster-identifier=new_cluster_id \
 --restore-type=copy-on-write \
 --use-latest-restorable-time

For Windows:

aws rds restore-db-cluster-to-point-in-time ^
 --source-db-cluster-identifier=arn:aws:rds:arn_details ^
 --db-cluster-identifier=new_cluster_id ^
 --restore-type=copy-on-write ^
 --use-latest-restorable-time

3. If the cluster that you are cloning is encrypted, encrypt your cloned cluster by including a kms-key-
id parameter. This kms-key-id value can be the same one used to encrypt the original DB cluster,
or your own KMS key. Your account must have permission to use that encryption key.

For Linux, macOS, or Unix:

aws rds restore-db-cluster-to-point-in-time \
 --source-db-cluster-identifier=arn:aws:rds:arn_details \
 --db-cluster-identifier=new_cluster_id \
 --restore-type=copy-on-write \
 --use-latest-restorable-time \
 --kms-key-id=arn:aws:kms:arn_details

For Windows:

aws rds restore-db-cluster-to-point-in-time ^
 --source-db-cluster-identifier=arn:aws:rds:arn_details ^
 --db-cluster-identifier=new_cluster_id ^
 --restore-type=copy-on-write ^
 --use-latest-restorable-time ^
 --kms-key-id=arn:aws:kms:arn_details

The account that owns the encryption key must grant permission to use the key to the destination
account by using a key policy. This process is similar to how encrypted snapshots are shared, by
using a key policy that grants permission to the destination account to use the key. An example of a
key policy follows.

{
 "Id": "key-policy-1",
 "Version": "2012-10-17",

421

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html

Amazon Aurora User Guide for Aurora
Cross-account cloning

 "Statement": [
 {
 "Sid": "Allow use of the key",
 "Effect": "Allow",
 "Principal": {"AWS": [
 "arn:aws:iam::account_id:user/KeyUser",
 "arn:aws:iam::account_id:root"
]},
 "Action": [
 "kms:CreateGrant",
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*"
 },
 {
 "Sid": "Allow attachment of persistent resources",
 "Effect": "Allow",
 "Principal": {"AWS": [
 "arn:aws:iam::account_id:user/KeyUser",
 "arn:aws:iam::account_id:root"
]},
 "Action": [
 "kms:CreateGrant",
 "kms:ListGrants",
 "kms:RevokeGrant"
],
 "Resource": "*",
 "Condition": {"Bool": {"kms:GrantIsForAWSResource": true}}
 }
]
}

Note
The restore-db-cluster-to-point-in-time AWS CLI command restores only the DB cluster, not
the DB instances for that DB cluster. To create DB instances for the restored DB cluster, invoke
the create-db-instance command. Specify the identifier of the restored DB cluster in --db-
cluster-identifier.
You can create DB instances only after the restore-db-cluster-to-point-in-time
command has completed and the DB cluster is available.

RDS API

To clone an Aurora cluster owned by another AWS account

1. Accept the invitation from the AWS account that owns the DB cluster, as shown preceding.

2. Clone the cluster by specifying the full ARN of the source cluster in the
SourceDBClusterIdentifier parameter of the RDS API operation
RestoreDBClusterToPointInTime.

If the ARN passed as the SourceDBClusterIdentifier hasn't been shared, then the same error is
returned as if the specified cluster doesn't exist.

3. If the cluster that you are cloning is encrypted, include a KmsKeyId parameter to encrypt your
cloned cluster. This kms-key-id value can be the same one used to encrypt the original DB cluster,
or your own KMS key. Your account must have permission to use that encryption key.

422

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterToPointInTime.html

Amazon Aurora User Guide for Aurora
Cross-account cloning

When you clone a volume, the destination account must have permission to use the encryption key
used to encrypt the source cluster. Aurora encrypts the new cloned cluster with the encryption key
specified in KmsKeyId.

The account that owns the encryption key must grant permission to use the key to the destination
account by using a key policy. This process is similar to how encrypted snapshots are shared, by
using a key policy that grants permission to the destination account to use the key. An example of a
key policy follows.

{
 "Id": "key-policy-1",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Allow use of the key",
 "Effect": "Allow",
 "Principal": {"AWS": [
 "arn:aws:iam::account_id:user/KeyUser",
 "arn:aws:iam::account_id:root"
]},
 "Action": [
 "kms:CreateGrant",
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*"
 },
 {
 "Sid": "Allow attachment of persistent resources",
 "Effect": "Allow",
 "Principal": {"AWS": [
 "arn:aws:iam::account_id:user/KeyUser",
 "arn:aws:iam::account_id:root"
]},
 "Action": [
 "kms:CreateGrant",
 "kms:ListGrants",
 "kms:RevokeGrant"
],
 "Resource": "*",
 "Condition": {"Bool": {"kms:GrantIsForAWSResource": true}}
 }
]
}

Note
The RestoreDBClusterToPointInTime RDS API operation restores only the DB cluster,
not the DB instances for that DB cluster. To create DB instances for the restored DB
cluster, invoke the CreateDBInstance RDS API operation. Specify the identifier of the
restored DB cluster in DBClusterIdentifier. You can create DB instances only after the
RestoreDBClusterToPointInTime operation has completed and the DB cluster is available.

Checking if a DB cluster is a cross-account clone

The DBClusters object identifies whether each cluster is a cross-account clone. You can see the clusters
that you have permission to clone by using the include-shared option when you run the RDS CLI

423

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterToPointInTime.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Aurora User Guide for Aurora
Cross-account cloning

command describe-db-clusters. However, you can't see most of the configuration details for such
clusters.

AWS CLI

To check if a DB cluster is a cross-account clone

• Call the RDS CLI command describe-db-clusters.

The following example shows how actual or potential cross-account clone DB clusters appear
in describe-db-clusters output. For existing clusters owned by your AWS account, the
CrossAccountClone field indicates whether the cluster is a clone of a DB cluster that is owned by
another AWS account.

In some cases, an entry might have a different AWS account number than yours in the
DBClusterArn field. In this case, that entry represents a cluster that is owned by a different AWS
account and that you can clone. Such entries have few fields other than DBClusterArn. When
creating the cloned cluster, specify the same StorageEncrypted, Engine, and EngineVersion
values as in the original cluster.

$ aws rds describe-db-clusters --include-shared --region us-east-1
{
 "DBClusters": [
 {
 "EarliestRestorableTime": "2019-05-01T21:17:54.106Z",
 "Engine": "aurora",
 "EngineVersion": "5.6.10a",
 "CrossAccountClone": false,
...
 },
 {
 "EarliestRestorableTime": "2019-04-09T16:01:07.398Z",
 "Engine": "aurora",
 "EngineVersion": "5.6.10a",
 "CrossAccountClone": true,
...
 },
 {
 "StorageEncrypted": false,
 "DBClusterArn": "arn:aws:rds:us-east-1:12345678:cluster:cluster-abcdefgh",
 "Engine": "aurora",
 "EngineVersion": "5.6.10a",
 }
]
}

RDS API

To check if a DB cluster is a cross-account clone

• Call the RDS API operation DescribeDBClusters.

For existing clusters owned by your AWS account, the CrossAccountClone field indicates whether
the cluster is a clone of a DB cluster owned by another AWS account. Entries with a different AWS
account number in the DBClusterArn field represent clusters that you can clone and that are
owned by other AWS accounts. These entries have few fields other than DBClusterArn. When
creating the cloned cluster, specify the same StorageEncrypted, Engine, and EngineVersion
values as in the original cluster.

424

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html

Amazon Aurora User Guide for Aurora
Cross-account cloning

The following example shows a return value that demonstrates both actual and potential cloned
clusters.

{
 "DBClusters": [
 {
 "EarliestRestorableTime": "2019-05-01T21:17:54.106Z",
 "Engine": "aurora",
 "EngineVersion": "5.6.10a",
 "CrossAccountClone": false,
...
 },
 {
 "EarliestRestorableTime": "2019-04-09T16:01:07.398Z",
 "Engine": "aurora",
 "EngineVersion": "5.6.10a",
 "CrossAccountClone": true,
...
 },
 {
 "StorageEncrypted": false,
 "DBClusterArn": "arn:aws:rds:us-east-1:12345678:cluster:cluster-abcdefgh",
 "Engine": "aurora",
 "EngineVersion": "5.6.10a"
 }
]
}

425

Amazon Aurora User Guide for Aurora
Integrating with AWS services

Integrating Aurora with other AWS services
Integrate Amazon Aurora with other AWS services so that you can extend your Aurora DB cluster to use
additional capabilities in the AWS Cloud.

Topics

• Integrating AWS services with Amazon Aurora MySQL (p. 426)

• Integrating AWS services with Amazon Aurora PostgreSQL (p. 426)

• Using Amazon Aurora Auto Scaling with Aurora replicas (p. 427)

• Using machine learning (ML) capabilities with Amazon Aurora (p. 442)

Integrating AWS services with Amazon Aurora MySQL
Amazon Aurora MySQL integrates with other AWS services so that you can extend your Aurora MySQL
DB cluster to use additional capabilities in the AWS Cloud. Your Aurora MySQL DB cluster can use AWS
services to do the following:

• Synchronously or asynchronously invoke an AWS Lambda function using the native functions
lambda_sync or lambda_async. Or, asynchronously invoke an AWS Lambda function using the
mysql.lambda_async procedure.

• Load data from text or XML files stored in an Amazon S3 bucket into your DB cluster using the LOAD
DATA FROM S3 or LOAD XML FROM S3 command.

• Save data to text files stored in an Amazon S3 bucket from your DB cluster using the SELECT INTO
OUTFILE S3 command.

• Automatically add or remove Aurora Replicas with Application Auto Scaling. For more information, see
Using Amazon Aurora Auto Scaling with Aurora replicas (p. 427).

For more information about integrating Aurora MySQL with other AWS services, see Integrating Amazon
Aurora MySQL with other AWS services (p. 1005).

Integrating AWS services with Amazon Aurora
PostgreSQL
Amazon Aurora PostgreSQL integrates with other AWS services so that you can extend your Aurora
PostgreSQL DB cluster to use additional capabilities in the AWS Cloud. Your Aurora PostgreSQL DB
cluster can use AWS services to do the following:

• Quickly collect, view, and assess performance on your relational database workloads with Performance
Insights.

• Automatically add or remove Aurora Replicas with Aurora Auto Scaling. For more information, see
Using Amazon Aurora Auto Scaling with Aurora replicas (p. 427).

For more information about integrating Aurora PostgreSQL with other AWS services, see Integrating
Amazon Aurora PostgreSQL with other AWS services (p. 1454).

426

Amazon Aurora User Guide for Aurora
Using Auto Scaling with Aurora replicas

Using Amazon Aurora Auto Scaling with Aurora
replicas
To meet your connectivity and workload requirements, Aurora Auto Scaling dynamically adjusts the
number of Aurora Replicas provisioned for an Aurora DB cluster using single-master replication. Aurora
Auto Scaling is available for both Aurora MySQL and Aurora PostgreSQL. Aurora Auto Scaling enables
your Aurora DB cluster to handle sudden increases in connectivity or workload. When the connectivity or
workload decreases, Aurora Auto Scaling removes unnecessary Aurora Replicas so that you don't pay for
unused provisioned DB instances.

You define and apply a scaling policy to an Aurora DB cluster. The scaling policy defines the minimum
and maximum number of Aurora Replicas that Aurora Auto Scaling can manage. Based on the policy,
Aurora Auto Scaling adjusts the number of Aurora Replicas up or down in response to actual workloads,
determined by using Amazon CloudWatch metrics and target values.

You can use the AWS Management Console to apply a scaling policy based on a predefined metric.
Alternatively, you can use either the AWS CLI or Aurora Auto Scaling API to apply a scaling policy based
on a predefined or custom metric.

Topics
• Before you begin (p. 427)
• Aurora Auto Scaling policies (p. 428)
• Adding a scaling policy (p. 429)
• Editing a scaling policy (p. 438)
• Deleting a scaling policy (p. 440)
• DB instance IDs and tagging (p. 441)

Before you begin
Before you can use Aurora Auto Scaling with an Aurora DB cluster, you must first create an Aurora DB
cluster with a primary instance and at least one Aurora Replica. Although Aurora Auto Scaling manages
Aurora Replicas, the Aurora DB cluster must start with at least one Aurora Replica. For more information
about creating an Aurora DB cluster, see Creating an Amazon Aurora DB cluster (p. 125).

Aurora Auto Scaling only scales a DB cluster if all Aurora Replicas in a DB cluster are in the available
state. If any of the Aurora Replicas are in a state other than available, Aurora Auto Scaling waits until the
whole DB cluster becomes available for scaling.

When Aurora Auto Scaling adds a new Aurora Replica, the new Aurora Replica is the same DB instance
class as the one used by the primary instance. For more information about DB instance classes, see
Aurora DB instance classes (p. 54). Also, the promotion tier for new Aurora Replicas is set to the last
priority, which is 15 by default. This means that during a failover, a replica with a better priority, such as
one created manually, would be promoted first. For more information, see Fault tolerance for an Aurora
DB cluster (p. 69).

Aurora Auto Scaling only removes Aurora Replicas that it created.

To benefit from Aurora Auto Scaling, your applications must support connections to new Aurora Replicas.
To do so, we recommend using the Aurora reader endpoint. For Aurora MySQL you can use a driver such
as the MariaDB Connector/J utility. For more information, see Connecting to an Amazon Aurora DB
cluster (p. 281).

Note
Aurora global databases currently don't support Aurora Auto Scaling for secondary DB clusters.

427

Amazon Aurora User Guide for Aurora
Using Auto Scaling with Aurora replicas

Aurora Auto Scaling policies
Aurora Auto Scaling uses a scaling policy to adjust the number of Aurora Replicas in an Aurora DB cluster.
Aurora Auto Scaling has the following components:

• A service-linked role
• A target metric
• Minimum and maximum capacity
• A cooldown period

Service linked role

Aurora Auto Scaling uses the AWSServiceRoleForApplicationAutoScaling_RDSCluster service-
linked role. For more information, see Service-linked roles for Application Auto Scaling in the Application
Auto Scaling User Guide.

Target metric

In this type of policy, a predefined or custom metric and a target value for the metric is specified in
a target-tracking scaling policy configuration. Aurora Auto Scaling creates and manages CloudWatch
alarms that trigger the scaling policy and calculates the scaling adjustment based on the metric and
target value. The scaling policy adds or removes Aurora Replicas as required to keep the metric at, or
close to, the specified target value. In addition to keeping the metric close to the target value, a target-
tracking scaling policy also adjusts to fluctuations in the metric due to a changing workload. Such a
policy also minimizes rapid fluctuations in the number of available Aurora Replicas for your DB cluster.

For example, take a scaling policy that uses the predefined average CPU utilization metric. Such a policy
can keep CPU utilization at, or close to, a specified percentage of utilization, such as 40 percent.

Note
For each Aurora DB cluster, you can create only one Auto Scaling policy for each target metric.

Minimum and maximum capacity

You can specify the maximum number of Aurora Replicas to be managed by Application Auto Scaling.
This value must be set to 0–15, and must be equal to or greater than the value specified for the
minimum number of Aurora Replicas.

You can also specify the minimum number of Aurora Replicas to be managed by Application Auto
Scaling. This value must be set to 0–15, and must be equal to or less than the value specified for the
maximum number of Aurora Replicas.

Note
The minimum and maximum capacity are set for an Aurora DB cluster. The specified values
apply to all of the policies associated with that Aurora DB cluster.

Cooldown period

You can tune the responsiveness of a target-tracking scaling policy by adding cooldown periods that
affect scaling your Aurora DB cluster in and out. A cooldown period blocks subsequent scale-in or scale-
out requests until the period expires. These blocks slow the deletions of Aurora Replicas in your Aurora
DB cluster for scale-in requests, and the creation of Aurora Replicas for scale-out requests.

You can specify the following cooldown periods:

• A scale-in activity reduces the number of Aurora Replicas in your Aurora DB cluster. A scale-in
cooldown period specifies the amount of time, in seconds, after a scale-in activity completes before
another scale-in activity can start.

428

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-service-linked-roles.html

Amazon Aurora User Guide for Aurora
Using Auto Scaling with Aurora replicas

• A scale-out activity increases the number of Aurora Replicas in your Aurora DB cluster. A scale-out
cooldown period specifies the amount of time, in seconds, after a scale-out activity completes before
another scale-out activity can start.

When a scale-in or a scale-out cooldown period is not specified, the default for each is 300 seconds.

Enable or disable scale-in activities

You can enable or disable scale-in activities for a policy. Enabling scale-in activities allows the scaling
policy to delete Aurora Replicas. When scale-in activities are enabled, the scale-in cooldown period in the
scaling policy applies to scale-in activities. Disabling scale-in activities prevents the scaling policy from
deleting Aurora Replicas.

Note
Scale-out activities are always enabled so that the scaling policy can create Aurora Replicas as
needed.

Adding a scaling policy

You can add a scaling policy using the AWS Management Console, the AWS CLI, or the Application Auto
Scaling API.

Note
For an example that adds a scaling policy using AWS CloudFormation, see Declaring a scaling
policy for an Aurora DB cluster in the AWS CloudFormation User Guide.

Topics

• Adding a scaling policy using the AWS Management Console (p. 429)

• Adding a scaling policy using the AWS CLI or the Application Auto Scaling API (p. 432)

Adding a scaling policy using the AWS Management Console

You can add a scaling policy to an Aurora DB cluster by using the AWS Management Console.

To add an auto scaling policy to an Aurora DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the Aurora DB cluster that you want to add a policy for.

4. Choose the Logs & events tab.

5. In the Auto scaling policies section, choose Add.

The Add Auto Scaling policy dialog box appears.

6. For Policy Name, type the policy name.

7. For the target metric, choose one of the following:

• Average CPU utilization of Aurora Replicas to create a policy based on the average CPU
utilization.

• Average connections of Aurora Replicas to create a policy based on the average number of
connections to Aurora Replicas.

8. For the target value, type one of the following:

429

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-autoscaling.html#w2ab1c19c22c15c21c11
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-autoscaling.html#w2ab1c19c22c15c21c11
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Using Auto Scaling with Aurora replicas

• If you chose Average CPU utilization of Aurora Replicas in the previous step, type the percentage
of CPU utilization that you want to maintain on Aurora Replicas.

• If you chose Average connections of Aurora Replicas in the previous step, type the number of
connections that you want to maintain.

Aurora Replicas are added or removed to keep the metric close to the specified value.

9. (Optional) Open Additional Configuration to create a scale-in or scale-out cooldown period.

10. For Minimum capacity, type the minimum number of Aurora Replicas that the Aurora Auto Scaling
policy is required to maintain.

11. For Maximum capacity, type the maximum number of Aurora Replicas the Aurora Auto Scaling
policy is required to maintain.

12. Choose Add policy.

The following dialog box creates an Auto Scaling policy based an average CPU utilization of 40 percent.
The policy specifies a minimum of 5 Aurora Replicas and a maximum of 15 Aurora Replicas.

430

Amazon Aurora User Guide for Aurora
Using Auto Scaling with Aurora replicas

The following dialog box creates an auto scaling policy based an average number of connections of 100.
The policy specifies a minimum of two Aurora Replicas and a maximum of eight Aurora Replicas.

431

Amazon Aurora User Guide for Aurora
Using Auto Scaling with Aurora replicas

Adding a scaling policy using the AWS CLI or the Application Auto Scaling API

You can apply a scaling policy based on either a predefined or custom metric. To do so, you can use the
AWS CLI or the Application Auto Scaling API. The first step is to register your Aurora DB cluster with
Application Auto Scaling.

Registering an Aurora DB cluster

Before you can use Aurora Auto Scaling with an Aurora DB cluster, you register your Aurora DB
cluster with Application Auto Scaling. You do so to define the scaling dimension and limits to be
applied to that cluster. Application Auto Scaling dynamically scales the Aurora DB cluster along the

432

Amazon Aurora User Guide for Aurora
Using Auto Scaling with Aurora replicas

rds:cluster:ReadReplicaCount scalable dimension, which represents the number of Aurora
Replicas.

To register your Aurora DB cluster, you can use either the AWS CLI or the Application Auto Scaling API.

AWS CLI

To register your Aurora DB cluster, use the register-scalable-target AWS CLI command with the
following parameters:

• --service-namespace – Set this value to rds.
• --resource-id – The resource identifier for the Aurora DB cluster. For this parameter, the resource

type is cluster and the unique identifier is the name of the Aurora DB cluster, for example
cluster:myscalablecluster.

• --scalable-dimension – Set this value to rds:cluster:ReadReplicaCount.
• --min-capacity – The minimum number of reader DB instances to be managed by Application Auto

Scaling. For information about the relationship between --min-capacity, --max-capacity, and
the number of DB instances in your cluster, see Minimum and maximum capacity (p. 428).

• --max-capacity – The maximum number of reader DB instances to be managed by Application Auto
Scaling. For information about the relationship between --min-capacity, --max-capacity, and
the number of DB instances in your cluster, see Minimum and maximum capacity (p. 428).

Example

In the following example, you register an Aurora DB cluster named myscalablecluster. The
registration indicates that the DB cluster should be dynamically scaled to have from one to eight Aurora
Replicas.

For Linux, macOS, or Unix:

aws application-autoscaling register-scalable-target \
 --service-namespace rds \
 --resource-id cluster:myscalablecluster \
 --scalable-dimension rds:cluster:ReadReplicaCount \
 --min-capacity 1 \
 --max-capacity 8 \

For Windows:

aws application-autoscaling register-scalable-target ^
 --service-namespace rds ^
 --resource-id cluster:myscalablecluster ^
 --scalable-dimension rds:cluster:ReadReplicaCount ^
 --min-capacity 1 ^
 --max-capacity 8 ^

RDS API

To register your Aurora DB cluster with Application Auto Scaling, use the RegisterScalableTarget
Application Auto Scaling API operation with the following parameters:

• ServiceNamespace – Set this value to rds.
• ResourceID – The resource identifier for the Aurora DB cluster. For this parameter, the resource

type is cluster and the unique identifier is the name of the Aurora DB cluster, for example
cluster:myscalablecluster.

433

https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/register-scalable-target.html
https://docs.aws.amazon.com/ApplicationAutoScaling/latest/APIReference/API_RegisterScalableTarget.html

Amazon Aurora User Guide for Aurora
Using Auto Scaling with Aurora replicas

• ScalableDimension – Set this value to rds:cluster:ReadReplicaCount.
• MinCapacity – The minimum number of reader DB instances to be managed by Application Auto

Scaling. For information about the relationship between MinCapacity, MaxCapacity, and the
number of DB instances in your cluster, see Minimum and maximum capacity (p. 428).

• MaxCapacity – The maximum number of reader DB instances to be managed by Application Auto
Scaling. For information about the relationship between MinCapacity, MaxCapacity, and the
number of DB instances in your cluster, see Minimum and maximum capacity (p. 428).

Example

In the following example, you register an Aurora DB cluster named myscalablecluster with the
Application Auto Scaling API. This registration indicates that the DB cluster should be dynamically scaled
to have from one to eight Aurora Replicas.

POST / HTTP/1.1
Host: autoscaling.us-east-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 219
X-Amz-Target: AnyScaleFrontendService.RegisterScalableTarget
X-Amz-Date: 20160506T182145Z
User-Agent: aws-cli/1.10.23 Python/2.7.11 Darwin/15.4.0 botocore/1.4.8
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "ServiceNamespace": "rds",
 "ResourceId": "cluster:myscalablecluster",
 "ScalableDimension": "rds:cluster:ReadReplicaCount",
 "MinCapacity": 1,
 "MaxCapacity": 8
}

Defining a scaling policy for an Aurora DB cluster

A target-tracking scaling policy configuration is represented by a JSON block that the metrics and target
values are defined in. You can save a scaling policy configuration as a JSON block in a text file. You use
that text file when invoking the AWS CLI or the Application Auto Scaling API. For more information about
policy configuration syntax, see TargetTrackingScalingPolicyConfiguration in the Application
Auto Scaling API Reference.

The following options are available for defining a target-tracking scaling policy configuration.

Topics
• Using a predefined metric (p. 434)
• Using a custom metric (p. 435)
• Using cooldown periods (p. 435)
• Disabling scale-in activity (p. 436)

Using a predefined metric

By using predefined metrics, you can quickly define a target-tracking scaling policy for an Aurora DB
cluster that works well with both target tracking and dynamic scaling in Aurora Auto Scaling.

Currently, Aurora supports the following predefined metrics in Aurora Auto Scaling:

• RDSReaderAverageCPUUtilization – The average value of the CPUUtilization metric in
CloudWatch across all Aurora Replicas in the Aurora DB cluster.

434

https://docs.aws.amazon.com/ApplicationAutoScaling/latest/APIReference/API_TargetTrackingScalingPolicyConfiguration.html

Amazon Aurora User Guide for Aurora
Using Auto Scaling with Aurora replicas

• RDSReaderAverageDatabaseConnections – The average value of the DatabaseConnections metric
in CloudWatch across all Aurora Replicas in the Aurora DB cluster.

For more information about the CPUUtilization and DatabaseConnections metrics, see Amazon
CloudWatch metrics for Amazon Aurora (p. 654).

To use a predefined metric in your scaling policy, you create a target tracking configuration for
your scaling policy. This configuration must include a PredefinedMetricSpecification for the
predefined metric and a TargetValue for the target value of that metric.

Example

The following example describes a typical policy configuration for target-tracking scaling for an Aurora
DB cluster. In this configuration, the RDSReaderAverageCPUUtilization predefined metric is used to
adjust the Aurora DB cluster based on an average CPU utilization of 40 percent across all Aurora Replicas.

{
 "TargetValue": 40.0,
 "PredefinedMetricSpecification":
 {
 "PredefinedMetricType": "RDSReaderAverageCPUUtilization"
 }
}

Using a custom metric

By using custom metrics, you can define a target-tracking scaling policy that meets your custom
requirements. You can define a custom metric based on any Aurora metric that changes in proportion to
scaling.

Not all Aurora metrics work for target tracking. The metric must be a valid utilization metric and describe
how busy an instance is. The value of the metric must increase or decrease in proportion to the number
of Aurora Replicas in the Aurora DB cluster. This proportional increase or decrease is necessary to use the
metric data to proportionally scale out or in the number of Aurora Replicas.

Example

The following example describes a target-tracking configuration for a scaling policy. In this configuration,
a custom metric adjusts an Aurora DB cluster based on an average CPU utilization of 50 percent across all
Aurora Replicas in an Aurora DB cluster named my-db-cluster.

{
 "TargetValue": 50,
 "CustomizedMetricSpecification":
 {
 "MetricName": "CPUUtilization",
 "Namespace": "AWS/RDS",
 "Dimensions": [
 {"Name": "DBClusterIdentifier","Value": "my-db-cluster"},
 {"Name": "Role","Value": "READER"}
],
 "Statistic": "Average",
 "Unit": "Percent"
 }
}

Using cooldown periods

You can specify a value, in seconds, for ScaleOutCooldown to add a cooldown period for scaling out
your Aurora DB cluster. Similarly, you can add a value, in seconds, for ScaleInCooldown to add a

435

Amazon Aurora User Guide for Aurora
Using Auto Scaling with Aurora replicas

cooldown period for scaling in your Aurora DB cluster. For more information about ScaleInCooldown
and ScaleOutCooldown, see TargetTrackingScalingPolicyConfiguration in the Application
Auto Scaling API Reference.

Example

The following example describes a target-tracking configuration for a scaling policy. In this configuration,
the RDSReaderAverageCPUUtilization predefined metric is used to adjust an Aurora DB cluster
based on an average CPU utilization of 40 percent across all Aurora Replicas in that Aurora DB cluster.
The configuration provides a scale-in cooldown period of 10 minutes and a scale-out cooldown period of
5 minutes.

{
 "TargetValue": 40.0,
 "PredefinedMetricSpecification":
 {
 "PredefinedMetricType": "RDSReaderAverageCPUUtilization"
 },
 "ScaleInCooldown": 600,
 "ScaleOutCooldown": 300
}

Disabling scale-in activity

You can prevent the target-tracking scaling policy configuration from scaling in your Aurora DB cluster
by disabling scale-in activity. Disabling scale-in activity prevents the scaling policy from deleting Aurora
Replicas, while still allowing the scaling policy to create them as needed.

You can specify a Boolean value for DisableScaleIn to enable or disable scale in
activity for your Aurora DB cluster. For more information about DisableScaleIn, see
TargetTrackingScalingPolicyConfiguration in the Application Auto Scaling API Reference.

Example

The following example describes a target-tracking configuration for a scaling policy. In this configuration,
the RDSReaderAverageCPUUtilization predefined metric adjusts an Aurora DB cluster based
on an average CPU utilization of 40 percent across all Aurora Replicas in that Aurora DB cluster. The
configuration disables scale-in activity for the scaling policy.

{
 "TargetValue": 40.0,
 "PredefinedMetricSpecification":
 {
 "PredefinedMetricType": "RDSReaderAverageCPUUtilization"
 },
 "DisableScaleIn": true
}

Applying a scaling policy to an Aurora DB cluster

After registering your Aurora DB cluster with Application Auto Scaling and defining a scaling policy, you
apply the scaling policy to the registered Aurora DB cluster. To apply a scaling policy to an Aurora DB
cluster, you can use the AWS CLI or the Application Auto Scaling API.

AWS CLI

To apply a scaling policy to your Aurora DB cluster, use the put-scaling-policy AWS CLI command
with the following parameters:

• --policy-name – The name of the scaling policy.
• --policy-type – Set this value to TargetTrackingScaling.

436

https://docs.aws.amazon.com/ApplicationAutoScaling/latest/APIReference/API_TargetTrackingScalingPolicyConfiguration.html
https://docs.aws.amazon.com/ApplicationAutoScaling/latest/APIReference/API_TargetTrackingScalingPolicyConfiguration.html
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/put-scaling-policy.html

Amazon Aurora User Guide for Aurora
Using Auto Scaling with Aurora replicas

• --resource-id – The resource identifier for the Aurora DB cluster. For this parameter, the resource
type is cluster and the unique identifier is the name of the Aurora DB cluster, for example
cluster:myscalablecluster.

• --service-namespace – Set this value to rds.
• --scalable-dimension – Set this value to rds:cluster:ReadReplicaCount.
• --target-tracking-scaling-policy-configuration – The target-tracking scaling policy

configuration to use for the Aurora DB cluster.

Example

In the following example, you apply a target-tracking scaling policy named myscalablepolicy to an
Aurora DB cluster named myscalablecluster with Application Auto Scaling. To do so, you use a policy
configuration saved in a file named config.json.

For Linux, macOS, or Unix:

aws application-autoscaling put-scaling-policy \
 --policy-name myscalablepolicy \
 --policy-type TargetTrackingScaling \
 --resource-id cluster:myscalablecluster \
 --service-namespace rds \
 --scalable-dimension rds:cluster:ReadReplicaCount \
 --target-tracking-scaling-policy-configuration file://config.json

For Windows:

aws application-autoscaling put-scaling-policy ^
 --policy-name myscalablepolicy ^
 --policy-type TargetTrackingScaling ^
 --resource-id cluster:myscalablecluster ^
 --service-namespace rds ^
 --scalable-dimension rds:cluster:ReadReplicaCount ^
 --target-tracking-scaling-policy-configuration file://config.json

RDS API

To apply a scaling policy to your Aurora DB cluster with the Application Auto Scaling API, use the
PutScalingPolicy Application Auto Scaling API operation with the following parameters:

• PolicyName – The name of the scaling policy.
• ServiceNamespace – Set this value to rds.
• ResourceID – The resource identifier for the Aurora DB cluster. For this parameter, the resource

type is cluster and the unique identifier is the name of the Aurora DB cluster, for example
cluster:myscalablecluster.

• ScalableDimension – Set this value to rds:cluster:ReadReplicaCount.
• PolicyType – Set this value to TargetTrackingScaling.
• TargetTrackingScalingPolicyConfiguration – The target-tracking scaling policy configuration

to use for the Aurora DB cluster.

Example

In the following example, you apply a target-tracking scaling policy named myscalablepolicy to
an Aurora DB cluster named myscalablecluster with Application Auto Scaling. You use a policy
configuration based on the RDSReaderAverageCPUUtilization predefined metric.

437

https://docs.aws.amazon.com/ApplicationAutoScaling/latest/APIReference/API_PutScalingPolicy.html

Amazon Aurora User Guide for Aurora
Using Auto Scaling with Aurora replicas

POST / HTTP/1.1
Host: autoscaling.us-east-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 219
X-Amz-Target: AnyScaleFrontendService.PutScalingPolicy
X-Amz-Date: 20160506T182145Z
User-Agent: aws-cli/1.10.23 Python/2.7.11 Darwin/15.4.0 botocore/1.4.8
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "PolicyName": "myscalablepolicy",
 "ServiceNamespace": "rds",
 "ResourceId": "cluster:myscalablecluster",
 "ScalableDimension": "rds:cluster:ReadReplicaCount",
 "PolicyType": "TargetTrackingScaling",
 "TargetTrackingScalingPolicyConfiguration": {
 "TargetValue": 40.0,
 "PredefinedMetricSpecification":
 {
 "PredefinedMetricType": "RDSReaderAverageCPUUtilization"
 }
 }
}

Editing a scaling policy

You can edit a scaling policy using the AWS Management Console, the AWS CLI, or the Application Auto
Scaling API.

Editing a scaling policy using the AWS Management Console

You can edit a scaling policy by using the AWS Management Console.

To edit an auto scaling policy for an Aurora DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the Aurora DB cluster whose auto scaling policy you want to edit.

4. Choose the Logs & events tab.

5. In the Auto scaling policies section, choose the auto scaling policy, and then choose Edit.

6. Make changes to the policy.

7. Choose Save.

The following is a sample Edit Auto Scaling policy dialog box.

438

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Using Auto Scaling with Aurora replicas

Editing a scaling policy using the AWS CLI or the Application Auto Scaling API

You can use the AWS CLI or the Application Auto Scaling API to edit a scaling policy in the same way that
you apply a scaling policy:

439

Amazon Aurora User Guide for Aurora
Using Auto Scaling with Aurora replicas

• When using the AWS CLI, specify the name of the policy you want to edit in the --policy-name
parameter. Specify new values for the parameters you want to change.

• When using the Application Auto Scaling API, specify the name of the policy you want to edit in the
PolicyName parameter. Specify new values for the parameters you want to change.

For more information, see Applying a scaling policy to an Aurora DB cluster (p. 436).

Deleting a scaling policy
You can delete a scaling policy using the AWS Management Console, the AWS CLI, or the Application
Auto Scaling API.

Deleting a scaling policy using the AWS Management Console

You can delete a scaling policy by using the AWS Management Console.

To delete an auto scaling policy for an Aurora DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.
3. Choose the Aurora DB cluster whose auto scaling policy you want to delete.
4. Choose the Logs & events tab.
5. In the Auto scaling policies section, choose the auto scaling policy, and then choose Delete.

Deleting a scaling policy using the AWS CLI or the Application Auto Scaling API

You can use the AWS CLI or the Application Auto Scaling API to delete a scaling policy from an Aurora DB
cluster.

AWS CLI

To delete a scaling policy from your Aurora DB cluster, use the delete-scaling-policy AWS CLI
command with the following parameters:

• --policy-name – The name of the scaling policy.
• --resource-id – The resource identifier for the Aurora DB cluster. For this parameter, the resource

type is cluster and the unique identifier is the name of the Aurora DB cluster, for example
cluster:myscalablecluster.

• --service-namespace – Set this value to rds.
• --scalable-dimension – Set this value to rds:cluster:ReadReplicaCount.

Example

In the following example, you delete a target-tracking scaling policy named myscalablepolicy from
an Aurora DB cluster named myscalablecluster.

For Linux, macOS, or Unix:

aws application-autoscaling delete-scaling-policy \
 --policy-name myscalablepolicy \
 --resource-id cluster:myscalablecluster \
 --service-namespace rds \

440

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/delete-scaling-policy.html

Amazon Aurora User Guide for Aurora
Using Auto Scaling with Aurora replicas

 --scalable-dimension rds:cluster:ReadReplicaCount \

For Windows:

aws application-autoscaling delete-scaling-policy ^
 --policy-name myscalablepolicy ^
 --resource-id cluster:myscalablecluster ^
 --service-namespace rds ^
 --scalable-dimension rds:cluster:ReadReplicaCount ^

RDS API

To delete a scaling policy from your Aurora DB cluster, use the DeleteScalingPolicy the Application
Auto Scaling API operation with the following parameters:

• PolicyName – The name of the scaling policy.
• ServiceNamespace – Set this value to rds.
• ResourceID – The resource identifier for the Aurora DB cluster. For this parameter, the resource

type is cluster and the unique identifier is the name of the Aurora DB cluster, for example
cluster:myscalablecluster.

• ScalableDimension – Set this value to rds:cluster:ReadReplicaCount.

Example

In the following example, you delete a target-tracking scaling policy named myscalablepolicy from
an Aurora DB cluster named myscalablecluster with the Application Auto Scaling API.

POST / HTTP/1.1
Host: autoscaling.us-east-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 219
X-Amz-Target: AnyScaleFrontendService.DeleteScalingPolicy
X-Amz-Date: 20160506T182145Z
User-Agent: aws-cli/1.10.23 Python/2.7.11 Darwin/15.4.0 botocore/1.4.8
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "PolicyName": "myscalablepolicy",
 "ServiceNamespace": "rds",
 "ResourceId": "cluster:myscalablecluster",
 "ScalableDimension": "rds:cluster:ReadReplicaCount"
}

DB instance IDs and tagging
When a replica is added by Aurora Auto Scaling, its DB instance ID is prefixed by application-
autoscaling-, for example, application-autoscaling-61aabbcc-4e2f-4c65-b620-
ab7421abc123.

The following tag is automatically added to the DB instance. You can view it on the Tags tab of the DB
instance detail page.

441

https://docs.aws.amazon.com/ApplicationAutoScaling/latest/APIReference/API_DeleteScalingPolicy.html

Amazon Aurora User Guide for Aurora
Using machine learning with Aurora

Tag Value

application-autoscaling:resourceId cluster:mynewcluster-cluster

For more information on Amazon RDS resource tags, see Tagging Amazon RDS resources (p. 474).

Using machine learning (ML) capabilities with
Amazon Aurora
Following, you can find a description of how to use machine learning (ML) capabilities in your Aurora
database applications. This feature simplifies developing database applications that use the Amazon
SageMaker and Amazon Comprehend services to perform predictions. In ML terminology, these
predictions are known as inferences.

This feature is suitable for many kinds of quick predictions. Examples include low-latency, real-time use
cases such as fraud detection, ad targeting, and product recommendations. The queries pass customer
profile, shopping history, and product catalog data to an SageMaker model. Then your application gets
product recommendations returned as query results.

To use this feature, it helps for your organization to already have the appropriate ML models, notebooks,
and so on available in the Amazon machine learning services. You can divide the database knowledge
and ML knowledge among the members of your team. The database developers can focus on the SQL
and database side of your application. The Aurora Machine Learning feature enables the application to
use ML processing through the familiar database interface of stored function calls.

Topics

• Using machine learning (ML) with Aurora MySQL (p. 1041)
• Using machine learning (ML) with Aurora PostgreSQL (p. 1511)

442

Amazon Aurora User Guide for Aurora
Maintaining an Aurora DB cluster

Maintaining an Amazon Aurora DB cluster
Periodically, Amazon RDS performs maintenance on Amazon RDS resources. Maintenance most often
involves updates to the DB cluster's underlying hardware, underlying operating system (OS), or database
engine version. Updates to the operating system most often occur for security issues and should be done
as soon as possible.

Some maintenance items require that Amazon RDS take your DB cluster offline for a short time.
Maintenance items that require a resource to be offline include required operating system or database
patching. Required patching is automatically scheduled only for patches that are related to security and
instance reliability. Such patching occurs infrequently (typically once every few months) and seldom
requires more than a fraction of your maintenance window.

Deferred DB cluster and instance modifications that you have chosen not to apply immediately are also
applied during the maintenance window. For example, you might choose to change DB instance classes
or cluster or DB parameter groups during the maintenance window. Such modifications that you specify
using the pending reboot setting don't show up in the Pending maintenance list. For information about
modifying a DB cluster, see Modifying an Amazon Aurora DB cluster (p. 372).

Viewing pending maintenence
You can view whether a maintenance update is available for your DB cluster by using the RDS console,
the AWS CLI, or the Amazon RDS API. If an update is available, it is indicated in the Maintenance column
for the DB cluster on the Amazon RDS console, as shown following.

If no maintenance update is available for a DB cluster, the column value is none for it.

If a maintenance update is available for a DB cluster, the following column values are possible:

• required – The maintenance action will be applied to the resource and can't be deferred indefinitely.

• available – The maintenance action is available, but it will not be applied to the resource
automatically. You can apply it manually.

• next window – The maintenance action will be applied to the resource during the next maintenance
window.

• In progress – The maintenance action is in the process of being applied to the resource.

If an update is available, you can take one of the actions:

443

Amazon Aurora User Guide for Aurora
Viewing pending maintenance

• If the maintenance value is next window, defer the maintenance items by choosing Defer upgrade
from Actions. You can't defer a maintenance action if it has already started.

• Apply the maintenance items immediately.
• Schedule the maintenance items to start during your next maintenance window.
• Take no action.

Note
Certain OS updates are marked as required. If you defer a required update, you get a notice
from Amazon RDS indicating when the update will be performed. Other updates are marked as
available, and these you can defer indefinitely.

To take an action, choose the DB cluster to show its details, then choose Maintenance & backups. The
pending maintenance items appear.

The maintenance window determines when pending operations start, but doesn't limit the total run
time of these operations. Maintenance operations aren't guaranteed to finish before the maintenance
window ends, and can continue beyond the specified end time. For more information, see The Amazon
RDS maintenance window (p. 446).

For information about updates to Amazon Aurora engines and instructions for upgrading and
patching them, see Database engine updates for Amazon Aurora MySQL (p. 1103) and Amazon Aurora
PostgreSQL updates (p. 1614).

You can also view whether a maintenance update is available for your DB cluster by running the
describe-pending-maintenance-actions AWS CLI command.

444

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-pending-maintenance-actions.html

Amazon Aurora User Guide for Aurora
Applying updates

Applying updates for a DB cluster
With Amazon RDS, you can choose when to apply maintenance operations. You can decide when Amazon
RDS applies updates by using the RDS console, AWS Command Line Interface (AWS CLI), or RDS API.

Console

To manage an update for a DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB cluster that has a required update.

4. For Actions, choose one of the following:

• Upgrade now

• Upgrade at next window

Note
If you choose Upgrade at next window and later want to delay the update, you can
choose Defer upgrade. You can't defer a maintenance action if it has already started.
To cancel a maintenance action, modify the DB instance and disable Auto minor version
upgrade.

AWS CLI

To apply a pending update to a DB cluster, use the apply-pending-maintenance-action AWS CLI
command.

Example

For Linux, macOS, or Unix:

aws rds apply-pending-maintenance-action \
 --resource-identifier arn:aws:rds:us-west-2:001234567890:db:mysql-db \
 --apply-action system-update \
 --opt-in-type immediate

For Windows:

aws rds apply-pending-maintenance-action ^
 --resource-identifier arn:aws:rds:us-west-2:001234567890:db:mysql-db ^
 --apply-action system-update ^
 --opt-in-type immediate

Note
To defer a maintenance action, specify undo-opt-in for --opt-in-type. You can't specify
undo-opt-in for --opt-in-type if the maintenance action has already started.
To cancel a maintenance action, run the modify-db-instance AWS CLI command and specify --
no-auto-minor-version-upgrade.

To return a list of resources that have at least one pending update, use the describe-pending-
maintenance-actions AWS CLI command.

445

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/apply-pending-maintenance-action.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-pending-maintenance-actions.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-pending-maintenance-actions.html

Amazon Aurora User Guide for Aurora
The maintenance window

Example

For Linux, macOS, or Unix:

aws rds describe-pending-maintenance-actions \
 --resource-identifier arn:aws:rds:us-west-2:001234567890:db:mysql-db

For Windows:

aws rds describe-pending-maintenance-actions ^
 --resource-identifier arn:aws:rds:us-west-2:001234567890:db:mysql-db

You can also return a list of resources for a DB cluster by specifying the --filters parameter of the
describe-pending-maintenance-actions AWS CLI command. The format for the --filters
command is Name=filter-name,Value=resource-id,....

The following are the accepted values for the Name parameter of a filter:

• db-instance-id – Accepts a list of DB instance identifiers or Amazon Resource Names (ARNs). The
returned list only includes pending maintenance actions for the DB instances identified by these
identifiers or ARNs.

• db-cluster-id – Accepts a list of DB cluster identifiers or ARNs for Amazon Aurora. The returned list
only includes pending maintenance actions for the DB clusters identified by these identifiers or ARNs.

For example, the following example returns the pending maintenance actions for the sample-
cluster1 and sample-cluster2 DB clusters.

Example

For Linux, macOS, or Unix:

aws rds describe-pending-maintenance-actions \
 --filters Name=db-cluster-id,Values=sample-cluster1,sample-cluster2

For Windows:

aws rds describe-pending-maintenance-actions ^
 --filters Name=db-cluster-id,Values=sample-cluster1,sample-cluster2

RDS API

To apply an update to a DB cluster, call the Amazon RDS API ApplyPendingMaintenanceAction
operation.

To return a list of resources that have at least one pending update, call the Amazon RDS API
DescribePendingMaintenanceActions operation.

The Amazon RDS maintenance window
Every DB cluster has a weekly maintenance window during which any system changes are applied. You
can think of the maintenance window as an opportunity to control when modifications and software
patching occur, in the event either are requested or required. If a maintenance event is scheduled for a
given week, it is initiated during the 30-minute maintenance window you identify. Most maintenance
events also complete during the 30-minute maintenance window, although larger maintenance events
may take more than 30 minutes to complete.

446

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ApplyPendingMaintenanceAction.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribePendingMaintenanceActions.html

Amazon Aurora User Guide for Aurora
The maintenance window

The 30-minute maintenance window is selected at random from an 8-hour block of time per region. If
you don't specify a preferred maintenance window when you create the DB cluster, then Amazon RDS
assigns a 30-minute maintenance window on a randomly selected day of the week.

RDS will consume some of the resources on your DB cluster while maintenance is being applied. You
might observe a minimal effect on performance. For a DB instance, on rare occasions, a Multi-AZ failover
might be required for a maintenance update to complete.

Following, you can find the time blocks for each region from which default maintenance windows are
assigned.

Region Name Region Time Block

US East (Ohio) us-east-2 03:00–11:00 UTC

US East (N. Virginia) us-east-1 03:00–11:00 UTC

US West (N. California) us-west-1 06:00–14:00 UTC

US West (Oregon) us-west-2 06:00–14:00 UTC

Africa (Cape Town) af-south-1 03:00–11:00 UTC

Asia Pacific (Hong
Kong)

ap-east-1 06:00–14:00 UTC

Asia Pacific (Jakarta) ap-southeast-3 08:00–16:00 UTC

Asia Pacific (Mumbai) ap-south-1 06:00–14:00 UTC

Asia Pacific (Osaka) ap-northeast-3 22:00–23:59 UTC

Asia Pacific (Seoul) ap-northeast-2 13:00–21:00 UTC

Asia Pacific (Singapore) ap-southeast-1 14:00–22:00 UTC

Asia Pacific (Sydney) ap-southeast-2 12:00–20:00 UTC

Asia Pacific (Tokyo) ap-northeast-1 13:00–21:00 UTC

Canada (Central) ca-central-1 03:00–11:00 UTC

China (Beijing) cn-north-1 06:00–14:00 UTC

China (Ningxia) cn-northwest-1 06:00–14:00 UTC

Europe (Frankfurt) eu-central-1 21:00–05:00 UTC

Europe (Ireland) eu-west-1 22:00–06:00 UTC

Europe (London) eu-west-2 22:00–06:00 UTC

Europe (Paris) eu-west-3 23:59–07:29 UTC

Europe (Milan) eu-south-1 02:00–10:00 UTC

Europe (Stockholm) eu-north-1 23:00–07:00 UTC

Middle East (Bahrain) me-south-1 06:00–14:00 UTC

South America (São
Paulo)

sa-east-1 00:00–08:00 UTC

447

Amazon Aurora User Guide for Aurora
Adjusting the maintenance window for a DB cluster

Region Name Region Time Block

AWS GovCloud (US-
East)

us-gov-east-1 17:00–01:00 UTC

AWS GovCloud (US-
West)

us-gov-west-1 06:00–14:00 UTC

Adjusting the preferred DB cluster maintenance
window
The Aurora DB cluster maintenance window should fall at the time of lowest usage and thus might need
modification from time to time. Your DB cluster is unavailable during this time only if the updates that
are being applied require an outage. The outage is for the minimum amount of time required to make
the necessary updates.

Console

To adjust the preferred DB cluster maintenance window

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB cluster for which you want to change the maintenance window.

4. Choose Modify.

5. In the Maintenance section, update the maintenance window.

6. Choose Continue.

On the confirmation page, review your changes.

7. To apply the changes to the maintenance window immediately, choose Immediately in the
Schedule of modifications section.

8. Choose Modify cluster to save your changes.

Alternatively, choose Back to edit your changes, or choose Cancel to cancel your changes.

AWS CLI

To adjust the preferred DB cluster maintenance window, use the AWS CLI modify-db-cluster
command with the following parameters:

• --db-cluster-identifier

• --preferred-maintenance-window

Example

The following code example sets the maintenance window to Tuesdays from 4:00–4:30 AM UTC.

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
--db-cluster-identifier my-cluster \

448

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Aurora User Guide for Aurora
Automatic minor version upgrades for Aurora DB clusters

--preferred-maintenance-window Tue:04:00-Tue:04:30

For Windows:

aws rds modify-db-cluster ^
--db-cluster-identifier my-cluster ^
--preferred-maintenance-window Tue:04:00-Tue:04:30

RDS API

To adjust the preferred DB cluster maintenance window, use the Amazon RDS ModifyDBCluster API
operation with the following parameters:

• DBClusterIdentifier

• PreferredMaintenanceWindow

Automatic minor version upgrades for Aurora DB
clusters
The Auto minor version upgrade setting specifies whether Aurora automatically applies upgrades
to your cluster. These upgrades include patch levels containing bug fixes, and new minor versions
containing additional features. They don't include any incompatible changes.

Note
This setting is enabled by default. For each new cluster, choose the appropriate value for this
setting based on its importance, expected lifetime, and the amount of verification testing that
you do after each upgrade.

For instructions about turning this setting on or off, see Settings for Amazon Aurora (p. 375). In
particular, make sure to apply the same setting to all DB instances in the cluster. If any DB instance in
your cluster has this setting turned off, the cluster isn't automatically upgraded.

For more information about engine updates for Aurora PostgreSQL, see Amazon Aurora PostgreSQL
updates (p. 1614).

For more information about the Auto minor version upgrade setting for Aurora MySQL, see Enabling
automatic upgrades between minor Aurora MySQL versions (p. 1110). For general information about
engine updates for Aurora MySQL, see Database engine updates for Amazon Aurora MySQL (p. 1103).

Choosing the frequency of Aurora MySQL
maintenance updates
You can control whether Aurora MySQL upgrades happen frequently or rarely for each DB cluster. The
best choice depends on your usage of Aurora MySQL and the priorities for your applications that run
on Aurora. For information about the Aurora MySQL long-term stability (LTS) releases that require less
frequent upgrades, see Aurora MySQL long-term support (LTS) releases (p. 1106).

You might choose to upgrade an Aurora MySQL cluster rarely if some or all of the following conditions
apply:

• Your testing cycle for your application takes a long time for each update to the Aurora MySQL
database engine.

• You have many DB clusters or many applications all running on the same Aurora MySQL version. You
prefer to upgrade all of your DB clusters and associated applications at the same time.

449

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora
Choosing the frequency of Aurora

MySQL maintenance updates

• You use both Aurora MySQL and RDS for MySQL, and you prefer to keep the Aurora MySQL clusters
and RDS for MySQL DB instances compatible with the same level of MySQL.

• Your Aurora MySQL application is in production or is otherwise business-critical. You can't afford
downtime for upgrades outside of rare occurrences for critical patches.

• Your Aurora MySQL application isn't limited by performance issues or feature gaps that are addressed
in subsequent Aurora MySQL versions.

If the preceding factors apply to your situation, you can limit the number of forced upgrades for an
Aurora MySQL DB cluster. You do so by choosing a specific Aurora MySQL version known as the "Long-
Term Support" (LTS) version when you create or upgrade that DB cluster. Doing so minimizes the number
of upgrade cycles, testing cycles, and upgrade-related outages for that DB cluster.

You might choose to upgrade an Aurora MySQL cluster frequently if some or all of the following
conditions apply:

• The testing cycle for your application is straightforward and brief.
• Your application is still in the development stage.
• Your database environment uses a variety of Aurora MySQL versions, or Aurora MySQL and RDS for

MySQL versions. Each Aurora MySQL cluster has its own upgrade cycle.
• You are waiting for specific performance or feature improvements before you increase your usage of

Aurora MySQL.

If the preceding factors apply to your situation, you can enable Aurora to apply important upgrades
more frequently by upgrading an Aurora MySQL DB cluster to a more recent Aurora MySQL version than
the LTS version. Doing so makes the latest performance enhancements, bug fixes, and features available
to you more quickly.

450

Amazon Aurora User Guide for Aurora
Rebooting an Aurora DB cluster or instance

Rebooting an Amazon Aurora DB cluster or
Amazon Aurora DB instance

You might need to reboot your DB cluster or some instances within the cluster, usually for maintenance
reasons. For example, suppose that you modify the parameters within a parameter group or associate a
different parameter group with your cluster. In these cases, you must reboot the cluster for the changes
to take effect. Similarly, you might reboot one or more reader DB instances within the cluster. You can
arrange the reboot operations for individual instances to minimize downtime for the entire cluster.

The time required to reboot each DB instance in your cluster depends on the database activity at the
time of reboot. It also depends on the recovery process of your specific DB engine. If it's practical, reduce
database activity on that particular instance before starting the reboot process. Doing so can reduce the
time needed to restart the database.

You can only reboot each DB instance in your cluster when it's in the available state. A DB instance can
be unavailable for several reasons. These include the cluster being stopped state, a modification being
applied to the instance, and a maintenance-window action such as a version upgrade.

Rebooting a DB instance restarts the database engine process. Rebooting a DB instance results in a
momentary outage, during which the DB instance status is set to rebooting.

Note
If a DB instance isn't using the latest changes to its associated DB parameter group, the AWS
Management Console shows the DB parameter group with a status of pending-reboot. The
pending-reboot parameter groups status doesn't result in an automatic reboot during the next
maintenance window. To apply the latest parameter changes to that DB instance, manually
reboot the DB instance. For more information about parameter groups, see Working with DB
parameter groups and DB cluster parameter groups (p. 339).

Topics
• Rebooting a DB instance within an Aurora cluster (p. 451)
• Rebooting an Aurora cluster (Aurora PostgreSQL and Aurora MySQL before version 2.10) (p. 452)
• Rebooting an Aurora MySQL cluster (version 2.10 and higher) (p. 452)
• Checking uptime for Aurora clusters and instances (p. 453)
• Examples of Aurora reboot operations (p. 455)

Rebooting a DB instance within an Aurora cluster
This procedure is the most important operation that you take when performing reboots with Aurora.
Many of the maintenance procedures involve rebooting one or more Aurora DB instances in a particular
order.

Console

To reboot a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance that you want to reboot.
3. For Actions, choose Reboot.

The Reboot DB Instance page appears.
4. Choose Reboot to reboot your DB instance.

451

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Rebooting an Aurora cluster (Aurora PostgreSQL

and Aurora MySQL before version 2.10)

Or choose Cancel.

AWS CLI

To reboot a DB instance by using the AWS CLI, call the reboot-db-instance command.

Example

For Linux, macOS, or Unix:

aws rds reboot-db-instance \
 --db-instance-identifier mydbinstance

For Windows:

aws rds reboot-db-instance ^
 --db-instance-identifier mydbinstance

RDS API

To reboot a DB instance by using the Amazon RDS API, call the RebootDBInstance operation.

Rebooting an Aurora cluster (Aurora PostgreSQL and
Aurora MySQL before version 2.10)
In Aurora PostgreSQL-Compatible Edition, in Aurora MySQL-Compatible Edition version 1, and in
Aurora MySQL before version 2.10, you reboot an entire Aurora DB cluster by rebooting the writer DB
instance of that cluster. To do so, follow the procedure in Rebooting a DB instance within an Aurora
cluster (p. 451).

Rebooting the writer DB instance also initiates a reboot for each reader DB instance in the cluster. That
way, any cluster-wide parameter changes are applied to all DB instances at the same time. However,
the reboot of all DB instances causes a brief outage for the cluster. The reader DB instances remain
unavailable until the writer DB instance finishes rebooting and becomes available.

In the RDS console, the writer DB instance has the value Writer under the Role column on the Databases
page. In the RDS CLI, the output of the describe-db-clusters command includes a section
DBClusterMembers. The DBClusterMembers element representing the writer DB instance has a value
of true for the IsClusterWriter field.

Important
In Aurora MySQL 2.10 and higher, the reboot behavior is different: the reader DB instances
typically remain available while you reboot the writer instance. Then you can reboot the reader
instances at a convenient time. You can reboot the reader instances on a staggered schedule if
you want some reader instances to always be available. For more information, see Rebooting an
Aurora MySQL cluster (version 2.10 and higher) (p. 452).

Rebooting an Aurora MySQL cluster (version 2.10 and
higher)
In Aurora MySQL version 2.10 and higher, you can reboot the writer instance of your Aurora MySQL
cluster without rebooting the reader instances in the cluster. Doing so can help maintain high availability

452

https://docs.aws.amazon.com/cli/latest/reference/rds/reboot-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RebootDBInstance.html

Amazon Aurora User Guide for Aurora
Checking uptime for Aurora clusters and instances

of the cluster for read operations while you reboot the writer instance. You can reboot the reader
instances later, on a schedule that's convenient for you. For example, for a production cluster, you might
reboot the reader instances one at a time, starting only after the reboot of the primary instance is
finished. For each DB instance that you reboot, follow the procedure in Rebooting a DB instance within
an Aurora cluster (p. 451).

Before Aurora MySQL 2.10, rebooting the primary instance caused a reboot for each reader instance
at the same time. If your Aurora MySQL cluster is running an older version, use the reboot procedure
in Rebooting an Aurora cluster (Aurora PostgreSQL and Aurora MySQL before version 2.10) (p. 452)
instead.

Important
The change to reboot behavior in Aurora MySQL 2.10 and higher is different for Aurora global
databases. If you reboot the writer instance for the primary cluster in an Aurora global database,
the reader instances in the primary cluster remain available. However, the DB instances in any
secondary clusters reboot at the same time.

You frequently reboot the cluster after making changes to cluster parameter groups. You make
parameter changes by following the procedures in Working with DB parameter groups and DB cluster
parameter groups (p. 339). Suppose that you reboot the writer DB instance in an Aurora MySQL cluster
to apply changes to cluster parameters. Some or all of the reader DB instances might continue using
the old parameter settings. However, the different parameter settings don't affect the data integrity
of the cluster. Any cluster parameters that affect the organization of data files are only used by the
writer DB instance. For example, you can update cluster parameters such as binlog_format and
innodb_purge_threads on the writer instance before the reader instances. Only the writer instance is
writing binary logs and purging undo records.

For parameters that change how queries interpret SQL statements or query output, you might need
to take care to reboot the reader instances immediately. You do this to avoid unexpected application
behavior during queries. For example, suppose that you change the lower_case_table_names
parameter and reboot the writer instance. In this case, the reader instances might not be able to access a
newly created table until they are all rebooted.

For a list of all the Aurora MySQL cluster parameters, see Cluster-level parameters (p. 1064).

Tip
Aurora MySQL might still reboot some of the reader instances along with the writer instance if
your cluster is processing a workload with high throughput.
The reduction in the number of reboots applies during failover operations also. Aurora MySQL
only restarts the writer DB instance and the failover target during a failover. Other reader DB
instances in the cluster remain available to continue processing queries through connections to
the reader endpoint. Thus, you can improve availability during a failover by having more than
one reader DB instance in a cluster.

Checking uptime for Aurora clusters and instances
You can check and monitor the length of time since the last reboot for each DB instance in your Aurora
cluster. The Amazon CloudWatch metric EngineUptime reports the number of seconds since the last
time a DB instance was started. You can examine this metric at a point in time to find out the uptime for
the DB instance. You can also monitor this metric over time to detect when the instance is rebooted.

You can also examine the EngineUptime metric at the cluster level. The Minimum and Maximum
dimensions report the smallest and largest uptime values for all DB instances in the cluster. To check the
most recent time when any reader instance in a cluster was rebooted, or restarted for another reason,
monitor the cluster-level metric using the Minimum dimension. To check which instance in the cluster
has gone the longest without a reboot, monitor the cluster-level metric using the Maximum dimension.
For example, you might want to confirm that all DB instances in the cluster were rebooted after a
configuration change.

453

Amazon Aurora User Guide for Aurora
Checking uptime for Aurora clusters and instances

Tip
For long-term monitoring, we recommend monitoring the EngineUptime metric for individual
instances instead of at the cluster level. The cluster-level EngineUptime metric is set to zero
when a new DB instance is added to the cluster. Such cluster changes can happen as part of
maintenance and scaling operations such as those performed by Auto Scaling.

The following CLI examples show how to examine the EngineUptime metric for the writer and reader
instances in a cluster. The examples use a cluster named tpch100g. This cluster has a writer DB instance
instance-1234. It also has two reader DB instances, instance-7448 and instance-6305.

First, the reboot-db-instance command reboots one of the reader instances. The wait command
waits until the instance is finished rebooting.

$ aws rds reboot-db-instance --db-instance-identifier instance-6305
{
 "DBInstance": {
 "DBInstanceIdentifier": "instance-6305",
 "DBInstanceStatus": "rebooting",
...
$ aws rds wait db-instance-available --db-instance-id instance-6305

The CloudWatch get-metric-statistics command examines the EngineUptime metric over the
last five minutes at one-minute intervals. The uptime for the instance-6305 instance is reset to zero
and begins counting upwards again. This AWS CLI example for Linux uses $() variable substitution to
insert the appropriate timestamps into the CLI commands. It also uses the Linux sort command to order
the output by the time the metric was collected. That timestamp value is the third field in each line of
output.

$ aws cloudwatch get-metric-statistics --metric-name "EngineUptime" \
 --start-time "$(date -d '5 minutes ago')" --end-time "$(date -d 'now')" \
 --period 60 --namespace "AWS/RDS" --statistics Maximum \
 --dimensions Name=DBInstanceIdentifier,Value=instance-6305 --output text \
 | sort -k 3
EngineUptime
DATAPOINTS 231.0 2021-03-16T18:19:00+00:00 Seconds
DATAPOINTS 291.0 2021-03-16T18:20:00+00:00 Seconds
DATAPOINTS 351.0 2021-03-16T18:21:00+00:00 Seconds
DATAPOINTS 411.0 2021-03-16T18:22:00+00:00 Seconds
DATAPOINTS 471.0 2021-03-16T18:23:00+00:00 Seconds

The minimum uptime for the cluster is reset to zero because one of the instances in the cluster was
rebooted. The maximum uptime for the cluster isn't reset because at least one of the DB instances in the
cluster remained available.

$ aws cloudwatch get-metric-statistics --metric-name "EngineUptime" \
 --start-time "$(date -d '5 minutes ago')" --end-time "$(date -d 'now')" \
 --period 60 --namespace "AWS/RDS" --statistics Minimum \
 --dimensions Name=DBClusterIdentifier,Value=tpch100g --output text \
 | sort -k 3
EngineUptime
DATAPOINTS 63099.0 2021-03-16T18:12:00+00:00 Seconds
DATAPOINTS 63159.0 2021-03-16T18:13:00+00:00 Seconds
DATAPOINTS 63219.0 2021-03-16T18:14:00+00:00 Seconds
DATAPOINTS 63279.0 2021-03-16T18:15:00+00:00 Seconds
DATAPOINTS 51.0 2021-03-16T18:16:00+00:00 Seconds

$ aws cloudwatch get-metric-statistics --metric-name "EngineUptime" \
 --start-time "$(date -d '5 minutes ago')" --end-time "$(date -d 'now')" \
 --period 60 --namespace "AWS/RDS" --statistics Maximum \
 --dimensions Name=DBClusterIdentifier,Value=tpch100g --output text \

454

Amazon Aurora User Guide for Aurora
Examples of Aurora reboot operations

 | sort -k 3
EngineUptime
DATAPOINTS 63389.0 2021-03-16T18:16:00+00:00 Seconds
DATAPOINTS 63449.0 2021-03-16T18:17:00+00:00 Seconds
DATAPOINTS 63509.0 2021-03-16T18:18:00+00:00 Seconds
DATAPOINTS 63569.0 2021-03-16T18:19:00+00:00 Seconds
DATAPOINTS 63629.0 2021-03-16T18:20:00+00:00 Seconds

Then another reboot-db-instance command reboots the writer instance of the cluster. Another wait
command pauses until the writer instance is finished rebooting.

$ aws rds reboot-db-instance --db-instance-identifier instance-1234
{
 "DBInstanceIdentifier": "instance-1234",
 "DBInstanceStatus": "rebooting",
...
$ aws rds wait db-instance-available --db-instance-id instance-1234

Now the EngineUptime metric for the writer instance shows that the instance instance-1234 was
rebooted recently. The reader instance instance-6305 was also rebooted automatically along with
the writer instance. This cluster is running Aurora MySQL 2.09, which doesn't keep the reader instances
running as the writer instance reboots.

$ aws cloudwatch get-metric-statistics --metric-name "EngineUptime" \
 --start-time "$(date -d '5 minutes ago')" --end-time "$(date -d 'now')" \
 --period 60 --namespace "AWS/RDS" --statistics Maximum \
 --dimensions Name=DBInstanceIdentifier,Value=instance-1234 --output text \
 | sort -k 3
EngineUptime
DATAPOINTS 63749.0 2021-03-16T18:22:00+00:00 Seconds
DATAPOINTS 63809.0 2021-03-16T18:23:00+00:00 Seconds
DATAPOINTS 63869.0 2021-03-16T18:24:00+00:00 Seconds
DATAPOINTS 41.0 2021-03-16T18:25:00+00:00 Seconds
DATAPOINTS 101.0 2021-03-16T18:26:00+00:00 Seconds

$ aws cloudwatch get-metric-statistics --metric-name "EngineUptime" \
 --start-time "$(date -d '5 minutes ago')" --end-time "$(date -d 'now')" \
 --period 60 --namespace "AWS/RDS" --statistics Maximum \
 --dimensions Name=DBInstanceIdentifier,Value=instance-6305 --output text \
 | sort -k 3
EngineUptime
DATAPOINTS 411.0 2021-03-16T18:22:00+00:00 Seconds
DATAPOINTS 471.0 2021-03-16T18:23:00+00:00 Seconds
DATAPOINTS 531.0 2021-03-16T18:24:00+00:00 Seconds
DATAPOINTS 49.0 2021-03-16T18:26:00+00:00 Seconds

Examples of Aurora reboot operations
The following Aurora MySQL examples show different combinations of reboot operations for reader and
writer DB instances in an Aurora DB cluster. After each reboot, SQL queries demonstrate the uptime for
the instances in the cluster.

Topics
• Finding the writer and reader instances for an Aurora cluster (p. 456)
• Rebooting a single reader instance (p. 456)
• Rebooting the writer instance (p. 457)
• Rebooting the writer and readers independently (p. 458)
• Applying a cluster parameter change to an Aurora MySQL version 2.10 cluster (p. 461)

455

Amazon Aurora User Guide for Aurora
Examples of Aurora reboot operations

Finding the writer and reader instances for an Aurora cluster
In an Aurora MySQL cluster with multiple DB instances, it's important to know which one is the writer
and which ones are the readers. The writer and reader instances also can switch roles when a failover
operation happens. Thus, it's best to perform a check like the following before doing any operation that
requires a writer or reader instance. In this case, the False values for IsClusterWriter identify the
reader instances, instance-6305 and instance-7448. The True value identifies the writer instance,
instance-1234.

$ aws rds describe-db-clusters --db-cluster-id tpch100g \
 --query "*[].['Cluster:',DBClusterIdentifier,DBClusterMembers[*].
['Instance:',DBInstanceIdentifier,IsClusterWriter]]" \
 --output text
Cluster: tpch100g
Instance: instance-6305 False
Instance: instance-7448 False
Instance: instance-1234 True

Before we start the examples of rebooting, the writer instance has an uptime of approximately one week.
The SQL query in this example shows a MySQL-specific way to check the uptime. You might use this
technique in a database application. For another technique that uses the AWS CLI and works for both
Aurora engines, see Checking uptime for Aurora clusters and instances (p. 453).

$ mysql -h instance-7448.a12345.us-east-1.rds.amazonaws.com -P 3306 -u my-user -p
...
mysql> select date_sub(now(), interval variable_value second) "Last Startup",
 -> time_format(sec_to_time(variable_value),'%Hh %im') as "Uptime"
 -> from performance_schema.global_status
 -> where variable_name='Uptime';
+----------------------------+---------+
| Last Startup | Uptime |
+----------------------------+---------+
| 2021-03-08 17:49:06.000000 | 174h 42m|
+----------------------------+---------+

Rebooting a single reader instance
This example reboots one of the reader DB instances. Perhaps this instance was overloaded by a huge
query or many concurrent connections. Or perhaps it fell behind the writer instance because of a
network issue. After starting the reboot operation, the example uses a wait command to pause until the
instance becomes available. By that point, the instance has an uptime of a few minutes.

$ aws rds reboot-db-instance --db-instance-identifier instance-6305
{
 "DBInstance": {
 "DBInstanceIdentifier": "instance-6305",
 "DBInstanceStatus": "rebooting",
...
 }
}
$ aws rds wait db-instance-available --db-instance-id instance-6305
$ mysql -h instance-6305.a12345.us-east-1.rds.amazonaws.com -P 3306 -u my-user -p
...
mysql> select date_sub(now(), interval variable_value second) "Last Startup",
 -> time_format(sec_to_time(variable_value),'%Hh %im') as "Uptime"
 -> from performance_schema.global_status
 -> where variable_name='Uptime';
+----------------------------+---------+
| Last Startup | Uptime |

456

Amazon Aurora User Guide for Aurora
Examples of Aurora reboot operations

+----------------------------+---------+
| 2021-03-16 00:35:02.000000 | 00h 03m |
+----------------------------+---------+

Rebooting the reader instance didn't affect the uptime of the writer instance. It still has an uptime of
about one week.

$ mysql -h instance-7448.a12345.us-east-1.rds.amazonaws.com -P 3306 -u my-user -p
...
mysql> select date_sub(now(), interval variable_value second) "Last Startup",
 -> time_format(sec_to_time(variable_value),'%Hh %im') as "Uptime"
 -> from performance_schema.global_status where variable_name='Uptime';
+----------------------------+----------+
| Last Startup | Uptime |
+----------------------------+----------+
| 2021-03-08 17:49:06.000000 | 174h 49m |
+----------------------------+----------+

Rebooting the writer instance
This example reboots the writer instance. This cluster is running Aurora MySQL version 2.09. Because the
Aurora MySQL version is lower than 2.10, rebooting the writer instance also reboots any reader instances
in the cluster.

A wait command pauses until the reboot is finished. Now the uptime for that instance is reset to zero.
It's possible that a reboot operation might take substantially different times for writer and reader DB
instances. The writer and reader DB instances perform different kinds of cleanup operations depending
on their roles.

$ aws rds reboot-db-instance --db-instance-identifier instance-1234
{
 "DBInstance": {
 "DBInstanceIdentifier": "instance-1234",
 "DBInstanceStatus": "rebooting",
...
 }
}
$ aws rds wait db-instance-available --db-instance-id instance-1234
$ mysql -h instance-1234.a12345.us-east-1.rds.amazonaws.com -P 3306 -u my-user -p
...
mysql> select date_sub(now(), interval variable_value second) "Last Startup",
 -> time_format(sec_to_time(variable_value),'%Hh %im') as "Uptime"
 -> from performance_schema.global_status where variable_name='Uptime';
+----------------------------+---------+
| Last Startup | Uptime |
+----------------------------+---------+
| 2021-03-16 00:40:27.000000 | 00h 00m |
+----------------------------+---------+

After the reboot for the writer DB instance, both of the reader DB instances also have their uptime reset.
Rebooting the writer instance caused the reader instances to reboot also. This behavior applies to Aurora
PostgreSQL clusters and to Aurora MySQL clusters before version 2.10.

$ mysql -h instance-7448.a12345.us-east-1.rds.amazonaws.com -P 3306 -u my-user -p
...
mysql> select date_sub(now(), interval variable_value second) "Last Startup",
 -> time_format(sec_to_time(variable_value),'%Hh %im') as "Uptime"
 -> from performance_schema.global_status where variable_name='Uptime';
+----------------------------+---------+
| Last Startup | Uptime |

457

Amazon Aurora User Guide for Aurora
Examples of Aurora reboot operations

+----------------------------+---------+
| 2021-03-16 00:40:35.000000 | 00h 00m |
+----------------------------+---------+

$ mysql -h instance-6305.a12345.us-east-1.rds.amazonaws.com -P 3306 -u my-user -p
...
mysql> select date_sub(now(), interval variable_value second) "Last Startup",
 -> time_format(sec_to_time(variable_value),'%Hh %im') as "Uptime"
 -> from performance_schema.global_status where variable_name='Uptime';
+----------------------------+---------+
| Last Startup | Uptime |
+----------------------------+---------+
| 2021-03-16 00:40:33.000000 | 00h 01m |
+----------------------------+---------+

Rebooting the writer and readers independently
These next examples show a cluster that runs Aurora MySQL version 2.10. In this Aurora MySQL version
and higher, you can reboot the writer instance without causing reboots for all the reader instances. That
way, your query-intensive applications don't experience any outage when you reboot the writer instance.
You can reboot the reader instances later. You might do those reboots at a time of low query traffic. You
might also reboot the reader instances one at a time. That way, at least one reader instance is always
available for the query traffic of your application.

The following example uses a cluster named cluster-2393, running Aurora MySQL version
5.7.mysql_aurora.2.10.0. This cluster has a writer instance named instance-9404 and three
reader instances named instance-6772, instance-2470, and instance-5138.

$ aws rds describe-db-clusters --db-cluster-id cluster-2393 \
 --query "*[].['Cluster:',DBClusterIdentifier,DBClusterMembers[*].
['Instance:',DBInstanceIdentifier,IsClusterWriter]]" \
 --output text
Cluster: cluster-2393
Instance: instance-5138 False
Instance: instance-2470 False
Instance: instance-6772 False
Instance: instance-9404 True

Checking the uptime value of each database instance through the mysql command shows that each
one has roughly the same uptime. For example, here is the uptime for instance-5138.

mysql> SHOW GLOBAL STATUS LIKE 'uptime';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Uptime | 3866 |
+---------------+-------+

By using CloudWatch, we can get the corresponding uptime information without actually logging into
the instances. That way, an administrator can monitor the database but can't view or change any table
data. In this case, we specify a time period spanning five minutes, and check the uptime value every
minute. The increasing uptime values demonstrate that the instances weren't restarted during that
period.

$ aws cloudwatch get-metric-statistics --metric-name "EngineUptime" \
 --start-time "$(date -d '5 minutes ago')" --end-time "$(date -d 'now')" --period 60 \
 --namespace "AWS/RDS" --statistics Minimum --dimensions
 Name=DBInstanceIdentifier,Value=instance-9404 \
 --output text | sort -k 3

458

Amazon Aurora User Guide for Aurora
Examples of Aurora reboot operations

EngineUptime
DATAPOINTS 4648.0 2021-03-17T23:42:00+00:00 Seconds
DATAPOINTS 4708.0 2021-03-17T23:43:00+00:00 Seconds
DATAPOINTS 4768.0 2021-03-17T23:44:00+00:00 Seconds
DATAPOINTS 4828.0 2021-03-17T23:45:00+00:00 Seconds
DATAPOINTS 4888.0 2021-03-17T23:46:00+00:00 Seconds

$ aws cloudwatch get-metric-statistics --metric-name "EngineUptime" \
 --start-time "$(date -d '5 minutes ago')" --end-time "$(date -d 'now')" --period 60 \
 --namespace "AWS/RDS" --statistics Minimum --dimensions
 Name=DBInstanceIdentifier,Value=instance-6772 \
 --output text | sort -k 3
EngineUptime
DATAPOINTS 4315.0 2021-03-17T23:42:00+00:00 Seconds
DATAPOINTS 4375.0 2021-03-17T23:43:00+00:00 Seconds
DATAPOINTS 4435.0 2021-03-17T23:44:00+00:00 Seconds
DATAPOINTS 4495.0 2021-03-17T23:45:00+00:00 Seconds
DATAPOINTS 4555.0 2021-03-17T23:46:00+00:00 Seconds

Now we reboot one of the reader instances, instance-5138. We wait for the instance to become
available again after the reboot. Now monitoring the uptime over a five-minute period shows that the
uptime was reset to zero during that time. The most recent uptime value was measured five seconds
after the reboot finished.

$ aws rds reboot-db-instance --db-instance-identifier instance-5138
{
 "DBInstanceIdentifier": "instance-5138",
 "DBInstanceStatus": "rebooting"
}
$ aws rds wait db-instance-available --db-instance-id instance-5138

$ aws cloudwatch get-metric-statistics --metric-name "EngineUptime" \
 --start-time "$(date -d '5 minutes ago')" --end-time "$(date -d 'now')" --period 60 \
 --namespace "AWS/RDS" --statistics Minimum --dimensions
 Name=DBInstanceIdentifier,Value=instance-5138 \
 --output text | sort -k 3
EngineUptime
DATAPOINTS 4500.0 2021-03-17T23:46:00+00:00 Seconds
DATAPOINTS 4560.0 2021-03-17T23:47:00+00:00 Seconds
DATAPOINTS 4620.0 2021-03-17T23:48:00+00:00 Seconds
DATAPOINTS 4680.0 2021-03-17T23:49:00+00:00 Seconds
DATAPOINTS 5.0 2021-03-17T23:50:00+00:00 Seconds

Next, we perform a reboot for the writer instance, instance-9404. We compare the uptime values for
the writer instance and one of the reader instances. By doing so, we can see that rebooting the writer
didn't cause a reboot for the readers. In versions before Aurora MySQL 2.10, the uptime values for all the
readers would be reset at the same time as the writer.

$ aws rds reboot-db-instance --db-instance-identifier instance-9404
{
 "DBInstanceIdentifier": "instance-9404",
 "DBInstanceStatus": "rebooting"
}
$ aws rds wait db-instance-available --db-instance-id instance-9404

$ aws cloudwatch get-metric-statistics --metric-name "EngineUptime" \
 --start-time "$(date -d '5 minutes ago')" --end-time "$(date -d 'now')" --period 60 \
 --namespace "AWS/RDS" --statistics Minimum --dimensions
 Name=DBInstanceIdentifier,Value=instance-9404 \
 --output text | sort -k 3
EngineUptime
DATAPOINTS 371.0 2021-03-17T23:57:00+00:00 Seconds
DATAPOINTS 431.0 2021-03-17T23:58:00+00:00 Seconds

459

Amazon Aurora User Guide for Aurora
Examples of Aurora reboot operations

DATAPOINTS 491.0 2021-03-17T23:59:00+00:00 Seconds
DATAPOINTS 551.0 2021-03-18T00:00:00+00:00 Seconds
DATAPOINTS 37.0 2021-03-18T00:01:00+00:00 Seconds

$ aws cloudwatch get-metric-statistics --metric-name "EngineUptime" \
 --start-time "$(date -d '5 minutes ago')" --end-time "$(date -d 'now')" --period 60 \
 --namespace "AWS/RDS" --statistics Minimum --dimensions
 Name=DBInstanceIdentifier,Value=instance-6772 \
 --output text | sort -k 3
EngineUptime
DATAPOINTS 5215.0 2021-03-17T23:57:00+00:00 Seconds
DATAPOINTS 5275.0 2021-03-17T23:58:00+00:00 Seconds
DATAPOINTS 5335.0 2021-03-17T23:59:00+00:00 Seconds
DATAPOINTS 5395.0 2021-03-18T00:00:00+00:00 Seconds
DATAPOINTS 5455.0 2021-03-18T00:01:00+00:00 Seconds

To make sure that all the reader instances have all the same changes to configuration parameters as the
writer instance, reboot all the reader instances after the writer. This example reboots all the readers and
then waits until all of them are available before proceeding.

$ aws rds reboot-db-instance --db-instance-identifier instance-6772
{
 "DBInstanceIdentifier": "instance-6772",
 "DBInstanceStatus": "rebooting"
}

$ aws rds reboot-db-instance --db-instance-identifier instance-2470
{
 "DBInstanceIdentifier": "instance-2470",
 "DBInstanceStatus": "rebooting"
}

$ aws rds reboot-db-instance --db-instance-identifier instance-5138
{
 "DBInstanceIdentifier": "instance-5138",
 "DBInstanceStatus": "rebooting"
}

$ aws rds wait db-instance-available --db-instance-id instance-6772
$ aws rds wait db-instance-available --db-instance-id instance-2470
$ aws rds wait db-instance-available --db-instance-id instance-5138

Now we can see that the writer DB instance has the highest uptime. This instance's uptime value
increased steadily throughout the monitoring period. The reader DB instances were all rebooted after
the reader. We can see the point within the monitoring period when each reader was rebooted and its
uptime was reset to zero.

$ aws cloudwatch get-metric-statistics --metric-name "EngineUptime" \
 --start-time "$(date -d '5 minutes ago')" --end-time "$(date -d 'now')" --period 60 \
 --namespace "AWS/RDS" --statistics Minimum --dimensions
 Name=DBInstanceIdentifier,Value=instance-9404 \
 --output text | sort -k 3
EngineUptime
DATAPOINTS 457.0 2021-03-18T00:08:00+00:00 Seconds
DATAPOINTS 517.0 2021-03-18T00:09:00+00:00 Seconds
DATAPOINTS 577.0 2021-03-18T00:10:00+00:00 Seconds
DATAPOINTS 637.0 2021-03-18T00:11:00+00:00 Seconds
DATAPOINTS 697.0 2021-03-18T00:12:00+00:00 Seconds

$ aws cloudwatch get-metric-statistics --metric-name "EngineUptime" \
 --start-time "$(date -d '5 minutes ago')" --end-time "$(date -d 'now')" --period 60 \
 --namespace "AWS/RDS" --statistics Minimum --dimensions
 Name=DBInstanceIdentifier,Value=instance-2470 \

460

Amazon Aurora User Guide for Aurora
Examples of Aurora reboot operations

 --output text | sort -k 3
EngineUptime
DATAPOINTS 5819.0 2021-03-18T00:08:00+00:00 Seconds
DATAPOINTS 35.0 2021-03-18T00:09:00+00:00 Seconds
DATAPOINTS 95.0 2021-03-18T00:10:00+00:00 Seconds
DATAPOINTS 155.0 2021-03-18T00:11:00+00:00 Seconds
DATAPOINTS 215.0 2021-03-18T00:12:00+00:00 Seconds

$ aws cloudwatch get-metric-statistics --metric-name "EngineUptime" \
 --start-time "$(date -d '5 minutes ago')" --end-time "$(date -d 'now')" --period 60 \
 --namespace "AWS/RDS" --statistics Minimum --dimensions
 Name=DBInstanceIdentifier,Value=instance-5138 \
 --output text | sort -k 3
EngineUptime
DATAPOINTS 1085.0 2021-03-18T00:08:00+00:00 Seconds
DATAPOINTS 1145.0 2021-03-18T00:09:00+00:00 Seconds
DATAPOINTS 1205.0 2021-03-18T00:10:00+00:00 Seconds
DATAPOINTS 49.0 2021-03-18T00:11:00+00:00 Seconds
DATAPOINTS 109.0 2021-03-18T00:12:00+00:00 Seconds

Applying a cluster parameter change to an Aurora MySQL
version 2.10 cluster
The following example demonstrates how to apply a parameter change to all DB instances in your
Aurora MySQL 2.10 cluster. With this Aurora MySQL version, you reboot the writer instance and all the
reader instances independently.

The example uses the MySQL configuration parameter lower_case_table_names for illustration.
When this parameter setting is different between the writer and reader DB instances, a query might not
be able to access a table declared with an uppercase or mixed-case name. Or if two table names differ
only in terms of uppercase and lowercase letters, a query might access the wrong table.

This example shows how to determine the writer and reader instances in the cluster by examining the
IsClusterWriter attribute of each instance. The cluster is named cluster-2393. The cluster has a
writer instance named instance-9404. The reader instances in the cluster are named instance-5138
and instance-2470.

$ aws rds describe-db-clusters --db-cluster-id cluster-2393 \
 --query '*[].[DBClusterIdentifier,DBClusterMembers[*].
[DBInstanceIdentifier,IsClusterWriter]]' \
 --output text
cluster-2393
instance-5138 False
instance-2470 False
instance-9404 True

To demonstrate the effects of changing the lower_case_table_names parameter, we set up two DB
cluster parameter groups. The lower-case-table-names-0 parameter group has this parameter set
to 0. The lower-case-table-names-1 parameter group has this parameter group set to 1.

$ aws rds create-db-cluster-parameter-group --description 'lower-case-table-names-0' \
 --db-parameter-group-family aurora-mysql5.7 \
 --db-cluster-parameter-group-name lower-case-table-names-0
{
 "DBClusterParameterGroup": {
 "DBClusterParameterGroupName": "lower-case-table-names-0",
 "DBParameterGroupFamily": "aurora-mysql5.7",
 "Description": "lower-case-table-names-0"
 }
}

461

Amazon Aurora User Guide for Aurora
Examples of Aurora reboot operations

$ aws rds create-db-cluster-parameter-group --description 'lower-case-table-names-1' \
 --db-parameter-group-family aurora-mysql5.7 \
 --db-cluster-parameter-group-name lower-case-table-names-1
{
 "DBClusterParameterGroup": {
 "DBClusterParameterGroupName": "lower-case-table-names-1",
 "DBParameterGroupFamily": "aurora-mysql5.7",
 "Description": "lower-case-table-names-1"
 }
}

$ aws rds modify-db-cluster-parameter-group \
 --db-cluster-parameter-group-name lower-case-table-names-0 \
 --parameters ParameterName=lower_case_table_names,ParameterValue=0,ApplyMethod=pending-
reboot
{
 "DBClusterParameterGroupName": "lower-case-table-names-0"
}

$ aws rds modify-db-cluster-parameter-group \
 --db-cluster-parameter-group-name lower-case-table-names-1 \
 --parameters ParameterName=lower_case_table_names,ParameterValue=1,ApplyMethod=pending-
reboot
{
 "DBClusterParameterGroupName": "lower-case-table-names-1"
}

The default value of lower_case_table_names is 0. With this parameter setting, the table foo is
distinct from the table FOO. This example verifies that the parameter is still at its default setting. Then
the example creates three tables that differ only in uppercase and lowercase letters in their names.

mysql> create database lctn;
Query OK, 1 row affected (0.07 sec)

mysql> use lctn;
Database changed
mysql> select @@lower_case_table_names;
+--------------------------+
| @@lower_case_table_names |
+--------------------------+
| 0 |
+--------------------------+

mysql> create table foo (s varchar(128));
mysql> insert into foo values ('Lowercase table name foo');

mysql> create table Foo (s varchar(128));
mysql> insert into Foo values ('Mixed-case table name Foo');

mysql> create table FOO (s varchar(128));
mysql> insert into FOO values ('Uppercase table name FOO');

mysql> select * from foo;
+--------------------------+
| s |
+--------------------------+
| Lowercase table name foo |
+--------------------------+

mysql> select * from Foo;
+---------------------------+
| s |
+---------------------------+

462

Amazon Aurora User Guide for Aurora
Examples of Aurora reboot operations

| Mixed-case table name Foo |
+---------------------------+

mysql> select * from FOO;
+--------------------------+
| s |
+--------------------------+
| Uppercase table name FOO |
+--------------------------+

Next, we associate the DB parameter group with the cluster to set the lower_case_table_names
parameter to 1. This change only takes effect after each DB instance is rebooted.

$ aws rds modify-db-cluster --db-cluster-identifier cluster-2393 \
 --db-cluster-parameter-group-name lower-case-table-names-1
{
 "DBClusterIdentifier": "cluster-2393",
 "DBClusterParameterGroup": "lower-case-table-names-1",
 "Engine": "aurora-mysql",
 "EngineVersion": "5.7.mysql_aurora.2.10.0"
}

The first reboot we do is for the writer DB instance. Then we wait for the instance to become available
again. At that point, we connect to the writer endpoint and verify that the writer instance has the
changed parameter value. The SHOW TABLES command confirms that the database contains the three
different tables. However, queries that refer to tables named foo, Foo, or FOO all access the table whose
name is all-lowercase, foo.

Rebooting the writer instance
$ aws rds reboot-db-instance --db-instance-identifier instance-9404
$ aws rds wait db-instance-available --db-instance-id instance-9404

Now, queries using the cluster endpoint show the effects of the parameter change. Whether the table
name in the query is uppercase, lowercase, or mixed case, the SQL statement accesses the table whose
name is all lowercase.

mysql> select @@lower_case_table_names;
+--------------------------+
| @@lower_case_table_names |
+--------------------------+
| 1 |
+--------------------------+

mysql> use lctn;
mysql> show tables;
+----------------+
| Tables_in_lctn |
+----------------+
| FOO |
| Foo |
| foo |
+----------------+

mysql> select * from foo;
+--------------------------+
| s |
+--------------------------+
| Lowercase table name foo |
+--------------------------+

mysql> select * from Foo;
+--------------------------+

463

Amazon Aurora User Guide for Aurora
Examples of Aurora reboot operations

| s |
+--------------------------+
| Lowercase table name foo |
+--------------------------+

mysql> select * from FOO;
+--------------------------+
| s |
+--------------------------+
| Lowercase table name foo |
+--------------------------+

The next example shows the same queries as the previous one. In this case, the queries use the reader
endpoint and run on one of the reader DB instances. Those instances haven't been rebooted yet. Thus,
they still have the original setting for the lower_case_table_names parameter. That means that
queries can access each of the foo, Foo, and FOO tables.

mysql> select @@lower_case_table_names;
+--------------------------+
| @@lower_case_table_names |
+--------------------------+
| 0 |
+--------------------------+

mysql> use lctn;

mysql> select * from foo;
+--------------------------+
| s |
+--------------------------+
| Lowercase table name foo |
+--------------------------+

mysql> select * from Foo;
+---------------------------+
| s |
+---------------------------+
| Mixed-case table name Foo |
+---------------------------+

mysql> select * from FOO;
+--------------------------+
| s |
+--------------------------+
| Uppercase table name FOO |
+--------------------------+

Next, we reboot one of the reader instances and wait for it to become available again.

$ aws rds reboot-db-instance --db-instance-identifier instance-2470
{
 "DBInstanceIdentifier": "instance-2470",
 "DBInstanceStatus": "rebooting"
}
$ aws rds wait db-instance-available --db-instance-id instance-2470

While connected to the instance endpoint for instance-2470, a query shows that the new parameter is
in effect.

mysql> select @@lower_case_table_names;
+--------------------------+
| @@lower_case_table_names |

464

Amazon Aurora User Guide for Aurora
Examples of Aurora reboot operations

+--------------------------+
| 1 |
+--------------------------+

At this point, the two reader instances in the cluster are running with different
lower_case_table_names settings. Thus, any connection to the reader endpoint of the cluster uses a
value for this setting that's unpredictable. It's important to immediately reboot the other reader instance
so that they both have consistent settings.

$ aws rds reboot-db-instance --db-instance-identifier instance-5138
{
 "DBInstanceIdentifier": "instance-5138",
 "DBInstanceStatus": "rebooting"
}
$ aws rds wait db-instance-available --db-instance-id instance-5138

The following example confirms that all the reader instances have the same setting for the
lower_case_table_names parameter. The commands check the lower_case_table_names setting
value on each reader instance. Then the same command using the reader endpoint demonstrates that
each connection to the reader endpoint uses one of the reader instances, but which one isn't predictable.

Check lower_case_table_names setting on each reader instance.

$ mysql -h instance-5138.a12345.us-east-1.rds.amazonaws.com \
 -u my-user -p -e 'select @@aurora_server_id, @@lower_case_table_names'
+--------------------------+--------------------------+
| @@aurora_server_id | @@lower_case_table_names |
+--------------------------+--------------------------+
| instance-5138 | 1 |
+--------------------------+--------------------------+

$ mysql -h instance-2470.a12345.us-east-1.rds.amazonaws.com \
 -u my-user -p -e 'select @@aurora_server_id, @@lower_case_table_names'
+--------------------------+--------------------------+
| @@aurora_server_id | @@lower_case_table_names |
+--------------------------+--------------------------+
| instance-2470 | 1 |
+--------------------------+--------------------------+

Check lower_case_table_names setting on the reader endpoint of the cluster.

$ mysql -h cluster-2393.cluster-ro-a12345.us-east-1.rds.amazonaws.com \
 -u my-user -p -e 'select @@aurora_server_id, @@lower_case_table_names'
+--------------------------+--------------------------+
| @@aurora_server_id | @@lower_case_table_names |
+--------------------------+--------------------------+
| instance-5138 | 1 |
+--------------------------+--------------------------+

Run query on writer instance

$ mysql -h cluster-2393.cluster-a12345.us-east-1.rds.amazonaws.com \
 -u my-user -p -e 'select @@aurora_server_id, @@lower_case_table_names'
+--------------------------+--------------------------+
| @@aurora_server_id | @@lower_case_table_names |
+--------------------------+--------------------------+
| instance-9404 | 1 |
+--------------------------+--------------------------+

With the parameter change applied everywhere, we can see the effect of setting
lower_case_table_names=1. Whether the table is referred to as foo, Foo, or FOO the query converts
the name to foo and accesses the same table in each case.

465

Amazon Aurora User Guide for Aurora
Examples of Aurora reboot operations

mysql> use lctn;

mysql> select * from foo;
+--------------------------+
| s |
+--------------------------+
| Lowercase table name foo |
+--------------------------+

mysql> select * from Foo;
+--------------------------+
| s |
+--------------------------+
| Lowercase table name foo |
+--------------------------+

mysql> select * from FOO;
+--------------------------+
| s |
+--------------------------+
| Lowercase table name foo |
+--------------------------+

466

Amazon Aurora User Guide for Aurora
Deleting Aurora clusters and instances

Deleting Aurora DB clusters and DB instances
You can delete an Aurora DB cluster when you don't need it any longer. Doing so removes the cluster
volume containing all your data. Before deleting the cluster, you can save a snapshot of your data. You
can restore the snapshot later create a new cluster containing the same data.

You can also delete DB instances from a cluster, while preserving the cluster itself and the data
that it contains. Doing so can help you reduce charges if the cluster isn't busy and doesn't need the
computation capacity of multiple DB instances.

Topics

• Deleting an Aurora DB cluster (p. 467)

• Deletion protection for Aurora clusters (p. 471)

• Deleting a stopped Aurora cluster (p. 472)

• Deleting Aurora MySQL clusters that are read replicas (p. 472)

• The final snapshot when deleting a cluster (p. 472)

• Deleting a DB instance from an Aurora DB cluster (p. 472)

Deleting an Aurora DB cluster
Aurora doesn't provide a single-step method to delete a DB cluster. This design choice is intended to
prevent you from accidentally losing data or taking your application offline. Aurora applications are
typically mission-critical and require high availability. Thus, Aurora makes it easy to scale the capacity
of the cluster up and down by adding and removing DB instances. However, removing the cluster itself
requires you to make a separate choice.

Use the following general procedure to remove all the DB instances from a cluster and then delete the
cluster itself.

1. Delete any reader instances in the cluster. Use the procedure in Deleting a DB instance from an Aurora
DB cluster (p. 472). If the cluster has any reader instances, deleting one of the instances just reduces
the computation capacity of the cluster. Deleting the reader instances first ensures that the cluster
remains available throughout the procedure and doesn't perform unnecessary failover operations.

2. Delete the writer instance from the cluster. Again, use the procedure in Deleting a DB instance from an
Aurora DB cluster (p. 472).

If you use the AWS Management Console, this is the final step. Deleting the final DB instance in a DB
cluster through the console automatically deletes the DB cluster and the data in the cluster volume. At
this point, Aurora prompts you to optionally create a snapshot before deleting the cluster. Aurora also
requires you to confirm that you intend to delete the cluster.

3. CLI and API only: If you delete the DB instances using the AWS CLI or the RDS API, the cluster and
its associated cluster volume remain even after you delete all the DB instances. To delete the cluster
itself, you call the delete-db-cluster CLI command or DeleteDBCluster API operation when the
cluster has zero associated DB instances. At this point, you choose whether to create a snapshot of the
cluster volume. Doing so preserves the data from the cluster if you might need it later.

Topics

• Deleting an empty Aurora cluster (p. 468)

• Deleting an Aurora cluster with a single DB instance (p. 468)

• Deleting an Aurora cluster with multiple DB instances (p. 469)

467

Amazon Aurora User Guide for Aurora
Deleting an Aurora DB cluster

Deleting an empty Aurora cluster
If you use the AWS Management Console, Aurora automatically deletes your cluster when you delete the
last DB instance in that cluster. Thus, the procedures for deleting an empty cluster only apply when you
use the AWS CLI or the RDS API.

Tip
You can keep a cluster with no DB instances to preserve your data without incurring CPU
charges for the cluster. You can quickly start using the cluster again by creating one or more
new DB instances for the cluster. You can perform Aurora-specific administrative operations on
the cluster while it doesn't have any associated DB instances. You just can't access the data or
perform any operations that require connecting to a DB instance.

To delete an empty Aurora DB cluster by using the AWS CLI, call the delete-db-cluster command.

To delete an empty Aurora DB cluster by using the Amazon RDS API, call the DeleteDBInstance
operation.

Suppose that the empty cluster deleteme-zero-instances was only used for development and
testing and doesn't contain any important data. In that case, you don't need to preserve a snapshot
of the cluster volume when you delete the cluster. The following example demonstrates that a cluster
doesn't contain any DB instances, and then deletes the empty cluster without creating a final snapshot.

$ aws rds describe-db-clusters --db-cluster-identifier deleteme-zero-instances --output
 text \
 --query '*[].["Cluster:",DBClusterIdentifier,DBClusterMembers[*].
["Instance:",DBInstanceIdentifier,IsClusterWriter]]
Cluster: deleteme-zero-instances

$ aws rds delete-db-cluster --db-cluster-identifier deleteme-zero-instances --skip-final-
snapshot
{
 "DBClusterIdentifier": "deleteme-zero-instances",
 "Status": "available",
 "Engine": "aurora-mysql"
}

Deleting an Aurora cluster with a single DB instance
If you try to delete the last DB instance in your Aurora cluster, the behavior depends on the method you
use. You can delete the last DB instance using the AWS Management Console. Doing so also deletes the
DB cluster. You can also delete the last DB instance through the AWS CLI or API, even if the DB cluster
has deletion protection enabled. In this case, the DB cluster itself still exists and your data is preserved.
You can access the data again by attaching a new DB instance to the cluster.

The following example shows how the delete-db-cluster command doesn't work when the cluster
still has any associated DB instances. This cluster has a single writer DB instance. When we examine the
DB instances in the cluster, we check the IsClusterWriter attribute of each one. The cluster could
have zero or one writer DB instance. A value of true signifies a writer DB instance. A value of false
signifies a reader DB instance. The cluster could have zero, one, or many reader DB instances. In this case,
we delete the writer DB instance using the delete-db-instance command. As soon as the DB instance
goes into deleting state, we can delete the cluster also. For this example also, suppose that the cluster
doesn't contain any data worth preserving and so we don't create a snapshot of the cluster volume.

$ aws rds delete-db-cluster --db-cluster-identifier deleteme-writer-only --skip-final-
snapshot
An error occurred (InvalidDBClusterStateFault) when calling the DeleteDBCluster operation:
 Cluster cannot be deleted, it still contains DB instances in non-deleting state.

$ aws rds describe-db-clusters --db-cluster-identifier deleteme-writer-only \

468

https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBInstance.html

Amazon Aurora User Guide for Aurora
Deleting an Aurora DB cluster

 --query '*[].[DBClusterIdentifier,Status,DBClusterMembers[*].
[DBInstanceIdentifier,IsClusterWriter]]'
[
 [
 "deleteme-writer-only",
 "available",
 [
 [
 "instance-2130",
 true
]
]
]
]

$ aws rds delete-db-instance --db-instance-identifier instance-2130
{
 "DBInstanceIdentifier": "instance-2130",
 "DBInstanceStatus": "deleting",
 "Engine": "aurora-mysql"
}

$ aws rds delete-db-cluster --db-cluster-identifier deleteme-writer-only --skip-final-
snapshot
{
 "DBClusterIdentifier": "deleteme-writer-only",
 "Status": "available",
 "Engine": "aurora-mysql"
}

Deleting an Aurora cluster with multiple DB instances
If your cluster contains multiple DB instances, typically there is a single writer instance and one or more
reader instances. The reader instances help with high availability, by being on standby to take over if the
writer instance encounters a problem. You can also use reader instances to scale the cluster up to handle
a read-intensive workload without adding overhead to the writer instance.

To delete a cluster with multiple reader DB instances, you delete the reader instances first and then the
writer instance. If you use the AWS Management Console, deleting the writer instance automatically
deletes the cluster afterwards. If you use the AWS CLI or RDS API, deleting the writer instance leaves
the cluster and its data in place. In that case, you delete the cluster through a separate command or API
operation.

• For the procedure to delete an Aurora DB instance, see Deleting a DB instance from an Aurora DB
cluster (p. 472).

• For the procedure to delete the writer DB instance in an Aurora cluster, see Deleting an Aurora cluster
with a single DB instance (p. 468).

• For the procedure to delete an empty Aurora cluster, see Deleting an empty Aurora cluster (p. 468).

This example shows how to delete a cluster containing both a writer DB instance and a single reader
DB instance. The describe-db-clusters output shows that instance-7384 is the writer instance
and instance-1039 is the reader instance. The example deletes the reader instance first, because
deleting the writer instance while a reader instance still existed would cause a failover operation. It
doesn't make sense to promote the reader instance to a writer if you plan to delete that instance also.
Again, suppose that these db.t2.small instances are only used for development and testing, and so
the delete operation skips the final snapshot.

$ aws rds delete-db-cluster --db-cluster-identifier deleteme-writer-and-reader --skip-
final-snapshot

469

Amazon Aurora User Guide for Aurora
Deleting an Aurora DB cluster

An error occurred (InvalidDBClusterStateFault) when calling the DeleteDBCluster operation:
 Cluster cannot be deleted, it still contains DB instances in non-deleting state.

$ aws rds describe-db-clusters --db-cluster-identifier deleteme-writer-and-reader --output
 text \
 --query '*[].["Cluster:",DBClusterIdentifier,DBClusterMembers[*].
["Instance:",DBInstanceIdentifier,IsClusterWriter]]
Cluster: deleteme-writer-and-reader
Instance: instance-1039 False
Instance: instance-7384 True

$ aws rds delete-db-instance --db-instance-identifier instance-1039
{
 "DBInstanceIdentifier": "instance-1039",
 "DBInstanceStatus": "deleting",
 "Engine": "aurora-mysql"
}

$ aws rds delete-db-instance --db-instance-identifier instance-7384
{
 "DBInstanceIdentifier": "instance-7384",
 "DBInstanceStatus": "deleting",
 "Engine": "aurora-mysql"
}

$ aws rds delete-db-cluster --db-cluster-identifier deleteme-writer-and-reader --skip-
final-snapshot
{
 "DBClusterIdentifier": "deleteme-writer-and-reader",
 "Status": "available",
 "Engine": "aurora-mysql"
}

The following example shows how to delete a DB cluster containing a writer DB instance and multiple
reader DB instances. It uses concise output from the describe-db-clusters command to get a
report of the writer and reader instances. Again, we delete all reader DB instances before deleting the
writer DB instance. It doesn't matter what order we delete the reader DB instances in. Suppose that this
cluster with several DB instances does contain data worth preserving. Thus, the delete-db-cluster
command in this example includes the --no-skip-final-snapshot and --final-db-snapshot-
identifier parameters to specify the details of the snapshot to create.

$ aws rds describe-db-clusters --db-cluster-identifier deleteme-multiple-readers --output
 text \
 --query '*[].["Cluster:",DBClusterIdentifier,DBClusterMembers[*].
["Instance:",DBInstanceIdentifier,IsClusterWriter]]
Cluster: deleteme-multiple-readers
Instance: instance-1010 False
Instance: instance-5410 False
Instance: instance-9948 False
Instance: instance-8451 True

$ aws rds delete-db-instance --db-instance-identifier instance-1010
{
 "DBInstanceIdentifier": "instance-1010",
 "DBInstanceStatus": "deleting",
 "Engine": "aurora-mysql"
}

$ aws rds delete-db-instance --db-instance-identifier instance-5410
{
 "DBInstanceIdentifier": "instance-5410",
 "DBInstanceStatus": "deleting",
 "Engine": "aurora-mysql"
}

470

Amazon Aurora User Guide for Aurora
Deletion protection for Aurora clusters

$ aws rds delete-db-instance --db-instance-identifier instance-9948
{
 "DBInstanceIdentifier": "instance-9948",
 "DBInstanceStatus": "deleting",
 "Engine": "aurora-mysql"
}

$ aws rds delete-db-instance --db-instance-identifier instance-8451
{
 "DBInstanceIdentifier": "instance-8451",
 "DBInstanceStatus": "deleting",
 "Engine": "aurora-mysql"
}

$ aws rds delete-db-cluster --db-cluster-identifier deleteme-multiple-readers --no-skip-
final-snapshot \
 --final-db-snapshot-identifier deleteme-multiple-readers-snapshot-11-7087
{
 "DBClusterIdentifier": "deleteme-multiple-readers",
 "Status": "available",
 "Engine": "aurora-mysql"
}

The following example shows how to confirm that Aurora created the requested snapshot. You can
request details for the specific snapshot by specifying its identifier deleteme-multiple-readers-
snapshot-11-7087. You can also get a report of all snapshots for the cluster that was deleted by
specifying the cluster identifier deleteme-multiple-readers. Both of those commands return
information about the same snapshot.

$ aws rds describe-db-cluster-snapshots --db-cluster-snapshot-identifier deleteme-multiple-
readers-snapshot-11-7087
{
 "DBClusterSnapshots": [
 {
 "AvailabilityZones": [],
 "DBClusterSnapshotIdentifier": "deleteme-multiple-readers-snapshot-11-7087",
 "DBClusterIdentifier": "deleteme-multiple-readers",
 "SnapshotCreateTime": "11T01:40:07.354000+00:00",
 "Engine": "aurora-mysql",
...

$ aws rds describe-db-cluster-snapshots --db-cluster-identifier deleteme-multiple-readers
{
 "DBClusterSnapshots": [
 {
 "AvailabilityZones": [],
 "DBClusterSnapshotIdentifier": "deleteme-multiple-readers-snapshot-11-7087",
 "DBClusterIdentifier": "deleteme-multiple-readers",
 "SnapshotCreateTime": "11T01:40:07.354000+00:00",
 "Engine": "aurora-mysql",
...

Deletion protection for Aurora clusters
You can't delete clusters that have deletion protection enabled. You can delete DB instances within
the cluster, but not the cluster itself. That way, the cluster volume containing all your data is safe from
accidental deletion. Aurora enforces deletion protection for a DB cluster whether you try to delete the
cluster using the console, the AWS CLI, or the RDS API.

Deletion protection is enabled by default when you create a production DB cluster using the AWS
Management Console. However, deletion protection is disabled by default if you create a cluster using

471

Amazon Aurora User Guide for Aurora
Deleting a stopped Aurora cluster

the AWS CLI or API. Enabling or disabling deletion protection doesn't cause an outage. To be able to
delete the cluster, modify the cluster and disable deletion protection. For more information about
turning deletion protection on and off, see Modifying the DB cluster by using the console, CLI, and
API (p. 372).

Tip
Even if all the DB instances are deleted, you can access the data by creating a new DB instance in
the cluster.

Deleting a stopped Aurora cluster
You can't delete a cluster if it's in the stopped state. In this case, start the cluster before deleting it. For
more information, see Starting an Aurora DB cluster (p. 370).

Deleting Aurora MySQL clusters that are read replicas
For Aurora MySQL, you can't delete a DB instance in a DB cluster if both of the following conditions are
true:

• The DB cluster is a read replica of another Aurora DB cluster.
• The DB instance is the only instance in the DB cluster.

To delete a DB instance in this case, first promote the DB cluster so that it's no longer a read replica.
After the promotion completes, you can delete the final DB instance in the DB cluster. For more
information, see Replicating Amazon Aurora MySQL DB clusters across AWS Regions (p. 943).

The final snapshot when deleting a cluster
Throughout this section, the examples show how you can choose whether to take a final snapshot when
you delete an Aurora cluster. If you choose to take a final snapshot but the name you specify matches an
existing snapshot, the operation stops with an error. In this case, examine the snapshot details to confirm
if it represents your current detail or if it is an older snapshot. If the existing snapshot doesn't have the
latest data that you want to preserve, rename the snapshot and try again, or specify a different name for
the final snapshot parameter.

Deleting a DB instance from an Aurora DB cluster
You can delete a DB instance from an Aurora DB cluster as part of the process of deleting the entire
cluster. If your cluster contains a certain number of DB instances, then deleting the cluster requires
deleting each of those DB instances. You can also delete one or more reader instances from a cluster
while leaving the cluster running. You might do so to reduce compute capacity and associated charges if
your cluster isn't busy.

To delete a DB instance, you specify the name of the instance.

You can delete a DB instance using the AWS Management Console, the AWS CLI, or the RDS API.

For Aurora DB clusters, deleting a DB instance doesn't necessarily delete the entire cluster. You can
delete a DB instance in an Aurora cluster to reduce compute capacity and associated charges when the
cluster isn't busy. For information about the special circumstances for Aurora clusters that have one DB
instance or zero DB instances, see Deleting an Aurora cluster with a single DB instance (p. 468) and
Deleting an empty Aurora cluster (p. 468).

Note
You can't delete a DB cluster when deletion protection is enabled for it. For more information,
see Deletion protection for Aurora clusters (p. 471).

472

Amazon Aurora User Guide for Aurora
Deleting a DB instance from an Aurora DB cluster

You can disable deletion protection by modifying the DB cluster. For more information, see
Modifying an Amazon Aurora DB cluster (p. 372).

Console

To delete a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance that you want to delete.
3. For Actions, choose Delete.
4. Enter delete me in the box.
5. Choose Delete.

AWS CLI

To delete a DB instance by using the AWS CLI, call the delete-db-instance command and specify the --
db-instance-identifier value.

Example

For Linux, macOS, or Unix:

aws rds delete-db-instance \
 --db-instance-identifier mydbinstance

For Windows:

aws rds delete-db-instance ^
 --db-instance-identifier mydbinstance

RDS API

To delete a DB instance by using the Amazon RDS API, call the DeleteDBInstance operation and
specify the DBInstanceIdentifier parameter.

Note
When the status for a DB instance is deleting, its CA certificate value doesn't appear in the
RDS console or in output for AWS CLI commands or RDS API operations. For more information
about CA certificates, see Using SSL/TLS to encrypt a connection to a DB cluster (p. 1726).

473

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBInstance.html

Amazon Aurora User Guide for Aurora
Tagging RDS resources

Tagging Amazon RDS resources
You can use Amazon RDS tags to add metadata to your Amazon RDS resources. You can use the tags
to add your own notations about database instances, snapshots, Aurora clusters, and so on. Doing
so can help you to document your Amazon RDS resources. You can also use the tags with automated
maintenance procedures.

In particular, you can use these tags with IAM policies to manage access to Amazon RDS resources and to
control what actions can be applied to the Amazon RDS resources. You can also use these tags to track
costs by grouping expenses for similarly tagged resources.

You can tag the following Amazon RDS resources:

• DB instances

• DB clusters

• Read replicas

• DB snapshots

• DB cluster snapshots

• Reserved DB instances

• Event subscriptions

• DB option groups

• DB parameter groups

• DB cluster parameter groups

• DB security groups

• DB subnet groups

• RDS Proxies

• RDS Proxy endpoints

Note
Currently, you can't tag RDS Proxies and RDS Proxy endpoints by using the AWS Management
Console.

Topics

• Overview of Amazon RDS resource tags (p. 474)

• Using tags for access control with IAM (p. 475)

• Using tags to produce detailed billing reports (p. 475)

• Adding, listing, and removing tags (p. 476)

• Using the AWS Tag Editor (p. 478)

• Copying tags to DB cluster snapshots (p. 478)

• Tutorial: Use tags to specify which Aurora DB clusters to stop (p. 479)

Overview of Amazon RDS resource tags
An Amazon RDS tag is a name-value pair that you define and associate with an Amazon RDS resource.
The name is referred to as the key. Supplying a value for the key is optional. You can use tags to assign
arbitrary information to an Amazon RDS resource. You can use a tag key, for example, to define a
category, and the tag value might be an item in that category. For example, you might define a tag key

474

Amazon Aurora User Guide for Aurora
Using tags for access control with IAM

of "project" and a tag value of "Salix", indicating that the Amazon RDS resource is assigned to the Salix
project. You can also use tags to designate Amazon RDS resources as being used for test or production by
using a key such as environment=test or environment=production. We recommend that you use a
consistent set of tag keys to make it easier to track metadata associated with Amazon RDS resources.

In addition, you can use conditions in your IAM policies to control access to AWS resources based on
the tags on that resource. You can do this by using the global aws:ResourceTag/tag-key condition
key. For more information, see Controlling access to AWS resources in the AWS Identity and Access
Management User Guide.

Each Amazon RDS resource has a tag set, which contains all the tags that are assigned to that Amazon
RDS resource. A tag set can contain as many as 50 tags, or it can be empty. If you add a tag to an Amazon
RDS resource that has the same key as an existing tag on resource, the new value overwrites the old
value.

AWS does not apply any semantic meaning to your tags; tags are interpreted strictly as character strings.
Amazon RDS can set tags on a DB instance or other Amazon RDS resources, depending on the settings
that you use when you create the resource. For example, Amazon RDS might add a tag indicating that a
DB instance is for production or for testing.

• The tag key is the required name of the tag. The string value can be from 1 to 128 Unicode characters
in length and cannot be prefixed with aws: or rds:. The string can contain only the set of Unicode
letters, digits, white-space, '_', '.', ':', '/', '=', '+', '-', '@' (Java regex: "^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-
@]*)$").

• The tag value is an optional string value of the tag. The string value can be from 1 to 256 Unicode
characters in length and cannot be prefixed with aws:. The string can contain only the set of Unicode
letters, digits, white-space, '_', '.', ':', '/', '=', '+', '-', '@' (Java regex: "^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-
@]*)$").

Values do not have to be unique in a tag set and can be null. For example, you can have a key-value
pair in a tag set of project=Trinity and cost-center=Trinity.

You can use the AWS Management Console, the command line interface, or the Amazon RDS API to add,
list, and delete tags on Amazon RDS resources. When using the command line interface or the Amazon
RDS API, you must provide the Amazon Resource Name (ARN) for the Amazon RDS resource you want
to work with. For more information about constructing an ARN, see Constructing an ARN for Amazon
RDS (p. 482).

Tags are cached for authorization purposes. Because of this, additions and updates to tags on Amazon
RDS resources can take several minutes before they are available.

Using tags for access control with IAM
You can use tags with IAM policies to manage access to Amazon RDS resources and to control what
actions can be applied to the Amazon RDS resources.

For information on managing access to tagged resources with IAM policies, see Identity and access
management in Amazon Aurora (p. 1737).

Using tags to produce detailed billing reports
You can also use tags to track costs by grouping expenses for similarly tagged resources.

Use tags to organize your AWS bill to reflect your own cost structure. To do this, sign up to get your AWS
account bill with tag key values included. Then, to see the cost of combined resources, organize your

475

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html#access_tags_control-resources

Amazon Aurora User Guide for Aurora
Adding, listing, and removing tags

billing information according to resources with the same tag key values. For example, you can tag several
resources with a specific application name, and then organize your billing information to see the total
cost of that application across several services. For more information, see Using Cost Allocation Tags in
the AWS Billing and Cost Management User Guide.

Note
You can add a tag to a snapshot, however, your bill will not reflect this grouping.

Adding, listing, and removing tags
The following procedures show how to perform typical tagging operations on resources related to DB
instances and Aurora DB clusters.

Console

The process to tag an Amazon RDS resource is similar for all resources. The following procedure shows
how to tag an Amazon RDS DB instance.

To add a tag to a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

Note
To filter the list of DB instances in the Databases pane, enter a text string for Filter
databases. Only DB instances that contain the string appear.

3. Choose the name of the DB instance that you want to tag to show its details.

4. In the details section, scroll down to the Tags section.

5. Choose Add. The Add tags window appears.

6. Enter a value for Tag key and Value.

7. To add another tag, you can choose Add another Tag and enter a value for its Tag key and Value.

Repeat this step as many times as necessary.

8. Choose Add.

476

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Adding, listing, and removing tags

To delete a tag from a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

Note
To filter the list of DB instances in the Databases pane, enter a text string in the Filter
databases box. Only DB instances that contain the string appear.

3. Choose the name of the DB instance to show its details.
4. In the details section, scroll down to the Tags section.
5. Choose the tag you want to delete.

6. Choose Delete, and then choose Delete in the Delete tags window.

AWS CLI

You can add, list, or remove tags for a DB instance using the AWS CLI.

• To add one or more tags to an Amazon RDS resource, use the AWS CLI command add-tags-to-
resource.

• To list the tags on an Amazon RDS resource, use the AWS CLI command list-tags-for-resource.
• To remove one or more tags from an Amazon RDS resource, use the AWS CLI command remove-
tags-from-resource.

To learn more about how to construct the required ARN, see Constructing an ARN for Amazon
RDS (p. 482).

RDS API

You can add, list, or remove tags for a DB instance using the Amazon RDS API.

• To add a tag to an Amazon RDS resource, use the AddTagsToResource operation.
• To list tags that are assigned to an Amazon RDS resource, use the ListTagsForResource.
• To remove tags from an Amazon RDS resource, use the RemoveTagsFromResource operation.

To learn more about how to construct the required ARN, see Constructing an ARN for Amazon
RDS (p. 482).

When working with XML using the Amazon RDS API, tags use the following schema:

<Tagging>
 <TagSet>
 <Tag>
 <Key>Project</Key>

477

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/add-tags-to-resource.html
https://docs.aws.amazon.com/cli/latest/reference/rds/add-tags-to-resource.html
https://docs.aws.amazon.com/cli/latest/reference/rds/list-tags-for-resource.html
https://docs.aws.amazon.com/cli/latest/reference/rds/remove-tags-from-resource.html
https://docs.aws.amazon.com/cli/latest/reference/rds/remove-tags-from-resource.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_AddTagsToResource.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RemoveTagsFromResource.html

Amazon Aurora User Guide for Aurora
Using the AWS Tag Editor

 <Value>Trinity</Value>
 </Tag>
 <Tag>
 <Key>User</Key>
 <Value>Jones</Value>
 </Tag>
 </TagSet>
</Tagging>

The following table provides a list of the allowed XML tags and their characteristics. Values for Key and
Value are case-dependent. For example, project=Trinity and PROJECT=Trinity are two distinct tags.

Tagging element Description

TagSet A tag set is a container for all tags assigned to an Amazon RDS resource.
There can be only one tag set per resource. You work with a TagSet only
through the Amazon RDS API.

Tag A tag is a user-defined key-value pair. There can be from 1 to 50 tags in a
tag set.

Key A key is the required name of the tag. The string value can be from 1 to 128
Unicode characters in length and cannot be prefixed with aws: or rds:. The
string can only contain only the set of Unicode letters, digits, white-space,
'_', '.', '/', '=', '+', '-' (Java regex: "^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-]*)$").

Keys must be unique to a tag set. For example, you cannot have a key-pair
in a tag set with the key the same but with different values, such as project/
Trinity and project/Xanadu.

Value A value is the optional value of the tag. The string value can be from 1 to
256 Unicode characters in length and cannot be prefixed with aws: or rds:.
The string can only contain only the set of Unicode letters, digits, white-
space, '_', '.', '/', '=', '+', '-' (Java regex: "^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-]*)$").

Values do not have to be unique in a tag set and can be null. For example,
you can have a key-value pair in a tag set of project/Trinity and cost-center/
Trinity.

Using the AWS Tag Editor
You can browse and edit the tags on your RDS resources in the AWS Management Console by using the
AWS Tag editor. For more information, see Tag Editor in the AWS Resource Groups User Guide.

Copying tags to DB cluster snapshots
When you create or restore a DB cluster, you can specify that the tags from the DB cluster are copied to
snapshots of the DB cluster. Copying tags ensures that the metadata for the DB snapshots matches that
of the source DB cluster and any access policies for the DB snapshot also match those of the source DB
cluster. Tags are not copied by default.

You can specify that tags are copied to DB snapshots for the following actions:

• Creating a DB cluster.
• Restoring a DB cluster.
• Creating a read replica.

478

https://docs.aws.amazon.com/ARG/latest/userguide/tag-editor.html

Amazon Aurora User Guide for Aurora
Tutorial: Use tags to specify

which Aurora DB clusters to stop

• Copying a DB cluster snapshot.

Note
If you include a value for the --tag-key parameter of the create-db-cluster-snapshot AWS CLI
command (or supply at least one tag to the CreateDBClusterSnapshot API operation) then RDS
doesn't copy tags from the source DB cluster to the new DB snapshot. This functionality applies
even if the source DB cluster has the --copy-tags-to-snapshot (CopyTagsToSnapshot)
option enabled. If you take this approach, you can create a copy of a DB cluster from a DB
cluster snapshot and avoid adding tags that don't apply to the new DB cluster. Once you
have created your DB cluster snapshot using the AWS CLI create-db-cluster-snapshot
command (or the CreateDBSClusternapshot Amazon RDS API operation) you can then add
tags as described later in this topic.

Tutorial: Use tags to specify which Aurora DB clusters
to stop
Suppose that you're creating a number of Aurora DB clusters in a development or test environment.
You need to keep all of these clusters for several days. Some of the clusters run tests overnight. Other
clusters can be stopped overnight and started again the next day. The following example shows how to
assign a tag to those clusters that are suitable to stop overnight. Then the example shows how a script
can detect which clusters have that tag and then stop those clusters. In this example, the value portion
of the key-value pair doesn't matter. The presence of the stoppable tag signifies that the cluster has
this user-defined property.

To specify which Aurora DB clusters to stop

1. Determine the ARN of a cluster that you want to designate as stoppable.

The commands and APIs for tagging work with ARNs. That way, they can work seamlessly across
AWS Regions, AWS accounts, and different types of resources that might have identical short
names. You can specify the ARN instead of the cluster ID in CLI commands that operate on clusters.
Substitute the name of your own cluster for dev-test-cluster. In subsequent commands that
use ARN parameters, substitute the ARN of your own cluster. The ARN includes your own AWS
account ID and the name of the AWS Region where your cluster is located.

$ aws rds describe-db-clusters --db-cluster-identifier dev-test-cluster \
 --query "*[].{DBClusterArn:DBClusterArn}" --output text
arn:aws:rds:us-east-1:123456789:cluster:dev-test-cluster

2. Add the tag stoppable to this cluster.

The name for this tag is chosen by you. Using a tag like this is an alternative to devising a naming
convention that encodes all the relevant information in the name of the cluster, DB instance, and so
on. Because this example treats the tag as an attribute that is either present or absent, it omits the
Value= part of the --tags parameter.

$ aws rds add-tags-to-resource \
 --resource-name arn:aws:rds:us-east-1:123456789:cluster:dev-test-cluster \
 --tags Key=stoppable

3. Confirm that the tag is present in the cluster.

These commands retrieve the tag information for the cluster in JSON format and in plain tab-
separated text.

$ aws rds list-tags-for-resource \

479

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBClusterSnapshot.html

Amazon Aurora User Guide for Aurora
Tutorial: Use tags to specify

which Aurora DB clusters to stop

 --resource-name arn:aws:rds:us-east-1:123456789:cluster:dev-test-cluster
{
 "TagList": [
 {
 "Key": "stoppable",
 "Value": ""

 }
]
}
$ aws rds list-tags-for-resource \
 --resource-name arn:aws:rds:us-east-1:123456789:cluster:dev-test-cluster --output
 text
TAGLIST stoppable

4. To stop all the clusters that are designated as stoppable, prepare a list of all your clusters. Loop
through the list and check if each cluster is tagged with the relevant attribute.

This Linux example uses shell scripting to save the list of cluster ARNs to a temporary file and then
perform CLI commands for each cluster.

$ aws rds describe-db-clusters --query "*[].[DBClusterArn]" --output text >/tmp/
cluster_arns.lst
$ for arn in $(cat /tmp/cluster_arns.lst)
do
 match="$(aws rds list-tags-for-resource --resource-name $arn --output text | grep
 'TAGLIST\tstoppable')"
 if [[! -z "$match"]]
 then
 echo "Cluster $arn is tagged as stoppable. Stopping it now."
Note that you can specify the full ARN value as the parameter instead of the short ID
 'dev-test-cluster'.
 aws rds stop-db-cluster --db-cluster-identifier $arn
 fi
done

Cluster arn:aws:rds:us-east-1:123456789:cluster:dev-test-cluster is tagged as
 stoppable. Stopping it now.
{
 "DBCluster": {
 "AllocatedStorage": 1,
 "AvailabilityZones": [
 "us-east-1e",
 "us-east-1c",
 "us-east-1d"
],
 "BackupRetentionPeriod": 1,
 "DBClusterIdentifier": "dev-test-cluster",
 ...

You can run a script like this at the end of each day to make sure that nonessential clusters are stopped.
You might also schedule a job using a utility such as cron to perform such a check each night, in case
some clusters were left running by mistake. In that case, you might fine-tune the command that prepares
the list of clusters to check. The following command produces a list of your clusters, but only the ones
in available state. The script can ignore clusters that are already stopped, because they will have
different status values such as stopped or stopping.

$ aws rds describe-db-clusters \
 --query '*[].{DBClusterArn:DBClusterArn,Status:Status}|[?Status == `available`]|[].
{DBClusterArn:DBClusterArn}' \
 --output text
arn:aws:rds:us-east-1:123456789:cluster:cluster-2447

480

Amazon Aurora User Guide for Aurora
Tutorial: Use tags to specify

which Aurora DB clusters to stop

arn:aws:rds:us-east-1:123456789:cluster:cluster-3395
arn:aws:rds:us-east-1:123456789:cluster:dev-test-cluster
arn:aws:rds:us-east-1:123456789:cluster:pg2-cluster

Tip
After you're familiar with the general procedure of assigning tags and finding clusters that have
those tags, you can use the same technique to reduce costs in other ways. For example, in this
scenario with Aurora DB clusters used for development and testing, you might designate some
clusters to be deleted at the end of each day, or to have only their reader DB instances deleted,
or to have their DB instances changed to a small DB instance classes during times of expected
low usage.

481

Amazon Aurora User Guide for Aurora
Working with ARNs

Working with Amazon Resource Names (ARNs) in
Amazon RDS

Resources created in Amazon Web Services are each uniquely identified with an Amazon Resource Name
(ARN). For certain Amazon RDS operations, you must uniquely identify an Amazon RDS resource by
specifying its ARN. For example, when you create an RDS DB instance read replica, you must supply the
ARN for the source DB instance.

Constructing an ARN for Amazon RDS
Resources created in Amazon Web Services are each uniquely identified with an Amazon Resource Name
(ARN). You can construct an ARN for an Amazon RDS resource using the following syntax.

arn:aws:rds:<region>:<account number>:<resourcetype>:<name>

Region
Name

Region Endpoint Protocol

US East
(Ohio)

us-east-2 rds.us-east-2.amazonaws.com

rds-fips.us-east-2.amazonaws.com

rds-fips.us-east-2.amazonaws.com

HTTPS

HTTPS

HTTPS

US East (N.
Virginia)

us-east-1 rds.us-east-1.amazonaws.com

rds-fips.us-east-1.amazonaws.com

rds-fips.us-east-1.amazonaws.com

HTTPS

HTTPS

HTTPS

US
West (N.
California)

us-west-1 rds.us-west-1.amazonaws.com

rds-fips.us-west-1.amazonaws.com

rds-fips.us-west-1.amazonaws.com

HTTPS

HTTPS

HTTPS

US West
(Oregon)

us-west-2 rds.us-west-2.amazonaws.com

rds-fips.us-west-2.amazonaws.com

rds-fips.us-west-2.amazonaws.com

HTTPS

HTTPS

HTTPS

Africa
(Cape
Town)

af-south-1 rds.af-south-1.amazonaws.com HTTPS

Asia
Pacific
(Hong
Kong)

ap-east-1 rds.ap-east-1.amazonaws.com HTTPS

Asia
Pacific
(Jakarta)

ap-
southeast-3

rds.ap-southeast-3.amazonaws.com HTTPS

482

Amazon Aurora User Guide for Aurora
Constructing an ARN

Region
Name

Region Endpoint Protocol

Asia
Pacific
(Mumbai)

ap-
south-1

rds.ap-south-1.amazonaws.com HTTPS

Asia
Pacific
(Osaka)

ap-
northeast-3

rds.ap-northeast-3.amazonaws.com HTTPS

Asia
Pacific
(Seoul)

ap-
northeast-2

rds.ap-northeast-2.amazonaws.com HTTPS

Asia
Pacific
(Singapore)

ap-
southeast-1

rds.ap-southeast-1.amazonaws.com HTTPS

Asia
Pacific
(Sydney)

ap-
southeast-2

rds.ap-southeast-2.amazonaws.com HTTPS

Asia
Pacific
(Tokyo)

ap-
northeast-1

rds.ap-northeast-1.amazonaws.com HTTPS

Canada
(Central)

ca-
central-1

rds.ca-central-1.amazonaws.com

rds-fips.ca-central-1.amazonaws.com

rds-fips.ca-central-1.amazonaws.com

HTTPS

HTTPS

HTTPS

Europe
(Frankfurt)

eu-
central-1

rds.eu-central-1.amazonaws.com HTTPS

Europe
(Ireland)

eu-west-1 rds.eu-west-1.amazonaws.com HTTPS

Europe
(London)

eu-west-2 rds.eu-west-2.amazonaws.com HTTPS

Europe
(Milan)

eu-
south-1

rds.eu-south-1.amazonaws.com HTTPS

Europe
(Paris)

eu-west-3 rds.eu-west-3.amazonaws.com HTTPS

Europe
(Stockholm)

eu-north-1 rds.eu-north-1.amazonaws.com HTTPS

Middle
East
(Bahrain)

me-
south-1

rds.me-south-1.amazonaws.com HTTPS

South
America
(São
Paulo)

sa-east-1 rds.sa-east-1.amazonaws.com HTTPS

483

Amazon Aurora User Guide for Aurora
Constructing an ARN

Region
Name

Region Endpoint Protocol

AWS
GovCloud
(US-East)

us-gov-
east-1

rds.us-gov-east-1.amazonaws.com HTTPS

AWS
GovCloud
(US-West)

us-gov-
west-1

rds.us-gov-west-1.amazonaws.com HTTPS

The following table shows the format that you should use when constructing an ARN for a particular
Amazon RDS resource type.

Resource type ARN format

DB instance arn:aws:rds:<region>:<account>:db:<name>

For example:

arn:aws:rds:us-east-2:123456789012:db:my-mysql-instance-1

DB cluster arn:aws:rds:<region>:<account>:cluster:<name>

For example:

arn:aws:rds:us-east-2:123456789012:cluster:my-aurora-
cluster-1

Event subscription arn:aws:rds:<region>:<account>:es:<name>

For example:

arn:aws:rds:us-east-2:123456789012:es:my-subscription

DB parameter group arn:aws:rds:<region>:<account>:pg:<name>

For example:

arn:aws:rds:us-east-2:123456789012:pg:my-param-enable-logs

DB cluster parameter group arn:aws:rds:<region>:<account>:cluster-pg:<name>

For example:

arn:aws:rds:us-east-2:123456789012:cluster-pg:my-cluster-
param-timezone

Reserved DB instance arn:aws:rds:<region>:<account>:ri:<name>

For example:

484

Amazon Aurora User Guide for Aurora
Getting an existing ARN

Resource type ARN format

arn:aws:rds:us-east-2:123456789012:ri:my-reserved-
postgresql

DB security group arn:aws:rds:<region>:<account>:secgrp:<name>

For example:

arn:aws:rds:us-east-2:123456789012:secgrp:my-public

Automated DB snapshot arn:aws:rds:<region>:<account>:snapshot:rds:<name>

For example:

arn:aws:rds:us-east-2:123456789012:snapshot:rds:my-mysql-
db-2019-07-22-07-23

Automated DB cluster snapshot arn:aws:rds:<region>:<account>:cluster-snapshot:rds:<name>

For example:

arn:aws:rds:us-east-2:123456789012:cluster-snapshot:rds:my-
aurora-cluster-2019-07-22-16-16

Manual DB snapshot arn:aws:rds:<region>:<account>:snapshot:<name>

For example:

arn:aws:rds:us-east-2:123456789012:snapshot:my-mysql-db-
snap

Manual DB cluster snapshot arn:aws:rds:<region>:<account>:cluster-snapshot:<name>

For example:

arn:aws:rds:us-east-2:123456789012:cluster-snapshot:my-
aurora-cluster-snap

DB subnet group arn:aws:rds:<region>:<account>:subgrp:<name>

For example:

arn:aws:rds:us-east-2:123456789012:subgrp:my-subnet-10

Getting an existing ARN
You can get the ARN of an RDS resource by using the AWS Management Console, AWS Command Line
Interface (AWS CLI), or RDS API.

485

Amazon Aurora User Guide for Aurora
Getting an existing ARN

Console

To get an ARN from the AWS Management Console, navigate to the resource you want an ARN for,
and view the details for that resource. For example, you can get the ARN for a DB instance from the
Configuration tab of the DB instance details, as shown following.

AWS CLI

To get an ARN from the AWS CLI for a particular RDS resource, you use the describe command for
that resource. The following table shows each AWS CLI command, and the ARN property used with the
command to get an ARN.

486

Amazon Aurora User Guide for Aurora
Getting an existing ARN

AWS CLI command ARN property

describe-event-subscriptions EventSubscriptionArn

describe-certificates CertificateArn

describe-db-parameter-groups DBParameterGroupArn

describe-db-cluster-parameter-
groups

DBClusterParameterGroupArn

describe-db-instances DBInstanceArn

describe-db-security-groups DBSecurityGroupArn

describe-db-snapshots DBSnapshotArn

describe-events SourceArn

describe-reserved-db-instances ReservedDBInstanceArn

describe-db-subnet-groups DBSubnetGroupArn

describe-db-clusters DBClusterArn

describe-db-cluster-snapshots DBClusterSnapshotArn

For example, the following AWS CLI command gets the ARN for a DB instance.

Example

For Linux, macOS, or Unix:

aws rds describe-db-instances \
--db-instance-identifier DBInstanceIdentifier \
--region us-west-2 \
--query "*[].{DBInstanceIdentifier:DBInstanceIdentifier,DBInstanceArn:DBInstanceArn}"

For Windows:

aws rds describe-db-instances ^
--db-instance-identifier DBInstanceIdentifier ^
--region us-west-2 ^
--query "*[].{DBInstanceIdentifier:DBInstanceIdentifier,DBInstanceArn:DBInstanceArn}"

The output of that command is like the following:

[
 {
 "DBInstanceArn": "arn:aws:rds:us-west-2:account_id:db:instance_id",
 "DBInstanceIdentifier": "instance_id"
 }
]

RDS API
To get an ARN for a particular RDS resource, you can call the following RDS API operations and use the
ARN properties shown following.

487

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-event-subscriptions.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-certificates.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameter-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-parameter-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-parameter-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-security-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-snapshots.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-events.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-reserved-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-subnet-groups.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-snapshots.html

Amazon Aurora User Guide for Aurora
Getting an existing ARN

RDS API operation ARN property

DescribeEventSubscriptions EventSubscriptionArn

DescribeCertificates CertificateArn

DescribeDBParameterGroups DBParameterGroupArn

DescribeDBClusterParameterGroups DBClusterParameterGroupArn

DescribeDBInstances DBInstanceArn

DescribeDBSecurityGroups DBSecurityGroupArn

DescribeDBSnapshots DBSnapshotArn

DescribeEvents SourceArn

DescribeReservedDBInstances ReservedDBInstanceArn

DescribeDBSubnetGroups DBSubnetGroupArn

DescribeDBClusters DBClusterArn

DescribeDBClusterSnapshots DBClusterSnapshotArn

488

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeEventSubscriptions.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeCertificates.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBParameterGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterParameterGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBSecurityGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBSnapshots.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeEvents.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeReservedDBInstances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBSubnetGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterSnapshots.html

Amazon Aurora User Guide for Aurora
Aurora updates

Amazon Aurora updates
Amazon Aurora releases updates regularly. Updates are applied to Amazon Aurora DB clusters during
system maintenance windows. The timing when updates are applied depends on the region and
maintenance window setting for the DB cluster, and also the type of update. Updates require a database
restart, so you typically experience 20 to 30 seconds of downtime. After this downtime, you can resume
using your DB cluster or clusters. You can view or change your maintenance window settings from the
AWS Management Console.

Note
The time required to reboot your DB instance depends on the crash recovery process, database
activity at the time of reboot, and the behavior of your specific DB engine. To improve the
reboot time, we recommend that you reduce database activity as much as possible during the
reboot process. Reducing database activity reduces rollback activity for in-transit transactions.

Following, you can find information on general updates to Amazon Aurora. Some of the updates applied
to Amazon Aurora are specific to a database engine supported by Aurora. For more information about
database engine updates for Aurora, see the following table.

Database engine Updates

Amazon Aurora MySQL See Database engine updates for Amazon Aurora MySQL (p. 1103)

Amazon Aurora PostgreSQL See Amazon Aurora PostgreSQL updates (p. 1614)

Identifying your Amazon Aurora version
Amazon Aurora includes certain features that are general to Aurora and available to all Aurora DB
clusters. Aurora includes other features that are specific to a particular database engine that Aurora
supports. These features are available only to those Aurora DB clusters that use that database engine,
such as Aurora PostgreSQL.

An Aurora DB instance provides two version numbers, the Aurora version number and the Aurora
database engine version number. Aurora version numbers use the following format.

<major version>.<minor version>.<patch version>

To get the Aurora version number from an Aurora DB instance using a particular database engine, use
one of the following queries.

Database engine Queries

Amazon Aurora MySQL
SELECT AURORA_VERSION();

SHOW @@aurora_version;

Amazon Aurora PostgreSQL
SELECT AURORA_VERSION();

489

https://console.aws.amazon.com/

Amazon Aurora User Guide for Aurora

Backing up and restoring an Amazon
Aurora DB cluster

This section shows how to back up and restore Amazon Aurora DB clusters.

Topics
• Overview of backing up and restoring an Aurora DB cluster (p. 491)
• Understanding Aurora backup storage usage (p. 494)
• Creating a DB cluster snapshot (p. 495)
• Restoring from a DB cluster snapshot (p. 497)
• Copying a DB cluster snapshot (p. 500)
• Sharing a DB cluster snapshot (p. 510)
• Exporting DB snapshot data to Amazon S3 (p. 518)
• Restoring a DB cluster to a specified time (p. 537)
• Deleting a DB cluster snapshot (p. 539)

490

Amazon Aurora User Guide for Aurora
Overview of backing up and restoring

Overview of backing up and restoring an Aurora
DB cluster

In the following sections, you can find information about Aurora backups and how to restore your Aurora
DB cluster using the AWS Management Console.

Tip
The Aurora high availability features and automatic backup capabilities help to keep your data
safe without requiring extensive setup from you. Before you implement a backup strategy, learn
about the ways that Aurora maintains multiple copies of your data and helps you to access them
across multiple DB instances and AWS Regions. For details, see High availability for Amazon
Aurora (p. 68).

Backups
Aurora backs up your cluster volume automatically and retains restore data for the length of the backup
retention period. Aurora backups are continuous and incremental so you can quickly restore to any point
within the backup retention period. No performance impact or interruption of database service occurs
as backup data is being written. You can specify a backup retention period, from 1 to 35 days, when you
create or modify a DB cluster. Aurora backups are stored in Amazon S3.

If you want to retain a backup beyond the backup retention period, you can also take a snapshot of
the data in your cluster volume. Because Aurora retains incremental restore data for the entire backup
retention period, you only need to create a snapshot for data that you want to retain beyond the backup
retention period. You can create a new DB cluster from the snapshot.

Note

• For Amazon Aurora DB clusters, the default backup retention period is one day regardless of
how the DB cluster is created.

• You can't disable automated backups on Aurora. The backup retention period for Aurora is
managed by the DB cluster.

Your costs for backup storage depend upon the amount of Aurora backup and snapshot data you keep
and how long you keep it. For information about the storage associated with Aurora backups and
snapshots, see Understanding Aurora backup storage usage (p. 494). For pricing information about
Aurora backup storage, see Amazon RDS for Aurora pricing. After the Aurora cluster associated with a
snapshot is deleted, storing that snapshot incurs the standard backup storage charges for Aurora.

Note
You can also use AWS Backup to manage backups of Amazon Aurora DB clusters. Backups
managed by AWS Backup are considered manual DB cluster snapshots, but don't count toward
the DB cluster snapshot quota for Aurora. Backups that were created with AWS Backup have
names ending in awsbackup:AWS-Backup-job-number. For information about AWS Backup,
see the AWS Backup Developer Guide.

Backup window
Automated backups occur daily during the preferred backup window. If the backup requires more time
than allotted to the backup window, the backup continues after the window ends, until it finishes. The
backup window can't overlap with the weekly maintenance window for the DB cluster.

Aurora backups are continuous and incremental, but the backup window is used to create a daily system
backup that is preserved within the backup retention period. You can copy it to preserve it outside of the
retention period.

491

https://aws.amazon.com/rds/aurora/pricing
https://docs.aws.amazon.com/aws-backup/latest/devguide

Amazon Aurora User Guide for Aurora
Backup window

Note
When you create a DB cluster using the AWS Management Console, you can't specify a backup
window. However, you can specify a backup window when you create a DB cluster using the AWS
CLI or RDS API.

If you don't specify a preferred backup window when you create the DB cluster, Aurora assigns a default
30-minute backup window. This window is selected at random from an 8-hour block of time for each
AWS Region. The following table lists the time blocks for each AWS Region from which the default
backup windows are assigned.

Region Name Region Time Block

US East (Ohio) us-east-2 03:00–11:00 UTC

US East (N. Virginia) us-east-1 03:00–11:00 UTC

US West (N. California) us-west-1 06:00–14:00 UTC

US West (Oregon) us-west-2 06:00–14:00 UTC

Africa (Cape Town) af-south-1 03:00–11:00 UTC

Asia Pacific (Hong
Kong)

ap-east-1 06:00–14:00 UTC

Asia Pacific (Jakarta) ap-southeast-3 08:00–16:00 UTC

Asia Pacific (Mumbai) ap-south-1 16:30–00:30 UTC

Asia Pacific (Osaka) ap-northeast-3 00:00–08:00 UTC

Asia Pacific (Seoul) ap-northeast-2 13:00–21:00 UTC

Asia Pacific (Singapore) ap-southeast-1 14:00–22:00 UTC

Asia Pacific (Sydney) ap-southeast-2 12:00–20:00 UTC

Asia Pacific (Tokyo) ap-northeast-1 13:00–21:00 UTC

Canada (Central) ca-central-1 03:00–11:00 UTC

China (Beijing) cn-north-1 06:00–14:00 UTC

China (Ningxia) cn-northwest-1 06:00–14:00 UTC

Europe (Frankfurt) eu-central-1 20:00–04:00 UTC

Europe (Ireland) eu-west-1 22:00–06:00 UTC

Europe (London) eu-west-2 22:00–06:00 UTC

Europe (Paris) eu-west-3 07:29–14:29 UTC

Europe (Milan) eu-south-1 02:00–10:00 UTC

Europe (Stockholm) eu-north-1 23:00–07:00 UTC

Middle East (Bahrain) me-south-1 06:00–14:00 UTC

South America (São
Paulo)

sa-east-1 23:00–07:00 UTC

492

Amazon Aurora User Guide for Aurora
Restoring data

Region Name Region Time Block

AWS GovCloud (US-
East)

us-gov-east-1 17:00–01:00 UTC

AWS GovCloud (US-
West)

us-gov-west-1 06:00–14:00 UTC

Restoring data
You can recover your data by creating a new Aurora DB cluster from the backup data that Aurora retains,
or from a DB cluster snapshot that you have saved. You can quickly restore a new copy of a DB cluster
created from backup data to any point in time during your backup retention period. The continuous and
incremental nature of Aurora backups during the backup retention period means you don't need to take
frequent snapshots of your data to improve restore times.

To determine the latest or earliest restorable time for a DB cluster, look for the Latest restore time
or Earliest restorable time values on the RDS console. For information about viewing these
values, see Viewing an Amazon Aurora DB cluster (p. 547). The latest restorable time for a DB cluster is
the most recent point at which you can restore your DB cluster, typically within 5 minutes of the current
time. The earliest restorable time specifies how far back within the backup retention period that you can
restore your cluster volume.

You can determine when the restore of a DB cluster is complete by checking the Latest Restorable
Time and Earliest Restorable Time values. The Latest Restorable Time and Earliest
Restorable Time values return NULL until the restore operation is complete. You can't request a
backup or restore operation if Latest Restorable Time or Earliest Restorable Time returns
NULL.

For information about restoring a DB cluster to a specified time, see Restoring a DB cluster to a specified
time (p. 537).

Database cloning for Aurora
You can also use database cloning to clone the databases of your Aurora DB cluster to a new DB cluster,
instead of restoring a DB cluster snapshot. The clone databases use only minimal additional space when
first created. Data is copied only as data changes, either on the source databases or the clone databases.
You can make multiple clones from the same DB cluster, or create additional clones even from other
clones. For more information, see Cloning a volume for an Aurora DB cluster (p. 402).

Backtrack
Aurora MySQL now supports "rewinding" a DB cluster to a specific time, without restoring data from a
backup. For more information, see Backtracking an Aurora DB cluster (p. 837).

493

Amazon Aurora User Guide for Aurora
Backup storage

Understanding Aurora backup storage usage
Aurora stores continuous backups (within the backup retention period) and snapshots in Aurora backup
storage. To control your backup storage usage, you can reduce the backup retention interval, remove
old manual snapshots when they are no longer needed, or both. For general information about Aurora
backups, see Backups (p. 491). For pricing information about Aurora backup storage, see the Amazon
Aurora pricing webpage.

To control your costs, you can monitor the amount of storage consumed by continuous backups and
manual snapshots that persist beyond the retention period. Then you can reduce the backup retention
interval and remove manual snapshots when they are no longer needed.

You can use the Amazon CloudWatch metrics TotalBackupStorageBilled, SnapshotStorageUsed,
and BackupRetentionPeriodStorageUsed to review and monitor the amount of storage used by
your Aurora backups, as follows:

• BackupRetentionPeriodStorageUsed represents the amount of backup storage used, in bytes, for
storing continuous backups at the current time. This value depends on the size of the cluster volume
and the amount of changes you make during the retention period. However, for billing purposes it
doesn't exceed the cumulative cluster volume size during the retention period. For example, if your
cluster's VolumeBytesUsed size is 107,374,182,400 bytes (100 GiB), and your retention period is two
days, the maximum value for BackupRetentionPeriodStorageUsed is 214,748,364,800 bytes (100
GiB + 100 GiB).

• SnapshotStorageUsed represents the amount of backup storage used, in bytes, for storing manual
snapshots beyond the backup retention period. Manual snapshots don't count against your snapshot
backup storage while their creation timestamp is within the retention period. All automatic snapshots
also don't count against your snapshot backup storage. The size of each snapshot is the size of the
cluster volume at the time you take the snapshot. The SnapshotStorageUsed value depends on
the number of snapshots you keep and the size of each snapshot. For example, suppose you have one
manual snapshot outside the retention period, and the cluster's VolumeBytesUsed size was 100 GiB
when that snapshot was taken. The amount of SnapshotStorageUsed is 107,374,182,400 bytes (100
GiB).

• TotalBackupStorageBilled represents the sum, in bytes, of
BackupRetentionPeriodStorageUsed and SnapshotStorageUsed, minus an amount of free
backup storage, which equals the size of the cluster volume for one day. The free backup storage is
equal to the latest volume size. For example if your cluster's VolumeBytesUsed size is 100 GiB, your
retention period is two days, and you have one manual snapshot outside the retention period, the
TotalBackupStorageBilled is 214,748,364,800 bytes (200 GiB + 100 GiB - 100 GiB).

• These metrics are computed independently for each Aurora DB cluster.

You can monitor your Aurora clusters and build reports using CloudWatch metrics through the
CloudWatch console. For more information about how to use CloudWatch metrics, see Availability of
Aurora metrics in the Amazon RDS console (p. 670).

The backtrack setting for an Aurora DB cluster doesn't affect the volume of backup data for that
cluster. Amazon bills the storage for backtrack data separately. You can also find the backtrack pricing
information on the Amazon Aurora pricing web page.

If you share a snapshot with another user, you are still the owner of that snapshot. The storage costs
apply to the snapshot owner. If you delete a shared snapshot that you own, nobody can access it. To keep
access to a shared snapshot owned by someone else, you can copy that snapshot. Doing so makes you
the owner of the new snapshot. Any storage costs for the copied snapshot apply to your account.

494

https://aws.amazon.com/rds/aurora/pricing
https://aws.amazon.com/rds/aurora/pricing
https://console.aws.amazon.com/cloudwatch/
https://aws.amazon.com/rds/aurora/pricing

Amazon Aurora User Guide for Aurora
Creating a DB cluster snapshot

Creating a DB cluster snapshot
Amazon RDS creates a storage volume snapshot of your DB cluster, backing up the entire DB cluster
and not just individual databases. When you create a DB cluster snapshot, you need to identify which
DB cluster you are going to back up, and then give your DB cluster snapshot a name so you can restore
from it later. The amount of time it takes to create a DB cluster snapshot varies with the size of your
databases. Because the snapshot includes the entire storage volume, the size of files, such as temporary
files, also affects the amount of time it takes to create the snapshot.

Unlike automated backups, manual snapshots aren't subject to the backup retention period. Snapshots
don't expire.

For very long-term backups, we recommend exporting snapshot data to Amazon S3. If the major version
of your DB engine is no longer supported, you can't restore to that version from a snapshot. For more
information, see Exporting DB snapshot data to Amazon S3 (p. 518).

You can create a DB cluster snapshot using the AWS Management Console, the AWS CLI, or the RDS API.

Console
To create a DB cluster snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.
3. In the list of DB instances, choose a writer instance for the DB cluster.
4. Choose Actions, and then choose Take snapshot.

The Take DB Snapshot window appears.
5. Enter the name of the DB cluster snapshot in the Snapshot name box.

6. Choose Take Snapshot.

AWS CLI
When you create a DB cluster snapshot using the AWS CLI, you need to identify which DB cluster you
are going to back up, and then give your DB cluster snapshot a name so you can restore from it later.

495

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Determining whether the snapshot is available

You can do this by using the AWS CLI create-db-cluster-snapshot command with the following
parameters:

• --db-cluster-identifier

• --db-cluster-snapshot-identifier

In this example, you create a DB cluster snapshot named mydbclustersnapshot for a DB cluster called
mydbcluster.

Example

For Linux, macOS, or Unix:

aws rds create-db-cluster-snapshot \
 --db-cluster-identifier mydbcluster \
 --db-cluster-snapshot-identifier mydbclustersnapshot

For Windows:

aws rds create-db-cluster-snapshot ^
 --db-cluster-identifier mydbcluster ^
 --db-cluster-snapshot-identifier mydbclustersnapshot

RDS API
When you create a DB cluster snapshot using the Amazon RDS API, you need to identify which DB cluster
you are going to back up, and then give your DB cluster snapshot a name so you can restore from it
later. You can do this by using the Amazon RDS API CreateDBClusterSnapshot command with the
following parameters:

• DBClusterIdentifier
• DBClusterSnapshotIdentifier

Determining whether the DB cluster snapshot is
available
You can check that the DB cluster snapshot is available by looking under Snapshots on the Maintenance
& backups tab on the detail page for the cluster in the AWS Management Console, by using the
describe-db-cluster-snapshots CLI command, or by using the DescribeDBClusterSnapshots
API action.

You can also use the wait db-cluster-snapshot-available CLI command to poll the API every 30
seconds until the snapshot is available.

496

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBClusterSnapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-snapshots
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterSnapshots.html
https://docs.aws.amazon.com/cli/latest/reference/rds/wait/db-cluster-snapshot-available.html

Amazon Aurora User Guide for Aurora
Restoring from a DB cluster snapshot

Restoring from a DB cluster snapshot
Amazon RDS creates a storage volume snapshot of your DB cluster, backing up the entire DB instance
and not just individual databases. You can create a new DB cluster by restoring from a DB snapshot. You
provide the name of the DB cluster snapshot to restore from, and then provide a name for the new DB
cluster that is created from the restore. You can't restore from a DB cluster snapshot to an existing DB
cluster; a new DB cluster is created when you restore.

You can use the restored DB cluster as soon as its status is available.

You can use AWS CloudFormation to restore a DB cluster from a DB cluster snapshot. For more
information, see AWS::RDS::DBCluster in the AWS CloudFormation User Guide.

Note
Sharing a manual DB cluster snapshot, whether encrypted or unencrypted, enables authorized
AWS accounts to directly restore a DB cluster from the snapshot instead of taking a copy of it
and restoring from that. For more information, see Sharing a DB cluster snapshot (p. 510).

Parameter group considerations
We recommend that you retain the DB parameter group and DB cluster parameter group for any
DB cluster snapshots you create, so that you can associate your restored DB cluster with the correct
parameter groups.

The default DB parameter group and DB cluster parameter group are associated with the restored
cluster, unless you choose different ones. No custom parameter settings are available in the default
parameter groups.

You can specify the parameter groups when you restore the DB cluster.

For more information about DB parameter groups and DB cluster parameter groups, see Working with
DB parameter groups and DB cluster parameter groups (p. 339).

Security group considerations
When you restore a DB cluster, the default virtual private cloud (VPC), DB subnet group, and VPC security
group are associated with the restored instance, unless you choose different ones.

• If you're using the Amazon RDS console, you can specify a custom VPC security group to associate with
the cluster or create a new VPC security group.

• If you're using the AWS CLI, you can specify a custom VPC security group to associate with the cluster
by including the --vpc-security-group-ids option in the restore-db-cluster-from-
snapshot command.

• If you're using the Amazon RDS API, you can include the
VpcSecurityGroupIds.VpcSecurityGroupId.N parameter in the
RestoreDBClusterFromSnapshot action.

As soon as the restore is complete and your new DB cluster is available, you can also change the VPC
settings by modifying the DB cluster. For more information, see Modifying an Amazon Aurora DB
cluster (p. 372).

Amazon Aurora considerations
With Aurora, you restore a DB cluster snapshot to a DB cluster.

497

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbcluster.html

Amazon Aurora User Guide for Aurora
Restoring from a snapshot

With both Aurora MySQL and Aurora PostgreSQL, you can also restore a DB cluster snapshot to
an Aurora Serverless DB cluster. For more information, see Restoring an Aurora Serverless v1 DB
cluster (p. 166).

With Aurora MySQL, you can restore a DB cluster snapshot from a cluster without parallel query to a
cluster with parallel query. Because parallel query is typically used with very large tables, the snapshot
mechanism is the fastest way to ingest large volumes of data to an Aurora MySQL parallel query-enabled
cluster. For more information, see Working with parallel query for Amazon Aurora MySQL (p. 902).

Restoring from a snapshot
You can restore a DB cluster from a DB cluster snapshot using the AWS Management Console, the AWS
CLI, or the RDS API.

Console

To restore a DB cluster from a DB cluster snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.
3. Choose the DB cluster snapshot that you want to restore from.
4. For Actions, choose Restore snapshot.
5. On the Restore snapshot page, for DB instance identifier, enter the name for your restored DB

cluster.
6. Choose Restore DB instance.

AWS CLI

To restore a DB cluster from a DB cluster snapshot, use the AWS CLI command restore-db-cluster-from-
snapshot.

In this example, you restore from a previously created DB cluster snapshot named
mydbclustersnapshot. You restore to a new DB cluster named mynewdbcluster.

Example

For Linux, macOS, or Unix:

aws rds restore-db-cluster-from-snapshot \
 --db-cluster-identifier mynewdbcluster \
 --snapshot-identifier mydbclustersnapshot \
 --engine aurora|aurora-mysql|aurora-postgresql

For Windows:

aws rds restore-db-cluster-from-snapshot ^
 --db-cluster-identifier mynewdbcluster ^
 --snapshot-identifier mydbclustersnapshot ^
 --engine aurora|aurora-mysql|aurora-postgresql

After the DB cluster has been restored, you must add the DB cluster to the security group used by the DB
cluster used to create the DB cluster snapshot if you want the same functionality as that of the previous
DB cluster.

498

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html

Amazon Aurora User Guide for Aurora
Restoring from a snapshot

Important
If you use the console to restore a DB cluster, then Amazon RDS automatically creates the
primary instance (writer) for your DB cluster. If you use the AWS CLI to restore a DB cluster,
you must explicitly create the primary instance for your DB cluster. The primary instance is the
first instance that is created in a DB cluster. Call the create-db-instance AWS CLI command to
create the primary instance for your DB cluster. Include the name of the DB cluster as the --db-
cluster-identifier option value.

RDS API

To restore a DB cluster from a DB cluster snapshot, call the RDS API operation
RestoreDBClusterFromSnapshot with the following parameters:

• DBClusterIdentifier

• SnapshotIdentifier

Important
If you use the console to restore a DB cluster, then Amazon RDS automatically creates the
primary instance (writer) for your DB cluster. If you use the RDS API to restore a DB cluster,
you must explicitly create the primary instance for your DB cluster. The primary instance is
the first instance that is created in a DB cluster. Call the RDS API operation CreateDBInstance
to create the primary instance for your DB cluster. Include the name of the DB cluster as the
DBClusterIdentifier parameter value.

499

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Aurora User Guide for Aurora
Copying a snapshot

Copying a DB cluster snapshot
With Amazon RDS, you can copy automated backups or manual DB cluster snapshots. After you copy
a snapshot, the copy is a manual snapshot. You can make multiple copies of an automated backup or
manual snapshot, but each copy must have a unique identifier.

You can copy a snapshot within the same AWS Region, you can copy a snapshot across AWS Regions, and
you can copy shared snapshots.

You can't copy a DB cluster snapshot across Regions and accounts in a single step. Perform one step for
each of these copy actions. As an alternative to copying, you can also share manual snapshots with other
AWS accounts. For more information, see Sharing a DB cluster snapshot (p. 510).

Note
Amazon bills you based upon the amount of Amazon Aurora backup and snapshot data you
keep and the period of time that you keep it. For information about the storage associated with
Aurora backups and snapshots, see Understanding Aurora backup storage usage (p. 494). For
pricing information about Aurora storage, see Amazon RDS for Aurora pricing.

Limitations
The following are some limitations when you copy snapshots:

• You can't copy a snapshot to or from the China (Beijing) or China (Ningxia) Regions.

• You can copy a snapshot between AWS GovCloud (US-East) and AWS GovCloud (US-West). However,
you can't copy a snapshot between these AWS GovCloud (US) Regions and commercial AWS Regions.

• If you delete a source snapshot before the target snapshot becomes available, the snapshot copy
might fail. Verify that the target snapshot has a status of AVAILABLE before you delete a source
snapshot.

• You can have up to five snapshot copy requests in progress to a single destination Region per account.

• Depending on the AWS Regions involved and the amount of data to be copied, a cross-Region
snapshot copy can take hours to complete. In some cases, there might be a large number of cross-
Region snapshot copy requests from a given source Region. In such cases, Amazon RDS might put
new cross-Region copy requests from that source Region into a queue until some in-progress copies
complete. No progress information is displayed about copy requests while they are in the queue.
Progress information is displayed when the copy starts.

Snapshot retention
Amazon RDS deletes automated backups in several situations:

• At the end of their retention period.

• When you disable automated backups for a DB cluster.

• When you delete a DB cluster.

If you want to keep an automated backup for a longer period, copy it to create a manual snapshot, which
is retained until you delete it. Amazon RDS storage costs might apply to manual snapshots if they exceed
your default storage space.

For more information about backup storage costs, see Amazon RDS pricing.

500

https://aws.amazon.com/rds/aurora/pricing
https://aws.amazon.com/rds/pricing/

Amazon Aurora User Guide for Aurora
Copying shared snapshots

Copying shared snapshots
You can copy snapshots shared to you by other AWS accounts. In some cases, you might copy an
encrypted snapshot that has been shared from another AWS account. In these cases, you must have
access to the AWS KMS key that was used to encrypt the snapshot.

You can only copy a shared DB cluster snapshot, whether encrypted or not, in the same AWS Region. For
more information, see Sharing encrypted snapshots (p. 511).

Handling encryption
You can copy a snapshot that has been encrypted using a KMS key. If you copy an encrypted snapshot,
the copy of the snapshot must also be encrypted. If you copy an encrypted snapshot within the same
AWS Region, you can encrypt the copy with the same KMS key as the original snapshot. Or you can
specify a different KMS key.

If you copy an encrypted snapshot across Regions, you must specify a KMS key valid in the destination
AWS Region. It can be a Region-specific KMS key, or a multi-Region key. For more information on multi-
Region KMS keys, see Using multi-Region keys in AWS KMS.

The source snapshot remains encrypted throughout the copy process. For more information, see
Limitations of Amazon Aurora encrypted DB clusters (p. 1725).

Note
For Amazon Aurora DB cluster snapshots, you can't encrypt an unencrypted DB cluster snapshot
when you copy the snapshot.

Incremental snapshot copying
Aurora doesn't support incremental snapshot copying. Aurora DB cluster snapshot copies are always full
copies. A full snapshot copy contains all of the data and metadata required to restore the DB cluster.

Cross-Region snapshot copying
You can copy DB cluster snapshots across AWS Regions. However, there are certain constraints and
considerations for cross-Region snapshot copying.

Cross-Region copying of DB cluster snapshots isn't supported in the following opt-in AWS Regions:

• Africa (Cape Town)

• Asia Pacific (Hong Kong)

• Europe (Milan)

• Middle East (Bahrain)

Depending on the AWS Regions involved and the amount of data to be copied, a cross-Region snapshot
copy can take hours to complete.

In some cases, there might be a large number of cross-Region snapshot copy requests from a given
source AWS Region. In such cases, Amazon RDS might put new cross-Region copy requests from that
source AWS Region into a queue until some in-progress copies complete. No progress information is
displayed about copy requests while they are in the queue. Progress information is displayed when the
copying starts.

501

https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

Amazon Aurora User Guide for Aurora
Parameter groups

Parameter group considerations
When you copy a snapshot across Regions, the copy doesn't include the parameter group used by
the original DB cluster. When you restore a snapshot to create a new DB cluster, that DB cluster gets
the default parameter group for the AWS Region it is created in. To give the new DB cluster the same
parameters as the original, do the following:

1. In the destination AWS Region, create a DB cluster parameter group with the same settings as the
original DB cluster. If one already exists in the new AWS Region, you can use that one.

2. After you restore the snapshot in the destination AWS Region, modify the new DB cluster and add the
new or existing parameter group from the previous step.

Copying a DB cluster snapshot
Use the procedures in this topic to copy a DB cluster snapshot. If your source database engine is Aurora,
then your snapshot is a DB cluster snapshot.

For each AWS account, you can copy up to five DB cluster snapshots at a time from one AWS Region to
another. Copying both encrypted and unencrypted DB cluster snapshots is supported. If you copy a DB
cluster snapshot to another AWS Region, you create a manual DB cluster snapshot that is retained in
that AWS Region. Copying a DB cluster snapshot out of the source AWS Region incurs Amazon RDS data
transfer charges.

For more information about data transfer pricing, see Amazon RDS pricing.

After the DB cluster snapshot copy has been created in the new AWS Region, the DB cluster snapshot
copy behaves the same as all other DB cluster snapshots in that AWS Region.

Console

This procedure works for copying encrypted or unencrypted DB cluster snapshots, in the same AWS
Region or across Regions.

To cancel a copy operation once it is in progress, delete the target DB cluster snapshot while that DB
cluster snapshot is in copying status.

To copy a DB cluster snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Select the check box for the DB cluster snapshot you want to copy.

4. For Actions, choose Copy Snapshot. The Make Copy of DB Snapshot page appears.

502

https://aws.amazon.com/rds/pricing/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Copying a DB cluster snapshot

5. (Optional) To copy the DB cluster snapshot to a different AWS Region, choose that AWS Region for
Destination Region.

6. Type the name of the DB cluster snapshot copy in New DB Snapshot Identifier.

7. To copy tags and values from the snapshot to the copy of the snapshot, choose Copy Tags.

8. Choose Copy Snapshot.

Copying an unencrypted DB cluster snapshot by using the AWS
CLI or Amazon RDS API

Use the procedures in the following sections to copy an unencrypted DB cluster snapshot by using the
AWS CLI or Amazon RDS API.

To cancel a copy operation once it is in progress, delete the target DB cluster snapshot identified by --
target-db-cluster-snapshot-identifier or TargetDBClusterSnapshotIdentifier while
that DB cluster snapshot is in copying status.

503

Amazon Aurora User Guide for Aurora
Copying a DB cluster snapshot

AWS CLI

To copy a DB cluster snapshot, use the AWS CLI copy-db-cluster-snapshot command. If you
are copying the snapshot to another AWS Region, run the command in the AWS Region to which the
snapshot will be copied.

The following options are used to copy an unencrypted DB cluster snapshot:

• --source-db-cluster-snapshot-identifier – The identifier for the DB cluster snapshot to
be copied. If you are copying the snapshot to another AWS Region, this identifier must be in the ARN
format for the source AWS Region.

• --target-db-cluster-snapshot-identifier – The identifier for the new copy of the DB cluster
snapshot.

The following code creates a copy of DB cluster snapshot arn:aws:rds:us-
east-1:123456789012:cluster-snapshot:aurora-cluster1-snapshot-20130805 named
myclustersnapshotcopy in the AWS Region in which the command is run. When the copy is made, all
tags on the original snapshot are copied to the snapshot copy.

Example

For Linux, macOS, or Unix:

aws rds copy-db-cluster-snapshot \
 --source-db-cluster-snapshot-identifier arn:aws:rds:us-east-1:123456789012:cluster-
snapshot:aurora-cluster1-snapshot-20130805 \
 --target-db-cluster-snapshot-identifier myclustersnapshotcopy \
 --copy-tags

For Windows:

aws rds copy-db-cluster-snapshot ^
 --source-db-cluster-snapshot-identifier arn:aws:rds:us-east-1:123456789012:cluster-
snapshot:aurora-cluster1-snapshot-20130805 ^
 --target-db-cluster-snapshot-identifier myclustersnapshotcopy ^
 --copy-tags

RDS API

To copy a DB cluster snapshot, use the Amazon RDS API CopyDBClusterSnapshot operation. If you
are copying the snapshot to another AWS Region, perform the action in the AWS Region to which the
snapshot will be copied.

The following parameters are used to copy an unencrypted DB cluster snapshot:

• SourceDBClusterSnapshotIdentifier – The identifier for the DB cluster snapshot to be copied. If
you are copying the snapshot to another AWS Region, this identifier must be in the ARN format for the
source AWS Region.

• TargetDBClusterSnapshotIdentifier – The identifier for the new copy of the DB cluster
snapshot.

The following code creates a copy of a snapshot arn:aws:rds:us-
east-1:123456789012:cluster-snapshot:aurora-cluster1-snapshot-20130805 named
myclustersnapshotcopy in the US West (N. California) Region. When the copy is made, all tags on the
original snapshot are copied to the snapshot copy.

504

https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-cluster-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CopyDBClusterSnapshot.html

Amazon Aurora User Guide for Aurora
Copying a DB cluster snapshot

Example

https://rds.us-west-1.amazonaws.com/
 ?Action=CopyDBClusterSnapshot
 &CopyTags=true
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &SourceDBSnapshotIdentifier=arn%3Aaws%3Ards%3Aus-east-1%3A123456789012%3Acluster-
snapshot%3Aaurora-cluster1-snapshot-20130805
 &TargetDBSnapshotIdentifier=myclustersnapshotcopy
 &Version=2013-09-09
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20140429/us-west-1/rds/aws4_request
 &X-Amz-Date=20140429T175351Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=9164337efa99caf850e874a1cb7ef62f3cea29d0b448b9e0e7c53b288ddffed2

Copying an encrypted DB cluster snapshot by using the AWS CLI
or Amazon RDS API
Use the procedures in the following sections to copy an encrypted DB cluster snapshot by using the AWS
CLI or Amazon RDS API.

To cancel a copy operation once it is in progress, delete the target DB cluster snapshot identified by --
target-db-cluster-snapshot-identifier or TargetDBClusterSnapshotIdentifier while
that DB cluster snapshot is in copying status.

AWS CLI

To copy a DB cluster snapshot, use the AWS CLI copy-db-cluster-snapshot command. If you
are copying the snapshot to another AWS Region, run the command in the AWS Region to which the
snapshot will be copied.

The following options are used to copy an encrypted DB cluster snapshot:

• --source-region – If you are copying the snapshot to another AWS Region, specify the AWS Region
that the encrypted DB cluster snapshot will be copied from.

If you are copying the snapshot to another AWS Region and you don't specify source-region, you
must specify the pre-signed-url option instead. The pre-signed-url value must be a URL that
contains a Signature Version 4 signed request for the CopyDBClusterSnapshot action to be called
in the source AWS Region where the DB cluster snapshot is copied from. To learn more about the pre-
signed-url, see copy-db-cluster-snapshot.

• --source-db-cluster-snapshot-identifier – The identifier for the encrypted DB cluster
snapshot to be copied. If you are copying the snapshot to another AWS Region, this identifier must be
in the ARN format for the source AWS Region. If that is the case, the AWS Region specified in source-
db-cluster-snapshot-identifier must match the AWS Region specified for --source-region.

• --target-db-cluster-snapshot-identifier – The identifier for the new copy of the encrypted
DB cluster snapshot.

• --kms-key-id – The KMS key identifier for the key to use to encrypt the copy of the DB cluster
snapshot.

You can optionally use this option if the DB cluster snapshot is encrypted, you copy the snapshot in the
same AWS Region, and you want to specify a new KMS key to encrypt the copy. Otherwise, the copy of
the DB cluster snapshot is encrypted with the same KMS key as the source DB cluster snapshot.

You must use this option if the DB cluster snapshot is encrypted and you are copying the snapshot to
another AWS Region. In that case, you must specify a KMS key for the destination AWS Region.

505

https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-cluster-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-cluster-snapshot.html

Amazon Aurora User Guide for Aurora
Copying a DB cluster snapshot

The following code example copies the encrypted DB cluster snapshot from the US West (Oregon)
Region to the US East (N. Virginia) Region. The command is called in the US East (N. Virginia) Region.

Example

For Linux, macOS, or Unix:

aws rds copy-db-cluster-snapshot \
 --source-db-cluster-snapshot-identifier arn:aws:rds:us-west-2:123456789012:cluster-
snapshot:aurora-cluster1-snapshot-20161115 \
 --target-db-cluster-snapshot-identifier myclustersnapshotcopy \
 --source-region us-west-2 \
 --kms-key-id my-us-east-1-key

For Windows:

aws rds copy-db-cluster-snapshot ^
 --source-db-cluster-snapshot-identifier arn:aws:rds:us-west-2:123456789012:cluster-
snapshot:aurora-cluster1-snapshot-20161115 ^
 --target-db-cluster-snapshot-identifier myclustersnapshotcopy ^
 --source-region us-west-2 ^
 --kms-key-id my-us-east-1-key

RDS API

To copy a DB cluster snapshot, use the Amazon RDS API CopyDBClusterSnapshot operation. If you
are copying the snapshot to another AWS Region, perform the action in the AWS Region to which the
snapshot will be copied.

The following parameters are used to copy an encrypted DB cluster snapshot:

• SourceDBClusterSnapshotIdentifier – The identifier for the encrypted DB cluster snapshot to
be copied. If you are copying the snapshot to another AWS Region, this identifier must be in the ARN
format for the source AWS Region.

• TargetDBClusterSnapshotIdentifier – The identifier for the new copy of the encrypted DB
cluster snapshot.

• KmsKeyId – The KMS key identifier for the key to use to encrypt the copy of the DB cluster snapshot.

You can optionally use this parameter if the DB cluster snapshot is encrypted, you copy the snapshot in
the same AWS Region, and you specify a new KMS key to use to encrypt the copy. Otherwise, the copy
of the DB cluster snapshot is encrypted with the same KMS key as the source DB cluster snapshot.

You must use this parameter if the DB cluster snapshot is encrypted and you are copying the snapshot
to another AWS Region. In that case, you must specify a KMS key for the destination AWS Region.

• PreSignedUrl – If you are copying the snapshot to another AWS Region, you must specify the
PreSignedUrl parameter. The PreSignedUrl value must be a URL that contains a Signature
Version 4 signed request for the CopyDBClusterSnapshot action to be called in the source AWS
Region where the DB cluster snapshot is copied from. To learn more about using a presigned URL, see
CopyDBClusterSnapshot.

To automatically rather than manually generate a presigned URL, use the AWS CLI copy-db-
cluster-snapshot command with the --source-region option instead.

The following code example copies the encrypted DB cluster snapshot from the US West (Oregon)
Region to the US East (N. Virginia) Region. The action is called in the US East (N. Virginia) Region.

506

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CopyDBClusterSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CopyDBClusterSnapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-cluster-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/copy-db-cluster-snapshot.html

Amazon Aurora User Guide for Aurora
Copying a DB cluster snapshot

Example

https://rds.us-east-1.amazonaws.com/
 ?Action=CopyDBClusterSnapshot
 &KmsKeyId=my-us-east-1-key
 &PreSignedUrl=https%253A%252F%252Frds.us-west-2.amazonaws.com%252F
 %253FAction%253DCopyDBClusterSnapshot
 %2526DestinationRegion%253Dus-east-1
 %2526KmsKeyId%253Dmy-us-east-1-key
 %2526SourceDBClusterSnapshotIdentifier%253Darn%25253Aaws%25253Ards%25253Aus-
west-2%25253A123456789012%25253Acluster-snapshot%25253Aaurora-cluster1-snapshot-20161115
 %2526SignatureMethod%253DHmacSHA256
 %2526SignatureVersion%253D4
 %2526Version%253D2014-10-31
 %2526X-Amz-Algorithm%253DAWS4-HMAC-SHA256
 %2526X-Amz-Credential%253DAKIADQKE4SARGYLE%252F20161117%252Fus-west-2%252Frds
%252Faws4_request
 %2526X-Amz-Date%253D20161117T215409Z
 %2526X-Amz-Expires%253D3600
 %2526X-Amz-SignedHeaders%253Dcontent-type%253Bhost%253Buser-agent%253Bx-amz-
content-sha256%253Bx-amz-date
 %2526X-Amz-Signature
%253D255a0f17b4e717d3b67fad163c3ec26573b882c03a65523522cf890a67fca613
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &SourceDBClusterSnapshotIdentifier=arn%3Aaws%3Ards%3Aus-
west-2%3A123456789012%3Acluster-snapshot%3Aaurora-cluster1-snapshot-20161115
 &TargetDBClusterSnapshotIdentifier=myclustersnapshotcopy
 &Version=2014-10-31
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20161117/us-east-1/rds/aws4_request
 &X-Amz-Date=20161117T221704Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=da4f2da66739d2e722c85fcfd225dc27bba7e2b8dbea8d8612434378e52adccf

Copying a DB cluster snapshot across accounts

You can enable other AWS accounts to copy DB cluster snapshots that you specify by using the Amazon
RDS API ModifyDBClusterSnapshotAttribute and CopyDBClusterSnapshot actions. You can
only copy DB cluster snapshots across accounts in the same AWS Region. The cross-account copying
process works as follows, where Account A is making the snapshot available to copy, and Account B is
copying it.

1. Using Account A, call ModifyDBClusterSnapshotAttribute, specifying restore for the
AttributeName parameter, and the ID for Account B for the ValuesToAdd parameter.

2. (If the snapshot is encrypted) Using Account A, update the key policy for the KMS key, first adding the
ARN of Account B as a Principal, and then allow the kms:CreateGrant action.

3. (If the snapshot is encrypted) Using Account B, choose or create an IAM user and attach an IAM policy
to that user that allows it to copy an encrypted DB cluster snapshot using your KMS key.

4. Using Account B, call CopyDBClusterSnapshot and use the
SourceDBClusterSnapshotIdentifier parameter to specify the ARN of the DB cluster snapshot
to be copied, which must include the ID for Account A.

To list all of the AWS accounts permitted to restore a DB cluster snapshot, use the
DescribeDBSnapshotAttributes or DescribeDBClusterSnapshotAttributes API operation.

507

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBSnapshotAttributes.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBSnapshotAttributes.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterSnapshotAttributes.html

Amazon Aurora User Guide for Aurora
Copying a DB cluster snapshot

To remove sharing permission for an AWS account, use the ModifyDBSnapshotAttribute or
ModifyDBClusterSnapshotAttribute action with AttributeName set to restore and the ID of
the account to remove in the ValuesToRemove parameter.

Copying an unencrypted DB cluster snapshot to another account

Use the following procedure to copy an unencrypted DB cluster snapshot to another account in the same
AWS Region.

1. In the source account for the DB cluster snapshot, call ModifyDBClusterSnapshotAttribute,
specifying restore for the AttributeName parameter, and the ID for the target account for the
ValuesToAdd parameter.

Running the following example using the account 987654321 permits two AWS account identifiers,
123451234512 and 123456789012, to restore the DB cluster snapshot named manual-
snapshot1.

https://rds.us-west-2.amazonaws.com/
 ?Action=ModifyDBClusterSnapshotAttribute
 &AttributeName=restore
 &DBClusterSnapshotIdentifier=manual-snapshot1
 &SignatureMethod=HmacSHA256&SignatureVersion=4
 &ValuesToAdd.member.1=123451234512
 &ValuesToAdd.member.2=123456789012
 &Version=2014-10-31
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20150922/us-west-2/rds/aws4_request
 &X-Amz-Date=20150922T220515Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=ef38f1ce3dab4e1dbf113d8d2a265c67d17ece1999ffd36be85714ed36dddbb3

2. In the target account, call CopyDBClusterSnapshot and use the
SourceDBClusterSnapshotIdentifier parameter to specify the ARN of the DB cluster
snapshot to be copied, which must include the ID for the source account.

Running the following example using the account 123451234512 copies the DB cluster snapshot
aurora-cluster1-snapshot-20130805 from account 987654321 and creates a DB cluster
snapshot named dbclustersnapshot1.

https://rds.us-west-2.amazonaws.com/
 ?Action=CopyDBClusterSnapshot
 &CopyTags=true
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &SourceDBClusterSnapshotIdentifier=arn:aws:rds:us-west-2:987654321:cluster-
snapshot:aurora-cluster1-snapshot-20130805
 &TargetDBClusterSnapshotIdentifier=dbclustersnapshot1
 &Version=2013-09-09
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20150922/us-west-2/rds/aws4_request
 &X-Amz-Date=20140429T175351Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=9164337efa99caf850e874a1cb7ef62f3cea29d0b448b9e0e7c53b288ddffed2

Copying an encrypted DB cluster snapshot to another account

Use the following procedure to copy an encrypted DB cluster snapshot to another account in the same
AWS Region.

508

Amazon Aurora User Guide for Aurora
Copying a DB cluster snapshot

1. In the source account for the DB cluster snapshot, call ModifyDBClusterSnapshotAttribute,
specifying restore for the AttributeName parameter, and the ID for the target account for the
ValuesToAdd parameter.

Running the following example using the account 987654321 permits two AWS account identifiers,
123451234512 and 123456789012, to restore the DB cluster snapshot named manual-
snapshot1.

https://rds.us-west-2.amazonaws.com/
 ?Action=ModifyDBClusterSnapshotAttribute
 &AttributeName=restore
 &DBClusterSnapshotIdentifier=manual-snapshot1
 &SignatureMethod=HmacSHA256&SignatureVersion=4
 &ValuesToAdd.member.1=123451234512
 &ValuesToAdd.member.2=123456789012
 &Version=2014-10-31
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20150922/us-west-2/rds/aws4_request
 &X-Amz-Date=20150922T220515Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=ef38f1ce3dab4e1dbf113d8d2a265c67d17ece1999ffd36be85714ed36dddbb3

2. In the source account for the DB cluster snapshot, update the key policy for the KMS key, first adding
the ARN of the target account as a Principal, and then allow the kms:CreateGrant action. For
more information, see Allowing access to an AWS KMS key (p. 511).

3. In the target account, choose or create an IAM user and attach an IAM policy to that user that allows
it to copy an encrypted DB cluster snapshot using your KMS key. For more information, see Creating
an IAM policy to enable copying of the encrypted snapshot (p. 512).

4. In the target account, call CopyDBClusterSnapshot and use the
SourceDBClusterSnapshotIdentifier parameter to specify the ARN of the DB cluster
snapshot to be copied, which must include the ID for the source account.

Running the following example using the account 123451234512 copies the DB cluster snapshot
aurora-cluster1-snapshot-20130805 from account 987654321 and creates a DB cluster
snapshot named dbclustersnapshot1.

https://rds.us-west-2.amazonaws.com/
 ?Action=CopyDBClusterSnapshot
 &CopyTags=true
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &SourceDBClusterSnapshotIdentifier=arn:aws:rds:us-west-2:987654321:cluster-
snapshot:aurora-cluster1-snapshot-20130805
 &TargetDBClusterSnapshotIdentifier=dbclustersnapshot1
 &Version=2013-09-09
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20150922/us-west-2/rds/aws4_request
 &X-Amz-Date=20140429T175351Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=9164337efa99caf850e874a1cb7ef62f3cea29d0b448b9e0e7c53b288ddffed2

509

Amazon Aurora User Guide for Aurora
Sharing a snapshot

Sharing a DB cluster snapshot
Using Amazon RDS, you can share a manual DB cluster snapshot in the following ways:

• Sharing a manual DB cluster snapshot, whether encrypted or unencrypted, enables authorized AWS
accounts to copy the snapshot.

• Sharing a manual DB cluster snapshot, whether encrypted or unencrypted, enables authorized AWS
accounts to directly restore a DB cluster from the snapshot instead of taking a copy of it and restoring
from that.

Note
To share an automated DB cluster snapshot, create a manual DB cluster snapshot by copying
the automated snapshot, and then share that copy. This process also applies to AWS Backup–
generated resources.

For more information on copying a snapshot, see Copying a DB cluster snapshot (p. 500). For more
information on restoring a DB instance from a DB cluster snapshot, see Restoring from a DB cluster
snapshot (p. 497).

For more information on restoring a DB cluster from a DB cluster snapshot, see Overview of backing up
and restoring an Aurora DB cluster (p. 491).

You can share a manual snapshot with up to 20 other AWS accounts.

The following limitation applies when sharing manual snapshots with other AWS accounts:

• When you restore a DB cluster from a shared snapshot using the AWS Command Line Interface (AWS
CLI) or Amazon RDS API, you must specify the Amazon Resource Name (ARN) of the shared snapshot
as the snapshot identifier.

Sharing public snapshots
You can also share an unencrypted manual snapshot as public, which makes the snapshot available to
all AWS accounts. Make sure when sharing a snapshot as public that none of your private information is
included in the public snapshot.

When a snapshot is shared publicly, it gives all AWS accounts permission both to copy the snapshot and
to create DB clusters from it.

You aren't billed for the backup storage of public snapshots owned by other accounts. You're billed only
for snapshots that you own.

If you copy a public snapshot, you own the copy. You're billed for the backup storage of your snapshot
copy. If you create a DB cluster from a public snapshot, you're billed for that DB cluster. For Amazon
Aurora pricing information, see the Aurora pricing page.

You can delete only the public snapshots that you own. To delete a shared or public snapshot, make sure
to log into the AWS account that owns the snapshot.

Viewing public snapshots owned by other AWS accounts
You can view public snapshots owned by other accounts in a particular AWS Region on the Public tab of
the Snapshots page in the Amazon RDS console. Your snapshots (those owned by your account) don't
appear on this tab.

510

https://aws.amazon.com/rds/aurora/pricing

Amazon Aurora User Guide for Aurora
Sharing encrypted snapshots

To view public snapshots

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.
2. In the navigation pane, choose Snapshots.
3. Choose the Public tab.

The public snapshots appear. You can see which account owns a public snapshot in the Owner
column.

Note
You might have to modify the page preferences, by selecting the gear icon at the upper
right of the Public snapshots list, to see this column.

Viewing your own public snapshots
You can use the following AWS CLI command (Unix only) to view the public snapshots owned by your
AWS account in a particular AWS Region.

aws rds describe-db-cluster-snapshots --snapshot-type public --include-public |
 grep account_number

The output returned is similar to the following example if you have public snapshots.

"DBClusterSnapshotArn": "arn:aws:rds:us-west-2:123456789012:cluster-
snapshot:myclustersnapshot1",
"DBClusterSnapshotArn": "arn:aws:rds:us-west-2:123456789012:cluster-
snapshot:myclustersnapshot2",

Sharing encrypted snapshots
You can share DB cluster snapshots that have been encrypted "at rest" using the AES-256 encryption
algorithm, as described in Encrypting Amazon Aurora resources (p. 1722). To do this, take the following
steps:

1. Share the AWS KMS key that was used to encrypt the snapshot with any accounts that you want to be
able to access the snapshot.

You can share KMS keys with another AWS account by adding the other account to the KMS key policy.
For details on updating a key policy, see Key policies in the AWS KMS Developer Guide. For an example
of creating a key policy, see Allowing access to an AWS KMS key (p. 511) later in this topic.

2. Use the AWS Management Console, AWS CLI, or Amazon RDS API to share the encrypted snapshot
with the other accounts.

These restrictions apply to sharing encrypted snapshots:

• You can't share encrypted snapshots as public.
• You can't share a snapshot that has been encrypted using the default KMS key of the AWS account

that shared the snapshot.

Allowing access to an AWS KMS key
For another AWS account to copy an encrypted DB cluster snapshot shared from your account, the
account that you share your snapshot with must have access to the AWS KMS key that encrypted the
snapshot.

511

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html

Amazon Aurora User Guide for Aurora
Sharing encrypted snapshots

To allow another AWS account access to a KMS key, update the key policy for the KMS key. You update it
with the Amazon Resource Name (ARN) of the AWS account that you are sharing to as Principal in the
KMS key policy. Then you allow the kms:CreateGrant action.

After you have given an AWS account access to your KMS key, to copy your encrypted snapshot that AWS
account must create an AWS Identity and Access Management (IAM) role or user if it doesn't already have
one. In addition, that AWS account must also attach an IAM policy to that IAM role or user that allows
the role or user to copy an encrypted DB cluster snapshot using your KMS key. The account must be an
IAM user and cannot be a root AWS account identity due to AWS KMS security restrictions.

In the following key policy example, user 111122223333 is the owner of the KMS key, and user
444455556666 is the account that the key is being shared with. This updated key policy gives the
AWS account access to the KMS key by including the ARN for the root AWS account identity for user
444455556666 as a Principal for the policy, and by allowing the kms:CreateGrant action.

{
 "Id": "key-policy-1",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Allow use of the key",
 "Effect": "Allow",
 "Principal": {"AWS": [
 "arn:aws:iam::111122223333:user/KeyUser",
 "arn:aws:iam::444455556666:root"
]},
 "Action": [
 "kms:CreateGrant",
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*"
 },
 {
 "Sid": "Allow attachment of persistent resources",
 "Effect": "Allow",
 "Principal": {"AWS": [
 "arn:aws:iam::111122223333:user/KeyUser",
 "arn:aws:iam::444455556666:root"
]},
 "Action": [
 "kms:CreateGrant",
 "kms:ListGrants",
 "kms:RevokeGrant"
],
 "Resource": "*",
 "Condition": {"Bool": {"kms:GrantIsForAWSResource": true}}
 }
]
}

Creating an IAM policy to enable copying of the encrypted snapshot

Once the external AWS account has access to your KMS key, the owner of that AWS account can create
a policy that allows an IAM user created for that account to copy an encrypted snapshot encrypted with
that KMS key.

The following example shows a policy that can be attached to an IAM user for AWS account
444455556666 that enables the IAM user to copy a shared snapshot from AWS account 111122223333

512

Amazon Aurora User Guide for Aurora
Sharing a snapshot

that has been encrypted with the KMS key c989c1dd-a3f2-4a5d-8d96-e793d082ab26 in the us-
west-2 region.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowUseOfTheKey",
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey",
 "kms:CreateGrant",
 "kms:RetireGrant"
],
 "Resource": ["arn:aws:kms:us-west-2:111122223333:key/c989c1dd-a3f2-4a5d-8d96-
e793d082ab26"]
 },
 {
 "Sid": "AllowAttachmentOfPersistentResources",
 "Effect": "Allow",
 "Action": [
 "kms:CreateGrant",
 "kms:ListGrants",
 "kms:RevokeGrant"
],
 "Resource": ["arn:aws:kms:us-west-2:111122223333:key/c989c1dd-a3f2-4a5d-8d96-
e793d082ab26"],
 "Condition": {
 "Bool": {
 "kms:GrantIsForAWSResource": true
 }
 }
 }
]
}

For details on updating a key policy, see Key policies in the AWS KMS Developer Guide.

Sharing a snapshot
You can share a DB cluster snapshot using the AWS Management Console, the AWS CLI, or the RDS API.

Console

Using the Amazon RDS console, you can share a manual DB cluster snapshot with up to 20 AWS
accounts. You can also use the console to stop sharing a manual snapshot with one or more accounts.

To share a manual DB cluster snapshot by using the Amazon RDS console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Select the manual snapshot that you want to share.

4. For Actions, choose Share Snapshot.

513

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Sharing a snapshot

5. Choose one of the following options for DB snapshot visibility.

• If the source is unencrypted, choose Public to permit all AWS accounts to restore a DB cluster
from your manual DB cluster snapshot, or choose Private to permit only AWS accounts that you
specify to restore a DB cluster from your manual DB cluster snapshot.

Warning
If you set DB snapshot visibility to Public, all AWS accounts can restore a DB cluster from
your manual DB cluster snapshot and have access to your data. Do not share any manual
DB cluster snapshots that contain private information as Public.

• If the source is encrypted, DB snapshot visibility is set as Private because encrypted snapshots
can't be shared as public.

6. For AWS Account ID, type the AWS account identifier for an account that you want to permit to
restore a DB cluster from your manual snapshot, and then choose Add. Repeat to include additional
AWS account identifiers, up to 20 AWS accounts.

If you make an error when adding an AWS account identifier to the list of permitted accounts, you
can delete it from the list by choosing Delete at the right of the incorrect AWS account identifier.

7. After you have added identifiers for all of the AWS accounts that you want to permit to restore the
manual snapshot, choose Save to save your changes.

To stop sharing a manual DB cluster snapshot with an AWS account

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. Select the manual snapshot that you want to stop sharing.

4. Choose Actions, and then choose Share Snapshot.

514

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Sharing a snapshot

5. To remove permission for an AWS account, choose Delete for the AWS account identifier for that
account from the list of authorized accounts.

6. Choose Save to save your changes.

AWS CLI

To share a DB cluster snapshot, use the aws rds modify-db-cluster-snapshot-attribute
command. Use the --values-to-add parameter to add a list of the IDs for the AWS accounts that are
authorized to restore the manual snapshot.

Example of sharing a snapshot with a single account

The following example enables AWS account identifier 123456789012 to restore the DB cluster
snapshot named cluster-3-snapshot.

For Linux, macOS, or Unix:

aws rds modify-db-cluster-snapshot-attribute \
--db-cluster-snapshot-identifier cluster-3-snapshot \
--attribute-name restore \
--values-to-add 123456789012

For Windows:

aws rds modify-db-cluster-snapshot-attribute ^
--db-cluster-snapshot-identifier cluster-3-snapshot ^
--attribute-name restore ^
--values-to-add 123456789012

515

Amazon Aurora User Guide for Aurora
Sharing a snapshot

Example of sharing a snapshot with multiple accounts

The following example enables two AWS account identifiers, 111122223333 and 444455556666, to
restore the DB cluster snapshot named manual-cluster-snapshot1.

For Linux, macOS, or Unix:

aws rds modify-db-cluster-snapshot-attribute \
--db-cluster-snapshot-identifier manual-cluster-snapshot1 \
--attribute-name restore \
--values-to-add {"111122223333","444455556666"}

For Windows:

aws rds modify-db-cluster-snapshot-attribute ^
--db-cluster-snapshot-identifier manual-cluster-snapshot1 ^
--attribute-name restore ^
--values-to-add "[\"111122223333\",\"444455556666\"]"

Note
When using the Windows command prompt, you must escape double quotes (") in JSON code by
prefixing them with a backslash (\).

To remove an AWS account identifier from the list, use the --values-to-remove parameter.

Example of stopping snapshot sharing

The following example prevents AWS account ID 444455556666 from restoring the snapshot.

For Linux, macOS, or Unix:

aws rds modify-db-cluster-snapshot-attribute \
--db-cluster-snapshot-identifier manual-cluster-snapshot1 \
--attribute-name restore \
--values-to-remove 444455556666

For Windows:

aws rds modify-db-cluster-snapshot-attribute ^
--db-cluster-snapshot-identifier manual-cluster-snapshot1 ^
--attribute-name restore ^
--values-to-remove 444455556666

To list the AWS accounts enabled to restore a snapshot, use the describe-db-cluster-snapshot-
attributes AWS CLI command.

RDS API

You can also share a manual DB cluster snapshot with other AWS accounts by using the Amazon RDS
API. To do so, call the ModifyDBClusterSnapshotAttribute operation. Specify restore for
AttributeName, and use the ValuesToAdd parameter to add a list of the IDs for the AWS accounts
that are authorized to restore the manual snapshot.

To make a manual snapshot public and restorable by all AWS accounts, use the value all. However,
take care not to add the all value for any manual snapshots that contain private information that you
don't want to be available to all AWS accounts. Also, don't specify all for encrypted snapshots, because
making such snapshots public isn't supported.

516

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-snapshot-attributes.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-snapshot-attributes.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBClusterSnapshotAttribute.html

Amazon Aurora User Guide for Aurora
Sharing a snapshot

To remove sharing permission for an AWS account, use the ModifyDBClusterSnapshotAttribute
operation with AttributeName set to restore and the ValuesToRemove parameter. To mark a
manual snapshot as private, remove the value all from the values list for the restore attribute.

To list all of the AWS accounts permitted to restore a snapshot, use the
DescribeDBClusterSnapshotAttributes API operation.

517

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBClusterSnapshotAttribute.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterSnapshotAttributes.html

Amazon Aurora User Guide for Aurora
Exporting snapshot data to Amazon S3

Exporting DB snapshot data to Amazon S3
You can export DB snapshot data to an Amazon S3 bucket. The export process runs in the background
and doesn't affect the performance of your active DB cluster.

When you export a DB snapshot, Amazon Aurora extracts data from the snapshot and stores it in an
Amazon S3 bucket. The data is stored in an Apache Parquet format that is compressed and consistent.

You can export manual snapshots and automated system snapshots. By default, all data in the snapshot
is exported. However, you can choose to export specific sets of databases, schemas, or tables.

After the data is exported, you can analyze the exported data directly through tools like Amazon Athena
or Amazon Redshift Spectrum. For more information on using Athena to read Parquet data, see Parquet
SerDe in the Amazon Athena User Guide. For more information on using Redshift Spectrum to read
Parquet data, see COPY from columnar data formats in the Amazon Redshift Database Developer Guide.

Amazon RDS supports exporting snapshots in all AWS Regions except the following:

• Asia Pacific (Jakarta)
• AWS GovCloud (US-East)
• AWS GovCloud (US-West)

The following table shows the Aurora MySQL engine versions that are supported for exporting snapshot
data to Amazon S3. For more information about Aurora MySQL engine versions, see Database engine
updates for Amazon Aurora MySQL (p. 1103).

Aurora MySQL version MySQL-compatible version

3.01.0 and higher 8.0

2.04.4 and higher 5.7

1.19.2 and higher 5.6

The following table shows the Aurora PostgreSQL engine versions that are supported for exporting
snapshot data to Amazon S3. For more information about Aurora PostgreSQL engine versions, see
Amazon Aurora PostgreSQL releases and engine versions (p. 1615).

Aurora PostgreSQL version PostgreSQL-compatible version

13.3 and higher 13.3 and higher

4.0 and higher 12.4 and higher

3.0 and higher 11.4 and higher

2.2 and higher 10.6 and higher

1.4 and higher 9.6.11 and higher

Topics
• Limitations (p. 519)
• Overview of exporting snapshot data (p. 519)

518

https://docs.aws.amazon.com/athena/latest/ug/parquet-serde.html
https://docs.aws.amazon.com/athena/latest/ug/parquet-serde.html
https://docs.aws.amazon.com/redshift/latest/dg/copy-usage_notes-copy-from-columnar.html

Amazon Aurora User Guide for Aurora
Limitations

• Setting up access to an Amazon S3 bucket (p. 520)
• Using a cross-account AWS KMS key for encrypting Amazon S3 exports (p. 522)
• Exporting a snapshot to an Amazon S3 bucket (p. 523)
• Monitoring snapshot exports (p. 526)
• Canceling a snapshot export task (p. 527)
• Failure messages for Amazon S3 export tasks (p. 528)
• Troubleshooting PostgreSQL permissions errors (p. 529)
• File naming convention (p. 529)
• Data conversion when exporting to an Amazon S3 bucket (p. 530)

Limitations
Exporting DB snapshot data to Amazon S3 has the following limitations:

• If a database, schema, or table has characters in its name other than the following, partial export isn't
supported. However, you can export the entire DB snapshot.
• Latin letters (A–Z)
• Digits (0–9)
• Dollar symbol ($)
• Underscore (_)

• Spaces () and certain characters aren't supported in database table column names. Tables with the
following characters in column names are skipped during export:

, ; { } () \n \t = (space)

• If the data contains a large object such as a BLOB or CLOB, close to or greater than 500 MB, the export
fails.

• If a table contains a large row close to or greater than 2 GB, the table is skipped during export.

Overview of exporting snapshot data
You use the following process to export DB snapshot data to an Amazon S3 bucket. For more details, see
the following sections.

1. Identify the snapshot to export.

Use an existing automated or manual snapshot, or create a manual snapshot of a DB instance.
2. Set up access to the Amazon S3 bucket.

A bucket is a container for Amazon S3 objects or files. To provide the information to access a bucket,
take the following steps:

a. Identify the S3 bucket where the snapshot is to be exported to. The S3 bucket must be in the
same AWS Region as the snapshot. For more information, see Identifying the Amazon S3 bucket
for export (p. 520).

b. Create an AWS Identity and Access Management (IAM) role that grants the snapshot export task
access to the S3 bucket. For more information, see Providing access to an Amazon S3 bucket
using an IAM role (p. 520).

3. Create a symmetric AWS KMS key for the server-side encryption. The KMS key is used by the
snapshot export task to set up AWS KMS server-side encryption when writing the export data to S3.
For more information, see Encrypting Amazon Aurora resources (p. 1722).

519

Amazon Aurora User Guide for Aurora
Setting up access to an S3 bucket

The KMS key is also used for local disk encryption at rest on Amazon EC2. In addition, if you have
a deny statement in your KMS key policy, make sure to explicitly exclude the AWS service principal
export.rds.amazonaws.com.

You can use a KMS key within your AWS account, or you can use a cross-account KMS key. For more
information, see Using a cross-account AWS KMS key for encrypting Amazon S3 exports (p. 522).

4. Export the snapshot to Amazon S3 using the console or the start-export-task CLI command.
For more information, see Exporting a snapshot to an Amazon S3 bucket (p. 523).

5. To access your exported data in the Amazon S3 bucket, see Uploading, downloading, and managing
objects in the Amazon Simple Storage Service User Guide.

Setting up access to an Amazon S3 bucket
To export DB snapshot data to an Amazon S3 file, you first give the snapshot permission to access the
Amazon S3 bucket. You then create an IAM role to allow the Amazon Aurora service to write to the
Amazon S3 bucket.

Topics
• Identifying the Amazon S3 bucket for export (p. 520)
• Providing access to an Amazon S3 bucket using an IAM role (p. 520)
• Using a cross-account Amazon S3 bucket (p. 522)

Identifying the Amazon S3 bucket for export
Identify the Amazon S3 bucket to export the DB snapshot to. Use an existing S3 bucket or create a new
S3 bucket.

Note
The S3 bucket to export to must be in the same AWS Region as the snapshot.

For more information about working with Amazon S3 buckets, see the following in the Amazon Simple
Storage Service User Guide:

• How do I view the properties for an S3 bucket?
• How do I enable default encryption for an Amazon S3 bucket?
• How do I create an S3 bucket?

Providing access to an Amazon S3 bucket using an IAM role
Before you export DB snapshot data to Amazon S3, give the snapshot export tasks write-access
permission to the Amazon S3 bucket.

To do this, create an IAM policy that provides access to the bucket. Then create an IAM role and attach
the policy to the role. You later assign the IAM role to your snapshot export task.

Important
If you plan to use the AWS Management Console to export your snapshot, you can choose to
create the IAM policy and the role automatically when you export the snapshot. For instructions,
see Exporting a snapshot to an Amazon S3 bucket (p. 523).

To give DB snapshot tasks access to Amazon S3

1. Create an IAM policy. This policy provides the bucket and object permissions that allow your
snapshot export task to access Amazon S3.

520

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-download-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-download-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/view-bucket-properties.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/default-bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html

Amazon Aurora User Guide for Aurora
Setting up access to an S3 bucket

Include in the policy the following required actions to allow the transfer of files from Amazon Aurora
to an S3 bucket:

• s3:PutObject*

• s3:GetObject*

• s3:ListBucket

• s3:DeleteObject*

• s3:GetBucketLocation

Include in the policy the following resources to identify the S3 bucket and objects in the bucket. The
following list of resources shows the Amazon Resource Name (ARN) format for accessing Amazon S3.

• arn:aws:s3:::your-s3-bucket

• arn:aws:s3:::your-s3-bucket/*

For more information on creating an IAM policy for Amazon Aurora, see Creating and using an IAM
policy for IAM database access (p. 1759). See also Tutorial: Create and attach your first customer
managed policy in the IAM User Guide.

The following AWS CLI command creates an IAM policy named ExportPolicy with these options. It
grants access to a bucket named your-s3-bucket.

Note
After you create the policy, note the ARN of the policy. You need the ARN for a subsequent
step when you attach the policy to an IAM role.

aws iam create-policy --policy-name ExportPolicy --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ExportPolicy",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject*",
 "s3:ListBucket",
 "s3:GetObject*",
 "s3:DeleteObject*",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::your-s3-bucket",
 "arn:aws:s3:::your-s3-bucket/*"
]
 }
]
}'

2. Create an IAM role. You do this so that Aurora can assume this IAM role on your behalf to access your
Amazon S3 buckets. For more information, see Creating a role to delegate permissions to an IAM
user in the IAM User Guide.

The following example shows using the AWS CLI command to create a role named rds-s3-
export-role.

aws iam create-role --role-name rds-s3-export-role --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [

521

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html

Amazon Aurora User Guide for Aurora
Using a cross-account KMS key

 {
 "Effect": "Allow",
 "Principal": {
 "Service": "export.rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }'

3. Attach the IAM policy that you created to the IAM role that you created.

The following AWS CLI command attaches the policy created earlier to the role named rds-s3-
export-role. Replace your-policy-arn with the policy ARN that you noted in an earlier step.

aws iam attach-role-policy --policy-arn your-policy-arn --role-name rds-s3-export-
role

Using a cross-account Amazon S3 bucket

You can use Amazon S3 buckets across AWS accounts. To use a cross-account bucket, add a bucket policy
to allow access to the IAM role that you're using for the S3 exports. For more information, see Example 2:
Bucket owner granting cross-account bucket permissions.

• Attach a bucket policy to your bucket, as shown in the following example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:role/Admin"
 },
 "Action": [
 "s3:PutObject*",
 "s3:ListBucket",
 "s3:GetObject*",
 "s3:DeleteObject*",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::mycrossaccountbucket",
 "arn:aws:s3:::mycrossaccountbucket/*"
]
 }
]
}

Using a cross-account AWS KMS key for encrypting
Amazon S3 exports
You can use a cross-account AWS KMS key to encrypt Amazon S3 exports. First, you add a key policy to
the local account, then you add IAM policies in the external account. For more information, see Allowing
users in other accounts to use a KMS key.

522

https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-walkthroughs-managing-access-example2.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-walkthroughs-managing-access-example2.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-modifying-external-accounts.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-modifying-external-accounts.html

Amazon Aurora User Guide for Aurora
Exporting a snapshot to an S3 bucket

To use a cross-account KMS key

1. Add a key policy to the local account.

The following example gives ExampleRole and ExampleUser in the external account
444455556666 permissions in the local account 123456789012.

{
 "Sid": "Allow an external account to use this KMS key",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::444455556666:role/ExampleRole",
 "arn:aws:iam::444455556666:user/ExampleUser"
]
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:CreateGrant",
 "kms:DescribeKey",
 "kms:RetireGrant"
],
 "Resource": "*"
}

2. Add IAM policies to the external account.

The following example IAM policy allows the principal to use the KMS key in account 123456789012
for cryptographic operations. To give this permission to ExampleRole and ExampleUser in
account 444455556666, attach the policy to them in that account.

{
 "Sid": "Allow use of KMS key in account 123456789012",
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:CreateGrant",
 "kms:DescribeKey",
 "kms:RetireGrant"
],
 "Resource": "arn:aws:kms:us-
west-2:123456789012:key/1234abcd-12ab-34cd-56ef-1234567890ab"
}

Exporting a snapshot to an Amazon S3 bucket
You can have up to five concurrent DB snapshot export tasks in progress per account.

Note
Exporting RDS snapshots can take a while depending on your database type and size. The
export task first restores and scales the entire database before extracting the data to Amazon
S3. The task's progress during this phase displays as Starting. When the task switches to
exporting data to S3, progress displays as In progress.

523

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#attach-managed-policy-console

Amazon Aurora User Guide for Aurora
Exporting a snapshot to an S3 bucket

The time it takes for the export to complete depends on the data stored in the database. For
example, tables with well-distributed numeric primary key or index columns export the fastest.
Tables that don't contain a column suitable for partitioning and tables with only one index on
a string-based column take longer. This longer export time occurs because the export uses a
slower single-threaded process.

You can export a DB snapshot to Amazon S3 using the AWS Management Console, the AWS CLI, or the
RDS API.

If you use a Lambda function to export a snapshot, add the kms:DescribeKey action to the Lambda
function policy. For more information, see AWS Lambda permissions.

Console

The Export to Amazon S3 console option appears only for snapshots that can be exported to Amazon
S3. A snapshot might not be available for export because of the following reasons:

• The DB engine isn't supported for S3 export.

• The DB instance version isn't supported for S3 export.

• S3 export isn't supported in the AWS Region where the snapshot was created.

To export a DB snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. From the tabs, choose the type of snapshot that you want to export.

4. In the list of snapshots, choose the snapshot that you want to export.

5. For Actions, choose Export to Amazon S3.

The Export to Amazon S3 window appears.

6. For Export identifier, enter a name to identify the export task. This value is also used for the name
of the file created in the S3 bucket.

7. Choose the data to be exported:

• Choose All to export all data in the snapshot.

• Choose Partial to export specific parts of the snapshot. To identify which parts of the snapshot to
export, enter one or more databases, schemas, or tables for Identifiers, separated by spaces.

Use the following format:

database[.schema][.table] database2[.schema2][.table2] ... databasen[.scheman]
[.tablen]

For example:

mydatabase mydatabase2.myschema1 mydatabase2.myschema2.mytable1
 mydatabase2.myschema2.mytable2

8. For S3 bucket, choose the bucket to export to.

To assign the exported data to a folder path in the S3 bucket, enter the optional path for S3 prefix.

9. For IAM role, either choose a role that grants you write access to your chosen S3 bucket, or create a
new role.

524

https://docs.aws.amazon.com/lambda/latest/dg/lambda-permissions.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Exporting a snapshot to an S3 bucket

• If you created a role by following the steps in Providing access to an Amazon S3 bucket using an
IAM role (p. 520), choose that role.

• If you didn't create a role that grants you write access to your chosen S3 bucket, choose Create a
new role to create the role automatically. Next, enter a name for the role in IAM role name.

10. For AWS KMS key, enter the ARN for the key to use for encrypting the exported data.
11. Choose Export to Amazon S3.

AWS CLI

To export a DB snapshot to Amazon S3 using the AWS CLI, use the start-export-task command with the
following required options:

• --export-task-identifier

• --source-arn

• --s3-bucket-name

• --iam-role-arn

• --kms-key-id

In the following examples, the snapshot export task is named my-snapshot-export, which exports a
snapshot to an S3 bucket named my-export-bucket.

Example

For Linux, macOS, or Unix:

aws rds start-export-task \
 --export-task-identifier my-snapshot-export \
 --source-arn arn:aws:rds:AWS_Region:123456789012:snapshot:snapshot-name \
 --s3-bucket-name my-export-bucket \
 --iam-role-arn iam-role \
 --kms-key-id my-key

For Windows:

aws rds start-export-task ^
 --export-task-identifier my-snapshot-export ^
 --source-arn arn:aws:rds:AWS_Region:123456789012:snapshot:snapshot-name ^
 --s3-bucket-name my-export-bucket ^
 --iam-role-arn iam-role ^
 --kms-key-id my-key

Sample output follows.

{
 "Status": "STARTING",
 "IamRoleArn": "iam-role",
 "ExportTime": "2019-08-12T01:23:53.109Z",
 "S3Bucket": "my-export-bucket",
 "PercentProgress": 0,
 "KmsKeyId": "my-key",
 "ExportTaskIdentifier": "my-snapshot-export",
 "TotalExtractedDataInGB": 0,
 "TaskStartTime": "2019-11-13T19:46:00.173Z",
 "SourceArn": "arn:aws:rds:AWS_Region:123456789012:snapshot:snapshot-name"
}

525

https://docs.aws.amazon.com/cli/latest/reference/rds/start-export-task.html

Amazon Aurora User Guide for Aurora
Monitoring snapshot exports

To provide a folder path in the S3 bucket for the snapshot export, include the --s3-prefix option in
the start-export-task command.

RDS API

To export a DB snapshot to Amazon S3 using the Amazon RDS API, use the StartExportTask operation
with the following required parameters:

• ExportTaskIdentifier

• SourceArn

• S3BucketName

• IamRoleArn

• KmsKeyId

Monitoring snapshot exports
You can monitor DB snapshot exports using the AWS Management Console, the AWS CLI, or the RDS API.

Console

To monitor DB snapshot exports

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.

3. To view the list of snapshot exports, choose the Exports in Amazon S3 tab.

4. To view information about a specific snapshot export, choose the export task.

AWS CLI

To monitor DB snapshot exports using the AWS CLI, use the describe-export-tasks command.

The following example shows how to display current information about all of your snapshot exports.

Example

aws rds describe-export-tasks

{
 "ExportTasks": [
 {
 "Status": "CANCELED",
 "TaskEndTime": "2019-11-01T17:36:46.961Z",
 "S3Prefix": "something",
 "ExportTime": "2019-10-24T20:23:48.364Z",
 "S3Bucket": "examplebucket",
 "PercentProgress": 0,
 "KmsKeyId": "arn:aws:kms:AWS_Region:123456789012:key/K7MDENG/
bPxRfiCYEXAMPLEKEY",
 "ExportTaskIdentifier": "anewtest",
 "IamRoleArn": "arn:aws:iam::123456789012:role/export-to-s3",
 "TotalExtractedDataInGB": 0,
 "TaskStartTime": "2019-10-25T19:10:58.885Z",
 "SourceArn": "arn:aws:rds:AWS_Region:123456789012:snapshot:parameter-groups-
test"

526

https://docs.aws.amazon.com/cli/latest/reference/rds/start-export-task.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_StartExportTask.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-export-tasks.html

Amazon Aurora User Guide for Aurora
Canceling a snapshot export

 },
{
 "Status": "COMPLETE",
 "TaskEndTime": "2019-10-31T21:37:28.312Z",
 "WarningMessage": "{\"skippedTables\":[],\"skippedObjectives\":[],\"general\":
[{\"reason\":\"FAILED_TO_EXTRACT_TABLES_LIST_FOR_DATABASE\"}]}",
 "S3Prefix": "",
 "ExportTime": "2019-10-31T06:44:53.452Z",
 "S3Bucket": "examplebucket1",
 "PercentProgress": 100,
 "KmsKeyId": "arn:aws:kms:AWS_Region:123456789012:key/2Zp9Utk/
h3yCo8nvbEXAMPLEKEY",
 "ExportTaskIdentifier": "thursday-events-test",
 "IamRoleArn": "arn:aws:iam::123456789012:role/export-to-s3",
 "TotalExtractedDataInGB": 263,
 "TaskStartTime": "2019-10-31T20:58:06.998Z",
 "SourceArn":
 "arn:aws:rds:AWS_Region:123456789012:snapshot:rds:example-1-2019-10-31-06-44"
 },
 {
 "Status": "FAILED",
 "TaskEndTime": "2019-10-31T02:12:36.409Z",
 "FailureCause": "The S3 bucket edgcuc-export isn't located in the current AWS
 Region. Please, review your S3 bucket name and retry the export.",
 "S3Prefix": "",
 "ExportTime": "2019-10-30T06:45:04.526Z",
 "S3Bucket": "examplebucket2",
 "PercentProgress": 0,
 "KmsKeyId": "arn:aws:kms:AWS_Region:123456789012:key/2Zp9Utk/
h3yCo8nvbEXAMPLEKEY",
 "ExportTaskIdentifier": "wednesday-afternoon-test",
 "IamRoleArn": "arn:aws:iam::123456789012:role/export-to-s3",
 "TotalExtractedDataInGB": 0,
 "TaskStartTime": "2019-10-30T22:43:40.034Z",
 "SourceArn":
 "arn:aws:rds:AWS_Region:123456789012:snapshot:rds:example-1-2019-10-30-06-45"
 }
]
}

To display information about a specific snapshot export, include the --export-task-identifier
option with the describe-export-tasks command. To filter the output, include the --Filters
option. For more options, see the describe-export-tasks command.

RDS API

To display information about DB snapshot exports using the Amazon RDS API, use the
DescribeExportTasks operation.

To track completion of the export workflow or to trigger another workflow, you can subscribe to Amazon
Simple Notification Service topics. For more information on Amazon SNS, see Using Amazon RDS event
notification (p. 696).

Canceling a snapshot export task
You can cancel a DB snapshot export task using the AWS Management Console, the AWS CLI, or the RDS
API.

Note
Canceling a snapshot export task doesn't remove any data that was exported to Amazon S3. For
information about how to delete the data using the console, see How do I delete objects from
an S3 bucket? To delete the data using the CLI, use the delete-object command.

527

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-export-tasks.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeExportTasks.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-objects.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/delete-object.html

Amazon Aurora User Guide for Aurora
Failure messages

Console

To cancel a snapshot export task

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.
3. Choose the Exports in Amazon S3 tab.
4. Choose the snapshot export task that you want to cancel.
5. Choose Cancel.
6. Choose Cancel export task on the confirmation page.

AWS CLI

To cancel a snapshot export task using the AWS CLI, use the cancel-export-task command. The command
requires the --export-task-identifier option.

Example

aws rds cancel-export-task --export-task-identifier my_export
{
 "Status": "CANCELING",
 "S3Prefix": "",
 "ExportTime": "2019-08-12T01:23:53.109Z",
 "S3Bucket": "examplebucket",
 "PercentProgress": 0,
 "KmsKeyId": "arn:aws:kms:AWS_Region:123456789012:key/K7MDENG/bPxRfiCYEXAMPLEKEY",
 "ExportTaskIdentifier": "my_export",
 "IamRoleArn": "arn:aws:iam::123456789012:role/export-to-s3",
 "TotalExtractedDataInGB": 0,
 "TaskStartTime": "2019-11-13T19:46:00.173Z",
 "SourceArn": "arn:aws:rds:AWS_Region:123456789012:snapshot:export-example-1"
}

RDS API

To cancel a snapshot export task using the Amazon RDS API, use the CancelExportTask operation with
the ExportTaskIdentifier parameter.

Failure messages for Amazon S3 export tasks
The following table describes the messages that are returned when Amazon S3 export tasks fail.

Failure message Description

An unknown internal error occurred. The task has failed because of an unknown error,
exception, or failure.

An unknown internal error occurred
writing the export task's metadata to the
S3 bucket [bucket name].

The task has failed because of an unknown error,
exception, or failure.

The RDS export failed to write the export
task's metadata because it can't assume
the IAM role [role ARN].

The export task assumes your IAM role to validate
whether it is allowed to write metadata to your S3 bucket.
If the task can't assume your IAM role, it fails.

528

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/cancel-export-task.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CancelExportTask.html

Amazon Aurora User Guide for Aurora
Troubleshooting PostgreSQL permissions errors

Failure message Description

The RDS export failed to write the export
task's metadata to the S3 bucket [bucket
name] using the IAM role [role ARN] with
the KMS key [key ID]. Error code: [error
code]

One or more permissions are missing, so the export task
can't access the S3 bucket. This failure message is raised
when receiving one of the following:

• AWSSecurityTokenServiceException with the
error code AccessDenied

• AmazonS3Exception with the error
code NoSuchBucket, AccessDenied,
KMS.KMSInvalidStateException, 403 Forbidden,
or KMS.DisabledException

This means that there are settings misconfigured among
the IAM role, S3 bucket, or KMS key.

The IAM role [role ARN] isn't authorized to
call [S3 action] on the S3 bucket [bucket
name]. Review your permissions and retry
the export.

The IAM policy is misconfigured. Permission for the
specific S3 action on the S3 bucket is missing. This causes
the export task to fail.

KMS key check failed. Check the
credentials on your KMS key and try again.

The KMS key credential check failed.

S3 credential check failed. Check the
permissions on your S3 bucket and IAM
policy.

The S3 credential check failed.

The S3 bucket [bucket name] isn't valid.
Either it isn't located in the current AWS
Region or it doesn't exist. Review your S3
bucket name and retry the export.

The S3 bucket is invalid.

The S3 bucket [bucket name] isn't located
in the current AWS Region. Review your S3
bucket name and retry the export.

The S3 bucket is in the wrong AWS Region.

Troubleshooting PostgreSQL permissions errors
When exporting PostgreSQL databases to Amazon S3, you might see a PERMISSIONS_DO_NOT_EXIST
error stating that certain tables were skipped. This is usually caused by the superuser, which you specify
when creating the DB instance, not having permissions to access those tables.

To fix this error, run the following command:

GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA schema_name TO superuser_name

For more information on superuser privileges, see Master user account privileges (p. 1795).

File naming convention
Exported data for specific tables is stored in the format base_prefix/files, where the base prefix is
the following:

export_identifier/database_name/schema_name.table_name/

529

Amazon Aurora User Guide for Aurora
Data conversion

For example:

export-1234567890123-459/rdststdb/rdststdb.DataInsert_7ADB5D19965123A2/

There are two conventions for how files are named. The current convention is the following:

partition_index/part-00000-random_uuid.format-based_extension

For example:

1/part-00000-c5a881bb-58ff-4ee6-1111-b41ecff340a3-c000.gz.parquet
2/part-00000-d7a881cc-88cc-5ab7-2222-c41ecab340a4-c000.gz.parquet
3/part-00000-f5a991ab-59aa-7fa6-3333-d41eccd340a7-c000.gz.parquet

The older convention is the following:

part-partition_index-random_uuid.format-based_extension

For example:

part-00000-c5a881bb-58ff-4ee6-1111-b41ecff340a3-c000.gz.parquet
part-00001-d7a881cc-88cc-5ab7-2222-c41ecab340a4-c000.gz.parquet
part-00002-f5a991ab-59aa-7fa6-3333-d41eccd340a7-c000.gz.parquet

The file naming convention is subject to change. Therefore, when reading target tables we recommend
that you read everything inside the base prefix for the table.

Data conversion when exporting to an Amazon S3
bucket
When you export a DB snapshot to an Amazon S3 bucket, Amazon Aurora converts data to, exports data
in, and stores data in the Parquet format. For more information about Parquet, see the Apache Parquet
website.

Parquet stores all data as one of the following primitive types:

• BOOLEAN
• INT32
• INT64
• INT96
• FLOAT
• DOUBLE
• BYTE_ARRAY – A variable-length byte array, also known as binary
• FIXED_LEN_BYTE_ARRAY – A fixed-length byte array used when the values have a constant size

The Parquet data types are few to reduce the complexity of reading and writing the format. Parquet
provides logical types for extending primitive types. A logical type is implemented as an annotation with
the data in a LogicalType metadata field. The logical type annotation explains how to interpret the
primitive type.

When the STRING logical type annotates a BYTE_ARRAY type, it indicates that the byte array should be
interpreted as a UTF-8 encoded character string. After an export task completes, Amazon Aurora notifies

530

https://parquet.apache.org/documentation/latest/

Amazon Aurora User Guide for Aurora
Data conversion

you if any string conversion occurred. The underlying data exported is always the same as the data from
the source. However, due to the encoding difference in UTF-8, some characters might appear different
from the source when read in tools such as Athena.

For more information, see Parquet logical type definitions in the Parquet documentation.

Topics
• MySQL data type mapping to Parquet (p. 531)

• PostgreSQL data type mapping to Parquet (p. 533)

MySQL data type mapping to Parquet
The following table shows the mapping from MySQL data types to Parquet data types when data is
converted and exported to Amazon S3.

Source data type Parquet primitive type Logical type
annotation

Conversion notes

Numeric data types

BIGINT INT64

BIGINT UNSIGNED FIXED_LEN_BYTE_ARRAY(9)DECIMAL(20,0) Parquet supports only
signed types, so the
mapping requires an
additional byte (8
plus 1) to store the
BIGINT_UNSIGNED
type.

BIT BYTE_ARRAY

INT32 DECIMAL(p,s) If the source value is
less than 231, it's stored
as INT32.

INT64 DECIMAL(p,s) If the source value is 231

or greater, but less than
263, it's stored as INT64.

FIXED_LEN_BYTE_ARRAY(N)DECIMAL(p,s) If the source value is 263

or greater, it's stored as
FIXED_LEN_BYTE_ARRAY(N).

DECIMAL

BYTE_ARRAY STRING Parquet doesn't support
Decimal precision
greater than 38.
The Decimal value is
converted to a string in
a BYTE_ARRAY type and
encoded as UTF8.

DOUBLE DOUBLE

FLOAT DOUBLE

INT INT32

531

https://github.com/apache/parquet-format/blob/master/LogicalTypes.md

Amazon Aurora User Guide for Aurora
Data conversion

Source data type Parquet primitive type Logical type
annotation

Conversion notes

INT UNSIGNED INT64

MEDIUMINT INT32

MEDIUMINT UNSIGNED INT64

INT32 DECIMAL(p,s) If the source value is
less than 231, it's stored
as INT32.

INT64 DECIMAL(p,s) If the source value is 231

or greater, but less than
263, it's stored as INT64.

FIXED_LEN_ARRAY(N) DECIMAL(p,s) If the source value is 263

or greater, it's stored as
FIXED_LEN_BYTE_ARRAY(N).

NUMERIC

BYTE_ARRAY STRING Parquet doesn't support
Numeric precision
greater than 38. This
Numeric value is
converted to a string in
a BYTE_ARRAY type and
encoded as UTF8.

SMALLINT INT32

SMALLINT UNSIGNED INT32

TINYINT INT32

TINYINT UNSIGNED INT32

String data types

BINARY BYTE_ARRAY

BLOB BYTE_ARRAY

CHAR BYTE_ARRAY

ENUM BYTE_ARRAY STRING

LINESTRING BYTE_ARRAY

LONGBLOB BYTE_ARRAY

LONGTEXT BYTE_ARRAY STRING

MEDIUMBLOB BYTE_ARRAY

MEDIUMTEXT BYTE_ARRAY STRING

MULTILINESTRING BYTE_ARRAY

SET BYTE_ARRAY STRING

TEXT BYTE_ARRAY STRING

532

Amazon Aurora User Guide for Aurora
Data conversion

Source data type Parquet primitive type Logical type
annotation

Conversion notes

TINYBLOB BYTE_ARRAY

TINYTEXT BYTE_ARRAY STRING

VARBINARY BYTE_ARRAY

VARCHAR BYTE_ARRAY STRING

Date and time data types

DATE BYTE_ARRAY STRING A date is converted to a
string in a BYTE_ARRAY
type and encoded as
UTF8.

DATETIME INT64 TIMESTAMP_MICROS

TIME BYTE_ARRAY STRING A TIME type is
converted to a string
in a BYTE_ARRAY and
encoded as UTF8.

TIMESTAMP INT64 TIMESTAMP_MICROS

YEAR INT32

Geometric data types

GEOMETRY BYTE_ARRAY

GEOMETRYCOLLECTION BYTE_ARRAY

MULTIPOINT BYTE_ARRAY

MULTIPOLYGON BYTE_ARRAY

POINT BYTE_ARRAY

POLYGON BYTE_ARRAY

JSON data type

JSON BYTE_ARRAY STRING

PostgreSQL data type mapping to Parquet

The following table shows the mapping from PostgreSQL data types to Parquet data types when data is
converted and exported to Amazon S3.

PostgreSQL data type Parquet primitive type Logical type
annotation

Mapping notes

Numeric data types

BIGINT INT64

533

Amazon Aurora User Guide for Aurora
Data conversion

PostgreSQL data type Parquet primitive type Logical type
annotation

Mapping notes

BIGSERIAL INT64

DECIMAL BYTE_ARRAY STRING A DECIMAL type is
converted to a string in
a BYTE_ARRAY type and
encoded as UTF8.

This conversion is to
avoid complications due
to data precision and
data values that are not
a number (NaN).

DOUBLE PRECISION DOUBLE

INTEGER INT32

MONEY BYTE_ARRAY STRING

REAL FLOAT

SERIAL INT32

SMALLINT INT32 INT_16

SMALLSERIAL INT32 INT_16

String and related data types

ARRAY BYTE_ARRAY STRING An array is converted to
a string and encoded as
BINARY (UTF8).

This conversion is to
avoid complications due
to data precision, data
values that are not a
number (NaN), and time
data values.

BIT BYTE_ARRAY STRING

BIT VARYING BYTE_ARRAY STRING

BYTEA BINARY

CHAR BYTE_ARRAY STRING

CHAR(N) BYTE_ARRAY STRING

ENUM BYTE_ARRAY STRING

NAME BYTE_ARRAY STRING

TEXT BYTE_ARRAY STRING

TEXT SEARCH BYTE_ARRAY STRING

534

Amazon Aurora User Guide for Aurora
Data conversion

PostgreSQL data type Parquet primitive type Logical type
annotation

Mapping notes

VARCHAR(N) BYTE_ARRAY STRING

XML BYTE_ARRAY STRING

Date and time data types

DATE BYTE_ARRAY STRING

INTERVAL BYTE_ARRAY STRING

TIME BYTE_ARRAY STRING

TIME WITH TIME ZONE BYTE_ARRAY STRING

TIMESTAMP BYTE_ARRAY STRING

TIMESTAMP WITH TIME
ZONE

BYTE_ARRAY STRING

Geometric data types

BOX BYTE_ARRAY STRING

CIRCLE BYTE_ARRAY STRING

LINE BYTE_ARRAY STRING

LINESEGMENT BYTE_ARRAY STRING

PATH BYTE_ARRAY STRING

POINT BYTE_ARRAY STRING

POLYGON BYTE_ARRAY STRING

JSON data types

JSON BYTE_ARRAY STRING

JSONB BYTE_ARRAY STRING

Other data types

BOOLEAN BOOLEAN

CIDR BYTE_ARRAY STRING Network data type

COMPOSITE BYTE_ARRAY STRING

DOMAIN BYTE_ARRAY STRING

INET BYTE_ARRAY STRING Network data type

MACADDR BYTE_ARRAY STRING

OBJECT IDENTIFIER N/A

PG_LSN BYTE_ARRAY STRING

RANGE BYTE_ARRAY STRING

535

Amazon Aurora User Guide for Aurora
Data conversion

PostgreSQL data type Parquet primitive type Logical type
annotation

Mapping notes

UUID BYTE_ARRAY STRING

536

Amazon Aurora User Guide for Aurora
Point-in-time recovery

Restoring a DB cluster to a specified time
You can restore a DB cluster to a specific point in time, creating a new DB cluster.

When you restore a DB cluster to a point in time, you can choose the default virtual private cloud (VPC)
security group. Or you can apply a custom VPC security group to your DB cluster.

Restored DB clusters are automatically associated with the default DB cluster and DB parameter groups.
However, you can apply custom parameter groups by specifying them during a restore.

Amazon RDS uploads transaction logs for DB clusters to Amazon S3 continuously. To see the latest
restorable time for a DB cluster, use the AWS CLI describe-db-clusters command and look at the value
returned in the LatestRestorableTime field for the DB cluster.

You can restore to any point in time within your backup retention period. To see the earliest restorable
time for a DB cluster, use the AWS CLI describe-db-clusters command and look at the value returned in
the EarliestRestorableTime field for the DB cluster.

Note
Information in this topic applies to Amazon Aurora. For information on restoring an Amazon
RDS DB instance, see Restoring a DB instance to a specified time.
For more information about backing up and restoring an Aurora DB cluster, see Overview of
backing up and restoring an Aurora DB cluster (p. 491).
For Aurora MySQL, you can restore a provisioned DB cluster to an Aurora Serverless DB cluster.
For more information, see Restoring an Aurora Serverless v1 DB cluster (p. 166).

You can restore a DB cluster to a point in time using the AWS Management Console, the AWS CLI, or the
RDS API.

Console

To restore a DB cluster to a specified time

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB cluster that you want to restore.

4. For Actions, choose Restore to point in time.

The Restore to point in time window appears.

5. Choose Latest restorable time to restore to the latest possible time, or choose Custom to choose a
time.

If you chose Custom, enter the date and time to which you want to restore the cluster.

Note
Times are shown in your local time zone, which is indicated by an offset from Coordinated
Universal Time (UTC). For example, UTC-5 is Eastern Standard Time/Central Daylight Time.

6. For DB instance identifier, enter the name of the target restored DB cluster. The name must be
unique.

7. Choose other options as needed, such as DB instance class and storage.

8. Choose Restore to point in time.

537

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Point-in-time recovery

AWS CLI
To restore a DB cluster to a specified time, use the AWS CLI command restore-db-cluster-to-
point-in-time to create a new DB cluster.

Example

For Linux, macOS, or Unix:

aws rds restore-db-cluster-to-point-in-time \
 --source-db-cluster-identifier mysourcedbcluster \
 --db-cluster-identifier mytargetdbcluster \
 --restore-to-time 2017-10-14T23:45:00.000Z

For Windows:

aws rds restore-db-cluster-to-point-in-time ^
 --source-db-cluster-identifier mysourcedbcluster ^
 --db-cluster-identifier mytargetdbcluster ^
 --restore-to-time 2017-10-14T23:45:00.000Z

Important
If you use the console to restore a DB cluster to a specified time, then Amazon RDS
automatically creates the primary instance (writer) for your DB cluster. If you use the AWS CLI to
restore a DB cluster to a specified time, you must explicitly create the primary instance for your
DB cluster. The primary instance is the first instance that is created in a DB cluster.
To create the primary instance for your DB cluster, call the create-db-instance AWS CLI
command. Include the name of the DB cluster as the --db-cluster-identifier option
value.

RDS API
To restore a DB cluster to a specified time, call the Amazon RDS API
RestoreDBClusterToPointInTime operation with the following parameters:

• SourceDBClusterIdentifier

• DBClusterIdentifier

• RestoreToTime

Important
If you use the console to restore a DB cluster to a specified time, then Amazon RDS
automatically creates the primary instance (writer) for your DB cluster. If you use the RDS API to
restore a DB cluster to a specified time, make sure to explicitly create the primary instance for
your DB cluster. The primary instance is the first instance that is created in a DB cluster.
To create the primary instance for your DB cluster, call the RDS API operation CreateDBInstance.
Include the name of the DB cluster as the DBClusterIdentifier parameter value.

538

https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterToPointInTime.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Aurora User Guide for Aurora
Deleting a snapshot

Deleting a DB cluster snapshot
You can delete DB cluster snapshots managed by Amazon RDS when you no longer need them.

Note
To delete backups managed by AWS Backup, use the AWS Backup console. For information
about AWS Backup, see the AWS Backup Developer Guide.

Deleting a DB cluster snapshot
You can delete a DB cluster snapshot using the console, the AWS CLI, or the RDS API.

To delete a shared or public snapshot, you must sign in to the AWS account that owns the snapshot.

Console

To delete a DB cluster snapshot

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Snapshots.
3. Choose the DB cluster snapshot that you want to delete.
4. For Actions, choose Delete Snapshot.
5. Choose Delete on the confirmation page.

AWS CLI

You can delete a DB cluster snapshot by using the AWS CLI command delete-db-cluster-snapshot.

The following options are used to delete a DB cluster snapshot.

• --db-cluster-snapshot-identifier – The identifier for the DB cluster snapshot.

Example

The following code deletes the mydbclustersnapshot DB cluster snapshot.

For Linux, macOS, or Unix:

aws rds delete-db-cluster-snapshot \
 --db-cluster-snapshot-identifier mydbclustersnapshot

For Windows:

aws rds delete-db-cluster-snapshot ^
 --db-cluster-snapshot-identifier mydbclustersnapshot

RDS API

You can delete a DB cluster snapshot by using the Amazon RDS API operation DeleteDBClusterSnapshot.

The following parameters are used to delete a DB cluster snapshot.

539

https://docs.aws.amazon.com/aws-backup/latest/devguide
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-cluster-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBClusterSnapshot.html

Amazon Aurora User Guide for Aurora
Deleting a DB cluster snapshot

• DBClusterSnapshotIdentifier – The identifier for the DB cluster snapshot.

540

Amazon Aurora User Guide for Aurora

Monitoring metrics in an Amazon
Aurora cluster

Amazon Aurora uses a cluster of replicated database servers. Typically, monitoring an Aurora cluster
requires checking the health of multiple DB instances. The instances might have specialized roles,
handling mostly write operations, only read operations, or a combination. You also monitor the overall
health of the cluster by measuring the replication lag. This is the amount of time for changes made by
one DB instance to be available to the other instances.

Topics
• Overview of monitoring metrics in Amazon Aurora (p. 542)
• Viewing cluster status and recommendations (p. 546)
• Viewing metrics in the Amazon RDS console (p. 563)
• Monitoring Amazon Aurora metrics with Amazon CloudWatch (p. 587)
• Monitoring DB load with Performance Insights on Amazon Aurora (p. 594)
• Analyzing performance anomalies with DevOps Guru for RDS (p. 644)
• Monitoring OS metrics with Enhanced Monitoring (p. 647)
• Metrics reference for Amazon Aurora (p. 654)

541

Amazon Aurora User Guide for Aurora
Overview of monitoring

Overview of monitoring metrics in Amazon Aurora
Monitoring is an important part of maintaining the reliability, availability, and performance of Amazon
Aurora and your AWS solutions. To more easily debug multi-point failures, we recommend that you
collect monitoring data from all parts of your AWS solution.

Topics

• Monitoring plan (p. 542)

• Performance baseline (p. 542)

• Performance guidelines (p. 542)

• Monitoring tools (p. 543)

Monitoring plan
Before you start monitoring Amazon Aurora, create a monitoring plan. This plan should answer the
following questions:

• What are your monitoring goals?

• Which resources will you monitor?

• How often will you monitor these resources?

• Which monitoring tools will you use?

• Who will perform the monitoring tasks?

• Whom should be notified when something goes wrong?

Performance baseline
To achieve your monitoring goals, you need to establish a baseline. To do this, measure performance
under different load conditions at various times in your Amazon Aurora environment. You can monitor
metrics such as the following:

• Network throughput

• Client connections

• I/O for read, write, or metadata operations

• Burst credit balances for your DB instances

We recommend that you store historical performance data for Amazon Aurora. Using the stored data,
you can compare current performance against past trends. You can also distinguish normal performance
patterns from anomalies, and devise techniques to address issues.

Performance guidelines
In general, acceptable values for performance metrics depend on what your application is doing relative
to your baseline. Investigate consistent or trending variances from your baseline. The following metrics
are often the source of performance issues:

• High CPU or RAM consumption – High values for CPU or RAM consumption might be appropriate,
if they're in keeping with your goals for your application (like throughput or concurrency) and are
expected.

542

Amazon Aurora User Guide for Aurora
Monitoring tools

• Disk space consumption – Investigate disk space consumption if space used is consistently at or above
85 percent of the total disk space. See if it is possible to delete data from the instance or archive data
to a different system to free up space.

• Network traffic – For network traffic, talk with your system administrator to understand what
expected throughput is for your domain network and internet connection. Investigate network traffic if
throughput is consistently lower than expected.

• Database connections – If you see high numbers of user connections and also decreases in instance
performance and response time, consider constraining database connections. The best number of
user connections for your DB instance varies based on your instance class and the complexity of the
operations being performed. To determine the number of database connections, associate your DB
instance with a parameter group where the User Connections parameter is set to a value other
than 0 (unlimited). You can either use an existing parameter group or create a new one. For more
information, see Working with DB parameter groups and DB cluster parameter groups (p. 339).

• IOPS metrics – The expected values for IOPS metrics depend on disk specification and server
configuration, so use your baseline to know what is typical. Investigate if values are consistently
different than your baseline. For best IOPS performance, make sure that your typical working set fits
into memory to minimize read and write operations.

When performance falls outside your established baseline, you might need to make changes to optimize
your database availability for your workload. For example, you might need to change the instance class
of your DB instance. Or you might need to change the number of DB instances and read replicas that are
available for clients.

Monitoring tools
Monitoring is an important part of maintaining the reliability, availability, and performance of Amazon
Aurora and your other AWS solutions. AWS provides various monitoring tools to watch Amazon Aurora,
report when something is wrong, and take automatic actions when appropriate.

Topics

• Automated monitoring tools (p. 543)

• Manual monitoring tools (p. 544)

Automated monitoring tools

We recommend that you automate monitoring tasks as much as possible.

Topics

• Amazon Aurora cluster status and recommendations (p. 543)

• Amazon CloudWatch metrics for Amazon Aurora (p. 544)

• Amazon RDS Performance Insights and operating-system monitoring (p. 544)

• Integrated services (p. 544)

Amazon Aurora cluster status and recommendations

You can use the following automated tools to watch Amazon Aurora and report when something is
wrong:

• Amazon Aurora cluster status — View details about the current status of your cluster by using the
Amazon RDS console, the AWS CLI, or the RDS API.

543

Amazon Aurora User Guide for Aurora
Monitoring tools

• Amazon Aurora recommendations — Respond to automated recommendations for database
resources, such as DB instances, DB clusters, and DB cluster parameter groups. For more information,
see Viewing Amazon Aurora recommendations (p. 558).

Amazon CloudWatch metrics for Amazon Aurora

Amazon Aurora integrates with Amazon CloudWatch for additional monitoring capabilities.

• Amazon CloudWatch – This service monitors your AWS resources and the applications you run on AWS
in real time. You can use the following Amazon CloudWatch features with Amazon Aurora:

• Amazon CloudWatch metrics – Amazon Aurora automatically sends metrics to CloudWatch every
minute for each active database. You don't get additional charges for Amazon RDS metrics in
CloudWatch. For more information, see Amazon CloudWatch metrics for Amazon Aurora (p. 654)

• Amazon CloudWatch alarms – You can watch a single Amazon Aurora metric over a specific time
period. You can then perform one or more actions based on the value of the metric relative to a
threshold that you set.

Amazon RDS Performance Insights and operating-system monitoring

You can use the following automated tools to monitor Amazon Aurora performance:

• Amazon RDS Performance Insights – Assess the load on your database, and determine when and
where to take action. For more information, see Monitoring DB load with Performance Insights on
Amazon Aurora (p. 594).

• Amazon RDS Enhanced Monitoring – Look at metrics in real time for the operating system. For more
information, see Monitoring OS metrics with Enhanced Monitoring (p. 647).

Integrated services

The following AWS services are integrated with Amazon Aurora:

• Amazon EventBridge is a serverless event bus service that makes it easy to connect your applications
with data from a variety of sources. For more information, see Monitoring Amazon Aurora
events (p. 692).

• Amazon CloudWatch Logs lets you monitor, store, and access your log files from Amazon Aurora
instances, CloudTrail, and other sources. For more information, see Monitoring Amazon Aurora log
files (p. 716).

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account and
delivers the log files to an Amazon S3 bucket that you specify. For more information, see Monitoring
Amazon Aurora API calls in AWS CloudTrail (p. 731).

• Database Activity Streams is an Amazon Aurora feature that provides a near-real-time stream of
the activity in your DB cluster. For more information, see Monitoring Amazon Aurora with Database
Activity Streams (p. 735).

• DevOps Guru for RDS is a capability of Amazon DevOps Guru that applies machine learning to
Performance Insights metrics for Amazon Aurora databases. For more information, see Analyzing
performance anomalies with DevOps Guru for RDS (p. 644).

Manual monitoring tools
You need to manually monitor those items that the CloudWatch alarms don't cover. The Amazon RDS,
CloudWatch, AWS Trusted Advisor and other AWS console dashboards provide an at-a-glance view of the
state of your AWS environment. We recommend that you also check the log files on your DB instance.

544

Amazon Aurora User Guide for Aurora
Monitoring tools

• From the Amazon RDS console, you can monitor the following items for your resources:
• The number of connections to a DB instance
• The amount of read and write operations to a DB instance
• The amount of storage that a DB instance is currently using
• The amount of memory and CPU being used for a DB instance
• The amount of network traffic to and from a DB instance

• From the Trusted Advisor dashboard, you can review the following cost optimization, security, fault
tolerance, and performance improvement checks:
• Amazon RDS Idle DB Instances
• Amazon RDS Security Group Access Risk
• Amazon RDS Backups
• Amazon RDS Multi-AZ
• Aurora DB Instance Accessibility

For more information on these checks, see Trusted Advisor best practices (checks).
• CloudWatch home page shows:

• Current alarms and status
• Graphs of alarms and resources
• Service health status

In addition, you can use CloudWatch to do the following:
• Create customized dashboards to monitor the services that you care about.
• Graph metric data to troubleshoot issues and discover trends.
• Search and browse all your AWS resource metrics.
• Create and edit alarms to be notified of problems.

545

https://aws.amazon.com/premiumsupport/trustedadvisor/best-practices/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/CloudWatch_Dashboards.html

Amazon Aurora User Guide for Aurora
Viewing cluster status and recommendations

Viewing cluster status and recommendations
Using the Amazon RDS console, you can quickly access the status of your DB cluster and respond to
Amazon Aurora recommendations.

Topics
• Viewing an Amazon Aurora DB cluster (p. 547)
• Viewing DB cluster status (p. 553)
• Viewing DB instance status in an Aurora cluster (p. 555)
• Viewing Amazon Aurora recommendations (p. 558)

546

Amazon Aurora User Guide for Aurora
Viewing a DB cluster

Viewing an Amazon Aurora DB cluster
You have several options for viewing information about your Amazon Aurora DB clusters and the DB
instances in your DB clusters.

• You can view DB clusters and DB instances in the Amazon RDS console by choosing Databases from
the navigation pane.

• You can get DB cluster and DB instance information using the AWS Command Line Interface (AWS CLI).

• You can get DB cluster and DB instance information using the Amazon RDS API.

Console

In the Amazon RDS console, you can see details about a DB cluster by choosing Databases from the
console's navigation pane. You can also see details about DB instances that are members of an Amazon
Aurora DB cluster on the Databases page.

The Databases list shows all of the DB clusters for your AWS account. When you choose a DB cluster, you
see both information about the DB cluster and also a list of the DB instances that are members of that
DB cluster. You can choose the identifier for a DB instance in the list to go directly to the details page for
that DB instance in the RDS console.

To view the details page for a DB cluster, choose Databases in the navigation pane, and then choose the
name of the DB cluster.

You can modify your DB cluster by choosing Databases from the console's navigation pane to go to the
Databases list. To modify a DB cluster, select the DB cluster from the Databases list and choose Modify.

To modify a DB instance that is a member of a DB cluster, choose Databases from the console's
navigation pane to go to the Databases list.

For example, the following image shows the details page for the DB cluster named aurora-test. The
DB cluster has four DB instances shown in the DB identifier list. The writer DB instance, dbinstance4, is
the primary DB instance for the DB cluster.

547

Amazon Aurora User Guide for Aurora
Viewing a DB cluster

If you click the link for the dbinstance4 DB instance identifier, the Amazon RDS console shows the
details page for the dbinstance4 DB instance, as shown in the following image.

548

Amazon Aurora User Guide for Aurora
Viewing a DB cluster

AWS CLI

To view DB cluster information by using the AWS CLI, use the describe-db-clusters command. For
example, the following AWS CLI command lists the DB cluster information for all of the DB clusters in
the us-east-1 region for the configured AWS account.

aws rds describe-db-clusters --region us-east-1

The command returns the following output if your AWS CLI is configured for JSON output.

{
 "DBClusters": [
 {
 "Status": "available",
 "Engine": "aurora",
 "Endpoint": "sample-cluster1.cluster-123456789012.us-east-1.rds.amazonaws.com"
 "AllocatedStorage": 1,
 "DBClusterIdentifier": "sample-cluster1",
 "MasterUsername": "mymasteruser",
 "EarliestRestorableTime": "2016-03-30T03:35:42.563Z",

549

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html

Amazon Aurora User Guide for Aurora
Viewing a DB cluster

 "DBClusterMembers": [
 {
 "IsClusterWriter": false,
 "DBClusterParameterGroupStatus": "in-sync",
 "DBInstanceIdentifier": "sample-replica"
 },
 {
 "IsClusterWriter": true,
 "DBClusterParameterGroupStatus": "in-sync",
 "DBInstanceIdentifier": "sample-primary"
 }
],
 "Port": 3306,
 "PreferredBackupWindow": "03:34-04:04",
 "VpcSecurityGroups": [
 {
 "Status": "active",
 "VpcSecurityGroupId": "sg-ddb65fec"
 }
],
 "DBSubnetGroup": "default",
 "StorageEncrypted": false,
 "DatabaseName": "sample",
 "EngineVersion": "5.6.10a",
 "DBClusterParameterGroup": "default.aurora5.6",
 "BackupRetentionPeriod": 1,
 "AvailabilityZones": [
 "us-east-1b",
 "us-east-1c",
 "us-east-1d"
],
 "LatestRestorableTime": "2016-03-31T20:06:08.903Z",
 "PreferredMaintenanceWindow": "wed:08:15-wed:08:45"
 },
 {
 "Status": "available",
 "Engine": "aurora",
 "Endpoint": "aurora-sample.cluster-123456789012.us-east-1.rds.amazonaws.com",
 "AllocatedStorage": 1,
 "DBClusterIdentifier": "aurora-sample-cluster",
 "MasterUsername": "mymasteruser",
 "EarliestRestorableTime": "2016-03-30T10:21:34.826Z",
 "DBClusterMembers": [
 {
 "IsClusterWriter": false,
 "DBClusterParameterGroupStatus": "in-sync",
 "DBInstanceIdentifier": "aurora-replica-sample"
 },
 {
 "IsClusterWriter": true,
 "DBClusterParameterGroupStatus": "in-sync",
 "DBInstanceIdentifier": "aurora-sample"
 }
],
 "Port": 3306,
 "PreferredBackupWindow": "10:20-10:50",
 "VpcSecurityGroups": [
 {
 "Status": "active",
 "VpcSecurityGroupId": "sg-55da224b"
 }
],
 "DBSubnetGroup": "default",
 "StorageEncrypted": false,
 "DatabaseName": "sample",
 "EngineVersion": "5.6.10a",

550

Amazon Aurora User Guide for Aurora
Viewing a DB cluster

 "DBClusterParameterGroup": "default.aurora5.6",
 "BackupRetentionPeriod": 1,
 "AvailabilityZones": [
 "us-east-1b",
 "us-east-1c",
 "us-east-1d"
],
 "LatestRestorableTime": "2016-03-31T20:00:11.491Z",
 "PreferredMaintenanceWindow": "sun:03:53-sun:04:23"
 }
]
}

RDS API

To view DB cluster information using the Amazon RDS API, use the DescribeDBClusters operation. For
example, the following Amazon RDS API command lists the DB cluster information for all of the DB
clusters in the us-east-1 region.

https://rds.us-east-1.amazonaws.com/
 ?Action=DescribeDBClusters
 &MaxRecords=100
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &Version=2014-10-31
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20140722/us-east-1/rds/aws4_request
 &X-Amz-Date=20140722T200807Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=2d4f2b9e8abc31122b5546f94c0499bba47de813cb875f9b9c78e8e19c9afe1b

The action returns the following output:

<DescribeDBClustersResponse xmlns="http://rds.amazonaws.com/doc/2014-10-31/">
 <DescribeDBClustersResult>
 <DBClusters>
 <DBCluster>
 <Engine>aurora5.6</Engine>
 <Status>available</Status>
 <BackupRetentionPeriod>0</BackupRetentionPeriod>
 <DBSubnetGroup>my-subgroup</DBSubnetGroup>
 <EngineVersion>5.6.10a</EngineVersion>
 <Endpoint>sample-cluster2.cluster-cbfvmgb0y5fy.us-east-1.rds.amazonaws.com</
Endpoint>
 <DBClusterIdentifier>sample-cluster2</DBClusterIdentifier>
 <PreferredBackupWindow>04:45-05:15</PreferredBackupWindow>
 <PreferredMaintenanceWindow>sat:05:56-sat:06:26</PreferredMaintenanceWindow>
 <DBClusterMembers/>
 <AllocatedStorage>15</AllocatedStorage>
 <MasterUsername>awsuser</MasterUsername>
 </DBCluster>
 <DBCluster>
 <Engine>aurora5.6</Engine>
 <Status>available</Status>
 <BackupRetentionPeriod>0</BackupRetentionPeriod>
 <DBSubnetGroup>my-subgroup</DBSubnetGroup>
 <EngineVersion>5.6.10a</EngineVersion>
 <Endpoint>sample-cluster3.cluster-cefgqfx9y5fy.us-east-1.rds.amazonaws.com</
Endpoint>
 <DBClusterIdentifier>sample-cluster3</DBClusterIdentifier>
 <PreferredBackupWindow>07:06-07:36</PreferredBackupWindow>
 <PreferredMaintenanceWindow>tue:10:18-tue:10:48</PreferredMaintenanceWindow>
 <DBClusterMembers>

551

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html

Amazon Aurora User Guide for Aurora
Viewing a DB cluster

 <DBClusterMember>
 <IsClusterWriter>true</IsClusterWriter>
 <DBInstanceIdentifier>sample-cluster3-master</DBInstanceIdentifier>
 </DBClusterMember>
 <DBClusterMember>
 <IsClusterWriter>false</IsClusterWriter>
 <DBInstanceIdentifier>sample-cluster3-read1</DBInstanceIdentifier>
 </DBClusterMember>
 </DBClusterMembers>
 <AllocatedStorage>15</AllocatedStorage>
 <MasterUsername>awsuser</MasterUsername>
 </DBCluster>
 </DBClusters>
 </DescribeDBClustersResult>
 <ResponseMetadata>
 <RequestId>d682b02c-1383-11b4-a6bb-172dfac7f170</RequestId>
 </ResponseMetadata>
</DescribeDBClustersResponse>

552

Amazon Aurora User Guide for Aurora
Viewing DB cluster status

Viewing DB cluster status
The status of a DB cluster indicates its health. You can view the status of a DB cluster by using
the Amazon RDS console, the AWS CLI command describe-db-clusters, or the API operation
DescribeDBClusters.

Note
Aurora also uses another status called maintenance status, which is shown in the Maintenance
column of the Amazon RDS console. This value indicates the status of any maintenance patches
that need to be applied to a DB cluster. Maintenance status is independent of DB cluster status.
For more information on maintenance status, see Applying updates for a DB cluster (p. 445).

Find the possible status values for DB clusters in the following table.

DB cluster status Billed Description

available Billed The DB cluster is healthy and available. When an
Aurora Serverless cluster is available and paused,
you're billed for storage only.

backing-up Billed The DB cluster is currently being backed up.

backtracking Billed The DB cluster is currently being backtracked. This
status only applies to Aurora MySQL.

cloning-failed Not billed Cloning a DB cluster failed.

creating Not billed The DB cluster is being created. The DB cluster is
inaccessible while it is being created.

deleting Not billed The DB cluster is being deleted.

failing-over Billed A failover from the primary instance to an Aurora
Replica is being performed.

inaccessible-
encryption-credentials

Not billed The AWS KMS key used to encrypt or decrypt the
DB cluster can't be accessed.

maintenance Billed Amazon RDS is applying a maintenance update to
the DB cluster. This status is used for DB cluster-
level maintenance that RDS schedules well in
advance.

migrating Billed A DB cluster snapshot is being restored to a DB
cluster.

migration-failed Not billed A migration failed.

modifying Billed The DB cluster is being modified because of a
customer request to modify the DB cluster.

promoting Billed A read replica is being promoted to a standalone
DB cluster.

renaming Billed The DB cluster is being renamed because of a
customer request to rename it.

resetting-master-
credentials

Billed The master credentials for the DB cluster are
being reset because of a customer request to reset
them.

553

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html

Amazon Aurora User Guide for Aurora
Viewing DB cluster status

DB cluster status Billed Description

starting Billed for storage The DB cluster is starting.

stopped Billed for storage The DB cluster is stopped.

stopping Billed for storage The DB cluster is being stopped.

update-iam-db-auth Billed IAM authorization for the DB cluster is being
updated.

upgrading Billed The DB cluster engine version is being upgraded.

554

Amazon Aurora User Guide for Aurora
Viewing DB instance status in an Aurora cluster

Viewing DB instance status in an Aurora cluster
The status of a DB instance in an Aurora cluster indicates the health of the DB instance. You can view the
status of a DB instance in a cluster by using the Amazon RDS console, the AWS CLI command describe-
db-instances, or the API operation DescribeDBInstances.

Note
Amazon RDS also uses another status called maintenance status, which is shown in the
Maintenance column of the Amazon RDS console. This value indicates the status of any
maintenance patches that need to be applied to a DB instance. Maintenance status is
independent of DB instance status. For more information on maintenance status, see Applying
updates for a DB cluster (p. 445).

Find the possible status values for DB instances in the following table. This table also shows whether you
will be billed for the DB instance and storage, billed only for storage, or not billed. For all DB instance
statuses, you are always billed for backup usage.

DB instance status Billed Description

available Billed The DB instance is healthy and available.

backing-up Billed The DB instance is currently being backed up.

backtracking Billed The DB instance is currently being backtracked. This status only
applies to Aurora MySQL.

configuring-enhanced-
monitoring

Billed Enhanced Monitoring is being enabled or disabled for this DB
instance.

configuring-iam-
database-auth

Billed AWS Identity and Access Management (IAM) database
authentication is being enabled or disabled for this DB instance.

configuring-log-exports Billed Publishing log files to Amazon CloudWatch Logs is being enabled
or disabled for this DB instance.

converting-to-vpc Billed The DB instance is being converted from a DB instance that is not
in an Amazon Virtual Private Cloud (Amazon VPC) to a DB instance
that is in an Amazon VPC.

creating Not
billed

The DB instance is being created. The DB instance is inaccessible
while it is being created.

deleting Not
billed

The DB instance is being deleted.

failed Not
billed

The DB instance has failed and Amazon RDS can't recover it.
Perform a point-in-time restore to the latest restorable time of the
DB instance to recover the data.

inaccessible-
encryption-credentials

Not
billed

The AWS KMS key used to encrypt or decrypt the DB instance can't
be accessed.

incompatible-network Not
billed

Amazon RDS is attempting to perform a recovery action on a
DB instance but can't do so because the VPC is in a state that
prevents the action from being completed. This status can occur
if, for example, all available IP addresses in a subnet are in use and
Amazon RDS can't get an IP address for the DB instance.

incompatible-option-
group

Billed Amazon RDS attempted to apply an option group change but
can't do so, and Amazon RDS can't roll back to the previous option

555

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstances.html

Amazon Aurora User Guide for Aurora
Viewing DB instance status in an Aurora cluster

DB instance status Billed Description

group state. For more information, check the Recent Events list
for the DB instance. This status can occur if, for example, the
option group contains an option such as TDE and the DB instance
doesn't contain encrypted information.

incompatible-
parameters

Billed Amazon RDS can't start the DB instance because the parameters
specified in the DB instance's DB parameter group aren't
compatible with the DB instance. Revert the parameter changes
or make them compatible with the DB instance to regain access to
your DB instance. For more information about the incompatible
parameters, check the Recent Events list for the DB instance.

incompatible-restore Not
billed

Amazon RDS can't do a point-in-time restore. Common causes for
this status include using temp tables or using MyISAM tables with
MySQL.

insufficient-capacity Amazon RDS can’t create your instance because sufficient capacity
isn’t currently available. To create your DB instance in the same AZ
with the same instance type, delete your DB instance, wait a few
hours, and try to create again. Alternatively, create a new instance
using a different instance class or AZ.

maintenance Billed Amazon RDS is applying a maintenance update to the DB instance.
This status is used for instance-level maintenance that RDS
schedules well in advance.

modifying Billed The DB instance is being modified because of a customer request
to modify the DB instance.

moving-to-vpc Billed The DB instance is being moved to a new Amazon Virtual Private
Cloud (Amazon VPC).

rebooting Billed The DB instance is being rebooted because of a customer request
or an Amazon RDS process that requires the rebooting of the DB
instance.

resetting-master-
credentials

Billed The master credentials for the DB instance are being reset because
of a customer request to reset them.

renaming Billed The DB instance is being renamed because of a customer request
to rename it.

restore-error Billed The DB instance encountered an error attempting to restore to a
point-in-time or from a snapshot.

starting Billed
for
storage

The DB instance is starting.

stopped Billed
for
storage

The DB instance is stopped.

stopping Billed
for
storage

The DB instance is being stopped.

556

Amazon Aurora User Guide for Aurora
Viewing DB instance status in an Aurora cluster

DB instance status Billed Description

storage-full Billed The DB instance has reached its storage capacity allocation. This
is a critical status, and we recommend that you fix this issue
immediately. To do so, scale up your storage by modifying the DB
instance. To avoid this situation, set Amazon CloudWatch alarms
to warn you when storage space is getting low.

storage-optimization Billed Your DB instance is being modified to change the storage size
or type. The DB instance is fully operational. However, while the
status of your DB instance is storage-optimization, you can't
request any changes to the storage of your DB instance. The
storage optimization process is usually short, but can sometimes
take up to and even beyond 24 hours.

upgrading Billed The database engine version is being upgraded.

557

Amazon Aurora User Guide for Aurora
Viewing Amazon Aurora recommendations

Viewing Amazon Aurora recommendations
Amazon Aurora provides automated recommendations for database resources, such as DB instances, DB
clusters, and DB cluster parameter groups. These recommendations provide best practice guidance by
analyzing DB cluster configuration, DB instance configuration, usage, and performance data.

You can find examples of these recommendations in the following table.

Type Description Recommendation Additional
information

Nondefault
custom
memory
parameters

Your DB parameter
group sets memory
parameters that
diverge too much
from the default
values.

Settings that diverge too much
from the default values can cause
poor performance and errors. We
recommend setting custom memory
parameters to their default values in
the DB parameter group used by the
DB instance.

Working with
DB parameter
groups and DB
cluster parameter
groups (p. 339)

Change
buffering
enabled for
a MySQL DB
instance

Your DB parameter
group has change
buffering enabled.

Change buffering allows a MySQL
DB instance to defer some writes
necessary to maintain secondary
indexes. This configuration can
improve performance slightly, but
it can create a large delay in crash
recovery. During crash recovery, the
secondary index must be brought up
to date. So, the benefits of change
buffering are outweighed by the
potentially very long crash recovery
events. We recommend disabling
change buffering.

Best practices
for configuring
parameters for
Amazon RDS for
MySQL, part 1:
Parameters related to
performance on the
AWS Database Blog

Logging to
table

Your DB parameter
group sets logging
output to TABLE.

Setting logging output to TABLE
uses more storage than setting this
parameter to FILE. To avoid reaching
the storage limit, we recommend
setting the logging output parameter
to FILE.

Aurora MySQL
database log
files (p. 721)

DB cluster
with one DB
instance

Your DB cluster only
contains one DB
instance.

For improved performance and
availability, we recommend adding
another DB instance with the same
DB instance class in a different
Availability Zone.

High availability
for Amazon
Aurora (p. 68)

DB cluster
in one
Availability
Zone

Your DB cluster
has all of its DB
instances in the same
Availability Zone.

For improved availability, we
recommend adding another DB
instance with the same DB instance
class in a different Availability Zone.

High availability
for Amazon
Aurora (p. 68)

DB cluster
outdated

Your DB cluster is
running an older
engine version.

We recommend that you keep your
DB cluster at the most current minor
version because it includes the latest
security and functionality fixes. Unlike
major version upgrades, minor version
upgrades include only changes

Maintaining an
Amazon Aurora DB
cluster (p. 443)

558

http://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
http://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
http://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
http://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
http://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
http://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
http://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/

Amazon Aurora User Guide for Aurora
Viewing Amazon Aurora recommendations

Type Description Recommendation Additional
information

that are backward-compatible with
previous minor versions (of the same
major version) of the DB engine. We
recommend that you upgrade to a
recent engine version

DB cluster
with different
parameter
groups

Your DB cluster
has different DB
parameter groups
assigned to its DB
instances.

Using different parameter groups
can cause incompatibilities between
the DB instances. To avoid problems
and for easier maintenance,
we recommend using the same
parameter group for all of the DB
instances in the DB cluster.

Working with
DB parameter
groups and DB
cluster parameter
groups (p. 339)

DB cluster
with different
DB instance
classes

Your DB cluster has
DB instances that use
different DB instance
classes.

Using different DB instance classes
for DB instances can cause problems.
For example, performance might
suffer if a less powerful DB instance
class is promoted to replace a more
powerful DB instance class. To avoid
problems and for easier maintenance,
we recommend using the same
DB instance class for all of the DB
instances in the DB cluster.

Aurora
Replicas (p. 70)

Amazon Aurora generates recommendations for a resource when the resource is created or modified.
Amazon Aurora also periodically scans your resources and generates recommendations.

Responding to Amazon Aurora recommendations

You can find recommendations in the AWS Management Console. You can perform the recommended
action immediately, schedule it for the next maintenance window, or dismiss it.

To respond to Amazon Aurora recommendations

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Recommendations.

559

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Viewing Amazon Aurora recommendations

The Recommendations page appears.

3. On the Recommendations page, choose one of the following:

• Active – Shows the current recommendations that you can apply, dismiss, or schedule.

• Dismissed – Shows the recommendations that have been dismissed. When you choose Dismissed,
you can apply these dismissed recommendations.

• Scheduled – Shows the recommendations that are scheduled but not yet applied. These
recommendations will be applied in the next scheduled maintenance window.

• Applied – Shows the recommendations that are currently applied.

560

Amazon Aurora User Guide for Aurora
Viewing Amazon Aurora recommendations

From any list of recommendations, you can open a section to view the recommendations in that
section.

To configure preferences for displaying recommendations in each section, choose the Preferences
icon.

From the Preferences window that appears, you can set display options. These options include the
visible columns and the number of recommendations to display on the page.

4. Manage your active recommendations:

a. Choose Active and open one or more sections to view the recommendations in them.

b. Choose one or more recommendations and choose Apply now (to apply them immediately),
Schedule (to apply them in next maintenance window), or Dismiss.

If the Apply now button appears for a recommendation but is unavailable (grayed out), the DB
instance is not available. You can apply recommendations immediately only if the DB instance
status is available. For example, you can't apply recommendations immediately to the DB

561

Amazon Aurora User Guide for Aurora
Viewing Amazon Aurora recommendations

instance if its status is modifying. In this case, wait for the DB instance to be available and then
apply the recommendation.

If the Apply now button doesn't appear for a recommendation, you can't apply the
recommendation using the Recommendations page. You can modify the DB instance to apply
the recommendation manually.

For more information about modifying a DB cluster, see Modifying an Amazon Aurora DB
cluster (p. 372).

Note
When you choose Apply now, a brief DB instance outage might result.

562

Amazon Aurora User Guide for Aurora
Viewing metrics in the Amazon RDS console

Viewing metrics in the Amazon RDS console
Amazon RDS integrates with Amazon CloudWatch to display a variety of Aurora DB cluster metrics
in the RDS console. Some metrics are apply at the cluster level, whereas others apply at the instance
level. For descriptions of the instance-level and cluster-level metrics, see Metrics reference for Amazon
Aurora (p. 654).

The Monitoring tab for your Aurora DB cluster shows the following categories of metrics:

• CloudWatch – Shows the Amazon CloudWatch metrics for Aurora that you can access in the RDS
console. You can also access these metrics in the CloudWatch console. Each metric includes a graph
that shows the metric monitored over a specific time span. For a list of CloudWatch metrics, see
Amazon CloudWatch metrics for Amazon Aurora (p. 654).

• Enhanced monitoring – Shows a summary of operating-system metrics when your Aurora DB
cluster has turned on Enhanced Monitoring. RDS delivers the metrics from Enhanced Monitoring
to your Amazon CloudWatch Logs account. Each OS metric includes a graph showing the metric
monitored over a specific time span. For an overview, see Monitoring OS metrics with Enhanced
Monitoring (p. 647). For a list of Enhanced Monitoring metrics, see OS metrics in Enhanced
Monitoring (p. 681).

• OS Process list – Shows details for each process running in your DB cluster.

• Performance Insights – Opens the Amazon RDS Performance Insights dashboard for a DB instance in
your Aurora DB cluster. Performance Insights isn't supported at the cluster level. For an overview of
Performance Insights, see Monitoring DB load with Performance Insights on Amazon Aurora (p. 594).
For a list of Performance Insights metrics, see

Performance Insights automatically publishes metrics to Amazon CloudWatch. The same
data can be queried from Performance Insights, but having the metrics in CloudWatch
makes it easy to add CloudWatch alarms. It also makes it easy to add the metrics to
existing CloudWatch Dashboards.

DBLoad The number of active sessions for the DB
engine. Typically, you want the data for

the average number of active sessions. In
Performance Insights, this data is queried
as db.load.avg.

DBLoadCPU The number of active sessions where the
wait event type is CPU. In Performance
Insights, this data is queried as
db.load.avg, filtered by the wait event
type CPU.

DBLoadNonCPU The number of active sessions where the
wait event type is not CPU.

Metric Description

Note
These metrics are published to CloudWatch only if there is load on the DB
instance.

You can examine these metrics using the CloudWatch console, the AWS CLI, or the
CloudWatch API.

563

Amazon Aurora User Guide for Aurora
Viewing metrics in the Amazon RDS console

For example, you can get the statistics for the DBLoad metric by running the get-metric-
statistics command.

aws cloudwatch get-metric-statistics \

 --region us-west-2 \

 --namespace AWS/RDS \

 --metric-name DBLoad \

 --period 60 \

 --statistics Average \

 --start-time 1532035185 \

 --end-time 1532036185 \

 --dimensions Name=DBInstanceIdentifier,Value=db-loadtest-0

This example generates output similar to the following.

{

 "Datapoints": [

 {

 "Timestamp": "2021-07-19T21:30:00Z",

 "Unit": "None",

 "Average": 2.1

 },

 {

 "Timestamp": "2021-07-19T21:34:00Z",

 "Unit": "None",

 "Average": 1.7

 },

 {

 "Timestamp": "2021-07-19T21:35:00Z",

 "Unit": "None",

 "Average": 2.8

 },

 {

 "Timestamp": "2021-07-19T21:31:00Z",

 "Unit": "None",

 "Average": 1.5

 },

 {

 "Timestamp": "2021-07-19T21:32:00Z",

 "Unit": "None",

 "Average": 1.8

 },

 {

 "Timestamp": "2021-07-19T21:29:00Z",

 "Unit": "None",

 "Average": 3.0

 },

 {

 "Timestamp": "2021-07-19T21:33:00Z",

 "Unit": "None",

 "Average": 2.4

 }

],

 "Label": "DBLoad"

 }

For more information about CloudWatch, see What is Amazon CloudWatch? in the
Amazon CloudWatch User Guide.

 (p. 673).

564

https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/get-metric-statistics.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/get-metric-statistics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html

Amazon Aurora User Guide for Aurora
Viewing metrics in the Amazon RDS console

To view metrics for your Aurora DB cluster in the RDS console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the name of the Aurora DB cluster that you want to monitor.

The database page appears. The following example shows an Amazon Aurora PostgreSQL database
named apga.

4. Scroll down and choose Monitoring.

The monitoring section appears. By default, CloudWatch metrics are shown. For descriptions of
these metrics, see

The AWS/RDS namespace includes the following metrics that apply to database
entities running on Amazon Aurora. Some metrics apply to either Aurora MySQL,
Aurora PostgreSQL, or both. Furthermore, some metrics are specific to a DB cluster,
primary DB instance, replica DB instance, or all DB instances.

For Aurora global database metrics, see Amazon CloudWatch metrics for write
forwarding (p. 263). For Aurora parallel query metrics, see Monitoring parallel
query (p. 919).

Topics

• Cluster-level metrics for Amazon Aurora (p. 654)
• Instance-level metrics for Amazon Aurora (p. 660)

Cluster-level metrics for Amazon Aurora
The following table describes metrics that are specific to Aurora clusters.

565

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Viewing metrics in the Amazon RDS console

Amazon Aurora cluster-level metrics

AuroraGlobalDBDataTransferBytesAurora Global
DB Data Transfer
Bytes (Bytes)

In an Aurora Global
Database, the amount
of redo log data

Aurora
MySQL
and

Bytes

transferred from the
master AWS Region Aurora

PostgreSQL
to a secondary AWS
Region.

AuroraGlobalDBProgressLag In an Aurora Global
Database, the measure

Aurora
PostgreSQL

Milliseconds

of how far the
secondary cluster is
behind the primary
cluster for both user
transactions and
system transactions.

AuroraGlobalDBReplicatedWriteIOAurora Global DB
Replicated Write
IO

In an Aurora Global
Database, the number
of write I/O operations

Aurora
MySQL
and

Count

replicated from
the primary AWS Aurora

PostgreSQL
Region to the cluster
volume in a secondary
AWS Region. The
billing calculations
for the secondary
AWS Regions in a
global database use
VolumeWriteIOPS
to account for writes
performed within the
cluster. The billing
calculations for the
primary AWS Region in
a global database use
VolumeWriteIOPS
to account for the
write activity within
that cluster, and
AuroraGlobalDBReplicatedWriteIO
to account for cross-
Region replication
within the global
database.

AuroraGlobalDBReplicationLagAurora Global DB
Replication Lag
(Milliseconds)

For an Aurora Global
Database, the amount
of lag when replicating

Aurora
MySQL
and

Milliseconds

updates from the
primary AWS Region.

Aurora
PostgreSQL

566

Amazon Aurora User Guide for Aurora
Viewing metrics in the Amazon RDS console

AuroraGlobalDBRPOLag In an Aurora Global
Database, the recovery

Aurora
PostgreSQL

Milliseconds

point objective (RPO)
lag time. This metric
measures how far the
secondary cluster is
behind the primary
cluster for user
transactions.

AuroraVolumeBytesLeftTotal The remaining
available space for the

Aurora
MySQL

Bytes

cluster volume. As the
cluster volume grows,
this value decreases.
If it reaches zero, the
cluster reports an out-
of-space error.
If you want to detect
whether your Aurora
cluster is approaching
the size limit of 128
tebibytes (TiB), this
value is simpler
and more reliable
to monitor than
VolumeBytesUsed.
AuroraVolumeBytesLeftTotal
takes into account
storage used for
internal housekeeping
and other allocations
that don't affect your
storage billing.
This parameter is
available in more
recent Aurora versions.
For Aurora MySQL
with MySQL 5.6
compatibility, use
Aurora version 1.19.5
or higher. For Aurora
MySQL with MySQL
5.7 compatibility, use
Aurora version 2.04.5
or higher.

BacktrackChangeRecordsCreationRateBacktrack
Change Records

The number of
backtrack change

Aurora
MySQL

Count per
5 minutes

records created over
Creation Rate
(Count)

5 minutes for your DB
cluster.

567

Amazon Aurora User Guide for Aurora
Viewing metrics in the Amazon RDS console

BacktrackChangeRecordsStoredBacktrack
Change Records
Stored (Count)

The number of
backtrack change

Aurora
MySQL

Count

records used by your
DB cluster.

BackupRetentionPeriodStorageUsedBackup
Retention Period

The total amount
of backup storage

Aurora
MySQL

Bytes

used to support the and
Storage Used
(GiB)

point-in-time restore

feature within the Aurora
PostgreSQL

Aurora DB cluster's
backup retention
window. This amount
is included in the
total reported by the
TotalBackupStorageBilled
metric. It is computed
separately for each
Aurora cluster. For
instructions, see
Understanding Aurora
backup storage
usage (p. 494).

ServerlessDatabaseCapacity The current capacity of
an Aurora Serverless
v1 DB cluster.

Aurora
MySQL
and

Count

Aurora
PostgreSQL

SnapshotStorageUsed Snapshot
Storage Used
(GiB)

The total amount
of backup storage
consumed by all

Aurora
MySQL
and

Bytes

Aurora snapshots
for an Aurora DB Aurora

PostgreSQL
cluster outside its
backup retention
window. This amount
is included in the
total reported by the
TotalBackupStorageBilled
metric. It is computed
separately for each
Aurora cluster. For
instructions, see
Understanding Aurora
backup storage
usage (p. 494).

568

Amazon Aurora User Guide for Aurora
Viewing metrics in the Amazon RDS console

TotalBackupStorageBilledTotal Backup
Storage Used
(GiB)

The total amount of
backup storage in
bytes for which you

Aurora
MySQL
and

Bytes

are billed for a given
Aurora DB cluster. Aurora

PostgreSQL
The metric includes
the backup storage
measured by the
BackupRetentionPeriodStorageUsed
and
SnapshotStorageUsed
metrics. This
metric is computed
separately for each
Aurora cluster. For
instructions, see
Understanding Aurora
backup storage
usage (p. 494).

VolumeBytesUsed Volume Bytes
Used (GiB)

The amount of storage
used by your Aurora
DB instance.

Aurora
MySQL
and

Bytes

Aurora
PostgreSQL

This value affects the
cost of the Aurora DB
cluster (for pricing
information, see the
Amazon RDS product
page).
This value doesn't
reflect some internal
storage allocations
that don't affect
storage billing. Thus,
you can anticipate
out-of-space issues
more accurately
by testing whether
AuroraVolumeBytesLeftTotal
is approaching zero
instead of comparing
VolumeBytesUsed
against the storage
limit of 128 TiB.

569

http://aws.amazon.com/rds/#pricing
http://aws.amazon.com/rds/#pricing

Amazon Aurora User Guide for Aurora
Viewing metrics in the Amazon RDS console

VolumeReadIOPs Volume Read
IOPS (Count)

The number of billed
read I/O operations

Aurora
MySQL

Count per
5 minutes

from a cluster volume and
within a 5-minute
interval.

Aurora
PostgreSQL

Billed read operations
are calculated at the
cluster volume level,
aggregated from all
instances in the Aurora
DB cluster, and then
reported at 5-minute
intervals. The value is
calculated by taking
the value of the Read
operations metric over
a 5-minute period.
You can determine the
amount of billed read
operations per second
by taking the value
of the Billed read
operations metric
and dividing by 300
seconds. For example,
if the Billed read
operations returns
13,686, then the billed
read operations per
second is 45 (13,686 /
300 = 45.62).
You accrue billed read
operations for queries
that request database
pages that aren't in
the buffer cache and
must be loaded from
storage. You might
see spikes in billed
read operations as
query results are read
from storage and then
loaded into the buffer
cache.

Tip
If your Aurora
MySQL cluster
uses parallel
query, you
might see an
increase in
VolumeReadIOPS
values.

570

Amazon Aurora User Guide for Aurora
Viewing metrics in the Amazon RDS console

Parallel

queries don't
use the buffer
pool. Thus,
although
the queries
are fast, this
optimized
processing
can result in
an increase
in read
operations
and
associated
charges.

VolumeWriteIOPs Volume Write
IOPS (Count)

The number of write
disk I/O operations

Aurora
MySQL

Count per
5 minutes

to the cluster volume, and
reported at 5-minute
intervals. For a Aurora

PostgreSQL
detailed description
of how billed write
operations are
calculated, see
VolumeReadIOPs.

Metric Console name Description Applies to Units

Instance-level metrics for Amazon Aurora
The following instance-specific CloudWatch metrics apply to all Aurora MySQL and
Aurora PostgreSQL instances unless noted otherwise.

Amazon Aurora instance-level metrics

AbortedClients The number of client
connections that

Aurora
MySQL

Count

have not been closed
properly.

571

Amazon Aurora User Guide for Aurora
Viewing metrics in the Amazon RDS console

ActiveTransactions Active Transactions
(Count)

The average number
of current transactions

Aurora
MySQL

Count per
second

executing on an
Aurora database
instance per second.
By default, Aurora
doesn't enable
this metric. To
begin measuring
this value, set
innodb_monitor_enable='all'
in the DB parameter
group for a specific DB
instance.

572

Amazon Aurora User Guide for Aurora
Viewing metrics in the Amazon RDS console

AuroraBinlogReplicaLagAurora Binlog
Replica Lag
(Seconds)

The amount of time
that a binary log
replica DB cluster

Primary
for Aurora
MySQL

Seconds

running on Aurora
MySQL-Compatible
Edition lags behind
the binary log
replication source. A
lag means that the
source is generating
records faster than
the replica can apply
them.
This metric reports
different values
depending on the
engine version:
Aurora MySQL version
1 and 2

The
Seconds_Behind_Master
field of the
MySQL SHOW
SLAVE STATUS

Aurora MySQL version
3

SHOW REPLICA
STATUS

You can use this metric
to monitor errors and
replica lag in a cluster
that acts as a binary
log replica. The metric
value indicates the
following:
A high value

The replica is
lagging the
replication source.

0 or a value close to 0

The replica
process is active
and current.

573

Amazon Aurora User Guide for Aurora
Viewing metrics in the Amazon RDS console

-1

Aurora can't
determine the lag,
which can happen
during replica
setup or when
the replica is in an
error state.

Because binary log
replication only occurs
on the writer instance
of the cluster, we
recommend using the
version of this metric
associated with the
WRITER role.
For more information
about administering
replication, see
Replicating Amazon
Aurora MySQL DB
clusters across AWS
Regions (p. 943).
For more
information about
troubleshooting,
see Amazon Aurora
MySQL replication
issues (p. 1831).

AuroraReplicaLag Aurora Replica Lag
(Milliseconds)

For an Aurora replica,
the amount of lag

Replica
for Aurora

Milliseconds

when replicating MySQL
and

updates from the
primary instance.

Aurora
PostgreSQL

AuroraReplicaLagMaximumReplica Lag
Maximum
(Milliseconds)

The maximum amount
of lag between the
primary instance

Primary
for Aurora
MySQL

Milliseconds

and each Aurora DB and
instance in the DB
cluster.

Aurora
PostgreSQL

AuroraReplicaLagMinimumReplica Lag
Minimum
(Milliseconds)

The minimum amount
of lag between the
primary instance

Primary
for Aurora
MySQL

Milliseconds

and each Aurora DB and
instance in the DB
cluster.

Aurora
PostgreSQL

574

Amazon Aurora User Guide for Aurora
Viewing metrics in the Amazon RDS console

BacktrackWindowActualBacktrack Window
Actual (Minutes)

The difference
between the target
backtrack window and

Primary
for Aurora
MySQL

Minutes

the actual backtrack
window.

BacktrackWindowAlert Backtrack Window
Alert (Count)

The number of
times that the actual
backtrack window

Primary
for Aurora
MySQL

Count

is smaller than the
target backtrack
window for a given
period of time.

BlockedTransactions Blocked
Transactions
(Count)

The average number
of transactions in the

Aurora
MySQL

Count per
second

database that are
blocked per second.

BufferCacheHitRatio Buffer Cache Hit
Ratio (Percent)

The percentage of
requests that are

Aurora
MySQL

Percentage

and
served by the buffer
cache.

Aurora
PostgreSQL

CommitLatency Commit Latency
(Milliseconds)

The average duration
of commit operations.

Aurora
MySQL

Milliseconds

and
Aurora
PostgreSQL

CommitThroughput Commit
Throughput (Count/
Second)

The average number
of commit operations
per second.

Aurora
MySQL
and

Count per
second

Aurora
PostgreSQL

575

Amazon Aurora User Guide for Aurora
Viewing metrics in the Amazon RDS console

CPUCreditBalance CPU Credit Balance
(Count)

The number of
CPU credits that

Aurora
MySQL

Count

an instance has and
accumulated, reported
at 5-minute intervals. Aurora

PostgreSQL
You can use this metric
to determine how
long a DB instance
can burst beyond its
baseline performance
level at a given rate.
This metric applies
only to db.t2.small
and db.t2.medium
instances for Aurora
MySQL, and to db.t3
instances for Aurora
PostgreSQL.

CPUCreditUsage CPU Credit Usage
(Count)

The number of CPU
credits consumed

Aurora
MySQL

Count

during the specified and
period, reported at
5-minute intervals. Aurora

PostgreSQL
This metric measures
the amount of time
during which physical
CPUs have been
used for processing
instructions by virtual
CPUs allocated to the
DB instance.
This metric applies
only to db.t2.small
and db.t2.medium
instances for Aurora
MySQL, and to db.t3
instances for Aurora
PostgreSQL.

CPUUtilization CPU Utilization
(Percent)

The percentage of CPU
used by an Aurora DB
instance.

Aurora
MySQL
and

Percentage

Aurora
PostgreSQL

576

Amazon Aurora User Guide for Aurora
Viewing metrics in the Amazon RDS console

DatabaseConnections DB Connections
(Count)

The number of client
network connections

Aurora
MySQL

Count

and
to the database
instance.

Aurora
PostgreSQL

The number of
database sessions can
be higher than the
metric value because
the metric value
doesn't include the
following:
• Sessions that no

longer have a
network connection
but which the
database hasn't
cleaned up

• Sessions created by
the database engine
for its own purposes

• Sessions created
by the database
engine's parallel
execution
capabilities

• Sessions created by
the database engine
job scheduler

• Amazon Aurora
connections

DDLLatency DDL Latency
(Milliseconds)

The average duration
of requests such as

Aurora
MySQL

Milliseconds

example, create, alter,
and drop requests.

DDLThroughput DDL (Count/
Second)

The average number
of DDL requests per
second.

Aurora
MySQL

Count per
second

Deadlocks Deadlocks (Count) The average number
of deadlocks in the
database per second.

Aurora
MySQL
and

Count per
second

Aurora
PostgreSQL

DeleteLatency Delete Latency
(Milliseconds)

The average duration
of delete operations.

Aurora
MySQL

Milliseconds

DeleteThroughput Delete Throughput
(Count/Second)

The average number
of delete queries per
second.

Aurora
MySQL

Count per
second

577

Amazon Aurora User Guide for Aurora
Viewing metrics in the Amazon RDS console

DiskQueueDepth Queue Depth
(Count)

The number of
outstanding read/

Aurora
PostgreSQL

Count

write requests waiting
to access the disk.

DMLLatency DML Latency
(Milliseconds)

The average duration
of inserts, updates,
and deletes.

Aurora
MySQL

Milliseconds

DMLThroughput DML Throughput
(Count/Second)

The average number
of inserts, updates,

Aurora
MySQL

Count per
second

and deletes per
second.

EBSByteBalance% EBS Byte Balance
(Percent)

The percentage of
throughput credits

Aurora
MySQL

Percent

remaining in the burst and
bucket of your RDS
database. This metric Aurora

PostgreSQL
is available for basic
monitoring only.
To find the instance
sizes that support
this metric, see the
instance sizes with an
asterisk (*) in the EBS
optimized by default
table in Amazon
EC2 User Guide for
Linux Instances. The
Sum statistic is not
applicable to this
metric.

578

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-optimized.html#current
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-optimized.html#current

Amazon Aurora User Guide for Aurora
Viewing metrics in the Amazon RDS console

EBSIOBalance% EBS IO Balance
(Percent)

The percentage of I/
O credits remaining

Aurora
MySQL

Percent

in the burst bucket of and
your RDS database.
This metric is available Aurora

PostgreSQL
for basic monitoring
only.
To find the instance
sizes that support
this metric, see the
instance sizes with an
asterisk (*) in the EBS
optimized by default
table in Amazon
EC2 User Guide for
Linux Instances. The
Sum statistic is not
applicable to this
metric.
This metric is different
from BurstBalance.
To learn how to
use this metric, see
Improving application
performance and
reducing costs
with Amazon EBS-
Optimized Instance
burst capability.

EngineUptime Engine Uptime
(Seconds)

The amount of time
that the instance has
been running.

Aurora
MySQL
and

Seconds

Aurora
PostgreSQL

FreeableMemory Freeable Memory
(MB)

The amount of
available random
access memory.

Aurora
MySQL
and

Bytes

Aurora
PostgreSQL

579

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-optimized.html#current
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-optimized.html#current
http://aws.amazon.com/blogs/compute/improving-application-performance-and-reducing-costs-with-amazon-ebs-optimized-instance-burst-capability/
http://aws.amazon.com/blogs/compute/improving-application-performance-and-reducing-costs-with-amazon-ebs-optimized-instance-burst-capability/
http://aws.amazon.com/blogs/compute/improving-application-performance-and-reducing-costs-with-amazon-ebs-optimized-instance-burst-capability/
http://aws.amazon.com/blogs/compute/improving-application-performance-and-reducing-costs-with-amazon-ebs-optimized-instance-burst-capability/
http://aws.amazon.com/blogs/compute/improving-application-performance-and-reducing-costs-with-amazon-ebs-optimized-instance-burst-capability/
http://aws.amazon.com/blogs/compute/improving-application-performance-and-reducing-costs-with-amazon-ebs-optimized-instance-burst-capability/

Amazon Aurora User Guide for Aurora
Viewing metrics in the Amazon RDS console

FreeLocalStorage The amount of local
storage available.

Aurora
MySQL

Bytes

and
Unlike for other DB
engines, for Aurora DB

Aurora
PostgreSQL

instances this metric
reports the amount of
storage available to
each DB instance. This
value depends on the
DB instance class (for
pricing information,
see the Amazon RDS
product page). You can
increase the amount
of free storage space
for an instance by
choosing a larger DB
instance class for your
instance.

InsertLatency Insert Latency
(Milliseconds)

The average duration
of insert operations.

Aurora
MySQL

Milliseconds

InsertThroughput Insert Throughput
(Count/Second)

The average number
of insert operations
per second.

Aurora
MySQL

Count per
second

LoginFailures Login Failures
(Count)

The average number
of failed login
attempts per second.

Aurora
MySQL

Count per
second

MaximumUsedTransactionIDsMaximumUsedTransactionIDsThe age of the
oldest unvacuumed

Aurora
PostgreSQL

Count

transaction ID, in
transactions. If
this value reaches
2,146,483,648 (2^31
- 1,000,000), the
database is forced
into read-only mode,
to avoid transaction
ID wraparound. For
more information, see
Preventing transaction
ID wraparound failures
in the PostgreSQL
documentation.

580

http://aws.amazon.com/rds/#pricing
http://aws.amazon.com/rds/#pricing
https://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND
https://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND

Amazon Aurora User Guide for Aurora
Viewing metrics in the Amazon RDS console

NetworkReceiveThroughputNetwork Receive
Throughput (MB/
Second)

The amount of
network throughput
received from clients

Aurora
MySQL
and

Bytes per
second
(console

by each instance in shows
the Aurora MySQL Aurora

PostgreSQL
Megabytes

DB cluster. This
throughput doesn't per

second)
include network traffic
between instances
in the Aurora DB
cluster and the cluster
volume.

NetworkThroughput Network
Throughput (Byte/
Second)

The amount of
network throughput
both received from

Aurora
MySQL
and

Bytes per
second

and transmitted
to clients by each Aurora

PostgreSQL
instance in the Aurora
MySQL DB cluster. This
throughput doesn't
include network traffic
between instances in
the DB cluster and the
cluster volume.

NetworkTransmitThroughputNetwork Transmit
Throughput (MB/
Second)

The amount of
network throughput
sent to clients by

Aurora
MySQL
and

Bytes per
second
(console

each instance in the shows
Aurora DB cluster. This Aurora

PostgreSQL
Megabytes

throughput doesn't
include network traffic per

second)
between instances in
the DB cluster and the
cluster volume.

NumBinaryLogFiles The number of binlog
files generated.

Aurora
MySQL

Count

Queries Queries (Count/
Second)

The average number
of queries executed
per second.

Aurora
MySQL

Count per
second

RDSToAuroraPostgreSQLReplicaLag The lag when
replicating updates
from the primary RDS

Replica
for Aurora
PostgreSQL

Seconds

PostgreSQL instance
to other nodes in the
cluster.

581

Amazon Aurora User Guide for Aurora
Viewing metrics in the Amazon RDS console

ReadIOPS Read IOPS (Count/
Second)

The average number
of disk I/O operations
per second.

Aurora
PostgreSQL

Count per
second

Aurora PostgreSQL-
Compatible Edition
reports read and write
IOPS separately, in 1-
minute intervals.

ReadLatency Read Latency
(Milliseconds)

The average amount
of time taken per disk
I/O operation.

Aurora
MySQL
and

Seconds

Aurora
PostgreSQL

ReadThroughput Read Throughput
(MB/Second)

The average number
of bytes read from
disk per second.

Aurora
PostgreSQL

Bytes per
second

ReplicationSlotDiskUsage The amount of disk
space consumed by
replication slot files.

Aurora
PostgreSQL

Bytes

ResultSetCacheHitRatioResult Set Cache Hit
Ratio (Percent)

The percentage
of requests that

Aurora
MySQL

Percentage

are served by the
Resultset cache.

RollbackSegmentHistoryListLength The undo logs that
record committed

Aurora
MySQL

Count

transactions with
delete-marked
records. These records
are scheduled to
be processed by
the InnoDB purge
operation.

RowLockTime The total time spent
acquiring row locks for
InnoDB tables.

Aurora
MySQL

Milliseconds

SelectLatency Select Latency
(Milliseconds)

The average amount
of time for select
operations.

Aurora
MySQL

Milliseconds

SelectThroughput Select Throughput
(Count/Second)

The average number
of select queries per
second.

Aurora
MySQL

Count per
second

582

Amazon Aurora User Guide for Aurora
Viewing metrics in the Amazon RDS console

StorageNetworkReceiveThroughputNetwork Receive
Throughput (MB/
Second)

The amount of
network throughput
received from the

Aurora
MySQL
and

Bytes per
second

Aurora storage
subsystem by each Aurora

PostgreSQL
instance in the DB
cluster.

StorageNetworkThroughputNetwork
Throughput (Byte/
Second)

The amount of
network throughput
received from and sent

Aurora
MySQL
and

Bytes per
second

to the Aurora storage
subsystem by each Aurora

PostgreSQL
instance in the Aurora
MySQL DB cluster.

StorageNetworkTransmitThroughputNetwork Transmit
Throughput (MB/
Second)

The amount of
network throughput
sent to the Aurora

Aurora
MySQL
and

Bytes per
second

storage subsystem
by each instance in Aurora

PostgreSQL
the Aurora MySQL DB
cluster.

SumBinaryLogSize The total size of the
binlog files.

Aurora
MySQL

Bytes

SwapUsage Swap Usage (MB) The amount of swap
space used. This

Aurora
MySQL

Bytes

metric is available for and
the Aurora PostgreSQL
DB instance classes Aurora

PostgreSQL
db.t3.medium,
db.t3.large,
db.r4.large,
db.r4.xlarge,
db.r5.large,
db.r5.xlarge,
db.r6g.large, and
db.r6g.xlarge. For
Aurora MySQL, this
metric applies only
to db.t* DB instance
classes.

583

Amazon Aurora User Guide for Aurora
Viewing metrics in the Amazon RDS console

TransactionLogsDiskUsageTransaction Logs
Disk Usage (MB)

The amount of disk
space consumed by
transaction logs on

Primary
for Aurora
PostgreSQL

Bytes

the Aurora PostgreSQL
DB instance.
This metric is
generated only when
Aurora PostgreSQL
is using logical
replication or AWS
Database Migration
Service. By default,
Aurora PostgreSQL
uses log records, not
transaction logs. When
transaction logs aren't
in use, the value for
this metric is -1.

UpdateLatency Update Latency
(Milliseconds)

The average amount
of taken taken for
update operations.

Aurora
MySQL

Milliseconds

UpdateThroughput Update Throughput
(Count/Second)

The average number
of updates per second.

Aurora
MySQL

Count per
second

WriteIOPS Volume Write IOPS
(Count)

The number of Aurora
storage write records

Aurora
PostgreSQL

Count per
second

generated per second.
This is more or less
the number of log
records generated by
the database. These
do not correspond to
8K page writes, and
do not correspond to
network packets sent.

WriteLatency Write Latency
(Milliseconds)

The average amount
of time taken per disk
I/O operation.

Aurora
MySQL
and

Seconds

Aurora
PostgreSQL

WriteThroughput Write Throughput
(MB/Second)

The average number
of bytes written to

Aurora
PostgreSQL

Bytes per
second

persistent storage
every second.

Metric Console Name Description Applies
to

Units

 (p. 654).

584

Amazon Aurora User Guide for Aurora
Viewing metrics in the Amazon RDS console

5. Choose Monitoring to see the metric categories.

6. Choose the category of metrics that you want to see.

The following example shows Enhanced Monitoring metrics. For descriptions of these metrics, see
OS metrics in Enhanced Monitoring (p. 681).

585

Amazon Aurora User Guide for Aurora
Viewing metrics in the Amazon RDS console

Tip
To choose the time range of the metrics represented by the graphs, you can use the time
range list.
To bring up a more detailed view, you can choose any graph. You can also apply metric-
specific filters to the data.

586

Amazon Aurora User Guide for Aurora
Monitoring Aurora with CloudWatch

Monitoring Amazon Aurora metrics with Amazon
CloudWatch

Amazon CloudWatch is a metrics repository. The repository collects and processes raw data from Amazon
Aurora into readable, near real-time metrics. For a complete list of Amazon Aurora metrics sent to
CloudWatch, see Amazon RDS dimensions and metrics in the Amazon CloudWatch User Guide.

By default, Amazon Aurora automatically sends metric data to CloudWatch in 1-minute periods. Data
points with a period of 60 seconds (1 minute) are available for 15 days. This means that you can access
historical information and see how your web application or service is performing.

For more information about CloudWatch, see What is Amazon CloudWatch? in the Amazon CloudWatch
User Guide. For more information about CloudWatch metrics retention, see Metrics retention.

Note
If you are using Amazon RDS Performance Insights, additional metrics are available. For more
information, see Amazon CloudWatch metrics for Performance Insights (p. 673).

Topics

587

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/rds-metricscollected.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/cloudwatch_concepts.html#metrics-retention

Amazon Aurora User Guide for Aurora
Monitoring Aurora with CloudWatch

• Viewing DB instance metrics in the CloudWatch console and CLI (p. 589)
• Creating CloudWatch alarms to monitor Amazon Aurora (p. 592)

588

Amazon Aurora User Guide for Aurora
Viewing CloudWatch metrics

Viewing DB instance metrics in the CloudWatch
console and CLI
Following, you can find details about how to view metrics for your DB instance using CloudWatch.
For information on monitoring metrics for your DB instance's operating system in real time using
CloudWatch Logs, see Monitoring OS metrics with Enhanced Monitoring (p. 647).

When you use Amazon Aurora resources, Amazon Aurora sends metrics and dimensions to Amazon
CloudWatch every minute. You can use the following procedures to view the metrics for Amazon Aurora
in the CloudWatch console and CLI.

Console

To view metrics using the Amazon CloudWatch console

Metrics are grouped first by the service namespace, and then by the various dimension combinations
within each namespace.

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. If necessary, change the AWS Region. From the navigation bar, choose the AWS Region where your
AWS resources are. For more information, see Regions and endpoints.

3. In the navigation pane, choose Metrics and then All metrics.

4. Scroll down and choose the RDS metric namespace.

The page displays the Amazon Aurora dimensions. For descriptions of these dimensions, see Amazon
CloudWatch dimensions for Aurora (p. 670).

589

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Aurora User Guide for Aurora
Viewing CloudWatch metrics

5. Choose a metric dimension, for example By Database Class.

6. Do any of the following actions:

• To sort the metrics, use the column heading.

• To graph a metric, select the check box next to the metric.

• To filter by resource, choose the resource ID, and then choose Add to search.

• To filter by metric, choose the metric name, and then choose Add to search.

The following example filters on the db.t3.medium class and graphs the CPUUtilization metric.

590

Amazon Aurora User Guide for Aurora
Viewing CloudWatch metrics

AWS CLI

To obtain metric information by using the AWS CLI, use the CloudWatch command list-metrics. In
the following example, you list all metrics in the AWS/RDS namespace.

aws cloudwatch list-metrics --namespace AWS/RDS

To obtain metric statistics, use the command get-metric-statistics. The following command gets
CPUUtilization statistics for instance my-instance over the specific 24-hour period, with a 5-minute
granularity.

Example

For Linux, macOS, or Unix:

aws cloudwatch get-metric-statistics --namespace AWS/RDS \
 --metric-name CPUUtilization \
 --start-time 2021-12-15T00:00:00Z \
 --end-time 2021-12-16T00:00:00Z \
 --period 360 \
 --statistics Minimum \
 --dimensions Name=DBInstanceIdentifier,Value=my-instance

For Windows:

aws cloudwatch get-metric-statistics --namespace AWS/RDS ^
 --metric-name CPUUtilization ^

591

https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/list-metrics.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/get-metric-statistics.html

Amazon Aurora User Guide for Aurora
Creating CloudWatch alarms

 --start-time 2021-12-15T00:00:00Z ^
 --end-time 2021-12-16T00:00:00Z ^
 --period 360 ^
 --statistics Minimum ^
 --dimensions Name=DBInstanceIdentifier,Value=my-instance

Sample output appears as follows:

{
 "Datapoints": [
 {
 "Timestamp": "2021-12-15T18:00:00Z",
 "Minimum": 8.7,
 "Unit": "Percent"
 },
 {
 "Timestamp": "2021-12-15T23:54:00Z",
 "Minimum": 8.12486458559024,
 "Unit": "Percent"
 },
 {
 "Timestamp": "2021-12-15T17:24:00Z",
 "Minimum": 8.841666666666667,
 "Unit": "Percent"
 }, ...
 {
 "Timestamp": "2021-12-15T22:48:00Z",
 "Minimum": 8.366248354248954,
 "Unit": "Percent"
 }
],
 "Label": "CPUUtilization"
}

For more information, see Getting statistics for a metric in the Amazon CloudWatch User Guide.

Creating CloudWatch alarms to monitor Amazon
Aurora
You can create a CloudWatch alarm that sends an Amazon SNS message when the alarm changes state.
An alarm watches a single metric over a time period that you specify. The alarm can also perform one
or more actions based on the value of the metric relative to a given threshold over a number of time
periods. The action is a notification sent to an Amazon SNS topic or Amazon EC2 Auto Scaling policy.

Alarms invoke actions for sustained state changes only. CloudWatch alarms don't invoke actions simply
because they are in a particular state. The state must have changed and have been maintained for a
specified number of time periods. The following procedures show how to create alarms for Amazon RDS.

Note
For Aurora, use WRITER or READER role metrics to set up alarms instead of relying on metrics for
specific DB instances. Aurora DB instance roles can change roles over time. You can find these
role-based metrics in the CloudWatch console.
Aurora Auto Scaling automatically sets alarms based on READER role metrics. For more
information about Aurora Auto Scaling, see Using Amazon Aurora Auto Scaling with Aurora
replicas (p. 427).

To set alarms using the CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

592

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/getting-metric-statistics.html
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon Aurora User Guide for Aurora
Creating CloudWatch alarms

2. Choose Alarms and then choose Create Alarm. Doing this launches the Create Alarm Wizard.
3. Choose RDS Metrics and scroll through the Amazon RDS metrics to find the metric that you want

to place an alarm on. To display just Amazon RDS metrics, search for the identifier of your resource.
Choose the metric to create an alarm on and then choose Next.

4. Enter Name, Description, and Whenever values for the metric.
5. If you want CloudWatch to send you an email when the alarm state is reached, for Whenever this

alarm, choose State is ALARM. For Send notification to, choose an existing SNS topic. If you choose
Create topic, you can set the name and email addresses for a new email subscription list. This list is
saved and appears in the field for future alarms.

Note
If you use Create topic to create a new Amazon SNS topic, the email addresses must be
verified before they receive notifications. Emails are only sent when the alarm enters an
alarm state. If this alarm state change happens before the email addresses are verified, the
addresses don't receive a notification.

6. Preview the alarm that you're about to create in the Alarm Preview area, and then choose Create
Alarm.

To set an alarm using the AWS CLI

• Call put-metric-alarm. For more information, see AWS CLI Command Reference.

To set an alarm using the CloudWatch API

• Call PutMetricAlarm. For more information, see Amazon CloudWatch API Reference

593

https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-alarm.html
https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricAlarm.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/

Amazon Aurora User Guide for Aurora
Monitoring DB load with Performance Insights

Monitoring DB load with Performance Insights on
Amazon Aurora

Performance Insights expands on existing Amazon Aurora monitoring features to illustrate your cluster
performance and help you analyze any issues that affect it. With the Performance Insights dashboard,
you can visualize the database load and filter the load by waits, SQL statements, hosts, or users.

Topics
• Overview of Performance Insights (p. 594)

• Enabling and disabling Performance Insights (p. 598)

• Enabling the Performance Schema for Performance Insights on Aurora MySQL (p. 601)

• Configuring access policies for Performance Insights (p. 603)

• Analyzing metrics with the Performance Insights dashboard (p. 606)

• Retrieving metrics with the Performance Insights API (p. 628)

• Logging Performance Insights calls using AWS CloudTrail (p. 642)

Overview of Performance Insights
By default, Performance Insights is enabled in the console create wizard for Amazon RDS engines. If you
have more than one database on a DB instance, Performance Insights aggregates performance data.

You can find an overview of Performance Insights in the following video.

Using Performance Insights to Analyze Performance of Amazon Aurora PostgreSQL

Topics
• Database load (p. 594)

• Maximum CPU (p. 597)

• Amazon Aurora DB engine support for Performance Insights (p. 597)

• AWS Region support for Performance Insights (p. 598)

• Cost of Performance Insights (p. 598)

Database load
Database load (DB load) measures the level of activity in your database. The key metric in Performance
Insights is DBLoad, which is collected every second.

Topics
• Active sessions (p. 594)

• Average active sessions (p. 595)

• Average active executions (p. 595)

• Dimensions (p. 596)

Active sessions

A database session represents an application's dialogue with a relational database. An active session is a
connection that has submitted work to the DB engine and is waiting for a response.

594

https://www.youtube.com/embed/yOeWcPBT458

Amazon Aurora User Guide for Aurora
Overview of Performance Insights

A session is active when it's either running on CPU or waiting for a resource to become available so that
it can proceed. For example, an active session might wait for a page to be read into memory, and then
consume CPU while it reads data from the page.

Average active sessions

The average active sessions (AAS) is the unit for the DBLoad metric in Performance Insights. To get the
average active sessions, Performance Insights samples the number of sessions concurrently running a
query. The AAS is the total number of sessions divided by the total number of samples for a specific time
period. The following table shows 5 consecutive samples of a running query.

Sample Number of sessions running
query

AAS Calculation

1 2 2 2 sessions / 1 sample

2 0 1 2 sessions / 2 samples

3 4 2 6 sessions / 3 samples

4 0 1.5 6 sessions / 4 samples

5 4 2 10 sessions / 5 samples

In the preceding example, the DB load for the time interval was 2 AAS. This measurement means that, on
average, 2 sessions were active at a time during the time period when the 5 samples were taken.

An analogy for DB load is activity in a warehouse. Suppose that the warehouse employs 100 workers.
If 1 order comes in, 1 worker fulfills the order while the other workers are idle. If 100 orders come in,
all 100 workers fulfill orders simultaneously. If you periodically sample how many workers are active
over a given time period, you can calculate the average number of active workers. The calculation shows
that, on average, N workers are busy fulfilling orders at any given time. If the average was 50 workers
yesterday and 75 workers today, the activity level in the warehouse increased. In the same way, DB load
increases as session activity increases.

Average active executions

The average active executions (AAE) per second is related to AAS. To calculate the AAE, Performance
Insights divides the total execution time of a query by the time interval. The following table shows the
AAE calculation for the same query in the preceding table.

Elapsed time
(sec)

Total execution time
(sec)

AAE Calculation

60 120 2 120 execution seconds/60
elapsed seconds

120 120 1 120 execution
seconds/120 elapsed
seconds

180 380 2.11 380 execution
seconds/180 elapsed
seconds

240 380 1.58 380 execution
seconds/240 elapsed
seconds

595

Amazon Aurora User Guide for Aurora
Overview of Performance Insights

Elapsed time
(sec)

Total execution time
(sec)

AAE Calculation

300 600 2 600 execution
seconds/300 elapsed
seconds

In most cases, the AAS and AAE for a query are approximately the same. However, because the inputs to
the calculations are different data sources, the calculations often vary slightly.

Dimensions

The db.load metric is different from the other time-series metrics because you can break it into
subcomponents called dimensions. You can think of dimensions as "slice by" categories for the different
characteristics of the DBLoad metric.

When you are diagnosing performance issues, the following dimensions are often the most useful:

Topics

• Wait events (p. 596)

• Top SQL (p. 597)

For a complete list of dimensions for the Aurora engines, see DB load sliced by dimensions (p. 609).

Wait events

A wait event causes a SQL statement to wait for a specific event to happen before it can continue
running. Wait events are an important dimension, or category, for DB load because they indicate where
work is impeded.

Every active session is either running on the CPU or waiting. For example, sessions consume CPU when
they search memory for a buffer, perform a calculation, or run procedural code. When sessions aren't
consuming CPU, they might be waiting for a memory buffer to become free, a data file to be read, or a
log to be written to. The more time that a session waits for resources, the less time it runs on the CPU.

When you tune a database, you often try to find out the resources that sessions are waiting for. For
example, two or three wait events might account for 90 percent of DB load. This measure means that, on
average, active sessions are spending most of their time waiting for a small number of resources. If you
can find out the cause of these waits, you can attempt a solution.

Consider the analogy of a warehouse worker. An order comes in for a book. The worker might be delayed
in fulfilling the order. For example, a different worker might be currently restocking the shelves, a trolley
might not be available. Or the system used to enter the order status might be slow. The longer the
worker waits, the longer it takes to fulfill the order. Waiting is a natural part of the warehouse workflow,
but if wait time becomes excessive, productivity decreases. In the same way, repeated or lengthy session
waits can degrade database performance. For more information, see Tuning with wait events for Aurora
PostgreSQL and Tuning with wait events for Aurora MySQL in the Amazon Aurora User Guide.

Wait events vary by DB engine:

• For a list of the common wait events for Aurora MySQL, see Aurora MySQL wait events (p. 1084). To
learn how to tune using these wait events, see Tuning Aurora MySQL with wait events and thread
states (p. 858).

• For information about all MySQL wait events, see Wait Event Summary Tables in the MySQL
documentation.

596

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Tuning.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Tuning.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.Tuning.wait-events.html
https://dev.mysql.com/doc/refman/5.7/en/wait-summary-tables.html

Amazon Aurora User Guide for Aurora
Overview of Performance Insights

• For a list of common wait events for Aurora PostgreSQL, see Amazon Aurora PostgreSQL wait
events (p. 1587). To learn how to tune using these wait events, see Tuning with wait events for Aurora
PostgreSQL (p. 1393).

• For information about all PostgreSQL wait events, see PostgreSQL Wait Events in the PostgreSQL
documentation.

Top SQL

Where wait events show bottlenecks, top SQL shows which queries are contributing the most to DB
load. For example, many queries might be currently running on the database, but a single query might
consume 99 percent of the DB load. In this case, the high load might indicate a problem with the query.

By default, the Performance Insights console displays top SQL queries that are contributing to the
database load. The console also shows relevant statistics for each statement. To diagnose performance
problems for a specific statement, you can examine its execution plan.

Maximum CPU

In the dashboard, the Database load chart collects, aggregates, and displays session information. To see
whether active sessions are exceeding the maximum CPU, look at their relationship to the Max vCPU line.
The Max vCPU value is determined by the number of vCPU (virtual CPU) cores for your DB instance. For
Aurora Serverless v2, Max vCPU represents the estimated number of vCPUs.

If the DB load is often above the Max vCPU line, and the primary wait state is CPU, the CPU is
overloaded. In this case, you might want to throttle connections to the instance, tune any SQL queries
with a high CPU load, or consider a larger instance class. High and consistent instances of any wait state
indicate that there might be bottlenecks or resource contention issues to resolve. This can be true even if
the DB load doesn't cross the Max vCPU line.

Amazon Aurora DB engine support for Performance Insights

Following, you can find the Amazon Aurora DB engines that support Performance Insights.

Amazon
Aurora DB
engine

Supported engine
versions when parallel
query isn't turned on

Supported engine versions
when parallel query is
turned on

Instance class restrictions

Amazon
Aurora MySQL-
Compatible
Edition

Performance Insights
is supported for the
following engine versions:

• 3.0 and higher 3
versions (compatible
with MySQL 8.0)

• 2.04.2 and higher 2
versions (compatible
with MySQL 5.7)

• 1.17.3 and higher 1
versions (compatible
with MySQL 5.6)

Performance Insights with
parallel query enabled is
supported for the following
engine versions:

• 2.09.0 and higher 2
versions (compatible with
MySQL 5.7)

• 1.23.0 and higher 1
versions (compatible with
MySQL 5.6)

Performance Insights has
the following engine class
restrictions:

• db.t2 – Not supported
• db.t3 – Not supported
• db.t4g – Supported only

for 2.10.1 and higher
2 versions (compatible
with MySQL 5.7)

Amazon Aurora
PostgreSQL-

Performance Insights is
supported for all engine
versions.

N/A N/A

597

https://www.postgresql.org/docs/10/static/monitoring-stats.html#WAIT-EVENT-TABLE

Amazon Aurora User Guide for Aurora
Enabling and disabling Performance Insights

Amazon
Aurora DB
engine

Supported engine
versions when parallel
query isn't turned on

Supported engine versions
when parallel query is
turned on

Instance class restrictions

Compatible
Edition

Note
Aurora Serverless doesn't support Performance Insights.

AWS Region support for Performance Insights
Performance Insights for Amazon Aurora is supported for all AWS Regions except the following:

• AWS GovCloud (US-East)

• AWS GovCloud (US-West)

• Asia Pacific (Jakarta)

Cost of Performance Insights
For cost information, see Performance Insights Pricing.

Enabling and disabling Performance Insights
To use Performance Insights, enable it on your DB instance. If needed, you can disable it later. Enabling
and disabling Performance Insights doesn't cause downtime, a reboot, or a failover.

Note
Performance Schema is an optional performance tool used by Aurora MySQL. If you turn
Performance Schema on or off, you need to reboot. If you turn Performance Insights on or
off, however, you don't need to reboot. For more information, see Enabling the Performance
Schema for Performance Insights on Aurora MySQL (p. 601).

If you use Performance Insights together with Aurora Global Database, enable Performance Insights
individually for the DB instances in each AWS Region. For details, see Monitoring an Amazon Aurora
global database with Amazon RDS Performance Insights (p. 277).

The Performance Insights agent consumes limited CPU and memory on the DB host. When the DB load is
high, the agent limits the performance impact by collecting data less frequently.

Console

In the console, you can enable or disable Performance Insights when you create or modify a new DB
instance.

Enabling or disabling Performance Insights when creating an instance

When you create a new DB instance, enable Performance Insights by choosing Enable Performance
Insights in the Performance Insights section. Or choose Disable Performance Insights.

To create a DB instance, follow the instructions for your DB engine in Creating an Amazon Aurora DB
cluster (p. 125).

598

http://aws.amazon.com/rds/performance-insights/pricing/

Amazon Aurora User Guide for Aurora
Enabling and disabling Performance Insights

The following screenshot shows the Performance Insights section.

If you choose Enable Performance Insights, you have the following options:

• Retention – The amount of time to retain Performance Insights data. Choose either 7 days (the
default) or 2 years.

• AWS KMS key – Specify your AWS KMS key. Performance Insights encrypts all potentially sensitive
data using your KMS key. Data is encrypted in flight and at rest. For more information, see Configuring
an AWS KMS policy for Performance Insights (p. 605).

Enabling or disabling Performance Insights when modifying an instance

In the console, you can modify a DB instance to enable or disable Performance Insights using the
console.

To enable or disable Performance Insights for a DB instance using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases.
3. Choose a DB instance, and choose Modify.
4. In the Performance Insights section, choose either Enable Performance Insights or Disable

Performance Insights.

If you choose Enable Performance Insights, you have the following options:

• Retention – The amount of time to retain Performance Insights data. Choose either 7 days (the
default) or 2 years. If you chose Long Term Retention (2 years) when you enable Performance
Insights, All displays 2 years of data. If you chose Default (7 days) instead, All displays only the
past week.

• AWS KMS key – Specify your KMS key. Performance Insights encrypts all potentially sensitive data
using your KMS key. Data is encrypted in flight and at rest. For more information, see Encrypting
Amazon Aurora resources (p. 1722).

5. Choose Continue.

599

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Enabling and disabling Performance Insights

6. For Scheduling of Modifications, choose Apply immediately. If you choose Apply during the next
scheduled maintenance window, your instance ignores this setting and enables Performance Insights
immediately.

7. Choose Modify instance.

AWS CLI

When you use the create-db-instance AWS CLI command, enable Performance Insights by specifying
--enable-performance-insights. Or disable Performance Insights by specifying --no-enable-
performance-insights.

You can also specify these values using the following AWS CLI commands:

• create-db-instance-read-replica
• modify-db-instance
• restore-db-instance-from-s3

The following procedure describes how to enable or disable Performance Insights for a DB instance using
the AWS CLI.

To enable or disable Performance Insights for a DB instance using the AWS CLI

• Call the modify-db-instance AWS CLI command and supply the following values:

• --db-instance-identifier – The name of the DB instance.
• --enable-performance-insights to enable or --no-enable-performance-insights to

disable

The following example enables Performance Insights for sample-db-instance.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier sample-db-instance \
 --enable-performance-insights

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier sample-db-instance ^
 --enable-performance-insights

When you enable Performance Insights, you can optionally specify the amount of time, in days, to retain
Performance Insights data with the --performance-insights-retention-period option. Valid
values are 7 (the default) or 731 (2 years).

The following example enables Performance Insights for sample-db-instance and specifies that
Performance Insights data is retained for two years.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier sample-db-instance \
 --enable-performance-insights \

600

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance-read-replica.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-s3.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Aurora User Guide for Aurora
Enabling the Performance Schema for Aurora MySQL

 --performance-insights-retention-period 731

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier sample-db-instance ^
 --enable-performance-insights ^
 --performance-insights-retention-period 731

RDS API

When you create a new DB instance using the CreateDBInstance operation Amazon RDS API operation,
enable Performance Insights by setting EnablePerformanceInsights to True. To disable
Performance Insights, set EnablePerformanceInsights to False.

You can also specify the EnablePerformanceInsights value using the following API operations:

• ModifyDBInstance

CreateDBInstanceReadReplica
• RestoreDBInstanceFromS3

When you enable Performance Insights, you can optionally specify the amount of time, in days, to retain
Performance Insights data with the PerformanceInsightsRetentionPeriod parameter. Valid values
are 7 (the default) or 731 (2 years).

Enabling the Performance Schema for Performance
Insights on Aurora MySQL
The Performance Schema is an optional feature for monitoring Aurora MySQL runtime performance at a
low level. You can use Performance insights with or without the Performance Schema. The Performance
Schema is designed to have minimal impact on database performance.

Topics
• Overview of the Performance Schema (p. 601)
• Options for enabling Performance Schema (p. 602)
• Configuring the Performance Schema for automatic management (p. 602)

Overview of the Performance Schema
The Performance Schema monitors server events. In this context, an event is a server action that
consumes time. Performance Schema events are distinct from binlog events and scheduler events.

The PERFORMANCE_SCHEMA storage engine collects event data using instrumentation in the database
source code. The engine stores collected events in tables in the performance_schema database. You
can query performance_schema just as you can query any other tables. For more information, see
MySQL Performance Schema in MySQL Reference Manual.

When the Performance Schema is enabled for Aurora MySQL, Performance Insights uses it to provide
more detailed information. For example, Performance Insights displays DB load categorized by detailed
wait events. You can use wait events to identify bottlenecks. Without the Performance Schema,
Performance Insights reports user states such as inserting and sending, which don't help you identify
bottlenecks.

601

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstanceReadReplica.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBInstanceFromS3.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema.html

Amazon Aurora User Guide for Aurora
Enabling the Performance Schema for Aurora MySQL

Options for enabling Performance Schema
You have the following options for enabling the Performance Schema:

• Allow Performance Insights to manage required Performance Schema parameters automatically.

When you create an Aurora MySQL DB instance with Performance Insights enabled, the Performance
Schema is also enabled. In this case, Performance Insights automatically manages your Performance
Schema parameters.

For automatic management, the performance_schema must be set to 0 and the Source
must be set to a value other than 0. By default, Source is engine-default. If you change the
performance_schema value manually, and then later want to revert to automatic management, see
Configuring the Performance Schema for automatic management (p. 602).

Important
When Performance Insights enables the Performance Schema, it doesn't change the
parameter group values. However, the values are changed on the instances that are running.
The only way to see the changed values is to run the SHOW GLOBAL VARIABLES command.

• Set the required Performance Schema parameters yourself.

For Performance Insights to list wait events, set all Performance Schema parameters as shown in the
following table.

Parameter Name Parameter Value

performance_schema 1 (the Source column has the value
engine-default)

performance-schema-consumer-events-waits-
current

ON

performance-schema-instrument wait/%=ON

performance_schema_consumer_global_instrumentationON

performance_schema_consumer_thread_instrumentationON

Note
If you enable or disable the Performance Schema, you must reboot the database. If you enable
or disable Performance Insights, you don't need to reboot the database.

For more information, see Performance Schema Command Options and Performance Schema Option
and Variable Reference in the MySQL documentation.

Configuring the Performance Schema for automatic
management
The following table shows the difference in settings when Performance Insights is and isn't managing
the Performance Schema.

Performance Insights isn't managing the
Performance Schema

Performance Insights is managing the
Performance Schema

performance_schema is 0 or 1 performance_schema is 0

602

https://dev.mysql.com/doc/refman/5.6/en/performance-schema-options.html#option_mysqld_performance-schema-consumer-events-stages-current
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-option-variable-reference.html

Amazon Aurora User Guide for Aurora
Performance Insights policies

Performance Insights isn't managing the
Performance Schema

Performance Insights is managing the
Performance Schema

The Source column is set to user The Source column is set to system

To let Performance Insights manage the Performance Schema automatically

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Parameter groups.
3. Select the name of the parameter group for your DB instance.
4. Enter performance_schema in the search bar.
5. Select the performance_schema parameter.

6. Check whether Source is system and Values is 0. If so, Performance Insights is managing the
Performance Schema automatically. If not, proceed to the next step.

7. Choose Edit parameters.
8. In Values, choose 0.
9. Select Reset. When you reset, Aurora MySQLsets Source to system and Values to 0.

The Reset parameters in DB parameter group page appears.
10. Select Reset parameters.
11. Restart the DB instance.

Important
Whenever you enable or disable the Performance Schema, you must restart the DB
instance.

For more information about modifying instance parameters, see Modifying parameters in a DB
parameter group (p. 347). For more information about the dashboard, see Analyzing metrics with
the Performance Insights dashboard (p. 606). For more information about the MySQL performance
schema, see MySQL 8.0 Reference Manual.

Configuring access policies for Performance Insights
To access Performance Insights, you must have the appropriate permissions from AWS Identity and
Access Management (IAM). You have the following options for granting access:

• Attach the AmazonRDSFullAccess managed policy to an IAM user or role.
• Create a custom IAM policy and attach it to an IAM user or role.

603

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://dev.mysql.com/doc/refman/8.0/en/performance-schema.html

Amazon Aurora User Guide for Aurora
Performance Insights policies

Also, if you specified a customer managed key when you turned on Performance Insights, make sure that
users in your account have the kms:Decrypt and kms:GenerateDataKey permissions on the KMS key.

Attaching the AmazonRDSFullAccess policy to an IAM principal
AmazonRDSFullAccess is an AWS-managed policy that grants access to all of the Amazon RDS API
operations. This policy does the following:

• Grants access to related services used by the Amazon RDS console. For example, this policy grants
access to event notifications using Amazon SNS.

• Grants permissions needed for using Performance Insights.

If you attach AmazonRDSFullAccess to an IAM user or role, the recipient can use Performance Insights
with other console features.

Creating a custom IAM policy for Performance Insights
For users who don't have full access with the AmazonRDSFullAccess policy, you can grant access to
Performance Insights by creating or modifying a user-managed IAM policy. When you attach the policy
to an IAM user or role, the recipient can use Performance Insights.

To create a custom policy

1. Open the IAM console at https://console.aws.amazon.com/iam/.
2. In the navigation pane, choose Policies.
3. Choose Create policy.
4. On the Create Policy page, choose the JSON tab.
5. Copy and paste the following text, replacing us-east-1 with the name of your AWS Region and

111122223333 with your customer account number.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "pi:*",
 "Resource": "arn:aws:pi:us-east-1:111122223333:metrics/rds/*"
 },
 {
 "Effect": "Allow",
 "Action": "rds:DescribeDBInstances",
 "Resource": "*"
 }
]
}

6. Choose Review policy.
7. Provide a name for the policy and optionally a description, and then choose Create policy.

You can now attach the policy to an IAM user or role. The following procedure assumes that you already
have an IAM user available for this purpose.

To attach the policy to an IAM user

1. Open the IAM console at https://console.aws.amazon.com/iam/.

604

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Aurora User Guide for Aurora
Performance Insights policies

2. In the navigation pane, choose Users.

3. Choose an existing user from the list.

Important
To use Performance Insights, make sure that you have access to Amazon RDS in addition
to the custom policy. For example, the AmazonRDSReadOnlyAccess predefined policy
provides read-only access to Amazon RDS. For more information, see Managing access using
policies (p. 1739).

4. On the Summary page, choose Add permissions.

5. Choose Attach existing policies directly. For Search, type the first few characters of your policy
name, as shown following.

6. Choose your policy, and then choose Next: Review.

7. Choose Add permissions.

Configuring an AWS KMS policy for Performance Insights
Performance Insights uses an AWS KMS key to encrypt sensitive data. When you enable Performance
Insights through the API or the console, you have the following options:

• Choose the default AWS managed key.

Amazon RDS uses the AWS managed key for your new DB instance. Amazon RDS creates an AWS
managed key for your AWS account. Your AWS account has a different AWS managed key for Amazon
RDS for each AWS Region.

• Choose a customer managed key.

If you specify a customer managed key, users in your account that call the Performance Insights API
need the kms:Decrypt and kms:GenerateDataKey permissions on the KMS key. You can configure
these permissions through IAM policies. However, we recommend that you manage these permissions
through your KMS key policy. For more information, see Using key policies in AWS KMS.

Example

The following sample key policy shows how to add statements to your KMS key policy. These statements
allow access to Performance Insights. Depending on how you use the KMS key, you might want to
change some restrictions. Before adding statements to your policy, remove all comments.

605

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html

Amazon Aurora User Guide for Aurora
Analyzing metrics with the Performance Insights dashboard

{
 "Version" : "2012-10-17",
 "Id" : "your-policy",
 "Statement" : [{
 //This represents a statement that currently exists in your policy.
 }
,
 //Starting here, add new statement to your policy for Performance Insights.
 //We recommend that you add one new statement for every RDS instance
{
 "Sid" : "Allow viewing RDS Performance Insights",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 //One or more principals allowed to access Performance Insights
 "arn:aws:iam::444455556666:role/Role1"
]
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": "*",
 "Condition" : {
 "StringEquals" : {
 //Restrict access to only RDS APIs (including Performance Insights).
 //Replace region with your AWS Region.
 //For example, specify us-west-2.
 "kms:ViaService" : "rds.region.amazonaws.com"
 },
 "ForAnyValue:StringEquals": {
 //Restrict access to only data encrypted by Performance Insights.
 "kms:EncryptionContext:aws:pi:service": "rds",
 "kms:EncryptionContext:service": "pi",

 //Restrict access to a specific RDS instance.
 //The value is a DbiResourceId.
 "kms:EncryptionContext:aws:rds:db-id": "db-AAAAABBBBBCCCCDDDDDEEEEE"
 }
 }
}

Analyzing metrics with the Performance Insights
dashboard
The Performance Insights dashboard contains database performance information to help you analyze
and troubleshoot performance issues. On the main dashboard page, you can view information about the
database load. You can "slice" DB load by dimensions such as wait events or SQL.

Performance Insights dashboard

• Overview of the Performance Insights dashboard (p. 607)

• Opening the Performance Insights dashboard (p. 612)

• Analyzing DB load by wait events (p. 613)

• Analyzing running queries using the Performance Insights dashboard (p. 614)

• Accessing the text of SQL statements (p. 625)

• Zooming In on the DB Load chart (p. 627)

606

Amazon Aurora User Guide for Aurora
Analyzing metrics with the Performance Insights dashboard

Overview of the Performance Insights dashboard
The dashboard is the easiest way to interact with Performance Insights. The following example shows
the dashboard for a MySQL DB instance. By default, the Performance Insights dashboard shows data for
the last hour.

The dashboard is divided into the following parts:

1. Counter Metrics – Shows data for specific performance counter metrics.
2. DB Load Chart – Shows how the DB load compares to DB instance capacity as represented by the Max

vCPU line.
3. Top items – Shows the top dimensions contributing to DB load.

Topics
• Counter metrics chart (p. 607)
• Database load chart (p. 609)
• Top dimensions table (p. 611)

Counter metrics chart

With counter metrics, you can customize the Performance Insights dashboard to include up to 10
additional graphs. These graphs show a selection of dozens of operating system and database
performance metrics. You can correlate this information with DB load to help identify and analyze
performance problems.

The Counter metrics chart displays data for performance counters. The default metrics depend on the
DB engine:

607

Amazon Aurora User Guide for Aurora
Analyzing metrics with the Performance Insights dashboard

• Aurora MySQL– db.SQL.Innodb_rows_read.avg

• Aurora PostgreSQL – db.Transactions.xact_commit.avg

To change the performance counters, choose Manage Metrics. You can select multiple OS metrics or
Database metrics, as shown in the following screenshot. To see details for any metric, hover over the
metric name.

For descriptions of the counter metrics that you can add for each DB engine, see Performance Insights
counter metrics (p. 674).

608

Amazon Aurora User Guide for Aurora
Analyzing metrics with the Performance Insights dashboard

Database load chart

The Database load chart shows how the database activity compares to DB instance capacity as
represented by the Max vCPU line. By default, the stacked line chart represents DB load as average active
sessions per unit of time. The DB load is sliced (grouped) by wait states.

DB load sliced by dimensions

You can choose to display load as active sessions grouped by any supported dimensions. The following
table shows which dimensions are supported for the different engines.

Dimension Aurora PostgreSQL Aurora MySQL

Host Yes Yes

SQL Yes Yes

User Yes Yes

Waits Yes Yes

Application Yes No

Database Yes Yes

Session type Yes No

The following image shows the dimensions for a PostgreSQL DB instance.

609

Amazon Aurora User Guide for Aurora
Analyzing metrics with the Performance Insights dashboard

DB load details for a dimension item

To see details about a DB load item within a dimension, hover over the item name. The following image
shows details for a SQL statement.

To see details for any item for the selected time period in the legend, hover over that item.

610

Amazon Aurora User Guide for Aurora
Analyzing metrics with the Performance Insights dashboard

Top dimensions table

The Top dimensions table slices DB load by different dimensions. A dimension is a category or "slice by"
for different characteristics of DB load. If the dimension is SQL, Top SQL shows the SQL statements that
contribute the most to DB load.

Choose any of the following dimension tabs.

Tab Description Supported engines

Top SQL The SQL statements that are
currently running

All

Top waits The event for which the
database backend is waiting

All

611

Amazon Aurora User Guide for Aurora
Analyzing metrics with the Performance Insights dashboard

Tab Description Supported engines

Top hosts The host name of the connected
client

All

Top users The user logged in to the
database

All

The name of the database to
which the client is connected

Top applications The name of the application that
is connected to the database

Aurora PostgreSQL only

Top session types The type of the current session Aurora PostgreSQL only

To learn how to analyze queries by using the Top SQL tab, see Overview of the Top SQL tab (p. 614).

Opening the Performance Insights dashboard

To see the Performance Insights dashboard, use the following procedure.

To view the Performance Insights dashboard in the AWS Management Console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Performance Insights.

3. Choose a DB instance. The Performance Insights dashboard is shown for that DB instance.

For DB instances with Performance Insights enabled, you can also reach the dashboard by choosing
the Sessions item in the list of DB instances. Under Current activity, the Sessions item shows the
database load in average active sessions over the last five minutes. The bar graphically shows the
load. When the bar is empty, the DB instance is idle. As the load increases, the bar fills with blue.
When the load passes the number of virtual CPUs (vCPUs) on the DB instance class, the bar turns
red, indicating a potential bottleneck.

4. (Optional) Choose a different time interval by selecting a button in the upper right. For example, to
change the interval to 5 hours, select 5h.

In the following screenshot, the DB load interval is 5 hours.

612

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Analyzing metrics with the Performance Insights dashboard

5. (Optional) To refresh your data automatically, enable Auto refresh.

The Performance Insight dashboard automatically refreshes with new data. The refresh rate depends
on the amount of data displayed:

• 5 minutes refreshes every 5 seconds.

• 1 hour refreshes every minute.

• 5 hours refreshes every minute.

• 24 hours refreshes every 5 minutes.

• 1 week refreshes every hour.

Analyzing DB load by wait events

If the Database load chart shows a bottleneck, you can find out where the load is coming from. To do
so, look at the top load items table below the Database load chart. Choose a particular item, like a SQL
query or a user, to drill down into that item and see details about it.

DB load grouped by waits and top SQL queries is the default Performance Insights dashboard view.
This combination typically provides the most insight into performance issues. DB load grouped by waits
shows if there are any resource or concurrency bottlenecks in the database. In this case, the SQL tab of
the top load items table shows which queries are driving that load.

Your typical workflow for diagnosing performance issues is as follows:

1. Review the Database load chart and see if there are any incidents of database load exceeding the Max
CPU line.

2. If there is, look at the Database load chart and identify which wait state or states are primarily
responsible.

3. Identify the digest queries causing the load by seeing which of the queries the SQL tab on the top
load items table are contributing most to those wait states. You can identify these by the DB Load by
Wait column.

4. Choose one of these digest queries in the SQL tab to expand it and see the child queries that it is
composed of.

613

Amazon Aurora User Guide for Aurora
Analyzing metrics with the Performance Insights dashboard

For example, in the dashboard following, log file sync waits account for most of the DB load. The LGWR
all worker groups wait is also high. The Top SQL chart shows what is causing the log file sync waits:
frequent COMMIT statements. In this case, committing less frequently will reduce DB load.

Analyzing running queries using the Performance Insights
dashboard
In the Amazon RDS Performance Insights dashboard, you can find information about running queries in
the Top SQL tab in the Top dimensions table. You can use this information to tune your queries.

Note
RDS for SQL Server doesn't show SQL-level statistics.

Topics
• Overview of the Top SQL tab (p. 614)
• Analyzing running queries in Aurora MySQL (p. 619)
• Analyzing running queries in Aurora PostgreSQL (p. 622)

Overview of the Top SQL tab

By default, the Top SQL tab shows the SQL queries that are contributing the most to DB load. To help
tune your queries, you can analyze information such as the query text, statistics, and Support SQL ID.
You can also choose the statistics that you want to appear in the Top SQL tab.

Topics
• SQL statistics (p. 615)
• Load by waits (AAS) (p. 615)
• SQL information (p. 616)

614

Amazon Aurora User Guide for Aurora
Analyzing metrics with the Performance Insights dashboard

• Preferences (p. 617)

SQL statistics

SQL statistics are performance-related metrics about SQL queries. For example, Performance Insights
might show executions per second or rows processed per second. Performance Insights collects statistics
for only the most common queries. Typically, these match the top queries by load shown in the
Performance Insights dashboard.

A SQL digest is a composite of multiple actual queries that are structurally similar but might have
different literal values. The digest replaces hardcoded values with a question mark. For example, a
digest might be SELECT * FROM emp WHERE lname= ?. This digest might include the following child
queries:

SELECT * FROM emp WHERE lname = 'Miller'
SELECT * FROM emp WHERE lname = 'Olagappan'
SELECT * FROM emp WHERE lname = 'Wu'

Every line in the Top SQL table shows relevant statistics for the SQL statement or digest, as shown in the
following example.

To see the literal SQL statements in a digest, select the query, and then choose the plus symbol (+). In
the following screenshot, the selected query is a digest.

Note
A SQL digest groups similar SQL statements, but does not redact sensitive information.

Load by waits (AAS)

In Top SQL, the Load by waits (AAS) column illustrates the percentage of the database load associated
with each top load item. This column reflects the load for that item by whatever grouping is currently
selected in the DB Load Chart.

For example, you might group the DB load chart by wait states. You examine SQL queries in the top load
items table. In this case, the DB Load by Waits bar is sized, segmented, and color-coded to show how

615

Amazon Aurora User Guide for Aurora
Analyzing metrics with the Performance Insights dashboard

much of a given wait state that query is contributing to. It also shows which wait states are affecting the
selected query.

SQL information

In the Top SQL table, you can open a statement to view its information. The information appears in the
bottom pane.

616

Amazon Aurora User Guide for Aurora
Analyzing metrics with the Performance Insights dashboard

The following types of identifiers (IDs) that are associated with SQL statements:

• Support SQL ID – A hash value of the SQL ID. This value is only for referencing a SQL ID when you are
working with AWS Support. AWS Support doesn't have access to your actual SQL IDs and SQL text.

• Support Digest ID – A hash value of the digest ID. This value is only for referencing a digest ID when
you are working with AWS Support. AWS Support doesn't have access to your actual digest IDs and
SQL text.

Preferences

You can control the statistics displayed in the Top SQL tab by choosing the Preferences icon.

617

Amazon Aurora User Guide for Aurora
Analyzing metrics with the Performance Insights dashboard

When you choose the Preferences icon, the Preferences window opens.

To enable the statistics that you want to appear in the Top SQL tab, use your mouse to scroll to the
bottom of the window, and then choose Continue.

618

Amazon Aurora User Guide for Aurora
Analyzing metrics with the Performance Insights dashboard

Analyzing running queries in Aurora MySQL

Aurora MySQL collect SQL statistics only at the digest level. No statistics are shown at the statement
level.

Topics
• Digest table in Aurora MySQL (p. 619)
• Per-second statistics for Aurora MySQL (p. 619)
• Per-call statistics for Aurora MySQL (p. 620)
• Viewing SQL statistics for Aurora MySQL (p. 620)

Digest table in Aurora MySQL

Performance Insights collects SQL digest statistics from the
events_statements_summary_by_digest table. The events_statements_summary_by_digest
table is managed by your database.

The digest table doesn't have an eviction policy. When the table is full, the AWS Management Console
shows the following message:

Performance Insights is unable to collect SQL Digest statistics on new queries because the
 table events_statements_summary_by_digest is full.
Please truncate events_statements_summary_by_digest table to clear the issue. Check the
 User Guide for more details.

In this situation, Aurora MySQL doesn't track SQL queries. To address this issue, Performance Insights
automatically truncates the digest table when both of the following conditions are met:

• The table is full.
• Performance Insights manages the Performance Schema automatically. For automatic management,

the performance_schema parameter must be set to 0 and the Source must not be set to user.

If Performance Insights isn't managing the Performance Schema automatically, see Enabling the
Performance Schema for Performance Insights on Aurora MySQL (p. 601).

In the AWS CLI, check the source of a parameter value by running the describe-db-parameters command.

Per-second statistics for Aurora MySQL

The following SQL statistics are available for Aurora MySQL DB clusters.

Metric Unit

db.sql_tokenized.stats.count_star_per_sec Calls per second

db.sql_tokenized.stats.sum_timer_wait_per_sec Average active executions per second (AAE)

db.sql_tokenized.stats.sum_select_full_join_per_sec Select full join per second

db.sql_tokenized.stats.sum_select_range_check_per_secSelect range check per second

db.sql_tokenized.stats.sum_select_scan_per_sec Select scan per second

db.sql_tokenized.stats.sum_sort_merge_passes_per_secSort merge passes per second

db.sql_tokenized.stats.sum_sort_scan_per_sec Sort scans per second

619

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameters.html

Amazon Aurora User Guide for Aurora
Analyzing metrics with the Performance Insights dashboard

Metric Unit

db.sql_tokenized.stats.sum_sort_range_per_sec Sort ranges per second

db.sql_tokenized.stats.sum_sort_rows_per_sec Sort rows per second

db.sql_tokenized.stats.sum_rows_affected_per_sec Rows affected per second

db.sql_tokenized.stats.sum_rows_examined_per_sec Rows examined per second

db.sql_tokenized.stats.sum_rows_sent_per_sec Rows sent per second

db.sql_tokenized.stats.sum_created_tmp_disk_tables_per_secCreated temporary disk tables per second

db.sql_tokenized.stats.sum_created_tmp_tables_per_secCreated temporary tables per second

db.sql_tokenized.stats.sum_lock_time_per_sec Lock time per second (in ms)

Per-call statistics for Aurora MySQL

The following metrics provide per call statistics for a SQL statement.

Metric Unit

db.sql_tokenized.stats.sum_timer_wait_per_call Average latency per call (in ms)

db.sql_tokenized.stats.sum_select_full_join_per_call Select full joins per call

db.sql_tokenized.stats.sum_select_range_check_per_callSelect range check per call

db.sql_tokenized.stats.sum_select_scan_per_call Select scans per call

db.sql_tokenized.stats.sum_sort_merge_passes_per_callSort merge passes per call

db.sql_tokenized.stats.sum_sort_scan_per_call Sort scans per call

db.sql_tokenized.stats.sum_sort_range_per_call Sort ranges per call

db.sql_tokenized.stats.sum_sort_rows_per_call Sort rows per call

db.sql_tokenized.stats.sum_rows_affected_per_call Rows affected per call

db.sql_tokenized.stats.sum_rows_examined_per_callRows examined per call

db.sql_tokenized.stats.sum_rows_sent_per_call Rows sent per call

db.sql_tokenized.stats.sum_created_tmp_disk_tables_per_callCreated temporary disk tables per call

db.sql_tokenized.stats.sum_created_tmp_tables_per_callCreated temporary tables per call

db.sql_tokenized.stats.sum_lock_time_per_call Lock time per call (in ms)

Viewing SQL statistics for Aurora MySQL

The statistics are available in the Top SQL tab of the Database load chart.

To view the SQL statistics

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

620

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Analyzing metrics with the Performance Insights dashboard

2. Go to the Performance Insights dashboard.

3. Choose the SQL tab and expand a query.

4.

Choose which statistics to display by choosing the gear icon in the upper-right corner of the chart.

The following screenshot shows the preferences for Aurora MySQL DB instances.

621

Amazon Aurora User Guide for Aurora
Analyzing metrics with the Performance Insights dashboard

Analyzing running queries in Aurora PostgreSQL

Aurora PostgreSQL collects SQL statistics only at the digest level. No statistics are shown at the
statement level.

Topics

• Digest statistics for Aurora PostgreSQL (p. 622)

• Per-second digest statistics for Aurora PostgreSQL (p. 623)

• Per-call digest statistics for Aurora PostgreSQL (p. 623)

• Viewing SQL statistics for Aurora PostgreSQL (p. 624)

Digest statistics for Aurora PostgreSQL

To view SQL digest statistics, the pg_stat_statements library must be loaded. For Aurora PostgreSQL
DB clusters that are compatible with PostgreSQL 10, this library is loaded by default. For Aurora
PostgreSQL DB clusters that are compatible with PostgreSQL 9.6, you enable this library manually. To
enable it manually, add pg_stat_statements to shared_preload_libraries in the DB parameter
group associated with the DB instance. Then reboot your DB instance. For more information, see Working
with DB parameter groups and DB cluster parameter groups (p. 339).

Note
Performance Insights can only collect statistics for queries in pg_stat_activity that aren't
truncated. By default, PostgreSQL databases truncate queries longer than 1,024 bytes. To
increase the query size, change the track_activity_query_size parameter in the DB
parameter group associated with your DB instance. When you change this parameter, a DB
instance reboot is required.

622

Amazon Aurora User Guide for Aurora
Analyzing metrics with the Performance Insights dashboard

Per-second digest statistics for Aurora PostgreSQL

The following SQL digest statistics are available for Aurora PostgreSQL DB instances.

Metric Unit

db.sql_tokenized.stats.calls_per_sec Calls per second

db.sql_tokenized.stats.rows_per_sec Rows per second

db.sql_tokenized.stats.total_time_per_sec Average active executions per second (AAE)

db.sql_tokenized.stats.shared_blks_hit_per_sec Block hits per second

db.sql_tokenized.stats.shared_blks_read_per_sec Block reads per second

db.sql_tokenized.stats.shared_blks_dirtied_per_sec Blocks dirtied per second

db.sql_tokenized.stats.shared_blks_written_per_sec Block writes per second

db.sql_tokenized.stats.local_blks_hit_per_sec Local block hits per second

db.sql_tokenized.stats.local_blks_read_per_sec Local block reads per second

db.sql_tokenized.stats.local_blks_dirtied_per_sec Local block dirty per second

db.sql_tokenized.stats.local_blks_written_per_sec Local block writes per second

db.sql_tokenized.stats.temp_blks_written_per_sec Temporary writes per second

db.sql_tokenized.stats.temp_blks_read_per_sec Temporary reads per second

db.sql_tokenized.stats.blk_read_time_per_sec Average concurrent reads per second

db.sql_tokenized.stats.blk_write_time_per_sec Average concurrent writes per second

Per-call digest statistics for Aurora PostgreSQL

The following metrics provide per call statistics for a SQL statement.

Metric Unit

db.sql_tokenized.stats.rows_per_call Rows per call

db.sql_tokenized.stats.avg_latency_per_call Average latency per call (in ms)

db.sql_tokenized.stats.shared_blks_hit_per_call Block hits per call

db.sql_tokenized.stats.shared_blks_read_per_call Block reads per call

db.sql_tokenized.stats.shared_blks_written_per_call Block writes per call

db.sql_tokenized.stats.shared_blks_dirtied_per_call Blocks dirtied per call

db.sql_tokenized.stats.local_blks_hit_per_call Local block hits per call

db.sql_tokenized.stats.local_blks_read_per_call Local block reads per call

db.sql_tokenized.stats.local_blks_dirtied_per_call Local block dirty per call

db.sql_tokenized.stats.local_blks_written_per_call Local block writes per call

623

Amazon Aurora User Guide for Aurora
Analyzing metrics with the Performance Insights dashboard

Metric Unit

db.sql_tokenized.stats.temp_blks_written_per_call Temporary block writes per call

db.sql_tokenized.stats.temp_blks_read_per_call Temporary block reads per call

db.sql_tokenized.stats.blk_read_time_per_call Read time per call (in ms)

db.sql_tokenized.stats.blk_write_time_per_call Write time per call (in ms)

For more information about these metrics, see pg_stat_statements in the PostgreSQL documentation.

Viewing SQL statistics for Aurora PostgreSQL

The statistics are available in the Top SQL tab of the Database load chart.

To view the SQL statistics

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.
2. Go to the Performance Insights dashboard.
3. Choose the SQL tab.

4. Choose which statistics to display by choosing the gear icon in the upper-right corner of the chart.

The following screenshot shows the preferences for Aurora PostgreSQL.

624

https://www.postgresql.org/docs/10/pgstatstatements.html
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Analyzing metrics with the Performance Insights dashboard

Accessing the text of SQL statements

By default, each row in the Top SQL table shows 500 bytes of SQL text for each SQL statement. When a
SQL statement exceeds 500 bytes, you can view more text by opening the statement in the Performance
Insights dashboard. In this case, the maximum length for the displayed query is 4 KB. This limit is
introduced by the console and is subject to the limits set by the database engine. If you view a child SQL
statement, you can also choose Download.

Topics

• Text size limits for Aurora MySQL (p. 625)

• Setting the SQL text limit for Aurora PostgreSQL DB instances (p. 626)

• Viewing and downloading SQL text in the Performance Insights dashboard (p. 626)

Text size limits for Aurora MySQL

When you download a SQL statement, the database engine determines the maximum length of the text.
You can download text up to the following per-engine limits:

625

Amazon Aurora User Guide for Aurora
Analyzing metrics with the Performance Insights dashboard

• Aurora MySQL 5.7 – 4,096 bytes
• Aurora MySQL 5.6 – 1,024 bytes

The Performance Insights console displays up to the maximum that the engine returns. For example, if
Aurora MySQL returns at most 1 KB to Performance Insights, it can only collect and show 1 KB, even if
the original query is larger. Thus, when you view or download the query, Performance Insights returns
the same number of bytes.

If you use the AWS CLI or API, Performance Insights doesn't have the 4 KB limit enforced by the
console. DescribeDimensionKeys and GetResourceMetrics return at most 500 bytes.
GetDimensionKeyDetails returns the full query, but the size is subject to the engine limit.

Setting the SQL text limit for Aurora PostgreSQL DB instances

Aurora PostgreSQL handles text differently. You can set the text size limit with the DB instance
parameter track_activity_query_size. This parameter has the following characteristics:

Default text size

On Aurora PostgreSQL version 9.6, the default setting for the track_activity_query_size
parameter is 1,024 bytes. On Aurora PostgreSQL version 10 or higher, the default is 4,096 bytes.

Maximum text size

The limit for track_activity_query_size is 102,400 bytes for Aurora PostgreSQL version 12
and lower. The maximum is 1 MB for version 13 and higher.

If the engine returns 1 MB to Performance Insights, the console displays only the first 4 KB. If you
download the query, you get the full 1 MB. In this case, viewing and downloading return different
numbers of bytes. For more information about the track_activity_query_size DB instance
parameter, see Run-time Statistics in the PostgreSQL documentation.

To increase the SQL text size, increase the track_activity_query_size limit. To modify the
parameter, change the parameter setting in the parameter group that is associated with the Aurora
PostgreSQL DB instance.

To change the setting when the instance uses the default parameter group

1. Create a new DB instance parameter group for the appropriate DB engine and DB engine version.
2. Set the parameter in the new parameter group.
3. Associate the new parameter group with the DB instance.

For information about setting a DB instance parameter, see Modifying parameters in a DB parameter
group (p. 347).

Viewing and downloading SQL text in the Performance Insights dashboard

In the Performance Insights dashboard, you can view or download SQL text.

To view more SQL text in the Performance Insights dashboard

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.
2. In the navigation pane, choose Performance Insights.
3. Choose a DB instance. The Performance Insights dashboard is displayed for that DB instance.

SQL statements with text larger than 500 bytes look similar to the following image.

626

https://www.postgresql.org/docs/current/runtime-config-statistics.html
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Analyzing metrics with the Performance Insights dashboard

4. Examine the SQL information section to view more of the SQL text.

The Performance Insights dashboard can display up to 4,096 bytes for each SQL statement.

5. (Optional) Choose Copy to copy the displayed SQL statement, or choose Download to download the
SQL statement to view the SQL text up to the DB engine limit.

Note
To copy or download the SQL statement, disable pop-up blockers.

Zooming In on the DB Load chart

You can use other features of the Performance Insights user interface to help analyze performance data.

Click-and-Drag Zoom In

In the Performance Insights interface, you can choose a small portion of the load chart and zoom in on
the detail.

627

Amazon Aurora User Guide for Aurora
Retrieving metrics with the Performance Insights API

To zoom in on a portion of the load chart, choose the start time and drag to the end of the time period
you want. When you do this, the selected area is highlighted. When you release the mouse, the load
chart zooms in on the selected AWS Region, and the Top items table is recalculated.

Retrieving metrics with the Performance Insights API
When Performance Insights is enabled, the API provides visibility into instance performance. Amazon
CloudWatch Logs provides the authoritative source for vended monitoring metrics for AWS services.

628

Amazon Aurora User Guide for Aurora
Retrieving metrics with the Performance Insights API

Performance Insights offers a domain-specific view of database load measured as average active
sessions (AAS). This metric appears to API consumers as a two-dimensional time-series dataset. The time
dimension of the data provides DB load data for each time point in the queried time range. Each time
point decomposes overall load in relation to the requested dimensions, such as SQL, Wait-event, User,
or Host, measured at that time point.

Amazon RDS Performance Insights monitors your Amazon Aurora cluster so that you can analyze
and troubleshoot database performance. One way to view Performance Insights data is in the AWS
Management Console. Performance Insights also provides a public API so that you can query your own
data. You can use the API to do the following:

• Offload data into a database
• Add Performance Insights data to existing monitoring dashboards
• Build monitoring tools

To use the Performance Insights API, enable Performance Insights on one of your Amazon RDS DB
instances. For information about enabling Performance Insights, see Enabling and disabling Performance
Insights (p. 598). For more information about the Performance Insights API, see the Amazon RDS
Performance Insights API Reference.

The Performance Insights API provides the following operations.

Performance Insights action AWS CLI command Description

DescribeDimensionKeys aws pi describe-dimension-
keys

Retrieves the top N dimension
keys for a metric for a specific time
period.

GetDimensionKeyDetails aws pi get-dimension-key-
details

Retrieves the attributes of the
specified dimension group
for a DB instance or data
source. For example, if you
specify a SQL ID, and if the
dimension details are available,
GetDimensionKeyDetails
retrieves the full text of the
dimension db.sql.statement
associated with this ID. This
operation is useful because
GetResourceMetrics and
DescribeDimensionKeys don't
support retrieval of large SQL
statement text.

GetResourceMetadata aws pi get-resource-
metadata

Retrieve the metadata for different
features. For example, the metadata
might indicate that a feature is
turned on or off on a specific DB
instance.

GetResourceMetrics aws pi get-resource-metrics Retrieves Performance Insights
metrics for a set of data sources
over a time period. You can
provide specific dimension groups
and dimensions, and provide
aggregation and filtering criteria for
each group.

629

https://docs.aws.amazon.com/performance-insights/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_DescribeDimensionKeys.html
https://docs.aws.amazon.com/cli/latest/reference/pi/describe-dimension-keys.html
https://docs.aws.amazon.com/cli/latest/reference/pi/describe-dimension-keys.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_GetDimensionKeyDetails.html
https://docs.aws.amazon.com/cli/latest/reference/pi/get-dimension-key-details.html
https://docs.aws.amazon.com/cli/latest/reference/pi/get-dimension-key-details.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_GetResourceMetadata.html
https://docs.aws.amazon.com/cli/latest/reference/pi/get-resource-metadata.html
https://docs.aws.amazon.com/cli/latest/reference/pi/get-resource-metadata.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_GetResourceMetrics.html
https://docs.aws.amazon.com/cli/latest/reference/pi/get-resource-metrics.html

Amazon Aurora User Guide for Aurora
Retrieving metrics with the Performance Insights API

Performance Insights action AWS CLI command Description

ListAvailableResourceDimensionsaws pi list-available-
resource-dimensions

Retrieve the dimensions that can
be queried for each specified metric
type on a specified instance.

ListAvailableResourceMetrics aws pi list-available-
resource-metrics

Retrieve all available metrics of the
specified metric types that can be
queried for a specified DB instance.

Topics
• AWS CLI for Performance Insights (p. 630)
• Retrieving time-series metrics (p. 630)
• AWS CLI examples for Performance Insights (p. 631)

AWS CLI for Performance Insights
You can view Performance Insights data using the AWS CLI. You can view help for the AWS CLI
commands for Performance Insights by entering the following on the command line.

aws pi help

If you don't have the AWS CLI installed, see Installing the AWS Command Line Interface in the AWS CLI
User Guide for information about installing it.

Retrieving time-series metrics
The GetResourceMetrics operation retrieves one or more time-series metrics from the Performance
Insights data. GetResourceMetrics requires a metric and time period, and returns a response with a
list of data points.

For example, the AWS Management Console uses GetResourceMetrics to populate the Counter
Metrics chart and the Database Load chart, as seen in the following image.

630

https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_ListAvailableResourceDimensions.html
https://docs.aws.amazon.com/cli/latest/reference/pi/list-available-resource-dimensions.html
https://docs.aws.amazon.com/cli/latest/reference/pi/list-available-resource-dimensions.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_ListAvailableResourceMetrics.html
https://docs.aws.amazon.com/cli/latest/reference/pi/list-available-resource-metrics.html
https://docs.aws.amazon.com/cli/latest/reference/pi/list-available-resource-metrics.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html

Amazon Aurora User Guide for Aurora
Retrieving metrics with the Performance Insights API

All metrics returned by GetResourceMetrics are standard time-series metrics, with the exception of
db.load. This metric is displayed in the Database Load chart. The db.load metric is different from
the other time-series metrics because you can break it into subcomponents called dimensions. In the
previous image, db.load is broken down and grouped by the waits states that make up the db.load.

Note
GetResourceMetrics can also return the db.sampleload metric, but the db.load metric is
appropriate in most cases.

For information about the counter metrics returned by GetResourceMetrics, see Performance Insights
counter metrics (p. 674).

The following calculations are supported for the metrics:

• Average – The average value for the metric over a period of time. Append .avg to the metric name.
• Minimum – The minimum value for the metric over a period of time. Append .min to the metric name.
• Maximum – The maximum value for the metric over a period of time. Append .max to the metric

name.
• Sum – The sum of the metric values over a period of time. Append .sum to the metric name.
• Sample count – The number of times the metric was collected over a period of time. Append
.sample_count to the metric name.

For example, assume that a metric is collected for 300 seconds (5 minutes), and that the metric is
collected one time each minute. The values for each minute are 1, 2, 3, 4, and 5. In this case, the
following calculations are returned:

• Average – 3
• Minimum – 1
• Maximum – 5
• Sum – 15
• Sample count – 5

For information about using the get-resource-metrics AWS CLI command, see get-resource-
metrics.

For the --metric-queries option, specify one or more queries that you want to get results for. Each
query consists of a mandatory Metric and optional GroupBy and Filter parameters. The following is
an example of a --metric-queries option specification.

{
 "Metric": "string",
 "GroupBy": {
 "Group": "string",
 "Dimensions": ["string", ...],
 "Limit": integer
 },
 "Filter": {"string": "string"
 ...}

AWS CLI examples for Performance Insights
The following examples show how to use the AWS CLI for Performance Insights.

Topics
• Retrieving counter metrics (p. 632)

631

https://docs.aws.amazon.com/cli/latest/reference/pi/get-resource-metrics.html
https://docs.aws.amazon.com/cli/latest/reference/pi/get-resource-metrics.html

Amazon Aurora User Guide for Aurora
Retrieving metrics with the Performance Insights API

• Retrieving the DB load average for top wait events (p. 634)
• Retrieving the DB load average for top SQL (p. 636)
• Retrieving the DB load average filtered by SQL (p. 638)
• Retrieving the full text of a SQL statement (p. 641)

Retrieving counter metrics

The following screenshot shows two counter metrics charts in the AWS Management Console.

The following example shows how to gather the same data that the AWS Management Console uses to
generate the two counter metric charts.

For Linux, macOS, or Unix:

aws pi get-resource-metrics \
 --service-type RDS \
 --identifier db-ID \
 --start-time 2018-10-30T00:00:00Z \
 --end-time 2018-10-30T01:00:00Z \
 --period-in-seconds 60 \
 --metric-queries '[{"Metric": "os.cpuUtilization.user.avg" },
 {"Metric": "os.cpuUtilization.idle.avg"}]'

For Windows:

aws pi get-resource-metrics ^
 --service-type RDS ^
 --identifier db-ID ^
 --start-time 2018-10-30T00:00:00Z ^
 --end-time 2018-10-30T01:00:00Z ^
 --period-in-seconds 60 ^
 --metric-queries '[{"Metric": "os.cpuUtilization.user.avg" },
 {"Metric": "os.cpuUtilization.idle.avg"}]'

You can also make a command easier to read by specifying a file for the --metrics-query option. The
following example uses a file called query.json for the option. The file has the following contents.

[

632

Amazon Aurora User Guide for Aurora
Retrieving metrics with the Performance Insights API

 {
 "Metric": "os.cpuUtilization.user.avg"
 },
 {
 "Metric": "os.cpuUtilization.idle.avg"
 }
]

Run the following command to use the file.

For Linux, macOS, or Unix:

aws pi get-resource-metrics \
 --service-type RDS \
 --identifier db-ID \
 --start-time 2018-10-30T00:00:00Z \
 --end-time 2018-10-30T01:00:00Z \
 --period-in-seconds 60 \
 --metric-queries file://query.json

For Windows:

aws pi get-resource-metrics ^
 --service-type RDS ^
 --identifier db-ID ^
 --start-time 2018-10-30T00:00:00Z ^
 --end-time 2018-10-30T01:00:00Z ^
 --period-in-seconds 60 ^
 --metric-queries file://query.json

The preceding example specifies the following values for the options:

• --service-type – RDS for Amazon RDS
• --identifier – The resource ID for the DB instance
• --start-time and --end-time – The ISO 8601 DateTime values for the period to query, with

multiple supported formats

It queries for a one-hour time range:

• --period-in-seconds – 60 for a per-minute query
• --metric-queries – An array of two queries, each just for one metric.

The metric name uses dots to classify the metric in a useful category, with the final element being
a function. In the example, the function is avg for each query. As with Amazon CloudWatch, the
supported functions are min, max, total, and avg.

The response looks similar to the following.

{
 "Identifier": "db-XXX",
 "AlignedStartTime": 1540857600.0,
 "AlignedEndTime": 1540861200.0,
 "MetricList": [
 { //A list of key/datapoints
 "Key": {
 "Metric": "os.cpuUtilization.user.avg" //Metric1
 },
 "DataPoints": [

633

Amazon Aurora User Guide for Aurora
Retrieving metrics with the Performance Insights API

 //Each list of datapoints has the same timestamps and same number of items
 {
 "Timestamp": 1540857660.0, //Minute1
 "Value": 4.0
 },
 {
 "Timestamp": 1540857720.0, //Minute2
 "Value": 4.0
 },
 {
 "Timestamp": 1540857780.0, //Minute 3
 "Value": 10.0
 }
 //... 60 datapoints for the os.cpuUtilization.user.avg metric
]
 },
 {
 "Key": {
 "Metric": "os.cpuUtilization.idle.avg" //Metric2
 },
 "DataPoints": [
 {
 "Timestamp": 1540857660.0, //Minute1
 "Value": 12.0
 },
 {
 "Timestamp": 1540857720.0, //Minute2
 "Value": 13.5
 },
 //... 60 datapoints for the os.cpuUtilization.idle.avg metric
]
 }
] //end of MetricList
} //end of response

The response has an Identifier, AlignedStartTime, and AlignedEndTime. B the --period-in-
seconds value was 60, the start and end times have been aligned to the minute. If the --period-in-
seconds was 3600, the start and end times would have been aligned to the hour.

The MetricList in the response has a number of entries, each with a Key and a DataPoints entry.
Each DataPoint has a Timestamp and a Value. Each Datapoints list has 60 data points because the
queries are for per-minute data over an hour, with Timestamp1/Minute1, Timestamp2/Minute2, and
so on, up to Timestamp60/Minute60.

Because the query is for two different counter metrics, there are two elements in the response
MetricList.

Retrieving the DB load average for top wait events

The following example is the same query that the AWS Management Console uses to generate a
stacked area line graph. This example retrieves the db.load.avg for the last hour with load divided
according to the top seven wait events. The command is the same as the command in Retrieving counter
metrics (p. 632). However, the query.json file has the following contents.

[
 {
 "Metric": "db.load.avg",
 "GroupBy": { "Group": "db.wait_event", "Limit": 7 }
 }
]

Run the following command.

634

Amazon Aurora User Guide for Aurora
Retrieving metrics with the Performance Insights API

For Linux, macOS, or Unix:

aws pi get-resource-metrics \
 --service-type RDS \
 --identifier db-ID \
 --start-time 2018-10-30T00:00:00Z \
 --end-time 2018-10-30T01:00:00Z \
 --period-in-seconds 60 \
 --metric-queries file://query.json

For Windows:

aws pi get-resource-metrics ^
 --service-type RDS ^
 --identifier db-ID ^
 --start-time 2018-10-30T00:00:00Z ^
 --end-time 2018-10-30T01:00:00Z ^
 --period-in-seconds 60 ^
 --metric-queries file://query.json

The example specifies the metric of db.load.avg and a GroupBy of the top seven wait events.
For details about valid values for this example, see DimensionGroup in the Performance Insights API
Reference.

The response looks similar to the following.

{
 "Identifier": "db-XXX",
 "AlignedStartTime": 1540857600.0,
 "AlignedEndTime": 1540861200.0,
 "MetricList": [
 { //A list of key/datapoints
 "Key": {
 //A Metric with no dimensions. This is the total db.load.avg
 "Metric": "db.load.avg"
 },
 "DataPoints": [
 //Each list of datapoints has the same timestamps and same number of items
 {
 "Timestamp": 1540857660.0, //Minute1
 "Value": 0.5166666666666667
 },
 {
 "Timestamp": 1540857720.0, //Minute2
 "Value": 0.38333333333333336
 },
 {
 "Timestamp": 1540857780.0, //Minute 3
 "Value": 0.26666666666666666
 }
 //... 60 datapoints for the total db.load.avg key
]
 },
 {
 "Key": {
 //Another key. This is db.load.avg broken down by CPU
 "Metric": "db.load.avg",
 "Dimensions": {
 "db.wait_event.name": "CPU",
 "db.wait_event.type": "CPU"
 }
 },

635

https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_DimensionGroup.html

Amazon Aurora User Guide for Aurora
Retrieving metrics with the Performance Insights API

 "DataPoints": [
 {
 "Timestamp": 1540857660.0, //Minute1
 "Value": 0.35
 },
 {
 "Timestamp": 1540857720.0, //Minute2
 "Value": 0.15
 },
 //... 60 datapoints for the CPU key
]
 },
 //... In total we have 8 key/datapoints entries, 1) total, 2-8) Top Wait Events
] //end of MetricList
} //end of response

In this response, there are eight entries in the MetricList. There is one entry for the total
db.load.avg, and seven entries each for the db.load.avg divided according to one of the top seven
wait events. Unlike in the first example, because there was a grouping dimension, there must be one
key for each grouping of the metric. There can't be only one key for each metric, as in the basic counter
metric use case.

Retrieving the DB load average for top SQL

The following example groups db.wait_events by the top 10 SQL statements. There are two different
groups for SQL statements:

• db.sql – The full SQL statement, such as select * from customers where customer_id =
123

• db.sql_tokenized – The tokenized SQL statement, such as select * from customers where
customer_id = ?

When analyzing database performance, it can be useful to consider SQL statements that only differ
by their parameters as one logic item. So, you can use db.sql_tokenized when querying. However,
especially when you're interested in explain plans, sometimes it's more useful to examine full SQL
statements with parameters, and query grouping by db.sql. There is a parent-child relationship
between tokenized and full SQL, with multiple full SQL (children) grouped under the same tokenized
SQL (parent).

The command in this example is the similar to the command in Retrieving the DB load average for top
wait events (p. 634). However, the query.json file has the following contents.

[
 {
 "Metric": "db.load.avg",
 "GroupBy": { "Group": "db.sql_tokenized", "Limit": 10 }
 }
]

The following example uses db.sql_tokenized.

For Linux, macOS, or Unix:

aws pi get-resource-metrics \
 --service-type RDS \
 --identifier db-ID \
 --start-time 2018-10-29T00:00:00Z \

636

Amazon Aurora User Guide for Aurora
Retrieving metrics with the Performance Insights API

 --end-time 2018-10-30T00:00:00Z \
 --period-in-seconds 3600 \
 --metric-queries file://query.json

For Windows:

aws pi get-resource-metrics ^
 --service-type RDS ^
 --identifier db-ID ^
 --start-time 2018-10-29T00:00:00Z ^
 --end-time 2018-10-30T00:00:00Z ^
 --period-in-seconds 3600 ^
 --metric-queries file://query.json

This example queries over 24 hours, with a one hour period-in-seconds.

The example specifies the metric of db.load.avg and a GroupBy of the top seven wait events.
For details about valid values for this example, see DimensionGroup in the Performance Insights API
Reference.

The response looks similar to the following.

{
 "AlignedStartTime": 1540771200.0,
 "AlignedEndTime": 1540857600.0,
 "Identifier": "db-XXX",

 "MetricList": [//11 entries in the MetricList
 {
 "Key": { //First key is total
 "Metric": "db.load.avg"
 }
 "DataPoints": [//Each DataPoints list has 24 per-hour Timestamps and a value
 {
 "Value": 1.6964980544747081,
 "Timestamp": 1540774800.0
 },
 //... 24 datapoints
]
 },
 {
 "Key": { //Next key is the top tokenized SQL
 "Dimensions": {
 "db.sql_tokenized.statement": "INSERT INTO authors (id,name,email)
 VALUES\n(nextval(?) ,?,?)",
 "db.sql_tokenized.db_id": "pi-2372568224",
 "db.sql_tokenized.id": "AKIAIOSFODNN7EXAMPLE"
 },
 "Metric": "db.load.avg"
 },
 "DataPoints": [//... 24 datapoints
]
 },
 // In total 11 entries, 10 Keys of top tokenized SQL, 1 total key
] //End of MetricList
} //End of response

This response has 11 entries in the MetricList (1 total, 10 top tokenized SQL), with each entry having
24 per-hour DataPoints.

For tokenized SQL, there are three entries in each dimensions list:

637

https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_DimensionGroup.html

Amazon Aurora User Guide for Aurora
Retrieving metrics with the Performance Insights API

• db.sql_tokenized.statement – The tokenized SQL statement.
• db.sql_tokenized.db_id – Either the native database ID used to refer to the SQL, or a synthetic

ID that Performance Insights generates for you if the native database ID isn't available. This example
returns the pi-2372568224 synthetic ID.

• db.sql_tokenized.id – The ID of the query inside Performance Insights.

In the AWS Management Console, this ID is called the Support ID. It's named this because the ID is
data that AWS Support can examine to help you troubleshoot an issue with your database. AWS takes
the security and privacy of your data extremely seriously, and almost all data is stored encrypted with
your AWS KMS customer master key (CMK). Therefore, nobody inside AWS can look at this data. In
the example preceding, both the tokenized.statement and the tokenized.db_id are stored
encrypted. If you have an issue with your database, AWS Support can help you by referencing the
Support ID.

When querying, it might be convenient to specify a Group in GroupBy. However, for finer-grained
control over the data that's returned, specify the list of dimensions. For example, if all that is needed is
the db.sql_tokenized.statement, then a Dimensions attribute can be added to the query.json file.

[
 {
 "Metric": "db.load.avg",
 "GroupBy": {
 "Group": "db.sql_tokenized",
 "Dimensions":["db.sql_tokenized.statement"],
 "Limit": 10
 }
 }
]

Retrieving the DB load average filtered by SQL

The preceding image shows that a particular query is selected, and the top average active sessions
stacked area line graph is scoped to that query. Although the query is still for the top seven overall wait
events, the value of the response is filtered. The filter causes it to take into account only sessions that are
a match for the particular filter.

638

Amazon Aurora User Guide for Aurora
Retrieving metrics with the Performance Insights API

The corresponding API query in this example is similar to the command in Retrieving the DB load average
for top SQL (p. 636). However, the query.json file has the following contents.

[
 {
 "Metric": "db.load.avg",
 "GroupBy": { "Group": "db.wait_event", "Limit": 5 },
 "Filter": { "db.sql_tokenized.id": "AKIAIOSFODNN7EXAMPLE" }
 }
]

For Linux, macOS, or Unix:

aws pi get-resource-metrics \
 --service-type RDS \
 --identifier db-ID \
 --start-time 2018-10-30T00:00:00Z \
 --end-time 2018-10-30T01:00:00Z \
 --period-in-seconds 60 \
 --metric-queries file://query.json

For Windows:

aws pi get-resource-metrics ^
 --service-type RDS ^
 --identifier db-ID ^
 --start-time 2018-10-30T00:00:00Z ^
 --end-time 2018-10-30T01:00:00Z ^
 --period-in-seconds 60 ^
 --metric-queries file://query.json

The response looks similar to the following.

{
 "Identifier": "db-XXX",
 "AlignedStartTime": 1556215200.0,
 "MetricList": [
 {
 "Key": {
 "Metric": "db.load.avg"
 },
 "DataPoints": [
 {
 "Timestamp": 1556218800.0,
 "Value": 1.4878117913832196
 },
 {
 "Timestamp": 1556222400.0,
 "Value": 1.192823803967328
 }
]
 },
 {
 "Key": {
 "Metric": "db.load.avg",
 "Dimensions": {
 "db.wait_event.type": "io",
 "db.wait_event.name": "wait/io/aurora_redo_log_flush"
 }
 },
 "DataPoints": [

639

Amazon Aurora User Guide for Aurora
Retrieving metrics with the Performance Insights API

 {
 "Timestamp": 1556218800.0,
 "Value": 1.1360544217687074
 },
 {
 "Timestamp": 1556222400.0,
 "Value": 1.058051341890315
 }
]
 },
 {
 "Key": {
 "Metric": "db.load.avg",
 "Dimensions": {
 "db.wait_event.type": "io",
 "db.wait_event.name": "wait/io/table/sql/handler"
 }
 },
 "DataPoints": [
 {
 "Timestamp": 1556218800.0,
 "Value": 0.16241496598639457
 },
 {
 "Timestamp": 1556222400.0,
 "Value": 0.05163360560093349
 }
]
 },
 {
 "Key": {
 "Metric": "db.load.avg",
 "Dimensions": {
 "db.wait_event.type": "synch",
 "db.wait_event.name": "wait/synch/mutex/innodb/
aurora_lock_thread_slot_futex"
 }
 },
 "DataPoints": [
 {
 "Timestamp": 1556218800.0,
 "Value": 0.11479591836734694
 },
 {
 "Timestamp": 1556222400.0,
 "Value": 0.013127187864644107
 }
]
 },
 {
 "Key": {
 "Metric": "db.load.avg",
 "Dimensions": {
 "db.wait_event.type": "CPU",
 "db.wait_event.name": "CPU"
 }
 },
 "DataPoints": [
 {
 "Timestamp": 1556218800.0,
 "Value": 0.05215419501133787
 },
 {
 "Timestamp": 1556222400.0,
 "Value": 0.05805134189031505
 }

640

Amazon Aurora User Guide for Aurora
Retrieving metrics with the Performance Insights API

]
 },
 {
 "Key": {
 "Metric": "db.load.avg",
 "Dimensions": {
 "db.wait_event.type": "synch",
 "db.wait_event.name": "wait/synch/mutex/innodb/lock_wait_mutex"
 }
 },
 "DataPoints": [
 {
 "Timestamp": 1556218800.0,
 "Value": 0.017573696145124718
 },
 {
 "Timestamp": 1556222400.0,
 "Value": 0.002333722287047841
 }
]
 }
],
 "AlignedEndTime": 1556222400.0
} //end of response

In this response, all values are filtered according to the contribution of tokenized SQL
AKIAIOSFODNN7EXAMPLE specified in the query.json file. The keys also might follow a different order
than a query without a filter, because it's the top five wait events that affected the filtered SQL.

Retrieving the full text of a SQL statement

The following example retrieves the full text of a SQL statement for DB instance
db-10BCD2EFGHIJ3KL4M5NO6PQRS5. The --group is db.sql, and the --group-identifier is
db.sql.id. In this example, my-sql-id represents a SQL ID retrieved by invoking pi get-resource-
metrics or pi describe-dimension-keys.

Run the following command.

For Linux, macOS, or Unix:

aws pi get-dimension-key-details \
 --service-type RDS \
 --identifier db-10BCD2EFGHIJ3KL4M5NO6PQRS5 \
 --group db.sql \
 --group-identifier my-sql-id \
 --requested-dimensions statement

For Windows:

aws pi get-dimension-key-details ^
 --service-type RDS ^
 --identifier db-10BCD2EFGHIJ3KL4M5NO6PQRS5 ^
 --group db.sql ^
 --group-identifier my-sql-id ^
 --requested-dimensions statement

In this example, the dimensions details are available. Thus, Performance Insights retrieves the full text of
the SQL statement, without truncating it.

{

641

Amazon Aurora User Guide for Aurora
Logging Performance Insights calls using AWS CloudTrail

 "Dimensions":[
 {
 "Value": "SELECT e.last_name, d.department_name FROM employees e, departments d
 WHERE e.department_id=d.department_id",
 "Dimension": "db.sql.statement",
 "Status": "AVAILABLE"
 },
 ...
]
}

Logging Performance Insights calls using AWS
CloudTrail
Performance Insights runs with AWS CloudTrail, a service that provides a record of actions taken by a
user, role, or an AWS service in Performance Insights. CloudTrail captures all API calls for Performance
Insights as events. This capture includes calls from the Amazon RDS console and from code calls to the
Performance Insights API operations.

If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon S3 bucket,
including events for Performance Insights. If you don't configure a trail, you can still view the most
recent events in the CloudTrail console in Event history. Using the data collected by CloudTrail, you can
determine certain information. This information includes the request that was made to Performance
Insights, the IP address the request was made from, who made the request, and when it was made. It
also includes additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Working with Performance Insights information in CloudTrail
CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
Performance Insights, that activity is recorded in a CloudTrail event along with other AWS service events
in the CloudTrail console in Event history. You can view, search, and download recent events in your AWS
account. For more information, see Viewing Events with CloudTrail Event History in AWS CloudTrail User
Guide.

For an ongoing record of events in your AWS account, including events for Performance Insights, create a
trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you create a
trail in the console, the trail applies to all AWS Regions. The trail logs events from all AWS Regions in the
AWS partition and delivers the log files to the Amazon S3 bucket that you specify. Additionally, you can
configure other AWS services to further analyze and act upon the event data collected in CloudTrail logs.
For more information, see the following topics in AWS CloudTrail User Guide:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from Multiple
Accounts

All Performance Insights operations are logged by CloudTrail and are documented in the Performance
Insights API Reference. For example, calls to the DescribeDimensionKeys and GetResourceMetrics
operations generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

642

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/Welcome.html

Amazon Aurora User Guide for Aurora
Logging Performance Insights calls using AWS CloudTrail

• Whether the request was made with root or IAM user credentials.
• Whether the request was made with temporary security credentials for a role or federated user.
• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Performance Insights log file entries
A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that you
specify. CloudTrail log files contain one or more log entries. An event represents a single request from
any source. Each event includes information about the requested operation, the date and time of the
operation, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the public
API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the GetResourceMetrics
operation.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AKIAIOSFODNN7EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/johndoe",
 "accountId": "123456789012",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "userName": "johndoe"
 },
 "eventTime": "2019-12-18T19:28:46Z",
 "eventSource": "pi.amazonaws.com",
 "eventName": "GetResourceMetrics",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "72.21.198.67",
 "userAgent": "aws-cli/1.16.240 Python/3.7.4 Darwin/18.7.0 botocore/1.12.230",
 "requestParameters": {
 "identifier": "db-YTDU5J5V66X7CXSCVDFD2V3SZM",
 "metricQueries": [
 {
 "metric": "os.cpuUtilization.user.avg"
 },
 {
 "metric": "os.cpuUtilization.idle.avg"
 }
],
 "startTime": "Dec 18, 2019 5:28:46 PM",
 "periodInSeconds": 60,
 "endTime": "Dec 18, 2019 7:28:46 PM",
 "serviceType": "RDS"
 },
 "responseElements": null,
 "requestID": "9ffbe15c-96b5-4fe6-bed9-9fccff1a0525",
 "eventID": "08908de0-2431-4e2e-ba7b-f5424f908433",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

643

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon Aurora User Guide for Aurora
Analyzing performance with DevOps Guru for RDS

Analyzing performance anomalies with
DevOps Guru for RDS

Amazon DevOps Guru is a fully managed operations service that helps developers and operators improve
the performance and availability of their applications. DevOps Guru offloads the tasks associated with
identifying operational issues so that you can quickly implement recommendations to improve your
application. To learn more, see What is Amazon DevOps Guru? in the Amazon DevOps Guru User Guide.

DevOps Guru detects, analyzes, and makes recommendations for operational issues for all Amazon RDS
DB engines. DevOps Guru for RDS extends this capability by applying machine learning to Performance
Insights metrics for Amazon Aurora databases. These monitoring features allow DevOps Guru for RDS to
detect and diagnose performance bottlenecks and recommend specific corrective actions. To learn more,
see Overview of DevOps Guru for RDS in the Amazon DevOps Guru User Guide.

Topics

• Benefits of DevOps Guru for RDS (p. 644)

• How DevOps Guru for RDS works (p. 645)

• Setting up DevOps Guru for RDS (p. 645)

Benefits of DevOps Guru for RDS
If you're responsible for an Amazon Aurora database, you might not know that an event or regression
that is affecting that database is occurring. When you learn about the issue, you might not know why
it's occurring or what to do about it. Rather than turning to a database administrator (DBA) for help or
relying on third-party tools, you can follow recommendations from DevOps Guru for RDS.

You gain the following advantages from the detailed analysis of DevOps Guru for RDS:

Fast diagnosis

DevOps Guru for RDS continuously monitors and analyzes database telemetry. Performance Insights,
Enhanced Monitoring, and Amazon CloudWatch collect telemetry data for your database cluster.
DevOps Guru for RDS uses statistical and machine learning techniques to mine this data and detect
anomalies. To learn more about telemetry data, see Monitoring DB load with Performance Insights
on Amazon Aurora and Monitoring the OS by using Enhanced Monitoring in the Amazon Aurora User
Guide.

Fast resolution

Each anomaly identifies the performance issue and suggests avenues of investigation or corrective
actions. For example, DevOps Guru for RDS might recommend that you investigate specific wait
events. Or it might recommend that you tune your application pool settings to limit the number of
database connections. Based on these recommendations, you can resolve performance issues more
quickly than by troubleshooting manually.

Deep knowledge of Amazon engineers

To detect performance issues and help you resolve bottlenecks, DevOps Guru for RDS relies
on machine learning (ML). Amazon database engineers contributed to the development of the
DevOps Guru for RDS findings, which encapsulate many years of managing hundreds of thousands
of databases. By drawing on this collective knowledge, DevOps Guru for RDS can teach you best
practices.

644

https://docs.aws.amazon.com/devops-guru/latest/userguide/welcome.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-rds.overview.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_Monitoring.OS.html

Amazon Aurora User Guide for Aurora
How DevOps Guru for RDS works

How DevOps Guru for RDS works
DevOps Guru for RDS collects data about your Aurora databases from Amazon RDS Performance
Insights. The most important metric is DBLoad. DevOps Guru for RDS consumes the Performance
Insights metrics, analyzes them with machine learning, and publishes insights to the dashboard.

Insights

An insight is a collection of related anomalies that were detected by DevOps Guru. If DevOps Guru
for RDS finds performance issues in your Amazon Aurora DB instances, it publishes an insight in the
DevOps Guru dashboard. To learn more about insights, see Working with insights in DevOps Guru in the
Amazon DevOps Guru User Guide.

Anomalies

In DevOps Guru for RDS, an anomaly is a pattern that deviates from what is considered normal
performance for your Amazon Aurora database.

Causal anomalies

A causal anomaly is a top-level anomaly within an insight. Database load (DB load) is the causal
anomaly for DevOps Guru for RDS.

An anomaly measures performance impact by assigning a severity level of High, Medium, or Low. To
learn more, see Key concepts for DevOps Guru for RDS in the Amazon DevOps Guru User Guide.

If DevOps Guru detects an anomaly on your DB instance, you're alerted in the Databases page of the RDS
console. To go to the anomaly page from the RDS console, choose the link in the alert message. The RDS
console also alerts you in the page for your Amazon Aurora cluster.

Contextual anomalies

A contextual anomaly is a finding within Database load (DB load). Each contextual anomaly describes
a specific Amazon Aurora performance issue that requires investigation. For example, DevOps Guru for
RDS might recommend that you consider increasing CPU capacity or investigate wait events that are
contributing to DB load. Amazon Aurora versions (p. 5)

Important
We recommend that you test any changes on a test instance before modifying a production
instance. In this way, you understand the impact of the change.

To learn more, see Analyzing anomalies in Amazon Aurora clusters in the Amazon DevOps Guru User
Guide.

Setting up DevOps Guru for RDS
To allow DevOps Guru for RDS to publish insights for an Amazon Aurora database, complete the
following tasks.

Topics

• Turning on Performance Insights for your Amazon Aurora DB instances (p. 646)

• Configuring access policies for DevOps Guru for RDS (p. 646)

• Adding Amazon Aurora resources to your DevOps Guru coverage (p. 646)

645

https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-insights.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-rds.overview.definitions.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-rds.analyzing.html

Amazon Aurora User Guide for Aurora
Setting up DevOps Guru for RDS

Turning on Performance Insights for your Amazon Aurora DB
instances
DevOps Guru for RDS relies on Performance Insights for its data. Without Performance Insights,
DevOps Guru publishes anomalies, but doesn't include the detailed analysis and recommendations.

When you create or modify a DB instance, you can turn on Performance Insights. For more information,
see Enabling and disabling Performance Insights (p. 598).

Configuring access policies for DevOps Guru for RDS
For your IAM user or role to access DevOps Guru for RDS, it must have either of the following policies:

• The AWS managed policy AmazonRDSFullAccess
• A customer managed policy that allows the following actions:

• pi:GetResourceMetrics

• pi:DescribeDimensionKeys

• pi:GetDimensionKeyDetails

For more information, see Configuring access policies for Performance Insights (p. 603).

Adding Amazon Aurora resources to your DevOps Guru coverage
To set up DevOps Guru for the first time, perform the following steps:

1. Sign up to AWS if you aren't already signed up.
2. Determine coverage for your resources.

To allow DevOps Guru for RDS to generate anomalies for your Amazon Aurora DB instances, specify
the instances that you want to be covered. By default, DevOps Guru analyzes all supported AWS
resources in your AWS Region and account. You can also specify individual resources by using AWS
CloudFormation stacks or applying tags. To learn more, see Adding Amazon Aurora resources to your
DevOps Guru coverage in the Amazon DevOps Guru User Guide.

3. Identify Amazon SNS topics.

Use one or two Amazon SNS topics to generate notifications about important DevOps Guru for RDS
events. An example is when an insight is created for an Amazon Aurora DB instance. In this way, you
know about issues that DevOps Guru for RDS finds as soon as possible. To learn more, see Identify
your Amazon SNS notifications topic in the Amazon DevOps Guru User Guide.

For more information, see Setting up Amazon DevOps Guru in the Amazon DevOps Guru User Guide.

646

https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-rds.enabling.html#working-with-rds.enabling.cf
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-rds.enabling.html#working-with-rds.enabling.cf
https://docs.aws.amazon.com/devops-guru/latest/userguide/setting-up.html#setting-up-notifications
https://docs.aws.amazon.com/devops-guru/latest/userguide/setting-up.html#setting-up-notifications
https://docs.aws.amazon.com/devops-guru/latest/userguide/setting-up.html

Amazon Aurora User Guide for Aurora
Monitoring the OS with Enhanced Monitoring

Monitoring OS metrics with Enhanced Monitoring
With Enhanced Monitoring, you can monitor the operating system of your DB instance in real time. When
you want to see how different processes or threads use the CPU, Enhanced Monitoring metrics are useful.

Topics

• Overview of Enhanced Monitoring (p. 647)

• Setting up and enabling Enhanced Monitoring (p. 648)

• Viewing OS metrics in the RDS console (p. 651)

• Viewing OS metrics using CloudWatch Logs (p. 653)

Overview of Enhanced Monitoring
Amazon RDS provides metrics in real time for the operating system (OS) that your DB instance runs on.
You can view all the system metrics and process information for your RDS DB instances on the console.
You can manage which metrics you want to monitor for each instance and customize the dashboard
according to your requirements.

RDS delivers the metrics from Enhanced Monitoring into your Amazon CloudWatch Logs account.
You can create metrics filters in CloudWatch from CloudWatch Logs and display the graphs on the
CloudWatch dashboard. You can consume the Enhanced Monitoring JSON output from CloudWatch Logs
in a monitoring system of your choice. For more information, see Enhanced Monitoring in the Amazon
RDS FAQs.

Topics

• Differences between CloudWatch and Enhanced Monitoring metrics (p. 647)

• Retention of Enhanced Monitoring metrics (p. 647)

• Cost of Enhanced Monitoring (p. 648)

Differences between CloudWatch and Enhanced Monitoring
metrics

A hypervisor creates and runs virtual machines (VMs). Using a hypervisor, an instance can support
multiple guest VMs by virtually sharing memory and CPU. CloudWatch gathers metrics about CPU
utilization from the hypervisor for a DB instance. In contrast, Enhanced Monitoring gathers its metrics
from an agent on the DB instance.

You might find differences between the CloudWatch and Enhanced Monitoring measurements, because
the hypervisor layer performs a small amount of work. The differences can be greater if your DB
instances use smaller instance classes. In this scenario, more virtual machines (VMs) are probably
managed by the hypervisor layer on a single physical instance.

Retention of Enhanced Monitoring metrics

By default, Enhanced Monitoring metrics are stored for 30 days in the CloudWatch Logs. This retention
period is different from typical CloudWatch metrics.

To modify the amount of time the metrics are stored in the CloudWatch Logs, change the retention for
the RDSOSMetrics log group in the CloudWatch console. For more information, see Change log data
retention in CloudWatch logs in the Amazon CloudWatch Logs User Guide.

647

https://aws.amazon.com/rds/faqs/#Enhanced_Monitoring
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention

Amazon Aurora User Guide for Aurora
Setting up and enabling Enhanced Monitoring

Cost of Enhanced Monitoring

Enhanced Monitoring metrics are stored in the CloudWatch Logs instead of in CloudWatch metrics. The
cost of Enhanced Monitoring depends on the following factors:

• You are charged for Enhanced Monitoring only if you exceed the free tier provided by Amazon
CloudWatch Logs. Charges are based on CloudWatch Logs data transfer and storage rates.

• The amount of information transferred for an RDS instance is directly proportional to the defined
granularity for the Enhanced Monitoring feature. A smaller monitoring interval results in more
frequent reporting of OS metrics and increases your monitoring cost. To manage costs, set different
granularities for different instances in your accounts.

• Usage costs for Enhanced Monitoring are applied for each DB instance that Enhanced Monitoring is
enabled for. Monitoring a large number of DB instances is more expensive than monitoring only a few.

• DB instances that support a more compute-intensive workload have more OS process activity to report
and higher costs for Enhanced Monitoring.

For more information about pricing, see Amazon CloudWatch pricing.

Setting up and enabling Enhanced Monitoring
To use Enhanced Monitoring, you must create an IAM role, and then enable Enhanced Monitoring.

Topics

• Creating an IAM role for Enhanced Monitoring (p. 648)

• Turning Enhanced Monitoring on and off (p. 649)

• Protecting against the confused deputy problem (p. 651)

Creating an IAM role for Enhanced Monitoring

Enhanced Monitoring requires permission to act on your behalf to send OS metric information to
CloudWatch Logs. You grant Enhanced Monitoring permissions using an AWS Identity and Access
Management (IAM) role. You can either create this role when you enable Enhanced Monitoring or create
it beforehand.

Topics

• Creating the IAM role when you enable Enhanced Monitoring (p. 648)

• Creating the IAM role before you enable Enhanced Monitoring (p. 649)

Creating the IAM role when you enable Enhanced Monitoring

When you enable Enhanced Monitoring in the RDS console, Amazon RDS can create the required IAM role
for you. The role is named rds-monitoring-role. RDS uses this role for the specified DB instance or
read replica.

To create the IAM role when enabling Enhanced Monitoring

1. Follow the steps in Turning Enhanced Monitoring on and off (p. 649).

2. Set Monitoring Role to Default in the step where you choose a role.

648

https://aws.amazon.com/cloudwatch/pricing/

Amazon Aurora User Guide for Aurora
Setting up and enabling Enhanced Monitoring

Creating the IAM role before you enable Enhanced Monitoring

You can create the required role before you enable Enhanced Monitoring. When you enable Enhanced
Monitoring, specify your new role's name. You must create this required role if you enable Enhanced
Monitoring using the AWS CLI or the RDS API.

The user that enables Enhanced Monitoring must be granted the PassRole permission. For more
information, see Example 2 in Granting a user permissions to pass a role to an AWS service in the IAM
User Guide.

To create an IAM role for Amazon RDS enhanced monitoring

1. Open the IAM console at https://console.aws.amazon.com.

2. In the navigation pane, choose Roles.

3. Choose Create role.

4. Choose the AWS service tab, and then choose RDS from the list of services.

5. Choose RDS - Enhanced Monitoring, and then choose Next: Permissions.

6. Ensure that the Attached permissions policy page shows AmazonRDSEnhancedMonitoringRole,
and then choose Next: Tags.

7. On the Add tags page, choose Next: Review.

8. For Role Name, enter a name for your role. For example, enter emaccess.

The trusted entity for your role is the AWS service monitoring.rds.amazonaws.com.

9. Choose Create role.

Turning Enhanced Monitoring on and off
You can turn Enhanced Monitoring on and off using the AWS Management Console, AWS CLI, or RDS
API. You choose the RDS DB instances on which you want to turn on Enhanced Monitoring. You can set
different granularities for metric collection on each DB instance.

Console

You can enable Enhanced Monitoring when you create a DB cluster or read replica, or when you modify
a DB cluster. If you modify a DB instance to enable Enhanced Monitoring, you don't need to reboot your
DB instance for the change to take effect.

You can enable Enhanced Monitoring in the RDS console when you do one of the following actions in the
Databases page:

• Create a DB cluster – Choose Create database.

• Create a read replica – Choose Actions, then Create read replica.

• Modify a DB instance – Choose Modify.

To turn Enhanced Monitoring on or off in the RDS console

1. Scroll to Additional configuration.

2. In Monitoring, choose Enable Enhanced Monitoring for your DB instance or read replica. To turn
Enhanced Monitoring off, choose Disable Enhanced Monitoring.

3. Set the Monitoring Role property to the IAM role that you created to permit Amazon RDS to
communicate with Amazon CloudWatch Logs for you, or choose Default to have RDS create a role
for you named rds-monitoring-role.

649

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://console.aws.amazon.com/iam/home?#home
https://console.aws.amazon.com/

Amazon Aurora User Guide for Aurora
Setting up and enabling Enhanced Monitoring

4. Set the Granularity property to the interval, in seconds, between points when metrics are collected
for your DB instance or read replica. The Granularity property can be set to one of the following
values: 1, 5, 10, 15, 30, or 60.

Note
The fastest that the RDS console refreshes is every 5 seconds. If you set the granularity to 1
second in the RDS console, you still see updated metrics only every 5 seconds. You can retrieve
1-second metric updates by using CloudWatch Logs.

AWS CLI

To enable Enhanced Monitoring using the AWS CLI, in the following commands, set the --monitoring-
interval option to a value other than 0 and set the --monitoring-role-arn option to the role you
created in Creating an IAM role for Enhanced Monitoring (p. 648).

• create-db-instance
• create-db-instance-read-replica
• modify-db-instance

The --monitoring-interval option specifies the interval, in seconds, between points when Enhanced
Monitoring metrics are collected. Valid values for the option are 0, 1, 5, 10, 15, 30, and 60.

To turn off Enhanced Monitoring using the AWS CLI, set the --monitoring-interval option to 0 in
these commands.

Example

The following example turn on Enhanced Monitoring for a DB instance:

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --monitoring-interval 30 \
 --monitoring-role-arn arn:aws:iam::123456789012:role/emaccess

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --monitoring-interval 30 ^
 --monitoring-role-arn arn:aws:iam::123456789012:role/emaccess

RDS API

To turn on Enhanced Monitoring using the RDS API, set the MonitoringInterval parameter to a value
other than 0 and set the MonitoringRoleArn parameter to the role you created in Creating an IAM role
for Enhanced Monitoring (p. 648). Set these parameters in the following actions:

• CreateDBInstance
• CreateDBInstanceReadReplica
• ModifyDBInstance

The MonitoringInterval parameter specifies the interval, in seconds, between points when Enhanced
Monitoring metrics are collected. Valid values are 0, 1, 5, 10, 15, 30, and 60.

650

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance-read-replica.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstanceReadReplica.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora
Viewing OS metrics in the RDS console

To turn off Enhanced Monitoring using the RDS API, set MonitoringInterval to 0.

Protecting against the confused deputy problem

The confused deputy problem is a security issue where an entity that doesn't have permission to perform
an action can coerce a more-privileged entity to perform the action. In AWS, cross-service impersonation
can result in the confused deputy problem. Cross-service impersonation can occur when one service (the
calling service) calls another service (the called service). The calling service can be manipulated to use its
permissions to act on another customer's resources in a way it should not otherwise have permission to
access. To prevent this, AWS provides tools that help you protect your data for all services with service
principals that have been given access to resources in your account. For more information, see The
confused deputy problem.

To limit the permissions to the resource that Amazon RDS can give another service, we recommend using
the aws:SourceArn and aws:SourceAccount global condition context keys in a trust policy for your
Enhanced Monitoring role. If you use both global condition context keys, they must use the same account
ID.

The most effective way to protect against the confused deputy problem is to use the aws:SourceArn
global condition context key with the full ARN of the resource. For Amazon RDS, set aws:SourceArn to
arn:aws:rds:Region:my-account-id:db/dbname.

The following example uses the aws:SourceArn and aws:SourceAccount global condition context
keys in a trust policy to prevent the confused deputy problem.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringLike": {
 "aws:SourceArn": "arn:aws:rds:Region:my-account-id:db/dbname"
 },
 "StringEquals": {
 "aws:SourceAccount": "my-account-id"
 }
 }
 }
]
}

Viewing OS metrics in the RDS console
You can view OS metrics reported by Enhanced Monitoring in the RDS console by choosing Enhanced
monitoring for Monitoring.

The Enhanced Monitoring page is shown following.

651

https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

Amazon Aurora User Guide for Aurora
Viewing OS metrics in the RDS console

If you want to see details for the processes running on your DB instance, choose OS process list for
Monitoring.

The Process List view is shown following.

The Enhanced Monitoring metrics shown in the Process list view are organized as follows:

• RDS child processes – Shows a summary of the RDS processes that support the DB instance, for
example aurora for Amazon Aurora DB clusters. Process threads appear nested beneath the parent
process. Process threads show CPU utilization only as other metrics are the same for all threads for the
process. The console displays a maximum of 100 processes and threads. The results are a combination
of the top CPU consuming and memory consuming processes and threads. If there are more than 50
processes and more than 50 threads, the console displays the top 50 consumers in each category. This
display helps you identify which processes are having the greatest impact on performance.

• RDS processes – Shows a summary of the resources used by the RDS management agent, diagnostics
monitoring processes, and other AWS processes that are required to support RDS DB instances.

• OS processes – Shows a summary of the kernel and system processes, which generally have minimal
impact on performance.

652

Amazon Aurora User Guide for Aurora
Viewing OS metrics using CloudWatch Logs

The items listed for each process are:

• VIRT – Displays the virtual size of the process.
• RES – Displays the actual physical memory being used by the process.
• CPU% – Displays the percentage of the total CPU bandwidth being used by the process.
• MEM% – Displays the percentage of the total memory being used by the process.

The monitoring data that is shown in the RDS console is retrieved from Amazon CloudWatch Logs.
You can also retrieve the metrics for a DB instance as a log stream from CloudWatch Logs. For more
information, see Viewing OS metrics using CloudWatch Logs (p. 653).

Enhanced Monitoring metrics are not returned during the following:

• A failover of the DB instance.
• Changing the instance class of the DB instance (scale compute).

Enhanced Monitoring metrics are returned during a reboot of a DB instance because only the database
engine is rebooted. Metrics for the operating system are still reported.

Viewing OS metrics using CloudWatch Logs
After you have enabled Enhanced Monitoring for your DB instance, you can view the metrics for your
DB instance using CloudWatch Logs, with each log stream representing a single DB instance being
monitored. The log stream identifier is the resource identifier (DbiResourceId) for the DB instance.

To view Enhanced Monitoring log data

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.
2. If necessary, choose the region that your DB instance is in. For more information, see Regions and

endpoints in the Amazon Web Services General Reference.
3. Choose Logs in the navigation pane.
4. Choose RDSOSMetrics from the list of log groups.
5. Choose the log stream that you want to view from the list of log streams.

653

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/general/latest/gr/index.html?rande.html
https://docs.aws.amazon.com/general/latest/gr/index.html?rande.html

Amazon Aurora User Guide for Aurora
Aurora metrics reference

Metrics reference for Amazon Aurora
In this reference, you can find descriptions of Amazon Aurora metrics for Amazon CloudWatch,
Performance Insights, and Enhanced Monitoring.

Topics
• Amazon CloudWatch metrics for Amazon Aurora (p. 654)
• Amazon CloudWatch dimensions for Aurora (p. 670)
• Availability of Aurora metrics in the Amazon RDS console (p. 670)
• Amazon CloudWatch metrics for Performance Insights (p. 673)
• Performance Insights counter metrics (p. 674)
• OS metrics in Enhanced Monitoring (p. 681)

Amazon CloudWatch metrics for Amazon Aurora
The AWS/RDS namespace includes the following metrics that apply to database entities running on
Amazon Aurora. Some metrics apply to either Aurora MySQL, Aurora PostgreSQL, or both. Furthermore,
some metrics are specific to a DB cluster, primary DB instance, replica DB instance, or all DB instances.

For Aurora global database metrics, see Amazon CloudWatch metrics for write forwarding (p. 263). For
Aurora parallel query metrics, see Monitoring parallel query (p. 919).

Topics
• Cluster-level metrics for Amazon Aurora (p. 654)
• Instance-level metrics for Amazon Aurora (p. 660)

Cluster-level metrics for Amazon Aurora
The following table describes metrics that are specific to Aurora clusters.

Amazon Aurora cluster-level metrics

Metric Console name Description Applies to Units

AuroraGlobalDBDataTransferBytesAurora Global DB
Data Transfer Bytes
(Bytes)

In an Aurora Global
Database, the amount of
redo log data transferred
from the master AWS
Region to a secondary
AWS Region.

Aurora
MySQL
and Aurora
PostgreSQL

Bytes

AuroraGlobalDBProgressLag In an Aurora Global
Database, the measure
of how far the secondary
cluster is behind the
primary cluster for both
user transactions and
system transactions.

Aurora
PostgreSQL

Milliseconds

AuroraGlobalDBReplicatedWriteIOAurora Global DB
Replicated Write IO

In an Aurora Global
Database, the number
of write I/O operations
replicated from the

Aurora
MySQL
and Aurora
PostgreSQL

Count

654

Amazon Aurora User Guide for Aurora
CloudWatch metrics for Aurora

Metric Console name Description Applies to Units

primary AWS Region
to the cluster volume
in a secondary AWS
Region. The billing
calculations for the
secondary AWS Regions
in a global database
use VolumeWriteIOPS
to account for writes
performed within the
cluster. The billing
calculations for the
primary AWS Region in
a global database use
VolumeWriteIOPS
to account for the
write activity within
that cluster, and
AuroraGlobalDBReplicatedWriteIO
to account for cross-
Region replication within
the global database.

AuroraGlobalDBReplicationLagAurora Global DB
Replication Lag
(Milliseconds)

For an Aurora Global
Database, the amount
of lag when replicating
updates from the primary
AWS Region.

Aurora
MySQL
and Aurora
PostgreSQL

Milliseconds

AuroraGlobalDBRPOLag In an Aurora Global
Database, the recovery
point objective (RPO) lag
time. This metric measures
how far the secondary
cluster is behind the
primary cluster for user
transactions.

Aurora
PostgreSQL

Milliseconds

655

Amazon Aurora User Guide for Aurora
CloudWatch metrics for Aurora

Metric Console name Description Applies to Units

AuroraVolumeBytesLeftTotal The remaining available
space for the cluster
volume. As the cluster
volume grows, this value
decreases. If it reaches
zero, the cluster reports an
out-of-space error.

If you want to detect
whether your Aurora
cluster is approaching
the size limit of 128
tebibytes (TiB), this value
is simpler and more
reliable to monitor than
VolumeBytesUsed.
AuroraVolumeBytesLeftTotal
takes into account
storage used for internal
housekeeping and other
allocations that don't
affect your storage billing.

This parameter is available
in more recent Aurora
versions. For Aurora
MySQL with MySQL 5.6
compatibility, use Aurora
version 1.19.5 or higher.
For Aurora MySQL with
MySQL 5.7 compatibility,
use Aurora version 2.04.5
or higher.

Aurora
MySQL

Bytes

BacktrackChangeRecordsCreationRateBacktrack Change
Records Creation
Rate (Count)

The number of backtrack
change records created
over 5 minutes for your DB
cluster.

Aurora
MySQL

Count per 5
minutes

BacktrackChangeRecordsStoredBacktrack Change
Records Stored
(Count)

The number of backtrack
change records used by
your DB cluster.

Aurora
MySQL

Count

656

Amazon Aurora User Guide for Aurora
CloudWatch metrics for Aurora

Metric Console name Description Applies to Units

BackupRetentionPeriodStorageUsedBackup Retention
Period Storage Used
(GiB)

The total amount of
backup storage used to
support the point-in-time
restore feature within
the Aurora DB cluster's
backup retention window.
This amount is included in
the total reported by the
TotalBackupStorageBilled
metric. It is computed
separately for each Aurora
cluster. For instructions,
see Understanding
Aurora backup storage
usage (p. 494).

Aurora
MySQL
and Aurora
PostgreSQL

Bytes

ServerlessDatabaseCapacity The current capacity of an
Aurora Serverless v1 DB
cluster.

Aurora
MySQL
and Aurora
PostgreSQL

Count

SnapshotStorageUsed Snapshot Storage
Used (GiB)

The total amount of
backup storage consumed
by all Aurora snapshots
for an Aurora DB cluster
outside its backup
retention window. This
amount is included in
the total reported by the
TotalBackupStorageBilled
metric. It is computed
separately for each Aurora
cluster. For instructions,
see Understanding
Aurora backup storage
usage (p. 494).

Aurora
MySQL
and Aurora
PostgreSQL

Bytes

TotalBackupStorageBilled Total Backup
Storage Used (GiB)

The total amount of
backup storage in bytes
for which you are billed
for a given Aurora DB
cluster. The metric
includes the backup
storage measured by the
BackupRetentionPeriodStorageUsed
and
SnapshotStorageUsed
metrics. This metric is
computed separately
for each Aurora cluster.
For instructions,
see Understanding
Aurora backup storage
usage (p. 494).

Aurora
MySQL
and Aurora
PostgreSQL

Bytes

657

Amazon Aurora User Guide for Aurora
CloudWatch metrics for Aurora

Metric Console name Description Applies to Units

VolumeBytesUsed Volume Bytes Used
(GiB)

The amount of storage
used by your Aurora DB
instance.

This value affects the cost
of the Aurora DB cluster
(for pricing information,
see the Amazon RDS
product page).

This value doesn't
reflect some internal
storage allocations that
don't affect storage
billing. Thus, you can
anticipate out-of-space
issues more accurately
by testing whether
AuroraVolumeBytesLeftTotal
is approaching zero
instead of comparing
VolumeBytesUsed
against the storage limit of
128 TiB.

Aurora
MySQL
and Aurora
PostgreSQL

Bytes

658

http://aws.amazon.com/rds/#pricing
http://aws.amazon.com/rds/#pricing

Amazon Aurora User Guide for Aurora
CloudWatch metrics for Aurora

Metric Console name Description Applies to Units

VolumeReadIOPs Volume Read IOPS
(Count)

The number of billed read
I/O operations from a
cluster volume within a 5-
minute interval.

Billed read operations are
calculated at the cluster
volume level, aggregated
from all instances in
the Aurora DB cluster,
and then reported at 5-
minute intervals. The
value is calculated by
taking the value of the
Read operations metric
over a 5-minute period.
You can determine the
amount of billed read
operations per second by
taking the value of the
Billed read operations
metric and dividing by 300
seconds. For example, if
the Billed read operations
returns 13,686, then the
billed read operations per
second is 45 (13,686 / 300
= 45.62).

You accrue billed read
operations for queries that
request database pages
that aren't in the buffer
cache and must be loaded
from storage. You might
see spikes in billed read
operations as query results
are read from storage
and then loaded into the
buffer cache.

Tip
If your Aurora
MySQL cluster
uses parallel
query, you might
see an increase in
VolumeReadIOPS
values. Parallel
queries don't
use the buffer
pool. Thus,
although the
queries are fast,
this optimized
processing

Aurora
MySQL
and Aurora
PostgreSQL

Count per 5
minutes

659

Amazon Aurora User Guide for Aurora
CloudWatch metrics for Aurora

Metric Console name Description Applies to Units

can result in
an increase in
read operations
and associated
charges.

VolumeWriteIOPs Volume Write IOPS
(Count)

The number of write disk
I/O operations to the
cluster volume, reported
at 5-minute intervals.
For a detailed description
of how billed write
operations are calculated,
see VolumeReadIOPs.

Aurora
MySQL
and Aurora
PostgreSQL

Count per 5
minutes

Instance-level metrics for Amazon Aurora

The following instance-specific CloudWatch metrics apply to all Aurora MySQL and Aurora PostgreSQL
instances unless noted otherwise.

Amazon Aurora instance-level metrics

Metric Console Name Description Applies to Units

AbortedClients The number of client
connections that have not
been closed properly.

Aurora
MySQL

Count

ActiveTransactions Active Transactions
(Count)

The average number
of current transactions
executing on an Aurora
database instance per
second.

By default, Aurora
doesn't enable this
metric. To begin
measuring this value, set
innodb_monitor_enable='all'
in the DB parameter group
for a specific DB instance.

Aurora
MySQL

Count per
second

AuroraBinlogReplicaLag Aurora Binlog Replica
Lag (Seconds)

The amount of time
that a binary log replica
DB cluster running on
Aurora MySQL-Compatible
Edition lags behind the
binary log replication
source. A lag means that
the source is generating
records faster than the
replica can apply them.

Primary
for Aurora
MySQL

Seconds

660

Amazon Aurora User Guide for Aurora
CloudWatch metrics for Aurora

Metric Console Name Description Applies to Units

This metric reports
different values depending
on the engine version:

Aurora MySQL version 1
and 2

The
Seconds_Behind_Master
field of the MySQL
SHOW SLAVE STATUS

Aurora MySQL version 3

SHOW REPLICA
STATUS

You can use this metric to
monitor errors and replica
lag in a cluster that acts as
a binary log replica. The
metric value indicates the
following:

A high value

The replica is lagging
the replication source.

0 or a value close to 0

The replica process is
active and current.

-1

Aurora can't
determine the lag,
which can happen
during replica setup or
when the replica is in
an error state.

Because binary log
replication only occurs on
the writer instance of the
cluster, we recommend
using the version of this
metric associated with the
WRITER role.

For more information
about administering
replication, see Replicating
Amazon Aurora MySQL
DB clusters across AWS
Regions (p. 943).

661

Amazon Aurora User Guide for Aurora
CloudWatch metrics for Aurora

Metric Console Name Description Applies to Units

For more information
about troubleshooting,
see Amazon Aurora
MySQL replication
issues (p. 1831).

AuroraReplicaLag Aurora Replica Lag
(Milliseconds)

For an Aurora replica,
the amount of lag when
replicating updates from
the primary instance.

Replica
for Aurora
MySQL
and Aurora
PostgreSQL

Milliseconds

AuroraReplicaLagMaximum Replica Lag Maximum
(Milliseconds)

The maximum amount of
lag between the primary
instance and each Aurora
DB instance in the DB
cluster.

Primary
for Aurora
MySQL
and Aurora
PostgreSQL

Milliseconds

AuroraReplicaLagMinimum Replica Lag Minimum
(Milliseconds)

The minimum amount of
lag between the primary
instance and each Aurora
DB instance in the DB
cluster.

Primary
for Aurora
MySQL
and Aurora
PostgreSQL

Milliseconds

BacktrackWindowActual Backtrack Window
Actual (Minutes)

The difference between
the target backtrack
window and the actual
backtrack window.

Primary
for Aurora
MySQL

Minutes

BacktrackWindowAlert Backtrack Window
Alert (Count)

The number of times
that the actual backtrack
window is smaller than the
target backtrack window
for a given period of time.

Primary
for Aurora
MySQL

Count

BlockedTransactions Blocked Transactions
(Count)

The average number
of transactions in the
database that are blocked
per second.

Aurora
MySQL

Count per
second

BufferCacheHitRatio Buffer Cache Hit Ratio
(Percent)

The percentage of
requests that are served
by the buffer cache.

Aurora
MySQL
and Aurora
PostgreSQL

Percentage

CommitLatency Commit Latency
(Milliseconds)

The average duration of
commit operations.

Aurora
MySQL
and Aurora
PostgreSQL

Milliseconds

CommitThroughput Commit Throughput
(Count/Second)

The average number of
commit operations per
second.

Aurora
MySQL
and Aurora
PostgreSQL

Count per
second

662

Amazon Aurora User Guide for Aurora
CloudWatch metrics for Aurora

Metric Console Name Description Applies to Units

CPUCreditBalance CPU Credit Balance
(Count)

The number of CPU credits
that an instance has
accumulated, reported
at 5-minute intervals.
You can use this metric to
determine how long a DB
instance can burst beyond
its baseline performance
level at a given rate.

This metric applies only
to db.t2.small and
db.t2.medium instances
for Aurora MySQL, and
to db.t3 instances for
Aurora PostgreSQL.

Aurora
MySQL
and Aurora
PostgreSQL

Count

CPUCreditUsage CPU Credit Usage
(Count)

The number of CPU credits
consumed during the
specified period, reported
at 5-minute intervals.
This metric measures the
amount of time during
which physical CPUs have
been used for processing
instructions by virtual
CPUs allocated to the DB
instance.

This metric applies only
to db.t2.small and
db.t2.medium instances
for Aurora MySQL, and
to db.t3 instances for
Aurora PostgreSQL.

Aurora
MySQL
and Aurora
PostgreSQL

Count

CPUUtilization CPU Utilization
(Percent)

The percentage of CPU
used by an Aurora DB
instance.

Aurora
MySQL
and Aurora
PostgreSQL

Percentage

663

Amazon Aurora User Guide for Aurora
CloudWatch metrics for Aurora

Metric Console Name Description Applies to Units

DatabaseConnections DB Connections (Count) The number of client
network connections to
the database instance.

The number of database
sessions can be higher
than the metric value
because the metric value
doesn't include the
following:

• Sessions that no
longer have a network
connection but which
the database hasn't
cleaned up

• Sessions created by the
database engine for its
own purposes

• Sessions created by
the database engine's
parallel execution
capabilities

• Sessions created by the
database engine job
scheduler

• Amazon Aurora
connections

Aurora
MySQL
and Aurora
PostgreSQL

Count

DDLLatency DDL Latency
(Milliseconds)

The average duration of
requests such as example,
create, alter, and drop
requests.

Aurora
MySQL

Milliseconds

DDLThroughput DDL (Count/Second) The average number of
DDL requests per second.

Aurora
MySQL

Count per
second

Deadlocks Deadlocks (Count) The average number of
deadlocks in the database
per second.

Aurora
MySQL
and Aurora
PostgreSQL

Count per
second

DeleteLatency Delete Latency
(Milliseconds)

The average duration of
delete operations.

Aurora
MySQL

Milliseconds

DeleteThroughput Delete Throughput
(Count/Second)

The average number of
delete queries per second.

Aurora
MySQL

Count per
second

DiskQueueDepth Queue Depth (Count) The number of
outstanding read/write
requests waiting to access
the disk.

Aurora
PostgreSQL

Count

664

Amazon Aurora User Guide for Aurora
CloudWatch metrics for Aurora

Metric Console Name Description Applies to Units

DMLLatency DML Latency
(Milliseconds)

The average duration
of inserts, updates, and
deletes.

Aurora
MySQL

Milliseconds

DMLThroughput DML Throughput
(Count/Second)

The average number of
inserts, updates, and
deletes per second.

Aurora
MySQL

Count per
second

EBSByteBalance% EBS Byte Balance
(Percent)

The percentage of
throughput credits
remaining in the burst
bucket of your RDS
database. This metric
is available for basic
monitoring only.

To find the instance sizes
that support this metric,
see the instance sizes
with an asterisk (*) in the
EBS optimized by default
table in Amazon EC2 User
Guide for Linux Instances.
The Sum statistic is not
applicable to this metric.

Aurora
MySQL
and Aurora
PostgreSQL

Percent

EBSIOBalance% EBS IO Balance
(Percent)

The percentage of I/O
credits remaining in the
burst bucket of your RDS
database. This metric
is available for basic
monitoring only.

To find the instance sizes
that support this metric,
see the instance sizes
with an asterisk (*) in the
EBS optimized by default
table in Amazon EC2 User
Guide for Linux Instances.
The Sum statistic is not
applicable to this metric.

This metric is different
from BurstBalance.
To learn how to use this
metric, see Improving
application performance
and reducing costs with
Amazon EBS-Optimized
Instance burst capability.

Aurora
MySQL
and Aurora
PostgreSQL

Percent

EngineUptime Engine Uptime
(Seconds)

The amount of time that
the instance has been
running.

Aurora
MySQL
and Aurora
PostgreSQL

Seconds

665

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-optimized.html#current
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-optimized.html#current
http://aws.amazon.com/blogs/compute/improving-application-performance-and-reducing-costs-with-amazon-ebs-optimized-instance-burst-capability/
http://aws.amazon.com/blogs/compute/improving-application-performance-and-reducing-costs-with-amazon-ebs-optimized-instance-burst-capability/
http://aws.amazon.com/blogs/compute/improving-application-performance-and-reducing-costs-with-amazon-ebs-optimized-instance-burst-capability/
http://aws.amazon.com/blogs/compute/improving-application-performance-and-reducing-costs-with-amazon-ebs-optimized-instance-burst-capability/
http://aws.amazon.com/blogs/compute/improving-application-performance-and-reducing-costs-with-amazon-ebs-optimized-instance-burst-capability/

Amazon Aurora User Guide for Aurora
CloudWatch metrics for Aurora

Metric Console Name Description Applies to Units

FreeableMemory Freeable Memory (MB) The amount of available
random access memory.

Aurora
MySQL
and Aurora
PostgreSQL

Bytes

FreeLocalStorage The amount of local
storage available.

Unlike for other DB
engines, for Aurora DB
instances this metric
reports the amount of
storage available to
each DB instance. This
value depends on the
DB instance class (for
pricing information,
see the Amazon RDS
product page). You can
increase the amount of
free storage space for an
instance by choosing a
larger DB instance class
for your instance.

Aurora
MySQL
and Aurora
PostgreSQL

Bytes

InsertLatency Insert Latency
(Milliseconds)

The average duration of
insert operations.

Aurora
MySQL

Milliseconds

InsertThroughput Insert Throughput
(Count/Second)

The average number of
insert operations per
second.

Aurora
MySQL

Count per
second

LoginFailures Login Failures (Count) The average number of
failed login attempts per
second.

Aurora
MySQL

Count per
second

MaximumUsedTransactionIDsMaximumUsedTransactionIDsThe age of the oldest
unvacuumed transaction
ID, in transactions.
If this value reaches
2,146,483,648 (2^31 -
1,000,000), the database
is forced into read-only
mode, to avoid transaction
ID wraparound. For
more information, see
Preventing transaction
ID wraparound failures
in the PostgreSQL
documentation.

Aurora
PostgreSQL

Count

666

http://aws.amazon.com/rds/#pricing
http://aws.amazon.com/rds/#pricing
https://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND
https://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND

Amazon Aurora User Guide for Aurora
CloudWatch metrics for Aurora

Metric Console Name Description Applies to Units

NetworkReceiveThroughputNetwork Receive
Throughput (MB/
Second)

The amount of network
throughput received from
clients by each instance
in the Aurora MySQL DB
cluster. This throughput
doesn't include network
traffic between instances
in the Aurora DB cluster
and the cluster volume.

Aurora
MySQL
and Aurora
PostgreSQL

Bytes per
second
(console
shows
Megabytes
per second)

NetworkThroughput Network Throughput
(Byte/Second)

The amount of network
throughput both received
from and transmitted to
clients by each instance
in the Aurora MySQL DB
cluster. This throughput
doesn't include network
traffic between instances
in the DB cluster and the
cluster volume.

Aurora
MySQL
and Aurora
PostgreSQL

Bytes per
second

NetworkTransmitThroughputNetwork Transmit
Throughput (MB/
Second)

The amount of network
throughput sent to clients
by each instance in the
Aurora DB cluster. This
throughput doesn't
include network traffic
between instances in the
DB cluster and the cluster
volume.

Aurora
MySQL
and Aurora
PostgreSQL

Bytes per
second
(console
shows
Megabytes
per second)

NumBinaryLogFiles The number of binlog files
generated.

Aurora
MySQL

Count

Queries Queries (Count/
Second)

The average number of
queries executed per
second.

Aurora
MySQL

Count per
second

RDSToAuroraPostgreSQLReplicaLag The lag when replicating
updates from the primary
RDS PostgreSQL instance
to other nodes in the
cluster.

Replica
for Aurora
PostgreSQL

Seconds

ReadIOPS Read IOPS (Count/
Second)

The average number of
disk I/O operations per
second.

Aurora PostgreSQL-
Compatible Edition
reports read and write
IOPS separately, in 1-
minute intervals.

Aurora
PostgreSQL

Count per
second

667

Amazon Aurora User Guide for Aurora
CloudWatch metrics for Aurora

Metric Console Name Description Applies to Units

ReadLatency Read Latency
(Milliseconds)

The average amount of
time taken per disk I/O
operation.

Aurora
MySQL
and Aurora
PostgreSQL

Seconds

ReadThroughput Read Throughput (MB/
Second)

The average number of
bytes read from disk per
second.

Aurora
PostgreSQL

Bytes per
second

ReplicationSlotDiskUsage The amount of disk space
consumed by replication
slot files.

Aurora
PostgreSQL

Bytes

ResultSetCacheHitRatio Result Set Cache Hit
Ratio (Percent)

The percentage of
requests that are served
by the Resultset cache.

Aurora
MySQL

Percentage

RollbackSegmentHistoryListLength The undo logs that record
committed transactions
with delete-marked
records. These records are
scheduled to be processed
by the InnoDB purge
operation.

Aurora
MySQL

Count

RowLockTime The total time spent
acquiring row locks for
InnoDB tables.

Aurora
MySQL

Milliseconds

SelectLatency Select Latency
(Milliseconds)

The average amount of
time for select operations.

Aurora
MySQL

Milliseconds

SelectThroughput Select Throughput
(Count/Second)

The average number of
select queries per second.

Aurora
MySQL

Count per
second

StorageNetworkReceiveThroughputNetwork Receive
Throughput (MB/
Second)

The amount of network
throughput received
from the Aurora storage
subsystem by each
instance in the DB cluster.

Aurora
MySQL
and Aurora
PostgreSQL

Bytes per
second

StorageNetworkThroughputNetwork Throughput
(Byte/Second)

The amount of network
throughput received from
and sent to the Aurora
storage subsystem by each
instance in the Aurora
MySQL DB cluster.

Aurora
MySQL
and Aurora
PostgreSQL

Bytes per
second

StorageNetworkTransmitThroughputNetwork Transmit
Throughput (MB/
Second)

The amount of network
throughput sent to the
Aurora storage subsystem
by each instance in the
Aurora MySQL DB cluster.

Aurora
MySQL
and Aurora
PostgreSQL

Bytes per
second

SumBinaryLogSize The total size of the binlog
files.

Aurora
MySQL

Bytes

668

Amazon Aurora User Guide for Aurora
CloudWatch metrics for Aurora

Metric Console Name Description Applies to Units

SwapUsage Swap Usage (MB) The amount of swap
space used. This metric is
available for the Aurora
PostgreSQL DB instance
classes db.t3.medium,
db.t3.large,
db.r4.large,
db.r4.xlarge,
db.r5.large,
db.r5.xlarge,
db.r6g.large, and
db.r6g.xlarge. For
Aurora MySQL, this metric
applies only to db.t* DB
instance classes.

Aurora
MySQL
and Aurora
PostgreSQL

Bytes

TransactionLogsDiskUsageTransaction Logs Disk
Usage (MB)

The amount of disk space
consumed by transaction
logs on the Aurora
PostgreSQL DB instance.

This metric is generated
only when Aurora
PostgreSQL is using
logical replication or
AWS Database Migration
Service. By default, Aurora
PostgreSQL uses log
records, not transaction
logs. When transaction
logs aren't in use, the
value for this metric is -1.

Primary
for Aurora
PostgreSQL

Bytes

UpdateLatency Update Latency
(Milliseconds)

The average amount of
taken taken for update
operations.

Aurora
MySQL

Milliseconds

UpdateThroughput Update Throughput
(Count/Second)

The average number of
updates per second.

Aurora
MySQL

Count per
second

WriteIOPS Volume Write IOPS
(Count)

The number of Aurora
storage write records
generated per second. This
is more or less the number
of log records generated
by the database. These
do not correspond to 8K
page writes, and do not
correspond to network
packets sent.

Aurora
PostgreSQL

Count per
second

WriteLatency Write Latency
(Milliseconds)

The average amount of
time taken per disk I/O
operation.

Aurora
MySQL
and Aurora
PostgreSQL

Seconds

669

Amazon Aurora User Guide for Aurora
CloudWatch dimensions for Aurora

Metric Console Name Description Applies to Units

WriteThroughput Write Throughput (MB/
Second)

The average number of
bytes written to persistent
storage every second.

Aurora
PostgreSQL

Bytes per
second

Amazon CloudWatch dimensions for Aurora
You can filter Aurora metrics data by using any dimension in the following table.

Dimension Filters the requested data for . . .

DBInstanceIdentifier A specific DB instance.

DBClusterIdentifier A specific Amazon Aurora DB cluster.

DBClusterIdentifier,
Role

A specific Aurora DB cluster, aggregating the metric by instance role
(WRITER/READER). For example, you can aggregate metrics for all
READER instances that belong to a cluster.

DatabaseClass All instances in a database class. For example, you can aggregate
metrics for all instances that belong to the database class
db.r5.large.

EngineName The identified engine name only. For example, you can aggregate
metrics for all instances that have the engine name mysql.

SourceRegion The specified Region only. For example, you can aggregate metrics
for all DB instances in the us-east-1 Region.

Availability of Aurora metrics in the Amazon RDS
console
Not all metrics provided by Amazon Aurora are available in the Amazon RDS console. You can view
these metrics using tools such as the AWS CLI and CloudWatch API. Also, some metrics in the Amazon
RDS console are either shown only for specific instance classes, or with different names and units of
measurement.

Topics
• Aurora metrics available in the Last Hour view (p. 670)
• Aurora metrics available in specific cases (p. 671)
• Aurora metrics that aren't available in the console (p. 672)

Aurora metrics available in the Last Hour view
You can view a subset of categorized Aurora metrics in the default Last Hour view in the Amazon RDS
console. The following table lists the categories and associated metrics displayed in the Amazon RDS
console for an Aurora instance.

Category Metrics

SQL ActiveTransactions

670

Amazon Aurora User Guide for Aurora
Availability of Aurora metrics in the Amazon RDS console

Category Metrics

BlockedTransactions

BufferCacheHitRatio

CommitLatency

CommitThroughput

DatabaseConnections

DDLLatency

DDLThroughput

Deadlocks

DMLLatency

DMLThroughput

LoginFailures

ResultSetCacheHitRatio

SelectLatency

SelectThroughput

System AuroraReplicaLag

AuroraReplicaLagMaximum

AuroraReplicaLagMinimum

CPUCreditBalance

CPUCreditUsage

CPUUtilization

FreeableMemory

FreeLocalStorage

NetworkReceiveThroughput

Deployment AuroraReplicaLag

BufferCacheHitRatio

ResultSetCacheHitRatio

SelectThroughput

Aurora metrics available in specific cases

In addition, some Aurora metrics are either shown only for specific instance classes, or only for DB
instances, or with different names and different units of measurement:

671

Amazon Aurora User Guide for Aurora
Availability of Aurora metrics in the Amazon RDS console

• The CPUCreditBalance and CPUCreditUsage metrics are displayed only for Aurora MySQL db.t2
instance classes and for Aurora PostgreSQL db.t3 instance classes.

• The following metrics that are displayed with different names, as listed:

Metric Display name

AuroraReplicaLagMaximum Replica lag maximum

AuroraReplicaLagMinimum Replica lag minimum

DDLThroughput DDL

NetworkReceiveThroughput Network throughput

VolumeBytesUsed [Billed] Volume bytes used

VolumeReadIOPs [Billed] Volume read IOPs

VolumeWriteIOPs [Billed] Volume write IOPs

• The following metrics apply to an entire Aurora DB cluster, but are displayed only when viewing DB
instances for an Aurora DB cluster in the Amazon RDS console:

• VolumeBytesUsed

• VolumeReadIOPs

• VolumeWriteIOPs

• The following metrics are displayed in megabytes, instead of bytes, in the Amazon RDS console:

• FreeableMemory

• FreeLocalStorage

• NetworkReceiveThroughput

• NetworkTransmitThroughput

Aurora metrics that aren't available in the console

The following Aurora metrics aren't available in the Amazon RDS console:

• AuroraBinlogReplicaLag

• DeleteLatency

• DeleteThroughput

• EngineUptime

• InsertLatency

• InsertThroughput

• NetworkThroughput

• Queries

• UpdateLatency

• UpdateThroughput

672

Amazon Aurora User Guide for Aurora
CloudWatch metrics for Performance Insights

Amazon CloudWatch metrics for Performance
Insights
Performance Insights automatically publishes metrics to Amazon CloudWatch. The same data can
be queried from Performance Insights, but having the metrics in CloudWatch makes it easy to add
CloudWatch alarms. It also makes it easy to add the metrics to existing CloudWatch Dashboards.

Metric Description

DBLoad The number of active sessions for the DB engine.
Typically, you want the data for the average
number of active sessions. In Performance
Insights, this data is queried as db.load.avg.

DBLoadCPU The number of active sessions where the wait
event type is CPU. In Performance Insights, this
data is queried as db.load.avg, filtered by the
wait event type CPU.

DBLoadNonCPU The number of active sessions where the wait
event type is not CPU.

Note
These metrics are published to CloudWatch only if there is load on the DB instance.

You can examine these metrics using the CloudWatch console, the AWS CLI, or the CloudWatch API.

For example, you can get the statistics for the DBLoad metric by running the get-metric-statistics
command.

aws cloudwatch get-metric-statistics \
 --region us-west-2 \
 --namespace AWS/RDS \
 --metric-name DBLoad \
 --period 60 \
 --statistics Average \
 --start-time 1532035185 \
 --end-time 1532036185 \
 --dimensions Name=DBInstanceIdentifier,Value=db-loadtest-0

This example generates output similar to the following.

{
 "Datapoints": [
 {
 "Timestamp": "2021-07-19T21:30:00Z",
 "Unit": "None",
 "Average": 2.1
 },
 {
 "Timestamp": "2021-07-19T21:34:00Z",
 "Unit": "None",
 "Average": 1.7
 },
 {
 "Timestamp": "2021-07-19T21:35:00Z",
 "Unit": "None",

673

https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/get-metric-statistics.html

Amazon Aurora User Guide for Aurora
Counter metrics for Performance Insights

 "Average": 2.8
 },
 {
 "Timestamp": "2021-07-19T21:31:00Z",
 "Unit": "None",
 "Average": 1.5
 },
 {
 "Timestamp": "2021-07-19T21:32:00Z",
 "Unit": "None",
 "Average": 1.8
 },
 {
 "Timestamp": "2021-07-19T21:29:00Z",
 "Unit": "None",
 "Average": 3.0
 },
 {
 "Timestamp": "2021-07-19T21:33:00Z",
 "Unit": "None",
 "Average": 2.4
 }
],
 "Label": "DBLoad"
 }

For more information about CloudWatch, see What is Amazon CloudWatch? in the Amazon CloudWatch
User Guide.

Performance Insights counter metrics
Counter metrics are operating system and database performance metrics in the Performance Insights
dashboard. To help identify and analyze performance problems, you can correlate counter metrics with
DB load.

Topics
• Performance Insights counters for Aurora PostgreSQL (p. 674)
• Performance Insights counters for Aurora MySQL (p. 676)
• Performance Insights counters for Aurora PostgreSQL (p. 680)

Performance Insights counters for Aurora PostgreSQL
The following operating system counters are available with Performance Insights for Aurora PostgreSQL.
You can find definitions for these metrics in Viewing OS metrics using CloudWatch Logs (p. 653).

Counter Type Metric

active memory os.memory.active

buffers memory os.memory.buffers

cached memory os.memory.cached

dirty memory os.memory.dirty

free memory os.memory.free

hugePagesFree memory os.memory.hugePagesFree

674

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html

Amazon Aurora User Guide for Aurora
Counter metrics for Performance Insights

Counter Type Metric

hugePagesRsvd memory os.memory.hugePagesRsvd

hugePagesSize memory os.memory.hugePagesSize

hugePagesSurp memory os.memory.hugePagesSurp

hugePagesTotal memory os.memory.hugePagesTotal

inactive memory os.memory.inactive

mapped memory os.memory.mapped

pageTables memory os.memory.pageTables

slab memory os.memory.slab

total memory os.memory.total

writeback memory os.memory.writeback

guest cpuUtilization os.cpuUtilization.guest

idle cpuUtilization os.cpuUtilization.idle

irq cpuUtilization os.cpuUtilization.irq

nice cpuUtilization os.cpuUtilization.nice

steal cpuUtilization os.cpuUtilization.steal

system cpuUtilization os.cpuUtilization.system

total cpuUtilization os.cpuUtilization.total

user cpuUtilization os.cpuUtilization.user

wait cpuUtilization os.cpuUtilization.wait

avgQueueLen diskIO os.diskIO.avgQueueLen

avgReqSz diskIO os.diskIO.avgReqSz

await diskIO os.diskIO.await

readIOsPS diskIO os.diskIO.readIOsPS

readKb diskIO os.diskIO.readKb

readKbPS diskIO os.diskIO.readKbPS

rrqmPS diskIO os.diskIO.rrqmPS

tps diskIO os.diskIO.tps

util diskIO os.diskIO.util

writeIOsPS diskIO os.diskIO.writeIOsPS

writeKb diskIO os.diskIO.writeKb

writeKbPS diskIO os.diskIO.writeKbPS

675

Amazon Aurora User Guide for Aurora
Counter metrics for Performance Insights

Counter Type Metric

wrqmPS diskIO os.diskIO.wrqmPS

blocked tasks os.tasks.blocked

running tasks os.tasks.running

sleeping tasks os.tasks.sleeping

stopped tasks os.tasks.stopped

total tasks os.tasks.total

zombie tasks os.tasks.zombie

one loadAverageMinute os.loadAverageMinute.one

fifteen loadAverageMinute os.loadAverageMinute.fifteen

five loadAverageMinute os.loadAverageMinute.five

cached swap os.swap.cached

free swap os.swap.free

in swap os.swap.in

out swap os.swap.out

total swap os.swap.total

maxFiles fileSys os.fileSys.maxFiles

usedFiles fileSys os.fileSys.usedFiles

usedFilePercent fileSys os.fileSys.usedFilePercent

usedPercent fileSys os.fileSys.usedPercent

used fileSys os.fileSys.used

total fileSys os.fileSys.total

rx network os.network.rx

tx network os.network.tx

numVCPUs general os.general.numVCPUs

Performance Insights counters for Aurora MySQL

The following database counters are available with Performance Insights for Aurora MySQL.

Topics

• Native counters for Aurora MySQL (p. 677)

• Non-native counters for Aurora MySQL (p. 678)

676

Amazon Aurora User Guide for Aurora
Counter metrics for Performance Insights

Native counters for Aurora MySQL

You can find definitions for these native metrics in Server Status Variables in the MySQL documentation.

Counter Type Unit Metric

Com_analyze SQL Queries per
second

db.SQL.Com_analyze

Com_optimize SQL Queries per
second

db.SQL.Com_optimize

Com_select SQL Queries per
second

db.SQL.Com_select

Innodb_rows_deleted SQL Rows per
second

db.SQL.Innodb_rows_deleted

Innodb_rows_inserted SQL Rows per
second

db.SQL.Innodb_rows_inserted

Innodb_rows_read SQL Rows per
second

db.SQL.Innodb_rows_read

Innodb_rows_updated SQL Rows per
second

db.SQL.Innodb_rows_updated

Questions SQL Queries per
second

db.SQL.Questions

Select_full_join SQL Queries per
second

db.SQL.Select_full_join

Select_full_range_join SQL Queries per
second

db.SQL.Select_full_range_join

Select_range SQL Queries per
second

db.SQL.Select_range

Select_range_check SQL Queries per
second

db.SQL.Select_range_check

Select_scan SQL Queries per
second

db.SQL.Select_scan

Slow_queries SQL Queries per
second

db.SQL.Slow_queries

Sort_merge_passes SQL Queries per
second

db.SQL.Sort_merge_passes

Sort_range SQL Queries per
second

db.SQL.Sort_range

Sort_rows SQL Queries per
second

db.SQL.Sort_rows

Sort_scan SQL Queries per
second

db.SQL.Sort_scan

677

https://dev.mysql.com/doc/refman/5.6/en/server-status-variables.html

Amazon Aurora User Guide for Aurora
Counter metrics for Performance Insights

Counter Type Unit Metric

Table_locks_immediate Locks Requests per
second

db.Locks.Table_locks_immediate

Table_locks_waited Locks Requests per
second

db.Locks.Table_locks_waited

Innodb_row_lock_time Locks Milliseconds
(average)

db.Locks.Innodb_row_lock_time

Aborted_clients Users Connections db.Users.Aborted_clients

Aborted_connects Users Connections db.Users.Aborted_connects

Threads_created Users Connections db.Users.Threads_created

Threads_running Users Connections db.Users.Threads_running

Created_tmp_disk_tables Temp Tables per
second

db.Temp.Created_tmp_disk_tables

Created_tmp_tables Temp Tables per
second

db.Temp.Created_tmp_tables

Innodb_buffer_pool_pages_data Cache Pages db.Cache.Innodb_buffer_pool_pages_data

Innodb_buffer_pool_pages_total Cache Pages db.Cache.Innodb_buffer_pool_pages_total

Innodb_buffer_pool_read_requests Cache Pages per
second

db.Cache.Innodb_buffer_pool_read_requests

Innodb_buffer_pool_reads Cache Pages per
second

db.Cache.Innodb_buffer_pool_reads

Opened_tables Cache Tables db.Cache.Opened_tables

Opened_table_definitions Cache Tables db.Cache.Opened_table_definitions

Qcache_hits Cache Queries db.Cache.Qcache_hits

Non-native counters for Aurora MySQL

Non-native counter metrics are counters defined by Amazon RDS. A non-native metric can be a metric
that you get with a specific query. A non-native metric also can be a derived metric, where two or more
native counters are used in calculations for ratios, hit rates, or latencies.

Counter Type Metric Description Definition

innodb_buffer_pool_hits Cache db.Cache.innoDB_buffer_pool_hitsThe number of reads
that InnoDB could satisfy
from the buffer pool.

innodb_buffer_pool_read_requests
-
innodb_buffer_pool_reads

innodb_buffer_pool_hit_rateCache db.Cache.innoDB_buffer_pool_hit_rateThe percentage of reads
that InnoDB could satisfy
from the buffer pool.

100 *
innodb_buffer_pool_read_requests /
(innodb_buffer_pool_read_requests
+
innodb_buffer_pool_reads)

678

Amazon Aurora User Guide for Aurora
Counter metrics for Performance Insights

Counter Type Metric Description Definition

innodb_buffer_pool_usageCache db.Cache.innoDB_buffer_pool_usageThe percentage of the
InnoDB buffer pool that
contains data (pages).

Note
When using
compressed
tables, this
value can
vary. For more
information, see
the information
about
Innodb_buffer_pool_pages_data
and
Innodb_buffer_pool_pages_total
in Server Status
Variables in
the MySQL
documentation.

Innodb_buffer_pool_pages_data /
Innodb_buffer_pool_pages_total
* 100.0

query_cache_hit_rate Cache db.Cache.query_cache_hit_rateThe hit ratio for the
MySQL result set cache
(query cache).

Qcache_hits /
(QCache_hits +
Com_select) * 100

innodb_rows_changed SQL db.SQL.innodb_rows_changedThe total InnoDB row
operations.

db.SQL.Innodb_rows_inserted
+
db.SQL.Innodb_rows_deleted
+
db.SQL.Innodb_rows_updated

active_transactions Transactionsdb.Transactions.active_transactionsThe total active
transactions.

SELECT COUNT(1) AS
active_transactions
FROM
INFORMATION_SCHEMA.INNODB_TRX

innodb_deadlocks Locks db.Locks.innodb_deadlocksThe total number of
deadlocks.

SELECT COUNT AS
innodb_deadlocks
FROM
INFORMATION_SCHEMA.INNODB_METRICS
WHERE
NAME='lock_deadlocks'

innodb_lock_timeouts Locks db.Locks.innodb_lock_timeoutsThe total number of
deadlocks that timed out.

SELECT COUNT AS
innodb_lock_timeouts
FROM
INFORMATION_SCHEMA.INNODB_METRICS
WHERE
NAME='lock_timeouts'

innodb_row_lock_waits Locks db.Locks.innodb_row_lock_waitsThe total number of row
locks that resulted in a
wait.

SELECT COUNT AS
innodb_row_lock_waits
FROM
INFORMATION_SCHEMA.INNODB_METRICS
WHERE
NAME='lock_row_lock_waits'

679

https://dev.mysql.com/doc/refman/5.6/en/server-status-variables.html
https://dev.mysql.com/doc/refman/5.6/en/server-status-variables.html

Amazon Aurora User Guide for Aurora
Counter metrics for Performance Insights

Performance Insights counters for Aurora PostgreSQL
The following database counters are available with Performance Insights for Aurora PostgreSQL.

Topics
• Native Counters for Aurora PostgreSQL (p. 680)
• Non-native counters for Aurora PostgreSQL (p. 681)

Native Counters for Aurora PostgreSQL

You can find definitions for these native metrics in Viewing Statistics in the PostgreSQL documentation.

Counter Type Unit Metric

tup_deleted SQL Tuples per second db.SQL.tup_deleted

tup_fetched SQL Tuples per second db.SQL.tup_fetched

tup_inserted SQL Tuples per second db.SQL.tup_inserted

tup_returned SQL Tuples per second db.SQL.tup_returned

tup_updated SQL Tuples per second db.SQL.tup_updated

buffers_checkpoint Checkpoint Blocks per second db.Checkpoint.buffers_checkpoint

checkpoints_req Checkpoint Checkpoints per minute db.Checkpoint.checkpoints_req

checkpoint_sync_time Checkpoint Milliseconds per
checkpoint

db.Checkpoint.checkpoint_sync_time

checkpoints_timed Checkpoint Checkpoints per minute db.Checkpoint.checkpoints_timed

checkpoint_write_time Checkpoint Milliseconds per
checkpoint

db.Checkpoint.checkpoint_write_time

maxwritten_clean Checkpoint Bgwriter clean stops per
minute

db.Checkpoint.maxwritten_clean

active_transactions Transactions Transactions db.Transactions.active_transactions

blocked_transactions Transactions Transactions db.Transactions.blocked_transactions

max_used_xact_ids Transactions Transactions db.Transactions.max_used_xact_ids

xact_commit Transactions Commits per second db.Transactions.xact_commit

xaxt_rollback Transactions Rollbacks per second db.Transactions.xact_rollback

blk_read_time I/O Milliseconds db.IO.blk_read_time

blks_read I/O Blocks per second db.IO.blks_read

buffers_backend I/O Blocks per second db.IO.buffers_backend

buffers_backend_fsync I/O Blocks per second db.IO.buffers_backend_fsync

buffers_clean I/O Blocks per second db.IO.buffers_clean

blks_hit Cache Blocks per second db.Cache.blks_hit

680

https://www.postgresql.org/docs/10/monitoring-stats.html#MONITORING-STATS-VIEWS

Amazon Aurora User Guide for Aurora
OS metrics in Enhanced Monitoring

Counter Type Unit Metric

buffers_alloc Cache Blocks per second db.Cache.buffers_alloc

temp_files Temp Files per minute db.Temp.temp_files

numbackends User Connections db.User.numbackends

deadlocks Concurrency Deadlocks per minute db.Concurrency.deadlocks

archived_count WAL Files per minute db.WAL.archived_count

archive_failed_count WAL Files per minute db.WAL.archive_failed_count

Non-native counters for Aurora PostgreSQL

Non-native counter metrics are counters defined by Amazon Aurora. A non-native metric can be a metric
that you get with a specific query. A non-native metric also can be a derived metric, where two or more
native counters are used in calculations for ratios, hit rates, or latencies.

Counter Type Metric Description Definition

checkpoint_sync_latencyCheckpoint db.Checkpoint.checkpoint_sync_latencyThe total amount of time
that has been spent in
the portion of checkpoint
processing where files are
synchronized to disk.

checkpoint_sync_time /
(checkpoints_timed +
checkpoints_req)

checkpoint_write_latencyCheckpoint db.Checkpoint.checkpoint_write_latencyThe total amount of time
that has been spent in
the portion of checkpoint
processing where files are
written to disk.

checkpoint_write_time /
(checkpoints_timed +
checkpoints_req)

read_latency I/O db.IO.read_latencyThe time spent reading
data file blocks by
backends in this instance.

blk_read_time /
blks_read

OS metrics in Enhanced Monitoring
Amazon Aurora provides metrics in real time for the operating system (OS) that your DB cluster runs on.
Aurora delivers the metrics from Enhanced Monitoring to your Amazon CloudWatch Logs account. The
following tables list the OS metrics available using Amazon CloudWatch Logs.

Topics

• OS metrics for Aurora (p. 682)

681

Amazon Aurora User Guide for Aurora
OS metrics in Enhanced Monitoring

OS metrics for Aurora

Group Metric Console
name

Description

engine Not
applicable

The database engine for the DB instance.

instanceID Not
applicable

The DB instance identifier.

instanceResourceIDNot
applicable

An immutable identifier for the DB instance that is unique
to an AWS Region, also used as the log stream identifier.

numVCPUs Not
applicable

The number of virtual CPUs for the DB instance.

timestamp Not
applicable

The time at which the metrics were taken.

uptime Not
applicable

The amount of time that the DB instance has been active.

General

version Not
applicable

The version of the OS metrics' stream JSON format.

guest CPU Guest The percentage of CPU in use by guest programs.

idle CPU Idle The percentage of CPU that is idle.

irq CPU IRQ The percentage of CPU in use by software interrupts.

nice CPU Nice The percentage of CPU in use by programs running at
lowest priority.

steal CPU Steal The percentage of CPU in use by other virtual machines.

system CPU System The percentage of CPU in use by the kernel.

total CPU Total The total percentage of the CPU in use. This value
includes the nice value.

user CPU User The percentage of CPU in use by user programs.

cpuUtilization

wait CPU Wait The percentage of CPU unused while waiting for I/O
access.

avgQueueLen Avg Queue
Size

The number of requests waiting in the I/O device's queue.

avgReqSz Ave Request
Size

The average request size, in kilobytes.

await Disk I/O
Await

The number of milliseconds required to respond to
requests, including queue time and service time.

device Not
applicable

The identifier of the disk device in use.

diskIO

readIOsPS Read IO/s The number of read operations per second.

682

Amazon Aurora User Guide for Aurora
OS metrics in Enhanced Monitoring

Group Metric Console
name

Description

readKb Read Total The total number of kilobytes read.

readKbPS Read Kb/s The number of kilobytes read per second.

readLatency Read
Latency

The elapsed time between the submission of a read I/O
request and its completion, in milliseconds.

This metric is only available for Amazon Aurora.

readThroughputRead
Throughput

The amount of network throughput used by requests to
the DB cluster, in bytes per second.

This metric is only available for Amazon Aurora.

rrqmPS Rrqms The number of merged read requests queued per second.

tps TPS The number of I/O transactions per second.

util Disk I/O
Util

The percentage of CPU time during which requests were
issued.

writeIOsPS Write IO/s The number of write operations per second.

writeKb Write Total The total number of kilobytes written.

writeKbPS Write Kb/s The number of kilobytes written per second.

writeLatencyWrite
Latency

The average elapsed time between the submission of a
write I/O request and its completion, in milliseconds.

This metric is only available for Amazon Aurora.

writeThroughputWrite
Throughput

The amount of network throughput used by responses
from the DB cluster, in bytes per second.

This metric is only available for Amazon Aurora.

wrqmPS Wrqms The number of merged write requests queued per second.

maxFiles Max Inodes The maximum number of files that can be created for the
file system.

mountPoint Not
applicable

The path to the file system.

name Not
applicable

The name of the file system.

total Total
Filesystem

The total number of disk space available for the file
system, in kilobytes.

used Used
Filesystem

The amount of disk space used by files in the file system,
in kilobytes.

usedFilePercentUsed % The percentage of available files in use.

fileSys

usedFiles Used Inodes The number of files in the file system.

683

Amazon Aurora User Guide for Aurora
OS metrics in Enhanced Monitoring

Group Metric Console
name

Description

usedPercentUsed Inodes
%

The percentage of the file-system disk space in use.

fifteen Load Avg 15
min

The number of processes requesting CPU time over the
last 15 minutes.

five Load Avg 5
min

The number of processes requesting CPU time over the
last 5 minutes.

loadAverageMinute

one Load Avg 1
min

The number of processes requesting CPU time over the
last minute.

active Active
Memory

The amount of assigned memory, in kilobytes.

buffers Buffered
Memory

The amount of memory used for buffering I/O requests
prior to writing to the storage device, in kilobytes.

cached Cached
Memory

The amount of memory used for caching file system–
based I/O.

dirty Dirty
Memory

The amount of memory pages in RAM that have been
modified but not written to their related data block in
storage, in kilobytes.

free Free
Memory

The amount of unassigned memory, in kilobytes.

hugePagesFreeHuge Pages
Free

The number of free huge pages. Huge pages are a feature
of the Linux kernel.

hugePagesRsvdHuge Pages
Rsvd

The number of committed huge pages.

hugePagesSizeHuge Pages
Size

The size for each huge pages unit, in kilobytes.

hugePagesSurpHuge Pages
Surp

The number of available surplus huge pages over the
total.

hugePagesTotalHuge Pages
Total

The total number of huge pages.

inactive Inactive
Memory

The amount of least-frequently used memory pages, in
kilobytes.

mapped Mapped
Memory

The total amount of file-system contents that is memory
mapped inside a process address space, in kilobytes.

pageTables Page Tables The amount of memory used by page tables, in kilobytes.

slab Slab
Memory

The amount of reusable kernel data structures, in
kilobytes.

memory

total Total
Memory

The total amount of memory, in kilobytes.

684

Amazon Aurora User Guide for Aurora
OS metrics in Enhanced Monitoring

Group Metric Console
name

Description

writeback Writeback
Memory

The amount of dirty pages in RAM that are still being
written to the backing storage, in kilobytes.

interface Not
applicable

The identifier for the network interface being used for the
DB instance.

rx RX The number of bytes received per second.

network

tx TX The number of bytes uploaded per second.

cpuUsedPc CPU % The percentage of CPU used by the process.

id Not
applicable

The identifier of the process.

memoryUsedPcMEM% The percentage of memory used by the process.

name Not
applicable

The name of the process.

parentID Not
applicable

The process identifier for the parent process of the
process.

rss RES The amount of RAM allocated to the process, in kilobytes.

tgid Not
applicable

The thread group identifier, which is a number
representing the process ID to which a thread belongs.
This identifier is used to group threads from the same
process.

processList

vss VIRT The amount of virtual memory allocated to the process,
in kilobytes.

swap Swap The amount of swap memory available, in kilobytes.

swap in Swaps in The amount of memory, in kilobytes, swapped in from
disk.

swap out Swaps out The amount of memory, in kilobytes, swapped out to
disk.

free Free Swap The amount of swap memory free, in kilobytes.

swap

committed Committed
Swap

The amount of swap memory, in kilobytes, used as cache
memory.

blocked Tasks
Blocked

The number of tasks that are blocked.

running Tasks
Running

The number of tasks that are running.

sleeping Tasks
Sleeping

The number of tasks that are sleeping.

tasks

stopped Tasks
Stopped

The number of tasks that are stopped.

685

Amazon Aurora User Guide for Aurora
OS metrics in Enhanced Monitoring

Group Metric Console
name

Description

total Tasks Total The total number of tasks.

zombie Tasks
Zombie

The number of child tasks that are inactive with an active
parent task.

686

Amazon Aurora User Guide for Aurora
Viewing logs, events, and streams

in the Amazon RDS console

Monitoring events, logs, and streams
in an Amazon Aurora DB cluster

When you monitor your Amazon Aurora databases and your other AWS solutions, your goal is to
maintain the following:

• Reliability
• Availability
• Performance

Monitoring metrics in an Amazon Aurora cluster (p. 541) explains how to monitor your cluster using
metrics. A complete solution must also monitor database events, log files, and activity streams. AWS
provides you with the following monitoring tools:

• Amazon EventBridge is a serverless event bus service that makes it easy to connect your applications
with data from a variety of sources. EventBridge delivers a stream of real-time data from your own
applications, Software-as-a-Service (SaaS) applications, and AWS services and routes that data to
targets such as AWS Lambda. This enables you to monitor events that happen in services, and build
event-driven architectures. For more information, see the Amazon EventBridge User Guide.

• Amazon CloudWatch Logs lets you monitor, store, and access your log files from Amazon Aurora
instances, AWS CloudTrail, and other sources. Amazon CloudWatch Logs can monitor information in
the log files and notify you when certain thresholds are met. You can also archive your log data in
highly durable storage. For more information, see the Amazon CloudWatch Logs User Guide.

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account
and delivers the log files to an Amazon S3 bucket that you specify. You can identify which users
and accounts called AWS, the source IP address from which the calls were made, and when the calls
occurred. For more information, see the AWS CloudTrail User Guide.

• Database Activity Streams is an Amazon Aurora feature that provides a near-real-time stream of the
activity in your DB cluster. Amazon Aurora pushes activities to an Amazon Kinesis data stream. The
Kinesis stream is created automatically. From Kinesis, you can configure AWS services such as Amazon
Kinesis Data Firehose and AWS Lambda to consume the stream and store the data.

Topics
• Viewing logs, events, and streams in the Amazon RDS console (p. 687)
• Monitoring Amazon Aurora events (p. 692)
• Monitoring Amazon Aurora log files (p. 716)
• Monitoring Amazon Aurora API calls in AWS CloudTrail (p. 731)
• Monitoring Amazon Aurora with Database Activity Streams (p. 735)

Viewing logs, events, and streams in the Amazon
RDS console

Amazon RDS integrates with AWS services to show information about logs, events, and database activity
streams in the RDS console.

687

https://docs.aws.amazon.com/eventbridge/latest/userguide/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/

Amazon Aurora User Guide for Aurora
Viewing logs, events, and streams

in the Amazon RDS console

The Logs & events tab for your Aurora DB cluster shows the following information:

• Auto scaling policies and activities – Shows policies and activities relating to the Aurora Auto Scaling
feature. This information only appears in the Logs & events tab at the cluster level.

• Amazon CloudWatch alarms – Shows any metric alarms that you have configured for the DB instance
in your Aurora cluster. If you haven't configured alarms, you can create them in the RDS console.

• Recent events – Shows a summary of events (environment changes) for your Aurora DB instance or
cluster. For more information, see Viewing Amazon RDS events (p. 695).

• Logs – Shows database log files generated by a DB instance in your Aurora cluster. For more
information, see Monitoring Amazon Aurora log files (p. 716).

The Configuration tab displays information about database activity streams.

To view logs, events, and streams for your Aurora DB cluster in the RDS console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the name of the Aurora DB cluster that you want to monitor.

The database page appears. The following example shows an Amazon Aurora PostgreSQL DB cluster
named apga.

4. Scroll down and choose Configuration.

The following example shows the status of the database activity streams for your cluster.

688

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Viewing logs, events, and streams

in the Amazon RDS console

5. Choose Logs & events.

The Logs & events section appears.

689

Amazon Aurora User Guide for Aurora
Viewing logs, events, and streams

in the Amazon RDS console

6. Choose a DB instance in your Aurora cluster, and then choose Logs & events for the instance.

The following example shows that the contents are different between the DB instance page and the
DB cluster page. The DB instance page shows logs and alarms.

690

Amazon Aurora User Guide for Aurora
Viewing logs, events, and streams

in the Amazon RDS console

691

Amazon Aurora User Guide for Aurora
Monitoring Aurora events

Monitoring Amazon Aurora events
An event indicates a change in an environment. This can be an AWS environment, an SaaS partner service
or application, or a custom application or service.

Topics
• Overview of events for Aurora (p. 692)
• Viewing Amazon RDS events (p. 695)
• Using Amazon RDS event notification (p. 696)
• Creating a rule that triggers on an Amazon Aurora event (p. 713)

Overview of events for Aurora
An RDS event indicates a change in the Aurora environment. For example, Amazon Aurora generates
an event when a DB cluster is patched. Amazon Aurora delivers events to CloudWatch Events and
EventBridge in near-real time.

Note
Amazon RDS emits events on a best effort basis. We recommend that you avoid writing
programs that depend on the order or existence of notification events, because they might be
out of sequence or missing.

Amazon RDS records events that relate to your DB clusters, DB instances, DB cluster snapshots, and DB
parameter groups. This information includes the following:

• The date and time of the event
• The source name and source type of the event
• A message associated with the event.

The following examples illustrate different types of Aurora events.

Topics
• Example of a DB cluster event (p. 692)
• Example of a DB instance event (p. 693)
• Example of a DB parameter group event (p. 693)
• Example of a DB cluster snapshot event (p. 694)

Example of a DB cluster event
The following is an example of a DB cluster event in JSON format. The event shows that the cluster
named my-db-cluster was patched. The event ID is RDS-EVENT-0173.

{
 "version": "0",
 "id": "844e2571-85d4-695f-b930-0153b71dcb42",
 "detail-type": "RDS DB Cluster Event",
 "source": "aws.rds",
 "account": "123456789012",
 "time": "2018-10-06T12:26:13Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:rds:us-east-1:123456789012:cluster:my-db-cluster"
],

692

Amazon Aurora User Guide for Aurora
Overview of events for Aurora

 "detail": {
 "EventCategories": [
 "notification"
],
 "SourceType": "CLUSTER",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:cluster:my-db-cluster",
 "Date": "2018-10-06T12:26:13.882Z",
 "Message": "Database cluster has been patched",
 "SourceIdentifier": "rds:my-db-cluster",
 "EventID": "RDS-EVENT-0173"
 }
}

Example of a DB instance event
The following is an example of a DB instance event in JSON format. The event shows that RDS
performed a multi-AZ failover for the instance named my-db-instance. The event ID is RDS-
EVENT-0049.

{
 "version": "0",
 "id": "68f6e973-1a0c-d37b-f2f2-94a7f62ffd4e",
 "detail-type": "RDS DB Instance Event",
 "source": "aws.rds",
 "account": "123456789012",
 "time": "2018-09-27T22:36:43Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:rds:us-east-1:123456789012:db:my-db-instance"
],
 "detail": {
 "EventCategories": [
 "failover"
],
 "SourceType": "DB_INSTANCE",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:db:my-db-instance",
 "Date": "2018-09-27T22:36:43.292Z",
 "Message": "A Multi-AZ failover has completed.",
 "SourceIdentifier": "rds:my-db-instance",
 "EventID": "RDS-EVENT-0049"
 }
}

Example of a DB parameter group event
The following is an example of a DB parameter group event in JSON format. The event shows that the
parameter time_zone was updated in parameter group my-db-param-group. The event ID is RDS-
EVENT-0037.

{
 "version": "0",
 "id": "844e2571-85d4-695f-b930-0153b71dcb42",
 "detail-type": "RDS DB Parameter Group Event",
 "source": "aws.rds",
 "account": "123456789012",
 "time": "2018-10-06T12:26:13Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:rds:us-east-1:123456789012:pg:my-db-param-group"
],
 "detail": {

693

Amazon Aurora User Guide for Aurora
Overview of events for Aurora

 "EventCategories": [
 "configuration change"
],
 "SourceType": "DB_PARAM",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:pg:my-db-param-group",
 "Date": "2018-10-06T12:26:13.882Z",
 "Message": "Updated parameter time_zone to UTC with apply method immediate",
 "SourceIdentifier": "rds:my-db-param-group",
 "EventID": "RDS-EVENT-0037"
 }
}

Example of a DB cluster snapshot event
The following is an example of a DB cluster snapshot event in JSON format. The event shows the
creation of the snapshot named my-db-cluster-snapshot. The event ID is RDS-EVENT-0074.

{
 "version": "0",
 "id": "844e2571-85d4-695f-b930-0153b71dcb42",
 "detail-type": "RDS DB Cluster Snapshot Event",
 "source": "aws.rds",
 "account": "123456789012",
 "time": "2018-10-06T12:26:13Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:rds:us-east-1:123456789012:cluster-snapshot:rds:my-db-cluster-snapshot"
],
 "detail": {
 "EventCategories": [
 "backup"
],
 "SourceType": "CLUSTER_SNAPSHOT",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:cluster-snapshot:rds:my-db-cluster-
snapshot",
 "Date": "2018-10-06T12:26:13.882Z",
 "SourceIdentifier": "rds:my-db-cluster-snapshot",
 "Message": "Creating manual cluster snapshot",
 "EventID": "RDS-EVENT-0074"
 }
}

694

Amazon Aurora User Guide for Aurora
Viewing Amazon RDS events

Viewing Amazon RDS events
You can retrieve events for your RDS resources through the AWS Management Console, which shows
events from the past 24 hours. You can also retrieve events for your RDS resources by using the describe-
events AWS CLI command, or the DescribeEvents RDS API operation. If you use the AWS CLI or the RDS
API to view events, you can retrieve events for up to the past 14 days.

Note
If you need to store events for longer periods of time, you can send Amazon RDS events to
CloudWatch Events. For more information, see Creating a rule that triggers on an Amazon
Aurora event (p. 713)

Console

To view all Amazon RDS instance events for the past 24 hours

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Events. The available events appear in a list.
3. Use the Filter list to filter the events by type, and use the text box to the right of the Filter list to

further filter your results. For example, the following screenshot shows a list of events filtered by the
characters error.

AWS CLI

You can view all Amazon RDS instance events for the past 7 days by calling the describe-events AWS CLI
command and setting the --duration parameter to 10080.

aws rds describe-events --duration 10080

API

You can view all Amazon RDS instance events for the past 14 days by calling the DescribeEvents RDS API
operation and setting the Duration parameter to 20160.

695

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-events.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-events.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeEvents.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-events.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeEvents.html

Amazon Aurora User Guide for Aurora
Using Amazon RDS event notification

Using Amazon RDS event notification
Amazon RDS uses the Amazon Simple Notification Service (Amazon SNS) to provide notification when an
Amazon RDS event occurs. These notifications can be in any notification form supported by Amazon SNS
for an AWS Region, such as an email, a text message, or a call to an HTTP endpoint.

Topics

• Overview of Amazon RDS event notification (p. 696)

• Amazon RDS event categories and event messages (p. 697)

• Subscribing to Amazon RDS event notification (p. 704)

• Listing Amazon RDS event notification subscriptions (p. 707)

• Modifying an Amazon RDS event notification subscription (p. 708)

• Adding a source identifier to an Amazon RDS event notification subscription (p. 709)

• Removing a source identifier from an Amazon RDS event notification subscription (p. 710)

• Listing the Amazon RDS event notification categories (p. 711)

• Deleting an Amazon RDS event notification subscription (p. 712)

Overview of Amazon RDS event notification
Amazon RDS groups events into categories that you can subscribe to so that you can be notified when
an event in that category occurs. Amazon RDS event notification is only available for unencrypted SNS
topics. If you specify an encrypted SNS topic, event notifications aren't sent for the topic.

RDS resources eligible for event subscription

For Amazon Aurora, events occur at both the DB cluster and the DB instance level. You can subscribe to
an event category for the following resources:

• DB instance

• DB cluster

• DB cluster snapshot

• DB parameter group

• DB security group

• RDS Proxy

For example, if you subscribe to the backup category for a given DB instance, you're notified whenever
a backup-related event occurs that affects the DB instance. If you subscribe to a configuration change
category for a DB security group, you're notified when the DB security group is changed. You also receive
notification when an event notification subscription changes.

You might want to create several different subscriptions. For example, you might create one subscription
receiving all event notifications and another subscription that includes only critical events for your
production DB instances.

Basic process for subscribing to Amazon RDS event notifications

The process for subscribing to Amazon RDS event notification is as follows:

1. You create an Amazon RDS event notification subscription by using the Amazon RDS console, AWS CLI,
or API.

696

Amazon Aurora User Guide for Aurora
Using Amazon RDS event notification

Amazon RDS uses the ARN of an Amazon SNS topic to identify each subscription. The Amazon RDS
console creates the ARN for you when you create the subscription. Create the ARN by using the
Amazon SNS console, the AWS CLI, or the Amazon SNS API.

2. Amazon RDS sends an approval email or SMS message to the addresses you submitted with your
subscription. To confirm your subscription, choose the link in the notification you were sent.

3. When you have confirmed the subscription, the status of your subscription is updated in the Amazon
RDS console's My Event Subscriptions section.

4. You then begin to receive event notifications.

To learn about identity and access management when using Amazon SNS, see Identity and access
management in Amazon SNS in the Amazon Simple Notification Service Developer Guide.

You can use AWS Lambda to process event notifications from a DB instance. For more information, see
Using AWS Lambda with Amazon RDS in the AWS Lambda Developer Guide.

Delivery of RDS event notifications

Amazon RDS sends notifications to the addresses that you provide when you create the subscription.
Event notifications might take up to five minutes to be delivered.

Important
Amazon RDS doesn't guarantee the order of events sent in an event stream. The event order is
subject to change.

When Amazon SNS sends a notification to a subscribed HTTP or HTTPS endpoint, the POST message
sent to the endpoint has a message body that contains a JSON document. For more information, see
Amazon SNS message and JSON formats in the Amazon Simple Notification Service Developer Guide.

You can configure SNS to notify you with text messages. For more information, see Mobile text
messaging (SMS) in the Amazon Simple Notification Service Developer Guide.

To turn off notifications without deleting a subscription, choose No for Enabled in the Amazon RDS
console. Or you can set the Enabled parameter to false using the AWS CLI or Amazon RDS API.

Billing for Amazon RDS event notifications

Billing for Amazon RDS event notification is through Amazon SNS. Amazon SNS fees apply when using
event notification. For more information about Amazon SNS billing, see Amazon Simple Notification
Service pricing.

Amazon RDS event categories and event messages

Amazon RDS generates a significant number of events in categories that you can subscribe to using the
Amazon RDS Console, AWS CLI, or the API. Each category applies to a source type.

Topics

• DB instance events (p. 698)

• DB parameter group events (p. 700)

• DB security group events (p. 701)

• DB cluster events (p. 701)

• DB cluster snapshot events (p. 703)

• RDS Proxy events (p. 703)

697

https://docs.aws.amazon.com/dg/sns-authentication-and-access-control.html
https://docs.aws.amazon.com/dg/sns-authentication-and-access-control.html
https://docs.aws.amazon.com/lambda/latest/dg/services-rds.html
https://docs.aws.amazon.com/sns/latest/dg/sns-message-and-json-formats.html
https://docs.aws.amazon.com/sns/latest/dg/sns-mobile-phone-number-as-subscriber.html
https://docs.aws.amazon.com/sns/latest/dg/sns-mobile-phone-number-as-subscriber.html
http://aws.amazon.com/sns/#pricing
http://aws.amazon.com/sns/#pricing

Amazon Aurora User Guide for Aurora
Using Amazon RDS event notification

DB instance events

The following table shows the event category and a list of events when a DB instance is the source type.

Category Amazon RDS event ID Description

Availability RDS-EVENT-0006 The DB instance restarted.

Availability RDS-EVENT-0004 DB instance shutdown.

Availability RDS-EVENT-0022 An error has occurred while restarting Aurora MySQL
or MariaDB.

Backtrack RDS-EVENT-0131 The actual Backtrack window is smaller than the
target Backtrack window you specified. Consider
reducing the number of hours in your target
Backtrack window. For more information about
backtracking, see Backtracking an Aurora DB
cluster (p. 837).

Backtrack RDS-EVENT-0132 The actual Backtrack window is the same as the target
Backtrack window.

Configuration
change

RDS-EVENT-0009 The DB instance has been added to a security group.

Configuration
change

RDS-EVENT-0012 Applying modification to database instance class.

Configuration
change

RDS-EVENT-0011 A parameter group for this DB instance has changed.

Configuration
change

RDS-EVENT-0092 A parameter group for this DB instance has finished
updating.

Configuration
change

RDS-EVENT-0033 There are [count] users that match the master user
name. Users not tied to a specific host have been
reset.

Configuration
change

RDS-EVENT-0025 The DB instance has been converted to a Multi-AZ DB
instance.

Configuration
change

RDS-EVENT-0029 The DB instance has been converted to a Single-AZ
DB instance.

Configuration
change

RDS-EVENT-0014 The DB instance class for this DB instance has
changed.

Configuration
change

RDS-EVENT-0017 The storage settings for this DB instance have
changed.

Configuration
change

RDS-EVENT-0010 The DB instance has been removed from a security
group.

Configuration
change

RDS-EVENT-0016 The master password for the DB instance has been
reset.

Configuration
change

RDS-EVENT-0067 An attempt to reset the master password for the DB
instance has failed.

698

Amazon Aurora User Guide for Aurora
Using Amazon RDS event notification

Category Amazon RDS event ID Description

Configuration
change

RDS-EVENT-0078 The Enhanced Monitoring configuration has been
changed.

Creation RDS-EVENT-0005 DB instance created.

Deletion RDS-EVENT-0003 The DB instance has been deleted.

Failure RDS-EVENT-0035 The DB instance has invalid parameters. For example,
if the DB instance could not start because a memory-
related parameter is set too high for this instance
class, the customer action would be to modify the
memory parameter and reboot the DB instance.

Failure RDS-EVENT-0036 The DB instance is in an incompatible network. Some
of the specified subnet IDs are invalid or do not exist.

Failure RDS-EVENT-0079 Enhanced Monitoring cannot be enabled without
the enhanced monitoring IAM role. For information
on creating the enhanced monitoring IAM role, see
To create an IAM role for Amazon RDS enhanced
monitoring (p. 649).

Failure RDS-EVENT-0080 Enhanced Monitoring was disabled due to an error
making the configuration change. It is likely that
the enhanced monitoring IAM role is configured
incorrectly. For information on creating the enhanced
monitoring IAM role, see To create an IAM role for
Amazon RDS enhanced monitoring (p. 649).

Failure RDS-EVENT-0082 Aurora was unable to copy backup data from an
Amazon S3 bucket. It is likely that the permissions
for Aurora to access the Amazon S3 bucket are
configured incorrectly. For more information, see
Migrating data from MySQL by using an Amazon S3
bucket (p. 805) .

Low storage RDS-EVENT-0007 The allocated storage for the DB instance has been
consumed. To resolve this issue, allocate additional
storage for the DB instance. For more information,
see the RDS FAQ. You can monitor the storage space
for a DB instance using the Free Storage Space
metric.

Low storage RDS-EVENT-0089 The DB instance has consumed more than 90% of
its allocated storage. You can monitor the storage
space for a DB instance using the Free Storage Space
metric.

Maintenance RDS-EVENT-0026 Offline maintenance of the DB instance is taking
place. The DB instance is currently unavailable.

Maintenance RDS-EVENT-0027 Offline maintenance of the DB instance is complete.
The DB instance is now available.

Maintenance RDS-EVENT-0047 Patching of the DB instance has completed.

699

https://aws.amazon.com/rds/faqs/#20

Amazon Aurora User Guide for Aurora
Using Amazon RDS event notification

Category Amazon RDS event ID Description

Maintenance RDS-EVENT-0155 The DB instance has a DB engine minor version
upgrade available.

Notification RDS-EVENT-0044 Operator-issued notification. For more information,
see the event message.

Notification RDS-EVENT-0048 Patching of the DB instance has been delayed.

Read replica RDS-EVENT-0045 An error has occurred in the read replication process.
For more information, see the event message.

For information on troubleshooting read replica
errors, see Troubleshooting a MySQL read replica
problem.

Read replica RDS-EVENT-0046 The read replica has resumed replication. This
message appears when you first create a read
replica, or as a monitoring message confirming that
replication is functioning properly. If this message
follows an RDS-EVENT-0045 notification, then
replication has resumed following an error or after
replication was stopped.

Read replica RDS-EVENT-0057 Replication on the read replica was terminated.

Recovery RDS-EVENT-0020 Recovery of the DB instance has started. Recovery
time will vary with the amount of data to be
recovered.

Recovery RDS-EVENT-0021 Recovery of the DB instance is complete.

Recovery RDS-EVENT-0023 A manual backup has been requested but Amazon
RDS is currently in the process of creating a DB
snapshot. Submit the request again after Amazon
RDS has completed the DB snapshot.

Recovery RDS-EVENT-0052 Recovery of the Multi-AZ instance has started.
Recovery time will vary with the amount of data to be
recovered.

Recovery RDS-EVENT-0053 Recovery of the Multi-AZ instance is complete.

Restoration RDS-EVENT-0019 The DB instance has been restored from a point-in-
time backup.

Restoration RDS-EVENT-0043 Restored from snapshot [snapshot_name].

The DB instance has been restored from a DB
snapshot.

DB parameter group events

The following table shows the event category and a list of events when a DB parameter group is the
source type.

700

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MySQL.Replication.ReadReplicas.html#USER_ReadRepl.Troubleshooting
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_MySQL.Replication.ReadReplicas.html#USER_ReadRepl.Troubleshooting

Amazon Aurora User Guide for Aurora
Using Amazon RDS event notification

Category RDS event ID Description

Configuration
change

RDS-EVENT-0037 The parameter group was modified.

DB security group events

The following table shows the event category and a list of events when a DB security group is the source
type.

Category RDS event ID Description

Configuration
change

RDS-EVENT-0038 The security group has been modified.

Failure RDS-EVENT-0039 The security group owned by [user] does not exist;
authorization for the security group has been
revoked.

DB cluster events

The following table shows the event category and a list of events when an Aurora DB cluster is the
source type.

Note
No event category exists for Aurora Serverless in the DB cluster event type. The Aurora
Serverless events range from RDS-EVENT-0141 to RDS-EVENT-0149.

Category RDS event ID Description

Configuration
change

RDS-EVENT-0179 Database Activity Streams is started on your database
cluster. For more information see Monitoring Amazon
Aurora with Database Activity Streams (p. 735).

Configuration
change

RDS-EVENT-0180 Database Activity Streams is stopped on your
database cluster. For more information see
Monitoring Amazon Aurora with Database Activity
Streams (p. 735).

creation RDS-EVENT-0170 DB cluster created.

deletion RDS-EVENT-0171 DB cluster deleted.

Failover RDS-EVENT-0069 A failover for the DB cluster has failed.

Failover RDS-EVENT-0070 A failover for the DB cluster has restarted.

Failover RDS-EVENT-0071 A failover for the DB cluster has finished.

Failover RDS-EVENT-0072 A failover for the DB cluster has begun within the
same Availability Zone.

Failover RDS-EVENT-0073 A failover for the DB cluster has begun across
Availability Zones.

701

Amazon Aurora User Guide for Aurora
Using Amazon RDS event notification

Category RDS event ID Description

Failure RDS-EVENT-0083 Aurora was unable to copy backup data from an
Amazon S3 bucket. It is likely that the permissions
for Aurora to access the Amazon S3 bucket are
configured incorrectly. For more information, see
Migrating data from MySQL by using an Amazon S3
bucket (p. 805) .

Failure RDS-EVENT-0143 Scaling failed for the Aurora Serverless DB cluster.

Global failover RDS-EVENT-0181 The failover of the global database has started. The
process can be delayed because other operations are
running on the DB cluster.

Global failover RDS-EVENT-0182 The old primary instance in the global database isn't
accepting writes. All volumes are synchronized.

Global failover RDS-EVENT-0183 A replication lag is occurring during the
synchronization phase of the global database failover.

Global failover RDS-EVENT-0184 The volume topology of the global database is
reestablished with the new primary volume.

Global failover RDS-EVENT-0185 The global database failover is finished on the
primary DB cluster. Replicas might take long to come
online after the failover completes.

Global failover RDS-EVENT-0186 The global database failover is canceled.

Global failover RDS-EVENT-0187 The global failover to the DB cluster failed.

Maintenance RDS-EVENT-0156 The DB cluster has a DB engine minor version upgrade
available.

Notification RDS-EVENT-0076 Migration to an Aurora DB cluster failed.

Notification RDS-EVENT-0077 An attempt to convert a table from the source
database to InnoDB failed during the migration to an
Aurora DB cluster.

Notification RDS-EVENT-0085 An error occurred while attempting to patch the
Aurora DB cluster. Check your instance status, resolve
the issue, and try again. For more information see
Maintaining an Amazon Aurora DB cluster (p. 443).

Notification RDS-EVENT-0141 Scaling initiated for the Aurora Serverless DB cluster.

Notification RDS-EVENT-0142 Scaling completed for the Aurora Serverless DB
cluster.

Notification RDS-EVENT-0144 Automatic pause initiated for the Aurora Serverless
DB cluster.

Notification RDS-EVENT-0145 The Aurora Serverless DB cluster paused.

Notification RDS-EVENT-0146 Pause cancelled for the Aurora Serverless DB cluster.

Notification RDS-EVENT-0147 Resume initiated for the Aurora Serverless DB cluster.

702

Amazon Aurora User Guide for Aurora
Using Amazon RDS event notification

Category RDS event ID Description

Notification RDS-EVENT-0148 Resume completed for the Aurora Serverless DB
cluster.

Notification RDS-EVENT-0149 Seamless scaling completed with the force option for
the Aurora Serverless DB cluster. Connections might
have been interrupted as required.

Notification RDS-EVENT-0150 The DB cluster stopped.

Notification RDS-EVENT-0151 The DB cluster started.

Notification RDS-EVENT-0152 The DB cluster stop failed.

Notification RDS-EVENT-0153 The DB cluster is being started due to it exceeding the
maximum allowed time being stopped.

Notification RDS-EVENT-0173 Patching of the DB cluster has completed.

DB cluster snapshot events

The following table shows the event category and a list of events when an Aurora DB cluster snapshot is
the source type.

Category RDS event ID Description

Backup RDS-EVENT-0074 Creation of a manual DB cluster snapshot has started.

Backup RDS-EVENT-0075 A manual DB cluster snapshot has been created.

notification RDS-EVENT-0162 DB cluster snapshot export task failed.

notification RDS-EVENT-0163 DB cluster snapshot export task canceled.

notification RDS-EVENT-0164 DB cluster snapshot export task completed.

backup RDS-EVENT-0168 Creating automated cluster snapshot.

backup RDS-EVENT-0169 Automated cluster snapshot created.

notification RDS-EVENT-0172 Renamed DB cluster from [old DB cluster name] to
[new DB cluster name].

RDS Proxy events

The following table shows the event category and a list of events when an RDS Proxy is the source type.

Category RDS event ID Description

Configuration
change

RDS-EVENT-0204 RDS modified the DB proxy (RDS Proxy).

Configuration
change

RDS-EVENT-0207 RDS modified the endpoint of the DB proxy (RDS
Proxy).

703

Amazon Aurora User Guide for Aurora
Using Amazon RDS event notification

Category RDS event ID Description

Configuration
change

RDS-EVENT-0213 RDS detected the addition of the DB instance and
automatically added it to the target group of the DB
proxy (RDS Proxy).

Configuration
change

RDS-EVENT-0214 RDS detected the deletion of the DB instance and
automatically removed it from the target group of the
DB proxy (RDS Proxy).

Configuration
change

RDS-EVENT-XXXX RDS detected the deletion of the DB cluster and
automatically removed it from the target group of the
DB proxy (RDS Proxy).

Creation RDS-EVENT-0203 RDS created the DB proxy (RDS Proxy).

Creation RDS-EVENT-0206 RDS created the endpoint for the DB proxy (RDS
Proxy).

Deletion RDS-EVENT-0205 RDS deleted the DB proxy (RDS Proxy).

Deletion RDS-EVENT-0208 RDS deleted the endpoint of DB proxy (RDS Proxy).

Subscribing to Amazon RDS event notification
The simplest way to create a subscription is with the RDS console. If you choose to create event
notification subscriptions using the CLI or API, you must create an Amazon Simple Notification Service
topic and subscribe to that topic with the Amazon SNS console or Amazon SNS API. You will also need to
retain the Amazon Resource Name (ARN) of the topic because it is used when submitting CLI commands
or API operations. For information on creating an SNS topic and subscribing to it, see Getting started
with Amazon SNS in the Amazon Simple Notification Service Developer Guide.

You can specify the type of source you want to be notified of and the Amazon RDS source that triggers
the event. These are defined by the SourceType (type of source) and the SourceIdentifier (the Amazon
RDS source generating the event). For example, SourceType might be SourceType = db-instance,
whereas SourceIdentifier might be SourceIdentifier = myDBInstance1. The following table
shows possible combinations.

SourceType SourceIdentifier Description

Specified Specified You receive notice of all DB instance events
for the specified source.

Specified Not specified You receive notice of the events for that
source type for all your Amazon RDS
sources.

Not specified Not specified You receive notice of all events from all
Amazon RDS sources belonging to your
customer account.

Console

To subscribe to RDS event notification

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

704

https://docs.aws.amazon.com/sns/latest/dg/GettingStarted.html
https://docs.aws.amazon.com/sns/latest/dg/GettingStarted.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Using Amazon RDS event notification

2. In navigation pane, choose Event subscriptions.
3. In the Event subscriptions pane, choose Create event subscription.
4. In the Create event subscription dialog box, do the following:

a. For Name, enter a name for the event notification subscription.
b. For Send notifications to, choose an existing Amazon SNS ARN for an Amazon SNS topic, or

choose create topic to enter the name of a topic and a list of recipients.
c. For Source type, choose a source type.
d. Choose Yes to enable the subscription. If you want to create the subscription but to not have

notifications sent yet, choose No.
e. Depending on the source type you selected, choose the event categories and sources that you

want to receive event notifications for.
f. Choose Create.

The Amazon RDS console indicates that the subscription is being created.

AWS CLI

To subscribe to RDS event notification, use the AWS CLI create-event-subscription command.
Include the following required parameters:

• --subscription-name

• --sns-topic-arn

Example

For Linux, macOS, or Unix:

aws rds create-event-subscription \
 --subscription-name myeventsubscription \
 --sns-topic-arn arn:aws:sns:us-east-1:802#########:myawsuser-RDS \
 --enabled

For Windows:

aws rds create-event-subscription ^
 --subscription-name myeventsubscription ^
 --sns-topic-arn arn:aws:sns:us-east-1:802#########:myawsuser-RDS ^
 --enabled

API

To subscribe to Amazon RDS event notification, call the Amazon RDS API function
CreateEventSubscription. Include the following required parameters:

• SubscriptionName

705

https://docs.aws.amazon.com/cli/latest/reference/rds/create-event-subscription.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateEventSubscription.html

Amazon Aurora User Guide for Aurora
Using Amazon RDS event notification

• SnsTopicArn

706

Amazon Aurora User Guide for Aurora
Using Amazon RDS event notification

Listing Amazon RDS event notification subscriptions
You can list your current Amazon RDS event notification subscriptions.

Console

To list your current Amazon RDS event notification subscriptions

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Event subscriptions. The Event subscriptions pane shows all your
event notification subscriptions.

AWS CLI

To list your current Amazon RDS event notification subscriptions, use the AWS CLI describe-event-
subscriptions command.

Example

The following example describes all event subscriptions.

aws rds describe-event-subscriptions

The following example describes the myfirsteventsubscription.

aws rds describe-event-subscriptions --subscription-name myfirsteventsubscription

API

To list your current Amazon RDS event notification subscriptions, call the Amazon RDS API
DescribeEventSubscriptions action.

707

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-event-subscriptions.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-event-subscriptions.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeEventSubscriptions.html

Amazon Aurora User Guide for Aurora
Using Amazon RDS event notification

Modifying an Amazon RDS event notification subscription
After you have created a subscription, you can change the subscription name, source identifier,
categories, or topic ARN.

Console

To modify an Amazon RDS event notification subscription

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Event subscriptions.
3. In the Event subscriptions pane, choose the subscription that you want to modify and choose Edit.
4. Make your changes to the subscription in either the Target or Source section.
5. Choose Edit. The Amazon RDS console indicates that the subscription is being modified.

AWS CLI

To modify an Amazon RDS event notification subscription, use the AWS CLI modify-event-
subscription command. Include the following required parameter:

• --subscription-name

Example

The following code enables myeventsubscription.

For Linux, macOS, or Unix:

aws rds modify-event-subscription \
 --subscription-name myeventsubscription \
 --enabled

For Windows:

aws rds modify-event-subscription ^
 --subscription-name myeventsubscription ^
 --enabled

API

To modify an Amazon RDS event, call the Amazon RDS API operation ModifyEventSubscription.
Include the following required parameter:

• SubscriptionName

708

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-event-subscription.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-event-subscription.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyEventSubscription.html

Amazon Aurora User Guide for Aurora
Using Amazon RDS event notification

Adding a source identifier to an Amazon RDS event notification
subscription
You can add a source identifier (the Amazon RDS source generating the event) to an existing
subscription.

Console

You can easily add or remove source identifiers using the Amazon RDS console by selecting or
deselecting them when modifying a subscription. For more information, see Modifying an Amazon RDS
event notification subscription (p. 708).

AWS CLI

To add a source identifier to an Amazon RDS event notification subscription, use the AWS CLI add-
source-identifier-to-subscription command. Include the following required parameters:

• --subscription-name

• --source-identifier

Example

The following example adds the source identifier mysqldb to the myrdseventsubscription
subscription.

For Linux, macOS, or Unix:

aws rds add-source-identifier-to-subscription \
 --subscription-name myrdseventsubscription \
 --source-identifier mysqldb

For Windows:

aws rds add-source-identifier-to-subscription ^
 --subscription-name myrdseventsubscription ^
 --source-identifier mysqldb

API

To add a source identifier to an Amazon RDS event notification subscription, call the Amazon RDS API
AddSourceIdentifierToSubscription. Include the following required parameters:

• SubscriptionName

• SourceIdentifier

709

https://docs.aws.amazon.com/
https://docs.aws.amazon.com/
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_AddSourceIdentifierToSubscription.html

Amazon Aurora User Guide for Aurora
Using Amazon RDS event notification

Removing a source identifier from an Amazon RDS event
notification subscription
You can remove a source identifier (the Amazon RDS source generating the event) from a subscription if
you no longer want to be notified of events for that source.

Console

You can easily add or remove source identifiers using the Amazon RDS console by selecting or
deselecting them when modifying a subscription. For more information, see Modifying an Amazon RDS
event notification subscription (p. 708).

AWS CLI

To remove a source identifier from an Amazon RDS event notification subscription, use the AWS CLI
remove-source-identifier-from-subscription command. Include the following required
parameters:

• --subscription-name

• --source-identifier

Example

The following example removes the source identifier mysqldb from the myrdseventsubscription
subscription.

For Linux, macOS, or Unix:

aws rds remove-source-identifier-from-subscription \
 --subscription-name myrdseventsubscription \
 --source-identifier mysqldb

For Windows:

aws rds remove-source-identifier-from-subscription ^
 --subscription-name myrdseventsubscription ^
 --source-identifier mysqldb

API

To remove a source identifier from an Amazon RDS event notification subscription, use the Amazon
RDS API RemoveSourceIdentifierFromSubscription command. Include the following required
parameters:

• SubscriptionName

• SourceIdentifier

710

https://docs.aws.amazon.com/cli/latest/reference/rds/remove-source-identifier-from-subscription.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RemoveSourceIdentifierFromSubscription.html

Amazon Aurora User Guide for Aurora
Using Amazon RDS event notification

Listing the Amazon RDS event notification categories
All events for a resource type are grouped into categories. To view the list of categories available, use the
following procedures.

Console

When you create or modify an event notification subscription, the event categories are displayed in
the Amazon RDS console. For more information, see Modifying an Amazon RDS event notification
subscription (p. 708).

AWS CLI

To list the Amazon RDS event notification categories, use the AWS CLI describe-event-categories
command. This command has no required parameters.

Example

aws rds describe-event-categories

API

To list the Amazon RDS event notification categories, use the Amazon RDS API
DescribeEventCategories command. This command has no required parameters.

711

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-event-categories.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeEventCategories.html

Amazon Aurora User Guide for Aurora
Using Amazon RDS event notification

Deleting an Amazon RDS event notification subscription
You can delete a subscription when you no longer need it. All subscribers to the topic will no longer
receive event notifications specified by the subscription.

Console

To delete an Amazon RDS event notification subscription

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose DB Event Subscriptions.
3. In the My DB Event Subscriptions pane, choose the subscription that you want to delete.
4. Choose Delete.
5. The Amazon RDS console indicates that the subscription is being deleted.

AWS CLI

To delete an Amazon RDS event notification subscription, use the AWS CLI delete-event-
subscription command. Include the following required parameter:

• --subscription-name

Example

The following example deletes the subscription myrdssubscription.

aws rds delete-event-subscription --subscription-name myrdssubscription

API

To delete an Amazon RDS event notification subscription, use the RDS API DeleteEventSubscription
command. Include the following required parameter:

• SubscriptionName

712

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-event-subscription.html
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-event-subscription.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteEventSubscription.html

Amazon Aurora User Guide for Aurora
Creating a rule that triggers on an Amazon Aurora event

Creating a rule that triggers on an Amazon Aurora
event
Using Amazon CloudWatch Events and Amazon EventBridge, you can automate AWS services and
respond to system events such as application availability issues or resource changes.

Topics
• Tutorial: log the state of an instance using EventBridge (p. 713)

Tutorial: log the state of an instance using EventBridge
You can create an AWS Lambda function that logs the state changes for an instance. You can choose to
create a rule that runs the function whenever there is a state transition or a transition to one or more
states that are of interest.

In this tutorial, you log any state change of an existing RDS DB instance. The tutorial assumes that you
have a small running test instance that you can shut down temporarily.

Important
Don't perform this tutorial on a running production instance.

Step 1: Create an AWS Lambda Function

Create a Lambda function to log the state change events. You specify this function when you create your
rule.

To create a Lambda function

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.
2. If you're new to Lambda, you see a welcome page. Choose Get Started Now. Otherwise, choose

Create function.
3. Choose Author from scratch.
4. On the Create function page, do the following:

a. Enter a name and description for the Lambda function. For example, name the function
RDSInstanceStateChange.

b. In Runtime, select Node.js 14x.
c. In Execution role, choose Create a new role with basic Lambda permissions. For Existing role,

select your basic execution role. Otherwise, create a basic execution role.
d. Choose Create function.

5. On the RDSInstanceStateChange page, do the following:

a. In Code source, select index.js.
b. Right-click index.js, and choose Open.
c. In the index.js pane, delete the existing code.
d. Enter the following code:

console.log('Loading function');

exports.handler = async (event, context) => {
 console.log('Received event:', JSON.stringify(event));
};

e. Choose Deploy.

713

https://console.aws.amazon.com/lambda/

Amazon Aurora User Guide for Aurora
Creating a rule that triggers on an Amazon Aurora event

Step 2: Create a Rule

Create a rule to run your Lambda function whenever you launch an Amazon RDS instance.

To create the EventBridge rule

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.
2. In the navigation pane, choose Rules.
3. Choose Create rule.
4. Enter a name and description for the rule. For example, enter RDSInstanceStateChangeRule.
5. For Define pattern, do the following:

a. Choose Event pattern.
b. Choose Pre-defined pattern by service.
c. For Service provider, choose AWS.
d. For Service Name, choose Relational Database Service (RDS).
e. For Event type, choose RDS DB Instance Event.

6. For Select event bus, choose AWS default event bus. When an AWS service in your account emits an
event, it always goes to your account’s default event bus.

7. For Target, choose Lambda function.
8. For Function, select the Lambda function that you created.
9. Choose Create.

Step 3: Test the Rule

To test your rule, shut down an RDS DB instance. After waiting a few minutes for the instance to shut
down, verify that your Lambda function was invoked.

To test your rule by stopping a DB instance

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.
2. Stop an RDS DB instance.
3. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.
4. In the navigation pane, choose Rules, choose the name of the rule that you created.
5. In Rule details, choose Metrics for the rule.

You are redirected to the Amazon CloudWatch console.
6. In All metrics, choose the name of the rule that you created.

The graph should indicate that the rule was invoked.
7. In the navigation pane, choose Log groups.
8. Choose the name of the log group for your Lambda function (/aws/lambda/function-name).
9. Choose the name of the log stream to view the data provided by the function for the instance that

you launched. You should see a received event similar to the following:

{
 "version": "0",
 "id": "12a345b6-78c9-01d2-34e5-123f4ghi5j6k",
 "detail-type": "RDS DB Instance Event",
 "source": "aws.rds",
 "account": "111111111111",
 "time": "2021-03-19T19:34:09Z",
 "region": "us-east-1",

714

https://console.aws.amazon.com/events/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/events/

Amazon Aurora User Guide for Aurora
Creating a rule that triggers on an Amazon Aurora event

 "resources": [
 "arn:aws:rds:us-east-1:111111111111:db:testdb"
],
 "detail": {
 "EventCategories": [
 "notification"
],
 "SourceType": "DB_INSTANCE",
 "SourceArn": "arn:aws:rds:us-east-1:111111111111:db:testdb",
 "Date": "2021-03-19T19:34:09.293Z",
 "Message": "DB instance stopped",
 "SourceIdentifier": "testdb",
 "EventID": "RDS-EVENT-0087"
 }
}

10. (Optional) When you're finished, you can open the Amazon RDS console and start the instance that
you stopped.

715

Amazon Aurora User Guide for Aurora
Monitoring Aurora logs

Monitoring Amazon Aurora log files
You can view, download, and watch database logs using the AWS Management Console, the AWS
Command Line Interface (AWS CLI), or the Amazon RDS API. Viewing, downloading, or watching
transaction logs isn't supported.

Note
In some cases, logs contain hidden data. Therefore, the AWS Management Console might show
content in a log file, but the log file might be empty when you download it.

Topics
• Viewing and listing database log files (p. 716)
• Downloading a database log file (p. 717)
• Watching a database log file (p. 718)
• Publishing database logs to Amazon CloudWatch Logs (p. 718)
• Reading log file contents using REST (p. 719)
• Aurora MySQL database log files (p. 721)
• PostgreSQL database log files (p. 727)

Viewing and listing database log files
You can view database log files for your DB engine by using the AWS Management Console. You can list
what log files are available for download or monitoring by using the AWS CLI or Amazon RDS API.

Console

To view a database log file

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.
2. In the navigation pane, choose Databases.
3. Choose the name of the DB instance that has the log file that you want to view.
4. Choose the Logs & events tab.
5. Scroll down to the Logs section.
6. In the Logs section, choose the log that you want to view, and then choose View.

AWS CLI

To list the available database log files for a DB instance, use the AWS CLI describe-db-log-files
command.

The following example returns a list of log files for a DB instance named my-db-instance.

Example

aws rds describe-db-log-files --db-instance-identifier my-db-instance

RDS API

To list the available database log files for a DB instance, use the Amazon RDS API
DescribeDBLogFiles action.

716

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-log-files.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBLogFiles.html

Amazon Aurora User Guide for Aurora
Downloading a database log file

Downloading a database log file
You can use the AWS Management Console, AWS CLI or API to download a database log file.

Console

To download a database log file

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the name of the DB instance that has the log file that you want to view.

4. Choose the Logs & events tab.

5. Scroll down to the Logs section.

6. In the Logs section, choose the button next to the log that you want to download, and then choose
Download.

7. Open the context (right-click) menu for the link provided, and then choose Save Link As. Enter the
location where you want the log file to be saved, and then choose Save.

AWS CLI

To download a database log file, use the AWS CLI command download-db-log-file-portion. By
default, this command downloads only the latest portion of a log file. However, you can download an
entire file by specifying the parameter --starting-token 0.

The following example shows how to download the entire contents of a log file called log/ERROR.4 and
store it in a local file called errorlog.txt.

Example

For Linux, macOS, or Unix:

aws rds download-db-log-file-portion \
 --db-instance-identifier myexampledb \
 --starting-token 0 --output text \
 --log-file-name log/ERROR.4 > errorlog.txt

For Windows:

aws rds download-db-log-file-portion ^

717

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/download-db-log-file-portion.html

Amazon Aurora User Guide for Aurora
Watching a database log file

 --db-instance-identifier myexampledb ^
 --starting-token 0 --output text ^
 --log-file-name log/ERROR.4 > errorlog.txt

RDS API

To download a database log file, use the Amazon RDS API DownloadDBLogFilePortion action.

Watching a database log file
You can monitor the contents of a log file by using the AWS Management Console.

Console

To watch a database log file

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the name of the DB instance that has the log file that you want to view.

4. Choose the Logs & events tab.

5. In the Logs section, choose a log file, and then choose Watch.

Publishing database logs to Amazon CloudWatch
Logs
In addition to viewing and downloading DB instance logs, you can publish logs to Amazon CloudWatch
Logs. With CloudWatch Logs, you can perform real-time analysis of the log data, store the data in
highly durable storage, and manage the data with the CloudWatch Logs Agent. AWS retains log data
published to CloudWatch Logs for an indefinite time period unless you specify a retention period. For
more information, see Change log data retention in CloudWatch Logs.

Topics

• Configuring CloudWatch log integration (p. 718)

• Engine-specific log information (p. 719)

Configuring CloudWatch log integration

Before you enable log data publishing, make sure that you have a service-linked role in AWS Identity
and Access Management (IAM). For more information about service-linked roles, see Using service-linked
roles for Amazon Aurora (p. 1796).

To publish your database log files to CloudWatch Logs, choose which logs to publish. Make this choice in
the Advanced Settings section when you create a new DB instance. You can also modify an existing DB
instance to begin publishing.

718

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DownloadDBLogFilePortion.html
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention

Amazon Aurora User Guide for Aurora
Reading log file contents using REST

After you have enabled publishing, Amazon Aurora continuously streams all of the DB
instance log records to a log group. For example, you have a log group /aws/rds/
cluster/cluster_name/log_type for each type of log that you publish. This log group is in the
same AWS Region as the database instance that generates the log.

After you have published log records, you can use CloudWatch Logs to search and filter the records. For
more information about searching and filtering logs, see Searching and filtering log data. For a tutorial
explaining how to monitor RDS logs, see Build proactive database monitoring for Amazon RDS with
Amazon CloudWatch Logs, AWS Lambda, and Amazon SNS.

Engine-specific log information
For engine-specific information, see the following:

• the section called “Publishing Aurora MySQL logs to CloudWatch Logs” (p. 1038)
• the section called “Publishing Aurora PostgreSQL logs to CloudWatch Logs” (p. 1504)

Reading log file contents using REST
Amazon RDS provides a REST endpoint that allows access to DB instance log files. This is useful if you
need to write an application to stream Amazon RDS log file contents.

The syntax is:

GET /v13/downloadCompleteLogFile/DBInstanceIdentifier/LogFileName HTTP/1.1
Content-type: application/json
host: rds.region.amazonaws.com

The following parameters are required:

• DBInstanceIdentifier—the name of the DB instance that contains the log file you want to
download.

• LogFileName—the name of the log file to be downloaded.

The response contains the contents of the requested log file, as a stream.

719

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/MonitoringLogData.html
http://aws.amazon.com/blogs/database/build-proactive-database-monitoring-for-amazon-rds-with-amazon-cloudwatch-logs-aws-lambda-and-amazon-sns/
http://aws.amazon.com/blogs/database/build-proactive-database-monitoring-for-amazon-rds-with-amazon-cloudwatch-logs-aws-lambda-and-amazon-sns/

Amazon Aurora User Guide for Aurora
Reading log file contents using REST

The following example downloads the log file named log/ERROR.6 for the DB instance named sample-sql
in the us-west-2 region.

GET /v13/downloadCompleteLogFile/sample-sql/log/ERROR.6 HTTP/1.1
host: rds.us-west-2.amazonaws.com
X-Amz-Security-Token: AQoDYXdzEIH//////////
wEa0AIXLhngC5zp9CyB1R6abwKrXHVR5efnAVN3XvR7IwqKYalFSn6UyJuEFTft9nObglx4QJ+GXV9cpACkETq=
X-Amz-Date: 20140903T233749Z
X-Amz-Algorithm: AWS4-HMAC-SHA256
X-Amz-Credential: AKIADQKE4SARGYLE/20140903/us-west-2/rds/aws4_request
X-Amz-SignedHeaders: host
X-Amz-Content-SHA256: e3b0c44298fc1c229afbf4c8996fb92427ae41e4649b934de495991b7852b855
X-Amz-Expires: 86400
X-Amz-Signature: 353a4f14b3f250142d9afc34f9f9948154d46ce7d4ec091d0cdabbcf8b40c558

If you specify a nonexistent DB instance, the response consists of the following error:

• DBInstanceNotFound—DBInstanceIdentifier does not refer to an existing DB instance. (HTTP
status code: 404)

720

Amazon Aurora User Guide for Aurora
MySQL database log files

Aurora MySQL database log files
You can monitor the Aurora MySQL logs directly through the Amazon RDS console, Amazon RDS API,
AWS CLI, or AWS SDKs. You can also access MySQL logs by directing the logs to a database table in the
main database and querying that table. You can use the mysqlbinlog utility to download a binary log.

For more information about viewing, downloading, and watching file-based database logs, see
Monitoring Amazon Aurora log files (p. 716).

Topics

• Overview of Aurora MySQL database logs (p. 721)

• Publishing Aurora MySQL logs to Amazon CloudWatch Logs (p. 723)

• Managing table-based Aurora MySQL logs (p. 723)

• Configuring Aurora MySQL binary logging (p. 724)

• Accessing MySQL binary logs (p. 725)

Overview of Aurora MySQL database logs
You can monitor the following types of Aurora MySQL log files:

• Error log

• Slow query log

• General log

• The audit log

The Aurora MySQL error log is generated by default. You can generate the slow query and general logs
by setting parameters in your DB parameter group.

Topics

• Aurora MySQL error logs (p. 721)

• Aurora MySQL slow query and general logs (p. 722)

• Log rotation and retention (p. 723)

• Size limits on BLOBs (p. 723)

Aurora MySQL error logs

Aurora MySQL writes errors in the mysql-error.log file. Each log file has the hour it was generated (in
UTC) appended to its name. The log files also have a timestamp that helps you determine when the log
entries were written.

Aurora MySQL writes to the error log only on startup, shutdown, and when it encounters errors. A DB
instance can go hours or days without new entries being written to the error log. If you see no recent
entries, it's because the server did not encounter an error that would result in a log entry.

Aurora MySQL writes mysql-error.log to disk every 5 minutes. MySQL appends the contents of the
log to mysql-error-running.log.

Aurora MySQL rotates the mysql-error-running.log file every hour. Aurora MySQL removes
the audit, general, slow query, and SDK logs after either 24 hours or when 15% of storage has been
consumed.

721

Amazon Aurora User Guide for Aurora
MySQL database log files

Note
The log retention period is different between Amazon RDS and Aurora.

Aurora MySQL slow query and general logs

The Aurora MySQL slow query log and the general log can be written to a file or a database table by
setting parameters in your DB parameter group. For information about creating and modifying a DB
parameter group, see Working with DB parameter groups and DB cluster parameter groups (p. 339). You
must set these parameters before you can view the slow query log or general log in the Amazon RDS
console or by using the Amazon RDS API, Amazon RDS CLI, or AWS SDKs.

You can control Aurora MySQL logging by using the parameters in this list:

• slow_query_log: To create the slow query log, set to 1. The default is 0.
• general_log: To create the general log, set to 1. The default is 0.
• long_query_time: To prevent fast-running queries from being logged in the slow query log, specify

a value for the shortest query run time to be logged, in seconds. The default is 10 seconds; the
minimum is 0. If log_output = FILE, you can specify a floating point value that goes to microsecond
resolution. If log_output = TABLE, you must specify an integer value with second resolution. Only
queries whose run time exceeds the long_query_time value are logged. For example, setting
long_query_time to 0.1 prevents any query that runs for less than 100 milliseconds from being
logged.

• log_queries_not_using_indexes: To log all queries that do not use an index to the slow query
log, set to 1. The default is 0. Queries that do not use an index are logged even if their run time is less
than the value of the long_query_time parameter.

• log_output option: You can specify one of the following options for the log_output parameter.
• TABLE – Write general queries to the mysql.general_log table, and slow queries to the
mysql.slow_log table.

• FILE – Write both general and slow query logs to the file system. Log files are rotated hourly.
• NONE – Disable logging.

For Aurora MySQL 5.6, the default for log_output is TABLE. For Aurora MySQL 5.7, the default for
log_output is FILE.

When logging is enabled, Amazon Aurora rotates table logs or deletes log files at regular intervals.
This measure is a precaution to reduce the possibility of a large log file either blocking database use or
affecting performance. FILE and TABLE logging approach rotation and deletion as follows:

• When FILE logging is enabled, log files are examined every hour and log files more than 30 days old
are deleted. In some cases, the remaining combined log file size after the deletion might exceed the
threshold of 2 percent of a DB instance's allocated space. In these cases, the oldest log files are deleted
until the log file size no longer exceeds the threshold.

• When TABLE logging is enabled, in some cases log tables are rotated every 24 hours. This rotation
occurs if the space used by the table logs is more than 20 percent of the allocated storage space or the
size of all logs combined is greater than 10 GB. If the amount of space used for a DB instance is greater
than 90 percent of the DB instance's allocated storage space, then the thresholds for log rotation are
reduced. Log tables are then rotated if the space used by the table logs is more than 10 percent of
the allocated storage space or the size of all logs combined is greater than 5 GB. You can subscribe to
the low_free_storage event to be notified when log tables are rotated to free up space. For more
information, see Using Amazon RDS event notification (p. 696).

When log tables are rotated, the current log table is copied to a backup log table and the entries in
the current log table are removed. If the backup log table already exists, then it is deleted before the
current log table is copied to the backup. You can query the backup log table if needed. The backup
log table for the mysql.general_log table is named mysql.general_log_backup. The backup
log table for the mysql.slow_log table is named mysql.slow_log_backup.

722

Amazon Aurora User Guide for Aurora
MySQL database log files

You can rotate the mysql.general_log table by calling the mysql.rds_rotate_general_log
procedure. You can rotate the mysql.slow_log table by calling the mysql.rds_rotate_slow_log
procedure.

Table logs are rotated during a database version upgrade.

To work with the logs from the Amazon RDS console, Amazon RDS API, Amazon RDS CLI, or AWS SDKs,
set the log_output parameter to FILE. Like the MySQL error log, these log files are rotated hourly. The
log files that were generated during the previous 30 days are retained. Note that the retention period is
different between Amazon RDS and Aurora.

For more information about the slow query and general logs, go to the following topics in the MySQL
documentation:

• The slow query log
• The general query log

Log rotation and retention

The Aurora MySQL slow query log, error log, and the general log file sizes are constrained to no more
than 2 percent of the allocated storage space for a DB instance. To maintain this threshold, logs are
automatically rotated every hour. Aurora MySQL removes logs after 24 hours or when 15% of disk space
is reached. If the combined log file size exceeds the threshold after removing old log files, then the
oldest log files are deleted until the log file size no longer exceeds the threshold.

Size limits on BLOBs

For Aurora MySQL, there is a size limit on BLOBs written to the redo log. To account for this limit, ensure
that the innodb_log_file_size parameter for your Aurora MySQL DB instance is 10 times larger than
the largest BLOB data size found in your tables, plus the length of other variable length fields (VARCHAR,
VARBINARY, TEXT) in the same tables. For information on how to set parameter values, see Working
with DB parameter groups and DB cluster parameter groups (p. 339). For information on the redo log
BLOB size limit, go to Changes in MySQL 5.6.20.

Publishing Aurora MySQL logs to Amazon CloudWatch Logs
You can configure your Aurora MySQL DB cluster to publish log data to a log group in Amazon
CloudWatch Logs. With CloudWatch Logs, you can perform real-time analysis of the log data, and use
CloudWatch to create alarms and view metrics. You can use CloudWatch Logs to store your log records
in highly durable storage. For more information, see Publishing Amazon Aurora MySQL logs to Amazon
CloudWatch Logs (p. 1038).

Managing table-based Aurora MySQL logs
You can direct the general and slow query logs to tables on the DB instance by creating a DB parameter
group and setting the log_output server parameter to TABLE. General queries are then logged to the
mysql.general_log table, and slow queries are logged to the mysql.slow_log table. You can query
the tables to access the log information. Enabling this logging increases the amount of data written to
the database, which can degrade performance.

Both the general log and the slow query logs are disabled by default. In order to enable logging to
tables, you must also set the general_log and slow_query_log server parameters to 1.

Log tables keep growing until the respective logging activities are turned off by resetting the appropriate
parameter to 0. A large amount of data often accumulates over time, which can use up a considerable

723

https://dev.mysql.com/doc/refman/8.0/en/slow-query-log.html
https://dev.mysql.com/doc/refman/8.0/en/query-log.html
http://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-20.html

Amazon Aurora User Guide for Aurora
MySQL database log files

percentage of your allocated storage space. Amazon Aurora doesn't allow you to truncate the log
tables, but you can move their contents. Rotating a table saves its contents to a backup table and then
creates a new empty log table. You can manually rotate the log tables with the following command line
procedures, where the command prompt is indicated by PROMPT>:

PROMPT> CALL mysql.rds_rotate_slow_log;
PROMPT> CALL mysql.rds_rotate_general_log;

To completely remove the old data and reclaim the disk space, call the appropriate procedure twice in
succession.

Configuring Aurora MySQL binary logging
The binary log is a set of log files that contain information about data modifications made to an Aurora
MySQL server instance. The binary log contains information such as the following:

• Events that describe database changes such as table creation or row modifications
• Information about the duration of each statement that updated data
• Events for statements that could have updated data but didn't

The binary log records statements that are sent during replication. It is also required for some
recovery operations. For more information, see The Binary Log and Binary Log Overview in the MySQL
documentation.

MySQL on Amazon Aurora supports the row-based, statement-based, and mixed binary logging formats
for MySQL version 5.6 and later. The default binary logging format is mixed. For details on the different
Aurora MySQL binary log formats, see Binary logging formats in the MySQL documentation.

If you plan to use replication, the binary logging format is important because it determines the record of
data changes that is recorded in the source and sent to the replication targets. For information about the
advantages and disadvantages of different binary logging formats for replication, see Advantages and
disadvantages of statement-based and row-based replication in the MySQL documentation.

Important
Setting the binary logging format to row-based can result in very large binary log files. Large
binary log files reduce the amount of storage available for a DB cluster and can increase the
amount of time to perform a restore operation of a DB cluster.
Statement-based replication can cause inconsistencies between the source DB cluster and a
read replica. For more information, see Determination of safe and unsafe statements in binary
logging in the MySQL documentation.

To set the MySQL binary logging format

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.
2. In the navigation pane, choose Parameter groups.
3. Choose the parameter group used by the DB cluster you want to modify.

You can't modify a default parameter group. If the DB cluster is using a default parameter group,
create a new parameter group and associate it with the DB cluster.

For more information on parameter groups, see Working with DB parameter groups and DB cluster
parameter groups (p. 339).

4. From Parameter group actions, choose Edit.
5. Set the binlog_format parameter to the binary logging format of your choice (ROW, STATEMENT,

or MIXED). You can also use the value OFF to turn off binary logging.
6. Choose Save changes to save the updates to the DB cluster parameter group.

724

https://dev.mysql.com/doc/refman/8.0/en/binary-log.html
https://dev.mysql.com/doc/internals/en/binary-log-overview.html
https://dev.mysql.com/doc/refman/8.0/en/binary-log-formats.html
https://dev.mysql.com/doc/refman/8.0/en/replication-sbr-rbr.html
https://dev.mysql.com/doc/refman/8.0/en/replication-sbr-rbr.html
https://dev.mysql.com/doc/refman/8.0/en/replication-rbr-safe-unsafe.html
https://dev.mysql.com/doc/refman/8.0/en/replication-rbr-safe-unsafe.html
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
MySQL database log files

Important
Changing a DB cluster parameter group affects all DB clusters that use that parameter group.
If you want to specify different binary logging formats for different Aurora MySQL DB clusters
in an AWS Region, the DB clusters must use different DB cluster parameter groups. These
parameter groups identify different logging formats. Assign the appropriate DB cluster
parameter group to each DB clusters. For more information about Aurora MySQL parameters,
see Aurora MySQL configuration parameters (p. 1063).

Accessing MySQL binary logs
You can use the mysqlbinlog utility to download or stream binary logs from Amazon RDS instances
running MySQL 5.6 or later. The binary log is downloaded to your local computer, where you can
perform actions such as replaying the log using the mysql utility. For more information about using the
mysqlbinlog utility, go to Using mysqlbinlog to back up binary log files.

To run the mysqlbinlog utility against an Amazon RDS instance, use the following options:

• Specify the --read-from-remote-server option.
• --host: Specify the DNS name from the endpoint of the instance.
• --port: Specify the port used by the instance.
• --user: Specify a MySQL user that has been granted the replication slave permission.
• --password: Specify the password for the user, or omit a password value so that the utility prompts

you for a password.
• To have the file downloaded in binary format, specify the --raw option.
• --result-file: Specify the local file to receive the raw output.
• Specify the names of one or more binary log files. To get a list of the available logs, use the SQL

command SHOW BINARY LOGS.
• To stream the binary log files, specify the --stop-never option.

For more information about mysqlbinlog options, go to mysqlbinlog - utility for processing binary log
files.

For example, see the following.

For Linux, macOS, or Unix:

mysqlbinlog \
 --read-from-remote-server \
 --host=MySQL56Instance1.cg034hpkmmjt.region.rds.amazonaws.com \
 --port=3306 \
 --user ReplUser \
 --password \
 --raw \
 --result-file=/tmp/ \
 binlog.00098

For Windows:

mysqlbinlog ^
 --read-from-remote-server ^
 --host=MySQL56Instance1.cg034hpkmmjt.region.rds.amazonaws.com ^
 --port=3306 ^
 --user ReplUser ^
 --password ^
 --raw ^
 --result-file=/tmp/ ^

725

https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog-backup.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html

Amazon Aurora User Guide for Aurora
MySQL database log files

 binlog.00098

Amazon RDS normally purges a binary log as soon as possible, but the binary log must still be available
on the instance to be accessed by mysqlbinlog. To specify the number of hours for RDS to retain binary
logs, use the mysql.rds_set_configuration stored procedure and specify a period with enough
time for you to download the logs. After you set the retention period, monitor storage usage for the DB
instance to ensure that the retained binary logs don't take up too much storage.

Note
The mysql.rds_set_configuration stored procedure is only available for MySQL version
5.6 or later.

The following example sets the retention period to 1 day.

call mysql.rds_set_configuration('binlog retention hours', 24);

To display the current setting, use the mysql.rds_show_configuration stored procedure.

call mysql.rds_show_configuration;

726

Amazon Aurora User Guide for Aurora
PostgreSQL database log files

PostgreSQL database log files
Aurora PostgreSQL generates query and error logs. You can use log messages to troubleshoot
performance and auditing issues while using the database.

To view, download, and watch file-based database logs, see Monitoring Amazon Aurora log files (p. 716).

Topics
• Overview of PostgreSQL logs (p. 727)
• Setting the log retention period (p. 728)
• Setting log file rotation (p. 728)
• Setting the message format (p. 729)
• Enabling query logging (p. 729)

Overview of PostgreSQL logs
PostgreSQL generates event log files that contain useful information for DBAs.

Log contents

The default logging level captures errors that affect your server. By default, Aurora PostgreSQL logging
parameters capture all server errors, including the following:

• Query failures
• Login failures
• Fatal server errors
• Deadlocks

To identify application issues, you can use the preceding error messages. For example, if you converted
a legacy application from Oracle to Aurora PostgreSQL, some queries may not convert correctly. These
incorrectly formatted queries generate error messages in the logs, which you can use to identify the
problematic code.

You can modify PostgreSQL logging parameters to capture additional information, including the
following:

• Connections and disconnections
• Checkpoints
• Schema modification queries
• Queries waiting for locks
• Queries consuming temporary disk storage
• Backend autovacuum process consuming resources

The preceding log information can help troubleshoot potential performance and auditing issues. For
more information, see Error reporting and logging in the PostgreSQL documentation. For a useful AWS
blog about PostgreSQL logging, see Working with RDS and Aurora PostgreSQL logs: Part 1 and Working
with RDS and Aurora PostgreSQL logs: Part 2.

Parameter groups

Each Aurora PostgreSQL instance is associated with a parameter group that contains the engine specific
configurations. The engine configurations also include several parameters that control PostgreSQL

727

https://www.postgresql.org/docs/current/runtime-config-logging.html
http://aws.amazon.com/blogs/database/working-with-rds-and-aurora-postgresql-logs-part-1/
http://aws.amazon.com/blogs/database/working-with-rds-and-aurora-postgresql-logs-part-2/
http://aws.amazon.com/blogs/database/working-with-rds-and-aurora-postgresql-logs-part-2/

Amazon Aurora User Guide for Aurora
PostgreSQL database log files

logging behavior. AWS provides the parameter groups with default configuration settings to use for your
instances. However, to change the default settings, you must create a clone of the default parameter
group, modify it, and attach it to your instance.

To set logging parameters for a DB instance, set the parameters in a DB parameter group and associate
that parameter group with the DB instance. For more information, see Working with DB parameter
groups and DB cluster parameter groups (p. 339).

Setting the log retention period

To set the retention period for system logs, use the rds.log_retention_period parameter. You can
find rds.log_retention_period in the DB parameter group associated with your DB instance. The
unit for this parameter is minutes. For example, a setting of 1,440 retains logs for one day. The default
value is 4,320 (three days). The maximum value is 10,080 (seven days). Your instance must have enough
allocated storage to contain the retained log files.

Amazon Aurora compresses older PostgreSQL logs when storage for the DB instance reaches a threshold.
Aurora compresses the files using the gzip compression utility; for information on gzip, see the gzip
website. When storage for the DB instance is low and all available logs are compressed, you get a
warning like the following.

Warning: local storage for PostgreSQL log files is critically low for
this Aurora PostgreSQL instance, and could lead to a database outage.

Note
If storage gets too low, Aurora might delete compressed PostgreSQL logs before the retention
period expires. If logs are deleted early, you get a message like the following.

 The oldest PostgreSQL log files were deleted due to local storage constraints.

To retain older logs, publish them to Amazon CloudWatch Logs. For more information, see Publishing
Aurora PostgreSQL logs to Amazon CloudWatch Logs (p. 1504). After you set up CloudWatch publishing,
Aurora doesn't delete a log until it's published to CloudWatch Logs.

Setting log file rotation

To control PostgreSQL log file rotation, set two parameters in the DB parameter group associated with
your DB instance: log_rotation_age and log_rotation_size . These two settings control when a
new, distinct log file is created.

The log file names are based on the file name pattern of the log_filename parameter. For example, to
provide log files names with a granularity of less than an hour, set log_filename to the minute format:
postgresql.log.%Y-%m-%d-%H%M. Granularity of less than an hour is only supported for PostgreSQL
version 10 and higher. To use a granularity in hours for log file names, set log_filename to the hour
format: postgresql.log.%Y-%m-%d-%H.

To control log file rotation based on time, set the log_rotation_age parameter to anywhere from
1 minute to 1,440 minutes (24 hours). The log_rotation_age default is 60 minutes. If you set the
log_rotation_age parameter to less than 60 minutes, also set the log_filename parameter to the
minute format.

To control log file rotation based on file size, set the log_rotation_size parameter to anywhere from
50,000 to 1,000,000 KB. The default is 100,000 KB. We recommend that you also set the log_filename
parameter to the minute format. Doing this makes sure that you can create a new log file in less than an
hour if the log_rotation_age parameter is 60 minutes or greater.

728

https://www.gzip.org
https://www.postgresql.org/docs/current/runtime-config-logging.html#GUC-LOG-ROTATION-AGE
https://www.postgresql.org/docs/current/runtime-config-logging.html#GUC-LOG-ROTATION-SIZE
https://www.postgresql.org/docs/current/runtime-config-logging.html#GUC-LOG-FILENAME

Amazon Aurora User Guide for Aurora
PostgreSQL database log files

Setting the message format
By default, Aurora PostgreSQL generates logs in standard error (stderr) format. In this format, each log
message is prefixed with the information specified by the parameter log_line_prefix. Aurora only
allows the following value for log_line_prefix:

%t:%r:%u@%d:[%p]:t

The preceding value maps to the following code:

log-time : remote-host : user-name @ db-name : [process-id]

For example, the following error message results from querying a column using the wrong name.

2019-03-10 03:54:59 UTC:10.0.0.123(52834):postgres@tstdb:[20175]:ERROR: column "wrong" does
 not exist at character 8

To specify the format for output logs, use the parameter log_destination. To make the instance
generate both standard and CSV output files, set log_destination to csvlog in your instance
parameter group. For a discussion of PostgreSQL logs, see Working with RDS and Aurora PostgreSQL
logs: Part 1.

Enabling query logging
To enable query logging for your PostgreSQL DB instance, set two parameters in the DB parameter
group associated with your DB instance: log_statement and log_min_duration_statement.

The log_statement parameter controls which SQL statements are logged. The default value is none.
We recommend that when you debug issues in your DB instance, set this parameter to all to log all
statements. To log all data definition language (DDL) statements (CREATE, ALTER, DROP, and so on), set
this value to ddl. To log all DDL and data modification language (DML) statements (INSERT, UPDATE,
DELETE, and so on), set the value to mod.

Warning
Sensitive information such as passwords can be exposed if you set the log_statement
parameter to ddl, mod, or all. To avoid this risk, set the log_statement to none. Also
consider the following solutions:

• Encrypt the sensitive information on the client side and use the ENCRYPTED and
UNENCRYPTED options of the CREATE and ALTER statements.

• Restrict access to the CloudWatch logs.

• Use stronger authentication mechanisms such as IAM.

For auditing, you can use the PostgreSQL pgAudit extension because it redacts the sensitive
information for CREATE and ALTER commands.

The log_min_duration_statement parameter sets the limit in milliseconds of a statement to be
logged. All SQL statements that run longer than the parameter setting are logged. This parameter is
disabled and set to -1 by default. Enabling this parameter can help you find unoptimized queries.

To set up query logging, take the following steps:

1. Set the log_statement parameter to all. The following example shows the information that is
written to the postgres.log file.

729

http://aws.amazon.com/blogs/database/working-with-rds-and-aurora-postgresql-logs-part-1/
http://aws.amazon.com/blogs/database/working-with-rds-and-aurora-postgresql-logs-part-1/

Amazon Aurora User Guide for Aurora
PostgreSQL database log files

2013-11-05 16:48:56 UTC::@:[2952]:LOG: received SIGHUP, reloading configuration files
2013-11-05 16:48:56 UTC::@:[2952]:LOG: parameter "log_statement" changed to "all"

Additional information is written to the postgres.log file when you run a query. The following example
shows the type of information written to the file after a query.

2013-11-05 16:41:07 UTC::@:[2955]:LOG: checkpoint starting: time
2013-11-05 16:41:07 UTC::@:[2955]:LOG: checkpoint complete: wrote 1 buffers (0.3%);
 0 transaction log file(s) added, 0 removed, 1 recycled; write=0.000 s, sync=0.003 s,
 total=0.012 s; sync files=1, longest=0.003 s, average=0.003 s
2013-11-05 16:45:14 UTC:[local]:master@postgres:[8839]:LOG: statement: SELECT d.datname
 as "Name",
 pg_catalog.pg_get_userbyid(d.datdba) as "Owner",
 pg_catalog.pg_encoding_to_char(d.encoding) as "Encoding",
 d.datcollate as "Collate",
 d.datctype as "Ctype",
 pg_catalog.array_to_string(d.datacl, E'\n') AS "Access privileges"
 FROM pg_catalog.pg_database d
 ORDER BY 1;
2013-11-05 16:45:

2. Set the log_min_duration_statement parameter. The following example shows the information
that is written to the postgres.log file when the parameter is set to 1.

2013-11-05 16:48:56 UTC::@:[2952]:LOG: received SIGHUP, reloading configuration files
2013-11-05 16:48:56 UTC::@:[2952]:LOG: parameter "log_min_duration_statement" changed to
 "1"

Additional information is written to the postgres.log file when you run a query that exceeds the
duration parameter setting. The following example shows the type of information written to the file
after a query.

2013-11-05 16:51:10 UTC:[local]:master@postgres:[9193]:LOG: statement: SELECT
 c2.relname, i.indisprimary, i.indisunique, i.indisclustered, i.indisvalid,
 pg_catalog.pg_get_indexdef(i.indexrelid, 0, true),
 pg_catalog.pg_get_constraintdef(con.oid, true), contype, condeferrable, condeferred,
 c2.reltablespace
 FROM pg_catalog.pg_class c, pg_catalog.pg_class c2, pg_catalog.pg_index i
 LEFT JOIN pg_catalog.pg_constraint con ON (conrelid = i.indrelid AND conindid =
 i.indexrelid AND contype IN ('p','u','x'))
 WHERE c.oid = '1255' AND c.oid = i.indrelid AND i.indexrelid = c2.oid
 ORDER BY i.indisprimary DESC, i.indisunique DESC, c2.relname;
2013-11-05 16:51:10 UTC:[local]:master@postgres:[9193]:LOG: duration: 3.367 ms
2013-11-05 16:51:10 UTC:[local]:master@postgres:[9193]:LOG: statement: SELECT
 c.oid::pg_catalog.regclass FROM pg_catalog.pg_class c, pg_catalog.pg_inherits i WHERE
 c.oid=i.inhparent AND i.inhrelid = '1255' ORDER BY inhseqno;
2013-11-05 16:51:10 UTC:[local]:master@postgres:[9193]:LOG: duration: 1.002 ms
2013-11-05 16:51:10 UTC:[local]:master@postgres:[9193]:LOG: statement:
 SELECT c.oid::pg_catalog.regclass FROM pg_catalog.pg_class c,
 pg_catalog.pg_inherits i WHERE c.oid=i.inhrelid AND i.inhparent = '1255' ORDER BY
 c.oid::pg_catalog.regclass::pg_catalog.text;
2013-11-05 16:51:18 UTC:[local]:master@postgres:[9193]:LOG: statement: select proname
 from pg_proc;
2013-11-05 16:51:18 UTC:[local]:master@postgres:[9193]:LOG: duration: 3.469 ms

730

Amazon Aurora User Guide for Aurora
Monitoring Aurora API calls in CloudTrail

Monitoring Amazon Aurora API calls in AWS
CloudTrail

AWS CloudTrail is an AWS service that helps you audit your AWS account. AWS CloudTrail is turned on
for your AWS account when you create it. For more information about CloudTrail, see the AWS CloudTrail
User Guide.

Topics
• CloudTrail integration with Amazon Aurora (p. 731)
• Amazon Aurora log file entries (p. 731)

CloudTrail integration with Amazon Aurora
All Amazon Aurora actions are logged by CloudTrail. CloudTrail provides a record of actions taken by a
user, role, or an AWS service in Amazon Aurora.

CloudTrail events
CloudTrail captures API calls for Amazon Aurora as events. An event represents a single request from any
source and includes information about the requested action, the date and time of the action, request
parameters, and so on. Events include calls from the Amazon RDS console and from code calls to the
Amazon RDS API operations.

Amazon Aurora activity is recorded in a CloudTrail event in Event history. You can use the CloudTrail
console to view the last 90 days of recorded API activity and events in an AWS Region. For more
information, see Viewing events with CloudTrail event history.

CloudTrail trails
For an ongoing record of events in your AWS account, including events for Amazon Aurora, create a trail.
A trail is a configuration that enables delivery of events to a specified Amazon S3 bucket. CloudTrail
typically delivers log files within 15 minutes of account activity.

Note
If you don't configure a trail, you can still view the most recent events in the CloudTrail console
in Event history.

You can create two types of trails for an AWS account: a trail that applies to all Regions, or a trail that
applies to one Region. By default, when you create a trail in the console, the trail applies to all Regions.

Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see:

• Overview for creating a trail
• CloudTrail supported services and integrations
• Configuring Amazon SNS notifications for CloudTrail
• Receiving CloudTrail log files from multiple Regions and Receiving CloudTrail log files from multiple

accounts

Amazon Aurora log file entries
CloudTrail log files contain one or more log entries. CloudTrail log files are not an ordered stack trace of
the public API calls, so they do not appear in any specific order.

731

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html

Amazon Aurora User Guide for Aurora
Amazon Aurora log file entries

The following example shows a CloudTrail log entry that demonstrates the CreateDBInstance action.

{
 "eventVersion": "1.04",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AKIAIOSFODNN7EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/johndoe",
 "accountId": "123456789012",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "userName": "johndoe"
 },
 "eventTime": "2018-07-30T22:14:06Z",
 "eventSource": "rds.amazonaws.com",
 "eventName": "CreateDBInstance",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "aws-cli/1.15.42 Python/3.6.1 Darwin/17.7.0 botocore/1.10.42",
 "requestParameters": {
 "enableCloudwatchLogsExports": [
 "audit",
 "error",
 "general",
 "slowquery"
],
 "dBInstanceIdentifier": "test-instance",
 "engine": "mysql",
 "masterUsername": "myawsuser",
 "allocatedStorage": 20,
 "dBInstanceClass": "db.m1.small",
 "masterUserPassword": "****"
 },
 "responseElements": {
 "dBInstanceArn": "arn:aws:rds:us-east-1:123456789012:db:test-instance",
 "storageEncrypted": false,
 "preferredBackupWindow": "10:27-10:57",
 "preferredMaintenanceWindow": "sat:05:47-sat:06:17",
 "backupRetentionPeriod": 1,
 "allocatedStorage": 20,
 "storageType": "standard",
 "engineVersion": "5.6.39",
 "dbInstancePort": 0,
 "optionGroupMemberships": [
 {
 "status": "in-sync",
 "optionGroupName": "default:mysql-5-6"
 }
],
 "dBParameterGroups": [
 {
 "dBParameterGroupName": "default.mysql5.6",
 "parameterApplyStatus": "in-sync"
 }
],
 "monitoringInterval": 0,
 "dBInstanceClass": "db.m1.small",
 "readReplicaDBInstanceIdentifiers": [],
 "dBSubnetGroup": {
 "dBSubnetGroupName": "default",
 "dBSubnetGroupDescription": "default",
 "subnets": [
 {
 "subnetAvailabilityZone": {"name": "us-east-1b"},
 "subnetIdentifier": "subnet-cbfff283",

732

Amazon Aurora User Guide for Aurora
Amazon Aurora log file entries

 "subnetStatus": "Active"
 },
 {
 "subnetAvailabilityZone": {"name": "us-east-1e"},
 "subnetIdentifier": "subnet-d7c825e8",
 "subnetStatus": "Active"
 },
 {
 "subnetAvailabilityZone": {"name": "us-east-1f"},
 "subnetIdentifier": "subnet-6746046b",
 "subnetStatus": "Active"
 },
 {
 "subnetAvailabilityZone": {"name": "us-east-1c"},
 "subnetIdentifier": "subnet-bac383e0",
 "subnetStatus": "Active"
 },
 {
 "subnetAvailabilityZone": {"name": "us-east-1d"},
 "subnetIdentifier": "subnet-42599426",
 "subnetStatus": "Active"
 },
 {
 "subnetAvailabilityZone": {"name": "us-east-1a"},
 "subnetIdentifier": "subnet-da327bf6",
 "subnetStatus": "Active"
 }
],
 "vpcId": "vpc-136a4c6a",
 "subnetGroupStatus": "Complete"
 },
 "masterUsername": "myawsuser",
 "multiAZ": false,
 "autoMinorVersionUpgrade": true,
 "engine": "mysql",
 "cACertificateIdentifier": "rds-ca-2015",
 "dbiResourceId": "db-ETDZIIXHEWY5N7GXVC4SH7H5IA",
 "dBSecurityGroups": [],
 "pendingModifiedValues": {
 "masterUserPassword": "****",
 "pendingCloudwatchLogsExports": {
 "logTypesToEnable": [
 "audit",
 "error",
 "general",
 "slowquery"
]
 }
 },
 "dBInstanceStatus": "creating",
 "publiclyAccessible": true,
 "domainMemberships": [],
 "copyTagsToSnapshot": false,
 "dBInstanceIdentifier": "test-instance",
 "licenseModel": "general-public-license",
 "iAMDatabaseAuthenticationEnabled": false,
 "performanceInsightsEnabled": false,
 "vpcSecurityGroups": [
 {
 "status": "active",
 "vpcSecurityGroupId": "sg-f839b688"
 }
]
 },
 "requestID": "daf2e3f5-96a3-4df7-a026-863f96db793e",
 "eventID": "797163d3-5726-441d-80a7-6eeb7464acd4",

733

Amazon Aurora User Guide for Aurora
Amazon Aurora log file entries

 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

As shown in the userIdentity element in the preceding example, every event or log entry contains
information about who generated the request. The identity information helps you determine the
following:

• Whether the request was made with root or IAM user credentials.
• Whether the request was made with temporary security credentials for a role or federated user.
• Whether the request was made by another AWS service.

For more information about the userIdentity, see the CloudTrail userIdentity element. For more
information about CreateDBInstance and other Amazon Aurora actions, see the Amazon RDS API
Reference.

734

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/

Amazon Aurora User Guide for Aurora
Monitoring Aurora with Database Activity Streams

Monitoring Amazon Aurora with Database Activity
Streams

By using Database Activity Streams, you can monitor near-real-time streams of database activity.

Topics

• Overview of Database Activity Streams (p. 735)

• Network prerequisites for Aurora MySQL database activity streams (p. 738)

• Starting a database activity stream (p. 739)

• Getting the status of a database activity stream (p. 741)

• Stopping a database activity stream (p. 741)

• Monitoring database activity streams (p. 742)

• Managing access to database activity streams (p. 764)

Overview of Database Activity Streams
As an Amazon Aurora database administrator, you need to safeguard your database and meet
compliance and regulatory requirements. One strategy is to integrate database activity streams with
your monitoring tools. In this way, you monitor and set alarms for auditing activity in your Amazon
Aurora cluster.

Security threats are both external and internal. To protect against internal threats, you can control
administrator access to data streams by configuring the Database Activity Streams feature. DBAs don't
have access to the collection, transmission, storage, and processing of the streams.

Topics

• How database activity streams work (p. 735)

• Asynchronous and synchronous mode for database activity streams (p. 736)

• Requirements for database activity streams (p. 737)

• Supported Aurora engine versions for database activity streams (p. 737)

• Supported DB instance classes for database activity streams (p. 737)

• Supported AWS Regions for database activity streams (p. 738)

How database activity streams work

Amazon Aurora pushes activities to an Amazon Kinesis data stream in near real time. The Kinesis stream
is created automatically. From Kinesis, you can configure AWS services such as Amazon Kinesis Data
Firehose and AWS Lambda to consume the stream and store the data.

Important
Use of the Database Activity Streams feature in Amazon Aurora and Amazon RDS is free, but
Amazon Kinesis charges for a data stream. For more information, see Amazon Kinesis Data
Streams pricing.

Applications for compliance management can also consume database activity streams. For Aurora
PostgreSQL, compliance applications include IBM's Security Guardium and Imperva's SecureSphere
Database Audit and Protection. These applications can use the stream to generate alerts and audit
activity on your Aurora DB cluster.

735

https://aws.amazon.com/kinesis/data-streams/pricing/
https://aws.amazon.com/kinesis/data-streams/pricing/

Amazon Aurora User Guide for Aurora
Overview

The following graphic shows an Aurora DB cluster configured with Amazon Kinesis Data Firehose.

Asynchronous and synchronous mode for database activity
streams
You can choose to have the database session handle database activity events in either of the following
modes:

• Asynchronous mode – When a database session generates an activity stream event, the session
returns to normal activities immediately. In the background, the activity stream event is made a
durable record. If an error occurs in the background task, an RDS event is sent. This event indicates the
beginning and end of any time windows where activity stream event records might have been lost.

Asynchronous mode favors database performance over the accuracy of the activity stream.

Note
Asynchronous mode is available for both Aurora PostgreSQL and Aurora MySQL.

• Synchronous mode – When a database session generates an activity stream event, the session blocks
other activities until the event is made durable. If the event can't be made durable for some reason,
the database session returns to normal activities. However, an RDS event is sent indicating that activity
stream records might be lost for some time. A second RDS event is sent after the system is back to a
healthy state.

The synchronous mode favors the accuracy of the activity stream over database performance.

736

Amazon Aurora User Guide for Aurora
Overview

Note
Synchronous mode is available for Aurora PostgreSQL. You can't use synchronous mode with
Aurora MySQL.

Requirements for database activity streams

In Aurora, database activity streams have the following requirements and limitations.

Topics

• Miscellaneous requirements (p. 737)

Miscellaneous requirements

• Database activity streams require use of AWS Key Management Service (AWS KMS). AWS KMS is
required because the activity streams are always encrypted.

• Database activity streams require use of Amazon Kinesis.

Supported Aurora engine versions for database activity streams

For Aurora PostgreSQL, database activity streams are supported for the following versions:

• All 13 versions

• All 12 versions

• Version 11.6 and higher 11 versions

• Version 10.11 and higher 10 versions

For more information about Aurora PostgreSQL versions, see Amazon Aurora PostgreSQL releases and
engine versions (p. 1615).

For Aurora MySQL, database activity streams are supported for version 2.08 or higher, which is
compatible with MySQL version 5.7.

Note
Database activity streams aren't supported in Aurora Serverless.

Supported DB instance classes for database activity streams

For Aurora MySQL, you can use database activity streams with the following DB instance classes:

• db.r6g

• db.r5

• db.r4

• db.r3

• db.x2g

For Aurora PostgreSQL, you can use database activity streams with the following DB instance classes:

• db.r6g

• db.r5

737

Amazon Aurora User Guide for Aurora
Aurora MySQL network prerequisites

• db.r4

• db.x2g

Supported AWS Regions for database activity streams
Database activity streams are supported in all AWS Regions except the following:

• China (Beijing) Region, cn-north-1

• China (Ningxia) Region, cn-northwest-1

• AWS GovCloud (US-East), us-gov-east-1

• AWS GovCloud (US-West), us-gov-west-1

Network prerequisites for Aurora MySQL database
activity streams
In the following section, you can find how to configure your virtual private cloud (VPC) for use with
database activity streams.

Topics

• Prerequisites for AWS KMS endpoints (p. 738)

• Prerequisites for public availability (p. 738)

• Prerequisites for private availability (p. 738)

Prerequisites for AWS KMS endpoints
Instances in an Aurora MySQL cluster that use activity streams must be able to access AWS KMS
endpoints. Make sure this requirement is satisfied before enabling database activity streams for
your Aurora MySQL cluster. If the Aurora cluster is publicly available, this requirement is satisfied
automatically.

Important
If the Aurora MySQL DB cluster can't access the AWS KMS endpoint, the activity stream stops. In
that case, Aurora notifies you about this issue using RDS Events.

Prerequisites for public availability
For an Aurora DB cluster to be public, it must meet the following requirements:

• Publicly Accessible is Yes in the AWS Management Console cluster details page.

• The DB cluster is in an Amazon VPC public subnet. For more information about publicly accessible
DB instances, see Working with a DB instance in a VPC (p. 1800). For more information about public
Amazon VPC subnets, see Your VPC and Subnets.

Prerequisites for private availability
If your Aurora DB cluster isn't publicly accessible, and it's in a VPC public subnet, it's private. To keep your
cluster private and use it with database activity streams, you have the following options:

• Configure Network Address Translation (NAT) in your VPC. For more information, see NAT Gateways.

738

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html

Amazon Aurora User Guide for Aurora
Starting a database activity stream

• Create an AWS KMS endpoint in your VPC. This option is recommended because it's easier to configure.

To create an AWS KMS endpoint in your VPC

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, choose Endpoints.
3. Choose Create Endpoint.

The Create Endpoint page appears.
4. Do the following:

• In Service category, choose AWS services.
• In Service Name, choose com.amazonaws.region.kms, where region is the AWS Region where

your cluster is located.
• For VPC, choose the VPC where your cluster is located.

5. Choose Create Endpoint.

For more information about configuring VPC endpoints, see VPC Endpoints.

Starting a database activity stream
To monitor database activity for all instances of the DB cluster, start an activity stream at the cluster
level. Any DB instances that you add to the cluster are also automatically monitored.

When you start an activity stream, each database activity event, such as a change or access, generates
an activity stream event. SQL commands such as CONNECT and SELECT generate access events. SQL
commands such as CREATE and INSERT generate change events.

Console

To start a database activity stream

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.
2. In the navigation pane, choose Databases.
3. Choose the DB cluster for which you want to enable an activity stream.
4. For Actions, choose Start activity stream.

The Start database activity stream: name window appears, where name is your DB cluster.
5. Enter the following settings:

• For AWS KMS key, choose a key from the list of AWS KMS keys.

Note
If your Aurora MySQL cluster can't access KMS keys, follow the instructions in Network
prerequisites for Aurora MySQL database activity streams (p. 738) to enable such access
first.

Aurora uses the KMS key to encrypt the key that in turn encrypts database activity. Choose a KMS
key other than the default key. For more information about encryption keys and AWS KMS, see
What is AWS Key Management Service? in the AWS Key Management Service Developer Guide.

• For Database activity stream mode, choose Asynchronous or Synchronous.

Note
This choice applies only to Aurora PostgreSQL. For Aurora MySQL, you can use only
asynchronous mode.

739

https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon Aurora User Guide for Aurora
Starting a database activity stream

• Choose Immediately.

When you choose Immediately, the DB cluster restarts right away. If you choose During the next
maintenance window, the DB cluster doesn't restart right away. In this case, the database activity
stream doesn't start until the next maintenance window.

When you're done entering settings, choose Start database activity stream.

The status for the DB cluster shows that the activity stream is starting.

AWS CLI

To start database activity streams for a DB cluster , configure the DB cluster using the start-activity-
stream AWS CLI command.

• --kms-key-id key – Specifies the KMS key identifier for encrypting messages in the database
activity stream. The AWS KMS key identifier is the key ARN, key ID, alias ARN, or alias name for the
AWS KMS key.

• --resource-arn arn – Specifies the Amazon Resource Name (ARN) of the DB cluster.

• --region – Identifies the AWS Region for the DB instance.

• --mode sync-or-async – Specifies either synchronous (sync) or asynchronous (async) mode. For
Aurora PostgreSQL, you can choose either value. For Aurora MySQL, specify async.

• --apply-immediately – Applies the change immediately. This parameter is optional. If you don't
specify this parameter, the database activity stream starts at the next maintenance interval.

For Linux, macOS, or Unix:

aws rds --region MY_REGION \
 start-activity-stream \
 --mode [sync | async] \
 --kms-key-id MY_KMS_KEY_ARN \
 --resource-arn MY_CLUSTER_ARN \
 --apply-immediately

For Windows:

aws rds --region MY_REGION ^
 start-activity-stream ^
 --mode [sync | async] ^
 --kms-key-id MY_KMS_KEY_ARN ^
 --resource-arn MY_CLUSTER_ARN ^
 --apply-immediately

RDS API

To start database activity streams for a DB cluster, configure the cluster using the StartActivityStream
operation.

Call the action with the parameters below:

• Region

• Mode

• ApplyImmediately

740

https://docs.aws.amazon.com/cli/latest/reference/rds/start-activity-stream.html
https://docs.aws.amazon.com/cli/latest/reference/rds/start-activity-stream.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_StartActivityStream.html

Amazon Aurora User Guide for Aurora
Getting activity stream status

Getting the status of a database activity stream
You can get the status of an activity stream using the console or AWS CLI.

Console

To get the status of a database activity stream

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.
2. In the navigation pane, choose Databases, and then choose the DB cluster link.
3. Choose the Configuration tab, and check Database activity stream for status.

AWS CLI

You can get the activity stream configuration for a DB cluster as the response to a describe-db-clusters
CLI request. In the following example, see the values for ActivityStreamKinesisStreamName,
ActivityStreamStatus, ActivityStreamKmsKeyId, and ActivityStreamMode.

The request is as follows.

aws rds --region MY_REGION describe-db-clusters --db-cluster-identifier my-cluster

The response includes the following items for a database activity stream.

The following example shows a JSON response. These fields are the same for Aurora PostgreSQL and
Aurora MySQL, except that ActivityStreamMode is always async for Aurora MySQL, while for Aurora
PostgreSQL it might be sync or async.

{
 "DBClusters": [
 {
 "DBClusterIdentifier": "my-cluster",
 ...
 "ActivityStreamKinesisStreamName": "aws-rds-das-cluster-
A6TSYXITZCZXJHIRVFUBZ5LTWY",
 "ActivityStreamStatus": "starting",
 "ActivityStreamKmsKeyId": "12345678-abcd-efgh-ijkl-bd041f170262",
 "ActivityStreamMode": "async",
 "DbClusterResourceId": "cluster-ABCD123456"
 ...
 }
]
}

RDS API

You can get the activity stream configuration for a DB cluster as the response to a DescribeDBClusters
operation.

Stopping a database activity stream
You can stop an activity stream using the console or AWS CLI.

If you delete your DB cluster, the activity stream is stopped and the underlying Amazon Kinesis stream is
deleted automatically.

741

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html

Amazon Aurora User Guide for Aurora
Monitoring activity streams

Console

To turn off an activity stream

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose a DB cluster that you want to stop the database activity stream for.

4. For Actions, choose Stop activity stream. The Database Activity Stream window appears.

a. Choose Immediately.

When you choose Immediately, the DB cluster restarts right away. If you choose During the
next maintenance window, the DB cluster doesn't restart right away. In this case, the database
activity stream doesn't stop until the next maintenance window.

b. Choose Continue.

AWS CLI

To stop database activity streams for your DB cluster, configure the DB cluster using the AWS CLI
command stop-activity-stream. Identify the AWS Region for the DB cluster using the --region
parameter. The --apply-immediately parameter is optional.

For Linux, macOS, or Unix:

aws rds --region MY_REGION \
 stop-activity-stream \
 --resource-arn MY_CLUSTER_ARN \
 --apply-immediately

For Windows:

aws rds --region MY_REGION ^
 stop-activity-stream ^
 --resource-arn MY_CLUSTER_ARN ^
 --apply-immediately

RDS API

To stop database activity streams for your DB cluster, configure the cluster using the StopActivityStream
operation. Identify the AWS Region for the DB cluster using the Region parameter. The
ApplyImmediately parameter is optional.

Monitoring database activity streams
Database activity streams monitor and report activities. The stream of activity is collected and
transmitted to Amazon Kinesis. From Kinesis, you can monitor the activity stream, or other services
and applications can consume the activity stream for further analysis. You can find the underlying
Kinesis stream name by using the AWS CLI command describe-db-clusters or the RDS API
DescribeDBClusters operation.

Aurora manages the Kinesis stream for you as follows:

• Aurora creates the Kinesis stream automatically with a 24-hour retention period.

742

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/stop-activity-stream.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_StopActivityStream.html

Amazon Aurora User Guide for Aurora
Monitoring activity streams

• Aurora scales the Kinesis stream if necessary.
• If you stop the database activity stream or delete the DB cluster, Aurora deletes the Kinesis stream.

The following categories of activity are monitored and put in the activity stream audit log:

• SQL commands – All SQL commands are audited, and also prepared statements, built-in functions,
and functions in PL/SQL. Calls to stored procedures are audited. Any SQL statements issued inside
stored procedures or functions are also audited.

• Other database information – Activity monitored includes the full SQL statement, the row count
of affected rows from DML commands, accessed objects, and the unique database name. For
Aurora PostgreSQL, database activity streams also monitor the bind variables and stored procedure
parameters.

Important
The full SQL text of each statement is visible in the activity stream audit log, including any
sensitive data. However, database user passwords are redacted if Aurora can determine them
from the context, such as in the following SQL statement.

ALTER ROLE role-name WITH password

• Connection information – Activity monitored includes session and network information, the server
process ID, and exit codes.

If an activity stream has a failure while monitoring your DB instance, you are notified through RDS
events.

Topics
• Accessing an activity stream from Kinesis (p. 743)
• Audit log contents and examples (p. 744)
• Processing a database activity stream using the AWS SDK (p. 758)

Accessing an activity stream from Kinesis
When you enable an activity stream for a DB cluster, a Kinesis stream is created for you. From Kinesis,
you can monitor your database activity in real time. To further analyze database activity, you can
connect your Kinesis stream to consumer applications. You can also connect the stream to compliance
management applications such as IBM's Security Guardium or Imperva's SecureSphere Database Audit
and Protection.

To access an activity stream from Kinesis

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.
2. Choose your activity stream from the list of Kinesis streams.

An activity stream's name includes the prefix aws-rds-das-cluster- followed by the resource ID
of the DB cluster. The following is an example.

aws-rds-das-cluster-NHVOV4PCLWHGF52NP

To use the Amazon RDS console to find the resource ID for the DB cluster, choose your DB cluster
from the list of databases, and then choose the Configuration tab.

To use the AWS CLI to find the full Kinesis stream name for an activity stream, use a describe-db-
clusters CLI request and note the value of ActivityStreamKinesisStreamName in the response.

743

https://console.aws.amazon.com/kinesis
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html

Amazon Aurora User Guide for Aurora
Monitoring activity streams

3. Choose Monitoring to begin observing the database activity.

For more information about using Amazon Kinesis, see What Is Amazon Kinesis Data Streams?.

Audit log contents and examples
Monitored events are represented in the database activity stream as JSON strings. The structure consists
of a JSON object containing a DatabaseActivityMonitoringRecord, which in turn contains a
databaseActivityEventList array of activity events.

Topics

• Examples of an audit log for an activity stream (p. 744)

• DatabaseActivityMonitoringRecords JSON object (p. 750)

• databaseActivityEvents JSON Object (p. 750)

• databaseActivityEventList JSON array (p. 751)

Examples of an audit log for an activity stream

Following are sample decrypted JSON audit logs of activity event records.

Example Activity event record of an Aurora PostgreSQL CONNECT SQL statement

Following is an activity event record of a login with the use of a CONNECT SQL statement (command) by a
psql client (clientApplication).

{
 "type":"DatabaseActivityMonitoringRecords",
 "version":"1.1",
 "databaseActivityEvents":
 {
 "type":"DatabaseActivityMonitoringRecord",
 "clusterId":"cluster-4HNY5V4RRNPKKYB7ICFKE5JBQQ",
 "instanceId":"db-FZJTMYKCXQBUUZ6VLU7NW3ITCM",
 "databaseActivityEventList":[
 {
 "startTime": "2019-10-30 00:39:49.940668+00",
 "logTime": "2019-10-30 00:39:49.990579+00",
 "statementId": 1,
 "substatementId": 1,
 "objectType": null,
 "command": "CONNECT",
 "objectName": null,
 "databaseName": "postgres",
 "dbUserName": "rdsadmin",
 "remoteHost": "172.31.3.195",
 "remotePort": "49804",
 "sessionId": "5ce5f7f0.474b",
 "rowCount": null,
 "commandText": null,
 "paramList": [],
 "pid": 18251,
 "clientApplication": "psql",
 "exitCode": null,
 "class": "MISC",
 "serverVersion": "2.3.1",
 "serverType": "PostgreSQL",
 "serviceName": "Amazon Aurora PostgreSQL-Compatible edition",
 "serverHost": "172.31.3.192",

744

https://docs.aws.amazon.com/streams/latest/dev/introduction.html

Amazon Aurora User Guide for Aurora
Monitoring activity streams

 "netProtocol": "TCP",
 "dbProtocol": "Postgres 3.0",
 "type": "record",
 "errorMessage": null
 }
]
 },
 "key":"decryption-key"
}

Example Activity event record of an Aurora MySQL CONNECT SQL statement

Following is an activity event record of a logon with the use of a CONNECT SQL statement (command) by
a mysql client (clientApplication).

{
 "type":"DatabaseActivityMonitoringRecord",
 "clusterId":"cluster-some_id",
 "instanceId":"db-some_id",
 "databaseActivityEventList":[
 {
 "logTime":"2020-05-22 18:07:13.267214+00",
 "type":"record",
 "clientApplication":null,
 "pid":2830,
 "dbUserName":"rdsadmin",
 "databaseName":"",
 "remoteHost":"localhost",
 "remotePort":"11053",
 "command":"CONNECT",
 "commandText":"",
 "paramList":null,
 "objectType":"TABLE",
 "objectName":"",
 "statementId":0,
 "substatementId":1,
 "exitCode":"0",
 "sessionId":"725121",
 "rowCount":0,
 "serverHost":"master",
 "serverType":"MySQL",
 "serviceName":"Amazon Aurora MySQL",
 "serverVersion":"MySQL 5.7.12",
 "startTime":"2020-05-22 18:07:13.267207+00",
 "endTime":"2020-05-22 18:07:13.267213+00",
 "transactionId":"0",
 "dbProtocol":"MySQL",
 "netProtocol":"TCP",
 "errorMessage":"",
 "class":"MAIN"
 }
]
}

Example Activity event record of an Aurora PostgreSQL CREATE TABLE statement

Following is an example of a CREATE TABLE event for Aurora PostgreSQL.

{
 "type":"DatabaseActivityMonitoringRecords",
 "version":"1.1",
 "databaseActivityEvents":

745

Amazon Aurora User Guide for Aurora
Monitoring activity streams

 {
 "type":"DatabaseActivityMonitoringRecord",
 "clusterId":"cluster-4HNY5V4RRNPKKYB7ICFKE5JBQQ",
 "instanceId":"db-FZJTMYKCXQBUUZ6VLU7NW3ITCM",
 "databaseActivityEventList":[
 {
 "startTime": "2019-05-24 00:36:54.403455+00",
 "logTime": "2019-05-24 00:36:54.494235+00",
 "statementId": 2,
 "substatementId": 1,
 "objectType": null,
 "command": "CREATE TABLE",
 "objectName": null,
 "databaseName": "postgres",
 "dbUserName": "rdsadmin",
 "remoteHost": "172.31.3.195",
 "remotePort": "34534",
 "sessionId": "5ce73c6f.7e64",
 "rowCount": null,
 "commandText": "create table my_table (id serial primary key, name
 varchar(32));",
 "paramList": [],
 "pid": 32356,
 "clientApplication": "psql",
 "exitCode": null,
 "class": "DDL",
 "serverVersion": "2.3.1",
 "serverType": "PostgreSQL",
 "serviceName": "Amazon Aurora PostgreSQL-Compatible edition",
 "serverHost": "172.31.3.192",
 "netProtocol": "TCP",
 "dbProtocol": "Postgres 3.0",
 "type": "record",
 "errorMessage": null
 }
]
 },
 "key":"decryption-key"
}

Example Activity event record of an Aurora MySQL CREATE TABLE statement

Following is an example of a CREATE TABLE statement for Aurora MySQL. The operation is represented
as two separate event records. One event has "class":"MAIN". The other event has "class":"AUX".
The messages might arrive in any order. The logTime field of the MAIN event is always earlier than the
logTime fields of any corresponding AUX events.

The following example shows the event with a class value of MAIN.

{
 "type":"DatabaseActivityMonitoringRecord",
 "clusterId":"cluster-some_id",
 "instanceId":"db-some_id",
 "databaseActivityEventList":[
 {
 "logTime":"2020-05-22 18:07:12.250221+00",
 "type":"record",
 "clientApplication":null,
 "pid":2830,
 "dbUserName":"master",
 "databaseName":"test",
 "remoteHost":"localhost",
 "remotePort":"11054",
 "command":"QUERY",

746

Amazon Aurora User Guide for Aurora
Monitoring activity streams

 "commandText":"CREATE TABLE test1 (id INT)",
 "paramList":null,
 "objectType":"TABLE",
 "objectName":"test1",
 "statementId":65459278,
 "substatementId":1,
 "exitCode":"0",
 "sessionId":"725118",
 "rowCount":0,
 "serverHost":"master",
 "serverType":"MySQL",
 "serviceName":"Amazon Aurora MySQL",
 "serverVersion":"MySQL 5.7.12",
 "startTime":"2020-05-22 18:07:12.226384+00",
 "endTime":"2020-05-22 18:07:12.250222+00",
 "transactionId":"0",
 "dbProtocol":"MySQL",
 "netProtocol":"TCP",
 "errorMessage":"",
 "class":"MAIN"
 }
]
}

The following example shows the corresponding event with a class value of AUX.

{
 "type":"DatabaseActivityMonitoringRecord",
 "clusterId":"cluster-some_id",
 "instanceId":"db-some_id",
 "databaseActivityEventList":[
 {
 "logTime":"2020-05-22 18:07:12.247182+00",
 "type":"record",
 "clientApplication":null,
 "pid":2830,
 "dbUserName":"master",
 "databaseName":"test",
 "remoteHost":"localhost",
 "remotePort":"11054",
 "command":"CREATE",
 "commandText":"test1",
 "paramList":null,
 "objectType":"TABLE",
 "objectName":"test1",
 "statementId":65459278,
 "substatementId":2,
 "exitCode":"",
 "sessionId":"725118",
 "rowCount":0,
 "serverHost":"master",
 "serverType":"MySQL",
 "serviceName":"Amazon Aurora MySQL",
 "serverVersion":"MySQL 5.7.12",
 "startTime":"2020-05-22 18:07:12.226384+00",
 "endTime":"2020-05-22 18:07:12.247182+00",
 "transactionId":"0",
 "dbProtocol":"MySQL",
 "netProtocol":"TCP",
 "errorMessage":"",
 "class":"AUX"
 }
]
}

747

Amazon Aurora User Guide for Aurora
Monitoring activity streams

Example Activity event record of an Aurora PostgreSQL SELECT statement

Following is an example of a SELECT event.

{
 "type":"DatabaseActivityMonitoringRecords",
 "version":"1.1",
 "databaseActivityEvents":
 {
 "type":"DatabaseActivityMonitoringRecord",
 "clusterId":"cluster-4HNY5V4RRNPKKYB7ICFKE5JBQQ",
 "instanceId":"db-FZJTMYKCXQBUUZ6VLU7NW3ITCM",
 "databaseActivityEventList":[
 {
 "startTime": "2019-05-24 00:39:49.920564+00",
 "logTime": "2019-05-24 00:39:49.940668+00",
 "statementId": 6,
 "substatementId": 1,
 "objectType": "TABLE",
 "command": "SELECT",
 "objectName": "public.my_table",
 "databaseName": "postgres",
 "dbUserName": "rdsadmin",
 "remoteHost": "172.31.3.195",
 "remotePort": "34534",
 "sessionId": "5ce73c6f.7e64",
 "rowCount": 10,
 "commandText": "select * from my_table;",
 "paramList": [],
 "pid": 32356,
 "clientApplication": "psql",
 "exitCode": null,
 "class": "READ",
 "serverVersion": "2.3.1",
 "serverType": "PostgreSQL",
 "serviceName": "Amazon Aurora PostgreSQL-Compatible edition",
 "serverHost": "172.31.3.192",
 "netProtocol": "TCP",
 "dbProtocol": "Postgres 3.0",
 "type": "record",
 "errorMessage": null
 }
]
 },
 "key":"decryption-key"
}

Example Activity event record of an Aurora MySQL SELECT statement

Following is an example of a SELECT event.

The following example shows the event with a class value of MAIN.

{
 "type":"DatabaseActivityMonitoringRecord",
 "clusterId":"cluster-some_id",
 "instanceId":"db-some_id",
 "databaseActivityEventList":[
 {
 "logTime":"2020-05-22 18:29:57.986467+00",
 "type":"record",
 "clientApplication":null,
 "pid":2830,

748

Amazon Aurora User Guide for Aurora
Monitoring activity streams

 "dbUserName":"master",
 "databaseName":"test",
 "remoteHost":"localhost",
 "remotePort":"11054",
 "command":"QUERY",
 "commandText":"SELECT * FROM test1 WHERE id < 28",
 "paramList":null,
 "objectType":"TABLE",
 "objectName":"test1",
 "statementId":65469218,
 "substatementId":1,
 "exitCode":"0",
 "sessionId":"726571",
 "rowCount":2,
 "serverHost":"master",
 "serverType":"MySQL",
 "serviceName":"Amazon Aurora MySQL",
 "serverVersion":"MySQL 5.7.12",
 "startTime":"2020-05-22 18:29:57.986364+00",
 "endTime":"2020-05-22 18:29:57.986467+00",
 "transactionId":"0",
 "dbProtocol":"MySQL",
 "netProtocol":"TCP",
 "errorMessage":"",
 "class":"MAIN"
 }
]
}

The following example shows the corresponding event with a class value of AUX.

{
 "type":"DatabaseActivityMonitoringRecord",
 "instanceId":"db-some_id",
 "databaseActivityEventList":[
 {
 "logTime":"2020-05-22 18:29:57.986399+00",
 "type":"record",
 "clientApplication":null,
 "pid":2830,
 "dbUserName":"master",
 "databaseName":"test",
 "remoteHost":"localhost",
 "remotePort":"11054",
 "command":"READ",
 "commandText":"test1",
 "paramList":null,
 "objectType":"TABLE",
 "objectName":"test1",
 "statementId":65469218,
 "substatementId":2,
 "exitCode":"",
 "sessionId":"726571",
 "rowCount":0,
 "serverHost":"master",
 "serverType":"MySQL",
 "serviceName":"Amazon Aurora MySQL",
 "serverVersion":"MySQL 5.7.12",
 "startTime":"2020-05-22 18:29:57.986364+00",
 "endTime":"2020-05-22 18:29:57.986399+00",
 "transactionId":"0",
 "dbProtocol":"MySQL",
 "netProtocol":"TCP",
 "errorMessage":"",
 "class":"AUX"

749

Amazon Aurora User Guide for Aurora
Monitoring activity streams

 }
]
}

DatabaseActivityMonitoringRecords JSON object

The database activity event records are in a JSON object that contains the following information.

JSON Field Data Type Description

type string The type of JSON record. The value is
DatabaseActivityMonitoringRecords.

version string The version of the database activity monitoring records.

The version of the generated database activity records depends
on the engine version of the DB cluster:

• Version 1.1 database activity records are generated for Aurora
PostgreSQL DB clusters running the engine versions 10.10 and
later minor versions and engine versions 11.5 and later.

• Version 1.0 database activity records are generated for Aurora
PostgreSQL DB clusters running the engine versions 10.7 and
11.4.

All of the following fields are in both version 1.0 and version 1.1
except where specifically noted.

databaseActivityEvents (p. 750)string A JSON object containing the activity events.

key string An encryption key you use to decrypt
the databaseActivityEventList (p. 751)
databaseActivityEventList JSON array.

databaseActivityEvents JSON Object

The databaseActivityEvents JSON object contains the following information.

Top-level fields in JSON record

Each event in the audit log is wrapped inside a record in JSON format. This record contains the following
fields.

type

This field always has the value DatabaseActivityMonitoringRecords.

version

This field represents the version of the database activity stream data protocol or contract. It defines
which fields are available.

Version 1.0 represents the original data activity streams support for Aurora PostgreSQL versions
10.7 and 11.4. Version 1.1 represents the data activity streams support for Aurora PostgreSQL
versions 10.10 and higher and Aurora PostgreSQL 11.5 and higher. Version 1.1 includes the
additional fields errorMessage and startTime. Version 1.2 represents the data activity streams

750

Amazon Aurora User Guide for Aurora
Monitoring activity streams

support for Aurora MySQL 2.08 and higher. Version 1.2 includes the additional fields endTime and
transactionId.

databaseActivityEvents

An encrypted string representing one or more activity events. It's represented as a base64 byte
array. When you decrypt the string, the result is a record in JSON format with fields as shown in the
examples in this section.

key

The encrypted data key used to encrypt the databaseActivityEvents string. This is the same
AWS KMS key that you provided when you started the database activity stream.

The following example shows the format of this record.

{
 "type":"DatabaseActivityMonitoringRecords",
 "version":"1.1",
 "databaseActivityEvents":"encrypted audit records",
 "key":"encrypted key"
}

Take the following steps to decrypt the contents of the databaseActivityEvents field:

1. Decrypt the value in the key JSON field using the KMS key you provided when starting database
activity stream. Doing so returns the data encryption key in clear text.

2. Base64-decode the value in the databaseActivityEvents JSON field to obtain the ciphertext, in
binary format, of the audit payload.

3. Decrypt the binary ciphertext with the data encryption key that you decoded in the first step.
4. Decompress the decrypted payload.

• The encrypted payload is in the databaseActivityEvents field.
• The databaseActivityEventList field contains an array of audit records. The type fields in the

array can be record or heartbeat.

The audit log activity event record is a JSON object that contains the following information.

JSON Field Data Type Description

type string The type of JSON record. The value is
DatabaseActivityMonitoringRecord.

clusterId string The DB cluster resource identifier. It corresponds to the DB cluster
attribute DbClusterResourceId.

instanceId string The DB instance resource identifier. It corresponds to the DB
instance attribute DbiResourceId.

databaseActivityEventList (p. 751)string An array of activity audit records or heartbeat messages.

databaseActivityEventList JSON array

The audit log payload is an encrypted databaseActivityEventList JSON array. The following tables
lists alphabetically the fields for each activity event in the decrypted DatabaseActivityEventList
array of an audit log. The fields differ depending on whether you use Aurora PostgreSQL or Aurora
MySQL. Consult the table that applies to your database engine.

751

Amazon Aurora User Guide for Aurora
Monitoring activity streams

Important
The event structure is subject to change. Aurora might add new fields to activity events in the
future. In applications that parse the JSON data, make sure that your code can ignore or take
appropriate actions for unknown field names.

databaseActivityEventList fields for Aurora PostgreSQL

Field Data Type Description

class string The class of activity event. Valid values for Aurora PostgreSQL
are the following:

• ALL

• CONNECT – A connect or disconnect event.
• DDL – A DDL statement that is not included in the list of

statements for the ROLE class.
• FUNCTION – A function call or a DO block.
• MISC – A miscellaneous command such as DISCARD, FETCH,
CHECKPOINT, or VACUUM.

• NONE

• READ – A SELECT or COPY statement when the source is a
relation or a query.

• ROLE – A statement related to roles and privileges including
GRANT, REVOKE, and CREATE/ALTER/DROP ROLE.

• WRITE – An INSERT, UPDATE, DELETE, TRUNCATE, or COPY
statement when the destination is a relation.

clientApplicationstring The application the client used to connect as reported by the
client. The client doesn't have to provide this information, so the
value can be null.

command string The name of the SQL command without any command details.

commandText string The actual SQL statement passed in by the user. For Aurora
PostgreSQL, the value is identical to the original SQL statement.
This field is used for all types of records except for connect or
disconnect records, in which case the value is null.

Important
The full SQL text of each statement is visible in the
activity stream audit log, including any sensitive data.
However, database user passwords are redacted if
Aurora can determine them from the context, such as in
the following SQL statement.

ALTER ROLE role-name WITH password

databaseName string The database to which the user connected.

dbProtocol string The database protocol, for example Postgres 3.0.

dbUserName string The database user with which the client authenticated.

errorMessage string If there was any error, this field is populated with the error
message that would've been generated by the DB server. The
errorMessage value is null for normal statements that didn't
result in an error.

752

Amazon Aurora User Guide for Aurora
Monitoring activity streams

Field Data Type Description

(version 1.1
database activity
records only)

An error is defined as any activity that would produce a client-
visible PostgreSQL error log event at a severity level of ERROR or
greater. For more information, see PostgreSQL Message Severity
Levels. For example, syntax errors and query cancellations
generate an error message.

Internal PostgreSQL server errors such as background
checkpointer process errors do not generate an error message.
However, records for such events are still emitted regardless of
the setting of the log severity level. This prevents attackers from
turning off logging to attempt avoiding detection.

See also the exitCode field.

exitCode int A value used for a session exit record. On a clean exit, this
contains the exit code. An exit code can't always be obtained
in some failure scenarios. Examples are if PostgreSQL does an
exit() or if an operator performs a command such as kill
-9.

If there was any error, the exitCode field shows the SQL error
code, SQLSTATE, as listed in PostgreSQL Error Codes.

See also the errorMessage field.

logTime string A timestamp as recorded in the auditing code path. This
represents the SQL statement execution end time. See also the
startTime field.

netProtocol string The network communication protocol.

objectName string The name of the database object if the SQL statement is
operating on one. This field is used only where the SQL
statement operates on a database object. If the SQL statement is
not operating on an object, this value is null.

objectType string The database object type such as table, index, view, and so on.
This field is used only where the SQL statement operates on a
database object. If the SQL statement is not operating on an
object, this value is null. Valid values include the following:

• COMPOSITE TYPE

• FOREIGN TABLE

• FUNCTION

• INDEX

• MATERIALIZED VIEW

• SEQUENCE

• TABLE

• TOAST TABLE

• VIEW

• UNKNOWN

paramList string An array of comma-separated parameters passed to the SQL
statement. If the SQL statement has no parameters, this value is
an empty array.

753

https://www.postgresql.org/docs/current/runtime-config-logging.html#RUNTIME-CONFIG-SEVERITY-LEVELS
https://www.postgresql.org/docs/current/runtime-config-logging.html#RUNTIME-CONFIG-SEVERITY-LEVELS
https://www.postgresql.org/docs/current/errcodes-appendix.html

Amazon Aurora User Guide for Aurora
Monitoring activity streams

Field Data Type Description

pid int The process ID of the backend process that is allocated for
serving the client connection.

remoteHost string Either the client IP address or hostname. For Aurora PostgreSQL,
which one is used depends on the database's log_hostname
parameter setting.

remotePort string The client port number.

rowCount int The number of rows returned by the SQL statement. For
example, if a SELECT statement returns 10 rows, rowCount is 10.
For INSERT or UPDATE statements, rowCount is 0.

serverHost string The database server host IP address.

serverType string The database server type, for example PostgreSQL.

serverVersion string The database server version, for example 2.3.1 for Aurora
PostgreSQL.

serviceName string The name of the service, for example Amazon Aurora
PostgreSQL-Compatible edition.

sessionId int A pseudo-unique session identifier.

sessionId int A pseudo-unique session identifier.

startTime

(version 1.1
database activity
records only)

string The time when execution began for the SQL statement.

To calculate the approximate execution time of the SQL
statement, use logTime - startTime. See also the logTime
field.

statementId int An identifier for the client's SQL statement. The counter is at the
session level and increments with each SQL statement entered
by the client.

substatementId int An identifier for a SQL substatement. This value counts the
contained substatements for each SQL statement identified by
the statementId field.

type string The event type. Valid values are record or heartbeat.

databaseActivityEventList fields for Aurora MySQL

Field Data Type Description

class string The class of activity event.

Valid values for Aurora MySQL are the following:

• MAIN – The primary event representing a SQL statement.
• AUX – A supplemental event containing additional details. For

example, a statement that renames an object might have an
event with class AUX that reflects the new name.

754

Amazon Aurora User Guide for Aurora
Monitoring activity streams

Field Data Type Description

To find MAIN and AUX events corresponding to the same
statement, check for different events that have the same
values for the pid field and for the statementId field.

clientApplicationstring The application the client used to connect as reported by the
client. The client doesn't have to provide this information, so the
value can be null.

command string The general category of the SQL statement. The values for this
field depend on the value of class.

The values when class is MAIN include the following:

• CONNECT – When a client session is connected.
• QUERY – A SQL statement. Accompanied by one or more

events with a class value of AUX.
• DISCONNECT – When a client session is disconnected.
• FAILED_CONNECT – When a client attempts to connect but

isn't able to.
• CHANGEUSER – A state change that's part of the MySQL

network protocol, not from a statement that you issue.

The values when class is AUX include the following:

• READ – A SELECT or COPY statement when the source is a
relation or a query.

• WRITE – An INSERT, UPDATE, DELETE, TRUNCATE, or COPY
statement when the destination is a relation.

• DROP – Deleting an object.
• CREATE – Creating an object.
• RENAME – Renaming an object.
• ALTER – Changing the properties of an object.

755

Amazon Aurora User Guide for Aurora
Monitoring activity streams

Field Data Type Description

commandText string For events with a class value of MAIN, this field represents the
actual SQL statement passed in by the user. This field is used for
all types of records except for connect or disconnect records, in
which case the value is null.

For events with a class value of AUX, this field contains
supplemental information about the objects involved in the
event.

For Aurora MySQL, characters such as quotation marks are
preceded by a backslash, representing an escape character.

Important
The full SQL text of each statement is visible in the
audit log, including any sensitive data. However,
database user passwords are redacted if Aurora can
determine them from the context, such as in the
following SQL statement.

mysql> SET PASSWORD = 'my-password';

databaseName string The database to which the user connected.

dbProtocol string The database protocol. Currently, this value is always MySQL for
Aurora MySQL.

dbUserName string The database user with which the client authenticated.

endTime

(version 1.2
database activity
records only)

string The time when execution ended for the SQL statement. It is
represented in Coordinated Universal Time (UTC) format.

To calculate the execution time of the SQL statement, use
endTime - startTime. See also the startTime field.

errorMessage

(version 1.1
database activity
records only)

string If there was any error, this field is populated with the error
message that would've been generated by the DB server. The
errorMessage value is null for normal statements that didn't
result in an error.

An error is defined as any activity that would produce a client-
visible MySQL error log event at a severity level of ERROR
or greater. For more information, see The Error Log in the
MySQL Reference Manual. For example, syntax errors and query
cancellations generate an error message.

Internal MySQL server errors such as background checkpointer
process errors do not generate an error message. However,
records for such events are still emitted regardless of the setting
of the log severity level. This prevents attackers from turning off
logging to attempt avoiding detection.

See also the exitCode field.

756

https://dev.mysql.com/doc/refman/5.7/en/error-log.html

Amazon Aurora User Guide for Aurora
Monitoring activity streams

Field Data Type Description

exitCode int A value used for a session exit record. On a clean exit, this
contains the exit code. An exit code can't always be obtained in
some failure scenarios. In such cases, this value might be zero or
might be blank.

logTime string A timestamp as recorded in the auditing code path. It is
represented in Coordinated Universal Time (UTC) format. For
the most accurate way to calculate statement duration, see the
startTime and endTime fields.

netProtocol string The network communication protocol. Currently, this value is
always TCP for Aurora MySQL.

objectName string The name of the database object if the SQL statement is
operating on one. This field is used only where the SQL
statement operates on a database object. If the SQL statement
isn't operating on an object, this value is blank. To construct the
fully qualified name of the object, combine databaseName and
objectName. If the query involves multiple objects, this field
can be a comma-separated list of names.

objectType string The database object type such as table, index, and so on. This
field is used only where the SQL statement operates on a
database object. If the SQL statement is not operating on an
object, this value is null.

Valid values for Aurora MySQL include the following:

• INDEX

• TABLE

• UNKNOWN

paramList string This field isn't used for Aurora MySQL and is always null.

pid int The process ID of the backend process that is allocated for
serving the client connection. When the database server
is restarted, the pid changes and the counter for the
statementId field starts over.

remoteHost string Either the IP address or hostname of the client that issued the
SQL statement. For Aurora MySQL, which one is used depends
on the database's skip_name_resolve parameter setting. The
value localhost indicates activity from the rdsadmin special
user.

remotePort string The client port number.

rowCount int The number of table rows affected or retrieved by the SQL
statement. This field is used only for SQL statements that are
data manipulation language (DML) statements. If the SQL
statement is not a DML statement, this value is null.

serverHost string The database server instance identifier. This value is represented
differently for Aurora MySQL than for Aurora PostgreSQL.
Aurora PostgreSQL uses an IP address instead of an identifier.

serverType string The database server type, for example MySQL.

757

Amazon Aurora User Guide for Aurora
Monitoring activity streams

Field Data Type Description

serverVersion string The database server version. Currently, this value is always
MySQL 5.7.12 for Aurora MySQL.

serviceName string The name of the service. Currently, this value is always Amazon
Aurora MySQL for Aurora MySQL.

sessionId int A pseudo-unique session identifier.

startTime

(version 1.1
database activity
records only)

string The time when execution began for the SQL statement. It is
represented in Coordinated Universal Time (UTC) format.

To calculate the execution time of the SQL statement, use
endTime - startTime. See also the endTime field.

statementId int An identifier for the client's SQL statement. The counter
increments with each SQL statement entered by the client. The
counter is reset when the DB instance is restarted.

substatementId int An identifier for a SQL substatement. This value is 1 for events
with class MAIN and 2 for events with class AUX. Use the
statementId field to identify all the events generated by the
same statement.

transactionId

(version 1.2
database activity
records only)

int An identifier for a transaction.

type string The event type. Valid values are record or heartbeat.

Processing a database activity stream using the AWS SDK
You can programmatically process an activity stream by using the AWS SDK. The following are fully
functioning Java and Python examples of how you might process the Kinesis data stream.

Java

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.net.InetAddress;
import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.Security;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.UUID;
import java.util.zip.GZIPInputStream;

import javax.crypto.Cipher;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.spec.SecretKeySpec;

import com.amazonaws.auth.AWSStaticCredentialsProvider;

758

Amazon Aurora User Guide for Aurora
Monitoring activity streams

import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CryptoInputStream;
import com.amazonaws.encryptionsdk.jce.JceMasterKey;
import com.amazonaws.services.kinesis.clientlibrary.exceptions.InvalidStateException;
import com.amazonaws.services.kinesis.clientlibrary.exceptions.ShutdownException;
import com.amazonaws.services.kinesis.clientlibrary.exceptions.ThrottlingException;
import com.amazonaws.services.kinesis.clientlibrary.interfaces.IRecordProcessor;
import
 com.amazonaws.services.kinesis.clientlibrary.interfaces.IRecordProcessorCheckpointer;
import
 com.amazonaws.services.kinesis.clientlibrary.interfaces.IRecordProcessorFactory;
import
 com.amazonaws.services.kinesis.clientlibrary.lib.worker.InitialPositionInStream;
import
 com.amazonaws.services.kinesis.clientlibrary.lib.worker.KinesisClientLibConfiguration;
import com.amazonaws.services.kinesis.clientlibrary.lib.worker.ShutdownReason;
import com.amazonaws.services.kinesis.clientlibrary.lib.worker.Worker;
import com.amazonaws.services.kinesis.clientlibrary.lib.worker.Worker.Builder;
import com.amazonaws.services.kinesis.model.Record;
import com.amazonaws.services.kms.AWSKMS;
import com.amazonaws.services.kms.AWSKMSClientBuilder;
import com.amazonaws.services.kms.model.DecryptRequest;
import com.amazonaws.services.kms.model.DecryptResult;
import com.amazonaws.util.Base64;
import com.amazonaws.util.IOUtils;
import com.google.gson.Gson;
import com.google.gson.GsonBuilder;
import com.google.gson.annotations.SerializedName;
import org.bouncycastle.jce.provider.BouncyCastleProvider;

public class DemoConsumer {

 private static final String STREAM_NAME = "aws-rds-das-[cluster-external-resource-
id]";
 private static final String APPLICATION_NAME = "AnyApplication"; //unique
 application name for dynamo table generation that holds kinesis shard tracking
 private static final String AWS_ACCESS_KEY = "[AWS_ACCESS_KEY_TO_ACCESS_KINESIS]";
 private static final String AWS_SECRET_KEY = "[AWS_SECRET_KEY_TO_ACCESS_KINESIS]";
 private static final String DBC_RESOURCE_ID = "[cluster-external-resource-id]";
 private static final String REGION_NAME = "[region-name]"; //us-east-1, us-
east-2...
 private static final BasicAWSCredentials CREDENTIALS = new
 BasicAWSCredentials(AWS_ACCESS_KEY, AWS_SECRET_KEY);
 private static final AWSStaticCredentialsProvider CREDENTIALS_PROVIDER = new
 AWSStaticCredentialsProvider(CREDENTIALS);

 private static final AwsCrypto CRYPTO = new AwsCrypto();
 private static final AWSKMS KMS = AWSKMSClientBuilder.standard()
 .withRegion(REGION_NAME)
 .withCredentials(CREDENTIALS_PROVIDER).build();

 class Activity {
 String type;
 String version;
 String databaseActivityEvents;
 String key;
 }

 class ActivityEvent {
 @SerializedName("class") String _class;
 String clientApplication;
 String command;
 String commandText;
 String databaseName;
 String dbProtocol;

759

Amazon Aurora User Guide for Aurora
Monitoring activity streams

 String dbUserName;
 String endTime;
 String errorMessage;
 String exitCode;
 String logTime;
 String netProtocol;
 String objectName;
 String objectType;
 List<String> paramList;
 String pid;
 String remoteHost;
 String remotePort;
 String rowCount;
 String serverHost;
 String serverType;
 String serverVersion;
 String serviceName;
 String sessionId;
 String startTime;
 String statementId;
 String substatementId;
 String transactionId;
 String type;
 }

 class ActivityRecords {
 String type;
 String clusterId;
 String instanceId;
 List<ActivityEvent> databaseActivityEventList;
 }

 static class RecordProcessorFactory implements IRecordProcessorFactory {
 @Override
 public IRecordProcessor createProcessor() {
 return new RecordProcessor();
 }
 }

 static class RecordProcessor implements IRecordProcessor {

 private static final long BACKOFF_TIME_IN_MILLIS = 3000L;
 private static final int PROCESSING_RETRIES_MAX = 10;
 private static final long CHECKPOINT_INTERVAL_MILLIS = 60000L;
 private static final Gson GSON = new GsonBuilder().serializeNulls().create();

 private static final Cipher CIPHER;
 static {
 Security.insertProviderAt(new BouncyCastleProvider(), 1);
 try {
 CIPHER = Cipher.getInstance("AES/GCM/NoPadding", "BC");
 } catch (NoSuchAlgorithmException | NoSuchPaddingException |
 NoSuchProviderException e) {
 throw new ExceptionInInitializerError(e);
 }
 }

 private long nextCheckpointTimeInMillis;

 @Override
 public void initialize(String shardId) {
 }

 @Override
 public void processRecords(final List<Record> records, final
 IRecordProcessorCheckpointer checkpointer) {

760

Amazon Aurora User Guide for Aurora
Monitoring activity streams

 for (final Record record : records) {
 processSingleBlob(record.getData());
 }

 if (System.currentTimeMillis() > nextCheckpointTimeInMillis) {
 checkpoint(checkpointer);
 nextCheckpointTimeInMillis = System.currentTimeMillis() +
 CHECKPOINT_INTERVAL_MILLIS;
 }
 }

 @Override
 public void shutdown(IRecordProcessorCheckpointer checkpointer, ShutdownReason
 reason) {
 if (reason == ShutdownReason.TERMINATE) {
 checkpoint(checkpointer);
 }
 }

 private void processSingleBlob(final ByteBuffer bytes) {
 try {
 // JSON $Activity
 final Activity activity = GSON.fromJson(new String(bytes.array(),
 StandardCharsets.UTF_8), Activity.class);

 // Base64.Decode
 final byte[] decoded = Base64.decode(activity.databaseActivityEvents);
 final byte[] decodedDataKey = Base64.decode(activity.key);

 Map<String, String> context = new HashMap<>();
 context.put("aws:rds:dbc-id", DBC_RESOURCE_ID);

 // Decrypt
 final DecryptRequest decryptRequest = new DecryptRequest()

 .withCiphertextBlob(ByteBuffer.wrap(decodedDataKey)).withEncryptionContext(context);
 final DecryptResult decryptResult = KMS.decrypt(decryptRequest);
 final byte[] decrypted = decrypt(decoded,
 getByteArray(decryptResult.getPlaintext()));

 // GZip Decompress
 final byte[] decompressed = decompress(decrypted);
 // JSON $ActivityRecords
 final ActivityRecords activityRecords = GSON.fromJson(new
 String(decompressed, StandardCharsets.UTF_8), ActivityRecords.class);

 // Iterate throught $ActivityEvents
 for (final ActivityEvent event :
 activityRecords.databaseActivityEventList) {
 System.out.println(GSON.toJson(event));
 }
 } catch (Exception e) {
 // Handle error.
 e.printStackTrace();
 }
 }

 private static byte[] decompress(final byte[] src) throws IOException {
 ByteArrayInputStream byteArrayInputStream = new ByteArrayInputStream(src);
 GZIPInputStream gzipInputStream = new
 GZIPInputStream(byteArrayInputStream);
 return IOUtils.toByteArray(gzipInputStream);
 }

 private void checkpoint(IRecordProcessorCheckpointer checkpointer) {
 for (int i = 0; i < PROCESSING_RETRIES_MAX; i++) {

761

Amazon Aurora User Guide for Aurora
Monitoring activity streams

 try {
 checkpointer.checkpoint();
 break;
 } catch (ShutdownException se) {
 // Ignore checkpoint if the processor instance has been shutdown
 (fail over).
 System.out.println("Caught shutdown exception, skipping
 checkpoint." + se);
 break;
 } catch (ThrottlingException e) {
 // Backoff and re-attempt checkpoint upon transient failures
 if (i >= (PROCESSING_RETRIES_MAX - 1)) {
 System.out.println("Checkpoint failed after " + (i + 1) +
 "attempts." + e);
 break;
 } else {
 System.out.println("Transient issue when checkpointing -
 attempt " + (i + 1) + " of " + PROCESSING_RETRIES_MAX + e);
 }
 } catch (InvalidStateException e) {
 // This indicates an issue with the DynamoDB table (check for
 table, provisioned IOPS).
 System.out.println("Cannot save checkpoint to the DynamoDB table
 used by the Amazon Kinesis Client Library." + e);
 break;
 }
 try {
 Thread.sleep(BACKOFF_TIME_IN_MILLIS);
 } catch (InterruptedException e) {
 System.out.println("Interrupted sleep" + e);
 }
 }
 }
 }

 private static byte[] decrypt(final byte[] decoded, final byte[] decodedDataKey)
 throws IOException {
 // Create a JCE master key provider using the random key and an AES-GCM
 encryption algorithm
 final JceMasterKey masterKey = JceMasterKey.getInstance(new
 SecretKeySpec(decodedDataKey, "AES"),
 "BC", "DataKey", "AES/GCM/NoPadding");
 try (final CryptoInputStream<JceMasterKey> decryptingStream =
 CRYPTO.createDecryptingStream(masterKey, new ByteArrayInputStream(decoded));
 final ByteArrayOutputStream out = new ByteArrayOutputStream()) {
 IOUtils.copy(decryptingStream, out);
 return out.toByteArray();
 }
 }

 public static void main(String[] args) throws Exception {
 final String workerId = InetAddress.getLocalHost().getCanonicalHostName() + ":"
 + UUID.randomUUID();
 final KinesisClientLibConfiguration kinesisClientLibConfiguration =
 new KinesisClientLibConfiguration(APPLICATION_NAME, STREAM_NAME,
 CREDENTIALS_PROVIDER, workerId);

 kinesisClientLibConfiguration.withInitialPositionInStream(InitialPositionInStream.LATEST);
 kinesisClientLibConfiguration.withRegionName(REGION_NAME);
 final Worker worker = new Builder()
 .recordProcessorFactory(new RecordProcessorFactory())
 .config(kinesisClientLibConfiguration)
 .build();

 System.out.printf("Running %s to process stream %s as worker %s...\n",
 APPLICATION_NAME, STREAM_NAME, workerId);

762

Amazon Aurora User Guide for Aurora
Monitoring activity streams

 try {
 worker.run();
 } catch (Throwable t) {
 System.err.println("Caught throwable while processing data.");
 t.printStackTrace();
 System.exit(1);
 }
 System.exit(0);
 }

 private static byte[] getByteArray(final ByteBuffer b) {
 byte[] byteArray = new byte[b.remaining()];
 b.get(byteArray);
 return byteArray;
 }
}

Python

import base64
import json
import zlib
import aws_encryption_sdk
from aws_encryption_sdk import CommitmentPolicy
from aws_encryption_sdk.internal.crypto import WrappingKey
from aws_encryption_sdk.key_providers.raw import RawMasterKeyProvider
from aws_encryption_sdk.identifiers import WrappingAlgorithm, EncryptionKeyType
import boto3

REGION_NAME = '<region>' # us-east-1
RESOURCE_ID = '<external-resource-id>' # cluster-ABCD123456
STREAM_NAME = 'aws-rds-das-' + RESOURCE_ID # aws-rds-das-cluster-ABCD123456

enc_client =
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_ALLOW_DECRYPT)

class MyRawMasterKeyProvider(RawMasterKeyProvider):
 provider_id = "BC"

 def __new__(cls, *args, **kwargs):
 obj = super(RawMasterKeyProvider, cls).__new__(cls)
 return obj

 def __init__(self, plain_key):
 RawMasterKeyProvider.__init__(self)
 self.wrapping_key =
 WrappingKey(wrapping_algorithm=WrappingAlgorithm.AES_256_GCM_IV12_TAG16_NO_PADDING,
 wrapping_key=plain_key,
 wrapping_key_type=EncryptionKeyType.SYMMETRIC)

 def _get_raw_key(self, key_id):
 return self.wrapping_key

def decrypt_payload(payload, data_key):
 my_key_provider = MyRawMasterKeyProvider(data_key)
 my_key_provider.add_master_key("DataKey")
 decrypted_plaintext, header = enc_client.decrypt(
 source=payload,

 materials_manager=aws_encryption_sdk.materials_managers.default.DefaultCryptoMaterialsManager(master_key_provider=my_key_provider))
 return decrypted_plaintext

763

Amazon Aurora User Guide for Aurora
Managing access to activity streams

def decrypt_decompress(payload, key):
 decrypted = decrypt_payload(payload, key)
 return zlib.decompress(decrypted, zlib.MAX_WBITS + 16)

def main():
 session = boto3.session.Session()
 kms = session.client('kms', region_name=REGION_NAME)
 kinesis = session.client('kinesis', region_name=REGION_NAME)

 response = kinesis.describe_stream(StreamName=STREAM_NAME)
 shard_iters = []
 for shard in response['StreamDescription']['Shards']:
 shard_iter_response = kinesis.get_shard_iterator(StreamName=STREAM_NAME,
 ShardId=shard['ShardId'],
 ShardIteratorType='LATEST')
 shard_iters.append(shard_iter_response['ShardIterator'])

 while len(shard_iters) > 0:
 next_shard_iters = []
 for shard_iter in shard_iters:
 response = kinesis.get_records(ShardIterator=shard_iter, Limit=10000)
 for record in response['Records']:
 record_data = record['Data']
 record_data = json.loads(record_data)
 payload_decoded =
 base64.b64decode(record_data['databaseActivityEvents'])
 data_key_decoded = base64.b64decode(record_data['key'])
 data_key_decrypt_result = kms.decrypt(CiphertextBlob=data_key_decoded,
 EncryptionContext={'aws:rds:dbc-
id': RESOURCE_ID})
 print decrypt_decompress((payload_decoded,
 data_key_decrypt_result['Plaintext']))
 if 'NextShardIterator' in response:
 next_shard_iters.append(response['NextShardIterator'])
 shard_iters = next_shard_iters

if __name__ == '__main__':
 main()

Managing access to database activity streams
Any user with appropriate AWS Identity and Access Management (IAM) role privileges for database
activity streams can create, start, stop, and modify the activity stream settings for a DB cluster. These
actions are included in the audit log of the stream. For best compliance practices, we recommend that
you don't provide these privileges to DBAs.

You set access to database activity streams using IAM policies. For more information about Aurora
authentication, see Identity and access management in Amazon Aurora (p. 1737). For more information
about creating IAM policies, see Creating and using an IAM policy for IAM database access (p. 1759).

Example Policy to allow configuring database activity streams

To give users fine-grained access to modify activity streams, use the service-specific operation context
keys rds:StartActivityStream and rds:StopActivityStream in an IAM policy. The following IAM
policy example allows a user or role to configure activity streams.

{
 "Version":"2012-10-17",
 "Statement":[

764

Amazon Aurora User Guide for Aurora
Managing access to activity streams

 {
 "Sid":"ConfigureActivityStreams",
 "Effect":"Allow",
 "Action": [
 "rds:StartActivityStream",
 "rds:StopActivityStream"
],
 "Resource":"*",
 }
]
}

Example Policy to allow starting database activity streams

The following IAM policy example allows a user or role to start activity streams.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowStartActivityStreams",
 "Effect":"Allow",
 "Action":"rds:StartActivityStream",
 "Resource":"*"
 }
]
}

Example Policy to allow stopping database activity streams

The following IAM policy example allows a user or role to stop activity streams.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowStopActivityStreams",
 "Effect":"Allow",
 "Action":"rds:StopActivityStream",
 "Resource":"*"
 }
]
}

Example Policy to deny starting database activity streams

The following IAM policy example prevents a user or role from starting activity streams.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"DenyStartActivityStreams",
 "Effect":"Deny",
 "Action":"rds:StartActivityStream",
 "Resource":"*"
 }
]
}

765

Amazon Aurora User Guide for Aurora
Managing access to activity streams

Example Policy to deny stopping database activity streams

The following IAM policy example prevents a user or role from stopping activity streams.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"DenyStopActivityStreams",
 "Effect":"Deny",
 "Action":"rds:StopActivityStream",
 "Resource":"*"
 }
]
}

766

Amazon Aurora User Guide for Aurora
Overview of Aurora MySQL

Working with Amazon Aurora MySQL

Amazon Aurora MySQL is a fully managed, MySQL-compatible, relational database engine that combines
the speed and reliability of high-end commercial databases with the simplicity and cost-effectiveness
of open-source databases. Aurora MySQL is a drop-in replacement for MySQL and makes it simple and
cost-effective to set up, operate, and scale your new and existing MySQL deployments, thus freeing you
to focus on your business and applications. Amazon RDS provides administration for Aurora by handling
routine database tasks such as provisioning, patching, backup, recovery, failure detection, and repair.
Amazon RDS also provides push-button migration tools to convert your existing Amazon RDS for MySQL
applications to Aurora MySQL.

Topics
• Overview of Amazon Aurora MySQL (p. 767)
• Security with Amazon Aurora MySQL (p. 795)
• Updating applications to connect to Aurora MySQL DB clusters using new SSL/TLS

certificates (p. 799)
• Migrating data to an Amazon Aurora MySQL DB cluster (p. 802)
• Managing Amazon Aurora MySQL (p. 833)
• Tuning Aurora MySQL with wait events and thread states (p. 858)
• Working with parallel query for Amazon Aurora MySQL (p. 902)
• Using Advanced Auditing with an Amazon Aurora MySQL DB cluster (p. 935)
• Single-master replication with Amazon Aurora MySQL (p. 939)
• Working with Aurora multi-master clusters (p. 979)
• Integrating Amazon Aurora MySQL with other AWS services (p. 1005)
• Amazon Aurora MySQL lab mode (p. 1053)
• Best practices with Amazon Aurora MySQL (p. 1054)
• Amazon Aurora MySQL reference (p. 1063)
• Database engine updates for Amazon Aurora MySQL (p. 1103)

Overview of Amazon Aurora MySQL
The following sections provide an overview of Amazon Aurora MySQL.

Topics
• Amazon Aurora MySQL performance enhancements (p. 767)
• Amazon Aurora MySQL and spatial data (p. 768)
• Aurora MySQL version 3 compatible with MySQL 8.0 (p. 769)
• Aurora MySQL version 2 compatible with MySQL 5.7 (p. 794)

Amazon Aurora MySQL performance enhancements
Amazon Aurora includes performance enhancements to support the diverse needs of high-end
commercial databases.

767

Amazon Aurora User Guide for Aurora
Aurora MySQL and spatial data

Fast insert

Fast insert accelerates parallel inserts sorted by primary key and applies specifically to LOAD DATA and
INSERT INTO ... SELECT ... statements. Fast insert caches the position of a cursor in an index
traversal while executing the statement. This avoids unnecessarily traversing the index again.

You can monitor the following metrics to determine the effectiveness of fast insert for your DB cluster:

• aurora_fast_insert_cache_hits: A counter that is incremented when the cached cursor is
successfully retrieved and verified.

• aurora_fast_insert_cache_misses: A counter that is incremented when the cached cursor is no
longer valid and Aurora performs a normal index traversal.

You can retrieve the current value of the fast insert metrics using the following command:

mysql> show global status like 'Aurora_fast_insert%';

You will get output similar to the following:

+---------------------------------+-----------+
| Variable_name | Value |
+---------------------------------+-----------+
| Aurora_fast_insert_cache_hits | 3598300 |
| Aurora_fast_insert_cache_misses | 436401336 |
+---------------------------------+-----------+

Amazon Aurora MySQL and spatial data
The following list summarizes the main Aurora MySQL spatial features and explains how they correspond
to spatial features in MySQL:

• Aurora MySQL 1.x supports the same spatial data types and spatial relation functions as MySQL
5.6. For more information about these data types and functions, see Spatial Data Types and Spatial
Relation Functions in the MySQL 5.6 documentation.

• Aurora MySQL 2.x supports the same spatial data types and spatial relation functions as MySQL
5.7. For more information about these data types and functions, see Spatial Data Types and Spatial
Relation Functions in the MySQL 5.7 documentation.

• Aurora MySQL 3.x supports the same spatial data types and spatial relation functions as MySQL
8.0. For more information about these data types and functions, see Spatial Data Types and Spatial
Relation Functions in the MySQL 8.0 documentation.

• Aurora MySQL supports spatial indexing on InnoDB tables. Spatial indexing improves query
performance on large datasets for queries on spatial data. In MySQL, spatial indexing for InnoDB
tables isn't available in MySQL 5.6, but is available in MySQL 5.7 and 8.0. Aurora MySQL uses a
different spatial indexing strategy than MySQL for high performance with spatial queries. The Aurora
spatial index implementation uses a space-filling curve on a B-tree, which is intended to provide higher
performance for spatial range scans than an R-tree.

The following data definition language (DDL) statements are supported for creating indexes on columns
that use spatial data types.

768

https://dev.mysql.com/doc/refman/5.6/en/spatial-types.html
https://dev.mysql.com/doc/refman/5.6/en/spatial-relation-functions-object-shapes.html
https://dev.mysql.com/doc/refman/5.6/en/spatial-relation-functions-object-shapes.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-types.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-relation-functions-object-shapes.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-relation-functions-object-shapes.html
https://dev.mysql.com/doc/refman/8.0/en/spatial-types.html
https://dev.mysql.com/doc/refman/8.0/en/spatial-relation-functions-object-shapes.html
https://dev.mysql.com/doc/refman/8.0/en/spatial-relation-functions-object-shapes.html

Amazon Aurora User Guide for Aurora
Aurora MySQL version 3 compatible with MySQL 8.0

CREATE TABLE
You can use the SPATIAL INDEX keywords in a CREATE TABLE statement to add a spatial index to a
column in a new table. Following is an example.

CREATE TABLE test (shape POLYGON NOT NULL, SPATIAL INDEX(shape));

ALTER TABLE
You can use the SPATIAL INDEX keywords in an ALTER TABLE statement to add a spatial index to a
column in an existing table. Following is an example.

ALTER TABLE test ADD SPATIAL INDEX(shape);

CREATE INDEX
You can use the SPATIAL keyword in a CREATE INDEX statement to add a spatial index to a column in
an existing table. Following is an example.

CREATE SPATIAL INDEX shape_index ON test (shape);

Aurora MySQL version 3 compatible with MySQL 8.0
You can use Aurora MySQL version 3 to get the latest MySQL-compatible features, performance
enhancements, and bug fixes. Following, you can learn about Aurora MySQL version 3, with MySQL 8.0
compatibility. You can learn how to upgrade your clusters and applications to Aurora MySQL version 3.

Topics
• Features from community MySQL 8.0 (p. 769)
• New parallel query optimizations (p. 770)
• Release notes for Aurora MySQL version 3 (p. 770)
• Comparison of Aurora MySQL version 2 and Aurora MySQL version 3 (p. 770)
• Comparison of Aurora MySQL version 3 and community MySQL 8.0 (p. 777)
• Upgrading to Aurora MySQL version 3 (p. 781)

Features from community MySQL 8.0
The initial release of Aurora MySQL version 3 is compatible with community MySQL 8.0.23. MySQL 8.0
introduces several new features, including the following:

• JSON functions. For usage information, see JSON Functions in the MySQL Reference Manual.
• Window functions. For usage information, see Window Functions in the MySQL Reference Manual.
• Common table expressions (CTEs), using the WITH clause. For usage information, see WITH (Common

Table Expressions) in the MySQL Reference Manual.
• Optimized ADD COLUMN and RENAME COLUMN clauses for the ALTER TABLE statement. These

optimizations are called "instant DDL." Aurora MySQL version 3 is compatible with the community
MySQL instant DDL feature. The former Aurora fast DDL feature isn't used. For usage information for
instant DDL, see Instant DDL (Aurora MySQL version 3) (p. 853).

• Descending, functional, and invisible indexes. For usage information, see Invisible Indexes, Descending
Indexes, and CREATE INDEX Statement in the MySQL Reference Manual.

769

https://dev.mysql.com/doc/refman/8.0/en/json-functions.html
https://dev.mysql.com/doc/refman/8.0/en/window-functions.html
https://dev.mysql.com/doc/refman/8.0/en/with.html
https://dev.mysql.com/doc/refman/8.0/en/with.html
https://dev.mysql.com/doc/refman/8.0/en/invisible-indexes.html
https://dev.mysql.com/doc/refman/8.0/en/descending-indexes.html
https://dev.mysql.com/doc/refman/8.0/en/descending-indexes.html
https://dev.mysql.com/doc/refman/8.0/en/create-index.html#create-index-functional-key-parts

Amazon Aurora User Guide for Aurora
Aurora MySQL version 3 compatible with MySQL 8.0

• Role-based privileges controlled through SQL statements. For more information on changes to the
privilege model, see Role-based privilege model (p. 778).

• NOWAIT and SKIP LOCKED clauses with the SELECT ... FOR SHARE statement. These clauses avoid
waiting for other transactions to release row locks. For usage information, see Locking Reads in the
MySQL Reference Manual.

• Improvements to binary log (binlog) replication. For the Aurora MySQL details, see Binary log
replication (p. 777). In particular, you can perform filtered replication. For usage information about
filtered replication, see How Servers Evaluate Replication Filtering Rules in the MySQL Reference
Manual.

• Hints. Some of the MySQL 8.0–compatible hints were already backported to Aurora MySQL version 2.
For information about using hints with Aurora MySQL, see Aurora MySQL hints (p. 1095). For the full
list of hints in community MySQL 8.0, see Optimizer Hints in the MySQL Reference Manual.

For the full list of features added to MySQL 8.0 community edition, see the blog post The complete list
of new features in MySQL 8.0.

Aurora MySQL version 3 also includes changes to keywords for inclusive language, backported from
community MySQL 8.0.26. For details about those changes, see Inclusive language changes for Aurora
MySQL version 3 (p. 772).

New parallel query optimizations
The Aurora parallel query optimization now applies to more SQL operations:

• Parallel query now applies to tables containing the data types TEXT, BLOB, JSON, GEOMETRY, and
VARCHAR and CHAR longer than 768 bytes.

• Parallel query can optimize queries involving partitioned tables.
• Parallel query can optimize queries involving aggregate function calls in the select list and the HAVING

clause.

For more information about these enhancements, see Upgrading parallel query clusters to Aurora
MySQL version 3 (p. 914). For general information about Aurora parallel query, see Working with
parallel query for Amazon Aurora MySQL (p. 902).

Release notes for Aurora MySQL version 3
For the release notes for all Aurora MySQL version 3 releases, see Database engine updates for Amazon
Aurora MySQL version 3 (p. 1129).

Comparison of Aurora MySQL version 2 and Aurora MySQL
version 3
Use the following to learn about changes to be aware of when you upgrade your Aurora MySQL version 2
cluster to version 3.

Topics
• Feature differences between Aurora MySQL version 2 and 3 (p. 771)
• Instance class support (p. 771)
• Parameter changes for Aurora MySQL version 3 (p. 772)
• Status variables (p. 772)
• Inclusive language changes for Aurora MySQL version 3 (p. 772)
• AUTO_INCREMENT values (p. 774)
• Temporary tables on reader DB instances (p. 775)

770

https://dev.mysql.com/doc/refman/8.0/en/innodb-locking-reads.html
https://dev.mysql.com/doc/refman/8.0/en/replication-rules.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html
https://dev.mysql.com/blog-archive/the-complete-list-of-new-features-in-mysql-8-0/
https://dev.mysql.com/blog-archive/the-complete-list-of-new-features-in-mysql-8-0/

Amazon Aurora User Guide for Aurora
Aurora MySQL version 3 compatible with MySQL 8.0

• Storage engine for internal temporary tables (p. 775)
• Binary log replication (p. 777)

Feature differences between Aurora MySQL version 2 and 3

The following Amazon Aurora MySQL features are supported in Aurora MySQL for MySQL 5.7, but these
features aren't supported in Aurora MySQL for MySQL 8.0:

• Backtrack currently isn't available for Aurora MySQL version 3 clusters. We intend to make this feature
available in a subsequent minor version.

If you have an Aurora MySQL version 2 cluster that uses backtrack, currently you can't use the
snapshot restore method to upgrade to Aurora MySQL version 3. This limitation applies to all clusters
that use backtrack clusters, regardless of whether the backtrack setting is turned on. For details about
upgrade procedures, see Upgrading to Aurora MySQL version 3 (p. 781).

• You can't use Aurora MySQL version 3 for Aurora Serverless v1 clusters. Aurora MySQL version 3 works
with Aurora Serverless v2, which is currently in preview.

• Lab mode doesn't apply to Aurora MySQL version 3. There aren't any lab mode features in Aurora
MySQL version 3. Instant DDL supersedes the fast online DDL feature that was formerly available in lab
mode. For an example, see Instant DDL (Aurora MySQL version 3) (p. 853).

• The query cache is removed from community MySQL 8.0 and also from Aurora MySQL version 3.
• Aurora MySQL version 3 is compatible with the community MySQL hash join feature. The Aurora-

specific implementation of hash joins in Aurora MySQL version 2 isn't used. For information
about using hash joins with Aurora parallel query, see Turning on hash join for parallel query
clusters (p. 913) and Aurora MySQL hints (p. 1095). For general usage information about hash joins,
see Hash Join Optimization in the MySQL Reference Manual.

• Currently, you can't restore a physical backup from the Percona XtraBackup tool to an Aurora MySQL
version 3 cluster. We intend to support this feature in a subsequent minor version.

• The mysql.lambda_async stored procedure that was deprecated in Aurora MySQL version 2 is
removed in version 3. For version 3, use the asynchronous function lambda_async instead.

• The default character set in Aurora MySQL version 3 is utf8mb4. In Aurora MySQL version 2, the
default character set was latin1. For information about this character set, see The utf8mb4
Character Set (4-Byte UTF-8 Unicode Encoding) in the MySQL Reference Manual.

• The innodb_flush_log_at_trx_commit configuration parameter can't be modified. The default
value of 1 always applies.

Some Aurora MySQL features are available for certain combinations of AWS Region and DB engine
version. For details, see Supported features in Amazon Aurora by AWS Region and Aurora DB
engine (p. 19).

Instance class support

Aurora MySQL version 3 supports a different set of instance classes than Aurora MySQL version 2 does:

• For larger instances, you can use the modern instance classes such as db.r5, db.r6g, and db.x2g.
• For smaller instances, you can use the modern instance classes such as db.t3 and db.t4g.

The following instance classes from Aurora MySQL version 2 aren't available for Aurora MySQL version 3:

• db.r4

• db.r3

• db.t3.small

• db.t2

771

https://dev.mysql.com/doc/refman/8.0/en/hash-joins.html
https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-utf8mb4.html
https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-utf8mb4.html

Amazon Aurora User Guide for Aurora
Aurora MySQL version 3 compatible with MySQL 8.0

Check your administration scripts for any CLI statements that create Aurora MySQL DB instances and
hardcode instance class names that aren't available for Aurora MySQL version 3. If necessary, modify the
instance class names to ones that Aurora MySQL version 3 supports.

Tip
To check the instance classes that you can use for a specific combination of Aurora MySQL
version and AWS Region, use the describe-orderable-db-instance-options AWS CLI
command.

For full details about Aurora instance classes, see Aurora DB instance classes (p. 54).

Parameter changes for Aurora MySQL version 3

Aurora MySQL version 3 includes new cluster-level and instance-level configuration parameters.
Aurora MySQL version 3 also removes some parameters that were present in Aurora MySQL version 2.
Some parameter names are changed as a result of the initiative for inclusive language. For backward
compatibility, you can still retrieve the parameter values using either the old names or the new names.
However, you must use the new names to specify parameter values in a custom parameter group.

In Aurora MySQL version 3, the value of the lower_case_table_names parameter is set permanently
at the time the cluster is created. If you use a nondefault value for this option, set up your Aurora MySQL
version 3 custom parameter group before upgrading. Then specify the parameter group during the
create cluster or snapshot restore operation.

For the full list of Aurora MySQL cluster parameters, see Cluster-level parameters (p. 1064). The table
covers all the parameters from Aurora MySQL version 1, 2, and 3. The table includes notes showing
which parameters are new in Aurora MySQL version 3 or were removed from Aurora MySQL version 3.

For the full list of Aurora MySQL instance parameters, see Instance-level parameters (p. 1070). The table
covers all the parameters from Aurora MySQL version 1, 2, and 3. The table includes notes showing
which parameters are new in Aurora MySQL version 3 and which parameters were removed from Aurora
MySQL version 3. It also includes notes showing which parameters were modifiable in earlier versions but
not Aurora MySQL version 3.

For information about parameter names that changed, see Inclusive language changes for Aurora MySQL
version 3 (p. 772).

Status variables

For information about status variables that aren't applicable to Aurora MySQL, see MySQL status
variables that don't apply to Aurora MySQL (p. 1083).

Inclusive language changes for Aurora MySQL version 3

Aurora MySQL version 3 is compatible with version 8.0.23 from the MySQL community edition. Aurora
MySQL version 3 also includes changes from MySQL 8.0.26 related to keywords and system schemas
for inclusive language. For example, the SHOW REPLICA STATUS command is now preferred instead of
SHOW SLAVE STATUS.

The following Amazon CloudWatch metrics have new names in Aurora MySQL version 3.

In Aurora MySQL version 3, only the new metric names are available. Make sure to update any alarms or
other automation that relies on metric names when you upgrade to Aurora MySQL version 3.

Old name New name

ForwardingMasterDMLLatency ForwardingWriterDMLLatency

ForwardingMasterOpenSessionsForwardingWriterOpenSessions

AuroraDMLRejectedMasterFullAuroraDMLRejectedWriterFull

772

Amazon Aurora User Guide for Aurora
Aurora MySQL version 3 compatible with MySQL 8.0

Old name New name

ForwardingMasterDMLThroughputForwardingWriterDMLThroughput

The following status variables have new names in Aurora MySQL version 3.

For compatibility, you can use either name in the initial Aurora MySQL version 3 release. The old status
variable names are to be removed in a future release.

Name to be removed New or preferred name

Aurora_fwd_master_dml_stmt_durationAurora_fwd_writer_dml_stmt_duration

Aurora_fwd_master_dml_stmt_countAurora_fwd_writer_dml_stmt_count

Aurora_fwd_master_select_stmt_durationAurora_fwd_writer_select_stmt_duration

Aurora_fwd_master_select_stmt_countAurora_fwd_writer_select_stmt_count

Aurora_fwd_master_errors_session_timeoutAurora_fwd_writer_errors_session_timeout

Aurora_fwd_master_open_sessionsAurora_fwd_writer_open_sessions

Aurora_fwd_master_errors_session_limitAurora_fwd_writer_errors_session_limit

Aurora_fwd_master_errors_rpc_timeoutAurora_fwd_writer_errors_rpc_timeout

The following configuration parameters have new names in Aurora MySQL version 3.

For compatibility, you can check the parameter values in the mysql client by using either name in the
initial Aurora MySQL version 3 release. You can only modify the values in a custom parameter group by
using the new names. The old parameter names are to be removed in a future release.

Name to be removed New or preferred name

aurora_fwd_master_idle_timeoutaurora_fwd_writer_idle_timeout

aurora_fwd_master_max_connections_pctaurora_fwd_writer_max_connections_pct

master_verify_checksum source_verify_checksum

sync_master_info sync_source_info

init_slave init_replica

rpl_stop_slave_timeout rpl_stop_replica_timeout

log_slow_slave_statements log_slow_replica_statements

slave_max_allowed_packet replica_max_allowed_packet

slave_compressed_protocol replica_compressed_protocol

slave_exec_mode replica_exec_mode

slave_type_conversions replica_type_conversions

slave_sql_verify_checksum replica_sql_verify_checksum

773

Amazon Aurora User Guide for Aurora
Aurora MySQL version 3 compatible with MySQL 8.0

Name to be removed New or preferred name

slave_parallel_type replica_parallel_type

slave_preserve_commit_orderreplica_preserve_commit_order

log_slave_updates log_replica_updates

slave_allow_batching replica_allow_batching

slave_load_tmpdir replica_load_tmpdir

slave_net_timeout replica_net_timeout

sql_slave_skip_counter sql_replica_skip_counter

slave_skip_errors replica_skip_errors

slave_checkpoint_period replica_checkpoint_period

slave_checkpoint_group replica_checkpoint_group

slave_transaction_retries replica_transaction_retries

slave_parallel_workers replica_parallel_workers

slave_pending_jobs_size_maxreplica_pending_jobs_size_max

pseudo_slave_mode pseudo_replica_mode

The following stored procedures have new names in Aurora MySQL version 3.

For compatibility, you can use either name in the initial Aurora MySQL version 3 release. The old
procedure names are to be removed in a future release.

Name to be removed New or preferred name

mysql.rds_set_master_auto_positionmysql.rds_set_source_auto_position

mysql.rds_set_external_mastermysql.rds_set_external_source

mysql.rds_set_external_master_with_auto_positionmysql.rds_set_external_source_with_auto_position

mysql.rds_reset_external_mastermysql.rds_reset_external_source

mysql.rds_next_master_log mysql.rds_next_source_log

AUTO_INCREMENT values

In Aurora MySQL version 3, Aurora preserves the AUTO_INCREMENT value for each table when it restarts
each DB instance. In Aurora MySQL version 2, the AUTO_INCREMENT value wasn't preserved after a
restart.

The AUTO_INCREMENT value isn't preserved when you set up a new cluster by restoring from a snapshot,
performing a point-in-time recovery, and cloning a cluster. In these cases, the AUTO_INCREMENT value
is initialized to the value based on the largest column value in the table at the time the snapshot was
created. This behavior is different than in RDS for MySQL 8.0, where the AUTO_INCREMENT value is
preserved during these operations.

774

Amazon Aurora User Guide for Aurora
Aurora MySQL version 3 compatible with MySQL 8.0

Temporary tables on reader DB instances

You can't create temporary tables using the InnoDB storage engine on Aurora MySQL reader instances.
On reader instances, the InnoDB storage engine is configured as read-only. Make sure that any CREATE
TEMPORARY TABLE statements on reader instances run with the NO_ENGINE_SUBSTITUTION SQL mode
turned off.

The error that you receive is different depending on whether you use a plain CREATE TEMPORARY
TABLE statement or the variation CREATE TEMPORARY TABLE AS SELECT. The following examples
show the different kinds of errors.

This temporary table behavior only applies to read-only instances. This first example confirms that's the
kind of instance the session is connected to.

mysql> select @@innodb_read_only;
+--------------------+
| @@innodb_read_only |
+--------------------+
| 1 |
+--------------------+

For plain CREATE TEMPORARY TABLE statements, the statement fails when the
NO_ENGINE_SUBSTITUTION SQL mode is turned on. It succeeds when that SQL mode is turned off.

mysql> set sql_mode = 'NO_ENGINE_SUBSTITUTION';

mysql> CREATE TEMPORARY TABLE tt2 (id int) ENGINE=InnoDB;
ERROR 3161 (HY000): Storage engine InnoDB is disabled (Table creation is disallowed).
mysql> SET sql_mode = '';

mysql> CREATE TEMPORARY TABLE tt4 (id int) ENGINE=InnoDB;

mysql> SHOW CREATE TABLE tt4\G
*************************** 1. row ***************************
 Table: tt4
Create Table: CREATE TEMPORARY TABLE `tt4` (
 `id` int DEFAULT NULL
) ENGINE=MyISAM DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

For CREATE TEMPORARY TABLE AS SELECT statements, the statement fails whether or not the
NO_ENGINE_SUBSTITUTION SQL mode is turned on. MySQL community edition doesn't support storage
engine substitution with CREATE TABLE AS SELECT or CREATE TEMPORARY TABLE AS SELECT
statements. For those statements, remove the ENGINE=InnoDB clause from your SQL code.

mysql> set sql_mode = 'NO_ENGINE_SUBSTITUTION';

mysql> CREATE TEMPORARY TABLE tt1 ENGINE=InnoDB AS SELECT * FROM t1;
ERROR 3161 (HY000): Storage engine InnoDB is disabled (Table creation is disallowed).

mysql> SET sql_mode = '';

mysql> CREATE TEMPORARY TABLE tt3 ENGINE=InnoDB AS SELECT * FROM t1;
ERROR 1874 (HY000): InnoDB is in read only mode.

Storage engine for internal temporary tables

In Aurora MySQL version 3, the way internal temporary tables work is different from earlier Aurora
MySQL versions. Instead of choosing between the InnoDB and MyISAM storage engines for such
temporary tables, now you choose between the TempTable and InnoDB storage engines.

775

Amazon Aurora User Guide for Aurora
Aurora MySQL version 3 compatible with MySQL 8.0

With the TempTable storage engine, you can make an additional choice for how to handle certain data.
The data affected overflows the memory pool that holds all the internal temporary tables for the DB
instance.

Those choices can influence the performance for queries that generate high volumes of temporary data,
for example while performing aggregations such as GROUP BY on large tables.

Tip
If your workload includes queries that generate internal temporary tables, confirm how your
application performs with this change by running benchmarks and monitoring performance-
related metrics.
In some cases, the amount of temporary data fits within the TempTable memory pool or
only overflows the memory pool by a small amount. In these cases, we recommend using
the TempTable setting for internal temporary tables and memory-mapped files to hold any
overflow data. That setting is the default.
If a substantial amount of temporary data overflows the TempTable memory pool, we
recommend using the MEMORY storage engine instead for internal temporary tables. Or you can
choose TempTable for internal temporary tables and InnoDB tables to hold any overflow data.

You make the initial choice between the TempTable storage engine and the MEMORY storage engine for
internal temporary tables. You do so by setting the parameter internal_tmp_mem_storage_engine.
This parameter replaces the internal_tmp_disk_storage_engine parameter used in Aurora MySQL
version 1 and 2.

The TempTable storage engine is the default. TempTable uses a common memory pool for all
temporary tables that use this engine, instead of a maximum memory limit per table. The size of this
memory pool is specified by the temptable_max_ram parameter. It defaults to 1 GB on DB instances
with 16 or more GB of memory, and 16 MB on DB instances with less than 16 GB of memory. The size of
the memory pool influences session-level memory consumption.

If you use the TempTable storage engine and the temporary data exceeds the size of the memory pool,
Aurora MySQL stores the overflow data using a secondary mechanism.

You can set the parameters temptable_use_mmap and temptable_max_mmap to specify if the
data overflows to memory-mapped temporary files or to InnoDB internal temporary tables on disk.
The different data formats and overflow criteria of these overflow mechanisms can affect query
performance. They do so by influencing the amount of data written to disk and the demand on disk
storage throughput.

Aurora MySQL stores the overflow data differently depending on your choice of data overflow
destination and whether the query runs on a writer or reader DB instance:

• On the writer instance, data that overflows to InnoDB internal temporary tables is stored in the Aurora
cluster volume.

• On the writer instance, data that overflows to memory-mapped temporary files resides on local
storage on the Aurora MySQL version 3 instance.

• On reader instances, overflow data always resides on memory-mapped temporary files on local
storage. That's because read-only instances can't store any data on the Aurora cluster volume.

Note
The configuration parameters related to internal temporary tables apply differently to the
writer and reader instances in your cluster. For reader instances, Aurora MySQL always uses
the TempTable storage engine and a value of 1 for temptable_use_mmap. The size for
temptable_max_mmap defaults to 1 GB, for both writer and reader instances, regardless of
the DB instance memory size. You can adjust this value the same way as on the writer instance,
except that you can't specify a value of zero for temptable_max_mmap on reader instances.

776

Amazon Aurora User Guide for Aurora
Aurora MySQL version 3 compatible with MySQL 8.0

Binary log replication

In MySQL 8.0 community edition, binary log replication is turned on by default. In Aurora MySQL version
3, binary log replication is turned off by default.

Tip
If your high availability requirements are fulfilled by the Aurora built-in replication features, you
can leave binary log replication turned off. That way, you can avoid the performance overhead
of binary log replication. You can also avoid the associated monitoring and troubleshooting that
are needed to manage binary log replication.

Aurora supports binary log replication from a MySQL 5.7–compatible source to Aurora MySQL version 3.
The source system can be an Aurora MySQL DB cluster, an RDS for MySQL DB instance, or an on-premises
MySQL instance.

As does community MySQL, Aurora MySQL supports replication from a source running a specific version
to a target running the same major version or one major version higher. For example, replication from
a MySQL 5.6–compatible system to Aurora MySQL version 3 isn't supported. Replicating from Aurora
MySQL version 3 to a MySQL 5.7–compatible or MySQL 5.6–compatible system isn't supported. For
details about using binary log replication, see Replication between Aurora and MySQL or between Aurora
and another Aurora DB cluster (binary log replication) (p. 953).

Aurora MySQL version 3 includes improvements to binary log replication in community MySQL 8.0, such
as filtered replication. For details about the community MySQL 8.0 improvements, see How Servers
Evaluate Replication Filtering Rules in the MySQL Reference Manual.

Multithreaded replication

With Aurora MySQL version 3, Aurora MySQL supports multithreaded replication. For usage information,
see Multithreaded binary log replication (Aurora MySQL version 3 and higher) (p. 969).

Note
We still recommend not using multithreaded replication with Aurora MySQL version 1 and
version 2.

Transaction compression for binary log replication

For usage information about binary log compression, see Binary Log Transaction Compression in the
MySQL Reference Manual.

The following limitations apply to binary log compression in Aurora MySQL version 3:

• Transactions whose binary log data is larger than the maximum allowed packet size aren't compressed,
regardless of whether the Aurora MySQL binary log compression setting is turned on. Such
transactions are replicated without being compressed.

• If you use a connector for change data capture (CDC) that doesn't support MySQL 8.0 yet, you can't
use this feature. We recommend that you test any third-party connectors thoroughly with binary log
compression before turning on binlog compression on systems that use binlog replication for CDC.

Comparison of Aurora MySQL version 3 and community MySQL
8.0
You can use the following information to learn about the changes to be aware of when you convert from
a different MySQL 8.0–compatible system to Aurora MySQL version 3.

In general, Aurora MySQL version 3 supports the feature set of community MySQL 8.0.23. Some new
features from MySQL 8.0 community edition don't apply to Aurora MySQL. Some of those features aren't

777

https://dev.mysql.com/doc/refman/8.0/en/replication-rules.html
https://dev.mysql.com/doc/refman/8.0/en/replication-rules.html
https://dev.mysql.com/doc/refman/8.0/en/binary-log-transaction-compression.html

Amazon Aurora User Guide for Aurora
Aurora MySQL version 3 compatible with MySQL 8.0

compatible with some aspect of Aurora, such as the Aurora storage architecture. Other features aren't
needed because the Amazon RDS management service provides equivalent functionality. The following
features in community MySQL 8.0 aren't supported or work differently in Aurora MySQL version 3.

For release notes for all Aurora MySQL version 3 releases, see Database engine updates for Amazon
Aurora MySQL version 3 (p. 1129).

Topics
• MySQL 8.0 features not available in Aurora MySQL version 3 (p. 778)
• Role-based privilege model (p. 778)
• Authentication (p. 781)

MySQL 8.0 features not available in Aurora MySQL version 3

The following features from community MySQL 8.0 aren't available or work differently in Aurora MySQL
version 3.

• Resource groups and associated SQL statements aren't supported in Aurora MySQL.
• The Aurora storage architecture means that you don't have to manually manage files and

the underlying storage for your database. In particular, Aurora handles the undo tablespace
differently than community MySQL does. This difference from community MySQL has the following
consequences:
• Aurora MySQL doesn't support named tablespaces.
• The innodb_undo_log_truncate configuration setting is turned off and can't be turned on.

Aurora has its own mechanism for reclaiming storage space.
• Aurora MySQL doesn't have the CREATE UNDO TABLESPACE, ALTER UNDO TABLESPACE ... SET
INACTIVE, and DROP UNDO TABLESPACE statements.

• Aurora sets the number of undo tablespaces automatically and manages those tablespaces for you.
• TLS 1.3 isn't supported in Aurora MySQL version 3.
• The aurora_hot_page_contention status variable isn't available. The hot page contention feature

isn't supported. For the full list of status variables not available in Aurora MySQL version 3, see Status
variables (p. 772).

• You can't modify the settings of any MySQL plugins.
• The X plugin isn't supported.

Role-based privilege model

With Aurora MySQL version 3, you can't modify the tables in the mysql database directly. In particular,
you can't set up users by inserting into the mysql.user table. Instead, you use SQL statements to grant
role-based privileges. You can still query the mysql tables. If you use binary log replication, changes
made directly to the mysql tables on the source cluster aren't replicated to the target cluster.

In some cases, your application might use shortcuts to create users or other objects by inserting into the
mysql tables. If so, change your application code to use the corresponding statements such as CREATE
USER.

To export metadata for database users during the migration from an external MySQL database, you can
use mysqlpump command instead of mysqldump. Use the following syntax.

mysqlpump --exclude-databases=mysql --users

This statement dumps all databases except for the tables in the mysql system database. It also includes
CREATE USER and GRANT statements to reproduce all MySQL users in the migrated database. You can

778

Amazon Aurora User Guide for Aurora
Aurora MySQL version 3 compatible with MySQL 8.0

also use the pt-show-grants tool on the source system to list CREATE USER and GRANT statements to
reproduce all the database users.

To simplify managing permissions for many users or applications, you can use the CREATE ROLE
statement to create a role that has a set of permissions. Then you can use the GRANT and SET ROLE
statements and the current_role function to assign roles to users or applications, switch the current
role, and check which roles are in effect. For more information on the role-based permission system in
MySQL 8.0, see Using Roles in the MySQL Reference Manual.

Aurora MySQL version 3 includes a special role that has all of the following privileges. This role is named
rds_superuser_role. The primary administrative user for each cluster already has this role granted.
The rds_superuser_role role includes the following privileges for all database objects:

• ALTER

• APPLICATION_PASSWORD_ADMIN

• ALTER ROUTINE

• CONNECTION_ADMIN

• CREATE

• CREATE ROLE

• CREATE ROUTINE

• CREATE TABLESPACE

• CREATE TEMPORARY TABLES

• CREATE USER

• CREATE VIEW

• DELETE

• DROP

• DROP ROLE

• EVENT

• EXECUTE

• INDEX

• INSERT

• LOCK TABLES

• PROCESS

• REFERENCES

• RELOAD

• REPLICATION CLIENT

• REPLICATION SLAVE

• ROLE_ADMIN

• SET_USER_ID

• SELECT

• SHOW DATABASES

• SHOW VIEW

• TRIGGER

• UPDATE

• XA_RECOVER_ADMIN

The role definition also includes WITH GRANT OPTION so that an administrative user can grant that role
to other users. In particular, the administrator must grant any privileges needed to perform binary log
replication with the Aurora MySQL cluster as the target.

779

https://www.percona.com/doc/percona-toolkit/LATEST/pt-show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/roles.html

Amazon Aurora User Guide for Aurora
Aurora MySQL version 3 compatible with MySQL 8.0

Tip
To see the full details of the permissions, enter the following statements.

SHOW GRANTS FOR rds_superuser_role@'%';
SHOW GRANTS FOR name_of_administrative_user_for_your_cluster@'%';

Aurora MySQL version 3 also includes roles that you can use to access other AWS services. You
can set these roles as an alternative to GRANT statements. For example, you specify GRANT
AWS_LAMBDA_ACCESS TO user instead of GRANT INVOKE LAMBDA ON *.* TO user. For the
procedures to access other AWS services, see Integrating Amazon Aurora MySQL with other AWS
services (p. 1005). Aurora MySQL version 3 includes the following roles related to accessing other AWS
services:

• AWS_LAMBDA_ACCESS role, as an alternative to the INVOKE LAMBDA privilege. For usage information,
Invoking a Lambda function from an Amazon Aurora MySQL DB cluster (p. 1031).

• AWS_LOAD_S3_ACCESS role, as an alternative to the LOAD FROM S3 privilege. For usage information,
see Loading data into an Amazon Aurora MySQL DB cluster from text files in an Amazon S3
bucket (p. 1018).

• AWS_SELECT_S3_ACCESS role, as an alternative to the SELECT INTO S3 privilege. For usage
information, see Saving data from an Amazon Aurora MySQL DB cluster into text files in an Amazon S3
bucket (p. 1025).

• AWS_SAGEMAKER_ACCESS role, as an alternative to the INVOKE SAGEMAKER privilege. For usage
information, see Using machine learning (ML) with Aurora MySQL (p. 1041).

• AWS_COMPREHEND_ACCESS role, as an alternative to the INVOKE COMPREHEND privilege. For usage
information, see Using machine learning (ML) with Aurora MySQL (p. 1041).

When you grant access by using roles in Aurora MySQL version 3, you also activate the role by using the
SET ROLE role_name or SET ROLE ALL statement. The following example shows how. Substitute the
appropriate role name for AWS_SELECT_S3_ACCESS.

Grant role to user
mysql> GRANT AWS_SELECT_S3_ACCESS TO 'user'@'domain-or-ip-address'

Check the current roles for your user. In this case, the AWS_SELECT_S3_ACCESS role has
 not been activated.
Only the rds_superuser_role is currently in effect.
mysql> SELECT CURRENT_ROLE();
+--------------------------+
| CURRENT_ROLE() |
+--------------------------+
| `rds_superuser_role`@`%` |
+--------------------------+
1 row in set (0.00 sec)

Activate all roles associated with this user using SET ROLE.
You can activate specific roles or all roles.
In this case, the user only has 2 roles, so we specify ALL.
mysql> SET ROLE ALL;
Query OK, 0 rows affected (0.00 sec)

Verify role is now active
mysql> SELECT CURRENT_ROLE();
+--+
| CURRENT_ROLE() |
+--+
| `AWS_LAMBDA_ACCESS`@`%`,`rds_superuser_role`@`%` |
+--+

780

Amazon Aurora User Guide for Aurora
Aurora MySQL version 3 compatible with MySQL 8.0

Authentication

In community MySQL 8.0, the default authentication plugin is caching_sha2_password.
Aurora MySQL version 3 still uses the mysql_native_password plugin. You can't change the
default_authentication_plugin setting.

Upgrading to Aurora MySQL version 3
For specific upgrade paths to upgrade your database from Aurora MySQL version 1 or 2 to version 3, you
can use one of the following approaches:

• To upgrade an Aurora MySQL version 2 cluster to version 3, create a snapshot of the version 2 cluster
and restore the snapshot to create a new version 3 cluster. Follow the procedure in Restoring from a
DB cluster snapshot (p. 497). Currently, in-place upgrade isn't available from Aurora MySQL version 2
to Aurora MySQL version 3.

• To upgrade from Aurora MySQL version 1, first do an intermediate upgrade to Aurora MySQL version
2. To do the upgrade to Aurora MySQL version 2, use any of the upgrade methods in Upgrading
Amazon Aurora MySQL DB clusters (p. 1109). Then use the snapshot restore technique to upgrade
from Aurora MySQL version 2 to Aurora MySQL version 3. Snapshot restore isn't available from Aurora
MySQL version 1 clusters (MySQL 5.6–compatible) to Aurora MySQL version 3.

• Currently, you can't clone a MySQL 5.7–compatible Aurora cluster to a MySQL 8.0–compatible one. Use
the snapshot restore technique instead.

• If you have an Aurora MySQL version 2 cluster that uses backtrack, currently you can't use the
snapshot restore method to upgrade to Aurora MySQL version 3. This limitation applies to all clusters
that use backtrack, regardless of whether the backtrack setting is turned on. In this case, perform a
logical dump and restore by using a tool such as the mysqldump command. For more information
about using mysqldump for Aurora MySQL, see Migrating from MySQL to Amazon Aurora by using
mysqldump (p. 817).

Tip
In some cases, you might specify the option to upload database logs to CloudWatch when
you restore the snapshot. If so, examine the logs in CloudWatch to diagnose any issues that
occur during the restore and associated upgrade operation. The CLI examples in this section
demonstrate how to do so using the --enable-cloudwatch-logs-exports option.

Topics
• Upgrade planning for Aurora MySQL version 3 (p. 781)
• Example of upgrading from Aurora MySQL version 2 to version 3 (p. 782)
• Example of upgrading from Aurora MySQL version 1 to version 3 (p. 784)
• Troubleshooting upgrade issues with Aurora MySQL version 3 (p. 786)
• Post-upgrade cleanup for Aurora MySQL version 3 (p. 793)

Upgrade planning for Aurora MySQL version 3

To help you decide the right time and approach to upgrade, you can learn the differences between
Aurora MySQL version 3 and your current Aurora and MySQL environment:

• If you are converting from RDS for MySQL 8.0 or community MySQL 8.0, see Comparison of Aurora
MySQL version 3 and community MySQL 8.0 (p. 777).

• If you are upgrading from Aurora MySQL version 2, RDS for MySQL 5.7, or community MySQL 5.7, see
Comparison of Aurora MySQL version 2 and Aurora MySQL version 3 (p. 770).

• Create new MySQL 8.0-compatible versions of any custom parameter groups. Apply any necessary
custom parameter values to the new parameter groups. Consult Parameter changes for Aurora MySQL
version 3 (p. 772) to learn about parameter changes.

781

Amazon Aurora User Guide for Aurora
Aurora MySQL version 3 compatible with MySQL 8.0

Note
For most parameter settings, you can choose the custom parameter group either when
you create the cluster or associate the parameter group with the cluster later. However, if
you use a nondefault setting for the lower_case_table_names parameter, you must set
up the custom parameter group with this setting in advance. Then specify the parameter
group when you perform the snapshot restore to create the cluster. Any change to the
lower_case_table_names parameter has no effect after the cluster is created.

You can also find more MySQL-specific upgrade considerations and tips in Changes in MySQL 8.0 in the
MySQL Reference Manual. For example, you can use the command mysqlcheck --check-upgrade to
analyze your existing Aurora MySQL databases and identify potential upgrade issues.

Currently, the primary upgrade path from earlier Aurora MySQL versions to Aurora MySQL version 3 is by
restoring a snapshot to create a new cluster. You can restore a snapshot of a cluster running any minor
version of Aurora MySQL version 2 (MySQL 5.7–compatible) to Aurora MySQL version 3. To upgrade
from Aurora MySQL version 1, you use a two-step process. First restore a snapshot to an Aurora MySQL
version 2 cluster, then make a snapshot of that cluster and restore it to an Aurora MySQL version 3
cluster. For the upgrade procedure from Aurora MySQL version 1 or 2, see Upgrading to Aurora MySQL
version 3 (p. 781). For general information about upgrading by restoring a snapshot, see Upgrading
Amazon Aurora MySQL DB clusters (p. 1109).

After you finish the upgrade itself, you can follow the post-upgrade procedures in Post-upgrade cleanup
for Aurora MySQL version 3 (p. 793). Finally, test your application's functionality and performance.

If you are converting from RDS from MySQL or community MySQL, follow the migration procedure
explained in Migrating data to an Amazon Aurora MySQL DB cluster (p. 802). In some cases, you might
use binary log replication to synchronize your data with an Aurora MySQL version 3 cluster as part of the
migration. If so, the source system must run a version that's compatible with MySQL 5.7, or a MySQL 8.0–
compatible version that is 8.0.23 or lower.

Example of upgrading from Aurora MySQL version 2 to version 3

The following AWS CLI example demonstrates the steps to upgrade an Aurora MySQL version 2 cluster to
Aurora MySQL version 3.

The first step is to determine the version of the cluster that you want to upgrade. The following AWS CLI
command shows how. The output confirms that the original cluster is a MySQL 5.7–compatible one that's
running Aurora MySQL version 2.09.2.

This cluster has at least one DB instance. For the upgrade process to work properly, this original cluster
requires a writer instance.

$ aws rds describe-db-clusters --db-cluster-id cluster-57-upgrade-ok \
 --query '*[].EngineVersion' --output text
5.7.mysql_aurora.2.09.2

The following command shows how to check which upgrade paths are available from a specific version.
In this case, the original cluster is running version 5.7.mysql_aurora.2.09.2. The output shows that
this version can be upgraded to Aurora MySQL version 3.

If the original cluster uses a version number that is too low to upgrade to Aurora MySQL version 3, the
upgrade requires an additional step. First, restore the snapshot to create a new cluster that could be
upgraded to Aurora MySQL version 3. Then, take a snapshot of that intermediate cluster. Finally, restore
the snapshot of the intermediate cluster to create a new Aurora MySQL version 3 cluster.

$ aws rds describe-db-engine-versions --engine aurora-mysql \

782

https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html

Amazon Aurora User Guide for Aurora
Aurora MySQL version 3 compatible with MySQL 8.0

 --engine-version 5.7.mysql_aurora.2.09.2 \
 --query 'DBEngineVersions[].ValidUpgradeTarget[].EngineVersion'
[
 "5.7.mysql_aurora.2.10.0",
 "5.7.mysql_aurora.2.10.1",
 "8.0.mysql_aurora.3.01.0"
]

The following command creates a snapshot of the cluster to upgrade to Aurora MySQL version 3. The
original cluster remains intact. You later create a new Aurora MySQL version 3 cluster from the snapshot.

aws rds create-db-cluster-snapshot --db-cluster-id cluster-57-upgrade-ok \
 --db-cluster-snapshot-id cluster-57-upgrade-ok-snapshot
{
 "DBClusterSnapshotIdentifier": "cluster-57-upgrade-ok-snapshot",
 "DBClusterIdentifier": "cluster-57-upgrade-ok",
 "SnapshotCreateTime": "2021-10-06T23:20:18.087000+00:00"
}

The following command restores the snapshot to a new cluster that's running Aurora MySQL version 3.

$ aws rds restore-db-cluster-from-snapshot \
 --snapshot-id cluster-57-upgrade-ok-snapshot \
 --db-cluster-id cluster-80-restored --engine aurora-mysql \
 --engine-version 8.0.mysql_aurora.3.01.0 \
 --enable-cloudwatch-logs-exports '["error","general","slowquery","audit"]'
{
 "DBClusterIdentifier": "cluster-80-restored",
 "Engine": "aurora-mysql",
 "EngineVersion": "8.0.mysql_aurora.3.01.0",
 "Status": "creating"
}

Restoring the snapshot sets up the storage for the cluster and establishes the database version that the
cluster can use. Because the compute capacity of the cluster is separate from the storage, you set up any
DB instances for the cluster once the cluster itself is created. The following example creates a writer DB
instance using one of the db.r5 instance classes.

Tip
You might have administration scripts that create DB instances using older instance classes such
as db.r3, db.r4, db.t2, or db.t3. If so, modify your scripts to use one of the instance classes that
are supported with Aurora MySQL version 3. For information about the instance classes that you
can use with Aurora MySQL version 3, see Instance class support (p. 771).

$ aws rds create-db-instance --db-instance-identifier instance-running-version-3 \
 --db-cluster-identifier cluster-80-restored \
 --db-instance-class db.r5.xlarge --engine aurora-mysql
{
 "DBInstanceIdentifier": "instance-running-version-3",
 "DBClusterIdentifier": "cluster-80-restored",
 "DBInstanceClass": "db.r5.xlarge",
 "EngineVersion": "8.0.mysql_aurora.3.01.0",
 "DBInstanceStatus": "creating"
}

After the upgrade is finished, you can verify the Aurora-specific version number of the cluster by using
the AWS CLI.

$ aws rds describe-db-clusters --db-cluster-id cluster-80-restored \
 --query '*[].EngineVersion' --output text

783

Amazon Aurora User Guide for Aurora
Aurora MySQL version 3 compatible with MySQL 8.0

8.0.mysql_aurora.3.01.0

You can also verify the MySQL-specific version of the database engine by calling the version function.

mysql> select version();
+-----------+
| version() |
+-----------+
| 8.0.23 |
+-----------+

Example of upgrading from Aurora MySQL version 1 to version 3

The following example shows the two-stage upgrade process if the original snapshot is from a
version that can't be directly restored to Aurora MySQL version 3. Instead, that snapshot is restored
to a cluster running an intermediate version that you can upgrade to Aurora MySQL version 3. This
intermediate cluster doesn't need any associated DB instances. Then, another snapshot is created from
the intermediate cluster. Finally, the second snapshot is restored to create a new Aurora MySQL version 3
cluster and a writer DB instance.

The Aurora MySQL version 1 cluster that we start with is named aurora-mysql-v1-to-v2. It's running
Aurora MySQL version 1.23.4. It has at least one DB instance in the cluster.

This example checks which Aurora MySQL version 2 versions can be upgraded to the
8.0.mysql_aurora.3.01.0 to use on the upgraded cluster. For this example, we choose version
2.10.0 as the intermediate version.

$ aws rds describe-db-engine-versions --engine aurora-mysql \
 --query '*[].
{EngineVersion:EngineVersion,TargetVersions:ValidUpgradeTarget[*].EngineVersion} |
 [?contains(TargetVersions, `'8.0.mysql_aurora.3.01.0'`) == `true`]|[].EngineVersion' \
 --output text
...
5.7.mysql_aurora.2.08.3
5.7.mysql_aurora.2.09.1
5.7.mysql_aurora.2.09.2
5.7.mysql_aurora.2.10.0
...

The following example verifies that Aurora MySQL version 1.23.4 to 2.10.0 is an available upgrade path.
Thus, the Aurora MySQL version that we're running can be upgraded to 2.10.0. Then that cluster can be
upgraded to 3.01.0.

aws rds describe-db-engine-versions --engine aurora \
 --query '*[].
{EngineVersion:EngineVersion,TargetVersions:ValidUpgradeTarget[*].EngineVersion} |
 [?contains(TargetVersions, `'5.7.mysql_aurora.2.10.0'`) == `true`]|[].[EngineVersion]'
 \
 --output text
...
5.6.mysql_aurora.1.22.5
5.6.mysql_aurora.1.23.0
5.6.mysql_aurora.1.23.1
5.6.mysql_aurora.1.23.2
5.6.mysql_aurora.1.23.3
5.6.mysql_aurora.1.23.4
...

The following example creates a snapshot named aurora-mysql-v1-to-v2-snapshot that's based
on the original Aurora MySQL version 1 cluster.

784

Amazon Aurora User Guide for Aurora
Aurora MySQL version 3 compatible with MySQL 8.0

$ aws rds create-db-cluster-snapshot \
 --db-cluster-id aurora-mysql-v1-to-v2 \
 --db-cluster-snapshot-id aurora-mysql-v1-to-v2-snapshot
{
 "DBClusterSnapshotIdentifier": "aurora-mysql-v1-to-v2-snapshot",
 "DBClusterIdentifier": "aurora-mysql-v1-to-v2"
}

The following example creates the intermediate Aurora MySQL version 2 cluster from the version 1
snapshot. This intermediate cluster is named aurora-mysql-v2-to-v3. It's running Aurora MySQL
version 2.10.0.

The example also creates a writer instance for the cluster. For the upgrade process to work properly, this
intermediate cluster requires a writer instance.

$ aws rds restore-db-cluster-from-snapshot \
 --snapshot-id aurora-mysql-v1-to-v2-snapshot \
 --db-cluster-id aurora-mysql-v2-to-v3 \
 --engine aurora-mysql --engine-version 5.7.mysql_aurora.2.10.0 \
 --enable-cloudwatch-logs-exports '["error","general","slowquery","audit"]'
{
 "DBCluster": {
 "AllocatedStorage": 1,
 "AvailabilityZones": [
 "us-east-1a",
 "us-east-1d",
 "us-east-1f"
],
...

$ aws rds create-db-instance --db-instance-identifier upgrade-demo-instance \
 --db-cluster-identifier aurora-mysql-v2-to-v3 \
 --db-instance-class db.r5.xlarge \
 --engine aurora-mysql
{
 "DBInstanceIdentifier": "upgrade-demo-instance",
 "DBInstanceClass": "db.r5.xlarge",
 "DBInstanceStatus": "creating"
}

The following example creates a snapshot from the intermediate Aurora MySQL version 2 cluster. This
snapshot is named aurora-mysql-v2-to-v3-snapshot. This is the snapshot to be restored to create
the Aurora MySQL version 3 cluster.

$ aws rds create-db-cluster-snapshot \
 --db-cluster-id aurora-mysql-v2-to-v3 \
 --db-cluster-snapshot-id aurora-mysql-v2-to-v3-snapshot
{
 "DBClusterSnapshotIdentifier": "aurora-mysql-v2-to-v3-snapshot",
 "DBClusterIdentifier": "aurora-mysql-v2-to-v3"
}

The following command creates the Aurora MySQL version 3 cluster. This cluster is named aurora-
mysql-v3-fully-upgraded.

$ aws rds restore-db-cluster-from-snapshot \
 --snapshot-id aurora-mysql-v2-to-v3-snapshot \
 --db-cluster-id aurora-mysql-v3-fully-upgraded \
 --engine aurora-mysql --engine-version 8.0.mysql_aurora.3.01.0 \
 --enable-cloudwatch-logs-exports '["error","general","slowquery","audit"]'

785

Amazon Aurora User Guide for Aurora
Aurora MySQL version 3 compatible with MySQL 8.0

{
 "DBCluster": {
 "AllocatedStorage": 1,
 "AvailabilityZones": [
 "us-east-1b",
 "us-east-1c",
 "us-east-1d"
],
...

Now that the Aurora MySQL version 3 cluster is created, the following example creates a writer DB
instance for it. When the cluster and the writer instance become available, you can connect to the cluster
and begin using it. All of the data from the original cluster is preserved through each of the snapshot
stages.

$ aws rds create-db-instance \
 --db-instance-identifier instance-also-running-v3 \
 --db-cluster-identifier aurora-mysql-v3-fully-upgraded \
 --db-instance-class db.r5.xlarge --engine aurora-mysql
{
 "DBInstanceIdentifier": "instance-also-running-v3",
 "DBClusterIdentifier": "aurora-mysql-v3-fully-upgraded",
 "DBInstanceClass": "db.r5.xlarge",
 "EngineVersion": "8.0.mysql_aurora.3.01.0",
 "DBInstanceStatus": "creating"
}

Troubleshooting upgrade issues with Aurora MySQL version 3

If your upgrade to Aurora MySQL version 3 doesn't complete successfully, you can diagnose the cause of
the problem. Then you can make any required changes to the original database schema or table data and
run the upgrade process again.

If the upgrade process to Aurora MySQL version 3 fails, the problem is detected while creating and
then upgrading the writer instance for the restored snapshot. Aurora leaves behind the original 5.7-
compatible writer instance. That way, you can examine the log from the preliminary checks that Aurora
runs before performing the upgrade. The following examples start with a 5.7-compatible database that
requires some changes before it can be upgraded to Aurora MySQL version 3. The examples demonstrate
how the first attempted upgrade doesn't succeed, how to examine the log file, and how to fix the
problems and run a successful upgrade.

First, we create a new MySQL 5.7-compatible cluster named problematic-57-80-upgrade. As the
name suggests, this cluster contains at least one schema object that causes a problem during an upgrade
to a MySQL 8.0-compatible version.

$ aws rds create-db-cluster --engine aurora-mysql \
 --engine-version 5.7.mysql_aurora.2.10.0 \
 --db-cluster-identifier problematic-57-80-upgrade \
 --master-username my_username \
 --master-user-password my_password
{
 "DBClusterIdentifier": "problematic-57-80-upgrade",
 "Status": "creating"
}

$ aws rds create-db-instance \
 --db-instance-identifier instance-preupgrade \
 --db-cluster-identifier problematic-57-80-upgrade \
 --db-instance-class db.t2.small --engine aurora-mysql
{
 "DBInstanceIdentifier": "instance-preupgrade",

786

Amazon Aurora User Guide for Aurora
Aurora MySQL version 3 compatible with MySQL 8.0

 "DBClusterIdentifier": "problematic-57-80-upgrade",
 "DBInstanceClass": "db.t2.small",
 "DBInstanceStatus": "creating"
}

$ aws rds wait db-instance-available \
 --db-instance-identifier instance-preupgrade

In the cluster that we intend to upgrade, we introduce a problematic table. Creating a FULLTEXT index
and then dropping the index leaves behind some metadata that causes a problem during the upgrade.

$ mysql -u my_username -p \
 -h problematic-57-80-upgrade.cluster-example123.us-east-1.rds.amazonaws.com

mysql> create database problematic_upgrade;
Query OK, 1 row affected (0.02 sec)

mysql> use problematic_upgrade;
Database changed
mysql> CREATE TABLE dangling_fulltext_index
 -> (id INT AUTO_INCREMENT PRIMARY KEY, txtcol TEXT NOT NULL)
 -> ENGINE=InnoDB;
Query OK, 0 rows affected (0.05 sec)

mysql> ALTER TABLE dangling_fulltext_index ADD FULLTEXT(txtcol);
Query OK, 0 rows affected, 1 warning (0.14 sec)

mysql> ALTER TABLE dangling_fulltext_index DROP INDEX txtcol;
Query OK, 0 rows affected (0.06 sec)

This example attempts to perform the upgrade procedure. We take a snapshot of the original cluster
and wait for snapshot creation to complete. Then we restore the snapshot, specifying the MySQL 8.0-
compatible version number. We also create the writer instance for the cluster. That is the point where the
upgrade processing actually happens. Then we wait for the writer instance to become available. That's
the point where the upgrade process is finished, whether it succeeded or failed.

Tip
If you restore the snapshot using the AWS Management Console, Aurora creates the writer
instance automatically and upgrades it to the requested engine version.

$ aws rds create-db-cluster-snapshot --db-cluster-id problematic-57-80-upgrade \
 --db-cluster-snapshot-id problematic-57-80-upgrade-snapshot
{
 "DBClusterSnapshotIdentifier": "problematic-57-80-upgrade-snapshot",
 "DBClusterIdentifier": "problematic-57-80-upgrade",
 "Engine": "aurora-mysql",
 "EngineVersion": "5.7.mysql_aurora.2.10.0"
}

$ aws rds wait db-cluster-snapshot-available \
 --db-cluster-snapshot-id problematic-57-80-upgrade-snapshot

$ aws rds restore-db-cluster-from-snapshot \
 --snapshot-id problematic-57-80-upgrade-snapshot \
 --db-cluster-id cluster-80-attempt-1 --engine aurora-mysql \
 --engine-version 8.0.mysql_aurora.3.01.0 \
 --enable-cloudwatch-logs-exports '["error","general","slowquery","audit"]'
{
 "DBClusterIdentifier": "cluster-80-attempt-1",
 "Engine": "aurora-mysql",
 "EngineVersion": "8.0.mysql_aurora.3.01.0",
 "Status": "creating"
}

787

Amazon Aurora User Guide for Aurora
Aurora MySQL version 3 compatible with MySQL 8.0

$ aws rds create-db-instance --db-instance-identifier instance-attempt-1 \
 --db-cluster-identifier cluster-80-attempt-1 \
 --db-instance-class db.r5.xlarge --engine aurora-mysql
{
 "DBInstanceIdentifier": "instance-attempt-1",
 "DBClusterIdentifier": "cluster-80-attempt-1",
 "DBInstanceClass": "db.r5.xlarge",
 "EngineVersion": "8.0.mysql_aurora.3.01.0",
 "DBInstanceStatus": "creating"
}

$ aws rds wait db-instance-available \
 --db-instance-identifier instance-attempt-1

Now we examine the newly created cluster and associated instance to verify if the upgrade succeeded.
The cluster and instance are still running a MySQL 5.7-compatible version. That means that the upgrade
failed. When an upgrade fails, Aurora only leaves the writer instance behind so that you can examine
any log files. You can't restart the upgrade process with that newly created cluster. After you correct the
problem by making changes in your original cluster, you must run the upgrade steps again: make a new
snapshot of the original cluster and restore it to another MySQL 8.0-compatible cluster.

$ aws rds describe-db-clusters \
 --db-cluster-identifier cluster-80-attempt-1 \
 --query '*[].[Status]' --output text
available
$ aws rds describe-db-clusters \
 --db-cluster-identifier cluster-80-attempt-1 \
 --query '*[].[EngineVersion]' --output text
5.7.mysql_aurora.2.10.0

$ aws rds describe-db-instances \
 --db-instance-identifier instance-attempt-1 \
 --query '*[].{DBInstanceStatus:DBInstanceStatus}' --output text
available
$ aws rds describe-db-instances \
 --db-instance-identifier instance-attempt-1 \
 --query '*[].[EngineVersion]' --output text
5.7.mysql_aurora.2.10.0

To get a summary of what happened during the upgrade process, we get a listing of events for the newly
created writer instance. In this example, we list the events over the last 600 minutes to cover the whole
time interval of the upgrade process. The events in the listing aren't necessarily in chronological order.
The highlighted event shows the problem that confirms the cluster couldn't be upgraded.

$ aws rds describe-events \
 --source-identifier instance-attempt-1 --source-type db-instance \
 --duration 600
{
 "Events": [
 {
 "SourceIdentifier": "instance-attempt-1",
 "SourceType": "db-instance",
 "Message": "Binlog position from crash recovery is mysql-bin-changelog.000001
 154",
 "EventCategories": [],
 "Date": "2021-12-03T20:26:17.862000+00:00",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:db:instance-attempt-1"
 },
 {
 "SourceIdentifier": "instance-attempt-1",
 "SourceType": "db-instance",

788

Amazon Aurora User Guide for Aurora
Aurora MySQL version 3 compatible with MySQL 8.0

 "Message": "Database cluster is in a state that cannot be upgraded:
PreUpgrade checks failed: Oscar PreChecker Found 1 errors",
 "EventCategories": [
 "maintenance"
],
 "Date": "2021-12-03T20:26:50.436000+00:00",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:db:instance-attempt-1"
 },
 {
 "SourceIdentifier": "instance-attempt-1",
 "SourceType": "db-instance",
 "Message": "DB instance created",
 "EventCategories": [
 "creation"
],
 "Date": "2021-12-03T20:26:58.830000+00:00",
 "SourceArn": "arn:aws:rds:us-east-1:123456789012:db:instance-attempt-1"
 },
...

To diagnose the exact cause of the problem, examine the database logs for the newly created writer
instance. When an upgrade to an 8.0-compatible version fails, the instance contains a log file with the
file name upgrade-prechecks.log. This example shows how to detect the presence of that log and
then download it to a local file for examination.

$ aws rds describe-db-log-files --db-instance-identifier instance-attempt-1 \
 --query '*[].[LogFileName]' --output text
error/mysql-error-running.log
error/mysql-error-running.log.2021-12-03.20
error/mysql-error-running.log.2021-12-03.21
error/mysql-error.log
external/mysql-external.log
upgrade-prechecks.log

$ aws rds download-db-log-file-portion --db-instance-identifier instance-attempt-1 \
 --log-file-name upgrade-prechecks.log --starting-token 0 \
 --output text >upgrade_prechecks.log

The upgrade-prechecks.log file is in JSON format. We download it using the --output text
option to avoid encoding JSON output within another JSON wrapper. For Aurora MySQL version 3
upgrades, this log always includes certain informational and warning messages. It only includes error
messages if the upgrade fails. If the upgrade succeeds, the log file isn't produced at all. The following
excerpts show the kinds of entries you can expect to find.

$ cat upgrade-prechecks.log
{
 "serverAddress": "/tmp%2Fmysql.sock",
 "serverVersion": "5.7.12",
 "targetVersion": "8.0.23",
 "auroraServerVersion": "2.10.0",
 "auroraTargetVersion": "3.01.0",
 "outfilePath": "/rdsdbdata/tmp/PreChecker.log",
 "checksPerformed": [

If "detectedProblems" is empty, the upgrade didn't encounter any occurrences of that type of
problem. You can ignore those entries.

{
 "id": "oldTemporalCheck",
 "title": "Usage of old temporal type",
 "status": "OK",

789

Amazon Aurora User Guide for Aurora
Aurora MySQL version 3 compatible with MySQL 8.0

 "detectedProblems": []
},

Checks for removed variables or changed default values aren't performed automatically. Aurora uses the
parameter group mechanism instead of a physical configuration file. You always receive some messages
with this CONFIGURATION_ERROR status, whether or not the variable changes have any effect on your
database. You can consult the MySQL documentation for details about these changes.

{
 "id": "removedSysLogVars",
 "title": "Removed system variables for error logging to the system log configuration",
 "status": "CONFIGURATION_ERROR",
 "description": "To run this check requires full path to MySQL server
configuration file to be specified at 'configPath' key of options dictionary",
 "documentationLink": "https://dev.mysql.com/doc/relnotes/mysql/8.0/en/
news-8-0-13.html#mysqld-8-0-13-logging"
},

This warning about obsolete date and time data types occurs if the SQL_MODE setting in your parameter
group is left at the default value. Your database might or might not contain columns with the affected
types.

{
 "id": "zeroDatesCheck",
 "title": "Zero Date, Datetime, and Timestamp values",
 "status": "OK",
 "description": "Warning: By default zero date/datetime/timestamp
values are no longer allowed in MySQL, as of 5.7.8 NO_ZERO_IN_DATE and
NO_ZERO_DATE are included in SQL_MODE by default. These modes should be used
with strict mode as they will be merged with strict mode in a future release.
If you do not include these modes in your SQL_MODE setting, you are able to
insert date/datetime/timestamp values that contain zeros. It is strongly
advised to replace zero values with valid ones, as they may not work
correctly in the future.",
 "documentationLink": "https://lefred.be/content/mysql-8-0-and-wrong-dates/",
 "detectedProblems": [
 {
 "level": "Warning",
 "dbObject": "global.sql_mode",
 "description": "does not contain either NO_ZERO_DATE or
NO_ZERO_IN_DATE which allows insertion of zero dates"
 }
]
},

When the detectedProblems field contains entries with a level value of Error, that means that the
upgrade can't succeed until you correct those issues.

{
 "id": "getDanglingFulltextIndex",
 "title": "Tables with dangling FULLTEXT index reference",
 "status": "OK",
 "description": "Error: The following tables contain dangling
FULLTEXT index which is not supported. It is recommended to rebuild the
table before upgrade.",
 "detectedProblems": [
 {
 "level": "Error",
 "dbObject": "problematic_upgrade.dangling_fulltext_index",
 "description": "Table `problematic_upgrade.dangling_fulltext_index` contains
 dangling FULLTEXT index. Kindly recreate the table before upgrade."

790

Amazon Aurora User Guide for Aurora
Aurora MySQL version 3 compatible with MySQL 8.0

 }
]
},

Tip
To summarize all of those errors and display the associated object and description fields, you
can run the command grep -A 2 '"level": "Error"' on the contents of the upgrade-
prechecks.log file. Doing so displays each error line and the two lines after it, which contain
the name of the corresponding database object and guidance about how to correct the problem.

$ cat upgrade-prechecks.log | grep -A 2 '"level": "Error"'
"level": "Error",
"dbObject": "problematic_upgrade.dangling_fulltext_index",
"description": "Table `problematic_upgrade.dangling_fulltext_index` contains
dangling FULLTEXT index. Kindly recreate the table before upgrade."

This defaultAuthenticationPlugin check always displays this warning message for Aurora MySQL
version 3 upgrades. That's because Aurora MySQL version 3 uses the mysql_native_password plugin
instead of caching_sha2_password. You don't need to take any action for this warning.

{
 "id": "defaultAuthenticationPlugin",
 "title": "New default authentication plugin considerations",
 "description": "Warning: The new default authentication plugin
'caching_sha2_password' offers more secure password hashing than previously
used 'mysql_native_password' (and consequent improved client connection
...
 "documentationLink": "https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-
series.html#upgrade-caching-sha2-password-compatibility-issues\nhttps://dev.mysql.com/
doc/refman/8.0/en/upgrading-from-previous-series.html#upgrade-caching-sha2-password-
replication"
}

The end of the upgrade-prechecks.log file summarizes how many checks encountered each type of
minor or severe problem. A nonzero errorCount indicates that the upgrade failed.

],
 "errorCount": 1,
 "warningCount": 2,
 "noticeCount": 0,
 "Summary": "1 errors were found. Please correct these issues before
upgrading to avoid compatibility issues."
}

The next sequence of examples demonstrates how to fix this particular issue and run the upgrade
process again. This time, the upgrade succeeds.

First, we go back to the original cluster and create a new table with the same structure and contents
as the one with faulty metadata. In practice, you would probably rename this table back to the original
table name after the upgrade.

$ mysql -u my_username -p \
 -h problematic-57-80-upgrade.cluster-example123.us-east-1.rds.amazonaws.com

mysql> show databases;
+---------------------+
| Database |
+---------------------+
| information_schema |

791

Amazon Aurora User Guide for Aurora
Aurora MySQL version 3 compatible with MySQL 8.0

| mysql |
| performance_schema |
| problematic_upgrade |
| sys |
+---------------------+
5 rows in set (0.00 sec)

mysql> use problematic_upgrade;
mysql> show tables;
+-------------------------------+
| Tables_in_problematic_upgrade |
+-------------------------------+
| dangling_fulltext_index |
+-------------------------------+
1 row in set (0.00 sec)

mysql> desc dangling_fulltext_index;
+--------+---------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+--------+---------+------+-----+---------+----------------+
| id | int(11) | NO | PRI | NULL | auto_increment |
| txtcol | text | NO | | NULL | |
+--------+---------+------+-----+---------+----------------+
2 rows in set (0.00 sec)

mysql> CREATE TABLE recreated_table LIKE dangling_fulltext_index;
Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO recreated_table SELECT * FROM dangling_fulltext_index;
Query OK, 0 rows affected (0.00 sec)

mysql> drop table dangling_fulltext_index;
Query OK, 0 rows affected (0.05 sec)

Now we go through the same process as before: creating a snapshot from the original cluster, restoring
the snapshot to a new MySQL 8.0-compatible cluster, and creating a writer instance to complete the
upgrade process.

$ aws rds create-db-cluster-snapshot --db-cluster-id problematic-57-80-upgrade \
 --db-cluster-snapshot-id problematic-57-80-upgrade-snapshot-2
{
 "DBClusterSnapshotIdentifier": "problematic-57-80-upgrade-snapshot-2",
 "DBClusterIdentifier": "problematic-57-80-upgrade",
 "Engine": "aurora-mysql",
 "EngineVersion": "5.7.mysql_aurora.2.10.0"
}

$ aws rds wait db-cluster-snapshot-available \
 --db-cluster-snapshot-id problematic-57-80-upgrade-snapshot-2

$ aws rds restore-db-cluster-from-snapshot \
 --snapshot-id problematic-57-80-upgrade-snapshot-2 \
 --db-cluster-id cluster-80-attempt-2 --engine aurora-mysql \
 --engine-version 8.0.mysql_aurora.3.01.0 \
 --enable-cloudwatch-logs-exports '["error","general","slowquery","audit"]'
{
 "DBClusterIdentifier": "cluster-80-attempt-2",
 "Engine": "aurora-mysql",
 "EngineVersion": "8.0.mysql_aurora.3.01.0",
 "Status": "creating"
}

$ aws rds create-db-instance --db-instance-identifier instance-attempt-2 \
 --db-cluster-identifier cluster-80-attempt-2 \

792

Amazon Aurora User Guide for Aurora
Aurora MySQL version 3 compatible with MySQL 8.0

 --db-instance-class db.r5.xlarge --engine aurora-mysql
{
 "DBInstanceIdentifier": "instance-attempt-2",
 "DBClusterIdentifier": "cluster-80-attempt-2",
 "DBInstanceClass": "db.r5.xlarge",
 "EngineVersion": "8.0.mysql_aurora.3.01.0",
 "DBInstanceStatus": "creating"
}

$ aws rds wait db-instance-available \
 --db-instance-identifier instance-attempt-2

This time, checking the version after the upgrade completes confirms that the version number changed
to reflect Aurora MySQL version 3. We can connect to the database and confirm the MySQL engine
version is an 8.0-compatible one. We confirm that the upgraded cluster contains the fixed version of the
table that caused the original upgrade problem.

$ aws rds describe-db-clusters \
 --db-cluster-identifier cluster-80-attempt-2 \
 --query '*[].[EngineVersion]' --output text
8.0.mysql_aurora.3.01.0
$ aws rds describe-db-instances \
 --db-instance-identifier instance-attempt-2 \
 --query '*[].[EngineVersion]' --output text
8.0.mysql_aurora.3.01.0

$ mysql -h cluster-80-attempt-2.cluster-example123.us-east-1.rds.amazonaws.com \
 -u my_username -p

mysql> select version();
+-----------+
| version() |
+-----------+
| 8.0.23 |
+-----------+
1 row in set (0.00 sec)

mysql> show databases;
+---------------------+
| Database |
+---------------------+
| information_schema |
| mysql |
| performance_schema |
| problematic_upgrade |
| sys |
+---------------------+
5 rows in set (0.00 sec)

mysql> use problematic_upgrade;
Database changed
mysql> show tables;
+-------------------------------+
| Tables_in_problematic_upgrade |
+-------------------------------+
| recreated_table |
+-------------------------------+
1 row in set (0.00 sec)

Post-upgrade cleanup for Aurora MySQL version 3

After you finish upgrading any Aurora MySQL version 1 or 2 clusters to Aurora MySQL version 3, you can
perform these other cleanup actions:

793

Amazon Aurora User Guide for Aurora
Aurora MySQL version 2 compatible with MySQL 5.7

• Create new MySQL 8.0–compatible versions of any custom parameter groups. Apply any necessary
custom parameter values to the new parameter groups.

• Update any CloudWatch alarms, setup scripts, and so on to use the new names for any metrics whose
names were affected by inclusive language changes. For a list of such metrics, see Inclusive language
changes for Aurora MySQL version 3 (p. 772).

• Update any AWS CloudFormation templates to use the new names for any configuration parameters
whose names were affected by inclusive language changes. For a list of such parameters, see Inclusive
language changes for Aurora MySQL version 3 (p. 772).

Spatial indexes

After upgrading to Aurora MySQL version 3, check if you need to drop or recreate objects and indexes
related to spatial indexes. Before MySQL 8.0, Aurora could optimize spatial queries using indexes that
didn't contain a spatial resource identifier (SRID). Aurora MySQL version 3 only uses spatial indexes
containing SRIDs. During an upgrade, Aurora automatically drops any spatial indexes without SRIDs and
prints warning messages in the database log. If you observe such warning messages, create new spatial
indexes with SRIDs after the upgrade. For more information about changes to spatial functions and data
types in MySQL 8.0, see Changes in MySQL 8.0 in the MySQL Reference Manual.

Aurora MySQL version 2 compatible with MySQL 5.7
The following features are supported in MySQL 5.7.12 but are currently not supported in Aurora MySQL
5.7:

• Group replication plugin
• Increased page size
• InnoDB buffer pool loading at startup
• InnoDB full-text parser plugin
• Multisource replication
• Online buffer pool resizing
• Password validation plugin
• Query rewrite plugins
• Replication filtering
• The CREATE TABLESPACE SQL statement
• X Protocol

For more information about these features, see the MySQL 5.7 documentation.

Comparison of Aurora MySQL 5.6 and Aurora MySQL 5.7
The following Amazon Aurora MySQL features are supported in Aurora MySQL 5.6, but these features are
currently not supported in Aurora MySQL 5.7.

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. You can asynchronously invoke
AWS Lambda functions from Aurora MySQL 5.7. For more information, see Invoking a Lambda
function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

794

https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html
https://dev.mysql.com/doc/refman/5.7/en/

Amazon Aurora User Guide for Aurora
Security with Aurora MySQL

Currently, Aurora MySQL 5.7 does not support features added in Aurora MySQL version 1.16 and
later. For information about Aurora MySQL version 1.16, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

The performance schema isn't available for early releases of Aurora MySQL 5.7. Upgrade to Aurora 2.03
or higher for performance schema support.

Security with Amazon Aurora MySQL
Security for Amazon Aurora MySQL is managed at three levels:

• To control who can perform Amazon RDS management actions on Aurora MySQL DB clusters and DB
instances, you use AWS Identity and Access Management (IAM). When you connect to AWS using IAM
credentials, your AWS account must have IAM policies that grant the permissions required to perform
Amazon RDS management operations. For more information, see Identity and access management in
Amazon Aurora (p. 1737).

If you are using IAM to access the Amazon RDS console, you must first sign on to the AWS
Management Console with your IAM user credentials. Then go to the Amazon RDS console at https://
console.aws.amazon.com/rds/.

• Aurora MySQL DB clusters must be created in an Amazon Virtual Private Cloud (VPC). To control
which devices and Amazon EC2 instances can open connections to the endpoint and port of the DB
instance for Aurora MySQL DB clusters in a VPC, you use a VPC security group. These endpoint and
port connections can be made using Secure Sockets Layer (SSL). In addition, firewall rules at your
company can control whether devices running at your company can open connections to a DB instance.
For more information on VPCs, see Amazon Virtual Private Cloud VPCs and Amazon Aurora (p. 1800).

The supported VPC tenancy depends on the DB instance class used by your Aurora MySQL DB clusters.
With default VPC tenancy, the VPC runs on shared hardware. With dedicated VPC tenancy, the VPC
runs on a dedicated hardware instance. The burstable performance DB instance classes support default
VPC tenancy only. The burstable performance DB instance classes include the db.t2, db.t3, and db.t4g
DB instance classes. All other Aurora MySQL DB instance classes support both default and dedicated
VPC tenancy.

For more information about instance classes, see Aurora DB instance classes (p. 54). For more
information about default and dedicated VPC tenancy, see Dedicated instances in the Amazon
Elastic Compute Cloud User Guide.

• To authenticate login and permissions for an Amazon Aurora MySQL DB cluster, you can take either of
the following approaches, or a combination of them:

• You can take the same approach as with a standalone instance of MySQL.

Commands such as CREATE USER, RENAME USER, GRANT, REVOKE, and SET PASSWORD work just
as they do in on-premises databases, as does directly modifying database schema tables. For more
information, see Access control and account management in the MySQL documentation.

• You can also use IAM database authentication.

With IAM database authentication, you authenticate to your DB cluster by using an IAM user or IAM
role and an authentication token. An authentication token is a unique value that is generated using
the Signature Version 4 signing process. By using IAM database authentication, you can use the same
credentials to control access to your AWS resources and your databases. For more information, see
IAM database authentication (p. 1756).

Note
For more information, see Security in Amazon Aurora (p. 1719).

795

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html
https://dev.mysql.com/doc/refman/5.6/en/access-control.html

Amazon Aurora User Guide for Aurora
Master user privileges with Aurora MySQL

Master user privileges with Amazon Aurora MySQL
When you create an Amazon Aurora MySQL DB instance, the master user has the following default
privileges:

• ALTER

• ALTER ROUTINE

• CREATE

• CREATE ROUTINE

• CREATE TEMPORARY TABLES

• CREATE USER

• CREATE VIEW

• DELETE

• DROP

• EVENT

• EXECUTE

• GRANT OPTION

• INDEX

• INSERT

• LOAD FROM S3

• LOCK TABLES

• PROCESS

• REFERENCES

• RELOAD

• REPLICATION CLIENT

• REPLICATION SLAVE

• SELECT

• SHOW DATABASES

• SHOW VIEW

• TRIGGER

• UPDATE

To provide management services for each DB cluster, the rdsadmin user is created when the DB cluster
is created. Attempting to drop, rename, change the password, or change privileges for the rdsadmin
account results in an error.

For management of the Aurora MySQL DB cluster, the standard kill and kill_query commands have
been restricted. Instead, use the Amazon RDS commands rds_kill and rds_kill_query to terminate
user sessions or queries on Aurora MySQL DB instances.

Note
Encryption of a database instance and snapshots is not supported for the China (Ningxia) region.

Using SSL/TLS with Aurora MySQL DB clusters
Amazon Aurora MySQL DB clusters support Secure Sockets Layer (SSL) and Transport Layer Security
(TLS) connections from applications using the same process and public key as RDS for MySQL DB
instances.

Amazon RDS creates an SSL/TLS certificate and installs the certificate on the DB instance when Amazon
RDS provisions the instance. These certificates are signed by a certificate authority. The SSL/TLS

796

Amazon Aurora User Guide for Aurora
Using SSL/TLS with Aurora MySQL DB clusters

certificate includes the DB instance endpoint as the Common Name (CN) for the SSL/TLS certificate to
guard against spoofing attacks. As a result, you can only use the DB cluster endpoint to connect to a DB
cluster using SSL/TLS if your client supports Subject Alternative Names (SAN). Otherwise, you must use
the instance endpoint of a writer instance.

For information about downloading certificates, see Using SSL/TLS to encrypt a connection to a DB
cluster (p. 1726).

We recommend the MariaDB Connector/J client as a client that supports SAN with SSL. For more
information, see the MariaDB Connector/J download page.

Topics
• Requiring an SSL/TLS connection to an Aurora MySQL DB cluster (p. 797)
• TLS versions for Aurora MySQL (p. 797)
• Encrypting connections to an Aurora MySQL DB cluster (p. 798)

Requiring an SSL/TLS connection to an Aurora MySQL DB
cluster
You can require that all user connections to your Aurora MySQL DB cluster use SSL/TLS by using the
require_secure_transport DB cluster parameter. By default, the require_secure_transport
parameter is set to OFF. You can set the require_secure_transport parameter to ON to require SSL/
TLS for connections to your DB cluster.

You can set the require_secure_transport parameter value by updating the DB cluster parameter
group for your DB cluster. You don't need to reboot your DB cluster for the change to take effect.
For more information on parameter groups, see Working with DB parameter groups and DB cluster
parameter groups (p. 339).

Note
The require_secure_transport parameter is only available for Aurora MySQL version
5.7. You can set this parameter in a custom DB cluster parameter group. The parameter isn't
available in DB instance parameter groups.

When the require_secure_transport parameter is set to ON for a DB cluster, a database client can
connect to it if it can establish an encrypted connection. Otherwise, an error message similar to the
following is returned to the client:

MySQL Error 3159 (HY000): Connections using insecure transport are prohibited while --
require_secure_transport=ON.

TLS versions for Aurora MySQL
Aurora MySQL supports Transport Layer Security (TLS) versions 1.0, 1.1, and 1.2. The following table
shows the TLS support for Aurora MySQL versions.

Aurora MySQL version TLS 1.0 TLS 1.1 TLS 1.2

Aurora MySQL version 3 Supported Supported Supported

Aurora MySQL version 2 Supported Supported Supported

Aurora MySQL version 1 Supported Supported for Aurora
MySQL 1.23.1 and
higher

Supported for Aurora
MySQL 1.23.1 and
higher

797

https://downloads.mariadb.org/connector-java/

Amazon Aurora User Guide for Aurora
Using SSL/TLS with Aurora MySQL DB clusters

Although the community edition of MySQL 8.0 supports TLS 1.3, the MySQL 8.0-compatible Aurora
MySQL version 3 currently doesn't support TLS 1.3.

For an Aurora MySQL 5.7 DB cluster, you can use the tls_version DB cluster parameter to indicate
the permitted protocol versions. Similar client parameters exist for most client tools or database drivers.
Some older clients might not support newer TLS versions. By default, the DB cluster attempts to use the
highest TLS protocol version allowed by both the server and client configuration.

Set the tls_version DB cluster parameter to one of the following values:

• TLSv1.2 – Only the TLS version 1.2 protocol is permitted for encrypted connections.
• TLSv1.1 – TLS version 1.1 and 1.2 protocols are permitted for encrypted connections.
• TLSv1 – TLS version 1.0, 1.1, and 1.2 protocols are permitted for encrypted connections.

If the parameter isn't set, then TLS version 1.0, 1.1, and 1.2 protocols are permitted for encrypted
connections.

For information about modifying parameters in a DB cluster parameter group, see Modifying parameters
in a DB cluster parameter group (p. 349). If you use the AWS CLI to modify the tls_version DB
cluster parameter, the ApplyMethod must be set to pending-reboot. When the application method
is pending-reboot, changes to parameters are applied after you stop and restart the DB clusters
associated with the parameter group.

Note
The tls_version DB cluster parameter isn't available for Aurora MySQL 5.6.

Encrypting connections to an Aurora MySQL DB cluster
To encrypt connections using the default mysql client, launch the mysql client using the --ssl-ca
parameter to reference the public key, for example:

For MySQL 5.7 and 8.0:

mysql -h myinstance.123456789012.rds-us-east-1.amazonaws.com
--ssl-ca=full_path_to_CA_certificate --ssl-mode=VERIFY_IDENTITY

For MySQL 5.6:

mysql -h myinstance.123456789012.rds-us-east-1.amazonaws.com
--ssl-ca=full_path_to_CA_certificate --ssl-verify-server-cert

Replace full_path_to_CA_certificate with the full path to your Certificate Authority (CA)
certificate. For information about downloading a certificate, see Using SSL/TLS to encrypt a connection
to a DB cluster (p. 1726).

You can require SSL/TLS connections for specific users accounts. For example, you can use one of the
following statements, depending on your MySQL version, to require SSL/TLS connections on the user
account encrypted_user.

For MySQL 5.7 and 8.0:

ALTER USER 'encrypted_user'@'%' REQUIRE SSL;

For MySQL 5.6:

798

Amazon Aurora User Guide for Aurora
Updating applications for new SSL/TLS certificates

GRANT USAGE ON *.* TO 'encrypted_user'@'%' REQUIRE SSL;

When you use an RDS proxy, you connect to the proxy endpoint instead of the usual cluster endpoint.
You can make SSL/TLS required or optional for connections to the proxy, in the same way as for
connections directly to the Aurora DB cluster. For information about using the RDS Proxy, see Using
Amazon RDS Proxy (p. 288).

Note
For more information on SSL/TLS connections with MySQL, see the MySQL documentation.

Updating applications to connect to Aurora MySQL
DB clusters using new SSL/TLS certificates

As of September 19, 2019, Amazon RDS has published new Certificate Authority (CA) certificates for
connecting to your Aurora DB clusters using Secure Socket Layer or Transport Layer Security (SSL/TLS).
Following, you can find information about updating your applications to use the new certificates.

This topic can help you to determine whether any client applications use SSL/TLS to connect to your DB
clusters. If they do, you can further check whether those applications require certificate verification to
connect.

Note
Some applications are configured to connect to Aurora MySQL DB clusters only if they can
successfully verify the certificate on the server.
For such applications, you must update your client application trust stores to include the new CA
certificates.

After you update your CA certificates in the client application trust stores, you can rotate the certificates
on your DB clusters. We strongly recommend testing these procedures in a development or staging
environment before implementing them in your production environments.

For more information about certificate rotation, see Rotating your SSL/TLS certificate (p. 1728). For
more information about downloading certificates, see Using SSL/TLS to encrypt a connection to a DB
cluster (p. 1726). For information about using SSL/TLS with Aurora MySQL DB clusters, see Using SSL/
TLS with Aurora MySQL DB clusters (p. 796).

Topics
• Determining whether any applications are connecting to your Aurora MySQL DB cluster using

SSL (p. 799)
• Determining whether a client requires certificate verification to connect (p. 800)
• Updating your application trust store (p. 801)
• Example Java code for establishing SSL connections (p. 802)

Determining whether any applications are connecting
to your Aurora MySQL DB cluster using SSL
If you are using Aurora MySQL version 2 (compatible with MySQL 5.7) and the Performance Schema
is enabled, run the following query to check if connections are using SSL/TLS. For information about
enabling the Performance Schema, see Performance Schema quick start in the MySQL documentation.

mysql> SELECT id, user, host, connection_type

799

https://dev.mysql.com/doc/refman/5.7/en/using-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-quick-start.html

Amazon Aurora User Guide for Aurora
Determining whether a client requires

certificate verification to connect

 FROM performance_schema.threads pst
 INNER JOIN information_schema.processlist isp
 ON pst.processlist_id = isp.id;

In this sample output, you can see both your own session (admin) and an application logged in as
webapp1 are using SSL.

+----+-----------------+------------------+-----------------+
| id | user | host | connection_type |
+----+-----------------+------------------+-----------------+
8	admin	10.0.4.249:42590	SSL/TLS
4	event_scheduler	localhost	NULL
10	webapp1	159.28.1.1:42189	SSL/TLS
+----+-----------------+------------------+-----------------+
3 rows in set (0.00 sec)

If you are using Aurora MySQL version 1 (compatible with MySQL 5.6), then you can't determine from
the server side whether applications are connecting with or without SSL. For those versions, you can
determine whether SSL is used by examining the application's connection method. You can find more
information on examining the client connection configuration in the following section.

Determining whether a client requires certificate
verification to connect
You can check whether JDBC clients and MySQL clients require certificate verification to connect.

JDBC
The following example with MySQL Connector/J 8.0 shows one way to check an application's JDBC
connection properties to determine whether successful connections require a valid certificate. For more
information on all of the JDBC connection options for MySQL, see Configuration properties in the MySQL
documentation.

When using the MySQL Connector/J 8.0, an SSL connection requires verification against the server CA
certificate if your connection properties have sslMode set to VERIFY_CA or VERIFY_IDENTITY, as in
the following example.

Properties properties = new Properties();
properties.setProperty("sslMode", "VERIFY_IDENTITY");
properties.put("user", DB_USER);
properties.put("password", DB_PASSWORD);

Note
If you use either the MySQL Java Connector v5.1.38 or later, or the MySQL Java Connector
v8.0.9 or later to connect to your databases, even if you haven't explicitly configured your
applications to use SSL/TLS when connecting to your databases, these client drivers default to
using SSL/TLS. In addition, when using SSL/TLS, they perform partial certificate verification and
fail to connect if the database server certificate is expired.

MySQL
The following examples with the MySQL Client show two ways to check a script's MySQL connection to
determine whether successful connections require a valid certificate. For more information on all of the
connection options with the MySQL Client, see Client-side configuration for encrypted connections in the
MySQL documentation.

800

https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-reference-configuration-properties.html
https://dev.mysql.com/doc/refman/8.0/en/using-encrypted-connections.html#using-encrypted-connections-client-side-configuration

Amazon Aurora User Guide for Aurora
Updating your application trust store

When using the MySQL 5.7 or MySQL 8.0 Client, an SSL connection requires verification against the
server CA certificate if for the --ssl-mode option you specify VERIFY_CA or VERIFY_IDENTITY, as in
the following example.

mysql -h mysql-database.rds.amazonaws.com -uadmin -ppassword --ssl-ca=/tmp/ssl-cert.pem --
ssl-mode=VERIFY_CA

When using the MySQL 5.6 Client, an SSL connection requires verification against the server CA
certificate if you specify the --ssl-verify-server-cert option, as in the following example.

mysql -h mysql-database.rds.amazonaws.com -uadmin -ppassword --ssl-ca=/tmp/ssl-cert.pem --
ssl-verify-server-cert

Updating your application trust store
For information about updating the trust store for MySQL applications, see Installing SSL certificates in
the MySQL documentation.

Note
When you update the trust store, you can retain older certificates in addition to adding the new
certificates.

Updating your application trust store for JDBC
You can update the trust store for applications that use JDBC for SSL/TLS connections.

To update the trust store for JDBC applications

1. Download the 2019 root certificate that works for all AWS Regions and put the file in the trust store
directory.

For information about downloading the root certificate, see Using SSL/TLS to encrypt a connection
to a DB cluster (p. 1726).

2. Convert the certificate to .der format using the following command.

openssl x509 -outform der -in rds-ca-2019-root.pem -out rds-ca-2019-root.der

Replace the file name with the one that you downloaded.
3. Import the certificate into the key store using the following command.

keytool -import -alias rds-root -keystore clientkeystore -file rds-ca-2019-root.der

4. Confirm that the key store was updated successfully.

keytool -list -v -keystore clientkeystore.jks

Enter the metastore password when you are prompted for it.

Your output should contain the following.

rds-root,date, trustedCertEntry,
Certificate fingerprint (SHA1):
 D4:0D:DB:29:E3:75:0D:FF:A6:71:C3:14:0B:BF:5F:47:8D:1C:80:96
This fingerprint should match the output from the below command
openssl x509 -fingerprint -in rds-ca-2019-root.pem -noout

801

https://dev.mysql.com/doc/mysql-monitor/8.0/en/mem-ssl-installation.html

Amazon Aurora User Guide for Aurora
Example Java code for establishing SSL connections

If you are using the mysql JDBC driver in an application, set the following properties in the application.

System.setProperty("javax.net.ssl.trustStore", certs);
System.setProperty("javax.net.ssl.trustStorePassword", "password");

When you start the application, set the following properties.

java -Djavax.net.ssl.trustStore=/path_to_truststore/MyTruststore.jks -
Djavax.net.ssl.trustStorePassword=my_truststore_password com.companyName.MyApplication

Example Java code for establishing SSL connections
The following code example shows how to set up the SSL connection that validates the server certificate
using JDBC.

public class MySQLSSLTest {

 private static final String DB_USER = "user name";
 private static final String DB_PASSWORD = "password";
 // This key store has only the prod root ca.
 private static final String KEY_STORE_FILE_PATH = "file-path-to-keystore";
 private static final String KEY_STORE_PASS = "keystore-password";

 public static void test(String[] args) throws Exception {
 Class.forName("com.mysql.jdbc.Driver");

 System.setProperty("javax.net.ssl.trustStore", KEY_STORE_FILE_PATH);
 System.setProperty("javax.net.ssl.trustStorePassword", KEY_STORE_PASS);

 Properties properties = new Properties();
 properties.setProperty("sslMode", "VERIFY_IDENTITY");
 properties.put("user", DB_USER);
 properties.put("password", DB_PASSWORD);

 Connection connection = DriverManager.getConnection("jdbc:mysql://jagdeeps-ssl-
test.cni62e2e7kwh.us-east-1.rds.amazonaws.com:3306",properties);
 Statement stmt=connection.createStatement();

 ResultSet rs=stmt.executeQuery("SELECT 1 from dual");

 return;
 }
}

Important
After you have determined that your database connections use SSL/TLS and have updated your
application trust store, you can update your database to use the rds-ca-2019 certificates. For
instructions, see step 3 in Updating your CA certificate by modifying your DB instance (p. 1729).

Migrating data to an Amazon Aurora MySQL DB
cluster

You have several options for migrating data from your existing database to an Amazon Aurora MySQL DB
cluster. Your migration options also depend on the database that you are migrating from and the size of
the data that you are migrating.

802

Amazon Aurora User Guide for Aurora
Migrating data to Aurora MySQL

There are two different types of migration: physical and logical. Physical migration means that physical
copies of database files are used to migrate the database. Logical migration means that the migration is
accomplished by applying logical database changes, such as inserts, updates, and deletes.

Physical migration has the following advantages:

• Physical migration is faster than logical migration, especially for large databases.
• Database performance does not suffer when a backup is taken for physical migration.
• Physical migration can migrate everything in the source database, including complex database

components.

Physical migration has the following limitations:

• The innodb_page_size parameter must be set to its default value (16KB).
• The innodb_data_file_path parameter must be configured with only one data file that uses the

default data file name "ibdata1:12M:autoextend". Databases with two data files, or with a data
file with a different name, can't be migrated using this method.

The following are examples of file names that are not allowed:
"innodb_data_file_path=ibdata1:50M; ibdata2:50M:autoextend" and
"innodb_data_file_path=ibdata01:50M:autoextend".

• The innodb_log_files_in_group parameter must be set to its default value (2).

Logical migration has the following advantages:

• You can migrate subsets of the database, such as specific tables or parts of a table.
• The data can be migrated regardless of the physical storage structure.

Logical migration has the following limitations:

• Logical migration is usually slower than physical migration.
• Complex database components can slow down the logical migration process. In some cases, complex

database components can even block logical migration.

The following table describes your options and the type of migration for each option.

Migrating from Migration type Solution

An RDS for MySQL DB
instance

Physical You can migrate from an RDS for MySQL
DB instance by first creating an Aurora
MySQL read replica of a MySQL DB
instance. When the replica lag between
the MySQL DB instance and the Aurora
MySQL read replica is 0, you can direct
your client applications to read from
the Aurora read replica and then stop
replication to make the Aurora MySQL
read replica a standalone Aurora MySQL
DB cluster for reading and writing. For
details, see Migrating data from a MySQL
DB instance to an Amazon Aurora MySQL
DB cluster by using an Aurora read
replica (p. 824).

803

Amazon Aurora User Guide for Aurora
Migrating data to Aurora MySQL

Migrating from Migration type Solution

An RDS for MySQL DB
snapshot

Physical You can migrate data directly from an RDS
for MySQL DB snapshot to an Amazon
Aurora MySQL DB cluster. For details, see
Migrating data from a MySQL DB instance
to an Amazon Aurora MySQL DB cluster by
using a DB snapshot (p. 818).

A MySQL database external
to Amazon RDS

Logical You can create a dump of your data
using the mysqldump utility, and then
import that data into an existing Amazon
Aurora MySQL DB cluster. For details, see
Migrating from MySQL to Amazon Aurora
by using mysqldump (p. 817).

A MySQL database external
to Amazon RDS

Physical You can copy the backup files from your
database to an Amazon Simple Storage
Service (Amazon S3) bucket, and then
restore an Amazon Aurora MySQL DB
cluster from those files. This option can
be considerably faster than migrating
data using mysqldump. For details, see
Migrating data from MySQL by using an
Amazon S3 bucket (p. 805).

A MySQL database external
to Amazon RDS

Logical You can save data from your database
as text files and copy those files to an
Amazon S3 bucket. You can then load that
data into an existing Aurora MySQL DB
cluster using the LOAD DATA FROM S3
MySQL command. For more information,
see Loading data into an Amazon Aurora
MySQL DB cluster from text files in an
Amazon S3 bucket (p. 1018).

A database that is not
MySQL-compatible

Logical You can use AWS Database Migration
Service (AWS DMS) to migrate data from
a database that is not MySQL-compatible.
For more information on AWS DMS, see
What is AWS database migration service?

Note

• If you are migrating a MySQL database external to Amazon RDS, the migration options
described in the table are supported only if your database supports the InnoDB or MyISAM
tablespaces.

• If the MySQL database you are migrating to Aurora MySQL uses memcached, remove
memcached before migrating it.

804

https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html

Amazon Aurora User Guide for Aurora
Migrating from an external

MySQL database to Aurora MySQL

Migrating data from an external MySQL database to
an Amazon Aurora MySQL DB cluster
If your database supports the InnoDB or MyISAM tablespaces, you have these options for migrating your
data to an Amazon Aurora MySQL DB cluster:

• You can create a dump of your data using the mysqldump utility, and then import that data into
an existing Amazon Aurora MySQL DB cluster. For more information, see Migrating from MySQL to
Amazon Aurora by using mysqldump (p. 817).

• You can copy the full and incremental backup files from your database to an Amazon S3 bucket, and
then restore an Amazon Aurora MySQL DB cluster from those files. This option can be considerably
faster than migrating data using mysqldump. For more information, see Migrating data from MySQL
by using an Amazon S3 bucket (p. 805).

Migrating data from MySQL by using an Amazon S3 bucket
You can copy the full and incremental backup files from your source MySQL version 5.5, 5.6, or 5.7
database to an Amazon S3 bucket, and then restore an Amazon Aurora MySQL DB cluster from those
files.

This option can be considerably faster than migrating data using mysqldump, because using mysqldump
replays all of the commands to recreate the schema and data from your source database in your new
Aurora MySQL DB cluster. By copying your source MySQL data files, Aurora MySQL can immediately use
those files as the data for an Aurora MySQL DB cluster.

Note
The Amazon S3 bucket and the Amazon Aurora MySQL DB cluster must be in the same AWS
Region.

Aurora MySQL doesn't restore everything from your database. You should save the database schema and
values for the following items from your source MySQL database and add them to your restored Aurora
MySQL DB cluster after it has been created:

• User accounts
• Functions
• Stored procedures
• Time zone information. Time zone information is loaded from the local operating system of your

Amazon Aurora MySQL DB cluster. For more information, see Local time zone for Amazon Aurora DB
clusters (p. 16).

You can't restore from an encrypted source database, but you can encrypt the data being migrated. You
can also leave the data unencrypted during the migration process.

You can't migrate from a source database that has tables defined outside of the default MySQL data
directory.

Also, decide whether you want to minimize downtime by using binary log replication during the
migration process. If you use binary log replication, the external MySQL database remains open to
transactions while the data is being migrated to the Aurora MySQL DB cluster. After the Aurora MySQL
DB cluster has been created, you use binary log replication to synchronize the Aurora MySQL DB cluster
with the transactions that happened after the backup. When the Aurora MySQL DB cluster is caught up
with the MySQL database, you finish the migration by completely switching to the Aurora MySQL DB
cluster for new transactions.

Topics

805

Amazon Aurora User Guide for Aurora
Migrating from an external

MySQL database to Aurora MySQL

• Before you begin (p. 806)

• Backing up files to be restored as an Amazon Aurora MySQL DB cluster (p. 807)

• Restoring an Amazon Aurora MySQL DB cluster from an Amazon S3 bucket (p. 809)

• Synchronizing the Amazon Aurora MySQL DB cluster with the MySQL database using
replication (p. 812)

Before you begin

Before you can copy your data to an Amazon S3 bucket and restore a DB cluster from those files, you
must do the following:

• Install Percona XtraBackup on your local server.

• Permit Aurora MySQL to access your Amazon S3 bucket on your behalf.

Installing Percona XtraBackup

Amazon Aurora can restore a DB cluster from files that were created using Percona XtraBackup. You can
install Percona XtraBackup from Download Percona XtraBackup.

Note
For MySQL 5.7 migration, you must use Percona XtraBackup 2.4. For earlier MySQL versions, use
Percona XtraBackup 2.3 or 2.4.

Required permissions

To migrate your MySQL data to an Amazon Aurora MySQL DB cluster, several permissions are required:

• The user that is requesting that Aurora create a new cluster from an Amazon S3 bucket must have
permission to list the buckets for your AWS account. You grant the user this permission using an AWS
Identity and Access Management (IAM) policy.

• Aurora requires permission to act on your behalf to access the Amazon S3 bucket where you store the
files used to create your Amazon Aurora MySQL DB cluster. You grant Aurora the required permissions
using an IAM service role.

• The user making the request must also have permission to list the IAM roles for your AWS account.

• If the user making the request is to create the IAM service role or request that Aurora create the IAM
service role (by using the console), then the user must have permission to create an IAM role for your
AWS account.

• If you plan to encrypt the data during the migration process, update the IAM policy of the user who
will perform the migration to grant RDS access to the AWS KMS keys used for encrypting the backups.
For instructions, see Creating an IAM policy to access AWS KMS resources (p. 1011).

For example, the following IAM policy grants a user the minimum required permissions to use the
console to list IAM roles, create an IAM role, list the Amazon S3 buckets for your account, and list the
KMS keys.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:ListRoles",
 "iam:CreateRole",
 "iam:CreatePolicy",

806

https://www.percona.com/downloads/Percona-XtraBackup-2.4/LATEST/

Amazon Aurora User Guide for Aurora
Migrating from an external

MySQL database to Aurora MySQL

 "iam:AttachRolePolicy",
 "s3:ListBucket",
 "kms:ListKeys"
],
 "Resource": "*"
 }
]
}

Additionally, for a user to associate an IAM role with an Amazon S3 bucket, the IAM user must have the
iam:PassRole permission for that IAM role. This permission allows an administrator to restrict which
IAM roles a user can associate with Amazon S3 buckets.

For example, the following IAM policy allows a user to associate the role named S3Access with an
Amazon S3 bucket.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowS3AccessRole",
 "Effect":"Allow",
 "Action":"iam:PassRole",
 "Resource":"arn:aws:iam::123456789012:role/S3Access"
 }
]
}

For more information on IAM user permissions, see Managing access using policies (p. 1739).

Creating the IAM service role

You can have the AWS Management Console create a role for you by choosing the Create a New Role
option (shown later in this topic). If you select this option and specify a name for the new role, then
Aurora creates the IAM service role required for Aurora to access your Amazon S3 bucket with the name
that you supply.

As an alternative, you can manually create the role using the following procedure.

To create an IAM role for Aurora to access Amazon S3

1. Complete the steps in Creating an IAM policy to access Amazon S3 resources (p. 1007).
2. Complete the steps in Creating an IAM role to allow Amazon Aurora to access AWS

services (p. 1012).
3. Complete the steps in Associating an IAM role with an Amazon Aurora MySQL DB cluster (p. 1013).

Backing up files to be restored as an Amazon Aurora MySQL DB cluster

You can create a full backup of your MySQL database files using Percona XtraBackup and upload the
backup files to an Amazon S3 bucket. Alternatively, if you already use Percona XtraBackup to back up
your MySQL database files, you can upload your existing full and incremental backup directories and files
to an Amazon S3 bucket.

Creating a full backup with Percona XtraBackup

To create a full backup of your MySQL database files that can be restored from Amazon S3 to create an
Amazon Aurora MySQL DB cluster, use the Percona XtraBackup utility (xtrabackup) to back up your
database.

807

Amazon Aurora User Guide for Aurora
Migrating from an external

MySQL database to Aurora MySQL

For example, the following command creates a backup of a MySQL database and stores the files in the /
on-premises/s3-restore/backup folder.

xtrabackup --backup --user=<myuser> --password=<password> --target-dir=</on-premises/s3-
restore/backup>

If you want to compress your backup into a single file (which can be split, if needed), you can use the --
stream option to save your backup in one of the following formats:

• Gzip (.gz)
• tar (.tar)
• Percona xbstream (.xbstream)

The following command creates a backup of your MySQL database split into multiple Gzip files.

xtrabackup --backup --user=<myuser> --password=<password> --stream=tar \
 --target-dir=</on-premises/s3-restore/backup> | gzip - | split -d --bytes=500MB \
 - </on-premises/s3-restore/backup/backup>.tar.gz

The following command creates a backup of your MySQL database split into multiple tar files.

xtrabackup --backup --user=<myuser> --password=<password> --stream=tar \
 --target-dir=</on-premises/s3-restore/backup> | split -d --bytes=500MB \
 - </on-premises/s3-restore/backup/backup>.tar

The following command creates a backup of your MySQL database split into multiple xbstream files.

xtrabackup --backup --user=<myuser> --password=<password> --stream=xbstream \
 --target-dir=</on-premises/s3-restore/backup> | split -d --bytes=500MB \
 - </on-premises/s3-restore/backup/backup>.xbstream

Once you have backed up your MySQL database using the Percona XtraBackup utility, you can copy your
backup directories and files to an Amazon S3 bucket.

For information on creating and uploading a file to an Amazon S3 bucket, see Getting started with
Amazon Simple Storage Service in the Amazon S3 Getting Started Guide.

Using incremental backups with Percona XtraBackup

Amazon Aurora MySQL supports both full and incremental backups created using Percona XtraBackup.
If you already use Percona XtraBackup to perform full and incremental backups of your MySQL database
files, you don't need to create a full backup and upload the backup files to Amazon S3. Instead, you can
save a significant amount of time by copying your existing backup directories and files for your full and
incremental backups to an Amazon S3 bucket. For more information about creating incremental backups
using Percona XtraBackup, see Incremental backup.

When copying your existing full and incremental backup files to an Amazon S3 bucket, you must
recursively copy the contents of the base directory. Those contents include the full backup and also all
incremental backup directories and files. This copy must preserve the directory structure in the Amazon
S3 bucket. Aurora iterates through all files and directories. Aurora uses the xtrabackup-checkpoints
file included with each incremental backup to identify the base directory and to order incremental
backups by log sequence number (LSN) range.

For information on creating and uploading a file to an Amazon S3 bucket, see Getting started with
Amazon Simple Storage Service in the Amazon S3 Getting Started Guide.

808

https://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
https://www.percona.com/doc/percona-xtrabackup/LATEST/backup_scenarios/incremental_backup.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html

Amazon Aurora User Guide for Aurora
Migrating from an external

MySQL database to Aurora MySQL

Backup considerations

When you upload a file to an Amazon S3 bucket, you can use server-side encryption to encrypt the data.
You can then restore an Amazon Aurora MySQL DB cluster from those encrypted files. Amazon Aurora
MySQL can restore a DB cluster with files encrypted using the following types of server-side encryption:

• Server-side encryption with Amazon S3–managed keys (SSE-S3) – Each object is encrypted with a
unique key employing strong multifactor encryption.

• Server-side encryption with AWS KMS–managed keys (SSE-KMS) – Similar to SSE-S3, but you have the
option to create and manage encryption keys yourself, and also other differences.

For information about using server-side encryption when uploading files to an Amazon S3 bucket, see
Protecting data using server-side encryption in the Amazon S3 Developer Guide.

Amazon S3 limits the size of a file uploaded to an Amazon S3 bucket to 5 TB. If the backup data for your
database exceeds 5 TB, use the split command to split the backup files into multiple files that are each
less than 5 TB.

Aurora limits the number of source files uploaded to an Amazon S3 bucket to 1 million files. In some
cases, backup data for your database, including all full and incremental backups, can come to a large
number of files. In these cases, use a tarball (.tar.gz) file to store full and incremental backup files in the
Amazon S3 bucket.

Aurora consumes your backup files based on the file name. Be sure to name your backup files with the
appropriate file extension based on the file format—for example, .xbstream for files stored using the
Percona xbstream format.

Aurora consumes your backup files in alphabetical order and also in natural number order. Always use
the split option when you issue the xtrabackup command to ensure that your backup files are
written and named in the proper order.

Aurora doesn't support partial backups created using Percona XtraBackup. You can't use the following
options to create a partial backup when you back up the source files for your database: --tables, --
tables-exclude, --tables-file, --databases, --databases-exclude, or --databases-file.

For more information about backing up your database with Percona XtraBackup, see Percona XtraBackup
- documentation and The xtrabackup binary on the Percona website.

Aurora supports incremental backups created using Percona XtraBackup. For more information about
creating incremental backups using Percona XtraBackup, see Incremental backup.

Restoring an Amazon Aurora MySQL DB cluster from an Amazon S3 bucket

You can restore your backup files from your Amazon S3 bucket to create a new Amazon Aurora MySQL
DB cluster by using the Amazon RDS console.

To restore an Amazon Aurora MySQL DB cluster from files on an Amazon S3 bucket

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the top right corner of the Amazon RDS console, choose the AWS Region in which to create your
DB cluster. Choose the same AWS Region as the Amazon S3 bucket that contains your database
backup.

3. In the navigation pane, choose Databases, and then choose Restore from S3.
4. Choose Restore from S3.

The Create database by restoring from S3 page appears.

809

https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
https://www.percona.com/doc/percona-xtrabackup/LATEST/index.html
https://www.percona.com/doc/percona-xtrabackup/LATEST/index.html
https://www.percona.com/doc/percona-xtrabackup/LATEST/xtrabackup_bin/xtrabackup_binary.html
https://www.percona.com/doc/percona-xtrabackup/LATEST/backup_scenarios/incremental_backup.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Migrating from an external

MySQL database to Aurora MySQL

810

Amazon Aurora User Guide for Aurora
Migrating from an external

MySQL database to Aurora MySQL

5. Under S3 destination:

a. Choose the S3 bucket that contains the backup files.

b. (Optional) For S3 folder path prefix, enter a file path prefix for the files stored in your Amazon
S3 bucket.

If you don't specify a prefix, then RDS creates your DB instance using all of the files and folders
in the root folder of the S3 bucket. If you do specify a prefix, then RDS creates your DB instance
using the files and folders in the S3 bucket where the path for the file begins with the specified
prefix.

For example, suppose that you store your backup files on S3 in a subfolder named backups, and
you have multiple sets of backup files, each in its own directory (gzip_backup1, gzip_backup2,
and so on). In this case, you specify a prefix of backups/gzip_backup1 to restore from the files in
the gzip_backup1 folder.

6. Under Engine options:

a. For Engine type, choose Amazon Aurora.

b. For Version, choose the Aurora MySQL engine version for your restored DB instance.

7. For IAM role, you can choose an existing IAM role.

8. (Optional) You can also have a new IAM role created for you by choosing Create a new role. If so:

a. Enter the IAM role name.

b. Choose whether to Allow access to KMS key:

• If you didn't encrypt the backup files, choose No.

• If you encrypted the backup files with AES-256 (SSE-S3) when you uploaded them to Amazon
S3, choose No. In this case, the data is decrypted automatically.

• If you encrypted the backup files with AWS KMS (SSE-KMS) server-side encryption when you
uploaded them to Amazon S3, choose Yes. Next, choose the correct KMS key for AWS KMS
key.

The AWS Management Console creates an IAM policy that enables Aurora to decrypt the data.

For more information, see Protecting data using server-side encryption in the Amazon S3
Developer Guide.

9. Choose settings for your DB cluster, such as the DB cluster identifier and the login credentials. For
information about each setting, see Settings for Aurora DB clusters (p. 137).

10. Customize additional settings for your Aurora MySQL DB cluster as needed.

11. Choose Create database to launch your Aurora DB instance.

On the Amazon RDS console, the new DB instance appears in the list of DB instances. The DB instance
has a status of creating until the DB instance is created and ready for use. When the state changes to
available, you can connect to the primary instance for your DB cluster. Depending on the DB instance
class and store allocated, it can take several minutes for the new instance to be available.

To view the newly created cluster, choose the Databases view in the Amazon RDS console and choose
the DB cluster. For more information, see Viewing an Amazon Aurora DB cluster (p. 547).

811

https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html

Amazon Aurora User Guide for Aurora
Migrating from an external

MySQL database to Aurora MySQL

Note the port and the writer endpoint of the DB cluster. Use the writer endpoint and port of the DB
cluster in your JDBC and ODBC connection strings for any application that performs write or read
operations.

Synchronizing the Amazon Aurora MySQL DB cluster with the MySQL database
using replication

To achieve little or no downtime during the migration, you can replicate transactions that were
committed on your MySQL database to your Aurora MySQL DB cluster. Replication enables the DB cluster
to catch up with the transactions on the MySQL database that happened during the migration. When
the DB cluster is completely caught up, you can stop the replication and finish the migration to Aurora
MySQL.

812

Amazon Aurora User Guide for Aurora
Migrating from an external

MySQL database to Aurora MySQL

Topics
• Configuring your external MySQL database and your Aurora MySQL DB cluster for encrypted

replication (p. 813)

• Synchronizing the Amazon Aurora MySQL DB cluster with the external MySQL database (p. 814)

Configuring your external MySQL database and your Aurora MySQL DB cluster for encrypted
replication

To replicate data securely, you can use encrypted replication.

Note
If you don't need to use encrypted replication, you can skip these steps and move on to the
instructions in Synchronizing the Amazon Aurora MySQL DB cluster with the external MySQL
database (p. 814).

The following are prerequisites for using encrypted replication:

• Secure Sockets Layer (SSL) must be enabled on the external MySQL primary database.

• A client key and client certificate must be prepared for the Aurora MySQL DB cluster.

During encrypted replication, the Aurora MySQL DB cluster acts a client to the MySQL database server.
The certificates and keys for the Aurora MySQL client are in files in .pem format.

To configure your external MySQL database and your Aurora MySQL DB cluster for encrypted
replication

1. Ensure that you are prepared for encrypted replication:

• If you don't have SSL enabled on the external MySQL primary database and don't have a client
key and client certificate prepared, enable SSL on the MySQL database server and generate the
required client key and client certificate.

• If SSL is enabled on the external primary, supply a client key and certificate for the Aurora MySQL
DB cluster. If you don't have these, generate a new key and certificate for the Aurora MySQL DB
cluster. To sign the client certificate, you must have the certificate authority key that you used to
configure SSL on the external MySQL primary database.

For more information, see Creating SSL certificates and keys using openssl in the MySQL
documentation.

You need the certificate authority certificate, the client key, and the client certificate.

2. Connect to the Aurora MySQL DB cluster as the primary user using SSL.

For information about connecting to an Aurora MySQL DB cluster with SSL, see Using SSL/TLS with
Aurora MySQL DB clusters (p. 796).

3. Run the mysql.rds_import_binlog_ssl_material stored procedure to import the SSL
information into the Aurora MySQL DB cluster.

For the ssl_material_value parameter, insert the information from the .pem format files for the
Aurora MySQL DB cluster in the correct JSON payload.

The following example imports SSL information into an Aurora MySQL DB cluster. In .pem format
files, the body code typically is longer than the body code shown in the example.

call mysql.rds_import_binlog_ssl_material(
'{"ssl_ca":"-----BEGIN CERTIFICATE-----

813

https://dev.mysql.com/doc/refman/5.6/en/creating-ssl-files-using-openssl.html

Amazon Aurora User Guide for Aurora
Migrating from an external

MySQL database to Aurora MySQL

AAAAB3NzaC1yc2EAAAADAQABAAABAQClKsfkNkuSevGj3eYhCe53pcjqP3maAhDFcvBS7O6V
hz2ItxCih+PnDSUaw+WNQn/mZphTk/a/gU8jEzoOWbkM4yxyb/wB96xbiFveSFJuOp/d6RJhJOI0iBXr
lsLnBItntckiJ7FbtxJMXLvvwJryDUilBMTjYtwB+QhYXUMOzce5Pjz5/i8SeJtjnV3iAoG/cQk+0FzZ
qaeJAAHco+CY/5WrUBkrHmFJr6HcXkvJdWPkYQS3xqC0+FmUZofz221CBt5IMucxXPkX4rWi+z7wB3Rb
BQoQzd8v7yeb7OzlPnWOyN0qFU0XA246RA8QFYiCNYwI3f05p6KLxEXAMPLE
-----END CERTIFICATE-----\n","ssl_cert":"-----BEGIN CERTIFICATE-----
AAAAB3NzaC1yc2EAAAADAQABAAABAQClKsfkNkuSevGj3eYhCe53pcjqP3maAhDFcvBS7O6V
hz2ItxCih+PnDSUaw+WNQn/mZphTk/a/gU8jEzoOWbkM4yxyb/wB96xbiFveSFJuOp/d6RJhJOI0iBXr
lsLnBItntckiJ7FbtxJMXLvvwJryDUilBMTjYtwB+QhYXUMOzce5Pjz5/i8SeJtjnV3iAoG/cQk+0FzZ
qaeJAAHco+CY/5WrUBkrHmFJr6HcXkvJdWPkYQS3xqC0+FmUZofz221CBt5IMucxXPkX4rWi+z7wB3Rb
BQoQzd8v7yeb7OzlPnWOyN0qFU0XA246RA8QFYiCNYwI3f05p6KLxEXAMPLE
-----END CERTIFICATE-----\n","ssl_key":"-----BEGIN RSA PRIVATE KEY-----
AAAAB3NzaC1yc2EAAAADAQABAAABAQClKsfkNkuSevGj3eYhCe53pcjqP3maAhDFcvBS7O6V
hz2ItxCih+PnDSUaw+WNQn/mZphTk/a/gU8jEzoOWbkM4yxyb/wB96xbiFveSFJuOp/d6RJhJOI0iBXr
lsLnBItntckiJ7FbtxJMXLvvwJryDUilBMTjYtwB+QhYXUMOzce5Pjz5/i8SeJtjnV3iAoG/cQk+0FzZ
qaeJAAHco+CY/5WrUBkrHmFJr6HcXkvJdWPkYQS3xqC0+FmUZofz221CBt5IMucxXPkX4rWi+z7wB3Rb
BQoQzd8v7yeb7OzlPnWOyN0qFU0XA246RA8QFYiCNYwI3f05p6KLxEXAMPLE
-----END RSA PRIVATE KEY-----\n"}');

For more information, see mysql_rds_import_binlog_ssl_material Using SSL/TLS with Aurora
MySQL DB clusters (p. 796).

Note
After running the procedure, the secrets are stored in files. To erase the files later, you can
run the mysql_rds_remove_binlog_ssl_material stored procedure.

Synchronizing the Amazon Aurora MySQL DB cluster with the external MySQL database

You can synchronize your Amazon Aurora MySQL DB cluster with the MySQL database using replication.

To synchronize your Aurora MySQL DB cluster with the MySQL database using replication

1. Ensure that the /etc/my.cnf file for the external MySQL database has the relevant entries.

If encrypted replication is not required, ensure that the external MySQL database is started with
binary logs (binlogs) enabled and SSL disabled. The following are the relevant entries in the /etc/
my.cnf file for unencrypted data.

log-bin=mysql-bin
server-id=2133421
innodb_flush_log_at_trx_commit=1
sync_binlog=1

If encrypted replication is required, ensure that the external MySQL database is started with SSL and
binlogs enabled. The entries in the /etc/my.cnf file include the .pem file locations for the MySQL
database server.

log-bin=mysql-bin
server-id=2133421
innodb_flush_log_at_trx_commit=1
sync_binlog=1

Setup SSL.
ssl-ca=/home/sslcerts/ca.pem
ssl-cert=/home/sslcerts/server-cert.pem
ssl-key=/home/sslcerts/server-key.pem

You can verify that SSL is enabled with the following command.

814

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_import_binlog_ssl_material.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_remove_binlog_ssl_material.html

Amazon Aurora User Guide for Aurora
Migrating from an external

MySQL database to Aurora MySQL

mysql> show variables like 'have_ssl';

Your output should be similar the following.

+~-~-~-~-~-~-~-~-~-~-~-~-~-~--+~-~-~-~-~-~--+
| Variable_name | Value |
+~-~-~-~-~-~-~-~-~-~-~-~-~-~--+~-~-~-~-~-~--+
| have_ssl | YES |
+~-~-~-~-~-~-~-~-~-~-~-~-~-~--+~-~-~-~-~-~--+
1 row in set (0.00 sec)

2. Determine the starting binary log position for replication. You specify the position to start
replication in a later step.

Using the AWS Management Console

a. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

b. In the navigation pane, choose Events.

c. In the Events list, note the position in the Recovered from Binary log filename event.

Using the AWS CLI

You can also get the binlog file name and position by calling the describe-events command from the
AWS CLI. The following shows an example describe-events command.

PROMPT> aws rds describe-events

In the output, identify the event that shows the binlog position.

3. While connected to the external MySQL database, create a user to be used for replication. This
account is used solely for replication and must be restricted to your domain to improve security. The
following is an example.

mysql> CREATE USER '<user_name>'@'<domain_name>' IDENTIFIED BY '<password>';

The user requires the REPLICATION CLIENT and REPLICATION SLAVE privileges. Grant these
privileges to the user.

815

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-events.html

Amazon Aurora User Guide for Aurora
Migrating from an external

MySQL database to Aurora MySQL

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO '<user_name>'@'<domain_name>';

If you need to use encrypted replication, require SSL connections for the replication user. For
example, you can use the following statement to require SSL connections on the user account
<user_name>.

GRANT USAGE ON *.* TO '<user_name>'@'<domain_name>' REQUIRE SSL;

Note
If REQUIRE SSL is not included, the replication connection might silently fall back to an
unencrypted connection.

4. In the Amazon RDS console, add the IP address of the server that hosts the external MySQL
database to the VPC security group for the Aurora MySQL DB cluster. For more information on
modifying a VPC security group, see Security groups for your VPC in the Amazon Virtual Private
Cloud User Guide.

You might also need to configure your local network to permit connections from the IP address of
your Aurora MySQL DB cluster, so that it can communicate with your external MySQL database. To
find the IP address of the Aurora MySQL DB cluster, use the host command.

host <db_cluster_endpoint>

The host name is the DNS name from the Aurora MySQL DB cluster endpoint.

5. Enable binary log replication by running the mysql.rds_set_external_master (Aurora MySQL
version 1 and 2) or mysql.rds_set_external_source (Aurora MySQL version 3 and higher)
stored procedure. This stored procedure has the following syntax.

CALL mysql.rds_set_external_master (
 host_name
 , host_port
 , replication_user_name
 , replication_user_password
 , mysql_binary_log_file_name
 , mysql_binary_log_file_location
 , ssl_encryption
);

CALL mysql.rds_set_external_source (
 host_name
 , host_port
 , replication_user_name
 , replication_user_password
 , mysql_binary_log_file_name
 , mysql_binary_log_file_location
 , ssl_encryption
);

For information about the parameters, see mysql_rds_set_external_master.

For mysql_binary_log_file_name and mysql_binary_log_file_location, use the position
in the Recovered from Binary log filename event you noted earlier.

816

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_set_external_master.html

Amazon Aurora User Guide for Aurora
Migrating from an external

MySQL database to Aurora MySQL

If the data in the Aurora MySQL DB cluster is not encrypted, the ssl_encryption parameter must
be set to 0. If the data is encrypted, the ssl_encryption parameter must be set to 1.

The following example runs the procedure for an Aurora MySQL DB cluster that has encrypted data.

CALL mysql.rds_set_external_master(
 'Externaldb.some.com',
 3306,
 'repl_user'@'mydomain.com',
 'password',
 'mysql-bin.000010',
 120,
 1);

CALL mysql.rds_set_external_source(
 'Externaldb.some.com',
 3306,
 'repl_user'@'mydomain.com',
 'password',
 'mysql-bin.000010',
 120,
 1);

This stored procedure sets the parameters that the Aurora MySQL DB cluster uses for connecting to
the external MySQL database and reading its binary log. If the data is encrypted, it also downloads
the SSL certificate authority certificate, client certificate, and client key to the local disk.

6. Start binary log replication by running the mysql.rds_start_replication stored procedure.

CALL mysql.rds_start_replication;

7. Monitor how far the Aurora MySQL DB cluster is behind the MySQL replication primary database. To
do so, connect to the Aurora MySQL DB cluster and run the following command.

Aurora MySQL version 1 and 2:
SHOW SLAVE STATUS;

Aurora MySQL version 3:
SHOW REPLICA STATUS;

In the command output, the Seconds Behind Master field shows how far the Aurora MySQL DB
cluster is behind the MySQL primary. When this value is 0 (zero), the Aurora MySQL DB cluster has
caught up to the primary, and you can move on to the next step to stop replication.

8. Connect to the MySQL replication primary database and stop replication. To do so, run the following
command.

CALL mysql.rds_stop_replication;

Migrating from MySQL to Amazon Aurora by using mysqldump

Because Amazon Aurora MySQL is a MySQL-compatible database, you can use the mysqldump utility to
copy data from your MySQL or MariaDB database to an existing Aurora MySQL DB cluster.

817

Amazon Aurora User Guide for Aurora
Migrating from a MySQL DB instance to Aurora MySQL

For a discussion of how to do so with MySQL databases that are very large, see Importing data to
a MySQL or MariaDB DB instance with reduced downtime. For MySQL databases that have smaller
amounts of data, see Importing data from a MySQL or MariaDB DB to a MySQL or MariaDB DB instance.

Migrating data from a MySQL DB instance to an
Amazon Aurora MySQL DB cluster by using a DB
snapshot
You can migrate (copy) data to an Amazon Aurora MySQL DB cluster from an RDS for MySQL DB
snapshot, as described following.

Topics
• Migrating an RDS for MySQL snapshot to Aurora (p. 818)
• Migrating data from a MySQL DB instance to an Amazon Aurora MySQL DB cluster by using an

Aurora read replica (p. 824)

Note
Because Amazon Aurora MySQL is compatible with MySQL, you can migrate data from your
MySQL database by setting up replication between your MySQL database and an Amazon
Aurora MySQL DB cluster. If you want to use replication to migrate data from your MySQL
database, we recommend that your MySQL database run MySQL version 5.5 or later. For more
information, see Replication with Amazon Aurora (p. 70).

Migrating an RDS for MySQL snapshot to Aurora
You can migrate a DB snapshot of an RDS for MySQL DB instance to create an Aurora MySQL DB cluster.
The new Aurora MySQL DB cluster is populated with the data from the original RDS for MySQL DB
instance. The DB snapshot must have been made from an Amazon RDS DB instance running MySQL
version 5.6 or 5.7.

You can migrate either a manual or automated DB snapshot. After the DB cluster is created, you can then
create optional Aurora Replicas.

When the MySQL DB instance and the Aurora DB cluster are running the same version of MySQL, you
can restore the MySQL snapshot directly to the Aurora DB cluster. For example, you can restore a MySQL
version 5.6 snapshot directly to Aurora MySQL version 5.6, but you can't restore a MySQL version 5.6
snapshot directly to Aurora MySQL version 5.7.

If you want to migrate a MySQL version 5.6 snapshot to Aurora MySQL version 5.7, you can perform the
migration in one of the following ways:

• Migrate the MySQL version 5.6 snapshot to Aurora MySQL version 5.6, take a snapshot of the Aurora
MySQL version 5.6 DB cluster, and then restore the Aurora MySQL version 5.6 snapshot to Aurora
MySQL version 5.7.

• Upgrade the MySQL version 5.6 snapshot to MySQL version 5.7, take a snapshot of the MySQL version
5.7 DB instance, and then restore the MySQL version 5.7 snapshot to Aurora MySQL version 5.7.

Note
You can also migrate a MySQL DB instance to an Aurora MySQL DB cluster by creating an Aurora
read replica of your source MySQL DB instance. For more information, see Migrating data
from a MySQL DB instance to an Amazon Aurora MySQL DB cluster by using an Aurora read
replica (p. 824).
You can't migrate a MySQL version 5.7 snapshot to Aurora MySQL version 5.6.

818

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.NonRDSRepl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.NonRDSRepl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.SmallExisting.html

Amazon Aurora User Guide for Aurora
Migrating from a MySQL DB instance to Aurora MySQL

The general steps you must take are as follows:

1. Determine the amount of space to provision for your Aurora MySQL DB cluster. For more information,
see How much space do I need? (p. 819)

2. Use the console to create the snapshot in the AWS Region where the Amazon RDS MySQL instance is
located. For information about creating a DB snapshot, see Creating a DB snapshot.

3. If the DB snapshot is not in the same AWS Region as your DB cluster, use the Amazon RDS console to
copy the DB snapshot to that AWS Region. For information about copying a DB snapshot, see Copying
a DB snapshot.

4. Use the console to migrate the DB snapshot and create an Aurora MySQL DB cluster with the same
databases as the original MySQL DB instance.

Warning
Amazon RDS limits each AWS account to one snapshot copy into each AWS Region at a time.

How much space do I need?

When you migrate a snapshot of a MySQL DB instance into an Aurora MySQL DB cluster, Aurora uses
an Amazon Elastic Block Store (Amazon EBS) volume to format the data from the snapshot before
migrating it. In some cases, additional space is needed to format the data for migration.

Tables that are not MyISAM tables and are not compressed can be up to 16 TB in size. If you have
MyISAM tables, then Aurora must use additional space in the volume to convert the tables to be
compatible with Aurora MySQL. If you have compressed tables, then Aurora must use additional space
in the volume to expand these tables before storing them on the Aurora cluster volume. Because of this
additional space requirement, you should ensure that none of the MyISAM and compressed tables being
migrated from your MySQL DB instance exceeds 8 TB in size.

Reducing the amount of space required to migrate data into Amazon Aurora
MySQL

You might want to modify your database schema prior to migrating it into Amazon Aurora. Such
modification can be helpful in the following cases:

• You want to speed up the migration process.
• You are unsure of how much space you need to provision.
• You have attempted to migrate your data and the migration has failed due to a lack of provisioned

space.

You can make the following changes to improve the process of migrating a database into Amazon
Aurora.

Important
Be sure to perform these updates on a new DB instance restored from a snapshot of a
production database, rather than on a production instance. You can then migrate the data
from the snapshot of your new DB instance into your Aurora DB cluster to avoid any service
interruptions on your production database.

Table type Limitation or guideline

MyISAM tables Aurora MySQL supports InnoDB tables only. If you have MyISAM
tables in your database, then those tables must be converted before
being migrated into Aurora MySQL. The conversion process requires
additional space for the MyISAM to InnoDB conversion during the
migration procedure.

819

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html

Amazon Aurora User Guide for Aurora
Migrating from a MySQL DB instance to Aurora MySQL

Table type Limitation or guideline

To reduce your chances of running out of space or to speed up the
migration process, convert all of your MyISAM tables to InnoDB tables
before migrating them. The size of the resulting InnoDB table is
equivalent to the size required by Aurora MySQL for that table. To
convert a MyISAM table to InnoDB, run the following command:

alter table <schema>.<table_name> engine=innodb,
algorithm=copy;

Compressed tables Aurora MySQL doesn't support compressed tables (that is, tables
created with ROW_FORMAT=COMPRESSED).

To reduce your chances of running out of space or to speed up
the migration process, expand your compressed tables by setting
ROW_FORMAT to DEFAULT, COMPACT, DYNAMIC, or REDUNDANT. For
more information, see https://dev.mysql.com/doc/refman/5.6/en/
innodb-row-format.html.

You can use the following SQL script on your existing MySQL DB instance to list the tables in your
database that are MyISAM tables or compressed tables.

-- This script examines a MySQL database for conditions that block
-- migrating the database into Amazon Aurora.
-- It needs to be run from an account that has read permission for the
-- INFORMATION_SCHEMA database.

-- Verify that this is a supported version of MySQL.

select msg as `==> Checking current version of MySQL.`
from
 (
 select
 'This script should be run on MySQL version 5.6. ' +
 'Earlier versions are not supported.' as msg,
 cast(substring_index(version(), '.', 1) as unsigned) * 100 +
 cast(substring_index(substring_index(version(), '.', 2), '.', -1)
 as unsigned)
 as major_minor
) as T
where major_minor <> 506;

-- List MyISAM and compressed tables. Include the table size.

select concat(TABLE_SCHEMA, '.', TABLE_NAME) as `==> MyISAM or Compressed Tables`,
round(((data_length + index_length) / 1024 / 1024), 2) "Approx size (MB)"
from INFORMATION_SCHEMA.TABLES
where
 ENGINE <> 'InnoDB'
 and
 (
 -- User tables
 TABLE_SCHEMA not in ('mysql', 'performance_schema',
 'information_schema')
 or
 -- Non-standard system tables
 (
 TABLE_SCHEMA = 'mysql' and TABLE_NAME not in
 (
 'columns_priv', 'db', 'event', 'func', 'general_log',

820

https://dev.mysql.com/doc/refman/5.6/en/innodb-row-format.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-row-format.html

Amazon Aurora User Guide for Aurora
Migrating from a MySQL DB instance to Aurora MySQL

 'help_category', 'help_keyword', 'help_relation',
 'help_topic', 'host', 'ndb_binlog_index', 'plugin',
 'proc', 'procs_priv', 'proxies_priv', 'servers', 'slow_log',
 'tables_priv', 'time_zone', 'time_zone_leap_second',
 'time_zone_name', 'time_zone_transition',
 'time_zone_transition_type', 'user'
)
)
)
 or
 (
 -- Compressed tables
 ROW_FORMAT = 'Compressed'
);

The script produces output similar to the output in the following example. The example shows two
tables that must be converted from MyISAM to InnoDB. The output also includes the approximate size of
each table in megabytes (MB).

+---------------------------------+------------------+
| ==> MyISAM or Compressed Tables | Approx size (MB) |
+---------------------------------+------------------+
| test.name_table | 2102.25 |
| test.my_table | 65.25 |
+---------------------------------+------------------+
2 rows in set (0.01 sec)

Console

You can migrate a DB snapshot of an RDS for MySQL DB instance to create an Aurora MySQL DB cluster.
The new Aurora MySQL DB cluster is populated with the data from the original RDS for MySQL DB
instance. The DB snapshot must have been made from an Amazon RDS DB instance running MySQL
version 5.6 or 5.7. For information about creating a DB snapshot, see Creating a DB snapshot.

If the DB snapshot is not in the AWS Region where you want to locate your data, use the Amazon RDS
console to copy the DB snapshot to that AWS Region. For information about copying a DB snapshot, see
Copying a DB snapshot.

When you migrate the DB snapshot by using the AWS Management Console, the console takes the
actions necessary to create both the DB cluster and the primary instance.

You can also choose for your new Aurora MySQL DB cluster to be encrypted at rest using an AWS KMS
key.

To migrate a MySQL DB snapshot by using the AWS Management Console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Either start the migration from the MySQL DB instance or from the snapshot:

To start the migration from the DB instance:

1. In the navigation pane, choose Databases, and then select the MySQL DB instance.

2. For Actions, choose Migrate latest snapshot.

To start the migration from the snapshot:

1. Choose Snapshots.

821

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Migrating from a MySQL DB instance to Aurora MySQL

2. On the Snapshots page, choose the snapshot that you want to migrate into an Aurora MySQL DB
cluster.

3. Choose Snapshot Actions, and then choose Migrate Snapshot.

The Migrate Database page appears.

3. Set the following values on the Migrate Database page:

• Migrate to DB Engine: Select aurora.

• DB Engine Version: Select the DB engine version for the Aurora MySQL DB cluster.

• DB Instance Class: Select a DB instance class that has the required storage and capacity for your
database, for example db.r3.large. Aurora cluster volumes automatically grow as the amount
of data in your database increases. An Aurora cluster volume can grow to a maximum size of 128
tebibytes (TiB). So you only need to select a DB instance class that meets your current storage
requirements. For more information, see Overview of Aurora storage (p. 64).

• DB Instance Identifier: Type a name for the DB cluster that is unique for your account in the AWS
Region you selected. This identifier is used in the endpoint addresses for the instances in your DB
cluster. You might choose to add some intelligence to the name, such as including the AWS Region
and DB engine you selected, for example aurora-cluster1.

The DB instance identifier has the following constraints:

• It must contain from 1 to 63 alphanumeric characters or hyphens.

• Its first character must be a letter.

• It cannot end with a hyphen or contain two consecutive hyphens.

• It must be unique for all DB instances per AWS account, per AWS Region.

• Virtual Private Cloud (VPC): If you have an existing VPC, then you can use that VPC with
your Aurora MySQL DB cluster by selecting your VPC identifier, for example vpc-a464d1c1.
For information on using an existing VPC, see How to create a VPC for use with Amazon
Aurora (p. 1806).

Otherwise, you can choose to have Aurora create a VPC for you by selecting Create a new VPC.

• Subnet group: If you have an existing subnet group, then you can use that subnet group with
your Aurora MySQL DB cluster by selecting your subnet group identifier, for example gs-subnet-
group1.

Otherwise, you can choose to have Aurora create a subnet group for you by selecting Create a
new subnet group.

• Public accessibility: Select No to specify that instances in your DB cluster can only be accessed
by resources inside of your VPC. Select Yes to specify that instances in your DB cluster can be
accessed by resources on the public network. The default is Yes.

Note
Your production DB cluster might not need to be in a public subnet, because only your
application servers require access to your DB cluster. If your DB cluster doesn't need to be
in a public subnet, set Publicly Accessible to No.

• Availability Zone: Select the Availability Zone to host the primary instance for your Aurora MySQL
DB cluster. To have Aurora select an Availability Zone for you, select No Preference.

• Database Port: Type the default port to be used when connecting to instances in the Aurora
MySQL DB cluster. The default is 3306.

Note
You might be behind a corporate firewall that doesn't allow access to default ports such
as the MySQL default port, 3306. In this case, provide a port value that your corporate
firewall allows. Remember that port value later when you connect to the Aurora MySQL
DB cluster.

822

Amazon Aurora User Guide for Aurora
Migrating from a MySQL DB instance to Aurora MySQL

• Encryption: Choose Enable Encryption for your new Aurora MySQL DB cluster to be encrypted at
rest. If you choose Enable Encryption, you must choose a KMS key as the AWS KMS key value.

If your DB snapshot isn't encrypted, specify an encryption key to have your DB cluster encrypted
at rest.

If your DB snapshot is encrypted, specify an encryption key to have your DB cluster encrypted
at rest using the specified encryption key. You can specify the encryption key used by the DB
snapshot or a different key. You can't create an unencrypted DB cluster from an encrypted DB
snapshot.

• Auto Minor Version Upgrade: This setting doesn't apply to Aurora MySQL DB clusters.

For more information about engine updates for Aurora MySQL, see Database engine updates for
Amazon Aurora MySQL (p. 1103).

4. Choose Migrate to migrate your DB snapshot.

5. Choose Instances, and then choose the arrow icon to show the DB cluster details and monitor the
progress of the migration. On the details page, you can find the cluster endpoint used to connect to
the primary instance of the DB cluster. For more information on connecting to an Aurora MySQL DB
cluster, see Connecting to an Amazon Aurora DB cluster (p. 281).

AWS CLI

You can migrate a DB snapshot of an RDS for MySQL DB instance to create an Aurora DB cluster. The new
DB cluster is then populated with the data from the DB snapshot. The DB snapshot must come from an
Amazon RDS DB instance running MySQL version 5.6 or 5.7. For more information, see Creating a DB
snapshot.

If the DB snapshot is not in the AWS Region where you want to locate your data, copy the DB snapshot
to that AWS Region. For more information, see Copying a DB snapshot.

You can create an Aurora DB cluster from a DB snapshot of an RDS for MySQL DB instance by using the
restore-db-cluster-from-snapshot command with the following parameters:

• --db-cluster-identifier

The name of the DB cluster to create.

• Either --engine aurora-mysql for a MySQL 5.7–compatible or 8.0–compatible DB cluster, or --
engine aurora for a MySQL 5.6–compatible DB cluster

• --kms-key-id

The AWS KMS key to optionally encrypt the DB cluster with, depending on whether your DB snapshot
is encrypted.

• If your DB snapshot isn't encrypted, specify an encryption key to have your DB cluster encrypted at
rest. Otherwise, your DB cluster isn't encrypted.

• If your DB snapshot is encrypted, specify an encryption key to have your DB cluster encrypted at
rest using the specified encryption key. Otherwise, your DB cluster is encrypted at rest using the
encryption key for the DB snapshot.

Note
You can't create an unencrypted DB cluster from an encrypted DB snapshot.

• --snapshot-identifier

The Amazon Resource Name (ARN) of the DB snapshot to migrate. For more information about
Amazon RDS ARNs, see Amazon Relational Database Service (Amazon RDS).

823

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-rds

Amazon Aurora User Guide for Aurora
Migrating from a MySQL DB instance to Aurora MySQL

When you migrate the DB snapshot by using the RestoreDBClusterFromSnapshot command, the
command creates both the DB cluster and the primary instance.

In this example, you create a MySQL 5.7–compatible DB cluster named mydbcluster from a DB
snapshot with an ARN set to mydbsnapshotARN.

For Linux, macOS, or Unix:

aws rds restore-db-cluster-from-snapshot \
 --db-cluster-identifier mydbcluster \
 --snapshot-identifier mydbsnapshotARN \
 --engine aurora-mysql

For Windows:

aws rds restore-db-cluster-from-snapshot ^
 --db-cluster-identifier mydbcluster ^
 --snapshot-identifier mydbsnapshotARN ^
 --engine aurora-mysql

In this example, you create a MySQL 5.6–compatible DB cluster named mydbcluster from a DB
snapshot with an ARN set to mydbsnapshotARN.

For Linux, macOS, or Unix:

aws rds restore-db-cluster-from-snapshot \
 --db-cluster-identifier mydbcluster \
 --snapshot-identifier mydbsnapshotARN \
 --engine aurora

For Windows:

aws rds restore-db-cluster-from-snapshot ^
 --db-cluster-identifier mydbcluster ^
 --snapshot-identifier mydbsnapshotARN ^
 --engine aurora

Migrating data from a MySQL DB instance to an Amazon Aurora
MySQL DB cluster by using an Aurora read replica
Aurora uses the MySQL DB engines' binary log replication functionality to create a special type of DB
cluster called an Aurora read replica for a source MySQL DB instance. Updates made to the source MySQL
DB instance are asynchronously replicated to the Aurora read replica.

We recommend using this functionality to migrate from a MySQL DB instance to an Aurora MySQL
DB cluster by creating an Aurora read replica of your source MySQL DB instance. When the replica lag
between the MySQL DB instance and the Aurora read replica is 0, you can direct your client applications
to the Aurora read replica and then stop replication to make the Aurora read replica a standalone Aurora
MySQL DB cluster. Be prepared for migration to take a while, roughly several hours per tebibyte (TiB) of
data.

For a list of regions where Aurora is available, see Amazon Aurora in the AWS General Reference.

When you create an Aurora read replica of a MySQL DB instance, Amazon RDS creates a DB snapshot of
your source MySQL DB instance (private to Amazon RDS, and incurring no charges). Amazon RDS then
migrates the data from the DB snapshot to the Aurora read replica. After the data from the DB snapshot
has been migrated to the new Aurora MySQL DB cluster, Amazon RDS starts replication between your
MySQL DB instance and the Aurora MySQL DB cluster. If your MySQL DB instance contains tables that

824

https://docs.aws.amazon.com/general/latest/gr/rande.html#aurora

Amazon Aurora User Guide for Aurora
Migrating from a MySQL DB instance to Aurora MySQL

use storage engines other than InnoDB, or that use compressed row format, you can speed up the
process of creating an Aurora read replica by altering those tables to use the InnoDB storage engine and
dynamic row format before you create your Aurora read replica. For more information about the process
of copying a MySQL DB snapshot to an Aurora MySQL DB cluster, see Migrating data from a MySQL DB
instance to an Amazon Aurora MySQL DB cluster by using a DB snapshot (p. 818).

You can only have one Aurora read replica for a MySQL DB instance.

Note
Replication issues can arise due to feature differences between Amazon Aurora MySQL and
the MySQL database engine version of your RDS for MySQL DB instance that is the replication
primary. If you encounter an error, you can find help in the Amazon RDS community forum or by
contacting AWS Support.

For more information on MySQL read replicas, see Working with read replicas of MariaDB, MySQL, and
PostgreSQL DB instances.

Creating an Aurora read replica

You can create an Aurora read replica for a MySQL DB instance by using the console or the AWS CLI.

Console

To create an Aurora read replica from a source MySQL DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.
3. Choose the MySQL DB instance that you want to use as the source for your Aurora read replica.
4. For Actions, choose Create Aurora read replica.
5. Choose the DB cluster specifications you want to use for the Aurora read replica, as described in the

following table.

Option Description

DB instance class Choose a DB instance class that defines the processing
and memory requirements for the primary instance in the
DB cluster. For more information about DB instance class
options, see Aurora DB instance classes (p. 54).

Multi-AZ deployment Choose Create Replica in Different Zone to create
a standby replica of the new DB cluster in another
Availability Zone in the target AWS Region for failover
support. For more information about multiple Availability
Zones, see Regions and Availability Zones (p. 11).

DB instance identifier Type a name for the primary instance in your Aurora read
replica DB cluster. This identifier is used in the endpoint
address for the primary instance of the new DB cluster.

The DB instance identifier has the following constraints:

• It must contain from 1 to 63 alphanumeric characters or
hyphens.

• Its first character must be a letter.
• It cannot end with a hyphen or contain two consecutive

hyphens.

825

https://forums.aws.amazon.com/forum.jspa?forumID=60
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Migrating from a MySQL DB instance to Aurora MySQL

Option Description

• It must be unique for all DB instances for each AWS
account, for each AWS Region.

Because the Aurora read replica DB cluster is created from
a snapshot of the source DB instance, the master user
name and master password for the Aurora read replica are
the same as the master user name and master password
for the source DB instance.

Virtual Private Cloud (VPC) Select the VPC to host the DB cluster. Select Create
new VPC to have Aurora create a VPC for you. For more
information, see DB cluster prerequisites (p. 125).

Subnet group Select the DB subnet group to use for the DB cluster.
Select Create new DB subnet group to have Aurora create
a DB subnet group for you. For more information, see DB
cluster prerequisites (p. 125).

Public accessibility Select Yes to give the DB cluster a public IP address;
otherwise, select No. The instances in your DB cluster
can be a mix of both public and private DB instances.
For more information about hiding instances from
public access, see Hiding a DB instance in a VPC from the
internet (p. 1802).

Availability zone Determine if you want to specify a particular Availability
Zone. For more information about Availability Zones, see
Regions and Availability Zones (p. 11).

VPC security groups Select Create new VPC security group to have Aurora
create a VPC security group for you. Select Select existing
VPC security groups to specify one or more VPC security
groups to secure network access to the DB cluster. For
more information, see DB cluster prerequisites (p. 125).

Database port Specify the port for applications and utilities to use
to access the database. Aurora MySQL DB clusters
default to the default MySQL port, 3306. Firewalls at
some companies block connections to this port. If your
company firewall blocks the default port, choose another
port for the new DB cluster.

DB parameter group Select a DB parameter group for the Aurora MySQL
DB cluster. Aurora has a default DB parameter group
you can use, or you can create your own DB parameter
group. For more information about DB parameter groups,
see Working with DB parameter groups and DB cluster
parameter groups (p. 339).

DB cluster parameter group Select a DB cluster parameter group for the Aurora
MySQL DB cluster. Aurora has a default DB cluster
parameter group you can use, or you can create your
own DB cluster parameter group. For more information
about DB cluster parameter groups, see Working
with DB parameter groups and DB cluster parameter
groups (p. 339).

826

Amazon Aurora User Guide for Aurora
Migrating from a MySQL DB instance to Aurora MySQL

Option Description

Encryption Choose Disable encryption if you don't want your new
Aurora DB cluster to be encrypted. Choose Enable
encryption for your new Aurora DB cluster to be
encrypted at rest. If you choose Enable encryption, you
must choose a KMS key as the AWS KMS key value.

If your MySQL DB instance isn't encrypted, specify an
encryption key to have your DB cluster encrypted at rest.

If your MySQL DB instance is encrypted, specify an
encryption key to have your DB cluster encrypted at
rest using the specified encryption key. You can specify
the encryption key used by the MySQL DB instance or a
different key. You can't create an unencrypted DB cluster
from an encrypted MySQL DB instance.

Priority Choose a failover priority for the DB cluster. If you
don't select a value, the default is tier-1. This priority
determines the order in which Aurora Replicas are
promoted when recovering from a primary instance
failure. For more information, see Fault tolerance for an
Aurora DB cluster (p. 69).

Backup retention period Select the length of time, from 1 to 35 days, that Aurora
retains backup copies of the database. Backup copies can
be used for point-in-time restores (PITR) of your database
down to the second.

Enhanced Monitoring Choose Enable enhanced monitoring to enable gathering
metrics in real time for the operating system that your DB
cluster runs on. For more information, see Monitoring OS
metrics with Enhanced Monitoring (p. 647).

Monitoring Role Only available if Enhanced Monitoring is set to Enable
enhanced monitoring. Choose the IAM role that you
created to permit Aurora to communicate with Amazon
CloudWatch Logs for you, or choose Default to have
Aurora create a role for you named rds-monitoring-
role. For more information, see Monitoring OS metrics
with Enhanced Monitoring (p. 647).

Granularity Only available if Enhanced Monitoring is set to Enable
enhanced monitoring. Set the interval, in seconds,
between when metrics are collected for your DB cluster.

Auto minor version upgrade This setting doesn't apply to Aurora MySQL DB clusters.

For more information about engine updates for Aurora
MySQL, see Database engine updates for Amazon Aurora
MySQL (p. 1103).

Maintenance window Select Select window and specify the weekly time range
during which system maintenance can occur. Or, select No
preference for Aurora to assign a period randomly.

6. Choose Create read replica.

827

Amazon Aurora User Guide for Aurora
Migrating from a MySQL DB instance to Aurora MySQL

AWS CLI

To create an Aurora read replica from a source MySQL DB instance, use the create-db-cluster and
create-db-instance AWS CLI commands to create a new Aurora MySQL DB cluster. When you call
the create-db-cluster command, include the --replication-source-identifier parameter
to identify the Amazon Resource Name (ARN) for the source MySQL DB instance. For more information
about Amazon RDS ARNs, see Amazon Relational Database Service (Amazon RDS).

Don't specify the master username, master password, or database name as the Aurora read replica uses
the same master username, master password, and database name as the source MySQL DB instance.

For Linux, macOS, or Unix:

aws rds create-db-cluster --db-cluster-identifier sample-replica-cluster --engine aurora \
 --db-subnet-group-name mysubnetgroup --vpc-security-group-ids sg-c7e5b0d2 \
 --replication-source-identifier arn:aws:rds:us-west-2:123456789012:db:primary-mysql-
instance

For Windows:

aws rds create-db-cluster --db-cluster-identifier sample-replica-cluster --engine aurora ^
 --db-subnet-group-name mysubnetgroup --vpc-security-group-ids sg-c7e5b0d2 ^
 --replication-source-identifier arn:aws:rds:us-west-2:123456789012:db:primary-mysql-
instance

If you use the console to create an Aurora read replica, then Aurora automatically creates the primary
instance for your DB cluster Aurora read replica. If you use the AWS CLI to create an Aurora read replica,
you must explicitly create the primary instance for your DB cluster. The primary instance is the first
instance that is created in a DB cluster.

You can create a primary instance for your DB cluster by using the create-db-instance AWS CLI
command with the following parameters.

• --db-cluster-identifier

The name of your DB cluster.

• --db-instance-class

The name of the DB instance class to use for your primary instance.

• --db-instance-identifier

The name of your primary instance.

• --engine aurora

In this example, you create a primary instance named myreadreplicainstance for the DB cluster
named myreadreplicacluster, using the DB instance class specified in myinstanceclass.

Example

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-cluster-identifier myreadreplicacluster \
 --db-instance-class myinstanceclass \
 --db-instance-identifier myreadreplicainstance \

828

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-rds
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora
Migrating from a MySQL DB instance to Aurora MySQL

 --engine aurora

For Windows:

aws rds create-db-instance ^
 --db-cluster-identifier myreadreplicacluster ^
 --db-instance-class myinstanceclass ^
 --db-instance-identifier myreadreplicainstance ^
 --engine aurora

RDS API

To create an Aurora read replica from a source MySQL DB instance, use the CreateDBCluster and
CreateDBInstance Amazon RDS API commands to create a new Aurora DB cluster and primary
instance. Do not specify the master username, master password, or database name as the Aurora read
replica uses the same master username, master password, and database name as the source MySQL DB
instance.

You can create a new Aurora DB cluster for an Aurora read replica from a source MySQL DB instance by
using the CreateDBCluster Amazon RDS API command with the following parameters:

• DBClusterIdentifier

The name of the DB cluster to create.
• DBSubnetGroupName

The name of the DB subnet group to associate with this DB cluster.
• Engine=aurora

• KmsKeyId

The AWS KMS key to optionally encrypt the DB cluster with, depending on whether your MySQL DB
instance is encrypted.
• If your MySQL DB instance isn't encrypted, specify an encryption key to have your DB cluster

encrypted at rest. Otherwise, your DB cluster is encrypted at rest using the default encryption key
for your account.

• If your MySQL DB instance is encrypted, specify an encryption key to have your DB cluster encrypted
at rest using the specified encryption key. Otherwise, your DB cluster is encrypted at rest using the
encryption key for the MySQL DB instance.

Note
You can't create an unencrypted DB cluster from an encrypted MySQL DB instance.

• ReplicationSourceIdentifier

The Amazon Resource Name (ARN) for the source MySQL DB instance. For more information about
Amazon RDS ARNs, see Amazon Relational Database Service (Amazon RDS).

• VpcSecurityGroupIds

The list of EC2 VPC security groups to associate with this DB cluster.

In this example, you create a DB cluster named myreadreplicacluster from a source MySQL
DB instance with an ARN set to mysqlprimaryARN, associated with a DB subnet group named
mysubnetgroup and a VPC security group named mysecuritygroup.

Example

https://rds.us-east-1.amazonaws.com/

829

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-rds

Amazon Aurora User Guide for Aurora
Migrating from a MySQL DB instance to Aurora MySQL

 ?Action=CreateDBCluster
 &DBClusterIdentifier=myreadreplicacluster
 &DBSubnetGroupName=mysubnetgroup
 &Engine=aurora
 &ReplicationSourceIdentifier=mysqlprimaryARN
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &Version=2014-10-31
 &VpcSecurityGroupIds=mysecuritygroup
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20150927/us-east-1/rds/aws4_request
 &X-Amz-Date=20150927T164851Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=6a8f4bd6a98f649c75ea04a6b3929ecc75ac09739588391cd7250f5280e716db

If you use the console to create an Aurora read replica, then Aurora automatically creates the primary
instance for your DB cluster Aurora read replica. If you use the AWS CLI to create an Aurora read replica,
you must explicitly create the primary instance for your DB cluster. The primary instance is the first
instance that is created in a DB cluster.

You can create a primary instance for your DB cluster by using the CreateDBInstance Amazon RDS API
command with the following parameters:

• DBClusterIdentifier

The name of your DB cluster.

• DBInstanceClass

The name of the DB instance class to use for your primary instance.

• DBInstanceIdentifier

The name of your primary instance.

• Engine=aurora

In this example, you create a primary instance named myreadreplicainstance for the DB cluster
named myreadreplicacluster, using the DB instance class specified in myinstanceclass.

Example

https://rds.us-east-1.amazonaws.com/
 ?Action=CreateDBInstance
 &DBClusterIdentifier=myreadreplicacluster
 &DBInstanceClass=myinstanceclass
 &DBInstanceIdentifier=myreadreplicainstance
 &Engine=aurora
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &Version=2014-09-01
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20140424/us-east-1/rds/aws4_request
 &X-Amz-Date=20140424T194844Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=bee4aabc750bf7dad0cd9e22b952bd6089d91e2a16592c2293e532eeaab8bc77

Viewing an Aurora read replica

You can view the MySQL to Aurora MySQL replication relationships for your Aurora MySQL DB clusters by
using the AWS Management Console or the AWS CLI.

830

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Aurora User Guide for Aurora
Migrating from a MySQL DB instance to Aurora MySQL

Console

To view the primary MySQL DB instance for an Aurora read replica

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB cluster for the Aurora read replica to display its details. The primary MySQL DB
instance information is in the Replication source field.

AWS CLI

To view the MySQL to Aurora MySQL replication relationships for your Aurora MySQL DB clusters by
using the AWS CLI, use the describe-db-clusters and describe-db-instances commands.

To determine which MySQL DB instance is the primary, use the describe-db-clusters and specify
the cluster identifier of the Aurora read replica for the --db-cluster-identifier option. Refer to

831

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html

Amazon Aurora User Guide for Aurora
Migrating from a MySQL DB instance to Aurora MySQL

the ReplicationSourceIdentifier element in the output for the ARN of the DB instance that is the
replication primary.

To determine which DB cluster is the Aurora read replica, use the describe-db-instances and specify
the instance identifier of the MySQL DB instance for the --db-instance-identifier option. Refer to
the ReadReplicaDBClusterIdentifiers element in the output for the DB cluster identifier of the
Aurora read replica.

Example

For Linux, macOS, or Unix:

aws rds describe-db-clusters \
 --db-cluster-identifier myreadreplicacluster

aws rds describe-db-instances \
 --db-instance-identifier mysqlprimary

For Windows:

aws rds describe-db-clusters ^
 --db-cluster-identifier myreadreplicacluster

aws rds describe-db-instances ^
 --db-instance-identifier mysqlprimary

Promoting an Aurora read replica

After migration completes, you can promote the Aurora read replica to a stand-alone DB cluster and
direct your client applications to the endpoint for the Aurora read replica. For more information on the
Aurora endpoints, see Amazon Aurora connection management (p. 32). Promotion should complete fairly
quickly, and you can read from and write to the Aurora read replica during promotion. However, you can't
delete the primary MySQL DB instance or unlink the DB Instance and the Aurora read replica during this
time.

Before you promote your Aurora read replica, stop any transactions from being written to the source
MySQL DB instance, and then wait for the replica lag on the Aurora read replica to reach 0. You can view
the replica lag for an Aurora read replica by calling the SHOW SLAVE STATUS (Aurora MySQL version
1 and 2) or SHOW REPLICA STATUS (Aurora MySQL version 3) command on your Aurora read replica.
Check the Seconds behind master value.

You can start writing to the Aurora read replica after write transactions to the primary have stopped and
replica lag is 0. If you write to the Aurora read replica before this and you modify tables that are also
being modified on the MySQL primary, you risk breaking replication to Aurora. If this happens, you must
delete and recreate your Aurora read replica.

Console

To promote an Aurora read replica to an Aurora DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.
3. Choose the DB cluster for the Aurora read replica.
4. For Actions, choose Promote.
5. Choose Promote read replica.

832

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Managing Aurora MySQL

After you promote, confirm that the promotion has completed by using the following procedure.

To confirm that the Aurora read replica was promoted

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Events.
3. On the Events page, verify that there is a Promoted Read Replica cluster to a stand-

alone database cluster event for the cluster that you promoted.

After promotion is complete, the primary MySQL DB instance and the Aurora read replica are unlinked,
and you can safely delete the DB instance if you want.

AWS CLI

To promote an Aurora read replica to a stand-alone DB cluster, use the promote-read-replica-db-
cluster AWS CLI command.

Example

For Linux, macOS, or Unix:

aws rds promote-read-replica-db-cluster \
 --db-cluster-identifier myreadreplicacluster

For Windows:

aws rds promote-read-replica-db-cluster ^
 --db-cluster-identifier myreadreplicacluster

Managing Amazon Aurora MySQL
The following sections discuss managing an Amazon Aurora MySQL DB cluster.

Topics
• Managing performance and scaling for Amazon Aurora MySQL (p. 833)
• Backtracking an Aurora DB cluster (p. 837)
• Testing Amazon Aurora using fault injection queries (p. 850)
• Altering tables in Amazon Aurora using fast DDL (p. 853)
• Displaying volume status for an Aurora MySQL DB cluster (p. 858)

Managing performance and scaling for Amazon
Aurora MySQL
Scaling Aurora MySQL DB instances
You can scale Aurora MySQL DB instances in two ways, instance scaling and read scaling. For more
information about read scaling, see Read scaling (p. 400).

You can scale your Aurora MySQL DB cluster by modifying the DB instance class for each DB instance in
the DB cluster. Aurora MySQL supports several DB instance classes optimized for Aurora. Don't use db.t2

833

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/promote-read-replica-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/promote-read-replica-db-cluster.html

Amazon Aurora User Guide for Aurora
Managing performance and

scaling for Amazon Aurora MySQL

or db.t3 instance classes for larger Aurora clusters of size greater than 40 TB. For the specifications of the
DB instance classes supported by Aurora MySQL, see Aurora DB instance classes (p. 54).

Maximum connections to an Aurora MySQL DB instance
The maximum number of connections allowed to an Aurora MySQL DB instance is determined by the
max_connections parameter in the instance-level parameter group for the DB instance.

The following table lists the resulting default value of max_connections for each DB instance class
available to Aurora MySQL. You can increase the maximum number of connections to your Aurora
MySQL DB instance by scaling the instance up to a DB instance class with more memory, or by setting a
larger value for the max_connections parameter in the DB parameter group for your instance, up to
16,000.

Instance class max_connections
default
value

db.t2.small 45

db.t2.medium 90

db.t3.small 45

db.t3.medium 90

db.t3.large 135

db.t4g.medium 90

db.t4g.large 135

db.r3.large 1000

db.r3.xlarge 2000

db.r3.2xlarge 3000

db.r3.4xlarge 4000

db.r3.8xlarge 5000

db.r4.large 1000

db.r4.xlarge 2000

db.r4.2xlarge 3000

db.r4.4xlarge 4000

db.r4.8xlarge 5000

db.r4.16xlarge 6000

db.r5.large 1000

db.r5.xlarge 2000

db.r5.2xlarge 3000

db.r5.4xlarge 4000

834

Amazon Aurora User Guide for Aurora
Managing performance and

scaling for Amazon Aurora MySQL

Instance class max_connections
default
value

db.r5.8xlarge 5000

db.r5.12xlarge 6000

db.r5.16xlarge 6000

db.r5.24xlarge 7000

db.r6g.large 1000

db.r6g.xlarge 2000

db.r6g.2xlarge 3000

db.r6g.4xlarge 4000

db.r6g.8xlarge 5000

db.r6g.12xlarge 6000

db.r6g.16xlarge 6000

db.x2g.large 2000

db.x2g.xlarge 3000

db.x2g.2xlarge 4000

db.x2g.4xlarge 5000

db.x2g.8xlarge 6000

db.x2g.12xlarge 7000

db.x2g.16xlarge 7000

If you create a new parameter group to customize your own default for the connection limit, you'll see
that the default connection limit is derived using a formula based on the DBInstanceClassMemory
value. As shown in the preceding table, the formula produces connection limits that increase by 1000
as the memory doubles between progressively larger R3, R4, and R5 instances, and by 45 for different
memory sizes of T2 and T3 instances.

The DBInstanceClassMemory value represents the memory capacity, in bytes, available for the DB
instance. It's a number that Aurora computes internally and isn't directly available for you to query.
Aurora reserves some memory in each DB instance for the Aurora management components. This
adjustment to the available memory produces a lower max_connections value than if the formula
used the full memory for the associated DB instance class.

Aurora MySQL and RDS for MySQL DB instances have different amounts of memory overhead. Therefore,
the max_connections value can be different for Aurora MySQL and RDS for MySQL DB instances that
use the same instance class. The values in the table only apply to Aurora MySQL DB instances.

The much lower connectivity limits for T2 and T3 instances are because with Aurora, those instance
classes are intended only for development and test scenarios, not for production workloads.

The default connection limits are tuned for systems that use the default values for other major memory
consumers, such as the buffer pool and query cache. If you change those other settings for your cluster,

835

Amazon Aurora User Guide for Aurora
Managing performance and

scaling for Amazon Aurora MySQL

consider adjusting the connection limit to account for the increase or decrease in available memory on
the DB instances.

Temporary storage limits for Aurora MySQL
Aurora MySQL stores tables and indexes in the Aurora storage subsystem. Aurora MySQL uses separate
temporary storage for non-persistent temporary files. This includes files that are used for such purposes
as sorting large datasets during query processing or for index build operations. For more about storage,
see Amazon Aurora storage and reliability (p. 64).

The following table shows the maximum amount of temporary storage available for each Aurora MySQL
DB instance class.

DB instance class Maximum temporary storage available (GiB)

db.x2g.16xlarge 1280

db.x2g.12xlarge 960

db.x2g.8xlarge 640

db.x2g.4xlarge 320

db.x2g.2xlarge 160

db.x2g.xlarge 80

db.x2g.large 40

db.r6g.16xlarge 1280

db.r6g.12xlarge 960

db.r6g.8xlarge 640

db.r6g.4xlarge 320

db.r6g.2xlarge 160

db.r6g.xlarge 80

db.r6g.large 32

db.r5.24xlarge 1920

db.r5.16xlarge 1280

db.r5.12xlarge 960

db.r5.8xlarge 640

db.r5.4xlarge 320

db.r5.2xlarge 160

db.r5.xlarge 80

db.r5.large 32

db.r4.16xlarge 1280

db.r4.8xlarge 640

836

Amazon Aurora User Guide for Aurora
Backtracking a DB cluster

DB instance class Maximum temporary storage available (GiB)

db.r4.4xlarge 320

db.r4.2xlarge 160

db.r4.xlarge 80

db.r4.large 32

db.t4g.large 32

db.t4g.medium 32

db.t3.large 32

db.t3.medium 32

db.t3.small 32

db.t2.medium 32

db.t2.small 32

Important
These values represent the theoretical maximum amount of free storage on each DB instance.
The actual local storage available to you might be lower. Aurora uses some local storage for
its management processes, and the DB instance uses some local storage even before you load
any data. You can monitor the temporary storage available for a specific DB instance with the
FreeLocalStorage CloudWatch metric, described in Amazon CloudWatch metrics for Amazon
Aurora (p. 654). You can check the amount of free storage at the present time. You can also
chart the amount of free storage over time. Monitoring the free storage over time helps you to
determine whether the value is increasing or decreasing, or to find the minimum, maximum, or
average values.

Backtracking an Aurora DB cluster
With Amazon Aurora MySQL-Compatible Edition, you can backtrack a DB cluster to a specific time,
without restoring data from a backup.

Overview of backtracking

Backtracking "rewinds" the DB cluster to the time you specify. Backtracking is not a replacement for
backing up your DB cluster so that you can restore it to a point in time. However, backtracking provides
the following advantages over traditional backup and restore:

• You can easily undo mistakes. If you mistakenly perform a destructive action, such as a DELETE
without a WHERE clause, you can backtrack the DB cluster to a time before the destructive action with
minimal interruption of service.

• You can backtrack a DB cluster quickly. Restoring a DB cluster to a point in time launches a new DB
cluster and restores it from backup data or a DB cluster snapshot, which can take hours. Backtracking a
DB cluster doesn't require a new DB cluster and rewinds the DB cluster in minutes.

• You can explore earlier data changes. You can repeatedly backtrack a DB cluster back and forth in
time to help determine when a particular data change occurred. For example, you can backtrack a DB
cluster three hours and then backtrack forward in time one hour. In this case, the backtrack time is two
hours before the original time.

837

Amazon Aurora User Guide for Aurora
Backtracking a DB cluster

Note
For information about restoring a DB cluster to a point in time, see Overview of backing up and
restoring an Aurora DB cluster (p. 491).

Backtrack window

With backtracking, there is a target backtrack window and an actual backtrack window:

• The target backtrack window is the amount of time you want to be able to backtrack your DB cluster.
When you enable backtracking, you specify a target backtrack window. For example, you might specify
a target backtrack window of 24 hours if you want to be able to backtrack the DB cluster one day.

• The actual backtrack window is the actual amount of time you can backtrack your DB cluster, which can
be smaller than the target backtrack window. The actual backtrack window is based on your workload
and the storage available for storing information about database changes, called change records.

As you make updates to your Aurora DB cluster with backtracking enabled, you generate change records.
Aurora retains change records for the target backtrack window, and you pay an hourly rate for storing
them. Both the target backtrack window and the workload on your DB cluster determine the number of
change records you store. The workload is the number of changes you make to your DB cluster in a given
amount of time. If your workload is heavy, you store more change records in your backtrack window than
you do if your workload is light.

You can think of your target backtrack window as the goal for the maximum amount of time you want to
be able to backtrack your DB cluster. In most cases, you can backtrack the maximum amount of time that
you specified. However, in some cases, the DB cluster can't store enough change records to backtrack the
maximum amount of time, and your actual backtrack window is smaller than your target. Typically, the
actual backtrack window is smaller than the target when you have extremely heavy workload on your DB
cluster. When your actual backtrack window is smaller than your target, we send you a notification.

When backtracking is enabled for a DB cluster, and you delete a table stored in the DB cluster, Aurora
keeps that table in the backtrack change records. It does this so that you can revert back to a time before
you deleted the table. If you don't have enough space in your backtrack window to store the table, the
table might be removed from the backtrack change records eventually.

Backtracking time

Aurora always backtracks to a time that is consistent for the DB cluster. Doing so eliminates the
possibility of uncommitted transactions when the backtrack is complete. When you specify a time for
a backtrack, Aurora automatically chooses the nearest possible consistent time. This approach means
that the completed backtrack might not exactly match the time you specify, but you can determine the
exact time for a backtrack by using the describe-db-cluster-backtracks AWS CLI command. For more
information, see Retrieving existing backtracks (p. 849).

Backtracking limitations

The following limitations apply to backtracking:

• Backtracking an Aurora DB cluster is available in certain AWS Regions and for specific Aurora MySQL
versions only. For more information, see Backtracking in Aurora (p. 19).

• Backtracking is only available for DB clusters that were created with the Backtrack feature enabled.
You can enable the Backtrack feature when you create a new DB cluster or restore a snapshot of a
DB cluster. For DB clusters that were created with the Backtrack feature enabled, you can create a
clone DB cluster with the Backtrack feature enabled. Currently, you can't perform backtracking on DB
clusters that were created with the Backtrack feature disabled.

• The limit for a backtrack window is 72 hours.
• Backtracking affects the entire DB cluster. For example, you can't selectively backtrack a single table or

a single data update.

838

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-backtracks.html

Amazon Aurora User Guide for Aurora
Backtracking a DB cluster

• Backtracking isn't supported with binary log (binlog) replication. Cross-Region replication must be
disabled before you can configure or use backtracking.

• You can't backtrack a database clone to a time before that database clone was created. However,
you can use the original database to backtrack to a time before the clone was created. For more
information about database cloning, see Cloning a volume for an Aurora DB cluster (p. 402).

• Backtracking causes a brief DB instance disruption. You must stop or pause your applications before
starting a backtrack operation to ensure that there are no new read or write requests. During the
backtrack operation, Aurora pauses the database, closes any open connections, and drops any
uncommitted reads and writes. It then waits for the backtrack operation to complete.

• Backtracking isn't supported for the following AWS Regions:
• Africa (Cape Town)
• China (Ningxia)
• Asia Pacific (Hong Kong)
• Europe (Milan)
• Europe (Stockholm)
• Middle East (Bahrain)
• South America (São Paulo)

• You can't restore a cross-Region snapshot of a backtrack-enabled cluster in an AWS Region that
doesn't support backtracking.

• You can't use Backtrack with Aurora multi-master clusters.
• If you perform an in-place upgrade for a backtrack-enabled cluster from Aurora MySQL version 1 to

version 2, you can't backtrack to a point in time before the upgrade happened.

Upgrade considerations for backtrack-enabled clusters
Backtracking is available for Aurora MySQL 1.*, which is compatible with MySQL 5.6. It's also available for
Aurora MySQL 2.06 and higher, which is compatible with MySQL 5.7. Because of the Aurora MySQL 2.*
version requirement, if you created the Aurora MySQL 1.* cluster with the Backtrack setting enabled, you
can only upgrade to a Backtrack-compatible version of Aurora MySQL 2.*. This requirement affects the
following types of upgrade paths:

• You can only restore a snapshot of the Aurora MySQL 1.* DB cluster to a Backtrack-compatible version
of Aurora MySQL 2.*.

• You can only perform point-in-time recovery on the Aurora MySQL 1.* DB cluster to restore it to a
Backtrack-compatible version of Aurora MySQL 2.*.

These upgrade requirements still apply even if you turn off Backtrack for the Aurora MySQL 1.* cluster.

Configuring backtracking
To use the Backtrack feature, you must enable backtracking and specify a target backtrack window.
Otherwise, backtracking is disabled.

For the target backtrack window, specify the amount of time that you want to be able to rewind your
database using Backtrack. Aurora tries to retain enough change records to support that window of time.

Console

You can use the console to configure backtracking when you create a new DB cluster. You can also
modify a DB cluster to change the backtrack window for a backtrack-enabled cluster. If you turn off
backtracking entirely for a cluster by setting the backtrack window to 0, you can't enable backtrack again
for that cluster.

839

Amazon Aurora User Guide for Aurora
Backtracking a DB cluster

Topics
• Configuring backtracking with the console when creating a DB cluster (p. 840)
• Configuring backtrack with the console when modifying a DB cluster (p. 840)

Configuring backtracking with the console when creating a DB cluster

When you create a new Aurora MySQL DB cluster, backtracking is configured when you choose Enable
Backtrack and specify a Target Backtrack window value that is greater than zero in the Backtrack
section.

To create a DB cluster, follow the instructions in Creating an Amazon Aurora DB cluster (p. 125). The
following image shows the Backtrack section.

When you create a new DB cluster, Aurora has no data for the DB cluster's workload. So it can't estimate
a cost specifically for the new DB cluster. Instead, the console presents a typical user cost for the
specified target backtrack window based on a typical workload. The typical cost is meant to provide a
general reference for the cost of the Backtrack feature.

Important
Your actual cost might not match the typical cost, because your actual cost is based on your DB
cluster's workload.

Configuring backtrack with the console when modifying a DB cluster

You can modify backtracking for a DB cluster using the console.

Note
Currently, you can modify backtracking only for a DB cluster that has the Backtrack feature
enabled. The Backtrack section doesn't appear for a DB cluster that was created with the
Backtrack feature disabled or if the Backtrack feature has been disabled for the DB cluster.

To modify backtracking for a DB cluster using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases.

840

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Backtracking a DB cluster

3. Choose the cluster that you want to modify, and choose Modify.
4. For Target Backtrack window, modify the amount of time that you want to be able to backtrack.

The limit is 72 hours.

The console shows the estimated cost for the amount of time you specified based on the DB cluster's
past workload:

• If backtracking was disabled on the DB cluster, the cost estimate is based on the
VolumeWriteIOPS metric for the DB cluster in Amazon CloudWatch.

• If backtracking was enabled previously on the DB cluster, the cost estimate is based on the
BacktrackChangeRecordsCreationRate metric for the DB cluster in Amazon CloudWatch.

5. Choose Continue.
6. For Scheduling of Modifications, choose one of the following:

• Apply during the next scheduled maintenance window – Wait to apply the Target Backtrack
window modification until the next maintenance window.

• Apply immediately – Apply the Target Backtrack window modification as soon as possible.
7. Choose Modify cluster.

AWS CLI

When you create a new Aurora MySQL DB cluster using the create-db-cluster AWS CLI command,
backtracking is configured when you specify a --backtrack-window value that is greater than zero.
The --backtrack-window value specifies the target backtrack window. For more information, see
Creating an Amazon Aurora DB cluster (p. 125).

You can also specify the --backtrack-window value using the following AWS CLI commands:

• modify-db-cluster
• restore-db-cluster-from-s3
• restore-db-cluster-from-snapshot
• restore-db-cluster-to-point-in-time

The following procedure describes how to modify the target backtrack window for a DB cluster using the
AWS CLI.

841

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-s3.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html

Amazon Aurora User Guide for Aurora
Backtracking a DB cluster

To modify the target backtrack window for a DB cluster using the AWS CLI

• Call the modify-db-cluster AWS CLI command and supply the following values:

• --db-cluster-identifier – The name of the DB cluster.

• --backtrack-window – The maximum number of seconds that you want to be able to backtrack
the DB cluster.

The following example sets the target backtrack window for sample-cluster to one day (86,400
seconds).

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier sample-cluster \
 --backtrack-window 86400

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier sample-cluster ^
 --backtrack-window 86400

Note
Currently, you can enable backtracking only for a DB cluster that was created with the Backtrack
feature enabled.

RDS API

When you create a new Aurora MySQL DB cluster using the CreateDBCluster Amazon RDS API operation,
backtracking is configured when you specify a BacktrackWindow value that is greater than zero.
The BacktrackWindow value specifies the target backtrack window for the DB cluster specified
in the DBClusterIdentifier value. For more information, see Creating an Amazon Aurora DB
cluster (p. 125).

You can also specify the BacktrackWindow value using the following API operations:

• ModifyDBCluster

• RestoreDBClusterFromS3

• RestoreDBClusterFromSnapshot

• RestoreDBClusterToPointInTime

Note
Currently, you can enable backtracking only for a DB cluster that was created with the Backtrack
feature enabled.

Performing a backtrack

You can backtrack a DB cluster to a specified backtrack time stamp. If the backtrack time stamp isn't
earlier than the earliest possible backtrack time, and isn't in the future, the DB cluster is backtracked to
that time stamp.

842

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterToPointInTime.html

Amazon Aurora User Guide for Aurora
Backtracking a DB cluster

Otherwise, an error typically occurs. Also, if you try to backtrack a DB cluster for which binary logging
is enabled, an error typically occurs unless you've chosen to force the backtrack to occur. Forcing a
backtrack to occur can interfere with other operations that use binary logging.

Important
Backtracking doesn't generate binlog entries for the changes that it makes. If you have binary
logging enabled for the DB cluster, backtracking might not be compatible with your binlog
implementation.

Note
For database clones, you can't backtrack the DB cluster earlier than the date and time when the
clone was created. For more information about database cloning, see Cloning a volume for an
Aurora DB cluster (p. 402).

Console

The following procedure describes how to perform a backtrack operation for a DB cluster using the
console.

To perform a backtrack operation using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Instances.
3. Choose the primary instance for the DB cluster that you want to backtrack.
4. For Actions, choose Backtrack DB cluster.
5. On the Backtrack DB cluster page, enter the backtrack time stamp to backtrack the DB cluster to.

6. Choose Backtrack DB cluster.

AWS CLI

The following procedure describes how to backtrack a DB cluster using the AWS CLI.

To backtrack a DB cluster using the AWS CLI

• Call the backtrack-db-cluster AWS CLI command and supply the following values:

843

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/backtrack-db-cluster.html

Amazon Aurora User Guide for Aurora
Backtracking a DB cluster

• --db-cluster-identifier – The name of the DB cluster.

• --backtrack-to – The backtrack time stamp to backtrack the DB cluster to, specified in ISO
8601 format.

The following example backtracks the DB cluster sample-cluster to March 19, 2018, at 10 a.m.

For Linux, macOS, or Unix:

aws rds backtrack-db-cluster \
 --db-cluster-identifier sample-cluster \
 --backtrack-to 2018-03-19T10:00:00+00:00

For Windows:

aws rds backtrack-db-cluster ^
 --db-cluster-identifier sample-cluster ^
 --backtrack-to 2018-03-19T10:00:00+00:00

RDS API

To backtrack a DB cluster using the Amazon RDS API, use the BacktrackDBCluster operation. This
operation backtracks the DB cluster specified in the DBClusterIdentifier value to the specified time.

Monitoring backtracking
You can view backtracking information and monitor backtracking metrics for a DB cluster.

Console

To view backtracking information and monitor backtracking metrics using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Databases.

3. Choose the DB cluster name to open information about it.

The backtrack information is in the Backtrack section.

844

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_BacktrackDBCluster.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Backtracking a DB cluster

When backtracking is enabled, the following information is available:

• Target window – The current amount of time specified for the target backtrack window. The
target is the maximum amount of time that you can backtrack if there is sufficient storage.

• Actual window – The actual amount of time you can backtrack, which can be smaller than the
target backtrack window. The actual backtrack window is based on your workload and the storage
available for retaining backtrack change records.

• Earliest backtrack time – The earliest possible backtrack time for the DB cluster. You can't
backtrack the DB cluster to a time before the displayed time.

4. Do the following to view backtracking metrics for the DB cluster:

a. In the navigation pane, choose Instances.

b. Choose the name of the primary instance for the DB cluster to display its details.

c. In the CloudWatch section, type Backtrack into the CloudWatch box to show only the
Backtrack metrics.

The following metrics are displayed:

845

Amazon Aurora User Guide for Aurora
Backtracking a DB cluster

• Backtrack Change Records Creation Rate (Count) – This metric shows the number of
backtrack change records created over five minutes for your DB cluster. You can use this
metric to estimate the backtrack cost for your target backtrack window.

• [Billed] Backtrack Change Records Stored (Count) – This metric shows the actual number of
backtrack change records used by your DB cluster.

• Backtrack Window Actual (Minutes) – This metric shows whether there is a difference
between the target backtrack window and the actual backtrack window. For example, if your
target backtrack window is 2 hours (120 minutes), and this metric shows that the actual
backtrack window is 100 minutes, then the actual backtrack window is smaller than the
target.

• Backtrack Window Alert (Count) – This metric shows how often the actual backtrack window
is smaller than the target backtrack window for a given period of time.

Note
The following metrics might lag behind the current time:

• Backtrack Change Records Creation Rate (Count)

• [Billed] Backtrack Change Records Stored (Count)

AWS CLI

The following procedure describes how to view backtrack information for a DB cluster using the AWS CLI.

To view backtrack information for a DB cluster using the AWS CLI

• Call the describe-db-clusters AWS CLI command and supply the following values:

• --db-cluster-identifier – The name of the DB cluster.

The following example lists backtrack information for sample-cluster.

For Linux, macOS, or Unix:

aws rds describe-db-clusters \
 --db-cluster-identifier sample-cluster

For Windows:

aws rds describe-db-clusters ^
 --db-cluster-identifier sample-cluster

RDS API

To view backtrack information for a DB cluster using the Amazon RDS API, use the DescribeDBClusters
operation. This operation returns backtrack information for the DB cluster specified in the
DBClusterIdentifier value.

846

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html

Amazon Aurora User Guide for Aurora
Backtracking a DB cluster

Subscribing to a backtrack event with the console

The following procedure describes how to subscribe to a backtrack event using the console. The event
sends you an email or text notification when your actual backtrack window is smaller than your target
backtrack window.

To view backtrack information using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Event subscriptions.

3. Choose Create event subscription.

4. In the Name box, type a name for the event subscription, and ensure that Yes is selected for
Enabled.

5. In the Target section, choose New email topic.

6. For Topic name, type a name for the topic, and for With these recipients, enter the email addresses
or phone numbers to receive the notifications.

7. In the Source section, choose Instances for Source type.

8. For Instances to include, choose Select specific instances, and choose your DB instance.

9. For Event categories to include, choose Select specific event categories, and choose backtrack.

Your page should look similar to the following page.

847

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Backtracking a DB cluster

848

Amazon Aurora User Guide for Aurora
Backtracking a DB cluster

10. Choose Create.

Retrieving existing backtracks

You can retrieve information about existing backtracks for a DB cluster. This information includes the
unique identifier of the backtrack, the date and time backtracked to and from, the date and time the
backtrack was requested, and the current status of the backtrack.

Note
Currently, you can't retrieve existing backtracks using the console.

AWS CLI

The following procedure describes how to retrieve existing backtracks for a DB cluster using the AWS CLI.

To retrieve existing backtracks using the AWS CLI

• Call the describe-db-cluster-backtracks AWS CLI command and supply the following values:

• --db-cluster-identifier – The name of the DB cluster.

The following example retrieves existing backtracks for sample-cluster.

For Linux, macOS, or Unix:

aws rds describe-db-cluster-backtracks \
 --db-cluster-identifier sample-cluster

For Windows:

aws rds describe-db-cluster-backtracks ^
 --db-cluster-identifier sample-cluster

RDS API

To retrieve information about the backtracks for a DB cluster using the Amazon RDS API, use the
DescribeDBClusterBacktracks operation. This operation returns information about backtracks for the DB
cluster specified in the DBClusterIdentifier value.

Disabling backtracking for a DB cluster

You can disable the Backtrack feature for a DB cluster.

Console

You can disable backtracking for a DB cluster using the console. After you turn off backtracking entirely
for a cluster, you can't enable it again for that cluster.

To disable the Backtrack feature for a DB cluster using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

849

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-backtracks.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterBacktracks.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Testing Amazon Aurora using fault injection queries

2. Choose Databases.
3. Choose the cluster you want to modify, and choose Modify.
4. In the Backtrack section, choose Disable Backtrack.
5. Choose Continue.
6. For Scheduling of Modifications, choose one of the following:

• Apply during the next scheduled maintenance window – Wait to apply the modification until the
next maintenance window.

• Apply immediately – Apply the modification as soon as possible.
7. Choose Modify Cluster.

AWS CLI

You can disable the Backtrack feature for a DB cluster using the AWS CLI by setting the target backtrack
window to 0 (zero). After you turn off backtracking entirely for a cluster, you can't enable it again for that
cluster.

To modify the target backtrack window for a DB cluster using the AWS CLI

• Call the modify-db-cluster AWS CLI command and supply the following values:

• --db-cluster-identifier – The name of the DB cluster.
• --backtrack-window – specify 0 to turn off backtracking.

The following example disables the Backtrack feature for the sample-cluster by setting --
backtrack-window to 0.

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier sample-cluster \
 --backtrack-window 0

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier sample-cluster ^
 --backtrack-window 0

RDS API

To disable the Backtrack feature for a DB cluster using the Amazon RDS API, use the ModifyDBCluster
operation. Set the BacktrackWindow value to 0 (zero), and specify the DB cluster in the
DBClusterIdentifier value. After you turn off backtracking entirely for a cluster, you can't enable it
again for that cluster.

Testing Amazon Aurora using fault injection queries
You can test the fault tolerance of your Amazon Aurora DB cluster by using fault injection queries. Fault
injection queries are issued as SQL commands to an Amazon Aurora instance and they enable you to
schedule a simulated occurrence of one of the following events:

850

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora
Testing Amazon Aurora using fault injection queries

• A crash of a writer or reader DB instance

• A failure of an Aurora Replica

• A disk failure

• Disk congestion

When a fault injection query specifies a crash, it forces a crash of the Aurora DB instance. The other fault
injection queries result in simulations of failure events, but don't cause the event to occur. When you
submit a fault injection query, you also specify an amount of time for the failure event simulation to
occur for.

You can submit a fault injection query to one of your Aurora Replica instances by connecting
to the endpoint for the Aurora Replica. For more information, see Amazon Aurora connection
management (p. 32).

Testing an instance crash

You can force a crash of an Amazon Aurora instance using the ALTER SYSTEM CRASH fault injection
query.

For this fault injection query, a failover will not occur. If you want to test a failover, then you can choose
the Failover instance action for your DB cluster in the RDS console, or use the failover-db-cluster AWS
CLI command or the FailoverDBCluster RDS API operation.

Syntax

ALTER SYSTEM CRASH [INSTANCE | DISPATCHER | NODE];

Options

This fault injection query takes one of the following crash types:

• INSTANCE — A crash of the MySQL-compatible database for the Amazon Aurora instance is simulated.

• DISPATCHER — A crash of the dispatcher on the writer instance for the Aurora DB cluster is simulated.
The dispatcher writes updates to the cluster volume for an Amazon Aurora DB cluster.

• NODE — A crash of both the MySQL-compatible database and the dispatcher for the Amazon Aurora
instance is simulated. For this fault injection simulation, the cache is also deleted.

The default crash type is INSTANCE.

Testing an Aurora replica failure

You can simulate the failure of an Aurora Replica using the ALTER SYSTEM SIMULATE READ REPLICA
FAILURE fault injection query.

An Aurora Replica failure will block all requests to an Aurora Replica or all Aurora Replicas in the DB
cluster for a specified time interval. When the time interval completes, the affected Aurora Replicas will
be automatically synced up with master instance.

Syntax

ALTER SYSTEM SIMULATE percentage_of_failure PERCENT READ REPLICA FAILURE

851

https://docs.aws.amazon.com/cli/latest/reference/rds/failover-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_FailoverDBCluster.html

Amazon Aurora User Guide for Aurora
Testing Amazon Aurora using fault injection queries

 [TO ALL | TO "replica name"]
 FOR INTERVAL quantity { YEAR | QUARTER | MONTH | WEEK | DAY | HOUR | MINUTE | SECOND };

Options

This fault injection query takes the following parameters:

• percentage_of_failure — The percentage of requests to block during the failure event. This value
can be a double between 0 and 100. If you specify 0, then no requests are blocked. If you specify 100,
then all requests are blocked.

• Failure type — The type of failure to simulate. Specify TO ALL to simulate failures for all Aurora
Replicas in the DB cluster. Specify TO and the name of the Aurora Replica to simulate a failure of a
single Aurora Replica. The default failure type is TO ALL.

• quantity — The amount of time for which to simulate the Aurora Replica failure. The interval is an
amount followed by a time unit. The simulation will occur for that amount of the specified unit. For
example, 20 MINUTE will result in the simulation running for 20 minutes.

Note
Take care when specifying the time interval for your Aurora Replica failure event. If you
specify too long of a time interval, and your writer instance writes a large amount of data
during the failure event, then your Aurora DB cluster might assume that your Aurora Replica
has crashed and replace it.

Testing a disk failure
You can simulate a disk failure for an Aurora DB cluster using the ALTER SYSTEM SIMULATE DISK
FAILURE fault injection query.

During a disk failure simulation, the Aurora DB cluster randomly marks disk segments as faulting.
Requests to those segments will be blocked for the duration of the simulation.

Syntax

ALTER SYSTEM SIMULATE percentage_of_failure PERCENT DISK FAILURE
 [IN DISK index | NODE index]
 FOR INTERVAL quantity { YEAR | QUARTER | MONTH | WEEK | DAY | HOUR | MINUTE | SECOND };

Options

This fault injection query takes the following parameters:

• percentage_of_failure — The percentage of the disk to mark as faulting during the failure event.
This value can be a double between 0 and 100. If you specify 0, then none of the disk is marked as
faulting. If you specify 100, then the entire disk is marked as faulting.

• DISK index — A specific logical block of data to simulate the failure event for. If you exceed the
range of available logical blocks of data, you will receive an error that tells you the maximum index
value that you can specify. For more information, see Displaying volume status for an Aurora MySQL
DB cluster (p. 858).

• NODE index — A specific storage node to simulate the failure event for. If you exceed the range of
available storage nodes, you will receive an error that tells you the maximum index value that you can
specify. For more information, see Displaying volume status for an Aurora MySQL DB cluster (p. 858).

• quantity — The amount of time for which to simulate the disk failure. The interval is an amount
followed by a time unit. The simulation will occur for that amount of the specified unit. For example,
20 MINUTE will result in the simulation running for 20 minutes.

852

Amazon Aurora User Guide for Aurora
Altering tables in Amazon Aurora using fast DDL

Testing disk congestion

You can simulate a disk failure for an Aurora DB cluster using the ALTER SYSTEM SIMULATE DISK
CONGESTION fault injection query.

During a disk congestion simulation, the Aurora DB cluster randomly marks disk segments as congested.
Requests to those segments will be delayed between the specified minimum and maximum delay time
for the duration of the simulation.

Syntax

ALTER SYSTEM SIMULATE percentage_of_failure PERCENT DISK CONGESTION
 BETWEEN minimum AND maximum MILLISECONDS
 [IN DISK index | NODE index]
 FOR INTERVAL quantity { YEAR | QUARTER | MONTH | WEEK | DAY | HOUR | MINUTE | SECOND };

Options

This fault injection query takes the following parameters:

• percentage_of_failure — The percentage of the disk to mark as congested during the failure
event. This value can be a double between 0 and 100. If you specify 0, then none of the disk is marked
as congested. If you specify 100, then the entire disk is marked as congested.

• DISK index Or NODE index — A specific disk or node to simulate the failure event for. If you exceed
the range of indexes for the disk or node, you will receive an error that tells you the maximum index
value that you can specify.

• minimum And maximum — The minimum and maximum amount of congestion delay, in milliseconds.
Disk segments marked as congested will be delayed for a random amount of time within the range of
the minimum and maximum amount of milliseconds for the duration of the simulation.

• quantity — The amount of time for which to simulate the disk congestion. The interval is an amount
followed by a time unit. The simulation will occur for that amount of the specified time unit. For
example, 20 MINUTE will result in the simulation running for 20 minutes.

Altering tables in Amazon Aurora using fast DDL
Amazon Aurora includes optimizations to run an ALTER TABLE operation in place, nearly
instantaneously. The operation completes without requiring the table to be copied and without having
a material impact on other DML statements. Because the operation doesn't consume temporary storage
for a table copy, it makes DDL statements practical even for large tables on small instance classes.

Aurora MySQL version 3 is compatible with the MySQL 8.0 feature called instant DDL. Aurora MySQL
versions 1 and 2 use a different implementation called fast DDL.

Topics

• Instant DDL (Aurora MySQL version 3) (p. 853)

• Fast DDL (Aurora MySQL version 1 and 2) (p. 855)

Instant DDL (Aurora MySQL version 3)

The optimization performed by Aurora MySQL version 3 to improve the efficiency of some DDL
operations is called instant DDL.

853

Amazon Aurora User Guide for Aurora
Altering tables in Amazon Aurora using fast DDL

Aurora MySQL version 3 is compatible with the instant DDL from community MySQL 8.0. You perform an
instant DDL operation by using the clause ALGORITHM=INSTANT with the ALTER TABLE statement. For
syntax and usage details about instant DDL, see ALTER TABLE and Online DDL Operations in the MySQL
documentation.

The following examples demonstrate the instant DDL feature. The ALTER TABLE statements create and
drop indexes, add columns, and change default column values. The examples include both regular and
virtual columns, and both regular and partitioned tables. At each step, you can see the results by issuing
SHOW CREATE TABLE and DESCRIBE statements.

mysql> CREATE TABLE t1 (a INT, b INT, KEY(b)) PARTITION BY KEY(b) PARTITIONS 6;
Query OK, 0 rows affected (0.02 sec)

mysql> ALTER TABLE t1 DROP KEY b, ADD KEY b(b) USING BTREE, ALGORITHM = INSTANT;
Query OK, 0 rows affected (0.01 sec)

mysql> ALTER TABLE t1 RENAME TO t2, ALGORITHM = INSTANT;
Query OK, 0 rows affected (0.01 sec)

mysql> ALTER TABLE t2 ALTER COLUMN b SET DEFAULT 100, ALGORITHM = INSTANT;
Query OK, 0 rows affected (0.00 sec)

mysql> ALTER TABLE t2 ALTER COLUMN b DROP DEFAULT, ALGORITHM = INSTANT;
Query OK, 0 rows affected (0.01 sec)

mysql> ALTER TABLE t2 ADD COLUMN c ENUM('a', 'b', 'c'), ALGORITHM = INSTANT;
Query OK, 0 rows affected (0.01 sec)

mysql> ALTER TABLE t2 MODIFY COLUMN c ENUM('a', 'b', 'c', 'd', 'e'), ALGORITHM = INSTANT;
Query OK, 0 rows affected (0.01 sec)

mysql> ALTER TABLE t2 ADD COLUMN (d INT GENERATED ALWAYS AS (a + 1) VIRTUAL), ALGORITHM =
 INSTANT;
Query OK, 0 rows affected (0.02 sec)

mysql> ALTER TABLE t2 ALTER COLUMN a SET DEFAULT 20,
 -> ALTER COLUMN b SET DEFAULT 200, ALGORITHM = INSTANT;
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE t2 (a INT, b INT) PARTITION BY LIST(a)(
 -> PARTITION mypart1 VALUES IN (1,3,5),
 -> PARTITION MyPart2 VALUES IN (2,4,6)
 ->);
Query OK, 0 rows affected (0.03 sec)

mysql> ALTER TABLE t3 ALTER COLUMN a SET DEFAULT 20, ALTER COLUMN b SET DEFAULT 200,
 ALGORITHM = INSTANT;
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE t4 (a INT, b INT) PARTITION BY RANGE(a)
 -> (PARTITION p0 VALUES LESS THAN(100), PARTITION p1 VALUES LESS THAN(1000),
 -> PARTITION p2 VALUES LESS THAN MAXVALUE);
Query OK, 0 rows affected (0.05 sec)

mysql> ALTER TABLE t4 ALTER COLUMN a SET DEFAULT 20,
 -> ALTER COLUMN b SET DEFAULT 200, ALGORITHM = INSTANT;
Query OK, 0 rows affected (0.01 sec)

/* Sub-partitioning example */
mysql> CREATE TABLE ts (id INT, purchased DATE, a INT, b INT)
 -> PARTITION BY RANGE(YEAR(purchased))
 -> SUBPARTITION BY HASH(TO_DAYS(purchased))
 -> SUBPARTITIONS 2 (
 -> PARTITION p0 VALUES LESS THAN (1990),

854

https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-online-ddl-operations.html

Amazon Aurora User Guide for Aurora
Altering tables in Amazon Aurora using fast DDL

 -> PARTITION p1 VALUES LESS THAN (2000),
 -> PARTITION p2 VALUES LESS THAN MAXVALUE
 ->);
Query OK, 0 rows affected (0.10 sec)

mysql> ALTER TABLE ts ALTER COLUMN a SET DEFAULT 20,
 -> ALTER COLUMN b SET DEFAULT 200, ALGORITHM = INSTANT;
Query OK, 0 rows affected (0.01 sec)

Fast DDL (Aurora MySQL version 1 and 2)

In MySQL, many data definition language (DDL) operations have a significant performance impact.

For example, suppose that you use an ALTER TABLE operation to add a column to a table. Depending
on the algorithm specified for the operation, this operation can involve the following:

• Creating a full copy of the table
• Creating a temporary table to process concurrent data manipulation language (DML) operations
• Rebuilding all indexes for the table
• Applying table locks while applying concurrent DML changes
• Slowing concurrent DML throughput

The optimization performed by Aurora MySQL version 1 and 2 to improve the efficiency of some DDL
operations is called fast DDL.

In Aurora MySQL version 3, Aurora uses the MySQL 8.0 feature called instant DDL. Aurora MySQL
versions 1 and 2 use a different implementation called fast DDL.

Important
Currently, Aurora lab mode must be enabled to use fast DDL for Aurora MySQL. We don't
recommend using fast DDL for production DB clusters. For information about enabling Aurora
lab mode, see Amazon Aurora MySQL lab mode (p. 1053).

Fast DDL limitations

Currently, fast DDL has the following limitations:

• Fast DDL only supports adding nullable columns, without default values, to the end of an existing
table.

• Fast DDL doesn't work for partitioned tables.
• Fast DDL doesn't work for InnoDB tables that use the REDUNDANT row format.
• Fast DDL doesn't work for tables with full-text search indexes.
• If the maximum possible record size for the DDL operation is too large, fast DDL is not used. A record

size is too large if it is greater than half the page size. The maximum size of a record is computed by
adding the maximum sizes of all columns. For variable sized columns, according to InnoDB standards,
extern bytes are not included for computation.

Note
The maximum record size check was added in Aurora 1.15.

Fast DDL syntax

ALTER TABLE tbl_name ADD COLUMN col_name column_definition

This statement takes the following options:

855

Amazon Aurora User Guide for Aurora
Altering tables in Amazon Aurora using fast DDL

• tbl_name — The name of the table to be modified.

• col_name — The name of the column to be added.

• col_definition — The definition of the column to be added.

Note
You must specify a nullable column definition without a default value. Otherwise, fast DDL
isn't used.

Fast DDL examples

The following examples demonstrate the speedup from fast DDL operations. The first SQL example runs
ALTER TABLE statements on a large table without using fast DDL. This operation takes substantial time.
A CLI example shows how to enable fast DDL for the cluster. Then another SQL example runs the same
ALTER TABLE statements on an identical table. With fast DDL enabled, the operation is very fast.

This example uses the ORDERS table from the TPC-H benchmark, containing 150 million rows. This
cluster intentionally uses a relatively small instance class, to demonstrate how long ALTER TABLE
statements can take when you can't use fast DDL. The example creates a clone of the original table
containing identical data. Checking the aurora_lab_mode setting confirms that the cluster can't
use fast DDL, because lab mode isn't enabled. Then ALTER TABLE ADD COLUMN statements take
substantial time to add new columns at the end of the table.

mysql> create table orders_regular_ddl like orders;
Query OK, 0 rows affected (0.06 sec)

mysql> insert into orders_regular_ddl select * from orders;
Query OK, 150000000 rows affected (1 hour 1 min 25.46 sec)

mysql> select @@aurora_lab_mode;
+-------------------+
| @@aurora_lab_mode |
+-------------------+
| 0 |
+-------------------+

mysql> ALTER TABLE orders_regular_ddl ADD COLUMN o_refunded boolean;
Query OK, 0 rows affected (40 min 31.41 sec)

mysql> ALTER TABLE orders_regular_ddl ADD COLUMN o_coverletter varchar(512);
Query OK, 0 rows affected (40 min 44.45 sec)

This example does the same preparation of a large table as the previous example. However, you can't
simply enable lab mode within an interactive SQL session. That setting must be enabled in a custom
parameter group. Doing so requires switching out of the mysql session and running some AWS CLI
commands or using the AWS Management Console.

mysql> create table orders_fast_ddl like orders;
Query OK, 0 rows affected (0.02 sec)

mysql> insert into orders_fast_ddl select * from orders;
Query OK, 150000000 rows affected (58 min 3.25 sec)

mysql> set aurora_lab_mode=1;
ERROR 1238 (HY000): Variable 'aurora_lab_mode' is a read only variable

Enabling lab mode for the cluster requires some work with a parameter group. This AWS CLI example
uses a cluster parameter group, to ensure that all DB instances in the cluster use the same value for the
lab mode setting.

856

Amazon Aurora User Guide for Aurora
Altering tables in Amazon Aurora using fast DDL

$ aws rds create-db-cluster-parameter-group \
 --db-parameter-group-family aurora5.6 \
 --db-cluster-parameter-group-name lab-mode-enabled-56 --description 'TBD'
$ aws rds describe-db-cluster-parameters \
 --db-cluster-parameter-group-name lab-mode-enabled-56 \
 --query '*[*].[ParameterName,ParameterValue]' \
 --output text | grep aurora_lab_mode
aurora_lab_mode 0
$ aws rds modify-db-cluster-parameter-group \
 --db-cluster-parameter-group-name lab-mode-enabled-56 \
 --parameters ParameterName=aurora_lab_mode,ParameterValue=1,ApplyMethod=pending-reboot
{
 "DBClusterParameterGroupName": "lab-mode-enabled-56"
}

Assign the custom parameter group to the cluster that's going to use fast DDL.
$ aws rds modify-db-cluster --db-cluster-identifier tpch100g \
 --db-cluster-parameter-group-name lab-mode-enabled-56
{
 "DBClusterIdentifier": "tpch100g",
 "DBClusterParameterGroup": "lab-mode-enabled-56",
 "Engine": "aurora",
 "EngineVersion": "5.6.mysql_aurora.1.22.2",
 "Status": "available"
}

Reboot the primary instance for the cluster tpch100g:
$ aws rds reboot-db-instance --db-instance-identifier instance-2020-12-22-5208
{
 "DBInstanceIdentifier": "instance-2020-12-22-5208",
 "DBInstanceStatus": "rebooting"
}

$ aws rds describe-db-clusters --db-cluster-identifier tpch100g \
 --query '*[].[DBClusterParameterGroup]' --output text
lab-mode-enabled-56

$ aws rds describe-db-cluster-parameters \
 --db-cluster-parameter-group-name lab-mode-enabled-56 \
 --query '*[*].{ParameterName:ParameterName,ParameterValue:ParameterValue}' \
 --output text | grep aurora_lab_mode
aurora_lab_mode 1

The following example shows the remaining steps after the parameter group change takes effect. It
tests the aurora_lab_mode setting to make sure that the cluster can use fast DDL. Then it runs ALTER
TABLE statements to add columns to the end of another large table. This time, the statements finish
very quickly.

mysql> select @@aurora_lab_mode;
+-------------------+
| @@aurora_lab_mode |
+-------------------+
| 1 |
+-------------------+

mysql> ALTER TABLE orders_fast_ddl ADD COLUMN o_refunded boolean;
Query OK, 0 rows affected (1.51 sec)

mysql> ALTER TABLE orders_fast_ddl ADD COLUMN o_coverletter varchar(512);
Query OK, 0 rows affected (0.40 sec)

857

Amazon Aurora User Guide for Aurora
Displaying volume status for an Aurora DB cluster

Displaying volume status for an Aurora MySQL DB
cluster
In Amazon Aurora, a DB cluster volume consists of a collection of logical blocks. Each of these represents
10 gigabytes of allocated storage. These blocks are called protection groups.

The data in each protection group is replicated across six physical storage devices, called storage nodes.
These storage nodes are allocated across three Availability Zones (AZs) in the AWS Region where the DB
cluster resides. In turn, each storage node contains one or more logical blocks of data for the DB cluster
volume. For more information about protection groups and storage nodes, see Introducing the Aurora
storage engine on the AWS Database Blog.

You can simulate the failure of an entire storage node, or a single logical block of data within a storage
node. To do so, you use the ALTER SYSTEM SIMULATE DISK FAILURE fault injection statement. For
the statement, you specify the index value of a specific logical block of data or storage node. However,
if you specify an index value greater than the number of logical blocks of data or storage nodes used
by the DB cluster volume, the statement returns an error. For more information about fault injection
queries, see Testing Amazon Aurora using fault injection queries (p. 850).

You can avoid that error by using the SHOW VOLUME STATUS statement. The statement returns two
server status variables, Disks and Nodes. These variables represent the total number of logical blocks of
data and storage nodes, respectively, for the DB cluster volume.

Note
The SHOW VOLUME STATUS statement is available for Aurora version 1.12 and later. For
more information about Aurora versions, see Database engine updates for Amazon Aurora
MySQL (p. 1103).

Syntax

SHOW VOLUME STATUS

Example
The following example illustrates a typical SHOW VOLUME STATUS result.

mysql> SHOW VOLUME STATUS;
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Disks | 96 |
| Nodes | 74 |
+---------------+-------+

Tuning Aurora MySQL with wait events and thread
states

Wait events and thread states are an important tuning tool for Aurora MySQL. If you can find out why
sessions are waiting for resources and what they are doing, you are better able to reduce bottlenecks.
You can use the information in this section to find possible causes and corrective actions.

858

http://aws.amazon.com/blogs/database/introducing-the-aurora-storage-engine/
http://aws.amazon.com/blogs/database/introducing-the-aurora-storage-engine/

Amazon Aurora User Guide for Aurora
Essential concepts for Aurora MySQL tuning

Important
The wait events and thread states in this section are specific to Aurora MySQL. Use the
information in this section to tune only Amazon Aurora, not Amazon RDS for MySQL.
Some wait events in this section have no analogs in the open source versions of these database
engines. Other wait events have the same names as events in open source engines, but behave
differently. For example, Amazon Aurora storage works different from open source storage, so
storage-related wait events indicate different resource conditions.

Topics
• Essential concepts for Aurora MySQL tuning (p. 859)
• Tuning Aurora MySQL with wait events (p. 861)
• Tuning Aurora MySQL with thread states (p. 897)

Essential concepts for Aurora MySQL tuning
Before you tune your Aurora MySQL database, make sure to learn what wait events and thread states are
and why they occur. Also review the basic memory and disk architecture of Aurora MySQL when using
the InnoDB storage engine. For a helpful architecture diagram, see the MySQL Reference Manual.

Topics
• Aurora MySQL wait events (p. 859)
• Aurora MySQL thread states (p. 860)
• Aurora MySQL memory (p. 860)
• Aurora MySQL processes (p. 860)

Aurora MySQL wait events
A wait event indicates a resource for which a session is waiting. For example, the wait event io/socket/
sql/client_connection indicates that a thread is in the process of handling a new connection.
Typical resources that a session waits for include the following:

• Single-threaded access to a buffer, for example, when a session is attempting to modify a buffer
• A row that is currently locked by another session
• A data file read
• A log file write

For example, to satisfy a query, the session might perform a full table scan. If the data isn't already in
memory, the session waits for the disk I/O to complete. When the buffers are read into memory, the
session might need to wait because other sessions are accessing the same buffers. The database records
the waits by using a predefined wait event. These events are grouped into categories.

A wait event doesn't by itself show a performance problem. For example, if requested data isn't in
memory, reading data from disk is necessary. If one session locks a row for an update, another session
waits for the row to be unlocked so that it can update it. A commit requires waiting for the write to a log
file to complete. Waits are integral to the normal functioning of a database.

Large numbers of wait events typically show a performance problem. In such cases, you can use wait
event data to determine where sessions are spending time. For example, if a report that typically runs in
minutes now runs for hours, you can identify the wait events that contribute the most to total wait time.
If you can determine the causes of the top wait events, you can sometimes make changes that improve
performance. For example, if your session is waiting on a row that has been locked by another session,
you can end the locking session.

859

https://dev.mysql.com/doc/refman/8.0/en/images/innodb-architecture.png

Amazon Aurora User Guide for Aurora
Essential concepts for Aurora MySQL tuning

Aurora MySQL thread states
A general thread state is a State value that is associated with general query processing. For example,
the thread state sending data indicates that a thread is reading and filtering rows for a query to
determine the correct result set.

You can use thread states to tune Aurora MySQL in a similar fashion to how you use wait events. For
example, frequent occurrences of sending data usually indicate that a query isn't using an index. For
more information about thread states, see General Thread States in the MySQL Reference Manual.

When you use Performance Insights, one of the following conditions is true:

• Performance Schema is turned on – Aurora MySQL shows wait events rather than the thread state.

• Performance Schema isn't turned on – Aurora MySQL shows the thread state.

We recommend that you configure the Performance Schema for automatic management. The
Performance Schema provides additional insights and better tools to investigate potential performance
problems. For more information, see Enabling the Performance Schema for Performance Insights on
Aurora MySQL (p. 601).

Aurora MySQL memory
In Aurora MySQL, the most important memory areas are the buffer pool and log buffer.

Topics
• Buffer pool (p. 860)

Buffer pool

The buffer pool is the shared memory area where Aurora MySQL caches table and index data. Queries can
access frequently used data directly from memory without reading from disk.

The buffer pool is structured as a linked list of pages. A page can hold multiple rows. Aurora MySQL uses
a least recently used (LRU) algorithm to age pages out of the pool.

For more information, see Buffer Pool in the MySQL Reference Manual.

Aurora MySQL processes
Aurora MySQL uses a process model that is very different from Aurora PostgreSQL.

Topics
• MySQL server (mysqld) (p. 860)

• Threads (p. 861)

• Thread pool (p. 861)

MySQL server (mysqld)

The MySQL server is a single operating-system process named mysqld. The MySQL server doesn't spawn
additional processes. Thus, an Aurora MySQL database uses mysqld to perform most of its work.

When the MySQL server starts, it listens for network connections from MySQL clients. When a client
connects to the database, mysqld opens a thread.

860

https://dev.mysql.com/doc/refman/5.7/en/general-thread-states.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-buffer-pool.html

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

Threads

Connection manager threads associate each client connection with a dedicated thread. This thread
manages authentication, runs statements, and returns results to the client. Connection manager creates
new threads when necessary.

The thread cache is the set of available threads. When a connection ends, MySQL returns the thread to
the thread cache if the cache isn't full. The thread_cache_size system variable determines the thread
cache size.

Thread pool

The thread pool consists of a number of thread groups. Each group manages a set of client connections.
When a client connects to the database, the thread pool assigns the connections to thread groups in
round-robin fashion. The thread pool separates connections and threads. There is no fixed relationship
between connections and the threads that run statements received from those connections.

Tuning Aurora MySQL with wait events
The following table summarizes the Aurora MySQL wait events that most commonly indicate
performance problems. The following wait events are a subset of the list in Aurora MySQL wait
events (p. 1084).

Wait event Description

cpu (p. 862) This event occurs when a thread is active in CPU or is
waiting for CPU.

io/aurora_redo_log_flush (p. 865) This event occurs when a session is writing persistent
data to Aurora storage.

io/aurora_respond_to_client (p. 868) This event occurs when a thread is waiting to return a
result set to a client.

io/file/innodb/innodb_data_file (p. 870) This event occurs when there are threads waiting on I/
O operations from storage.

io/socket/sql/client_connection (p. 872) This event occurs when a thread is in the process of
handling a new connection.

io/table/sql/handler (p. 874) This event occurs when work has been delegated to a
storage engine.

synch/cond/mysys/thread_var::suspend (p. 877) This event occurs when threads are suspended because
they are waiting on a condition.

synch/cond/sql/
MDL_context::COND_wait_status (p. 878)

This event occurs when there are threads waiting on a
table metadata lock.

synch/mutex/innodb/
aurora_lock_thread_slot_futex (p. 885)

This event occurs when one session has locked a row
for an update, and another session tries to update the
same row.

synch/mutex/innodb/buf_pool_mutex (p. 887) This event occurs when a thread has acquired a lock on
the InnoDB buffer pool to access a page in memory.

synch/mutex/innodb/fil_system_mutex (p. 889) This event occurs when when a session is waiting to
access the tablespace memory cache.

861

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

Wait event Description

synch/mutex/innodb/trx_sys_mutex (p. 892) This event occurs when there is high database activity
with a large number of transactions.

synch/rwlock/innodb/hash_table_locks (p. 893) This event occurs when there is contention on
modifying the hash table that maps the buffer cache.

synch/sxlock/innodb/hash_table_locks (p. 895) This event occurs when pages not found in the buffer
pool must be read from a file.

cpu

The cpu wait event occurs when a thread is active in CPU or is waiting for CPU.

Topics

• Supported engine versions (p. 862)

• Context (p. 862)

• Likely causes of increased waits (p. 863)

• Actions (p. 863)

Supported engine versions

This wait event information is supported for the following engine versions:

• Aurora MySQL version 2, up to 2.09.2

• Aurora MySQL version 1, up to 1.23.1

Context

For every vCPU, a connection can run work on this CPU. In some situations, the number of active
connections that are ready to run is higher than the number of vCPUs. This imbalance results in
connections waiting for CPU resources. If the number of active connections stays consistently higher
than the number of vCPUs, then your instance experiences CPU contention. The contention causes the
cpu wait event to occur.

Note
The Performance Insights metric for CPU is DBLoadCPU. The value for DBLoadCPU can differ
from the value for the CloudWatch metric CPUUtilization. The latter metric is collected from
the HyperVisor for a database instance.

Performance Insights OS metrics provide detailed information about CPU utilization. For example, you
can display the following metrics:

• os.cpuUtilization.nice.avg

• os.cpuUtilization.total.avg

• os.cpuUtilization.wait.avg

• os.cpuUtilization.idle.avg

Performance Insights reports the CPU usage by the database engine as
os.cpuUtilization.nice.avg.

862

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

Likely causes of increased waits

When this event occurs more than normal, possibly indicating a performance problem, typical causes
include the following:

• Analytic queries

• Highly concurrent transactions

• Long-running transactions

• A sudden increase in the number of connections, known as a login storm

• An increase in context switching

Actions

If the cpu wait event dominates database activity, it doesn't necessarily indicate a performance problem.
Respond to this event only when performance degrades.

Depending on the cause of the increase in CPU utilization, consider the following strategies:

• Increase the CPU capacity of the host. This approach typically gives only temporary relief.

• Identify top queries for potential optimization.

• Redirect some read-only workload to reader nodes, if applicable.

Topics

• Identify the sessions or queries that are causing the problem (p. 863)

• Analyze and optimize the high CPU workload (p. 864)

Identify the sessions or queries that are causing the problem

To find the sessions and queries, look at the Top SQL table in Performance Insights for the SQL
statements that have the highest CPU load. For more information, see Analyzing metrics with the
Performance Insights dashboard (p. 606).

Typically, one or two SQL statements consume the majority of CPU cycles. Concentrate your efforts
on these statements. Suppose that your DB instance has 2 vCPUs with a DB load of 3.1 average active
sessions (AAS), all in the CPU state. In this case, your instance is CPU bound. Consider the following
strategies:

• Upgrade to a larger instance class with more vCPUs.

• Tune your queries to have lower CPU load.

In this example, the top SQL queries have a DB load of 1.5 AAS, all in the CPU state. Another SQL
statement has a load of 0.1 in the CPU state. In this example, if you stopped the lowest-load SQL
statement, you don't significantly reduce database load. However, if you optimize the two high-load
queries to be twice as efficient, you eliminate the CPU bottleneck. If you reduce the CPU load of 1.5 AAS
by 50 percent, the AAS for each statement decreases to 0.75. The total DB load spent on CPU is now 1.6
AAS. This value is below the maximum vCPU line of 2.0.

For a useful overview of troubleshooting using Performance Insights, see the blog post Analyze Amazon
Aurora MySQL Workloads with Performance Insights. Also see the AWS Support article How can I
troubleshoot and resolve high CPU utilization on my Amazon RDS for MySQL instances?.

863

http://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
http://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://aws.amazon.com/premiumsupport/knowledge-center/rds-instance-high-cpu/
https://aws.amazon.com/premiumsupport/knowledge-center/rds-instance-high-cpu/

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

Analyze and optimize the high CPU workload

After you identify the query or queries increasing CPU usage, you can either optimize them or end the
connection. The following example shows how to end a connection.

CALL mysql.rds_kill(processID);

For more information, see mysql.rds_kill in the Amazon RDS User Guide.

If you end a session, the action might trigger a long rollback.

Follow the guidelines for optimizing queries

To optimize queries, consider the following guidelines:

• Run the EXPLAIN statement.

This command shows the individual steps involved in running a query. For more information, see
Optimizing Queries with EXPLAIN in the MySQL documentation.

• Run the SHOW PROFILE statement.

Use this statement to review profile details that can indicate resource usage for statements that are
run during the current session. For more information, see SHOW PROFILE Statement in the MySQL
documentation.

• Run the ANALYZE TABLE statement.

Use this statement to refresh the index statistics for the tables accessed by the high-CPU consuming
query. By analyzing the statement, you can help the optimizer choose an appropriate execution plan.
For more information, see ANALYZE TABLE Statement in the MySQL documentation.

Follow the guidelines for improving CPU usage

To improve CPU usage in a database instance, follow these guidelines:

• Ensure that all queries are using proper indexes.

• Find out whether you can use Aurora parallel queries. You can use this technique to reduce CPU usage
on the head node by pushing down function processing, row filtering, and column projection for the
WHERE clause.

• Find out whether the number of SQL executions per second meets the expected thresholds.

• Find out whether index maintenance or new index creation takes up CPU cycles needed by your
production workload. Schedule maintenance activities outside of peak activity times.

• Find out whether you can use partitioning to help reduce the query data set. For more information, see
the blog post How to plan and optimize Amazon Aurora with MySQL compatibility for consolidated
workloads.

Check for connection storms

If the DBLoadCPU metric is not very high, but the CPUUtilization metric is high, the cause of the high
CPU utilization lies outside of the database engine. A classic example is a connection storm.

Check whether the following conditions are true:

• There is an increase in both the Performance Insights CPUUtilization metric and the Amazon
CloudWatch DatabaseConnections metric.

864

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_kill.html
https://dev.mysql.com/doc/refman/5.7/en/using-explain.html
https://dev.mysql.com/doc/refman/5.7/en/show-profile.html
https://dev.mysql.com/doc/refman/5.7/en/analyze-table.html
https://aws.amazon.com/blogs/database/planning-and-optimizing-amazon-aurora-with-mysql-compatibility-for-consolidated-workloads/
https://aws.amazon.com/blogs/database/planning-and-optimizing-amazon-aurora-with-mysql-compatibility-for-consolidated-workloads/

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

• The number of threads in the CPU is greater than the number of vCPUs.

If the preceding conditions are true, consider decreasing the number of database connections. For
example, you can use a connection pool such as RDS Proxy. To learn the best practices for effective
connection management and scaling, see the whitepaper Amazon Aurora MySQL DBA Handbook for
Connection Management.

io/aurora_redo_log_flush
The io/aurora_redo_log_flush event occurs when a session is writing persistent data to Amazon
Aurora storage.

Topics

• Supported engine versions (p. 865)

• Context (p. 865)

• Likely causes of increased waits (p. 865)

• Actions (p. 866)

Supported engine versions

This wait event information is supported for the following engine versions:

• Aurora MySQL version 2.x up to 2.09.2

• Aurora MySQL version 1.x up to 1.23.1

Context

The io/aurora_redo_log_flush event is for a write input/output (I/O) operation in Aurora MySQL.

Likely causes of increased waits

For data persistence, commits require a durable write to stable storage. If the database is doing too
many commits, there is a wait event on the write I/O operation, the io/aurora_redo_log_flush wait
event.

In the following examples, 50,000 records are inserted into an Aurora MySQL DB cluster using the
db.r5.xlarge DB instance class:

• In the first example, each session inserts 10,000 records row by row. By default, if a data manipulation
language (DML) command isn't within a transaction, Aurora MySQL uses implicit commits. Autocommit
is turned on. This means that for each row insertion there is a commit. Performance Insights shows
that the connections spend most of their time waiting on the io/aurora_redo_log_flush wait
event.

865

https://d1.awsstatic.com/whitepapers/RDS/amazon-aurora-mysql-database-administrator-handbook.pdf
https://d1.awsstatic.com/whitepapers/RDS/amazon-aurora-mysql-database-administrator-handbook.pdf

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

This is caused by the simple insert statements used.

The 50,000 records take 3.5 minutes to be inserted.
• In the second example, inserts are made in 1,000 batches, that is each connection performs 10

commits instead of 10,000. Performance Insights shows that the connections don't spend most of
their time on the io/aurora_redo_log_flush wait event.

The 50,000 records take 4 seconds to be inserted.

Actions

We recommend different actions depending on the causes of your wait event.

Identify the problematic sessions and queries

If your DB instance is experiencing a bottleneck, your first task is to find the sessions and queries that
cause it. For a useful AWS Database Blog post, see Analyze Amazon Aurora MySQL Workloads with
Performance Insights.

To identify sessions and queries causing a bottleneck

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Performance Insights.
3. Choose your DB instance.
4. In Database load, choose Slice by wait.
5. At the bottom of the page, choose Top SQL.

The queries at the top of the list are causing the highest load on the database.

Group your write operations

The following examples trigger the io/aurora_redo_log_flush wait event. (Autocommit is turned
on.)

INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES ('xxxx','xxxxx');
INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES ('xxxx','xxxxx');
INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES ('xxxx','xxxxx');
....

866

http://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
http://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES ('xxxx','xxxxx');

UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE id=xx;
UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE id=xx;
UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE id=xx;
....
UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE id=xx;

DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1=xx;
DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1=xx;
DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1=xx;
....
DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1=xx;

To reduce the time spent waiting on the io/aurora_redo_log_flush wait event, group your write
operations logically into a single commit to reduce persistent calls to storage.

Turn off autocommit

Turn off autocommit before making large changes that aren't within a transaction, as shown in the
following example.

SET SESSION AUTOCOMMIT=OFF;
UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE sampleCol1=xx;
UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE sampleCol1=xx;
UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE sampleCol1=xx;
....
UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE sampleCol1=xx;
-- Other DML statements here
COMMIT;

SET SESSION AUTOCOMMIT=ON;

Use transactions

You can use transactions, as shown in the following example.

BEGIN
INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES ('xxxx','xxxxx');
INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES ('xxxx','xxxxx');
INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES ('xxxx','xxxxx');
....
INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES ('xxxx','xxxxx');

DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1=xx;
DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1=xx;
DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1=xx;
....
DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1=xx;

-- Other DML statements here
END

Use batches

You can make changes in batches, as shown in the following example. However, using batches that are
too large can cause performance issues, especially in read replicas or when doing point-in-time recovery
(PITR).

INSERT INTO `sampleDB`.`sampleTable` (sampleCol2, sampleCol3) VALUES

867

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

('xxxx','xxxxx'),('xxxx','xxxxx'),...,('xxxx','xxxxx'),('xxxx','xxxxx');

UPDATE `sampleDB`.`sampleTable` SET sampleCol3='xxxxx' WHERE sampleCol1 BETWEEN xx AND xxx;

DELETE FROM `sampleDB`.`sampleTable` WHERE sampleCol1<xx;

io/aurora_respond_to_client
The io/aurora_respond_to_client event occurs when a thread is waiting to return a result set to a
client.

Topics
• Supported engine versions (p. 868)

• Context (p. 868)

• Likely causes of increased waits (p. 868)

• Actions (p. 869)

Supported engine versions

This wait event information is supported for the following engine versions:

• For Aurora MySQL version 2, version 2.07.7 and higher 2.07 versions, 2.09.3 and higher 2.09 versions,
and 2.10.2 and higher 2.10 versions

• For Aurora MySQL version 1, version 1.22.6 and higher

In versions before version 1.22.6, 2.07.7, 2.09.3, and 2.10.2, this wait event erroneously includes idle
time.

Context

The event io/aurora_respond_to_client indicates that a thread is waiting to return a result set to a
client.

The query processing is complete, and the results are being returned back to the application client.
However, because there isn't enough network bandwidth on the DB cluster, a thread is waiting to return
the result set.

Likely causes of increased waits

When the io/aurora_respond_to_client event appears more than normal, possibly indicating a
performance problem, typical causes include the following:

DB instance class insufficient for the workload

The DB instance class used by the DB cluster doesn't have the necessary network bandwidth to
process the workload efficiently.

Large result sets

There was an increase in size of the result set being returned, because the query returns higher
numbers of rows. The larger result set consumes more network bandwidth.

Increased load on the client

There might be CPU pressure, memory pressure, or network saturation on the client. An increase in
load on the client delays the reception of data from the Aurora MySQL DB cluster.

868

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

Increased network latency

There might be increased network latency between the Aurora MySQL DB cluster and client. Higher
network latency increases the time required for the client to receive the data.

Actions

We recommend different actions depending on the causes of your wait event.

Topics
• Identify the sessions and queries causing the events (p. 869)
• Scale the DB instance class (p. 869)
• Check workload for unexpected results (p. 869)
• Distribute workload with reader instances (p. 870)
• Use the SQL_BUFFER_RESULT modifier (p. 870)

Identify the sessions and queries causing the events

You can use Performance Insights to show queries blocked by the io/aurora_respond_to_client
wait event. Typically, databases with moderate to significant load have wait events. The wait events
might be acceptable if performance is optimal. If performance isn't optimal, then examine where the
database is spending the most time. Look at the wait events that contribute to the highest load, and find
out whether you can optimize the database and application to reduce those events.

To find SQL queries that are responsible for high load

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Performance Insights.
3. Choose a DB instance. The Performance Insights dashboard is shown for that DB instance.
4. In the Database load chart, choose Slice by wait.
5. At the bottom of the page, choose Top SQL.

The chart lists the SQL queries that are responsible for the load. Those at the top of the list are most
responsible. To resolve a bottleneck, focus on these statements.

For a useful overview of troubleshooting using Performance Insights, see the AWS Database Blog post
Analyze Amazon Aurora MySQL Workloads with Performance Insights.

Scale the DB instance class

Check for the increase in the value of the Amazon CloudWatch metrics related to network throughput,
such as NetworkReceiveThroughput and NetworkTransmitThroughput. If the DB instance class
network bandwidth is being reached, you can scale the DB instance class used by the DB cluster by
modifying the DB cluster. A DB instance class with larger network bandwidth returns data to clients more
efficiently.

For information about monitoring Amazon CloudWatch metrics, see Viewing metrics in the Amazon RDS
console (p. 563). For information about DB instance classes, see Aurora DB instance classes (p. 54). For
information about modifying a DB cluster, see Modifying an Amazon Aurora DB cluster (p. 372).

Check workload for unexpected results

Check the workload on the DB cluster and make sure that it isn't producing unexpected results. For
example, there might be queries that are returning a higher number of rows than expected. In this case,

869

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
http://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

you can use Performance Insights counter metrics such as Innodb_rows_read. For more information,
see Performance Insights counter metrics (p. 674).

Distribute workload with reader instances

You can distribute read-only workload with Aurora replicas. You can scale horizontally by adding more
Aurora replicas. Doing so can result in an increase in the throttling limits for network bandwidth. For
more information, see Amazon Aurora DB clusters (p. 3).

Use the SQL_BUFFER_RESULT modifier

You can add the SQL_BUFFER_RESULT modifier to SELECT statements to force the result into a
temporary table before they are returned to the client. This modifier can help with performance issues
when InnoDB locks aren't being freed because queries are in the io/aurora_respond_to_client wait
state. For more information, see SELECT Statement in the MySQL documentation.

io/file/innodb/innodb_data_file

The io/file/innodb/innodb_data_file event occurs when there are threads waiting on I/O
operations from storage.

Topics

• Supported engine versions (p. 870)

• Context (p. 870)

• Likely causes of increased waits (p. 870)

• Actions (p. 871)

Supported engine versions

This wait event information is supported for the following engine versions:

Aurora MySQL version 1, up to 1.23.1

Context

The InnoDB buffer pool is the shared memory area where Aurora MySQL caches table and index data.
Queries can access frequently used data directly from memory without reading from disk. The event
io/file/innodb/innodb_data_file indicates that processing the query requires a storage I/O
operation because the data isn't available in the buffer pool.

RDS typically generates this event when it performs I/O operations such as reads, writes, or flushes. RDS
also generates this event when it runs data definition language (DDL) statements. This happens because
these statements involve creating, deleting, opening, closing, or renaming InnoDB data files.

Likely causes of increased waits

When this event appears more than normal, possibly indicating a performance problem, typical causes
include the following:

• A spike in an application workload that's I/O intensive can increase the occurrence of this wait event
because more queries need to read from storage.

A significant increase in the number of pages being scanned causes least recently used (LRU) pages to
be evicted from the buffer pool at a faster rate. Inefficient query plans can contribute to the problem.

870

https://dev.mysql.com/doc/refman/5.7/en/select.html

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

Query plans can be inefficient because of outdated states, missing indexes, or inefficiently written
queries.

• Storage capacity is sufficient but network throughput exceeds the maximum bandwidth for the
instance class, causing I/O throttling. For information about network throughput capacity for different
instance classes, see Hardware specifications for DB instance classes for Aurora (p. 62).

• Operations involving DDL statements or transactions that read, insert, or modify a large number of
rows. For example, bulk inserts or update or delete statements can specify a wide range of values in
the WHERE clause.

• SELECT queries that scan a large number of rows. For example, queries that use BETWEEN or IN
clauses can specify wide ranges of data.

• A low buffer pool hit ratio because the buffer pool is too small. The smaller the buffer pool, the more
frequently LRU pages are flushed out. This increases the likelihood that the requested data is read
from disk.

Actions

We recommend different actions depending on the causes of your wait event.

Topics
• Identify and optimize problem queries (p. 871)
• Scale up your instance (p. 871)
• Make your buffer scan resistant (p. 872)

Identify and optimize problem queries

Find the query digest responsible for this wait from Performance Insights. Check the query's statement
execution plan to see if the query can be optimized to read fewer pages into the InnoDB buffer pool.
Doing so reduces the number of least recently used pages that are evicted from the buffer pool. This
increases the cache hit efficiency of the buffer pool, which lessens the load on the I/O subsystem.

To check a query's statement execution plan, run the EXPLAIN statement. This command shows the
individual steps involved in query execution. For more information, see Optimizing Queries with EXPLAIN
in the MySQL documentation.

Scale up your instance

If your io/file/innodb/innodb_data_file wait events are caused by insufficient network or buffer
pool capacity, consider scaling up your RDS instance to a higher instance class type.

• Network throughput – Check for an increase in the value of the Amazon CloudWatch metrics network
receive throughput and network transmit throughput. If your instance has reached the
network bandwidth limit for your instance class, consider scaling up your RDS instance to a higher
instance class type. For more information, see Hardware specifications for DB instance classes for
Aurora (p. 62).

• Buffer pool size – Check for a low buffer pool hit ratio. To monitor this value in Performance Insights,
check the db.Cache.innoDB_buffer_pool_hit_rate.avg metric. To add this metric, choose
Manage metrics, and choose innoDB_buffer_pool_hit_rate under Cache on the Database
metrics tab.

If the hit ratio is low, consider scaling up your RDS instance to a higher instance class type.

Note
The DB instance parameter that controls the buffer pool size is innodb_buffer_pool_size.
You can modify this parameter value, but we recommend that you scale up your instance class
instead because the default value is optimized for each instance class.

871

https://dev.mysql.com/doc/refman/5.7/en/using-explain.html

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

Make your buffer scan resistant

If you have a mix of reporting and online transaction processing (OLTP) queries, consider making
your buffer pool scan resistant. To do this, tune the parameters innodb_old_blocks_pct and
innodb_old_blocks_time. The effects of these parameters can vary based on your instance class
hardware, data, and workload type. We highly recommend that you benchmark your system before you
set these parameters in your production environment. For more information, see Making the Buffer Pool
Scan Resistant in the MySQL documentation.

io/socket/sql/client_connection
The io/socket/sql/client_connection event occurs when a thread is in the process of handling a
new connection.

Topics

• Supported engine versions (p. 872)

• Context (p. 872)

• Likely causes of increased waits (p. 872)

• Actions (p. 872)

Supported engine versions

This wait event information is supported for the following engine versions:

• Aurora MySQL version 2, up to 2.09.2

• Aurora MySQL version 1, up to 1.23.1

Context

The event io/socket/sql/client_connection indicates that mysqld is busy creating threads
to handle incoming new client connections. In this scenario, the processing of servicing new client
connection requests slows down while connections wait for the thread to be assigned. For more
information, see MySQL server (mysqld) (p. 860).

Likely causes of increased waits

When this event appears more than normal, possibly indicating a performance problem, typical causes
include the following:

• There is a sudden increase in new user connections from the application to your Amazon RDS instance.

• Your DB instance can't process new connections because the network, CPU, or memory is being
throttled.

Actions

If io/socket/sql/client_connection dominates database activity, it doesn't necessarily indicate
a performance problem. In a database that isn't idle, a wait event is always on top. Act only when
performance degrades. We recommend different actions depending on the causes of your wait event.

Topics

• Identify the problematic sessions and queries (p. 873)

• Follow best practices for connection management (p. 873)

872

https://dev.mysql.com/doc/refman/5.7/en/innodb-performance-midpoint_insertion.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-performance-midpoint_insertion.html

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

• Scale up your instance if resources are being throttled (p. 873)

• Check the top hosts and top users (p. 874)

• Query the performance_schema tables (p. 874)

• Check the thread states of your queries (p. 874)

• Audit your requests and queries (p. 874)

• Pool your database connections (p. 874)

Identify the problematic sessions and queries

If your DB instance is experiencing a bottleneck, your first task is to find the sessions and queries that
cause it. For a useful blog post, see Analyze Amazon Aurora MySQL Workloads with Performance
Insights.

To identify sessions and queries causing a bottleneck

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Performance Insights.

3. Choose your DB instance.

4. In Database load, choose Slice by wait.

5. At the bottom of the page, choose Top SQL.

The queries at the top of the list are causing the highest load on the database.

Follow best practices for connection management

To manage your connections, consider the following strategies:

• Use connection pooling.

You can gradually increase the number of connections as required. For more information, see the
whitepaper Amazon Aurora MySQL Database Administrator’s Handbook.

• Use a reader node to redistribute read-only traffic.

For more information, see Aurora Replicas (p. 70) and Amazon Aurora connection management (p. 32).

Scale up your instance if resources are being throttled

Look for examples of throttling in the following resources:

• CPU

Check your Amazon CloudWatch metrics for high CPU usage.

• Network

Check for an increase in the value of the CloudWatch metrics network receive throughput and
network transmit throughput. If your instance has reached the network bandwidth limit for
your instance class, consider scaling up your RDS instance to a higher instance class type. For more
information, see Aurora DB instance classes (p. 54).

• Freeable memory

Check for a drop in the CloudWatch metric FreeableMemory. Also, consider turning on Enhanced
Monitoring. For more information, see Monitoring OS metrics with Enhanced Monitoring (p. 647).

873

http://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
http://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://d1.awsstatic.com/whitepapers/RDS/amazon-aurora-mysql-database-administrator-handbook.pdf

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

Check the top hosts and top users

Use Performance Insights to check the top hosts and top users. For more information, see Analyzing
metrics with the Performance Insights dashboard (p. 606).

Query the performance_schema tables

To get an accurate count of the current and total connections, query the performance_schema tables.
With this technique, you identify the source user or host that is responsible for creating a high number of
connections. For example, query the performance_schema tables as follows.

SELECT * FROM performance_schema.accounts;
SELECT * FROM performance_schema.users;
SELECT * FROM performance_schema.hosts;

Check the thread states of your queries

If your performance issue is ongoing, check the thread states of your queries. In the mysql client, issue
the following command.

show processlist;

Audit your requests and queries

To check the nature of the requests and queries from user accounts, use AuroraAurora MySQL Advanced
Auditing. To learn how to turn on auditing, see Using Advanced Auditing with an Amazon Aurora MySQL
DB cluster (p. 935).

Pool your database connections

Consider using Amazon RDS Proxy for connection management. By using RDS Proxy, you can allow your
applications to pool and share database connections to improve their ability to scale. RDS Proxy makes
applications more resilient to database failures by automatically connecting to a standby DB instance
while preserving application connections. For more information, see Using Amazon RDS Proxy (p. 288).

io/table/sql/handler

The io/table/sql/handler event occurs when work has been delegated to a storage engine.

Topics

• Supported engine versions (p. 874)

• Context (p. 875)

• Likely causes of increased waits (p. 875)

• Actions (p. 875)

Supported engine versions

This wait event information is supported for the following engine versions:

• Aurora MySQL version 2, up to 2.09.2

• Aurora MySQL version 1, up to 1.23.1

874

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

Context

The event io/table indicates a wait for access to a table. This event occurs regardless of whether the
data is cached in the buffer pool or accessed on disk. The io/table/sql/handler event indicates an
increase in workload activity.

A handler is a routine specialized in a certain type of data or focused on certain special tasks. For
example, an event handler receives and digests events and signals from the operating system or from a
user interface. A memory handler performs tasks related to memory. A file input handler is a function
that receives file input and performs special tasks on the data, according to context.

Views such as performance_schema.events_waits_current often show io/table/sql/handler
when the actual wait is a nested wait event such as a lock. When the actual wait isn't io/table/sql/
handler, Performance Insights reports the nested wait event. When Performance Insights reports io/
table/sql/handler, it represents the actual I/O wait and not a hidden nested wait event. For more
information, see Performance Schema Atom and Molecule Events in the MySQL Reference Manual.

The io/table/sql/handler event often appears in top wait events with I/O waits such as io/
aurora_redo_log_flush and io/file/innodb/innodb_data_file.

Likely causes of increased waits

In Performance Insights, sudden spikes in the io/table/sql/handler event indicate an increase in
workload activity. Increased activity means increased I/O.

Performance Insights filters the nesting event IDs and doesn't report a io/table/sql/handler wait
when the underlying nested event is a lock wait. For example, if the root cause event is synch/mutex/
innodb/aurora_lock_thread_slot_futex, Performance Insights displays this wait in top wait
events and not io/table/sql/handler.

In views such as performance_schema.events_waits_current, waits for io/table/sql/handler
often appear when the actual wait is a nested wait event such as a lock. When the actual wait differs
from io/table/sql/handler, Performance Insights looks up the nested wait and reports the actual
wait instead of io/table/sql/handler. When Performance Insights reports io/table/sql/
handler, the real wait is io/table/sql/handler and not a hidden nested wait event. For more
information, see Performance Schema Atom and Molecule Events in the MySQL 5.7 Reference Manual.

Actions

If this wait event dominates database activity, it doesn't necessarily indicate a performance problem.
A wait event is always on top when the database is active. You need to act only when performance
degrades.

We recommend different actions depending on the other wait events that you see.

Topics

• Identify the sessions and queries causing the events (p. 875)

• Check for a correlation with Performance Insights counter metrics (p. 876)

• Check for other correlated wait events (p. 876)

Identify the sessions and queries causing the events

Typically, databases with moderate to significant load have wait events. The wait events might be
acceptable if performance is optimal. If performance is isn't optimal, then examine where the database
is spending the most time. Look at the wait events that contribute to the highest load, and find out
whether you can optimize the database and application to reduce those events.

875

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-atom-molecule-events.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-atom-molecule-events.html

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

To find SQL queries that are responsible for high load

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Performance Insights.
3. Choose a DB instance. The Performance Insights dashboard is shown for that DB instance.
4. In the Database load chart, choose Slice by wait.
5. At the bottom of the page, choose Top SQL.

The chart lists the SQL queries that are responsible for the load. Those at the top of the list are most
responsible. To resolve a bottleneck, focus on these statements.

For a useful overview of troubleshooting using Performance Insights, see the blog post Analyze Amazon
Aurora MySQL Workloads with Performance Insights.

Check for a correlation with Performance Insights counter metrics

Check for Performance Insights counter metrics such as Innodb_rows_changed. If counter metrics are
correlated with io/table/sql/handler, follow these steps:

1. In Performance Insights, look for the SQL statements accounting for the io/table/sql/handler
top wait event. If possible, optimize this statement so that it returns fewer rows.

2. Retrieve the top tables from the schema_table_statistics and x$schema_table_statistics
views. These views show the amount of time spent per table. For more information, see The
schema_table_statistics and x$schema_table_statistics Views in the MySQL Reference Manual.

By default, rows are sorted by descending total wait time. Tables with the most contention appear
first. The output indicates whether time is spent on reads, writes, fetches, inserts, updates, or deletes.
The following example was run on an Aurora MySQL 2.09.1 instance.

mysql> select * from sys.schema_table_statistics limit 1\G
*************************** 1. row ***************************
 table_schema: read_only_db
 table_name: sbtest41
 total_latency: 54.11 m
 rows_fetched: 6001557
 fetch_latency: 39.14 m
 rows_inserted: 14833
 insert_latency: 5.78 m
 rows_updated: 30470
 update_latency: 5.39 m
 rows_deleted: 14833
 delete_latency: 3.81 m
 io_read_requests: NULL
 io_read: NULL
 io_read_latency: NULL
io_write_requests: NULL
 io_write: NULL
 io_write_latency: NULL
 io_misc_requests: NULL
 io_misc_latency: NULL
1 row in set (0.11 sec)

Check for other correlated wait events

If synch/sxlock/innodb/btr_search_latch and io/table/sql/handler contribute most to the
DB load anomaly together, check whether the innodb_adaptive_hash_index variable is turned on. If
it is, consider increasing the innodb_adaptive_hash_index_parts parameter value.

876

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://dev.mysql.com/doc/refman/5.7/en/sys-schema-table-statistics.html
https://dev.mysql.com/doc/refman/5.7/en/sys-schema-table-statistics.html

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

If the Adaptive Hash Index is turned off, and the situation warrants it, consider turning it on. To learn
more about the MySQL Adaptive Hash Index, see the following resources:

• The article Is Adaptive Hash Index in InnoDB right for my workload? on the Percona website

• Adaptive Hash Index in the MySQL Reference Manual

• The article Contention in MySQL InnoDB: Useful Info From the Semaphores Section on the Percona
website

The Adaptive Hash Index isn't a viable option for Aurora reader nodes. In some cases, performance might
be poor on a reader node when synch/sxlock/innodb/btr_search_latch and io/table/sql/
handler are dominant. If so, consider redirecting the workload temporarily to the writer note and
turning on the Adaptive Hash Index.

synch/cond/mysys/thread_var::suspend

The synch/cond/mysys/thread_var::suspend wait event indicates that threads are suspended
because they are waiting on a condition.

Topics

• Supported engine versions (p. 877)

• Context (p. 877)

• Likely causes of increased waits (p. 877)

• Actions (p. 878)

Supported engine versions

This wait event information is supported for the following versions:

• Aurora MySQL version 2 up to 2.09.2

• Aurora MySQL version 1 up to 1.23.1

Context

The event synch/cond/mysys/thread_var::suspend indicates that threads are suspended because
they are waiting on a condition. For example, this wait event occurs when threads are waiting for a table-
level lock. In this case, we recommend that you investigate your workload to determine which threads
might be acquiring table locks on your DB instance.

Likely causes of increased waits

When the synch/cond/mysys/thread_var::suspend event appears more than normal, possibly
indicating a performance problem, typical causes include the following:

Thread waiting on a table-level lock

One or more threads are waiting on a table-level lock. In this case, the thread state is Waiting for
table level lock.

Data being sent to the mysqldump client

One or more threads are waiting because you are using mysqldump, and the result is being sent to
the mysqldump client. In this case, the thread state is: Writing to net.

877

https://www.percona.com/blog/2016/04/12/is-adaptive-hash-index-in-innodb-right-for-my-workload
https://dev.mysql.com/doc/refman/5.7/en/innodb-adaptive-hash.html
https://www.percona.com/blog/2019/12/20/contention-in-mysql-innodb-useful-info-from-the-semaphores-section/

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

Actions

We recommend different actions depending on the causes of your wait event.

Topics
• Avoid locking tables (p. 878)
• Make sure that backup tools don't lock tables (p. 878)
• Long-running sessions that lock tables (p. 878)
• Non-InnoDB temporary table (p. 878)

Avoid locking tables

Make sure that the application is not explicitly locking the tables using the LOCK TABLE statement. You
can check the statements run by applications using Advanced Auditing. For more information, see Using
Advanced Auditing with an Amazon Aurora MySQL DB cluster (p. 935).

Make sure that backup tools don't lock tables

If you are using a backup tool, make sure that it isn't locking tables. For example, if you are using
mysqldump, use the --single-transaction option so that it doesn't lock tables.

Long-running sessions that lock tables

There might be long-running sessions that have explicitly locked tables. Run the following SQL
statement to check for such sessions.

SELECT
p.id as session_id, p.user, p.host, p.db, p.command, p.time, p.state,
SUBSTRING(p.info, 1, 50) AS INFO,
t.trx_started, unix_timestamp(now()) - unix_timestamp(t.trx_started) as trx_age_seconds,
 t.trx_rows_modified, t.trx_isolation_level
FROM information_schema.processlist p
LEFT JOIN information_schema.innodb_trx t
ON p.id = t.trx_mysql_thread_id;

When you identify the session, your options include the following:

• Contact the application owner or the user.
• If the blocking session is idle, consider ending the blocking session. This action might trigger a long

rollback. To learn how to end a session, see Ending a session or query in the Amazon RDS User Guide.

For more information about identifying blocking transactions, see Using InnoDB Transaction and Locking
Information in the MySQL documentation.

Non-InnoDB temporary table

If you are using a non-InnoDB temporary table, then the database doesn't use row-level locking, which
can result in table locks. MyISAM and MEMORY tables are examples of a non-InnoDB temporary table. If
you are using a non-InnoDB temporary table, consider switching to an InnoDB memory table.

synch/cond/sql/MDL_context::COND_wait_status
The synch/cond/sql/MDL_context::COND_wait_status event occurs when there are threads
waiting on a table metadata lock.

Topics

878

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.CommonDBATasks.html#Appendix.MySQL.CommonDBATasks.End
https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-examples.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-examples.html

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

• Supported engine versions (p. 879)

• Context (p. 879)

• Likely causes of increased waits (p. 879)

• Actions (p. 880)

Supported engine versions

This wait event information is supported for the following engine versions:

• Aurora MySQL version 2, up to 2.09.2

• Aurora MySQL version 1, up to 1.23.1

Context

The event synch/cond/sql/MDL_context::COND_wait_status indicates that there are threads
waiting on a table metadata lock. In some cases, one session holds a metadata lock on a table and
another session tries to get the same lock on the same table. In such a case, the second session waits on
the synch/cond/sql/MDL_context::COND_wait_status wait event.

MySQL uses metadata locking to manage concurrent access to database objects and to ensure data
consistency. Metadata locking applies to tables, schemas, scheduled events, tablespaces, and user locks
acquired with the get_lock function, and stored programs. Stored programs include procedures,
functions, and triggers. For more information, see Metadata locking in the MySQL documentation.

The MySQL process list shows this session in the state waiting for metadata lock. In
Performance Insights, if Performance_schema is turned on, the event synch/cond/sql/
MDL_context::COND_wait_status appears.

The default timeout for a query waiting on a metadata lock is based on the value of the
lock_wait_timeout parameter, which defaults to 31,536,000 seconds (365 days).

For more details on different InnoDB locks and the types of locks that can cause conflicts, see InnoDB
Locking in the MySQL documentation.

Likely causes of increased waits

When the synch/cond/sql/MDL_context::COND_wait_status event appears more than normal,
possibly indicating a performance problem, typical causes include the following:

Long-running transactions

One or more transactions are modifying a large amount of data and holding locks on tables for a
very long time.

Idle transactions

One or more transactions remain open for a long time, without being committed or rolled back.

DDL statements on large tables

One or more data definition statements (DDL) statements, such as ALTER TABLE commands, were
run on very large tables.

Explicit table locks

There are explicit locks on tables that aren't being released in a timely manner. For example, an
application might run LOCK TABLE statements improperly.

879

https://dev.mysql.com/doc/refman/5.7/en/metadata-locking.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-locking.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-locking.html

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

Actions

We recommend different actions depending on the causes of your wait event and on the version of the
Aurora MySQL DB cluster.

Topics
• Identify the sessions and queries causing the events (p. 880)
• Check for past events (p. 880)
• Run queries on Aurora MySQL version 1 (p. 881)
• Run queries on Aurora MySQL version 2 (p. 883)
• Respond to the blocking session (p. 885)

Identify the sessions and queries causing the events

You can use Performance Insights to show queries blocked by the synch/cond/sql/
MDL_context::COND_wait_status wait event. However, to identify the blocking session, query
metadata tables from performance_schema and information_schema on the DB cluster.

Typically, databases with moderate to significant load have wait events. The wait events might be
acceptable if performance is optimal. If performance isn't optimal, then examine where the database
is spending the most time. Look at the wait events that contribute to the highest load, and find out
whether you can optimize the database and application to reduce those events.

To find SQL queries that are responsible for high load

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Performance Insights.
3. Choose a DB instance. The Performance Insights dashboard for that DB instance appears.
4. In the Database load chart, choose Slice by wait.
5. At the bottom of the page, choose Top SQL.

The chart lists the SQL queries that are responsible for the load. Those at the top of the list are most
responsible. To resolve a bottleneck, focus on these statements.

For a useful overview of troubleshooting using Performance Insights, see the AWS Database Blog post
Analyze Amazon Aurora MySQL Workloads with Performance Insights.

Check for past events

You can gain insight into this wait event to check for past occurrences of it. To do so, complete the
following actions:

• Check the data manipulation language (DML) and DDL throughput and latency to see if there were any
changes in workload.

You can use Performance Insights to find queries waiting on this event at the time of the issue. Also,
you can view the digest of the queries run near the time of issue.

• If audit logs or general logs are turned on for the DB cluster, you can check for all queries run on the
objects (schema.table) involved in the waiting transaction. You can also check for the queries that
completed running before the transaction.

The information available to troubleshoot past events is limited. Performing these checks doesn't show
which object is waiting for information. However, you can identify tables with heavy load at the time of

880

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

the event and the set of frequently operated rows causing conflict at the time of issue. You can then use
this information to reproduce the issue in a test environment and provide insights about its cause.

Run queries on Aurora MySQL version 1

In Aurora MySQL version 1, you can query tables in information_schema and performance_schema
to identify a blocking session. To run the queries, make sure that the DB cluster is configured
with the performance_schema consumer events_statements_history. Also,
maintain an adequate number of queries in events_statements_history table in
performance_schema. You control the number of queries maintained in that table with the
performance_schema_events_statements_history_size parameter. If the required data isn't
available in performance_schema, you can check the audit logs or general logs.

An example can illustrate how to query tables to identify blocking queries and sessions. In this example,
every session runs fewer than 10 statements and required consumers are enabled on the DB cluster.

In the following process list output, process ID 59 (running the TRUNCATE command) and process ID 53
(running the INSERT command) have been waiting on a metadata lock for 33 seconds. Also, both of the
threads are running queries on same table named sbtest.sbtest1.

MySQL [(none)]> select @@version, @@aurora_version;
+-----------+------------------+
| @@version | @@aurora_version |
+-----------+------------------+
| 5.6.10 | 1.23.0 |
+-----------+------------------+
1 row in set (0.00 sec)

MySQL [performance_schema]> select * from setup_consumers where
 name='events_statements_history';
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
| events_statements_history | YES |
+---------------------------+---------+
1 row in set (0.00 sec)

MySQL [performance_schema]> show global variables like
 'performance_schema_events_statements_history_size';
+---+-------+
| Variable_name | Value |
+---+-------+
| performance_schema_events_statements_history_size | 10 |
+---+-------+
1 row in set (0.00 sec)

MySQL [performance_schema]> show processlist;
+----+------------------+--------------------+--------------------
+---------+------+---------------------------------
+--
+
| Id | User | Host | db | Command | Time | State
 | Info
 |
+----+------------------+--------------------+--------------------
+---------+------+---------------------------------
+--
+
| 11 | rdsadmin | localhost | NULL | Sleep | 0 |
 cleaned up | NULL
 |
| 14 | rdsadmin | localhost | NULL | Sleep | 1 |
 cleaned up | NULL
 |

881

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

| 15 | rdsadmin | localhost | NULL | Sleep | 14 |
 cleaned up | NULL
 |
| 16 | rdsadmin | localhost | NULL | Sleep | 1 |
 cleaned up | NULL
 |
| 17 | rdsadmin | localhost | NULL | Sleep | 214 |
 cleaned up | NULL
 |
| 40 | auroramysql56123 | 172.31.21.51:44876 | sbtest123 | Query | 1843 | User
 sleep | select sleep(10000)
 |
| 41 | auroramysql56123 | 172.31.21.51:44878 | performance_schema | Query | 0 | init
 | show processlist
 |
| 48 | auroramysql56123 | 172.31.21.51:44894 | sbtest123 | Execute | 0 |
 delayed commit ok initiated | COMMIT
 |
| 49 | auroramysql56123 | 172.31.21.51:44899 | sbtest123 | Execute | 0 |
 delayed commit ok initiated | COMMIT
 |
| 50 | auroramysql56123 | 172.31.21.51:44896 | sbtest123 | Execute | 0 |
 delayed commit ok initiated | COMMIT
 |
| 51 | auroramysql56123 | 172.31.21.51:44892 | sbtest123 | Execute | 0 |
 delayed commit ok initiated | COMMIT
 |
| 52 | auroramysql56123 | 172.31.21.51:44898 | sbtest123 | Execute | 0 |
 delayed commit ok initiated | COMMIT
 |
| 53 | auroramysql56123 | 172.31.21.51:44902 | sbtest | Query | 33 |
 Waiting for table metadata lock | INSERT INTO sbtest1 (id, k, c, pad) VALUES (0, 5021,
 '91560616281-61537173720-56678788409-8805377477 |
| 56 | auroramysql56123 | 172.31.21.51:44908 | NULL | Query | 118 | User
 sleep | select sleep(10000)
 |
| 58 | auroramysql56123 | 172.31.21.51:44912 | NULL | Sleep | 41 |
 cleaned up | NULL
 |
| 59 | auroramysql56123 | 172.31.21.51:44914 | NULL | Query | 33 |
 Waiting for table metadata lock | truncate table sbtest.sbtest1
 |
+----+------------------+--------------------+--------------------
+---------+------+---------------------------------
+--
+
16 rows in set (0.00 sec)

Given this output, run the following query. This query identifies transactions that have been running for
longer than 33 seconds with connection ID 59 waiting for a lock on a table for same amount of time.

MySQL [performance_schema]> select
 b.id,
 a.trx_id,
 a.trx_state,
 a.trx_started,
 TIMESTAMPDIFF(SECOND,a.trx_started, now()) as "Seconds Transaction Has Been Open",
 a.trx_rows_modified,
 b.USER,
 b.host,
 b.db,
 b.command,
 b.time,
 b.state

882

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

 from information_schema.innodb_trx a,
 information_schema.processlist b
 where a.trx_mysql_thread_id=b.id
 and TIMESTAMPDIFF(SECOND,a.trx_started, now()) > 33 order by trx_started;
+----+---------+-----------+---------------------+-----------------------------------
+-------------------+------------------+--------------------+-----------+---------+------
+------------+
| id | trx_id | trx_state | trx_started | Seconds Transaction Has Been Open |
 trx_rows_modified | USER | host | db | command | time |
 state |
+----+---------+-----------+---------------------+-----------------------------------
+-------------------+------------------+--------------------+-----------+---------+------
+------------+
| 40 | 1907737 | RUNNING | 2021-02-02 12:58:16 | 1955 |
 0 | auroramysql56123 | 172.31.21.51:44876 | sbtest123 | Query | 1955 | User
 sleep |
| 56 | 3797992 | RUNNING | 2021-02-02 13:27:01 | 230 |
 0 | auroramysql56123 | 172.31.21.51:44908 | NULL | Query | 230 | User
 sleep |
| 58 | 3895074 | RUNNING | 2021-02-02 13:28:18 | 153 |
 0 | auroramysql56123 | 172.31.21.51:44912 | NULL | Sleep | 153 |
 cleaned up |
+----+---------+-----------+---------------------+-----------------------------------
+-------------------+------------------+--------------------+-----------+---------+------
+------------+
3 rows in set (0.00 sec)

In the output, processes 40, 56, and 58 have been active for long time. Let's identify queries run by these
sessions on the sbtest.sbtest1 table.

MySQL [performance_schema]> select
 t.processlist_id,
 t.thread_id,
 sql_text
 from performance_schema.threads t
 join events_statements_history sh
 on t.thread_id=sh.thread_id
 where processlist_id in (40,56,58)
 and SQL_TEXT like '%sbtest1%' order by 1;
+----------------+-----------+--+
| processlist_id | thread_id | sql_text |
+----------------+-----------+--+
| 56 | 84 | select * from sbtest123.sbtest10 limit 1 |
| 58 | 86 | select * from sbtest.sbtest1 limit 1 |
+----------------+-----------+--+
2 rows in set (0.01 sec)

In this output, the session with a processlist_id of 58 ran a query on the table and holds an open
transaction. That open transaction is blocking the TRUNCATE command.

Run queries on Aurora MySQL version 2

In Aurora MySQL version 2, you can identify the blocked session directly by querying
performance_schema tables or sys schema views. An example can illustrate how to query tables to
identify blocking queries and sessions.

In the following process list output, the connection ID 89 is waiting on a metadata lock, and it's running a
TRUNCATE TABLE command. In a query on the performance_schema tables or sys schema views, the
output shows that the blocking session is 76.

MySQL [(none)]> select @@version, @@aurora_version;
+-----------+------------------+

883

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

| @@version | @@aurora_version |
+-----------+------------------+
| 5.7.12 | 2.09.0 |
+-----------+------------------+
1 row in set (0.01 sec)

MySQL [(none)]> show processlist;
+----+-----------------+--------------------+-----------+---------+------
+---------------------------------+-------------------------------+
| Id | User | Host | db | Command | Time | State
 | Info |
+----+-----------------+--------------------+-----------+---------+------
+---------------------------------+-------------------------------+
| 2 | rdsadmin | localhost | NULL | Sleep | 0 | NULL
 | NULL |
| 4 | rdsadmin | localhost | NULL | Sleep | 2 | NULL
 | NULL |
| 5 | rdsadmin | localhost | NULL | Sleep | 1 | NULL
 | NULL |
| 20 | rdsadmin | localhost | NULL | Sleep | 0 | NULL
 | NULL |
| 21 | rdsadmin | localhost | NULL | Sleep | 261 | NULL
 | NULL |
| 66 | auroramysql5712 | 172.31.21.51:52154 | sbtest123 | Sleep | 0 | NULL
 | NULL |
| 67 | auroramysql5712 | 172.31.21.51:52158 | sbtest123 | Sleep | 0 | NULL
 | NULL |
| 68 | auroramysql5712 | 172.31.21.51:52150 | sbtest123 | Sleep | 0 | NULL
 | NULL |
| 69 | auroramysql5712 | 172.31.21.51:52162 | sbtest123 | Sleep | 0 | NULL
 | NULL |
| 70 | auroramysql5712 | 172.31.21.51:52160 | sbtest123 | Sleep | 0 | NULL
 | NULL |
| 71 | auroramysql5712 | 172.31.21.51:52152 | sbtest123 | Sleep | 0 | NULL
 | NULL |
| 72 | auroramysql5712 | 172.31.21.51:52156 | sbtest123 | Sleep | 0 | NULL
 | NULL |
| 73 | auroramysql5712 | 172.31.21.51:52164 | sbtest123 | Sleep | 0 | NULL
 | NULL |
| 74 | auroramysql5712 | 172.31.21.51:52166 | sbtest123 | Sleep | 0 | NULL
 | NULL |
| 75 | auroramysql5712 | 172.31.21.51:52168 | sbtest123 | Sleep | 0 | NULL
 | NULL |
| 76 | auroramysql5712 | 172.31.21.51:52170 | NULL | Query | 0 | starting
 | show processlist |
| 88 | auroramysql5712 | 172.31.21.51:52194 | NULL | Query | 22 | User sleep
 | select sleep(10000) |
| 89 | auroramysql5712 | 172.31.21.51:52196 | NULL | Query | 5 | Waiting for
 table metadata lock | truncate table sbtest.sbtest1 |
+----+-----------------+--------------------+-----------+---------+------
+---------------------------------+-------------------------------+
18 rows in set (0.00 sec)

Next, a query on the performance_schema tables or sys schema views shows that the blocking session
is 76.

MySQL [(none)]> select * from sys.schema_table_lock_waits;

+---------------+-------------+-------------------+-------------
+------------------------------+-------------------+-----------------------
+-------------------------------+--------------------+-----------------------------
+-----------------------------+--------------------+--------------
+------------------------------+--------------------+------------------------
+-------------------------+------------------------------+

884

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

| object_schema | object_name | waiting_thread_id | waiting_pid | waiting_account
 | waiting_lock_type | waiting_lock_duration | waiting_query
 | waiting_query_secs | waiting_query_rows_affected | waiting_query_rows_examined |
 blocking_thread_id | blocking_pid | blocking_account | blocking_lock_type |
 blocking_lock_duration | sql_kill_blocking_query | sql_kill_blocking_connection |
+---------------+-------------+-------------------+-------------
+------------------------------+-------------------+-----------------------
+-------------------------------+--------------------+-----------------------------
+-----------------------------+--------------------+--------------
+------------------------------+--------------------+------------------------
+-------------------------+------------------------------+
| sbtest | sbtest1 | 121 | 89 | auroramysql5712@192.0.2.0
 | EXCLUSIVE | TRANSACTION | truncate table sbtest.sbtest1 |
 10 | 0 | 0 | 108
 | 76 | auroramysql5712@192.0.2.0 | SHARED_READ | TRANSACTION
 | KILL QUERY 76 | KILL 76 |
+---------------+-------------+-------------------+-------------
+------------------------------+-------------------+-----------------------
+-------------------------------+--------------------+-----------------------------
+-----------------------------+--------------------+--------------
+------------------------------+--------------------+------------------------
+-------------------------+------------------------------+
1 row in set (0.00 sec)

Respond to the blocking session

When you identify the session, your options include the following:

• Contact the application owner or the user.
• If the blocking session is idle, consider ending the blocking session. This action might trigger a long

rollback. To learn how to end a session, see Ending a session or query in the Amazon RDS User Guide.

For more information about identifying blocking transactions, see Using InnoDB Transaction and Locking
Information in the MySQL documentation.

synch/mutex/innodb/aurora_lock_thread_slot_futex
The synch/mutex/innodb/aurora_lock_thread_slot_futex event occurs when one session has
locked a row for an update, and another session tries to update the same row. For more information, see
InnoDB locking in the MySQL Reference.

Supported engine versions

This wait event information is supported for the following engine versions:

• Aurora MySQL version 2, up to 2.09.2
• Aurora MySQL version 1, up to 1.23.1

Likely causes of increased waits

Multiple data manipulation language (DML) statements are accessing the same row or rows
simultaneously.

Actions

We recommend different actions depending on the other wait events that you see.

Topics

885

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.CommonDBATasks.html#Appendix.MySQL.CommonDBATasks.End
https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-examples.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-examples.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-locking.html

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

• Find and respond to the SQL statements responsible for this wait event (p. 886)

• Find and respond to the blocking session (p. 886)

Find and respond to the SQL statements responsible for this wait event

Use Performance Insights to identify the SQL statements responsible for this wait event. Consider the
following strategies:

• If row locks are a persistent problem, consider rewriting the application to use optimistic locking.

• Use multirow statements.

• Spread the workload over different database objects. One way to do achieve this is through
partitioning.

• Check the value of the innodb_lock_wait_timeout parameter. It controls how long transactions
wait before generating a timeout error.

For a useful overview of troubleshooting using Performance Insights, see the blog post Analyze Amazon
Aurora MySQL Workloads with Performance Insights.

Find and respond to the blocking session

Determine whether the blocking session is idle or active. Also, find out whether the session comes from
an application or an active user.

To identify the session holding the lock, you can run SHOW ENGINE INNODB STATUS. The following
example shows sample output.

mysql> SHOW ENGINE INNODB STATUS;

---------------------TRANSACTION 302631452, ACTIVE 2 sec starting index read
mysql tables in use 1, locked 1
LOCK WAIT 2 lock struct(s), heap size 376, 1 row lock(s)
MySQL thread id 80109, OS thread handle 0x2ae915060700, query id 938819 10.0.4.12 reinvent
 updating
UPDATE sbtest1 SET k=k+1 WHERE id=503
------- TRX HAS BEEN WAITING 2 SEC FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 148 page no 11 n bits 30 index `PRIMARY` of table
 `sysbench2`.`sbtest1` trx id 302631452 lock_mode X locks rec but not gap waiting
Record lock, heap no 30 PHYSICAL RECORD: n_fields 6; compact format; info bits 0

Or you can use the following query to extract details on current locks.

mysql> SELECT p1.id waiting_thread,
 p1.user waiting_user,
 p1.host waiting_host,
 it1.trx_query waiting_query,
 ilw.requesting_trx_id waiting_transaction,
 ilw.blocking_lock_id blocking_lock,
 il.lock_mode blocking_mode,
 il.lock_type blocking_type,
 ilw.blocking_trx_id blocking_transaction,
 CASE it.trx_state
 WHEN 'LOCK WAIT'
 THEN it.trx_state
 ELSE p.state
 END blocker_state,
 il.lock_table locked_table,
 it.trx_mysql_thread_id blocker_thread,

886

https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

 p.user blocker_user,
 p.host blocker_host
 FROM information_schema.innodb_lock_waits ilw
 JOIN information_schema.innodb_locks il
 ON ilw.blocking_lock_id = il.lock_id
 AND ilw.blocking_trx_id = il.lock_trx_id
 JOIN information_schema.innodb_trx it
 ON ilw.blocking_trx_id = it.trx_id
 JOIN information_schema.processlist p
 ON it.trx_mysql_thread_id = p.id
 JOIN information_schema.innodb_trx it1
 ON ilw.requesting_trx_id = it1.trx_id
 JOIN information_schema.processlist p1
 ON it1.trx_mysql_thread_id = p1.id\G

*************************** 1. row ***************************
 waiting_thread: 3561959471
 waiting_user: reinvent
 waiting_host: 123.456.789.012:20485
 waiting_query: select id1 from test.t1 where id1=1 for update
 waiting_transaction: 312337314
 blocking_lock: 312337287:261:3:2
 blocking_mode: X
 blocking_type: RECORD
blocking_transaction: 312337287
 blocker_state: User sleep
 locked_table: `test`.`t1`
 blocker_thread: 3561223876
 blocker_user: reinvent
 blocker_host: 123.456.789.012:17746
1 row in set (0.04 sec)

When you identify the session, your options include the following:

• Contact the application owner or the user.

• If the blocking session is idle, consider ending the blocking session. This action might trigger a long
rollback. To learn how to end a session, see Ending a session or query in the Amazon RDS User Guide.

For more information about identifying blocking transactions, see Using InnoDB Transaction and Locking
Information in the MySQL Reference Manual.

synch/mutex/innodb/buf_pool_mutex

The synch/mutex/innodb/buf_pool_mutex event occurs when a thread has acquired a lock on the
InnoDB buffer pool to access a page in memory.

Topics

• Relevant engine versions (p. 887)

• Context (p. 888)

• Likely causes of increased waits (p. 888)

• Actions (p. 888)

Relevant engine versions

This wait event information is supported for the following engine versions:

• Aurora MySQL version 2.x up to 2.09.2

887

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.CommonDBATasks.html#Appendix.MySQL.CommonDBATasks.End
https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-examples.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-examples.html

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

• Aurora MySQL version 1.x up to 1.23.1

Context

The buf_pool mutex is a single mutex that protects the control data structures of the buffer pool.

For more information, see Monitoring InnoDB Mutex Waits Using Performance Schema in the MySQL
documentation.

Likely causes of increased waits

This is a workload-specific wait event. Common causes for synch/mutex/innodb/buf_pool_mutex to
appear among the top wait events include the following:

• The buffer pool size isn't large enough to hold the working set of data.

• The workload is more specific to certain pages from a specific table in the database, leading to
contention in the buffer pool.

Actions

We recommend different actions depending on the causes of your wait event.

Identify the sessions and queries causing the events

Typically, databases with moderate to significant load have wait events. The wait events might be
acceptable if performance is optimal. If performance isn't optimal, then examine where the database
is spending the most time. Look at the wait events that contribute to the highest load, and find out
whether you can optimize the database and application to reduce those events.

To view the Top SQL chart in the AWS Management Console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Performance Insights.

3. Choose a DB instance. The Performance Insights dashboard is shown for that DB instance.

4. In the Database load chart, choose Slice by wait.

5. Underneath the Database load chart, choose Top SQL.

The chart lists the SQL queries that are responsible for the load. Those at the top of the list are most
responsible. To resolve a bottleneck, focus on these statements.

For a useful overview of troubleshooting using Performance Insights, see the blog post Analyze Amazon
Aurora MySQL Workloads with Performance Insights.

Use Performance Insights

This event is related to workload. You can use Performance Insights to do the following:

• Identify when wait events start, and whether there's any change in the workload around that time
from the application logs or related sources.

• Identify the SQL statements responsible for this wait event. Examine the execution plan of the queries
to make sure that these queries are optimized and using appropriate indexes.

If the top queries responsible for the wait event are related to the same database object or table, then
consider partitioning that object or table.

888

https://dev.mysql.com/doc/refman/5.6/en/monitor-innodb-mutex-waits-performance-schema.html
https://console.aws.amazon.com/rds/
https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

Create Aurora Replicas

You can create Aurora Replicas to serve read-only traffic. You can also use Aurora Auto Scaling to handle
surges in read traffic. Make sure to run scheduled read-only tasks and logical backups on Aurora Replicas.

For more information, see Using Amazon Aurora Auto Scaling with Aurora replicas (p. 427).

Examine the buffer pool size

Check whether the buffer pool size is sufficient for the workload by looking at the metric
innodb_buffer_pool_wait_free. If the value of this metric is high and increasing continuously,
that indicates that the size of the buffer pool isn't sufficient to handle the workload. If
innodb_buffer_pool_size has been set properly, the value of innodb_buffer_pool_wait_free
should be small. For more information, see Innodb_buffer_pool_wait_free in the MySQL documentation.

Increase the buffer pool size if the DB instance has enough memory for session buffers and operating-
system tasks. If it doesn't, change the DB instance to a larger DB instance class to get additional memory
that can be allocated to the buffer pool.

Note
Aurora MySQL automatically adjusts the value of innodb_buffer_pool_instances based on
the configured innodb_buffer_pool_size.

Monitor the global status history

By monitoring the change rates of status variables, you can detect locking or memory issues on your
DB instance. Turn on Global Status History (GoSH) if it isn't already turned on. For more information on
GoSH, see Managing the global status history.

You can also create custom Amazon CloudWatch metrics to monitor status variables. For more
information, see Publishing custom metrics.

synch/mutex/innodb/fil_system_mutex

The synch/mutex/innodb/fil_system_mutex event occurs when a session is waiting to access the
tablespace memory cache.

Topics

• Supported engine versions (p. 889)

• Context (p. 889)

• Likely causes of increased waits (p. 890)

• Actions (p. 890)

Supported engine versions

This wait event information is supported for the following engine versions:

• Aurora MySQL version 2, up to 2.09.2

• Aurora MySQL version 1, up to 1.23.1

Context

InnoDB uses tablespaces to manage the storage area for tables and log files. The tablespace memory
cache is a global memory structure that maintains information about tablespaces. MySQL uses synch/

889

https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Innodb_buffer_pool_wait_free
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.CommonDBATasks.html#Appendix.MySQL.CommonDBATasks.GoSH
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/publishingMetrics.html

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

mutex/innodb/fil_system_mutex waits to control concurrent access to the tablespace memory
cache.

The event synch/mutex/innodb/fil_system_mutex indicates that there is currently more than one
operation that needs to retrieve and manipulate information in the tablespace memory cache for the
same tablespace.

Likely causes of increased waits

When the synch/mutex/innodb/fil_system_mutex event appears more than normal, possibly
indicating a performance problem, this typically occurs when all of the following conditions are present:

• An increase in concurrent data manipulation language (DML) operations that update or delete data in
the same table.

• The tablespace for this table is very large and has a lot of data pages.

• The fill factor for these data pages is low.

Actions

We recommend different actions depending on the causes of your wait event.

Topics

• Identify the sessions and queries causing the events (p. 890)

• Reorganize large tables during off-peak hours (p. 891)

Identify the sessions and queries causing the events

Typically, databases with moderate to significant load have wait events. The wait events might be
acceptable if performance is optimal. If performance isn't optimal, examine where the database is
spending the most time. Look at the wait events that contribute to the highest load, and find out
whether you can optimize the database and application to reduce those events.

To find SQL queries that are responsible for high load

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Performance Insights.

3. Choose a DB instance. The Performance Insights dashboard appears for that DB instance.

4. In the Database load chart, choose Slice by wait.

5. At the bottom of the page, choose Top SQL.

The chart lists the SQL queries that are responsible for the load. Those at the top of the list are most
responsible. To resolve a bottleneck, focus on these statements.

For a useful overview of troubleshooting using Performance Insights, see the blog post Analyze Amazon
Aurora MySQL Workloads with Performance Insights.

Another way to find out which queries are causing high numbers of synch/mutex/innodb/
fil_system_mutex waits is to check performance_schema, as in the following example.

mysql> select * from performance_schema.events_waits_current where EVENT_NAME='wait/synch/
mutex/innodb/fil_system_mutex'\G

890

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

*************************** 1. row ***************************
 THREAD_ID: 19
 EVENT_ID: 195057
 END_EVENT_ID: 195057
 EVENT_NAME: wait/synch/mutex/innodb/fil_system_mutex
 SOURCE: fil0fil.cc:6700
 TIMER_START: 1010146190118400
 TIMER_END: 1010146196524000
 TIMER_WAIT: 6405600
 SPINS: NULL
 OBJECT_SCHEMA: NULL
 OBJECT_NAME: NULL
 INDEX_NAME: NULL
 OBJECT_TYPE: NULL
OBJECT_INSTANCE_BEGIN: 47285552262176
 NESTING_EVENT_ID: NULL
 NESTING_EVENT_TYPE: NULL
 OPERATION: lock
 NUMBER_OF_BYTES: NULL
 FLAGS: NULL
*************************** 2. row ***************************
 THREAD_ID: 23
 EVENT_ID: 5480
 END_EVENT_ID: 5480
 EVENT_NAME: wait/synch/mutex/innodb/fil_system_mutex
 SOURCE: fil0fil.cc:5906
 TIMER_START: 995269979908800
 TIMER_END: 995269980159200
 TIMER_WAIT: 250400
 SPINS: NULL
 OBJECT_SCHEMA: NULL
 OBJECT_NAME: NULL
 INDEX_NAME: NULL
 OBJECT_TYPE: NULL
OBJECT_INSTANCE_BEGIN: 47285552262176
 NESTING_EVENT_ID: NULL
 NESTING_EVENT_TYPE: NULL
 OPERATION: lock
 NUMBER_OF_BYTES: NULL
 FLAGS: NULL
*************************** 3. row ***************************
 THREAD_ID: 55
 EVENT_ID: 23233794
 END_EVENT_ID: NULL
 EVENT_NAME: wait/synch/mutex/innodb/fil_system_mutex
 SOURCE: fil0fil.cc:449
 TIMER_START: 1010492125341600
 TIMER_END: 1010494304900000
 TIMER_WAIT: 2179558400
 SPINS: NULL
 OBJECT_SCHEMA: NULL
 OBJECT_NAME: NULL
 INDEX_NAME: NULL
 OBJECT_TYPE: NULL
OBJECT_INSTANCE_BEGIN: 47285552262176
 NESTING_EVENT_ID: 23233786
 NESTING_EVENT_TYPE: WAIT
 OPERATION: lock
 NUMBER_OF_BYTES: NULL
 FLAGS: NULL

Reorganize large tables during off-peak hours

Reorganize large tables that you identify as the source of high numbers of synch/mutex/innodb/
fil_system_mutex wait events during a maintenance window outside of production hours. Doing so

891

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

ensures that the internal tablespaces map cleanup doesn't occur when quick access to the table is critical.
For information about reorganizing tables, see OPTIMIZE TABLE Statement in the MySQL Reference.

synch/mutex/innodb/trx_sys_mutex
The synch/mutex/innodb/trx_sys_mutex event occurs when there is high database activity with a
large number of transactions.

Topics

• Relevant engine versions (p. 892)

• Context (p. 892)

• Likely causes of increased waits (p. 892)

• Actions (p. 893)

Relevant engine versions

This wait event information is supported for the following engine versions:

• Aurora MySQL version 2.x up to 2.09.2

• Aurora MySQL version 1.x up to 1.23.1

Context

Internally, the InnoDB database engine uses the repeatable read isolation level with snapshots to provide
read consistency. This gives you a point-in-time view of the database at the time the snapshot was
created.

In InnoDB, all changes are applied to the database as soon as they arrive, regardless of whether they're
committed. This approach means that without multiversion concurrency control (MVCC), all users
connected to the database see all of the changes and the latest rows. Therefore, InnoDB requires a way
to track the changes to understand what to roll back when necessary.

To do this, InnoDB uses a transaction system (trx_sys) to track snapshots. The transaction system does
the following:

• Tracks the transaction ID for each row in the undo logs.

• Uses an internal InnoDB structure called ReadView that helps to identify which transaction IDs are
visible for a snapshot.

Likely causes of increased waits

Any database operation that requires the consistent and controlled handling (creating, reading, updating,
and deleting) of transactions IDs generates a call from trx_sys to the mutex.

These calls happen inside three functions:

• trx_sys_mutex_enter – Creates the mutex.

• trx_sys_mutex_exit – Releases the mutex.

• trx_sys_mutex_own – Tests whether the mutex is owned.

The InnoDB Performance Schema instrumentation tracks all trx_sys mutex calls. Tracking includes,
but isn't limited to, management of trx_sys on database startup or shutdown, rollback operations,

892

https://dev.mysql.com/doc/refman/5.7/en/optimize-table.html

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

undo cleanups, row read access, and buffer pool loads. High database activity with a large number of
transactions results in synch/mutex/innodb/trx_sys_mutex appearing among the top wait events.

For more information, see Monitoring InnoDB Mutex Waits Using Performance Schema in the MySQL
documentation.

Actions

We recommend different actions depending on the causes of your wait event.

Identify the sessions and queries causing the events

Typically, databases with moderate to significant load have wait events. The wait events might be
acceptable if performance is optimal. If performance isn't optimal, then examine where the database is
spending the most time. Look at the wait events that contribute to the highest load. Find out whether
you can optimize the database and application to reduce those events.

To view the Top SQL chart in the AWS Management Console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.
2. In the navigation pane, choose Performance Insights.
3. Choose a DB instance. The Performance Insights dashboard is shown for that DB instance.
4. In the Database load chart, choose Slice by wait.
5. Under the Database load chart, choose Top SQL.

The chart lists the SQL queries that are responsible for the load. Those at the top of the list are most
responsible. To resolve a bottleneck, focus on these statements.

For a useful overview of troubleshooting using Performance Insights, see the blog post Analyze Amazon
Aurora MySQL Workloads with Performance Insights.

Examine other wait events

Examine the other wait events associated with the synch/mutex/innodb/trx_sys_mutex wait
event. Doing this can provide more information about the nature of the workload. A large number of
transactions might reduce throughput, but the workload might also make this necessary.

For more information on how to optimize transactions, see Optimizing InnoDB Transaction Management
in the MySQL documentation.

synch/rwlock/innodb/hash_table_locks
The synch/rwlock/innodb/hash_table_locks event occurs when there is contention on modifying
the hash table that maps the buffer cache.

Topics
• Supported engine versions (p. 893)
• Context (p. 894)
• Likely causes of increased waits (p. 894)
• Actions (p. 894)

Supported engine versions

This wait event information is supported for Aurora MySQL version 1, up to 1.23.1.

893

https://dev.mysql.com/doc/refman/5.6/en/monitor-innodb-mutex-waits-performance-schema.html
https://console.aws.amazon.com/rds/
https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://dev.mysql.com/doc/refman/5.7/en/optimizing-innodb-transaction-management.html

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

Context

The event synch/rwlock/innodb/hash_table_locks indicates that there is contention on
modifying the hash table that maps the buffer cache. A hash table is a table in memory designed to
improve buffer pool access performance. This wait event is invoked when the hash table needs to be
modified.

For more information, see Buffer Pool in the MySQL documentation.

Likely causes of increased waits

When the synch/rwlock/innodb/hash_table_locks event appears more than normal, possibly
indicating a performance problem, typical causes include the following:

An undersized buffer pool

The size of the buffer pool is too small to keep all of the frequently accessed pages in memory.

Heavy workload

The workload is causing frequent evictions and data pages reloads in the buffer cache.

Actions

We recommend different actions depending on the causes of your wait event.

Topics
• Increase the size of the buffer pool (p. 894)

• Improve data access patterns (p. 894)

• Find SQL queries responsible for high load (p. 894)

• Reduce or avoid full-table scans (p. 895)

Increase the size of the buffer pool

Make sure that the buffer pool is appropriately sized for the workload. To do so, you can check the buffer
pool cache hit rate. Typically, if the value drops below 95 percent, consider increasing the buffer pool
size. A larger buffer pool can keep frequently accessed pages in memory longer.

To increase the size of the buffer pool, modify the value of the innodb_buffer_pool_size parameter.
The default value of this parameter is based on the DB instance class size. For more information, see the
AWS Database Blog post Best practices for configuring parameters for Amazon RDS for MySQL, part 1:
Parameters related to performance.

Improve data access patterns

Check the queries affected by this wait and their execution plans. Consider improving data access
patterns. For example, if you are using mysqli_result::fetch_array, you can try increasing the array fetch
size.

You can use Performance Insights to show queries and sessions that might be causing the synch/
rwlock/innodb/hash_table_locks wait event.

Find SQL queries responsible for high load

Typically, databases with moderate to significant load have wait events. The wait events might be
acceptable if performance is optimal. If performance isn't optimal, then examine where the database

894

https://dev.mysql.com/doc/refman/5.6/en/innodb-buffer-pool.html
http://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
http://aws.amazon.com/blogs/database/best-practices-for-configuring-parameters-for-amazon-rds-for-mysql-part-1-parameters-related-to-performance/
https://www.php.net/manual/en/mysqli-result.fetch-array.php

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

is spending the most time. Look at the wait events that contribute to the highest load, and find out
whether you can optimize the database and application to reduce those events.

To find SQL queries that are responsible for high load

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Performance Insights.

3. Choose a DB instance. The Performance Insights dashboard is shown for that DB instance.

4. In the Database load chart, choose Slice by wait.

5. At the bottom of the page, choose Top SQL.

The chart lists the SQL queries that are responsible for the load. Those at the top of the list are most
responsible. To resolve a bottleneck, focus on these statements.

For a useful overview of troubleshooting using Performance Insights, see the AWS Database Blog post
Analyze Amazon Aurora MySQL Workloads with Performance Insights.

Reduce or avoid full-table scans

Monitor your workload to see if it's running full-table scans, and, if it is, reduce or avoid them. For
example, you can monitor status variables such as Handler_read_rnd_next. For more information,
see Server Status Variables in the MySQL documentation.

synch/sxlock/innodb/hash_table_locks

The synch/sxlock/innodb/hash_table_locks event occurs when pages not found in the buffer
pool must be read from a file.

Topics

• Supported engine versions (p. 895)

• Context (p. 895)

• Likely causes of increased waits (p. 896)

• Actions (p. 896)

Supported engine versions

This wait event information is supported for Aurora MySQL version 2, up to 2.09.2.

Context

The event synch/sxlock/innodb/hash_table_locks indicates that a workload is frequently
accessing data that isn't stored in the buffer pool. This wait event is associated with new page additions
and old data evictions from the buffer pool. The data stored in the buffer pool aged and new data must
be cached, so the aged pages are evicted to allow caching of the new pages. MySQL uses a least recently
used (LRU) algorithm to evict pages from the buffer pool. The workload is trying to access data that
hasn't been loaded into the buffer pool or data that has been evicted from the buffer pool.

This wait event occurs when the workload must access the data in files on disk or when blocks are freed
from or added to the buffer pool's LRU list. These operations wait to obtain a shared excluded lock
(SX-lock). This SX-lock is used for the synchronization over the hash table, which is a table in memory
designed to improve buffer pool access performance.

895

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
http://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://dev.mysql.com/doc/refman/5.6/en/server-status-variables.html#statvar_Handler_read_rnd_next

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with wait events

For more information, see Buffer Pool in the MySQL documentation.

Likely causes of increased waits

When the synch/sxlock/innodb/hash_table_locks wait event appears more than normal,
possibly indicating a performance problem, typical causes include the following:

An undersized buffer pool

The size of the buffer pool is too small to keep all of the frequently accessed pages in memory.

Heavy workload

The workload is causing frequent evictions and data pages reloads in the buffer cache.

Errors reading the pages

There are errors reading pages in the buffer pool, which might indicate data corruption.

Actions

We recommend different actions depending on the causes of your wait event.

Topics

• Increase the size of the buffer pool (p. 896)

• Improve data access patterns (p. 896)

• Reduce or avoid full-table scans (p. 897)

• Check the error logs for page corruption (p. 897)

Increase the size of the buffer pool

Make sure that the buffer pool is appropriately sized for the workload. To do so, you can check the buffer
pool cache hit rate. Typically, if the value drops below 95 percent, consider increasing the buffer pool
size. A larger buffer pool can keep frequently accessed pages in memory longer. To increase the size of
the buffer pool, modify the value of the innodb_buffer_pool_size parameter. The default value
of this parameter is based on the DB instance class size. For more information, see Best practices for
Amazon Aurora MySQL database configuration.

Improve data access patterns

Check the queries affected by this wait and their execution plans. Consider improving data access
patterns. For example, if you are using mysqli_result::fetch_array, you can try increasing the array fetch
size.

You can use Performance Insights to show queries and sessions that might be causing the synch/
sxlock/innodb/hash_table_locks wait event.

To find SQL queries that are responsible for high load

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Performance Insights.

3. Choose a DB instance. The Performance Insights dashboard is shown for that DB instance.

4. In the Database load chart, choose Slice by wait.

896

https://dev.mysql.com/doc/refman/5.7/en/innodb-buffer-pool.html
http://aws.amazon.com/blogs/database/best-practices-for-amazon-aurora-mysql-database-configuration/
http://aws.amazon.com/blogs/database/best-practices-for-amazon-aurora-mysql-database-configuration/
https://www.php.net/manual/en/mysqli-result.fetch-array.php
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with thread states

5. At the bottom of the page, choose Top SQL.

The chart lists the SQL queries that are responsible for the load. Those at the top of the list are most
responsible. To resolve a bottleneck, focus on these statements.

For a useful overview of troubleshooting using Performance Insights, see the AWS Database Blog post
Analyze Amazon Aurora MySQL Workloads with Performance Insights.

Reduce or avoid full-table scans

Monitor your workload to see if it's running full-table scans, and, if it is, reduce or avoid them. For
example, you can monitor status variables such as Handler_read_rnd_next. For more information,
see Server Status Variables in the MySQL documentation.

Check the error logs for page corruption

You can check the mysql-error.log for corruption-related messages that were detected near the time of
the issue. Messages that you can work with to resolve the issue are in the error log. You might need to
recreate objects that were reported as corrupted.

Tuning Aurora MySQL with thread states
The following table summarizes the most common general thread states for Aurora MySQL.

General thread state Description

??? (p. 897) This thread state indicates that a thread is processing a
SELECT statement that requires the use of an internal
temporary table to sort the data.

??? (p. 900) This thread state indicates that a thread is reading and
filtering rows for a query to determine the correct result
set.

creating sort index

The creating sort index thread state indicates that a thread is processing a SELECT statement that
requires the use of an internal temporary table to sort the data.

Topics

• Supported engine versions (p. 897)

• Context (p. 898)

• Likely causes of increased waits (p. 898)

• Actions (p. 898)

Supported engine versions

This thread state information is supported for the following versions:

• Aurora MySQL version 2 up to 2.09.2

• Aurora MySQL version 1 up to 1.23.1

897

https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Handler_read_rnd_next

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with thread states

Context

The creating sort index state appears when a query with an ORDER BY or GROUP BY clause can't
use an existing index to perform the operation. In this case, MySQL needs to perform a more expensive
filesort operation. This operation is typically performed in memory if the result set isn't too large.
Otherwise, it involves creating a file on disk.

Likely causes of increased waits

The appearance of creating sort index doesn't by itself indicate a problem. If performance is poor,
and you see frequent instances of creating sort index, the most likely cause is slow queries with
ORDER BY or GROUP BY operators.

Actions

The general guideline is to find queries with ORDER BY or GROUP BY clauses that are associated with the
increases in the creating sort index state. Then see whether adding an index or increasing the sort
buffer size solves the problem.

Topics

• Turn on the Performance Schema if it isn't turned on (p. 898)

• Identify the problem queries (p. 898)

• Examine the explain plans for filesort usage (p. 898)

• Increase the sort buffer size (p. 899)

Turn on the Performance Schema if it isn't turned on

Performance Insights reports thread states only if Performance Schema instruments aren't turned on.
When Performance Schema instruments are turned on, Performance Insights reports wait events instead.
Performance Schema instruments provide additional insights and better tools when you investigate
potential performance problems. Therefore, we recommend that you turn on the Performance Schema.
For more information, see Enabling the Performance Schema for Performance Insights on Aurora
MySQL (p. 601).

Identify the problem queries

To identify current queries that are causing increases in the creating sort index state, run show
processlist and see if any of the queries have ORDER BY or GROUP BY. Optionally, run explain for
connection N, where N is the process list ID of the query with filesort.

To identify past queries that are causing these increases, turn on the slow query log and find the queries
with ORDER BY. Run EXPLAIN on the slow queries and look for "using filesort." For more information,
see Examine the explain plans for filesort usage (p. 898).

Examine the explain plans for filesort usage

Identify the statements with ORDER BY or GROUP BY clauses that result in the creating sort index
state.

The following example shows how to run explain on a query. The Extra column shows that this query
uses filesort.

mysql> explain select * from mytable order by c1 limit 10\G
*************************** 1. row ***************************

898

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with thread states

 id: 1
 select_type: SIMPLE
 table: mytable
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 2064548
 filtered: 100.00
 Extra: Using filesort
1 row in set, 1 warning (0.01 sec)

The following example shows the result of running EXPLAIN on the same query after an index is created
on column c1.

mysql> alter table mytable add index (c1);

mysql> explain select * from mytable order by c1 limit 10\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: mytable
 partitions: NULL
 type: index
possible_keys: NULL
 key: c1
 key_len: 1023
 ref: NULL
 rows: 10
 filtered: 100.00
 Extra: Using index
1 row in set, 1 warning (0.01 sec)

For information on using indexes for sort order optimization, see ORDER BY Optimization in the MySQL
documentation.

Increase the sort buffer size

To see whether a specific query required a filesort process that created a file on disk, check the
sort_merge_passes variable value after running the query. The following shows an example.

mysql> show session status like 'sort_merge_passes';
+-------------------+-------+
| Variable_name | Value |
+-------------------+-------+
| Sort_merge_passes | 0 |
+-------------------+-------+
1 row in set (0.01 sec)

--- run query
mysql> select * from mytable order by u limit 10;
--- run status again:

mysql> show session status like 'sort_merge_passes';
+-------------------+-------+
| Variable_name | Value |
+-------------------+-------+
| Sort_merge_passes | 0 |
+-------------------+-------+

899

https://dev.mysql.com/doc/refman/5.7/en/order-by-optimization.html

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with thread states

1 row in set (0.01 sec)

If the value of sort_merge_passes is high, consider increasing the sort buffer size. Apply the increase
at the session level, because increasing it globally can significantly increase the amount of RAM MySQL
uses. The following example shows how to change the sort buffer size before running a query.

mysql> set session sort_buffer_size=10*1024*1024;
Query OK, 0 rows affected (0.00 sec)
-- run query

sending data
The sending data thread state indicates that a thread is reading and filtering rows for a query to
determine the correct result set. The name is misleading because it implies the state is transferring data,
not collecting and preparing data to be sent later.

Topics

• Supported engine versions (p. 900)

• Context (p. 900)

• Likely causes of increased waits (p. 900)

• Actions (p. 901)

Supported engine versions

This thread state information is supported for the following versions:

• Aurora MySQL version 2 up to 2.09.2

• Aurora MySQL version 1 up to 1.23.1

Context

Many thread states are short-lasting. Operations occurring during sending data tend to perform large
numbers of disk or cache reads. Therefore, sending data is often the longest-running state over the
lifetime of a given query. This state appears when Aurora MySQL is doing the following:

• Reading and processing rows for a SELECT statement

• Performing a large number of reads from either disk or memory

• Completing a full read of all data from a specific query

• Reading data from a table, an index, or the work of a stored procedure

• Sorting, grouping, or ordering data

After the sending data state finishes preparing the data, the thread state writing to net indicates
the return of data to the client. Typically, writing to net is captured only when the result set is very
large or severe network latency is slowing the transfer.

Likely causes of increased waits

The appearance of sending data doesn't by itself indicate a problem. If performance is poor, and you
see frequent instances of sending data, the most likely causes are as follows.

Topics

900

Amazon Aurora User Guide for Aurora
Tuning Aurora MySQL with thread states

• Inefficient query (p. 901)

• Suboptimal server configuration (p. 901)

Inefficient query

In most cases, what's responsible for this state is a query that isn't using an appropriate index to find
the result set of a specific query. For example, consider a query reading a 10 million record table for all
orders placed in California, where the state column isn't indexed or is poorly indexed. In the latter case,
the index might exist, but the optimizer ignores it because of low cardinality.

Suboptimal server configuration

If several queries appear in the sending data state, the database server might be configured poorly.
Specifically, the server might have the following issues:

• The database server doesn't have enough computing capacity: disk I/O, disk type and speed, CPU, or
number of CPUs.

• The server is starved for allocated resources, such as the InnoDB buffer pool for InnoDB tables or the
key buffer for MyIsam tables.

• Per-thread memory settings such as sort_buffer, read_buffer, and join_buffer consume more
RAM than required, starving the physical server for memory resources.

Actions

The general guideline is to find queries that return large numbers of rows by checking the Performance
Schema. If logging queries that don't use indexes is turned on, you can also examine the results from the
slow logs.

Topics

• Turn on the Performance Schema if it isn't turned on (p. 901)

• Examine memory settings (p. 901)

• Examine the explain plans for index usage (p. 902)

• Check the volume of data returned (p. 902)

• Check for concurrency issues (p. 902)

• Check the structure of your queries (p. 902)

Turn on the Performance Schema if it isn't turned on

Performance Insights reports thread states only if Performance Schema instruments aren't turned on.
When Performance Schema instruments are turned on, Performance Insights reports wait events instead.
Performance Schema instruments provide additional insights and better tools when you investigate
potential performance problems. Therefore, we recommend that you turn on the Performance Schema.
For more information, see Enabling the Performance Schema for Performance Insights on Aurora
MySQL (p. 601).

Examine memory settings

Examine the memory settings for the primary buffer pools. Make sure that these pools are appropriately
sized for the workload. If your database uses multiple buffer pool instances, make sure that they aren't
divided into many small buffer pools. Threads can only use one buffer pool at a time.

Make sure that the following memory settings used for each thread are properly sized:

901

Amazon Aurora User Guide for Aurora
Parallel query for Aurora MySQL

• read_buffer

• read_rnd_buffer

• sort_buffer

• join_buffer

• binlog_cache

Unless you have a specific reason to modify the settings, use the default values.

Examine the explain plans for index usage

For queries in the sending data thread state, examine the plan to determine whether appropriate
indexes are used. If a query isn't using a useful index, consider adding hints like USE INDEX or FORCE
INDEX. Hints can greatly increase or decrease the time it takes to run a query, so use care before adding
them.

Check the volume of data returned

Check the tables that are being queried and the amount of data that they contain. Can any of this data
be archived? In many cases, the cause of poor query execution times isn't the result of the query plan,
but the volume of data to be processed. Many developers are very efficient in adding data to a database
but seldom consider dataset life cycle in the design and development phases.

Look for queries that perform well in low-volume databases but perform poorly in your current system.
Sometimes developers who design specific queries might not realize that these queries are returning
350,000 rows. The developers might have developed the queries in a lower-volume environment with
smaller datasets than production environments have.

Check for concurrency issues

Check whether multiple queries of the same type are running at the same time. Some forms of queries
run efficiently when they run alone. However, if similar forms of query run together, or in high volume,
they can cause concurrency issues. Often, these issues are caused when the database uses temp tables to
render results. A restrictive transaction isolation level can also cause concurrency issues.

If tables are read and written to concurrently, the database might be using locks. To help identify periods
of poor performance, examine the use of databases through large-scale batch processes. To see recent
locks and rollbacks, examine the output of the SHOW ENGINE INNODB STATUS command.

Check the structure of your queries

Check whether captured queries from these states use subqueries. This type of query often leads to
poor performance because the database compiles the results internally and then substitutes them back
into the query to render data. This process is an extra step for the database. In many cases, this step can
cause poor performance in a highly concurrent loading condition.

Also check whether your queries use large numbers of ORDER BY and GROUP BY clauses. In such
operations, often the database must first form the entire dataset in memory. Then it must order or group
it in a specific manner before returning it to the client.

Working with parallel query for Amazon Aurora
MySQL

902

Amazon Aurora User Guide for Aurora
Parallel query for Aurora MySQL

Following, you can find a description of the parallel query performance optimization for Amazon Aurora
MySQL-Compatible Edition. This feature uses a special processing path for certain data-intensive queries,
taking advantage of the Aurora shared storage architecture. Parallel query works best with Aurora
MySQL DB clusters that have tables with millions of rows and analytic queries that take minutes or
hours to complete. For information about Aurora MySQL versions that support parallel query in an AWS
Region, see Aurora parallel queries (p. 26).

Contents

• Overview of parallel query for Aurora MySQL (p. 904)

• Benefits (p. 904)

• Architecture (p. 905)

• Prerequisites (p. 905)

• Limitations (p. 906)

• Planning for a parallel query cluster (p. 906)

• Checking Aurora MySQL version compatibility for parallel query (p. 907)

• Creating a DB cluster that works with parallel query (p. 907)

• Creating a parallel query cluster using the console (p. 908)

• Creating a parallel query cluster using the CLI (p. 909)

• Turning parallel query on and off (p. 911)

• Aurora MySQL 1.23 and 2.09 or higher (p. 911)

• Before Aurora MySQL 1.23 (p. 912)

• Turning on hash join for parallel query clusters (p. 913)

• Turning on and turning off parallel query using the console (p. 913)

• Turning on and turning off parallel query using the CLI (p. 914)

• Upgrade considerations for parallel query (p. 914)

• Upgrading parallel query clusters to Aurora MySQL version 3 (p. 914)

• Upgrading to Aurora MySQL 1.23 or 2.09 and higher (p. 915)

• Performance tuning for parallel query (p. 915)

• Creating schema objects to take advantage of parallel query (p. 916)

• Verifying which statements use parallel query (p. 916)

• Monitoring parallel query (p. 919)

• How parallel query works with SQL constructs (p. 922)

• EXPLAIN statement (p. 923)

• WHERE clause (p. 924)

• Data definition language (DDL) (p. 926)

• Column data types (p. 926)

• Partitioned tables (p. 926)

• Aggregate functions, GROUP BY clauses, and HAVING clauses (p. 927)

• Function calls in WHERE clause (p. 928)

• LIMIT clause (p. 929)

• Comparison operators (p. 929)

• Joins (p. 929)

• Subqueries (p. 930)

• UNION (p. 931)

• Views (p. 931)

• Data manipulation language (DML) statements (p. 931)903

Amazon Aurora User Guide for Aurora
Overview of parallel query

• Transactions and locking (p. 932)

• B-tree indexes (p. 934)

• Full-text search (FTS) indexes (p. 934)

• Virtual columns (p. 934)

• Built-in caching mechanisms (p. 934)

• MyISAM temporary tables (p. 935)

Overview of parallel query for Aurora MySQL
Aurora MySQL parallel query is an optimization that parallelizes some of the I/O and computation
involved in processing data-intensive queries. The work that is parallelized includes retrieving rows from
storage, extracting column values, and determining which rows match the conditions in the WHERE
clause and join clauses. This data-intensive work is delegated (in database optimization terms, pushed
down) to multiple nodes in the Aurora distributed storage layer. Without parallel query, each query
brings all the scanned data to a single node within the Aurora MySQL cluster (the head node) and
performs all the query processing there.

Tip
The PostgreSQL database engine also has a feature that's also called "parallel query". That
feature is unrelated to Aurora parallel query.

When the parallel query feature is turned on, the Aurora MySQL engine automatically determines when
queries can benefit, without requiring SQL changes such as hints or table attributes. In the following
sections, you can find an explanation of when parallel query is applied to a query. You can also find how
to make sure that parallel query is applied where it provides the most benefit.

Note
The parallel query optimization provides the most benefit for long-running queries that
take minutes or hours to complete. Aurora MySQL generally doesn't perform parallel
query optimization for inexpensive queries. It also generally doesn't perform parallel query
optimization if another optimization technique makes more sense, such as query caching, buffer
pool caching, or index lookups. If you find that parallel query isn't being used when you expect
it, see Verifying which statements use parallel query (p. 916).

Topics

• Benefits (p. 904)

• Architecture (p. 905)

• Prerequisites (p. 905)

• Limitations (p. 906)

Benefits

With parallel query, you can run data-intensive analytic queries on Aurora MySQL tables. In many cases,
you can get an order-of-magnitude performance improvement over the traditional division of labor for
query processing.

Benefits of parallel query include the following:

• Improved I/O performance, due to parallelizing physical read requests across multiple storage nodes.

• Reduced network traffic. Aurora doesn't transmit entire data pages from storage nodes to the head
node and then filter out unnecessary rows and columns afterward. Instead, Aurora transmits compact
tuples containing only the column values needed for the result set.

904

Amazon Aurora User Guide for Aurora
Overview of parallel query

• Reduced CPU usage on the head node, due to pushing down function processing, row filtering, and
column projection for the WHERE clause.

• Reduced memory pressure on the buffer pool. The pages processed by the parallel query aren't added
to the buffer pool. This approach reduces the chance of a data-intensive scan evicting frequently used
data from the buffer pool.

• Potentially reduced data duplication in your extract, transform, load (ETL) pipeline, by making it
practical to perform long-running analytic queries on existing data.

Architecture
The parallel query feature uses the major architectural principles of Aurora MySQL: decoupling
the database engine from the storage subsystem, and reducing network traffic by streamlining
communication protocols. Aurora MySQL uses these techniques to speed up write-intensive operations
such as redo log processing. Parallel query applies the same principles to read operations.

Note
The architecture of Aurora MySQL parallel query differs from that of similarly named
features in other database systems. Aurora MySQL parallel query doesn't involve symmetric
multiprocessing (SMP) and so doesn't depend on the CPU capacity of the database server. The
parallel processing happens in the storage layer, independent of the Aurora MySQL server that
serves as the query coordinator.

By default, without parallel query, the processing for an Aurora query involves transmitting raw data
to a single node within the Aurora cluster (the head node). Aurora then performs all further processing
for that query in a single thread on that single node. With parallel query, much of this I/O-intensive and
CPU-intensive work is delegated to nodes in the storage layer. Only the compact rows of the result set
are transmitted back to the head node, with rows already filtered, and column values already extracted
and transformed. The performance benefit comes from the reduction in network traffic, reduction in CPU
usage on the head node, and parallelizing the I/O across the storage nodes. The amount of parallel I/O,
filtering, and projection is independent of the number of DB instances in the Aurora cluster that runs the
query.

Prerequisites
To use all features of parallel query requires an Aurora MySQL DB cluster that's running version 1.23 or
2.09 and higher. If you already have a cluster that you want to use with parallel query, you can upgrade
it to a compatible version and turn on parallel query afterward. In that case, make sure to follow the
upgrade procedure in Upgrade considerations for parallel query (p. 914) because the configuration
setting names and default values are different in these newer versions.

You can also use parallel query with certain older Aurora MySQL versions that are compatible with
MySQL 5.6: 1.22.2, 1.20.1, 1.19.6, and 5.6.10a. The parallel query support for these older versions is
only available in certain AWS Regions. Those older versions have additional limitations, as described
following. Using parallel query with an older Aurora MySQL version also requires creating a dedicated
DB cluster with a special engine mode parameter that can't be changed later. For those reasons, we
recommend using parallel query with Aurora MySQL 1.23 or 2.09 and higher where practical.

The DB instances in your cluster must be using the db.r* instance classes.

Make sure that the hash join optimization is turned on for your cluster. The procedure to do so is
different depending on whether your cluster is running an Aurora MySQL version higher or lower than
1.23 or 2.09. To learn how, see Turning on hash join for parallel query clusters (p. 913).

To customize parameters such as aurora_parallel_query and aurora_disable_hash_join, you
must have a custom parameter group that you use with your cluster. You can specify these parameters
individually for each DB instance by using a DB parameter group. However, we recommend that you

905

Amazon Aurora User Guide for Aurora
Planning for a parallel query cluster

specify them in a DB cluster parameter group. That way, all DB instances in your cluster inherit the same
settings for these parameters.

Limitations
The following limitations apply to the parallel query feature:

• You can't use parallel query with the db.t2 or db.t3 instance classes. This limitation applies even if you
request parallel query using the aurora_pq_force SQL hint.

• Parallel query doesn't apply to tables using the COMPRESSED or REDUNDANT row formats. Use the
COMPACT or DYNAMIC row formats for tables you plan to use with parallel query.

• Aurora uses a cost-based algorithm to determine whether to use the parallel query mechanism for
each SQL statement. Using certain SQL constructs in a statement can prevent parallel query or make
parallel query unlikely for that statement. For information about compatibility of SQL constructs with
parallel query, see How parallel query works with SQL constructs (p. 922).

• Each Aurora DB instance can run only a certain number of parallel query sessions at one time. If a
query has multiple parts that use parallel query, such as subqueries, joins, or UNION operators, those
phases run in sequence. The statement only counts as a single parallel query session at any one time.
You can monitor the number of active sessions using the parallel query status variables (p. 919).
You can check the limit on concurrent sessions for a given DB instance by querying the status variable
Aurora_pq_max_concurrent_requests.

• Parallel query is available in all AWS Regions that Aurora supports. For most AWS Regions, the
minimum required Aurora MySQL version to use parallel query is 1.23 or 2.09. For more information,
see Aurora parallel queries (p. 26).

• Aurora MySQL 1.22.2, 1.20.1, 1.19.6, and 5.6.10a only: Using parallel query with these older versions
involves creating a new cluster, or restoring from an existing Aurora MySQL cluster snapshot.

• Aurora MySQL 1.22.2, 1.20.1, 1.19.6, and 5.6.10a only: Parallel query doesn't support AWS Identity
and Access Management (IAM) database authentication.

Planning for a parallel query cluster
Planning for a DB cluster that has parallel query turned on requires making some choices. These include
performing setup steps (either creating or restoring a full Aurora MySQL cluster) and deciding how
broadly to turn on parallel query across your DB cluster.

Consider the following as part of planning:

• Which Aurora MySQL version do you plan to use for the cluster? Depending on your choice, you can
use one of these ways to turn on parallel query for the cluster:

If you use Aurora MySQL that's compatible with MySQL 5.7, you must choose Aurora MySQL 2.09 or
higher. In this case, you always create a provisioned cluster. Then you turn on parallel query using the
aurora_parallel_query parameter. We recommend this choice if you are starting with Aurora
parallel query for the first time.

If you use Aurora MySQL that's compatible with MySQL 5.6, you can choose version 1.23 or certain
lower versions. With version 1.23 or higher, you create a provisioned cluster and then turn on parallel
query using the aurora_parallel_query DB cluster parameter. With a version lower than 1.23,
you choose the parallelquery engine mode when creating the cluster. In this case, parallel query
is permanently turned on for the cluster. The parallelquery engine mode imposes limitations
on interoperating with other kinds of Aurora MySQL clusters. If you have a choice, we recommend
choosing version 1.23 or higher for Aurora MySQL with MySQL 5.6 compatibility.

If you have an existing Aurora MySQL cluster that's running version 1.23 or higher, or 2.09 or higher,
you don't have to create a new cluster to use parallel query. You can associate your cluster, or

906

Amazon Aurora User Guide for Aurora
Creating a parallel query cluster

specific DB instances in the cluster, with a parameter group that has the aurora_parallel_query
parameter turned on. By doing so, you can reduce the time and effort to set up the relevant data to
use with parallel query.

• Plan for any large tables that you need to reorganize so that you can use parallel query when accessing
them. You might need to create new versions of some large tables where parallel query is useful. For
example, you might need to remove full-text search indexes. For details, see Creating schema objects
to take advantage of parallel query (p. 916).

Checking Aurora MySQL version compatibility for parallel query
To check which Aurora MySQL versions are compatible with parallel query clusters, use the describe-
db-engine-versions AWS CLI command and check the value of the SupportsParallelQuery field.
The following code example shows how to check which combinations are available for parallel query
clusters in a specified AWS Region. Make sure to specify the full --query parameter string on a single
line.

aws rds describe-db-engine-versions --region us-east-1 --engine aurora --query '*[]|[?
SupportsParallelQuery == `true`].[EngineVersion]' --output text

aws rds describe-db-engine-versions --region us-east-1 --engine aurora-mysql --query '*[]|
[?SupportsParallelQuery == `true`].[EngineVersion]' --output text

The preceding commands produce output similar to the following. The output might vary depending on
which Aurora MySQL versions are available in the specified AWS Region.

5.6.10a
5.6.mysql_aurora.1.19.0
5.6.mysql_aurora.1.19.1
5.6.mysql_aurora.1.19.2
5.6.mysql_aurora.1.19.3
5.6.mysql_aurora.1.19.3.1
5.6.mysql_aurora.1.19.3.90
5.6.mysql_aurora.1.19.4
5.6.mysql_aurora.1.19.4.1
5.6.mysql_aurora.1.19.4.2
5.6.mysql_aurora.1.19.4.3
5.6.mysql_aurora.1.19.4.4
5.6.mysql_aurora.1.19.4.5
5.6.mysql_aurora.1.19.5
5.6.mysql_aurora.1.19.5.90
5.6.mysql_aurora.1.19.6
5.6.mysql_aurora.1.20.1
5.6.mysql_aurora.1.22.0
5.6.mysql_aurora.1.22.2
5.6.mysql_aurora.1.23.0

5.7.mysql_aurora.2.09.0

After you start using parallel query with a cluster, you can monitor performance and remove obstacles to
parallel query usage. For those instructions, see Performance tuning for parallel query (p. 915).

Creating a DB cluster that works with parallel query
To create an Aurora MySQL cluster with parallel query, add new instances to it, or perform other
administrative operations, you use the same AWS Management Console and AWS CLI techniques that
you do with other Aurora MySQL clusters. You can create a new cluster to work with parallel query.
You can also create a DB cluster to work with parallel query by restoring from a snapshot of a MySQL-

907

Amazon Aurora User Guide for Aurora
Creating a parallel query cluster

compatible Aurora DB cluster. If you aren't familiar with the process for creating a new Aurora MySQL
cluster, you can find background information and prerequisites in Creating an Amazon Aurora DB
cluster (p. 125).

However, certain options are different:

• When you choose an Aurora MySQL engine version, we recommend that you choose the latest engine
that is compatible with MySQL 5.7. Currently, Aurora MySQL 2.09 or higher, and certain Aurora MySQL
versions that are compatible with MySQL 5.6 support parallel query. You have more flexibility to turn
parallel query on and off, or use parallel query with existing clusters, if you use Aurora MySQL 1.23 or
2.09 and higher.

• Only for Aurora MySQL before version 1.23: When you create or restore the DB cluster, make sure to
choose the parallelquery engine mode.

Whether you create a new cluster or restore from a snapshot, you use the same techniques to add new
DB instances that you do with other Aurora MySQL clusters.

Creating a parallel query cluster using the console
You can create a new parallel query cluster with the console as described following.

To create a parallel query cluster with the AWS Management Console

1. Follow the general AWS Management Console procedure in Creating an Amazon Aurora DB
cluster (p. 125).

2. On the Select engine screen, choose Aurora MySQL.

For Engine version, choose Aurora MySQL 2.09 or higher, or Aurora MySQL 1.23 or higher if
practical. With those versions, you have the fewest limitations on parallel query usage. Those
versions also have the most flexibility to turn parallel query on or off at any time.

If it isn't practical to use a recent Aurora MySQL version for this cluster, choose Show versions that
support the parallel query feature. Doing so filters the Version menu to show only the specific
Aurora MySQL versions that are compatible with parallel query.

3. (For older versions only) For Capacity type, choose Provisioned with Aurora parallel query
enabled. The AWS Management Console only displays this choice when you select an Aurora MySQL
version lower than 1.23. For Aurora MySQL 1.23 or 2.09 and higher, you don't need to make any
special choice to make the cluster compatible with parallel query.

4. (For recent versions only) For Additional configuration, choose a parameter group that you created
for DB cluster parameter group. Using such a custom parameter group is required for Aurora
MySQL 1.23 or 2.09 or 3.1 and higher. In your DB cluster parameter group, specify the parameter
settings aurora_parallel_query=ON and aurora_disable_hash_join=OFF. Doing so turns
on parallel query for the cluster, and turns on the hash join optimization which works in combination
with parallel query.

To verify that a new cluster can use parallel query

1. Create a cluster using the preceding technique.

2. (For Aurora MySQL version 2.09 and higher minor versions, or Aurora MySQL version 3) Check that
the aurora_parallel_query configuration setting is true.

mysql> select @@aurora_parallel_query;
+-------------------------+
| @@aurora_parallel_query |
+-------------------------+

908

Amazon Aurora User Guide for Aurora
Creating a parallel query cluster

| 1 |
+-------------------------+

3. (For Aurora MySQL version 2.09 and higher minor versions) Check that the
aurora_disable_hash_join setting is false.

mysql> select @@aurora_disable_hash_join;
+----------------------------+
| @@aurora_disable_hash_join |
+----------------------------+
| 0 |
+----------------------------+

4. (For older versions only) Check that the aurora_pq_supported configuration setting is true.

mysql> select @@aurora_pq_supported;
+-----------------------+
| @@aurora_pq_supported |
+-----------------------+
| 1 |
+-----------------------+

5. With some large tables and data-intensive queries, check the query plans to confirm that some of
your queries are using the parallel query optimization. To do so, follow the procedure in Verifying
which statements use parallel query (p. 916).

Creating a parallel query cluster using the CLI
You can create a new parallel query cluster with the CLI as described following.

To create a parallel query cluster with the AWS CLI

1. (Optional) Check which Aurora MySQL versions are compatible with parallel query clusters.
To do so, use the describe-db-engine-versions command and check the value of the
SupportsParallelQuery field. For an example, see Checking Aurora MySQL version compatibility
for parallel query (p. 907).

2. (Optional) Create a custom DB cluster parameter group with the settings
aurora_parallel_query=ON and aurora_disable_hash_join=OFF. Use commands such as
the following.

aws rds create-db-cluster-parameter-group --db-parameter-group-family aurora-mysql5.7
 --db-cluster-parameter-group-name pq-enabled-57-compatible
aws rds modify-db-cluster-parameter-group --db-cluster-parameter-group-name pq-
enabled-57-compatible \
 --parameters
 ParameterName=aurora_parallel_query,ParameterValue=ON,ApplyMethod=pending-reboot
aws rds modify-db-cluster-parameter-group --db-cluster-parameter-group-name pq-
enabled-57-compatible \
 --parameters
 ParameterName=aurora_disable_hash_join,ParameterValue=OFF,ApplyMethod=pending-reboot

If you perform this step, specify the option --db-cluster-parameter-group-name
my_cluster_parameter_group in the subsequent create-db-cluster statement. Substitute
the name of your own parameter group. If you omit this step, you create the parameter group and
associate it with the cluster later, as described in Turning parallel query on and off (p. 911).

3. Follow the general AWS CLI procedure in Creating an Amazon Aurora DB cluster (p. 125).

4. Specify the following set of options:

909

Amazon Aurora User Guide for Aurora
Creating a parallel query cluster

• For the --engine option, use aurora or aurora-mysql. These values produce parallel query
clusters that are compatible with MySQL 5.6 or MySQL 5.7 respectively.

• The value to use for the --engine-mode parameter depends on the engine version that you
choose.

For Aurora MySQL 1.23 or higher, or 2.09 or higher, specify --engine-mode provisioned. You
can also omit the --engine-mode parameter, because provisioned is the default. In these
versions, you can turn parallel query on or off for the default kind of Aurora MySQL clusters,
instead of creating clusters dedicated to always using parallel query.

Before Aurora MySQL 1.23, for the --engine-mode option, use parallelquery. The --
engine-mode parameter applies to the create-db-cluster operation. Then the engine mode
of the cluster is used automatically by subsequent create-db-instance operations.

• For the --db-cluster-parameter-group-name option, specify the name of
a DB cluster parameter group that you created and specified the parameter value
aurora_parallel_query=ON. If you omit this option, you can create the cluster with a default
parameter group and later modify it to use such a custom parameter group.

• For the --engine-version option, use an Aurora MySQL version that's compatible with parallel
query. Use the procedure from Planning for a parallel query cluster (p. 906) to get a list of
versions if necessary. If practical, use at least 1.23.0 or 2.09.0. These versions and all higher ones
contain substantial enhancements to parallel query.

The following code example shows how. Substitute your own value for each of the environment
variables such as $CLUSTER_ID.

aws rds create-db-cluster --db-cluster-identifier $CLUSTER_ID--engine aurora-mysql --
engine-version 5.7.mysql_aurora.2.09.0 \
 --master-username $MASTER_USER_ID --master-user-password $MASTER_USER_PW \
 --db-cluster-parameter-group-name $CUSTOM_CLUSTER_PARAM_GROUP

aws rds create-db-cluster --db-cluster-identifier $CLUSTER_ID
 --engine aurora --engine-version 5.6.mysql_aurora.1.23.0 \
 --master-username $MASTER_USER_ID --master-user-password $MASTER_USER_PW \
 --db-cluster-parameter-group-name $CUSTOM_CLUSTER_PARAM_GROUP

aws rds create-db-instance --db-instance-identifier ${INSTANCE_ID}-1 \
 --engine same_value_as_in_create_cluster_command \
 --db-cluster-identifier $CLUSTER_ID --db-instance-class $INSTANCE_CLASS

5. Verify that a cluster you created or restored has the parallel query feature available.

For Aurora MySQL 1.23 and 2.09 or higher: Check that the aurora_parallel_query configuration
setting exists. If this setting has the value 1, parallel query is ready for you to use. If this setting
has the value 0, set it to 1 before you can use parallel query. Either way, the cluster is capable of
performing parallel queries.

mysql> select @@aurora_parallel_query;
+------------------------+
| @@aurora_parallel_query|
+------------------------+
| 1 |
+------------------------+

Before Aurora MySQL 1.23: Check that the aurora_pq_supported configuration setting is true.

mysql> select @@aurora_pq_supported;
+-----------------------+
| @@aurora_pq_supported |

910

Amazon Aurora User Guide for Aurora
Turning parallel query on and off

+-----------------------+
| 1 |
+-----------------------+

To restore a snapshot to a parallel query cluster with the AWS CLI

1. Check which Aurora MySQL versions are compatible with parallel query clusters. To do
so, use the describe-db-engine-versions command and check the value of the
SupportsParallelQuery field. For an example, see Checking Aurora MySQL version compatibility
for parallel query (p. 907). Decide which version to use for the restored cluster. If practical, choose
Aurora MySQL 2.09.0 or higher for a MySQL 5.7-compatible cluster, or 1.23.0 or higher for a MySQL
5.6-compatible cluster.

2. Locate an Aurora MySQL-compatible cluster snapshot.

3. Follow the general AWS CLI procedure in Restoring from a DB cluster snapshot (p. 497).

4. The value to use for the --engine-mode parameter depends on the engine version that you
choose.

For Aurora MySQL 1.23 or higher, or 2.09 or higher, specify --engine-mode provisioned. You
can also omit the --engine-mode parameter, because provisioned is the default. In these
versions, you can turn parallel query on or off for your Aurora MySQL clusters, instead of creating
clusters dedicated to always using parallel query.

Before Aurora MySQL 1.23, specify --engine-mode parallelquery. The --engine-mode
parameter applies to the create-db-cluster operation. Then the engine mode of the cluster is
used automatically by subsequent create-db-instance operations.

aws rds restore-db-cluster-from-snapshot \
 --db-cluster-identifier mynewdbcluster \
 --snapshot-identifier mydbclustersnapshot \
 --engine aurora
 --engine-mode parallelquery

5. Verify that a cluster you created or restored has the parallel query feature available. Use the same
verification procedure as in Creating a parallel query cluster using the CLI (p. 909).

Turning parallel query on and off
Note
When parallel query is turned on, Aurora MySQL determines whether to use it at runtime
for each query. In the case of joins, unions, subqueries, and so on, Aurora MySQL determines
whether to use parallel query at runtime for each query block. For details, see Verifying
which statements use parallel query (p. 916) and How parallel query works with SQL
constructs (p. 922).

Aurora MySQL 1.23 and 2.09 or higher
In Aurora MySQL 1.23 and 2.09 or higher, you can turn on and turn off parallel query dynamically at
both the global and session level for a DB instance by using the aurora_parallel_query option. You can
change the aurora_parallel_query setting in your DB cluster group to turn parallel query on or off
by default.

mysql> select @@aurora_parallel_query;
+------------------------+
| @@aurora_parallel_query|
+------------------------+

911

Amazon Aurora User Guide for Aurora
Turning parallel query on and off

| 1 |
+------------------------+

To toggle the aurora_parallel_query parameter at the session level, use the standard methods
to change a client configuration setting. For example, you can do so through the mysql command line
or within a JDBC or ODBC application. The command on the standard MySQL client is set session
aurora_parallel_query = {'ON'/'OFF'}. You can also add the session-level parameter to the
JDBC configuration or within your application code to turn on or turn off parallel query dynamically.

You can permanently change the setting for the aurora_parallel_query parameter, either for a
specific DB instance or for your whole cluster. If you specify the parameter value in a DB parameter
group, that value only applies to specific DB instance in your cluster. If you specify the parameter value
in a DB cluster parameter group, all DB instances in the cluster inherit the same setting. To toggle the
aurora_parallel_query parameter, use the techniques for working with parameter groups, as
described in Working with DB parameter groups and DB cluster parameter groups (p. 339). Follow these
steps:

1. Create a custom cluster parameter group (recommended) or a custom DB parameter group.

2. In this parameter group, update parallel_query to the value that you want.

3. Depending on whether you created a DB cluster parameter group or a DB parameter group, attach
the parameter group to your Aurora cluster or to the specific DB instances where you plan to use the
parallel query feature.

Tip
Because aurora_parallel_query is a dynamic parameter, you don't need to restart your
cluster after changing this setting.

You can modify the parallel query parameter by using the ModifyDBClusterParameterGroup or
ModifyDBParameterGroup API operation or the AWS Management Console.

Before Aurora MySQL 1.23
For these older versions, you can turn on and turn off parallel query dynamically at both the global
and session level for a DB instance by using the aurora_pq option. On clusters where the parallel query
feature is available, the parameter is turned on by default.

mysql> select @@aurora_pq;
+-------------+
| @@aurora_pq |
+-------------+
| 1 |
+-------------+

To toggle the aurora_pq parameter at the session level, for example through the mysql command
line or within a JDBC or ODBC application, use the standard methods to change a client configuration
setting. For example, the command on the standard MySQL client is set session aurora_pq =
{'ON'/'OFF'}. You can also add the session-level parameter to the JDBC configuration or within your
application code to turn on or turn off parallel query dynamically.

To toggle the aurora_pq parameter permanently, use the techniques for working with parameter
groups, as described in Working with DB parameter groups and DB cluster parameter groups (p. 339).
Follow these steps:

1. Create a custom cluster parameter group or DB instance parameter group. We recommend using a
cluster parameter group, so that all DB instance in the cluster inherit the same settings.

2. In this parameter group, update aurora_pq to the value that you want.

912

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBClusterParameterGroup.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBParameterGroup.html

Amazon Aurora User Guide for Aurora
Turning parallel query on and off

3. Associate the custom cluster parameter group with the Aurora cluster where you plan to use the
parallel query feature. Or, for a custom DB parameter group, associate it with one or more DB
instances in the cluster.

4. Restart all the DB instances of the cluster.

You can modify the parallel query parameter by using the ModifyDBClusterParameterGroup or
ModifyDBParameterGroup API operation or the AWS Management Console.

Note
When parallel query is turned on, Aurora MySQL determines whether to use it at runtime
for each query. In the case of joins, unions, subqueries, and so on, Aurora MySQL determines
whether to use parallel query at runtime for each query block. For details, see Verifying
which statements use parallel query (p. 916) and How parallel query works with SQL
constructs (p. 922).

Turning on hash join for parallel query clusters
Parallel query is typically used for the kinds of resource-intensive queries that benefit from the hash join
optimization. Thus, it's helpful to ensure that hash joins are turned on for clusters where you plan to use
parallel query.

• In Aurora MySQL version 3, the hash join optimization is turned on by default. You can turn it on and
off by using the block_nested_loop flag of the optimizer_switch configuration setting. The
aurora_disable_hash_join option isn't used.

• In Aurora MySQL 1.23 or 2.09 and higher minor versions, the parallel query and hash join
settings are both turned off by default. When you turn on parallel query for such a cluster,
turn on hash joins also. The simplest way to do so is to set the cluster configuration parameter
aurora_disable_hash_join=OFF.

• For Aurora MySQL 5.6-compatible clusters before version 1.23, hash joins are always available in
parallel query clusters. In this case, you don't need to take any action for the hash join feature. If you
upgrade such clusters to a higher release of version 1 or version 2, you do need to turn on hash joins at
that time.

For information about how to use hash joins effectively, see Optimizing large Aurora MySQL join queries
with hash joins (p. 1059).

Turning on and turning off parallel query using the console
You can turn on or turn off parallel query at the DB instance level or the DB cluster level by working with
parameter groups.

To turn on or turn off parallel query for a DB cluster with the AWS Management Console

1. Create a custom parameter group, as described in Working with DB parameter groups and DB cluster
parameter groups (p. 339).

2. For Aurora MySQL 1.23 and 2.09 or higher: Update aurora_parallel_query to 1 (turned on) or 0
(turned off). For clusters where the parallel query feature is available, aurora_parallel_query is
turned off by default.

For Aurora MySQL before 1.23: Update aurora_pq to 1 (turned on) or 0 (turned off). For clusters
where the parallel query feature is available, aurora_pq is turned on by default.

3. If you use a custom cluster parameter group, attach it to the Aurora DB cluster where you plan to
use the parallel query feature. If you use a custom DVB parameter group, attach it to one or more
DB instances in the cluster. We recommend using a cluster parameter group. Doing so makes sure
that all DB instances in the cluster have the same settings for parallel query and associated features
such as hash join.

913

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBClusterParameterGroup.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBParameterGroup.html

Amazon Aurora User Guide for Aurora
Upgrading a parallel query cluster

Turning on and turning off parallel query using the CLI
You can modify the parallel query parameter by using the modify-db-cluster-parameter-group or
modify-db-parameter-group command. Choose the appropriate command depending on whether
you specify the value of aurora_parallel_query through a DB cluster parameter group or a DB
parameter group.

To turn on or turn off parallel query for a DB cluster with the CLI

• Modify the parallel query parameter by using the modify-db-cluster-parameter-group
command. Use a command such as the following. Substitute the appropriate name for your own
custom parameter group. Substitute either ON or OFF for the ParameterValue portion of the --
parameters option.

Aurora MySQL 1.23 or 2.09 and higher:
$ aws rds modify-db-cluster-parameter-group --db-cluster-parameter-group-
name cluster_param_group_name \
 --parameters
 ParameterName=aurora_parallel_query,ParameterValue=ON,ApplyMethod=pending-reboot
{
 "DBClusterParameterGroupName": "cluster_param_group_name"
}

Before Aurora MySQL 1.23:
$ aws rds modify-db-cluster-parameter-group --db-cluster-parameter-group-
name cluster_param_group_name \
 --parameters ParameterName=aurora_pq,ParameterValue=ON,ApplyMethod=pending-reboot
{
 "DBClusterParameterGroupName": "cluster_param_group_name"
}

You can also turn on or turn off parallel query at the session level, for example through the mysql
command line or within a JDBC or ODBC application. To do so, use the standard methods to change a
client configuration setting. For example, the command on the standard MySQL client is set session
aurora_parallel_query = {'ON'/'OFF'} for Aurora MySQL 1.23 or 2.09 and higher. Before Aurora
MySQL 1.23, the command is set session aurora_pq = {'ON'/'OFF'}.

You can also add the session-level parameter to the JDBC configuration or within your application code
to turn on or turn off parallel query dynamically.

Upgrade considerations for parallel query
Depending on the original and destination versions when you upgrade a parallel query cluster, you might
find enhancements in the types of queries that parallel query can optimize. You might also find that you
don't need to specify a special engine mode parameter for parallel query. The following sections explain
the considerations when you upgrade a cluster that has parallel query turned on.

Upgrading parallel query clusters to Aurora MySQL version 3
Several SQL statements, clauses, and data types have new or improved parallel query support starting in
Aurora MySQL version 3. When you upgrade from a release that's earlier than version 3, check whether
additional queries can benefit from parallel query optimizations. For information about these parallel
query enhancements, see Column data types (p. 926), Partitioned tables (p. 926), and Aggregate
functions, GROUP BY clauses, and HAVING clauses (p. 927).

If you are upgrading a parallel query cluster from Aurora MySQL 2.08 or lower, also learn about
changes in how to turn on parallel query. To do so, read Upgrading to Aurora MySQL 1.23 or 2.09 and
higher (p. 915).

914

Amazon Aurora User Guide for Aurora
Performance tuning

In Aurora MySQL version 3, the hash join optimization is turned on by default. The
aurora_disable_hash_join configuration option from earlier versions isn't used.

Upgrading to Aurora MySQL 1.23 or 2.09 and higher
In Aurora MySQL 1.23 or 2.09 and higher, parallel query works for provisioned clusters and doesn't
require the parallelquery engine mode parameter. Thus, you don't need to create a new cluster
or restore from an existing snapshot to use parallel query with these versions. You can use the
upgrade procedures described in Upgrading the minor version or patch level of an Aurora MySQL DB
cluster (p. 1109) to upgrade your cluster to such a version. You can upgrade an older cluster regardless
of whether it was a parallel query cluster or a provisioned cluster. To reduce the number of choices in the
Engine version menu, you can choose Show versions that support the parallel query feature to filter
the entries in that menu. Then choose Aurora MySQL 1.23 or 2.09 and higher.

After you upgrade an earlier parallel query cluster to Aurora MySQL 1.23 or 2.09 and higher, you turn on
parallel query in the upgraded cluster. Parallel query is turned off by default in these versions, and the
procedure for enabling it is different. The hash join optimization is also turned off by default and must
be turned on separately. Thus, make sure that you turn on these settings again after the upgrade. For
instructions on doing so, see Turning parallel query on and off (p. 911) and Turning on hash join for
parallel query clusters (p. 913).

In particular, you turn on parallel query by using the configuration parameters
aurora_parallel_query=ON and aurora_disable_hash_join=OFF instead of
aurora_pq_supported and aurora_pq. The aurora_pq_supported and aurora_pq parameters are
deprecated in the newer Aurora MySQL versions.

In the upgraded cluster, the EngineMode attribute has the value provisioned instead of
parallelquery. To check whether parallel query is available for a specified engine version, now you
check the value of the SupportsParallelQuery field in the output of the describe-db-engine-
versions AWS CLI command. In earlier Aurora MySQL versions, you checked for the presence of
parallelquery in the SupportedEngineModes list.

After you upgrade to Aurora MySQL 1.23 or 2.09 and higher, you can take advantage of the following
features. These features aren't available to parallel query clusters running older Aurora MySQL versions.

• Performance Insights. For more information, see Monitoring DB load with Performance Insights on
Amazon Aurora (p. 594).

• Backtracking. For more information, see Backtracking an Aurora DB cluster (p. 837).
• Stopping and starting the cluster. For more information, see Stopping and starting an Amazon Aurora

DB cluster (p. 368).

Performance tuning for parallel query
To manage the performance of a workload with parallel query, make sure that parallel query is used for
the queries where this optimization helps the most.

To do so, you can do the following:

• Make sure that your biggest tables are compatible with parallel query. You might change table
properties or recreate some tables so that queries for those tables can take advantage of the
parallel query optimization. To learn how, see Creating schema objects to take advantage of parallel
query (p. 916).

• Monitor which queries use parallel query. To learn how, see Monitoring parallel query (p. 919).
• Verify that parallel query is being used for the most data-intensive and long-running queries, and with

the right level of concurrency for your workload. To learn how, see Verifying which statements use
parallel query (p. 916).

915

Amazon Aurora User Guide for Aurora
Creating schema objects

• Fine-tune your SQL code to turn on parallel query to apply to the queries that you expect. To learn
how, see How parallel query works with SQL constructs (p. 922).

Creating schema objects to take advantage of
parallel query
Before you create or modify tables that you plan to use for parallel query, make sure to familiarize
yourself with the requirements described in Prerequisites (p. 905) and Limitations (p. 906).

Because parallel query requires tables to use the ROW_FORMAT=Compact or ROW_FORMAT=Dynamic
setting, check your Aurora configuration settings for any changes to the INNODB_FILE_FORMAT
configuration option. Issue the SHOW TABLE STATUS statement to confirm the row format for all the
tables in a database.

Before changing your schema to turn on parallel query to work with more tables, make sure to test. Your
tests should confirm if parallel query results in a net increase in performance for those tables. Also, make
sure that the schema requirements for parallel query are otherwise compatible with your goals.

For example, before switching from ROW_FORMAT=Compressed to ROW_FORMAT=Compact or
ROW_FORMAT=Dynamic, test the performance of workloads for the original and new tables. Also,
consider other potential effects such as increased data volume.

Verifying which statements use parallel query
In typical operation, you don't need to perform any special actions to take advantage of parallel query.
After a query meets the essential requirements for parallel query, the query optimizer automatically
decides whether to use parallel query for each specific query.

If you run experiments in a development or test environment, you might find that parallel query isn't
used because your tables are too small in number of rows or overall data volume. The data for the table
might also be entirely in the buffer pool, especially for tables that you created recently to perform
experiments.

As you monitor or tune cluster performance, make sure to decide whether parallel query is being used
in the appropriate contexts. You might adjust the database schema, settings, SQL queries, or even the
cluster topology and application connection settings to take advantage of this feature.

To check if a query is using parallel query, check the query plan (also known as the "explain plan") by
running the EXPLAIN statement. For examples of how SQL statements, clauses, and expressions affect
EXPLAIN output for parallel query, see How parallel query works with SQL constructs (p. 922).

The following example demonstrates the difference between a traditional query plan and a parallel
query plan. This explain plan is from Query 3 from the TPC-H benchmark. Many of the sample queries
throughout this section use the tables from the TPC-H dataset. You can get the table definitions, queries,
and the dbgen program that generates sample data from the TPC-h website.

EXPLAIN SELECT l_orderkey,
 sum(l_extendedprice * (1 - l_discount)) AS revenue,
 o_orderdate,
 o_shippriority
FROM customer,
 orders,
 lineitem
WHERE c_mktsegment = 'AUTOMOBILE'
AND c_custkey = o_custkey
AND l_orderkey = o_orderkey

916

https://dev.mysql.com/doc/refman/5.7/en/execution-plan-information.html
http://www.tpc.org/tpch/

Amazon Aurora User Guide for Aurora
Verifying parallel query usage

AND o_orderdate < date '1995-03-13'
AND l_shipdate > date '1995-03-13'
GROUP BY l_orderkey,
 o_orderdate,
 o_shippriority
ORDER BY revenue DESC,
 o_orderdate LIMIT 10;

By default, the query might have a plan like the following. If you don't see hash join used in the query
plan, make sure that optimization is turned on first.

+----+-------------+----------+------------+------+---------------+------+---------+------
+----------+----------+--+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref |
 rows | filtered | Extra |
+----+-------------+----------+------------+------+---------------+------+---------+------
+----------+----------+--+
| 1 | SIMPLE | customer | NULL | ALL | NULL | NULL | NULL | NULL |
 1480234 | 10.00 | Using where; Using temporary; Using filesort |
| 1 | SIMPLE | orders | NULL | ALL | NULL | NULL | NULL | NULL |
 14875240 | 3.33 | Using where; Using join buffer (Block Nested Loop) |
| 1 | SIMPLE | lineitem | NULL | ALL | NULL | NULL | NULL | NULL |
 59270573 | 3.33 | Using where; Using join buffer (Block Nested Loop) |
+----+-------------+----------+------------+------+---------------+------+---------+------
+----------+----------+--+

You can turn on hash join at the session level by issuing the following statement. Afterwards, try the
EXPLAIN statement again.

For Aurora MySQL version 3:
SET optimizer_switch='block_nested_loop=on';

For Aurora MySQL version 2.09 and higher:
SET optimizer_switch='hash_join=on';

For information about how to use hash joins effectively, see Optimizing large Aurora MySQL join queries
with hash joins (p. 1059).

With hash join turned on but parallel query turned off, the query might have a plan like the following,
which uses hash join but not parallel query.

+----+-------------+----------+...+-----------
+---+
| id | select_type | table |...| rows | Extra
 |
+----+-------------+----------+...+-----------
+---+
| 1 | SIMPLE | customer |...| 5798330 | Using where; Using index; Using temporary;
 Using filesort |
| 1 | SIMPLE | orders |...| 154545408 | Using where; Using join buffer (Hash Join
 Outer table orders) |
| 1 | SIMPLE | lineitem |...| 606119300 | Using where; Using join buffer (Hash Join
 Outer table lineitem) |
+----+-------------+----------+...+-----------
+---+

After parallel query is turned on, two steps in this query plan can use the parallel query optimization, as
shown under the Extra column in the EXPLAIN output. The I/O-intensive and CPU-intensive processing
for those steps is pushed down to the storage layer.

917

Amazon Aurora User Guide for Aurora
Verifying parallel query usage

+----+...
+--
+
| id |...| Extra
 |
+----+...
+--
+
| 1 |...| Using where; Using index; Using temporary; Using filesort
 |
| 1 |...| Using where; Using join buffer (Hash Join Outer table orders); Using parallel
 query (4 columns, 1 filters, 1 exprs; 0 extra) |
| 1 |...| Using where; Using join buffer (Hash Join Outer table lineitem); Using parallel
 query (4 columns, 1 filters, 1 exprs; 0 extra) |
+----+...
+--
+

For information about how to interpret EXPLAIN output for a parallel query and the parts of SQL
statements that parallel query can apply to, see How parallel query works with SQL constructs (p. 922).

The following example output shows the results of running the preceding query on a db.r4.2xlarge
instance with a cold buffer pool. The query runs substantially faster when using parallel query.

Note
Because timings depend on many environmental factors, your results might be different. Always
conduct your own performance tests to confirm the findings with your own environment,
workload, and so on.

-- Without parallel query
+------------+-------------+-------------+----------------+
| l_orderkey | revenue | o_orderdate | o_shippriority |
+------------+-------------+-------------+----------------+
| 92511430 | 514726.4896 | 1995-03-06 | 0 |
.
.
| 28840519 | 454748.2485 | 1995-03-08 | 0 |
+------------+-------------+-------------+----------------+
10 rows in set (24 min 49.99 sec)

-- With parallel query
+------------+-------------+-------------+----------------+
| l_orderkey | revenue | o_orderdate | o_shippriority |
+------------+-------------+-------------+----------------+
| 92511430 | 514726.4896 | 1995-03-06 | 0 |
.
.
| 28840519 | 454748.2485 | 1995-03-08 | 0 |
+------------+-------------+-------------+----------------+
10 rows in set (1 min 49.91 sec)

Many of the sample queries throughout this section use the tables from this TPC-H dataset, particularly
the PART table, which has 20 million rows and the following definition.

+---------------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------------+---------------+------+-----+---------+-------+
p_partkey	int(11)	NO	PRI	NULL	
p_name	varchar(55)	NO		NULL	
p_mfgr	char(25)	NO		NULL	
p_brand	char(10)	NO		NULL	

918

Amazon Aurora User Guide for Aurora
Monitoring

p_type	varchar(25)	NO		NULL	
p_size	int(11)	NO		NULL	
p_container	char(10)	NO		NULL	
p_retailprice	decimal(15,2)	NO		NULL	
p_comment	varchar(23)	NO		NULL	
+---------------+---------------+------+-----+---------+-------+

Experiment with your workload to get a sense of whether individual SQL statements can take advantage
of parallel query. Then use the following monitoring techniques to help verify how often parallel query is
used in real workloads over time. For real workloads, extra factors such as concurrency limits apply.

Monitoring parallel query
If your Aurora MySQL cluster uses parallel query, you might see an increase in VolumeReadIOPS values.
Parallel queries don't use the buffer pool. Thus, although the queries are fast, this optimized processing
can result in an increase in read operations and associated charges.

In addition to the Amazon CloudWatch metrics described in Viewing metrics in the Amazon RDS
console (p. 563), Aurora provides other global status variables. You can use these global status variables
to help monitor parallel query execution. They can give you insights into why the optimizer might use
or not use parallel query in a given situation. To access these variables, you can use the SHOW GLOBAL
STATUS command. You can also find these variables listed following.

A parallel query session isn't necessarily a one-to-one mapping with the queries performed by the
database. For example, suppose that your query plan has two steps that use parallel query. In that case,
the query involves two parallel sessions and the counters for requests attempted and requests successful
are incremented by two.

When you experiment with parallel query by issuing EXPLAIN statements, expect to see increases in the
counters designated as "not chosen" even though the queries aren't actually running. When you work
with parallel query in production, you can check if the "not chosen" counters are increasing faster than
you expect. At this point, you can adjust so that parallel query runs for the queries that you expect. To do
so, you can change your cluster settings, query mix, DB instances where parallel query is turned on, and
so on.

These counters are tracked at the DB instance level. When you connect to a different endpoint, you
might see different metrics because each DB instance runs its own set of parallel queries. You might also
see different metrics when the reader endpoint connects to a different DB instance for each session.

Name Description

Aurora_pq_request_attempted The number of parallel query sessions requested.
This value might represent more than one session
per query, depending on SQL constructs such as
subqueries and joins.

Aurora_pq_request_executed The number of parallel query sessions run
successfully.

Aurora_pq_request_failed The number of parallel query sessions that
returned an error to the client. In some cases,
a request for a parallel query might fail, for
example due to a problem in the storage layer. In
these cases, the query part that failed is retried
using the nonparallel query mechanism. If the
retried query also fails, an error is returned to the
client and this counter is incremented.

919

https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html

Amazon Aurora User Guide for Aurora
Monitoring

Aurora_pq_pages_pushed_down The number of data pages (each with a fixed size
of 16 KiB) where parallel query avoided a network
transmission to the head node.

Aurora_pq_bytes_returned The number of bytes for the tuple data structures
transmitted to the head node during parallel
queries. Divide by 16,384 to compare against
Aurora_pq_pages_pushed_down.

Aurora_pq_request_not_chosen The number of times parallel query wasn't chosen
to satisfy a query. This value is the sum of several
other more granular counters. An EXPLAIN
statement can increment this counter even
though the query isn't actually performed.

Aurora_pq_request_not_chosen_
below_min_rows

The number of times parallel query wasn't chosen
due to the number of rows in the table. An
EXPLAIN statement can increment this counter
even though the query isn't actually performed.

Aurora_pq_request_not_chosen_
small_table

The number of times parallel query wasn't chosen
due to the overall size of the table, as determined
by number of rows and average row length. An
EXPLAIN statement can increment this counter
even though the query isn't actually performed.

Aurora_pq_request_not_chosen_
high_buffer_pool_pct

The number of times parallel query wasn't chosen
because a high percentage of the table data
(currently, greater than 95 percent) was already
in the buffer pool. In these cases, the optimizer
determines that reading the data from the buffer
pool is more efficient. An EXPLAIN statement can
increment this counter even though the query
isn't actually performed.

Aurora_pq_request_not_chosen_
few_pages_outside_buffer_pool

The number of times parallel query wasn't chosen,
even though less than 95 percent of the table
data was in the buffer pool, because there wasn't
enough unbuffered table data to make parallel
query worthwhile.

Aurora_pq_max_concurrent_requests The maximum number of parallel query sessions
that can run concurrently on this Aurora DB
instance. This is a fixed number that depends on
the AWS DB instance class.

Aurora_pq_request_in_progress The number of parallel query sessions
currently in progress. This number applies
to the particular Aurora DB instance that
you are connected to, not the entire Aurora
DB cluster. To see if a DB instance is close to
its concurrency limit, compare this value to
Aurora_pq_max_concurrent_requests.

Aurora_pq_request_throttled The number of times parallel query wasn't chosen
due to the maximum number of concurrent
parallel queries already running on a particular
Aurora DB instance.

920

Amazon Aurora User Guide for Aurora
Monitoring

Aurora_pq_request_not_chosen_long_trx The number of parallel query requests that
used the nonparallel query processing path,
due to the query being started inside a long-
running transaction. An EXPLAIN statement can
increment this counter even though the query
isn't actually performed.

Aurora_pq_request_not_chosen_
unsupported_access

The number of parallel query requests that use
the nonparallel query processing path because the
WHERE clause doesn't meet the criteria for parallel
query. This result can occur if the query doesn't
require a data-intensive scan, or if the query is a
DELETE or UPDATE statement.

Aurora_pq_request_not_chosen_column_bit The number of parallel query requests that use
the nonparallel query processing path because of
an unsupported data type in the list of projected
columns.

Aurora_pq_request_not_chosen_column_geometryThe number of parallel query requests that use
the nonparallel query processing path because the
table has columns with the GEOMETRY data type.
For information about Aurora MySQL versions
that remove this limitation, see Upgrading
parallel query clusters to Aurora MySQL version
3 (p. 914).

Aurora_pq_request_not_chosen_column_lob The number of parallel query requests that use
the nonparallel query processing path because
the table has columns with a LOB data type, or
VARCHAR columns that are stored externally
due to the declared length. For information
about Aurora MySQL versions that remove this
limitation, see Upgrading parallel query clusters
to Aurora MySQL version 3 (p. 914).

Aurora_pq_request_not_chosen_column_virtualThe number of parallel query requests that use
the nonparallel query processing path because the
table contains a virtual column.

Aurora_pq_request_not_chosen_custom_charsetThe number of parallel query requests that use
the nonparallel query processing path because the
table has columns with a custom character set.

Aurora_pq_request_not_chosen_fast_ddl The number of parallel query requests that use
the nonparallel query processing path because
the table is currently being altered by a fast DDL
ALTER statement.

Aurora_pq_request_not_chosen_full_text_indexThe number of parallel query requests that use
the nonparallel query processing path because the
table has full-text indexes.

Aurora_pq_request_not_chosen_index_hint The number of parallel query requests that use
the nonparallel query processing path because the
query includes an index hint.

921

Amazon Aurora User Guide for Aurora
Parallel query and SQL constructs

Aurora_pq_request_not_chosen_innodb_table_formatThe number of parallel query requests that use
the nonparallel query processing path because
the table uses an unsupported InnoDB row
format. Aurora parallel query only applies to the
COMPACT, REDUNDANT, and DYNAMIC row formats.

Aurora_pq_request_not_chosen_no_where_clauseThe number of parallel query requests that use
the nonparallel query processing path because the
query doesn't include any WHERE clause.

Aurora_pq_request_not_chosen_range_scan The number of parallel query requests that use
the nonparallel query processing path because the
query uses a range scan on an index.

Aurora_pq_request_not_chosen_row_length_too_longThe number of parallel query requests that use
the nonparallel query processing path because the
total combined length of all the columns is too
long.

Aurora_pq_request_not_chosen_temporary_tableThe number of parallel query requests that use
the nonparallel query processing path because
the query refers to temporary tables that use the
unsupported MyISAM or memory table types.

Aurora_pq_request_not_chosen_tx_isolationThe number of parallel query requests that use
the nonparallel query processing path because
query uses an unsupported transaction isolation
level. On reader DB instances, parallel query only
applies to the REPEATABLE READ and READ
COMMITTED isolation levels.

Aurora_pq_request_not_chosen_update_delete_stmtsThe number of parallel query requests that use
the nonparallel query processing path because the
query is part of an UPDATE or DELETE statement.

How parallel query works with SQL constructs
In the following section, you can find more detail about why particular SQL statements use or don't
use parallel query. This section also details how Aurora MySQL features interact with parallel query.
This information can help you diagnose performance issues for a cluster that uses parallel query or
understand how parallel query applies for your particular workload.

The decision to use parallel query relies on many factors that occur at the moment that the statement
runs. Thus, parallel query might be used for certain queries always, never, or only under certain
conditions.

Tip
When you view these examples in HTML, you can use the Copy widget in the upper-right corner
of each code listing to copy the SQL code to try yourself. Using the Copy widget avoids copying
the extra characters around the mysql> prompt and -> continuation lines.

Topics
• EXPLAIN statement (p. 923)
• WHERE clause (p. 924)
• Data definition language (DDL) (p. 926)
• Column data types (p. 926)

922

Amazon Aurora User Guide for Aurora
Parallel query and SQL constructs

• Partitioned tables (p. 926)

• Aggregate functions, GROUP BY clauses, and HAVING clauses (p. 927)

• Function calls in WHERE clause (p. 928)

• LIMIT clause (p. 929)

• Comparison operators (p. 929)

• Joins (p. 929)

• Subqueries (p. 930)

• UNION (p. 931)

• Views (p. 931)

• Data manipulation language (DML) statements (p. 931)

• Transactions and locking (p. 932)

• B-tree indexes (p. 934)

• Full-text search (FTS) indexes (p. 934)

• Virtual columns (p. 934)

• Built-in caching mechanisms (p. 934)

• MyISAM temporary tables (p. 935)

EXPLAIN statement
As shown in examples throughout this section, the EXPLAIN statement indicates whether each stage of
a query is currently eligible for parallel query. It also indicates which aspects of a query can be pushed
down to the storage layer. The most important items in the query plan are the following:

• A value other than NULL for the key column suggests that the query can be performed efficiently
using index lookups, and parallel query is unlikely.

• A small value for the rows column (a value not in the millions) suggests that the query isn't accessing
enough data to make parallel query worthwhile. This means that parallel query is unlikely.

• The Extra column shows you if parallel query is expected to be used. This output looks like the
following example.

Using parallel query (A columns, B filters, C exprs; D extra)

The columns number represents how many columns are referred to in the query block.

The filters number represents the number of WHERE predicates representing a simple comparison
of a column value to a constant. The comparison can be for equality, inequality, or a range. Aurora can
parallelize these kinds of predicates most effectively.

The exprs number represents the number of expressions such as function calls, operators, or other
expressions that can also be parallelized, though not as effectively as a filter condition.

The extra number represents how many expressions can't be pushed down and are performed by the
head node.

For example, consider the following EXPLAIN output.

mysql> explain select p_name, p_mfgr from part
 -> where p_brand is not null
 -> and upper(p_type) is not null
 -> and round(p_retailprice) is not null;

923

Amazon Aurora User Guide for Aurora
Parallel query and SQL constructs

+----+-------------+-------+...+----------
+--+
| id | select_type | table |...| rows | Extra
 |
+----+-------------+-------+...+----------
+--+
| 1 | SIMPLE | part |...| 20427936 | Using where; Using parallel query (5 columns, 1
 filters, 2 exprs; 0 extra) |
+----+-------------+-------+...+----------
+--+

The information from the Extra column shows that five columns are extracted from each row to
evaluate the query conditions and construct the result set. One WHERE predicate involves a filter, that
is, a column that is directly tested in the WHERE clause. Two WHERE clauses require evaluating more
complicated expressions, in this case involving function calls. The 0 extra field confirms that all
the operations in the WHERE clause are pushed down to the storage layer as part of parallel query
processing.

In cases where parallel query isn't chosen, you can typically deduce the reason from the other columns of
the EXPLAIN output. For example, the rows value might be too small, or the possible_keys column
might indicate that the query can use an index lookup instead of a data-intensive scan. The following
example shows a query where the optimizer can estimate that the query will scan only a small number of
rows. It does so based on the characteristics of the primary key. In this case, parallel query isn't required.

mysql> explain select count(*) from part where p_partkey between 1 and 100;
+----+-------------+-------+-------+---------------+---------+---------+------+------
+--------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows |
 Extra |
+----+-------------+-------+-------+---------------+---------+---------+------+------
+--------------------------+
| 1 | SIMPLE | part | range | PRIMARY | PRIMARY | 4 | NULL | 99 |
 Using where; Using index |
+----+-------------+-------+-------+---------------+---------+---------+------+------
+--------------------------+

The output showing whether parallel query will be used takes into account all available factors at the
moment that the EXPLAIN statement is run. The optimizer might make a different choice when the
query is actually run, if the situation changed in the meantime. For example, EXPLAIN might report that
a statement will use parallel query. But when the query is actually run later, it might not use parallel
query based on the conditions then. Such conditions can include several other parallel queries running
concurrently. They can also include rows being deleted from the table, a new index being created, too
much time passing within an open transaction, and so on.

WHERE clause
For a query to use the parallel query optimization, it must include a WHERE clause.

The parallel query optimization speeds up many kinds of expressions used in the WHERE clause:

• Simple comparisons of a column value to a constant, known as filters. These comparisons benefit the
most from being pushed down to the storage layer. The number of filter expressions in a query is
reported in the EXPLAIN output.

• Other kinds of expressions in the WHERE clause are also pushed down to the storage layer where
possible. The number of such expressions in a query is reported in the EXPLAIN output. These
expressions can be function calls, LIKE operators, CASE expressions, and so on.

• Certain functions and operators aren't currently pushed down by parallel query. The number of such
expressions in a query is reported as the extra counter in the EXPLAIN output. The rest of the query
can still use parallel query.

924

Amazon Aurora User Guide for Aurora
Parallel query and SQL constructs

• While expressions in the select list aren't pushed down, queries containing such functions can still
benefit from reduced network traffic for the intermediate results of parallel queries. For example,
queries that call aggregation functions in the select list can benefit from parallel query, even though
the aggregation functions aren't pushed down.

For example, the following query does a full-table scan and processes all the values for the P_BRAND
column. However, it doesn't use parallel query because the query doesn't include any WHERE clause.

mysql> explain select count(*), p_brand from part group by p_brand;
+----+-------------+-------+------+---------------+------+---------+------+----------
+---------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows |
 Extra |
+----+-------------+-------+------+---------------+------+---------+------+----------
+---------------------------------+
| 1 | SIMPLE | part | ALL | NULL | NULL | NULL | NULL | 20427936 |
 Using temporary; Using filesort |
+----+-------------+-------+------+---------------+------+---------+------+----------
+---------------------------------+

In contrast, the following query includes WHERE predicates that filter the results, so parallel query can be
applied:

mysql> explain select count(*), p_brand from part where p_name is not null
 -> and p_mfgr in ('Manufacturer#1', 'Manufacturer#3') and p_retailprice > 1000
 -> group by p_brand;
+----+...+----------
+---
+
| id |...| rows | Extra
 |
+----+...+----------
+---
+
| 1 |...| 20427936 | Using where; Using temporary; Using filesort; Using parallel query (5
 columns, 1 filters, 2 exprs; 0 extra) |
+----+...+----------
+---
+

If the optimizer estimates that the number of returned rows for a query block is small, parallel query
isn't used for that query block. The following example shows a case where a greater-than operator on
the primary key column applies to millions of rows, which causes parallel query to be used. The converse
less-than test is estimated to apply to only a few rows and doesn't use parallel query.

mysql> explain select count(*) from part where p_partkey > 10;
+----+...+----------
+--+
| id |...| rows | Extra
 |
+----+...+----------
+--+
| 1 |...| 20427936 | Using where; Using parallel query (1 columns, 1 filters, 0 exprs; 0
 extra) |
+----+...+----------
+--+

mysql> explain select count(*) from part where p_partkey < 10;
+----+...+------+--------------------------+
| id |...| rows | Extra |
+----+...+------+--------------------------+

925

Amazon Aurora User Guide for Aurora
Parallel query and SQL constructs

| 1 |...| 9 | Using where; Using index |
+----+...+------+--------------------------+

Data definition language (DDL)
Before Aurora MySQL version 3, parallel query is only available for tables for which no fast data
definition language (DDL) operations are pending. In Aurora MySQL version 3, you can use parallel query
on a table at the same time as an instant DDL operation. Instant DDL in Aurora MySQL version 3 replaces
the fast DDL feature in Aurora MySQL versions 1 and 2. For information about instant DDL, see Instant
DDL (Aurora MySQL version 3) (p. 853).

Column data types
In Aurora MySQL version 3, parallel query can work with tables containing columns with data types
TEXT, BLOB, JSON, and GEOMETRY. It can also work with VARCHAR and CHAR columns with a maximum
declared length longer than 768 bytes. If your query refers to any columns containing such large object
types, the additional work to retrieve them does add some overhead to query processing. In that case,
check if the query can omit the references to those columns. If not, run benchmarks to confirm if such
queries are faster with parallel query turned on or turned off.

Before Aurora MySQL version 3, parallel query has these limitations for large object types:

In these earlier versions, TEXT, BLOB, JSON, and GEOMETRY data types aren't supported with parallel
query. A query that refers to any columns of these types can't use parallel query.

In these earlier versions, variable-length columns (VARCHAR and CHAR data types) are compatible with
parallel query up to a maximum declared length of 768 bytes. A query that refers to any columns of the
types declared with a longer maximum length can't use parallel query. For columns that use multibyte
character sets, the byte limit takes into account the maximum number of bytes in the character set.
For example, for the character set utf8mb4 (which has a maximum character length of 4 bytes), a
VARCHAR(192) column is compatible with parallel query but a VARCHAR(193) column isn't.

Partitioned tables
You can use partitioned tables with parallel query in Aurora MySQL version 3. Because partitioned
tables are represented internally as multiple smaller tables, a query that uses parallel query
on a nonpartitioned table might not use parallel query on an identical partitioned table.
Aurora MySQL considers whether each partition is large enough to qualify for the parallel
query optimization, instead of evaluating the size of the entire table. Check whether the
Aurora_pq_request_not_chosen_small_table status variable is incremented if a query on a
partitioned table doesn't use parallel query when you expect it to.

For example, consider one table partitioned with PARTITION BY HASH (column) PARTITIONS 2 and
another table partitioned with PARTITION BY HASH (column) PARTITIONS 10. In the table with
two partititions, the partitions are five times as large as the table with ten partitions. Thus, parallel query
is more likely to be used for queries against the table with fewer partitions. In the following example,
the table PART_BIG_PARTITIONS has two partitions and PART_SMALL_PARTITIONS has ten partitions.
With identical data, parallel query is more likely to be used for the table with fewer big partitions.

mysql> explain select count(*), p_brand from part_big_partitions where p_name is not null
 -> and p_mfgr in ('Manufacturer#1', 'Manufacturer#3') and p_retailprice > 1000 group
 by p_brand;
+----+-------------+---------------------+------------
+---
+
| id | select_type | table | partitions | Extra
 |

926

Amazon Aurora User Guide for Aurora
Parallel query and SQL constructs

+----+-------------+---------------------+------------
+---
+
| 1 | SIMPLE | part_big_partitions | p0,p1 | Using where; Using temporary; Using
 parallel query (4 columns, 1 filters, 1 exprs; 0 extra; 1 group-bys, 1 aggrs) |
+----+-------------+---------------------+------------
+---
+

mysql> explain select count(*), p_brand from part_small_partitions where p_name is not null
 -> and p_mfgr in ('Manufacturer#1', 'Manufacturer#3') and p_retailprice > 1000 group
 by p_brand;
+----+-------------+-----------------------+-------------------------------
+------------------------------+
| id | select_type | table | partitions | Extra
 |
+----+-------------+-----------------------+-------------------------------
+------------------------------+
| 1 | SIMPLE | part_small_partitions | p0,p1,p2,p3,p4,p5,p6,p7,p8,p9 | Using where;
 Using temporary |
+----+-------------+-----------------------+-------------------------------
+------------------------------+

Aggregate functions, GROUP BY clauses, and HAVING clauses
Queries involving aggregate functions are often good candidates for parallel query, because they involve
scanning large numbers of rows within large tables.

In Aurora MySQL 3, parallel query can optimize aggregate function calls in the select list and the HAVING
clause.

Before Aurora MySQL 3, aggregate function calls in the select list or the HAVING clause aren't pushed
down to the storage layer. However, parallel query can still improve the performance of such queries
with aggregate functions. It does so by first extracting column values from the raw data pages in parallel
at the storage layer. It then transmits those values back to the head node in a compact tuple format
instead of as entire data pages. As always, the query requires at least one WHERE predicate for parallel
query to be activated.

The following simple examples illustrate the kinds of aggregate queries that can benefit from parallel
query. They do so by returning intermediate results in compact form to the head node, filtering
nonmatching rows from the intermediate results, or both.

mysql> explain select sql_no_cache count(distinct p_brand) from part where p_mfgr =
 'Manufacturer#5';
+----+...+--+
| id |...| Extra |
+----+...+--+
| 1 |...| Using where; Using parallel query (2 columns, 1 filters, 0 exprs; 0 extra) |
+----+...+--+

mysql> explain select sql_no_cache p_mfgr from part where p_retailprice > 1000 group by
 p_mfgr having count(*) > 100;
+----+...
+---
+
| id |...| Extra
 |
+----+...
+---
+
| 1 |...| Using where; Using temporary; Using filesort; Using parallel query (3 columns, 0
 filters, 1 exprs; 0 extra) |

927

Amazon Aurora User Guide for Aurora
Parallel query and SQL constructs

+----+...
+---
+

Function calls in WHERE clause
Aurora can apply the parallel query optimization to calls to most built-in functions in the WHERE
clause. Parallelizing these function calls offloads some CPU work from the head node. Evaluating the
predicate functions in parallel during the earliest query stage helps Aurora minimize the amount of data
transmitted and processed during later stages.

Currently, the parallelization doesn't apply to function calls in the select list. Those functions are
evaluated by the head node, even if identical function calls appear in the WHERE clause. The original
values from relevant columns are included in the tuples transmitted from the storage nodes back to the
head node. The head node performs any transformations such as UPPER, CONCATENATE, and so on to
produce the final values for the result set.

In the following example, parallel query parallelizes the call to LOWER because it appears in the WHERE
clause. Parallel query doesn't affect the calls to SUBSTR and UPPER because they appear in the select list.

mysql> explain select sql_no_cache distinct substr(upper(p_name),1,5) from part
 -> where lower(p_name) like '%cornflower%' or lower(p_name) like '%goldenrod%';
+----+...
+---
+
| id |...| Extra
 |
+----+...
+---
+
| 1 |...| Using where; Using temporary; Using parallel query (2 columns, 0 filters, 1
 exprs; 0 extra) |
+----+...
+---
+

The same considerations apply to other expressions, such as CASE expressions or LIKE operators. For
example, the following example shows that parallel query evaluates the CASE expression and LIKE
operators in the WHERE clause.

mysql> explain select p_mfgr, p_retailprice from part
 -> where p_retailprice > case p_mfgr
 -> when 'Manufacturer#1' then 1000
 -> when 'Manufacturer#2' then 1200
 -> else 950
 -> end
 -> and p_name like '%vanilla%'
 -> group by p_retailprice;
+----+...
+---
+
| id |...| Extra
 |
+----+...
+---
+
| 1 |...| Using where; Using temporary; Using filesort; Using parallel query (4 columns, 0
 filters, 2 exprs; 0 extra) |
+----+...
+---
+

928

Amazon Aurora User Guide for Aurora
Parallel query and SQL constructs

LIMIT clause
Currently, parallel query isn't used for any query block that includes a LIMIT clause. Parallel query might
still be used for earlier query phases with GROUP by, ORDER BY, or joins.

Comparison operators
The optimizer estimates how many rows to scan to evaluate comparison operators, and determines
whether to use parallel query based on that estimate.

The first example following shows that an equality comparison against the primary key column can
be performed efficiently without parallel query. The second example following shows that a similar
comparison against an unindexed column requires scanning millions of rows and therefore can benefit
from parallel query.

mysql> explain select * from part where p_partkey = 10;
+----+...+------+-------+
| id |...| rows | Extra |
+----+...+------+-------+
| 1 |...| 1 | NULL |
+----+...+------+-------+

mysql> explain select * from part where p_type = 'LARGE BRUSHED BRASS';
+----+...+----------
+--+
| id |...| rows | Extra
 |
+----+...+----------
+--+
| 1 |...| 20427936 | Using where; Using parallel query (9 columns, 1 filters, 0 exprs; 0
 extra) |
+----+...+----------
+--+

The same considerations apply for not-equals tests and for range comparisons such as less than, greater
than or equal to, or BETWEEN. The optimizer estimates the number of rows to scan, and determines
whether parallel query is worthwhile based on the overall volume of I/O.

Joins
Join queries with large tables typically involve data-intensive operations that benefit from the parallel
query optimization. The comparisons of column values between multiple tables (that is, the join
predicates themselves) currently aren't parallelized. However, parallel query can push down some of the
internal processing for other join phases, such as constructing the Bloom filter during a hash join. Parallel
query can apply to join queries even without a WHERE clause. Therefore, a join query is an exception to
the rule that a WHERE clause is required to use parallel query.

Each phase of join processing is evaluated to check if it is eligible for parallel query. If more than one
phase can use parallel query, these phases are performed in sequence. Thus, each join query counts as a
single parallel query session in terms of concurrency limits.

For example, when a join query includes WHERE predicates to filter the rows from one of the joined
tables, that filtering option can use parallel query. As another example, suppose that a join query uses
the hash join mechanism, for example to join a big table with a small table. In this case, the table scan to
produce the Bloom filter data structure might be able to use parallel query.

Note
Parallel query is typically used for the kinds of resource-intensive queries that benefit from the
hash join optimization. The method for turning on the hash join optimization depends on the
Aurora MySQL version. For details for each version, see Turning on hash join for parallel query

929

Amazon Aurora User Guide for Aurora
Parallel query and SQL constructs

clusters (p. 913). For information about how to use hash joins effectively, see Optimizing large
Aurora MySQL join queries with hash joins (p. 1059).

mysql> explain select count(*) from orders join customer where o_custkey = c_custkey;
+----+...+----------+-------+---------------+-------------+...+-----------
+---
+
| id |...| table | type | possible_keys | key |...| rows | Extra

 |
+----+...+----------+-------+---------------+-------------+...+-----------
+---
+
| 1 |...| customer | index | PRIMARY | c_nationkey |...| 15051972 | Using index

 |
| 1 |...| orders | ALL | o_custkey | NULL |...| 154545408 | Using join
 buffer (Hash Join Outer table orders); Using parallel query (1 columns, 0 filters, 1
 exprs; 0 extra) |
+----+...+----------+-------+---------------+-------------+...+-----------
+---
+

For a join query that uses the nested loop mechanism, the outermost nested loop block might use
parallel query. The use of parallel query depends on the same factors as usual, such as the presence of
additional filter conditions in the WHERE clause.

mysql> -- Nested loop join with extra filter conditions can use parallel query.
mysql> explain select count(*) from part, partsupp where p_partkey != ps_partkey and p_name
 is not null and ps_availqty > 0;
+----+-------------+----------+...+----------
+--+
| id | select_type | table |...| rows | Extra
 |
+----+-------------+----------+...+----------
+--+
| 1 | SIMPLE | part |...| 20427936 | Using where; Using parallel query (2
 columns, 1 filters, 0 exprs; 0 extra) |
| 1 | SIMPLE | partsupp |...| 78164450 | Using where; Using join buffer (Block Nested
 Loop) |
+----+-------------+----------+...+----------
+--+

Subqueries
The outer query block and inner subquery block might each use parallel query, or not. Whether they do
is based on the usual characteristics of the table, WHERE clause, and so on, for each block. For example,
the following query uses parallel query for the subquery block but not the outer block.

mysql> explain select count(*) from part where
 --> p_partkey < (select max(p_partkey) from part where p_name like '%vanilla%');
+----+-------------+...+----------
+--+
| id | select_type |...| rows | Extra
 |
+----+-------------+...+----------
+--+
| 1 | PRIMARY |...| NULL | Impossible WHERE noticed after reading const tables
 |
| 2 | SUBQUERY |...| 20427936 | Using where; Using parallel query (2 columns, 0
 filters, 1 exprs; 0 extra) |

930

Amazon Aurora User Guide for Aurora
Parallel query and SQL constructs

+----+-------------+...+----------
+--+

Currently, correlated subqueries can't use the parallel query optimization.

UNION
Each query block in a UNION query can use parallel query, or not, based on the usual characteristics of
the table, WHERE clause, and so on, for each part of the UNION.

mysql> explain select p_partkey from part where p_name like '%choco_ate%'
 -> union select p_partkey from part where p_name like '%vanil_a%';
+----+----------------+...+----------
+--+
| id | select_type |...| rows | Extra
 |
+----+----------------+...+----------
+--+
| 1 | PRIMARY |...| 20427936 | Using where; Using parallel query (2 columns, 0
 filters, 1 exprs; 0 extra) |
| 2 | UNION |...| 20427936 | Using where; Using parallel query (2 columns, 0
 filters, 1 exprs; 0 extra) |
| NULL | UNION RESULT | <union1,2> |...| NULL | Using temporary
 |
+----+--------------+...+----------
+--+

Note
Each UNION clause within the query is run sequentially. Even if the query includes multiple
stages that all use parallel query, it only runs a single parallel query at any one time. Therefore,
even a complex multistage query only counts as 1 toward the limit of concurrent parallel
queries.

Views
The optimizer rewrites any query using a view as a longer query using the underlying tables. Thus,
parallel query works the same whether table references are views or real tables. All the same
considerations about whether to use parallel query for a query, and which parts are pushed down, apply
to the final rewritten query.

For example, the following query plan shows a view definition that usually doesn't use parallel query.
When the view is queried with additional WHERE clauses, Aurora MySQL uses parallel query.

mysql> create view part_view as select * from part;
mysql> explain select count(*) from part_view where p_partkey is not null;
+----+...+----------
+--+
| id |...| rows | Extra
 |
+----+...+----------
+--+
| 1 |...| 20427936 | Using where; Using parallel query (1 columns, 0 filters, 0 exprs; 1
 extra) |
+----+...+----------
+--+

Data manipulation language (DML) statements
The INSERT statement can use parallel query for the SELECT phase of processing, if the SELECT part
meets the other conditions for parallel query.

931

Amazon Aurora User Guide for Aurora
Parallel query and SQL constructs

mysql> create table part_subset like part;
mysql> explain insert into part_subset select * from part where p_mfgr = 'Manufacturer#1';
+----+...+----------
+--+
| id |...| rows | Extra
 |
+----+...+----------
+--+
| 1 |...| 20427936 | Using where; Using parallel query (9 columns, 1 filters, 0 exprs; 0
 extra) |
+----+...+----------
+--+

Note
Typically, after an INSERT statement, the data for the newly inserted rows is in the buffer pool.
Therefore, a table might not be eligible for parallel query immediately after inserting a large
number of rows. Later, after the data is evicted from the buffer pool during normal operation,
queries against the table might begin using parallel query again.

The CREATE TABLE AS SELECT statement doesn't use parallel query, even if the SELECT portion of
the statement would otherwise be eligible for parallel query. The DDL aspect of this statement makes
it incompatible with parallel query processing. In contrast, in the INSERT ... SELECT statement, the
SELECT portion can use parallel query.

Parallel query is never used for DELETE or UPDATE statements, regardless of the size of the table and
predicates in the WHERE clause.

mysql> explain delete from part where p_name is not null;
+----+-------------+...+----------+-------------+
| id | select_type |...| rows | Extra |
+----+-------------+...+----------+-------------+
| 1 | SIMPLE |...| 20427936 | Using where |
+----+-------------+...+----------+-------------+

Transactions and locking
You can use all the isolation levels on the Aurora primary instance.

On Aurora reader DB instances, parallel query applies to statements performed under the REPEATABLE
READ isolation level. Aurora MySQL versions 1.23 and 2.09 or higher can also use the READ COMMITTED
isolation level on reader DB instances. REPEATABLE READ is the default isolation level for Aurora
reader DB instances. To use READ COMMITTED isolation level on reader DB instances requires setting
the aurora_read_replica_read_committed configuration option at the session level. The READ
COMMITTED isolation level for reader instances complies with SQL standard behavior. However, the
isolation is less strict on reader instances than when queries use READ COMMITTED isolation level on the
writer instance.

For more information about Aurora isolation levels, especially the differences in READ COMMITTED
between writer and reader instances, see Aurora MySQL isolation levels (p. 1091).

After a big transaction is finished, the table statistics might be stale. Such stale statistics might require
an ANALYZE TABLE statement before Aurora can accurately estimate the number of rows. A large-scale
DML statement might also bring a substantial portion of the table data into the buffer pool. Having this
data in the buffer pool can lead to parallel query being chosen less frequently for that table until the
data is evicted from the pool.

When your session is inside a long-running transaction (by default, 10 minutes), further queries inside
that session don't use parallel query. A timeout can also occur during a single long-running query. This

932

Amazon Aurora User Guide for Aurora
Parallel query and SQL constructs

type of timeout might happen if the query runs for longer than the maximum interval (currently 10
minutes) before the parallel query processing starts.

You can reduce the chance of starting long-running transactions accidentally by setting autocommit=1
in mysql sessions where you perform ad hoc (one-time) queries. Even a SELECT statement against a
table begins a transaction by creating a read view. A read view is a consistent set of data for subsequent
queries that remains until the transaction is committed. Be aware of this restriction also when using
JDBC or ODBC applications with Aurora, because such applications might run with the autocommit
setting turned off.

The following example shows how, with the autocommit setting turned off, running a query against
a table creates a read view that implicitly begins a transaction. Queries that are run shortly afterward
can still use parallel query. However, after a pause of several minutes, queries are no longer eligible for
parallel query. Ending the transaction with COMMIT or ROLLBACK restores parallel query eligibility.

mysql> set autocommit=0;

mysql> explain select sql_no_cache count(*) from part where p_retailprice > 10.0;
+----+...+---------
+--+
| id |...| rows | Extra
 |
+----+...+---------
+--+
| 1 |...| 2976129 | Using where; Using parallel query (1 columns, 1 filters, 0 exprs; 0
 extra) |
+----+...+---------
+--+

mysql> select sleep(720); explain select sql_no_cache count(*) from part where
 p_retailprice > 10.0;
+------------+
| sleep(720) |
+------------+
| 0 |
+------------+
1 row in set (12 min 0.00 sec)

+----+...+---------+-------------+
| id |...| rows | Extra |
+----+...+---------+-------------+
| 1 |...| 2976129 | Using where |
+----+...+---------+-------------+

mysql> commit;

mysql> explain select sql_no_cache count(*) from part where p_retailprice > 10.0;
+----+...+---------
+--+
| id |...| rows | Extra
 |
+----+...+---------
+--+
| 1 |...| 2976129 | Using where; Using parallel query (1 columns, 1 filters, 0 exprs; 0
 extra) |
+----+...+---------
+--+

To see how many times queries weren't eligible for parallel query because they were inside long-running
transactions, check the status variable Aurora_pq_request_not_chosen_long_trx.

mysql> show global status like '%pq%trx%';
+---------------------------------------+-------+

933

Amazon Aurora User Guide for Aurora
Parallel query and SQL constructs

| Variable_name | Value |
+---------------------------------------+-------+
| Aurora_pq_request_not_chosen_long_trx | 4 |
+-------------------------------+-------+

Any SELECT statement that acquires locks, such as the SELECT FOR UPDATE or SELECT LOCK IN
SHARE MODE syntax, can't use parallel query.

Parallel query can work for a table that is locked by a LOCK TABLES statement.

mysql> explain select o_orderpriority, o_shippriority from orders where o_clerk =
 'Clerk#000095055';
+----+...+-----------
+--+
| id |...| rows | Extra
 |
+----+...+-----------
+--+
| 1 |...| 154545408 | Using where; Using parallel query (3 columns, 1 filters, 0 exprs; 0
 extra) |
+----+...+-----------
+--+

mysql> explain select o_orderpriority, o_shippriority from orders where o_clerk =
 'Clerk#000095055' for update;
+----+...+-----------+-------------+
| id |...| rows | Extra |
+----+...+-----------+-------------+
| 1 |...| 154545408 | Using where |
+----+...+-----------+-------------+

B-tree indexes
The statistics gathered by the ANALYZE TABLE statement help the optimizer to decide when to use
parallel query or index lookups, based on the characteristics of the data for each column. Keep statistics
current by running ANALYZE TABLE after DML operations that make substantial changes to the data
within a table.

If index lookups can perform a query efficiently without a data-intensive scan, Aurora might use index
lookups. Doing so avoids the overhead of parallel query processing. There are also concurrency limits on
the number of parallel queries that can run simultaneously on any Aurora DB cluster. Make sure to use
best practices for indexing your tables, so that your most frequent and most highly concurrent queries
use index lookups.

Full-text search (FTS) indexes
Currently, parallel query isn't used for tables that contain a full-text search index, regardless of whether
the query refers to such indexed columns or uses the MATCH operator.

Virtual columns
Currently, parallel query isn't used for tables that contain a virtual column, regardless of whether the
query refers to any virtual columns.

Built-in caching mechanisms
Aurora includes built-in caching mechanisms, namely the buffer pool and the query cache. The Aurora
optimizer chooses between these caching mechanisms and parallel query depending on which one is
most effective for a particular query.

934

Amazon Aurora User Guide for Aurora
Advanced Auditing with Aurora MySQL

When a parallel query filters rows and transforms and extracts column values, data is transmitted back
to the head node as tuples rather than as data pages. Therefore, running a parallel query doesn't add any
pages to the buffer pool, or evict pages that are already in the buffer pool.

Aurora checks the number of pages of table data that are present in the buffer pool, and what
proportion of the table data that number represents. Aurora uses that information to determine whether
it is more efficient to use parallel query (and bypass the data in the buffer pool). Alternatively, Aurora
might use the nonparallel query processing path, which uses data cached in the buffer pool. Which pages
are cached and how data-intensive queries affect caching and eviction depends on configuration settings
related to the buffer pool. Therefore, it can be hard to predict whether any particular query uses parallel
query, because the choice depends on the ever-changing data within the buffer pool.

Also, Aurora imposes concurrency limits on parallel queries. Because not every query uses parallel query,
tables that are accessed by multiple queries simultaneously typically have a substantial portion of their
data in the buffer pool. Therefore, Aurora often doesn't choose these tables for parallel queries.

When you run a sequence of nonparallel queries on the same table, the first query might be slow due to
the data not being in the buffer pool. Then the second and subsequent queries are much faster because
the buffer pool is now "warmed up". Parallel queries typically show consistent performance from the
very first query against the table. When conducting performance tests, benchmark the nonparallel
queries with both a cold and a warm buffer pool. In some cases, the results with a warm buffer pool can
compare well to parallel query times. In these cases, consider factors such as the frequency of queries
against that table. Also consider whether it is worthwhile to keep the data for that table in the buffer
pool.

The query cache avoids rerunning a query when an identical query is submitted and the underlying table
data hasn't changed. Queries optimized by parallel query feature can go into the query cache, effectively
making them instantaneous when run again.

Note
When conducting performance comparisons, the query cache can produce artificially low timing
numbers. Therefore, in benchmark-like situations, you can use the sql_no_cache hint. This
hint prevents the result from being served from the query cache, even if the same query had
been run previously. The hint comes immediately after the SELECT statement in a query. Many
parallel query examples in this topic include this hint, to make query times comparable between
versions of the query for which parallel query is turned on and turned off.
Make sure that you remove this hint from your source when you move to production use of
parallel query.

MyISAM temporary tables
The parallel query optimization only applies to InnoDB tables. Because Aurora MySQL uses MyISAM
behind the scenes for temporary tables, internal query phases involving temporary tables never use
parallel query. These query phases are indicated by Using temporary in the EXPLAIN output.

Using Advanced Auditing with an Amazon Aurora
MySQL DB cluster

You can use the high-performance Advanced Auditing feature in Amazon Aurora MySQL to audit
database activity. To do so, you enable the collection of audit logs by setting several DB cluster
parameters. When Advanced Auditing is enabled, you can use it to log any combination of supported
events.

You can view or download the audit logs to review the audit information for one DB instance at a time.
To do so, you can use the procedures in Monitoring Amazon Aurora log files (p. 716).

935

Amazon Aurora User Guide for Aurora
Enabling Advanced Auditing

Tip
For an Aurora DB cluster containing multiple DB instances, you might find it more convenient
to examine the audit logs for all instances in the cluster. To do so, you can use CloudWatch
Logs. You can turn on a setting at the cluster level to publish the Aurora MySQL audit log data
to a log group in CloudWatch. Then you can view, filter, and search the audit logs through the
CloudWatch interface. For more information, see Publishing Amazon Aurora MySQL logs to
Amazon CloudWatch Logs (p. 1038).

Enabling Advanced Auditing
Use the parameters described in this section to enable and configure Advanced Auditing for your DB
cluster.

Use the server_audit_logging parameter to enable or disable Advanced Auditing.

Use the server_audit_events parameter to specify what events to log.

Use the server_audit_incl_users and server_audit_excl_users parameters to specify who
gets audited. By default, all users are audited. For details about how these parameters work when one or
both are left empty, or the same user names are specified in both, see server_audit_incl_users (p. 937)
and server_audit_excl_users (p. 937).

Configure Advanced Auditing by setting these parameters in the parameter group used by your DB
cluster. You can use the procedure shown in Modifying parameters in a DB parameter group (p. 347) to
modify DB cluster parameters using the AWS Management Console. You can use the modify-db-cluster-
parameter-group AWS CLI command or the ModifyDBClusterParameterGroup Amazon RDS API operation
to modify DB cluster parameters programmatically.

Modifying these parameters doesn't require a DB cluster restart when the parameter group is already
associated with your cluster. When you associate the parameter group with the cluster for the first time,
a cluster restart is required.

Topics
• server_audit_logging (p. 936)
• server_audit_events (p. 936)
• server_audit_incl_users (p. 937)
• server_audit_excl_users (p. 937)

server_audit_logging
Enables or disables Advanced Auditing. This parameter defaults to OFF; set it to ON to enable Advanced
Auditing.

No audit data appears in the logs unless you also define one or more types of events to audit using the
server_audit_events parameter.

To confirm that audit data is logged for a DB instance, check that some log files for that instance have
names of the form audit/audit.log.other_identifying_information. To see the names of the
log files, follow the procedure in Viewing and listing database log files (p. 716).

server_audit_events
Contains the comma-delimited list of events to log. Events must be specified in all caps, and there
should be no white space between the list elements, for example: CONNECT,QUERY_DDL. This parameter
defaults to an empty string.

936

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBClusterParameterGroup.html

Amazon Aurora User Guide for Aurora
Enabling Advanced Auditing

You can log any combination of the following events:

• CONNECT – Logs both successful and failed connections and also disconnections. This event includes
user information.

• QUERY – Logs all queries in plain text, including queries that fail due to syntax or permission errors.

Tip
With this event type turned on, the audit data includes information about the continuous
monitoring and health-checking information that Aurora does automatically. If you are only
interested in particular kinds of operations, you can use the more specific kinds of events.
You can also use the CloudWatch interface to search in the logs for events related to specific
databases, tables, or users.

• QUERY_DCL – Similar to the QUERY event, but returns only data control language (DCL) queries
(GRANT, REVOKE, and so on).

• QUERY_DDL – Similar to the QUERY event, but returns only data definition language (DDL) queries
(CREATE, ALTER, and so on).

• QUERY_DML – Similar to the QUERY event, but returns only data manipulation language (DML) queries
(INSERT, UPDATE, and so on, and also SELECT).

• TABLE – Logs the tables that were affected by query execution.

server_audit_incl_users
Contains the comma-delimited list of user names for users whose activity is logged. There should be no
white space between the list elements, for example: user_3,user_4. This parameter defaults to an
empty string. The maximum length is 1024 characters. Specified user names must match corresponding
values in the User column of the mysql.user table. For more information about user names, see the
MySQL documentation.

If server_audit_incl_users and server_audit_excl_users are both empty (the default), all
users are audited.

If you add users to server_audit_incl_users and leave server_audit_excl_users empty, then
only those users are audited.

If you add users to server_audit_excl_users and leave server_audit_incl_users empty, then
all users are audited, except for those listed in server_audit_excl_users.

If you add the same users to both server_audit_excl_users and server_audit_incl_users,
then those users are audited. When the same user is listed in both settings,
server_audit_incl_users is given higher priority.

Connect and disconnect events aren't affected by this variable; they are always logged if specified. A
user is logged even if that user is also specified in the server_audit_excl_users parameter, because
server_audit_incl_users has higher priority.

server_audit_excl_users
Contains the comma-delimited list of user names for users whose activity isn't logged. There should be
no white space between the list elements, for example: rdsadmin,user_1,user_2. This parameter
defaults to an empty string. The maximum length is 1024 characters. Specified user names must match
corresponding values in the User column of the mysql.user table. For more information about user
names, see the MySQL documentation.

If server_audit_incl_users and server_audit_excl_users are both empty (the default), all
users are audited.

937

https://dev.mysql.com/doc/refman/5.6/en/user-names.html
https://dev.mysql.com/doc/refman/5.6/en/user-names.html
https://dev.mysql.com/doc/refman/5.6/en/user-names.html

Amazon Aurora User Guide for Aurora
Viewing audit logs

If you add users to server_audit_excl_users and leave server_audit_incl_users empty, then
only those users that you list in server_audit_excl_users are not audited, and all other users are.

If you add the same users to both server_audit_excl_users and server_audit_incl_users,
then those users are audited. When the same user is listed in both settings,
server_audit_incl_users is given higher priority.

Connect and disconnect events aren't affected by this variable; they are always logged if specified. A
user is logged if that user is also specified in the server_audit_incl_users parameter, because that
setting has higher priority than server_audit_excl_users.

Viewing audit logs
You can view and download the audit logs by using the console. On the Databases page, choose the DB
instance to show its details, then scroll to the Logs section. The audit logs produced by the Advanced
Auditing feature have names of the form audit/audit.log.other_identifying_information.

To download a log file, choose that file in the Logs section and then choose Download.

You can also get a list of the log files by using the describe-db-log-files AWS CLI command. You can
download the contents of a log file by using the download-db-log-file-portion AWS CLI command. For
more information, see Viewing and listing database log files (p. 716) and Downloading a database log
file (p. 717).

Audit log details
Log files are represented as comma-separated variable (CSV) files in UTF-8 format. The audit log is
stored separately on the local (ephemeral) storage of each instance. Each Aurora instance distributes
writes across four log files at a time. The maximum size of the logs is 100 MB in aggregate. When this
non-configurable limit is reached, Aurora rotates the files and generates four new files.

Tip
Log file entries are not in sequential order. To order the entries, use the timestamp value. To
see the latest events, you might have to review all log files. For more flexibility in sorting and
searching the log data, turn on the setting to upload the audit logs to CloudWatch and view
them using the CloudWatch interface.
To view audit data with more types of fields and with output in JSON format, you can also use
the Database Activity Streams feature. For more information, see Monitoring Amazon Aurora
with Database Activity Streams (p. 735).

The audit log files include the following comma-delimited information in rows, in the specified order:

Field Description

timestamp The Unix time stamp for the logged event with microsecond precision.

serverhost The name of the instance that the event is logged for.

username The connected user name of the user.

host The host that the user connected from.

connectionid The connection ID number for the logged operation.

queryid The query ID number, which can be used for finding the relational table events and
related queries. For TABLE events, multiple lines are added.

operation The recorded action type. Possible values are: CONNECT, QUERY, READ, WRITE,
CREATE, ALTER, RENAME, and DROP.

938

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-log-files.html
https://docs.aws.amazon.com/cli/latest/reference/rds/download-db-log-file-portion.html

Amazon Aurora User Guide for Aurora
Single-master replication with Aurora MySQL

Field Description

database The active database, as set by the USE command.

object For QUERY events, this value indicates the query that the database performed. For
TABLE events, it indicates the table name.

retcode The return code of the logged operation.

Single-master replication with Amazon Aurora
MySQL

The Aurora MySQL replication features are key to the high availability and performance of your cluster.
Aurora makes it easy to create or resize clusters with up to 15 Aurora Replicas.

All the replicas work from the same underlying data. If some database instances go offline, others remain
available to continue processing queries or to take over as the writer if needed. Aurora automatically
spreads your read-only connections across multiple database instances, helping an Aurora cluster to
support query-intensive workloads.

Following, you can find information about how Aurora MySQL replication works and how to fine-tune
replication settings for best availability and performance.

Note
Following, you can learn about replication features for Aurora clusters using single-master
replication. This kind of cluster is the default for Aurora. For information about Aurora multi-
master clusters, see Working with Aurora multi-master clusters (p. 979).

Topics
• Using Aurora replicas (p. 939)
• Replication options for Amazon Aurora MySQL (p. 940)
• Performance considerations for Amazon Aurora MySQL replication (p. 941)
• Zero-downtime restart (ZDR) for Amazon Aurora MySQL (p. 941)
• Monitoring Amazon Aurora MySQL replication (p. 943)
• Replicating Amazon Aurora MySQL DB clusters across AWS Regions (p. 943)
• Replication between Aurora and MySQL or between Aurora and another Aurora DB cluster (binary

log replication) (p. 953)
• Using GTID-based replication for Aurora MySQL (p. 975)

Using Aurora replicas
Aurora Replicas are independent endpoints in an Aurora DB cluster, best used for scaling read operations
and increasing availability. Up to 15 Aurora Replicas can be distributed across the Availability Zones that
a DB cluster spans within an AWS Region. Although the DB cluster volume is made up of multiple copies
of the data for the DB cluster, the data in the cluster volume is represented as a single, logical volume
to the primary instance and to Aurora Replicas in the DB cluster. For more information about Aurora
Replicas, see Aurora Replicas (p. 70).

Aurora Replicas work well for read scaling because they are fully dedicated to read operations on your
cluster volume. Write operations are managed by the primary instance. Because the cluster volume is
shared among all instances in your Aurora MySQL DB cluster, no additional work is required to replicate

939

Amazon Aurora User Guide for Aurora
Options

a copy of the data for each Aurora Replica. In contrast, MySQL read replicas must replay, on a single
thread, all write operations from the source DB instance to their local data store. This limitation can
affect the ability of MySQL read replicas to support large volumes of read traffic.

With Aurora MySQL, when an Aurora Replica is deleted, its instance endpoint is removed immediately,
and the Aurora Replica is removed from the reader endpoint. If there are statements running on the
Aurora Replica that is being deleted, there is a three minute grace period. Existing statements can finish
gracefully during the grace period. When the grace period ends, the Aurora Replica is shut down and
deleted.

Important
Aurora Replicas for Aurora MySQL always use the REPEATABLE READ default transaction
isolation level for operations on InnoDB tables. You can use the SET TRANSACTION
ISOLATION LEVEL command to change the transaction level only for the primary instance
of an Aurora MySQL DB cluster. This restriction avoids user-level locks on Aurora Replicas,
and allows Aurora Replicas to scale to support thousands of active user connections while still
keeping replica lag to a minimum.

Note
DDL statements that run on the primary instance might interrupt database connections on the
associated Aurora Replicas. If an Aurora Replica connection is actively using a database object,
such as a table, and that object is modified on the primary instance using a DDL statement, the
Aurora Replica connection is interrupted.

Note
The China (Ningxia) Region does not support cross-Region read replicas.

Replication options for Amazon Aurora MySQL
You can set up replication between any of the following options:

• Two Aurora MySQL DB clusters in different AWS Regions, by creating a cross-Region read replica of an
Aurora MySQL DB cluster.

For more information, see Replicating Amazon Aurora MySQL DB clusters across AWS
Regions (p. 943).

• Two Aurora MySQL DB clusters in the same AWS Region, by using MySQL binary log (binlog)
replication.

For more information, see Replication between Aurora and MySQL or between Aurora and another
Aurora DB cluster (binary log replication) (p. 953).

• An RDS for MySQL DB instance as the source and an Aurora MySQL DB cluster, by creating an Aurora
read replica of an RDS for MySQL DB instance.

You can use this approach to bring existing and ongoing data changes into Aurora MySQL during
migration to Aurora. For more information, see Migrating data from a MySQL DB instance to an
Amazon Aurora MySQL DB cluster by using a DB snapshot (p. 818).

You can also use this approach to increase the scalability of read queries for your data. You do so by
querying the data using one or more DB instances within a read-only Aurora MySQL cluster. For more
information, see Using Amazon Aurora to scale reads for your MySQL database (p. 966).

• An Aurora MySQL DB cluster in one AWS Region and up to five Aurora read-only Aurora MySQL DB
clusters in different Regions, by creating an Aurora global database.

You can use an Aurora global database to support applications with a world-wide footprint. The
primary Aurora MySQL DB cluster has a Writer instance and up to 15 Aurora Replicas. The read-only
secondary Aurora MySQL DB clusters can each be made up of as many as 16 Aurora Replicas. For more
information, see Using Amazon Aurora global databases (p. 225).

940

Amazon Aurora User Guide for Aurora
Performance

Note
Rebooting the primary instance of an Amazon Aurora DB cluster also automatically reboots the
Aurora Replicas for that DB cluster, to re-establish an entry point that guarantees read/write
consistency across the DB cluster.

Performance considerations for Amazon Aurora
MySQL replication
The following features help you to fine-tune the performance of Aurora MySQL replication.

Starting in Aurora MySQL 1.17.4, the replica log compression feature automatically reduces network
bandwidth for replication messages. Because each message is transmitted to all Aurora Replicas, the
benefits are greater for larger clusters. This feature involves some CPU overhead on the writer node to
perform the compression. Thus, the feature is only available on the 8xlarge and 16xlarge instance
classes, which have high CPU capacity. It is enabled by default on these instance classes. You can control
this feature by turning off the aurora_enable_replica_log_compression parameter. For example,
you might turn off replica log compression for larger instance classes if your writer node is near its
maximum CPU capacity.

Starting in Aurora MySQL 1.17.4, the binlog filtering feature automatically reduces network bandwidth
for replication messages. Because the Aurora Replicas don't use the binlog information that is included
in the replication messages, that data is omitted from the messages sent to those nodes. You control this
feature by changing the aurora_enable_repl_bin_log_filtering parameter. This parameter is
on by default. Because this optimization is intended to be transparent, you might turn off this setting
only during diagnosis or troubleshooting for issues related to replication. For example, you can do so to
match the behavior of an older Aurora MySQL cluster where this feature was not available.

Zero-downtime restart (ZDR) for Amazon Aurora
MySQL
The zero-downtime restart (ZDR) feature can preserve some or all of the active connections to DB
instances during certain kinds of restarts. ZDR applies to restarts that Aurora performs automatically to
resolve error conditions, for example when a replica begins to lag too far behind the source.

Important
The ZDR mechanism operates on a best-effort basis. The Aurora MySQL versions, instance
classes, error conditions, compatible SQL operations, and other factors that determine where
ZDR applies are subject to change at any time.

In Aurora MySQL 1.* versions where ZDR is available, you turn on this feature by turning on the
aurora_enable_zdr parameter in the cluster parameter group. ZDR for Aurora MySQL 2.* requires
version 2.10 and higher. ZDR is available in all minor versions of Aurora MySQL 3.*. In Aurora
MySQL version 2 and 3, the ZDR mechanism is turned on by default and Aurora doesn't use the
aurora_enable_zdr parameter.

Aurora reports on the Events page activities related to zero-downtime restart. Aurora records an event
when it attempts a restart using the ZDR mechanism. This event states why Aurora performs the restart.
Then Aurora records another event when the restart finishes. This final event reports how long the
process took, and how many connections were preserved or dropped during the restart. You can consult
the database error log to see more details about what happened during the restart.

Although connections remain intact following a successful ZDR operation, some variables and features
are reinitialized. The following kinds of information aren't preserved through a restart caused by zero-
downtime restart:

941

Amazon Aurora User Guide for Aurora
Zero-downtime restart (ZDR)

• Global variables. Aurora restores session variables, but it doesn't restore global variables after the
restart.

• Status variables. In particular, the uptime value reported by the engine status is reset.

• LAST_INSERT_ID.

• In-memory auto_increment state for tables. The in-memory auto-increment state is reinitialized.
For more information about auto-increment values, see MySQL Reference Manual.

• Diagnostic information from INFORMATION_SCHEMA and PERFORMANCE_SCHEMA tables. This
diagnostic information also appears in the output of commands such as SHOW PROFILE and SHOW
PROFILES.

The following table shows the versions, instance roles, instance classes, and other circumstances that
determine whether Aurora can use the ZDR mechanism when restarting DB instances in your cluster.

Aurora
MySQL
version

Does ZDR
apply to the
writer?

Does ZDR
apply to
readers?

Notes

Aurora
MySQL
version 1.*,
1.17.3 and
lower

No No ZDR isn't available for these versions.

Aurora
MySQL
version 1.*,
1.17.4 and
higher

No Yes In these Aurora MySQL versions, the following conditions
apply to the ZDR mechanism:

• Aurora doesn't use the ZDR mechanism if binary
logging is turned on for the DB instance.

• Aurora rolls back any transactions that are in progress
on active connections. Your application must retry the
transactions.

• Aurora cancels any connections that use TLS/SSL,
temporary tables, table locks, or user locks.

Aurora
MySQL
version
2.*, before
2.10.0

No No ZDR isn't available for these versions. The
aurora_enable_zdr parameter isn't available in the
default cluster parameter group for Aurora MySQL
version 2.

Aurora
MySQL
version 2.*,
2.10.0 and
higher

Yes Yes The ZDR mechanism is always enabled.

In these Aurora MySQL versions, the following conditions
apply to the ZDR mechanism:

• Aurora rolls back any transactions that are in progress
on active connections. Your application must retry the
transactions.

• Aurora cancels any connections that use TLS/SSL,
temporary tables, table locks, or user locks.

Aurora
MySQL
version 3.*

Yes Yes The ZDR mechanism is always enabled.

The same conditions apply as in Aurora MySQL version
2.10. ZDR applies to all instance classes.

942

https://dev.mysql.com/doc/refman/8.0/en/innodb-auto-increment-handling.html#innodb-auto-increment-initialization

Amazon Aurora User Guide for Aurora
Monitoring

Monitoring Amazon Aurora MySQL replication
Read scaling and high availability depend on minimal lag time. You can monitor how far an Aurora
Replica is lagging behind the primary instance of your Aurora MySQL DB cluster by monitoring the
Amazon CloudWatch AuroraReplicaLag metric. The AuroraReplicaLag metric is recorded in each
Aurora Replica.

The primary DB instance also records the AuroraReplicaLagMaximum and AuroraReplicaLag
Amazon CloudWatch metrics. The AuroraReplicaLagMaximum metric records the maximum
amount of lag between the primary DB instance and each Aurora Replica in the DB cluster. The
AuroraReplicaLag metric records the minimum amount of lag between the primary DB instance and
each Aurora Replica in the DB cluster.

If you need the most current value for Aurora Replica lag, you can query the recrystallisations
table on the primary instance in your Aurora MySQL DB cluster and check the value in the
Replica_lag_in_msec column. This column value is provided to Amazon CloudWatch as the value for
the AuroraReplicaLag metric. The Aurora Replica lag is also recorded on each Aurora Replica in the
INFORMATION_SCHEMA.REPLICA_HOST_STATUS table in your Aurora MySQL DB cluster.

For more information on monitoring RDS instances and CloudWatch metrics, see Monitoring metrics in
an Amazon Aurora cluster (p. 541).

Replicating Amazon Aurora MySQL DB clusters across
AWS Regions
You can create an Amazon Aurora MySQL DB cluster as a read replica in a different AWS Region than the
source DB cluster. Taking this approach can improve your disaster recovery capabilities, let you scale read
operations into an AWS Region that is closer to your users, and make it easier to migrate from one AWS
Region to another.

You can create read replicas of both encrypted and unencrypted DB clusters. The read replica must be
encrypted if the source DB cluster is encrypted.

For each source DB cluster, you can have up to five cross-Region DB clusters that are read replicas.

Note
As an alternative to cross-Region read replicas, you can scale read operations with minimal lag
time by using an Aurora global database. An Aurora global database has a primary Aurora DB
cluster in one AWS Region and up to five secondary read-only DB clusters in different Regions.
Each secondary DB cluster can include up to 16 (rather than 15) Aurora Replicas. Replication
from the primary DB cluster to all secondaries is handled by the Aurora storage layer rather than
by the database engine, so lag time for replicating changes is minimal—typically, less than 1
second. Keeping the database engine out of the replication process means that the database
engine is dedicated to processing workloads. It also means that you don't need to configure or
manage Aurora MySQL's binlog (binary logging) replication. To learn more, see Using Amazon
Aurora global databases (p. 225).

When you create an Aurora MySQL DB cluster read replica in another AWS Region, you should be aware
of the following:

• Both your source DB cluster and your cross-Region read replica DB cluster can have up to 15 Aurora
Replicas, along with the primary instance for the DB cluster. By using this functionality, you can scale
read operations for both your source AWS Region and your replication target AWS Region.

• In a cross-Region scenario, there is more lag time between the source DB cluster and the read replica
due to the longer network channels between AWS Regions.

943

Amazon Aurora User Guide for Aurora
Replicating Amazon Aurora MySQL

DB clusters across AWS Regions

• Data transferred for cross-Region replication incurs Amazon RDS data transfer charges. The following
cross-Region replication actions generate charges for the data transferred out of the source AWS
Region:

• When you create the read replica, Amazon RDS takes a snapshot of the source cluster and transfers
the snapshot to the AWS Region that holds the read replica.

• For each data modification made in the source databases, Amazon RDS transfers data from the
source region to the AWS Region that holds the read replica.

For more information about Amazon RDS data transfer pricing, see Amazon Aurora pricing.

• You can run multiple concurrent create or delete actions for read replicas that reference the same
source DB cluster. However, you must stay within the limit of five read replicas for each source DB
cluster.

• For replication to operate effectively, each read replica should have the same amount of compute and
storage resources as the source DB cluster. If you scale the source DB cluster, you should also scale the
read replicas.

Topics

• Before you begin (p. 944)

• Creating an Amazon Aurora MySQL DB cluster that is a cross-Region read replica (p. 944)

• Viewing Amazon Aurora MySQL cross-Region replicas (p. 951)

• Promoting a read replica to be a DB cluster (p. 951)

• Troubleshooting Amazon Aurora MySQL cross Region replicas (p. 952)

Before you begin
Before you can create an Aurora MySQL DB cluster that is a cross-Region read replica, you must turn on
binary logging on your source Aurora MySQL DB cluster. Cross-region replication for Aurora MySQL uses
MySQL binary replication to replay changes on the cross-Region read replica DB cluster.

To turn on binary logging on an Aurora MySQL DB cluster, update the binlog_format parameter
for your source DB cluster. The binlog_format parameter is a cluster-level parameter that is in the
default cluster parameter group. If your DB cluster uses the default DB cluster parameter group, create
a new DB cluster parameter group to modify binlog_format settings. We recommend that you set the
binlog_format to MIXED. However, you can also set binlog_format to ROW or STATEMENT if you
need a specific binlog format. Reboot your Aurora DB cluster for the change to take effect.

For more information about using binary logging with Aurora MySQL, see Replication between Aurora
and MySQL or between Aurora and another Aurora DB cluster (binary log replication) (p. 953). For more
information about modifying Aurora MySQL configuration parameters, see Amazon Aurora DB cluster
and DB instance parameters (p. 341) and Working with DB parameter groups and DB cluster parameter
groups (p. 339).

Creating an Amazon Aurora MySQL DB cluster that is a cross-
Region read replica
You can create an Aurora DB cluster that is a cross-Region read replica by using the AWS Management
Console, the AWS Command Line Interface (AWS CLI), or the Amazon RDS API. You can create cross-
Region read replicas from both encrypted and unencrypted DB clusters.

When you create a cross-Region read replica for Aurora MySQL by using the AWS Management Console,
Amazon RDS creates a DB cluster in the target AWS Region, and then automatically creates a DB instance
that is the primary instance for that DB cluster.

944

http://aws.amazon.com/rds/aurora/pricing/

Amazon Aurora User Guide for Aurora
Replicating Amazon Aurora MySQL

DB clusters across AWS Regions

When you create a cross-Region read replica using the AWS CLI or RDS API, you first create the DB cluster
in the target AWS Region and wait for it to become active. Once it is active, you then create a DB instance
that is the primary instance for that DB cluster.

Replication begins when the primary instance of the read replica DB cluster becomes available.

Use the following procedures to create a cross-Region read replica from an Aurora MySQL DB cluster.
These procedures work for creating read replicas from either encrypted or unencrypted DB clusters.

Console

To create an Aurora MySQL DB cluster that is a cross-Region read replica with the AWS
Management Console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the top-right corner of the AWS Management Console, select the AWS Region that hosts your
source DB cluster.

3. In the navigation pane, choose Instances.

4. Choose the check box for the DB instance that you want to create a cross-Region read replica for. For
Actions, choose Create cross region read replica.

5. On the Create cross region read replica page, choose the option settings for your cross-Region read
replica DB cluster, as described in the following table.

Option Description

Destination region Choose the AWS Region to host the new cross-Region
read replica DB cluster.

Destination DB subnet group Choose the DB subnet group to use for the cross-Region
read replica DB cluster.

Publicly accessible Choose Yes to give the cross-Region read replica DB
cluster a public IP address; otherwise, select No.

Encryption Select Enable Encryption to turn on encryption at rest
for this DB cluster. For more information, see Encrypting
Amazon Aurora resources (p. 1722).

AWS KMS key Only available if Encryption is set to Enable Encryption.
Select the AWS KMS key to use for encrypting this DB
cluster. For more information, see Encrypting Amazon
Aurora resources (p. 1722).

DB instance class Choose a DB instance class that defines the processing
and memory requirements for the primary instance in the
DB cluster. For more information about DB instance class
options, see Aurora DB instance classes (p. 54).

Multi-AZ deployment Choose Yes to create a read replica of the new DB
cluster in another Availability Zone in the target AWS
Region for failover support. For more information about
multiple Availability Zones, see Regions and Availability
Zones (p. 11).

Read replica source Choose the source DB cluster to create a cross-Region
read replica for.

945

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Replicating Amazon Aurora MySQL

DB clusters across AWS Regions

Option Description

DB instance identifier Type a name for the primary instance in your cross-
Region read replica DB cluster. This identifier is used in
the endpoint address for the primary instance of the new
DB cluster.

The DB instance identifier has the following constraints:

• It must contain from 1 to 63 alphanumeric characters
or hyphens.

• Its first character must be a letter.
• It cannot end with a hyphen or contain two consecutive

hyphens.
• It must be unique for all DB instances for each AWS

account, for each AWS Region.

Because the cross-Region read replica DB cluster is
created from a snapshot of the source DB cluster, the
master user name and master password for the read
replica are the same as the master user name and master
password for the source DB cluster.

DB cluster identifier Type a name for your cross-Region read replica DB cluster
that is unique for your account in the target AWS Region
for your replica. This identifier is used in the cluster
endpoint address for your DB cluster. For information
on the cluster endpoint, see Amazon Aurora connection
management (p. 32).

The DB cluster identifier has the following constraints:

• It must contain from 1 to 63 alphanumeric characters
or hyphens.

• Its first character must be a letter.
• It cannot end with a hyphen or contain two consecutive

hyphens.
• It must be unique for all DB clusters for each AWS

account, for each AWS Region.

Priority Choose a failover priority for the primary instance of
the new DB cluster. This priority determines the order
in which Aurora Replicas are promoted when recovering
from a primary instance failure. If you don't select a
value, the default is tier-1. For more information, see
Fault tolerance for an Aurora DB cluster (p. 69).

Database port Specify the port for applications and utilities to use to
access the database. Aurora DB clusters default to the
default MySQL port, 3306. Firewalls at some companies
block connections to this port. If your company firewall
blocks the default port, choose another port for the new
DB cluster.

946

Amazon Aurora User Guide for Aurora
Replicating Amazon Aurora MySQL

DB clusters across AWS Regions

Option Description

Enhanced monitoring Choose Enable enhanced monitoring to turn on
gathering metrics in real time for the operating
system that your DB cluster runs on. For more
information, see Monitoring OS metrics with Enhanced
Monitoring (p. 647).

Monitoring Role Only available if Enhanced Monitoring is set to Enable
enhanced monitoring. Choose the IAM role that you
created to permit Amazon RDS to communicate with
Amazon CloudWatch Logs for you, or choose Default to
have RDS create a role for you named rds-monitoring-
role. For more information, see Monitoring OS metrics
with Enhanced Monitoring (p. 647).

Granularity Only available if Enhanced Monitoring is set to Enable
enhanced monitoring. Set the interval, in seconds,
between when metrics are collected for your DB cluster.

Auto minor version upgrade This setting doesn't apply to Aurora MySQL DB clusters.

For more information about engine updates for Aurora
MySQL, see Database engine updates for Amazon Aurora
MySQL (p. 1103).

6. Choose Create to create your cross-Region read replica for Aurora.

AWS CLI

To create an Aurora MySQL DB cluster that is a cross-Region read replica with the CLI

1. Call the AWS CLI create-db-cluster command in the AWS Region where you want to create the
read replica DB cluster. Include the --replication-source-identifier option and specify the
Amazon Resource Name (ARN) of the source DB cluster to create a read replica for.

For cross-Region replication where the DB cluster identified by --replication-source-
identifier is encrypted, you must specify the --kms-key-id option and the --storage-
encrypted option. You must also specify either the --source-region or --pre-signed-url
option. Using --source-region autogenerates a presigned URL that is a valid request for the
CreateDBCluster API operation that can be performed in the source AWS Region that contains
the encrypted DB cluster to be replicated. Using --pre-signed-url requires you to construct a
presigned URL manually instead. The KMS key identifier is used to encrypt the read replica. It must
be a KMS key valid for the destination AWS Region. To learn more about these options, see create-
db-cluster.

Note
You can set up cross-Region replication from an unencrypted DB cluster to an encrypted
read replica by specifying --storage-encrypted and providing a value for --kms-key-
id. In this case, you don't need to specify --source-region or --pre-signed-url.

You can't specify the --master-username and --master-user-password parameters. Those
values are taken from the source DB cluster.

The following code example creates a read replica in the us-east-1 Region from an unencrypted DB
cluster snapshot in the us-west-2 Region. The command is called in the us-east-1 Region.

For Linux, macOS, or Unix:

947

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html

Amazon Aurora User Guide for Aurora
Replicating Amazon Aurora MySQL

DB clusters across AWS Regions

aws rds create-db-cluster \
 --db-cluster-identifier sample-replica-cluster \
 --engine aurora \
 --replication-source-identifier arn:aws:rds:us-west-2:123456789012:cluster:sample-
master-cluster

For Windows:

aws rds create-db-cluster ^
 --db-cluster-identifier sample-replica-cluster ^
 --engine aurora ^
 --replication-source-identifier arn:aws:rds:us-west-2:123456789012:cluster:sample-
master-cluster

The following code example creates a read replica in the us-east-1 Region from an encrypted DB
cluster snapshot in the us-west-2 Region. The command is called in the us-east-1 Region.

For Linux, macOS, or Unix:

aws rds create-db-cluster \
 --db-cluster-identifier sample-replica-cluster \
 --engine aurora \
 --replication-source-identifier arn:aws:rds:us-west-2:123456789012:cluster:sample-
master-cluster \
 --kms-key-id my-us-east-1-key \
 --source-region us-west-2 \
 --storage-encrypted

For Windows:

aws rds create-db-cluster ^
 --db-cluster-identifier sample-replica-cluster ^
 --engine aurora ^
 --replication-source-identifier arn:aws:rds:us-west-2:123456789012:cluster:sample-
master-cluster ^
 --kms-key-id my-us-east-1-key ^
 --source-region us-west-2 ^
 --storage-encrypted

2. Check that the DB cluster has become available to use by using the AWS CLI describe-db-
clusters command, as shown in the following example.

aws rds describe-db-clusters --db-cluster-identifier sample-replica-cluster

When the describe-db-clusters results show a status of available, create the primary
instance for the DB cluster so that replication can begin. To do so, use the AWS CLI create-db-
instance command as shown in the following example.

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-cluster-identifier sample-replica-cluster \
 --db-instance-class db.r3.large \
 --db-instance-identifier sample-replica-instance \
 --engine aurora

For Windows:

948

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora
Replicating Amazon Aurora MySQL

DB clusters across AWS Regions

aws rds create-db-instance ^
 --db-cluster-identifier sample-replica-cluster ^
 --db-instance-class db.r3.large ^
 --db-instance-identifier sample-replica-instance ^
 --engine aurora

When the DB instance is created and available, replication begins. You can determine if the DB
instance is available by calling the AWS CLI describe-db-instances command.

RDS API

To create an Aurora MySQL DB cluster that is a cross-Region read replica with the API

1. Call the RDS API CreateDBCluster action in the AWS Region where you want to create the read
replica DB cluster. Include the ReplicationSourceIdentifier parameter and specify the
Amazon Resource Name (ARN) of the source DB cluster to create a read replica for.

For cross-Region replication where the DB cluster identified by ReplicationSourceIdentifier is
encrypted, you must specify the KmsKeyId parameter and set the StorageEncrypted parameter
to true. You must also specify the PreSignedUrl parameter. The presigned URL must be a valid
request for the CreateDBCluster API operation that can be performed in the source AWS Region
that contains the encrypted DB cluster to be replicated. The KMS key identifier is used to encrypt the
read replica, and must be a KMS key valid for the destination AWS Region. To automatically rather
than manually generate a presigned URL, use the AWS CLI create-db-cluster command with the
--source-region option instead.

Note
You can set up cross-Region replication from an unencrypted DB cluster to an encrypted
read replica by specifying StorageEncrypted as true and providing a value for
KmsKeyId. In this case, you don't need to specify PreSignedUrl.

You don't need to include the MasterUsername and MasterUserPassword parameters, because
those values are taken from the source DB cluster.

The following code example creates a read replica in the us-east-1 Region from an unencrypted DB
cluster snapshot in the us-west-2 Region. The action is called in the us-east-1 Region.

https://rds.us-east-1.amazonaws.com/
 ?Action=CreateDBCluster
 &ReplicationSourceIdentifier=arn:aws:rds:us-west-2:123456789012:cluster:sample-
master-cluster
 &DBClusterIdentifier=sample-replica-cluster
 &Engine=aurora
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &Version=2014-10-31
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20161117/us-east-1/rds/aws4_request
 &X-Amz-Date=20160201T001547Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=a04c831a0b54b5e4cd236a90dcb9f5fab7185eb3b72b5ebe9a70a4e95790c8b7

The following code example creates a read replica in the us-east-1 Region from an encrypted DB
cluster snapshot in the us-west-2 Region. The action is called in the us-east-1 Region.

https://rds.us-east-1.amazonaws.com/
 ?Action=CreateDBCluster
 &KmsKeyId=my-us-east-1-key

949

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html

Amazon Aurora User Guide for Aurora
Replicating Amazon Aurora MySQL

DB clusters across AWS Regions

 &StorageEncrypted=true
 &PreSignedUrl=https%253A%252F%252Frds.us-west-2.amazonaws.com%252F
 %253FAction%253DCreateDBCluster
 %2526DestinationRegion%253Dus-east-1
 %2526KmsKeyId%253Dmy-us-east-1-key
 %2526ReplicationSourceIdentifier%253Darn%25253Aaws%25253Ards%25253Aus-
west-2%25253A123456789012%25253Acluster%25253Asample-master-cluster
 %2526SignatureMethod%253DHmacSHA256
 %2526SignatureVersion%253D4
 %2526Version%253D2014-10-31
 %2526X-Amz-Algorithm%253DAWS4-HMAC-SHA256
 %2526X-Amz-Credential%253DAKIADQKE4SARGYLE%252F20161117%252Fus-west-2%252Frds
%252Faws4_request
 %2526X-Amz-Date%253D20161117T215409Z
 %2526X-Amz-Expires%253D3600
 %2526X-Amz-SignedHeaders%253Dcontent-type%253Bhost%253Buser-agent%253Bx-amz-
content-sha256%253Bx-amz-date
 %2526X-Amz-Signature
%253D255a0f17b4e717d3b67fad163c3ec26573b882c03a65523522cf890a67fca613
 &ReplicationSourceIdentifier=arn:aws:rds:us-west-2:123456789012:cluster:sample-
master-cluster
 &DBClusterIdentifier=sample-replica-cluster
 &Engine=aurora
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &Version=2014-10-31
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20161117/us-east-1/rds/aws4_request
 &X-Amz-Date=20160201T001547Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=a04c831a0b54b5e4cd236a90dcb9f5fab7185eb3b72b5ebe9a70a4e95790c8b7

2. Check that the DB cluster has become available to use by using the RDS API DescribeDBClusters
action, as shown in the following example.

https://rds.us-east-1.amazonaws.com/
 ?Action=DescribeDBClusters
 &DBClusterIdentifier=sample-replica-cluster
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &Version=2014-10-31
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20161117/us-east-1/rds/aws4_request
 &X-Amz-Date=20160201T002223Z
 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=84c2e4f8fba7c577ac5d820711e34c6e45ffcd35be8a6b7c50f329a74f35f426

When the DescribeDBClusters results show a status of available, create the primary instance
for the DB cluster so that replication can begin. To do so, use the RDS API CreateDBInstance
action as shown in the following example.

https://rds.us-east-1.amazonaws.com/
 ?Action=CreateDBInstance
 &DBClusterIdentifier=sample-replica-cluster
 &DBInstanceClass=db.r3.large
 &DBInstanceIdentifier=sample-replica-instance
 &Engine=aurora
 &SignatureMethod=HmacSHA256
 &SignatureVersion=4
 &Version=2014-10-31
 &X-Amz-Algorithm=AWS4-HMAC-SHA256
 &X-Amz-Credential=AKIADQKE4SARGYLE/20161117/us-east-1/rds/aws4_request
 &X-Amz-Date=20160201T003808Z

950

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html

Amazon Aurora User Guide for Aurora
Replicating Amazon Aurora MySQL

DB clusters across AWS Regions

 &X-Amz-SignedHeaders=content-type;host;user-agent;x-amz-content-sha256;x-amz-date
 &X-Amz-Signature=125fe575959f5bbcebd53f2365f907179757a08b5d7a16a378dfa59387f58cdb

When the DB instance is created and available, replication begins. You can determine if the DB
instance is available by calling the AWS CLI DescribeDBInstances command.

Viewing Amazon Aurora MySQL cross-Region replicas

You can view the cross-Region replication relationships for your Amazon Aurora MySQL DB clusters
by calling the describe-db-clusters AWS CLI command or the DescribeDBClusters RDS API
operation. In the response, refer to the ReadReplicaIdentifiers field for the DB cluster identifiers of
any cross-Region read replica DB clusters, and refer to the ReplicationSourceIdentifier element
for the ARN of the source DB cluster that is the replication source.

Promoting a read replica to be a DB cluster

You can promote an Aurora MySQL read replica to a standalone DB cluster. When you promote an Aurora
MySQL read replica, its DB instances are rebooted before they become available.

Typically, you promote an Aurora MySQL read replica to a standalone DB cluster as a data recovery
scheme if the source DB cluster fails.

To do this, first create a read replica and then monitor the source DB cluster for failures. In the event of a
failure, do the following:

1. Promote the read replica.

2. Direct database traffic to the promoted DB cluster.

3. Create a replacement read replica with the promoted DB cluster as its source.

When you promote a read replica, the read replica becomes a standalone Aurora DB cluster. The
promotion process can take several minutes or longer to complete, depending on the size of the read
replica. After you promote the read replica to a new DB cluster, it's just like any other DB cluster. For
example, you can create read replicas from it and perform point-in-time restore operations. You can also
create Aurora Replicas for the DB cluster.

Because the promoted DB cluster is no longer a read replica, you can't use it as a replication target.

The following steps show the general process for promoting a read replica to a DB cluster:

1. Stop any transactions from being written to the read replica source DB cluster, and then wait for all
updates to be made to the read replica. Database updates occur on the read replica after they have
occurred on the source DB cluster, and this replication lag can vary significantly. Use the ReplicaLag
metric to determine when all updates have been made to the read replica. The ReplicaLag metric
records the amount of time a read replica DB instance lags behind the source DB instance. When the
ReplicaLag metric reaches 0, the read replica has caught up to the source DB instance.

2. Promote the read replica by using the Promote option on the Amazon RDS console, the AWS CLI
command promote-read-replica-db-cluster, or the PromoteReadReplicaDBCluster
Amazon RDS API operation.

You choose an Aurora MySQL DB instance to promote the read replica. After the read replica is
promoted, the Aurora MySQL DB cluster is promoted to a standalone DB cluster. The DB instance with
the highest failover priority is promoted to the primary DB instance for the DB cluster. The other DB
instances become Aurora Replicas.

951

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBInstances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/promote-read-replica-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_PromoteReadReplicaDBCluster.html

Amazon Aurora User Guide for Aurora
Replicating Amazon Aurora MySQL

DB clusters across AWS Regions

Note
The promotion process takes a few minutes to complete. When you promote a read replica,
replication is stopped and the DB instances are rebooted. When the reboot is complete, the
read replica is available as a new DB cluster.

Console

To promote an Aurora MySQL read replica to a DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. On the console, choose Instances.

The Instance pane appears.

3. In the Instances pane, choose the read replica that you want to promote.

The read replicas appear as Aurora MySQL DB instances.

4. For Actions, choose Promote read replica.

5. On the acknowledgment page, choose Promote read replica.

AWS CLI

To promote a read replica to a DB cluster, use the AWS CLI promote-read-replica-db-cluster
command.

Example

For Linux, macOS, or Unix:

aws rds promote-read-replica-db-cluster \
 --db-cluster-identifier mydbcluster

For Windows:

aws rds promote-read-replica-db-cluster ^
 --db-cluster-identifier mydbcluster

RDS API

To promote a read replica to a DB cluster, call PromoteReadReplicaDBCluster.

Troubleshooting Amazon Aurora MySQL cross Region replicas

Following you can find a list of common error messages that you might encounter when creating an
Amazon Aurora cross-Region read replica, and how to resolve the specified errors.

Source cluster [DB cluster ARN] doesn't have binlogs enabled

To resolve this issue, turn on binary logging on the source DB cluster. For more information, see Before
you begin (p. 944).

952

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/promote-read-replica-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_PromoteReadReplicaDBCluster.html

Amazon Aurora User Guide for Aurora
Replication between Aurora and MySQL or between Aurora

and another Aurora DB cluster (binary log replication)

Source cluster [DB cluster ARN] doesn't have cluster parameter group in sync on
writer

You receive this error if you have updated the binlog_format DB cluster parameter, but have not
rebooted the primary instance for the DB cluster. Reboot the primary instance (that is, the writer) for the
DB cluster and try again.

Source cluster [DB cluster ARN] already has a read replica in this region

You can have up to five cross-Region DB clusters that are read replicas for each source DB cluster in any
AWS Region. If you already have the maximum number of read replicas for a DB cluster in a particular
AWS Region, you must delete an existing one before you can create a new cross-Region DB cluster in that
Region.

DB cluster [DB cluster ARN] requires a database engine upgrade for cross-Region
replication support

To resolve this issue, upgrade the database engine version for all of the instances in the source DB cluster
to the most recent database engine version, and then try creating a cross-Region read replica DB again.

Replication between Aurora and MySQL or between
Aurora and another Aurora DB cluster (binary log
replication)
Because Amazon Aurora MySQL is compatible with MySQL, you can set up replication between a MySQL
database and an Amazon Aurora MySQL DB cluster. This type of replication uses the MySQL binary
log replication, also referred to as binlog replication. If you use binary log replication with Aurora, we
recommend that your MySQL database run MySQL version 5.5 or later. You can set up replication where
your Aurora MySQL DB cluster is the replication source or the replica. You can replicate with an Amazon
RDS MySQL DB instance, a MySQL database external to Amazon RDS, or another Aurora MySQL DB
cluster.

Note
You can't use binlog replication to or from certain kinds of Aurora clusters. In particular, binlog
replication isn't available for Aurora Serverless v1 and multi-master clusters. If the SHOW
MASTER STATUS and SHOW SLAVE STATUS (Aurora MySQL version 1 and 2) or SHOW REPLICA
STATUS (Aurora MySQL version 3) statement returns no output, check that the cluster you're
using is one that supports binlog replication.

You can also replicate with an RDS for MySQL DB instance or Aurora MySQL DB cluster in another AWS
Region. When you're performing replication across AWS Regions, ensure that your DB clusters and DB
instances are publicly accessible. Aurora MySQL DB clusters must be part of a public subnet in your VPC.

If you want to configure replication between an Aurora MySQL DB cluster and an Aurora MySQL DB
cluster in another region, you can create an Aurora MySQL DB cluster as a read replica in a different AWS
Region than the source DB cluster. For more information, see Replicating Amazon Aurora MySQL DB
clusters across AWS Regions (p. 943).

With Aurora MySQL 2.04 and higher, you can replicate between Aurora MySQL and an external source
or target that uses global transaction identifiers (GTIDs) for replication. Ensure that the GTID-related
parameters in the Aurora MySQL DB cluster have settings that are compatible with the GTID status of the
external database. To learn how to do this, see Using GTID-based replication for Aurora MySQL (p. 975).
In Aurora MySQL version 3.01 and higher, you can choose how to assign GTIDs to transactions that
are replicated from a source that doesn't use GTIDs. For information about the stored procedure that
controls that setting, see mysql.rds_assign_gtids_to_anonymous_transactions (Aurora MySQL version 3
and higher) (p. 1097).

953

Amazon Aurora User Guide for Aurora
Replication between Aurora and MySQL or between Aurora

and another Aurora DB cluster (binary log replication)

Warning
When you replicate between Aurora MySQL and MySQL, ensure that you use only InnoDB tables.
If you have MyISAM tables that you want to replicate, you can convert them to InnoDB before
setting up replication with the following command.

alter table <schema>.<table_name> engine=innodb, algorithm=copy;

Setting up MySQL replication with Aurora MySQL involves the following steps, which are discussed in
detail following in this topic:

1. Turn on binary logging on the replication source (p. 954)

2. Retain binary logs on the replication source until no longer needed (p. 957)

3. Create a snapshot of your replication source (p. 959)

4. Load the snapshot into your replica target (p. 961)

5. Turn on replication on your replica target (p. 962)

6. Monitor your replica (p. 964)

Setting up replication with MySQL or another Aurora DB cluster
To set up Aurora replication with MySQL, take the following steps.

1. Turn on binary logging on the replication source

Find instructions on how to turn on binary logging on the replication source for your database engine
following.

Database
engine

Instructions

Aurora To turn on binary logging on an Aurora MySQL DB cluster

Set the binlog_format parameter to ROW, STATEMENT, or MIXED. MIXED is
recommended unless you have a need for a specific binlog format. The binlog_format
parameter is a cluster-level parameter that is in the default cluster parameter group. If
you are changing the binlog_format parameter from OFF to another value, then you
need to reboot your Aurora DB cluster for the change to take effect.

For more information, see Amazon Aurora DB cluster and DB instance parameters (p. 341)
and Working with DB parameter groups and DB cluster parameter groups (p. 339).

RDS for
MySQL

To turn on binary logging on an Amazon RDS DB instance

You can't turn on binary logging directly for an Amazon RDS DB instance, but you can
turn it on by doing one of the following:

• Turn on automated backups for the DB instance. You can turn on automated backups
when you create a DB instance, or you can turn on backups by modifying an existing
DB instance. For more information, see Creating a DB instance in the Amazon RDS User
Guide.

• Create a read replica for the DB instance. For more information, see Working with read
replicas in the Amazon RDS User Guide.

MySQL
(external)

To set up encrypted replication

954

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html

Amazon Aurora User Guide for Aurora
Replication between Aurora and MySQL or between Aurora

and another Aurora DB cluster (binary log replication)

Database
engine

Instructions

To replicate data securely with Aurora MySQL version 5.6, you can use encrypted
replication.

Currently, encrypted replication with an external MySQL database is only supported for
Aurora MySQL version 5.6.

Note
If you don't need to use encrypted replication, you can skip these steps.

The following are prerequisites for using encrypted replication:

• Secure Sockets Layer (SSL) must be enabled on the external MySQL source database.
• A client key and client certificate must be prepared for the Aurora MySQL DB cluster.

During encrypted replication, the Aurora MySQL DB cluster acts a client to the MySQL
database server. The certificates and keys for the Aurora MySQL client are in files in .pem
format.

1. Ensure that you are prepared for encrypted replication:

• If you don't have SSL enabled on the external MySQL source database and don't
have a client key and client certificate prepared, turn on SSL on the MySQL
database server and generate the required client key and client certificate.

• If SSL is enabled on the external source, supply a client key and certificate for
the Aurora MySQL DB cluster. If you don't have these, generate a new key and
certificate for the Aurora MySQL DB cluster. To sign the client certificate, you must
have the certificate authority key that you used to configure SSL on the external
MySQL source database.

For more information, see Creating SSL certificates and keys using openssl in the
MySQL documentation.

You need the certificate authority certificate, the client key, and the client certificate.
2. Connect to the Aurora MySQL DB cluster as the master user using SSL.

For information about connecting to an Aurora MySQL DB cluster with SSL, see Using
SSL/TLS with Aurora MySQL DB clusters (p. 796).

3. Run the mysql.rds_import_binlog_ssl_material stored procedure to import
the SSL information into the Aurora MySQL DB cluster.

For the ssl_material_value parameter, insert the information from the .pem
format files for the Aurora MySQL DB cluster in the correct JSON payload.

The following example imports SSL information into an Aurora MySQL DB cluster.
In .pem format files, the body code typically is longer than the body code shown in
the example.

call mysql.rds_import_binlog_ssl_material(
'{"ssl_ca":"-----BEGIN CERTIFICATE-----
AAAAB3NzaC1yc2EAAAADAQABAAABAQClKsfkNkuSevGj3eYhCe53pcjqP3maAhDFcvBS7O6V
hz2ItxCih+PnDSUaw+WNQn/mZphTk/a/gU8jEzoOWbkM4yxyb/wB96xbiFveSFJuOp/
d6RJhJOI0iBXr
lsLnBItntckiJ7FbtxJMXLvvwJryDUilBMTjYtwB+QhYXUMOzce5Pjz5/i8SeJtjnV3iAoG/
cQk+0FzZ

955

https://dev.mysql.com/doc/refman/8.0/en/creating-ssl-files-using-openssl.html

Amazon Aurora User Guide for Aurora
Replication between Aurora and MySQL or between Aurora

and another Aurora DB cluster (binary log replication)

Database
engine

Instructions

qaeJAAHco+CY/5WrUBkrHmFJr6HcXkvJdWPkYQS3xqC0+FmUZofz221CBt5IMucxXPkX4rWi
+z7wB3Rb
BQoQzd8v7yeb7OzlPnWOyN0qFU0XA246RA8QFYiCNYwI3f05p6KLxEXAMPLE
-----END CERTIFICATE-----\n","ssl_cert":"-----BEGIN CERTIFICATE-----
AAAAB3NzaC1yc2EAAAADAQABAAABAQClKsfkNkuSevGj3eYhCe53pcjqP3maAhDFcvBS7O6V
hz2ItxCih+PnDSUaw+WNQn/mZphTk/a/gU8jEzoOWbkM4yxyb/wB96xbiFveSFJuOp/
d6RJhJOI0iBXr
lsLnBItntckiJ7FbtxJMXLvvwJryDUilBMTjYtwB+QhYXUMOzce5Pjz5/i8SeJtjnV3iAoG/
cQk+0FzZ
qaeJAAHco+CY/5WrUBkrHmFJr6HcXkvJdWPkYQS3xqC0+FmUZofz221CBt5IMucxXPkX4rWi
+z7wB3Rb
BQoQzd8v7yeb7OzlPnWOyN0qFU0XA246RA8QFYiCNYwI3f05p6KLxEXAMPLE
-----END CERTIFICATE-----\n","ssl_key":"-----BEGIN RSA PRIVATE KEY-----
AAAAB3NzaC1yc2EAAAADAQABAAABAQClKsfkNkuSevGj3eYhCe53pcjqP3maAhDFcvBS7O6V
hz2ItxCih+PnDSUaw+WNQn/mZphTk/a/gU8jEzoOWbkM4yxyb/wB96xbiFveSFJuOp/
d6RJhJOI0iBXr
lsLnBItntckiJ7FbtxJMXLvvwJryDUilBMTjYtwB+QhYXUMOzce5Pjz5/i8SeJtjnV3iAoG/
cQk+0FzZ
qaeJAAHco+CY/5WrUBkrHmFJr6HcXkvJdWPkYQS3xqC0+FmUZofz221CBt5IMucxXPkX4rWi
+z7wB3Rb
BQoQzd8v7yeb7OzlPnWOyN0qFU0XA246RA8QFYiCNYwI3f05p6KLxEXAMPLE
-----END RSA PRIVATE KEY-----\n"}');

For more information, see mysql_rds_import_binlog_ssl_material and Using SSL/TLS
with Aurora MySQL DB clusters (p. 796).

Note
After running the procedure, the secrets are stored in files. To erase the
files later, you can run the mysql_rds_remove_binlog_ssl_material stored
procedure.

To turn on binary logging on an external MySQL database

1. From a command shell, stop the mysql service.

sudo service mysqld stop

2. Edit the my.cnf file (this file is usually under /etc).

sudo vi /etc/my.cnf

Add the log_bin and server_id options to the [mysqld] section. The log_bin
option provides a file name identifier for binary log files. The server_id option
provides a unique identifier for the server in source-replica relationships.

If encrypted replication isn't required, ensure that the external MySQL database is
started with binlogs enabled and SSL is turned off.

The following are the relevant entries in the /etc/my.cnf file for unencrypted data.

log-bin=mysql-bin
server-id=2133421
innodb_flush_log_at_trx_commit=1
sync_binlog=1

956

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_import_binlog_ssl_material.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_remove_binlog_ssl_material.html

Amazon Aurora User Guide for Aurora
Replication between Aurora and MySQL or between Aurora

and another Aurora DB cluster (binary log replication)

Database
engine

Instructions

If encrypted replication is required, ensure that the external MySQL database is started
with SSL and binlogs enabled.

The entries in the /etc/my.cnf file include the .pem file locations for the MySQL
database server.

log-bin=mysql-bin
server-id=2133421
innodb_flush_log_at_trx_commit=1
sync_binlog=1

Setup SSL.
ssl-ca=/home/sslcerts/ca.pem
ssl-cert=/home/sslcerts/server-cert.pem
ssl-key=/home/sslcerts/server-key.pem

Additionally, the sql_mode option for your MySQL DB instance must be set to 0, or
must not be included in your my.cnf file.

While connected to the external MySQL database, record the external MySQL
database's binary log position.

mysql> SHOW MASTER STATUS;

Your output should be similar to the following:

+------------------+----------+--------------+------------------
+-------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
 Executed_Gtid_Set |
+------------------+----------+--------------+------------------
+-------------------+
| mysql-bin.000031 | 107 | | |
 |
+------------------+----------+--------------+------------------
+-------------------+
1 row in set (0.00 sec)

For more information, see Setting the replication source configuration in the MySQL
documentation.

3. Start the mysql service.

sudo service mysqld start

2. Retain binary logs on the replication source until no longer needed

When you use MySQL binary log replication, Amazon RDS doesn't manage the replication process. As
a result, you need to ensure that the binlog files on your replication source are retained until after the
changes have been applied to the replica. This maintenance helps ensure that you can restore your
source database in the event of a failure.

Find instructions on how to retain binary logs for your database engine following.

957

http://dev.mysql.com/doc/refman/8.0/en/replication-howto-masterbaseconfig.html

Amazon Aurora User Guide for Aurora
Replication between Aurora and MySQL or between Aurora

and another Aurora DB cluster (binary log replication)

Database
engine

Instructions

Aurora To retain binary logs on an Aurora MySQL DB cluster

You do not have access to the binlog files for an Aurora MySQL DB cluster. As a result,
you must choose a time frame to retain the binlog files on your replication source long
enough to ensure that the changes have been applied to your replica before the binlog
file is deleted by Amazon RDS. You can retain binlog files on an Aurora MySQL DB cluster
for up to 90 days.

If you are setting up replication with a MySQL database or RDS for MySQL DB instance
as the replica, and the database that you are creating a replica for is very large, choose a
large time frame to retain binlog files until the initial copy of the database to the replica
is complete and the replica lag has reached 0.

To set the binary log retention time frame, use the mysql_rds_set_configuration
procedure and specify a configuration parameter of 'binlog retention hours'
along with the number of hours to retain binlog files on the DB cluster, up to 2160 (90
days). The following example that sets the retention period for binlog files to 6 days:

CALL mysql.rds_set_configuration('binlog retention hours', 144);

After replication has been started, you can verify that changes have been applied to your
replica by running the SHOW SLAVE STATUS (Aurora MySQL version 1 and 2) or SHOW
REPLICA STATUS (Aurora MySQL version 3) command on your replica and checking the
Seconds behind master field. If the Seconds behind master field is 0, then there
is no replica lag. When there is no replica lag, reduce the length of time that binlog files
are retained by setting the binlog retention hours configuration parameter to a
smaller time frame.

If this setting isn't specified, the default for Aurora MySQL is 24 (1 day).

If you specify a value for 'binlog retention hours' that is higher than 2160, then
Aurora MySQL uses a value of 2160.

RDS for
MySQL

To retain binary logs on an Amazon RDS DB instance

You can retain binary log files on an Amazon RDS DB instance by setting the binlog
retention hours just as with an Aurora MySQL DB cluster, described in the previous
section.

You can also retain binlog files on an Amazon RDS DB instance by creating a read replica
for the DB instance. This read replica is temporary and solely for the purpose of retaining
binlog files. After the read replica has been created, call the mysql_rds_stop_replication
procedure on the read replica. While replication is stopped, Amazon RDS doesn't delete
any of the binlog files on the replication source. After you have set up replication with
your permanent replica, you can delete the read replica when the replica lag (Seconds
behind master field) between your replication source and your permanent replica
reaches 0.

MySQL
(external)

To retain binary logs on an external MySQL database

Because binlog files on an external MySQL database are not managed by Amazon RDS,
they are retained until you delete them.

After replication has been started, you can verify that changes have been applied to your
replica by running the SHOW SLAVE STATUS (Aurora MySQL version 1 and 2) or SHOW

958

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_set_configuration.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_stop_replication.html

Amazon Aurora User Guide for Aurora
Replication between Aurora and MySQL or between Aurora

and another Aurora DB cluster (binary log replication)

Database
engine

Instructions

REPLICA STATUS (Aurora MySQL version 3) command on your replica and checking the
Seconds behind master field. If the Seconds behind master field is 0, then there
is no replica lag. When there is no replica lag, you can delete old binlog files.

3. Create a snapshot of your replication source

You use a snapshot of your replication source to load a baseline copy of your data onto your replica and
then start replicating from that point on.

Find instructions on how to create a snapshot of your replication source for your database engine
following.

Database
engine

Instructions

Aurora To create a snapshot of an Aurora MySQL DB cluster

1. Create a DB cluster snapshot of your Amazon Aurora DB cluster. For more information,
see Creating a DB cluster snapshot (p. 495).

2. Create a new Aurora DB cluster by restoring from the DB cluster snapshot that you
just created. Be sure to retain the same DB parameter group for your restored DB
cluster as your original DB cluster. Doing this ensures that the copy of your DB cluster
has binary logging enabled. For more information, see Restoring from a DB cluster
snapshot (p. 497).

3. In the console, choose Databases and choose the primary instance (writer) for your
restored Aurora DB cluster to show its details. Scroll to Recent Events. An event
message shows that includes the binlog file name and position. The event message is
in the following format.

Binlog position from crash recovery is binlog-file-name binlog-position

Save the binlog file name and position values for when you start replication.

You can also get the binlog file name and position by calling the describe-events
command from the AWS CLI. The following shows an example describe-events
command with example output.

PROMPT> aws rds describe-events

{
 "Events": [
 {
 "EventCategories": [],
 "SourceType": "db-instance",
 "SourceArn": "arn:aws:rds:us-west-2:123456789012:db:sample-
restored-instance",
 "Date": "2016-10-28T19:43:46.862Z",
 "Message": "Binlog position from crash recovery is mysql-bin-
changelog.000003 4278",
 "SourceIdentifier": "sample-restored-instance"
 }
]
}

959

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-events.html

Amazon Aurora User Guide for Aurora
Replication between Aurora and MySQL or between Aurora

and another Aurora DB cluster (binary log replication)

Database
engine

Instructions

You can also get the binlog file name and position by checking the MySQL error log for
the last MySQL binlog file position.

4. If your replica target is an Aurora DB cluster owned by another AWS account, an
external MySQL database, or an RDS for MySQL DB instance, then you can't load the
data from an Amazon Aurora DB cluster snapshot. Instead, create a dump of your
Amazon Aurora DB cluster by connecting to your DB cluster using a MySQL client and
issuing the mysqldump command. Be sure to run the mysqldump command against
the copy of your Amazon Aurora DB cluster that you created. The following is an
example.

PROMPT> mysqldump --databases <database_name> --single-transaction
--order-by-primary -r backup.sql -u <local_user> -p

5. When you have finished creating the dump of your data from the newly created Aurora
DB cluster, delete that DB cluster as it is no longer needed.

RDS for
MySQL

To create a snapshot of an Amazon RDS DB instance

1. Create a read replica of your Amazon RDS DB instance. For more information, see
Creating a read replica in the Amazon Relational Database Service User Guide.

2. Connect to your read replica and stop replication by running the
mysql_rds_stop_replication procedure.

3. While the read replica is Stopped, Connect to the read replica and run the SHOW
SLAVE STATUS (Aurora MySQL version 1 and 2) or SHOW REPLICA STATUS
(Aurora MySQL version 3) command. Retrieve the current binary log file name
from the Relay_Master_Log_File field and the log file position from the
Exec_Master_Log_Pos field. Save these values for when you start replication.

4. While the read replica remains Stopped, create a DB snapshot of the read replica. For
more information, see Creating a DB snapshot in the Amazon Relational Database
Service User Guide.

5. Delete the read replica.

MySQL
(external)

To create a snapshot of an external MySQL database

1. Before you create a snapshot, you need to ensure that the binlog location for the
snapshot is current with the data in your source instance. To do this, you must first stop
any write operations to the instance with the following command:

mysql> FLUSH TABLES WITH READ LOCK;

2. Create a dump of your MySQL database using the mysqldump command as shown
following:

PROMPT> sudo mysqldump --databases <database_name> --master-data=2 --
single-transaction \
--order-by-primary -r backup.sql -u <local_user> -p

3. After you have created the snapshot, unlock the tables in your MySQL database with
the following command:

mysql> UNLOCK TABLES;

960

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html#USER_ReadRepl.Create
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_stop_replication.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html

Amazon Aurora User Guide for Aurora
Replication between Aurora and MySQL or between Aurora

and another Aurora DB cluster (binary log replication)

4. Load the snapshot into your replica target

If you plan to load data from a dump of a MySQL database that is external to Amazon RDS, then you
might want to create an EC2 instance to copy the dump files to, and then load the data into your
DB cluster or DB instance from that EC2 instance. Using this approach, you can compress the dump
file(s) before copying them to the EC2 instance in order to reduce the network costs associated with
copying data to Amazon RDS. You can also encrypt the dump file or files to secure the data as it is being
transferred across the network.

Find instructions on how to load the snapshot of your replication source into your replica target for your
database engine following.

Database
engine

Instructions

Aurora To load a snapshot into an Aurora MySQL DB cluster

• If the snapshot of your replication source is a DB cluster snapshot, then you can restore
from the DB cluster snapshot to create a new Aurora MySQL DB cluster as your replica
target. For more information, see Restoring from a DB cluster snapshot (p. 497).

• If the snapshot of your replication source is a DB snapshot, then you can migrate
the data from your DB snapshot into a new Aurora MySQL DB cluster. For more
information, see Migrating data to an Amazon Aurora DB cluster (p. 366).

• If the snapshot of your replication source is the output from the mysqldump command,
then follow these steps:
1. Copy the output of the mysqldump command from your replication source to a

location that can also connect to your Aurora MySQL DB cluster.
2. Connect to your Aurora MySQL DB cluster using the mysql command. The following

is an example.

PROMPT> mysql -h <host_name> -port=3306 -u <db_master_user> -p

3. At the mysql prompt, run the source command and pass it the name of your
database dump file to load the data into the Aurora MySQL DB cluster, for example:

mysql> source backup.sql;

RDS for
MySQL

To load a snapshot into an Amazon RDS DB instance

1. Copy the output of the mysqldump command from your replication source to a
location that can also connect to your MySQL DB instance.

2. Connect to your MySQL DB instance using the mysql command. The following is an
example.

PROMPT> mysql -h <host_name> -port=3306 -u <db_master_user> -p

3. At the mysql prompt, run the source command and pass it the name of your
database dump file to load the data into the MySQL DB instance, for example:

mysql> source backup.sql;

MySQL
(external)

To load a snapshot into an external MySQL database

You cannot load a DB snapshot or a DB cluster snapshot into an external MySQL
database. Instead, you must use the output from the mysqldump command.

961

Amazon Aurora User Guide for Aurora
Replication between Aurora and MySQL or between Aurora

and another Aurora DB cluster (binary log replication)

Database
engine

Instructions

1. Copy the output of the mysqldump command from your replication source to a
location that can also connect to your MySQL database.

2. Connect to your MySQL database using the mysql command. The following is an
example.

PROMPT> mysql -h <host_name> -port=3306 -u <db_master_user> -p

3. At the mysql prompt, run the source command and pass it the name of your
database dump file to load the data into your MySQL database. The following is an
example.

mysql> source backup.sql;

5. Turn on replication on your replica target

Before you turn on replication, we recommend that you take a manual snapshot of the Aurora MySQL
DB cluster or RDS for MySQL DB instance replica target. If a problem arises and you need to re-establish
replication with the DB cluster or DB instance replica target, you can restore the DB cluster or DB
instance from this snapshot instead of having to import the data into your replica target again.

Also, create a user ID that is used solely for replication. The following is an example.

mysql> CREATE USER 'repl_user'@'<domain_name>' IDENTIFIED BY '<password>';

The user requires the REPLICATION CLIENT and REPLICATION SLAVE privileges. Grant these
privileges to the user.

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'<domain_name>';

If you need to use encrypted replication, require SSL connections for the replication user. For example,
you can use one of the following statement to require SSL connections on the user account repl_user.

GRANT USAGE ON *.* TO 'repl_user'@'<domain_name>' REQUIRE SSL;

Note
If REQUIRE SSL isn't included, the replication connection might silently fall back to an
unencrypted connection.

Find instructions on how to turn on replication for your database engine following.

Database
engine

Instructions

Aurora To turn on replication from an Aurora MySQL DB cluster

1. If your DB cluster replica target was created from a DB cluster snapshot, then connect
to the DB cluster replica target and issue the SHOW MASTER STATUS command.
Retrieve the current binary log file name from the File field and the log file position
from the Position field.

If your DB cluster replica target was created from a DB snapshot, then you need the
binlog file and binlog position that are the starting place for replication. You retrieved

962

Amazon Aurora User Guide for Aurora
Replication between Aurora and MySQL or between Aurora

and another Aurora DB cluster (binary log replication)

Database
engine

Instructions

these values from the SHOW SLAVE STATUS (Aurora MySQL version 1 and 2) or SHOW
REPLICA STATUS (Aurora MySQL version 3) command when you created the snapshot
of your replication source.

2. Connect to the DB cluster and issue the mysql_rds_set_external_master (Aurora
MySQL version 1 and 2) mysql_rds_set_external_source (Aurora MySQL version 3
and higher) and mysql_rds_start_replication procedures to start replication with your
replication source using the binary log file name and location from the previous step.
The following is an example.

For Aurora MySQL version 1 and 2:
CALL mysql.rds_set_external_master ('mydbinstance.123456789012.us-
east-1.rds.amazonaws.com', 3306,
 'repl_user', '<password>', 'mysql-bin-changelog.000031', 107, 0);

For Aurora MySQL version 3 and higher:
CALL mysql.rds_set_external_source ('mydbinstance.123456789012.us-
east-1.rds.amazonaws.com', 3306,
 'repl_user', '<password>', 'mysql-bin-changelog.000031', 107, 0);

For all versions:
CALL mysql.rds_start_replication;

RDS for
MySQL

To turn on replication from an Amazon RDS DB instance

1. If your DB instance replica target was created from a DB snapshot, then you need the
binlog file and binlog position that are the starting place for replication. You retrieved
these values from the SHOW SLAVE STATUS (Aurora MySQL version 1 and 2) or SHOW
REPLICA STATUS (Aurora MySQL version 3) command when you created the snapshot
of your replication source.

2. Connect to the DB instance and issue the mysql_rds_set_external_master and
mysql_rds_start_replication procedures to start replication with your replication source
using the binary log file name and location from the previous step. The following is an
example.

For Aurora MySQL version 1 and 2:
CALL mysql.rds_set_external_master ('mydbcluster.cluster-123456789012.us-
east-1.rds.amazonaws.com', 3306,
 'repl_user', '<password>', 'mysql-bin-changelog.000031', 107, 0);

For Aurora MySQL version 3 and higher:
CALL mysql.rds_set_external_source ('mydbcluster.cluster-123456789012.us-
east-1.rds.amazonaws.com', 3306,
 'repl_user', '<password>', 'mysql-bin-changelog.000031', 107, 0);

For all versions:
CALL mysql.rds_start_replication;

963

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_set_external_master.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_set_external_source.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_start_replication.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_set_external_master.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_start_replication.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_start_replication.html

Amazon Aurora User Guide for Aurora
Replication between Aurora and MySQL or between Aurora

and another Aurora DB cluster (binary log replication)

Database
engine

Instructions

MySQL
(external)

To turn on replication from an external MySQL database

1. Retrieve the binlog file and binlog position that are the starting place for replication.
You retrieved these values from the SHOW SLAVE STATUS (Aurora MySQL version
1 and 2) or SHOW REPLICA STATUS (Aurora MySQL version 3) command when you
created the snapshot of your replication source. If your external MySQL replica target
was populated from the output of the mysqldump command with the --master-
data=2 option, then the binlog file and binlog position are included in the output. The
following is an example.

--
-- Position to start replication or point-in-time recovery from
--

-- CHANGE MASTER TO MASTER_LOG_FILE='mysql-bin-changelog.000031',
 MASTER_LOG_POS=107;

2. Connect to the external MySQL replica target, and issue CHANGE MASTER TO and
START SLAVE (Aurora MySQL version 1 and 2) or START REPLICA (Aurora MySQL
version 3) to start replication with your replication source using the binary log file
name and location from the previous step, for example:

CHANGE MASTER TO
 MASTER_HOST = 'mydbcluster.cluster-123456789012.us-
east-1.rds.amazonaws.com',
 MASTER_PORT = 3306,
 MASTER_USER = 'repl_user',
 MASTER_PASSWORD = '<password>',
 MASTER_LOG_FILE = 'mysql-bin-changelog.000031',
 MASTER_LOG_POS = 107;
-- And one of these statements depending on your engine version:
START SLAVE; -- Aurora MySQL version 1 and 2
START REPLICA; -- Aurora MySQL version 3

If replication fails, it can result in a large increase in unintentional I/O on the replica,
which can degrade performance. If replication fails or is no longer needed, you can run the
mysql.rds_reset_external_master stored procedure to remove the replication configuration.

6. Monitor your replica

When you set up MySQL replication with an Aurora MySQL DB cluster, you must monitor failover events
for the Aurora MySQL DB cluster when it is the replica target. If a failover occurs, then the DB cluster that
is your replica target might be recreated on a new host with a different network address. For information
on how to monitor failover events, see Using Amazon RDS event notification (p. 696).

You can also monitor how far the replica target is behind the replication source by connecting to the
replica target and running the SHOW SLAVE STATUS (Aurora MySQL version 1 and 2) or SHOW REPLICA
STATUS (Aurora MySQL version 3) command. In the command output, the Seconds Behind Master
field tells you how far the replica target is behind the source.

964

Amazon Aurora User Guide for Aurora
Replication between Aurora and MySQL or between Aurora

and another Aurora DB cluster (binary log replication)

Stopping replication between Aurora and MySQL or between
Aurora and another Aurora DB cluster
To stop binary log replication with a MySQL DB instance, external MySQL database, or another Aurora DB
cluster, follow these steps, discussed in detail following in this topic.

1. Stop binary log replication on the replica target (p. 965)

2. Turn off binary logging on the replication source (p. 965)

1. Stop binary log replication on the replica target

Find instructions on how to stop binary log replication for your database engine following.

Database
engine

Instructions

Aurora To stop binary log replication on an Aurora MySQL DB cluster replica target

Connect to the Aurora DB cluster that is the replica target, and call the
mysql_rds_stop_replication procedure.

RDS for
MySQL

To stop binary log replication on an Amazon RDS DB instance

Connect to the RDS DB instance that is the replica target and call the
mysql_rds_stop_replication procedure. The mysql.rds_stop_replication procedure
is only available for MySQL versions 5.5 and later, 5.6 and later, and 5.7 and later.

MySQL
(external)

To stop binary log replication on an external MySQL database

Connect to the MySQL database and call the STOP REPLICATION command.

2. Turn off binary logging on the replication source

Find instructions on how to turn off binary logging on the replication source for your database engine
following.

Database
engine

Instructions

Aurora To turn off binary logging on an Amazon Aurora DB cluster

1. Connect to the Aurora DB cluster that is the replication source, and set the binary
log retention time frame to 0. To set the binary log retention time frame, use the
mysql_rds_set_configuration procedure and specify a configuration parameter of
'binlog retention hours' along with the number of hours to retain binlog files on
the DB cluster, in this case 0, as shown in the following example.

CALL mysql.rds_set_configuration('binlog retention hours', 0);

2. Set the binlog_format parameter to OFF on the replication source. The
binlog_format parameter is a cluster-level parameter that is in the default cluster
parameter group.

After you have changed the binlog_format parameter value, reboot your DB cluster
for the change to take effect.

965

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_stop_replication.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_stop_replication.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_stop_replication.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_stop_replication.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_set_configuration.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_set_configuration.html

Amazon Aurora User Guide for Aurora
Replication between Aurora and MySQL or between Aurora

and another Aurora DB cluster (binary log replication)

Database
engine

Instructions

For more information, see Amazon Aurora DB cluster and DB instance
parameters (p. 341) and Modifying parameters in a DB parameter group (p. 347).

RDS for
MySQL

To turn off binary logging on an Amazon RDS DB instance

You can't turn off binary logging directly for an Amazon RDS DB instance, but you can
turn it off by doing the following:

1. Turn off automated backups for the DB instance. You can turn off automated backups
by modifying an existing DB instance and setting the Backup Retention Period to 0.
For more information, see Modifying an Amazon RDS DB instance and Working with
backups in the Amazon Relational Database Service User Guide.

2. Delete all read replicas for the DB instance. For more information, see Working
with read replicas of MariaDB, MySQL, and PostgreSQL DB instances in the Amazon
Relational Database Service User Guide.

MySQL
(external)

To turn off binary logging on an external MySQL database

Connect to the MySQL database and call the STOP REPLICATION command.

1. From a command shell, stop the mysqld service,

sudo service mysqld stop

2. Edit the my.cnf file (this file is usually under /etc).

sudo vi /etc/my.cnf

Delete the log_bin and server_id options from the [mysqld] section.

For more information, see Setting the replication source configuration in the MySQL
documentation.

3. Start the mysql service.

sudo service mysqld start

Using Amazon Aurora to scale reads for your MySQL database

You can use Amazon Aurora with your MySQL DB instance to take advantage of the read scaling
capabilities of Amazon Aurora and expand the read workload for your MySQL DB instance. To use Aurora
to read scale your MySQL DB instance, create an Amazon Aurora MySQL DB cluster and make it a read
replica of your MySQL DB instance. This applies to an RDS for MySQL DB instance, or a MySQL database
running external to Amazon RDS.

For information on creating an Amazon Aurora DB cluster, see Creating an Amazon Aurora DB
cluster (p. 125).

When you set up replication between your MySQL DB instance and your Amazon Aurora DB cluster, be
sure to follow these guidelines:

966

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.DBInstance.Modifying.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithAutomatedBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithAutomatedBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
http://dev.mysql.com/doc/refman/8.0/en/replication-howto-masterbaseconfig.html

Amazon Aurora User Guide for Aurora
Replication between Aurora and MySQL or between Aurora

and another Aurora DB cluster (binary log replication)

• Use the Amazon Aurora DB cluster endpoint address when you reference your Amazon Aurora MySQL
DB cluster. If a failover occurs, then the Aurora Replica that is promoted to the primary instance for the
Aurora MySQL DB cluster continues to use the DB cluster endpoint address.

• Maintain the binlogs on your writer instance until you have verified that they have been applied to the
Aurora Replica. This maintenance ensures that you can restore your writer instance in the event of a
failure.

Important
When using self-managed replication, you're responsible for monitoring and resolving any
replication issues that may occur. For more information, see Diagnosing and resolving lag
between read replicas (p. 1831).

Note
The permissions required to start replication on an Amazon Aurora MySQL DB cluster are
restricted and not available to your Amazon RDS master user. Because of this, you must use the
Amazon RDS mysql_rds_set_external_master and mysql_rds_start_replication procedures to
set up replication between your Amazon Aurora MySQL DB cluster and your MySQL DB instance.

Start replication between an external source instance and a MySQL DB instance
on Amazon RDS

1. Make the source MySQL DB instance read-only:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SET GLOBAL read_only = ON;

2. Run the SHOW MASTER STATUS command on the source MySQL DB instance to determine the binlog
location. You receive output similar to the following example:

File Position

 mysql-bin-changelog.000031 107

3. Copy the database from the external MySQL DB instance to the Amazon Aurora MySQL DB cluster
using mysqldump. For very large databases, you might want to use the procedure in Importing data
to a MySQL or MariaDB DB instance with reduced downtime in the Amazon Relational Database
Service User Guide.

For Linux, macOS, or Unix:

mysqldump \
 --databases <database_name> \
 --single-transaction \
 --compress \
 --order-by-primary \
 -u <local_user> \
 -p <local_password> | mysql \
 --host aurora_cluster_endpoint_address \
 --port 3306 \
 -u <RDS_user_name> \
 -p <RDS_password>

For Windows:

mysqldump ^
 --databases <database_name> ^
 --single-transaction ^

967

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_set_external_master.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_start_replication.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.NonRDSRepl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.NonRDSRepl.html

Amazon Aurora User Guide for Aurora
Replication between Aurora and MySQL or between Aurora

and another Aurora DB cluster (binary log replication)

 --compress ^
 --order-by-primary ^
 -u <local_user> ^
 -p <local_password> | mysql ^
 --host aurora_cluster_endpoint_address ^
 --port 3306 ^
 -u <RDS_user_name> ^
 -p <RDS_password>

Note
Make sure that there is not a space between the -p option and the entered password.

Use the --host, --user (-u), --port and -p options in the mysql command to specify
the hostname, user name, port, and password to connect to your Aurora DB cluster. The
host name is the DNS name from the Amazon Aurora DB cluster endpoint, for example,
mydbcluster.cluster-123456789012.us-east-1.rds.amazonaws.com. You can find the
endpoint value in the cluster details in the Amazon RDS Management Console.

4. Make the source MySQL DB instance writeable again:

mysql> SET GLOBAL read_only = OFF;
mysql> UNLOCK TABLES;

For more information on making backups for use with replication, see Backing up a source or replica
by making it read only in the MySQL documentation.

5. In the Amazon RDS Management Console, add the IP address of the server that hosts the source
MySQL database to the VPC security group for the Amazon Aurora DB cluster. For more information
on modifying a VPC security group, see Security groups for your VPC in the Amazon Virtual Private
Cloud User Guide.

You might also need to configure your local network to permit connections from the IP address of
your Amazon Aurora DB cluster, so that it can communicate with your source MySQL instance. To find
the IP address of the Amazon Aurora DB cluster, use the host command.

host <aurora_endpoint_address>

The host name is the DNS name from the Amazon Aurora DB cluster endpoint.

6. Using the client of your choice, connect to the external MySQL instance and create a MySQL user to be
used for replication. This account is used solely for replication and must be restricted to your domain
to improve security. The following is an example.

CREATE USER 'repl_user'@'mydomain.com' IDENTIFIED BY '<password>';

7. For the external MySQL instance, grant REPLICATION CLIENT and REPLICATION SLAVE privileges
to your replication user. For example, to grant the REPLICATION CLIENT and REPLICATION SLAVE
privileges on all databases for the 'repl_user' user for your domain, issue the following command.

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'mydomain.com'
 IDENTIFIED BY '<password>';

8. Take a manual snapshot of the Aurora MySQL DB cluster to be the read replica before setting up
replication. If you need to reestablish replication with the DB cluster as a read replica, you can restore
the Aurora MySQL DB cluster from this snapshot instead of having to import the data from your
MySQL DB instance into a new Aurora MySQL DB cluster.

9. Make the Amazon Aurora DB cluster the replica. Connect to the Amazon Aurora DB cluster as
the master user and identify the source MySQL database as the replication master by using the

968

http://dev.mysql.com/doc/refman/8.0/en/replication-solutions-backups-read-only.html
http://dev.mysql.com/doc/refman/8.0/en/replication-solutions-backups-read-only.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_set_external_master.html

Amazon Aurora User Guide for Aurora
Replication between Aurora and MySQL or between Aurora

and another Aurora DB cluster (binary log replication)

mysql_rds_set_external_master procedure. Use the master log file name and master log position that
you determined in Step 2. The following is an example.

For Aurora MySQL version 1 and 2:
CALL mysql.rds_set_external_master ('mymasterserver.mydomain.com', 3306,
 'repl_user', '<password>', 'mysql-bin-changelog.000031', 107, 0);

For Aurora MySQL version 3 and higher:
CALL mysql.rds_set_external_source ('mymasterserver.mydomain.com', 3306,
 'repl_user', '<password>', 'mysql-bin-changelog.000031', 107, 0);

10.On the Amazon Aurora DB cluster, issue the mysql_rds_start_replication procedure to start
replication.

CALL mysql.rds_start_replication;

After you have established replication between your source MySQL DB instance and your Amazon Aurora
DB cluster, you can add Aurora Replicas to your Amazon Aurora DB cluster. You can then connect to
the Aurora Replicas to read scale your data. For information on creating an Aurora Replica, see Adding
Aurora Replicas to a DB cluster (p. 392).

Optimizing binary log replication
Following, you can learn how to optimize binary log replication performance and troubleshoot related
issues in Aurora MySQL.

Tip
This discussion presumes that you are familiar with the MySQL binary log replication mechanism
and how it works. For background information, see Replication Implementation in the MySQL
documentation.

Multithreaded binary log replication (Aurora MySQL version 3 and higher)

With multithreaded binary log replication, a SQL thread reads events from the relay log and queues
them up for SQL worker threads to apply. The SQL worker threads are managed by a coordinator thread.
The binary log events are applied in parallel when possible.

When an Aurora MySQL instance is configured to use binary log replication, by default the replica
instance uses single-threaded replication. To enable multithreaded replication, you update the
replica_parallel_workers parameter to a value greater than zero in your custom parameter group.

The following configuration options help you to fine-tune multithreaded replication. For usage
information, see Replication and Binary Logging Options and Variables in the MySQL Reference Manual.

Optimal configuration depends on several factors. For example, performance for binary log replication
is influenced by your database workload characteristics and the DB instance class the replica is running
on. Thus, we recommend that you thoroughly test all changes to these configuration parameters before
applying new parameter settings to a production instance.

• replica_parallel_workers

• replica_parallel_type

• replica_preserve_commit_order

• binlog_transaction_dependency_tracking

• binlog_transaction_dependency_history_size

• binlog_group_commit_sync_delay

• binlog_group_commit_sync_no_delay_count

969

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_set_external_master.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_start_replication.html
https://dev.mysql.com/doc/refman/8.0/en/replication-implementation.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html

Amazon Aurora User Guide for Aurora
Replication between Aurora and MySQL or between Aurora

and another Aurora DB cluster (binary log replication)

Optimizing binlog replication (Aurora MySQL 2.10 and higher)

In Aurora MySQL 2.10 and higher, Aurora automatically applies an optimization known as the binlog I/O
cache to binary log replication. By caching the most recently committed binlog events, this optimization
is designed to improve binlog dump thread performance while limiting the impact to foreground
transactions on the binlog source instance.

Note
This memory used for this feature is independent of the MySQL binlog_cache setting.
This feature doesn't apply to Aurora DB instances that use the db.t2 and db.t3 instance
classes.

You don't need to adjust any configuration parameters to turn on this optimization. In particular, if
you adjust the configuration parameter aurora_binlog_replication_max_yield_seconds to a
nonzero value in earlier Aurora MySQL versions, set it back to zero for Aurora MySQL 2.10 and higher.

The status variables aurora_binlog_io_cache_reads and
aurora_binlog_io_cache_read_requests are available in Aurora MySQL 2.10 and higher. These
status variables help you to monitor how often the data is read from the binlog I/O cache.

• aurora_binlog_io_cache_read_requests shows the number of binlog I/O read requests from
the cache.

• aurora_binlog_io_cache_reads shows the number of binlog I/O reads that retrieve information
from the cache.

The following SQL query computes the percentage of binlog read requests that take advantage of the
cached information. In this case, the closer the ratio is to 100, the better it is.

mysql> SELECT
 (SELECT VARIABLE_VALUE FROM INFORMATION_SCHEMA.GLOBAL_STATUS
 WHERE VARIABLE_NAME='aurora_binlog_io_cache_reads')
 / (SELECT VARIABLE_VALUE FROM INFORMATION_SCHEMA.GLOBAL_STATUS
 WHERE VARIABLE_NAME='aurora_binlog_io_cache_read_requests')
 * 100
 as binlog_io_cache_hit_ratio;
+---------------------------+
| binlog_io_cache_hit_ratio |
+---------------------------+
| 99.99847949080622 |
+---------------------------+

The binlog I/O cache feature also includes new metrics related to the binlog dump threads. Dump
threads are the threads that are created when new binlog replicas are connected to the binlog source
instance.

The dump thread metrics are printed to the database log every 60 seconds with the prefix [Dump
thread metrics]. The metrics include information for each binlog replica such as Secondary_id,
Secondary_uuid, binlog file name, and the position that each replica is reading. The metrics also
include Bytes_behind_primary representing the distance in bytes between replication source and
replica. This metric measures the lag of the replica I/O thread. That figure is different from the lag of the
replica SQL applier thread, which is represented by the seconds_behind_master metric on the binlog
replica. You can determine whether binlog replicas are catching up to the source or falling behind by
checking whether the distance decreases or increases.

Optimizing binlog replication (Aurora MySQL 2.04.5 through 2.09)

To optimize binary log replication for Aurora MySQL, you adjust the following cluster-level optimization
parameters. These parameters help you to specify the right balance between latency on the binlog
source instance and replication lag.

970

Amazon Aurora User Guide for Aurora
Replication between Aurora and MySQL or between Aurora

and another Aurora DB cluster (binary log replication)

• aurora_binlog_use_large_read_buffer

• aurora_binlog_read_buffer_size

• aurora_binlog_replication_max_yield_seconds

Note
For MySQL 5.7-compatible clusters, you can use these parameters in Aurora MySQL version
2.04.5 through 2.09.*. In Aurora MySQL 2.10.0 and higher, these parameters are superseded by
the binlog I/O cache optimization and you don't need to use them.
For MySQL 5.6-compatible clusters, you can use these parameters in Aurora MySQL version
1.17.6 and later.

Topics

• Overview of the large read buffer and max-yield optimizations (p. 971)

• Related parameters (p. 972)

• Enabling the max-yield mechanism for binary log replication (p. 973)

• Turning off the binary log replication max-yield optimization (p. 974)

• Turning off the large read buffer (p. 974)

Overview of the large read buffer and max-yield optimizations

You might experience reduced binary log replication performance when the binary log dump
thread accesses the Aurora cluster volume while the cluster processes a high number of
transactions. You can use the parameters aurora_binlog_use_large_read_buffer,
aurora_binlog_replication_max_yield_seconds, and aurora_binlog_read_buffer_size to
help minimize this type of contention.

Suppose that you have a situation where aurora_binlog_replication_max_yield_seconds
is set to greater than 0 and the current binlog file of the dump thread is active. In this case, the
binary log dump thread waits up to a specified number of seconds for the current binlog file
to be filled by transactions. This wait period avoids contention that can arise from replicating
each binlog event individually. However, doing so increases the replica lag for binary log
replicas. Those replicas can fall behind the source by the same number of seconds as the
aurora_binlog_replication_max_yield_seconds setting.

The current binlog file means the binlog file that the dump thread is currently reading to perform
replication. We consider that a binlog file is active when the binlog file is updating or open to be updated
by incoming transactions. After Aurora MySQL fills up the active binlog file, MySQL creates and switches
to a new binlog file. The old binlog file becomes inactive. It isn't updated by incoming transactions any
longer.

Note
Before adjusting these parameters, measure your transaction latency and throughput over time.
You might find that binary log replication performance is stable and has low latency even if
there is occasional contention.

aurora_binlog_use_large_read_buffer

If this parameter is set to 1, Aurora MySQL optimizes binary log replication
based on the settings of the parameters aurora_binlog_read_buffer_size
and aurora_binlog_replication_max_yield_seconds. If
aurora_binlog_use_large_read_buffer is 0, Aurora MySQL
ignores the values of the aurora_binlog_read_buffer_size and
aurora_binlog_replication_max_yield_seconds parameters.

971

Amazon Aurora User Guide for Aurora
Replication between Aurora and MySQL or between Aurora

and another Aurora DB cluster (binary log replication)

aurora_binlog_read_buffer_size

Binary log dump threads with larger read buffer minimize the number of read I/O operations by
reading more events for each I/O. The parameter aurora_binlog_read_buffer_size sets the
read buffer size. The large read buffer can reduce binary log contention for workloads that generate
a large amount of binlog data.

Note
This parameter only has an effect when the cluster also has the setting
aurora_binlog_use_large_read_buffer=1.
Increasing the size of the read buffer doesn't affect the performance of binary log
replication. Binary log dump threads don't wait for updating transactions to fill up the read
buffer.

aurora_binlog_replication_max_yield_seconds

If your workload requires low transaction latency, and you can tolerate some replication lag, you can
increase the aurora_binlog_replication_max_yield_seconds parameter. This parameter
controls the maximum yield property of binary log replication in your cluster.

Note
This parameter only has an effect when the cluster also has the setting
aurora_binlog_use_large_read_buffer=1.

Aurora MySQL recognizes any change to the aurora_binlog_replication_max_yield_seconds
parameter value immediately. You don't need to restart the DB instance. However, when you turn on this
setting, the dump thread only starts to yield when the current binlog file reaches its maximum size of
128 MB and is rotated to a new file.

Related parameters

Use the following DB cluster parameters to turn on the binlog optimization.

Binlog optimization parameters for Aurora MySQL version 2.04.5 and later

Parameter Default Valid Values Description

aurora_binlog_use_large_read_buffer1 0, 1 Switch for turning
on the feature
of replication
improvement. When
it is 1, the binary log
dump thread uses
aurora_binlog_read_buffer_size
for binary log
replication; otherwise
default buffer size (8K)
is used.

aurora_binlog_read_buffer_size5242880 8192-536870912 Read buffer size used by
binary log dump thread
when the parameter
aurora_binlog_use_large_read_buffer
is set to 1.

aurora_binlog_replication_max_yield_seconds0 0-36000 For Aurora MySQL
versions 2.04.5–2.04.8
and 2.05–2.08.*, the
maximum accepted
value is 45. You can
tune it to a higher

972

Amazon Aurora User Guide for Aurora
Replication between Aurora and MySQL or between Aurora

and another Aurora DB cluster (binary log replication)

Parameter Default Valid Values Description

value on 2.04.9 and
later versions of 2.04.*,
and on 2.09 and
later versions. This
parameter works only
when the parameter
aurora_binlog_use_large_read_buffer
is set to 1.

Binlog optimization parameters for Aurora MySQL version 1.17.6 and later

Parameter Default Valid Values Description

aurora_binlog_use_large_read_buffer0 0, 1 Switch for turning
on the feature
of replication
improvement. When
it is 1, the binary log
dump thread uses
aurora_binlog_read_buffer_size
for binary log
replication. Otherwise,
the default buffer size
(8 KB) is used.

aurora_binlog_read_buffer_size5242880 8192-536870912 Read buffer size used by
binary log dump thread
when the parameter
aurora_binlog_use_large_read_buffer
is set to 1.

aurora_binlog_replication_max_yield_seconds0 0-36000 Maximum seconds
to yield when the
binary log dump thread
replicates the current
binlog file (the file
used by foreground
queries) to replicas. This
parameter works only
when the parameter
aurora_binlog_use_large_read_buffer
is set to 1.

Enabling the max-yield mechanism for binary log replication

You can turn on the binary log replication max-yield optimization as follows. Doing so minimizes latency
for transactions on the binlog source instance. However, you might experience higher replication lag.

To turn on the max-yield binlog optimization for an Aurora MySQL cluster

1. Create or edit a DB cluster parameter group using the following parameter settings:

• aurora_binlog_use_large_read_buffer: turn on with a value of ON or 1.

• aurora_binlog_replication_max_yield_seconds: specify a value greater than 0.

973

Amazon Aurora User Guide for Aurora
Replication between Aurora and MySQL or between Aurora

and another Aurora DB cluster (binary log replication)

2. Associate the DB cluster parameter group with the Aurora MySQL cluster that works as the binlog
source. To do so, follow the procedures in Working with DB parameter groups and DB cluster
parameter groups (p. 339).

3. Confirm that the parameter change takes effect. To do so, run the following query on the binlog
source instance.

SELECT @@aurora_binlog_use_large_read_buffer,
 @@aurora_binlog_replication_max_yield_seconds;

Your output should be similar to the following.

+---------------------------------------
+---+
| @@aurora_binlog_use_large_read_buffer | @@aurora_binlog_replication_max_yield_seconds
 |
+---------------------------------------
+---+
| 1 | 45
 |
+---------------------------------------
+---+

Turning off the binary log replication max-yield optimization

You can turn off the binary log replication max-yield optimization as follows. Doing so minimizes
replication lag. However, you might experience higher latency for transactions on the binlog source
instance.

To turn off the max-yield optimization for an Aurora MySQL cluster

1. Make sure that the DB cluster parameter group associated with the Aurora MySQL cluster has
aurora_binlog_replication_max_yield_seconds set to 0. For more information about
setting configuration parameters using parameter groups, see Working with DB parameter groups
and DB cluster parameter groups (p. 339).

2. Confirm that the parameter change takes effect. To do so, run the following query on the binlog
source instance.

SELECT @@aurora_binlog_replication_max_yield_seconds;

Your output should be similar to the following.

+---+
| @@aurora_binlog_replication_max_yield_seconds |
+---+
| 0 |
+---+

Turning off the large read buffer

You can turn off the entire large read buffer feature as follows.

To turn off the large binary log read buffer for an Aurora MySQL cluster

1. Reset the aurora_binlog_use_large_read_buffer to OFF or 0.

974

Amazon Aurora User Guide for Aurora
Using GTID-based replication

Make sure that the DB cluster parameter group associated with the Aurora MySQL cluster has
aurora_binlog_use_large_read_buffer set to 0. For more information about setting
configuration parameters using parameter groups, see Working with DB parameter groups and DB
cluster parameter groups (p. 339).

2. On the binlog source instance, run the following query.

SELECT @@ aurora_binlog_use_large_read_buffer;

Your output should be similar to the following.

+---------------------------------------+
| @@aurora_binlog_use_large_read_buffer |
+---------------------------------------+
| 0 |
+---------------------------------------+

Synchronizing passwords between replication source and target

When you change user accounts and passwords on the replication source using SQL statements, those
changes are replicated to the replication target automatically.

If you use the AWS Management Console, the AWS CLI, or the RDS API to change the master password
on the replication source, those changes are not automatically replicated to the replication target. If you
want to synchronize the master user and master password between the source and target systems, you
must make the same change on the replication target yourself.

Using GTID-based replication for Aurora MySQL
Following, you can learn how to use global transaction identifiers (GTIDs) with binary log (binlog)
replication between an Aurora MySQL cluster and an external source.

Note
For Aurora, you can only use this feature with Aurora MySQL clusters that use binlog replication
to or from an external MySQL database. The other database might be an Amazon RDS MySQL
instance, an on-premises MySQL database, or an Aurora DB cluster in a different AWS Region. To
learn how to configure that kind of replication, see Replication between Aurora and MySQL or
between Aurora and another Aurora DB cluster (binary log replication) (p. 953).

If you use binlog replication and aren't familiar with GTID-based replication with MySQL, see Replication
with global transaction identifiers in the MySQL documentation for background.

GTID-based replication is supported for MySQL 5.7-compatible clusters in Aurora MySQL version 2.04
and higher. GTID-based replication isn't supported for MySQL 5.6-compatible clusters in Aurora MySQL
version 1.

Topics

• Overview of global transaction identifiers (GTIDs) (p. 976)

• Parameters for GTID-based replication (p. 976)

• Configuring GTID-based replication for an Aurora MySQL cluster (p. 977)

• Disabling GTID-based replication for an Aurora MySQL DB cluster (p. 978)

975

https://dev.mysql.com/doc/refman/5.7/en/replication-gtids.html
https://dev.mysql.com/doc/refman/5.7/en/replication-gtids.html

Amazon Aurora User Guide for Aurora
Using GTID-based replication

Overview of global transaction identifiers (GTIDs)
Global transaction identifiers (GTIDs) are unique identifiers generated for committed MySQL transactions.
You can use GTIDs to make binlog replication simpler and easier to troubleshoot.

Note
When Aurora synchronizes data among the DB instances in a cluster, that replication mechanism
doesn't involve the binary log (binlog). For Aurora MySQL, GTID-based replication only applies
when you also use binlog replication to replicate into or out of an Aurora MySQL DB cluster
from an external MySQL-compatible database.

MySQL uses two different types of transactions for binlog replication:

• GTID transactions – Transactions that are identified by a GTID.
• Anonymous transactions – Transactions that don't have a GTID assigned.

In a replication configuration, GTIDs are unique across all DB instances. GTIDs simplify replication
configuration because when you use them, you don't have to refer to log file positions. GTIDs also make
it easier to track replicated transactions and determine whether the source instance and replicas are
consistent.

You typically use GTID-based replication with Aurora when replicating from an external MySQL-
compatible database into an Aurora cluster. You can set up this replication configuration as part of a
migration from an on-premises or Amazon RDS database into Aurora MySQL. If the external database
already uses GTIDs, enabling GTID-based replication for the Aurora cluster simplifies the replication
process.

You configure GTID-based replication for an Aurora MySQL cluster by first setting the relevant
configuration parameters in a DB cluster parameter group. You then associate that parameter group with
the cluster.

Parameters for GTID-based replication
Use the following parameters to configure GTID-based replication.

Parameter Valid values Description

gtid_mode OFF, OFF_PERMISSIVE,
ON_PERMISSIVE, ON

OFF specifies that new transactions are anonymous
transactions (that is, don't have GTIDs), and a
transaction must be anonymous to be replicated.

OFF_PERMISSIVE specifies that new transactions
are anonymous transactions, but all transactions
can be replicated.

ON_PERMISSIVE specifies that new transactions
are GTID transactions, but all transactions can be
replicated.

ON specifies that new transactions are GTID
transactions, and a transaction must be a GTID
transaction to be replicated.

enforce_gtid_consistencyOFF, ON, WARN OFF allows transactions to violate GTID
consistency.

ON prevents transactions from violating GTID
consistency.

976

Amazon Aurora User Guide for Aurora
Using GTID-based replication

Parameter Valid values Description

WARN allows transactions to violate GTID
consistency but generates a warning when a
violation occurs.

Note
In the AWS Management Console, the gtid_mode parameter appears as gtid-mode.

For GTID-based replication, use these settings for the DB cluster parameter group for your Aurora MySQL
DB cluster:

• ON and ON_PERMISSIVE apply only to outgoing replication from an RDS DB instance or Aurora
MySQL cluster. Both of these values cause your RDS DB instance or Aurora DB cluster to use GTIDs for
transactions that are replicated to an external database. ON requires that the external database also
use GTID-based replication. ON_PERMISSIVE makes GTID-based replication optional on the external
database.

• OFF_PERMISSIVE, if set, means that your RDS DB instances or Aurora DB cluster can accept incoming
replication from an external database. It can do this whether the external database uses GTID-based
replication or not.

• OFF, if set, means that your RDS DB instances or Aurora DB cluster only accept incoming replication
from external databases that don't use GTID-based replication.

Tip
Incoming replication is the most common binlog replication scenario for Aurora MySQL clusters.
For incoming replication, we recommend that you set the GTID mode to OFF_PERMISSIVE. That
setting allows incoming replication from external databases regardless of the GTID settings at
the replication source.

For more information about parameter groups, see Working with DB parameter groups and DB cluster
parameter groups (p. 339).

Configuring GTID-based replication for an Aurora MySQL cluster

When GTID-based replication is enabled for an Aurora MySQL DB cluster, the GTID settings apply to both
inbound and outbound binlog replication.

To enable GTID-based replication for an Aurora MySQL cluster

1. Create or edit a DB cluster parameter group using the following parameter settings:

• gtid_mode – ON or ON_PERMISSIVE

• enforce_gtid_consistency – ON

2. Associate the DB cluster parameter group with the Aurora MySQL cluster. To do so, follow the
procedures in Working with DB parameter groups and DB cluster parameter groups (p. 339).

3. In Aurora MySQL version 3 and higher, optionally specify how to assign GTIDs
to transactions that don't include them. To do so, call the stored procedure in
mysql.rds_assign_gtids_to_anonymous_transactions (Aurora MySQL version 3 and higher) (p. 1097).

977

Amazon Aurora User Guide for Aurora
Using GTID-based replication

Disabling GTID-based replication for an Aurora MySQL DB
cluster

You can disable GTID-based replication for an Aurora MySQL DB cluster. Doing so means that the Aurora
cluster can't perform inbound or outbound binlog replication with external databases that use GTID-
based replication.

Note
In the following procedure, read replica means the replication target in an Aurora configuration
with binlog replication to or from an external database. It doesn't mean the read-only Aurora
Replica DB instances. For example, when an Aurora cluster accepts incoming replication from an
external source, the Aurora primary instance acts as the read replica for binlog replication.

For more details about the stored procedures mentioned in this section, see Aurora MySQL stored
procedures (p. 1097).

To disable GTID-based replication for an Aurora MySQL DB cluster

1. On the Aurora primary instance, run the following procedure.

CALL mysql.rds_set_master_auto_position(0); (Aurora MySQL version 1 and 2)
CALL mysql.rds_set_source_auto_position(0); (Aurora MySQL version 3 and higher)

2. Reset the gtid_mode to ON_PERMISSIVE.

a. Make sure that the DB cluster parameter group associated with the Aurora MySQL cluster has
gtid_mode set to ON_PERMISSIVE.

For more information about setting configuration parameters using parameter groups, see
Working with DB parameter groups and DB cluster parameter groups (p. 339).

b. Restart the Aurora MySQL DB cluster.

3. Reset the gtid_mode to OFF_PERMISSIVE:

a. Make sure that the DB cluster parameter group associated with the Aurora MySQL cluster has
gtid_mode set to OFF_PERMISSIVE.

b. Restart the Aurora MySQL DB cluster.

4. a. On the Aurora primary instance, run the SHOW MASTER STATUS command.

Your output should be similar to the following.

File Position

mysql-bin-changelog.000031 107

Note the file and position in your output.

b. On each read replica, use the file and position information from its source instance in the
previous step to run the following query.

SELECT MASTER_POS_WAIT('file', position);

For example, if the file name is mysql-bin-changelog.000031 and the position is 107, run
the following statement.

978

Amazon Aurora User Guide for Aurora
Working with multi-master clusters

SELECT MASTER_POS_WAIT('mysql-bin-changelog.000031', 107);

If the read replica is past the specified position, the query returns immediately. Otherwise, the
function waits. When the query returns for all read replicas, go to the next step.

5. Reset the GTID parameters to disable GTID-based replication:

a. Make sure that the DB cluster parameter group associated with the Aurora MySQL cluster has
the following parameter settings:

• gtid_mode – OFF
• enforce_gtid_consistency – OFF

b. Restart the Aurora MySQL DB cluster.

Working with Aurora multi-master clusters
Following, you can learn about Aurora multi-master clusters. In a multi-master cluster, all DB instances
have read/write capability. Multi-master clusters have different availability characteristics, support for
database features, and procedures for monitoring and troubleshooting than single-master clusters.

Topics
• Overview of Aurora multi-master clusters (p. 979)
• Creating an Aurora multi-master cluster (p. 984)
• Managing Aurora multi-master clusters (p. 990)
• Application considerations for Aurora multi-master clusters (p. 993)
• Performance considerations for Aurora multi-master clusters (p. 1002)
• Approaches to Aurora multi-master clusters (p. 1004)

Overview of Aurora multi-master clusters
Use the following background information to help you choose a multi-master or single-master cluster
when you set up a new Aurora cluster. For you to make an informed choice, we recommend that you first
understand how you plan to adapt your schema design and application logic to work best with a multi-
master cluster.

For each new Amazon Aurora cluster, you can choose whether to create a single-master or multi-master
cluster.

Most kinds of Aurora clusters are single-master clusters. For example, provisioned, Aurora Serverless,
parallel query, and Global Database clusters are all single-master clusters. In a single-master cluster, a
single DB instance performs all write operations and any other DB instances are read-only. If the writer
DB instance becomes unavailable, a failover mechanism promotes one of the read-only instances to be
the new writer.

In a multi-master cluster, all DB instances can perform write operations. The notions of a single read/
write primary instance and multiple read-only Aurora Replicas don't apply. There isn't any failover when
a writer DB instance becomes unavailable, because another writer DB instance is immediately available
to take over the work of the failed instance. We refer to this type of availability as continuous availability,
to distinguish it from the high availability (with brief downtime during failover) offered by a single-
master cluster.

Multi-master clusters work differently in many ways from the other kinds of Aurora clusters, such as
provisioned, Aurora Serverless, and parallel query clusters. With multi-master clusters, you consider

979

Amazon Aurora User Guide for Aurora
Overview of multi-master clusters

different factors in areas such as high availability, monitoring, connection management, and database
features. For example, in applications where you can't afford even brief downtime for database write
operations, a multi-master cluster can help to avoid an outage when a writer instance becomes
unavailable. The multi-master cluster doesn't use the failover mechanism, because it doesn't need to
promote another DB instance to have read/write capability. With a multi-master cluster, you examine
metrics related to DML throughput, latency, and deadlocks for all DB instances instead of a single
primary instance.

Currently, multi-master clusters require Aurora MySQL version 1, which is compatible with MySQL 5.6.
When specifying the DB engine version in the AWS Management Console, AWS CLI, or RDS API, choose
5.6.10a.

To create a multi-master cluster, you choose Multiple writers under Database features when creating
the cluster. Doing so enables different behavior for replication among DB instances, availability, and
performance than other kinds of Aurora clusters. This choice remains in effect for the life of the cluster.
Make sure that you understand the specialized use cases that are appropriate for multi-master clusters.

Topics
• Multi-master cluster terminology (p. 980)
• Multi-master cluster architecture (p. 981)
• Recommended workloads for multi-master clusters (p. 982)
• Advantages of multi-master clusters (p. 983)
• Limitations of multi-master clusters (p. 983)

Multi-master cluster terminology
You can understand the terminology about multi-master clusters by learning the following definitions.
These terms are used throughout the documentation for multi-master clusters.

Writer

A DB instance that can perform write operations. In an Aurora multi-master cluster, all DB instances
are writers. This is a significant difference from Aurora single-master clusters, where only one DB
instance can act as a writer. With a single-master cluster, if the writer becomes unavailable, the
failover mechanism promotes another DB instance to become the new writer. With a multi-master
cluster, your application can redirect write operations from the failed DB instance to any other DB
instance in the cluster.

Multi-master

An architecture for Aurora clusters where each DB instance can perform both read and write
operations. Contrast this with single-master. Multi-master clusters are best suited for segmented
workloads, such as for multitenant applications.

Single-master

The default architecture for Aurora clusters. A single DB instance (the primary instance) performs
writes. All other DB instances (the Aurora Replicas) handle read-only query traffic. Contrast this with
multi-master. This architecture is appropriate for general-purpose applications. In such applications,
a single DB instance can handle all the data manipulation language (DML) and data definition
language (DDL) statements. Scalability issues mostly involve SELECT queries.

Write conflict

A situation that occurs when different DB instances attempt to modify the same data page at
the same time. Aurora reports a write conflict to your application as a deadlock error. This error
condition causes the transaction to roll back. Your application must detect the error code and retry
the transaction.

980

Amazon Aurora User Guide for Aurora
Overview of multi-master clusters

The main design consideration and performance tuning goal with Aurora multi-master clusters is
to divide your write operations between DB instances in a way that minimizes write conflicts. That
is why multi-master clusters are well-suited for sharded applications. For details about the write
conflict mechanism, see Conflict resolution for multi-master clusters (p. 1003).

Sharding

A particular class of segmented workloads. The data is physically divided into many partitions,
tables, databases, or even separate clusters. The containers for specific portions of the data are
known as shards. In an Aurora multi-master cluster, each shard is managed by a specific DB instance,
and a DB instance can be responsible for multiple shards. A sharded schema design maps well to the
way you manage connections in an Aurora multi-master cluster.

Shard

The unit of granularity within a sharded deployment. It might be a table, a set of related tables,
a database, a partition, or even an entire cluster. With Aurora multi-master clusters, you can
consolidate the data for a sharded application into a single Aurora shared storage volume, making
the database continuously available and the data easy to manage. You decide which shards are
managed by each DB instance. You can change this mapping at any time, without physically
reorganizing the data.

Resharding

Physically reorganizing sharded data so that different DB instances can handle specific tables or
databases. You don't need to physically reorganize data inside Aurora multi-master clusters in
response to changing workload or DB instance failures. You can avoid resharding operations because
all DB instances in a cluster can access all databases and tables through the shared storage volume.

Multitenant

A particular class of segmented workloads. The data for each customer, client, or user is kept in a
separate table or database. This design ensures isolation and helps you to manage capacity and
resources at the level of individual users.

Bring-your-own-shard (BYOS)

A situation where you already have a database schema and associated applications that use
sharding. You can transfer such deployments relatively easily to Aurora multi-master clusters. In this
case, you can devote your effort to investigating the Aurora benefits such as server consolidation
and high availability. You don't need to create new application logic to handle multiple connections
for write requests.

Global read-after-write (GRAW)

A setting that introduces synchronization so that any read operations always see the most current
state of the data. By default, the data seen by a read operation in a multi-master cluster is subject
to replication lag, typically a few milliseconds. During this brief interval, a query on one DB instance
might retrieve stale data if the same data is modified at the same time by a different DB instance. To
enable this setting, change aurora_mm_session_consistency_level from its default setting of
INSTANCE_RAW to REGIONAL_RAW. Doing so ensures cluster-wide consistency for read operations
regardless of the DB instances that perform the reads and writes. For details on GRAW mode, see
Consistency model for multi-master clusters (p. 995).

Multi-master cluster architecture
Multi-master clusters have a different architecture than other kinds of Aurora clusters. In multi-master
clusters, all DB instances have read/write capability. Other kinds of Aurora clusters have a single
dedicated DB instance that performs all write operations, while all other DB instances are read-only and
handle only SELECT queries. Multi-master clusters don't have a primary instance or read-only Aurora
Replicas.

981

Amazon Aurora User Guide for Aurora
Overview of multi-master clusters

Your application controls which write requests are handled by which DB instance. Thus, with a multi-
master cluster, you connect to individual instance endpoints to issue DML and DDL statements. That's
different than other kinds of Aurora clusters, where you typically direct all write operations to the single
cluster endpoint and all read operations to the single reader endpoint.

The underlying storage for Aurora multi-master clusters is similar to storage for single-master clusters.
Your data is still stored in a highly reliable, shared storage volume that grows automatically. The core
difference lies in the number and type of DB instances. In multi-master clusters, there are N read/write
nodes. Currently, the maximum for N is 4.

Multi-master clusters have no dedicated read-only nodes. Thus, the Aurora procedures and guidelines
about Aurora Replicas don't apply to multi-master clusters. You can temporarily make a DB instance
read-only to place read and write workloads on different DB instances. To do so, see Using instance read-
only mode (p. 1001).

Multi-master cluster nodes are connected using low-latency and low-lag Aurora replication. Multi-master
clusters use all-to-all peer-to-peer replication. Replication works directly between writers. Every writer
replicates its changes to all other writers.

DB instances in a multi-master cluster handle restart and recovery independently. If a writer restarts,
there is no requirement for other writers to also restart. For details, see High availability considerations
for Aurora multi-master clusters (p. 992).

Multi-master clusters keep track of all changes to data within all database instances. The unit of
measurement is the data page, which has a fixed size of 16 KB. These changes include modifications
to table data, secondary indexes, and system tables. Changes can also result from Aurora internal
housekeeping tasks. Aurora ensures consistency between the multiple physical copies that Aurora keeps
for each data page in the shared storage volume, and in memory on the DB instances.

If two DB instances attempt to modify the same data page at almost the same instant, a write conflict
occurs. The earliest change request is approved using a quorum voting mechanism. That change is saved
to permanent storage. The DB instance whose change isn't approved rolls back the entire transaction
containing the attempted change. Rolling back the transaction ensures that data is kept in a consistent
state, and applications always see a predictable view of the data. Your application can detect the
deadlock condition and retry the entire transaction.

For details about how to minimize write conflicts and associated performance overhead, see Conflict
resolution for multi-master clusters (p. 1003).

Recommended workloads for multi-master clusters
Multi-master clusters work best with certain kinds of workloads.

Active-passive workloads

With an active-passive workload, you perform all read and write operations on one DB instance at a
time. You hold any other DB instances in the Aurora cluster in reserve. If the original active DB instance
becomes unavailable, you immediately switch all read and write operations to the other DB instance.
With this configuration, you minimize any downtime for write operations. The other DB instance can take
over all processing for your application without performing a failover.

Active-active workloads

With an active-active workload, you perform read and write operations to all the DB instances at the
same time. In this configuration, you typically segment the workload so that the different DB instances
don't modify the same underlying data at the same time. Doing so minimizes the chance for write
conflicts.

982

Amazon Aurora User Guide for Aurora
Overview of multi-master clusters

Multi-master clusters work well with application logic that's designed for a segmented workload. In this
type of workload, you divide write operations by database instance, database, table, or table partition.
For example, you can run multiple applications on the same cluster, each assigned to a specific DB
instance. Alternatively, you can run an application that uses multiple small tables, such as one table for
each user of an online service. Ideally, you design your schema so that write operations for different DB
instances don't perform simultaneous updates to overlapping rows within the same tables. Sharded
applications are one example of this kind of architecture.

For examples of designs for active-active workloads, see Using a multi-master cluster for a sharded
database (p. 1004).

Advantages of multi-master clusters
You can take advantage of the following benefits with Aurora multi-master clusters:

• Multi-master clusters improve Aurora's already high availability. You can restart a read/write DB
instance without causing other DB instances in the cluster to restart. There is no failover process and
associated delay when a read/write DB instance becomes unavailable.

• Multi-master clusters are well-suited to sharded or multitenant applications. As you manage the data,
you can avoid complex resharding operations. You might be able to consolidate sharded applications
with a smaller number of clusters or DB instances. For details, see Using a multi-master cluster for a
sharded database (p. 1004).

• Aurora detects write conflicts immediately, not when the transaction commits. For details about the
write conflict mechanism, see Conflict resolution for multi-master clusters (p. 1003).

Limitations of multi-master clusters
Note
Aurora multi-master clusters are highly specialized for continuous availability use cases.
Thus, such clusters might not be generally applicable to all workloads. Your requirements for
performance, scalability, and availability might be satisfied by using a larger DB instance class
with an Aurora single-master cluster. If so, consider using a provisioned or Aurora Serverless
cluster.

AWS and Aurora limitations

The following limitations currently apply to the AWS and Aurora features that you can use with multi-
master clusters:

• Currently, you can have a maximum of four DB instances in a multi-master cluster.

• Currently, all DB instances in a multi-master cluster must be in the same AWS Region.

• You can't enable cross-Region replicas from multi-master clusters.

• Multi-master clusters are available in the following AWS Regions:

• US East (N. Virginia) Region

• US East (Ohio) Region

• US West (Oregon) Region

• Asia Pacific (Mumbai) Region

• Asia Pacific (Seoul) Region

• Asia Pacific (Tokyo) Region

• Europe (Frankfurt) Region

• Europe (Ireland) Region

• The Stop action isn't available for multi-master clusters.

983

Amazon Aurora User Guide for Aurora
Creating a multi-master cluster

• The Aurora survivable page cache, also known as the survivable buffer pool, isn't supported for multi-
master clusters.

• A multi-master cluster doesn't do any load balancing for connections. Your application must
implement its own connection management logic to distribute read and write operations
among multiple DB instance endpoints. Typically, in a bring-your-own-shard (BYOS) application,
you already have logic to map each shard to a specific connection. To learn how to adapt the
connection management logic in your application, see Connection management for multi-master
clusters (p. 994).

• Multi-master clusters have some processing and network overhead for coordination between DB
instances. This overhead has the following consequences for write-intensive and read-intensive
applications:
• Throughput benefits are most obvious on busy clusters with multiple concurrent write operations.

In many cases, a traditional Aurora cluster with a single primary instance can handle the write traffic
for a cluster. In these cases, the benefits of multi-master clusters are mostly for high availability
rather than performance.

• Single-query performance is generally lower than for an equivalent single-master cluster.
• You can't take a snapshot created on a single-master cluster and restore it on a multi-master cluster,

or the opposite. Instead, to transfer all data from one kind of cluster to the other, use a logical dump
produced by a tool such as AWS Database Migration Service (AWS DMS) or the mysqldump command.

• You can't use the parallel query, Aurora Serverless, or Global Database features on a multi-master
cluster.

The multi-master aspect is a permanent choice for a cluster. You can't switch an existing Aurora cluster
between a multi-master cluster and another kind such as Aurora Serverless or parallel query.

• The zero-downtime patching (ZDP) and zero-downtime restart (ZDR) features aren't available for
multi-master clusters.

• Integration with other AWS services such as AWS Lambda, Amazon S3, and AWS Identity and Access
Management isn't available for multi-master clusters.

• The Performance Insights feature isn't available for multi-master clusters.
• You can't clone a multi-master cluster.
• You can't enable the backtrack feature for multi-master clusters.

Database engine limitations

The following limitations apply to the database engine features that you can use with a multi-master
cluster:

• You can't perform binary log (binlog) replication to or from a multi-master cluster. This limitation
means you also can't use global transaction ID (GTID) replication in a multi-master cluster.

• The event scheduler isn't available for multi-master clusters.
• The hash join optimization isn't enabled on multi-master clusters.
• The query cache isn't available on multi-master clusters.
• You can't use certain SQL language features on multi-master clusters. For the full list of SQL

differences, and instructions about adapting your SQL code to address these limitations, see SQL
considerations for multi-master clusters (p. 993).

Creating an Aurora multi-master cluster
You choose the multi-master or single-master architecture at the time you create an Aurora cluster. The
following procedures show where to make the multi-master choice. If you haven't created any Aurora
clusters before, you can learn the general procedure in Creating an Amazon Aurora DB cluster (p. 125).

984

Amazon Aurora User Guide for Aurora
Creating a multi-master cluster

Console

To create an Aurora multi-master cluster from the AWS Management Console, you make the following
choices. On the first screen, you select an Aurora cluster:

985

Amazon Aurora User Guide for Aurora
Creating a multi-master cluster

986

Amazon Aurora User Guide for Aurora
Creating a multi-master cluster

You also choose MySQL 5.6 compatibility and location Regional:

On the second screen, choose Multiple writers under Database features.

987

Amazon Aurora User Guide for Aurora
Creating a multi-master cluster

Fill in the other settings for the cluster. This part of the procedure is the same as the general procedure
for creating an Aurora cluster in Creating a DB cluster (p. 126).

After you create the multi-master cluster, add two DB instances to it by following the procedure in
Adding Aurora Replicas to a DB cluster (p. 392). Use the same AWS instance class for all DB instances
within the multi-master cluster.

After you create the multi-master cluster and associated DB instances, you see the cluster in the AWS
Management Console Databases page as follows. All DB instances show the role Writer.

988

Amazon Aurora User Guide for Aurora
Creating a multi-master cluster

AWS CLI

To create a multi-master cluster with the AWS CLI, run the create-db-cluster AWS CLI command and
include the option --engine_mode=multimaster.

The following command shows the syntax for creating an Aurora cluster with multi-master replication.
For the general procedure to create an Aurora cluster, see Creating a DB cluster (p. 126).

For Linux, macOS, or Unix:

aws rds create-db-cluster --db-cluster-identifier sample-cluster --engine aurora \
 --engine-version 5.6.10a --master-username user-name --master-user-password password \
 --db-subnet-group-name my_subnet_group --vpc-security-group-ids my_vpc_id \
 --engine-mode multimaster

For Windows:

aws rds create-db-cluster --db-cluster-identifier sample-cluster --engine aurora ^
 --engine-version 5.6.10a --master-username user-name --master-user-password password ^
 --db-subnet-group-name my_subnet_group --vpc-security-group-ids my_vpc_id ^
 --engine-mode multimaster

After you create the multi-master cluster, add a second DB instance to it by following the procedure in
Adding Aurora Replicas to a DB cluster (p. 392). Use the same AWS instance class for all DB instances
within the multi-master cluster.

989

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html

Amazon Aurora User Guide for Aurora
Managing multi-master clusters

RDS API

To create a multi-master cluster with the RDS API, run the CreateDBCluster operation. Specify the value
multimaster for the EngineMode parameter. For the general procedure to create an Aurora cluster, see
Creating a DB cluster (p. 126).

After you create the multi-master cluster, add two DB instances to it by following the procedure in
Adding Aurora Replicas to a DB cluster (p. 392). Use the same AWS instance class for all DB instances
within the multi-master cluster.

Adding a DB instance to a multi-master cluster

You need more than one DB instance to see the benefits of a multi-master cluster. After you create
the first instance, you can create other DB instances, up to a maximum of four DB instances, using the
procedures from Adding Aurora Replicas to a DB cluster (p. 392). The difference for multi-master clusters
is that the new DB instances all have read/write capability instead of being read-only Aurora Replicas.
Use the same AWS instance class for all DB instances within the multi-master cluster.

Managing Aurora multi-master clusters
You do most management and administration for Aurora multi-master clusters the same way as for
other kinds of Aurora clusters. The following sections explain the differences and unique features of
multi-master clusters for administration and management.

Topics

• Monitoring an Aurora multi-master cluster (p. 990)

• Data ingestion performance for multi-master clusters (p. 991)

• Exporting data from a multi-master cluster (p. 991)

• High availability considerations for Aurora multi-master clusters (p. 992)

• Replication between multi-master clusters and other clusters (p. 992)

• Upgrading a multi-master cluster (p. 992)

Monitoring an Aurora multi-master cluster

Most of the monitoring and diagnostic features supported by MySQL and Aurora single-master clusters
are also supported for multi-master clusters:

• MySQL error logs, general logs and slow query logs.

• MySQL built-in diagnostic features such as SHOW commands, status variables, InnoDB runtime status
tables, and so on.

• MySQL Performance Schema.

• Advanced Auditing.

• CloudWatch metrics.

• Enhanced Monitoring.

Aurora multi-master clusters don't currently support the following monitoring features:

• Performance Insights.

990

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora
Managing multi-master clusters

Data ingestion performance for multi-master clusters

One best practice for DML operations on a multi-master cluster is to keep transactions small and brief.
Also, route write operations for a particular table or database to a specific DB instance. Doing a bulk
import might require relaxing the guidance for transaction size. However, you can still distribute the
write operations to minimize the chance of write conflicts.

To distribute the write workload from a bulk import

1. Issue a separate mysqldump command for each database, table, or other object in your schema.
Store the results of each mysqldump in a file whose name reflects the object being dumped. As an
alternative, you can use a specialized dump and import tool that can automatically dump multiple
tables in parallel, such as mydumper.

2. Run a separate mysql session for each data file, connecting to the appropriate instance endpoint
that handles the corresponding schema object. Again, as an alternative, you can use a specialized
parallel import command, such as myloader.

3. Run the import sessions in parallel across the DB instances in the multi-master cluster, instead of
waiting for each to finish before starting the next.

You can use the following techniques to import data into an Aurora multi-master cluster:

• You can import logical (SQL-format) dumps from other MySQL-compatible servers to Aurora multi-
master clusters, if the statements don't use any features that aren't supported in Aurora. For example,
a logical dump from a table containing MySQL Full-Text Search (FTS) indexes doesn't work because the
FTS feature is not supported on multi-master clusters.

• You can use managed services such as DMS to migrate data into an Aurora multi-master cluster.

• For migrations into an Aurora multi-master cluster from a server that isn't compatible with MySQL,
follow existing instructions for heterogeneous Aurora migrations.

• Aurora multi-master clusters can produce MySQL-compatible logical dumps in SQL format. Any
migration tool (for example, AWS DMS) that can understand such format can consume data dumps
from Aurora multi-master clusters.

• Aurora doesn't support binary logging with the multi-master cluster as the binlog master or worker.
You can't use binlog-based CDC tools with multi-master clusters.

• When migrating from non-MySQL-compatible servers, you can replicate into a multi-master cluster
using the continuous change data capture (CDC) feature of AWS DMS. That type of replication
transmits SQL statements to the destination cluster, thus the restriction on binlog replication doesn't
apply.

For a detailed discussion of migration techniques and recommendations, see the Amazon Aurora
migration handbook AWS whitepaper. Some of the migration methods listed in the handbook might not
apply to Aurora multi-master clusters, but the document is a great overall source of knowledge about
Aurora migration topics.

Exporting data from a multi-master cluster

You can save a snapshot of a multi-master cluster and restore it to another multi-master cluster.
Currently, you can't restore a multi-master cluster snapshot into a single-master cluster.

To migrate data from a multi-master cluster to a single-master cluster, use a logical dump and restore
with a tool such as mysqldump.

You can't use a multi-master cluster as the source or destination for binary log replication.

991

https://d0.awsstatic.com/whitepapers/Migration/amazon-aurora-migration-handbook.pdf
https://d0.awsstatic.com/whitepapers/Migration/amazon-aurora-migration-handbook.pdf

Amazon Aurora User Guide for Aurora
Managing multi-master clusters

High availability considerations for Aurora multi-master clusters

In an Aurora multi-master cluster, any DB instance can restart without causing any other instance to
restart. This behavior provides a higher level of availability for read/write and read-only connections
than for Aurora single-master clusters. We refer to this availability level as continuous availability. In
multi-master clusters, there is no downtime for write availability when a writer DB instance fails. Multi-
master clusters don't use the failover mechanism, because all cluster instances are writable. If a DB
instance fails in a multi-master cluster, your application can redirect the workload towards the remaining
healthy instances.

In a single-master cluster, restarting the primary instance makes write operations unavailable until the
failover mechanism promotes a new primary instance. Read-only operations also experience a brief
downtime because all the Aurora Replicas in the cluster restart.

To minimize downtime for applications in a multi-master cluster, implement frequent SQL-level health
checks. If a DB instance in a multi-master cluster becomes unavailable, you can decide what to do based
on the expected length of the outage and the urgency of write operations in the workload. If you expect
the outage to be brief and the write operations aren't urgent, you can wait for the DB instance to recover
before resuming the workload that is normally handled by that DB instance. Alternatively, you can
redirect that workload to a different DB instance. The underlying data remains available at all time to all
DB instances in the cluster. The highly distributed Aurora storage volume keeps the data continuously
available even in the unlikely event of a failure affecting an entire AZ. For information about the timing
considerations for switching write operations away from an unavailable DB instance, see Using a multi-
master cluster as an active standby (p. 1005).

Replication between multi-master clusters and other clusters

Multi-master clusters don't support incoming or outgoing binary log replication.

Upgrading a multi-master cluster

Aurora multi-master clusters use the same version numbering scheme, with major and minor version
numbers, as other kinds of Aurora clusters. However, the Enable auto minor version upgrade setting
doesn't apply for multi-master clusters.

When you upgrade an Aurora multi-master cluster, typically the upgrade procedure moves the database
engine from the current version to the next higher version. If you upgrade to an Aurora version that
increments the version number by more than one, the upgrade uses a multi-step approach. Each DB
instance is upgraded to the next higher version, then the next one after that, and so on until it reaches
the specified upgrade version.

The approach is different depending on whether there are any backwards-incompatible changes
between the old and new versions. For example, updates to the system schema are considered
backwards-incompatible changes. You can check whether a specific version contains any backwards-
incompatible changes by consulting the release notes.

If there aren't any incompatible changes between the old and new versions, each DB instance is
upgraded and restarted individually. The upgrades are staggered so that the overall cluster doesn't
experience any downtime. At least one DB instance is available at any time during the upgrade process.

If there are incompatible changes between the old and new versions, Aurora performs the upgrade in
offline mode. All cluster nodes are upgraded and restarted at the same time. The cluster experiences
some downtime, to avoid an older engine writing to newer system tables.

Zero-downtime patching (ZDP) isn't currently supported for Aurora multi-master clusters.

992

Amazon Aurora User Guide for Aurora
Application considerations

Application considerations for Aurora multi-master
clusters
Following, you can learn any changes that might be required in your applications due to differences in
feature support or behavior between multi-master and single-master clusters.

Topics

• SQL considerations for multi-master clusters (p. 993)

• Connection management for multi-master clusters (p. 994)

• Consistency model for multi-master clusters (p. 995)

• Multi-master clusters and transactions (p. 996)

• Write conflicts and deadlocks in multi-master clusters (p. 996)

• Multi-master clusters and locking reads (p. 997)

• Performing DDL operations on a multi-master cluster (p. 998)

• Using autoincrement columns (p. 999)

• Multi-master clusters feature reference (p. 1000)

SQL considerations for multi-master clusters
The following are the major limitations that apply to the SQL language features you can use with a
multi-master cluster:

• In a multi-master cluster, you can't use certain settings or column types that change the row layout.
You can't enable the innodb_large_prefix configuration option. You can't use the column types
MEDIUMTEXT, MEDIUMBLOB, LONGTEXT, or LONGBLOB.

• You can't use the CASCADE clause with any foreign key columns in a multi-master cluster.

• Multi-master clusters can't contain any tables with full-text search (FTS) indexes. Such tables can't be
created on or imported into multi-master clusters.

• DDL works differently on multi-master and single-master clusters. For example, the fast DDL
mechanism isn't available for multi-master clusters. You can't write to a table in a multi-master cluster
while the table is undergoing DDL. For full details on DDL differences, see Performing DDL operations
on a multi-master cluster (p. 998).

• You can't use the SERIALIZABLE transaction isolation level on multi-master clusters. On Aurora
single-master clusters, you can use this isolation level on the primary instance.

• Autoincrement columns are handled using the auto_increment_increment and
auto_increment_offset parameters. Parameter values are predetermined and not configurable.
The parameter auto_increment_increment is set to 16, which is the maximum number of
instances in any Aurora cluster. However, multi-master clusters currently have a lower limit on the
number of DB instances. For details, see Using autoincrement columns (p. 999).

When adapting an application for an Aurora multi-master cluster, approach that activity the same as
a migration. You might have to stop using certain SQL features, and change your application logic for
other SQL features:

• In your CREATE TABLE statements, change any columns defined as MEDIUMTEXT, MEDIUMBLOB,
LONGTEXT, or LONGBLOB to shorter types that don't require off-page storage.

• In your CREATE TABLE statements, remove the CASCADE clause from any foreign key declarations.
Add application logic if necessary to emulate the CASCADE effects through INSERT or DELETE
statements.

993

Amazon Aurora User Guide for Aurora
Application considerations

• Remove any use of InnoDB fulltext search (FTS) indexes. Check your source code for MATCH()
operators in SELECT statements, and FULLTEXT keywords in DDL statements. Check if any table
names from the INFORMATION_SCHEMA.INNODB_SYS_TABLES system table contain the string FTS_.

• Check the frequency of DDL operations such as CREATE TABLE and DROP TABLE in your application.
Because DDL operations have more overhead in multi-master clusters, avoid running many small
DDL statements. For example, look for opportunities to create needed tables ahead of time. For
information about DDL differences with multi-master clusters, see Performing DDL operations on a
multi-master cluster (p. 998).

• Examine your use of autoincrement columns. The sequences of values for autoincrement
columns are different for multi-master clusters than other kinds of Aurora clusters. Check for the
AUTO_INCREMENT keyword in DDL statements, the function name last_insert_id() in SELECT
statements, and the name innodb_autoinc_lock_mode in your custom configuration settings. For
details about the differences and how to handle them, see Using autoincrement columns (p. 999).

• Check your code for the SERIALIZABLE keyword. You can't use this transaction isolation level with a
multi-master cluster.

Connection management for multi-master clusters
The main connectivity consideration for multi-master clusters is the number and type of the available
DNS endpoints. With multi-master clusters, you often use the instance endpoints, which you rarely use in
other kinds of Aurora clusters.

Aurora multi-master clusters have the following kinds of endpoints:

Cluster endpoint

This type of endpoint always points to a DB instance with read/write capability. Each multi-master
cluster has one cluster endpoint.

Because applications in multi-master clusters typically include logic to manage connections to
specific DB instances, you rarely need to use this endpoint. It's mostly useful for connecting to a
multi-master cluster to perform administration.

You can also connect to this endpoint to examine the cluster topology when you don't know
the status of the DB instances in the cluster. To learn that procedure, see Describing cluster
topology (p. 1001).

DB instance endpoint

This type of endpoint connects to specific named DB instances. For Aurora multi-master clusters,
your application typically uses the DB instance endpoints for all or nearly all connections. You decide
which DB instance to use for each SQL statement based on the mapping between your shards and
the DB instances in the cluster. Each DB instance has one such endpoint. Thus the multi-master
cluster has one or more of these endpoints, and the number changes as DB instances are added to or
removed from a multi-master cluster.

The way you use DB instance endpoints is different between single-master and multi-master
clusters. For single-master clusters, you typically don't use this endpoint often.

Custom endpoint

This type of endpoint is optional. You can create one or more custom endpoints to group together
DB instances for a specific purpose. When you connect to the endpoint, Aurora returns the IP address
of a different DB instance each time. In multi-master clusters, you typically use custom endpoints to
designate a set of DB instances to use mostly for read operations. We recommend not using custom
endpoints with multi-master clusters to load-balance write operations, because doing so increases
the chance of write conflicts.

994

Amazon Aurora User Guide for Aurora
Application considerations

Multi-master clusters don't have reader endpoints. Where practical, issue SELECT queries using the
same DB instance endpoint that normally writes to the same table. Doing so makes more effective use
of cached data from the buffer pool, and avoids potential issues with stale data due to replication lag
within the cluster. If you don't locate SELECT statements on the same DB instances that write to the
same tables, and you require strict read after write guarantee for certain queries, consider running those
queries using the global read-after-write (GRAW) mechanism described in Consistency model for multi-
master clusters (p. 995).

For general best practices of Aurora and MySQL connection management, see the Amazon Aurora
migration handbook AWS whitepaper.

For information about how to emulate read-only DB instances in multi-master DB clusters, see Using
instance read-only mode (p. 1001).

Follow these guidelines when creating custom DNS endpoints and designing drivers and connectors for
Aurora multi-master clusters:

• For DDL, DML, and DCL statements, don't use endpoints or connection routing techniques that operate
in round-robin or random fashion.

• Avoid long-running write queries and long write transactions unless these transactions are guaranteed
not to conflict with other write traffic in the cluster.

• Prefer to use autocommitted transactions. Where practical, avoid autocommit=0 settings at global
or session level. When you use a database connector or database framework for your programming
language, check that autocommit is turned on for applications that use the connector or framework.
If needed, add COMMIT statements at logical points throughout your code to ensure that transactions
are brief.

• When global read consistency or read-after-write guarantee is required, follow recommendations for
global read-after-write (GRAW) described in Consistency model for multi-master clusters (p. 995).

• Use the cluster endpoint for DDL and DCL statements where practical. The cluster endpoint helps to
minimize the dependency on the hostnames of the individual DB instances. You don't need to divide
DDL and DCL statements by table or database, as you do with DML statements.

Consistency model for multi-master clusters
Aurora multi-master clusters support a global read-after-write (GRAW) mode that is configurable at
the session level. This setting introduces extra synchronization to create a consistent read view for each
query. That way, queries always see the very latest data. By default, the replication lag in a multi-master
cluster means that a DB instance might see old data for a few milliseconds after the data was updated.
Enable this feature if your application depends on queries seeing the latest data changes made by any
other DB instance, even if the query has to wait as a result.

Note
Replication lag doesn't affect your query results if you write and then read the data using the
same DB instance. Thus, the GRAW feature applies mainly to applications that issue multiple
concurrent write operations through different DB instances.

When using the GRAW mode, don't enable it for all queries by default. Globally consistent reads are
noticeably slower than local reads. Therefore, use GRAW selectively for queries that require it.

Be aware of these considerations for using GRAW:

• GRAW involves performance overhead due to the cost of establishing a cluster-wide consistent read
view. The transaction must first determine a cluster-wide consistent point in time, then replication
must catch up to that time. The total delay depends on the workload, but it's typically in the range of
tens of milliseconds.

• You can't change GRAW mode within a transaction.

995

https://d0.awsstatic.com/whitepapers/Migration/amazon-aurora-migration-handbook.pdf
https://d0.awsstatic.com/whitepapers/Migration/amazon-aurora-migration-handbook.pdf

Amazon Aurora User Guide for Aurora
Application considerations

• When using GRAW without explicit transactions, each individual query incurs the performance
overhead of establishing a globally consistent read view.

• With GRAW enabled, the performance penalty applies to both reads and writes.
• When you use GRAW with explicit transactions, the overhead of establishing a globally consistent

view applies once for each transaction, when the transaction starts. Queries performed later in the
transaction are as fast as if run without GRAW. If multiple successive statements can all use the same
read view, you can wrap them in a single transaction for a better overall performance. That way, the
penalty is only paid once per transaction instead of per query.

Multi-master clusters and transactions
Standard Aurora MySQL guidance applies to Aurora multi-master clusters. The Aurora MySQL database
engine is optimized for short-lived SQL statements. These are the types of statements typically
associated with online transaction processing (OLTP) applications.

In particular, make your write transactions as short as possible. Doing so reduces the window of
opportunity for write conflicts. The conflict resolution mechanism is optimistic, meaning that it performs
best when write conflicts are rare. The tradeoff is that when conflicts occur, they incur substantial
overhead.

There are certain workloads that benefit from large transactions. For example, bulk data imports
are significantly faster when run using multi-megabyte transactions rather than single-statement
transactions. If you observe an unacceptable number of conflicts while running such workloads, consider
the following options:

• Reduce transaction size.
• Reschedule or rearrange batch jobs so that they don't overlap and don't provoke conflicts with other

workloads. If practical, reschedule the batch jobs so that they run during off-peak hours.
• Refactor the batch jobs so that they run on the same writer instance as the other transactions causing

conflicts. When conflicting transactions are run on the same instance, the transactional engine
manages access to the rows. In that case, storage-level write conflicts don't occur.

Write conflicts and deadlocks in multi-master clusters
One important performance aspect for multi-master clusters is the frequency of write conflicts. When
such a problem condition occurs in the Aurora storage subsystem, your application receives a deadlock
error and performs the usual error handling for deadlock conditions. Aurora uses a lock-free optimistic
algorithm that performs best when such conflicts are rare.

In a multi-master cluster, all the DB instances can write to the shared storage volume. For every data
page you modify, Aurora automatically distributes several copies across multiple Availability Zones
(AZs). A write conflict can occur when multiple DB instances try to modify the same data page within a
very short time. The Aurora storage subsystem detects that the changes overlap and performs conflict
resolution before finalizing the write operation.

Aurora detects write conflicts at the level of the physical data pages, which have a fixed size of 16 KiB.
Thus, a conflict can occur even for changes that affect different rows, if the rows are both within the
same data page.

When conflicts do occur, the cleanup operation requires extra work to undo the changes from one of
the DB instances. From the point of view of your application, the transaction that caused the conflict
encounters a deadlock and Aurora rolls back that whole transaction. Your application receives error code
1213.

Undoing the transaction might require modifying many other data pages whose changes were already
applied to the Aurora storage subsystem. Depending on how much data was changed by the transaction,

996

Amazon Aurora User Guide for Aurora
Application considerations

undoing it might involve substantial overhead. Therefore, minimizing the potential for write conflicts is a
crucial design consideration for an Aurora multi-master cluster.

Some conflicts result from changes that you initiate. These changes include SQL statements,
transactions, and transaction rollbacks. You can minimize these kinds of conflicts through your schema
design and the connection management logic in your application.

Other conflicts happen because of simultaneous changes from both a SQL statement and an internal
server thread. These conflicts are hard to predict because they depend on internal server activity that
you might not be aware of. The two major kinds of internal activity that cause these conflicts are
garbage collection (known as purge), and transaction rollbacks performed automatically by Aurora. For
example, Aurora performs rollbacks automatically during crash recovery or if a client connection is lost.

A transaction rollback physically reverts page changes that were already made. A rollback produces page
changes just like the original transaction does. A rollback takes time, potentially several times as long as
the original transaction. While the rollback is proceeding, the changes it produces can come into conflict
with your transactions.

Garbage collection has to do with multi-version concurrency control (MVCC), which is the concurrency
control method used by the Aurora MySQL transactional engine. With MVCC, data mutations create new
row versions, and the database keeps multiple versions of rows to achieve transaction isolation while
permitting concurrent access to data. Row versions are removed (purged) when they're no longer needed.
Here again, the process of purging produces page changes, which might conflict with your transactions.
Depending on the workload, the database can develop a purge lag: a queue of changes waiting to be
garbage collected. If the lag grows substantially, the database might need a considerable amount of time
to complete the purge, even if you stop submitting SQL statements.

If an internal server thread encounters a write conflict, Aurora retries automatically. In contrast, your
application must handle the retry logic for any transactions that encounter conflicts.

When multiple transactions from the same DB instance cause these kinds of overlapping changes,
Aurora uses the standard transaction concurrency rules. For example, if two transactions on the same
DB instance modify the same row, one of them waits. If the wait is longer than the configured timeout
(innodb_lock_wait_timeout, by default 50 seconds), the waiting transaction aborts with a "Lock wait
timeout exceeded" message.

Multi-master clusters and locking reads
Aurora multi-master clusters support locking reads in the following forms.

SELECT ... FOR UPDATE
SELECT ... LOCK IN SHARE MODE

For more information about locking reads, see the MySQL reference manual.

Locking read operations are supported on all nodes, but the lock scope is local to the node on which the
command was run. A locking read performed on one writer doesn't prevent other writers from accessing
or modifying the locked rows. Despite this limitation, you can still work with locking reads in use cases
that guarantee strict workload scope separation between writers, such as in sharded or multitenant
databases.

Consider the following guidelines:

• Remember that a node can always see its own changes immediately and without delay. When possible,
you can colocate reads and writes on the same node to eliminate the GRAW requirement.

• If read-only queries must be run with globally consistent results, use GRAW.
• If read-only queries care about data visibility but not global consistency, use GRAW or introduce a

timed wait before each read. For example, a single application thread might maintain connections
C1 and C2 to two different nodes. The application writes on C1 and reads on C2. In such case, the

997

https://dev.mysql.com/doc/refman/5.6/en/innodb-locking-reads.html

Amazon Aurora User Guide for Aurora
Application considerations

application can issue a read immediately using GRAW, or it can sleep before issuing a read. The sleep
time should be equal to or longer than the replication lag (usually approximately 20–30 ms).

The read-after-write feature is controlled using the aurora_mm_session_consistency_level
session variable. The valid values are INSTANCE_RAW for local consistency mode (default) and
REGIONAL_RAW for cluster-wide consistency:

Performing DDL operations on a multi-master cluster
The SQL data definition language (DDL) statements have special considerations for multi-master
clusters. These statements sometimes cause substantial reorganization of the underlying data. Such
large-scale changes potentially affect many data pages in the shared storage volume. The definitions of
tables and other schema objects are held in the INFORMATION_SCHEMA tables. Aurora handles changes
to those tables specially to avoid write conflicts when multiple DB instances run DDL statements at the
same time.

For DDL statements, Aurora automatically delegates the statement processing to a special server
process in the cluster. Because Aurora centralizes the changes to the INFORMATION_SCHEMA tables, this
mechanism avoids the potential for write conflicts between DDL statements.

DDL operations prevent concurrent writes to that table. During a DDL operation on a table, all DB
instances in the multi-master cluster are limited to read-only access to that table until the DDL
statement finishes.

The following DDL behaviors are the same in Aurora single-master and multi-master clusters:

• A DDL performed on one DB instance causes other instances to terminate any connections actively
using the table.

• Session-level temporary tables can be created on any node using the MyISAM or MEMORY storage
engines.

• DDL operations on very large tables might fail if the DB instance doesn't have sufficient local
temporary storage.

Note the following DDL performance considerations in multi-master clusters:

• Try to avoid issuing large numbers of short DDL statements in your application. Create databases,
tables, partitions, columns, and so on, in advance where practical. Replication overhead can impose
significant performance overhead for simple DDL statements that are typically very quick. The
statement doesn't finish until the changes are replicated to all DB instances in the cluster. For example,
multi-master clusters take longer than other Aurora clusters to create empty tables, drop tables, or
drop schemas containing many tables.

If you do need to perform a large set of DDL operations, you can reduce the network and coordination
overhead by issuing the statements in parallel through multiple threads.

• Long-running DDL statements are less affected, because the replication delay is only a small fraction
of the total time for the DDL statement.

• Performance of DDLs on session-level temporary tables should be roughly equivalent on Aurora
single-master and multi-master clusters. Operations on temporary tables happen locally and are not
subject to synchronous replication overhead.

Using Percona online schema change with multi-master clusters

The pt-online-schema-change tool works with multi-master clusters. You can use it if your priority
is to run table modifications in the most nonblocking manner. However, be aware of the write conflict
implications of the schema change process.

998

Amazon Aurora User Guide for Aurora
Application considerations

At a high level, the pt-online-schema-change tool works as follows:

1. It creates a new, empty table with the desired structure.
2. It creates DELETE, INSERT and UPDATE triggers on the original table to redo any data changes on the

original table on top of the new table.
3. It moves existing rows into the new table using small chunks while ongoing table changes are

automatically handled using the triggers.
4. After all the data is moved, it drops the triggers and switches the tables by renaming them.

The potential contention point occurs while the data is being transferred to the new table. When the
new table is initially created, it's completely empty and therefore can become a locking hot point. The
same is true in other kinds of database systems. Because triggers are synchronous, the impact from the
hot point can propagate back to your queries.

In multi-master clusters, the impact can be more visible. This visibility is because the new table not only
provokes lock contention, but also increases the likelihood of write conflicts. The table initially has very
few pages in it, which means that writes are highly localized and therefore prone to conflicts. After the
table grows, writes should spread out and write conflicts should no longer be a problem.

You can use the online schema change tool with multi-master clusters. However, it might require more
careful testing and its effects on the ongoing workload might be slightly more visible in the first minutes
of the operation.

Using autoincrement columns
Aurora multi-master clusters handle autoincrement columns using the existing configuration parameters
auto_increment_increment and auto_increment_offset. For more information, see the MySQL
reference manual.

Parameter values are predetermined and you can't change them. Specifically, the
auto_increment_increment parameter is hardcoded to 16, which is the maximum number of DB
instances in any kind of Aurora cluster.

Due to the hard-coded increment setting, autoincrement values are consumed much more quickly than
in single-master clusters. This is true even if a given table is only ever modified by a single DB instance.
For best results, always use a BIGINT data type instead of INT for your autoincrement columns.

In a multi-master cluster, your application logic must be prepared to tolerate autoincrement columns
that have the following properties:

• The values are noncontiguous.
• The values might not start from 1 on an empty table.
• The values increase by increments greater than 1.
• The values are consumed significantly more quickly than in a single-master cluster.

The following example shows how the sequence of autoincrement values in a multi-master cluster can
be different from what you might expect.

mysql> create table autoinc (id bigint not null auto_increment, s varchar(64), primary key
 (id));

mysql> insert into autoinc (s) values ('row 1'), ('row 2'), ('row 3');
Query OK, 3 rows affected (0.02 sec)

mysql> select * from autoinc order by id;

999

https://dev.mysql.com/doc/refman/5.6/en/replication-options-master.html#sysvar_auto_increment_increment
https://dev.mysql.com/doc/refman/5.6/en/replication-options-master.html#sysvar_auto_increment_increment

Amazon Aurora User Guide for Aurora
Application considerations

+----+-------+
| id | s |
+----+-------+
2	row 1
18	row 2
34	row 3
+----+-------+
3 rows in set (0.00 sec)

You can change the AUTO_INCREMENT table property. Using a nondefault value only works reliably if
that value is larger than any of the primary key values already in the table. You can't use smaller values
to fill in an empty interval in the table. If you do, the change takes effect either temporarily or not at all.
This behavior is inherited from MySQL 5.6 and is not specific to the Aurora implementation.

Multi-master clusters feature reference
Following, you can find a quick reference of the commands, procedures, and status variables specific to
Aurora multi-master clusters.

Using read-after-write

The read-after-write feature is controlled using the aurora_mm_session_consistency_level
session variable. The valid values are INSTANCE_RAW for local consistency mode (default) and
REGIONAL_RAW for cluster-wide consistency.

An example follows.

mysql> select @@aurora_mm_session_consistency_level;
+---------------------------------------+
| @@aurora_mm_session_consistency_level |
+---------------------------------------+
| INSTANCE_RAW |
+---------------------------------------+
1 row in set (0.01 sec)
mysql> set session aurora_mm_session_consistency_level = 'REGIONAL_RAW';
Query OK, 0 rows affected (0.00 sec)
mysql> select @@aurora_mm_session_consistency_level;
+---------------------------------------+
| @@aurora_mm_session_consistency_level |
+---------------------------------------+
| REGIONAL_RAW |
+---------------------------------------+
1 row in set (0.03 sec)

Checking DB instance read-write mode

In multi-master clusters, all nodes operate in read/write mode. The innodb_read_only variable always
returns zero. The following example shows that when you connect to any DB instance in a multi-master
cluster, the DB instance reports that it has read/write capability.

$ mysql -h mysql -A -h multi-master-instance-1.example123.us-east-1.rds.amazonaws.com
mysql> select @@innodb_read_only;
+--------------------+
| @@innodb_read_only |
+--------------------+
| 0 |
+--------------------+
mysql> quit;
Bye

1000

Amazon Aurora User Guide for Aurora
Application considerations

$ mysql -h mysql -A -h multi-master-instance-2.example123.us-east-1.rds.amazonaws.com
mysql> select @@innodb_read_only;
+--------------------+
| @@innodb_read_only |
+--------------------+
| 0 |
+--------------------+

Checking the node name and role

You can check the name of the DB instance you're currently connected to by using the
aurora_server_id status variable. The following example shows how.

mysql> select @@aurora_server_id;
+----------------------+
| @@aurora_server_id |
+----------------------+
| mmr-demo-test-mm-3-1 |
+----------------------+
1 row in set (0.00 sec)

To find this information for all the DB instances in a multi-master cluster, see Describing cluster
topology (p. 1001).

Describing cluster topology

You can describe multi-master cluster topology by selecting from the
information_schema.replica_host_status table. Multi-master clusters have the following
differences from single-master clusters:

• The has_primary column identifies the role of the node. For multi-master clusters, this value is true
for the DB instance that handles all DDL and DCL statements. Aurora forwards such requests to one of
the DB instances in a multi-master cluster.

• The replica_lag_in_milliseconds column reports replication lag on all DB instances.
• The last_reported_status column reports the status of the DB instance. It can be Online,
Recovery, or Offline.

An example follows.

mysql> select server_id, has_primary, replica_lag_in_milliseconds, last_reported_status
 -> from information_schema.replica_host_status;
+----------------------+-------------+-----------------------------+----------------------+
| server_id | has_primary | replica_lag_in_milliseconds | last_reported_status |
+----------------------+------------------+------------------------+----------------------+
| mmr-demo-test-mm-3-1 | true | 37.302 | Online |
| mmr-demo-test-mm-3-2 | false | 39.907 | Online |
+----------------------+-------------+-----------------------------+----------------------+

Using instance read-only mode

In Aurora multi-master clusters, you usually issue SELECT statements to the specific DB instance that
performs write operations on the associated tables. Doing so avoids consistency issues due to replication
lag and maximizes reuse for table and index data from the buffer pool.

If you need to run a query-intensive workload across multiple tables, you might designate one of more
DB instances within a multi-master cluster as read-only.

1001

Amazon Aurora User Guide for Aurora
Performance considerations

To put an entire DB instance into read-only mode at runtime, call the mysql.rds_set_read_only
stored procedure.

mysql> select @@read_only;
+-------------+
| @@read_only |
+-------------+
| 0 |
+-------------+
1 row in set (0.00 sec)
mysql> call mysql.rds_set_read_only(1);
Query OK, 0 rows affected (0.00 sec)
mysql> select @@read_only;
+-------------+
| @@read_only |
+-------------+
| 1 |
+-------------+
1 row in set (0.00 sec)
mysql> call mysql.rds_set_read_only(0);
Query OK, 0 rows affected (0.00 sec)
mysql> select @@read_only;
+-------------+
| @@read_only |
+-------------+
| 0 |
+-------------+
1 row in set (0.00 sec)

Calling the stored procedure is equivalent to running SET GLOBAL read_only = 0|1. That setting is
runtime only and doesn't survive an engine restart. You can permanently set the DB instance to read-
only by setting the read_only parameter to true in the parameter group for your DB instance.

Performance considerations for Aurora multi-master
clusters
For both single-master and multi-master clusters, the Aurora engine is optimized for OLTP workloads.
OLTP applications consist mostly of short-lived transactions with highly selective, random-access
queries. You get the most advantage from Aurora with workloads that run many such operations
concurrently.

Avoid running all the time at 100 percent utilization. Doing so lets Aurora keep up with internal
maintenance work. To learn how to measure how busy a multi-master cluster is and how much
maintenance work is needed, see Monitoring an Aurora multi-master cluster (p. 990).

Topics
• Query performance for multi-master clusters (p. 1002)
• Conflict resolution for multi-master clusters (p. 1003)
• Optimizing buffer pool and dictionary cache usage (p. 1003)

Query performance for multi-master clusters
Multi-master clusters don't provide dedicated read-only nodes or read-only DNS endpoints, but it's
possible to create groups of read-only DB instances and use them for the intended purpose. For more
information, see Using instance read-only mode (p. 1001).

You can use the following approaches to optimize query performance for a multi-master cluster:

1002

Amazon Aurora User Guide for Aurora
Performance considerations

• Perform SELECT statements on the DB instance that handles the shard containing the associated
table, database, or other schema objects involved in the query. This technique maximizes reuse of data
in the buffer pool. It also avoids the same data being cached on more than one DB instance. For more
details about this technique, see Optimizing buffer pool and dictionary cache usage (p. 1003).

• If you need read/write workload isolation, designate one or more DB instances as read-only, as
described in Using instance read-only mode (p. 1001). You can direct read-only sessions to those DB
instances by connecting to the corresponding instance endpoints, or by defining a custom endpoint
that is associated with all the read-only instances.

• Spread read-only queries across all DB instances. This approach is the least efficient. Use one of the
other approaches where practical, especially as you move from the development and test phase
towards production.

Conflict resolution for multi-master clusters
Many best practices for multi-master clusters focus on reducing the chance of write conflicts. Resolving
write conflicts involves network overhead. Your applications must also handle error conditions and retry
transactions. Wherever possible, try to minimize these unwanted consequences:

• Wherever practical, make all changes to a particular table and its associated indexes using the same
DB instance. If only one DB instance ever modifies a data page, changing that page cannot trigger any
write conflicts. This access pattern is common in sharded or multitenant database deployments. Thus,
it's relatively easy to switch such deployments to use multi-master clusters.

• A multi-master cluster doesn't have a reader endpoint. The reader endpoint load-balances incoming
connections, freeing you from knowing which DB instance is handling a particular connection. In a
multi-master cluster, managing connections involves being aware which DB instance is used for each
connection. That way, modifications to a particular database or table can always be routed to the same
DB instance.

• A write conflict for a small amount of data (one 16-KB page) can trigger a substantial amount of work
to roll back the entire transaction. Thus, ideally you keep the transactions for a multi-master cluster
relatively brief and small. This best practice for OLTP applications is especially important for Aurora
multi-master clusters.

Conflicts are detected at page level. A conflict could occur because proposed changes from different DB
instances modify different rows within the page. All page changes introduced in the system are subject
to conflict detection. This rule applies regardless of whether the source is a user transaction or a server
background process. It also applies whether the data page is from a table, secondary index, undo space,
and so on.

You can divide the write operations so that each DB instance handles all write operations for a set of
schema objects. In this case, all the changes to each data page are made by one specific instance.

Optimizing buffer pool and dictionary cache usage
Each DB instance in a multi-master cluster maintains separate in-memory buffers and caches such as
the buffer pool, table handler cache, and table dictionary cache. For each DB instance, the contents
and amount of turnover for the buffers and caches depends on the SQL statements processed by that
instance.

Using memory efficiently can help the performance of multi-master clusters and reduce I/O cost. Use
a sharded design to physically separate the data and write to each shard from a particular DB instance.
Doing so makes the most efficient use of the buffer cache on each DB instance. Try to assign SELECT
statements for a table to the same DB instance that performs write operations for that table. Doing so
helps those queries to reuse the cached data on that DB instance. If you have a large number of tables or
partitions, this technique also reduces the number of unique table handlers and dictionary objects held
in memory by each DB instance.

1003

Amazon Aurora User Guide for Aurora
Approaches to multi-master clusters

Approaches to Aurora multi-master clusters
In the following sections, you can find approaches to take for particular deployments that are suitable
for multi-master clusters. These approaches involve ways to divide the workload so that the DB instances
perform write operations for portions of the data that don't overlap. Doing so minimizes the chances of
write conflicts. Write conflicts are the main focus of performance tuning and troubleshooting for a multi-
master cluster.

Topics
• Using a multi-master cluster for a sharded database (p. 1004)
• Using a multi-master cluster without sharding (p. 1004)
• Using a multi-master cluster as an active standby (p. 1005)

Using a multi-master cluster for a sharded database
Sharding is a popular type of schema design that works well with Aurora multi-master clusters. In
a sharded architecture, each DB instance is assigned to update a specific group of schema objects.
That way, multiple DB instances can write to the same shared storage volume without conflicts from
concurrent changes. Each DB instance can handle write operations for multiple shards. You can change
the mapping of DB instances to shards at any time by updating your application configuration. You don't
need to reorganize your database storage or reconfigure DB instances when you do so.

Applications that use a sharded schema design are good candidates to use with Aurora multi-master
clusters. The way the data is physically divided in a sharded system helps to avoid write conflicts. You
map each shard to a schema object such as a partition, a table, or a database. Your application directs all
write operations for a particular shard to the appropriate DB instance.

Bring-your-own-shard (BYOS) describes a use case where you already have a sharded/partitioned
database and an application capable of accessing it. The shards are already physically separated. Thus,
you can easily move the workload to Aurora multi-master clusters without changing your schema design.
The same simple migration path applies to multitenant databases, where each tenant uses a dedicated
table, a set of tables, or an entire database.

You map shards or tenants to DB instances in a one-to-one or many-to-one fashion. Each DB instance
handles one or more shards. The sharded design primarily applies to write operations. You can issue
SELECT queries for any shard from any DB instance with equivalent performance.

Suppose you used a multi-master cluster for a sharded gaming application. You might distribute the
work so that database updates are performed by specific DB instances, depending on the player's user
name. Your application handles the logic of mapping each player to the appropriate DB instance and
connecting to the endpoint for that instance. Each DB instance can handle write operations for many
different shards. You can submit queries to any DB instance, because conflicts can only arise during
write operations. You might designate one DB instance to perform all SELECT queries to minimize the
overhead on the DB instances that perform write operations.

Suppose that as time goes on, one of the shards becomes much more active. To rebalance the workload,
you can switch which DB instance is responsible for that shard. In a non-Aurora system, you might have
to physically move the data to a different server. With an Aurora multi-master cluster, you can reshard
like this by directing all write operations for the shard to some other DB instance that has unused
compute capacity. The Aurora shared storage model avoids the need to physically reorganize the data.

Using a multi-master cluster without sharding
If your schema design doesn't subdivide the data into physically separate containers such as databases,
tables, or partitions, you can still divide write operations such as DML statements among the DB
instances in a multi-master cluster.

1004

Amazon Aurora User Guide for Aurora
Integrating Aurora MySQL with AWS services

You might see some performance overhead, and your application might have to deal with occasional
transaction rollbacks when write conflicts are treated as deadlock conditions. Write conflicts are more
likely during write operations for small tables. If a table contains few data pages, rows from different
parts of the primary key range might be in the same data page. This overlap might lead to write conflicts
if those rows are changed simultaneously by different DB instances.

You should also minimize the number of secondary indexes in this case. When you make a change to
indexed columns in a table, Aurora makes corresponding changes in the associated secondary indexes.
A change to an index could cause a write conflict because the order and grouping of rows is different
between a secondary index and the associated table.

Because you might still experience some write conflicts when using this technique, Amazon recommends
using a different approach if practical. See if you can use an alternative database design that subdivides
the data into different schema objects.

Using a multi-master cluster as an active standby

An active standby is a DB instance that is kept synchronized with another DB instance, and is ready to
take over for it very quickly. This configuration helps with high availability in situations where a single DB
instance can handle the full workload.

You can use multi-master clusters in an active standby configuration by directing all traffic, both read/
write and read-only, to a single DB instance. If that DB instance becomes unavailable, your application
must detect the problem and switch all connections to a different DB instance. In this case, Aurora
doesn't perform any failover because the other DB instance is already available to accept read/write
connections. By only writing to a single DB instance at any one time, you avoid write conflicts. Thus, you
don't need to have a sharded database schema to use multi-master clusters in this way.

Tip
If your application can tolerate a brief pause, you can wait several seconds after a DB instance
becomes unavailable before redirecting write traffic to another instance. When an instance
becomes unavailable because of a restart, it becomes available again after approximately
10–20 seconds. If the instance can't restart quickly, Aurora might initiate recovery for that
instance. When an instance is shut down, it performs some additional cleanup activities as part
of the shutdown. If you begin writing to a different instance while the instance is restarting,
undergoing recovery, or being shut down, you can encounter write conflicts. The conflicts can
occur between SQL statements on the new instance, and recovery operations such as rollback
and purge on the instance that was restarted or shut down.

Integrating Amazon Aurora MySQL with other
AWS services

Amazon Aurora MySQL integrates with other AWS services so that you can extend your Aurora MySQL
DB cluster to use additional capabilities in the AWS Cloud. Your Aurora MySQL DB cluster can use AWS
services to do the following:

• Synchronously or asynchronously invoke an AWS Lambda function using the native functions
lambda_sync or lambda_async. For more information, see Invoking a Lambda function from an
Amazon Aurora MySQL DB cluster (p. 1031).

• Load data from text or XML files stored in an Amazon Simple Storage Service (Amazon S3) bucket
into your DB cluster using the LOAD DATA FROM S3 or LOAD XML FROM S3 command. For more
information, see Loading data into an Amazon Aurora MySQL DB cluster from text files in an Amazon
S3 bucket (p. 1018).

1005

Amazon Aurora User Guide for Aurora
Authorizing Aurora MySQL to access AWS services

• Save data to text files stored in an Amazon S3 bucket from your DB cluster using the SELECT INTO
OUTFILE S3 command. For more information, see Saving data from an Amazon Aurora MySQL DB
cluster into text files in an Amazon S3 bucket (p. 1025).

• Automatically add or remove Aurora Replicas with Application Auto Scaling. For more information, see
Using Amazon Aurora Auto Scaling with Aurora replicas (p. 427).

• Perform sentiment analysis with Amazon Comprehend, or a wide variety of machine learning
algorithms with SageMaker. For more information, see Using machine learning (ML) capabilities with
Amazon Aurora (p. 442).

Aurora secures the ability to access other AWS services by using AWS Identity and Access Management
(IAM). You grant permission to access other AWS services by creating an IAM role with the necessary
permissions, and then associating the role with your DB cluster. For details and instructions on how
to permit your Aurora MySQL DB cluster to access other AWS services on your behalf, see Authorizing
Amazon Aurora MySQL to access other AWS services on your behalf (p. 1006).

Authorizing Amazon Aurora MySQL to access other
AWS services on your behalf

Note
Integration with other AWS services is available for Amazon Aurora MySQL version 1.8 and
later. Some integration features are only available for later versions of Aurora MySQL. For
more information on Aurora versions, see Database engine updates for Amazon Aurora
MySQL (p. 1103).

For your Aurora MySQL DB cluster to access other services on your behalf, create and configure an
AWS Identity and Access Management (IAM) role. This role authorizes database users in your DB
cluster to access other AWS services. For more information, see Setting up IAM roles to access AWS
services (p. 1006).

You must also configure your Aurora DB cluster to allow outbound connections to the target AWS
service. For more information, see Enabling network communication from Amazon Aurora MySQL to
other AWS services (p. 1017).

If you do so, your database users can perform these actions using other AWS services:

• Synchronously or asynchronously invoke an AWS Lambda function using the native functions
lambda_sync or lambda_async. Or, asynchronously invoke an AWS Lambda function using the
mysql.lambda_async procedure. For more information, see Invoking a Lambda function with an
Aurora MySQL native function (p. 1033).

• Load data from text or XML files stored in an Amazon S3 bucket into your DB cluster by using the LOAD
DATA FROM S3 or LOAD XML FROM S3 statement. For more information, see Loading data into an
Amazon Aurora MySQL DB cluster from text files in an Amazon S3 bucket (p. 1018).

• Save data from your DB cluster into text files stored in an Amazon S3 bucket by using the SELECT
INTO OUTFILE S3 statement. For more information, see Saving data from an Amazon Aurora MySQL
DB cluster into text files in an Amazon S3 bucket (p. 1025).

• Export log data to Amazon CloudWatch Logs MySQL. For more information, see Publishing Amazon
Aurora MySQL logs to Amazon CloudWatch Logs (p. 1038).

• Automatically add or remove Aurora Replicas with Application Auto Scaling. For more information, see
Using Amazon Aurora Auto Scaling with Aurora replicas (p. 427).

Setting up IAM roles to access AWS services
To permit your Aurora DB cluster to access another AWS service, do the following:

1006

Amazon Aurora User Guide for Aurora
Authorizing Aurora MySQL to access AWS services

1. Create an IAM policy that grants permission to the AWS service. For more information, see:
• Creating an IAM policy to access Amazon S3 resources (p. 1007)
• Creating an IAM policy to access AWS Lambda resources (p. 1009)
• Creating an IAM policy to access CloudWatch Logs resources (p. 1010)
• Creating an IAM policy to access AWS KMS resources (p. 1011)

2. Create an IAM role and attach the policy that you created. For more information, see Creating an IAM
role to allow Amazon Aurora to access AWS services (p. 1012).

3. Associate that IAM role with your Aurora DB cluster. For more information, see Associating an IAM role
with an Amazon Aurora MySQL DB cluster (p. 1013).

Creating an IAM policy to access Amazon S3 resources

Aurora can access Amazon S3 resources to either load data to or save data from an Aurora DB cluster.
However, you must first create an IAM policy that provides the bucket and object permissions that allow
Aurora to access Amazon S3.

The following table lists the Aurora features that can access an Amazon S3 bucket on your behalf, and
the minimum required bucket and object permissions required by each feature.

Feature Bucket permissions Object permissions

LOAD DATA FROM S3 ListBucket GetObject

GetObjectVersion

LOAD XML FROM S3 ListBucket GetObject

GetObjectVersion

SELECT INTO OUTFILE S3 ListBucket AbortMultipartUpload

DeleteObject

GetObject

ListMultipartUploadParts

PutObject

The following policy adds the permissions that might be required by Aurora to access an Amazon S3
bucket on your behalf.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAuroraToExampleBucket",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:AbortMultipartUpload",
 "s3:ListBucket",
 "s3:DeleteObject",
 "s3:GetObjectVersion",
 "s3:ListMultipartUploadParts"
],

1007

Amazon Aurora User Guide for Aurora
Authorizing Aurora MySQL to access AWS services

 "Resource": [
 "arn:aws:s3:::example-bucket/*",
 "arn:aws:s3:::example-bucket"
]
 }
]
}

Note
Make sure to include both entries for the Resource value. Aurora needs the permissions on
both the bucket itself and all the objects inside the bucket.
Based on your use case, you might not need to add all of the permissions in the sample policy.
Also, other permissions might be required. For example, if your Amazon S3 bucket is encrypted,
you need to add kms:Decrypt permissions.

You can use the following steps to create an IAM policy that provides the minimum required permissions
for Aurora to access an Amazon S3 bucket on your behalf. To allow Aurora to access all of your
Amazon S3 buckets, you can skip these steps and use either the AmazonS3ReadOnlyAccess or
AmazonS3FullAccess predefined IAM policy instead of creating your own.

To create an IAM policy to grant access to your Amazon S3 resources

1. Open the IAM Management Console.
2. In the navigation pane, choose Policies.
3. Choose Create policy.
4. On the Visual editor tab, choose Choose a service, and then choose S3.
5. For Actions, choose Expand all, and then choose the bucket permissions and object permissions

needed for the IAM policy.

Object permissions are permissions for object operations in Amazon S3, and need to be granted
for objects in a bucket, not the bucket itself. For more information about permissions for object
operations in Amazon S3, see Permissions for object operations.

6. Choose Resources, and choose Add ARN for bucket.
7. In the Add ARN(s) dialog box, provide the details about your resource, and choose Add.

Specify the Amazon S3 bucket to allow access to. For instance, if you want to allow Aurora to access
the Amazon S3 bucket named example-bucket, then set the Amazon Resource Name (ARN) value
to arn:aws:s3:::example-bucket.

8. If the object resource is listed, choose Add ARN for object.
9. In the Add ARN(s) dialog box, provide the details about your resource.

For the Amazon S3 bucket, specify the Amazon S3 bucket to allow access to. For the object, you can
choose Any to grant permissions to any object in the bucket.

Note
You can set Amazon Resource Name (ARN) to a more specific ARN value in order to allow
Aurora to access only specific files or folders in an Amazon S3 bucket. For more information
about how to define an access policy for Amazon S3, see Managing access permissions to
your Amazon S3 resources.

10. (Optional) Choose Add ARN for bucket to add another Amazon S3 bucket to the policy, and repeat
the previous steps for the bucket.

Note
You can repeat this to add corresponding bucket permission statements to your policy for
each Amazon S3 bucket that you want Aurora to access. Optionally, you can also grant
access to all buckets and objects in Amazon S3.

11. Choose Review policy.

1008

https://console.aws.amazon.com/iam/home?#home
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html#using-with-s3-actions-related-to-objects
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html

Amazon Aurora User Guide for Aurora
Authorizing Aurora MySQL to access AWS services

12. For Name, enter a name for your IAM policy, for example AllowAuroraToExampleBucket. You use
this name when you create an IAM role to associate with your Aurora DB cluster. You can also add an
optional Description value.

13. Choose Create policy.

14. Complete the steps in Creating an IAM role to allow Amazon Aurora to access AWS
services (p. 1012).

Creating an IAM policy to access AWS Lambda resources

You can create an IAM policy that provides the minimum required permissions for Aurora to invoke an
AWS Lambda function on your behalf.

The following policy adds the permissions required by Aurora to invoke an AWS Lambda function on your
behalf.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAuroraToExampleFunction",
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource":
 "arn:aws:lambda:<region>:<123456789012>:function:<example_function>"
 }
]
}

You can use the following steps to create an IAM policy that provides the minimum required permissions
for Aurora to invoke an AWS Lambda function on your behalf. To allow Aurora to invoke all of your AWS
Lambda functions, you can skip these steps and use the predefined AWSLambdaRole policy instead of
creating your own.

To create an IAM policy to grant invoke to your AWS Lambda functions

1. Open the IAM console.

2. In the navigation pane, choose Policies.

3. Choose Create policy.

4. On the Visual editor tab, choose Choose a service, and then choose Lambda.

5. For Actions, choose Expand all, and then choose the AWS Lambda permissions needed for the IAM
policy.

Ensure that InvokeFunction is selected. It is the minimum required permission to enable Amazon
Aurora to invoke an AWS Lambda function.

6. Choose Resources and choose Add ARN for function.

7. In the Add ARN(s) dialog box, provide the details about your resource.

Specify the Lambda function to allow access to. For instance, if you want to allow Aurora
to access a Lambda function named example_function, then set the ARN value to
arn:aws:lambda:::function:example_function.

For more information on how to define an access policy for AWS Lambda, see Authentication and
access control for AWS Lambda.

8. Optionally, choose Add additional permissions to add another AWS Lambda function to the policy,
and repeat the previous steps for the function.

1009

https://console.aws.amazon.com/iam/home?#home
https://docs.aws.amazon.com/lambda/latest/dg/lambda-auth-and-access-control.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-auth-and-access-control.html

Amazon Aurora User Guide for Aurora
Authorizing Aurora MySQL to access AWS services

Note
You can repeat this to add corresponding function permission statements to your policy for
each AWS Lambda function that you want Aurora to access.

9. Choose Review policy.

10. Set Name to a name for your IAM policy, for example AllowAuroraToExampleFunction. You use
this name when you create an IAM role to associate with your Aurora DB cluster. You can also add an
optional Description value.

11. Choose Create policy.

12. Complete the steps in Creating an IAM role to allow Amazon Aurora to access AWS
services (p. 1012).

Creating an IAM policy to access CloudWatch Logs resources

Aurora can access CloudWatch Logs to export audit log data from an Aurora DB cluster. However, you
must first create an IAM policy that provides the log group and log stream permissions that allow Aurora
to access CloudWatch Logs.

The following policy adds the permissions required by Aurora to access Amazon CloudWatch Logs on
your behalf, and the minimum required permissions to create log groups and export data.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnableCreationAndManagementOfRDSCloudwatchLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:GetLogEvents",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/rds/*:log-stream:*"
 },
 {
 "Sid": "EnableCreationAndManagementOfRDSCloudwatchLogGroupsAndStreams",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:DescribeLogStreams",
 "logs:PutRetentionPolicy",
 "logs:CreateLogGroup"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/rds/*"
 }
]
}

You can modify the ARNs in the policy to restrict access to a specific AWS Region and account.

You can use the following steps to create an IAM policy that provides the minimum required permissions
for Aurora to access CloudWatch Logs on your behalf. To allow Aurora full access to CloudWatch Logs,
you can skip these steps and use the CloudWatchLogsFullAccess predefined IAM policy instead of
creating your own. For more information, see Using identity-based policies (IAM policies) for CloudWatch
Logs in the Amazon CloudWatch User Guide.

To create an IAM policy to grant access to your CloudWatch Logs resources

1. Open the IAM console.

1010

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-identity-based-access-control-cwl.html#managed-policies-cwl
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-identity-based-access-control-cwl.html#managed-policies-cwl
https://console.aws.amazon.com/iam/home?#home

Amazon Aurora User Guide for Aurora
Authorizing Aurora MySQL to access AWS services

2. In the navigation pane, choose Policies.

3. Choose Create policy.

4. On the Visual editor tab, choose Choose a service, and then choose CloudWatch Logs.

5. For Actions, choose Expand all (on the right), and then choose the Amazon CloudWatch Logs
permissions needed for the IAM policy.

Ensure that the following permissions are selected:

• CreateLogGroup

• CreateLogStream

• DescribeLogStreams

• GetLogEvents

• PutLogEvents

• PutRetentionPolicy

6. Choose Resources and choose Add ARN for log-group.

7. In the Add ARN(s) dialog box, enter the following values:

• Region – An AWS Region or *

• Account – An account number or *

• Log Group Name – /aws/rds/*

8. In the Add ARN(s) dialog box, choose Add.

9. Choose Add ARN for log-stream.

10. In the Add ARN(s) dialog box, enter the following values:

• Region – An AWS Region or *

• Account – An account number or *

• Log Group Name – /aws/rds/*

• Log Stream Name – *

11. In the Add ARN(s) dialog box, choose Add.

12. Choose Review policy.

13. Set Name to a name for your IAM policy, for example AmazonRDSCloudWatchLogs. You use this
name when you create an IAM role to associate with your Aurora DB cluster. You can also add an
optional Description value.

14. Choose Create policy.

15. Complete the steps in Creating an IAM role to allow Amazon Aurora to access AWS
services (p. 1012).

Creating an IAM policy to access AWS KMS resources

Aurora can access the AWS KMS keys used for encrypting their database backups. However, you must
first create an IAM policy that provides the permissions that allow Aurora to access KMS keys.

The following policy adds the permissions required by Aurora to access KMS keys on your behalf.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"

1011

Amazon Aurora User Guide for Aurora
Authorizing Aurora MySQL to access AWS services

],
 "Resource": "arn:aws:kms:<region>:<123456789012>:key/<key-ID>"
 }
]
}

You can use the following steps to create an IAM policy that provides the minimum required permissions
for Aurora to access KMS keys on your behalf.

To create an IAM policy to grant access to your KMS keys

1. Open the IAM console.

2. In the navigation pane, choose Policies.

3. Choose Create policy.

4. On the Visual editor tab, choose Choose a service, and then choose KMS.

5. For Actions, choose Write, and then choose Decrypt.

6. Choose Resources, and choose Add ARN.

7. In the Add ARN(s) dialog box, enter the following values:

• Region – Type the AWS Region, such as us-west-2.

• Account – Type the user account number.

• Log Stream Name – Type the KMS key identifier.

8. In the Add ARN(s) dialog box, choose Add

9. Choose Review policy.

10. Set Name to a name for your IAM policy, for example AmazonRDSKMSKey. You use this name
when you create an IAM role to associate with your Aurora DB cluster. You can also add an optional
Description value.

11. Choose Create policy.

12. Complete the steps in Creating an IAM role to allow Amazon Aurora to access AWS
services (p. 1012).

Creating an IAM role to allow Amazon Aurora to access AWS services

After creating an IAM policy to allow Aurora to access AWS resources, you must create an IAM role and
attach the IAM policy to the new IAM role.

To create an IAM role to permit your Amazon RDS cluster to communicate with other AWS services on
your behalf, take the following steps.

To create an IAM role to allow Amazon RDS to access AWS services

1. Open the IAM console.

2. In the navigation pane, choose Roles.

3. Choose Create role.

4. Under AWS service, choose RDS.

5. Under Select your use case, choose RDS – Add Role to Database.

6. Choose Next: Permissions.

7. On the Attach permissions policies page, enter the name of your policy in the Search field.

8. When it appears in the list, select the policy that you defined earlier using the instructions in one of
the following sections:

1012

https://console.aws.amazon.com/iam/home?#home
https://console.aws.amazon.com/iam/home?#home

Amazon Aurora User Guide for Aurora
Authorizing Aurora MySQL to access AWS services

• Creating an IAM policy to access Amazon S3 resources (p. 1007)

• Creating an IAM policy to access AWS Lambda resources (p. 1009)

• Creating an IAM policy to access CloudWatch Logs resources (p. 1010)

• Creating an IAM policy to access AWS KMS resources (p. 1011)

9. Choose Next: Tags, and then choose Next: Review.

10. In Role name, enter a name for your IAM role, for example RDSLoadFromS3. You can also add an
optional Role description value.

11. Choose Create Role.

12. Complete the steps in Associating an IAM role with an Amazon Aurora MySQL DB cluster (p. 1013).

Associating an IAM role with an Amazon Aurora MySQL DB cluster

To permit database users in an Amazon Aurora DB cluster to access other AWS services, you associate the
role that you created in Creating an IAM role to allow Amazon Aurora to access AWS services (p. 1012)
with that DB cluster.

Note
You can't associate an IAM role with an Aurora Serverless DB cluster. For more information, see
Using Amazon Aurora Serverless v1 (p. 147).

To associate an IAM role with a DB cluster you do two things:

• Add the role to the list of associated roles for a DB cluster by using the RDS console, the add-role-to-
db-cluster AWS CLI command, or the AddRoleToDBCluster RDS API operation.

You can add a maximum of five IAM roles for each Aurora DB cluster.

• Set the cluster-level parameter for the related AWS service to the ARN for the associated IAM role.

The following table describes the cluster-level parameter names for the IAM roles used to access other
AWS services.

Cluster-level
parameter

Description

aws_default_lambda_roleUsed when invoking a Lambda function from
your DB cluster.

aws_default_logs_roleThis parameter is no longer required for
exporting log data from your DB cluster to
Amazon CloudWatch Logs. Aurora MySQL
now uses a service-linked role for the required
permissions. For more information about service-
linked roles, see Using service-linked roles for
Amazon Aurora (p. 1796).

aws_default_s3_role Used when invoking the LOAD DATA FROM
S3, LOAD XML FROM S3, or SELECT INTO
OUTFILE S3 statement from your DB cluster.

The IAM role specified in this parameter
is used only if an IAM role isn't specified
for aurora_load_from_s3_role or
aurora_select_into_s3_role for the
appropriate statement.

1013

https://docs.aws.amazon.com/cli/latest/reference/rds/add-role-to-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/add-role-to-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_AddRoleToDBCluster.html

Amazon Aurora User Guide for Aurora
Authorizing Aurora MySQL to access AWS services

Cluster-level
parameter

Description

For earlier versions of Aurora, the IAM role
specified for this parameter is always used.

aurora_load_from_s3_roleUsed when invoking the LOAD DATA FROM
S3 or LOAD XML FROM S3 statement from
your DB cluster. If an IAM role is not specified
for this parameter, the IAM role specified in
aws_default_s3_role is used.

For earlier versions of Aurora, this parameter is
not available.

aurora_select_into_s3_roleUsed when invoking the SELECT INTO
OUTFILE S3 statement from your DB
cluster. If an IAM role is not specified for
this parameter, the IAM role specified in
aws_default_s3_role is used.

For earlier versions of Aurora, this parameter is
not available.

To associate an IAM role to permit your Amazon RDS cluster to communicate with other AWS services on
your behalf, take the following steps.

To associate an IAM role with an Aurora DB cluster using the console

1. Open the RDS console at https://console.aws.amazon.com/rds/.

2. Choose Databases.

3. Choose the name of the Aurora DB cluster that you want to associate an IAM role with to show its
details.

4. On the Connectivity & security tab, in the Manage IAM roles section, choose the role to add under
Add IAM roles to this cluster.

5. Choose Add role.

6. (Optional) To stop associating an IAM role with a DB cluster and remove the related permission,
choose the role and choose Delete.

1014

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Authorizing Aurora MySQL to access AWS services

7. In the RDS console, choose Parameter groups in the navigation pane.
8. If you are already using a custom DB parameter group, you can select that group to use instead of

creating a new DB cluster parameter group. If you are using the default DB cluster parameter group,
create a new DB cluster parameter group, as described in the following steps:

a. Choose Create parameter group.
b. For Parameter group family, choose aurora-mysql8.0 for an Aurora MySQL 8.0-compatible

DB cluster, choose aurora-mysql5.7 for an Aurora MySQL 5.7-compatible DB cluster, or
choose aurora5.6 for an Aurora MySQL 5.6-compatible DB cluster.

c. For Type, choose DB Cluster Parameter Group.
d. For Group name, type the name of your new DB cluster parameter group.
e. For Description, type a description for your new DB cluster parameter group.

f. Choose Create.
9. On the Parameter groups page, select your DB cluster parameter group and choose Edit for

Parameter group actions.
10. Set the appropriate cluster-level parameters to the related IAM role ARN values. For example, you

can set just the aws_default_s3_role parameter to arn:aws:iam::123456789012:role/
AllowAuroraS3Role.

11. Choose Save changes.
12. To change the DB cluster parameter group for your DB cluster, complete the following steps:

a. Choose Databases, and then choose your Aurora DB cluster.
b. Choose Modify.
c. Scroll to Database options and set DB cluster parameter group to the DB cluster parameter

group.
d. Choose Continue.
e. Verify your changes and then choose Apply immediately.
f. Choose Modify cluster.

1015

Amazon Aurora User Guide for Aurora
Authorizing Aurora MySQL to access AWS services

g. Choose Databases, and then choose the primary instance for your DB cluster.

h. For Actions, choose Reboot.

When the instance has rebooted, your IAM role is associated with your DB cluster.

For more information about cluster parameter groups, see Aurora MySQL configuration
parameters (p. 1063).

To associate an IAM role with a DB cluster by using the AWS CLI

1. Call the add-role-to-db-cluster command from the AWS CLI to add the ARNs for your IAM
roles to the DB cluster, as shown following.

PROMPT> aws rds add-role-to-db-cluster --db-cluster-identifier my-cluster --role-arn
 arn:aws:iam::123456789012:role/AllowAuroraS3Role
PROMPT> aws rds add-role-to-db-cluster --db-cluster-identifier my-cluster --role-arn
 arn:aws:iam::123456789012:role/AllowAuroraLambdaRole

2. If you are using the default DB cluster parameter group, create a new DB cluster parameter group.
If you are already using a custom DB parameter group, you can use that group instead of creating a
new DB cluster parameter group.

To create a new DB cluster parameter group, call the create-db-cluster-parameter-group
command from the AWS CLI, as shown following.

PROMPT> aws rds create-db-cluster-parameter-group --db-cluster-parameter-group-name
 AllowAWSAccess \
 --db-parameter-group-family aurora5.6 --description "Allow access to Amazon S3 and
 AWS Lambda"

For an Aurora MySQL 5.7-compatible DB cluster, specify aurora-mysql5.7 for --db-parameter-
group-family. For an Aurora MySQL 8.0-compatible DB cluster, specify aurora-mysql8.0 for --
db-parameter-group-family.

3. Set the appropriate cluster-level parameter or parameters and the related IAM role ARN values in
your DB cluster parameter group, as shown following.

PROMPT> aws rds modify-db-cluster-parameter-group --db-cluster-parameter-group-name
 AllowAWSAccess \
 --parameters
 "ParameterName=aws_default_s3_role,ParameterValue=arn:aws:iam::123456789012:role/
AllowAuroraS3Role,method=pending-reboot" \
 --parameters
 "ParameterName=aws_default_lambda_role,ParameterValue=arn:aws:iam::123456789012:role/
AllowAuroraLambdaRole,method=pending-reboot"

4. Modify the DB cluster to use the new DB cluster parameter group and then reboot the cluster, as
shown following.

PROMPT> aws rds modify-db-cluster --db-cluster-identifier my-cluster --db-cluster-
parameter-group-name AllowAWSAccess
PROMPT> aws rds reboot-db-instance --db-instance-identifier my-cluster-primary

When the instance has rebooted, your IAM roles are associated with your DB cluster.

For more information about cluster parameter groups, see Aurora MySQL configuration
parameters (p. 1063).

1016

Amazon Aurora User Guide for Aurora
Authorizing Aurora MySQL to access AWS services

Enabling network communication from Amazon Aurora MySQL
to other AWS services
To use certain other AWS services with Amazon Aurora, the network configuration of your Aurora DB
cluster must allow outbound connections to endpoints for those services. The following operations
require this network configuration.

• Invoking AWS Lambda functions. To learn about this feature, see Invoking a Lambda function with an
Aurora MySQL native function (p. 1033).

• Accessing files from Amazon S3. To learn about this feature, see Loading data into an Amazon Aurora
MySQL DB cluster from text files in an Amazon S3 bucket (p. 1018) and Saving data from an Amazon
Aurora MySQL DB cluster into text files in an Amazon S3 bucket (p. 1025).

• Accessing AWS KMS endpoints. AWS KMS access is required to use database activity streams with
Aurora MySQL. To learn about this feature, see Monitoring Amazon Aurora with Database Activity
Streams (p. 735).

• Accessing SageMaker endpoints. SageMaker access is required to use SageMaker machine learning
with Aurora MySQL. To learn about this feature, see Using machine learning (ML) with Aurora
MySQL (p. 1041).

Aurora returns the following error messages if it can't connect to a service endpoint.

ERROR 1871 (HY000): S3 API returned error: Network Connection

ERROR 1873 (HY000): Lambda API returned error: Network Connection. Unable to connect to
 endpoint

ERROR 1815 (HY000): Internal error: Unable to initialize S3Stream

For database activity streams using Aurora MySQL, the activity stream stops functioning if the DB cluster
can't access the AWS KMS endpoint. Aurora notifies you about this issue using RDS Events.

If you encounter these messages while using the corresponding AWS services, check if your Aurora
DB cluster is public or private. If your Aurora DB cluster is private, you must configure it to enable
connections.

For an Aurora DB cluster to be public, it must be marked as publicly accessible. If you look at the details
for the DB cluster in the AWS Management Console, Publicly Accessible is Yes if this is the case. The DB
cluster must also be in an Amazon VPC public subnet. For more information about publicly accessible DB
instances, see Working with a DB instance in a VPC (p. 1800). For more information about public Amazon
VPC subnets, see Your VPC and subnets.

If your Aurora DB cluster isn't publicly accessible and in a VPC public subnet, it is private. You might have
a DB cluster that is private and want to use one of the features that requires this network configuration.
If so, configure the cluster so that it can connect to Internet addresses through Network Address
Translation (NAT). As an alternative for Amazon S3, Amazon SageMaker, and AWS Lambda, you can
instead configure the VPC to have a VPC endpoint for the other service associated with the DB cluster's
route table. For more information about configuring NAT in your VPC, see NAT gateways. For more
information about configuring VPC endpoints, see VPC endpoints.

Related topics
• Integrating Aurora with other AWS services (p. 426)

1017

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html

Amazon Aurora User Guide for Aurora
Loading data from text files in Amazon S3

• Managing an Amazon Aurora DB cluster (p. 367)

Loading data into an Amazon Aurora MySQL DB
cluster from text files in an Amazon S3 bucket
You can use the LOAD DATA FROM S3 or LOAD XML FROM S3 statement to load data from files stored
in an Amazon S3 bucket.

If you are using encryption, the Amazon S3 bucket must be encrypted with an AWS managed key.
Currently, you can't load data from a bucket that is encrypted with a customer managed key.

Note
Loading data into a table from text files in an Amazon S3 bucket is available for Amazon Aurora
MySQL version 1.8 and later. For more information about Aurora MySQL versions, see Database
engine updates for Amazon Aurora MySQL (p. 1103).
This feature currently isn't available for Aurora Serverless clusters.

Giving Aurora access to Amazon S3
Before you can load data from an Amazon S3 bucket, you must first give your Aurora MySQL DB cluster
permission to access Amazon S3.

To give Aurora MySQL access to Amazon S3

1. Create an AWS Identity and Access Management (IAM) policy that provides the bucket and object
permissions that allow your Aurora MySQL DB cluster to access Amazon S3. For instructions, see
Creating an IAM policy to access Amazon S3 resources (p. 1007).

2. Create an IAM role, and attach the IAM policy you created in Creating an IAM policy to access
Amazon S3 resources (p. 1007) to the new IAM role. For instructions, see Creating an IAM role to
allow Amazon Aurora to access AWS services (p. 1012).

3. Make sure the DB cluster is using a custom DB cluster parameter group.

For more information about creating a custom DB cluster parameter group, see Creating a DB cluster
parameter group (p. 343).

4. Set either the aurora_load_from_s3_role or aws_default_s3_role DB cluster parameter
to the Amazon Resource Name (ARN) of the new IAM role. If an IAM role isn't specified for
aurora_load_from_s3_role, Aurora uses the IAM role specified in aws_default_s3_role.

If the cluster is part of an Aurora global database, set this parameter for each Aurora cluster in the
global database. Although only the primary cluster in an Aurora global database can load data,
another cluster might be promoted by the failover mechanism and become the primary cluster.

For more information about DB cluster parameters, see Amazon Aurora DB cluster and DB instance
parameters (p. 341).

5. To permit database users in an Aurora MySQL DB cluster to access Amazon S3, associate the role
that you created in Creating an IAM role to allow Amazon Aurora to access AWS services (p. 1012)
with the DB cluster. For an Aurora global database, associate the role with each Aurora cluster in the
global database. For information about associating an IAM role with a DB cluster, see Associating an
IAM role with an Amazon Aurora MySQL DB cluster (p. 1013).

6. Configure your Aurora MySQL DB cluster to allow outbound connections to Amazon S3. For
instructions, see Enabling network communication from Amazon Aurora MySQL to other AWS
services (p. 1017).

For an Aurora global database, enable outbound connections for each Aurora cluster in the global
database.

1018

Amazon Aurora User Guide for Aurora
Loading data from text files in Amazon S3

Granting privileges to load data in Amazon Aurora MySQL
The database user that issues the LOAD DATA FROM S3 or LOAD XML FROM S3 statement must
have a specific role or privilege to issue either statement. In Aurora MySQL version 3, you grant the
AWS_LOAD_S3_ACCESS role. In Aurora MySQL version 1 or 2, you grant the LOAD FROM S3 privilege.
The administrative user for a DB cluster is granted the appropriate role or privilege by default. You can
grant the privilege to another user by using one of the following statements.

Use the following statement for Aurora MySQL version 3:

GRANT AWS_LOAD_S3_ACCESS TO 'user'@'domain-or-ip-address'

Tip
When you use the role technique in Aurora MySQL version 3, you also activate the role by using
the SET ROLE role_name or SET ROLE ALL statement. If you aren't familiar with the MySQL
8.0 role system, you can learn more in Role-based privilege model (p. 778). You can also find
more details in Using Roles in the MySQL Reference Manual.

Use the following statement for Aurora MySQL version 1 or 2:

GRANT LOAD FROM S3 ON *.* TO 'user'@'domain-or-ip-address'

The AWS_LOAD_S3_ACCESS role and LOAD FROM S3 privilege are specific to Amazon Aurora and
are not available for MySQL databases or RDS for MySQL DB instances. If you have set up replication
between an Aurora DB cluster as the replication master and a MySQL database as the replication
client, then the GRANT statement for the role or privilege causes replication to stop with an error. You
can safely skip the error to resume replication. To skip the error on an RDS for MySQL DB instance,
use the mysql_rds_skip_repl_error procedure. To skip the error on an external MySQL database, use
the SET GLOBAL sql_slave_skip_counter statement (Aurora MySQL version 1 and 2) or SET GLOBAL
sql_replica_skip_counter statement (Aurora MySQL version 3).

Specifying a path to an Amazon S3 bucket
The syntax for specifying a path to files stored on an Amazon S3 bucket is as follows.

s3-region://bucket-name/file-name-or-prefix

The path includes the following values:

• region (optional) – The AWS Region that contains the Amazon S3 bucket to load from. This value is
optional. If you don't specify a region value, then Aurora loads your file from Amazon S3 in the same
region as your DB cluster.

• bucket-name – The name of the Amazon S3 bucket that contains the data to load. Object prefixes
that identify a virtual folder path are supported.

• file-name-or-prefix – The name of the Amazon S3 text file or XML file, or a prefix that identifies
one or more text or XML files to load. You can also specify a manifest file that identifies one or more
text files to load. For more information about using a manifest file to load text files from Amazon S3,
see Using a manifest to specify data files to load (p. 1021).

LOAD DATA FROM S3
You can use the LOAD DATA FROM S3 statement to load data from any text file format that is
supported by the MySQL LOAD DATA INFILE statement, such as text data that is comma-delimited.
Compressed files are not supported.

1019

https://dev.mysql.com/doc/refman/8.0/en/roles.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_skip_repl_error.html
http://dev.mysql.com/doc/refman/5.7/en/set-global-sql-slave-skip-counter.html
http://dev.mysql.com/doc/refman/8.0/en/set-global-sql-slave-skip-counter.html
http://dev.mysql.com/doc/refman/8.0/en/set-global-sql-slave-skip-counter.html
https://dev.mysql.com/doc/refman/5.6/en/load-data.html

Amazon Aurora User Guide for Aurora
Loading data from text files in Amazon S3

Syntax

LOAD DATA FROM S3 [FILE | PREFIX | MANIFEST] 'S3-URI'
 [REPLACE | IGNORE]
 INTO TABLE tbl_name
 [PARTITION (partition_name,...)]
 [CHARACTER SET charset_name]
 [{FIELDS | COLUMNS}
 [TERMINATED BY 'string']
 [[OPTIONALLY] ENCLOSED BY 'char']
 [ESCAPED BY 'char']
]
 [LINES
 [STARTING BY 'string']
 [TERMINATED BY 'string']
]
 [IGNORE number {LINES | ROWS}]
 [(col_name_or_user_var,...)]
 [SET col_name = expr,...]

Parameters

Following, you can find a list of the required and optional parameters used by the LOAD DATA FROM S3
statement. You can find more details about some of these parameters in LOAD DATA INFILE syntax in the
MySQL documentation.

• FILE | PREFIX | MANIFEST – Identifies whether to load the data from a single file, from all files that
match a given prefix, or from all files in a specified manifest. FILE is the default.

• S3-URI – Specifies the URI for a text or manifest file to load, or an Amazon S3 prefix to use. Specify the
URI using the syntax described in Specifying a path to an Amazon S3 bucket (p. 1019).

• REPLACE | IGNORE – Determines what action to take if an input row as the same unique key values as
an existing row in the database table.

• Specify REPLACE if you want the input row to replace the existing row in the table.

• Specify IGNORE if you want to discard the input row.

• INTO TABLE – Identifies the name of the database table to load the input rows into.

• PARTITION – Requires that all input rows be inserted into the partitions identified by the specified
list of comma-separated partition names. If an input row cannot be inserted into one of the specified
partitions, then the statement fails and an error is returned.

• CHARACTER SET – Identifies the character set of the data in the input file.

• FIELDS | COLUMNS – Identifies how the fields or columns in the input file are delimited. Fields are tab-
delimited by default.

• LINES – Identifies how the lines in the input file are delimited. Lines are delimited by a newline
character ('\n') by default.

• IGNORE number LINES | ROWS – Specifies to ignore a certain number of lines or rows at the start of
the input file. For example, you can use IGNORE 1 LINES to skip over an initial header line containing
column names, or IGNORE 2 ROWS to skip over the first two rows of data in the input file. If you also
use PREFIX, IGNORE skips a certain number of lines or rows at the start of the first input file.

• col_name_or_user_var, ... – Specifies a comma-separated list of one or more column names or user
variables that identify which columns to load by name. The name of a user variable used for this
purpose must match the name of an element from the text file, prefixed with @. You can employ user
variables to store the corresponding field values for subsequent reuse.

For example, the following statement loads the first column from the input file into the first column
of table1, and sets the value of the table_column2 column in table1 to the input value of the
second column divided by 100.

1020

https://dev.mysql.com/doc/refman/5.6/en/load-data.html

Amazon Aurora User Guide for Aurora
Loading data from text files in Amazon S3

LOAD DATA FROM S3 's3://mybucket/data.txt'
 INTO TABLE table1
 (column1, @var1)
 SET table_column2 = @var1/100;

• SET – Specifies a comma-separated list of assignment operations that set the values of columns in the
table to values not included in the input file.

For example, the following statement sets the first two columns of table1 to the values in the first
two columns from the input file, and then sets the value of the column3 in table1 to the current
time stamp.

LOAD DATA FROM S3 's3://mybucket/data.txt'
 INTO TABLE table1
 (column1, column2)
 SET column3 = CURRENT_TIMESTAMP;

You can use subqueries in the right side of SET assignments. For a subquery that returns a value to be
assigned to a column, you can use only a scalar subquery. Also, you cannot use a subquery to select
from the table that is being loaded.

You cannot use the LOCAL keyword of the LOAD DATA FROM S3 statement if you are loading data from
an Amazon S3 bucket.

Using a manifest to specify data files to load

You can use the LOAD DATA FROM S3 statement with the MANIFEST keyword to specify a manifest file
in JSON format that lists the text files to be loaded into a table in your DB cluster. You must be using
Aurora 1.11 or greater to use the MANIFEST keyword with the LOAD DATA FROM S3 statement.

The following JSON schema describes the format and content of a manifest file.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "additionalProperties": false,
 "definitions": {},
 "id": "Aurora_LoadFromS3_Manifest",
 "properties": {
 "entries": {
 "additionalItems": false,
 "id": "/properties/entries",
 "items": {
 "additionalProperties": false,
 "id": "/properties/entries/items",
 "properties": {
 "mandatory": {
 "default": "false"
 "id": "/properties/entries/items/properties/mandatory",
 "type": "boolean"
 },
 "url": {
 "id": "/properties/entries/items/properties/url",
 "maxLength": 1024,
 "minLength": 1,
 "type": "string"
 }
 },
 "required": [
 "url"

1021

Amazon Aurora User Guide for Aurora
Loading data from text files in Amazon S3

],
 "type": "object"
 },
 "type": "array",
 "uniqueItems": true
 }
 },
 "required": [
 "entries"
],
 "type": "object"
}

Each url in the manifest must specify a URL with the bucket name and full object path for the file, not
just a prefix. You can use a manifest to load files from different buckets, different regions, or files that
do not share the same prefix. If a region is not specified in the URL, the region of the target Aurora DB
cluster is used. The following example shows a manifest file that loads four files from different buckets.

{
 "entries": [
 {
 "url":"s3://aurora-bucket/2013-10-04-customerdata",
 "mandatory":true
 },
 {
 "url":"s3-us-west-2://aurora-bucket-usw2/2013-10-05-customerdata",
 "mandatory":true
 },
 {
 "url":"s3://aurora-bucket/2013-10-04-customerdata",
 "mandatory":false
 },
 {
 "url":"s3://aurora-bucket/2013-10-05-customerdata"
 }
]
}

The optional mandatory flag specifies whether LOAD DATA FROM S3 should return an error if the file
is not found. The mandatory flag defaults to false. Regardless of how mandatory is set, LOAD DATA
FROM S3 terminates if no files are found.

Manifest files can have any extension. The following example runs the LOAD DATA FROM S3 statement
with the manifest in the previous example, which is named customer.manifest.

LOAD DATA FROM S3 MANIFEST 's3-us-west-2://aurora-bucket/customer.manifest'
 INTO TABLE CUSTOMER
 FIELDS TERMINATED BY ','
 LINES TERMINATED BY '\n'
 (ID, FIRSTNAME, LASTNAME, EMAIL);

After the statement completes, an entry for each successfully loaded file is written to the
aurora_s3_load_history table.

Verifying loaded files using the aurora_s3_load_history table

Every successful LOAD DATA FROM S3 statement updates the aurora_s3_load_history table in the
mysql schema with an entry for each file that was loaded.

After you run the LOAD DATA FROM S3 statement, you can verify which files were loaded by querying
the aurora_s3_load_history table. To see the files that were loaded from one iteration of the

1022

Amazon Aurora User Guide for Aurora
Loading data from text files in Amazon S3

statement, use the WHERE clause to filter the records on the Amazon S3 URI for the manifest file used
in the statement. If you have used the same manifest file before, filter the results using the timestamp
field.

select * from mysql.aurora_s3_load_history where load_prefix = 'S3_URI';

The following table describes the fields in the aurora_s3_load_history table.

Field Description

load_prefix The URI that was specified in the load statement. This URI can map
to any of the following:

• A single data file for a LOAD DATA FROM S3 FILE statement
• An Amazon S3 prefix that maps to multiple data files for a LOAD
DATA FROM S3 PREFIX statement

• A single manifest file that contains the names of files to be
loaded for a LOAD DATA FROM S3 MANIFEST statement

file_name The name of a file that was loaded into Aurora from Amazon S3
using the URI identified in the load_prefix field.

version_number The version number of the file identified by the file_name field
that was loaded, if the Amazon S3 bucket has a version number.

bytes_loaded The size of the file loaded, in bytes.

load_timestamp The timestamp when the LOAD DATA FROM S3 statement
completed.

Examples

The following statement loads data from an Amazon S3 bucket that is in the same region as the Aurora
DB cluster. The statement reads the comma-delimited data in the file customerdata.txt that is in
the dbbucket Amazon S3 bucket, and then loads the data into the table store-schema.customer-
table.

LOAD DATA FROM S3 's3://dbbucket/customerdata.csv'
 INTO TABLE store-schema.customer-table
 FIELDS TERMINATED BY ','
 LINES TERMINATED BY '\n'
 (ID, FIRSTNAME, LASTNAME, ADDRESS, EMAIL, PHONE);

The following statement loads data from an Amazon S3 bucket that is in a different region from
the Aurora DB cluster. The statement reads the comma-delimited data from all files that match the
employee-data object prefix in the my-data Amazon S3 bucket in the us-west-2 region, and then
loads the data into the employees table.

LOAD DATA FROM S3 PREFIX 's3-us-west-2://my-data/employee_data'
 INTO TABLE employees
 FIELDS TERMINATED BY ','
 LINES TERMINATED BY '\n'
 (ID, FIRSTNAME, LASTNAME, EMAIL, SALARY);

The following statement loads data from the files specified in a JSON manifest file named q1_sales.json
into the sales table.

1023

Amazon Aurora User Guide for Aurora
Loading data from text files in Amazon S3

LOAD DATA FROM S3 MANIFEST 's3-us-west-2://aurora-bucket/q1_sales.json'
 INTO TABLE sales
 FIELDS TERMINATED BY ','
 LINES TERMINATED BY '\n'
 (MONTH, STORE, GROSS, NET);

LOAD XML FROM S3
You can use the LOAD XML FROM S3 statement to load data from XML files stored on an Amazon S3
bucket in one of three different XML formats:

• Column names as attributes of a <row> element. The attribute value identifies the contents of the
table field.

<row column1="value1" column2="value2" .../>

• Column names as child elements of a <row> element. The value of the child element identifies the
contents of the table field.

<row>
 <column1>value1</column1>
 <column2>value2</column2>
</row>

• Column names in the name attribute of <field> elements in a <row> element. The value of the
<field> element identifies the contents of the table field.

<row>
 <field name='column1'>value1</field>
 <field name='column2'>value2</field>
</row>

Syntax

LOAD XML FROM S3 'S3-URI'
 [REPLACE | IGNORE]
 INTO TABLE tbl_name
 [PARTITION (partition_name,...)]
 [CHARACTER SET charset_name]
 [ROWS IDENTIFIED BY '<element-name>']
 [IGNORE number {LINES | ROWS}]
 [(field_name_or_user_var,...)]
 [SET col_name = expr,...]

Parameters

Following, you can find a list of the required and optional parameters used by the LOAD DATA FROM S3
statement. You can find more details about some of these parameters in LOAD XML syntax in the MySQL
documentation.

• FILE | PREFIX – Identifies whether to load the data from a single file, or from all files that match a
given prefix. FILE is the default.

• REPLACE | IGNORE – Determines what action to take if an input row as the same unique key values as
an existing row in the database table.

• Specify REPLACE if you want the input row to replace the existing row in the table.

1024

https://dev.mysql.com/doc/refman/5.6/en/load-xml.html

Amazon Aurora User Guide for Aurora
Saving data into text files in Amazon S3

• Specify IGNORE if you want to discard the input row. IGNORE is the default.

• INTO TABLE – Identifies the name of the database table to load the input rows into.

• PARTITION – Requires that all input rows be inserted into the partitions identified by the specified
list of comma-separated partition names. If an input row cannot be inserted into one of the specified
partitions, then the statement fails and an error is returned.

• CHARACTER SET – Identifies the character set of the data in the input file.

• ROWS IDENTIFIED BY – Identifies the element name that identifies a row in the input file. The default
is <row>.

• IGNORE number LINES | ROWS – Specifies to ignore a certain number of lines or rows at the start of
the input file. For example, you can use IGNORE 1 LINES to skip over the first line in the text file, or
IGNORE 2 ROWS to skip over the first two rows of data in the input XML.

• field_name_or_user_var, ... – Specifies a comma-separated list of one or more XML element names or
user variables that identify which elements to load by name. The name of a user variable used for this
purpose must match the name of an element from the XML file, prefixed with @. You can employ user
variables to store the corresponding field values for subsequent reuse.

For example, the following statement loads the first column from the input file into the first column
of table1, and sets the value of the table_column2 column in table1 to the input value of the
second column divided by 100.

LOAD XML FROM S3 's3://mybucket/data.xml'
 INTO TABLE table1
 (column1, @var1)
 SET table_column2 = @var1/100;

• SET – Specifies a comma-separated list of assignment operations that set the values of columns in the
table to values not included in the input file.

For example, the following statement sets the first two columns of table1 to the values in the first
two columns from the input file, and then sets the value of the column3 in table1 to the current
time stamp.

LOAD XML FROM S3 's3://mybucket/data.xml'
 INTO TABLE table1
 (column1, column2)
 SET column3 = CURRENT_TIMESTAMP;

You can use subqueries in the right side of SET assignments. For a subquery that returns a value to be
assigned to a column, you can use only a scalar subquery. Also, you cannot use a subquery to select
from the table that is being loaded.

Related topics
• Integrating Amazon Aurora MySQL with other AWS services (p. 1005)

• Saving data from an Amazon Aurora MySQL DB cluster into text files in an Amazon S3
bucket (p. 1025)

• Managing an Amazon Aurora DB cluster (p. 367)

• Migrating data to an Amazon Aurora DB cluster (p. 366)

Saving data from an Amazon Aurora MySQL DB
cluster into text files in an Amazon S3 bucket

1025

Amazon Aurora User Guide for Aurora
Saving data into text files in Amazon S3

You can use the SELECT INTO OUTFILE S3 statement to query data from an Amazon Aurora
MySQL DB cluster and save it directly into text files stored in an Amazon S3 bucket. You can use this
functionality to skip bringing the data down to the client first, and then copying it from the client to
Amazon S3. The LOAD DATA FROM S3 statement can use the files created by this statement to load
data into an Aurora DB cluster. For more information, see Loading data into an Amazon Aurora MySQL
DB cluster from text files in an Amazon S3 bucket (p. 1018).

If you are using encryption, the Amazon S3 bucket must be encrypted with an AWS managed key.
Currently, you can't save data to a bucket that is encrypted with a customer managed key.

This feature currently isn't available for Aurora Serverless clusters.

Note
You can save DB cluster snapshot data to Amazon S3 using the AWS Management Console, AWS
CLI, or Amazon RDS API. For more information, see Exporting DB snapshot data to Amazon
S3 (p. 518).

Giving Aurora MySQL access to Amazon S3

Before you can save data into an Amazon S3 bucket, you must first give your Aurora MySQL DB cluster
permission to access Amazon S3.

To give Aurora MySQL access to Amazon S3

1. Create an AWS Identity and Access Management (IAM) policy that provides the bucket and object
permissions that allow your Aurora MySQL DB cluster to access Amazon S3. For instructions, see
Creating an IAM policy to access Amazon S3 resources (p. 1007).

2. Create an IAM role, and attach the IAM policy you created in Creating an IAM policy to access
Amazon S3 resources (p. 1007) to the new IAM role. For instructions, see Creating an IAM role to
allow Amazon Aurora to access AWS services (p. 1012).

3. Set either the aurora_select_into_s3_role or aws_default_s3_role DB cluster parameter
to the Amazon Resource Name (ARN) of the new IAM role. If an IAM role isn't specified for
aurora_select_into_s3_role, Aurora uses the IAM role specified in aws_default_s3_role.

If the cluster is part of an Aurora global database, set this parameter for each Aurora cluster in the
global database.

For more information about DB cluster parameters, see Amazon Aurora DB cluster and DB instance
parameters (p. 341).

4. To permit database users in an Aurora MySQL DB cluster to access Amazon S3, associate the role
that you created in Creating an IAM role to allow Amazon Aurora to access AWS services (p. 1012)
with the DB cluster.

For an Aurora global database, associate the role with each Aurora cluster in the global database.

For information about associating an IAM role with a DB cluster, see Associating an IAM role with an
Amazon Aurora MySQL DB cluster (p. 1013).

5. Configure your Aurora MySQL DB cluster to allow outbound connections to Amazon S3. For
instructions, see Enabling network communication from Amazon Aurora MySQL to other AWS
services (p. 1017).

For an Aurora global database, enable outbound connections for each Aurora cluster in the global
database.

1026

Amazon Aurora User Guide for Aurora
Saving data into text files in Amazon S3

Granting privileges to save data in Aurora MySQL
The database user that issues the SELECT INTO OUTFILE S3 statement must have a specific role or
privilege. In Aurora MySQL version 3, you grant the AWS_SELECT_S3_ACCESS role. In Aurora MySQL
version 1 or 2, you grant the SELECT INTO S3 privilege. The administrative user for a DB cluster is
granted the appropriate role or privilege by default. You can grant the privilege to another user by using
one of the following statements.

Use the following statement for Aurora MySQL version 3:

GRANT AWS_SELECT_S3_ACCESS TO 'user'@'domain-or-ip-address'

Tip
When you use the role technique in Aurora MySQL version 3, you also activate the role by using
the SET ROLE role_name or SET ROLE ALL statement. If you aren't familiar with the MySQL
8.0 role system, you can learn more in Role-based privilege model (p. 778). You can also find
more details in Using Roles in the MySQL Reference Manual.

Use the following statement for Aurora MySQL version 1 or 2:

GRANT SELECT INTO S3 ON *.* TO 'user'@'domain-or-ip-address'

The AWS_SELECT_S3_ACCESS role and SELECT INTO S3 privilege are specific to Amazon Aurora
MySQL and are not available for MySQL databases or RDS for MySQL DB instances. If you have set up
replication between an Aurora MySQL DB cluster as the replication master and a MySQL database as
the replication client, then the GRANT statement for the role or privilege causes replication to stop with
an error. You can safely skip the error to resume replication. To skip the error on an RDS for MySQL DB
instance, use the mysql_rds_skip_repl_error procedure. To skip the error on an external MySQL database,
use the SET GLOBAL sql_slave_skip_counter statement (Aurora MySQL version 1 and 2) or SET GLOBAL
sql_replica_skip_counter statement (Aurora MySQL version 3).

Specifying a path to an Amazon S3 bucket
The syntax for specifying a path to store the data and manifest files on an Amazon S3 bucket is similar to
that used in the LOAD DATA FROM S3 PREFIX statement, as shown following.

s3-region://bucket-name/file-prefix

The path includes the following values:

• region (optional) – The AWS Region that contains the Amazon S3 bucket to save the data into. This
value is optional. If you don't specify a region value, then Aurora saves your files into Amazon S3 in
the same region as your DB cluster.

• bucket-name – The name of the Amazon S3 bucket to save the data into. Object prefixes that identify
a virtual folder path are supported.

• file-prefix – The Amazon S3 object prefix that identifies the files to be saved in Amazon S3.

The data files created by the SELECT INTO OUTFILE S3 statement use the following path, in which
00000 represents a 5-digit, zero-based integer number.

s3-region://bucket-name/file-prefix.part_00000

For example, suppose that a SELECT INTO OUTFILE S3 statement specifies s3-us-west-2://
bucket/prefix as the path in which to store data files and creates three data files. The specified
Amazon S3 bucket contains the following data files.

1027

https://dev.mysql.com/doc/refman/8.0/en/roles.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_skip_repl_error.html
http://dev.mysql.com/doc/refman/5.7/en/set-global-sql-slave-skip-counter.html
http://dev.mysql.com/doc/refman/8.0/en/set-global-sql-slave-skip-counter.html
http://dev.mysql.com/doc/refman/8.0/en/set-global-sql-slave-skip-counter.html

Amazon Aurora User Guide for Aurora
Saving data into text files in Amazon S3

• s3-us-west-2://bucket/prefix.part_00000
• s3-us-west-2://bucket/prefix.part_00001
• s3-us-west-2://bucket/prefix.part_00002

Creating a manifest to list data files
You can use the SELECT INTO OUTFILE S3 statement with the MANIFEST ON option to create a
manifest file in JSON format that lists the text files created by the statement. The LOAD DATA FROM
S3 statement can use the manifest file to load the data files back into an Aurora MySQL DB cluster. For
more information about using a manifest to load data files from Amazon S3 into an Aurora MySQL DB
cluster, see Using a manifest to specify data files to load (p. 1021).

The data files included in the manifest created by the SELECT INTO OUTFILE S3 statement are listed
in the order that they're created by the statement. For example, suppose that a SELECT INTO OUTFILE
S3 statement specified s3-us-west-2://bucket/prefix as the path in which to store data files
and creates three data files and a manifest file. The specified Amazon S3 bucket contains a manifest file
named s3-us-west-2://bucket/prefix.manifest, that contains the following information.

{
 "entries": [
 {
 "url":"s3-us-west-2://bucket/prefix.part_00000"
 },
 {
 "url":"s3-us-west-2://bucket/prefix.part_00001"
 },
 {
 "url":"s3-us-west-2://bucket/prefix.part_00002"
 }
]
}

SELECT INTO OUTFILE S3
You can use the SELECT INTO OUTFILE S3 statement to query data from a DB cluster and save it
directly into delimited text files stored in an Amazon S3 bucket. Compressed files are not supported.
Encrypted files are supported starting in Aurora MySQL 2.09.0.

Syntax

SELECT
 [ALL | DISTINCT | DISTINCTROW]
 [HIGH_PRIORITY]
 [STRAIGHT_JOIN]
 [SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUFFER_RESULT]
 [SQL_CACHE | SQL_NO_CACHE] [SQL_CALC_FOUND_ROWS]
 select_expr [, select_expr ...]
 [FROM table_references
 [PARTITION partition_list]
 [WHERE where_condition]
 [GROUP BY {col_name | expr | position}
 [ASC | DESC], ... [WITH ROLLUP]]
 [HAVING where_condition]
 [ORDER BY {col_name | expr | position}
 [ASC | DESC], ...]
 [LIMIT {[offset,] row_count | row_count OFFSET offset}]
 [PROCEDURE procedure_name(argument_list)]
INTO OUTFILE S3 's3_uri'
[CHARACTER SET charset_name]

1028

Amazon Aurora User Guide for Aurora
Saving data into text files in Amazon S3

 [export_options]
 [MANIFEST {ON | OFF}]
 [OVERWRITE {ON | OFF}]

export_options:
 [FORMAT {CSV|TEXT} [HEADER]]
 [{FIELDS | COLUMNS}
 [TERMINATED BY 'string']
 [[OPTIONALLY] ENCLOSED BY 'char']
 [ESCAPED BY 'char']
]
 [LINES
 [STARTING BY 'string']
 [TERMINATED BY 'string']
]

Parameters

Following, you can find a list of the required and optional parameters used by the SELECT INTO
OUTFILE S3 statement that are specific to Aurora.

• s3-uri – Specifies the URI for an Amazon S3 prefix to use. Specify the URI using the syntax described in
Specifying a path to an Amazon S3 bucket (p. 1027).

• FORMAT {CSV|TEXT} [HEADER] – Optionally saves the data in CSV format. This syntax is available in
Aurora MySQL version 2.07.0 and later.

The TEXT option is the default and produces the existing MySQL export format.

The CSV option produces comma-separated data values. The CSV format follows the specification in
RFC-4180. If you specify the optional keyword HEADER, the output file contains one header line. The
labels in the header line correspond to the column names from the SELECT statement. You can use
the CSV files for training data models for use with AWS ML services. For more information about using
exported Aurora data with AWS ML services, see Exporting data to Amazon S3 for SageMaker model
training (p. 1047).

• MANIFEST {ON | OFF} – Indicates whether a manifest file is created in Amazon S3. The manifest file is
a JavaScript Object Notation (JSON) file that can be used to load data into an Aurora DB cluster with
the LOAD DATA FROM S3 MANIFEST statement. For more information about LOAD DATA FROM S3
MANIFEST, see Loading data into an Amazon Aurora MySQL DB cluster from text files in an Amazon S3
bucket (p. 1018).

If MANIFEST ON is specified in the query, the manifest file is created in Amazon S3 after all data files
have been created and uploaded. The manifest file is created using the following path:

s3-region://bucket-name/file-prefix.manifest

For more information about the format of the manifest file's contents, see Creating a manifest to list
data files (p. 1028).

• OVERWRITE {ON | OFF} – Indicates whether existing files in the specified Amazon S3 bucket are
overwritten. If OVERWRITE ON is specified, existing files that match the file prefix in the URI specified
in s3-uriare overwritten. Otherwise, an error occurs.

You can find more details about other parameters in SELECT syntax and LOAD DATA INFILE syntax, in the
MySQL documentation.

Considerations

The number of files written to the Amazon S3 bucket depends on the amount of data selected by the
SELECT INTO OUTFILE S3 statement and the file size threshold for Aurora MySQL. The default

1029

https://tools.ietf.org/html/rfc4180
https://dev.mysql.com/doc/refman/5.6/en/select.html
https://dev.mysql.com/doc/refman/5.6/en/load-data.html

Amazon Aurora User Guide for Aurora
Saving data into text files in Amazon S3

file size threshold is 6 gigabytes (GB). If the data selected by the statement is less than the file size
threshold, a single file is created; otherwise, multiple files are created. Other considerations for files
created by this statement include the following:

• Aurora MySQL guarantees that rows in data files are not split across file boundaries. For multiple
files, the size of every data file except the last is typically close to the file size threshold. However,
occasionally staying under the file size threshold results in a row being split across two data files. In
this case, Aurora MySQL creates a data file that keeps the row intact, but might be larger than the file
size threshold.

• Because each SELECT statement in Aurora MySQL runs as an atomic transaction, a SELECT INTO
OUTFILE S3 statement that selects a large data set might run for some time. If the statement fails
for any reason, you might need to start over and issue the statement again. If the statement fails,
however, files already uploaded to Amazon S3 remain in the specified Amazon S3 bucket. You can use
another statement to upload the remaining data instead of starting over again.

• If the amount of data to be selected is large (more than 25 GB), we recommend that you use multiple
SELECT INTO OUTFILE S3 statements to save the data to Amazon S3. Each statement should select
a different portion of the data to be saved, and also specify a different file_prefix in the s3-
uri parameter to use when saving the data files. Partitioning the data to be selected with multiple
statements makes it easier to recover from an error in one statement. If an error occurs for one
statement, only a portion of data needs to be re-selected and uploaded to Amazon S3. Using multiple
statements also helps to avoid a single long-running transaction, which can improve performance.

• If multiple SELECT INTO OUTFILE S3 statements that use the same file_prefix in the s3-uri
parameter run in parallel to select data into Amazon S3, the behavior is undefined.

• Metadata, such as table schema or file metadata, is not uploaded by Aurora MySQL to Amazon S3.

• In some cases, you might re-run a SELECT INTO OUTFILE S3 query, such as to recover from a
failure. In these cases, you must either remove any existing data files in the Amazon S3 bucket with the
same file prefix specified in s3-uri, or include OVERWRITE ON in the SELECT INTO OUTFILE S3
query.

The SELECT INTO OUTFILE S3 statement returns a typical MySQL error number and response on
success or failure. If you don't have access to the MySQL error number and response, the easiest way to
determine when it's done is by specifying MANIFEST ON in the statement. The manifest file is the last
file written by the statement. In other words, if you have a manifest file, the statement has completed.

Currently, there's no way to directly monitor the progress of the SELECT INTO OUTFILE S3 statement
while it runs. However, suppose that you're writing a large amount of data from Aurora MySQL to
Amazon S3 using this statement, and you know the size of the data selected by the statement. In this
case, you can estimate progress by monitoring the creation of data files in Amazon S3.

To do so, you can use the fact that a data file is created in the specified Amazon S3 bucket for about
every 6 GB of data selected by the statement. Divide the size of the data selected by 6 GB to get the
estimated number of data files to create. You can then estimate the progress of the statement by
monitoring the number of files uploaded to Amazon S3 while the statement runs.

Examples

The following statement selects all of the data in the employees table and saves the data into an
Amazon S3 bucket that is in a different region from the Aurora MySQL DB cluster. The statement creates
data files in which each field is terminated by a comma (,) character and each row is terminated by a
newline (\n) character. The statement returns an error if files that match the sample_employee_data
file prefix exist in the specified Amazon S3 bucket.

SELECT * FROM employees INTO OUTFILE S3 's3-us-west-2://aurora-select-into-s3-pdx/
sample_employee_data'
 FIELDS TERMINATED BY ','

1030

Amazon Aurora User Guide for Aurora
Invoking a Lambda function from Aurora MySQL

 LINES TERMINATED BY '\n';

The following statement selects all of the data in the employees table and saves the data into an
Amazon S3 bucket that is in the same region as the Aurora MySQL DB cluster. The statement creates
data files in which each field is terminated by a comma (,) character and each row is terminated by a
newline (\n) character, and also a manifest file. The statement returns an error if files that match the
sample_employee_data file prefix exist in the specified Amazon S3 bucket.

SELECT * FROM employees INTO OUTFILE S3 's3://aurora-select-into-s3-pdx/
sample_employee_data'
 FIELDS TERMINATED BY ','
 LINES TERMINATED BY '\n'
 MANIFEST ON;

The following statement selects all of the data in the employees table and saves the data into an
Amazon S3 bucket that is in a different region from the Aurora DB cluster. The statement creates data
files in which each field is terminated by a comma (,) character and each row is terminated by a newline
(\n) character. The statement overwrites any existing files that match the sample_employee_data file
prefix in the specified Amazon S3 bucket.

SELECT * FROM employees INTO OUTFILE S3 's3-us-west-2://aurora-select-into-s3-pdx/
sample_employee_data'
 FIELDS TERMINATED BY ','
 LINES TERMINATED BY '\n'
 OVERWRITE ON;

The following statement selects all of the data in the employees table and saves the data into an
Amazon S3 bucket that is in the same region as the Aurora MySQL DB cluster. The statement creates
data files in which each field is terminated by a comma (,) character and each row is terminated by a
newline (\n) character, and also a manifest file. The statement overwrites any existing files that match
the sample_employee_data file prefix in the specified Amazon S3 bucket.

SELECT * FROM employees INTO OUTFILE S3 's3://aurora-select-into-s3-pdx/
sample_employee_data'
 FIELDS TERMINATED BY ','
 LINES TERMINATED BY '\n'
 MANIFEST ON
 OVERWRITE ON;

Related topics
• Integrating Aurora with other AWS services (p. 426)

• Loading data into an Amazon Aurora MySQL DB cluster from text files in an Amazon S3
bucket (p. 1018)

• Managing an Amazon Aurora DB cluster (p. 367)

• Migrating data to an Amazon Aurora DB cluster (p. 366)

Invoking a Lambda function from an Amazon Aurora
MySQL DB cluster
You can invoke an AWS Lambda function from an Amazon Aurora MySQL-Compatible Edition DB cluster
with the native function lambda_sync or lambda_async. Before invoking a Lambda function from an

1031

Amazon Aurora User Guide for Aurora
Invoking a Lambda function from Aurora MySQL

Aurora MySQL, the Aurora DB cluster must have access to Lambda. For details about granting access to
Aurora MySQL, see Giving Aurora access to Lambda (p. 1032). For information about the lambda_sync
and lambda_async stored functions, see Invoking a Lambda function with an Aurora MySQL native
function (p. 1033).

You can also call an AWS Lambda function by using a stored procedure. However, using a stored
procedure is deprecated. We strongly recommend using an Aurora MySQL native function if you are
using one of the following Aurora MySQL versions:

• Aurora MySQL version 1.16 and later, for MySQL 5.6-compatible clusters.

• Aurora MySQL version 2.06 and later, for MySQL 5.7-compatible clusters.

• Aurora MySQL version 3.01 and higher, for MySQL 8.0-compatible clusters. The stored procedure is not
available in Aurora MySQL version 3.

Topics

• Giving Aurora access to Lambda (p. 1032)

• Invoking a Lambda function with an Aurora MySQL native function (p. 1033)

• Invoking a Lambda function with an Aurora MySQL stored procedure (deprecated) (p. 1035)

Giving Aurora access to Lambda

Before you can invoke Lambda functions from an Aurora MySQL DB cluster, make sure to first give your
cluster permission to access Lambda.

To give Aurora MySQL access to Lambda

1. Create an AWS Identity and Access Management (IAM) policy that provides the permissions that
allow your Aurora MySQL DB cluster to invoke Lambda functions. For instructions, see Creating an
IAM policy to access AWS Lambda resources (p. 1009).

2. Create an IAM role, and attach the IAM policy you created in Creating an IAM policy to access AWS
Lambda resources (p. 1009) to the new IAM role. For instructions, see Creating an IAM role to allow
Amazon Aurora to access AWS services (p. 1012).

3. Set the aws_default_lambda_role DB cluster parameter to the Amazon Resource Name (ARN) of
the new IAM role.

If the cluster is part of an Aurora global database, apply the same setting for each Aurora cluster in
the global database.

For more information about DB cluster parameters, see Amazon Aurora DB cluster and DB instance
parameters (p. 341).

4. To permit database users in an Aurora MySQL DB cluster to invoke Lambda functions, associate
the role that you created in Creating an IAM role to allow Amazon Aurora to access AWS
services (p. 1012) with the DB cluster. For information about associating an IAM role with a DB
cluster, see Associating an IAM role with an Amazon Aurora MySQL DB cluster (p. 1013).

If the cluster is part of an Aurora global database, associate the role with each Aurora cluster in the
global database.

5. Configure your Aurora MySQL DB cluster to allow outbound connections to Lambda. For
instructions, see Enabling network communication from Amazon Aurora MySQL to other AWS
services (p. 1017).

If the cluster is part of an Aurora global database, enable outbound connections for each Aurora
cluster in the global database.

1032

Amazon Aurora User Guide for Aurora
Invoking a Lambda function from Aurora MySQL

Invoking a Lambda function with an Aurora MySQL native
function

Note
You can call the native functions lambda_sync and lambda_async when you use Aurora
MySQL version 1.16 and later, Aurora MySQL 2.06 and later, or Aurora MySQL version 3.01 and
higher. For more information about Aurora MySQL versions, see Database engine updates for
Amazon Aurora MySQL (p. 1103).

You can invoke an AWS Lambda function from an Aurora MySQL DB cluster by calling the native
functions lambda_sync and lambda_async. This approach can be useful when you want to integrate
your database running on Aurora MySQL with other AWS services. For example, you might want to send
a notification using Amazon Simple Notification Service (Amazon SNS) whenever a row is inserted into a
specific table in your database.

Working with native functions to invoke a Lambda function

The lambda_sync and lambda_async functions are built-in, native functions that invoke a Lambda
function synchronously or asynchronously. When you must know the result of the Lambda function
before moving on to another action, use the synchronous function lambda_sync. When you don't need
to know the result of the Lambda function before moving on to another action, use the asynchronous
function lambda_async.

In Aurora MySQL version 3, the user invoking a native function must be granted the
AWS_LAMBDA_ACCESS role. To grant this role to a user, connect to the DB instance as the administrative
user, and run the following statement.

GRANT AWS_LAMBDA_ACCESS TO user@domain-or-ip-address

You can revoke this role by running the following statement.

REVOKE AWS_LAMBDA_ACCESS FROM user@domain-or-ip-address

Tip
When you use the role technique in Aurora MySQL version 3, you also activate the role by using
the SET ROLE role_name or SET ROLE ALL statement. If you aren't familiar with the MySQL
8.0 role system, you can learn more in Role-based privilege model (p. 778). You can also find
more details in Using Roles in the MySQL Reference Manual.

In Aurora MySQL version 1 and 2, the user invoking a native function must be granted the INVOKE
LAMBDA privilege. To grant this privilege to a user, connect to the DB instance as the administrative user,
and run the following statement.

GRANT INVOKE LAMBDA ON *.* TO user@domain-or-ip-address

You can revoke this privilege by running the following statement.

REVOKE INVOKE LAMBDA ON *.* FROM user@domain-or-ip-address

Syntax for the lambda_sync function

You invoke the lambda_sync function synchronously with the RequestResponse invocation type. The
function returns the result of the Lambda invocation in a JSON payload. The function has the following
syntax.

lambda_sync (

1033

https://dev.mysql.com/doc/refman/8.0/en/roles.html

Amazon Aurora User Guide for Aurora
Invoking a Lambda function from Aurora MySQL

 lambda_function_ARN,
 JSON_payload
)

Note
You can use triggers to call Lambda on data-modifying statements. Remember that triggers are
not run once per SQL statement, but once per row modified, one row at a time. When a trigger
runs, the process is synchronous. The data-modifying statement only returns when the trigger
completes.
Be careful when invoking an AWS Lambda function from triggers on tables that experience
high write traffic. INSERT, UPDATE, and DELETE triggers are activated per row. A write-heavy
workload on a table with INSERT, UPDATE, or DELETE triggers results in a large number of calls
to your AWS Lambda function.

Parameters for the lambda_sync function

The lambda_sync function has the following parameters.

lambda_function_ARN

The Amazon Resource Name (ARN) of the Lambda function to invoke.
JSON_payload

The payload for the invoked Lambda function, in JSON format.

Note
Aurora MySQL version 3 supports the JSON parsing functions from MySQL 8.0. However, Aurora
MySQL versions 1 and 2 don't include those functions. JSON parsing isn't required when a
Lambda function returns an atomic value, such as a number or a string.

Example for the lambda_sync function

The following query based on lambda_sync invokes the Lambda function BasicTestLambda
synchronously using the function ARN. The payload for the function is {"operation": "ping"}.

SELECT lambda_sync(
 'arn:aws:lambda:us-east-1:868710585169:function:BasicTestLambda',
 '{"operation": "ping"}');

Syntax for the lambda_async function

You invoke the lambda_async function asynchronously with the Event invocation type. The function
returns the result of the Lambda invocation in a JSON payload. The function has the following syntax.

lambda_async (
 lambda_function_ARN,
 JSON_payload
)

Parameters for the lambda_async function

The lambda_async function has the following parameters.

lambda_function_ARN

The Amazon Resource Name (ARN) of the Lambda function to invoke.
JSON_payload

The payload for the invoked Lambda function, in JSON format.

1034

Amazon Aurora User Guide for Aurora
Invoking a Lambda function from Aurora MySQL

Note
Aurora MySQL version 3 supports the JSON parsing functions from MySQL 8.0. However, Aurora
MySQL versions 1 and 2 don't include those functions. JSON parsing isn't required when a
Lambda function returns an atomic value, such as a number or a string.

Example for the lambda_async function

The following query based on lambda_async invokes the Lambda function BasicTestLambda
asynchronously using the function ARN. The payload for the function is {"operation": "ping"}.

SELECT lambda_async(
 'arn:aws:lambda:us-east-1:868710585169:function:BasicTestLambda',
 '{"operation": "ping"}');

Invoking a Lambda function with an Aurora MySQL stored
procedure (deprecated)
You can invoke an AWS Lambda function from an Aurora MySQL DB cluster by calling the
mysql.lambda_async procedure. This approach can be useful when you want to integrate your
database running on Aurora MySQL with other AWS services. For example, you might want to send a
notification using Amazon Simple Notification Service (Amazon SNS) whenever a row is inserted into a
specific table in your database.

Aurora MySQL version considerations

Starting in Aurora MySQL version 1.8 and Aurora MySQL version 2.06, you can use the native function
method instead of these stored procedures to invoke a Lambda function. For more information about the
native functions, see Working with native functions to invoke a Lambda function (p. 1033).

Starting with Amazon Aurora version 1.16 and 2.06, the stored procedure mysql.lambda_async is
no longer supported. If you are using an Aurora version that's higher than 1.16 or 2.06, we strongly
recommend that you work with native Lambda functions instead. In Aurora MySQL version 3, the stored
procedure isn't available.

Working with the mysql.lambda_async procedure to invoke a Lambda function
(deprecated)

The mysql.lambda_async procedure is a built-in stored procedure that invokes a Lambda function
asynchronously. To use this procedure, your database user must have EXECUTE privilege on the
mysql.lambda_async stored procedure.

Syntax

The mysql.lambda_async procedure has the following syntax.

CALL mysql.lambda_async (
 lambda_function_ARN,
 lambda_function_input
)

Parameters

The mysql.lambda_async procedure has the following parameters.

lambda_function_ARN

The Amazon Resource Name (ARN) of the Lambda function to invoke.

1035

Amazon Aurora User Guide for Aurora
Invoking a Lambda function from Aurora MySQL

lambda_function_input

The input string, in JSON format, for the invoked Lambda function.

Examples

As a best practice, we recommend that you wrap calls to the mysql.lambda_async procedure in a
stored procedure that can be called from different sources such as triggers or client code. This approach
can help to avoid impedance mismatch issues and make it easier to invoke Lambda functions.

Note
Be careful when invoking an AWS Lambda function from triggers on tables that experience
high write traffic. INSERT, UPDATE, and DELETE triggers are activated per row. A write-heavy
workload on a table with INSERT, UPDATE, or DELETE triggers results in a large number of calls
to your AWS Lambda function.
Although calls to the mysql.lambda_async procedure are asynchronous, triggers are
synchronous. A statement that results in a large number of trigger activations doesn't wait for
the call to the AWS Lambda function to complete, but it does wait for the triggers to complete
before returning control to the client.

Example Example: Invoke an AWS Lambda function to send email

The following example creates a stored procedure that you can call in your database code to send an
email using a Lambda function.

AWS Lambda Function

import boto3

ses = boto3.client('ses')

def SES_send_email(event, context):

 return ses.send_email(
 Source=event['email_from'],
 Destination={
 'ToAddresses': [
 event['email_to'],
]
 },

 Message={
 'Subject': {
 'Data': event['email_subject']
 },
 'Body': {
 'Text': {
 'Data': event['email_body']
 }
 }
 }
)

Stored Procedure

DROP PROCEDURE IF EXISTS SES_send_email;
DELIMITER ;;
 CREATE PROCEDURE SES_send_email(IN email_from VARCHAR(255),
 IN email_to VARCHAR(255),
 IN subject VARCHAR(255),
 IN body TEXT) LANGUAGE SQL
 BEGIN

1036

Amazon Aurora User Guide for Aurora
Invoking a Lambda function from Aurora MySQL

 CALL mysql.lambda_async(
 'arn:aws:lambda:us-west-2:123456789012:function:SES_send_email',
 CONCAT('{"email_to" : "', email_to,
 '", "email_from" : "', email_from,
 '", "email_subject" : "', subject,
 '", "email_body" : "', body, '"}')
);
 END
 ;;
DELIMITER ;

Call the Stored Procedure to Invoke the AWS Lambda Function

mysql> call SES_send_email('example_from@amazon.com', 'example_to@amazon.com', 'Email
 subject', 'Email content');

Example Example: Invoke an AWS Lambda function to publish an event from a trigger

The following example creates a stored procedure that publishes an event by using Amazon SNS. The
code calls the procedure from a trigger when a row is added to a table.

AWS Lambda Function

import boto3

sns = boto3.client('sns')

def SNS_publish_message(event, context):

 return sns.publish(
 TopicArn='arn:aws:sns:us-west-2:123456789012:Sample_Topic',
 Message=event['message'],
 Subject=event['subject'],
 MessageStructure='string'
)

Stored Procedure

DROP PROCEDURE IF EXISTS SNS_Publish_Message;
DELIMITER ;;
CREATE PROCEDURE SNS_Publish_Message (IN subject VARCHAR(255),
 IN message TEXT) LANGUAGE SQL
BEGIN
 CALL mysql.lambda_async('arn:aws:lambda:us-
west-2:123456789012:function:SNS_publish_message',
 CONCAT('{ "subject" : "', subject,
 '", "message" : "', message, '" }')
);
END
;;
DELIMITER ;

Table

CREATE TABLE 'Customer_Feedback' (
 'id' int(11) NOT NULL AUTO_INCREMENT,
 'customer_name' varchar(255) NOT NULL,
 'customer_feedback' varchar(1024) NOT NULL,
 PRIMARY KEY ('id')
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

1037

Amazon Aurora User Guide for Aurora
Publishing Aurora MySQL logs to CloudWatch Logs

Trigger

DELIMITER ;;
CREATE TRIGGER TR_Customer_Feedback_AI
 AFTER INSERT ON Customer_Feedback
 FOR EACH ROW
BEGIN
 SELECT CONCAT('New customer feedback from ', NEW.customer_name), NEW.customer_feedback
 INTO @subject, @feedback;
 CALL SNS_Publish_Message(@subject, @feedback);
END
;;
DELIMITER ;

Insert a Row into the Table to Trigger the Notification

mysql> insert into Customer_Feedback (customer_name, customer_feedback) VALUES ('Sample
 Customer', 'Good job guys!');

Publishing Amazon Aurora MySQL logs to Amazon
CloudWatch Logs
You can configure your Aurora MySQL DB cluster to publish general, slow, audit, and error log data to a
log group in Amazon CloudWatch Logs. With CloudWatch Logs, you can perform real-time analysis of
the log data, and use CloudWatch to create alarms and view metrics. You can use CloudWatch Logs to
store your log records in highly durable storage.

To publish logs to CloudWatch Logs, the respective logs must be enabled. Error logs are enabled
by default, but you must enable the other types of logs explicitly. For information about enabling
logs in MySQL, see Selecting general query and slow query log output destinations in the MySQL
documentation. For more information about enabling Aurora MySQL audit logs, see Enabling Advanced
Auditing (p. 936).

Note
Be aware of the following:

• You can't publish logs to CloudWatch Logs for the China (Ningxia) region.
• If exporting log data is disabled, Aurora doesn't delete existing log groups or log streams.

If exporting log data is disabled, existing log data remains available in CloudWatch Logs,
depending on log retention, and you still incur charges for stored audit log data. You can
delete log streams and log groups using the CloudWatch Logs console, the AWS CLI, or the
CloudWatch Logs API.

• An alternative way to publish audit logs to CloudWatch Logs is by enabling advanced auditing
and setting the cluster-level DB parameter server_audit_logs_upload to 1. The default
for the server_audit_logs_upload parameter is 0.

If you use this alternative method, you must have an IAM role to access CloudWatch
Logs and set the aws_default_logs_role cluster-level parameter to the ARN for this
role. For information about creating the role, see Setting up IAM roles to access AWS
services (p. 1006). However, if you have the AWSServiceRoleForRDS service-linked
role, it provides access to CloudWatch Logs and overrides any custom-defined roles. For
information service-linked roles for Amazon RDS, see Using service-linked roles for Amazon
Aurora (p. 1796).

• If you don't want to export audit logs to CloudWatch Logs, make sure that all methods of
exporting audit logs are disabled. These methods are the AWS Management Console, the AWS
CLI, the RDS API, and the server_audit_logs_upload parameter.

1038

https://dev.mysql.com/doc/refman/5.6/en/log-destinations.html

Amazon Aurora User Guide for Aurora
Publishing Aurora MySQL logs to CloudWatch Logs

• The procedure is slightly different for Aurora Serverless clusters than for provisioned clusters.
Serverless clusters automatically upload all the kinds of logs that you enable through the
configuration parameters. Therefore, you enable or disable log upload for Serverless clusters
by turning different log types on and off in the DB cluster parameter group. You don't modify
the settings of the cluster itself through the AWS Management Console, AWS CLI, or RDS API.
For information about enabling MySQL logs for Serverless clusters, see Parameter groups and
Aurora Serverless v1 (p. 156).

Console

You can publish Aurora MySQL logs for provisioned clusters to CloudWatch Logs with the console.

To publish Aurora MySQL logs from the console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.
2. In the navigation pane, choose Databases.
3. Choose the Aurora MySQL DB cluster that you want to publish the log data for.
4. Choose Modify.
5. In the Log exports section, choose the logs that you want to start publishing to CloudWatch Logs.
6. Choose Continue, and then choose Modify DB Cluster on the summary page.

AWS CLI

You can publish Aurora MySQL logs for provisioned clusters with the AWS CLI. To do so, you run the
modify-db-cluster AWS CLI command with the following options:

• --db-cluster-identifier—The DB cluster identifier.
• --cloudwatch-logs-export-configuration—The configuration setting for the log types to be

enabled for export to CloudWatch Logs for the DB cluster.

You can also publish Aurora MySQL logs by running one of the following AWS CLI commands:

• create-db-cluster
• restore-db-cluster-from-s3
• restore-db-cluster-from-snapshot
• restore-db-cluster-to-point-in-time

Run one of these AWS CLI commands with the following options:

• --db-cluster-identifier—The DB cluster identifier.
• --engine—The database engine.
• --enable-cloudwatch-logs-exports—The configuration setting for the log types to be enabled

for export to CloudWatch Logs for the DB cluster.

Other options might be required depending on the AWS CLI command that you run.

Example

The following command modifies an existing Aurora MySQL DB cluster to publish log files to CloudWatch
Logs.

For Linux, macOS, or Unix:

1039

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-s3.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html

Amazon Aurora User Guide for Aurora
Publishing Aurora MySQL logs to CloudWatch Logs

aws rds modify-db-cluster \
 --db-cluster-identifier mydbcluster \
 --cloudwatch-logs-export-configuration '{"EnableLogTypes":
["error","general","slowquery","audit"]}'

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier mydbcluster ^
 --cloudwatch-logs-export-configuration '{"EnableLogTypes":
["error","general","slowquery","audit"]}'

Example

The following command creates an Aurora MySQL DB cluster to publish log files to CloudWatch Logs.

For Linux, macOS, or Unix:

aws rds create-db-cluster \
 --db-cluster-identifier mydbcluster \
 --engine aurora \
 --enable-cloudwatch-logs-exports '["error","general","slowquery","audit"]'

For Windows:

aws rds create-db-cluster ^
 --db-cluster-identifier mydbcluster ^
 --engine aurora ^
 --enable-cloudwatch-logs-exports '["error","general","slowquery","audit"]'

RDS API

You can publish Aurora MySQL logs for provisioned clusters with the RDS API. To do so, you run the
ModifyDBCluster operation with the following options:

• DBClusterIdentifier—The DB cluster identifier.

• CloudwatchLogsExportConfiguration—The configuration setting for the log types to be enabled
for export to CloudWatch Logs for the DB cluster.

You can also publish Aurora MySQL logs with the RDS API by running one of the following RDS API
operations:

• CreateDBCluster

• RestoreDBClusterFromS3

• RestoreDBClusterFromSnapshot

• RestoreDBClusterToPointInTime

Run the RDS API operation with the following parameters:

• DBClusterIdentifier—The DB cluster identifier.

1040

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterToPointInTime.html

Amazon Aurora User Guide for Aurora
Using machine learning with Aurora MySQL

• Engine—The database engine.
• EnableCloudwatchLogsExports—The configuration setting for the log types to be enabled for

export to CloudWatch Logs for the DB cluster.

Other parameters might be required depending on the AWS CLI command that you run.

Monitoring log events in Amazon CloudWatch
After enabling Aurora MySQL log events, you can monitor the events in Amazon CloudWatch Logs. A
new log group is automatically created for the Aurora DB cluster under the following prefix, in which
cluster-name represents the DB cluster name, and log_type represents the log type.

/aws/rds/cluster/cluster-name/log_type

For example, if you configure the export function to include the slow query log for a DB cluster named
mydbcluster, slow query data is stored in the /aws/rds/cluster/mydbcluster/slowquery log
group.

The events from all instances in your cluster are pushed to a log group using different log streams. The
behavior depends on which of the following conditions is true:

• A log group with the specified name exists.

Aurora uses the existing log group to export log data for the cluster. To create log groups with
predefined log retention periods, metric filters, and customer access, you can use automated
configuration, such as AWS CloudFormation.

• A log group with the specified name doesn't exist.

When a matching log entry is detected in the log file for the instance, Aurora MySQL creates a new log
group in CloudWatch Logs automatically. The log group uses the default log retention period of Never
Expire.

To change the log retention period, use the CloudWatch Logs console, the AWS CLI, or the CloudWatch
Logs API. For more information about changing log retention periods in CloudWatch Logs, see Change
log data retention in CloudWatch Logs.

To search for information within the log events for a DB cluster, use the CloudWatch Logs console, the
AWS CLI, or the CloudWatch Logs API. For more information about searching and filtering log data, see
Searching and filtering log data.

Using machine learning (ML) with Aurora MySQL
With Aurora machine learning, you can add machine learning–based predictions to database applications
using the SQL language. Aurora machine learning uses a highly optimized integration between the
Aurora database and the AWS machine learning (ML) services SageMaker and Amazon Comprehend.

Benefits of Aurora machine learning include the following:

• You can add ML–based predictions to your existing database applications. You don't need to build
custom integrations or learn separate tools. You can embed machine learning processing directly into
your SQL query as calls to stored functions.

• The ML integration is a fast way to enable ML services to work with transactional data. You don't have
to move the data out of the database to perform the machine learning operations. You don't have
to convert or reimport the results of the machine learning operations to use them in your database
application.

1041

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SettingLogRetention.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SettingLogRetention.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/MonitoringLogData.html

Amazon Aurora User Guide for Aurora
Using machine learning with Aurora MySQL

• You can use your existing governance policies to control who has access to the underlying data and to
the generated insights.

AWS ML Services are managed services that are set up and run in their own production environments.
Currently, Aurora machine learning integrates with Amazon Comprehend for sentiment analysis and
SageMaker for a wide variety of ML algorithms.

For details about using Aurora and Amazon Comprehend together, see Using Amazon Comprehend
for sentiment detection (p. 1050). For general information about Amazon Comprehend, see Amazon
Comprehend.

For details about using Aurora and SageMaker together, see Using SageMaker to run your own ML
models (p. 1048). For general information about SageMaker, see SageMaker.

Topics
• Prerequisites for Aurora machine learning (p. 1042)
• Enabling Aurora machine learning (p. 1042)
• Exporting data to Amazon S3 for SageMaker model training (p. 1047)
• Using SageMaker to run your own ML models (p. 1048)
• Using Amazon Comprehend for sentiment detection (p. 1050)
• Performance considerations for Aurora machine learning (p. 1051)
• Monitoring Aurora machine learning (p. 1052)
• Limitations of Aurora machine learning (p. 1053)

Prerequisites for Aurora machine learning
Aurora machine learning is available for any Aurora cluster that's running an Aurora MySQL 2.07.0 or
higher version in an AWS Region that supports Aurora machine learning. You can upgrade an Aurora
cluster that's running a lower version of Aurora MySQL to a supported higher version if you want to
use Aurora machine learning with that cluster. For more information, see Database engine updates for
Amazon Aurora MySQL (p. 1103).

For more information about Regions and Aurora version availability, see Aurora machine learning (p. 23).

Enabling Aurora machine learning
Enabling the ML capabilities involves the following steps:

• You enable the Aurora cluster to access the Amazon machine learning services SageMaker or Amazon
Comprehend, depending the kinds of ML algorithms you want for your application.

• For SageMaker, then you use the Aurora CREATE FUNCTION statement to set up stored functions that
access inference features.

Note
Aurora machine learning includes built-in functions that call Amazon Comprehend for
sentiment analysis. You don't need to run any CREATE FUNCTION statements if you only use
Amazon Comprehend.

Topics
• Setting up IAM access to Amazon Comprehend and SageMaker (p. 1043)
• Granting SQL privileges for invoking Aurora machine learning services (p. 1047)
• Enabling network communication from Aurora MySQL to other AWS services (p. 1047)

1042

http://aws.amazon.com/comprehend
http://aws.amazon.com/comprehend
http://aws.amazon.com/sagemaker

Amazon Aurora User Guide for Aurora
Using machine learning with Aurora MySQL

Setting up IAM access to Amazon Comprehend and SageMaker

Before you can access SageMaker and Amazon Comprehend services, enable the Aurora MySQL cluster
to access AWS ML services. For your Aurora MySQL DB cluster to access AWS ML services on your behalf,
create and configure AWS Identity and Access Management (IAM) roles. These roles authorize the users
of your Aurora MySQL database to access AWS ML services.

When you use the AWS Management Console, AWS does the IAM setup for you automatically. You can
skip the following information and follow the procedure in Connecting an Aurora DB cluster to Amazon
S3, SageMaker, or Amazon Comprehend using the console (p. 1043).

Setting up the IAM roles for SageMaker or Amazon Comprehend using the AWS CLI or the RDS API
consists of the following steps:

1. Create an IAM policy to specify which SageMaker endpoints tan be invoked by your Aurora MySQL
cluster or to enable access to Amazon Comprehend.

2. Create an IAM role to permit your Aurora MySQL database cluster to access AWS ML services. The IAM
policy created above is attached to the IAM role.

3. To permit the Aurora MySQL database cluster to access AWS ML services, you associate the IAM role
that you created above to the database cluster.

4. To permit database applications to invoke AWS ML services, you must also grant privileges to specific
database users. For SageMaker, because the calls to the endpoints are wrapped inside a stored
function, you also grant EXECUTE privileges on the stored functions to any database users that call
them.

For general information about how to permit your Aurora MySQL DB cluster to access other AWS
services on your behalf, see Authorizing Amazon Aurora MySQL to access other AWS services on your
behalf (p. 1006).

Connecting an Aurora DB cluster to Amazon S3, SageMaker, or Amazon Comprehend using the
console

Aurora machine learning requires that your DB cluster use some combination of Amazon S3, SageMaker,
and Amazon Comprehend. Amazon Comprehend is for sentiment analysis. SageMaker is for a wide
variety of machine learning algorithms. For Aurora machine learning, Amazon S3 is only for training
SageMaker models. You only need to use Amazon S3 with Aurora machine learning if you don't already
have a trained model available and the training is your responsibility. To connect a DB cluster to these
services requires that you set up an AWS Identity and Access Management (IAM) role for each Amazon
service. The IAM role enables users of your DB cluster to authenticate with the corresponding service.

To generate the IAM roles for Amazon S3, SageMaker, or Amazon Comprehend, repeat the following
steps for each service that you need.

To connect a DB cluster to an Amazon service

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the Aurora MySQL DB cluster that you
want to use.

3. Choose the Connectivity & security tab.
4. Choose Select a service to connect to this cluster in the Manage IAM roles section., and choose the

service that you want to connect to:

• Amazon S3
• Amazon Comprehend
• SageMaker

1043

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Using machine learning with Aurora MySQL

5. Choose Connect service.

6. Enter the required information for the specific service on the Connect cluster window:

• For SageMaker, enter the Amazon Resource Name (ARN) of an SageMaker endpoint. For details
about what the endpoint represents, see Deploy a model on Amazon SageMaker hosting services.

In the navigation pane of the SageMaker console, choose Endpoints and copy the ARN of the
endpoint you want to use.

• For Amazon Comprehend, don't specify any additional parameter.

• For Amazon S3, enter the ARN of an Amazon S3 bucket to use.

The format of an Amazon S3 bucket ARN is arn:aws:s3:::bucket_name. Ensure that the
Amazon S3 bucket that you use is set up with the requirements for training SageMaker models.
When you train a model, your Aurora DB cluster requires permission to export data to the Amazon
S3 bucket, and also to import data from the bucket.

To learn more about Amazon S3 bucket ARNs, see Specifying resources in a policy in the Amazon
Simple Storage Service User Guide. For more about using an Amazon S3 bucket with SageMaker,
see Step 1: Create an Amazon Amazon S3 bucket in the Amazon SageMaker Developer Guide.

7. Choose Connect service.

8. Aurora creates a new IAM role and adds it to the DB cluster's list of Current IAM roles for this
cluster. The IAM role's status is initially In progress. The IAM role name is autogenerated with the
following pattern for each connected service:

• The Amazon S3 IAM role name pattern is rds-cluster_ID-S3-policy-timestamp.

• The SageMaker IAM role name pattern is rds-cluster_ID-SageMaker-policy-timestamp.

• The Amazon Comprehend IAM role name pattern is rds-cluster_ID-Comprehend-
policy-timestamp.

Aurora also creates a new IAM policy and attaches it to the role. The policy name follows a similar
naming convention and also has a timestamp.

Creating an IAM policy to access SageMaker (AWS CLI only)

Note
When you use the AWS Management Console, Aurora creates the IAM policy automatically. In
that case, you can skip this section.

The following policy adds the permissions required by Aurora MySQL to invoke an SageMaker
function on your behalf. You can specify all of your SageMaker endpoints that you need your database
applications to access from your Aurora MySQL cluster in a single policy. The policy allows you to
specify the AWS Region for an SageMaker endpoint. However, an Aurora MySQL cluster can only invoke
SageMaker models deployed in the same AWS Region as the cluster.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAuroraToInvokeRCFEndPoint",
 "Effect": "Allow",
 "Action": "sagemaker:InvokeEndpoint",
 "Resource": "arn:aws:sagemaker:region:123456789012:endpoint/endpointName"
 }
]
}

1044

https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-hosting.html
https://console.aws.amazon.com/sagemaker/home
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-arn-format.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-config-permissions.html

Amazon Aurora User Guide for Aurora
Using machine learning with Aurora MySQL

The following command performs the same operation through the AWS CLI.

aws iam put-role-policy --role-name role_name --policy-name policy_name
 --policy-document '{"Version": "2012-10-17", "Statement": [{ "Sid":
 "AllowAuroraToInvokeRCFEndPoint", "Effect": "Allow", "Action": "sagemaker:InvokeEndpoint",
 "Resource": "arn:aws:sagemaker:region:123456789012:endpoint/endpointName" }]}'

Creating an IAM policy to access Amazon Comprehend (AWS CLI only)

Note
When you use the AWS Management Console, Aurora creates the IAM policy automatically. In
that case, you can skip this section.

The following policy adds the permissions required by Aurora MySQL to invoke Amazon Comprehend on
your behalf.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAuroraToInvokeComprehendDetectSentiment",
 "Effect": "Allow",
 "Action": [
 "comprehend:DetectSentiment",
 "comprehend:BatchDetectSentiment"
],
 "Resource": "*"
 }
]
}

The following command performs the same operation through the AWS CLI.

aws iam put-role-policy --role-name role_name --policy-name policy_name
 --policy-document '{ "Version": "2012-10-17", "Statement": [{ "Sid":
 "AllowAuroraToInvokeComprehendDetectSentiment", "Effect": "Allow", "Action":
 ["comprehend:DetectSentiment", "comprehend:BatchDetectSentiment"], "Resource": "*" }]}'

To create an IAM policy to grant access to Amazon Comprehend

1. Open the IAM Management Console.
2. In the navigation pane, choose Policies.
3. Choose Create policy.
4. On the Visual editor tab, choose Choose a service, and then choose Comprehend.
5. For Actions, choose Detect Sentiment and BatchDetectSentiment.
6. Choose Review policy.
7. For Name, enter a name for your IAM policy. You use this name when you create an IAM role to

associate with your Aurora DB cluster. You can also add an optional Description value.
8. Choose Create policy.
9. Complete the procedure in Creating an IAM role to allow Amazon Aurora to access AWS

services (p. 1012).

Creating an IAM role to access SageMaker and Amazon Comprehend

After you create the IAM policies, create an IAM role that the Aurora MySQL cluster can assume on behalf
of your database users to access ML services. To create an IAM role, you can use the AWS Management

1045

https://console.aws.amazon.com/iam/home?#home

Amazon Aurora User Guide for Aurora
Using machine learning with Aurora MySQL

Console or the AWS CLI. To create an IAM role and attach the preceding policies to the role, follow the
steps described in Creating an IAM role to allow Amazon Aurora to access AWS services (p. 1012). For
more information about IAM roles, see IAM roles in the AWS Identity and Access Management User Guide.

You can only use a global IAM role for authentication. You can't use an IAM role associated with a
database user or a session. This requirement is the same as for Aurora integration with the Lambda and
Amazon S3 services.

Associating an IAM role with an Aurora MySQL DB cluster (AWS CLI only)

Note
When you use the AWS Management Console, Aurora creates the IAM policy automatically. In
that case, you can skip this section.

The last step is to associate the IAM role with the attached IAM policy with your Aurora MySQL DB
cluster. To associate an IAM role with an Aurora DB cluster, you do two things:

1. Add the role to the list of associated roles for a DB cluster by using the AWS Management Console, the
add-role-to-db-cluster AWS CLI command, or the AddRoleToDBCluster RDS API operation.

2. Set the cluster-level parameter for the related AWS ML service to the ARN for the associated IAM role.
Use the aws_default_sagemaker_role, aws_default_comprehend_role, or both parameters
depending on which AWS ML services you intend to use with your Aurora cluster.

Cluster-level parameters are grouped into DB cluster parameter groups. To set the preceding cluster
parameters, use an existing custom DB cluster group or create an new one. To create a new DB cluster
parameter group, call the create-db-cluster-parameter-group command from the AWS CLI, as
shown following.

PROMPT> aws rds create-db-cluster-parameter-group --db-cluster-parameter-group-
name AllowAWSAccessToExternalServices \
 --db-parameter-group-family aurora-mysql5.7 --description "Allow access to Amazon S3,
 AWS Lambda, AWS SageMaker, and AWS Comprehend"

Set the appropriate cluster-level parameter or parameters and the related IAM role ARN values in your
DB cluster parameter group, as shown in the following.

PROMPT> aws rds modify-db-cluster-parameter-group \
 --db-cluster-parameter-group-name AllowAWSAccessToExternalServices \
 --parameters
 "ParameterName=aws_default_s3_role,ParameterValue=arn:aws:iam::123456789012:role/
AllowAuroraS3Role,ApplyMethod=pending-reboot" \
 --parameters
 "ParameterName=aws_default_sagemaker_role,ParameterValue=arn:aws:iam::123456789012:role/
AllowAuroraSageMakerRole,ApplyMethod=pending-reboot" \
 --parameters
 "ParameterName=aws_default_comprehend_role,ParameterValue=arn:aws:iam::123456789012:role/
AllowAuroraComprehendRole,ApplyMethod=pending-reboot"

Modify the DB cluster to use the new DB cluster parameter group. Then, reboot the cluster. The
following shows how.

PROMPT> aws rds modify-db-cluster --db-cluster-identifier your_cluster_id --db-cluster-
parameter-group-nameAllowAWSAccessToExternalServices
PROMPT> aws rds failover-db-cluster --db-cluster-identifier your_cluster_id

When the instance has rebooted, your IAM roles are associated with your DB cluster.

1046

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/cli/latest/reference/rds/add-role-to-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_AddRoleToDBCluster.html

Amazon Aurora User Guide for Aurora
Using machine learning with Aurora MySQL

Granting SQL privileges for invoking Aurora machine learning services

After you create the required IAM policies and roles and associating the role to the Aurora MySQL DB
cluster, you authorize individual database users to invoke the Aurora machine learning stored functions
for SageMaker and built-in functions for Amazon Comprehend.

The database user invoking a native function must be granted a corresponding role or
privilege. For Aurora MySQL version 3, you grant the AWS_SAGEMAKER_ACCESS role or the
AWS_COMPREHEND_ACCESS role. For Aurora MySQL version 1 or 2, you grant the INVOKE SAGEMAKER
or INVOKE COMPREHEND privilege. To grant this privilege to a user, connect to the DB instance as
the administrative user, and run the following statements. Substitute the appropriate details for the
database user.

Use the following statements for Aurora MySQL version 3:

GRANT AWS_SAGEMAKER_ACCESS TO user@domain-or-ip-address
GRANT AWS_COMPREHEND_ACCESS TO user@domain-or-ip-address

Tip
When you use the role technique in Aurora MySQL version 3, you also activate the role by using
the SET ROLE role_name or SET ROLE ALL statement. If you aren't familiar with the MySQL
8.0 role system, you can learn more in Role-based privilege model (p. 778). You can also find
more details in Using Roles in the MySQL Reference Manual.

Use the following statements for Aurora MySQL version 1 or 2:

Use the following statements for Aurora MySQL version 3:

GRANT AWS_SAGEMAKER_ACCESS TO user@domain-or-ip-address
GRANT AWS_COMPREHEND_ACCESS TO user@domain-or-ip-address

Use the following statements for Aurora MySQL version 1 or 2:

GRANT INVOKE SAGEMAKER ON *.* TO user@domain-or-ip-address
GRANT INVOKE COMPREHEND ON *.* TO user@domain-or-ip-address

For SageMaker, user-defined functions define the parameters to be sent to the model for producing
the inference and to configure the endpoint name to be invoked. You grant EXECUTE permission to the
stored functions configured for SageMaker for each of the database users who intend to invoke the
endpoint.

GRANT EXECUTE ON FUNCTION db1.anomaly_score TO user1@domain-or-ip-address1
GRANT EXECUTE ON FUNCTION db2.company_forecasts TO user2@domain-or-ip-address2

Enabling network communication from Aurora MySQL to other AWS services

Since SageMaker and Amazon Comprehend are external AWS services, you must also configure your
Aurora DB cluster to allow outbound connections to the target AWS service. For more information, see
Enabling network communication from Amazon Aurora MySQL to other AWS services (p. 1017).

You can use VPC endpoints to connect to Amazon S3. AWS PrivateLink can't be used to connect Aurora
to AWS machine learning services or Amazon S3 at this time.

Exporting data to Amazon S3 for SageMaker model training
Depending on how your team divides the machine learning tasks, you might not perform this task. If
someone else provides the SageMaker model for you, you can skip this section.

1047

https://dev.mysql.com/doc/refman/8.0/en/roles.html

Amazon Aurora User Guide for Aurora
Using machine learning with Aurora MySQL

To train SageMaker models, you export data to an Amazon S3 bucket. The Amazon S3 bucket is used
by a Jupyter SageMaker notebook instance to train your model before it is deployed. You can use the
SELECT INTO OUTFILE S3 statement to query data from an Aurora MySQL DB cluster and save it
directly into text files stored in an Amazon S3 bucket. Then the notebook instance consumes the data
from the Amazon S3 bucket for training.

Aurora machine learning extends the existing SELECT INTO OUTFILE syntax in Aurora MySQL to
export data to CSV format. The generated CSV file can be directly consumed by models that need this
format for training purposes.

SELECT * INTO OUTFILE S3 's3_uri' [FORMAT {CSV|TEXT} [HEADER]] FROM table_name;

The extension supports the standard CSV format.

• Format TEXT is the same as the existing MySQL export format. This is the default format.

• Format CSV is a newly introduced format that follows the specification in RFC-4180.

• If you specify the optional keyword HEADER, the output file contains one header line. The labels in the
header line correspond to the column names from the SELECT statement.

• You can still use the keywords CSV and HEADER as identifiers.

The extended syntax and grammar of SELECT INTO is now as follows:

INTO OUTFILE S3 's3_uri'
[CHARACTER SET charset_name]
[FORMAT {CSV|TEXT} [HEADER]]
[{FIELDS | COLUMNS}
 [TERMINATED BY 'string']
 [[OPTIONALLY] ENCLOSED BY 'char']
 [ESCAPED BY 'char']
]
[LINES
 [STARTING BY 'string']
 [TERMINATED BY 'string']
]

Using SageMaker to run your own ML models

SageMaker is a fully managed machine learning service. With SageMaker, data scientists and developers
can quickly and easily build and train machine learning models. Then they can directly deploy the models
into a production-ready hosted environment. SageMaker provides an integrated Jupyter authoring
notebook instance for easy access to your data sources. That way, you can perform exploration and
analysis without managing the hardware infrastructure for servers. It also provides common machine
learning algorithms that are optimized to run efficiently against extremely large datasets in a distributed
environment. With native support for bring-your-own-algorithms and frameworks, SageMaker offers
flexible distributed training options that adjust to your specific workflows.

Currently, Aurora machine learning supports any SageMaker endpoint that can read and write comma-
separated value format, through a ContentType of text/csv. The built-in SageMaker algorithms
that currently accept this format are Random Cut Forest, Linear Learner, 1P, XGBoost, and 3P. If the
algorithms return multiple outputs per item, the Aurora machine learning function returns only the first
item. This first item is expected to be a representative result.

Aurora machine learning always invokes SageMaker endpoints in the same AWS Region as your Aurora
cluster. Therefore, for a single-region Aurora cluster, always deploy the model in the same AWS Region as
your Aurora MySQL cluster.

1048

https://tools.ietf.org/html/rfc4180

Amazon Aurora User Guide for Aurora
Using machine learning with Aurora MySQL

If you are using an Aurora global database, you set up the same integration between the services for
each AWS Region that's part of the global database. In particular, make sure the following conditions are
satisfied for all AWS Regions in the global database:

• Configure the appropriate IAM roles for accessing external services such as SageMaker, Amazon
Comprehend, or Lambda for the global database cluster in each AWS Region.

• Ensure that all AWS Regions have the same trained SageMaker models deployed with the same
endpoint names. Do so before running the CREATE FUNCTION statement for your Aurora machine
learning function in the primary AWS Region. In a global database, all CREATE FUNCTION statements
you run in the primary AWS Region are immediately run in all the secondary regions also.

To use models deployed in SageMaker for inference, you create user-defined functions using the familiar
MySQL data definition language (DDL) statements for stored functions. Each stored function represents
the SageMaker endpoint hosting the model. When you define such a function, you specify the input
parameters to the model, the specific SageMaker endpoint to invoke, and the return type. The function
returns the inference computed by the SageMaker endpoint after applying the model to the input
parameters. All Aurora machine learning stored functions return numeric types or VARCHAR. You can use
any numeric type except BIT. Other types, such as JSON, BLOB, TEXT, and DATE are not allowed. Use
model input parameters that are the same as the input parameters that you exported to Amazon S3 for
model training.

CREATE FUNCTION function_name (arg1 type1, arg2 type2, ...) -- variable number of arguments
 [DEFINER = user] -- same as existing MySQL
 CREATE FUNCTION
 RETURNS mysql_type -- For example, INTEGER, REAL, ...
 [SQL SECURITY { DEFINER | INVOKER }] -- same as existing MySQL
 CREATE FUNCTION
 ALIAS AWS_SAGEMAKER_INVOKE_ENDPOINT -- ALIAS replaces the stored function body. Only
 AWS_SAGEMAKER_INVOKE_ENDPOINT is supported for now.
 ENDPOINT NAME 'endpoint_name'
 [MAX_BATCH_SIZE max_batch_size]; -- default is 10,000

This is a variation of the existing CREATE FUNCTION DDL statement. In the CREATE FUNCTION
statement that defines the SageMaker function, you don't specify a function body. Instead, you specify
the new keyword ALIAS where the function body usually goes. Currently, Aurora machine learning
only supports aws_sagemaker_invoke_endpoint for this extended syntax. You must specify
the endpoint_name parameter. The optional parameter max_batch_size restricts the maximum
number of inputs processed in an actual batched request to SageMaker. An SageMaker endpoint can
have different characteristics for each model. The max_batch_size parameter can help to avoid
an error caused by inputs that are too large, or to make SageMaker return a response more quickly.
The max_batch_size parameter affects the size of an internal buffer used for ML request processing.
Specifying too large a value for max_batch_size might cause substantial memory overhead on your
DB instance.

We recommend leaving the MANIFEST setting at its default value of OFF. Although you can use the
MANIFEST ON option, some SageMaker features can't directly use the CSV exported with this option.
The manifest format is not compatible with the expected manifest format from SageMaker.

You create a separate stored function for each of your SageMaker models. This mapping of functions
to models is required because an endpoint is associated with a specific model, and each model accepts
different parameters. Using SQL types for the model inputs and the model output type helps to avoid
type conversion errors passing data back and forth between the AWS services. You can control who can
apply the model. You can also control the runtime characteristics by specifying a parameter representing
the maximum batch size.

Currently, all Aurora machine learning functions have the NOT DETERMINISTIC property. If you don't
specify that property explicitly, Aurora sets NOT DETERMINISTIC automatically. This requirement is
because the ML model can be changed without any notification to the database. If that happens, calls

1049

Amazon Aurora User Guide for Aurora
Using machine learning with Aurora MySQL

to an Aurora machine learning function might return different results for the same input within a single
transaction.

You can't use the characteristics CONTAINS SQL, NO SQL, READS SQL DATA, or MODIFIES SQL DATA
in your CREATE FUNCTION statement.

Following is an example usage of invoking an SageMaker endpoint to detect anomalies. There is an
SageMaker endpoint random-cut-forest-model. The corresponding model is already trained by the
random-cut-forest algorithm. For each input, the model returns an anomaly score. This example
shows the data points whose score is greater than 3 standard deviations (approximately the 99.9th
percentile) from the mean score.

create function anomaly_score(value real) returns real
 alias aws_sagemaker_invoke_endpoint endpoint name 'random-cut-forest-model-demo';

set @score_cutoff = (select avg(anomaly_score(value)) + 3 * std(anomaly_score(value)) from
 nyc_taxi);

select *, anomaly_detection(value) score from nyc_taxi
 where anomaly_detection(value) > @score_cutoff;

Character set requirement for SageMaker functions that return strings

We recommend specifying a character set of utf8mb4 as the return type type for your SageMaker
functions that return string values. If that isn't practical, use a large enough string length for the return
type to hold a value represented in the utf8mb4 character set. The following example shows how to
declare the utf8mb4 character set for your function.

CREATE FUNCTION my_ml_func(...) RETURNS VARCHAR(5) CHARSET utf8mb4 ALIAS ...

Currently, each SageMaker function that returns a string uses the character set utf8mb4 for the return
value. The return value uses this character set even if your ML function declares a different character set
for its return type implicitly or explicitly. If your ML function declares a different character set for the
return value, the returned data might be silently truncated if you store it in a table column that isn't long
enough. For example, a query with a DISTINCT clause creates a temporary table. Thus, the ML function
result might be truncated due to the way strings are handled internally during a query.

Using Amazon Comprehend for sentiment detection
Amazon Comprehend uses machine learning to find insights and relationships in textual data. You
can use this AWS machine learning service even if you don't have any machine learning experience or
expertise. Aurora machine learning uses Amazon Comprehend for sentiment analysis of text that is
stored in your database. For example, using Amazon Comprehend you can analyze contact center call-
in documents to detect sentiment and better understand caller-agent dynamics. You can find a further
description in the post Analyzing contact center calls on the AWS Machine Learning blog.

You can also combine sentiment analysis with analysis of other information in your database using a
single query. For example, you can detect the average sentiment of call-in center documents for issues
that combine the following:

• Open for more than 30 days.
• About a specific product or feature.
• Made by the customers who have the greatest social media influence.

Using Amazon Comprehend from Aurora machine learning is as easy as
calling a SQL function. Aurora machine learning provides two built-in Amazon
Comprehend functions, aws_comprehend_detect_sentiment() and

1050

http://aws.amazon.com/blogs/machine-learning/analyzing-contact-center-calls-part-1-use-amazon-transcribe-and-amazon-comprehend-to-analyze-customer-sentiment/

Amazon Aurora User Guide for Aurora
Using machine learning with Aurora MySQL

aws_comprehend_detect_sentiment_confidence() to perform sentiment analysis through
Amazon Comprehend. For each text fragment that you analyze, these functions help you to determine
the sentiment and the confidence level.

-- Returns one of 'POSITIVE', 'NEGATIVE', 'NEUTRAL', 'MIXED'
aws_comprehend_detect_sentiment(
 input_text
 ,language_code
 [,max_batch_size] -- default is 25. should be greater than 0
)

-- Returns a double value that indicates confidence of the result of
 aws_comprehend_detect_sentiment.
aws_comprehend_detect_sentiment_confidence(
 input_text
 ,language_code
 [,max_batch_size] -- default is 25. should be greater than 0.
)

The max_batch_size helps you to tune the performance of the Amazon Comprehend function calls. A
large batch size trades off faster performance for greater memory usage on the Aurora cluster. For more
information, see Performance considerations for Aurora machine learning (p. 1051).

For information about parameters and return types for the sentiment detection functions in Amazon
Comprehend, see DetectSentiment

A typical Amazon Comprehend query looks for rows where the sentiment is a certain value, with a
confidence level greater than a certain number. For example, the following query shows how you can
determine the average sentiment of documents in your database. The query considers only documents
where the confidence of the assessment is at least 80%.

SELECT AVG(CASE aws_comprehend_detect_sentiment(productTable.document, 'en')
 WHEN 'POSITIVE' THEN 1.0
 WHEN 'NEGATIVE' THEN -1.0
 ELSE 0.0 END) AS avg_sentiment, COUNT(*) AS total
FROM productTable
WHERE productTable.productCode = 1302 AND
 aws_comprehend_detect_sentiment_confidence(productTable.document, 'en') >= 0.80;

Note
Amazon Comprehend is currently available only in some AWS Regions. To check in which AWS
Regions you can use Amazon Comprehend, see the AWS Region table page.

Performance considerations for Aurora machine learning
Most of the work in an Aurora machine learning function call happens within the external ML service.
This separation enables you to scale the resources for the machine learning service independent of your
Aurora cluster. Within Aurora, you mostly focus on making the function calls themselves as efficient as
possible.

Query cache

The Aurora MySQL query cache doesn't work for ML functions. Aurora MySQL doesn't store query results
in the query cache for any SQL statements that call ML functions.

Batch optimization for Aurora machine learning function calls

The main Aurora machine learning performance aspect that you can influence from your Aurora cluster
is the batch mode setting for calls to the Aurora machine learning stored functions. Machine learning

1051

https://docs.aws.amazon.com/comprehend/latest/dg/API_DetectSentiment.html
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

Amazon Aurora User Guide for Aurora
Using machine learning with Aurora MySQL

functions typically require substantial overhead, making it impractical to call an external service
separately for each row. Aurora machine learning can minimize this overhead by combining the calls
to the external Aurora machine learning service for many rows into a single batch. Aurora machine
learning receives the responses for all the input rows, and delivers the responses, one row at a time,
to the query as it runs. This optimization improves the throughput and latency of your Aurora queries
without changing the results.

When you create an Aurora stored function that's connected to an SageMaker endpoint, you define the
batch size parameter. This parameter influences how many rows are transferred for every underlying
call to SageMaker. For queries that process large numbers of rows, the overhead to make a separate
SageMaker call for each row can be substantial. The larger the data set processed by the stored
procedure, the larger you can make the batch size.

If the batch mode optimization can be applied to an SageMaker function, you can tell by checking the
query plan produced by the EXPLAIN PLAN statement. In this case, the extra column in the execution
plan includes Batched machine learning. The following example shows a call to an SageMaker
function that uses batch mode.

mysql> create function anomaly_score(val real) returns real alias
 aws_sagemaker_invoke_endpoint endpoint name 'my-rcf-model-20191126';
Query OK, 0 rows affected (0.01 sec)

mysql> explain select timestamp, value, anomaly_score(value) from nyc_taxi;
+----+-------------+----------+------------+------+---------------+------+---------+------
+------+----------+--------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref |
 rows | filtered | Extra |
+----+-------------+----------+------------+------+---------------+------+---------+------
+------+----------+--------------------------+
| 1 | SIMPLE | nyc_taxi | NULL | ALL | NULL | NULL | NULL | NULL |
 48 | 100.00 | Batched machine learning |
+----+-------------+----------+------------+------+---------------+------+---------+------
+------+----------+--------------------------+
1 row in set, 1 warning (0.01 sec)

When you call one of the built-in Amazon Comprehend functions, you can control the batch size by
specifying the optional max_batch_size parameter. his parameter restricts the maximum number
of input_text values processed in each batch. By sending multiple items at once, it reduces the
number of round trips between Aurora and Amazon Comprehend. Limiting the batch size is useful in
situations such as a query with a LIMIT clause. By using a small value for max_batch_size, you can
avoid invoking Amazon Comprehend more times than you have input texts.

The batch optimization for evaluating Aurora machine learning functions applies in the following cases:

• Function calls within the select list or the WHERE clause of SELECT statements. There are some
exceptions, as described following.

• Function calls in the VALUES list of INSERT and REPLACE statements.
• ML functions in SET values in UPDATE statements.

INSERT INTO MY_TABLE (col1, col2, col3) VALUES
 (ML_FUNC(1), ML_FUNC(2), ML_FUNC(3)),
 (ML_FUNC(4), ML_FUNC(5), ML_FUNC(6));
UPDATE MY_TABLE SET col1 = ML_FUNC(col2), SET col3 = ML_FUNC(col4) WHERE ...;

Monitoring Aurora machine learning
To monitor the performance of Aurora machine learning batch operations, Aurora MySQL includes
several global variables that you can query as follows.

1052

Amazon Aurora User Guide for Aurora
Aurora MySQL lab mode

show status like 'Aurora_ml%';

You can reset these status variables by using a FLUSH STATUS statement. Thus, all of the figures
represent totals, averages, and so on, since the last time the variable was reset.

Aurora_ml_logical_response_cnt

The aggregate response count that Aurora MySQL receives from the ML services across all queries
run by users of the DB instance.

Aurora_ml_actual_request_cnt

The aggregate request count that Aurora MySQL receives from the ML services across all queries run
by users of the DB instance.

Aurora_ml_actual_response_cnt

The aggregate response count that Aurora MySQL receives from the ML services across all queries
run by users of the DB instance.

Aurora_ml_cache_hit_cnt

The aggregate internal cache hit count that Aurora MySQL receives from the ML services across all
queries run by users of the DB instance.

Aurora_ml_single_request_cnt

The aggregate count of ML functions that are evaluated by non-batch mode across all queries run by
users of the DB instance.

For information about monitoring the performance of the SageMaker operations called from Aurora
machine learning functions, see Monitor Amazon SageMaker.

Limitations of Aurora machine learning
The following limitations apply to Aurora machine learning.

You can't use an Aurora machine learning function for a generated-always column. The same limitation
applies to any Aurora MySQL stored function. functions aren't compatible with this binary log (binlog)
format. for information about generated columns, see the MySQL documentation.

The setting --binlog-format=STATEMENT throws an exception for calls to Aurora machine learning
functions. The reason for the error is that Aurora machine learning considers all ML functions to be
nondeterministic, and nondeterministic stored functions aren't compatible with this binlog format. For
information about this binlog format, see the MySQL documentation.

Amazon Aurora MySQL lab mode
Aurora lab mode is used to enable Aurora features that are available in the current Aurora database
version, but are not enabled by default. While Aurora lab mode features are not recommended for use
in production DB clusters, you can use Aurora lab mode to enable these features for DB clusters in your
development and test environments. For more information about Aurora features available when Aurora
lab mode is enabled, see Aurora lab mode features (p. 1054).

The aurora_lab_mode parameter is an instance-level parameter that is in the default parameter
group. The parameter is set to 0 (disabled) in the default parameter group. To enable Aurora lab

1053

https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-overview.html
https://dev.mysql.com/doc/refman/5.7/en/create-table-generated-columns.html
https://dev.mysql.com/doc/refman/5.7/en/binary-log-formats.html

Amazon Aurora User Guide for Aurora
Aurora lab mode features

mode, create a custom parameter group, set the aurora_lab_mode parameter to 1 (enabled) in
the custom parameter group, and modify one or more DB instances in your Aurora cluster to use the
custom parameter group. Then connect to the appropriate instance endpoint to try the lab mode
features. For information on modifying a DB parameter group, see Modifying parameters in a DB
parameter group (p. 347). For information on parameter groups and Amazon Aurora, see Aurora MySQL
configuration parameters (p. 1063).

Aurora lab mode features
The following table lists the Aurora features currently available when Aurora lab mode is enabled. You
must enable Aurora lab mode before any of these features can be used.

Feature Description

Scan Batching Aurora MySQL scan batching speeds up in-
memory, scan-oriented queries significantly.
The feature boosts the performance of table full
scans, index full scans, and index range scans by
batch processing.

Hash Joins This feature can improve query performance
when you need to join a large amount of data
by using an equijoin. It requires lab mode in
Aurora MySQL version 1. You can use this feature
without lab mode in Aurora MySQL version 2. For
more information about using this feature, see
Optimizing large Aurora MySQL join queries with
hash joins (p. 1059).

Fast DDL This feature allows you to run an ALTER
TABLE tbl_name ADD COLUMN col_name
column_definition operation nearly
instantaneously. The operation completes without
requiring the table to be copied and without
materially impacting other DML statements. Since
it does not consume temporary storage for a table
copy, it makes DDL statements practical even for
large tables on small instance classes. Fast DDL
is currently only supported for adding a nullable
column, without a default value, at the end of
a table. For more information about using this
feature, see Altering tables in Amazon Aurora
using fast DDL (p. 853).

Best practices with Amazon Aurora MySQL
This topic includes information on best practices and options for using or migrating data to an Amazon
Aurora MySQL DB cluster. The information in this topic summarizes and reiterates some of the guidelines
and procedures that you can find in Managing an Amazon Aurora DB cluster (p. 367).

Contents

• Determining which DB instance you are connected to (p. 1055)

• Best practices for using AWS features with Aurora MySQL (p. 1055)

1054

Amazon Aurora User Guide for Aurora
Determining which DB instance you are connected to

• Using T instance classes for development and testing (p. 1055)
• Invoking AWS Lambda functions using native functions (p. 1057)

• Best practices for Aurora MySQL performance and scaling (p. 1057)
• Optimizing Amazon Aurora indexed join queries with asynchronous key prefetch (p. 1057)

• Enabling asynchronous key prefetch (p. 1057)
• Optimizing queries for asynchronous key prefetch (p. 1058)

• Optimizing large Aurora MySQL join queries with hash joins (p. 1059)
• Enabling hash joins (p. 1060)
• Optimizing queries for hash joins (p. 1060)

• Using Amazon Aurora to scale reads for your MySQL database (p. 1061)
• Best practices for Aurora MySQL high availability (p. 1061)

• Using Amazon Aurora for Disaster Recovery with your MySQL databases (p. 1061)
• Migrating from MySQL to Amazon Aurora MySQL with reduced downtime (p. 1062)

• Best practices for limiting certain MySQL features with Aurora MySQL (p. 1062)
• Using multithreaded replication in Aurora MySQL version 3 (p. 1062)
• Avoiding XA transactions with Amazon Aurora MySQL (p. 1063)
• Keeping foreign keys turned on during DML statements (p. 1063)

Determining which DB instance you are connected to
To determine which DB instance in an Aurora MySQL DB cluster a connection is connected to, check the
innodb_read_only global variable, as shown in the following example.

SHOW GLOBAL VARIABLES LIKE 'innodb_read_only';

The innodb_read_only variable is set to ON if you are connected to a reader DB instance. This setting is
OFF if you are connected to a writer DB instance, such as primary instance in a provisioned cluster.

This approach can be helpful if you want to add logic to your application code to balance the workload
or to ensure that a write operation is using the correct connection. This technique only applies to Aurora
clusters using single-master replication. For multi-master clusters, all the DB instances have the setting
innodb_read_only=OFF.

Best practices for using AWS features with Aurora
MySQL
You can apply the following best practices to use Aurora MySQL in combination with AWS aspects such
as instance classes and other AWS services.

Topics
• Using T instance classes for development and testing (p. 1055)
• Invoking AWS Lambda functions using native functions (p. 1057)

Using T instance classes for development and testing
Amazon Aurora MySQL instances that use the db.t2, db.t3, or db.t4g DB instance classes are best
suited for applications that do not support a high workload for an extended amount of time. The
T instances are designed to provide moderate baseline performance and the capability to burst to

1055

Amazon Aurora User Guide for Aurora
Best practices for using AWS features with Aurora MySQL

significantly higher performance as required by your workload. They are intended for workloads that
don't use the full CPU often or consistently, but occasionally need to burst. We recommend only using
the T DB instance classes for development and test servers, or other non-production servers. For more
details on the T instance classes, see Burstable performance instances.

If your Aurora cluster is larger than 40 TB, don't use the T instance classes. When your database has a
large volume of data, the memory overhead for managing schema objects can exceed the capacity of a T
instance.

Don't enable the MySQL Performance Schema on Amazon Aurora MySQL T instances. If the Performance
Schema is enabled, the instance might run out of memory.

When you use a T instance as a DB instance in an Aurora MySQL DB cluster, we recommend the
following:

• If you use a T instance as a DB instance class in your DB cluster, use the same DB instance class for all
instances in your DB cluster. For example, if you use db.t2.medium for your writer instance, then we
recommend that you use db.t2.medium for your reader instances also.

• Don't adjust any memory-related configuration settings, such as innodb_buffer_pool_size.
Aurora uses a highly tuned set of default values for memory buffers on T instances. These special
defaults are needed for Aurora to run on memory-constrained instances. If you change any memory-
related settings on a T instance, you are much more likely to encounter out-of-memory conditions,
even if your change is intended to increase buffer sizes.

• Monitor your CPU Credit Balance (CPUCreditBalance) to ensure that it is at a sustainable level. That
is, CPU credits are being accumulated at the same rate as they are being used.

When you have exhausted the CPU credits for an instance, you see an immediate drop in the available
CPU and an increase in the read and write latency for the instance. This situation results in a severe
decrease in the overall performance of the instance.

If your CPU credit balance is not at a sustainable level, then we recommend that you modify your DB
instance to use a one of the supported R DB instance classes (scale compute).

For more information on monitoring metrics, see Viewing metrics in the Amazon RDS console (p. 563).
• For your Aurora MySQL DB clusters using single-master replication, monitor the replica lag

(AuroraReplicaLag) between the writer instance and the reader instances.

If a reader instance runs out of CPU credits before the writer instance does, the resulting lag can cause
the reader instance to restart frequently. This result is common when an application has a heavy load
of read operations distributed among reader instances, at the same time that the writer instance has a
minimal load of write operations.

If you see a sustained increase in replica lag, make sure that your CPU credit balance for the reader
instances in your DB cluster is not being exhausted.

If your CPU credit balance is not at a sustainable level, then we recommend that you modify your DB
instance to use one of the supported R DB instance classes (scale compute).

• Keep the number of inserts per transaction below 1 million for DB clusters that have binary logging
enabled.

If the DB cluster parameter group for your DB cluster has the binlog_format parameter set to a
value other than OFF, then your DB cluster might experience out-of-memory conditions if the DB
cluster receives transactions that contain over 1 million rows to insert. You can monitor the freeable
memory (FreeableMemory) metric to determine if your DB cluster is running out of available
memory. You then check the write operations (VolumeWriteIOPS) metric to see if a writer instance is
receiving a heavy load of write operations. If this is the case, then we recommend that you update your
application to limit the number of inserts in a transaction to less than 1 million. Alternatively, you can
modify your instance to use one of the supported R DB instance classes (scale compute).

1056

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html

Amazon Aurora User Guide for Aurora
Best practices for Aurora MySQL performance and scaling

Invoking AWS Lambda functions using native functions
If you are using Amazon Aurora version 1.16 or later, we recommend using the native functions
lambda_sync and lambda_async to invoke Lambda functions.

If you are using the deprecated mysql.lambda_async procedure, we recommend that you wrap calls
to the mysql.lambda_async procedure in a stored procedure. You can call this stored procedure from
different sources, such as triggers or client code. This approach can help to avoid impedance mismatch
issues and make it easier for your database programmers to invoke Lambda functions.

For more information on invoking Lambda functions from Amazon Aurora, see Invoking a Lambda
function from an Amazon Aurora MySQL DB cluster (p. 1031).

Best practices for Aurora MySQL performance and
scaling
You can apply the following best practices to improve the performance and scalability of your Aurora
MySQL clusters.

Topics

• Optimizing Amazon Aurora indexed join queries with asynchronous key prefetch (p. 1057)

• Optimizing large Aurora MySQL join queries with hash joins (p. 1059)

• Using Amazon Aurora to scale reads for your MySQL database (p. 1061)

Optimizing Amazon Aurora indexed join queries with
asynchronous key prefetch

Note
The asynchronous key prefetch (AKP) feature is available for Amazon Aurora MySQL version 1.15
and later. For more information about Aurora MySQL versions, see Database engine updates for
Amazon Aurora MySQL (p. 1103).

Amazon Aurora can use AKP to improve the performance of queries that join tables across indexes. This
feature improves performance by anticipating the rows needed to run queries in which a JOIN query
requires use of the Batched Key Access (BKA) Join algorithm and Multi-Range Read (MRR) optimization
features. For more information about BKA and MRR, see Block nested-loop and batched key access joins
and Multi-range read optimization in the MySQL documentation.

To take advantage of the AKP feature, a query must use both BKA and MRR. Typically, such a query
occurs when the JOIN clause of a query uses a secondary index, but also needs some columns from
the primary index. For example, you can use AKP when a JOIN clause represents an equijoin on index
values between a small outer and large inner table, and the index is highly selective on the larger table.
AKP works in concert with BKA and MRR to perform a secondary to primary index lookup during the
evaluation of the JOIN clause. AKP identifies the rows required to run the query during the evaluation
of the JOIN clause. It then uses a background thread to asynchronously load the pages containing those
rows into memory before running the query.

Enabling asynchronous key prefetch

You can enable the AKP feature by setting aurora_use_key_prefetch, a MySQL server variable, to
on. By default, this value is set to on. However, AKP cannot be enabled until you also enable the BKA
Join algorithm and disable cost-based MRR functionality. To do so, you must set the following values for
optimizer_switch, a MySQL server variable:

1057

https://dev.mysql.com/doc/refman/5.6/en/bnl-bka-optimization.html
https://dev.mysql.com/doc/refman/5.6/en/mrr-optimization.html

Amazon Aurora User Guide for Aurora
Best practices for Aurora MySQL performance and scaling

• Set batched_key_access to on. This value controls the use of the BKA Join algorithm. By default,
this value is set to off.

• Set mrr_cost_based to off. This value controls the use of cost-based MRR functionality. By default,
this value is set to on.

Currently, you can set these values only at the session level. The following example illustrates how to set
these values to enable AKP for the current session by executing SET statements.

mysql> set @@session.aurora_use_key_prefetch=on;
mysql> set @@session.optimizer_switch='batched_key_access=on,mrr_cost_based=off';

Similarly, you can use SET statements to disable AKP and the BKA Join algorithm and re-enable cost-
based MRR functionality for the current session, as shown in the following example.

mysql> set @@session.aurora_use_key_prefetch=off;
mysql> set @@session.optimizer_switch='batched_key_access=off,mrr_cost_based=on';

For more information about the batched_key_access and mrr_cost_based optimizer switches, see
Switchable optimizations in the MySQL documentation.

Optimizing queries for asynchronous key prefetch

You can confirm whether a query can take advantage of the AKP feature. To do so, use the EXPLAIN
statement with the EXTENDED keyword to profile the query before running it. The EXPLAIN statement
provides information about the execution plan to use for a specified query.

In the output for the EXPLAIN statement, the Extra column describes additional information included
with the execution plan. If the AKP feature applies to a table used in the query, this column includes one
of the following values:

• Using Key Prefetching

• Using join buffer (Batched Key Access with Key Prefetching)

The following example shows use of EXPLAIN with EXTENDED to view the execution plan for a query
that can take advantage of AKP.

mysql> explain extended select sql_no_cache
 -> ps_partkey,
 -> sum(ps_supplycost * ps_availqty) as value
 -> from
 -> partsupp,
 -> supplier,
 -> nation
 -> where
 -> ps_suppkey = s_suppkey
 -> and s_nationkey = n_nationkey
 -> and n_name = 'ETHIOPIA'
 -> group by
 -> ps_partkey having
 -> sum(ps_supplycost * ps_availqty) > (
 -> select
 -> sum(ps_supplycost * ps_availqty) * 0.0000003333
 -> from
 -> partsupp,
 -> supplier,

1058

https://dev.mysql.com/doc/refman/5.6/en/switchable-optimizations.html

Amazon Aurora User Guide for Aurora
Best practices for Aurora MySQL performance and scaling

 -> nation
 -> where
 -> ps_suppkey = s_suppkey
 -> and s_nationkey = n_nationkey
 -> and n_name = 'ETHIOPIA'
 ->)
 -> order by
 -> value desc;
+----+-------------+----------+------+-----------------------+---------------
+---------+----------------------------------+------+----------
+---+
| id | select_type | table | type | possible_keys | key | key_len |
 ref | rows | filtered | Extra
 |
+----+-------------+----------+------+-----------------------+---------------
+---------+----------------------------------+------+----------
+---+
| 1 | PRIMARY | nation | ALL | PRIMARY | NULL | NULL |
 NULL | 25 | 100.00 | Using where; Using temporary; Using
 filesort |
| 1 | PRIMARY | supplier | ref | PRIMARY,i_s_nationkey | i_s_nationkey | 5 |
 dbt3_scale_10.nation.n_nationkey | 2057 | 100.00 | Using index
 |
| 1 | PRIMARY | partsupp | ref | i_ps_suppkey | i_ps_suppkey | 4 |
 dbt3_scale_10.supplier.s_suppkey | 42 | 100.00 | Using join buffer (Batched Key Access
 with Key Prefetching) |
| 2 | SUBQUERY | nation | ALL | PRIMARY | NULL | NULL |
 NULL | 25 | 100.00 | Using where
 |
| 2 | SUBQUERY | supplier | ref | PRIMARY,i_s_nationkey | i_s_nationkey | 5 |
 dbt3_scale_10.nation.n_nationkey | 2057 | 100.00 | Using index
 |
| 2 | SUBQUERY | partsupp | ref | i_ps_suppkey | i_ps_suppkey | 4 |
 dbt3_scale_10.supplier.s_suppkey | 42 | 100.00 | Using join buffer (Batched Key Access
 with Key Prefetching) |
+----+-------------+----------+------+-----------------------+---------------
+---------+----------------------------------+------+----------
+---+
6 rows in set, 1 warning (0.00 sec)

For more information about the extended EXPLAIN output format, see Extended EXPLAIN output format
in the MySQL product documentation.

Optimizing large Aurora MySQL join queries with hash joins
When you need to join a large amount of data by using an equijoin, a hash join can improve query
performance. You can enable hash joins for Aurora MySQL.

A hash join column can be any complex expression. In a hash join column, you can compare across data
types in the following ways:

• You can compare anything across the category of precise numeric data types, such as int, bigint,
numeric, and bit.

• You can compare anything across the category of approximate numeric data types, such as float and
double.

• You can compare items across string types if the string types have the same character set and
collation.

• You can compare items with date and timestamp data types if the types are the same.

Note
Data types in different categories cannot compare.

1059

https://dev.mysql.com/doc/refman/5.6/en/explain-extended.html

Amazon Aurora User Guide for Aurora
Best practices for Aurora MySQL performance and scaling

The following restrictions apply to hash joins for Aurora MySQL:

• Left-right outer joins are not supported.

• Semijoins such as subqueries are not supported, unless the subqueries are materialized first.

• Multiple-table updates or deletes are not supported.

Note
Single-table updates or deletes are supported.

• BLOB and spatial data type columns cannot be join columns in a hash join.

Enabling hash joins

To enable hash joins, set the MySQL server variable optimizer_switch to hash_join=on (Aurora
MySQL version 1 and 2) or block_nested_loop=on (Aurora MySQL version 3). Hash joins are turned
on by default in Aurora MySQL version 3. This optimization is turned off by default in Aurora MySQL
version 1 and 2. The following example illustrates how to enable hash joins. You can issue the statement
select @@optimizer_switch first to see what other settings are present in the SET parameter string.
Updating one setting in the optimizer_switch parameter doesn't erase or modify the other settings.

For Aurora MySQL version 1 and 2:
mysql> SET optimizer_switch='hash_join=on';

For Aurora MySQL version 3:
mysql> SET optimizer_switch='block_nested_loop=on';

With this setting, the optimizer chooses to use a hash join based on cost, query characteristics, and
resource availability. If the cost estimation is incorrect, you can force the optimizer to choose a hash join.
You do so by setting hash_join_cost_based, a MySQL server variable, to off. The following example
illustrates how to force the optimizer to choose a hash join.

mysql> SET optimizer_switch='hash_join_cost_based=off';

Note
For Aurora MySQL version 3, hash join support is available in all minor versions and is turned on
by default.
For Aurora MySQL version 2, hash join support is available in version 2.06 and higher. In Aurora
MySQL version 2, the hash join feature is always controlled by the optimizer_switch value.
Prior to Aurora MySQL version 1.22, the way to enable hash joins in Aurora MySQL version 1 is
by enabling the aurora_lab_mode session-level setting. In those Aurora MySQL versions, the
optimizer_switch setting for hash joins is enabled by default and you only need to enable
aurora_lab_mode.

Optimizing queries for hash joins

To find out whether a query can take advantage of a hash join, use the EXPLAIN statement to profile the
query first. The EXPLAIN statement provides information about the execution plan to use for a specified
query.

In the output for the EXPLAIN statement, the Extra column describes additional information included
with the execution plan. If a hash join applies to the tables used in the query, this column includes values
similar to the following:

• Using where; Using join buffer (Hash Join Outer table table1_name)

1060

Amazon Aurora User Guide for Aurora
Best practices for Aurora MySQL high availability

• Using where; Using join buffer (Hash Join Inner table table2_name)

The following example shows the use of EXPLAIN to view the execution plan for a hash join query.

mysql> explain SELECT sql_no_cache * FROM hj_small, hj_big, hj_big2
 -> WHERE hj_small.col1 = hj_big.col1 and hj_big.col1=hj_big2.col1 ORDER BY 1;
+----+-------------+----------+------+---------------+------+---------+------+------
+--+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra
 |
+----+-------------+----------+------+---------------+------+---------+------+------
+--+
| 1 | SIMPLE | hj_small | ALL | NULL | NULL | NULL | NULL | 6 | Using
 temporary; Using filesort |
| 1 | SIMPLE | hj_big | ALL | NULL | NULL | NULL | NULL | 10 | Using
 where; Using join buffer (Hash Join Outer table hj_big) |
| 1 | SIMPLE | hj_big2 | ALL | NULL | NULL | NULL | NULL | 15 | Using
 where; Using join buffer (Hash Join Inner table hj_big2) |
+----+-------------+----------+------+---------------+------+---------+------+------
+--+
3 rows in set (0.04 sec)

In the output, the Hash Join Inner table is the table used to build hash table, and the Hash Join
Outer table is the table that is used to probe the hash table.

For more information about the extended EXPLAIN output format, see Extended EXPLAIN output format
in the MySQL product documentation.

In Aurora MySQL 2.08 and higher, you can use SQL hints to influence whether a query uses hash join
or not, and which tables to use for the build and probe sides of the join. For details, see Aurora MySQL
hints (p. 1095).

Using Amazon Aurora to scale reads for your MySQL database
You can use Amazon Aurora with your MySQL DB instance to take advantage of the read scaling
capabilities of Amazon Aurora and expand the read workload for your MySQL DB instance. To use
Aurora to read scale your MySQL DB instance, create an Aurora MySQL DB cluster and make it a read
replica of your MySQL DB instance. Then connect to the Aurora MySQL cluster to process the read
queries. The source database can be an RDS for MySQL DB instance, or a MySQL database running
external to Amazon RDS. For more information, see Using Amazon Aurora to scale reads for your MySQL
database (p. 966).

Best practices for Aurora MySQL high availability
You can apply the following best practices to improve the availability of your Aurora MySQL clusters.

Topics
• Using Amazon Aurora for Disaster Recovery with your MySQL databases (p. 1061)
• Migrating from MySQL to Amazon Aurora MySQL with reduced downtime (p. 1062)

Using Amazon Aurora for Disaster Recovery with your MySQL
databases
You can use Amazon Aurora with your MySQL DB instance to create an offsite backup for disaster
recovery. To use Aurora for disaster recovery of your MySQL DB instance, create an Amazon Aurora DB

1061

https://dev.mysql.com/doc/refman/5.6/en/explain-extended.html

Amazon Aurora User Guide for Aurora
Best practices for limiting certain

MySQL features with Aurora MySQL

cluster and make it a read replica of your MySQL DB instance. This applies to an RDS for MySQL DB
instance, or a MySQL database running external to Amazon RDS.

Important
When you set up replication between a MySQL DB instance and an Amazon Aurora MySQL DB
cluster, you should monitor the replication to ensure that it remains healthy and repair it if
necessary.

For instructions on how to create an Amazon Aurora MySQL DB cluster and make it a read replica of
your MySQL DB instance, follow the procedure in Using Amazon Aurora to scale reads for your MySQL
database (p. 1061).

Migrating from MySQL to Amazon Aurora MySQL with reduced
downtime
When importing data from a MySQL database that supports a live application to an Amazon Aurora
MySQL DB cluster, you might want to reduce the time that service is interrupted while you migrate. To
do so, you can use the procedure documented in Importing data to a MySQL or MariaDB DB instance
with reduced downtime in the Amazon Relational Database Service User Guide. This procedure can
especially help if you are working with a very large database. You can use the procedure to reduce the
cost of the import by minimizing the amount of data that is passed across the network to AWS.

The procedure lists steps to transfer a copy of your database data to an Amazon EC2 instance and import
the data into a new RDS for MySQL DB instance. Because Amazon Aurora is compatible with MySQL, you
can instead use an Amazon Aurora DB cluster for the target Amazon RDS MySQL DB instance.

Best practices for limiting certain MySQL features
with Aurora MySQL
The following features are available in Aurora MySQL for MySQL compatibility. However, they have
performance, scalability, or stability issues in the Aurora environment. Thus, we recommend that you
limit your use of these features. For example, we recommend that you don't use certain features for
production Aurora deployments.

Topics
• Using multithreaded replication in Aurora MySQL version 3 (p. 1062)
• Avoiding XA transactions with Amazon Aurora MySQL (p. 1063)
• Keeping foreign keys turned on during DML statements (p. 1063)

Using multithreaded replication in Aurora MySQL version 3
By default, Aurora uses single-threaded replication when an Aurora MySQL DB cluster is used as a read
replica for binary log replication.

Although Aurora MySQL doesn't prohibit multithreaded replication, this feature is only supported in
Aurora MySQL version 3 and higher.

Aurora MySQL version 1 and 2 inherited several issues regarding multithreaded replication from MySQL.
For those versions, we recommend that you don't use multithreaded replication in production.

If you do use multithreaded replication, we recommend that you test any use thoroughly.

For more information about using replication in Amazon Aurora, see Replication with Amazon
Aurora (p. 70). For information about multithreaded replication in Aurora MySQL version 3, see
Multithreaded binary log replication (Aurora MySQL version 3 and higher) (p. 969).

1062

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.NonRDSRepl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.NonRDSRepl.html

Amazon Aurora User Guide for Aurora
Aurora MySQL reference

Avoiding XA transactions with Amazon Aurora MySQL
We recommend that you don't use eXtended Architecture (XA) transactions with Aurora MySQL, because
they can cause long recovery times if the XA was in the PREPARED state. If you must use XA transactions
with Aurora MySQL, follow these best practices:

• Don't leave an XA transaction open in the PREPARED state.

• Keep XA transactions as small as possible.

For more information about using XA transactions with MySQL, see XA transactions in the MySQL
documentation.

Keeping foreign keys turned on during DML statements
We strongly recommend that you don't run any data definition language (DDL) statements when the
foreign_key_checks variable is set to 0 (off).

If you need to insert or update rows that require a transient violation of foreign keys, follow these steps:

1. Set foreign_key_checks to 0.

2. Make your data manipulation language (DML) changes.

3. Make sure that your completed changes don't violate any foreign key constraints.

4. Set foreign_key_checks to 1 (on).

In addition, follow these other best practices for foreign key constraints:

• Make sure that your client applications don't set the foreign_key_checks variable to 0 as a part of
the init_connect variable.

• If a restore from a logical backup such as mysqldump fails or is incomplete, make sure that
foreign_key_checks is set to 1 before starting any other operations in the same session. A logical
backup sets foreign_key_checks to 0 when it starts.

Amazon Aurora MySQL reference
This reference includes information about Aurora MySQL parameters, status variables, and general SQL
extensions or differences from the community MySQL database engine.

Topics
• Aurora MySQL configuration parameters (p. 1063)

• MySQL parameters that don't apply to Aurora MySQL (p. 1082)

• MySQL status variables that don't apply to Aurora MySQL (p. 1083)

• Aurora MySQL wait events (p. 1084)

• Aurora MySQL thread states (p. 1088)

• Aurora MySQL isolation levels (p. 1091)

• Aurora MySQL hints (p. 1095)

• Aurora MySQL stored procedures (p. 1097)

Aurora MySQL configuration parameters

1063

https://dev.mysql.com/doc/refman/5.6/en/xa.html

Amazon Aurora User Guide for Aurora
Configuration parameters

You manage your Amazon Aurora MySQL DB cluster in the same way that you manage other Amazon
RDS DB instances, by using parameters in a DB parameter group. Amazon Aurora differs from other
DB engines in that you have a DB cluster that contains multiple DB instances. As a result, some of the
parameters that you use to manage your Aurora MySQL DB cluster apply to the entire cluster. Other
parameters apply only to a particular DB instance in the DB cluster.

To manage cluster-level parameters, you use DB cluster parameter groups. To manage instance-
level parameters, you use DB parameter groups. Each DB instance in an Aurora MySQL DB cluster is
compatible with the MySQL database engine. However, you apply some of the MySQL database engine
parameters at the cluster level, and you manage these parameters using DB cluster parameter groups.
You can't find cluster-level parameters in the DB parameter group for an instance in an Aurora DB
cluster. A list of cluster-level parameters appears later in this topic.

You can manage both cluster-level and instance-level parameters using the AWS Management
Console, the AWS CLI, or the Amazon RDS API. You use separate commands for managing cluster-level
parameters and instance-level parameters. For example, you can use the modify-db-cluster-parameter-
group CLI command to manage cluster-level parameters in a DB cluster parameter group. You can use
the modify-db-parameter-group CLI command to manage instance-level parameters in a DB parameter
group for a DB instance in a DB cluster.

You can view both cluster-level and instance-level parameters in the console, or by using the CLI or RDS
API. For example, you can use the describe-db-cluster-parameters AWS CLI command to view cluster-
level parameters in a DB cluster parameter group. You can use the describe-db-parameters CLI command
to view instance-level parameters in a DB parameter group for a DB instance in a DB cluster.

Note
Each default parameter group (p. 339) contains the default values for all parameters in the
parameter group. If the parameter has "engine default" for this value, see the version-specific
MySQL or PostgreSQL documentation for the actual default value.

For more information on DB parameter groups, see Working with DB parameter groups and DB cluster
parameter groups (p. 339). For rules and restrictions for Aurora Serverless clusters, see Parameter groups
and Aurora Serverless v1 (p. 156).

Topics
• Cluster-level parameters (p. 1064)

• Instance-level parameters (p. 1070)

Cluster-level parameters
The following table shows all of the parameters that apply to the entire Aurora MySQL DB cluster.

Parameter name Modifiable Notes

aurora_binlog_read_buffer_size Yes Only affects clusters that use binary log
(binlog) replication. For information about
binlog replication, see Replication between
Aurora and MySQL or between Aurora
and another Aurora DB cluster (binary
log replication) (p. 953). Removed from
Aurora MySQL version 3.

aurora_binlog_replication_max_yield_secondsYes Only affects clusters that use binary log
(binlog) replication. For information about
binlog replication, see Replication between
Aurora and MySQL or between Aurora

1064

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-parameters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameters.html

Amazon Aurora User Guide for Aurora
Configuration parameters

Parameter name Modifiable Notes

and another Aurora DB cluster (binary log
replication) (p. 953).

aurora_binlog_use_large_read_bufferYes Only affects clusters that use binary log
(binlog) replication. For information about
binlog replication, see Replication between
Aurora and MySQL or between Aurora
and another Aurora DB cluster (binary
log replication) (p. 953). Removed from
Aurora MySQL version 3.

aurora_enable_replica_log_compressionYes For more information, see Performance
considerations for Amazon Aurora MySQL
replication (p. 941). Doesn't apply to
clusters that are part of an Aurora global
database. Removed from Aurora MySQL
version 3.

aurora_enable_repl_bin_log_filteringYes For more information, see Performance
considerations for Amazon Aurora MySQL
replication (p. 941). Doesn't apply to
clusters that are part of an Aurora global
database. Removed from Aurora MySQL
version 3.

aurora_enable_zdr Yes This setting is turned on by default in
Aurora MySQL 2.10 and higher. For
more information, see Zero-downtime
restart (ZDR) for Amazon Aurora
MySQL (p. 941).

aurora_load_from_s3_role Yes For more information, see Loading
data into an Amazon Aurora MySQL DB
cluster from text files in an Amazon S3
bucket (p. 1018). Currently not available in
Aurora MySQL version 3.

aurora_select_into_s3_role Yes For more information, see Saving data
from an Amazon Aurora MySQL DB
cluster into text files in an Amazon S3
bucket (p. 1025). Currently not available in
Aurora MySQL version 3.

auto_increment_increment Yes

auto_increment_offset Yes

aws_default_lambda_role Yes For more information, see Invoking a
Lambda function from an Amazon Aurora
MySQL DB cluster (p. 1031).

aws_default_s3_role Yes

1065

Amazon Aurora User Guide for Aurora
Configuration parameters

Parameter name Modifiable Notes

binlog_checksum Yes The AWS CLI and RDS API report a value
of None if this parameter isn't set. In
that case, Aurora MySQL uses the engine
default value, which is CRC32. This is
different than the explicit setting of
NONE, which turns off the checksum. For
a bug fix related to this parameter, see
Aurora MySQL database engine updates
2020-09-02 (version 1.23.0) (p. 1221) and
Aurora MySQL database engine updates
2020-03-05 (version 1.22.2) (p. 1227).

binlog-do-db Yes This parameter applies to Aurora MySQL
version 3 and higher.

binlog_format Yes For more information, see Replication
between Aurora and MySQL or between
Aurora and another Aurora DB cluster
(binary log replication) (p. 953).

binlog_group_commit_sync_delay Yes This parameter applies to Aurora MySQL
version 3 and higher.

binlog_group_commit_sync_no_delay_countYes This parameter applies to Aurora MySQL
version 3 and higher.

binlog-ignore-db Yes This parameter applies to Aurora MySQL
version 3 and higher.

binlog_row_image No

binlog_row_metadata Yes This parameter applies to Aurora MySQL
version 3 and higher.

binlog_row_value_options Yes This parameter applies to Aurora MySQL
version 3 and higher.

binlog_rows_query_log_events Yes

binlog_transaction_compression Yes This parameter applies to Aurora MySQL
version 3 and higher.

binlog_transaction_compression_level_zstdYes This parameter applies to Aurora MySQL
version 3 and higher.

binlog_transaction_dependency_history_sizeYes This parameter applies to Aurora MySQL
version 3 and higher.

binlog_transaction_dependency_trackingYes This parameter applies to Aurora MySQL
version 3 and higher.

character-set-client-handshake Yes

character_set_client Yes

character_set_connection Yes

character_set_database Yes

1066

Amazon Aurora User Guide for Aurora
Configuration parameters

Parameter name Modifiable Notes

character_set_filesystem Yes

character_set_results Yes

character_set_server Yes

collation_connection Yes

collation_server Yes

completion_type Yes

default_storage_engine No Aurora MySQL clusters use the InnoDB
storage engine for all of your data.

enforce_gtid_consistency Sometimes Modifiable in Aurora MySQL version 2.04
and later.

gtid-mode Sometimes Modifiable in Aurora MySQL version 2.04
and later.

innodb_autoinc_lock_mode Yes

innodb_checksums No Removed from Aurora MySQL version 3.

innodb_cmp_per_index_enabled Yes

innodb_commit_concurrency Yes

innodb_data_home_dir No Aurora MySQL uses managed instances
where you don't access the file system
directly.

innodb_file_per_table Yes

innodb_flush_log_at_trx_commit Yes (Aurora
MySQL
version 1
and 2), No
(Aurora
MySQL
version 3)

For Aurora MySQL version 3, Aurora
always uses the default value of 1.

innodb_ft_max_token_size Yes

innodb_ft_min_token_size Yes

innodb_ft_num_word_optimize Yes

innodb_ft_sort_pll_degree Yes

innodb_online_alter_log_max_size Yes

innodb_optimize_fulltext_only Yes

innodb_page_size No

innodb_purge_batch_size Yes

1067

Amazon Aurora User Guide for Aurora
Configuration parameters

Parameter name Modifiable Notes

innodb_purge_threads Yes

innodb_rollback_on_timeout Yes

innodb_rollback_segments Yes

innodb_spin_wait_delay Yes

innodb_strict_mode Yes

innodb_support_xa Yes Removed from Aurora MySQL version 3.

innodb_sync_array_size Yes

innodb_sync_spin_loops Yes

innodb_table_locks Yes

innodb_undo_directory No Aurora MySQL uses managed instances
where you don't access the file system
directly.

innodb_undo_logs Yes Removed from Aurora MySQL version 3.

innodb_undo_tablespaces No Removed from Aurora MySQL version 3.

internal_tmp_mem_storage_engine Yes This parameter applies to Aurora MySQL
version 3 and higher.

lc_time_names Yes

lower_case_table_names Yes (Aurora
MySQL
version 1
and 2), only
at cluster
creation
time (Aurora
MySQL
version 3)

In Aurora MySQL version 2.10 and higher
2.x versions, make sure to reboot all reader
instances after changing this setting
and rebooting the writer instance. For
details, see Rebooting an Aurora MySQL
cluster (version 2.10 and higher) (p. 452).
In Aurora MySQL version 3, the value of
this parameter is set permanently at the
time the cluster is created. If you use a
nondefault value for this option, set up
your Aurora MySQL version 3 custom
parameter group before upgrading, and
specify the parameter group during the
snapshot restore operation that creates
the version 3 cluster.

master-info-repository Yes Removed from Aurora MySQL version 3.

master_verify_checksum Yes Aurora MySQL version 1 and 2. Use
source_verify_checksum in Aurora
MySQL version 3.

partial_revokes No This parameter applies to Aurora MySQL
version 3 and higher.

1068

Amazon Aurora User Guide for Aurora
Configuration parameters

Parameter name Modifiable Notes

relay-log-space-limit Yes This parameter applies to Aurora MySQL
version 3 and higher.

replica_preserve_commit_order Yes This parameter applies to Aurora MySQL
version 3 and higher.

replica_transaction_retries Yes This parameter applies to Aurora MySQL
version 3 and higher.

replicate-do-db Yes This parameter applies to Aurora MySQL
version 3 and higher.

replicate-do-table Yes This parameter applies to Aurora MySQL
version 3 and higher.

replicate-ignore-db Yes This parameter applies to Aurora MySQL
version 3 and higher.

replicate-ignore-table Yes This parameter applies to Aurora MySQL
version 3 and higher.

replicate-wild-do-table Yes This parameter applies to Aurora MySQL
version 3 and higher.

replicate-wild-ignore-table Yes This parameter applies to Aurora MySQL
version 3 and higher.

require_secure_transport Yes For more information, see Using SSL/TLS
with Aurora MySQL DB clusters (p. 796).

rpl_read_size Yes This parameter applies to Aurora MySQL
version 3 and higher.

server_audit_events Yes

server_audit_excl_users Yes

server_audit_incl_users Yes

server_audit_logging Yes For instructions on uploading the logs to
Amazon CloudWatch Logs, see Publishing
Amazon Aurora MySQL logs to Amazon
CloudWatch Logs (p. 1038).

server_id No

skip-character-set-client-
handshake

Yes

skip_name_resolve No

slave-skip-errors Yes Only applies to Aurora MySQL version 2
clusters, with MySQL 5.7 compatibility.

source_verify_checksum Yes Aurora MySQL version 3 and higher

sync_frm Yes Removed from Aurora MySQL version 3.

1069

Amazon Aurora User Guide for Aurora
Configuration parameters

Parameter name Modifiable Notes

time_zone Yes

tls_version Yes For more information, see TLS versions for
Aurora MySQL (p. 797).

Instance-level parameters
The following table shows all of the parameters that apply to a specific DB instance in an Aurora MySQL
DB cluster.

Parameter name Modifiable Notes

activate_all_roles_on_login Yes This parameter applies to Aurora MySQL
version 3 and higher.

allow-suspicious-udfs No

aurora_lab_mode Yes For more information, see Amazon Aurora
MySQL lab mode (p. 1053). Removed from
Aurora MySQL version 3.

aurora_oom_response Yes This parameter only applies to Aurora
MySQL version 1.18 and higher. It isn't
used in Aurora MySQL version 2 or 3. For
more information, see Amazon Aurora
MySQL out of memory issues (p. 1830).

aurora_parallel_query Yes Set to ON to turn on parallel query
in Aurora MySQL versions 1.23 and
2.09 or higher. The old aurora_pq
parameter isn't used in these versions.
For more information, see Working
with parallel query for Amazon Aurora
MySQL (p. 902).

aurora_pq Yes Set to OFF to turn off parallel query for
specific DB instances in Aurora MySQL
versions before 1.23 and 2.09. In 1.23
and 2.09 or higher, turn parallel query on
and off with aurora_parallel_query
instead. For more information, see
Working with parallel query for Amazon
Aurora MySQL (p. 902).

autocommit Yes

automatic_sp_privileges Yes

back_log Yes

basedir No Aurora MySQL uses managed instances
where you don't access the file system
directly.

binlog_cache_size Yes

1070

Amazon Aurora User Guide for Aurora
Configuration parameters

Parameter name Modifiable Notes

binlog_max_flush_queue_time Yes

binlog_order_commits Yes

binlog_stmt_cache_size Yes

binlog_transaction_compression Yes This parameter applies to Aurora MySQL
version 3 and higher.

binlog_transaction_compression_level_zstdYes This parameter applies to Aurora MySQL
version 3 and higher.

bulk_insert_buffer_size Yes

concurrent_insert Yes

connect_timeout Yes

core-file No Aurora MySQL uses managed instances
where you don't access the file system
directly.

datadir No Aurora MySQL uses managed instances
where you don't access the file system
directly.

default_authentication_plugin No This parameter applies to Aurora MySQL
version 3 and higher.

default_time_zone No

default_tmp_storage_engine Yes

default_week_format Yes

delay_key_write Yes

delayed_insert_limit Yes

delayed_insert_timeout Yes

delayed_queue_size Yes

div_precision_increment Yes

end_markers_in_json Yes

eq_range_index_dive_limit Yes

event_scheduler Yes

explicit_defaults_for_timestamp Yes

flush No

flush_time Yes

ft_boolean_syntax No

ft_max_word_len Yes

1071

Amazon Aurora User Guide for Aurora
Configuration parameters

Parameter name Modifiable Notes

ft_min_word_len Yes

ft_query_expansion_limit Yes

ft_stopword_file Yes

general_log Yes For instructions on uploading the logs
to CloudWatch Logs, see Publishing
Amazon Aurora MySQL logs to Amazon
CloudWatch Logs (p. 1038).

general_log_file No Aurora MySQL uses managed instances
where you don't access the file system
directly.

group_concat_max_len Yes

host_cache_size Yes

init_connect Yes

innodb_adaptive_hash_index Yes

innodb_adaptive_max_sleep_delay Yes Modifying this parameter has no effect,
because innodb_thread_concurrency
is always 0 for Aurora.

innodb_autoextend_increment Yes

innodb_buffer_pool_dump_at_shutdownNo

innodb_buffer_pool_dump_now No

innodb_buffer_pool_filename No

innodb_buffer_pool_load_abort No

innodb_buffer_pool_load_at_startupNo

innodb_buffer_pool_load_now No

innodb_buffer_pool_size Yes The default value is represented by
a formula. For details about how the
DBInstanceClassMemory value in the
formula is calculated, see DB parameter
formula variables (p. 363).

innodb_change_buffer_max_size No Aurora MySQL doesn't use the InnoDB
change buffer at all.

innodb_compression_failure_threshold_pctYes

innodb_compression_level Yes

innodb_compression_pad_pct_max Yes

innodb_concurrency_tickets Yes Modifying this parameter has no effect,
because innodb_thread_concurrency
is always 0 for Aurora.

1072

Amazon Aurora User Guide for Aurora
Configuration parameters

Parameter name Modifiable Notes

innodb_file_format Yes Removed from Aurora MySQL version 3.

innodb_flush_log_at_timeout No

innodb_flushing_avg_loops No

innodb_force_load_corrupted No

innodb_ft_aux_table Yes

innodb_ft_cache_size Yes

innodb_ft_enable_stopword Yes

innodb_ft_server_stopword_table Yes

innodb_ft_user_stopword_table Yes

innodb_large_prefix Yes Removed from Aurora MySQL version 3.

innodb_lock_wait_timeout Yes

innodb_log_compressed_pages No

innodb_lru_scan_depth Yes

innodb_max_purge_lag Yes

innodb_max_purge_lag_delay Yes

innodb_monitor_disable Yes

innodb_monitor_enable Yes

innodb_monitor_reset Yes

innodb_monitor_reset_all Yes

innodb_old_blocks_pct Yes

innodb_old_blocks_time Yes

innodb_open_files Yes

innodb_print_all_deadlocks Yes

innodb_random_read_ahead Yes

innodb_read_ahead_threshold Yes

innodb_read_io_threads No

innodb_read_only No Aurora MySQL manages the read-only and
read/write state of DB instances based
on the type of cluster. For example, a
provisioned cluster has one read/write DB
instance (the primary instance) and any
other instances in the cluster are read-only
(the Aurora Replicas).

innodb_replication_delay Yes

1073

Amazon Aurora User Guide for Aurora
Configuration parameters

Parameter name Modifiable Notes

innodb_sort_buffer_size Yes

innodb_stats_auto_recalc Yes

innodb_stats_method Yes

innodb_stats_on_metadata Yes

innodb_stats_persistent Yes

innodb_stats_persistent_sample_pagesYes

innodb_stats_transient_sample_pagesYes

innodb_thread_concurrency No

innodb_thread_sleep_delay Yes Modifying this parameter has no effect,
because innodb_thread_concurrency
is always 0 for Aurora.

interactive_timeout Yes Aurora evaluates the minimum value
of interactive_timeout and
wait_timeout. It then uses that
minimum as the timeout to end all
idle sessions, both interactive and
noninteractive.

internal_tmp_mem_storage_engine Yes This parameter applies to Aurora MySQL
version 3 and higher.

join_buffer_size Yes

keep_files_on_create Yes

key_buffer_size Yes

key_cache_age_threshold Yes

key_cache_block_size Yes

key_cache_division_limit Yes

local_infile Yes

lock_wait_timeout Yes

log-bin No Setting binlog_format to STATEMENT,
MIXED, or ROW automatically sets log-
bin to ON. Setting binlog_format to
OFF automatically sets log-bin to OFF.
For more information, see Replication
between Aurora and MySQL or between
Aurora and another Aurora DB cluster
(binary log replication) (p. 953).

log_bin_trust_function_creators Yes

log_bin_use_v1_row_events Yes Removed from Aurora MySQL version 3.

1074

Amazon Aurora User Guide for Aurora
Configuration parameters

Parameter name Modifiable Notes

log_error No

log_output Yes

log_queries_not_using_indexes Yes

log_slave_updates No Aurora MySQL version 1 and 2. Use
log_replica_updates in Aurora MySQL
version 3.

log_replica_updates No Aurora MySQL version 3 and higher

log_throttle_queries_not_using_indexesYes

log_warnings Yes Removed from Aurora MySQL version 3.

long_query_time Yes

low_priority_updates Yes

max_allowed_packet Yes

max_binlog_cache_size Yes

max_binlog_size No

max_binlog_stmt_cache_size Yes

max_connect_errors Yes

max_connections Yes The default value is represented by
a formula. For details about how the
DBInstanceClassMemory value in the
formula is calculated, see DB parameter
formula variables (p. 363). For the default
values depending on the instance class,
see Maximum connections to an Aurora
MySQL DB instance (p. 834).

max_delayed_threads Yes

max_error_count Yes

max_heap_table_size Yes

max_insert_delayed_threads Yes

max_join_size Yes

max_length_for_sort_data Yes Removed from Aurora MySQL version 3.

max_prepared_stmt_count Yes

max_seeks_for_key Yes

max_sort_length Yes

max_sp_recursion_depth Yes

max_tmp_tables Yes Removed from Aurora MySQL version 3.

1075

Amazon Aurora User Guide for Aurora
Configuration parameters

Parameter name Modifiable Notes

max_user_connections Yes

max_write_lock_count Yes

metadata_locks_cache_size Yes Removed from Aurora MySQL version 3.

min_examined_row_limit Yes

myisam_data_pointer_size Yes

myisam_max_sort_file_size Yes

myisam_mmap_size Yes

myisam_sort_buffer_size Yes

myisam_stats_method Yes

myisam_use_mmap Yes

net_buffer_length Yes

net_read_timeout Yes

net_retry_count Yes

net_write_timeout Yes

old-style-user-limits Yes

old_passwords Yes Removed from Aurora MySQL version 3.

optimizer_prune_level Yes

optimizer_search_depth Yes

optimizer_switch Yes For information about Aurora MySQL
features that use this switch, see
Best practices with Amazon Aurora
MySQL (p. 1054).

optimizer_trace Yes

optimizer_trace_features Yes

optimizer_trace_limit Yes

optimizer_trace_max_mem_size Yes

optimizer_trace_offset Yes

performance-schema-consumer-
events-waits-current

Yes

performance-schema-instrument Yes

performance_schema Yes

performance_schema_accounts_size Yes

performance_schema_consumer_global_instrumentationYes

1076

Amazon Aurora User Guide for Aurora
Configuration parameters

Parameter name Modifiable Notes

performance_schema_consumer_thread_instrumentationYes

performance_schema_consumer_events_stages_currentYes

performance_schema_consumer_events_stages_historyYes

performance_schema_consumer_events_stages_history_longYes

performance_schema_consumer_events_statements_currentYes

performance_schema_consumer_events_statements_historyYes

performance_schema_consumer_events_statements_history_longYes

performance_schema_consumer_events_waits_historyYes

performance_schema_consumer_events_waits_history_longYes

performance_schema_consumer_statements_digestYes

performance_schema_digests_size Yes

performance_schema_events_stages_history_long_sizeYes

performance_schema_events_stages_history_sizeYes

performance_schema_events_statements_history_long_sizeYes

performance_schema_events_statements_history_sizeYes

performance_schema_events_transactions_history_long_sizeYes Aurora MySQL 2.x only

performance_schema_events_transactions_history_sizeYes Aurora MySQL 2.x only

performance_schema_events_waits_history_long_sizeYes

performance_schema_events_waits_history_sizeYes

performance_schema_hosts_size Yes

performance_schema_max_cond_classesYes

performance_schema_max_cond_instancesYes

performance_schema_max_digest_lengthYes

performance_schema_max_file_classesYes

performance_schema_max_file_handlesYes

performance_schema_max_file_instancesYes

performance_schema_max_index_stat Yes Aurora MySQL 2.x only

performance_schema_max_memory_classesYes Aurora MySQL 2.x only

performance_schema_max_metadata_locksYes Aurora MySQL 2.x only

performance_schema_max_mutex_classesYes

performance_schema_max_mutex_instancesYes

1077

Amazon Aurora User Guide for Aurora
Configuration parameters

Parameter name Modifiable Notes

performance_schema_max_prepared_statements_instancesYes Aurora MySQL 2.x only

performance_schema_max_program_instancesYes Aurora MySQL 2.x only

performance_schema_max_rwlock_classesYes

performance_schema_max_rwlock_instancesYes

performance_schema_max_socket_classesYes

performance_schema_max_socket_instancesYes

performance_schema_max_sql_text_lengthYes Aurora MySQL 2.x only

performance_schema_max_stage_classesYes

performance_schema_max_statement_classesYes

performance_schema_max_statement_stackYes Aurora MySQL 2.x only

performance_schema_max_table_handlesYes

performance_schema_max_table_instancesYes

performance_schema_max_table_lock_statYes Aurora MySQL 2.x only

performance_schema_max_thread_classesYes

performance_schema_max_thread_instancesYes

performance_schema_session_connect_attrs_sizeYes

performance_schema_setup_actors_sizeYes

performance_schema_setup_objects_sizeYes

performance_schema_users_size Yes

pid_file No

plugin_dir No Aurora MySQL uses managed instances
where you don't access the file system
directly.

port No Aurora MySQL manages the connection
properties and enforces consistent settings
for all DB instances in a cluster.

preload_buffer_size Yes

profiling_history_size Yes

query_alloc_block_size Yes

query_cache_limit Yes Removed from Aurora MySQL version 3.

query_cache_min_res_unit Yes Removed from Aurora MySQL version 3.

1078

Amazon Aurora User Guide for Aurora
Configuration parameters

Parameter name Modifiable Notes

query_cache_size Yes The default value is represented by
a formula. For details about how the
DBInstanceClassMemory value in the
formula is calculated, see DB parameter
formula variables (p. 363).

Removed from Aurora MySQL version 3.

query_cache_type Yes Removed from Aurora MySQL version 3.

query_cache_wlock_invalidate Yes Removed from Aurora MySQL version 3.

query_prealloc_size Yes

range_alloc_block_size Yes

read_buffer_size Yes

read_only Yes Aurora MySQL manages the read-only and
read/write state of DB instances based
on the type of cluster. For example, a
provisioned cluster has one read/write DB
instance (the primary instance) and any
other instances in the cluster are read-only
(the Aurora Replicas). The writer instance
can be switched to a read-only state by
changing this parameter. Any reader
instances are always in a read-only state,
regardless of the value of this parameter.

read_rnd_buffer_size Yes

relay-log No

relay_log_info_repository Yes Removed from Aurora MySQL version 3.

relay_log_recovery No

safe-user-create Yes

secure_auth Yes Removed from Aurora MySQL version 3.

secure_file_priv No Aurora MySQL uses managed instances
where you don't access the file system
directly.

skip-slave-start No

skip_external_locking No

skip_show_database Yes

slave_checkpoint_group Yes Aurora MySQL version 1 and 2. Use
replica_checkpoint_group in Aurora
MySQL version 3.

replica_checkpoint_group Yes Aurora MySQL version 3 and higher

1079

Amazon Aurora User Guide for Aurora
Configuration parameters

Parameter name Modifiable Notes

slave_checkpoint_period Yes Aurora MySQL version 1 and 2. Use
replica_checkpoint_period in Aurora
MySQL version 3.

replica_checkpoint_period Yes Aurora MySQL version 3 and higher

slave_parallel_workers Yes Aurora MySQL version 1 and 2. Use
replica_parallel_workers in Aurora
MySQL version 3.

replica_parallel_workers Yes Aurora MySQL version 3 and higher

slave_pending_jobs_size_max Yes Aurora MySQL version 1 and 2. Use
replica_pending_jobs_size_max in
Aurora MySQL version 3.

replica_pending_jobs_size_max Yes Aurora MySQL version 3 and higher

replica_skip_errors Yes Aurora MySQL version 3 and higher

slave_sql_verify_checksum Yes Aurora MySQL version 1 and 2. Use
replica_sql_verify_checksum in
Aurora MySQL version 3.

replica_sql_verify_checksum Yes Aurora MySQL version 3 and higher

slow_launch_time Yes

slow_query_log Yes For instructions on uploading the logs
to CloudWatch Logs, see Publishing
Amazon Aurora MySQL logs to Amazon
CloudWatch Logs (p. 1038).

slow_query_log_file No Aurora MySQL uses managed instances
where you don't access the file system
directly.

socket No

sort_buffer_size Yes

sql_mode Yes

sql_select_limit Yes

stored_program_cache Yes

sync_binlog No

sync_master_info Yes

sync_source_info Yes This parameter applies to Aurora MySQL 3
and higher.

sync_relay_log Yes Removed from Aurora MySQL version 3.

sync_relay_log_info Yes

sysdate-is-now Yes

1080

Amazon Aurora User Guide for Aurora
Configuration parameters

Parameter name Modifiable Notes

table_cache_element_entry_ttl No

table_definition_cache Yes The default value is represented by
a formula. For details about how the
DBInstanceClassMemory value in the
formula is calculated, see DB parameter
formula variables (p. 363).

table_open_cache Yes The default value is represented by
a formula. For details about how the
DBInstanceClassMemory value in the
formula is calculated, see DB parameter
formula variables (p. 363).

table_open_cache_instances Yes

temp-pool Yes Removed from Aurora MySQL version 3.

temptable_max_mmap Yes This parameter applies to Aurora MySQL
version 3 and higher. For details, see
Storage engine for internal temporary
tables (p. 775).

temptable_max_ram Yes This parameter applies to Aurora MySQL
version 3 and higher. For details, see
Storage engine for internal temporary
tables (p. 775).

temptable_use_mmap Yes This parameter applies to Aurora MySQL
version 3 and higher. For details, see
Storage engine for internal temporary
tables (p. 775).

thread_handling No

thread_stack Yes

timed_mutexes Yes

tmp_table_size Yes

tmpdir No Aurora MySQL uses managed instances
where you don't access the file system
directly.

transaction_alloc_block_size Yes

transaction_isolation Yes This parameter applies to Aurora
MySQL version 3 and higher. It replaces
tx_isolation.

transaction_prealloc_size Yes

tx_isolation Yes Removed from Aurora MySQL version 3. It
is replaced by transaction_isolation.

updatable_views_with_limit Yes

1081

Amazon Aurora User Guide for Aurora
MySQL parameters that don't apply to Aurora MySQL

Parameter name Modifiable Notes

validate-password No

validate_password_dictionary_file No

validate_password_length No

validate_password_mixed_case_countNo

validate_password_number_count No

validate_password_policy No

validate_password_special_char_countNo

wait_timeout Yes Aurora evaluates the minimum value
of interactive_timeout and
wait_timeout. It then uses that
minimum as the timeout to end all
idle sessions, both interactive and
noninteractive.

MySQL parameters that don't apply to Aurora MySQL
Because of architectural differences between Aurora MySQL and MySQL, some MySQL parameters don't
apply to Aurora MySQL.

The following MySQL parameters don't apply to Aurora MySQL. This list is not exhaustive.

• activate_all_roles_on_login. This parameter isn't applicable to Aurora MySQL version 1 and 2.
It is available in Aurora MySQL version 3.

• big_tables

• bind_address

• character_sets_dir

• innodb_adaptive_flushing

• innodb_adaptive_flushing_lwm

• innodb_change_buffering

• innodb_checksum_algorithm

• innodb_data_file_path

• innodb_deadlock_detect

• innodb_dedicated_server

• innodb_doublewrite

• innodb_flush_method

• innodb_flush_neighbors

• innodb_io_capacity

• innodb_io_capacity_max

• innodb_buffer_pool_chunk_size

• innodb_buffer_pool_instances

• innodb_log_buffer_size

• innodb_default_row_format

1082

Amazon Aurora User Guide for Aurora
MySQL status variables that don't apply to Aurora MySQL

• innodb_log_file_size

• innodb_log_files_in_group

• innodb_log_spin_cpu_abs_lwm

• innodb_log_spin_cpu_pct_hwm

• innodb_max_dirty_pages_pct

• innodb_numa_interleave

• innodb_page_size

• innodb_redo_log_encrypt

• innodb_undo_log_encrypt

• innodb_undo_log_truncate

• innodb_use_native_aio

• innodb_write_io_threads

• thread_cache_size

MySQL status variables that don't apply to Aurora
MySQL
Because of architectural differences between Aurora MySQL and MySQL, some MySQL status variables
don't apply to Aurora MySQL.

The following MySQL status variables don't apply to Aurora MySQL. This list is not exhaustive.

• innodb_buffer_pool_bytes_dirty

• innodb_buffer_pool_pages_dirty

• innodb_buffer_pool_pages_flushed

Aurora MySQL version 3 removes the following status variables that were in Aurora MySQL version 2:

• AuroraDb_lockmgr_bitmaps0_in_use

• AuroraDb_lockmgr_bitmaps1_in_use

• AuroraDb_lockmgr_bitmaps_mem_used

• AuroraDb_thread_deadlocks

• available_alter_table_log_entries

• Aurora_lockmgr_memory_used

• Aurora_missing_history_on_replica_incidents

• Aurora_new_lock_manager_lock_release_cnt

• Aurora_new_lock_manager_lock_release_total_duration_micro

• Aurora_new_lock_manager_lock_timeout_cnt

• Aurora_oom_response

• Aurora_total_op_memory

• Aurora_total_op_temp_space

• Aurora_used_alter_table_log_entries

• Aurora_using_new_lock_manager

• Aurora_volume_bytes_allocated

1083

Amazon Aurora User Guide for Aurora
Aurora MySQL wait events

• Aurora_volume_bytes_left_extent

• Aurora_volume_bytes_left_total

• Com_alter_db_upgrade

• Compression

• External_threads_connected

• Innodb_available_undo_logs

• Last_query_cost

• Last_query_partial_plans

• Slave_heartbeat_period

• Slave_last_heartbeat

• Slave_received_heartbeats

• Slave_retried_transactions

• Slave_running

• Time_since_zero_connections

These MySQL status variables are available in Aurora MySQL version 1 or 2, but they aren't available in
Aurora MySQL version 3:

• Innodb_redo_log_enabled

• Innodb_undo_tablespaces_total

• Innodb_undo_tablespaces_implicit

• Innodb_undo_tablespaces_explicit

• Innodb_undo_tablespaces_active

Aurora MySQL wait events
The following are some common wait events for Aurora MySQL.

Note
For information about the naming conventions used in MySQL wait events, see Performance
Schema instrument naming conventions in the MySQL documentation.

cpu

The number of active connections that are ready to run is consistently higher than the number of
vCPUs. For more information, see cpu (p. 862).

io/aurora_redo_log_flush

A session is persisting data to Aurora storage. Typically, this wait event is for a write I/O operation in
Aurora MySQL. For more information, see io/aurora_redo_log_flush (p. 865).

io/aurora_respond_to_client

Query processing has completed and results are being returned to the application client for the
following Aurora MySQL versions: 2.10.2 and higher 2.10 versions, 2.09.3 and higher 2.09 versions,
2.07.7 and higher 2.07 versions, and 1.22.6 and higher 1.22 versions. Compare the network
bandwidth of the DB instance class with the size of the result set being returned. Also, check client-
side response times. If the client is unresponsive and can't process the TCP packets, packet drops
and TCP retransmissions can occur. This situation negatively affects network bandwidth. In versions
lower than 2.10.2, 2.09.3, 2.07.7, and 1.22.6, the wait event erroneously includes idle time. To learn
how to tune your database when this wait is prominent, see io/aurora_respond_to_client (p. 868).

1084

https://dev.mysql.com/doc/refman/5.6/en/performance-schema-instrument-naming.html
https://dev.mysql.com/doc/refman/5.6/en/performance-schema-instrument-naming.html

Amazon Aurora User Guide for Aurora
Aurora MySQL wait events

io/file/csv/data

Threads are writing to tables in comma-separated value (CSV) format. Check your CSV table usage. A
typical cause of this event is setting log_output on a table.

io/file/innodb/innodb_data_file

Threads are waiting on I/O from storage. This event is more prevalent in I/O-intensive workloads.
When this wait event is prevalent, SQL statements might be running disk-intensive queries or
requesting data that can't be satisfied from the InnoDB buffer pool. For more information, see io/
file/innodb/innodb_data_file (p. 870).

io/file/sql/binlog

A thread is waiting on a binary log (binlog) file that is being written to disk.
io/socket/sql/client_connection

The mysqld program is busy creating threads to handle incoming new client connections. For more
information, see io/socket/sql/client_connection (p. 872).

io/table/sql/handler

The engine is waiting for access to a table. This event occurs regardless of whether the data
is cached in the buffer pool or accessed on disk. For more information, see io/table/sql/
handler (p. 874).

lock/table/sql/handler

This wait event is a table lock wait event handler. For more information about atom and molecule
events in the Performance Schema, see Performance Schema atom and molecule events in the
MySQL documentation.

synch/cond/mysys/my_thread_var::suspend

The thread is suspended while waiting on a table-level lock because another thread issued LOCK
TABLES ... READ.

synch/cond/sql/MDL_context::COND_wait_status

Threads are waiting on a table metadata lock. The engine uses this type of lock to manage
concurrent access to a database schema and to ensure data consistency. For more information, see
Optimizing locking operations in the MySQL documentation. To learn how to tune your database
when this event is prominent, see synch/cond/sql/MDL_context::COND_wait_status (p. 878).

synch/cond/sql/MYSQL_BIN_LOG::COND_done

You have turned on binary logging. There might be a high commit throughput, large number
transactions committing, or replicas reading binlogs. Consider using multirow statements or
bundling statements into one transaction. In Aurora, use global databases instead of binary log
replication, or use the aurora_binlog_* parameters.

synch/mutex/innodb/aurora_lock_thread_slot_futex

Multiple data manipulation language (DML) statements are accessing the same
database rows at the same time. For more information, see synch/mutex/innodb/
aurora_lock_thread_slot_futex (p. 885).

synch/mutex/innodb/buf_pool_mutex

The buffer pool isn't large enough to hold the working data set. Or the workload accesses pages
from a specific table, which leads to contention in the buffer pool. For more information, see synch/
mutex/innodb/buf_pool_mutex (p. 887).

synch/mutex/innodb/fil_system_mutex

The process is waiting for access to the tablespace memory cache. For more information, see synch/
mutex/innodb/fil_system_mutex (p. 889).

1085

https://dev.mysql.com/doc/refman/5.6/en/performance-schema-atom-molecule-events.html
https://dev.mysql.com/doc/refman/5.6/en/locking-issues.html

Amazon Aurora User Guide for Aurora
Aurora MySQL wait events

synch/mutex/innodb/os_mutex

This event is part of an event semaphore. It provides exclusive access to variables used for signaling
between threads. Uses include statistics threads, full-text search, buffer pool dump and load
operations, and log flushes. This wait event is specific to Aurora MySQL version 1.

synch/mutex/innodb/trx_sys_mutex

Operations are checking, updating, deleting, or adding transaction IDs in InnoDB in a consistent or
controlled manner. These operations require a trx_sys mutex call, which is tracked by Performance
Schema instrumentation. Operations include management of the transaction system when the
database starts or shuts down, rollbacks, undo cleanups, row read access, and buffer pool loads.
High database load with a large number of transactions results in the frequent appearance of this
wait event. For more information, see synch/mutex/innodb/trx_sys_mutex (p. 892).

synch/mutex/mysys/KEY_CACHE::cache_lock

The keycache->cache_lock mutex controls access to the key cache for MyISAM
tables. In Aurora MySQL, this wait event is related to temporary table usage. Check the
size of the key_buffer_size. Also check the values for created_tmp_tables or
created_tmp_disk_tables at the time of the wait event spike. When it's justified, use multiple
key caches.

synch/mutex/sql/FILE_AS_TABLE::LOCK_offsets

The engine acquires this mutex when opening or creating a table metadata file. When this wait event
occurs with excessive frequency, the number of tables being created or opened has spiked.

synch/mutex/sql/FILE_AS_TABLE::LOCK_shim_lists

The engine acquires this mutex while performing operations such as reset_size,
detach_contents, or add_contents on the internal structure that keeps track of opened tables.
The mutex synchronizes access to the list contents. When this wait event occurs with high frequency,
it indicates a sudden change in the set of tables that were previously accessed. The engine needs to
access new tables or let go of the context related to previously accessed tables.

synch/mutex/sql/LOCK_open

The number of tables that your sessions are opening exceeds the size of the table definition cache or
the table open cache. Increase the size of these caches.

synch/mutex/sql/LOCK_table_cache

The number of tables that your sessions are opening exceeds the size of the table definition cache or
the table open cache. Increase the size of these caches.

synch/mutex/sql/LOG

In this wait event, there are threads waiting on a log lock. For example, a thread might wait for a
lock to write to the slow query log file.

synch/mutex/sql/MYSQL_BIN_LOG::LOCK_commit

In this wait event, there is a thread that is waiting to acquire a lock with the intention of committing
to the binary log. Binary logging contention can occur on databases with a very high change rate.
Depending on your version of MySQL, there are certain locks being used to protect the consistency
and durability of the binary log. In RDS for MySQL, binary logs are used for replication and the
automated backup process. In Aurora MySQL, binary logs are not needed for native replication
or backups. They are disabled by default but can be enabled and used for external replication or
change data capture. For more information, see The binary log in the MySQL documentation.

sync/mutex/sql/MYSQL_BIN_LOG::LOCK_dump_thread_metrics_collection

If binary logging is turned on, the engine acquires this mutex when it prints active dump threads
metrics to the engine error log and to the internal operations map.

1086

https://dev.mysql.com/doc/refman/5.6/en/binary-log.html

Amazon Aurora User Guide for Aurora
Aurora MySQL wait events

sync/mutex/sql/MYSQL_BIN_LOG::LOCK_inactive_binlogs_map

If binary logging is turned on, the engine acquires this mutex when it adds to, deletes from, or
searches through the list of binlog files behind the latest one.

sync/mutex/sql/MYSQL_BIN_LOG::LOCK_io_cache

If binary logging is turned on, the engine acquires this mutex during Aurora binlog IO cache
operations: allocate, resize, free, write, read, purge, and access cache info. If this event occurs
frequently, the engine is accessing the cache where binlog events are stored. To reduce wait times,
reduce commits. Try grouping multiple statements into a single transaction.

synch/mutex/sql/MYSQL_BIN_LOG::LOCK_log

You have turned on binary logging. There might be high commit throughput, many transactions
committing, or replicas reading binlogs. Consider using multirow statements or bundling statements
into one transaction. In Aurora, use global databases instead of binary log replication or use the
aurora_binlog_* parameters.

synch/mutex/sql/SERVER_THREAD::LOCK_sync

The mutex SERVER_THREAD::LOCK_sync is acquired during the scheduling, processing, or
launching of threads for file writes. The excessive occurrence of this wait event indicates increased
write activity in the database.

synch/mutex/sql/TABLESPACES:lock

The engine acquires the TABLESPACES:lock mutex during the following tablespace operations:
create, delete, truncate, and extend. The excessive occurrence of this wait event indicates a high
frequency of tablespace operations. An example is loading a large amount of data into the database.

synch/rwlock/innodb/dict

In this wait event, there are threads waiting on an rwlock held on the InnoDB data dictionary.
synch/rwlock/innodb/dict_operation_lock

In this wait event, there are threads holding locks on InnoDB data dictionary operations.
synch/rwlock/innodb/dict sys RW lock

A high number of concurrent data control language statements (DCLs) in data definition language
code (DDLs) are triggered at the same time. Reduce the application's dependency on DDLs during
regular application activity.

synch/rwlock/innodb/hash_table_locks

The excessive occurrence of this wait event indicates contention when modifying the hash table that
maps the buffer cache. Consider increasing the buffer cache size and improving access paths for the
relevant queries. To learn how to tune your database when this wait is prominent, see synch/rwlock/
innodb/hash_table_locks (p. 893).

synch/rwlock/innodb/index_tree_rw_lock

A large number of similar data manipulation language (DML) statements are accessing the same
database object at the same time. Try using multirow statements. Also, spread the workload over
different database objects. For example, implement partitioning.

synch/sxlock/innodb/dict_operation_lock

A high number of concurrent data control language statements (DCLs) in data definition language
code (DDLs) are triggered at the same time. Reduce the application's dependency on DDLs during
regular application activity.

synch/sxlock/innodb/dict_sys_lock

A high number of concurrent data control language statements (DCLs) in data definition language
code (DDLs) are triggered at the same time. Reduce the application's dependency on DDLs during
regular application activity.

1087

Amazon Aurora User Guide for Aurora
Aurora MySQL thread states

synch/sxlock/innodb/hash_table_locks

The session couldn't find pages in the buffer pool. The engine either needs to read a file or modify
the least-recently used (LRU) list for the buffer pool. Consider increasing the buffer cache size and
improving access paths for the relevant queries.

synch/sxlock/innodb/index_tree_rw_lock

Many similar data manipulation language (DML) statements are accessing the same database object
at the same time. Try using multirow statements. Also, spread the workload over different database
objects. For example, implement partitioning.

Aurora MySQL thread states
The following are some common thread states for Aurora MySQL.

checking permissions

The thread is checking whether the server has the required privileges to run the statement.
checking query cache for query

The server is checking whether the current query is present in the query cache.
cleaned up

This is the final state of a connection whose work is complete but which hasn't been closed by the
client. The best solution is to explicitly close the connection in code. Or you can set a lower value for
wait_timeout in your parameter group.

closing tables

The thread is flushing the changed table data to disk and closing the used tables. If this isn't
a fast operation, verify the network bandwidth consumption metrics against the instance
class network bandwidth. Also, check that the parameter values for table_open_cache and
table_definition_cache parameter allow for enough tables to be simultaneously open so
that the engine doesn't need to open and close tables frequently. These parameters influence the
memory consumption on the instance.

converting HEAP to MyISAM

The query is converting a temporary table from in-memory to on-disk. This conversion is necessary
because the temporary tables created by MySQL in the intermediate steps of query processing grew
too big for memory. Check the values of tmp_table_size and max_heap_table_size. In later
versions, this thread state name is converting HEAP to ondisk.

converting HEAP to ondisk

The thread is converting an internal temporary table from an in-memory table to an on-disk table.
copy to tmp table

The thread is processing an ALTER TABLE statement. This state occurs after the table with the new
structure has been created but before rows are copied into it. For a thread in this state, you can use
the Performance Schema to obtain information about the progress of the copy operation.

creating sort index

Aurora MySQL is performing a sort because it can't use an existing index to satisfy the ORDER BY or
GROUP BY clause of a query. For more information, see creating sort index (p. 897).

creating table

The thread is creating a permanent or temporary table.

1088

Amazon Aurora User Guide for Aurora
Aurora MySQL thread states

delayed commit ok done

An asynchronous commit in Aurora MySQL has received an acknowledgement and is complete.
delayed commit ok initiated

The Aurora MySQL thread has started the async commit process but is waiting for
acknowledgement. This is usually the genuine commit time of a transaction.

delayed send ok done

An Aurora MySQL worker thread that is tied to a connection can be freed while a response is sent
to the client. The thread can begin other work. The state delayed send ok means that the
asynchronous acknowledgement to the client completed.

delayed send ok initiated

An Aurora MySQL worker thread has sent a response asynchronously to a client and is now free to
do work for other connections. The transaction has started an async commit process that hasn't yet
been acknowledged.

executing

The thread has begun running a statement.
freeing items

The thread has run a command. Some freeing of items done during this state involves the query
cache. This state is usually followed by cleaning up.

init

This state occurs before the initialization of ALTER TABLE, DELETE, INSERT, SELECT, or UPDATE
statements. Actions in this state include flushing the binary log or InnoDB log, and some cleanup of
the query cache.

master has sent all binlog to slave

The primary node has finished its part of the replication. The thread is waiting for more queries to
run so that it can write to the binary log (binlog).

opening tables

The thread is trying to open a table. This operation is fast unless an ALTER TABLE or a LOCK TABLE
statement needs to finish, or it exceeds the value of table_open_cache.

optimizing

The server is performing initial optimizations for a query.
preparing

This state occurs during query optimization.
query end

This state occurs after processing a query but before the freeing items state.
removing duplicates

Aurora MySQL couldn't optimize a DISTINCT operation in the early stage of a query. Aurora MySQL
must remove all duplicated rows before sending the result to the client.

searching rows for update

The thread is finding all matching rows before updating them. This stage is necessary if the UPDATE
is changing the index that the engine uses to find the rows.

sending binlog event to slave

The thread read an event from the binary log and is sending it to the replica.

1089

Amazon Aurora User Guide for Aurora
Aurora MySQL thread states

sending cached result to client

The server is taking the result of a query from the query cache and sending it to the client.
sending data

The thread is reading and processing rows for a SELECT statement but hasn't yet started sending
data to the client. The process is identifying which pages contain the results necessary to satisfy the
query. For more information, see sending data (p. 900).

sending to client

The server is writing a packet to the client. In earlier MySQL versions, this wait event was labeled
writing to net.

starting

This is the first stage at the beginning of statement execution.
statistics

The server is calculating statistics to develop a query execution plan. If a thread is in this state for a
long time, the server is probably disk-bound while performing other work.

storing result in query cache

The server is storing the result of a query in the query cache.
system lock

The thread has called mysql_lock_tables, but the thread state hasn't been updated since the call.
This general state occurs for many reasons.

update

The thread is preparing to start updating the table.
updating

The thread is searching for rows and is updating them.
user lock

The thread issued a GET_LOCK call. The thread either requested an advisory lock and is waiting for it,
or is planning to request it.

waiting for more updates

The primary node has finished its part of the replication. The thread is waiting for more queries to
run so that it can write to the binary log (binlog).

waiting for schema metadata lock

This is a wait for a metadata lock.
waiting for stored function metadata lock

This is a wait for a metadata lock.
waiting for stored procedure metadata lock

This is a wait for a metadata lock.
waiting for table flush

The thread is executing FLUSH TABLES and is waiting for all threads to close their tables. Or the
thread received notification that the underlying structure for a table changed, so it must reopen
the table to get the new structure. To reopen the table, the thread must wait until all other threads
have closed the table. This notification takes place if another thread has used one of the following

1090

Amazon Aurora User Guide for Aurora
Aurora MySQL isolation levels

statements on the table: FLUSH TABLES, ALTER TABLE, RENAME TABLE, REPAIR TABLE,
ANALYZE TABLE, or OPTIMIZE TABLE.

waiting for table level lock

One session is holding a lock on a table while another session tries to acquire the same lock on the
same table.

waiting for table metadata lock

Aurora MySQL uses metadata locking to manage concurrent access to database objects and
to ensure data consistency. In this wait event, one session is holding a metadata lock on
a table while another session tries to acquire the same lock on the same table. When the
Performance Schema is enabled, this thread state is reported as the wait event synch/cond/sql/
MDL_context::COND_wait_status.

writing to net

The server is writing a packet to the network. In later MySQL versions, this wait event is labeled
Sending to client.

Aurora MySQL isolation levels
Following, you can learn how DB instances in an Aurora MySQL cluster implement the database property
of isolation. Doing so helps you understand how the Aurora MySQL default behavior balances between
strict consistency and high performance. You can also decide when to change the default settings based
on the characteristics of your workload.

Available isolation levels for writer instances
You can use the isolation levels REPEATABLE READ, READ COMMITTED, READ UNCOMMITTED, and
SERIALIZABLE on the primary instance of an Aurora MySQL single-master cluster. You can use the
isolation levels REPEATABLE READ, READ COMMITTED, and READ UNCOMMITTED on any DB instance in
an Aurora MySQL multi-master cluster. These isolation levels work the same in Aurora MySQL as in RDS
for MySQL.

REPEATABLE READ isolation level for reader instances
By default, Aurora MySQL DB instances configured as read-only Aurora Replicas always use the
REPEATABLE READ isolation level. These DB instances ignore any SET TRANSACTION ISOLATION
LEVEL statements and continue using the REPEATABLE READ isolation level.

READ COMMITTED isolation level for reader instances
If your application includes a write-intensive workload on the primary instance and long-running
queries on the Aurora Replicas, you might experience substantial purge lag. Purge lag happens when
internal garbage collection is blocked by long-running queries. The symptom that you see is a high
value for history list length in output from the SHOW ENGINE INNODB STATUS command.
You can monitor this value using the RollbackSegmentHistoryListLength metric in CloudWatch.
This condition can reduce the effectiveness of secondary indexes and lead to reduced overall query
performance and wasted storage space.

If you experience such issues, you can use an Aurora MySQL session-level configuration setting,
aurora_read_replica_read_committed, to use the READ COMMITTED isolation level on Aurora
Replicas. Using this setting can help reduce slowdowns and wasted space that can result from
performing long-running queries at the same time as transactions that modify your tables.

We recommend making sure that you understand the specific Aurora MySQL behavior of the READ
COMMITTED isolation before using this setting. The Aurora Replica READ COMMITTED behavior

1091

Amazon Aurora User Guide for Aurora
Aurora MySQL isolation levels

complies with the ANSI SQL standard. However, the isolation is less strict than typical MySQL
READ COMMITTED behavior that you might be familiar with. Thus, you might see different query
results under READ COMMITTED on an Aurora MySQL read replica than for the same query under
READ COMMITTED on the Aurora MySQL primary instance or on RDS for MySQL. You might use the
aurora_read_replica_read_committed setting for such use cases as a comprehensive report that
scans a very large database. You might avoid it for short queries with small result sets, where precision
and repeatability are important.

The READ COMMITTED isolation level isn't available for sessions within a secondary cluster in an Aurora
global database that use the write forwarding feature. For information about write forwarding, see Using
write forwarding in an Amazon Aurora global database (p. 255).

Enabling READ COMMITTED for readers

To enable the READ COMMITTED isolation level for Aurora Replicas, enable the
aurora_read_replica_read_committed configuration setting. Enable this setting at the session
level while connected a specific Aurora Replica. To do so, run the following SQL commands.

set session aurora_read_replica_read_committed = ON;
set session transaction isolation level read committed;

You might enable this configuration setting temporarily to perform interactive ad hoc (one-time)
queries. You might also want to run a reporting or data analysis application that benefits from the READ
COMMITTED isolation level, while leaving the default unchanged for other applications.

When the aurora_read_replica_read_committed setting is enabled, use the SET TRANSACTION
ISOLATION LEVEL command to specify the isolation level for the appropriate transactions.

set transaction isolation level read committed;

Differences in READ COMMITTED behavior on Aurora replicas

The aurora_read_replica_read_committed setting makes the READ COMMITTED isolation
level available for an Aurora Replica, with consistency behavior that is optimized for long-running
transactions. The READ COMMITTED isolation level on Aurora Replicas has less strict isolation than on
Aurora primary instances or multi-master instances. For that reason, enable this setting only on Aurora
Replicas where you know that your queries can accept the possibility of certain types of inconsistent
results.

Your queries can experience certain kinds of read anomalies when the
aurora_read_replica_read_committed setting is turned on. Two kinds of anomalies are especially
important to understand and handle in your application code. A non-repeatable read occurs when
another transaction commits while your query is running. A long-running query can see different data
at the start of the query than it sees at the end. A phantom read occurs when other transactions cause
existing rows to be reorganized while your query is running, and one or more rows are read twice by your
query.

Your queries might experience inconsistent row counts as a result of phantom reads. Your queries might
also return incomplete or inconsistent results due to non-repeatable reads. For example, suppose that
a join operation refers to tables that are concurrently modified by SQL statements such as INSERT or
DELETE. In this case, the join query might read a row from one table but not the corresponding row from
another table.

The ANSI SQL standard allows both of these behaviors for the READ COMMITTED isolation level.
However, those behaviors are different than the typical MySQL implementation of READ COMMITTED.
Thus, before enabling the aurora_read_replica_read_committed setting, check any existing SQL
code to verify if it operates as expected under the looser consistency model.

1092

Amazon Aurora User Guide for Aurora
Aurora MySQL isolation levels

Row counts and other results might not be strongly consistent under the READ COMMITTED isolation
level while this setting is enabled. Thus, you typically enable the setting only while running analytic
queries that aggregate large amounts of data and don't require absolute precision. If you don't have
these kinds of long-running queries alongside a write-intensive workload, you probably don't need the
aurora_read_replica_read_committed setting. Without the combination of long-running queries
and a write-intensive workload, you're unlikely to encounter issues with the length of the history list.

Example Queries showing isolation behavior for READ COMMITTED on Aurora replicas

The following example shows how READ COMMITTED queries on an Aurora Replica might return non-
repeatable results if transactions modify the associated tables at the same time. The table BIG_TABLE
contains 1 million rows before any queries start. Other data manipulation language (DML) statements
add, remove, or change rows while the are running.

The queries on the Aurora primary instance under the READ COMMITTED isolation level produce
predictable results. However, the overhead of keeping the consistent read view for the lifetime of every
long-running query can lead to expensive garbage collection later.

The queries on the Aurora Replica under the READ COMMITTED isolation level are optimized to
minimize this garbage collection overhead. The tradeoff is that the results might vary depending on
whether the queries retrieve rows that are added, removed, or reorganized by transactions that commit
while the query is running. The queries are allowed to consider these rows but aren't required to. For
demonstration purposes, the queries check only the number of rows in the table by using the COUNT(*)
function.

Time DML statement on
Aurora primary
instance

Query on Aurora
primary instance with
READ COMMITTED

Query on Aurora
replica with READ
COMMITTED

T1 INSERT INTO
big_table SELECT
* FROM other_table
LIMIT 1000000;
COMMIT;

T2 Q1: SELECT COUNT(*)
FROM big_table;

Q2: SELECT COUNT(*)
FROM big_table;

T3 INSERT INTO
big_table (c1,
c2) VALUES (1,
'one more row');
COMMIT;

T4 If Q1 finishes now,
result is 1,000,000.

If Q2 finishes now,
result is 1,000,000 or
1,000,001.

T5 DELETE FROM
big_table LIMIT 2;
COMMIT;

T6 If Q1 finishes now,
result is 1,000,000.

If Q2 finishes now,
result is 1,000,000 or
1,000,001 or 999,999
or 999,998.

T7 UPDATE big_table
SET c2 =

1093

Amazon Aurora User Guide for Aurora
Aurora MySQL isolation levels

Time DML statement on
Aurora primary
instance

Query on Aurora
primary instance with
READ COMMITTED

Query on Aurora
replica with READ
COMMITTED

CONCAT(c2,c2,c2);
COMMIT;

T8 If Q1 finishes now,
result is 1,000,000.

If Q2 finishes now,
result is 1,000,000 or
1,000,001 or 999,999,
or possibly some higher
number.

T9 Q3: SELECT COUNT(*)
FROM big_table;

Q4: SELECT COUNT(*)
FROM big_table;

T10 If Q3 finishes now,
result is 999,999.

If Q4 finishes now,
result is 999,999.

T11 Q5: SELECT COUNT(*)
FROM parent_table
p JOIN child_table
c ON (p.id = c.id)
WHERE p.id = 1000;

Q6: SELECT COUNT(*)
FROM parent_table
p JOIN child_table
c ON (p.id = c.id)
WHERE p.id = 1000;

T12 INSERT INTO
parent_table (id,
s) VALUES (1000,
'hello'); INSERT
INTO child_table
(id, s) VALUES
(1000, 'world');
COMMIT;

T13 If Q5 finishes now,
result is 0.

If Q6 finishes now,
result is 0 or 1.

If the queries finish quickly, before any other transactions perform DML statements and commit, the
results are predictable and the same between the primary instance and the Aurora Replica.

The results for Q1 are highly predictable, because READ COMMITTED on the primary instance uses a
strong consistency model similar to the REPEATABLE READ isolation level.

The results for Q2 might vary depending on what transactions commit while that query is running. For
example, suppose that other transactions perform DML statements and commit while the queries are
running. In this case, the query on the Aurora Replica with the READ COMMITTED isolation level might or
might not take the changes into account. The row counts are not predictable in the same way as under
the REPEATABLE READ isolation level. They also aren't as predictable as queries running under the READ
COMMITTED isolation level on the primary instance, or on an RDS for MySQL instance.

The UPDATE statement at T7 doesn't actually change the number of rows in the table. However, by
changing the length of a variable-length column, this statement can cause rows to be reorganized
internally. A long-running READ COMMITTED transaction might see the old version of a row, and later
within the same query see the new version of the same row. The query can also skip both the old and
new versions of the row. Thus, the row count might be different than expected.

The results of Q5 and Q6 might be identical or slightly different. Query Q6 on the Aurora Replica under
READ COMMITTED is able to see, but is not required to see, the new rows that are committed while the
query is running. It might also see the row from one table but not from the other table. If the join query

1094

Amazon Aurora User Guide for Aurora
Aurora MySQL hints

doesn't find a matching row in both tables, it returns a count of zero. If the query does find both the new
rows in PARENT_TABLE and CHILD_TABLE, the query returns a count of one. In a long-running query,
the lookups from the joined tables might happen at widely separated times.

Note
These differences in behavior depend on the timing of when transactions are committed
and when the queries process the underlying table rows. Thus, you're most likely to see such
differences in report queries that take minutes or hours and that run on Aurora clusters
processing OLTP transactions at the same time. These are the kinds of mixed workloads that
benefit the most from the READ COMMITTED isolation level on Aurora Replicas.

Aurora MySQL hints
You can use SQL hints with Aurora MySQL queries to fine-tune performance. You can also use hints to
prevent execution plans for important queries to change based on unpredictable conditions.

Tip
To verify the effect that a hint has on a query, examine the query plan produced by the
EXPLAIN statement. Compare the query plans with and without the hint.

In Aurora MySQL version 3, you can use all the hints that are available in community MySQL 8.0. For
details about these hints, see Optimizer Hints in the MySQL Reference Manual.

The following hints are available in Aurora MySQL 2.08 and higher. These hints apply to queries that
use the hash join feature in Aurora MySQL version 2, especially queries that use the parallel query
optimization.

HASH_JOIN, NO_HASH_JOIN

Turns on or off the ability of the optimizer to choose whether to use the hash join optimization
method for a query. HASH_JOIN enables the optimizer to use hash join if that mechanism is more
efficient. NO_HASH_JOIN prevents the optimizer from using hash join for the query. This hint is
available in Aurora MySQL 2.08 and higher minor versions. It has no effect in Aurora MySQL version
3.

The following examples show how to use this hint.

EXPLAIN SELECT/*+ HASH_JOIN(t2) */ f1, f2
 FROM t1, t2 WHERE t1.f1 = t2.f1;

EXPLAIN SELECT /*+ NO_HASH_JOIN(t2) */ f1, f2
 FROM t1, t2 WHERE t1.f1 = t2.f1;

HASH_JOIN_PROBING, NO_HASH_JOIN_PROBING

In a hash join query, specifies whether or not to use the specified table for the probe side of
the join. The query tests whether column values from the build table exist in the probe table,
instead of reading the entire contents of the probe table. You can use HASH_JOIN_PROBING and
HASH_JOIN_BUILDING to specify how hash join queries are processed without reordering the tables
within the query text. This hint is available in Aurora MySQL 2.08 and higher minor versions. It has
no effect in Aurora MySQL version 3.

The following examples show how to use this hint. Specifying the HASH_JOIN_PROBING hint for the
table T2 has the same effect as specifying NO_HASH_JOIN_PROBING for the table T1.

EXPLAIN SELECT /*+ HASH_JOIN(t2) HASH_JOIN_PROBING(t2) */ f1, f2
 FROM t1, t2 WHERE t1.f1 = t2.f1;

EXPLAIN SELECT /*+ HASH_JOIN(t2) NO_HASH_JOIN_PROBING(t1) */ f1, f2

1095

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html

Amazon Aurora User Guide for Aurora
Aurora MySQL hints

 FROM t1, t2 WHERE t1.f1 = t2.f1;

HASH_JOIN_BUILDING, NO_HASH_JOIN_BUILDING

In a hash join query, specifies whether or not to use the specified table for the build side of the join.
The query processes all the rows from this table to build the list of column values to cross-reference
with the other table. You can use HASH_JOIN_PROBING and HASH_JOIN_BUILDING to specify
how hash join queries are processed without reordering the tables within the query text. This hint is
available in Aurora MySQL 2.08 and higher minor versions. It has no effect in Aurora MySQL version
3.

The following examples show how to use this hint. Specifying the HASH_JOIN_BUILDING hint for
the table T2 has the same effect as specifying NO_HASH_JOIN_BUILDING for the table T1.

EXPLAIN SELECT /*+ HASH_JOIN(t2) HASH_JOIN_BUILDING(t2) */ f1, f2
 FROM t1, t2 WHERE t1.f1 = t2.f1;

EXPLAIN SELECT /*+ HASH_JOIN(t2) NO_HASH_JOIN_BUILDING(t1) */ f1, f2
 FROM t1, t2 WHERE t1.f1 = t2.f1;

JOIN_FIXED_ORDER

Specifies that tables in the query are joined based on the order they are listed in the query. It is
especially useful with queries involving three or more tables. It is intended as a replacement for
the MySQL STRAIGHT_JOIN hint. Equivalent to the MySQL JOIN_FIXED_ORDER hint. This hint is
available in Aurora MySQL 2.08 and higher.

The following examples show how to use this hint.

EXPLAIN SELECT /*+ JOIN_FIXED_ORDER */ f1, f2
 FROM t1 JOIN t2 USING (id) JOIN t3 USING (id) JOIN t4 USING (id);

JOIN_ORDER

Specifies the join order for the tables in the query. It is especially useful with queries involving three
or more tables. Equivalent to the MySQL JOIN_ORDER hint. This hint is available in Aurora MySQL
2.08 and higher.

The following examples show how to use this hint.

EXPLAIN SELECT /*+ JOIN_ORDER (t4, t2, t1, t3) */ f1, f2
 FROM t1 JOIN t2 USING (id) JOIN t3 USING (id) JOIN t4 USING (id);

JOIN_PREFIX

Specifies the tables to put first in the join order. It is especially useful with queries involving three or
more tables. Equivalent to the MySQL JOIN_PREFIX hint. This hint is available in Aurora MySQL 2.08
and higher.

The following examples show how to use this hint.

EXPLAIN SELECT /*+ JOIN_ORDER (t4, t2) */ f1, f2
 FROM t1 JOIN t2 USING (id) JOIN t3 USING (id) JOIN t4 USING (id);

JOIN_SUFFIX

Specifies the tables to put last in the join order. It is especially useful with queries involving three or
more tables. Equivalent to the MySQL JOIN_SUFFIX hint. This hint is available in Aurora MySQL 2.08
and higher.

1096

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html

Amazon Aurora User Guide for Aurora
Stored procedures

The following examples show how to use this hint.

EXPLAIN SELECT /*+ JOIN_ORDER (t1, t3) */ f1, f2
 FROM t1 JOIN t2 USING (id) JOIN t3 USING (id) JOIN t4 USING (id);

For information about using hash join queries, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

Aurora MySQL stored procedures
You can call the following stored procedures while connected to the primary instance in an Aurora
MySQL cluster. These procedures control how transactions are replicated from an external database into
Aurora MySQL, or from Aurora MySQL to an external database. To learn how to use replication based on
global transaction identifiers (GTIDs) with Aurora MySQL, see Using GTID-based replication for Aurora
MySQL (p. 975).

Topics
• mysql.rds_assign_gtids_to_anonymous_transactions (Aurora MySQL version 3 and higher) (p. 1097)
• mysql.rds_set_master_auto_position (Aurora MySQL version 1 and 2) (p. 1098)
• mysql.rds_set_source_auto_position (Aurora MySQL version 3 and higher) (p. 1098)
• mysql.rds_set_source_auto_position (Aurora MySQL version 3 and higher) (p. 1098)
• mysql.rds_set_external_master_with_auto_position (Aurora MySQL version 1 and 2) (p. 1099)
• mysql.rds_set_external_source_with_auto_position (Aurora MySQL version 3 and higher) (p. 1101)
• mysql.rds_skip_transaction_with_gtid (p. 1103)

mysql.rds_assign_gtids_to_anonymous_transactions (Aurora
MySQL version 3 and higher)

Syntax

CALL mysql.rds_assign_gtids_to_anonymous_transactions(gtid_option);

Parameters

gtid_option

String value. The allowed values are OFF, LOCAL, or a specified UUID.

Usage notes

This procedure has the same effect as issuing the statement CHANGE REPLICATION SOURCE TO
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS = gtid_option in community MySQL.

GTID must be turned to ON for gtid_option to be set to LOCAL or a specific UUID.

The default is OFF, meaning that the feature is not used.

LOCAL assigns a GTID including the replica's own UUID (the server_uuid setting).

Passing a parameter that is a UUID assigns a GTID that includes the specified UUID, such as the
server_uuid setting for the replication source server.

1097

Amazon Aurora User Guide for Aurora
Stored procedures

Examples

To turn off this feature:

mysql> call mysql.rds_assign_gtids_to_anonymous_transactions('OFF');
+---+
| Message |
+---+
| ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS has been set to: OFF |
+---+
1 row in set (0.07 sec)

To use the replica's own UUID:

mysql> call mysql.rds_assign_gtids_to_anonymous_transactions('LOCAL');
+---+
| Message |
+---+
| ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS has been set to: LOCAL |
+---+
1 row in set (0.07 sec)

To use a specified UUID:

mysql> call mysql.rds_assign_gtids_to_anonymous_transactions('317a4760-
f3dd-3b74-8e45-0615ed29de0e');
+--
+
| Message |
+--
+
| ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS has been set to: 317a4760-
f3dd-3b74-8e45-0615ed29de0e |
+--
+
1 row in set (0.07 sec)

mysql.rds_set_master_auto_position (Aurora MySQL version 1
and 2)
Sets the replication mode to be based on either binary log file positions or on global transaction
identifiers (GTIDs).

Syntax

CALL mysql.rds_set_master_auto_position (auto_position_mode);

mysql.rds_set_source_auto_position (Aurora MySQL version 3
and higher)
Sets the replication mode to be based on either binary log file positions or on global transaction
identifiers (GTIDs).

Syntax

CALL mysql.rds_set_source_auto_position (auto_position_mode);

1098

Amazon Aurora User Guide for Aurora
Stored procedures

Parameters

auto_position_mode

A value that indicates whether to use log file position replication or GTID-based replication:
• 0 – Use the replication method based on binary log file position. The default is 0.
• 1 – Use the GTID-based replication method.

Usage notes

For an Aurora MySQL DB cluster, you call this stored procedure while connected to the primary instance.

The master user must run the mysql.rds_set_master_auto_position procedure.

For Aurora, this procedure is supported for Aurora MySQL version 2.04 and later MySQL 5.7–compatible
versions. GTID-based replication isn't supported for Aurora MySQL 1.1 or 1.0.

mysql.rds_set_source_auto_position (Aurora MySQL version 3
and higher)
Sets the replication mode to be based on either binary log file positions or on global transaction
identifiers (GTIDs).

Syntax

CALL mysql.rds_set_source_auto_position (auto_position_mode);

Parameters

auto_position_mode

A value that indicates whether to use log file position replication or GTID-based replication:
• 0 – Use the replication method based on binary log file position. The default is 0.
• 1 – Use the GTID-based replication method.

Usage notes

For an Aurora MySQL DB cluster, you call this stored procedure while connected to the primary instance.

The administrative user must run the mysql.rds_set_source_auto_position procedure.

For Aurora, this procedure is supported for Aurora MySQL version 2.04 and later MySQL 5.7–compatible
versions. GTID-based replication isn't supported for Aurora MySQL 1.1 or 1.0.

mysql.rds_set_external_master_with_auto_position (Aurora
MySQL version 1 and 2)
Configures an Aurora MySQL primary instance to accept incoming replication from an external MySQL
instance. This procedure also configures replication based on global transaction identifiers (GTIDs).

This procedure is available for both RDS for MySQL and Aurora MySQL. It works differently depending on
the context. When used with Aurora MySQL, this procedure doesn't configure delayed replication. This
limitation is because RDS for MySQL supports delayed replication but Aurora MySQL doesn't.

1099

Amazon Aurora User Guide for Aurora
Stored procedures

Syntax

CALL mysql.rds_set_external_master_with_auto_position (
 host_name
 , host_port
 , replication_user_name
 , replication_user_password
 , ssl_encryption
);

Parameters

host_name

The host name or IP address of the MySQL instance running external to Aurora to become the
replication master.

host_port

The port used by the MySQL instance running external to Aurora to be configured as the replication
master. If your network configuration includes Secure Shell (SSH) port replication that converts the
port number, specify the port number that is exposed by SSH.

replication_user_name

The ID of a user with REPLICATION CLIENT and REPLICATION SLAVE permissions on the MySQL
instance running external to Aurora. We recommend that you provide an account that is used solely
for replication with the external instance.

replication_user_password

The password of the user ID specified in replication_user_name.
ssl_encryption

This option is not currently implemented. The default is 0.

Usage notes

For an Aurora MySQL DB cluster, you call this stored procedure while connected to the primary instance.

The master user must run the mysql.rds_set_external_master_with_auto_position procedure.
The master user runs this procedure on the primary instance of an Aurora MySQL DB cluster that acts
as a replication target. This can be the replication target of an external MySQL DB instance or an Aurora
MySQL DB cluster.

For Aurora, this procedure is supported for Aurora MySQL version 2.04 and later MySQL 5.7-compatible
versions. GTID-based replication isn't supported for Aurora MySQL 1.1 or 1.0. For Aurora MySQL version
3, use the procedure mysql.rds_set_external_source_with_auto_position instead.

Before you run mysql.rds_set_external_master_with_auto_position, configure the external
MySQL DB instance to be a replication master. To connect to the external MySQL instance, specify values
for replication_user_name and replication_user_password. These values must indicate a
replication user that has REPLICATION CLIENT and REPLICATION SLAVE permissions on the external
MySQL instance.

To configure an external MySQL instance as a replication master

1. Using the MySQL client of your choice, connect to the external MySQL instance and create a user
account to be used for replication. The following is an example.

CREATE USER 'repl_user'@'mydomain.com' IDENTIFIED BY 'SomePassW0rd'

1100

Amazon Aurora User Guide for Aurora
Stored procedures

2. On the external MySQL instance, grant REPLICATION CLIENT and REPLICATION SLAVE privileges
to your replication user. The following example grants REPLICATION CLIENT and REPLICATION
SLAVE privileges on all databases for the 'repl_user' user for your domain.

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'mydomain.com'
IDENTIFIED BY 'SomePassW0rd'

When you call mysql.rds_set_external_master_with_auto_position, Amazon RDS records
certain information. This information is the time, the user, and an action of "set master" in the
mysql.rds_history and mysql.rds_replication_status tables.

To skip a specific GTID-based transaction that is known to cause a problem, you can use the
mysql.rds_skip_transaction_with_gtid (p. 1103) stored procedure. For more information about working
with GTID-based replication, see Using GTID-based replication for Aurora MySQL (p. 975).

Examples

When run on an Aurora primary instance, the following example configures the Aurora cluster to act as a
read replica of an instance of MySQL running external to Aurora.

call mysql.rds_set_external_master_with_auto_position(
 'Externaldb.some.com',
 3306,
 'repl_user'@'mydomain.com',
 'SomePassW0rd');

mysql.rds_set_external_source_with_auto_position (Aurora
MySQL version 3 and higher)
Configures an Aurora MySQL primary instance to accept incoming replication from an external MySQL
instance. This procedure also configures replication based on global transaction identifiers (GTIDs).

This procedure is available for both RDS for MySQL and Aurora MySQL. It works differently depending on
the context. When used with Aurora MySQL, this procedure doesn't configure delayed replication. This
limitation is because RDS for MySQL supports delayed replication but Aurora MySQL doesn't.

Syntax

CALL mysql.rds_set_external_source_with_auto_position (
 host_name
 , host_port
 , replication_user_name
 , replication_user_password
 , ssl_encryption
);

Parameters

host_name

The host name or IP address of the MySQL instance running external to Aurora to become the
replication source.

host_port

The port used by the MySQL instance running external to Aurora to be configured as the replication
source. If your network configuration includes Secure Shell (SSH) port replication that converts the
port number, specify the port number that is exposed by SSH.

1101

Amazon Aurora User Guide for Aurora
Stored procedures

replication_user_name

The ID of a user with REPLICATION CLIENT and REPLICATION SLAVE permissions on the MySQL
instance running external to Aurora. We recommend that you provide an account that is used solely
for replication with the external instance.

replication_user_password

The password of the user ID specified in replication_user_name.
ssl_encryption

This option is not currently implemented. The default is 0.

Usage notes

For an Aurora MySQL DB cluster, you call this stored procedure while connected to the primary instance.

The administrative user must run the mysql.rds_set_external_source_with_auto_position
procedure. The administrative user runs this procedure on the primary instance of an Aurora MySQL
DB cluster that acts as a replication target. This can be the replication target of an external MySQL DB
instance or an Aurora MySQL DB cluster.

For Aurora, this procedure is supported for Aurora MySQL version 2.04 and later MySQL 5.7-compatible
versions. It's also supported for Aurora MySQL version 3. GTID-based replication isn't supported for
Aurora MySQL 1.1 or 1.0.

Before you run mysql.rds_set_external_source_with_auto_position, configure the external
MySQL DB instance to be a replication source. To connect to the external MySQL instance, specify values
for replication_user_name and replication_user_password. These values must indicate a
replication user that has REPLICATION CLIENT and REPLICATION SLAVE permissions on the external
MySQL instance.

To configure an external MySQL instance as a replication source

1. Using the MySQL client of your choice, connect to the external MySQL instance and create a user
account to be used for replication. The following is an example.

CREATE USER 'repl_user'@'mydomain.com' IDENTIFIED BY 'SomePassW0rd'

2. On the external MySQL instance, grant REPLICATION CLIENT and REPLICATION SLAVE privileges
to your replication user. The following example grants REPLICATION CLIENT and REPLICATION
SLAVE privileges on all databases for the 'repl_user' user for your domain.

GRANT REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'repl_user'@'mydomain.com'
IDENTIFIED BY 'SomePassW0rd'

When you call mysql.rds_set_external_source_with_auto_position, Amazon RDS records
certain information. This information is the time, the user, and an action of "set master" in the
mysql.rds_history and mysql.rds_replication_status tables.

To skip a specific GTID-based transaction that is known to cause a problem, you can use the
mysql.rds_skip_transaction_with_gtid (p. 1103) stored procedure. For more information about working
with GTID-based replication, see Using GTID-based replication for Aurora MySQL (p. 975).

Examples

When run on an Aurora primary instance, the following example configures the Aurora cluster to act as a
read replica of an instance of MySQL running external to Aurora.

1102

Amazon Aurora User Guide for Aurora
Aurora MySQL updates

call mysql.rds_set_external_source_with_auto_position(
 'Externaldb.some.com',
 3306,
 'repl_user'@'mydomain.com',
 'SomePassW0rd');

mysql.rds_skip_transaction_with_gtid
Skips replication of a transaction with the specified global transaction identifier (GTID) on an Aurora
primary instance.

You can use this procedure for disaster recovery when a specific GTID transaction is known to cause
a problem. Use this stored procedure to skip the problematic transaction. Examples of problematic
transactions include transactions that disable replication, delete important data, or cause the DB
instance to become unavailable.

Syntax

CALL mysql.rds_skip_transaction_with_gtid (gtid_to_skip);

Parameters

gtid_to_skip

The GTID of the replication transaction to skip.

Usage notes

For an Aurora MySQL DB cluster, you call this stored procedure while connected to the primary instance.

The master user must run the mysql.rds_skip_transaction_with_gtid procedure.

For Aurora, this procedure is supported for Aurora MySQL version 2.04 and later MySQL 5.7-compatible
versions. It's also supported for Aurora MySQL version 3. GTID-based replication isn't supported for
Aurora MySQL 1.1 or 1.0.

Database engine updates for Amazon Aurora
MySQL

Amazon Aurora releases updates regularly. Updates are applied to Aurora DB clusters during system
maintenance windows. The timing when updates are applied depends on the region and maintenance
window setting for the DB cluster, as well as the type of update.

Updates are applied to all instances in a DB cluster at the same time. An update requires a database
restart on all instances in a DB cluster, so you experience 20 to 30 seconds of downtime, after which you
can resume using your DB cluster or clusters. You can view or change your maintenance window settings
from the AWS Management Console.

Following, you can learn how to choose the right Aurora MySQL version for your cluster, how to specify
the version when you create or upgrade a cluster, and the procedures to upgrade a cluster from one
version to another with minimal interruption.

Topics
• Aurora MySQL version numbers and special versions (p. 1104)

1103

https://console.aws.amazon.com/

Amazon Aurora User Guide for Aurora
Version Numbers and Special Versions

• Preparing for Amazon Aurora MySQL-Compatible Edition version 1 end of life (p. 1107)
• Upgrading Amazon Aurora MySQL DB clusters (p. 1109)
• Database engine updates for Amazon Aurora MySQL version 3 (p. 1129)
• Database engine updates for Amazon Aurora MySQL version 2 (p. 1129)
• Database engine updates for Amazon Aurora MySQL version 1 (p. 1217)
• Database engine updates for Aurora MySQL Serverless clusters (p. 1268)
• MySQL bugs fixed by Aurora MySQL database engine updates (p. 1271)
• Security vulnerabilities fixed in Amazon Aurora MySQL (p. 1292)

Aurora MySQL version numbers and special versions
Although Aurora MySQL-Compatible Edition is compatible with the MySQL database engines,
Aurora MySQL includes features and bug fixes that are specific to particular Aurora MySQL versions.
Application developers can check the Aurora MySQL version in their applications by using SQL. Database
administrators can check and specify Aurora MySQL versions when creating or upgrading Aurora MySQL
DB clusters and DB instances.

Topics
• Checking or specifying Aurora MySQL engine versions through AWS (p. 1104)
• Checking Aurora MySQL versions using SQL (p. 1105)
• Aurora MySQL long-term support (LTS) releases (p. 1106)
• Upgrade paths between 5.6-compatible and 5.7-compatible clusters (p. 1106)

Checking or specifying Aurora MySQL engine versions through
AWS
When you perform administrative tasks using the AWS Management Console, AWS CLI, or RDS API, you
specify the Aurora MySQL version in a descriptive alphanumeric format.

Starting with Aurora MySQL 2.03.2 and 1.19.0, Aurora engine versions have the following syntax.

mysql-major-version.mysql_aurora.aurora-mysql-version

The mysql-major-version- portion is 5.6, 5.7, or 8.0. This value represents the version of the client
protocol and general level of MySQL feature support for the corresponding Aurora MySQL version.

The aurora-mysql-version is a dotted value with three parts: the Aurora MySQL major version, the
Aurora MySQL minor version, and the patch level. The major version is 1, 2, or 3. Those values represent
Aurora MySQL compatible with MySQL 5.6, 5.7, or 8.0 respectively. The minor version represents the
feature release within the 1.x, 2.x, or 3.x series. The patch level begins at 0 for each minor version,
and represents the set of subsequent bug fixes that apply to the minor version. Occasionally, a new
feature is incorporated into a minor version but not made visible immediately. In these cases, the feature
undergoes fine-tuning and is made public in a later patch level.

All 1.x Aurora MySQL engine versions are wire-compatible with Community MySQL 5.6.10a. All 2.x
Aurora MySQL engine versions are wire-compatible with Community MySQL 5.7.12. All 3.x Aurora
MySQL engine versions are wire-compatible with MySQL 8.0.23.

For example, the engine versions for Aurora MySQL 3.01.0, 2.03.2, and 1.19.0 are the following.

8.0.mysql_aurora.3.01.0
5.7.mysql_aurora.2.03.2

1104

Amazon Aurora User Guide for Aurora
Version Numbers and Special Versions

5.6.mysql_aurora.1.19.0

Note
There isn't a one-to-one correspondence between community MySQL versions and the Aurora
MySQL 1.x and 2.x versions. For Aurora MySQL version 3, there is a more direct mapping. To
check which bug fixes and new features are in a particular Aurora MySQL release, see Database
engine updates for Amazon Aurora MySQL version 3 (p. 1129), Database engine updates for
Amazon Aurora MySQL version 2 (p. 1129) and Database engine updates for Amazon Aurora
MySQL version 1 (p. 1217). For a chronological list of new features and releases, see Document
history (p. 1837). To check the minimum version required for a security-related fix, see Security
vulnerabilities fixed in Amazon Aurora MySQL (p. 1292).

For Aurora MySQL 2.x, all versions 2.03.1 and lower are represented by the engine version 5.7.12. In the
same way, all versions before 1.19.0 are represented by the engine version 5.6.10a. These older version
designations don't include the 5.7.mysql_aurora prefix. When you specified 5.7.12 or 5.6.10a
while creating or modifying a cluster, you got the highest version before the 2.03.2 and 1.19.0 versions
where the version numbering changed. To determine the exact version number for those older versions,
you used the SQL technique explained in Checking Aurora MySQL versions using SQL (p. 1105).

You specify the Aurora MySQL engine version in some AWS CLI commands and RDS API operations. For
example, you specify the --engine-version option when you run the AWS CLI commands create-db-
cluster and modify-db-cluster. You specify the EngineVersion parameter when you run the RDS API
operations CreateDBCluster and ModifyDBCluster.

In Aurora MySQL 1.19.0 and higher or 2.03.2 and higher, the engine version in the AWS Management
Console also includes the Aurora version. Upgrading the cluster changes the displayed value. This change
helps you to specify and check the precise Aurora MySQL versions, without the need to connect to the
cluster or run any SQL commands.

Tip
For Aurora clusters managed through AWS CloudFormation, this change in the EngineVersion
setting can trigger actions by AWS CloudFormation. For information about how AWS
CloudFormation treats changes to the EngineVersion setting, see the AWS CloudFormation
documentation.

Before Aurora MySQL 1.19.0 and 2.03.2, the process to update the engine version is to use the Apply
a Pending Maintenance Action option for the cluster. This process doesn't change the Aurora MySQL
engine version that the console displays. For example, suppose that you see an Aurora MySQL cluster
with a reported engine version of 5.6.10a or 5.7.12. To find out the specific version, connect to the
cluster and query the AURORA_VERSION system variable as described previously.

Checking Aurora MySQL versions using SQL
The Aurora version numbers that you can retrieve in your application using SQL queries use the format
<major version>.<minor version>.<patch version>. You can get this version number for any
DB instance in your Aurora MySQL cluster by querying the AURORA_VERSION system variable. To get this
version number, use one of the following queries.

select aurora_version();
select @@aurora_version;

Those queries produce output similar to the following.

mysql> select aurora_version(), @@aurora_version;
+------------------+------------------+
| aurora_version() | @@aurora_version |
+------------------+------------------+
| 2.08.1 | 2.08.1 |
+------------------+------------------+

1105

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbcluster.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbcluster.html

Amazon Aurora User Guide for Aurora
Version Numbers and Special Versions

The version numbers that the console, CLI, and RDS API return by using the techniques described
in Checking or specifying Aurora MySQL engine versions through AWS (p. 1104) are typically more
descriptive. However, for versions before 2.03.2 and 1.19, AWS always returns the version numbers
5.7.12 or 5.6.10a. For those older versions, use the SQL technique to check the precise version
number.

Aurora MySQL long-term support (LTS) releases
Each new Aurora MySQL version remains available for a certain amount of time for you to use when you
create or upgrade a DB cluster. After this period, you must upgrade any clusters that use that version.
You can manually upgrade your cluster before the support period ends, or Aurora can automatically
upgrade it for you when its Aurora MySQL version is no longer supported.

Aurora designates certain Aurora MySQL versions as long-term support (LTS) releases. DB clusters that
use LTS releases can stay on the same version longer and undergo fewer upgrade cycles than clusters
that use non-LTS releases. Aurora supports each LTS release for at least one year after that release
becomes available. When a DB cluster that's on an LTS release is required to upgrade, Aurora upgrades it
to the next LTS release. That way, the cluster doesn't need to be upgraded again for a long time.

During the lifetime of an Aurora MySQL LTS release, new patch levels introduce fixes to important issues.
The patch levels don't include any new features. You can choose whether to apply such patches to DB
clusters running the LTS release. For certain critical fixes, Amazon might perform a managed upgrade to
a patch level within the same LTS release. Such managed upgrades are performed automatically within
the cluster maintenance window.

We recommend that you upgrade to the latest release, instead of using the LTS release, for most of
your Aurora MySQL clusters. Doing so takes advantage of Aurora as a managed service and gives you
access to the latest features and bug fixes. The LTS releases are intended for clusters with the following
characteristics:

• You can't afford downtime on your Aurora MySQL application for upgrades outside of rare occurrences
for critical patches.

• The testing cycle for the cluster and associated applications takes a long time for each update to the
Aurora MySQL database engine.

• The database version for your Aurora MySQL cluster has all the DB engine features and bug fixes that
your application needs.

The current LTS releases for Aurora MySQL are the following:

• Aurora MySQL version 2.07.*. For more details about this version, see Aurora MySQL database engine
updates 2021-11-24 (version 2.07.7) (p. 1161).

• Aurora MySQL version 1.22.*. For more details about this version, see Aurora MySQL database engine
updates 2021-06-03 (version 1.22.5) (p. 1225).

These older versions are also designated as LTS releases:

• Aurora MySQL version 2.04.
• Aurora MySQL version 1.19.

Upgrade paths between 5.6-compatible and 5.7-compatible
clusters
For most Aurora MySQL 1.x and 2.x versions, you can upgrade a MySQL 5.6-compatible cluster to any
version of a MySQL 5.7-compatible cluster.

1106

Amazon Aurora User Guide for Aurora
Preparing for Aurora MySQL version 1 end of life

However, if your cluster is running Aurora MySQL 1.23 or higher, any upgrade to Aurora MySQL version
2.x must be to Aurora MySQL 2.09 or higher. This restriction applies even when you upgrade by restoring
a snapshot to create a new Aurora cluster. Aurora MySQL 1.23 includes improvements in Aurora storage.
For example, the maximum size of the cluster volume is larger in Aurora MySQL 1.23 and later. Aurora
MySQL 2.09 is the first 2.x version that has the same storage enhancements.

Preparing for Amazon Aurora MySQL-Compatible
Edition version 1 end of life
Amazon Aurora MySQL-Compatible Edition version 1 (with MySQL 5.6 compatibility) is planned to reach
end of life on February 28, 2023. Amazon advises that you upgrade all clusters running Aurora MySQL
version 1 to Aurora MySQL version 2 (with MySQL 5.7 compatibility) or Aurora MySQL version 3 (with
MySQL 8.0 compatibility). Do this before Aurora MySQL version 1 reaches the end of its support period.

For Aurora provisioned DB clusters, you can complete upgrades from Aurora MySQL version 1 to Aurora
MySQL version 2 by several methods. You can find instructions for the in-place upgrade mechanism
in How to perform an in-place upgrade (p. 1119). Another way to complete the upgrade is to take a
snapshot of an Aurora MySQL version 1 cluster and restore the snapshot to an Aurora MySQL version 2
cluster. Or you can follow a multistep process that runs the old and new clusters side by side. For more
details about each method, see Upgrading from Aurora MySQL 1.x to 2.x (p. 1115)

For Aurora provisioned DB clusters, you can complete upgrades from Aurora MySQL version 1 to Aurora
MySQL version 3 by using a two-stage upgrade process. The first stage requires an upgrade from Aurora
MySQL version 1 to Aurora MySQL version 2 using the methods described preceding. The second stage
requires an upgrade from Aurora MySQL version 2 to Aurora MySQL version 3. To perform this upgrade,
take a snapshot of an Aurora MySQL version 2 cluster and restore the snapshot to an Aurora MySQL
version 3 cluster. For more details, see Upgrading from Aurora MySQL 2.x to 3.x (p. 1114).

You can find upcoming end-of-life dates for Aurora major versions in Amazon Aurora versions (p. 5).
Amazon automatically upgrades any clusters that you don't upgrade yourself before the end-of-life date.
After the end-of-life date, these automatic upgrades to the subsequent major version occur during a
scheduled maintenance window for clusters.

The following are additional milestones for upgrading Aurora MySQL version 1 clusters that are reaching
end of life. For each, the start time is 00:00 Universal Coordinated Time (UTC).

1. Now through February 28, 2023 – You can at any time start upgrades of Aurora MySQL version 1 (with
MySQL 5.6 compatibility) clusters to Aurora MySQL version 2 (with MySQL 5.7 compatibility). From
Aurora MySQL version 2, you can do a further upgrade to Aurora MySQL version 3 (with MySQL 8.0
compatibility) for Aurora provisioned DB clusters.

2. September 27, 2022 – After this time, you can't create new Aurora MySQL version 1 clusters or
instances from either the AWS Management Console or the AWS Command Line Interface (AWS CLI).
You also can't add new secondary Regions to an Aurora global database. This might affect your ability
to recover from an unplanned outage as outlined in Recovering an Amazon Aurora global database
from an unplanned outage (p. 267), because you can't complete steps 5 and 6 after this time. You can
still do the following for existing Aurora MySQL version 1 clusters until February 28, 2023:
• Restore a snapshot taken of an Aurora MySQL version 1 cluster.
• Add read replicas.
• Change instance configuration.
• Perform point-in-time restore.
• Create clones of existing version 1 clusters.

3. February 28, 2023 – After this time, we plan to automatically upgrade Aurora MySQL version 1
clusters to the default version of Aurora MySQL version 2 within a scheduled maintenance window
that follows. Restoring Aurora MySQL version 1 DB snapshots results in an automatic upgrade of the
restored cluster to the default version of Aurora MySQL version 2 at that time.

1107

Amazon Aurora User Guide for Aurora
Preparing for Aurora MySQL version 1 end of life

Upgrading between major versions requires more extensive planning and testing than for a minor
version. The process can take substantial time. After the upgrade is finished, you also might have follow-
up work to do. For example, you might need to follow up due to differences in SQL compatibility, the
way certain MySQL-related features work, or parameter settings between the old and new versions.

To learn more about the methods, planning, testing, and troubleshooting of Aurora MySQL major
version upgrades, be sure to thoroughly read Upgrading the major version of an Aurora MySQL DB
cluster (p. 1114) .

Finding clusters affected by this end-of-life process

To find clusters affected by this end-of-life process, use the following procedures.

Console

To find an Aurora MySQL version 1 cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. In the Filter by databases box, enter 5.6.

4. Check for Aurora MySQL in the engine column.

AWS CLI

To find clusters affected by this end-of-life process using the AWS CLI, call the describe-db-clusters
command. You can use the sample script following.

Example

aws rds describe-db-clusters --include-share --query 'DBClusters[?Engine==`aurora`].
{EV:EngineVersion, DBCI:DBClusterIdentifier, EM:EngineMode}' --output table --region us-
east-1

 +--+
 | DescribeDBClusters |
 +---------------+--------------+-----------+
 | DBCI | EM | EV |
 +---------------+--------------+-----------+
 | my-database-1| serverless | 5.6.10a |
 +---------------+--------------+-----------+

RDS API

To find Aurora MySQL DB clusters running Aurora MySQL version 1, use the RDS DescribeDBClusters API
operation with the following required parameters:

• DescribeDBClusters

• Filters.Filter.N

• Name

• engine

• Values.Value.N

• ['aurora']

1108

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html

Amazon Aurora User Guide for Aurora
Upgrading Amazon Aurora MySQL DB clusters

Upgrading Amazon Aurora MySQL DB clusters
You can upgrade an Aurora MySQL DB cluster to get bug fixes, new Aurora MySQL features, or to change
to an entirely new version of the underlying database engine. The following sections show how.

Tip
The type of upgrade that you do depends on how much downtime you can afford for your
cluster, how much verification testing you plan to do, how important the specific bug fixes
or new features are for your use case, and whether you plan to do frequent small upgrades
or occasional upgrades that skip several intermediate versions. For each upgrade, you can
change the major version, the minor version, and the patch level for your cluster. If you aren't
familiar with the distinction between Aurora MySQL major versions, minor versions, and patch
levels, you can read the background information at Aurora MySQL version numbers and special
versions (p. 1104).

Topics
• Upgrading the minor version or patch level of an Aurora MySQL DB cluster (p. 1109)
• Upgrading the major version of an Aurora MySQL DB cluster (p. 1114)

Upgrading the minor version or patch level of an Aurora MySQL
DB cluster
You can use the following methods to upgrade the minor version of a DB cluster or to patch a DB cluster:

• Upgrading Aurora MySQL by modifying the engine version (p. 1109) (for Aurora MySQL 1.19.0 and
higher, or 2.03.2 and higher)

• Enabling automatic upgrades between minor Aurora MySQL versions (p. 1110)
• Upgrading Aurora MySQL by applying pending maintenance to an Aurora MySQL DB cluster (p. 1111)

(before Aurora MySQL 1.19.0 or 2.03.2)

For information about how zero-downtime patching can reduce interruptions during the upgrade
process, see Using zero-downtime patching (p. 1112).

Upgrading Aurora MySQL by modifying the engine version

Upgrading the minor version of an Aurora MySQL cluster applies additional fixes and new features to
an existing cluster. You can do this type of upgrade for clusters that are running Amazon Aurora MySQL
version 1.19.0 and higher, or 2.03.2 and higher.

This kind of upgrade applies to Aurora MySQL clusters where the original version and the upgraded
version are both in the Aurora MySQL 1.x series, or both in the Aurora MySQL 2.x series. The process is
fast and straightforward because it doesn't involve any conversion for the Aurora MySQL metadata or
reorganization of your table data.

You perform this kind of upgrade by modifying the engine version of the DB cluster using the AWS
Management Console, AWS CLI, or the RDS API. If your cluster is running Aurora MySQL 1.x, choose a
higher 1.x version. If your cluster is running Aurora MySQL 2.x, choose a higher 2.x version.

Note
If you're performing a minor upgrade on an Aurora global database, upgrade all of the
secondary clusters before you upgrade the primary cluster.

To modify the engine version of a DB cluster

• By using the console – Modify the properties of your cluster. In the Modify DB cluster window, change
the Aurora MySQL engine version in the DB engine version box. If you aren't familiar with the general

1109

Amazon Aurora User Guide for Aurora
Upgrading Amazon Aurora MySQL DB clusters

procedure for modifying a cluster, follow the instructions at Modifying the DB cluster by using the
console, CLI, and API (p. 372).

• By using the AWS CLI – Call the modify-db-cluster AWS CLI command, and specify the name of your
DB cluster for the --db-cluster-identifier option and the engine version for the --engine-
version option.

For example, to upgrade to Aurora MySQL version 2.03.2, set the --engine-version option to
5.7.mysql_aurora.2.03.2. Specify the --apply-immediately option to immediately update the
engine version for your DB cluster.

• By using the RDS API – Call the ModifyDBCluster API operation, and specify the name of your DB
cluster for the DBClusterIdentifier parameter and the engine version for the EngineVersion
parameter. Set the ApplyImmediately parameter to true to immediately update the engine version
for your DB cluster.

Enabling automatic upgrades between minor Aurora MySQL versions

For an Amazon Aurora MySQL DB cluster, you can specify that Aurora upgrades the DB cluster
automatically to new minor versions as those versions are released. You do so by enabling the automatic
minor version upgrade property of the DB cluster using the AWS Management Console, AWS CLI, or the
RDS API.

The automatic upgrades occur during the maintenance window for the database.

Important
Until August 2020, you could specify this setting for a DB instance that was part of an Aurora
MySQL DB cluster, but the setting had no effect. Now, the setting does apply to Aurora MySQL.
If you have clusters created before August 2020, check whether the DB instances in the cluster
already had the Enable auto minor version upgrade setting enabled. If so, confirm that this
setting is still appropriate and change it if not. Aurora only performs the automatic upgrade if
all DB instances in your cluster have this setting enabled.

Automatic minor version upgrade applies also to clusters running the LTS version for Aurora MySQL 1.x
or 2.x. To prevent those clusters from being automatically upgraded, make sure to turn off the Enable
auto minor version upgrade setting.

Automatic minor version upgrade doesn't apply to the following kinds of Aurora MySQL clusters:

• Multi-master clusters.
• Clusters that are part of an Aurora global database.
• Clusters that have cross-Region replicas.

If any of the DB instances in a cluster don't have the auto minor version upgrade setting turned on,
Aurora doesn't automatically upgrade any of the instances in that cluster. Make sure to keep that setting
consistent for all the DB instances in the cluster.

The outage duration varies depending on workload, cluster size, the amount of binary log data, and if
Aurora can use the zero-downtime patching (ZDP) feature. Aurora restarts the database cluster, so you
might experience a short period of unavailability before resuming use of your cluster. In particular, the
amount of binary log data affects recovery time. The DB instance processes the binary log data during
recovery. Thus, a high volume of binary log data increases recovery time.

To enable automatic minor version upgrades for an Aurora MySQL DB cluster

1. Follow the general procedure to modify the DB instances in your cluster, as described in Modify a DB
instance in a DB cluster (p. 373). Repeat this procedure for each DB instance in your cluster.

2. Do the following to enable automatic minor version upgrades for your cluster:

1110

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora
Upgrading Amazon Aurora MySQL DB clusters

• By using the console – Complete the following steps:
1. Sign in to the Amazon RDS console. choose Databases, and find the DB cluster where you want to

turn automatic minor version upgrade on or off.
2. Choose each DB instance in the DB cluster that you want to modify. Apply the following change for

each DB instance in sequence:
a. Choose Modify.
b. Choose the Enable auto minor version upgrade setting. This setting is part of the Maintenance

section.
c. Choose Continue and check the summary of modifications.
d. (Optional) Choose Apply immediately to apply the changes immediately.
e. On the confirmation page, choose Modify DB instance.

• By using the AWS CLI – Call the modify-db-instance AWS CLI command. Specify the name of your DB
instance for the --db-instance-identifier option and true for the --auto-minor-version-
upgrade option. Optionally, specify the --apply-immediately option to immediately enable this
setting for your DB instance. Run a separate modify-db-instance command for each DB instance in
the cluster.

• By using the RDS API – Call the ModifyDBInstance API operation and specify the name of your DB
cluster for the DBInstanceIdentifier parameter and true for the AutoMinorVersionUpgrade
parameter. Optionally, set the ApplyImmediately parameter to true to immediately enable this
setting for your DB instance. Call a separate ModifyDBInstance operation for each DB instance in
the cluster.

You can use a CLI command such as the following to check the status of the Enable auto minor version
upgrade for all of the DB instances in your Aurora MySQL clusters.

aws rds describe-db-instances \
 --query '*[].
{DBClusterIdentifier:DBClusterIdentifier,DBInstanceIdentifier:DBInstanceIdentifier,AutoMinorVersionUpgrade:AutoMinorVersionUpgrade}'

That command produces output similar to the following.

[
 {
 "DBInstanceIdentifier": "db-t2-medium-instance",
 "DBClusterIdentifier": "cluster-57-2020-06-03-6411",
 "AutoMinorVersionUpgrade": true
 },
 {
 "DBInstanceIdentifier": "db-t2-small-original-size",
 "DBClusterIdentifier": "cluster-57-2020-06-03-6411",
 "AutoMinorVersionUpgrade": false
 },
 {
 "DBInstanceIdentifier": "instance-2020-05-01-2332",
 "DBClusterIdentifier": "cluster-57-2020-05-01-4615",
 "AutoMinorVersionUpgrade": true
 },
... output omitted ...

Upgrading Aurora MySQL by applying pending maintenance to an Aurora
MySQL DB cluster

When upgrading to Aurora MySQL version 1.x versions, new database engine minor versions and patches
show as an available maintenance upgrade for your DB cluster. You can upgrade or patch the database
version of your DB cluster by applying the available maintenance action. We recommend applying the

1111

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora
Upgrading Amazon Aurora MySQL DB clusters

update on a nonproduction DB cluster first, so that you can see how changes in the new version affect
your instances and applications.

To apply pending maintenance actions

• By using the console – Complete the following steps:

1. Sign in to the Amazon RDS console, choose Databases, and choose the DB cluster that shows the
available maintenance upgrade.

2. For Actions, choose Upgrade now to immediately update the database version for your DB cluster,
or Upgrade at next window to update the database version for your DB cluster during the next DB
cluster maintenance window.

• By using the AWS CLI – Call the apply-pending-maintenance-action AWS CLI command, and specify
the Amazon Resource Name (ARN) for your DB cluster for the --resource-id option and system-
update for the --apply-action option. Set the --opt-in-type option to immediate to
immediately update the database version for your DB cluster, or next-maintenance to update the
database version for your DB cluster during the next cluster maintenance window.

• By using the RDS API – Call the ApplyPendingMaintenanceAction API operation, and specify the
ARN for your DB cluster for the ResourceId parameter and system-update for the ApplyAction
parameter. Set the OptInType parameter to immediate to immediately update the database version
for your DB cluster, or next-maintenance to update the database version for your instance during
the next cluster maintenance window.

For more information on how Amazon RDS manages database and operating system updates, see
Maintaining an Amazon Aurora DB cluster (p. 443).

Note
If your current Aurora MySQL version is 1.14.x but lower than 1.14.4, you can upgrade only to
1.14.4 (which supports db.r4 instance classes). Also, to upgrade from 1.14.x to a higher minor
Aurora MySQL version, such as 1.17, the 1.14.x version must be 1.14.4.

Using zero-downtime patching

Performing upgrades for Aurora MySQL DB clusters involves the possibility of an outage when the
database is shut down and while it's being upgraded. By default, if you start the upgrade while the
database is busy, you lose all the connections and transactions that the DB cluster is processing. If you
wait until the database is idle to perform the upgrade, you might have to wait a long time.

The zero-downtime patching (ZDP) feature attempts, on a best-effort basis, to preserve client
connections through an Aurora MySQL upgrade. If ZDP completes successfully, application sessions are
preserved and the database engine restarts while the upgrade is in progress. The database engine restart
can cause a drop in throughput lasting for a few seconds to approximately one minute.

ZDP is available in Aurora MySQL 2.07.2 and higher 2.07 versions, and 2.10.0 and higher, compatible
with MySQL 5.7, and 3.01.0 and higher, compatible with MySQL 8.0.

In Aurora MySQL version 2, ZDP only applies to Aurora MySQL DB instances that use the db.t2 or db.t3
instance classes. In Aurora MySQL version 3, ZDP applies to all instance classes.

You can see metrics of important attributes during ZDP in the MySQL error log. You can also see
information about when Aurora MySQL uses ZDP or chooses not use use ZDP on the Events page in the
AWS Management Console.

In Aurora MySQL 2.10 and higher, Aurora can perform a zero-downtime patch when binary log
replication is enabled. Aurora MySQL automatically drops the connection to the binlog target during a
ZDP operation. Aurora MySQL automatically reconnects to the binlog target and resumes replication
after the restart finishes.

1112

https://docs.aws.amazon.com/cli/latest/reference/rds/apply-pending-maintenance-action.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ApplyPendingMaintenanceAction.html

Amazon Aurora User Guide for Aurora
Upgrading Amazon Aurora MySQL DB clusters

ZDP also works in combination with the reboot enhancements in Aurora MySQL 2.10 and higher.
Patching the writer DB instance automatically patches readers at the same time. After performing the
patch, Aurora restores the connections on both the writer and reader DB instances. Before Aurora MySQL
2.10, ZDP applies only to the writer DB instance of a cluster.

ZDP might not complete successfully under the following conditions:

• Long-running queries or transactions are in progress. If Aurora can perform ZDP in this case, any open
transactions are canceled.

• Open Secure Socket Layer (SSL) connections exist.

• Temporary tables or table locks are in use, for example while data definition language (DDL)
statements run. If Aurora can perform ZDP in this case, any open transactions are canceled.

• Pending parameter changes exist.

If no suitable time window for performing ZDP becomes available because of one or more of these
conditions, patching reverts to the standard behavior.

Although connections remain intact following a successful ZDP operation, some variables and features
are reinitialized. The following kinds of information aren't preserved through a restart caused by zero-
downtime patching:

• Global variables. Aurora restores session variables, but it doesn't restore global variables after the
restart.

• Status variables. In particular, the uptime value reported by the engine status is reset after a restart
that uses the ZDR or ZDP mechanisms.

• LAST_INSERT_ID.

• In-memory auto_increment state for tables. The in-memory auto-increment state is reinitialized.
For more information about auto-increment values, see MySQL Reference Manual.

• Diagnostic information from INFORMATION_SCHEMA and PERFORMANCE_SCHEMA tables. This
diagnostic information also appears in the output of commands such as SHOW PROFILE and SHOW
PROFILES.

The following activities related to zero-downtime restart are reported on the Events page:

• Attempting to upgrade the database with zero downtime.

• Attempt to upgrade the database with zero downtime finished. The event reports how long the
process took. The event also reports how many connections were preserved during the restart and how
many connections were dropped. You can consult the database error log to see more details about
what happened during the restart.

The following table summarizes how ZDP works for upgrading from and to specific Aurora MySQL
versions. The instance class of the DB instance also affects whether Aurora uses the ZDP mechanism.

Original
version

Upgraded
version

Does ZDP apply?

Aurora MySQL
1.*

Any No

Aurora MySQL
2.*, before
2.07.2

Any No

1113

https://dev.mysql.com/doc/refman/5.7/en/innodb-auto-increment-handling.html#innodb-auto-increment-initialization

Amazon Aurora User Guide for Aurora
Upgrading Amazon Aurora MySQL DB clusters

Original
version

Upgraded
version

Does ZDP apply?

Aurora MySQL
2.07.2, 2.07.3

2.07.4 and
higher 2.07
versions, 2.10.*

Yes, on the writer instance for T2 and T3 instance classes only.
Aurora only performs ZDP if a quiet point is found before a timeout
occurs. After the timeout, Aurora performs a regular restart.

2.07.4 and
higher 2.07
versions

2.10.* Yes, on the writer instance for T2 and T3 instances only. Aurora
rolls back transactions for active and idle transactions. Connections
using SSL, temporary tables, table locks, or user locks are
disconnected. Aurora might restart the engine and drop all
connections if the engine takes too long to start after ZDP finishes.

Alternative blue-green upgrade technique

Blog post: Performing major version upgrades for Aurora MySQL with minimum downtime.

Upgrading the major version of an Aurora MySQL DB cluster
In an Aurora MySQL version number such as 2.08.1, the 2 represents the major version. Aurora MySQL
version 1 is compatible with MySQL 5.6. Aurora MySQL version 2 is compatible with MySQL 5.7. Aurora
MySQL version 3 is compatible with MySQL 8.0.23.

Upgrading between major versions requires more extensive planning and testing than for a minor
version. The process can take substantial time. After the upgrade is finished, you also might have
followup work to do. For example, this might occur due to differences in SQL compatibility, the way
certain MySQL-related features work, or parameter settings between the old and new versions.

Topics
• Upgrading from Aurora MySQL 2.x to 3.x (p. 1114)
• Upgrading from Aurora MySQL 1.x to 2.x (p. 1115)
• Planning a major version upgrade for an Aurora MySQL cluster (p. 1115)
• Aurora MySQL major version upgrade paths (p. 1116)
• How the Aurora MySQL in-place major version upgrade works (p. 1117)
• How to perform an in-place upgrade (p. 1119)
• How in-place upgrades affect the parameter groups for a cluster (p. 1120)
• Changes to cluster properties between Aurora MySQL version 1 and 2 (p. 1121)
• In-place major upgrades for global databases (p. 1122)
• After the upgrade (p. 1122)
• Troubleshooting for Aurora MySQL in-place upgrade (p. 1122)
• Aurora MySQL in-place upgrade tutorial (p. 1124)
• Alternative blue-green upgrade technique (p. 1128)

Upgrading from Aurora MySQL 2.x to 3.x

Currently, upgrading to Aurora MySQL version 3 requires restoring a snapshot of an Aurora MySQL
version 2 cluster to create a new version 3 cluster. If your original cluster is running Aurora MySQL
version 1, you first upgrade to version 2 and then use the snapshot restore technique to create the
version 3 cluster. For general information about Aurora MySQL version 3 and the new features that you
can use after you upgrade, see Aurora MySQL version 3 compatible with MySQL 8.0 (p. 769). For details
and examples of performing this type of upgrade, see Upgrade planning for Aurora MySQL version
3 (p. 781) and Upgrading to Aurora MySQL version 3 (p. 781).

1114

http://aws.amazon.com/blogs/database/performing-major-version-upgrades-for-amazon-aurora-mysql-with-minimum-downtime/

Amazon Aurora User Guide for Aurora
Upgrading Amazon Aurora MySQL DB clusters

Tip
When you upgrade the major version of your cluster from 2.x to 3.x, the original cluster and the
upgraded one both use the same aurora-mysql value for the engine attribute.

Upgrading from Aurora MySQL 1.x to 2.x

Upgrading the major version from 1.x to 2.x changes the engine attribute of the cluster from aurora
to aurora-mysql. Make sure to update any AWS CLI or API automation that you use with this cluster to
account for the changed engine value.

If you have a MySQL 5.6-compatible cluster and want to upgrade it to a MySQL-5.7 compatible cluster,
you can do so by running an upgrade process on the cluster itself. This kind of upgrade is an in-place
upgrade, in contrast to upgrades that you do by creating a new cluster. This technique keeps the same
endpoint and other characteristics of the cluster. The upgrade is relatively fast because it doesn't require
copying all your data to a new cluster volume. This stability helps to minimize any configuration changes
in your applications. It also helps to reduce the amount of testing for the upgraded cluster, because the
number of DB instances and their instance classes all stay the same.

The in-place upgrade mechanism involves shutting down your DB cluster while the operation takes place.
Aurora performs a clean shutdown and completes outstanding operations such as transaction rollback
and undo purge.

The in-place upgrade is convenient, because it is simple to perform and minimizes configuration changes
to associated applications. For example, an in-place upgrade preserves the endpoints and set of DB
instances for your cluster. However, the time needed for an in-place upgrade can vary depending on the
properties of your schema and how busy the cluster is. Thus, depending on the needs for your cluster,
you can choose between in-place upgrade, snapshot restore as described in Restoring from a DB cluster
snapshot (p. 497), or other upgrade techniques such as the one described in Alternative blue-green
upgrade technique (p. 1128).

If your cluster is running a version that's lower than 1.22.3, the upgrade might take longer because
Aurora MySQL automatically performs an upgrade to 1.22.3 as a first step. To minimize downtime during
the major version upgrade, you can do an initial minor version upgrade to Aurora MySQL 1.22.3 in
advance.

Planning a major version upgrade for an Aurora MySQL cluster

To make sure that your applications and administration procedures work smoothly after upgrading a
cluster between major versions, you can do some advance planning and preparation. To see what sorts of
management code to update for your AWS CLI scripts or RDS API–based applications, see How in-place
upgrades affect the parameter groups for a cluster (p. 1120) and Changes to cluster properties between
Aurora MySQL version 1 and 2 (p. 1121).

You can learn the sorts of issues that you might encounter during the upgrade by reading
Troubleshooting for Aurora MySQL in-place upgrade (p. 1122). For issues that might cause the upgrade
to take a long time, you can test those conditions in advance and correct them.

To verify application compatibility, performance, maintenance procedures, and similar considerations for
the upgraded cluster, you can perform a simulation of the upgrade before doing the real upgrade. This
technique can be especially useful for production clusters. Here, it's important to minimize downtime
and have the upgraded cluster ready to go as soon as the upgrade as finished.

Note
This technique applies to upgrades from Aurora MySQL version 1 to version 2. Currently, you
can't upgrade from Aurora MySQL version 2 to 3 by using cloning.

Use the following steps:

1. Create a clone of the original cluster. Follow the procedure in Cloning a volume for an Aurora DB
cluster (p. 402).

1115

Amazon Aurora User Guide for Aurora
Upgrading Amazon Aurora MySQL DB clusters

2. Set up a similar set of writer and reader DB instances as in the original cluster.
3. Perform an in-place upgrade of the cloned cluster. Follow the procedure in How to perform an in-

place upgrade (p. 1119). Start the upgrade immediately after creating the clone. That way, the cluster
volume is still identical to the state of the original cluster. If the clone sits idle before you do the
upgrade, Aurora performs database cleanup processes in the background. In that case, the upgrade of
the clone isn't an accurate simulation of upgrading the original cluster.

4. Test application compatibility, performance, administration procedures, and so on, using the cloned
cluster.

5. If you encounter any issues, adjust your upgrade plans to account for them. For example, adapt any
application code to be compatible with the feature set of the higher version. Estimate how long
the upgrade is likely to take based on the amount of data in your cluster. You might also choose to
schedule the upgrade for a time when the cluster isn't busy.

6. After you are satisfied that your applications and workload work properly with the test cluster, you can
perform the in-place upgrade for your production cluster.

7. To minimize the total downtime of your cluster during a major version upgrade, make sure that the
workload on the cluster is low or zero at the time of the upgrade. In particular, make sure that there
are no long running transactions in progress when you start the upgrade.

Aurora MySQL major version upgrade paths

Not all kinds or versions of Aurora MySQL clusters can use the in-place upgrade mechanism. You can
learn the appropriate upgrade path for each Aurora MySQL cluster by consulting the following table.

Type of Aurora MySQL DB
cluster

Can it
use in-
place
upgrade?

Action

Aurora MySQL provisioned
cluster, 1.22.3 or higher

Yes This is the fastest upgrade path. Aurora doesn't need to
perform an intermediate upgrade first.

Aurora MySQL provisioned
cluster, earlier than 1.22.3

Yes The upgrade might take longer than if the cluster is already
running Aurora MySQL 1.22.3 or higher. During a major
version upgrade, Aurora MySQL performs some database
cleanup using a minimum Aurora MySQL version of 1.22.3.
Aurora MySQL automatically performs an upgrade to 1.22.3
as a first step before doing that cleanup.

Aurora MySQL provisioned
cluster, 2.0 or higher

No In-place upgrade is only for 5.6-compatible Aurora MySQL
clusters, to make possible compatibility with MySQL 5.7.
Aurora MySQL version 2 is already compatible with 5.7. Use
the procedure for upgrading the minor version or patch
level to change from one 5.7-compatible version to another.

Aurora MySQL provisioned
cluster, 3.1.0 or higher

No For information about upgrading to Aurora MySQL
version 3, see Upgrade planning for Aurora MySQL version
3 (p. 781) and Upgrading to Aurora MySQL version
3 (p. 781).

Aurora MySQL provisioned
cluster, 3.1.0 or higher

No For information about upgrading to Aurora MySQL
version 3, see Upgrade planning for Aurora MySQL version
3 (p. 781) and Upgrading to Aurora MySQL version
3 (p. 781).

Aurora Serverless cluster No Make a snapshot of the 5.6-compatible Aurora Serverless
cluster. Restore the snapshot to a 5.7-compatible cluster.

1116

Amazon Aurora User Guide for Aurora
Upgrading Amazon Aurora MySQL DB clusters

Type of Aurora MySQL DB
cluster

Can it
use in-
place
upgrade?

Action

You can choose to make the new cluster Aurora Serverless
or some other kind of 5.7-compatible cluster.

Cluster in an Aurora global
database

Yes Follow the procedure for doing an in-place upgrade for
clusters in an Aurora global database. Perform the upgrade
on the primary cluster in the global database. Aurora
upgrades the primary cluster and all the secondary clusters
in the global database at the same time. If you use the
AWS CLI or RDS API, call the modify-global-cluster
command or ModifyGlobalCluster operation instead of
modify-db-cluster or ModifyDBCluster.

Multi-master cluster No Currently, multi-master replication isn't available for Aurora
MySQL 5.7-compatible clusters.

Parallel query cluster Maybe If you have an existing parallel query cluster using an
older Aurora MySQL version, upgrade the cluster to
Aurora MySQL 1.23 first. Follow the procedure in Upgrade
considerations for parallel query (p. 914). You make some
changes to configuration parameters to turn parallel query
back on after this initial upgrade. Then you can perform an
in-place upgrade. In this case, choose 2.09.1 or higher for
the Aurora MySQL version.

Cluster that is the target of
binary log replication

Maybe If the binary log replication is from a 5.6-compatible Aurora
MySQL cluster, you can perform an in-place upgrade. You
can't perform the upgrade if the binary log replication is
from an RDS MySQL or an on-premises MySQL DB instance.
In that case, you can upgrade using the snapshot restore
mechanism.

Cluster with zero DB
instances

No Using the AWS CLI or the RDS API, you can create an Aurora
MySQL cluster without any attached DB instances. In the
same way, you can also remove all DB instances from an
Aurora MySQL cluster while leaving the data in the cluster
volume intact. While a cluster has zero DB instances, you
can't perform an in-place upgrade.

The upgrade mechanism requires a writer instance in the
cluster to perform conversions on the system tables, data
files, and so on. In this case, use the AWS CLI or the RDS
API to create a writer instance for the cluster. Then you can
perform an in-place upgrade.

Cluster with backtrack
enabled

Yes You can perform an in-place upgrade for an Aurora MySQL
cluster that uses the backtrack feature. However, after the
upgrade, you can't backtrack the cluster to a time before
the upgrade.

How the Aurora MySQL in-place major version upgrade works

Aurora MySQL performs a major version upgrade as a multistage process. You can check the current
status of an upgrade. Some of the upgrade steps also provide progress information. As each stage

1117

Amazon Aurora User Guide for Aurora
Upgrading Amazon Aurora MySQL DB clusters

begins, Aurora MySQL records an event. You can examine events as they occur on the Events page
in the RDS console. For more information about working with events, see Using Amazon RDS event
notification (p. 696).

Important
Once the process begins, it runs until the upgrade either succeeds or fails. You can't cancel the
upgrade while it's underway. If the upgrade fails, Aurora rolls back all the changes and your
cluster has the same engine version, metadata, and so on as before.

The upgrade process consists of these stages:

1. Aurora performs a series of checks before beginning the upgrade process. Your cluster keeps running
while Aurora does these checks. For example, the cluster can't have any XA transactions in the
prepared state or be processing any data definition language (DDL) statements. For example, you
might need to shut down applications that are submitting certain kinds of SQL statements. Or you
might simply wait until certain long-running statements are finished. Then try the upgrade again.
Some checks test for conditions that don't prevent the upgrade but might make the upgrade take a
long time.

If Aurora detects that any required conditions aren't met, modify the conditions identified in the
event details. Follow the guidance in Troubleshooting for Aurora MySQL in-place upgrade (p. 1122).
If Aurora detects conditions that might cause a slow upgrade, plan to monitor the upgrade over an
extended period.

2. Aurora takes your cluster offline. Then Aurora performs a similar set of tests as in the previous stage,
to confirm that no new issues arose during the shutdown process. If Aurora detects any conditions at
this point that would prevent the upgrade, Aurora cancels the upgrade and brings the cluster back
online. In this case, confirm when the conditions no longer apply and start the upgrade again.

3. Aurora creates a snapshot of your cluster volume. Suppose that you discover compatibility or other
kinds of issues after the upgrade is finished. Or suppose that you want to perform testing using both
the original and upgraded clusters. In such cases, you can restore from this snapshot to create a new
cluster with the original engine version and the original data.

Tip
This snapshot is a manual snapshot. However, Aurora can create it and continue with the
upgrade process even if you have reached your quota for manual snapshots. This snapshot
remains permanently until you delete it. After you finish all post-upgrade testing, you can
delete this snapshot to minimize storage charges.

4. Aurora clones your cluster volume. Cloning is a fast operation that doesn't involve copying the actual
table data. If Aurora encounters an issue during the upgrade, it reverts to the original data from the
cloned cluster volume and brings the cluster back online. The temporary cloned volume during the
upgrade isn't subject to the usual limit on the number of clones for a single cluster volume.

5. Aurora performs a clean shutdown for the writer DB instance. During the clean shutdown, progress
events are recorded every 15 minutes for the following operations. You can examine events as they
occur on the Events page in the RDS console.
• Aurora purges the undo records for old versions of rows.
• Aurora rolls back any uncommitted transactions.

6. Aurora upgrades the engine version on the writer DB instance:
• Aurora installs the binary for the new engine version on the writer DB instance.
• Aurora uses the writer DB instance to upgrade your data to MySQL 5.7-compatible format. During

this stage, Aurora modifies the system tables and performs other conversions that affect the data in
your cluster volume. In particular, Aurora upgrades the partition metadata in the system tables to
be compatible with the MySQL 5.7 partition format. This stage can take a long time if the tables in
your cluster have a large number of partitions.

If any errors occur during this stage, you can find the details in the MySQL error logs. After this
stage starts, if the upgrade process fails for any reason, Aurora restores the original data from the
cloned cluster volume.

1118

Amazon Aurora User Guide for Aurora
Upgrading Amazon Aurora MySQL DB clusters

7. Aurora upgrades the engine version on the reader DB instances.
8. The upgrade process is completed. Aurora records a final event to indicate that the upgrade process

completed successfully. Now your DB cluster is running the new major version.

How to perform an in-place upgrade

Console

To upgrade the major version of an Aurora MySQL DB cluster

1. (Optional) Review the background material in How the Aurora MySQL in-place major version
upgrade works (p. 1117). Perform any pre-upgrade planning and testing, as described in Planning a
major version upgrade for an Aurora MySQL cluster (p. 1115).

2. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

3. If you used a custom parameter group with the original 1.x cluster, create a corresponding MySQL
5.7-compatible parameter group. Make any necessary adjustments to the configuration parameters
in that new parameter group. For more information, see How in-place upgrades affect the parameter
groups for a cluster (p. 1120).

4. In the navigation pane, choose Databases.
5. In the list, choose the DB cluster that you want to modify.
6. Choose Modify.
7. For Version, choose an Aurora MySQL 2.x version.
8. Choose Continue.
9. On the next page, specify when to perform the upgrade. Choose During the next scheduled

maintenance window or Immediately.
10. (Optional) Periodically examine the Events page in the RDS console during the upgrade. Doing so

helps you to monitor the progress of the upgrade and identify any issues. If the upgrade encounters
any issues, consult Troubleshooting for Aurora MySQL in-place upgrade (p. 1122) for the steps to
take.

11. If you created a new MySQL 5.7-compatible parameter group at the start of this procedure,
associate the custom parameter group with your upgraded cluster. For more information, see How
in-place upgrades affect the parameter groups for a cluster (p. 1120).

Note
Performing this step requires you to restart the cluster again to apply the new parameter
group.

12. (Optional) After you complete any post-upgrade testing, delete the manual snapshot that Aurora
created at the beginning of the upgrade.

AWS CLI

To upgrade the major version of an Aurora MySQL DB cluster, use the AWS CLI modify-db-cluster
command with the following required parameters:

• --db-cluster-identifier

• --engine aurora-mysql

• --engine-version

• --allow-major-version-upgrade

• --apply-immediately or --no-apply-immediately

If your cluster uses any custom parameter groups, also include one or both of the following options:

1119

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html

Amazon Aurora User Guide for Aurora
Upgrading Amazon Aurora MySQL DB clusters

• --db-cluster-parameter-group-name, if the cluster uses a custom cluster parameter group
• --db-instance-parameter-group-name, if any instances in the cluster use a custom DB

parameter group

The following example upgrades the sample-cluster DB cluster to Aurora MySQL version 2.09.0. The
upgrade happens immediately, instead of waiting for the next maintenance window.

Example

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier sample-cluster \
 --engine aurora-mysql \
 --engine-version 5.7.mysql_aurora.2.09.0 \
 --allow-major-version-upgrade \
 --apply-immediately

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier sample-cluster ^
 --engine aurora-mysql ^
 --engine-version 5.7.mysql_aurora.2.09.0 ^
 --allow-major-version-upgrade ^
 --apply-immediately

You can combine other CLI commands with modify-db-cluster to create an automated end-to-end
process for performing and verifying upgrades. For more information and examples, see Aurora MySQL
in-place upgrade tutorial (p. 1124).

Note
If your cluster is part of an Aurora global database, the in-place upgrade procedure is slightly
different. You call the modify-global-cluster command operation instead of modify-db-
cluster. For more information, see In-place major upgrades for global databases (p. 1122).

RDS API

To upgrade the major version of an Aurora MySQL DB cluster, use the RDS API ModifyDBCluster
operation with the following required parameters:

• DBClusterIdentifier

• Engine

• EngineVersion

• AllowMajorVersionUpgrade

• ApplyImmediately (set to true or false)

Note
If your cluster is part of an Aurora global database, the in-place upgrade procedure is slightly
different. You call the ModifyGlobalCluster operation instead of ModifyDBCluster. For more
information, see In-place major upgrades for global databases (p. 1122).

How in-place upgrades affect the parameter groups for a cluster

Aurora parameter groups have different sets of configuration settings for clusters that are compatible
with MySQL 5.6 or 5.7. When you perform an in-place upgrade, the upgraded cluster and all its instances

1120

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-global-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBClusterParameterGroup.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyGlobalClusterParameterGroup.html

Amazon Aurora User Guide for Aurora
Upgrading Amazon Aurora MySQL DB clusters

must use corresponding 5.7-compatible cluster and instance parameter groups. If your cluster and
instances use the default 5.6-compatible parameter groups, the upgraded cluster and instance start with
the default 5.7-compatible parameter groups. If your cluster and instances use any custom parameter
groups, you must create corresponding 5.7-compatible parameter groups and specify those during the
upgrade process.

If your original cluster uses a custom 5.6-compatible cluster parameter group, create a corresponding
5.7-compatible cluster parameter group. You associate that parameter group with the cluster as part of
the upgrade process.

Similarly, create any corresponding 5.7-compatible DB parameter group. You associate that parameter
group with all the DB instances in the cluster as part of the upgrade process.

Important
If you specify any custom parameter group during the upgrade process, you must manually
reboot the cluster after the upgrade finishes. Doing so makes the cluster begin using your
custom parameter settings.

Changes to cluster properties between Aurora MySQL version 1 and 2

For MySQL 5.6-compatible clusters, the value that you use for the engine parameter in AWS CLI
commands or RDS API operations is aurora. For MySQL 5.7-compatible or MySQL 8.0-compatible
clusters, the corresponding value is aurora-mysql. When you upgrade from Aurora MySQL version 1
to version 2 or version 3, make sure to change any applications or scripts you use to set up or manage
Aurora MySQL clusters and DB instances.

Also, change your code that manipulates parameter groups to account for the fact that the default
parameter group names are different for MySQL 5.6-, 5.7-, and 8.0-compatible clusters. The default
parameter group name for Aurora MySQL version 1 clusters is default.aurora5.6. The corresponding
parameter group names for Aurora MySQL version 2 and 3 clusters are default.aurora-mysql5.7
and default.aurora-mysql8.0.

For example, you might have code like the following that applies to your cluster before an upgrade.

Add a new DB instance to a MySQL 5.6-compatible cluster.
create-db-instance --db-instance-identifier instance-2020-04-28-6889 --db-cluster-
identifier cluster-2020-04-28-2690 \
 --db-instance-class db.t2.small --engine aurora --region us-east-1

Find the Aurora MySQL v1.x versions available for minor version upgrades and patching.
aws rds describe-orderable-db-instance-options --engine aurora --region us-east-1 \
 --query 'OrderableDBInstanceOptions[].{EngineVersion:EngineVersion}' --output text

Check the default parameter values for MySQL 5.6-compatible clusters.
aws rds describe-db-parameters --db-parameter-group-name default.aurora5.6 --region us-
east-1

After upgrading the major version of the cluster, modify that code as follows.

Add a new DB instance to a MySQL 5.7-compatible cluster.
create-db-instance --db-instance-identifier instance-2020-04-28-3333 --db-cluster-
identifier cluster-2020-04-28-2690 \
 --db-instance-class db.t2.small --engine aurora-mysql --region us-east-1

Find the Aurora MySQL v2.x versions available for minor version upgrades and patching.
aws rds describe-orderable-db-instance-options --engine aurora-mysql --region us-east-1 \
 --query 'OrderableDBInstanceOptions[].{EngineVersion:EngineVersion}' --output text

Check the default parameter values for MySQL 5.7-compatible clusters.
aws rds describe-db-parameters --db-parameter-group-name default.aurora-mysql5.7 --region
 us-east-1

1121

Amazon Aurora User Guide for Aurora
Upgrading Amazon Aurora MySQL DB clusters

In-place major upgrades for global databases

For an Aurora global database, you upgrade the global database cluster. Aurora automatically upgrades
all of the clusters at the same time and makes sure that they all run the same engine version. This
requirement is because any changes to system tables, data file formats, and so on, are automatically
replicated to all the secondary clusters.

Follow the instructions in How the Aurora MySQL in-place major version upgrade works (p. 1117). When
you specify what to upgrade, make sure to choose the global database cluster instead of one of the
clusters it contains.

If you use the AWS Management Console, choose the item with the role Global database.

If you use the AWS CLI or RDS API, start the upgrade process by calling the modify-global-cluster
command or ModifyGlobalCluster operation instead of modify-db-cluster or ModifyDBCluster.

After the upgrade

If the cluster you upgraded had the backtrack feature enabled, you can't backtrack the upgraded cluster
to a time that's before the upgrade.

Troubleshooting for Aurora MySQL in-place upgrade

Troubleshooting for Aurora MySQL in-place upgrade

Reason for in-place upgrade
being canceled or slow

Solution to
allow in-place
upgrade to
complete
within
maintenance
window

Cluster has XA transactions in
the prepared state

Aurora cancels
the upgrade.

Commit or roll back all prepared XA transactions.

Cluster is processing any data
definition language (DDL)
statements

Aurora cancels
the upgrade.

Consider waiting and performing the upgrade
after all DDL statements are finished.

1122

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-global-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyGlobalCluster.html

Amazon Aurora User Guide for Aurora
Upgrading Amazon Aurora MySQL DB clusters

Reason for in-place upgrade
being canceled or slow

Solution to
allow in-place
upgrade to
complete
within
maintenance
window

Cluster has uncommitted
changes for many rows

Upgrade might
take a long
time.

The upgrade process rolls back the uncommitted
changes. The indicator for this condition is
the value of TRX_ROWS_MODIFIED in the
INFORMATION_SCHEMA.INNODB_TRX table.
Consider performing the upgrade only after all
large transactions are committed or rolled back.

Cluster has high number of undo
records

Upgrade might
take a long
time.

Even if the uncommitted transactions don't
affect a large number of rows, they might
involve a large volume of data. For example, you
might be inserting large BLOBs. Aurora doesn't
automatically detect or generate an event for this
kind of transaction activity. The indicator for this
condition is the history list length. The upgrade
process rolls back the uncommitted changes.
Consider performing the upgrade only after the
history list length is smaller.

Cluster is in the process of
committing a large binary log
transaction

Upgrade might
take a long
time.

The upgrade process waits until the binary log
changes are applied. More transactions or DDL
statements could start during this period, further
slowing down the upgrade process. Schedule the
upgrade process when the cluster isn't busy with
generating binary log replication changes. Aurora
doesn't automatically detect or generate an event
for this condition.

You can use the following steps to perform your own checks for some of the conditions in the preceding
table. That way, you can schedule the upgrade at a time when you know the database is in a state where
the upgrade can complete successfully and quickly.

• You can check for open XA transactions by executing the XA RECOVER statement. You can then
commit or roll back the XA transactions before starting the upgrade.

• You can check for DDL statements by executing a SHOW PROCESSLIST statement and looking for
CREATE, DROP, ALTER, RENAME, and TRUNCATE statements in the output. Allow all DDL statements to
finish before starting the upgrade.

• You can check the total number of uncommitted rows by querying the
INFORMATION_SCHEMA.INNODB_TRX table. The table contains one row for each transaction. The
TRX_ROWS_MODIFIED column contains the number of rows modified or inserted by the transaction.

• You can check the length of the InnoDB history list by executing the SHOW ENGINE INNODB STATUS
SQL statement and looking for the History list length in the output. You can also check the
value directly by running the following query:

SELECT count FROM information_schema.innodb_metrics WHERE name = 'trx_rseg_history_len';

The length of the history list corresponds to the amount of undo information stored by the database
to implement multi-version concurrency control (MVCC).

1123

Amazon Aurora User Guide for Aurora
Upgrading Amazon Aurora MySQL DB clusters

Aurora MySQL in-place upgrade tutorial

The following Linux examples show how you might perform the general steps of the in-place upgrade
procedure using the AWS CLI.

This first example creates an Aurora DB cluster that's running a 1.x version of Aurora MySQL. The cluster
includes a writer DB instance and a reader DB instance. The wait db-instance-available command
pauses until the writer DB instance is available. That's the point when the cluster is ready to be upgraded.

$ aws rds create-db-cluster --db-cluster-identifier cluster-56-2020-11-17-3824 --engine
 aurora \
 --db-cluster-version 5.6.mysql_aurora.1.22.3
...
$ aws rds create-db-instance --db-instance-identifier instance-2020-11-17-7832 \
 --db-cluster-identifier cluster-56-2020-11-17-3824 --db-instance-class db.t2.medium --
engine aurora
...
$ aws rds wait db-instance-available --db-instance-identifier instance-2020-11-17-7832 --
region us-east-1

The Aurora MySQL 2.x versions that you can upgrade the cluster to depend on the 1.x version that the
cluster is currently running and on the AWS Region where the cluster is located. The first command, with
--output text, just shows the available target version. The second command shows the full JSON
output of the response. In that detailed response, you can see details such as the aurora-mysql value
you use for the engine parameter, and the fact that upgrading to 2.07.3 represents a major version
upgrade.

$ aws rds describe-db-clusters --db-cluster-identifier cluster-56-2020-11-17-9355 \
 --query '*[].{EngineVersion:EngineVersion}' --output text
5.6.mysql_aurora.1.22.3

$ aws rds describe-db-engine-versions --engine aurora --engine-version
 5.6.mysql_aurora.1.22.3 \
 --query '*[].[ValidUpgradeTarget]'
[
 [
 [
 {
 "Engine": "aurora-mysql",
 "EngineVersion": "5.7.mysql_aurora.2.07.3",
 "Description": "Aurora (MySQL 5.7) 2.07.3",
 "AutoUpgrade": false,
 "IsMajorVersionUpgrade": true
 }
]
]
]

This example shows how if you enter a target version number that isn't a valid upgrade target for the
cluster, Aurora won't perform the upgrade. Aurora also won't perform a major version upgrade unless
you include the --allow-major-version-upgrade parameter. That way, you can't accidentally
perform an upgrade that has the potential to require extensive testing and changes to your application
code.

$ aws rds modify-db-cluster --db-cluster-identifier cluster-56-2020-11-17-9355 \
 --engine-version 5.7.mysql_aurora.2.04.9 --region us-east-1 --apply-immediately
An error occurred (InvalidParameterCombination) when calling the ModifyDBCluster
 operation: Cannot find upgrade target from 5.6.mysql_aurora.1.22.3 with requested version
 5.7.mysql_aurora.2.04.9.

$ aws rds modify-db-cluster --db-cluster-identifier cluster-56-2020-11-17-9355 \

1124

Amazon Aurora User Guide for Aurora
Upgrading Amazon Aurora MySQL DB clusters

 --engine-version 5.7.mysql_aurora.2.09.0 --region us-east-1 --apply-immediately
An error occurred (InvalidParameterCombination) when calling the ModifyDBCluster operation:
 The AllowMajorVersionUpgrade flag must be present when upgrading to a new major version.

$ aws rds modify-db-cluster --db-cluster-identifier cluster-56-2020-11-17-9355 \
 --engine-version 5.7.mysql_aurora.2.09.0 --region us-east-1 --apply-immediately --allow-
major-version-upgrade
{
 "DBClusterIdentifier": "cluster-56-2020-11-17-9355",
 "Status": "available",
 "Engine": "aurora",
 "EngineVersion": "5.6.mysql_aurora.1.22.3"
}

It takes a few moments for the status of the cluster and associated DB instances to change to
upgrading. The version numbers for the cluster and DB instances only change when the upgrade is
finished. Again, you can use the wait db-instance-available command for the writer DB instance
to wait until the upgrade is finished before proceeding.

$ aws rds describe-db-clusters --db-cluster-identifier cluster-56-2020-11-17-9355 \
 --query '*[].[Status,EngineVersion]' --output text
upgrading 5.6.mysql_aurora.1.22.3

$ aws rds describe-db-instances --db-instance-identifier instance-2020-11-17-5158 \
 --query '*[].
{DBInstanceIdentifier:DBInstanceIdentifier,DBInstanceStatus:DBInstanceStatus} | [0]'
{
 "DBInstanceIdentifier": "instance-2020-11-17-5158",
 "DBInstanceStatus": "upgrading"
}

$ aws rds wait db-instance-available --db-instance-identifier instance-2020-11-17-5158

At this point, the version number for the cluster matches the one that was specified for the upgrade.

$ aws rds describe-db-clusters --region us-east-1 --db-cluster-identifier
 cluster-56-2020-11-17-9355 \
 --query '*[].[EngineVersion]' --output text
5.7.mysql_aurora.2.09.0

The preceding example did an immediate upgrade by specifying the --apply-immediately parameter.
To let the upgrade happen at a convenient time when the cluster isn't expected to be busy, you can
specify the --no-apply-immediately parameter. Doing so makes the upgrade start during the
next maintenance window for the cluster. The maintenance window defines the period during which
maintenance operations can start. A long-running operation might not finish during the maintenance
window. Thus, you don't need to define a larger maintenance window even if you expect that the
upgrade might take a long time.

The following example upgrades a cluster that's initially running Aurora MySQL version 1.22.2.
In the describe-db-engine-versions output, the False and True values represent the
IsMajorVersionUpgrade property. From version 1.22.2, you can upgrade to some other 1.* versions.
Those upgrades aren't considered major version upgrades and so don't require an in-place upgrade. In-
place upgrade is only available for upgrades to the 2.07 and 2.09 versions that are shown in the list.

$ aws rds describe-db-clusters --region us-east-1 --db-cluster-identifier
 cluster-56-2020-11-17-3824 \
 --query '*[].{EngineVersion:EngineVersion}' --output text
5.6.mysql_aurora.1.22.2
$ aws rds describe-db-engine-versions --engine aurora --engine-version
 5.6.mysql_aurora.1.22.2 \

1125

Amazon Aurora User Guide for Aurora
Upgrading Amazon Aurora MySQL DB clusters

 --query '*[].[ValidUpgradeTarget]|[0][0]|[*].[EngineVersion,IsMajorVersionUpgrade]' --
output text
5.6.mysql_aurora.1.22.3 False
5.6.mysql_aurora.1.23.0 False
5.6.mysql_aurora.1.23.1 False
5.7.mysql_aurora.2.07.1 True
5.7.mysql_aurora.2.07.1 True
5.7.mysql_aurora.2.07.2 True
5.7.mysql_aurora.2.07.3 True
5.7.mysql_aurora.2.09.1 True

$ aws rds modify-db-cluster --db-cluster-identifier cluster-56-2020-11-17-9355 \
 --engine-version 5.7.mysql_aurora.2.09.0 --region us-east-1 --no-apply-immediately --
allow-major-version-upgrade
...

When a cluster is created without a specified maintenance window, Aurora picks a random day of the
week. In this case, the modify-db-cluster command is submitted on a Monday. Thus, we change
the maintenance window to be Tuesday morning. All times are represented in the UTC time zone. The
tue:10:00-tue:10:30 window corresponds to 2-2:30 AM Pacific time. The change in the maintenance
window takes effect immediately.

$ aws rds describe-db-clusters --db-cluster-identifier cluster-56-2020-11-17-9355 --region
 us-east-1 --query '*[].[PreferredMaintenanceWindow]'
[
 [
 "sat:08:20-sat:08:50"
]
]

$ aws rds modify-db-cluster --db-cluster-identifier cluster-56-2020-11-17-3824 --preferred-
maintenance-window tue:10:00-tue:10:30"
$ aws rds describe-db-clusters --db-cluster-identifier cluster-56-2020-11-17-3824 --region
 us-east-1 --query '*[].[PreferredMaintenanceWindow]'
[
 [
 "tue:10:00-tue:10:30"
]
]

$ aws rds create-db-cluster --engine aurora --db-cluster-identifier
 cluster-56-2020-11-17-9355 \
 --region us-east-1 --master-username my_username --master-user-password my_password
{
 "DBClusterIdentifier": "cluster-56-2020-11-17-9355",
 "DBClusterArn": "arn:aws:rds:us-east-1:123456789012:cluster:cluster-56-2020-11-17-9355",
 "Engine": "aurora",
 "EngineVersion": "5.6.mysql_aurora.1.22.2",
 "Status": "creating",
 "Endpoint": "cluster-56-2020-11-17-9355.cluster-ccfbt21ixr91.us-east-1-
integ.rds.amazonaws.com",
 "ReaderEndpoint": "cluster-56-2020-11-17-9355.cluster-ro-ccfbt21ixr91.us-east-1-
integ.rds.amazonaws.com"
}

$ aws rds create-db-instance --db-instance-identifier instance-2020-11-17-5158 \
 --db-cluster-identifier cluster-56-2020-11-17-9355 --db-instance-class db.r5.large --
region us-east-1 --engine aurora
{
 "DBInstanceIdentifier": "instance-2020-11-17-5158",
 "DBClusterIdentifier": "cluster-56-2020-11-17-9355",
 "DBInstanceClass": "db.r5.large",
 "DBInstanceStatus": "creating"

1126

Amazon Aurora User Guide for Aurora
Upgrading Amazon Aurora MySQL DB clusters

}

$ aws rds wait db-instance-available --db-instance-identifier instance-2020-11-17-5158 --
region us-east-1

The following example shows how to get a report of the events generated by the upgrade. The --
duration argument represents the number of minutes to retrieve the event information. This argument
is needed because by default, describe-events only returns events from the last hour.

$ aws rds describe-events --source-type db-cluster --source-identifier
 cluster-56-2020-11-17-3824 --duration 20160
{
 "Events": [
 {
 "SourceIdentifier": "cluster-56-2020-11-17-3824",
 "SourceType": "db-cluster",
 "Message": "DB cluster created",
 "EventCategories": [
 "creation"
],
 "Date": "2020-11-17T01:24:11.093000+00:00",
 "SourceArn": "arn:aws:rds:us-
east-1:123456789012:cluster:cluster-56-2020-11-17-3824"
 },
 {
 "SourceIdentifier": "cluster-56-2020-11-17-3824",
 "SourceType": "db-cluster",
 "Message": "Upgrade in progress: Performing online pre-upgrade checks.",
 "EventCategories": [
 "maintenance"
],
 "Date": "2020-11-18T22:57:08.450000+00:00",
 "SourceArn": "arn:aws:rds:us-
east-1:123456789012:cluster:cluster-56-2020-11-17-3824"
 },
 {
 "SourceIdentifier": "cluster-56-2020-11-17-3824",
 "SourceType": "db-cluster",
 "Message": "Upgrade in progress: Performing offline pre-upgrade checks.",
 "EventCategories": [
 "maintenance"
],
 "Date": "2020-11-18T22:57:59.519000+00:00",
 "SourceArn": "arn:aws:rds:us-
east-1:123456789012:cluster:cluster-56-2020-11-17-3824"
 },
 {
 "SourceIdentifier": "cluster-56-2020-11-17-3824",
 "SourceType": "db-cluster",
 "Message": "Upgrade in progress: Creating pre-upgrade snapshot
 [preupgrade-cluster-56-2020-11-17-3824-5-6-mysql-aurora-1-22-2-to-5-7-mysql-
aurora-2-09-0-2020-11-18-22-55].",
 "EventCategories": [
 "maintenance"
],
 "Date": "2020-11-18T23:00:22.318000+00:00",
 "SourceArn": "arn:aws:rds:us-
east-1:123456789012:cluster:cluster-56-2020-11-17-3824"
 },
 {
 "SourceIdentifier": "cluster-56-2020-11-17-3824",
 "SourceType": "db-cluster",
 "Message": "Upgrade in progress: Cloning volume.",
 "EventCategories": [

1127

Amazon Aurora User Guide for Aurora
Upgrading Amazon Aurora MySQL DB clusters

 "maintenance"
],
 "Date": "2020-11-18T23:01:45.428000+00:00",
 "SourceArn": "arn:aws:rds:us-
east-1:123456789012:cluster:cluster-56-2020-11-17-3824"
 },
 {
 "SourceIdentifier": "cluster-56-2020-11-17-3824",
 "SourceType": "db-cluster",
 "Message": "Upgrade in progress: Purging undo records for old row versions.
 Records remaining: 164",
 "EventCategories": [
 "maintenance"
],
 "Date": "2020-11-18T23:02:25.141000+00:00",
 "SourceArn": "arn:aws:rds:us-
east-1:123456789012:cluster:cluster-56-2020-11-17-3824"
 },
 {
 "SourceIdentifier": "cluster-56-2020-11-17-3824",
 "SourceType": "db-cluster",
 "Message": "Upgrade in progress: Purging undo records for old row versions.
 Records remaining: 164",
 "EventCategories": [
 "maintenance"
],
 "Date": "2020-11-18T23:06:23.036000+00:00",
 "SourceArn": "arn:aws:rds:us-
east-1:123456789012:cluster:cluster-56-2020-11-17-3824"
 },
 {
 "SourceIdentifier": "cluster-56-2020-11-17-3824",
 "SourceType": "db-cluster",
 "Message": "Upgrade in progress: Upgrading database objects.",
 "EventCategories": [
 "maintenance"
],
 "Date": "2020-11-18T23:06:48.208000+00:00",
 "SourceArn": "arn:aws:rds:us-
east-1:123456789012:cluster:cluster-56-2020-11-17-3824"
 },
 {
 "SourceIdentifier": "cluster-56-2020-11-17-3824",
 "SourceType": "db-cluster",
 "Message": "Database cluster major version has been upgraded",
 "EventCategories": [
 "maintenance"
],
 "Date": "2020-11-18T23:10:28.999000+00:00",
 "SourceArn": "arn:aws:rds:us-
east-1:123456789012:cluster:cluster-56-2020-11-17-3824"
 }
]
}

Alternative blue-green upgrade technique

For situations where the top priority is to perform an immediate switchover from the old cluster to an
upgraded one, you can use a multistep process that runs the old and new clusters side-by-side. In this
case, you replicate data from the old cluster to the new one until you are ready for the new cluster to
take over. For details, see this blog post: Performing major version upgrades for Amazon Aurora MySQL
with minimum downtime.

1128

http://aws.amazon.com/blogs/database/performing-major-version-upgrades-for-amazon-aurora-mysql-with-minimum-downtime/
http://aws.amazon.com/blogs/database/performing-major-version-upgrades-for-amazon-aurora-mysql-with-minimum-downtime/

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 3

Database engine updates for Amazon Aurora MySQL
version 3
The following are database engine updates for Amazon Aurora MySQL version 3.

Topics
• Aurora MySQL database engine updates 2021-11-18 (version 3.01.0, compatible with MySQL

8.0.23) (p. 1129)

Aurora MySQL database engine updates 2021-11-18 (version
3.01.0, compatible with MySQL 8.0.23)
Version: 3.01.0

Aurora MySQL 3.01.0 is generally available. Aurora MySQL 3.01 versions are compatible with MySQL
8.0.23, Aurora MySQL 2.x versions are compatible with MySQL 5.7, and Aurora MySQL 1.x versions are
compatible with MySQL 5.6.

For details of new features in Aurora MySQL version 3 and differences between Aurora MySQL version 3
and Aurora MySQL version 2 or community MySQL 8.0, see Comparison of Aurora MySQL version 2 and
Aurora MySQL version 3 (p. 770) and Comparison of Aurora MySQL version 3 and community MySQL
8.0 (p. 777).

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 1.20.*, 1.21.*,
1.22.*, 1.23.*, 2.01.*, 2.02.*, 2.03.*, 2.04.*, 2.05.*, 2.06.*, 2.07.*, 2.08.*, 2.09.*, 2.10.*, and 3.01.*.

You can restore a snapshot from any currently supported Aurora MySQL version 2 cluster into Aurora
MySQL 3.01.0.

For information on planning an upgrade to Aurora MySQL version 3, see Upgrade planning for Aurora
MySQL version 3 (p. 781). For the upgrade procedure itself, see Upgrading to Aurora MySQL version
3 (p. 781). For general information about Aurora MySQL upgrades, see Upgrading Amazon Aurora
MySQL DB clusters (p. 1109).

To create a cluster with an older version of Aurora MySQL, specify the engine version through the AWS
Management Console, the AWS CLI, or the Amazon RDS API.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

Aurora MySQL version 3.01.0 is generally compatible with community MySQL 8.0.23. This version
includes the security fixes for Common Vulnerabilities and Exposures (CVE) issues as of community
MySQL 8.0.23.

Aurora MySQL version 3.01.0 contains all the Aurora-specific bug fixes through Aurora MySQL version
2.10.0.

For details of new features in Aurora MySQL version 3, see Features from community MySQL
8.0 (p. 769) and New parallel query optimizations (p. 770).

Database engine updates for Amazon Aurora MySQL
version 2
The following are Amazon Aurora version 2 database engine updates:

1129

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Aurora MySQL database engine updates 2022-01-26 (version 2.10.2) (p. 1131)

• Aurora MySQL database engine updates 2021-10-21 (version 2.10.1) (p. 1134)

• Aurora MySQL database engine updates 2021-05-25 (version 2.10.0) (p. 1136)

• Aurora MySQL database engine updates 2021-11-12 (version 2.09.3) (p. 1140)

• Aurora MySQL database engine updates 2021-02-26 (version 2.09.2) (p. 1143)

• Aurora MySQL database engine updates 2020-12-11 (version 2.09.1) (p. 1145)

• Aurora MySQL database engine updates 2020-09-17 (version 2.09.0) (p. 1148)

• Aurora MySQL database engine updates 2022-01-06 (version 2.08.4) (p. 1152)

• Aurora MySQL database engine updates 2020-11-12 (version 2.08.3) (p. 1154)

• Aurora MySQL database engine updates 2020-08-28 (version 2.08.2) (p. 1156)

• Aurora MySQL database engine updates 2020-06-18 (version 2.08.1) (p. 1157)

• Aurora MySQL database engine updates 2020-06-02 (version 2.08.0) (p. 1158)

• Aurora MySQL database engine updates 2021-11-24 (version 2.07.7) (p. 1161)

• Aurora MySQL database engine updates 2021-09-02 (version 2.07.6) (p. 1163)

• Aurora MySQL database engine updates 2021-07-06 (version 2.07.5) (p. 1164)

• Aurora MySQL database engine updates 2021-03-04 (version 2.07.4) (p. 1166)

• Aurora MySQL database engine updates 2020-11-10 (version 2.07.3) (p. 1168)

• Aurora MySQL database engine updates 2020-04-17 (version 2.07.2) (p. 1170)

• Aurora MySQL database engine updates 2019-12-23 (version 2.07.1) (p. 1172)

• Aurora MySQL database engine updates 2019-11-25 (version 2.07.0) (p. 1174)

• Aurora MySQL database engine updates 2019-11-22 (version 2.06.0) (deprecated) (p. 1176)

• Aurora MySQL database engine updates 2019-11-11 (version 2.05.0) (deprecated) (p. 1179)

• Aurora MySQL database engine updates 2020-08-14 (version 2.04.9) (p. 1180)

• Aurora MySQL database engine updates 2019-11-20 (version 2.04.8) (p. 1184)

• Aurora MySQL database engine updates 2019-11-14 (version 2.04.7) (p. 1185)

• Aurora MySQL database engine updates 2019-09-19 (version 2.04.6) (p. 1187)

• Aurora MySQL database engine updates 2019-07-08 (version 2.04.5) (p. 1189)

• Aurora MySQL database engine updates 2019-05-29 (version 2.04.4) (p. 1190)

• Aurora MySQL database engine updates 2019-05-09 (version 2.04.3) (p. 1191)

• Aurora MySQL database engine updates 2019-05-02 (version 2.04.2) (p. 1193)

• Aurora MySQL database engine updates 2019-03-25 (version 2.04.1) (p. 1194)

• Aurora MySQL database engine updates 2019-03-25 (version 2.04.0) (p. 1196)

• Aurora MySQL database engine updates 2019-02-07 (version 2.03.4) (deprecated) (p. 1197)

• Aurora MySQL database engine updates 2019-01-18 (version 2.03.3) (deprecated) (p. 1198)

• Aurora MySQL database engine updates 2019-01-09 (version 2.03.2) (deprecated) (p. 1200)

• Aurora MySQL database engine updates 2018-10-24 (version 2.03.1) (deprecated) (p. 1202)

• Aurora MySQL database engine updates 2018-10-11 (version 2.03) (deprecated) (p. 1203)

• Aurora MySQL database engine updates 2018-10-08 (version 2.02.5) (deprecated) (p. 1205)

• Aurora MySQL database engine updates 2018-09-21 (version 2.02.4) (deprecated) (p. 1206)

• Aurora MySQL database engine updates 2018-08-23 (version 2.02.3) (deprecated) (p. 1208)

• Aurora MySQL database engine updates 2018-06-04 (version 2.02.2) (deprecated) (p. 1210)

• Aurora MySQL database engine updates 2018-05-03 (version 2.02) (deprecated) (p. 1212)

• Aurora MySQL database engine updates 2018-03-13 (version 2.01.1) (deprecated) (p. 1214)

• Aurora MySQL database engine updates 2018-02-06 (version 2.01) (deprecated) (p. 1215)

1130

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

Aurora MySQL database engine updates 2022-01-26 (version
2.10.2)
Version: 2.10.2

Aurora MySQL 2.10.2 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7,
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

Security fixes:

• CVE-2021-35624
• CVE-2021-35604
• CVE-2021-2390
• CVE-2021-2389
• CVE-2021-2385
• CVE-2021-2356
• CVE-2019-17543
• CVE-2019-2960

General improvements:

• Added a performance optimization to help reduce database IO latency in 24XL instance classes.
• Added support for ECDHE SSL ciphers. For more information on configuring your clients to use these

SSL Ciphers please see the following MySQL documentation, encrypted connection protocols ciphers
• Fixed security issues related to Aurora MySQL integration with other AWS Services such as Amazon S3,

Amazon ML, and AWS Lambda.
• Fixed an issue which can cause a database instance restart to fail when the database has approximately

over 1GB of user and privilege combinations.
• Fixed an issue with Parallel Query which could cause the database to return incorrect groupings or

sort order when executing queries with a GROUP BY clause and a WHERE clause that contain a range
predicate.

• Fixed an issue which causes general_log and slow_log tables to become inaccessible after an in-place
major version upgrade from Aurora MySQL 1.x (compatible with MySQL 5.6) to Aurora MySQL 2.x
(compatible with MySQL 5.7).

• Fixed an issue which, in rare cases, causes the database instance to restart when innodb_trx,
innodb_locks or innodb_lockwaits tables are queried while the database is under heavy workload.
Monitoring tools such as Performance Insights may query such tables.

• Fixed an issue where the value of a TIMESTAMP column of an existing row is updated to the latest
timestamp when all of the following conditions are satisfied:
1. A trigger exists for the table.
2. An INSERT is performed on the table that has an ON DUPLICATE KEY UPDATE clause.
3. The inserted row causes a duplicate value violation in a UNIQUE index or PRIMARY KEY.
4. One or more columns are of TIMESTAMP data type and have a default value of

CURRENT_TIMESTAMP.
• Fixed an issue which, in rare cases, could prevent a binlog replica from connecting to an instance with

binlog enabled.

1131

http://aws.amazon.com/support
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-35624
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-35604
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2390
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2389
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2385
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2356
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17543
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2960
https://dev.mysql.com/doc/refman/5.7/en/encrypted-connection-protocols-ciphers.html#encrypted-connection-cipher-configuration

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Fixed an issue where, in rare conditions, transactions were unable to commit when running on an
instance with binlog enabled.

• Fixed an issue where new connections could not be established to an instance with binlog enabled.

• Fixed an issue which can cause excessive internal logging when attempting zero downtime patching
and restart causing local storage to fill up.

• Fixed an issue that causes a binlog replica to stop with an HA_ERR_FOUND_DUPP_KEY error when
replicating certain DDL and DCL statements. The issue occurs when the source instance is configured
with MIXED binary logging format and READ COMMITTED or READ UNCOMMITTED isolation level.

• Fixed an issue where the binlog replication I/O thread is unable to keep up with the primary instance,
when multi-threaded replication is enabled

• Fixed an issue where, in rare conditions, a high number of active connections to the database instance
may cause the CloudWatch CommitLatency metric to be incorrectly reported.

• Fixed an issue which causes local storage on Graviton instances to fill up when performing LOAD FROM
S3 or SELECT INTO S3.

• Fixed an issue which can cause wrong query results when querying a table with a foreign key and both
of the following conditions are met:

1. Query cache is enabled

2. A transaction with a cascading delete or update on that table is rolled back

• Fixed an issue which, in rare conditions, can cause Aurora reader instances to restart. The chance of this
issue occurring increases as the number of transaction rollbacks increases.

• Fixed an issue where the number of mutex 'LOCK_epoch_id_master' occurrences in Performance
Schema increases when a session is opened and closed.

• Fixed an issue which can cause an increasing number of deadlocks for workloads which have many
transactions updating the same set of rows concurrently.

• Fixed an issue which, in rare conditions, can cause the instances to restart when the database volume
grows to a multiple of 160GB.

• Fixed an issue with Parallel Query which could cause the database to restart when executing SQL
statements with a LIMIT clause.

• Fixed an issue which, in rare conditions, can cause the database instance to restart when using XA
transactions with the READ COMMITTED isolation level.

• Fixed an issue where, after an Aurora Read instance restarts, it may restart again if there is a heavy
DDL workload during the restart.

• Fixed an issue with incorrect reporting of Aurora reader replication lag.

• Fixed an issue which, in rare conditions, can cause a writer instance to restart when an in-memory
data-integrity check fails.

• Fixed an issue which, in rare conditions, incorrectly shows the “Database Load” chart in Performance
Insights (PI) sessions as actively using CPU even though the sessions have finished processing and are
idle.

• Fixed an issue which, in rare conditions, can cause the database server to restart when a query is
processed using Parallel Query.

• Fixed an issue which, in rare conditions, can cause the writer instance in a primary Global Database
cluster to restart because of a race condition during Global Database replication.

• Fixed an issue that can occur during a database instance restart, which can cause more than one
restart.

Integration of MySQL Community Edition bug fixes

• Fixed an issue in InnoDB where an error in code related to table statistics raised an assertion in the
dict0stats.cc source file. (Bug #24585978)

1132

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Fixed an issue where a secondary index over a virtual column became corrupted when the index was
built online. For UPDATE statements, we fix this as follows: If the virtual column value of the index
record is set to NULL, then we generate this value from the cluster index record. (Bug #30556595))

• Fixed an issue in InnoDB where deleting marked rows were able to acquire an external read lock before
a partial rollback was completed. The external read lock prevented conversion of an implicit lock to an
explicit lock during the partial rollback, causing an assertion failure. (Bug #29195848)

• Fixed an issue where the empty host names in accounts could cause the server to misbehave. (Bug
#28653104)

• Fixed an issue in InnoDB where a query interruption during a lock wait caused an error. (Bug
#28068293)

• Fixed an issue in replication where Interleaved transactions could sometimes deadlock the slave applier
when the transaction isolation level was set to REPEATABLE READ. (Bug #25040331)

• Fixed an issue which can cause binlog replicas to stall due to lock wait timeout. (Bug #27189701)

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

This Aurora MySQL version is wire-compatible with MySQL 5.7 and includes features such as JSON
support, spatial indexes, and generated columns. Aurora MySQL uses a native implementation of
spatial indexing using z-order curves to deliver >20x better write performance and >10x better read
performance than MySQL 5.7 for spatial datasets.

This Aurora MySQL version does not currently support the following MySQL 5.7 features:

• Group replication plugin

• Increased page size

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin

• Query rewrite plugins

• Replication filtering

• The CREATE TABLESPACE SQL statement

1133

https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html#isolevel_repeatable-read

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

Aurora MySQL database engine updates 2021-10-21 (version
2.10.1)
Version: 2.10.1

Aurora MySQL 2.10.1 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7,
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 1.20.*, 1.21.*,
1.22.*, 1.23.*, 2.01.*, 2.02.*, 2.03.*, 2.04.*, 2.05.*, 2.06.*, 2.07.*, 2.08.*, 2.09.*, and 2.10.*.

You can upgrade an existing Aurora MySQL 2.* database cluster to Aurora MySQL 2.10.1. For clusters
running Aurora MySQL version 1, you can upgrade an existing Aurora MySQL 1.23 or higher cluster
directly to 2.10.1. You can also restore a snapshot from any currently supported Aurora MySQL release
into Aurora MySQL 2.10.1.

To create a cluster with an older version of Aurora MySQL, specify the engine version through the AWS
Management Console, the AWS CLI, or the Amazon RDS API.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
For information on how to upgrade your Aurora MySQL database cluster, see Upgrading the
minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

Security fixes:

• CVE-2021-2194
• CVE-2021-2174
• CVE-2021-2154
• CVE-2021-2307
• CVE-2021-2226
• CVE-2021-2171
• CVE-2021-2169
• CVE-2021-2166
• CVE-2021-2160
• CVE-2021-2060
• CVE-2021-2032
• CVE-2021-2001

Availability improvements:

• Added the ability to cleanly shut down the cluster for future major version upgrades.

General improvements:

• Fixed an issue that can cause high CPU consumption on the reader instances due to excessive logging
of informational messages in internal diagnostic log files.

• Fixed an issue where the value of a TIMESTAMP column of an existing row is updated to the latest
timestamp when all of the following conditions are satisfied:

1134

http://aws.amazon.com/support
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2194
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2174
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2154
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2307
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2226
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2171
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2169
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2166
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2060
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2032
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2001

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

1. A trigger exists for the table.

2. An INSERT is performed on the table that has an ON DUPLICATE KEY UPDATE clause.

3. The inserted row causes a duplicate value violation in a UNIQUE index or PRIMARY KEY.

4. One or more columns are of TIMESTAMP data type and have a default value of
CURRENT_TIMESTAMP.

• Fixed an issue introduced in version 2.10.0 which causes use of json_merge function to raise an error
code in certain cases. In particular, when json_merge function is used in a DDL containing generated
columns, it can return error code 1305.

• Fixed an issue where, in rare conditions, read replicas restarts when a large object's update history is
being validated for a transaction's read view on the read replica.

• Fixed an issue which, in rare conditions, causes a writer instance to restart when an in-memory data-
integrity check fails.

Integration of MySQL community edition bug fixes

• CURRENT_TIMESTAMP PRODUCES ZEROS IN TRIGGER. (Bug #25209512)

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

This Aurora MySQL version is wire-compatible with MySQL 5.7 and includes features such as JSON
support, spatial indexes, and generated columns. Aurora MySQL uses a native implementation of
spatial indexing using z-order curves to deliver >20x better write performance and >10x better read
performance than MySQL 5.7 for spatial datasets.

This Aurora MySQL version does not currently support the following MySQL 5.7 features:

• Group replication plugin

• Increased page size

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin

1135

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Query rewrite plugins

• Replication filtering

• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2021-05-25 (version
2.10.0)
Version: 2.10.0

Aurora MySQL 2.10.0 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7,
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 1.20.*, 1.21.*,
1.22.*, 1.23.*, 2.01.*, 2.02.*, 2.03.*, 2.04.*, 2.05.*, 2.06.*, 2.07.*, 2.08.*, 2.09.*, and 2.10.*.

You can upgrade an existing Aurora MySQL 2.* database cluster to Aurora MySQL 2.10.0. For clusters
running Aurora MySQL version 1, you can upgrade an existing Aurora MySQL 1.23 or higher cluster
directly to 2.10.0. You can also restore a snapshot from any currently supported Aurora MySQL release
into Aurora MySQL 2.10.0.

To create a cluster with an older version of Aurora MySQL, specify the engine version through the AWS
Management Console, the AWS CLI, or the Amazon RDS API.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
For information on how to upgrade your Aurora MySQL database cluster, see Upgrading the
minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

Security fixes:

• CVE-2021-23841

• CVE-2021-3449

• CVE-2020-28196

• CVE-2020-14790

• CVE-2020-14776

• CVE-2020-14567

• CVE-2020-14559

• CVE-2020-14553

• CVE-2020-14547

• CVE-2020-14540

• CVE-2020-14539

• CVE-2018-3251

• CVE-2018-3156

• CVE-2018-3143

New features:

1136

http://aws.amazon.com/support
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-23841
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3449
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-28196
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14790
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14776
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14567
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14559
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14553
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14547
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14540
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14539
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3251
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3156
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3143

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• The db.t3.large instance class is now supported for Aurora MySQL.
• Binary log replication:

• Introduced the binlog I/O cache to improve binlog performance by reducing contention
between writer threads and dump threads. For more information, see Optimizing binary log
replication (p. 969).

• In Aurora MySQL version 2.08, we introduced improved binary log (binlog) processing to reduce
crash recovery time and commit time latency when very large transactions are involved. These
improvements are now supported for clusters that have GTID enabled.

• Improved reader instance availability:
• Previously, when a writer instance restarted, all reader instances in an Aurora MySQL cluster

restarted as well. With today's launch, in-Region reader instances continue to serve read requests
during a writer instance restart, improving read availability in the cluster. For more information, see
Rebooting an Aurora MySQL cluster (version 2.10 and higher) (p. 452).

Important
After you upgrade to Aurora MySQL 2.10, rebooting the writer instance doesn't perform
a reboot of the entire cluster. If you want to reboot the entire cluster, now you reboot any
reader instances in the cluster after rebooting the writer instance.

• Improved the performance of the read ahead page reads requested by logical read ahead (LRA)
technique. This was done by batching the multiple page reads in a single request sent to Aurora
storage. As a result, the queries that use the LRA optimization execute up to 3x faster.

• Zero-downtime restarts and patching:
• Improved zero-downtime restart (ZDR) and zero-downtime patching (ZDP) to enable ZDR and ZDP

in a wider range of scenarios, including the added support for cases when binary logging is enabled.
Also, improved visibility into ZDR and ZDP events. See documentation for details: Zero-downtime
restart (ZDR) for Amazon Aurora MySQL (p. 941) and Using zero-downtime patching (p. 1112).

Availability improvements:

• Improvements for faster startup when the database has a large number of temporary indexes and
tables created during a prior interrupted DDL activity.

• Fixed multiple issues related to repeated restarts during the crash recovery of interrupted DDL
operations, such as DROP TRIGGER, ALTER TABLE, and specifically ALTER TABLE that modifies the
type of partitioning or number of partitions in a table.

• Fixed an issue that could cause a server restart during Database Activity Streams (DAS) log processing.
• Fixed an issue printing an error message while processing an ALTER query on system tables.

General improvements:

• Fixed an issue where the query cache could return stale results on a reader instance.
• Fixed an issue where some Aurora commit metrics were not being updated when the system variable
innodb_flush_log_at_trx_commit was set to 0 or 2.

• Fixed an issue where a query result stored in the query cache was not refreshed by multistatement
transactions.

• Fixed an issue that could cause the last-modified timestamp of binary log files to not be updated
correctly. This could lead to binary log files being purged prematurely, before reaching the customer-
configured retention period.

• Fixed incorrect reported binlog filename and position from InnoDB after crash recovery.
• Fixed an issue that could cause large transactions to generate incorrect binlog events if the
binlog_checksum parameter was set to NONE.

• Fixed an issue that caused a binlog replica to stop with an error if the replicated transaction contained
a DDL statement and a large number of row changes.

1137

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Fixed an issue leading to a restart in a reader instance when dropping a table.
• Fixed an issue that caused open source connectors to fail when attempting to consume a binlog file

with a large transaction.
• Fixed an issue that could lead to incorrect query results on the large geometry column after creating a

spatial index on the table with the large geometry values.
• The database now recreates the temporary tablespace during restart, which allows the associated

storage space to be freed and reclaimed.
• Fixed an issue that prevented performance_schema tables from being truncated on Aurora reader

instances.
• Fixed an issue that caused a binlog replica to stop with an HA_ERR_KEY_NOT_FOUND error.
• Fixed an issue that caused the database to restart when running FLUSH TABLES WITH READ LOCK

statement.
• Fixed an issue that prevented the use of user-level lock functions on Aurora reader instances.

Integration of MySQL community edition bug fixes

• Interleaved transactions could sometimes deadlock the replica applier when the transaction isolation
level was set to REPEATABLE READ. (Bug #25040331)

• When a stored procedure contained a statement referring to a view which in turn referred to another
view, the procedure could not be invoked successfully more than once. (Bug #87858, Bug #26864199)

• For queries with many OR conditions, the optimizer now is more memory-efficient and less likely to
exceed the memory limit imposed by the range_optimizer_max_mem_size system variable. In addition,
the default value for that variable has been raised from 1,536,000 to 8,388,608. (Bug #79450, Bug
#22283790)

• Replication: In the next_event() function, which is called by a replica's SQL thread to read the next
event from the relay log, the SQL thread did not release the relaylog.log_lock it acquired when it
ran into an error (for example, due to a closed relay log), causing all other threads waiting to acquire
a lock on the relay log to hang. With this fix, the lock is released before the SQL thread leaves the
function under the situation. (Bug #21697821)

• Fixing a memory corruption for ALTER TABLE with virtual column. (Bug #24961167; Bug #24960450)
• Replication: Multithreaded replicas could not be configured with small queue sizes using

slave_pending_jobs_size_max if they ever needed to process transactions larger than that
size. Any packet larger than slave_pending_jobs_size_max was rejected with the error
ER_MTS_EVENT_BIGGER_PENDING_JOBS_SIZE_MAX, even if the packet was smaller than the limit
set by slave_max_allowed_packet. With this fix, slave_pending_jobs_size_max becomes a soft limit
rather than a hard limit. If the size of a packet exceeds slave_pending_jobs_size_max but is less
than slave_max_allowed_packet, the transaction is held until all the replica workers have empty
queues, and then processed. All subsequent transactions are held until the large transaction has been
completed. The queue size for replica workers can therefore be limited while still allowing occasional
larger transactions. (Bug #21280753, Bug #77406)

• Replication: When using a multithreaded replica, applier errors displayed worker ID data that was
inconsistent with data externalized in Performance Schema replication tables. (Bug #25231367)

• Replication: On a GTID-based replication replica running with -gtid-mode=ON, -log-bin=OFF, and using
-slave-skip-errors, when an error was encountered that should be ignored Exec_Master_Log_Pos
was not being correctly updated, causing Exec_Master_Log_Pos to loose synchrony with
Read_master_log_pos. If a GTID_NEXT was not specified, the replica would never update its GTID
state when rolling back from a single statement transaction. The Exec_Master_Log_Pos would not
be updated because even though the transaction was finished, its GTID state would show otherwise.
The fix removes the restraint of updating the GTID state when a transaction is rolled back only if
GTID_NEXT is specified. (Bug #22268777)

• Replication: A partially failed statement was not correctly consuming an auto-generated or specified
GTID when binary logging was disabled. The fix ensures that a partially failed DROP TABLE, a partially

1138

https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html#isolevel_repeatable-read
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_range_optimizer_max_mem_size
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_slave_pending_jobs_size_max
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_slave_pending_jobs_size_max
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_slave_max_allowed_packet
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_slave_pending_jobs_size_max
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_slave_pending_jobs_size_max
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_slave_max_allowed_packet
https://dev.mysql.com/doc/refman/5.7/en/replication-options-gtids.html#sysvar_gtid_mode
https://dev.mysql.com/doc/refman/5.7/en/replication-options-binary-log.html#sysvar_log_bin
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_slave_skip_errors
https://dev.mysql.com/doc/refman/5.7/en/drop-table.html

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

failed DROP USER, or a partially failed DROP VIEW consume respectively the relevant GTID and save it
into @@GLOBAL.GTID_EXECUTED and mysql.gtid_executed table when binary logging is disabled.
(Bug #21686749)

• Replication: Replicas running MySQL 5.7 could not connect to a MySQL 5.5 source due to an error
retrieving the server_uuid, which is not part of MySQL 5.5. This was caused by changes in the method
of retrieving the server_uuid. (Bug #22748612)

• Replication: The GTID transaction skipping mechanism that silently skips a GTID transaction that was
previously executed did not work properly for XA transactions. (Bug #25041920)

• ">XA ROLLBACK statements that failed because an incorrect transaction ID was given, could be
recorded in the binary log with the correct transaction ID, and could therefore be actioned by
replication replicas. A check is now made for the error situation before binary logging takes place, and
failed XA ROLLBACK statements are not logged. (Bug #26618925)

• Replication: If a replica was set up using a CHANGE MASTER TO statement that did not specify the
source log file name and source log position, then shut down before START SLAVE was issued, then
restarted with the option -relay-log-recovery set, replication did not start. This happened because
the receiver thread had not been started before relay log recovery was attempted, so no log rotation
event was available in the relay log to provide the source log file name and source log position. In
this situation, the replica now skips relay log recovery and logs a warning, then proceeds to start
replication. (Bug #28996606, Bug #93397)

• Replication: In row-based replication, a message that incorrectly displayed field lengths was returned
when replicating from a table with a utf8mb3 column to a table of the same definition where the
column was defined with a utf8mb4 character set. (Bug #25135304, Bug #83918)

• Replication: When a RESET SLAVE statement was issued on a replication replica with GTIDs in use, the
existing relay log files were purged, but the replacement new relay log file was generated before the
set of received GTIDs for the channel had been cleared. The former GTID set was therefore written to
the new relay log file as the PREVIOUS_GTIDS event, causing a fatal error in replication stating that
the replica had more GTIDs than the source, even though the gtid_executed set for both servers was
empty. Now, when RESET SLAVE is issued, the set of received GTIDs is cleared before the new relay
log file is generated, so that this situation does not occur. (Bug #27411175)

• Replication: With GTIDs in use for replication, transactions including statements that caused a parsing
error (ER_PARSE_ERROR) could not be skipped manually by the recommended method of injecting
an empty or replacement transaction with the same GTID. This action should result in the replica
identifying the GTID as already used, and therefore skipping the unwanted transaction that shared its
GTID. However, in the case of a parsing error, because the statement was parsed before the GTID was
checked to see if it needed to be skipped, the replication applier thread stopped due to the parsing
error, even though the intention was for the transaction to be skipped anyway. With this fix, the
replication applier thread now ignores parsing errors if the transaction concerned needs to be skipped
because the GTID was already used. Note that this behavior change does not apply in the case of
workloads consisting of binary log output produced by mysqlbinlog. In that situation, there would
be a risk that a transaction with a parsing error that immediately follows a skipped transaction would
also be silently skipped, when it ought to raise an error. (Bug #27638268)

• Replication: Enable the SQL thread to GTID skip a partial transaction. (Bug #25800025)
• Replication: When a negative or fractional timeout parameter was supplied to
WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS(), the server behaved in unexpected ways. With this fix:
• A fractional timeout value is read as-is, with no round-off.
• A negative timeout value is rejected with an error if the server is on a strict SQL mode; if the server

is not on a strict SQL mode, the value makes the function return NULL immediately without any
waiting and then issue a warning. (Bug #24976304, Bug #83537)

• Replication: If the WAIT_FOR_EXECUTED_GTID_SET() function was used with a timeout value
including a fractional part (for example, 1.5), an error in the casting logic meant that the timeout was
rounded down to the nearest whole second, and to zero for values less than 1 second (for example,
0.1). The casting logic has now been corrected so that the timeout value is applied as originally
specified with no rounding. Thanks to Dirkjan Bussink for the contribution. (Bug #29324564, Bug
#94247)

1139

https://dev.mysql.com/doc/refman/5.7/en/drop-user.html
http://simonlightstone.contently.com/
https://dev.mysql.com/doc/refman/5.7/en/replication-options.html#sysvar_server_uuid
https://dev.mysql.com/doc/refman/5.7/en/xa.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_relay_log_recovery
https://dev.mysql.com/doc/refman/5.7/en/reset-slave.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_parse_error

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• With GTIDs enabled, XA COMMIT on a disconnected XA transaction within a multiple-statement
transaction raised an assertion. (Bug #22173903)

• Replication: An assertion was raised in debug builds if an XA ROLLBACK statement was issued for
an unknown transaction identifier when the gtid_next value had been set manually. The server now
does not attempt to update the GTID state if an XA ROLLBACK statement fails with an error. (Bug
#27928837, Bug #90640)

• Fix wrong sorting order issue when multiple CASE functions are used in ORDER BY clause
(Bug#22810883).

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

This Aurora MySQL version is wire-compatible with MySQL 5.7 and includes features such as JSON
support, spatial indexes, and generated columns. Aurora MySQL uses a native implementation of
spatial indexing using z-order curves to deliver >20x better write performance and >10x better read
performance than MySQL 5.7 for spatial datasets.

This Aurora MySQL version does not currently support the following MySQL 5.7 features:

• Group replication plugin
• Increased page size
• InnoDB buffer pool loading at startup
• InnoDB full-text parser plugin
• Multisource replication
• Online buffer pool resizing
• Password validation plugin
• Query rewrite plugins
• Replication filtering
• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2021-11-12 (version
2.09.3)
Version: 2.09.3

1140

https://dev.mysql.com/doc/refman/5.7/en/xa.html
https://dev.mysql.com/doc/refman/5.7/en/xa.html
https://dev.mysql.com/doc/refman/5.7/en/replication-options-gtids.html#sysvar_gtid_next

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

Aurora MySQL 2.09.3 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7,
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

To create a cluster with an older version of Aurora MySQL, specify the engine version through the AWS
Management Console, the AWS CLI, or the Amazon RDS API.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
For information on how to upgrade your Aurora MySQL database cluster, see Upgrading the
minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

Security fixes:

Fixes and other enhancements to fine-tune handling in a managed environment. Additional CVE fixes
below:

• CVE-2021-23841

• CVE-2021-3712

• CVE-2021-3449

• CVE-2021-2307

• CVE-2021-2226

• CVE-2021-2174

• CVE-2021-2171

• CVE-2021-2169

• CVE-2021-2166

• CVE-2021-2154

• CVE-2021-2060

• CVE-2021-2032

• CVE-2021-2001

• CVE-2020-28196

• CVE-2020-14769

• CVE-2019-17543

• CVE-2019-2960

Availability improvements:

• Introduced an optimization which can reduce contention for queries that are executed on tables in
information_schema.

• Add support for ECDHE SSL ciphers.

General improvements:

• Fixed an issue which, in rare conditions, can cause a writer instance to restart when an in-memory
data-integrity check fails.

• Fixed an issue which, in rare conditions, can cause the database instance to restart when the cluster
volume is expanding while binary logging is enabled.

• Fixed a rare race condition during a database instance restart, which can cause more than one restart.

1141

http://aws.amazon.com/support
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-23841
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3712
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3449
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2307
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2226
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2174
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2171
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2169
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2166
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2154
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2060
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2032
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2001
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-28196
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14769
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17543
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-CVE-2019-2960

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Fixed an issue which can cause a database instance restart to fail when the database has a large
number of user and privilege combinations.

• Fixed an issue with parallel query which can cause the database to restart when executing SQL
statements with LIMIT clause.

• Fixed an issue with incorrect reporting of aurora replication lag.

• Fixed an issue which can cause general_log and slow_log tables to become inaccessible after in-place
major version upgrade from Aurora-MySQL 1.x (based on MySQL 5.6) to Aurora-MySQL 2.x (based on
MySQL 5.7).

• Fixed an issue which, in rare cases, can cause the database instance to restart when innodb_trx,
innodb_locks or innodb_lockwaits tables are queried while the database is under heavy workload.
Monitoring tools and features such as performance insights may query such tables.

• Fixed an issue which can cause a database instance to restart when "FLUSH TABLES WITH READ LOCK"
SQL statement is executed.

• Fixed an issue where the InnoDB purge process pauses during the deletion of a reader instance leading
to a temporary increase in history list length.

• Fixed an issue with parallel query which can cause the database to restart when executing a SQL
statement against a table containing a virtual column.

• Fixed an issue with parallel query which can cause the database to return incorrect groupings or
sort order when executing queries with GROUP BY clause and a WHERE clause containing a range
predicate.

• Fixed an issue in parallel query which, in rare conditions, can cause the database to restart when
executing SQL statements with JSON functions.

• Fixed an issue which, in rare conditions, can cause the writer instance in primary Global Database
cluster to restart because of a race condition during Global Database Replication.

• Fixed an issue that can cause a Binlog replica to stop with an HA_ERR_FOUND_DUPP_KEY error when
replicating certain DDL and DCL statements. The issue occurs when the source instance is configured
with MIXED binary logging format and READ COMMITTED or READ UNCOMMITTED isolation level.

• Fixed an issue which, in rare conditions, can cause the database instance to restart when using XA
transactions in READ COMMITTED isolation level.

• Fixed an issue where the value of a TIMESTAMP column of an existing row is updated to the latest
timestamp when all of the following conditions are satisfied: 1. a trigger exists for the table; 2. an
INSERT is performed on the table that has an ON DUPLICATE KEY UPDATE clause; 3. the inserted row
can cause a duplicate value violation in a UNIQUE index or PRIMARY KEY; and 4. one or more columns
are of TIMESTAMP data type and have a default value of CURRENT_TIMESTAMP.

• Fixed an issue which, in rare conditions, can cause a reader instance to restart due to an incorrect check
processing.

• Fixed an issue which can cause the reader instance to restart when the writer instance grows the
database volume to cross specific volume size boundaries.

• Fixed an issue which can cause longer restart times for database instances using cloned cluster
volumes.

• Fixed an issue where a database instance restart may fail one or more times after a TRUNCATE TABLE
operation was performed on the writer instance.

• Fixed an issue which, in rare conditions, can cause the database instance to restart.

• Fixed an issue which, in rare conditions, can cause the writer instance to restart when the database
volume grows to a multiple of 160GB.

Integration of MySQL community edition bug fixes

• Bug #23533396 - When adding a new index, the server dropped an internally defined foreign key
index and attempted to use a secondary index defined on a virtual generated column as the foreign

1142

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

key index, causing a server exit. InnoDB now permits a foreign key constraint to reference a secondary
index defined on a virtual generated column.

• Bug #29550513 - Replication: A locking issue in the WAIT_FOR_EXECUTED_GTID_SET() function can
cause the server to hang in certain circumstances. The issue has now been corrected.

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

This Aurora MySQL version is wire-compatible with MySQL 5.7 and includes features such as JSON
support, spatial indexes, and generated columns. Aurora MySQL uses a native implementation of
spatial indexing using z-order curves to deliver >20x better write performance and >10x better read
performance than MySQL 5.7 for spatial datasets.

This Aurora MySQL version does not currently support the following MySQL 5.7 features:

• Group replication plugin

• Increased page size

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin

• Query rewrite plugins

• Replication filtering

• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2021-02-26 (version
2.09.2)
Version: 2.09.2

Aurora MySQL 2.09.2 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

1143

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 1.20.*, 1.21.*,
1.22.*, 1.23.*, 2.01.*, 2.02.*, 2.03.*, 2.04.*, 2.05.*, 2.06.*, 2.07.*, 2.08.*, and 2.09.*.

You can upgrade an existing Aurora MySQL 2.* database cluster to Aurora MySQL 2.09.2. For clusters
running Aurora MySQL version 1, you can upgrade an existing Aurora MySQL 1.23 or higher cluster
directly to 2.09.2. You can also restore a snapshot from any currently supported Aurora MySQL release
into Aurora MySQL 2.09.2.

To create a cluster with an older version of Aurora MySQL, specify the engine version through the AWS
Management Console, the AWS CLI, or the Amazon RDS API.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
For information on how to upgrade your Aurora MySQL database cluster, see Upgrading the
minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

New features:

• Aurora MySQL clusters now support the following EC2 R6g instances powered by Arm-based AWS
Graviton2 processors: r6g.large, r6g.xlarge, r6g.2xlarge, r6g.4xlarge, r6g.8xlarge,
r6g.12xlarge, r6g.16xlarge. For more information, see Aurora DB instance classes (p. 54).

Security fixes:

Fixes and other enhancements to fine-tune handling in a managed environment. Additional CVE fixes
below:

• CVE-2020-14775

• CVE-2020-14793

• CVE-2020-14765

• CVE-2020-14769

• CVE-2020-14812

• CVE-2020-14760

• CVE-2020-14672

• CVE-2020-14790

• CVE-2020-1971

Availability improvements:

• Fixed an issue introduced in 2.09.0 that can cause elevated write latency during the scaling of the
cluster storage volume.

• Fixed an issue in the dynamic resizing feature that could cause Aurora Read Replicas to restart.

• Fixed an issue that could cause longer downtime during upgrade from 1.23.* to 2.09.*.

• Fixed an issue where a DDL or DML could cause engine restart during a page prefetch request.

• Fixed an issue that caused a binlog replica to stop with an error if the replicated transaction contains a
DDL statement and a large number of row changes.

• Fixed an issue where a database acting as a binlog replica could restart while replicating a DDL event
on the mysql time_zone table.

1144

http://aws.amazon.com/support
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14775
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14793
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14765
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14769
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14812
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14760
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14672
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14790
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-1971

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Fixed an issue that could cause large transactions to generate incorrect binlog events if the
binlog_checksum parameter was set to NONE.

• Fixed an issue that caused a binlog replica to stop with an HA_ERR_KEY_NOT_FOUND error.

• Improved overall stability.

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

This Aurora MySQL version is wire-compatible with MySQL 5.7 and includes features such as JSON
support, spatial indexes, and generated columns. Aurora MySQL uses a native implementation of
spatial indexing using z-order curves to deliver >20x better write performance and >10x better read
performance than MySQL 5.7 for spatial datasets.

This Aurora MySQL version does not currently support the following MySQL 5.7 features:

• Group replication plugin

• Increased page size

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin

• Query rewrite plugins

• Replication filtering

• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2020-12-11 (version
2.09.1)
Version: 2.09.1

Aurora MySQL 2.09.1 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

1145

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 1.20.*, 1.21.*,
1.22.*, 1.23.*, 2.01.*, 2.02.*, 2.03.*, 2.04.*, 2.05.*, 2.06.*, 2.07.*, 2.08.*, and 2.09.*.

You can upgrade an existing Aurora MySQL 2.* database cluster to Aurora MySQL 2.09.1. For clusters
running Aurora MySQL version 1, you can upgrade an existing Aurora MySQL 1.23 or higher cluster
directly to 2.09.1. You can also restore a snapshot from any currently supported Aurora MySQL release
into Aurora MySQL 2.09.1.

To create a cluster with an older version of Aurora MySQL, specify the engine version through the AWS
Management Console, the AWS CLI, or the RDS API.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
For information on how to upgrade your Aurora MySQL database cluster, see Upgrading the
minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

Security fixes:

Fixes and other enhancements to fine-tune handling in a managed environment. Additional CVE fixes
below:

• CVE-2020-14567

• CVE-2020-14559

• CVE-2020-14553

• CVE-2020-14547

• CVE-2020-14540

• CVE-2020-2812

• CVE-2020-2806

• CVE-2020-2780

• CVE-2020-2765

• CVE-2020-2763

• CVE-2020-2760

• CVE-2020-2579

Incompatible changes:

This version introduces a permission change that affects the behavior of the mysqldump command.
Users must have the PROCESS privilege to access the INFORMATION_SCHEMA.FILES table. To run the
mysqldump command without any changes, grant the PROCESS privilege to the database user that
the mysqldump command connects to. You can also run the mysqldump command with the --no-
tablespaces option. With that option, the mysqldump output doesn't include any CREATE LOGFILE
GROUP or CREATE TABLESPACE statements. In that case, the mysqldump command doesn't access the
INFORMATION_SCHEMA.FILES table, and you don't need to grant the PROCESS permission.

Availability improvements:

• Fixed an issue that might cause a client session to hang when the database engine encounters an error
while reading from or writing to the network.

• Fixed a memory leak in dynamic resizing feature, introduced in 2.09.0.

1146

http://aws.amazon.com/support
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14567
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14559
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14553
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14547
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14540
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2812
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2806
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2780
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2765
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2763
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2760
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2579

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

Global databases:

• Fixed multiple issues where a global database secondary Region's replicas might restart when
upgraded to release 2.09.0 while the primary Region writer was on an older release version.

Integration of MySQL community edition bug fixes

• Replication: Interleaved transactions could sometimes deadlock the slave applier when the transaction
isolation level was set to REPEATABLE READ. (Bug #25040331)

• For a table having a TIMESTAMP or DATETIME column having a default of CURRENT_TIMESTAMP, the
column could be initialized to 0000-00-00 00:00:00 if the table had a BEFORE INSERT trigger.
(Bug #25209512, Bug #84077)

• For an INSERT statement for which the VALUES list produced values for the second or later row using
a subquery containing a join, the server could exit after failing to resolve the required privileges. (Bug
#23762382)

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

This Aurora MySQL version is wire-compatible with MySQL 5.7 and includes features such as JSON
support, spatial indexes, and generated columns. Aurora MySQL uses a native implementation of
spatial indexing using z-order curves to deliver >20x better write performance and >10x better read
performance than MySQL 5.7 for spatial datasets.

This Aurora MySQL version does not currently support the following MySQL 5.7 features:

• Group replication plugin

• Increased page size

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin

• Query rewrite plugins

• Replication filtering

1147

https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html#isolevel_repeatable-read
https://dev.mysql.com/doc/refman/5.7/en/datetime.html
https://dev.mysql.com/doc/refman/5.7/en/datetime.html
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_current-timestamp
https://dev.mysql.com/doc/refman/5.7/en/insert.html

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2020-09-17 (version
2.09.0)
Version: 2.09.0

Aurora MySQL 2.09.0 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 1.20.*, 1.21.*,
1.22.*, 1.23.*, 2.01.*, 2.02.*, 2.03.*, 2.04.*, 2.05.*, 2.06.*, 2.07.*, 2.08.*, and 2.09.*.

You can restore a snapshot from Aurora MySQL 1.23.* into Aurora MySQL 2.09.0. You also have the
option to upgrade existing Aurora MySQL 2.* database clusters to Aurora MySQL 2.09.0. You can't
upgrade an existing Aurora MySQL 1.23.* cluster directly to 2.09.0; however, you can restore its snapshot
to Aurora MySQL 2.09.0.

Important
The improvements to Aurora storage in this version limit the available upgrade paths from
Aurora MySQL 1.* to Aurora MySQL 2.09. When you upgrade an Aurora MySQL 1.* cluster to
2.09, you must upgrade from Aurora MySQL 1.23.

To create a cluster with an older version of Aurora MySQL, specify the engine version through the AWS
Management Console, the AWS CLI, or the RDS API.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
For information on how to upgrade your Aurora MySQL database cluster, see Upgrading the
minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

New features:

• With this release, you can create Amazon Aurora MySQL database instances with up to 128 tebibytes
(TiB) of storage. The new storage limit is an increase from the prior 64 TiB. The 128 TiB storage size
supports larger databases. This capability is not supported on small instances sizes (db.t2 or db.t3). A
single tablespace cannot grow beyond 64 TiB due to InnoDB limitations with 16 KB page size.

Aurora alerts you when the cluster volume size is near 128 TiB, so that you can take action prior to
hitting the size limit. The alerts appear in the mysql log and RDS Events in the AWS Management
Console.

• You can now turn parallel query on or off for an existing cluster by changing the value of the DB
cluster parameter aurora_parallel_query. You don't need to use the parallelquery setting for
the --engine-mode parameter when creating the cluster.

Parallel query is now expanded to be available in all regions where Aurora MySQL is available.

There are a number of other functionality enhancements and changes to the procedures for upgrading
and enabling parallel query in an Aurora cluster. For more information, see Working with parallel
query for Amazon Aurora MySQL (p. 902).

• Aurora dynamically resizes your cluster storage space. With dynamic resizing, the storage space for
your Aurora DB cluster automatically decreases when you remove data from the DB cluster. For more
information, see Storage scaling (p. 396).

1148

http://aws.amazon.com/support
https://dev.mysql.com/doc/refman/5.7/en/innodb-limits.html

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

Note
The dynamic resizing feature is being deployed in phases to the AWS Regions where Aurora is
available. Depending on the Region where your cluster is, this feature might not be available
yet. For more information, see the What's New announcement.

High priority fixes:

• Backport of Community Bug #27659490: SELECT USING DYNAMIC RANGE AND INDEX MERGE USE
TOO MUCH MEMORY (OOM)

• Bug #26881508: MYSQL #1: DISABLE_ABORT_ON_ERROR IN AUTH_COMMON.H

• Backport of Community Bug #24437124: POSSIBLE BUFFER OVERFLOW ON CREATE TABLE

• Backport of Bug #27158030: INNODB ONLINE ALTER CRASHES WITH CONCURRENT DML

• Bug #29770705: SERVER CRASHED WHILE EXECUTING SELECT WITH SPECIFIC WHERE CLAUSE

• Backport of BUG #26502135: MYSQLD SEGFAULTS IN MDL_CONTEXT::TRY_ACQUIRE_LOCK_IMPL

• Backport of Bug #26935001: ALTER TABLE AUTO_INCREMENT TRIES TO READ INDEX FROM
DISCARDED TABLESPACE

• Bug #28491099: [FATAL] MEMORY BLOCK IS INVALID | INNODB: ASSERTION FAILURE: UT0UT.CC:670

• Bug #30499288: GCC 9.2.1 REPORTS A NEW WARNING FOR OS_FILE_GET_PARENT_DIR

• Bug #29952565 where MYSQLD GOT SIGNAL 11 WHILE EXECUTING A QUERY(UNION + ORDER BY +
SUB-QUERY)

• Bug #30628268: OUT OF MEMORY CRASH

• Bug #30441969: BUG #29723340: MYSQL SERVER CRASH AFTER SQL QUERY WITH DATA ?AST

• Bug #30569003: 5.7 REPLICATION BREAKAGE WITH SYNTAX ERROR WITH GRANT MANAGEMENT

• Bug #29915479: RUNNING COM_REGISTER_SLAVE WITHOUT COM_BINLOG_DUMP CAN RESULTS IN
SERVER EXIT

• Bug #30569003: 5.7 REPLICATION BREAKAGE WITH SYNTAX ERROR WITH GRANT MANAGEMENT

• Bug #29915479: RUNNING COM_REGISTER_SLAVE WITHOUT COM_BINLOG_DUMP CAN RESULTS IN
SERVER EXIT

• Bug #20712046: SHOW PROCESSLIST AND PERFORMANCE_SCHEMA TABLES DO NOT MASK
PASSWORD FROM QUERY

• Backport bug #18898433: EXTREMELY SLOW PERFORMANCE WITH OUTER JOINS AND JOIN BUFFER
(fixed in 5.7.21). Queries with many left joins were slow if join buffering was used (for example, using
the block nested loop algorithm). (Bug #18898433, Bug #72854)"

• Backport bug #26402045: MYSQLD CRASHES ON QUERY (fixed in MySQL 5.7.23). Certain cases of
subquery materialization could cause a server exit. These queries now produce an error suggesting that
materialization be disabled. (Bug #26402045)

• [Backport from MySQL] users other than rdsadmin is disallowed to update pfs table in the reader
replica.

• Fix the issue where the customer can not update the perfschema in the reader replica

• Bug #26666274: INFINITE LOOP IN PERFORMANCE SCHEMA BUFFER CONTAINER

• Bug #26997096: relay_log_space value is not updated in a synchronized manner so that its value
sometimes much higher than the actual disk space used by relay logs.

• BUG #25082593: FOREIGN KEY VALIDATION DOESN'T NEED TO ACQUIRE GAP LOCK IN READ
COMMITTED

• CVE-2019-2731

• CVE-2018-2645

• CVE-2019-2581

1149

http://aws.amazon.com/about-aws/whats-new/2020/10/amazon-aurora-enables-dynamic-resizing-database-storage-space/
https://github.com/mysql/mysql-server/commit/78f25d2809ad457e81f90342239c9bc32a36cdfa
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2731
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2645
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2581

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• CVE-2018-2787

• CVE-2019-2482

• CVE-2018-2640

• CVE-2018-2784

• CVE-2019-2628

• CVE-2019-2911

• CVE-2019-2628

• CVE-2018-3284

• CVE-2018-3065

• CVE-2019-2537

• CVE-2019-2948

• CVE-2019-2434

• CVE-2019-2420

Availability improvements:

• Enable lock manager ABA fix by default.

• Fixed an issue in the lock manager where a race condition can cause a lock to be shared by two
transactions, causing the database to restart.

• Fixed an issue when creating a temporary table with compressed row format might result in a restart.

• Fix default value of table_open_cache on 16XL and 24XL instances which could cause repeated
failovers and high CPU utilization on large instances classes (R4/R5-16XL, R5-12XL, R5-24XL). This
impacted 2.07.x.

• Fixed an issue where restoring a cluster from Amazon S3 to Aurora MySQL version 2.08.0 takes longer
than expected when the S3 backup didn't include the mysql.host table.

• Fixed an issue which might cause repeated failovers due to updates of virtual columns with secondary
indexes.

• Fixed an issue related to transaction lock memory management with long-running write transactions
resulting in a database restart.

• Fixed multiple issues where the engine might crash during zero-downtime patching while checking for
safe point for patching.

• Fixed an issue to skip redo logging for temporary tables, which was previously causing a crash.

• Fixed a race condition in the lock manager between killing connection/query and the session killed.

• Fixed an issue where the database could crash if it is a binlog replica and receives a DDL event over the
MySQL time_zone table.

Global databases:

• MySQL INFORMATION_SCHEMA.REPLICA_HOST_STATUS view in a secondary Region now shows the
entries for the replicas belonging to that Region.

• Fixed unexpected query failures that could occur in a Global DB secondary Region after temporary
network connectivity issues between the primary and secondary Regions.

•

Parallel query:

• Fixed the EXPLAIN plan for a Parallel Query query, which is incorrect for a simple single-table query.

1150

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2787
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2482
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2640
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2784
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2628
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2911
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2628
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3284
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3065
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2537
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2948
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2434
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2420

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Fixed self-deadlatch that may occur when Parallel Query is enabled.

General improvements:

• Export to S3 now supports the ENCRYPTION keyword.

• The aurora_binlog_replication_max_yield_seconds parameter now has a max value
of 36,000. The previous maximum accepted value was 45. This parameter works only when the
parameter aurora_binlog_use_large_read_buffer is set to 1.

• Changed the behavior to map MIXED binlog_format to ROW instead of STATEMENT when executing
LOAD DATA FROM INFILE | S3.

• Fixed an issue where a binlog replica connected to an Aurora MySQL binlog primary might show
incomplete data when the primary executed LOAD DATA FROM S3 and binlog_format is set to
STATEMENT.

• Increased maximum allowable length for audit system variables server_audit_incl_users and
server_audit_excl_users from 1024 bytes to 2000 bytes.

• Fixed an issue where users may lose access to the database when lowering the max_connections
parameter in the parameter group when the current connections is greater than the value being set.

• Fixed an issue in Data Activity Streams where a single quote and backslash were not escaped properly.

Integration of MySQL community edition bug fixes

• Bug #27659490: SELECT USING DYNAMIC RANGE AND INDEX MERGE USE TOO MUCH MEMORY(OOM)

• Bug #26881508: MYSQL #1: DISABLE_ABORT_ON_ERROR IN AUTH_COMMON.H

• Bug #24437124: POSSIBLE BUFFER OVERFLOW ON CREATE TABLE

• Bug #27158030: INNODB ONLINE ALTER CRASHES WITH CONCURRENT DML

• Bug #29770705: SERVER CRASHED WHILE EXECUTING SELECT WITH SPECIFIC WHERE CLAUSE

• Bug #26502135: MYSQLD SEGFAULTS IN MDL_CONTEXT::TRY_ACQUIRE_LOCK_IMPL

• Bug #26935001: ALTER TABLE AUTO_INCREMENT TRIES TO READ INDEX FROM DISCARDED
TABLESPACE

• Bug #28491099: [FATAL] MEMORY BLOCK IS INVALID | INNODB: ASSERTION FAILURE: UT0UT.CC:670

• Bug #30499288: GCC 9.2.1 REPORTS A NEW WARNING FOR OS_FILE_GET_PARENT_DIR

• Bug #29952565: where MYSQLD GOT SIGNAL 11 WHILE EXECUTING A QUERY(UNION + ORDER BY +
SUB-QUERY)

• Bug #30628268: OUT OF MEMORY CRASH

• Bug #30441969: BUG #29723340: MYSQL SERVER CRASH AFTER SQL QUERY WITH DATA ?AST

• Bug #30569003: 5.7 REPLICATION BREAKAGE WITH SYNTAX ERROR WITH GRANT MANAGEMENT

• Bug #29915479: RUNNING COM_REGISTER_SLAVE WITHOUT COM_BINLOG_DUMP CAN RESULTS IN
SERVER EXIT

• Bug #30569003: 5.7 REPLICATION BREAKAGE WITH SYNTAX ERROR WITH GRANT MANAGEMENT

• Bug #29915479: RUNNING COM_REGISTER_SLAVE WITHOUT COM_BINLOG_DUMP CAN RESULTS IN
SERVER EXIT

• Bug #20712046: SHOW PROCESSLIST AND PERFORMANCE_SCHEMA TABLES DO NOT MASK
PASSWORD FROM QUERY

• Bug #18898433: EXTREMELY SLOW PERFORMANCE WITH OUTER JOINS AND JOIN BUFFER (fixed in
5.7.21)

• Bug #26402045: MYSQLD CRASHES ON QUERY (fixed in MySQL 5.7.23)

• Bug #23103937: PS_TRUNCATE_ALL_TABLES() DOES NOT WORK IN SUPER_READ_ONLY MODE

• Bug #26666274: INFINITE LOOP IN PERFORMANCE SCHEMA BUFFER CONTAINER

1151

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Bug #26997096: relay_log_space value is not updated in a synchronized manner so that its value
sometimes much higher than the actual disk space used by relay logs. (https://github.com/mysql/
mysql-server/commit/78f25d2809ad457e81f90342239c9bc32a36cdfa)

• Bug #25082593: FOREIGN KEY VALIDATION DOESN'T NEED TO ACQUIRE GAP LOCK IN READ
COMMITTED

• Bug #24764800: REPLICATION FAILING ON SLAVE WITH XAER_RMFAIL ERROR.

• Bug #81441: WARNING ABOUT LOCALHOST WHEN USING SKIP-NAME-RESOLVE.

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

This Aurora MySQL version is wire-compatible with MySQL 5.7 and includes features such as JSON
support, spatial indexes, and generated columns. Aurora MySQL uses a native implementation of
spatial indexing using z-order curves to deliver >20x better write performance and >10x better read
performance than MySQL 5.7 for spatial datasets.

This Aurora MySQL version does not currently support the following MySQL 5.7 features:

• Group replication plugin

• Increased page size

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin

• Query rewrite plugins

• Replication filtering

• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2022-01-06 (version
2.08.4)
Version: 2.08.4

1152

https://github.com/mysql/mysql-server/commit/78f25d2809ad457e81f90342239c9bc32a36cdfa
https://github.com/mysql/mysql-server/commit/78f25d2809ad457e81f90342239c9bc32a36cdfa

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

Aurora MySQL 2.08.4 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
For information on how to upgrade your Aurora MySQL database cluster, see Upgrading the
minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

Security fixes and general improvements:

• Fixed security issues related to Aurora MySQL integration with other AWS Services such as Amazon S3,
Amazon ML, and AWS Lambda.

• Fixed an issue where the value of a TIMESTAMP column of an existing row is updated to the latest
timestamp when all of the following conditions are satisfied: 1. a trigger exists for the table; 2. an
INSERT is performed on the table that has an ON DUPLICATE KEY UPDATE clause; 3. the inserted row
can cause a duplicate value violation in a UNIQUE index or PRIMARY KEY; and 4. one or more columns
are of TIMESTAMP data type and have a default value of CURRENT_TIMESTAMP.

• Fixed an issue which, in rare conditions, causes a writer instance to restart when an in-memory data-
integrity check fails.

• Fixed an issue with parallel query which could cause the database to restart when executing SQL
statements with a LIMIT clause.

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

This Aurora MySQL version is wire-compatible with MySQL 5.7 and includes features such as JSON
support, spatial indexes, and generated columns. Aurora MySQL uses a native implementation of
spatial indexing using z-order curves to deliver >20x better write performance and >10x better read
performance than MySQL 5.7 for spatial datasets.

This Aurora MySQL version does not currently support the following MySQL 5.7 features:

• Group replication plugin

• Increased page size

1153

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• InnoDB buffer pool loading at startup
• InnoDB full-text parser plugin
• Multisource replication
• Online buffer pool resizing
• Password validation plugin
• Query rewrite plugins
• Replication filtering
• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2020-11-12 (version
2.08.3)
Version: 2.08.3

Aurora MySQL 2.08.3 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

Currently supported Aurora MySQL releases for upgrade to 2.08.3 are: 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*,
1.19.*, 1.20.*, 1.21.*, 1.22.*, 2.01.*, 2.02.*, 2.03.*, 2.04.*, 2.05.*, 2.06.*, 2.07.*, and 2.08.*.

You can upgrade existing Aurora MySQL 2.* database clusters directly to Aurora MySQL 2.08.3. You can
upgrade an existing Aurora MySQL 1.* cluster directly to 2.07.3 or higher and then directly upgrade to
2.08.3.

To create a cluster with an older version of Aurora MySQL, specify the engine version through the AWS
Management Console, the AWS CLI, or the RDS API.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
For information on how to upgrade your Aurora MySQL database cluster, see Upgrading the
minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

Security fixes:

Fixes and other enhancements to fine-tune handling in a managed environment. Additional CVE fixes
below:

• CVE-2020-14567
• CVE-2020-14559
• CVE-2020-14553
• CVE-2020-14547
• CVE-2020-14540
• CVE-2020-2812
• CVE-2020-2806
• CVE-2020-2780
• CVE-2020-2765
• CVE-2020-2763
• CVE-2020-2760

1154

http://aws.amazon.com/support
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14567
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14559
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14553
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14547
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14540
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2812
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2806
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2780
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2765
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2763
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2760

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• CVE-2020-2579

Incompatible changes:

This version introduces a permission change that affects the behavior of the mysqldump command.
Users must have the PROCESS privilege to access the INFORMATION_SCHEMA.FILES table. To run the
mysqldump command without any changes, grant the PROCESS privilege to the database user that
the mysqldump command connects to. You can also run the mysqldump command with the --no-
tablespaces option. With that option, the mysqldump output doesn't include any CREATE LOGFILE
GROUP or CREATE TABLESPACE statements. In that case, the mysqldump command doesn't access the
INFORMATION_SCHEMA.FILES table, and you don't need to grant the PROCESS permission.

Integration of MySQL community edition bug fixes

• Bug #23762382 - INSERT VALUES QUERY WITH JOIN IN A SELECT CAUSES INCORRECT BEHAVIOR.
• Bug #25209512 - CURRENT_TIMESTAMP PRODUCES ZEROS IN TRIGGER.

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

This Aurora MySQL version is wire-compatible with MySQL 5.7 and includes features such as JSON
support, spatial indexes, and generated columns. Aurora MySQL uses a native implementation of
spatial indexing using z-order curves to deliver >20x better write performance and >10x better read
performance than MySQL 5.7 for spatial datasets.

This Aurora MySQL version does not currently support the following MySQL 5.7 features:

• Group replication plugin
• Increased page size
• InnoDB buffer pool loading at startup
• InnoDB full-text parser plugin
• Multisource replication
• Online buffer pool resizing
• Password validation plugin
• Query rewrite plugins
• Replication filtering

1155

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2579

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2020-08-28 (version
2.08.2)
Version: 2.08.2

Aurora MySQL 2.08.2 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 1.20.*, 1.21.*,
1.22.*, 2.01.*, 2.02.*, 2.03.*, 2.04.*, 2.05.*, 2.06.*, 2.07.*, and 2.08.*.

You can restore a snapshot from a currently supported Aurora MySQL release into Aurora MySQL 2.08.2.
You also have the option to upgrade existing Aurora MySQL 2.* database clusters to Aurora MySQL
2.08.2. You can't upgrade an existing Aurora MySQL 1.* cluster directly to 2.08.2; however, you can
restore its snapshot to Aurora MySQL 2.08.2. See Restoring from a DB cluster snapshot (p. 497) for more
information about restoring snapshots.

To create a cluster with an older version of Aurora MySQL, specify the engine version through the AWS
Management Console, the AWS CLI, or the RDS API.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
For information on how to upgrade your Aurora MySQL database cluster, see Upgrading the
minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

Critical fixes:

• Fixed an issue that might cause an unplanned outage and affect database availability.

Availability fixes:

• Fixed an issue where the Aurora MySQL database could restart if it is a binlog replica and replicates a
DDL event over the mysql time_zone table.

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

1156

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

MySQL 5.7 compatibility

This Aurora MySQL version is wire-compatible with MySQL 5.7 and includes features such as JSON
support, spatial indexes, and generated columns. Aurora MySQL uses a native implementation of
spatial indexing using z-order curves to deliver >20x better write performance and >10x better read
performance than MySQL 5.7 for spatial datasets.

This Aurora MySQL version does not currently support the following MySQL 5.7 features:

• Group replication plugin
• Increased page size
• InnoDB buffer pool loading at startup
• InnoDB full-text parser plugin
• Multisource replication
• Online buffer pool resizing
• Password validation plugin
• Query rewrite plugins
• Replication filtering
• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2020-06-18 (version
2.08.1)
Version: 2.08.1

Aurora MySQL 2.08.1 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 1.20.*, 1.21.*,
1.22.*, 2.01.*, 2.02.*, 2.03.*, 2.04.*, 2.05.*, 2.06.*, 2.07.*, and 2.08.*.

You can restore a snapshot from a currently supported Aurora MySQL release into Aurora MySQL 2.08.1.
You also have the option to upgrade existing Aurora MySQL 2.* database clusters to Aurora MySQL
2.08.1. You can't upgrade an existing Aurora MySQL 1.* cluster directly to 2.08.1; however, you can
restore its snapshot to Aurora MySQL 2.08.1.

To create a cluster with an older version of Aurora MySQL, specify the engine version through the AWS
Management Console, the AWS CLI, or the RDS API.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
For information on how to upgrade your Aurora MySQL database cluster, see Upgrading the
minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

New features:

• Global database write forwarding. In an Aurora global database, now you can perform certain write
operations, such as DML statements, while connected to a secondary cluster. The write operations are
forwarded to the primary cluster, and any changes are replicated back to the secondary clusters. For
more information, see Using write forwarding in an Amazon Aurora global database (p. 255).

1157

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

General stability fixes:

• Fixed an issue where restoring a cluster from Amazon S3 to Aurora MySQL version 2.08.0 took longer
than expected if the S3 backup didn't include the mysql.host table.

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

This Aurora MySQL version is wire-compatible with MySQL 5.7 and includes features such as JSON
support, spatial indexes, and generated columns. Aurora MySQL uses a native implementation of
spatial indexing using z-order curves to deliver >20x better write performance and >10x better read
performance than MySQL 5.7 for spatial datasets.

This Aurora MySQL version does not currently support the following MySQL 5.7 features:

• Group replication plugin
• Increased page size
• InnoDB buffer pool loading at startup
• InnoDB full-text parser plugin
• Multisource replication
• Online buffer pool resizing
• Password validation plugin
• Query rewrite plugins
• Replication filtering
• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2020-06-02 (version
2.08.0)
Version: 2.08.0

Aurora MySQL 2.08.0 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 1.20.*, 1.21.*,
1.22.*, 2.01.*, 2.02.*, 2.03.*, 2.04.*, 2.05.*, 2.06.*, 2.07.*, and 2.08.*.

1158

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

You can restore a snapshot from a currently supported Aurora MySQL release into Aurora MySQL 2.08.0.
You also have the option to upgrade existing Aurora MySQL 2.* database clusters to Aurora MySQL
2.08.0. You can't upgrade an existing Aurora MySQL 1.* cluster directly to 2.08.0; however, you can
restore its snapshot to Aurora MySQL 2.08.0.

To create a cluster with an older version of Aurora MySQL, specify the engine version through the AWS
Management Console, the AWS CLI, or the RDS API.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
For information on how to upgrade your Aurora MySQL database cluster, see Upgrading the
minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

New features:

• Improved binary log (binlog) processing to reduce crash recovery time and commit time latency when
very large transactions are involved.

• Launching Database Activity Streams (DAS) feature for Aurora MySQL. This feature provides a near-
real-time data stream of the database activity in your relational database to help you monitor activity.
For more information, see Monitoring Amazon Aurora with Database Activity Streams (p. 735).

• Updated timezone files to support the latest Brazil timezone change.
• Introduced new keywords in SQL to exercise the hash join functionality for a specific table and/or inner

table: HASH_JOIN, HASH_JOIN_PROBING, and HASH_JOIN_BUILDING. For additional details, see
Aurora MySQL hints (p. 1095).

• Introduced join order hint support in Aurora MySQL 5.7 by backporting a MySQL 8.0 feature. The
new hints are JOIN_FIXED_ORDER, JOIN_ORDER, JOIN_PREFIX, and JOIN_SUFFIX. For detailed
documentation of join order hint support, see WL#9158: Join order hints.

• Aurora Machine Learning now supports user-defined functions with MEDIUMINT as the return type.
• The lambda_async() stored procedure now supports all MySQL utf8 characters.

High priority fixes:

• Fixed an issue that could cause a reader DB instance to return incomplete results for an FTS query after
the INFORMATION_SCHEMA.INNODB_SYS_TABLES table is queried on the writer DB instance.

• CVE-2019-5443
• CVE-2019-3822

Availability improvements:

• Fixed an issue that resulted in a database restart after a multi-query statement that accesses multiple
tables or databases is executed with the query cache enabled.

• Fixed a race condition in the lock manager that resulted in a database restart or failover during
transaction rollback.

• Fixed an issue that triggered database restart or failover when multiple connections are trying to
update the same table with a Full-Text Search index.

• Fixed an issue that could trigger a database restart or failover during a kill session command. If
you encounter this issue, contact AWS support to enable this fix on your instance.

• Fixed an issue that caused reader DB instance to restart during a multi-statement transaction with
multiple SELECT statements and a heavy write workload on the writer DB instance with AUTOCOMMIT
enabled.

1159

http://aws.amazon.com/support
https://github.com/mysql/mysql-server/commit/d2d91c3286b9ac3b95ef0e5036c5319aa4ffeda2#diff-4d30ba39ad1958c6f8148f67c94a896b
https://dev.mysql.com/worklog/task/?id=9158
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5443
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-3822

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Fixed an issue that caused reader DB instance to restart after executing long-running queries while the
writer DB instance is under a heavy OLTP write workload.

General improvements:

• Improved database recovery time and commit latency for long running transactions when binlog is
enabled.

• Improved the algorithm to generate better statistics for estimating distinct value counts on indexed
columns, including columns with skewed data distributions.

• Reduced the response time and CPU utilization of join queries that access MyISAM temporary tables
and the results spill to local storage.

• Fixed an issue that prevented Aurora MySQL 5.6 snapshots with database or table names containing
spaces from being restored to a new Aurora MySQL 5.7 cluster.

• Included victim transaction info when deadlock is resolved in show engine innodb status.
• Fixed an issue that caused connections to get stuck when clients of multiple different versions are

connected to the same database and are accessing the query cache.
• Fixed a memory leak resulting from multiple invocations of the Zero-Downtime Patch (ZDP) or Zero-

Downtime Restart (ZDR) workflow throughout the lifetime of a database instance.
• Fixed an error message in Zero-Downtime Patch (ZDP) or Zero-Downtime Restart (ZDR) operations

wrongly stating that the last transaction was aborted if the auto-commit flag is turned off.
• Fixed an issue in Zero-Downtime Patch (ZDP) operations that could lead to a server failure error

message when restoring user session variables in the new database process.
• Fixed an issue in Zero Downtime Patch (ZDP) operations that might cause intermittent database

failures when there are long running queries during patching.
• Fixed an issue where queries including an Aurora Machine Learning function returned empty error

messages due to an incorrectly handled error response from Machine Learning services such as
Amazon Sagemaker and Amazon Comprehend.

• Fixed an issue in the out-of-memory monitoring functionality that did not honor a custom value of the
table_definition_cache parameter.

• The error message "Query execution was interrupted" is returned if an Aurora Machine Learning query
is interrupted. Previously, the generic message "Internal error in processing ML request" was returned
instead.

• Fixed an issue that could cause a binlog worker to experience a connection
timeout when the slave_net_timeout parameter is less than the
aurora_binlog_replication_max_yield_seconds parameter and there is low workload on the
binlog master cluster.

• Improved monitoring of the binlog recovery progress by outputting informational messages in the
error log at a frequency of one message per minute.

• Fixed an issue that could cause active transactions not to be reported by the SHOW ENGINE INNODB
STATUS query.

Integration of MySQL community edition bug fixes

• Bug #25289359: A full-text cache lock taken when data is synchronized was not released if the full-
text cache size exceeded the full-text cache size limit.

• Bug #29138644: Manually changing the system time while the MySQL server was running caused page
cleaner thread delays.

• Bug #25222337: A NULL virtual column field name in a virtual index caused a server exit during a field
name comparison that occurs while populating virtual columns affected by a foreign key constraint.

• Bug #25053286: Executing a stored procedure containing a query that accessed a view could allocate
memory that was not freed until the session ended.

1160

https://github.com/mysql/mysql-server/commit/64161c9abd50de7ba0b542bd4895881f6ead6531
https://github.com/mysql/mysql-server/commit/fbfd9fcd32afc11ba77d52fa0690aa26dcd64f72
https://github.com/mysql/mysql-server/commit/273d5c9d7072c63b6c47dbef6963d7dc491d5131
https://github.com/mysql/mysql-server/commit/d7b37d4d141a95f577916448650c429f0d6e193d

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Bug #25586773: Executing a stored procedure containing a statement that created a table from the
contents of certain SELECT statements could result in a memory leak.

• Bug #28834208: During log application, after an OPTIMIZE TABLE operation, InnoDB did not populate
virtual columns before checking for virtual column index updates.

• Bug #26666274: Infinite loop in performance schema buffer container due to 32-bit unsigned integer
overflow.

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

This Aurora MySQL version is wire-compatible with MySQL 5.7 and includes features such as JSON
support, spatial indexes, and generated columns. Aurora MySQL uses a native implementation of
spatial indexing using z-order curves to deliver >20x better write performance and >10x better read
performance than MySQL 5.7 for spatial datasets.

This Aurora MySQL version does not currently support the following MySQL 5.7 features:

• Group replication plugin
• Increased page size
• InnoDB buffer pool loading at startup
• InnoDB full-text parser plugin
• Multisource replication
• Online buffer pool resizing
• Password validation plugin
• Query rewrite plugins
• Replication filtering
• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2021-11-24 (version
2.07.7)
Version: 2.07.7

Aurora MySQL 2.07.7 is generally available. Aurora MySQL 2.* versions are compatible with MySQL 5.7
and Aurora MySQL 1.* versions are compatible with MySQL 5.6.

1161

https://github.com/mysql/mysql-server/commit/88301e5adab65f6750f66af284be410c4369d0c1
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://github.com/mysql/mysql-server/commit/ca722bbb409209d683534846a90093c118bf8c5b
https://dev.mysql.com/doc/refman/5.7/en/optimize-table.html
https://github.com/mysql/mysql-server/commit/bd87573bc159c849f34aa8293ec43ac053cbfda0

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

Note
This version is designated as a long-term support (LTS) release. For more information, see
Aurora MySQL long-term support (LTS) releases (p. 1106).

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

Security fixes:

Fixes and other enhancements to fine-tune handling in a managed environment. Additional CVE fixes
below:

• CVE-2019-17543
• CVE-2019-2960

General improvements:

• Fixed security issues related to Aurora MySQL integration with other AWS Services such as Amazon S3,
Amazon ML, Lambda.

• Fixed an issue with incorrect reporting of an Aurora replication lag.
• Fixed an issue which can cause a database instance restart to fail when the database has a large

number of user and privilege combinations.
• Fixed an issue which can cause general_log and slow_log tables to become inaccessible after in-place

major version upgrade from Aurora MySQL 1.x (based on MySQL 5.6) to Aurora MySQL 2.x (based on
MySQL 5.7).

• Fixed an issue which, in rare conditions, can cause a reader instance to restart due to an incorrect check
processing.

• Fixed an issue which, in rare conditions, shows the "Database Load" chart in Performance Insights (PI)
sessions as actively using CPU even though the sessions have finished processing and are idle.

• Fixed an issue with parallel query which can cause the database to restart when executing SQL
statements with a LIMIT clause.

• Fixed an issue where the value of a TIMESTAMP column of an existing row is updated to the latest
timestamp when all of the following conditions are satisfied: 1. A trigger exists for the table; 2. an
INSERT is performed on the table that has an ON DUPLICATE KEY UPDATE clause; 3. the inserted row
can cause a duplicate value violation in a UNIQUE index or PRIMARY KEY; and, 4. one or more columns
are of TIMESTAMP data type and have a default value of CURRENT_TIMESTAMP.

• Fixed an issue which, in rare conditions, can cause the database instance to restart when using XA
transactions in READ COMMITTED isolation level.

Integration of MySQL community edition bug fixes

• INSERTING 64K SIZE RECORDS TAKE TOO MUCH TIME. (Bug#23031146)

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

1162

http://aws.amazon.com/support
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17543
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2960
https://github.com/mysql/mysql-server/commit/a2f9ea422e4bdfd65da6dd0c497dc233629ec52e

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

This Aurora MySQL version is wire-compatible with MySQL 5.7 and includes features such as JSON
support, spatial indexes, and generated columns. Aurora MySQL uses a native implementation of
spatial indexing using z-order curves to deliver >20x better write performance and >10x better read
performance than MySQL 5.7 for spatial datasets.

This Aurora MySQL version does not currently support the following MySQL 5.7 features:

• Group replication plugin
• Increased page size
• InnoDB buffer pool loading at startup
• InnoDB full-text parser plugin
• Multisource replication
• Online buffer pool resizing
• Password validation plugin
• Query rewrite plugins
• Replication filtering
• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2021-09-02 (version
2.07.6)
Version: 2.07.6

Aurora MySQL 2.07.6 is generally available. Aurora MySQL 2.* versions are compatible with MySQL 5.7
and Aurora MySQL 1.* versions are compatible with MySQL 5.6.

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 1.20.*, 1.21.*,
1.22.*, 1.23.*, 2.01.*, 2.02.*, 2.03.*, 2.04.*, 2.05.*, 2.06.*, 2.07.*, 2.08.*, 2.09.*, and 2.10.*.

You can restore a snapshot from a currently supported Aurora MySQL release into Aurora MySQL 2.07.6.
You also have the option to upgrade existing Aurora MySQL 2.* database clusters to Aurora MySQL
2.07.6. You can't upgrade an existing Aurora MySQL 1.* cluster directly to 2.07.6; however, you can
restore its snapshot to Aurora MySQL 2.07.6.

To create a cluster with an older version of Aurora MySQL, please specify the engine version through the
AWS Management Console, the AWS CLI, or the RDS API.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Integration of MySQL community edition bug fixes

• INSERTING 64K SIZE RECORDS TAKE TOO MUCH TIME. (Bug#23031146)

1163

http://aws.amazon.com/support
https://github.com/mysql/mysql-server/commit/a2f9ea422e4bdfd65da6dd0c497dc233629ec52e

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

This Aurora MySQL version is wire-compatible with MySQL 5.7 and includes features such as JSON
support, spatial indexes, and generated columns. Aurora MySQL uses a native implementation of
spatial indexing using z-order curves to deliver >20x better write performance and >10x better read
performance than MySQL 5.7 for spatial datasets.

This Aurora MySQL version does not currently support the following MySQL 5.7 features:

• Group replication plugin

• Increased page size

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin

• Query rewrite plugins

• Replication filtering

• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2021-07-06 (version
2.07.5)

Version: 2.07.5

Aurora MySQL 2.07.5 is generally available. Aurora MySQL 2.* versions are compatible with MySQL 5.7
and Aurora MySQL 1.* versions are compatible with MySQL 5.6.

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 1.20.*, 1.21.*,
1.22.*, 1.23.*, 2.01.*, 2.02.*, 2.03.*, 2.04.*, 2.05.*, 2.06.*, 2.07.*, 2.08.*, 2.09.*, and 2.10.*.

You can restore a snapshot from a currently supported Aurora MySQL release into Aurora MySQL 2.07.5.
You also have the option to upgrade existing Aurora MySQL 2.* database clusters to Aurora MySQL

1164

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

2.07.5. You can't upgrade an existing Aurora MySQL 1.* cluster directly to 2.07.5; however, you can
restore its snapshot to Aurora MySQL 2.07.5.

To create a cluster with an older version of Aurora MySQL, please specify the engine version through the
AWS Management Console, the AWS CLI, or the RDS API.

Note
This version is designated as a long-term support (LTS) release. For more information, see
Aurora MySQL long-term support (LTS) releases (p. 1106).

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

Availability improvements:

• Fixed an issue that user-level locks are not allowed on an Aurora Replica.
• Fixed an issue that could cause a restart of a database when using XA transactions in READ
COMMITTED isolation level.

• Extended maximum allowable length to 2000 for the server_audit_incl_users and
server_audit_excl_users global parameters.

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

This Aurora MySQL version is wire-compatible with MySQL 5.7 and includes features such as JSON
support, spatial indexes, and generated columns. Aurora MySQL uses a native implementation of
spatial indexing using z-order curves to deliver >20x better write performance and >10x better read
performance than MySQL 5.7 for spatial datasets.

This Aurora MySQL version does not currently support the following MySQL 5.7 features:

• Group replication plugin
• Increased page size
• InnoDB buffer pool loading at startup
• InnoDB full-text parser plugin
• Multisource replication

1165

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Online buffer pool resizing
• Password validation plugin
• Query rewrite plugins
• Replication filtering
• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2021-03-04 (version
2.07.4)
Version: 2.07.4

Aurora MySQL 2.07.4 is generally available. Aurora MySQL 2.* versions are compatible with MySQL 5.7
and Aurora MySQL 1.* versions are compatible with MySQL 5.6.

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 1.20.*, 1.21.*,
1.22.*, 1.23.*, 2.01.*, 2.02.*, 2.03.*, 2.04.*, 2.05.*, 2.06.*, 2.07.*, 2.08.*, and 2.09.*.

You can restore a snapshot from a currently supported Aurora MySQL release into Aurora MySQL 2.07.4.
You also have the option to upgrade existing Aurora MySQL 2.* database clusters to Aurora MySQL
2.07.4. You can't upgrade an existing Aurora MySQL 1.* cluster directly to 2.07.4; however, you can
restore its snapshot to Aurora MySQL 2.07.4.

To create a cluster with an older version of Aurora MySQL, please specify the engine version through the
AWS Management Console, the AWS CLI, or the RDS API.

Note
This version is designated as a long-term support (LTS) release. For more information, see
Aurora MySQL long-term support (LTS) releases (p. 1106).

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

Security fixes:

• CVE-2020-14812
• CVE-2020-14793
• CVE-2020-14790
• CVE-2020-14775
• CVE-2020-14769
• CVE-2020-14765
• CVE-2020-14760
• CVE-2020-14672
• CVE-2020-1971

Availability improvements:

• Fixed an issue that could cause a client to hang in case of a network error while reading or writing a
network packet.

• Improved engine restart times in some cases after interrupted DDL.
• Fixed an issue where a DDL or DML could cause engine restart during a page prefetch request.

1166

http://aws.amazon.com/support
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14812
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14793
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14790
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14775
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14769
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14765
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14760
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14672
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-1971

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Fixed an issue where a replica could restart while performing a reverse scan of a table/index on an
Aurora Read Replica.

• Fixed an issue in clone cluster operation that could cause the clone to take longer.

• Fixed an issue that could cause a restart of a database when using parallel query optimization for geo-
spatial column.

• Fixed an issue that caused a binlog replica to stop with an HA_ERR_KEY_NOT_FOUND error.

Integration of MySQL community edition bug fixes

• Fixed an issue in the Full-text ngram parser when dealing with tokens containing ' ' (space), '%', or ','.
Customers should rebuild their FTS indexes if using ngram parser. (Bug #25873310)

• Fixed an issue that could cause engine restart during query execution with nested SQL views. (Bug
#27214153, Bug #26864199)

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

This Aurora MySQL version is wire-compatible with MySQL 5.7 and includes features such as JSON
support, spatial indexes, and generated columns. Aurora MySQL uses a native implementation of
spatial indexing using z-order curves to deliver >20x better write performance and >10x better read
performance than MySQL 5.7 for spatial datasets.

This Aurora MySQL version does not currently support the following MySQL 5.7 features:

• Group replication plugin

• Increased page size

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin

• Query rewrite plugins

• Replication filtering

• The CREATE TABLESPACE SQL statement

1167

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

Aurora MySQL database engine updates 2020-11-10 (version
2.07.3)
Version: 2.07.3

Aurora MySQL 2.07.3 is generally available. Aurora MySQL 2.* versions are compatible with MySQL 5.7
and Aurora MySQL 1.* versions are compatible with MySQL 5.6.

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 1.20.*, 1.21.*,
1.22.*, 1.23.*, 2.01.*, 2.02.*, 2.03.*, 2.04.*, 2.05.*, 2.06.*, 2.07.*, 2.08.*, and 2.09.*.

You can restore a snapshot from a currently supported Aurora MySQL release into Aurora MySQL 2.07.3.
You also have the option to upgrade existing Aurora MySQL 2.* database clusters to Aurora MySQL
2.07.3. You can't upgrade an existing Aurora MySQL 1.* cluster directly to 2.07.3; however, you can
restore its snapshot to Aurora MySQL 2.07.3.

To create a cluster with an older version of Aurora MySQL, please specify the engine version through the
AWS Management Console, the AWS CLI, or the RDS API.

Note
This version is designated as a long-term support (LTS) release. For more information, see
Aurora MySQL long-term support (LTS) releases (p. 1106).

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

Security fixes:

Fixes and other enhancements to fine-tune handling in a managed environment. Additional CVE fixes
below:

• CVE-2020-14567
• CVE-2020-14559
• CVE-2020-14553
• CVE-2020-14547
• CVE-2020-14540
• CVE-2020-2812
• CVE-2020-2806
• CVE-2020-2780
• CVE-2020-2765
• CVE-2020-2763
• CVE-2020-2760
• CVE-2020-2579
• CVE-2019-2740

Incompatible changes:

This version introduces a permission change that affects the behavior of the mysqldump command.
Users must have the PROCESS privilege to access the INFORMATION_SCHEMA.FILES table. To run the
mysqldump command without any changes, grant the PROCESS privilege to the database user that
the mysqldump command connects to. You can also run the mysqldump command with the --no-
tablespaces option. With that option, the mysqldump output doesn't include any CREATE LOGFILE

1168

http://aws.amazon.com/support
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14567
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14559
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14553
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14547
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14540
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2812
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2806
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2780
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2765
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2763
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2760
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2579
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2740

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

GROUP or CREATE TABLESPACE statements. In that case, the mysqldump command doesn't access the
INFORMATION_SCHEMA.FILES table, and you don't need to grant the PROCESS permission.

Availability improvements:

• Fixed a race condition in the lock manager between the killing of a connection/query and the
termination of the session resulting in a database restart.

• Fixed an issue that results in a database restart after a multi-query statement that accesses multiple
tables or databases is executed with the query cache enabled.

• Fixed an issue that might cause repeated restarts due to updates of virtual columns with secondary
indexes.

Integration of MySQL community edition bug fixes

• InnoDB: Concurrent XA transactions that ran successfully to the XA prepare stage on the master
conflicted when replayed on the slave, resulting in a lock wait timeout in the applier thread. The
conflict was due to the GAP lock range which differed when the transactions were replayed serially on
the slave. To prevent this type of conflict, GAP locks taken by XA transactions in READ COMMITTED
isolation level are now released (and no longer inherited) when XA transactions reach the prepare
stage. (Bug #27189701, Bug #25866046)

• InnoDB: A gap lock was taken unnecessarily during foreign key validation while using the READ
COMMITTED isolation level. (Bug #25082593)

• Replication: When using XA transactions, if a lock wait timeout or deadlock occurred for the applier
(SQL) thread on a replication slave, the automatic retry did not work. The cause was that while the
SQL thread would do a rollback, it would not roll the XA transaction back. This meant that when the
transaction was retried, the first event was XA START which was invalid as the XA transaction was
already in progress, leading to an XAER_RMFAIL error. (Bug #24764800)

• Replication: Interleaved transactions could sometimes deadlock the slave applier when the transaction
isolation level was set to REPEATABLE READ. (Bug #25040331)

• Replication: The value returned by a SHOW SLAVE STATUS statement for the total combined size of
all existing relay log files (Relay_Log_Space) could become much larger than the actual disk space
used by the relay log files. The I/O thread did not lock the variable while it updated the value, so
the SQL thread could automatically delete a relay log file and write a reduced value before the I/O
thread finished updating the value. The I/O thread then wrote its original size calculation, ignoring the
SQL thread's update and so adding back the space for the deleted file. The Relay_Log_Space value is
now locked during updates to prevent concurrent updates and ensure an accurate calculation. (Bug
#26997096, Bug #87832)

• For an INSERT statement for which the VALUES list produced values for the second or later row using
a subquery containing a join, the server could exit after failing to resolve the required privileges. (Bug
#23762382)

• For a table having a TIMESTAMP or DATETIME column having a default of CURRENT_TIMESTAMP, the
column could be initialized to 0000-00-00 00:00:00 if the table had a BEFORE INSERT trigger.
(Bug #25209512, Bug #84077)

• A server exit could result from simultaneous attempts by multiple threads to register and deregister
metadata Performance Schema objects. (Bug #26502135)

• Executing a stored procedure containing a statement that created a table from the contents of certain
SELECT statements could result in a memory leak. (Bug #25586773)

• Executing a stored procedure containing a query that accessed a view could allocate memory that was
not freed until the session ended. (Bug #25053286)

• Certain cases of subquery materialization could cause a server exit. These queries now produce an
error suggesting that materialization be disabled. (Bug #26402045)

• Queries with many left joins were slow if join buffering was used (for example, using the block nested
loop algorithm). (Bug #18898433, Bug #72854)

1169

https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html#isolevel_repeatable-read
https://dev.mysql.com/doc/refman/5.6/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/datetime.html
https://dev.mysql.com/doc/refman/5.7/en/datetime.html
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_current-timestamp
https://dev.mysql.com/doc/refman/5.7/en/select.html

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• The optimizer skipped the second column in a composite index when executing an inner join with a
LIKE clause against the second column. (Bug #28086754)

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

This Aurora MySQL version is wire-compatible with MySQL 5.7 and includes features such as JSON
support, spatial indexes, and generated columns. Aurora MySQL uses a native implementation of
spatial indexing using z-order curves to deliver >20x better write performance and >10x better read
performance than MySQL 5.7 for spatial datasets.

This Aurora MySQL version does not currently support the following MySQL 5.7 features:

• Group replication plugin

• Increased page size

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin

• Query rewrite plugins

• Replication filtering

• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2020-04-17 (version
2.07.2)
Version: 2.07.2

Aurora MySQL 2.07.2 is generally available. Aurora MySQL 2.* versions are compatible with MySQL 5.7
and Aurora MySQL 1.* versions are compatible with MySQL 5.6.

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 1.20.*, 1.21.*,
1.22.*, 2.01.*, 2.02.*, 2.03.*, 2.04.*, 2.05.*, 2.06.*, and 2.07.*.

1170

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

You can restore a snapshot from a currently supported Aurora MySQL release into Aurora MySQL 2.07.2.
You also have the option to upgrade existing Aurora MySQL 2.* database clusters to Aurora MySQL
2.07.2. You can't upgrade an existing Aurora MySQL 1.* cluster directly to 2.07.2; however, you can
restore its snapshot to Aurora MySQL 2.07.2.

To create a cluster with an older version of Aurora MySQL, please specify the engine version through the
AWS Management Console, the AWS CLI, or the RDS API.

Note
This version is currently not available in the following AWS Region: [us-gov-east-1], AWS
GovCloud (US-West) [us-gov-west-1]. There will be a separate announcement once it is made
available.
This version is designated as a long-term support (LTS) release. For more information, see
Aurora MySQL long-term support (LTS) releases (p. 1106).

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

High priority fixes:

• Fixed an issue that caused cloning to take longer on some database clusters with high write loads.
• Fixed an issue that could cause queries on a reader DB instance with execution plans using secondary

indexes to return uncommitted data. The issue is limited to data affected by data manipulation
language (DML) operations that modify primary or secondary index key columns.

General improvements:

• Fixed an issue that resulted in a slow restore of an Aurora 1.x DB cluster containing FTS (Full Text
Search) indexes to an Aurora 2.x DB cluster.

• Fixed an issue that caused slower restores of an Aurora 1.x database snapshot containing partitioned
tables with special characters in table names to an Aurora 2.x DB cluster.

• Fixed an issue that caused errors when querying slow query logs and general logs in reader DB
instances.

Integration of MySQL community edition bug fixes

• Bug #23104498: Fixed an issue in Performance Schema in reporting total memory used. (https://
github.com/mysql/mysql-server/commit/20b6840df5452f47313c6f9a6ca075bfbc00a96b)

• Bug #22551677: Fixed an issue in Performance Schema that could lead to the database engine
crashing when attempting to take it offline. (https://github.com/mysql/mysql-server/commit/
05e2386eccd32b6b444b900c9f8a87a1d8d531e9)

• Bug #23550835, Bug #23298025, Bug #81464: Fixed an issue in Performance Schema that causes a
database engine crash due to exceeding the capacity of an internal buffer. (https://github.com/mysql/
mysql-server/commit/b4287f93857bf2f99b18fd06f555bbe5b12debfc)

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

1171

http://aws.amazon.com/support
https://github.com/mysql/mysql-server/commit/20b6840df5452f47313c6f9a6ca075bfbc00a96b
https://github.com/mysql/mysql-server/commit/20b6840df5452f47313c6f9a6ca075bfbc00a96b
https://github.com/mysql/mysql-server/commit/05e2386eccd32b6b444b900c9f8a87a1d8d531e9
https://github.com/mysql/mysql-server/commit/05e2386eccd32b6b444b900c9f8a87a1d8d531e9
https://github.com/mysql/mysql-server/commit/b4287f93857bf2f99b18fd06f555bbe5b12debfc
https://github.com/mysql/mysql-server/commit/b4287f93857bf2f99b18fd06f555bbe5b12debfc

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

This Aurora MySQL version is wire-compatible with MySQL 5.7 and includes features such as JSON
support, spatial indexes, and generated columns. Aurora MySQL uses a native implementation of
spatial indexing using z-order curves to deliver >20x better write performance and >10x better read
performance than MySQL 5.7 for spatial datasets.

This Aurora MySQL version does not currently support the following MySQL 5.7 features:

• Group replication plugin

• Increased page size

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin

• Query rewrite plugins

• Replication filtering

• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2019-12-23 (version
2.07.1)
Version: 2.07.1

Aurora MySQL 2.07.1 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 1.20.*, 1.21.*,
1.22.*, 2.01.*, 2.02.*, 2.03.*, 2.04.*, 2.05.*, 2.06.*, and 2.07.*.

You can restore a snapshot from a currently supported Aurora MySQL release into Aurora MySQL 2.07.1.
You also have the option to upgrade existing Aurora MySQL 2.* database clusters to Aurora MySQL
2.07.1. You cannot upgrade an existing Aurora MySQL 1.* cluster directly to 2.07.1; however, you can
restore its snapshot to Aurora MySQL 2.07.1.

To create a cluster with an older version of Aurora MySQL, please specify the engine version through the
AWS Management Console, the AWS CLI, or the RDS API.

Note
This version is currently not available in the following AWS Regions: AWS GovCloud (US-East)
[us-gov-east-1], AWS GovCloud (US-West) [us-gov-west-1], China (Ningxia) [cn-northwest-1],

1172

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

Asia Pacific (Hong Kong) [ap-east-1], and Middle East (Bahrain) [me-south-1]. There will be a
separate announcement once it is made available.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
For information on how to upgrade your Aurora MySQL database cluster, see Upgrading the
minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

High priority fixes:

• Fixed a slow memory leak in Aurora specific database tracing and logging sub-system that lowers the
freeable memory.

General Stability fixes:

• Fixed a crash during execution of a complex query involving multi-table joins and aggregation that use
intermediate tables internally.

Comparison with Aurora MySQL Version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

This Aurora MySQL version is wire-compatible with MySQL 5.7 and includes features such as JSON
support, spatial indexes, and generated columns. Aurora MySQL uses a native implementation of
spatial indexing using z-order curves to deliver >20x better write performance and >10x better read
performance than MySQL 5.7 for spatial datasets.

This Aurora MySQL version does not currently support the following MySQL 5.7 features:

• Group replication plugin

• Increased page size

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin

• Query rewrite plugins

• Replication filtering

1173

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2019-11-25 (version
2.07.0)
Version: 2.07.0

Aurora MySQL 2.07.0 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 1.20.*, 1.21.*,
1.22.*, 2.01.*, 2.02.*, 2.03.*, 2.04.*, 2.05.*, 2.06.*, and 2.07.*.

You can restore a snapshot from a currently supported Aurora MySQL release into Aurora MySQL 2.07.0.
You also have the option to upgrade existing Aurora MySQL 2.* database clusters to Aurora MySQL
2.07.0. You cannot upgrade an existing Aurora MySQL 1.* cluster directly to 2.07.0; however, you can
restore its snapshot to Aurora MySQL 2.07.0.

To create a cluster with an older version of Aurora MySQL, please specify the engine version through the
AWS Management Console, the AWS CLI, or the RDS API.

Note
This version is currently not available in the following AWS Regions: AWS GovCloud (US-East)
[us-gov-east-1], AWS GovCloud (US-West) [us-gov-west-1], China (Ningxia) [cn-northwest-1],
Asia Pacific (Hong Kong) [ap-east-1], Middle East (Bahrain) [me-south-1], and South America
(São Paulo) [sa-east-1]. There will be a separate announcement once it is made available.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
For information on how to upgrade your Aurora MySQL database cluster, see Upgrading the
minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

New features:

• Global Databases now allow adding secondary read-only replica regions for database clusters
deployed in these AWS Regions: regions: US East (N. Virginia) [us-east-1], US East (Ohio) [us-east-2],
US West (N. California) [us-west-1], US West (Oregon) [us-west-2], Europe (Ireland) [eu-west-1],
Europe (London) [eu-west-2], Europe (Paris) [eu-west-3], Asia Pacific (Tokyo) [ap-northeast-1], Asia
Pacific (Seoul) [ap-northeast-2], Asia Pacific (Singapore) [ap-southeast-1], Asia Pacific (Sydney) [ap-
southeast-2], Canada (Central) [ca-central-1], Europe (Frankfurt) [eu-central-1], and Asia Pacific
(Mumbai) [ap-south-1].

• Amazon Aurora machine learning is a highly optimized integration between the Aurora MySQL
database and AWS machine learning (ML) services. Aurora machine learning allows developers to add
a variety of ML-based predictions to their database applications by invoking ML models using the
familiar SQL programming language they already use for database development, without having to
build custom integrations or learn separate tools. For more information, see Using machine learning
(ML) capabilities with Amazon Aurora.

• Added support for the ANSI READ COMMITTED isolation level on the read replicas. This isolation level
enables long-running queries on the read replica to execute without impacting the high throughput of
writes on the writer node. For more information, see Aurora MySQL isolation levels.

Critical fixes:

1174

http://aws.amazon.com/support
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-ml.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-ml.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Reference.html#AuroraMySQL.Reference.IsolationLevels

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• CVE-2019-2922

• CVE-2019-2923

• CVE-2019-2924

• CVE-2019-2910

High-priority fixes:

• Fixed an issue in the DDL recovery that resulted in prolonged database downtime. Clusters that
become unavailable after executing multi-table drop statement, for example DROP TABLE t1, t2,
t3, should be updated to this version.

• Fixed an issue in the DDL recovery that resulted in prolonged database downtime. Clusters that
become unavailable after executing INPLACE ALTER TABLE DDL statements should be updated to
this version.

General stability fixes:

• Fixed an issue that generated inconsistent data in the
information_schema.replica_host_status table.

Integration of MySQL community edition bug fixes

• Bug #26251621: INCORRECT BEHAVIOR WITH TRIGGER AND GCOL

• Bug #22574695: ASSERTION `!TABLE || (!TABLE->READ_SET || BITMAP_IS_SET(TABLE->READ_SET,
FIEL

• Bug #25966845: INSERT ON DUPLICATE KEY GENERATE A DEADLOCK

• Bug #23070734: CONCURRENT TRUNCATE TABLES CAUSE STALL

• Bug #26191879: FOREIGN KEY CASCADES USE EXCESSIVE MEMORY

• Bug #20989615: INNODB AUTO_INCREMENT PRODUCES SAME VALUE TWICE

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

Aurora MySQL 2.07.0 is wire-compatible with MySQL 5.7 and includes features such as JSON support,
spatial indexes, and generated columns. Aurora MySQL uses a native implementation of spatial indexing
using z-order curves to deliver >20x better write performance and >10x better read performance than
MySQL 5.7 for spatial datasets.

Aurora MySQL 2.07.0 does not currently support the following MySQL 5.7 features:

1175

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2922
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2923
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2924
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2910

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Group replication plugin

• Increased page size

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin

• Query rewrite plugins

• Replication filtering

• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2019-11-22 (version
2.06.0) (deprecated)
Version: 2.06.0

Aurora MySQL 2.06.0 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 2.01.*, 2.02.*,
2.03.*, 2.04.*, 2.05.*, and 2.06.*.

You can restore a snapshot from a currently supported Aurora MySQL release into Aurora MySQL 2.06.0.
You also have the option to upgrade existing Aurora MySQL 2.* database clusters to Aurora MySQL
2.06.0. You cannot upgrade an existing Aurora MySQL 1.* cluster directly to 2.06.0; however, you can
restore its snapshot to Aurora MySQL 2.06.0.

To create a cluster with an older version of Aurora MySQL, please specify the engine version through the
AWS Management Console, the AWS CLI, or the RDS API.

Note
This version is currently not available in the following AWS Regions: AWS GovCloud (US-East)
[us-gov-east-1], AWS GovCloud (US-West) [us-gov-west-1], China (Ningxia) [cn-northwest-1],
Asia Pacific (Hong Kong) [ap-east-1], and Middle East (Bahrain) [me-south-1]. There will be a
separate announcement once it is made available.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
For information on how to upgrade your Aurora MySQL database cluster, see Upgrading the
minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

New features:

• Aurora MySQL clusters now support the instance types db.r5.8xlarge, db.r5.16xlarge, and
db.r5.24xlarge. For more information about instance types for Aurora MySQL clusters, see Aurora DB
instance classes (p. 54).

• The hash join feature is now generally available and does not require the Aurora lab mode setting to
be ON. This feature can improve query performance when you need to join a large amount of data by
using an equi-join. For more information about using this feature, see Optimizing large Aurora MySQL
join queries with hash joins (p. 1059).

1176

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• The hot row contention feature is now generally available and does not require the Aurora lab
mode setting to be ON. This feature substantially improves throughput for workloads with many
transactions contending for rows on the same page.

• Aurora MySQL 2.06 and higher support "rewinding" a DB cluster to a specific time, without restoring
data from a backup. This feature, known as Backtrack, provides a quick way to recover from user
errors, such as dropping the wrong table or deleting the wrong row. Backtrack completes within
seconds, even for large databases. Read the AWS blog for an overview, and refer to Backtracking an
Aurora DB cluster (p. 837) for more details.

• Aurora 2.06 and higher support synchronous AWS Lambda invocations through the native function
lambda_sync(). Also available is native function lambda_async(), which can be used as an
alternative to the existing stored procedure for asynchronous Lambda invocation. For information
about calling Lambda functions, see Invoking a Lambda function from an Amazon Aurora MySQL DB
cluster (p. 1031).

Critical fixes:

None.

High-priority fixes:

CVE fixes

• CVE-2019-2805
• CVE-2019-2730
• CVE-2019-2739
• CVE-2019-2778
• CVE-2019-2758
• CVE-2018-3064
• CVE-2018-3058
• CVE-2018-2786
• CVE-2017-3653
• CVE-2017-3455
• CVE-2017-3465
• CVE-2017-3244
• CVE-2016-5612

Connection handling

• Database availability has been improved to better service a surge in client connections while executing
one or more DDLs. It is handled by temporarily creating additional threads when needed. You are
advised to upgrade if the database becomes unresponsive following a surge in connections while
processing DDL.

Engine restart

• Fixed an issue of prolonged unavailability while restarting the engine. This addresses an issue in the
buffer pool initialization. This issue occurs rarely but can potentially impact any supported release.

• Fixed an issue that causes a database configured as a binlog master to restart while a heavy write
workload is running.

General stability fixes:

1177

http://aws.amazon.com/blogs/aws/amazon-aurora-backtrack-turn-back-time/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2805
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2730
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2739
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2778
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2758
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3064
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3058
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2786
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3653
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3455
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3465
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3244
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5612

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Made improvements where queries accessing uncached data could be slower than usual. Customers
experiencing unexplained elevated read latency while accessing uncached data are encouraged to
upgrade as they may be experiencing this issue.

• Fixed an issue that failed to restore partitioned tables from a database snapshot. Customers who
encounter errors when accessing partitioned tables in a database that has been restored from the
snapshot of an Aurora MySQL 1.* database are advised to use this version.

• Improved stability of the Aurora Replicas by fixing lock contention between threads serving read
queries and the one applying schema changes while a DDL query is in progress on the writer DB
instance.

• Fixed a stability issue related to mysql.innodb_table_stats table update triggered by DDL
operations.

• Fixed an issue that incorrectly reported ERROR 1836 when a nested query is executed against a
temporary table on the Aurora Replica.

Performance enhancements:

• Improved performance of binlog replication by preventing unnecessary API calls to the cache if the
query cache has been disabled on the binlog worker.

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

Aurora MySQL 2.06.0 is wire-compatible with MySQL 5.7 and includes features such as JSON support,
spatial indexes, and generated columns. Aurora MySQL uses a native implementation of spatial indexing
using z-order curves to deliver >20x better write performance and >10x better read performance than
MySQL 5.7 for spatial datasets.

Aurora MySQL 2.06.0 does not currently support the following MySQL 5.7 features:

• Group replication plugin

• Increased page size

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin

• Query rewrite plugins

• Replication filtering

1178

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2019-11-11 (version
2.05.0) (deprecated)
Version: 2.05.0

Aurora MySQL 2.05.0 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 2.01.*, 2.02.*,
2.03.* and 2.04.*.

You can restore a snapshot from a currently supported Aurora MySQL release into Aurora MySQL 2.05.0.
You also have the option to upgrade existing Aurora MySQL 2.* database clusters, up to 2.04.6, to Aurora
MySQL 2.05.0. You cannot upgrade an existing Aurora MySQL 1.* cluster directly to 2.05.0; however, you
can restore its snapshot to Aurora MySQL 2.05.0.

To create a cluster with an older version of Aurora MySQL, please specify the engine version through the
AWS Management Console, the AWS CLI, or the RDS API.

Note
This version is currently not available in the following AWS Regions: AWS GovCloud (US-East)
[us-gov-east-1], AWS GovCloud (US-West) [us-gov-west-1], China (Ningxia) [cn-northwest-1],
Asia Pacific (Hong Kong) [ap-east-1], Europe (Stockholm) [eu-north-1], and Middle East
(Bahrain) [me-south-1]. There will be a separate announcement once it is made available.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
For information on how to upgrade your Aurora MySQL database cluster, see Upgrading the
minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

Critical fixes:

• CVE-2018-0734
• CVE-2019-2534
• CVE-2018-3155
• CVE-2018-2612
• CVE-2017-3599
• CVE-2018-3056
• CVE-2018-2562
• CVE-2017-3329
• CVE-2018-2696
• Fixed an issue where the events in current binlog file on the master were not replicated on the worker

if the value of the parameter sync_binlog was not set to 1.

High-priority fixes:

• Customers with database size close to 64 tebibytes (TiB) are strongly advised to upgrade to this
version to avoid downtime due to stability bugs affecting volumes close to the Aurora storage limit.

1179

http://aws.amazon.com/support
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-0734
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2534
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3155
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2612
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3599
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3056
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2562
https://nvd.nist.gov/vuln/detail/CVE-2017-3329
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2696

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• The default value of the parameter aurora_binlog_replication_max_yield_seconds has been
changed to zero to prevent an increase in replication lag in favor of foreground query performance on
the binlog master.

Integration of MySQL bug fixes

• Bug#23054591: PURGE BINARY LOGS TO is reading the whole binlog file and causing MySql to Stall

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

Aurora MySQL 2.05.0 is wire-compatible with MySQL 5.7 and includes features such as JSON support,
spatial indexes, and generated columns. Aurora MySQL uses a native implementation of spatial indexing
using z-order curves to deliver >20x better write performance and >10x better read performance than
MySQL 5.7 for spatial datasets.

Aurora MySQL 2.05.0 does not currently support the following MySQL 5.7 features:

• Group replication plugin

• Increased page size

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin

• Query rewrite plugins

• Replication filtering

• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2020-08-14 (version
2.04.9)
Version: 2.04.9

1180

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

Aurora MySQL 2.04.9 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 2.01.*, 2.02.*,
2.03.*, 2.04.*, and 2.05.*. You can restore a snapshot of any 2.* Aurora MySQL release into Aurora MySQL
2.04.9. You also have the option to upgrade existing Aurora MySQL 2.* database clusters to Aurora
MySQL 2.04.9.

To create a cluster with an older version of Aurora MySQL, please specify the engine version through the
AWS Management Console, the AWS CLI, or the RDS API.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
This version is currently not available in the following AWS Regions: AWS GovCloud (US-East)
[us-gov-east-1], AWS GovCloud (US-West) [us-gov-west-1], Asia Pacific (Hong Kong) [ap-east-1],
and Middle East (Bahrain) [me-south-1]. There will be a separate announcement once it is made
available.

Note
For information on how to upgrade your Aurora MySQL database cluster, see Upgrading the
minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

High-priority fixes:

CVE fixes

• CVE-2019-2805

• CVE-2019-2730

• CVE-2019-2739

• CVE-2019-2778

• CVE-2019-2758

• CVE-2018-3064

• CVE-2018-3058

• CVE-2018-2786

• CVE-2017-3653

• CVE-2017-3455

• CVE-2017-3464

• CVE-2017-3465

• CVE-2017-3244

• CVE-2016-5612

• CVE-2019-2628

• CVE-2019-2740

• CVE-2019-2922

• CVE-2019-2923

• CVE-2019-2924

• CVE-2019-2910

• CVE-2019-5443

• CVE-2019-3822

1181

http://aws.amazon.com/support
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2805
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2730
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2739
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2778
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2758
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3064
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3058
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2786
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3653
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3455
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3464
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3465
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3244
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5612
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2628
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2740
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2922
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2923
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2924
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2910
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5443
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-3822

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• CVE-2020-2760
• CVE-2019-2911
• CVE-2018-2813

Availability improvements:

• Fixed an issue that could cause a database restart or failover due to execution of a kill session
command. If you encounter this issue, contact AWS support to enable this fix on your instance.

• Fixed an issue that causes a database restart during execution of a complex query involving multi-table
joins and aggregation that use intermediate tables internally.

• Fixed an issue that causes database restarts due to an interrupted DROP TABLE on multiple tables.
• Fixed an issue that causes a database failover during database recovery.
• Fixed a database restart caused by incorrect reporting of threads_running when audit and slow query

logs are enabled.
• Fixed an issue where a kill query command might get stuck during execution.
• Fixed a race condition in the lock manager that resulted in a database restart or failover during

transaction rollback.
• Fixed an issue that triggered database restart or failover when multiple connections are trying to

update the same table with a Full-Text Search index.
• Fixed an issue that can cause a deadlatch when purging an index resulting in a failover or restart.

General improvements:

• Fixed issues that could cause queries on read replicas to use data from an uncommitted transaction.
This issue is limited to the transactions that are started immediately after a database restart.

• Fixed an issue encountered during INPLACE ALTER TABLE for a table with triggers defined and when
the DDL did not contain a RENAME clause.

• Fixed an issue that caused cloning to take longer on some database clusters with high writeload.
• Fixed an issue encountered during an upgrade when a partitioned table has embedded spaces in the

name.
• Fixed an issue where the read replica might transiently see partial results of a recently committed

transaction on the writer.
• Fixed an issue where queries on a read replica against an FTS table may produce stale results.

This will only occur when the FTS query on the read replica closely follows a query on
INFORMATION_SCHEMA.INNODB_SYS_TABLES for the same FTS table on the writer.

• Fixed an issue that resulted in a slow restore of Aurora 1.x database cluster containing FTS (Full-Text
Search) indexes to an Aurora 2.x database cluster.

• Extended maximum allowable length to 2000 for server_audit_incl_users and
server_audit_excl_users global parameters.

• Fixed an issue where Aurora 1.x to Aurora 2.x restore might take an extended time to complete.
• Fixed an issue where a lambda_async invocation through stored procedure doesn't work with

Unicode.
• Fixed an issue encountered when a spatial index does not properly handle an off-record geometry

column.
• Fixed an issue that might cause a query to fail on a reader DB instance with
InternalFailureException error with message"Operation terminated (internal error)".

Integration of MySQL bug fixes

• Bug #23070734, Bug #80060: Concurrent TRUNCATE TABLEs cause stalls

1182

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2760
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2911
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2813

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Bug #23103937: PS_TRUNCATE_ALL_TABLES() DOES NOT WORK IN SUPER_READ_ONLY MODE
• Bug#22551677: When taking the server offline, a race condition within the Performance Schema could

lead to a server exit.
• Bug #27082268: Invalid FTS sync synchronization.
• BUG #12589870: Fixed an issues which causes a restart with multi-query statement when query cache

is enabled.
• Bug #26402045: Certain cases of subquery materialization could cause a server exit. These queries

now produce an error suggesting that materialization be disabled.
• Bug #18898433: Queries with many left joins were slow if join buffering was used (for example, using

the block nested loop algorithm).
• Bug #25222337: A NULL virtual column field name in a virtual index caused a server exit during a field

name comparison that occurs while populating virtual columns affected by a foreign key constraint.
(https://github.com/mysql/mysql-server/commit/273d5c9d7072c63b6c47dbef6963d7dc491d5131)

• Bug #25053286: Executing a stored procedure containing a query that accessed a view could allocate
memory that was not freed until the session ended. (https://github.com/mysql/mysql-server/commit/
d7b37d4d141a95f577916448650c429f0d6e193d)

• Bug #25586773: Executing a stored procedure containing a statement that created a table
from the contents of certain SELECT (https://dev.mysql.com/doc/refman/5.7/en/select.html)
statements could result in a memory leak. (https://github.com/mysql/mysql-server/commit/
88301e5adab65f6750f66af284be410c4369d0c1)

• Bug #26666274: INFINITE LOOP IN PERFORMANCE SCHEMA BUFFER CONTAINER.
• Bug #23550835, Bug #23298025, Bug #81464: A SELECT Performance Schema tables when an

internal buffer was full could cause a server exit.

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

Aurora MySQL 2.04.9 is wire-compatible with MySQL 5.7 and includes features such as JSON support,
spatial indexes, and generated columns. Aurora MySQL uses a native implementation of spatial indexing
using z-order curves to deliver >20x better write performance and >10x better read performance than
MySQL 5.7 for spatial datasets.

Aurora MySQL 2.04.9 does not currently support the following MySQL 5.7 features:

• Group replication plugin
• Increased page size

1183

https://github.com/mysql/mysql-server/commit/273d5c9d7072c63b6c47dbef6963d7dc491d5131
https://github.com/mysql/mysql-server/commit/d7b37d4d141a95f577916448650c429f0d6e193d
https://github.com/mysql/mysql-server/commit/d7b37d4d141a95f577916448650c429f0d6e193d
https://github.com/mysql/mysql-server/commit/88301e5adab65f6750f66af284be410c4369d0c1
https://github.com/mysql/mysql-server/commit/88301e5adab65f6750f66af284be410c4369d0c1

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin

• Query rewrite plugins

• Replication filtering

• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2019-11-20 (version
2.04.8)
Version: 2.04.8

Aurora MySQL 2.04.8 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 2.01.*, 2.02.*,
2.03.*, 2.04.*, and 2.05.*. You can restore a snapshot of any 2.* Aurora MySQL release into Aurora MySQL
2.04.8. You also have the option to upgrade existing Aurora MySQL 2.* database clusters to Aurora
MySQL 2.04.8.

To create a cluster with an older version of Aurora MySQL, please specify the engine version through the
AWS Management Console, the AWS CLI, or the RDS API.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
This version is currently not available in the following AWS Regions: AWS GovCloud (US-East)
[us-gov-east-1], AWS GovCloud (US-West) [us-gov-west-1], Asia Pacific (Hong Kong) [ap-east-1],
and Middle East (Bahrain) [me-south-1]. There will be a separate announcement once it is made
available.

Note
For information on how to upgrade your Aurora MySQL database cluster, see Upgrading the
minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

New features:

• Read replica improvements:

• Reduced network traffic from the writer instance by efficiently transmitting data to reader
instances within the Aurora DB cluster. This improvement is enabled by default, because it
helps prevent replicas from falling behind and restarting. The parameter for this feature is
aurora_enable_repl_bin_log_filtering.

• Reduced network traffic from the writer to reader instances within the Aurora DB cluster using
compression. This improvement is enabled by default for 8xlarge and 16xlarge instance classes only,
because these instances can tolerate additional CPU overhead for compression. The parameter for
this feature is aurora_enable_replica_log_compression.

High-priority fixes:

1184

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Improved memory management in the Aurora writer instance that prevents restart of writer due to
out of memory conditions during heavy workload in presence of reader instances within the Aurora DB
cluster.

• Fix for a non-deterministic condition in the scheduler that results in engine restart while accessing the
performance schema object concurrently.

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

Aurora MySQL 2.04.8 is wire-compatible with MySQL 5.7 and includes features such as JSON support,
spatial indexes, and generated columns. Aurora MySQL uses a native implementation of spatial indexing
using z-order curves to deliver >20x better write performance and >10x better read performance than
MySQL 5.7 for spatial datasets.

Aurora MySQL 2.04.8 does not currently support the following MySQL 5.7 features:

• Group replication plugin

• Increased page size

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin

• Query rewrite plugins

• Replication filtering

• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2019-11-14 (version
2.04.7)
Version: 2.04.7

Aurora MySQL 2.04.7 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

1185

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 2.01.*, 2.02.*,
2.03.* and 2.04.*.

You can restore a snapshot from a currently supported Aurora MySQL release into Aurora MySQL 2.04.7.
You also have the option to upgrade existing Aurora MySQL 2.* database clusters to Aurora MySQL
2.04.7. You can't upgrade an existing Aurora MySQL 1.* cluster directly to 2.04.7; however, you can
restore its snapshot to Aurora MySQL 2.04.7.

To create a cluster with an older version of Aurora MySQL, please specify the engine version through the
AWS Management Console, the AWS CLI, or the RDS API.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
This version is currently not available in the following AWS Regions: AWS GovCloud (US-East)
[us-gov-east-1], AWS GovCloud (US-West) [us-gov-west-1], Asia Pacific (Hong Kong) [ap-east-1],
and Middle East (Bahrain) [me-south-1]. There will be a separate announcement once it is made
available.

Note
For information on how to upgrade your Aurora MySQL database cluster, see Upgrading the
minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

High-priority fixes:

Connection Handling

• Database availability has been improved to better service a surge in client connections while executing
one or more DDLs. It is handled by temporarily creating additional threads when needed. You are
advised to upgrade if the database becomes unresponsive following a surge in connections while
processing DDL.

• Fixed an issue that resulted in an incorrect value for the Threads_running global status variable.

Engine Restart

• Fixed an issue of prolonged unavailability while restarting the engine. This addresses an issue in the
buffer pool initialization. This issue occurs rarely but can potentially impact any supported release.

General stability fixes:

• Made improvements where queries accessing uncached data could be slower than usual. Customers
experiencing unexplained elevated read latencies while accessing uncached data are encouraged to
upgrade as they may be experiencing this issue.

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

1186

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

Aurora MySQL 2.04.7 is wire-compatible with MySQL 5.7 and includes features such as JSON support,
spatial indexes, and generated columns. Aurora MySQL uses a native implementation of spatial indexing
using z-order curves to deliver >20x better write performance and >10x better read performance than
MySQL 5.7 for spatial datasets.

Aurora MySQL 2.04.7 does not currently support the following MySQL 5.7 features:

• Group replication plugin

• Increased page size

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin

• Query rewrite plugins

• Replication filtering

• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2019-09-19 (version
2.04.6)

Version: 2.04.6

Aurora MySQL 2.04.6 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

You have the option to upgrade existing Aurora MySQL 2.* database clusters to Aurora MySQL 2.04.6. We
do not allow in-place upgrade of Aurora MySQL 1.* clusters. This restriction will be lifted in a later Aurora
MySQL 2.* release. You can restore snapshots of Aurora MySQL 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*,
2.01.*, 2.02.*, 2.03.* and 2.04.* into Aurora MySQL 2.04.6.

To use an older version of Aurora MySQL, you can create new database clusters by specifying the engine
version through the AWS Management Console, the AWS CLI, or the Amazon RDS API.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
This version is currently not available in the following AWS Regions: Europe (London) [eu-
west-2], AWS GovCloud (US-East) [us-gov-east-1], AWS GovCloud (US-West) [us-gov-west-1],
China (Ningxia) [cn-northwest-1], and Asia Pacific (Hong Kong) [ap-east-1]. There will be a
separate announcement once it is made available.

1187

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

Note
For information on how to upgrade your Aurora MySQL database cluster, see Upgrading the
minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

• Fixed an issue where the events in current binlog file on the master were not replicated on the worker
if the value of the parameter sync_binlog was not set to 1.

• The default value of the parameter aurora_binlog_replication_max_yield_seconds has been
changed to zero to prevent an increase in replication lag in favor of foreground query performance on
the binlog master.

Integration of MySQL bug fixes

• Bug#23054591: PURGE BINARY LOGS TO is reading the whole binlog file and causing MySql to Stall

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

Aurora MySQL 2.04.6 is wire-compatible with MySQL 5.7 and includes features such as JSON support,
spatial indexes, and generated columns. Aurora MySQL uses a native implementation of spatial indexing
using z-order curves to deliver >20x better write performance and >10x better read performance than
MySQL 5.7 for spatial datasets.

Aurora MySQL 2.04.6 does not currently support the following MySQL 5.7 features:

• Group replication plugin
• Increased page size
• InnoDB buffer pool loading at startup
• InnoDB full-text parser plugin
• Multisource replication
• Online buffer pool resizing
• Password validation plugin
• Query rewrite plugins
• Replication filtering
• The CREATE TABLESPACE SQL statement

1188

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

Aurora MySQL database engine updates 2019-07-08 (version
2.04.5)
Version: 2.04.5

Aurora MySQL 2.04.5 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

You have the option to upgrade existing Aurora MySQL 2.* database clusters to Aurora MySQL 2.04.5. We
do not allow in-place upgrade of Aurora MySQL 1.* clusters. This restriction will be lifted in a later Aurora
MySQL 2.* release. You can restore snapshots of Aurora MySQL 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*,
2.01.*, 2.02.*, 2.03.* and 2.04.* into Aurora MySQL 2.04.5.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
For information on how to upgrade your Aurora MySQL database cluster, see Upgrading the
minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

• Fixed a race condition during storage volume growth that caused the database to restart.
• Fixed an internal communication failure during volume open that caused the database to restart.
• Added DDL recovery support for ALTER TABLE ALGORITHM=INPLACE on partitioned tables.
• Fixed an issue with DDL recovery of ALTER TABLE ALGORITHM=COPY that caused the database to

restart.
• Improved Aurora Replica stability under heavy delete workload on the writer.
• Fixed a database restart caused by a deadlatch between the thread performing full-text search index

sync and the thread performing eviction of full-text search table from dictionary cache.
• Fixed a stability issue on the binlog worker during DDL replication while the connection to the binlog

master is unstable.
• Fixed an out-of-memory issue in the full-text search code that caused the database to restart.
• Fixed an issue on the Aurora Writer that caused it to restart when the entire 64 tebibyte (TiB) volume is

used.
• Fixed a race condition in the Performance Schema feature that caused the database to restart.
• Fixed an issue that caused aborted connections when handling an error in network protocol

management.

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

1189

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

Aurora MySQL 2.04.5 is wire-compatible with MySQL 5.7 and includes features such as JSON support,
spatial indexes, and generated columns. Aurora MySQL uses a native implementation of spatial indexing
using z-order curves to deliver >20x better write performance and >10x better read performance than
MySQL 5.7 for spatial datasets.

Aurora MySQL 2.04.5 does not currently support the following MySQL 5.7 features:

• Group replication plugin
• Increased page size
• InnoDB buffer pool loading at startup
• InnoDB full-text parser plugin
• Multisource replication
• Online buffer pool resizing
• Password validation plugin
• Query rewrite plugins
• Replication filtering
• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2019-05-29 (version
2.04.4)
Version: 2.04.4

Aurora MySQL 2.04.4 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

When creating a new Aurora MySQL DB cluster (including restoring a snapshot), you have the option of
choosing compatibility with either MySQL 5.7 or MySQL 5.6. We do not allow in-place upgrade of Aurora
MySQL 1.* clusters or restore of Aurora MySQL 1.* clusters from an Amazon S3 backup into Aurora
MySQL 2.04.4. We plan to remove these restrictions in a later Aurora MySQL 2.* release.

You can restore snapshots of Aurora MySQL 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 2.01.*, 2.02.*,
2.03.*, and 2.04.* into Aurora MySQL 2.04.4.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
This version is currently not available in the AWS GovCloud (US-West) [us-gov-west-1], Europe
(Stockholm) [eu-north-1], China (Ningxia) [cn-northwest-1], and Asia Pacific (Hong Kong) [ap-
east-1] AWS Regions. There will be a separate announcement once it is made available.

Note
For information on how to upgrade your Aurora MySQL database cluster, see Upgrading the
minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

• Fixed an issue that could cause failures when loading data into Aurora from S3.

1190

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Fixed an issue that could cause failures when upload data from Aurora to S3.
• Fixed an issue that caused aborted connections when handling an error in network protocol

management.
• Fixed an issue that could cause a crash when dealing with partitioned tables.
• Fixed an issue with the Performance Insights feature being unavailable in some regions.

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

Aurora MySQL 2.04.4 is wire-compatible with MySQL 5.7 and includes features such as JSON support,
spatial indexes, and generated columns. Aurora MySQL uses a native implementation of spatial indexing
using z-order curves to deliver >20x better write performance and >10x better read performance than
MySQL 5.7 for spatial datasets.

Aurora MySQL 2.04.4 does not currently support the following MySQL 5.7 features:

• Group replication plugin
• Increased page size
• InnoDB buffer pool loading at startup
• InnoDB full-text parser plugin
• Multisource replication
• Online buffer pool resizing
• Password validation plugin
• Query rewrite plugins
• Replication filtering
• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2019-05-09 (version
2.04.3)
Version: 2.04.3

Aurora MySQL 2.04.3 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

1191

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

When creating a new Aurora MySQL DB cluster (including restoring a snapshot), you have the option of
choosing compatibility with either MySQL 5.7 or MySQL 5.6. We do not allow in-place upgrade of Aurora
MySQL 1.* clusters or restore of Aurora MySQL 1.* clusters from an Amazon S3 backup into Aurora
MySQL 2.04.3. We plan to remove these restrictions in a later Aurora MySQL 2.* release.

You can restore snapshots of Aurora MySQL 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 2.01.*, 2.02.*,
2.03.*, and 2.04.* into Aurora MySQL 2.04.3.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
This version is currently not available in the AWS GovCloud (US-West) [us-gov-west-1] and
China (Ningxia) [cn-northwest-1] AWS Regions. There will be a separate announcement once it is
made available.

Note
For information on how to upgrade your Aurora MySQL database cluster, see Upgrading the
minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

• Fixed a bug in binlog replication that can cause an issue on Aurora instances configured as binlog
worker.

• Fixed an out-of-memory condition when handling large stored routines.

• Fixed an error in handling certain kinds of ALTER TABLE commands.

• Fixed an issue with aborted connections because of an error in network protocol management.

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

Aurora MySQL 2.04.3 is wire-compatible with MySQL 5.7 and includes features such as JSON support,
spatial indexes, and generated columns. Aurora MySQL uses a native implementation of spatial indexing
using z-order curves to deliver >20x better write performance and >10x better read performance than
MySQL 5.7 for spatial datasets.

Aurora MySQL 2.04.3 does not currently support the following MySQL 5.7 features:

• Group replication plugin

1192

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Increased page size

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin

• Query rewrite plugins

• Replication filtering

• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2019-05-02 (version
2.04.2)
Version: 2.04.2

Aurora MySQL 2.04.2 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

When creating a new Aurora MySQL DB cluster (including restoring a snapshot), you have the option of
choosing compatibility with either MySQL 5.7 or MySQL 5.6. We do not allow in-place upgrade of Aurora
MySQL 1.* clusters or restore of Aurora MySQL 1.* clusters from an Amazon S3 backup into Aurora
MySQL 2.04.2. We plan to remove these restrictions in a later Aurora MySQL 2.* release.

You can restore snapshots of Aurora MySQL 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 2.01.*, 2.02.*,
2.03.*, 2.04.0, and 2.04.1 into Aurora MySQL 2.04.2.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
This version is currently not available in the AWS GovCloud (US-West) [us-gov-west-1] and
China (Ningxia) [cn-northwest-1] AWS Regions. There will be a separate announcement once it is
made available.

Note
For information on how to upgrade your Aurora MySQL database cluster, see Upgrading the
minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

• Added support for SSL binlog replication using custom certificates. For information on using SSL
binlog replication in Aurora MySQL, see mysql_rds_import_binlog_ssl_material.

• Fixed a deadlatch on the Aurora primary instance that occurs when a table with a Full Text Search
index is being optimized.

• Fixed an issue on the Aurora Replicas where performance of certain queries using SELECT(*) could be
impacted on tables that have secondary indexes.

• Fixed a condition that resulted in Error 1032 being posted.

• Improved the stability of Aurora Replicas by fixing multiple deadlatches.

Integration of MySQL bug fixes

• Bug #24829050 - INDEX_MERGE_INTERSECTION OPTIMIZATION CAUSES WRONG QUERY RESULTS

1193

http://aws.amazon.com/support
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_import_binlog_ssl_material.html

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

Aurora MySQL 2.04.2 is wire-compatible with MySQL 5.7 and includes features such as JSON support,
spatial indexes, and generated columns. Aurora MySQL uses a native implementation of spatial indexing
using z-order curves to deliver >20x better write performance and >10x better read performance than
MySQL 5.7 for spatial datasets.

Aurora MySQL 2.04.2 does not currently support the following MySQL 5.7 features:

• Group replication plugin
• Increased page size
• InnoDB buffer pool loading at startup
• InnoDB full-text parser plugin
• Multisource replication
• Online buffer pool resizing
• Password validation plugin
• Query rewrite plugins
• Replication filtering
• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2019-03-25 (version
2.04.1)
Version: 2.04.1

Aurora MySQL 2.04.1 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

When creating a new Aurora MySQL DB cluster (including restoring a snapshot), you have the option of
choosing compatibility with either MySQL 5.7 or MySQL 5.6. We do not allow in-place upgrade of Aurora
MySQL 1.* clusters or restore of Aurora MySQL 1.* clusters from an Amazon S3 backup into Aurora
MySQL 2.04.1. We plan to remove these restrictions in a later Aurora MySQL 2.* release.

You can restore snapshots of Aurora MySQL 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 2.01.*, 2.02.*,
2.03.*, 2.04.0 into Aurora MySQL 2.04.1.

1194

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
This version is currently not available in the AWS GovCloud (US-West) [us-gov-west-1] region.
There will be a separate announcement once it is made available.

Note
The procedure to upgrade your DB cluster has changed. For more information, see Upgrading
the minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

• Fixed an issue where an Aurora MySQL 5.6 snapshot for versions lower than 1.16 could not be restored
to the latest Aurora MySQL 5.7 cluster.

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

This Aurora MySQL version is wire-compatible with MySQL 5.7 and includes features such as JSON
support, spatial indexes, and generated columns. Aurora MySQL uses a native implementation of
spatial indexing using z-order curves to deliver >20x better write performance and >10x better read
performance than MySQL 5.7 for spatial datasets.

This Aurora MySQL version does not currently support the following MySQL 5.7 features:

• Group replication plugin

• Increased page size

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin

• Query rewrite plugins

• Replication filtering

• The CREATE TABLESPACE SQL statement

1195

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

Aurora MySQL database engine updates 2019-03-25 (version
2.04.0)

Version: 2.04

Aurora MySQL 2.04 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7 and
Aurora MySQL 1.x versions are compatible with MySQL 5.6.

When creating a new Aurora MySQL DB cluster (including restoring a snapshot), you have the option of
choosing compatibility with either MySQL 5.7 or MySQL 5.6. We do not allow in-place upgrade of Aurora
MySQL 1.* clusters or restore of Aurora MySQL 1.* clusters from an Amazon S3 backup into Aurora
MySQL 2.04.0. We plan to remove these restrictions in a later Aurora MySQL 2.* release.

You can restore snapshots of Aurora MySQL 1.19.*, 2.01.*, 2.02.*, and 2.03.* into Aurora MySQL 2.04.0.
You cannot restore snapshots of Aurora MySQL 1.14.* or lower, 1.15.*, 1.16.*, 1.17.*, 1.18.* into Aurora
MySQL 2.04.0. This restriction is removed in Aurora MySQL 2.04.1.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
This version is currently not available in the AWS GovCloud (US-West) [us-gov-west-1] region.
There will be a separate announcement once it is made available.

Note
The procedure to upgrade your DB cluster has changed. For more information, see Upgrading
the minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

• Supports GTID-based replication. For information about using GTID-based replication with Aurora
MySQL, see Using GTID-based replication for Aurora MySQL (p. 975).

• Fixed an issue where an Aurora Replica incorrectly throws aRunning in read-only mode error
when a statement deleting or updating rows in a temporary table contains an InnoDB subquery.

Integration of MySQL bug fixes

• Bug #26225783: MYSQL CRASH ON CREATE TABLE (REPRODUCEABLE) -> INNODB: ALONG
SEMAPHORE WAIT.

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL Version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL Version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

1196

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

This Aurora MySQL version is wire-compatible with MySQL 5.7 and includes features such as JSON
support, spatial indexes, and generated columns. Aurora MySQL uses a native implementation of
spatial indexing using z-order curves to deliver >20x better write performance and >10x better read
performance than MySQL 5.7 for spatial datasets.

This Aurora MySQL version does not currently support the following MySQL 5.7 features:

• Group replication plugin
• Increased page size
• InnoDB buffer pool loading at startup
• InnoDB full-text parser plugin
• Multisource replication
• Online buffer pool resizing
• Password validation plugin
• Query rewrite plugins
• Replication filtering
• The CREATE TABLESPACE SQL statement

Aurora MySQL database engine updates 2019-02-07 (version
2.03.4) (deprecated)
Version: 2.03.4

Aurora MySQL 2.03.4 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

When creating a new Aurora MySQL DB cluster (including restoring a snapshot), you can choose
compatibility with either MySQL 5.7 or MySQL 5.6.

We don't allow in-place upgrade of Aurora MySQL 1.* clusters into Aurora MySQL 2.03.4 or restore to
Aurora MySQL 2.03.4 from an Amazon S3 backup. We plan to remove these restrictions in a later Aurora
MySQL 2.* release.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
This version is currently not available in the AWS GovCloud (US-West) [us-gov-west-1] and
China (Beijing) [cn-north-1] regions. There will be a separate announcement once it is made
available.

Note
The procedure to upgrade your DB cluster has changed. For more information, see Upgrading
the minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

• Support for UTF8MB4 Unicode 9.0 accent-sensitive and case-insensitive collation,
utf8mb4_0900_as_ci.

1197

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. These functions are available for
MySQL 5.7-compatible clusters in Aurora MySQL 2.06 and higher. For more information, see Invoking a
Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

Aurora MySQL 2.03.4 is wire-compatible with MySQL 5.7 and includes features such as JSON support,
spatial indexes, and generated columns. Aurora MySQL uses a native implementation of spatial indexing
using z-order curves to deliver >20x better write performance and >10x better read performance than
MySQL 5.7 for spatial datasets.

Aurora MySQL 2.03.4 does not currently support the following MySQL 5.7 features:

• Global transaction identifiers (GTIDs). Aurora MySQL supports GTIDs in version 2.04 and higher.

• Group replication plugin

• Increased page size

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin

• Query rewrite plugins

• Replication filtering

• The CREATE TABLESPACE SQL statement

• X Protocol

Aurora MySQL database engine updates 2019-01-18 (version
2.03.3) (deprecated)
Version: 2.03.3

Aurora MySQL 2.03.3 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

When creating a new Aurora MySQL DB cluster (including restoring a snapshot), you can choose
compatibility with either MySQL 5.7 or MySQL 5.6.

1198

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

We don't allow in-place upgrade of Aurora MySQL 1.* clusters into Aurora MySQL 2.03.3 or restore to
Aurora MySQL 2.03.3 from an Amazon S3 backup. We plan to remove these restrictions in a later Aurora
MySQL 2.* release.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
This version is currently not available in the AWS GovCloud (US-West) [us-gov-west-1] and
China (Beijing) [cn-north-1] regions. There will be a separate announcement once it is made
available.

Note
The procedure to upgrade your DB cluster has changed. For more information, see Upgrading
the minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

• Fixed an issue where an Aurora Replica might become dead-latched when running a backward scan on
an index.

• Fixed an issue where an Aurora Replica might restart when the Aurora primary instance runs in-place
DDL operations on partitioned tables.

• Fixed an issue where an Aurora Replica might restart during query cache invalidation after a DDL
operation on the Aurora primary instance.

• Fixed an issue where an Aurora Replica might restart during a SELECT query on a table while the
Aurora primary instance runs truncation on that table.

• Fixed a wrong result issue with MyISAM temporary tables where only indexed columns are accessed.
• Fixed an issue in slow logs that generated incorrect large values for query_time and lock_time

periodically after approximately 40,000 queries.
• Fixed an issue where a schema named "tmp" could cause migration from RDS for MySQL to Aurora

MySQL to become stuck.
• Fixed an issue where the audit log might have missing events during log rotation.
• Fixed an issue where the Aurora primary instance restored from an Aurora 5.6 snapshot might restart

when the Fast DDL feature in the lab mode is enabled.
• Fixed an issue where the CPU usage is 100% caused by the dictionary stats thread.
• Fixed an issue where an Aurora Replica might restart when running a CHECK TABLE statement.

Integration of MySQL bug fixes

• Bug #25361251: INCORRECT BEHAVIOR WITH INSERT ON DUPLICATE KEY IN SP
• Bug #26734162: INCORRECT BEHAVIOR WITH INSERT OF BLOB + ON DUPLICATE KEY UPDATE
• Bug #27460607: INCORRECT BEHAVIOR OF IODKU WHEN INSERT SELECT's SOURCE TABLE IS EMPTY
• A query using a DISTINCT or GROUP BY clause could return incorrect results. (MySQL 5.7 Bug #79591,

Bug #22343910)
• A DELETE from joined tables using a derived table in the WHERE clause fails with error 1093 (Bug

#23074801).
• GCOLS: INCORRECT BEHAVIOR WITH CHARSET CHANGES (Bug #25287633).

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL version 2 (compatible
with MySQL 5.7).

1199

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. These functions are available for
MySQL 5.7-compatible clusters in Aurora MySQL 2.06 and higher. For more information, see Invoking a
Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

Aurora MySQL 2.03.3 is wire-compatible with MySQL 5.7 and includes features such as JSON support,
spatial indexes, and generated columns. Aurora MySQL uses a native implementation of spatial indexing
using z-order curves to deliver >20x better write performance and >10x better read performance than
MySQL 5.7 for spatial datasets.

Aurora MySQL 2.03.3 does not currently support the following MySQL 5.7 features:

• Global transaction identifiers (GTIDs). Aurora MySQL supports GTIDs in version 2.04 and higher.
• Group replication plugin
• Increased page size
• InnoDB buffer pool loading at startup
• InnoDB full-text parser plugin
• Multisource replication
• Online buffer pool resizing
• Password validation plugin
• Query rewrite plugins
• Replication filtering
• The CREATE TABLESPACE SQL statement
• X Protocol

Aurora MySQL database engine updates 2019-01-09 (version
2.03.2) (deprecated)
Version: 2.03.2

Aurora MySQL 2.03.2 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

When creating a new Aurora MySQL DB cluster (including restoring a snapshot), you can choose
compatibility with either MySQL 5.7 or MySQL 5.6.

We don't allow in-place upgrade of Aurora MySQL 1.* clusters into Aurora MySQL 2.03.2 or restore to
Aurora MySQL 2.03.2 from an Amazon S3 backup. We plan to remove these restrictions in a later Aurora
MySQL 2.* release.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

1200

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

Note
This version is currently not available in the AWS GovCloud (US-West) [us-gov-west-1] and
China (Beijing) [cn-north-1] regions. There will be a separate announcement once it is made
available.

Note
The procedure to upgrade your DB cluster has changed. For more information, see Upgrading
the minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

• Aurora Version Selector – Starting with Aurora MySQL 2.03.2, you can choose from among multiple
versions of MySQL 5.7-compatible Aurora on the AWS Management Console. For more information,
see Checking or specifying Aurora MySQL engine versions through AWS (p. 1104).

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. These functions are available for
MySQL 5.7-compatible clusters in Aurora MySQL 2.06 and higher. For more information, see Invoking a
Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

Aurora MySQL 2.03.2 is wire-compatible with MySQL 5.7 and includes features such as JSON support,
spatial indexes, and generated columns. Aurora MySQL uses a native implementation of spatial indexing
using z-order curves to deliver >20x better write performance and >10x better read performance than
MySQL 5.7 for spatial datasets.

Aurora MySQL 2.03.2 does not currently support the following MySQL 5.7 features:

• Global transaction identifiers (GTIDs). Aurora MySQL supports GTIDs in version 2.04 and higher.
• Group replication plugin
• Increased page size
• InnoDB buffer pool loading at startup
• InnoDB full-text parser plugin
• Multisource replication
• Online buffer pool resizing
• Password validation plugin
• Query rewrite plugins
• Replication filtering
• The CREATE TABLESPACE SQL statement

1201

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• X Protocol

Aurora MySQL database engine updates 2018-10-24 (version
2.03.1) (deprecated)
Version: 2.03.1

Aurora MySQL 2.03.1 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

When creating a new Aurora MySQL DB cluster, you can choose compatibility with either MySQL 5.7 or
MySQL 5.6. When restoring a MySQL 5.6-compatible snapshot, you can choose compatibility with either
MySQL 5.7 or MySQL 5.6.

You can restore snapshots of Aurora MySQL 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 2.01.*, 2.02.*, and 2.03
into Aurora MySQL 2.03.1.

We don't allow in-place upgrade of Aurora MySQL 1.* clusters into Aurora MySQL 2.03.1 or restore to
Aurora MySQL 2.03.1 from an Amazon S3 backup. We plan to remove these restrictions in a later Aurora
MySQL 2.* release.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
This version is currently not available in the AWS GovCloud (US-West) [us-gov-west-1] and
China (Beijing) [cn-north-1] regions. There will be a separate announcement once it is made
available.

Improvements

• Fix an issue where the Aurora Writer might restart when running transaction deadlock detection.

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. These functions are available for
MySQL 5.7-compatible clusters in Aurora MySQL 2.06 and higher. For more information, see Invoking a
Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

Aurora MySQL 2.03.1 is wire-compatible with MySQL 5.7 and includes features such as JSON support,
spatial indexes, and generated columns. Aurora MySQL uses a native implementation of spatial indexing

1202

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

using z-order curves to deliver >20x better write performance and >10x better read performance than
MySQL 5.7 for spatial datasets.

Aurora MySQL 2.03.1 does not currently support the following MySQL 5.7 features:

• Global transaction identifiers (GTIDs). Aurora MySQL supports GTIDs in version 2.04 and higher.

• Group replication plugin

• Increased page size

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin

• Query rewrite plugins

• Replication filtering

• The CREATE TABLESPACE SQL statement

• X Protocol

Aurora MySQL database engine updates 2018-10-11 (version
2.03) (deprecated)
Version: 2.03

Aurora MySQL 2.03 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7 and
Aurora MySQL 1.x versions are compatible with MySQL 5.6.

When creating a new Aurora MySQL DB cluster, you can choose compatibility with either MySQL 5.7 or
MySQL 5.6. When restoring a MySQL 5.6-compatible snapshot, you can choose compatibility with either
MySQL 5.7 or MySQL 5.6.

You can restore snapshots of Aurora MySQL 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 2.01.*, and 2.02.* into
Aurora MySQL 2.03.

We don't allow in-place upgrade of Aurora MySQL 1.* clusters into Aurora MySQL 2.03 or restore to
Aurora MySQL 2.03 from an Amazon S3 backup. We plan to remove these restrictions in a later Aurora
MySQL 2.* release.

Note
This version is currently not available in the AWS GovCloud (US-West) [us-gov-west-1] and
China (Beijing) [cn-north-1] regions. There will be a separate announcement once it is made
available.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

• Performance schema is available.

• Fixed an issue where zombie sessions with killed state might consume more CPU.

• Fixed a dead latch issue when a read-only transaction is acquiring a lock on a record on the Aurora
Writer.

• Fixed an issue where the Aurora Replica without customer workload might have high CPU utilization.

1203

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Multiple fixes on issues that might cause the Aurora Replica or the Aurora writer to restart.

• Added capability to skip diagnostic logging when the disk throughput limit is reached.

• Fixed a memory leak issue when binlog is enabled on the Aurora Writer.

Integration of MySQL community edition bug fixes

• REVERSE SCAN ON A PARTITIONED TABLE DOES ICP - ORDER BY DESC (Bug #24929748).

• JSON_OBJECT CREATES INVALID JSON CODE (Bug#26867509).

• INSERTING LARGE JSON DATA TAKES AN INORDINATE AMOUNT OF TIME (Bug #22843444).

• PARTITIONED TABLES USE MORE MEMORY IN 5.7 THAN 5.6 (Bug #25080442).

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. These functions are available for
MySQL 5.7-compatible clusters in Aurora MySQL 2.06 and higher. For more information, see Invoking a
Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

Aurora MySQL 2.03 is wire-compatible with MySQL 5.7 and includes features such as JSON support,
spatial indexes, and generated columns. Aurora MySQL uses a native implementation of spatial indexing
using z-order curves to deliver >20x better write performance and >10x better read performance than
MySQL 5.7 for spatial datasets.

Aurora MySQL 2.03 does not currently support the following MySQL 5.7 features:

• Global transaction identifiers (GTIDs). Aurora MySQL supports GTIDs in version 2.04 and higher.

• Group replication plugin

• Increased page size

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin

• Query rewrite plugins

• Replication filtering

• The CREATE TABLESPACE SQL statement

1204

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• X Protocol

Aurora MySQL database engine updates 2018-10-08 (version
2.02.5) (deprecated)
Version: 2.02.5

Aurora MySQL 2.02.5 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

When creating a new Aurora MySQL DB cluster, you can choose compatibility with either MySQL 5.7 or
MySQL 5.6. When restoring a MySQL 5.6-compatible snapshot, you can choose compatibility with either
MySQL 5.7 or MySQL 5.6.

You can restore snapshots of Aurora MySQL 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 2.01.*, and 2.02.* into
Aurora MySQL 2.02.5. You can also perform an in-place upgrade from Aurora MySQL 2.01.* or 2.02.* to
Aurora MySQL 2.02.5.

We don't allow in-place upgrade of Aurora MySQL 1.* clusters into Aurora MySQL 2.02.5 or restore to
Aurora MySQL 2.02.5 from an Amazon S3 backup. We plan to remove these restrictions in a later Aurora
MySQL 2.* release.

The performance schema is disabled for this release of Aurora MySQL 5.7. Upgrade to Aurora 2.03 for
performance schema support.

Note
This version is currently not available in the AWS GovCloud (US-West) [us-gov-west-1] and
China (Beijing) [cn-north-1] regions. There will be a separate announcement once it is made
available.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

• Fix an issue where an Aurora Replica might restart when it is doing a reverse scan on a table.

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. These functions are available for
MySQL 5.7-compatible clusters in Aurora MySQL 2.06 and higher. For more information, see Invoking a
Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

1205

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

MySQL 5.7 compatibility

Aurora MySQL 2.02.5 is wire-compatible with MySQL 5.7 and includes features such as JSON support,
spatial indexes, and generated columns. Aurora MySQL uses a native implementation of spatial indexing
using z-order curves to deliver >20x better write performance and >10x better read performance than
MySQL 5.7 for spatial datasets.

Aurora MySQL 2.02.5 does not currently support the following MySQL 5.7 features:

• Global transaction identifiers (GTIDs). Aurora MySQL supports GTIDs in version 2.04 and higher.

• Group replication plugin

• Increased page size

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin

• Query rewrite plugins

• Replication filtering

• The CREATE TABLESPACE SQL statement

• X Protocol

Aurora MySQL database engine updates 2018-09-21 (version
2.02.4) (deprecated)
Version: 2.02.4

Aurora MySQL 2.02.4 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

When creating a new Aurora MySQL DB cluster, you can choose compatibility with either MySQL 5.7 or
MySQL 5.6. When restoring a MySQL 5.6-compatible snapshot, you can choose compatibility with either
MySQL 5.7 or MySQL 5.6.

You can restore snapshots of Aurora MySQL 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 2.01.*, and 2.02.* into
Aurora MySQL 2.02.4. You can also perform an in-place upgrade from Aurora MySQL 2.01.* or 2.02.* to
Aurora MySQL 2.02.4.

We don't allow in-place upgrade of Aurora MySQL 1.* clusters into Aurora MySQL 2.02.4 or restore to
Aurora MySQL 2.02.4 from an Amazon S3 backup. We plan to remove these restrictions in a later Aurora
MySQL 2.* release.

The performance schema is disabled for this release of Aurora MySQL 5.7. Upgrade to Aurora 2.03 for
performance schema support.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

• Fixed a stability issue related to Full Text Search indexes on tables restored from an Aurora MySQL 5.6
snapshot.

1206

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

Integration of MySQL community edition bug fixes

• BUG#13651665 INNODB MAY BE UNABLE TO LOAD TABLE DEFINITION AFTER RENAME

• BUG#21371070 INNODB: CANNOT ALLOCATE 0 BYTES.

• BUG#21378944 FTS ASSERT ENC.SRC_ILIST_PTR != NULL, FTS_OPTIMIZE_WORD(),
OPTIMIZE TABLE

• BUG#21508537 ASSERTION FAILURE UT_A(!VICTIM_TRX->READ_ONLY)

• BUG#21983865 UNEXPECTED DEADLOCK WITH INNODB_AUTOINC_LOCK_MODE=0

• BUG#22679185 INVALID INNODB FTS DOC ID DURING INSERT

• BUG#22899305 GCOLS: ASSERTION: !(COL->PRTYPE & 256).

• BUG#22956469 MEMORY LEAK INTRODUCED IN 5.7.8 IN MEMORY/INNODB/OS0FILE

• BUG#22996488 CRASH IN FTS_SYNC_INDEX WHEN DOING DDL IN A LOOP

• BUG#23014521 GCOL:INNODB: ASSERTION: !IS_V

• BUG#23021168 REPLICATION STOPS AFTER TRX IS ROLLED BACK ASYNC

• BUG#23052231 ASSERTION: ADD_AUTOINC < DICT_TABLE_GET_N_USER_COLS

• BUG#23149683 ROTATE INNODB MASTER KEY WITH KEYRING_OKV_CONF_DIR MISSING:
SIGSEGV; SIGNAL 11

• BUG#23762382 INSERT VALUES QUERY WITH JOIN IN A SELECT CAUSES INCORRECT
BEHAVIOR

• BUG#25209512 CURRENT_TIMESTAMP PRODUCES ZEROS IN TRIGGER

• BUG#26626277 BUG IN "INSERT... ON DUPLICATE KEY UPDATE" QUERY

• BUG#26734162 INCORRECT BEHAVIOR WITH INSERT OF BLOB + ON DUPLICATE KEY UPDATE

• BUG#27460607 INCORRECT WHEN INSERT SELECT's SOURCE TABLE IS EMPTY

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. These functions are available for
MySQL 5.7-compatible clusters in Aurora MySQL 2.06 and higher. For more information, see Invoking a
Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

MySQL 5.7 compatibility

Aurora MySQL 2.02.4 is wire-compatible with MySQL 5.7 and includes features such as JSON support,
spatial indexes, and generated columns. Aurora MySQL uses a native implementation of spatial indexing
using z-order curves to deliver >20x better write performance and >10x better read performance than
MySQL 5.7 for spatial datasets.

1207

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

Aurora MySQL 2.02.4 does not currently support the following MySQL 5.7 features:

• Global transaction identifiers (GTIDs). Aurora MySQL supports GTIDs in version 2.04 and higher.
• Group replication plugin
• Increased page size
• InnoDB buffer pool loading at startup
• InnoDB full-text parser plugin
• Multisource replication
• Online buffer pool resizing
• Password validation plugin
• Query rewrite plugins
• Replication filtering
• The CREATE TABLESPACE SQL statement
• X Protocol

Aurora MySQL database engine updates 2018-08-23 (version
2.02.3) (deprecated)
Version: 2.02.3

Aurora MySQL 2.02.3 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

When creating a new Aurora MySQL DB cluster, you can choose compatibility with either MySQL 5.7 or
MySQL 5.6. When restoring a MySQL 5.6-compatible snapshot, you can choose compatibility with either
MySQL 5.7 or MySQL 5.6.

You can restore snapshots of Aurora MySQL 1.14.*, 1.15.*, 1.16.*, 1.17.*, 2.01.*, and 2.02.* into Aurora
MySQL 2.02.3. You can also perform an in-place upgrade from Aurora MySQL 2.01.* or 2.02.* to Aurora
MySQL 2.02.3.

We don't allow in-place upgrade of Aurora MySQL 1.* clusters into Aurora MySQL 2.02.3 or restore to
Aurora MySQL 2.02.3 from an Amazon S3 backup. We plan to remove these restrictions in a later Aurora
MySQL 2.* release.

The performance schema is disabled for this release of Aurora MySQL 5.7. Upgrade to Aurora 2.03 for
performance schema support.

Note
This version is currently not available in the AWS GovCloud (US-West) [us-gov-west-1] and
China (Beijing) [cn-north-1] regions. There will be a separate announcement once it is made
available.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Comparison with Aurora MySQL version 1

The following Amazon Aurora MySQL features are supported in Aurora MySQL version 1 (compatible
with MySQL 5.6), but these features are currently not supported in Aurora MySQL version 2 (compatible
with MySQL 5.7).

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

1208

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. These functions are available for
MySQL 5.7-compatible clusters in Aurora MySQL 2.06 and higher. For more information, see Invoking a
Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

Currently, Aurora MySQL 2.01 does not support features added in Aurora MySQL version 1.16 and
later. For information about Aurora MySQL version 1.16, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

MySQL 5.7 compatibility

Aurora MySQL 2.02.3 is wire-compatible with MySQL 5.7 and includes features such as JSON support,
spatial indexes, and generated columns. Aurora MySQL uses a native implementation of spatial indexing
using z-order curves to deliver >20x better write performance and >10x better read performance than
MySQL 5.7 for spatial datasets.

Aurora MySQL 2.02.3 does not currently support the following MySQL 5.7 features:

• Global transaction identifiers (GTIDs). Aurora MySQL supports GTIDs in version 2.04 and higher.

• Group replication plugin

• Increased page size

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin

• Query rewrite plugins

• Replication filtering

• The CREATE TABLESPACE SQL statement

• X Protocol

CLI differences between Aurora MySQL 2.x and Aurora MySQL 1.x

• The engine name for Aurora MySQL 2.x is aurora-mysql; the engine name for Aurora MySQL 1.x
continues to be aurora.

• The engine version for Aurora MySQL 2.x is 5.7.12; the engine version for Aurora MySQL 1.x
continues to be 5.6.10ann.

• The default parameter group for Aurora MySQL 2.x is default.aurora-mysql5.7; the default
parameter group for Aurora MySQL 1.x continues to be default.aurora5.6.

• The DB cluster parameter group family name for Aurora MySQL 2.x is aurora-mysql5.7; the DB
cluster parameter group family name for Aurora MySQL 1.x continues to be aurora5.6.

Refer to the Aurora documentation for the full set of CLI commands and differences between Aurora
MySQL 2.x and Aurora MySQL 1.x.

1209

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

Improvements

• Fixed an issue where an Aurora Replica can restart when using optimistic cursor restores while reading
records.

• Updated the default value of the parameter innodb_stats_persistent_sample_pages to 128 to
improve index statistics.

• Fixed an issue where an Aurora Replica might restart when it accesses a small table that is being
concurrently modified on the Aurora primary instance.

• Fixed ANALYZE TABLE to stop flushing the table definition cache.
• Fixed an issue where the Aurora primary instance or an Aurora Replica might restart when converting a

point query for geospatial to a search range.

Aurora MySQL database engine updates 2018-06-04 (version
2.02.2) (deprecated)
Version: 2.02.2

Aurora MySQL 2.02.2 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

When creating a new Aurora MySQL DB cluster, you can choose compatibility with either MySQL 5.7 or
MySQL 5.6. When restoring a MySQL 5.6-compatible snapshot, you can choose compatibility with either
MySQL 5.7 or MySQL 5.6.

You can restore snapshots of Aurora MySQL 1.14*, 1.15*, 1.16*, 1.17*, 2.01*, and 2.02 into Aurora MySQL
2.02.2. You can also perform an in-place upgrade from Aurora MySQL 2.01* or 2.02 to Aurora MySQL
2.02.2.

We don't allow in-place upgrade of Aurora MySQL 1.* clusters into Aurora MySQL 2.02.2 or restore to
Aurora MySQL 2.02.2 from an Amazon S3 backup. We plan to remove these restrictions in a later Aurora
MySQL 2.* release.

The performance schema is disabled for this release of Aurora MySQL 5.7. Upgrade to Aurora 2.03 for
performance schema support.

Note
This version is currently not available in the AWS GovCloud (US-West) [us-gov-west-1] and
China (Beijing) [cn-north-1] regions. There will be a separate announcement once it is made
available.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Comparison with Aurora MySQL 5.6

The following Amazon Aurora MySQL features are supported in Aurora MySQL 5.6, but these features are
currently not supported in Aurora MySQL 5.7.

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

1210

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

Currently, Aurora MySQL 2.01 does not support features added in Aurora MySQL version 1.16 and
later. For information about Aurora MySQL version 1.16, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

MySQL 5.7 compatibility

Aurora MySQL 2.02.2 is wire-compatible with MySQL 5.7 and includes features such as JSON support,
spatial indexes, and generated columns. Aurora MySQL uses a native implementation of spatial indexing
using z-order curves to deliver >20x better write performance and >10x better read performance than
MySQL 5.7 for spatial datasets.

Aurora MySQL 2.02.2 does not currently support the following MySQL 5.7 features:

• Global transaction identifiers (GTIDs). Aurora MySQL supports GTIDs in version 2.04 and higher.

• Group replication plugin

• Increased page size

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin

• Query rewrite plugins

• Replication filtering

• The CREATE TABLESPACE SQL statement

• X Protocol

CLI differences between Aurora MySQL 2.x and Aurora MySQL 1.x

• The engine name for Aurora MySQL 2.x is aurora-mysql; the engine name for Aurora MySQL 1.x
continues to be aurora.

• The engine version for Aurora MySQL 2.x is 5.7.12; the engine version for Aurora MySQL 1.x
continues to be 5.6.10ann.

• The default parameter group for Aurora MySQL 2.x is default.aurora-mysql5.7; the default
parameter group for Aurora MySQL 1.x continues to be default.aurora5.6.

• The DB cluster parameter group family name for Aurora MySQL 2.x is aurora-mysql5.7; the DB
cluster parameter group family name for Aurora MySQL 1.x continues to be aurora5.6.

Refer to the Aurora documentation for the full set of CLI commands and differences between Aurora
MySQL 2.x and Aurora MySQL 1.x.

Improvements

• Fixed an issue where an Aurora Writer can occasionally restart when tracking Aurora Replica progress.

• Fixed an issue where an Aurora Replica restarts or throws an error when a partitioned table is accessed
after running index create or drop statements on the table on the Aurora Writer.

• Fixed an issue where a table on an Aurora Replica is inaccessible while it is applying the changes
caused by running ALTER table ADD/DROP column statements on the Aurora Writer.

1211

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

Aurora MySQL database engine updates 2018-05-03 (version
2.02) (deprecated)
Version: 2.02

Aurora MySQL 2.02 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7 and
Aurora MySQL 1.x versions are compatible with MySQL 5.6.

When creating a new Aurora MySQL DB cluster, you can choose compatibility with either MySQL 5.7 or
MySQL 5.6. When restoring a MySQL 5.6-compatible snapshot, you can choose compatibility with either
MySQL 5.7 or MySQL 5.6.

You can restore snapshots of Aurora MySQL 1.14*, 1.15*, 1.16*, 1.17* and 2.01* into Aurora MySQL 2.02.
You can also perform an in-place upgrade from Aurora MySQL 2.01* to Aurora MySQL 2.02.

We don't allow in-place upgrade of Aurora MySQL 1.x clusters into Aurora MySQL 2.02 or restore to
Aurora MySQL 2.02 from an Amazon S3 backup. We plan to remove these restrictions in a later Aurora
MySQL 2.x release.

The performance schema is disabled for this release of Aurora MySQL 5.7. Upgrade to Aurora 2.03 for
performance schema support.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Comparison with Aurora MySQL 5.6

The following Amazon Aurora MySQL features are supported in Aurora MySQL 5.6, but these features are
currently not supported in Aurora MySQL 5.7.

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

Currently, Aurora MySQL 2.01 does not support features added in Aurora MySQL version 1.16 and
later. For information about Aurora MySQL version 1.16, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

MySQL 5.7 compatibility

Aurora MySQL 2.02 is wire-compatible with MySQL 5.7 and includes features such as JSON support,
spatial indexes, and generated columns. Aurora MySQL uses a native implementation of spatial indexing
using z-order curves to deliver >20x better write performance and >10x better read performance than
MySQL 5.7 for spatial datasets.

Aurora MySQL 2.02 does not currently support the following MySQL 5.7 features:

• Global transaction identifiers (GTIDs). Aurora MySQL supports GTIDs in version 2.04 and higher.

1212

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Group replication plugin

• Increased page size

• InnoDB buffer pool loading at startup

• InnoDB full-text parser plugin

• Multisource replication

• Online buffer pool resizing

• Password validation plugin

• Query rewrite plugins

• Replication filtering

• The CREATE TABLESPACE SQL statement

• X Protocol

CLI differences between Aurora MySQL 2.x and Aurora MySQL 1.x

• The engine name for Aurora MySQL 2.x is aurora-mysql; the engine name for Aurora MySQL 1.x
continues to be aurora.

• The engine version for Aurora MySQL 2.x is 5.7.12; the engine version for Aurora MySQL 1.x
continues to be 5.6.10ann.

• The default parameter group for Aurora MySQL 2.x is default.aurora-mysql5.7; the default
parameter group for Aurora MySQL 1.x continues to be default.aurora5.6.

• The DB cluster parameter group family name for Aurora MySQL 2.x is aurora-mysql5.7; the DB
cluster parameter group family name for Aurora MySQL 1.x continues to be aurora5.6.

Refer to the Aurora documentation for the full set of CLI commands and differences between Aurora
MySQL 2.x and Aurora MySQL 1.x.

Improvements

• Fixed an issue where an Aurora Writer restarts when running INSERT statements and exploiting the
Fast Insert optimization.

• Fixed an issue where an Aurora Replica restarts when running ALTER DATABASE statements on the
Aurora Replica.

• Fixed an issue where an Aurora Replica restarts when running queries on tables that have just been
dropped on the Aurora Writer.

• Fixed an issue where an Aurora Replica restarts when setting innodb_adaptive_hash_index to OFF
on the Aurora Replica.

• Fixed an issue where an Aurora Replica restarts when running TRUNCATE TABLE queries on the Aurora
Writer.

• Fixed an issue where the Aurora Writer freezes in certain circumstances when running INSERT
statements. On a multi-node cluster, this can result in a failover.

• Fixed a memory leak associated with setting session variables.

• Fixed an issue where the Aurora Writer freezes in certain circumstances associated with purging undo
for tables with generated columns.

• Fixed an issue where the Aurora Writer can sometimes restart when binary logging is enabled.

Integration of MySQL bug fixes

• Left join returns incorrect results on the outer side (Bug #22833364).

1213

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

Aurora MySQL database engine updates 2018-03-13 (version
2.01.1) (deprecated)
Version: 2.01.1

Aurora MySQL 2.01.1 is generally available. Aurora MySQL 2.x versions are compatible with MySQL 5.7
and Aurora MySQL 1.x versions are compatible with MySQL 5.6.

When creating a new Aurora MySQL DB cluster, you can choose compatibility with either MySQL 5.7 or
MySQL 5.6. When restoring a MySQL 5.6-compatible snapshot, you can choose compatibility with either
MySQL 5.7 or MySQL 5.6.

You can restore snapshots of Aurora MySQL 1.14*, 1.15*, 1.16*, and 1.17* into Aurora MySQL 2.01.1.

We don't allow in-place upgrade of Aurora MySQL 1.x clusters into Aurora MySQL 2.01.1 or restore to
Aurora MySQL 2.01.1 from an Amazon S3 backup. We plan to remove these restrictions in a later Aurora
MySQL 2.x release.

The performance schema is disabled for this release of Aurora MySQL 5.7. Upgrade to Aurora 2.03 for
performance schema support.

Comparison with Aurora MySQL 5.6

The following Amazon Aurora MySQL features are supported in Aurora MySQL 5.6, but these features are
currently not supported in Aurora MySQL 5.7.

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

Currently, Aurora MySQL 2.01.1 does not support features added in Aurora MySQL version 1.16 and
later. For information about Aurora MySQL version 1.16, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

MySQL 5.7 compatibility

Aurora MySQL 2.01.1 is wire-compatible with MySQL 5.7 and includes features such as JSON support,
spatial indexes, and generated columns. Aurora MySQL uses a native implementation of spatial indexing
using z-order curves to deliver >20x better write performance and >10x better read performance than
MySQL 5.7 for spatial datasets.

Aurora MySQL 2.01.1 does not currently support the following MySQL 5.7 features:

• Global transaction identifiers (GTIDs). Aurora MySQL supports GTIDs in version 2.04 and higher.
• Group replication plugin
• Increased page size
• InnoDB buffer pool loading at startup
• InnoDB full-text parser plugin

1214

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Multisource replication
• Online buffer pool resizing
• Password validation plugin
• Query rewrite plugins
• Replication filtering
• The CREATE TABLESPACE SQL statement
• X Protocol

CLI differences between Aurora MySQL 2.x and Aurora MySQL 1.x

• The engine name for Aurora MySQL 2.x is aurora-mysql; the engine name for Aurora MySQL 1.x
continues to be aurora.

• The engine version for Aurora MySQL 2.x is 5.7.12; the engine version for Aurora MySQL 1.x
continues to be 5.6.10ann.

• The default parameter group for Aurora MySQL 2.x is default.aurora-mysql5.7; the default
parameter group for Aurora MySQL 1.x continues to be default.aurora5.6.

• The DB cluster parameter group family name for Aurora MySQL 2.x is aurora-mysql5.7; the DB
cluster parameter group family name for Aurora MySQL 1.x continues to be aurora5.6.

Refer to the Aurora documentation for the full set of CLI commands and differences between Aurora
MySQL 2.x and Aurora MySQL 1.x.

Improvements

• Fixed an issue with snapshot restore where Aurora-specific database privileges were created incorrectly
when a MySQL 5.6-compatible snapshot was restored with MySQL 5.7 compatibility.

• Added support for 1.17 snapshot restores.

Aurora MySQL database engine updates 2018-02-06 (version
2.01) (deprecated)
Version: 2.01

Aurora MySQL 2.01 is generally available. Going forward, Aurora MySQL 2.x versions will be compatible
with MySQL 5.7 and Aurora MySQL 1.x versions will be compatible with MySQL 5.6.

When creating a new Aurora MySQL DB cluster, including those restored from snapshots, you can choose
compatibility with either MySQL 5.7 or MySQL 5.6.

You can restore snapshots of Aurora MySQL 1.14*, 1.15*, and 1.16* into Aurora MySQL 2.01.

We don't allow in-place upgrade of Aurora MySQL 1.x clusters into Aurora MySQL 2.01 or restore to
Aurora MySQL 2.01 from an Amazon S3 backup. We plan to remove these restrictions in a later Aurora
MySQL 2.x release.

The performance schema is disabled for this release of Aurora MySQL 5.7. Upgrade to Aurora 2.03 for
performance schema support.

Comparison with Aurora MySQL 5.6

The following Amazon Aurora MySQL features are supported in Aurora MySQL 5.6, but these features are
currently not supported in Aurora MySQL 5.7.

1215

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 2

• Asynchronous key prefetch (AKP). For more information, see Optimizing Amazon Aurora indexed join
queries with asynchronous key prefetch (p. 1057).

• Hash joins. For more information, see Optimizing large Aurora MySQL join queries with hash
joins (p. 1059).

• Native functions for synchronously invoking AWS Lambda functions. For more information, see
Invoking a Lambda function with an Aurora MySQL native function (p. 1033).

• Scan batching. For more information, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

• Migrating data from MySQL using an Amazon S3 bucket. For more information, see Migrating data
from MySQL by using an Amazon S3 bucket (p. 805).

Currently, Aurora MySQL 2.01 does not support features added in Aurora MySQL version 1.16 and
later. For information about Aurora MySQL version 1.16, see Aurora MySQL database engine updates
2017-12-11 (p. 1246).

MySQL 5.7 compatibility

Aurora MySQL 2.01 is wire-compatible with MySQL 5.7 and includes features such as JSON support,
spatial indexes, and generated columns. Aurora MySQL uses a native implementation of spatial indexing
using z-order curves to deliver >20x better write performance and >10x better read performance than
MySQL 5.7 for spatial datasets.

Aurora MySQL 2.01 does not currently support the following MySQL 5.7 features:

• Global transaction identifiers (GTIDs). Aurora MySQL supports GTIDs in version 2.04 and higher.
• Group replication plugin
• Increased page size
• InnoDB buffer pool loading at startup
• InnoDB full-text parser plugin
• Multisource replication
• Online buffer pool resizing
• Password validation plugin
• Query rewrite plugins
• Replication filtering
• The CREATE TABLESPACE SQL statement
• X Protocol

CLI differences between Aurora MySQL 2.x and Aurora MySQL 1.x

• The engine name for Aurora MySQL 2.x is aurora-mysql; the engine name for Aurora MySQL 1.x
continues to be aurora.

• The engine version for Aurora MySQL 2.x is 5.7.12; the engine version for Aurora MySQL 1.x
continues to be 5.6.10ann.

• The default parameter group for Aurora MySQL 2.x is default.aurora-mysql5.7; the default
parameter group for Aurora MySQL 1.x continues to be default.aurora5.6.

• The DB cluster parameter group family name for Aurora MySQL 2.x is aurora-mysql5.7; the DB
cluster parameter group family name for Aurora MySQL 1.x continues to be aurora5.6.

Refer to the Aurora documentation for the full set of CLI commands and differences between Aurora
MySQL 2.x and Aurora MySQL 1.x.

1216

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

Database engine updates for Amazon Aurora MySQL
version 1
The following are Amazon Aurora version 1 database engine updates:

• Aurora MySQL database engine updates 2021-09-30 (version 1.23.4) (p. 1218)

• Aurora MySQL database engine updates 2021-06-28 (version 1.23.3) (p. 1219)

• Aurora MySQL database engine updates 2021-03-18 (version 1.23.2) (p. 1219)

• Aurora MySQL database engine updates 2020-11-24 (version 1.23.1) (p. 1220)

• Aurora MySQL database engine updates 2020-09-02 (version 1.23.0) (p. 1221)

• Aurora MySQL database engine updates 2021-06-03 (version 1.22.5) (p. 1225)

• Aurora MySQL database engine updates 2021-03-04 (version 1.22.4) (p. 1225)

• Aurora MySQL database engine updates 2020-11-09 (version 1.22.3) (p. 1226)

• Aurora MySQL database engine updates 2020-03-05 (version 1.22.2) (p. 1227)

• Aurora MySQL database engine updates 2019-12-23 (version 1.22.1) (p. 1228)

• Aurora MySQL database engine updates 2019-11-25 (version 1.22.0) (p. 1229)

• Aurora MySQL database engine updates 2019-11-25 (version 1.21.0) (p. 1232)

• Aurora MySQL database engine updates 2020-03-05 (version 1.20.1) (p. 1233)

• Aurora MySQL database engine updates 2019-11-11 (version 1.20.0) (p. 1234)

• Aurora MySQL database engine updates 2020-03-05 (version 1.19.6) (p. 1235)

• Aurora MySQL database engine updates 2019-09-19 (version 1.19.5) (p. 1235)

• Aurora MySQL database engine updates 2019-06-05 (version 1.19.2) (p. 1236)

• Aurora MySQL database engine updates 2019-05-09 (version 1.19.1) (p. 1237)

• Aurora MySQL database engine updates 2019-02-07 (version 1.19.0) (p. 1238)

• Aurora MySQL database engine updates 2018-09-20 (p. 1239) (Version 1.18.0)

• Aurora MySQL database engine updates 2020-03-05 (p. 1240) (Version 1.17.9)

• Aurora MySQL database engine updates 2019-01-17 (p. 1240) (Version 1.17.8)

• Aurora MySQL database engine updates 2018-10-08 (p. 1241) (Version 1.17.7)

• Aurora MySQL database engine updates 2018-09-06 (p. 1242) (Version 1.17.6)

• Aurora MySQL database engine updates 2018-08-14 (p. 1242) (Version 1.17.5)

• Aurora MySQL database engine updates 2018-08-07 (p. 1243) (Version 1.17.4)

• Aurora MySQL database engine updates 2018-06-05 (p. 1244) (Version 1.17.3)

• Aurora MySQL database engine updates 2018-04-27 (p. 1244) (Version 1.17.2)

• Aurora MySQL database engine updates 2018-03-23 (p. 1245) (Version 1.17.1)

• Aurora MySQL database engine updates 2018-03-13 (p. 1245) (Version 1.17)

• Aurora MySQL database engine updates 2017-12-11 (p. 1246) (Version 1.16)

• Aurora MySQL database engine updates 2017-11-20 (p. 1247) (Version 1.15.1)

• Aurora MySQL database engine updates 2017-10-24 (p. 1248) (Version 1.15)

• Aurora MySQL database engine updates: 2018-03-13 (p. 1250) (Version 1.14.4)

• Aurora MySQL database engine updates: 2017-09-22 (p. 1250) (Version 1.14.1)

• Aurora MySQL database engine updates: 2017-08-07 (p. 1251) (Version 1.14)

• Aurora MySQL database engine updates: 2017-05-15 (p. 1252) (Version 1.13)

1217

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

• Aurora MySQL database engine updates: 2017-04-05 (p. 1253) (Version 1.12)

• Aurora MySQL database engine updates: 2017-02-23 (p. 1255) (Version 1.11)

• Aurora MySQL database engine updates: 2017-01-12 (p. 1257) (Version 1.10.1)

• Aurora MySQL database engine updates: 2016-12-14 (p. 1257) (Version 1.10)

• Aurora MySQL database engine updates: 2016-11-10 (p. 1258) (Versions 1.9.0, 1.9.1)

• Aurora MySQL database engine updates: 2016-10-26 (p. 1259) (Version 1.8.1)

• Aurora MySQL database engine updates: 2016-10-18 (p. 1259) (Version 1.8)

• Aurora MySQL database engine updates: 2016-09-20 (p. 1261) (Version 1.7.1)

• Aurora MySQL database engine updates: 2016-08-30 (p. 1261) (Version 1.7)

• Aurora MySQL database engine updates: 2016-06-01 (p. 1262) (Version 1.6.5)

• Aurora MySQL database engine updates: 2016-04-06 (p. 1262) (Version 1.6)

• Aurora MySQL database engine updates: 2016-01-11 (p. 1264) (Version 1.5)

• Aurora MySQL database engine updates: 2015-12-03 (p. 1264) (Version 1.4)

• Aurora MySQL database engine updates: 2015-10-16 (p. 1266) (Versions 1.2, 1.3)

• Aurora MySQL database engine updates: 2015-08-24 (p. 1268) (Version 1.1)

Aurora MySQL database engine updates 2021-09-30 (version
1.23.4)

Version: 1.23.4

Aurora MySQL 1.23.4 is generally available. Aurora MySQL 2.* versions are compatible with MySQL 5.7
and Aurora MySQL 1.* versions are compatible with MySQL 5.6.

Currently supported Aurora MySQL releases for upgrade to 1.23.4 are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*,
1.19.*, 1.20.*, 1.21.*, 1.22.*, and 1.23.*.

To create a cluster with an older version of Aurora MySQL, specify the engine version through the RDS
Console, the AWS CLI, or the Amazon RDS API.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

General improvements:

• Fixed an issue that can cause high CPU consumption on the reader instances due to excessive logging
of informational messages in internal diagnostic log files.

High-priority fixes:

• CVE-2021-2307

• CVE-2021-2226

• CVE-2021-2160

• CVE-2021-2154

• CVE-2021-2060

• CVE-2021-2032

1218

http://aws.amazon.com/support
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2307
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2226
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2154
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2060
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2032

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

• CVE-2021-2001

Aurora MySQL database engine updates 2021-06-28 (version
1.23.3)
Version: 1.23.3

Aurora MySQL 1.23.3 is generally available. Aurora MySQL 1.* versions are compatible with MySQL 5.6
and Aurora MySQL 2.* versions are compatible with MySQL 5.7.

Currently supported Aurora MySQL releases for upgrade to 1.23.3 are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*,
1.19.*, 1.20.*, 1.21.*, 1.22.*, and 1.23.*.

To create a cluster with an older version of Aurora MySQL, specify the engine version through the RDS
Console, the AWS CLI, or the Amazon RDS API.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

General stability and availability enhancements.

Security fixes:

• CVE-2021-23841
• CVE-2021-3449
• CVE-2020-28196

Aurora MySQL database engine updates 2021-03-18 (version
1.23.2)
Version: 1.23.2

Aurora MySQL 1.23.2 is generally available. Aurora MySQL 1.* versions are compatible with MySQL 5.6
and Aurora MySQL 2.* versions are compatible with MySQL 5.7.

Currently supported Aurora MySQL releases are 1.19.*, 1.20.*, 1.21.*, 1.22.*, 1.23.*, and 2.04.*, 2.05.*,
2.06.*,2.07.*, 2.08.* and 2.09.*. You can restore the snapshot of an Aurora MySQL 1.* database into
Aurora MySQL 1.23.2.

To create a cluster with an older version of Aurora MySQL, specify the engine version through the RDS
Console, the AWS CLI, or the Amazon RDS API.

Note
This version is currently not available in the following regions: AWS GovCloud (US-East) [us-gov-
east-1], AWS GovCloud (US-West) [us-gov-west-1]. There will be a separate announcement once
it is made available.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

High priority fixes:

1219

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2001
http://aws.amazon.com/support
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-23841
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3449
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-28196
http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

• CVE-2020-14867

• CVE-2020-14812

• CVE-2020-14769

• CVE-2020-14765

• CVE-2020-14793

• CVE-2020-14672

• CVE-2020-1971

• CVE-2018-3143

Availability improvements:

• Fixed an issue in the dynamic cluster storage resizing feature that could cause reader DB instances to
restart.

• Fixed a failover issue due to a race condition in RESET QUERY CACHE statement.

• Fixed a crash in a nested stored procedure call with query cache.

• Fixed an issue to prevent repeated restart of mysqld when recovering from an incomplete truncation
of partitioned or sub-partitioned tables.

• Fixed an issue that could cause migration from on-prem or RDS for MySQL to Aurora MySQL to not
succeed.

• Fixed a rare race condition where the database can restart during the scaling of the storage volume.

• Fixed an issue in the lock manager where a race condition can cause a lock to be shared by two
transactions, causing the database to restart.

• Fixed an issue related to transaction lock memory management with long-running write transactions
resulting in a database restart.

• Fixed a race condition in the lock manager that resulted in a database restart or failover during
transaction rollback.

• Fixed an issue during upgrade from 5.6 to 5.7 when the table had Fast Online DDL enabled in lab
mode in 5.6.

• Fixed multiple issues where the engine might restart during zero-downtime patching while checking
for a quiesced point in database activity for patching.

• Fixed multiple issues related to repeated restarts due to interrupted DDL operations, such as DROP
TRIGGER, ALTER TABLE, and specifically ALTER TABLE that modifies the type of partitioning or
number of partitions in a table.

• Updated the default value of table_open_cache on 16XL and 24XL instances to avoid repeated
restarts and high CPU utilization on large instances classes (R4/R5-16XL, R5-12XL, R5-24XL). This
impacted 1.21.x and 1.22.x releases.

• Fixed an issue that caused a binlog replica to stop with an HA_ERR_KEY_NOT_FOUND error.

Integration of MySQL community edition bug fixes

• Replication: While a SHOW BINLOG EVENTS statement was executing, any parallel transaction was
blocked. The fix ensures that the SHOW BINLOG EVENTS process now only acquires a lock for the
duration of calculating the file's end position, therefore parallel transactions are not blocked for long
durations. (Bug #76618, Bug #20928790)

Aurora MySQL database engine updates 2020-11-24 (version
1.23.1)

1220

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14867
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14812
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14769
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14765
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14793
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14672
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-1971
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3143

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

Version: 1.23.1

Aurora MySQL 1.23.1 is generally available. Aurora MySQL 1.* versions are compatible with MySQL 5.6
and Aurora MySQL 2.* versions are compatible with MySQL 5.7.

Currently supported Aurora MySQL releases for upgrade to 1.23.1 are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*,
1.19.*, 1.20.*, 1.21.*, 1.22.*, and 1.23.*.

To create a cluster with an older version of Aurora MySQL, specify the engine version through the RDS
Console, the AWS CLI, or the Amazon RDS API.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

Security fixes:

Fixes and other enhancements to fine-tune handling in a managed environment. Additional CVE fixes
below:

• CVE-2020-14559

• CVE-2020-14539

Incompatible changes:

This version introduces a permission change that affects the behavior of the mysqldump command.
Users must have the PROCESS privilege to access the INFORMATION_SCHEMA.FILES table. To run the
mysqldump command without any changes, grant the PROCESS privilege to the database user that
the mysqldump command connects to. You can also run the mysqldump command with the --no-
tablespaces option. With that option, the mysqldump output doesn't include any CREATE LOGFILE
GROUP or CREATE TABLESPACE statements. In that case, the mysqldump command doesn't access the
INFORMATION_SCHEMA.FILES table, and you don't need to grant the PROCESS permission.

Availability improvements:

• Fixed an issue that causes an Aurora reader instance in a global database secondary cluster running
1.23.0 to restart repeatedly.

• Fixed an issue where a global database secondary Region's replicas might restart when upgraded to
release 1.23.0 while the primary Region writer was on an older release version.

• Fixed a memory leak in dynamic resizing feature, introduced in Aurora MySQL 1.23.0.

• Fixed an issue that might cause server restart during execution of a query using the parallel query
feature.

• Fixed an issue that might cause a client session to hang when the database engine encounters an error
while reading from or writing to the network.

Aurora MySQL database engine updates 2020-09-02 (version
1.23.0)
Version: 1.23.0

Aurora MySQL 1.23.0 is generally available. Aurora MySQL 1.* versions are compatible with MySQL 5.6
and Aurora MySQL 2.* versions are compatible with MySQL 5.7.

1221

http://aws.amazon.com/support
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14559
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14539

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 1.20.*, 1.21.*,
1.22.*, 1.23.*, 2.01.*, 2.02.*, 2.03.*, 2.04.*, 2.05.*, 2.06.*, 2.07.*, 2.08.*, and 2.09.*. You can restore the
snapshot of an Aurora MySQL 1.* database into Aurora MySQL 1.23.0.

Important
The improvements to Aurora storage in this version limit the available upgrade paths from
Aurora MySQL 1.23 to Aurora MySQL 2.*. When you upgrade an Aurora MySQL 1.23 cluster to
2.*, you must upgrade to Aurora MySQL 2.09.0 or later.

To create a cluster with an older version of Aurora MySQL, please specify the engine version through the
RDS Console, the AWS CLI, or the Amazon RDS API.

Note
This version is currently not available in the following regions: AWS GovCloud (US-East) [us-gov-
east-1], AWS GovCloud (US-West) [us-gov-west-1]. There will be a separate announcement once
it is made available.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

New features:

• You can now turn parallel query on or off for an existing cluster by changing the value of the DB
cluster parameter aurora_parallel_query. You don't need to use the parallelquery setting for
the --engine-mode parameter when creating the cluster.

Parallel query is now expanded to be available in all regions where Aurora MySQL is available.

There are a number of other functionality enhancements and changes to the procedures for upgrading
and enabling parallel query in an Aurora cluster. For more information, see Working with parallel
query for Amazon Aurora MySQL (p. 902).

• With this release, you can create Amazon Aurora MySQL database instances with up to 128 tebibytes
(TiB) of storage. The new storage limit is an increase from the prior 64 TiB. The 128 TiB storage size
supports larger databases. This capability is not supported on small instances sizes (db.t2 or db.t3). A
single tablespace cannot grow beyond 64 TiB due to InnoDB limitations with 16 KB page size.

Aurora alerts you when the cluster volume size is near 128 TiB, so that you can take action prior to
hitting the size limit. The alerts appear in the mysql log and RDS Events in the AWS Management
Console.

• Improved binary log (binlog) processing to reduce crash recovery time and commit time latency when
very large transactions are involved.

• Aurora dynamically resizes your cluster storage space. With dynamic resizing, the storage space for
your Aurora DB cluster automatically decreases when you remove data from the DB cluster. For more
information, see Storage scaling (p. 396).

Note
The dynamic resizing feature is being deployed in phases to the AWS Regions where Aurora is
available. Depending on the Region where your cluster is, this feature might not be available
yet. For more information, see the What's New announcement.

High priority fixes:

• CVE-2019-2911

• CVE-2019-2537

• CVE-2018-2787

1222

http://aws.amazon.com/support
https://dev.mysql.com/doc/refman/5.7/en/innodb-limits.html
http://aws.amazon.com/about-aws/whats-new/2020/10/amazon-aurora-enables-dynamic-resizing-database-storage-space/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2911
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2537
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2787

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

• CVE-2018-2784

• CVE-2018-2645

• CVE-2018-2640

Availability improvements:

• Fixed an issue in the lock manager where a race condition can cause a lock to be shared by two
transactions, causing the database to restart.

• Fixed an issue related to transaction lock memory management with long-running write transactions
resulting in a database restart.

• Fixed a race condition in the lock manager that resulted in a database restart or failover during
transaction rollback.

• Fixed an issue during upgrade from 5.6 to 5.7 when the innodb_file_format changed on a table
that had Fast DDL enabled.

• Fixed multiple issues where the engine might restart during zero-downtime patching while checking
for a quiesced point in database activity for patching.

• Fixed an issue related to DDL recovery that impacts restart of the DB instance while recovering an
interrupted DROP TRIGGER operation.

• Fixed a bug that might cause unavailability of the database if a crash occurs during the execution of
certain partitioning operations. Specifically, an interrupted ALTER TABLE operation that modifies the
type of partitioning or the number of partitions in a table.

• Fix default value of table_open_cache on 16XL and 24XL instances which could cause repeated
failovers and high CPU utilization on large instances classes (R4/R5-16XL, R5-12XL, R5-24XL). This
impacted 1.21.x and 1.22.x.

Global databases:

• Populate missing data in the MySQL INFORMATION_SCHEMA.REPLICA_HOST_STATUS view on
primary and secondary AWS Regions in an Aurora global database.

• Fixed unexpected query failures that could occur in a Global DB secondary Region due to garbage
collection of UNDO records in the primary Region, after temporary network connectivity issues
between the primary and secondary Regions.

Parallel query:

• Fixed an issue where parallel query might cause a long-running query to return an empty result.

• Fixed an issue where a query on a small table on the Aurora read replica might take more than one
second.

• Fixed an issue that might cause a restart when a parallel query and a DML statement are executing
concurrently under a heavy workload.

General improvements:

• Fixed an issue where queries using spatial index might return partial results if spatial index was created
on tables with already existing large spatial values.

• Increased maximum allowable length for audit system variables server_audit_incl_users and
server_audit_excl_users from 1024 bytes to 2000 bytes.

• Fixed an issue where a binlog replica connected to an Aurora MySQL binlog primary might show
incomplete data when the Aurora MySQL binlog primary loads data from S3 under statement
binlog_format.

1223

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2784
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2645
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2640

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

• Comply with community behavior to map mixed binlog_format to row instead of statement for
loading data.

• Fixed an issue causing binlog replication to stop working when the user closes the connection and the
session is using temporary tables.

• Improved response time of a query involving MyISAM temporary tables.

• Fix permission issue when binlog worker runs a native lambda function.

• Fixed an issue on Aurora read replicas when trying to query or rotate the slow log or general log.

• Fixed an issue that broke logical replication when the binlog_checksum parameter is set to different
values on the master and the replica.

• Fixed an issue where the read replica might transiently see partial results of a recently committed
transaction on the writer.

• Include transaction info of the rolled-back transaction in show engine innodb status when a
deadlock is resolved.

Integration of MySQL community edition bug fixes

• Binlog events with ALTER TABLE ADD COLUMN ALGORITHM=QUICK will be rewritten as
ALGORITHM=DEFAULT to be compatible with the community edition.

• BUG #22350047: IF CLIENT KILLED AFTER ROLLBACK TO SAVEPOINT PREVIOUS STMTS COMMITTED

• Bug #29915479: RUNNING COM_REGISTER_SLAVE WITHOUT COM_BINLOG_DUMP CAN RESULTS IN
SERVER EXIT

• Bug #30441969: BUG #29723340: MYSQL SERVER CRASH AFTER SQL QUERY WITH DATA ?AST

• Bug #30628268: OUT OF MEMORY CRASH

• Bug #27081349: UNEXPECTED BEHAVIOUR WHEN DELETE WITH SPATIAL FUNCTION

• Bug #27230859: UNEXPECTED BEHAVIOUR WHILE HANDLING INVALID POLYGON"

• Bug #27081349: UNEXPECTED BEHAVIOUR WHEN DELETE WITH SPATIAL"

• Bug #26935001: ALTER TABLE AUTO_INCREMENT TRIES TO READ INDEX FROM DISCARDED
TABLESPACE

• Bug #29770705: SERVER CRASHED WHILE EXECUTING SELECT WITH SPECIFIC WHERE CLAUSE

• Bug #27659490: SELECT USING DYNAMIC RANGE AND INDEX MERGE USE TOO MUCH MEMORY(OOM)

• Bug #24786290: REPLICATION BREAKS AFTER BUG #74145 HAPPENS IN MASTER

• Bug #27703912: EXCESSIVE MEMORY USAGE WITH MANY PREPARE

• Bug #20527363: TRUNCATE TEMPORARY TABLE CRASH: !DICT_TF2_FLAG_IS_SET(TABLE,
DICT_TF2_TEMPORARY)

• Bug#23103937 PS_TRUNCATE_ALL_TABLES() DOES NOT WORK IN SUPER_READ_ONLY MODE

• Bug #25053286: USE VIEW WITH CONDITION IN PROCEDURE CAUSES INCORRECT BEHAVIOR (fixed in
5.6.36)

• Bug #25586773: INCORRECT BEHAVIOR FOR CREATE TABLE SELECT IN A LOOP IN SP (fixed in 5.6.39)

• Bug #27407480: AUTOMATIC_SP_PRIVILEGES REQUIRES NEED THE INSERT PRIVILEGES FOR
MYSQL.USER TABLE

• Bug #26997096: relay_log_space value is not updated in a synchronized manner so that its value is
sometimes much higher than the actual disk space used by relay logs.

• Bug#15831300 SLAVE_TYPE_CONVERSIONS=ALL_NON_LOSSY NOT WORKING AS EXPECTED

• SSL Bug backport Bug #17087862, Bug #20551271

• Bug #16894092: PERFORMANCE REGRESSION IN 5.6.6+ FOR INSERT INTO ... SELECT ... FROM (fixed in
5.6.15).

• Port a bug fix related to SLAVE_TYPE_CONVERSIONS.

1224

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

Aurora MySQL database engine updates 2021-06-03 (version
1.22.5)
Version: 1.22.5

Aurora MySQL 1.22.5 is generally available. Aurora MySQL 1.* versions are compatible with MySQL 5.6
and Aurora MySQL 2.* versions are compatible with MySQL 5.7.

Currently supported Aurora MySQL releases for upgrade to 1.22.5 are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*,
1.19.*, 1.20.*, 1.21.*, and 1.22.*.

To create a cluster with an older version of Aurora MySQL, specify the engine version through the RDS
Console, the AWS CLI, or the Amazon RDS API.

Note
This version is designated as a long-term support (LTS) release. For more information, see
Aurora MySQL long-term support (LTS) releases (p. 1106).

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

Availability improvements:

• Resolved an issue that could cause the database to stall, and subsequently restart or fail over due to a
concurrency conflict between internal cleanup threads.

• Resolved an issue that could cause the cluster to become unavailable if the database restarted while
holding XA transactions in prepared state, and then restarted again before those transactions were
committed or rolled back. Prior to this fix, you can address the issue by restoring the cluster to a point
in time before the first restart.

• Resolved an issue that could cause the InnoDB purge to become blocked if the database restarts while
processing a DDL statement. As a result, the InnoDB history list length would grow and the cluster
storage volume would keep growing until it fills up, making the database unavailable. Prior to this fix,
you can mitigate the issue by restarting the database again to unblock purge.

Aurora MySQL database engine updates 2021-03-04 (version
1.22.4)
Version: 1.22.4

Aurora MySQL 1.22.4 is generally available. Aurora MySQL 1.* versions are compatible with MySQL 5.6
and Aurora MySQL 2.* versions are compatible with MySQL 5.7.

Currently supported Aurora MySQL releases for upgrade to 1.22.4 are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*,
1.19.*, 1.20.*, 1.21.*, and 1.22.*.

To create a cluster with an older version of Aurora MySQL, specify the engine version through the RDS
Console, the AWS CLI, or the Amazon RDS API.

Note
This version is designated as a long-term support (LTS) release. For more information, see
Aurora MySQL long-term support (LTS) releases (p. 1106).

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

1225

http://aws.amazon.com/support
http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

Improvements

Security fixes:

Fixes and other enhancements to fine-tune handling in a managed environment. Additional CVE fixes
below:

• CVE-2020-14867

• CVE-2020-14812

• CVE-2020-14793

• CVE-2020-14769

• CVE-2020-14765

• CVE-2020-14672

• CVE-2020-1971

Availability improvements:

• Fixed an issue that could trigger a database restart or failover during a kill session command. If
you encounter this issue, contact AWS support to enable this fix on your instance.

• Improved binary logging to reduce crash recovery time and commit latency when large transactions
are involved.

• Fixed an issue that caused a binlog replica to stop with an HA_ERR_KEY_NOT_FOUND error.

Aurora MySQL database engine updates 2020-11-09 (version
1.22.3)
Version: 1.22.3

Aurora MySQL 1.22.3 is generally available. Aurora MySQL 1.* versions are compatible with MySQL 5.6
and Aurora MySQL 2.* versions are compatible with MySQL 5.7.

Currently supported Aurora MySQL releases for upgrade to 1.22.3 are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*,
1.19.*, 1.20.*, 1.21.*, and 1.22.*.

To create a cluster with an older version of Aurora MySQL, specify the engine version through the RDS
Console, the AWS CLI, or the Amazon RDS API.

Note
This version is designated as a long-term support (LTS) release. For more information, see
Aurora MySQL long-term support (LTS) releases (p. 1106).

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

Security fixes:

Fixes and other enhancements to fine-tune handling in a managed environment. Additional CVE fixes
below:

• CVE-2020-14559

• CVE-2020-14539

1226

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14867
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14812
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14793
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14769
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14765
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14672
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-1971
http://aws.amazon.com/support
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14559
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14539

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

• CVE-2020-2579
• CVE-2020-2812
• CVE-2020-2780
• CVE-2020-2763

Incompatible changes:

This version introduces a permission change that affects the behavior of the mysqldump command.
Users must have the PROCESS privilege to access the INFORMATION_SCHEMA.FILES table. To run the
mysqldump command without any changes, grant the PROCESS privilege to the database user that
the mysqldump command connects to. You can also run the mysqldump command with the --no-
tablespaces option. With that option, the mysqldump output doesn't include any CREATE LOGFILE
GROUP or CREATE TABLESPACE statements. In that case, the mysqldump command doesn't access the
INFORMATION_SCHEMA.FILES table, and you don't need to grant the PROCESS permission.

Availability improvements:

• Fixed issues that might cause server restarts during recovery of a DDL statement that was not
committed.

• Fixed race conditions in the lock manager that can cause a server restart.
• Fixed an issue that might cause the monitoring agent to restart the server during recovery of a large

transaction

General improvements:

• Changed the behavior to map MIXED binlog_format to ROW instead of STATEMENT when executing
LOAD DATA FROM INFILE | S3.

• Fixed an issue where a binlog replica connected to an Aurora MySQL binlog primary might show
incomplete data when the primary executed LOAD DATA FROM S3 and binlog_format is set to
STATEMENT.

Integration of MySQL community edition bug fixes

• Bug #26654685: A corrupt index ID encountered during a foreign key check raised an assertion
• Bug #15831300: By default, when promoting integers from a smaller type on the master to a larger

type on the slave (for example, from a SMALLINT column on the master to a BIGINT column on the
slave), the promoted values are treated as though they are signed. Now in such cases it is possible
to modify or override this behavior using one or both of ALL_SIGNED, ALL_UNSIGNED in the set of
values specified for the slave_type_conversions server system variable. For more information, see Row-
based replication: attribute promotion and demotion, as well as the description of the variable.

• Bug #17449901: With foreign_key_checks=0, InnoDB permitted an index required by a foreign
key constraint to be dropped, placing the table into an inconsistent and causing the foreign key check
that occurs at table load to fail. InnoDB now prevents dropping an index required by a foreign key
constraint, even with foreign_key_checks=0. The foreign key constraint must be removed before
dropping the foreign key index.

• BUG #20768847: An ALTER TABLE ... DROP INDEX operation on a table with foreign key dependencies
raised an assertion.

Aurora MySQL database engine updates 2020-03-05 (version
1.22.2)
Version: 1.22.2

1227

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2579
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2812
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2780
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2763
https://dev.mysql.com/doc/refman/5.6/en/integer-types.html
https://dev.mysql.com/doc/refman/5.6/en/integer-types.html
https://dev.mysql.com/doc/refman/5.6/en/replication-options-replica.html#sysvar_slave_type_conversions
https://dev.mysql.com/doc/refman/5.6/en/replication-features-differing-tables.html#replication-features-attribute-promotion
https://dev.mysql.com/doc/refman/5.6/en/replication-features-differing-tables.html#replication-features-attribute-promotion
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

Aurora MySQL 1.22.2 is generally available. Aurora MySQL 1.* versions are compatible with MySQL 5.6
and Aurora MySQL 2.* versions are compatible with MySQL 5.7.

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 1.20.*, 1.21.*,
1.22.*, 2.01.*, 2.02.*, 2.03.*, 2.04.*, 2.05.*, 2.06.* and 2.07.*. You can restore the snapshot of an Aurora
MySQL 1.* database into Aurora MySQL 1.22.2.

To create a cluster with an older version of Aurora MySQL, please specify the engine version through the
RDS Console, the AWS CLI, or the Amazon RDS API.

Note
This version is currently not available in the following regions: AWS GovCloud (US-East) [us-gov-
east-1], AWS GovCloud (US-West) [us-gov-west-1]. There will be a separate announcement once
it is made available.
This version is designated as a long-term support (LTS) release. For more information, see
Aurora MySQL long-term support (LTS) releases (p. 1106).

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

High priority fixes:

• Fixed an issue of intermittent connection failures after certificate rotation.
• Fixed an issue that caused cloning to take longer on some database clusters with high write loads.
• Fixed an issue that broke logical replication when the binlog_checksum parameter is set to different

values on the master and the replica.
• Fixed an issue where slow log and general log may not properly rotate on read replicas.
• Fixed an issue with ANSI Read Committed Isolation Level behavior.

Aurora MySQL database engine updates 2019-12-23 (version
1.22.1)
Version: 1.22.1

Aurora MySQL 1.22.1 is generally available. Aurora MySQL 1.* versions are compatible with MySQL 5.6
and Aurora MySQL 2.* versions are compatible with MySQL 5.7.

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 1.20.*, 1.21.*,
1.22.*, 2.01.*, 2.02.*, 2.03.*, 2.04.*, 2.05.*, 2.06.*, and 2.07.*. To create a cluster with an older version of
Aurora MySQL, please specify the engine version through the AWS Management Console, the AWS CLI
or the RDS API. You have the option to upgrade existing Aurora MySQL 1.* database clusters to Aurora
MySQL 1.22.1.

Note
This version is currently not available in the following AWS Regions: AWS GovCloud (US-East)
[us-gov-east-1], AWS GovCloud (US-West) [us-gov-west-1], China (Ningxia) [cn-northwest-1],
Asia Pacific (Hong Kong) [ap-east-1], and Middle East (Bahrain) [me-south-1. There will be a
separate announcement once it is made available.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
The procedure to upgrade your DB cluster has changed. For more information, see Upgrading
the minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

1228

http://aws.amazon.com/support
http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

Improvements

Critical fixes:

• Fixed issues that prevented engine recovery involving table locks and temporary tables.

• Improved the stability of binary log when temporary tables are used.

High priority fixes:

• Fixed a slow memory leak in Aurora specific database tracing and logging sub-system that lowers the
freeable memory.

Aurora MySQL database engine updates 2019-11-25 (version
1.22.0)
Version: 1.22.0

Aurora MySQL 1.22.0 is generally available. Aurora MySQL 1.* versions are compatible with MySQL 5.6
and Aurora MySQL 2.* versions are compatible with MySQL 5.7.

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 1.20.*, 1.21.*,
1.22.*, 2.01.*, 2.02.*, 2.03.*, 2.04.*, 2.05.*, 2.06.*, and 2.07.*. To create a cluster with an older version of
Aurora MySQL, please specify the engine version through the AWS Management Console, the AWS CLI
or the RDS API. You have the option to upgrade existing Aurora MySQL 1.* database clusters to Aurora
MySQL 1.22.0.

Note
This version is currently not available in the following AWS Regions: AWS GovCloud (US-East)
[us-gov-east-1], AWS GovCloud (US-West) [us-gov-west-1], China (Ningxia) [cn-northwest-1],
Asia Pacific (Hong Kong) [ap-east-1], Middle East (Bahrain) [me-south-1], and South America
(São Paulo) [sa-east-1]. There will be a separate announcement once it is made available.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
The procedure to upgrade your DB cluster has changed. For more information, see Upgrading
the minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

New features:

• Aurora MySQL clusters now support the instance types r5.8xlarge, r5.16xlarge and r5.24xlarge.

• Binlog has new enhancements for improved commit time latency when very large transactions are
involved.

• Aurora MySQL now has a mechanism to minimize the time window during which events of a large
transaction are written to binlog on commit. This effectively prevents lengthy offline recovery incurred
when database crashes occur during that time window. This feature also fixes the issue where a large
transaction blocks small transactions on binlog commit. This feature is off by default and can be
enabled by the service team if needed for your workload. When enabled, it will be triggered when a
transaction size is > 500MB.

• Added support for the ANSI READ COMMITTED isolation level on the read replicas. This isolation level
enables long-running queries on the read replica to execute without impacting the high throughput of
writes on the writer node. For more information, see Aurora MySQL isolation levels.

1229

http://aws.amazon.com/support
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Reference.html#AuroraMySQL.Reference.IsolationLevels

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

• Global Databases now allow adding secondary read-only replica regions for database clusters
deployed in these AWS Regions: regions: US East (N. Virginia) [us-east-1], US East (Ohio) [us-east-2],
US West (N. California) [us-west-1], US West (Oregon) [us-west-2], Europe (Ireland) [eu-west-1],
Europe (London) [eu-west-2], Europe (Paris) [eu-west-3], Asia Pacific (Tokyo) [ap-northeast-1], Asia
Pacific (Seoul) [ap-northeast-2], Asia Pacific (Singapore) [ap-southeast-1], Asia Pacific (Sydney) [ap-
southeast-2], Canada (Central) [ca-central-1], Europe (Frankfurt) [eu-central-1], and Asia Pacific
(Mumbai) [ap-south-1].

• The hot row contention feature is now generally available and does not require the Aurora lab
mode setting to be ON. This feature substantially improves throughput for workloads with many
transactions contending for rows on the same page.

• This version has updated timezone files to support the latest Brazil timezone update for new clusters.

Critical fixes:

• CVE-2019-2922

• CVE-2019-2923

• CVE-2019-2924

• CVE-2019-2910

High priority fixes:

• CVE-2019-2805

• CVE-2019-2730

• CVE-2019-2740

• CVE-2018-3064

• CVE-2018-3058

• CVE-2017-3653

• CVE-2017-3464

• CVE-2017-3244

• CVE-2016-5612

• CVE-2016-5439

• CVE-2016-0606

• CVE-2015-4904

• CVE-2015-4879

• CVE-2015-4864

• CVE-2015-4830

• CVE-2015-4826

• CVE-2015-2620

• CVE-2015-0382

• CVE-2015-0381

• CVE-2014-6555

• CVE-2014-4258

• CVE-2014-4260

• CVE-2014-2444

• CVE-2014-2436

• CVE-2013-5881

• CVE-2014-0393

1230

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2922
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2923
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2924
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2910
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2805
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2730
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2740
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3064
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3058
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3653
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3464
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3244
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5612
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5439
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0606
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4904
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4879
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4864
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4830
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4826
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2620
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0382
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0381
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6555
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4258
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4260
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2444
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2436
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-5881
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0393

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

• CVE-2013-5908

• CVE-2013-5807

• CVE-2013-3806

• CVE-2013-3811

• CVE-2013-3804

• CVE-2013-3807

• CVE-2013-2378

• CVE-2013-2375

• CVE-2013-1523

• CVE-2013-2381

• CVE-2012-5615

• CVE-2014-6489

• Fixed an issue in the DDL recovery component that resulted in prolonged database downtime.
Clusters that become unavailable after executing TRUNCATE TABLE query on a table with an
AUTO_INCREMENT column should be updated.

• Fixed an issue in the DDL recovery component that resulted in prolonged database downtime. Clusters
that become unavailable after executing DROP TABLE query on multiple tables in parallel should be
updated.

General stability fixes:

• Fixed an issue that caused read replicas to restart during a long-running transaction. Customers who
encounter replica restarts that coincide with an accelerated drop in freeable memory should consider
upgrading to this version.

• Fixed an issue that incorrectly reported ERROR 1836 when a nested query is executed against a
temporary table on the read replica.

• Fixed a parallel query abort error on an Aurora reader instance while a heavy write workload is running
on the Aurora writer instance.

• Fixed an issue that causes a database configured as a Binlog Master to restart while a heavy write
workload is running.

• Fixed an issue of prolonged unavailability while restarting the engine. This addresses an issue in the
buffer pool initialization. This issue occurs rarely but can potentially impact any supported release.

• Fixed an issue that generated inconsistent data in the
information_schema.replica_host_status table.

• Fixed a race condition between the parallel query and the standard execution paths that caused the
Reader nodes to restart intermittently.

• Improved stability of the database when the number of number of client connections exceeds the
max_connections parameter value.

• Improved stability of the reader instances by blocking unsupported DDL and LOAD FROM S3 queries.

Integration of MySQL community edition bug fixes

• Bug#16346241 - SERVER CRASH IN ITEM_PARAM::QUERY_VAL_STR

• Bug#17733850 - NAME_CONST() CRASH IN ITEM_NAME_CONST::ITEM_NAME_CONST()

• Bug #20989615 - INNODB AUTO_INCREMENT PRODUCES SAME VALUE TWICE

• Bug #20181776 - ACCESS CONTROL DOESN'T MATCH MOST SPECIFIC HOST WHEN IT CONTAINS
WILDCARD

• Bug #27326796 - MYSQL CRASH WITH INNODB ASSERTION FAILURE IN FILE PARS0PARS.CC

1231

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-5908
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-5807
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3806
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3811
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3804
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3807
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2378
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2375
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1523
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2381
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5615
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6489

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

• Bug #20590013 - IF YOU HAVE A FULLTEXT INDEX AND DROP IT YOU CAN NO LONGER PERFORM
ONLINE DDL

Aurora MySQL database engine updates 2019-11-25 (version
1.21.0)
Version: 1.21.0

Aurora MySQL 1.21.0 is generally available. Aurora MySQL 1.* versions are compatible with MySQL 5.6
and Aurora MySQL 2.* versions are compatible with MySQL 5.7.

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 1.20.*, 1.21.*,
2.01.*, 2.02.*, 2.03.* and 2.04.*. To create a cluster with an older version of Aurora MySQL, please specify
the engine version through the AWS Management Console, the AWS CLI or the RDS API. You have the
option to upgrade existing Aurora MySQL 1.* database clusters to Aurora MySQL 1.21.0.

Note
This version is currently not available in the following AWS Regions: AWS GovCloud (US-East)
[us-gov-east-1], AWS GovCloud (US-West) [us-gov-west-1], China (Ningxia) [cn-northwest-1],
Asia Pacific (Hong Kong) [ap-east-1], Europe (Stockholm) [eu-north-1], and Middle East
(Bahrain) [me-south-1]. There will be a separate announcement once it is made available.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
The procedure to upgrade your DB cluster has changed. For more information, see Upgrading
the minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

Critical fixes:

• CVE-2018-0734
• CVE-2019-2534
• CVE-2018-2612
• CVE-2017-3599
• CVE-2018-2562
• CVE-2017-3329
• CVE-2018-2696
• CVE-2015-4737

High priority fixes:

• Customers with database size close to 64 tebibytes (TiB) are strongly advised to upgrade to this
version to avoid downtime due to stability bugs affecting volumes close to the Aurora storage limit.

General stability fixes:

• Fixed a parallel query abort error on Aurora reader instances while a heavy write workload is running
on the Aurora writer instance.

• Fixed an issue on Aurora reader instances that reduced free memory during long-running transactions
while there is a heavy transaction commit traffic on the writer instance.

• The value of the parameter aurora_disable_hash_join is now persisted after database restart or
host replacement.

1232

http://aws.amazon.com/support
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-0734
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2534
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2612
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3599
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2562
https://nvd.nist.gov/vuln/detail/CVE-2017-3329
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2696
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4737

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

• Fixed an issue related to the Full Text Search cache that caused the Aurora instance to run out of
memory. Customers using Full Text Search should upgrade.

• Improved stability of the database when the hash join feature is enabled and the instance is low on
memory. Customers using hash join should upgrade.

• Fixed an issue in the query cache where the "Too many connections" error could cause a reboot.

• Fixed the free memory calculation on T2 instances to include swap memory space to prevent
unnecessary reboots.

Integration of MySQL community edition bug fixes

• Bug #19929406: HANDLE_FATAL_SIGNAL (SIG=11) IN __MEMMOVE_SSSE3_BACK FROM STRING::COPY

• Bug #17059925: For UNION statements, the rows-examined value was calculated incorrectly. This was
manifested as too-large values for the ROWS_EXAMINED column of Performance Schema statement
tables (such as events_statements_current).

• Bug #11827369: Some queries with SELECT ... FROM DUAL nested subqueries raised an assertion.

• Bug #16311231: Incorrect results were returned if a query contained a subquery in an IN clause that
contained an XOR operation in the WHERE clause.

Aurora MySQL database engine updates 2020-03-05 (version
1.20.1)
Version: 1.20.1

Aurora MySQL 1.20.1 is generally available. Aurora MySQL 1.* versions are compatible with MySQL 5.6
and Aurora MySQL 2.* versions are compatible with MySQL 5.7.

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 1.20.*, 1.21.*,
1.22.*, 2.01.*, 2.02.*, 2.03.*, 2.04.*, 2.05.*, 2.06.* and 2.07.*. You can restore the snapshot of an Aurora
MySQL 1.* database into Aurora MySQL 1.20.1.

To create a cluster with an older version of Aurora MySQL, please specify the engine version through the
RDS Console, the AWS CLI, or the Amazon RDS API.

Note
This version is currently not available in the following regions: AWS GovCloud (US-East) [us-gov-
east-1], AWS GovCloud (US-West) [us-gov-west-1]. There will be a separate announcement once
it is made available.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

High priority fixes:

• Fixed an issue of intermittent connection failures after certificate rotation.

• Fixed an issue related to connection close concurrency that would result in a failover under heavy
workload.

General stability fixes:

• Fixed a crash during execution of a complex query involving multi-table joins and aggregation that
uses intermediate tables internally.

1233

https://dev.mysql.com/doc/refman/5.6/en/union.html
https://dev.mysql.com/doc/refman/5.6/en/events-statements-current-table.html
https://dev.mysql.com/doc/refman/5.6/en/logical-operators.html#operator_xor
http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

Aurora MySQL database engine updates 2019-11-11 (version
1.20.0)
Version: 1.20.0

Aurora MySQL 1.20.0 is generally available. Aurora MySQL 1.* versions are compatible with MySQL 5.6
and Aurora MySQL 2.* versions are compatible with MySQL 5.7.

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 1.20.*, 2.01.*,
2.02.*, 2.03.* and 2.04.*. To create a cluster with an older version of Aurora MySQL, please specify the
engine version through the AWS Management Console, the AWS CLI or the RDS API. You have the option
to upgrade existing Aurora MySQL 1.* database clusters, up to 1.19.5, to Aurora MySQL 1.20.0.

Note
This version is currently not available in the following AWS Regions: AWS GovCloud (US-East)
[us-gov-east-1], AWS GovCloud (US-West) [us-gov-west-1], China (Ningxia) [cn-northwest-1],
Asia Pacific (Hong Kong) [ap-east-1], Europe (Stockholm) [eu-north-1], and Middle East
(Bahrain) [me-south-1]. There will be a separate announcement once it is made available.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
The procedure to upgrade your DB cluster has changed. For more information, see Upgrading
the minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

Critical fixes:

• CVE-2018-0734
• CVE-2019-2534
• CVE-2018-2612
• CVE-2017-3599
• CVE-2018-2562
• CVE-2017-3329
• CVE-2018-2696
• CVE-2015-4737

High priority fixes:

• Customers with database size close to 64 tebibytes (TiB) are strongly advised to upgrade to this
version to avoid downtime due to stability bugs affecting volumes close to the Aurora storage limit.

General stability fixes:

• Fixed a parallel query abort error on Aurora reader instances while a heavy write workload is running
on the Aurora writer instance.

• Fixed an issue on Aurora reader instances that reduced free memory during long-running transactions
while there is a heavy transaction commit traffic on the writer instance.

• The value of the parameter aurora_disable_hash_join is now persisted after database restart or
host replacement.

• Fixed an issue related to the Full Text Search cache that caused the Aurora instance to run out of
memory. Customers using Full Text Search should upgrade.

1234

http://aws.amazon.com/support
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-0734
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2534
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2612
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3599
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2562
https://nvd.nist.gov/vuln/detail/CVE-2017-3329
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2696
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4737

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

• Improved stability of the database when the hash join feature is enabled and the instance is low on
memory. Customers using hash join should upgrade.

• Fixed an issue in the query cache where the "Too many connections" error could cause a reboot.

• Fixed the free memory calculation on T2 instances to include swap memory space to prevent
unnecessary reboots.

Integration of MySQL community edition bug fixes

• Bug #19929406: HANDLE_FATAL_SIGNAL (SIG=11) IN __MEMMOVE_SSSE3_BACK FROM STRING::COPY

• Bug #17059925: For UNION statements, the rows-examined value was calculated incorrectly. This was
manifested as too-large values for the ROWS_EXAMINED column of Performance Schema statement
tables (such as events_statements_current).

• Bug #11827369: Some queries with SELECT ... FROM DUAL nested subqueries raised an assertion.

• Bug #16311231: Incorrect results were returned if a query contained a subquery in an IN clause that
contained an XOR operation in the WHERE clause.

Aurora MySQL database engine updates 2020-03-05 (version
1.19.6)
Version: 1.19.6

Aurora MySQL 1.19.6 is generally available. Aurora MySQL 1.* versions are compatible with MySQL 5.6
and Aurora MySQL 2.* versions are compatible with MySQL 5.7.

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 1.20.*, 1.21.*,
1.22.*, 2.01.*, 2.02.*, 2.03.*, 2.04.*, 2.05.*, 2.06.* and 2.07.*. You can restore the snapshot of an Aurora
MySQL 1.* database into Aurora MySQL 1.19.6.

To create a cluster with an older version of Aurora MySQL, please specify the engine version through the
RDS Console, the AWS CLI, or the Amazon RDS API.

Note
This version is currently not available in the following regions: AWS GovCloud (US-East) [us-gov-
east-1], AWS GovCloud (US-West) [us-gov-west-1]. There will be a separate announcement once
it is made available.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

High priority fixes:

• Fixed an issue of intermittent connection failures after certificate rotation.

Aurora MySQL database engine updates 2019-09-19 (version
1.19.5)
Version: 1.19.5

Aurora MySQL 1.19.5 is generally available. Aurora MySQL 1.* versions are compatible with MySQL 5.6
and Aurora MySQL 2.* versions are compatible with MySQL 5.7.

1235

https://dev.mysql.com/doc/refman/5.6/en/union.html
https://dev.mysql.com/doc/refman/5.6/en/events-statements-current-table.html
https://dev.mysql.com/doc/refman/5.6/en/logical-operators.html#operator_xor
http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

You have the option to upgrade existing database clusters to Aurora MySQL 1.19.5. You can restore
snapshots of Aurora MySQL 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.1, and 1.19.2 into Aurora MySQL
1.19.5.

To use an older version of Aurora MySQL, you can create new database clusters by specifying the engine
version through the AWS Management Console, the AWS CLI, or the RDS API.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
This version is currently not available in the following AWS Regions: Europe (London) [eu-
west-2], AWS GovCloud (US-East) [us-gov-east-1], AWS GovCloud (US-West) [us-gov-west-1],
China (Ningxia) [cn-northwest-1], and Asia Pacific (Hong Kong) [ap-east-1]. There will be a
separate announcement once it is made available.

Note
The procedure to upgrade your DB cluster has changed. For more information, see Upgrading
the minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

• Fixed an issue on Aurora reader instances that reduced free memory during long-running transactions
while there is a heavy transaction commit traffic on the writer instance.

• Fixed a parallel query abort error on Aurora reader instances while a heavy write workload is running
on the Aurora writer instance.

• The value of the parameter aurora_disable_hash_join is now persisted after database restart or
host replacement.

• Fixed an issue related to the Full Text Search cache that caused the Aurora instance to run out of
memory.

• Improved stability of the database when the volume size is close to the 64 tebibyte (TiB) volume limit
by reserving 160 GB of space for the recovery workflow to complete without a failover.

• Improved stability of the database when the hash join feature is enabled and the instance is low on
memory.

• Fixed the free memory calculation to include swap memory space on T2 instances that caused them to
reboot prematurely.

• Fixed an issue in the query cache where the "Too many connections" error could cause a reboot.

Integration of MySQL community edition bug fixes

• CVE-2018-2696
• CVE-2015-4737
• Bug #19929406: HANDLE_FATAL_SIGNAL (SIG=11) IN __MEMMOVE_SSSE3_BACK FROM STRING::COPY
• Bug #17059925: For UNION statements, the rows-examined value was calculated incorrectly. This was

manifested as too-large values for the ROWS_EXAMINED column of Performance Schema statement
tables (such as events_statements_current).

• Bug #11827369: Some queries with SELECT ... FROM DUAL nested subqueries raised an assertion.
• Bug #16311231: Incorrect results were returned if a query contained a subquery in an IN clause that

contained an XOR operation in the WHERE clause.

Aurora MySQL database engine updates 2019-06-05 (version
1.19.2)
Version: 1.19.2

1236

http://aws.amazon.com/support
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2696
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4737
https://dev.mysql.com/doc/refman/5.6/en/union.html
https://dev.mysql.com/doc/refman/5.6/en/events-statements-current-table.html
https://dev.mysql.com/doc/refman/5.6/en/logical-operators.html#operator_xor

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

Aurora MySQL 1.19.2 is generally available. All new Aurora MySQL database clusters with MySQL 5.6
compatibility, including those restored from snapshots, can be created with 1.17.8, 1.19.0, 1.19.1, or
1.19.2. You have the option, but are not required, to upgrade existing database clusters to Aurora MySQL
1.19.2. To use an older version, you can create new database clusters in Aurora MySQL 1.14.4, Aurora
MySQL 1.15.1, Aurora MySQL 1.16, Aurora MySQL 1.17.8, or Aurora MySQL 1.18. You can do so using the
AWS CLI or the Amazon RDS API and specifying the engine version.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
This version is currently not available in the AWS GovCloud (US-West) [us-gov-west-1], Europe
(Stockholm) [eu-north-1], China (Ningxia) [cn-northwest-1], and Asia Pacific (Hong Kong) [ap-
east-1] AWS Regions. There will be a separate announcement once it is made available.

Note
The procedure to upgrade your DB cluster has changed. For more information, see Upgrading
the minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

• Fixed an issue that could cause failures when loading data into Aurora from Amazon S3.
• Fixed an issue that could cause failures when uploading data from Aurora to Amazon S3.
• Fixed an issue that created zombie sessions left in a killed state.
• Fixed an issue that caused aborted connections when handling an error in network protocol

management.
• Fixed an issue that could cause a crash when dealing with partitioned tables.
• Fixed an issue related to binlog replication of trigger creation.

Aurora MySQL database engine updates 2019-05-09 (version
1.19.1)
Version: 1.19.1

Aurora MySQL 1.19.1 is generally available. All new Aurora MySQL database clusters with MySQL 5.6
compatibility, including those restored from snapshots, can be created with 1.17.8, 1.19.0, or 1.19.1. You
have the option, but are not required, to upgrade existing database clusters to Aurora MySQL 1.19.1.
To use an older version, you can create new database clusters in Aurora MySQL 1.14.4, Aurora MySQL
1.15.1, Aurora MySQL 1.16, Aurora MySQL 1.17.8, or Aurora MySQL 1.18. You can do so using the AWS
CLI or the Amazon RDS API and specifying the engine version.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
This version is currently not available in the AWS GovCloud (US-West) [us-gov-west-1] and
China (Beijing) [cn-north-1] regions. There will be a separate announcement once it is made
available.

Note
The procedure to upgrade your DB cluster has changed. For more information, see Upgrading
the minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Improvements

• Fixed a bug in binlog replication that can cause an issue on Aurora instances configured as binlog
worker.

1237

http://aws.amazon.com/support
http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

• Fixed an error in handling certain kinds of ALTER TABLE commands.
• Fixed an issue with aborted connections because of an error in network protocol management.

Aurora MySQL database engine updates 2019-02-07 (version
1.19.0)
Version: 1.19.0

Aurora MySQL 1.19.0 is generally available. All new Aurora MySQL database clusters with MySQL 5.6
compatibility, including those restored from snapshots, can be created with 1.17.8 or 1.19.0. You have
the option, but are not required, to upgrade existing database clusters to Aurora MySQL 1.19.0. To use
an older version, you can create new database clusters in Aurora MySQL 1.14.4, Aurora MySQL 1.15.1,
Aurora MySQL 1.16, Aurora MySQL 1.17.8, or Aurora MySQL 1.18.0. You can do so using the AWS CLI or
the Amazon RDS API and specifying the engine version.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
This version is currently not available in the AWS GovCloud (US-West) [us-gov-west-1] and
China (Beijing) [cn-north-1] regions. There will be a separate announcement once it is made
available.

Note
The procedure to upgrade your DB cluster has changed. For more information, see Upgrading
the minor version or patch level of an Aurora MySQL DB cluster (p. 1109).

Features

• Aurora Version Selector - Starting with Aurora MySQL 1.19.0, you can choose from among multiple
versions of MySQL 5.6 compatible Aurora on the Amazon RDS console. For more information, see
Checking or specifying Aurora MySQL engine versions through AWS (p. 1104).

Improvements

• Fixed a stability issue related to the CHECK TABLE query on an Aurora Replica.
• Introduced a new global user variable aurora_disable_hash_join to disable Hash Join.
• Fixed a stability issue when generating the output row during multiple table hash join.
• Fixed an issue that returned a wrong result because of a plan change during Hash Join applicability

check.
• Zero Downtime Patching is supported with long running transactions. This enhancement will come

into effect when upgrading from version 1.19 to a higher one.
• Zero Downtime Patching is now supported when binlog is enabled. This enhancement will come into

effect when upgrading from version 1.19 to a higher one.
• Fixed an issue that caused a spike in CPU utilization on the Aurora Replica unrelated to the workload.
• Fixed a race condition in the lock manager that resulted in a database restart.
• Fixed a race condition in the lock manager component to improve stability of Aurora instances.
• Improved stability of the deadlock detector inside the lock manager component.
• INSERT operation on a table is prohibited if InnoDB detects that the index is corrupted.
• Fixed a stability issue in Fast DDL.
• Improved Aurora stability by reducing the memory consumption in scan batching for single-row

subquery.

1238

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

• Fixed a stability issue that occurred after a foreign key was dropped while the system variable
foreign_key_checks is set to 0.

• Fixed an issue in the Out Of Memory Avoidance feature that erroneously overrode changes to the
table_definition_cache value made by the user.

• Fixed stability issues in the Out Of Memory Avoidance feature.

• Fixed an issue that set query_time and lock_time in slow_query_log to garbage values.

• Fixed a parallel query stability issue triggered by improper handling of string collation internally.

• Fixed a parallel query stability issue triggered by a secondary index search.

• Fixed a parallel query stability issue triggered by a multi-table update.

Integration of MySQL community edition bug fixes

• BUG #32917: DETECT ORPHAN TEMP-POOL FILES, AND HANDLE GRACEFULLY

• BUG #63144 CREATE TABLE IF NOT EXISTS METADATA LOCK IS TOO RESTRICTIVE

Aurora MySQL database engine updates 2018-09-20
Version: 1.18.0

Aurora MySQL 1.18.0 is generally available. All new Aurora MySQL parallel query clusters with MySQL
5.6 compatibility, including those restored from snapshots, will be created in Aurora MySQL 1.18.0.
You have the option, but are not required, to upgrade existing parallel query clusters to Aurora MySQL
1.18.0. You can create new DB clusters in Aurora MySQL 1.14.4, Aurora MySQL 1.15.1, Aurora MySQL
1.16, or Aurora MySQL 1.17.6. You can do so using the AWS CLI or the Amazon RDS API and specifying
the engine version.

With version 1.18.0 of Aurora MySQL, we are using a cluster patching model where all nodes in an
Aurora DB cluster are patched at the same time.

Important
Aurora MySQL 1.18.0 only applies to Aurora parallel query clusters. If you upgrade a provisioned
5.6.10a cluster, the resulting version is 1.17.8. If you upgrade a parallel query 5.6.10a cluster,
the resulting version is 1.18.0.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Features

• Parallel Query is available with this release, for new clusters and restored snapshots. Aurora MySQL
parallel query is an optimization that parallelizes some of the I/O and computation involved in
processing data-intensive queries. The work that is parallelized includes retrieving rows from storage,
extracting column values, and determining which rows match the conditions in the WHERE clause and
join clauses. This data-intensive work is delegated (in database optimization terms, pushed down) to
multiple nodes in the Aurora distributed storage layer. Without parallel query, each query brings all
the scanned data to a single node within the Aurora MySQL cluster (the head node) and performs all
the query processing there.

• When the parallel query feature is enabled, the Aurora MySQL engine automatically determines
when queries can benefit, without requiring SQL changes such as hints or table attributes.

For more information, see Working with parallel query for Amazon Aurora MySQL (p. 902).

• OOM Avoidance: This feature monitors the system memory and tracks memory consumed by various
components of the database. Once the system runs low on memory, it performs a list of actions to

1239

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

release memory from various tracked components in an attempt to save the database from running
into Out of Memory (OOM) and thereby avoiding a database restart. This best-effort feature is enabled
by default for t2 instances and can be enabled on other instance classes via a new instance parameter
named aurora_oom_response. The instance parameter takes a string of comma separated actions
that an instance should take when its memory is low. Valid actions include "print", "tune", "decline",
"kill_query" or any combination of these. Any empty string means there should be no actions taken
and effectively renders the feature to be disabled. Note that the default actions for the feature is
"print, tune". Usage examples:

• "print" – Only prints the queries taking high amount of memory.

• "tune" – Tunes the internal table caches to release some memory back to the system.

• "decline" – Declines new queries once the instance is low on memory.

• "kill_query" – Kills the queries in descending order of memory consumption until the instance
memory surfaces above the low threshold. Data definition language (DDL) statements are not killed.

• "print, tune" – Performs actions described for both "print" and "tune".

• "tune, decline, kill_query" – Performs the actions described for "tune", "decline", and "kill_query".

For information about handling out-of-memory conditions and other troubleshooting advice, see
Amazon Aurora MySQL out of memory issues (p. 1830).

Aurora MySQL database engine updates 2020-03-05

Version: 1.17.9

Aurora MySQL 1.17.9 is generally available. Aurora MySQL 1.* versions are compatible with MySQL 5.6
and Aurora MySQL 2.* versions are compatible with MySQL 5.7.

Currently supported Aurora MySQL releases are 1.14.*, 1.15.*, 1.16.*, 1.17.*, 1.18.*, 1.19.*, 1.20.*, 1.21.*,
1.22.*, 2.01.*, 2.02.*, 2.03.*, 2.04.*, 2.05.*, 2.06.* and 2.07.*. You can restore the snapshot of an Aurora
MySQL 1.* database into Aurora MySQL 1.17.9.

To create a cluster with an older version of Aurora MySQL, please specify the engine version through the
RDS Console, the AWS CLI, or the Amazon RDS API.

Note
This version is currently not available in the following regions: AWS GovCloud (US-East) [us-gov-
east-1], AWS GovCloud (US-West) [us-gov-west-1]. There will be a separate announcement once
it is made available.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

High priority fixes:

• Fixed an issue of intermittent connection failures after certificate rotation.

Aurora MySQL database engine updates 2019-01-17

Version: 1.17.8

Aurora MySQL 1.17.8 is generally available. All new Aurora MySQL database clusters with MySQL 5.6
compatibility, including those restored from snapshots, will be created in Aurora MySQL 1.17.8. You have
the option, but are not required, to upgrade existing database clusters to Aurora MySQL 1.17.8. To use

1240

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

an older version, you can create new database clusters in Aurora MySQL 1.14.4, 1.15.1, 1.16, or 1.17.7.
You can do so using the AWS CLI or the Amazon RDS API and specifying the engine version.

With version 1.17.8 of Aurora MySQL, we are using a cluster patching model where all nodes in an
Aurora DB cluster are patched at the same time.

Note
This version is currently not available in the AWS GovCloud (US-West) [us-gov-west-1] and
China (Beijing) [cn-north-1] regions. There will be a separate announcement once it is made
available.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

• Fixed a performance issue that increased the CPU utilization on an Aurora Replica after a restart.
• Fixed a stability issue for SELECT queries that used hash join.

Integration of MySQL community edition bug fixes

• BUG #13418638: CREATE TABLE IF NOT EXISTS METADATA LOCK IS TOO RESTRICTIVE

Aurora MySQL database engine updates 2018-10-08
Version: 1.17.7

Aurora MySQL 1.17.7 is generally available. All new Aurora MySQL database clusters with MySQL 5.6
compatibility, including those restored from snapshots, will be created in Aurora MySQL 1.17.7. You have
the option, but are not required, to upgrade existing database clusters to Aurora MySQL 1.17.7. To use
an older version, you can create new database clusters in Aurora MySQL 1.14.4, 1.15.1, 1.16, or 1.17.6.
You can do so using the AWS CLI or the Amazon RDS API and specifying the engine version.

With version 1.17.7 of Aurora MySQL, we are using a cluster patching model where all nodes in an
Aurora DB cluster are patched at the same time.

Note
This version is currently not available in the AWS GovCloud (US-West) [us-gov-west-1] and
China (Beijing) [cn-north-1] regions. There will be a separate announcement once it is made
available.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

• The InnoDB status variable innodb_buffer_pool_size has been made publicly visible for the
customers to modify.

• Fixed a stability issue on the Aurora cluster that occurred during failovers.
• Improved cluster availability by fixing a DDL recovery issue that occurred after an unsuccessful
TRUNCATE operation.

• Fixed a stability issue related to the mysql.innodb_table_stats table update, triggered by DDL
operations.

• Fixed Aurora Replica stability issues triggered during query cache invalidation after a DDL operation.
• Fixed a stability issue triggered by invalid memory access during periodic dictionary cache eviction in

the background.

1241

http://aws.amazon.com/support
http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

Integration of MySQL community edition bug fixes

• Bug #16208542: Drop index on a foreign key column leads to missing table.

• Bug #76349: memory leak in add_derived_key().

• Bug #16862316: For partitioned tables, queries could return different results depending on whether
Index Merge was used.

• Bug #17588348: Queries using the index_merge optimization (see Index merge optimization) could
return invalid results when run against tables that were partitioned by HASH.

Aurora MySQL database engine updates 2018-09-06
Version: 1.17.6

Aurora MySQL 1.17.6 is generally available. All new Aurora MySQL database clusters with MySQL 5.6
compatibility, including those restored from snapshots, will be created in Aurora MySQL 1.17.6. You have
the option, but are not required, to upgrade existing database clusters to Aurora MySQL 1.17.6. To use
an older version, you can create new database clusters in Aurora MySQL 1.14.4, 1.15.1, 1.16, or 1.17.5.
You can do so using the AWS CLI or the Amazon RDS API and specifying the engine version.

With version 1.17.6 of Aurora MySQL, we are using a cluster patching model where all nodes in an
Aurora DB cluster are patched at the same time.

Note
This version is currently not available in the AWS GovCloud (US-West) [us-gov-west-1] and
China (Beijing) [cn-north-1] regions. There will be a separate announcement once it is made
available.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

• Fixed a stability issue on the Aurora Reader for SELECT queries while the Aurora Writer is performing
DDL operations on the same table.

• Fixed a stability issue caused by the creation and deletion of DDL logs for temporary tables that use
Heap/Memory engine.

• Fixed a stability issue on the binlog worker when DDL statements are being replicated while the
connection to the Binlog Master is unstable.

• Fixed a stability issue encountered while writing to the slow query log.

• Fixed an issue with the replica status table that exposed incorrect Aurora Reader lag information.

Integration of MySQL community edition bug fixes

• For an ALTER TABLE statement that renamed or changed the default value of a BINARY column, the
alteration was done using a table copy and not in place. (Bug #67141, Bug #14735373, Bug #69580,
Bug #17024290)

• An outer join between a regular table and a derived table that is implicitly groups could cause a server
exit. (Bug #16177639)

Aurora MySQL database engine updates 2018-08-14
Version: 1.17.5

1242

https://dev.mysql.com/doc/refman/5.6/en/index-merge-optimization.html
http://aws.amazon.com/support
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/binary-varbinary.html

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

Aurora MySQL 1.17.5 is generally available. All new Aurora MySQL database clusters with MySQL 5.6
compatibility, including those restored from snapshots, will be created in Aurora MySQL 1.17.5. You have
the option, but are not required, to upgrade existing database clusters to Aurora MySQL 1.17.5. To use
an older version, you can create new database clusters in Aurora MySQL 1.14.4, 1.15.1, 1.16, or 1.17.4.
You can do so using the AWS CLI or the Amazon RDS API and specifying the engine version.

With version 1.17.5 of Aurora MySQL, we are using a cluster patching model where all nodes in an
Aurora DB cluster are patched at the same time.

Note
This version is currently not available in the AWS GovCloud (US-West) [us-gov-west-1] and
China (Beijing) [cn-north-1] regions. There will be a separate announcement once it is made
available.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

• Fixed an issue where an Aurora Writer might experience a restart after an Aurora cluster is patched
using the Zero-Downtime Patching feature.

Aurora MySQL database engine updates 2018-08-07
Version: 1.17.4

Aurora MySQL 1.17.4 is generally available. All new Aurora MySQL database clusters with MySQL 5.6
compatibility, including those restored from snapshots, will be created in Aurora MySQL 1.17.4. You have
the option, but are not required, to upgrade existing database clusters to Aurora MySQL 1.17.4. To use
an older version, you can create new database clusters in Aurora MySQL 1.14.4, 1.15.1, 1.16, or 1.17.3.
You can do so using the AWS CLI or the Amazon RDS API and specifying the engine version.

With version 1.17.4 of Aurora MySQL, we are using a cluster patching model where all nodes in an
Aurora DB cluster are patched at the same time.

Note
This version is currently not available in the AWS GovCloud (US-West) [us-gov-west-1] and
China (Beijing) [cn-north-1] regions. There will be a separate announcement once it is made
available.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

• Replication improvements:

• Reduced network traffic by not transmitting binlog records to cluster replicas. This improvement is
enabled by default.

• Reduced network traffic by compressing replication messages. This improvement is enabled by
default for 8xlarge and 16xlarge instance classes. Such large instances can sustain a heavy volume of
write traffic that results in substantial network traffic for replication messages.

• Fixes to the replica query cache.

• Fixed an issue where ORDER BY LOWER(col_name) could produce incorrect ordering while using the
utf8_bin collation.

• Fixed an issue where DDL statements (especially TRUNCATE TABLE) could cause problems on Aurora
replicas, including instability or missing tables.

1243

http://aws.amazon.com/support
http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

• Fixed an issue where sockets are left in a half-open state when storage nodes are restarted.
• The following new DB cluster parameters are available:

• aurora_enable_zdr – Allow connections opened on an Aurora Replica to stay active on replica
restart.

• aurora_enable_replica_log_compression – Enable compression of replication payloads to
improve network bandwidth utilization between the master and Aurora Replicas.

• aurora_enable_repl_bin_log_filtering – Enable filtering of replication records that are
unusable by Aurora Replicas on the master.

Aurora MySQL database engine updates 2018-06-05
Version: 1.17.3

Aurora MySQL 1.17.3 is generally available. All new Aurora MySQL database clusters with MySQL 5.6
compatibility, including those restored from snapshots, will be created in Aurora MySQL 1.17.3. You have
the option, but are not required, to upgrade existing database clusters to Aurora MySQL 1.17.3. You can
create new database clusters in Aurora MySQL 1.14.4, Aurora MySQL 1.15.1, or Aurora MySQL 1.16. You
can do so using the AWS CLI or the Amazon RDS API and specifying the engine version.

With version 1.17.3 of Aurora MySQL, we are using a cluster patching model where all nodes in an
Aurora DB cluster are patched at the same time.

Note
This version is currently not available in the AWS GovCloud (US-West) [us-gov-west-1] and
China (Beijing) [cn-north-1] regions. There will be a separate announcement once it is made
available.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

• Fixed an issue where an Aurora Replica can restart when using optimistic cursor restores while reading
records.

• Fixed an issue where an Aurora Writer restarts when trying to kill a MySQL session (kill "<session
id>") with performance schema enabled.

• Fixed an issue where an Aurora Writer restarts when computing a threshold for garbage collection.
• Fixed an issue where an Aurora Writer can occasionally restart when tracking Aurora Replica progress

in log application.
• Fixed an issue with the Query Cache when auto-commit is off and that could potentially cause stale

reads.

Aurora MySQL database engine updates 2018-04-27
Version: 1.17.2

Aurora MySQL 1.17.2 is generally available. All new Aurora MySQL database clusters with MySQL 5.6
compatibility, including those restored from snapshots, will be created in Aurora MySQL 1.17.2. You have
the option, but are not required, to upgrade existing database clusters to Aurora MySQL 1.17.2. You can
create new database clusters in Aurora MySQL 1.14.4, Aurora MySQL 1.15.1, or Aurora MySQL 1.16. You
can do so using the AWS CLI or the Amazon RDS API and specifying the engine version.

With version 1.17.2 of Aurora MySQL, we are using a cluster patching model where all nodes in an
Aurora DB cluster are patched at the same time.

1244

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

• Fixed an issue which was causing restarts during certain DDL partition operations.

• Fixed an issue which was causing support for invocation of AWS Lambda functions via native Aurora
MySQL functions to be disabled.

• Fixed an issue with cache invalidation which was causing restarts on Aurora Replicas.

• Fixed an issue in lock manager which was causing restarts.

Aurora MySQL database engine updates 2018-03-23
Version: 1.17.1

Aurora MySQL 1.17.1 is generally available. All new database clusters, including those restored from
snapshots, will be created in Aurora MySQL 1.17.1. You have the option, but are not required, to upgrade
existing database clusters to Aurora MySQL 1.17.1. You can create new DB clusters in Aurora MySQL
1.15.1, Aurora MySQL 1.16, or Aurora MySQL 1.17. You can do so using the AWS CLI or the Amazon RDS
API and specifying the engine version.

With version 1.17.1 of Aurora MySQL, we are using a cluster patching model where all nodes in an
Aurora DB cluster are patched at the same time. This release fixes some known engine issues as well as
regressions.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Note
There is an issue in the latest version of the Aurora MySQL engine. After upgrading to 1.17.1,
the engine version is reported incorrectly as 1.17. If you upgraded to 1.17.1, you can confirm
the upgrade by checking the Maintenance column for the DB cluster in the AWS Management
Console. If it displays none, then the engine is upgraded to 1.17.1.

Improvements

• Fixed an issue in binary log recovery that resulted in longer recovery times for situations with large
binary log index files which can happen if binary logs rotate very often.

• Fixed an issue in the query optimizer that generated an inefficient query plan for partitioned tables.

• Fixed an issue in the query optimizer due to which a range query resulted in a restart of the database
engine.

Aurora MySQL database engine updates 2018-03-13
Version: 1.17

Aurora MySQL 1.17 is generally available. Aurora MySQL 1.x versions are only compatible with MySQL
5.6, and not MySQL 5.7. All new 5.6-compatible database clusters, including those restored from
snapshots, will be created in Aurora 1.17. You have the option, but are not required, to upgrade existing
database clusters to Aurora 1.17. You can create new DB clusters in Aurora 1.14.1, Aurora 1.15.1, or
Aurora 1.16. You can do so using the AWS CLI or the Amazon RDS API and specifying the engine version.

With version 1.17 of Aurora, we are using a cluster patching model where all nodes in an Aurora DB
cluster are patched at the same time. We support zero-downtime patching, which works on a best-effort

1245

http://aws.amazon.com/support
http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

basis to preserve client connections through the patching process. For more information, see Maintaining
an Amazon Aurora DB cluster (p. 443).

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support.

Zero-downtime patching

The zero-downtime patching (ZDP) feature attempts, on a best-effort basis, to preserve client
connections through an engine patch. For more information about ZDP, see Using zero-downtime
patching (p. 1112).

New features

• Aurora MySQL now supports lock compression, which optimizes the lock manager's memory usage.
Starting in version 1.17, you can use this feature without enabling lab mode.

Improvements

• Fixed an issue predominantly seen on instances with fewer cores where a single core might have 100%
CPU utilization even when the database is idle.

• Improved the performance of fetching binary logs from Aurora clusters.

• Fixed an issue where Aurora Replicas attempt to write table statistics to persistent storage, and crash.

• Fixed an issue where query cache did not work as expected on Aurora Replicas.

• Fixed a race condition in lock manager that resulted in an engine restart.

• Fixed an issue where locks taken by read-only, auto-commit transactions resulted in an engine restart.

• Fixed an issue where some queries are not written to the audit logs.

• Fixed an issue with recovery of certain partition maintenance operations on failover.

Integration of MySQL bug fixes

• LAST_INSERT_ID is replicated incorrectly if replication filters are used (Bug #69861)

• Query returns different results depending on whether INDEX_MERGE setting (Bug #16862316)

• Query proc re-execute of stored routine, inefficient query plan (Bug #16346367)

• INNODB FTS : Assert in FTS_CACHE_APPEND_DELETED_DOC_IDS (BUG #18079671)

• Assert RBT_EMPTY(INDEX_CACHE->WORDS) in ALTER TABLE CHANGE COLUMN (BUG #17536995)

• INNODB fulltext search doesn't find records when savepoints are involved (BUG #70333, BUG
#17458835)

Aurora MySQL database engine updates 2017-12-11
Version: 1.16

Aurora MySQL 1.16 is generally available. All new database clusters, including those restored from
snapshots, will be created in Aurora 1.16. You have the option, but are not required, to upgrade existing
database clusters to Aurora 1.16. You can create new DB clusters in Aurora 1.14.1 or Aurora 1.15.1. You
can do so using the AWS CLI or the Amazon RDS API and specifying the engine version.

With version 1.16 of Aurora, we are using a cluster patching model where all nodes in an Aurora DB
cluster are patched at the same time. We are enabling zero-downtime patching, which works on a best-

1246

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

effort basis to preserve client connections through the patching process. For more information, see
Maintaining an Amazon Aurora DB cluster (p. 443).

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support.

Zero-downtime patching

The zero-downtime patching (ZDP) feature attempts, on a best-effort basis, to preserve client
connections through an engine patch. For more information about ZDP, see Using zero-downtime
patching (p. 1112).

New features

• Aurora MySQL now supports synchronous AWS Lambda invocations via the native function
lambda_sync(). Also available is native function lambda_async(), which can be used as
an alternative to the existing stored procedure for asynchronous Lambda invocation. For more
information, see Invoking a Lambda function from an Amazon Aurora MySQL DB cluster (p. 1031).

• Aurora MySQL now supports hash joins to speed up equijoin queries. Aurora's cost-based optimizer
can automatically decide when to use hash joins; you can also force their use in a query plan. For more
information, see Optimizing large Aurora MySQL join queries with hash joins (p. 1059).

• Aurora MySQL now supports scan batching to speed up in-memory scan-oriented queries significantly.
The feature boosts the performance of table full scans, index full scans, and index range scans by
batch processing.

Improvements

• Fixed an issue where read replicas crashed when running queries on tables that have just been dropped
on the master.

• Fixed an issue where restarting the writer on a database cluster with a very large number of FULLTEXT
indexes results in longer than expected recovery.

• Fixed an issue where flushing binary logs causes LOST_EVENTS incidents in binlog events.
• Fixed stability issues with the scheduler when performance schema is enabled.
• Fixed an issue where a subquery that uses temporary tables could return partial results.

Integration of MySQL bug fixes

None

Aurora MySQL database engine updates 2017-11-20
Version: 1.15.1

Aurora MySQL 1.15.1 is generally available. All new database clusters, including those restored from
snapshots, will be created in Aurora 1.15.1. You have the option, but are not required, to upgrade
existing DB clusters to Aurora 1.15.1. You can create new DB clusters in Aurora 1.14.1. You can do so
using the AWS CLI or the Amazon RDS API and specifying the engine version.

With version 1.15.1 of Aurora, we are using a cluster patching model where all nodes in an Aurora DB
cluster are patched at the same time. We are enabling zero-downtime patching, which works on a best-
effort basis to preserve client connections through the patching process. For more information, see
Maintaining an Amazon Aurora DB cluster (p. 443).

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

1247

http://aws.amazon.com/support
http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

Zero-downtime patching

The zero-downtime patching (ZDP) feature attempts, on a best-effort basis, to preserve client
connections through an engine patch. For more information about ZDP, see Using zero-downtime
patching (p. 1112).

Improvements

• Fixed an issue in the adaptive segment selector for a read request that would cause it to choose the
same segment twice causing a spike in read latency under certain conditions.

• Fixed an issue that stems from an optimization in Aurora MySQL for the thread scheduler. This
problem manifests itself into what are spurious errors while writing to the slow log, while the
associated queries themselves perform fine.

• Fixed an issue with stability of read replicas on large (> 5 TB) volumes.
• Fixed an issue where worker thread count increases continuously due to a bogus outstanding

connection count.
• Fixed an issue with table locks that caused long semaphore waits during insert workloads.
• Reverted the following MySQL bug fixes included in Aurora MySQL 1.15:

• MySQL instance stalling "doing SYNC index" (Bug #73816)
• Assert RBT_EMPTY(INDEX_CACHE->WORDS) in ALTER TABLE CHANGE COLUMN (Bug #17536995)
• InnoDB Fulltext search doesn't find records when savepoints are involved (Bug #70333)

Integration of MySQL bug fixes

None

Aurora MySQL database engine updates 2017-10-24
Version: 1.15

Aurora MySQL 1.15 is generally available. All new database clusters, including those restored from
snapshots, will be created in Aurora 1.15. You have the option, but are not required, to upgrade existing
DB clusters to Aurora 1.15. You can create new DB clusters in Aurora 1.14.1. You can do so using the AWS
CLI or the Amazon RDS API and specifying the engine version.

With version 1.15 of Aurora, we are using a cluster patching model where all nodes in an Aurora DB
cluster are patched at the same time. Updates require a database restart, so you will experience 20 to 30
seconds of downtime, after which you can resume using your DB cluster or clusters. If your DB clusters
are currently running Aurora 1.14 or Aurora 1.14.1, the zero-downtime patching feature in Aurora
MySQL might allow client connections to your Aurora MySQL primary instance to persist through the
upgrade, depending on your workload.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Zero-downtime patching

The zero-downtime patching (ZDP) feature attempts, on a best-effort basis, to preserve client
connections through an engine patch. For more information about ZDP, see Using zero-downtime
patching (p. 1112).

New features

• Asynchronous Key Prefetch – Asynchronous key prefetch (AKP) is a feature targeted to improve
the performance of non-cached index joins, by prefetching keys in memory ahead of when they

1248

http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

are needed. The primary use case targeted by AKP is an index join between a small outer and large
inner table, where the index is highly selective on the larger table. Also, when the Multi-Range Read
(MRR) interface is enabled, AKP will be leveraged for a secondary to primary index lookup. Smaller
instances which have memory constraints might in some cases be able to leverage AKP, given the
right key cardinality. For more information, see Optimizing Amazon Aurora indexed join queries with
asynchronous key prefetch (p. 1057).

• Fast DDL – We have extended the feature that was released in Aurora 1.13 (p. 1252) to operations
that include default values. With this extension, Fast DDL is applicable for operations that add
a nullable column at the end of a table, with or without default values. The feature remains
under Aurora lab mode. For more information, see Altering tables in Amazon Aurora using fast
DDL (p. 853).

Improvements

• Fixed a calculation error during optimization of WITHIN/CONTAINS spatial queries which previously
resulted in an empty result set.

• Fixed SHOW VARIABLE command to show the updated innodb_buffer_pool_size parameter value
whenever it is changed in the parameter group.

• Improved stability of primary instance during bulk insert into a table altered using Fast DDL when
adaptive hash indexing is disabled and the record to be inserted is the first record of a page.

• Improved stability of Aurora when the user attempts to set server_audit_events DB cluster parameter
value to default.

• Fixed an issue in which a database character set change for an ALTER TABLE statement that ran on the
Aurora primary instance was not being replicated on the Aurora Replicas until they were restarted.

• Improved stability by fixing a race condition on the primary instance which previously allowed it to
register an Aurora Replica even if the primary instance had closed its own volume.

• Improved performance of the primary instance during index creation on a large table by changing the
locking protocol to enable concurrent data manipulation language (DML) statements during index
build.

• Fixed InnoDB metadata inconsistency during ALTER TABLE RENAME query which improved stability.
Example: When columns of table t1(c1, c2) are renamed cyclically to t1(c2,c3) within the same ALTER
statement.

• Improved stability of Aurora Replicas for the scenario where an Aurora Replica has no active workload
and the primary instance is unresponsive.

• Improved availability of Aurora Replicas for a scenario in which the Aurora Replica holds an explicit
lock on a table and blocks the replication thread from applying any DDL changes received from the
primary instance.

• Improved stability of the primary instance when a foreign key and a column are being added to a table
from two separate sessions at the same time and Fast DDL has been enabled.

• Improved stability of the purge thread on the primary instance during a heavy write workload by
blocking truncate of undo records until they have been purged.

• Improved stability by fixing the lock release order during commit process of transactions which drop
tables.

• Fixed a defect for Aurora Replicas in which the DB instance could not complete startup and
complained that port 3306 was already in use.

• Fixed a race condition in which a SELECT query run on certain information_schema tables (innodb_trx,
innodb_lock, innodb_lock_waits) increased cluster instability.

Integration of MySQL bug fixes

• CREATE USER accepts plugin and password hash, but ignores the password hash (Bug #78033)

1249

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

• The partitioning engine adds fields to the read bit set to be able to return entries sorted from a
partitioned index. This leads to the join buffer will try to read unneeded fields. Fixed by not adding all
partitioning fields to the read_set,but instead only sort on the already set prefix fields in the read_set.
Added a DBUG_ASSERT that if doing key_cmp, at least the first field must be read (Bug #16367691).

• MySQL instance stalling "doing SYNC index" (Bug #73816)
• Assert RBT_EMPTY(INDEX_CACHE->WORDS) in ALTER TABLE CHANGE COLUMN (Bug #17536995)
• InnoDB Fulltext search doesn't find records when savepoints are involved (Bug #70333)

Aurora MySQL database engine updates: 2018-03-13
Version: 1.14.4

Aurora MySQL 1.14.4 is generally available. You can create new DB clusters in Aurora 1.14.4, using the
AWS CLI or the Amazon RDS API and specifying the engine version. You have the option, but are not
required, to upgrade existing 1.14.x DB clusters to Aurora 1.14.4.

With version 1.14.4 of Aurora, we are using a cluster-patching model where all nodes in an Aurora DB
cluster are patched at the same time. We support zero-downtime patching, which works on a best-effort
basis to preserve client connections through the patching process. For more information, see Maintaining
an Amazon Aurora DB cluster (p. 443).

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Zero-downtime patching

The zero-downtime patching (ZDP) feature attempts, on a best-effort basis, to preserve client
connections through an engine patch. For more information about ZDP, see Using zero-downtime
patching (p. 1112).

New features

• Aurora MySQL now supports db.r4 instance classes.

Improvements

• Fixed an issue where LOST_EVENTS were generated when writing large binlog events.

Integration of MySQL bug fixes

• Ignorable events don't work and are not tested (Bug #74683)
• NEW->OLD ASSERT FAILURE 'GTID_MODE > 0' (Bug #20436436)

Aurora MySQL database engine updates: 2017-09-22
Version: 1.14.1

Aurora MySQL 1.14.1 is generally available. All new database clusters, including those restored from
snapshots, will be created in Aurora MySQL 1.14.1. Aurora MySQL 1.14.1 is also a mandatory upgrade for
existing Aurora MySQL DB clusters. For more information, see Announcement: Extension to mandatory
upgrade schedule for Amazon Aurora on the AWS Developer Forums website.

With version 1.14.1 of Aurora MySQL, we are using a cluster patching model where all nodes in an
Aurora MySQL DB cluster are patched at the same time. Updates require a database restart, so you will

1250

http://aws.amazon.com/support
http://forums.aws.amazon.com/ann.jspa?annID=4983
http://forums.aws.amazon.com/ann.jspa?annID=4983

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

experience 20 to 30 seconds of downtime, after which you can resume using your DB cluster or clusters.
If your DB clusters are currently running version 1.13 or greater, the zero-downtime patching feature in
Aurora MySQL might allow client connections to your Aurora MySQL primary instance to persist through
the upgrade, depending on your workload.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support.

Improvements

• Fixed race conditions associated with inserts and purge to improve the stability of the Fast DDL
feature, which remains in Aurora MySQL lab mode.

Aurora MySQL database engine updates: 2017-08-07
Version: 1.14

Aurora MySQL 1.14 is generally available. All new database clusters, including those restored from
snapshots, will be created in Aurora MySQL 1.14. Aurora MySQL 1.14 is also a mandatory upgrade
for existing Aurora MySQL DB clusters. We will send a separate announcement with the timeline for
deprecating earlier versions of Aurora MySQL.

With version 1.14 of Aurora MySQL, we are using a cluster patching model where all nodes in an Aurora
DB cluster are patched at the same time. Updates require a database restart, so you will experience
20 to 30 seconds of downtime, after which you can resume using your DB cluster or clusters. If your
DB clusters are currently running version 1.13, Aurora's zero-downtime patching feature may allow
client connections to your Aurora primary instance to persist through the upgrade, depending on your
workload.

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support.

Zero-downtime patching

The zero-downtime patching (ZDP) feature attempts, on a best-effort basis, to preserve client
connections through an engine patch. For more information about ZDP, see Using zero-downtime
patching (p. 1112).

Improvements

• Fixed an incorrect "record not found" error when a record is found in the secondary index but not in
the primary index.

• Fixed a stability issue that can occur due to a defensive assertion (added in 1.12) that was too strong
in the case when an individual write spans over 32 pages. Such a situation can occur, for instance, with
large BLOB values.

• Fixed a stability issue because of inconsistencies between the tablespace cache and the dictionary
cache.

• Fixed an issue in which an Aurora Replica becomes unresponsive after it has exceeded the maximum
number of attempts to connect to the primary instance. An Aurora Replica now restarts if the period of
inactivity is more than the heartbeat time period used for health check by the primary instance.

• Fixed a livelock that can occur under very high concurrency when one connection tries to acquire an
exclusive meta data lock (MDL) while issuing a command, such as ALTER TABLE.

• Fixed a stability issue in an Aurora Read Replica in the presence of logical/parallel read ahead.

• Improved LOAD FROM S3 in two ways:

1251

http://aws.amazon.com/support
http://aws.amazon.com/support

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

1. Better handling of Amazon S3 timeout errors by using the SDK retry in addition to the existing retry.
2. Performance optimization when loading very big files or large numbers of files by caching and

reusing client state.
• Fixed the following stability issues with Fast DDL for ALTER TABLE operations:

1. When the ALTER TABLE statement has multiple ADD COLUMN commands and the column names
are not in ascending order.

2. When the name string of the column to be updated and its corresponding name string, fetched
from the internal system table, differs by a null terminating character (/0).

3. Under certain B-tree split operations.
4. When the table has a variable length primary key.

• Fixed a stability issue with Aurora Replicas when it takes too long to make its Full Text Search (FTS)
index cache consistent with that of the primary instance. This can happen if a large portion of the
newly created FTS index entries on the primary instance have not yet been flushed to disk.

• Fixed a stability issue that can happen during index creation.
• New infrastructure that tracks memory consumption per connection and associated telemetry that will

be used for building out Out-Of-Memory (OOM) avoidance strategies.
• Fixed an issue where ANALYZE TABLE was incorrectly allowed on Aurora Replicas. This has now been

blocked.
• Fixed a stability issue caused by a rare deadlock as a result of a race condition between logical read-

ahead and purge.

Integration of MySQL bug fixes

• A full-text search combined with derived tables (subqueries in the FROM clause) caused a server exit.
Now, if a full-text operation depends on a derived table, the server produces an error indicating that a
full-text search cannot be done on a materialized table. (Bug #68751, Bug #16539903)

Aurora MySQL database engine updates: 2017-05-15
Version: 1.13

Note
We enabled a new feature - SELECT INTO OUTFILE S3 - in Aurora MySQL version 1.13 after the
initial release, and have updated the release notes to reflect that change.

Aurora MySQL 1.13 is generally available. All new database clusters, including those restored from
snapshots, will be created in Aurora MySQL 1.13. You have the option, but are not required, to upgrade
existing database clusters to Aurora MySQL 1.13. With version 1.13 of Aurora, we are using a cluster
patching model where all nodes in an Aurora DB cluster are patched at the same time. We are enabling
zero-downtime patching, which works on a best-effort basis to preserve client connections through the
patching process. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Zero-downtime patching

The zero-downtime patching (ZDP) feature attempts, on a best-effort basis, to preserve client
connections through an engine patch. For more information about ZDP, see Using zero-downtime
patching (p. 1112).

New features:

• SELECT INTO OUTFILE S3 – Aurora MySQL now allows you to upload the results of a query to one or
more files in an Amazon S3 bucket. For more information, see Saving data from an Amazon Aurora
MySQL DB cluster into text files in an Amazon S3 bucket (p. 1025).

1252

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

Improvements:

• Implemented truncation of CSV format log files at engine startup to avoid long recovery time. The
general_log_backup, general_log, slow_log_backup, and slow_log tables now don't survive
a database restart.

• Fixed an issue where migration of a database named test would fail.

• Improved stability in the lock manager's garbage collector by reusing the correct lock segments.

• Improved stability of the lock manager by removing invalid assertions during deadlock detection
algorithm.

• Re-enabled asynchronous replication, and fixed an associated issue which caused incorrect replica lag
to be reported under no-load or read-only workload. The replication pipeline improvements that were
introduced in version 1.10. These improvements were introduced in order to apply log stream updates
to the buffer cache of an Aurora Replica. which helps to improve read performance and stability on
Aurora Replicas.

• Fixed an issue where autocommit=OFF leads to scheduled events being blocked and long transactions
being held open until the server reboots.

• Fixed an issue where general, audit, and slow query logs could not log queries handled by
asynchronous commit.

• Improved the performance of the logical read ahead (LRA) feature by up to 2.5 times. This was done by
allowing pre-fetches to continue across intermediate pages in a B-tree.

• Added parameter validation for audit variables to trim unnecessary spaces.

• Fixed a regression, introduced in Aurora MySQL version 1.11, in which queries can return incorrect
results when using the SQL_CALC_FOUND_ROWS option and invoking the FOUND_ROWS() function.

• Fixed a stability issue when the Metadata Lock list was incorrectly formed.

• Improved stability when sql_mode is set to PAD_CHAR_TO_FULL_LENGTH and the command SHOW
FUNCTION STATUS WHERE Db='string' is executed.

• Fixed a rare case when instances would not come up after Aurora version upgrade because of a false
volume consistency check.

• Fixed the performance issue, introduced in Aurora MySQL version 1.12, where the performance of the
Aurora writer was reduced when users have a large number of tables.

• Improved stability issue when the Aurora writer is configured as a binlog worker and the number of
connections approaches 16,000.

• Fixed a rare issue where an Aurora Replica could restart when a connection gets blocked waiting for
Metadata Lock when running DDL on the Aurora master.

Integration of MySQL bug fixes

• With an empty InnoDB table, it's not possible to decrease the auto_increment value using an ALTER
TABLE statement, even when the table is empty. (Bug #69882)

• MATCH() ... AGAINST queries that use a long string as an argument for AGAINST() could result in an
error when run on an InnoDB table with a full-text search index. (Bug #17640261)

• Handling of SQL_CALC_FOUND_ROWS in combination with ORDER BY and LIMIT could lead to
incorrect results for FOUND_ROWS(). (Bug #68458, Bug # 16383173)

• ALTER TABLE does not allow to change nullability of the column if foreign key exists. (Bug #77591)

Aurora MySQL database engine updates: 2017-04-05

Version: 1.12

1253

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

Aurora MySQL 1.12 is now the preferred version for the creation of new DB clusters, including restores
from snapshots.

This is not a mandatory upgrade for existing clusters. You will have the option to upgrade existing
clusters to version 1.12 after we complete the fleet-wide patch to 1.11 (see Aurora 1.11 release
notes (p. 1255) and corresponding forum announcement). With version 1.12 of Aurora, we are using a
cluster patching model where all nodes in an Aurora DB cluster are patched at the same time. For more
information, see Maintaining an Amazon Aurora DB cluster (p. 443).

New features

• Fast DDL – Aurora MySQL now allows you to execute an ALTER TABLE tbl_name ADD COLUMN
col_name column_definition operation nearly instantaneously. The operation completes without
requiring the table to be copied and without materially impacting other DML statements. Since it does
not consume temporary storage for a table copy, it makes DDL statements practical even for large
tables on small instance classes. Fast DDL is currently only supported for adding a nullable column,
without a default value, at the end of a table. This feature is currently available in Aurora lab mode.
For more information, see Altering tables in Amazon Aurora using fast DDL (p. 853).

• Show volume status – We have added a new monitoring command, SHOW VOLUME STATUS, to
display the number of nodes and disks in a volume. For more information, see Displaying volume
status for an Aurora MySQL DB cluster (p. 858).

Improvements

• Implemented changes to lock compression to further reduce memory allocated per lock object. This
improvement is available in lab mode.

• Fixed an issue where the trx_active_transactions metric decrements rapidly even when the
database is idle.

• Fixed an invalid error message regarding fault injection query syntax when simulating failure in disks
and nodes.

• Fixed multiple issues related to race conditions and dead latches in the lock manager.

• Fixed an issue causing a buffer overflow in the query optimizer.

• Fixed a stability issue in Aurora read replicas when the underlying storage nodes experience low
available memory.

• Fixed an issue where idle connections persisted past the wait_timeout parameter setting.

• Fixed an issue where query_cache_size returns an unexpected value after reboot of the instance.

• Fixed a performance issue that is the result of a diagnostic thread probing the network too often in the
event that writes are not progressing to storage.

Integration of MySQL bug fixes

• Reloading a table that was evicted while empty caused an AUTO_INCREMENT value to be reset. (Bug
#21454472, Bug #77743)

• An index record was not found on rollback due to inconsistencies in the purge_node_t structure.
The inconsistency resulted in warnings and error messages such as "error in sec index entry update",
"unable to purge a record", and "tried to purge sec index entry not marked for deletion". (Bug
#19138298, Bug #70214, Bug #21126772, Bug #21065746)

• Wrong stack size calculation for qsort operation leads to stack overflow. (Bug #73979)

• Record not found in an index upon rollback. (Bug #70214, Bug #72419)

• ALTER TABLE add column TIMESTAMP on update CURRENT_TIMESTAMP inserts ZERO-datas (Bug
#17392)

1254

https://forums.aws.amazon.com/ann.jspa?annID=4444

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

Aurora MySQL database engine updates: 2017-02-23
Version: 1.11

We will patch all Aurora MySQL DB clusters with the latest version over a short period following the
release. DB clusters are patched using the legacy procedure with a downtime of about 5-30 seconds.

Patching occurs during the system maintenance window that you have specified for each of your
database instances. You can view or change this window using the AWS Management Console. For more
information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Alternatively, you can apply the patch immediately in the AWS Management Console by choosing a DB
cluster, choosing Cluster Actions, and then choosing Upgrade Now.

With version 1.11 of Aurora MySQL, we are using a cluster patching model where all nodes in an Aurora
DB cluster are patched at the same time.

New features

• MANIFEST option for LOAD DATA FROM S3 – LOAD DATA FROM S3 was released in version 1.8. The
options for this command have been expanded, and you can now specify a list of files to be loaded
into an Aurora DB cluster from Amazon S3 by using a manifest file. This makes it easy to load data
from specific files in one or more locations, as opposed to loading data from a single file by using
the FILE option or loading data from multiple files that have the same location and prefix by using
the PREFIX option. The manifest file format is the same as that used by Amazon Redshift. For more
information about using LOAD DATA FROM S3 with the MANIFEST option, see Using a manifest to
specify data files to load (p. 1021).

• Spatial indexing enabled by default – This feature was released in lab mode in version 1.10, and is
now turned on by default. Spatial indexing improves query performance on large datasets for queries
that use spatial data. For more information about using spatial indexing, see Amazon Aurora MySQL
and spatial data (p. 768).

• Advanced Auditing timing change – This feature was released in version 1.10.1 to provide a
high-performance facility for auditing database activity. In this release, the precision of audit log
timestamps has been changed from one second to one microsecond. The more accurate timestamps
allow you to better understand when an audit event happened. For more information about audit, see
Using Advanced Auditing with an Amazon Aurora MySQL DB cluster (p. 935).

Improvements

• Modified the thread_handling parameter to prevent you from setting it to anything other than
multiple-connections-per-thread, which is the only supported model with Aurora's thread
pool.

• Fixed an issue caused when you set either the buffer_pool_size or the query_cache_size
parameter to be larger than the DB cluster's total memory. In this circumstance, Aurora sets the
modified parameter to the default value, so the DB cluster can start up and not crash.

• Fixed an issue in the query cache where a transaction gets stale read results if the table is invalidated
in another transaction.

• Fixed an issue where binlog files marked for deletion are removed after a small delay rather than right
away.

• Fixed an issue where a database created with the name tmp is treated as a system database stored on
ephemeral storage and not persisted to Aurora distributed storage.

• Modified the behavior of SHOW TABLES to exclude certain internal system tables. This change helps
avoid an unnecessary failover caused by mysqldump locking all files listed in SHOW TABLES, which in
turn prevents writes on the internal system table, causing the failover.

1255

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

• Fixed an issue where an Aurora Replica incorrectly restarts when creating a temporary table from a
query that invokes a function whose argument is a column of an InnoDB table.

• Fixed an issue related to a metadata lock conflict in an Aurora Replica node that causes the Aurora
Replica to fall behind the primary DB cluster and eventually get restarted.

• Fixed a dead latch in the replication pipeline in reader nodes, which causes an Aurora Replica to fall
behind and eventually get restarted.

• Fixed an issue where an Aurora Replica lags too much with encrypted volumes larger than 1 terabyte
(TB).

• Improved Aurora Replica dead latch detection by using an improved way to read the system clock time.

• Fixed an issue where an Aurora Replica can restart twice instead of once following de-registration by
the writer.

• Fixed a slow query performance issue on Aurora Replicas that occurs when transient statistics cause
statistics discrepancy on non-unique index columns.

• Fixed an issue where an Aurora Replica can crash when a DDL statement is replicated on the Aurora
Replica at the same time that the Aurora Replica is processing a related query.

• Changed the replication pipeline improvements that were introduced in version 1.10 from enabled
by default to disabled by default. These improvements were introduced in order to apply log stream
updates to the buffer cache of an Aurora Replica, and although this feature helps to improve read
performance and stability on Aurora Replicas, it increases replica lag in certain workloads.

• Fixed an issue where the simultaneous occurrence of an ongoing DDL statement and pending Parallel
Read Ahead on the same table causes an assertion failure during the commit phase of the DDL
transaction.

• Enhanced the general log and slow query log to survive DB cluster restart.

• Fixed an out-of-memory issue for certain long running queries by reducing memory consumption in
the ACL module.

• Fixed a restart issue that occurs when a table has non-spatial indexes, there are spatial predicates
in the query, the planner chooses to use a non-spatial index, and the planner incorrectly pushes the
spatial condition down to the index.

• Fixed an issue where the DB cluster restarts when there is a delete, update, or purge of very large
geospatial objects that are stored externally (like LOBs).

• Fixed an issue where fault simulation using ALTER SYSTEM SIMULATE ... FOR INTERVAL isn't working
properly.

• Fixed a stability issue caused by an invalid assertion on an incorrect invariant in the lock manager.

• Disabled the following two improvements to InnoDB Full-Text Search that were introduced in version
1.10 because they introduce stability issues for some demanding workloads:

• Updating the cache only after a read request to an Aurora Replica in order to improve full-text
search index cache replication speed.

• Offloading the cache sync task to a separate thread as soon as the cache size crosses 10% of the
total size, in order to avoid MySQL queries stalling for too long during FTS cache sync to disk. (Bugs
#22516559, #73816).

Integration of MySQL bug fixes

• Running ALTER table DROP foreign key simultaneously with another DROP operation causes the table
to disappear. (Bug #16095573)

• Some INFORMATION_SCHEMA queries that used ORDER BY did not use a filesort optimization as they
did previously. (Bug #16423536)

• FOUND_ROWS () returns the wrong count of rows on a table. (Bug #68458)

• The server fails instead of giving an error when too many temp tables are open. (Bug #18948649)

1256

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

Aurora MySQL database engine updates: 2017-01-12
Version: 1.10.1

Version 1.10.1 of Aurora MySQL is an opt-in version and is not used to patch your database instances.
It is available for creating new Aurora instances and for upgrading existing instances. You can apply the
patch by choosing a cluster in the Amazon RDS console, choosing Cluster Actions, and then choosing
Upgrade Now. Patching requires a database restart with downtime typically lasting 5-30 seconds, after
which you can resume using your DB clusters. This patch is using a cluster patching model where all
nodes in an Aurora cluster are patched at the same time.

New features

• Advanced Auditing – Aurora MySQL provides a high-performance Advanced Auditing feature, which
you can use to audit database activity. For more information about enabling and using Advanced
Auditing, see Using Advanced Auditing with an Amazon Aurora MySQL DB cluster (p. 935).

Improvements

• Fixed an issue with spatial indexing when creating a column and adding an index on it in the same
statement.

• Fixed an issue where spatial statistics aren't persisted across DB cluster restart.

Aurora MySQL database engine updates: 2016-12-14
Version: 1.10

New features

• Zero downtime patch – This feature allows a DB instance to be patched without any downtime. That
is, database upgrades are performed without disconnecting client applications, or rebooting the
database. This approach increases the availability of your Aurora DB clusters during the maintenance
window. Note that temporary data like that in the performance schema is reset during the upgrade
process. This feature applies to service-delivered patches during a maintenance window as well as
user-initiated patches.

When a patch is initiated, the service ensures there are no open locks, transactions or temporary
tables, and then waits for a suitable window during which the database can be patched and restarted.
Application sessions are preserved, although there is a drop in throughput while the patch is in
progress (for approximately 5 seconds). If no suitable window can be found, then patching defaults to
the standard patching behavior.

Zero downtime patching takes place on a best-effort basis, subject to certain limitations as described
following:
• This feature is currently applicable for patching single-node DB clusters or writer instances in multi-

node DB clusters.
• SSL connections are not supported in conjunction with this feature. If there are active SSL

connections, Amazon Aurora MySQL won't perform a zero downtime patch, and instead will retry
periodically to see if the SSL connections have terminated. If they have, zero downtime patching
proceeds. If the SSL connections persist after more than a couple seconds, standard patching with
downtime proceeds.

• The feature is available in Aurora release 1.10 and beyond. Going forward, we will identify any
releases or patches that can't be applied by using zero downtime patching.

• This feature is not applicable if replication based on binary logging is active.

1257

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

• Spatial indexing – Spatial indexing improves query performance on large datasets for queries that
use spatial data. For more information about using spatial indexing, see Amazon Aurora MySQL and
spatial data (p. 768).

This feature is disabled by default and can be activated by enabling Aurora lab mode. For information,
see Amazon Aurora MySQL lab mode (p. 1053).

• Replication pipeline improvements – Aurora MySQL now uses an improved mechanism to apply log
stream updates to the buffer cache of an Aurora Replica. This feature improves the read performance
and stability on Aurora Replicas when there is a heavy write load on the master as well as a significant
read load on the Replica. This feature is enabled by default.

• Throughput improvement for workloads with cached reads – Aurora MySQL now uses a latch-free
concurrent algorithm to implement read views, which leads to better throughput for read queries
served by the buffer cache. As a result of this and other improvements, Amazon Aurora MySQL can
achieve throughput of up to 625K reads per second compared to 164K reads per second by MySQL 5.7
for a SysBench SELECT-only workload.

• Throughput improvement for workloads with hot row contention – Aurora MySQL uses a new lock
release algorithm that improves performance, particularly when there is hot page contention (that is,
many transactions contending for the rows on the same page). In tests with the TPC-C benchmark, this
can result in up to16x throughput improvement in transactions per minute relative to MySQL 5.7. This
feature is disabled by default and can be activated by enabling Aurora lab mode. For information, see
Amazon Aurora MySQL lab mode (p. 1053).

Improvements

• Full-text search index cache replication speed has been improved by updating the cache only after a
read request to an Aurora Replica. This approach avoids any reads from disk by the replication thread.

• Fixed an issue where dictionary cache invalidation does not work on an Aurora Replica for tables that
have a special character in the database name or table name.

• Fixed a STUCK IO issue during data migration for distributed storage nodes when storage heat
management is enabled.

• Fixed an issue in the lock manager where an assertion check fails for the transaction lock wait thread
when preparing to rollback or commit a transaction.

• Fixed an issue when opening a corrupted dictionary table by correctly updating the reference count to
the dictionary table entries.

• Fixed a bug where the DB cluster minimum read point can be held by slow Aurora Replicas.

• Fixed a potential memory leak in the query cache.

• Fixed a bug where an Aurora Replica places a row-level lock on a table when a query is used in an IF
statement of a stored procedure.

Integration of MySQL bug fixes

• UNION of derived tables returns wrong results with '1=0/false'-clauses. (Bug #69471)

• Server crashes in ITEM_FUNC_GROUP_CONCAT::FIX_FIELDS on 2nd execution of stored procedure.
(Bug #20755389)

• Avoid MySQL queries from stalling for too long during FTS cache sync to disk by offloading the
cache sync task to a separate thread, as soon as the cache size crosses 10% of the total size. (Bug
#22516559, #73816)

Aurora MySQL database engine updates: 2016-11-10
Version: 1.9.0, 1.9.1

1258

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

New features

• Improved index build – The implementation for building secondary indexes now operates by building
the index in a bottom-up fashion, which eliminates unnecessary page splits. This can reduce the time
needed to create an index or rebuild a table by up to 75% (based on an db.r3.8xlarge DB instance
class). This feature was in lab mode in Aurora MySQL version 1.7 and is enabled by default in Aurora
version 1.9 and later. For information, see Amazon Aurora MySQL lab mode (p. 1053).

• Lock compression (lab mode) – This implementation significantly reduces the amount of memory
that lock manager consumes by up to 66%. Lock manager can acquire more row locks without
encountering an out-of-memory exception. This feature is disabled by default and can be activated by
enabling Aurora lab mode. For information, see Amazon Aurora MySQL lab mode (p. 1053).

• Performance schema – Aurora MySQL now includes support for performance schema with minimal
impact on performance. In our testing using SysBench, enabling performance schema could degrade
MySQL performance by up to 60%.

SysBench testing of an Aurora DB cluster showed an impact on performance that is 4x less than
MySQL. Running the db.r3.8xlarge DB instance class resulted in 100K SQL writes/sec and over
550K SQL reads/sec, even with performance schema enabled.

• Hot row contention improvement – This feature reduces CPU utilization and increases throughput
when a small number of hot rows are accessed by a large number of connections. This feature also
eliminates error 188 when there is hot row contention.

• Improved out-of-memory handling – When non-essential, locking SQL statements are executed and
the reserved memory pool is breached, Aurora forces rollback of those SQL statements. This feature
frees memory and prevents engine crashes due to out-of-memory exceptions.

• Smart read selector – This implementation improves read latency by choosing the optimal storage
segment among different segments for every read, resulting in improved read throughput. SysBench
testing has shown up to a 27% performance increase for write workloads .

Improvements

• Fixed an issue where an Aurora Replica encounters a shared lock during engine start up.
• Fixed a potential crash on an Aurora Replica when the read view pointer in the purge system is NULL.

Aurora MySQL database engine updates: 2016-10-26
Version: 1.8.1

Improvements

• Fixed an issue where bulk inserts that use triggers that invoke AWS Lambda procedures fail.
• Fixed an issue where catalog migration fails when autocommit is off globally.
• Resolved a connection failure to Aurora when using SSL and improved Diffie-Hellman group to deal

with LogJam attacks.

Integration of MySQL bug fixes

• OpenSSL changed the Diffie-Hellman key length parameters due to the LogJam issue. (Bug
#18367167)

Aurora MySQL database engine updates: 2016-10-18
Version: 1.8

1259

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

New features

• AWS Lambda integration – You can now asynchronously invoke an AWS Lambda function from an
Aurora DB cluster using the mysql.lambda_async procedure. For more information, see Invoking a
Lambda function from an Amazon Aurora MySQL DB cluster (p. 1031).

• Load data from Amazon S3 – You can now load text or XML files from an Amazon S3 bucket into
your Aurora DB cluster using the LOAD DATA FROM S3 or LOAD XML FROM S3 commands. For more
information, see Loading data into an Amazon Aurora MySQL DB cluster from text files in an Amazon
S3 bucket (p. 1018).

• Catalog migration – Aurora now persists catalog metadata in the cluster volume to support
versioning. This enables seamless catalog migration across versions and restores.

• Cluster-level maintenance and patching – Aurora now manages maintenance updates for an entire
DB cluster. For more information, see Maintaining an Amazon Aurora DB cluster (p. 443).

Improvements

• Fixed an issue where an Aurora Replica crashes when not granting a metadata lock to an inflight DDL
table.

• Allowed Aurora Replicas to modify non-InnoDB tables to facilitate rotation of the slow and general log
CSV files where log_output=TABLE.

• Fixed a lag when updating statistics from the primary instance to an Aurora Replica. Without this fix,
the statistics of the Aurora Replica can get out of sync with the statistics of the primary instance and
result in a different (and possibly under-performing) query plan on an Aurora Replica.

• Fixed a race condition that ensures that an Aurora Replica does not acquire locks.
• Fixed a rare scenario where an Aurora Replica that registers or de-registers with the primary instance

could fail.
• Fixed a race condition that could lead to a deadlock on db.r3.large instances when opening or

closing a volume.
• Fixed an out-of-memory issue that can occur due to a combination of a large write workload and

failures in the Aurora Distributed Storage service.
• Fixed an issue with high CPU consumption because of the purge thread spinning in the presence of a

long-running transaction.
• Fixed an issue when running information schema queries to get information about locks under heavy

load.
• Fixed an issue with a diagnostics process that could in rare cases cause Aurora writes to storage nodes

to stall and restart/fail-over.
• Fixed a condition where a successfully created table might be deleted during crash recovery if the

crash occurred while a CREATE TABLE [if not exists] statement was being handled.
• Fixed a case where the log rotation procedure is broken when the general log and slow log are not

stored on disk using catalog mitigation.
• Fixed a crash when a user creates a temporary table within a user defined function, and then uses the

user defined function in the select list of the query.
• Fixed a crash that occurred when replaying GTID events. GTID is not supported by Aurora MySQL.

Integration of MySQL bug fixes:

• When dropping all indexes on a column with multiple indexes, InnoDB failed to block a DROP INDEX
operation when a foreign key constraint requires an index. (Bug #16896810)

• Solve add foreign key constraint crash. (Bug #16413976)
• Fixed a crash when fetching a cursor in a stored procedure, and analyzing or flushing the table at the

same time. (Bug # 18158639)

1260

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

• Fixed an auto-increment bug when a user alters a table to change the AUTO_INCREMENT value to less
than the maximum auto-increment column value. (Bug # 16310273)

Aurora MySQL database engine updates: 2016-09-20
Version: 1.7.1

Improvements

• Fixes an issue where an Aurora Replica crashes if the InnoDB full-text search cache is full.
• Fixes an issue where the database engine crashes if a worker thread in the thread pool waits for itself.
• Fixes an issue where an Aurora Replica crashes if a metadata lock on a table causes a deadlock.
• Fixes an issue where the database engine crashes due to a race condition between two worker threads

in the thread pool.
• Fixes an issue where an unnecessary failover occurs under heavy load if the monitoring agent doesn't

detect the advancement of write operations to the distributed storage subsystem.

Aurora MySQL database engine updates: 2016-08-30
Version: 1.7.0

New features

• NUMA aware scheduler – The task scheduler for the Aurora MySQL engine is now Non-Uniform
Memory Access (NUMA) aware. This minimizes cross-CPU socket contention resulting in improved
performance throughput for the db.r3.8xlarge DB instance class.

• Parallel read-ahead operates asynchronously in the background – Parallel read-ahead has been
revised to improve performance by using a dedicated thread to reduce thread contention.

• Improved index build (lab mode) – The implementation for building secondary indexes now operates
by building the index in a bottom-up fashion, which eliminates unnecessary page splits. This can
reduce the time needed to create an index or rebuild a table. This feature is disabled by default
and can be activated by enabling Aurora lab mode. For information, see Amazon Aurora MySQL lab
mode (p. 1053).

Improvements

• Fixed an issue where establishing a connection was taking a long time if there was a surge in the
number of connections requested for an instance.

• Fixed an issue where a crash occurred if ALTER TABLE was run on a partitioned table that did not use
InnoDB.

• Fixed an issue where heavy write workload can cause a failover.
• Fixed an erroneous assertion that caused a failure if RENAME TABLE was run on a partitioned table.
• Improved stability when rolling back a transaction during insert-heavy workload.
• Fixed an issue where full-text search indexes were not viable on an Aurora Replica.

Integration of MySQL bug fixes

• Improve scalability by partitioning LOCK_grant lock. (Port WL #8355)
• Opening cursor on SELECT in stored procedure causes segfault. (Port Bug #16499751)
• MySQL gives the wrong result with some special usage. (Bug #11751794)

1261

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

• Crash in GET_SEL_ARG_FOR_KEYPART – caused by patch for bug #11751794. (Bug #16208709)
• Wrong results for a simple query with GROUP BY. (Bug #17909656)
• Extra rows on semijoin query with range predicates. (Bug #16221623)
• Adding an ORDER BY clause following an IN subquery could cause duplicate rows to be returned. (Bug

#16308085)
• Crash with explain for a query with loose scan for GROUP BY, MyISAM. (Bug #16222245)
• Loose index scan with quoted int predicate returns random data. (Bug #16394084)
• If the optimizer was using a loose index scan, the server could exit while attempting to create a

temporary table. (Bug #16436567)
• COUNT(DISTINCT) should not count NULL values, but they were counted when the optimizer used

loose index scan. (Bug #17222452)
• If a query had both MIN()/MAX() and aggregate_function(DISTINCT) (for example, SUM(DISTINCT))

and was executed using loose index scan, the result values of MIN()/MAX() were set improperly. (Bug
#17217128)

Aurora MySQL database engine updates: 2016-06-01
Version: 1.6.5

New features

• Efficient storage of Binary Logs – Efficient storage of binary logs is now enabled by default for all
Aurora MySQL DB clusters, and is not configurable. Efficient storage of binary logs was introduced
in the April 2016 update. For more information, see Aurora MySQL database engine updates:
2016-04-06 (p. 1262).

Improvements

• Improved stability for Aurora Replicas when the primary instance is encountering a heavy workload.
• Improved stability for Aurora Replicas when running queries on partitioned tables and tables with

special characters in the table name.
• Fixed connection issues when using secure connections.

Integration of MySQL bug fixes

• SLAVE CAN'T CONTINUE REPLICATION AFTER MASTER'S CRASH RECOVERY (Port Bug #17632285)

Aurora MySQL database engine updates: 2016-04-06
Version: 1.6

This update includes the following improvements:

New features

• Parallel read-ahead – Parallel read-ahead is now enabled by default for all Aurora MySQL DB clusters,
and is not configurable. Parallel read-ahead was introduced in the December 2015 update. For more
information, see Aurora MySQL database engine updates: 2015-12-03 (p. 1264).

In addition to enabling parallel read-ahead by default, this release includes the following
improvements to parallel read-ahead:

1262

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

• Improved logic so that parallel read-ahead is less aggressive, which is beneficial when your DB
cluster encounters many parallel workloads.

• Improved stability on smaller tables.

• Efficient storage of Binary Logs (lab mode) – MySQL binary log files are now stored more efficiently
in Aurora MySQL. The new storage implementation enables binary log files to be deleted much earlier
and improves system performance for an instance in an Aurora MySQL DB cluster that is a binary log
replication master.

To enable efficient storage of binary logs, set the aurora_lab_mode parameter to 1 in the
parameter group for your primary instance or Aurora Replica. The aurora_lab_mode parameter
is an instance-level parameter that is in the default.aurora5.6 parameter group by default.
For information on modifying a DB parameter group, see Modifying parameters in a DB parameter
group (p. 347). For information on parameter groups and Aurora MySQL, see Aurora MySQL
configuration parameters (p. 1063).

Only turn on efficient storage of binary logs for instances in an Aurora MySQL DB cluster that are
MySQL binary log replication master instances.

• AURORA_VERSION system variable – You can now get the Aurora version of your Aurora MySQL DB
cluster by querying for the AURORA_VERSION system variable.

To get the Aurora version, use one of the following queries:

select AURORA_VERSION();
select @@aurora_version;
show variables like '%version';

You can also see the Aurora version in the AWS Management Console when you modify a DB cluster,
or by calling the describe-db-engine-versions AWS CLI command or the DescribeDBEngineVersions API
operation.

• Lock manager memory usage metric – Information about lock manager memory usage is now
available as a metric.

To get the lock manager memory usage metric, use one of the following queries:

show global status where variable_name in ('aurora_lockmgr_memory_used');
select * from INFORMATION_SCHEMA.GLOBAL_STATUS where variable_name in
 ('aurora_lockmgr_memory_used');

Improvements

• Improved stability during binlog and XA transaction recovery.

• Fixed a memory issue resulting from a large number of connections.

• Improved accuracy in the following metrics: Read Throughput, Read IOPS, Read Latency, Write
Throughput, Write IOPS, Write Latency, and Disk Queue Depth.

• Fixed a stability issue causing slow startup for large instances after a crash.

• Improved concurrency in the data dictionary regarding synchronization mechanisms and cache
eviction.

• Stability and performance improvements for Aurora Replicas:

• Fixed a stability issue for Aurora Replicas during heavy or burst write workloads for the primary
instance.

• Improved replica lag for db.r3.4xlarge and db.r3.8xlarge instances.

1263

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBEngineVersions.html

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

• Improved performance by reducing contention between application of log records and concurrent
reads on an Aurora Replica.

• Fixed an issue for refreshing statistics on Aurora Replicas for newly created or updated statistics.

• Improved stability for Aurora Replicas when there are many transactions on the primary instance
and concurrent reads on the Aurora Replicas across the same data.

• Improved stability for Aurora Replicas when running UPDATE and DELETE statements with JOIN
statements.

• Improved stability for Aurora Replicas when running INSERT ... SELECT statements.

Integration of MySQL bug fixes

• BACKPORT Bug #18694052 FIX FOR ASSERTION `!M_ORDERED_REC_BUFFER' FAILED TO 5.6 (Port
Bug #18305270)

• SEGV IN MEMCPY(), HA_PARTITION::POSITION (Port Bug # 18383840)

• WRONG RESULTS WITH PARTITIONING,INDEX_MERGE AND NO PK (Port Bug # 18167648)

• FLUSH TABLES FOR EXPORT: ASSERTION IN HA_PARTITION::EXTRA (Port Bug # 16943907)

• SERVER CRASH IN VIRTUAL HA_ROWS HANDLER::MULTI_RANGE_READ_INFO_CONST (Port Bug #
16164031)

• RANGE OPTIMIZER CRASHES IN SEL_ARG::RB_INSERT() (Port Bug # 16241773)

Aurora MySQL database engine updates: 2016-01-11
Version: 1.5

This update includes the following improvements:

Improvements

• Fixed a 10 second pause of write operations for idle instances during Aurora storage deployments.

• Logical read-ahead now works when innodb_file_per_table is set to No. For more information on
logical read-ahead, see Aurora MySQL database engine updates: 2015-12-03 (p. 1264).

• Fixed issues with Aurora Replicas reconnecting with the primary instance. This improvement also
fixes an issue when you specify a large value for the quantity parameter when testing Aurora
Replica failures using fault-injection queries. For more information, see Testing an Aurora replica
failure (p. 851).

• Improved monitoring of Aurora Replicas falling behind and restarting.

• Fixed an issue that caused an Aurora Replica to lag, become deregistered, and then restart.

• Fixed an issue when you run the show innodb status command during a deadlock.

• Fixed an issue with failovers for larger instances during high write throughput.

Integration of MySQL bug fixes

• Addressed incomplete fix in MySQL full text search affecting tables where the database name begins
with a digit. (Port Bug #17607956)

Aurora MySQL database engine updates: 2015-12-03
Version: 1.4

1264

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

This update includes the following improvements:

New features

• Fast Insert – Accelerates parallel inserts sorted by primary key. For more information, see Amazon
Aurora MySQL performance enhancements (p. 767).

• Large dataset read performance – Aurora MySQL automatically detects an IO heavy workload and
launches more threads in order to boost the performance of the DB cluster. The Aurora scheduler looks
into IO activity and decides to dynamically adjust the optimal number of threads in the system, quickly
adjusting between IO heavy and CPU heavy workloads with low overhead.

• Parallel read-ahead – Improves the performance of B-Tree scans that are too large for the memory
available on your primary instance or Aurora Replica (including range queries). Parallel read-ahead
automatically detects page read patterns and pre-fetches pages into the buffer cache in advance of
when they are needed. Parallel read-ahead works multiple tables at the same time within the same
transaction.

Improvements:

• Fixed brief Aurora database availability issues during Aurora storage deployments.

• Correctly enforce the max_connection limit.

• Improve binlog purging where Aurora is the binlog master and the database is restarting after a heavy
data load.

• Fixed memory management issues with the table cache.

• Add support for huge pages in shared memory buffer cache for faster recovery.

• Fixed an issue with thread-local storage not being initialized.

• Allow 16K connections by default.

• Dynamic thread pool for IO heavy workloads.

• Fixed an issue with properly invalidating views involving UNION in the query cache.

• Fixed a stability issue with the dictionary stats thread.

• Fixed a memory leak in the dictionary subsystem related to cache eviction.

• Fixed high read latency issue on Aurora Replicas when there is very low write load on the master.

• Fixed stability issues on Aurora Replicas when performing operations on DDL partitioned tables such
as ALTER TABLE ... REORGANIZE PARTITION on the master.

• Fixed stability issues on Aurora Replicas during volume growth.

• Fixed performance issue for scans on non-clustered indexes in Aurora Replicas.

• Fix stability issue that makes Aurora Replicas lag and eventually get deregistered and re-started.

Integration of MySQL bug fixes

• SEGV in FTSPARSE(). (Bug #16446108)

• InnoDB data dictionary is not updated while renaming the column. (Bug #19465984)

• FTS crash after renaming table to different database. (Bug #16834860)

• Failed preparing of trigger on truncated tables cause error 1054. (Bug #18596756)

• Metadata changes might cause problems with trigger execution. (Bug #18684393)

• Materialization is not chosen for long UTF8 VARCHAR field. (Bug #17566396)

• Poor execution plan when ORDER BY with limit X. (Bug #16697792)

• Backport bug #11765744 TO 5.1, 5.5 AND 5.6. (Bug #17083851)

1265

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

• Mutex issue in SQL/SQL_SHOW.CC resulting in SIG6. Source likely FILL_VARIABLES. (Bug #20788853)

• Backport bug #18008907 to 5.5+ versions. (Bug #18903155)

• Adapt fix for a stack overflow error in MySQL 5.7. (Bug #19678930)

Aurora MySQL database engine updates: 2015-10-16
Versions: 1.2, 1.3

This update includes the following improvements:

Fixes

• Resolved out-of-memory issue in the new lock manager with long-running transactions

• Resolved security vulnerability when replicating with non-RDS for MySQL databases

• Updated to ensure that quorum writes retry correctly with storage failures

• Updated to report replica lag more accurately

• Improved performance by reducing contention when many concurrent transactions are trying to
modify the same row

• Resolved query cache invalidation for views that are created by joining two tables

• Disabled query cache for transactions with UNCOMMITTED_READ isolation

Improvements

• Better performance for slow catalog queries on warm caches

• Improved concurrency in dictionary statistics

• Better stability for the new query cache resource manager, extent management, files stored in Amazon
Aurora smart storage, and batch writes of log records

Integration of MySQL bug fixes

• Killing a query inside innodb causes it to eventually crash with an assertion. (Bug #1608883)

• For failure to create a new thread for the event scheduler, event execution, or new connection, no
message was written to the error log. (Bug #16865959)

• If one connection changed its default database and simultaneously another connection executed
SHOW PROCESSLIST, the second connection could access invalid memory when attempting to display
the first connection's default database memory. (Bug #11765252)

• PURGE BINARY LOGS by design does not remove binary log files that are in use or active, but did not
provide any notice when this occurred. (Bug #13727933)

• For some statements, memory leaks could result when the optimizer removed unneeded subquery
clauses. (Bug #15875919)

• During shutdown, the server could attempt to lock an uninitialized mutex. (Bug #16016493)

• A prepared statement that used GROUP_CONCAT() and an ORDER BY clause that named multiple
columns could cause the server to exit. (Bug #16075310)

• Performance Schema instrumentation was missing for replica worker threads. (Bug #16083949)

• STOP SLAVE could cause a deadlock when issued concurrently with a statement such
as SHOW STATUS that retrieved the values for one or more of the status variables
Slave_retried_transactions, Slave_heartbeat_period, Slave_received_heartbeats,
Slave_last_heartbeat, or Slave_running. (Bug #16088188)

1266

Amazon Aurora User Guide for Aurora
Database engine updates for

Amazon Aurora MySQL version 1

• A full-text query using Boolean mode could return zero results in some cases where the search term
was a quoted phrase. (Bug #16206253)

• The optimizer's attempt to remove redundant subquery clauses raised an assertion when executing a
prepared statement with a subquery in the ON clause of a join in a subquery. (Bug #16318585)

• GROUP_CONCAT unstable, crash in ITEM_SUM::CLEAN_UP_AFTER_REMOVAL. (Bug #16347450)

• Attempting to replace the default InnoDB full-text search (FTS) stopword list by creating an InnoDB
table with the same structure as INFORMATION_SCHEMA.INNODB_FT_DEFAULT_STOPWORD would
result in an error. (Bug #16373868)

• After the client thread on a worker performed a FLUSH TABLES WITH READ LOCK and was followed
by some updates on the master, the worker hung when executing SHOW SLAVE STATUS. (Bug
#16387720)

• When parsing a delimited search string such as "abc-def" in a full-text search, InnoDB now uses the
same word delimiters as MyISAM. (Bug #16419661)

• Crash in FTS_AST_TERM_SET_WILDCARD. (Bug #16429306)

• SEGFAULT in FTS_AST_VISIT() for FTS RQG test. (Bug # 16435855)

• For debug builds, when the optimizer removed an Item_ref pointing to a subquery, it caused a server
exit. (Bug #16509874)

• Full-text search on InnoDB tables failed on searches for literal phrases combined with + or - operators.
(Bug #16516193)

• START SLAVE failed when the server was started with the options --master-info-repository=TABLE
relay-log-info-repository=TABLE and with autocommit set to 0, together with --skip-slave-start.
(Bug #16533802)

• Very large InnoDB full-text search (FTS) results could consume an excessive amount of memory. (Bug
#16625973)

• In debug builds, an assertion could occur in OPT_CHECK_ORDER_BY when using binary directly
in a search string, as binary might include NULL bytes and other non-meaningful characters. (Bug
#16766016)

• For some statements, memory leaks could result when the optimizer removed unneeded subquery
clauses. (Bug #16807641)

• It was possible to cause a deadlock after issuing FLUSH TABLES WITH READ LOCK by issuing STOP
SLAVE in a new connection to the worker, then issuing SHOW SLAVE STATUS using the original
connection. (Bug #16856735)

• GROUP_CONCAT() with an invalid separator could cause a server exit. (Bug #16870783)

• The server did excessive locking on the LOCK_active_mi and active_mi->rli->data_lock mutexes
for any SHOW STATUS LIKE 'pattern' statement, even when the pattern did not match status
variables that use those mutexes (Slave_heartbeat_period, Slave_last_heartbeat,
Slave_received_heartbeats, Slave_retried_transactions, Slave_running). (Bug
#16904035)

• A full-text search using the IN BOOLEAN MODE modifier would result in an assertion failure. (Bug
#16927092)

• Full-text search on InnoDB tables failed on searches that used the + boolean operator. (Bug
#17280122)

• 4-way deadlock: zombies, purging binlogs, show processlist, show binlogs. (Bug #17283409)

• When an SQL thread which was waiting for a commit lock was killed and restarted it caused a
transaction to be skipped on worker. (Bug #17450876)

• An InnoDB full-text search failure would occur due to an "unended" token. The string and string length
should be passed for string comparison. (Bug #17659310)

• Large numbers of partitioned InnoDB tables could consume much more memory when used in MySQL
5.6 or 5.7 than the memory used by the same tables used in previous releases of the MySQL Server.
(Bug #17780517)

1267

Amazon Aurora User Guide for Aurora
Database engine updates for

Aurora MySQL Serverless clusters

• For full-text queries, a failure to check that num_token is less than max_proximity_item could result in
an assertion. (Bug #18233051)

• Certain queries for the INFORMATION_SCHEMA TABLES and COLUMNS tables could lead to excessive
memory use when there were large numbers of empty InnoDB tables. (Bug #18592390)

• When committing a transaction, a flag is now used to check whether a thread has been created, rather
than checking the thread itself, which uses more resources, particularly when running the server with
master_info_repository=TABLE. (Bug #18684222)

• If a client thread on a worker executed FLUSH TABLES WITH READ LOCK while the master executed a
DML, executing SHOW SLAVE STATUS in the same client became blocked, causing a deadlock. (Bug
#19843808)

• Ordering by a GROUP_CONCAT() result could cause a server exit. (Bug #19880368)

Aurora MySQL database engine updates: 2015-08-24
Version: 1.1

This update includes the following improvements:

• Replication stability improvements when replicating with a MySQL database (binlog replication). For
information on Aurora MySQL replication with MySQL, see Replication with Amazon Aurora (p. 70).

• A 1 gigabyte (GB) limit on the size of the relay logs accumulated for an Aurora MySQL DB cluster that
is a replication worker. This improves the file management for the Aurora DB clusters.

• Stability improvements in the areas of read ahead, recursive foreign-key relationships, and Aurora
replication.

• Integration of MySQL bug fixes.

• InnoDB databases with names beginning with a digit cause a full-text search (FTS) parser error. (Bug
#17607956)

• InnoDB full-text searches fail in databases whose names began with a digit. (Bug #17161372)

• For InnoDB databases on Windows, the full-text search (FTS) object ID is not in the expected
hexadecimal format. (Bug #16559254)

• A code regression introduced in MySQL 5.6 negatively impacted DROP TABLE and ALTER TABLE
performance. This could cause a performance drop between MySQL Server 5.5.x and 5.6.x. (Bug
#16864741)

• Simplified logging to reduce the size of log files and the amount of storage that they require.

Database engine updates for Aurora MySQL
Serverless clusters
The following are Aurora MySQL database engine updates for Aurora MySQL Serverless DB clusters.
These release notes provide information about bug fixes, updates to the database engine, and other
critical information. Aurora Serverless v1 doesn't have its own version number. It shares the version
number (and name) of the Aurora database engine that supports Aurora Serverless v1. For more
information, see Aurora Serverless v1 and Aurora database engine versions (p. 177).

• Aurora MySQL Serverless 5.7 engine updates 2021-07-16 (version 2.08.3) (p. 1269)

• Aurora MySQL Serverless 5.7 engine updates 2020-06-18 (version 2.07.1) (p. 1269)

• Aurora MySQL Serverless 5.6 engine updates 2021-07-16 (version 1.22.3) (p. 1270)

• Aurora MySQL Serverless 5.6 engine updates 2020-08-14 (version 1.21.0) (p. 1270)

1268

Amazon Aurora User Guide for Aurora
Database engine updates for

Aurora MySQL Serverless clusters

Aurora MySQL Serverless 5.7 engine updates 2021-07-16
(version 2.08.3)
Aurora Serverless 5.7 is generally available. It has the same features and bug fixes as Aurora MySQL
2.08.3.

You can restore a snapshot from a currently supported Aurora MySQL release into Aurora MySQL
Serverless 5.7. By using a snapshot, you can also upgrade an Aurora MySQL-5.6 compatible Aurora
Serverless v1 DB cluster to an Aurora MySQL-5.7 compatible Aurora Serverless v1 DB cluster. To do so:

• Create a snapshot from the Aurora MySQL 5.6 Serverless DB cluster. To learn how, see Creating a DB
cluster snapshot (p. 495).

• Restore the snapshot to a new Aurora MySQL 5.7 Serverless cluster. For more information, see
Restoring an Aurora Serverless v1 DB cluster (p. 166).

Aurora Serverless v1 doesn't have its own version number. It uses the number of the Aurora MySQL
version that supports it to distinguish between Aurora MySQL 5.7 and Aurora MySQL 5.6 updates. For
more information, see Aurora Serverless v1 and Aurora database engine versions (p. 177).

For general information about Aurora Serverless, see Using Amazon Aurora Serverless v1 (p. 147).

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Aurora DB cluster.

Bug fixes:

This Aurora Serverless release includes all bug fixes up to Aurora MySQL version 2.08.3. For details, see
Aurora MySQL database engine updates 2020-11-12 (version 2.08.3) (p. 1154) and the release notes for
previous Aurora MySQL versions.

Features:

This Aurora Serverless release includes all new features up to Aurora MySQL version 2.08.3. For details,
see Aurora MySQL database engine updates 2020-11-12 (version 2.08.3) (p. 1154) and the release notes
for previous Aurora MySQL versions.

Aurora MySQL Serverless 5.7 engine updates 2020-06-18
(version 2.07.1)
Aurora Serverless 5.7 is generally available. It has the same features and bug fixes as Aurora MySQL
2.07.1.

You can restore a snapshot from a currently supported Aurora MySQL release into Aurora MySQL
Serverless 5.7. By using a snapshot, you can also upgrade an Aurora MySQL-5.6 compatible Aurora
Serverless v1 DB cluster to an Aurora MySQL-5.7 compatible Aurora Serverless v1 DB cluster. To do so:

• Create a snapshot from the Aurora MySQL 5.6 Serverless DB cluster. To learn how, see Creating a DB
cluster snapshot (p. 495).

• Restore the snapshot to a new Aurora MySQL 5.7 Serverless cluster. For more information, see
Restoring an Aurora Serverless v1 DB cluster (p. 166).

Aurora Serverless v1 doesn't have its own version number. It uses the number of the Aurora MySQL
version that supports it to distinguish between Aurora MySQL 5.7 and Aurora MySQL 5.6 updates. For
more information, see Aurora Serverless v1 and Aurora database engine versions (p. 177).

For general information about Aurora Serverless, see Using Amazon Aurora Serverless v1 (p. 147).

1269

http://aws.amazon.com/support
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.Maintenance.html

Amazon Aurora User Guide for Aurora
Database engine updates for

Aurora MySQL Serverless clusters

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Aurora DB cluster.

Bug fixes:

This Aurora Serverless release includes all bug fixes up to Aurora MySQL version 2.07.1. For details, see
Aurora MySQL database engine updates 2019-12-23 (version 2.07.1) (p. 1172) and the release notes for
previous Aurora MySQL versions.

Features:

This Aurora Serverless release includes all new features up to Aurora MySQL version 2.07.1. For details,
see Aurora MySQL database engine updates 2019-12-23 (version 2.07.1) (p. 1172) and the release notes
for previous Aurora MySQL versions. The following features are of particular interest for users of Aurora
Serverless or Aurora MySQL with MySQL 5.7 compatibility:

• Aurora MySQL Serverless now supports the hot row contention feature. For more information, see
Aurora MySQL database engine updates: 2016-12-14 (p. 1257).

• Aurora MySQL Serverless now supports the hash join feature. To use this feature, you must specify the
configuration setting optimizer_switch='hash_join=on'. For more information, see Optimizing
large Aurora MySQL join queries with hash joins (p. 1059).

• Aurora Serverless 5.7 can use the Data API. For more information, see Using the Data API for Aurora
Serverless (p. 178).

• Aurora Serverless 5.7 can use the query editor. For more information, see Using the query editor for
Aurora Serverless (p. 204).

• Aurora Serverless 5.7 supports the same JSON features as other Aurora MySQL versions that are
compatible with MySQL 5.7.

Aurora MySQL Serverless 5.6 engine updates 2021-07-16
(version 1.22.3)
Aurora Serverless 5.6 is generally available. It has the same features and bug fixes as Aurora MySQL
1.22.3.

Aurora Serverless v1 doesn't have its own version number. It uses the number of the Aurora MySQL
version that supports it to distinguish between Aurora MySQL 5.6 and Aurora MySQL 5.7 updates. For
more information, see Aurora Serverless v1 and Aurora database engine versions (p. 177). For general
information about Aurora Serverless, see Using Amazon Aurora Serverless v1 (p. 147).

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Aurora DB cluster.

Bug fixes:

This Aurora Serverless release includes all bug fixes up to Aurora MySQL version 1.22.3. For details, see
Aurora MySQL database engine updates 2020-11-09 (version 1.22.3) (p. 1226) and the release notes for
previous Aurora MySQL versions.

Aurora MySQL Serverless 5.6 engine updates 2020-08-14
(version 1.21.0)
Aurora Serverless 5.6 is generally available. It has the same features and bug fixes as Aurora MySQL
1.21.0.

Aurora Serverless v1 doesn't have its own version number. It uses the number of the Aurora MySQL
version that supports it to distinguish between Aurora MySQL 5.6 and Aurora MySQL 5.7 updates. For

1270

http://aws.amazon.com/support
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.Maintenance.html
http://aws.amazon.com/support
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.Maintenance.html

Amazon Aurora User Guide for Aurora
MySQL bugs fixed by Aurora MySQL updates

more information, see Aurora Serverless v1 and Aurora database engine versions (p. 177). For general
information about Aurora Serverless, see Using Amazon Aurora Serverless v1 (p. 147).

If you have any questions or concerns, AWS Support is available on the community forums and through
AWS Premium Support. For more information, see Maintaining an Aurora DB cluster.

Bug fixes:

This Aurora Serverless release includes all bug fixes up to Aurora MySQL version 1.21.0. For details, see
Aurora MySQL database engine updates 2019-11-25 (version 1.21.0) (p. 1232) and the release notes for
previous Aurora MySQL versions.

Features:

This Aurora Serverless release improves CPU utilization across the Serverless fleet, especially benefiting
clusters with one and two Aurora capacity units (ACUs). See Aurora Serverless v1 architecture (p. 152) for
more information about ACUs.

MySQL bugs fixed by Aurora MySQL database engine
updates
The following sections identify MySQL bugs that have been fixed by Aurora MySQL database engine
updates.

Topics
• MySQL bugs fixed by Aurora MySQL 2.x database engine updates (p. 1271)
• MySQL bugs fixed by Aurora MySQL 1.x database engine updates (p. 1282)

MySQL bugs fixed by Aurora MySQL 2.x database engine
updates
MySQL 5.7-compatible version Aurora contains all MySQL bug fixes through MySQL 5.7.12. The
following table identifies additional MySQL bugs that have been fixed by Aurora MySQL database engine
updates, and which update they were fixed in.

Database engine
update

Version MySQL bugs fixed

Aurora MySQL
database
engine updates
2022-01-26 (version
2.10.2) (p. 1131)

2.10.2 • Fixed an issue in InnoDB where an error in code related to
table statistics raised an assertion in the dict0stats.cc (http://
dict0stats.cc/) source file. (Bug #24585978)

• A secondary index over a virtual column became corrupted when
the index was built online. For UPDATE (https://dev.mysql.com/
doc/refman/5.7/en/update.html) statements, we fix this as
follows: If the virtual column value of the index record is set to
NULL, then we generate this value from the cluster index record.
(Bug #30556595)

• ASSERTION "!OTHER_LOCK" IN LOCK_REC_ADD_TO_QUEUE (Bug
#29195848)

• HANDLE_FATAL_SIGNAL (SIG=11) IN __STRCHR_SSE2 (Bug
#28653104)

• Fixed an issue which a query interruption during a lock wait can
cause an error in InnoDB. (Bug #28068293)

1271

http://aws.amazon.com/support
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.Maintenance.html

Amazon Aurora User Guide for Aurora
MySQL bugs fixed by Aurora MySQL updates

Database engine
update

Version MySQL bugs fixed

• Interleaved transactions could sometimes deadlock the
replica applier when the transaction isolation level was set to
REPEATABLE READ. (Bug #25040331)

• Fixed an issue which can cause binlog replicas to stall due to lock
wait timeout.(Bug #27189701)

Aurora MySQL
database
engine updates
2021-10-21 (version
2.10.1) (p. 1134)

2.10.1 CURRENT_TIMESTAMP PRODUCES ZEROS IN TRIGGER. (Bug
#25209512)

1272

Amazon Aurora User Guide for Aurora
MySQL bugs fixed by Aurora MySQL updates

Database engine
update

Version MySQL bugs fixed

Aurora MySQL
database
engine updates
2021-05-25 (version
2.10.0) (p. 1136)

2.10.0 • Interleaved transactions could sometimes deadlock the
replica applier when the transaction isolation level was set to
REPEATABLE READ. (Bug #25040331)

• When a stored procedure contained a statement referring to a
view which in turn referred to another view, the procedure could
not be invoked successfully more than once. (Bug #87858, Bug
#26864199)

• For queries with many OR conditions, the optimizer now is more
memory-efficient and less likely to exceed the memory limit
imposed by the range_optimizer_max_mem_size system variable.
In addition, the default value for that variable has been raised
from 1,536,000 to 8,388,608. (Bug #79450, Bug #22283790)

• Replication: In the next_event() function, which is called by a
replica's SQL thread to read the next event from the relay log, the
SQL thread did not release the relaylog.log_lock it acquired
when it ran into an error (for example, due to a closed relay log),
causing all other threads waiting to acquire a lock on the relay
log to hang. With this fix, the lock is released before the SQL
thread leaves the function under the situation. (Bug #21697821)

• Fixing a memory corruption for ALTER TABLE with virtual
column. (Bug #24961167; Bug #24960450)

• Replication: Multithreaded replicas could not be configured with
small queue sizes using slave_pending_jobs_size_max if they ever
needed to process transactions larger than that size. Any packet
larger than slave_pending_jobs_size_max was rejected with the
error ER_MTS_EVENT_BIGGER_PENDING_JOBS_SIZE_MAX,
even if the packet was smaller than the limit
set by slave_max_allowed_packet. With this fix,
slave_pending_jobs_size_max becomes a soft limit
rather than a hard limit. If the size of a packet
exceeds slave_pending_jobs_size_max but is less than
slave_max_allowed_packet, the transaction is held until all the
replica workers have empty queues, and then processed. All
subsequent transactions are held until the large transaction has
been completed. The queue size for replica workers can therefore
be limited while still allowing occasional larger transactions. (Bug
#21280753, Bug #77406)

• Replication: When using a multithreaded replica, applier errors
displayed worker ID data that was inconsistent with data
externalized in Performance Schema replication tables. (Bug
#25231367)

• Replication: On a GTID-based replication replica running
with -gtid-mode=ON, -log-bin=OFF, and using -slave-skip-
errors, when an error was encountered that should be ignored
Exec_Master_Log_Pos was not being correctly updated,
causing Exec_Master_Log_Pos to loose synchrony with
Read_master_log_pos. If a GTID_NEXT was not specified, the
replica would never update its GTID state when rolling back from
a single statement transaction. The Exec_Master_Log_Pos
would not be updated because even though the transaction was
finished, its GTID state would show otherwise. The fix removes

1273

https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html#isolevel_repeatable-read
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_range_optimizer_max_mem_size
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_slave_pending_jobs_size_max
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_slave_pending_jobs_size_max
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_slave_max_allowed_packet
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_slave_pending_jobs_size_max
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_slave_pending_jobs_size_max
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_slave_max_allowed_packet
https://dev.mysql.com/doc/refman/5.7/en/replication-options-gtids.html#sysvar_gtid_mode
https://dev.mysql.com/doc/refman/5.7/en/replication-options-binary-log.html#sysvar_log_bin
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_slave_skip_errors
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_slave_skip_errors

Amazon Aurora User Guide for Aurora
MySQL bugs fixed by Aurora MySQL updates

Database engine
update

Version MySQL bugs fixed

the restraint of updating the GTID state when a transaction is
rolled back only if GTID_NEXT is specified. (Bug #22268777)

• Replication: A partially failed statement was not correctly
consuming an auto-generated or specified GTID when binary
logging was disabled. The fix ensures that a partially failed DROP
TABLE, a partially failed DROP USER, or a partially failed DROP
VIEW consume respectively the relevant GTID and save it into
@@GLOBAL.GTID_EXECUTED and mysql.gtid_executed table
when binary logging is disabled. (Bug #21686749)

• Replication: Replicas running MySQL 5.7 could not connect to
a MySQL 5.5 source due to an error retrieving the server_uuid,
which is not part of MySQL 5.5. This was caused by changes in
the method of retrieving the server_uuid. (Bug #22748612)

• Binlog replication: GTID transaction skipping mechanism was not
working properly for XA transaction before this fix. Server has
a mechanism to skip (silently) a GTID transaction if it is already
executed that particular transaction in the past. (BUG#25041920)

• ">XA ROLLBACK statements that failed because an incorrect
transaction ID was given, could be recorded in the binary log with
the correct transaction ID, and could therefore be actioned by
replication replicas. A check is now made for the error situation
before binary logging takes place, and failed XA ROLLBACK
statements are not logged. (Bug #26618925)

• Replication: If a replica was set up using a CHANGE MASTER
TO statement that did not specify the source log file name and
source log position, then shut down before START SLAVE was
issued, then restarted with the option -relay-log-recovery set,
replication did not start. This happened because the receiver
thread had not been started before relay log recovery was
attempted, so no log rotation event was available in the relay log
to provide the source log file name and source log position. In
this situation, the replica now skips relay log recovery and logs a
warning, then proceeds to start replication. (Bug #28996606, Bug
#93397)

• Replication: In row-based replication, a message that incorrectly
displayed field lengths was returned when replicating from a
table with a utf8mb3 column to a table of the same definition
where the column was defined with a utf8mb4 character set.
(Bug #25135304, Bug #83918)

• Replication: When a RESET SLAVE statement was issued on
a replication replica with GTIDs in use, the existing relay log
files were purged, but the replacement new relay log file was
generated before the set of received GTIDs for the channel had
been cleared. The former GTID set was therefore written to the
new relay log file as the PREVIOUS_GTIDS event, causing a
fatal error in replication stating that the replica had more GTIDs
than the source, even though the gtid_executed set for both
servers was empty. Now, when RESET SLAVE is issued, the
set of received GTIDs is cleared before the new relay log file is
generated, so that this situation does not occur. (Bug #27411175)

• Replication: With GTIDs in use for replication, transactions
including statements that caused a parsing error

1274

https://dev.mysql.com/doc/refman/5.7/en/drop-table.html
https://dev.mysql.com/doc/refman/5.7/en/drop-table.html
https://dev.mysql.com/doc/refman/5.7/en/drop-user.html
http://simonlightstone.contently.com/
http://simonlightstone.contently.com/
https://dev.mysql.com/doc/refman/5.7/en/replication-options.html#sysvar_server_uuid
https://dev.mysql.com/doc/refman/5.7/en/x.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_relay_log_recovery
https://dev.mysql.com/doc/refman/5.7/en/reset-slave.html

Amazon Aurora User Guide for Aurora
MySQL bugs fixed by Aurora MySQL updates

Database engine
update

Version MySQL bugs fixed

(ER_PARSE_ERROR) could not be skipped manually by the
recommended method of injecting an empty or replacement
transaction with the same GTID. This action should result in
the replica identifying the GTID as already used, and therefore
skipping the unwanted transaction that shared its GTID. However,
in the case of a parsing error, because the statement was parsed
before the GTID was checked to see if it needed to be skipped,
the replication applier thread stopped due to the parsing error,
even though the intention was for the transaction to be skipped
anyway. With this fix, the replication applier thread now ignores
parsing errors if the transaction concerned needs to be skipped
because the GTID was already used. Note that this behavior
change does not apply in the case of workloads consisting of
binary log output produced by mysqlbinlog. In that situation,
there would be a risk that a transaction with a parsing error that
immediately follows a skipped transaction would also be silently
skipped, when it ought to raise an error. (Bug #27638268)

• Replication: Enable the SQL thread to GTID skip a partial
transaction. (Bug #25800025)

• Replication: When a negative or fractional timeout parameter was
supplied to WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS(), the
server behaved in unexpected ways. With this fix:
• A fractional timeout value is read as-is, with no round-off.
• A negative timeout value is rejected with an error if the

server is on a strict SQL mode; if the server is not on a
strict SQL mode, the value makes the function return NULL
immediately without any waiting and then issue a warning.
(Bug #24976304, Bug #83537)

• Replication: If the WAIT_FOR_EXECUTED_GTID_SET() function
was used with a timeout value including a fractional part (for
example, 1.5), an error in the casting logic meant that the
timeout was rounded down to the nearest whole second, and to
zero for values less than 1 second (for example, 0.1). The casting
logic has now been corrected so that the timeout value is applied
as originally specified with no rounding. Thanks to Dirkjan
Bussink for the contribution. (Bug #29324564, Bug #94247)

• With GTIDs enabled, XA COMMIT on a disconnected XA
transaction within a multiple-statement transaction raised an
assertion. (Bug #22173903)

• Replication: An assertion was raised in debug builds if an XA
ROLLBACK statement was issued for an unknown transaction
identifier when the gtid_next value had been set manually. The
server now does not attempt to update the GTID state if an XA
ROLLBACK statement fails with an error. (Bug #27928837, Bug
#90640)

• Fix wrong sorting order issue when multiple CASE functions are
used in ORDER BY clause (Bug#22810883).

1275

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_parse_error
https://dev.mysql.com/doc/refman/5.7/en/xa.html
https://dev.mysql.com/doc/refman/5.7/en/xa.html
https://dev.mysql.com/doc/refman/5.7/en/xa.html
https://dev.mysql.com/doc/refman/5.7/en/replication-options-gtids.html#sysvar_gtid_next

Amazon Aurora User Guide for Aurora
MySQL bugs fixed by Aurora MySQL updates

Database engine
update

Version MySQL bugs fixed

Aurora MySQL
database
engine updates
2021-11-12 (version
2.09.3) (p. 1140)

2.09.3 • ASSERTION !M_PREBUILT->TRX->CHECK_FOREIGNS. (Bug
#23533396)

• Replication:* A locking issue in the
WAIT_FOR_EXECUTED_GTID_SET() function could cause the
server to hang in certain circumstances. The issue has now been
corrected. (Bug #29550513)

Aurora MySQL
database
engine updates
2020-12-11 (version
2.09.1) (p. 1145)

2.09.1 • Replication: Interleaved transactions could sometimes deadlock
the slave applier when the transaction isolation level was set to
REPEATABLE READ. (Bug #25040331)

• For a table having a TIMESTAMP or DATETIME column having a
default of CURRENT_TIMESTAMP, the column could be initialized
to 0000-00-00 00:00:00 if the table had a BEFORE INSERT
trigger. (Bug #25209512, Bug #84077)

• For an INSERT statement for which the VALUES list produced
values for the second or later row using a subquery containing
a join, the server could exit after failing to resolve the required
privileges. (Bug #23762382)

Aurora MySQL
database
engine updates
2020-11-12 (version
2.08.3) (p. 1154)

2.08.3 • Bug #23762382 - INSERT VALUES QUERY WITH JOIN IN A
SELECT CAUSES INCORRECT BEHAVIOR.

• Bug #25209512 - CURRENT_TIMESTAMP PRODUCES ZEROS IN
TRIGGER.

Aurora MySQL
database
engine updates
2020-06-02 (version
2.08.0) (p. 1158)

2.08.0 • Bug #25289359: A full-text cache lock taken when data is
synchronized was not released if the full-text cache size exceeded
the full-text cache size limit.

• Bug #29138644: Manually changing the system time while the
MySQL server was running caused page cleaner thread delays.

• Bug #25222337: A NULL virtual column field name in a virtual
index caused a server exit during a field name comparison that
occurs while populating virtual columns affected by a foreign key
constraint.

• Bug #25053286: Executing a stored procedure containing a query
that accessed a view could allocate memory that was not freed
until the session ended.

• Bug #25586773: Executing a stored procedure containing a
statement that created a table from the contents of certain
SELECT statements could result in a memory leak.

• Bug #28834208: During log application, after an OPTIMIZE
TABLE operation, InnoDB did not populate virtual columns before
checking for virtual column index updates.

• Bug #26666274: Infinite loop in performance schema buffer
container due to 32-bit unsigned integer overflow.

Aurora MySQL
database
engine updates
2021-11-24 (version
2.07.7) (p. 1161)

2.07.7 INSERTING 64K SIZE RECORDS TAKE TOO MUCH TIME.
(Bug#23031146)

1276

https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html#isolevel_repeatable-read
https://dev.mysql.com/doc/refman/5.7/en/datetime.html
https://dev.mysql.com/doc/refman/5.7/en/datetime.html
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_current-timestamp
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://github.com/mysql/mysql-server/commit/64161c9abd50de7ba0b542bd4895881f6ead6531
https://github.com/mysql/mysql-server/commit/fbfd9fcd32afc11ba77d52fa0690aa26dcd64f72
https://github.com/mysql/mysql-server/commit/273d5c9d7072c63b6c47dbef6963d7dc491d5131
https://github.com/mysql/mysql-server/commit/d7b37d4d141a95f577916448650c429f0d6e193d
https://github.com/mysql/mysql-server/commit/88301e5adab65f6750f66af284be410c4369d0c1
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://github.com/mysql/mysql-server/commit/ca722bbb409209d683534846a90093c118bf8c5b
https://dev.mysql.com/doc/refman/5.7/en/optimize-table.html
https://dev.mysql.com/doc/refman/5.7/en/optimize-table.html
https://github.com/mysql/mysql-server/commit/bd87573bc159c849f34aa8293ec43ac053cbfda0

Amazon Aurora User Guide for Aurora
MySQL bugs fixed by Aurora MySQL updates

Database engine
update

Version MySQL bugs fixed

Aurora MySQL
database
engine updates
2021-09-02 (version
2.07.6) (p. 1163)

2.07.6 • INSERTING 64K SIZE RECORDS TAKE TOO MUCH TIME.
(Bug#23031146)

Aurora MySQL
database
engine updates
2021-03-04 (version
2.07.4) (p. 1166)

2.07.4 • Fixed an issue in the Full-text ngram parser when dealing with
tokens containing ' ' (space), '%', or ','. Customers should rebuild
their FTS indexes if using ngram parser. (Bug #25873310)

• Fixed an issue that could cause engine restart during query
execution with nested SQL views. (Bug #27214153, Bug
#26864199)

1277

Amazon Aurora User Guide for Aurora
MySQL bugs fixed by Aurora MySQL updates

Database engine
update

Version MySQL bugs fixed

Aurora MySQL
database
engine updates
2020-11-10 (version
2.07.3) (p. 1168)

2.07.3 • InnoDB: Concurrent XA transactions that ran successfully to the
XA prepare stage on the master conflicted when replayed on
the slave, resulting in a lock wait timeout in the applier thread.
The conflict was due to the GAP lock range which differed when
the transactions were replayed serially on the slave. To prevent
this type of conflict, GAP locks taken by XA transactions in READ
COMMITTED isolation level are now released (and no longer
inherited) when XA transactions reach the prepare stage. (Bug
#27189701, Bug #25866046)

• InnoDB: A gap lock was taken unnecessarily during foreign key
validation while using the READ COMMITTED isolation level. (Bug
#25082593)

• Replication: When using XA transactions, if a lock wait timeout or
deadlock occurred for the applier (SQL) thread on a replication
slave, the automatic retry did not work. The cause was that while
the SQL thread would do a rollback, it would not roll the XA
transaction back. This meant that when the transaction was
retried, the first event was XA START which was invalid as the XA
transaction was already in progress, leading to an XAER_RMFAIL
error. (Bug #24764800)

• Replication: Interleaved transactions could sometimes deadlock
the slave applier when the transaction isolation level was set to
REPEATABLE READ. (Bug #25040331)

• Replication: The value returned by a SHOW SLAVE STATUS
statement for the total combined size of all existing relay log files
(Relay_Log_Space) could become much larger than the actual
disk space used by the relay log files. The I/O thread did not lock
the variable while it updated the value, so the SQL thread could
automatically delete a relay log file and write a reduced value
before the I/O thread finished updating the value. The I/O thread
then wrote its original size calculation, ignoring the SQL thread's
update and so adding back the space for the deleted file. The
Relay_Log_Space value is now locked during updates to prevent
concurrent updates and ensure an accurate calculation. (Bug
#26997096, Bug #87832)

• For an INSERT statement for which the VALUES list produced
values for the second or later row using a subquery containing
a join, the server could exit after failing to resolve the required
privileges. (Bug #23762382)

• For a table having a TIMESTAMP or DATETIME column having a
default of CURRENT_TIMESTAMP, the column could be initialized
to 0000-00-00 00:00:00 if the table had a BEFORE INSERT
trigger. (Bug #25209512, Bug #84077)

• A server exit could result from simultaneous attempts by multiple
threads to register and deregister metadata Performance Schema
objects. (Bug #26502135)

• Executing a stored procedure containing a statement that created
a table from the contents of certain SELECT statements could
result in a memory leak. (Bug #25586773)

1278

https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html#isolevel_repeatable-read
https://dev.mysql.com/doc/refman/5.6/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/datetime.html
https://dev.mysql.com/doc/refman/5.7/en/datetime.html
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_current-timestamp
https://dev.mysql.com/doc/refman/5.7/en/select.html

Amazon Aurora User Guide for Aurora
MySQL bugs fixed by Aurora MySQL updates

Database engine
update

Version MySQL bugs fixed

• Executing a stored procedure containing a query that accessed a
view could allocate memory that was not freed until the session
ended. (Bug #25053286)

• Certain cases of subquery materialization could cause a server
exit. These queries now produce an error suggesting that
materialization be disabled. (Bug #26402045)

• Queries with many left joins were slow if join buffering was
used (for example, using the block nested loop algorithm). (Bug
#18898433, Bug #72854)

• The optimizer skipped the second column in a composite index
when executing an inner join with a LIKE clause against the
second column. (Bug #28086754)

Aurora MySQL
database
engine updates
2020-04-17 (version
2.07.2) (p. 1170)

2.07.2 • Bug #23104498: Fixed an issue in Performance Schema in
reporting total memory used. (https://github.com/mysql/mysql-
server/commit/20b6840df5452f47313c6f9a6ca075bfbc00a96b)

• Bug #22551677: Fixed an issue in Performance Schema that
could lead to the database engine crashing when attempting to
take it offline. (https://github.com/mysql/mysql-server/commit/
05e2386eccd32b6b444b900c9f8a87a1d8d531e9)

• Bug #23550835, Bug #23298025, Bug #81464: Fixed
an issue in Performance Schema that causes a database
engine crash due to exceeding the capacity of an internal
buffer. (https://github.com/mysql/mysql-server/commit/
b4287f93857bf2f99b18fd06f555bbe5b12debfc,
https://github.com/mysql/mysql-server/commit/
b4287f93857bf2f99b18fd06f555bbe5b12debfc)

Aurora MySQL
database
engine updates
2019-11-25 (version
2.07.0) (p. 1174)

2.07.0 • Bug #26251621: INCORRECT BEHAVIOR WITH TRIGGER AND
GCOL

• Bug #22574695: ASSERTION `!TABLE || (!TABLE->READ_SET ||
BITMAP_IS_SET(TABLE->READ_SET, FIEL

• Bug #25966845: INSERT ON DUPLICATE KEY GENERATE A
DEADLOCK

• Bug #23070734: CONCURRENT TRUNCATE TABLES CAUSE STALL
• Bug #26191879: FOREIGN KEY CASCADES USE EXCESSIVE

MEMORY
• Bug #20989615: INNODB AUTO_INCREMENT PRODUCES SAME

VALUE TWICE

Aurora MySQL
database engine
updates 2019-11-11
(version 2.05.0)
(deprecated) (p. 1179)

2.05.0 • Bug#23054591: PURGE BINARY LOGS TO is reading the whole
binlog file and causing MySql to stall

1279

https://github.com/mysql/mysql-server/commit/20b6840df5452f47313c6f9a6ca075bfbc00a96b
https://github.com/mysql/mysql-server/commit/20b6840df5452f47313c6f9a6ca075bfbc00a96b
https://github.com/mysql/mysql-server/commit/05e2386eccd32b6b444b900c9f8a87a1d8d531e9
https://github.com/mysql/mysql-server/commit/05e2386eccd32b6b444b900c9f8a87a1d8d531e9
https://github.com/mysql/mysql-server/commit/b4287f93857bf2f99b18fd06f555bbe5b12debfc
https://github.com/mysql/mysql-server/commit/b4287f93857bf2f99b18fd06f555bbe5b12debfc
https://github.com/mysql/mysql-server/commit/b4287f93857bf2f99b18fd06f555bbe5b12debfc
https://github.com/mysql/mysql-server/commit/b4287f93857bf2f99b18fd06f555bbe5b12debfc

Amazon Aurora User Guide for Aurora
MySQL bugs fixed by Aurora MySQL updates

Database engine
update

Version MySQL bugs fixed

Aurora MySQL
database
engine updates
2020-08-14 (version
2.04.9) (p. 1180)

2.04.9 • Bug #23070734, Bug #80060: Concurrent TRUNCATE TABLEs
cause stalls

• Bug #23103937: PS_TRUNCATE_ALL_TABLES() DOES NOT WORK
IN SUPER_READ_ONLY MODE

• Bug#22551677: When taking the server offline, a race condition
within the Performance Schema could lead to a server exit.

• Bug #27082268: Invalid FTS sync synchronization.
• BUG #12589870: Fixed an issues which causes a restart with

multi-query statement when query cache is enabled.
• Bug #26402045: Certain cases of subquery materialization

could cause a server exit. These queries now produce an error
suggesting that materialization be disabled.

• Bug #18898433: Queries with many left joins were slow if join
buffering was used (for example, using the block nested loop
algorithm).

• Bug #25222337: A NULL virtual column field name in a virtual
index caused a server exit during a field name comparison that
occurs while populating virtual columns affected by a foreign key
constraint. (https://github.com/mysql/mysql-server/commit/
273d5c9d7072c63b6c47dbef6963d7dc491d5131)

• Bug #25053286: Executing a stored procedure
containing a query that accessed a view could allocate
memory that was not freed until the session ended.
(https://github.com/mysql/mysql-server/commit/
d7b37d4d141a95f577916448650c429f0d6e193d)

• Bug #25586773: Executing a stored procedure containing
a statement that created a table from the contents of
certain SELECT (https://dev.mysql.com/doc/refman/5.7/
en/select.html) statements could result in a memory
leak. (https://github.com/mysql/mysql-server/commit/
88301e5adab65f6750f66af284be410c4369d0c1)

• Bug #26666274: INFINITE LOOP IN PERFORMANCE SCHEMA
BUFFER CONTAINER.

• Bug #23550835, Bug #23298025, Bug #81464: A SELECT
Performance Schema tables when an internal buffer was full
could cause a server exit.

Aurora MySQL
database
engine updates
2019-09-19 (version
2.04.6) (p. 1187)

2.04.6 • Bug#23054591: PURGE BINARY LOGS TO is reading the whole
binlog file and causing MySql to stall

Aurora MySQL
database
engine updates
2019-05-02 (version
2.04.2) (p. 1193)

2.04.2 Bug #24829050 - INDEX_MERGE_INTERSECTION OPTIMIZATION
CAUSES WRONG QUERY RESULTS

1280

https://github.com/mysql/mysql-server/commit/273d5c9d7072c63b6c47dbef6963d7dc491d5131
https://github.com/mysql/mysql-server/commit/273d5c9d7072c63b6c47dbef6963d7dc491d5131
https://github.com/mysql/mysql-server/commit/d7b37d4d141a95f577916448650c429f0d6e193d
https://github.com/mysql/mysql-server/commit/d7b37d4d141a95f577916448650c429f0d6e193d
https://github.com/mysql/mysql-server/commit/88301e5adab65f6750f66af284be410c4369d0c1
https://github.com/mysql/mysql-server/commit/88301e5adab65f6750f66af284be410c4369d0c1

Amazon Aurora User Guide for Aurora
MySQL bugs fixed by Aurora MySQL updates

Database engine
update

Version MySQL bugs fixed

Aurora MySQL
database engine
updates 2018-10-11
(version 2.03)
(deprecated) (p. 1203)

2.03 • REVERSE SCAN ON A PARTITIONED TABLE DOES ICP - ORDER BY
DESC (Bug #24929748).

• JSON_OBJECT CREATES INVALID JSON CODE (Bug#26867509).
• INSERTING LARGE JSON DATA TAKES AN INORDINATE AMOUNT

OF TIME (Bug #22843444).
• PARTITIONED TABLES USE MORE MEMORY IN 5.7 THAN 5.6 (Bug

#25080442).

Aurora MySQL
database engine
updates 2018-09-21
(version 2.02.4)
(deprecated) (p. 1206)

2.02.4 • BUG#13651665 INNODB MAY BE UNABLE TO LOAD TABLE
DEFINITION AFTER RENAME

• BUG#21371070 INNODB: CANNOT ALLOCATE 0 BYTES.

• BUG#21378944 FTS ASSERT ENC.SRC_ILIST_PTR !=
NULL, FTS_OPTIMIZE_WORD(), OPTIMIZE TABLE

• BUG#21508537 ASSERTION FAILURE UT_A(!VICTIM_TRX-
>READ_ONLY)

• BUG#21983865 UNEXPECTED DEADLOCK WITH
INNODB_AUTOINC_LOCK_MODE=0

• BUG#22679185 INVALID INNODB FTS DOC ID DURING
INSERT

• BUG#22899305 GCOLS: ASSERTION: !(COL->PRTYPE &
256).

• BUG#22956469 MEMORY LEAK INTRODUCED IN 5.7.8 IN
MEMORY/INNODB/OS0FILE

• BUG#22996488 CRASH IN FTS_SYNC_INDEX WHEN DOING
DDL IN A LOOP

• BUG#23014521 GCOL:INNODB: ASSERTION: !IS_V

• BUG#23021168 REPLICATION STOPS AFTER TRX IS
ROLLED BACK ASYNC

• BUG#23052231 ASSERTION: ADD_AUTOINC <
DICT_TABLE_GET_N_USER_COLS

• BUG#23149683 ROTATE INNODB MASTER KEY WITH
KEYRING_OKV_CONF_DIR MISSING: SIGSEGV; SIGNAL 11

• BUG#23762382 INSERT VALUES QUERY WITH JOIN IN A
SELECT CAUSES INCORRECT BEHAVIOR

• BUG#25209512 CURRENT_TIMESTAMP PRODUCES ZEROS IN
TRIGGER

• BUG#26626277 BUG IN "INSERT... ON DUPLICATE KEY
UPDATE" QUERY

• BUG#26734162 INCORRECT BEHAVIOR WITH INSERT OF
BLOB + ON DUPLICATE KEY UPDATE

• BUG#27460607 INCORRECT WHEN INSERT SELECT's
SOURCE TABLE IS EMPTY

Aurora MySQL
database engine
updates 2018-05-03
(version 2.02)
(deprecated) (p. 1212)

2.02.0 Left join returns incorrect results on the outer side (Bug
#22833364)

1281

Amazon Aurora User Guide for Aurora
MySQL bugs fixed by Aurora MySQL updates

MySQL bugs fixed by Aurora MySQL 1.x database engine
updates

MySQL 5.6-compatible version Aurora contains all MySQL bug fixes through MySQL 5.6.10. The
following table identifies additional MySQL bugs that have been fixed by Aurora MySQL database engine
updates, and which update they were fixed in.

Database engine
update

Version MySQL bugs fixed

Aurora MySQL
database
engine updates
2021-03-18 (version
1.23.2) (p. 1219)

1.23.2 • Replication: While a SHOW BINLOG EVENTS statement was
executing, any parallel transaction was blocked. The fix ensures
that the SHOW BINLOG EVENTS process now only acquires a lock
for the duration of calculating the file's end position, therefore
parallel transactions are not blocked for long durations. (Bug
#76618, Bug #20928790)

Aurora MySQL
database
engine updates
2020-09-02 (version
1.23.0) (p. 1221)

1.23.0 • Binlog events with ALTER TABLE ADD COLUMN
ALGORITHM=QUICK will be rewritten as ALGORITHM=DEFAULT to
be compatible with the community edition.

• BUG #22350047: IF CLIENT KILLED AFTER ROLLBACK TO
SAVEPOINT PREVIOUS STMTS COMMITTED

• Bug #29915479: RUNNING COM_REGISTER_SLAVE WITHOUT
COM_BINLOG_DUMP CAN RESULTS IN SERVER EXIT

• Bug #30441969: BUG #29723340: MYSQL SERVER CRASH AFTER
SQL QUERY WITH DATA ?AST

• Bug #30628268: OUT OF MEMORY CRASH
• Bug #27081349: UNEXPECTED BEHAVIOUR WHEN DELETE WITH

SPATIAL FUNCTION
• Bug #27230859: UNEXPECTED BEHAVIOUR WHILE HANDLING

INVALID POLYGON"
• Bug #27081349: UNEXPECTED BEHAVIOUR WHEN DELETE WITH

SPATIAL"
• Bug #26935001: ALTER TABLE AUTO_INCREMENT TRIES TO

READ INDEX FROM DISCARDED TABLESPACE
• Bug #29770705: SERVER CRASHED WHILE EXECUTING SELECT

WITH SPECIFIC WHERE CLAUSE
• Bug #27659490: SELECT USING DYNAMIC RANGE AND INDEX

MERGE USE TOO MUCH MEMORY(OOM)
• Bug #24786290: REPLICATION BREAKS AFTER BUG #74145

HAPPENS IN MASTER
• Bug #27703912: EXCESSIVE MEMORY USAGE WITH MANY

PREPARE
• Bug #20527363: TRUNCATE TEMPORARY TABLE CRASH: !

DICT_TF2_FLAG_IS_SET(TABLE, DICT_TF2_TEMPORARY)
• Bug#23103937 PS_TRUNCATE_ALL_TABLES() DOES NOT WORK

IN SUPER_READ_ONLY MODE
• Bug #25053286: USE VIEW WITH CONDITION IN PROCEDURE

CAUSES INCORRECT BEHAVIOR (fixed in 5.6.36)
• Bug #25586773: INCORRECT BEHAVIOR FOR CREATE TABLE

SELECT IN A LOOP IN SP (fixed in 5.6.39)

1282

Amazon Aurora User Guide for Aurora
MySQL bugs fixed by Aurora MySQL updates

Database engine
update

Version MySQL bugs fixed

• Bug #27407480: AUTOMATIC_SP_PRIVILEGES REQUIRES NEED
THE INSERT PRIVILEGES FOR MYSQL.USER TABLE

• Bug #26997096: relay_log_space value is not updated in a
synchronized manner so that its value is sometimes much higher
than the actual disk space used by relay logs.

• Bug#15831300 SLAVE_TYPE_CONVERSIONS=ALL_NON_LOSSY
NOT WORKING AS EXPECTED

• SSL Bug backport Bug #17087862, Bug #20551271
• Bug #16894092: PERFORMANCE REGRESSION IN 5.6.6+ FOR

INSERT INTO ... SELECT ... FROM (fixed in 5.6.15).
• Port a bug fix related to SLAVE_TYPE_CONVERSIONS.

Aurora MySQL
database
engine updates
2020-11-09 (version
1.22.3) (p. 1226)

1.22.3 • Bug #26654685: A corrupt index ID encountered during a foreign
key check raised an assertion

• Bug #15831300: By default, when promoting integers from
a smaller type on the master to a larger type on the slave
(for example, from a SMALLINT column on the master to a
BIGINT column on the slave), the promoted values are treated
as though they are signed. Now in such cases it is possible
to modify or override this behavior using one or both of
ALL_SIGNED, ALL_UNSIGNED in the set of values specified for
the slave_type_conversions server system variable. For more
information, see Row-based replication: attribute promotion and
demotion, as well as the description of the variable.

• Bug #17449901: With foreign_key_checks=0, InnoDB
permitted an index required by a foreign key constraint to be
dropped, placing the table into an inconsistent and causing the
foreign key check that occurs at table load to fail. InnoDB now
prevents dropping an index required by a foreign key constraint,
even with foreign_key_checks=0. The foreign key constraint must
be removed before dropping the foreign key index.

• BUG #20768847: An ALTER TABLE ... DROP INDEX operation on a
table with foreign key dependencies raised an assertion.

Aurora MySQL
database
engine updates
2019-11-25 (version
1.22.0) (p. 1229)

1.22.0 • Bug#16346241 - SERVER CRASH IN
ITEM_PARAM::QUERY_VAL_STR

• Bug#17733850 - NAME_CONST() CRASH IN
ITEM_NAME_CONST::ITEM_NAME_CONST()

• Bug #20989615 - INNODB AUTO_INCREMENT PRODUCES SAME
VALUE TWICE

• Bug #20181776 - ACCESS CONTROL DOESN'T MATCH MOST
SPECIFIC HOST WHEN IT CONTAINS WILDCARD

• Bug #27326796 - MYSQL CRASH WITH INNODB ASSERTION
FAILURE IN FILE PARS0PARS.CC

• Bug #20590013 - IF YOU HAVE A FULLTEXT INDEX AND DROP IT
YOU CAN NO LONGER PERFORM ONLINE DDL

1283

https://dev.mysql.com/doc/refman/5.6/en/integer-types.html
https://dev.mysql.com/doc/refman/5.6/en/integer-types.html
https://dev.mysql.com/doc/refman/5.6/en/replication-options-replica.html#sysvar_slave_type_conversions
https://dev.mysql.com/doc/refman/5.6/en/replication-features-differing-tables.html#replication-features-attribute-promotion
https://dev.mysql.com/doc/refman/5.6/en/replication-features-differing-tables.html#replication-features-attribute-promotion
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html

Amazon Aurora User Guide for Aurora
MySQL bugs fixed by Aurora MySQL updates

Database engine
update

Version MySQL bugs fixed

Aurora MySQL
database
engine updates
2019-11-25 (version
1.21.0) (p. 1232)

1.21.0 • Bug #19929406: HANDLE_FATAL_SIGNAL (SIG=11) IN
__MEMMOVE_SSSE3_BACK FROM STRING::COPY

• Bug #17059925: For UNION statements, the rows-examined
value was calculated incorrectly. This was manifested as too-large
values for the ROWS_EXAMINED column of Performance Schema
statement tables (such as events_statements_current).

• Bug #11827369: Some queries with SELECT ... FROM DUAL
nested subqueries raised an assertion.

• Bug #16311231: Incorrect results were returned if a query
contained a subquery in an IN clause that contained an XOR
operation in the WHERE clause.

Aurora MySQL
database
engine updates
2019-11-11 (version
1.20.0) (p. 1234)

1.20.0 • Bug #19929406: HANDLE_FATAL_SIGNAL (SIG=11) IN
__MEMMOVE_SSSE3_BACK FROM STRING::COPY

• Bug #17059925: For UNION statements, the rows-examined
value was calculated incorrectly. This was manifested as too-large
values for the ROWS_EXAMINED column of Performance Schema
statement tables (such as events_statements_current).

• Bug #11827369: Some queries with SELECT ... FROM DUAL
nested subqueries raised an assertion.

• Bug #16311231: Incorrect results were returned if a query
contained a subquery in an IN clause that contained an XOR
operation in the WHERE clause.

Aurora MySQL
database
engine updates
2019-09-19 (version
1.19.5) (p. 1235)

1.19.5 • CVE-2018-2696
• CVE-2015-4737
• Bug #19929406: HANDLE_FATAL_SIGNAL (SIG=11) IN

__MEMMOVE_SSSE3_BACK FROM STRING::COPY
• Bug #17059925: For UNION statements, the rows-examined

value was calculated incorrectly. This was manifest as too-large
values for the ROWS_EXAMINED column of Performance Schema
statement tables (such as events_statements_current).

• Bug #11827369: Some queries with SELECT ... FROM DUAL
nested subqueries raised an assertion.

• Bug #16311231: Incorrect results were returned if a query
contained a subquery in an IN clause which contained an XOR
operation in the WHERE clause.

Aurora MySQL
database
engine updates
2019-02-07 (version
1.19.0) (p. 1238)

1.19.0 • BUG #32917: DETECT ORPHAN TEMP-POOL FILES, AND HANDLE
GRACEFULLY

• BUG #63144 CREATE TABLE IF NOT EXISTS METADATA LOCK IS
TOO RESTRICTIVE

Aurora MySQL
database
engine updates
2019-01-17 (p. 1240)

1.17.8 • BUG #13418638: CREATE TABLE IF NOT EXISTS METADATA LOCK
IS TOO RESTRICTIVE

1284

https://dev.mysql.com/doc/refman/5.6/en/union.html
https://dev.mysql.com/doc/refman/5.6/en/events-statements-current-table.html
https://dev.mysql.com/doc/refman/5.6/en/logical-operators.html#operator_xor
https://dev.mysql.com/doc/refman/5.6/en/union.html
https://dev.mysql.com/doc/refman/5.6/en/events-statements-current-table.html
https://dev.mysql.com/doc/refman/5.6/en/logical-operators.html#operator_xor
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2696
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4737
https://dev.mysql.com/doc/refman/5.6/en/union.html
https://dev.mysql.com/doc/refman/5.6/en/events-statements-current-table.html
https://dev.mysql.com/doc/refman/5.6/en/logical-operators.html#operator_xor

Amazon Aurora User Guide for Aurora
MySQL bugs fixed by Aurora MySQL updates

Database engine
update

Version MySQL bugs fixed

Aurora MySQL
database
engine updates
2018-10-08 (p. 1241)

1.17.7 • Drop index on a foreign key column leads to missing table. (Bug
#16208542)

• Memory leak in add_derived_key(). (Bug #76349)
• For partitioned tables, queries could return different results

depending on whether Index Merge was used. (Bug #16862316)
• Queries using the index_merge optimization (see Index merge

optimization) could return invalid results when run against tables
that were partitioned by HASH. (Bug #17588348)

Aurora MySQL
database
engine updates
2018-09-06 (p. 1242)

1.17.6 • For an ALTER TABLE statement that renamed or changed the
default value of a BINARY column, the alteration was done using
a table copy and not in place. (Bug #67141, Bug #14735373, Bug
#69580, Bug #17024290)

• An outer join between a regular table and a derived table that is
implicitly groups could cause a server exit. (Bug #16177639)

Aurora MySQL
database
engine updates
2018-03-13 (p. 1245)

1.17.0 • LAST_INSERT_ID is replicated incorrectly if replication filters are
used (Bug #69861)

• Query returns different results depending on whether
INDEX_MERGE setting (Bug #16862316)

• Query proc re-execute of stored routine, inefficient query plan
(Bug #16346367)

• InnoDB FTS : Assert in FTS_CACHE_APPEND_DELETED_DOC_IDS
(Bug #18079671)

• Assert RBT_EMPTY(INDEX_CACHE->WORDS) in ALTER TABLE
CHANGE COLUMN (Bug #17536995)

• InnoDB fulltext search doesn't find records when savepoints are
involved (Bug #70333, Bug #17458835)

Aurora MySQL
database
engine updates
2017-11-20 (p. 1247)

1.15.1 • Reverted — MySQL instance stalling "doing SYNC index" (Bug
#73816)

• Reverted — Assert RBT_EMPTY(INDEX_CACHE->WORDS) in
ALTER TABLE CHANGE COLUMN (Bug #17536995)

• Reverted — InnoDB Fulltext search doesn't find records when
savepoints are involved (Bug #70333)

Aurora MySQL
database
engine updates
2017-10-24 (p. 1248)

1.15.0 • CREATE USER accepts plugin and password hash, but ignores the
password hash (Bug #78033)

• The partitioning engine adds fields to the read bit set to be able
to return entries sorted from a partitioned index. This leads to
the join buffer will try to read unneeded fields. Fixed by not
adding all partitioning fields to the read_set,but instead only
sort on the already set prefix fields in the read_set. Added a
DBUG_ASSERT that if doing key_cmp, at least the first field must
be read (Bug #16367691).

• MySQL instance stalling "doing SYNC index" (Bug #73816)
• Assert RBT_EMPTY(INDEX_CACHE->WORDS) in ALTER TABLE

CHANGE COLUMN (Bug #17536995)
• InnoDB Fulltext search doesn't find records when savepoints are

involved (Bug #70333)

1285

https://dev.mysql.com/doc/refman/5.6/en/index-merge-optimization.html
https://dev.mysql.com/doc/refman/5.6/en/index-merge-optimization.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/binary-varbinary.html

Amazon Aurora User Guide for Aurora
MySQL bugs fixed by Aurora MySQL updates

Database engine
update

Version MySQL bugs fixed

Aurora MySQL
database
engine updates:
2018-03-13 (p. 1250)

1.14.4 • Ignorable events don't work and are not tested (Bug #74683)
• NEW->OLD ASSERT FAILURE 'GTID_MODE > 0' (Bug #20436436)

Aurora MySQL
database
engine updates:
2017-08-07 (p. 1251)

1.14.0 A full-text search combined with derived tables (subqueries in the
FROM clause) caused a server exit. Now, if a full-text operation
depends on a derived table, the server produces an error indicating
that a full-text search cannot be done on a materialized table. (Bug
#68751, Bug #16539903)

Aurora MySQL
database
engine updates:
2017-05-15 (p. 1252)

1.13.0 • Reloading a table that was evicted while empty caused an
AUTO_INCREMENT value to be reset. (Bug #21454472, Bug
#77743)

• An index record was not found on rollback due to inconsistencies
in the purge_node_t structure. The inconsistency resulted in
warnings and error messages such as "error in sec index entry
update", "unable to purge a record", and "tried to purge sec index
entry not marked for deletion". (Bug #19138298, Bug #70214,
Bug #21126772, Bug #21065746)

• Wrong stack size calculation for qsort operation leads to stack
overflow. (Bug #73979)

• Record not found in an index upon rollback. (Bug #70214, Bug
#72419)

• ALTER TABLE add column TIMESTAMP on update
CURRENT_TIMESTAMP inserts ZERO-datas (Bug #17392)

Aurora MySQL
database
engine updates:
2017-04-05 (p. 1253)

1.12.0 • Reloading a table that was evicted while empty caused an
AUTO_INCREMENT value to be reset. (Bug #21454472, Bug
#77743)

• An index record was not found on rollback due to inconsistencies
in the purge_node_t structure. The inconsistency resulted in
warnings and error messages such as "error in sec index entry
update", "unable to purge a record", and "tried to purge sec index
entry not marked for deletion". (Bug #19138298, Bug #70214,
Bug #21126772, Bug #21065746)

• Wrong stack size calculation for qsort operation leads to stack
overflow. (Bug #73979)

• Record not found in an index upon rollback. (Bug #70214, Bug
#72419)

• ALTER TABLE add column TIMESTAMP on update
CURRENT_TIMESTAMP inserts ZERO-datas (Bug #17392)

1286

Amazon Aurora User Guide for Aurora
MySQL bugs fixed by Aurora MySQL updates

Database engine
update

Version MySQL bugs fixed

Aurora MySQL
database
engine updates:
2017-02-23 (p. 1255)

1.11.0 • Running ALTER table DROP foreign key simultaneously with
another DROP operation causes the table to disappear. (Bug
#16095573)

• Some INFORMATION_SCHEMA queries that used ORDER BY
did not use a filesort optimization as they did previously. (Bug
#16423536)

• FOUND_ROWS () returns the wrong count of rows on a table.
(Bug #68458)

• The server fails instead of giving an error when too many temp
tables are open. (Bug #18948649)

Aurora MySQL
database
engine updates:
2016-12-14 (p. 1257)

1.10.0 • UNION of derived tables returns wrong results with '1=0/false'-
clauses. (Bug #69471)

• Server crashes in ITEM_FUNC_GROUP_CONCAT::FIX_FIELDS on
2nd execution of stored procedure. (Bug #20755389)

• Avoid MySQL queries from stalling for too long during FTS cache
sync to disk by offloading the cache sync task to a separate
thread, as soon as the cache size crosses 10% of the total size.
(Bugs #22516559, #73816)

Aurora MySQL
database
engine updates:
2016-10-26 (p. 1259)

1.8.1 • OpenSSL changed the Diffie-Hellman key length parameters due
to the LogJam issue. (Bug #18367167)

Aurora MySQL
database
engine updates:
2016-10-18 (p. 1259)

1.8.0 • When dropping all indexes on a column with multiple indexes,
InnoDB failed to block a DROP INDEX operation when a foreign
key constraint requires an index. (Bug #16896810)

• Solve add foreign key constraint crash. (Bug #16413976)
• Fixed a crash when fetching a cursor in a stored procedure,

and analyzing or flushing the table at the same time. (Bug #
18158639)

• Fixed an auto-increment bug when a user alters a table to change
the AUTO_INCREMENT value to less than the maximum auto-
increment column value. (Bug # 16310273)

1287

Amazon Aurora User Guide for Aurora
MySQL bugs fixed by Aurora MySQL updates

Database engine
update

Version MySQL bugs fixed

Aurora MySQL
database
engine updates:
2016-08-30 (p. 1261)

1.7.0 • Improve scalability by partitioning LOCK_grant lock. (Port WL
#8355)

• Opening cursor on SELECT in stored procedure causes segfault.
(Port Bug #16499751)

• MySQL gives the wrong result with some special usage. (Bug
#11751794)

• Crash in GET_SEL_ARG_FOR_KEYPART – caused by patch for bug
#11751794. (Bug #16208709)

• Wrong results for a simple query with GROUP BY. (Bug
#17909656)

• Extra rows on semijoin query with range predicates. (Bug
#16221623)

• Adding an ORDER BY clause following an IN subquery could cause
duplicate rows to be returned. (Bug #16308085)

• Crash with explain for a query with loose scan for GROUP BY,
MyISAM. (Bug #16222245)

• Loose index scan with quoted int predicate returns random data.
(Bug #16394084)

• If the optimizer was using a loose index scan, the server could exit
while attempting to create a temporary table. (Bug #16436567)

• COUNT(DISTINCT) should not count NULL values, but they
were counted when the optimizer used loose index scan. (Bug
#17222452)

• If a query had both MIN()/MAX() and
aggregate_function(DISTINCT) (for example, SUM(DISTINCT)) and
was executed using loose index scan, the result values of MIN()/
MAX() were set improperly. (Bug #17217128)

Aurora MySQL
database
engine updates:
2016-06-01 (p. 1262)

1.6.5 • SLAVE CAN'T CONTINUE REPLICATION AFTER MASTER'S CRASH
RECOVERY (Port Bug #17632285)

Aurora MySQL
database
engine updates:
2016-04-06 (p. 1262)

1.6.0 • BACKPORT Bug #18694052 FIX FOR ASSERTION `!
M_ORDERED_REC_BUFFER' FAILED TO 5.6 (Port Bug #18305270)

• SEGV IN MEMCPY(), HA_PARTITION::POSITION (Port Bug #
18383840)

• WRONG RESULTS WITH PARTITIONING,INDEX_MERGE AND NO
PK (Port Bug # 18167648)

• FLUSH TABLES FOR EXPORT: ASSERTION IN
HA_PARTITION::EXTRA (Port Bug # 16943907)

• SERVER CRASH IN VIRTUAL HA_ROWS
HANDLER::MULTI_RANGE_READ_INFO_CONST (Port Bug #
16164031)

• RANGE OPTIMIZER CRASHES IN SEL_ARG::RB_INSERT() (Port Bug
16241773)

1288

Amazon Aurora User Guide for Aurora
MySQL bugs fixed by Aurora MySQL updates

Database engine
update

Version MySQL bugs fixed

Aurora MySQL
database
engine updates:
2016-01-11 (p. 1264)

1.5.0 • Addressed incomplete fix in MySQL full text search affecting
tables where the database name begins with a digit. (Port Bug
#17607956)

Aurora MySQL
database
engine updates:
2015-12-03 (p. 1264)

1.4 • SEGV in FTSPARSE(). (Bug #16446108)
• InnoDB data dictionary is not updated while renaming the

column. (Bug #19465984)
• FTS crash after renaming table to different database. (Bug

#16834860)
• Failed preparing of trigger on truncated tables cause error 1054.

(Bug #18596756)
• Metadata changes might cause problems with trigger execution.

(Bug #18684393)
• Materialization is not chosen for long UTF8 VARCHAR field. (Bug

#17566396)
• Poor execution plan when ORDER BY with limit X. (Bug

#16697792)
• Backport bug #11765744 TO 5.1, 5.5 AND 5.6. (Bug #17083851)
• Mutex issue in SQL/SQL_SHOW.CC resulting in SIG6. Source likely

FILL_VARIABLES. (Bug #20788853)
• Backport bug #18008907 to 5.5+ versions. (Bug #18903155)
• Adapt fix for a stack overflow error in MySQL 5.7. (Bug

#19678930)

1289

Amazon Aurora User Guide for Aurora
MySQL bugs fixed by Aurora MySQL updates

Database engine
update

Version MySQL bugs fixed

Aurora MySQL
database
engine updates:
2015-10-16 (p. 1266)

1.2, 1.3 • Killing a query inside innodb causes it to eventually crash with an
assertion. (Bug #1608883)

• For failure to create a new thread for the event scheduler, event
execution, or new connection, no message was written to the
error log. (Bug #16865959)

• If one connection changed its default database and
simultaneously another connection executed SHOW
PROCESSLIST, the second connection could access invalid
memory when attempting to display the first connection's
default database memory. (Bug #11765252)

• PURGE BINARY LOGS by design does not remove binary log files
that are in use or active, but did not provide any notice when this
occurred. (Bug #13727933)

• For some statements, memory leaks could result when the
optimizer removed unneeded subquery clauses. (Bug #15875919)

• During shutdown, the server could attempt to lock an
uninitialized mutex. (Bug #16016493)

• A prepared statement that used GROUP_CONCAT() and an
ORDER BY clause that named multiple columns could cause the
server to exit. (Bug #16075310)

• Performance Schema instrumentation was missing for replica
worker threads. (Bug #16083949)

• STOP SLAVE could cause a deadlock when issued
concurrently with a statement such as SHOW STATUS that
retrieved the values for one or more of the status variables
Slave_retried_transactions, Slave_heartbeat_period,
Slave_received_heartbeats, Slave_last_heartbeat, or
Slave_running. (Bug #16088188)

• A full-text query using Boolean mode could return zero results
in some cases where the search term was a quoted phrase. (Bug
#16206253)

• The optimizer's attempt to remove redundant subquery clauses
raised an assertion when executing a prepared statement
with a subquery in the ON clause of a join in a subquery. (Bug
#16318585)

• GROUP_CONCAT unstable, crash in
ITEM_SUM::CLEAN_UP_AFTER_REMOVAL. (Bug #16347450)

• Attempting to replace the default InnoDB full-text search (FTS)
stopword list by creating an InnoDB table with the same structure
as INFORMATION_SCHEMA.INNODB_FT_DEFAULT_STOPWORD
would result in an error. (Bug #16373868)

• After the client thread on a worker performed a FLUSH TABLES
WITH READ LOCK and was followed by some updates on the
master, the worker hung when executing SHOW SLAVE STATUS.
(Bug #16387720)

• When parsing a delimited search string such as "abc-def" in a
full-text search, InnoDB now uses the same word delimiters as
MyISAM. (Bug #16419661)

• Crash in FTS_AST_TERM_SET_WILDCARD. (Bug #16429306)

1290

Amazon Aurora User Guide for Aurora
MySQL bugs fixed by Aurora MySQL updates

Database engine
update

Version MySQL bugs fixed

• SEGFAULT in FTS_AST_VISIT() for FTS RQG test. (Bug #
16435855)

• For debug builds, when the optimizer removed an Item_ref
pointing to a subquery, it caused a server exit. (Bug #16509874)

• Full-text search on InnoDB tables failed on searches for literal
phrases combined with + or - operators. (Bug #16516193)

• START SLAVE failed when the server was started with the
options--master-info-repository=TABLE relay-log-info-
repository=TABLE and with autocommit set to 0, together with
--skip-slave-start. (Bug #16533802)

• Very large InnoDB full-text search (FTS) results could consume an
excessive amount of memory. (Bug #16625973)

• In debug builds, an assertion could occur in
OPT_CHECK_ORDER_BY when using binary directly in a search
string, as binary might include NULL bytes and other non-
meaningful characters. (Bug #16766016)

• For some statements, memory leaks could result when the
optimizer removed unneeded subquery clauses. (Bug #16807641)

• It was possible to cause a deadlock after issuing FLUSH TABLES
WITH READ LOCK by issuing STOP SLAVE in a new connection to
the worker, then issuing SHOW SLAVE STATUS using the original
connection. (Bug #16856735)

• GROUP_CONCAT() with an invalid separator could cause a server
exit. (Bug #16870783)

• The server did excessive locking on the LOCK_active_mi and
active_mi->rli->data_lock mutexes for any SHOW STATUS LIKE
'pattern' statement, even when the pattern did not match status
variables that use those mutexes (Slave_heartbeat_period,
Slave_last_heartbeat, Slave_received_heartbeats,
Slave_retried_transactions, Slave_running). (Bug
#16904035)

• A full-text search using the IN BOOLEAN MODE modifier would
result in an assertion failure. (Bug #16927092)

• Full-text search on InnoDB tables failed on searches that used the
+ boolean operator. (Bug #17280122)

• 4-way deadlock: zombies, purging binlogs, show processlist, show
binlogs. (Bug #17283409)

• When an SQL thread which was waiting for a commit lock was
killed and restarted it caused a transaction to be skipped on
worker. (Bug #17450876)

• An InnoDB full-text search failure would occur due to an
"unended" token. The string and string length should be passed
for string comparison. (Bug #17659310)

• Large numbers of partitioned InnoDB tables could consume much
more memory when used in MySQL 5.6 or 5.7 than the memory
used by the same tables used in previous releases of the MySQL
Server. (Bug #17780517)

• For full-text queries, a failure to check that num_token is less
than max_proximity_item could result in an assertion. (Bug
#18233051)

1291

Amazon Aurora User Guide for Aurora
Security vulnerabilities fixed in Amazon Aurora MySQL

Database engine
update

Version MySQL bugs fixed

• Certain queries for the INFORMATION_SCHEMA TABLES and
COLUMNS tables could lead to excessive memory use when there
were large numbers of empty InnoDB tables. (Bug #18592390)

• When committing a transaction, a flag is now used to check
whether a thread has been created, rather than checking the
thread itself, which uses more resources, particularly when
running the server with master_info_repository=TABLE. (Bug
#18684222)

• If a client thread on a worker executed FLUSH TABLES WITH
READ LOCK while the master executed a DML, executing SHOW
SLAVE STATUS in the same client became blocked, causing a
deadlock. (Bug #19843808)

• Ordering by a GROUP_CONCAT() result could cause a server exit.
(Bug #19880368)

Aurora MySQL
database
engine updates:
2015-08-24 (p. 1268)

1.1 • InnoDB databases with names beginning with a digit cause a full-
text search (FTS) parser error. (Bug #17607956)

• InnoDB full-text searches fail in databases whose names began
with a digit. (Bug #17161372)

• For InnoDB databases on Windows, the full-text search (FTS)
object ID is not in the expected hexadecimal format. (Bug
#16559254)

• A code regression introduced in MySQL 5.6 negatively impacted
DROP TABLE and ALTER TABLE performance. This could cause a
performance drop between MySQL Server 5.5.x and 5.6.x. (Bug
#16864741)

Security vulnerabilities fixed in Amazon Aurora
MySQL
Common Vulnerabilities and Exposures (CVE) is a list of entries for publicly known cybersecurity
vulnerabilities. Each entry contains an identification number, a description, and at least one public
reference.

You can find on this page a list of security vulnerabilities fixed in Aurora MySQL. For general information
about security for Aurora, see Security in Amazon Aurora (p. 1719). For additional security information
for Aurora MySQL, see Security with Amazon Aurora MySQL (p. 795).

We recommend that you always upgrade to the latest Aurora release to be protected against known
vulnerabilities. You can use this page to verify whether a particular version of Aurora MySQL has a fix
for a specific security vulnerability. If your cluster doesn't have the security fix, you can see which Aurora
MySQL version you should upgrade to for that fix.

Any CVEs fixed in Aurora MySQL version 1 and 2 are also listed in the release notes for that version:

• Database engine updates for Amazon Aurora MySQL version 1 (p. 1217)

• Database engine updates for Amazon Aurora MySQL version 2 (p. 1129)

1292

Amazon Aurora User Guide for Aurora
Security vulnerabilities fixed in Amazon Aurora MySQL

Note
The initial release of Aurora MySQL version 3 includes all CVEs fixed up to community MySQL
8.0.23. For future CVEs that are fixed, look for them listed here and in the Aurora MySQL version
3 release notes.

CVEs and minimum fixed Aurora MySQL versions

• CVE-2021-35624: 2.10.2
• CVE-2021-35604: 2.10.2
• CVE-2021-23841: 2.10.0, 2.09.3, 1.23.3
• CVE-2021-3712: 2.09.3
• CVE-2021-3449: 2.10.0, 2.09.3, 1.23.3
• CVE-2021-2390: 2.10.2
• CVE-2021-2389: 2.10.2
• CVE-2021-2385: 2.10.2
• CVE-2021-2356: 2.10.2
• CVE-2021-2307: 2.10.1, 2.09.3, 1.23.4
• CVE-2021-2226: 2.10.1, 2.09.3, 1.23.4
• CVE-2021-2194: 2.10.1
• CVE-2021-2174: 2.10.1, 2.09.3
• CVE-2021-2171: 2.10.1, 2.09.3
• CVE-2021-2169: 2.10.1, 2.09.3
• CVE-2021-2166: 2.10.1, 2.09.3
• CVE-2021-2160: 2.10.1, 1.23.4
• CVE-2021-2154: 2.10.1, 2.09.3, 1.23.4
• CVE-2021-2060: 2.10.1, 2.09.3, 1.23.4
• CVE-2021-2032: 2.10.1, 2.09.3, 1.23.4
• CVE-2021-2001: 2.10.1, 2.09.3, 1.23.4
• CVE-2020-28196: 2.10.0, 2.09.3, 1.23.3
• CVE-2020-14867: 1.23.2, 1.22.4
• CVE-2020-14812: 2.09.2, 2.07.4, 1.23.2, 1.22.4
• CVE-2020-14793: 2.09.2, 2.07.4, 1.23.2, 1.22.4
• CVE-2020-14790: 2.10.0, 2.09.2, 2.07.4
• CVE-2020-14776: 2.10.0
• CVE-2020-14775: 2.09.2, 2.07.4
• CVE-2020-14769: 2.09.3, 2.09.2, 2.07.4, 1.23.2, 1.22.4
• CVE-2020-14765: 2.09.2, 2.07.4, 1.23.2, 1.22.4
• CVE-2020-14760: 2.09.2, 2.07.4
• CVE-2020-14672: 2.09.2, 2.07.4, 1.23.2, 1.22.4
• CVE-2020-14567: 2.10.0, 2.09.1, 2.08.3, 2.07.3
• CVE-2020-14559: 2.10.0, 2.09.1, 2.08.3, 2.07.3, 1.23.1, 1.22.3
• CVE-2020-14553: 2.10.0, 2.09.1, 2.08.3, 2.07.3
• CVE-2020-14547: 2.10.0, 2.09.1, 2.08.3, 2.07.3
• CVE-2020-14540: 2.10.0, 2.09.1, 2.08.3, 2.07.3
• CVE-2020-14539: 2.10.0, 1.23.1, 1.22.3
• CVE-2020-2812: 2.09.1, 2.08.3, 2.07.3, 1.22.3
• CVE-2020-2806: 2.09.1, 2.08.3, 2.07.3

1293

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-35624
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-35604
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-23841
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3712
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3449
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2390
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2389
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2385
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2356
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2307
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2226
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2194
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2174
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2171
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2169
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2166
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2154
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2060
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2032
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2001
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-28196
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14867
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14812
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14793
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14790
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14776
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14775
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14769
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14765
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14760
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14672
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14567
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14559
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14553
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14547
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14540
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14539
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2812
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2806

Amazon Aurora User Guide for Aurora
Security vulnerabilities fixed in Amazon Aurora MySQL

• CVE-2020-2780: 2.09.1, 2.08.3, 2.07.3, 1.22.3
• CVE-2020-2765: 2.09.1, 2.08.3, 2.07.3
• CVE-2020-2763: 2.09.1, 2.08.3, 2.07.3, 1.22.3
• CVE-2020-2760: 2.09.1, 2.08.3, 2.07.3, 2.04.9
• CVE-2019-2740: 2.07.3
• CVE-2020-2579: 2.09.1, 2.08.3, 2.07.3, 1.22.3
• CVE-2020-1971: 2.09.2, 2.07.4, 1.23.2, 1.22.4
• CVE-2019-17543: 2.10.2, 2.09.3, 2.07.7
• CVE-2019-5443: 2.08.0, 2.04.9
• CVE-2019-3822: 2.08.0, 2.04.9
• CVE-2019-2960: 2.10.2, 2.09.3, 2.07.7
• CVE-2019-2948: 2.09.0
• CVE-2019-2924: 2.07.0, 2.04.9, 1.22.0
• CVE-2019-2923: 2.07.0, 2.04.9, 1.22.0
• CVE-2019-2922: 2.07.0, 2.04.9, 1.22.0
• CVE-2019-2911: 2.09.0, 2.04.9, 1.23.0
• CVE-2019-2910: 2.07.0, 2.04.9, 1.22.0
• CVE-2019-2805: 2.06.0, 2.04.9, 1.22.0
• CVE-2019-2778: 2.06.0, 2.04.9
• CVE-2019-2758: 2.06.0, 2.04.9
• CVE-2019-2740: 2.04.9, 1.22.0
• CVE-2019-2739: 2.06.0, 2.04.9
• CVE-2019-2731: 2.09.0
• CVE-2019-2730: 2.06.0, 2.04.9, 1.22.0
• CVE-2019-2628: 2.04.9
• CVE-2019-2581: 2.09.0
• CVE-2019-2537: 2.09.0, 1.23.0
• CVE-2019-2534: 2.05.0, 2.04.3 (p. 1191), 1.21.0, 1.20.0, 1.19.1
• CVE-2019-2482: 2.09.0
• CVE-2019-2434: 2.09.0
• CVE-2019-2420: 2.09.0
• CVE-2018-3284: 2.09.0
• CVE-2018-3251: 2.10.0
• CVE-2018-3156: 2.10.0
• CVE-2018-3155: 2.05.0, 2.04.3 (p. 1191)
• CVE-2018-3143: 2.10.0, 1.23.2
• CVE-2018-3065: 2.09.0
• CVE-2018-3064: 2.06.0, 2.04.9, 1.22.0
• CVE-2018-3058: 2.06.0, 2.04.9, 1.22.0
• CVE-2018-3056: 2.05.0, 2.04.4 (p. 1190)
• CVE-2018-2813: 2.04.9
• CVE-2018-2787: 2.09.0, 1.23.0
• CVE-2018-2786: 2.06.0, 2.04.9
• CVE-2018-2784: 2.09.0, 1.23.0
• CVE-2018-2696: 2.05.0, 2.04.5 (p. 1189), 1.21.0, 1.20.0, 1.19.5
• CVE-2018-2645: 2.09.0, 1.23.0

1294

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2780
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2765
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2763
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2760
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2740
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2579
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-1971
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17543
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5443
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-3822
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2960
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2948
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2924
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2923
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2922
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2911
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2910
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2805
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2778
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2758
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2740
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2739
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2731
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2730
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2628
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2581
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2537
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2534
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2482
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2434
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2420
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3284
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3251
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3156
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3155
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3143
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3065
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3064
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3058
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3056
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2813
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2787
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2786
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2784
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2696
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2645

Amazon Aurora User Guide for Aurora
Security vulnerabilities fixed in Amazon Aurora MySQL

• CVE-2018-2640: 2.09.0, 1.23.0
• CVE-2018-2612: 2.05.0, 2.04.3 (p. 1191), 1.21.0, 1.20.0, 1.19.1
• CVE-2018-2562: 2.05.0, 2.04.4 (p. 1190), 1.21.0, 1.20.0, 1.19.2
• CVE-2018-0734: 2.05.0, 2.04.3 (p. 1191), 1.21.0, 1.20.0, 1.19.1
• CVE-2017-3653: 2.06.0, 2.04.9, 1.22.0
• CVE-2017-3599: 2.05.0, 2.04.3 (p. 1191), 1.21.0, 1.20.0, 1.19.1
• CVE-2017-3465: 2.06.0, 2.04.9
• CVE-2017-3464: 1.22.0, 2.04.9
• CVE-2017-3455: 2.06.0, 2.04.9
• CVE-2017-3329: 2.05.0, 2.04.4 (p. 1190), 1.21.0, 1.20.0, 1.19.2
• CVE-2017-3244: 2.06.0, 2.04.9, 1.22.0
• CVE-2016-5612: 2.06.0, 2.04.9, 1.22.0
• CVE-2016-5439: 1.22.0
• CVE-2016-0606: 1.22.0
• CVE-2015-4904: 1.22.0
• CVE-2015-4879: 1.22.0
• CVE-2015-4864: 1.22.0
• CVE-2015-4830: 1.22.0
• CVE-2015-4826: 1.22.0
• CVE-2015-4737: 1.21.0, 1.20.0, 1.19.5
• CVE-2015-2620: 1.22.0
• CVE-2015-0382: 1.22.0
• CVE-2015-0381: 1.22.0
• CVE-2014-6555: 1.22.0
• CVE-2014-6489: 1.22.0
• CVE-2014-4260: 1.22.0
• CVE-2014-4258: 1.22.0
• CVE-2014-2444: 1.22.0
• CVE-2014-2436: 1.22.0
• CVE-2014-0393: 1.22.0
• CVE-2013-5908: 1.22.0
• CVE-2013-5881: 1.22.0
• CVE-2013-5807: 1.22.0
• CVE-2013-3811: 1.22.0
• CVE-2013-3807: 1.22.0
• CVE-2013-3806: 1.22.0
• CVE-2013-3804: 1.22.0
• CVE-2013-2381: 1.22.0
• CVE-2013-2378: 1.22.0
• CVE-2013-2375: 1.22.0
• CVE-2013-1523: 1.22.0
• CVE-2012-5615: 1.22.0

1295

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2640
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2612
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2562
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-0734
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3653
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3599
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3465
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3464
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3455
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3329
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3244
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5612
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5439
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0606
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4904
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4879
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4864
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4830
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4826
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4737
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2620
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0382
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0381
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6555
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6489
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4260
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4258
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2444
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2436
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0393
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-5908
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-5881
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-5807
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3811
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3807
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3806
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3804
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2381
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2378
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2375
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1523
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5615

Amazon Aurora User Guide for Aurora

Working with Amazon Aurora
PostgreSQL

Amazon Aurora PostgreSQL is a fully managed, PostgreSQL-compatible, and ACID-compliant relational
database engine that combines the speed and reliability of high-end commercial databases with the
simplicity and cost-effectiveness of open-source databases. Aurora PostgreSQL is a drop-in replacement
for PostgreSQL and makes it simple and cost-effective to set up, operate, and scale your new and
existing PostgreSQL deployments, thus freeing you to focus on your business and applications. Amazon
RDS provides administration for Aurora by handling routine database tasks such as provisioning,
patching, backup, recovery, failure detection, and repair. Amazon RDS also provides push-button
migration tools to convert your existing Amazon RDS for PostgreSQL applications to Aurora PostgreSQL.

Aurora PostgreSQL can work with many industry standards. For example, you can use Aurora PostgreSQL
databases to build HIPAA-compliant applications and to store healthcare related information, including
protected health information (PHI), under a completed Business Associate Agreement (BAA) with AWS.

Aurora PostgreSQL is FedRAMP HIGH eligible. For details about AWS and compliance efforts, see AWS
services in scope by compliance program.

Topics

• Security with Amazon Aurora PostgreSQL (p. 1297)

• Updating applications to connect to Aurora PostgreSQL DB clusters using new SSL/TLS
certificates (p. 1301)

• Migrating data to Amazon Aurora with PostgreSQL compatibility (p. 1304)

• Working with Babelfish for Aurora PostgreSQL (p. 1318)

• Managing Amazon Aurora PostgreSQL (p. 1377)

• Tuning with wait events for Aurora PostgreSQL (p. 1393)

• Best practices with Amazon Aurora PostgreSQL (p. 1440)

• Replication with Amazon Aurora PostgreSQL (p. 1448)

• Integrating Amazon Aurora PostgreSQL with other AWS services (p. 1454)

• Importing Amazon S3 data into an Aurora PostgreSQL DB cluster (p. 1455)

• Exporting data from an Aurora PostgreSQL DB cluster to Amazon S3 (p. 1467)

• Managing query execution plans for Aurora PostgreSQL (p. 1477)

• Publishing Aurora PostgreSQL logs to Amazon CloudWatch Logs (p. 1504)

• Using machine learning (ML) with Aurora PostgreSQL (p. 1511)

• Fast recovery after failover with cluster cache management for Aurora PostgreSQL (p. 1530)

• Invoking an AWS Lambda function from an Aurora PostgreSQL DB cluster (p. 1534)

• Using the oracle_fdw extension to access foreign data in Aurora PostgreSQL (p. 1544)

• Managing PostgreSQL partitions with the pg_partman extension (p. 1547)

• Using Kerberos authentication with Aurora PostgreSQL (p. 1551)

• Amazon Aurora PostgreSQL reference (p. 1564)

1296

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/

Amazon Aurora User Guide for Aurora
Security with Aurora PostgreSQL

• Amazon Aurora PostgreSQL updates (p. 1614)

Security with Amazon Aurora PostgreSQL
Security for Amazon Aurora PostgreSQL is managed at three levels:

• To control who can perform Amazon RDS management actions on Aurora PostgreSQL DB clusters
and DB instances, you use AWS Identity and Access Management (IAM). When you connect to AWS
using IAM credentials, your AWS account must have IAM policies that grant the permissions required
to perform Amazon RDS management operations. For more information, see Identity and access
management in Amazon Aurora (p. 1737).

If you are using IAM to access the Amazon RDS console, you must first sign on to the AWS
Management Console with your IAM user credentials. Then go to the Amazon RDS console at https://
console.aws.amazon.com/rds/.

• Aurora DB clusters must be created in an Amazon Virtual Private Cloud (VPC). To control which devices
and Amazon EC2 instances can open connections to the endpoint and port of the DB instance for
Aurora DB clusters in a VPC, you use a VPC security group. These endpoint and port connections can
be made using Secure Sockets Layer (SSL) and Transport Layer Security (TLS). In addition, firewall
rules at your company can control whether devices running at your company can open connections
to a DB instance. For more information on VPCs, see Amazon Virtual Private Cloud VPCs and Amazon
Aurora (p. 1800).

The supported VPC tenancy depends on the DB instance class used by your Aurora PostgreSQL DB
clusters. With default VPC tenancy, the VPC runs on shared hardware. With dedicated VPC tenancy,
the VPC runs on a dedicated hardware instance. The burstable performance DB instance classes
support default VPC tenancy only. The burstable performance DB instance classes include the db.t3
and db.t4g DB instance classes. All other Aurora PostgreSQL DB instance classes support both default
and dedicated VPC tenancy.

For more information about instance classes, see Aurora DB instance classes (p. 54). For more
information about default and dedicated VPC tenancy, see Dedicated instances in the Amazon
Elastic Compute Cloud User Guide.

• To authenticate login and permissions for an Amazon Aurora DB cluster, you can take the same
approach as with a stand-alone instance of PostgreSQL.

Commands such as CREATE ROLE, ALTER ROLE, GRANT, and REVOKE work just as they do in on-
premises databases, as does directly modifying database schema tables. For more information, see
Client authentication in the PostgreSQL documentation.

Note
The Salted Challenge Response Authentication Mechanism (SCRAM) is not supported with
Aurora PostgreSQL.

Note
For more information, see Security in Amazon Aurora (p. 1719).

When you create an Amazon Aurora PostgreSQL DB instance, the master user has the following default
privileges:

• LOGIN

• NOSUPERUSER

• INHERIT

• CREATEDB

1297

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html
https://www.postgresql.org/docs/current/client-authentication.html

Amazon Aurora User Guide for Aurora
Restricting password management

• CREATEROLE

• NOREPLICATION

• VALID UNTIL 'infinity'

To provide management services for each DB cluster, the rdsadmin user is created when the DB cluster
is created. Attempting to drop, rename, change the password, or change privileges for the rdsadmin
account will result in an error.

Restricting password management
You can restrict who can manage database user passwords to a special role. By doing this, you can have
more control over password management on the client side.

You enable restricted password management with the static parameter
rds.restrict_password_commands and use a role called rds_password. When the parameter
rds.restrict_password_commands is set to 1, only users that are members of the rds_password
role can run certain SQL commands. The restricted SQL commands are commands that modify database
user passwords and password expiration time.

To use restricted password management, your DB cluster must be running Amazon Aurora for
PostgreSQL 10.6 or higher. Because the rds.restrict_password_commands parameter is static,
changing this parameter requires a database restart.

When a database has restricted password management enabled, if you try to run restricted SQL
commands you get the following error: ERROR: must be a member of rds_password to alter passwords.

Following are some examples of SQL commands that are restricted when restricted password
management is enabled.

postgres=> CREATE ROLE myrole WITH PASSWORD 'mypassword';
postgres=> CREATE ROLE myrole WITH PASSWORD 'mypassword' VALID UNTIL '2020-01-01';
postgres=> ALTER ROLE myrole WITH PASSWORD 'mypassword' VALID UNTIL '2020-01-01';
postgres=> ALTER ROLE myrole WITH PASSWORD 'mypassword';
postgres=> ALTER ROLE myrole VALID UNTIL '2020-01-01';
postgres=> ALTER ROLE myrole RENAME TO myrole2;

Some ALTER ROLE commands that include RENAME TO might also be restricted. They might be
restricted because renaming a PostgreSQL role that has an MD5 password clears the password.

The rds_superuser role has membership for the rds_password role by default, and you can't
change this. You can give other roles membership for the rds_password role by using the GRANT SQL
command. We recommend that you give membership to rds_password to only a few roles that you use
solely for password management. These roles require the CREATEROLE attribute to modify other roles.

Make sure that you verify password requirements such as expiration and needed complexity on the
client side. We recommend that you restrict password-related changes by using your own client-side
utility. This utility should have a role that is a member of rds_password and has the CREATEROLE role
attribute.

Securing Aurora PostgreSQL data with SSL/TLS
Amazon RDS supports Secure Socket Layer (SSL) and Transport Layer Security (TLS) encryption for
Aurora PostgreSQL DB clusters. Using SSL/TLS, you can encrypt a connection between your applications
and your Aurora PostgreSQL DB clusters. You can also force all connections to your Aurora PostgreSQL

1298

Amazon Aurora User Guide for Aurora
Securing Aurora PostgreSQL data with SSL/TLS

DB cluster to use SSL/TLS. Amazon Aurora PostgreSQL supports Transport Layer Security (TLS) versions
1.1 and 1.2. We recommend using TLS 1.2 for encrypted connections.

For general information about SSL/TLS support and PostgreSQL databases, see SSL support in the
PostgreSQL documentation. For information about using an SSL/TLS connection over JDBC, see
Configuring the client in the PostgreSQL documentation.

Topics
• Requiring an SSL/TLS connection to an Aurora PostgreSQL DB cluster (p. 1299)
• Determining the SSL/TLS connection status (p. 1300)

SSL/TLS support is available in all AWS Regions for Aurora PostgreSQL. Amazon RDS creates an SSL/
TLS certificate for your Aurora PostgreSQL DB cluster when the DB cluster is created. If you enable SSL/
TLS certificate verification, then the SSL/TLS certificate includes the DB cluster endpoint as the Common
Name (CN) for the SSL/TLS certificate to guard against spoofing attacks.

To connect to an Aurora PostgreSQL DB cluster over SSL/TLS

1. Download the certificate.

For information about downloading certificates, see Using SSL/TLS to encrypt a connection to a DB
cluster (p. 1726).

2. Import the certificate into your operating system.
3. Connect to your Aurora PostgreSQL DB cluster over SSL/TLS.

When you connect using SSL/TLS, your client can choose to verify the certificate chain or not. If your
connection parameters specify sslmode=verify-ca or sslmode=verify-full, then your client
requires the RDS CA certificates to be in their trust store or referenced in the connection URL. This
requirement is to verify the certificate chain that signs your database certificate.

When a client, such as psql or JDBC, is configured with SSL/TLS support, the client first tries to
connect to the database with SSL/TLS by default. If the client can't connect with SSL/TLS, it reverts
to connecting without SSL/TLS. The default sslmode mode used is different between libpq-based
clients (such as psql) and JDBC. The libpq-based clients default to prefer, where JDBC clients
default to verify-full.

Use the sslrootcert parameter to reference the certificate, for example sslrootcert=rds-
ssl-ca-cert.pem.

The following is an example of using psql to connect to an Aurora PostgreSQL DB cluster.

$ psql -h testpg.cdhmuqifdpib.us-east-1.rds.amazonaws.com -p 5432 \
 "dbname=testpg user=testuser sslrootcert=rds-ca-2015-root.pem sslmode=verify-full"

Requiring an SSL/TLS connection to an Aurora PostgreSQL DB
cluster
You can require that connections to your Aurora PostgreSQL DB cluster use SSL/TLS by using the
rds.force_ssl parameter. By default, the rds.force_ssl parameter is set to 0 (off). You can set the
rds.force_ssl parameter to 1 (on) to require SSL/TLS for connections to your DB cluster. Updating
the rds.force_ssl parameter also sets the PostgreSQL ssl parameter to 1 (on) and modifies your DB
cluster's pg_hba.conf file to support the new SSL/TLS configuration.

You can set the rds.force_ssl parameter value by updating the DB cluster parameter group for your
DB cluster. If the DB cluster parameter group isn't the default one, and the ssl parameter is already set

1299

https://www.postgresql.org/docs/current/libpq-ssl.html
https://jdbc.postgresql.org/documentation/head/ssl-client.html

Amazon Aurora User Guide for Aurora
Securing Aurora PostgreSQL data with SSL/TLS

to 1 when you set rds.force_ssl to 1, you don't need to reboot your DB cluster. Otherwise, you must
reboot your DB cluster for the change to take effect. For more information on parameter groups, see
Working with DB parameter groups and DB cluster parameter groups (p. 339).

When the rds.force_ssl parameter is set to 1 for a DB cluster, you see output similar to the following
when you connect, indicating that SSL/TLS is now required:

$ psql postgres -h SOMEHOST.amazonaws.com -p 8192 -U someuser
psql (9.3.12, server 9.4.4)
WARNING: psql major version 9.3, server major version 9.4.
Some psql features might not work.
SSL connection (cipher: DHE-RSA-AES256-SHA, bits: 256)
Type "help" for help.

postgres=>

Determining the SSL/TLS connection status
The encrypted status of your connection is shown in the logon banner when you connect to the DB
cluster.

Password for user master:
psql (9.3.12)
SSL connection (cipher: DHE-RSA-AES256-SHA, bits: 256)
Type "help" for help.

postgres=>

You can also load the sslinfo extension and then call the ssl_is_used() function to determine if
SSL/TLS is being used. The function returns t if the connection is using SSL/TLS, otherwise it returns f.

postgres=> create extension sslinfo;
CREATE EXTENSION

postgres=> select ssl_is_used();
 ssl_is_used

t
(1 row)

You can use the select ssl_cipher() command to determine the SSL/TLS cipher:

postgres=> select ssl_cipher();
ssl_cipher

DHE-RSA-AES256-SHA
(1 row)

If you enable set rds.force_ssl and restart your DB cluster, non-SSL connections are refused with
the following message:

1300

Amazon Aurora User Guide for Aurora
Updating applications for new SSL/TLS certificates

$ export PGSSLMODE=disable
$ psql postgres -h SOMEHOST.amazonaws.com -p 8192 -U someuser
psql: FATAL: no pg_hba.conf entry for host "host.ip", user "someuser", database "postgres",
 SSL off
$

For information about the sslmode option, see Database connection control functions in the
PostgreSQL documentation.

Updating applications to connect to Aurora
PostgreSQL DB clusters using new SSL/TLS
certificates

As of September 19, 2019, Amazon RDS has published new Certificate Authority (CA) certificates for
connecting to your Aurora DB clusters using Secure Socket Layer or Transport Layer Security (SSL/TLS).
Following, you can find information about updating your applications to use the new certificates.

This topic can help you to determine whether any client applications use SSL/TLS to connect to your DB
clusters. If they do, you can further check whether those applications require certificate verification to
connect.

Note
Some applications are configured to connect to Aurora PostgreSQL DB clusters only if they can
successfully verify the certificate on the server.
For such applications, you must update your client application trust stores to include the new CA
certificates.

After you update your CA certificates in the client application trust stores, you can rotate the certificates
on your DB clusters. We strongly recommend testing these procedures in a development or staging
environment before implementing them in your production environments.

For more information about certificate rotation, see Rotating your SSL/TLS certificate (p. 1728). For
more information about downloading certificates, see Using SSL/TLS to encrypt a connection to a DB
cluster (p. 1726). For information about using SSL/TLS with PostgreSQL DB clusters, see Securing Aurora
PostgreSQL data with SSL/TLS (p. 1298).

Topics
• Determining whether applications are connecting to Aurora PostgreSQL DB clusters using

SSL (p. 1301)

• Determining whether a client requires certificate verification in order to connect (p. 1302)

• Updating your application trust store (p. 1302)

• Using SSL/TLS connections for different types of applications (p. 1303)

Determining whether applications are connecting to
Aurora PostgreSQL DB clusters using SSL
Check the DB cluster configuration for the value of the rds.force_ssl parameter. By default, the
rds.force_ssl parameter is set to 0 (off). If the rds.force_ssl parameter is set to 1 (on), clients are
required to use SSL/TLS for connections. For more information about parameter groups, see Working
with DB parameter groups and DB cluster parameter groups (p. 339).

1301

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLMODE

Amazon Aurora User Guide for Aurora
Determining whether a client requires

certificate verification in order to connect

If rds.force_ssl isn't set to 1 (on), query the pg_stat_ssl view to check connections using SSL. For
example, the following query returns only SSL connections and information about the clients using SSL.

select datname, usename, ssl, client_addr from pg_stat_ssl inner join pg_stat_activity on
 pg_stat_ssl.pid = pg_stat_activity.pid where ssl is true and usename<>'rdsadmin';

Only rows using SSL/TLS connections are displayed with information about the connection. The
following is sample output.

 datname | usename | ssl | client_addr
----------+---------+-----+-------------
 benchdb | pgadmin | t | 53.95.6.13
 postgres | pgadmin | t | 53.95.6.13
(2 rows)

The preceding query displays only the current connections at the time of the query. The absence of
results doesn't indicate that no applications are using SSL connections. Other SSL connections might be
established at a different time.

Determining whether a client requires certificate
verification in order to connect
When a client, such as psql or JDBC, is configured with SSL support, the client first tries to connect to the
database with SSL by default. If the client can't connect with SSL, it reverts to connecting without SSL.
The default sslmode mode used is different between libpq-based clients (such as psql) and JDBC. The
libpq-based clients default to prefer, where JDBC clients default to verify-full. The certificate on
the server is verified only when sslrootcert is provided with sslmode set to require, verify-ca, or
verify-full. An error is thrown if the certificate is invalid.

Use PGSSLROOTCERT to verify the certificate with the PGSSLMODE environment variable, with
PGSSLMODE set to require, verify-ca, or verify-full.

PGSSLMODE=require PGSSLROOTCERT=/fullpath/rds-ca-2019-root.pem psql -h
 pgdbidentifier.cxxxxxxxx.us-east-2.rds.amazonaws.com -U primaryuser -d postgres

Use the sslrootcert argument to verify the certificate with sslmode in connection string format, with
sslmode set to require, verify-ca, or verify-full.

psql "host=pgdbidentifier.cxxxxxxxx.us-east-2.rds.amazonaws.com sslmode=require
 sslrootcert=/full/path/rds-ca-2019-root.pem user=primaryuser dbname=postgres"

For example, in the preceding case, if you use an invalid root certificate, you see an error similar to the
following on your client.

psql: SSL error: certificate verify failed

Updating your application trust store
For information about updating the trust store for PostgreSQL applications, see Secure TCP/IP
connections with SSL in the PostgreSQL documentation.

Note
When you update the trust store, you can retain older certificates in addition to adding the new
certificates.

1302

https://www.postgresql.org/docs/current/ssl-tcp.html
https://www.postgresql.org/docs/current/ssl-tcp.html

Amazon Aurora User Guide for Aurora
Using SSL/TLS connections for
different types of applications

Updating your application trust store for JDBC
You can update the trust store for applications that use JDBC for SSL/TLS connections.

To update the trust store for JDBC applications

1. Download the 2019 root certificate that works for all AWS Regions and put the file in your trust
store directory.

For information about downloading the root certificate, see Using SSL/TLS to encrypt a connection
to a DB cluster (p. 1726).

2. Convert the certificate to .der format using the following command.

openssl x509 -outform der -in rds-ca-2019-root.pem -out rds-ca-2019-root.der

Replace the file name with the one that you downloaded.
3. Import the certificate into the key store using the following command.

keytool -import -alias rds-root -keystore clientkeystore -file rds-ca-2019-root.der

4. Confirm that the key store was updated successfully.

keytool -list -v -keystore clientkeystore.jks

Enter the key store password when you are prompted for it.

Your output should contain the following.

rds-root,date, trustedCertEntry,
Certificate fingerprint (SHA1):
 D4:0D:DB:29:E3:75:0D:FF:A6:71:C3:14:0B:BF:5F:47:8D:1C:80:96
This fingerprint should match the output from the below command
openssl x509 -fingerprint -in rds-ca-2019-root.pem -noout

Using SSL/TLS connections for different types of
applications
The following provides information about using SSL/TLS connections for different types of applications:

• psql

The client is invoked from the command line by specifying options either as a connection string or
as environment variables. For SSL/TLS connections, the relevant options are sslmode (environment
variable PGSSLMODE), sslrootcert (environment variable PGSSLROOTCERT).

For the complete list of options, see Parameter key words in the PostgreSQL documentation. For the
complete list of environment variables, see Environment variables in the PostgreSQL documentation.

• pgAdmin

This browser-based client is a more user-friendly interface for connecting to a PostgreSQL database.

For information about configuring connections, see the pgAdmin documentation.
• JDBC

1303

https://www.postgresql.org/docs/11/libpq-connect.html#LIBPQ-PARAMKEYWORDS
https://www.postgresql.org/docs/current/libpq-envars.html
https://www.pgadmin.org/docs/pgadmin4/latest/server_dialog.html

Amazon Aurora User Guide for Aurora
Migrating data to Aurora PostgreSQL

JDBC enables database connections with Java applications.

For general information about connecting to a PostgreSQL database with JDBC, see Connecting to
the database in the PostgreSQL documentation. For information about connecting with SSL/TLS, see
Configuring the client in the PostgreSQL documentation.

• Python

A popular Python library for connecting to PostgreSQL databases is psycopg2.

For information about using psycopg2, see the psycopg2 documentation. For a short tutorial on
how to connect to a PostgreSQL database, see Psycopg2 tutorial. You can find information about the
options the connect command accepts in The psycopg2 module content.

Important
After you have determined that your database connections use SSL/TLS and have updated your
application trust store, you can update your database to use the rds-ca-2019 certificates. For
instructions, see step 3 in Updating your CA certificate by modifying your DB instance (p. 1729).

Migrating data to Amazon Aurora with PostgreSQL
compatibility

You have several options for migrating data from your existing database to an Amazon Aurora
PostgreSQL-Compatible Edition DB cluster. Your migration options also depend on the database that you
are migrating from and the size of the data that you are migrating. Following are your options:

Migrating an RDS for PostgreSQL DB instance using a snapshot (p. 1305)

You can migrate data directly from an RDS for PostgreSQL DB snapshot to an Aurora PostgreSQL DB
cluster.

Migrating an RDS for PostgreSQL DB instance using an Aurora read replica (p. 1309)

You can also migrate from an RDS for PostgreSQL DB instance by creating an Aurora PostgreSQL
read replica of an RDS for PostgreSQL DB instance. When the replica lag between the RDS for
PostgreSQL DB instance and the Aurora PostgreSQL read replica is zero, you can stop replication.
At this point, you can make the Aurora read replica a standalone Aurora PostgreSQL DB cluster for
reading and writing.

Importing S3 data into Aurora PostgreSQL (p. 1455)

You can migrate data by importing it from Amazon S3 into a table belonging to an Aurora
PostgreSQL DB cluster.

Migrating from a database that is not PostgreSQL-compatible

You can use AWS Database Migration Service (AWS DMS) to migrate data from a database that is not
PostgreSQL-compatible. For more information on AWS DMS, see What is AWS Database Migration
Service? in the AWS Database Migration Service User Guide.

For a list of AWS Regions where Aurora is available, see Amazon Aurora in the AWS General Reference.

Important
If you plan to migrate an RDS for PostgreSQL DB instance to an Aurora PostgreSQL DB cluster
in the near future, we strongly recommend that you turn off auto minor version upgrades for
the DB instance early in the migration planning phase. Migration to Aurora PostgreSQL might be
delayed if the RDS for PostgreSQL version isn't yet supported by Aurora PostgreSQL.

1304

https://jdbc.postgresql.org/documentation/head/connect.html
https://jdbc.postgresql.org/documentation/head/connect.html
https://jdbc.postgresql.org/documentation/head/ssl-client.html
https://pypi.org/project/psycopg2/
https://wiki.postgresql.org/wiki/Psycopg2_Tutorial
http://initd.org/psycopg/docs/module.html#module-psycopg2
https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#aurora

Amazon Aurora User Guide for Aurora
Migrating an RDS for PostgreSQL

DB instance using a snapshot

For information about Aurora PostgreSQL versions, see Engine versions for Amazon Aurora
PostgreSQL.

Migrating a snapshot of an RDS for PostgreSQL DB
instance to an Aurora PostgreSQL DB cluster
To create an Aurora PostgreSQL DB cluster, you can migrate a DB snapshot of an RDS for PostgreSQL DB
instance. The new Aurora PostgreSQL DB cluster is populated with the data from the original RDS for
PostgreSQL DB instance. For information about creating a DB snapshot, see Creating a DB snapshot.

In some cases, the DB snapshot might not be in the AWS Region where you want to locate your data. If
so, use the Amazon RDS console to copy the DB snapshot to that AWS Region. For information about
copying a DB snapshot, see Copying a DB snapshot.

You can migrate RDS for PostgreSQL snapshots that are compatible with the Aurora PostgreSQL versions
available in the given AWS Region. For example, you can migrate a snapshot from an RDS for PostgreSQL
11.1 DB instance to Aurora PostgreSQL version 11.4, 11.7, 11.8, or 11.9 in the US West (N. California)
Region. You can migrate RDS for PostgreSQL 10.11 snapshot to Aurora PostgreSQL 10.11, 10.12, 10.13,
and 10.14. In other words, the RDS for PostgreSQL snapshot must use the same or a lower minor version
as the Aurora PostgreSQL.

You can also choose for your new Aurora PostgreSQL DB cluster to be encrypted at rest by using an AWS
KMS key. This option is available only for unencrypted DB snapshots.

To migrate an RDS for PostgreSQL DB snapshot to an Aurora PostgreSQL DB cluster, you can use the
AWS Management Console, the AWS CLI, or the RDS API. When you use the AWS Management Console,
the console takes the actions necessary to create both the DB cluster and the primary instance.

Console

To migrate a PostgreSQL DB snapshot by using the RDS console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose Snapshots.

3. On the Snapshots page, choose the RDS for PostgreSQL snapshot that you want to migrate into an
Aurora PostgreSQL DB cluster.

4. Choose Actions then choose Migrate snapshot.

5. Set the following values on the Migrate database page:

• DB engine version: Choose a DB engine version you want to use for the new migrated instance.

• DB instance identifier: Enter a name for the DB cluster that is unique for your account in the AWS
Region that you chose. This identifier is used in the endpoint addresses for the instances in your
DB cluster. You might choose to add some intelligence to the name, such as including the AWS
Region and DB engine that you chose, for example aurora-cluster1.

The DB instance identifier has the following constraints:

• It must contain 1–63 alphanumeric characters or hyphens.

• Its first character must be a letter.

• It can't end with a hyphen or contain two consecutive hyphens.

• It must be unique for all DB instances per AWS account, per AWS Region.

• DB instance class: Choose a DB instance class that has the required storage and capacity for your
database, for example db.r6g.large. Aurora cluster volumes automatically grow as the amount

1305

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Migrating an RDS for PostgreSQL

DB instance using a snapshot

of data in your database increases. So you only need to choose a DB instance class that meets your
current storage requirements. For more information, see Overview of Aurora storage (p. 64).

• Virtual private cloud (VPC): If you have an existing VPC, then you can use that VPC with your
Aurora PostgreSQL DB cluster by choosing your VPC identifier, for example vpc-a464d1c1.
For information on using an existing VPC, see How to create a VPC for use with Amazon
Aurora (p. 1806).

Otherwise, you can choose to have Amazon RDS create a VPC for you by choosing Create new
VPC.

• Subnet group: If you have an existing subnet group, then you can use that subnet group with your
Aurora PostgreSQL DB cluster by choosing your subnet group identifier, for example gs-subnet-
group1.

• Public access: Choose No to specify that instances in your DB cluster can only be accessed by
resources inside of your VPC. Choose Yes to specify that instances in your DB cluster can be
accessed by resources on the public network.

Note
Your production DB cluster might not need to be in a public subnet, because only your
application servers require access to your DB cluster. If your DB cluster doesn't need to be
in a public subnet, set Public access to No.

• VPC security group: Choose a VPC security group to allow access to your database.

• Availability Zone: Choose the Availability Zone to host the primary instance for your Aurora
PostgreSQL DB cluster. To have Amazon RDS choose an Availability Zone for you, choose No
preference.

• Database port: Enter the default port to be used when connecting to instances in the Aurora
PostgreSQL DB cluster. The default is 5432.

Note
You might be behind a corporate firewall that doesn't allow access to default ports
such as the PostgreSQL default port, 5432. In this case, provide a port value that your
corporate firewall allows. Remember that port value later when you connect to the
Aurora PostgreSQL DB cluster.

• Enable Encryption: Choose Enable Encryption for your new Aurora PostgreSQL DB cluster to be
encrypted at rest. Also choose a KMS key as the AWS KMS key value.

• Auto minor version upgrade: Choose Enable auto minor version upgrade to enable your Aurora
PostgreSQL DB cluster to receive minor PostgreSQL DB engine version upgrades automatically
when they become available.

The Auto minor version upgrade option only applies to upgrades to PostgreSQL minor engine
versions for your Aurora PostgreSQL DB cluster. It doesn't apply to regular patches applied to
maintain system stability.

6. Choose Migrate to migrate your DB snapshot.

7. Choose Databases to see the new DB cluster. Choose the new DB cluster to monitor the progress
of the migration. On the Connectivity & security tab, you can find the cluster endpoint to use for
connecting to the primary writer instance of the DB cluster. For more information on connecting to
an Aurora PostgreSQL DB cluster, see Connecting to an Amazon Aurora DB cluster (p. 281).

AWS CLI

Using the AWS CLI to migrate an RDS for PostgreSQL DB snapshot to an Aurora PostgreSQL involves
two separate AWS CLI commands. First, you use the restore-db-cluster-from-snapshot AWS
CLI command create a new Aurora PostgreSQL DB cluster. You then use the create-db-instance
command to create the primary DB instance in the new cluster to complete the migration. The following
procedure creates an Aurora PostgreSQL DB cluster with primary DB instance that has the same
configuration as the DB instance used to create the snapshot.

1306

Amazon Aurora User Guide for Aurora
Migrating an RDS for PostgreSQL

DB instance using a snapshot

To migrate an RDS for PostgreSQL DB snapshot to an Aurora PostgreSQL DB cluster

1. Use the describe-db-snapshots command to obtain information about the DB snapshot you want
to migrate. You can specify either the --db-instance-identifier parameter or the --db-
snapshot-identifier in the command. If you don't specify one of these parameters, you get all
snapshots.

aws rds describe-db-snapshots --db-instance-identifier <your-db-instance-name>

2. The command returns all configuration details for any snapshots created from the DB instance
specified. In the output, find the snapshot that you want to migrate and locate its Amazon Resource
Name (ARN). To learn more about Amazon RDS ARNs, see Amazon Relational Database Service
(Amazon RDS). An ARN looks similar to the output following.

“DBSnapshotArn": "arn:aws:rds:aws-region:111122223333:snapshot:<snapshot_name>"

Also in the output you can find configuration details for the RDS for PostgreSQL DB instance, such as
the engine version, allocated storage, whether or not the DB instance is encrypted, and so on.

3. Use the restore-db-cluster-from-snapshot command to start the migration. Specify the following
parameters:

• --db-cluster-identifier – The name that you want to give to the Aurora PostgreSQL DB
cluster. This Aurora DB cluster is the target for your DB snapshot migration.

• --snapshot-identifier – The Amazon Resource Name (ARN) of the DB snapshot to migrate.

• --engine – Specify aurora-postgresql for the Aurora DB cluster engine.

• --kms-key-id – This optional parameter lets you create an encrypted Aurora PostgreSQL DB
cluster from an unencrypted DB snapshot. It also lets you choose a different encryption key for
the DB cluster than the key used for the DB snapshot.

Note
You can't create an unencrypted Aurora PostgreSQL DB cluster from an encrypted DB
snapshot.

Without the --kms-key-id parameter specified as shown following, the restore-db-cluster-from-
snapshot AWS CLI command creates an empty Aurora PostgreSQL DB cluster that's either encrypted
using the same key as the DB snapshot or is unencrypted if the source DB snapshot isn't encrypted.

For Linux, macOS, or Unix:

aws rds restore-db-cluster-from-snapshot \
 --db-cluster-identifier cluster-name \
 --snapshot-identifier arn:aws:rds:aws-region:111122223333:snapshot:your-snapshot-
name \
 --engine aurora-postgresql

For Windows:

aws rds restore-db-cluster-from-snapshot ^
 --db-cluster-identifier new_cluster ^
 --snapshot-identifier arn:aws:rds:aws-region:111122223333:snapshot:your-snapshot-
name ^
 --engine aurora-postgresql

4. The command returns details about the Aurora PostgreSQL DB cluster that's being created for the
migration. You can check the status of the Aurora PostgreSQL DB cluster by using the describe-db-
clusters AWS CLI command.

1307

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-snapshots.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-rds
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-rds
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clussters.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clussters.html

Amazon Aurora User Guide for Aurora
Migrating an RDS for PostgreSQL

DB instance using a snapshot

aws rds describe-db-clusters --db-cluster-idenfifier cluster-name

5. When the DB cluster becomes "available", you use create-db-instance command to populate the
Aurora PostgreSQL DB cluster with the DB instance based on your Amazon RDS DB snapshot. Specify
the following parameters:

• --db-cluster-identifier – The name of the new Aurora PostgreSQL DB cluster that you
created in the previous step.

• --db-instance-identifier – The name you want to give to the DB instance. This instance
becomes the primary node in your Aurora PostgreSQL DB cluster.

• ----db-instance-class – Specify the DB instance class to use. Choose from among the
DB instance classes supported by the Aurora PostgreSQL version to which you're migrating. For
more information, see DB instance class types (p. 54) and Supported DB engines for DB instance
classes (p. 54).

• --engine – Specify aurora-postgresql for the DB instance.

You can also create the DB instance with a different configuration than the source DB snapshot,
by passing in the appropriate options in the create-db-instance AWS CLI command. For more
information, see the create-db-instance command.

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-cluster-identifier cluster-name \
 --db-instance-identifier --db-instance-class db.instance.class \
 --engine aurora-postgresql

For Windows:

aws rds create-db-instance ^
 --db-cluster-identifier cluster-name ^
 --db-instance-identifier --db-instance-class db.instance.class ^
 --engine aurora-postgresql

When the migration process completes, the Aurora PostgreSQL cluster has a populated primary DB
instance.

1308

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora
Migrating an RDS for PostgreSQL DB
instance using an Aurora read replica

Migrating data from an RDS for PostgreSQL DB
instance to an Aurora PostgreSQL DB cluster using an
Aurora read replica
You can use an RDS for PostgreSQL DB instance as the basis for a new Aurora PostgreSQL DB cluster
by using an Aurora read replica for the migration process. The Aurora read replica option is available
only for migrating within the same AWS Region and account. This option is available only to an RDS
for PostgreSQL DB instance for which the Region offers a compatible version of Aurora PostgreSQL. In
this case, compatible means that the Aurora PostgreSQL version is the same as the RDS for PostgreSQL
version, or that it is a higher minor version in the same major version family.

For example, to use this technique to migrate an RDS for PostgreSQL 11.14 DB instance, the Region must
offer Aurora PostgreSQL version 11.14 or a higher minor version in the PostgreSQL version 11 family.

Topics
• Overview of migrating data by using an Aurora read replica (p. 1309)
• Preparing to migrate data by using an Aurora read replica (p. 1309)
• Creating an Aurora read replica (p. 1310)
• Promoting an Aurora read replica (p. 1315)

Overview of migrating data by using an Aurora read replica
Migrating from an RDS for PostgreSQL DB instance to an Aurora PostgreSQL DB cluster is a multistep
procedure. First, you create an Aurora read replica of your source RDS for PostgreSQL DB instance.
That starts a replication process from your RDS for PostgreSQL DB instance to a special-purpose DB
cluster known as a Replica cluster. The Replica cluster consists solely of an Aurora read replica (a reader
instance).

Once the Replica cluster exists, you monitor the lag between it and the source RDS for PostgreSQL DB
instance. When the replica lag is zero (0), you can promote the Replica cluster. Replication stops, the
Replica cluster is promoted to a standalone Aurora DB cluster, and the reader is promoted to writer
instance for the cluster. You can then add instances to the Aurora PostgreSQL DB cluster to size your
Aurora PostgreSQL DB cluster for your use case. You can also delete the RDS for PostgreSQL DB instance
if you have no further need of it.

Note
It can take several hours per tebitype (TiB) of data for the migration to complete.

You can't create an Aurora read replica if your RDS for PostgreSQL DB instance already has an Aurora
read replica or if it has a cross-Region read replica.

Preparing to migrate data by using an Aurora read replica
During the migration process using Aurora read replica, updates made to the source RDS for PostgreSQL
DB instance are asynchronously replicated to the Aurora read replica of the Replica cluster. The process
uses PostgreSQL's native streaming replication functionality which stores write-ahead logs (WAL)
segments on the source instance. Before starting this migration process, make sure that your instance
has sufficient storage capacity by checking values for the metrics listed in the table.

Metric Description

FreeStorageSpace The available storage space.

Units: Bytes

1309

Amazon Aurora User Guide for Aurora
Migrating an RDS for PostgreSQL DB
instance using an Aurora read replica

Metric Description

OldestReplicationSlotLag The size of the lag for WAL data in the replica that
is lagging the most.

Units: Megabytes

RDSToAuroraPostgreSQLReplicaLag The amount of time in seconds that an Aurora
PostgreSQL DB cluster lags behind the source RDS
DB instance.

TransactionLogsDiskUsage The disk space used by the transaction logs.

Units: Megabytes

For more information about monitoring your RDS instance, see Monitoring in the Amazon RDS User
Guide.

Creating an Aurora read replica
You can create an Aurora read replica for an RDS for PostgreSQL DB instance by using the console or
the AWS CLI. The option to create an Aurora read replica is available only if the AWS Region offers a
compatible Aurora PostgreSQL version. That is, it's available only if there's an Aurora PostgreSQL version
that is the same as the RDS for PostgreSQL version or a higher minor version in the same major version
family.

Console

To create an Aurora read replica from a source PostgreSQL DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.
3. Choose the RDS for PostgreSQL DB instance that you want to use as the source for your Aurora read

replica. For Actions, choose Create Aurora read replica. If this choice doesn't display, it means that a
compatible Aurora PostgreSQL version isn't available in the Region.

4. On the Create Aurora read replica settings page, you configure the properties for the Aurora
PostgreSQL DB cluster as shown in the following table. The Replica DB cluster is created from a

1310

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Monitoring.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Migrating an RDS for PostgreSQL DB
instance using an Aurora read replica

snapshot of the source DB instance using the same 'master' user name and password as the source,
so you can't change these at this time.

Option Description

DB instance class Choose a DB instance class that meets the processing
and memory requirements primary instance in the DB
cluster. For more information, see Aurora DB instance
classes (p. 54).

Multi-AZ deployment Not available during the migration

DB instance identifier Enter the name that you want to give to the DB instance.
This identifier is used in the endpoint address for the
primary instance of the new DB cluster.

The DB instance identifier has the following constraints:

• It must contain 1–63 alphanumeric characters or
hyphens.

• Its first character must be a letter.
• It can't end with a hyphen or contain two consecutive

hyphens.
• It must be unique for all DB instances for each AWS

account, for each AWS Region.

Virtual Private Cloud (VPC) Choose the VPC to host the DB cluster. Choose Create
new VPC to have Amazon RDS create a VPC for you. For
more information, see DB cluster prerequisites (p. 125).

Subnet group Choose the DB subnet group to use for the DB cluster.
Choose Create new DB Subnet Group to have Amazon
RDS create a DB subnet group for you. For more
information, see DB cluster prerequisites (p. 125).

Public accessibility Choose Yes to give the DB cluster a public IP address;
otherwise, choose No. The instances in your DB cluster
can be a mix of both public and private DB instances.
For more information about hiding instances from
public access, see Hiding a DB instance in a VPC from the
internet (p. 1802).

Availability zone Determine if you want to specify a particular Availability
Zone. For more information about Availability Zones, see
Regions and Availability Zones (p. 11).

VPC security groups Choose one or more VPC security groups to secure
network access to the DB cluster. Choose Create new
VPC security group to have Amazon RDS create a VPC
security group for you. For more information, see DB
cluster prerequisites (p. 125).

1311

Amazon Aurora User Guide for Aurora
Migrating an RDS for PostgreSQL DB
instance using an Aurora read replica

Option Description

Database port Specify the port for applications and utilities to use to
access the database. Aurora PostgreSQL DB clusters
default to the default PostgreSQL port, 5432. Firewalls
at some companies block connections to this port. If your
company firewall blocks the default port, choose another
port for the new DB cluster.

DB parameter group Choose a DB parameter group for the Aurora PostgreSQL
DB cluster. Aurora has a default DB parameter group
you can use, or you can create your own DB parameter
group. For more information about DB parameter groups,
see Working with DB parameter groups and DB cluster
parameter groups (p. 339).

DB cluster parameter group Choose a DB cluster parameter group for the Aurora
PostgreSQL DB cluster. Aurora has a default DB cluster
parameter group you can use, or you can create your
own DB cluster parameter group. For more information
about DB cluster parameter groups, see Working
with DB parameter groups and DB cluster parameter
groups (p. 339).

Encryption Choose Enable encryption for your new Aurora DB cluster
to be encrypted at rest. If you choose Enable encryption,
also choose a KMS key as the AWS KMS key value.

Priority Choose a failover priority for the DB cluster. If you
don't choose a value, the default is tier-1. This priority
determines the order in which Aurora Replicas are
promoted when recovering from a primary instance
failure. For more information, see Fault tolerance for an
Aurora DB cluster (p. 69).

Backup retention period Choose the length of time, 1–35 days, for Aurora to retain
backup copies of the database. Backup copies can be used
for point-in-time restores (PITR) of your database down to
the second.

Enhanced monitoring Choose Enable enhanced monitoring to enable gathering
metrics in real time for the operating system that your DB
cluster runs on. For more information, see Monitoring OS
metrics with Enhanced Monitoring (p. 647).

Monitoring Role Only available if you chose Enable enhanced monitoring.
The AWS Identity and Access Management (IAM) role to
use for Enhanced Monitoring. For more information, see
Setting up and enabling Enhanced Monitoring (p. 648).

Granularity Only available if you chose Enable enhanced monitoring.
Set the interval, in seconds, between when metrics are
collected for your DB cluster.

1312

Amazon Aurora User Guide for Aurora
Migrating an RDS for PostgreSQL DB
instance using an Aurora read replica

Option Description

Auto minor version upgrade Choose Yes to enable your Aurora PostgreSQL DB cluster
to receive minor PostgreSQL DB engine version upgrades
automatically when they become available.

The Auto minor version upgrade option only applies to
upgrades to PostgreSQL minor engine versions for your
Aurora PostgreSQL DB cluster. It doesn't apply to regular
patches applied to maintain system stability.

Maintenance window Choose the weekly time range during which system
maintenance can occur.

5. Choose Create read replica.

AWS CLI

To create an Aurora read replica from a source RDS for PostgreSQL DB instance, use the create-db-
cluster and create-db-instance AWS CLI commands to create a new Aurora PostgreSQL DB cluster.
When you call the create-db-cluster command, include the --replication-source-identifier
parameter to identify the Amazon Resource Name (ARN) for the source RDS for PostgreSQL DB instance.
For more information about Amazon RDS ARNs, see Amazon Relational Database Service (Amazon RDS)
in the AWS General Reference.

Don't specify the master user name, master password, or database name. The Aurora read replica uses
the same master user name, master password, and database name as the source RDS for PostgreSQL DB
instance.

For Linux, macOS, or Unix:

aws rds create-db-cluster --db-cluster-identifier sample-replica-cluster --engine aurora-
postgresql \
 --db-subnet-group-name mysubnetgroup --vpc-security-group-ids sg-c7e5b0d2 \
 --replication-source-identifier arn:aws:rds:us-west-2:123456789012:db:master-
postgresql-instance

For Windows:

aws rds create-db-cluster --db-cluster-identifier sample-replica-cluster --engine aurora-
postgresql ^
 --db-subnet-group-name mysubnetgroup --vpc-security-group-ids sg-c7e5b0d2 ^
 --replication-source-identifier arn:aws:rds:us-west-2:123456789012:db:master-
postgresql-instance

If you use the console to create an Aurora read replica, then RDS automatically creates the primary
instance for your DB cluster Aurora Read Replica. If you use the CLI to create an Aurora read replica, you
must explicitly create the primary instance for your DB cluster. The primary instance is the first instance
that is created in a DB cluster.

You can create a primary instance for your DB cluster by using the create-db-instance CLI command
with the following parameters:

• --db-cluster-identifier

The name of your DB cluster.
• --db-instance-class

The name of the DB instance class to use for your primary instance.

1313

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-rds
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora
Migrating an RDS for PostgreSQL DB
instance using an Aurora read replica

• --db-instance-identifier

The name of your primary instance.
• --engine aurora-postgresql

The database engine to use.

In the following example, you create a primary instance named myreadreplicainstance for the
DB cluster named myreadreplicacluster. You do this using the DB instance class specified in
myinstanceclass.

Example

For Linux, macOS, or Unix:

aws rds create-db-instance \
 --db-cluster-identifier myreadreplicacluster \
 --db-instance-class myinstanceclass \
 --db-instance-identifier myreadreplicainstance \
 --engine aurora-postgresql

For Windows:

aws rds create-db-instance ^
 --db-cluster-identifier myreadreplicacluster ^
 --db-instance-class myinstanceclass ^
 --db-instance-identifier myreadreplicainstance ^
 --engine aurora-postgresql

RDS API

To create an Aurora read replica from a source RDS for PostgreSQL DB instance, use the RDS API
operations CreateDBCluster and CreateDBInstance to create a new Aurora DB cluster and primary
instance. Don't specify the master user name, master password, or database name. The Aurora read
replica uses the same master user name, master password, and database name as the source RDS for
PostgreSQL DB instance.

You can create a new Aurora DB cluster for an Aurora read replica from a source RDS for PostgreSQL DB
instance. To do so, use the RDS API operation CreateDBCluster with the following parameters:

• DBClusterIdentifier

The name of the DB cluster to create.
• DBSubnetGroupName

The name of the DB subnet group to associate with this DB cluster.
• Engine=aurora-postgresql

The name of the engine to use.
• ReplicationSourceIdentifier

The Amazon Resource Name (ARN) for the source PostgreSQL DB instance. For more information
about Amazon RDS ARNs, see Amazon Relational Database Service (Amazon RDS) in the Amazon Web
Services General Reference.

• VpcSecurityGroupIds

The list of Amazon EC2 VPC security groups to associate with this DB cluster.

1314

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arn-syntax-rds

Amazon Aurora User Guide for Aurora
Migrating an RDS for PostgreSQL DB
instance using an Aurora read replica

See an example with the RDS API operation CreateDBCluster.

If you use the console to create an Aurora read replica, then Amazon RDS automatically creates the
primary instance for your DB cluster Aurora Read Replica. If you use the CLI to create an Aurora read
replica, you must explicitly create the primary instance for your DB cluster. The primary instance is the
first instance that is created in a DB cluster.

You can create a primary instance for your DB cluster by using the RDS API operation
CreateDBInstance with the following parameters:

• DBClusterIdentifier

The name of your DB cluster.

• DBInstanceClass

The name of the DB instance class to use for your primary instance.

• DBInstanceIdentifier

The name of your primary instance.

• Engine=aurora-postgresql

The name of the engine to use.

See an example with the RDS API operation CreateDBInstance.

Promoting an Aurora read replica

The migration to Aurora PostgreSQL isn't complete until you promote the Replica cluster, so don't delete
the RDS for PostgreSQL source DB instance just yet.

Before promoting the Replica cluster, make sure that the RDS for PostgreSQL DB instance doesn't
have any in-process transactions or other activity writing to the database. When the replica lag on the
Aurora read replica reaches zero (0), you can promote the Replica cluster. For more information about
monitoring replica lag, see Monitoring Aurora PostgreSQL replication (p. 1449) and Instance-level
metrics for Amazon Aurora (p. 660).

Console

To promote an Aurora read replica to an Aurora DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the Replica cluster.

1315

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Migrating an RDS for PostgreSQL DB
instance using an Aurora read replica

4. For Actions, choose Promote. This may take a few minutes.

When the process completes, the Aurora Replica cluster is a Regional Aurora PostgreSQL DB cluster, with
a Writer instance containing the data from the RDS for PostgreSQL DB instance.

AWS CLI

To promote an Aurora read replica to a stand-alone DB cluster, use the promote-read-replica-db-cluster
AWS CLI command.

Example

For Linux, macOS, or Unix:

aws rds promote-read-replica-db-cluster \
 --db-cluster-identifier myreadreplicacluster

For Windows:

aws rds promote-read-replica-db-cluster ^
 --db-cluster-identifier myreadreplicacluster

RDS API

To promote an Aurora read replica to a stand-alone DB cluster, use the RDS API operation
PromoteReadReplicaDBCluster.

After you promote the Replica cluster, you can confirm that the promotion has completed by checking
the event log, as follows.

To confirm that the Aurora Replica cluster was promoted

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Events.
3. On the Events page, find the name of your cluster in the Source list. Each event has a source, type,

time, and message. You can see all events that have occurred in your AWS Region for your account. A
successful promotion generates the following message.

1316

https://docs.aws.amazon.com/cli/latest/reference/rds/promote-read-replica-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_PromoteReadReplicaDBCluster.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Migrating an RDS for PostgreSQL DB
instance using an Aurora read replica

Promoted Read Replica cluster to a stand-alone database cluster.

After promotion is complete, the source RDS for PostgreSQL DB instance and the Aurora PostgreSQL DB
cluster are unlinked. You can direct your client applications to the endpoint for the Aurora read replica.
For more information on the Aurora endpoints, see Amazon Aurora connection management (p. 32). At
this point, you can safely delete the DB instance.

1317

Amazon Aurora User Guide for Aurora
Babelfish for Aurora PostgreSQL

Working with Babelfish for Aurora PostgreSQL
Babelfish for Aurora PostgreSQL extends your Amazon Aurora PostgreSQL-Compatible Edition
database with the ability to accept database connections from Microsoft SQL Server clients. Doing this
allows applications originally built for SQL Server to work directly with Aurora PostgreSQL with few
code changes compared to a traditional migration and without changing database drivers. For more
information about migrating, see Using Babelfish to migrate to PostgreSQL (p. 1321).

Babelfish provides an additional endpoint for an Aurora PostgreSQL database cluster that allows it
to understand the SQL Server wire-level protocol and commonly used SQL Server statements. This
approach allows client applications that use the Tabular Data Stream (TDS) wire protocol to connect
natively to the TDS listener port on Aurora PostgreSQL. Babelfish supports TDS versions 7.1 and higher.
For more information on the SQL Server wire-level protocol, see [MS-TDS]: Tabular Data Stream Protocol
on the Microsoft website.

You can access your data simultaneously using a Babelfish TDS connection from one application and
a native PostgreSQL connection from another application. You can customize the ports used for each
client connection when you create the cluster, or later in your Aurora PostgreSQL parameter group.
For more information about the parameters that control Babelfish, see Configuring a database for
Babelfish (p. 1364).

By default, to use the following dialects use the following ports:

• SQL Server dialect, clients connect to port 1433.
• PostgreSQL dialect, clients connect to port 5432.

Babelfish runs the Transact-SQL (T-SQL) language with the exceptions documented in Differences
between Aurora PostgreSQL with Babelfish and SQL Server (p. 1342).

Babelfish architecture
When you create an Aurora PostgreSQL cluster with Babelfish turned on, Aurora provisions the cluster
with a PostgreSQL database named babelfish_db. This database is where all migrated SQL Server
objects and structures reside.

Note
In an Aurora PostgreSQL cluster, the babelfish_db database name is reserved for Babelfish.
Creating your own "babelfish_db" database on a Babelfish for Aurora PostgreSQL prevents
Aurora from successfully provisioning Babelfish.

When you connect to the TDS port, the session is placed in the babelfish_db database. From T-SQL,
the structure looks similar to being connected to a SQL Server instance. You can see the master and
tempdb databases and the sys.databases catalog. You can create additional user databases and
switch between databases with the USE statement. When you create a SQL Server user database, it's
flattened into the babelfish_db PostgreSQL database. Your database retains cross-database syntax
and semantics equal to or similar to those provided by SQL Server.

Using Babelfish with a single database or multiple databases
When you create an Aurora PostgreSQL cluster to use with Babelfish, you choose between using a single
SQL Server database on its own or multiple SQL Server databases together. Your choice affects how the
names of SQL Server schemas inside the babelfish_db database appear from Aurora PostgreSQL. The
migration mode is stored in the migration_mode parameter. You can't change this parameter after
creating your cluster.

In single-database mode, the schema names of the user database in the babelfish_db database
remain the same as in SQL Server. If you choose to move a single database, schemas are recreated inside

1318

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/b46a581a-39de-4745-b076-ec4dbb7d13ec

Amazon Aurora User Guide for Aurora
Babelfish architecture

of the database and can be referenced with the same name used with SQL Server. For example, the dbo
and smith schemas reside inside the dbA database.

When connecting through TDS, you can run USE dbA to see schemas dbo and smith from T-SQL, as you
would in SQL Server. The unchanged schema names are also visible from PostgreSQL.

In multiple-database mode, the schema names of user databases become dbname_schemaname when
seen from PostgreSQL. The schema names remain the same when seen from T-SQL.

1319

Amazon Aurora User Guide for Aurora
Babelfish architecture

When connecting through TDS, you can run USE dbA, to see schemas dbo and smith from T-SQL, as
you would in SQL Server. The mapped schema names, such as dbA_dbo and dbA_smith, are visible
from PostgreSQL.

Each database still contains your schemas. The name of each database is prepended to the name of the
SQL Server schema, using an underscore as a delimiter, for example:

• dbA contains dbA_dbo and dbA_smith.
• dbB contains dbB_dbo and dbB_jones.
• dbC contains dbC_dbo and dbC_miller.

Inside the babelfish_db database, the T-SQL user still needs to run USE dbname to change database
context, so the look and feel remains similar to SQL Server.

Choosing a migration mode
Each migration mode has advantages and disadvantages. Choose your migration mode based on
the number of user databases you have, and your migration plans. After you create a cluster for use
with Babelfish, you can't change the migration mode. When choosing a migration mode, consider the
requirements of your user databases and clients.

When you create a cluster for use with Babelfish, Aurora PostgreSQL creates the system databases,
master and tempdb. If you created or modified objects in the system databases (master or tempdb),
make sure to recreate those objects in your new cluster. Unlike SQL Server, Babelfish doesn't reinitialize
tempdb after a cluster reboot.

Use single database migration mode in the following cases:

• If you are migrating a single SQL Server database. In single database mode, migrated schema names
are identical to the original SQL Server schema names. When you migrate your application, you make
fewer changes to your SQL code.

• If your end goal is a complete migration to native Aurora PostgreSQL. Before migrating, consolidate
your schemas into a single schema (dbo) and then migrate into a single cluster to lessen required
changes.

Use multiple database migration mode in the following cases:

• If you are trying out Babelfish and you aren't sure of your future needs.
• If multiple user databases need to be migrated together, and the end goal isn't to perform a fully

native PostgreSQL migration.
• If you might be migrating multiple databases in the future.

1320

Amazon Aurora User Guide for Aurora
Using Babelfish to migrate to PostgreSQL

Using Babelfish to migrate to PostgreSQL
You can use Babelfish for Aurora PostgreSQL to ease migration from a SQL Server database to an
Amazon Aurora PostgreSQL DB cluster. Before migrating, review Using Babelfish with a single database
or multiple databases (p. 1318).

The following high-level overview lists the steps required to make your SQL Server application work with
Babelfish:

1. Create a new Aurora PostgreSQL DB cluster with Babelfish turned on, providing support for SQL
Server T-SQL syntax and features. For details, see Creating an Aurora PostgreSQL cluster with
Babelfish (p. 1323).

2. To connect to the new database, use a native SQL Server tool such as sqlcmd. For details, see Using a
SQL Server client to connect to your DB cluster (p. 1333).

3. Export the data definition language (DDL) for your SQL Server databases that you want to migrate.
The DDL is SQL code that describes database objects that contain user data (such as tables, indexes,
and views) and user-written database code (such as stored procedures, user-defined functions, and
triggers).

You can use SQL Server Management Studio (SSMS) to export the DDL. After connecting to your
existing SQL Server instance, complete the following steps:
a. Open the context menu (right-click) for a database name.
b. Choose Tasks, Generate Scripts from the context menu.
c. On the Choose Objects page, select the entire database or specific objects.
d. On the Set Scripting Options page, choose Advanced and make sure you turn on triggers, logins,

owners, and permissions. These are turned off by default in SSMS.
e. Save the script.

4. Export the data manipulation language (DML) for your SQL Server databases that you want to
migrate. The DML is SQL code that inserts rows into the tables in your database.

You can use SQL Server Management Studio (SSMS) to export the DML. After connecting to your
existing SQL Server instance, complete the following steps:
a. Open the context menu (right-click) for a database name.
b. Choose Tasks, Generate Scripts from the context menu.
c. On the Choose Objects page, select the entire database or specific objects.
d. On the Set Scripting Options page, choose Advanced and for Types of data to script, choose Data

only.
e. Save the script.

5. Run an assessment tool. For example, you can run the Babelfish Compass tool. You run this tool on
the DDL to determine to what extent the T-SQL code is supported by Babelfish. Identify T-SQL code
that might require modifications before running on Babelfish.

Note
Because Babelfish Compass is an open-source tool, report any issues through GitHub. Don't
report issues with Babelfish Compass to AWS Support.

You can also use the AWS Schema Conversion Tool to help with your migration. The AWS Schema
Conversion Tool supports Babelfish as a virtual target. To learn more, see Using virtual targets in the
AWS Schema Conversion Tool User Guide.

6. Run the DDL on your new Babelfish server to recreate your schemas on Babelfish using SSMS or
sqlcmd. Make code adjustments as needed. This process might require multiple iterations.

7. Run the DML on your new Babelfish server to insert rows into the tables in your database.
8. Reconfigure your client application to connect to the Babelfish endpoint instead of SQL Server. For

details, see Connecting to a DB cluster with Babelfish turned on (p. 1330).

1321

https://docs.microsoft.com/en-us/sql/tools/sqlcmd-utility?view=sql-server-ver15
https://github.com/babelfish-for-postgresql/babelfish_compass/releases/latest
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Mapping.VirtualTargets.html

Amazon Aurora User Guide for Aurora
Using Babelfish to migrate to PostgreSQL

9. Modify your application where necessary and retest. For more information, see Differences between
Aurora PostgreSQL with Babelfish and SQL Server (p. 1342).

10.When you're satisfied with your application test results, start using your Babelfish database for
production.

When you're ready, stop the original database and redirect live client applications to use the Babelfish
TDS port.

11.(Optional) Capture client-side SQL queries, and run these queries through an assessment tool
(such as Babelfish Compass). A reverse-engineered schema only converts server-side SQL code.
For applications with complex client-side SQL queries, we recommend that you also analyze these
for Babelfish compatibility. If the analysis indicates that the client-side SQL statements contain
unsupported SQL features, review the SQL aspects in the client application and make modifications if
necessary.

1322

Amazon Aurora User Guide for Aurora
Creating an Aurora PostgreSQL cluster with Babelfish

Creating an Aurora PostgreSQL cluster with Babelfish
You can use Babelfish on Aurora PostgreSQL. Babelfish is currently supported on Aurora PostgreSQL
version 13.4 and higher.

You can use the AWS Management Console or the AWS CLI to create an Aurora PostgreSQL cluster with
Babelfish.

Note
In an Aurora PostgreSQL cluster, the babelfish_db database name is reserved for Babelfish.
Creating your own "babelfish_db" database on a Babelfish for Aurora PostgreSQL prevents
Aurora from successfully provisioning Babelfish.

Console

To create a cluster with Babelfish running with the AWS Management Console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/, and choose Create
database.

2. For Choose a database creation method, do one of the following:

• To specify detailed engine options, choose Standard create.

• To use preconfigured options that support best practices for an Aurora cluster, choose Easy create.

3. For Engine type, choose Amazon Aurora.

4. For Edition, choose Amazon Aurora PostgreSQL.

5. Choose Show filters, and then choose Show versions that support the Babelfish for PostgreSQL
feature to list the engine types that support Babelfish. Babelfish is currently supported on Aurora
PostgreSQL 13.4 and higher.

6. For Available versions, choose an Aurora PostgreSQL version.

1323

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Creating an Aurora PostgreSQL cluster with Babelfish

7. For Templates, choose the template that matches your use case.

8. For DB cluster identifier, enter a name that you can easily find later in the DB cluster list.

9. For Master username, enter an administrator user name.

Unlike SQL Server, Babelfish doesn't create an sa login. To create a login named sa, enter the name
in the Master username field.

If you don't create a user named sa at this time, you can create one later with your choice of client.
After creating the user, use the ALTER SERVER ROLE command to add it to sysadmin.

10. For Master password, enter a strong password for the administrative user that you just named, and
confirm the password.

11. For the options that follow, until the Babelfish settings section, specify your DB cluster settings. For
information about each setting, see Settings for Aurora DB clusters (p. 137).

12. To make Babelfish functionality available, select the Turn on Babelfish box.

13. For DB cluster parameter group, do one of the following:

• Choose Create new to create a new parameter group with Babelfish turned on.

• Choose Choose existing to use an existing parameter group. If you use an existing group, make
sure to modify the group before creating the cluster and add values for Babelfish parameters. For
information about Babelfish parameters, see Configuring a database for Babelfish (p. 1364).

If you use an existing group, provide the group name in the box that follows.

14. For Database migration mode, choose one of the following:

• Single database to migrate a single SQL Server database.

1324

Amazon Aurora User Guide for Aurora
Creating an Aurora PostgreSQL cluster with Babelfish

In some cases, you might migrate multiple user databases together, with your end goal a complete
migration to native Aurora PostgreSQL without Babelfish. If the final applications require
consolidated schemas (a single dbo schema), make sure to first consolidate your SQL Server
databases into a single SQL server database. Then migrate to Babelfish using Single database
mode.

• Multiple databases to migrate multiple SQL Server databases (originating from a single SQL
Server installation). Multiple database mode doesn't consolidate multiple databases that don't
originate from a single SQL Server installation. For information about migrating multiple
databases, see Using Babelfish with a single database or multiple databases (p. 1318).

15. For Default collation locale, enter your server locale. The default is en-US. For detailed information
about collations, see Babelfish collation support (p. 1368).

16. For Collation name field, enter your default collation. The default is
sql_latin1_general_cp1_ci_as. For detailed information, see Babelfish collation
support (p. 1368).

17. For Babelfish TDS port, enter the port number for your SQL Server client connect to. The default is
1433.

18. For DB parameter group, choose a parameter group or have Aurora create a new group for you with
default settings.

19. For Failover priority, choose a failover priority for the instance. If you don't choose a value,
the default is tier-1. This priority determines the order in which replicas are promoted when
recovering from a primary instance failure. For more information, see Fault tolerance for an Aurora
DB cluster (p. 69).

20. For Backup retention period, choose the length of time (1–35 days) that Aurora retains backup
copies of the database. You can use backup copies for point-in-time restores (PITR) of your database
down to the second. The default retention period is seven days.

1325

Amazon Aurora User Guide for Aurora
Creating an Aurora PostgreSQL cluster with Babelfish

21. Choose Copy tags to snapshots to copy any DB instance tags to a DB snapshot when you create a
snapshot.

22. Choose Enable encryption to turn on encryption at rest (Aurora storage encryption) for this DB
cluster.

23. Choose Enable Performance Insights to turn on Amazon RDS Performance Insights.

24. Choose Enable Enhanced monitoring to start gathering metrics in real time for the operating
system that your DB cluster runs on.

25. Choose PostgreSQL log to publish the log files to Amazon CloudWatch Logs.

26. Choose Enable auto minor version upgrade to automatically update your Aurora DB cluster when a
minor version upgrade is available.

27. For Maintenance window, do the following:

• To choose a time for Amazon RDS to make modifications or perform maintenance, choose Select
window.

1326

Amazon Aurora User Guide for Aurora
Creating an Aurora PostgreSQL cluster with Babelfish

• To perform Amazon RDS maintenance at an unscheduled time, choose No preference.

28. Select the Enable deletion protection box to protect your database from being deleted by accident.

If you turn on this feature, you can't directly delete the database. Instead, you need to modify the
database cluster and turn off this feature before deleting the database.

29. Choose Create database.

You can find your new database set up for Babelfish in the Databases listing. The Status column displays
Available when the deployment is complete.

AWS CLI

Before you create an Aurora DB cluster with Babelfish running using the AWS CLI, make sure to fulfill
the required prerequisites, such as creating a parameter group. For more information, see DB cluster
prerequisites (p. 125).

Before you can use the AWS CLI to create an Aurora PostgreSQL cluster with Babelfish, do the following:

• Choose your endpoint URL from the list of services at Amazon Aurora endpoints and quotas.

• Create a parameter group for the cluster. For more information about parameter groups, see Working
with DB parameter groups and DB cluster parameter groups (p. 339).

• Modify the parameter group, adding the parameter that turns on Babelfish.

1327

https://docs.aws.amazon.com/general/latest/gr/aurora.html

Amazon Aurora User Guide for Aurora
Creating an Aurora PostgreSQL cluster with Babelfish

To create an Aurora PostgreSQL DB cluster with Babelfish using the AWS CLI

1. Create a parameter group.

For Linux, macOS, or Unix:

aws rds create-db-cluster-parameter-group \
--endpoint-url my_endpoint_URL \
--db-cluster-parameter-group-name my_parameter_group \
--db-parameter-group-family aurora-postgresql13 \
--description "parameter_group_description"

For Windows:

aws rds create-db-cluster-parameter-group ^
--endpoint-url my_endpoint_URL ^
--db-cluster-parameter-group-name my_parameter_group ^
--db-parameter-group-family aurora-postgresql13 ^
--description "parameter_group_description"

2. Modify your parameter group to turn on Babelfish.

For Linux, macOS, or Unix:

aws rds modify-db-cluster-parameter-group \
--endpoint-url my_endpoint_URL \
--db-cluster-parameter-group-name my_parameter_group \
--parameters "ParameterName=rds.babelfish_status,ParameterValue=on,ApplyMethod=pending-
reboot"

For Windows:

aws rds modify-db-cluster-parameter-group ^
--endpoint-url my_endpoint_URL ^
--db-cluster-parameter-group-name my_parameter_group ^
--parameters "ParameterName=rds.babelfish_status,ParameterValue=on,ApplyMethod=pending-
reboot"

3. Identify your DB subnet group and the virtual private cloud (VPC) security group ID for your new DB
cluster, and then call the create-db-cluster command.

For Linux, macOS, or Unix:

aws rds create-db-cluster \
--db-cluster-identifier my_cluster_name \
--master-username user_name \
--master-user-password my_password \
--engine aurora-postgresql \
--engine-version 13.4 \
--vpc-security-group-ids my_security_group \
--db-subnet-group-name my_subnet_group \
--db-cluster-parameter-group-name my_parameter_group

For Windows:

aws rds create-db-cluster ^
--db-cluster-identifier my_cluster_name ^
--master-username user_name ^
--master-user-password my_password ^

1328

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html

Amazon Aurora User Guide for Aurora
Creating an Aurora PostgreSQL cluster with Babelfish

--engine aurora-postgresql ^
--engine-version 13.4 ^
--vpc-security-group-ids my_security_group ^
--db-subnet-group-name my_subnet_group ^
--db-cluster-parameter-group-name my_parameter_group

4. Explicitly create the primary instance. Use the name of the cluster that you created preceding for
the value of the --db-cluster-identifier option and run the create-db-instance command as
shown following.

For Linux, macOS, or Unix:

aws rds create-db-instance \
--db-instance-identifier my_instance_name \
--db-instance-class db.r5.4xlarge \
--db-subnet-group-name my_subnet_group \
--db-cluster-identifier my_cluster_name \
--engine aurora-postgresql

For Windows:

aws rds create-db-instance ^
--db-instance-identifier my_instance_name ^
--db-instance-class db.r5.4xlarge ^
--db-subnet-group-name my_subnet_group ^
--db-cluster-identifier my_cluster_name ^
--engine aurora-postgresql

1329

https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html

Amazon Aurora User Guide for Aurora
Connecting to a DB cluster with Babelfish turned on

Connecting to a DB cluster with Babelfish turned on
To connect to Babelfish, modify your database client configuration to connect to the endpoint of the
Aurora PostgreSQL cluster running Babelfish. Your client can use one of the following client drivers
compliant with TDS version 7.1 or higher:

• Open Database Connectivity (ODBC)

• OLE DB Driver/MSOLEDBSQL

• Java Database Connectivity (JDBC)

• Microsoft SqlClient Data Provider for SQL Server

• .NET Data Provider for SQL Server

• SQL Server Native Client 11.0 (deprecated)

• OLEDB Provider/SQLOLEDB (deprecated)

With Babelfish, you run the following:

• SQL Server tools, applications, and syntax on the TDS port, by default port 1433.

• PostgreSQL tools, applications, and syntax on the PostgreSQL port, by default port 5432.

Note
Babelfish for Aurora PostgreSQL doesn't support MARS (Multiple Active Result Sets). Be sure
that any client applications that you use to connect to Babelfish aren't set to use MARS.

If you're new to connecting to an Amazon Aurora PostgreSQL database, see also Connecting to an
Amazon Aurora PostgreSQL DB cluster (p. 285).

Finding the DNS writer endpoint and port number

Use the following procedure to find your database endpoint.

To find your database endpoint

1. Open the console for Babelfish.

2. Choose Databases from the navigation pane.

Your database should have a status of Available. If it doesn't, wait until it displays as Available. The
status updates automatically without requiring you to refresh the page. This process can take up to
20 minutes after creating a DB cluster.

3. Choose your DB cluster that supports Babelfish to show its details.

4. On the Connectivity & security tab, note the available cluster Endpoints values. Use the cluster
endpoint for the writer instance in your connection strings for any applications that perform
database write or read operations.

1330

Amazon Aurora User Guide for Aurora
Connecting to a DB cluster with Babelfish turned on

For more information about DB cluster details, see Creating an Amazon Aurora DB cluster (p. 125).

Performing client authentication
Aurora PostgreSQL with Babelfish supports password authentication. Passwords are stored in encrypted
form on disk. For more information about authentication on an Aurora PostgreSQL cluster, see Security
with Amazon Aurora PostgreSQL (p. 1297).

You might be prompted for credentials each time you connect to Babelfish. Any user migrated to or
created on Aurora PostgreSQL can use the same credentials on both the SQL Server port and the
PostgreSQL port. Babelfish doesn't enforce password policies, but we recommend you do the following:

• Require a complex password that is at least eight characters long.
• Enforce a password expiration policy.

To review a complete list of database users, use the command SELECT * FROM pg_user;.

1331

Amazon Aurora User Guide for Aurora
Connecting to a DB cluster with Babelfish turned on

Configuring a client to connect to the DB cluster
To see how to connect a client to a DB cluster that supports Babelfish, see the code examples following.

Example Using C# code to connect to a DB cluster

string dataSource = 'babelfishServer_11_24';

//Create connection
connectionString = @"Data Source=" + dataSource
 +";Initial Catalog=your-DB-name"
 +";User ID=user-id;Password=password";

SqlConnection cnn = new SqlConnection(connectionString);
cnn.Open();

Example Using generic JDBC API classes and interfaces to connect to a DB cluster

String dbServer =
 "database-babelfish.cluster-123abc456def.us-east-1-rds.amazonaws.com";
String connectionUrl = "jdbc:sqlserver://" + dbServer + ":1433;" +
 "databaseName=your-DB-name;user=user-id;password=password";

// Load the SQL Server JDBC driver and establish the connection.
System.out.print("Connecting Babelfish Server ... ");
Connection cnn = DriverManager.getConnection(connectionUrl);

Example Using SQL Server-specific JDBC classes and interfaces to connect to a DB cluster

// Create datasource.
SQLServerDataSource ds = new SQLServerDataSource();
ds.setUser("user-id");
ds.setPassword("password");
String babelfishServer =
 "database-babelfish.cluster-123abc456def.us-east-1-rds.amazonaws.com";

ds.setServerName(babelfishServer);
ds.setPortNumber(1433);
ds.setDatabaseName("your-DB-name");

Connection con = ds.getConnection();

1332

Amazon Aurora User Guide for Aurora
Connecting to a DB cluster with Babelfish turned on

Using a SQL Server client to connect to your DB cluster

You can use a SQL Server client to connect with Babelfish on the TDS port.

Using sqlcmd to connect to the DB cluster

You can connect to and interact with an Aurora PostgreSQL DB cluster that supports Babelfish by using
the SQL Server sqlcmd command line client. Use the following command to connect.

sqlcmd -S endpoint,port -U login-id -P password -d your-DB-name

The options are as follows:

• -S is the endpoint and (optional) TDS port of the DB cluster.

• -U is the login name of the user.

• -P is the password associated with the user.

• -d is the name of your Babelfish database.

After connecting, you can use many of the same commands that you use with SQL Server. For some
examples, see Querying a database for object information (p. 1338).

To review a list of exceptions, see Differences between Aurora PostgreSQL with Babelfish and SQL
Server (p. 1342).

Using SSMS to connect to the DB cluster

In the following procedure, you connect to your Aurora PostgreSQL database by using Microsoft SQL
Server Management Studio (SSMS). You can use the SSMS query editor to connect to a Babelfish
database.

You can't currently connect using the SSMS Object Explorer.

To connect to your Babelfish database with SSMS

1. Start SSMS.

2. Open the Connect to Server dialog box by doing one of the following:

• Choose New Query.

• If the Query Editor is open, choose Query, Connection, Connect.

3. Provide the following information for your database:

a. For Server type, choose Database Engine.

b. For Server name, enter the DNS name. For example, your server name should look similar to the
following.

cluster-name.cluster-123abc456def.us-east-1-rds.amazonaws.com,1433

c. For Authentication, choose SQL Server Authentication.

d. For Login, enter the user name that you chose when you created your database.

e. For Password, enter the password that you chose when you created your database.

1333

Amazon Aurora User Guide for Aurora
Connecting to a DB cluster with Babelfish turned on

4. (Optional) Choose Options, and then choose the Connection Properties tab.

1334

Amazon Aurora User Guide for Aurora
Connecting to a DB cluster with Babelfish turned on

5. (Optional) For Connect to database, specify the name of the migrated SQL Server database to
connect to, and choose Connect.

If a message appears indicating that SSMS can't apply connection strings, choose OK.

If you are having trouble connecting, see Troubleshooting connections to your SQL Server DB
instance in the Amazon RDS User Guide.

1335

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToMicrosoftSQLServerInstance.html#USER_ConnectToMicrosoftSQLServerInstance.Troubleshooting
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToMicrosoftSQLServerInstance.html#USER_ConnectToMicrosoftSQLServerInstance.Troubleshooting

Amazon Aurora User Guide for Aurora
Connecting to a DB cluster with Babelfish turned on

Using a PostgreSQL client to connect to your DB cluster

You can use a PostgreSQL client to connect to Babelfish on the PostgreSQL port.

Using psql to connect to the DB cluster

You can query an Aurora PostgreSQL DB cluster that supports Babelfish with the psql command line
client. When connecting, use the PostgreSQL port. Use the following command to connect to Babelfish
with the psql client:

psql "host=babelfish_db.cluster-123456789012
 port=portNumber dbname=babelfish_db user=userName"

The parameters are as follows:

• host – The host name of the DB cluster (cluster endpoint) that you want to access

• port – The PostgreSQL port number used to connect to your DB instance

• dbname – babelfish_db

• user – The database user account that you want to access

• password – The password of the database user

When you run a SQL command on the psql client, you end the command with a semicolon. For example,
the following SQL command queries the pg_tables system view to return information about each table
in the database.

SELECT * FROM pg_tables;

The psql client also has a set of built-in metacommands. A metacommand is a shortcut that adjusts
formatting or provides a shortcut that returns meta-data in an easy-to-use format. For example, the
following metacommand returns similar information to the previous SQL command:

\d

Metacommands don't need to be terminated with a semicolon (;).

To exit the psql client, enter \q.

For more information about using the psql client to query an Aurora PostgreSQL cluster, see the
PostgreSQL documentation.

Using pgAdmin to connect to the DB cluster

You can use the pgAdmin client to access your data in native PostgreSQL dialect.

To connect to the cluster with the pgAdmin client

1. Download and install the pgAdmin client from the pgAdmin website.

2. Open the client and authenticate with pgAdmin.

3. Open the context (right-click) menu for Servers, and then choose Create, Server.

1336

https://www.postgresql.org/docs/current/view-pg-tables.html
https://www.postgresql.org/docs/14/app-psql.html
https://www.postgresql.org/docs/14/app-psql.html
https://www.pgadmin.org/

Amazon Aurora User Guide for Aurora
Connecting to a DB cluster with Babelfish turned on

4. Enter information in the Create - Server dialog box.

On the Connection tab, add the Aurora PostgreSQL cluster address for Host and the PostgreSQL
port number (by default, 5432) for Port. Provide authentication details, and choose Save.

1337

Amazon Aurora User Guide for Aurora
Querying a database for object information

After connecting, you can use pgAdmin functionality to monitor and manage your Aurora PostgreSQL
cluster on the PostgreSQL port.

For more details about using pgAdmin, visit the pgAdmin web site.

Querying a database for object information
To return information about database objects that are stored in your Aurora PostgreSQL cluster, you
can query many of the same system views that you use on SQL Server. You can access these views from
either the TDS port or the PostgreSQL port.

For example, to find a list of schemas in your migrated database on the T-SQL port, connect to the TDS
port with sqlcmd, and use the following command.

SELECT * FROM sys.schemas

If you migrate a single-db or multi-db database, Babelfish returns a list of schema names formatted in
Babelfish style that includes both the SQL Server and PostgreSQL system schemas:

mydb_dbo

public

sys

master_dbo

temp_dbo

You get the same result set if you connect with a PostgreSQL client on the database port (by default,
5432). For example, querying the database with pgAdmin returns the following.

1338

https://www.pgadmin.org/

Amazon Aurora User Guide for Aurora
Querying Babelfish to find Babelfish details

Use SQL Server and PostgreSQL views to return information about objects in your Aurora PostgreSQL
cluster. A few of the SQL Server views implemented by Babelfish follow:

View name Description

sys.all_views All views in all schemas

sys.schemas All schemas

sys.databases All databases in all schemas

sys.server_principalsAll logins and roles

sys.all_objects All objects in all schemas

sys.tables All tables in a schema

sys.all_columns All columns in all tables and views

sys.columns All columns in user-defined tables and views

PostgreSQL implements system catalogs that are similar to the SQL Server object catalog views. For a
complete list of system catalogs, see System Catalogs in the PostgreSQL documentation.

Querying Babelfish to find Babelfish details
You can query Babelfish to find details about the Babelfish version, the Aurora PostgreSQL version, and
the compatible Microsoft SQL Server version.

Run these queries while connected to the TDS port.

1339

https://www.postgresql.org/docs/current/catalogs.html

Amazon Aurora User Guide for Aurora
Querying Babelfish to find Babelfish details

To identify the Babelfish version, run the following query:

SELECT CAST(serverproperty('babelfishversion') AS VARCHAR)

The query returns results similar to the following:

1.0.0

To identify the version of the Aurora PostgreSQL DB cluster, run the following query:

SELECT aurora_version() AS aurora_version

The query returns results similar to the following:

13.4.0

To identify the compatible Microsoft SQL Server version, run the following query:

SELECT @@VERSION AS version

The query returns results similar to the following:

Babelfish for Aurora Postgres with SQL Server Compatibility - 12.0.2000.8
Sep 28 2021 14:37:26
Copyright (c) Amazon Web Services
PostgreSQL 13.4 on x86_64-pc-linux-gnu

In addition, the following query returns 1 when executed on Babelfish, and NULL when executed on
Microsoft SQL Server:

SELECT CAST(serverproperty('babelfish') AS VARCHAR) AS runs_on_babelfish

To query babelfish_db the same way using the PostgreSQL port, connect to the babelfish_db and
run the following.

\x
SELECT
aurora_version() as aurora_version,
version() as postgresql_version,
sys.version() as Babelfish_compatibility,
sys.SERVERPROPERTY('BabelfishVersion') as Babelfish_Version

The query returns the following.

babelfish_db=> \x
Expanded display is on.
babelfish_db=> SELECT
babelfish_db-> aurora_version() as aurora_version,
babelfish_db-> version() as postgresql_version,
babelfish_db-> sys.version() as Babelfish_compatibility,
babelfish_db-> sys.SERVERPROPERTY('BabelfishVersion') as Babelfish_Version ;
-[RECORD 1]
aurora_version | 13.4.0
postgresql_version | PostgreSQL 13.4 on aarch64-unknown-linux-gnu, compiled by
 aarch64-unknown-linux-gnu-gcc (GCC) 7.4.0, 64-bit

1340

Amazon Aurora User Guide for Aurora
Querying Babelfish to find Babelfish details

babelfish_compatibility | Babelfish for Aurora Postgres with SQL Server Compatibility -
 12.0.2000.8 +
 | Oct 13 2021 17:34:47
 +
 | Copyright (c) Amazon Web Services
 +
 | PostgreSQL 13.4 on aarch64-unknown-linux-gnu
babelfish_version | 1.0.0

1341

Amazon Aurora User Guide for Aurora
Differences between Aurora PostgreSQL

with Babelfish and SQL Server

Differences between Aurora PostgreSQL with
Babelfish and SQL Server
Babelfish provides support for T-SQL and Microsoft SQL Server behavior by supporting SQL Server data
types, syntax, and functions for Aurora PostgreSQL. This approach allows Aurora to support both Aurora
PostgreSQL and SQL Server SQL dialects. Also, Babelfish supports the SQL Server wire-level protocol
(TDS), allowing a SQL Server application to communicate natively with Aurora PostgreSQL. Doing this
helps migrate database objects, stored procedures, and application code with fewer changes.

Although Babelfish doesn't offer complete support for T-SQL, you can use Aurora PostgreSQL SQL
commands to perform many of the tasks normally handled by these commands. For example, suppose
that you regularly use a specific T-SQL command that isn't supported by Babelfish. In this case, you
can connect to the Aurora PostgreSQL port and use a PostgreSQL SQL command instead. For more
information, see SQL Commands in the PostgreSQL documentation.

Aurora PostgreSQL offers functionality to replace many commonly used SQL Server features. Some
examples of SQL Server functionality that can be replaced by the PostgreSQL functionality available in
Aurora PostgreSQL follow. In this list, references are to the PostgreSQL documentation.

• If you use SQL Server bulk copy, you can use the PostgreSQL COPY statement available in Aurora
PostgreSQL. COPY is optimized for fast data loading.

• If you use unsupported SQL Server GROUP BY clauses, you can use PostgreSQL GROUPING SETS.

• If you use SQL Server JSON support, you can use PostgreSQL JSON functions and operators.

• If you use SQL Server XML support, you can use PostgreSQL XML functions.

• If you use SQL Server full-text search, you can use PostgreSQL full-text search.

• If you use the SQL Server GEOGRAPHY data type, you can use PostGIS to provide support for
geographical data and geographical data manipulation.

To help with cluster management in Aurora PostgreSQL, you can use its scalability, high-availability with
failover support, and built-in replication. For more information about these capabilities, see Managing
performance and scaling for Aurora DB clusters (p. 396), High availability for Amazon Aurora (p. 68), and
Replication with Amazon Aurora (p. 70). You also have access to other AWS tools and utilities:

• Amazon CloudWatch is a monitoring and observability service that provides you with data and
actionable insights.

• Amazon RDS Performance Insights is a database performance tuning and monitoring feature that
helps you quickly assess the load on your database.

• Amazon RDS Multi-AZ deployments provide enhanced availability and durability for your database
cluster.

• Amazon RDS global databases allow a single Amazon Aurora database to span multiple AWS Regions,
offering scalable, cross-Region replication.

• Automatic software patching keeps your database up-to-date with the latest security and feature
patches when they become available.

• Overview of Amazon RDS event notification (p. 696) Amazon RDS events notify you by email or SMS
message of important database events, such as an automated failover.

Topics

• T-SQL limitations and unsupported functionality (p. 1343)

• Unsupported functionality in Babelfish (p. 1350)

1342

https://www.postgresql.org/docs/14/sql-commands.html
https://www.postgresql.org/docs/current/populate.html
https://www.postgresql.org/docs/current/queries-table-expressions.html#QUERIES-GROUP
https://www.postgresql.org/docs/current/functions-json.html
https://www.postgresql.org/docs/current/functions-xml.html
https://www.postgresql.org/docs/current/textsearch.html
https://postgis.net/
http://aws.amazon.com/cloudwatch/
http://aws.amazon.com/rds/performance-insights/
http://aws.amazon.com/rds/features/multi-az/
http://aws.amazon.com/rds/aurora/global-database/

Amazon Aurora User Guide for Aurora
Differences between Aurora PostgreSQL

with Babelfish and SQL Server

T-SQL limitations and unsupported functionality

Following, you can find a table of limitations or partially supported T-SQL syntax for Babelfish.

Functionality or syntax Notes

@@version The format of the value returned by @@version is slightly different
from the value returned by SQL Server. Your code might not work
correctly if it depends on the formatting of @@version.

Aggregate functions (partially
supported)

APPROX_COUNT_DISTINCT, CHECKSUM_AGG, GROUPING_ID,
ROWCOUNT_BIG, STDEV, STDEVP, VAR, and VARP aren't supported.

ALTER TABLE Supports adding or dropping a single column or constraint only.

Assembly modules and SQL
Common Language Runtime
(CLR) routines

Functionality related to assembly modules and CLR routines isn't
supported.

BACKUP statement Aurora PostgreSQL snapshots of a database are dissimilar to
backup files created in SQL Server. Also, the granularity of when a
backup and restore occurs might be different between SQL Server
and Aurora PostgreSQL.

Blank column names with no
column alias

The sqlcmd and psql utilities handle columns with blank names
differently:

• SQL Server sqlcmd returns a blank column name.
• PostgreSQL psql returns a generated column name.

Collation, index on type
dependent on the ICU library

An index on a user-defined type that depends on the ICU collation
library (the library used by Babelfish) isn't invalidated when the
version of the library is changed. For more information about
collations, see Babelfish collation support (p. 1368).

COLLATIONPROPERTY function Collation properties are implemented only for the supported
Babelfish BBF collations. For more information about collations, see
Babelfish collation support (p. 1368).

Column default When creating a column default, the constraint name is ignored.
To drop a column default, use the following syntax: ALTER
TABLE...ALTER COLUMN..DROP DEFAULT...

Column name case Column names are stored as lowercase in the PostgreSQL catalogs
and are returned to the client in lowercase if you run a SELECT
statement. In general, all schema identifiers are stored in lowercase
in the PostgreSQL catalogs. For more information, see SQL-
SYNTAX-IDENTIFIERS in the PostgreSQL documentation.

Column attributes ROWGUIDCOL, SPARSE, FILESTREAM, and MASKED aren't
supported.

CONNECTIONPROPERTY
function

The unsupported properties include local_net_address,
client_net_address, and physical_net_transport.

Constraints PostgreSQL doesn't support turning on and turning off individual
constraints. The statement is ignored and a warning is raised.

1343

https://www.postgresql.org/docs/current/sql-syntax-lexical.html#SQL-SYNTAX-IDENTIFIERS
https://www.postgresql.org/docs/current/sql-syntax-lexical.html#SQL-SYNTAX-IDENTIFIERS

Amazon Aurora User Guide for Aurora
Differences between Aurora PostgreSQL

with Babelfish and SQL Server

Functionality or syntax Notes

Constraints created with DESC
(descending) columns

Constraints are created with ASC (ascending) columns.

Constraints with
IGNORE_DUP_KEY

Constraints are created without this property.

Contained databases Contained databases with logins authenticated at the database
level rather than at the server level aren't supported.

CREATE, ALTER, DROP SERVER
ROLE

ALTER SERVER ROLE is supported only for sysadmin. All other
syntax is unsupported.

Babelfish provides the T-SQL user with an experience that is similar
to SQL Server for the concepts of a login (server principal), a
database, and a database user (database principal).

In Babelfish, currently only the dbo user is available in user
databases. Currently, to operate as the dbo user, a login must be a
member of the server-level sysadmin role (ALTER SERVER ROLE
sysadmin ADD MEMBER login). Logins without sysadmin role
can currently access only master and tempdb as the guest user.

Currently, because Babelfish only supports the dbo user in user
databases, all application users must use a login that is a sysadmin
member. You can't create a user with lesser privileges, such as read-
only on certain tables.

CREATE DATABASE case-
sensitive collation

Case-sensitive collations aren't supported with the CREATE
DATABASE statement.

CREATE DATABASE keywords
and clauses

Options except COLLATE and CONTAINMENT=NONE aren't
supported. The COLLATE clause is accepted and is always set to the
value of babelfishpg_tsql.server_collation_name.

CREATE SCHEMA... supporting
clauses

You can use the CREATE SCHEMA command to create an empty
schema. Use additional commands to create schema objects.

CREATE USER This syntax isn't supported. The PostgreSQL statement CREATE
USER doesn't create a user that is equivalent to the SQL Server
CREATE USER syntax.

CREATE, ALTER LOGIN clauses
are supported with limited
syntax

The CREATE LOGIN... PASSWORD clause, ...DEFAULT_DATABASE
clause, and ...DEFAULT_LANGUAGE clause are supported. The
ALTER LOGIN... PASSWORD clause is supported, but ALTER LOGIN...
OLD_PASSWORD clause isn't supported. Only a login that is a
sysadmin member can modify a password.

LOGIN objects All options for LOGIN objects except: PASSWORD,
DEFAULT_DATABASE, ENABLE, DISABLE

CROSS APPLY Lateral joins aren't supported.

Cross-database object references Objects with three-part names aren't supported. For more
information, see: Using Babelfish with a single database or multiple
databases (p. 1318).

Cursors (updatable) Updatable cursors aren't supported.

1344

Amazon Aurora User Guide for Aurora
Differences between Aurora PostgreSQL

with Babelfish and SQL Server

Functionality or syntax Notes

Cursors (global) GLOBAL cursors aren't supported.

Cursor (fetch behaviors) The following cursor fetch behaviors aren't supported: FETCH
PRIOR, FIRST, LAST, ABSOLUTE, abd RELATIVE

Cursor-typed (variables and
parameters)

Cursor-typed variables and parameters aren't supported.

Cursor options SCROLL, KEYSET, DYNAMIC, FAST_FORWARD, SCROLL_LOCKS,
OPTIMISTIC, TYPE_WARNING, and FOR UPDATE

Database ID values are different
on Babelfish

The master and tempdb databases will not be database IDs 1 and 2.

Data encryption Data encryption isn't supported.

DBCC commands DBCC commands aren't supported.

DROP IF EXISTS This syntax isn't supported for USER and SCHEMA objects. It's
supported for the objects TABLE, VIEW, PROCEDURE, FUNCTION,
and DATABASE.

DROP INDEX This syntax is supported only in the form DROP index_name ON
table_name.

DROP statements that drop
multiple objects

This functionality is supported only for tables, views, functions, and
procedures.

Encryption Built-in functions and statements don't support encryption.

ENCRYPT_CLIENT_CERT
connections

Client certificate connections aren't supported.

EXECUTE AS statement This statement isn't supported.

EXECUTE AS SELF clause This clause isn't supported in functions, procedures, or triggers.

CREATE... EXECUTE AS OWNER
clause

EXECUTE AS OWNER or CALLER is supported for permission, but
not for name resolution.

EXECUTE AS USER clause This clause isn't supported in functions, procedures, or triggers.

EXECUTE with AS LOGIN or AT
option

This syntax isn't supported.

Foreign key constraints
referencing database name

Foreign key constraints that reference the database name aren't
supported.

Full-text search Full-text search built-in Functions and statements aren't supported.

Function declarations with
greater than 100 parameters

Function declarations that contain more than 100 parameters aren't
supported.

Function calls that include
DEFAULT as a parameter value

DEFAULT isn't a supported parameter value for a function call.

Function calls that include :: Function calls that include :: aren't supported.

Functions, externally defined External functions, including SQL CLR functions, aren't supported.

1345

Amazon Aurora User Guide for Aurora
Differences between Aurora PostgreSQL

with Babelfish and SQL Server

Functionality or syntax Notes

GEOMETRY This data type and all associated functionality isn't supported.

GEOGRAPHY This data type and all associated functionality isn't supported.

Global temporary tables (tables
with names that start with ##)

Global temporary tables aren't supported.

Graph functionality All SQL graph functionality isn't supported.

HASHBYTES function The only supported algorithms are: MD5, SHA1, and SHA256

HIERARCHYID The data type and methods aren't supported.

Hints Hints aren't supported for joins, queries, or tables.

Identifiers exceeding 63
characters

PostgreSQL supports a maximum of 63 characters for identifiers.
Babelfish converts identifiers longer than 63 characters to a name
that includes a hash of the original name.

Identifiers with leading dot
characters

Identifiers that start with a . aren't supported.

Identifiers (variables or
parameters) with multiple
leading @ characters

Identifiers that start with more than one leading @ aren't
supported.

Identifiers, table or column
names that contain @ or]]
characters

Table or column names that contain an @ sign or square brackets
aren't supported.

IDENTITY columns support IDENTITY columns are supported for data types tinyint,
smallint, int, bigint. numeric, and decimal.

SQL Server supports precision to 38 places for data types numeric
and decimal in IDENTITY columns.

PostgreSQL supports precision to 19 places for data types numeric
and decimal in IDENTITY columns.

Indexes with IGNORE_DUP_KEY Syntax that creates an index that includes IGNORE_DUP_KEY
creates an index as if this property is omitted.

Indexes with more than 32
columns

An index can't include more than 32 columns. Included index
columns count toward the maximum in PostgreSQL but not in SQL
Server.

INFORMATION_SCHEMA catalog Information schema views aren't supported.

Inline indexes Inline indexes aren't supported.

Indexes (clustered) Clustered indexes are created as if NONCLUSTERED was specified.

Index clauses The following clauses are ignored: FILLFACTOR,
ALLOW_PAGE_LOCKS, ALLOW_ROW_LOCKS, PAD_INDEX,
STATISTICS_NORECOMPUTE, OPTIMIZE_FOR_SEQUENTIAL_KEY,
SORT_IN_TEMPDB, DROP_EXISTING, ONLINE,
COMPRESSION_DELAY, MAXDOP, and DATA_COMPRESSION

1346

Amazon Aurora User Guide for Aurora
Differences between Aurora PostgreSQL

with Babelfish and SQL Server

Functionality or syntax Notes

Invoking a procedure whose
name is in a variable

Using a variable as a procedure name isn't supported.

Materialized views Materialized views aren't supported.

NEWSEQUENTIALID function Implemented as NEWID; sequential behavior isn't guaranteed.

NEWSEQUENTIALID function When calling NEWSEQUENTIALID, PostgreSQL generates a new
GUID value.

NEXT VALUE FOR sequence
clause

This syntax isn't supported.

NOT FOR REPLICATION clause This syntax is accepted and ignored.

ODBC escape functions ODBC escape functions aren't supported.

OUTER APPLY SQL Server lateral joins aren't supported. PostgreSQL provides SQL
syntax that allows a lateral join, but the behavior isn't identical.
For more information about PostgreSQL lateral joins, see the
PostgreSQL documentation.

OUTPUT clause is supported
with the following limitations

OUTPUT and OUTPUT INTO aren't supported in the same DML
query. References to non-target table of UPDATE or DELETE
operations in an OUTPUT clause aren't supported. OUTPUT...
DELETED *, INSERTED * aren't supported in the same query.

Partitioning Table and index partitioning isn't supported.

Procedure calls that includes
DEFAULT as a parameter value

DEFAULT isn't a supported parameter value.

Procedure declarations with
more than 100 parameters

Declarations with more than 100 parameters aren't supported.

Procedures, externally defined Externally defined procedures, including SQL CLR procedures, aren't
supported.

Procedure versioning Procedure versioning isn't supported.

Procedures WITH RECOMPILE WITH RECOMPILE (when used in conjunction with the DECLARE and
EXECUTE statements) isn't supported.

Procedure or function parameter
limit

Babelfish supports a maximum of 100 parameters for a procedure
or function.

Remote object references Objects with four-part names aren't supported.. For more
information, see: Configuring a database for Babelfish (p. 1364).

Server-level roles other than
sysadmin

Server-level roles (other than sysadmin) aren't supported.

Database-level roles other than
db_owner

Database-level roles other than db_owner aren't supported.

RESTORE statement Aurora PostgreSQL snapshots of a database are dissimilar to
backup files created in SQL Server. Also, the granularity of when the
backup and restore occurs might be different between SQL Server
and Aurora PostgreSQL.

1347

https://www.postgresql.org/docs/14/queries-table-expressions.html
https://www.postgresql.org/docs/14/queries-table-expressions.html

Amazon Aurora User Guide for Aurora
Differences between Aurora PostgreSQL

with Babelfish and SQL Server

Functionality or syntax Notes

ROLLBACK: table variables don't
support transactional rollback

Processing might be interrupted if a rollback occurs in a session
with table variables.

ROWGUIDCOL This clause is currently ignored. Queries referencing $GUIDGOL
cause a syntax error.

Row-level security Row-level security with CREATE SECURITY POLICY and inline table-
valued functions isn't supported.

ROWSET functions The following ROWSET functions aren't supported: OPENXML,
OPENJSON, OPENROWSET, OPENQUERY, OPENDATASOURCE

SELECT... FOR XML PATH,
ELEMENTS

Syntax is supported without the ELEMENTS clause.

SELECT... FOR XML RAW,
ELEMENTS

Syntax is supported without the ELEMENTS clause.

SERVERPROPERTY Unsupported properties: BuildClrVersion, ComparisonStyle,
ComputerNamePhysicalNetBIOS, EditionID, HadrManagerStatus,
InstanceDefaultDataPath, InstanceDefaultLogPath, InstanceName,
IsAdvancedAnalyticsInstalled, IsBigDataCluster, IsClustered,
IsFullTextInstalled, IsHadrEnabled, IsIntegratedSecurityOnly,
IsLocalDB, IsPolyBaseInstalled, IsXTPSupported, LCID, LicenseType,
MachineName, NumLicenses, ProcessID, ProductBuild,
ProductBuildType, ProductLevel, ProductUpdateLevel,
ProductUpdateReference, ResourceLastUpdateDateTime,
ResourceVersion, ServerName, SqlCharSet, SqlCharSetName,
SqlSortOrder, SqlSortOrderName, FilestreamShareName,
FilestreamConfiguredLevel, and FilestreamEffectiveLevel

Service broker functionality Service broker functionality isn't supported.

SESSIONPROPERTY Unsupported properties: ANSI_NULLS, ANSI_PADDING,
ANSI_WARNINGS, ARITHABORT, CONCAT_NULL_YIELDS_NULL, and
NUMERIC_ROUNDABORT

SET LANGUAGE This syntax isn't supported with any value other than english or
us_english.

SEQUENCE object support SEQUENCE objects are supported for the data types tinyint,
smallint, int, bigint, numeric, and decimal.

Aurora PostgreSQL supports precision to 19 places for data types
numeric and decimal in a SEQUENCE.

SET NUMERIC_ROUNDABORT
ON

This setting isn't supported.

SP_CONFIGURE This system stored procedure isn't supported.

SQL keyword SPARSE The keyword SPARSE is accepted and ignored.

SQL keyword clause ON
filegroup

This clause is currently ignored.

1348

Amazon Aurora User Guide for Aurora
Differences between Aurora PostgreSQL

with Babelfish and SQL Server

Functionality or syntax Notes

SQL keywords CLUSTERED and
NONCLUSTERED for indexes and
constraints

Babelfish accepts and ignores the CLUSTERED and NONCLUSTERED
keywords.

System-defined @@ variables Babelfish doesn't support system-defined @@variables
other than these: @@VERSION, @@SPID, @@ROWCOUNT,
@@TRANCOUNT, @@IDENTITY, @@ERROR, @@FETCH_STATUS,
@@MAX_PRECISION, @@SERVERNAME, @@DATEFIRST

sysdatabases.cmptlevel sysdatabases.cmptlevel are always NULL.

System-provided stored
procedures are partially
supported

SP_HELPDB, SP_GETAPPLOCK, and SP_RELEASEAPPLOCK are
supported. All other stored procedures aren't supported.

Table value constructor syntax
(FROM clause)

The unsupported syntax is for a derived table constructed with the
FROM clause.

tempdb isn't reinitialized at
restart

Permanent objects (like tables and procedures) created in tempdb
aren't removed when the database is restarted.

Temporal tables Temporal tables aren't supported.

Temporary procedures aren't
dropped automatically

This functionality isn't supported.

TEXTIMAGE_ON filegroup Babelfish ignores the TEXTIMAGE_ON filegroup clause.

Time precision Babelfish supports 6-digit precision for fractional seconds. No
adverse effects are anticipated with this behavior.

Transaction isolation levels READUNCOMMITTED is treated the same as READCOMMITTED.
REPEATABLEREAD, and SERIALIZABLE aren't supported.

TIMESTAMP data type This data type isn't supported. The SQL Server TIMESTAMP type is
unrelated to PostgreSQL TIMESTAMP.

Triggers, externally defined These triggers aren't supported, including SQL Common Language
Runtime (CLR).

Trigger for multiple DML actions
cannot reference transition
tables

Triggers that reference multiple DML actions can't reference
transition tables.

Unquoted string values in stored
procedure calls and default
values

String parameters to stored procedure calls, and defaults for string
parameters in CREATE PROCEDURE, are not supported.

Virtual computed columns (non-
persistent)

Virtual computed columns are created as persistent.

WITH ENCRYPTION clause This syntax isn't supported for functions, procedures, triggers, or
views.

WITHOUT SCHEMABINDING
clause

This clause isn't supported in functions, procedures, triggers, or
views. The object is created, but as if WITH SCHEMABINDING was
specified.

1349

Amazon Aurora User Guide for Aurora
Differences between Aurora PostgreSQL

with Babelfish and SQL Server

Functionality or syntax Notes

XML data type with schema
(xmlschema)

XML type without schema is supported.

XML indexes XML indexes aren't supported.

XML methods XML methods aren't supported, including .VALUES, .NODES, and
other methods.

XPATH expressions This syntax isn't supported.

WITH XMLNAMESPACES
construct

This syntax isn't supported.

Unsupported functionality in Babelfish
In the following lists, you can find functionality that isn't currently supported in Babelfish.

Commands for which certain functionality isn't supported

Certain functionality for the following commands isn't supported:

• ADD SIGNATURE
• ALTER DATABASE, ALTER DATABASE SET
• CREATE, ALTER, DROP AUTHORIZATION
• CREATE, ALTER, DROP AVAILABILITY GROUP
• CREATE, ALTER, DROP BROKER PRIORITY
• CREATE, ALTER, DROP COLUMN ENCRYPTION KEY
• CREATE, ALTER, DROP DATABASE ENCRYPTION KEY
• CREATE, ALTER, DROP, BACKUP CERTIFICATE
• CREATE AGGREGATE
• CREATE CONTRACT
• GRANT

Syntax for which certain functionality isn't supported

Certain functionality for the following syntax isn't supported:

• ALTER SERVICE, BACKUP/RESTORE SERVICE MASTER KEY clause
• BEGIN DISTRIBUTED TRANSACTION
• CREATE EXTERNAL TABLE
• CREATE TABLE... GRANT clause
• CREATE TABLE... IDENTITY clause
• CREATE, ALTER, DROP APPLICATION ROLE
• CREATE, ALTER, DROP ASSEMBLY
• CREATE, ALTER, DROP ASYMMETRIC KEY
• CREATE, ALTER, DROP EVENT SESSION
• CREATE, ALTER, DROP EXTERNAL RESOURCE POOL
• CREATE, ALTER, DROP FULLTEXT CATALOG

1350

Amazon Aurora User Guide for Aurora
Differences between Aurora PostgreSQL

with Babelfish and SQL Server

• CREATE, ALTER, DROP FULLTEXT INDEX
• CREATE, ALTER, DROP FULLTEXT STOPLIST
• CREATE, ALTER, DROP QUEUE
• CREATE, ALTER, DROP RESOURCE GOVERNOR
• CREATE, ALTER, DROP ROUTE
• CREATE, ALTER, DROP SERVICE
• CREATE, ALTER, DROP WORKLOAD GROUP
• CREATE, ALTER, DROP, OPEN/CLOSE, BACKUP/RESTORE MASTER KEY
• CREATE/DROP RULE

Object types that aren't supported

The following object types aren't supported:

• COLUMN MASTER KEY
• CREATE, ALTER EXTERNAL DATA SOURCE
• CREATE, ALTER, DROP DATABASE AUDIT SPECIFICATION
• CREATE, ALTER, DROP EXTERNAL LIBRARY
• CREATE, ALTER, DROP SERVER AUDIT
• CREATE, ALTER, DROP SERVER AUDIT SPECIFICATION
• CREATE, ALTER, DROP, OPEN/CLOSE SYMMETRIC KEY
• CREATE, DROP DEFAULT
• CREDENTIAL
• CRYPTOGRAPHIC PROVIDER
• DIAGNOSTIC SESSION
• Indexed views
• SERVICE MASTER KEY
• SYNONYM
• USER

Functions that aren't supported

The following functions aren't supported:

• CERTENCODED function
• CERTID function
• CERTPRIVATEKEY function
• CERTPROPERTY function
• COLUMNPROPERTY
• EVENTDATA function
• GET_TRANSMISSION_STATUS
• LOGINPROPERTY function
• OBJECTPROPERTY
• OBJECTPROPERTYEX
• OPENXML
• TYPEPROPERTY function

1351

Amazon Aurora User Guide for Aurora
Differences between Aurora PostgreSQL

with Babelfish and SQL Server

Syntax that isn't supported

The following syntax isn't supported:

• ALTER DATABASE
• ALTER DATABASE SCOPED CONFIGURATION
• ALTER DATABASE SCOPED CREDENTIAL
• ALTER DATABASE SET HADR
• ALTER FUNCTION
• ALTER INDEX
• ALTER PROCEDURE statement
• ALTER SCHEMA
• ALTER SERVER CONFIGURATION
• ALTER VIEW
• BEGIN CONVERSATION TIMER
• BEGIN DIALOG CONVERSATION
• BULK INSERT
• CREATE COLUMNSTORE INDEX
• CREATE EXTERNAL FILE FORMAT
• CREATE, ALTER, DROP CREDENTIAL
• CREATE, ALTER, DROP CRYPTOGRAPHIC PROVIDER
• CREATE, ALTER, DROP ENDPOINT
• CREATE, ALTER, DROP EXTERNAL LANGUAGE
• CREATE, ALTER, DROP MESSAGE TYPE
• CREATE, ALTER, DROP PARTITION FUNCTION
• CREATE, ALTER, DROP PARTITION SCHEME
• CREATE, ALTER, DROP RESOURCE POOL
• CREATE, ALTER, DROP ROLE
• CREATE, ALTER, DROP SEARCH PROPERTY LIST
• CREATE, ALTER, DROP SECURITY POLICY
• CREATE, ALTER, DROP SELECTIVE XML INDEX clause
• CREATE, ALTER, DROP SPATIAL INDEX
• CREATE, ALTER, DROP TYPE
• CREATE, ALTER, DROP XML INDEX
• CREATE, ALTER, DROP XML SCHEMA COLLECTION
• CREATE, DROP WORKLOAD CLASSIFIER
• CREATE/ALTER/ENABLE/DISABLE TRIGGER
• DENY
• END, MOVE CONVERSATION
• EXECUTE with AS LOGIN or AT option
• GET CONVERSATION GROUP
• GROUP BY ALL clause
• GROUP BY CUBE clause
• GROUP BY ROLLUP clause
• INSERT... DEFAULT VALUES
• INSERT... TOP

1352

Amazon Aurora User Guide for Aurora
Differences between Aurora PostgreSQL

with Babelfish and SQL Server

• KILL
• MERGE
• NEXT VALUE FOR sequence clause
• READTEXT
• REVERT
• REVOKE
• SELECT PIVOT/UNPIVOT
• SELECT TOP x PERCENT WHERE x <> 100
• SELECT TOP... WITH TIES
• SELECT... FOR XML AUTO
• SELECT... FOR XML EXPLICIT
• SEND
• SET CONTEXT_INFO
• SET DATEFORMAT
• SET DEADLOCK_PRIORITY
• SET FMTONLY
• SET FORCEPLAN
• SET LOCK_TIMEOUT
• SET NUMERIC_ROUNDABORT ON
• SET OFFSETS
• SET REMOTE_PROC_TRANSACTIONS
• SET ROWCOUNT @variable
• SET ROWCOUNT n WHERE n != 0
• SET SHOWPLAN_ALL
• SET SHOWPLAN_TEXT
• SET SHOWPLAN_XML
• SET STATISTICS
• SET STATISTICS IO
• SET STATISTICS PROFILE
• SET STATISTICS TIME
• SET STATISTICS XML
• SET TRANSACTION ISOLATION LEVEL REPEATABLE READ
• SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
• SHUTDOWN statement
• UPDATE STATISTICS
• UPDATETEXT
• Using EXECUTE to call a SQL function
• VIEW... CHECK OPTION clause
• VIEW... VIEW_METADATA clause
• WAITFOR DELAY
• WAITFOR TIME
• WAITFOR, RECEIVE
• WITH XMLNAMESPACES construct
• WRITETEXT
• XPATH expressions

1353

Amazon Aurora User Guide for Aurora
Differences between Aurora PostgreSQL

with Babelfish and SQL Server

Data types that aren't supported

The following data types aren't supported:

• ROWVERSION
• ROWVERSION data type
• TIMESTAMP data type. The SQL Server TIMESTAMP date is unrelated to PostgreSQL TIMESTAMP.

Column names that aren't supported

The following column names aren't supported:

• $IDENTITY
• $ROWGUID
• IDENTITYCOL

Settings that aren't supported

The following settings aren't supported:

• SET ANSI_NULL_DFLT_OFF ON
• SET ANSI_NULL_DFLT_ON OFF
• SET ANSI_PADDING OFF
• SET ANSI_WARNINGS OFF
• SET ARITHABORT OFF
• SET ARITHIGNORE ON
• SET CURSOR_CLOSE_ON_COMMIT ON
• SET NUMERIC_ROUNDABORT ON

1354

Amazon Aurora User Guide for Aurora
Using Aurora PostgreSQL extensions with Babelfish

Using Aurora PostgreSQL extensions with Babelfish
Aurora PostgreSQL provides extensions for working with other AWS services. These are optional
extensions that support various use cases, such as using Amazon S3 with your DB cluster for importing or
exporting data.

• To import data from an Amazon S3 bucket to your Babelfish for Aurora PostgreSQL DB cluster, you
set up the aws_s3 Aurora PostgreSQL extension. This extension also lets you export data from your
Aurora PostgreSQL DB cluster to an Amazon S3 bucket.

• AWS Lambda is a compute service that lets you run code without provisioning or managing servers.
You can use Lambda functions to do things like process event notifications from your DB instance. To
learn more about Lambda, see What is AWS Lambda? in the AWS Lambda Developer Guide. To invoke
Lambda functions from your Babelfish for Aurora PostgreSQL DB cluster, you set up the aws_lambda
Aurora PostgreSQL extension.

To set up these extensions for your Babelfish cluster, you first need to grant permission to the internal
Babelfish user to load the extensions. After granting permission, you can then load Aurora PostgreSQL
extensions.

Enabling Aurora PostgreSQL extensions in your Babelfish DB
cluster

Before you can load the aws_s3 or the aws_lambda extensions, you grant the needed privileges to your
Babelfish DB cluster.

The procedure following uses the psql PostgreSQL command line tool to connect to the DB cluster. For
more information, see Using psql to connect to the DB cluster (p. 1336). You can also use pgAdmin. For
details, see Using pgAdmin to connect to the DB cluster (p. 1336).

This procedure loads both aws_s3 and aws_lambda, one after the other. You don't need to load both if
you want to use only one of these extensions. The aws_commons extension is required by each, and it's
loaded by default as shown in the output.

To set up your Babelfish DB cluster with privileges for the Aurora PostgreSQL extensions

1. Connect to your Babelfish for Aurora PostgreSQL DB cluster. Use the name for the "master" user (-
U) that you specified when you created the Babelfish DB cluster. The default (postgres) is shown in
the examples.

For Linux, macOS, or Unix:

psql -h your-Babelfish.cluster.444455556666-us-east-1.rds.amazonaws.com \
-U postgres \
-d babelfish_db \
-p 5432

For Windows:

psql -h your-Babelfish.cluster.444455556666-us-east-1.rds.amazonaws.com ^
-U postgres ^
-d babelfish_db ^
-p 5432

The command responds with a prompt to enter the password for the user name (-U).

1355

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html

Amazon Aurora User Guide for Aurora
Using Aurora PostgreSQL extensions with Babelfish

Password:

Enter the password for the user name (-U) for the DB cluster. When you successfully connect, you see
output similar to the following.

psql (13.4)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,
 compression: off)
Type "help" for help.

postgres=>

2. Grant privileges to the internal Babelfish user to create and load extensions.

babelfish_db=> GRANT rds_superuser TO master_dbo;
GRANT ROLE

3. Create and load the aws_s3 extension. The aws_commons extension is required, and it's installed
automatically when the aws_s3 is installed.

babelfish_db=> create extension aws_s3 cascade;
NOTICE: installing required extension "aws_commons"
CREATE EXTENSION

4. Create and load the aws_lambda extension.

babelfish_db=> create extension aws_lambda cascade;
CREATE EXTENSION
babelfish_db=>

Using Babelfish with Amazon S3

If you don't already have an Amazon S3 bucket to use with your Babelfish DB cluster, you can create one.
For any Amazon S3 bucket that you want to use, you provide access.

Before trying to import or export data using an Amazon S3 bucket, complete the following one-time
steps.

To set up access for your Babelfish DB instance to your Amazon S3 bucket

1. Create an Amazon S3 bucket for your Babelfish instance, if needed. To do so, follow the instructions
in Create a bucket in the Amazon Simple Storage Service User Guide.

2. Upload files to your Amazon S3 bucket. To do so, follow the steps in Add an object to a bucket in the
Amazon Simple Storage Service User Guide.

3. Set up permissions as needed:

• To import data from Amazon S3, the Babelfish for Aurora PostgreSQL DB cluster needs permission
to access the bucket. We recommend using an AWS Identity and Access Management (IAM) role
and attaching an IAM policy to that role for your cluster. To do so, follow the steps in Using an IAM
role to access an Amazon S3 bucket (p. 1457).

• To export data from your Babelfish for Aurora PostgreSQL DB cluster, your cluster must be
granted access to the Amazon S3 bucket. As with importing, we recommend using an IAM role and
policy. To do so, follow the steps in Setting up access to an Amazon S3 bucket (p. 1469).

1356

https://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/PuttingAnObjectInABucket.html

Amazon Aurora User Guide for Aurora
Using Aurora PostgreSQL extensions with Babelfish

You can now use Amazon S3 with the aws_s3 extension with your Babelfish for Aurora PostgreSQL DB
cluster.

To import data from Amazon S3 to Babelfish and to export Babelfish data to Amazon S3

1. Use the aws_s3 extension with your Babelfish DB cluster.

When you do, make sure to reference the tables as they exist in the context of PostgreSQL. That is, if
you want to import into a Babelfish table named [database].[schema].[tableA], refer to that
table as database_schema_tableA in the aws_s3 function:

• For an example of using an aws_s3 function to import data, see Using the
aws_s3.table_import_from_s3 function to import Amazon S3 data (p. 1461).

• For examples of using aws_s3 functions to export data, see Exporting query data using the
aws_s3.query_export_to_s3 function (p. 1472).

2. Make sure to reference Babelfish tables using PostgreSQL naming when using the aws_s3 extension
and Amazon S3, as shown in the following table.

Babelfish table Aurora PostgreSQL table

database.schema.table database_schema_table

To learn more about using Amazon S3 with Aurora PostgreSQL, see Importing Amazon S3 data into an
Aurora PostgreSQL DB cluster (p. 1455) and Exporting data from an Aurora PostgreSQL DB cluster to
Amazon S3 (p. 1467).

Using Babelfish with AWS Lambda
After the aws_lambda extension is loaded in your Babelfish DB cluster but before you can invoke
Lambda functions, you give Lambda access to your DB cluster by following this procedure.

To set up access for your Babelfish DB cluster to work with Lambda

This procedure uses the AWS CLI to create the IAM policy, role, and associate these with the Babelfish DB
cluster.

1. Create an IAM policy that allows access to Lambda from your Babelfish DB cluster.

aws iam create-policy --policy-name rds-lambda-policy --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAccessToExampleFunction",
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:aws-region:444455556666:function:my-function"
 }
]
}'

2. Create an IAM role that the policy can assume at runtime.

aws iam create-role --role-name rds-lambda-role --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

1357

Amazon Aurora User Guide for Aurora
Using Aurora PostgreSQL extensions with Babelfish

 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}'

3. Attach the policy to the role.

aws iam attach-role-policy \
 --policy-arn arn:aws:iam::444455556666:policy/rds-lambda-policy \
 --role-name rds-lambda-role --region aws-region

4. Attach the role to your Babelfish for Aurora PostgreSQL DB cluster

aws rds add-role-to-db-cluster \
 --db-cluster-identifier my-cluster-name \
 --feature-name Lambda \
 --role-arn arn:aws:iam::444455556666:role/rds-lambda-role \
 --region aws-region

After you complete these tasks, you can invoke your Lambda functions. For more information and
examples of setting up AWS Lambda for Aurora PostgreSQL DB cluster with AWS Lambda, see Step 2:
Configure IAM for your Aurora PostgreSQL DB cluster and AWS Lambda (p. 1535).

To invoke a Lambda function from your Babelfish DB cluster

AWS Lambda supports functions written in Java, Node.js, Python, Ruby, and other languages. If the
function returns text when invoked, you can invoke it from your Babelfish DB cluster. The following
example is a placeholder python function that returns a greeting.

lambda_function.py
import json
def lambda_handler(event, context):
 #TODO implement
 return {
 'statusCode': 200,
 'body': json.dumps('Hello from Lambda!')

Currently, Babelfish for Aurora PostgreSQL doesn't support JSON. If your function returns JSON, you use
a wrapper to handle the JSON. For example, say that the lamdba_function.py shown preceding is
stored in Lambda as my-function.

1. Connect to your Babelfish DB cluster using the psql client (or the pgAdmin client). For more
information, see Using psql to connect to the DB cluster (p. 1336).

2. Create the wrapper. This example uses PostgreSQL's procedural language for SQL, PL/pgSQL. To
learn more, see PL/pgSQL–SQL Procedural Language

create or replace function master_dbo.lambda_wrapper()
returns text
language plpgsql
as
$$
declare
 r_status_code integer;
 r_payload text;
begin
 SELECT payload INTO r_payload

1358

https://www.postgresql.org/docs/13/plpgsql.html

Amazon Aurora User Guide for Aurora
Using Aurora PostgreSQL extensions with Babelfish

 FROM aws_lambda.invoke(aws_commons.create_lambda_function_arn('my-function',
 'us-east-1')
 ,'{"body": "Hello from Postgres!"}'::json);
 return r_payload ;
end;
$$;

The function can now be run from the Babelfish TDS port (1433) or from the PostgreSQL port
(5433).

a. To invoke (call) this function from your PostgreSQL port:

SELECT * from aws_lambda.invoke(aws_commons.create_lambda_function_arn('my-
function', 'us-east-1'), '{"body": "Hello from Postgres!"}'::json);

The output is similar to the following:

status_code | payload |
 executed_version | log_result
-------------+---
+------------------+------------
 200 | {"statusCode": 200, "body": "\"Hello from Lambda!\""} | $LATEST
 |
(1 row)

b. To invoke (call) this function from the TDS port, connect to the port using the SQL Server
sqlcmd command line client. For details, see Using a SQL Server client to connect to your DB
cluster (p. 1333). When connected, run the following:

1> select lambda_wrapper();
2> go

The command returns output similar to the following:

{"statusCode": 200, "body": "\"Hello from Lambda!\""}

To learn more about using Lambda with Aurora PostgreSQL, see Invoking an AWS Lambda function from
an Aurora PostgreSQL DB cluster (p. 1534). For more information about working with Lambda functions,
see Getting started with Lambda in the AWS Lambda Developer Guide.

1359

https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html

Amazon Aurora User Guide for Aurora
Managing Babelfish error handling

Managing Babelfish error handling
Babelfish mimics SQL behavior in terms of control flow and transaction state whenever possible. If
Babelfish encounters an error, it returns an error code similar to the SQL Server error code if possible. If
Babelfish can't map the error, it returns a fixed error code (33557097). If an unmapped error is one of the
following, the indicated result happens:

• If it's a compile time error, Babelfish rolls back the transaction.
• If it's a runtime error, Babelfish ends the batch and rolls back the transaction.
• If it's a protocol error between the client and server, the transaction isn't rolled back.

If an error code can't be mapped to an equivalent code and the code for a similar error is available, the
error code is mapped to the alternative code. For example, the behaviors that cause SQL Server codes
8143 and 8144 are both mapped to 8143.

Errors that can't be mapped don't respect a TRY... CATCH construct.

You can use @@ERROR to return a SQL Server error code, or the @@PGERROR function to return a
PostgreSQL error code. You can also use the fn_mapped_system_error_list function to return a list
of mapped error codes. For information about PostgreSQL error codes, see the PostgreSQL website.

Babelfish escape hatches
To better deal with statements that might fail, Babelfish defines certain options called escape hatches.
An escape hatch is an option that specifies Babelfish behavior when it encounters an unsupported
feature or syntax.

You can use the sp_babelfish_configure stored procedure to control the settings of an escape
hatch. Use the script to set the escape hatch to ignore or strict. If it's set to strict, Babelfish
returns an error that you need to correct before continuing.

Include the server keyword to apply the changes to the current session and on a cluster level.

The usage is as follows:

• To list all escape hatches and their status, plus usage information, run sp_babelfish_configure.
• To list the named escape hatches and their values, for the current session or cluster-wide, run the

command sp_babelfish_configure 'hatch_name' where hatch_name is the identifier of one or
more escape hatches. hatch_name can use SQL wildcards, such as '%'.

• To set one or more escape hatches to the value specified, run sp_babelfish_configure
['hatch_name' [, 'strict'|'ignore' [, 'server']]. To make the settings permanent on
a cluster-wide level, include the server keyword. To set them for the current session only, don't use
server.

The string identifying the hatch (or hatches) might contain SQL wildcards. For example, the following
sets all syntax escape hatches to ignore for the Aurora PostgreSQL cluster.

EXECUTE sp_babelfish_configure '%', 'ignore', 'server'

The Babelfish predefined escape hatches are as follows.

Escape hatch Description Default

escape_hatch_storage_optionsEscape hatch on any storage option used in
CREATE, ALTER DATABASE, TABLE, INDEX. This

ignore

1360

https://www.postgresql.org/docs/current/errcodes-appendix.html

Amazon Aurora User Guide for Aurora
Managing Babelfish error handling

Escape hatch Description Default

includes clauses (LOG) ON, TEXTIMAGE_ON,
FILESTREAM_ON that define storage locations
(partitions, file groups) for tables, indexes, and
constraints, and also for a database. This escape
hatch setting applies to all of these clauses
(including ON [PRIMARY] and ON "DEFAULT").
The exception is when a partition is specified
for a table or index with ON partition_scheme
(column).

escape_hatch_storage_on_partitionControls Babelfish behavior related to the ON
partition_scheme column clause when
defining partitioning. Babelfish currently doesn't
implement partitioning.

strict

escape_hatch_database_misc_optionsControls Babelfish behavior related to the
following options on CREATE or ALTER DATABASE:
CONTAINMENT, DB_CHAINING, TRUSTWORTHY,
PERSISTENT_LOG_BUFFER.

ignore

escape_hatch_language_non_englishControls Babelfish behavior related to languages
other than English for onscreen messages.
Babelfish currently supports only us_english
for onscreen messages. SET LANGUAGE might use
a variable containing the language name, so the
actual language being set can only be detected at
run time.

strict

escape_hatch_login_hashed_passwordWhen ignored, suppresses the error for the
HASHED keyword for CREATE LOGIN and ALTER
LOGIN.

strict

escape_hatch_login_misc_optionsWhen ignored, suppresses the error for other
keywords besides HASHED, MUST_CHANGE,
OLD_PASSWORD, and UNLOCK for CREATE LOGIN
and ALTER LOGIN.

strict

escape_hatch_login_old_passwordWhen ignored, suppresses the error for the
OLD_PASSWORD keyword for CREATE LOGIN and
ALTER LOGIN.

strict

escape_hatch_login_password_must_changeWhen ignored, suppresses the error for the
MUST_CHANGE keyword for CREATE LOGIN and
ALTER LOGIN.

strict

escape_hatch_login_password_unlockWhen ignored, suppresses the error for the
UNLOCK keyword for CREATE LOGIN and ALTER
LOGIN.

strict

escape_hatch_fulltextControls Babelfish behavior related to FULLTEXT
features, such a DEFAULT_FULLTEXT_LANGUAGE
in CREATE/ALTER DATABASE, CREATE FULLTEXT
INDEX, or sp_fulltext_database.

strict

1361

Amazon Aurora User Guide for Aurora
Managing Babelfish error handling

Escape hatch Description Default

escape_hatch_schemabinding_functionControls Babelfish behavior related to the WITH
SCHEMABINDING clause. By default, the WITH
SCHEMABINDING clause is ignored when specified
with the CREATE or ALTER FUNCTION command.

ignore

escape_hatch_schemabinding_procedureControls Babelfish behavior related to the WITH
SCHEMABINDING clause. By default, the WITH
SCHEMABINDING clause is ignored when specified
with the CREATE or ALTER PROCEDURE command.

ignore

escape_hatch_schemabinding_viewControls Babelfish behavior related to the WITH
SCHEMABINDING clause. By default, the WITH
SCHEMABINDING clause is ignored when specified
with the CREATE or ALTER VIEW command.

ignore

escape_hatch_schemabinding_triggerControls Babelfish behavior related to the WITH
SCHEMABINDING clause. By default, the WITH
SCHEMABINDING clause is ignored when specified
with the CREATE or ALTER TRIGGER command.

ignore

escape_hatch_index_clusteringControls Babelfish behavior related to the
CLUSTERED or NONCLUSTERED keywords for
indexes and PRIMARY KEY or UNIQUE constraints.
When CLUSTERED is ignored, the index or
constraint is still created as if NONCLUSTERED
was specified.

ignore

escape_hatch_index_columnstoreControls Babelfish behavior related to the
COLUMNSTORE clause. If you specify ignore,
Babelfish creates a regular B-tree index.

strict

escape_hatch_for_replicationControls Babelfish behavior related to the [NOT]
FOR REPLICATION clause when creating or
altering a table.

strict

escape_hatch_for_replicationControls Babelfish behavior related to the [NOT]
FOR REPLICATION clause when creating or
altering a procedure.

strict

escape_hatch_rowguidcol_columnControls Babelfish behavior related to the
ROWGUIDCOL clause when creating or altering a
table.

strict

escape_hatch_nocheck_add_constraintControls Babelfish behavior related to the WITH
CHECK or NOCHECK clause for constraints.

strict

escape_hatch_nocheck_existing_constraintControls Babelfish behavior related to FOREIGN
KEY or CHECK constraints.

strict

escape_hatch_constraint_name_for_defaultControls Babelfish behavior related to default
constraint names.

ignore

escape_hatch_table_hintsControls the behavior of table hints specified
using the WITH (...) clause.

ignore

1362

Amazon Aurora User Guide for Aurora
Managing Babelfish error handling

Escape hatch Description Default

escape_hatch_query_hintsControls Babelfish behavior related to query
hints. When this option is set to ignore, the server
ignores hints that use the OPTION (...) clause
to specify query processing aspects. Examples
include SELECT FROM ... OPTION(MERGE JOIN
HASH, MAXRECURSION 10)).

ignore

escape_hatch_join_hintsControls the behavior of keywords in a JOIN
operator: LOOP, HASH, MERGE, REMOTE, REDUCE,
REDISTRIBUTE, REPLICATE.

ignore

escape_hatch_session_settingsControls Babelfish behavior toward unsupported
session-level SET statements.

ignore

escape_hatch_unique_constraintControls Babelfish behavior when creating a
unique index or constraint on a nullable column.

strict

1363

Amazon Aurora User Guide for Aurora
Configuring a database for Babelfish

Configuring a database for Babelfish
When you create a Babelfish for Aurora PostgreSQL DB cluster, you can use a parameter group in one of
two ways. You can create a new parameter group that configures a cluster with Babelfish running. Or you
can use a pre-existing Amazon Aurora parameter group.

To use an existing parameter group, edit the group and set the babelfish_status parameter to on.
Specify any Babelfish options before creating your Aurora PostgreSQL cluster. For information about
modifying your parameter group, see Working with DB parameter groups and DB cluster parameter
groups (p. 339).

The following parameters control Babelfish preferences.

Parameter Type Default
value

Values allowed Description Modifiable?

rds.babelfish_status String off on, off,
datatypesonly

Sets the state of Babelfish
for Aurora PostgreSQL;
functionality. When
this parameter is set
to datatypesonly,
Babelfish is turned off but
SQL Server data types are
still available.

Yes

babelfishpg_tds.default_server_nameString Microsoft
SQL
Server

null The default name of the
Babelfish server.

Yes

babelfishpg_tds.port Integer 1433 1-65535 Sets the TCP port used
for requests in SQL Server
syntax.

Yes

babelfishpg_tds.tds_default_protocol_versionInteger 0 TDSv7.0,
TDSv7.1,
TDSv7.1.1,
TDSv7.2,
TDSv7.3A,
TDSv7.3B,
TDSv7.4,
DEFAULT

Sets a default TDS
protocol version for
connecting clients.

Yes

babelfishpg_tds.tds_ssl_encryptBoolean 0 0/1 Turns encryption on (0) or
off (1) for data traversing
the TDS listener port.
For detailed information
about using SSL for client
connections, see How
Babelfish interprets SSL
settings (p. 1367).

Yes

babelfishpg_tds.tds_ssl_max_protocol_versionString 'TLSv1.2' 'TLSv1, TLSv1.1,
TLSv1.2'

Sets the minimum SSL/
TLS protocol version to
use for the TDS session.

Yes

babelfishpg_tds.tds_ssl_min_protocol_versionString 'TLSv1' 'TLSv1, TLSv1.1,
TLSv1.2'

Sets the minimum SSL/
TLS protocol version to
use for the TDS session.

Yes

1364

Amazon Aurora User Guide for Aurora
Configuring a database for Babelfish

Parameter Type Default
value

Values allowed Description Modifiable?

babelfishpg_tds.tds_default_packet_sizeInteger 4096 512-32767 Sets the default packet
size for connecting SQL
Server clients.

Yes

babelfishpg_tds.tds_default_numeric_scaleInteger 8 0-38 Sets the default scale
of numeric type to be
sent in the TDS column
metadata if the engine
doesn't specify one.

Yes

babelfishpg_tds.tds_default_numeric_precisionInteger 38 1-38 Sets the default precision
of numeric type to be
sent in the TDS column
metadata if the engine
doesn't specify one.

Yes

babelfishpg_tsql.version String null default Sets the output of
@@VERSION variable.

Don't modify this value
for Aurora PostgreSQL DB
clusters.

Yes

babelfishpg_tsql.default_localeString en_US Allowed Default locale used for
Babelfish collations. The
default locale is only the
locale and doesn't include
any qualifiers.

Set this parameter when
you provision a Babelfish
DB cluster. After the DB
cluster is provisioned,
modifications to this
parameter are ignored.

Yes

babelfishpg_tsql.migration_modeList single-
db

single-db, multi-
db,null

Defines if multiple user
databases are supported.

Set this parameter when
you provision a Babelfish
DB cluster. After the DB
cluster is provisioned,
don't modify the value of
this parameter.

No

1365

Amazon Aurora User Guide for Aurora
Configuring a database for Babelfish

Parameter Type Default
value

Values allowed Description Modifiable?

babelfishpg_tsql.server_collation_nameString bbf_unicode_general_ci_asBabelfish
collation
support (p. 1368)

The name of the collation
used for server-level
actions. Set once at
provisioning time.

Set this parameter when
you provision a Babelfish
DB cluster. After the DB
cluster is provisioned,
don't modify the value of
this parameter.

Yes

babelfishpg_tds.listen_addressesString * null Sets the host name or IP
address or addresses to
listen for TDS on.

No

babelfishpg_tds.enable_tds_debug_log_levelInteger '1' '0, 1, 2, 3' Sets the logging level in
TDS; 0 turns off logging.

Yes

babelfishpg_tds.unix_socket_directoriesString /tmp NULL TDS server Unix socket
directories.

No

babelfishpg_tds.unix_socket_groupString rdsdb NULL TDS server Unix socket
group.

No

unix_socket_permissions Integer 0700 0 - 511 TDS server Unix socket
permissions.

No

1366

Amazon Aurora User Guide for Aurora
Configuring a database for Babelfish

How Babelfish interprets SSL settings
When a client connects to port 1433, Babelfish compares the Secure Sockets Layer (SSL) setting sent
during the client handshake to the Babelfish SSL parameter setting (tds_ssl_encrypt). Babelfish then
determines if a connection is allowed. If a connection is allowed, encryption behavior is either enforced
or not, depending on your parameter settings and the support for encryption offered by the client.

The table following shows how Babelfish behaves for each combination.

Client SSL setting Babelfish SSL setting Connection
allowed?

Value returned to client

ENCRYPT_OFF tds_ssl_encrypt=false Allowed, the
login packet
is encrypted

ENCRYPT_OFF

ENCRYPT_OFF tds_ssl_encrypt=true Allowed,
the entire
connection
is encrypted

ENCRYPT_REQ

ENCRYPT_ON tds_ssl_encrypt=false Allowed,
the entire
connection
is encrypted

ENCRYPT_ON

ENCRYPT_ON tds_ssl_encrypt=true Allowed,
the entire
connection
is encrypted

ENCRYPT_ON

ENCRYPT_NOT_SUP tds_ssl_encrypt=false Yes ENCRYPT_NOT_SUP

ENCRYPT_NOT_SUP tds_ssl_encrypt=true No,
connection
closed

ENCRYPT_REQ

ENCRYPT_REQ tds_ssl_encrypt=false Allowed,
the entire
connection
is encrypted

ENCRYPT_ON

ENCRYPT_REQ tds_ssl_encrypt=true Allowed,
the entire
connection
is encrypted

ENCRYPT_ON

ENCRYPT_CLIENT_CERT tds_ssl_encrypt=false No,
connection
closed

Unsupported

ENCRYPT_CLIENT_CERT tds_ssl_encrypt=true No,
connection
closed

Unsupported

1367

Amazon Aurora User Guide for Aurora
Babelfish collation support

Babelfish collation support
A collation specifies the sort order and presentation format of data. Babelfish maps SQL Server collations
to comparable collations provided by Babelfish. Babelfish predefines Unicode collations with culturally
sensitive string comparisons and sort orders. Babelfish also provides a way to translate the collations in
your SQL Server DB to the closest-matching Babelfish collation. Locale-specific collations are provided
for different languages and regions.

Some collations specify a code page that corresponds to a client-side encoding. Babelfish automatically
translates from the server encoding to the client encoding depending on the collation of each output
column.

Babelfish uses version 153.80 of the ICU collation library. For detailed information about PostgreSQL
collation behavior, see the PostgreSQL documentation.

Babelfish supports deterministic and nondeterministic collations:

• A deterministic collation considers two characters as equal if they have the exact same byte sequence.
A deterministic collation evaluates x and X as not equal. Collations that are deterministic are case-
sensitive (CS) and accent-sensitive (AS).

• A nondeterministic collation doesn't require an identical match. A nondeterministic collation evaluates
x and X as equal. Nondeterministic collations are case-insensitive (CI) and accent-insensitive (AI).

Babelfish and SQL Server follow a naming convention for collations that describe the collation
attributes, as shown in the table following.

Attribute Description

AI Accent-insensitive.

AS Accent-sensitive.

BIN2 BIN2 requests data to be sorted in code point order. Unicode code point order is
the same character order for UTF-8, UTF-16, and UCS-2 encodings. Code point
order is a fast deterministic collation.

CI Case-insensitive.

CS Case-sensitive.

PREF To sort uppercase letters before lowercase letters, use a PREF collation. If
comparison is case-insensitive, the uppercase version of a letter sorts before
the lowercase version, if there is no other distinction. The ICU library supports
uppercase preference with colCaseFirst=upper, but not for CI_AS collations.

PREF can be applied only to CS_AS deterministic collations.

PostgreSQL doesn't support the LIKE clause on nondeterministic collations, but Babelfish supports it for
CI_AS collations. Babelfish doesn't support the LIKE clause on AI collations. Pattern matching operations
on nondeterministic collations also aren't supported.

To establish Babelfish collation behavior, set the following parameters.

Parameter Description

default_locale The default_locale parameter is used in combination
with the collation attributes in the table preceding to customize

1368

https://www.postgresql.org/docs/13/collation.html

Amazon Aurora User Guide for Aurora
Babelfish collation support

Parameter Description

collations for a specific language and region. The default value is
en-US.

The default locale applies to all Babelfish collations that start with
the letters BBF, and to all SQL Server collations that are mapped
to Babelfish collations. You can change this parameter after initial
Babelfish database creation, but it doesn't affect the locale of
existing collations.

server_collation_name The collation used as the default collation at both
the server level and the database level. The default
value is sql_latin1_general_cp1_ci_as. The
server_collation_name has to be a CI_AS collation because
in T-SQL, the server collation determines how identifiers are
compared.

You can choose from the collations in the table that follows
for the Collation name field when you create your Aurora
PostgreSQL cluster for use with Babelfish. Don't modify the
server_collation_name after the Babelfish database is created.

Use the following collations as a server collation or an object collation.

Collation ID Notes

BBF_Unicode_General_CI_AS Supports case-insensitive comparison and the LIKE operator.

BBF_Unicode_CP1_CI_AS Nondeterministic collation also known as CP1252.

BBF_Unicode_CP1250_CI_AS Nondeterministic collation used to represent texts in Central
European and Eastern European languages that use Latin script.

BBF_Unicode_CP1251_CI_AS Nondeterministic collation for languages that use the Cyrillic script.

BBF_Unicode_CP1253_CI_AS Nondeterministic collation used to represent modern Greek.

BBF_Unicode_CP1254_CI_AS Nondeterministic collation that supports Turkish.

BBF_Unicode_CP1255_CI_AS Nondeterministic collation that supports Hebrew.

BBF_Unicode_CP1256_CI_AS Nondeterministic collation used to write languages that use Arabic
script.

BBF_Unicode_CP1257_CI_AS Nondeterministic collation used to support Estonian, Latvian, and
Lithuanian languages.

BBF_Unicode_CP1258_CI_AS Nondeterministic collation used to write Vietnamese characters.

BBF_Unicode_CP874_CI_AS Nondeterministic collation used to write Thai characters.

sql_latin1_general_cp1250_ci_as Nondeterministic single-byte character encoding used to represent
Latin characters.

sql_latin1_general_cp1251_ci_as Nondeterministic collation that supports Latin characters.

sql_latin1_general_cp1_ci_as Nondeterministic collation that supports Latin characters.

1369

https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1252.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1250.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1251.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1253.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1254.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1255.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1256.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1257.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1258.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit874.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1250.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1251.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1252.txt

Amazon Aurora User Guide for Aurora
Babelfish collation support

Collation ID Notes

sql_latin1_general_cp1253_ci_as Nondeterministic collation that supports Latin characters.

sql_latin1_general_cp1254_ci_as Nondeterministic collation that supports Latin characters.

sql_latin1_general_cp1255_ci_as Nondeterministic collation that supports Latin characters.

sql_latin1_general_cp1256_ci_as Nondeterministic collation that supports Latin characters.

sql_latin1_general_cp1257_ci_as Nondeterministic collation that supports Latin characters.

sql_latin1_general_cp1258_ci_as Nondeterministic collation that supports Latin characters.

chinese_prc_ci_as Nondeterministic collation that supports Chinese (PRC).

cyrillic_general_ci_as Nondeterministic collation that supports Cyrillic.

finnish_swedish_ci_as Nondeterministic collation that supports Finnish.

french_ci_as Nondeterministic collation that supports French.

korean_wansung_ci_as Nondeterministic collation that supports Korean (with dictionary
sort).

latin1_general_ci_as Nondeterministic collation that supports Latin characters.

modern_spanish_ci_as Nondeterministic collation that supports Modern Spanish.

polish_ci_as Nondeterministic collation that supports Polish.

thai_ci_as Nondeterministic collation that supports Thai.

traditional_spanish_ci_as Nondeterministic collation that supports Spanish (traditional sort).

turkish_ci_as Nondeterministic collation that supports Turkish.

ukrainian_ci_as Nondeterministic collation that supports Ukrainian.

vietnamese_ci_as Nondeterministic collation that supports Vietnamese.

You can use the following collations as object collations.

Dialect Deterministic options Nondeterministic options

Arabic Arabic_CS_AS Arabic_CI_AS, Arabic_CI_AI

Chinese Chinese_CS_AS Chinese_CI_AS, Chinese_CI_AI

Cyrillic_General Cyrillic_General_CS_AS Cyrillic_General_CI_AS, Cyrillic_General_CI_AI

Estonian Estonian_CS_AS Estonian_CI_AS, Estonian_CI_AI

Finnish_Swedish Finnish_Swedish_CS_AS Finnish_Swedish_CI_AS, Finnish_Swedish_CI_AI

French French_CS_AS French_CI_AS, French_CI_AI

Greek Greek_CS_AS Greek_CI_AS, Greek_CI_AI

Hebrew Hebrew_CS_AS Hebrew_CI_AS, Hebrew_CI_AI

1370

https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1253.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1254.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1255.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1256.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1257.txt
https://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/bestfit1258.txt

Amazon Aurora User Guide for Aurora
Babelfish collation support

Dialect Deterministic options Nondeterministic options

Korean_WamsungKorean_Wamsung_CS_AS Korean_Wamsung_CI_AS, Korean_Wamsung_CI_AI

Modern_Spanish Modern_Spanish_CS_AS Modern_Spanish_CI_AS, Modern_Spanish_CI_AI

Mongolian Mongolian_CS_AS Mongolian_CI_AS, Mongolian_CI_AI

Polish Polish_CS_AS Polish_CI_AS, Polish_CI_AI

Thai Thai_CS_AS Thai_CI_AS, Thai_CI_AI

Traditional_SpanishTraditional_Spanish_CS_AS Traditional_Spanish_CI_AS,
Traditional_Spanish_CI_AI

Turkish Turkish_CS_AS Turkish_CI_AS, Turkish_CI_AI

Ukranian Ukranian_CS_AS Ukranian_CI_AS, Ukranian_CI_AI

Vietnamese Vietnamese_CS_AS Vietnamese_CI_AS, Vietnamese_CI_AI

Managing collations

The ICU library provides collation version tracking to ensure that indexes that depend on collations can
be reindexed when a new version of ICU becomes available. You can use the following query to identify
all collations in the current database that need to be refreshed and the objects that depend on them.

SELECT pg_describe_object(refclassid, refobjid, refobjsubid) AS "Collation",
 pg_describe_object(classid, objid, objsubid) AS "Object" FROM pg_depend d JOIN
 pg_collation c ON refclassid = 'pg_collation'::regclass AND refobjid = c.oid WHERE
 c.collversion < > pg_collation_actual_version(c.oid) ORDER BY 1, 2;

Predefined collations are stored in the sys.fn_helpcollations table. You can use the following
command to display information about a collation (such as its lcid, style, and collate flags). To retrieve
the list, connect a psql client to the Aurora PostgreSQL port (by default, 5432) and enter the following.

postgres=# set search_path = public, pg_temp, sys;
 SET
 postgres=# \dO

Connect to the T-SQL port (by default 1433) and enter the following.

SELECT * FROM fn_helpcollation()

Collation limitations and behaviors

Babelfish uses the ICU library for collation support. The following section lists some of the known
limitations and behavior variations of Babelfish collations:

• Unicode sorting rules

SQL Server SQL collations sort Unicode-encoded data (nchar and nvarchar) one way, but data that
isn't Unicode-encoded (char and varchar) a different way. Babelfish databases are always UTF-8
encoded and always apply Unicode sorting rules consistently, regardless of data type. Thus, the sort
order is the same for char or varchar as it is for nchar or nvarchar.

1371

Amazon Aurora User Guide for Aurora
Babelfish collation support

• Secondary-equal collations

The default ICU Unicode secondary-equal (CI_AS) collation sorts punctuation marks and other
nonalphanumeric characters before numeric characters, and numeric characters before alphabetic
characters. However, the order of punctuation and other special characters is different.

• Tertiary collations

SQL collations, such as SQL_Latin1_General_Pref_CP1_CI_AS, support the TERTIARY_WEIGHTS
function and the ability to sort strings that compare equally in a CI_AS collation to be sorted
uppercase first: ABC, ABc, AbC, Abc, aBC, aBc, abC, and finally abc. Thus, the DENSE_RANK OVER
(ORDER BY column) analytic function assesses these strings as having the same rank but orders
them uppercase first within a partition.

You can get a similar result with Babelfish by adding a COLLATE clause to the ORDER BY clause
that specifies a tertiary CS_AS collation that specifies @colCaseFirst=upper. However, the
colCaseFirst modifier applies only to strings that are tertiary-equal (rather than secondary-equal
like a CI_AS collation). Thus, you can't emulate tertiary SQL collations using a single ICU collation.

As a workaround, we recommend that you modify applications that use
the SQL_Latin1_General_Pref_CP1_CI_AS collation to use the
BBF_SQL_Latin1_General_CP1_CI_AS collation first. Then add COLLATE
BBF_SQL_Latin1_General_Pref_CP1_CS_AS to any ORDER BY clause for this column.

• PostgreSQL is built with a specific version of ICU and can match at most one version of a collation.
Variations across versions are unavoidable, as are minor variations across time as languages evolve.

• Character expansion

A character expansion treats a single character as equal to a sequence of characters at the primary
level. SQL Server's default CI_AS collation supports character expansion; ICU collations support
character expansion only for accent-insensitive collations.

When character expansion is required, then use a AI collation for comparisons. However, such
collations aren't currently supported by the LIKE operator.

• char and varchar encoding

When collations that begin with SQL are used for char or varchar data types, the sort order for
characters preceding ASCII 127 is determined by the specific code page for that SQL collation. For SQL
collations, strings declared as char or varchar might sort differently than strings declared as nchar or
nvarchar.

PostgreSQL encodes all strings with the database encoding so converts all characters to UTF-8 and
sorts using Unicode rules.

Because SQL collations sort nchar and nvarchar data types using Unicode rules, Babelfish encodes all
strings on the server using UTF-8. Babelfish sorts nchar and nvarchar strings the same way it sorts char
and varchar strings, using Unicode rules.

• Supplementary character

The SQL Server functions NCHAR, UNICODE, and LEN support characters for code-points outside the
Unicode Basic Multilingual Plane (BMP). In contrast, non-SC collations use surrogate pair characters
to handle supplementary characters. For Unicode data types, SQL Server can represent up to 65,535
characters using UCS-2, or the full Unicode range (1,114,114 characters) if supplementary characters
are used.

• Kana-sensitive

When Japanese Kana characters Hiragana and Katakana are treated differently, the collation is
called Kana-sensitive (KS). ICU supports the Japanese collation standard JIS X 4061. The now
deprecated colhiraganaQ [on | off] locale modifier might provide the same functionality as

1372

Amazon Aurora User Guide for Aurora
Babelfish collation support

KS collations. However, KS collations of the same name as SQL Server aren't currently supported by
Babelfish.

• Width-Sensitive

When a single-byte character (half-width) and the same character represented as a double-byte
character (full-width) are treated differently, the collation is called width-sensitive (WS). WS collations
with the same name as SQL Server aren't currently supported by Babelfish.

• Variation-Selector Sensitivity

Variation-Selector Sensitivity (VSS) collations distinguish between ideographic variation selectors in
Japanese collations Japanese_Bushu_Kakusu_140 and Japanese_XJIS_140. A variation sequence
is made up of a base character plus an additional variation selector. If you don't select the _VSS
option, the variation selector isn't considered in the comparison.

VSS collations aren't currently supported by Babelfish.
• BIN and BIN2

A BIN2 collation sorts characters according to code point order. The byte-by-byte binary order of
UTF-8 preserves Unicode code point order, so this is also likely to be the best-performing collation. If
Unicode code point order works for an application, consider using a BIN2 collation. However, using a
BIN2 collation can result in data being displayed on the client in an order that is culturally unexpected.
New mappings to lowercase characters are added to Unicode as time progresses, so the LOWER
function might perform differently on different versions of ICU. This is a special case of the more
general collation versioning problem rather than as something specific to the BIN2 collation.

Babelfish provides the BBF_Latin1_General_BIN2 collation with the Babelfish distribution to
collate in Unicode code point order. In a BIN collation only the first character is sorted as a wchar.
Remaining characters are sorted byte-by-byte, effectively in code point order according to its
encoding. This approach doesn't follow Unicode collation rules and isn't supported by Babelfish.

1373

Amazon Aurora User Guide for Aurora
Troubleshooting for Babelfish

Troubleshooting for Babelfish
Following, you can find troubleshooting ideas and workarounds for some Babelfish for Aurora
PostgreSQL DB cluster issues.

Topics
• Connection failure (p. 1374)
• Using pg_dump and pg_restore requires extra setup (p. 1374)

Connection failure
Common causes of connection failures to a new Aurora DB cluster with Babelfish include the following:

• Security group doesn't allow access – If you're having trouble connecting to a Babelfish, make sure
that you added your IP address to the default Amazon EC2 security group. You can use https://
checkip.amazonaws.com/ to determine your IP address and then add it to your in-bound rule for the
TDS port and the PostgreSQL port. For more information, see Add rules to a security group in the
Amazon EC2 User Guide.

For more information about troubleshooting Aurora connection issues, see Can't connect to Amazon RDS
DB instance (p. 1827).

Using pg_dump and pg_restore requires extra setup
Currently, if you try to use the PostgreSQL utilities pg_dump and pg_restore to move a database from
one Babelfish for Aurora PostgreSQL DB cluster to another, you see the following error message:

psql:bbf.sql:29: ERROR: role "db_owner" does not exist
psql:bbf.sql:49: ERROR: role "dbo" does not exist

To workaround this issue, you first create the same logical database on the target cluster that is on the
source. Once that exists, you can create the needed roles to run pg_dump and pg_restore.

To use pg_dump and pg_restore to move a database between Babelfish DB clusters

1. Use psql or pgAdmin to connect to the target Babelfish for Aurora PostgreSQL DB cluster.
The following examples use psql. For more information, see Using psql to connect to the DB
cluster (p. 1336).

2. Create the same logical database on the target that is on the source.

CREATE DATABASE your-DB-name

3. Connect to the Babelfish DB instance and create the necessary roles.

CREATE ROLE db_owner;
ALTER ROLE db_owner WITH NOSUPERUSER INHERIT NOCREATEROLE NOCREATEDB NOLOGIN
 NOREPLICATION NOBYPASSRLS;
CREATE ROLE dbo;
ALTER ROLE dbo WITH NOSUPERUSER INHERIT NOCREATEROLE NOCREATEDB NOLOGIN NOREPLICATION
 NOBYPASSRLS;
GRANT db_owner TO dbo GRANTED BY sysadmin;
GRANT dbo TO sysadmin GRANTED BY sysadmin;

4. Use pg_restore to restore the DB instance from the source to the target.

1374

https://checkip.amazonaws.com/
https://checkip.amazonaws.com/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/working-with-security-groups.html#adding-security-group-rule.html

Amazon Aurora User Guide for Aurora
Troubleshooting for Babelfish

To learn more about using these PostgreSQL utilities, see pg_dump and pg_restore.

1375

https://www.postgresql.org/docs/13/app-pgdump.html
https://www.postgresql.org/docs/13/app-pgrestore.html

Amazon Aurora User Guide for Aurora
Turning off Babelfish

Turning off Babelfish
When you no longer need Babelfish, you can turn off Babelfish functionality.

Be aware of some considerations:

• In some cases, you might turn off Babelfish before completing a migration to Aurora PostgreSQL. If
you do and your DDL depends on SQL Server data types or you use any T-SQL functionality in your
code, your code fails.

• If after provisioning a Babelfish instance you turn off the Babelfish extension, you can't provision that
same database again on the same cluster.

To turn off Babelfish, modify your parameter group, setting rds.babelfish_status to OFF. You can
continue to use your SQL Server data types with Babelfish off, by setting rds.babelfish_status to
datatypeonly.

If you turn off Babelfish in parameter group, all clusters that use that parameter group lose Babelfish
functionality.

For more information about modifying parameter groups, see Working with DB parameter groups and
DB cluster parameter groups (p. 339).

1376

Amazon Aurora User Guide for Aurora
Managing Aurora PostgreSQL

Managing Amazon Aurora PostgreSQL
The following section discusses managing performance and scaling for an Amazon Aurora PostgreSQL
DB cluster. It also includes information about other maintenance tasks.

Topics

• Scaling Aurora PostgreSQL DB instances (p. 1377)

• Maximum connections to an Aurora PostgreSQL DB instance (p. 1377)

• Temporary storage limits for Aurora PostgreSQL (p. 1379)

• Testing Amazon Aurora PostgreSQL by using fault injection queries (p. 1381)

• Displaying volume status for an Aurora PostgreSQL DB cluster (p. 1384)

• Specifying the RAM disk for the stats_temp_directory (p. 1385)

• Scheduling maintenance with the PostgreSQL pg_cron extension (p. 1387)

Scaling Aurora PostgreSQL DB instances
You can scale Aurora PostgreSQL DB instances in two ways, instance scaling and read scaling. For more
information about read scaling, see Read scaling (p. 400).

You can scale your Aurora PostgreSQL DB cluster by modifying the DB instance class for each DB
instance in the DB cluster. Aurora PostgreSQL supports several DB instance classes optimized for Aurora.
Don't use db.t2 or db.t3 instance classes for larger Aurora clusters of size greater than 40 terabytes (TB).

Scaling isn' instantaneous. It can take 15 minutes or more to complete the change to a different DB
instance class. We recommend that if use this approach to modify the DB instance class, you apply the
change during the next scheduled maintenance window (rather than immediately) to avoid affecting
users.

As an alternative to modifying the DB instance class directly, you can minimize downtime by using the
high availability features of Amazon Aurora. First, add an Aurora Replica to your cluster. When creating
the replica, choose the DB instance class size that you want to use for your cluster. When the Aurora
Replica is synchronized with the cluster, you then failover to the newly added Replica. To learn more, see
Aurora Replicas (p. 70) and Fast failover with Amazon Aurora PostgreSQL (p. 1440).

For detailed specifications of the DB instance classes supported by Aurora PostgreSQL, see Supported DB
engines for DB instance classes (p. 54).

Maximum connections to an Aurora PostgreSQL DB
instance
An Aurora DB cluster allocates resources based on the DB instance class and its available memory. The
maximum number of connections allowed by an Aurora PostgreSQL DB instance is determined by the
max_connections parameter value specified in the parameter group for that DB instance.

Keep the following factors in mind before you try to change the max_connections parameter setting.

• If the max_connections value is too low, the Aurora PostgreSQL DB instance might not have
sufficient connections available when clients attempt to connect.

• If the max_connections value exceeds the number of connections that are actually needed, the
unused connections can cause performance to degrade.

1377

Amazon Aurora User Guide for Aurora
Maximum connections

The ideal setting for the max_connections parameter is one that supports all the client connections
your application needs, without an excess of unused connections, plus at least 3 more connections to
support AWS automation.

The value of max_connections in the default DB parameter group for Aurora PostgreSQL is set to the
lower of two values derived from the following Aurora PostgreSQL LEAST function:

LEAST({DBInstanceClassMemory/9531392},5000)

Although you can't change values in default parameter groups, you can create your own custom DB
cluster parameter group and modify your Aurora PostgreSQL DB cluster to use it. If you do this, be sure
that you reboot the DB cluster after applying your custom parameter group. For more information, see
Amazon Aurora PostgreSQL parameters (p. 1564) and Creating a DB cluster parameter group (p. 343). To
learn more about Aurora DB cluster and DB parameter groups, see Working with DB parameter groups
and DB cluster parameter groups (p. 339).

Following, you can find a table that lists the highest value that should ever be used for
max_connections for each DB instance class that can be used with Aurora PostgreSQL.

Instance class max_connections default value

db.x2g.16xlarge 5000

db.x2g.12xlarge 5000

db.x2g.8xlarge 5000

db.x2g.4xlarge 5000

db.x2g.2xlarge 5000

db.x2g.xlarge 5000

db.x2g.large 3479

db.r6g.16xlarge 5000

db.r6g.12xlarge 5000

db.r6g.8xlarge 5000

db.r6g.4xlarge 5000

db.r6g.2xlarge 5000

db.r6g.xlarge 3479

db.r6g.large 1722

db.r5.24xlarge 5000

db.r5.16xlarge 5000

db.r5.12xlarge 5000

db.r5.8xlarge 5000

db.r5.4xlarge 5000

db.r5.2xlarge 5000

db.r5.xlarge 3300

1378

Amazon Aurora User Guide for Aurora
Temporary storage limits

Instance class max_connections default value

db.r5.large 1600

db.r4.16xlarge 5000

db.r4.8xlarge 5000

db.r4.4xlarge 5000

db.r4.2xlarge 5000

db.r4.xlarge 3200

db.r4.large 1600

db.t4g.large 844

db.t4g.medium 405

db.t3.large 844

db.t3.medium 420

If your application needs more connections than the number listed for your DB instance class, consider
the following alternatives.

• Choose a DB instance class that has more memory. If your connection requirements are too high for
the DB instance class supporting your Aurora PostgreSQL DB cluster, you can potentially overload
your database and decrease performance. For list of DB instance classes for Aurora PostgreSQL, see
Supported DB engines for DB instance classes (p. 54). For the amount of memory for each DB instance
class, Hardware specifications for DB instance classes for Aurora (p. 62).

• Pool connections by using RDS Proxy with your Aurora PostgreSQL DB cluster. For more information,
see Using Amazon RDS Proxy (p. 288).

Temporary storage limits for Aurora PostgreSQL
Aurora PostgreSQL stores tables and indexes in the Aurora storage subsystem. Aurora PostgreSQL uses
separate temporary storage for non-persistent temporary files. This includes files that are used for such
purposes as sorting large datasets during query processing or for index build operations. For more about
storage, see Amazon Aurora storage and reliability (p. 64).

The following table shows the maximum amount of temporary storage available for each Aurora
PostgreSQL DB instance class.

DB instance class Maximum temporary storage available (GiB)

db-x2g-16xlarge 1829

db-x2g-12xlarge 1606

db-x2g-8xlarge 1071

db-x2g-4xlarge 535

db-x2g-2xlarge 268

1379

Amazon Aurora User Guide for Aurora
Temporary storage limits

DB instance class Maximum temporary storage available (GiB)

db-x2g-xlarge 134

db-x2g-large 67

db.r6g.16xlarge 1008

db.r6g.12xlarge 756

db.r6g.8xlarge 504

db.r6g.4xlarge 252

db.r6g.2xlarge 126

db.r6g.xlarge 63

db.r6g.large 32

db.r5.24xlarge 1500

db.r5.16xlarge 1008

db.r5.12xlarge 748

db.r5.8xlarge 504

db.r5.4xlarge 249

db.r5.2xlarge 124

db.r5.xlarge 62

db.r5.large 31

db.r4.16xlarge 960

db.r4.8xlarge 480

db.r4.4xlarge 240

db.r4.2xlarge 120

db.r4.xlarge 60

db.r4.large 30

db.t4g.large 16.5

db.t4g.medium 8.13

db.t3.large 16

db.t3.medium 7.5

You can monitor the temporary storage available for a DB instance with the FreeLocalStorage
CloudWatch metric, described in Amazon CloudWatch metrics for Amazon Aurora (p. 654).

For some workloads, you can reduce the amount of temporary storage by allocating more memory to
the processes that are performing the operation. To increase the memory available to an operation,
increasing the values of the work_mem or maintenance_work_mem PostgreSQL parameters.

1380

https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-WORK-MEM
https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-MAINTENANCE-WORK-MEM

Amazon Aurora User Guide for Aurora
Testing Amazon Aurora PostgreSQL

by using fault injection queries

Testing Amazon Aurora PostgreSQL by using fault
injection queries
You can test the fault tolerance of your Aurora PostgreSQL DB cluster by using fault injection queries.
Fault injection queries are issued as SQL commands to an Amazon Aurora instance. Fault injection
queries enable you to schedule simulated tests of the following events:

Topics
• Testing an instance crash (p. 1381)
• Testing an Aurora Replica failure (p. 1382)
• Testing a disk failure (p. 1382)
• Testing disk congestion (p. 1383)

When a fault injection query specifies a crash, it forces a crash of the Aurora PostgreSQL DB instance.
The other fault injection queries result in simulations of failure events, but don't cause the event to
occur. When you submit a fault injection query, you also specify an amount of time for the failure event
simulation to occur.

You can submit a fault injection query to one of your Aurora Replica instances by connecting
to the endpoint for the Aurora Replica. For more information, see Amazon Aurora connection
management (p. 32).

Note
Fault injection queries for Aurora PostgreSQL are currently supported for the following versions:

• Version 2.4, which is compatible with PostgreSQL version 10.11.
• Version 3.2, which is compatible with PostgreSQL version 11.7.

Testing an instance crash
You can force a crash of an Aurora PostgreSQL instance by using the fault injection query function
aurora_inject_crash().

For this fault injection query, a failover does not occur. If you want to test a failover, then you can choose
the Failover instance action for your DB cluster in the RDS console, or use the failover-db-cluster AWS
CLI command or the FailoverDBCluster RDS API operation.

Syntax

SELECT aurora_inject_crash ('instance' | 'dispatcher' | 'node');

Options

This fault injection query takes one of the following crash types. The crash type is not case sensitive:

'instance'

A crash of the PostgreSQL-compatible database for the Amazon Aurora instance is simulated.
'dispatcher'

A crash of the dispatcher on the primary instance for the Aurora DB cluster is simulated. The
dispatcher writes updates to the cluster volume for an Amazon Aurora DB cluster.

1381

https://docs.aws.amazon.com/cli/latest/reference/rds/failover-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_FailoverDBCluster.html

Amazon Aurora User Guide for Aurora
Testing Amazon Aurora PostgreSQL

by using fault injection queries

'node'

A crash of both the PostgreSQL-compatible database and the dispatcher for the Amazon Aurora
instance is simulated.

Testing an Aurora Replica failure
You can simulate the failure of an Aurora Replica by using the fault injection query function
aurora_inject_replica_failure().

An Aurora Replica failure blocks replication to the Aurora Replica or all Aurora Replicas in the DB cluster
by the specified percentage for the specified time interval. When the time interval completes, the
affected Aurora Replicas are automatically synchronized with the primary instance.

Syntax

SELECT aurora_inject_replica_failure(
 percentage_of_failure,
 time_interval,
 'replica_name'
);

Options

This fault injection query takes the following parameters:

percentage_of_failure

The percentage of replication to block during the failure event. This value can be a double between
0 and 100. If you specify 0, then no replication is blocked. If you specify 100, then all replication is
blocked.

time_interval

The amount of time to simulate the Aurora Replica failure. The interval is in seconds. For example, if
the value is 20, the simulation runs for 20 seconds.

Note
Take care when specifying the time interval for your Aurora Replica failure event. If you
specify too long an interval, and your writer instance writes a large amount of data during
the failure event, then your Aurora DB cluster might assume that your Aurora Replica has
crashed and replace it.

replica_name

The Aurora Replica in which to inject the failure simulation. Specify the name of an Aurora Replica
to simulate a failure of the single Aurora Replica. Specify an empty string to simulate failures for all
Aurora Replicas in the DB cluster.

To identify replica names, see the server_id column from the aurora_replica_status()
function. For example:

postgres=> SELECT server_id FROM aurora_replica_status();

Testing a disk failure
You can simulate a disk failure for an Aurora PostgreSQL DB cluster by using the fault injection query
function aurora_inject_disk_failure().

1382

Amazon Aurora User Guide for Aurora
Testing Amazon Aurora PostgreSQL

by using fault injection queries

During a disk failure simulation, the Aurora PostgreSQL DB cluster randomly marks disk segments as
faulting. Requests to those segments are blocked for the duration of the simulation.

Syntax

SELECT aurora_inject_disk_failure(
 percentage_of_failure,
 index,
 is_disk,
 time_interval
);

Options

This fault injection query takes the following parameters:

percentage_of_failure

The percentage of the disk to mark as faulting during the failure event. This value can be a double
between 0 and 100. If you specify 0, then none of the disk is marked as faulting. If you specify 100,
then the entire disk is marked as faulting.

index

A specific logical block of data in which to simulate the failure event. If you exceed the range of
available logical blocks or storage nodes data, you receive an error that tells you the maximum
index value that you can specify. To avoid this error, see Displaying volume status for an Aurora
PostgreSQL DB cluster (p. 1384).

is_disk

Indicates whether the injection failure is to a logical block or a storage node. Specifying true means
injection failures are to a logical block. Specifying false means injection failures are to a storage
node.

time_interval

The amount of time to simulate the Aurora Replica failure. The interval is in seconds. For example, if
the value is 20, the simulation runs for 20 seconds.

Testing disk congestion
You can simulate a disk failure for an Aurora PostgreSQL DB cluster by using the fault injection query
function aurora_inject_disk_congestion().

During a disk congestion simulation, the Aurora PostgreSQL DB cluster randomly marks disk segments as
congested. Requests to those segments are delayed between the specified minimum and maximum delay
time for the duration of the simulation.

Syntax

SELECT aurora_inject_disk_congestion(
 percentage_of_failure,
 index,
 is_disk,
 time_interval,
 minimum,
 maximum
);

1383

Amazon Aurora User Guide for Aurora
Displaying volume status for an Aurora DB cluster

Options

This fault injection query takes the following parameters:

percentage_of_failure

The percentage of the disk to mark as congested during the failure event. This is a double value
between 0 and 100. If you specify 0, then none of the disk is marked as congested. If you specify
100, then the entire disk is marked as congested.

index

A specific logical block of data or storage node to use to simulate the failure event.

If you exceed the range of available logical blocks or storage nodes of data, you receive an error that
tells you the maximum index value that you can specify. To avoid this error, see Displaying volume
status for an Aurora PostgreSQL DB cluster (p. 1384).

is_disk

Indicates whether the injection failure is to a logical block or a storage node. Specifying true means
injection failures are to a logical block. Specifying false means injection failures are to a storage
node.

time_interval

The amount of time to simulate the Aurora Replica failure. The interval is in seconds. For example, if
the value is 20, the simulation runs for 20 seconds.

minimum, maximum

The minimum and maximum amount of congestion delay, in milliseconds. Valid values range from
0.0 to 100.0 milliseconds. Disk segments marked as congested are delayed for a random amount
of time within the minimum and maximum range for the duration of the simulation. The maximum
value must be greater than the minimum value.

Displaying volume status for an Aurora PostgreSQL
DB cluster
In Amazon Aurora, a DB cluster volume consists of a collection of logical blocks. Each of these represents
10 gigabytes of allocated storage. These blocks are called protection groups.

The data in each protection group is replicated across six physical storage devices, called storage nodes.
These storage nodes are allocated across three Availability Zones (AZs) in the region where the DB cluster
resides. In turn, each storage node contains one or more logical blocks of data for the DB cluster volume.
For more information about protection groups and storage nodes, see Introducing the Aurora storage
engine on the AWS Database Blog.

Use the aurora_show_volume_status() function to return the following server status variables:

• Disks — The total number of logical blocks of data for the DB cluster volume.
• Nodes — The total number of storage nodes for the DB cluster volume.

You can use the aurora_show_volume_status() function to help avoid an error when using the
aurora_inject_disk_failure() fault injection function. The aurora_inject_disk_failure()
fault injection function simulates the failure of an entire storage node, or a single logical block of
data within a storage node. In the function, you specify the index value of a specific logical block of
data or storage node. However, the statement returns an error if you specify an index value greater
than the number of logical blocks of data or storage nodes used by the DB cluster volume. For more

1384

http://aws.amazon.com/blogs/database/introducing-the-aurora-storage-engine/
http://aws.amazon.com/blogs/database/introducing-the-aurora-storage-engine/

Amazon Aurora User Guide for Aurora
Specifying the RAM disk for the stats_temp_directory

information about fault injection queries, see Testing Amazon Aurora PostgreSQL by using fault injection
queries (p. 1381).

Note
The aurora_show_volume_status() function is available for Aurora PostgreSQL version
10.11. For more information about Aurora PostgreSQL versions, see Amazon Aurora PostgreSQL
releases and engine versions (p. 1615).

Syntax

SELECT * FROM aurora_show_volume_status();

Example

customer_database=> SELECT * FROM aurora_show_volume_status();
 disks | nodes
-------+-------
 96 | 45

Specifying the RAM disk for the stats_temp_directory
You can use the Aurora PostgreSQL parameter, rds.pg_stat_ramdisk_size, to specify the system
memory allocated to a RAM disk for storing the PostgreSQL stats_temp_directory. The RAM disk
parameter is available for all Aurora PostgreSQL versions.

Under certain workloads, setting this parameter can improve performance and decrease IO requirements.
For more information about the stats_temp_directory, see the PostgreSQL documentation..

To enable a RAM disk for your stats_temp_directory, set the rds.pg_stat_ramdisk_size
parameter to a non-zero value in the DB cluster parameter group used by your DB cluster. The parameter
value is in MB. You must restart the DB cluster before the change takes effect. For information about
setting parameters, see Working with DB parameter groups and DB cluster parameter groups (p. 339).

For example, the following AWS CLI command sets the RAM disk parameter to 256 MB.

aws rds modify-db-cluster-parameter-group \
 --db-cluster-parameter-group-name db-cl-pg-ramdisk-testing \
 --parameters "ParameterName=rds.pg_stat_ramdisk_size, ParameterValue=256,
 ApplyMethod=pending-reboot"

After you restart the DB cluster, run the following command to see the status of the
stats_temp_directory:

postgres=>show stats_temp_directory;

The command should return the following:

stats_temp_directory

/rdsdbramdisk/pg_stat_tmp
(1 row)

1385

https://www.postgresql.org/docs/current/static/runtime-config-statistics.html#GUC-STATS-TEMP-DIRECTORY

Amazon Aurora User Guide for Aurora
Specifying the RAM disk for the stats_temp_directory

1386

Amazon Aurora User Guide for Aurora
Scheduling maintenance with the pg_cron extension

Scheduling maintenance with the PostgreSQL
pg_cron extension
You can use the PostgreSQL pg_cron extension to schedule maintenance commands within a
PostgreSQL database. For a complete description, see What is pg_cron? in the pg_cron documentation.

The pg_cron extension is supported on Aurora PostgreSQL engine version 12.6 and higher 12 versions,
and all 13 versions.

Topics

• Enabling the pg_cron extension (p. 1387)

• Granting permissions to pg_cron (p. 1387)

• Scheduling pg_cron jobs (p. 1388)

• pg_cron reference (p. 1390)

Enabling the pg_cron extension

Enable the pg_cron extension as follows:

1. Modify the parameter group associated with your PostgreSQL DB instance and add pg_cron
to the shared_preload_libraries parameter value. This change requires a PostgreSQL DB
instance restart to take effect. For more information, see Modifying parameters in a DB parameter
group (p. 347).

2. After the PostgreSQL DB instance has restarted, run the following command using an account that has
the rds_superuser permissions. For example, if you used the default settings when you created your
RDS for PostgreSQL DB instance, connect as user postgres and create the extension.

CREATE EXTENSION pg_cron;

The pg_cron scheduler is set in the default PostgreSQL database named postgres. The pg_cron
objects are created in this postgres database and all scheduling actions run in this database.

3. You can use the default settings, or you can schedule jobs to run in other databases within your
PostgreSQL DB instance. To schedule jobs for other databases within your PostgreSQL DB instance,
see the example in Scheduling a cron job for a database other than postgres (p. 1390).

Granting permissions to pg_cron

As the rds_superuser role, you can create the pg_cron extension and then grant permissions to other
users. For other users to be able to schedule jobs, grant them permissions to objects in the cron schema.

Important
We recommend that you grant access to the cron schema sparingly.

To grant others permission to the cron schema, run the following command.

postgres=> GRANT USAGE ON SCHEMA cron TO other-user;

This permission provides other-user with access to the cron schema to schedule and unschedule
cron jobs. However, for the cron jobs to run successfully, the user also needs permission to access
the objects in the cron jobs. If the user doesn't have permission, the job fails and errors such as the

1387

https://github.com/citusdata/pg_cron

Amazon Aurora User Guide for Aurora
Scheduling maintenance with the pg_cron extension

following appears in the postgresql.log. In this example, the user doesn't have permission to access the
pgbench_accounts table.

2020-12-08 16:41:00 UTC::@:[30647]:ERROR: permission denied for table pgbench_accounts
2020-12-08 16:41:00 UTC::@:[30647]:STATEMENT: update pgbench_accounts set abalance =
 abalance + 1
2020-12-08 16:41:00 UTC::@:[27071]:LOG: background worker "pg_cron" (PID 30647) exited with
 exit code 1

Other messages in the cron.job_run_details table appear like the following.

postgres=> select jobid, username, status, return_message, start_time from
 cron.job_run_details where status = 'failed';
 jobid | username | status | return_message |
 start_time
-------+------------+--------+---
+-------------------------------
 143 | unprivuser | failed | ERROR: permission denied for table pgbench_accounts |
 2020-12-08 16:41:00.036268+00
 143 | unprivuser | failed | ERROR: permission denied for table pgbench_accounts |
 2020-12-08 16:40:00.050844+00
 143 | unprivuser | failed | ERROR: permission denied for table pgbench_accounts |
 2020-12-08 16:42:00.175644+00
 143 | unprivuser | failed | ERROR: permission denied for table pgbench_accounts |
 2020-12-08 16:43:00.069174+00
 143 | unprivuser | failed | ERROR: permission denied for table pgbench_accounts |
 2020-12-08 16:44:00.059466+00
(5 rows)

For more information, see The pg_cron tables (p. 1392).

Scheduling pg_cron jobs
The following sections demonstrate scheduling pg_cron jobs to perform management tasks.

Note
When creating pg_cron jobs, make sure that the number of max_worker_processes is always
greater than the number of cron.max_running_jobs. A pg_cron job will fail if it runs out of
background worker processes. The default number of pg_cron jobs is 5; for more information,
see The pg_cron parameters (p. 1390).

Topics

• Vacuuming a table (p. 1388)

• Purging the pg_cron history table (p. 1389)

• Disabling logging of pg_cron history (p. 1389)

• Scheduling a cron job for a database other than postgres (p. 1390)

Vacuuming a table

Autovacuum handles vacuum maintenance for most cases. However, you might want to schedule a
vacuum of a specific table at a time of your choosing.

Following is an example of using the cron.schedule function to set up a job to use VACUUM FREEZE
on a specific table every day at 22:00 (GMT).

SELECT cron.schedule('manual vacuum', '0 22 * * *', 'VACUUM FREEZE pgbench_accounts');

1388

Amazon Aurora User Guide for Aurora
Scheduling maintenance with the pg_cron extension

 schedule

1
(1 row)

After the preceding example runs, you can check the history in the cron.job_run_details table as
follows.

postgres=> select * from cron.job_run_details;
 jobid | runid | job_pid | database | username | command | status | return_message |
 start_time | end_time
-------+-------+---------+----------+----------+--
+-----------+----------------+-------------------------------
+-------------------------------
 1 | 1 | 3395 | postgres | adminuser| vacuum freeze pgbench_accounts | succeeded | VACUUM |
 2020-12-04 21:10:00.050386+00 | 2020-12-04 21:10:00.072028+00
(1 row)

Following is an example of viewing the history in the cron.job_run_details table to investigate why
a job failed.

postgres=> select * from cron.job_run_details where status = 'failed';
 jobid | runid | job_pid | database | username | command | status | return_message |
 start_time | end_time
-------+-------+---------+----------+----------+---------------------------------------
+--------+--
+-------------------------------+-------------------------------
 5 | 4 | 30339 | postgres | adminuser| vacuum freeze pgbench_account | failed | ERROR:
 relation "pgbench_account" does not exist | 2020-12-04 21:48:00.015145+00 | 2020-12-04
 21:48:00.029567+00
(1 row)

For more information, see The pg_cron tables (p. 1392).

Purging the pg_cron history table

The cron.job_run_details table contains a history of cron jobs that can become very large over
time. We recommend that you schedule a job that purges this table. For example, keeping a week's worth
of entries might be sufficient for troubleshooting purposes.

The following example uses the cron.schedule (p. 1391) function to schedule a job that runs every day at
midnight to purge the cron.job_run_details table. The job keeps only the last seven days. Use your
rds_superuser account to schedule the job such as the following.

SELECT cron.schedule('0 0 * * *', $$DELETE
 FROM cron.job_run_details
 WHERE end_time < now() – interval '7 days'$$);

For more information, see The pg_cron tables (p. 1392).

Disabling logging of pg_cron history

To completely disable writing anything to the cron.job_run_details table, modify the parameter
group associated with the PostgreSQL DB instance and set the cron.log_run parameter to off.
If you do this, the pg_cron extension no longer writes to the table and produces errors only in
the postgresql.log file. For more information, see Modifying parameters in a DB parameter
group (p. 347).

1389

Amazon Aurora User Guide for Aurora
Scheduling maintenance with the pg_cron extension

Use the following command to check the value of the cron.log_run parameter.

postgres=> SHOW cron.log_run;

For more information, see The pg_cron parameters (p. 1390).

Scheduling a cron job for a database other than postgres

The metadata for pg_cron is all held in the PostgreSQL default database named postgres. Because
background workers are used for running the maintenance cron jobs, you can schedule a job in any of
your databases within the PostgreSQL DB instance:

1. In the cron database, schedule the job as you normally do using the cron.schedule (p. 1391).

postgres=> SELECT cron.schedule('database1 manual vacuum', '29 03 * * *', 'vacuum freeze
 test_table');

2. As a user with the rds_superuser role, update the database column for the job that you just created
so that it runs in another database within your PostgreSQL DB instance.

postgres=> UPDATE cron.job SET database = 'database1' WHERE jobid = 106;

3. Verify by querying the cron.job table.

postgres=> select * from cron.job;
 jobid | schedule | command | nodename | nodeport | database | username | active |
 jobname
-------+-------------+--+-----------+----------
+-----------+-----------+--------+-------------------------
 106 | 29 03 * * * | vacuum freeze test_table | localhost | 8192 | database1 | adminuser
 | t | database1 manual vacuum
 1 | 59 23 * * * | vacuum freeze pgbench_accounts | localhost | 8192 | postgres |
 adminuser | t | manual vacuum
(2 rows)

Note
In some situations, you might add a cron job that you intend to run on a different database.
In such cases, the job might try to run in the default database (postgres) before you update
the correct database column. If the user name has permissions, the job successfully runs in the
default database.

pg_cron reference
You can use the following parameters, functions, and tables with the pg_cron extension. For more
information, see What is pg_cron? in the pg_cron documentation.

Topics
• The pg_cron parameters (p. 1390)
• The cron.schedule() function (p. 1391)
• The cron.unschedule() function (p. 1392)
• The pg_cron tables (p. 1392)

The pg_cron parameters

Following is a list of parameters that control the pg_cron extension behavior.

1390

https://github.com/citusdata/pg_cron

Amazon Aurora User Guide for Aurora
Scheduling maintenance with the pg_cron extension

Parameter Description

cron.database_name The database in which pg_cron metadata is kept.

cron.host The hostname to connect to PostgreSQL. You
can't modify this value.

cron.log_run Log all the jobs that run into the
job_run_details table. Values are on or off.

For more information, see The pg_cron
tables (p. 1392).

cron.log_statement Log all cron statements before running them.
Values are on or off.

cron.max_running_jobs The maximum number of jobs that can run
concurrently.

cron.use_background_workers Use background workers instead of client sessions.
You can't modify this value.

Use the following SQL command to display these parameters and their values.

postgres=> SELECT name, setting, short_desc FROM pg_settings WHERE name LIKE 'cron.%' ORDER
 BY name;

The cron.schedule() function

This function schedules a cron job. The job is initially scheduled in the default postgres database.
The function returns a bigint value representing the job identifier. To schedule jobs to run in other
databases within your PostgreSQL DB instance, see the example in Scheduling a cron job for a database
other than postgres (p. 1390).

The function has two syntax formats.

Syntax

cron.schedule (job_name,
 schedule,
 command
);

cron.schedule (schedule,
 command
);

Parameters

Parameter Description

job_name The name of the cron job.

schedule Text indicating the schedule for the cron job.
The format is the standard cron format.

command Text of the command to run.

1391

Amazon Aurora User Guide for Aurora
Scheduling maintenance with the pg_cron extension

Examples

postgres=> SELECT cron.schedule ('test','0 10 * * *', 'VACUUM pgbench_history');
 schedule

 145
(1 row)

postgres=> SELECT cron.schedule ('0 15 * * *', 'VACUUM pgbench_accounts');
 schedule

 146
(1 row)

The cron.unschedule() function

This function deletes a cron job. You can either pass in the job_name or the job_id. A policy makes sure
that you are the owner to remove the schedule for the job. The function returns a Boolean indicating
success or failure.

The function has the following syntax formats.

Syntax

cron.unschedule (job_id);

cron.unschedule (job_name);

Parameters

Parameter Description

job_id A job identifier that was returned from the
cron.schedule function when the cron job
was scheduled.

job_name The name of a cron job that was scheduled with
the cron.schedule function.

Examples

postgres=> select cron.unschedule(108);
 unschedule

 t
(1 row)

postgres=> select cron.unschedule('test');
 unschedule

 t
(1 row)

The pg_cron tables

The following tables are used to schedule the cron jobs and record how the jobs completed.

1392

Amazon Aurora User Guide for Aurora
Tuning with wait events for Aurora PostgreSQL

Table Description

cron.job Contains the metadata about each scheduled
job. Most interactions with this table should
be done by using the cron.schedule and
cron.unschedule functions.

Note
We don't recommend giving update or
insert privileges directly to this table.
Doing so would allow the user to update
the username column to run as rds-
superuser.

cron.job_run_details Contains historic information about past
scheduled jobs that ran. This is useful to
investigate the status, return messages, and start
and end time from the job that ran.

Note
To prevent this table from growing
indefinitely, purge it on a regular basis.
For an example, see Purging the pg_cron
history table (p. 1389).

Tuning with wait events for Aurora PostgreSQL
Wait events are an important tuning tool for Aurora PostgreSQL. If you can find out why sessions are
waiting for resources and what they are doing, you are better able to reduce bottlenecks. You can use the
information in this section to find possible causes and corrective actions.

Important
The wait events in this section are specific to Aurora PostgreSQL. Use the information in this
section to tune only Amazon Aurora, not RDS for PostgreSQL.
Some wait events in this section have no analogs in the open source versions of these database
engines. Other wait events have the same names as events in open source engines, but behave
differently. For example, Amazon Aurora storage works differently from open source storage, so
storage-related wait events indicate different resource conditions.

Topics
• Essential concepts for Aurora PostgreSQL tuning (p. 1394)
• Aurora PostgreSQL wait events (p. 1397)
• Client:ClientRead (p. 1398)
• Client:ClientWrite (p. 1401)
• CPU (p. 1402)
• IO:BufFileRead and IO:BufFileWrite (p. 1406)
• IO:DataFileRead (p. 1412)
• IO:XactSync (p. 1418)
• ipc:damrecordtxack (p. 1420)
• Lock:advisory (p. 1420)
• Lock:extend (p. 1422)
• Lock:Relation (p. 1424)
• Lock:transactionid (p. 1427)

1393

Amazon Aurora User Guide for Aurora
Essential concepts for Aurora PostgreSQL tuning

• Lock:tuple (p. 1430)
• lwlock:buffer_content (BufferContent) (p. 1432)
• LWLock:buffer_mapping (p. 1434)
• LWLock:BufferIO (p. 1435)
• LWLock:lock_manager (p. 1437)
• Timeout:PgSleep (p. 1440)

Essential concepts for Aurora PostgreSQL tuning
Before you tune your Aurora PostgreSQL database, make sure to learn what wait events are and why
they occur. Also review the basic memory and disk architecture of Aurora PostgreSQL. For a helpful
architecture diagram, see the PostgreSQL wikibook.

Topics
• Aurora PostgreSQL wait events (p. 1394)
• Aurora PostgreSQL memory (p. 1394)
• Aurora PostgreSQL processes (p. 1396)

Aurora PostgreSQL wait events
A wait event indicates a resource for which a session is waiting. For example, the wait event
Client:ClientRead occurs when Aurora PostgreSQL is waiting to receive data from the client. Typical
resources that a session waits for include the following:

• Single-threaded access to a buffer, for example, when a session is attempting to modify a buffer
• A row that is currently locked by another session
• A data file read
• A log file write

For example, to satisfy a query, the session might perform a full table scan. If the data isn't already in
memory, the session waits for the disk I/O to complete. When the buffers are read into memory, the
session might need to wait because other sessions are accessing the same buffers. The database records
the waits by using a predefined wait event. These events are grouped into categories.

A wait event doesn't by itself show a performance problem. For example, if requested data isn't in
memory, reading data from disk is necessary. If one session locks a row for an update, another session
waits for the row to be unlocked so that it can update it. A commit requires waiting for the write to a log
file to complete. Waits are integral to the normal functioning of a database.

Large numbers of wait events typically show a performance problem. In such cases, you can use wait
event data to determine where sessions are spending time. For example, if a report that typically runs in
minutes now runs for hours, you can identify the wait events that contribute the most to total wait time.
If you can determine the causes of the top wait events, you can sometimes make changes that improve
performance. For example, if your session is waiting on a row that has been locked by another session,
you can end the locking session.

Aurora PostgreSQL memory
Aurora PostgreSQL memory is divided into shared and local.

Topics

1394

https://en.wikibooks.org/wiki/PostgreSQL/Architecture

Amazon Aurora User Guide for Aurora
Essential concepts for Aurora PostgreSQL tuning

• Shared memory in Aurora PostgreSQL (p. 1395)
• Local memory in Aurora PostgreSQL (p. 1395)

Shared memory in Aurora PostgreSQL

Aurora PostgreSQL allocates shared memory when the instance starts. Shared memory is divided into
multiple subareas. Following, you can find a description of the most important ones.

Topics
• Shared buffers (p. 1395)
• Write ahead log (WAL) buffers (p. 1395)

Shared buffers

The shared buffer pool is an Aurora PostgreSQL memory area that holds all pages that are or were being
used by application connections. A page is the memory version of a disk block. The shared buffer pool
caches the data blocks read from disk. The pool reduces the need to reread data from disk, making the
database operate more efficiently.

Every table and index is stored as an array of pages of a fixed size. Each block contains multiple tuples,
which correspond to rows. A tuple can be stored in any page.

The shared buffer pool has finite memory. If a new request requires a page that isn't in memory, and no
more memory exists, Aurora PostgreSQL evicts a less frequently used page to accommodate the request.
The eviction policy is implemented by a clock sweep algorithm.

The shared_buffers parameter determines how much memory the server dedicates to caching data.

Write ahead log (WAL) buffers

A write-ahead log (WAL) buffer holds transaction data that Aurora PostgreSQL later writes to persistent
storage. Using the WAL mechanism, Aurora PostgreSQL can do the following:

• Recover data after a failure
• Reduce disk I/O by avoiding frequent writes to disk

When a client changes data, Aurora PostgreSQL writes the changes to the WAL buffer. When the client
issues a COMMIT, the WAL writer process writes transaction data to the WAL file.

The wal_level parameter determines how much information is written to the WAL.

Local memory in Aurora PostgreSQL

Every backend process allocates local memory for query processing.

Topics
• Work memory area (p. 1395)
• Maintenance work memory area (p. 1396)
• Temporary buffer area (p. 1396)

Work memory area

The work memory area holds temporary data for queries that performs sorts and hashes. For example, a
query with an ORDER BY clause performs a sort. Queries use hash tables in hash joins and aggregations.

1395

Amazon Aurora User Guide for Aurora
Essential concepts for Aurora PostgreSQL tuning

The work_mem parameter the amount of memory to be used by internal sort operations and hash
tables before writing to temporary disk files. The default value is 4 MB. Multiple sessions can run
simultaneously, and each session can run maintenance operations in parallel. For this reason, the total
work memory used can be multiples of the work_mem setting.

Maintenance work memory area

The maintenance work memory area caches data for maintenance operations. These operations include
vacuuming, creating an index, and adding foreign keys.

The maintenance_work_mem parameter specifies the maximum amount of memory to be used by
maintenance operations. The default value is 64 MB. A database session can only run one maintenance
operation at a time.

Temporary buffer area

The temporary buffer area caches temporary tables for each database session.

Each session allocates temporary buffers as needed up to the limit you specify. When the session ends,
the server clears the buffers.

The temp_buffers parameter sets the maximum number of temporary buffers used by each session.
Before the first use of temporary tables within a session, you can change the temp_buffers value.

Aurora PostgreSQL processes

Aurora PostgreSQL uses multiple processes.

Topics

• Postmaster process (p. 1396)

• Backend processes (p. 1396)

• Background processes (p. 1396)

Postmaster process

The postmaster process is the first process started when you start Aurora PostgreSQL. The postmaster
process has the following primary responsibilities:

• Fork and monitor background processes

• Receive authentication requests from client processes, and authenticate them before allowing the
database to service requests

Backend processes

If the postmaster authenticates a client request, the postmaster forks a new backend process, also called
a postgres process. One client process connects to exactly one backend process. The client process and
the backend process communicate directly without intervention by the postmaster process.

Background processes

The postmaster process forks several processes that perform different backend tasks. Some of the more
important include the following:

• WAL writer

1396

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL wait events

Aurora PostgreSQL writes data in the WAL (write ahead logging) buffer to the log files. The principle of
write ahead logging is that the database can't write changes to the data files until after the database
writes log records describing those changes to disk. The WAL mechanism reduces disk I/O, and allows
Aurora PostgreSQL to use the logs to recover the database after a failure.

• Background writer

This process periodically write dirty (modified) pages from the memory buffers to the data files. A
page becomes dirty when a backend process modifies it in memory.

• Autovacuum daemon

The daemon consists of the following:
• The autovacuum launcher
• The autovacuum worker processes

When autovacuum is turned on, it checks for tables that have had a large number of inserted, updated,
or deleted tuples. The daemon has the following responsibilities:
• Recover or reuse disk space occupied by updated or deleted rows
• Update statistics used by the planner
• Protect against loss of old data because of transaction ID wraparound

The autovacuum feature automates the execution of VACUUM and ANALYZE commands. VACUUM
has the following variants: standard and full. Standard vacuum runs in parallel with other database
operations. VACUUM FULL requires an exclusive lock on the table it is working on. Thus, it can't run in
parallel with operations that access the same table. VACUUM creates a substantial amount of I/O traffic,
which can cause poor performance for other active sessions.

Aurora PostgreSQL wait events
The following table lists the wait events for Aurora PostgreSQL that most commonly indicate
performance problems, and summarizes the most common causes and corrective actions. The following
wait events are a subset of the list in Amazon Aurora PostgreSQL wait events (p. 1587).

Wait event Definition

Client:ClientRead (p. 1398) This event occurs when Aurora PostgreSQL is waiting to
receive data from the client.

Client:ClientWrite (p. 1401) This event occurs when Aurora PostgreSQL is waiting to
write data to the client.

CPU (p. 1402) This event occurs when a thread is active in CPU or is waiting
for CPU.

IO:BufFileRead and IO:BufFileWrite (p. 1406) These events occur when Aurora PostgreSQL creates
temporary files.

IO:DataFileRead (p. 1412) This event occurs when a connection waits on a backend
process to read a required page from storage because the
page isn't available in shared memory.

IO:XactSync (p. 1418) This event occurs when the database is waiting for the
Aurora storage subsystem to acknowledge the commit of a
regular transaction, or the commit or rollback of a prepared
transaction.

1397

Amazon Aurora User Guide for Aurora
Client:ClientRead

Wait event Definition

ipc:damrecordtxack (p. 1420) This event occurs when Aurora PostgreSQL in a session
using database activity streams generates an activity stream
event, then waits for that event to become durable.

Lock:advisory (p. 1420) This event occurs when a PostgreSQL application uses a lock
to coordinate activity across multiple sessions.

Lock:extend (p. 1422) This event occurs when a backend process is waiting to lock
a relation to extend it while another process has a lock on
that relation for the same purpose.

Lock:Relation (p. 1424) This event occurs when a query is waiting to acquire a
lock on a table or view that's currently locked by another
transaction.

Lock:transactionid (p. 1427) This event occurs when a transaction is waiting for a row-
level lock.

Lock:tuple (p. 1430) This event occurs when a backend process is waiting to
acquire a lock on a tuple.

lwlock:buffer_content (BufferContent) (p. 1432) This event occurs when a session is waiting to read or write
a data page in memory while another session has that page
locked for writing.

LWLock:buffer_mapping (p. 1434) This event occurs when a session is waiting to associate a
data block with a buffer in the shared buffer pool.

LWLock:BufferIO (p. 1435) This event occurs when Aurora PostgreSQL or RDS for
PostgreSQL is waiting for other processes to finish their
input/output (I/O) operations when concurrently trying to
access a page.

LWLock:lock_manager (p. 1437) This event occurs when the Aurora PostgreSQL engine
maintains the shared lock's memory area to allocate, check,
and deallocate a lock when a fast path lock isn't possible.

Timeout:PgSleep (p. 1440) This event occurs when a server process has called the
pg_sleep function and is waiting for the sleep timeout to
expire.

Client:ClientRead
The Client:ClientRead event occurs when Aurora PostgreSQL is waiting to receive data from the
client.

Topics

• Supported engine versions (p. 1399)

• Context (p. 1399)

• Likely causes of increased waits (p. 1399)

• Actions (p. 1399)

1398

Amazon Aurora User Guide for Aurora
Client:ClientRead

Supported engine versions
This wait event information is supported for Aurora PostgreSQL version 10 and higher.

Context
An Aurora PostgreSQL DB cluster is waiting to receive data from the client. The Aurora PostgreSQL DB
cluster must receive the data from the client before it can send more data to the client. The time that the
cluster waits before receiving data from the client is a Client:ClientRead event.

Likely causes of increased waits
Common causes for the Client:ClientRead event to appear in top waits include the following:

Increased network latency

There might be increased network latency between the Aurora PostgreSQL DB cluster and client.
Higher network latency increases the time required for DB cluster to receive data from the client.

Increased load on the client

There might be CPU pressure or network saturation on the client. An increase in load on the client
can delay transmission of data from the client to the Aurora PostgreSQL DB cluster.

Excessive network round trips

A large number of network round trips between the Aurora PostgreSQL DB cluster and the client can
delay transmission of data from the client to the Aurora PostgreSQL DB cluster.

Large copy operation

During a copy operation, the data is transferred from the client's file system to the Aurora
PostgreSQL DB cluster. Sending a large amount of data to the DB cluster can delay transmission of
data from the client to the DB cluster.

Idle client connection

When a client connects to the Aurora PostgreSQL DB cluster in an idle in transaction state,
the DB cluster might wait for the client to send more data or issue a command. A connection in this
state can lead to an increase in Client:ClientRead events.

PgBouncer used for connection pooling

PgBouncer has a low-level network configuration setting called pkt_buf, which is set to 4,096
by default. If the workload is sending query packets larger than 4,096 bytes through PgBouncer,
we recommend increasing the pkt_buf setting to 8,192. If the new setting doesn't decrease the
number of Client:ClientRead events, we recommend increasing the pkt_buf setting to larger
values, such as 16,384 or 32,768. If the query text is large, the larger setting can be particularly
helpful.

Actions
We recommend different actions depending on the causes of your wait event.

Topics
• Place the clients in the same Availability Zone and VPC subnet as the cluster (p. 1400)
• Scale your client (p. 1400)
• Use current generation instances (p. 1400)
• Increase network bandwidth (p. 1400)

1399

Amazon Aurora User Guide for Aurora
Client:ClientRead

• Monitor maximums for network performance (p. 1400)
• Monitor for transactions in the "idle in transaction" state (p. 1400)

Place the clients in the same Availability Zone and VPC subnet as the cluster

To reduce network latency and increase network throughput, place clients in the same Availability Zone
and virtual private cloud (VPC) subnet as the Aurora PostgreSQL DB cluster. Make sure that the clients
are as geographically close to the DB cluster as possible.

Scale your client

Using Amazon CloudWatch or other host metrics, determine if your client is currently constrained by CPU
or network bandwidth, or both. If the client is constrained, scale your client accordingly.

Use current generation instances

In some cases, you might not be using a DB instance class that supports jumbo frames. If you're running
your application on Amazon EC2, consider using a current generation instance for the client. Also,
configure the maximum transmission unit (MTU) on the client operating system. This technique might
reduce the number of network round trips and increase network throughput. For more information, see
Jumbo frames (9001 MTU) in the Amazon EC2 User Guide for Linux Instances.

For information about DB instance classes, see Aurora DB instance classes (p. 54). To determine the
DB instance class that is equivalent to an Amazon EC2 instance type, place db. before the Amazon
EC2 instance type name. For example, the r5.8xlarge Amazon EC2 instance is equivalent to the
db.r5.8xlarge DB instance class.

Increase network bandwidth

Use NetworkReceiveThroughput and NetworkTransmitThroughput Amazon CloudWatch metrics
to monitor incoming and outgoing network traffic on the DB cluster. These metrics can help you to
determine if network bandwidth is sufficient for your workload.

If your network bandwidth isn't enough, increase it. If the AWS client or your DB instance is reaching the
network bandwidth limits, the only way to increase the bandwidth is to increase your DB instance size.

For more information about CloudWatch metrics, see Amazon CloudWatch metrics for Amazon
Aurora (p. 654).

Monitor maximums for network performance

If you are using Amazon EC2 clients, Amazon EC2 provides maximums for network performance metrics,
including aggregate inbound and outbound network bandwidth. It also provides connection tracking
to ensure that packets are returned as expected and link-local services access for services such as the
Domain Name System (DNS). To monitor these maximums, use a current enhanced networking driver
and monitor network performance for your client.

For more information, see Monitor network performance for your Amazon EC2 instance in the Amazon
EC2 User Guide for Linux Instances and Monitor network performance for your Amazon EC2 instance in
the Amazon EC2 User Guide for Windows Instances.

Monitor for transactions in the "idle in transaction" state

Check whether you have an increasing number of idle in transaction connections. To do this,
monitor the state column in the pg_stat_activity table. You might be able to identify the
connection source by running a query similar to the following.

select client_addr, state, count(1) from pg_stat_activity

1400

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/network_mtu.html#jumbo_frame_instances
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/network_mtu.html#jumbo_frame_instances
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring-network-performance-ena.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/monitoring-network-performance-ena.html

Amazon Aurora User Guide for Aurora
Client:ClientWrite

where state like 'idle in transaction%'
group by 1,2
order by 3 desc

Client:ClientWrite
The Client:ClientWrite event occurs when Aurora PostgreSQL is waiting to write data to the client.

Topics
• Supported engine versions (p. 1401)
• Context (p. 1401)
• Likely causes of increased waits (p. 1401)
• Actions (p. 1401)

Supported engine versions
This wait event information is supported for Aurora PostgreSQL version 10 and higher.

Context
A client process must read all of the data received from an Aurora PostgreSQL DB cluster before the
cluster can send more data. The time that the cluster waits before sending more data to the client is a
Client:ClientWrite event.

Reduced network throughput between the Aurora PostgreSQL DB cluster and the client can cause this
event. CPU pressure and network saturation on the client can also cause this event. CPU pressure is
when the CPU is fully utilized and there are tasks waiting for CPU time. Network saturation is when the
network between the database and client is carrying more data than it can handle.

Likely causes of increased waits
Common causes for the Client:ClientWrite event to appear in top waits include the following:

Increased network latency

There might be increased network latency between the Aurora PostgreSQL DB cluster and client.
Higher network latency increases the time required for the client to receive the data.

Increased load on the client

There might be CPU pressure or network saturation on the client. An increase in load on the client
delays the reception of data from the Aurora PostgreSQL DB cluster.

Large volume of data sent to the client

The Aurora PostgreSQL DB cluster might be sending a large amount of data to the client. A client
might not be able to receive the data as fast as the cluster is sending it. Activities such as a copy of a
large table can result in an increase in Client:ClientWrite events.

Actions
We recommend different actions depending on the causes of your wait event.

Topics
• Place the clients in the same Availability Zone and VPC subnet as the cluster (p. 1402)

1401

Amazon Aurora User Guide for Aurora
CPU

• Use current generation instances (p. 1402)
• Reduce the amount of data sent to the client (p. 1402)
• Scale your client (p. 1402)

Place the clients in the same Availability Zone and VPC subnet as the cluster

To reduce network latency and increase network throughput, place clients in the same Availability Zone
and virtual private cloud (VPC) subnet as the Aurora PostgreSQL DB cluster.

Use current generation instances

In some cases, you might not be using a DB instance class that supports jumbo frames. If you're running
your application on Amazon EC2, consider using a current generation instance for the client. Also,
configure the maximum transmission unit (MTU) on the client operating system. This technique might
reduce the number of network round trips and increase network throughput. For more information, see
Jumbo frames (9001 MTU) in the Amazon EC2 User Guide for Linux Instances.

For information about DB instance classes, see Aurora DB instance classes (p. 54). To determine the
DB instance class that is equivalent to an Amazon EC2 instance type, place db. before the Amazon
EC2 instance type name. For example, the r5.8xlarge Amazon EC2 instance is equivalent to the
db.r5.8xlarge DB instance class.

Reduce the amount of data sent to the client

When possible, adjust your application to reduce the amount of data that the Aurora PostgreSQL DB
cluster sends to the client. Making such adjustments relieves CPU and network contention on the client.

Scale your client

Using Amazon CloudWatch or other host metrics, determine if your client is currently constrained by CPU
or network bandwidth, or both. If the client is constrained, scale your client accordingly.

CPU
This event occurs when a thread is active in CPU or is waiting for CPU.

Topics
• Supported engine versions (p. 1402)
• Context (p. 1402)
• Likely causes of increased waits (p. 1404)
• Actions (p. 1404)

Supported engine versions
This wait event information is relevant for Aurora PostgreSQL version 9.6 and higher.

Context
The central processing unit (CPU) is the component of a computer that runs instructions. For example,
CPU instructions perform arithmetic operations and exchange data in memory. If a query increases the
number of instructions that it performs through the database engine, the time spent running the query
increases. CPU scheduling is giving CPU time to a process. Scheduling is orchestrated by the kernel of the
operating system.

1402

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/network_mtu.html#jumbo_frame_instances
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/network_mtu.html#jumbo_frame_instances

Amazon Aurora User Guide for Aurora
CPU

Topics

• How to tell when this wait occurs (p. 1403)

• DBLoadCPU metric (p. 1403)

• os.cpuUtilization metrics (p. 1403)

• Likely cause of CPU scheduling (p. 1403)

How to tell when this wait occurs

This CPU wait event indicates that a backend process is active in CPU or is waiting for CPU. You know that
it's occurring when a query shows the following information:

• The pg_stat_activity.state column has the value active.

• The wait_event_type and wait_event columns in pg_stat_activity are both null.

To see the backend processes that are using or waiting on CPU, run the following query.

SELECT *
FROM pg_stat_activity
WHERE state = 'active'
AND wait_event_type IS NULL
AND wait_event IS NULL;

DBLoadCPU metric

The Performance Insights metric for CPU is DBLoadCPU. The value for DBLoadCPU can differ from the
value for the Amazon CloudWatch metric CPUUtilization. The latter metric is collected from the
HyperVisor for a database instance.

os.cpuUtilization metrics

Performance Insights operating-system metrics provide detailed information about CPU utilization. For
example, you can display the following metrics:

• os.cpuUtilization.nice.avg

• os.cpuUtilization.total.avg

• os.cpuUtilization.wait.avg

• os.cpuUtilization.idle.avg

Performance Insights reports the CPU usage by the database engine as
os.cpuUtilization.nice.avg.

Likely cause of CPU scheduling

From an operating system perspective, the CPU is active when it isn't running the idle thread. The CPU is
active while it performs a computation, but it's also active when it waits on memory I/O. This type of I/O
dominates a typical database workload.

Processes are likely to wait to get scheduled on a CPU when the following conditions are met:

• The CloudWatch CPUUtilization metric is near 100 percent.

• The average load is greater than the number of vCPUs, indicating a heavy load. You can find the
loadAverageMinute metric in the OS metrics section in Performance Insights.

1403

Amazon Aurora User Guide for Aurora
CPU

Likely causes of increased waits
When the CPU wait event occurs more than normal, possibly indicating a performance problem, typical
causes include the following.

Topics
• Likely causes of sudden spikes (p. 1404)
• Likely causes of long-term high frequency (p. 1404)
• Corner cases (p. 1404)

Likely causes of sudden spikes

The most likely causes of sudden spikes are as follows:

• Your application has opened too many simultaneous connections to the database. This scenario is
known as a "connection storm."

• Your application workload changed in any of the following ways:
• New queries
• An increase in the size of your dataset
• Index maintenance or creation
• New functions
• New operators
• An increase in parallel query execution

• Your query execution plans have changed. In some cases, a change can cause an increase in buffers. For
example, the query is now using a sequential scan when it previously used an index. In this case, the
queries need more CPU to accomplish the same goal.

Likely causes of long-term high frequency

The most likely causes of events that recur over a long period:

• Too many backend processes are running concurrently on CPU. These processes can be parallel
workers.

• Queries are performing suboptimally because they need a large number of buffers.

Corner cases

If none of the likely causes turn out to be actual causes, the following situations might be occurring:

• The CPU is swapping processes in and out.
• CPU context switching has increased.
• Aurora PostgreSQL code is missing wait events.

Actions
If the CPU wait event dominates database activity, it doesn't necessarily indicate a performance problem.
Respond to this event only when performance degrades.

Topics
• Investigate whether the database is causing the CPU increase (p. 1405)

1404

Amazon Aurora User Guide for Aurora
CPU

• Determine whether the number of connections increased (p. 1405)
• Respond to workload changes (p. 1406)

Investigate whether the database is causing the CPU increase

Examine the os.cpuUtilization.nice.avg metric in Performance Insights. If this value is far less
than the CPU usage, nondatabase processes are the main contributor to CPU.

Determine whether the number of connections increased

Examine the DatabaseConnections metric in Amazon CloudWatch. Your action depends on whether
the number increased or decreased during the period of increased CPU wait events.

The connections increased

If the number of connections went up, compare the number of backend processes consuming CPU to the
number of vCPUs. The following scenarios are possible:

• The number of backend processes consuming CPU is less than the number of vCPUs.

In this case, the number of connections isn't an issue. However, you might still try to reduce CPU
utilization.

• The number of backend processes consuming CPU is greater than the number of vCPUs.

In this case, consider the following options:
• Decrease the number of backend processes connected to your database. For example, implement a

connection pooling solution such as RDS Proxy. To learn more, see Using Amazon RDS Proxy (p. 288).
• Upgrade your instance size to get a higher number of vCPUs.
• Redirect some read-only workloads to reader nodes, if applicable.

The connections didn't increase

Examine the blks_hit metrics in Performance Insights. Look for a correlation between an increase in
blks_hit and CPU usage. The following scenarios are possible:

• CPU usage and blks_hit are correlated.

In this case, find the top SQL statements that are linked to the CPU usage, and look for plan changes.
You can use either of the following techniques:
• Explain the plans manually and compare them to the expected execution plan.
• Look for an increase in block hits per second and local block hits per second. In the Top SQL section

of Performance Insights dashboard, choose Preferences.
• CPU usage and blks_hit aren't correlated.

In this case, determine whether any of the following occurs:
• The application is rapidly connecting to and disconnecting from the database.

Diagnose this behavior by turning on log_connections and log_disconnections, then
analyzing the PostgreSQL logs. Consider using the pgbadger log analyzer. For more information,
see https://github.com/darold/pgbadger.

• The OS is overloaded.

In this case, Performance Insights shows that backend processes are consuming CPU for a longer
time than usual. Look for evidence in the Performance Insights os.cpuUtilization metrics or
the CloudWatch CPUUtilization metric. If the operating system is overloaded, look at Enhanced

1405

https://github.com/darold/pgbadger

Amazon Aurora User Guide for Aurora
IO:BufFileRead and IO:BufFileWrite

Monitoring metrics to diagnose further. Specifically, look at the process list and the percentage of
CPU consumed by each process.

• Top SQL statements are consuming too much CPU.

Examine statements that are linked to the CPU usage to see whether they can use less CPU. Run
an EXPLAIN command, and focus on the plan nodes that have the most impact. Consider using a
PostgreSQL execution plan visualizer. To try out this tool, see http://explain.dalibo.com/.

Respond to workload changes

If your workload has changed, look for the following types of changes:

New queries

Check whether the new queries are expected. If so, ensure that their execution plans and the number
of executions per second are expected.

An increase in the size of the data set

Determine whether partitioning, if it's not already implemented, might help. This strategy might
reduce the number of pages that a query needs to retrieve.

Index maintenance or creation

Check whether the schedule for the maintenance is expected. A best practice is to schedule
maintenance activities outside of peak activities.

New functions

Check whether these functions perform as expected during testing. Specifically, check whether the
number of executions per second is expected.

New operators

Check whether they perform as expected during the testing.

An increase in running parallel queries

Determine whether any of the following situations has occurred:

• The relations or indexes involved have suddenly grown in size so that they differ significantly from
min_parallel_table_scan_size or min_parallel_index_scan_size.

• Recent changes have been made to parallel_setup_cost or parallel_tuple_cost.

• Recent changes have been made to max_parallel_workers or
max_parallel_workers_per_gather.

IO:BufFileRead and IO:BufFileWrite
The IO:BufFileRead and IO:BufFileWrite events occur when Aurora PostgreSQL creates
temporary files. When operations require more memory than the working memory parameters currently
define, they write temporary data to persistent storage. This operation is sometimes called "spilling to
disk."

Topics
• Supported engine versions (p. 1407)

• Context (p. 1407)

• Likely causes of increased waits (p. 1407)

• Actions (p. 1407)

1406

http://explain.dalibo.com/

Amazon Aurora User Guide for Aurora
IO:BufFileRead and IO:BufFileWrite

Supported engine versions
This wait event information is supported for all versions of Aurora PostgreSQL.

Context
IO:BufFileRead and IO:BufFileWrite relate to the work memory area and maintenance work
memory area. For more information about these local memory areas, see Work memory area (p. 1395)
and Maintenance work memory area (p. 1396).

The default value for work_mem is 4 MB. If one session performs operations in parallel, each worker
handling the parallelism uses 4 MB of memory. For this reason, set work_mem carefully. If you increase
the value too much, a database running many sessions might consume too much memory. If you set
the value too low, Aurora PostgreSQL creates temporary files in local storage. The disk I/O for these
temporary files can reduce performance.

If you observe the following sequence of events, your database might be generating temporary files:

1. Sudden and sharp decreases in availability
2. Fast recovery for the free space

You might also see a "chainsaw" pattern. This pattern can indicate that your database is creating small
files constantly.

Likely causes of increased waits
In general, these wait events are caused by operations that consume more memory than the work_mem
or maintenance_work_mem parameters allocate. To compensate, the operations write to temporary
files. Common causes for the IO:BufFileRead and IO:BufFileWrite events include the following:

Queries that need more memory than exists in the work memory area

Queries with the following characteristics use the work memory area:
• Hash joins
• ORDER BY clause
• GROUP BY clause
• DISTINCT

• Window functions
• CREATE TABLE AS SELECT

• Materialized view refresh

Statements that need more memory than exists in the maintenance work memory area

The following statements use the maintenance work memory area:
• CREATE INDEX

• CLUSTER

Actions
We recommend different actions depending on the causes of your wait event.

Topics
• Identify the problem (p. 1408)

1407

Amazon Aurora User Guide for Aurora
IO:BufFileRead and IO:BufFileWrite

• Examine your join queries (p. 1408)
• Examine your ORDER BY and GROUP BY queries (p. 1409)
• Avoid using the DISTINCT operation (p. 1409)
• Consider using window functions instead of GROUP BY functions (p. 1410)
• Investigate materialized views and CTAS statements (p. 1410)
• Use pg_repack when you create indexes (p. 1410)
• Increase maintenance_work_mem when you cluster tables (p. 1411)
• Tune memory to prevent IO:BufFileRead and IO:BufFileWrite (p. 1411)

Identify the problem

Assume a situation in which Performance Insights isn't turned on and you suspect that
IO:BufFileRead and IO:BufFileWrite are occurring more frequently than is normal. Do the
following:

1. Examine the FreeLocalStorage metric in Amazon CloudWatch.
2. Look for a chainsaw pattern, which is a series of jagged spikes.

A chainsaw pattern indicates a quick consumption and release of storage, often associated with
temporary files. If you notice this pattern, turn on Performance Insights. When using Performance
Insights, you can identify when the wait events occur and which queries are associated with them. Your
solution depends on the specific query causing the events.

Or set the parameter log_temp_files. This parameter logs all queries generating more than threshold
KB of temporary files. If the value is 0, Aurora PostgreSQL logs all temporary files. If the value is 1024,
Aurora PostgreSQL logs all queries that produces temporary files larger than 1 MB. For more information
about log_temp_files, see Error Reporting and Logging in the PostgreSQL documentation.

Examine your join queries

Your application probably use joins. For example, the following query joins four tables.

SELECT *
 FROM order
 INNER JOIN order_item
 ON (order.id = order_item.order_id)
 INNER JOIN customer
 ON (customer.id = order.customer_id)
 INNER JOIN customer_address
 ON (customer_address.customer_id = customer.id AND
 order.customer_address_id = customer_address.id)
 WHERE customer.id = 1234567890;

A possible cause of spikes in temporary file usage is a problem in the query itself. For example, a broken
clause might not filter the joins properly. Consider the second inner join in the following example.

SELECT *
 FROM order
 INNER JOIN order_item
 ON (order.id = order_item.order_id)
 INNER JOIN customer
 ON (customer.id = customer.id)
 INNER JOIN customer_address
 ON (customer_address.customer_id = customer.id AND
 order.customer_address_id = customer_address.id)
 WHERE customer.id = 1234567890;

1408

https://www.postgresql.org/docs/10/runtime-config-logging.html

Amazon Aurora User Guide for Aurora
IO:BufFileRead and IO:BufFileWrite

The preceding query mistakenly joins customer.id to customer.id, generating a Cartesian product
between every customer and every order. This type of accidental join generates large temporary files.
Depending on the size of the tables, a Cartesian query can even fill up storage. Your application might
have Cartesian joins when the following conditions are met:

• You see large, sharp decreases in storage availability, followed by fast recovery.
• No indexes are being created.
• No CREATE TABLE FROM SELECT statements are being issued.
• No materialized views are being refreshed.

To see whether the tables are being joined using the proper keys, inspect your query and object-
relational mapping directives. Bear in mind that certain queries of your application are not called all the
time, and some queries are dynamically generated.

Examine your ORDER BY and GROUP BY queries

In some cases, an ORDER BY clause can result in excessive temporary files. Consider the following
guidelines:

• Only include columns in an ORDER BY clause when they need to be ordered. This guideline is
especially important for queries that return thousands of rows and specify many columns in the ORDER
BY clause.

• Considering creating indexes to accelerate ORDER BY clauses when they match columns that have the
same ascending or descending order. Partial indexes are preferable because they are smaller. Smaller
indexes are read and traversed more quickly.

• If you create indexes for columns that can accept null values, consider whether you want the null
values stored at the end or at the beginning of the indexes.

If possible, reduce the number of rows that need to be ordered by filtering the result set. If you use
WITH clause statements or subqueries, remember that an inner query generates a result set and passes
it to the outside query. The more rows that a query can filter out, the less ordering the query needs to
do.

• If you don't need to obtain the full result set, use the LIMIT clause. For example, if you only want the
top five rows, a query using the LIMIT clause doesn't keep generating results. In this way, the query
requires less memory and temporary files.

A query that uses a GROUP BY clause can also require temporary files. GROUP BY queries summarize
values by using functions such as the following:

• COUNT

• AVG

• MIN

• MAX

• SUM

• STDDEV

To tune GROUP BY queries, follow the recommendations for ORDER BY queries.

Avoid using the DISTINCT operation

If possible, avoid using the DISTINCT operation to remove duplicated rows. The more unnecessary
and duplicated rows that your query returns, the more expensive the DISTINCT operation becomes. If
possible, add filters in the WHERE clause even if you use the same filters for different tables. Filtering

1409

Amazon Aurora User Guide for Aurora
IO:BufFileRead and IO:BufFileWrite

the query and joining correctly improves your performance and reduces resource use. It also prevents
incorrect reports and results.

If you need to use DISTINCT for multiple rows of a same table, consider creating a composite index.
Grouping multiple columns in an index can improve the time to evaluate distinct rows. Also, if you use
Amazon Aurora PostgreSQL version 10 or higher, you can correlate statistics among multiple columns by
using the CREATE STATISTICS command.

Consider using window functions instead of GROUP BY functions

Using GROUP BY, you change the result set, and then retrieve the aggregated result. Using window
functions, you aggregate data without changing the result set. A window function uses the OVER clause
to perform calculations across the sets defined by the query, correlating one row with another. You can
use all the GROUP BY functions in window functions, but also use functions such as the following:

• RANK

• ARRAY_AGG

• ROW_NUMBER

• LAG

• LEAD

To minimize the number of temporary files generated by a window function, remove duplications for the
same result set when you need two distinct aggregations. Consider the following query.

SELECT sum(salary) OVER (PARTITION BY dept ORDER BY salary DESC) as sum_salary
 , avg(salary) OVER (PARTITION BY dept ORDER BY salary ASC) as avg_salary
 FROM empsalary;

You can rewrite the query with the WINDOW clause as follows.

SELECT sum(salary) OVER w as sum_salary
 , avg(salary) OVER w as_avg_salary
 FROM empsalary
 WINDOW w AS (PARTITION BY dept ORDER BY salary DESC);

By default, the Aurora PostgreSQL execution planner consolidates similar nodes so that it doesn't
duplicate operations. However, by using an explicit declaration for the window block, you can maintain
the query more easily. You might also improve performance by preventing duplication.

Investigate materialized views and CTAS statements

When a materialized view refreshes, it runs a query. This query can contain an operation such as GROUP
BY, ORDER BY, or DISTINCT. During a refresh, you might observe large numbers of temporary files and
the wait events IO:BufFileWrite and IO:BufFileRead. Similarly, when you create a table based on
a SELECT statement, the CREATE TABLE statement runs a query. To reduce the temporary files needed,
optimize the query.

Use pg_repack when you create indexes

When you create an index, the engine orders the result set. As tables grow in size, and as values in
the indexed column become more diverse, the temporary files require more space. In most cases, you
can't prevent the creation of temporary files for large tables without modifying the maintenance work
memory area. For more information, see Maintenance work memory area (p. 1396).

A possible workaround when recreating a large index is to use the pg_repack tool. For more information,
see Reorganize tables in PostgreSQL databases with minimal locks in the pg_repack documentation.

1410

https://reorg.github.io/pg_repack/

Amazon Aurora User Guide for Aurora
IO:BufFileRead and IO:BufFileWrite

Increase maintenance_work_mem when you cluster tables

The CLUSTER command clusters the table specified by table_name based on an existing index specified
by index_name. Aurora PostgreSQL physically recreates the table to match the order of a given index.

When magnetic storage was prevalent, clustering was common because storage throughput was limited.
Now that SSD-based storage is common, clustering is less popular. However, if you cluster tables, you can
still increase performance slightly depending on the table size, index, query, and so on.

If you run the CLUSTER command and observe the wait events IO:BufFileWrite and
IO:BufFileRead, tune maintenance_work_mem. Increase the memory size to a fairly large amount. A
high value means that the engine can use more memory for the clustering operation.

Tune memory to prevent IO:BufFileRead and IO:BufFileWrite

In some situation, you need to tune memory. Your goal is to balance the following requirements:

• The work_mem value (see Work memory area (p. 1395))
• The memory remaining after discounting the shared_buffers value (see Buffer pool (p. 860))
• The maximum connections opened and in use, which is limited by max_connections

Increase the size of the work memory area

In some situations, your only option is to increase the memory used by your session. If your queries are
correctly written and are using the correct keys for joins, consider increasing the work_mem value. For
more information, see Work memory area (p. 1395).

To find out how many temporary files a query generates, set log_temp_files to 0. If you increase the
work_mem value to the maximum value identified in the logs, you prevent the query from generating
temporary files. However, work_mem sets the maximum per plan node for each connection or parallel
worker. If the database has 5,000 connections, and if each one uses 256 MiB memory, the engine needs
1.2 TiB of RAM. Thus, your instance might run out of memory.

Reserve sufficient memory for the shared buffer pool

Your database uses memory areas such as the shared buffer pool, not just the work memory area.
Consider the requirements of these additional memory areas before you increase work_mem. For more
information about the buffer pool, see Buffer pool (p. 860).

For example, assume that your Aurora PostgreSQL instance class is db.r5.2xlarge. This class has 64 GiB of
memory. By default, 75 percent of the memory is reserved for the shared buffer pool. After you subtract
the amount allocated to the shared memory area, 16,384 MB remains. Don't allocate the remaining
memory exclusively to the work memory area because the operating system and the engine also require
memory.

The memory that you can allocate to work_mem depends on the instance class. If you use a larger
instance class, more memory is available. However, in the preceding example, you can't use more than 16
GiB. Otherwise, your instance becomes unavailable when it runs out of memory. To recover the instance
from the unavailable state, the Aurora PostgreSQL automation services automatically restart.

Manage the number of connections

Suppose that your database instance has 5,000 simultaneous connections. Each connection uses at least
4 MiB of work_mem. The high memory consumption of the connections is likely to degrade performance.
In response, you have the following options:

• Upgrade to a larger instance class.

1411

Amazon Aurora User Guide for Aurora
IO:DataFileRead

• Decrease the number of simultaneous database connections by using a connection proxy or pooler.

For proxies, consider Amazon RDS Proxy, pgBouncer, or a connection pooler based on your application.
This solution alleviates the CPU load. It also reduces the risk when all connections require the work
memory area. When fewer database connections exist, you can increase the value of work_mem. In this
way, you reduce the occurrence of the IO:BufFileRead and IO:BufFileWrite wait events. Also, the
queries waiting for the work memory area speed up significantly.

IO:DataFileRead
The IO:DataFileRead event occurs when a connection waits on a backend process to read a required
page from storage because the page isn't available in shared memory.

Topics
• Supported engine versions (p. 1412)
• Context (p. 1412)
• Likely causes of increased waits (p. 1412)
• Actions (p. 1413)

Supported engine versions
This wait event information is supported for all versions of Aurora PostgreSQL.

Context
All queries and data manipulation (DML) operations access pages in the buffer pool. Statements that can
induce reads include SELECT, UPDATE, and DELETE. For example, an UPDATE can read pages from tables
or indexes. If the page being requested or updated isn't in the shared buffer pool, this read can lead to
the IO:DataFileRead event.

Because the shared buffer pool is finite, it can fill up. In this case, requests for pages that aren't in
memory force the database to read blocks from disk. If the IO:DataFileRead event occurs frequently,
your shared buffer pool might be too small to accommodate your workload. This problem is acute for
SELECT queries that read a large number of rows that don't fit in the buffer pool. For more information
about the buffer pool, see Buffer pool (p. 860).

Likely causes of increased waits
Common causes for the IO:DataFileRead event include the following:

Connection spikes

You might find multiple connections generating the same number of IO:DataFileRead wait events. In
this case, a spike (sudden and large increase) in IO:DataFileRead events can occur.

SELECT and DML statements performing sequential scans

Your application might be performing a new operation. Or an existing operation might change
because of a new execution plan. In such cases, look for tables (particularly large tables) that have a
greater seq_scan value. Find them by querying pg_stat_user_tables. To track queries that are
generating more read operations, use the extension pg_stat_statements.

CTAS and CREATE INDEX for large data sets

A CTAS is a CREATE TABLE AS SELECT statement. If you run a CTAS using a large data set as
a source, or create an index on a large table, the IO:DataFileRead event can occur. When you

1412

Amazon Aurora User Guide for Aurora
IO:DataFileRead

create an index, the database might need to read the entire object using a sequential scan. A CTAS
generates IO:DataFile reads when pages aren't in memory.

Multiple vacuum workers running at the same time

Vacuum workers can be triggered manually or automatically. We recommend adopting an aggressive
vacuum strategy. However, when a table has many updated or deleted rows, the IO:DataFileRead
waits increase. After space is reclaimed, the vacuum time spent on IO:DataFileRead decreases.

Ingesting large amounts of data

When your application ingests large amounts of data, ANALYZE operations might occur more often.
The ANALYZE process can be triggered by an autovacuum launcher or invoked manually.

The ANALYZE operation reads a subset of the table. The number of pages that must be scanned is
calculated by multiplying 30 by the default_statistics_target value. For more information,
see the PostgreSQL documentation. The default_statistics_target parameter accepts values
between 1 and 10,000, where the default is 100.

Resource starvation

If instance network bandwidth or CPU are consumed, the IO:DataFileRead event might occur
more frequently.

Actions
We recommend different actions depending on the causes of your wait event.

Topics
• Check predicate filters for queries that generate waits (p. 1413)
• Minimize the effect of maintenance operations (p. 1414)
• Respond to high numbers of connections (p. 1418)

Check predicate filters for queries that generate waits

Assume that you identify specific queries that are generating IO:DataFileRead wait events. You might
identify them using the following techniques:

• Performance Insights
• Catalog views such as the one provided by the extension pg_stat_statements
• The catalog view pg_stat_all_tables, if it periodically shows an increased number of physical

reads
• The pg_statio_all_tables view, if it shows that _read counters are increasing

We recommend that you determine which filters are used in the predicate (WHERE clause) of these
queries. Follow these guidelines:

• Run the EXPLAIN command. In the output, identify which types of scans are used. A sequential scan
doesn't necessarily indicate a problem. Queries that use sequential scans naturally produce more
IO:DataFileRead events when compared to queries that use filters.

Find out whether the column listed in the WHERE clause is indexed. If not, consider creating an index
for this column. This approach avoids the sequential scans and reduces the IO:DataFileRead events.
If a query has restrictive filters and still produces sequential scans, evaluate whether the proper
indexes are being used.

• Find out whether the query is accessing a very large table. In some cases, partitioning a table can
improve performance, allowing the query to only read necessary partitions.

1413

https://www.postgresql.org/docs/current/runtime-config-query.html#GUC-DEFAULT-STATISTICS-TARGET

Amazon Aurora User Guide for Aurora
IO:DataFileRead

• Examine the cardinality (total number of rows) from your join operations. Note how restrictive the
values are that you're passing in the filters for your WHERE clause. If possible, tune your query to
reduce the number of rows that are passed in each step of the plan.

Minimize the effect of maintenance operations

Maintenance operations such as VACUUM and ANALYZE are important. We recommend that you don't
turn them off because you find IO:DataFileRead wait events related to these maintenance operations.
The following approaches can minimize the effect of these operations:

• Run maintenance operations manually during off-peak hours. This technique prevents the database
from reaching the threshold for automatic operations.

• For very large tables, consider partitioning the table. This technique reduces the overhead of
maintenance operations. The database only accesses the partitions that require maintenance.

• When you ingest large amounts of data, consider disabling the autoanalyze feature.

The autovacuum feature is automatically triggered for a table when the following formula is true.

pg_stat_user_tables.n_dead_tup > (pg_class.reltuples x autovacuum_vacuum_scale_factor) +
 autovacuum_vacuum_threshold

The view pg_stat_user_tables and catalog pg_class have multiple rows. One row can
correspond to one row in your table. This formula assumes that the reltuples are for a
specific table. The parameters autovacuum_vacuum_scale_factor (0.20 by default) and
autovacuum_vacuum_threshold (50 tuples by default) are usually set globally for the whole instance.
However, you can set different values for a specific table.

Topics
• Find tables consuming unnecessary space (p. 1414)
• Find indexes consuming unnecessary space (p. 1415)
• Find tables that are eligible to be autovacuumed (p. 1417)

Find tables consuming unnecessary space

To find tables consuming unnecessary space, run the following query.

/* WARNING: Run with a nonsuperuser role, the query inspects only tables
* that you have the permission to read.
* This query is compatible with PostgreSQL 9.0 and later.
*/

SELECT current_database(), schemaname, tblname, bs*tblpages AS real_size,
 (tblpages-est_tblpages)*bs AS extra_size,
 CASE WHEN tblpages - est_tblpages > 0
 THEN 100 * (tblpages - est_tblpages)/tblpages::float
 ELSE 0
 END AS extra_ratio, fillfactor, (tblpages-est_tblpages_ff)*bs AS bloat_size,
 CASE WHEN tblpages - est_tblpages_ff > 0
 THEN 100 * (tblpages - est_tblpages_ff)/tblpages::float
 ELSE 0
 END AS bloat_ratio, is_na
 -- , (pst).free_percent + (pst).dead_tuple_percent AS real_frag
FROM (
 SELECT
 ceil(reltuples / ((bs-page_hdr)/tpl_size)) + ceil(toasttuples / 4)
 AS est_tblpages,

1414

Amazon Aurora User Guide for Aurora
IO:DataFileRead

 ceil(reltuples / ((bs-page_hdr)*fillfactor/(tpl_size*100))) + ceil(toasttuples /
 4)
 AS est_tblpages_ff,
 tblpages, fillfactor, bs, tblid, schemaname, tblname, heappages, toastpages, is_na
 -- , stattuple.pgstattuple(tblid) AS pst
 FROM (
 SELECT
 (4 + tpl_hdr_size + tpl_data_size + (2*ma)
 - CASE WHEN tpl_hdr_size%ma = 0 THEN ma ELSE tpl_hdr_size%ma END
 - CASE WHEN ceil(tpl_data_size)::int%ma = 0 THEN ma ELSE ceil(tpl_data_size)::int
%ma END
) AS tpl_size, bs - page_hdr AS size_per_block, (heappages + toastpages) AS tblpages,
 heappages,
 toastpages, reltuples, toasttuples, bs, page_hdr, tblid, schemaname, tblname,
 fillfactor, is_na
 FROM (
 SELECT
 tbl.oid AS tblid, ns.nspname AS schemaname, tbl.relname AS tblname, tbl.reltuples,
 tbl.relpages AS heappages, coalesce(toast.relpages, 0) AS toastpages,
 coalesce(toast.reltuples, 0) AS toasttuples,
 coalesce(substring(
 array_to_string(tbl.reloptions, ' ')
 FROM 'fillfactor=([0-9]+)')::smallint, 100) AS fillfactor,
 current_setting('block_size')::numeric AS bs,
 CASE WHEN version()~'mingw32' OR version()~'64-bit|x86_64|ppc64|ia64|amd64'
 THEN 8
 ELSE 4
 END AS ma,
 24 AS page_hdr,
 23 + CASE WHEN MAX(coalesce(null_frac,0)) > 0 THEN (7 + count(*)) / 8 ELSE 0::int
 END
 + CASE WHEN tbl.relhasoids THEN 4 ELSE 0 END AS tpl_hdr_size,
 sum((1-coalesce(s.null_frac, 0)) * coalesce(s.avg_width, 1024)) AS tpl_data_size,
 bool_or(att.atttypid = 'pg_catalog.name'::regtype)
 OR count(att.attname) <> count(s.attname) AS is_na
 FROM pg_attribute AS att
 JOIN pg_class AS tbl ON att.attrelid = tbl.oid
 JOIN pg_namespace AS ns ON ns.oid = tbl.relnamespace
 LEFT JOIN pg_stats AS s ON s.schemaname=ns.nspname
 AND s.tablename = tbl.relname AND s.inherited=false AND s.attname=att.attname
 LEFT JOIN pg_class AS toast ON tbl.reltoastrelid = toast.oid
 WHERE att.attnum > 0 AND NOT att.attisdropped
 AND tbl.relkind = 'r'
 GROUP BY 1,2,3,4,5,6,7,8,9,10, tbl.relhasoids
 ORDER BY 2,3
) AS s
) AS s2
) AS s3 ;
-- WHERE NOT is_na
-- AND tblpages*((pst).free_percent + (pst).dead_tuple_percent)::float4/100 >= 1

Find indexes consuming unnecessary space

To find indexes consuming unnecessary space, run the following query.

-- WARNING: run with a nonsuperuser role, the query inspects
-- only indexes on tables you have permissions to read.
-- WARNING: rows with is_na = 't' are known to have bad statistics ("name" type is not
 supported).
-- This query is compatible with PostgreSQL 8.2 and later.

SELECT current_database(), nspname AS schemaname, tblname, idxname, bs*(relpages)::bigint
 AS real_size,
 bs*(relpages-est_pages)::bigint AS extra_size,

1415

Amazon Aurora User Guide for Aurora
IO:DataFileRead

 100 * (relpages-est_pages)::float / relpages AS extra_ratio,
 fillfactor, bs*(relpages-est_pages_ff) AS bloat_size,
 100 * (relpages-est_pages_ff)::float / relpages AS bloat_ratio,
 is_na
 -- , 100-(sub.pst).avg_leaf_density, est_pages, index_tuple_hdr_bm,
 -- maxalign, pagehdr, nulldatawidth, nulldatahdrwidth, sub.reltuples, sub.relpages
 -- (DEBUG INFO)
FROM (
 SELECT coalesce(1 +
 ceil(reltuples/floor((bs-pageopqdata-pagehdr)/(4+nulldatahdrwidth)::float)), 0
 -- ItemIdData size + computed avg size of a tuple (nulldatahdrwidth)
) AS est_pages,
 coalesce(1 +
 ceil(reltuples/floor((bs-pageopqdata-pagehdr)*fillfactor/
(100*(4+nulldatahdrwidth)::float))), 0
) AS est_pages_ff,
 bs, nspname, table_oid, tblname, idxname, relpages, fillfactor, is_na
 -- , stattuple.pgstatindex(quote_ident(nspname)||'.'||quote_ident(idxname)) AS pst,
 -- index_tuple_hdr_bm, maxalign, pagehdr, nulldatawidth, nulldatahdrwidth, reltuples
 -- (DEBUG INFO)
 FROM (
 SELECT maxalign, bs, nspname, tblname, idxname, reltuples, relpages, relam, table_oid,
 fillfactor,
 (index_tuple_hdr_bm +
 maxalign - CASE -- Add padding to the index tuple header to align on MAXALIGN
 WHEN index_tuple_hdr_bm%maxalign = 0 THEN maxalign
 ELSE index_tuple_hdr_bm%maxalign
 END
 + nulldatawidth + maxalign - CASE -- Add padding to the data to align on MAXALIGN
 WHEN nulldatawidth = 0 THEN 0
 WHEN nulldatawidth::integer%maxalign = 0 THEN maxalign
 ELSE nulldatawidth::integer%maxalign
 END
)::numeric AS nulldatahdrwidth, pagehdr, pageopqdata, is_na
 -- , index_tuple_hdr_bm, nulldatawidth -- (DEBUG INFO)
 FROM (
 SELECT
 i.nspname, i.tblname, i.idxname, i.reltuples, i.relpages, i.relam, a.attrelid AS
 table_oid,
 current_setting('block_size')::numeric AS bs, fillfactor,
 CASE -- MAXALIGN: 4 on 32bits, 8 on 64bits (and mingw32 ?)
 WHEN version() ~ 'mingw32' OR version() ~ '64-bit|x86_64|ppc64|ia64|amd64' THEN 8
 ELSE 4
 END AS maxalign,
 /* per page header, fixed size: 20 for 7.X, 24 for others */
 24 AS pagehdr,
 /* per page btree opaque data */
 16 AS pageopqdata,
 /* per tuple header: add IndexAttributeBitMapData if some cols are null-able */
 CASE WHEN max(coalesce(s.null_frac,0)) = 0
 THEN 2 -- IndexTupleData size
 ELSE 2 + ((32 + 8 - 1) / 8)
 -- IndexTupleData size + IndexAttributeBitMapData size (max num filed per index
 + 8 - 1 /8)
 END AS index_tuple_hdr_bm,
 /* data len: we remove null values save space using it fractionnal part from stats
 */
 sum((1-coalesce(s.null_frac, 0)) * coalesce(s.avg_width, 1024)) AS nulldatawidth,
 max(CASE WHEN a.atttypid = 'pg_catalog.name'::regtype THEN 1 ELSE 0 END) > 0 AS
 is_na
 FROM pg_attribute AS a
 JOIN (
 SELECT nspname, tbl.relname AS tblname, idx.relname AS idxname,
 idx.reltuples, idx.relpages, idx.relam,
 indrelid, indexrelid, indkey::smallint[] AS attnum,
 coalesce(substring(

1416

Amazon Aurora User Guide for Aurora
IO:DataFileRead

 array_to_string(idx.reloptions, ' ')
 from 'fillfactor=([0-9]+)')::smallint, 90) AS fillfactor
 FROM pg_index
 JOIN pg_class idx ON idx.oid=pg_index.indexrelid
 JOIN pg_class tbl ON tbl.oid=pg_index.indrelid
 JOIN pg_namespace ON pg_namespace.oid = idx.relnamespace
 WHERE pg_index.indisvalid AND tbl.relkind = 'r' AND idx.relpages > 0
) AS i ON a.attrelid = i.indexrelid
 JOIN pg_stats AS s ON s.schemaname = i.nspname
 AND ((s.tablename = i.tblname AND s.attname =
 pg_catalog.pg_get_indexdef(a.attrelid, a.attnum, TRUE))
 -- stats from tbl
 OR (s.tablename = i.idxname AND s.attname = a.attname))
 -- stats from functionnal cols
 JOIN pg_type AS t ON a.atttypid = t.oid
 WHERE a.attnum > 0
 GROUP BY 1, 2, 3, 4, 5, 6, 7, 8, 9
) AS s1
) AS s2
 JOIN pg_am am ON s2.relam = am.oid WHERE am.amname = 'btree'
) AS sub
-- WHERE NOT is_na
ORDER BY 2,3,4;

Find tables that are eligible to be autovacuumed

To find tables that are eligible to be autovacuumed, run the following query.

--This query shows tables that need vacuuming and are eligible candidates.
--The following query lists all tables that are due to be processed by autovacuum.
-- During normal operation, this query should return very little.
WITH vbt AS (SELECT setting AS autovacuum_vacuum_threshold
 FROM pg_settings WHERE name = 'autovacuum_vacuum_threshold')
 , vsf AS (SELECT setting AS autovacuum_vacuum_scale_factor
 FROM pg_settings WHERE name = 'autovacuum_vacuum_scale_factor')
 , fma AS (SELECT setting AS autovacuum_freeze_max_age
 FROM pg_settings WHERE name = 'autovacuum_freeze_max_age')
 , sto AS (SELECT opt_oid, split_part(setting, '=', 1) as param,
 split_part(setting, '=', 2) as value
 FROM (SELECT oid opt_oid, unnest(reloptions) setting FROM pg_class) opt)
SELECT
 '"'||ns.nspname||'"."'||c.relname||'"' as relation
 , pg_size_pretty(pg_table_size(c.oid)) as table_size
 , age(relfrozenxid) as xid_age
 , coalesce(cfma.value::float, autovacuum_freeze_max_age::float)
 autovacuum_freeze_max_age
 , (coalesce(cvbt.value::float, autovacuum_vacuum_threshold::float) +
 coalesce(cvsf.value::float,autovacuum_vacuum_scale_factor::float) * c.reltuples)
 as autovacuum_vacuum_tuples
 , n_dead_tup as dead_tuples
FROM pg_class c
JOIN pg_namespace ns ON ns.oid = c.relnamespace
JOIN pg_stat_all_tables stat ON stat.relid = c.oid
JOIN vbt on (1=1)
JOIN vsf ON (1=1)
JOIN fma on (1=1)
LEFT JOIN sto cvbt ON cvbt.param = 'autovacuum_vacuum_threshold' AND c.oid = cvbt.opt_oid
LEFT JOIN sto cvsf ON cvsf.param = 'autovacuum_vacuum_scale_factor' AND c.oid =
 cvsf.opt_oid
LEFT JOIN sto cfma ON cfma.param = 'autovacuum_freeze_max_age' AND c.oid = cfma.opt_oid
WHERE c.relkind = 'r'
AND nspname <> 'pg_catalog'
AND (
 age(relfrozenxid) >= coalesce(cfma.value::float, autovacuum_freeze_max_age::float)

1417

Amazon Aurora User Guide for Aurora
IO:XactSync

 or
 coalesce(cvbt.value::float, autovacuum_vacuum_threshold::float) +
 coalesce(cvsf.value::float,autovacuum_vacuum_scale_factor::float) * c.reltuples <=
 n_dead_tup
 -- or 1 = 1
)
ORDER BY age(relfrozenxid) DES;

Respond to high numbers of connections

When you monitor Amazon CloudWatch, you might find that the DatabaseConnections metric
spikes. This increase indicates an increased number of connections to your database. We recommend the
following approach:

• Limit the number of connections that the application can open with each instance. If your application
has an embedded connection pool feature, set a reasonable number of connections. Base the number
on what the vCPUs in your instance can parallelize effectively.

If your application doesn't use a connection pool feature, considering using Amazon RDS Proxy or an
alternative. This approach lets your application open multiple connections with the load balancer. The
balancer can then open a restricted number of connections with the database. As fewer connections
are running in parallel, your DB instance performs less context switching in the kernel. Queries
should progress faster, leading to fewer wait events. For more information, see Using Amazon RDS
Proxy (p. 288).

• Whenever possible, take advantage of reader nodes for Aurora PostgreSQL and read replicas for RDS
for PostgreSQL. When your application runs a read-only operation, send these requests to the reader-
only endpoint. This technique spreads application requests across all reader nodes, reducing the I/O
pressure on the writer node.

• Consider scaling up your DB instance. A higher-capacity instance class gives more memory, which gives
Aurora PostgreSQL a larger shared buffer pool to hold pages. The larger size also gives the DB instance
more vCPUs to handle connections. More vCPUs are particularly helpful when the operations that are
generating IO:DataFileRead wait events are writes.

IO:XactSync
The IO:XactSync event occurs when the database is waiting for the Aurora storage subsystem to
acknowledge the commit of a regular transaction, or the commit or rollback of a prepared transaction. A
prepared transaction is part of PostgreSQL's support for a two-phase commit.

Topics

• Supported engine versions (p. 1418)

• Context (p. 1418)

• Likely causes of increased waits (p. 1419)

• Actions (p. 1419)

Supported engine versions
This wait event information is supported for all versions of Aurora PostgreSQL.

Context
The event IO:XactSync indicates that the instance is spending time waiting for the Aurora storage
subsystem to confirm that transaction data was processed.

1418

Amazon Aurora User Guide for Aurora
IO:XactSync

Likely causes of increased waits

When the IO:XactSync event appears more than normal, possibly indicating a performance problem,
typical causes include the following:

Network saturation

Traffic between clients and the DB instance or traffic to the storage subsystem might be too heavy
for the network bandwidth.

CPU pressure

A heavy workload might be preventing the Aurora storage daemon from getting sufficient CPU time.

Actions

We recommend different actions depending on the causes of your wait event.

Topics

• Monitor your resources (p. 1419)

• Scale up the CPU (p. 1419)

• Increase network bandwidth (p. 1419)

• Reduce the number of commits (p. 1420)

Monitor your resources

To determine the cause of the increased IO:XactSync events, check the following metrics:

• WriteThroughput and CommitThroughput – Changes in write throughput or commit throughput
can show an increase in workload.

• WriteLatency and CommitLatency – Changes in write latency or commit latency can show that the
storage subsystem is being asked to do more work.

• CPUUtilization – If the instance's CPU utilization is above 90 percent, the Aurora storage daemon
might not be getting sufficient time on the CPU. In this case, I/O performance degrades.

For information about these metrics, see Instance-level metrics for Amazon Aurora (p. 660).

Scale up the CPU

To address CPU starvation issues, consider changing to an instance type with more CPU capacity. For
information about CPU capacity for a DB instance class, see Hardware specifications for DB instance
classes for Aurora (p. 62).

Increase network bandwidth

To determine whether the instance is reaching its network bandwidth limits, check for the following
other wait events:

• IO:DataFileRead, IO:BufferRead, IO:BufferWrite, and IO:XactWrite – Queries using large
amounts of I/O can generate more of these wait events.

• Client:ClientRead and Client:ClientWrite – Queries with large amounts of client
communication can generate more of these wait events.

1419

Amazon Aurora User Guide for Aurora
ipc:damrecordtxack

If network bandwidth is an issue, consider changing to an instance type with more network bandwidth.
For information about network performance for a DB instance class, see Hardware specifications for DB
instance classes for Aurora (p. 62).

Reduce the number of commits

To reduce the number of commits, combine statements into transaction blocks.

ipc:damrecordtxack
The ipc:damrecordtxack event occurs when Aurora PostgreSQL in a session using database activity
streams generates an activity stream event, then waits for that event to become durable.

Topics
• Relevant engine versions (p. 1420)
• Context (p. 1420)
• Causes (p. 1420)
• Actions (p. 1420)

Relevant engine versions
This wait event information is relevant for all Aurora PostgreSQL 10.7 and higher 10 versions, 11.4 and
higher 11 versions, and all 12 and 13 versions.

Context
In synchronous mode, durability of activity stream events is favored over database performance.
While waiting for a durable write of the event, the session blocks other database activity, causing the
ipc:damrecordtxack wait event.

Causes
The most common cause for the ipc:damrecordtxack event to appear in top waits is that the
Database Activity Streams (DAS) feature is a holistic audit. Higher SQL activity generates activity stream
events that need to be recorded.

Actions
We recommend different actions depending on the causes of your wait event:

• Reduce the number of SQL statements or turn off database activity streams. Doing this reduces the
number of events that require durable writes.

• Change to asynchronous mode. Doing this helps to reduce contention on the ipc:damrecordtxack
wait event.

However, the DAS feature can't guarantee the durability of every event in asynchronous mode.

Lock:advisory
The Lock:advisory event occurs when a PostgreSQL application uses a lock to coordinate activity
across multiple sessions.

Topics
• Relevant engine versions (p. 1421)

1420

Amazon Aurora User Guide for Aurora
Lock:advisory

• Context (p. 1421)
• Causes (p. 1421)
• Actions (p. 1421)

Relevant engine versions
This wait event information is relevant for Aurora PostgreSQL versions 9.6 and higher.

Context
PostgreSQL advisory locks are application-level, cooperative locks explicitly locked and unlocked by the
user's application code. An application can use PostgreSQL advisory locks to coordinate activity across
multiple sessions. Unlike regular, object- or row-level locks, the application has full control over the
lifetime of the lock. For more information, see Advisory Locks in the PostgreSQL documentation.

Advisory locks can be released before a transaction ends or be held by a session across transactions. This
isn't true for implicit, system-enforced locks, such as an access-exclusive lock on a table acquired by a
CREATE INDEX statement.

For a description of the functions used to acquire (lock) and release (unlock) advisory locks, see Advisory
Lock Functions in the PostgreSQL documentation.

Advisory locks are implemented on top of the regular PostgreSQL locking system and are visible in the
pg_locks system view.

Causes
This lock type is exclusively controlled by an application explicitly using it. Advisory locks that are
acquired for each row as part of a query can cause a spike in locks or a long-term buildup.

These effects happen when the query is run in a way that acquires locks on more rows than are returned
by the query. The application must eventually release every lock, but if locks are acquired on rows that
aren't returned, the application can't find all of the locks.

The following example is from Advisory Locks in the PostgreSQL documentation.

SELECT pg_advisory_lock(id) FROM foo WHERE id > 12345 LIMIT 100;

In this example, the LIMIT clause can only stop the query's output after the rows have already been
internally selected and their ID values locked. This can happen suddenly when a growing data volume
causes the planner to choose a different execution plan that wasn't tested during development. The
buildup in this case happens because the application explicitly calls pg_advisory_unlock for every ID
value that was locked. However, in this case it can't find the set of locks acquired on rows that weren't
returned. Because the locks are acquired on the session level, they aren't released automatically at the
end of the transaction.

Another possible cause for spikes in blocked lock attempts is unintended conflicts. In these conflicts,
unrelated parts of the application share the same lock ID space by mistake.

Actions
Review application usage of advisory locks and detail where and when in the application flow each type
of advisory lock is acquired and released.

Determine whether a session is acquiring too many locks or a long-running session isn't releasing locks
early enough, leading to a slow buildup of locks. You can correct a slow buildup of session-level locks by
ending the session using pg_terminate_backend(pid).

1421

https://www.postgresql.org/docs/12/explicit-locking.html#ADVISORY-LOCKS
https://www.postgresql.org/docs/current/functions-admin.html#FUNCTIONS-ADVISORY-LOCKS
https://www.postgresql.org/docs/current/functions-admin.html#FUNCTIONS-ADVISORY-LOCKS
https://www.postgresql.org/docs/12/explicit-locking.html#ADVISORY-LOCKS

Amazon Aurora User Guide for Aurora
Lock:extend

A client waiting for an advisory lock appears in pg_stat_activity with wait_event_type=Lock and
wait_event=advisory. You can obtain specific lock values by querying the pg_locks system view for
the same pid, looking for locktype=advisory and granted=f.

You can then identify the blocking session by querying pg_locks for the same advisory lock having
granted=t, as shown in the following example.

SELECT blocked_locks.pid AS blocked_pid,
 blocking_locks.pid AS blocking_pid,
 blocked_activity.usename AS blocked_user,
 blocking_activity.usename AS blocking_user,
 now() - blocked_activity.xact_start AS blocked_transaction_duration,
 now() - blocking_activity.xact_start AS blocking_transaction_duration,
 concat(blocked_activity.wait_event_type,':',blocked_activity.wait_event) AS
 blocked_wait_event,
 concat(blocking_activity.wait_event_type,':',blocking_activity.wait_event) AS
 blocking_wait_event,
 blocked_activity.state AS blocked_state,
 blocking_activity.state AS blocking_state,
 blocked_locks.locktype AS blocked_locktype,
 blocking_locks.locktype AS blocking_locktype,
 blocked_activity.query AS blocked_statement,
 blocking_activity.query AS blocking_statement
 FROM pg_catalog.pg_locks blocked_locks
 JOIN pg_catalog.pg_stat_activity blocked_activity ON blocked_activity.pid =
 blocked_locks.pid
 JOIN pg_catalog.pg_locks blocking_locks
 ON blocking_locks.locktype = blocked_locks.locktype
 AND blocking_locks.DATABASE IS NOT DISTINCT FROM blocked_locks.DATABASE
 AND blocking_locks.relation IS NOT DISTINCT FROM blocked_locks.relation
 AND blocking_locks.page IS NOT DISTINCT FROM blocked_locks.page
 AND blocking_locks.tuple IS NOT DISTINCT FROM blocked_locks.tuple
 AND blocking_locks.virtualxid IS NOT DISTINCT FROM blocked_locks.virtualxid
 AND blocking_locks.transactionid IS NOT DISTINCT FROM blocked_locks.transactionid
 AND blocking_locks.classid IS NOT DISTINCT FROM blocked_locks.classid
 AND blocking_locks.objid IS NOT DISTINCT FROM blocked_locks.objid
 AND blocking_locks.objsubid IS NOT DISTINCT FROM blocked_locks.objsubid
 AND blocking_locks.pid != blocked_locks.pid
 JOIN pg_catalog.pg_stat_activity blocking_activity ON blocking_activity.pid =
 blocking_locks.pid
 WHERE NOT blocked_locks.GRANTED;

All of the advisory lock API functions have two sets of arguments, either one bigint argument or two
integer arguments:

• For the API functions with one bigint argument, the upper 32 bits are in pg_locks.classid and
the lower 32 bits are in pg_locks.objid.

• For the API functions with two integer arguments, the first argument is pg_locks.classid and
the second argument is pg_locks.objid.

The pg_locks.objsubid value indicates which API form was used: 1 means one bigint argument; 2
means two integer arguments.

Lock:extend
The Lock:extend event occurs when a backend process is waiting to lock a relation to extend it while
another process has a lock on that relation for the same purpose.

Topics
• Supported engine versions (p. 1423)

1422

Amazon Aurora User Guide for Aurora
Lock:extend

• Context (p. 1423)

• Likely causes of increased waits (p. 1423)

• Actions (p. 1423)

Supported engine versions
This wait event information is supported for all versions of Aurora PostgreSQL.

Context
The event Lock:extend indicates that a backend process is waiting to extend a relation that another
backend process holds a lock on while it's extending that relation. Because only one process at a time
can extend a relation, the system generates a Lock:extend wait event. INSERT, COPY, and UPDATE
operations can generate this event.

Likely causes of increased waits
When the Lock:extend event appears more than normal, possibly indicating a performance problem,
typical causes include the following:

Surge in concurrent inserts or updates to the same table

There might be an increase in the number of concurrent sessions with queries that insert into or
update the same table.

Insufficient network bandwidth

The network bandwidth on the DB instance might be insufficient for the storage communication
needs of the current workload. This can contribute to storage latency that causes an increase in
Lock:extend events.

Actions
We recommend different actions depending on the causes of your wait event.

Topics

• Reduce concurrent inserts and updates to the same relation (p. 1423)

• Increase network bandwidth (p. 1424)

Reduce concurrent inserts and updates to the same relation

First, determine whether there's an increase in tup_inserted and tup_updated metrics and an
accompanying increase in this wait event. If so, check which relations are in high contention for insert
and update operations. To determine this, query the pg_stat_all_tables view for the values
in n_tup_ins and n_tup_upd fields. For information about the pg_stat_all_tables view, see
pg_stat_all_tables in the PostgreSQL documentation.

To get more information about blocking and blocked queries, query pg_stat_activity as in the
following example:

SELECT
 blocked.pid,
 blocked.usename,

1423

https://www.postgresql.org/docs/13/monitoring-stats.html#MONITORING-PG-STAT-ALL-TABLES-VIEW

Amazon Aurora User Guide for Aurora
Lock:Relation

 blocked.query,
 blocking.pid AS blocking_id,
 blocking.query AS blocking_query,
 blocking.wait_event AS blocking_wait_event,
 blocking.wait_event_type AS blocking_wait_event_type
FROM pg_stat_activity AS blocked
JOIN pg_stat_activity AS blocking ON blocking.pid = ANY(pg_blocking_pids(blocked.pid))
where
blocked.wait_event = 'extend'
and blocked.wait_event_type = 'Lock';

 pid | usename | query | blocking_id |
 blocking_query | blocking_wait_event | blocking_wait_event_type
 ------+----------+------------------------------+-------------
+--+---------------------
+--------------------------
 7143 | myuser | insert into tab1 values (1); | 4600 | INSERT INTO tab1 (a)
 SELECT s FROM generate_series(1,1000000) s; | DataFileExtend | IO

After you identify relations that contribute to increase Lock:extend events, use the following
techniques to reduce the contention:

• Find out whether you can use partitioning to reduce contention for the same table. Separating
inserted or updated tuples into different partitions can reduce contention. For information about
partitioning, see Managing PostgreSQL partitions with the pg_partman extension (p. 1547).

• If the wait event is mainly due to update activity, consider reducing the relation's fillfactor value.
This can reduce requests for new blocks during the update. The fillfactor is a storage parameter for
a table that determines the maximum amount of space for packing a table page. It's expressed as a
percentage of the total space for a page. For more information about the fillfactor parameter, see
CREATE TABLE in the PostgreSQL documentation.

Important
We highly recommend that you test your system if you change the fillfactor because changing
this value can negatively impact performance, depending on your workload.

Increase network bandwidth

To see whether there's an increase in write latency, check the WriteLatency metric in CloudWatch. If
there is, use the WriteThroughput and ReadThroughput Amazon CloudWatch metrics to monitor the
storage related traffic on the DB cluster. These metrics can help you to determine if network bandwidth
is sufficient for the storage activity of your workload.

If your network bandwidth isn't enough, increase it. If your DB instance is reaching the network
bandwidth limits, the only way to increase the bandwidth is to increase your DB instance size.

For more information about CloudWatch metrics, see Amazon CloudWatch metrics for Amazon
Aurora (p. 654). For information about network performance for each DB instance class, see Hardware
specifications for DB instance classes for Aurora (p. 62).

Lock:Relation
The Lock:Relation event occurs when a query is waiting to acquire a lock on a table or view (relation)
that's currently locked by another transaction.

Topics
• Supported engine versions (p. 1425)
• Context (p. 1425)
• Likely causes of increased waits (p. 1425)

1424

https://www.postgresql.org/docs/13/sql-createtable.html

Amazon Aurora User Guide for Aurora
Lock:Relation

• Actions (p. 1426)

Supported engine versions
This wait event information is supported for all versions of Aurora PostgreSQL.

Context
Most PostgreSQL commands implicitly use locks to control concurrent access to data in tables. You can
also use these locks explicitly in your application code with the LOCK command. Many lock modes aren't
compatible with each other, and they can block transactions when they're trying to access the same
object. When this happens, Aurora PostgreSQL generates a Lock:Relation event. Some common
examples are the following:

• Exclusive locks such as ACCESS EXCLUSIVE can block all concurrent access. Data definition language
(DDL) operations such as DROP TABLE, TRUNCATE, VACUUM FULL, and CLUSTER acquire ACCESS
EXCLUSIVE locks implicitly. ACCESS EXCLUSIVE is also the default lock mode for LOCK TABLE
statements that don't specify a mode explicitly.

• Using CREATE INDEX (without CONCURRENT) on a table conflicts with data manipulation
language (DML) statements UPDATE, DELETE, and INSERT, which acquire ROW EXCLUSIVE locks.

For more information about table-level locks and conflicting lock modes, see Explicit Locking in the
PostgreSQL documentation.

Blocking queries and transactions typically unblock in one of the following ways:

• Blocking query – The application can cancel the query or the user can end the process. The engine
can also force the query to end because of a session's statement-timeout or a deadlock detection
mechanism.

• Blocking transaction – A transaction stops blocking when it runs a ROLLBACK or COMMIT statement.
Rollbacks also happen automatically when sessions are disconnected by a client or by network issues,
or are ended. Sessions can be ended when the database engine is shut down, when the system is out
of memory, and so forth.

Likely causes of increased waits
When the Lock:Relation event appears more than normal, possibly indicating a performance
problem, typical causes include the following:

Increased concurrent sessions with conflicting table locks

There might be an increase in the number of concurrent sessions with queries that lock the same
table with conflicting locking modes.

Maintenance operations

Health maintenance operations such as VACUUM and ANALYZE can significantly increase the number
of conflicting locks. VACUUM FULL acquires an ACCESS EXCLUSIVE lock, and ANALYSE acquires
a SHARE UPDATE EXCLUSIVE lock. Both types of locks can cause a Lock:Relation wait event.
Application data maintenance operations such as refreshing a materialized view can also increase
blocked queries and transactions.

Locks on reader instances

There might be an increase in locks acquired on reader instances. From the standpoint of locking,
Aurora PostgreSQL treats the writer and reader instances as a single unit. Thus, locks acquired on

1425

https://www.postgresql.org/docs/13/explicit-locking.html

Amazon Aurora User Guide for Aurora
Lock:Relation

a reader instance can block queries on the writer. Similarly, locks on the writer can block reader
queries.

Actions
We recommend different actions depending on the causes of your wait event.

Topics
• Reduce the impact of blocking SQL statements (p. 1426)
• Minimize the effect of maintenance operations (p. 1426)
• Check for reader locks (p. 1426)

Reduce the impact of blocking SQL statements

To reduce the impact of blocking SQL statements, modify your application code where possible.
Following are two common techniques for reducing blocks:

• Use the NOWAIT option – Some SQL commands, such as SELECT and LOCK statements, support
this option. The NOWAIT directive cancels the lock-requesting query if the lock can't be acquired
immediately. This technique can help prevent a blocking session from causing a pile-up of blocked
sessions behind it.

For example: Assume that transaction A is waiting on a lock held by transaction B. Now, if B requests
a lock on a table that’s locked by transaction C, transaction A might be blocked until transaction C
completes. But if transaction B uses a NOWAIT when it requests the lock on C, it can fail fast and ensure
that transaction A doesn't have to wait indefinitely.

• Use SET lock_timeout – Set a lock_timeout value to limit the time a SQL statement waits to
acquire a lock on a relation. If the lock isn't acquired within the timeout specified, the transaction
requesting the lock is cancelled. Set this value at the session level.

Minimize the effect of maintenance operations

Maintenance operations such as VACUUM and ANALYZE are important. We recommend that you don't
turn them off because you find Lock:Relation wait events related to these maintenance operations.
The following approaches can minimize the effect of these operations:

• Run maintenance operations manually during off-peak hours.
• To reduce Lock:Relation waits caused by autovacuum tasks, perform any needed autovacuum

tuning. For information about tuning autovacuum, see Working with PostgreSQL autovacuum on
Amazon RDS in the Amazon RDS User Guide.

Check for reader locks

You can see how concurrent sessions on a writer and readers might be holding locks that block each
other. One way to do this is to run a query that returns the lock type and relation, as in the following
example.

Writer session Reader session Description

export
 WRITER=aurorapg1.12345678910.us-
west-1.rds.amazonaws.com

export
 READER=aurorapg2.12345678910.us-
west-1.rds.amazonaws.com

This example shows two
concurrent sessions. The first
column shows the writer session.

1426

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.Autovacuum.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.Autovacuum.html

Amazon Aurora User Guide for Aurora
Lock:transactionid

Writer session Reader session Description

psql -h $WRITER
psql (15devel, server
 10.14)
Type "help" for help.

psql -h $READER
psql (15devel, server 10.14)
Type "help" for help.

The second column shows the
reader session.

postgres=> CREATE TABLE t1(b
 integer);
CREATE TABLE

 The writer session creates table
t1 on the writer instance.

postgres=> SET
 lock_timeout=100;
SET

The reader session sets a
lock timeout interval of 100
milliseconds.

postgres=> SELECT * FROM t1;
 b

(0 rows)

The reader session tries to read
data from table t1 on the reader
instance.

postgres=> BEGIN;
BEGIN
postgres=*> DROP TABLE t1;
DROP TABLE
postgres=*>

 The writer session drops t1.

postgres=> SELECT * FROM t1;
ERROR: canceling statement
 due to lock timeout
LINE 1: SELECT * FROM t1;
 ^

The query times out and is
canceled on the reader.

postgres=> SELECT
 locktype, relation, mode,
 backend_type
postgres-> FROM pg_locks l,
 pg_stat_activity t1
postgres-> WHERE
 l.pid=t1.pid AND relation =
 't1'::regclass::oid;
 locktype | relation |
 mode |
 backend_type
----------+----------
+---------------------
+-------------------
 relation | 68628525 |
 AccessExclusiveLock |
 aurora wal replay
(1 row)

The reader session
queries pg_locks and
pg_stat_activity to
determine the cause of the error.
The result indicates that the
aurora wal replay process is
holding an ACCESS EXCLUSIVE
lock on table t1.

Lock:transactionid
The Lock:transactionid event occurs when a transaction is waiting for a row-level lock.

1427

Amazon Aurora User Guide for Aurora
Lock:transactionid

Topics
• Supported engine versions (p. 1428)
• Context (p. 1428)
• Likely causes of increased waits (p. 1428)
• Actions (p. 1429)

Supported engine versions
This wait event information is supported for all versions of Aurora PostgreSQL.

Context
The event Lock:transactionid occurs when a transaction is trying to acquire a row-level lock that
has already been granted to a transaction that is running at the same time. The session that shows the
Lock:transactionid wait event is blocked because of this lock. After the blocking transaction ends in
either a COMMIT or ROLLBACK statement, the blocked transaction can proceed.

The multiversion concurrency control semantics of Aurora PostgreSQL guarantee that readers don't
block writers and writers don't block readers. For row-level conflicts to occur, blocking and blocked
transactions must issue conflicting statements of the following types:

• UPDATE

• SELECT … FOR UPDATE

• SELECT … FOR KEY SHARE

The statement SELECT … FOR KEY SHARE is a special case. The database uses the clause FOR KEY
SHARE to optimize the performance of referential integrity. A row-level lock on a row can block INSERT,
UPDATE, and DELETE commands on other tables that reference the row.

Likely causes of increased waits
When this event appears more than normal, the cause is typically UPDATE, SELECT … FOR UPDATE, or
SELECT … FOR KEY SHARE statements combined with the following conditions.

Topics
• High concurrency (p. 1428)
• Idle in transaction (p. 1428)
• Long-running transactions (p. 1429)

High concurrency

Aurora PostgreSQL can use granular row-level locking semantics. The probability of row-level conflicts
increases when the following conditions are met:

• A highly concurrent workload contends for the same rows.
• Concurrency increases.

Idle in transaction

Sometimes the pg_stat_activity.state column shows the value idle in transaction. This
value appears for sessions that have started a transaction, but haven't yet issued a COMMIT or ROLLBACK.
If the pg_stat_activity.state value isn't active, the query shown in pg_stat_activity is the

1428

Amazon Aurora User Guide for Aurora
Lock:transactionid

most recent one to finish running. The blocking session isn't actively processing a query because an open
transaction is holding a lock.

If an idle transaction acquired a row-level lock, it might be preventing other sessions from acquiring it.
This condition leads to frequent occurrence of the wait event Lock:transactionid. To diagnose the
issue, examine the output from pg_stat_activity and pg_locks.

Long-running transactions

Transactions that run for a long time get locks for a long time. These long-held locks can block other
transactions from running.

Actions
Row-locking is a conflict among UPDATE, SELECT … FOR UPDATE, or SELECT … FOR KEY SHARE
statements. Before attempting a solution, find out when these statements are running on the same row.
Use this information to choose a strategy described in the following sections.

Topics
• Respond to high concurrency (p. 1429)
• Respond to idle transactions (p. 1429)
• Respond to long-running transactions (p. 1429)

Respond to high concurrency

If concurrency is the issue, try one of the following techniques:

• Lower the concurrency in the application. For example, decrease the number of active sessions.
• Implement a connection pool. To learn how to pool connections with RDS Proxy, see Using Amazon

RDS Proxy (p. 288).
• Design the application or data model to avoid contending UPDATE and SELECT … FOR UPDATE

statements. You can also decrease the number of foreign keys accessed by SELECT … FOR KEY
SHARE statements.

Respond to idle transactions

If pg_stat_activity.state shows idle in transaction, use the following strategies:

• Turn on autocommit wherever possible. This approach prevents transactions from blocking other
transactions while waiting for a COMMIT or ROLLBACK.

• Search for code paths that are missing COMMIT, ROLLBACK, or END.
• Make sure that the exception handling logic in your application always has a path to a valid end of
transaction.

• Make sure that your application processes query results after ending the transaction with COMMIT or
ROLLBACK.

Respond to long-running transactions

If long-running transactions are causing the frequent occurrence of Lock:transactionid, try the
following strategies:

• Keep row locks out of long-running transactions.
• Limit the length of queries by implementing autocommit whenever possible.

1429

Amazon Aurora User Guide for Aurora
Lock:tuple

Lock:tuple
The Lock:tuple event occurs when a backend process is waiting to acquire a lock on a tuple.

Topics
• Supported engine versions (p. 1430)
• Context (p. 1430)
• Likely causes of increased waits (p. 1430)
• Actions (p. 1431)

Supported engine versions
This wait event information is supported for all versions of Aurora PostgreSQL.

Context
The event Lock:tuple indicates that a backend is waiting to acquire a lock on a tuple while another
backend holds a conflicting lock on the same tuple. The following table illustrates a scenario in which
sessions generate the Lock:tuple event.

Time Session 1 Session 2 Session 3

t1 Starts a transaction.

t2 Updates row 1.

t3 Updates row 1. The session
acquires an exclusive lock on
the tuple and then waits for
session 1 to release the lock by
committing or rolling back.

t4 Updates row 1. The session
waits for session 2 to release the
exclusive lock on the tuple.

Or you can simulate this wait event by using the benchmarking tool pgbench. Configure a high number
of concurrent sessions to update the same row in a table with a custom SQL file.

To learn more about conflicting lock modes, see Explicit Locking in the PostgreSQL documentation. To
learn more about pgbench, see pgbench in the PostgreSQL documentation.

Likely causes of increased waits
When this event appears more than normal, possibly indicating a performance problem, typical causes
include the following:

• A high number of concurrent sessions are trying to acquire a conflicting lock for the same tuple by
running UPDATE or DELETE statements.

• Highly concurrent sessions are running a SELECT statement using the FOR UPDATE or FOR NO KEY
UPDATE lock modes.

• Various factors drive application or connection pools to open more sessions to execute the same
operations. As new sessions are trying to modify the same rows, DB load can spike, and Lock:tuple
can appear.

1430

https://www.postgresql.org/docs/current/explicit-locking.html
https://www.postgresql.org/docs/current/pgbench.html

Amazon Aurora User Guide for Aurora
Lock:tuple

For more information, see Row-Level Locks in the PostgreSQL documentation.

Actions
We recommend different actions depending on the causes of your wait event.

Topics
• Investigate your application logic (p. 1431)
• Find the blocker session (p. 1431)
• Reduce concurrency when it is high (p. 1432)
• Troubleshoot bottlenecks (p. 1432)

Investigate your application logic

Find out whether a blocker session has been in the idle in transaction state for long time. If so,
consider ending the blocker session as a short-term solution. You can use the pg_terminate_backend
function. For more information about this function, see Server Signaling Functions in the PostgreSQL
documentation.

For a long-term solution, do the following:

• Adjust the application logic.
• Use the idle_in_transaction_session_timeout parameter. This parameter ends any session

with an open transaction that has been idle for longer than the specified amount of time. For more
information, see Client Connection Defaults in the PostgreSQL documentation.

• Use autocommit as much as possible. For more information, see SET AUTOCOMMIT in the PostgreSQL
documentation.

Find the blocker session

While the Lock:tuple wait event is occurring, identify the blocker and blocked session by
finding out which locks depend on one another. For more information, see Lock dependency
information in the PostgreSQL wiki. To analyze past Lock:tuple events, use the Aurora function
aurora_stat_backend_waits.

The following example queries all sessions, filtering on tuple and ordering by wait_time.

--AURORA_STAT_BACKEND_WAITS
 SELECT a.pid,
 a.usename,
 a.app_name,
 a.current_query,
 a.current_wait_type,
 a.current_wait_event,
 a.current_state,
 wt.type_name AS wait_type,
 we.event_name AS wait_event,
 a.waits,
 a.wait_time
 FROM (SELECT pid,
 usename,
 left(application_name,16) AS app_name,
 coalesce(wait_event_type,'CPU') AS current_wait_type,
 coalesce(wait_event,'CPU') AS current_wait_event,
 state AS current_state,
 left(query,80) as current_query,
 (aurora_stat_backend_waits(pid)).*
 FROM pg_stat_activity

1431

https://www.postgresql.org/docs/current/explicit-locking.html#LOCKING-ROWS
https://www.postgresql.org/docs/13/functions-admin.html#FUNCTIONS-ADMIN-SIGNAL
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-IDLE-IN-TRANSACTION-SESSION-TIMEOUT
https://www.postgresql.org/docs/current/ecpg-sql-set-autocommit.html
https://wiki.postgresql.org/wiki/Lock_dependency_information
https://wiki.postgresql.org/wiki/Lock_dependency_information

Amazon Aurora User Guide for Aurora
lwlock:buffer_content (BufferContent)

 WHERE pid <> pg_backend_pid()
 AND usename<>'rdsadmin') a
NATURAL JOIN aurora_stat_wait_type() wt
NATURAL JOIN aurora_stat_wait_event() we
WHERE we.event_name = 'tuple'
 ORDER BY a.wait_time;

 pid | usename | app_name | current_query |
 current_wait_type | current_wait_event | current_state | wait_type | wait_event | waits |
 wait_time
-------+---------+----------+--
+-------------------+--------------------+---------------+-----------+------------+-------
+-----------
 32136 | sys | psql | /*session3*/ update tab set col=1 where col=1; | Lock
 | tuple | active | Lock | tuple | 1 | 1000018
 11999 | sys | psql | /*session4*/ update tab set col=1 where col=1; | Lock
 | tuple | active | Lock | tuple | 1 | 1000024

Reduce concurrency when it is high

The Lock:tuple event might occur constantly, especially in a busy workload time. In this situation,
consider reducing the high concurrency for very busy rows. Often, just a few rows control a queue or the
Boolean logic, which makes these rows very busy.

You can reduce concurrency by using different approaches based in the business requirement, application
logic, and workload type. For example, you can do the following:

• Redesign your table and data logic to reduce high concurrency.
• Change the application logic to reduce high concurrency at the row level.
• Leverage and redesign queries with row-level locks.
• Use the NOWAIT clause with retry operations.
• Consider using optimistic and hybrid-locking logic concurrency control.
• Consider changing the database isolation level.

Troubleshoot bottlenecks

The Lock:tuple can occur with bottlenecks such as CPU starvation or maximum usage of Amazon EBS
bandwidth. To reduce bottlenecks, consider the following approaches:

• Scale up your instance class type.
• Optimize resource-intensive queries.
• Change the application logic.
• Archive data that is rarely accessed.

lwlock:buffer_content (BufferContent)
The lwlock:buffer_content event occurs when a session is waiting to read or write a data page in
memory while another session has that page locked for writing. In Aurora PostgreSQL 13 and higher, this
wait event is called BufferContent.

Topics
• Supported engine versions (p. 1433)
• Context (p. 1433)
• Likely causes of increased waits (p. 1433)
• Actions (p. 1433)

1432

Amazon Aurora User Guide for Aurora
lwlock:buffer_content (BufferContent)

Supported engine versions
This wait event information is supported for all versions of Aurora PostgreSQL.

Context
To read or manipulate data, PostgreSQL accesses it through shared memory buffers. To read from the
buffer, a process gets a lightweight lock (LWLock) on the buffer content in shared mode. To write to the
buffer, it gets that lock in exclusive mode. Shared locks allow other processes to concurrently acquire
shared locks on that content. Exclusive locks prevent other processes from getting any type of lock on it.

The lwlock:buffer_content (BufferContent) event indicates that multiple processes are
attempting to get a lock on contents of a specific buffer.

Likely causes of increased waits
When the lwlock:buffer_content (BufferContent) event appears more than normal, possibly
indicating a performance problem, typical causes include the following:

Increased concurrent updates to the same data

There might be an increase in the number of concurrent sessions with queries that update the same
buffer content. This contention can be more pronounced on tables with a lot of indexes.

Workload data is not in memory

When data that the active workload is processing is not in memory, these wait events can increase.
This effect is because processes holding locks can keep them longer while they perform disk I/O
operations.

Excessive use of foreign key constraints

Foreign key constraints can increase the amount of time a process holds onto a buffer content lock.
This effect is because read operations require a shared buffer content lock on the referenced key
while that key is being updated.

Actions
We recommend different actions depending on the causes of your wait event. You might identify
lwlock:buffer_content (BufferContent) events by using Amazon RDS Performance Insights or by
querying the view pg_stat_activity.

Topics
• Improve in-memory efficiency (p. 1433)
• Reduce usage of foreign key constraints (p. 1433)
• Remove unused indexes (p. 1434)

Improve in-memory efficiency

To increase the chance that active workload data is in memory, partition tables or scale up your instance
class. For information about DB instance classes, see Aurora DB instance classes (p. 54).

Reduce usage of foreign key constraints

Investigate workloads experiencing high numbers of lwlock:buffer_content (BufferContent) wait
events for usage of foreign key constraints. Remove unnecessary foreign key constraints.

1433

Amazon Aurora User Guide for Aurora
LWLock:buffer_mapping

Remove unused indexes

For workloads experiencing high numbers of lwlock:buffer_content (BufferContent) wait events,
identify unused indexes and remove them.

LWLock:buffer_mapping
This event occurs when a session is waiting to associate a data block with a buffer in the shared buffer
pool.

Note
This event appears as LWLock:buffer_mapping in Aurora PostgreSQL version 12 and lower,
and LWLock:BufferMapping in version 13 and higher.

Topics
• Supported engine versions (p. 1434)
• Context (p. 1434)
• Causes (p. 1434)
• Actions (p. 1434)

Supported engine versions
This wait event information is relevant for Aurora PostgreSQL version 9.6 and higher.

Context
The shared buffer pool is an Aurora PostgreSQL memory area that holds all pages that are or were being
used by processes. When a process needs a page, it reads the page into the shared buffer pool. The
shared_buffers parameter sets the shared buffer size and reserves a memory area to store the table
and index pages. If you change this parameter, make sure to restart the database. For more information,
see Shared buffers (p. 1395).

The LWLock:buffer_mapping wait event occurs in the following scenarios:

• A process searches the buffer table for a page and acquires a shared buffer mapping lock.
• A process loads a page into the buffer pool and acquires an exclusive buffer mapping lock.
• A process removes a page from the pool and acquires an exclusive buffer mapping lock.

Causes
When this event appears more than normal, possibly indicating a performance problem, the database is
paging in and out of the shared buffer pool. Typical causes include the following:

• Large queries
• Bloated indexes and tables
• Full table scans
• A shared pool size that is smaller than the working set

Actions
We recommend different actions depending on the causes of your wait event.

1434

Amazon Aurora User Guide for Aurora
LWLock:BufferIO

Topics
• Monitor buffer-related metrics (p. 1435)
• Assess your indexing strategy (p. 1435)
• Reduce the number of buffers that must be allocated quickly (p. 1435)

Monitor buffer-related metrics

When LWLock:buffer_mapping waits spike, investigate the buffer hit ratio. You can use these metrics
to get a better understanding of what is happening in the buffer cache. Examine the following metrics:

BufferCacheHitRatio

This Amazon CloudWatch metric measures the percentage of requests that are served by the buffer
cache of a DB instance in your DB cluster. You might see this metric decrease in the lead-up to the
LWLock:buffer_mapping wait event.

blks_hit

This Performance Insights counter metric indicates the number of blocks that were retrieved from
the shared buffer pool. After the LWLock:buffer_mapping wait event appears, you might observe
a spike in blks_hit.

blks_read

This Performance Insights counter metric indicates the number of blocks that required I/O to be
read into the shared buffer pool. You might observe a spike in blks_read in the lead-up to the
LWLock:buffer_mapping wait event.

Assess your indexing strategy

To confirm that your indexing strategy is not degrading performance, check the following:

Index bloat

Ensure that index and table bloat aren't leading to unnecessary pages being read into the shared
buffer. If your tables contain unused rows, consider archiving the data and removing the rows from
the tables. You can then rebuild the indexes for the resized tables.

Indexes for frequently used queries

To determine whether you have the optimal indexes, monitor DB engine metrics in Performance
Insights. The tup_returned metric shows the number of rows read. The tup_fetched metric
shows the number of rows returned to the client. If tup_returned is significantly larger than
tup_fetched, the data might not be properly indexed. Also, your table statistics might not be
current.

Reduce the number of buffers that must be allocated quickly

To reduce the LWLock:buffer_mapping wait events, try to reduce the number of buffers that must
be allocated quickly. One strategy is to perform smaller batch operations. You might be able to achieve
smaller batches by partitioning your tables.

LWLock:BufferIO
The LWLock:BufferIO event occurs when Aurora PostgreSQL or RDS for PostgreSQL is waiting for
other processes to finish their input/output (I/O) operations when concurrently trying to access a page.
Its purpose is for the same page to be read into the shared buffer.

1435

Amazon Aurora User Guide for Aurora
LWLock:BufferIO

Topics
• Relevant engine versions (p. 1436)
• Context (p. 1436)
• Causes (p. 1436)
• Actions (p. 1436)

Relevant engine versions
This wait event information is relevant for all Aurora PostgreSQL 13 versions.

Context
Each shared buffer has an I/O lock that is associated with the LWLock:BufferIO wait event, each time a
block (or a page) has to be retrieved outside the shared buffer pool.

This lock is used to handle multiple sessions that all require access to the same block. This block has to
be read from outside the shared buffer pool, defined by the shared_buffers parameter.

As soon as the page is read inside the shared buffer pool, the LWLock:BufferIO lock is released.

Note
The LWLock:BufferIO wait event precedes the IO:DataFileRead (p. 1412) wait event. The
IO:DataFileRead wait event occurs while data is being read from storage.

For more information on lightweight locks, see Locking Overview.

Causes
Common causes for the LWLock:BufferIO event to appear in top waits include the following:

• Multiple backends or connections trying to access the same page that's also pending an I/O operation
• The ratio between the size of the shared buffer pool (defined by the shared_buffers parameter) and

the number of buffers needed by the current workload
• The size of the shared buffer pool not being well balanced with the number of pages being evicted by

other operations
• Large or bloated indexes that require the engine to read more pages than necessary into the shared

buffer pool
• Lack of indexes that forces the DB engine to read more pages from the tables than necessary
• Checkpoints occurring too frequently or needing to flush too many modified pages
• Sudden spikes for database connections trying to perform operations on the same page

Actions
We recommend different actions depending on the causes of your wait event:

• Observe Amazon CloudWatch metrics for correlation between sharp decreases in the
BufferCacheHitRatio and LWLock:BufferIO wait events. This effect can mean that you have a
small shared buffers setting. You might need to increase it or scale up your DB instance class. You can
split your workload into more reader nodes.

• Tune max_wal_size and checkpoint_timeout based on your workload peak time if you see
LWLock:BufferIO coinciding with BufferCacheHitRatio metric dips. Then identify which query
might be causing it.

• Verify whether you have unused indexes, then remove them.

1436

https://github.com/postgres/postgres/blob/65dc30ced64cd17f3800ff1b73ab1d358e92efd8/src/backend/storage/lmgr/README#L20

Amazon Aurora User Guide for Aurora
LWLock:lock_manager

• Use partitioned tables (which also have partitioned indexes). Doing this helps to keep index reordering
low and reduces its impact.

• Avoid indexing columns unnecessarily.
• Prevent sudden database connection spikes by using a connection pool.
• Restrict the maximum number of connections to the database as a best practice.

LWLock:lock_manager
This event occurs when the Aurora PostgreSQL engine maintains the shared lock's memory area to
allocate, check, and deallocate a lock when a fast path lock isn't possible.

Topics
• Supported engine versions (p. 1437)
• Context (p. 1437)
• Likely causes of increased waits (p. 1438)
• Actions (p. 1438)

Supported engine versions
This wait event information is relevant for Aurora PostgreSQL version 9.6 and higher.

Context
When you issue a SQL statement, Aurora PostgreSQL records locks to protect the structure, data, and
integrity of your database during concurrent operations. The engine can achieve this goal using a fast
path lock or a path lock that isn't fast. A path lock that isn't fast is more expensive and creates more
overhead than a fast path lock.

Fast path locking

To reduce the overhead of locks that are taken and released frequently, but that rarely conflict, backend
processes can use fast path locking. The database uses this mechanism for locks that meet the following
criteria:

• They use the DEFAULT lock method.
• They represent a lock on a database relation rather than a shared relation.
• They are weak locks that are unlikely to conflict.
• The engine can quickly verify that no conflicting locks can possibly exist.

The engine can't use fast path locking when either of the following conditions is true:

• The lock doesn't meet the preceding criteria.
• No more slots are available for the backend process.

For more information about fast path locking, see fast path in the PostgreSQL lock manager README
and pg-locks in the PostgreSQL documentation.

Example of a scaling problem for the lock manager

In this example, a table named purchases stores five years of data, partitioned by day. Each partition
has two indexes. The following sequence of events occurs:

1437

https://github.com/postgres/postgres/blob/master/src/backend/storage/lmgr/README#L70-L76
https://www.postgresql.org/docs/9.3/view-pg-locks.html#AEN98195

Amazon Aurora User Guide for Aurora
LWLock:lock_manager

1. You query many days worth of data, which requires the database to read many partitions.

2. The database creates a lock entry for each partition. If partition indexes are part of the optimizer
access path, the database creates a lock entry for them, too.

3. When the number of requested locks entries for the same backend process is higher than 16, which is
the value of FP_LOCK_SLOTS_PER_BACKEND, the lock manager uses the non–fast path lock method.

Modern applications might have hundreds of sessions. If concurrent sessions are querying the
parent without proper partition pruning, the database might create hundreds or even thousands
of non–fast path locks. Typically, when this concurrency is higher than the number of vCPUs, the
LWLock:lock_manager wait event appears.

Note
The LWLock:lock_manager wait event isn't related to the number of partitions or indexes in
a database schema. Instead, it's related to the number of non–fast path locks that the database
must control.

Likely causes of increased waits
When the LWLock:lock_manager wait event occurs more than normal, possibly indicating a
performance problem, the most likely causes of sudden spikes are as follows:

• Concurrent active sessions are running queries that don't use fast path locks. These sessions also
exceed the maximum vCPU.

• A large number of concurrent active sessions are accessing a heavily partitioned table. Each partition
has multiple indexes.

• The database is experiencing a connection storm. By default, some applications and connection pool
software create more connections when the database is slow. This practice makes the problem worse.
Tune your connection pool software so that connection storms don't occur.

• A large number of sessions query a parent table without pruning partitions.

• A data definition language (DDL), data manipulation language (DML), or a maintenance command
exclusively locks either a busy relation or tuples that are frequently accessed or modified.

Actions
If the CPU wait event occurs, it doesn't necessarily indicate a performance problem. Respond to this
event only when performance degrades and this wait event is dominating DB load.

Topics
• Use partition pruning (p. 1438)

• Remove unnecessary indexes (p. 1439)

• Tune your queries for fast path locking (p. 1439)

• Tune for other wait events (p. 1439)

• Reduce hardware bottlenecks (p. 1439)

• Use a connection pooler (p. 1439)

• Upgrade your Aurora PostgreSQL version (p. 1440)

Use partition pruning

Partition pruning is a query optimization strategy that excludes unneeded partitions from table scans,
thereby improving performance. Partition pruning is turned on by default. If it is turned off, turn it on as
follows.

1438

Amazon Aurora User Guide for Aurora
LWLock:lock_manager

SET enable_partition_pruning = on;

Queries can take advantage of partition pruning when their WHERE clause contains the column used for
the partitioning. For more information, see Partition Pruning in the PostgreSQL documentation.

Remove unnecessary indexes

Your database might contain unused or rarely used indexes. If so, consider deleting them. Do either of
the following:

• Learn how to find unnecessary indexes by reading Unused Indexes in the PostgreSQL wiki.
• Run PG Collector. This SQL script gathers database information and presents it in a consolidated HTML

report. Check the "Unused indexes" section. For more information, see pg-collector in the AWS Labs
GitHub repository.

Tune your queries for fast path locking

To find out whether your queries use fast path locking, query the fastpath column in the pg_locks
table. If your queries aren't using fast path locking, try to reduce number of relations per query to fewer
than 16.

Tune for other wait events

If LWLock:lock_manager is first or second in the list of top waits, check whether the following wait
events also appear in the list:

• Lock:Relation

• Lock:transactionid

• Lock:tuple

If the preceding events appear high in the list, consider tuning these wait events first. These events can
be a driver for LWLock:lock_manager.

Reduce hardware bottlenecks

You might have a hardware bottleneck, such as CPU starvation or maximum usage of your Amazon EBS
bandwidth. In these cases, consider reducing the hardware bottlenecks. Consider the following actions:

• Scale up your instance class.
• Optimize queries that consume large amounts of CPU and memory.
• Change your application logic.
• Archive your data.

For more information about CPU, memory, and EBS network bandwidth, see Amazon RDS Instance
Types.

Use a connection pooler

If your total number of active connections exceeds the maximum vCPU, more OS processes require CPU
than your instance type can support. In this case, consider using or tuning a connection pool. For more
information about the vCPUs for your instance type, see Amazon RDS Instance Types.

For more information about connection pooling, see the following resources:

• Using Amazon RDS Proxy (p. 288)

1439

https://www.postgresql.org/docs/current/ddl-partitioning.html#DDL-PARTITION-PRUNING
https://wiki.postgresql.org/wiki/Index_Maintenance#Unused_Indexes
https://github.com/awslabs/pg-collector
https://aws.amazon.com/rds/instance-types/
https://aws.amazon.com/rds/instance-types/
https://aws.amazon.com/rds/instance-types/

Amazon Aurora User Guide for Aurora
Timeout:PgSleep

• pgbouncer
• Connection Pools and Data Sources in the PostgreSQL Documentation

Upgrade your Aurora PostgreSQL version

If your current version of Aurora PostgreSQL is lower than 12, upgrade to version 12 or higher.
PostgreSQL versions 12 and 13 have an improved partition mechanism. For more information about
version 12, see PostgreSQL 12.0 Release Notes. For more information about upgrading Aurora
PostgreSQL, see Amazon Aurora PostgreSQL updates (p. 1614).

Timeout:PgSleep
The Timeout:PgSleep event occurs when a server process has called the pg_sleep function and is
waiting for the sleep timeout to expire.

Topics
• Supported engine versions (p. 1440)
• Likely causes of increased waits (p. 1440)
• Actions (p. 1440)

Supported engine versions
This wait event information is supported for all versions of Aurora PostgreSQL.

Likely causes of increased waits
This wait event occurs when an application, stored function, or user issues a SQL statement that calls one
of the following functions:

• pg_sleep

• pg_sleep_for

• pg_sleep_until

The preceding functions delay execution until the specified number of seconds have elapsed. For
example, SELECT pg_sleep(1) pauses for 1 second. For more information, see Delaying Execution in
the PostgreSQL documentation.

Actions
Identify the statement that was running the pg_sleep function. Determine if the use of the function is
appropriate.

Best practices with Amazon Aurora PostgreSQL
This topic includes information on best practices and options for using or migrating data to an Amazon
Aurora PostgreSQL DB cluster.

Fast failover with Amazon Aurora PostgreSQL
There are several things you can do to make a failover perform faster with Aurora PostgreSQL. This
section discusses each of the following ways:

1440

http://www.pgbouncer.org/usage.html
https://www.postgresql.org/docs/7.4/jdbc-datasource.html
https://www.postgresql.org/docs/release/12.0/
https://www.postgresql.org/docs/current/functions-datetime.html#FUNCTIONS-DATETIME-DELAY

Amazon Aurora User Guide for Aurora
Fast failover

• Aggressively set TCP keepalives to ensure that longer running queries that are waiting for a server
response will be stopped before the read timeout expires in the event of a failure.

• Set the Java DNS caching timeouts aggressively to ensure the Aurora read-only endpoint can properly
cycle through read-only nodes on subsequent connection attempts.

• Set the timeout variables used in the JDBC connection string as low as possible. Use separate
connection objects for short and long running queries.

• Use the provided read and write Aurora endpoints to establish a connection to the cluster.

• Use RDS APIs to test application response on server side failures and use a packet dropping tool to test
application response for client-side failures.

• Use the AWS JDBC Driver for PostgreSQL (preview) to take full advantage of the failover capabilities
of Aurora PostgreSQL. For more information about the AWS JDBC Driver for PostgreSQL and complete
instructions for using it, see the AWS JDBC Driver for PostgreSQL GitHub repository.

Contents

• Setting TCP keepalives parameters (p. 1441)

• Configuring your application for fast failover (p. 1442)

• Reducing DNS cache timeouts (p. 1442)

• Setting an Aurora PostgreSQL connection string for fast failover (p. 1442)

• Other options for obtaining the host string (p. 1444)

• Java example to list instances using the DescribeDBClusters API (p. 1445)

• Testing failover (p. 1445)

• Fast failover Java example (p. 1446)

Setting TCP keepalives parameters
The TCP keepalive process is simple: when you set up a TCP connection, you associate a set of timers.
When the keepalive timer reaches zero, you send a keepalive probe packet. If you receive a reply to your
keepalive probe, you can assume that the connection is still up and running.

Enabling TCP keepalive parameters and setting them aggressively ensures that if your client is no longer
able to connect to the database, then any active connections are quickly closed. This action allows the
application to react appropriately, such as by picking a new host to connect to.

You need to set the following TCP keepalive parameters:

• tcp_keepalive_time controls the time, in seconds, after which a keepalive packet is sent when no
data has been sent by the socket (ACKs are not considered data). We recommend the following setting:

tcp_keepalive_time = 1

• tcp_keepalive_intvl controls the time, in seconds, between sending subsequent keepalive packets
after the initial packet is sent (set using the tcp_keepalive_time parameter). We recommend the
following setting:

tcp_keepalive_intvl = 1

• tcp_keepalive_probes is the number of unacknowledged keepalive probes that occur before the
application is notified. We recommend the following setting:

tcp_keepalive_probes = 5

These settings should notify the application within five seconds when the database stops responding.
A higher tcp_keepalive_probes value can be set if keepalive packets are often dropped within the

1441

https://awslabs.github.io/aws-postgresql-jdbc/

Amazon Aurora User Guide for Aurora
Fast failover

application's network. This subsequently increases the time it takes to detect an actual failure, but allows
for more buffer in less reliable networks.

Setting TCP keepalive parameters on Linux

1. When testing how to configure the TCP keepalive parameters, we recommend doing so via the
command line with the following commands: This suggested configuration is system wide, meaning
that it affects all other applications that create sockets with the SO_KEEPALIVE option on.

sudo sysctl net.ipv4.tcp_keepalive_time=1
sudo sysctl net.ipv4.tcp_keepalive_intvl=1
sudo sysctl net.ipv4.tcp_keepalive_probes=5

2. After you've found a configuration that works for your application, persist these settings by adding
the following lines to /etc/sysctl.conf, including any changes you made:

tcp_keepalive_time = 1
tcp_keepalive_intvl = 1
tcp_keepalive_probes = 5

For information on setting TCP keepalive parameters on Windows, see Things you May want to know
about TCP keepalive.

Configuring your application for fast failover
This section discusses several Aurora PostgreSQL specific configuration changes you can make. To
learn more about PostgreSQL JDBC driver setup and configuration, see the PostgreSQL JDBC Driver
documentation.

Topics
• Reducing DNS cache timeouts (p. 1442)
• Setting an Aurora PostgreSQL connection string for fast failover (p. 1442)
• Other options for obtaining the host string (p. 1444)

Reducing DNS cache timeouts

When your application tries to establish a connection after a failover, the new Aurora PostgreSQL writer
will be a previous reader, which can be found using the Aurora read only endpoint before DNS updates
have fully propagated. Setting the java DNS TTL to a low value helps cycle between reader nodes on
subsequent connection attempts.

// Sets internal TTL to match the Aurora RO Endpoint TTL
java.security.Security.setProperty("networkaddress.cache.ttl" , "1");
// If the lookup fails, default to something like small to retry
java.security.Security.setProperty("networkaddress.cache.negative.ttl" , "3");

Setting an Aurora PostgreSQL connection string for fast failover

To make use of Aurora PostgreSQL fast failover, your application's connection string should have a list
of hosts (highlighted in bold in the following example) instead of just a single host. Here is an example
connection string you could use to connect to an Aurora PostgreSQL cluster:

jdbc:postgresql://myauroracluster.cluster-c9bfei4hjlrd.us-east-1-
beta.rds.amazonaws.com:5432,
myauroracluster.cluster-ro-c9bfei4hjlrd.us-east-1-beta.rds.amazonaws.com:5432

1442

https://blogs.technet.microsoft.com/nettracer/2010/06/03/things-that-you-may-want-to-know-about-tcp-keepalives/
https://blogs.technet.microsoft.com/nettracer/2010/06/03/things-that-you-may-want-to-know-about-tcp-keepalives/
https://jdbc.postgresql.org/documentation/head/index.html

Amazon Aurora User Guide for Aurora
Fast failover

/postgres?user=<primaryuser>&password=<primarypw>&loginTimeout=2
&connectTimeout=2&cancelSignalTimeout=2&socketTimeout=60
&tcpKeepAlive=true&targetServerType=primary

For more information about PostgreSQL JDBC driver parameters, see Connecting to the Database.

For best availability and to avoid a dependency on the RDS API, the best option for connecting is to
maintain a file with a host string that your application reads from when you establish a connection to
the database. This host string would have all the Aurora endpoints available for the cluster. For more
information about Aurora endpoints, see Amazon Aurora connection management (p. 32). For example,
you could store the endpoints in a file locally like the following:

myauroracluster.cluster-c9bfei4hjlrd.us-east-1-beta.rds.amazonaws.com:5432,
myauroracluster.cluster-ro-c9bfei4hjlrd.us-east-1-beta.rds.amazonaws.com:5432

Your application would read from this file to populate the host section of the JDBC connection string.
Renaming the DB cluster causes these endpoints to change; ensure that your application handles that
event should it occur.

Another option is to use a list of DB instance nodes:

my-node1.cksc6xlmwcyw.us-east-1-beta.rds.amazonaws.com:5432,
my-node2.cksc6xlmwcyw.us-east-1-beta.rds.amazonaws.com:5432,
my-node3.cksc6xlmwcyw.us-east-1-beta.rds.amazonaws.com:5432,
my-node4.cksc6xlmwcyw.us-east-1-beta.rds.amazonaws.com:5432

The benefit of this approach is that the PostgreSQL JDBC connection driver will loop through all nodes
on this list to find a valid connection, whereas when using the Aurora endpoints only two nodes will
be tried per connection attempt. The downside of using DB instance nodes is that if you add or remove
nodes from your cluster and the list of instance endpoints becomes stale, the connection driver may
never find the correct host to connect to.

Set the following parameters aggressively to help ensure that your application doesn't wait too long to
connect to any one host.

• targetServerType – Use this parameter to control whether the driver connects to a write or read
node. To ensure your applications will reconnect only to a write node, set the targetServerType
value to primary.

Values for the targetServerType parameter include primary, secondary, any, and
preferSecondary. The preferSecondary value attempts to establish a connection to a reader first
but connects to the writer if no reader connection can be established.

• loginTimeout – Controls how long your application waits to login to the database after a socket
connection has been established.

• connectTimeout – Controls how long the socket waits to establish a connection to the database.

You can modify other application parameters to speed up the connection process, depending on how
aggressive you want your application to be.

• cancelSignalTimeout – In some applications, you may want to send a "best effort" cancel signal on
a query that has timed out. If this cancel signal is in your failover path, you should consider setting it
aggressively to avoid sending this signal to a dead host.

• socketTimeout – This parameter controls how long the socket waits for read operations. This
parameter can be used as a global "query timeout" to ensure no query waits longer than this value. A
good practice is to have one connection handler that runs short lived queries and sets this value lower,
and to have another connection handler for long running queries with this value set much higher.
Then, you can rely on TCP keepalive parameters to stop long running queries if the server goes down.

1443

https://jdbc.postgresql.org/documentation/head/connect.html

Amazon Aurora User Guide for Aurora
Fast failover

• tcpKeepAlive – Enable this parameter to ensure the TCP keepalive parameters that you set are
respected.

• loadBalanceHosts – When set to true, this parameter has the application connect to a random
host chosen from a list of candidate hosts.

Other options for obtaining the host string

You can get the host string from several sources, including the aurora_replica_status function and
by using the Amazon RDS API.

Your application can connect to any DB instance in the DB cluster and query the
aurora_replica_status function to determine who the writer of the cluster is, or to find any other
reader nodes in the cluster. You can use this function to reduce the amount of time it takes to find a host
to connect to, though in certain scenarios the aurora_replica_status function may show out of date
or incomplete information in certain network failure scenarios.

A good way to ensure your application can find a node to connect to is to attempt to connect to
the cluster writerendpoint and then the cluster readerendpoint until you can establish a readable
connection. These endpoints do not change unless you rename your DB cluster, and thus can generally
be left as static members of your application or stored in a resource file that your application reads from.

After you establish a connection using one of these endpoints, you can call the
aurora_replica_status function to get information about the rest of the cluster. For example, the
following command retrieves information with the aurora_replica_status function.

postgres=> SELECT server_id, session_id, highest_lsn_rcvd, cur_replay_latency_in_usec,
 now(), last_update_timestamp
FROM aurora_replica_status();

server_id | session_id | highest_lsn_rcvd | cur_replay_latency_in_usec | now |
 last_update_timestamp
-----------+--------------------------------------+------------------
+----------------------------+-------------------------------+------------------------
mynode-1 | 3e3c5044-02e2-11e7-b70d-95172646d6ca | 594221001 | 201421 | 2017-03-07
 19:50:24.695322+00 | 2017-03-07 19:50:23+00
mynode-2 | 1efdd188-02e4-11e7-becd-f12d7c88a28a | 594221001 | 201350 | 2017-03-07
 19:50:24.695322+00 | 2017-03-07 19:50:23+00
mynode-3 | MASTER_SESSION_ID | | | 2017-03-07 19:50:24.695322+00 | 2017-03-07 19:50:23+00
(3 rows)

So for example, the hosts section of your connection string could start with both the writer and reader
cluster endpoints:

myauroracluster.cluster-c9bfei4hjlrd.us-east-1-beta.rds.amazonaws.com:5432,
myauroracluster.cluster-ro-c9bfei4hjlrd.us-east-1-beta.rds.amazonaws.com:5432

In this scenario, your application would attempt to establish a connection to any node type, primary or
secondary. When your application is connected, a good practice is to first examine the read/write status
of the node by querying for the result of the command SHOW transaction_read_only.

If the return value of the query is OFF, then you've successfully connected to the primary
node. If the return value is ON, and your application requires a read/write connection, you
can then call the aurora_replica_status function to determine the server_id that has
session_id='MASTER_SESSION_ID'. This function gives you the name of the primary node. You can
use this in conjunction with the 'endpointPostfix' described below.

One thing to be aware of is when you connect to a replica that has stale data. When this happens, the
aurora_replica_status function might show out-of-date information. A threshold for staleness

1444

Amazon Aurora User Guide for Aurora
Fast failover

can be set at the application level and examined by looking at the difference between the server
time and the last_update_timestamp. In general, your application should avoid flipping between
two hosts due to conflicting information returned by the aurora_replica_status function. Your
application should try all known hosts first instead of blindly following the data returned by the
aurora_replica_status function.

Java example to list instances using the DescribeDBClusters API

You can programmatically find the list of instances by using the AWS SDK for Java, specifically the
DescribeDBClusters API. Here's a small example of how you might do this in java 8:

AmazonRDS client = AmazonRDSClientBuilder.defaultClient();
DescribeDBClustersRequest request = new DescribeDBClustersRequest()
 .withDBClusterIdentifier(clusterName);
DescribeDBClustersResult result =
rdsClient.describeDBClusters(request);

DBCluster singleClusterResult = result.getDBClusters().get(0);

String pgJDBCEndpointStr =
singleClusterResult.getDBClusterMembers().stream()
 .sorted(Comparator.comparing(DBClusterMember::getIsClusterWriter)
 .reversed()) // This puts the writer at the front of the list
 .map(m -> m.getDBInstanceIdentifier() + endpointPostfix + ":" +
 singleClusterResult.getPort()))
 .collect(Collectors.joining(","));

pgJDBCEndpointStr will contain a formatted list of endpoints. For example:

my-node1.cksc6xlmwcyw.us-east-1-beta.rds.amazonaws.com:5432,
my-node2.cksc6xlmwcyw.us-east-1-beta.rds.amazonaws.com:5432

The variable endpointPostfix can be a constant that your application sets, or can be obtained by
querying the DescribeDBInstances API for a single instance in your cluster. This value remains
constant within a region and for an individual customer, so it would save an API call to simply keep this
constant in a resource file that your application reads from. In the example above, it would be set to:

.cksc6xlmwcyw.us-east-1-beta.rds.amazonaws.com

For availability purposes, a good practice is to default to using the Aurora endpoints of your DB cluster
if the API is not responding, or is taking too long to respond. The endpoints are guaranteed to be up to
date within the time it takes to update the DNS record. This is typically less than 30 seconds. You can
store this in a resource file that your application consumes.

Testing failover
In all cases you must have a DB cluster with two or more DB instances in it.

From the server side, certain APIs can cause an outage that can be used to test how your applications
responds:

• FailoverDBCluster - Will attempt to promote a new DB instance in your DB cluster to writer.

The following code sample shows how you can use failoverDBCluster to cause an outage. For
more details about setting up an Amazon RDS client, see Using the AWS SDK for Java.

public void causeFailover() {

1445

https://aws.amazon.com/sdk-for-java/
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_FailoverDBCluster.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/basics.html

Amazon Aurora User Guide for Aurora
Fast failover

 final AmazonRDS rdsClient = AmazonRDSClientBuilder.defaultClient();

 FailoverDBClusterRequest request = new FailoverDBClusterRequest();
 request.setDBClusterIdentifier("cluster-identifier");

 rdsClient.failoverDBCluster(request);
}

• RebootDBInstance – Failover is not guaranteed in this API. It will shutdown the database on the
writer, though, and can be used to test how your application responds to connections dropping (note
that the ForceFailover parameter is not applicable for Aurora engines and instead should use the
FailoverDBCluster API).

• ModifyDBCluster – Modifying the Port will cause an outage when the nodes in the cluster begin
listening on a new port. In general your application can respond to this failure by ensuring that only
your application controls port changes and can appropriately update the endpoints it depends on,
by having someone manually update the port when they make modifications at the API level, or by
querying the RDS API in your application to determine if the port has changed.

• ModifyDBInstance – Modifying the DBInstanceClass will cause an outage.

• DeleteDBInstance – Deleting the primary/writer will cause a new DB instance to be promoted to writer
in your DB cluster.

From the application/client side, if using Linux, you can test how the application responds to sudden
packet drops based on port, host, or if tcp keepalive packets are not sent or received by using iptables.

Fast failover Java example
The following code sample shows how an application might set up an Aurora PostgreSQL driver
manager. The application would call getConnection() when it needs a connection. A call to this
function can fail to find a valid host, such as when no writer is found but the targetServerType
parameter was set to primary. The calling application should simply retry calling the function. This can
easily be wrapped into a connection pooler to avoid pushing the retry behavior onto the application.
Most connection poolers allow you to specify a JDBC connection string, so your application could call
into getJdbcConnectionString() and pass that to the connection pooler to make use of faster
failover on Aurora PostgreSQL.

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.IntStream;

import org.joda.time.Duration;

public class FastFailoverDriverManager {
 private static Duration LOGIN_TIMEOUT = Duration.standardSeconds(2);
 private static Duration CONNECT_TIMEOUT = Duration.standardSeconds(2);
 private static Duration CANCEL_SIGNAL_TIMEOUT = Duration.standardSeconds(1);
 private static Duration DEFAULT_SOCKET_TIMEOUT = Duration.standardSeconds(5);

 public FastFailoverDriverManager() {
 try {
 Class.forName("org.postgresql.Driver");
 } catch (ClassNotFoundException e) {
 e.printStackTrace();
 }

1446

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RebootDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBInstance.html

Amazon Aurora User Guide for Aurora
Fast failover

 /*
 * RO endpoint has a TTL of 1s, we should honor that here. Setting this
 aggressively makes sure that when
 * the PG JDBC driver creates a new connection, it will resolve a new different RO
 endpoint on subsequent attempts
 * (assuming there is > 1 read node in your cluster)
 */
 java.security.Security.setProperty("networkaddress.cache.ttl" , "1");
 // If the lookup fails, default to something like small to retry
 java.security.Security.setProperty("networkaddress.cache.negative.ttl" , "3");
 }

 public Connection getConnection(String targetServerType) throws SQLException {
 return getConnection(targetServerType, DEFAULT_SOCKET_TIMEOUT);
 }

 public Connection getConnection(String targetServerType, Duration queryTimeout) throws
 SQLException {
 Connection conn =
 DriverManager.getConnection(getJdbcConnectionString(targetServerType, queryTimeout));

 /*
 * A good practice is to set socket and statement timeout to be the same thing
 since both
 * the client AND server will stop the query at the same time, leaving no running
 queries
 * on the backend
 */
 Statement st = conn.createStatement();
 st.execute("set statement_timeout to " + queryTimeout.getMillis());
 st.close();

 return conn;
 }

 private static String urlFormat = "jdbc:postgresql://%s"
 + "/postgres"
 + "?user=%s"
 + "&password=%s"
 + "&loginTimeout=%d"
 + "&connectTimeout=%d"
 + "&cancelSignalTimeout=%d"
 + "&socketTimeout=%d"
 + "&targetServerType=%s"
 + "&tcpKeepAlive=true"
 + "&ssl=true"
 + "&loadBalanceHosts=true";
 public String getJdbcConnectionString(String targetServerType, Duration queryTimeout) {
 return String.format(urlFormat,
 getFormattedEndpointList(getLocalEndpointList()),
 CredentialManager.getUsername(),
 CredentialManager.getPassword(),
 LOGIN_TIMEOUT.getStandardSeconds(),
 CONNECT_TIMEOUT.getStandardSeconds(),
 CANCEL_SIGNAL_TIMEOUT.getStandardSeconds(),
 queryTimeout.getStandardSeconds(),
 targetServerType
);
 }

 private List<String> getLocalEndpointList() {
 /*
 * As mentioned in the best practices doc, a good idea is to read a local resource
 file and parse the cluster endpoints.
 * For illustration purposes, the endpoint list is hardcoded here

1447

Amazon Aurora User Guide for Aurora
Troubleshooting storage issues

 */
 List<String> newEndpointList = new ArrayList<>();
 newEndpointList.add("myauroracluster.cluster-c9bfei4hjlrd.us-east-1-
beta.rds.amazonaws.com:5432");
 newEndpointList.add("myauroracluster.cluster-ro-c9bfei4hjlrd.us-east-1-
beta.rds.amazonaws.com:5432");

 return newEndpointList;
 }

 private static String getFormattedEndpointList(List<String> endpoints) {
 return IntStream.range(0, endpoints.size())
 .mapToObj(i -> endpoints.get(i).toString())
 .collect(Collectors.joining(","));
 }
}

Troubleshooting storage issues
If the amount of memory required by a sort or index creation operation exceeds the amount of memory
available, Aurora PostgreSQL writes the excess data to storage. When it writes the data it uses the
same storage space it uses for storing error and message logs. If your sorts or index creation functions
exceed the memory available, you could develop a local storage shortage. If you experience issues with
Aurora PostgreSQL running out of storage space, you can either reconfigure your data sorts to use more
memory, or reduce the data retention period for your PostgreSQL log files. For more information about
changing the log retention period see, PostgreSQL database log files (p. 727).

If your Aurora cluster is larger than 40 TB, don't use db.t2, db.t3, or db.t4g instance classes.

Replication with Amazon Aurora PostgreSQL
Following, you can find a description of replication with Amazon Aurora PostgreSQL, including how to
monitor replication.

Topics
• Using Aurora Replicas (p. 1448)

• Monitoring Aurora PostgreSQL replication (p. 1449)

• Using PostgreSQL logical replication with Aurora (p. 1449)

Using Aurora Replicas
An Aurora Replica is an independent endpoint in an Aurora DB cluster, best used for scaling read
operations and increasing availability. An Aurora DB cluster can include up to 15 Aurora Replicas located
throughout the Availability Zones of the Aurora DB cluster's AWS Region.

The DB cluster volume is made up of multiple copies of the data for the DB cluster. However, the
data in the cluster volume is represented as a single, logical volume to the primary writer DB instance
and to Aurora Replicas in the DB cluster. For more information about Aurora Replicas, see Aurora
Replicas (p. 70).

Aurora Replicas work well for read scaling because they're fully dedicated to read operations on your
cluster volume. The writer DB instance manages write operations. The cluster volume is shared among all
instances in your Aurora PostgreSQL DB cluster. Thus, no extra work is needed to replicate a copy of the
data for each Aurora Replica.

1448

Amazon Aurora User Guide for Aurora
Monitoring replication

With Aurora PostgreSQL, when an Aurora Replica is deleted, its instance endpoint is removed
immediately, and the Aurora Replica is removed from the reader endpoint. If there are statements
running on the Aurora Replica that is being deleted, there is a three minute grace period. Existing
statements can finish gracefully during the grace period. When the grace period ends, the Aurora Replica
is shut down and deleted.

Aurora PostgreSQL DB clusters don't support Aurora Replicas in different AWS Regions, so you can't use
Aurora Replicas for cross-Region replication.

Note
Rebooting the writer DB instance of an Amazon Aurora DB cluster also automatically reboots
the Aurora Replicas for that DB cluster. The automatic reboot re-establishes an entry point that
guarantees read/write consistency across the DB cluster.

Monitoring Aurora PostgreSQL replication
Read scaling and high availability depend on minimal lag time. You can monitor how far an Aurora
Replica is lagging behind the writer DB instance of your Aurora PostgreSQL DB cluster by monitoring the
Amazon CloudWatch ReplicaLag metric. Because Aurora Replicas read from the same cluster volume
as the writer DB instance, the ReplicaLag metric has a different meaning for an Aurora PostgreSQL DB
cluster. The ReplicaLag metric for an Aurora Replica indicates the lag for the page cache of the Aurora
Replica compared to that of the writer DB instance.

For more information on monitoring RDS instances and CloudWatch metrics, see Monitoring metrics in
an Amazon Aurora cluster (p. 541).

Using PostgreSQL logical replication with Aurora
PostgreSQL logical replication provides fine-grained control over replicating and synchronizing parts of a
database. For example, you can use logical replication to replicate an individual table of a database.

Following, you can find information about how to work with PostgreSQL logical replication and Amazon
Aurora. For more detailed information about the PostgreSQL implementation of logical replication, see
Logical replication and Logical decoding concepts in the PostgreSQL documentation.

Note
Logical replication is available with Aurora PostgreSQL version 2.2.0 (compatible with
PostgreSQL 10.6) and later.

Following, you can find information about how to work with PostgreSQL logical replication and Amazon
Aurora.

Topics
• Configuring logical replication (p. 1449)

• Example of logical replication of a database table (p. 1451)

• Logical replication using the AWS Database Migration Service (p. 1452)

• Stopping logical replication (p. 1454)

Configuring logical replication
To use logical replication, you first set the rds.logical_replication parameter for a cluster
parameter group. You then set up the publisher and subscriber.

Logical replication uses a publish and subscribe model. Publishers and subscribers are the nodes. A
publication is a set of changes generated from one or more database tables. You specify a publication on

1449

https://www.postgresql.org/docs/current/logical-replication.html
https://www.postgresql.org/docs/current/logicaldecoding-explanation.html

Amazon Aurora User Guide for Aurora
Using logical replication

a publisher. A subscription defines the connection to another database and one or more publications to
which it subscribes. You specify a subscription on a subscriber. The publication and subscription make the
connection between the publisher and subscriber.

Note
Following are requirements for logical replication:

• To perform logical replication for a PostgreSQL database, your AWS user account needs the
rds_superuser role.

• The RDS for PostgreSQL DB instance that you use as the source must have automated
backups enabled. For instructions on how to enable automated backups for an RDS for
PostgreSQL DB instance, see Enabling automated backups in the Amazon RDS User Guide.

To enable PostgreSQL logical replication with Aurora

1. Create a new DB cluster parameter group to use for logical replication, as described in Creating a DB
cluster parameter group (p. 343). Use the following settings:

• For Parameter group family, choose your version of Aurora PostgreSQL, such as aurora-
postgresql12.

• For Type, choose DB Cluster Parameter Group.
2. Modify the DB cluster parameter group, as described in Modifying parameters in a DB cluster

parameter group (p. 349). Set the rds.logical_replication static parameter to 1.

Enabling the rds.logical_replication parameter affects the DB cluster's performance.
3. Review the max_replication_slots, max_wal_senders,

max_logical_replication_workers, and max_worker_processes parameters in your
DB cluster parameter group based on your expected usage. If necessary, modify the DB cluster
parameter group to change the settings for these parameters, as described in Modifying parameters
in a DB cluster parameter group (p. 349).

Follow these guidelines for setting the parameters:

• max_replication_slots – Ensure that max_replication_slots is at least as high as the
combined number of logical replication publications and subscriptions you plan to create. If you
are using AWS DMS, make sure max_replication_slots is at least as high as the number of
AWS DMS tasks you plan to use for change data capture from this DB cluster, plus any logical
replication publications and subscriptions.

• max_wal_senders and max_logical_replication_workers – Ensure that
max_wal_senders and max_logical_replication_workers are each set at least as high as
the number of logical replication slots that you intend to be active, or the number of active AWS
DMS tasks for change data capture. Leaving a logical replication slot inactive prevents vacuum
from removing obsolete tuples from tables, so we recommend that you don't keep inactive
replication slots for long periods of time.

• max_worker_processes – Ensure that max_worker_processes is at least as high as the
combined values of max_logical_replication_workers, autovacuum_max_workers, and
max_parallel_workers. Having a high number of background worker processes might affect
application workloads on small DB instance classes, so monitor the performance of your database
if you set max_worker_processes higher than the default value.

To configure a publisher for logical replication

1. Set the publisher's cluster parameter group:

• To use an existing Aurora PostgreSQL DB cluster for the publisher, the engine version must be
10.6 or later. Do the following:

1450

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithAutomatedBackups.html#USER_WorkingWithAutomatedBackups.Enabling

Amazon Aurora User Guide for Aurora
Using logical replication

1. Modify the DB cluster parameter group to set it to the group that you created when you
enabled logical replication. For details about modifying an Aurora PostgreSQL DB cluster, see
Modifying an Amazon Aurora DB cluster (p. 372).

2. Restart the DB cluster for static parameter changes to take effect. The DB cluster parameter
group includes a change to the static parameter rds.logical_replication.

• To use a new Aurora PostgreSQL DB cluster for the publisher, create the DB cluster using the
following settings. For details about creating an Aurora PostgreSQL DB cluster, see Creating a DB
cluster (p. 126).

1. Choose the Amazon Aurora engine and choose the PostgreSQL-compatible edition.

2. For Engine version, choose an Aurora PostgreSQL engine that is compatible with PostgreSQL
10.6 or greater.

3. For DB cluster parameter group, choose the group that you created when you enabled logical
replication.

2. Modify the inbound rules of the security group for the publisher to allow the subscriber to connect.
Usually, you do this by including the IP address of the subscriber in the security group. For details
about modifying a security group, see Security groups for your VPC in the Amazon Virtual Private
Cloud User Guide.

Example of logical replication of a database table
To implement logical replication, use the PostgreSQL commands CREATE PUBLICATION and CREATE
SUBSCRIPTION.

For this example, table data is replicated from an Aurora PostgreSQL database as the publisher to a
PostgreSQL database as the subscriber. Note that a subscriber database can be an RDS PostgreSQL
database or an Aurora PostgreSQL database. A subscriber can also be an application that uses
PostgreSQL logical replication. After the logical replication mechanism is set up, changes on the
publisher are continually sent to the subscriber as they occur.

To set up logical replication for this example, do the following:

1. Configure an Aurora PostgreSQL DB cluster as the publisher. To do so, create a new Aurora
PostgreSQL DB cluster, as described when configuring the publisher in Configuring logical
replication (p. 1449).

2. Set up the publisher database.

For example, create a table using the following SQL statement on the publisher database.

CREATE TABLE LogicalReplicationTest (a int PRIMARY KEY);

3. Insert data into the publisher database by using the following SQL statement.

INSERT INTO LogicalReplicationTest VALUES (generate_series(1,10000));

4. Create a publication on the publisher by using the following SQL statement.

CREATE PUBLICATION testpub FOR TABLE LogicalReplicationTest;

5. Create your subscriber. A subscriber database can be either of the following:

• Aurora PostgreSQL database version 2.2.0 (compatible with PostgreSQL 10.6) or later.

• Amazon RDS for PostgreSQL database with the PostgreSQL DB engine version 10.4 or later.

For this example, we create an Amazon RDS for PostgreSQL database as the subscriber. For details on
creating a DB instance, see Creating a DB instance in the Amazon RDS User Guide.

1451

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateDBInstance.html

Amazon Aurora User Guide for Aurora
Using logical replication

6. Set up the subscriber database.

For this example, create a table like the one created for the publisher by using the following SQL
statement.

CREATE TABLE LogicalReplicationTest (a int PRIMARY KEY);

7. Verify that there is data in the table at the publisher but no data yet at the subscriber by using the
following SQL statement on both databases.

SELECT count(*) FROM LogicalReplicationTest;

8. Create a subscription on the subscriber.

Use the following SQL statement on the subscriber database and the following settings from the
publisher cluster:

• host – The publisher cluster's writer DB instance.

• port – The port on which the writer DB instance is listening. The default for PostgreSQL is 5432.

• dbname – The DB name of the publisher cluster.

CREATE SUBSCRIPTION testsub CONNECTION
 'host=publisher-cluster-writer-endpoint port=5432 dbname=db-name user=user
 password=password'
 PUBLICATION testpub;

After the subscription is created, a logical replication slot is created at the publisher.

9. To verify for this example that the initial data is replicated on the subscriber, use the following SQL
statement on the subscriber database.

SELECT count(*) FROM LogicalReplicationTest;

Any further changes on the publisher are replicated to the subscriber.

Logical replication using the AWS Database Migration Service
You can use the AWS Database Migration Service (AWS DMS) to replicate a database or a portion of a
database. Use AWS DMS to migrate your data from an Aurora PostgreSQL database to another open
source or commercial database. For more information about AWS DMS, see the AWS Database Migration
Service User Guide.

The following example shows how to set up logical replication from an Aurora PostgreSQL database as
the publisher and then use AWS DMS for migration. This example uses the same publisher and subscriber
that were created in Example of logical replication of a database table (p. 1451).

To set up logical replication with AWS DMS, you need details about your publisher and subscriber from
Amazon RDS. In particular, you need details about the publisher's writer DB instance and the subscriber's
DB instance.

Get the following information for the publisher's writer DB instance:

• The virtual private cloud (VPC) identifier

• The subnet group

• The Availability Zone (AZ)

• The VPC security group

1452

https://docs.aws.amazon.com/dms/latest/userguide/
https://docs.aws.amazon.com/dms/latest/userguide/

Amazon Aurora User Guide for Aurora
Using logical replication

• The DB instance ID

Get the following information for the subscriber's DB instance:

• The DB instance ID

• The source engine

To use AWS DMS for logical replication with Aurora PostgreSQL

1. Prepare the publisher database to work with AWS DMS.

To do this, PostgreSQL 10.x and later databases require that you apply AWS DMS wrapper
functions to the publisher database. For details on this and later steps, see the instructions in Using
PostgreSQL version 10.x and later as a source for AWS DMS in the AWS Database Migration Service
User Guide.

2. Sign in to the AWS Management Console and open the AWS DMS console at https://
console.aws.amazon.com/dms/v2. At top right, choose the same AWS Region in which the publisher
and subscriber are located.

3. Create an AWS DMS replication instance.

Choose values that are the same as for your publisher's writer DB instance. These include the
following settings:

• For VPC, choose the same VPC as for the writer DB instance.

• For Replication Subnet Group, choose a subnet group with the same values as the writer DB
instance. Create a new one if necessary.

• For Availability zone, choose the same zone as for the writer DB instance.

• For VPC Security Group, choose the same group as for the writer DB instance.

4. Create an AWS DMS endpoint for the source.

Specify the publisher as the source endpoint by using the following settings:

• For Endpoint type, choose Source endpoint.

• Choose Select RDS DB Instance.

• For RDS Instance, choose the DB identifier of the publisher's writer DB instance.

• For Source engine, choose postgres.

5. Create an AWS DMS endpoint for the target.

Specify the subscriber as the target endpoint by using the following settings:

• For Endpoint type, choose Target endpoint.

• Choose Select RDS DB Instance.

• For RDS Instance, choose the DB identifier of the subscriber DB instance.

• Choose a value for Source engine. For example, if the subscriber is an RDS PostgreSQL database,
choose postgres. If the subscriber is an Aurora PostgreSQL database, choose aurora-postgresql.

6. Create an AWS DMS database migration task.

You use a database migration task to specify what database tables to migrate, to map data using the
target schema, and to create new tables on the target database. At a minimum, use the following
settings for Task configuration:

• For Replication instance, choose the replication instance that you created in an earlier step.

• For Source database endpoint, choose the publisher source that you created in an earlier step.
1453

https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.PostgreSQL.html#CHAP_Source.PostgreSQL.v10
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.PostgreSQL.html#CHAP_Source.PostgreSQL.v10
https://console.aws.amazon.com/dms/v2
https://console.aws.amazon.com/dms/v2

Amazon Aurora User Guide for Aurora
Integrating Aurora PostgreSQL with AWS services

• For Target database endpoint, choose the subscriber target that you created in an earlier step.

The rest of the task details depend on your migration project. For more information about specifying
all the details for DMS tasks, see Working with AWS DMS tasks in the AWS Database Migration
Service User Guide.

After AWS DMS creates the task, it begins migrating data from the publisher to the subscriber.

Stopping logical replication
You can stop using logical replication.

To stop using logical replication

1. Drop all replication slots.

To drop all of the replication slots, connect to the publisher and run the following SQL command

SELECT pg_drop_replication_slot(slot_name) FROM pg_replication_slots
 WHERE slot_name IN (SELECT slot_name FROM pg_replication_slots);

The replication slots can't be active when you run this command.
2. Modify the DB cluster parameter group associated with the publisher, as described in Modifying

parameters in a DB cluster parameter group (p. 349). Set the rds.logical_replication static
parameter to 0.

3. Restart the publisher DB cluster for the change to the rds.logical_replication static
parameter to take effect.

Integrating Amazon Aurora PostgreSQL with other
AWS services

Amazon Aurora integrates with other AWS services so that you can extend your Aurora PostgreSQL DB
cluster to use additional capabilities in the AWS Cloud. Your Aurora PostgreSQL DB cluster can use AWS
services to do the following:

• Quickly collect, view, and assess performance for your Aurora PostgreSQL DB instances with Amazon
RDS Performance Insights. Performance Insights expands on existing Amazon RDS monitoring features
to illustrate your database's performance and help you analyze any issues that affect it. With the
Performance Insights dashboard, you can visualize the database load and filter the load by waits, SQL
statements, hosts, or users. For more information about Performance Insights, see Monitoring DB load
with Performance Insights on Amazon Aurora (p. 594).

• Automatically add or remove Aurora Replicas with Aurora Auto Scaling. For more information, see
Using Amazon Aurora Auto Scaling with Aurora replicas (p. 427).

• Configure your Aurora PostgreSQL DB cluster to publish log data to Amazon CloudWatch Logs.
CloudWatch Logs provide highly durable storage for your log records. With CloudWatch Logs, you can
perform real-time analysis of the log data, and use CloudWatch to create alarms and view metrics. For
more information, see Publishing Aurora PostgreSQL logs to Amazon CloudWatch Logs (p. 1504).

• Import data from an Amazon S3 bucket to an Aurora PostgreSQL DB cluster, or export data from
an Aurora PostgreSQL DB cluster to an Amazon S3 bucket. For more information, see Importing
Amazon S3 data into an Aurora PostgreSQL DB cluster (p. 1455) and Exporting data from an Aurora
PostgreSQL DB cluster to Amazon S3 (p. 1467).

1454

https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Tasks.html

Amazon Aurora User Guide for Aurora
Importing S3 data into Aurora PostgreSQL

• Add machine learning-based predictions to database applications using the SQL language. Aurora
machine learning uses a highly optimized integration between the Aurora database and the AWS
machine learning (ML) services SageMaker and Amazon Comprehend. For more information, see Using
machine learning (ML) with Aurora PostgreSQL (p. 1511).

• Invoke AWS Lambda functions from an Aurora PostgreSQL DB cluster. To do this, use the aws_lambda
PostgreSQL extension provided with Aurora PostgreSQL. For more information, see Invoking an AWS
Lambda function from an Aurora PostgreSQL DB cluster (p. 1534).

• For easy and efficient access to Oracle databases for Aurora PostgreSQL, you can use the PostgreSQL
oracle_fdw extension, which provides a foreign data wrapper. For more information, see Using the
oracle_fdw extension to access foreign data in Aurora PostgreSQL (p. 1544).

• Integrate queries from Amazon Redshift and Aurora PostgreSQL. For more information, see Getting
started with using federated queries to PostgreSQL in the Amazon Redshift Database Developer Guide.

Importing Amazon S3 data into an Aurora
PostgreSQL DB cluster

You can import data from Amazon S3 into a table belonging to an Aurora PostgreSQL DB cluster. To do
this, you use the aws_s3 PostgreSQL extension that Aurora PostgreSQL provides. Your database must be
running PostgreSQL version 10.7 or higher to import from Amazon S3 into Aurora PostgreSQL.

If you are using encryption, the Amazon S3 bucket must be encrypted with an AWS managed key.
Currently, you can't import data from a bucket that is encrypted with a customer managed key.

For more information on storing data with Amazon S3, see Create a bucket in the Amazon Simple Storage
Service User Guide. For instructions on how to upload a file to an Amazon S3 bucket, see Add an object to
a bucket in the Amazon Simple Storage Service User Guide.

Topics
• Overview of importing Amazon S3 data (p. 1455)
• Setting up access to an Amazon S3 bucket (p. 1456)
• Using the aws_s3.table_import_from_s3 function to import Amazon S3 data (p. 1461)
• Function reference (p. 1463)

Overview of importing Amazon S3 data
To import data stored in an Amazon S3 bucket to a PostgreSQL database table, follow these steps.

To import S3 data into Aurora PostgreSQL

1. Install the required PostgreSQL extensions. These include the aws_s3 and aws_commons
extensions. To do so, start psql and use the following command.

psql=> CREATE EXTENSION aws_s3 CASCADE;
NOTICE: installing required extension "aws_commons"

The aws_s3 extension provides the aws_s3.table_import_from_s3 (p. 1463) function that you use to
import Amazon S3 data. The aws_commons extension provides additional helper functions.

2. Identify the database table and Amazon S3 file to use.

The aws_s3.table_import_from_s3 (p. 1463) function requires the name of the PostgreSQL database
table that you want to import data into. The function also requires that you identify the Amazon S3
file to import. To provide this information, take the following steps.

1455

https://docs.aws.amazon.com/redshift/latest/dg/getting-started-federated.html
https://docs.aws.amazon.com/redshift/latest/dg/getting-started-federated.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/PuttingAnObjectInABucket.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/PuttingAnObjectInABucket.html

Amazon Aurora User Guide for Aurora
Setting up access to an Amazon S3 bucket

a. Identify the PostgreSQL database table to put the data in. For example, the following is a
sample t1 database table used in the examples for this topic.

psql=> CREATE TABLE t1 (col1 varchar(80), col2 varchar(80), col3 varchar(80));

b. Get the following information to identify the Amazon S3 file that you want to import:

• Bucket name – A bucket is a container for Amazon S3 objects or files.
• File path – The file path locates the file in the Amazon S3 bucket.
• AWS Region – The AWS Region is the location of the Amazon S3 bucket. For example, if the

S3 bucket is in the US East (N. Virginia) Region, use us-east-1. For a listing of AWS Region
names and associated values, see Regions and Availability Zones (p. 11).

To find how to get this information, see View an object in the Amazon Simple Storage Service
User Guide. You can confirm the information by using the AWS CLI command aws s3 cp. If the
information is correct, this command downloads a copy of the Amazon S3 file.

aws s3 cp s3://sample_s3_bucket/sample_file_path ./

c. Use the aws_commons.create_s3_uri (p. 1466) function to create an
aws_commons._s3_uri_1 structure to hold the Amazon S3 file information. You
provide this aws_commons._s3_uri_1 structure as a parameter in the call to the
aws_s3.table_import_from_s3 (p. 1463) function.

For a psql example, see the following.

psql=> SELECT aws_commons.create_s3_uri(
 'sample_s3_bucket',
 'sample.csv',
 'us-east-1'
) AS s3_uri \gset

3. Provide permission to access the Amazon S3 file.

To import data from an Amazon S3 file, give the Aurora PostgreSQL DB cluster permission to
access the Amazon S3 bucket the file is in. To do this, you use either an AWS Identity and Access
Management (IAM) role or security credentials. For more information, see Setting up access to an
Amazon S3 bucket (p. 1456).

4. Import the Amazon S3 data by calling the aws_s3.table_import_from_s3 function.

After you complete the previous preparation tasks, use the aws_s3.table_import_from_s3 (p. 1463)
function to import the Amazon S3 data. For more information, see Using the
aws_s3.table_import_from_s3 function to import Amazon S3 data (p. 1461).

Setting up access to an Amazon S3 bucket
To import data from an Amazon S3 file, give the Aurora PostgreSQL DB cluster permission to access the
Amazon S3 bucket containing the file. You provide access to an Amazon S3 bucket in one of two ways, as
described in the following topics.

Topics
• Using an IAM role to access an Amazon S3 bucket (p. 1457)
• Using security credentials to access an Amazon S3 bucket (p. 1460)
• Troubleshooting access to Amazon S3 (p. 1461)

1456

https://docs.aws.amazon.com/AmazonS3/latest/gsg/OpeningAnObject.html

Amazon Aurora User Guide for Aurora
Setting up access to an Amazon S3 bucket

Using an IAM role to access an Amazon S3 bucket
Before you load data from an Amazon S3 file, give your Aurora PostgreSQL DB cluster permission to
access the Amazon S3 bucket the file is in. This way, you don't have to manage additional credential
information or provide it in the aws_s3.table_import_from_s3 (p. 1463) function call.

To do this, create an IAM policy that provides access to the Amazon S3 bucket. Create an IAM role and
attach the policy to the role. Then assign the IAM role to your DB cluster.

To give an Aurora PostgreSQL DB cluster access to Amazon S3 through an IAM role

1. Create an IAM policy.

This policy provides the bucket and object permissions that allow your Aurora PostgreSQL DB cluster
to access Amazon S3.

Include in the policy the following required actions to allow the transfer of files from an Amazon S3
bucket to Aurora PostgreSQL:

• s3:GetObject

• s3:ListBucket

Include in the policy the following resources to identify the Amazon S3 bucket and objects in the
bucket. This shows the Amazon Resource Name (ARN) format for accessing Amazon S3.

• arn:aws:s3:::your-s3-bucket
• arn:aws:s3:::your-s3-bucket/*

For more information on creating an IAM policy for Aurora PostgreSQL, see Creating and using
an IAM policy for IAM database access (p. 1759). See also Tutorial: Create and attach your first
customer managed policy in the IAM User Guide.

The following AWS CLI command creates an IAM policy named rds-s3-import-policy with these
options. It grants access to a bucket named your-s3-bucket.

Note
Note the Amazon Resource Name (ARN) of the policy returned by this command. You need
the ARN when you attach the policy to an IAM role, in a subsequent step.

Example

For Linux, macOS, or Unix:

aws iam create-policy \
 --policy-name rds-s3-import-policy \
 --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "s3import",
 "Action": [
 "s3:GetObject",
 "s3:ListBucket"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:s3:::your-s3-bucket",
 "arn:aws:s3:::your-s3-bucket/*"
]

1457

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html

Amazon Aurora User Guide for Aurora
Setting up access to an Amazon S3 bucket

 }
]
 }'

For Windows:

aws iam create-policy ^
 --policy-name rds-s3-import-policy ^
 --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "s3import",
 "Action": [
 "s3:GetObject",
 "s3:ListBucket"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:s3:::your-s3-bucket",
 "arn:aws:s3:::your-s3-bucket/*"
]
 }
]
 }'

2. Create an IAM role.

You do this so Aurora PostgreSQL can assume this IAM role to access your Amazon S3 buckets. For
more information, see Creating a role to delegate permissions to an IAM user in the IAM User Guide.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context keys
in resource-based policies to limit the service's permissions to a specific resource. This is the most
effective way to protect against the confused deputy problem.

If you use both global condition context keys and the aws:SourceArn value contains the account
ID, the aws:SourceAccount value and the account in the aws:SourceArn value must use the
same account ID when used in the same policy statement.

• Use aws:SourceArn if you want cross-service access for a single resource.

• Use aws:SourceAccount if you want to allow any resource in that account to be associated with
the cross-service use.

In the policy, be sure to use the aws:SourceArn global condition context key with the full ARN of
the resource. The following example shows how to do so using the AWS CLI command to create a
role named rds-s3-import-role.

Example

For Linux, macOS, or Unix:

aws iam create-role \
 --role-name rds-s3-import-role \
 --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"

1458

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

Amazon Aurora User Guide for Aurora
Setting up access to an Amazon S3 bucket

 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111122223333",
 "aws:SourceArn": "arn:aws:rds:us-east-1:111122223333:db:dbname"
 }
 }
 }
]
 }'

For Windows:

aws iam create-role ^
 --role-name rds-s3-import-role ^
 --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111122223333",
 "aws:SourceArn": "arn:aws:rds:us-east-1:111122223333:db:dbname"
 }
 }
 }
]
 }'

3. Attach the IAM policy that you created to the IAM role that you created.

The following AWS CLI command attaches the policy created in the previous step to the role named
rds-s3-import-role Replace your-policy-arn with the policy ARN that you noted in an earlier
step.

Example

For Linux, macOS, or Unix:

aws iam attach-role-policy \
 --policy-arn your-policy-arn \
 --role-name rds-s3-import-role

For Windows:

aws iam attach-role-policy ^
 --policy-arn your-policy-arn ^
 --role-name rds-s3-import-role

4. Add the IAM role to the DB cluster.

You do so by using the AWS Management Console or AWS CLI, as described following.

1459

Amazon Aurora User Guide for Aurora
Setting up access to an Amazon S3 bucket

Note
You can't associate an IAM role with an Aurora Serverless DB cluster. For more information,
see Using Amazon Aurora Serverless v1 (p. 147).
Also, be sure the database you use doesn't have any restrictions noted in Importing Amazon
S3 data into an Aurora PostgreSQL DB cluster (p. 1455).

Console

To add an IAM role for a PostgreSQL DB cluster using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose the PostgreSQL DB cluster name to display its details.
3. On the Connectivity & security tab, in the Manage IAM roles section, choose the role to add under

Add IAM roles to this cluster .
4. Under Feature, choose s3Import.
5. Choose Add role.

AWS CLI

To add an IAM role for a PostgreSQL DB cluster using the CLI

• Use the following command to add the role to the PostgreSQL DB cluster named my-db-cluster.
Replace your-role-arn with the role ARN that you noted in a previous step. Use s3Import for the
value of the --feature-name option.

Example

For Linux, macOS, or Unix:

aws rds add-role-to-db-cluster \
 --db-cluster-identifier my-db-cluster \
 --feature-name s3Import \
 --role-arn your-role-arn \
 --region your-region

For Windows:

aws rds add-role-to-db-cluster ^
 --db-cluster-identifier my-db-cluster ^
 --feature-name s3Import ^
 --role-arn your-role-arn ^
 --region your-region

RDS API

To add an IAM role for a PostgreSQL DB cluster using the Amazon RDS API, call the AddRoleToDBCluster
operation.

Using security credentials to access an Amazon S3 bucket
If you prefer, you can use security credentials to provide access to an Amazon S3 bucket instead
of providing access with an IAM role. To do this, use the credentials parameter in the
aws_s3.table_import_from_s3 (p. 1463) function call.

1460

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_AddRoleToDBCluster.html

Amazon Aurora User Guide for Aurora
Using the aws_s3.table_import_from_s3

function to import Amazon S3 data

The credentials parameter is a structure of type aws_commons._aws_credentials_1, which
contains AWS credentials. Use the aws_commons.create_aws_credentials (p. 1466) function to set the
access key and secret key in an aws_commons._aws_credentials_1 structure, as shown following.

psql=> SELECT aws_commons.create_aws_credentials(
 'sample_access_key', 'sample_secret_key', '')
AS creds \gset

After creating the aws_commons._aws_credentials_1 structure, use the
aws_s3.table_import_from_s3 (p. 1463) function with the credentials parameter to import the data,
as shown following.

psql=> SELECT aws_s3.table_import_from_s3(
 't', '', '(format csv)',
 :'s3_uri',
 :'creds'
);

Or you can include the aws_commons.create_aws_credentials (p. 1466) function call inline within the
aws_s3.table_import_from_s3 function call.

psql=> SELECT aws_s3.table_import_from_s3(
 't', '', '(format csv)',
 :'s3_uri',
 aws_commons.create_aws_credentials('sample_access_key', 'sample_secret_key', '')
);

Troubleshooting access to Amazon S3
If you encounter connection problems when attempting to import Amazon S3 file data, see the following
for recommendations:

• Troubleshooting Amazon Aurora identity and access (p. 1782)
• Troubleshooting Amazon S3 in the Amazon Simple Storage Service User Guide
• Troubleshooting Amazon S3 and IAM in the IAM User Guide

Using the aws_s3.table_import_from_s3 function to
import Amazon S3 data
Import your Amazon S3 data by calling the aws_s3.table_import_from_s3 (p. 1463) function.

Note
The following examples use the IAM role method for providing access to the Amazon S3 bucket.
Thus, the aws_s3.table_import_from_s3 function calls don't include credential parameters.

The following shows a typical PostgreSQL example using psql.

psql=> SELECT aws_s3.table_import_from_s3(
 't1',
 '',
 '(format csv)',
 :'s3_uri'
);

The parameters are the following:

1461

https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_iam-s3.html

Amazon Aurora User Guide for Aurora
Using the aws_s3.table_import_from_s3

function to import Amazon S3 data

• t1 – The name for the table in the PostgreSQL DB cluster to copy the data into.
• '' – An optional list of columns in the database table. You can use this parameter to indicate which

columns of the S3 data go in which table columns. If no columns are specified, all the columns are
copied to the table. For an example of using a column list, see Importing an Amazon S3 file that uses a
custom delimiter (p. 1462).

• (format csv) – PostgreSQL COPY arguments. The copy process uses the arguments and format
of the PostgreSQL COPY command. In the preceding example, the COPY command uses the comma-
separated value (CSV) file format to copy the data.

• s3_uri – A structure that contains the information identifying the Amazon S3 file. For an example of
using the aws_commons.create_s3_uri (p. 1466) function to create an s3_uri structure, see Overview
of importing Amazon S3 data (p. 1455).

For more information about this function, see aws_s3.table_import_from_s3 (p. 1463).

The aws_s3.table_import_from_s3 function returns text. To specify other kinds of files for import
from an Amazon S3 bucket, see one of the following examples.

Topics
• Importing an Amazon S3 file that uses a custom delimiter (p. 1462)
• Importing an Amazon S3 compressed (gzip) file (p. 1463)
• Importing an encoded Amazon S3 file (p. 1463)

Importing an Amazon S3 file that uses a custom delimiter
The following example shows how to import a file that uses a custom delimiter. It also shows how
to control where to put the data in the database table using the column_list parameter of the
aws_s3.table_import_from_s3 (p. 1463) function.

For this example, assume that the following information is organized into pipe-delimited columns in the
Amazon S3 file.

1|foo1|bar1|elephant1
2|foo2|bar2|elephant2
3|foo3|bar3|elephant3
4|foo4|bar4|elephant4
...

To import a file that uses a custom delimiter

1. Create a table in the database for the imported data.

psql=> CREATE TABLE test (a text, b text, c text, d text, e text);

2. Use the following form of the aws_s3.table_import_from_s3 (p. 1463) function to import data from
the Amazon S3 file.

You can include the aws_commons.create_s3_uri (p. 1466) function call inline within the
aws_s3.table_import_from_s3 function call to specify the file.

psql=> SELECT aws_s3.table_import_from_s3(
 'test',
 'a,b,d,e',
 'DELIMITER ''|''',
 aws_commons.create_s3_uri('sampleBucket', 'pipeDelimitedSampleFile', 'us-east-2')
);

1462

https://www.postgresql.org/docs/current/sql-copy.html

Amazon Aurora User Guide for Aurora
Function reference

The data is now in the table in the following columns.

psql=> SELECT * FROM test;
a | b | c | d | e
---+------+---+---+------+-----------
1 | foo1 | | bar1 | elephant1
2 | foo2 | | bar2 | elephant2
3 | foo3 | | bar3 | elephant3
4 | foo4 | | bar4 | elephant4

Importing an Amazon S3 compressed (gzip) file
The following example shows how to import a file from Amazon S3 that is compressed with gzip. The file
that you import needs to have the following Amazon S3 metadata:

• Key: Content-Encoding
• Value: gzip

If you upload the file using the AWS Management Console, the metadata is typically applied by the
system. For information about uploading files to Amazon S3 using the AWS Management Console, the
AWS CLI, or the API, see Uploading objects in the Amazon Simple Storage Service User Guide.

For more information about Amazon S3 metadata and details about system-provided metadata, see
Editing object metadata in the Amazon S3 console in the Amazon Simple Storage Service User Guide.

Import the gzip file into your Aurora PostgreSQL DB cluster as shown following.

psql=> CREATE TABLE test_gzip(id int, a text, b text, c text, d text);
psql=> SELECT aws_s3.table_import_from_s3(
 'test_gzip', '', '(format csv)',
 'myS3Bucket', 'test-data.gz', 'us-east-2'
);

Importing an encoded Amazon S3 file
The following example shows how to import a file from Amazon S3 that has Windows-1252 encoding.

psql=> SELECT aws_s3.table_import_from_s3(
 'test_table', '', 'encoding ''WIN1252''',
 aws_commons.create_s3_uri('sampleBucket', 'SampleFile', 'us-east-2')
);

Function reference
Functions

• aws_s3.table_import_from_s3 (p. 1463)
• aws_commons.create_s3_uri (p. 1466)
• aws_commons.create_aws_credentials (p. 1466)

aws_s3.table_import_from_s3
Imports Amazon S3 data into an Aurora PostgreSQL table. The aws_s3 extension provides the
aws_s3.table_import_from_s3 function. The return value is text.

1463

https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-object-metadata.html

Amazon Aurora User Guide for Aurora
Function reference

Syntax

The required parameters are table_name, column_list and options. These identify the database
table and specify how the data is copied into the table.

You can also use the following parameters:

• The s3_info parameter specifies the Amazon S3 file to import. When you use this parameter, access
to Amazon S3 is provided by an IAM role for the PostgreSQL DB cluster.

aws_s3.table_import_from_s3 (
 table_name text,
 column_list text,
 options text,
 s3_info aws_commons._s3_uri_1
)

• The credentials parameter specifies the credentials to access Amazon S3. When you use this
parameter, you don't use an IAM role.

aws_s3.table_import_from_s3 (
 table_name text,
 column_list text,
 options text,
 s3_info aws_commons._s3_uri_1,
 credentials aws_commons._aws_credentials_1
)

Parameters

table_name

A required text string containing the name of the PostgreSQL database table to import the data
into.

column_list

A required text string containing an optional list of the PostgreSQL database table columns in
which to copy the data. If the string is empty, all columns of the table are used. For an example, see
Importing an Amazon S3 file that uses a custom delimiter (p. 1462).

options

A required text string containing arguments for the PostgreSQL COPY command. These arguments
specify how the data is to be copied into the PostgreSQL table. For more details, see the PostgreSQL
COPY documentation.

s3_info

An aws_commons._s3_uri_1 composite type containing the following information about the S3
object:
• bucket – The name of the Amazon S3 bucket containing the file.
• file_path – The Amazon S3 file name including the path of the file.
• region – The AWS Region that the file is in. For a listing of AWS Region names and associated

values, see Regions and Availability Zones (p. 11).
credentials

An aws_commons._aws_credentials_1 composite type containing the following credentials to
use for the import operation:
• Access key

1464

https://www.postgresql.org/docs/current/sql-copy.html
https://www.postgresql.org/docs/current/sql-copy.html

Amazon Aurora User Guide for Aurora
Function reference

• Secret key
• Session token

For information about creating an aws_commons._aws_credentials_1 composite structure, see
aws_commons.create_aws_credentials (p. 1466).

Alternate syntax

To help with testing, you can use an expanded set of parameters instead of the s3_info
and credentials parameters. Following are additional syntax variations for the
aws_s3.table_import_from_s3 function:

• Instead of using the s3_info parameter to identify an Amazon S3 file, use the combination of the
bucket, file_path, and region parameters. With this form of the function, access to Amazon S3 is
provided by an IAM role on the PostgreSQL DB instance.

aws_s3.table_import_from_s3 (
 table_name text,
 column_list text,
 options text,
 bucket text,
 file_path text,
 region text
)

• Instead of using the credentials parameter to specify Amazon S3 access, use the combination of
the access_key, session_key, and session_token parameters.

aws_s3.table_import_from_s3 (
 table_name text,
 column_list text,
 options text,
 bucket text,
 file_path text,
 region text,
 access_key text,
 secret_key text,
 session_token text
)

Alternate parameters

bucket

A text string containing the name of the Amazon S3 bucket that contains the file.
file_path

A text string containing the Amazon S3 file name including the path of the file.
region

A text string containing the AWS Region that the file is in. For a listing of AWS Region names and
associated values, see Regions and Availability Zones (p. 11).

access_key

A text string containing the access key to use for the import operation. The default is NULL.
secret_key

A text string containing the secret key to use for the import operation. The default is NULL.

1465

Amazon Aurora User Guide for Aurora
Function reference

session_token

(Optional) A text string containing the session key to use for the import operation. The default is
NULL.

aws_commons.create_s3_uri
Creates an aws_commons._s3_uri_1 structure to hold Amazon S3 file information. Use the
results of the aws_commons.create_s3_uri function in the s3_info parameter of the
aws_s3.table_import_from_s3 (p. 1463) function.

Syntax

aws_commons.create_s3_uri(
 bucket text,
 file_path text,
 region text
)

Parameters

bucket

A required text string containing the Amazon S3 bucket name for the file.
file_path

A required text string containing the Amazon S3 file name including the path of the file.
region

A required text string containing the AWS Region that the file is in. For a listing of AWS Region
names and associated values, see Regions and Availability Zones (p. 11).

aws_commons.create_aws_credentials
Sets an access key and secret key in an aws_commons._aws_credentials_1 structure. Use the results
of the aws_commons.create_aws_credentials function in the credentials parameter of the
aws_s3.table_import_from_s3 (p. 1463) function.

Syntax

aws_commons.create_aws_credentials(
 access_key text,
 secret_key text,
 session_token text
)

Parameters

access_key

A required text string containing the access key to use for importing an Amazon S3 file. The default
is NULL.

secret_key

A required text string containing the secret key to use for importing an Amazon S3 file. The default
is NULL.

1466

Amazon Aurora User Guide for Aurora
Exporting PostgreSQL data to Amazon S3

session_token

An optional text string containing the session token to use for importing an Amazon S3 file. The
default is NULL. If you provide an optional session_token, you can use temporary credentials.

Exporting data from an Aurora PostgreSQL DB
cluster to Amazon S3

You can query data from an Aurora PostgreSQL DB cluster and export it directly into files stored in
an Amazon S3 bucket. To do this, you use the aws_s3 PostgreSQL extension that Aurora PostgreSQL
provides.

For more information on storing data with Amazon S3, see Create a bucket in the Amazon Simple Storage
Service User Guide.

The upload to Amazon S3 uses server-side encryption by default. If you are using encryption, the
Amazon S3 bucket must be encrypted with an AWS managed key. Currently, you can't export data to a
bucket that is encrypted with a customer managed key.

Note
You can save DB and DB cluster snapshot data to Amazon S3 using the AWS Management
Console, AWS CLI, or Amazon RDS API. For more information, see Exporting DB snapshot data to
Amazon S3 (p. 518).

Topics
• Overview of exporting data to Amazon S3 (p. 1467)
• Verify that your Aurora PostgreSQL version supports exports (p. 1468)
• Specifying the Amazon S3 file path to export to (p. 1468)
• Setting up access to an Amazon S3 bucket (p. 1469)
• Exporting query data using the aws_s3.query_export_to_s3 function (p. 1472)
• Troubleshooting access to Amazon S3 (p. 1474)
• Function reference (p. 1474)

Overview of exporting data to Amazon S3
To export data stored in an Aurora PostgreSQL database to an Amazon S3 bucket, use the following
procedure.

To export Aurora PostgreSQL data to S3

1. Install the required PostgreSQL extensions. These include the aws_s3 and aws_commons
extensions. To do so, start psql and use the following commands.

CREATE EXTENSION IF NOT EXISTS aws_s3 CASCADE;

The aws_s3 extension provides the aws_s3.query_export_to_s3 (p. 1475) function that you use to
export data to Amazon S3. The aws_commons extension is included to provide additional helper
functions.

2. Identify an Amazon S3 file path to use for exporting data. For details about this process, see
Specifying the Amazon S3 file path to export to (p. 1468).

3. Provide permission to access the Amazon S3 bucket.

1467

https://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html

Amazon Aurora User Guide for Aurora
Verify that your Aurora PostgreSQL

version supports exports

To export data to an Amazon S3 file, give the Aurora PostgreSQL DB cluster permission to access the
Amazon S3 bucket that the export will use for storage. Doing this includes the following steps:

1. Create an IAM policy that provides access to an Amazon S3 bucket that you want to export to.
2. Create an IAM role.
3. Attach the policy you created to the role you created.
4. Add this IAM role to your DB cluster .

For details about this process, see Setting up access to an Amazon S3 bucket (p. 1469).
4. Identify a database query to get the data. Export the query data by calling the

aws_s3.query_export_to_s3 function.

After you complete the preceding preparation tasks, use the aws_s3.query_export_to_s3 (p. 1475)
function to export query results to Amazon S3. For details about this process, see Exporting query
data using the aws_s3.query_export_to_s3 function (p. 1472).

Verify that your Aurora PostgreSQL version supports
exports
Currently, Amazon S3 exports are supported for the following versions of Aurora PostgreSQL:

• 10.11 and higher 10 versions
• 11.6 and higher 11 versions
• 12.4 and higher 12 versions
• 13.3 and higher 13 versions

You can also verify support by using the describe-db-engine-versions command. The following
example verify support for version 10.14.

aws rds describe-db-engine-versions --region us-east-1 \
--engine aurora-postgresql --engine-version 10.14 | grep s3Export

If the output includes the string "s3Export", then the engine supports Amazon S3 exports. Otherwise,
the engine doesn't support them.

Specifying the Amazon S3 file path to export to
Specify the following information to identify the location in Amazon S3 where you want to export data
to:

• Bucket name – A bucket is a container for Amazon S3 objects or files.

For more information on storing data with Amazon S3, see Create a bucket and View an object in the
Amazon Simple Storage Service User Guide.

• File path – The file path identifies where the export is stored in the Amazon S3 bucket. The file path
consists of the following:
• An optional path prefix that identifies a virtual folder path.
• A file prefix that identifies one or more files to be stored. Larger exports are stored in multiple files,

each with a maximum size of approximately 6 GB. The additional file names have the same file prefix
but with _partXX appended. The XX represents 2, then 3, and so on.

1468

https://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/OpeningAnObject.html

Amazon Aurora User Guide for Aurora
Setting up access to an Amazon S3 bucket

For example, a file path with an exports folder and a query-1-export file prefix is /exports/
query-1-export.

• AWS Region (optional) – The AWS Region where the Amazon S3 bucket is located. If you don't specify
an AWS Region value, then Aurora saves your files into Amazon S3 in the same AWS Region as the
exporting DB cluster.

Note
Currently, the AWS Region must be the same as the region of the exporting DB cluster.

For a listing of AWS Region names and associated values, see Regions and Availability Zones (p. 11).

To hold the Amazon S3 file information about where the export is to be stored, you can use the
aws_commons.create_s3_uri (p. 1477) function to create an aws_commons._s3_uri_1 composite
structure as follows.

psql=> SELECT aws_commons.create_s3_uri(
 'sample-bucket',
 'sample-filepath',
 'us-west-2'
) AS s3_uri_1 \gset

You later provide this s3_uri_1 value as a parameter in the call to the
aws_s3.query_export_to_s3 (p. 1475) function. For examples, see Exporting query data using the
aws_s3.query_export_to_s3 function (p. 1472).

Setting up access to an Amazon S3 bucket
To export data to Amazon S3, give your PostgreSQL DB cluster permission to access the Amazon S3
bucket that the files are to go in.

To do this, use the following procedure.

To give a PostgreSQL DB cluster access to Amazon S3 through an IAM role

1. Create an IAM policy.

This policy provides the bucket and object permissions that allow your PostgreSQL DB cluster to
access Amazon S3.

As part of creating this policy, take the following steps:

a. Include in the policy the following required actions to allow the transfer of files from your
PostgreSQL DB cluster to an Amazon S3 bucket:

• s3:PutObject

• s3:AbortMultipartUpload

b. Include the Amazon Resource Name (ARN) that identifies the Amazon S3 bucket and objects in
the bucket. The ARN format for accessing Amazon S3 is: arn:aws:s3:::your-s3-bucket/*

For more information on creating an IAM policy for Aurora PostgreSQL, see Creating and using
an IAM policy for IAM database access (p. 1759). See also Tutorial: Create and attach your first
customer managed policy in the IAM User Guide.

The following AWS CLI command creates an IAM policy named rds-s3-export-policy with these
options. It grants access to a bucket named your-s3-bucket.

1469

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html

Amazon Aurora User Guide for Aurora
Setting up access to an Amazon S3 bucket

Warning
We recommend that you set up your database within a private VPC that has endpoint
policies configured for accessing specific buckets. For more information, see Using endpoint
policies for Amazon S3 in the Amazon VPC User Guide.
We strongly recommend that you do not create a policy with all-resource access. This access
can pose a threat for data security. If you create a policy that gives S3:PutObject access
to all resources using "Resource":"*", then a user with export privileges can export data
to all buckets in your account. In addition, the user can export data to any publicly writable
bucket within your AWS Region.

After you create the policy, note the Amazon Resource Name (ARN) of the policy. You need the ARN
for a subsequent step when you attach the policy to an IAM role.

aws iam create-policy --policy-name rds-s3-export-policy --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "s3export",
 "Action": [
 "S3:PutObject"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:s3:::your-s3-bucket/*"
]
 }
]
 }'

2. Create an IAM role.

You do this so Aurora PostgreSQL can assume this IAM role on your behalf to access your Amazon S3
buckets. For more information, see Creating a role to delegate permissions to an IAM user in the IAM
User Guide.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context keys
in resource-based policies to limit the service's permissions to a specific resource. This is the most
effective way to protect against the confused deputy problem.

If you use both global condition context keys and the aws:SourceArn value contains the account
ID, the aws:SourceAccount value and the account in the aws:SourceArn value must use the
same account ID when used in the same policy statement.

• Use aws:SourceArn if you want cross-service access for a single resource.

• Use aws:SourceAccount if you want to allow any resource in that account to be associated with
the cross-service use.

In the policy, be sure to use the aws:SourceArn global condition context key with the full ARN of
the resource. The following example shows how to do so using the AWS CLI command to create a
role named rds-s3-export-role.

Example

For Linux, macOS, or Unix:

aws iam create-role \
 --role-name rds-s3-export-role \
 --assume-role-policy-document '{

1470

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-policies-s3
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-policies-s3
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

Amazon Aurora User Guide for Aurora
Setting up access to an Amazon S3 bucket

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": 111122223333,
 "aws:SourceArn": arn:aws:rds:us-east-1:111122223333:db:dbname
 }
 }
 }
]
 }'

For Windows:

aws iam create-role ^
 --role-name rds-s3-export-role ^
 --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": 111122223333,
 "aws:SourceArn": arn:aws:rds:us-east-1:111122223333:db:dbname
 }
 }
 }
]
 }'

3. Attach the IAM policy that you created to the IAM role that you created.

The following AWS CLI command attaches the policy created earlier to the role named rds-s3-
export-role. Replace your-policy-arn with the policy ARN that you noted in an earlier step.

aws iam attach-role-policy --policy-arn your-policy-arn --role-name rds-s3-export-
role

4. Add the IAM role to the DB cluster. You do so by using the AWS Management Console or AWS CLI, as
described following.

Console

To add an IAM role for a PostgreSQL DB cluster using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose the PostgreSQL DB cluster name to display its details.

1471

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Exporting query data using the

aws_s3.query_export_to_s3 function

3. On the Connectivity & security tab, in the Manage IAM roles section, choose the role to add under
Add IAM roles to this instance.

4. Under Feature, choose s3Export.

5. Choose Add role.

AWS CLI

To add an IAM role for a PostgreSQL DB cluster using the CLI

• Use the following command to add the role to the PostgreSQL DB cluster named my-db-cluster.
Replace your-role-arn with the role ARN that you noted in a previous step. Use s3Export for the
value of the --feature-name option.

Example

For Linux, macOS, or Unix:

aws rds add-role-to-db-cluster \
 --db-cluster-identifier my-db-cluster \
 --feature-name s3Export \
 --role-arn your-role-arn \
 --region your-region

For Windows:

aws rds add-role-to-db-cluster ^
 --db-cluster-identifier my-db-cluster ^
 --feature-name s3Export ^
 --role-arn your-role-arn ^
 --region your-region

Exporting query data using the
aws_s3.query_export_to_s3 function
Export your PostgreSQL data to Amazon S3 by calling the aws_s3.query_export_to_s3 (p. 1475)
function.

Topics

• Prerequisites (p. 1472)

• Calling aws_s3.query_export_to_s3 (p. 1473)

• Exporting to a CSV file that uses a custom delimiter (p. 1474)

• Exporting to a binary file with encoding (p. 1474)

Prerequisites

Before you use the aws_s3.query_export_to_s3 function, be sure to complete the following
prerequisites:

• Install the required PostgreSQL extensions as described in Overview of exporting data to Amazon
S3 (p. 1467).

1472

Amazon Aurora User Guide for Aurora
Exporting query data using the

aws_s3.query_export_to_s3 function

• Determine where to export your data to Amazon S3 as described in Specifying the Amazon S3 file path
to export to (p. 1468).

• Make sure that the DB cluster has export access to Amazon S3 as described in Setting up access to an
Amazon S3 bucket (p. 1469).

The examples following use a database table called sample_table. These examples export the data
into a bucket called sample-bucket. The example table and data are created with the following SQL
statements in psql.

psql=> CREATE TABLE sample_table (bid bigint PRIMARY KEY, name varchar(80));
psql=> INSERT INTO sample_table (bid,name) VALUES (1, 'Monday'), (2,'Tuesday'), (3,
 'Wednesday');

Calling aws_s3.query_export_to_s3
The following shows the basic ways of calling the aws_s3.query_export_to_s3 (p. 1475) function.

These examples use the variable s3_uri_1 to identify a structure that contains the information
identifying the Amazon S3 file. Use the aws_commons.create_s3_uri (p. 1477) function to create the
structure.

psql=> SELECT aws_commons.create_s3_uri(
 'sample-bucket',
 'sample-filepath',
 'us-west-2'
) AS s3_uri_1 \gset

Although the parameters vary for the following two aws_s3.query_export_to_s3 function calls, the
results are the same for these examples. All rows of the sample_table table are exported into a bucket
called sample-bucket.

psql=> SELECT * FROM aws_s3.query_export_to_s3('SELECT * FROM sample_table', :'s3_uri_1');

psql=> SELECT * FROM aws_s3.query_export_to_s3('SELECT * FROM sample_table', :'s3_uri_1',
 options :='format text');

The parameters are described as follows:

• 'SELECT * FROM sample_table' – The first parameter is a required text string containing an SQL
query. The PostgreSQL engine runs this query. The results of the query are copied to the S3 bucket
identified in other parameters.

• :'s3_uri_1' – This parameter is a structure that identifies the Amazon S3 file. This example uses a
variable to identify the previously created structure. You can instead create the structure by including
the aws_commons.create_s3_uri function call inline within the aws_s3.query_export_to_s3
function call as follows.

SELECT * from aws_s3.query_export_to_s3('select * from sample_table',
 aws_commons.create_s3_uri('sample-bucket', 'sample-filepath', 'us-west-2')
);

• options :='format text' – The options parameter is an optional text string containing
PostgreSQL COPY arguments. The copy process uses the arguments and format of the PostgreSQL
COPY command.

If the file specified doesn't exist in the Amazon S3 bucket, it's created. If the file already exists, it's
overwritten. The syntax for accessing the exported data in Amazon S3 is the following.

1473

https://www.postgresql.org/docs/current/sql-copy.html
https://www.postgresql.org/docs/current/sql-copy.html

Amazon Aurora User Guide for Aurora
Troubleshooting access to Amazon S3

s3-region://bucket-name[/path-prefix]/file-prefix

Larger exports are stored in multiple files, each with a maximum size of approximately 6 GB. The
additional file names have the same file prefix but with _partXX appended. The XX represents 2, then 3,
and so on. For example, suppose that you specify the path where you store data files as the following.

s3-us-west-2://my-bucket/my-prefix

If the export has to create three data files, the Amazon S3 bucket contains the following data files.

s3-us-west-2://my-bucket/my-prefix
s3-us-west-2://my-bucket/my-prefix_part2
s3-us-west-2://my-bucket/my-prefix_part3

For the full reference for this function and additional ways to call it, see
aws_s3.query_export_to_s3 (p. 1475). For more about accessing files in Amazon S3, see View an object
in the Amazon Simple Storage Service User Guide.

Exporting to a CSV file that uses a custom delimiter
The following example shows how to call the aws_s3.query_export_to_s3 (p. 1475) function to export
data to a file that uses a custom delimiter. The example uses arguments of the PostgreSQL COPY
command to specify the comma-separated value (CSV) format and a colon (:) delimiter.

SELECT * from aws_s3.query_export_to_s3('select * from basic_test', :'s3_uri_1',
 options :='format csv, delimiter $$:$$');

Exporting to a binary file with encoding
The following example shows how to call the aws_s3.query_export_to_s3 (p. 1475) function to export
data to a binary file that has Windows-1253 encoding.

SELECT * from aws_s3.query_export_to_s3('select * from basic_test', :'s3_uri_1',
 options :='format binary, encoding WIN1253');

Troubleshooting access to Amazon S3
If you encounter connection problems when attempting to export data to Amazon S3, first confirm that
the outbound access rules for the VPC security group associated with your DB instance permit network
connectivity. Specifically, they must allow access to port 443 for SSL connections. For more information,
see Provide access to the DB cluster in the VPC by creating a security group (p. 87).

See also the following for recommendations:

• Troubleshooting Amazon Aurora identity and access (p. 1782)
• Troubleshooting Amazon S3 in the Amazon Simple Storage Service User Guide
• Troubleshooting Amazon S3 and IAM in the IAM User Guide

Function reference
Functions

• aws_s3.query_export_to_s3 (p. 1475)

1474

https://docs.aws.amazon.com/AmazonS3/latest/gsg/OpeningAnObject.html
https://www.postgresql.org/docs/current/sql-copy.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/troubleshooting.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_iam-s3.html

Amazon Aurora User Guide for Aurora
Function reference

• aws_commons.create_s3_uri (p. 1477)

aws_s3.query_export_to_s3
Exports a PostgreSQL query result to an Amazon S3 bucket. The aws_s3 extension provides the
aws_s3.query_export_to_s3 function.

The two required parameters are query and s3_info. These define the query to be exported and
identify the Amazon S3 bucket to export to. An optional parameter called options provides for defining
various export parameters. For examples of using the aws_s3.query_export_to_s3 function, see
Exporting query data using the aws_s3.query_export_to_s3 function (p. 1472).

Syntax

aws_s3.query_export_to_s3(
 query text,
 s3_info aws_commons._s3_uri_1,
 options text
)

Input parameters

query

A required text string containing an SQL query that the PostgreSQL engine runs. The results of this
query are copied to an S3 bucket identified in the s3_info parameter.

s3_info

An aws_commons._s3_uri_1 composite type containing the following information about the S3
object:
• bucket – The name of the Amazon S3 bucket to contain the file.
• file_path – The Amazon S3 file name and path.
• region – The AWS Region that the bucket is in. For a listing of AWS Region names and associated

values, see Regions and Availability Zones (p. 11).

Currently, this value must be the same AWS Region as that of the exporting DB cluster . The
default is the AWS Region of the exporting DB cluster .

To create an aws_commons._s3_uri_1 composite structure, see the
aws_commons.create_s3_uri (p. 1477) function.

options

An optional text string containing arguments for the PostgreSQL COPY command. These arguments
specify how the data is to be copied when exported. For more details, see the PostgreSQL COPY
documentation.

Alternate input parameters

To help with testing, you can use an expanded set of parameters instead of the s3_info parameter.
Following are additional syntax variations for the aws_s3.query_export_to_s3 function.

Instead of using the s3_info parameter to identify an Amazon S3 file, use the combination of the
bucket, file_path, and region parameters.

aws_s3.query_export_to_s3(
 query text,
 bucket text,

1475

https://www.postgresql.org/docs/current/sql-copy.html
https://www.postgresql.org/docs/current/sql-copy.html

Amazon Aurora User Guide for Aurora
Function reference

 file_path text,
 region text,
 options text
)

query

A required text string containing an SQL query that the PostgreSQL engine runs. The results of this
query are copied to an S3 bucket identified in the s3_info parameter.

bucket

A required text string containing the name of the Amazon S3 bucket that contains the file.
file_path

A required text string containing the Amazon S3 file name including the path of the file.
region

An optional text string containing the AWS Region that the bucket is in. For a listing of AWS Region
names and associated values, see Regions and Availability Zones (p. 11).

Currently, this value must be the same AWS Region as that of the exporting DB cluster . The default
is the AWS Region of the exporting DB cluster .

options

An optional text string containing arguments for the PostgreSQL COPY command. These arguments
specify how the data is to be copied when exported. For more details, see the PostgreSQL COPY
documentation.

Output parameters

aws_s3.query_export_to_s3(
 OUT rows_uploaded bigint,
 OUT files_uploaded bigint,
 OUT bytes_uploaded bigint
)

rows_uploaded

The number of table rows that were successfully uploaded to Amazon S3 for the given query.
files_uploaded

The number of files uploaded to Amazon S3. Files are created in sizes of approximately 6 GB. Each
additional file created has _partXX appended to the name. The XX represents 2, then 3, and so on
as needed.

bytes_uploaded

The total number of bytes uploaded to Amazon S3.

Examples

psql=> SELECT * from aws_s3.query_export_to_s3('select * from sample_table', 'sample-
bucket', 'sample-filepath');
psql=> SELECT * from aws_s3.query_export_to_s3('select * from sample_table', 'sample-
bucket', 'sample-filepath','us-west-2');
psql=> SELECT * from aws_s3.query_export_to_s3('select * from sample_table', 'sample-
bucket', 'sample-filepath','us-west-2','format text');

1476

https://www.postgresql.org/docs/current/sql-copy.html
https://www.postgresql.org/docs/current/sql-copy.html

Amazon Aurora User Guide for Aurora
Managing query execution plans for Aurora PostgreSQL

aws_commons.create_s3_uri
Creates an aws_commons._s3_uri_1 structure to hold Amazon S3 file information.
You use the results of the aws_commons.create_s3_uri function in the s3_info
parameter of the aws_s3.query_export_to_s3 (p. 1475) function. For an example of using the
aws_commons.create_s3_uri function, see Specifying the Amazon S3 file path to export
to (p. 1468).

Syntax

aws_commons.create_s3_uri(
 bucket text,
 file_path text,
 region text
)

Input parameters

bucket

A required text string containing the Amazon S3 bucket name for the file.
file_path

A required text string containing the Amazon S3 file name including the path of the file.
region

A required text string containing the AWS Region that the file is in. For a listing of AWS Region
names and associated values, see Regions and Availability Zones (p. 11).

Managing query execution plans for Aurora
PostgreSQL

With query plan management for Amazon Aurora PostgreSQL-Compatible Edition, you can control how
and when query execution plans change. Query plan management has two main objectives:

• Preventing plan regressions when the database system changes
• Controlling when the query optimizer can use new plans

The quality and consistency of query optimization have a major impact on the performance and stability
of any relational database management system (RDBMS). Query optimizers create a query execution
plan for a SQL statement at a specific point in time. As conditions change, the optimizer might pick
a different plan that makes performance better or worse. In some cases, a number of changes can all
cause the query optimizer to choose a different plan and lead to performance regression. These changes
include changes in statistics, constraints, environment settings, query parameter bindings, and software
upgrades. Regression is a major concern for high-performance applications.

With query plan management, you can control execution plans for a set of statements that you want to
manage. You can do the following:

• Improve plan stability by forcing the optimizer to choose from a small number of known, good plans.
• Optimize plans centrally and then distribute the best plans globally.
• Identify indexes that aren't used and assess the impact of creating or dropping an index.
• Automatically detect a new minimum-cost plan discovered by the optimizer.

1477

Amazon Aurora User Guide for Aurora
Enabling query plan management

• Try new optimizer features with less risk, because you can choose to approve only the plan changes
that improve performance.

Topics
• Enabling query plan management for Aurora PostgreSQL (p. 1478)
• Upgrading query plan management (p. 1479)
• Basics of query plan management (p. 1479)
• Best practices for query plan management (p. 1482)
• Examining plans in the apg_plan_mgmt.dba_plans view (p. 1483)
• Capturing execution plans (p. 1486)
• Using managed plans (p. 1487)
• Maintaining execution plans (p. 1490)
• Parameter reference for query plan management (p. 1494)
• Function reference for query plan management (p. 1497)

Enabling query plan management for Aurora
PostgreSQL
Query plan management is available with the following Aurora PostgreSQL versions:

• All Aurora PostgreSQL 13 versions
• Aurora PostgreSQL version 12.4 and higher
• Aurora PostgreSQL version 11.6 and higher
• Aurora PostgreSQL version 10.5 and higher

Only users with the rds_superuser role can complete the following procedure. The rds_superuser
is required for creating the apg_plan_mgmt extension and its apg_plan_mgmt role. Users must be
granted the apg_plan_mgmt role to administer the apg_plan_mgmt extension.

To enable query plan management

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.
2. Create a new instance-level parameter group to use for query plan management parameters. For

more information, see Creating a DB parameter group (p. 342). Associate the new parameter group
with the DB instances in which you want to use query plan management. For more information, see
Modify a DB instance in a DB cluster (p. 373).

3. Create a new cluster-level parameter group to use for query plan management parameters. For
more information, see Creating a DB cluster parameter group (p. 343). Associate the new cluster-
level parameter group with the DB clusters in which you want to use query plan management. For
more information, see Modifying the DB cluster by using the console, CLI, and API (p. 372).

4. Open your cluster-level parameter group and set the rds.enable_plan_management parameter
to 1. For more information, see Modifying parameters in a DB cluster parameter group (p. 349).

5. Reboot your DB instance to enable this new setting.
6. Connect to your DB instance with a SQL client such as psql.
7. Create the apg_plan_mgmt extension for your DB instance. The following shows an example.

psql my-database
my-database=> CREATE EXTENSION apg_plan_mgmt;

1478

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Upgrading query plan management

If you create the apg_plan_mgmt extension in the template1 default database, then the query
plan management extension is available in each new database that you create.

You can disable query plan management at any time by turning off the
apg_plan_mgmt.use_plan_baselines and apg_plan_mgmt.capture_plan_baselines:

my-database=> SET apg_plan_mgmt.use_plan_baselines = off;
my-database=> SET apg_plan_mgmt.capture_plan_baselines = off;

Upgrading query plan management
The latest version of query plan management is 2.0. If you installed an earlier version of query plan
management, we strongly recommend that you upgrade to version 2.0. For version details, see Extension
versions for Amazon Aurora PostgreSQL (p. 1682).

To upgrade, run the following commands at the cluster or DB instance level.

ALTER EXTENSION apg_plan_mgmt UPDATE TO '2.0';
SELECT apg_plan_mgmt.validate_plans('update_plan_hash');
SELECT apg_plan_mgmt.reload();

Basics of query plan management
You can manage any SELECT, INSERT, UPDATE, or DELETE statement with query plan management,
regardless of how complex the statement is. Prepared, dynamic, embedded, and immediate-mode SQL
statements are all supported. All PostgreSQL language features can be used, including partitioned
tables, inheritance, row-level security, and recursive common table expressions (CTEs).

Topics
• Performing a manual plan capture (p. 1479)
• Viewing captured plans (p. 1480)
• Working with managed statements and the SQL hash (p. 1480)
• Working with automatic plan capture (p. 1481)
• Validating plans (p. 1481)
• Approving new plans that improve performance (p. 1482)
• Deleting plans (p. 1482)

Performing a manual plan capture
To capture plans for specific statements, use the manual capture mode as in the following example.

/* Turn on manual capture */
SET apg_plan_mgmt.capture_plan_baselines = manual;
EXPLAIN SELECT COUNT(*) from pg_class; -- capture the plan baseline
SET apg_plan_mgmt.capture_plan_baselines = off; -- turn off capture
SET apg_plan_mgmt.use_plan_baselines = true; -- turn on plan usage

You can either execute SELECT, INSERT, UPDATE, or DELETE statements, or you can include the EXPLAIN
statement as shown above. Use EXPLAIN to capture a plan without the overhead or potential side-effects
of executing the statement. For more about manual capture, see Manually capturing plans for specific
SQL statements (p. 1486). Note that query plan management doesn't save the plans for statements that
refer to system tables such as pg_class.

1479

Amazon Aurora User Guide for Aurora
Basics

Viewing captured plans
When EXPLAIN SELECT runs in the previous example, the optimizer saves the plan. To do so, it inserts a
row into the apg_plan_mgmt.dba_plans view and commits the plan in an autonomous transaction.
You can see the contents of the apg_plan_mgmt.dba_plans view if you've been granted the
apg_plan_mgmt role. The following query displays some important columns of the dba_plans view.

SELECT sql_hash, plan_hash, status, enabled, plan_outline, sql_text::varchar(40)
FROM apg_plan_mgmt.dba_plans
ORDER BY sql_text, plan_created;

Each row displayed represents a managed plan. The preceding example displays the following
information.

• sql_hash – The ID of the managed statement that the plan is for.
• plan_hash – The ID of the managed plan.
• status – The status of the plan. The optimizer can run an approved plan.
• enabled – A value that indicates whether the plan is enabled for use or disabled and not for use.
• plan_outline – Details of the managed plan.

For more about the apg_plan_mgmt.dba_plans view, see Examining plans in the
apg_plan_mgmt.dba_plans view (p. 1483).

Working with managed statements and the SQL hash
A managed statement is a SQL statement captured by the optimizer under query plan management.
You specify which SQL statements to capture as managed statements using either manual or automatic
capture:

• For manual capture, you provide the specific statements to the optimizer as shown in the previous
example.

• For automatic capture, the optimizer captures plans for statements that run multiple times. Automatic
capture is shown in a later example.

In the apg_plan_mgmt.dba_plans view, you can identify a managed statement with a SQL hash value.
The SQL hash is calculated on a normalized representation of the SQL statement that removes some
differences such as the literal values. Using normalization means that when multiple SQL statements
differ only in their literal or parameter values, they are represented by the same SQL hash in the
apg_plan_mgmt.dba_plans view. Therefore, there can be multiple plans for the same SQL hash where
each plan is optimal under different conditions.

When the optimizer processes any SQL statement, it uses the following rules to create the normalized
SQL statement:

• Removes any leading block comment
• Removes the EXPLAIN keyword and EXPLAIN options, if present
• Removes trailing spaces
• Removes all literals
• Preserves space and case for readability

For example, take the following statement.

/*Leading comment*/ EXPLAIN SELECT /* Query 1 */ * FROM t WHERE x > 7 AND y = 1;

1480

Amazon Aurora User Guide for Aurora
Basics

The optimizer normalizes this statement as the following.

SELECT /* Query 1 */ * FROM t WHERE x > CONST AND y = CONST;

Working with automatic plan capture
Use automatic plan capture if you want to capture plans for all SQL statements in your application, or if
you can’t use manual capture. With automatic plan capture, the optimizer captures plans for statements
that run at least two times. To use automatic plan capture, do the following.

1. Create a custom DB parameter group based on the default DB parameter group for the version of
Aurora PostgreSQL that you're running.

2. Edit the custom DB parameter group, by changing the apg_plan_mgmt.capture_plan_baselines
setting to automatic.

3. Save your customized DB parameter group.
4. Apply your custom DB parameter group to an Aurora DB instance that is already running as follows:

• Choose your Aurora PostgreSQL DB instance from the list in the navigation pane, and then choose
Modify.

• In the Additional configuration section of the Modify DB instance page, for the DB parameter
group, choose your custom DB parameter group.

• Choose Continue. Confirm the Summary of modifications and choose Apply immediately.
• Choose Modify DB instance to apply your custom DB parameter group.

You can also use your custom DB parameter group when you create a new Aurora PostgreSQL DB
instance. For more information about parameter groups, see Modifying parameters in a DB parameter
group (p. 347).

As your application runs, the optimizer captures plans for any statement that runs more than once. The
optimizer always sets the status of a managed statement's first captured plan to approved. A managed
statement's set of approved plans is known as its plan baseline.

As your application continues to run, the optimizer might find additional plans for the managed
statements. The optimizer sets additional captured plans to a status of Unapproved.

The set of all captured plans for a managed statement is known as the plan history. Later, you
can decide if the Unapproved plans perform well and change them to Approved, Rejected,
or Preferred by using the apg_plan_mgmt.evolve_plan_baselines function or the
apg_plan_mgmt.set_plan_status function.

To turn off automatic plan capture, set apg_plan_mgmt.capture_plan_baselines to off in the
parameter group for the DB instance. Follow the same general process as outlined above, modifying your
custom DB parameter group value for apg_plan_mgmt.capture_plan_baselines and then applying
the custom DB parameter group to your Aurora DB instance.

For more about plan capture, see Capturing execution plans (p. 1486).

Validating plans
Managed plans can become invalid ("stale") when objects that they depend on are removed, such as an
index. To find and delete all plans that are stale, use the apg_plan_mgmt.validate_plans function.

SELECT apg_plan_mgmt.validate_plans('delete');

For more information, see Validating plans (p. 1491).

1481

Amazon Aurora User Guide for Aurora
Best practices for query plan management

Approving new plans that improve performance
While using your managed plans, you can verify whether newer, lower-cost plans discovered
by the optimizer are faster than the minimum-cost plan already in the plan baseline.
To do the performance comparison and optionally approve the faster plans, call the
apg_plan_mgmt.evolve_plan_baselines function.

The following example automatically approves any unapproved plan that is enabled and faster by at
least 10 percent than the minimum-cost plan in the plan baseline.

SELECT apg_plan_mgmt.evolve_plan_baselines(
 sql_hash,
 plan_hash,
 1.1,
 'approve'
)
FROM apg_plan_mgmt.dba_plans
WHERE status = 'Unapproved' AND enabled = true;

When the apg_plan_mgmt.evolve_plan_baselines function runs, it collects performance
statistics and saves them in the apg_plan_mgmt.dba_plans view in the columns
planning_time_ms, execution_time_ms, cardinality_error, total_time_benefit_ms, and
execution_time_benefit_ms. The apg_plan_mgmt.evolve_plan_baselines function also
updates the columns last_verified or last_validated timestamps, in which you can see the
most recent time the performance statistics were collected.

SELECT sql_hash, plan_hash, status, last_verified, sql_text::varchar(40)
FROM apg_plan_mgmt.dba_plans
ORDER BY last_verified DESC; -- value updated by evolve_plan_baselines()

For more information about verifying plans, see Evaluating plan performance (p. 1490).

Deleting plans
The optimizer deletes plans automatically if they have not been executed or chosen as the minimum-
cost plan for the plan retention period. By default, the plan retention period is 32 days. To change the
plan retention period, set the apg_plan_mgmt.plan_retention_period parameter.

You can also review the contents of the apg_plan_mgmt.dba_plans view and delete any plans you
don't want by using the apg_plan_mgmt.delete_plan function. For more information, see Deleting
plans (p. 1493).

Best practices for query plan management
Consider using a plan management style that is either proactive or reactive. These plan management
styles contrast in how and when new plans get approved for use.

Proactive plan management to help prevent performance
regression
With proactive plan management, you manually approve new plans after you have verified that they
are faster. Do this to prevent plan performance regressions. Follow these steps for proactive plan
management:

1. In a development environment, identify the SQL statements that have the greatest impact on
performance or system throughput. Then capture the plans for these statements as described

1482

Amazon Aurora User Guide for Aurora
Examining plans in the dba_plans view

in Manually capturing plans for specific SQL statements (p. 1486) and Automatically capturing
plans (p. 1487).

2. Export the captured plans from the development environment and import them into the production
environment. For more information, see Exporting and importing plans (p. 1493).

3. In production, run your application and enforce the use of approved managed plans. For more
information, see Using managed plans (p. 1487). While the application runs, also add new plans as
the optimizer discovers them. For more information, see Automatically capturing plans (p. 1487).

4. Analyze the unapproved plans and approve those that perform well. For more information, see
Evaluating plan performance (p. 1490).

5. While your application continues to run, the optimizer begins to use the new plans as appropriate.

Reactive plan management to detect and repair performance
regression
With reactive plan management, you monitor your application as it runs to detect plans that cause
performance regressions. When you detect regressions, you manually reject or fix the bad plans. Follow
these steps for reactive plan management:

1. While your application runs, enforce the use of managed plans and automatically add newly
discovered plans as unapproved. For more information, see Using managed plans (p. 1487) and
Automatically capturing plans (p. 1487).

2. Monitor your running application for performance regressions.
3. When you discover a plan regression, set the plan's status to rejected. The next time the optimizer

runs the SQL statement, it automatically ignores the rejected plan and uses a different approved plan
instead. For more information, see Rejecting or disabling slower plans (p. 1491).

In some cases, you might prefer to fix a bad plan rather than reject, disable, or delete it. Use the
pg_hint_plan extension to experiment with improving a plan. With pg_hint_plan, you use special
comments to tell the optimizer to override how it normally creates a plan. For more information, see
Fixing plans using pg_hint_plan (p. 1492).

Examining plans in the apg_plan_mgmt.dba_plans
view
Query plan management provides a new SQL view for database administrators (DBAs) to use called
apg_plan_mgmt.dba_plans. This one view contains the plan history for all of the databases in the DB
instance.

This view contains the plan history for all of your managed statements. Each managed plan is identified
by the combination of a SQL hash value and a plan hash value. With these identifiers, you can use tools
such as Amazon RDS Performance Insights to track individual plan performance. For more information
on Performance Insights, see Using Amazon RDS performance insights.

Note
Access to the apg_plan_mgmt.dba_plans view is restricted to users that hold the
apg_plan_mgmt role.

Listing managed plans
To list the managed plans, use a SELECT statement on the apg_plan_mgmt.dba_plans view. The
following example displays some columns in the dba_plans view such as the status, which identifies
the approved and unapproved plans.

1483

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html

Amazon Aurora User Guide for Aurora
Examining plans in the dba_plans view

SELECT sql_hash, plan_hash, status, enabled, stmt_name
FROM apg_plan_mgmt.dba_plans;

 sql_hash | plan_hash | status | enabled | stmt_name
------------+-----------+------------+---------+------------
 1984047223 | 512153379 | Approved | t | rangequery
 1984047223 | 512284451 | Unapproved | t | rangequery
 (2 rows)

Reference for the apg_plan_mgmt.dba_plans view

The columns of plan information in the apg_plan_mgmt.dba_plans view include the following.

dba_plans column Description

cardinality_error A measure of the error between the estimated cardinality versus the
actual cardinality. Cardinality is the number of table rows that the
plan is to process. If the cardinality error is large, then it increases the
likelihood that the plan isn't optimal. This column is populated by the
apg_plan_mgmt.evolve_plan_baselines (p. 1498) function.

compatibility_levelThe feature level of the Aurora PostgreSQL optimizer.

created_by The authenticated user (session_user) who created the plan.

enabled An indicator of whether the plan is enabled or disabled. All plans
are enabled by default. You can disable plans to prevent them
from being used by the optimizer. To modify this value, use the
apg_plan_mgmt.set_plan_enabled (p. 1501) function.

environment_variablesThe PostgreSQL Grand Unified Configuration (GUC) parameters and values
that the optimizer has overridden at the time the plan was captured.

estimated_startup_costThe estimated optimizer setup cost before the optimizer delivers rows of a
table.

estimated_total_costThe estimated optimizer cost to deliver the final table row.

execution_time_benefit_msThe execution time benefit in milliseconds of enabling the plan. This column is
populated by the apg_plan_mgmt.evolve_plan_baselines (p. 1498) function.

execution_time_ms The estimated time in milliseconds that the plan would run. This column is
populated by the apg_plan_mgmt.evolve_plan_baselines (p. 1498) function.

has_side_effects A value that indicates that the SQL statement is a data manipulation language
(DML) statement or a SELECT statement that contains a VOLATILE function.

last_used This value is updated to the current date whenever the plan is either executed
or when the plan is the query optimizer's minimum-cost plan. This value
is stored in shared memory and periodically flushed to disk. To get the
most up-to-date value, read the date from shared memory by calling the
function apg_plan_mgmt.plan_last_used(sql_hash, plan_hash)
instead of reading the last_used value. For additional information, see the
apg_plan_mgmt.plan_retention_period (p. 1496) parameter.

last_validated The most recent date and time when it was verified that the plan could be
recreated by either the apg_plan_mgmt.validate_plans (p. 1503) function or
the apg_plan_mgmt.evolve_plan_baselines (p. 1498) function.

1484

Amazon Aurora User Guide for Aurora
Examining plans in the dba_plans view

dba_plans column Description

last_verified The most recent date and time when a plan was verified to be
the best-performing plan for the specified parameters by the
apg_plan_mgmt.evolve_plan_baselines (p. 1498) function.

origin How the plan was captured with the
apg_plan_mgmt.capture_plan_baselines (p. 1495) parameter. Valid values
include the following:

M – The plan was captured with manual plan capture.

A – The plan was captured with automatic plan capture.

param_list The parameter values that were passed to the statement if this is a prepared
statement.

plan_created The date and time the plan that was created.

plan_hash The plan identifier. The combination of plan_hash and sql_hash uniquely
identifies a specific plan.

plan_outline A representation of the plan that is used to recreate the actual execution
plan, and that is database-independent. Operators in the tree correspond to
operators that appear in the EXPLAIN output.

planning_time_ms The actual time to run the planner, in milliseconds. This column is populated
by the apg_plan_mgmt.evolve_plan_baselines (p. 1498) function.

queryId A statement hash, as calculated by the pg_stat_statements extension. This
isn't a stable or database-independent identifier because it depends on object
identifiers (OIDs).

sql_hash A hash value of the SQL statement text, normalized with literals removed.

sql_text The full text of the SQL statement.

status A plan's status, which determines how the optimizer uses a plan. Valid values
include the following.

• Approved – A usable plan that the optimizer can choose to run. The
optimizer runs the least-cost plan from a managed statement's set
of approved plans (baseline). To reset a plan to approved, use the
apg_plan_mgmt.evolve_plan_baselines (p. 1498) function.

• Unapproved – A captured plan that you have not verified for use. For more
information, see Evaluating plan performance (p. 1490).

• Rejected – A plan that the optimizer won't use. For more information, see
Rejecting or disabling slower plans (p. 1491).

• Preferred – A plan that you have determined is a preferred plan to use for
a managed statement.

If the optimizer's minimum-cost plan isn't an approved or preferred plan,
you can reduce plan enforcement overhead. To do so, make a subset of the
approved plans Preferred. When the optimizer's minimum cost isn't an
Approved plan, a Preferred plan is chosen before an Approved plan.

To reset a plan to Preferred, use the
apg_plan_mgmt.set_plan_status (p. 1501) function.

1485

Amazon Aurora User Guide for Aurora
Capturing execution plans

dba_plans column Description

stmt_name The name of the SQL statement within a PREPARE statement. This value is
an empty string for an unnamed prepared statement. This value is NULL for a
nonprepared statement.

total_time_benefit_msThe total time benefit in milliseconds of enabling this plan. This value
considers both planning time and execution time.

If this value is negative, there is a disadvantage to enabling this plan. This
column is populated by the apg_plan_mgmt.evolve_plan_baselines (p. 1498)
function.

Capturing execution plans
You can capture execution plans for specific SQL statements by using manual plan capture. Alternatively,
you can capture all (or the slowest) plans that are executed two or more times as your application runs
by using automatic plan capture.

When capturing plans, the optimizer sets the status of a managed statement's first captured plan to
approved. The optimizer sets the status of any additional plans captured for a managed statement to
unapproved. However, more than one plan might occasionally be saved with the approved status. This
can happen when multiple plans are created for a statement in parallel and before the first plan for the
statement is committed.

To control the maximum number of plans that can be captured and stored in the dba_plans view, set
the apg_plan_mgmt.max_plans parameter in your DB instance-level parameter group. A change to
the apg_plan_mgmt.max_plans parameter requires a DB instance reboot for a new value to take
effect. For more information, see the apg_plan_mgmt.max_plans (p. 1495) parameter.

Topics
• Manually capturing plans for specific SQL statements (p. 1486)

• Automatically capturing plans (p. 1487)

Manually capturing plans for specific SQL statements
If you have a known set of SQL statements to manage, put the statements into a SQL script file and then
manually capture plans. The following shows a psql example of how to capture query plans manually for
a set of SQL statements.

psql> SET apg_plan_mgmt.capture_plan_baselines = manual;
psql> \i my-statements.sql
psql> SET apg_plan_mgmt.capture_plan_baselines = off;

After capturing a plan for each SQL statement, the optimizer adds a new row to the
apg_plan_mgmt.dba_plans view.

We recommend that you use either EXPLAIN or EXPLAIN EXECUTE statements in the SQL script file.
Make sure that you include enough variations in parameter values to capture all the plans of interest.

If you know of a better plan than the optimizer's minimum cost plan, you might be able to force the
optimizer to use the better plan. To do so, specify one or more optimizer hints. For more information,
see Fixing plans using pg_hint_plan (p. 1492). To compare the performance of the unapproved and
approved plans and approve, reject, or delete them, see Evaluating plan performance (p. 1490).

1486

Amazon Aurora User Guide for Aurora
Using managed plans

Automatically capturing plans

Use automatic plan capture for situations such as the following:

• You don't know the specific SQL statements that you want to manage.

• You have hundreds or thousands of SQL statements to manage.

• Your application uses a client API. For example, JDBC uses unnamed prepared statements or bulk-
mode statements that can't be expressed in psql.

To capture plans automatically

1. Turn on automatic plan capture by setting apg_plan_mgmt.capture_plan_baselines to
automatic in the DB instance-level parameter group. For more information, see Modifying
parameters in a DB parameter group (p. 347).

2. Reboot your DB instance.

3. As the application runs, the optimizer captures plans for each SQL statement that runs at least
twice.

As the application runs with default query plan management parameter settings, the optimizer
captures plans for each SQL statement that runs at least twice. Capturing all plans while using the
defaults has very little run-time overhead and can be enabled in production.

To turn off automatic plan capture

• Set the apg_plan_mgmt.capture_plan_baselines parameter to off from the DB instance-
level parameter group.

To measure the performance of the unapproved plans and approve, reject, or delete them, see
Evaluating plan performance (p. 1490).

Using managed plans
To get the optimizer to use captured plans for your managed statements, set the parameter
apg_plan_mgmt.use_plan_baselines to true. The following is a local instance example.

SET apg_plan_mgmt.use_plan_baselines = true;

While the application runs, this setting causes the optimizer to use the minimum-cost, preferred, or
approved plan that is valid and enabled, for each managed statement.

How the optimizer chooses which plan to run

The cost of an execution plan is an estimate that the optimizer makes to compare different plans.
Optimizer cost is a function of several factors that include the CPU and I/O operations that the plan uses.
For more information about PostgreSQL query planner costs, see the PostgreSQL documentation on
query planning.

The following flowchart shows how the query plan management optimizer chooses which plan to run.

1487

https://www.postgresql.org/docs/current/runtime-config-query.html
https://www.postgresql.org/docs/current/runtime-config-query.html

Amazon Aurora User Guide for Aurora
Using managed plans

The flow is as follows:

1. When the optimizer processes every SQL statement, it generates a minimum-cost plan.

2. Without query plan management, the optimizer simply runs its generated plan. The optimizer uses
query plan management if you set one or both of the following parameter settings:

1488

Amazon Aurora User Guide for Aurora
Using managed plans

• apg_plan_mgmt.capture_plan_baselines to manual or automatic
• apg_plan_mgmt.use_plan_baselines to true

3. The optimizer immediately runs the generated plan if the following are both true:
• The optimizer's plan is already in the apg_plan_mgmt.dba_plans view for the SQL statement.
• The plan's status is either approved or preferred.

4. The optimizer goes through the capture plan processing if the parameter
apg_plan_mgmt.capture_plan_baselines is manual or automatic.

For details on how the optimizer captures plans, see Capturing execution plans (p. 1486).
5. The optimizer runs the generated plan if apg_plan_mgmt.use_plan_baselines is false.
6. If the optimizer's plan isn't in the apg_plan_mgmt.dba_plans view, the optimizer captures the plan

as a new unapproved plan.
7. The optimizer runs the generated plan if the following are both true:

• The optimizer's plan isn't a rejected or disabled plan.
• The plan's total cost is less than the unapproved execution plan threshold.

The optimizer doesn't run disabled plans or any plans that have the rejected status. In most cases,
the optimizer doesn't execute unapproved plans. However, the optimizer runs an unapproved plan if
you set a value for the parameter apg_plan_mgmt.unapproved_plan_execution_threshold
and the plan's total cost is less than the threshold. For more information, see the
apg_plan_mgmt.unapproved_plan_execution_threshold (p. 1496) parameter.

8. If the managed statement has any enabled and valid preferred plans, the optimizer runs the
minimum-cost one.

A valid plan is one that the optimizer can run. Managed plans can become invalid for various reasons.
For example, plans become invalid when objects that they depend on are removed, such as an index or
a partition of a partitioned table.

9. The optimizer determines the minimum-cost plan from the managed statement's approved plans that
are both enabled and valid. The optimizer then runs the minimum-cost approved plan.

Analyzing which plan the optimizer will use
When the apg_plan_mgmt.use_plan_baselines parameter is set to true, you can use EXPLAIN
ANALYZE SQL statements to cause the optimizer to show the plan it would use if it were to run the
statement. The following is an example.

EXPLAIN ANALYZE EXECUTE rangeQuery (1,10000);

 QUERY PLAN
--
 Aggregate (cost=393.29..393.30 rows=1 width=8) (actual time=7.251..7.251 rows=1 loops=1)
 -> Index Only Scan using t1_pkey on t1 t (cost=0.29..368.29 rows=10000 width=0)
 (actual time=0.061..4.859 rows=10000 loops=1)
Index Cond: ((id >= 1) AND (id <= 10000))
 Heap Fetches: 10000
 Planning time: 1.408 ms
 Execution time: 7.291 ms
 Note: An Approved plan was used instead of the minimum cost plan.
 SQL Hash: 1984047223, Plan Hash: 512153379

The optimizer indicates which plan it will run, but notice that in this example that it found a lower-cost
plan. In this case, you capture this new minimum cost plan by turning on automatic plan capture as
described in Automatically capturing plans (p. 1487).

1489

Amazon Aurora User Guide for Aurora
Maintaining execution plans

The optimizer captures new plans as Unapproved. Use the
apg_plan_mgmt.evolve_plan_baselines function to compare plans and change them to approved,
rejected, or disabled. For more information, see Evaluating plan performance (p. 1490).

Maintaining execution plans
Query plan management provides techniques and functions to add, maintain, and improve execution
plans.

Topics
• Evaluating plan performance (p. 1490)

• Validating plans (p. 1491)

• Fixing plans using pg_hint_plan (p. 1492)

• Deleting plans (p. 1493)

• Exporting and importing plans (p. 1493)

Evaluating plan performance
After the optimizer captures plans as unapproved, use the apg_plan_mgmt.evolve_plan_baselines
function to compare plans based on their actual performance. Depending on the outcome of your
performance experiments, you can change a plan's status from unapproved to either approved or
rejected. You can instead decide to use the apg_plan_mgmt.evolve_plan_baselines function to
temporarily disable a plan if it does not meet your requirements.

Topics
• Approving better plans (p. 1490)

• Rejecting or disabling slower plans (p. 1491)

Approving better plans

The following example demonstrates how to change the status of managed plans to approved using the
apg_plan_mgmt.evolve_plan_baselines function.

SELECT apg_plan_mgmt.evolve_plan_baselines (
 sql_hash,
 plan_hash,
 min_speedup_factor := 1.0,
 action := 'approve'
)
FROM apg_plan_mgmt.dba_plans WHERE status = 'Unapproved';

NOTICE: rangequery (1,10000)
NOTICE: Baseline [Planning time 0.761 ms, Execution time 13.261 ms]
NOTICE: Baseline+1 [Planning time 0.204 ms, Execution time 8.956 ms]
NOTICE: Total time benefit: 4.862 ms, Execution time benefit: 4.305 ms
NOTICE: Unapproved -> Approved
evolve_plan_baselines

0
(1 row)

The output shows a performance report for the rangequery statement with parameter bindings of 1
and 10,000. The new unapproved plan (Baseline+1) is better than the best previously approved plan

1490

Amazon Aurora User Guide for Aurora
Maintaining execution plans

(Baseline). To confirm that the new plan is now Approved, check the apg_plan_mgmt.dba_plans
view.

SELECT sql_hash, plan_hash, status, enabled, stmt_name
FROM apg_plan_mgmt.dba_plans;

sql_hash | plan_hash | status | enabled | stmt_name
------------+-----------+----------+---------+------------
1984047223 | 512153379 | Approved | t | rangequery
1984047223 | 512284451 | Approved | t | rangequery
(2 rows)

The managed plan now includes two approved plans that are the statement's plan baseline. You can
also call the apg_plan_mgmt.set_plan_status function to directly set a plan's status field to
'Approved', 'Rejected', 'Unapproved', or 'Preferred'.

Rejecting or disabling slower plans

To reject or disable plans, pass 'reject' or 'disable' as the action parameter to the
apg_plan_mgmt.evolve_plan_baselines function. This example disables any captured
Unapproved plan that is slower by at least 10 percent than the best Approved plan for the statement.

SELECT apg_plan_mgmt.evolve_plan_baselines(
sql_hash, -- The managed statement ID
plan_hash, -- The plan ID
1.1, -- number of times faster the plan must be
'disable' -- The action to take. This sets the enabled field to false.
)
FROM apg_plan_mgmt.dba_plans
WHERE status = 'Unapproved' AND -- plan is Unapproved
origin = 'Automatic'; -- plan was auto-captured

You can also directly set a plan to rejected or disabled. To directly set a plan's enabled field
to true or false, call the apg_plan_mgmt.set_plan_enabled function. To directly set a
plan's status field to 'Approved', 'Rejected', 'Unapproved', or 'Preferred', call the
apg_plan_mgmt.set_plan_status function.

Validating plans

Use the apg_plan_mgmt.validate_plans function to delete or disable plans that are invalid.

Plans can become invalid or stale when objects that they depend on are removed, such as an index or
a table. However, a plan might be invalid only temporarily if the removed object gets recreated. If an
invalid plan can become valid later, you might prefer to disable an invalid plan or do nothing rather than
delete it.

To find and delete all plans that are invalid and haven't been used in the past week, use the
apg_plan_mgmt.validate_plans function as follows.

SELECT apg_plan_mgmt.validate_plans(sql_hash, plan_hash, 'delete')
FROM apg_plan_mgmt.dba_plans
WHERE last_used < (current_date - interval '7 days');

To enable or disabled a plan directly, use the apg_plan_mgmt.set_plan_enabled function.

1491

Amazon Aurora User Guide for Aurora
Maintaining execution plans

Fixing plans using pg_hint_plan
The query optimizer is well-designed to find an optimal plan for all statements, and in most cases the
optimizer finds a good plan. However, occasionally you might know that a much better plan exists than
that generated by the optimizer. Two recommended ways to get the optimizer to generate a desired plan
include using the pg_hint_plan extension or setting Grand Unified Configuration (GUC) variables in
PostgreSQL:

• pg_hint_plan extension – Specify a "hint" to modify how the planner works by using PostgreSQL's
pg_hint_plan extension. To install and learn more about how to use the pg_hint_plan extension,
see the pg_hint_plan documentation.

• GUC variables – Override one or more cost model parameters or other optimizer parameters, such as
the from_collapse_limit or GEQO_threshold.

When you use one of these techniques to force the query optimizer to use a plan, you can also use query
plan management to capture and enforce use of the new plan.

You can use the pg_hint_plan extension to change the join order, the join methods, or the access paths
for a SQL statement. You use a SQL comment with special pg_hint_plan syntax to modify how the
optimizer creates a plan. For example, assume the problem SQL statement has a two-way join.

SELECT *
FROM t1, t2
WHERE t1.id = t2.id;

Then suppose that the optimizer chooses the join order (t1, t2), but we know that the join order (t2, t1)
is faster. The following hint forces the optimizer to use the faster join order, (t2, t1). Include EXPLAIN so
that the optimizer generates a plan for the SQL statement but does not run the statement. (Output not
shown.)

/*+ Leading ((t2 t1)) */ EXPLAIN SELECT *
FROM t1, t2
WHERE t1.id = t2.id;

The following steps show how to use pg_hint_plan.

To modify the optimizer's generated plan and capture the plan using pg_hint_plan

1. Turn on the manual capture mode.

SET apg_plan_mgmt.capture_plan_baselines = manual;

2. Specify a hint for the SQL statement of interest.

/*+ Leading ((t2 t1)) */ EXPLAIN SELECT *
FROM t1, t2
WHERE t1.id = t2.id;

After this runs, the optimizer captures the plan in the apg_plan_mgmt.dba_plans view. The
captured plan doesn't include the special pg_hint_plan comment syntax because query plan
management normalizes the statement by removing leading comments.

3. View the managed plans by using the apg_plan_mgmt.dba_plans view.

SELECT sql_hash, plan_hash, status, sql_text, plan_outline
FROM apg_plan_mgmt.dba_plans;

1492

http://pghintplan.osdn.jp/

Amazon Aurora User Guide for Aurora
Maintaining execution plans

4. Set the status of the plan to Preferred. Doing so makes sure that the optimizer chooses to run
it, instead of selecting from the set of approved plans, when the minimum-cost plan isn't already
Approved or Preferred.

SELECT apg_plan_mgmt.set_plan_status(sql-hash, plan-hash, 'preferred');

5. Turn off manual plan capture and enforce the use of managed plans.

SET apg_plan_mgmt.capture_plan_baselines = false;
SET apg_plan_mgmt.use_plan_baselines = true;

Now, when the original SQL statement runs, the optimizer chooses either an Approved or
Preferred plan. If the minimum-cost plan isn't Approved or Preferred, then the optimizer
chooses the Preferred plan.

Deleting plans
Delete plans that have not been used for a long time or that are no longer relevant. Each plan has a
last_used date that the optimizer updates each time it executes a plan or picks it as the minimum-cost
plan for a statement. Use the last_used date to determine if a plan has been used recently and is still
relevant.

For example, you can use the apg_plan_mgmt.delete_plan function as follows. Doing this deletes
all plans that haven't been chosen as the minimum-cost plan or haven't run in at least 31 days. However,
this example doesn't delete plans that have been explicitly rejected.

SELECT SUM(apg_plan_mgmt.delete_plan(sql_hash, plan_hash))
FROM apg_plan_mgmt.dba_plans
WHERE last_used < (current_date - interval '31 days')
AND status <> 'Rejected';

To delete any plan that is no longer valid and that you expect not to become valid again, use the
apg_plan_mgmt.validate_plans function. For more information, see Validating plans (p. 1491).

You can implement your own policy for deleting plans. Plans are automatically deleted when the
current date last_used is greater than the value of the apg_plan_mgmt.plan_retention_period
parameter, which defaults to 32 days. You can specify a longer interval, or you can implement your
own plan retention policy by calling the delete_plan function directly. The last_used date is the
most recent date that either the optimizer chose a plan as the minimum cost plan or that the plan was
executed.

Important
If you don't clean up plans, you might eventually run out of shared memory that is set aside
for query plan management. To control how much memory is available for managed plans,
use the apg_plan_mgmt.max_plans parameter. Set this parameter in your DB instance-level
parameter group and reboot your DB instance for changes to take effect. For more information,
see the apg_plan_mgmt.max_plans (p. 1495) parameter.

Exporting and importing plans
You can export your managed plans and import them into another DB instance.

To export managed plans

An authorized user can copy any subset of the apg_plan_mgmt.plans table to another table, and then
save it using the pg_dump command. The following is an example.

1493

Amazon Aurora User Guide for Aurora
Parameter reference for query plan management

CREATE TABLE plans_copy AS SELECT *
FROM apg_plan_mgmt.plans [WHERE predicates] ;

% pg_dump --table apg_plan_mgmt.plans_copy -Ft mysourcedatabase > plans_copy.tar

DROP TABLE apg_plan_mgmt.plans_copy;

To import managed plans

1. Copy the .tar file of the exported managed plans to the system where the plans are to be restored.
2. Use the pg_restore command to copy the tar file into a new table.

% pg_restore --dbname mytargetdatabase -Ft plans_copy.tar

3. Merge the plans_copy table with the apg_plan_mgmt.plans table, as shown in the following
example.

Note
In some cases, you might dump from one version of the apg_plan_mgmt extension and
restore into a different version. In these cases, the columns in the plans table might be
different. If so, name the columns explicitly instead of using SELECT *.

INSERT INTO apg_plan_mgmt.plans SELECT * FROM plans_copy
 ON CONFLICT ON CONSTRAINT plans_pkey
 DO UPDATE SET
 status = EXCLUDED.status,
 enabled = EXCLUDED.enabled,
 -- Save the most recent last_used date
 --
 last_used = CASE WHEN EXCLUDED.last_used > plans.last_used
 THEN EXCLUDED.last_used ELSE plans.last_used END,
 -- Save statistics gathered by evolve_plan_baselines, if it ran:
 --
 estimated_startup_cost = EXCLUDED.estimated_startup_cost,
 estimated_total_cost = EXCLUDED.estimated_total_cost,
 planning_time_ms = EXCLUDED.planning_time_ms,
 execution_time_ms = EXCLUDED.execution_time_ms,
 total_time_benefit_ms = EXCLUDED.total_time_benefit_ms,
 execution_time_benefit_ms = EXCLUDED.execution_time_benefit_ms;

4. Reload the managed plans into shared memory and remove the temporary plans table.

SELECT apg_plan_mgmt.reload(); -- refresh shared memory
DROP TABLE plans_copy;

Parameter reference for query plan management
The apg_plan_mgmt extension provides the following parameters.

Parameters
• apg_plan_mgmt.capture_plan_baselines (p. 1495)
• apg_plan_mgmt.max_databases (p. 1495)
• apg_plan_mgmt.max_plans (p. 1495)
• apg_plan_mgmt.plan_retention_period (p. 1496)

1494

Amazon Aurora User Guide for Aurora
Parameter reference for query plan management

• apg_plan_mgmt.unapproved_plan_execution_threshold (p. 1496)
• apg_plan_mgmt.use_plan_baselines (p. 1496)

Set the query plan management parameters at the appropriate level:

• Set at the cluster-level to provide the same settings for all DB instances. For more information, see
Modifying parameters in a DB cluster parameter group (p. 349).

• Set at the DB instance level to isolate the settings to an individual DB instance. For more information,
see Modifying parameters in a DB parameter group (p. 347).

• Set in a specific client session such as in psql, to isolate the values to only that session.

You can set the apg_plan_mgmt.max_databases parameter and the apg_plan_mgmt.max_plans
parameter at the Aurora DB cluster level or at the DB instance level.

apg_plan_mgmt.capture_plan_baselines
Enable execution plan capture for SQL statements.

SET apg_plan_mgmt.capture_plan_baselines = [off | automatic |manual];

Value Description

off Disable plan capture. This is the default.

automatic Enable plan capture for subsequent SQL statements that satisfy the eligibility criteria.

manual Enable plan capture for subsequent SQL statements.

apg_plan_mgmt.max_databases
Sets the maximum number of databases that can use query plan management. You can use the psq1
meta-command (\l) to find out how many databases are on the DB instance in the Aurora PostgreSQL
DB cluster. By default, query plan management can support 10 databases. You can change the value of
this parameter at the DB cluster level or at the DB instance level.

Important
If you change the value of apg_plan_mgmt.max_databases, be sure to reboot the DB
instance so that the new value takes effect.

SET apg_plan_mgmt.max_databases = integer-value;

Value Default Description

Positive integer 10 A positive integer value.

apg_plan_mgmt.max_plans
Sets the maximum number of SQL statements that the query plan manager can maintain in the
apg_plan_mgmt.dba_plans view. We recommend setting this parameter to 10000 or higher for all
Aurora PostgreSQL versions.

1495

Amazon Aurora User Guide for Aurora
Parameter reference for query plan management

Important
You can set the apg_plan_mgmt.max_plans parameter at the cluster level or at the DB
instance level. Be sure to reboot the DB instance so that the new value can take effect.

SET apg_plan_mgmt.max_plans = integer-value;

Value Default Version

10000 Aurora PostgreSQL version 11 and higher versionsPositive
integer >=
10 1000 Aurora PostgreSQL version 10 and previous versions

apg_plan_mgmt.plan_retention_period
The number of days that plans are kept in the apg_plan_mgmt.dba_plans view before being
automatically deleted. A plan is deleted when the current date is the specified number of days since the
plan's last_used date. The default is 32 days. The last_used date is the most recent date that either
the optimizer chose a plan as the minimum cost plan or that the plan was executed.

SET apg_plan_mgmt.plan_retention_period = integer-value;

Value Default Description

Positive integer 32 A positive integer value greater or equal to 32, representing days.

apg_plan_mgmt.unapproved_plan_execution_threshold
An estimated total plan cost threshold, below which the optimizer runs an unapproved plan. By default,
the optimizer does not run unapproved plans. However, you can set an execution threshold for your
fastest unapproved plans. With this setting, the optimizer bypasses the overhead of enforcing only
approved plans.

SET apg_plan_mgmt.unapproved_plan_execution_threshold = integer-value;

Value Default Description

Positive integer 0 A positive integer value greater or equal to 0. A value of 0 means no
unapproved plans run when use_plan_baselines is true.

With the following example, the optimizer runs an unapproved plan if the estimated cost is less than
550, even if use_plan_baselines is true.

SET apg_plan_mgmt.unapproved_plan_execution_threshold = 550;

apg_plan_mgmt.use_plan_baselines
Enforce the optimizer to use managed plans for managed statements.

1496

Amazon Aurora User Guide for Aurora
Function reference for query plan management

SET apg_plan_mgmt.use_plan_baselines = [true | false];

Value Description

true Enforce the use of managed plans. When a SQL statement runs and it is a managed
statement in the apg_plan_mgmt.dba_plans view, the optimizer chooses a managed
plan in the following order.

1. The minimum-cost preferred plan that is valid and enabled.
2. The minimum cost approved plan that is valid and enabled.
3. The minimum cost unapproved plan that is valid,

enabled, and that meets the threshold, if set with the
apg_plan_mgmt.unapproved_plan_execution_threshold parameter.

4. The optimizer's generated minimum-cost plan.

false (Default) Do not use managed plans. The optimizer uses its generated minimum-cost
plan.

Usage notes

When use_plan_baselines is true, then the optimizer makes the following execution decisions:

1. If the estimated cost of the optimizer's plan is below the
unapproved_plan_execution_threshold, then execute it, else

2. If the plan is approved or preferred, then execute it, else

3. Execute a minimum-cost preferred plan, if possible, else

4. Execute a minimum-cost approved plan, if possible, else

5. Execute the optimizer's minimum-cost plan.

Function reference for query plan management
The apg_plan_mgmt extension provides the following functions.

Functions

• apg_plan_mgmt.delete_plan (p. 1497)

• apg_plan_mgmt.evolve_plan_baselines (p. 1498)

• apg_plan_mgmt.get_explain_plan (p. 1499)

• apg_plan_mgmt.plan_last_used (p. 1500)

• apg_plan_mgmt.reload (p. 1500)

• apg_plan_mgmt.set_plan_enabled (p. 1501)

• apg_plan_mgmt.set_plan_status (p. 1501)

• apg_plan_mgmt.update_plans_last_used (p. 1502)

• apg_plan_mgmt.validate_plans (p. 1503)

apg_plan_mgmt.delete_plan
Delete a managed plan.

1497

Amazon Aurora User Guide for Aurora
Function reference for query plan management

Syntax

apg_plan_mgmt.delete_plan(
 sql_hash,
 plan_hash
)

Return value

Returns 0 if the delete was successful or -1 if the delete failed.

Parameters

Parameter Description

sql_hash The sql_hash ID of the plan's managed SQL
statement.

plan_hash The managed plan's plan_hash ID.

apg_plan_mgmt.evolve_plan_baselines

Verifies whether an already approved plan is faster or whether a plan identified by the query optimizer
as a minimum cost plan is faster.

Syntax

apg_plan_mgmt.evolve_plan_baselines(
 sql_hash,
 plan_hash,
 min_speedup_factor,
 action
)

Return value

The number of plans that were not faster than the best approved plan.

Parameters

Parameter Description

sql_hash The sql_hash ID of the plan's managed SQL statement.

plan_hash The managed plan's plan_hash ID. Use NULL to mean all plans that have
the same sql_hash ID value.

min_speedup_factor The minimum speedup factor can be the number of times faster that a
plan must be than the best of the already approved plans to approve it.
Alternatively, this factor can be the number of times slower that a plan must
be to reject or disable it.

This is a positive float value.

1498

Amazon Aurora User Guide for Aurora
Function reference for query plan management

Parameter Description

action The action the function is to perform. Valid values include the following.
Case does not matter.

• 'disable' – Disable each matching plan that does not meet the
minimum speedup factor.

• 'approve' – Enable each matching plan that meets the minimum
speedup factor and set its status to approved.

• 'reject' – For each matching plan that does not meet the minimum
speedup factor, set its status to rejected.

• NULL – The function simply returns the number of plans that have no
performance benefit because they do not meet the minimum speedup
factor.

Usage notes

Set specified plans to approved, rejected, or disabled based on whether the planning plus execution time
is faster than the best approved plan by a factor that you can set. The action parameter might be set to
'approve' or 'reject' to automatically approve or reject a plan that meets the performance criteria.
Alternatively, it might be set to '' (empty string) to do the performance experiment and produce a report,
but take no action.

You can avoid pointlessly rerunning of the apg_plan_mgmt.evolve_plan_baselines function for
a plan on which it was recently run. To do so, restrict the plans to just the recently created unapproved
plans. Alternatively, you can avoid running the apg_plan_mgmt.evolve_plan_baselines function
on any approved plan that has a recent last_verified timestamp.

Conduct a performance experiment to compare the planning plus execution time of each plan relative
to the other plans in the baseline. In some cases, there is only one plan for a statement and the plan
is approved. In such a case, compare the planning plus execution time of the plan to the planning plus
execution time of using no plan.

The incremental benefit (or disadvantage) of each plan is recorded in the apg_plan_mgmt.dba_plans
view in the total_time_benefit_ms column. When this value is positive, there is a measurable
performance advantage to including this plan in the baseline.

In addition to collecting the planning and execution time of each candidate plan, the last_verified
column of the apg_plan_mgmt.dba_plans view is updated with the current_timestamp. The
last_verified timestamp might be used to avoid running this function again on a plan that recently
had its performance verified.

apg_plan_mgmt.get_explain_plan
Generates the text of an EXPLAIN statement for the specified SQL statement.

Syntax

apg_plan_mgmt.get_explain_plan(
 sql_hash,
 plan_hash,
 [explainOptionList]
)

Return value

Returns runtime statistics for the specified SQL statements. Use without explainOptionList to return
a simple EXPLAIN plan.

1499

Amazon Aurora User Guide for Aurora
Function reference for query plan management

Parameters

Parameter Description

sql_hash The sql_hash ID of the plan's managed SQL
statement.

plan_hash The managed plan's plan_hash ID.

explainOptionList A comma-separated list of explain options.
Valid values include 'analyze', 'verbose',
'buffers', 'hashes', and 'format json'. If
the explainOptionList is NULL or an empty
string (''), this function generates an EXPLAIN
statement, without any statistics.

Usage notes

For the explainOptionList, you can use any of the same options that you would use with an
EXPLAIN statement. The Aurora PostgreSQL optimizer concatenates the list of options you provide to
the EXPLAIN statement, so you can request any option that EXPLAIN supports.

apg_plan_mgmt.plan_last_used
Returns the last_used date of the specified plan from shared memory.

Note
The value in shared memory is always current on the primary DB instance in the
DB cluster. The value is only periodically flushed to the last_used column of the
apg_plan_mgmt.dba_plans view.

Syntax

apg_plan_mgmt.plan_last_used(
 sql_hash,
 plan_hash
)

Return value

Returns the last_used date.

Parameters

Parameter Description

sql_hash The sql_hash ID of the plan's managed SQL
statement.

plan_hash The managed plan's plan_hash ID.

apg_plan_mgmt.reload
Reload plans into shared memory from the apg_plan_mgmt.dba_plans view.

1500

Amazon Aurora User Guide for Aurora
Function reference for query plan management

Syntax

apg_plan_mgmt.reload()

Return value

None.

Parameters

None.

Usage notes

Call reload for the following situations:

• Use it to refresh the shared memory of a read-only replica immediately, rather than wait for new plans
to propagate to the replica.

• Use it after importing managed plans.

apg_plan_mgmt.set_plan_enabled
Enable or disable a managed plan.

Syntax

apg_plan_mgmt.set_plan_enabled(
 sql_hash,
 plan_hash,
 [true | false]
)

Return value

Returns 0 if the setting was successful or -1 if the setting failed.

Parameters

Parameter Description

sql_hash The sql_hash ID of the plan's managed SQL statement.

plan_hash The managed plan's plan_hash ID.

enabled Boolean value of true or false:

• A value of true enables the plan.
• A value of false disables the plan.

apg_plan_mgmt.set_plan_status
Set a managed plan's status to Approved, Unapproved, Rejected, or Preferred.

Syntax

1501

Amazon Aurora User Guide for Aurora
Function reference for query plan management

apg_plan_mgmt.set_plan_status(
 sql_hash,
 plan_hash,
 status
)

Return value

Returns 0 if the setting was successful or -1 if the setting failed.

Parameters

Parameter Description

sql_hash The sql_hash ID of the plan's managed SQL statement.

plan_hash The managed plan's plan_hash ID.

status A string with one of the following values:

• 'Approved'

• 'Unapproved'

• 'Rejected'

• 'Preferred'

The case you use does not matter, however the status value is set to initial uppercase
in the apg_plan_mgmt.dba_plans view. For more information about these values,
see status in Reference for the apg_plan_mgmt.dba_plans view (p. 1484).

apg_plan_mgmt.update_plans_last_used
Immediately updates the plans table with the last_used date stored in shared memory.

Syntax

apg_plan_mgmt.update_plans_last_used()

Return value

None.

Parameters

None.

Usage notes

Call update_plans_last_used to make sure queries against the dba_plans.last_used column use
the most current information. If the last_used date isn't updated immediately, a background process
updates the plans table with the last_used date once every hour (by default).

For example, if a statement with a certain sql_hash begins to run slowly, you can determine which
plans for that statement were executed since the performance regression began. To do that, first flush
the data in shared memory to disk so that the last_used dates are current, and then query for all
plans of the sql_hash of the statement with the performance regression. In the query, make sure the

1502

Amazon Aurora User Guide for Aurora
Function reference for query plan management

last_used date is greater than or equal to the date on which the performance regression began. The
query identifies the plan or set of plans that might be responsible for the performance regression. You
can use apg_plan_mgmt.get_explain_plan with explainOptionList set to verbose, hashes.
You can also use apg_plan_mgmt.evolve_plan_baselines to analyze the plan and any alternative
plans that might perform better.

The update_plans_last_used function has an effect only on the primary DB instance of the DB
cluster.

apg_plan_mgmt.validate_plans
Validate that the optimizer can still recreate plans. The optimizer validates Approved, Unapproved,
and Preferred plans, whether the plan is enabled or disabled. Rejected plans are not validated.
Optionally, you can use the apg_plan_mgmt.validate_plans function to delete or disable invalid
plans.

Syntax

apg_plan_mgmt.validate_plans(
 sql_hash,
 plan_hash,
 action)

apg_plan_mgmt.validate_plans(
 action)

Return value

The number of invalid plans.

Parameters

Parameter Description

sql_hash The sql_hash ID of the plan's managed SQL statement.

plan_hash The managed plan's plan_hash ID. Use NULL to mean all plans for the same
sql_hash ID value.

action The action the function is to perform for invalid plans. Valid string values include the
following. Case does not matter.

• 'disable' – Each invalid plan is disabled.
• 'delete' – Each invalid plan is deleted.
• 'update_plan_hash' – Updates the plan_hash ID for plans that can't be

reproduced exactly. It also allows you to fix a plan by rewriting the SQL. You can then
register the good plan as an Approved plan for the original SQL.

• NULL – The function simply returns the number of invalid plans. No other action is
performed.

• '' – An empty string produces a message indicating the number of both valid and
invalid plans.

Any other value is treated like the empty string.

Usage notes

1503

Amazon Aurora User Guide for Aurora
Publishing Aurora PostgreSQL logs to CloudWatch Logs

Use the form validate_plans(action) to validate all the managed plans for all the managed
statements in the entire apg_plan_mgmt.dba_plans view.

Use the form validate_plans(sql_hash, plan_hash, action) to validate a managed plan
specified with plan_hash, for a managed statement specified with sql_hash.

Use the form validate_plans(sql_hash, NULL, action) to validate all the managed plans for
the managed statement specified with sql_hash.

Publishing Aurora PostgreSQL logs to Amazon
CloudWatch Logs

You can configure your Aurora PostgreSQL DB cluster to publish log data to a log group in Amazon
CloudWatch Logs. With CloudWatch Logs, you can perform real-time analysis of the log data, and use
CloudWatch to create alarms and view metrics. You can use CloudWatch Logs to store your log records
in highly durable storage. Unlike with RDS for PostgreSQL which lets you publish both upgrade and
postgresql logs, Aurora PostgreSQL supports uploading postgresql logs only to CloudWatch Logs.

Aurora PostgreSQL supports publishing logs to CloudWatch Logs for the following versions:

• 13.3 and higher 13 versions
• 12.4 and higher 12 versions
• 11.6 and higher 11 versions
• 10.11 and higher 10 versions

Note
Be aware of the following:

• If exporting log data is disabled, Aurora doesn't delete existing log groups or log streams.
• If exporting log data is disabled, existing log data remains available in CloudWatch Logs based

on log retention settings, which means you still incur charges for stored audit log data. You
can delete log streams and log groups using the CloudWatch Logs console, the AWS CLI, or
the CloudWatch Logs API.

• If you don't want to export audit logs to CloudWatch Logs, make sure that all methods of
exporting audit logs are disabled. These methods are the AWS Management Console, the AWS
CLI, and the RDS API.

Publishing logs to Amazon CloudWatch
You can use the AWS Management Console, the AWS CLI, or the RDS API to publish Aurora PostgreSQL
logs to Amazon CloudWatch Logs.

Console

You can publish Aurora PostgreSQL logs to CloudWatch Logs with the console.

To publish Aurora PostgreSQL logs from the console

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.
2. In the navigation pane, choose Databases.
3. Choose the Aurora PostgreSQL DB cluster that you want to publish the log data for.

1504

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Publishing logs to Amazon CloudWatch

4. Choose Modify.
5. In the Log exports section, choose Postgresql log.
6. Choose Continue, and then choose Modify cluster on the summary page.

AWS CLI

You can publish Aurora PostgreSQL logs with the AWS CLI. You can run the modify-db-cluster AWS CLI
command with the following options:

• --db-cluster-identifier—The DB cluster identifier.
• --cloudwatch-logs-export-configuration—The configuration setting for the log types to be

set for export to CloudWatch Logs for the DB cluster.

You can also publish Aurora PostgreSQL logs by running one of the following AWS CLI commands:

• create-db-cluster
• restore-db-cluster-from-s3
• restore-db-cluster-from-snapshot
• restore-db-cluster-to-point-in-time

Run one of these AWS CLI commands with the following options:

• --db-cluster-identifier—The DB cluster identifier.
• --engine—The database engine.
• --enable-cloudwatch-logs-exports—The configuration setting for the log types to be enabled

for export to CloudWatch Logs for the DB cluster.

Other options might be required depending on the AWS CLI command that you run.

Example

The following command creates an Aurora PostgreSQL DB cluster to publish log files to CloudWatch
Logs.

For Linux, macOS, or Unix:

aws rds create-db-cluster \
 --db-cluster-identifier my-db-cluster \
 --engine aurora-postgresql \
 --enable-cloudwatch-logs-exports postgresql

For Windows:

aws rds create-db-cluster ^
 --db-cluster-identifier my-db-cluster ^
 --engine aurora-postgresql ^
 --enable-cloudwatch-logs-exports postgresql

Example

The following command modifies an existing Aurora PostgreSQL DB cluster to publish log files to
CloudWatch Logs. The --cloudwatch-logs-export-configuration value is a JSON object. The key
for this object is EnableLogTypes, and its value is postgresql.

1505

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-s3.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html

Amazon Aurora User Guide for Aurora
Publishing logs to Amazon CloudWatch

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier my-db-cluster \
 --cloudwatch-logs-export-configuration '{"EnableLogTypes":["postgresql"]}'

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier my-db-cluster ^
 --cloudwatch-logs-export-configuration '{\"EnableLogTypes\":[\"postgresql\"]}'

Note
When using the Windows command prompt, make sure to escape double quotation marks (") in
JSON code by prefixing them with a backslash (\).

Example

The following example modifies an existing Aurora PostgreSQL DB cluster to disable publishing log files
to CloudWatch Logs. The --cloudwatch-logs-export-configuration value is a JSON object. The
key for this object is DisableLogTypes, and its value is postgresql.

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier mydbinstance \
 --cloudwatch-logs-export-configuration '{"DisableLogTypes":["postgresql"]}'

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier mydbinstance ^
 --cloudwatch-logs-export-configuration "{\"DisableLogTypes\":[\"postgresql\"]}"

Note
When using the Windows command prompt, you must escape double quotes (") in JSON code by
prefixing them with a backslash (\).

RDS API

You can publish Aurora PostgreSQL logs with the RDS API. You can run the ModifyDBCluster operation
with the following options:

• DBClusterIdentifier – The DB cluster identifier.

• CloudwatchLogsExportConfiguration – The configuration setting for the log types to be enabled
for export to CloudWatch Logs for the DB cluster.

You can also publish Aurora PostgreSQL logs with the RDS API by running one of the following RDS API
operations:

• CreateDBCluster

• RestoreDBClusterFromS3

• RestoreDBClusterFromSnapshot

1506

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromSnapshot.html

Amazon Aurora User Guide for Aurora
Monitoring log events in Amazon CloudWatch

• RestoreDBClusterToPointInTime

Run the RDS API action with the following parameters:

• DBClusterIdentifier—The DB cluster identifier.

• Engine—The database engine.

• EnableCloudwatchLogsExports—The configuration setting for the log types to be enabled for
export to CloudWatch Logs for the DB cluster.

Other parameters might be required depending on the AWS CLI command that you run.

Monitoring log events in Amazon CloudWatch
After enabling Aurora PostgreSQL log events, you can monitor the events in Amazon CloudWatch Logs.
For more information about monitoring, see View log data sent to CloudWatch Logs.

A new log group is automatically created for the Aurora DB cluster under the following prefix. In this
prefix, cluster-name represents the DB cluster name and log_type represents the log type.

/aws/rds/cluster/cluster-name/log_type

For example, suppose that you configure the export function to include the postgresql log for a DB
cluster named my-db-cluster. In this case, PostgreSQL log data is stored in the /aws/rds/cluster/
my-db-cluster/postgresql log group.

All of the events from all of the DB instances in a DB cluster are pushed to a log group using different log
streams.

If a log group with the specified name exists, Aurora uses that log group to export log data for the
Aurora DB cluster. You can use automated configuration, such as AWS CloudFormation, to create log
groups with predefined log retention periods, metric filters, and customer access. Otherwise, a new log
group is automatically created using the default log retention period, Never Expire, in CloudWatch Logs.
You can use the CloudWatch Logs console, the AWS CLI, or the CloudWatch Logs API to change the log
retention period. For more information about changing log retention periods in CloudWatch Logs, see
Change log data retention in CloudWatch Logs.

You can use the CloudWatch Logs console, the AWS CLI, or the CloudWatch Logs API to search for
information within the log events for a DB cluster. For more information about searching and filtering
log data, see Searching and filtering log data.

Analyze Aurora PostgreSQL logs using CloudWatch
Logs Insights
After publishing Aurora PostgreSQL logs to CloudWatch Logs, you can analyze logs graphically and
create dashboards using CloudWatch Logs Insights.

To analyze Aurora PostgreSQL logs with CloudWatch Logs Insights

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, open Logs and choose Log insights.

3. In Select log group(s), select the log group for your DB cluster.

1507

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterToPointInTime.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#ViewingLogData
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SettingLogRetention.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/MonitoringLogData.html
https://console.aws.amazon.com/cloudwatch/

Amazon Aurora User Guide for Aurora
Analyze Aurora PostgreSQL logs
using CloudWatch Logs Insights

4. In the query editor, delete the query that is currently shown, enter the following, and then choose
Run query.

##Autovacuum execution time in seconds per 5 minute
fields @message
| parse @message "elapsed: * s" as @duration_sec
| filter @message like / automatic vacuum /
| display @duration_sec
| sort @timestamp
| stats avg(@duration_sec) as avg_duration_sec,
max(@duration_sec) as max_duration_sec
by bin(5 min)

5. Choose the Visualization tab.

1508

Amazon Aurora User Guide for Aurora
Analyze Aurora PostgreSQL logs
using CloudWatch Logs Insights

6. Choose Add to dashboard.

7. In Select a dashboard, either select a dashboard or enter a name to create a new dashboard.

8. In Widget type, choose a widget type for your visualization.

9. (Optional) Add more widgets based on your log query results.

1509

Amazon Aurora User Guide for Aurora
Analyze Aurora PostgreSQL logs
using CloudWatch Logs Insights

a. Choose Add widget.

b. Choose a widget type, such as Line.

c. In the Add to this dashboard window, choose Logs.

d. In Select log group(s), select the log group for your DB cluster.

e. In the query editor, delete the query that is currently shown, enter the following, and then
choose Run query.

##Autovacuum tuples statistics per 5 min
fields @timestamp, @message
| parse @message "tuples: " as @tuples_temp
| parse @tuples_temp "* removed," as @tuples_removed
| parse @tuples_temp "remain, * are dead but not yet removable, " as
 @tuples_not_removable
| filter @message like / automatic vacuum /
| sort @timestamp
| stats avg(@tuples_removed) as avg_tuples_removed,
avg(@tuples_not_removable) as avg_tuples_not_removable
by bin(5 min)

1510

Amazon Aurora User Guide for Aurora
Using machine learning with Aurora PostgreSQL

f. Choose Create widget.

Your dashboard should look similar to the following image.

Using machine learning (ML) with Aurora
PostgreSQL

With Aurora machine learning, you can add machine learning–based predictions to database applications
using the SQL language. Aurora machine learning uses a highly optimized integration between the
Aurora database and the AWS machine learning (ML) services SageMaker and Amazon Comprehend.

Benefits of Aurora machine learning include the following:

• You can add ML–based predictions to your existing database applications. You don't need to build
custom integrations or learn separate tools. You can embed machine learning processing directly into
your SQL query as calls to functions.

• The ML integration is a fast way to enable ML services to work with transactional data. You don't have
to move the data out of the database to perform the machine learning operations. You don't have
to convert or reimport the results of the machine learning operations to use them in your database
application.

• You can use your existing governance policies to control who has access to the underlying data and to
the generated insights.

AWS machine learning services are managed services that you set up and run in their own production
environments. Currently, Aurora machine learning integrates with Amazon Comprehend for sentiment
analysis and SageMaker for a wide variety of ML algorithms.

1511

Amazon Aurora User Guide for Aurora
Prequisites

For general information about Amazon Comprehend, see Amazon Comprehend. For details about
using Aurora and Amazon Comprehend together, see Using Amazon Comprehend for natural language
processing (p. 1514).

For general information about SageMaker, see SageMaker. For details about using Aurora and SageMaker
together, see Using SageMaker to run your own ML models (p. 1516).

Note
Aurora machine learning for PostgreSQL connects an Aurora cluster to SageMaker or Amazon
Comprehend services only within the same AWS Region.

Topics

• Prerequisites for Aurora machine learning (p. 1512)

• Enabling Aurora machine learning (p. 1512)

• Using Amazon Comprehend for natural language processing (p. 1514)

• Exporting data to Amazon S3 for SageMaker model training (p. 1516)

• Using SageMaker to run your own ML models (p. 1516)

• Best practices with Aurora machine learning (p. 1519)

• Monitoring Aurora machine learning (p. 1523)

• PostgreSQL function reference for Aurora machine learning (p. 1524)

• Manually setting up IAM roles for SageMaker and Amazon Comprehend using the AWS CLI (p. 1526)

Prerequisites for Aurora machine learning
Aurora machine learning is available on any Aurora cluster that's running a supported Aurora PostgreSQL
10 or higher major version in an AWS Region that supports Aurora machine learning. You can upgrade
an Aurora cluster that's running a lower version of Aurora PostgreSQL to a supported higher version if
you want to use Aurora machine learning with that cluster. For more information, see Upgrading the
PostgreSQL DB engine for Aurora PostgreSQL (p. 1695).

For more information about Regions and Aurora version availability, see Aurora machine learning (p. 23).

Enabling Aurora machine learning
Enabling the ML capabilities involves the following steps.

Topics

• Setting up IAM access to AWS machine learning services (p. 1512)

• Installing the aws_ml extension for model inference (p. 1514)

Setting up IAM access to AWS machine learning services

Before you can access SageMaker and Amazon Comprehend services, you set up AWS Identity and Access
Management (IAM) roles. You then add the IAM roles to the Aurora PostgreSQL cluster. These roles
authorize the users of your Aurora PostgreSQL database to access AWS ML services.

You can do IAM setup automatically by using the AWS Management Console as shown here. To use
the AWS CLI to set up IAM access, see Manually setting up IAM roles for SageMaker and Amazon
Comprehend using the AWS CLI (p. 1526).

1512

http://aws.amazon.com/comprehend
http://aws.amazon.com/sagemaker

Amazon Aurora User Guide for Aurora
Enabling Aurora machine learning

Automatically connecting an Aurora DB cluster to AWS services using the
console

Aurora machine learning requires that your DB cluster use some combination of Amazon S3, SageMaker,
and Amazon Comprehend. Amazon Comprehend is for sentiment analysis. SageMaker is for a wide
variety of machine learning algorithms.

For Aurora machine learning, you use Amazon S3 only for training SageMaker models. You only need to
use Amazon S3 with Aurora machine learning if you don't already have a trained model available and the
training is your responsibility.

To connect a DB cluster to these services requires that you set up an AWS Identity and Access
Management (IAM) role for each Amazon service. The IAM role enables users of your DB cluster to
authenticate with the corresponding service.

To generate the IAM roles for SageMaker, Amazon Comprehend, or Amazon S3, repeat the following
steps for each service that you need.

To connect a DB cluster to an Amazon service

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the Aurora PostgreSQL DB cluster that
you want to use.

3. Choose the Connectivity & security tab.

4. Choose Select a service to connect to this cluster in the Manage IAM roles section.

5. Choose the service that you want to connect to from the list:

• Amazon S3

• Amazon Comprehend

• SageMaker

6. Choose Connect service.

7. Enter the required information for the specific service on the Connect cluster window:

• For SageMaker, enter the Amazon Resource Name (ARN) of a SageMaker endpoint.

From the navigation pane of the SageMaker console, choose Endpoints and copy the ARN of the
endpoint you want to use. For details about what the endpoint represents, see Deploy a Model in
Amazon SageMaker.

• For Amazon Comprehend, you don't specify any additional parameters.

• For Amazon S3, enter the ARN of an Amazon S3 bucket to use.

The format of an Amazon S3 bucket ARN is arn:aws:s3:::bucket_name. Ensure that the
Amazon S3 bucket you use is set up with the requirements for training SageMaker models. When
you train a model, your Aurora DB cluster requires permission to export data to the Amazon S3
bucket, and also to import data from the bucket.

For more about an Amazon S3 bucket ARN, see Specifying resources in a policy in the Amazon
Simple Storage Service User Guide. For more about using an Amazon S3 bucket with SageMaker,
see Step 1: Create an Amazon S3 bucket in the Amazon SageMaker Developer Guide.

8. Choose Connect service.

9. Aurora creates a new IAM role and adds it to the DB cluster's list of Current IAM roles for this
cluster. The IAM role's status is initially In progress. The IAM role name is autogenerated with the
following pattern for each connected service:

1513

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/sagemaker/home
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-deployment.html
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-deployment.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-arn-format.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-config-permissions.html

Amazon Aurora User Guide for Aurora
Using Amazon Comprehend for

natural language processing

• The Amazon S3 IAM role name pattern is rds-cluster_ID-S3-role-timestamp.

• The SageMaker IAM role name pattern is rds-cluster_ID-SageMaker-role-timestamp.

• The Amazon Comprehend IAM role name pattern is rds-cluster_ID-Comprehend-
role-timestamp.

Aurora also creates a new IAM policy and attaches it to the role. The policy name follows a similar
naming convention and also has a timestamp.

Installing the aws_ml extension for model inference

After you create the required IAM roles and associate them with the Aurora PostgreSQL DB
cluster, install the functions that use the SageMaker and Amazon Comprehend functionality.
The aws_ml Aurora PostgreSQL extension provides the aws_sagemaker.invoke_endpoint
function that communicates directly with SageMaker. The aws_ml extension also provides the
aws_comprehend.detect_sentiment function that communicates directly with Amazon
Comprehend.

To install these functions in a specific database, enter the following SQL command at a psql prompt.

psql>CREATE EXTENSION IF NOT EXISTS aws_ml CASCADE;

If you create the aws_ml extension in the template1 default database, then the functions are available
in each new database that you create.

To verify the installation, enter the following at a psql prompt.

psql>\dx

If you set up an IAM role for Amazon Comprehend, you can verify the setup as follows.

SELECT sentiment FROM aws_comprehend.detect_sentiment(null, 'I like it!', 'en');

When you install the aws_ml extension, the aws_ml administrative role is created and granted to the
rds_superuser role. Separate schemas are also created for the aws_sagemaker service and for the
aws_comprehend service. The rds_superuser role is made the OWNER of both of these schemas.

For users or roles to obtain access to the functions in the aws_ml extension, grant EXECUTE privilege on
those functions. You can subsequently REVOKE the privileges, if needed. EXECUTE privileges are revoked
from PUBLIC on the functions of these schemas by default. In a multi-tenant database configuration,
to prevent tenants from accessing the functions use REVOKE USAGE on one or more of the ML service
schemas.

For a reference to the installed functions of the aws_ml extension, see PostgreSQL function reference
for Aurora machine learning (p. 1524).

Using Amazon Comprehend for natural language
processing
Amazon Comprehend uses machine learning to find insights and relationships in text. Amazon
Comprehend uses natural language processing to extract insights about the content of documents. It

1514

Amazon Aurora User Guide for Aurora
Using Amazon Comprehend for

natural language processing

develops insights by recognizing the entities, key phrases, language, sentiments, and other common
elements in a document. You can use this Aurora machine learning service with very little machine
learning experience.

Aurora machine learning uses Amazon Comprehend for sentiment analysis of text that is stored in your
database. A sentiment is an opinion expressed in text. Sentiment analysis identifies and categorizes
sentiments to determine if the attitude towards something (such as a topic or product) is positive,
negative, or neutral.

Note
Amazon Comprehend is currently available only in some AWS Regions. To check in which AWS
Regions you can use Amazon Comprehend, see the AWS Region table page on the AWS site.

For example, using Amazon Comprehend you can analyze contact center call-in documents to detect
caller sentiment and better understand caller-agent dynamics. You can find a further description in the
post Analyzing contact center calls on the AWS Machine Learning blog.

You can also combine sentiment analysis with the analysis of other information in your database using
a single query. For example, you can detect the average sentiment of call-in center documents for issues
that combine the following:

• Open for more than 30 days.

• About a specific product or feature.

• Made by the customers who have the greatest social media influence.

Using Amazon Comprehend from Aurora machine learning is as easy as calling a SQL function. When
you installed the aws_ml extension (Installing the aws_ml extension for model inference (p. 1514)),
it provides the aws_comprehend.detect_sentiment (p. 1524) function to perform sentiment analysis
through Amazon Comprehend.

For each text fragment that you analyze, this function helps you determine the sentiment and the
confidence level. A typical Amazon Comprehend query looks for table rows where the sentiment has a
certain value (POSITIVE or NEGATIVE), with a confidence level greater than a certain percent.

For example, the following query shows how to determine the average sentiment of documents in a
database table, myTable.document. The query considers only documents where the confidence of the
assessment is at least 80 percent. In the following example, English (en) is the language of the sentiment
text.

SELECT AVG(CASE s.sentiment
 WHEN 'POSITIVE' then 1
 WHEN 'NEGATIVE' then -1
 ELSE 0 END) as avg_sentiment, COUNT(*) AS total
FROM myTable, aws_comprehend.detect_sentiment (myTable.document, 'en') s
WHERE s.confidence >= 0.80;

To avoid your being charged for sentiment analysis more than once per table row, you can materialize
the results of the analysis once per row. Do this on the rows of interest. In the following example, French
(fr) is the language of the sentiment text.

-- *Example:* Update the sentiment and confidence of French text.
--
UPDATE clinician_notes
SET sentiment = (aws_comprehend.detect_sentiment (french_notes, 'fr')).sentiment,
 confidence = (aws_comprehend.detect_sentiment (french_notes, 'fr')).confidence
WHERE
 clinician_notes.french_notes IS NOT NULL AND

1515

http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
http://aws.amazon.com/blogs/machine-learning/analyzing-contact-center-calls-part-1-use-amazon-transcribe-and-amazon-comprehend-to-analyze-customer-sentiment/

Amazon Aurora User Guide for Aurora
Exporting data to Amazon S3
for SageMaker model training

 LENGTH(TRIM(clinician_notes.french_notes)) > 0 AND
 clinician_notes.sentiment IS NULL;

For more information on optimizing your function calls, see Best practices with Aurora machine
learning (p. 1519).

For information about parameters and return types for the sentiment detection function, see
aws_comprehend.detect_sentiment (p. 1524).

Exporting data to Amazon S3 for SageMaker model
training
Depending on how your team divides the machine learning tasks, you might not perform model training.
If someone else provides the SageMaker model for you, you can skip this section.

To train SageMaker models, you export data to an Amazon S3 bucket. The Amazon S3 bucket is used by
SageMaker to train your model before it is deployed. You can query data from an Aurora PostgreSQL DB
cluster and save it directly into text files stored in an Amazon S3 bucket. Then SageMaker consumes the
data from the Amazon S3 bucket for training. For more about SageMaker model training, see Train a
model with Amazon SageMaker.

Note
When you create an S3 bucket for SageMaker model training or batch scoring, always include
the text sagemaker in the S3 bucket name. For more information about creating an S3 bucket
for SageMaker, see Step 1: Create an Amazon S3 bucket.

For more information about exporting your data, see Exporting data from an Aurora PostgreSQL DB
cluster to Amazon S3 (p. 1467).

Using SageMaker to run your own ML models
SageMaker is a fully managed machine learning service. With SageMaker, data scientists and developers
build and train machine learning models. Then they can directly deploy the models into a production-
ready hosted environment.

SageMaker provides access to your data sources so that you can perform exploration and analysis
without managing the hardware infrastructure for servers. SageMaker also provides common machine
learning algorithms that are optimized to run efficiently against extremely large datasets in a distributed
environment. With native support for bring-your-own-algorithms and frameworks, SageMaker offers
flexible distributed training options that adjust to your specific workflows.

Note
Currently, Aurora machine learning supports any SageMaker endpoint that can read and write
the comma-separated value (CSV) format, through a ContentType value of text/csv. The
built-in SageMaker algorithms that currently accept this format are Random Cut Forest, Linear
Learner, and XGBoost.

Be sure to deploy the model you are using in the same AWS Region as your Aurora PostgreSQL cluster.
Aurora machine learning always invokes SageMaker endpoints in the same AWS Region as your Aurora
cluster.

When you install the aws_ml extension (as described in Installing the aws_ml extension for model
inference (p. 1514)), it provides the aws_sagemaker.invoke_endpoint (p. 1525) function. You use this
function to invoke your SageMaker model and perform model inference directly from within your SQL
database application.

1516

https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-config-permissions.html

Amazon Aurora User Guide for Aurora
Using SageMaker to run your own ML models

Topics

• Creating a user-defined function to invoke a SageMaker model (p. 1517)

• Passing an array as input to a SageMaker model (p. 1518)

• Specifying batch size when invoking a SageMaker model (p. 1518)

• Invoking a SageMaker model that has multiple outputs (p. 1518)

Creating a user-defined function to invoke a SageMaker model

Create a separate user-defined function to call aws_sagemaker.invoke_endpoint for each of your
SageMaker models. Your user-defined function represents the SageMaker endpoint hosting the model.
The aws_sagemaker.invoke_endpoint function runs within the user-defined function. User-defined
functions provide many advantages:

• You can give your ML model its own name instead of only calling
aws_sagemaker.invoke_endpoint for all of your ML models.

• You can specify the model endpoint URL in just one place in your SQL application code.

• You can control EXECUTE privileges to each ML function independently.

• You can declare the model input and output types using SQL types. SQL enforces the number and type
of arguments passed to your ML model and performs type conversion if necessary. Using SQL types
will also translate SQL NULL to the appropriate default value expected by your ML model.

• You can reduce the maximum batch size if you want to return the first few rows a little faster.

To specify a user-defined function, use the SQL data definition language (DDL) statement CREATE
FUNCTION. When you define the function, you specify the following:

• The input parameters to the model.

• The specific SageMaker endpoint to invoke.

• The return type.

The user-defined function returns the inference computed by the SageMaker endpoint after running the
model on the input parameters. The following example creates a user-defined function for an SageMaker
model with two input parameters.

CREATE FUNCTION classify_event (IN arg1 INT, IN arg2 DATE, OUT category INT)
AS $$
 SELECT aws_sagemaker.invoke_endpoint (
 'sagemaker_model_endpoint_name', NULL,
 arg1, arg2 -- model inputs are separate arguments
)::INT -- cast the output to INT
$$ LANGUAGE SQL PARALLEL SAFE COST 5000;

Note the following:

• The aws_sagemaker.invoke_endpoint function input can be one or more parameters of any data
type.

For more details about parameters, see the aws_sagemaker.invoke_endpoint (p. 1525) function
reference.

• This example uses an INT output type. If you cast the output from a varchar type to a different type,
then it must be cast to a PostgreSQL builtin scalar type such as INTEGER, REAL, FLOAT, or NUMERIC.
For more information about these types, see Data types in the PostgreSQL documentation.

1517

https://www.postgresql.org/docs/current/datatype.html

Amazon Aurora User Guide for Aurora
Using SageMaker to run your own ML models

• Specify PARALLEL SAFE to enable parallel query processing. For more information, see Exploiting
parallel query processing (p. 1521).

• Specify COST 5000 to estimate the cost of running the function. Use a positive number giving the
estimated run cost for the function, in units of cpu_operator_cost.

Passing an array as input to a SageMaker model
The aws_sagemaker.invoke_endpoint (p. 1525) function can have up to 100 input parameters, which is
the limit for PostgreSQL functions. If the SageMaker model requires more than 100 parameters of the
same type, pass the model parameters as an array.

The following example creates a user-defined function that passes an array as input to the SageMaker
regression model.

CREATE FUNCTION regression_model (params REAL[], OUT estimate REAL)
AS $$
 SELECT aws_sagemaker.invoke_endpoint (
 'sagemaker_model_endpoint_name', NULL,
 params -- model input parameters as an array
)::REAL -- cast output to REAL
$$ LANGUAGE SQL PARALLEL SAFE COST 5000;

Specifying batch size when invoking a SageMaker model
The following example creates a user-defined function for a SageMaker model that sets the batch size
default to NULL. The function also allows you to provide a different batch size when you invoke it.

CREATE FUNCTION classify_event (
 IN event_type INT, IN event_day DATE, IN amount REAL, -- model inputs
 max_rows_per_batch INT DEFAULT NULL, -- optional batch size limit
 OUT category INT) -- model output
AS $$
 SELECT aws_sagemaker.invoke_endpoint (
 'sagemaker_model_endpoint_name', max_rows_per_batch,
 event_type, event_day, COALESCE(amount, 0.0)
)::INT -- casts output to type INT
$$ LANGUAGE SQL PARALLEL SAFE COST 5000;

Note the following:

• Use the optional max_rows_per_batch parameter to provide control of the number of rows for a
batch-mode function invocation. If you use a value of NULL, then the query optimizer automatically
chooses the maximum batch size. For more information, see Optimizing batch-mode execution for
Aurora machine learning function calls (p. 1519).

• By default, passing NULL as a parameter's value is translated to an empty string before passing to
SageMaker. For this example the inputs have different types.

• If you have a non-text input, or text input that needs to default to some value other than an empty
string, use the COALESCE statement. Use COALESCE to translate NULL to the desired null replacement
value in the call to aws_sagemaker.invoke_endpoint. For the amount parameter in this example,
a NULL value is converted to 0.0.

Invoking a SageMaker model that has multiple outputs
The following example creates a user-defined function for a SageMaker model that returns multiple
outputs. Your function needs to cast the output of the aws_sagemaker.invoke_endpoint function to

1518

Amazon Aurora User Guide for Aurora
Best practices with Aurora machine learning

a corresponding data type. For example, you could use the built-in PostgreSQL point type for (x,y) pairs
or a user-defined composite type.

This user-defined function returns values from a model that returns multiple outputs by using a
composite type for the outputs.

CREATE TYPE company_forecasts AS (
 six_month_estimated_return real,
 one_year_bankruptcy_probability float);
CREATE FUNCTION analyze_company (
 IN free_cash_flow NUMERIC(18, 6),
 IN debt NUMERIC(18,6),
 IN max_rows_per_batch INT DEFAULT NULL,
 OUT prediction company_forecasts)
AS $$
 SELECT (aws_sagemaker.invoke_endpoint(
 'endpt_name', max_rows_per_batch,
 free_cash_flow, debt))::company_forecasts;

$$ LANGUAGE SQL PARALLEL SAFE COST 5000;

For the composite type, use fields in the same order as they appear in the model output and cast the
output of aws_sagemaker.invoke_endpoint to your composite type. The caller can extract the
individual fields either by name or with PostgreSQL ".*" notation.

Best practices with Aurora machine learning
Most of the work in an aws_ml function call happens within the external Aurora machine learning
service. This separation allows you to scale the resources for the machine learning service independent
of your Aurora cluster. Within Aurora, you mostly focus on making the user-defined function calls
themselves as efficient as possible. Some aspects that you can influence from your Aurora cluster
include:

• The max_rows_per_batch setting for calls to the aws_ml functions.
• The number of virtual CPUs of the database instance, which determines the maximum degree of

parallelism that the database might use when running your ML functions.
• the PostgreSQL parameters that control parallel query processing.

Topics
• Optimizing batch-mode execution for Aurora machine learning function calls (p. 1519)
• Exploiting parallel query processing (p. 1521)
• Using materialized views and materialized columns (p. 1522)

Optimizing batch-mode execution for Aurora machine learning
function calls
Typically PostgreSQL runs functions one row at a time. Aurora machine learning can minimize this
overhead by combining the calls to the external Aurora machine learning service for many rows into
batches with an approach called batch-mode execution. In batch mode, Aurora machine learning receives
the responses for a batch of input rows, and then delivers the responses back to the running query one
row at a time. This optimization improves the throughput of your Aurora queries without limiting the
PostgreSQL query optimizer.

Aurora automatically uses batch mode if the function is referenced from the SELECT list, a WHERE clause,
or a HAVING clause. Note that top-level simple CASE expressions are eligible for batch-mode execution.

1519

Amazon Aurora User Guide for Aurora
Best practices with Aurora machine learning

Top-level searched CASE expressions are also eligible for batch-mode execution provided that the first
WHEN clause is a simple predicate with a batch-mode function call.

Your user-defined function must be a LANGUAGE SQL function and should specify PARALLEL SAFE and
COST 5000.

Topics
• Function migration from the SELECT statement to the FROM clause (p. 1520)
• Using the max_rows_per_batch parameter (p. 1520)
• Verifying batch-mode execution (p. 1521)

Function migration from the SELECT statement to the FROM clause

Usually, an aws_ml function that is eligible for batch-mode execution is automatically migrated by
Aurora to the FROM clause.

The migration of eligible batch-mode functions to the FROM clause can be examined manually on a per-
query level. To do this, you use EXPLAIN statements (and ANALYZE and VERBOSE) and find the "Batch
Processing" information below each batch-mode Function Scan. You can also use EXPLAIN (with
VERBOSE) without running the query. You then observe whether the calls to the function appear as a
Function Scan under a nested loop join that was not specified in the original statement.

In the following example, the presence of the nested loop join operator in the plan shows that Aurora
migrated the anomaly_score function. It migrated this function from the SELECT list to the FROM
clause, where it's eligible for batch-mode execution.

EXPLAIN (VERBOSE, COSTS false)
SELECT anomaly_score(ts.R.description) from ts.R;
 QUERY PLAN

 Nested Loop
 Output: anomaly_score((r.description)::text)
 -> Seq Scan on ts.r
 Output: r.id, r.description, r.score
 -> Function Scan on public.anomaly_score
 Output: anomaly_score.anomaly_score
 Function Call: anomaly_score((r.description)::text)

To disable batch-mode execution, set the apg_enable_function_migration parameter to false.
This prevents the migration of aws_ml functions from the SELECT to the FROM clause. The following
shows how.

SET apg_enable_function_migration = false;

The apg_enable_function_migration parameter is a Grand Unified Configuration (GUC)
parameter that is recognized by the Aurora PostgreSQL apg_plan_mgmt extension for query plan
management. To disable function migration in a session, use query plan management to save the
resulting plan as an approved plan. At runtime, query plan management enforces the approved
plan with its apg_enable_function_migration setting. This enforcement occurs regardless of the
apg_enable_function_migration GUC parameter setting. For more information, see Managing
query execution plans for Aurora PostgreSQL (p. 1477).

Using the max_rows_per_batch parameter

The max_rows_per_batch parameter of the aws_sagemaker.invoke_endpoint (p. 1525) and
aws_comprehend.detect_sentiment (p. 1524) functions influences how many rows are transferred to

1520

Amazon Aurora User Guide for Aurora
Best practices with Aurora machine learning

the Aurora machine learning service. The larger the dataset processed by the user-defined function, the
larger you can make the batch size.

Batch-mode functions improve efficiency by building batches of rows that spread the cost of the
Aurora machine learning function calls over a large number of rows. However, if a SELECT statement
finishes early due to a LIMIT clause, then the batch can be constructed over more rows than the
query uses. This approach can result in additional charges to your AWS account. To gain the benefits
of batch-mode execution but avoid building batches that are too large, use a smaller value for the
max_rows_per_batch parameter in your function calls.

If you do an EXPLAIN (VERBOSE, ANALYZE) of a query that uses batch-mode execution, you see a
FunctionScan operator that is below a nested loop join. The number of loops reported by EXPLAIN
tells you the number of times a row was fetched from the FunctionScan operator. If a statement
uses a LIMIT clause, the number of fetches is consistent. To optimize the size of the batch, set the
max_rows_per_batch parameter to this value. However, if the batch-mode function is referenced in a
predicate in the WHERE clause or HAVING clause, then you probably can't know the number of fetches in
advance. In this case, use the loops as a guideline and experiment with max_rows_per_batch to find a
setting that optimizes performance.

Verifying batch-mode execution

To see if a function ran in batch mode, use EXPLAIN ANALYZE. If batch-mode execution was used, then
the query plan will include the information in a "Batch Processing" section.

EXPLAIN ANALYZE SELECT user-defined-function();
 Batch Processing: num batches=1 avg/min/max batch size=3333.000/3333.000/3333.000
 avg/min/max batch call time=146.273/146.273/146.273

In this example, there was 1 batch that contained 3,333 rows, which took 146.273 ms to process. The
"Batch Processing" section shows the following:

• How many batches there were for this function scan operation

• The batch size average, minimum, and maximum

• The batch execution time average, minimum, and maximum

Typically the final batch is smaller than the rest, which often results in a minimum batch size that is
much smaller than the average.

To return the first few rows more quickly, set the max_rows_per_batch parameter to a smaller value.

To reduce the number of batch mode calls to the ML service when you use a LIMIT in your user-defined
function, set the max_rows_per_batch parameter to a smaller value.

Exploiting parallel query processing
To dramatically increase performance when processing a large number of rows, you can combine parallel
query processing with batch mode processing. You can use parallel query processing for SELECT,
CREATE TABLE AS SELECT, and CREATE MATERIALIZED VIEW statements.

Note
PostgreSQL doesn't yet support parallel query for data manipulation language (DML)
statements.

Parallel query processing occurs both within the database and within the ML service. The number
of cores in the instance class of the database limits the degree of parallelism that can be used when
running a query. The database server can construct a parallel query execution plan that partitions the

1521

Amazon Aurora User Guide for Aurora
Best practices with Aurora machine learning

task among a set of parallel workers. Then each of these workers can build batched requests containing
tens of thousands of rows (or as many as are allowed by each service).

The batched requests from all of the parallel workers are sent to the endpoint for the AWS service
(SageMaker, for example). Thus, the number and type of instances behind the AWS service endpoint also
limits the degree of parallelism that can be usefully exploited. Even a two-core instance class can benefit
significantly from parallel query processing. However, to fully exploit parallelism at higher K degrees, you
need a database instance class that has at least K cores. You also need to configure the AWS service so
that it can process K batched requests in parallel. For SageMaker, you need to configure the SageMaker
endpoint for your ML model to have K initial instances of a sufficiently high-performing instance class.

To exploit parallel query processing, you can set the parallel_workers storage parameter of the table
that contains the data that you plan to pass. You set parallel_workers to a batch-mode function
such as aws_comprehend.detect_sentiment. If the optimizer chooses a parallel query plan, the AWS
ML services can be called both in batch and in parallel. You can use the following parameters with the
aws_comprehend.detect_sentiment function to get a plan with four-way parallelism.

-- If you change either of the following two parameters, you must restart
-- the database instance for the changes to take effect.
--
-- SET max_worker_processes to 8; -- default value is 8
-- SET max_parallel_workers to 8; -- not greater than max_worker_processes

--
SET max_parallel_workers_per_gather to 4; -- not greater than max_parallel_workers

-- You can set the parallel_workers storage parameter on the table that the data
-- for the ML function is coming from in order to manually override the degree of
-- parallelism that would otherwise be chosen by the query optimizer
--
ALTER TABLE yourTable SET (parallel_workers = 4);

-- Example query to exploit both batch-mode execution and parallel query
--
EXPLAIN (verbose, analyze, buffers, hashes)
SELECT aws_comprehend.detect_sentiment(description, 'en')).*
FROM yourTable
WHERE id < 100;

For more about controlling parallel query, see Parallel plans in the PostgreSQL documentation.

Using materialized views and materialized columns
When you invoke an AWS service such as SageMaker or Amazon Comprehend from your database,
your account is charged according to the pricing policy of that service. To minimize charges to your
account, you can materialize the result of calling the AWS service into a materialized column so that
the AWS service is not called more than once per input row. If desired, you can add a materializedAt
timestamp column to record the time at which the columns were materialized.

The latency of an ordinary single-row INSERT statement is typically much less than the latency
of calling a batch-mode function. Thus, you might not be able to meet the latency requirements
of your application if you invoke the batch-mode function for every single-row INSERT that your
application performs. To materialize the result of calling an AWS service into a materialized column,
high-performance applications generally need to populate the materialized columns. To do this, they
periodically issue an UPDATE statement that operates on a large batch of rows at the same time.

UPDATE takes a row-level lock that can impact a running application. So you might need to use
SELECT ... FOR UPDATE SKIP LOCKED, or use MATERIALIZED VIEW.

Analytics queries that operate on a large number of rows in real time can combine batch-mode
materialization with real-time processing. To do this, these queries assemble a UNION ALL of the pre-

1522

https://www.postgresql.org/docs/current/parallel-plans.html

Amazon Aurora User Guide for Aurora
Monitoring Aurora machine learning

materialized results with a query over the rows that don't yet have materialized results. In some cases,
such a UNION ALL is needed in multiple places, or the query is generated by a third-party application.
If so, you can create a VIEW to encapsulate the UNION ALL operation so this detail isn't exposed to the
rest of the SQL application.

You can use a materialized view to materialize the results of an arbitrary SELECT statement at a
snapshot in time. You can also use it to refresh the materialized view at any time in the future. Currently
PostgreSQL doesn't support incremental refresh, so each time the materialized view is refreshed the
materialized view is fully recomputed.

You can refresh materialized views with the CONCURRENTLY option, which updates the contents of the
materialized view without taking an exclusive lock. Doing this allows a SQL application to read from the
materialized view while it's being refreshed.

Monitoring Aurora machine learning
To monitor the functions in the aws_ml package, set the track_functions parameter and then query
the PostgreSQL pg_stat_user_functions view.

For information about monitoring the performance of the SageMaker operations called from Aurora
machine learning functions, see Monitor Amazon SageMaker.

To set track_functions at the session level, run the following.

SET track_functions = 'all';

Use one of the following values:

• all – Track C language functions and SQL language functions that aren't placed inline. To track the
aws_ml functions, use all because these functions are implemented in C.

• pl – Track only procedural-language functions.

• none – Disable function statistics tracking.

After enabling track_functions and running your user-defined ML function, query
the pg_stat_user_functions view to get information. The view includes the number
of calls, total_time and self_time for each function. To view the statistics for the
aws_sagemaker.invoke_endpoint and aws_comprehend.detect_sentiment functions, filter the
results by schema names starting with aws_.

run your statement
SELECT * FROM pg_stat_user_functions WHERE schemaname LIKE 'aws_%';
SELECT pg_stat_reset(); -- To clear statistics

To find the names of your SQL functions that call the aws_sagemaker.invoke_endpoint function,
query the source code of the functions in the PostgreSQL pg_proc catalog table.

SELECT proname FROM pg_proc WHERE prosrc LIKE '%invoke_endpoint%';

Using query plan management to monitor ML functions
If you captured plans using the apg_plan_mgmt extension of query plan management, you can then
search through all the statements in your workload that refer to these function names. In your search,
you can check plan_outline to see if batch-mode execution was used. You can also list statement

1523

https://www.postgresql.org/docs/current/monitoring-stats.html#PG-STAT-USER-FUNCTIONS-VIEW
https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-overview.html
https://www.postgresql.org/docs/current/catalog-pg-proc.html

Amazon Aurora User Guide for Aurora
Function reference

statistics such as execution time and plan cost. Plans that use batch-mode function scans contain a
FuncScan operator in the plan outline. Functions that aren't run as a join don't contain a FuncScan
operator.

For more about query plan management, see Managing query execution plans for Aurora
PostgreSQL (p. 1477).

To find calls to the aws_sagemaker.invoke_endpoint function that don't use batch mode, use the
following statement.

\dx apg_plan_mgmt

SELECT sql_hash, plan_hash, status, environment_variables,
 sql_text::varchar(50), plan_outline
FROM pg_proc, apg_plan_mgmt.dba_plans
WHERE
 prosrc LIKE '%invoke_endpoint%' AND
 sql_text LIKE '%' || proname || '%' AND
 plan_outline NOT LIKE '%"FuncScan"%';

The example preceding searches all statements in your workload that call SQL functions that in turn call
the aws_sagemaker.invoke_endpoint function.

To obtain detailed runtime statistics for each of these statements, call the
apg_plan_mgmt.get_explain_stmt function.

SELECT apg_plan_mgmt.get_explain_stmt(sql_hash, plan_hash, 'analyze,verbose,buffers')
FROM pg_proc, apg_plan_mgmt.dba_plans
WHERE
 prosrc LIKE '%invoke_endpoint%' AND
 sql_text LIKE '%' || proname || '%' AND
 plan_outline NOT LIKE '%"FuncScan"%';

PostgreSQL function reference for Aurora machine
learning
Functions

• aws_comprehend.detect_sentiment (p. 1524)

• aws_sagemaker.invoke_endpoint (p. 1525)

aws_comprehend.detect_sentiment
Performs sentiment analysis using Amazon Comprehend. For more about usage, see Using Amazon
Comprehend for natural language processing (p. 1514).

Syntax

aws_comprehend.detect_sentiment (
 IN input_text varchar,
 IN language_code varchar,
 IN max_rows_per_batch int,
 OUT sentiment varchar,
 OUT confidence real)
)

1524

Amazon Aurora User Guide for Aurora
Function reference

Input Parameters

input_text

The text to detect sentiment on.
language_code

The language of the input_text. For valid values, see Languages supported in Amazon
Comprehend.

max_rows_per_batch

The maximum number of rows per batch for batch-mode processing. For more information, see
Optimizing batch-mode execution for Aurora machine learning function calls (p. 1519).

Output Parameters

sentiment

The sentiment of the text. Valid values are POSITIVE, NEGATIVE, NEUTRAL, or MIXED.
confidence

The degree of confidence in the sentiment value. Values range between 1.0 for 100% to 0.0 for
0%.

aws_sagemaker.invoke_endpoint
After you train a model and deploy it into production using SageMaker services, your client applications
use the aws_sagemaker.invoke_endpoint function to get inferences from the model. The model
must be hosted at the specified endpoint and must be in the same AWS Region as the database instance.
For more about usage, see Using SageMaker to run your own ML models (p. 1516).

Syntax

aws_sagemaker.invoke_endpoint(
 IN endpoint_name varchar,
 IN max_rows_per_batch int,
 VARIADIC model_input "any",
 OUT model_output varchar
)

Input Parameters

endpoint_name

An endpoint URL that is AWS Region–independent.
max_rows_per_batch

The maximum number of rows per batch for batch-mode processing. For more information, see
Optimizing batch-mode execution for Aurora machine learning function calls (p. 1519).

model_input

One or more input parameters for the ML model. These can be any data type.

PostgreSQL allows you to specify up to 100 input parameters for a function. Array data types must
be one-dimensional, but can contain as many elements as are expected by the SageMaker model.

1525

https://docs.aws.amazon.com/comprehend/latest/dg/supported-languages.html#supported-languages-1
https://docs.aws.amazon.com/comprehend/latest/dg/supported-languages.html#supported-languages-1

Amazon Aurora User Guide for Aurora
Manually setting up IAM roles using the AWS CLI

The number of inputs to a SageMaker model is bounded only by the SageMaker 5 MB message size
limit.

Output Parameters

model_output

The SageMaker model's output parameter, as text.

Usage Notes

The aws_sagemaker.invoke_endpoint function connects only to a model endpoint in the same AWS
Region. If your database instance has replicas in multiple AWS Regions, always deploy each Amazon
SageMaker model to all of those AWS Regions.

Calls to aws_sagemaker.invoke_endpoint are authenticated using the SageMaker IAM role for the
database instance.

SageMaker model endpoints are scoped to an individual account and are not public. The
endpoint_name URL doesn't contain the account ID. SageMaker determines the account ID from the
authentication token that is supplied by the SageMaker IAM role of the database instance.

Manually setting up IAM roles for SageMaker and
Amazon Comprehend using the AWS CLI

Note
If you use the AWS Management Console, AWS does the IAM setup for you automatically. In
this case, you can skip the following information and follow the procedure in Automatically
connecting an Aurora DB cluster to AWS services using the console (p. 1513).

Setting up the IAM roles for SageMaker or Amazon Comprehend using the AWS CLI or the RDS API
consists of the following steps:

1. Create an IAM policy to specify which SageMaker endpoints can be invoked by your Aurora
PostgreSQL cluster or to enable access to Amazon Comprehend.

2. Create an IAM role to permit your Aurora PostgreSQL database cluster to access AWS ML services. Also
attach the IAM policy created preceding to the IAM role created here.

3. Associate the IAM role that you created preceding to the Aurora PostgreSQL database cluster to
permit access to AWS ML services.

Topics
• Creating an IAM policy to access SageMaker using the AWS CLI (p. 1526)

• Creating an IAM policy to access Amazon Comprehend using the AWS CLI (p. 1527)

• Creating an IAM role to access SageMaker and Amazon Comprehend (p. 1528)

• Associating an IAM role with an Aurora PostgreSQL DB cluster using the AWS CLI (p. 1528)

Creating an IAM policy to access SageMaker using the AWS CLI
Note
Aurora can create the IAM policy for you automatically. You can skip the following information
and use the procedure in Automatically connecting an Aurora DB cluster to AWS services using
the console (p. 1513).

1526

Amazon Aurora User Guide for Aurora
Manually setting up IAM roles using the AWS CLI

The following policy adds the permissions required by Aurora PostgreSQL to invoke a SageMaker
function on your behalf. You can specify all of your SageMaker endpoints that you need your database
applications to access from your Aurora PostgreSQL cluster in a single policy.

Note
This policy enables you to specify the AWS Region for a SageMaker endpoint. However, an
Aurora PostgreSQL cluster can only invoke SageMaker models deployed in the same AWS
Region as the cluster.

{ "Version": "2012-10-17", "Statement": [{ "Sid":
"AllowAuroraToInvokeRCFEndPoint", "Effect": "Allow",
"Action": "sagemaker:InvokeEndpoint", "Resource":
"arn:aws:sagemaker:region:123456789012:endpoint/endpointName" }] }

The following AWS CLI command creates an IAM policy with these options.

aws iam create-policy --policy-name policy_name --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAuroraToInvokeRCFEndPoint",
 "Effect": "Allow",
 "Action": "sagemaker:InvokeEndpoint",
 "Resource": "arn:aws:sagemaker:region:123456789012:endpoint/endpointName"
 }
]
}'

For the next step, see Creating an IAM role to access SageMaker and Amazon Comprehend (p. 1528).

Creating an IAM policy to access Amazon Comprehend using the
AWS CLI

Note
Aurora can create the IAM policy for you automatically. You can skip the following information
and use the procedure in Automatically connecting an Aurora DB cluster to AWS services using
the console (p. 1513).

The following policy adds the permissions required by Aurora PostgreSQL to invoke Amazon
Comprehend on your behalf.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAuroraToInvokeComprehendDetectSentiment",
 "Effect": "Allow",
 "Action": [
 "comprehend:DetectSentiment",
 "comprehend:BatchDetectSentiment"
],
 "Resource": "*"
 }
]
}

To create an IAM policy to grant access to Amazon Comprehend

1. Open the IAM management console.

1527

https://console.aws.amazon.com/iam/home?#home

Amazon Aurora User Guide for Aurora
Manually setting up IAM roles using the AWS CLI

2. In the navigation pane, choose Policies.
3. Choose Create policy.
4. On the Visual editor tab, choose Choose a service, and then choose Comprehend.
5. For Actions, choose Detect Sentiment and BatchDetectSentiment.
6. Choose Review policy.
7. For Name, enter a name for your IAM policy. You use this name when you create an IAM role to

associate with your Aurora DB cluster. You can also add an optional Description value.
8. Choose Create policy.

For the net step, see Creating an IAM role to access SageMaker and Amazon Comprehend (p. 1528).

Creating an IAM role to access SageMaker and Amazon
Comprehend

Note
Aurora can create the IAM role for you automatically. You can skip the following information
and use the procedure in Automatically connecting an Aurora DB cluster to AWS services using
the console (p. 1513).

After you create the IAM policies, create an IAM role that the Aurora PostgreSQL DB cluster can assume
for your database users to access ML services. To create an IAM role, follow the steps described in
Creating a role to delegate permissions to an IAM user.

Attach the preceding policies to the IAM role you create. For more information, see Attaching an IAM
policy to an IAM user or role (p. 1761).

For more information about IAM roles, see IAM roles in the IAM User Guide.

For the next step, see Associating an IAM role with an Aurora PostgreSQL DB cluster using the AWS
CLI (p. 1528).

Associating an IAM role with an Aurora PostgreSQL DB cluster
using the AWS CLI

Note
Aurora can associate an IAM role with your DB cluster for you automatically. You can skip the
following information and use the procedure in Automatically connecting an Aurora DB cluster
to AWS services using the console (p. 1513).

The last process in setting up IAM access is to associate the IAM role and its IAM policy with your Aurora
PostgreSQL DB cluster. Do the following:

1. Add the role to the list of associated roles for a DB cluster.

To associate the role with your DB cluster, use the AWS Management Console or the add-role-to-db-
cluster AWS CLI command.
• To add an IAM role for a PostgreSQL DB cluster using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. Choose the PostgreSQL DB cluster name to display its details.
3. On the Connectivity & security tab, in the Manage IAM roles section, choose the role to add

under Add IAM roles to this cluster .
4. Under Feature, choose SageMaker or Comprehend.

1528

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/cli/latest/reference/rds/add-role-to-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/add-role-to-db-cluster.html
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Manually setting up IAM roles using the AWS CLI

5. Choose Add role.

• To add an IAM role for a PostgreSQL DB cluster using the CLI

Use the following command to add the role to the PostgreSQL DB cluster named my-db-cluster.
Replace your-role-arn with the role ARN that you noted in a previous step. For the value of the
--feature-name option, use SageMaker, Comprehend, or s3Export depending on which service
you want to use.

Example

For Linux, macOS, or Unix:

aws rds add-role-to-db-cluster \
 --db-cluster-identifier my-db-cluster \
 --feature-name external-service \
 --role-arn your-role-arn \
 --region your-region

For Windows:

aws rds add-role-to-db-cluster ^
 --db-cluster-identifier my-db-cluster ^
 --feature-name external-service ^
 --role-arn your-role-arn ^
 --region your-region

2. Set the cluster-level parameter for each AWS ML service to the ARN for the associated IAM role.

Use the electroencephalographic, miscomprehended, or both parameters depending on which
AWS ML services you intend to use with your Aurora cluster.

Cluster-level parameters are grouped into DB cluster parameter groups. To set the preceding cluster
parameters, use an existing custom DB cluster group or create a new one. To create a new DB cluster
parameter group, call the create-db-cluster-parameter-group command from the AWS CLI, for
example:

aws rds create-db-cluster-parameter-group --db-cluster-parameter-group-
name AllowAWSAccessToExternalServices \
 --db-parameter-group-family aurora-postgresql-group --description "Allow access to
 Amazon S3, Amazon SageMaker, and Amazon Comprehend"

Set the appropriate cluster-level parameter or parameters and the related IAM role ARN values in your
DB cluster parameter group. Do the following.

aws rds modify-db-cluster-parameter-group \
 --db-cluster-parameter-group-name AllowAWSAccessToExternalServices \
 --parameters
 "ParameterName=aws_default_s3_role,ParameterValue=arn:aws:iam::123456789012:role/
AllowAuroraS3Role,ApplyMethod=pending-reboot" \
 --parameters
 "ParameterName=aws_default_sagemaker_role,ParameterValue=arn:aws:iam::123456789012:role/
AllowAuroraSageMakerRole,ApplyMethod=pending-reboot" \
 --parameters
 "ParameterName=aws_default_comprehend_role,ParameterValue=arn:aws:iam::123456789012:role/
AllowAuroraComprehendRole,ApplyMethod=pending-reboot"

Modify the DB cluster to use the new DB cluster parameter group. Then, reboot the cluster. The
following shows how.

1529

Amazon Aurora User Guide for Aurora
Fast recovery after failover

aws rds modify-db-cluster --db-cluster-identifier your_cluster_id --db-cluster-parameter-
group-nameAllowAWSAccessToExternalServices
aws rds failover-db-cluster --db-cluster-identifier your_cluster_id

When the instance has rebooted, your IAM roles are associated with your DB cluster.

Fast recovery after failover with cluster cache
management for Aurora PostgreSQL

For fast recovery of the writer DB instance in your Aurora PostgreSQL clusters if there's a failover, use
cluster cache management for Amazon Aurora PostgreSQL. Cluster cache management ensures that
application performance is maintained if there's a failover.

In a typical failover situation, you might see a temporary but large performance degradation after
failover. This degradation occurs because when the failover DB instance starts, the buffer cache is empty.
An empty cache is also known as a cold cache. A cold cache degrades performance because the DB
instance has to read from the slower disk, instead of taking advantage of values stored in the buffer
cache.

With cluster cache management, you set a specific reader DB instance as the failover target. Cluster
cache management ensures that the data in the designated reader's cache is kept synchronized with
the data in the writer DB instance's cache. The designated reader's cache with prefilled values is known
as a warm cache. If a failover occurs, the designated reader uses values in its warm cache immediately
when it's promoted to the new writer DB instance. This approach provides your application much better
recovery performance.

Cluster cache management requires that the designated reader instance have the same instance class
type and size (db.r5.2xlarge or db.r5.xlarge, for example) as the writer. Keep this in mind when
you create your Aurora PostgreSQL DB clusters so that your cluster can recover during a failover. For a
listing of instance class types and sizes, see Hardware specifications for DB instance classes for Aurora.

Note
Cluster cache management is not supported for Aurora PostgreSQL DB clusters that are part of
Aurora global databases.

Contents

• Configuring cluster cache management (p. 1530)

• Enabling cluster cache management (p. 1531)

• Setting the promotion tier priority for the writer DB instance (p. 1531)

• Setting the promotion tier priority for a reader DB instance (p. 1532)

• Monitoring the buffer cache (p. 1533)

Configuring cluster cache management
To configure cluster cache management, do the following processes in order.

Topics

• Enabling cluster cache management (p. 1531)

• Setting the promotion tier priority for the writer DB instance (p. 1531)

1530

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Summary

Amazon Aurora User Guide for Aurora
Configuring cluster cache management

• Setting the promotion tier priority for a reader DB instance (p. 1532)

Note
Allow at least 1 minute after completing these steps for cluster cache management to be fully
operational.

Enabling cluster cache management
To enable cluster cache management, take the steps described following.

Console

To enable cluster cache management

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Parameter groups.

3. In the list, choose the parameter group for your Aurora PostgreSQL DB cluster.

The DB cluster must use a parameter group other than the default, because you can't change values
in a default parameter group.

4. For Parameter group actions, choose Edit.

5. Set the value of the apg_ccm_enabled cluster parameter to 1.

6. Choose Save changes.

AWS CLI

To enable cluster cache management for an Aurora PostgreSQL DB cluster, use the AWS CLI modify-db-
cluster-parameter-group command with the following required parameters:

• --db-cluster-parameter-group-name

• --parameters

Example

For Linux, macOS, or Unix:

aws rds modify-db-cluster-parameter-group \
 --db-cluster-parameter-group-name my-db-cluster-parameter-group \
 --parameters "ParameterName=apg_ccm_enabled,ParameterValue=1,ApplyMethod=immediate"

For Windows:

aws rds modify-db-cluster-parameter-group ^
 --db-cluster-parameter-group-name my-db-cluster-parameter-group ^
 --parameters "ParameterName=apg_ccm_enabled,ParameterValue=1,ApplyMethod=immediate"

Setting the promotion tier priority for the writer DB instance
For cluster cache management, make sure that the promotion priority is tier-0 for the writer DB instance
of the Aurora PostgreSQL DB cluster. The promotion tier priority is a value that specifies the order in
which an Aurora reader is promoted to the writer DB instance after a failure. Valid values are 0–15, where

1531

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html

Amazon Aurora User Guide for Aurora
Configuring cluster cache management

0 is the first priority and 15 is the last priority. For more information about the promotion tier, see Fault
tolerance for an Aurora DB cluster (p. 69).

Console

To set the promotion priority for the writer DB instance to tier-0

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.
3. Choose the Writer DB instance of the Aurora PostgreSQL DB cluster.
4. Choose Modify. The Modify DB Instance page appears.
5. On the Additional configuration panel, choose tier-0 for the Failover priority.
6. Choose Continue and check the summary of modifications.
7. To apply the changes immediately after you save them, choose Apply immediately.
8. Choose Modify DB Instance to save your changes.

AWS CLI

To set the promotion tier priority to 0 for the writer DB instance using the AWS CLI, call the modify-db-
instance command with the following required parameters:

• --db-instance-identifier

• --promotion-tier

• --apply-immediately

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier writer-db-instance \
 --promotion-tier 0 \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier writer-db-instance ^
 ---promotion-tier 0 ^
 --apply-immediately

Setting the promotion tier priority for a reader DB instance
You set one reader DB instance for cluster cache management. To do so, choose a reader from the Aurora
PostgreSQL cluster that is the same instance class and size as the writer DB instance. For example, if the
writer uses db.r5.xlarge, choose a reader that uses this same instance class type and size. Then set its
promotion tier priority to 0.

The promotion tier priority is a value that specifies the order in which an Aurora reader is promoted to
the writer DB instance after a failure. Valid values are 0–15, where 0 is the first priority and 15 is the last
priority.

1532

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Aurora User Guide for Aurora
Monitoring the buffer cache

Console

To set the promotion priority of the reader DB instance to tier-0

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose a Reader DB instance of the Aurora PostgreSQL DB cluster that is the same instance class as
the writer DB instance.

4. Choose Modify. The Modify DB Instance page appears.

5. On the Additional configuration panel, choose tier-0 for the Failover priority.

6. Choose Continue and check the summary of modifications.

7. To apply the changes immediately after you save them, choose Apply immediately.

8. Choose Modify DB Instance to save your changes.

AWS CLI

To set the promotion tier priority to 0 for the reader DB instance using the AWS CLI, call the modify-db-
instance command with the following required parameters:

• --db-instance-identifier

• --promotion-tier

• --apply-immediately

Example

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier reader-db-instance \
 --promotion-tier 0 \
 --apply-immediately

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier reader-db-instance ^
 ---promotion-tier 0 ^
 --apply-immediately

Monitoring the buffer cache
After setting up cluster cache management, you can monitor the state of synchronization between
the writer DB instance's buffer cache and the designated reader's warm buffer cache. To examine the
buffer cache contents on both the writer DB instance and the designated reader DB instance, use the
PostgreSQL pg_buffercache module. For more information, see the PostgreSQL pg_buffercache
documentation.

Using the aurora_ccm_status Function

1533

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://www.postgresql.org/docs/current/pgbuffercache.html
https://www.postgresql.org/docs/current/pgbuffercache.html

Amazon Aurora User Guide for Aurora
Invoking a Lambda function from Aurora PostgreSQL

Cluster cache management also provides the aurora_ccm_status function. Use the
aurora_ccm_status function on the writer DB instance to get the following information about the
progress of cache warming on the designated reader:

• buffers_sent_last_minute – How many buffers have been sent to the designated reader in the
last minute.

• buffers_sent_last_scan – How many buffers have been sent to the designated reader during the
last complete scan of the buffer cache.

• buffers_found_last_scan – How many buffers have been identified as frequently accessed and
needed to be sent during the last complete scan of the buffer cache. Buffers already cached on the
designated reader aren't sent.

• buffers_sent_current_scan – How many buffers have been sent so far during the current scan.
• buffers_found_current_scan – How many buffers have been identified as frequently accessed in

the current scan.
• current_scan_progress – How many buffers have been visited so far during the current scan.

The following example shows how to use the aurora_ccm_status function to convert some of its
output into a warm rate and warm percentage.

SELECT buffers_sent_last_minute*8/60 AS warm_rate_kbps,
 100*(1.0-buffers_sent_last_scan/buffers_found_last_scan) AS warm_percent
 FROM aurora_ccm_status();

Invoking an AWS Lambda function from an Aurora
PostgreSQL DB cluster

AWS Lambda is an event-driven compute service that lets you run code without provisioning or
managing servers. It's available for use with many AWS services, including Aurora PostgreSQL. For
example, you can use Lambda functions to process event notifications from a database, or to load data
from files whenever a new file is uploaded to Amazon S3. To learn more about Lambda, see What is AWS
Lambda? in the AWS Lambda Developer Guide.

Note
Invoking AWS Lambda functions is supported in Aurora PostgreSQL 11.9 and higher.

Setting up Aurora PostgreSQL to work with Lambda functions is a multi-step process involving AWS
Lambda, IAM, your VPC, and your Aurora PostgreSQL DB cluster. Following, you can find summaries of
the necessary steps.

For more information about Lambda functions, see Getting started with Lambda and AWS Lambda
foundations in the AWS Lambda Developer Guide.

Topics
• Step 1: Configure your Aurora PostgreSQL DB cluster for outbound connections to AWS

Lambda (p. 1535)
• Step 2: Configure IAM for your Aurora PostgreSQL DB cluster and AWS Lambda (p. 1535)
• Step 3: Install the aws_lambda extension for an Aurora PostgreSQL DB cluster (p. 1536)
• Step 4: Use Lambda helper functions with your Aurora PostgreSQL DB cluster (Optional) (p. 1537)
• Step 5: Invoke a Lambda function from your Aurora PostgreSQL DB cluster (p. 1538)
• Lambda function error messages (p. 1541)
• Function reference (p. 1541)

1534

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-foundation.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-foundation.html

Amazon Aurora User Guide for Aurora
Step 1: Configure outbound connections

Step 1: Configure your Aurora PostgreSQL DB cluster
for outbound connections to AWS Lambda
Lambda functions always run inside an Amazon VPC owned by the AWS Lambda service. Lambda applies
network access and security rules to this VPC and it maintains and monitors the VPC automatically.
Your Aurora PostgreSQL DB cluster needs to send network traffic to the Lambda service's VPC. How you
configure this depends on whether your Aurora DB cluster's primary DB instance is public or private.

• If your Aurora PostgreSQL DB cluster is public, you need only configure your security group to allow
outbound traffic from your VPC. Your DB cluster's primary DB instance is public if it's located in a
public subnet on your VPC, and if the instance's "PubliclyAccessible" property is true.

To find the value of this property, you can use the describe-db-instances AWS CLI command. Or,
you can use the AWS Management Console to open the Connectivity & security tab and check that
Publicly accessible is Yes. You can also use the AWS Management Console and the AWS CLI to check
that the instance is in a public subnet in your VPC.

• If your Aurora PostgreSQL DB cluster is private, you have a couple of choices. You can use a Network
Address Translation) NAT gateway or you can use a VPC endpoint. For information about NAT
gateways, see NAT gateways. The summary of steps for using a VPC endpoint follow.

To configure connectivity to AWS Lambda for a public DB instance

• Configure the VPC in which your Aurora PostgreSQL DB cluster is running to allow outbound
connections. You do so by creating an outbound rule on your VPC's security group that allows TCP
traffic to port 443 and to any IPv4 addresses (0.0.0.0/0).

To configure connectivity to AWS Lambda for a private DB instance

1. Configure your VPC with a VPC endpoint for AWS Lambda. For details, see VPC endpoints in the
Amazon VPC User Guide. The endpoint returns responses to calls made by your Aurora PostgreSQL
DB cluster to your Lambda functions.

2. Add the endpoint to your VPC's route table. For more information, see Work with route tables in the
the Amazon VPC User Guide.

Your VPC can now interact with the AWS Lambda VPC at the network level. However, you still need to
configure the permissions using IAM.

Step 2: Configure IAM for your Aurora PostgreSQL DB
cluster and AWS Lambda
Invoking Lambda functions from your Aurora PostgreSQL DB cluster requires certain privileges. To
configure the necessary privileges, we recommend that you create an IAM policy that allows invoking
Lambda functions, assign that policy to a role, and then apply the role to your DB cluster. This approach
gives the DB cluster privileges to invoke the specified Lambda function on your behalf. The following
steps show you how to do this using the AWS CLI.

To configure IAM permissions for using your cluster with Lambda

1. Use the create-policy AWS CLI command to create an IAM policy that allows your Aurora PostgreSQL
DB cluster to invoke the specified Lambda function. (The statement ID (Sid) is an optional
description for your policy statement and has no effect on usage.) This policy gives your Aurora DB
cluster the minimum permissions needed to invoke the specified Lambda function.

1535

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/userguide/WorkWithRouteTables.html#AddRemoveRoutes
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/create-policy.html

Amazon Aurora User Guide for Aurora
Step 3: Install the extension

aws iam create-policy --policy-name rds-lambda-policy --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAccessToExampleFunction",
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:aws-region:444455556666:function:my-function"
 }
]
}'

Alternatively, you can use the predefined AWSLambdaRole policy that allows you to invoke any of
your Lambda functions. For more information, see Identity-based IAM policies for Lambda

2. Use the create-role AWS CLI command to create an IAM role that the policy can assume at runtime.

aws iam create-role --role-name rds-lambda-role --assume-role-policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}'

3. Apply the policy to the role by using the attach-role-policy AWS CLI command.

aws iam attach-role-policy \
 --policy-arn arn:aws:iam::444455556666:policy/rds-lambda-policy \
 --role-name rds-lambda-role --region aws-region

4. Apply the role to your Aurora PostgreSQL DB cluster by using the add-role-to-db-cluster AWS CLI
command. This last step allows your DB cluster's database users to invoke Lambda functions.

aws rds add-role-to-db-cluster \
 --db-cluster-identifier my-cluster-name \
 --feature-name Lambda \
 --role-arn arn:aws:iam::444455556666:role/rds-lambda-role \
 --region aws-region

With the VPC and the IAM configurations complete, you can now install the aws_lambda extension.
(Note that you can install the extension at any time, but until you set up the correct VPC support
and IAM privileges, the aws_lambda extension adds nothing to your Aurora PostgreSQL DB cluster's
capabilities.)

Step 3: Install the aws_lambda extension for an
Aurora PostgreSQL DB cluster
To use AWS Lambda with your Aurora PostgreSQL DB cluster, the aws_lambda PostgreSQL extension to
your Aurora PostgreSQL. This extension provides your Aurora PostgreSQL DB cluster with the ability to
call Lambda functions from PostgreSQL.

1536

https://docs.aws.amazon.com/lambda/latest/dg/access-control-identity-based.html#access-policy-examples-aws-managed
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/create-role.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/attach-role-policy.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rds/add-role-to-db-cluster.html

Amazon Aurora User Guide for Aurora
Step 4: Use Lambda helper functions

To install the aws_lambda extension in your Aurora PostgreSQL DB cluster

Use the PostgreSQL psql command-line or the pgAdmin tool to connect to your Aurora PostgreSQL DB
cluster .

1. Connect to your Aurora PostgreSQL DB cluster instance as a user with rds_superuser privileges.
The default postgres user is shown in the example.

psql -h cluster-instance.444455556666.aws-region.rds.amazonaws.com -U postgres -p 5432

2. Install the aws_lambda extension. The aws_commons extension is also required. It provides helper
functions to aws_lambda and many other Aurora extensions for PostgreSQL. If it's not already on
your Aurora PostgreSQLDB cluster , it's installed with aws_lambda as shown following.

CREATE EXTENSION IF NOT EXISTS aws_lambda CASCADE;
NOTICE: installing required extension "aws_commons"
CREATE EXTENSION

The aws_lambda extension is installed in your Aurora PostgreSQL DB cluster's primary DB instance. You
can now create convenience structures for invoking your Lambda functions.

Step 4: Use Lambda helper functions with your
Aurora PostgreSQL DB cluster (Optional)
You can use the helper functions in the aws_commons extension to prepare entities that you can more
easily invoke from PostgreSQL. To do this, you need to have the following information about your
Lambda functions:

• Function name – The name, Amazon Resource Name (ARN), version, or alias of the Lambda function.
The IAM policy created in Step 2: Configure IAM for your cluster and Lambda (p. 1535) requires the
ARN, so we recommend that you use your function's ARN.

• AWS Region – (Optional) The AWS Region where the Lambda function is located if it's not in the same
Region as your Aurora PostgreSQL DB cluster.

To hold the Lambda function name information, you use the
aws_commons.create_lambda_function_arn (p. 1543) function. This helper function creates an
aws_commons._lambda_function_arn_1 composite structure with the details needed by the invoke
function. Following, you can find three alternative approaches to setting up this composite structure.

SELECT aws_commons.create_lambda_function_arn(
 'my-function',
 'aws-region'
) AS aws_lambda_arn_1 \gset

SELECT aws_commons.create_lambda_function_arn(
 '111122223333:function:my-function',
 'aws-region'
) AS lambda_partial_arn_1 \gset

SELECT aws_commons.create_lambda_function_arn(
 'arn:aws:lambda:aws-region:111122223333:function:my-function'
) AS lambda_arn_1 \gset

1537

Amazon Aurora User Guide for Aurora
Step 5: Invoke a Lambda function

Any of these values can be used in calls to the aws_lambda.invoke (p. 1541) function. For examples, see
Step 5: Invoke a Lambda function from your Aurora PostgreSQL DB cluster (p. 1538).

Step 5: Invoke a Lambda function from your Aurora
PostgreSQL DB cluster
The aws_lambda.invoke function behaves synchronously or asynchronously, depending on the
invocation_type. The two alternatives for this parameter are RequestResponse (the default) and
Event, as follows.

• RequestResponse – This invocation type is synchronous. It's the default behavior when the call
is made without specifying an invocation type. The response payload includes the results of the
aws_lambda.invoke function. Use this invocation type when your workflow requires receiving results
from the Lambda function before proceeding.

• Event – This invocation type is asynchronous. The response doesn't include a payload containing
results. Use this invocation type when your workflow doesn't need a result from the Lambda function
to continue processing.

As a simple test of your setup, you can connect to your DB instance using psql and invoke an example
function from the command line. Suppose that you have one of the basic functions set up on your
Lambda service, such as the simple Python function shown in the following screenshot.

To invoke an example function

1. Connect to your primary DB instance using psql or pgAdmin.

psql -h cluster.444455556666.aws-region.rds.amazonaws.com -U postgres -p 5432

2. Invoke the function using its ARN.

SELECT * from
 aws_lambda.invoke(aws_commons.create_lambda_function_arn('arn:aws:lambda:aws-
region:444455556666:function:simple', 'us-west-1'), '{"body": "Hello from
 Postgres!"}'::json);

The response looks as follows.

status_code | payload | executed_version
 | log_result

1538

Amazon Aurora User Guide for Aurora
Step 5: Invoke a Lambda function

-------------+---
+------------------+------------
 200 | {"statusCode": 200, "body": "\"Hello from Lambda!\""} | $LATEST
 |
(1 row)

If your invocation attempt doesn't succeed, see Lambda function error messages (p. 1541).

Following, you can find several examples of calling the aws_lambda.invoke (p. 1541) function. Most all
the examples use the composite structure aws_lambda_arn_1 that you create in Step 4: Use Lambda
helper functions with your Aurora PostgreSQL DB cluster (Optional) (p. 1537) to simplify passing
the function details. For an example of asynchronous invocation, see Example: Asynchronous (Event)
invocation of Lambda functions (p. 1540). All the other examples listed use synchronous invocation.

To learn more about Lambda invocation types, see Invoking Lambda functions in the
AWS Lambda Developer Guide. For more information about aws_lambda_arn_1, see
aws_commons.create_lambda_function_arn (p. 1543).

Examples list

• Example: Synchronous (RequestResponse) invocation of Lambda functions (p. 1539)

• Example: Asynchronous (Event) invocation of Lambda functions (p. 1540)

• Example: Capturing the Lambda execution log in a function response (p. 1540)

• Example: Including client context in a Lambda function (p. 1540)

• Example: Invoking a specific version of a Lambda function (p. 1540)

Example: Synchronous (RequestResponse) invocation of Lambda
functions
Following are two examples of a synchronous Lambda function invocation. The results of these
aws_lambda.invoke function calls are the same.

SELECT * FROM aws_lambda.invoke(:'aws_lambda_arn_1', '{"body": "Hello from
 Postgres!"}'::json);

SELECT * FROM aws_lambda.invoke(:'aws_lambda_arn_1', '{"body": "Hello from
 Postgres!"}'::json, 'RequestResponse');

The parameters are described as follows:

• :'aws_lambda_arn_1' – This parameter identifies the composite structure created in Step 4: Use
Lambda helper functions with your Aurora PostgreSQL DB cluster (Optional) (p. 1537), with the
aws_commons.create_lambda_function_arn helper function. You can also create this structure
inline within your aws_lambda.invoke call as follows.

SELECT * FROM aws_lambda.invoke(aws_commons.create_lambda_function_arn('my-function',
 'aws-region'),
'{"body": "Hello from Postgres!"}'::json
);

• '{"body": "Hello from PostgreSQL!"}'::json – The JSON payload to pass to the Lambda
function.

• 'RequestResponse' – The Lambda invocation type.

1539

https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html

Amazon Aurora User Guide for Aurora
Step 5: Invoke a Lambda function

Example: Asynchronous (Event) invocation of Lambda functions

Following is an example of an asynchronous Lambda function invocation. The Event invocation type
schedules the Lambda function invocation with the specified input payload and returns immediately. Use
the Event invocation type in certain workflows that don't depend on the results of the Lambda function.

SELECT * FROM aws_lambda.invoke(:'aws_lambda_arn_1', '{"body": "Hello from
 Postgres!"}'::json, 'Event');

Example: Capturing the Lambda execution log in a function
response

You can include the last 4 KB of the execution log in the function response by using the log_type
parameter in your aws_lambda.invoke function call. By default, this parameter is set to None, but you
can specify Tail to capture the results of the Lambda execution log in the response, as shown following.

SELECT *, select convert_from(decode(log_result, 'base64'), 'utf-8') as log FROM
 aws_lambda.invoke(:'aws_lambda_arn_1', '{"body": "Hello from Postgres!"}'::json,
 'RequestResponse', 'Tail');

Set the aws_lambda.invoke (p. 1541) function's log_type parameter to Tail to include the execution
log in the response. The default value for the log_type parameter is None.

The log_result that's returned is a base64 encoded string. You can decode the contents using a
combination of the decode and convert_from PostgreSQL functions.

For more information about log_type, see aws_lambda.invoke (p. 1541).

Example: Including client context in a Lambda function

The aws_lambda.invoke function has a context parameter that you can use to pass information
separate from the payload, as shown following.

SELECT *, convert_from(decode(log_result, 'base64'), 'utf-8') as log FROM
 aws_lambda.invoke(:'aws_lambda_arn_1', '{"body": "Hello from Postgres!"}'::json,
 'RequestResponse', 'Tail');

To include client context, use a JSON object for the aws_lambda.invoke (p. 1541) function's context
parameter.

For more information about the context parameter, see the aws_lambda.invoke (p. 1541) reference.

Example: Invoking a specific version of a Lambda function

You can specify a particular version of a Lambda function by including the qualifier parameter
with the aws_lambda.invoke call. Following, you can find an example that does this using
'custom_version' as an alias for the version.

SELECT * FROM aws_lambda.invoke(:'aws_lambda_arn_1', '{"body": "Hello from
 Postgres!"}'::json, 'RequestResponse', 'None', NULL, 'custom_version');

You can also supply a Lambda function qualifier with the function name details instead, as follows.

1540

Amazon Aurora User Guide for Aurora
Lambda function error messages

SELECT * FROM aws_lambda.invoke(aws_commons.create_lambda_function_arn('my-
function:custom_version', 'us-west-2'),
'{"body": "Hello from Postgres!"}'::json);

For more information about qualifier and other parameters, see the aws_lambda.invoke (p. 1541)
reference.

Lambda function error messages
Incorrect VPC configuration can result in error messages, such as the following.

ERROR: invoke API failed
DETAIL: AWS Lambda client returned 'Unable to connect to endpoint'.
CONTEXT: SQL function "invoke" statement 1

The first thing to check is your VPC security group. Make sure you have an outbound rule for TCP open
on port 443 so that your VPC can connect to the Lambda VPC.

If a Lambda function throws an exception during request processing, aws_lambda.invoke fails with a
PostgreSQL error such as the following.

SELECT * FROM aws_lambda.invoke(:'aws_lambda_arn_1', '{"body": "Hello from
 Postgres!"}'::json);
ERROR: lambda invocation failed
DETAIL: "arn:aws:lambda:us-west-2:555555555555:function:my-function" returned error
 "Unhandled", details: "<Error details string>".

Be sure to handle errors in your Lambda functions or in your PostgreSQL application.

Function reference
Following is the reference for the functions to use for invoking Lambda functions with Aurora
PostgreSQL .

Functions

• aws_lambda.invoke (p. 1541)

• aws_commons.create_lambda_function_arn (p. 1543)

aws_lambda.invoke
Runs a Lambda function for an Aurora PostgreSQL DB cluster .

For more details about invoking Lambda functions, see also Invoke in the AWS Lambda Developer Guide.

Syntax

JSON

aws_lambda.invoke(
IN function_name TEXT,
IN payload JSON,
IN region TEXT DEFAULT NULL,
IN invocation_type TEXT DEFAULT 'RequestResponse',

1541

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

Amazon Aurora User Guide for Aurora
Function reference

IN log_type TEXT DEFAULT 'None',
IN context JSON DEFAULT NULL,
IN qualifier VARCHAR(128) DEFAULT NULL,
OUT status_code INT,
OUT payload JSON,
OUT executed_version TEXT,
OUT log_result TEXT)

aws_lambda.invoke(
IN function_name aws_commons._lambda_function_arn_1,
IN payload JSON,
IN invocation_type TEXT DEFAULT 'RequestResponse',
IN log_type TEXT DEFAULT 'None',
IN context JSON DEFAULT NULL,
IN qualifier VARCHAR(128) DEFAULT NULL,
OUT status_code INT,
OUT payload JSON,
OUT executed_version TEXT,
OUT log_result TEXT)

JSONB

aws_lambda.invoke(
IN function_name TEXT,
IN payload JSONB,
IN region TEXT DEFAULT NULL,
IN invocation_type TEXT DEFAULT 'RequestResponse',
IN log_type TEXT DEFAULT 'None',
IN context JSONB DEFAULT NULL,
IN qualifier VARCHAR(128) DEFAULT NULL,
OUT status_code INT,
OUT payload JSONB,
OUT executed_version TEXT,
OUT log_result TEXT)

aws_lambda.invoke(
IN function_name aws_commons._lambda_function_arn_1,
IN payload JSONB,
IN invocation_type TEXT DEFAULT 'RequestResponse',
IN log_type TEXT DEFAULT 'None',
IN context JSONB DEFAULT NULL,
IN qualifier VARCHAR(128) DEFAULT NULL,
OUT status_code INT,
OUT payload JSONB,
OUT executed_version TEXT,
OUT log_result TEXT
)

Input parameters

function_name

The identifying name of the Lambda function. The value can be the function name, an ARN, or
a partial ARN. For a listing of possible formats, see Lambda function name formats in the AWS
Lambda Developer Guide.

payload

The input for the Lambda function. The format can be JSON or JSONB. For more information, see
JSON Types in the PostgreSQL documentation.

1542

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html#API_Invoke_RequestParameters
https://www.postgresql.org/docs/current/datatype-json.html

Amazon Aurora User Guide for Aurora
Function reference

region

(Optional) The Lambda Region for the function. By default, Aurora resolves the AWS Region from
the full ARN in the function_name or it uses the Aurora PostgreSQL DB instance Region. If this
Region value conflicts with the one provided in the function_name ARN, an error is raised.

invocation_type

The invocation type of the Lambda function. The value is case-sensitive. Possible values include the
following:

• RequestResponse – The default. This type of invocation for a Lambda function is synchronous
and returns a response payload in the result. Use the RequestResponse invocation type when
your workflow depends on receiving the Lambda function result immediately.

• Event – This type of invocation for a Lambda function is asynchronous and returns immediately
without a returned payload. Use the Event invocation type when you don't need results of the
Lambda function before your workflow moves on.

• DryRun – This type of invocation tests access without running the Lambda function.

log_type

The type of Lambda log to return in the log_result output parameter. The value is case-sensitive.
Possible values include the following:

• Tail – The returned log_result output parameter will include the last 4 KB of the execution log.

• None – No Lambda log information is returned.

context

Client context in JSON or JSONB format. Fields to use include than custom and env.

qualifier

A qualifier that identifies a Lambda function's version to be invoked. If this value conflicts with one
provided in the function_name ARN, an error is raised.

Output parameters

status_code

An HTTP status response code. For more information, see Lambda Invoke response elements in the
AWS Lambda Developer Guide.

payload

The information returned from the Lambda function that ran. The format is in JSON or JSONB.

executed_version

The version of the Lambda function that ran.

log_result

The execution log information returned if the log_type value is Tail when the Lambda function
was invoked. The result contains the last 4 KB of the execution log encoded in Base64.

aws_commons.create_lambda_function_arn
Creates an aws_commons._lambda_function_arn_1 structure to hold Lambda function name
information. You can use the results of the aws_commons.create_lambda_function_arn function in
the function_name parameter of the aws_lambda.invoke aws_lambda.invoke (p. 1541) function.

1543

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html#API_Invoke_ResponseElements

Amazon Aurora User Guide for Aurora
Using oracle_fdw to access foreign data

Syntax

aws_commons.create_lambda_function_arn(
 function_name TEXT,
 region TEXT DEFAULT NULL
)
 RETURNS aws_commons._lambda_function_arn_1

Input parameters

function_name

A required text string containing the Lambda function name. The value can be a function name, a
partial ARN, or a full ARN.

region

An optional text string containing the AWS Region that the Lambda function is in. For a listing of
Region names and associated values, see Regions and Availability Zones (p. 11).

Using the oracle_fdw extension to access foreign
data in Aurora PostgreSQL

For easy and efficient access to Oracle databases for Aurora PostgreSQL, you can use the PostgreSQL
oracle_fdw extension, which provides a foreign data wrapper. For a complete description of this
extension, see the oracle_fdw documentation.

The oracle_fdw extension is supported on Amazon RDS for PostgreSQL versions 12.7, 13.3, and higher.

Turning on the oracle_fdw extension
To use the oracle_fdw extension, perform the following procedure.

To turn on the oracle_fdw extension

• Run the following command using an account that has rds_superuser permissions.

CREATE EXTENSION oracle_fdw;

Example using a foreign server linked to an RDS for
Oracle database
The following example demonstrates using a foreign server linked to an RDS for Oracle database.

To create a foreign server linked to an RDS for Oracle database

1. Note the following for the RDS for Oracle DB instance:

• Endpoint
• Port
• Database name

1544

https://github.com/laurenz/oracle_fdw

Amazon Aurora User Guide for Aurora
Working with encryption in transit

2. Create a foreign server.

test=> CREATE SERVER oradb FOREIGN DATA WRAPPER oracle_fdw OPTIONS (dbserver
 '//endpoint:port/DB_name');
CREATE SERVER

3. Grant usage to a user who doesn't have rds_superuser permissions, for example user1.

test=> GRANT USAGE ON FOREIGN SERVER oradb TO user1;
GRANT

4. Connect as user1 and create a mapping to an Oracle user.

test=> CREATE USER MAPPING FOR user1 SERVER oradb OPTIONS (user 'oracleuser', password
 'mypassword');
CREATE USER MAPPING

5. Create a foreign table linked to an Oracle table.

test=> create foreign table mytab (a int) SERVER oradb OPTIONS (table 'MYTABLE');
CREATE FOREIGN TABLE

6. Query the foreign table.

test=> select * from mytab;
 a

 1
(1 row)

If the query reports the following error, check your security group and access control list (ACL) to make
sure that both instances can communicate.

ERROR: connection for foreign table "mytab" cannot be established
DETAIL: ORA-12170: TNS:Connect timeout occurred

Working with encryption in transit
PostgreSQL-to-Oracle encryption in transit is based on a combination of client and server configuration
parameters. For an example using Oracle 21c, see About the Values for Negotiating Encryption and
Integrity in the Oracle documentation. The client used for oracle_fdw on RDS is configured with
ACCEPTED, meaning that the encryption depends on the Oracle database server configuration.

pg_user_mapping and pg_user_mappings
permissions
In the following table, you can find an illustration of user mapping permissions using the example roles.
The rdssu1 and rdssu2 users have the rds_superuser role, and the user1 user doesn't.

Note
You can use the \du metacommand in psql to list existing roles.

test=> \du
 List of roles

1545

https://docs.oracle.com/en/database/oracle/oracle-database/21/dbseg/configuring-network-data-encryption-and-integrity.html#GUID-3A2AF4AA-AE3E-446B-8F64-31C48F27A2B5
https://docs.oracle.com/en/database/oracle/oracle-database/21/dbseg/configuring-network-data-encryption-and-integrity.html#GUID-3A2AF4AA-AE3E-446B-8F64-31C48F27A2B5

Amazon Aurora User Guide for Aurora
pg_user_mapping and pg_user_mappings permissions

 Role name | Attributes |
 Member of
-----------------+--
+---
 rdssu1 | |
 {rds_superuser}
 rdssu2 | |
 {rds_superuser}
 user1 | | {}

Users with the rds_superuser role can't query the pg_user_mapping table. The following example
uses rdssu1,

test=> SET SESSION AUTHORIZATION rdssu1;
SET
test=> select * from pg_user_mapping;
ERROR: permission denied for table pg_user_mapping

On RDS for PostgreSQL, all users—even ones with the rds_superuser role—can see only their own
umoptions values in the pg_user_mappings table. The following example demonstrates.

test=> SET SESSION AUTHORIZATION rdssu1;
SET
test=> select * from pg_user_mappings;
 umid | srvid | srvname | umuser | usename | umoptions
-------+-------+---------+--------+------------+----------------------------------
 16414 | 16411 | oradb | 16412 | user1 |
 16423 | 16411 | oradb | 16421 | rdssu1 | {user=oracleuser,password=mypwd}
 16424 | 16411 | oradb | 16422 | rdssu2 |
(3 rows)

test=> SET SESSION AUTHORIZATION rdssu2;
SET
test=> select * from pg_user_mappings;
 umid | srvid | srvname | umuser | usename | umoptions
-------+-------+---------+--------+------------+----------------------------------
 16414 | 16411 | oradb | 16412 | user1 |
 16423 | 16411 | oradb | 16421 | rdssu1 |
 16424 | 16411 | oradb | 16422 | rdssu2 | {user=oracleuser,password=mypwd}
(3 rows)

test=> SET SESSION AUTHORIZATION user1;
SET
test=> select * from pg_user_mappings;
 umid | srvid | srvname | umuser | usename | umoptions
-------+-------+---------+--------+------------+--------------------------------
 16414 | 16411 | oradb | 16412 | user1 | {user=oracleuser,password=mypwd}
 16423 | 16411 | oradb | 16421 | rdssu1 |
 16424 | 16411 | oradb | 16422 | rdssu2 |
(3 rows)

Because of differences in implementation of information_schema._pg_user_mappings and
pg_catalog.pg_user_mappings, a manually created rds_superuser requires additional
permissions to view passwords in pg_catalog.pg_user_mappings.

No additional permissions are required for a user with the rds_superuser role to view passwords in
information_schema._pg_user_mappings.

Users who don't have the rds_superuser role can view passwords in pg_user_mappings only under
the following conditions:

• The current user is the user being mapped and owns the server or holds the USAGE privilege on it.

1546

Amazon Aurora User Guide for Aurora
Managing partitions with the pg_partman extension

• The current user is the server owner and the mapping is for PUBLIC.

Managing PostgreSQL partitions with the
pg_partman extension

PostgreSQL table partitioning provides a framework for high-performance handling of data input
and reporting. Use partitioning for databases that require very fast input of large amounts of data.
Partitioning also provides for faster queries of large tables. Partitioning helps maintain data without
impacting the database instance because it requires less I/O resources.

By using partitioning, you can split data into custom-sized chunks for processing. For example, you can
partition time-series data for ranges such as hourly, daily, weekly, monthly, quarterly, yearly, custom,
or any combination of these. For a time-series data example, if you partition the table by hour, each
partition contains one hour of data. If you partition the time-series table by day, the partitions holds one
day's worth of data, and so on. The partition key controls the size of a partition.

When you use an INSERT or UPDATE SQL command on a partitioned table, the database engine routes
the data to the appropriate partition. PostgreSQL table partitions that store the data are child tables of
the main table.

During database query reads, the PostgreSQL optimizer examines the WHERE clause of the query and, if
possible, directs the database scan to only the relevant partitions.

Starting with version 10, PostgreSQL uses declarative partitioning to implement table partitioning. This
is also known as native PostgreSQL partitioning. Before PostgreSQL version 10, you used triggers to
implement partitions.

PostgreSQL table partitioning provides the following features:

• Creation of new partitions at any time.
• Variable partition ranges.
• Detachable and reattachable partitions using data definition language (DDL) statements.

For example, detachable partitions are useful for removing historical data from the main partition but
keeping historical data for analysis.

• New partitions inherit the parent database table properties, including the following:
• Indexes
• Primary keys, which must include the partition key column
• Foreign keys
• Check constraints
• References

• Creating indexes for the full table or each specific partition.

You can't alter the schema for an individual partition. However, you can alter the parent table (such as
adding a new column), which propagates to partitions.

Topics
• Overview of the PostgreSQL pg_partman extension (p. 1548)
• Enabling the pg_partman extension (p. 1548)
• Configuring partitions using the create_parent function (p. 1549)
• Configuring partition maintenance using the run_maintenance_proc function (p. 1550)

1547

Amazon Aurora User Guide for Aurora
Overview of the PostgreSQL pg_partman extension

Overview of the PostgreSQL pg_partman extension
You can use the PostgreSQL pg_partman extension to automate the creation and maintenance of table
partitions. For more general information, see PG Partition Manager in the pg_partman documentation.

Note
The pg_partman extension is supported on Aurora PostgreSQL versions 12.6 and higher.

Instead of having to manually create each partition, you configure pg_partman with the following
settings:

• Table to be partitioned
• Partition type
• Partition key
• Partition granularity
• Partition precreation and management options

After you create a PostgreSQL partitioned table, you register it with pg_partman by calling the
create_parent function. Doing this creates the necessary partitions based on the parameters you pass
to the function.

The pg_partman extension also provides the run_maintenance_proc function, which you can call on
a scheduled basis to automatically manage partitions. To ensure that the proper partitions are created
as needed, schedule this function to run periodically (such as hourly). You can also ensure that partitions
are automatically dropped.

Enabling the pg_partman extension
If you have multiple databases inside the same PostgreSQL DB instance for which you want to manage
partitions, enable the pg_partman extension separately for each database. To enable the pg_partman
extension for a specific database, create the partition maintenance schema and then create the
pg_partman extension as follows.

CREATE SCHEMA partman;
CREATE EXTENSION pg_partman WITH SCHEMA partman;

Note
To create the pg_partman extension, make sure that you have rds_superuser privileges.

If you receive an error such as the following, grant the rds_superuser privileges to the account or use
your superuser account.

ERROR: permission denied to create extension "pg_partman"
HINT: Must be superuser to create this extension.

To grant rds_superuser privileges, connect with your superuser account and run the following
command.

GRANT rds_superuser TO user-or-role;

For the examples that show using the pg_partman extension, we use the following sample database
table and partition. This database uses a partitioned table based on a timestamp. A schema data_mart
contains a table named events with a column named created_at. The following settings are included
in the events table:

• Primary keys event_id and created_at, which must have the column used to guide the partition.

1548

https://github.com/pgpartman/pg_partman

Amazon Aurora User Guide for Aurora
Configuring partitions using the create_parent function

• A check constraint ck_valid_operation to enforce values for an operation table column.
• Two foreign keys, where one (fk_orga_membership) points to the external table organization

and the other (fk_parent_event_id) is a self-referenced foreign key.
• Two indexes, where one (idx_org_id) is for the foreign key and the other (idx_event_type) is for

the event type.

The follow DDL statements create these objects, which are automatically included on each partition.

CREATE SCHEMA data_mart;
CREATE TABLE data_mart.organization (org_id BIGSERIAL,
 org_name TEXT,
 CONSTRAINT pk_organization PRIMARY KEY (org_id)
);

CREATE TABLE data_mart.events(
 event_id BIGSERIAL,
 operation CHAR(1),
 value FLOAT(24),
 parent_event_id BIGINT,
 event_type VARCHAR(25),
 org_id BIGSERIAL,
 created_at timestamp,
 CONSTRAINT pk_data_mart_event PRIMARY KEY (event_id, created_at),
 CONSTRAINT ck_valid_operation CHECK (operation = 'C' OR operation = 'D'),
 CONSTRAINT fk_orga_membership
 FOREIGN KEY(org_id)
 REFERENCES data_mart.organization (org_id),
 CONSTRAINT fk_parent_event_id
 FOREIGN KEY(parent_event_id, created_at)
 REFERENCES data_mart.events (event_id,created_at)
) PARTITION BY RANGE (created_at);

CREATE INDEX idx_org_id ON data_mart.events(org_id);
CREATE INDEX idx_event_type ON data_mart.events(event_type);

Configuring partitions using the create_parent
function
After you enable the pg_partman extension, use the create_parent function to configure partitions
inside the partition maintenance schema. The following example uses the events table example created
in Enabling the pg_partman extension (p. 1548). Call the create_parent function as follows.

SELECT partman.create_parent(p_parent_table => 'data_mart.events',
 p_control => 'created_at',
 p_type => 'native',
 p_interval=> 'daily',
 p_premake => 30);

The parameters are as follows:

• p_parent_table – The parent partitioned table. This table must already exist and be fully qualified,
including the schema.

• p_control – The column on which the partitioning is to be based. The data type must be an integer
or time-based.

• p_type – The type is either 'native' or 'partman'. You typically use the native type for its
performance improvements and flexibility. The partman type relies on inheritance.

1549

Amazon Aurora User Guide for Aurora
Configuring partition maintenance using

the run_maintenance_proc function

• p_interval – The time interval or integer range for each partition. Example values include daily,
hourly, and so on.

• p_premake – The number of partitions to create in advance to support new inserts.

For a complete description of the create_parent function, see Creation Functions in the pg_partman
documentation.

Configuring partition maintenance using the
run_maintenance_proc function
You can run partition maintenance operations to automatically create new partitions, detach partitions,
or remove old partitions. Partition maintenance relies on the run_maintenance_proc function of the
pg_partman extension and the pg_cron extension, which initiates an internal scheduler. The pg_cron
scheduler automatically executes SQL statements, functions, and procedures defined in your databases.

The following example uses the events table example created in Enabling the pg_partman
extension (p. 1548) to set partition maintenance operations to run automatically. As a prerequisite, add
pg_cron to the shared_preload_libraries parameter in the DB instance's parameter group.

CREATE EXTENSION pg_cron;

UPDATE partman.part_config
SET infinite_time_partitions = true,
 retention = '3 months',
 retention_keep_table=true
WHERE parent_table = 'data_mart.events';
SELECT cron.schedule('@hourly', $$CALL partman.run_maintenance_proc()$$);

Following, you can find a step-by-step explanation of the preceding example:

1. Modify the parameter group associated with your DB instance and add pg_cron to the
shared_preload_libraries parameter value. This change requires a DB instance restart for it to
take effect. For more information, see Modifying parameters in a DB parameter group (p. 347).

2. Run the command CREATE EXTENSION pg_cron; using an account that has the rds_superuser
permissions. Doing this enables the pg_cron extension. For more information, see Scheduling
maintenance with the PostgreSQL pg_cron extension (p. 1387).

3. Run the command UPDATE partman.part_config to adjust the pg_partman settings for the
data_mart.events table.

4. Run the command SET . . . to configure the data_mart.events table, with these clauses:

a. infinite_time_partitions = true, – Configures the table to be able to automatically create
new partitions without any limit.

b. retention = '3 months', – Configures the table to have a maximum retention of three
months.

c. retention_keep_table=true – Configures the table so that when the retention period is due,
the table isn't deleted automatically. Instead, partitions that are older than the retention period are
only detached from the parent table.

5. Run the command SELECT cron.schedule . . . to make a pg_cron function call. This
call defines how often the scheduler runs the pg_partman maintenance procedure,
partman.run_maintenance_proc. For this example, the procedure runs every hour.

For a complete description of the run_maintenance_proc function, see Maintenance Functions in the
pg_partman documentation.

1550

https://github.com/pgpartman/pg_partman/blob/master/doc/pg_partman.md#user-content-creation-functions
https://github.com/pgpartman/pg_partman/blob/master/doc/pg_partman.md#maintenance-functions

Amazon Aurora User Guide for Aurora
Using Kerberos authentication

Using Kerberos authentication with Aurora
PostgreSQL

You can use Kerberos authentication to authenticate users when they connect to your DB cluster running
PostgreSQL. In this case, your DB instance works with AWS Directory Service for Microsoft Active
Directory to enable Kerberos authentication. AWS Directory Service for Microsoft Active Directory is also
called AWS Managed Microsoft AD.

You create an AWS Managed Microsoft AD directory to store user credentials. You then provide to your
PostgreSQL DB cluster the Active Directory's domain and other information. When users authenticate
with the PostgreSQL DB cluster, authentication requests are forwarded to the AWS Managed Microsoft
AD directory.

Keeping all of your credentials in the same directory can save you time and effort. You have a centralized
place for storing and managing credentials for multiple DB clusters. Using a directory can also improve
your overall security profile.

You can also access credentials from your own on-premises Microsoft Active Directory. To do so you
create a trusting domain relationship so that the AWS Managed Microsoft AD directory trusts your on-
premises Microsoft Active Directory. In this way, your users can access your PostgreSQL clusters with
the same Windows single sign-on (SSO) experience as when they access workloads in your on-premises
network.

A database can use Kerberos, AWS Identity and Access Management (IAM), or both Kerberos and IAM
authentication. However, since Kerberos and IAM authentication provide different authentication
methods, a specific user can log in to a database using only one or the other authentication method but
not both. For more information about IAM authentication, see IAM database authentication (p. 1756).

Topics
• Availability of Kerberos authentication (p. 1551)
• Overview of Kerberos authentication for PostgreSQL DB clusters (p. 1552)
• Setting up Kerberos authentication for PostgreSQL DB clusters (p. 1553)
• Managing a DB cluster in a Domain (p. 1562)
• Connecting to PostgreSQL with Kerberos authentication (p. 1563)

Availability of Kerberos authentication
Kerberos authentication is supported on the following engine versions:

• All PostgreSQL 13 versions
• PostgreSQL 12.4 and higher 12 versions
• PostgreSQL 11.6 and higher 11 versions
• PostgreSQL 10.11 and higher 10 versions

For more information, see Amazon Aurora PostgreSQL releases and engine versions (p. 1615).

Amazon Aurora supports Kerberos authentication for PostgreSQL DB clusters in the following AWS
Regions:

Region name Region

US East (Ohio) us-east-2

1551

Amazon Aurora User Guide for Aurora
Overview of Kerberos authentication

Region name Region

US East (N. Virginia) us-east-1

US West (N. California) us-west-1

US West (Oregon) us-west-2

Asia Pacific (Mumbai) ap-south-1

Asia Pacific (Seoul) ap-northeast-2

Asia Pacific (Singapore) ap-southeast-1

Asia Pacific (Sydney) ap-southeast-2

Asia Pacific (Tokyo) ap-northeast-1

Canada (Central) ca-central-1

China (Beijing) cn-north-1

China (Ningxia) cn-northwest-1

Europe (Frankfurt) eu-central-1

Europe (Ireland) eu-west-1

Europe (London) eu-west-2

Europe (Paris) eu-west-3

Europe (Stockholm) eu-north-1

South America (São Paulo) sa-east-1

Overview of Kerberos authentication for PostgreSQL
DB clusters
To set up Kerberos authentication for a PostgreSQL DB cluster, take the following steps, described in
more detail later:

1. Use AWS Managed Microsoft AD to create an AWS Managed Microsoft AD directory. You can use the
AWS Management Console, the AWS CLI, or the AWS Directory Service API to create the directory.
Make sure to open the relevant outbound ports on the directory security group so that the directory
can communicate with the cluster.

2. Create a role that provides Amazon Aurora access to make calls to your AWS Managed Microsoft AD
directory. To do so, create an AWS Identity and Access Management (IAM) role that uses the managed
IAM policy AmazonRDSDirectoryServiceAccess.

For the IAM role to allow access, the AWS Security Token Service (AWS STS) endpoint must be
activated in the correct AWS Region for your AWS account. AWS STS endpoints are active by default
in all AWS Regions, and you can use them without any further actions. For more information, see
Activating and deactivating AWS STS in an AWS Region in the IAM User Guide.

3. Create and configure users in the AWS Managed Microsoft AD directory using the Microsoft Active
Directory tools. For more information about creating users in your Active Directory, see Manage users
and groups in AWS Managed Microsoft AD in the AWS Directory Service Administration Guide.

1552

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html#sts-regions-activate-deactivate
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_manage_users_groups.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_manage_users_groups.html

Amazon Aurora User Guide for Aurora
Setting up

4. If you plan to locate the directory and the DB instance in different AWS accounts or virtual private
clouds (VPCs), configure VPC peering. For more information, see What is VPC peering? in the Amazon
VPC Peering Guide.

5. Create or modify a PostgreSQL DB cluster either from the console, CLI, or RDS API using one of the
following methods:

• Creating a DB cluster and connecting to a database on an Aurora PostgreSQL DB cluster (p. 96)

• Modifying an Amazon Aurora DB cluster (p. 372)

• Restoring from a DB cluster snapshot (p. 497)

• Restoring a DB cluster to a specified time (p. 537)

You can locate the cluster in the same Amazon Virtual Private Cloud (VPC) as the directory or in
a different AWS account or VPC. When you create or modify the PostgreSQL DB cluster, do the
following:

• Provide the domain identifier (d-* identifier) that was generated when you created your directory.

• Provide the name of the IAM role that you created.

• Ensure that the DB instance security group can receive inbound traffic from the directory security
group.

6. Use the RDS master user credentials to connect to the PostgreSQL DB cluster. Create the user in
PostgreSQL to be identified externally. Externally identified users can log in to the PostgreSQL DB
cluster using Kerberos authentication.

Setting up Kerberos authentication for PostgreSQL
DB clusters
You use AWS Directory Service for Microsoft Active Directory (AWS Managed Microsoft AD) to set
up Kerberos authentication for a PostgreSQL DB cluster. To set up Kerberos authentication, take the
following steps.

Topics

• Step 1: Create a directory using AWS Managed Microsoft AD (p. 1553)

• Step 2: (Optional) create a trust for an on-premises Active Directory (p. 1557)

• Step 3: Create an IAM role for Amazon Aurora to access the AWS Directory Service (p. 1558)

• Step 4: Create and configure users (p. 1559)

• Step 5: Enable cross-VPC traffic between the directory and the DB instance (p. 1559)

• Step 6: Create or modify a PostgreSQL DB cluster (p. 1560)

• Step 7: Create Kerberos authentication PostgreSQL logins (p. 1561)

• Step 8: Configure a PostgreSQL client (p. 1561)

Step 1: Create a directory using AWS Managed Microsoft AD
AWS Directory Service creates a fully managed Active Directory in the AWS Cloud. When you create an
AWS Managed Microsoft AD directory, AWS Directory Service creates two domain controllers and DNS
servers for you. The directory servers are created in different subnets in a VPC. This redundancy helps
make sure that your directory remains accessible even if a failure occurs.

When you create an AWS Managed Microsoft AD directory, AWS Directory Service performs the following
tasks on your behalf:

• Sets up an Active Directory within your VPC.

1553

https://docs.aws.amazon.com/vpc/latest/peering/Welcome.html

Amazon Aurora User Guide for Aurora
Setting up

• Creates a directory administrator account with the user name Admin and the specified password. You
use this account to manage your directory.

Important
Make sure to save this password. AWS Directory Service doesn't store this password, and it
can't be retrieved or reset.

• Creates a security group for the directory controllers. The security group must permit communication
with the PostgreSQL DB cluster.

When you launch AWS Directory Service for Microsoft Active Directory, AWS creates an Organizational
Unit (OU) that contains all of your directory's objects. This OU, which has the NetBIOS name that you
entered when you created your directory, is located in the domain root. The domain root is owned and
managed by AWS.

The Admin account that was created with your AWS Managed Microsoft AD directory has permissions for
the most common administrative activities for your OU:

• Create, update, or delete users

• Add resources to your domain such as file or print servers, and then assign permissions for those
resources to users in your OU

• Create additional OUs and containers

• Delegate authority

• Restore deleted objects from the Active Directory Recycle Bin

• Run Active Directory and Domain Name Service (DNS) modules for Windows PowerShell on the Active
Directory Web Service

The Admin account also has rights to perform the following domain-wide activities:

• Manage DNS configurations (add, remove, or update records, zones, and forwarders)

• View DNS event logs

• View security event logs

To create a directory with AWS Managed Microsoft AD

1. In the AWS Directory Service console navigation pane, choose Directories, and then choose Set up
directory.

2. Choose AWS Managed Microsoft AD. AWS Managed Microsoft AD is the only option currently
supported for use with Amazon Aurora.

3. Choose Next.

4. On the Enter directory information page, provide the following information:

Edition

Choose the edition that meets your requirements.

Directory DNS name

The fully qualified name for the directory, such as corp.example.com.

Directory NetBIOS name

An optional short name for the directory, such as CORP.

Directory description

An optional description for the directory.

1554

https://console.aws.amazon.com/directoryservicev2/

Amazon Aurora User Guide for Aurora
Setting up

Admin password

The password for the directory administrator. The directory creation process creates an
administrator account with the user name Admin and this password.

The directory administrator password can't include the word "admin." The password is case-
sensitive and must be 8–64 characters in length. It must also contain at least one character from
three of the following four categories:

• Lowercase letters (a–z)

• Uppercase letters (A–Z)

• Numbers (0–9)

• Nonalphanumeric characters (~!@#$%^&*_-+=`|\(){}[]:;"'<>,.?/)

Confirm password

Retype the administrator password.

Important
Make sure that you save this password. AWS Directory Service doesn't store this
password, and it can't be retrieved or reset.

5. Choose Next.

6. On the Choose VPC and subnets page, provide the following information:

VPC

Choose the VPC for the directory. You can create the PostgreSQL DB cluster in this same VPC or
in a different VPC.

Subnets

Choose the subnets for the directory servers. The two subnets must be in different Availability
Zones.

7. Choose Next.

8. Review the directory information. If changes are needed, choose Previous and make the changes.
When the information is correct, choose Create directory.

1555

Amazon Aurora User Guide for Aurora
Setting up

It takes several minutes for the directory to be created. When it has been successfully created, the Status
value changes to Active.

To see information about your directory, choose the directory ID in the directory listing. Make a note of
the Directory ID value. You need this value when you create or modify your PostgreSQL DB instance.

1556

Amazon Aurora User Guide for Aurora
Setting up

Step 2: (Optional) create a trust for an on-premises Active
Directory
If you don't plan to use your own on-premises Microsoft Active Directory, skip to Step 3: Create an IAM
role for Amazon Aurora to access the AWS Directory Service (p. 1558).

To get Kerberos authentication using your on-premises Active Directory, you need to create a trusting
domain relationship using a forest trust between your on-premises Microsoft Active Directory and
the AWS Managed Microsoft AD directory (created in Step 1: Create a directory using AWS Managed
Microsoft AD (p. 1553)). The trust can be one-way, where the AWS Managed Microsoft AD directory
trusts the on-premises Microsoft Active Directory. The trust can also be two-way, where both Active
Directories trust each other. For more information about setting up trusts using AWS Directory Service,
see When to create a trust relationship in the AWS Directory Service Administration Guide.

Note
If you use an on-premises Microsoft Active Directory:

• Windows clients must connect using specialized endpoints as described in Connecting to
PostgreSQL with Kerberos authentication (p. 1563).

• Windows clients can't connect with custom endpoints (p. 36).

1557

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_setup_trust.html

Amazon Aurora User Guide for Aurora
Setting up

• For global databases (p. 225):
• Windows clients can connect using instance endpoints or cluster endpoints in the primary

AWS Region of the global database.
• Windows clients can't connect using cluster endpoints in secondary AWS Regions.

Make sure that your on-premises Microsoft Active Directory domain name includes a DNS suffix routing
that corresponds to the newly created trust relationship. The following screenshot shows an example.

Step 3: Create an IAM role for Amazon Aurora to access the AWS
Directory Service
For Amazon Aurora to call AWS Directory Service for you, an IAM role that uses the managed IAM policy
AmazonRDSDirectoryServiceAccess is required. This role allows Amazon Aurora to make calls to
AWS Directory Service. (Note that this IAM role to access the AWS Directory Service is different than the
IAM role used for IAM database authentication (p. 1756).)

When a DB instance is created using the AWS Management Console and the console user has
the iam:CreateRole permission, the console creates this role automatically. In this case, the
role name is rds-directoryservice-kerberos-access-role. Otherwise, create the IAM
role manually. Choose RDS and then RDS - Directory Service. Attach the AWS managed policy
AmazonRDSDirectoryServiceAccess to this role.

For more information about creating IAM roles for a service, see Creating a role to delegate permissions
to an AWS service in the IAM User Guide.

Note
The IAM role used for Windows Authentication for RDS for Microsoft SQL Server can't be used
for Amazon Aurora.

Optionally, you can create policies with the required permissions instead of using the managed IAM
policy AmazonRDSDirectoryServiceAccess. In this case, the IAM role must have the following IAM
trust policy.

{

1558

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Aurora User Guide for Aurora
Setting up

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "directoryservice.rds.amazonaws.com",
 "rds.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

The role must also have the following IAM role policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ds:DescribeDirectories",
 "ds:AuthorizeApplication",
 "ds:UnauthorizeApplication",
 "ds:GetAuthorizedApplicationDetails"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Step 4: Create and configure users
You can create users by using the Active Directory Users and Computers tool. This is one of the Active
Directory Domain Services and Active Directory Lightweight Directory Services tools. In this case, users
are individual people or entities who have access to your directory.

To create users in an AWS Directory Service directory, you must be connected to a Windows-based
Amazon EC2 instance. Also, this EC2 instance must be a member of the AWS Directory Service directory.
At the same time, you must be logged in as a user that has privileges to create users. For more
information, see Create a user in the AWS Directory Service Administration Guide.

Step 5: Enable cross-VPC traffic between the directory and the
DB instance
If you plan to locate the directory and the DB cluster in the same VPC, skip this step and move on to
Step 6: Create or modify a PostgreSQL DB cluster (p. 1560).

If you plan to locate the directory and the DB instance in different VPCs, configure cross-VPC traffic using
VPC peering or AWS Transit Gateway.

The following procedure enables traffic between VPCs using VPC peering. Follow the instructions in
What is VPC peering? in the Amazon Virtual Private Cloud Peering Guide.

To enable cross-VPC traffic using VPC peering

1. Set up appropriate VPC routing rules to ensure that network traffic can flow both ways.

1559

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_manage_users_groups_create_user.html
https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html
https://docs.aws.amazon.com/vpc/latest/peering/Welcome.html

Amazon Aurora User Guide for Aurora
Setting up

2. Ensure that the DB instance security group can receive inbound traffic from the directory security
group.

3. Ensure that there is no network access control list (ACL) rule to block traffic.

If a different AWS account owns the directory, you must share the directory.

To share the directory between AWS accounts

1. Start sharing the directory with the AWS account that the DB instance will be created in by following
the instructions in Tutorial: Sharing your AWS Managed Microsoft AD directory for seamless EC2
Domain-join in the AWS Directory Service Administration Guide.

2. Sign in to the AWS Directory Service console using the account for the DB instance, and ensure that
the domain has the SHARED status before proceeding.

3. While signed into the AWS Directory Service console using the account for the DB instance, note the
Directory ID value. You use this directory ID to join the DB instance to the domain.

Step 6: Create or modify a PostgreSQL DB cluster
Create or modify a PostgreSQL DB cluster for use with your directory. You can use the console, CLI, or
RDS API to associate a DB cluster with a directory. You can do this in one of the following ways:

• Create a new PostgreSQL DB cluster using the console, the create-db-cluster CLI command, or the
CreateDBCluster RDS API operation. For instructions, see Creating a DB cluster and connecting to a
database on an Aurora PostgreSQL DB cluster (p. 96).

• Modify an existing PostgreSQL DB cluster using the console, the modify-db-cluster CLI command,
or the ModifyDBCluster RDS API operation. For instructions, see Modifying an Amazon Aurora DB
cluster (p. 372).

• Restore a PostgreSQL DB cluster from a DB snapshot using the console, the restore-db-cluster-
from-db-snapshot CLI command, or the RestoreDBClusterFromDBSnapshot RDS API operation. For
instructions, see Restoring from a DB cluster snapshot (p. 497).

• Restore a PostgreSQL DB cluster to a point-in-time using the console, the restore-db-instance-
to-point-in-time CLI command, or the RestoreDBClusterToPointInTime RDS API operation. For
instructions, see Restoring a DB cluster to a specified time (p. 537).

Kerberos authentication is only supported for PostgreSQL DB clusters in a VPC. The DB cluster can be in
the same VPC as the directory, or in a different VPC. The DB cluster must use a security group that allows
ingress and egress within the directory's VPC so the DB cluster can communicate with the directory.

Console

When you use the console to create, modify, or restore a DB cluster, choose Kerberos authentication
in the Database authentication section. Then choose Browse Directory. Select the directory or choose
Create a new directory to use the Directory Service.

AWS CLI

When you use the AWS CLI, the following parameters are required for the DB cluster to be able to use
the directory that you created:

• For the --domain parameter, use the domain identifier ("d-*" identifier) generated when you created
the directory.

• For the --domain-iam-role-name parameter, use the role you created that uses the managed IAM
policy AmazonRDSDirectoryServiceAccess.

1560

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_tutorial_directory_sharing.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_tutorial_directory_sharing.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-from-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromSnapshot.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterToPointInTime.html

Amazon Aurora User Guide for Aurora
Setting up

For example, the following CLI command modifies a DB cluster to use a directory.

aws rds modify-db-cluster --db-cluster-identifier mydbinstance --domain d-Directory-ID --
domain-iam-role-name role-name

Important
If you modify a DB cluster to enable Kerberos authentication, reboot the DB cluster after making
the change.

Step 7: Create Kerberos authentication PostgreSQL logins
Use the RDS master user credentials to connect to the PostgreSQL DB cluster as you do with any other
DB cluster . The DB instance is joined to the AWS Managed Microsoft AD domain. Thus, you can provision
PostgreSQL logins and users from the Microsoft Active Directory users and groups in your domain. To
manage database permissions, you grant and revoke standard PostgreSQL permissions to these logins.

To allow an Active Directory user to authenticate with PostgreSQL, use the RDS master user credentials.
You use these credentials to connect to the PostgreSQL DB cluster as you do with any other DB cluster .
After you're logged in, create an externally authenticated user in PostgreSQL and grant the rds_ad role
to this user.

CREATE USER "username@CORP.EXAMPLE.COM" WITH LOGIN;
GRANT rds_ad TO "username@CORP.EXAMPLE.COM";

Replace username with the user name and include the domain name in uppercase. Users (both humans
and applications) from your domain can now connect to the RDS PostgreSQL cluster from a domain-
joined client machine using Kerberos authentication.

Note that a database user can use either Kerberos or IAM authentication but not both, so this user can't
also have the rds_iam role. This also applies to nested memberships. For more information, see IAM
database authentication (p. 1756).

Step 8: Configure a PostgreSQL client
To configure a PostgreSQL client, take the following steps:

• Create a krb5.conf file (or equivalent) to point to the domain.
• Verify that traffic can flow between the client host and AWS Directory Service. Use a network utility

such as Netcat for the following:
• Verify traffic over DNS for port 53.
• Verify traffic over TCP/UDP for port 53 and for Kerberos, which includes ports 88 and 464 for AWS

Directory Service.
• Verify that traffic can flow between the client host and the DB instance over the database port. For

example, use psql to connect and access the database.

The following is sample krb5.conf content for AWS Managed Microsoft AD.

[libdefaults]
 default_realm = EXAMPLE.COM
[realms]
 EXAMPLE.COM = {
 kdc = example.com
 admin_server = example.com
 }
[domain_realm]

1561

Amazon Aurora User Guide for Aurora
Managing a DB cluster in a Domain

 .example.com = EXAMPLE.COM
 example.com = EXAMPLE.COM

The following is sample krb5.conf content for an on-premises Microsoft Active Directory.

[libdefaults]
 default_realm = EXAMPLE.COM
[realms]
 EXAMPLE.COM = {
 kdc = example.com
 admin_server = example.com
 }
 ONPREM.COM = {
 kdc = onprem.com
 admin_server = onprem.com
 }
[domain_realm]
 .example.com = EXAMPLE.COM
 example.com = EXAMPLE.COM
 .onprem.com = ONPREM.COM
 onprem.com = ONPREM.COM
 .rds.amazonaws.com = EXAMPLE.COM
 .amazonaws.com.cn = EXAMPLE.COM
 .amazon.com = EXAMPLE.COM

Managing a DB cluster in a Domain
You can use the console, the CLI, or the RDS API to manage your DB cluster and its relationship with
your Microsoft Active Directory. For example, you can associate an Active Directory to enable Kerberos
authentication. You can also remove the association for an Active Directory to disable Kerberos
authentication. You can also move a DB cluster to be externally authenticated by one Microsoft Active
Directory to another.

For example, using the CLI, you can do the following:

• To reattempt enabling Kerberos authentication for a failed membership, use the modify-db-cluster CLI
command. Specify the current membership's directory ID for the --domain option.

• To disable Kerberos authentication on a DB instance, use the modify-db-cluster CLI command. Specify
none for the --domain option.

• To move a DB instance from one domain to another, use the modify-db-cluster CLI command. Specify
the domain identifier of the new domain for the --domain option.

Understanding Domain membership
After you create or modify your DB cluster, the DB instances become members of the domain. You can
view the status of the domain membership in the console or by running the describe-db-instances CLI
command. The status of the DB instance can be one of the following:

• kerberos-enabled – The DB instance has Kerberos authentication enabled.
• enabling-kerberos – AWS is in the process of enabling Kerberos authentication on this DB instance.
• pending-enable-kerberos – Enabling Kerberos authentication is pending on this DB instance.
• pending-maintenance-enable-kerberos – AWS will attempt to enable Kerberos authentication

on the DB instance during the next scheduled maintenance window.
• pending-disable-kerberos – Disabling Kerberos authentication is pending on this DB instance.
• pending-maintenance-disable-kerberos – AWS will attempt to disable Kerberos authentication

on the DB instance during the next scheduled maintenance window.

1562

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html

Amazon Aurora User Guide for Aurora
Connecting with Kerberos authentication

• enable-kerberos-failed – A configuration problem prevented AWS from enabling Kerberos
authentication on the DB instance. Correct the configuration problem before reissuing the command
to modify the DB instance.

• disabling-kerberos – AWS is in the process of disabling Kerberos authentication on this DB
instance.

A request to enable Kerberos authentication can fail because of a network connectivity issue or an
incorrect IAM role. In some cases, the attempt to enable Kerberos authentication might fail when you
create or modify a DB cluster. If so, make sure that you are using the correct IAM role, then modify the
DB cluster to join the domain.

Connecting to PostgreSQL with Kerberos
authentication
You can connect to PostgreSQL with Kerberos authentication with the pgAdmin interface or with a
command line interface such as psql. For more information about connecting, see Connecting to an
Amazon Aurora PostgreSQL DB cluster (p. 285).

pgAdmin

To use pgAdmin to connect to PostgreSQL with Kerberos authentication, take the following steps:

1. Launch the pgAdmin application on your client computer.
2. On the Dashboard tab, choose Add New Server.
3. In the Create - Server dialog box, enter a name on the General tab to identify the server in pgAdmin.
4. On the Connection tab, enter the following information from your Aurora PostgreSQL database:

• For Host, enter the endpoint. Use a format such as PostgreSQL-endpoint.AWS-
Region.rds.amazonaws.com.

If you're using an on-premises Microsoft Active Directory from a Windows client, then you need to
connect using a specialized endpoint. Instead of using the Amazon domain rds.amazonaws.com in
the host endpoint, use the domain name of the AWS Managed Active Directory.

For example, suppose that the domain name for the AWS Managed Active Directory is
corp.example.com. Then for Host, use the format PostgreSQL-endpoint.AWS-
Region.corp.example.com.

• For Port, enter the assigned port.
• For Maintenance database, enter the name of the initial database to which the client will connect.
• For Username, enter the user name that you entered for Kerberos authentication in Step 7: Create

Kerberos authentication PostgreSQL logins (p. 1561).
5. Choose Save.

Psql

To use psql to connect to PostgreSQL with Kerberos authentication, take the following steps:

1. At a command prompt, run the following command.

kinit username

Replace username with the user name. At the prompt, enter the password stored in the Microsoft
Active Directory for the user.

1563

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL reference

2. If the PostgreSQL DB cluster is using a publicly accessible VPC, put a private IP address for your DB
cluster endpoint in your /etc/hosts file on the EC2 client. For example, the following commands
obtain the private IP address and then put it in the /etc/hosts file.

% dig +short PostgreSQL-endpoint.AWS-Region.rds.amazonaws.com
;; Truncated, retrying in TCP mode.
ec2-34-210-197-118.AWS-Region.compute.amazonaws.com.
34.210.197.118

% echo " 34.210.197.118 PostgreSQL-endpoint.AWS-Region.rds.amazonaws.com" >> /etc/hosts

If you're using an on-premises Microsoft Active Directory from a Windows client, then you need to
connect using a specialized endpoint. Instead of using the Amazon domain rds.amazonaws.com in
the host endpoint, use the domain name of the AWS Managed Active Directory.

For example, suppose that the domain name for your AWS Managed Active Directory
is corp.example.com. Then use the format PostgreSQL-endpoint.AWS-
Region.corp.example.com for the endpoint and put it in the /etc/hosts file.

% echo " 34.210.197.118 PostgreSQL-endpoint.AWS-Region.corp.example.com" >> /etc/hosts

3. Use the following psql command to log in to a PostgreSQL DB cluster that is integrated with Active
Directory. Use a cluster or instance endpoint.

psql -U username@CORP.EXAMPLE.COM -p 5432 -h PostgreSQL-endpoint.AWS-
Region.rds.amazonaws.com postgres

To log in to the PostgreSQL DB cluster from a Windows client using an on-premises Active
Directory, use the following psql command with the domain name from the previous step
(corp.example.com):

psql -U username@CORP.EXAMPLE.COM -p 5432 -h PostgreSQL-endpoint.AWS-
Region.corp.example.com postgres

Amazon Aurora PostgreSQL reference
Topics

• Amazon Aurora PostgreSQL parameters (p. 1564)
• Amazon Aurora PostgreSQL wait events (p. 1587)
• Aurora PostgreSQL functions reference (p. 1604)

Amazon Aurora PostgreSQL parameters
You manage your Amazon Aurora DB cluster in the same way that you manage Amazon RDS DB
instances, by using parameters in a DB parameter group. However, Amazon Aurora differs from Amazon
RDS in that an Aurora DB cluster has multiple DB instances. Some of the parameters that you use to
manage your Amazon Aurora DB cluster apply to the entire cluster, while other parameters apply only to
a given DB instance in the DB cluster, as follows:

• DB cluster parameter group – A DB cluster parameter group contains the set of engine configuration
parameters that apply throughout the Aurora DB cluster. For example, cluster cache management is a
feature of an Aurora DB cluster that's controlled by the apg_ccm_enabled parameter which is part of

1564

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL parameters

the DB cluster parameter group. The DB cluster parameter group also contains default settings for the
DB parameter group for the DB instances that make up the cluster.

• DB parameter group – A DB parameter group is the set of engine configuration values that apply to a
specific DB instance of that engine type. The DB parameter groups for the PostgreSQL DB engine are
used by an RDS for PostgreSQL DB instance. and Aurora PostgreSQL DB cluster. These configuration
settings apply to properties that can vary among the DB instances within an Aurora cluster, such as the
sizes for memory buffers.

You manage cluster-level parameters in DB cluster parameter groups. You manage instance-level
parameters in DB parameter groups. You can manage parameters using the Amazon RDS console, the
AWS CLI, or the Amazon RDS API. There are separate commands for managing cluster-level parameters
and instance-level parameters.

• To manage cluster-level parameters in a DB cluster parameter group, use the modify-db-cluster-
parameter-group AWS CLI command.

• To manage instance-level parameters in a DB parameter group for a DB instance in a DB cluster, use
the modify-db-parameter-group AWS CLI command.

To learn more about the AWS CLI, see Using the AWS CLI in the AWS Command Line Interface User Guide.

For more information about parameter groups, see Working with DB parameter groups and DB cluster
parameter groups (p. 339).

Viewing Aurora PostgreSQL DB cluster and DB parameters
You can view all available default parameter groups for RDS for PostgreSQL DB instances and for Aurora
PostgreSQL DB clusters in the AWS Management Console. The default parameter groups for all DB
engines and DB cluster types and versions are listed for each AWS Region. Any custom parameter groups
are also listed.

Rather than viewing in the AWS Management Console, you can also list parameters contained in DB
cluster parameter groups and DB parameter groups by using the AWS CLI or the Amazon RDS API. For
example, to list parameters in a DB cluster parameter group you use the describe-db-cluster-parameters
AWS CLI command as follows:

aws rds describe-db-cluster-parameters --db-cluster-parameter-group-name default.aurora-
postgresql12

The command returns detailed JSON descriptions of each parameter. To reduce the amount of
information returned, you can specify what you want by using the --query option. For example, you can
get the parameter name, its description, and allowed values for the default Aurora PostgreSQL 12 DB
cluster parameter group as follows:

For Linux, macOS, or Unix:

aws rds describe-db-cluster-parameters --db-cluster-parameter-group-name default.aurora-
postgresql12 \
 --query 'Parameters[].
[{ParameterName:ParameterName,Description:Description,ApplyType:ApplyType,AllowedValues:AllowedValues}]'

For Windows:

aws rds describe-db-cluster-parameters --db-cluster-parameter-group-name default.aurora-
postgresql12 ^

1565

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster-parameter-group.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-parameter-group.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-using.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-cluster-parameters.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL parameters

 --query "Parameters[].
[{ParameterName:ParameterName,Description:Description,ApplyType:ApplyType,AllowedValues:AllowedValues}]"

An Aurora DB cluster parameter group includes the DB instance parameter group and default values for a
given Aurora DB engine. You can get the list of DB parameters from the same default Aurora PostgreSQL
default parameter group by usng the describe-db-parameters AWS CLI command as shown following.

For Linux, macOS, or Unix:

aws rds describe-db-parameters --db-parameter-group-name default.aurora-postgresql12 \
 --query 'Parameters[].
[{ParameterName:ParameterName,Description:Description,ApplyType:ApplyType,AllowedValues:AllowedValues}]'

For Windows:

aws rds describe-db-parameters --db-parameter-group-name default.aurora-postgresql12 ^
 --query "Parameters[].
[{ParameterName:ParameterName,Description:Description,ApplyType:ApplyType,AllowedValues:AllowedValues}]"

The preceding commands return lists of parameters from the DB cluster or DB parameter group with
descriptions and other details specified in the query. Following is an example response.

[
 [
 {
 "ParameterName": "apg_enable_batch_mode_function_execution",
 "ApplyType": "dynamic",
 "Description": "Enables batch-mode functions to process sets of rows at a
 time.",
 "AllowedValues": "0,1"
 }
],
 [
 {
 "ParameterName": "apg_enable_correlated_any_transform",
 "ApplyType": "dynamic",
 "Description": "Enables the planner to transform correlated ANY Sublink (IN/NOT
 IN subquery) to JOIN when possible.",
 "AllowedValues": "0,1"
 }
],...

Following are tables containing values for the default DB cluster parameter and DB parameter for Aurora
PostgreSQL version 13.

1566

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameters.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL parameters

Aurora PostgreSQL cluster-level parameters
The following table lists some of parameters available in the default DB cluster parameter group
for Aurora PostgreSQL version 13. If you create an Aurora PostgreSQL DB cluster without specifying
your own custom DB parameter group, your DB cluster is created using the default Aurora DB cluster
parameter group for the version chosen, such as default.aurora-postresql13, default.aurora-
postgresql12, and so on.

Note
All parameters in the following table are dynamic unless otherwise noted in the description.

For a listing of the DB instance parameters for the same default Aurora parameter group, see Aurora
PostgreSQL instance-level parameters (p. 1577).

Parameter name Description

ansi_constraint_trigger_orderingChange the firing order of constraint triggers to be compatible with
the ANSI SQL standard.

ansi_force_foreign_key_checksEnsure referential actions such as cascaded delete or cascaded
update will always occur regardless of the various trigger contexts
that exist for the action.

ansi_qualified_update_set_targetSupport table and schema qualifiers in UPDATE ... SET statements.

apg_ccm_enabled Enable or disable cluster cache management for the cluster.

apg_enable_batch_mode_function_executionEnables batch-mode functions to process sets of rows at a time.

apg_enable_correlated_any_transformEnables the planner to transform correlated ANY Sublink (IN/NOT
IN subquery) to JOIN when possible.

apg_enable_function_migrationEnables the planner to migrate eligible scalar functions to the
FROM clause.

apg_enable_not_in_transformEnables the planner to transform NOT IN subquery to ANTI JOIN
when possible.

apg_enable_remove_redundant_inner_joinsEnables the planner to remove redundant inner joins.

apg_enable_semijoin_push_downEnables the use of semijoin filters for hash joins.

apg_plan_mgmt.capture_plan_baselinesCapture plan baseline mode. manual - enable plan capture for
any SQL statement off - disable plan capture automatic - enable
plan capture for statements in pg_stat_statements that satisfy the
eligibility criteria.

apg_plan_mgmt.max_databasesStatic. Sets the maximum number of databases that that may
manage queries using apg_plan_mgmt.

apg_plan_mgmt.max_plans Static. Sets the maximum number of plans that may be cached by
apg_plan_mgmt.

apg_plan_mgmt.plan_retention_periodStatic. Maximum number of days since a plan was last_used before
a plan will be automatically deleted.

apg_plan_mgmt.unapproved_plan_execution_thresholdEstimated total plan cost below which an Unapproved plan will be
executed.

apg_plan_mgmt.use_plan_baselinesUse only approved or fixed plans for managed statements.

1567

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL parameters

Parameter name Description

array_nulls Enable input of NULL elements in arrays.

authentication_timeout (s) Sets the maximum allowed time to complete client
authentication.

auto_explain.log_analyze Use EXPLAIN ANALYZE for plan logging.

auto_explain.log_buffers Log buffers usage.

auto_explain.log_format EXPLAIN format to be used for plan logging.

auto_explain.log_min_durationSets the minimum execution time above which plans will be logged.

auto_explain.log_nested_statementsLog nested statements.

auto_explain.log_timing Collect timing data not just row counts.

auto_explain.log_triggers Include trigger statistics in plans.

auto_explain.log_verbose Use EXPLAIN VERBOSE for plan logging.

auto_explain.sample_rate Fraction of queries to process.

autovacuum Starts the autovacuum subprocess.

autovacuum_analyze_scale_factorNumber of tuple inserts updates or deletes prior to analyze as a
fraction of reltuples.

autovacuum_analyze_thresholdMinimum number of tuple inserts updates or deletes prior to
analyze.

autovacuum_freeze_max_age Static. Age at which to autovacuum a table to prevent transaction
ID wraparound.

autovacuum_max_workers Static. Sets the maximum number of simultaneously running
autovacuum worker processes.

autovacuum_multixact_freeze_max_ageStatic. Multixact age at which to autovacuum a table to prevent
multixact wraparound.

autovacuum_naptime (s) Time to sleep between autovacuum runs.

autovacuum_vacuum_cost_delay(ms) Vacuum cost delay in milliseconds for autovacuum.

autovacuum_vacuum_cost_limitVacuum cost amount available before napping for autovacuum.

autovacuum_vacuum_insert_scale_factorNumber of tuple inserts prior to vacuum as a fraction of reltuples.

autovacuum_vacuum_insert_thresholdMinimum number of tuple inserts prior to vacuum or -1 to disable
insert vacuums.

autovacuum_vacuum_scale_factorNumber of tuple updates or deletes prior to vacuum as a fraction of
reltuples.

autovacuum_vacuum_thresholdMinimum number of tuple updates or deletes prior to vacuum.

autovacuum_work_mem (kB) Sets the maximum memory to be used by each autovacuum
worker process.

1568

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL parameters

Parameter name Description

babelfishpg_tsql.default_localeStatic. Default locale to be used for collations created by CREATE
COLLATION.

babelfishpg_tds.port Static. Sets the TDS TCP port the server listens on.

babelfishpg_tds.tds_debug_log_levelSets logging level in TDS 0 disables logging

babelfishpg_tds.tds_default_numeric_precisionSets the default precision of numeric type to be sent in the TDS
column metadata if the engine does not specify one.

babelfishpg_tds.tds_default_numeric_scaleSets the default scale of numeric type to be sent in the TDS column
metadata if the engine does not specify one.

babelfishpg_tds.tds_default_packet_sizeSets the default packet size for all the SQL Server clients being
connected

babelfishpg_tds.tds_default_protocol_versionSets a default TDS protocol version for all the clients being
connected

babelfishpg_tds.tds_ssl_encryptSets the SSL Encryption option

babelfishpg_tds.tds_ssl_max_protocol_versionSets the maximum SSL/TLS protocol version to use for tds session.

babelfishpg_tds.tds_ssl_min_protocol_versionSets the minimum SSL/TLS protocol version to use for tds session.

babelfishpg_tsql.migration_modeStatic. Defines if multiple user databases are supported

backend_flush_after (8Kb) Number of pages after which previously performed writes are
flushed to disk.

backslash_quote Sets whether \\ is allowed in string literals.

bytea_output Sets the output format for bytea.

check_function_bodies Check function bodies during CREATE FUNCTION.

client_min_messages Sets the message levels that are sent to the client.

constraint_exclusion Enables the planner to use constraints to optimize queries.

cpu_index_tuple_cost Sets the planners estimate of the cost of processing each index
entry during an index scan.

cpu_operator_cost Sets the planners estimate of the cost of processing each operator
or function call.

cpu_tuple_cost Sets the planners estimate of the cost of processing each tuple
(row).

cron.log_run Static. Log all jobs runs into the job_run_details table

cron.log_statement Static. Log all cron statements prior to execution.

cron.max_running_jobs Static. Maximum number of jobs that can run concurrently.

cursor_tuple_fraction Sets the planners estimate of the fraction of a cursors rows that will
be retrieved.

db_user_namespace Enables per-database user names.

1569

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL parameters

Parameter name Description

deadlock_timeout (ms) Sets the time to wait on a lock before checking for deadlock.

debug_pretty_print Indents parse and plan tree displays.

debug_print_parse Logs each querys parse tree.

debug_print_plan Logs each querys execution plan.

debug_print_rewritten Logs each querys rewritten parse tree.

default_statistics_target Sets the default statistics target.

default_transaction_deferrableSets the default deferrable status of new transactions.

default_transaction_isolationSets the transaction isolation level of each new transaction.

default_transaction_read_onlySets the default read-only status of new transactions.

effective_cache_size (8kB) Sets the planners assumption about the size of the disk cache.

effective_io_concurrency Number of simultaneous requests that can be handled efficiently by
the disk subsystem.

enable_bitmapscan Enables the planners use of bitmap-scan plans.

enable_gathermerge Enables the planners use of gather merge plans.

enable_hashagg Enables the planners use of hashed aggregation plans.

enable_hashjoin Enables the planners use of hash join plans.

enable_incremental_sort Enables the planners use of incremental sort steps.

enable_indexonlyscan Enables the planners use of index-only-scan plans.

enable_indexscan Enables the planners use of index-scan plans.

enable_material Enables the planners use of materialization.

enable_mergejoin Enables the planners use of merge join plans.

enable_nestloop Enables the planners use of nested-loop join plans.

enable_parallel_append Enables the planners use of parallel append plans.

enable_parallel_hash Enables the planners user of parallel hash plans.

enable_partition_pruning Enable plan-time and run-time partition pruning.

enable_partitionwise_aggregateEnables partitionwise aggregation and grouping.

enable_partitionwise_join Enables partitionwise join.

enable_seqscan Enables the planners use of sequential-scan plans.

enable_sort Enables the planners use of explicit sort steps.

enable_tidscan Enables the planners use of TID scan plans.

escape_string_warning Warn about backslash escapes in ordinary string literals.

1570

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL parameters

Parameter name Description

exit_on_error Terminate session on any error.

extra_float_digits Sets the number of digits displayed for floating-point values.

force_parallel_mode Forces use of parallel query facilities.

from_collapse_limit Sets the FROM-list size beyond which subqueries are not collapsed.

geqo Enables genetic query optimization.

geqo_effort GEQO: effort is used to set the default for other GEQO parameters.

geqo_generations GEQO: number of iterations of the algorithm.

geqo_pool_size GEQO: number of individuals in the population.

geqo_seed GEQO: seed for random path selection.

geqo_selection_bias GEQO: selective pressure within the population.

geqo_threshold Sets the threshold of FROM items beyond which GEQO is used.

gin_fuzzy_search_limit Sets the maximum allowed result for exact search by GIN.

gin_pending_list_limit (kB) Sets the maximum size of the pending list for GIN index.

hash_mem_multiplier Multiple of work_mem to use for hash tables.

hot_standby_feedback Allows feedback from a hot standby to the primary that will avoid
query conflicts.

huge_pages Static. Use of huge pages on Linux.

idle_in_transaction_session_timeout(ms) Sets the maximum allowed duration of any idling transaction.

intervalstyle Sets the display format for interval values.

join_collapse_limit Sets the FROM-list size beyond which JOIN constructs are not
flattened.

lo_compat_privileges Enables backward compatibility mode for privilege checks on large
objects.

log_autovacuum_min_duration(ms) Sets the minimum execution time above which autovacuum
actions will be logged.

log_connections Logs each successful connection.

log_destination Sets the destination for server log output.

log_disconnections Logs end of a session including duration.

log_duration Logs the duration of each completed SQL statement.

log_error_verbosity Sets the verbosity of logged messages.

log_executor_stats Writes executor performance statistics to the server log.

log_filename Sets the file name pattern for log files.

log_hostname Logs the host name in the connection logs.

1571

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL parameters

Parameter name Description

log_lock_waits Logs long lock waits.

log_min_duration_sample (ms) Sets the minimum execution time above which a sample
of statements will be logged. Sampling is determined by
log_statement_sample_rate.

log_min_duration_statement (ms) Sets the minimum execution time above which statements will
be logged.

log_min_error_statement Causes all statements generating error at or above this level to be
logged.

log_min_messages Sets the message levels that are logged.

log_parameter_max_length (B) When logging statements limit logged parameter values to first
N bytes.

log_parameter_max_length_on_error(B) When reporting an error limit logged parameter values to first N
bytes.

log_parser_stats Writes parser performance statistics to the server log.

log_planner_stats Writes planner performance statistics to the server log.

log_replication_commands Logs each replication command.

log_rotation_age (min) Automatic log file rotation will occur after N minutes.

log_rotation_size (kB) Automatic log file rotation will occur after N kilobytes.

log_statement Sets the type of statements logged.

log_statement_sample_rate Fraction of statements exceeding log_min_duration_sample to be
logged.

log_statement_stats Writes cumulative performance statistics to the server log.

log_temp_files (kB) Log the use of temporary files larger than this number of
kilobytes.

log_transaction_sample_rateSet the fraction of transactions to log for new transactions.

log_truncate_on_rotation Truncate existing log files of same name during log rotation.

logging_collector Static. Start a subprocess to capture stderr output and/or csvlogs
into log files.

logical_decoding_work_mem (kB) This much memory can be used by each internal reorder buffer
before spilling to disk.

maintenance_io_concurrency A variant of effective_io_concurrency that is used for maintenance
work.

maintenance_work_mem (kB) Sets the maximum memory to be used for maintenance
operations.

max_connections Static. Sets the maximum number of concurrent connections.

max_files_per_process Static. Sets the maximum number of simultaneously open files for
each server process.

1572

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL parameters

Parameter name Description

max_locks_per_transaction Static. Sets the maximum number of locks per transaction.

max_logical_replication_workersStatic. Maximum number of logical replication worker processes.

max_parallel_maintenance_workersSets the maximum number of parallel processes per maintenance
operation.

max_parallel_workers Sets the maximum number of parallel workers than can be active at
one time.

max_parallel_workers_per_gatherSets the maximum number of parallel processes per executor node.

max_pred_locks_per_page Sets the maximum number of predicate-locked tuples per page.

max_pred_locks_per_relationSets the maximum number of predicate-locked pages and tuples
per relation.

max_pred_locks_per_transactionStatic. Sets the maximum number of predicate locks per
transaction.

max_prepared_transactions Static. Sets the maximum number of simultaneously prepared
transactions.

max_replication_slots Static. Sets the maximum number of replication slots that the
server can support.

max_slot_wal_keep_size (MB) Replication slots will be marked as failed and segments
released for deletion or recycling if this much space is occupied by
WAL on disk.

max_stack_depth (kB) Sets the maximum stack depth in kilobytes.

max_standby_streaming_delay(ms) Sets the maximum delay before canceling queries when a hot
standby server is processing streamed WAL data.

max_sync_workers_per_subscriptionMaximum number of synchronization workers per subscription

max_wal_senders Static. Sets the maximum number of simultaneously running WAL
sender processes.

max_worker_processes Static. Sets the maximum number of concurrent worker processes.

min_parallel_index_scan_size(8kB) Sets the minimum amount of index data for a parallel scan.

min_parallel_table_scan_size(8kB) Sets the minimum amount of table data for a parallel scan.

old_snapshot_threshold Static. (min) Time before a snapshot is too old to read pages
changed after the snapshot was taken.

operator_precedence_warningEmit a warning for constructs that changed meaning since
PostgreSQL 9.4.

parallel_leader_participationControls whether Gather and Gather Merge also run subplans.

parallel_setup_cost Sets the planners estimate of the cost of starting up worker
processes for parallel query.

parallel_tuple_cost Sets the planners estimate of the cost of passing each tuple (row)
from worker to master backend.

1573

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL parameters

Parameter name Description

password_encryption Encrypt passwords.

pg_bigm.enable_recheck It specifies whether to perform Recheck which is an internal process
of full text search.

pg_bigm.gin_key_limit It specifies the maximum number of 2-grams of the search keyword
to be used for full text search.

pg_hint_plan.debug_print Logs results of hint parsing.

pg_hint_plan.enable_hint Force planner to use plans specified in the hint comment preceding
to the query.

pg_hint_plan.enable_hint_tableForce planner to not get hint by using table lookups.

pg_hint_plan.message_level Message level of debug messages.

pg_hint_plan.parse_messagesMessage level of parse errors.

pg_prewarm.autoprewarm Starts the autoprewarm worker.

pg_prewarm.autoprewarm_intervalSets the interval between dumps of shared buffers

pg_stat_statements.max Static. Sets the maximum number of statements tracked by
pg_stat_statements.

pg_stat_statements.save Save pg_stat_statements statistics across server shutdowns.

pg_stat_statements.track Selects which statements are tracked by pg_stat_statements.

pg_stat_statements.track_planningSelects whether planning duration is tracked by
pg_stat_statements.

pg_stat_statements.track_utilitySelects whether utility commands are tracked by
pg_stat_statements.

pgaudit.log Specifies which classes of statements will be logged by session
audit logging.

pgaudit.log_catalog Specifies that session logging should be enabled in the case where
all relations in a statement are in pg_catalog.

pgaudit.log_level Specifies the log level that will be used for log entries.

pgaudit.log_parameter Specifies that audit logging should include the parameters that
were passed with the statement.

pgaudit.log_relation Specifies whether session audit logging should create a separate
log entry for each relation (TABLE VIEW etc.) referenced in a
SELECT or DML statement.

pgaudit.log_statement_once Specifies whether logging will include the statement text and
parameters with the first log entry for a statement/substatement
combination or with every entry.

pgaudit.role Specifies the master role to use for object audit logging.

pglogical.batch_inserts Static. Batch inserts if possible

pglogical.conflict_log_levelSets log level used for logging resolved conflicts.

1574

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL parameters

Parameter name Description

pglogical.conflict_resolutionSets method used for conflict resolution for resolvable conflicts.

pglogical.synchronous_commitStatic. pglogical specific synchronous commit value

pglogical.use_spi Use SPI instead of low-level API for applying changes

plan_cache_mode Controls the planner selection of custom or generic plan.

postgis.gdal_enabled_driversStatic. Enable or disable GDAL drivers used with PostGIS in Postgres
9.3.5 and above.

quote_all_identifiers When generating SQL fragments quote all identifiers.

random_page_cost Sets the planners estimate of the cost of a nonsequentially fetched
disk page.

rdkit.do_chiral_sss Should stereochemistry be taken into account in substructure
matching. If false no stereochemistry information is used in
substructure matches.

rds.adaptive_autovacuum RDS parameter to enable/disable adaptive autovacuum.

rds.babelfish_status Static. RDS parameter to enable/disable Babelfish for Aurora
PostgreSQL.

rds.enable_plan_management Static. Enable or disable the apg_plan_mgmt extension.

rds.force_admin_logging_levelSee log messages for RDS admin user actions in customer
databases.

rds.force_autovacuum_logging_levelSee log messages related to autovacuum operations.

rds.force_ssl Force SSL connections.

rds.global_db_rpo (s) Recovery point objective threshold in seconds that blocks user
commits when it is violated.

rds.log_retention_period Amazon RDS will delete PostgreSQL log that are older than N
minutes.

rds.logical_replication Static. Enables logical decoding.

rds.pg_stat_ramdisk_size Static. Size of the stats ramdisk in MB. A nonzero value will setup
the ramdisk.

rds.rds_superuser_reserved_connectionsStatic. Sets the number of connection slots reserved for
rds_superusers.

rds.restrict_password_commandsStatic. Restricts password-related commands to members of
rds_password

restart_after_crash Reinitialize server after backend crash.

row_security Enable row security.

seq_page_cost Sets the planners estimate of the cost of a sequentially fetched disk
page.

session_replication_role Sets the sessions behavior for triggers and rewrite rules.

1575

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL parameters

Parameter name Description

shared_buffers (8kB) Sets the number of shared memory buffers used by the
server.

shared_preload_libraries Static. Lists shared libraries to preload into server.

update_process_title Updates the process title to show the active SQL command.

vacuum_cleanup_index_scale_factorNumber of tuple inserts prior to index cleanup as a fraction of
reltuples.

vacuum_cost_delay (ms) Vacuum cost delay in milliseconds.

vacuum_cost_limit Vacuum cost amount available before napping.

vacuum_cost_page_dirty Vacuum cost for a page dirtied by vacuum.

vacuum_cost_page_hit Vacuum cost for a page found in the buffer cache.

vacuum_cost_page_miss Vacuum cost for a page not found in the buffer cache.

vacuum_defer_cleanup_age Number of transactions by which VACUUM and HOT cleanup should
be deferred if any.

vacuum_freeze_min_age Minimum age at which VACUUM should freeze a table row.

vacuum_freeze_table_age Age at which VACUUM should scan whole table to freeze tuples.

vacuum_multixact_freeze_min_ageMinimum age at which VACUUM should freeze a MultiXactId in a
table row.

vacuum_multixact_freeze_table_ageMultixact age at which VACUUM should scan whole table to freeze
tuples.

wal_buffers Static. (8kB) Sets the number of disk-page buffers in shared
memory for WAL.

wal_receiver_create_temp_slotSets whether a WAL receiver should create a temporary replication
slot if no permanent slot is configured.

wal_receiver_status_interval(s) Sets the maximum interval between WAL receiver status reports
to the primary.

wal_receiver_timeout (ms) Sets the maximum wait time to receive data from the primary.

wal_sender_timeout (ms) Sets the maximum time to wait for WAL replication.

work_mem (kB) Sets the maximum memory to be used for query workspaces.

1576

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL parameters

Aurora PostgreSQL instance-level parameters
The following table shows all of the parameters that apply to a specific DB instance in an Aurora
PostgreSQL DB cluster. This list was generated by running the describe-db-parameters AWS CLI
command with default.aurora-postgresql13 for the --db-parameter-group-name value.

Note
All parameters in the following table are dynamic unless otherwise noted in the description.

For a listing of the DB cluster parameters for the default Aurora parameter group, see Aurora PostgreSQL
cluster-level parameters (p. 1567).

Parameter name Description

apg_enable_batch_mode_function_executionEnables batch-mode functions to process sets of rows at a time.

apg_enable_correlated_any_transformEnables the planner to transform correlated ANY Sublink (IN/NOT
IN subquery) to JOIN when possible.

apg_enable_function_migrationEnables the planner to migrate eligible scalar functions to the
FROM clause.

apg_enable_not_in_transformEnables the planner to transform NOT IN subquery to ANTI JOIN
when possible.

apg_enable_remove_redundant_inner_joinsEnables the planner to remove redundant inner joins.

apg_enable_semijoin_push_downEnables the use of semijoin filters for hash joins.

apg_plan_mgmt.capture_plan_baselinesCapture plan baseline mode. manual - enable plan capture for
any SQL statement, off - disable plan capture, automatic - enable
plan capture for statements in pg_stat_statements that satisfy the
eligibility criteria.

apg_plan_mgmt.max_databasesStatic. Sets the maximum number of databases that may manage
queries using apg_plan_mgmt.

apg_plan_mgmt.max_plans Static. Sets the maximum number of plans that may be cached by
apg_plan_mgmt.

apg_plan_mgmt.plan_retention_periodStatic. Maximum number of days since a plan was last_used before
a plan will be automatically deleted.

apg_plan_mgmt.unapproved_plan_execution_thresholdEstimated total plan cost below which an Unapproved plan will be
executed.

apg_plan_mgmt.use_plan_baselinesUse only approved or fixed plans for managed statements.

application_name Sets the application name to be reported in statistics and logs.

authentication_timeout (s) Sets the maximum allowed time to complete client
authentication.

auto_explain.log_analyze Use EXPLAIN ANALYZE for plan logging.

auto_explain.log_buffers Log buffers usage.

auto_explain.log_format EXPLAIN format to be used for plan logging.

auto_explain.log_min_durationSets the minimum execution time above which plans will be logged.

1577

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-parameters.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL parameters

Parameter name Description

auto_explain.log_nested_statementsLog nested statements.

auto_explain.log_timing Collect timing data, not just row counts.

auto_explain.log_triggers Include trigger statistics in plans.

auto_explain.log_verbose Use EXPLAIN VERBOSE for plan logging.

auto_explain.sample_rate Fraction of queries to process.

babelfishpg_tds.listen_addressesStatic. Sets the host name or IP address(es) to listen TDS to.

babelfishpg_tds.tds_debug_log_levelSets logging level in TDS, 0 disables logging

backend_flush_after (8Kb) Number of pages after which previously performed writes are
flushed to disk.

bytea_output Sets the output format for bytea.

check_function_bodies Check function bodies during CREATE FUNCTION.

client_min_messages Sets the message levels that are sent to the client.

config_file Static. Sets the servers main configuration file.

constraint_exclusion Enables the planner to use constraints to optimize queries.

cpu_index_tuple_cost Sets the planners estimate of the cost of processing each index
entry during an index scan.

cpu_operator_cost Sets the planners estimate of the cost of processing each operator
or function call.

cpu_tuple_cost Sets the planners estimate of the cost of processing each tuple
(row).

cron.database_name Static. Sets the database to store pg_cron metadata tables

cron.log_run Static. Log all jobs runs into the job_run_details table

cron.log_statement Static. Log all cron statements prior to execution.

cron.max_running_jobs Static. Maximum number of jobs that can run concurrently.

cron.use_background_workersStatic. Enables background workers for pg_cron

cursor_tuple_fraction Sets the planners estimate of the fraction of a cursors rows that will
be retrieved.

db_user_namespace Enables per-database user names.

deadlock_timeout (ms) Sets the time to wait on a lock before checking for deadlock.

debug_pretty_print Indents parse and plan tree displays.

debug_print_parse Logs each querys parse tree.

debug_print_plan Logs each querys execution plan.

debug_print_rewritten Logs each querys rewritten parse tree.

1578

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL parameters

Parameter name Description

default_statistics_target Sets the default statistics target.

default_transaction_deferrableSets the default deferrable status of new transactions.

default_transaction_isolationSets the transaction isolation level of each new transaction.

default_transaction_read_onlySets the default read-only status of new transactions.

effective_cache_size (8kB) Sets the planners assumption about the size of the disk cache.

effective_io_concurrency Number of simultaneous requests that can be handled efficiently by
the disk subsystem.

enable_bitmapscan Enables the planners use of bitmap-scan plans.

enable_gathermerge Enables the planners use of gather merge plans.

enable_hashagg Enables the planners use of hashed aggregation plans.

enable_hashjoin Enables the planners use of hash join plans.

enable_incremental_sort Enables the planners use of incremental sort steps.

enable_indexonlyscan Enables the planners use of index-only-scan plans.

enable_indexscan Enables the planners use of index-scan plans.

enable_material Enables the planners use of materialization.

enable_mergejoin Enables the planners use of merge join plans.

enable_nestloop Enables the planners use of nested-loop join plans.

enable_parallel_append Enables the planners use of parallel append plans.

enable_parallel_hash Enables the planners user of parallel hash plans.

enable_partition_pruning Enable plan-time and run-time partition pruning.

enable_partitionwise_aggregateEnables partitionwise aggregation and grouping.

enable_partitionwise_join Enables partitionwise join.

enable_seqscan Enables the planners use of sequential-scan plans.

enable_sort Enables the planners use of explicit sort steps.

enable_tidscan Enables the planners use of TID scan plans.

escape_string_warning Warn about backslash escapes in ordinary string literals.

exit_on_error Terminate session on any error.

force_parallel_mode Forces use of parallel query facilities.

from_collapse_limit Sets the FROM-list size beyond which subqueries are not collapsed.

geqo Enables genetic query optimization.

geqo_effort GEQO: effort is used to set the default for other GEQO parameters.

1579

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL parameters

Parameter name Description

geqo_generations GEQO: number of iterations of the algorithm.

geqo_pool_size GEQO: number of individuals in the population.

geqo_seed GEQO: seed for random path selection.

geqo_selection_bias GEQO: selective pressure within the population.

geqo_threshold Sets the threshold of FROM items beyond which GEQO is used.

gin_fuzzy_search_limit Sets the maximum allowed result for exact search by GIN.

gin_pending_list_limit (kB) Sets the maximum size of the pending list for GIN index.

hash_mem_multiplier Multiple of work_mem to use for hash tables.

hba_file Static. Sets the servers hba configuration file.

hot_standby_feedback Allows feedback from a hot standby to the primary that will avoid
query conflicts.

ident_file Static. Sets the servers ident configuration file.

idle_in_transaction_session_timeout(ms) Sets the maximum allowed duration of any idling transaction.

join_collapse_limit Sets the FROM-list size beyond which JOIN constructs are not
flattened.

lc_messages Sets the language in which messages are displayed.

listen_addresses Static. Sets the host name or IP address(es) to listen to.

lo_compat_privileges Enables backward compatibility mode for privilege checks on large
objects.

log_connections Logs each successful connection.

log_destination Sets the destination for server log output.

log_directory Sets the destination directory for log files.

log_disconnections Logs end of a session, including duration.

log_duration Logs the duration of each completed SQL statement.

log_error_verbosity Sets the verbosity of logged messages.

log_executor_stats Writes executor performance statistics to the server log.

log_file_mode Sets the file permissions for log files.

log_filename Sets the file name pattern for log files.

logging_collector Static. Start a subprocess to capture stderr output and/or csvlogs
into log files.

log_hostname Logs the host name in the connection logs.

logical_decoding_work_mem (kB) This much memory can be used by each internal reorder buffer
before spilling to disk.

1580

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL parameters

Parameter name Description

log_line_prefix Controls information prefixed to each log line.

log_lock_waits Logs long lock waits.

log_min_duration_sample (ms) Sets the minimum execution time above which a sample
of statements will be logged. Sampling is determined by
log_statement_sample_rate.

log_min_duration_statement (ms) Sets the minimum execution time above which statements will
be logged.

log_min_error_statement Causes all statements generating error at or above this level to be
logged.

log_min_messages Sets the message levels that are logged.

log_parameter_max_length (B) When logging statements, limit logged parameter values to first
N bytes.

log_parameter_max_length_on_error(B) When reporting an error, limit logged parameter values to first
N bytes.

log_parser_stats Writes parser performance statistics to the server log.

log_planner_stats Writes planner performance statistics to the server log.

log_replication_commands Logs each replication command.

log_rotation_age (min) Automatic log file rotation will occur after N minutes.

log_rotation_size (kB) Automatic log file rotation will occur after N kilobytes.

log_statement Sets the type of statements logged.

log_statement_sample_rate Fraction of statements exceeding log_min_duration_sample to be
logged.

log_statement_stats Writes cumulative performance statistics to the server log.

log_temp_files (kB) Log the use of temporary files larger than this number of
kilobytes.

log_timezone Sets the time zone to use in log messages.

log_truncate_on_rotation Truncate existing log files of same name during log rotation.

maintenance_io_concurrency A variant of effective_io_concurrency that is used for maintenance
work.

maintenance_work_mem (kB) Sets the maximum memory to be used for maintenance
operations.

max_connections Static. Sets the maximum number of concurrent connections.

max_files_per_process Static. Sets the maximum number of simultaneously open files for
each server process.

max_locks_per_transaction Static. Sets the maximum number of locks per transaction.

1581

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL parameters

Parameter name Description

max_parallel_maintenance_workersSets the maximum number of parallel processes per maintenance
operation.

max_parallel_workers Sets the maximum number of parallel workers than can be active at
one time.

max_parallel_workers_per_gatherSets the maximum number of parallel processes per executor node.

max_pred_locks_per_page Sets the maximum number of predicate-locked tuples per page.

max_pred_locks_per_relationSets the maximum number of predicate-locked pages and tuples
per relation.

max_pred_locks_per_transactionStatic. Sets the maximum number of predicate locks per
transaction.

max_slot_wal_keep_size (MB) Replication slots will be marked as failed, and segments
released for deletion or recycling, if this much space is occupied by
WAL on disk.

max_stack_depth (kB) Sets the maximum stack depth, in kilobytes.

max_standby_streaming_delay(ms) Sets the maximum delay before canceling queries when a hot
standby server is processing streamed WAL data.

max_worker_processes Static. Sets the maximum number of concurrent worker processes.

min_parallel_index_scan_size(8kB) Sets the minimum amount of index data for a parallel scan.

min_parallel_table_scan_size(8kB) Sets the minimum amount of table data for a parallel scan.

old_snapshot_threshold Static. (min) Time before a snapshot is too old to read pages
changed after the snapshot was taken.

operator_precedence_warningEmit a warning for constructs that changed meaning since
PostgreSQL 9.4.

parallel_leader_participationControls whether Gather and Gather Merge also run subplans.

parallel_setup_cost Sets the planners estimate of the cost of starting up worker
processes for parallel query.

parallel_tuple_cost Sets the planners estimate of the cost of passing each tuple (row)
from worker to master backend.

pgaudit.log Specifies which classes of statements will be logged by session
audit logging.

pgaudit.log_catalog Specifies that session logging should be enabled in the case where
all relations in a statement are in pg_catalog.

pgaudit.log_level Specifies the log level that will be used for log entries.

pgaudit.log_parameter Specifies that audit logging should include the parameters that
were passed with the statement.

pgaudit.log_relation Specifies whether session audit logging should create a separate
log entry for each relation (TABLE, VIEW, etc.) referenced in a
SELECT or DML statement.

1582

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL parameters

Parameter name Description

pgaudit.log_statement_once Specifies whether logging will include the statement text and
parameters with the first log entry for a statement/substatement
combination or with every entry.

pgaudit.role Specifies the master role to use for object audit logging.

pg_bigm.enable_recheck It specifies whether to perform Recheck which is an internal process
of full text search.

pg_bigm.gin_key_limit It specifies the maximum number of 2-grams of the search keyword
to be used for full text search.

pg_bigm.last_update Static. It reports the last updated date of the pg_bigm module.

pg_bigm.similarity_limit It specifies the minimum threshold used by the similarity search.

pg_hint_plan.debug_print Logs results of hint parsing.

pg_hint_plan.enable_hint Force planner to use plans specified in the hint comment preceding
to the query.

pg_hint_plan.enable_hint_tableForce planner to not get hint by using table lookups.

pg_hint_plan.message_level Message level of debug messages.

pg_hint_plan.parse_messagesMessage level of parse errors.

pglogical.batch_inserts Static. Batch inserts if possible

pglogical.conflict_log_levelSets log level used for logging resolved conflicts.

pglogical.conflict_resolutionSets method used for conflict resolution for resolvable conflicts.

pglogical.extra_connection_optionsconnection options to add to all peer node connections

pglogical.synchronous_commitStatic. pglogical specific synchronous commit value

pglogical.use_spi Static. Use SPI instead of low-level API for applying changes

pg_similarity.block_is_normalizedSets if the result value is normalized or not.

pg_similarity.block_thresholdSets the threshold used by the Block similarity function.

pg_similarity.block_tokenizerSets the tokenizer for Block similarity function.

pg_similarity.cosine_is_normalizedSets if the result value is normalized or not.

pg_similarity.cosine_thresholdSets the threshold used by the Cosine similarity function.

pg_similarity.cosine_tokenizerSets the tokenizer for Cosine similarity function.

pg_similarity.dice_is_normalizedSets if the result value is normalized or not.

pg_similarity.dice_thresholdSets the threshold used by the Dice similarity measure.

pg_similarity.dice_tokenizerSets the tokenizer for Dice similarity measure.

pg_similarity.euclidean_is_normalizedSets if the result value is normalized or not.

pg_similarity.euclidean_thresholdSets the threshold used by the Euclidean similarity measure.

1583

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL parameters

Parameter name Description

pg_similarity.euclidean_tokenizerSets the tokenizer for Euclidean similarity measure.

pg_similarity.hamming_is_normalizedSets if the result value is normalized or not.

pg_similarity.hamming_thresholdSets the threshold used by the Block similarity metric.

pg_similarity.jaccard_is_normalizedSets if the result value is normalized or not.

pg_similarity.jaccard_thresholdSets the threshold used by the Jaccard similarity measure.

pg_similarity.jaccard_tokenizerSets the tokenizer for Jaccard similarity measure.

pg_similarity.jaro_is_normalizedSets if the result value is normalized or not.

pg_similarity.jaro_thresholdSets the threshold used by the Jaro similarity measure.

pg_similarity.jarowinkler_is_normalizedSets if the result value is normalized or not.

pg_similarity.jarowinkler_thresholdSets the threshold used by the Jarowinkler similarity measure.

pg_similarity.levenshtein_is_normalizedSets if the result value is normalized or not.

pg_similarity.levenshtein_thresholdSets the threshold used by the Levenshtein similarity measure.

pg_similarity.matching_is_normalizedSets if the result value is normalized or not.

pg_similarity.matching_thresholdSets the threshold used by the Matching Coefficient similarity
measure.

pg_similarity.matching_tokenizerSets the tokenizer for Matching Coefficient similarity measure.

pg_similarity.mongeelkan_is_normalizedSets if the result value is normalized or not.

pg_similarity.mongeelkan_thresholdSets the threshold used by the Monge-Elkan similarity measure.

pg_similarity.mongeelkan_tokenizerSets the tokenizer for Monge-Elkan similarity measure.

pg_similarity.nw_gap_penaltySets the gap penalty used by the Needleman-Wunsch similarity
measure.

pg_similarity.nw_is_normalizedSets if the result value is normalized or not.

pg_similarity.nw_threshold Sets the threshold used by the Needleman-Wunsch similarity
measure.

pg_similarity.overlap_is_normalizedSets if the result value is normalized or not.

pg_similarity.overlap_thresholdSets the threshold used by the Overlap Coefficient similarity
measure.

pg_similarity.overlap_tokenizerSets the tokenizer for Overlap Coefficientsimilarity measure.

pg_similarity.qgram_is_normalizedSets if the result value is normalized or not.

pg_similarity.qgram_thresholdSets the threshold used by the Q-Gram similarity measure.

pg_similarity.qgram_tokenizerSets the tokenizer for Q-Gram measure.

pg_similarity.swg_is_normalizedSets if the result value is normalized or not.

1584

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL parameters

Parameter name Description

pg_similarity.swg_thresholdSets the threshold used by the Smith-Waterman-Gotoh similarity
measure.

pg_similarity.sw_is_normalizedSets if the result value is normalized or not.

pg_similarity.sw_threshold Sets the threshold used by the Smith-Waterman similarity measure.

pg_stat_statements.max Sets the maximum number of statements tracked by
pg_stat_statements.

pg_stat_statements.save Save pg_stat_statements statistics across server shutdowns.

pg_stat_statements.track Selects which statements are tracked by pg_stat_statements.

pg_stat_statements.track_planningSelects whether planning duration is tracked by
pg_stat_statements.

pg_stat_statements.track_utilitySelects whether utility commands are tracked by
pg_stat_statements.

postgis.gdal_enabled_driversEnable or disable GDAL drivers used with PostGIS in Postgres 9.3.5
and above.

quote_all_identifiers When generating SQL fragments, quote all identifiers.

random_page_cost Sets the planners estimate of the cost of a nonsequentially fetched
disk page.

rds.force_admin_logging_levelSee log messages for RDS admin user actions in customer
databases.

rds.log_retention_period Amazon RDS will delete PostgreSQL log that are older than N
minutes.

rds.pg_stat_ramdisk_size Size of the stats ramdisk in MB. A nonzero value will setup the
ramdisk.

rds.rds_superuser_reserved_connectionsSets the number of connection slots reserved for rds_superusers.

rds.superuser_variables List of superuser-only variables for which we elevate rds_superuser
modification statements.

restart_after_crash Reinitialize server after backend crash.

row_security Enable row security.

search_path Sets the schema search order for names that are not schema-
qualified.

seq_page_cost Sets the planners estimate of the cost of a sequentially fetched disk
page.

session_replication_role Sets the sessions behavior for triggers and rewrite rules.

shared_buffers (8kB) Sets the number of shared memory buffers used by the
server.

shared_preload_libraries Lists shared libraries to preload into server.

ssl_ca_file Location of the SSL server authority file.

1585

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL parameters

Parameter name Description

ssl_cert_file Location of the SSL server certificate file.

ssl_key_file Location of the SSL server private key file

standard_conforming_stringsCauses ... strings to treat backslashes literally.

statement_timeout (ms) Sets the maximum allowed duration of any statement.

stats_temp_directory Writes temporary statistics files to the specified directory.

superuser_reserved_connectionsStatic. Sets the number of connection slots reserved for superusers.

synchronize_seqscans Enable synchronized sequential scans.

tcp_keepalives_count Maximum number of TCP keepalive retransmits.

tcp_keepalives_idle (s) Time between issuing TCP keepalives.

tcp_keepalives_interval (s) Time between TCP keepalive retransmits.

temp_buffers (8kB) Sets the maximum number of temporary buffers used by each
session.

temp_file_limit Constrains the total amount disk space in kilobytes that a given
PostgreSQL process can use for temporary files, excluding space
used for explicit temporary tables

temp_tablespaces Sets the tablespace(s) to use for temporary tables and sort files.

track_activities Collects information about executing commands.

track_activity_query_size Static. Sets the size reserved for pg_stat_activity.current_query, in
bytes.

track_counts Collects statistics on database activity.

track_functions Collects function-level statistics on database activity.

track_io_timing Collects timing statistics on database IO activity.

transform_null_equals Treats expr=NULL as expr IS NULL.

update_process_title Updates the process title to show the active SQL command.

vacuum_cleanup_index_scale_factorNumber of tuple inserts prior to index cleanup as a fraction of
reltuples.

wal_receiver_status_interval(s) Sets the maximum interval between WAL receiver status reports
to the primary.

work_mem (kB) Sets the maximum memory to be used for query workspaces.

xmlbinary Sets how binary values are to be encoded in XML.

xmloption Sets whether XML data in implicit parsing and serialization
operations is to be considered as documents or content fragments.

1586

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL wait events

Amazon Aurora PostgreSQL wait events
The following are common wait events for Aurora PostgreSQL.

Activity:ArchiverMain

The archiver process is waiting for activity.

Activity:AutoVacuumMain

The autovacuum launcher process is waiting for activity.

Activity:BgWriterHibernate

The background writer process is hibernating while waiting for activity.

Activity:BgWriterMain

The background writer process is waiting for activity.

Activity:CheckpointerMain

The checkpointer process is waiting for activity.

Activity:LogicalApplyMain

The logical replication apply process is waiting for activity.

Activity:LogicalLauncherMain

The logical replication launcher process is waiting for activity.

Activity:PgStatMain

The statistics collector process is waiting for activity.

Activity:RecoveryWalAll

A process is waiting for the write-ahead log (WAL) from a stream at recovery.

Activity:RecoveryWalStream

The startup process is waiting for the write-ahead log (WAL) to arrive during streaming recovery.

Activity:SysLoggerMain

The syslogger process is waiting for activity.

Activity:WalReceiverMain

The write-ahead log (WAL) receiver process is waiting for activity.

Activity:WalSenderMain

The write-ahead log (WAL) sender process is waiting for activity.

Activity:WalWriterMain

The write-ahead log (WAL) writer process is waiting for activity.

BufferPin:BufferPin

A process is waiting to acquire an exclusive pin on a buffer.

Client:GSSOpenServer

A process is waiting to read data from the client while establishing a Generic Security Service
Application Program Interface (GSSAPI) session.

1587

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL wait events

Client:ClientRead

A backend process is waiting to receive data from a PostgreSQL client. For more information, see
Client:ClientRead (p. 1398).

Client:ClientWrite

A backend process is waiting to send more data to a PostgreSQL client. For more information, see
Client:ClientWrite (p. 1401).

Client:LibPQWalReceiverConnect

A process is waiting in the write-ahead log (WAL) receiver to establish connection to remote server.
Client:LibPQWalReceiverReceive

A process is waiting in the write-ahead log (WAL) receiver to receive data from remote server.
Client:SSLOpenServer

A process is waiting for Secure Sockets Layer (SSL) while attempting connection.
Client:WalReceiverWaitStart

A process is waiting for startup process to send initial data for streaming replication.
Client:WalSenderWaitForWAL

A process is waiting for the write-ahead log (WAL) to be flushed in the WAL sender process.
Client:WalSenderWriteData

A process is waiting for any activity when processing replies from the write-ahead log (WAL) receiver
in the WAL sender process.

CPU

A backend process is active in or is waiting for CPU. For more information, see CPU (p. 1402).
Extension:extension

A backend process is waiting for a condition defined by an extension or module.
IO:AuroraStorageLogAllocate

A session is allocating metadata and preparing for a transaction log write.
IO:BufFileRead

When operations require more memory than the amount defined by working memory parameters,
the engine creates temporary files on disk. This wait event occurs when operations read from the
temporary files. For more information, see IO:BufFileRead and IO:BufFileWrite (p. 1406).

IO:BufFileWrite

When operations require more memory than the amount defined by working memory parameters,
the engine creates temporary files on disk. This wait event occurs when operations write to the
temporary files. For more information, see IO:BufFileRead and IO:BufFileWrite (p. 1406).

IO:ControlFileRead

A process is waiting for a read from the pg_control file.
IO:ControlFileSync

A process is waiting for the pg_control file to reach durable storage.
IO:ControlFileSyncUpdate

A process is waiting for an update to the pg_control file to reach durable storage.

1588

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL wait events

IO:ControlFileWrite

A process is waiting for a write to the pg_control file.
IO:ControlFileWriteUpdate

A process is waiting for a write to update the pg_control file.
IO:CopyFileRead

A process is waiting for a read during a file copy operation.
IO:CopyFileWrite

A process is waiting for a write during a file copy operation.
IO:DataFileExtend

A process is waiting for a relation data file to be extended.
IO:DataFileFlush

A process is waiting for a relation data file to reach durable storage.
IO:DataFileImmediateSync

A process is waiting for an immediate synchronization of a relation data file to durable storage.
IO:DataFilePrefetch

A process is waiting for an asynchronous prefetch from a relation data file.
IO:DataFileSync

A process is waiting for changes to a relation data file to reach durable storage.
IO:DataFileRead

A backend process tried to find a page in the shared buffers, didn't find it, and so read it from
storage. For more information, see IO:DataFileRead (p. 1412).

IO:DataFileTruncate

A process is waiting for a relation data file to be truncated.
IO:DataFileWrite

A process is waiting for a write to a relation data file.
IO:DSMFillZeroWrite

A process is waiting to write zero bytes to a dynamic shared memory backing file.
IO:LockFileAddToDataDirRead

A process is waiting for a read while adding a line to the data directory lock file.
IO:LockFileAddToDataDirSync

A process is waiting for data to reach durable storage while adding a line to the data directory lock
file.

IO:LockFileAddToDataDirWrite

A process is waiting for a write while adding a line to the data directory lock file.
IO:LockFileCreateRead

A process is waiting to read while creating the data directory lock file.
IO:LockFileCreateSync

A process is waiting for data to reach durable storage while creating the data directory lock file.

1589

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL wait events

IO:LockFileCreateWrite

A process is waiting for a write while creating the data directory lock file.
IO:LockFileReCheckDataDirRead

A process is waiting for a read during recheck of the data directory lock file.
IO:LogicalRewriteCheckpointSync

A process is waiting for logical rewrite mappings to reach durable storage during a checkpoint.
IO:LogicalRewriteMappingSync

A process is waiting for mapping data to reach durable storage during a logical rewrite.
IO:LogicalRewriteMappingWrite

A process is waiting for a write of mapping data during a logical rewrite.
IO:LogicalRewriteSync

A process is waiting for logical rewrite mappings to reach durable storage.
IO:LogicalRewriteTruncate

A process is waiting for the truncation of mapping data during a logical rewrite.
IO:LogicalRewriteWrite

A process is waiting for a write of logical rewrite mappings.
IO:RelationMapRead

A process is waiting for a read of the relation map file.
IO:RelationMapSync

A process is waiting for the relation map file to reach durable storage.
IO:RelationMapWrite

A process is waiting for a write to the relation map file.
IO:ReorderBufferRead

A process is waiting for a read during reorder buffer management.
IO:ReorderBufferWrite

A process is waiting for a write during reorder buffer management.
IO:ReorderLogicalMappingRead

A process is waiting for a read of a logical mapping during reorder buffer management.
IO:ReplicationSlotRead

A process is waiting for a read from a replication slot control file.
IO:ReplicationSlotRestoreSync

A process is waiting for a replication slot control file to reach durable storage while restoring it to
memory.

IO:ReplicationSlotSync

A process is waiting for a replication slot control file to reach durable storage.
IO:ReplicationSlotWrite

A process is waiting for a write to a replication slot control file.

1590

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL wait events

IO:SLRUFlushSync

A process is waiting for segmented least-recently used (SLRU) data to reach durable storage during a
checkpoint or database shutdown.

IO:SLRURead

A process is waiting for a read of a segmented least-recently used (SLRU) page.

IO:SLRUSync

A process is waiting for segmented least-recently used (SLRU) data to reach durable storage
following a page write.

IO:SLRUWrite

A process is waiting for a write of a segmented least-recently used (SLRU) page.

IO:SnapbuildRead

A process is waiting for a read of a serialized historical catalog snapshot.

IO:SnapbuildSync

A process is waiting for a serialized historical catalog snapshot to reach durable storage.

IO:SnapbuildWrite

A process is waiting for a write of a serialized historical catalog snapshot.

IO:TimelineHistoryFileSync

A process is waiting for a timeline history file received through streaming replication to reach
durable storage.

IO:TimelineHistoryFileWrite

A process is waiting for a write of a timeline history file received through streaming replication.

IO:TimelineHistoryRead

A process is waiting for a read of a timeline history file.

IO:TimelineHistorySync

A process is waiting for a newly created timeline history file to reach durable storage.

IO:TimelineHistoryWrite

A process is waiting for a write of a newly created timeline history file.

IO:TwophaseFileRead

A process is waiting for a read of a two phase state file.

IO:TwophaseFileSync

A process is waiting for a two phase state file to reach durable storage.

IO:TwophaseFileWrite

A process is waiting for a write of a two phase state file.

IO:WALBootstrapSync

A process is waiting for the write-ahead log (WAL) to reach durable storage during bootstrapping.

IO:WALBootstrapWrite

A process is waiting for a write of a write-ahead log (WAL) page during bootstrapping.

1591

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL wait events

IO:WALCopyRead

A process is waiting for a read when creating a new write-ahead log (WAL) segment by copying an
existing one.

IO:WALCopySync

A process is waiting for a new write-ahead log (WAL) segment created by copying an existing one to
reach durable storage.

IO:WALCopyWrite

A process is waiting for a write when creating a new write-ahead log (WAL) segment by copying an
existing one.

IO:WALInitSync

A process is waiting for a newly initialized write-ahead log (WAL) file to reach durable storage.
IO:WALInitWrite

A process is waiting for a write while initializing a new write-ahead log (WAL) file.
IO:WALRead

A process is waiting for a read from a write-ahead log (WAL) file.
IO:WALSenderTimelineHistoryRead

A process is waiting for a read from a timeline history file during a WAL sender timeline command.
IO:WALSync

A process is waiting for a write-ahead log (WAL) file to reach durable storage.
IO:WALSyncMethodAssign

A process is waiting for data to reach durable storage while assigning a new write-ahead log (WAL)
sync method.

IO:WALWrite

A process is waiting for a write to a write-ahead log (WAL) file.
IO:XactSync

A backend process is waiting for the Aurora storage subsystem to acknowledge the commit of a
regular transaction, or the commit or rollback of a prepared transaction. For more information, see
IO:XactSync (p. 1418).

IPC:BackupWaitWalArchive

A process is waiting for write-ahead log (WAL) files required for a backup to be successfully archived.
IPC:BgWorkerShutdown

A process is waiting for a background worker to shut down.
IPC:BgWorkerStartup

A process is waiting for a background worker to start.
IPC:BtreePage

A process is waiting for the page number needed to continue a parallel B-tree scan to become
available.

IPC:CheckpointDone

A process is waiting for a checkpoint to complete.

1592

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL wait events

IPC:CheckpointStart

A process is waiting for a checkpoint to start.
IPC:ClogGroupUpdate

A process is waiting for the group leader to update the transaction status at a transaction's end.
pc:damrecordtxack

A backend process has generated a database activity streams event and is waiting for the event to
become durable. For more information, see ipc:damrecordtxack (p. 1420).

IPC:ExecuteGather

A process is waiting for activity from a child process while executing a Gather plan node.
IPC:Hash/Batch/Allocating

A process is waiting for an elected parallel hash participant to allocate a hash table.
IPC:Hash/Batch/Electing

A process is electing a parallel hash participant to allocate a hash table.
IPC:Hash/Batch/Loading

A process is waiting for other parallel hash participants to finish loading a hash table.
IPC:Hash/Build/Allocating

A process is waiting for an elected parallel hash participant to allocate the initial hash table.
IPC:Hash/Build/Electing

A process is electing a parallel hash participant to allocate the initial hash table.
IPC:Hash/Build/HashingInner

A process is waiting for other parallel hash participants to finish hashing the inner relation.
IPC:Hash/Build/HashingOuter

A process is waiting for other parallel hash participants to finish partitioning the outer relation.
IPC:Hash/GrowBatches/Allocating

A process is waiting for an elected parallel hash participant to allocate more batches.
IPC:Hash/GrowBatches/Deciding

A process is electing a parallel hash participant to decide on future batch growth.
IPC:Hash/GrowBatches/Electing

A process is electing a parallel hash participant to allocate more batches.
IPC:Hash/GrowBatches/Finishing

A process is waiting for an elected parallel hash participant to decide on future batch growth.
IPC:Hash/GrowBatches/Repartitioning

A process is waiting for other parallel hash participants to finishing repartitioning.
IPC:Hash/GrowBuckets/Allocating

A process is waiting for an elected parallel hash participant to finish allocating more buckets.
IPC:Hash/GrowBuckets/Electing

A process is electing a parallel hash participant to allocate more buckets.

1593

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL wait events

IPC:Hash/GrowBuckets/Reinserting

A process is waiting for other parallel hash participants to finish inserting tuples into new buckets.
IPC:HashBatchAllocate

A process is waiting for an elected parallel hash participant to allocate a hash table.
IPC:HashBatchElect

A process is waiting to elect a parallel hash participant to allocate a hash table.
IPC:HashBatchLoad

A process is waiting for other parallel hash participants to finish loading a hash table.
IPC:HashBuildAllocate

A process is waiting for an elected parallel hash participant to allocate the initial hash table.
IPC:HashBuildElect

A process is waiting to elect a parallel hash participant to allocate the initial hash table.
IPC:HashBuildHashInner

A process is waiting for other parallel hash participants to finish hashing the inner relation.
IPC:'HashBuildHashOuter

A process is waiting for other parallel hash participants to finish partitioning the outer relation.
IPC:HashGrowBatchesAllocate

A process is waiting for an elected parallel hash participant to allocate more batches.
IPC:'HashGrowBatchesDecide

A process is waiting to elect a parallel hash participant to decide on future batch growth.
IPC:HashGrowBatchesElect

A process is waiting to elect a parallel hash participant to allocate more batches.
IPC:HashGrowBatchesFinish

A process is waiting for an elected parallel hash participant to decide on future batch growth.
IPC:HashGrowBatchesRepartition

A process is waiting for other parallel hash participants to finish repartitioning.
IPC:HashGrowBucketsAllocate

A process is waiting for an elected parallel hash participant to finish allocating more buckets.
IPC:HashGrowBucketsElect

A process is waiting to elect a parallel hash participant to allocate more buckets.
IPC:HashGrowBucketsReinsert

A process is waiting for other parallel hash participants to finish inserting tuples into new buckets.
IPC:LogicalSyncData

A process is waiting for a logical replication remote server to send data for initial table
synchronization.

IPC:LogicalSyncStateChange

A process is waiting for a logical replication remote server to change state.

1594

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL wait events

IPC:MessageQueueInternal

A process is waiting for another process to be attached to a shared message queue.
IPC:MessageQueuePutMessage

A process is waiting to write a protocol message to a shared message queue.
IPC:MessageQueueReceive

A process is waiting to receive bytes from a shared message queue.
IPC:MessageQueueSend

A process is waiting to send bytes to a shared message queue.
IPC:ParallelBitmapScan

A process is waiting for a parallel bitmap scan to become initialized.
IPC:ParallelCreateIndexScan

A process is waiting for parallel CREATE INDEX workers to finish a heap scan.
IPC:ParallelFinish

A process is waiting for parallel workers to finish computing.
IPC:ProcArrayGroupUpdate

A process is waiting for the group leader to clear the transaction ID at the end of a parallel
operation.

IPC:ProcSignalBarrier

A process is waiting for a barrier event to be processed by all backends.
IPC:Promote

A process is waiting for standby promotion.
IPC:RecoveryConflictSnapshot

A process is waiting for recovery conflict resolution for a vacuum cleanup.
IPC:RecoveryConflictTablespace

A process is waiting for recovery conflict resolution for dropping a tablespace.
IPC:RecoveryPause

A process is waiting for recovery to be resumed.
IPC:ReplicationOriginDrop

A process is waiting for a replication origin to become inactive so it can be dropped.
IPC:ReplicationSlotDrop

A process is waiting for a replication slot to become inactive so it can be dropped.
IPC:SafeSnapshot

A process is waiting to obtain a valid snapshot for a READ ONLY DEFERRABLE transaction.
IPC:SyncRep

A process is waiting for confirmation from a remote server during synchronous replication.
IPC:XactGroupUpdate

A process is waiting for the group leader to update the transaction status at the end of a parallel
operation.

1595

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL wait events

Lock:advisory

A backend process requested an advisory lock and is waiting for it. For more information, see
Lock:advisory (p. 1420).

Lock:extend

A backend process is waiting for a lock to be released so that it can extend a relation. This lock is
needed because only one backend process can extend a relation at a time. For more information, see
Lock:extend (p. 1422).

Lock:frozenid

A process is waiting to update pg_database.datfrozenxid and pg_database.datminmxid.
Lock:object

A process is waiting to get a lock on a nonrelation database object.
Lock:page

A process is waiting to get a lock on a page of a relation.
Lock:Relation

A backend process is waiting to acquire a lock on a relation that is locked by another transaction. For
more information, see Lock:Relation (p. 1424).

Lock:spectoken

A process is waiting to get a speculative insertion lock.
Lock:speculative token

A process is waiting to acquire a speculative insertion lock.
Lock:transactionid

A transaction is waiting for a row-level lock. For more information, see Lock:transactionid (p. 1427).
Lock:tuple

A backend process is waiting to acquire a lock on a tuple while another backend process holds a
conflicting lock on the same tuple. For more information, see Lock:tuple (p. 1430).

Lock:userlock

A process is waiting to get a user lock.
Lock:virtualxid

A process is waiting to get a virtual transaction ID lock.
Lwlock:AddinShmemInit

A process is waiting to manage an extension's space allocation in shared memory.
Lwlock:AddinShmemInitLock

A process is waiting to manage space allocation in shared memory.
Lwlock:async

A process is waiting for I/O on an async (notify) buffer.
Lwlock:AsyncCtlLock

A process is waiting to read or update a shared notification state.
Lwlock:AsyncQueueLock

A process is waiting to read or update notification messages.

1596

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL wait events

Lwlock:AutoFile

A process is waiting to update the postgresql.auto.conf file.
Lwlock:AutoFileLock

A process is waiting to update the postgresql.auto.conf file.
Lwlock:Autovacuum

A process is waiting to read or update the current state of autovacuum workers.
Lwlock:AutovacuumLock

An autovacuum worker or launcher is waiting to update or read the current state of autovacuum
workers.

Lwlock:AutovacuumSchedule

A process is waiting to ensure that a table selected for autovacuum still needs vacuuming.
Lwlock:AutovacuumScheduleLock

A process is waiting to ensure that the table it has selected for a vacuum still needs vacuuming.
Lwlock:BackendRandomLock

A process is waiting to generate a random number.
Lwlock:BackgroundWorker

A process is waiting to read or update background worker state.
Lwlock:BackgroundWorkerLock

A process is waiting to read or update the background worker state.
Lwlock:BtreeVacuum

A process is waiting to read or update vacuum-related information for a B-tree index.
Lwlock:BtreeVacuumLock

A process is waiting to read or update vacuum-related information for a B-tree index.
LWLock:buffer_content

A backend process is waiting to acquire a lightweight lock on the contents of a shared memory
buffer. For more information, see lwlock:buffer_content (BufferContent) (p. 1432).

LWLock:buffer_mapping

A backend process is waiting to associate a data block with a buffer in the shared buffer pool. For
more information, see LWLock:buffer_mapping (p. 1434).

LWLock:BufferIO

A backend process wants to read a page into shared memory. The process is waiting for other
processes to finish their I/O for the page. For more information, see LWLock:BufferIO (p. 1435).

Lwlock:Checkpoint

A process is waiting to begin a checkpoint.
Lwlock:CheckpointLock

A process is waiting to perform checkpoint.
Lwlock:CheckpointerComm

A process is waiting to manage fsync requests.

1597

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL wait events

Lwlock:CheckpointerCommLock

A process is waiting to manage fsync requests.
Lwlock:clog

A process is waiting for I/O on a clog (transaction status) buffer.
Lwlock:CLogControlLock

A process is waiting to read or update transaction status.
Lwlock:CLogTruncationLock

A process is waiting to run txid_status or update the oldest transaction ID available to it.
Lwlock:commit_timestamp

A process is waiting for I/O on a commit timestamp buffer.
Lwlock:CommitTs

A process is waiting to read or update the last value set for a transaction commit timestamp.
Lwlock:CommitTsBuffer

A process is waiting for I/O on a segmented least-recently used (SLRU) buffer for a commit
timestamp.

Lwlock:CommitTsControlLock

A process is waiting to read or update transaction commit timestamps.
Lwlock:CommitTsLock

A process is waiting to read or update the last value set for the transaction timestamp.
Lwlock:CommitTsSLRU

A process is waiting to access the segmented least-recently used (SLRU) cache for a commit
timestamp.

Lwlock:ControlFile

A process is waiting to read or update the pg_control file or create a new write-ahead log (WAL)
file.

Lwlock:ControlFileLock

A process is waiting to read or update the control file or creation of a new write-ahead log (WAL) file.
Lwlock:DynamicSharedMemoryControl

A process is waiting to read or update dynamic shared memory allocation information.
Lwlock:DynamicSharedMemoryControlLock

A process is waiting to read or update the dynamic shared memory state.
LWLock:lock_manager

A backend process is waiting to add or examine locks for backend processes. Or it's waiting
to join or exit a locking group that is used by parallel query. For more information, see
LWLock:lock_manager (p. 1437).

Lwlock:LockFastPath

A process is waiting to read or update a process's fast-path lock information.
Lwlock:LogicalRepWorker

A process is waiting to read or update the state of logical replication workers.

1598

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL wait events

Lwlock:LogicalRepWorkerLock

A process is waiting for an action on a logical replication worker to finish.

Lwlock:multixact_member

A process is waiting for I/O on a multixact_member buffer.

Lwlock:multixact_offset

A process is waiting for I/O on a multixact offset buffer.

Lwlock:MultiXactGen

A process is waiting to read or update shared multixact state.

Lwlock:MultiXactGenLock

A process is waiting to read or update a shared multixact state.

Lwlock:MultiXactMemberBuffer

A process is waiting for I/O on a segmented least-recently used (SLRU) buffer for a multixact
member.

Lwlock:MultiXactMemberControlLock

A process is waiting to read or update multixact member mappings.

Lwlock:MultiXactMemberSLRU

A process is waiting to access the segmented least-recently used (SLRU) cache for a multixact
member.

Lwlock:MultiXactOffsetBuffer

A process is waiting for I/O on a segmented least-recently used (SLRU) buffer for a multixact offset.

Lwlock:MultiXactOffsetControlLock

A process is waiting to read or update multixact offset mappings.

Lwlock:MultiXactOffsetSLRU

A process is waiting to access the segmented least-recently used (SLRU) cache for a multixact offset.

Lwlock:MultiXactTruncation

A process is waiting to read or truncate multixact information.

Lwlock:MultiXactTruncationLock

A process is waiting to read or truncate multixact information.

Lwlock:NotifyBuffer

A process is waiting for I/O on the segmented least-recently used (SLRU) buffer for a NOTIFY
message.

Lwlock:NotifyQueue

A process is waiting to read or update NOTIFY messages.

Lwlock:NotifyQueueTail

A process is waiting to update a limit on NOTIFY message storage.

Lwlock:NotifyQueueTailLock

A process is waiting to update limit on notification message storage.

1599

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL wait events

Lwlock:NotifySLRU

A process is waiting to access the segmented least-recently used (SLRU) cache for a NOTIFY
message.

Lwlock:OidGen

A process is waiting to allocate a new object ID (OID).
Lwlock:OidGenLock

A process is waiting to allocate or assign an object ID (OID).
Lwlock:oldserxid

A process is waiting for I/O on an oldserxid buffer.
Lwlock:OldSerXidLock

A process is waiting to read or record conflicting serializable transactions.
Lwlock:OldSnapshotTimeMap

A process is waiting to read or update old snapshot control information.
Lwlock:OldSnapshotTimeMapLock

A process is waiting to read or update old snapshot control information.
Lwlock:parallel_append

A process is waiting to choose the next subplan during parallel append plan execution.
Lwlock:parallel_hash_join

A process is waiting to allocate or exchange a chunk of memory or update counters during a parallel
hash plan execution.

Lwlock:parallel_query_dsa

A process is waiting for a lock on dynamic shared memory allocation for a parallel query.
Lwlock:ParallelAppend

A process is waiting to choose the next subplan during parallel append plan execution.
Lwlock:ParallelHashJoin

A process is waiting to synchronize workers during plan execution for a parallel hash join.
Lwlock:ParallelQueryDSA

A process is waiting for dynamic shared memory allocation for a parallel query.
Lwlock:PerSessionDSA

A process is waiting for dynamic shared memory allocation for a parallel query.
Lwlock:PerSessionRecordType

A process is waiting to access a parallel query's information about composite types.
Lwlock:PerSessionRecordTypmod

A process is waiting to access a parallel query's information about type modifiers that identify
anonymous record types.

Lwlock:PerXactPredicateList

A process is waiting to access the list of predicate locks held by the current serializable transaction
during a parallel query.

1600

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL wait events

Lwlock:predicate_lock_manager

A process is waiting to add or examine predicate lock information.
Lwlock:PredicateLockManager

A process is waiting to access predicate lock information used by serializable transactions.
Lwlock:proc

A process is waiting to read or update the fast-path lock information.
Lwlock:ProcArray

A process is waiting to access the shared per-process data structures (typically, to get a snapshot or
report a session's transaction ID).

Lwlock:ProcArrayLock

A process is waiting to get a snapshot or clearing a transaction Id at a transaction's end.
Lwlock:RelationMapping

A process is waiting to read or update a pg_filenode.map file (used to track the file-node
assignments of certain system catalogs).

Lwlock:RelationMappingLock

A process is waiting to update the relation map file used to store catalog-to-file-node mapping.
Lwlock:RelCacheInit

A process is waiting to read or update a pg_internal.init file (a relation cache initialization file).
Lwlock:RelCacheInitLock

A process is waiting to read or write a relation cache initialization file.
Lwlock:replication_origin

A process is waiting to read or update the replication progress.
Lwlock:replication_slot_io

A process is waiting for I/O on a replication slot.
Lwlock:ReplicationOrigin

A process is waiting to create, drop, or use a replication origin.
Lwlock:ReplicationOriginLock

A process is waiting to set up, drop, or use a replication origin.
Lwlock:ReplicationOriginState

A process is waiting to read or update the progress of one replication origin.
Lwlock:ReplicationSlotAllocation

A process is waiting to allocate or free a replication slot.
Lwlock:ReplicationSlotAllocationLock

A process is waiting to allocate or free a replication slot.
Lwlock:ReplicationSlotControl

A process is waiting to read or update a replication slot state.
Lwlock:ReplicationSlotControlLock

A process is waiting to read or update the replication slot state.

1601

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL wait events

Lwlock:ReplicationSlotIO

A process is waiting for I/O on a replication slot.
Lwlock:SerialBuffer

A process is waiting for I/O on a segmented least-recently used (SLRU) buffer for a serializable
transaction conflict.

Lwlock:SerializableFinishedList

A process is waiting to access the list of finished serializable transactions.
Lwlock:SerializableFinishedListLock

A process is waiting to access the list of finished serializable transactions.
Lwlock:SerializablePredicateList

A process is waiting to access the list of predicate locks held by serializable transactions.
Lwlock:SerializablePredicateLockListLock

A process is waiting to perform an operation on a list of locks held by serializable transactions.
Lwlock:SerializableXactHash

A process is waiting to read or update information about serializable transactions.
Lwlock:SerializableXactHashLock

A process is waiting to retrieve or store information about serializable transactions.
Lwlock:SerialSLRU

A process is waiting to access the segmented least-recently used (SLRU) cache for a serializable
transaction conflict.

Lwlock:SharedTidBitmap

A process is waiting to access a shared tuple identifier (TID) bitmap during a parallel bitmap index
scan.

Lwlock:SharedTupleStore

A process is waiting to access a shared tuple store during a parallel query.
Lwlock:ShmemIndex

A process is waiting to find or allocate space in shared memory.
Lwlock:ShmemIndexLock

A process is waiting to find or allocate space in shared memory.
Lwlock:SInvalRead

A process is waiting to retrieve messages from the shared catalog invalidation queue.
Lwlock:SInvalReadLock

A process is waiting to retrieve or remove messages from a shared invalidation queue.
Lwlock:SInvalWrite

A process is waiting to add a message to the shared catalog invalidation queue.
Lwlock:SInvalWriteLock

A process is waiting to add a message in a shared invalidation queue.
Lwlock:subtrans

A process is waiting for I/O on a subtransaction buffer.

1602

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL wait events

Lwlock:SubtransBuffer

A process is waiting for I/O on a segmented least-recently used (SLRU) buffer for a subtransaction.

Lwlock:SubtransControlLock

A process is waiting to read or update subtransaction information.

Lwlock:SubtransSLRU

A process is waiting to access the segmented least-recently used (SLRU) cache for a subtransaction.

Lwlock:SyncRep

A process is waiting to read or update information about the state of synchronous replication.

Lwlock:SyncRepLock

A process is waiting to read or update information about synchronous replicas.

Lwlock:SyncScan

A process is waiting to select the starting location of a synchronized table scan.

Lwlock:SyncScanLock

A process is waiting to get the start location of a scan on a table for synchronized scans.

Lwlock:TablespaceCreate

A process is waiting to create or drop a tablespace.

Lwlock:TablespaceCreateLock

A process is waiting to create or drop the tablespace.

Lwlock:tbm

A process is waiting for a shared iterator lock on a tree bitmap (TBM).

Lwlock:TwoPhaseState

A process is waiting to read or update the state of prepared transactions.

Lwlock:TwoPhaseStateLock

A process is waiting to read or update the state of prepared transactions.

Lwlock:wal_insert

A process is waiting to insert the write-ahead log (WAL) into a memory buffer.

Lwlock:WALBufMapping

A process is waiting to replace a page in write-ahead log (WAL) buffers.

Lwlock:WALBufMappingLock

A process is waiting to replace a page in write-ahead log (WAL) buffers.

Lwlock:WALInsert

A process is waiting to insert write-ahead log (WAL) data into a memory buffer.

Lwlock:WALWrite

A process is waiting for write-ahead log (WAL) buffers to be written to disk.

Lwlock:WALWriteLock

A process is waiting for write-ahead log (WAL) buffers to be written to disk.

1603

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL functions reference

Lwlock:WrapLimitsVacuum

A process is waiting to update limits on transaction ID and multixact consumption.
Lwlock:WrapLimitsVacuumLock

A process is waiting to update limits on transaction ID and multixact consumption.
Lwlock:XactBuffer

A process is waiting for I/O on a segmented least-recently used (SLRU) buffer for a transaction
status.

Lwlock:XactSLRU

A process is waiting to access the segmented least-recently used (SLRU) cache for a transaction
status.

Lwlock:XactTruncation

A process is waiting to run pg_xact_status or update the oldest transaction ID available to it.
Lwlock:XidGen

A process is waiting to allocate a new transaction ID.
Lwlock:XidGenLock

A process is waiting to allocate or assign a transaction ID.
Timeout:BaseBackupThrottle

A process is waiting during base backup when throttling activity.
Timeout:PgSleep

A backend process has called the pg_sleep function and is waiting for the sleep timeout to expire.
For more information, see Timeout:PgSleep (p. 1440).

Timeout:RecoveryApplyDelay

A process is waiting to apply write-ahead log (WAL) during recovery because of a delay setting.
Timeout:RecoveryRetrieveRetryInterval

A process is waiting during recovery when write-ahead log (WAL) data is not available from any
source (pg_wal, archive, or stream).

Timeout:VacuumDelay

A process is waiting in a cost-based vacuum delay point.

For a complete list of PostgreSQL wait events, see PostgreSQL wait-event table in the PostgreSQL
documentation.

Aurora PostgreSQL functions reference
Following, you can find a list of Aurora PostgreSQL functions that are available for your Aurora DB
clusters that run the Aurora PostgreSQL-Compatible Edition DB engine. These Aurora PostgreSQL
functions are in addition to the standard PostgreSQL functions. For more information about standard
PostgreSQL functions, see PostgreSQL–Functions and Operators.

Overview
You can use the following functions for Amazon RDS DB instances running Aurora PostgreSQL:

1604

https://www.postgresql.org/docs/10/static/monitoring-stats.html#WAIT-EVENT-TABLE
https://www.postgresql.org/docs/current/functions.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL functions reference

• aurora_list_builtins (p. 1605)
• aurora_stat_dml_activity (p. 1606)
• aurora_stat_get_db_commit_latency (p. 1608)
• aurora_stat_system_waits (p. 1610)
• aurora_stat_wait_event (p. 1612)
• aurora_stat_wait_type (p. 1613)

aurora_list_builtins
Lists all available Aurora PostgreSQL built-in functions, along with brief descriptions and function
details.

Syntax

aurora_list_builtins()

Return type

SETOF record

Arguments

None

Examples

The following example shows results from calling the aurora_list_builtins function.

=> SELECT *
 FROM aurora_list_builtins();

 Name | Result data type | Argument data
 types | Type | Volatility | Parallel | Security |
 Description
-----------------------------------+------------------
+--+------+------------
+------------+----------
+---
 aurora_version | text |
 | func | stable | safe | invoker | Amazon Aurora
 PostgreSQL-Compatible Edition version string
 aurora_stat_wait_type | SETOF record | OUT type_id smallint, OUT type_name
 text | func | volatile | restricted | invoker | Lists all supported
 wait types
 aurora_stat_wait_event | SETOF record | OUT type_id smallint, OUT event_id
 integer, OUT event_na.| func | volatile | restricted | invoker | Lists all supported
 wait events
 | |.me text
 | | | | |
 aurora_list_builtins | SETOF record | OUT "Name" text, OUT "Result data
 type" text, OUT "Argum.| func | stable | safe | invoker | Lists all Aurora
 built-in functions
 | |.ent data types" text, OUT "Type"
 text, OUT "Volatility" .| | | | |
 | |.text, OUT "Parallel" text, OUT
 "Security" text, OUT "Des.| | | | |

1605

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL functions reference

 | |.cription" text
 | | | | |
 .
 .
 .
 aurora_stat_file | SETOF record | OUT filename text, OUT
 allocated_bytes bigint, OUT used_.| func | stable | safe | invoker | Lists all
 files present in Aurora storage
 | |.bytes bigint
 | | | | |
 aurora_stat_get_db_commit_latency | bigint | oid
 | func | stable | restricted | invoker | Per DB commit latency
 in microsecs

aurora_stat_dml_activity
Reports cumulative activity for each type of data manipulation language (DML) operation on a database
in an Aurora PostgreSQL cluster.

Syntax

aurora_stat_dml_activity(database_oid)

Return type

SETOF record

Arguments

database_oid

The object ID (OID) of the database in the Aurora PostgreSQL cluster.

Usage notes

The aurora_stat_dml_activity function is only available with Aurora PostgreSQL release 3.1
compatible with PostgreSQL engine 11.6 and later.

Use this function on Aurora PostgreSQL clusters with a large number of databases to identify which
databases have more or slower DML activity, or both.

The aurora_stat_dml_activity function returns the number of times the operations ran and the
cumulative latency in microseconds for SELECT, INSERT, UPDATE, and DELETE operations. The report
includes only successful DML operations.

You can reset this statistic by using the PostgreSQL statistics access function pg_stat_reset. You can
check the last time this statistic was reset by using the pg_stat_get_db_stat_reset_time function.
For more information about PostgreSQL statistics access functions, see The Statistics Collector in the
PostgreSQL documentation.

Examples

The following example shows how to report DML activity statistics for the connected database.

-- Define the oid variable from connected database by using \gset

1606

https://www.postgresql.org/docs/9.1/monitoring-stats.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL functions reference

=> SELECT oid,
 datname
 FROM pg_database
 WHERE datname=(select current_database()) \gset

=> SELECT *
 FROM aurora_stat_dml_activity(:oid);

 select_count | select_latency_microsecs | insert_count | insert_latency_microsecs |
 update_count | update_latency_microsecs | delete_count | delete_latency_microsecs
--------------+--------------------------+--------------+--------------------------
+--------------+--------------------------+--------------+--------------------------
 178957 | 66684115 | 171065 | 28876649 |
 519538 | 1454579206167 | 1 | 53027

-- Showing the same results with expanded display on
=> SELECT *
 FROM aurora_stat_dml_activity(:oid);
-[RECORD 1]------------+--------------
select_count | 178957
select_latency_microsecs | 66684115
insert_count | 171065
insert_latency_microsecs | 28876649
update_count | 519538
update_latency_microsecs | 1454579206167
delete_count | 1
delete_latency_microsecs | 53027

The following example shows DML activity statistics for all databases in the Aurora PostgreSQL cluster.
This cluster has two databases, postgres and mydb. The comma-separated list corresponds with the
select_count, select_latency_microsecs, insert_count, insert_latency_microsecs,
update_count, update_latency_microsecs, delete_count, and delete_latency_microsecs
fields.

Aurora PostgreSQL creates and uses a system database named rdsadmin to support administrative
operations such as backups, restores, health checks, replication, and so on. These DML operations have
no impact on your Aurora PostgreSQL cluster.

=> SELECT oid,
 datname,
 aurora_stat_dml_activity(oid)
 FROM pg_database;
 oid | datname | aurora_stat_dml_activity
-------+----------------+---
 14006 | template0 | (,,,,,,,)
 16384 | rdsadmin | (2346623,1211703821,4297518,817184554,0,0,0,0)
 1 | template1 | (,,,,,,,)
 14007 | postgres | (178961,66716329,171065,28876649,519538,1454579206167,1,53027)
 16401 | mydb | (200246,64302436,200036,107101855,600000,83659417514,0,0)

The following example shows DML activity statistics for all databases, organized in columns for better
readability.

SELECT db.datname,
 BTRIM(SPLIT_PART(db.asdmla::TEXT, ',', 1), '()') AS select_count,
 BTRIM(SPLIT_PART(db.asdmla::TEXT, ',', 2), '()') AS select_latency_microsecs,
 BTRIM(SPLIT_PART(db.asdmla::TEXT, ',', 3), '()') AS insert_count,
 BTRIM(SPLIT_PART(db.asdmla::TEXT, ',', 4), '()') AS insert_latency_microsecs,
 BTRIM(SPLIT_PART(db.asdmla::TEXT, ',', 5), '()') AS update_count,
 BTRIM(SPLIT_PART(db.asdmla::TEXT, ',', 6), '()') AS update_latency_microsecs,
 BTRIM(SPLIT_PART(db.asdmla::TEXT, ',', 7), '()') AS delete_count,

1607

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL functions reference

 BTRIM(SPLIT_PART(db.asdmla::TEXT, ',', 8), '()') AS delete_latency_microsecs
FROM (SELECT datname,
 aurora_stat_dml_activity(oid) AS asdmla
 FROM pg_database
) AS db;

 datname | select_count | select_latency_microsecs | insert_count |
 insert_latency_microsecs | update_count | update_latency_microsecs | delete_count |
 delete_latency_microsecs
----------------+--------------+--------------------------+--------------
+--------------------------+--------------+--------------------------+--------------
+--------------------------
 template0 | | | |
 | | | |
 rdsadmin | 4206523 | 2478812333 | 7009414 | 1338482258
 | 0 | 0 | 0 | 0
 template1 | | | |
 | | | |
 fault_test | 66 | 452099 | 0 | 0
 | 0 | 0 | 0 | 0
 db_access_test | 1 | 5982 | 0 | 0
 | 0 | 0 | 0 | 0
 postgres | 42035 | 95179203 | 5752 | 2678832898
 | 21157 | 441883182488 | 2 | 1520
 mydb | 71 | 453514 | 0 | 0
 | 1 | 190 | 1 | 152

The following example shows the average cumulative latency (cumulative latency divided by count) for
each DML operation for the database with the OID 16401.

=> SELECT select_count,
 select_latency_microsecs,
 select_latency_microsecs/NULLIF(select_count,0) select_latency_per_exec,
 insert_count,
 insert_latency_microsecs,
 insert_latency_microsecs/NULLIF(insert_count,0) insert_latency_per_exec,
 update_count,
 update_latency_microsecs,
 update_latency_microsecs/NULLIF(update_count,0) update_latency_per_exec,
 delete_count,
 delete_latency_microsecs,
 delete_latency_microsecs/NULLIF(delete_count,0) delete_latency_per_exec
 FROM aurora_stat_dml_activity(16401);

-[RECORD 1]------------+-------------
select_count | 451312
select_latency_microsecs | 80205857
select_latency_per_exec | 177
insert_count | 451001
insert_latency_microsecs | 123667646
insert_latency_per_exec | 274
update_count | 1353067
update_latency_microsecs | 200900695615
update_latency_per_exec | 148478
delete_count | 12
delete_latency_microsecs | 448
delete_latency_per_exec | 37

aurora_stat_get_db_commit_latency
Gets the cumulative commit latency in microseconds for Aurora PostgreSQL databases. Commit latency is
measured as the time between when a client submits a commit request and when it receives the commit
acknowledgement.

1608

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL functions reference

Syntax

aurora_stat_get_db_commit_latency(database_oid)

Return type

SETOF record

Arguments

database_oid

The object ID (OID) of the Aurora PostgreSQL database.

Usage notes

Amazon CloudWatch uses this function to calculate the average commit latency. For more information
about Amazon CloudWatch metrics and how to troubleshoot high commit latency, see Viewing metrics
in the Amazon RDS console (p. 563) and Making better decisions about Amazon RDS with Amazon
CloudWatch metrics.

You can reset this statistic by using the PostgreSQL statistics access function pg_stat_reset. You can
check the last time this statistic was reset by using the pg_stat_get_db_stat_reset_time function.
For more information about PostgreSQL statistics access functions, see The Statistics Collector in the
PostgreSQL documentation.

Examples

The following example gets the cumulative commit latency for each database in the pg_database
cluster.

=> SELECT oid,
 datname,
 aurora_stat_get_db_commit_latency(oid)
 FROM pg_database;

 oid | datname | aurora_stat_get_db_commit_latency
-------+----------------+-----------------------------------
 14006 | template0 | 0
 16384 | rdsadmin | 654387789
 1 | template1 | 0
 16401 | mydb | 229556
 69768 | postgres | 22011

The following example gets the cumulative commit latency for the currently connected database. Before
calling the aurora_stat_get_db_commit_latency function, the example first uses \gset to define
a variable for the oid argument and sets its value from the connected database.

--Get the oid value from the connected database before calling
 aurora_stat_get_db_commit_latency

=> SELECT oid
 FROM pg_database
 WHERE datname=(SELECT current_database()) \gset

=> SELECT *
 FROM aurora_stat_get_db_commit_latency(:oid);

1609

https://aws.amazon.com/blogs/database/making-better-decisions-about-amazon-rds-with-amazon-cloudwatch-metrics/
https://aws.amazon.com/blogs/database/making-better-decisions-about-amazon-rds-with-amazon-cloudwatch-metrics/
https://www.postgresql.org/docs/9.1/monitoring-stats.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL functions reference

 aurora_stat_get_db_commit_latency

 1424279160

The following example gets the cumulative commit latency for the mydb database in the pg_database
cluster. Then, it resets this statistic by using the pg_stat_reset function and shows the results. Finally,
it uses the pg_stat_get_db_stat_reset_time function to check the last time this statistic was reset.

=> SELECT oid,
 datname,
 aurora_stat_get_db_commit_latency(oid)
 FROM pg_database
 WHERE datname = 'mydb';

 oid | datname | aurora_stat_get_db_commit_latency
-------+-----------+-----------------------------------
 16427 | mydb | 3320370

=> SELECT pg_stat_reset();

 pg_stat_reset

=> SELECT oid,
 datname,
 aurora_stat_get_db_commit_latency(oid)
 FROM pg_database
 WHERE datname = 'mydb';

 oid | datname | aurora_stat_get_db_commit_latency
-------+-----------+-----------------------------------
 16427 | mydb | 6

=> SELECT *
 FROM pg_stat_get_db_stat_reset_time(16427);

 pg_stat_get_db_stat_reset_time

 2021-04-29 21:36:15.707399+00

aurora_stat_system_waits
Reports wait event information for the Aurora PostgreSQL DB instance.

Syntax

aurora_stat_system_waits()

Return type

SETOF record

Arguments

None

1610

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL functions reference

Usage notes

This function returns the cumulative number of waits and cumulative wait time for each wait event
generated by the DB instance that you're currently connected to.

The returned recordset includes the following fields:

• type_id – The ID of the type of wait event.
• event_id – The ID of the wait event.
• waits – The number of times the wait event occurred.
• wait_time – The total amount of time in microseconds spent waiting for this event.

Statistics returned by this function are reset when a DB instance restarts.

Examples

The following example shows results from calling the aurora_stat_system_waits function.

=> SELECT *
 FROM aurora_stat_system_waits();

 type_id | event_id | waits | wait_time
---------+-----------+-----------+--------------
 1 | 16777219 | 11 | 12864
 1 | 16777220 | 501 | 174473
 1 | 16777270 | 53171 | 23641847
 1 | 16777271 | 23 | 319668
 1 | 16777274 | 60 | 12759
.
.
.
 10 | 167772231 | 204596 | 790945212
 10 | 167772232 | 2 | 47729
 10 | 167772234 | 1 | 888
 10 | 167772235 | 2 | 64

The following example shows how you can use this function together with aurora_stat_wait_event
and aurora_stat_wait_type to produce more readable results.

=> SELECT type_name,
 event_name,
 waits,
 wait_time
 FROM aurora_stat_system_waits()
NATURAL JOIN aurora_stat_wait_event()
NATURAL JOIN aurora_stat_wait_type();

 type_name | event_name | waits | wait_time
-----------+------------------------+----------+--------------
 LWLock | XidGenLock | 11 | 12864
 LWLock | ProcArrayLock | 501 | 174473
 LWLock | buffer_content | 53171 | 23641847
 LWLock | rdsutils | 2 | 12764
 Lock | tuple | 75686 | 2033956052
 Lock | transactionid | 1765147 | 47267583409
 Activity | AutoVacuumMain | 136868 | 56305604538
 Activity | BgWriterHibernate | 7486 | 55266949471
 Activity | BgWriterMain | 7487 | 1508909964
.
.

1611

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL functions reference

.
 IO | SLRURead | 3 | 11756
 IO | WALWrite | 52544463 | 388850428
 IO | XactSync | 187073 | 597041642
 IO | ClogRead | 2 | 47729
 IO | OutboundCtrlRead | 1 | 888
 IO | OutboundCtrlWrite | 2 | 64

aurora_stat_wait_event
Lists all supported wait events for Aurora PostgreSQL. For information about Aurora PostgreSQL wait
events, see Amazon Aurora PostgreSQL wait events (p. 1587).

Syntax

aurora_stat_wait_event()

Return type

SETOF record

Arguments

None

Usage notes

To see event names with event types instead of IDs, use this function together with other functions such
as aurora_stat_wait_type and aurora_stat_system_waits. Wait event names returned by this
function are the same as those returned by the aurora_wait_report function.

Examples

The following example shows results from calling the aurora_stat_wait_event function.

=> SELECT *
 FROM aurora_stat_wait_event();

 type_id | event_id | event_name
---------+-----------+---
 1 | 16777216 | <unassigned:0>
 1 | 16777217 | ShmemIndexLock
 1 | 16777218 | OidGenLock
 1 | 16777219 | XidGenLock
.
.
.
 9 | 150994945 | PgSleep
 9 | 150994946 | RecoveryApplyDelay
 10 | 167772160 | BufFileRead
 10 | 167772161 | BufFileWrite
 10 | 167772162 | ControlFileRead
.
.
.
 10 | 167772226 | WALInitWrite
 10 | 167772227 | WALRead

1612

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL functions reference

 10 | 167772228 | WALSync
 10 | 167772229 | WALSyncMethodAssign
 10 | 167772230 | WALWrite
 10 | 167772231 | XactSync
.
.
.
 11 | 184549377 | LsnAllocate

The following example joins aurora_stat_wait_type and aurora_stat_wait_event to return type
names and event names for improved readability.

=> SELECT *
 FROM aurora_stat_wait_type() t
 JOIN aurora_stat_wait_event() e
 ON t.type_id = e.type_id;

 type_id | type_name | type_id | event_id | event_name
---------+-----------+---------+-----------+---
 1 | LWLock | 1 | 16777216 | <unassigned:0>
 1 | LWLock | 1 | 16777217 | ShmemIndexLock
 1 | LWLock | 1 | 16777218 | OidGenLock
 1 | LWLock | 1 | 16777219 | XidGenLock
 1 | LWLock | 1 | 16777220 | ProcArrayLock
.
.
.
 3 | Lock | 3 | 50331648 | relation
 3 | Lock | 3 | 50331649 | extend
 3 | Lock | 3 | 50331650 | page
 3 | Lock | 3 | 50331651 | tuple
.
.
.
 10 | IO | 10 | 167772214 | TimelineHistorySync
 10 | IO | 10 | 167772215 | TimelineHistoryWrite
 10 | IO | 10 | 167772216 | TwophaseFileRead
 10 | IO | 10 | 167772217 | TwophaseFileSync
.
.
.
 11 | LSN | 11 | 184549376 | LsnDurable

aurora_stat_wait_type
Lists all supported wait types for Aurora PostgreSQL.

Syntax

aurora_stat_wait_type()

Return type

SETOF record

Arguments

None

1613

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL updates

Usage notes

To see wait event names with wait event types instead of IDs, use this function together with other
functions such as aurora_stat_wait_event and aurora_stat_system_waits. Wait type names
returned by this function are the same as those returned by the aurora_wait_report function.

Examples

The following example shows results from calling the aurora_stat_wait_type function.

=> SELECT *
 FROM aurora_stat_wait_type();

 type_id | type_name
---------+-----------
 1 | LWLock
 3 | Lock
 4 | BufferPin
 5 | Activity
 6 | Client
 7 | Extension
 8 | IPC
 9 | Timeout
 10 | IO
 11 | LSN

Amazon Aurora PostgreSQL updates
Following, you can find information about Amazon Aurora PostgreSQL engine version releases and
updates. You can also find information about how to upgrade your Aurora PostgreSQL engine. For more
information about Aurora releases in general, see Amazon Aurora versions (p. 5).

Topics
• Identifying versions of Amazon Aurora PostgreSQL (p. 1614)
• Amazon Aurora PostgreSQL releases and engine versions (p. 1615)
• Extension versions for Amazon Aurora PostgreSQL (p. 1682)
• Upgrading the PostgreSQL DB engine for Aurora PostgreSQL (p. 1695)
• Aurora PostgreSQL long-term support (LTS) releases (p. 1704)

Identifying versions of Amazon Aurora PostgreSQL
Amazon Aurora includes certain features that are general to Aurora and available to all Aurora DB
clusters. Aurora includes other features that are specific to a particular database engine that Aurora
supports. These features are available only to those Aurora DB clusters that use that database engine,
such as Aurora PostgreSQL.

An Aurora database release typically has two version numbers, the database engine version number
and the Aurora version number. If an Aurora PostgreSQL release has an Aurora version number, it's
included after the engine version number in the Amazon Aurora PostgreSQL releases and engine
versions (p. 1615) listing.

Aurora version number
Aurora version numbers use the major.minor.patch naming scheme. An Aurora patch version includes
important bug fixes added to a minor version after its release. To learn more about Amazon Aurora

1614

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

major, minor, and patch releases, see Amazon Aurora major versions (p. 6), Amazon Aurora minor
versions (p. 6), and Amazon Aurora patch versions (p. 7).

You can find out the Aurora version number of your Aurora PostgreSQL DB instance with the following
SQL query:

pgres=> SELECT aurora_version();

Starting with the release of PostgreSQL versions 13.3, 12.8, 11.13, 10.18, and for all other later versions,
Aurora version numbers align more closely to the PostgreSQL engine version. For example, querying an
Aurora PostgreSQL 13.3 DB cluster returns the following:

aurora_version

 13.3.1
(1 row)

Prior releases, such as Aurora PostgreSQL 10.14 DB cluster, return version numbers similar to the
following:

aurora_version

 2.7.3
(1 row)

PostgreSQL engine version numbers
Starting with PostgreSQL 10, PostgreSQL database engine versions use a major.minor numbering
scheme for all releases. Some examples include PostgreSQL 10.18, PostgreSQL 12.7, and PostgreSQL
13.3.

Releases prior to PostgreSQL 10 use a major.major.minor numbering scheme in which the first
two digits make up the major version number and a third digit denotes a minor version. For example,
PostgreSQL 9.6 is a major version, with minor versions 9.6.19 or 9.6.21 indicated by the third digit.

Note
The PostgreSQL engine version 9.6 is no longer supported. To upgrade, see Upgrading the
PostgreSQL DB engine for Aurora PostgreSQL (p. 1695).

You can find out the PostgreSQL database engine version number with the following SQL query:

pgres=> SELECT version();

For an Aurora PostgreSQL 13.3 DB cluster, the results are as follows:

version

 PostgreSQL 13.3 on x86_64-pc-linux-gnu, compiled by x86_64-pc-linux-gnu-gcc (GCC) 7.4.0,
 64-bit
(1 row)

Amazon Aurora PostgreSQL releases and engine
versions
Following, you can find information about versions of the Aurora PostgreSQL-Compatible Edition
database engine that have been released for Amazon Aurora. Many of the listed releases include both a

1615

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

PostgreSQL version number and an Amazon Aurora version number. However, starting with the release
of PostgreSQL versions 13.3, 12.8, 11.13, 10.18, and for all other later versions, Aurora version numbers
aren't used. To determine the version numbers of your Aurora PostgreSQL database, see Identifying
versions of Amazon Aurora PostgreSQL (p. 1614).

For information about extensions and modules, see Extension versions for Amazon Aurora
PostgreSQL (p. 1682).

Amazon Aurora for PostgreSQL 1.X (compatible with PostgreSQL 9.6.XX) reaches end of life on January
31, 2022. For more information, see Announcement: Amazon Aurora PostgreSQL 9.6 End-of-Life date is
January 31, 2022. We recommend that you proactively upgrade your databases that are running Aurora
PostgreSQL 9.6 to Amazon Aurora PostgreSQL 10 or higher at your convenience before January 31,
2022. To learn how, see Upgrading the PostgreSQL DB engine for Aurora PostgreSQL (p. 1695).

For more information about Amazon Aurora supported releases, policies, and timelines, see How long
Amazon Aurora major versions remain available (p. 8). For more information about support and other
policies for Amazon Aurora see Amazon RDS FAQs.

To determine which Aurora PostgreSQL DB engine versions are available in an AWS Region, use the
describe-db-engine-versions AWS CLI command. For example:

aws rds describe-db-engine-versions --engine aurora-postgresql --query '*[].
[EngineVersion]' --output text --region aws-region

For a list of AWS Regions, see Aurora PostgreSQL Region availability (p. 14).

Topics
• PostgreSQL 13.4 (p. 1617)

• PostgreSQL 13.3 (p. 1618)

• PostgreSQL 12.8 (p. 1619)

• PostgreSQL 12.7, Aurora PostgreSQL release 4.2 (p. 1620)

• PostgreSQL 12.6, Aurora PostgreSQL release 4.1 (p. 1622)

• PostgreSQL 12.4, Aurora PostgreSQL release 4.0 (p. 1623)

• PostgreSQL 11.13 (p. 1625)

• PostgreSQL 11.12, Aurora PostgreSQL release 3.6 (p. 1626)

• PostgreSQL 11.11, Aurora PostgreSQL release 3.5 (p. 1627)

• PostgreSQL 11.9, Aurora PostgreSQL release 3.4 (p. 1628)

• PostgreSQL 11.8, Aurora PostgreSQL release 3.3 (p. 1631)

• PostgreSQL 11.7, Aurora PostgreSQL release 3.2 (p. 1634)

• PostgreSQL 11.6, Aurora PostgreSQL release 3.1 (p. 1637)

• PostgreSQL 11.4, Aurora PostgreSQL release 3.0 (unsupported) (p. 1641)

• PostgreSQL 10.18 (p. 1642)

• PostgreSQL 10.17, Aurora PostgreSQL release 2.9 (p. 1643)

• PostgreSQL 10.16, Aurora PostgreSQL release 2.8 (p. 1644)

• PostgreSQL 10.14, Aurora PostgreSQL release 2.7 (p. 1645)

• PostgreSQL 10.13, Aurora PostgreSQL release 2.6 (p. 1648)

• PostgreSQL 10.12, Aurora PostgreSQL release 2.5 (p. 1650)

• PostgreSQL 10.11, Aurora PostgreSQL release 2.4 (p. 1654)

• PostgreSQL 10.7, Aurora PostgreSQL release 2.3 (unsupported) (p. 1658)

• PostgreSQL 10.6, Aurora PostgreSQL release 2.2 (unsupported) (p. 1660)

1616

http://forums.aws.amazon.com/ann.jspa?annID=8512
http://forums.aws.amazon.com/ann.jspa?annID=8512
http://aws.amazon.com/rds/faqs/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

• PostgreSQL 10.5, Aurora PostgreSQL release 2.1 (unsupported) (p. 1661)

• PostgreSQL 10.4, Aurora PostgreSQL release 2.0 (unsupported) (p. 1662)

• PostgreSQL 9.6.22, Aurora PostgreSQL release 1.11 (unsupported) (p. 1664)

• PostgreSQL 9.6.21, Aurora PostgreSQL release 1.10 (unsupported) (p. 1665)

• PostgreSQL 9.6.19, Aurora PostgreSQL release 1.9 (unsupported) (p. 1665)

• PostgreSQL 9.6.18, Aurora PostgreSQL release 1.8 (unsupported) (p. 1667)

• PostgreSQL 9.6.17, Aurora PostgreSQL release 1.7 (unsupported) (p. 1668)

• PostgreSQL 9.6.16, Aurora PostgreSQL release 1.6 (unsupported) (p. 1670)

• PostgreSQL 9.6.12, Aurora PostgreSQL release 1.5 (unsupported) (p. 1674)

• PostgreSQL 9.6.11, Aurora PostgreSQL release 1.4 (unsupported) (p. 1675)

• PostgreSQL 9.6.9, Aurora PostgreSQL release 1.3 (unsupported) (p. 1676)

• PostgreSQL 9.6.8, Aurora PostgreSQL release 1.2 (unsupported) (p. 1678)

• PostgreSQL 9.6.6 Aurora PostgreSQL release 1.1 (unsupported) (p. 1679)

• PostgreSQL 9.6.3, Aurora PostgreSQL release 1.0 (unsupported) (p. 1680)

PostgreSQL 13.4
This release of Aurora PostgreSQL is compatible with PostgreSQL 13.4. For more information about the
improvements in PostgreSQL 13.4, see PostgreSQL release 13.4.

Aurora PostgreSQL release 13.4

New features

• This version supports Babelfish which extends your Amazon Aurora PostgreSQL database with the
ability to accept database connections from Microsoft SQL Server clients. For more information, see
Working with Babelfish for Aurora PostgreSQL.

Critical stability enhancements

• Fixed an issue where, in rare circumstances, a data cache of a read node may be inconsistent following
a restart of that node.

High priority stability enhancements

• Fixed an issue where queries may become unresponsive due to I/O resource exhaustion triggered by
prefetch.

• Fixed an issue where Aurora may panic following a major version update with the message: "PANIC:
could not access status of next transaction id xxxxxxxx".

Additional improvements and enhancements

• Fixed an issue where read nodes restart due to a replication origin cache lookup failure.

• Fixed an issue where read queries may time out on read nodes during the replay of lazy truncation
triggered by vacuum on the write node.

• Fixed an issue that causes Performance Insights to incorrectly set the backend type of a database
connection.

• Fixed an issue where the aurora_postgres_replica_status() function returned stale or lagging CPU stats.

1617

https://www.postgresql.org/docs/13/release-13-4.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/babelfish.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

• Fixed an issue where the role rds_superuser did not have permission to execute the
pg_stat_statements_reset() function.

• Fixed an issue with the apg_plan_mgmt extension where the planning and execution times were
reported as 0.

• Removed support for DES, 3DES and RC4 cipher suites.
• Updated the PostGIS extension to version 3.1.4.
• Updated the pgrouting extension to 3.1.3.
• Updated the pglogical extension to 2.4.0.
• Added support for the following SPI module extensions:

• autoinc version 1.0

• insert_username version 1.0

• moddatetime version 1.0

• refint version 1.0

• Fixed multiple issues in the Aurora storage daemon that could lead to brief periods of unavailability
when specific network configurations are used.

• Fixed an out of memory crash issue with Aurora storage daemon that leads to writer node restart. This
also reduces the overall system memory consumption.

PostgreSQL 13.3
This release of Aurora PostgreSQL is compatible with PostgreSQL 13.3. For more information about the
improvements in PostgreSQL 13.3, see PostgreSQL release 13.3.

Patch releases
• Aurora PostgreSQL 13.3.1 (p. 1618)
• Aurora PostgreSQL release 13.3.0 (p. 1619)

Aurora PostgreSQL 13.3.1

Critical stability enhancements

• Fixed an issue where, in rare circumstances, a data cache of a read node may be inconsistent following
a restart of that node.

High priority stability enhancements

• Fixed an issue where queries may become unresponsive due to I/O resource exhaustion triggered by
prefetch.

• Fixed an issue where Aurora may panic following a major version update with the message: "PANIC:
could not access status of next transaction id xxxxxxxx".

Additional improvements and enhancements

• Fixed an issue where read nodes restart due to a replication origin cache lookup failure.
• Fixed an issue with the apg_plan_mgmt extension where the planning and execution times were

reported as 0.
• Fixed an issue that causes Performance Insights to incorrectly set the backend type of a database

connection.
• Fixed an issue with the apg_plan_mgmt extension where plan outline on a partitioned table did not

enforce an index-based plan.

1618

https://www.postgresql.org/docs/13/release-13-3.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

• Fixed an issue where orphaned files caused failed translations in read codepaths during or after a
major version upgrade.

• Fixed multiple issues in the Aurora storage daemon that could lead to brief periods of unavailability
when specific network configurations are used.

• Fixed an out of memory crash issue with Aurora storage daemon that leads to writer node restart. This
also reduces the overall system memory consumption.

Aurora PostgreSQL release 13.3.0

New features

• Supports a major version upgrade from PostgreSQL 12.4, Aurora PostgreSQL release 4.0 (p. 1623) and
later versions

• Supports bool_plperl version 1.0
• Supports rds_tools version 1.0

Critical stability enhancements

• Fixed an issue where, in rare circumstances, a data cache of a read node may be inconsistent following
a restart of that node.

Additional improvements and enhancements

• Contains all of the fixes, features, and improvements present in PostgreSQL 12.7, Aurora PostgreSQL
release 4.2 (p. 1620)

• Contains several improvements that were announced for PostgreSQL releases 13.0, 13.1, 13.2 and
13.3

• Instance type R4 was deprecated.
• Updated the following extensions:

• hll to version 2.15.
• hstore to version 1.7.
• intarray to version 1.3.
• log_fdw to version 1.2.
• ltree to version 1.2.
• pg_hint_plan to version 1.3.7.
• pg_repack to version 1.4.6.
• pg_stat_statements to version 1.8.
• pg_trgm to version 1.5.
• pgaudit to version 1.5.
• pglogical to version 2.3.3.
• pgrouting to version 3.1.0
• plcoffee to version 2.3.15.
• plls to version 2.3.15.
• plv8 to version 2.3.15.

PostgreSQL 12.8
This release of Aurora PostgreSQL is compatible with PostgreSQL 12.8. For more information about the
improvements in PostgreSQL 12.8, see PostgreSQL release 12.8.

1619

https://www.postgresql.org/docs/13/release-13.html
https://www.postgresql.org/docs/13/release-13-1.html
https://www.postgresql.org/docs/13/release-13-2.html
https://www.postgresql.org/docs/13/release-13-3.html
https://www.postgresql.org/docs/12/release-12-8.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

Critical stability enhancements

• Fixed an issue where, in rare circumstances, a data cache of a read node may be inconsistent following
a restart of that node.

High priority stability enhancements

• Fixed an issue where queries may become unresponsive due to I/O resource exhaustion triggered by
prefetch.

• Fixed an issue where Aurora may panic following a major version update with the message: "PANIC:
could not access status of next transaction id xxxxxxxx".

Additional improvements and enhancements

• Fixed an issue where read nodes restart due to a replication origin cache lookup failure.

• Fixed an issue where read queries may time out on read nodes during the replay of lazy truncation
triggered by vacuum on the write node.

• Fixed an issue that causes Performance Insights to incorrectly set the backend type of a database
connection.

• Fixed an issue where the aurora_postgres_replica_status() function returned stale or lagging CPU stats.

• Fixed an issue where the role rds_superuser did not have permission to execute the
pg_stat_statements_reset() function.

• Fixed an issue with the apg_plan_mgmt extension where the planning and execution times were
reported as 0.

• Removed support for DES, 3DES and RC4 cipher suites.

• Updated PostGIS extension to version 3.1.4.

PostgreSQL 12.7, Aurora PostgreSQL release 4.2
This release of Aurora PostgreSQL is compatible with PostgreSQL 12.7. For more information about the
improvements in PostgreSQL 12.7, see PostgreSQL release 12.7.

Patch releases

• Aurora PostgreSQL 4.2.1 (p. 1620)

• Aurora PostgreSQL release 4.2.0 (p. 1621)

Aurora PostgreSQL 4.2.1

Critical stability enhancements

• Fixed an issue where, in rare circumstances, a data cache of a read node may be inconsistent following
a restart of that node.

High priority stability enhancements

• Fixed an issue where queries may become unresponsive due to I/O resource exhaustion triggered by
prefetch.

• Fixed an issue where Aurora may panic following a major version update with the message: "PANIC:
could not access status of next transaction id xxxxxxxx".

1620

https://www.postgresql.org/docs/12/release-12-7.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

Additional improvements and enhancements

• Fixed an issue where read nodes restart due to a replication origin cache lookup failure.

• Fixed an issue with the apg_plan_mgmt extension where planning and execution time were reported
as 0.

• Fixed an issue that causes Performance Insights to incorrectly set the backend type of a database
connection.

• Fixed an issue with the apg_plan_mgmt extension where plan outline on a partitioned table did not
enforce an index-based plan.

• Fixed an issue where orphaned files caused failed translations in read codepaths during or after major
version upgrade.

• Fixed multiple issues in the Aurora storage daemon that could lead to brief periods of unavailability
when specific network configurations are used.

• Fixed an out of memory crash issue with Aurora storage daemon that leads to writer node restart. This
also reduces the overall system memory consumption.

Aurora PostgreSQL release 4.2.0

New features

• Added support for the oracle_fdw extension version 2.3.0.

High priority stability enhancements

• Fixed an issue where creating a database from an existing template database with tablespace resulted
in an error with the message ERROR: could not open file pg_tblspc/...: No such file
or directory.

• Fixed an issue where, in rare cases, an Aurora replica may be unable to start when a large number of
PostgreSQL subtransactions (i.e. SQL savepoints) have been used.

• Fixed an issue where, in rare circumstances, read results may be inconsistent for repeated read requests
on replica nodes.

Additional improvements and enhancements

• Upgraded OpenSSL to 1.1.1k.

• Reduced CPU usage and memory consumption of the WAL apply process on Aurora replicas for some
workloads.

• Improved safety checks in the write path to detect incorrect writes to metadata.

• Improved security by removing 3DES and other older ciphers for SSL/TLS connections.

• Fixed an issue where a duplicate file entry can prevent the Aurora PostgreSQL engine from starting up.

• Fixed an issue that could cause temporary unavailability under heavy workloads.

• Added back ability to use a leading forward slash in the S3 path during S3 import.

• Added Graviton support for oracle_fdw extension version 2.3.0.

• Changed the following extensions:

• Updated the Orafce extension to version 3.16.

• Updated the pg_partman extension to version 4.5.1.

• Updated the pg_cron extension to version 1.3.1.

• Updated the postgis extension to version 3.0.3.

1621

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

PostgreSQL 12.6, Aurora PostgreSQL release 4.1
This release of Aurora PostgreSQL is compatible with PostgreSQL 12.6. For more information about the
improvements in PostgreSQL 12.6, see PostgreSQL release 12.6.

Aurora PostgreSQL release 4.1.0

New features

• Added support for the following extensions:
• The pg_proctab extension version 0.0.9
• The pg_partman extension version 4.4.0. For more information, see Managing PostgreSQL

partitions with the pg_partman extension (p. 1547).
• The pg_cron extension version 1.3.0. For more information, see Scheduling maintenance with the

PostgreSQL pg_cron extension (p. 1387).
• The pg_bigm extension version 1.2

High priority stability enhancements

• Fixed a bug in the pglogical extension that could lead to data inconsistency for inbound replication.
• Fixed a bug where in rare cases a reader had inconsistent results when it restarted while a transaction

with more than 64 subtransactions was being processed.
• Backported fixes for the following PostgreSQL community security issues:

• CVE-2021-32027
• CVE-2021-32028
• CVE-2021-32029

Additional improvements and enhancements

• Fixed a bug where the database could not be started when there were many relations in memory-
constrained environments.

• Fixed a bug in the apg_plan_mgmt extension that could cause brief periods of unavailability due to an
internal buffer overflow.

• Fixed a bug on reader nodes that could cause brief periods of unavailability during WAL replay.
• Fixed a bug in the rds_activity_stream extension that caused an error during startup when

attempting to log audit events.
• Fixed bugs in the aurora_replica_status function where rows were sometimes partially populated

and some values such as Replay Latency, and CPU usage were always 0.
• Fixed a bug where the database engine would attempt to create shared memory segments larger than

the instance total memory and fail repeatedly. For example, attempts to create 128 GiB shared buffers
on a db.r5.large instance would fail. With this change, requests for total shared memory allocations
larger than the instance memory allow setting the instance to incompatible parameters.

• Added logic to clean up unnecessary pg_wal temporary files on a database startup.
• Fixed a bug that could lead to outbound replication synchronization errors after a major version

upgrade.
• Fixed a bug that reported ERROR: rds_activity_stream stack item 2 not found on top - cannot pop

when attempting to create the rds_activity_stream extension.
• Fixed a bug that could cause the error failed to build any 3-way joins in a correlated IN subquery under

an EXISTS subquery.
• Backported the following performance improvement from the PostgreSQL community:

pg_stat_statements: add missing check for pgss_enabled().

1622

https://www.postgresql.org/docs/12/release-12-6.html
https://nvd.nist.gov/vuln/detail/CVE-2021-32027
https://nvd.nist.gov/vuln/detail/CVE-2021-32028
https://nvd.nist.gov/vuln/detail/CVE-2021-32029
https://github.com/postgres/postgres/commit/6f40ee4f837ec1ac59c8ddc73b67a04978a184d

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

• Fixed a bug that could cause upgrades to Aurora PostgreSQL 12.x to fail due to the inability to open
the pg_control file.

• Fixed a bug that could cause brief periods of unavailability due to running out of memory when
creating the postgis extension with pgAudit enabled.

• Backported the following bug fix from the PostgreSQL community: Fix use-after-free bug with
AfterTriggersTableData.storeslot.

• Fixed a bug when using outbound logical replication to synchronize changes to another database that
could fail with an error message like ERROR: could not map filenode "base/16395/228486645" to
relation OID.

• Fixed a bug that could cause a brief period of unavailability when aborting a transaction.
• Fixed a bug that caused no ICU collations to be shown in the pg_collation catalog table after

creating a new Aurora PostgreSQL 12.x instance. This issue does not affect upgrading from an older
version.

• Fixed a bug where the rds_ad role wasn't created after upgrading from a version of Aurora
PostgreSQL that doesn't support Microsoft Active Directory authentication.

• Added btree page checks to detect tuple metadata inconsistency.
• Fixed a bug in asynchronous buffer reads that could cause brief periods of unavailability on reader

nodes during WAL replay.
• Fixed a bug where reading a TOAST value from disk could cause a brief period of unavailability.
• Fixed a bug that caused brief periods of unavailability when attempting to fetch a tuple from and

index scan.

PostgreSQL 12.4, Aurora PostgreSQL release 4.0
This release of Aurora PostgreSQL is compatible with PostgreSQL 12.4. For more information about the
improvements in PostgreSQL 12.4, see PostgreSQL release 12.4.

Patch releases
• Aurora PostgreSQL release 4.0.2 (p. 1623)
• Aurora PostgreSQL release 4.0.1 (p. 1624)
• Aurora PostgreSQL release 4.0.0 (p. 1624)

Aurora PostgreSQL release 4.0.2

High priority stability enhancements

• Fixed a bug where a reader node might render an extra or missing row if the reader restarted while the
writer node is processing a long transaction with more than 64 subtransactions.

• Fixed a bug that can cause vacuum to block on GiST indexes.
• Fixed a bug where after upgrade to PostgreSQL 12, vacuum can fail on the system table
pg_catalog.pg_shdescription with the following error. ERROR: found xmin 484 from before
relfrozenxid

Additional improvements and enhancements

• Fixed a bug that could lead to intermittent unavailability due to a race condition when handling
responses from storage nodes.

• Fixed a bug that could lead to intermittent unavailability due to the rotation of network encryption
keys.

• Fixed a bug that could lead to intermittent unavailability due to heat management of the underlying
storage segments.

1623

https://github.com/postgres/postgres/commit/262eb990c72097bd804e5c747fe38bf9b3a1ded9
https://github.com/postgres/postgres/commit/262eb990c72097bd804e5c747fe38bf9b3a1ded9
https://www.postgresql.org/docs/12/release-12-4.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

• Fixed a bug where a large S3 import with thousands of clients can cause one or more of the import
clients to stop responding.

• Removed a restriction that prevented setting configuration variable strings that contained brazil.
• Fixed a bug that could lead to intermittent unavailability if a reader node runs a query that access

many tables while the writer node is acquiring exclusive locks on all of the same tables.

Aurora PostgreSQL release 4.0.1

New features

• This release adds support for the Graviton2 db.r6g instance classes (p. 54) to the PostgreSQL engine
version 12.4.

Critical stability enhancements

• Fixed a bug that caused a read replica to unsuccessfully restart repeatedly in rare cases.
• Fixed a bug where a cluster became unavailable when attempting to create more than 16 read replicas

or Aurora global database secondary AWS Regions. The cluster became available again when the new
read replica or secondary AWS Region was removed.

Additional improvements and enhancements

• Fixed a bug that when under heavy load, snapshot import, COPY import, or Amazon S3 import
stopped responding in rare cases.

• Fixed a bug where a read replica might not join the cluster when the writer was very busy with a write-
intensive workload.

• Fixed a bug where a cluster could be unavailable briefly when a high-volume S3 import was running.
• Fixed a bug that caused a cluster to take several minutes to restart if a logical replication stream was

terminated while handling many complex transactions.
• Fixed the Just-in-Time (JIT) compilation, which was incorrectly enabled by default in Aurora

PostgreSQL release 4.0.0.
• Disallowed the use of both AWS Identity and Access Management (IAM) and Kerberos authentication

for the same user.

Aurora PostgreSQL release 4.0.0

New features

• This version supports a major version upgrade from PostgreSQL 11.7, Aurora PostgreSQL release 3.2
 (p. 1634) and later versions.

Additional improvements and enhancements

• Contains several improvements that were announced for PostgreSQL releases 12.0, 12.1, 12.2, 12.3,
and 12.4.

• Contains all fixes, features, and improvements present in PostgreSQL 11.9, Aurora PostgreSQL release
3.4 (p. 1628).

• Backported fixes for the following PostgreSQL community security issues:
• CVE-2020-25694
• CVE-2020-25695
• CVE-2020-25696

1624

https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12-1.html
https://www.postgresql.org/docs/12/release-12-2.html
https://www.postgresql.org/docs/12/release-12-3.html
https://www.postgresql.org/docs/12/release-12-4.html
https://nvd.nist.gov/vuln/detail/CVE-2020-25694
https://nvd.nist.gov/vuln/detail/CVE-2020-25695
https://nvd.nist.gov/vuln/detail/CVE-2020-25696

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

• Updated the following extensions:

• address_standardizer to version 3.0.2

• address_standardizer_data_us to version 3.0.2

• amcheck to version 1.2

• citext to version 1.6

• hll to version 2.14

• hstore to version 1.6

• ip4r to version 2.4

• pg_repack to version 1.4.5

• pg_stat_statements to version 1.7

• pgaudit to version 1.4

• pglogical to version 2.3.2

• pgrouting to version 3.0.3

• plv8 to version 2.3.14

• postGIS to version 3.0.2

• postgis_tiger_geocoder to version 3.0.2

• postgis_topology to version 3.0.2

PostgreSQL 11.13
This release of Aurora PostgreSQL is compatible with PostgreSQL 11.13. For more information about the
improvements in PostgreSQL 11.13, see PostgreSQL release 11.13.

Critical stability enhancements

• Fixed an issue where, in rare circumstances, a data cache of a read node may be inconsistent following
a restart of that node.

High priority stability enhancements

• Fixed an issue where queries may become unresponsive due to I/O resource exhaustion triggered by
prefetch.

• Fixed an issue where Aurora may panic following a major version update with the message: "PANIC:
could not access status of next transaction id xxxxxxxx".

Additional improvements and enhancements

• Fixed an issue where read nodes restart due to a replication origin cache lookup failure.

• Fixed an issue where read queries may time out on read nodes during the replay of lazy truncation
triggered by vacuum on the write node.

• Fixed an issue that causes Performance Insights to incorrectly set the backend type of a database
connection.

• Fixed an issue where the aurora_postgres_replica_status() function returned stale or lagging CPU stats.

• Fixed an issue where, in rare cases, an Aurora Global Database secondary mirror cluster may restart
due to a stall in the log apply process.

• Fixed an issue with the apg_plan_mgmt extension where the planning and execution times were
reported as 0.

• Removed support for DES, 3DES and RC4 cipher suites.

1625

https://www.postgresql.org/docs/12/release-11-13.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

• Updated PostGIS extension to version 3.1.4.

• Added support for postgis_raster extension version 3.1.4.

PostgreSQL 11.12, Aurora PostgreSQL release 3.6

This release of Aurora PostgreSQL is compatible with PostgreSQL 11.12. For more information about the
improvements in PostgreSQL 11.12, see PostgreSQL release 11.12.

Patch releases

• Aurora PostgreSQL 3.6.1 (p. 1626)

• Aurora PostgreSQL release 3.6.0 (p. 1627)

Aurora PostgreSQL 3.6.1

Critical stability enhancements

• Fixed an issue where, in rare circumstances, a data cache of a read node may be inconsistent following
a restart of that node.

High priority stability enhancements

• Fixed an issue where queries may become unresponsive due to I/O resource exhaustion triggered by
prefetch.

• Fixed an issue where Aurora may panic following a major version update with the message: "PANIC:
could not access status of next transaction id xxxxxxxx".

• Fixed multiple issues in the Aurora storage daemon that could lead to brief periods of unavailability
when specific network configurations are used.

• Fixed an out of memory crash issue with Aurora storage daemon that leads to writer node restart. This
also reduces the overall system memory consumption.

Additional improvements and enhancements

• Fixed an issue where read nodes restart due to a replication origin cache lookup failure.

• Fixed an issue with the apg_plan_mgmt extension where planning and execution time were reported
as 0.

• Fixed an issue that causes Performance Insights to incorrectly set the backend type of a database
connection.

• Fixed an issue where in rare cases, an Aurora Global Database secondary mirror cluster may restart due
to a stall in the log apply process.

• Fixed an issue where orphaned files caused failed translations in read codepaths during or after major
version upgrade.

• Fixed multiple issues in the Aurora storage daemon that could lead to brief periods of unavailability
when specific network configurations are used.

• Fixed an out of memory crash issue with Aurora storage daemon that leads to writer node restart. This
also reduces the overall system memory consumption.

1626

https://www.postgresql.org/docs/11/release-11-12.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

Aurora PostgreSQL release 3.6.0

High priority stability enhancements

• Fixed an issue where creating a database from an existing template database with tablespace resulted
in an error with the message ERROR: could not open file pg_tblspc/...: No such file
or directory.

• Fixed an issue where, in rare cases, an Aurora replica may be unable to start when a large number of
PostgreSQL subtransactions (i.e. SQL savepoints) have been used.

• Fixed an issue where, in rare circumstances, read results may be inconsistent for repeated read requests
on replica nodes.

Additional improvements and enhancements

• Upgraded OpenSSL to 1.1.1k.
• Reduced CPU usage and memory consumption of the WAL apply process on Aurora replicas for some

workloads.
• Improved metadata protection from accidental erasure.
• Improved safety checks in the write path to detect incorrect writes to metadata.
• Improved security by removing 3DES and other older ciphers for SSL/TLS connections.
• Fixed an issue where a duplicate file entry can prevent the Aurora PostgreSQL engine from starting up.
• Fixed an issue that could cause temporary unavailability under heavy workloads.
• Added back ability to use a leading forward slash in the S3 path during S3 import.
• Updated the orafce extension to version 3.16.

PostgreSQL 11.11, Aurora PostgreSQL release 3.5
This release of Aurora PostgreSQL is compatible with PostgreSQL 11.11. For more information about the
improvements in PostgreSQL 11.11, see PostgreSQL release 11.11.

Aurora PostgreSQL release 3.5.0

New features

• Added support for the following extensions:
• The pg_proctab extension version 0.0.9
• The pg_bigm extension version 1.2

High priority stability enhancements

• Fixed a bug where in rare cases a reader had inconsistent results when it restarted while a transaction
with more than 64 subtransactions was being processed.

• Backported fixes for the following PostgreSQL community security issues:
• CVE-2021-32027
• CVE-2021-32028
• CVE-2021-32029

Additional improvements and enhancements

• Fixed a bug where the database could not be started when there were many relations in memory-
constrained environments.

1627

https://www.postgresql.org/docs/11/release-11-11.html
https://nvd.nist.gov/vuln/detail/CVE-2021-32027
https://nvd.nist.gov/vuln/detail/CVE-2021-32028
https://nvd.nist.gov/vuln/detail/CVE-2021-32029

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

• Fixed a bug in the apg_plan_mgmt extension that could cause brief periods of unavailability due to an
internal buffer overflow.

• Fixed a bug on reader nodes that could cause brief periods of unavailability during WAL replay.

• Fixed a bug in the rds_activity_stream extension that caused an error during startup when
attempting to log audit events.

• Fixed bugs in the aurora_replica_status function where rows were sometimes partially populated
and some values such as Replay Latency, and CPU usage were always 0.

• Fixed a bug where the database engine would attempt to create shared memory segments larger than
the instance total memory and fail repeatedly. For example, attempts to create 128 GiB shared buffers
on a db.r5.large instance would fail. With this change, requests for total shared memory allocations
larger than the instance memory allow setting the instance to incompatible parameters.

• Added logic to clean up unnecessary pg_wal temporary files on a database startup.

• Fixed a bug that reported ERROR: rds_activity_stream stack item 2 not found on top - cannot pop
when attempting to create the rds_activity_stream extension.

• Fixed a bug that could cause the error failed to build any 3-way joins in a correlated IN subquery under
an EXISTS subquery.

• Backported the following performance improvement from the PostgreSQL community:
pg_stat_statements: add missing check for pgss_enabled().

• Fixed a bug that could cause brief periods of unavailability due to running out of memory when
creating the postgis extension with pgAudit enabled.

• Fixed a bug when using outbound logical replication to synchronize changes to another database that
could fail with an error message like ERROR: could not map filenode "base/16395/228486645" to
relation OID.

• Fixed a bug that could cause a brief period of unavailability when aborting a transaction.

• Fixed a bug where the rds_ad role wasn't created after upgrading from a version of Aurora
PostgreSQL that doesn't support Microsoft Active Directory authentication.

• Added btree page checks to detect tuple metadata inconsistency.

• Fixed a bug in asynchronous buffer reads that could cause brief periods of unavailability on reader
nodes during WAL replay.

PostgreSQL 11.9, Aurora PostgreSQL release 3.4

This release of Aurora PostgreSQL is compatible with PostgreSQL 11.9. For more information about the
improvements in PostgreSQL 11.9, see PostgreSQL release 11.9.

Patch releases

• Aurora PostgreSQL release 3.4.3 (p. 1628)

• Aurora PostgreSQL release 3.4.2 (p. 1629)

• Aurora PostgreSQL release 3.4.1 (p. 1629)

• Aurora PostgreSQL release 3.4.0 (p. 1630)

Aurora PostgreSQL release 3.4.3

High priority stability enhancements

• Provided a patch for PostgreSQL community security issues CVE-2021-32027, CVE-2021-32028 and
CVE-2021-32029.

1628

https://github.com/postgres/postgres/commit/6f40ee4f837ec1ac59c8ddc73b67a04978a184d
https://www.postgresql.org/docs/11/release-11-9.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

Additional improvements and enhancements

• Fixed a bug in the aws_s3 extension to allow import of objects with leading forward slashes in the
object identifier.

• Fixed a bug in the rds_activity_stream extension that caused an error during startup when
attempting to log audit events.

• Fixed a bug that returned an ERROR when attempting to create the rds_activity_stream
extension.

• Fixed a bug that could cause brief periods of unavailability due to running out of memory when
creating the postgis extension with pgAudit enabled.

• Fixed multiple issues in the Aurora storage daemon that could lead to brief periods of unavailability
when specific network configurations are used.

Aurora PostgreSQL release 3.4.2

High priority stability enhancements

• Fixed a bug where in rare cases a reader had inconsistent results when it restarted while a transaction
with more than 64 subtransactions was being processed.

Additional improvements and enhancements

• Fixed a bug that could lead to intermittent unavailability due to a race condition when handling
responses from storage nodes.

• Fixed a bug that could lead to intermittent unavailability due to the rotation of network encryption
keys.

• Fixed a bug that could lead to intermittent unavailability due to heat management of the underlying
storage segments.

• Fixed a bug where a large S3 import with thousands of clients can cause one or more of the import
clients to stop responding.

• Removed a restriction that prevented setting configuration variable strings that contained brazil.

• Fixed a bug that could lead to intermittent unavailability if a reader node runs a query that access
many tables while the writer node is acquiring exclusive locks on all of the same tables.

Aurora PostgreSQL release 3.4.1

Critical stability enhancements

• Fixed a bug that caused a read replica to unsuccessfully restart repeatedly in rare cases.

• Fixed a bug where a cluster became unavailable when attempting to create more than 16 read replicas
or Aurora global database secondary AWS Regions. The cluster became available again when the new
read replica or secondary AWS Region was removed.

Additional improvements and enhancements

• Fixed a bug that when under heavy load, snapshot import, COPY import, or S3 import stopped
responding in rare cases.

• Fixed a bug where a read replica might not join the cluster when the writer was very busy with a write-
intensive workload.

• Fixed a bug where a cluster could be unavailable briefly when a high-volume S3 import was running.

1629

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

• Fixed a bug that caused a cluster to take several minutes to restart if a logical replication stream was
terminated while handling many complex transactions.

• Disallowed the use of both IAM and Kerberos authentication for the same user.

Aurora PostgreSQL release 3.4.0

New features

• Aurora PostgreSQL now supports invocation of AWS Lambda functions. This includes the new
aws_lambda extension. For more information, see Invoking an AWS Lambda function from an Aurora
PostgreSQL DB cluster (p. 1534).

• The db.r6g instance classes are now available in preview for Aurora. For more information, see Aurora
DB instance classes (p. 54).

Critical stability enhancements

• None

High priority stability enhancements

• Fixed a bug in Aurora PostgreSQL replication that could result in the error message ERROR:
MultiXactId nnnn has not been created yet -- apparent wraparound.

• Fixed a bug where in some cases, DB clusters that have logical replication enabled did not remove
truncated WAL segment files from storage. This resulted in volume size growth.

• Backported fixes for the following PostgreSQL community security issues:
• CVE-2020-25694
• CVE-2020-25695
• CVE-2020-25696

• Fixed a bug in the pg_stat_statements extension that caused excessive CPU consumption.

Additional improvements and enhancements

• You can now use pg_replication_slot_advance to advance a logical replication slot for the roles
rds_replication and rds_superuser.

• Improved the asynchronous mode performance of database activity streams.
• Reduced the delay when publishing to CloudWatch the rpo_lag_in_msec metric for Aurora global

database clusters.
• Aurora PostgreSQL no longer falls behind on a read node when the backend is blocked writing to the

database client.
• Fixed a bug that in rare cases caused a brief period of unavailability on a read replica when the storage

volume grew.
• Fixed a bug when creating a database that could return the following: ERROR: could not create

directory on local disk
• Updated data grid files to fix errors or incorrect transformation results from the ST_Transform

method of the PostGIS extension.
• Fixed a bug where in some cases replaying XLOG_BTREE_REUSE_PAGE records on Aurora reader

instances caused unnecessary replay lag.
• Fixed a small memory leak in a b-tree index that could lead to an out of memory condition.
• Fixed a bug in the GiST index that could result in an out of memory condition after promoting an

Aurora read replica.

1630

https://nvd.nist.gov/vuln/detail/CVE-2020-25694
https://nvd.nist.gov/vuln/detail/CVE-2020-25695
https://nvd.nist.gov/vuln/detail/CVE-2020-25696

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

• Fixed an S3 import bug that reported ERROR: HTTP 403. Permission denied when importing data from
a file inside an S3 subfolder.

• Fixed a bug in the aws_s3 extension for pre-signed URL handling that could result in the error
message S3 bucket names with a period (.) are not supported.

• Fixed a bug in the aws_s3 extension where an import might be blocked indefinitely if an exclusive lock
was taken on the relation prior to beginning the operation.

• Fixed a bug related to replication when Aurora PostgreSQL is acting as a physical replica of an
RDS PostgreSQL instance that uses GiST indexes. In rare cases, this bug caused a brief period of
unavailability after promoting the Aurora cluster.

• Fixed a bug in database activity streams where customers were not notified of the end of an outage.
• Updated the pg_audit extension to version 1.3.1.

PostgreSQL 11.8, Aurora PostgreSQL release 3.3
This release of Aurora PostgreSQL is compatible with PostgreSQL 11.8. For more information about the
improvements in PostgreSQL 11.8, see PostgreSQL release 11.8.

Patch releases
• Aurora PostgreSQL release 3.3.2 (p. 1631)
• Aurora PostgreSQL release 3.3.1 (p. 1632)
• Aurora PostgreSQL release 3.3.0 (p. 1632)

Aurora PostgreSQL release 3.3.2

Critical stability enhancements

• None

High priority stability enhancements

• Fixed a bug in Aurora PostgreSQL replication that could result in the error message ERROR:
MultiXactId nnnn has not been created yet -- apparent wraparound.

• Fixed a bug where in some cases, DB clusters that have logical replication enabled did not remove
truncated WAL segment files from storage. This resulted in volume size growth.

• Fixed an issue with creating a global database cluster in a secondary region.
• Backported fixes for the following PostgreSQL community security issues:

• CVE-2020-25694
• CVE-2020-25695
• CVE-2020-25696

• Fixed a bug in the pg_stat_statements extension that caused excessive CPU consumption.

Additional improvements and enhancements

• Aurora PostgreSQL no longer falls behind on a read node when the backend is blocked writing to the
database client.

• Reduced the delay when publishing to CloudWatch the rpo_lag_in_msec metric for Aurora global
database clusters.

• Fixed a bug where a DROP DATABASE statement didn't remove any relation files.
• Fixed a bug where in some cases replaying XLOG_BTREE_REUSE_PAGE records on Aurora reader

instances caused unnecessary replay lag.

1631

https://www.postgresql.org/docs/11/release-11-8.html
https://nvd.nist.gov/vuln/detail/CVE-2020-25694
https://nvd.nist.gov/vuln/detail/CVE-2020-25695
https://nvd.nist.gov/vuln/detail/CVE-2020-25696

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

• Fixed a small memory leak in a b-tree index that could lead to an out of memory condition.
• Fixed a bug in the aurora_replica_status() function where the server_id field was sometimes

truncated.
• Fixed a bug where a log record was incorrectly processed causing the Aurora replica to crash.
• Fixed an S3 import bug that reported ERROR: HTTP 403. Permission denied when importing data from

a file inside an S3 subfolder.
• You can now use pg_replication_slot_advance to advance a logical replication slot for the roles
rds_replication and rds_superuser.

• Improved performance of the asynchronous mode for database activity streams.
• Fixed a bug in the aws_s3 extension that could result in the error message S3 bucket names with a

period (.) are not supported.
• Fixed a race condition that caused valid imports to intermittently fail.
• Fixed a bug related to replication when Aurora PostgreSQL is acting as a physical replica of an

RDS PostgreSQL instance that uses GiST indexes. In rare cases, this bug caused a brief period of
unavailability after promoting the Aurora DB cluster.

• Fixed a bug in the aws_s3 extension where an import may be blocked indefinitely if an exclusive lock
was taken on the relation prior to beginning the operation.

Aurora PostgreSQL release 3.3.1

You can find the following improvements in this release.

Critical stability enhancements

1. Fixed a bug that appears when the NOT EXISTS operator incorrectly returns TRUE, which can only
happen when the following unusual set of circumstances occurs:
• A query is using the NOT EXISTS operator.
• The column or columns being evaluated against the outer query in the NOT EXISTS subquery

contain a NULL value.
• There isn't a another predicate in the subquery that removes the need for the evaluation of the

NULL values.
• The filter used in the subquery does not use an index seek for its execution.
• The operator isn't converted to a join by the query optimizer.

Aurora PostgreSQL release 3.3.0

New features

• Added support for the RDKit extension version 3.8.

The RDKit extension provides modeling functions for cheminformatics. Cheminformatics is storing,
indexing, searching, retrieving, and applying information about chemical compounds. For example,
with the RDKit extension you can construct models of molecules, search for molecular structures, and
read or create molecules in various notations. You can also perform research on data loaded from
the ChEMBL website or a SMILES file. The Simplified Molecular Input Line Entry System (SMILES) is a
typographical notation for representing molecules and reactions. For more information, see The RDKit
database cartridge in the RDKit documentation.

• Added support for a minimum TLS version

Support for a minimum Transport Layer Security (TLS) version is back ported from PostgreSQL 12. It
allows the Aurora PostgreSQL server to constrain the TLS protocols with which a client is allowed to
connect via two new PostgreSQL parameters. These parameters include ssl_min_protocol_versionand

1632

https://www.ebi.ac.uk/chembl/
https://rdkit.org/docs/Cartridge.html
https://rdkit.org/docs/Cartridge.html
https://www.postgresql.org/docs/current/runtime-config-connection.html#GUC-SSL-MIN-PROTOCOL-VERSION

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

ssl_max_protocol_version. For example, to limit client connections to the Aurora PostgreSQL server to
at least TLS 1.2 protocol version, set the ssl_min_protocol_version to TLSv1.2.

• Added support for the pglogical extension version 2.2.2.

The pglogical extension is a logical streaming replication system that provides additional features
beyond what's available in PostgreSQL native logical replication. Features include conflict handling,
row filtering, DDL/sequence replication and delayed apply. You can use the pglogical extension
to set up replication between Aurora PostgreSQL clusters, between RDS PostgreSQL and Aurora
PostgreSQL, and with PostgreSQL databases running outside of RDS.

• Aurora dynamically resizes your cluster storage space. With dynamic resizing, the storage space for
your Aurora DB cluster automatically decreases when you remove data from the DB cluster. For more
information, see Storage scaling (p. 396).

Note
The dynamic resizing feature is being deployed in phases to the AWS Regions where Aurora is
available. Depending on the Region where your cluster is, this feature might not be available
yet. For more information, see the What's New announcement.

Critical stability enhancements

• Fixed a bug related to heap page extend that in rare cases resulted in longer recovery time and
impacted availability.

High priority stability enhancements

• Fixed a bug in Aurora Global Database that could cause delays in upgrading the database engine in a
secondary AWS Region. For more information, see Using Amazon Aurora global databases (p. 225).

• Fixed a bug that in rare cases caused delays in upgrading a database to engine version 11.8.

Additional improvements and enhancements

• Fixed a bug where the Aurora replica crashed when workloads with heavy subtransactions are made on
the writer instance.

• Fixed a bug where the writer instance crashed due to a memory leak and the depletion of memory
used to track active transactions.

• Fixed a bug that lead to a crash due to improper initialization when there is no free memory available
during PostgreSQL backend startup.

• Fixed a bug where an Aurora PostgreSQL Serverless DB cluster might return the following error after a
scaling event: ERROR: prepared statement "S_6" already exists.

• Fixed an out-of-memory problem when issuing the CREATE EXTENSION command with PostGIS when
Database Activity Streams enabled.

• Fixed a bug where a SELECT query might incorrectly return the error Attempting to read past EOF of
relation rrrr. blockno=bbb nblocks=nnn.

• Fixed a bug where the database might be unavailable briefly due to error handling in database storage
growth.

• Fixed a bug in Aurora PostgreSQL Serverless where queries that executed on previously idle
connections got delayed until the scale operation completed.

• Fixed a bug where an Aurora PostgreSQL DB cluster with Database Activity Streams enabled
might report the beginning of a potential loss window for activity records, but does not report the
restoration of connectivity.

• Fixed a bug with theaws_s3.table_import_from_s3 (p. 1463) function where a COPY from S3 failed
with the error HTTP error code: 248.

1633

https://www.postgresql.org/docs/current/runtime-config-connection.html#GUC-SSL-MAX-PROTOCOL-VERSION
http://aws.amazon.com/about-aws/whats-new/2020/10/amazon-aurora-enables-dynamic-resizing-database-storage-space/

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

PostgreSQL 11.7, Aurora PostgreSQL release 3.2
This release of Aurora PostgreSQL is compatible with PostgreSQL 11.7. For more information about the
improvements in PostgreSQL 11.7, see PostgreSQL release 11.7.

Patch releases

• Aurora PostgreSQL release 3.2.7 (p. 1634)

• Aurora PostgreSQL release 3.2.6 (p. 1634)

• Aurora PostgreSQL release 3.2.4 (p. 1635)

• Aurora PostgreSQL release 3.2.3 (p. 1635)

• Aurora PostgreSQL release 3.2.2 (p. 1636)

• Aurora PostgreSQL release 3.2.1 (p. 1636)

Aurora PostgreSQL release 3.2.7

You can find the following improvements in this release.

Critical stability enhancements

• None

High priority stability enhancements

• Backported fixes for the following PostgreSQL community security issues:

• CVE-2020-25694

• CVE-2020-25695

• CVE-2020-25696

Additional improvements and enhancements

• None

Aurora PostgreSQL release 3.2.6

You can find the following improvements in this release.

Critical stability enhancements

• None

High priority stability enhancements

• Fixed a bug in Aurora PostgreSQL replication that might result in the error message, ERROR:
MultiXactId nnnn has not been created yet -- apparent wraparound.

Additional improvements and enhancements

• Fixed a bug that in rare cases caused brief read replica unavailability when storage volume grew.

• Aurora PostgreSQL Serverless now supports execution of queries on all connections during a scale
event.

1634

https://www.postgresql.org/docs/11/release-11-7.html
https://nvd.nist.gov/vuln/detail/CVE-2020-25694
https://nvd.nist.gov/vuln/detail/CVE-2020-25695
https://nvd.nist.gov/vuln/detail/CVE-2020-25696

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

• Fixed a bug in Aurora PostgreSQL Serverless where a leaked lock resulted in a prolonged scale event.

• Fixed a bug where the aurora_replica_status function showed truncated server identifiers.

• Fixed a bug in Aurora PostgreSQL Serverless where connections being migrated during a scale event
disconnected with the message: "ERROR: could not open relation with OID

• Fixed a small memory leak in a b-tree index that could lead to an out of memory condition.

• Fixed a bug in a GiST index that might result in an out of memory condition after promoting an Aurora
Read Replica.

• Improved performance for Database Activity Streams.

• Fixed a bug in Database Activity Streams where customers were not notified when an outage ended.

• Fixed a bug in the aws_s3 extension for pre-signed URL handling that could have resulted in the error
message S3 bucket names with a period (.) are not supported.

• Fixed a bug in the aws_s3 extension where incorrect error handling could lead to failures during the
import process.

• Fixed a bug in the aws_s3 extension where an import may be blocked indefinitely if an exclusive lock
was taken on the relation prior to beginning the operation.

Aurora PostgreSQL release 3.2.4

You can find the following improvements in this release.

Critical stability enhancements

1. Fixed a bug that appears when the NOT EXISTS operator incorrectly returns TRUE, which can only
happen when the following unusual set of circumstances occurs:

• A query is using the NOT EXISTS operator.

• The column or columns being evaluated against the outer query in the NOT EXISTS subquery
contain a NULL value.

• There isn't a another predicate in the subquery that removes the need for the evaluation of the
NULL values.

• The filter used in the subquery does not use an index seek for its execution.

• The operator isn't converted to a join by the query optimizer.

Aurora PostgreSQL release 3.2.3

You can find the following improvements in this release.

Critical stability enhancements

• None

High priority stability enhancements

• None

Additional improvements and enhancements

• Fixed a bug in Aurora PostgreSQL Serverless where queries that ran on previously idle connections got
delayed until the scale operation completed.

• Fixed a bug that might cause brief unavailability for heavy subtransaction workloads when multiple
reader instances restart or rejoin the cluster.

1635

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

Aurora PostgreSQL release 3.2.2

You can find the following improvements in this release.

Critical stability enhancements

• Fixed a bug related to heap page extend that in rare cases resulted in longer recovery time and
impacted availability.

High priority stability enhancements

• Fixed a bug in Aurora Global Database that could cause delays in upgrading the database engine in a
secondary region. For more information, see Using Amazon Aurora global databases (p. 225).

• Fixed a bug that in rare cases caused delays in upgrading a database to engine version 11.7.

Additional improvements and enhancements

• Fixed a bug where the database might be unavailable briefly due to error handling in database storage
growth.

• Fixed a bug where a SELECT query might incorrectly return the error, Attempting to read past EOF of
relation rrrr. blockno=bbb nblocks=nnn.

• Fixed a bug where an Aurora PostgreSQL Serverless DB cluster might return the following error after a
scaling event: ERROR: prepared statement "S_6" already exists.

Aurora PostgreSQL release 3.2.1

New features

• Added support for Amazon Aurora PostgreSQL Global Database. For more information, see Using
Amazon Aurora global databases (p. 225).

• Added the ability to configure the recovery point objective (RPO) of a global database for Aurora
PostgreSQL. For more information, see Managing RPOs for Aurora PostgreSQL–based global
databases (p. 272).

You can find the following improvements in this release.

Critical stability enhancements

None.

High priority stability enhancements

• Improved performance and availability of read instances when applying DROP TABLE and TRUNCATE
TABLE operations.

• Fixed a small but continuous memory leak in a diagnostic module that could lead to an out-of-
memory condition on smaller DB instance types.

• Fixed a bug in the PostGIS extension which could lead to a database restart. This has been reported
to the PostGIS community as https://trac.osgeo.org/postgis/ticket/4646.

• Fixed a bug where read requests might stop responding due to incorrect error handling in the storage
engine.

• Fixed a bug that fails for some queries and results in the message ERROR: found xmin xxxxxx from
before relfrozenxid yyyyyyy. This could occur following the promotion of a read instance to a write
instance.

1636

https://trac.osgeo.org/postgis/ticket/4646

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

• Fixed a bug where an Aurora serverless DB cluster might crash while rolling back a scale attempt.

Additional improvements and enhancements

• Improved performance for queries that read many rows from storage.
• Improved performance and availability of reader DB instances during heavy read workload.
• Enabled correlated IN and NOT IN subqueries to be transformed to joins when possible.
• Improved the filtering estimation for enhanced semi-join filter pushdown by using multi-column

statistics or indexes when available.
• Improved read performance of the pg_prewarm extension.
• Fixed a bug where an Aurora serverless DB cluster might report the message ERROR: incorrect binary

data format in bind parameter ... following a scale event.
• Fixed a bug where a serverless DB cluster might report the message ERROR: insufficient data left in

message following a scale event.
• Fixed a bug where an Aurora serverless DB cluster can experience prolonged or failed scale attempts.
• Fixed a bug that resulted in the message ERROR: could not create file "base/xxxxxx/yyyyyyy" as a

previous version still exists on disk: Success. Please contact AWS customer support. This can occur
during object creation after PostgreSQL's 32-bit object identifier has wrapped around.

• Fixed a bug where the write-ahead-log (WAL) segment files for PostgreSQL logical replication were not
deleted when changing the wal_level value from logical to replica.

• Fixed a bug in the pg_hint_plan extension where a multi-statement query could lead to a crash
when enable_hint_table is enabled. This is tracked in the PostgreSQL community as https://
github.com/ossc-db/pg_hint_plan/issues/25.

• Fixed a bug where JDBC clients might report the message java.io.IOException: Unexpected packet type:
75 following a scale event in an Aurora serverless DB cluster.

• Fixed a bug in PostgreSQL logical replication that resulted in the message ERROR: snapshot reference
is not owned by resource owner TopTransaction.

• Changed the following extensions:
• Updated orafce to version 3.8
• Updated pgTAP to version 1.1

• Provided support for fault injection queries.

PostgreSQL 11.6, Aurora PostgreSQL release 3.1
This release of Aurora PostgreSQL is compatible with PostgreSQL 11.6. For more information about the
improvements in PostgreSQL 11.6, see PostgreSQL release 11.6.

This release contains multiple critical stability enhancements. Amazon highly recommends upgrading
your Aurora PostgreSQL clusters that use older PostgreSQL 11 engines to this release.

Patch releases
• Aurora PostgreSQL release 3.1.4 (p. 1637)
• Aurora PostgreSQL release 3.1.3 (p. 1638)
• Aurora PostgreSQL release 3.1.2 (p. 1638)
• Aurora PostgreSQL release 3.1.1 (p. 1639)
• Aurora PostgreSQL release 3.1.0 (p. 1639)

Aurora PostgreSQL release 3.1.4

You can find the following improvements in this release.

1637

https://github.com/ossc-db/pg_hint_plan/issues/25
https://github.com/ossc-db/pg_hint_plan/issues/25
https://www.postgresql.org/docs/11/release-11-6.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

Critical stability enhancements

• None

High priority stability enhancements

• Backported fixes for the following PostgreSQL community security issues:

• CVE-2020-25694

• CVE-2020-25695

• CVE-2020-25696

Additional improvements and enhancements

• None

Aurora PostgreSQL release 3.1.3

New features

• Aurora PostgreSQL now supports the PostgreSQL vacuum_truncate storage parameter to manage
vacuum truncation for specific tables. Set this storage parameter to false for a table to prevent the
VACUUM SQL command from truncating the table's trailing empty pages.

Critical stability enhancements

• None

High priority stability enhancements

• Fixed a bug where reads from storage might stop responding due to incorrect error handling.

Additional improvements and enhancements

• None

Aurora PostgreSQL release 3.1.2

This release contains a critical stability enhancement. Amazon highly recommends updating your older
Aurora PostgreSQL 11-compatible clusters to this release.

Critical stability enhancements

• Fixed a bug in which a reader DB instance might temporarily use stale data. This could lead to wrong
results such as too few or too many rows. This error is not persisted on storage, and will clear when
the database page containing the row has been evicted from cache. This can happen when the primary
DB instance enters a transaction snapshot overflow due to having more than 64 subtransactions in
a single transaction. Applications susceptible to this bug include those that use SQL savepoints or
PostgreSQL exception handlers with more than 64 subtransactions in the top transaction.

1638

https://nvd.nist.gov/vuln/detail/CVE-2020-25694
https://nvd.nist.gov/vuln/detail/CVE-2020-25695
https://nvd.nist.gov/vuln/detail/CVE-2020-25696
https://www.postgresql.org/docs/current/sql-createtable.html#RELOPTION-VACUUM-TRUNCATE
https://www.postgresql.org/docs/current/sql-createtable.html#SQL-CREATETABLE-STORAGE-PARAMETERS
https://www.postgresql.org/docs/current/sql-vacuum.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

High priority stability enhancements

• Fixed a bug that might cause a reader DB instance to crash causing unavailability while attempting to
the join the DB cluster. This can happen in some cases when the primary DB instance has a transaction
snapshot overflow due to a high number of subtransactions. In this situation the reader DB instance
will be unable to join until the snapshot overflow has cleared.

Additional improvements and enhancements

• Fixed a bug that prevented Performance Insights from determining the query ID of a running
statement.

Aurora PostgreSQL release 3.1.1

You can find the following improvements in this release.

Critical stability enhancements

• Fixed a bug in which the DB instance might be briefly unavailable due to the self-healing function of
the underlying storage.

High priority stability enhancements

• Fixed a bug in which the database engine might crash causing unavailability. This occurred while
scanning an included, non-key column of a B-Tree index. This only applies to PostgreSQL 11 "included
column" indexes.

• Fixed a bug that might cause the database engine to crash causing unavailability. This occurred if
a newly established database connection encountered a resource exhaustion-related error during
initialization after successful authentication.

Additional improvements and enhancements

• Provided a fix for the pg_hint_plan extension that could lead the database engine to crash causing
unavailability. The open source issue can be tracked at https://github.com/ossc-db/pg_hint_plan/pull/
45.

• Fixed a bug where SQL of the form ALTER FUNCTION ... OWNER TO ... incorrectly reported
ERROR: improper qualified name (too many dotted names).

• Improved the performance of GIN index vacuum via prefetching.
• Fixed a bug in open source PostgreSQL that could lead to a database engine crash causing

unavailability. This occurred during parallel B-Tree index scans. This issue has been reported to the
PostgreSQL community.

• Improved the performance of in-memory B-Tree index scans.

For information about extensions and modules, see Extensions supported for Aurora PostgreSQL
11.x (p. 1687).

Aurora PostgreSQL release 3.1.0

You can find the following new features and improvements in this engine version.

New features

1. Support for exporting data to Amazon S3. For more information, see Exporting data from an Aurora
PostgreSQL DB cluster to Amazon S3 (p. 1467).

1639

https://github.com/ossc-db/pg_hint_plan/pull/45
https://github.com/ossc-db/pg_hint_plan/pull/45

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

2. Support for Amazon Aurora Machine Learning. For more information, see Using machine learning (ML)
with Aurora PostgreSQL (p. 1511).

3. SQL processing enhancements include:
• Optimizations for NOT IN with the apg_enable_not_in_transform parameter.
• Semi-join filter pushdown enhancements for hash joins with the
apg_enable_semijoin_push_down parameter.

• Optimizations for redundant inner join removal with the
apg_enable_remove_redundant_inner_joins parameter.

• Improved ANSI compatibility options with the ansi_constraint_trigger_ordering,
ansi_force_foreign_key_checks and ansi_qualified_update_set_target parameters.

For more information, see Amazon Aurora PostgreSQL parameters (p. 1564).
4. New and updated PostgreSQL extensions include:

• The new aws_ml extension. For more information, see Using machine learning (ML) with Aurora
PostgreSQL (p. 1511).

• The new aws_s3 extension. For more information, see Exporting data from an Aurora PostgreSQL
DB cluster to Amazon S3 (p. 1467).

• Updates to the apg_plan_mgmt extension. For more information, see Managing query execution
plans for Aurora PostgreSQL (p. 1477)

Critical stability enhancements

1. Fixed a bug related to creating B-tree indexes on temporary tables that in rare cases might result in
longer recovery time, and impact availability.

2. Fixed a bug related to replication when Aurora PostgreSQL is acting as a physical replica of an RDS
PostgreSQL instance. In rare cases, this bug causes a log write failure that might result in longer
recovery time, and impact availability.

3. Fixed a bug related to handling of reads with high I/O latency that in rare cases might result in longer
recovery time, and impact availability.

High priority stability enhancements

1. Fixed a bug related to logical replication in which wal segments are not properly removed from
storage. This can result in storage bloat. To monitor this, view the TransactionLogDiskUsage
parameter.

2. Fixed multiple bugs, which cause Aurora to crash during prefetch operations on Btree indexes.
3. Fixed a bug in which an Aurora restart might time out when logical replication is used.
4. Enhanced the validation checks performed on data blocks in the buffer cache. This improves Aurora's

detection of inconsistency.

Additional improvements and enhancements

1. The query plan management extension apg_plan_mgmt has an improved algorithm for managing
plan generation for highly partitioned tables.

2. Reduced startup time on instances with large caches via improvements in the buffer cache recovery
algorithm.

3. Improved the performance of the read-node-apply process under high transaction rate workloads by
using changes to PostgreSQL LWLock prioritization. These changes prevent starvation of the read-
node-apply process while the PostgreSQL ProcArray is under heavy contention.

4. Improved handling of batch reads during vacuum, table scans, and index scans. This results in greater
throughput and lower CPU consumption.

1640

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

5. Fixed a bug in which a read node might crash during the replay of a PostgreSQL SLRU-truncate
operation.

6. Fixed a bug where in rare cases, database writes might stall following an error returned by one of the
six copies of an Aurora log record.

7. Fixed a bug related to logical replication where an individual transaction larger than 1 GB in size might
result in an engine crash.

8. Fixed a memory leak on read nodes when cluster cache management is enabled.

9. Fixed a bug in which importing an RDS PostgreSQL snapshot might stop responding if the source
snapshot contains a large number of unlogged relations.

10.Fixed a bug in which the Aurora storage daemon might crash under heavy I/O load.

11.Fixed a bug related to hot_standby_feedback for read nodes in which the read node might
report the wrong transaction id epoch to the write node. This can cause the write node to ignore the
hot_standby_feedback and invalidate snapshots on the read node.

12.Fixed a bug in which storage errors that occur during CREATE DATABASE statements are not properly
handled. The bug left the resulting database inaccessible. The correct behavior is to fail the database
creation and return the appropriate error to the user.

13.Improved handling of PostgreSQL snapshot overflow when a read node attempts to connect to a
write node. Prior to this change, if the write node was in a snapshot overflow state, the read node
was unable to join. A message appeared in the PostgreSQL log file in the form DEBUG: recovery
snapshot waiting for non-overflowed snapshot or until oldest active xid on
standby is at least xxxxxxx (now yyyyyyy). A snapshot overflow occurs when an individual
transaction has created over 64 subtransactions.

14.Fixed a bug related to common table expressions in which an error is incorrectly raised when a NOT IN
class exists in a CTE. The error is CTE with NOT IN fails with ERROR: could not find CTE
CTE-Name.

15.Fixed a bug related to an incorrect last_error_timestamp value in the aurora_replica_status
table.

16.Fixed a bug to avoid populating shared buffers with blocks belonging to temporary objects. These
blocks correctly reside in PostgreSQL backend local buffers.

17.Changed the following extensions:

• Updated pg_hint_plan to version 1.3.4.

• Added plprofiler version 4.1.

• Added pgTAP version 1.0.0.

PostgreSQL 11.4, Aurora PostgreSQL release 3.0 (unsupported)
Note
The PostgreSQL engine version 11.4 with the Aurora PostgreSQL release 3.0 is no
longer supported. To upgrade, see Upgrading the PostgreSQL DB engine for Aurora
PostgreSQL (p. 1695).

This release of Aurora PostgreSQL is compatible with PostgreSQL 11.4. For more information about the
improvements in PostgreSQL 11.4, see PostgreSQL release 11.4.

You can find the following improvements in this release.

Improvements

1. This release contains all fixes, features, and improvements present in Aurora PostgreSQL release
2.3.5 (p. 1658).

2. Partitioning – Partitioning improvements include support for hash partitioning, enabling creation of a
default partition, and dynamic row movement to another partition based on the key column update.

1641

https://www.postgresql.org/docs/11/release-11-4.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

3. Performance – Performance improvements include parallelism while creating indexes, materialized
views, hash joins, and sequential scans to make the operations perform better.

4. Stored procedures – SQL stored procedures now added support for embedded transactions.

5. Autovacuum improvements – To provide valuable logging, the parameter
rds.force_autovacuum_logging is ON by default in conjunction with the
log_autovacuum_min_duration parameter set to 10 seconds. To increase
autovacuum effectiveness, the values for the autovacuum_max_workers and
autovacuum_vacuum_cost_limit parameters are computed based on host memory capacity to
provide larger default values.

6. Improved transaction timeout – The parameter idle_in_transaction_session_timeout is set to
24 hours. Any session that has been idle more than 24 hours is terminated.

7. The tsearch2 module is no longer supported – If your application uses tsearch2 functions, update
it to use the equivalent functions provided by the core PostgreSQL engine. For more information
about the tsearch2 module, see PostgreSQL tsearch2.

8. The chkpass module is no longer supported – For more information about the chkpass module, see
PostgreSQL chkpass.

9. Updated the following extensions:

• address_standardizer to version 2.5.1

• address_standardizer_data_us to version 2.5.1

• btree_gin to version 1.3

• citext to version 1.5

• cube to version 1.4

• hstore to version 1.5

• ip4r to version 2.2

• isn to version 1.2

• orafce to version 3.7

• pg_hint_plan to version 1.3.4

• pg_prewarm to version 1.2

• pg_repack to version 1.4.4

• pg_trgm to version 1.4

• pgaudit to version 1.3

• pgrouting to version 2.6.1

• pgtap to version 1.0.0

• plcoffee to version 2.3.8

• plls to version 2.3.8

• plv8 to version 2.3.8

• postgis to version 2.5.1

• postgis_tiger_geocoder to version 2.5.1

• postgis_topology to version 2.5.1

• rds_activity_stream to version 1.3

PostgreSQL 10.18

This release of Aurora PostgreSQL is compatible with PostgreSQL 10.18. For more information about the
improvements in PostgreSQL 10.18, see PostgreSQL release 10.18.

1642

https://www.postgresql.org/docs/9.6/tsearch2.html
https://www.postgresql.org/docs/10/chkpass.html
https://www.postgresql.org/docs/12/release-10-18.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

Critical stability enhancements

• Fixed an issue where, in rare circumstances, a data cache of a read node may be inconsistent following
a restart of that node.

High priority stability enhancements

• Fixed an issue where queries may become unresponsive due to I/O resource exhaustion triggered by
prefetch.

• Fixed an issue where Aurora may panic following a major version update with the message: "PANIC:
could not access status of next transaction id xxxxxxxx".

Additional improvements and enhancements

• Fixed an issue where read nodes restart due to a replication origin cache lookup failure.

• Fixed an issue where read queries may time out on read nodes during the replay of lazy truncation
triggered by vacuum on the write node.

• Fixed an issue that causes Performance Insights to incorrectly set the backend type of a database
connection.

• Fixed an issue where the aurora_postgres_replica_status() function returned stale or lagging CPU stats.

• Fixed an issue where, in rare cases, an Aurora Global Database secondary mirror cluster may restart
due to a stall in the log apply process.

• Removed support for DES, 3DES and RC4 cipher suites.

• Updated PostGIS extension to version 3.1.4.

• Added support for postgis_raster extension version 3.1.4.

PostgreSQL 10.17, Aurora PostgreSQL release 2.9

This release of Aurora PostgreSQL is compatible with PostgreSQL 10.17. For more information about the
improvements in PostgreSQL 10.17, see PostgreSQL release 10.17.

Patch releases

• Aurora PostgreSQL 2.9.1 (p. 1643)

• Aurora PostgreSQL release 2.9 (p. 1644)

Aurora PostgreSQL 2.9.1

Critical stability enhancements

• Fixed an issue where, in rare circumstances, a data cache of a read node may be inconsistent following
a restart of that node.

High priority stability enhancements

• Fixed an issue where queries may become unresponsive due to I/O resource exhaustion triggered by
prefetch.

• Fixed an issue where Aurora may panic following a major version update with the message: "PANIC:
could not access status of next transaction id xxxxxxxx".

1643

https://www.postgresql.org/docs/11/release-10-17.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

Additional improvements and enhancements

• Fixed an issue where read nodes restart due to a replication origin cache lookup failure.
• Fixed an issue where in rare cases, an Aurora Global Database secondary mirror cluster may restart due

to a stall in the log apply process.
• Fixed an issue that causes Performance Insights to incorrectly set the backend type of a database

connection.
• Fixed an issue where orphaned files caused failed translations in read codepaths during or after major

version upgrade.
• Fixed multiple issues in the Aurora storage daemon that could lead to brief periods of unavailability

when specific network configurations are used.
• Fixed an out of memory crash issue with Aurora storage daemon that leads to writer node restart. This

also reduces the overall system memory consumption.

Aurora PostgreSQL release 2.9

High priority stability enhancements

1. Fixed an issue where creating a database from an existing template database with tablespace resulted
in an error with the message ERROR: could not open file pg_tblspc/...: No such file
or directory.

2. Fixed an issue where, in rare cases, an Aurora replica may be unable to start when a large number of
PostgreSQL subtransactions (i.e. SQL savepoints) have been used.

3. Fixed an issue where, in rare circumstances, read results may be inconsistent for repeated read
requests on replica nodes.

Additional improvements and enhancements

1. Upgraded OpenSSL to 1.1.1k.
2. Reduced CPU usage and memory consumption of the WAL apply process on Aurora replicas for some

workloads.
3. Improved safety checks in the write path to detect incorrect writes to metadata.
4. Improved security by removing 3DES and other older ciphers for SSL/TLS connections.
5. Fixed an issue where a duplicate file entry can prevent the Aurora PostgreSQL engine from starting

up.
6. Fixed an issue that could cause temporary unavailability under heavy workloads.
7. Added back ability to use a leading forward slash in the S3 path during S3 import.
8. Updated the orafce extension to version 3.16.
9. Updated the PostGIS extension to version 2.4.7.

PostgreSQL 10.16, Aurora PostgreSQL release 2.8
This release of Aurora PostgreSQL is compatible with PostgreSQL 10.16. For more information about the
improvements in PostgreSQL 10.16, see PostgreSQL release 10.16.

Aurora PostgreSQL release 2.8.0

High priority stability enhancements

1. Fixed a bug where in rare cases a reader had inconsistent results when it restarted while a transaction
with more than 64 subtransactions was being processed.

1644

https://www.postgresql.org/docs/10/release-10-16.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

2. Backported fixes for the following PostgreSQL community security issues:

• CVE-2021-32027

• CVE-2021-32028

• CVE-2021-32029

Additional improvements and enhancements

1. Fixed a bug where the database could not be started when there were many relations in memory-
constrained environments.

2. Fixed a bug in the apg_plan_mgmt extension that could cause brief periods of unavailability due to
an internal buffer overflow.

3. Fixed a bug on reader nodes that could cause brief periods of unavailability during WAL replay.

4. Fixed a bug in the rds_activity_stream extension that caused an error during startup when
attempting to log audit events.

5. Fixed a bug that prevented minor version updates of an Aurora global database cluster.

6. Fixed bugs in the aurora_replica_status function where rows were sometimes partially
populated and some values such as Replay Latency, and CPU usage were always 0.

7. Fixed a bug where the database engine would attempt to create shared memory segments larger than
the instance total memory and fail repeatedly. For example, attempts to create 128 GiB shared buffers
on a db.r5.large instance would fail. With this change, requests for total shared memory allocations
larger than the instance memory allow setting the instance to incompatible parameters.

8. Added logic to clean up unnecessary pg_wal temporary files on a database startup.

9. Fixed a bug that reported ERROR: rds_activity_stream stack item 2 not found on top - cannot pop
when attempting to create the rds_activity_stream extension.

10.Fixed a bug that could cause the error failed to build any 3-way joins in a correlated IN subquery
under an EXISTS subquery.

11.Fixed a bug that could cause brief periods of unavailability due to running out of memory when
creating the postgis extension with pgAudit enabled.

12.Fixed a bug when using outbound logical replication to synchronize changes to another database that
could fail with an error message like ERROR: could not map filenode "base/16395/228486645" to
relation OID.

13.Fixed a bug where the rds_ad role wasn't created after upgrading from a version of Aurora
PostgreSQL that doesn't support Microsoft Active Directory authentication.

14.Added btree page checks to detect tuple metadata inconsistency.

15.Fixed a bug in asynchronous buffer reads that could cause brief periods of unavailability on reader
nodes during WAL replay.

PostgreSQL 10.14, Aurora PostgreSQL release 2.7

This release of Aurora PostgreSQL is compatible with PostgreSQL 10.14. For more information about the
improvements in PostgreSQL 10.14, see PostgreSQL release 10.14.

Patch releases

• Aurora PostgreSQL release 2.7.3 (p. 1646)

• Aurora PostgreSQL release 2.7.2 (p. 1646)

• Aurora PostgreSQL release 2.7.1 (p. 1646)

• Aurora PostgreSQL release 2.7.0 (p. 1647)

1645

https://nvd.nist.gov/vuln/detail/CVE-2021-32027
https://nvd.nist.gov/vuln/detail/CVE-2021-32028
https://nvd.nist.gov/vuln/detail/CVE-2021-32029
https://www.postgresql.org/docs/10/release-10-14.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

Aurora PostgreSQL release 2.7.3

High priority stability enhancements

1. Provided a patch for PostgreSQL community security issues CVE-2021-32027, CVE-2021-32028 and
CVE-2021-32029.

Additional improvements and enhancements

1. Fixed a bug in the aws_s3 extension to allow import of objects with leading forward slashes in the
object identifier.

2. Fixed a bug in the rds_activity_stream extension that caused an error during startup when
attempting to log audit events.

3. Fixed a bug that returned an ERROR when attempting to create the rds_activity_stream
extension.

4. Fixed a bug that could cause brief periods of unavailability due to running out of memory when
creating the postgis extension with pgAudit enabled.

5. Fixed multiple issues in the Aurora storage daemon that could lead to brief periods of unavailability
when specific network configurations are used.

Aurora PostgreSQL release 2.7.2

High priority stability enhancements

1. Fixed a bug where a reader node might render an extra or missing row if the reader restarted while the
writer node is processing a long transaction with more than 64 subtransactions.

Additional improvements and enhancements

1. Fixed a bug that could lead to intermittent unavailability due to the rotation of network encryption
keys.

2. Fixed a bug where a large S3 import with thousands of clients can cause one or more of the import
clients to stop responding.

Aurora PostgreSQL release 2.7.1

Critical stability enhancements

1. Fixed a bug that caused a read replica to unsuccessfully restart repeatedly in rare cases.
2. Fixed a bug where a cluster became unavailable when attempting to create more than 16 read replicas

or Aurora global database secondary AWS Regions. The cluster became available again when the new
read replica or secondary AWS Region was removed.

Additional improvements and enhancements

1. Fixed a bug that when under heavy load, snapshot import, COPY import, or S3 import stopped
responding in rare cases.

2. Fixed a bug where a read replica might not join the cluster when the writer was very busy with a write-
intensive workload.

3. Fixed a bug that caused a cluster to take several minutes to restart if a logical replication stream was
terminated while handling many complex transactions.

1646

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

4. Disallowed the use of both IAM and Kerberos authentication for the same user.

Aurora PostgreSQL release 2.7.0

Critical stability enhancements

• None

High priority stability enhancements

1. Backported fixes for the following PostgreSQL community security issues:

• CVE-2020-25694

• CVE-2020-25695

• CVE-2020-25696

2. Fixed a bug in Aurora PostgreSQL replication that could result in the error message ERROR:
MultiXactId nnnn has not been created yet -- apparent wraparound.

3. Fixed a bug where in some cases, DB clusters that have logical replication enabled did not remove
truncated WAL segment files from storage. This resulted in volume size growth.

4. Fixed a bug in the pg_stat_statements extension that caused excessive CPU consumption.

Additional improvements and enhancements

1. Improved the asynchronous mode performance of database activity streams.

2. Aurora Serverless v1 for PostgreSQL now supports query execution on all connections during a scale
event.

3. Reduced the delay when publishing to CloudWatch the rpo_lag_in_msec metric for Aurora global
database clusters.

4. Fixed a bug in Serverless clusters where transaction processing was unnecessarily suspended for long
periods when creating a scale point.

5. Fixed a bug in Aurora Serverless v1 for PostgreSQL where a leaked lock resulted in a prolonged scale
event.

6. Fixed a bug in Aurora Serverless v1 for PostgreSQL where connections being migrated during a scale
event was disconnected with the following message: ERROR: could not open relation with OID ...

7. Aurora PostgreSQL no longer falls behind on a read node when the backend is blocked writing to the
database client.

8. Fixed a bug that in rare cases caused a brief period of unavailability on a read replica when the storage
volume grew.

9. Fixed a bug when creating a database that could return the following error: ERROR: could not create
directory on local disk

10.Fixed a bug where in some cases replaying XLOG_BTREE_REUSE_PAGE records on Aurora reader
instances caused unnecessary replay lag.

11.Fixed a bug in the GiST index that could result in an out of memory condition after promoting an
Aurora read replica.

12.Fixed a bug where the aurora_replica_status function showed truncated server identifiers.

13.Fixed an S3 import bug that reported ERROR: HTTP 403. Permission denied when importing data
from a file inside an S3 subfolder.

14.Fixed a bug in the aws_s3 extension for pre-signed URL handling that could result in the error
message S3 bucket names with a period (.) are not supported.

1647

https://nvd.nist.gov/vuln/detail/CVE-2020-25694
https://nvd.nist.gov/vuln/detail/CVE-2020-25695
https://nvd.nist.gov/vuln/detail/CVE-2020-25696

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

15.Fixed a bug in the aws_s3 extension where an import might be blocked indefinitely if an exclusive
lock was taken on the relation prior to beginning the operation.

16.Fixed a bug related to replication when Aurora PostgreSQL is acting as a physical replica of an
RDS PostgreSQL instance that uses GiST indexes. In rare cases, this bug caused a brief period of
unavailability after promoting the Aurora cluster.

17.Fixed a bug in database activity streams where customers were not notified of the end of an outage.

PostgreSQL 10.13, Aurora PostgreSQL release 2.6
This release of Aurora PostgreSQL is compatible with PostgreSQL 10.13. For more information about the
improvements in PostgreSQL 10.13, see PostgreSQL release 10.13.

Patch releases
• Aurora PostgreSQL release 2.6.2 (p. 1648)
• Aurora PostgreSQL release 2.6.1 (p. 1649)
• Aurora PostgreSQL release 2.6.0 (p. 1649)

Aurora PostgreSQL release 2.6.2

Critical stability enhancements

1. None

High priority stability enhancements

1. Fixed a bug in Aurora PostgreSQL replication that could result in the error message ERROR:
MultiXactId nnnn has not been created yet -- apparent wraparound.

2. Fixed a bug where in some cases, DB clusters that have logical replication enabled did not remove
truncated WAL segment files from storage. This resulted in volume size growth.

3. Fixed an issue with creating a global database cluster in a secondary region.
4. Backported fixes for the following PostgreSQL community security issues:

• CVE-2020-25694
• CVE-2020-25695
• CVE-2020-25696

5. Fixed a bug in the pg_stat_statements extension that caused excessive CPU consumption.

Additional improvements and enhancements

1. Aurora PostgreSQL no longer falls behind on a read node when the backend is blocked writing to the
database client.

2. Reduced the delay when publishing to CloudWatch the rpo_lag_in_msec metric for Aurora global
database clusters.

3. Fixed a bug where a DROP DATABASE statement didn't remove any relation files.
4. Fixed a bug where in some cases replaying XLOG_BTREE_REUSE_PAGE records on Aurora reader

instances caused unnecessary replay lag.
5. Fixed a small memory leak in a b-tree index that could lead to an out of memory condition.
6. Fixed a bug in the aurora_replica_status() function where the server_id field was sometimes

truncated.
7. Fixed a bug where a log record was incorrectly processed causing the Aurora replica to crash.

1648

https://www.postgresql.org/docs/10/release-10-13.html
https://nvd.nist.gov/vuln/detail/CVE-2020-25694
https://nvd.nist.gov/vuln/detail/CVE-2020-25695
https://nvd.nist.gov/vuln/detail/CVE-2020-25696

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

8. Fixed an S3 import bug that reported ERROR: HTTP 403. Permission denied when importing data
from a file inside an S3 subfolder.

9. Improved performance of the asynchronous mode for database activity streams.
10.Fixed a bug in the aws_s3 extension that could result in the error message S3 bucket names with a

period (.) are not supported.
11.Fixed a race condition that caused valid imports to intermittently fail.
12.Fixed a bug related to replication when Aurora PostgreSQL is acting as a physical replica of an

RDS PostgreSQL instance that uses GiST indexes. In rare cases, this bug caused a brief period of
unavailability after promoting the Aurora DB cluster.

13.Fixed a bug in the aws_s3 extension where an import may be blocked indefinitely if an exclusive lock
was taken on the relation prior to beginning the operation.

Aurora PostgreSQL release 2.6.1

You can find the following improvements in this release.

Critical stability enhancements

1. Fixed a bug that appears when the NOT EXISTS operator incorrectly returns TRUE, which can only
happen when the following unusual set of circumstances occurs:
• A query is using the NOT EXISTS operator.
• The column or columns being evaluated against the outer query in the NOT EXISTS subquery

contain a NULL value.
• There isn't a another predicate in the subquery that removes the need for the evaluation of the

NULL values.
• The filter used in the subquery does not use an index seek for its execution.
• The operator isn't converted to a join by the query optimizer.

Aurora PostgreSQL release 2.6.0

You can find the following improvements in this release.

New features

1. Added support for the RDKit extension version 3.8.

The RDKit extension provides modeling functions for cheminformatics. Cheminformatics is storing,
indexing, searching, retrieving, and applying information about chemical compounds. For example,
with the RDKit extension you can construct models of molecules, search for molecular structures, and
read or create molecules in various notations. You can also perform research on data loaded from
the ChEMBL website or a SMILES file. The Simplified Molecular Input Line Entry System (SMILES) is a
typographical notation for representing molecules and reactions. For more information, see The RDKit
database cartridge in the RDKit documentation.

2. Added support for the pglogical extension version 2.2.2.

The pglogical extension is a logical streaming replication system that provides additional features
beyond what's available in PostgreSQL native logical replication. Features include conflict handling,
row filtering, DDL/sequence replication and delayed apply. You can use the pglogical extension
to set up replication between Aurora PostgreSQL clusters, between RDS PostgreSQL and Aurora
PostgreSQL, and with PostgreSQL databases running outside of RDS.

3. Aurora dynamically resizes your cluster storage space. With dynamic resizing, the storage space for
your Aurora DB cluster automatically decreases when you remove data from the DB cluster. For more
information, see Storage scaling (p. 396).

1649

https://www.ebi.ac.uk/chembl/
https://rdkit.org/docs/Cartridge.html
https://rdkit.org/docs/Cartridge.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

Note
The dynamic resizing feature is being deployed in phases to the AWS Regions where Aurora is
available. Depending on the Region where your cluster is, this feature might not be available
yet. For more information, see the What's New announcement.

Critical stability enhancements

1. Fixed a bug related to heap page extend that in rare cases resulted in longer recovery time and
impacted availability.

High priority stability enhancements

1. Fixed a bug when upgrading Aurora Global Database clusters from 10.11.

2. Fixed a bug in Aurora Global Database that could cause delays in upgrading the database engine in a
secondary AWS Region. For more information, see Using Amazon Aurora global databases (p. 225).

3. Fixed a bug that in rare cases caused delays in upgrading a database to engine version 10.13.

Additional improvements and enhancements

1. Fixed a bug where the Aurora replica crashed when workloads with heavy subtransactions are made
on the writer instance.

2. Fixed a bug where the writer instance crashed due to a memory leak and the depletion of memory
used to track active transactions.

3. Fixed a bug that lead to a crash due to improper initialization when there is no free memory available
during PostgreSQL backend startup.

4. Fixed a bug where an Aurora PostgreSQL Serverless DB cluster might return the following error after a
scaling event: ERROR: prepared statement "S_6" already exists.

5. Fixed an out-of-memory problem when issuing the CREATE EXTENSION command with PostGIS
when Database Activity Streams enabled.

6. Fixed a bug where a SELECT query might incorrectly return the error Attempting to read past EOF of
relation rrrr. blockno=bbb nblocks=nnn.

7. Fixed a bug where the database might be unavailable briefly due to error handling in database storage
growth.

8. Fixed a bug in Aurora PostgreSQL Serverless where queries that executed on previously idle
connections got delayed until the scale operation completed.

9. Fixed a bug where an Aurora PostgreSQL DB cluster with Database Activity Streams enabled
might report the beginning of a potential loss window for activity records, but does not report the
restoration of connectivity.

PostgreSQL 10.12, Aurora PostgreSQL release 2.5
This release of Aurora PostgreSQL is compatible with PostgreSQL 10.12. For more information about the
improvements in PostgreSQL 10.12, see PostgreSQL release 10.12.

Patch releases

• Aurora PostgreSQL release 2.5.7 (p. 1651)

• Aurora PostgreSQL release 2.5.6 (p. 1651)

• Aurora PostgreSQL release 2.5.4 (p. 1652)

• Aurora PostgreSQL release 2.5.3 (p. 1652)

1650

http://aws.amazon.com/about-aws/whats-new/2020/10/amazon-aurora-enables-dynamic-resizing-database-storage-space/
https://www.postgresql.org/docs/10/release-10-12.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

• Aurora PostgreSQL release 2.5.2 (p. 1652)

• Aurora PostgreSQL release 2.5.1 (p. 1653)

Aurora PostgreSQL release 2.5.7

You can find the following improvements in this release.

Critical stability enhancements

• None

High priority stability enhancements

1. Backported fixes for the following PostgreSQL community security issues:

• CVE-2020-25694

• CVE-2020-25695

• CVE-2020-25696

Additional improvements and enhancements

• None

Aurora PostgreSQL release 2.5.6

You can find the following improvements in this release.

Critical stability enhancements

• None

High priority stability enhancements

1. Fixed a bug in Aurora PostgreSQL replication that might result in the error message, ERROR:
MultiXactId nnnn has not been created yet -- apparent wraparound.

Additional improvements and enhancements

1. Fixed a bug that in rare cases caused brief read replica unavailability when storage volume grew.

2. Aurora PostgreSQL Serverless now supports execution of queries on all connections during a scale
event.

3. Fixed a bug in Aurora PostgreSQL Serverless where a leaked lock resulted in a prolonged scale event.

4. Fixed a bug where the aurora_replica_status function showed truncated server identifiers.

5. Fixed a bug in Aurora PostgreSQL Serverless where connections being migrated during a scale event
disconnected with the message: "ERROR: could not open relation with OID

6. Fixed a bug in a GiST index that might result in an out of memory condition after promoting an Aurora
Read Replica.

7. Improved performance for Database Activity Streams.

8. Fixed a bug in Database Activity Streams where customers were not notified when an outage ended.

9. Fixed a bug in the aws_s3 extension for pre-signed URL handling that could have resulted in the error
message S3 bucket names with a period (.) are not supported.

1651

https://nvd.nist.gov/vuln/detail/CVE-2020-25694
https://nvd.nist.gov/vuln/detail/CVE-2020-25695
https://nvd.nist.gov/vuln/detail/CVE-2020-25696

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

10.Fixed a bug in the aws_s3 extension where incorrect error handling could lead to failures during the
import process.

11.Fixed a bug in the aws_s3 extension where an import may be blocked indefinitely if an exclusive lock
was taken on the relation prior to beginning the operation.

Aurora PostgreSQL release 2.5.4

You can find the following improvements in this release.

Critical stability enhancements

1. Fixed a bug that appears when the NOT EXISTS operator incorrectly returns TRUE, which can only
happen when the following unusual set of circumstances occurs:

• A query is using the NOT EXISTS operator.

• The column or columns being evaluated against the outer query in the NOT EXISTS subquery
contain a NULL value.

• There isn't a another predicate in the subquery that removes the need for the evaluation of the
NULL values.

• The filter used in the subquery does not use an index seek for its execution.

• The operator isn't converted to a join by the query optimizer.

Aurora PostgreSQL release 2.5.3

You can find the following improvements in this release.

Critical stability enhancements

• None

High priority stability enhancements

• None

Additional improvements and enhancements

1. Fixed a bug in Aurora PostgreSQL Serverless where queries that ran on previously idle connections got
delayed until the scale operation completed.

2. Fixed a bug that might cause brief unavailability for heavy subtransaction workloads when multiple
reader instances restart or rejoin the cluster.

3. Fixed a bug in Aurora PostgreSQL Global Database where upgrading a secondary cluster might result
in failure due to incorrect checksum versioning. This might have required re-creating the secondary
clusters.

Aurora PostgreSQL release 2.5.2

You can find the following improvements in this release.

Critical stability enhancements

1. Fixed a bug related to heap page extend that in rare cases resulted in longer recovery time and
impacted availability.

1652

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

High priority stability enhancements

1. Fixed a bug in Aurora Global Database that could cause delays in upgrading the database engine in a
secondary region. For more information, see Using Amazon Aurora global databases (p. 225).

2. Fixed a bug that in rare cases caused delays in upgrading a database to engine version 10.12.

Additional improvements and enhancements

1. Fixed a bug where the database might be unavailable briefly due to error handling in database storage
growth.

2. Fixed a bug where a SELECT query might incorrectly return the error, Attempting to read past EOF of
relation rrrr. blockno=bbb nblocks=nnn.

3. Fixed a bug where an Aurora PostgreSQL Serverless DB cluster might return the following error after a
scaling event: ERROR: prepared statement "S_6" already exists.

Aurora PostgreSQL release 2.5.1

New features

1. Added support for Amazon Aurora PostgreSQL Global Database. For more information, see Using
Amazon Aurora global databases (p. 225).

2. Added the ability to configure the recovery point objective (RPO) of a global database for Aurora
PostgreSQL. For more information, see Managing RPOs for Aurora PostgreSQL–based global
databases (p. 272).

You can find the following improvements in this release.

Critical stability enhancements

None.

High priority stability enhancements

1. Improved performance and availability of read instances when applying DROP TABLE and TRUNCATE
TABLE operations.

2. Fixed a small but continuous memory leak in a diagnostic module that could lead to an out-of-
memory condition on smaller DB instance types.

3. Fixed a bug in the PostGIS extension which could lead to a database restart. This has been reported
to the PostGIS community as https://trac.osgeo.org/postgis/ticket/4646.

4. Fixed a bug where read requests might stop responding due to incorrect error handling in the storage
engine.

5. Fixed a bug that fails for some queries and results in the message ERROR: found xmin xxxxxx from
before relfrozenxid yyyyyyy. This could occur following the promotion of a read instance to a write
instance.

6. Fixed a bug where an Aurora serverless DB cluster might crash while rolling back a scale attempt.

Additional improvements and enhancements

1. Improved performance for queries that read many rows from storage.

2. Improved performance and availability of reader DB instances during heavy read workload.

3. Enabled correlated IN and NOT IN subqueries to be transformed to joins when possible.

1653

https://trac.osgeo.org/postgis/ticket/4646

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

4. Improved read performance of the pg_prewarm extension.
5. Fixed a bug where an Aurora serverless DB cluster might report the message ERROR: incorrect binary

data format in bind parameter ... following a scale event.
6. Fixed a bug where a serverless DB cluster might report the message ERROR: insufficient data left in

message following a scale event.
7. Fixed a bug where an Aurora serverless DB cluster may experience prolonged or failed scale attempts.
8. Fixed a bug that resulted in the message ERROR: could not create file "base/xxxxxx/yyyyyyy" as a

previous version still exists on disk: Success. Please contact AWS customer support. This can occur
during object creation after PostgreSQL's 32-bit object identifier has wrapped around.

9. Fixed a bug where the write-ahead-log (WAL) segment files for PostgreSQL logical replication were
not deleted when changing the wal_level value from logical to replica.

10.Fixed a bug in the pg_hint_plan extension where a multi-statement query could lead to a crash
when enable_hint_table is enabled. This is tracked in the PostgreSQL community as https://
github.com/ossc-db/pg_hint_plan/issues/25.

11.Fixed a bug where JDBC clients might report the message java.io.IOException: Unexpected packet
type: 75 following a scale event in an Aurora serverless DB cluster.

12.Fixed a bug in PostgreSQL logical replication that resulted in the message ERROR: snapshot reference
is not owned by resource owner TopTransaction.

13.Changed the following extensions:
• Updated orafce to version 3.8

PostgreSQL 10.11, Aurora PostgreSQL release 2.4
This release of Aurora PostgreSQL is compatible with PostgreSQL 10.11. For more information about the
improvements in PostgreSQL 10.11, see PostgreSQL release 10.11.

This release contains multiple critical stability enhancements. Amazon highly recommends upgrading
your Aurora PostgreSQL clusters that use older PostgreSQL 10 engines to this release.

Patch releases
• Aurora PostgreSQL release 2.4.4 (p. 1654)
• Aurora PostgreSQL release 2.4.3 (p. 1655)
• Aurora PostgreSQL release 2.4.2 (p. 1655)
• Aurora PostgreSQL release 2.4.1 (p. 1655)
• Aurora PostgreSQL release 2.4.0 (p. 1656)

Aurora PostgreSQL release 2.4.4

You can find the following improvements in this release.

Critical stability enhancements

• None

High priority stability enhancements

1. Backported fixes for the following PostgreSQL community security issues:
• CVE-2020-25694
• CVE-2020-25695
• CVE-2020-25696

1654

https://github.com/ossc-db/pg_hint_plan/issues/25
https://github.com/ossc-db/pg_hint_plan/issues/25
https://www.postgresql.org/docs/10/release-10-11.html
https://nvd.nist.gov/vuln/detail/CVE-2020-25694
https://nvd.nist.gov/vuln/detail/CVE-2020-25695
https://nvd.nist.gov/vuln/detail/CVE-2020-25696

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

Additional improvements and enhancements

• None

Aurora PostgreSQL release 2.4.3

New features

1. Aurora PostgreSQL now supports the PostgreSQL vacuum_truncate storage parameter to manage
vacuum truncation for specific tables. Set this storage parameter to false for a table to prevent the
VACUUM SQL command from truncating the table's trailing empty pages.

Critical stability enhancements

• None

High priority stability enhancements

1. Fixed a bug where reads from storage might stop responding due to incorrect error handling.

Additional improvements and enhancements

• None

Aurora PostgreSQL release 2.4.2

You can find the following improvements in this release.

Critical stability enhancements

1. Fixed a bug in which a reader DB instance might temporarily use stale data. This could lead to
wrong results such as too few or too many rows. This error is not persisted on storage, and will
clear when the database page containing the row has been evicted from cache. This can happen
when the primary DB instance enters a transaction snapshot overflow due to having more than 64
subtransactions in a single transaction. Applications susceptible to this bug include those that use
SQL savepoints or PostgreSQL exception handlers with more than 64 subtransactions in the top
transaction.

High priority stability enhancements

1. Fixed a bug that may cause a reader DB instance to crash causing unavailability while attempting to
the join the DB cluster. This can happen in some cases when the primary DB instance has a transaction
snapshot overflow due to a high number of subtransactions. In this situation the reader DB instance
will be unable to join until the snapshot overflow has cleared.

Additional improvements and enhancements

1. Fixed a bug that prevented Performance Insights from determining the query ID of a running
statement.

Aurora PostgreSQL release 2.4.1

You can find the following improvements in this release.

1655

https://www.postgresql.org/docs/current/sql-createtable.html#RELOPTION-VACUUM-TRUNCATE
https://www.postgresql.org/docs/current/sql-createtable.html#SQL-CREATETABLE-STORAGE-PARAMETERS
https://www.postgresql.org/docs/current/sql-vacuum.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

Critical stability enhancements

1. Fixed a bug in which the DB instance might be briefly unavailable due to the self-healing function of
the underlying storage.

High priority stability enhancements

1. Fixed a bug that might cause the database engine to crash causing unavailability. This occurred if
a newly established database connection encountered a resource exhaustion-related error during
initialization after successful authentication.

Additional improvements and enhancements

1. Provided a fix for the pg_hint_plan extension that could lead the database engine to crash causing
unavailability. The open source issue can be tracked at https://github.com/ossc-db/pg_hint_plan/
pull/45.

2. Fixed a bug where SQL of the form ALTER FUNCTION ... OWNER TO ... incorrectly reported
ERROR: improper qualified name (too many dotted names).

3. Improved the performance of GIN index vacuum via prefetching.
4. Fixed a bug in open source PostgreSQL that could lead to a database engine crash causing

unavailability. This occurred during parallel B-Tree index scans. This issue has been reported to the
PostgreSQL community.

5. Improved the performance of in-memory B-Tree index scans.
6. Additional general improvements to the stability and availability of Aurora PostgreSQL.

Aurora PostgreSQL release 2.4.0

You can find the following new features and improvements in this engine version.

New features

1. Support for exporting data to Amazon S3. For more information, see Exporting data from an Aurora
PostgreSQL DB cluster to Amazon S3 (p. 1467).

2. Support for Amazon Aurora Machine Learning. For more information, see Using machine learning (ML)
with Aurora PostgreSQL (p. 1511).

3. SQL processing enhancements include:
• Optimizations for NOT IN with the apg_enable_not_in_transform parameter.
• Semi-join filter pushdown enhancements for hash joins with the
apg_enable_semijoin_push_down parameter.

• Optimizations for redundant inner join removal with the
apg_enable_remove_redundant_inner_joins parameter.

• Improved ANSI compatibility options with the ansi_constraint_trigger_ordering,
ansi_force_foreign_key_checks and ansi_qualified_update_set_target parameters.

For more information, see Amazon Aurora PostgreSQL parameters (p. 1564).
4. New and updated PostgreSQL extensions include:

• The new aws_ml extension. For more information, see Using machine learning (ML) with Aurora
PostgreSQL (p. 1511).

• The new aws_s3 extension. For more information, see Exporting data from an Aurora PostgreSQL
DB cluster to Amazon S3 (p. 1467).

• Updates to the apg_plan_mgmt extension. For more information, see Managing query execution
plans for Aurora PostgreSQL (p. 1477)

1656

https://github.com/ossc-db/pg_hint_plan/pull/45
https://github.com/ossc-db/pg_hint_plan/pull/45

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

Critical stability enhancements

1. Fixed a bug related to creating B-tree indexes on temporary tables that in rare cases may result in
longer recovery time, and impact availability.

2. Fixed a bug related to replication when Aurora PostgreSQL is acting as a physical replica of an RDS
PostgreSQL instance. In rare cases, this bug causes a log write failure that may result in longer
recovery time, and impact availability.

3. Fixed a bug related to handling of reads with high I/O latency that in rare cases may result in longer
recovery time, and impact availability.

High priority stability enhancements

1. Fixed a bug related to logical replication in which wal segments are not properly removed from
storage. This can result in storage bloat. To monitor this, view the TransactionLogDiskUsage
parameter.

2. Fixed multiple bugs, which cause Aurora to crash during prefetch operations on Btree indexes.

3. Fixed a bug in which an Aurora restart may timeout when logical replication is used.

4. Enhanced the validation checks performed on data blocks in the buffer cache. This improves Aurora's
detection of inconsistency.

Additional improvements and enhancements

1. The query plan management extension apg_plan_mgmt has an improved algorithm for managing
plan generation for highly partitioned tables.

2. Reduced startup time on instances with large caches via improvements in the buffer cache recovery
algorithm.

3. Improved the performance of the read-node-apply process under high transaction rate workloads by
using changes to PostgreSQL LWLock prioritization. These changes prevent starvation of the read-
node-apply process while the PostgreSQL ProcArray is under heavy contention.

4. Improved handling of batch reads during vacuum, table scans, and index scans. This results in greater
throughput and lower CPU consumption.

5. Fixed a bug in which a read node may crash during the replay of a PostgreSQL SLRU-truncate
operation.

6. Fixed a bug where in rare cases, database writes may stall following an error returned by one of the six
copies of an Aurora log record.

7. Fixed a bug related to logical replication where an individual transaction larger than 1 GB in size may
result in an engine crash.

8. Fixed a memory leak on read nodes when cluster cache management is enabled.

9. Fixed a bug in which importing an RDS PostgreSQL snapshot might stop responding if the source
snapshot contains a large number of unlogged relations.

10.Fixed a bug in which the Aurora storage daemon may crash under heavy I/O load.

11.Fixed a bug related to hot_standby_feedback for read nodes in which the read node may report
the wrong transaction id epoch to the write node. This can cause the write node to ignore the
hot_standby_feedback and invalidate snapshots on the read node.

12.Fixed a bug in which storage errors that occur during CREATE DATABASE statements are not properly
handled. The bug left the resulting database inaccessible. The correct behavior is to fail the database
creation and return the appropriate error to the user.

13.Improved handling of PostgreSQL snapshot overflow when a read node attempts to connect to a
write node. Prior to this change, if the write node was in a snapshot overflow state, the read node
was unable to join. A message appeared in the PostgreSQL log file in the form DEBUG: recovery

1657

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

snapshot waiting for non-overflowed snapshot or until oldest active xid on
standby is at least xxxxxxx (now yyyyyyy). A snapshot overflow occurs when an individual
transaction has created over 64 subtransactions.

14.Fixed a bug related to common table expressions in which an error is incorrectly raised when a NOT IN
class exists in a CTE. The error is CTE with NOT IN fails with ERROR: could not find CTE
CTE-Name.

15.Fixed a bug related to an incorrect last_error_timestamp value in the aurora_replica_status
table.

16.Fixed a bug to avoid populating shared buffers with blocks belonging to temporary objects. These
blocks correctly reside in PostgreSQL backend local buffers.

17.Improved the performance of vacuum cleanup on GIN indexes.

18.Fixed a bug where in rare cases Aurora may exhibit 100% CPU utilization while acting as a replica of
an RDS PostgreSQL instance even when the replication stream is idle.

19.Backported a change from PostgreSQL 11 which improves the cleanup of orphaned temporary
tables. Without this change, it is possible that in rare cases orphaned temporary tables can lead to
transaction ID wraparound. For more information, see this PostgreSQL community commit.

20.Fixed a bug where a Writer instance may accept replication registration requests from Reader
instances while having an uninitialized startup process.

21.Changed the following extensions:

• Updated pg_hint_plan to version 1.3.3.

• Added plprofiler version 4.1.

For information about extensions and modules, see Extensions supported for Aurora PostgreSQL
10.x (p. 1690).

PostgreSQL 10.7, Aurora PostgreSQL release 2.3 (unsupported)
Note
The PostgreSQL engine version 10.7 with the Aurora PostgreSQL release 2.3 is no
longer supported. To upgrade, see Upgrading the PostgreSQL DB engine for Aurora
PostgreSQL (p. 1695).

This release of Aurora PostgreSQL is compatible with PostgreSQL 10.7. For more information about the
improvements in PostgreSQL 10.7, see PostgreSQL release 10.7.

Patch releases

• Aurora PostgreSQL release 2.3.5 (p. 1658)

• Aurora PostgreSQL release 2.3.3 (p. 1659)

• Aurora PostgreSQL release 2.3.1 (p. 1659)

• Aurora PostgreSQL release 2.3.0 (p. 1659)

Aurora PostgreSQL release 2.3.5

You can find the following improvements in this release.

Improvements

1. Fixed a bug that could cause DB instance restarts.

2. Fixed a bug that could cause a crash when the PostgreSQL backend exits while using logical
replication.

3. Fixed a bug that could cause a restart when reads occurred during failovers.

1658

https://github.com/postgres/postgres/commit/246a6c8f7b237cc1943efbbb8a7417da9288f5c4
https://www.postgresql.org/docs/10/release-10-7.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

4. Fixed a bug with the wal2json module for logical replication.

5. Fixed a bug that could result in inconsistent metadata.

Aurora PostgreSQL release 2.3.3

You can find the following improvements in this release.

Improvements

1. Provided a backport fix for the PostgreSQL community security issue CVE-2019-10130.

2. Provided a backport fix for the PostgreSQL community security issue CVE-2019-10164.

3. Fixed a bug in which data activity streaming could consume excessive CPU time.

4. Fixed a bug in which parallel threads scanning a B-tree index might stop responding following a disk
read.

5. Fixed a bug where use of the not in predicate against a common table expression (CTE) could return
the following error: "ERROR: bad levelsup for CTE".

6. Fixed a bug in which the read node replay process might stop responding while applying a
modification to a generalized search tree (GiST) index.

7. Fixed a bug in which visibility map pages could contain incorrect freeze bits following a failover to a
read node.

8. Optimized log traffic between the write node and read nodes during index maintenance.

9. Fixed a bug in which queries on read nodes may crash while performing a B-tree index scan.

10.Fixed a bug in which a query that has been optimized for redundant inner join removal could crash.

11.The function aurora_stat_memctx_usage now reports the number of instances of a given context
name.

12.Fixed a bug in which the function aurora_stat_memctx_usage reported incorrect results.

13.Fixed a bug in which the read node replay process could wait to stop conflicting queries beyond the
configured max_standby_streaming_delay value.

14.Additional information is now logged on read nodes when active connections conflict with the relay
process.

15.Provided a backport fix for the PostgreSQL community bug #15677, where a crash could occur while
deleting from a partitioned table.

Aurora PostgreSQL release 2.3.1

You can find the following improvements in this release.

Improvements

1. Fixed multiple bugs related to I/O prefetching that caused engine crashes.

Aurora PostgreSQL release 2.3.0

You can find the following improvements in this release.

New features

1. Aurora PostgreSQL now performs I/O prefetching while scanning B-tree indexes. This results in
significantly improved performance for B-tree scans over uncached data.

1659

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

Improvements

1. Fixed a bug in which read nodes may fail with the error "too many LWLocks taken".
2. Addressed numerous issues that caused read nodes to fail to startup while the cluster is under heavy

write workload.
3. Fixed a bug in which usage of the aurora_stat_memctx_usage() function could lead to a crash.
4. Improved the cache replacement strategy used by table scans to minimize thrashing of the buffer

cache.

PostgreSQL 10.6, Aurora PostgreSQL release 2.2 (unsupported)
Note
The PostgreSQL engine version 10.6 with the Aurora PostgreSQL release 2.2 is no
longer supported. To upgrade, see Upgrading the PostgreSQL DB engine for Aurora
PostgreSQL (p. 1695).

This release of Aurora PostgreSQL is compatible with PostgreSQL 10.6. For more information about the
improvements in PostgreSQL 10.6, see PostgreSQL release 10.6.

Patch releases
• Aurora PostgreSQL release 2.2.1 (p. 1660)
• Aurora PostgreSQL release 2.2.0 (p. 1660)

Aurora PostgreSQL release 2.2.1

You can find the following improvements in this release.

Improvements

1. Improved stability of logical replication.
2. Fixed a bug which could cause an error running queries. The message reported was of the form "CLOG

segment 123 does not exist: No such file or directory".
3. Increased the supported size of IAM passwords to 8KB.
4. Improved consistency of performance under high throughput write workloads.
5. Fixed a bug which could cause a read replica to crash during a restart.
6. Fixed a bug which could cause an error running queries. The message reported was of the form "SQL

ERROR: Attempting to read past EOF of relation".
7. Fixed a bug which could cause an increase in memory usage after a restart.
8. Fixed a bug which could cause a transaction with a large number of subtransactions to fail.
9. Merged a patch from community PostgreSQL which addresses potential failures when

using GIN indexes. For more information see https://git.postgresql.org/gitweb/?
p=postgresql.git;a=commit;h=f9e66f2fbbb49a493045c8d8086a9b15d95b8f18.

10.Fixed a bug which could cause a snapshot import from RDS for PostgreSQL to fail.

Aurora PostgreSQL release 2.2.0

You can find the following improvements in this release.

New features

1. Added the restricted password management feature. Restricted password management enables you
to restrict who can manage user passwords and password expiration changes by using the parameter

1660

https://www.postgresql.org/docs/10/release-10-6.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=f9e66f2fbbb49a493045c8d8086a9b15d95b8f18
https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=f9e66f2fbbb49a493045c8d8086a9b15d95b8f18

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

rds.restrict_password_commands and the role rds_password. For more information, see
Restricting password management (p. 1298).

PostgreSQL 10.5, Aurora PostgreSQL release 2.1 (unsupported)
Note
The PostgreSQL engine version 10.5 with the Aurora PostgreSQL release 2.1 is no
longer supported. To upgrade, see Upgrading the PostgreSQL DB engine for Aurora
PostgreSQL (p. 1695).

This release of Aurora PostgreSQL is compatible with PostgreSQL 10.5. For more information about the
improvements in PostgreSQL 10.5, see PostgreSQL release 10.5.

Patch releases
• Aurora PostgreSQL release 2.1.1 (p. 1661)
• Aurora PostgreSQL release 2.1.0 (p. 1661)

Aurora PostgreSQL release 2.1.1

You can find the following improvements in this release.

Improvements

1. Fixed a bug which could cause an error running queries. The message reported was of the form "CLOG
segment 123 does not exist: No such file or directory".

2. Increased the supported size of IAM passwords to 8KB.
3. Improved consistency of performance under high throughput write workloads.
4. Fixed a bug which could cause a read replica to crash during a restart.
5. Fixed a bug which could cause an error running queries. The message reported was of the form "SQL

ERROR: Attempting to read past EOF of relation".
6. Fixed a bug which could cause an increase in memory usage after a restart.
7. Fixed a bug which could cause a transaction with a large number of subtransactions to fail.
8. Merged a patch from community PostgreSQL which addresses potential failures when

using GIN indexes. For more information see https://git.postgresql.org/gitweb/?
p=postgresql.git;a=commit;h=f9e66f2fbbb49a493045c8d8086a9b15d95b8f18.

9. Fixed a bug which could cause a snapshot import from RDS for PostgreSQL to fail.

For information about extensions and modules, see Extensions supported for Aurora PostgreSQL
10.x (p. 1690).

Aurora PostgreSQL release 2.1.0

You can find the following improvements in this release.

New features

1. General availability of Aurora Query Plan Management, which enables customers to track and manage
any or all query plans used by their applications, to control query optimizer plan selection, and to
ensure high and stable applicationperformance. For more information, see Managing query execution
plans for Aurora PostgreSQL (p. 1477).

2. Updated the libprotobuf extension to version 1.3.0. This is used by the PostGIS extension.
3. Updated the pg_similarity extension to version 1.0.
4. Updated the log_fdw extension to version 1.1.

1661

https://www.postgresql.org/docs/current/static/release-10-5.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=f9e66f2fbbb49a493045c8d8086a9b15d95b8f18
https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=f9e66f2fbbb49a493045c8d8086a9b15d95b8f18

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

5. Updated the pg_hint_plan extension to version 1.3.1.

Improvements

1. Network traffic between the writer and reader nodes is now compressed to reduce network utilization.
This reduces the chance of read node unavailability due to network saturation.

2. Implemented a high performance, scalable subsystem for PostgreSQL subtransactions. This improves
the performance of applications which make extensive use of savepoints and PL/pgSQL exception
handlers.

3. The rds_superuser role can now set the following parameters on a per-session, database, or role
level:

• log_duration

• log_error_verbosity

• log_executor_stats

• log_lock_waits

• log_min_duration_statement

• log_min_error_statement

• log_min_messages

• log_parser_stats

• log_planner_stats

• log_replication_commands

• log_statement_stats

• log_temp_files

4. Fixed a bug in which the SQL command "ALTER FUNCTION ... OWNER TO ..." might fail with error
"improper qualified name (too many dotted names)".

5. Fixed a bug in which a crash could occur while committing a transaction with more than two million
subtransactions.

6. Fixed a bug in community PostgreSQL code related to GIN indexes which can cause the Aurora Storage
volume to become unavailable.

7. Fixed a bug in which an Aurora PostgreSQL replica of an RDS for PostgreSQL instance might fail to
start, reporting error: "PANIC: could not locate a valid checkpoint record".

8. Fixed a bug in which passing an invalid parameter to the aurora_stat_backend_waits function
could cause a crash.

Known issues

1. The pageinspect extension is not supported in Aurora PostgreSQL.

PostgreSQL 10.4, Aurora PostgreSQL release 2.0 (unsupported)
Note
The PostgreSQL engine version 10.4 with the Aurora PostgreSQL release 2.0 is no
longer supported. To upgrade, see Upgrading the PostgreSQL DB engine for Aurora
PostgreSQL (p. 1695).

This release of Aurora PostgreSQL is compatible with PostgreSQL 10.4. For more information about the
improvements in PostgreSQL 10.4, see PostgreSQL release 10.4.

Patch releases

• Aurora PostgreSQL release 2.0.1 (p. 1663)

1662

https://www.postgresql.org/docs/10/release-10-4.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

• Aurora PostgreSQL release 2.0.0 (p. 1663)

Aurora PostgreSQL release 2.0.1

You can find the following improvements in this release.

Improvements

1. Fixed a bug which could cause an error running queries. The message reported was of the form "CLOG
segment 123 does not exist: No such file or directory".

2. Increased the supported size of IAM passwords to 8KB.

3. Improved consistency of performance under high throughput write workloads.

4. Fixed a bug which could cause a read replica to crash during a restart.

5. Fixed a bug which could cause an error running queries. The message reported was of the form "SQL
ERROR: Attempting to read past EOF of relation".

6. Fixed a bug which could cause an increase in memory usage after a restart.

7. Fixed a bug which could cause a transaction with a large number of subtransactions to fail.

8. Merged a patch from community PostgreSQL which addresses potential failures when
using GIN indexes. For more information see https://git.postgresql.org/gitweb/?
p=postgresql.git;a=commit;h=f9e66f2fbbb49a493045c8d8086a9b15d95b8f18.

9. Fixed a bug which could cause a snapshot import from RDS for PostgreSQL to fail.

For information about extensions and modules, see Extensions supported for Aurora PostgreSQL
10.x (p. 1690).

Aurora PostgreSQL release 2.0.0

You can find the following improvements in this release.

Improvements

1. This release contains all fixes, features, and improvements present in PostgreSQL 9.6.9, Aurora
PostgreSQL release 1.3 (unsupported) (p. 1676).

2. The temporary file size limitation is user-configurable. You require the rds_superuser role to modify
the temp_file_limit parameter.

3. Updated the GDAL library, which is used by the PostGIS extension.

4. Updated the ip4r extension to version 2.1.1.

5. Updated the pg_repack extension to version 1.4.3.

6. Updated the plv8 extension to version 2.1.2.

7. Parallel queries – When you create a new Aurora PostgreSQL version 2.0 instance, parallel
queries are enabled for the default.postgres10 parameter group. The parameter
max_parallel_workers_per_gather is set to 2 by default, but you can modify it to support your
specific workload requirements.

8. Fixed a bug in which read nodes may crash following a specific type of free space change from the
write node.

1663

https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=f9e66f2fbbb49a493045c8d8086a9b15d95b8f18
https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=f9e66f2fbbb49a493045c8d8086a9b15d95b8f18

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

PostgreSQL 9.6.22, Aurora PostgreSQL release 1.11
(unsupported)

Note
The PostgreSQL engine version 9.6.22 and Aurora PostgreSQL release 1.10 are no
longer supported. To upgrade, see Upgrading the PostgreSQL DB engine for Aurora
PostgreSQL (p. 1695).

This release of Aurora PostgreSQL is compatible with PostgreSQL 9.6.22. For more information about the
improvements in PostgreSQL 9.6.22, see PostgreSQL release 9.6.22.

Patch releases

• Aurora PostgreSQL 1.11.1 (p. 1664)

• Aurora PostgreSQL release 1.11 (p. 1664)

Aurora PostgreSQL 1.11.1

High priority stability enhancements

• Fixed an issue where queries may become unresponsive due to I/O resource exhaustion triggered by
prefetch.

Additional improvements and stability enhancements

• Fixed multiple issues in the Aurora storage daemon that could lead to brief periods of unavailability
when specific network configurations are used.

Aurora PostgreSQL release 1.11

High priority stability enhancements

1. Fixed an issue where creating a database from an existing template database with tablespace resulted
in an error with the message ERROR: could not open file pg_tblspc/...: No such file
or directory.

2. Fixed an issue where, in rare cases, an Aurora replica may be unable to start when a large number of
PostgreSQL subtransactions (i.e. SQL savepoints) have been used.

3. Fixed an issue where, in rare circumstances, read results may be inconsistent for repeated read
requests on replica nodes.

Additional improvements and enhancements

1. Upgraded OpenSSL to 1.1.1k.

2. Reduced CPU usage and memory consumption of the WAL apply process on Aurora replicas for some
workloads.

3. Improve safety checks in the write path to detect incorrect writes to metadata.

4. Fixed an issue where a duplicate file entry can prevent the Aurora PostgreSQL engine from starting
up.

5. Fixed an issue that could cause temporary unavailability under heavy workloads.

6. Added back ability to use a leading forward slash in the S3 path during S3 import.

7. Updated the PostGIS extension to version 2.4.7.

1664

https://www.postgresql.org/docs/96/release-9-6.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

8. Updated the Orafce extension to version 3.16.

PostgreSQL 9.6.21, Aurora PostgreSQL release 1.10
(unsupported)

Note
The PostgreSQL engine version 9.6.21 and Aurora PostgreSQL release 1.10 are no
longer supported. To upgrade, see Upgrading the PostgreSQL DB engine for Aurora
PostgreSQL (p. 1695).

This release of Aurora PostgreSQL is compatible with PostgreSQL 9.6.21. For more information about the
improvements in PostgreSQL 9.6.21, see PostgreSQL release 9.6.21.

Aurora PostgreSQL release 1.10.0

High priority stability enhancements

1. Fixed a bug where in rare cases a reader had inconsistent results when it restarted while a transaction
with more than 64 subtransactions was being processed.

2. Backported fixes for the following PostgreSQL community security issues:

• CVE-2021-32027

• CVE-2021-32028

• CVE-2021-32029

Additional improvements and enhancements

1. Fixed a bug where the database could not be started when there were many relations in memory-
constrained environments.

2. Fixed a bug in the apg_plan_mgmt extension that could cause brief periods of unavailability due to
an internal buffer overflow.

3. Fixed a bug where the database engine would attempt to create shared memory segments larger than
the instance total memory and fail repeatedly. For example, attempts to create 128 GiB shared buffers
on a db.r5.large instance would fail. With this change, requests for total shared memory allocations
larger than the instance memory allow setting the instance to incompatible parameters.

4. Added logic to clean up unnecessary pg_wal temporary files on a database startup.

5. Fixed a bug in Aurora PostgreSQL 9.6 that sometimes prevented read/write nodes from starting up
when inbound replication is used.

6. Fixed a bug that could cause brief periods of unavailability due to running out of memory when
creating the postgis extension with pgAudit enabled.

7. Added btree page checks to detect tuple metadata inconsistency.

PostgreSQL 9.6.19, Aurora PostgreSQL release 1.9
(unsupported)

Note
The PostgreSQL engine version 9.6.19 and Aurora PostgreSQL release 1.9 are no
longer supported. To upgrade, see Upgrading the PostgreSQL DB engine for Aurora
PostgreSQL (p. 1695).

This release of Aurora PostgreSQL is compatible with PostgreSQL 9.6.19. For more information about the
improvements in PostgreSQL 9.6.19, see PostgreSQL release 9.6.19.

1665

https://www.postgresql.org/docs/9.6/release-9-6-21.html
https://nvd.nist.gov/vuln/detail/CVE-2021-32027
https://nvd.nist.gov/vuln/detail/CVE-2021-32028
https://nvd.nist.gov/vuln/detail/CVE-2021-32029
https://www.postgresql.org/docs/9.6/release-9-6-19.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

Patch releases

• Aurora PostgreSQL release 1.9.2 (p. 1666)

• Aurora PostgreSQL release 1.9.1 (p. 1666)

• Aurora PostgreSQL release 1.9.0 (p. 1666)

Aurora PostgreSQL release 1.9.2

High priority stability enhancements

1. Fixed a bug where a reader node might render an extra or missing row if the reader restarted while the
writer node is processing a long transaction with more than 64 subtransactions.

Additional improvements and enhancements

1. Fixed a bug where a large S3 import with thousands of clients can cause one or more of the import
clients to stop responding.

Aurora PostgreSQL release 1.9.1

Critical stability enhancements

1. Fixed a bug that caused a read replica to unsuccessfully restart repeatedly in rare cases.

Additional improvements and enhancements

1. Fixed a bug that when under heavy load, snapshot import, COPY import, or S3 import stopped
responding in rare cases.

2. Fixed a bug where a read replica might not join the cluster when the writer was very busy with a write-
intensive workload.

Aurora PostgreSQL release 1.9.0

Critical stability enhancements

• None

High priority stability enhancements

1. Backported a fix for the PostgreSQL community security issues CVE-2020-25694, CVE-2020-25695,
and CVE-2020-25696.

2. Fixed a bug in Aurora PostgreSQL replication that might result in the following error message: ERROR:
MultiXactId nnnn has not been created yet -- apparent wraparound

Additional improvements and enhancements

1. Aurora PostgreSQL no longer falls behind on a read node when the backend is blocked writing to the
database client.

2. Fixed a bug that in rare cases caused a brief period of unavailability on a read replica when the storage
volume grew.

1666

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

3. Fixed a bug when creating a database that could return the following error: ERROR: could not create
directory on local disk

4. Fixed a bug in the GiST index that could result in an out of memory condition after promoting an
Aurora read replica.

5. Fixed a bug related to replication when Aurora PostgreSQL is acting as a physical replica of an
RDS PostgreSQL instance that uses GiST indexes. In rare cases, this bug caused a brief period of
unavailability after promoting the Aurora cluster.

PostgreSQL 9.6.18, Aurora PostgreSQL release 1.8
(unsupported)

Note
The PostgreSQL engine version 9.6.18 and Aurora PostgreSQL release 1.8 are no
longer supported. To upgrade, see Upgrading the PostgreSQL DB engine for Aurora
PostgreSQL (p. 1695).

This release of Aurora PostgreSQL is compatible with PostgreSQL 9.6.18. For more information about the
improvements in PostgreSQL 9.6.18, see PostgreSQL release 9.6.18.

Patch releases
• Aurora PostgreSQL release 1.8.2 (p. 1667)
• Aurora PostgreSQL release 1.8.0 (p. 1668)

There is no version 1.8.1.

Aurora PostgreSQL release 1.8.2

Critical stability enhancements

1. None

High priority stability enhancements

1. Fixed a bug in Aurora PostgreSQL replication that could result in the error message ERROR:
MultiXactId nnnn has not been created yet -- apparent wraparound.

2. Backported fixes for the following PostgreSQL community security issues:
• CVE-2020-25694
• CVE-2020-25695
• CVE-2020-25696

Additional improvements and enhancements

1. Aurora PostgreSQL no longer falls behind on a read node when the backend is blocked writing to the
database client.

2. Fixed a bug where a DROP DATABASE statement didn't remove any relation files.
3. Fixed a small memory leak in a b-tree index that could lead to an out of memory condition.
4. Fixed a bug in the aurora_replica_status() function where the server_id field was sometimes

truncated.
5. Fixed a bug related to replication when Aurora PostgreSQL is acting as a physical replica of an

RDS PostgreSQL instance that uses GiST indexes. In rare cases, this bug caused a brief period of
unavailability after promoting the Aurora DB cluster.

1667

https://www.postgresql.org/docs/9.6/release-9-6-18.html
https://nvd.nist.gov/vuln/detail/CVE-2020-25694
https://nvd.nist.gov/vuln/detail/CVE-2020-25695
https://nvd.nist.gov/vuln/detail/CVE-2020-25696

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

Aurora PostgreSQL release 1.8.0

You can find the following improvements in this release.

Critical stability enhancements

1. Fixed a bug related to heap page extend that in rare cases resulted in longer recovery time and
impacted availability.

Additional improvements and enhancements

1. Fixed a bug where the Aurora replica crashed when workloads with heavy subtransactions are made
on the writer instance.

2. Fixed a bug where the writer instance crashed due to a memory leak and the depletion of memory
used to track active transactions.

3. Fixed a bug that lead to a crash due to improper initialization when there is no free memory available
during PostgreSQL backend startup.

4. Fixed a crash during a BTree prefetch that occurred under certain conditions that depended on the
shape and data contained in the index.

5. Fixed a bug where a SELECT query might incorrectly return the error Attempting to read past EOF of
relation rrrr. blockno=bbb nblocks=nnn.

6. Fixed a bug where the database might be unavailable briefly due to error handling in database storage
growth.

PostgreSQL 9.6.17, Aurora PostgreSQL release 1.7
(unsupported)
This release of Aurora PostgreSQL is compatible with PostgreSQL 9.6.17. For more information about the
improvements in PostgreSQL 9.6.17, see PostgreSQL release 9.6.17.

Patch releases
• Aurora PostgreSQL release 1.7.7 (p. 1668)
• Aurora PostgreSQL release 1.7.6 (p. 1669)
• Aurora PostgreSQL release 1.7.3 (p. 1669)
• Aurora PostgreSQL release 1.7.2 (p. 1669)
• Aurora PostgreSQL release 1.7.1 (p. 1670)

Aurora PostgreSQL release 1.7.7

You can find the following improvements in this release.

Critical stability enhancements

• None

High priority stability enhancements

1. Backported fixes for the following PostgreSQL community security issues:
• CVE-2020-25694
• CVE-2020-25695
• CVE-2020-25696

1668

https://www.postgresql.org/docs/9.6/release-9-6-17.html
https://nvd.nist.gov/vuln/detail/CVE-2020-25694
https://nvd.nist.gov/vuln/detail/CVE-2020-25695
https://nvd.nist.gov/vuln/detail/CVE-2020-25696

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

Additional improvements and enhancements

• None

Aurora PostgreSQL release 1.7.6

You can find the following improvements in this release.

Critical stability enhancements

• None

High priority stability enhancements

1. Fixed a bug in Aurora PostgreSQL replication that might result in the error message, ERROR:
MultiXactId nnnn has not been created yet -- apparent wraparound.

Additional improvements and enhancements

1. Fixed a bug that in rare cases caused brief read replica unavailability when storage volume grew.
2. Fixed a bug in a b-tree index read optimization that might have caused a brief period of unavailability.
3. Fixed a bug in a GiST index that might result in an out of memory condition after promoting an Aurora

Read Replica.

Aurora PostgreSQL release 1.7.3

You can find the following improvements in this release.

Critical stability enhancements

• None

High priority stability enhancements

• None

Additional improvements and enhancements

1. Fixed a bug that might cause brief unavailability for heavy subtransaction workloads when multiple
reader instances restart or rejoin the cluster.

Aurora PostgreSQL release 1.7.2

You can find the following improvements in this release.

Critical stability enhancements

1. Fixed a bug related to heap page extend that in rare cases resulted in longer recovery time and
impacted availability.

High Priority Stability Enhancements

None

1669

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

Additional improvements and enhancements

1. Fixed a bug where the database might be unavailable briefly due to error handling in database storage
growth.

2. Fixed a bug where a SELECT query might incorrectly return the error, Attempting to read past EOF of
relation rrrr. blockno=bbb nblocks=nnn.

3. Fixed an issue with the internal metrics collector that could result in erratic CPU spikes on database
instances.

Aurora PostgreSQL release 1.7.1

You can find the following improvements in this release.

Critical stability enhancements

None.

High priority stability enhancements

1. Improved performance and availability of read instances when applying DROP TABLE and TRUNCATE
TABLE operations.

2. Fixed a small but continuous memory leak in a diagnostic module that could lead to an out-of-
memory condition on smaller DB instance types.

3. Fixed a bug in the PostGIS extension which could lead to a database restart. This has been reported
to the PostGIS community as https://trac.osgeo.org/postgis/ticket/4646.

4. Fixed a bug where read requests might stop responding due to incorrect error handling in the storage
engine.

5. Fixed a bug that fails for some queries and results in the message ERROR: found xmin xxxxxx from
before relfrozenxid yyyyyyy. This could occur following the promotion of a read instance to a write
instance.

Additional improvements and enhancements

1. Improved performance for queries that read many rows from storage.
2. Improved performance and availability of reader DB instances during heavy read workload.
3. Fixed a bug that resulted in the message ERROR: could not create file "base/xxxxxx/yyyyyyy" as a

previous version still exists on disk: Success. Please contact AWS customer support. This can occur
during object creation after PostgreSQL's 32-bit object identifier has wrapped around.

4. Fixed a bug in the pg_hint_plan extension where a multi-statement query could lead to a crash
when enable_hint_table is enabled. This is tracked in the PostgreSQL community as https://
github.com/ossc-db/pg_hint_plan/issues/25.

5. Changed the following extensions:
• Updated orafce to version 3.8

PostgreSQL 9.6.16, Aurora PostgreSQL release 1.6
(unsupported)
This version of Aurora PostgreSQL is compatible with PostgreSQL 9.6.16. For more information about
the improvements in release 9.6.16, see PostgreSQL release 9.6.16.

This release contains multiple critical stability enhancements. Amazon highly recommends upgrading
your Aurora PostgreSQL clusters that use older PostgreSQL 9.6 engines to this release.

1670

https://trac.osgeo.org/postgis/ticket/4646
https://github.com/ossc-db/pg_hint_plan/issues/25
https://github.com/ossc-db/pg_hint_plan/issues/25
https://www.postgresql.org/docs/9.6/release-9-6-16.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

Patch versions

• Aurora PostgreSQL release 1.6.4 (p. 1671)

• Aurora PostgreSQL release 1.6.3 (p. 1671)

• Aurora PostgreSQL release 1.6.2 (p. 1671)

• Aurora PostgreSQL release 1.6.1 (p. 1672)

• Aurora PostgreSQL release 1.6.0 (p. 1672)

Aurora PostgreSQL release 1.6.4

You can find the following improvements in this release.

Critical stability enhancements

• None

High priority stability enhancements

1. Backported fixes for the following PostgreSQL community security issues:

• CVE-2020-25694

• CVE-2020-25695

• CVE-2020-25696

Additional improvements and enhancements

• None

Aurora PostgreSQL release 1.6.3

New features

1. Aurora PostgreSQL now supports the PostgreSQL vacuum_truncate storage parameter to manage
vacuum truncation for specific tables. Set this storage parameter to false when creating or altering a
table to prevent the VACUUM SQL command from truncating the table's trailing empty pages.

Critical stability enhancements

• None

High priority stability enhancements

1. Fixed a bug where reads from storage might stop responding due to incorrect error handling.

Additional improvements and enhancements

• None

Aurora PostgreSQL release 1.6.2

You can find the following improvements in this engine update.

1671

https://nvd.nist.gov/vuln/detail/CVE-2020-25694
https://nvd.nist.gov/vuln/detail/CVE-2020-25695
https://nvd.nist.gov/vuln/detail/CVE-2020-25696
https://www.postgresql.org/docs/current/sql-createtable.html#RELOPTION-VACUUM-TRUNCATE
https://www.postgresql.org/docs/current/sql-createtable.html#SQL-CREATETABLE-STORAGE-PARAMETERS
https://www.postgresql.org/docs/current/sql-vacuum.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

Critical stability enhancements

1. Fixed a bug in which a reader DB instance might temporarily use stale data. This could lead to
wrong results such as too few or too many rows. This error is not persisted on storage, and will
clear when the database page containing the row has been evicted from cache. This can happen
when the primary DB instance enters a transaction snapshot overflow due to having more than 64
subtransactions in a single transaction. Applications susceptible to this bug include those that use
SQL savepoints or PostgreSQL exception handlers with more than 64 subtransactions in the top
transaction.

High priority stability enhancements

1. Fixed a bug that may cause a reader DB instance to crash causing unavailability while attempting to
the join the DB cluster. This can happen in some cases when the primary DB instance has a transaction
snapshot overflow due to a high number of subtransactions. In this situation the reader DB instance
will be unable to join until the snapshot overflow has cleared.

Additional improvements and enhancements

1. Fixed a bug that prevented Performance Insights from determining the query ID of a running
statement.

Aurora PostgreSQL release 1.6.1

You can find the following improvements in this engine update.

Critical stability enhancements

1. None

High priority stability enhancements

1. Fixed a bug that might cause the database engine to crash causing unavailability. This occurred if
a newly established database connection encountered a resource exhaustion-related error during
initialization after successful authentication.

Additional improvements and enhancements

1. Provided general improvements to the stability and availability of Aurora PostgreSQL.

Aurora PostgreSQL release 1.6.0

You can find the following new features and improvements in this engine version.

New features

1. Updates to the apg_plan_mgmt extension. For more information, see Managing query execution
plans for Aurora PostgreSQL (p. 1477)

Critical stability enhancements

1. Fixed a bug related to creating B-tree indexes on temporary tables that in rare cases may result in
longer recovery time, and impact availability.

1672

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

2. Fixed a bug related to replication when Aurora PostgreSQL is acting as a physical replica of an RDS
PostgreSQL instance. In rare cases, this bug causes a log write failure that may result in longer
recovery time, and impact availability.

3. Fixed a bug related to handling of reads with high I/O latency that in rare cases may result in longer
recovery time, and impact availability.

High priority stability enhancements

1. Fixed multiple bugs, which cause Aurora to crash during prefetch operations on Btree indexes.
2. Enhanced the validation checks performed on data blocks in the buffer cache. This improves Aurora's

detection of inconsistency.

Additional improvements and enhancements

1. The query plan management extension apg_plan_mgmt has an improved algorithm for managing
plan generation for highly partitioned tables.

2. Reduced startup time on instances with large caches via improvements in the buffer cache recovery
algorithm.

3. Improved the performance of the read-node-apply process under high transaction rate workloads by
using changes to PostgreSQL LWLock prioritization. These changes prevent starvation of the read-
node-apply process while the PostgreSQL ProcArray is under heavy contention.

4. Fixed a bug in which a read node may crash during the replay of a PostgreSQL SLRU-truncate
operation.

5. Fixed a bug where in rare cases, database writes might stall following an error returned by one of the
six copies of an Aurora log record.

6. Fixed a memory leak on read nodes when cluster cache management is enabled.
7. Fixed a bug in which importing an RDS PostgreSQL snapshot might stop responding if the source

snapshot contains a large number of unlogged relations.
8. Fixed a bug related to hot_standby_feedback for read nodes in which the read node may report

the wrong transaction id epoch to the write node. This can cause the write node to ignore the
hot_standby_feedback and invalidate snapshots on the read node.

9. Fixed a bug in which storage errors that occur during CREATE DATABASE statements are not properly
handled. The bug left the resulting database inaccessible. The correct behavior is to fail the database
creation and return the appropriate error to the user.

10.Improved handling of PostgreSQL snapshot overflow when a read node attempts to connect to a
write node. Prior to this change, if the write node was in a snapshot overflow state, the read node
was unable to join. A message appear in the PostgreSQL log file in the form DEBUG: recovery
snapshot waiting for non-overflowed snapshot or until oldest active xid on
standby is at least xxxxxxx (now yyyyyyy). A snapshot overflow occurs when an individual
transaction has created over 64 subtransactions.

11.Fixed a bug related to common table expressions in which an error is incorrectly raised when a NOT IN
class exists in a CTE. The error is CTE with NOT IN fails with ERROR: could not find CTE
CTE-Name.

12.Fixed a bug related to an incorrect last_error_timestamp value in the aurora_replica_status
table.

13.Fixed a bug to avoid populating shared buffers with blocks belonging to temporary objects. These
blocks correctly reside in PostgreSQL backend local buffers.

14.Fixed a bug where in rare cases Aurora may exhibit 100% CPU utilization while acting as a replica of
an RDS PostgreSQL instance even when the replication stream is idle.

15.Backported a change from PostgreSQL 11 which improves the cleanup of orphaned temporary
tables. Without this change, it is possible that in rare cases orphaned temporary tables can to lead to
transaction ID wraparound. For more information, see this PostgreSQL community commit.

1673

https://github.com/postgres/postgres/commit/246a6c8f7b237cc1943efbbb8a7417da9288f5c4

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

16.Fixed a bug where a Writer instance may accept replication registration requests from Reader
instances while having an uninitialized startup process.

17.Changed the following extensions:
• Updated pg_hint_plan to version 1.2.5.

PostgreSQL 9.6.12, Aurora PostgreSQL release 1.5
(unsupported)

Note
The PostgreSQL engine version 9.6.12 with the Aurora PostgreSQL release 1.5 is no
longer supported. To upgrade, see Upgrading the PostgreSQL DB engine for Aurora
PostgreSQL (p. 1695).

This release of Aurora PostgreSQL is compatible with PostgreSQL 9.6.12. For more information about the
improvements in PostgreSQL 9.6.12, see PostgreSQL release 9.6.12.

Patch releases
• Aurora PostgreSQL release 1.5.3 (p. 1674)
• Aurora PostgreSQL release 1.5.2 (p. 1674)
• Aurora PostgreSQL release 1.5.1 (p. 1675)
• Aurora PostgreSQL release 1.5.0 (p. 1675)

Aurora PostgreSQL release 1.5.3

You can find the following improvements in this release.

Improvements

1. Fixed a bug that could cause DB instance restarts.
2. Fixed a bug that could cause a restart when reads occurred during failovers.
3. Fixed a bug that could result in inconsistent metadata.

Aurora PostgreSQL release 1.5.2

You can find the following improvements in this release.

Improvements

1. Provided a backport fix for the PostgreSQL community security issue CVE-2019-10130.
2. Fixed a bug in which the read node replay process might stop responding while applying a

modification to a generalized search tree (GiST) index.
3. Fixed a bug in which visibility map pages may contain incorrect freeze bits following a failover to a

read node.
4. Fixed a bug in which the error "relation relation-name does not exist" is incorrectly reported.
5. Optimized log traffic between the write node and read nodes during index maintenance.
6. Fixed a bug in which queries on read nodes may crash while performing a B-tree index scan.
7. The function aurora_stat_memctx_usage now reports the number of instances of a given context

name.
8. Fixed a bug in which the function aurora_stat_memctx_usage reported incorrect results.
9. Fixed a bug in which the read node replay process may wait to stop conflicting queries beyond the

configured max_standby_streaming_delay.

1674

https://www.postgresql.org/docs/9.6/release-9-6-12.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

10.Additional information is now logged on read nodes when active connections conflict with the relay
process.

Aurora PostgreSQL release 1.5.1

You can find the following improvements in this release.

Improvements

1. Fixed multiple bugs related to I/O prefetching, which caused engine crashes.

Aurora PostgreSQL release 1.5.0

You can find the following improvements in this release.

New features

1. Aurora PostgreSQL now performs I/O prefetching while scanning B-tree indexes. This results in
significantly improved performance for B-tree scans over uncached data.

Improvements

1. Addressed numerous issues that caused read nodes to fail to startup while the cluster is under heavy
write workload.

2. Fixed a bug in which usage of the aurora_stat_memctx_usage() function could lead to a crash.

3. Improved the cache replacement strategy used by table scans to minimize thrashing of the buffer
cache.

PostgreSQL 9.6.11, Aurora PostgreSQL release 1.4
(unsupported)

Note
The PostgreSQL engine version 9.6.11 with the Aurora PostgreSQL release 1.4 is no
longer supported. To upgrade, see Upgrading the PostgreSQL DB engine for Aurora
PostgreSQL (p. 1695).

This release of Aurora PostgreSQL is compatible with PostgreSQL 9.6.11. For more information about the
improvements in PostgreSQL 9.6.11, see PostgreSQL release 9.6.11.

You can find the following improvements in this release.

New features

1. Support is added for the pg_similarity extension version 1.0.

2. Aurora PostgreSQL now supports the PostgreSQL vacuum_truncate storage parameter to manage
vacuum truncation for specific tables. Set this storage parameter to false when creating or altering a
table to prevent the VACUUM SQL command from truncating the table's trailing empty pages.

Improvements

1. This release contains all fixes, features, and improvements present in PostgreSQL 9.6.9, Aurora
PostgreSQL release 1.3 (unsupported) (p. 1676).

1675

https://www.postgresql.org/docs/9.6/release-9-6-11.html
https://www.postgresql.org/docs/current/sql-createtable.html#RELOPTION-VACUUM-TRUNCATE
https://www.postgresql.org/docs/current/sql-createtable.html#SQL-CREATETABLE-STORAGE-PARAMETERS
https://www.postgresql.org/docs/current/sql-vacuum.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

2. Network traffic between the writer and reader nodes is now compressed to reduce network utilization.
This reduces the chance of read node unavailability due to network saturation.

3. Performance of subtransactions has improved under high concurrency workloads.
4. An update for the pg_hint_plan extension to version 1.2.3.
5. Fixed an issue where on a busy system, a commit with millions of subtransactions (and sometimes

with commit timestamps enabled) can cause Aurora to crash.
6. Fixed an issue where an INSERT statement with VALUES could fail with the message "Attempting to

read past EOF of relation".
7. An upgrade of the apg_plan_mgmt extension to version 1.0.1. For details, see Version 1.0.1 of the

Aurora PostgreSQL apg_plan_mgmt extension (p. 1693).

The apg_plan_mgmt extension is used with query plan management. For more about how to install,
upgrade, and use the apg_plan_mgmt extension, see Managing query execution plans for Aurora
PostgreSQL (p. 1477).

PostgreSQL 9.6.9, Aurora PostgreSQL release 1.3 (unsupported)
Note
The PostgreSQL engine version 9.6.9 with the Aurora PostgreSQL release 1.3 is no
longer supported. To upgrade, see Upgrading the PostgreSQL DB engine for Aurora
PostgreSQL (p. 1695).

This release of Aurora PostgreSQL is compatible with PostgreSQL 9.6.9. For more information about the
improvements in PostgreSQL 9.6.9, see PostgreSQL release 9.6.9.

Patch releases
• Aurora PostgreSQL release 1.3.2 (p. 1676)
• Aurora PostgreSQL release 1.3.0 (p. 1677)

Aurora PostgreSQL release 1.3.2

You can find the following improvements in this release.

New features

1. Added the ProcArrayGroupUpdate wait event.

Improvements

1. Fixed a bug which could cause an error running queries. The message reported was of the form "CLOG
segment 123 does not exist: No such file or directory".

2. Increased the supported size of IAM passwords to 8KB.
3. Improved consistency of performance under high throughput write workloads.
4. Fixed a bug which could cause a read replica to crash during a restart.
5. Fixed a bug which could cause an error running queries. The message reported was of the form "SQL

ERROR: Attempting to read past EOF of relation".
6. Fixed a bug which could cause an increase in memory usage after a restart.
7. Fixed a bug which could cause a transaction with a large number of subtransactions to fail.
8. Merged a patch from community PostgreSQL which addresses potential failures when

using GIN indexes. For more information see https://git.postgresql.org/gitweb/?
p=postgresql.git;a=commit;h=f9e66f2fbbb49a493045c8d8086a9b15d95b8f18.

9. Fixed a bug which could cause a snapshot import from RDS for PostgreSQL to fail.

1676

https://www.postgresql.org/docs/9.6/release-9-6-9.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=f9e66f2fbbb49a493045c8d8086a9b15d95b8f18
https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=f9e66f2fbbb49a493045c8d8086a9b15d95b8f18

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

Aurora PostgreSQL release 1.3.0

You can find the following improvements in this release.

Improvements

1. This release contains all fixes, features, and improvements present in PostgreSQL 9.6.8, Aurora
PostgreSQL release 1.2 (unsupported) (p. 1678).

2. Updated the GDAL library, which is used by the PostGIS extension.

3. Updated the following PostgreSQL extensions:

• ip4r updated to version 2.1.1.

• pgaudit updated to version 1.1.1.

• pg_repack updated to version 1.4.3.

• plv8 updated to version 2.1.2.

4. Fixed an issue in the monitoring system that could incorrectly cause a failover when local disk usage is
high.

5. Fixed a bug in which Aurora PostgreSQL can repeatedly crash, reporting:

PANIC: new_record_total_len (8201) must be less than BLCKSZ (8192), rmid (6),
info (32)

6. Fixed a bug in which an Aurora PostgreSQL read node might be unable to rejoin a cluster due to
recovery of a large buffer cache. This issue is unlikely to occur on instances other than r4.16xlarge.

7. Fixed a bug in which inserting into an empty GIN index leaf page imported from pre-9.4 engine
versions can cause the Aurora storage volume to become unavailable.

8. Fixed a bug in which, in rare circumstances, a crash during transaction commit could result in the loss
of CommitTs data for the committing transaction. The actual durability of the transaction was not
impacted by this bug.

9. Fixed a bug in the PostGIS extension in which PostGIS can crash in the function
gserialized_gist_picksplit_2d().

10.Improved the stability of read-only nodes during heavy write traffic on instances smaller than r4.8xl.
This specifically addresses a situation where the network bandwidth between the writer and the
reader is constrained.

11.Fixed a bug in which an Aurora PostgreSQL instance acting as a replication target of an RDS for
PostgreSQL instance crashed with the following error:

FATAL: could not open file "base/16411/680897_vm": No such file or directory"
during "xlog redo at 782/3122D540 for Storage/TRUNCATE"

12.Fixed a memory leak on read-only nodes in which the heap size for the "aurora wal replay process" will
continue to grow. This is observable via Enhanced Monitoring.

13.Fixed a bug in which Aurora PostgreSQL can fail to start, with the following message reported in the
PostgreSQL log:

FATAL: Storage initialization failed.

14.Fixed a performance limitation on heavy write workloads that caused waits on the
LWLock:buffer_content and IO:ControlFileSyncUpdate events.

15.Fixed a bug in which read nodes could crash following a specific type of free space change from the
write node.

1677

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

PostgreSQL 9.6.8, Aurora PostgreSQL release 1.2 (unsupported)
Note
The PostgreSQL engine version 9.6.8 with the Aurora PostgreSQL release 1.2 is no
longer supported. To upgrade, see Upgrading the PostgreSQL DB engine for Aurora
PostgreSQL (p. 1695).

For more information about PostgreSQL 9.6.8, see PostgreSQL release 9.6.8.

Patch releases
• Aurora PostgreSQL release 1.2.2 (p. 1678)
• Aurora PostgreSQL release 1.2.0 (p. 1678)

Aurora PostgreSQL release 1.2.2

You can find the following improvements in this release.

New features

1. Added the ProcArrayGroupUpdate wait event.

Improvements

1. Fixed a bug which could cause an error running queries. The message reported was of the form "CLOG
segment 123 does not exist: No such file or directory".

2. Increased the supported size of IAM passwords to 8KB.
3. Improved consistency of performance under high throughput write workloads.
4. Fixed a bug which could cause a read replica to crash during a restart.
5. Fixed a bug which could cause an error running queries. The message reported was of the form "SQL

ERROR: Attempting to read past EOF of relation".
6. Fixed a bug which could cause an increase in memory usage after a restart.
7. Fixed a bug which could cause a transaction with a large number of subtransactions to fail.
8. Merged a patch from community PostgreSQL which addresses potential failures when

using GIN indexes. For more information see https://git.postgresql.org/gitweb/?
p=postgresql.git;a=commit;h=f9e66f2fbbb49a493045c8d8086a9b15d95b8f18.

9. Fixed a bug which could cause a snapshot import from RDS for PostgreSQL to fail.

Aurora PostgreSQL release 1.2.0

You can find the following improvements in this release.

New features

1. Introduced the aurora_stat_memctx_usage() function. This function reports internal memory
context usage for each PostgreSQL backend. You can use this function to help determine why certain
backends are consuming large amounts of memory.

Improvements

1. This release contains all fixes, features, and improvements present in PostgreSQL 9.6.6 Aurora
PostgreSQL release 1.1 (unsupported) (p. 1679).

2. Updates the following PostgreSQL extensions:
• pg_hint_plan updated to version 1.2.2

1678

https://www.postgresql.org/docs/9.6/release-9-6-8.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=f9e66f2fbbb49a493045c8d8086a9b15d95b8f18
https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=f9e66f2fbbb49a493045c8d8086a9b15d95b8f18

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

• plv8 updated to version 2.1.0
3. Improves efficiency of traffic between writer and reader nodes.
4. Improves connection establishment performance.
5. Improve the diagnostic data provided in the PostgreSQL error log when an out-of-memory error is

encountered.
6. Multiple fixes to improve the reliability and performance of snapshot import from Amazon RDS for

PostgreSQL to Aurora PostgreSQL-Compatible Edition.
7. Multiple fixes to improve the reliability and performance of Aurora PostgreSQL read nodes.
8. Fixes a bug in which an otherwise idle instance can generate unnecessary read traffic on an Aurora

storage volume.
9. Fixes a bug in which duplicate sequence values can be encountered during insert. The problem only

occurs when migrating a snapshot from RDS for PostgreSQL to Aurora PostgreSQL. The fix prevents
the problem from being introduced when performing the migration. Instances migrated before this
release can still encounter duplicate key errors.

10.Fixes a bug in which an RDS for PostgreSQL instance migrated to Aurora PostgreSQL using replication
can run out of memory doing insert/update of GIST indexes, or cause other issues with GIST indexes.

11.Fixes a bug in which vacuum can fail to update the corresponding pg_database.datfrozenxid
value for a database.

12.Fixes a bug in which a crash while creating a new MultiXact (contended row level lock) can cause
Aurora PostgreSQL to stop responding indefinitely on the first access to the same relation after the
engine restarts.

13.Fixes a bug in which a PostgreSQL backend can't be terminated or canceled while invoking an fdw call.
14.Fixes a bug in which one vCPU is fully utilized at all times by the Aurora storage daemon. This issue is

especially noticeable on smaller instance classes, such as r4.large, where it can lead to 25–50 percent
CPU usage when idle.

15.Fixes a bug in which an Aurora PostgreSQL writer node can fail over spuriously.
16.Fixes a bug in which, in a rare scenario, an Aurora PostgreSQL read node can report:

"FATAL: lock buffer_io is not held"
17.Fixes a bug in which stale relcache entries can halt vacuuming of relations and push the system close

to transaction ID wraparound. The fix is a port of a PostgreSQL community patch scheduled to be
released in a future minor version.

18.Fixes a bug in which a failure while extending a relation can cause Aurora to crash while scanning the
partially extended relation.

PostgreSQL 9.6.6 Aurora PostgreSQL release 1.1 (unsupported)
Note
The PostgreSQL engine version 9.6.6 with the Aurora PostgreSQL release 1.1 is no
longer supported. To upgrade, see Upgrading the PostgreSQL DB engine for Aurora
PostgreSQL (p. 1695).

For more information about PostgreSQL 9.6.6 see, PostgreSQL release 9.6.6.

You can find the following improvements in this engine update:

New features

1. Introduced the aurora_stat_utils extension. This extension includes two functions:
• aurora_wait_report() function for wait event monitoring
• aurora_log_report() for log record write monitoring

2. Added support for the following extensions:

1679

https://www.postgresql.org/docs/9.6/static/release-9-6-6.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

• orafce 3.6.1
• pgrouting 2.4.2
• postgresql-hll 2.10.2
• prefix 1.2.6

Improvements

1. This release contains all fixes, features, and improvements present in Aurora PostgreSQL release
1.0.11 (p. 1681)

2. Updates for the following PostgreSQL extensions:
• postgis extension updated to version 2.3.4
• geos library updated to version 3.6.2
• pg_repack updated to version 1.4.2

3. Access to the pg_statistic relation enabled.
4. Disabled the 'effective_io_concurrency' guc parameter, as it does not apply to Aurora storage.
5. Changed the 'hot_standby_feedback' guc parameter to not-modifiable and set the value to '1'.
6. Improved heap page read performance during a vacuum operation.
7. Improved performance of snapshot conflict resolution on read nodes.
8. Improved performance of transaction snapshot acquisition on read nodes.
9. Improved write performance for GIN meta page updates.
10.Improved buffer cache recovery performance during startup.
11.Fixes a bug that caused a database engine crash at startup while recovering prepared transactions.
12.Fixes a bug that could result in the inability to start a read node when there are a large number of

prepared transactions.
13.Fixes a bug that could cause a read node to report:

ERROR: could not access status of transaction 6080077

DETAIL:* *Could not open file "pg_subtrans/005C": No such file or directory.
14.Fixes a bug that could cause the error below when replicating from RDS PostgreSQL to Aurora

PostgreSQL:

FATAL: lock buffer_content is not held

CONTEXT: xlog redo at 46E/F1330870 for Storage/TRUNCATE: base/13322/8058750 to 0 blocks
flags 7

15.Fixes a bug that could cause Aurora PostgreSQL to stop responding while replaying a multixact WAL
record when replicating from RDS PostgreSQL to Aurora PostgreSQL.

16.Multiple improvements to the reliability of importing snapshots from RDS PostgreSQL to Aurora
PostgreSQL.

PostgreSQL 9.6.3, Aurora PostgreSQL release 1.0 (unsupported)
Note
The PostgreSQL engine version 9.6.3 with the Aurora PostgreSQL release 1.0 is no
longer supported. To upgrade, see Upgrading the PostgreSQL DB engine for Aurora
PostgreSQL (p. 1695).

For more information about PostgreSQL 9.6.3 see, PostgreSQL release 9.6.3.

This version includes the following patch releases:

1680

https://www.postgresql.org/docs/9.6/release-9-6-3.html

Amazon Aurora User Guide for Aurora
Aurora PostgreSQL releases

Patch releases
• Aurora PostgreSQL release 1.0.11 (p. 1681)
• Aurora PostgreSQL release 1.0.10 (p. 1681)
• Aurora PostgreSQL release 1.0.9 (p. 1681)
• Aurora PostgreSQL release 1.0.8 (p. 1681)
• Aurora PostgreSQL release 1.0.7 (p. 1682)

Aurora PostgreSQL release 1.0.11

You can find the following improvements in this engine update:

1. Fixes an issue with parallel query processing that can lead to incorrect results.
2. Fixes an issue with visibility map handling during replication from Amazon RDS for PostgreSQL that

can cause the Aurora storage volume to become unavailable.
3. Corrects the pg-repack extension.
4. Implements improvements to maintain fresh nodes.
5. Fixes issues that can lead to an engine crash.

Aurora PostgreSQL release 1.0.10

This update includes a new feature. You can now replicate an Amazon RDS PostgreSQL DB instance to
Aurora PostgreSQL. For more information, see Replication with Amazon Aurora PostgreSQL (p. 1448).

You can find the following improvements in this engine update:

1. Adds error logging when a cache exists and a parameter change results in a mismatched buffer cache,
storage format, or size.

2. Fixes an issue that causes an engine reboot if there is an incompatible parameter value for huge
pages.

3. Improves handling of multiple truncate table statements during a replay of a write ahead log (WAL)
on a read node.

4. Reduces static memory overhead to reduce out-of-memory errors.
5. Fixes an issue that can lead to out-of-memory errors while performing an insert with a GiST index.
6. Improves snapshot import from RDS PostgreSQL, removing the requirement that a vacuum be

performed on uninitialized pages.
7. Fixes an issue that causes prepared transactions to return to the previous state following an engine

crash.
8. Implements improvements to prevent read nodes from becoming stale.
9. Implements improvements to reduce downtime with an engine restart.
10.Fixes issues that can cause an engine crash.

Aurora PostgreSQL release 1.0.9

In this engine update, we fix an issue that can cause the Aurora storage volume to become unavailable
when importing a snapshot from RDS PostgreSQL that contained uninitialized pages.

Aurora PostgreSQL release 1.0.8

You can find the following improvements in this engine update:

1. Fixes an issue that prevented the engine from starting if the shared_preload_libraries instance
parameter contained pg_hint_plan.

1681

Amazon Aurora User Guide for Aurora
Extension versions for Aurora PostgreSQL

2. Fixes the error "Attempt to fetch heap block XXX is beyond end of heap (YYY blocks)," which can occur
during parallel scans.

3. Improves the effectiveness of prefetching on reads for a vacuum.
4. Fixes issues with snapshot import from RDS PostgreSQL, which can fail if there are incompatible

pg_internal.init files in the source snapshot.
5. Fixes an issue that can cause a read node to crash with the message "aurora wal replay process (PID

XXX) was terminated by signal 11: Segmentation fault". This issue occurs when the reader applied a
visibility map change for an uncached visibility map page.

Aurora PostgreSQL release 1.0.7

This is the first generally available release of Amazon Aurora PostgreSQL-Compatible Edition.

Extension versions for Amazon Aurora PostgreSQL
Topics

• Extensions supported for Aurora PostgreSQL 13.x (p. 1682)
• Extensions supported for Aurora PostgreSQL 12.x (p. 1685)
• Extensions supported for Aurora PostgreSQL 11.x (p. 1687)
• Extensions supported for Aurora PostgreSQL 10.x (p. 1690)
• Aurora PostgreSQL apg_plan_mgmt extension versions (p. 1692)

To upgrade a PostgreSQL extension, see Upgrading PostgreSQL extensions (p. 1703).

Extensions supported for Aurora PostgreSQL 13.x
The following table shows the PostgreSQL extension versions that are currently supported on Aurora
PostgreSQL versions 13.x. "NA" indicates that the extension isn't available for that PostgreSQL version.
For more information about PostgreSQL extensions, see Packaging Related Objects into an Extension in
the PostgreSQL documentation.

Extension 13.3 13.4

address_standardizer 3.0.3 3.1.4

address_standardizer_data_us 3.0.3 3.1.4

amcheck 1.2 1.2

apg_plan_mgmt (p. 1692) 2.1 2.1

aurora_stat_utils 1.0 1.0

autoinc (contrib-spi) N/A 1.0

aws_commons 1.2 1.2

aws_lambda 1.0 1.0

aws_ml 1.0 1.0

aws_s3 1.1 1.1

bloom 1.0 1.0

1682

https://www.postgresql.org/docs/13/extend-extensions.html
http://postgis.net/docs/Address_Standardizer.html
http://postgis.net/docs/Address_Standardizer.html
https://www.postgresql.org/docs/current/amcheck.html
https://www.postgresql.org/docs/13/contrib-spi.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-ml.html#postgresql-ml-aws_ml-install
https://www.postgresql.org/docs/12/bloom.html

Amazon Aurora User Guide for Aurora
Extension versions for Aurora PostgreSQL

Extension 13.3 13.4

bool_plperl 1.3 1.3

btree_gin 1.3 1.3

btree_gist 1.5 1.5

citext 1.6 1.6

cube 1.4 1.4

dblink 1.2 1.2

dict_int 1.0 1.0

dict_xsyn 1.0 1.0

earthdistance 1.1 1.1

fuzzystrmatch 1.1 1.1

hll 2.15 2.15

hstore 1.7 1.7

hstore_plperl 1.0 1.0

insert_username (contrib-spi) N/A 1.0

intagg 1.1 1.1

intarray 1.3 1.3

ip4r 2.4 2.4

isn 1.2 1.2

jsonb_plperl 1.0 1.0

log_fdw 1.2 1.2

ltree 1.2 1.2

moddatetime (contrib-spi) N/A 1.0

oracle_fdw 2.3.0 2.3.0

orafce 3.16 3.16

pg_bigm 1.2 1.2

pg_buffercache 1.3 1.3

pg_cron 1.3 1.3

pg_freespacemap 1.2 1.2

pg_hint_plan 1.3.7 1.3.7

pg_partman 4.5.1 4.5.1

pg_prewarm 1.2 1.2

1683

http://www.postgresql.org/docs/12/btree-gin.html
http://www.postgresql.org/docs/12/btree-gist.html
http://www.postgresql.org/docs/12/citext.html
http://www.postgresql.org/docs/12/cube.html
http://www.postgresql.org/docs/12/dblink.html
http://www.postgresql.org/docs/12/dict-int.html
https://www.postgresql.org/docs/12/dict-xsyn.html
http://www.postgresql.org/docs/12/earthdistance.html
http://www.postgresql.org/docs/12/fuzzystrmatch.html
http://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/13/contrib-spi.html
http://www.postgresql.org/docs/12/intagg.html
http://www.postgresql.org/docs/12/intarray.html
https://github.com/RhodiumToad/ip4r
http://www.postgresql.org/docs/12/isn.html
http://www.postgresql.org/docs/12/ltree.html
https://www.postgresql.org/docs/13/contrib-spi.html
https://github.com/orafce/orafce
https://pgbigm.osdn.jp/pg_bigm_en-1-2.html
http://www.postgresql.org/docs/12/pgbuffercache.html
https://www.postgresql.org/docs/12/pgfreespacemap.html
http://pghintplan.osdn.jp/pg_hint_plan.html
https://www.postgresql.org/docs/12/pgprewarm.html

Amazon Aurora User Guide for Aurora
Extension versions for Aurora PostgreSQL

Extension 13.3 13.4

pg_proctab 0.0.9 0.0.9

pg_repack 1.4.6 1.4.6

pg_similarity 1.0 1.0

pg_stat_statements 1.8 1.8

pg_trgm 1.5 1.5

pg_visibility 1.2 1.2

pgaudit 1.5 1.5

pgcrypto 1.3 1.3

pglogical 2.3.3 2.4.0

pglogical_origin 1.0.0 1.0.0

pgrouting 3.1.0 3.1.3

pgrowlocks 1.2 1.2

pgstattuple 1.5 1.5

pgtap 1.1.0 1.1.0

plcoffee 2.3.15 2.3.15

plls 2.3.15 2.3.15

plperl 1.0 1.0

plpgsql 1.0 1.0

plprofiler 4.1 4.1

pltcl 1.0 1.0

plv8 2.3.15 2.3.15

PostGIS 3.0.3 3.1.4

postgis_raster 3.0.3 3.1.4

postgis_tiger_geocoder 3.0.3 3.1.4

postgis_topology 3.0.3 3.1.4

postgres_fdw 1.0 1.0

prefix 1.2.0 1.2.0

rdkit 3.8 3.8

rds_activity_stream 1.3 1.3

rds_tools 1.0 1.0

refint (contrib-spi) N/A 1.0

1684

http://reorg.github.io/pg_repack/
http://www.postgresql.org/docs/12/pgstatstatements.html
http://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgvisibility.html
https://github.com/pgaudit/pgaudit/blob/master/README.md
http://www.postgresql.org/docs/12/pgcrypto.html
https://github.com/2ndQuadrant/pglogical
http://docs.pgrouting.org/2.3/en/doc/index.html
http://www.postgresql.org/docs/12/pgrowlocks.html
http://www.postgresql.org/docs/12/pgstattuple.html
https://pgtap.org/
https://www.postgresql.org/docs/12/plperl.html
https://www.postgresql.org/docs/12/plpgsql.html
https://github.com/bigsql/plprofiler
https://www.postgresql.org/docs/13/pltcl-overview.html
https://github.com/plv8
http://www.postgis.net/
http://postgis.net/docs/Geocode.html
http://postgis.net/docs/manual-dev/Topology.html
http://www.postgresql.org/docs/13/postgres-fdw.html
https://github.com/dimitri/prefix
https://www.rdkit.org/
https://www.postgresql.org/docs/13/contrib-spi.html

Amazon Aurora User Guide for Aurora
Extension versions for Aurora PostgreSQL

Extension 13.3 13.4

sslinfo 1.2 1.2

tablefunc 1.0 1.0

test_parser 1.0 1.0

tsm_system_rows 1.0 1.0

tsm_system_time 1.0 1.0

unaccent 1.1 1.1

uuid-ossp 1.1 1.1

wal2json 2.3 2.3

Extensions supported for Aurora PostgreSQL 12.x
The following table shows the PostgreSQL extension versions that are currently supported on Aurora
PostgreSQL versions 12.x. "NA" indicates that the extension isn't available for that PostgreSQL version.
For more information about PostgreSQL extensions, see Packaging Related Objects into an Extension in
the PostgreSQL documentation.

Extension 12.4 12.6 12.7 12.8

address_standardizer 3.0.2 3.0.2 3.0.2 3.0.2

address_standardizer_data_us3.0.2 3.0.2 3.0.2 3.0.2

amcheck 1.2 1.2 1.2 1.2

apg_plan_mgmt (p. 1692)2.0 2.0 2.0 2.0

aurora_stat_utils 1.0 1.0 1.0 1.0

aws_commons 1.2 1.2 1.2 1.2

aws_lambda 1.0 1.0 1.0 1.0

aws_ml 1.0 1.0 1.0 1.0

aws_s3 1.1 1.1 1.1 1.1

bloom 1.0 1.0 1.0 1.0

btree_gin 1.3 1.3 1.3 1.3

btree_gist 1.5 1.5 1.5 1.5

citext 1.6 1.6 1.6 1.6

cube 1.4 1.4 1.4 1.4

dblink 1.2 1.2 1.2 1.2

dict_int 1.0 1.0 1.0 1.0

dict_xsyn 1.0 1.0 1.0 1.0

1685

http://www.postgresql.org/docs/12/sslinfo.html
http://www.postgresql.org/docs/12/tablefunc.html
https://www.postgresql.org/docs/9.4/test-parser.html
https://www.postgresql.org/docs/12/tsm-system-rows.html
https://www.postgresql.org/docs/12/tsm-system-time.html
http://www.postgresql.org/docs/12/unaccent.html
http://www.postgresql.org/docs/12/uuid-ossp.html
https://github.com/eulerto/wal2json
https://www.postgresql.org/docs/12/extend-extensions.html
http://postgis.net/docs/Address_Standardizer.html
http://postgis.net/docs/Address_Standardizer.html
https://www.postgresql.org/docs/current/amcheck.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-ml.html#postgresql-ml-aws_ml-install
https://www.postgresql.org/docs/12/bloom.html
http://www.postgresql.org/docs/12/btree-gin.html
http://www.postgresql.org/docs/12/btree-gist.html
http://www.postgresql.org/docs/12/citext.html
http://www.postgresql.org/docs/12/cube.html
http://www.postgresql.org/docs/12/dblink.html
http://www.postgresql.org/docs/12/dict-int.html
https://www.postgresql.org/docs/12/dict-xsyn.html

Amazon Aurora User Guide for Aurora
Extension versions for Aurora PostgreSQL

Extension 12.4 12.6 12.7 12.8

earthdistance 1.1 1.1 1.1 1.1

fuzzystrmatch 1.1 1.1 1.1 1.1

hll 2.14 2.14 2.14 2.14

hstore 1.6 1.6 1.6 1.6

hstore_plperl 1.0 1.0 1.0 1.0

intagg 1.1 1.1 1.1 1.1

intarray 1.2 1.2 1.2 1.2

ip4r 2.4 2.4 2.4 2.4

isn 1.2 1.2 1.2 1.2

jsonb_plperl 1.0 1.0 1.0 1.0

log_fdw 1.1 1.1 1.1 1.1

ltree 1.1 1.1 1.1 1.1

oracle_fdw NA NA 2.3.0 2.3.0

orafce 3.8 3.8 3.16 3.16

pg_bigm NA 1.2 1.2 1.2

pg_buffercache 1.3 1.3 1.3 1.3

pg_cron NA 1.3 1.3.1 1.3.1

pg_freespacemap 1.2 1.2 1.2 1.2

pg_hint_plan 1.3.5 1.3.5 1.3.5 1.3.5

pg_partman NA 4.4.0 4.5.1 4.5.1

pg_prewarm 1.2 1.2 1.2 1.2

pg_proctab NA 0.0.9 0.0.9 0.0.9

pg_repack 1.4.5 1.4.5 1.4.5 1.4.5

pg_similarity 1.0 1.0 1.0 1.0

pg_stat_statements 1.7 1.7 1.7 1.7

pg_trgm 1.4 1.4 1.4 1.4

pg_visibility 1.2 1.2 1.2 1.2

pgaudit 1.4 1.4 1.4 1.4

pgcrypto 1.3 1.3 1.3 1.3

pglogical 2.3.2 2.3.2 2.3.2 2.4.0

pglogical_origin 1.0.0 1.0.0 1.0.0 1.0.0

1686

http://www.postgresql.org/docs/12/earthdistance.html
http://www.postgresql.org/docs/12/fuzzystrmatch.html
http://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
http://www.postgresql.org/docs/12/intagg.html
http://www.postgresql.org/docs/12/intarray.html
https://github.com/RhodiumToad/ip4r
http://www.postgresql.org/docs/12/isn.html
http://www.postgresql.org/docs/12/ltree.html
https://github.com/orafce/orafce
https://pgbigm.osdn.jp/pg_bigm_en-1-2.html
http://www.postgresql.org/docs/12/pgbuffercache.html
https://www.postgresql.org/docs/12/pgfreespacemap.html
http://pghintplan.osdn.jp/pg_hint_plan.html
https://www.postgresql.org/docs/12/pgprewarm.html
http://reorg.github.io/pg_repack/
http://www.postgresql.org/docs/12/pgstatstatements.html
http://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgvisibility.html
https://github.com/pgaudit/pgaudit/blob/master/README.md
http://www.postgresql.org/docs/12/pgcrypto.html
https://github.com/2ndQuadrant/pglogical

Amazon Aurora User Guide for Aurora
Extension versions for Aurora PostgreSQL

Extension 12.4 12.6 12.7 12.8

pgrouting 3.0.3 3.0.3 3.0.3 3.0.3

pgrowlocks 1.2 1.2 1.2 1.2

pgstattuple 1.5 1.5 1.5 1.5

pgTAP 1.1.0 1.1.0 1.1.0 1.1.0

plcoffee 2.3.14 2.3.14 2.3.14 2.3.14

plls 2.3.14 2.3.14 2.3.14 2.3.14

plperl 1.0 1.0 1.0 1.0

plpgsql 1.0 1.0 1.0 1.0

plprofiler 4.1 4.1 4.1 4.1

pltcl 1.0 1.0 1.0 1.0

plv8 2.3.14 2.3.14 2.3.14 2.3.14

PostGIS 3.0.2 3.0.2 3.0.3 3.1

postgis_raster 3.0.2 3.0.2 3.0.3 3.1

postgis_tiger_geocoder3.0.2 3.0.2 3.0.3 3.1

postgis_topology 3.0.2 3.0.2 3.0.3 3.1

postgres_fdw 1.0 1.0 1.0 1.0

prefix 1.2.0 1.2.0 1.2.0 1.2.0

RDKit 3.8 3.8 3.8 3.8

rds_activity_stream 1.3 1.3 1.3 1.3

sslinfo 1.2 1.2 1.2 1.2

tablefunc 1.0 1.0 1.0 1.0

test_parser 1.0 1.0 1.0 1.0

tsm_system_rows 1.0 1.0 1.0 1.0

tsm_system_time 1.0 1.0 1.0 1.0

unaccent 1.1 1.1 1.1 1.1

uuid-ossp 1.1 1.1 1.1 1.1

wal2json 2.3 2.3 2.3 2.3

Extensions supported for Aurora PostgreSQL 11.x

The following table shows PostgreSQL extension versions currently supported on Aurora PostgreSQL
versions 11.x. "NA" indicates that the extension isn't available for that PostgreSQL version. For more
information about PostgreSQL extensions, see Packaging Related Objects into an Extension.

1687

http://docs.pgrouting.org/2.3/en/doc/index.html
http://www.postgresql.org/docs/12/pgrowlocks.html
http://www.postgresql.org/docs/12/pgstattuple.html
https://pgtap.org/
https://www.postgresql.org/docs/12/plperl.html
https://www.postgresql.org/docs/12/plpgsql.html
https://github.com/bigsql/plprofiler
https://www.postgresql.org/docs/12/pltcl-overview.html
https://github.com/plv8
http://www.postgis.net/
http://postgis.net/docs/Geocode.html
http://postgis.net/docs/manual-dev/Topology.html
http://www.postgresql.org/docs/12/postgres-fdw.html
https://github.com/dimitri/prefix
https://www.rdkit.org/
http://www.postgresql.org/docs/12/sslinfo.html
http://www.postgresql.org/docs/12/tablefunc.html
https://www.postgresql.org/docs/9.4/test-parser.html
https://www.postgresql.org/docs/12/tsm-system-rows.html
https://www.postgresql.org/docs/12/tsm-system-time.html
http://www.postgresql.org/docs/12/unaccent.html
http://www.postgresql.org/docs/12/uuid-ossp.html
https://github.com/eulerto/wal2json
https://www.postgresql.org/docs/11/extend-extensions.html

Amazon Aurora User Guide for Aurora
Extension versions for Aurora PostgreSQL

Extension 11.4 11.6 11.7 11.8 11.9 11.11 11.12 11.13

address_standardizer 2.5.1 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2

address_standardizer_data_us2.5.1 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2

amcheck 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

apg_plan_mgmt (p. 1692)1.0.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0

aurora_stat_utils 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

aws_commons 1.0 1.1 1.1 1.1 1.2 1.2 1.2 1.2

aws_lambda NA NA NA NA 1.0 1.0 1.0 1.0

aws_ml NA 1.0 1.0 1.0 1.0 1.0 1.0 1.0

aws_s3 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1

bloom 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

btree_gin 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3

btree_gist 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

citext 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

cube 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4

dblink 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

dict_int 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

dict_xsyn 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

earthdistance 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

fuzzystrmatch 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

hll 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11

hstore 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

hstore_plperl 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

intagg 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

intarray 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

ip4r 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2

isn 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

jsonb_plperl 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

log_fdw 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

ltree 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

orafce 3.7 3.7 3.8 3.8 3.8 3.8 3.16 3.16

pg_bigm NA NA NA NA NA 1.2 1.2 1.2

1688

http://postgis.net/docs/Address_Standardizer.html
http://postgis.net/docs/Address_Standardizer.html
https://www.postgresql.org/docs/current/amcheck.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-ml.html#postgresql-ml-aws_ml-install
https://www.postgresql.org/docs/11/bloom.html
http://www.postgresql.org/docs/11/btree-gin.html
http://www.postgresql.org/docs/11/btree-gist.html
http://www.postgresql.org/docs/11/citext.html
http://www.postgresql.org/docs/11/cube.html
http://www.postgresql.org/docs/11/dblink.html
http://www.postgresql.org/docs/11/dict-int.html
https://www.postgresql.org/docs/11/dict-xsyn.html
http://www.postgresql.org/docs/11/earthdistance.html
http://www.postgresql.org/docs/11/fuzzystrmatch.html
http://www.postgresql.org/docs/11/hstore.html
https://www.postgresql.org/docs/11/hstore.html
http://www.postgresql.org/docs/11/intagg.html
http://www.postgresql.org/docs/11/intarray.html
https://github.com/RhodiumToad/ip4r
http://www.postgresql.org/docs/11/isn.html
http://www.postgresql.org/docs/11/ltree.html
https://github.com/orafce/orafce
https://pgbigm.osdn.jp/pg_bigm_en-1-2.html

Amazon Aurora User Guide for Aurora
Extension versions for Aurora PostgreSQL

Extension 11.4 11.6 11.7 11.8 11.9 11.11 11.12 11.13

pg_buffercache 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3

pg_freespacemap 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

pg_hint_plan 1.3.4 1.3.4 1.3.4 1.3.5 1.3.5 1.3.5 1.3.5 1.3.5

pg_prewarm 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

pg_proctab NA NA NA NA NA 0.0.9 0.0.9 0.0.9

pg_repack 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4

pg_similarity 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

pg_stat_statements 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6

pg_trgm 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4

pg_visibility 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

pgaudit 1.3 1.3 1.3 1.3 1.3.1 1.3.1 1.3.1 1.3.1

pgcrypto 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3

pglogical NA NA NA 2.2.2 2.2.2 2.2.2 2.2.2 2.2.2

pglogical_origin NA NA NA 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0

pgrouting 2.6.1 2.6.1 2.6.1 2.6.1 2.6.1 2.6.1 2.6.1 2.6.1

pgrowlocks 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

pgstattuple 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

pgTAP 1.0.0 1.0.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0

plcoffee 2.3.8 2.3.8 2.3.8 2.3.14 2.3.14 2.3.14 2.3.14 2.3.14

plls 2.3.8 2.3.8 2.3.8 2.3.14 2.3.14 2.3.14 2.3.14 2.3.14

plperl 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

plpgsql 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

plprofiler NA 4.1 4.1 4.1 4.1 4.1 4.1 4.1

pltcl 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

plv8 2.3.8 2.3.8 2.3.8 2.3.14 2.3.14 2.3.14 2.3.14 2.3.14

PostGIS 2.5.1 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 3.1

postgis_tiger_geocoder2.5.1 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 3.1

postgis_topology 2.5.1 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 3.1

postgres_fdw 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

prefix 1.2.0 1.2.0 1.2.0 1.2.0 1.2.0 1.2.0 1.2.0 1.2.0

RDKit NA NA NA 3.8 3.8 3.8 3.8 3.8

1689

http://www.postgresql.org/docs/11/pgbuffercache.html
https://www.postgresql.org/docs/11/pgfreespacemap.html
http://pghintplan.osdn.jp/pg_hint_plan.html
https://www.postgresql.org/docs/11/pgprewarm.html
http://reorg.github.io/pg_repack/
http://www.postgresql.org/docs/11/pgstatstatements.html
http://www.postgresql.org/docs/11/pgtrgm.html
https://www.postgresql.org/docs/11/pgvisibility.html
https://github.com/pgaudit/pgaudit/blob/master/README.md
http://www.postgresql.org/docs/11/pgcrypto.html
https://github.com/2ndQuadrant/pglogical
http://docs.pgrouting.org/2.3/en/doc/index.html
http://www.postgresql.org/docs/11/pgrowlocks.html
http://www.postgresql.org/docs/11/pgstattuple.html
https://pgtap.org/
https://www.postgresql.org/docs/11/plperl.html
https://www.postgresql.org/docs/11/plpgsql.html
https://github.com/bigsql/plprofiler
https://www.postgresql.org/docs/11/pltcl-overview.html
https://github.com/plv8
http://www.postgis.net/
http://postgis.net/docs/Geocode.html
http://postgis.net/docs/manual-dev/Topology.html
http://www.postgresql.org/docs/11/postgres-fdw.html
https://github.com/dimitri/prefix
https://www.rdkit.org/

Amazon Aurora User Guide for Aurora
Extension versions for Aurora PostgreSQL

Extension 11.4 11.6 11.7 11.8 11.9 11.11 11.12 11.13

rds_activity_stream 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3

sslinfo 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

tablefunc 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

test_parser 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

tsm_system_rows 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

tsm_system_time 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

unaccent 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

uuid-ossp 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

wal2json 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3

Extensions supported for Aurora PostgreSQL 10.x
The following table shows PostgreSQL extension versions currently supported on Aurora PostgreSQL
versions 10.x. "NA" indicates that the extension isn't available for that PostgreSQL version. For more
information about PostgreSQL extensions, see Packaging Related Objects into an Extension.

Note

• The adminpack extension is no longer supported because it accesses the file system.
• The plperlu extension is no longer supported because it is an untrusted language extension.
• The pltclu extension is no longer supported because it is an untrusted language extension.

Extension 10.4 10.5 10.6 10.7 10.11 10.12 10.13 10.14 10.16 10.17 10.18

address_standardizer 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4

address_standardizer_data_us2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4

adminpack 1.1 1.1 1.1 NA NA NA NA NA NA NA NA

amcheck 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

apg_plan_mgmt (p. 1692)0.1 1.0.1 1.0.1 1.0.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0

aurora_stat_utils 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

aws_commons NA NA 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1

aws_ml NA NA NA NA 1.0 1.0 1.0 1.0 1.0 1.0 1.0

aws_s3 NA NA 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1

bloom 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

btree_gin 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

btree_gist 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

chkpass 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1690

http://www.postgresql.org/docs/11/sslinfo.html
http://www.postgresql.org/docs/11/tablefunc.html
https://www.postgresql.org/docs/9.4/test-parser.html
https://www.postgresql.org/docs/11/tsm-system-rows.html
https://www.postgresql.org/docs/11/tsm-system-time.html
http://www.postgresql.org/docs/11/unaccent.html
http://www.postgresql.org/docs/11/uuid-ossp.html
https://github.com/eulerto/wal2json
https://www.postgresql.org/docs/11/extend-extensions.html
http://postgis.net/docs/Address_Standardizer.html
http://postgis.net/docs/Address_Standardizer.html
https://www.postgresql.org/docs/current/adminpack.html
https://www.postgresql.org/docs/current/amcheck.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-ml.html#postgresql-ml-aws_ml-install
https://www.postgresql.org/docs/10/bloom.html
http://www.postgresql.org/docs/10/btree-gin.html
http://www.postgresql.org/docs/10/btree-gist.html
http://www.postgresql.org/docs/10/chkpass.html

Amazon Aurora User Guide for Aurora
Extension versions for Aurora PostgreSQL

Extension 10.4 10.5 10.6 10.7 10.11 10.12 10.13 10.14 10.16 10.17 10.18

citext 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4

cube 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

dblink 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

dict_int 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

dict_xsyn 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

earthdistance 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

fuzzystrmatch 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

hll 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10

hstore 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4

hstore_plperl 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

hstore_plperlu 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

intagg 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

intarray 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

ip4r 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1

isn 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

log_fdw 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

ltree 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

orafce 3.6 3.6 3.6 3.6 3.6 3.8 3.8 3.8 3.8 3.16 3.16

pg_buffercache 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3

pg_freespacemap 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

pg_hint_plan 1.3.0 1.3.1 1.3.1 1.3.1 1.3.3 1.3.3 1.3.5 1.3.5 1.3.5 1.3.5 1.3.5

pg_prewarm 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

pg_repack 1.4.3 1.4.3 1.4.3 1.4.3 1.4.3 1.4.3 1.4.3 1.4.3 1.4.3 1.4.3 1.4.3

pg_similarity NA 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

pg_stat_statements 1.5 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6

pg_trgm 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3

pg_visibility 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

pgaudit 1.2 1.2 1.2 1.2 1.2 1.2 1.2.1 1.2.1 1.2.1 1.2.1 1.2.1

pgcrypto 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3

pglogical NA NA NA NA NA NA 2.2.2 2.2.2 2.2.2 2.2.2 2.2.2

pglogical_origin NA NA NA NA NA NA 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0

1691

http://www.postgresql.org/docs/10/citext.html
http://www.postgresql.org/docs/10/cube.html
http://www.postgresql.org/docs/10/dblink.html
http://www.postgresql.org/docs/10/dict-int.html
https://www.postgresql.org/docs/10/dict-xsyn.html
http://www.postgresql.org/docs/10/earthdistance.html
http://www.postgresql.org/docs/10/fuzzystrmatch.html
http://www.postgresql.org/docs/10/hstore.html
https://www.postgresql.org/docs/10/hstore.html
http://www.postgresql.org/docs/10/intagg.html
http://www.postgresql.org/docs/10/intarray.html
https://github.com/RhodiumToad/ip4r
http://www.postgresql.org/docs/10/isn.html
http://www.postgresql.org/docs/10/ltree.html
https://github.com/orafce/orafce
http://www.postgresql.org/docs/10/pgbuffercache.html
https://www.postgresql.org/docs/10/pgfreespacemap.html
http://pghintplan.osdn.jp/pg_hint_plan.html
https://www.postgresql.org/docs/10/pgprewarm.html
http://reorg.github.io/pg_repack/
http://www.postgresql.org/docs/10/pgstatstatements.html
http://www.postgresql.org/docs/10/pgtrgm.html
https://www.postgresql.org/docs/10/pgvisibility.html
https://github.com/pgaudit/pgaudit/blob/master/README.md
http://www.postgresql.org/docs/10/pgcrypto.html
https://github.com/2ndQuadrant/pglogical

Amazon Aurora User Guide for Aurora
Extension versions for Aurora PostgreSQL

Extension 10.4 10.5 10.6 10.7 10.11 10.12 10.13 10.14 10.16 10.17 10.18

pgrouting 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2 2.5.2

pgrowlocks 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

pgstattuple 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

plcoffee 2.1.2 2.1.2 2.1.2 2.1.2 2.1.2 2.1.2 2.3.14 2.3.14 2.3.14 2.3.14 2.3.14

plls 2.1.2 2.1.2 2.1.2 2.1.2 2.1.2 2.1.2 2.3.14 2.3.14 2.3.14 2.3.14 2.3.14

plperl 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

plperlu 1.0 1.0 1.0 NA NA NA NA NA NA NA NA

plpgsql 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

plprofiler NA NA NA NA 4.0 4.1 4.1 4.1 4.1 4.1 4.1

pltcl 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

pltclu 1.0 1.0 1.0 NA NA NA NA NA NA NA NA

plv8 2.1.2 2.1.2 2.1.2 2.1.2 2.1.2 2.1.2 2.3.14 2.3.14 2.3.14 2.3.14 2.3.14

PostGIS 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.7 3.1

postgis_tiger_geocoder 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.7 3.1

postgis_topology 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.7 3.1

postgres_fdw 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

prefix 1.2.0 1.2.0 1.2.0 1.2.0 1.2.0 1.2.0 1.2.0 1.2.0 1.2.0 1.2.0 1.2.0

RDKit NA NA NA NA NA NA 3.8 3.8 3.8 3.8 3.8

rds_activity_stream NA 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

sslinfo 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

tablefunc 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

test_parser 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

tsearch2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

tsm_system_rows 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

tsm_system_time 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

unaccent 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

uuid-ossp 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

wal2json NA NA NA 2.1 2.1 2.3 2.3 2.3 2.3 2.3 2.3

Aurora PostgreSQL apg_plan_mgmt extension versions
Topics

1692

http://docs.pgrouting.org/2.3/en/doc/index.html
http://www.postgresql.org/docs/10/pgrowlocks.html
http://www.postgresql.org/docs/10/pgstattuple.html
https://www.postgresql.org/docs/10/plperl.html
https://www.postgresql.org/docs/10/plpgsql.html
https://github.com/bigsql/plprofiler
https://www.postgresql.org/docs/10/pltcl-overview.html
https://github.com/plv8
http://www.postgis.net/
http://postgis.net/docs/Geocode.html
http://postgis.net/docs/manual-dev/Topology.html
http://www.postgresql.org/docs/10/postgres-fdw.html
https://github.com/dimitri/prefix
https://www.rdkit.org/
http://www.postgresql.org/docs/10/sslinfo.html
http://www.postgresql.org/docs/10/tablefunc.html
https://www.postgresql.org/docs/9.4/test-parser.html
http://www.postgresql.org/docs/9.6/tsearch2.html
https://www.postgresql.org/docs/10/tsm-system-rows.html
https://www.postgresql.org/docs/10/tsm-system-time.html
http://www.postgresql.org/docs/10/unaccent.html
http://www.postgresql.org/docs/10/uuid-ossp.html
https://github.com/eulerto/wal2json

Amazon Aurora User Guide for Aurora
Extension versions for Aurora PostgreSQL

• Version 2.0 of the Aurora PostgreSQL apg_plan_mgmt extension (p. 1693)

• Version 1.0.1 of the Aurora PostgreSQL apg_plan_mgmt extension (p. 1693)

Version 2.0 of the Aurora PostgreSQL apg_plan_mgmt extension

You use the apg_plan_mgmt extension with query plan management. For more about how to install,
upgrade, and use the apg_plan_mgmt extension, see Managing query execution plans for Aurora
PostgreSQL (p. 1477).

The apg_plan_mgmt extension changes for version 2.0 include the following:

New extension features

1. You can now manage all queries inside SQL functions, whether they have parameters or not.

2. You can now manage all queries inside PL/pgSQL functions, whether they have parameters or not.

3. You can now manage queries in generic plans, whether they have parameters or not. To learn
more about generic plans versus custom plans, see the PREPARE statement in the PostgreSQL
documentation.

4. You can now use query plan management to enforce the use of specific types of aggregate methods in
query plans.

Extension improvements

1. You can now save plans with a size up to 8KB times the setting of the max_worker_processes
parameter. Previously the maximum plan size was 8KB.

2. Fixed bugs for unnamed prepared statements such as those from JDBC.

3. Previously, when you tried to do CREATE EXTENSION apg_plan_mgmt when it is not loaded in the
shared_preload_libraries, the PostgreSQL backend connection was dropped. Now, an error
message prints and the connection is not dropped.

4. The default value of the cardinality_error in the apg_plan_mgmt.plans table is NULL, but it
can be set to -1 during the apg_plan_mgmt.evolve_plan_baselines function. NULL is now used
consistently.

5. Plans are now saved for queries that refer to temporary tables.

6. The default maximum number of plans is increased from 1000 to 10000.

7. The following pgss parameters are deprecated because the automatic plan capture mode should be
used instead of those parameters.

• apg_plan_mgmt.pgss_min_calls

• apg_plan_mgmt.pgss_min_mean_time_ms

• apg_plan_mgmt.pgss_min_stddev_time_ms

• apg_plan_mgmt.pgss_min_total_time_ms

Version 1.0.1 of the Aurora PostgreSQL apg_plan_mgmt extension

The apg_plan_mgmt extension changes for version 1.0.1 include the following:

New extension features

1. The validate_plans function has a new action value called update_plan_hash. This action
updates the plan_hash ID for plans that can't be reproduced exactly. The update_plan_hash
value also allows you to fix a plan by rewriting the SQL. You can then register the good plan as an

1693

https://www.postgresql.org/docs/current/sql-prepare.html
https://www.postgresql.org/docs/current/sql-prepare.html

Amazon Aurora User Guide for Aurora
Extension versions for Aurora PostgreSQL

Approved plan for the original SQL. Following is an example of using the update_plan_hash
action.

UPDATE apg_plan_mgmt.plans SET plan_hash = new _plan_hash, plan_outline
 = good_plan_outline
 WHERE sql_hash = bad_plan_sql_hash AND plan_hash = bad_plan_plan_hash;
SELECT apg_plan_mgmt.validate_plans(bad_plan_sql_hash, bad_plan_plan_hash,
 'update_plan_hash');
SELECT apg_plan_mgmt.reload();

2. A new get_explain_stmt function is available that generates the text of an EXPLAIN
statement for the specified SQL statement. It includes the parameters sql_hash, plan_hash and
explain_options.

The parameter explain_options can be any comma-separated list of valid EXPLAIN options, as
shown following.

analyze,verbose,buffers,hashes,format json

If the parameter explain_options is NULL or an empty string, the get_explain_stmt function
generates a simple EXPLAIN statement.

To create an EXPLAIN script for your workload or a portion of it, use the \a , \t, and \o options to
redirect the output to a file. For example, you can create an EXPLAIN script for the top-ranked (top-
K) statements by using the PostgreSQL pg_stat_statements view sorted by total_time in DESC
order.

3. The precise location of the Gather parallel query operator is determined by costing, and may
change slightly over time. To prevent these differences from invalidating the entire plan, query plan
management now computes the same plan_hash even if the Gather operators move to different
places in the plan tree.

4. Support is added for nonparameterized statements inside pl/pgsql functions.
5. Overhead is reduced when the apg_plan_mgmt extension is installed on multiple databases in the

same cluster while two or more databases are being accessed concurrently. Also, this release fixed a
bug in this area that caused plans to not be stored in shared memory.

Extension improvements

1. Improvements to the evolve_plan_baselines function.
a. The evolve_plan_baselines function now computes a cardinality_error metric

over all nodes in the plan. Using this metric, you can identify any plan where the cardinality
estimation error is large, and the plan quality is more doubtful. Long-running statements with high
cardinality_error values are high-priority candidates for query tuning.

b. Reports generated by evolve_plan_baselines now include sql_hash, plan_hash, and the
plan status.

c. You can now allow evolve_plan_baselines to approve previously Rejected plans.
d. The meaning of speedup_factor for evolve_plan_baselines is now always relative to the

baseline plan. For example, a value of 1.1 now means 10 percent faster than the baseline plan.
A value of 0.9 means 10 percent slower than the baseline plan. The comparison is made using
running time alone instead of total time.

e. The evolve_plan_baselines function now warms the cache in a new way. It does this by
running the baseline plan, then running the baseline plan one more time, and then running the
candidate plan once. Previously, evolve_plan_baselines ran the candidate plan twice. This
approach added significantly to running time, especially for slow candidate plans. However, running
the candidate plan twice is more reliable when the candidate plan uses an index that isn't used in
the baseline plan.

1694

Amazon Aurora User Guide for Aurora
Upgrading the PostgreSQL DB engine

2. Query plan management no longer saves plans that refer to system tables or views, temporary tables,
or the query plan management's own tables.

3. Bug fixes include caching a plan immediately when saved and fixing a bug that caused the back end to
terminate.

Upgrading the PostgreSQL DB engine for Aurora
PostgreSQL
When Aurora PostgreSQL supports a new version of a database engine, you can upgrade your DB clusters
to the new version. There are two kinds of upgrades for PostgreSQL DB clusters: major version upgrades
and minor version upgrades.

Major version upgrades can contain database changes that are not backward-compatible with existing
applications. As a result, you must manually perform major version upgrades of your DB instances. You
can initiate a major version upgrade by modifying your DB cluster. However, before you perform a major
version upgrade, we recommend that you follow the steps described in How to perform a major version
upgrade (p. 1696).

In contrast, minor version upgrades include only changes that are backward-compatible with existing
applications. You can initiate a minor version upgrade manually by modifying your DB cluster. Or you
can enable the Auto minor version upgrade option when creating or modifying a DB cluster. Doing
so means that your DB cluster is automatically upgraded after Aurora PostgreSQL tests and approves
the new version. For more details, see Automatic minor version upgrades for PostgreSQL (p. 1701). For
information about manually performing a minor version upgrade, see Manually upgrading the Aurora
PostgreSQL engine (p. 1699).

Aurora DB clusters that are configured as logical replication publishers or subscribers can't undergo a
major version upgrade. Before upgrading, you need to stop replication and drop any logical slots. For
more information, see Stopping logical replication (p. 1454).

For how to determine valid upgrade targets, see Determining which engine version to upgrade
to (p. 1696).

Topics
• Overview of upgrading Aurora PostgreSQL (p. 1695)
• Determining which engine version to upgrade to (p. 1696)
• How to perform a major version upgrade (p. 1696)
• Manually upgrading the Aurora PostgreSQL engine (p. 1699)
• In-place major upgrades for global databases (p. 1701)
• Automatic minor version upgrades for PostgreSQL (p. 1701)
• Upgrading PostgreSQL extensions (p. 1703)

Overview of upgrading Aurora PostgreSQL
Major version upgrades can contain database changes that are not backward-compatible with previous
versions of the database. This functionality can cause your existing applications to stop working
correctly. As a result, Amazon Aurora doesn't apply major version upgrades automatically. To perform a
major version upgrade, you modify your DB cluster manually.

To safely upgrade your DB instances, Aurora PostgreSQL uses the pg_upgrade utility described in the
PostgreSQL documentation. After the writer upgrade completes, each reader instance experiences a brief
outage while it's upgraded to the new major version automatically.

1695

https://www.postgresql.org/docs/current/pgupgrade.html

Amazon Aurora User Guide for Aurora
Upgrading the PostgreSQL DB engine

Aurora PostgreSQL takes a DB cluster snapshot before a major version upgrade begins. It doesn't take a
DB cluster snapshot before a minor version upgrade.

If you want to return to a previous version after a major version upgrade is complete, you can restore
the DB cluster from this snapshot. You can also restore the DB cluster to a specific point in time before
either a major or minor version upgrade started. For more information, see Restoring from a DB cluster
snapshot (p. 497) or Restoring a DB cluster to a specified time (p. 537).

During the major version upgrade process, a cloned volume is allocated. If the upgrade fails for some
reason, such as due to a schema incompatibility, Aurora PostgreSQL uses this clone to roll back the
upgrade. Note, when more than 15 clones of a source volume are allocated, subsequent clones become
full copies and will take longer. This can cause the upgrade process to take longer as well. If Aurora
PostgreSQL rolls back the upgrade, be aware of the following:

• You may see billing entries and metrics for both the original volume and the cloned volume allocated
during the upgrade. Aurora PostgreSQL will clean up the extra volume after the cluster backup
retention window is beyond the time of the upgrade.

• The next cross region snapshot copy from this cluster will be a full copy instead of an incremental
copy.

Determining which engine version to upgrade to

To determine which major engine version that you can upgrade your database to, use the describe-
db-engine-versions CLI command. If you can't do a major version upgrade. You first upgrade to a
minor version that has a major version upgrade path.

For example, the following command displays the major engine versions available for upgrading a DB
cluster currently running the Aurora PostgreSQL engine version 10.11.

Example

For Linux, macOS, or Unix:

aws rds describe-db-engine-versions \
 --engine aurora-postgresql \
 --engine-version 10.11 \
 --query 'DBEngineVersions[].ValidUpgradeTarget[?IsMajorVersionUpgrade == `true`].
{EngineVersion:EngineVersion}' \
 --output text

For Windows:

aws rds describe-db-engine-versions ^
 --engine aurora-postgresql ^
 --engine-version 10.11 ^
 --query "DBEngineVersions[].ValidUpgradeTarget[?IsMajorVersionUpgrade == `true`].
{EngineVersion:EngineVersion}" ^
 --output text

How to perform a major version upgrade

Major version upgrades can contain database changes that are not backward-compatible with previous
versions of the database. This functionality can cause your existing applications to stop working
correctly. As a result, Amazon Aurora doesn't apply major version upgrades automatically. To perform a
major version upgrade, you modify your DB cluster manually.

1696

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html

Amazon Aurora User Guide for Aurora
Upgrading the PostgreSQL DB engine

The following Aurora PostgreSQL major version upgrades are available for Graviton2-based instances.

Current source version Major upgrade targets

9.6.9 and higher minor versions 10.11 or higher minor versions

10.7 and higher minor versions 11.7 or higher minor versions

11.7 and higher minor versions 12.4 or higher minor versions

12.4 and higher minor versions 13.3 or higher minor versions

The following Aurora PostgreSQL major version upgrades are available for Intel-based instances.

Current source version Major upgrade targets

9.6.9 and higher minor versions 10.11 or higher minor versions

10.7 and higher minor versions 11.7 or higher minor versions

11.7 and higher minor versions 12.4 or higher minor versions

12.7 and higher minor versions 13.3 or higher minor versions

Before applying an upgrade to your production DB clusters, make sure that you thoroughly test any
upgrade to verify that your applications work correctly.

We recommend the following process when upgrading an Aurora PostgreSQL DB cluster:

1. Have a version-compatible parameter group ready.

If you are using a custom DB instance or DB cluster parameter group, you have two options:
• Specify the default DB instance, DB cluster parameter group, or both for the new DB engine version.
• Create your own custom parameter group for the new DB engine version.

If you associate a new DB instance or DB cluster parameter group as a part of the upgrade request,
make sure to reboot the database after the upgrade completes to apply the parameters. If a DB
instance needs to be rebooted to apply the parameter group changes, the instance's parameter group
status shows pending-reboot. You can view an instance's parameter group status in the console or
by using a CLI command such as describe-db-instances or describe-db-clusters.

2. Check for unsupported usage:
• Commit or roll back all open prepared transactions before attempting an upgrade. You can use the

following query to verify that there are no open prepared transactions on your instance.

SELECT count(*) FROM pg_catalog.pg_prepared_xacts;

• Remove all uses of the reg* data types before attempting an upgrade. Except for regtype
and regclass, you can't upgrade the reg* data types. The pg_upgrade utility can't persist this
data type, which is used by Amazon Aurora to do the upgrade. For more information about the
pg_upgrade utility, see the PostgreSQL documentation.

To verify that there are no uses of unsupported reg* data types, use the following query for each
database.

SELECT count(*) FROM pg_catalog.pg_class c, pg_catalog.pg_namespace n,
 pg_catalog.pg_attribute a

1697

https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-instances.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html
https://www.postgresql.org/docs/current/pgupgrade.html

Amazon Aurora User Guide for Aurora
Upgrading the PostgreSQL DB engine

 WHERE c.oid = a.attrelid
 AND NOT a.attisdropped
 AND a.atttypid IN ('pg_catalog.regproc'::pg_catalog.regtype,
 'pg_catalog.regprocedure'::pg_catalog.regtype,
 'pg_catalog.regoper'::pg_catalog.regtype,
 'pg_catalog.regoperator'::pg_catalog.regtype,
 'pg_catalog.regconfig'::pg_catalog.regtype,
 'pg_catalog.regdictionary'::pg_catalog.regtype)
 AND c.relnamespace = n.oid
 AND n.nspname NOT IN ('pg_catalog', 'information_schema');

3. Perform a backup.

The upgrade process creates a DB cluster snapshot of your DB cluster during upgrading. If you also
want to do a manual backup before the upgrade process, see Creating a DB cluster snapshot (p. 495)
for more information.

4. Upgrade certain extensions to the latest available version before performing the major version
upgrade. The extensions to update include the following:

• pgRouting

• postgis_raster

• postgis_tiger_geocoder

• postgis_topology

• address_standardizer

• address_standardizer_data_us

Run the following command for each extension that you are using.

ALTER EXTENSION PostgreSQL-extension UPDATE TO 'new-version'

For more information, see Upgrading PostgreSQL extensions (p. 1703).

5. If you're upgrading to version 11.x, drop the extensions that it doesn't support before performing the
major version upgrade. The extensions to drop include:

• chkpass

• tsearch2

6. Drop unknown data types, depending on your target version.

PostgreSQL version 10 doesn't support the unknown data type. If a version 9.6 database uses the
unknown data type, an upgrade to version 10 shows an error message such as the following.

Database instance is in a state that cannot be upgraded: PreUpgrade checks failed:
The instance could not be upgraded because the 'unknown' data type is used in user
 tables.
Please remove all usages of the 'unknown' data type and try again."

To find the unknown data type in your database so that you can remove such columns or change them
to supported data types, use the following SQL code for each database.

SELECT n.nspname, c.relname, a.attname
 FROM pg_catalog.pg_class c,
 pg_catalog.pg_namespace n,
 pg_catalog.pg_attribute a
 WHERE c.oid = a.attrelid AND NOT a.attisdropped AND
 a.atttypid = 'pg_catalog.unknown'::pg_catalog.regtype AND
 c.relkind IN ('r','m','c') AND
 c.relnamespace = n.oid AND
 n.nspname !~ '^pg_temp_' AND

1698

Amazon Aurora User Guide for Aurora
Upgrading the PostgreSQL DB engine

 n.nspname !~ '^pg_toast_temp_' AND n.nspname NOT IN ('pg_catalog',
 'information_schema');

7. Perform a dry run upgrade.

We highly recommend testing a major version upgrade on a duplicate of your production database
before trying the upgrade on your production database. To create a duplicate test instance, you can
either restore your database from a recent snapshot or clone your database. For more information, see
Restoring from a snapshot (p. 498) or Cloning a volume for an Aurora DB cluster (p. 402).

For more information, see Manually upgrading the Aurora PostgreSQL engine (p. 1699).
8. Upgrade your production instance.

When your dry-run major version upgrade is successful, you should be able to upgrade your
production database with confidence. For more information, see Manually upgrading the Aurora
PostgreSQL engine (p. 1699).

Note
During the upgrade process, you can't do a point-in-time restore of your cluster. Aurora
PostgreSQL takes a DB cluster snapshot during the upgrade process if your backup retention
period is greater than 0. You can perform a point-in-time restore to times before the upgrade
began and after the automatic snapshot of your instance has completed.

For information about an upgrade in progress, you can use Amazon RDS to view two
logs that the pg_upgrade utility produces. These are pg_upgrade_internal.log and
pg_upgrade_server.log. Amazon Aurora appends a timestamp to the file name for these logs. You
can view these logs as you can any other log. For more information, see Monitoring Amazon Aurora
log files (p. 716).

9. Upgrade PostgreSQL extensions. The PostgreSQL upgrade process doesn't upgrade any PostgreSQL
extensions. For more information, see Upgrading PostgreSQL extensions (p. 1703).

After you complete a major version upgrade, we recommend the following:

• Run the ANALYZE operation to refresh the pg_statistic table.
• If you upgraded to PostgreSQL version 10, run REINDEX on any hash indexes you have. Hash indexes

were changed in version 10 and must be rebuilt. To locate invalid hash indexes, run the following SQL
for each database that contains hash indexes.

SELECT idx.indrelid::regclass AS table_name,
 idx.indexrelid::regclass AS index_name
FROM pg_catalog.pg_index idx
 JOIN pg_catalog.pg_class cls ON cls.oid = idx.indexrelid
 JOIN pg_catalog.pg_am am ON am.oid = cls.relam
WHERE am.amname = 'hash'
AND NOT idx.indisvalid;

• Consider testing your application on the upgraded database with a similar workload to verify that
everything works as expected. After the upgrade is verified, you can delete this test instance.

Manually upgrading the Aurora PostgreSQL engine
To perform an upgrade of an Aurora PostgreSQL DB cluster, use the following instructions for the AWS
Management Console, the AWS CLI, or the RDS API.

Note
If you're performing a minor upgrade on an Aurora global database, upgrade all of the
secondary clusters before you upgrade the primary cluster.

1699

Amazon Aurora User Guide for Aurora
Upgrading the PostgreSQL DB engine

Console

To upgrade the engine version of a DB cluster by using the console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB cluster that you want to upgrade.
3. Choose Modify. The Modify DB cluster page appears.
4. For Engine version, choose the new version.
5. Choose Continue and check the summary of modifications.
6. To apply the changes immediately, choose Apply immediately. Choosing this option can cause an

outage in some cases. For more information, see Modifying an Amazon Aurora DB cluster (p. 372).
7. On the confirmation page, review your changes. If they are correct, choose Modify Cluster to save

your changes.

Or choose Back to edit your changes or Cancel to cancel your changes.

AWS CLI

To upgrade the engine version of a DB cluster, use the CLI modify-db-cluster command. Specify the
following parameters:

• --db-cluster-identifier – the name of the DB cluster.
• --engine-version – the version number of the database engine to upgrade to. For information

about valid engine versions, use the AWS CLI describe-db-engine-versions command.
• --allow-major-version-upgrade – a required flag when the --engine-version parameter is a

different major version than the DB cluster's current major version.
• --no-apply-immediately – apply changes during the next maintenance window. To apply changes

immediately, use --apply-immediately.

Example

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
 --db-cluster-identifier mydbcluster \
 --engine-version new_version \
 --allow-major-version-upgrade \
 --no-apply-immediately

For Windows:

aws rds modify-db-cluster ^
 --db-cluster-identifier mydbcluster ^
 --engine-version new_version ^
 --allow-major-version-upgrade ^
 --no-apply-immediately

RDS API

To upgrade the engine version of a DB cluster, use the ModifyDBCluster operation. Specify the following
parameters:

• DBClusterIdentifier – the name of the DB cluster, for example mydbcluster.

1700

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-engine-versions.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html

Amazon Aurora User Guide for Aurora
Upgrading the PostgreSQL DB engine

• EngineVersion – the version number of the database engine to upgrade to. For information about
valid engine versions, use the DescribeDBEngineVersions operation.

• AllowMajorVersionUpgrade – a required flag when the EngineVersion parameter is a different
major version than the DB cluster's current major version.

• ApplyImmediately – whether to apply changes immediately or during the next maintenance
window. To apply changes immediately, set the value to true. To apply changes during the next
maintenance window, set the value to false.

In-place major upgrades for global databases
For an Aurora global database, you upgrade the global database cluster. Aurora automatically upgrades
all of the clusters at the same time and makes sure that they all run the same engine version. This
requirement is because any changes to system tables, data file formats, and so on, are automatically
replicated to all the secondary clusters.

Follow the instructions in How to perform a major version upgrade (p. 1696). When you specify what to
upgrade, make sure to choose the global database cluster instead of one of the clusters it contains.

If you use the AWS Management Console, choose the item with the role Global database.

If you use the AWS CLI or RDS API, start the upgrade process by calling the modify-global-cluster
command or ModifyGlobalCluster operation instead of modify-db-cluster or ModifyDBCluster.

Note
You can't perform a major version upgrade of the Aurora DB engine if the recovery point
objective (RPO) feature is turned on. Before you upgrade the DB engine, make sure that this
feature is turned off. For more information about the RPO feature, see Managing RPOs for
Aurora PostgreSQL–based global databases (p. 272).

Automatic minor version upgrades for PostgreSQL
For each PostgreSQL major version, one minor version is designated by Amazon Aurora as the automatic
upgrade version. After a minor version has been tested and approved by Amazon Aurora, the minor
version upgrade occurs automatically during your maintenance window. Aurora doesn't automatically
set newer released minor versions as the automatic upgrade version. Before Aurora designates a newer
automatic upgrade version, several criteria are considered, such as the following:

• Known security issues
• Bugs in the PostgreSQL community version

1701

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBEngineVersions.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-global-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyGlobalCluster.html

Amazon Aurora User Guide for Aurora
Upgrading the PostgreSQL DB engine

• Overall fleet stability since the minor version was released

You can use the following AWS CLI command and script to determine the current automatic upgrade
minor versions.

aws rds describe-db-engine-versions --engine aurora-postgresql | grep -A 1 AutoUpgrade|
 grep -A 2 true |grep PostgreSQL | sort --unique | sed -e 's/"Description": "//g'

If no results are returned, there is no automatic minor version upgrade available and scheduled.

A PostgreSQL DB instance is automatically upgraded during your maintenance window if the following
criteria are met:

• The DB cluster has the Auto minor version upgrade option turned on.
• The DB cluster is running a minor DB engine version that is less than the current automatic upgrade

minor version.

If any of the DB instances in a cluster don't have the auto minor version upgrade setting turned on,
Aurora doesn't automatically upgrade any of the instances in that cluster. Make sure to keep that setting
consistent for all the DB instances in the cluster.

Turning on automatic minor version upgrades

To turn on automatic minor version upgrades for an Aurora PostgreSQL DB cluster, use the following
instructions for the AWS Management Console, the AWS CLI, or the RDS API.

Console

Follow the general procedure to modify the DB instances in your cluster, as described in Modify a DB
instance in a DB cluster (p. 373). Repeat this procedure for each DB instance in your cluster.

To use the console to implement automatic minor version upgrades for your cluster

1. Sign in to the Amazon RDS console, choose Databases, and find the DB cluster where you want to
turn automatic minor version upgrade on or off.

2. Choose each DB instance in the DB cluster that you want to modify. Apply the following change for
each DB instance in sequence:

a. Choose Modify.
b. In the Maintenance section, select the Enable auto minor version upgrade box.
c. Choose Continue and check the summary of modifications.
d. (Optional) Choose Apply immediately to apply the changes immediately.
e. On the confirmation page, choose Modify DB instance.

AWS CLI

To use the CLI to implement minor version upgrades, use the modify-db-instance command.

When you call the modify-db-instance AWS CLI command, specify the name of your DB instance for the
--db-instance-identifier option and true for the --auto-minor-version-upgrade option.
Optionally, specify the --apply-immediately option to immediately turn this setting on for your DB
instance. Run a separate modify-db-instance command for each DB instance in the cluster.

You can use a CLI command such as the following to check the status of Enable auto minor version
upgrade for all of the DB instances in your Aurora PostgreSQL clusters.

1702

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Aurora User Guide for Aurora
Upgrading the PostgreSQL DB engine

aws rds describe-db-instances \
 --query '*[].
{DBClusterIdentifier:DBClusterIdentifier,DBInstanceIdentifier:DBInstanceIdentifier,AutoMinorVersionUpgrade:AutoMinorVersionUpgrade}'

That command produces output similar to the following.

[
 {
 "DBInstanceIdentifier": "db-t2-medium-instance",
 "DBClusterIdentifier": "cluster-57-2020-06-03-6411",
 "AutoMinorVersionUpgrade": true
 },
 {
 "DBInstanceIdentifier": "db-t2-small-original-size",
 "DBClusterIdentifier": "cluster-57-2020-06-03-6411",
 "AutoMinorVersionUpgrade": false
 },
 {
 "DBInstanceIdentifier": "instance-2020-05-01-2332",
 "DBClusterIdentifier": "cluster-57-2020-05-01-4615",
 "AutoMinorVersionUpgrade": true
 },
... output omitted ...

RDS API

To use the API to implement minor version upgrades, use the ModifyDBInstance operation.

Call the ModifyDBInstance API operation, and specify the name of your DB cluster for the
DBInstanceIdentifier parameter and true for the AutoMinorVersionUpgrade parameter.
Optionally, set the ApplyImmediately parameter to true to immediately turn this setting on for your
DB instance. Call a separate ModifyDBInstance operation for each DB instance in the cluster.

Upgrading PostgreSQL extensions
A PostgreSQL engine upgrade doesn't automatically upgrade any PostgreSQL extensions. Installing
PostgreSQL extensions requires rds_superuser privileges, and the permissions are typically delegated
to only those users (roles) that use the extension. This means that upgrading all extensions in an
Aurora PostgreSQL DB instance after a database engine upgrade might involve many different
users (roles). Keep this in mind also if you want to automate the upgrade process by using scripts.
For more information about PostgreSQL privileges and roles, see Security with Amazon Aurora
PostgreSQL (p. 1297).

Note
If you are running the PostGIS extension in your Amazon RDS PostgreSQL DB instance, see
PostGIS_Extensions_Upgrade in the PostGIS documentation to upgrade the extension.

To update an extension after an engine upgrade, use the ALTER EXTENSION UPDATE command.

ALTER EXTENSION extension_name UPDATE TO 'new_version';

To list your currently installed extensions, use the PostgreSQL pg_extension catalog in the following
command.

SELECT * FROM pg_extension;

1703

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html
https://postgis.net/docs/PostGIS_Extensions_Upgrade.html
https://postgis.net/docs/PostGIS_Extensions_Upgrade.html
https://www.postgresql.org/docs/current/catalog-pg-extension.html

Amazon Aurora User Guide for Aurora
Using a long-term support (LTS) release

To view a list of the specific extension versions that are available for your installation, use the
PostgreSQL pg_available_extension_versions view in the following command.

SELECT * FROM pg_available_extension_versions;

Aurora PostgreSQL long-term support (LTS) releases
Each new Aurora PostgreSQL version remains available for a certain amount of time for you to use
when you create or upgrade a DB cluster. After this period, you must upgrade any clusters that use
that version. You can manually upgrade your cluster before the support period ends, or Aurora can
automatically upgrade it for you when its Aurora PostgreSQL version is no longer supported.

Aurora designates certain Aurora PostgreSQL versions as long-term support (LTS) releases. Database
clusters that use LTS releases can stay on the same version longer and undergo fewer upgrade cycles
than clusters that use non-LTS releases. LTS minor versions include only bug fixes (through patch
versions); an LTS version doesn't include new features released after its introduction.

Once a year, DB clusters running on an LTS minor version are patched to the latest patch version of the
LTS release. We do this patching to help ensure that you benefit from cumulative security and stability
fixes. We might patch an LTS minor version more frequently if there are critical fixes, such as for security,
that need to be applied.

Note
To remain on an LTS minor version for the duration of its lifecycle, make sure to turn off Auto
minor version upgrade for your DB instances. To avoid automatically upgrading your DB cluster
from the LTS minor version, set Auto minor version upgrade to No on all DB instances in your
Aurora cluster.

We recommend that you upgrade to the latest release, instead of using the LTS release, for most of
your Aurora PostgreSQL clusters. Doing so takes advantage of Aurora as a managed service and gives
you access to the latest features and bug fixes. LTS releases are intended for clusters with the following
characteristics:

• You can't afford downtime on your Aurora PostgreSQL application for upgrades outside of rare
occurrences for critical patches.

• The testing cycle for the cluster and associated applications takes a long time for each update to the
Aurora PostgreSQL database engine.

• The database version for your Aurora PostgreSQL cluster has all the DB engine features and bug fixes
that your application needs.

The current LTS release for Aurora PostgreSQL is release 3.4 (PostgreSQL 11.9). It was released on
December 11, 2020. For more information about this version, see PostgreSQL 11.9, Aurora PostgreSQL
release 3.4 (p. 1628).

1704

https://www.postgresql.org/docs/current/view-pg-available-extension-versions.html

Amazon Aurora User Guide for Aurora
Basic operational guidelines for Amazon Aurora

Best practices with Amazon Aurora
Following, you can find information on general best practices and options for using or migrating data to
an Amazon Aurora DB cluster.

Some of the best practices for Amazon Aurora are specific to a particular database engine. For more
information about Aurora best practices specific to a database engine, see the following.

Database engine Best practices

Amazon Aurora MySQL See Best practices with Amazon Aurora MySQL (p. 1054)

Amazon Aurora PostgreSQL See Best practices with Amazon Aurora PostgreSQL (p. 1440)

Note
For common recommendations for Aurora, see Viewing Amazon Aurora
recommendations (p. 558).

Topics
• Basic operational guidelines for Amazon Aurora (p. 1705)
• DB instance RAM recommendations (p. 1705)
• Monitoring Amazon Aurora (p. 1706)
• Working with DB parameter groups and DB cluster parameter groups (p. 1706)
• Amazon Aurora best practices presentation video (p. 1706)

Basic operational guidelines for Amazon Aurora
The following are basic operational guidelines that everyone should follow when working with Amazon
Aurora. The Amazon RDS Service Level Agreement requires that you follow these guidelines:

• Monitor your memory, CPU, and storage usage. You can set up Amazon CloudWatch to notify you
when usage patterns change or when you approach the capacity of your deployment. This way, you
can maintain system performance and availability.

• If your client application is caching the Domain Name Service (DNS) data of your DB instances, set
a time-to-live (TTL) value of less than 30 seconds. The underlying IP address of a DB instance can
change after a failover. Thus, caching the DNS data for an extended time can lead to connection
failures if your application tries to connect to an IP address that no longer is in service. Aurora DB
clusters with multiple read replicas can experience connection failures also when connections use the
reader endpoint and one of the read replica instances is in maintenance or is deleted.

• Test failover for your DB cluster to understand how long the process takes for your use case. Testing
failover can help you ensure that the application that accesses your DB cluster can automatically
connect to the new DB cluster after failover.

DB instance RAM recommendations
To optimize performance, allocate enough RAM so that your working set resides almost completely in
memory. To determine whether your working set is almost all in memory, examine the following metrics
in Amazon CloudWatch:

1705

Amazon Aurora User Guide for Aurora
Monitoring Amazon Aurora

• VolumeReadIOPS – This metric measures the average number of read I/O operations from a cluster
volume, reported at 5-minute intervals. The value of VolumeReadIOPS should be small and stable.
In some cases, you might find your read I/O is spiking or is higher than usual. If so, investigate the DB
instances in your DB cluster to see which DB instances are causing the increased I/O.

Tip
If your Aurora MySQL cluster uses parallel query, you might see an increase in
VolumeReadIOPS values. Parallel queries don't use the buffer pool. Thus, although the
queries are fast, this optimized processing can result in an increase in read operations and
associated charges.

• BufferCacheHitRatio – This metric measures the percentage of requests that are served by the
buffer cache of a DB instance in your DB cluster. This metric gives you an insight into the amount of
data that is being served from memory. If the hit ratio is low, it's a good indication that your queries on
this DB instance are going to disk more often than not. In this case, investigate your workload to see
which queries are causing this behavior.

If, after investigating your workload, you find that you need more memory, consider scaling up the
DB instance class to a class with more RAM. After doing so, you can investigate the metrics discussed
preceding and continue to scale up as necessary. If your Aurora cluster is larger than 40 TB, don't use
db.t2 or db.t3 instance classes. For more information about monitoring a DB cluster, see Viewing metrics
in the Amazon RDS console (p. 563).

Monitoring Amazon Aurora
Amazon Aurora provides a variety of Amazon CloudWatch metrics that you can monitor to determine
the health and performance of your Aurora DB cluster. You can use various tools, such as the AWS
Management Console, AWS CLI, and CloudWatch API, to view Aurora metrics. For more information, see
Monitoring metrics in an Amazon Aurora cluster (p. 541).

Working with DB parameter groups and DB cluster
parameter groups

We recommend that you try out DB parameter group and DB cluster parameter group changes on a test
DB cluster before applying parameter group changes to your production DB cluster. Improperly setting
DB engine parameters can have unintended adverse effects, including degraded performance and system
instability.

Always use caution when modifying DB engine parameters, and back up your DB cluster before
modifying a DB parameter group. For information about backing up your DB cluster, see Backing up and
restoring an Amazon Aurora DB cluster (p. 490).

Amazon Aurora best practices presentation video
The 2016 AWS Summit conference in Chicago included a presentation on best practices for creating
and configuring an Amazon Aurora DB cluster to be more secure and highly available. For a video of the
presentation, see Amazon Aurora best practices on the AWS YouTube channel.

1706

https://www.youtube.com/embed/DZFPYzp1JJA

Amazon Aurora User Guide for Aurora
Overview of an Aurora proof of concept

Performing a proof of concept with
Amazon Aurora

Following, you can find an explanation of how to set up and run a proof of concept for Aurora. A proof
of concept is an investigation that you do to see if Aurora is a good fit with your application. The proof of
concept can help you understand Aurora features in the context of your own database applications and
how Aurora compares with your current database environment. It can also show what level of effort you
need to move data, port SQL code, tune performance, and adapt your current management procedures.

In this topic, you can find an overview and a step-by-step outline of the high-level procedures and
decisions involved in running a proof of concept, listed following. For detailed instructions, you can
follow links to the full documentation for specific subjects.

Overview of an Aurora proof of concept
When you conduct a proof of concept for Amazon Aurora, you learn what it takes to port your existing
data and SQL applications to Aurora. You exercise the important aspects of Aurora at scale, using a
volume of data and activity that's representative of your production environment. The objective is to feel
confident that the strengths of Aurora match up well with the challenges that cause you to outgrow your
previous database infrastructure. At the end of a proof of concept, you have a solid plan to do larger-
scale performance benchmarking and application testing. At this point, you understand the biggest work
items on your way to a production deployment.

The following advice about best practices can help you avoid common mistakes that cause problems
during benchmarking. However, this topic doesn't cover the step-by-step process of performing
benchmarks and doing performance tuning. Those procedures vary depending on your workload and
the Aurora features that you use. For detailed information, consult performance-related documentation
such as Managing performance and scaling for Aurora DB clusters (p. 396), Amazon Aurora MySQL
performance enhancements (p. 767), Managing Amazon Aurora PostgreSQL (p. 1377), and Monitoring
DB load with Performance Insights on Amazon Aurora (p. 594).

The information in this topic applies mainly to applications where your organization writes the code
and designs the schema and that support the MySQL and PostgreSQL open-source database engines. If
you're testing a commercial application or code generated by an application framework, you might not
have the flexibility to apply all of the guidelines. In such cases, check with your AWS representative to
see if there are Aurora best practices or case studies for your type of application.

1. Identify your objectives
When you evaluate Aurora as part of a proof of concept, you choose what measurements to make and
how to evaluate the success of the exercise.

You must ensure that all of the functionality of your application is compatible with Aurora. Because
Aurora major versions are wire-compatible with corresponding major versions of MySQL and PostgreSQL,
most applications developed for those engines are also compatible with Aurora. However, you must still
validate compatibility on a per-application basis.

1707

Amazon Aurora User Guide for Aurora
2. Understand your workload characteristics

For example, some of the configuration choices that you make when you set up an Aurora cluster
influence whether you can or should use particular database features. You might start with the most
general-purpose kind of Aurora cluster, known as provisioned. You might then decide if a specialized
configuration such as serverless or parallel query offers benefits for your workload.

Use the following questions to help identify and quantify your objectives:

• Does Aurora support all functional use cases of your workload?
• What dataset size or load level do you want? Can you scale to that level?
• What are your specific query throughput or latency requirements? Can you reach them?
• What is the minimum acceptable amount of planned or unplanned downtime for your workload? Can

you achieve it?
• What are the necessary metrics for operational efficiency? Can you accurately monitor them?
• Does Aurora support your specific business goals, such as cost reduction, increase in deployment, or

provisioning speed? Do you have a way to quantify these goals?
• Can you meet all security and compliance requirements for your workload?

Take some time to build knowledge about Aurora database engines and platform capabilities, and
review the service documentation. Take note of all the features that can help you achieve your desired
outcomes. One of these might be workload consolidation, described in the AWS Database Blog post
How to plan and optimize Amazon Aurora with MySQL compatibility for consolidated workloads.
Another might be demand-based scaling, described in Using Amazon Aurora Auto Scaling with Aurora
replicas (p. 427) in the Amazon Aurora User Guide. Others might be performance gains or simplified
database operations.

2. Understand your workload characteristics
Evaluate Aurora in the context of your intended use case. Aurora is a good choice for online transaction
processing (OLTP) workloads. You can also run reports on the cluster that holds the real-time OLTP data
without provisioning a separate data warehouse cluster. You can recognize if your use case falls into
these categories by checking for the following characteristics:

• High concurrency, with dozens, hundreds, or thousands of simultaneous clients.
• Large volume of low-latency queries (milliseconds to seconds).
• Short, real-time transactions.
• Highly selective query patterns, with index-based lookups.
• For HTAP, analytical queries that can take advantage of Aurora parallel query.

One of the key factors affecting your database choices is the velocity of the data. High velocity involves
data being inserted and updated very frequently. Such a system might have thousands of connections
and hundreds of thousands of simultaneous queries reading from and writing to a database. Queries
in high-velocity systems usually affect a relatively small number of rows, and typically access multiple
columns in the same row.

Aurora is designed to handle high-velocity data. Depending on the workload, an Aurora cluster with a
single r4.16xlarge DB instance can process more than 600,000 SELECT statements per second. Again
depending on workload, such a cluster can process 200,000 INSERT, UPDATE, and DELETE statements
per second. Aurora is a row store database and is ideally suited for high-volume, high-throughput, and
highly parallelized OLTP workloads.

Aurora can also run reporting queries on the same cluster that handles the OLTP workload. Aurora
supports up to 15 replicas (p. 70), each of which is on average within 10–20 milliseconds of the primary

1708

http://aws.amazon.com/blogs/database/planning-and-optimizing-amazon-aurora-with-mysql-compatibility-for-consolidated-workloads/

Amazon Aurora User Guide for Aurora
3. Practice with the console or CLI

instance. Analysts can query OLTP data in real time without copying the data to a separate data
warehouse cluster. With Aurora clusters using the parallel query feature, you can offload much of the
processing, filtering, and aggregation work to the massively distributed Aurora storage subsystem.

Use this planning phase to familiarize yourself with the capabilities of Aurora, other AWS services, the
AWS Management Console, and the AWS CLI. Also, check how these work with the other tooling that you
plan to use in the proof of concept.

3. Practice with the AWS Management Console or
AWS CLI

As a next step, practice with the AWS Management Console or the AWS CLI, to become familiar with
these tools and with Aurora.

Practice with the AWS Management Console
The following initial activities with Aurora database clusters are mainly so you can familiarize yourself
with the AWS Management Console environment and practice setting up and modifying Aurora clusters.
If you use the MySQL-compatible and PostgreSQL-compatible database engines with Amazon RDS, you
can build on that knowledge when you use Aurora.

By taking advantage of the Aurora shared storage model and features such as replication and snapshots,
you can treat entire database clusters as another kind of object that you freely manipulate. You can set
up, tear down, and change the capacity of Aurora clusters frequently during the proof of concept. You
aren't locked into early choices about capacity, database settings, and physical data layout.

To get started, set up an empty Aurora cluster. Choose the provisioned capacity type and regional
location for your initial experiments.

Connect to that cluster using a client program such as a SQL command-line application. Initially, you
connect using the cluster endpoint. You connect to that endpoint to perform any write operations, such
as data definition language (DDL) statements and extract, transform, load (ETL) processes. Later in the
proof of concept, you connect query-intensive sessions using the reader endpoint, which distributes the
query workload among multiple DB instances in the cluster.

Scale the cluster out by adding more Aurora Replicas. For those procedures, see Replication with Amazon
Aurora (p. 70). Scale the DB instances up or down by changing the AWS instance class. Understand
how Aurora simplifies these kinds of operations, so that if your initial estimates for system capacity are
inaccurate, you can adjust later without starting over.

Create a snapshot and restore it to a different cluster.

Examine cluster metrics to see activity over time, and how the metrics apply to the DB instances in the
cluster.

It's useful to become familiar with how to do these things through the AWS Management Console in the
beginning. After you understand what you can do with Aurora, you can progress to automating those
operations using the AWS CLI. In the following sections, you can find more details about the procedures
and best practices for these activities during the proof-of-concept period.

Practice with the AWS CLI
We recommend automating deployment and management procedures, even in a proof-of-concept
setting. To do so, become familiar with the AWS CLI if you're not already. If you use the MySQL-

1709

Amazon Aurora User Guide for Aurora
4. Create your Aurora cluster

compatible and PostgreSQL-compatible database engines with Amazon RDS, you can build on that
knowledge when you use Aurora.

Aurora typically involves groups of DB instances arranged in clusters. Thus, many operations involve
determining which DB instances are associated with a cluster and then performing administrative
operations in a loop for all the instances.

For example, you might automate steps such as creating Aurora clusters, then scaling them up with
larger instance classes or scaling them out with additional DB instances. Doing so helps you to repeat any
stages in your proof of concept and explore what-if scenarios with different kinds or configurations of
Aurora clusters.

Learn the capabilities and limitations of infrastructure deployment tools such as AWS CloudFormation.
You might find activities that you do in a proof-of-concept context aren't suitable for production use. For
example, the AWS CloudFormation behavior for modification is to create a new instance and delete the
current one, including its data. For more details on this behavior, see Update behaviors of stack resources
in the AWS CloudFormation User Guide.

4. Create your Aurora cluster
With Aurora, you can explore what-if scenarios by adding DB instances to the cluster and scaling up the
DB instances to more powerful instance classes. You can also create clusters with different configuration
settings to run the same workload side by side. With Aurora, you have a lot of flexibility to set up, tear
down, and reconfigure DB clusters. Given this, it's helpful to practice these techniques in the early stages
of the proof-of-concept process. For the general procedures to create Aurora clusters, see Creating an
Amazon Aurora DB cluster (p. 125).

Where practical, start with a cluster using the following settings. Skip this step only if you have certain
specific use cases in mind. For example, you might skip this step if your use case requires a specialized
kind of Aurora cluster. Or you might skip it if you need a particular combination of database engine and
version.

• Amazon Aurora.

• MySQL 5.7 compatibility. This combination of database engine and version has wide compatibility with
other Aurora features and substantial customer usage for production applications.

• Turn off Easy create. For the proof of concept, we recommend that you be aware of all the settings
you choose so that you can create identical or slightly different clusters later.

• Regional. The Global setting is for specific high availability scenarios. You can try it out later after your
initial functional and performance experiments.

• One writer, multiple readers. This is the most widely used, general purpose kind of cluster. This setting
persists for the life of the cluster. Thus, if you later do experiments with other kinds of clusters such as
serverless or parallel query, you create other clusters and compare and contrast the results on each.

• Choose the Dev/Test template. This choice isn't significant for your proof-of-concept activities.

• For DB instance class, choose Memory optimized classes and one of the xlarge instance classes. You
can adjust the instance class up or down later.

• Under Multi-AZ Deployment, choose Create an Aurora Replica or Reader node in a different AZ.
Many of the most useful aspects of Aurora involve clusters of multiple DB instances. It makes sense to
always start with at least two DB instances in any new cluster. Using a different Availability Zone for
the second DB instance helps to test different high availability scenarios.

• When you pick names for the DB instances, use a generic naming convention. Don't refer to any cluster
DB instance as the "master" or "writer," because different DB instances assume those roles as needed.
We recommend using something like clustername-az-serialnumber, for example myprodappdb-
a-01. These pieces uniquely identify the DB instance and its placement.

1710

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-update-behaviors.html

Amazon Aurora User Guide for Aurora
5. Set up your schema

• Set the backup retention high for the Aurora cluster. With a long retention period, you can do point-
in-time recovery (PITR) for a period up to 35 days. You can reset your database to a known state after
running tests involving DDL and data manipulation language (DML) statements. You can also recover if
you delete or change data by mistake.

• Turn on additional recovery, logging, and monitoring features at cluster creation. Turn on all the
choices under Backtrack, Performance Insights, Monitoring, and Log exports. With these features
enabled, you can test the suitability of features such as backtracking, Enhanced Monitoring, or
Performance Insights for your workload. You can also easily investigate performance and perform
troubleshooting during the proof of concept.

5. Set up your schema
On the Aurora cluster, set up databases, tables, indexes, foreign keys, and other schema objects for your
application. If you're moving from another MySQL-compatible or PostgreSQL-compatible database
system, expect this stage to be simple and straightforward. You use the same SQL syntax and command
line or other client applications that you're familiar with for your database engine.

To issue SQL statements on your cluster, find its cluster endpoint and supply that value as the
connection parameter to your client application. You can find the cluster endpoint on the Connectivity
tab of the detail page of your cluster. The cluster endpoint is the one labeled Writer. The other endpoint,
labeled Reader, represents a read-only connection that you can supply to end users who run reports or
other read-only queries. For help with any issues around connecting to your cluster, see Connecting to an
Amazon Aurora DB cluster (p. 281).

If you're porting your schema and data from a different database system, expect to make some schema
changes at this point. These schema changes are to match the SQL syntax and capabilities available in
Aurora. You might leave out certain columns, constraints, triggers, or other schema objects at this point.
Doing so can be useful particularly if these objects require rework for Aurora compatibility and aren't
significant for your objectives with the proof of concept.

If you're migrating from a database system with a different underlying engine than Aurora's, consider
using the AWS Schema Conversion Tool (AWS SCT) to simplify the process. For details, see the AWS
Schema Conversion Tool User Guide. For general details about migration and porting activities, see the
Migrating Your Databases to Amazon Aurora AWS whitepaper.

During this stage, you can evaluate whether there are inefficiencies in your schema setup, for example
in your indexing strategy or other table structures such as partitioned tables. Such inefficiencies can
be amplified when you deploy your application on a cluster with multiple DB instances and a heavy
workload. Consider whether you can fine-tune such performance aspects now, or during later activities
such as a full benchmark test.

6. Import your data
During the proof of concept, you bring across the data, or a representative sample, from your former
database system. If practical, set up at least some data in each of your tables. Doing so helps to test
compatibility of all data types and schema features. After you have exercised the basic Aurora features,
scale up the amount of data. By the time you finish the proof of concept, you should test your ETL tools,
queries, and overall workload with a dataset that's big enough to draw accurate conclusions.

You can use several techniques to import either physical or logical backup data to Aurora. For details,
see Migrating data to an Amazon Aurora MySQL DB cluster (p. 802) or Migrating data to Amazon Aurora
with PostgreSQL compatibility (p. 1304) depending on the database engine you're using in the proof of
concept.

1711

https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Welcome.html
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Welcome.html
https://d1.awsstatic.com/whitepapers/RDS/Migrating%20your%20databases%20to%20Amazon%20Aurora.pdf
https://d1.awsstatic.com/whitepapers/RDS/Migrating%20your%20databases%20to%20Amazon%20Aurora.pdf

Amazon Aurora User Guide for Aurora
7. Port your SQL code

Experiment with the ETL tools and technologies that you're considering. See which one best meets
your needs. Consider both throughput and flexibility. For example, some ETL tools perform a one-time
transfer, and others involve ongoing replication from the old system to Aurora.

If you're migrating from a MySQL-compatible system to Aurora MySQL, you can use the native data
transfer tools. The same applies if you're migrating from a PostgreSQL-compatible system to Aurora
PostgreSQL. If you're migrating from a database system that uses a different underlying engine than
Aurora does, you can experiment with the AWS Database Migration Service (AWS DMS). For details about
AWS DMS, see the AWS Database Migration Service User Guide.

For details about migration and porting activities, see the AWS whitepaper Aurora migration handbook.

7. Port your SQL code
Trying out SQL and associated applications requires different levels of effort depending on different
cases. In particular, the level of effort depends on whether you move from a MySQL-compatible or
PostgreSQL-compatible system or another kind.

• If you're moving from RDS for MySQL or RDS for PostgreSQL, the SQL changes are small enough that
you can try the original SQL code with Aurora and manually incorporate needed changes.

• Similarly, if you move from an on-premises database compatible with MySQL or PostgreSQL, you can
try the original SQL code and manually incorporate changes.

• If you're coming from a different commercial database, the required SQL changes are more extensive.
In this case, consider using the AWS SCT.

During this stage, you can evaluate whether there are inefficiencies in your schema setup, for example
in your indexing strategy or other table structures such as partitioned tables. Consider whether you can
fine-tune such performance aspects now, or during later activities such as a full benchmark test.

You can verify the database connection logic in your application. To take advantage of Aurora distributed
processing, you might need to use separate connections for read and write operations, and use
relatively short sessions for query operations. For information about connections, see 9. Connect to
Aurora (p. 1713).

Consider if you had to make compromises and tradeoffs to work around issues in your production
database. Build time into the proof-of-concept schedule to make improvements to your schema design
and queries. To judge if you can achieve easy wins in performance, operating cost, and scalability, try the
original and modified applications side by side on different Aurora clusters.

For details about migration and porting activities, see the AWS whitepaper Aurora migration handbook.

8. Specify configuration settings
You can also review your database configuration parameters as part of the Aurora proof-of-concept
exercise. You might already have MySQL or PostgreSQL configuration settings tuned for performance
and scalability in your current environment. The Aurora storage subsystem is adapted and tuned for a
distributed cloud-based environment with a high-speed storage subsystem. As a result, many former
database engine settings don't apply. We recommend conducting your initial experiments with the
default Aurora configuration settings. Reapply settings from your current environment only if you
encounter performance and scalability bottlenecks. If you're interested, you can look more deeply into
this subject in Introducing the Aurora storage engine on the AWS Database Blog.

Aurora makes it easy to reuse the optimal configuration settings for a particular application or use case.
Instead of editing a separate configuration file for each DB instance, you manage sets of parameters that

1712

https://docs.aws.amazon.com/dms/latest/userguide/
https://d1.awsstatic.com/whitepapers/Migration/amazon-aurora-migration-handbook.pdf
https://d1.awsstatic.com/whitepapers/Migration/amazon-aurora-migration-handbook.pdf
http://aws.amazon.com/blogs/database/introducing-the-aurora-storage-engine/

Amazon Aurora User Guide for Aurora
9. Connect to Aurora

you assign to entire clusters or specific DB instances. For example, the time zone setting applies to all DB
instances in the cluster, and you can adjust the page cache size setting for each DB instance.

You start with one of the default parameter sets, and apply changes to only the parameters that you
need to fine-tune. For details about working with parameter groups, see Amazon Aurora DB cluster
and DB instance parameters (p. 341). For the configuration settings that are or aren't applicable to
Aurora clusters, see Aurora MySQL configuration parameters (p. 1063) or Amazon Aurora PostgreSQL
parameters (p. 1564) depending on your database engine.

9. Connect to Aurora
As you find when doing your initial schema and data setup and running sample queries, you can connect
to different endpoints in an Aurora cluster. The endpoint to use depends on whether the operation is a
read such as SELECT statement, or a write such as a CREATE or INSERT statement. As you increase the
workload on an Aurora cluster and experiment with Aurora features, it's important for your application to
assign each operation to the appropriate endpoint.

By using the cluster endpoint for write operations, you always connect to a DB instance in the cluster
that has read/write capability. By default, only one DB instance in an Aurora cluster has read/write
capability. This DB instance is called the primary instance. If the original primary instance becomes
unavailable, Aurora activates a failover mechanism and a different DB instance takes over as the primary.

Similarly, by directing SELECT statements to the reader endpoint, you spread the work of processing
queries among the DB instances in the cluster. Each reader connection is assigned to a different DB
instance using round-robin DNS resolution. Doing most of the query work on the read-only DB Aurora
Replicas reduces the load on the primary instance, freeing it to handle DDL and DML statements.

Using these endpoints reduces the dependency on hard-coded hostnames, and helps your application to
recover more quickly from DB instance failures.

Note
Aurora also has custom endpoints that you create. Those endpoints usually aren't needed during
a proof of concept.

The Aurora Replicas are subject to a replica lag, even though that lag is usually 10 to 20 milliseconds.
You can monitor the replication lag and decide whether it is within the range of your data consistency
requirements. In some cases, your read queries might require strong read consistency (read-after-write
consistency). In these cases, you can continue using the cluster endpoint for them and not the reader
endpoint.

To take full advantage of Aurora capabilities for distributed parallel execution, you might need to change
the connection logic. Your objective is to avoid sending all read requests to the primary instance. The
read-only Aurora Replicas are standing by, with all the same data, ready to handle SELECT statements.
Code your application logic to use the appropriate endpoint for each kind of operation. Follow these
general guidelines:

• Avoid using a single hard-coded connection string for all database sessions.

• If practical, enclose write operations such as DDL and DML statements in functions in your client
application code. That way, you can make different kinds of operations use specific connections.

• Make separate functions for query operations. Aurora assigns each new connection to the reader
endpoint to a different Aurora Replica to balance the load for read-intensive applications.

• For operations involving sets of queries, close and reopen the connection to the reader endpoint
when each set of related queries is finished. Use connection pooling if that feature is available in your
software stack. Directing queries to different connections helps Aurora to distribute the read workload
among the DB instances in the cluster.

1713

Amazon Aurora User Guide for Aurora
10. Run your workload

For general information about connection management and endpoints for Aurora, see Connecting to
an Amazon Aurora DB cluster (p. 281). For a deep dive on this subject, see Aurora MySQL database
administrator's handbook – Connection management.

10. Run your workload
After the schema, data, and configuration settings are in place, you can begin exercising the cluster by
running your workload. Use a workload in the proof of concept that mirrors the main aspects of your
production workload. We recommend always making decisions about performance using real-world tests
and workloads rather than synthetic benchmarks such as sysbench or TPC-C. Wherever practical, gather
measurements based on your own schema, query patterns, and usage volume.

As much as practical, replicate the actual conditions under which the application will run. For example,
you typically run your application code on Amazon EC2 instances in the same AWS Region and the same
virtual private cloud (VPC) as the Aurora cluster. If your production application runs on multiple EC2
instances spanning multiple Availability Zones, set up your proof-of-concept environment in the same
way. For more information on AWS Regions, see Regions and Availability Zones in the Amazon RDS User
Guide. To learn more about the Amazon VPC service, see What is Amazon VPC? in the Amazon VPC User
Guide.

After you've verified that the basic features of your application work and you can access the data
through Aurora, you can exercise aspects of the Aurora cluster. Some features you might want to try are
concurrent connections with load balancing, concurrent transactions, and automatic replication.

By this point, the data transfer mechanisms should be familiar, and so you can run tests with a larger
proportion of sample data.

This stage is when you can see the effects of changing configuration settings such as memory limits and
connection limits. Revisit the procedures that you explored in 8. Specify configuration settings (p. 1712).

You can also experiment with mechanisms such as creating and restoring snapshots. For example, you
can create clusters with different AWS instance classes, numbers of AWS Replicas, and so on. Then
on each cluster, you can restore the same snapshot containing your schema and all your data. For
the details of that cycle, see Creating a DB cluster snapshot (p. 495) and Restoring from a DB cluster
snapshot (p. 497).

11. Measure performance
Best practices in this area are designed to ensure that all the right tools and processes are set up to
quickly isolate abnormal behaviors during workload operations. They're also set up to see that you can
reliably identify any applicable causes.

You can always see the current state of your cluster, or examine trends over time, by examining the
Monitoring tab. This tab is available from the console detail page for each Aurora cluster or DB instance.
It displays metrics from the Amazon CloudWatch monitoring service in the form of charts. You can filter
the metrics by name, by DB instance, and by time period.

To have more choices on the Monitoring tab, enable Enhanced Monitoring and Performance Insights in
the cluster settings. You can also enable those choices later if you didn't choose them when setting up
the cluster.

To measure performance, you rely mostly on the charts showing activity for the whole Aurora cluster.
You can verify whether the Aurora Replicas have similar load and response times. You can also see how
the work is split up between the read/write primary instance and the read-only Aurora Replicas. If there
is some imbalance between the DB instances or an issue affecting only one DB instance, you can examine
the Monitoring tab for that specific instance.

1714

https://d1.awsstatic.com/whitepapers/RDS/amazon-aurora-mysql-database-administrator-handbook.pdf
https://d1.awsstatic.com/whitepapers/RDS/amazon-aurora-mysql-database-administrator-handbook.pdf
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html

Amazon Aurora User Guide for Aurora
11. Measure performance

After the environment and the actual workload are set up to emulate your production application, you
can measure how well Aurora performs. The most important questions to answer are as follows:

• How many queries per second is Aurora processing? You can examine the Throughput metrics to see
the figures for various kinds of operations.

• How long does it take, on average for Aurora to process a given query? You can examine the Latency
metrics to see the figures for various kinds of operations.

To do so, look at the Monitoring tab for a given Aurora cluster in the Amazon RDS console as illustrated
following.

If you can, establish baseline values for these metrics in your current environment. If that's not practical,
construct a baseline on the Aurora cluster by executing a workload equivalent to your production
application. For example, run your Aurora workload with a similar number of simultaneous users and
queries. Then observe how the values change as you experiment with different instance classes, cluster
size, configuration settings, and so on.

If the throughput numbers are lower than you expect, investigate further the factors affecting database
performance for your workload. Similarly, if the latency numbers are higher than you expect, further
investigate. To do so, monitor the secondary metrics for the DB server (CPU, memory, and so on). You
can see whether the DB instances are close to their limits. You can also see how much extra capacity your
DB instances have to handle more concurrent queries, queries against larger tables, and so on.

Tip
To detect metric values that fall outside the expected ranges, set up CloudWatch alarms.

When evaluating the ideal Aurora cluster size and capacity, you can find the configuration that achieves
peak application performance without over-provisioning resources. One important factor is finding

1715

https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
12. Exercise Aurora high availability

the appropriate size for the DB instances in the Aurora cluster. Start by selecting an instance size that
has similar CPU and memory capacity to your current production environment. Collect throughput and
latency numbers for the workload at that instance size. Then, scale the instance up to the next larger
size. See if the throughput and latency numbers improve. Also scale the instance size down, and see if
the latency and throughput numbers remain the same. Your goal is to get the highest throughput, with
the lowest latency, on the smallest instance possible.

Tip
Size your Aurora clusters and associated DB instances with enough existing capacity to handle
sudden, unpredictable traffic spikes. For mission-critical databases, leave at least 20 percent
spare CPU and memory capacity.

Run performance tests long enough to measure database performance in a warm, steady state. You
might need to run the workload for many minutes or even a few hours before reaching this steady state.
It's normal at the beginning of a run to have some variance. This variance happens because each Aurora
Replica warms up its caches based on the SELECT queries that it handles.

Aurora performs best with transactional workloads involving multiple concurrent users and queries.
To ensure that you're driving enough load for optimal performance, run benchmarks that use
multithreading, or run multiple instances of the performance tests concurrently. Measure performance
with hundreds or even thousands of concurrent client threads. Simulate the number of concurrent
threads that you expect in your production environment. You might also perform additional stress tests
with more threads to measure Aurora scalability.

12. Exercise Aurora high availability
Many of the main Aurora features involve high availability. These features include automatic replication,
automatic failover, automatic backups with point-in-time restore, and ability to add DB instances to the
cluster. The safety and reliability from features like these are important for mission-critical applications.

To evaluate these features requires a certain mindset. In earlier activities, such as performance
measurement, you observe how the system performs when everything works correctly. Testing high
availability requires you to think through worst-case behavior. You must consider various kinds of
failures, even if such conditions are rare. You might intentionally introduce problems to make sure that
the system recovers correctly and quickly.

Tip
For a proof of concept, set up all the DB instances in an Aurora cluster with the same AWS
instance class. Doing so makes it possible to try out Aurora availability features without major
changes to performance and scalability as you take DB instances offline to simulate failures.

We recommend using at least two instances in each Aurora cluster. The DB instances in an Aurora cluster
can span up to three Availability Zones (AZs). Locate each of the first two or three DB instances in a
different AZ. When you begin using larger clusters, spread your DB instances across all of the AZs in
your AWS Region. Doing so increases fault tolerance capability. Even if a problem affects an entire AZ,
Aurora can fail over to a DB instance in a different AZ. If you run a cluster with more than three instances,
distribute the DB instances as evenly as you can over all three AZs.

Tip
The storage for an Aurora cluster is independent from the DB instances. The storage for each
Aurora cluster always spans three AZs.
When you test high availability features, always use DB instances with identical capacity in your
test cluster. Doing so avoids unpredictable changes in performance, latency, and so on whenever
one DB instance takes over for another.

To learn how to simulate failure conditions to test high availability features, see Testing Amazon Aurora
using fault injection queries (p. 850).

1716

Amazon Aurora User Guide for Aurora
13. What to do next

As part of your proof-of-concept exercise, one objective is to find the ideal number of DB instances and
the optimal instance class for those DB instances. Doing so requires balancing the requirements of high
availability and performance.

For Aurora, the more DB instances that you have in a cluster, the greater the benefits for high availability.
Having more DB instances also improves scalability of read-intensive applications. Aurora can distribute
multiple connections for SELECT queries among the read-only Aurora Replicas.

On the other hand, limiting the number of DB instances reduces the replication traffic from the
primary node. The replication traffic consumes network bandwidth, which is another aspect of overall
performance and scalability. Thus, for write-intensive OLTP applications, prefer to have a smaller number
of large DB instances rather than many small DB instances.

In a typical Aurora cluster, one DB instance (the primary instance) handles all the DDL and DML
statements. The other DB instances (the Aurora Replicas) handle only SELECT statements. Although the
DB instances don't do exactly the same amount of work, we recommend using the same instance class
for all the DB instances in the cluster. That way, if a failure happens and Aurora promotes one of the
read-only DB instances to be the new primary instance, the primary instance has the same capacity as
before.

If you need to use DB instances of different capacities in the same cluster, set up failover tiers for the
DB instances. These tiers determine the order in which Aurora Replicas are promoted by the failover
mechanism. Put DB instances that are a lot larger or smaller than the others into a lower failover tier.
Doing so ensures that they are chosen last for promotion.

Exercise the data recovery features of Aurora, such as automatic point-in-time restore, manual snapshots
and restore, and cluster backtracking. If appropriate, copy snapshots to other AWS Regions and restore
into other AWS Regions to mimic DR scenarios.

Investigate your organization's requirements for restore time objective (RTO), restore point objective
(RPO), and geographic redundancy. Most organizations group these items under the broad category of
disaster recovery. Evaluate the Aurora high availability features described in this section in the context of
your disaster recovery process to ensure that your RTO and RPO requirements are met.

13. What to do next
At the end of a successful proof-of-concept process, you confirm that Aurora is a suitable solution for you
based on the anticipated workload. Throughout the preceding process, you've checked how Aurora works
in a realistic operational environment and measured it against your success criteria.

After you get your database environment up and running with Aurora, you can move on to more detailed
evaluation steps, leading to your final migration and production deployment. Depending on your
situation, these other steps might or might not be included in the proof-of-concept process. For details
about migration and porting activities, see the AWS whitepaper Aurora migration handbook.

In another next step, consider the security configurations relevant for your workload and designed
to meet your security requirements in a production environment. Plan what controls to put in place
to protect access to the Aurora cluster master user credentials. Define the roles and responsibilities
of database users to control access to data stored in the Aurora cluster. Take into account database
access requirements for applications, scripts, and third-party tools or services. Explore AWS services and
features such as AWS Secrets Manager and AWS Identity and Access Management (IAM) authentication.

At this point, you should understand the procedures and best practices for running benchmark
tests with Aurora. You might find you need to do additional performance tuning. For details, see
Managing performance and scaling for Aurora DB clusters (p. 396), Amazon Aurora MySQL performance
enhancements (p. 767), Managing Amazon Aurora PostgreSQL (p. 1377), and Monitoring DB load with
Performance Insights on Amazon Aurora (p. 594). If you do additional tuning, make sure that you're

1717

https://d1.awsstatic.com/whitepapers/Migration/amazon-aurora-migration-handbook.pdf

Amazon Aurora User Guide for Aurora
13. What to do next

familiar with the metrics that you gathered during the proof of concept. For a next step, you might
create new clusters with different choices for configuration settings, database engine, and database
version. Or you might create specialized kinds of Aurora clusters to match the needs of specific use cases.

For example, you can explore Aurora parallel query clusters for hybrid transaction/analytical processing
(HTAP) applications. If wide geographic distribution is crucial for disaster recovery or to minimize latency,
you can explore Aurora global databases. If your workload is intermittent or you're using Aurora in a
development/test scenario, you can explore Aurora Serverless clusters.

Your production clusters might also need to handle high volumes of incoming connections. To learn
those techniques, see the AWS whitepaper Aurora MySQL database administrator's handbook –
Connection management.

If, after the proof of concept, you decide that your use case is not suited for Aurora, consider these other
AWS services:

• For purely analytic use cases, workloads benefit from a columnar storage format and other features
more suitable to OLAP workloads. AWS services that address such use cases include the following:
• Amazon Redshift
• Amazon EMR
• Amazon Athena

• Many workloads benefit from a combination of Aurora with one or more of these services. You can
move data between these services by using these:
• AWS Glue
• AWS DMS
• Importing from Amazon S3, as described in the Amazon Aurora User Guide
• Exporting to Amazon S3, as described in the Amazon Aurora User Guide
• Many other popular ETL tools

1718

https://d1.awsstatic.com/whitepapers/RDS/amazon-aurora-mysql-database-administrator-handbook.pdf
https://d1.awsstatic.com/whitepapers/RDS/amazon-aurora-mysql-database-administrator-handbook.pdf
https://docs.aws.amazon.com/redshift/
https://docs.aws.amazon.com/emr/
https://docs.aws.amazon.com/athena/
https://docs.aws.amazon.com/glue/
https://docs.aws.amazon.com/dms/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.LoadFromS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.SaveIntoS3.html

Amazon Aurora User Guide for Aurora

Security in Amazon Aurora
Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes this
as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS services in
the AWS Cloud. AWS also provides you with services that you can use securely. Third-party auditors
regularly test and verify the effectiveness of our security as part of the AWS compliance programs. To
learn about the compliance programs that apply to Amazon Aurora (Aurora), see AWS services in scope
by compliance program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You are also
responsible for other factors including the sensitivity of your data, your organization's requirements,
and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when using
Amazon Aurora. The following topics show you how to configure Amazon Aurora to meet your security
and compliance objectives. You also learn how to use other AWS services that help you monitor and
secure your Amazon Aurora resources.

You can manage access to your Amazon Aurora resources and your databases on a DB cluster. The
method you use to manage access depends on what type of task the user needs to perform with Amazon
Aurora:

• Run your DB cluster in a virtual private cloud (VPC) based on the Amazon VPC service for the greatest
possible network access control. For more information about creating a DB cluster in a VPC, see
Amazon Virtual Private Cloud VPCs and Amazon Aurora (p. 1800).

• Use AWS Identity and Access Management (IAM) policies to assign permissions that determine who
is allowed to manage Amazon Aurora resources. For example, you can use IAM to determine who is
allowed to create, describe, modify, and delete DB clusters, tag resources, or modify security groups.

For information on setting up an IAM user, see Create an IAM user (p. 84).

• Use security groups to control what IP addresses or Amazon EC2 instances can connect to your
databases on a DB cluster. When you first create a DB cluster, its firewall prevents any database access
except through rules specified by an associated security group.

• Use Secure Socket Layer (SSL) or Transport Layer Security (TLS) connections with DB clusters running
the Aurora MySQL or Aurora PostgreSQL. For more information on using SSL/TLS with a DB cluster,
see Using SSL/TLS to encrypt a connection to a DB cluster (p. 1726).

• Use Amazon Aurora encryption to secure your DB clusters and snapshots at rest. Amazon Aurora
encryption uses the industry standard AES-256 encryption algorithm to encrypt your data on
the server that hosts your DB cluster. For more information, see Encrypting Amazon Aurora
resources (p. 1722).

• Use the security features of your DB engine to control who can log in to the databases on a DB cluster.
These features work just as if the database was on your local network.

For information about security with Aurora MySQL, see Security with Amazon Aurora MySQL (p. 795).
For information about security with Aurora PostgreSQL, see Security with Amazon Aurora
PostgreSQL (p. 1297).

1719

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/

Amazon Aurora User Guide for Aurora
Database authentication

Aurora is part of the managed database service Amazon Relational Database Service (Amazon RDS).
Amazon RDS is a web service that makes it easier to set up, operate, and scale a relational database in
the cloud. If you are not already familiar with Amazon RDS, see the Amazon RDS user guide.

Aurora includes a high-performance storage subsystem. Its MySQL- and PostgreSQL-compatible
database engines are customized to take advantage of that fast distributed storage. Aurora also
automates and standardizes database clustering and replication, which are typically among the most
challenging aspects of database configuration and administration.

For both Amazon RDS and Aurora, you can access the RDS API programmatically, and you can use the
AWS CLI to access the RDS API interactively. Some RDS API operations and AWS CLI commands apply
to both Amazon RDS and Aurora, while others apply to either Amazon RDS or Aurora. For information
about RDS API operations, see Amazon RDS API reference. For more information about the AWS CLI, see
AWS Command Line Interface reference for Amazon RDS.

Note
You only have to configure security for your use cases. You don't have to configure security
access for processes that Amazon Aurora manages. These include creating backups, replicating
data between a primary DB instance and a read replica, and other processes.

For more information on managing access to Amazon Aurora resources and your databases on a DB
cluster, see the following topics.

Topics
• Database authentication with Amazon Aurora (p. 1720)
• Data protection in Amazon RDS (p. 1722)
• Identity and access management in Amazon Aurora (p. 1737)
• Logging and monitoring in Amazon Aurora (p. 1784)
• Compliance validation for Amazon Aurora (p. 1786)
• Resilience in Amazon Aurora (p. 1787)
• Infrastructure security in Amazon Aurora (p. 1789)
• Amazon RDS API and interface VPC endpoints (AWS PrivateLink) (p. 1790)
• Security best practices for Amazon Aurora (p. 1792)
• Controlling access with security groups (p. 1793)
• Master user account privileges (p. 1795)
• Using service-linked roles for Amazon Aurora (p. 1796)
• Amazon Virtual Private Cloud VPCs and Amazon Aurora (p. 1800)

Database authentication with Amazon Aurora
Amazon Aurora supports several ways to authenticate database users.

Password authentication is available by default for all DB clusters. For Aurora MySQL, you can also add
IAM database authentication. For Aurora PostgreSQL, you can also add either or both IAM database
authentication and Kerberos authentication for the same DB cluster.

Password, Kerberos, and IAM database authentication use different methods of authenticating to the
database. Therefore, a specific user can log in to a database using only one authentication method.

For PostgreSQL, use only one of the following role settings for a user of a specific database:

• To use IAM database authentication, assign the rds_iam role to the user.
• To use Kerberos authentication, assign the rds_ad role to the user.
• To use password authentication, don't assign either the rds_iam or rds_ad roles to the user.

1720

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cli/latest/reference/rds/index.html

Amazon Aurora User Guide for Aurora
Password authentication

Don't assign both the rds_iam and rds_ad roles to a user of a PostgreSQL database either directly or
indirectly by nested grant access. If the rds_iam role is added to the master user, IAM authentication
takes precedence over password authentication so the master user has to log in as an IAM user.

Topics
• Password authentication (p. 1721)
• IAM database authentication (p. 1721)
• Kerberos authentication (p. 1721)

Password authentication
With password authentication, your DB instance performs all administration of user accounts. You create
users with SQL statements such as CREATE USER, with the appropriate clause required by the DB engine
for specifying passwords. For example, in MySQL the statement is CREATE USER name IDENTIFIED BY
password, while in PostgreSQL, the statement is CREATE USER name WITH PASSWORD password.

With password authentication, your database controls and authenticates user accounts. If a DB engine
has strong password management features, they can enhance security. Database authentication might
be easier to administer using password authentication when you have small user communities. Because
clear text passwords are generated in this case, integrating with AWS Secrets Manager can enhance
security.

For information about using Secrets Manager with Amazon Aurora, see Creating a basic secret and
Rotating secrets for supported Amazon RDS databases in the AWS Secrets Manager User Guide. For
information about programmatically retrieving your secrets in your custom applications, see Retrieving
the secret value in the AWS Secrets Manager User Guide.

IAM database authentication
You can authenticate to your DB cluster using AWS Identity and Access Management (IAM) database
authentication. IAM database authentication works with Aurora MySQL and Aurora PostgreSQL. With this
authentication method, you don't need to use a password when you connect to a DB cluster. Instead, you
use an authentication token.

For more information about IAM database authentication, including information about availability for
specific DB engines, see IAM database authentication (p. 1756).

Kerberos authentication
Amazon Aurora supports external authentication of database users using Kerberos and Microsoft
Active Directory. Kerberos is a network authentication protocol that uses tickets and symmetric-key
cryptography to eliminate the need to transmit passwords over the network. Kerberos has been built into
Active Directory and is designed to authenticate users to network resources, such as databases.

Amazon Aurora support for Kerberos and Active Directory provides the benefits of single sign-on and
centralized authentication of database users. You can keep your user credentials in Active Directory.
Active Directory provides a centralized place for storing and managing credentials for multiple DB
instances.

You can enable your database users to authenticate against DB instances in two ways. They can use
credentials stored either in AWS Directory Service for Microsoft Active Directory or in your on-premises
Active Directory.

Currently, Aurora supports Kerberos authentication for Aurora PostgreSQL DB clusters. With Kerberos
authentication, Aurora PostgreSQL DB clusters support one- and two-way forest trust relationships. For
more information, see Using Kerberos authentication with Aurora PostgreSQL (p. 1551).

1721

https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets-rds.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_retrieve-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_retrieve-secret.html

Amazon Aurora User Guide for Aurora
Data protection

Data protection in Amazon RDS
The AWS shared responsibility model applies to data protection in Amazon Relational Database Service.
As described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. This content includes the security configuration and management tasks for the
AWS services that you use. For more information about data privacy, see the Data Privacy FAQ. For
information about data protection in Europe, see the AWS Shared Responsibility Model and GDPR blog
post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set up
individual user accounts with AWS Identity and Access Management (IAM). That way each user is given
only the permissions necessary to fulfill their job duties. We also recommend that you secure your data
in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We recommend TLS 1.2 or later.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing personal data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a command
line interface or an API, use a FIPS endpoint. For more information about the available FIPS endpoints,
see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form fields such as a Name field. This includes when you
work with Amazon RDS or other AWS services using the console, API, AWS CLI, or AWS SDKs. Any data
that you enter into tags or free-form fields used for names may be used for billing or diagnostic logs.
If you provide a URL to an external server, we strongly recommend that you do not include credentials
information in the URL to validate your request to that server.

Topics
• Protecting data using encryption (p. 1722)

• Internetwork traffic privacy (p. 1736)

Protecting data using encryption
You can enable encryption for database resources. You can also encrypt connections to DB clusters.

Topics
• Encrypting Amazon Aurora resources (p. 1722)

• AWS KMS key management (p. 1725)

• Using SSL/TLS to encrypt a connection to a DB cluster (p. 1726)

• Rotating your SSL/TLS certificate (p. 1728)

Encrypting Amazon Aurora resources
Amazon Aurora can encrypt your Amazon Aurora DB clusters. Data that is encrypted at rest includes the
underlying storage for DB clusters, its automated backups, read replicas, and snapshots.

1722

http://aws.amazon.com/compliance/shared-responsibility-model/
http://aws.amazon.com/compliance/data-privacy-faq
http://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
http://aws.amazon.com/compliance/fips/

Amazon Aurora User Guide for Aurora
Data encryption

Amazon Aurora encrypted DB clusters use the industry standard AES-256 encryption algorithm to
encrypt your data on the server that hosts your Amazon Aurora DB clusters. After your data is encrypted,
Amazon Aurora handles authentication of access and decryption of your data transparently with a
minimal impact on performance. You don't need to modify your database client applications to use
encryption.

Note
For encrypted and unencrypted DB clusters, data that is in transit between the source and the
read replicas is encrypted, even when replicating across AWS Regions.

Topics
• Overview of encrypting Amazon Aurora resources (p. 1723)
• Enabling encryption for an Amazon Aurora DB cluster (p. 1723)
• Determining whether encryption is turned on for a DB cluster (p. 1724)
• Availability of Amazon Aurora encryption (p. 1725)
• Limitations of Amazon Aurora encrypted DB clusters (p. 1725)

Overview of encrypting Amazon Aurora resources

Amazon Aurora encrypted DB clusters provide an additional layer of data protection by securing your
data from unauthorized access to the underlying storage. You can use Amazon Aurora encryption
to increase data protection of your applications deployed in the cloud, and to fulfill compliance
requirements for encryption at rest.

For an Amazon Aurora encrypted DB cluster, all DB instances, logs, backups, and snapshots are
encrypted. You can also encrypt a read replica of an Amazon Aurora encrypted cluster. Amazon Aurora
uses an AWS KMS key to encrypt these resources. For more information about KMS keys, see AWS KMS
keys in the AWS Key Management Service Developer Guide. Each DB instance in the DB cluster is encrypted
using the same KMS key as the DB cluster. If you copy an encrypted snapshot, you can use a different
KMS key to encrypt the target snapshot than the one that was used to encrypt the source snapshot.

You can use an AWS managed key, or you can create customer managed keys. To manage the customer
managed keys used for encrypting and decrypting your Amazon Aurora resources, you use the AWS Key
Management Service (AWS KMS). AWS KMS combines secure, highly available hardware and software
to provide a key management system scaled for the cloud. Using AWS KMS, you can create customer
managed keys and define the policies that control how these customer managed keys can be used. AWS
KMS supports CloudTrail, so you can audit KMS key usage to verify that customer managed keys are
being used appropriately. You can use your customer managed keys with Amazon Aurora and supported
AWS services such as Amazon S3, Amazon EBS, and Amazon Redshift. For a list of services that are
integrated with AWS KMS, see AWS Service Integration.

Enabling encryption for an Amazon Aurora DB cluster

To enable encryption for a new DB cluster, choose Enable encryption on the console. For information on
creating a DB cluster, see Creating an Amazon Aurora DB cluster (p. 125).

If you use the create-db-cluster AWS CLI command to create an encrypted DB cluster, set the
--storage-encrypted parameter. If you use the CreateDBCluster API operation, set the
StorageEncrypted parameter to true.

When you create an encrypted DB cluster, you can choose a customer managed key or the AWS managed
key for Amazon Aurora to encrypt your DB cluster. If you don't specify the key identifier for a customer
managed key, Amazon Aurora uses the AWS managed key for your new DB cluster. Amazon Aurora
creates an AWS managed key for Amazon Aurora for your AWS account. Your AWS account has a
different AWS managed key for Amazon Aurora for each AWS Region.

Once you have created an encrypted DB cluster, you can't change the KMS key used by that DB cluster.
Therefore, be sure to determine your KMS key requirements before you create your encrypted DB cluster.

1723

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#kms_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#kms_keys
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
http://aws.amazon.com/kms/features/#AWS_Service_Integration
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora
Data encryption

If you use the AWS CLI create-db-cluster command to create an encrypted DB cluster with a
customer managed key, set the --kms-key-id parameter to any key identifier for the KMS key. If
you use the Amazon RDS API CreateDBInstance operation, set the KmsKeyId parameter to any key
identifier for the KMS key. To use a customer managed key in a different AWS account, specify the key
ARN or alias ARN.

Important
In some cases, Amazon Aurora can lose access to the KMS key for a DB cluster. For example,
Aurora loses access when RDS access to a KMS key is revoked. In these cases, the encrypted DB
cluster goes into a terminal state, and you can only restore the DB cluster from a backup. We
strongly recommend that you always enable backups for encrypted DB clusters to guard against
the loss of encrypted data in your databases.

Determining whether encryption is turned on for a DB cluster

You can use the AWS Management Console, AWS CLI, or RDS API to determine whether encryption at
rest is turned on for a DB cluster.

Console

To determine whether encryption at rest is turned on for a DB cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.
3. Choose the name of the DB cluster that you want to check to view its details.
4. Choose the Configuration tab and check the Encryption value.

It shows either Enabled or Not enabled.

AWS CLI

To determine whether encryption at rest is turned on for a DB cluster by using the AWS CLI, call the
describe-db-clusters command with the following option:

1724

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/describe-db-clusters.html

Amazon Aurora User Guide for Aurora
Data encryption

• --db-cluster-identifier – The name of the DB cluster.

The following example uses a query to return either TRUE or FALSE regarding encryption at rest for the
mydb DB cluster.

Example

aws rds describe-db-clusters --db-cluster-identifier mydb --query "*[].
{StorageEncrypted:StorageEncrypted}" --output text

RDS API

To determine whether encryption at rest is turned on for a DB cluster by using the Amazon RDS API, call
the DescribeDBClusters operation with the following parameter:

• DBClusterIdentifier – The name of the DB cluster.

Availability of Amazon Aurora encryption

Amazon Aurora encryption is currently available for all database engines and storage types.

Note
Amazon Aurora encryption is not available for the db.t2.micro DB instance class.

Limitations of Amazon Aurora encrypted DB clusters

The following limitations exist for Amazon Aurora encrypted DB clusters:

• You can't disable encryption on an encrypted DB cluster.
• You can't create an encrypted snapshot of an unencrypted DB cluster.
• A snapshot of an encrypted DB cluster must be encrypted using the same KMS key as the DB cluster.
• You can't convert an unencrypted DB cluster to an encrypted one. However, you can restore an

unencrypted snapshot to an encrypted Aurora DB cluster. To do this, specify a KMS key when you
restore from the unencrypted snapshot.

• You can't create an encrypted Aurora Replica from an unencrypted Aurora DB cluster. You can't create
an unencrypted Aurora Replica from an encrypted Aurora DB cluster.

• To copy an encrypted snapshot from one AWS Region to another, you must specify the KMS key in the
destination AWS Region. This is because KMS keys are specific to the AWS Region that they are created
in.

The source snapshot remains encrypted throughout the copy process. Amazon Aurora uses envelope
encryption to protect data during the copy process. For more information about envelope encryption,
see Envelope encryption in the AWS Key Management Service Developer Guide.

• You can't unencrypt an encrypted DB cluster. However, you can export data from an encrypted DB
cluster and import the data into an unencrypted DB cluster.

AWS KMS key management
Amazon Aurora automatically integrates with AWS Key Management Service (AWS KMS) for key
management. Amazon Aurora uses envelope encryption. For more information about envelope
encryption, see Envelope encryption in the AWS Key Management Service Developer Guide.

An AWS KMS key is a logical representation of a key. The KMS key includes metadata, such as the key ID,
creation date, description, and key state. The KMS key also contains the key material used to encrypt and

1725

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#enveloping
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#enveloping

Amazon Aurora User Guide for Aurora
Data encryption

decrypt data. For more information about KMS keys, see AWS KMS keys in the AWS Key Management
Service Developer Guide.

You can manage KMS keys used for Amazon Aurora encrypted DB clusters using the AWS Key
Management Service (AWS KMS) in the AWS KMS console, the AWS CLI, or the AWS KMS API. If you want
full control over a KMS key, then you must create a customer managed key. For more information about
customer managed keys, see Customer managed keys in the AWS Key Management Service Developer
Guide.

AWS managed keys are KMS keys in your account that are created, managed, and used on your behalf by
an AWS service that is integrated with AWS KMS. You can't delete, edit, or rotate AWS managed keys. For
more information about AWS managed keys, see AWS managed keys in the AWS Key Management Service
Developer Guide.

You can't share a snapshot that has been encrypted using the AWS managed key of the AWS account
that shared the snapshot.

You can view audit logs of every action taken with an AWS managed or customer managed key by using
AWS CloudTrail.

Important
If you disable or revoke permissions to a KMS key used by an RDS database, RDS puts your
database into a terminal state when access to the KMS key is required. This change could be
immediate, or deferred, depending on the use case that required access to the KMS key. In
this state, the DB cluster is no longer available, and the current state of the database can't be
recovered. To restore the DB cluster, you must re-enable access to the KMS key for RDS, and
then restore the DB cluster from the latest available backup.

Authorizing use of a customer managed key

When Aurora uses a customer managed key in cryptographic operations, it acts on behalf of the user
who is creating or changing the Aurora resource.

To use the customer managed key for an Aurora resource on your behalf, a user must have permissions
to call the following operations on the customer managed key:

• kms:GenerateDataKey
• kms:Decrypt

You can specify these required permissions in a key policy, or in an IAM policy if the key policy allows it.

You can make the IAM policy stricter in various ways. For example, to allow the customer managed key to
be used only for requests that originate in Aurora, you can use the kms:ViaService condition key with the
rds.<region>.amazonaws.com value.

You can also use the keys or values in the encryption context as a condition for using the customer
managed key for cryptographic operations.

For more information, see Allowing users in other accounts to use a KMS key in the AWS Key
Management Service Developer Guide.

Using SSL/TLS to encrypt a connection to a DB cluster
You can use Secure Socket Layer (SSL) or Transport Layer Security (TLS) from your application to encrypt
a connection to a DB cluster running Aurora MySQL or Aurora PostgreSQL.

SSL/TLS connections provide one layer of security by encrypting data that moves between your client
and a DB cluster. Using a server certificate provides an extra layer of security by validating that the
connection is being made to an Amazon Aurora DB cluster. It does so by checking the server certificate
that is automatically installed on all DB clusters that you provision.

1726

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#kms_keys
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://console.aws.amazon.com/kms
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service
https://docs.aws.amazon.com/kms/latest/developerguide/services-rds.html#rds-encryptioncontext
https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-modifying-external-accounts.html

Amazon Aurora User Guide for Aurora
Data encryption

Each DB engine has its own process for implementing SSL/TLS. To learn how to implement SSL/TLS for
your DB cluster, use the link following that corresponds to your DB engine:

• Security with Amazon Aurora MySQL (p. 795)
• Security with Amazon Aurora PostgreSQL (p. 1297)

Note
All certificates are only available for download using SSL/TLS connections.

To get a certificate bundle that contains both the intermediate and root certificates for all AWS Regions,
download from https://truststore.pki.rds.amazonaws.com/global/global-bundle.pem.

If your application is on Microsoft Windows and requires a PKCS7 file, you can download the PKCS7
certificate bundle. This bundle contains both the intermediate and root certificates at https://
truststore.pki.rds.amazonaws.com/global/global-bundle.p7b.

Note
Amazon RDS Proxy and Aurora Serverless use certificates from the AWS Certificate Manager
(ACM). If you are using RDS Proxy, you don't need to download Amazon RDS certificates or
update applications that use RDS Proxy connections. For more information about using TLS/SSL
with RDS Proxy, see Using TLS/SSL with RDS Proxy (p. 292).
If you are Aurora Serverless, downloading Amazon RDS certificates isn't required. For more
information about using TLS/SSL with Aurora Serverless, see Using TLS/SSL with Aurora
Serverless v1 (p. 150).

Certificate bundles for AWS Regions

To get a certificate bundle that contains both the intermediate and root certificates for an AWS Region,
download from the link for the AWS Region in the following table.

AWS Region Certificate bundle (PEM) Certificate bundle (PKCS7)

US East (N. Virginia) us-east-1-bundle.pem us-east-1-bundle.p7b

US East (Ohio) us-east-2-bundle.pem us-east-2-bundle.p7b

US West (N. California) us-west-1-bundle.pem us-west-1-bundle.p7b

US West (Oregon) us-west-2-bundle.pem us-west-2-bundle.p7b

Africa (Cape Town) af-south-1-bundle.pem af-south-1-bundle.p7b

Asia Pacific (Hong Kong) ap-east-1-bundle.pem ap-east-1-bundle.p7b

Asia Pacific (Jakarta) ap-southeast-3-bundle.pem ap-southeast-3-bundle.p7b

Asia Pacific (Mumbai) ap-south-1-bundle.pem ap-south-1-bundle.p7b

Asia Pacific (Osaka) ap-northeast-3-bundle.pem ap-northeast-3-bundle.p7b

Asia Pacific (Tokyo) ap-northeast-1-bundle.pem ap-northeast-1-bundle.p7b

Asia Pacific (Seoul) ap-northeast-2-bundle.pem ap-northeast-2-bundle.p7b

Asia Pacific (Singapore) ap-southeast-1-bundle.pem ap-southeast-1-bundle.p7b

Asia Pacific (Sydney) ap-southeast-2-bundle.pem ap-southeast-2-bundle.p7b

Canada (Central) ca-central-1-bundle.pem ca-central-1-bundle.p7b

1727

https://truststore.pki.rds.amazonaws.com/global/global-bundle.pem
https://truststore.pki.rds.amazonaws.com/global/global-bundle.p7b
https://truststore.pki.rds.amazonaws.com/global/global-bundle.p7b
https://truststore.pki.rds.amazonaws.com/us-east-1/us-east-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/us-east-1/us-east-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/us-east-2/us-east-2-bundle.pem
https://truststore.pki.rds.amazonaws.com/us-east-2/us-east-2-bundle.p7b
https://truststore.pki.rds.amazonaws.com/us-west-1/us-west-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/us-west-1/us-west-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/us-west-2/us-west-2-bundle.pem
https://truststore.pki.rds.amazonaws.com/us-west-2/us-west-2-bundle.p7b
https://truststore.pki.rds.amazonaws.com/af-south-1/af-south-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/af-south-1/af-south-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-east-1/ap-east-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-east-1/ap-east-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-southeast-3/ap-southeast-3-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-southeast-3/ap-southeast-3-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-south-1/ap-south-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-south-1/ap-south-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-northeast-3/ap-northeast-3-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-northeast-3/ap-northeast-3-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-northeast-1/ap-northeast-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-northeast-1/ap-northeast-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-northeast-2/ap-northeast-2-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-northeast-2/ap-northeast-2-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-southeast-1/ap-southeast-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-southeast-1/ap-southeast-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ap-southeast-2/ap-southeast-2-bundle.pem
https://truststore.pki.rds.amazonaws.com/ap-southeast-2/ap-southeast-2-bundle.p7b
https://truststore.pki.rds.amazonaws.com/ca-central-1/ca-central-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/ca-central-1/ca-central-1-bundle.p7b

Amazon Aurora User Guide for Aurora
Data encryption

AWS Region Certificate bundle (PEM) Certificate bundle (PKCS7)

Europe (Frankfurt) eu-central-1-bundle.pem eu-central-1-bundle.p7b

Europe (Ireland) eu-west-1-bundle.pem eu-west-1-bundle.p7b

Europe (London) eu-west-2-bundle.pem eu-west-2-bundle.p7b

Europe (Milan) eu-south-1-bundle.pem eu-south-1-bundle.p7b

Europe (Paris) eu-west-3-bundle.pem eu-west-3-bundle.p7b

Europe (Stockholm) eu-north-1-bundle.pem eu-north-1-bundle.p7b

Middle East (Bahrain) me-south-1-bundle.pem me-south-1-bundle.p7b

South America (São Paulo) sa-east-1-bundle.pem sa-east-1-bundle.p7b

AWS GovCloud (US) certificates

To get a certificate bundle that contains both the intermediate and root certificates for the AWS
GovCloud (US) Regions, download from https://truststore.pki.us-gov-west-1.rds.amazonaws.com/
global/global-bundle.pem.

If your application is on Microsoft Windows and requires a PKCS7 file, you can download the PKCS7
certificate bundle. This bundle contains both the intermediate and root certificates at https://
truststore.pki.us-gov-west-1.rds.amazonaws.com/global/global-bundle.p7b.

To get a certificate bundle that contains both the intermediate and root certificates for an AWS
GovCloud (US) Region, download from the link for the AWS GovCloud (US) Region in the following table.

AWS GovCloud (US) Region Certificate bundle (PEM) Certificate bundle (PKCS7)

AWS GovCloud (US-East) us-gov-east-1-bundle.pem us-gov-east-1-bundle.p7b

AWS GovCloud (US-West) us-gov-west-1-bundle.pem us-gov-west-1-bundle.p7b

Rotating your SSL/TLS certificate
As of March 5, 2020, Amazon RDS CA-2015 certificates have expired. If you use or plan to use Secure
Sockets Layer (SSL) or Transport Layer Security (TLS) with certificate verification to connect to your RDS
DB instances, you require Amazon RDS CA-2019 certificates, which are enabled by default for new DB
instances. If you currently do not use SSL/TLS with certificate verification, you might still have expired
CA-2015 certificates and must update them to CA-2019 certificates if you plan to use SSL/TLS with
certificate verification to connect to your RDS databases.

Follow these instructions to complete your updates. Before you update your DB instances to use the new
CA certificate, make sure that you update your clients or applications connecting to your RDS databases.

Amazon RDS provides new CA certificates as an AWS security best practice. For information about the
new certificates and the supported AWS Regions, see Using SSL/TLS to encrypt a connection to a DB
cluster (p. 1726).

Note
Amazon RDS Proxy and Aurora Serverless use certificates from the AWS Certificate Manager
(ACM). If you are using RDS Proxy, when you rotate your SSL/TLS certificate, you don't need to
update applications that use RDS Proxy connections. For more information about using TLS/SSL
with RDS Proxy, see Using TLS/SSL with RDS Proxy (p. 292).

1728

https://truststore.pki.rds.amazonaws.com/eu-central-1/eu-central-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/eu-central-1/eu-central-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/eu-west-1/eu-west-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/eu-west-1/eu-west-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/eu-west-2/eu-west-2-bundle.pem
https://truststore.pki.rds.amazonaws.com/eu-west-2/eu-west-2-bundle.p7b
https://truststore.pki.rds.amazonaws.com/eu-south-1/eu-south-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/eu-south-1/eu-south-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/eu-west-3/eu-west-3-bundle.pem
https://truststore.pki.rds.amazonaws.com/eu-west-3/eu-west-3-bundle.p7b
https://truststore.pki.rds.amazonaws.com/eu-north-1/eu-north-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/eu-north-1/eu-north-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/me-south-1/me-south-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/me-south-1/me-south-1-bundle.p7b
https://truststore.pki.rds.amazonaws.com/sa-east-1/sa-east-1-bundle.pem
https://truststore.pki.rds.amazonaws.com/sa-east-1/sa-east-1-bundle.p7b
https://truststore.pki.us-gov-west-1.rds.amazonaws.com/global/global-bundle.pem
https://truststore.pki.us-gov-west-1.rds.amazonaws.com/global/global-bundle.pem
https://truststore.pki.us-gov-west-1.rds.amazonaws.com/global/global-bundle.p7b
https://truststore.pki.us-gov-west-1.rds.amazonaws.com/global/global-bundle.p7b
https://truststore.pki.us-gov-west-1.rds.amazonaws.com/us-gov-east-1/us-gov-east-1-bundle.pem
https://truststore.pki.us-gov-west-1.rds.amazonaws.com/us-gov-east-1/us-gov-east-1-bundle.p7b
https://truststore.pki.us-gov-west-1.rds.amazonaws.com/us-gov-west-1/us-gov-west-1-bundle.pem
https://truststore.pki.us-gov-west-1.rds.amazonaws.com/us-gov-west-1/us-gov-west-1-bundle.p7b

Amazon Aurora User Guide for Aurora
Data encryption

If you are Aurora Serverless, rotating your SSL/TLS certificate isn't required. For more
information about using TLS/SSL with Aurora Serverless, see Using TLS/SSL with Aurora
Serverless v1 (p. 150).

Note
If you are using a Go version 1.15 application with a DB instance that was created or updated to
the rds-ca-2019 certificate prior to July 28, 2020, you must update the certificate again. Run
the modify-db-instance command shown in the AWS CLI section using rds-ca-2019 as
the CA certificate identifier. In this case, it isn't possible to update the certificate using the AWS
Management Console. If you created your DB instance or updated its certificate after July 28,
2020, no action is required. For more information, see Go GitHub issue #39568.

Topics

• Updating your CA certificate by modifying your DB instance (p. 1729)

• Updating your CA certificate by applying DB instance maintenance (p. 1732)

• Sample script for importing certificates into your trust store (p. 1735)

Updating your CA certificate by modifying your DB instance

Complete the following steps to update your CA certificate.

To update your CA certificate by modifying your DB instance

1. Download the new SSL/TLS certificate as described in Using SSL/TLS to encrypt a connection to a
DB cluster (p. 1726).

2. Update your applications to use the new SSL/TLS certificate.

The methods for updating applications for new SSL/TLS certificates depend on your specific
applications. Work with your application developers to update the SSL/TLS certificates for your
applications.

For information about checking for SSL/TLS connections and updating applications for each DB
engine, see the following topics:

• Updating applications to connect to Aurora MySQL DB clusters using new SSL/TLS
certificates (p. 799)

• Updating applications to connect to Aurora PostgreSQL DB clusters using new SSL/TLS
certificates (p. 1301)

For a sample script that updates a trust store for a Linux operating system, see Sample script for
importing certificates into your trust store (p. 1735).

Note
The certificate bundle contains certificates for both the old and new CA, so you can upgrade
your application safely and maintain connectivity during the transition period. If you
are using the AWS Database Migration Service to migrate a database to a DB cluster, we
recommend using the certificate bundle to ensure connectivity during the migration.

3. Modify the DB instance to change the CA from rds-ca-2015 to rds-ca-2019.

Important
By default, this operation restarts your DB instance. If you don't want to restart your DB
instance during this operation, you can use the modify-db-instance CLI command and
specify the --no-certificate-rotation-restart option.
This option will not rotate the certificate until the next time the database restarts, either for
planned or unplanned maintenance. This option is only recommended if you don't use SSL/
TLS.

1729

https://github.com/golang/go/issues/39568

Amazon Aurora User Guide for Aurora
Data encryption

If you are experiencing connectivity issues after certificate expiry, use the apply immediately
option by specifying Apply immediately in the console or by specifying the --apply-
immediately option using the AWS CLI. By default, this operation is scheduled to run
during your next maintenance window.

You can use the AWS Management Console or the AWS CLI to change the CA certificate from rds-
ca-2015 to rds-ca-2019 for a DB instance.

Console

To change the CA from rds-ca-2015 to rds-ca-2019 for a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance that you want to
modify.

3. Choose Modify.

The Modify DB Instance page appears.

4. In the Connectivity section, choose rds-ca-2019.

1730

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Data encryption

5. Choose Continue and check the summary of modifications.
6. To apply the changes immediately, choose Apply immediately.

Important
Choosing this option restarts your database immediately.

7. On the confirmation page, review your changes. If they are correct, choose Modify DB Instance to
save your changes.

Important
When you schedule this operation, make sure that you have updated your client-side trust
store beforehand.

Or choose Back to edit your changes or Cancel to cancel your changes.

AWS CLI

To use the AWS CLI to change the CA from rds-ca-2015 to rds-ca-2019 for a DB instance, call the
modify-db-instance command. Specify the DB instance identifier and the --ca-certificate-
identifier option.

Important
When you schedule this operation, make sure that you have updated your client-side trust store
beforehand.

Example

The following code modifies mydbinstance by setting the CA certificate to rds-ca-2019. The changes
are applied during the next maintenance window by using --no-apply-immediately. Use --apply-
immediately to apply the changes immediately.

Important
By default, this operation reboots your DB instance. If you don't want to reboot your DB instance
during this operation, you can use the modify-db-instance CLI command and specify the --
no-certificate-rotation-restart option.
This option will not rotate the certificate until the next time the database restarts, either for
planned or unplanned maintenance. This option is only recommended if you do not use SSL/
TLS.
Use --apply-immediately to apply the update immediately. By default, this operation is
scheduled to run during your next maintenance window.

For Linux, macOS, or Unix:

aws rds modify-db-instance \
 --db-instance-identifier mydbinstance \
 --ca-certificate-identifier rds-ca-2019 \
 --no-apply-immediately

1731

https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html

Amazon Aurora User Guide for Aurora
Data encryption

For Windows:

aws rds modify-db-instance ^
 --db-instance-identifier mydbinstance ^
 --ca-certificate-identifier rds-ca-2019 ^
 --no-apply-immediately

Updating your CA certificate by applying DB instance maintenance

Complete the following steps to update your CA certificate by applying DB instance maintenance.

To update your CA certificate by applying DB instance maintenance

1. Download the new SSL/TLS certificate as described in Using SSL/TLS to encrypt a connection to a
DB cluster (p. 1726).

2.
Update your database applications to use the new SSL/TLS certificate.

The methods for updating applications for new SSL/TLS certificates depend on your specific
applications. Work with your application developers to update the SSL/TLS certificates for your
applications.

For information about checking for SSL/TLS connections and updating applications for each DB
engine, see the following topics:

• Updating applications to connect to Aurora MySQL DB clusters using new SSL/TLS
certificates (p. 799)

• Updating applications to connect to Aurora PostgreSQL DB clusters using new SSL/TLS
certificates (p. 1301)

For a sample script that updates a trust store for a Linux operating system, see Sample script for
importing certificates into your trust store (p. 1735).

Note
The certificate bundle contains certificates for both the old and new CA, so you can upgrade
your application safely and maintain connectivity during the transition period.

3. Apply DB instance maintenance to change the CA from rds-ca-2015 to rds-ca-2019.

Important
You can choose to apply the change immediately. By default, this operation is scheduled to
run during your next maintenance window.

You can use the AWS Management Console to apply DB instance maintenance to change the CA
certificate from rds-ca-2015 to rds-ca-2019 for multiple DB instances.

Updating your CA certificate by applying maintenance to multiple DB instances

Use the AWS Management Console to change the CA certificate for multiple DB instances.

To change the CA from rds-ca-2015 to rds-ca-2019 for multiple DB instances

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

In the navigation pane, there is a Certificate update option that shows the total number of affected
DB instances.

1732

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Data encryption

Choose Certificate update in the navigation pane.

The Update your Amazon RDS SSL/TLS certificates page appears.

1733

Amazon Aurora User Guide for Aurora
Data encryption

Note
This page only shows the DB instances for the current AWS Region. If you have DB instances
in more than one AWS Region, check this page in each AWS Region to see all DB instances
with old SSL/TLS certificates.

3. Choose the DB instance you want to update.

You can schedule the certificate rotation for your next maintenance window by choosing Update at
the next maintenance window. Apply the rotation immediately by choosing Update now.

Important
When your CA certificate is rotated, the operation restarts your DB instance.
If you experience connectivity issues after certificate expiry, use the Update now option.

4. If you choose Update at the next maintenance window or Update now, you are prompted to
confirm the CA certificate rotation.

Important
Before scheduling the CA certificate rotation on your database, update any client
applications that use SSL/TLS and the server certificate to connect. These updates are
specific to your DB engine. To determine whether your applications use SSL/TLS and the
server certificate to connect, see Step 2: Update Your Database Applications to Use the New
SSL/TLS Certificate (p. 1732). After you have updated these client applications, you can
confirm the CA certificate rotation.

To continue, choose the check box, and then choose Confirm.

5. Repeat steps 3 and 4 for each DB instance that you want to update.

1734

Amazon Aurora User Guide for Aurora
Data encryption

Sample script for importing certificates into your trust store

The following are sample shell scripts that import the certificate bundle into a trust store.

Each sample shell script uses keytool, which is part of the Java Development Kit (JDK). For information
about installing the JDK, see JDK Installation Guide.

Topics
• Sample script for importing certificates on Linux (p. 1735)
• Sample script for importing certificates on macOS (p. 1735)

Sample script for importing certificates on Linux

The following is a sample shell script that imports the certificate bundle into a trust store on a Linux
operating system.

mydir=tmp/certs
if [! -e "${mydir}"]
then
mkdir -p "${mydir}"
fi

truststore=${mydir}/rds-truststore.jks
storepassword=changeit

curl -sS "https://s3.amazonaws.com/rds-downloads/rds-combined-ca-bundle.pem" > ${mydir}/
rds-combined-ca-bundle.pem
awk 'split_after == 1 {n++;split_after=0} /-----END CERTIFICATE-----/ {split_after=1}{print
 > "rds-ca-" n ".pem"}' < ${mydir}/rds-combined-ca-bundle.pem

for CERT in rds-ca-*; do
 alias=$(openssl x509 -noout -text -in $CERT | perl -ne 'next unless /Subject:/; s/.*(CN=|
CN =)//; print')
 echo "Importing $alias"
 keytool -import -file ${CERT} -alias "${alias}" -storepass ${storepassword} -keystore
 ${truststore} -noprompt
 rm $CERT
done

rm ${mydir}/rds-combined-ca-bundle.pem

echo "Trust store content is: "

keytool -list -v -keystore "$truststore" -storepass ${storepassword} | grep Alias | cut -d
 " " -f3- | while read alias
do
 expiry=`keytool -list -v -keystore "$truststore" -storepass ${storepassword} -alias
 "${alias}" | grep Valid | perl -ne 'if(/until: (.*?)\n/) { print "$1\n"; }'`
 echo " Certificate ${alias} expires in '$expiry'"
done

Sample script for importing certificates on macOS

The following is a sample shell script that imports the certificate bundle into a trust store on macOS.

mydir=tmp/certs
if [! -e "${mydir}"]
then

1735

https://docs.oracle.com/en/java/javase/17/install/overview-jdk-installation.html

Amazon Aurora User Guide for Aurora
Internetwork traffic privacy

mkdir -p "${mydir}"
fi

truststore=${mydir}/rds-truststore.jks
storepassword=changeit

curl -sS "https://s3.amazonaws.com/rds-downloads/rds-combined-ca-bundle.pem" > ${mydir}/
rds-combined-ca-bundle.pem
split -p "-----BEGIN CERTIFICATE-----" ${mydir}/rds-combined-ca-bundle.pem rds-ca-

for CERT in rds-ca-*; do
 alias=$(openssl x509 -noout -text -in $CERT | perl -ne 'next unless /Subject:/; s/.*(CN=|
CN =)//; print')
 echo "Importing $alias"
 keytool -import -file ${CERT} -alias "${alias}" -storepass ${storepassword} -keystore
 ${truststore} -noprompt
 rm $CERT
done

rm ${mydir}/rds-combined-ca-bundle.pem

echo "Trust store content is: "

keytool -list -v -keystore "$truststore" -storepass ${storepassword} | grep Alias | cut -d
 " " -f3- | while read alias
do
 expiry=`keytool -list -v -keystore "$truststore" -storepass ${storepassword} -alias
 "${alias}" | grep Valid | perl -ne 'if(/until: (.*?)\n/) { print "$1\n"; }'`
 echo " Certificate ${alias} expires in '$expiry'"
done

Internetwork traffic privacy
Connections are protected both between Amazon Aurora and on-premises applications and between
Amazon Aurora and other AWS resources within the same AWS Region.

Traffic between service and on-premises clients and applications
You have two connectivity options between your private network and AWS:

• An AWS Site-to-Site VPN connection. For more information, see What is AWS Site-to-Site VPN?
• An AWS Direct Connect connection. For more information, see What is AWS Direct Connect?

You get access to Amazon Aurora through the network by using AWS-published API operations. Clients
must support Transport Layer Security (TLS) 1.0. We recommend TLS 1.2. Clients must also support
cipher suites with Perfect Forward Secrecy (PFS), such as Ephemeral Diffie-Hellman (DHE) or Elliptic
Curve Diffie-Hellman Ephemeral (ECDHE). Most modern systems such as Java 7 and later support these
modes. Additionally, you must sign requests using an access key identifier and a secret access key that
are associated with an IAM principal. Or you can use the AWS security token service (STS) to generate
temporary security credentials to sign requests.

1736

https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Amazon Aurora User Guide for Aurora
Identity and access management

Identity and access management in Amazon
Aurora

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in) and
authorized (have permissions) to use Aurora resources. IAM is an AWS service that you can use with no
additional charge.

Topics

• Audience (p. 1737)

• Authenticating with identities (p. 1737)

• Managing access using policies (p. 1739)

• How Amazon Aurora works with IAM (p. 1740)

• Amazon Aurora identity-based policy examples (p. 1743)

• Preventing cross-service confused deputy problems (p. 1754)

• IAM database authentication (p. 1756)

• Troubleshooting Amazon Aurora identity and access (p. 1782)

Audience
How you use AWS Identity and Access Management (IAM) differs, depending on the work you do in
Aurora.

Service user – If you use the Aurora service to do your job, then your administrator provides you with
the credentials and permissions that you need. As you use more Aurora features to do your work, you
might need additional permissions. Understanding how access is managed can help you request the
right permissions from your administrator. If you cannot access a feature in Aurora, see Troubleshooting
Amazon Aurora identity and access (p. 1782).

Service administrator – If you're in charge of Aurora resources at your company, you probably have
full access to Aurora. It's your job to determine which Aurora features and resources your employees
should access. You must then submit requests to your IAM administrator to change the permissions of
your service users. Review the information on this page to understand the basic concepts of IAM. To
learn more about how your company can use IAM with Aurora, see How Amazon Aurora works with
IAM (p. 1740).

IAM administrator – If you're an IAM administrator, you might want to learn details about how you can
write policies to manage access to Aurora. To view example Aurora identity-based policies that you can
use in IAM, see Amazon Aurora identity-based policy examples (p. 1743).

Authenticating with identities
Authentication is how you sign in to AWS using your identity credentials. For more information about
signing in using the AWS Management Console, see The IAM console and sign-in page in the IAM User
Guide.

You must be authenticated (signed in to AWS) as the AWS account root user, an IAM user, or by assuming
an IAM role. You can also use your company's single sign-on authentication, or even sign in using Google
or Facebook. In these cases, your administrator previously set up identity federation using IAM roles.
When you access AWS using credentials from another company, you are assuming a role indirectly.

1737

https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html

Amazon Aurora User Guide for Aurora
Authenticating with identities

To sign in directly to the AWS Management Console, use your password with your root user email or your
IAM user name. You can access AWS programmatically using your root user or IAM user access keys. AWS
provides SDK and command line tools to cryptographically sign your request using your credentials. If
you don't use AWS tools, you must sign the request yourself. Do this using Signature Version 4, a protocol
for authenticating inbound API requests. For more information about authenticating requests, see
Signature Version 4 signing process in the AWS General Reference.

Regardless of the authentication method that you use, you might also be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication (MFA) to
increase the security of your account. To learn more, see Using multi-factor authentication (MFA) in AWS
in the IAM User Guide.

AWS account root user
When you first create an AWS account, you begin with a single sign-in identity that has complete access
to all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account. We
strongly recommend that you do not use the root user for your everyday tasks, even the administrative
ones. Instead, adhere to the best practice of using the root user only to create your first IAM user. Then
securely lock away the root user credentials and use them to perform only a few account and service
management tasks.

IAM users and groups
An IAM user is an identity within your AWS account that has specific permissions for a single person or
application. An IAM user can have long-term credentials such as a user name and password or a set of
access keys. To learn how to generate access keys, see Managing access keys for IAM users in the IAM
User Guide. When you generate access keys for an IAM user, make sure you view and securely save the key
pair. You cannot recover the secret access key in the future. Instead, you must generate a new access key
pair.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier to
manage for large sets of users. For example, you could have a group named IAMAdmins and give that
group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but a role
is intended to be assumable by anyone who needs it. Users have permanent long-term credentials, but
roles provide temporary credentials. To learn more, see When to create an IAM user (instead of a role) in
the IAM User Guide.

You can authenticate to your DB cluster using IAM database authentication.

IAM database authentication works with Aurora. For more information about authenticating to your DB
cluster using IAM, see IAM database authentication (p. 1756).

IAM roles
An IAM role is an identity within your AWS account that has specific permissions. It is similar to an IAM
user, but is not associated with a specific person. You can temporarily assume an IAM role in the AWS
Management Console by switching roles. You can assume a role by calling an AWS CLI or AWS API
operation or by using a custom URL. For more information about methods for using roles, see Using IAM
roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Temporary IAM user permissions – An IAM user can assume an IAM role to temporarily take on
different permissions for a specific task.

1738

https://console.aws.amazon.com/
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#create-iam-users
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html

Amazon Aurora User Guide for Aurora
Managing access using policies

• Federated user access – Instead of creating an IAM user, you can use existing identities from AWS
Directory Service, your enterprise user directory, or a web identity provider. These are known as
federated users. AWS assigns a role to a federated user when access is requested through an identity
provider. For more information about federated users, see Federated users and roles in the IAM User
Guide.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a different
account to access resources in your account. Roles are the primary way to grant cross-account access.
However, with some AWS services, you can attach a policy directly to a resource (instead of using a role
as a proxy). To learn the difference between roles and resource-based policies for cross-account access,
see How IAM roles differ from resource-based policies in the IAM User Guide.

• AWS service access – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For more
information, see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary credentials
for applications that are running on an EC2 instance and making AWS CLI or AWS API requests.
This is preferable to storing access keys within the EC2 instance. To assign an AWS role to an EC2
instance and make it available to all of its applications, you create an instance profile that is attached
to the instance. An instance profile contains the role and enables programs that are running on the
EC2 instance to get temporary credentials. For more information, see Using an IAM role to grant
permissions to applications running on Amazon EC2 instances in the IAM User Guide.

To learn whether to use IAM roles, see When to create an IAM role (instead of a user) in the IAM User
Guide.

Managing access using policies
You control access in AWS by creating policies and attaching them to IAM identities or AWS resources. A
policy is an object in AWS that, when associated with an identity or resource, defines their permissions.
AWS evaluates these policies when an entity (root user, IAM user, or IAM role) makes a request.
Permissions in the policies determine whether the request is allowed or denied. Most policies are stored
in AWS as JSON documents. For more information about the structure and contents of JSON policy
documents, see Overview of JSON policies in the IAM User Guide.

An IAM administrator can use policies to specify who has access to AWS resources, and what actions
they can perform on those resources. Every IAM entity (user or role) starts with no permissions. In other
words, by default, users can do nothing, not even change their own password. To give a user permission
to do something, an administrator must attach a permissions policy to a user. Or the administrator can
add the user to a group that has the intended permissions. When an administrator gives permissions to a
group, all users in that group are granted those permissions.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A user with
that policy can get role information from the AWS Management Console, the AWS CLI, or the AWS API.

Identity-based policies
Identity-based policies are JSON permissions policy documents that you can attach to an identity, such
as an IAM user, role, or group. These policies control what actions that identity can perform, on which
resources, and under what conditions. To learn how to create an identity-based policy, see Creating IAM
policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline policies
are embedded directly into a single user, group, or role. Managed policies are standalone policies that
you can attach to multiple users, groups, and roles in your AWS account. Managed policies include AWS
managed policies and customer managed policies. To learn how to choose between a managed policy or
an inline policy, see Choosing between managed policies and inline policies in the IAM User Guide.

1739

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html#intro-access-roles
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline

Amazon Aurora User Guide for Aurora
How Amazon Aurora works with IAM

The following AWS managed policies, which you can attach to users in your account, are specific to
Amazon Aurora:

• AmazonRDSReadOnlyAccess – Grants read-only access to all Amazon Aurora resources for the AWS
account specified.

• AmazonRDSFullAccess – Grants full access to all Amazon Aurora resources for the AWS account
specified.

Other policy types
AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set the
maximum permissions that an identity-based policy can grant to an IAM entity (IAM user or role).
You can set a permissions boundary for an entity. The resulting permissions are the intersection of
entity's identity-based policies and its permissions boundaries. Resource-based policies that specify
the user or role in the Principal field are not limited by the permissions boundary. An explicit deny
in any of these policies overrides the allow. For more information about permissions boundaries, see
Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions for
an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a service for
grouping and centrally managing multiple AWS accounts that your business owns. If you enable all
features in an organization, then you can apply service control policies (SCPs) to any or all of your
accounts. The SCP limits permissions for entities in member accounts, including each AWS account
root user. For more information about Organizations and SCPs, see How SCPs work in the AWS
Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session policies.
Permissions can also come from a resource-based policy. An explicit deny in any of these policies
overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types
When multiple types of policies apply to a request, the resulting permissions are more complicated to
understand. To learn how AWS determines whether to allow a request when multiple policy types are
involved, see Policy evaluation logic in the IAM User Guide.

For more information about identity and access management for Aurora, continue to the following
pages:

• How Amazon Aurora works with IAM (p. 1740)
• Troubleshooting Amazon Aurora identity and access (p. 1782)

How Amazon Aurora works with IAM
Before you use IAM to manage access to Aurora, you should understand what IAM features are available
to use with Aurora. To get a high-level view of how Aurora and other AWS services work with IAM, see
AWS services that work with IAM in the IAM User Guide.

Topics
• Aurora identity-based policies (p. 1741)

1740

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Aurora User Guide for Aurora
How Amazon Aurora works with IAM

• Aurora resource-based policies (p. 1742)
• Authorization based on Aurora tags (p. 1743)
• Aurora IAM roles (p. 1743)

Aurora identity-based policies
With IAM identity-based policies, you can specify allowed or denied actions and resources as well as the
conditions under which actions are allowed or denied. Aurora supports specific actions, resources, and
condition keys. To learn about all of the elements that you use in a JSON policy, see IAM JSON policy
elements reference in the IAM User Guide.

Actions

The Action element of an IAM identity-based policy describes the specific action or actions that will be
allowed or denied by the policy. Policy actions usually have the same name as the associated AWS API
operation. The action is used in a policy to grant permissions to perform the associated operation.

Policy actions in Aurora use the following prefix before the action: rds:. For example, to grant someone
permission to describe DB instances with the Amazon RDS DescribeDBInstances API operation, you
include the rds:DescribeDBInstances action in their policy. Policy statements must include either
an Action or NotAction element. Aurora defines its own set of actions that describe tasks that you can
perform with this service.

To specify multiple actions in a single statement, separate them with commas as follows:

"Action": [
 "rds:action1",
 "rds:action2"

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin with
the word Describe, include the following action:

"Action": "rds:Describe*"

To see a list of Aurora actions, see Actions Defined by Amazon RDS in the Service Authorization Reference.

Resources

The Resource element specifies the object or objects to which the action applies. Statements must
include either a Resource or a NotResource element. You specify a resource using an ARN or using the
wildcard (*) to indicate that the statement applies to all resources.

The DB instance resource has the following ARN:

arn:${Partition}:rds:${Region}:${Account}:{ResourceType}/${Resource}

For more information about the format of ARNs, see Amazon Resource Names (ARNs) and AWS service
namespaces.

For example, to specify the dbtest DB instance in your statement, use the following ARN:

"Resource": "arn:aws:rds:us-west-2:123456789012:db:dbtest"

1741

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html#amazonrds-actions-as-permissions
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

Amazon Aurora User Guide for Aurora
How Amazon Aurora works with IAM

To specify all DB instances that belong to a specific account, use the wildcard (*):

"Resource": "arn:aws:rds:us-east-1:123456789012:db:*"

Some RDS API operations, such as those for creating resources, cannot be performed on a specific
resource. In those cases, you must use the wildcard (*).

"Resource": "*"

Many Amazon RDS API operations involve multiple resources. For example, CreateDBInstance creates
a DB instance. You can specify that an IAM user must use a specific security group and parameter group
when creating a DB instance. To specify multiple resources in a single statement, separate the ARNs with
commas.

"Resource": [
 "resource1",
 "resource2"

To see a list of Aurora resource types and their ARNs, see Resources Defined by Amazon RDS in the
Service Authorization Reference. To learn with which actions you can specify the ARN of each resource,
see Actions Defined by Amazon RDS.

Condition keys

The Condition element (or Condition block) lets you specify conditions in which a statement is in
effect. The Condition element is optional. You can build conditional expressions that use condition
operators, such as equals or less than, to match the condition in the policy with values in the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single Condition
element, AWS evaluates them using a logical AND operation. If you specify multiple values for a single
condition key, AWS evaluates the condition using a logical OR operation. All of the conditions must be
met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant an IAM
user permission to access a resource only if it is tagged with their IAM user name. For more information,
see IAM policy elements: Variables and tags in the IAM User Guide.

Aurora defines its own set of condition keys and also supports using some global condition keys. To see
all AWS global condition keys, see AWS global condition context keys in the IAM User Guide.

All RDS API operations support the aws:RequestedRegion condition key.

To see a list of Aurora condition keys, see Condition Keys for Amazon RDS in the Service Authorization
Reference. To learn with which actions and resources you can use a condition key, see Actions Defined by
Amazon RDS.

Examples

To view examples of Aurora identity-based policies, see Amazon Aurora identity-based policy
examples (p. 1743).

Aurora resource-based policies
Aurora does not support resource-based policies.

1742

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html#amazonrds-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html#amazonrds-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html#amazonrds-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html#amazonrds-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html#amazonrds-actions-as-permissions

Amazon Aurora User Guide for Aurora
Identity-based policy examples

Authorization based on Aurora tags
You can attach tags to Aurora resources or pass tags in a request to Aurora. To control access
based on tags, you provide tag information in the condition element of a policy using the
aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys condition keys. For
more information, see Controlling access to AWS resources using tags in the IAM User Guide. For more
information about tagging Aurora resources, see Specifying conditions: Using custom tags (p. 1750).

To view an example identity-based policy for limiting access to a resource based on the tags on
that resource, see Grant permission for actions on a resource with a specific tag with two different
values (p. 1747).

Aurora IAM roles
An IAM role is an entity within your AWS account that has specific permissions.

Using temporary credentials with Aurora

You can use temporary credentials to sign in with federation, assume an IAM role, or to assume a cross-
account role. You obtain temporary security credentials by calling AWS STS API operations such as
AssumeRole or GetFederationToken.

Aurora supports using temporary credentials.

Service-linked roles

Service-linked roles allow AWS services to access resources in other services to complete an action on
your behalf. Service-linked roles appear in the Roles list in the IAM Management Console and are owned
by the service. An IAM administrator can view but not edit the permissions for service-linked roles.

Aurora supports service-linked roles. For details about creating or managing Aurora service-linked roles,
see Using service-linked roles for Amazon Aurora (p. 1796).

Service roles

This feature allows a service to assume a service role on your behalf. This role allows the service to access
resources in other services to complete an action on your behalf. Service roles appear in the Roles list in
the IAM Management Console and are owned by your account. This means that an IAM administrator can
change the permissions for this role. However, doing so might break the functionality of the service.

Aurora supports service roles.

Amazon Aurora identity-based policy examples
By default, IAM users and roles don't have permission to create or modify Aurora resources. They also
can't perform tasks using the AWS Management Console, AWS CLI, or AWS API. An IAM administrator
must create IAM policies that grant users and roles permission to perform specific API operations on
the specified resources they need. The administrator must then attach those policies to the IAM users or
groups that require those permissions.

To learn how to create an IAM identity-based policy using these example JSON policy documents, see
Creating policies on the JSON tab in the IAM User Guide.

Topics

• Policy best practices (p. 1744)

1743

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor

Amazon Aurora User Guide for Aurora
Identity-based policy examples

• Using the Aurora console (p. 1744)
• Allow users to view their own permissions (p. 1745)
• Allow a user to create DB instances in an AWS account (p. 1745)
• Permissions required to use the console (p. 1746)
• Allow a user to perform any describe action on any RDS resource (p. 1747)
• Allow a user to create a DB instance that uses the specified DB parameter group and subnet

group (p. 1747)
• Grant permission for actions on a resource with a specific tag with two different values (p. 1747)
• Prevent a user from deleting a DB instance (p. 1748)
• Deny all access to a resource (p. 1748)
• Example policies: Using condition keys (p. 1748)
• Specifying conditions: Using custom tags (p. 1750)

Policy best practices
Identity-based policies are very powerful. They determine whether someone can create, access, or delete
Aurora resources in your account. These actions can incur costs for your AWS account. When you create
or edit identity-based policies, follow these guidelines and recommendations:

• Get Started Using AWS Managed Policies – To start using Aurora quickly, use AWS managed policies
to give your employees the permissions they need. These policies are already available in your account
and are maintained and updated by AWS. For more information, see Get started using permissions
with AWS managed policies in the IAM User Guide.

• Grant Least Privilege – When you create custom policies, grant only the permissions required
to perform a task. Start with a minimum set of permissions and grant additional permissions as
necessary. Doing so is more secure than starting with permissions that are too lenient and then trying
to tighten them later. For more information, see Grant least privilege in the IAM User Guide.

• Enable MFA for Sensitive Operations – For extra security, require IAM users to use multi-factor
authentication (MFA) to access sensitive resources or API operations. For more information, see Using
multi-factor authentication (MFA) in AWS in the IAM User Guide.

• Use Policy Conditions for Extra Security – To the extent that it's practical, define the conditions under
which your identity-based policies allow access to a resource. For example, you can write conditions to
specify a range of allowable IP addresses that a request must come from. You can also write conditions
to allow requests only within a specified date or time range, or to require the use of SSL or MFA. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

Using the Aurora console
To access the Amazon Aurora console, you must have a minimum set of permissions. These permissions
must enable you to list and view details about the Aurora resources in your AWS account. You can create
an identity-based policy that is more restrictive than the minimum required permissions. However, if you
do, the console doesn't function as intended for entities (IAM users or roles) with that policy.

To ensure that those entities can still use the Aurora console, also attach the following AWS managed
policy to the entities. For more information, see Adding permissions to a user in the IAM User Guide.

AmazonRDSReadOnlyAccess

You don't need to allow minimum console permissions for users that are making calls only to the AWS
CLI or the AWS API. Instead, allow access to only the actions that match the API operation that you're
trying to perform.

1744

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-use-aws-defined-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-use-aws-defined-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon Aurora User Guide for Aurora
Identity-based policy examples

Allow users to view their own permissions
This example shows how you might create a policy that allows IAM users to view the inline and managed
policies that are attached to their user identity. This policy includes permissions to complete this action
on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": [
 "arn:aws:iam::*:user/${aws:username}"
]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
 }

Allow a user to create DB instances in an AWS account
The following is an example policy that allows the user with the ID 123456789012 to create DB
instances for your AWS account. The policy requires that the name of the new DB instance begin with
test. The new DB instance must also use the MySQL database engine and the db.t2.micro DB
instance class. In addition, the new DB instance must use an option group and a DB parameter group that
starts with default, and it must use the default subnet group.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowCreateDBInstanceOnly",
 "Effect": "Allow",
 "Action": [
 "rds:CreateDBInstance"
],
 "Resource": [
 "arn:aws:rds:*:123456789012:db:test*",
 "arn:aws:rds:*:123456789012:og:default*",

1745

Amazon Aurora User Guide for Aurora
Identity-based policy examples

 "arn:aws:rds:*:123456789012:pg:default*",
 "arn:aws:rds:*:123456789012:subgrp:default"
],
 "Condition": {
 "StringEquals": {
 "rds:DatabaseEngine": "mysql",
 "rds:DatabaseClass": "db.t2.micro"
 }
 }
 }
]
}

The policy includes a single statement that specifies the following permissions for the IAM user:

• The policy allows the IAM user to create a DB instance using the CreateDBInstance API operation (this
also applies to the create-db-instance AWS CLI command and the AWS Management Console).

• The Resource element specifies that the user can perform actions on or with resources. You specify
resources using an Amazon Resources Name (ARN). This ARN includes the name of the service that
the resource belongs to (rds), the AWS Region (* indicates any region in this example), the user
account number (123456789012 is the user ID in this example), and the type of resource. For more
information about creating ARNs, see Working with Amazon Resource Names (ARNs) in Amazon
RDS (p. 482).

The Resource element in the example specifies the following policy constraints on resources for the
user:
• The DB instance identifier for the new DB instance must begin with test (for example,
testCustomerData1, test-region2-data).

• The option group for the new DB instance must begin with default.
• The DB parameter group for the new DB instance must begin with default.
• The subnet group for the new DB instance must be the default subnet group.

• The Condition element specifies that the DB engine must be MySQL and the DB instance class
must be db.t2.micro. The Condition element specifies the conditions when a policy should
take effect. You can add additional permissions or restrictions by using the Condition element.
For more information about specifying conditions, see Condition keys (p. 1742). This example
specifies the rds:DatabaseEngine and rds:DatabaseClass conditions. For information about
the valid condition values for rds:DatabaseEngine, see the list under the Engine parameter in
CreateDBInstance. For information about the valid condition values for rds:DatabaseClass, see
Supported DB engines for DB instance classes (p. 54).

The policy doesn't specify the Principal element because in an identity-based policy you don't specify
the principal who gets the permission. When you attach policy to a user, the user is the implicit principal.
When you attach a permission policy to an IAM role, the principal identified in the role's trust policy gets
the permissions.

To see a list of Aurora actions, see Actions Defined by Amazon RDS in the Service Authorization Reference.

Permissions required to use the console
For a user to work with the console, that user must have a minimum set of permissions. These
permissions allow the user to describe the Amazon Aurora resources for their AWS account and to
provide other related information, including Amazon EC2 security and network information.

If you create an IAM policy that is more restrictive than the minimum required permissions, the console
doesn't function as intended for users with that IAM policy. To ensure that those users can still use the
console, also attach the AmazonRDSReadOnlyAccess managed policy to the user, as described in
Managing access using policies (p. 1739).

1746

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html#amazonrds-actions-as-permissions

Amazon Aurora User Guide for Aurora
Identity-based policy examples

You don't need to allow minimum console permissions for users that are making calls only to the AWS
CLI or the Amazon RDS API.

The following policy grants full access to all Amazon Aurora resources for the root AWS account:

AmazonRDSFullAccess

Allow a user to perform any describe action on any RDS
resource
The following permissions policy grants permissions to a user to run all of the actions that begin with
Describe. These actions show information about an RDS resource, such as a DB instance. The wildcard
character (*) in the Resource element indicates that the actions are allowed for all Amazon Aurora
resources owned by the account.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowRDSDescribe",
 "Effect":"Allow",
 "Action":"rds:Describe*",
 "Resource":"*"
 }
]
}

Allow a user to create a DB instance that uses the specified DB
parameter group and subnet group
The following permissions policy grants permissions to allow a user to only create a DB instance that
must use the mydbpg DB parameter group and the mydbsubnetgroup DB subnet group.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": "rds:CreateDBInstance",
 "Resource": [
 "arn:aws:rds:*:*:pg:mydbpg",
 "arn:aws:rds:*:*:subgrp:mydbsubnetgroup"
]
 }
]
}

Grant permission for actions on a resource with a specific tag
with two different values
You can use conditions in your identity-based policy to control access to Aurora resources based on tags.
The following policy allows permission to perform the ModifyDBInstance and CreateDBSnapshot
APIs on DB instances with either the stage tag set to development or test.

1747

Amazon Aurora User Guide for Aurora
Identity-based policy examples

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowDevTestCreate",
 "Effect":"Allow",
 "Action":[
 "rds:ModifyDBInstance",
 "rds:CreateDBSnapshot"
],
 "Resource":"*",
 "Condition":{
 "StringEquals":{
 "rds:db-tag/stage":[
 "development",
 "test"
]
 }
 }
 }
]
}

Prevent a user from deleting a DB instance
The following permissions policy grants permissions to prevent a user from deleting a specific DB
instance. For example, you might want to deny the ability to delete your production DB instances to any
user that is not an administrator.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"DenyDelete1",
 "Effect":"Deny",
 "Action":"rds:DeleteDBInstance",
 "Resource":"arn:aws:rds:us-west-2:123456789012:db:my-mysql-instance"
 }
]
}

Deny all access to a resource
You can explicitly deny access to a resource. Deny policies take precedence over allow policies. The
following policy explicitly denies a user the ability to manage a resource:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": "rds:*",
 "Resource": "arn:aws:rds:us-east-1:123456789012:db:mydb"
 }
]
}

Example policies: Using condition keys
Following are examples of how you can use condition keys in Amazon Aurora IAM permissions policies.

1748

Amazon Aurora User Guide for Aurora
Identity-based policy examples

Example 1: Grant permission to create a DB instance that uses a specific DB
engine and isn't MultiAZ

The following policy uses an RDS condition key and allows a user to create only DB instances that use the
MySQL database engine and don't use MultiAZ. The Condition element indicates the requirement that
the database engine is MySQL.

{

 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowMySQLCreate",
 "Effect":"Allow",
 "Action":"rds:CreateDBInstance",
 "Resource":"*",
 "Condition":{
 "StringEquals":{
 "rds:DatabaseEngine":"mysql"
 },
 "Bool":{
 "rds:MultiAz": false
 }
 }
 }
]
}

Example 2: Explicitly deny permission to create DB instances for certain DB
instance classes and create DB instances that use Provisioned IOPS

The following policy explicitly denies permission to create DB instances that use the DB instance classes
r3.8xlarge and m4.10xlarge, which are the largest and most expensive DB instance classes. This
policy also prevents users from creating DB instances that use Provisioned IOPS, which incurs an
additional cost.

Explicitly denying permission supersedes any other permissions granted. This ensures that identities to
not accidentally get permission that you never want to grant.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"DenyLargeCreate",
 "Effect":"Deny",
 "Action":"rds:CreateDBInstance",
 "Resource":"*",
 "Condition":{
 "StringEquals":{
 "rds:DatabaseClass":[
 "db.r3.8xlarge",
 "db.m4.10xlarge"
]
 }
 }
 },
 {
 "Sid":"DenyPIOPSCreate",
 "Effect":"Deny",
 "Action":"rds:CreateDBInstance",
 "Resource":"*",

1749

Amazon Aurora User Guide for Aurora
Identity-based policy examples

 "Condition":{
 "NumericNotEquals":{
 "rds:Piops":"0"
 }
 }
 }
]
}

Example 3: Limit the set of tag keys and values that can be used to tag a
resource

The following policy uses an RDS condition key and allows the addition of a tag with the key stage to be
added to a resource with the values test, qa, and production.

{

 {
 "Version" : "2012-10-17",
 "Statement" : [{
 "Effect" : "Allow",
 "Action" : ["rds:AddTagsToResource", "rds:RemoveTagsFromResource"
],
 "Resource" : "*",
 "Condition" : { "streq" : { "rds:req-tag/stage" : ["test", "qa",
 "production"] } }
 }
]
}
}

Specifying conditions: Using custom tags
Amazon Aurora supports specifying conditions in an IAM policy using custom tags.

For example, suppose that you add a tag named environment to your DB instances with values such as
beta, staging, production, and so on. If you do, you can create a policy that restricts certain users to
DB instances based on the environment tag value.

Note
Custom tag identifiers are case-sensitive.

The following table lists the RDS tag identifiers that you can use in a Condition element.

RDS tag identifier Applies to

db-tag DB instances, including read replicas

snapshot-tag DB snapshots

ri-tag Reserved DB instances

secgrp-tag DB security groups

og-tag DB option groups

pg-tag DB parameter groups

subgrp-tag DB subnet groups

1750

Amazon Aurora User Guide for Aurora
Identity-based policy examples

RDS tag identifier Applies to

es-tag Event subscriptions

cluster-tag DB clusters

cluster-pg-tag DB cluster parameter groups

cluster-snapshot-tag DB cluster snapshots

The syntax for a custom tag condition is as follows:

"Condition":{"StringEquals":{"rds:rds-tag-identifier/tag-name": ["value"]} }

For example, the following Condition element applies to DB instances with a tag named environment
and a tag value of production.

"Condition":{"StringEquals":{"rds:db-tag/environment": ["production"]} }

For information about creating tags, see Tagging Amazon RDS resources (p. 474).

Important
If you manage access to your RDS resources using tagging, we recommend that you secure
access to the tags for your RDS resources. You can manage access to tags by creating policies
for the AddTagsToResource and RemoveTagsFromResource actions. For example, the
following policy denies users the ability to add or remove tags for all resources. You can then
create policies to allow specific users to add or remove tags.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"DenyTagUpdates",
 "Effect":"Deny",
 "Action":[
 "rds:AddTagsToResource",
 "rds:RemoveTagsFromResource"
],
 "Resource":"*"
 }
]
}

To see a list of Aurora actions, see Actions Defined by Amazon RDS in the Service Authorization Reference.

Example policies: Using custom tags

Following are examples of how you can use custom tags in Amazon Aurora IAM permissions policies. For
more information about adding tags to an Amazon Aurora resource, see Working with Amazon Resource
Names (ARNs) in Amazon RDS (p. 482).

Note
All examples use the us-west-2 region and contain fictitious account IDs.

Example 1: Grant permission for actions on a resource with a specific tag with two different
values

The following policy allows permission to perform the ModifyDBInstance and CreateDBSnapshot
APIs on DB instances with either the stage tag set to development or test.

1751

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonrds.html#amazonrds-actions-as-permissions

Amazon Aurora User Guide for Aurora
Identity-based policy examples

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowDevTestCreate",
 "Effect":"Allow",
 "Action":[
 "rds:ModifyDBInstance",
 "rds:CreateDBSnapshot"
],
 "Resource":"*",
 "Condition":{
 "StringEquals":{
 "rds:db-tag/stage":[
 "development",
 "test"
]
 }
 }
 }
]
}

Example 2: Explicitly deny permission to create a DB instance that uses specified DB parameter
groups

The following policy explicitly denies permission to create a DB instance that uses DB parameter groups
with specific tag values. You might apply this policy if you require that a specific customer-created DB
parameter group always be used when creating DB instances. Policies that use Deny are most often used
to restrict access that was granted by a broader policy.

Explicitly denying permission supersedes any other permissions granted. This ensures that identities to
not accidentally get permission that you never want to grant.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"DenyProductionCreate",
 "Effect":"Deny",
 "Action":"rds:CreateDBInstance",
 "Resource":"*",
 "Condition":{
 "StringEquals":{
 "rds:pg-tag/usage":"prod"
 }
 }
 }
]
}

Example 3: Grant permission for actions on a DB instance with an instance name that is prefixed
with a user name

The following policy allows permission to call any API (except to AddTagsToResource or
RemoveTagsFromResource) on a DB instance that has a DB instance name that is prefixed with the
user's name and that has a tag called stage equal to devo or that has no tag called stage.

The Resource line in the policy identifies a resource by its Amazon Resource Name (ARN). For more
information about using ARNs with Amazon Aurora resources, see Working with Amazon Resource
Names (ARNs) in Amazon RDS (p. 482).

1752

Amazon Aurora User Guide for Aurora
Identity-based policy examples

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowFullDevAccessNoTags",
 "Effect":"Allow",
 "NotAction":[
 "rds:AddTagsToResource",
 "rds:RemoveTagsFromResource"
],
 "Resource":"arn:aws:rds:*:123456789012:db:${aws:username}*",
 "Condition":{
 "StringEqualsIfExists":{
 "rds:db-tag/stage":"devo"
 }
 }
 }
]
}

1753

Amazon Aurora User Guide for Aurora
Cross-service confused deputy prevention

Preventing cross-service confused deputy problems
The confused deputy problem is a security issue where an entity that doesn't have permission to perform
an action can coerce a more-privileged entity to perform the action. In AWS, cross-service impersonation
can result in the confused deputy problem.

Cross-service impersonation can occur when one service (the calling service) calls another service (the
called service). The calling service can be manipulated to use its permissions to act on another customer's
resources in a way that it shouldn't have permission to access. To prevent this, AWS provides tools that
can help you protect your data for all services with service principals that have been given access to
resources in your account. For more information, see The confused deputy problem in the IAM User
Guide.

To limit the permissions that Amazon RDS gives another service for a specific resource, we recommend
using the aws:SourceArn and aws:SourceAccount global condition context keys in resource policies.

In some cases, the aws:SourceArn value doesn't contain the account ID, for example when you
use the Amazon Resource Name (ARN) for an Amazon S3 bucket. In these cases, make sure to use
both global condition context keys to limit permissions. In some cases, you use both global condition
context keys and the aws:SourceArn value contains the account ID. In these cases, make sure that the
aws:SourceAccount value and the account in the aws:SourceArn use the same account ID when
they're used in the same policy statement. If you want only one resource to be associated with the cross-
service access, use aws:SourceArn. If you want to allow any resource in the specified AWS account to
be associated with the cross-service use, use aws:SourceAccount.

Make sure that the value of aws:SourceArn is an ARN for an Amazon RDS resource type. For more
information, see Working with Amazon Resource Names (ARNs) in Amazon RDS (p. 482).

The most effective way to protect against the confused deputy problem is to use the aws:SourceArn
global condition context key with the full ARN of the resource. In some cases, you might not know
the full ARN of the resource or you might be specifying multiple resources. In these cases, use the
aws:SourceArn global context condition key with wildcards (*) for the unknown portions of the ARN.
An example is arn:aws:rds:*:123456789012:*.

The following example shows how you can use the aws:SourceArn and aws:SourceAccount global
condition context keys in Amazon RDS to prevent the confused deputy problem.

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "ConfusedDeputyPreventionExamplePolicy",
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:rds:us-east-1:123456789012:db/mydbinstance"
 },
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 }
 }
 }
}

For more examples of policies that use the aws:SourceArn and aws:SourceAccount global condition
context keys, see the following sections:

1754

https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

Amazon Aurora User Guide for Aurora
Cross-service confused deputy prevention

• Setting up access to an Amazon S3 bucket (p. 1456) (PostgreSQL import)
• Setting up access to an Amazon S3 bucket (p. 1469) (PostgreSQL export)

1755

Amazon Aurora User Guide for Aurora
IAM database authentication

IAM database authentication
You can authenticate to your DB cluster using AWS Identity and Access Management (IAM) database
authentication. IAM database authentication works with MariaDB, Aurora MySQL and Aurora PostgreSQL.
With this authentication method, you don't need to use a password when you connect to a DB cluster.
Instead, you use an authentication token.

An authentication token is a unique string of characters that Amazon Aurora generates on request.
Authentication tokens are generated using AWS Signature Version 4. Each token has a lifetime of 15
minutes. You don't need to store user credentials in the database, because authentication is managed
externally using IAM. You can also still use standard database authentication. The token is only used for
authentication and doesn't affect the session after it is established.

IAM database authentication provides the following benefits:

• Network traffic to and from the database is encrypted using Secure Socket Layer (SSL) or Transport
Layer Security (TLS). For more information about using SSL/TLS with Amazon Aurora, see Using SSL/
TLS to encrypt a connection to a DB cluster (p. 1726).

• You can use IAM to centrally manage access to your database resources, instead of managing access
individually on each DB cluster.

• For applications running on Amazon EC2, you can use profile credentials specific to your EC2 instance
to access your database instead of a password, for greater security.

Topics

• Availability for IAM database authentication (p. 1756)

• Limitations for IAM database authentication (p. 1757)

• MariaDB and Aurora MySQL recommendations for IAM database authentication (p. 1757)

• Enabling and disabling IAM database authentication (p. 1757)

• Creating and using an IAM policy for IAM database access (p. 1759)

• Creating a database account using IAM authentication (p. 1762)

• Connecting to your DB cluster using IAM authentication (p. 1763)

Availability for IAM database authentication

IAM database authentication is available for the following database engines:

• Aurora MySQL

• Aurora MySQL version 3, all minor versions

• Aurora MySQL version 2, all minor versions

• Aurora MySQL version 1.10 and higher 1.1 minor versions

• Aurora PostgreSQL

• All Aurora PostgreSQL 13 versions

• All Aurora PostgreSQL 12 versions

• Aurora PostgreSQL 11.6 and higher 11 versions

• Aurora PostgreSQL 10.11 and higher 10 versions

• Aurora PostgreSQL 9.6.16 and higher 9.6 versions

For more information, see Amazon Aurora PostgreSQL releases and engine versions (p. 1615).

1756

Amazon Aurora User Guide for Aurora
IAM database authentication

For Aurora MySQL, all supported DB instance classes support IAM database authentication, except for
db.t2.small and db.t3.small. For information about the supported DB instance classes, see Supported DB
engines for DB instance classes (p. 54).

Limitations for IAM database authentication
When using IAM database authentication, the following limitations apply:

• The maximum number of connections per second for your DB cluster might be limited depending on
its DB instance class and your workload.

• Currently, IAM database authentication doesn't support all global condition context keys.

For more information about global condition context keys, see AWS global condition context keys in
the IAM User Guide.

• Currently, IAM database authentication isn't supported for CNAMEs.
• For PostgreSQL, if the IAM role (rds_iam) is added to the master user, IAM authentication takes

precedence over Password authentication so the master user has to log in as an IAM user.

MariaDB and Aurora MySQL recommendations for IAM database
authentication
We recommend the following when using the MariaDB or Aurora MySQL DB engine:

• Use IAM database authentication as a mechanism for temporary, personal access to databases.
• Use IAM database authentication only for workloads that can be easily retried.
• Use IAM database authentication when your application requires fewer than 200 new IAM database

authentication connections per second.

The database engines that work with Amazon Aurora don't impose any limits on authentication
attempts per second. However, when you use IAM database authentication, your application must
generate an authentication token. Your application then uses that token to connect to the DB cluster.
If you exceed the limit of maximum new connections per second, then the extra overhead of IAM
database authentication can cause connection throttling. The extra overhead can cause even existing
connections to drop. For information about the maximum total connections for Aurora MySQL, see
Maximum connections to an Aurora MySQL DB instance (p. 834).

Note
These recommendations don't apply to Aurora PostgreSQL DB clusters.

Enabling and disabling IAM database authentication
By default, IAM database authentication is disabled on DB clusters. You can enable or disable IAM
database authentication using the AWS Management Console, AWS CLI, or the API.

You can enable IAM database authentication when you perform one of the following actions:

• To create a new DB cluster with IAM database authentication enabled, see Creating an Amazon Aurora
DB cluster (p. 125).

• To modify a DB cluster to enable IAM database authentication, see Modifying an Amazon Aurora DB
cluster (p. 372).

• To restore a DB cluster from a snapshot with IAM database authentication enabled, see Restoring from
a DB cluster snapshot (p. 497).

• To restore a DB cluster to a point in time with IAM database authentication enabled, see Restoring a
DB cluster to a specified time (p. 537).

1757

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon Aurora User Guide for Aurora
IAM database authentication

Console

Each creation or modification workflow has a Database authentication section, where you can
enable or disable IAM database authentication. In that section, choose Password and IAM database
authentication to enable IAM database authentication.

To enable or disable IAM database authentication for an existing DB cluster

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB cluster that you want to modify.

Note
You can only enable IAM authentication if all DB instances in the DB cluster are compatible
with IAM. Check the compatibility requirements in Availability for IAM database
authentication (p. 1756).

4. Choose Modify.

5. In the Database authentication section, choose Password and IAM database authentication to
enable IAM database authentication.

6. Choose Continue.

7. To apply the changes immediately, choose Immediately in the Scheduling of modifications section.

8. Choose Modify cluster.

AWS CLI

To create a new DB cluster with IAM authentication by using the AWS CLI, use the create-db-cluster
command. Specify the --enable-iam-database-authentication option.

To update an existing DB cluster to have or not have IAM authentication, use the AWS CLI command
modify-db-cluster. Specify either the --enable-iam-database-authentication or --no-
enable-iam-database-authentication option, as appropriate.

Note
You can only enable IAM authentication if all DB instances in the DB cluster are compatible
with IAM. Check the compatibility requirements in Availability for IAM database
authentication (p. 1756).

By default, Aurora performs the modification during the next maintenance window. If you want to
override this and enable IAM DB authentication as soon as possible, use the --apply-immediately
parameter.

If you are restoring a DB cluster, use one of the following AWS CLI commands:

• restore-db-cluster-to-point-in-time

• restore-db-cluster-from-db-snapshot

The IAM database authentication setting defaults to that of the source snapshot. To change this
setting, set the --enable-iam-database-authentication or --no-enable-iam-database-
authentication option, as appropriate.

RDS API

To create a new DB instance with IAM authentication by using the API, use the API operation
CreateDBCluster. Set the EnableIAMDatabaseAuthentication parameter to true.

1758

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/create-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-cluster-to-point-in-time.html
https://docs.aws.amazon.com/cli/latest/reference/rds/restore-db-instance-from-db-snapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html

Amazon Aurora User Guide for Aurora
IAM database authentication

To update an existing DB cluster to have IAM authentication, use the API operation ModifyDBCluster.
Set the EnableIAMDatabaseAuthentication parameter to true to enable IAM authentication, or
false to disable it.

Note
You can only enable IAM authentication if all DB instances in the DB cluster are compatible
with IAM. Check the compatibility requirements in Availability for IAM database
authentication (p. 1756).

If you are restoring a DB cluster, use one of the following API operations:

• RestoreDBClusterFromSnapshot

• RestoreDBClusterToPointInTime

The IAM database authentication setting defaults to that of the source snapshot. To change this setting,
set the EnableIAMDatabaseAuthentication parameter to true to enable IAM authentication, or
false to disable it.

Creating and using an IAM policy for IAM database access
To allow an IAM user or role to connect to your DB cluster, you must create an IAM policy. After that, you
attach the policy to an IAM user or role.

Note
To learn more about IAM policies, see Identity and access management in Amazon
Aurora (p. 1737).

The following example policy allows an IAM user to connect to a DB cluster using IAM database
authentication.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rds-db:connect"
],
 "Resource": [
 "arn:aws:rds-db:us-east-2:1234567890:dbuser:cluster-ABCDEFGHIJKL01234/db_user"
]
 }
]
}

Important
An IAM administrator user can access DB clusters without explicit permissions in an IAM policy.
The example in Create an IAM user (p. 84) creates an IAM administrator user. If you want to
restrict administrator access to DB clusters, you can create an IAM role with the appropriate,
lesser privileged permissions and assign it to the administrator.

Note
Don't confuse the rds-db: prefix with other RDS API operation prefixes that begin with
rds:. You use the rds-db: prefix and the rds-db:connect action only for IAM database
authentication. They aren't valid in any other context.
Currently, the IAM console displays an error for policies with the rds-db:connect action. You
can ignore this error.

1759

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterFromSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RestoreDBClusterToPointInTime.html

Amazon Aurora User Guide for Aurora
IAM database authentication

The example policy includes a single statement with the following elements:

• Effect – Specify Allow to grant access to the DB cluster. If you don't explicitly allow access, then
access is denied by default.

• Action – Specify rds-db:connect to allow connections to the DB cluster.
• Resource – Specify an Amazon Resource Name (ARN) that describes one database account in one DB

cluster. The ARN format is as follows.

arn:aws:rds-db:region:account-id:dbuser:DbClusterResourceId/db-user-name

In this format, replace the following:
• region is the AWS Region for the DB cluster. In the example policy, the AWS Region is us-east-2.
• account-id is the AWS account number for the DB cluster. In the example policy, the account

number is 1234567890.
• DbClusterResourceId is the identifier for the DB cluster. This identifier is unique to an AWS

Region and never changes. In the example policy, the identifier is cluster-ABCDEFGHIJKL01234.

To find a DB cluster resource ID in the AWS Management Console for Amazon Aurora, choose the
DB cluster to see its details. Then choose the Configuration tab. The Resource ID is shown in the
Configuration section.

Alternatively, you can use the AWS CLI command to list the identifiers and resource IDs for all of
your DB cluster in the current AWS Region, as shown following.

aws rds describe-db-clusters --query "DBClusters[*].
[DBClusterIdentifier,DbClusterResourceId]"

Note
If you are connecting to a database through RDS Proxy, specify the proxy resource ID, such
as prx-ABCDEFGHIJKL01234. For information about using IAM database authentication
with RDS Proxy, see Connecting to a proxy using IAM authentication (p. 304).

• db-user-name is the name of the database account to associate with IAM authentication. In the
example policy, the database account is db_user.

You can construct other ARNs to support various access patterns. The following policy allows access to
two different database accounts in a DB cluster.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rds-db:connect"
],
 "Resource": [
 "arn:aws:rds-db:us-east-2:123456789012:dbuser:cluster-ABCDEFGHIJKL01234/
jane_doe",
 "arn:aws:rds-db:us-east-2:123456789012:dbuser:cluster-ABCDEFGHIJKL01234/
mary_roe"
]
 }

1760

Amazon Aurora User Guide for Aurora
IAM database authentication

]
}

The following policy uses the "*" character to match all DB clusters and database accounts for a
particular AWS account and AWS Region.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rds-db:connect"
],
 "Resource": [
 "arn:aws:rds-db:us-east-2:1234567890:dbuser:*/*"
]
 }
]
}

The following policy matches all of the DB clusters for a particular AWS account and AWS Region.
However, the policy only grants access to DB clusters that have a jane_doe database account.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rds-db:connect"
],
 "Resource": [
 "arn:aws:rds-db:us-east-2:123456789012:dbuser:*/jane_doe"
]
 }
]
}

The IAM user or role has access to only those databases that the database user does. For example,
suppose that your DB cluster has a database named dev, and another database named test. If the
database user jane_doe has access only to dev, any IAM users or roles that access that DB cluster with
the jane_doe user also have access only to dev. This access restriction is also true for other database
objects, such as tables, views, and so on.

An IAM administrator must create IAM policies that grant users and roles permission to perform specific
API operations on the specified resources they need. The administrator must then attach those policies
to the IAM users or groups that require those permissions. For examples of policies, see Amazon Aurora
identity-based policy examples (p. 1743).

Attaching an IAM policy to an IAM user or role

After you create an IAM policy to allow database authentication, you need to attach the policy to an IAM
user or role. For a tutorial on this topic, see Create and attach your first customer managed policy in the
IAM User Guide.

1761

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_managed-policies.html

Amazon Aurora User Guide for Aurora
IAM database authentication

As you work through the tutorial, you can use one of the policy examples shown in this section as
a starting point and tailor it to your needs. At the end of the tutorial, you have an IAM user with an
attached policy that can make use of the rds-db:connect action.

Note
You can map multiple IAM users or roles to the same database user account. For example,
suppose that your IAM policy specified the following resource ARN.

arn:aws:rds-db:us-east-2:123456789012:dbuser:cluster-12ABC34DEFG5HIJ6KLMNOP78QR/
jane_doe

If you attach the policy to IAM users Jane, Bob, and Diego, then each of those users can connect
to the specified DB cluster using the jane_doe database account.

Creating a database account using IAM authentication
With IAM database authentication, you don't need to assign database passwords to the user accounts
you create. If you remove an IAM user that is mapped to a database account, you should also remove the
database account with the DROP USER statement.

Note
The user name used for IAM authentication must match the case of the user name in the
database.

Topics
• Using IAM authentication with MariaDB or MySQL (p. 1762)
• Using IAM authentication with PostgreSQL (p. 1763)

Using IAM authentication with MariaDB or MySQL

With MariaDB or MySQL, authentication is handled by AWSAuthenticationPlugin—an AWS-provided
plugin that works seamlessly with IAM to authenticate your IAM users. Connect to the DB cluster and
issue the CREATE USER statement, as shown in the following example.

CREATE USER jane_doe IDENTIFIED WITH AWSAuthenticationPlugin AS 'RDS';

The IDENTIFIED WITH clause allows MariaDB or MySQL to use the AWSAuthenticationPlugin
to authenticate the database account (jane_doe). The AS 'RDS' clause refers to the authentication
method. Make sure the specified database user name is the same as a resource in the IAM policy for
IAM database access. For more information, see Creating and using an IAM policy for IAM database
access (p. 1759).

Note
If you see the following message, it means that the AWS-provided plugin is not available for the
current DB cluster.
ERROR 1524 (HY000): Plugin 'AWSAuthenticationPlugin' is not loaded
To troubleshoot this error, verify that you are using a supported configuration and that you
have enabled IAM database authentication on your DB cluster. For more information, see
Availability for IAM database authentication (p. 1756) and Enabling and disabling IAM database
authentication (p. 1757).

After you create an account using AWSAuthenticationPlugin, you manage it in the same way as
other database accounts. For example, you can modify account privileges with GRANT and REVOKE
statements, or modify various account attributes with the ALTER USER statement.

1762

Amazon Aurora User Guide for Aurora
IAM database authentication

Using IAM authentication with PostgreSQL

To use IAM authentication with PostgreSQL, connect to the DB cluster, create database users, and then
grant them the rds_iam role as shown in the following example.

CREATE USER db_userx;
GRANT rds_iam TO db_userx;

Make sure the specified database user name is the same as a resource in the IAM policy for IAM database
access. For more information, see Creating and using an IAM policy for IAM database access (p. 1759).

Note that a PostgreSQL database user can use either IAM or Kerberos authentication but not both,
so this user can't also have the rds_ad role. This also applies to nested memberships. For more
information, see Step 7: Create Kerberos authentication PostgreSQL logins (p. 1561).

Connecting to your DB cluster using IAM authentication
With IAM database authentication, you use an authentication token when you connect to your DB
cluster. An authentication token is a string of characters that you use instead of a password. After you
generate an authentication token, it's valid for 15 minutes before it expires. If you try to connect using
an expired token, the connection request is denied.

Every authentication token must be accompanied by a valid signature, using AWS signature version 4.
(For more information, see Signature Version 4 signing process in the AWS General Reference.) The AWS
CLI and an AWS SDK, such as the AWS SDK for Java or AWS SDK for Python (Boto3), can automatically
sign each token you create.

You can use an authentication token when you connect to Amazon Aurora from another AWS service,
such as AWS Lambda. By using a token, you can avoid placing a password in your code. Alternatively, you
can use an AWS SDK to programmatically create and programmatically sign an authentication token.

After you have a signed IAM authentication token, you can connect to an Aurora DB cluster. Following,
you can find out how to do this using either a command line tool or an AWS SDK, such as the AWS SDK
for Java or AWS SDK for Python (Boto3).

For more information, see the following blog posts:

• Use IAM authentication to connect with SQL Workbench/J to Aurora MySQL or Amazon RDS for
MySQL

• Using IAM authentication to connect with pgAdmin Amazon Aurora PostgreSQL or Amazon RDS for
PostgreSQL

The following are prerequisites for connecting to your DB cluster using IAM authentication:

• Enabling and disabling IAM database authentication (p. 1757)
• Creating and using an IAM policy for IAM database access (p. 1759)
• Creating a database account using IAM authentication (p. 1762)

Topics
• Connecting to your DB cluster using IAM authentication from the command line: AWS CLI and mysql

client (p. 1764)
• Connecting to your DB cluster using IAM authentication from the command line: AWS CLI and psql

client (p. 1765)
• Connecting to your DB cluster using IAM authentication and the AWS SDK for .NET (p. 1767)
• Connecting to your DB cluster using IAM authentication and the AWS SDK for Go (p. 1769)

1763

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
http://aws.amazon.com/blogs/database/use-iam-authentication-to-connect-with-sql-workbenchj-to-amazon-aurora-mysql-or-amazon-rds-for-mysql/
http://aws.amazon.com/blogs/database/use-iam-authentication-to-connect-with-sql-workbenchj-to-amazon-aurora-mysql-or-amazon-rds-for-mysql/
http://aws.amazon.com/blogs/database/using-iam-authentication-to-connect-with-pgadmin-amazon-aurora-postgresql-or-amazon-rds-for-postgresql/
http://aws.amazon.com/blogs/database/using-iam-authentication-to-connect-with-pgadmin-amazon-aurora-postgresql-or-amazon-rds-for-postgresql/

Amazon Aurora User Guide for Aurora
IAM database authentication

• Connecting to your DB cluster using IAM authentication and the AWS SDK for Java (p. 1773)
• Connecting to your DB cluster using IAM authentication and the AWS SDK for Python

(Boto3) (p. 1780)

Connecting to your DB cluster using IAM authentication from the command line:
AWS CLI and mysql client

You can connect from the command line to an Aurora DB cluster with the AWS CLI and mysql command
line tool as described following.

The following are prerequisites for connecting to your DB cluster using IAM authentication:

• Enabling and disabling IAM database authentication (p. 1757)
• Creating and using an IAM policy for IAM database access (p. 1759)
• Creating a database account using IAM authentication (p. 1762)

Note
For information about connecting to your database using SQL Workbench/J with IAM
authentication, see the blog post Use IAM authentication to connect with SQL Workbench/J to
Aurora MySQL or Amazon RDS for MySQL.

Topics
• Generating an IAM authentication token (p. 1764)
• Connecting to a DB cluster (p. 1764)

Generating an IAM authentication token

The following example shows how to get a signed authentication token using the AWS CLI.

aws rds generate-db-auth-token \
 --hostname rdsmysql.123456789012.us-west-2.rds.amazonaws.com \
 --port 3306 \
 --region us-west-2 \
 --username jane_doe

In the example, the parameters are as follows:

• --hostname – The host name of the DB cluster that you want to access
• --port – The port number used for connecting to your DB cluster
• --region – The AWS Region where the DB cluster is running
• --username – The database account that you want to access

The first several characters of the token look like the following.

rdsmysql.123456789012.us-west-2.rds.amazonaws.com:3306/?Action=connect&DBUser=jane_doe&X-
Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Expires=900...

Connecting to a DB cluster

The general format for connecting is shown following.

mysql --host=hostName --port=portNumber --ssl-ca=full_path_to_ssl_certificate --enable-
cleartext-plugin --user=userName --password=authToken

1764

http://aws.amazon.com/blogs/database/use-iam-authentication-to-connect-with-sql-workbenchj-to-amazon-aurora-mysql-or-amazon-rds-for-mysql/
http://aws.amazon.com/blogs/database/use-iam-authentication-to-connect-with-sql-workbenchj-to-amazon-aurora-mysql-or-amazon-rds-for-mysql/

Amazon Aurora User Guide for Aurora
IAM database authentication

The parameters are as follows:

• --host – The host name of the DB cluster that you want to access
• --port – The port number used for connecting to your DB cluster
• --ssl-ca – The full path to the SSL certificate file that contains the public key

For more information, see Using SSL/TLS with Aurora MySQL DB clusters (p. 796).

To download an SSL certificate, see Using SSL/TLS to encrypt a connection to a DB cluster (p. 1726).
• --enable-cleartext-plugin – A value that specifies that AWSAuthenticationPlugin must be

used for this connection

If you are using a MariaDB client, the --enable-cleartext-plugin option isn't required.
• --user – The database account that you want to access
• --password – A signed IAM authentication token

The authentication token consists of several hundred characters. It can be unwieldy on the command
line. One way to work around this is to save the token to an environment variable, and then use that
variable when you connect. The following example shows one way to perform this workaround. In the
example, /sample_dir/ is the full path to the SSL certificate file that contains the public key.

RDSHOST="mysqlcluster.cluster-123456789012.us-east-1.rds.amazonaws.com"
TOKEN="$(aws rds generate-db-auth-token --hostname $RDSHOST --port 3306 --region us-west-2
 --username jane_doe)"

mysql --host=$RDSHOST --port=3306 --ssl-ca=/sample_dir/global-bundle.pem --enable-
cleartext-plugin --user=jane_doe --password=$TOKEN

When you connect using AWSAuthenticationPlugin, the connection is secured using SSL. To verify
this, type the following at the mysql> command prompt.

show status like 'Ssl%';

The following lines in the output show more details.

+---------------+-------------+
| Variable_name | Value

 |
+---------------+-------------+
| ... | ...
| Ssl_cipher | AES256-SHA

 |
| ... | ...
| Ssl_version | TLSv1.1

 |
| ... | ...
+-----------------------------+

Connecting to your DB cluster using IAM authentication from the command line:
AWS CLI and psql client

You can connect from the command line to an Aurora PostgreSQL DB cluster with the AWS CLI and psql
command line tool as described following.

1765

Amazon Aurora User Guide for Aurora
IAM database authentication

The following are prerequisites for connecting to your DB cluster using IAM authentication:

• Enabling and disabling IAM database authentication (p. 1757)
• Creating and using an IAM policy for IAM database access (p. 1759)
• Creating a database account using IAM authentication (p. 1762)

Note
For information about connecting to your database using pgAdmin with IAM authentication, see
the blog post Using IAM authentication to connect with pgAdmin Amazon Aurora PostgreSQL or
Amazon RDS for PostgreSQL.

Topics
• Generating an IAM authentication token (p. 1766)
• Connecting to an Aurora PostgreSQL cluster (p. 1766)

Generating an IAM authentication token

The authentication token consists of several hundred characters so it can be unwieldy on the command
line. One way to work around this is to save the token to an environment variable, and then use that
variable when you connect. The following example shows how to use the AWS CLI to get a signed
authentication token using the generate-db-auth-token command, and store it in a PGPASSWORD
environment variable.

export RDSHOST="mypostgres-cluster.cluster-123456789012.us-west-2.rds.amazonaws.com"
export PGPASSWORD="$(aws rds generate-db-auth-token --hostname $RDSHOST --port 5432 --
region us-west-2 --username jane_doe)"

In the example, the parameters to the generate-db-auth-token command are as follows:

• --hostname – The host name of the DB cluster (cluster endpoint) that you want to access
• --port – The port number used for connecting to your DB cluster
• --region – The AWS Region where the DB cluster is running
• --username – The database account that you want to access

The first several characters of the generated token look like the following.

mypostgres-cluster.cluster-123456789012.us-west-2.rds.amazonaws.com:5432/?
Action=connect&DBUser=jane_doe&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Expires=900...

Connecting to an Aurora PostgreSQL cluster

The general format for using psql to connect is shown following.

psql "host=hostName port=portNumber sslmode=verify-full
 sslrootcert=full_path_to_ssl_certificate dbname=DBName user=userName password=authToken"

The parameters are as follows:

• host – The host name of the DB cluster (cluster endpoint) that you want to access
• port – The port number used for connecting to your DB cluster
• sslmode – The SSL mode to use

1766

http://aws.amazon.com/blogs/database/using-iam-authentication-to-connect-with-pgadmin-amazon-aurora-postgresql-or-amazon-rds-for-postgresql/
http://aws.amazon.com/blogs/database/using-iam-authentication-to-connect-with-pgadmin-amazon-aurora-postgresql-or-amazon-rds-for-postgresql/

Amazon Aurora User Guide for Aurora
IAM database authentication

When you use sslmode=verify-full, the SSL connection verifies the DB cluster endpoint against
the endpoint in the SSL certificate.

• sslrootcert – The full path to the SSL certificate file that contains the public key

For more information, see Securing Aurora PostgreSQL data with SSL/TLS (p. 1298).

To download an SSL certificate, see Using SSL/TLS to encrypt a connection to a DB cluster (p. 1726).
• dbname – The database that you want to access
• user – The database account that you want to access
• password – A signed IAM authentication token

The following example shows using psql to connect. In the example, psql uses the environment variable
RDSHOST for the host and the environment variable PGPASSWORD for the generated token. Also, /
sample_dir/ is the full path to the SSL certificate file that contains the public key.

export RDSHOST="mypostgres-cluster.cluster-123456789012.us-west-2.rds.amazonaws.com"
export PGPASSWORD="$(aws rds generate-db-auth-token --hostname $RDSHOST --port 5432 --
region us-west-2 --username jane_doe)"

psql "host=$RDSHOST port=5432 sslmode=verify-full sslrootcert=/sample_dir/global-bundle.pem
 dbname=DBName user=jane_doe password=$PGPASSWORD"

Connecting to your DB cluster using IAM authentication and the AWS SDK
for .NET

You can connect to an Aurora MySQL or Aurora PostgreSQL DB cluster with the AWS SDK for .NET as
described following.

The following are prerequisites for connecting to your DB cluster using IAM authentication:

• Enabling and disabling IAM database authentication (p. 1757)
• Creating and using an IAM policy for IAM database access (p. 1759)
• Creating a database account using IAM authentication (p. 1762)

The following code examples show how to generate an authentication token, and then use it to connect
to a DB cluster.

To run this code example, you need the AWS SDK for .NET, found on the AWS site. The AWSSDK.CORE
and the AWSSDK.RDS packages are required. To connect to a DB instance, use the .NET database
connector for the DB engine, such as MySqlConnector for MariaDB or MySQL, or Npgsql for PostgreSQL.

This code connects to an Aurora MySQL DB cluster.

Modify the values of the following variables as needed:

• server – The endpoint of the DB cluster that you want to access
• user – The database account that you want to access
• password – The password for the specified user
• database – The database that you want to access
• port – The port number used for connecting to your DB cluster
• SslMode – The SSL mode to use

When you use SslMode=Required, the SSL connection verifies the DB cluster endpoint against the
endpoint in the SSL certificate.

1767

http://aws.amazon.com/sdk-for-net/

Amazon Aurora User Guide for Aurora
IAM database authentication

• SslCa – The full path to the SSL certificate for Amazon Aurora

To download a certificate, see Using SSL/TLS to encrypt a connection to a DB cluster (p. 1726).

using System;
using System.Data;
using MySql.Data;
using MySql.Data.MySqlClient;
using Amazon;

namespace ubuntu
{
 class Program
 {
 static void Main(string[] args)
 {
 var pwd =
 Amazon.RDS.Util.RDSAuthTokenGenerator.GenerateAuthToken(RegionEndpoint.USEast1,
 "mysqlcluster.cluster-123456789012.us-east-1.rds.amazonaws.com", 3306, "jane_doe");
 // for debug only Console.Write("{0}\n", pwd); //this verifies the token is
 generated

 MySqlConnection conn = new
 MySqlConnection($"server=mysqlcluster.cluster-123456789012.us-
east-1.rds.amazonaws.com;user=jane_doe;database=mydB;port=3306;password=password;SslMode=Required;SslCa=full_path_to_ssl_certificate");
 conn.Open();

 // Define a query
 MySqlCommand sampleCommand = new MySqlCommand("SHOW DATABASES;", conn);

 // Execute a query
 MySqlDataReader mysqlDataRdr = sampleCommand.ExecuteReader();

 // Read all rows and output the first column in each row
 while (mysqlDataRdr.Read())
 Console.WriteLine(mysqlDataRdr[0]);

 mysqlDataRdr.Close();
 // Close connection
 conn.Close();
 }
 }
}

This code connects to an Aurora PostgreSQL DB cluster.

Modify the values of the following variables as needed:

• Server – The endpoint of the DB cluster that you want to access
• User ID – The database account that you want to access
• Password – The password for the specified user
• Database – The database that you want to access
• Port – The port number used for connecting to your DB cluster
• SSL Mode – The SSL mode to use

When you use SSL Mode=Required, the SSL connection verifies the DB cluster endpoint against the
endpoint in the SSL certificate.

• SSL Certificate – The full path to the SSL certificate for Amazon Aurora

To download a certificate, see Using SSL/TLS to encrypt a connection to a DB cluster (p. 1726).

1768

Amazon Aurora User Guide for Aurora
IAM database authentication

using System;
using Npgsql;
using Amazon.RDS.Util;

namespace ConsoleApp1
{
 class Program
 {
 static void Main(string[] args)
 {
 var pwd =
 RDSAuthTokenGenerator.GenerateAuthToken("postgresmycluster.cluster-123456789012.us-
east-1.rds.amazonaws.com", 5432, "jane_doe");
// for debug only Console.Write("{0}\n", pwd); //this verifies the token is generated

 NpgsqlConnection conn = new
 NpgsqlConnection($"Server=postgresmycluster.cluster-123456789012.us-
east-1.rds.amazonaws.com;User Id=jane_doe;Password=password;Database=mydb;SSL
 Mode=Require;SSL Certificate=full_path_to_ssl_certificate");
 conn.Open();

 // Define a query
 NpgsqlCommand cmd = new NpgsqlCommand("select count(*) FROM pg_user",
 conn);

 // Execute a query
 NpgsqlDataReader dr = cmd.ExecuteReader();

 // Read all rows and output the first column in each row
 while (dr.Read())
 Console.Write("{0}\n", dr[0]);

 // Close connection
 conn.Close();
 }
 }
}

Connecting to your DB cluster using IAM authentication and the AWS SDK for Go

You can connect to an Aurora MySQL or Aurora PostgreSQL DB cluster with the AWS SDK for Go as
described following.

The following are prerequisites for connecting to your DB cluster using IAM authentication:

• Enabling and disabling IAM database authentication (p. 1757)

• Creating and using an IAM policy for IAM database access (p. 1759)

• Creating a database account using IAM authentication (p. 1762)

To run these code examples, you need the AWS SDK for Go, found on the AWS site.

Modify the values of the following variables as needed:

• dbName – The database that you want to access

• dbUser – The database account that you want to access

• dbHost – The endpoint of the DB cluster that you want to access

• dbPort – The port number used for connecting to your DB cluster

• region – The AWS Region where the DB cluster is running

1769

http://aws.amazon.com/sdk-for-go/

Amazon Aurora User Guide for Aurora
IAM database authentication

In addition, make sure the imported libraries in the sample code exist on your system.

Important
The examples in this section use the following code to provide credentials that access a
database from a local environment:
creds := credentials.NewEnvCredentials()
If you are accessing a database from an AWS service, such as Amazon EC2 or Amazon ECS, you
can replace the code with the following code:
sess := session.Must(session.NewSession())
creds := sess.Config.Credentials
If you make this change, make sure you add the following import:
"github.com/aws/aws-sdk-go/aws/session"

Topics
• Connecting using IAM authentication and the AWS SDK for Go V2 (p. 1770)
• Connecting using IAM authentication and the AWS SDK for Go V1. (p. 1771)

Connecting using IAM authentication and the AWS SDK for Go V2

You can connect to a DB cluster using IAM authentication and the AWS SDK for Go V2.

The following code examples show how to generate an authentication token, and then use it to connect
to a DB cluster.

This code connects to an Aurora MySQL DB cluster.

package main

import (
 "context"
 "database/sql"
 "fmt"

 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/feature/rds/auth"
 _ "github.com/lib/pq"
)

func main() {

 var dbName string = "DatabaseName"
 var dbUser string = "DatabaseUser"
 var dbHost string = "mysqlcluster.cluster-123456789012.us-east-1.rds.amazonaws.com "
 var dbPort int = 3306
 var dbEndpoint string = fmt.Sprintf("%s:%d", dbHost, dbPort)
 var region string = "us-east-1"

 cfg, err := config.LoadDefaultConfig(context.TODO())
 if err != nil {
 panic("configuration error: " + err.Error())
 }

 authenticationToken, err := auth.BuildAuthToken(
 context.TODO(), dbEndpoint, region, dbUser, cfg.Credentials)
 if err != nil {
 panic("failed to create authentication token: " + err.Error())
 }

 dsn := fmt.Sprintf("%s:%s@tcp(%s)/%s?tls=true&allowCleartextPasswords=true",
 dbUser, authenticationToken, dbEndpoint, dbName,
)

1770

Amazon Aurora User Guide for Aurora
IAM database authentication

 db, err := sql.Open("mysql", dsn)
 if err != nil {
 panic(err)
 }

 err = db.Ping()
 if err != nil {
 panic(err)
 }
}

This code connects to an Aurora PostgreSQL DB cluster.

package main

import (
 "context"
 "database/sql"
 "fmt"

 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/feature/rds/auth"
 _ "github.com/lib/pq"
)

func main() {

 var dbName string = "DatabaseName"
 var dbUser string = "DatabaseUser"
 var dbHost string = "postgresmycluster.cluster-123456789012.us-
east-1.rds.amazonaws.com"
 var dbPort int = 5432
 var dbEndpoint string = fmt.Sprintf("%s:%d", dbHost, dbPort)
 var region string = "us-east-1"

 cfg, err := config.LoadDefaultConfig(context.TODO())
 if err != nil {
 panic("configuration error: " + err.Error())
 }

 authenticationToken, err := auth.BuildAuthToken(
 context.TODO(), dbEndpoint, region, dbUser, cfg.Credentials)
 if err != nil {
 panic("failed to create authentication token: " + err.Error())
 }

 dsn := fmt.Sprintf("host=%s port=%d user=%s password=%s dbname=%s",
 dbHost, dbPort, dbUser, authenticationToken, dbName,
)

 db, err := sql.Open("postgres", dsn)
 if err != nil {
 panic(err)
 }

 err = db.Ping()
 if err != nil {
 panic(err)
 }
}

Connecting using IAM authentication and the AWS SDK for Go V1.

You can connect to a DB cluster using IAM authentication and the AWS SDK for Go V1

1771

Amazon Aurora User Guide for Aurora
IAM database authentication

The following code examples show how to generate an authentication token, and then use it to connect
to a DB cluster.

This code connects to an Aurora MySQL DB cluster.

package main

import (
 "database/sql"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go/aws/credentials"
 "github.com/aws/aws-sdk-go/service/rds/rdsutils"
 _ "github.com/go-sql-driver/mysql"
)

func main() {
 dbName := "app"
 dbUser := "jane_doe"
 dbHost := "mysqlcluster.cluster-123456789012.us-east-1.rds.amazonaws.com"
 dbPort := 3306
 dbEndpoint := fmt.Sprintf("%s:%d", dbHost, dbPort)
 region := "us-east-1"

 creds := credentials.NewEnvCredentials()
 authToken, err := rdsutils.BuildAuthToken(dbEndpoint, region, dbUser, creds)
 if err != nil {
 panic(err)
 }

 dsn := fmt.Sprintf("%s:%s@tcp(%s)/%s?tls=true&allowCleartextPasswords=true",
 dbUser, authToken, dbEndpoint, dbName,
)

 db, err := sql.Open("mysql", dsn)
 if err != nil {
 panic(err)
 }

 err = db.Ping()
 if err != nil {
 panic(err)
 }
}

This code connects to an Aurora PostgreSQL DB cluster.

package main

import (
 "database/sql"
 "fmt"

 "github.com/aws/aws-sdk-go/aws/credentials"
 "github.com/aws/aws-sdk-go/service/rds/rdsutils"
 _ "github.com/lib/pq"
)

func main() {
 dbName := "app"
 dbUser := "jane_doe"
 dbHost := "postgresmycluster.cluster-123456789012.us-east-1.rds.amazonaws.com"
 dbPort := 5432

1772

Amazon Aurora User Guide for Aurora
IAM database authentication

 dbEndpoint := fmt.Sprintf("%s:%d", dbHost, dbPort)
 region := "us-east-1"

 creds := credentials.NewEnvCredentials()
 authToken, err := rdsutils.BuildAuthToken(dbEndpoint, region, dbUser, creds)
 if err != nil {
 panic(err)
 }

 dsn := fmt.Sprintf("host=%s port=%d user=%s password=%s dbname=%s",
 dbHost, dbPort, dbUser, authToken, dbName,
)

 db, err := sql.Open("postgres", dsn)
 if err != nil {
 panic(err)
 }

 err = db.Ping()
 if err != nil {
 panic(err)
 }
}

Connecting to your DB cluster using IAM authentication and the AWS SDK for
Java

You can connect to an Aurora MySQL or Aurora PostgreSQL DB cluster with the AWS SDK for Java as
described following.

The following are prerequisites for connecting to your DB cluster using IAM authentication:

• Enabling and disabling IAM database authentication (p. 1757)

• Creating and using an IAM policy for IAM database access (p. 1759)

• Creating a database account using IAM authentication (p. 1762)

• Set up the AWS SDK for Java

Topics

• Generating an IAM authentication token (p. 1773)

• Manually constructing an IAM authentication token (p. 1774)

• Connecting to a DB cluster (p. 1777)

Generating an IAM authentication token

If you are writing programs using the AWS SDK for Java, you can get a signed authentication token
using the RdsIamAuthTokenGenerator class. Using this class requires that you provide AWS
credentials. To do this, you create an instance of the DefaultAWSCredentialsProviderChain class.
DefaultAWSCredentialsProviderChain uses the first AWS access key and secret key that it finds in
the default credential provider chain. For more information about AWS access keys, see Managing access
keys for IAM users.

After you create an instance of RdsIamAuthTokenGenerator, you can call the getAuthToken
method to obtain a signed token. Provide the AWS Region, host name, port number, and user name. The
following code example illustrates how to do this.

package com.amazonaws.codesamples;

1773

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-install.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html#credentials-default
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

Amazon Aurora User Guide for Aurora
IAM database authentication

import com.amazonaws.auth.DefaultAWSCredentialsProviderChain;
import com.amazonaws.services.rds.auth.GetIamAuthTokenRequest;
import com.amazonaws.services.rds.auth.RdsIamAuthTokenGenerator;

public class GenerateRDSAuthToken {

 public static void main(String[] args) {

 String region = "us-west-2";
 String hostname = "rdsmysql.123456789012.us-west-2.rds.amazonaws.com";
 String port = "3306";
 String username = "jane_doe";

 System.out.println(generateAuthToken(region, hostname, port, username));
 }

 static String generateAuthToken(String region, String hostName, String port, String
 username) {

 RdsIamAuthTokenGenerator generator = RdsIamAuthTokenGenerator.builder()
 .credentials(new DefaultAWSCredentialsProviderChain())
 .region(region)
 .build();

 String authToken = generator.getAuthToken(
 GetIamAuthTokenRequest.builder()
 .hostname(hostName)
 .port(Integer.parseInt(port))
 .userName(username)
 .build());

 return authToken;
 }

}

Manually constructing an IAM authentication token

In Java, the easiest way to generate an authentication token is to use RdsIamAuthTokenGenerator.
This class creates an authentication token for you, and then signs it using AWS signature version 4. For
more information, see Signature version 4 signing process in the AWS General Reference.

However, you can also construct and sign an authentication token manually, as shown in the following
code example.

package com.amazonaws.codesamples;

import com.amazonaws.SdkClientException;
import com.amazonaws.auth.DefaultAWSCredentialsProviderChain;
import com.amazonaws.auth.SigningAlgorithm;
import com.amazonaws.util.BinaryUtils;
import org.apache.commons.lang3.StringUtils;

import javax.crypto.Mac;
import javax.crypto.spec.SecretKeySpec;
import java.nio.charset.Charset;
import java.security.MessageDigest;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.SortedMap;
import java.util.TreeMap;

import static com.amazonaws.auth.internal.SignerConstants.AWS4_TERMINATOR;

1774

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Amazon Aurora User Guide for Aurora
IAM database authentication

import static com.amazonaws.util.StringUtils.UTF8;

public class CreateRDSAuthTokenManually {
 public static String httpMethod = "GET";
 public static String action = "connect";
 public static String canonicalURIParameter = "/";
 public static SortedMap<String, String> canonicalQueryParameters = new TreeMap();
 public static String payload = StringUtils.EMPTY;
 public static String signedHeader = "host";
 public static String algorithm = "AWS4-HMAC-SHA256";
 public static String serviceName = "rds-db";
 public static String requestWithoutSignature;

 public static void main(String[] args) throws Exception {

 String region = "us-west-2";
 String instanceName = "rdsmysql.123456789012.us-west-2.rds.amazonaws.com";
 String port = "3306";
 String username = "jane_doe";

 Date now = new Date();
 String date = new SimpleDateFormat("yyyyMMdd").format(now);
 String dateTimeStamp = new SimpleDateFormat("yyyyMMdd'T'HHmmss'Z'").format(now);
 DefaultAWSCredentialsProviderChain creds = new
 DefaultAWSCredentialsProviderChain();
 String awsAccessKey = creds.getCredentials().getAWSAccessKeyId();
 String awsSecretKey = creds.getCredentials().getAWSSecretKey();
 String expiryMinutes = "900";

 System.out.println("Step 1: Create a canonical request:");
 String canonicalString = createCanonicalString(username, awsAccessKey, date,
 dateTimeStamp, region, expiryMinutes, instanceName, port);
 System.out.println(canonicalString);
 System.out.println();

 System.out.println("Step 2: Create a string to sign:");
 String stringToSign = createStringToSign(dateTimeStamp, canonicalString,
 awsAccessKey, date, region);
 System.out.println(stringToSign);
 System.out.println();

 System.out.println("Step 3: Calculate the signature:");
 String signature = BinaryUtils.toHex(calculateSignature(stringToSign,
 newSigningKey(awsSecretKey, date, region, serviceName)));
 System.out.println(signature);
 System.out.println();

 System.out.println("Step 4: Add the signing info to the request");
 System.out.println(appendSignature(signature));
 System.out.println();

 }

 //Step 1: Create a canonical request date should be in format YYYYMMDD and dateTime
 should be in format YYYYMMDDTHHMMSSZ
 public static String createCanonicalString(String user, String accessKey, String date,
 String dateTime, String region, String expiryPeriod, String hostName, String port) throws
 Exception {
 canonicalQueryParameters.put("Action", action);
 canonicalQueryParameters.put("DBUser", user);
 canonicalQueryParameters.put("X-Amz-Algorithm", "AWS4-HMAC-SHA256");
 canonicalQueryParameters.put("X-Amz-Credential", accessKey + "%2F" + date + "%2F" +
 region + "%2F" + serviceName + "%2Faws4_request");
 canonicalQueryParameters.put("X-Amz-Date", dateTime);
 canonicalQueryParameters.put("X-Amz-Expires", expiryPeriod);
 canonicalQueryParameters.put("X-Amz-SignedHeaders", signedHeader);

1775

Amazon Aurora User Guide for Aurora
IAM database authentication

 String canonicalQueryString = "";
 while(!canonicalQueryParameters.isEmpty()) {
 String currentQueryParameter = canonicalQueryParameters.firstKey();
 String currentQueryParameterValue =
 canonicalQueryParameters.remove(currentQueryParameter);
 canonicalQueryString = canonicalQueryString + currentQueryParameter + "=" +
 currentQueryParameterValue;
 if (!currentQueryParameter.equals("X-Amz-SignedHeaders")) {
 canonicalQueryString += "&";
 }
 }
 String canonicalHeaders = "host:" + hostName + ":" + port + '\n';
 requestWithoutSignature = hostName + ":" + port + "/?" + canonicalQueryString;

 String hashedPayload = BinaryUtils.toHex(hash(payload));
 return httpMethod + '\n' + canonicalURIParameter + '\n' + canonicalQueryString +
 '\n' + canonicalHeaders + '\n' + signedHeader + '\n' + hashedPayload;

 }

 //Step 2: Create a string to sign using sig v4
 public static String createStringToSign(String dateTime, String canonicalRequest,
 String accessKey, String date, String region) throws Exception {
 String credentialScope = date + "/" + region + "/" + serviceName + "/aws4_request";
 return algorithm + '\n' + dateTime + '\n' + credentialScope + '\n' +
 BinaryUtils.toHex(hash(canonicalRequest));

 }

 //Step 3: Calculate signature
 /**
 * Step 3 of the &AWS; Signature version 4 calculation. It involves deriving
 * the signing key and computing the signature. Refer to
 * http://docs.aws.amazon
 * .com/general/latest/gr/sigv4-calculate-signature.html
 */
 public static byte[] calculateSignature(String stringToSign,
 byte[] signingKey) {
 return sign(stringToSign.getBytes(Charset.forName("UTF-8")), signingKey,
 SigningAlgorithm.HmacSHA256);
 }

 public static byte[] sign(byte[] data, byte[] key,
 SigningAlgorithm algorithm) throws SdkClientException {
 try {
 Mac mac = algorithm.getMac();
 mac.init(new SecretKeySpec(key, algorithm.toString()));
 return mac.doFinal(data);
 } catch (Exception e) {
 throw new SdkClientException(
 "Unable to calculate a request signature: "
 + e.getMessage(), e);
 }
 }

 public static byte[] newSigningKey(String secretKey,
 String dateStamp, String regionName, String serviceName)
 {
 byte[] kSecret = ("AWS4" + secretKey).getBytes(Charset.forName("UTF-8"));
 byte[] kDate = sign(dateStamp, kSecret, SigningAlgorithm.HmacSHA256);
 byte[] kRegion = sign(regionName, kDate, SigningAlgorithm.HmacSHA256);
 byte[] kService = sign(serviceName, kRegion,
 SigningAlgorithm.HmacSHA256);
 return sign(AWS4_TERMINATOR, kService, SigningAlgorithm.HmacSHA256);
 }

1776

Amazon Aurora User Guide for Aurora
IAM database authentication

 public static byte[] sign(String stringData, byte[] key,
 SigningAlgorithm algorithm) throws SdkClientException {
 try {
 byte[] data = stringData.getBytes(UTF8);
 return sign(data, key, algorithm);
 } catch (Exception e) {
 throw new SdkClientException(
 "Unable to calculate a request signature: "
 + e.getMessage(), e);
 }
 }

 //Step 4: append the signature
 public static String appendSignature(String signature) {
 return requestWithoutSignature + "&X-Amz-Signature=" + signature;
 }

 public static byte[] hash(String s) throws Exception {
 try {
 MessageDigest md = MessageDigest.getInstance("SHA-256");
 md.update(s.getBytes(UTF8));
 return md.digest();
 } catch (Exception e) {
 throw new SdkClientException(
 "Unable to compute hash while signing request: "
 + e.getMessage(), e);
 }
 }
}

Connecting to a DB cluster

The following code example shows how to generate an authentication token, and then use it to connect
to a cluster running MariaDB or MySQL.

To run this code example, you need the AWS SDK for Java, found on the AWS site. In addition, you need
the following:

• MySQL Connector/J. This code example was tested with mysql-connector-java-5.1.33-
bin.jar.

• An intermediate certificate for Amazon Aurora that is specific to an AWS Region. (For more
information, see Using SSL/TLS to encrypt a connection to a DB cluster (p. 1726).) At runtime, the
class loader looks for the certificate in the same directory as this Java code example, so that the class
loader can find it.

• Modify the values of the following variables as needed:
• RDS_INSTANCE_HOSTNAME – The host name of the DB cluster that you want to access.
• RDS_INSTANCE_PORT – The port number used for connecting to your PostgreSQL DB cluster.
• REGION_NAME – The AWS Region where the DB cluster is running.
• DB_USER – The database account that you want to access.
• SSL_CERTIFICATE – An SSL certificate for Amazon Aurora that is specific to an AWS Region.

To download a certificate for your AWS Region, see Using SSL/TLS to encrypt a connection to a DB
cluster (p. 1726). Place the SSL certificate in the same directory as this Java program file, so that the
class loader can find the certificate at runtime.

This code example obtains AWS credentials from the default credential provider chain.

package com.amazonaws.samples;

1777

http://aws.amazon.com/sdk-for-java/
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html#credentials-default

Amazon Aurora User Guide for Aurora
IAM database authentication

import com.amazonaws.services.rds.auth.RdsIamAuthTokenGenerator;
import com.amazonaws.services.rds.auth.GetIamAuthTokenRequest;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.auth.DefaultAWSCredentialsProviderChain;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

import java.io.File;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.security.KeyStore;
import java.security.cert.CertificateFactory;
import java.security.cert.X509Certificate;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;
import java.util.Properties;

import java.net.URL;

public class IAMDatabaseAuthenticationTester {
 //&AWS; Credentials of the IAM user with policy enabling IAM Database Authenticated
 access to the db by the db user.
 private static final DefaultAWSCredentialsProviderChain creds = new
 DefaultAWSCredentialsProviderChain();
 private static final String AWS_ACCESS_KEY =
 creds.getCredentials().getAWSAccessKeyId();
 private static final String AWS_SECRET_KEY = creds.getCredentials().getAWSSecretKey();

 //Configuration parameters for the generation of the IAM Database Authentication token
 private static final String RDS_INSTANCE_HOSTNAME = "rdsmysql.123456789012.us-
west-2.rds.amazonaws.com";
 private static final int RDS_INSTANCE_PORT = 3306;
 private static final String REGION_NAME = "us-west-2";
 private static final String DB_USER = "jane_doe";
 private static final String JDBC_URL = "jdbc:mysql://" + RDS_INSTANCE_HOSTNAME + ":" +
 RDS_INSTANCE_PORT;

 private static final String SSL_CERTIFICATE = "rds-ca-2019-us-west-2.pem";

 private static final String KEY_STORE_TYPE = "JKS";
 private static final String KEY_STORE_PROVIDER = "SUN";
 private static final String KEY_STORE_FILE_PREFIX = "sys-connect-via-ssl-test-cacerts";
 private static final String KEY_STORE_FILE_SUFFIX = ".jks";
 private static final String DEFAULT_KEY_STORE_PASSWORD = "changeit";

 public static void main(String[] args) throws Exception {
 //get the connection
 Connection connection = getDBConnectionUsingIam();

 //verify the connection is successful
 Statement stmt= connection.createStatement();
 ResultSet rs=stmt.executeQuery("SELECT 'Success!' FROM DUAL;");
 while (rs.next()) {
 String id = rs.getString(1);
 System.out.println(id); //Should print "Success!"
 }

 //close the connection
 stmt.close();
 connection.close();

 clearSslProperties();

 }

1778

Amazon Aurora User Guide for Aurora
IAM database authentication

 /**
 * This method returns a connection to the db instance authenticated using IAM Database
 Authentication
 * @return
 * @throws Exception
 */
 private static Connection getDBConnectionUsingIam() throws Exception {
 setSslProperties();
 return DriverManager.getConnection(JDBC_URL, setMySqlConnectionProperties());
 }

 /**
 * This method sets the mysql connection properties which includes the IAM Database
 Authentication token
 * as the password. It also specifies that SSL verification is required.
 * @return
 */
 private static Properties setMySqlConnectionProperties() {
 Properties mysqlConnectionProperties = new Properties();
 mysqlConnectionProperties.setProperty("verifyServerCertificate","true");
 mysqlConnectionProperties.setProperty("useSSL", "true");
 mysqlConnectionProperties.setProperty("user",DB_USER);
 mysqlConnectionProperties.setProperty("password",generateAuthToken());
 return mysqlConnectionProperties;
 }

 /**
 * This method generates the IAM Auth Token.
 * An example IAM Auth Token would look like follows:
 * btusi123.cmz7kenwo2ye.rds.cn-north-1.amazonaws.com.cn:3306/?
Action=connect&DBUser=iamtestuser&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-
Date=20171003T010726Z&X-Amz-SignedHeaders=host&X-Amz-Expires=899&X-Amz-
Credential=AKIAPFXHGVDI5RNFO4AQ%2F20171003%2Fcn-north-1%2Frds-db%2Faws4_request&X-Amz-
Signature=f9f45ef96c1f770cdad11a53e33ffa4c3730bc03fdee820cfdf1322eed15483b
 * @return
 */
 private static String generateAuthToken() {
 BasicAWSCredentials awsCredentials = new BasicAWSCredentials(AWS_ACCESS_KEY,
 AWS_SECRET_KEY);

 RdsIamAuthTokenGenerator generator = RdsIamAuthTokenGenerator.builder()
 .credentials(new
 AWSStaticCredentialsProvider(awsCredentials)).region(REGION_NAME).build();
 return generator.getAuthToken(GetIamAuthTokenRequest.builder()

 .hostname(RDS_INSTANCE_HOSTNAME).port(RDS_INSTANCE_PORT).userName(DB_USER).build());
 }

 /**
 * This method sets the SSL properties which specify the key store file, its type and
 password:
 * @throws Exception
 */
 private static void setSslProperties() throws Exception {
 System.setProperty("javax.net.ssl.trustStore", createKeyStoreFile());
 System.setProperty("javax.net.ssl.trustStoreType", KEY_STORE_TYPE);
 System.setProperty("javax.net.ssl.trustStorePassword", DEFAULT_KEY_STORE_PASSWORD);
 }

 /**
 * This method returns the path of the Key Store File needed for the SSL verification
 during the IAM Database Authentication to
 * the db instance.
 * @return
 * @throws Exception

1779

Amazon Aurora User Guide for Aurora
IAM database authentication

 */
 private static String createKeyStoreFile() throws Exception {
 return createKeyStoreFile(createCertificate()).getPath();
 }

 /**
 * This method generates the SSL certificate
 * @return
 * @throws Exception
 */
 private static X509Certificate createCertificate() throws Exception {
 CertificateFactory certFactory = CertificateFactory.getInstance("X.509");
 URL url = new File(SSL_CERTIFICATE).toURI().toURL();
 if (url == null) {
 throw new Exception();
 }
 try (InputStream certInputStream = url.openStream()) {
 return (X509Certificate) certFactory.generateCertificate(certInputStream);
 }
 }

 /**
 * This method creates the Key Store File
 * @param rootX509Certificate - the SSL certificate to be stored in the KeyStore
 * @return
 * @throws Exception
 */
 private static File createKeyStoreFile(X509Certificate rootX509Certificate) throws
 Exception {
 File keyStoreFile = File.createTempFile(KEY_STORE_FILE_PREFIX,
 KEY_STORE_FILE_SUFFIX);
 try (FileOutputStream fos = new FileOutputStream(keyStoreFile.getPath())) {
 KeyStore ks = KeyStore.getInstance(KEY_STORE_TYPE, KEY_STORE_PROVIDER);
 ks.load(null);
 ks.setCertificateEntry("rootCaCertificate", rootX509Certificate);
 ks.store(fos, DEFAULT_KEY_STORE_PASSWORD.toCharArray());
 }
 return keyStoreFile;
 }

 /**
 * This method clears the SSL properties.
 * @throws Exception
 */
 private static void clearSslProperties() throws Exception {
 System.clearProperty("javax.net.ssl.trustStore");
 System.clearProperty("javax.net.ssl.trustStoreType");
 System.clearProperty("javax.net.ssl.trustStorePassword");
 }

}

Connecting to your DB cluster using IAM authentication and the AWS SDK for
Python (Boto3)

You can connect to an Aurora MySQL or Aurora PostgreSQL DB cluster with the AWS SDK for Python
(Boto3) as described following.

The following are prerequisites for connecting to your DB cluster using IAM authentication:

• Enabling and disabling IAM database authentication (p. 1757)
• Creating and using an IAM policy for IAM database access (p. 1759)
• Creating a database account using IAM authentication (p. 1762)

1780

Amazon Aurora User Guide for Aurora
IAM database authentication

In addition, make sure the imported libraries in the sample code exist on your system.

The code examples use profiles for shared credentials. For information about the specifying credentials,
see Credentials in the AWS SDK for Python (Boto3) documentation.

The following code examples show how to generate an authentication token, and then use it to connect
to a DB cluster.

To run this code example, you need the AWS SDK for Python (Boto3), found on the AWS site.

Modify the values of the following variables as needed:

• ENDPOINT – The endpoint of the DB cluster that you want to access
• PORT – The port number used for connecting to your DB cluster
• USER – The database account that you want to access.
• REGION – The AWS Region where the DB cluster is running
• DBNAME – The database that you want to access
• SSLCERTIFICATE – The full path to the SSL certificate for Amazon Aurora

To download a certificate, see Using SSL/TLS to encrypt a connection to a DB cluster (p. 1726).

For ssl_ca, specify an SSL certificate. To download an SSL certificate, see Using SSL/TLS to encrypt a
connection to a DB cluster (p. 1726).

This code connects to an Aurora MySQL DB cluster.

Before running this code, install Connector/Python by following the instructions in Connector/Python
Installation in the MySQL documentation.

import mysql.connector
import sys
import boto3
import os

ENDPOINT="mysqlcluster.cluster-123456789012.us-east-1.rds.amazonaws.com"
PORT="3306"
USER="jane_doe"
REGION="us-east-1"
DBNAME="mydb"
os.environ['LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN'] = '1'

#gets the credentials from .aws/credentials
session = boto3.Session(profile_name='default')
client = session.client('rds')

token = client.generate_db_auth_token(DBHostname=ENDPOINT, Port=PORT, DBUsername=USER,
 Region=REGION)

try:
 conn = mysql.connector.connect(host=ENDPOINT, user=USER, passwd=token, port=PORT,
 database=DBNAME, ssl_ca='SSLCERTIFICATE')
 cur = conn.cursor()
 cur.execute("""SELECT now()""")
 query_results = cur.fetchall()
 print(query_results)
except Exception as e:
 print("Database connection failed due to {}".format(e))

This code connects to an Aurora PostgreSQL DB cluster.

1781

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
http://aws.amazon.com/sdk-for-python/
https://dev.mysql.com/doc/connector-python/en/connector-python-installation.html
https://dev.mysql.com/doc/connector-python/en/connector-python-installation.html

Amazon Aurora User Guide for Aurora
Troubleshooting

Before running this code, install psycopg2 by following the instructions in Psycopg documentation.

import psycopg2
import sys
import boto3
import os

ENDPOINT="postgresmycluster.cluster-123456789012.us-east-1.rds.amazonaws.com"
PORT="5432"
USER="jane_doe"
REGION="us-east-1"
DBNAME="mydb"

#gets the credentials from .aws/credentials
session = boto3.Session(profile_name='RDSCreds')
client = session.client('rds')

token = client.generate_db_auth_token(DBHostname=ENDPOINT, Port=PORT, DBUsername=USER,
 Region=REGION)

try:
 conn = psycopg2.connect(host=ENDPOINT, port=PORT, database=DBNAME, user=USER,
 password=token, sslrootcert="SSLCERTIFICATE")
 cur = conn.cursor()
 cur.execute("""SELECT now()""")
 query_results = cur.fetchall()
 print(query_results)
except Exception as e:
 print("Database connection failed due to {}".format(e))

Troubleshooting Amazon Aurora identity and access
Use the following information to help you diagnose and fix common issues that you might encounter
when working with Aurora and IAM.

Topics
• I'm not authorized to perform an action in Aurora (p. 1782)
• I'm not authorized to perform iam:PassRole (p. 1783)
• I want to view my access keys (p. 1783)
• I'm an administrator and want to allow others to access Aurora (p. 1783)
• I want to allow people outside of my AWS account to access my Aurora resources (p. 1783)

I'm not authorized to perform an action in Aurora
If the AWS Management Console tells you that you're not authorized to perform an action, then you
must contact your administrator for assistance. Your administrator is the person that provided you with
your user name and password.

The following example error occurs when the mateojackson IAM user tries to use the console to view
details about a widget but does not have rds:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 rds:GetWidget on resource: my-example-widget

In this case, Mateo asks his administrator to update his policies to allow him to access the my-example-
widget resource using the rds:GetWidget action.

1782

https://pypi.org/project/psycopg2/

Amazon Aurora User Guide for Aurora
Troubleshooting

I'm not authorized to perform iam:PassRole
If you receive an error that you're not authorized to perform the iam:PassRole action, then you must
contact your administrator for assistance. Your administrator is the person that provided you with your
user name and password. Ask that person to update your policies to allow you to pass a role to Aurora.

Some AWS services allow you to pass an existing role to that service, instead of creating a new service
role or service-linked role. To do this, you must have permissions to pass the role to the service.

The following example error occurs when an IAM user named marymajor tries to use the console to
perform an action in Aurora. However, the action requires the service to have permissions granted by a
service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform: iam:PassRole

In this case, Mary asks her administrator to update her policies to allow her to perform the
iam:PassRole action.

I want to view my access keys
After you create your IAM user access keys, you can view your access key ID at any time. However, you
can't view your secret access key again. If you lose your secret key, you must create a new access key pair.

Access keys consist of two parts: an access key ID (for example, AKIAIOSFODNN7EXAMPLE) and a secret
access key (for example, wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY). Like a user name and
password, you must use both the access key ID and secret access key together to authenticate your
requests. Manage your access keys as securely as you do your user name and password.

Important
Do not provide your access keys to a third party, even to help find your canonical user ID. By
doing this, you might give someone permanent access to your account.

When you create an access key pair, you are prompted to save the access key ID and secret access key in
a secure location. The secret access key is available only at the time you create it. If you lose your secret
access key, you must add new access keys to your IAM user. You can have a maximum of two access keys.
If you already have two, you must delete one key pair before creating a new one. To view instructions,
see Managing access keys in the IAM User Guide.

I'm an administrator and want to allow others to access Aurora
To enable others to access Aurora, you must create an IAM entity (user or role) for the person or
application that needs access. They use the credentials for that entity to access AWS. You must then
attach a policy to the entity that grants them the correct permissions in Aurora.

To get started right away, see Creating your first IAM delegated user and group in the IAM User Guide.

I want to allow people outside of my AWS account to access my
Aurora resources
You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people access to
your resources.

To learn more, consult the following:

1783

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html#FindingCanonicalId
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-delegated-user.html

Amazon Aurora User Guide for Aurora
Logging and monitoring

• To learn whether Aurora supports these features, see How Amazon Aurora works with IAM (p. 1740).

• To learn how to provide access to your resources across AWS accounts that you own, see Providing
access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing access to
AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access, see
How IAM roles differ from resource-based policies in the IAM User Guide.

Logging and monitoring in Amazon Aurora
Monitoring is an important part of maintaining the reliability, availability, and performance of Amazon
Aurora and your AWS solutions. You should collect monitoring data from all of the parts of your AWS
solution so that you can more easily debug a multi-point failure if one occurs. AWS provides several tools
for monitoring your Amazon Aurora resources and responding to potential incidents:

Amazon CloudWatch Alarms

Using Amazon CloudWatch alarms, you watch a single metric over a time period that you specify.
If the metric exceeds a given threshold, a notification is sent to an Amazon SNS topic or AWS Auto
Scaling policy. CloudWatch alarms do not invoke actions because they are in a particular state.
Rather the state must have changed and been maintained for a specified number of periods.

AWS CloudTrail Logs

CloudTrail provides a record of actions taken by a user, role, or an AWS service in Amazon Aurora.
CloudTrail captures all API calls for Amazon Aurora as events, including calls from the console and
from code calls to Amazon RDS API operations. Using the information collected by CloudTrail, you
can determine the request that was made to Amazon Aurora, the IP address from which the request
was made, who made the request, when it was made, and additional details. For more information,
see Monitoring Amazon Aurora API calls in AWS CloudTrail (p. 731).

Enhanced Monitoring

Amazon Aurora provides metrics in real time for the operating system (OS) that your DB cluster
runs on. You can view the metrics for your DB cluster using the console, or consume the Enhanced
Monitoring JSON output from Amazon CloudWatch Logs in a monitoring system of your choice. For
more information, see Monitoring OS metrics with Enhanced Monitoring (p. 647).

Amazon RDS Performance Insights

Performance Insights expands on existing Amazon Aurora monitoring features to illustrate your
database's performance and help you analyze any issues that affect it. With the Performance
Insights dashboard, you can visualize the database load and filter the load by waits, SQL statements,
hosts, or users. For more information, see Monitoring DB load with Performance Insights on Amazon
Aurora (p. 594).

Database Logs

You can view, download, and watch database logs using the AWS Management Console, AWS CLI, or
RDS API. For more information, see Monitoring Amazon Aurora log files (p. 716).

Amazon Aurora Recommendations

Amazon Aurora provides automated recommendations for database resources. These
recommendations provide best practice guidance by analyzing DB cluster configuration, usage, and
performance data. For more information, see Viewing Amazon Aurora recommendations (p. 558).

1784

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

Amazon Aurora User Guide for Aurora
Logging and monitoring

Amazon Aurora Event Notification

Amazon Aurora uses the Amazon Simple Notification Service (Amazon SNS) to provide notification
when an Amazon Aurora event occurs. These notifications can be in any notification form supported
by Amazon SNS for an AWS Region, such as an email, a text message, or a call to an HTTP endpoint.
For more information, see Using Amazon RDS event notification (p. 696).

AWS Trusted Advisor

Trusted Advisor draws upon best practices learned from serving hundreds of thousands of AWS
customers. Trusted Advisor inspects your AWS environment and then makes recommendations
when opportunities exist to save money, improve system availability and performance, or help
close security gaps. All AWS customers have access to five Trusted Advisor checks. Customers with a
Business or Enterprise support plan can view all Trusted Advisor checks.

Trusted Advisor has the following Amazon Aurora-related checks:
• Amazon Aurora Idle DB Instances
• Amazon Aurora Security Group Access Risk
• Amazon Aurora Backups
• Amazon Aurora Multi-AZ
• Aurora DB Instance Accessibility

For more information on these checks, see Trusted Advisor best practices (checks).
Database activity streams

Database activity streams can protect your databases from internal threats by controlling DBA
access to the database activity streams. Thus, the collection, transmission, storage, and subsequent
processing of the database activity stream is beyond the access of the DBAs that manage the
database. Database activity streams can provide safeguards for your database and meet compliance
and regulatory requirements. For more information, see Monitoring Amazon Aurora with Database
Activity Streams (p. 735).

For more information about monitoring Aurora see Monitoring metrics in an Amazon Aurora
cluster (p. 541).

1785

https://aws.amazon.com/premiumsupport/trustedadvisor/best-practices/

Amazon Aurora User Guide for Aurora
Compliance validation

Compliance validation for Amazon Aurora
Third-party auditors assess the security and compliance of Amazon Aurora as part of multiple AWS
compliance programs. These include SOC, PCI, FedRAMP, HIPAA, and others.

For a list of AWS services in scope of specific compliance programs, see AWS services in scope by
compliance program. For general information, see AWS compliance programs.

You can download third-party audit reports using AWS Artifact. For more information, see Downloading
reports in AWS Artifact.

Your compliance responsibility when using Amazon Aurora is determined by the sensitivity of your
data, your organization's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and compliance quick start guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA security and compliance whitepaper – This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

• AWS compliance resources – This collection of workbooks and guides that might apply to your industry
and location.

• AWS Config – This AWS service assesses how well your resource configurations comply with internal
practices, industry guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within AWS
that helps you check your compliance with security industry standards and best practices.

1786

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://d0.awsstatic.com/whitepapers/compliance/AWS_HIPAA_Compliance_Whitepaper.pdf
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html

Amazon Aurora User Guide for Aurora
Resilience

Resilience in Amazon Aurora
The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions provide
multiple physically separated and isolated Availability Zones, which are connected with low-latency,
high-throughput, and highly redundant networking. With Availability Zones, you can design and operate
applications and databases that automatically fail over between Availability Zones without interruption.
Availability Zones are more highly available, fault tolerant, and scalable than traditional single or
multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS global infrastructure.

In addition to the AWS global infrastructure, Aurora offers features to help support your data resiliency
and backup needs.

Backup and restore
Aurora backs up your cluster volume automatically and retains restore data for the length of the backup
retention period. Aurora backups are continuous and incremental so you can quickly restore to any point
within the backup retention period. No performance impact or interruption of database service occurs
as backup data is being written. You can specify a backup retention period, from 1 to 35 days, when you
create or modify a DB cluster.

If you want to retain a backup beyond the backup retention period, you can also take a snapshot of the
data in your cluster volume. Aurora retains incremental restore data for the entire backup retention
period. Thus, you need to create a snapshot only for data that you want to retain beyond the backup
retention period. You can create a new DB cluster from the snapshot.

You can recover your data by creating a new Aurora DB cluster from the backup data that Aurora
retains, or from a DB cluster snapshot that you have saved. You can quickly create a new copy of a DB
cluster from backup data to any point in time during your backup retention period. The continuous and
incremental nature of Aurora backups during the backup retention period means you don't need to take
frequent snapshots of your data to improve restore times.

For more information, see Backing up and restoring an Amazon Aurora DB cluster (p. 490).

Replication
Aurora Replicas are independent endpoints in an Aurora DB cluster, best used for scaling read operations
and increasing availability. Up to 15 Aurora Replicas can be distributed across the Availability Zones that
a DB cluster spans within an AWS Region. The DB cluster volume is made up of multiple copies of the
data for the DB cluster. However, the data in the cluster volume is represented as a single, logical volume
to the primary DB instance and to Aurora Replicas in the DB cluster. If the primary DB instance fails, an
Aurora Replica is promoted to be the primary DB instance.

Aurora also supports replication options that are specific to Aurora MySQL and Aurora PostgreSQL.

For more information, see Replication with Amazon Aurora (p. 70).

Failover
Aurora stores copies of the data in a DB cluster across multiple Availability Zones in a single AWS Region.
This storage occurs regardless of whether the DB instances in the DB cluster span multiple Availability
Zones. When you create Aurora Replicas across Availability Zones, Aurora automatically provisions and
maintains them synchronously. The primary DB instance is synchronously replicated across Availability
Zones to Aurora Replicas to provide data redundancy, eliminate I/O freezes, and minimize latency spikes
during system backups. Running a DB cluster with high availability can enhance availability during

1787

https://aws.amazon.com/about-aws/global-infrastructure/

Amazon Aurora User Guide for Aurora
Failover

planned system maintenance, and help protect your databases against failure and Availability Zone
disruption.

For more information, see High availability for Amazon Aurora (p. 68).

1788

Amazon Aurora User Guide for Aurora
Infrastructure security

Infrastructure security in Amazon Aurora
As a managed service, Amazon RDS is protected by the AWS global network security procedures that are
described in the Amazon Web Services: Overview of security processes whitepaper.

You use AWS published API calls to access Amazon Aurora through the network. Clients must support
Transport Layer Security (TLS) 1.0. We recommend TLS 1.2 or later. Clients must also support cipher
suites with perfect forward secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve
Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is associated
with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to generate temporary
security credentials to sign requests.

In addition, Aurora offers features to help support infrastructure security.

Security groups
Security groups control the access that traffic has in and out of a DB instance. By default, network access
is turned off to a DB instance. You can specify rules in a security group that allow access from an IP
address range, port, or security group. After ingress rules are configured, the same rules apply to all DB
instances that are associated with that security group.

For more information, see Controlling access with security groups (p. 1793).

Public accessibility
When you launch a DB instance inside a virtual private cloud (VPC) based on the Amazon VPC service,
you can turn on or off public accessibility for that instance. To designate whether the DB instance
that you create has a DNS name that resolves to a public IP address, you use the Public accessibility
parameter. By using this parameter, you can designate whether there is public access to the DB instance.
You can modify a DB instance to turn on or off public accessibility by modifying the Public accessibility
parameter.

For more information, see Hiding a DB instance in a VPC from the internet (p. 1802).

Note
If your DB instance is in a VPC but isn't publicly accessible, you can also use an AWS Site-to-Site
VPN connection or an AWS Direct Connect connection to access it from a private network. For
more information, see Internetwork traffic privacy (p. 1736).

1789

https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Amazon Aurora User Guide for Aurora
VPC endpoints (AWS PrivateLink)

Amazon RDS API and interface VPC endpoints
(AWS PrivateLink)

You can establish a private connection between your VPC and Amazon RDS API endpoints by creating an
interface VPC endpoint. Interface endpoints are powered by AWS PrivateLink.

AWS PrivateLink enables you to privately access Amazon RDS API operations without an internet
gateway, NAT device, VPN connection, or AWS Direct Connect connection. Instances in your VPC don't
need public IP addresses to communicate with Amazon RDS API endpoints to launch, modify, or
terminate DB clusters. Your instances also don't need public IP addresses to use any of the available RDS
API operations. Traffic between your VPC and Amazon RDS doesn't leave the Amazon network.

Each interface endpoint is represented by one or more elastic network interfaces in your subnets. For
more information on elastic network interfaces, see Elastic network interfaces in the Amazon EC2 User
Guide.

For more information about VPC endpoints, see Interface VPC endpoints (AWS PrivateLink) in the
Amazon VPC User Guide. For more information about RDS API operations, see Amazon RDS API
Reference.

Considerations for VPC endpoints
Before you set up an interface VPC endpoint for Amazon RDS API endpoints, ensure that you review
Interface endpoint properties and limitations in the Amazon VPC User Guide.

All RDS API operations relevant to managing Amazon Aurora resources are available from your VPC using
AWS PrivateLink.

VPC endpoint policies are supported for RDS API endpoints. By default, full access to RDS API operations
is allowed through the endpoint. For more information, see Controlling access to services with VPC
endpoints in the Amazon VPC User Guide.

Availability
Amazon RDS API currently supports VPC endpoints in the following AWS Regions:

• US East (Ohio)
• US East (N. Virginia)
• US West (N. California)
• US West (Oregon)
• Africa (Cape Town)
• Asia Pacific (Hong Kong)
• Asia Pacific (Mumbai)
• Asia Pacific (Osaka)
• Asia Pacific (Seoul)
• Asia Pacific (Singapore)
• Asia Pacific (Sydney)
• Asia Pacific (Tokyo)
• Canada (Central)
• Europe (Frankfurt)
• Europe (Ireland)
• Europe (London)

1790

http://aws.amazon.com/privatelink
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

Amazon Aurora User Guide for Aurora
Creating an interface VPC endpoint

• Europe (Paris)
• Europe (Stockholm)
• Europe (Milan)
• Middle East (Bahrain)
• South America (São Paulo)
• China (Beijing)
• China (Ningxia)
• AWS GovCloud (US-East)
• AWS GovCloud (US-West)

Creating an interface VPC endpoint for Amazon RDS
API
You can create a VPC endpoint for the Amazon RDS API using either the Amazon VPC console or the
AWS Command Line Interface (AWS CLI). For more information, see Creating an interface endpoint in the
Amazon VPC User Guide.

Create a VPC endpoint for Amazon RDS API using the service name com.amazonaws.region.rds.

Excluding AWS Regions in China, if you enable private DNS for the endpoint, you can make API requests
to Amazon RDS with the VPC endpoint using its default DNS name for the AWS Region, for example
rds.us-east-1.amazonaws.com. For the China (Beijing) and China (Ningxia) AWS Regions, you can
make API requests with the VPC endpoint using rds-api.cn-north-1.amazonaws.com.cn and rds-
api.cn-northwest-1.amazonaws.com.cn, respectively.

For more information, see Accessing a service through an interface endpoint in the Amazon VPC User
Guide.

Creating a VPC endpoint policy for Amazon RDS API
You can attach an endpoint policy to your VPC endpoint that controls access to Amazon RDS API. The
policy specifies the following information:

• The principal that can perform actions.
• The actions that can be performed.
• The resources on which actions can be performed.

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC User
Guide.

Example: VPC endpoint policy for Amazon RDS API actions

The following is an example of an endpoint policy for Amazon RDS API. When attached to an endpoint,
this policy grants access to the listed Amazon RDS API actions for all principals on all resources.

{
 "Statement":[
 {
 "Principal":"*",
 "Effect":"Allow",
 "Action":[
 "rds:CreateDBInstance",
 "rds:ModifyDBInstance",

1791

https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#access-service-though-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

Amazon Aurora User Guide for Aurora
Security best practices

 "rds:CreateDBSnapshot"
],
 "Resource":"*"
 }
]
}

Example: VPC endpoint policy that denies all access from a specified AWS account

The following VPC endpoint policy denies AWS account 123456789012 all access to resources using the
endpoint. The policy allows all actions from other accounts.

{
 "Statement": [
 {
 "Action": "*",
 "Effect": "Allow",
 "Resource": "*",
 "Principal": "*"
 },
 {
 "Action": "*",
 "Effect": "Deny",
 "Resource": "*",
 "Principal": {
 "AWS": [
 "123456789012"
]
 }
]
}

Security best practices for Amazon Aurora
Use AWS Identity and Access Management (IAM) accounts to control access to Amazon RDS API
operations, especially operations that create, modify, or delete Amazon Aurora resources. Such resources
include DB clusters, security groups, and parameter groups. Also use IAM to control actions that perform
common administrative actions such as backing up and restoring DB clusters.

• Create an individual IAM user for each person who manages Amazon Aurora resources, including
yourself. Don't use AWS root credentials to manage Amazon Aurora resources.

• Grant each user the minimum set of permissions required to perform his or her duties.
• Use IAM groups to effectively manage permissions for multiple users.
• Rotate your IAM credentials regularly.
• Configure AWS Secrets Manager to automatically rotate the secrets for Amazon Aurora. For more

information, see Rotating your AWS Secrets Manager secrets in the AWS Secrets Manager User
Guide. You can also retrieve the credential from AWS Secrets Manager programmatically. For more
information, see Retrieving the secret value in the AWS Secrets Manager User Guide.

For more information about Amazon Aurora security, see Security in Amazon Aurora (p. 1719). For
more information about IAM, see AWS Identity and Access Management. For information on IAM best
practices, see IAM best practices.

Use the AWS Management Console, the AWS CLI, or the RDS API to change the password for your master
user. If you use another tool, such as a SQL client, to change the master user password, it might result in
privileges being revoked for the user unintentionally.

1792

https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_retrieve-secret.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/IAMBestPractices.html

Amazon Aurora User Guide for Aurora
Controlling access with security groups

Controlling access with security groups
Security groups control the access that traffic has in and out of a DB instance. Aurora supports VPC
security groups.

VPC security groups
Each VPC security group rule enables a specific source to access a DB instance in a VPC that is associated
with that VPC security group. The source can be a range of addresses (for example, 203.0.113.0/24), or
another VPC security group. By specifying a VPC security group as the source, you allow incoming traffic
from all instances (typically application servers) that use the source VPC security group. VPC security
groups can have rules that govern both inbound and outbound traffic, though the outbound traffic rules
typically do not apply to DB instances. Outbound traffic rules only apply if the DB instance acts as a
client. You must use the Amazon EC2 API or the Security Group option on the VPC Console to create
VPC security groups.

When you create rules for your VPC security group that allow access to the instances in your VPC, you
must specify a port for each range of addresses that the rule allows access for. For example, if you want
to enable SSH access to instances in the VPC, then you create a rule allowing access to TCP port 22 for
the specified range of addresses.

You can configure multiple VPC security groups that allow access to different ports for different
instances in your VPC. For example, you can create a VPC security group that allows access to TCP port
80 for web servers in your VPC. You can then create another VPC security group that allows access to TCP
port 3306 for Aurora MySQL DB instances in your VPC.

Note
In an Aurora DB cluster, the VPC security group associated with the DB cluster is also associated
with all of the DB instances in the DB cluster. If you change the VPC security group for the DB
cluster or for a DB instance, the change is applied automatically to all of the DB instances in the
DB cluster.

For more information on VPC security groups, see Security groups in the Amazon Virtual Private Cloud
User Guide.

Note
If your DB cluster is in a VPC but isn't publicly accessible, you can also use an AWS Site-to-Site
VPN connection or an AWS Direct Connect connection to access it from a private network. For
more information, see Internetwork traffic privacy (p. 1736).

Security group scenario
A common use of a DB instance in a VPC is to share data with an application server running in an
Amazon EC2 instance in the same VPC, which is accessed by a client application outside the VPC. For
this scenario, you use the RDS and VPC pages on the AWS Management Console or the RDS and EC2 API
operations to create the necessary instances and security groups:

1. Create a VPC security group (for example, sg-0123ec2example) and define inbound rules that
use the IP addresses of the client application as the source. This security group allows your client
application to connect to EC2 instances in a VPC that uses this security group.

2. Create an EC2 instance for the application and add the EC2 instance to the VPC security group
(sg-0123ec2example) that you created in the previous step.

3. Create a second VPC security group (for example, sg-6789rdsexample) and create a new rule by
specifying the VPC security group that you created in step 1 (sg-0123ec2example) as the source.

4. Create a new DB instance and add the DB instance to the VPC security group (sg-6789rdsexample)
that you created in the previous step. When you create the DB instance, use the same port number as
the one specified for the VPC security group (sg-6789rdsexample) rule that you created in step 3.

1793

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html

Amazon Aurora User Guide for Aurora
Creating a VPC security group

The following diagram shows this scenario.

For more information about using a VPC, see Amazon Virtual Private Cloud VPCs and Amazon
Aurora (p. 1800).

Creating a VPC security group
You can create a VPC security group for a DB instance by using the VPC console. For information
about creating a security group, see Provide access to the DB cluster in the VPC by creating a security
group (p. 87) and Security groups in the Amazon Virtual Private Cloud User Guide.

Associating a security group with a DB instance
You can associate a security group with a DB instance by using Modify on the RDS console, the
ModifyDBInstance Amazon RDS API, or the modify-db-instance AWS CLI command.

For information about modifying a DB instance in a DB cluster, see Modify a DB instance in a DB
cluster (p. 373). For security group considerations when you restore a DB instance from a DB snapshot,
see Security group considerations (p. 497).

Associating a security group with a DB cluster
You can associate a security group with a DB cluster by using Modify cluster on the RDS console, the
ModifyDBCluster Amazon RDS API, or the modify-db-cluster AWS CLI command.

For information about modifying a DB cluster, see Modifying an Amazon Aurora DB cluster (p. 372).

1794

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html

Amazon Aurora User Guide for Aurora
Master user account privileges

Master user account privileges
When you create a new DB cluster, the default master user that you use gets certain privileges for that
DB cluster. The following table shows the privileges and database roles the master user gets for each of
the database engines.

Important
We strongly recommend that you do not use the master user directly in your applications.
Instead, adhere to the best practice of using a database user created with the minimal privileges
required for your application.

Note
If you accidentally delete the permissions for the master user, you can restore them by
modifying the DB cluster and setting a new master user password. For more information about
modifying a DB cluster, see Modifying an Amazon Aurora DB cluster (p. 372).

Database
engine

System privilege Database role

Amazon
Aurora
MySQL

CREATE, DROP, GRANT OPTION, REFERENCES, EVENT,
ALTER, DELETE, INDEX, INSERT, SELECT, UPDATE, CREATE
TEMPORARY TABLES, LOCK TABLES, TRIGGER, CREATE
VIEW, SHOW VIEW, LOAD FROM S3, SELECT INTO S3,
ALTER ROUTINE, CREATE ROUTINE, EXECUTE, CREATE
USER, PROCESS, SHOW DATABASES , RELOAD, REPLICATION
CLIENT, REPLICATION SLAVE

—

Amazon
Aurora
PostgreSQL

LOGIN, NOSUPERUSER, INHERIT, CREATEDB, CREATEROLE,
NOREPLICATION, VALID UNTIL 'infinity'

RDS_SUPERUSER

1795

Amazon Aurora User Guide for Aurora
Service-linked roles

Using service-linked roles for Amazon Aurora
Amazon Aurora uses AWS Identity and Access Management (IAM) service-linked roles. A service-linked
role is a unique type of IAM role that is linked directly to Amazon Aurora. Service-linked roles are
predefined by Amazon Aurora and include all the permissions that the service requires to call other AWS
services on your behalf.

A service-linked role makes using Amazon Aurora easier because you don't have to manually add the
necessary permissions. Amazon Aurora defines the permissions of its service-linked roles, and unless
defined otherwise, only Amazon Aurora can assume its roles. The defined permissions include the trust
policy and the permissions policy, and that permissions policy cannot be attached to any other IAM
entity.

You can delete the roles only after first deleting their related resources. This protects your Amazon
Aurora resources because you can't inadvertently remove permission to access the resources.

For information about other services that support service-linked roles, see AWS services that work with
IAM and look for the services that have Yes in the Service-Linked Role column. Choose a Yes with a link
to view the service-linked role documentation for that service.

Service-linked role permissions for Amazon Aurora
Amazon Aurora uses the service-linked role named AWSServiceRoleForRDS to allow Amazon RDS to call
AWS services on behalf of your DB clusters.

The AWSServiceRoleForRDS service-linked role trusts the following services to assume the role:

• rds.amazonaws.com

This service-linked role has a permissions policy attached to it called AmazonRDSServiceRolePolicy
that grants it permissions to operate in your account. The role permissions policy allows Amazon Aurora
to complete the following actions on the specified resources:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:CreateNetworkInterface",
 "ec2:CreateSecurityGroup",
 "ec2:DeleteNetworkInterface",
 "ec2:DeleteSecurityGroup",
 "ec2:DescribeAvailabilityZones",
 "ec2:DescribeInternetGateways",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcAttribute",
 "ec2:DescribeVpcs",
 "ec2:ModifyNetworkInterfaceAttribute",
 "ec2:ModifyVpcEndpoint",
 "ec2:RevokeSecurityGroupIngress",
 "ec2:CreateVpcEndpoint",
 "ec2:DescribeVpcEndpoints",
 "ec2:DeleteVpcEndpoints",
 "ec2:AssignPrivateIpAddresses",
 "ec2:UnassignPrivateIpAddresses"

1796

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Aurora User Guide for Aurora
Service-linked role permissions for Amazon Aurora

],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sns:Publish"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup"
],
 "Resource": [
 "arn:aws:logs:*:*:log-group:/aws/rds/*",
 "arn:aws:logs:*:*:log-group:/aws/docdb/*",
 "arn:aws:logs:*:*:log-group:/aws/neptune/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:*:*:log-group:/aws/rds/*:log-stream:*",
 "arn:aws:logs:*:*:log-group:/aws/docdb/*:log-stream:*",
 "arn:aws:logs:*:*:log-group:/aws/neptune/*:log-stream:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:CreateStream",
 "kinesis:PutRecord",
 "kinesis:PutRecords",
 "kinesis:DescribeStream",
 "kinesis:SplitShard",
 "kinesis:MergeShards",
 "kinesis:DeleteStream",
 "kinesis:UpdateShardCount"
],
 "Resource": [
 "arn:aws:kinesis:*:*:stream/aws-rds-das-*"
]
 }
]
}

Note
You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. If you encounter the following error message:
Unable to create the resource. Verify that you have permission to create service linked role.
Otherwise wait and try again later.
Make sure you have the following permissions enabled:

{
 "Action": "iam:CreateServiceLinkedRole",
 "Effect": "Allow",

1797

Amazon Aurora User Guide for Aurora
Service-linked role permissions for Amazon Aurora

 "Resource": "arn:aws:iam::*:role/aws-service-role/rds.amazonaws.com/
AWSServiceRoleForRDS",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName":"rds.amazonaws.com"
 }
 }
}

For more information, see Service-linked role permissions in the IAM User Guide.

Creating a service-linked role for Amazon Aurora
You don't need to manually create a service-linked role. When you create a DB cluster, Amazon Aurora
creates the service-linked role for you.

Important
If you were using the Amazon Aurora service before December 1, 2017, when it began
supporting service-linked roles, then Amazon Aurora created the AWSServiceRoleForRDS role in
your account. To learn more, see A new role appeared in my AWS account.

If you delete this service-linked role, and then need to create it again, you can use the same process to
recreate the role in your account. When you create a DB cluster, Amazon Aurora creates the service-
linked role for you again.

Editing a service-linked role for Amazon Aurora
Amazon Aurora does not allow you to edit the AWSServiceRoleForRDS service-linked role. After you
create a service-linked role, you cannot change the name of the role because various entities might
reference the role. However, you can edit the description of the role using IAM. For more information, see
Editing a service-linked role in the IAM User Guide.

Deleting a service-linked role for Amazon Aurora
If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don't have an unused entity that is not actively monitored or
maintained. However, you must delete all of your DB clusters before you can delete the service-linked
role.

Cleaning up a service-linked role

Before you can use IAM to delete a service-linked role, you must first confirm that the role has no active
sessions and remove any resources used by the role.

To check whether the service-linked role has an active session in the IAM console

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles. Then choose the name (not the check box)
of the AWSServiceRoleForRDS role.

3. On the Summary page for the chosen role, choose the Access Advisor tab.
4. On the Access Advisor tab, review recent activity for the service-linked role.

Note
If you are unsure whether Amazon Aurora is using the AWSServiceRoleForRDS role, you can
try to delete the role. If the service is using the role, then the deletion fails and you can view
the AWS Regions where the role is being used. If the role is being used, then you must wait

1798

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_roles.html#troubleshoot_roles_new-role-appeared
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Aurora User Guide for Aurora
Service-linked role permissions for Amazon Aurora

for the session to end before you can delete the role. You cannot revoke the session for a
service-linked role.

If you want to remove the AWSServiceRoleForRDS role, you must first delete all of your DB clusters.

Deleting all of your clusters

Use one of the following procedures to delete a single cluster. Repeat the procedure for each of your
clusters.

To delete a cluster (console)

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.
2. In the Databases list, choose the cluster that you want to delete.
3. For Cluster Actions, choose Delete.
4. Choose Delete.

To delete a cluster (CLI)

See delete-db-cluster in the AWS CLI Command Reference.

To delete a cluster (API)

See DeleteDBCluster in the Amazon RDS API Reference.

You can use the IAM console, the IAM CLI, or the IAM API to delete the AWSServiceRoleForRDS service-
linked role. For more information, see Deleting a service-linked role in the IAM User Guide.

1799

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/cli/latest/reference/rds/delete-db-cluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DeleteDBCluster.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role

Amazon Aurora User Guide for Aurora
Using Amazon Aurora with Amazon VPC

Amazon Virtual Private Cloud VPCs and Amazon
Aurora

Amazon Virtual Private Cloud (Amazon VPC) enables you to launch AWS resources, such as Aurora DB
clusters, into a virtual private cloud (VPC).

When you use an Amazon VPC, you have control over your virtual networking environment: you can
choose your own IP address range, create subnets, and configure routing and access control lists. There is
no additional cost to run your DB instance in an Amazon VPC.

Accounts that support only the EC2-VPC platform have a default VPC. All new DB instances are created
in the default VPC unless you specify otherwise. If you are a new Amazon Aurora customer, if you have
never created a DB instance before, or if you are creating a DB instance in an AWS Region you have not
used before, you are most likely on the EC2-VPC platform and have a default VPC.

Topics

• Working with a DB instance in a VPC (p. 1800)

• How to create a VPC for use with Amazon Aurora (p. 1806)

• Scenarios for accessing a DB instance in a VPC (p. 1813)

• Tutorial: Create an Amazon VPC for use with a DB instance (p. 1818)

This documentation only discusses VPC functionality relevant to Amazon Aurora DB clusters. For more
information about Amazon VPC, see Amazon VPC Getting Started Guide and Amazon VPC User Guide.
For information about using a network address translation (NAT) gateway, see NAT gateways in the
Amazon Virtual Private Cloud User Guide.

Working with a DB instance in a VPC
Your DB instance is in a virtual private cloud (VPC). A VPC is a virtual network that is logically isolated
from other virtual networks in the AWS Cloud. Amazon VPC lets you launch AWS resources, such as an
Amazon Aurora DB instance or Amazon EC2 instance, into a VPC. The VPC can either be a default VPC
that comes with your account or one that you create. All VPCs are associated with your AWS account.

Your default VPC has three subnets you can use to isolate resources inside the VPC. The default VPC also
has an internet gateway that can be used to provide access to resources inside the VPC from outside the
VPC.

For a list of scenarios involving Amazon Aurora DB instances in a VPC , see Scenarios for accessing a DB
instance in a VPC (p. 1813).

For a tutorial that shows you how to create a VPC that you can use with a common Amazon Aurora
scenario, see Tutorial: Create an Amazon VPC for use with a DB instance (p. 1818).

To learn how to work with DB instances inside a VPC, see the following:

Topics

• Working with a DB instance in a VPC (p. 1801)

• Working with DB subnet groups (p. 1801)

• Hiding a DB instance in a VPC from the internet (p. 1802)

• Creating a DB instance in a VPC (p. 1803)

1800

https://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/
https://docs.aws.amazon.com/vpc/latest/userguide/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html

Amazon Aurora User Guide for Aurora
Working with a DB instance in a VPC

Working with a DB instance in a VPC
Here are some tips on working with a DB instance in a VPC:

• Your VPC must have at least two subnets. These subnets must be in two different Availability Zones
in the AWS Region where you want to deploy your DB instance. A subnet is a segment of a VPC's
IP address range that you can specify and that lets you group instances based on your security and
operational needs.

• If you want your DB instance in the VPC to be publicly accessible, you must enable the VPC attributes
DNS hostnames and DNS resolution.

• Your VPC must have a DB subnet group that you create (for more information, see the next section).
You create a DB subnet group by specifying the subnets you created. Amazon Aurora chooses a subnet
and an IP address within that subnet to associate with your DB instance. The DB instance uses the
Availability Zone that contains the subnet.

• Your VPC must have a VPC security group that allows access to the DB instance.
• The CIDR blocks in each of your subnets must be large enough to accommodate spare IP addresses for

Amazon Aurora to use during maintenance activities, including failover and compute scaling.
• A VPC can have an instance tenancy attribute of either default or dedicated. All default VPCs have the

instance tenancy attribute set to default, and a default VPC can support any DB instance class.

If you choose to have your DB instance in a dedicated VPC where the instance tenancy attribute is
set to dedicated, the DB instance class of your DB instance must be one of the approved Amazon EC2
dedicated instance types. For example, the m3.medium EC2 dedicated instance corresponds to the
db.m3.medium DB instance class. For information about instance tenancy in a VPC, see Dedicated
instances in the Amazon Elastic Compute Cloud User Guide.

For more information about the instance types that can be in a dedicated instance, see Amazon EC2
dedicated instances on the EC2 pricing page.

Note
When you set the instance tenancy attribute to dedicated for an Amazon RDS DB instance, it
doesn't guarantee that the DB instance will run on a dedicated host.

Working with DB subnet groups
Subnets are segments of a VPC's IP address range that you designate to group your resources based
on security and operational needs. A DB subnet group is a collection of subnets (typically private) that
you create in a VPC and that you then designate for your DB instances. A DB subnet group allows you to
specify a particular VPC when creating DB instances using the CLI or API; if you use the console, you can
just choose the VPC and subnets you want to use.

Each DB subnet group should have subnets in at least two Availability Zones in a given AWS Region.
When creating a DB instance in a VPC, you must choose a DB subnet group. From the DB subnet
group, Amazon Aurora chooses a subnet and an IP address within that subnet to associate with your
DB instance. The DB instance uses the Availability Zone that contains the subnet. If the primary DB
instance of a Multi-AZ deployment fails, Amazon Aurora can promote the corresponding standby and
subsequently create a new standby using an IP address of the subnet in one of the other Availability
Zones.

The subnets in a DB subnet group are either public or private. They can't be a mix of both public and
private subnets. The subnets are public or private, depending on the configuration that you set for their
network access control lists (network ACLs) and routing tables.

When Amazon Aurora creates a DB instance in a VPC, it assigns a network interface to your DB instance
by using an IP address from your DB subnet group. However, we strongly recommend that you use the
DNS name to connect to your DB instance because the underlying IP address changes during failover.

1801

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html
https://aws.amazon.com/ec2/purchasing-options/dedicated-instances/
https://aws.amazon.com/ec2/purchasing-options/dedicated-instances/

Amazon Aurora User Guide for Aurora
Working with a DB instance in a VPC

Note
For each DB instance that you run in a VPC, make sure to reserve at least one address in each
subnet in the DB subnet group for use by Amazon Aurora for recovery actions.

Hiding a DB instance in a VPC from the internet

One common Amazon Aurora scenario is to have a VPC in which you have an EC2 instance with a public-
facing web application and a DB instance with a database that is not publicly accessible. For example,
you can create a VPC that has a public subnet and a private subnet. Amazon EC2 instances that function
as web servers can be deployed in the public subnet, and the DB instances are deployed in the private
subnet. In such a deployment, only the web servers have access to the DB instances. For an illustration of
this scenario, see A DB instance in a VPC accessed by an EC2 instance in the same VPC (p. 1813).

When you launch a DB instance inside a VPC, the DB instance has a private IP address for traffic
inside the VPC. This private IP address isn't publicly accessible. You can use the Public access option to
designate whether the DB instance also has a public IP address in addition to the private IP address. If
the DB instance is designated as publicly accessible, its DNS endpoint resolves to the private IP address
from within the DB instance's VPC, and to the public IP address from outside of the DB instance's VPC.
Access to the DB instance is ultimately controlled by the security group it uses, and that public access is
not permitted if the security group assigned to the DB instance doesn't permit it.

You can modify a DB instance to turn on or off public accessibility by modifying the Public access option.
For more information, see the modifying section for your DB engine.

The following illustration shows the Public access option in the Additional connectivity configuration
section. To set the option, open the Additional connectivity configuration section in the Connectivity
section.

1802

Amazon Aurora User Guide for Aurora
Working with a DB instance in a VPC

For information about modifying a DB instance to set the Public access option, see Modify a DB instance
in a DB cluster (p. 373).

Creating a DB instance in a VPC
The following procedures help you create a DB instance in a VPC. If your account has a default VPC, you
can begin with step 3 because the VPC and DB subnet group have already been created for you. If your
AWS account doesn't have a default VPC, or if you want to create an additional VPC, you can create a
new VPC.

Note
If you want your DB instance in the VPC to be publicly accessible, you must update the DNS
information for the VPC by enabling the VPC attributes DNS hostnames and DNS resolution. For
information about updating the DNS information for a VPC instance, see Updating DNS support
for your VPC.

Follow these steps to create a DB instance in a VPC:

1803

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html

Amazon Aurora User Guide for Aurora
Working with a DB instance in a VPC

• Step 1: Create a VPC (p. 1804)

• Step 2: Add subnets to the VPC (p. 1804)

• Step 3: Create a DB subnet group (p. 1804)

• Step 4: Create a VPC security group (p. 1806)

• Step 5: Create a DB instance in the VPC (p. 1806)

Step 1: Create a VPC

If your AWS account does not have a default VPC or if you want to create an additional VPC, follow the
instructions for creating a new VPC. See Create a VPC with private and public subnets (p. 1818), or see
Step 1: Create a VPC in the Amazon VPC documentation.

Step 2: Add subnets to the VPC

Once you have created a VPC, you need to create subnets in at least two Availability Zones. You use these
subnets when you create a DB subnet group. If you have a default VPC, a subnet is automatically created
for you in each Availability Zone in the AWS Region.

For instructions on how to create subnets in a VPC, see Create a VPC with private and public
subnets (p. 1818).

Step 3: Create a DB subnet group

A DB subnet group is a collection of subnets (typically private) that you create for a VPC and that you
then designate for your DB instances. A DB subnet group allows you to specify a particular VPC when you
create DB instances using the CLI or API. If you use the console, you can just choose the VPC and subnets
you want to use. Each DB subnet group must have at least one subnet in at least two Availability Zones in
the AWS Region.

For a DB instance to be publicly accessible, the subnets in the DB subnet group must have an internet
gateway. For more information about internet gateways for subnets, see Internet gateways in the
Amazon VPC documentation.

When you create a DB instance in a VPC, make sure to choose a DB subnet group. Amazon Aurora
chooses a subnet and an IP address within that subnet to associate with your DB instance. Amazon
Aurora creates and associates an Elastic Network Interface to your DB instance with that IP address. The
DB instance uses the Availability Zone that contains the subnet. For Multi-AZ deployments, defining
a subnet for two or more Availability Zones in an AWS Region allows Amazon Aurora to create a new
standby in another Availability Zone should the need arise. You need to do this even for Single-AZ
deployments, just in case you want to convert them to Multi-AZ deployments at some point.

In this step, you create a DB subnet group and add the subnets that you created for your VPC.

To create a DB subnet group

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. In the navigation pane, choose Subnet groups.

3. Choose Create DB Subnet Group.

4. For Name, type the name of your DB subnet group.

5. For Description, type a description for your DB subnet group.

6. For VPC, choose the VPC that you created.

7. In the Add subnets section, choose the Availability Zones that include the subnets from Availability
Zones, and then choose the subnets from Subnets.

1804

https://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/Wizard.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html
https://console.aws.amazon.com/rds/

Amazon Aurora User Guide for Aurora
Working with a DB instance in a VPC

1805

Amazon Aurora User Guide for Aurora
Creating a VPC for Aurora

8. Choose Create.

Your new DB subnet group appears in the DB subnet groups list on the RDS console. You can choose
the DB subnet group to see details, including all of the subnets associated with the group, in the
details pane at the bottom of the window.

Step 4: Create a VPC security group

Before you create your DB instance, you must create a VPC security group to associate with your DB
instance. For instructions on how to create a security group for your DB instance, see Create a VPC
security group for a private DB instance (p. 1821), or see Security groups for your VPC in the Amazon
VPC documentation.

Step 5: Create a DB instance in the VPC

In this step, you create a DB instance and use the VPC name, the DB subnet group, and the VPC security
group you created in the previous steps.

Note
If you want your DB instance in the VPC to be publicly accessible, you must enable the
VPC attributes DNS hostnames and DNS resolution. For information on updating the DNS
information for a VPC instance, see Updating DNS support for your VPC.

For details on how to create a DB instance, see Creating an Amazon Aurora DB cluster (p. 125) .

When prompted in the Connectivity section, enter the VPC name, the DB subnet group, and the VPC
security group you created in the previous steps.

Note
Updating VPCs is not currently supported for Aurora clusters.

How to create a VPC for use with Amazon Aurora
The following sections discuss how to create a VPC for use with Amazon Aurora.

Note
For a helpful and detailed guide on connecting to an Amazon Aurora DB cluster, you can see
Aurora MySQL database administrator's handbook – Connection management.

Create a VPC and subnets
You can only create an Amazon Aurora DB cluster in a Virtual Private Cloud (VPC) that spans two
Availability Zones, and each zone must contain at least one subnet. You can create an Aurora DB cluster
in the default VPC for your AWS account, or you can create a user-defined VPC. For information, see
Amazon Virtual Private Cloud VPCs and Amazon Aurora (p. 1800).

Amazon Aurora optionally can create a VPC and subnet group for you to use with your DB cluster.
Doing this can be helpful if you have never created a VPC, or if you would like to create a new VPC that
is separate from your other VPCs. If you want Amazon Aurora to create a VPC and subnet group for
you, then skip this procedure and see Create an Aurora MySQL DB cluster (p. 89) or Create an Aurora
PostgreSQL DB cluster (p. 97).

Note
All VPC and EC2 resources that you use with your Aurora DB cluster must be in one of the
regions listed in Regions and Availability Zones (p. 11).

To create a VPC for use with an Aurora DB cluster

1806

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html
https://d1.awsstatic.com/whitepapers/RDS/amazon-aurora-mysql-database-administrator-handbook.pdf

Amazon Aurora User Guide for Aurora
Creating a VPC for Aurora

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc/.

2. In the top-right corner of the AWS Management Console, choose the AWS Region to create your VPC
in. This example uses the US East (Ohio) Region.

3. In the upper-left corner, choose VPC Dashboard. Choose Start VPC Wizard to begin creating a VPC.

4. In the Create VPC wizard, choose VPC with a Single Public Subnet. Choose Select.

5. Set the following values in the Create VPC panel:

• IP CIDR block: 10.0.0.0/16

• VPC name: gs-cluster-vpc

• Public subnet: 10.0.0.0/24

• Availability Zone: us-east-1a

• Subnet name: gs-subnet1

• Enable DNS hostnames: Yes

• Hardware tenancy: Default

1807

https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

Amazon Aurora User Guide for Aurora
Creating a VPC for Aurora

6. Choose Create VPC.

7. When your VPC has been created, choose Close on the notification page.

To create additional subnets

1. To add the second subnet to your VPC, in the VPC Dashboard choose Subnets, and then choose Create
Subnet. An Amazon Aurora DB cluster requires at least two VPC subnets.

2. Set the following values in the Create Subnet panel:

• Name tag: gs-subnet2

• VPC: Choose the VPC that you created in the previous step, for example: vpc-a464d1c1
(10.0.0.0/16) | gs-cluster-vpc.

• Availability Zone: us-east-1c

• CIDR block: 10.0.1.0/24

1808

Amazon Aurora User Guide for Aurora
Creating a VPC for Aurora

3. Choose Yes Create.
4. To ensure that the second subnet that you created uses the same route table as the first subnet, in

the VPC Dashboard, choose Subnets, and then choose the first subnet that was created for the VPC,
gs-subnet1. Choose the Route Table tab, and note the Current Route Table, for example: rtb-
c16ce5bc.

5. In the list of subnets, clear the first subnet and choose the second subnet, gs-subnet2. Choose the
Route Table tab, and then choose Edit. In the Change to list, choose the route table from the previous
step, for example: rtb-c16ce5bc. Choose Save to save your choice.

Create a security group and add inbound rules
After you've created your VPC and subnets, the next step is to create a security group and add inbound
rules.

To create a security group

The last step in creating a VPC for use with your Amazon Aurora DB cluster is to create a VPC security
group, which identifies which network addresses and protocols are allowed to access DB instances in your
VPC.

1. In the VPC Dashboard, choose Security Groups, and then choose Create Security Group.
2. Set the following values in the Create Security Group panel:

1809

Amazon Aurora User Guide for Aurora
Creating a VPC for Aurora

• Name tag: gs-securitygroup1

• Group name: gs-securitygroup1

• Description: Getting Started Security Group

• VPC: Choose the VPC that you created earlier, for example: vpc-b5754bcd | gs-cluster-vpc.

3. Choose Yes, Create to create the security group.

To add inbound rules to the security group

To connect to your Aurora DB cluster, you need to add an inbound rule to your VPC security group that
allows inbound traffic to connect.

1. Determine the IP address to use to connect to the Aurora cluster. You can use the service at https://
checkip.amazonaws.com to determine your public IP address. If you are connecting through an ISP or
from behind your firewall without a static IP address, you need to find out the range of IP addresses
used by client computers.

Warning
If you use 0.0.0.0/0, you enable all IP addresses to access your DB cluster. This
is acceptable for a short time in a test environment, but it's unsafe for production
environments. In production, you'll authorize only a specific IP address or range of addresses
to access your DB cluster.

2. In the VPC Dashboard, choose Security Groups, and then choose the gs-securitygroup1 security
group that you created in the previous procedure.

3. Choose the Inbound tab, and then choose the Edit button.

4. Set the following values for your new inbound rule:

• Type: All Traffic

• Source: The IP address or range from the previous step, for example 203.0.113.25/32.

5. Choose Save to save your settings.

1810

https://checkip.amazonaws.com
https://checkip.amazonaws.com

Amazon Aurora User Guide for Aurora
Creating a VPC for Aurora

Create a DB subnet group

The last thing that you need before you can create an Aurora DB cluster is a DB subnet group. Your
DB subnet group identifies the subnets that your DB cluster uses from the VPC that you created in the
previous steps. Your DB subnet group must include at least one subnet in at least two of the Availability
Zones in the AWS Region where you want to deploy your DB cluster.

To create a DB subnet group for use with your Aurora DB cluster

1. Open the Amazon Aurora console at https://console.aws.amazon.com/rds.

2. Choose Subnet Groups, and then choose Create DB Subnet Group.

3. Set the following values for your new DB subnet group:

• Name: gs-subnetgroup1

• Description: Getting Started Subnet Group

• VPC ID: Choose the VPC that you created in the previous procedure, for example, gs-cluster-vpc
(vpc-b5754bcd).

4. In the Add subnets section, choose the Availability Zones that include the subnets from Availability
Zones, and then choose the subnets from Subnets.

1811

https://console.aws.amazon.com/rds

Amazon Aurora User Guide for Aurora
Creating a VPC for Aurora

1812

Amazon Aurora User Guide for Aurora
Scenarios for accessing a DB instance in a VPC

5. Choose Create to create the subnet group.

Scenarios for accessing a DB instance in a VPC
Amazon Aurora supports the following scenarios for accessing a DB instance in a VPC:

• An EC2 instance in the same VPC (p. 1813)
• An EC2 instance in a different VPC (p. 1814)
• A client application through the internet (p. 1815)
• A private network (p. 1816)
• An EC2 instance not in a VPC (p. 1816)

A DB instance in a VPC accessed by an EC2 instance in the same
VPC
A common use of a DB instance in a VPC is to share data with an application server that is running in an
EC2 instance in the same VPC. This is the user scenario created if you use AWS Elastic Beanstalk to create
an EC2 instance and a DB instance in the same VPC.

The following diagram shows this scenario.

The simplest way to manage access between EC2 instances and DB instances in the same VPC is to do the
following:

• Create a VPC security group for your DB instances to be in. This security group can be used to restrict
access to the DB instances. For example, you can create a custom rule for this security group that

1813

Amazon Aurora User Guide for Aurora
Scenarios for accessing a DB instance in a VPC

allows TCP access using the port you assigned to the DB instance when you created it and an IP
address you use to access the DB instance for development or other purposes.

• Create a VPC security group for your EC2 instances (web servers and clients) to be in. This security
group can, if needed, allow access to the EC2 instance from the internet by using the VPC's routing
table. For example, you can set rules on this security group to allow TCP access to the EC2 instance
over port 22.

• Create custom rules in the security group for your DB instances that allow connections from the
security group you created for your EC2 instances. This would allow any member of the security group
to access the DB instances.

For a tutorial that shows you how to create a VPC with both public and private subnets for this scenario,
see Tutorial: Create an Amazon VPC for use with a DB instance (p. 1818).

To create a rule in a VPC security group that allows connections from another security group,
do the following:

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc.

2. In the navigation pane, choose Security Groups.
3. Choose or create a security group for which you want to allow access to members of another

security group. In the scenario preceding, this is the security group that you use for your DB
instances. Choose the Inbound rules tab, and then choose Edit inbound rules.

4. On the Edit inbound rules page, choose Add rule.
5. From Type, choose the entry that corresponds to the port you used when you created your DB

instance, such as MYSQL/Aurora.
6. In the Source box, start typing the ID of the security group, which lists the matching security groups.

Choose the security group with members that you want to have access to the resources protected
by this security group. In the scenario preceding, this is the security group that you use for your EC2
instance.

7. If required, repeat the steps for the TCP protocol by creating a rule with All TCP as the Type and
your security group in the Source box. If you intend to use the UDP protocol, create a rule with All
UDP as the Type and your security group in the Source box.

8. Choose Save rules when you are done.

The following screen shows an inbound rule with a security group for its source.

A DB instance in a VPC accessed by an EC2 instance in a
different VPC
When your DB instance is in a different VPC from the EC2 instance you are using to access it, you can use
VPC peering to access the DB instance.

The following diagram shows this scenario.

1814

https://console.aws.amazon.com/vpc
https://console.aws.amazon.com/vpc

Amazon Aurora User Guide for Aurora
Scenarios for accessing a DB instance in a VPC

A VPC peering connection is a networking connection between two VPCs that enables you to route traffic
between them using private IP addresses. Instances in either VPC can communicate with each other as
if they are within the same network. You can create a VPC peering connection between your own VPCs,
with a VPC in another AWS account, or with a VPC in a different AWS Region. To learn more about VPC
peering, see VPC peering in the Amazon Virtual Private Cloud User Guide.

A DB instance in a VPC accessed by a client application through
the internet
To access a DB instance in a VPC from a client application through the internet, you configure a VPC with
a single public subnet, and an internet gateway to enable communication over the internet.

The following diagram shows this scenario.

We recommend the following configuration:

• A VPC of size /16 (for example CIDR: 10.0.0.0/16). This size provides 65,536 private IP addresses.

• A subnet of size /24 (for example CIDR: 10.0.0.0/24). This size provides 256 private IP addresses.

• An Amazon Aurora DB instance that is associated with the VPC and the subnet. Amazon RDS assigns an
IP address within the subnet to your DB instance.

• An internet gateway which connects the VPC to the internet and to other AWS products.

1815

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-peering.html

Amazon Aurora User Guide for Aurora
Scenarios for accessing a DB instance in a VPC

• A security group associated with the DB instance. The security group's inbound rules allow your client
application to access to your DB instance.

For information about creating a DB instance in a VPC, see Creating a DB instance in a VPC (p. 1803).

A DB instance in a VPC accessed by a private network

If your DB instance isn't publicly accessible, you have the following options for accessing it from a private
network:

• An AWS Site-to-Site VPN connection. For more information, see What is AWS Site-to-Site VPN?

• An AWS Direct Connect connection. For more information, see What is AWS Direct Connect?

The following diagram shows a scenario with an AWS Site-to-Site VPN connection.

For more information, see Internetwork traffic privacy (p. 1736).

A DB instance in a VPC accessed by an EC2 instance not in a VPC

You can communicate between an Amazon Aurora DB instance that is in a VPC and an EC2 instance
that is not in an Amazon VPC by using ClassicLink. When you use ClassicLink, an application on the
EC2 instance can connect to the DB instance by using the endpoint for the DB instance. ClassicLink is
available at no charge.

Important
If your EC2 instance was created after 2013, it is probably in a VPC.

The following diagram shows this scenario.

1816

https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html

Amazon Aurora User Guide for Aurora
Scenarios for accessing a DB instance in a VPC

Using ClassicLink, you can connect an EC2 instance to a logically isolated database where you define the
IP address range and control the access control lists (ACLs) to manage network traffic. You don't have to
use public IP addresses or tunneling to communicate with the DB instance in the VPC. This arrangement
provides you with higher throughput and lower latency connectivity for inter-instance communications.

To enable ClassicLink between a DB instance in a VPC and an EC2 instance not in a VPC

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc.

2. In the navigation pane, choose Your VPCs.
3. Choose the VPC used by the DB instance.
4. In Actions, choose Enable ClassicLink. In the confirmation dialog box, choose Yes, Enable.
5. On the EC2 console, choose the EC2 instance you want to connect to the DB instance in the VPC.
6. In Actions, choose ClassicLink, and then choose Link to VPC.
7. On the Link to VPC page, choose the security group you want to use, and then choose Link to VPC.

Note
The ClassicLink features are only visible in the consoles for accounts and regions that support
EC2-Classic. For more information, see ClassicLink in the Amazon EC2 User Guide for Linux
Instances.

1817

https://console.aws.amazon.com/vpc
https://console.aws.amazon.com/vpc
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpc-classiclink.html

Amazon Aurora User Guide for Aurora
Tutorial: Create an Amazon VPC for use with a DB instance

Tutorial: Create an Amazon VPC for use with a DB
instance
A common scenario includes a DB instance in an Amazon VPC, that shares data with a web server that is
running in the same VPC. In this tutorial you create the VPC for this scenario.

The following diagram shows this scenario. For information about other scenarios, see Scenarios for
accessing a DB instance in a VPC (p. 1813).

Because your DB instance only needs to be available to your web server, and not to the public Internet,
you create a VPC with both public and private subnets. The web server is hosted in the public subnet,
so that it can reach the public Internet. The DB instance is hosted in a private subnet. The web server is
able to connect to the DB instance because it is hosted within the same VPC, but the DB instance is not
available to the public Internet, providing greater security.

This tutorial describes configuring a VPC for Amazon Aurora DB clusters. For more information about
Amazon VPC, see Amazon VPC Getting Started Guide and Amazon VPC User Guide.

Note
For a tutorial that shows you how to create a web server for this VPC scenario, see Tutorial:
Create a web server and an Amazon Aurora DB cluster (p. 103).

Create a VPC with private and public subnets

Use the following procedure to create a VPC with both public and private subnets.

1818

https://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/
https://docs.aws.amazon.com/vpc/latest/userguide/

Amazon Aurora User Guide for Aurora
Tutorial: Create an Amazon VPC for use with a DB instance

To create a VPC and subnets

1. If you don't have an Elastic IP address to associate with a network address translation (NAT)
gateway, allocate one now. A NAT gateway is required for this tutorial. If you have an available
Elastic IP address, move on to the next step.

a. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
b. In the top-right corner of the AWS Management Console, choose the Region to allocate your

Elastic IP address in. The Region of your Elastic IP address should be the same as the Region
where you want to create your VPC. This example uses the US West (Oregon) Region.

c. In the navigation pane, choose Elastic IPs.
d. Choose Allocate Elastic IP address.
e. If the console shows the Network Border Group field, keep the default value for it.
f. For Public IPv4 address pool, choose Amazon's pool of IPv4 addresses.
g. Choose Allocate.

Note the allocation ID of the new Elastic IP address because you'll need this information when
you create your VPC.

For more information about Elastic IP addresses, see Elastic IP addresses in the Amazon EC2 User
Guide. For more information about NAT gateways, see NAT gateways in the Amazon VPC User Guide.

2. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
3. In the top-right corner of the AWS Management Console, choose the Region to create your VPC in.

This example uses the US West (Oregon) Region.
4. In the upper-left corner, choose VPC Dashboard. To begin creating a VPC, choose Launch VPC

Wizard.
5. On the Step 1: Select a VPC Configuration page, choose VPC with Public and Private Subnets, and

then choose Select.
6. On the Step 2: VPC with Public and Private Subnets page, set these values:

• IPv4 CIDR block: 10.0.0.0/16
• IPv6 CIDR block: No IPv6 CIDR Block
• VPC name: tutorial-vpc
• Public subnet's IPv4 CIDR: 10.0.0.0/24
• Availability Zone: us-west-2a
• Public subnet name: Tutorial public
• Private subnet's IPv4 CIDR: 10.0.1.0/24
• Availability Zone: us-west-2b
• Private subnet name: Tutorial private 1
• Elastic IP Allocation ID: An Elastic IP address to associate with the NAT gateway
• Service endpoints: Skip this field.
• Enable DNS hostnames: Yes
• Hardware tenancy: Default

7. Choose Create VPC.

Create additional subnets
You must have either two private subnets or two public subnets available to create a DB subnet group
for a DB instance to use in a VPC. Because the DB instance for this tutorial is private, add a second private
subnet to the VPC.

1819

https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://console.aws.amazon.com/vpc/

Amazon Aurora User Guide for Aurora
Tutorial: Create an Amazon VPC for use with a DB instance

To create an additional subnet

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. To add the second private subnet to your VPC, choose VPC Dashboard, choose Subnets, and then

choose Create subnet.
3. On the Create subnet page, set these values:

• VPC ID: Choose the VPC that you created in the previous step, for example: vpc-identifier
(tutorial-vpc)

• Subnet name: Tutorial private 2
• Availability Zone: us-west-2c

Note
Choose an Availability Zone that is different from the one that you chose for the first
private subnet.

• IPv4 CIDR block: 10.0.2.0/24
4. Choose Create subnet.
5. To ensure that the second private subnet that you created uses the same route table as the first

private subnet, complete the following steps:

a. Choose VPC Dashboard, choose Subnets, and then choose the first private subnet that you
created for the VPC, Tutorial private 1.

b. Below the list of subnets, choose the Route table tab, and note the value for Route Table—for
example: rtb-98b613fd.

c. In the list of subnets, deselect the first private subnet.
d. In the list of subnets, choose the second private subnet Tutorial private 2, and choose the

Route table tab.
e. If the current route table is not the same as the route table for the first private subnet, choose

Edit route table association. For Route table ID, choose the route table that you noted earlier
—for example: rtb-98b613fd. Next, to save your selection, choose Save.

Create a VPC security group for a public web server
Next you create a security group for public access. To connect to public instances in your VPC, you add
inbound rules to your VPC security group that allow traffic to connect from the internet.

To create a VPC security group

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. Choose VPC Dashboard, choose Security Groups, and then choose Create security group.
3. On the Create security group page, set these values:

• Security group name: tutorial-securitygroup
• Description: Tutorial Security Group
• VPC: Choose the VPC that you created earlier, for example: vpc-identifier (tutorial-vpc)

4. Add inbound rules to the security group.

a. Determine the IP address to use to connect to instances in your VPC. To determine your
public IP address, in a different browser window or tab, you can use the service at https://
checkip.amazonaws.com. An example of an IP address is 203.0.113.25/32.

If you are connecting through an Internet service provider (ISP) or from behind your firewall
without a static IP address, you need to find out the range of IP addresses used by client
computers.

1820

https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/
https://checkip.amazonaws.com
https://checkip.amazonaws.com

Amazon Aurora User Guide for Aurora
Tutorial: Create an Amazon VPC for use with a DB instance

Warning
If you use 0.0.0.0/0, you enable all IP addresses to access your public instances.
This approach is acceptable for a short time in a test environment, but it's unsafe for
production environments. In production, you'll authorize only a specific IP address or
range of addresses to access your instances.

b. In the Inbound rules section, choose Add rule.
c. Set the following values for your new inbound rule to allow Secure Shell (SSH) access to your

EC2 instance. If you do this, you can connect to your EC2 instance to install the web server and
other utilities, and to upload content for your web server.

• Type: SSH
• Source: The IP address or range from Step a, for example: 203.0.113.25/32.

d. Choose Add rule.
e. Set the following values for your new inbound rule to allow HTTP access to your web server.

• Type: HTTP
• Source: 0.0.0.0/0

5. To create the security group, choose Create security group.

Note the security group ID because you need it later in this tutorial.

Create a VPC security group for a private DB instance
To keep your DB instance private, create a second security group for private access. To connect to private
instances in your VPC, you add inbound rules to your VPC security group that allow traffic from your web
server only.

To create a VPC security group

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. Choose VPC Dashboard, choose Security Groups, and then choose Create security group.
3. On the Create security group page, set these values:

• Security group name: tutorial-db-securitygroup
• Description: Tutorial DB Instance Security Group
• VPC: Choose the VPC that you created earlier, for example: vpc-identifier (tutorial-vpc)

4. Add inbound rules to the security group.

a. In the Inbound rules section, choose Add rule.
b. Set the following values for your new inbound rule to allow MySQL traffic on port 3306 from

your EC2 instance. If you do this, you can connect from your web server to your DB instance to
store and retrieve data from your web application to your database.

• Type: MySQL/Aurora
• Source: The identifier of the tutorial-securitygroup security group that you created

previously in this tutorial, for example: sg-9edd5cfb.
5. To create the security group, choose Create security group.

Create a DB subnet group
A DB subnet group is a collection of subnets that you create in a VPC and that you then designate for
your DB instances. A DB subnet group allows you to specify a particular VPC when creating DB instances.

1821

https://console.aws.amazon.com/vpc/

Amazon Aurora User Guide for Aurora
Tutorial: Create an Amazon VPC for use with a DB instance

To create a DB subnet group

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

Note
Make sure you connect to the Amazon RDS console, not to the Amazon VPC console.

2. In the navigation pane, choose Subnet groups.
3. Choose Create DB Subnet Group.
4. On the Create DB subnet group page, set these values in Subnet group details:

• Name: tutorial-db-subnet-group
• Description: Tutorial DB Subnet Group
• VPC: tutorial-vpc (vpc-identifier)

5. In the Add subnets section, choose the Availability Zones and Subnets.

For this tutorial, choose us-west-2b and us-west-2c for the Availability Zones. Next, for
Subnets, choose the subnets for IPv4 CIDR block 10.0.1.0/24 and 10.0.2.0/24.

6. Choose Create.

Your new DB subnet group appears in the DB subnet groups list on the RDS console. You can click
the DB subnet group to see details, including all of the subnets associated with the group, in the
details pane at the bottom of the window.

Note
If you created this VPC to complete Tutorial: Create a web server and an Amazon Aurora DB
cluster (p. 103), create the DB cluster by following the instructions in Create an Amazon Aurora
DB cluster (p. 104).

Deleting the VPC
After you create the VPC and other resources for this tutorial, you can delete them if they are no longer
needed.

Note
If you added resources in the Amazon VPC you created for this tutorial, such as Amazon EC2
instances or Amazon RDS DB instances, you might need to delete these resources before you can
delete the VPC. For more information, see Delete your VPC in the Amazon VPC User Guide.

To delete a VPC and related resources

1. Delete the DB subnet group.

a. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.
b. In the navigation pane, choose Subnet groups.
c. Select the DB subnet group you want to delete, such as tutorial-db-subnet-group.
d. Choose Delete, and then choose Delete in the confirmation window.

2. Note the VPC ID.

a. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
b. Choose VPC Dashboard, and then choose VPCs.
c. In the list, identify the VPC you created, such as tutorial-vpc.
d. Note the VPC ID of the VPC you created. You will need the VPC ID in subsequent steps.

3. Delete the security groups.

a. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

1822

https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#VPC_Deleting
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

Amazon Aurora User Guide for Aurora
Tutorial: Create an Amazon VPC for use with a DB instance

b. Choose VPC Dashboard, and then choose Security Groups.
c. Select the security group for the Amazon RDS DB instance, such as tutorial-db-securitygroup.
d. From Actions, choose Delete security groups, and then choose Delete on the confirmation

page.
e. On the Security Groups page, select the security group for the Amazon EC2 instance, such as

tutorial-securitygroup.
f. From Actions, choose Delete security groups, and then choose Delete on the confirmation

page.
4. Delete the NAT gateway.

a. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
b. Choose VPC Dashboard, and then choose NAT Gateways.
c. Select the NAT gateway of the VPC you created. Use the VPC ID to identify the correct NAT

gateway.
d. From Actions, choose Delete NAT gateway.
e. On the confirmation page, enter delete, and then choose Delete.

5. Delete the VPC.

a. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
b. Choose VPC Dashboard, and then choose VPCs.
c. Select the VPC you want to delete, such as tutorial-vpc.
d. From Actions, choose Delete VPC.

The confirmation page shows other resources that are associated with the VPC that will also be
deleted, including the subnets associated with it.

e. On the confirmation page, enter delete, and then choose Delete.
6. Release the Elastic IP addresses.

a. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
b. Choose EC2 Dashboard, and then choose Elastic IPs.
c. Select the Elastic IP address you want to release.
d. From Actions, choose Release Elastic IP addresses.
e. On the confirmation page, choose Release.

1823

https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/ec2/

Amazon Aurora User Guide for Aurora
Quotas in Amazon Aurora

Quotas and constraints for Amazon
Aurora

Following, you can find a description of the resource quotas and naming constraints for Amazon Aurora.

Topics

• Quotas in Amazon Aurora (p. 1824)

• Naming constraints in Amazon Aurora (p. 1825)

• Amazon Aurora size limits (p. 1826)

Quotas in Amazon Aurora
Each AWS account has quotas, for each AWS Region, on the number of Amazon Aurora resources that
can be created. After a quota for a resource has been reached, additional calls to create that resource fail
with an exception.

The following table lists the resources and their quotas per AWS Region.

Name Default Adjustable

Authorizations per DB security group Each supported Region: 20 No

DB instances Each supported Region: 40 Yes

DB subnet groups Each supported Region: 50 Yes

Event subscriptions Each supported Region: 20 Yes

IAM roles per DB cluster Each supported Region: 5 Yes

IAM roles per DB instance Each supported Region: 5 Yes

Manual DB cluster snapshots Each supported Region: 100 Yes

Manual DB instance snapshots Each supported Region: 100 Yes

Option groups Each supported Region: 20 Yes

Parameter groups Each supported Region: 50 Yes

Proxies Each supported Region: 20 Yes

Read replicas per master Each supported Region: 5 Yes

Reserved DB instances Each supported Region: 40 Yes

Rules per security group Each supported Region: 20 No

Security groups Each supported Region: 25 Yes

1824

https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-7B6409FD
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-48C6BF61
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-A59F4C87
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-E094F43D
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-DD2301CA
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-9B510759
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-272F1212
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-9FA33840
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-DE55804A
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-D94C7EA3
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-5BC124EF
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-78E853F4
https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-732153D0

Amazon Aurora User Guide for Aurora
Naming constraints in Amazon Aurora

Name Default Adjustable

Security groups (VPC) Each supported Region: 5 No

Subnets per DB subnet group Each supported Region: 20 No

Tags per resource Each supported Region: 50 No

Total storage for all DB instances Each supported Region:
100,000 Gigabytes

Yes

Note
By default, you can have up to a total of 40 DB instances. RDS DB instances, Aurora DB
instances, Amazon Neptune instances, and Amazon DocumentDB instances apply to this quota.
If your application requires more DB instances, you can request additional DB instances by
opening the Service Quotas console. In the navigation pane, choose AWS services. Choose
Amazon Relational Database Service (Amazon RDS), choose a quota, and follow the directions
to request a quota increase. For more information, see Requesting a quota increase in the
Service Quotas User Guide.
Backups managed by AWS Backup are considered manual DB cluster snapshots, but don't count
toward the manual cluster snapshot quota. For information about AWS Backup, see the AWS
Backup Developer Guide.

If you use any of the Amazon RDS APIs and exceed the default quota for the number of calls per
second, the Amazon RDS API issues an error similar to the following: ClientError: An error occurred
(ThrottlingException) when calling the API_name operation: Rate exceeded. Reduce the number of calls
per second. The quota is meant to cover most use cases. If higher limits are needed, request a quota
increase by contacting AWS Support. Open the AWS Support Center page, sign in if necessary, and
choose Create case. Choose Service limit increase. Complete and submit the form.

Note
This quota can't be changed in the Amazon RDS Service Quotas console.

Naming constraints in Amazon Aurora
The following table describes naming constraints in Amazon Aurora.

Resource or item Constraints

DB cluster identifier Identifiers have these naming constraints:

• Must contain 1–63 alphanumeric characters or hyphens.
• First character must be a letter.
• Can't end with a hyphen or contain two consecutive

hyphens.
• Must be unique for all DB instances per AWS account, per

AWS Region.

Initial database name Database name constraints differ between Aurora MySQL
and PostgreSQL. For more information, see the available
settings when creating each DB cluster.

Master user name Master user name constraints differ for each database
engine. For more information, see the available settings
when creating each DB cluster.

1825

https://console.aws.amazon.com/servicequotas/home/services/rds/quotas/L-7ADDB58A
https://console.aws.amazon.com/servicequotas/home?region=us-east-1#!/dashboard
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-increase.html
https://docs.aws.amazon.com/aws-backup/latest/devguide
https://docs.aws.amazon.com/aws-backup/latest/devguide
https://console.aws.amazon.com/support/home#/

Amazon Aurora User Guide for Aurora
Amazon Aurora size limits

Resource or item Constraints

Master password The password for the database master user can include any
printable ASCII character except /, ", @, or a space. Master
password length constraints differ for each database engine.
For more information, see the available settings when
creating each DB cluster.

DB parameter group name These names have these constraints:

• Must contain 1–255 alphanumeric characters.
• First character must be a letter.
• Hyphens are allowed, but the name cannot end with a

hyphen or contain two consecutive hyphens.

DB subnet group name These names have these constraints:

• Must contain 1–255 characters.
• Alphanumeric characters, spaces, hyphens, underscores,

and periods are allowed.

Amazon Aurora size limits
Storage size limits

An Aurora cluster volume can grow to a maximum size of 128 tebibytes (TiB) for the following
engine versions:
• Aurora MySQL versions 3.1 and higher (compatible with MySQL 8.0), 2.09 and higher (compatible

with MySQL 5.7), and 1.23 and higher (compatible with MySQL 5.6)
• All Aurora PostgreSQL 13 versions, Aurora PostgreSQL versions 12.4 and higher, 11.7 and higher,

10.12 and higher, and 9.6.17 and higher

For lower engine versions, the maximum size of an Aurora cluster volume is 64 TiB. For more
information, see How Aurora storage automatically resizes (p. 65).

SQL table size limits

For Aurora MySQL, the maximum table size is 64 tebibytes (TiB). For an Aurora PostgreSQL DB
cluster, the maximum table size is 32 tebibytes (TiB). We recommend that you follow table design
best practices, such as partitioning of large tables.

1826

Amazon Aurora User Guide for Aurora
Can't connect to DB instance

Troubleshooting for Aurora
Use the following sections to help troubleshoot problems you have with DB instances in Amazon RDS
and Aurora.

Topics
• Can't connect to Amazon RDS DB instance (p. 1827)
• Amazon RDS security issues (p. 1829)
• Resetting the DB instance owner password (p. 1829)
• Amazon RDS DB instance outage or reboot (p. 1829)
• Amazon RDS DB parameter changes not taking effect (p. 1830)
• Amazon Aurora MySQL out of memory issues (p. 1830)
• Amazon Aurora MySQL replication issues (p. 1831)

For information about debugging problems using the Amazon RDS API, see Troubleshooting applications
on Aurora (p. 1836).

Can't connect to Amazon RDS DB instance
When you can't connect to a DB instance, the following are common causes:

• Inbound rules – The access rules enforced by your local firewall and the IP addresses authorized to
access your DB instance might not match. The problem is most likely the inbound rules in your security
group.

By default, DB instances don't allow access. Access is granted through a security group associated with
the VPC that allows traffic into and out of the DB instance. If necessary, add inbound and outbound
rules for your particular situation to the security group. You can specify an IP address, a range of IP
addresses, or another VPC security group.

Note
When adding a new inbound rule, you can choose My IP for Source to allow access to the DB
instance from the IP address detected in your browser.

For more information about setting up security groups, see Provide access to the DB cluster in the VPC
by creating a security group (p. 87).

Note
Client connections from IP addresses within the range 169.254.0.0/16 aren't permitted. This is
the Automatic Private IP Addressing Range (APIPA), which is used for local-link addressing.

• Public accessibility – To connect to your DB instance from outside of the VPC, such as by using a client
application, the instance must have a public IP address assigned to it.

To make the instance publicly accessible, modify it and choose Yes under Public accessibility. For
more information, see Hiding a DB instance in a VPC from the internet (p. 1802).

• Port – The port that you specified when you created the DB instance can't be used to send or receive
communications due to your local firewall restrictions. To determine if your network allows the
specified port to be used for inbound and outbound communication, check with your network
administrator.

1827

Amazon Aurora User Guide for Aurora
Testing the DB instance connection

• Availability – For a newly created DB instance, the DB instance has a status of creating until the DB
instance is ready to use. When the state changes to available, you can connect to the DB instance.
Depending on the size of your DB instance, it can take up to 20 minutes before an instance is available.

• Internet gateway – For a DB instance to be publicly accessible, the subnets in its DB subnet group
must have an internet gateway.

To configure an internet gateway for a subnet

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the name of the DB instance.
3. In the Connectivity & security tab, write down the values of the VPC ID under VPC and the subnet

ID under Subnets.
4. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
5. In the navigation pane, choose Internet Gateways. Verify that there is an internet gateway

attached to your VPC. Otherwise, choose Create Internet Gateway to create an internet gateway.
Select the internet gateway, and then choose Attach to VPC and follow the directions to attach it
to your VPC.

6. In the navigation pane, choose Subnets, and then select your subnet.
7. On the Route Table tab, verify that there is a route with 0.0.0.0/0 as the destination and the

internet gateway for your VPC as the target.

a. Choose the ID of the route table (rtb-xxxxxxxx) to navigate to the route table.
b. On the Routes tab, choose Edit routes. Choose Add route, use 0.0.0.0/0 as the destination

and the internet gateway as the target.
c. Choose Save routes.

For more information, see Working with a DB instance in a VPC (p. 1800).

Testing a connection to a DB instance
You can test your connection to a DB instance using common Linux or Microsoft Windows tools.

From a Linux or Unix terminal, you can test the connection by entering the following (replace DB-
instance-endpoint with the endpoint and port with the port of your DB instance).

nc -zv DB-instance-endpoint port

For example, the following shows a sample command and the return value.

nc -zv postgresql1.c6c8mn7fake0.us-west-2.rds.amazonaws.com 8299

 Connection to postgresql1.c6c8mn7fake0.us-west-2.rds.amazonaws.com 8299 port [tcp/vvr-
data] succeeded!

Windows users can use Telnet to test the connection to a DB instance. Telnet actions aren't supported
other than for testing the connection. If a connection is successful, the action returns no message. If a
connection isn't successful, you receive an error message such as the following.

C:\>telnet sg-postgresql1.c6c8mntfake0.us-west-2.rds.amazonaws.com 819

 Connecting To sg-postgresql1.c6c8mntfake0.us-west-2.rds.amazonaws.com...Could not open
 connection to the host, on port 819: Connect failed

1828

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/vpc/

Amazon Aurora User Guide for Aurora
Troubleshooting connection authentication

If Telnet actions return success, your security group is properly configured.

Note
Amazon RDS doesn't accept internet control message protocol (ICMP) traffic, including ping.

Troubleshooting connection authentication
If you can connect to your DB instance but you get authentication errors, you might want to reset the
master user password for the DB instance. You can do this by modifying the RDS instance.

Amazon RDS security issues
To avoid security issues, never use your master AWS user name and password for a user account. Best
practice is to use your master AWS account to create AWS Identity and Access Management (IAM)
users and assign those to DB user accounts. You can also use your master account to create other user
accounts, if necessary.

For more information on creating IAM users, see Create an IAM user (p. 84).

Error message "failed to retrieve account attributes,
certain console functions may be impaired."
You can get this error for several reasons. It might be because your account is missing permissions, or
your account hasn't been properly set up. If your account is new, you might not have waited for the
account to be ready. If this is an existing account, you might lack permissions in your access policies to
perform certain actions such as creating a DB instance. To fix the issue, your IAM administrator needs to
provide the necessary roles to your account. For more information, see the IAM documentation.

Resetting the DB instance owner password
If you get locked out of your DB cluster, you can log in as the master user. Then you can reset the
credentials for other administrative users or roles. If you can't log in as the master user, the AWS account
owner can reset the master user password. For details of which administrative accounts or roles you
might need to reset, see Master user account privileges (p. 1795).

You can change the DB instance password by using the Amazon RDS console, the AWS CLI command
modify-db-instance, or by using the ModifyDBInstance API operation. For more information about
modifying a DB instance in a DB cluster, see Modify a DB instance in a DB cluster (p. 373).

Amazon RDS DB instance outage or reboot
A DB instance outage can occur when a DB instance is rebooted. It can also occur when the DB instance is
put into a state that prevents access to it, and when the database is restarted. A reboot can occur when
you either manually reboot your DB instance or change a DB instance setting that requires a reboot
before it can take effect.

A DB instance reboot occurs when you change a setting that requires a reboot, or when you manually
cause a reboot. A reboot can occur immediately if you change a setting and request that the change take
effect immediately or it can occur during the DB instance's maintenance window.

1829

https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_ModifyDBInstance.html

Amazon Aurora User Guide for Aurora
Parameter changes not taking effect

A DB instance reboot occurs immediately when one of the following occurs:

• You change the backup retention period for a DB instance from 0 to a nonzero value or from a nonzero
value to 0 and set Apply Immediately to true.

• You change the DB instance class, and Apply Immediately is set to true.

A DB instance reboot occurs during the maintenance window when one of the following occurs:

• You change the backup retention period for a DB instance from 0 to a nonzero value or from a nonzero
value to 0, and Apply Immediately is set to false.

• You change the DB instance class, and Apply Immediately is set to false.

When you change a static parameter in a DB parameter group, the change doesn't take effect until the
DB instance associated with the parameter group is rebooted. The change requires a manual reboot. The
DB instance isn't automatically rebooted during the maintenance window.

Amazon RDS DB parameter changes not taking
effect

In some cases, you might change a parameter in a DB parameter group but don't see the changes
take effect. If so, you likely need to reboot the DB instance associated with the DB parameter group.
When you change a dynamic parameter, the change takes effect immediately. When you change a
static parameter, the change doesn't take effect until you reboot the DB instance associated with the
parameter group.

You can reboot a DB instance using the RDS console or explicitly calling the RebootDBInstance API
operation (without failover, if the DB instance is in a Multi-AZ deployment). The requirement to reboot
the associated DB instance after a static parameter change helps mitigate the risk of a parameter
misconfiguration affecting an API call. An example of this might be calling ModifyDBInstance to
change the DB instance class. For more information, see Modifying parameters in a DB parameter
group (p. 347).

Amazon Aurora MySQL out of memory issues
The Aurora MySQL aurora_oom_response instance-level parameter can enable the DB instance
to monitor the system memory and estimate the memory consumed by various statements and
connections. If the system runs low on memory, it can perform a list of actions to release that memory
in an attempt to avoid out-of-memory (OOM) and database restart. The instance-level parameter takes a
string of comma-separated actions that a DB instance should take when its memory is low. Valid actions
include print, tune, decline, kill_query, or any combination of these. An empty string means that
no action should be taken and effectively disables the feature.

Note
This parameter only applies to Aurora MySQL version 1.18 and higher. It isn't used in Aurora
MySQL version 2.

The following are usage examples for the aurora_oom_response parameter:

• print – Only prints the queries taking high amount of memory.
• tune – Tunes the internal table caches to release some memory back to the system.
• decline – Declines new queries once the instance is low on memory.

1830

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RebootDBInstance.html

Amazon Aurora User Guide for Aurora
Aurora MySQL replication issues

• kill_query – Ends the queries in descending order of memory consumption until the instance
memory surfaces above the low threshold. Data definition language (DDL) statements aren't ended.

• print, tune – Performs actions described for both print and tune.
• tune, decline, kill_query – Performs the actions described for tune, decline, and
kill_query.

For the db.t2.small DB instance class, the aurora_oom_response parameter is set to print, tune by
default. For all other DB instance classes, the parameter value is empty by default (disabled).

Amazon Aurora MySQL replication issues
Some MySQL replication issues also apply to Aurora MySQL. You can diagnose and correct these.

Topics
• Diagnosing and resolving lag between read replicas (p. 1831)
• Diagnosing and resolving a MySQL read replication failure (p. 1832)
• Replication stopped error (p. 1833)

Diagnosing and resolving lag between read replicas
After you create a MySQL read replica and the replica is available, Amazon RDS first replicates the
changes made to the source DB instance from the time the read replica create operation started. During
this phase, the replication lag time for the read replica is greater than 0. You can monitor this lag time in
Amazon CloudWatch by viewing the Amazon RDS AuroraBinlogReplicaLag metric.

The AuroraBinlogReplicaLag metric reports the value of the Seconds_Behind_Master field
of the MySQL SHOW SLAVE STATUS command. For more information, see SHOW SLAVE STATUS.
When the AuroraBinlogReplicaLag metric reaches 0, the replica has caught up to the source DB
instance. If the AuroraBinlogReplicaLag metric returns -1, replication might not be active. To
troubleshoot a replication error, see Diagnosing and resolving a MySQL read replication failure (p. 1832).
A AuroraBinlogReplicaLag value of -1 can also mean that the Seconds_Behind_Master value
can't be determined or is NULL.

Note
Previous versions of Aurora MySQL used SHOW SLAVE STATUS instead of SHOW REPLICA
STATUS. If you are using Aurora MySQL version 1 or 2, then use SHOW SLAVE STATUS. Use
SHOW REPLICA STATUS for Aurora MySQL version 3 and higher.

The AuroraBinlogReplicaLag metric returns -1 during a network outage or when a patch is applied
during the maintenance window. In this case, wait for network connectivity to be restored or for the
maintenance window to end before you check the AuroraBinlogReplicaLag metric again.

The MySQL read replication technology is asynchronous. Thus, you can expect occasional increases for
the BinLogDiskUsage metric on the source DB instance and for the AuroraBinlogReplicaLag
metric on the read replica. For example, consider a situation where a high volume of write operations
to the source DB instance occur in parallel. At the same time, write operations to the read replica are
serialized using a single I/O thread. Such a situation can lead to a lag between the source instance and
read replica.

For more information about read replicas and MySQL, see Replication implementation details in the
MySQL documentation.

You can reduce the lag between updates to a source DB instance and the subsequent updates to the read
replica by doing the following:

1831

https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/replication-implementation-details.html

Amazon Aurora User Guide for Aurora
Diagnosing and resolving a MySQL read replication failure

• Set the DB instance class of the read replica to have a storage size comparable to that of the source DB
instance.

• Make sure that parameter settings in the DB parameter groups used by the source DB instance and
the read replica are compatible. For more information and an example, see the discussion of the
max_allowed_packet parameter in the next section.

• Disable the query cache. For tables that are modified often, using the query cache can increase replica
lag because the cache is locked and refreshed often. If this is the case, you might see less replica lag
if you disable the query cache. You can disable the query cache by setting the query_cache_type
parameter to 0 in the DB parameter group for the DB instance. For more information on the query
cache, see Query cache configuration.

• Warm the buffer pool on the read replica for InnoDB for MySQL. For example, suppose that you have a
small set of tables that are being updated often and you're using the InnoDB or XtraDB table schema.
In this case, dump those tables on the read replica. Doing this causes the database engine to scan
through the rows of those tables from the disk and then cache them in the buffer pool. This approach
can reduce replica lag. The following shows an example.

For Linux, macOS, or Unix:

PROMPT> mysqldump \
 -h <endpoint> \
 --port=<port> \
 -u=<username> \
 -p <password> \
 database_name table1 table2 > /dev/null

For Windows:

PROMPT> mysqldump ^
 -h <endpoint> ^
 --port=<port> ^
 -u=<username> ^
 -p <password> ^
 database_name table1 table2 > /dev/null

Diagnosing and resolving a MySQL read replication
failure
Amazon RDS monitors the replication status of your read replicas and updates the Replication State
field of the read replica instance to Error if replication stops for any reason. You can review the details
of the associated error thrown by the MySQL engines by viewing the Replication Error field. Events that
indicate the status of the read replica are also generated, including RDS-EVENT-0045 (p. 700), RDS-
EVENT-0046 (p. 700), and RDS-EVENT-0047 (p. 699). For more information about events and subscribing
to events, see Using Amazon RDS event notification (p. 696). If a MySQL error message is returned, check
the error in the MySQL error message documentation.

Common situations that can cause replication errors include the following:

• The value for the max_allowed_packet parameter for a read replica is less than the
max_allowed_packet parameter for the source DB instance.

The max_allowed_packet parameter is a custom parameter that you can set in a DB parameter
group. The max_allowed_packet parameter is used to specify the maximum size of data
manipulation language (DML) that can be run on the database. If the max_allowed_packet value
for the source DB instance is larger than the max_allowed_packet value for the read replica,
the replication process can throw an error and stop replication. The most common error is packet

1832

https://dev.mysql.com/doc/refman/5.7/en/query-cache-configuration.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html

Amazon Aurora User Guide for Aurora
Replication stopped error

bigger than 'max_allowed_packet' bytes. You can fix the error by having the source and read
replica use DB parameter groups with the same max_allowed_packet parameter values.

• Writing to tables on a read replica. If you're creating indexes on a read replica, you need to have the
read_only parameter set to 0 to create the indexes. If you're writing to tables on the read replica, it
can break replication.

• Using a nontransactional storage engine such as MyISAM. Read replicas require a transactional storage
engine. Replication is only supported for the following storage engines: InnoDB for MySQL or MariaDB.

You can convert a MyISAM table to InnoDB with the following command:

alter table <schema>.<table_name> engine=innodb;

• Using unsafe nondeterministic queries such as SYSDATE(). For more information, see Determination
of safe and unsafe statements in binary logging in the MySQL documentation.

The following steps can help resolve your replication error:

• If you encounter a logical error and you can safely skip the error, follow the steps described in Skipping
the current replication error. Your Aurora MySQL DB instance must be running a version that includes
the mysql_rds_skip_repl_error procedure. For more information, see mysql_rds_skip_repl_error.

• If you encounter a binary log (binlog) position issue, you can change the replica replay
position with the mysql.rds_next_master_log (Aurora MySQL version 1 and 2) or
mysql.rds_next_source_log (Aurora MySQL version 3 and higher) command. Your Aurora MySQL
DB instance must be running a version that supports this command to change the replica replay
position. For version information, see mysql_rds_next_master_log.

• If you encounter a temporary performance issue due to high DML load, you can set the
innodb_flush_log_at_trx_commit parameter to 2 in the DB parameter group on the read replica.
Doing this can help the read replica catch up, though it temporarily reduces atomicity, consistency,
isolation, and durability (ACID).

• You can delete the read replica and create an instance using the same DB instance identifier so that the
endpoint remains the same as that of your old read replica.

If a replication error is fixed, the Replication State changes to replicating. For more information, see
Troubleshooting a MySQL read replica problem.

Replication stopped error
When you call the mysql.rds_skip_repl_error command, you might receive an error message
stating that replication is down or disabled.

This error message appears because replication is stopped and can't be restarted.

If you need to skip a large number of errors, the replication lag can increase beyond the default retention
period for binary log files. In this case, you might encounter a fatal error due to binary log files being
purged before they have been replayed on the replica. This purge causes replication to stop, and you can
no longer call the mysql.rds_skip_repl_error command to skip replication errors.

You can mitigate this issue by increasing the number of hours that binary log files are retained on your
replication source. After you have increased the binlog retention time, you can restart replication and call
the mysql.rds_skip_repl_error command as needed.

To set the binlog retention time, use the mysql_rds_set_configuration procedure. Specify a configuration
parameter of 'binlog retention hours' along with the number of hours to retain binlog files on the DB
cluster, up to 2160 (90 days). The default for Aurora MySQL is 24 (1 day). The following example sets the
retention period for binlog files to 48 hours.

1833

https://dev.mysql.com/doc/refman/8.0/en/replication-rbr-safe-unsafe.html
https://dev.mysql.com/doc/refman/8.0/en/replication-rbr-safe-unsafe.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.CommonDBATasks.SkipError.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.CommonDBATasks.SkipError.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_skip_repl_error.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_next_master_log.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.Troubleshooting.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.Troubleshooting.html

Amazon Aurora User Guide for Aurora
Replication stopped error

CALL mysql.rds_set_configuration('binlog retention hours', 48);

1834

Amazon Aurora User Guide for Aurora
Using the Query API

Amazon RDS application
programming interface (API)
reference

In addition to the AWS Management Console, and the AWS Command Line Interface (AWS CLI), Amazon
Relational Database Service (Amazon RDS) also provides an application programming interface (API). You
can use the API to automate tasks for managing your DB instances and other objects in Amazon RDS.

• For an alphabetical list of API operations, see Actions.
• For an alphabetical list of data types, see Data types.
• For a list of common query parameters, see Common parameters.
• For descriptions of the error codes, see Common errors.

For more information about the AWS CLI, see AWS Command Line Interface reference for Amazon RDS.

Topics
• Using the Query API (p. 1835)
• Troubleshooting applications on Aurora (p. 1836)

Using the Query API
The following sections briefly discuss the parameters and request authentication used with the Query
API.

For general information about how the Query API works, see Query requests in the Amazon EC2 API
Reference.

Query parameters
HTTP Query-based requests are HTTP requests that use the HTTP verb GET or POST and a Query
parameter named Action.

Each Query request must include some common parameters to handle authentication and selection of
an action.

Some operations take lists of parameters. These lists are specified using the param.n notation. Values of
n are integers starting from 1.

For information about Amazon RDS regions and endpoints, go to Amazon Relational Database Service
(RDS) in the Regions and Endpoints section of the Amazon Web Services General Reference.

Query request authentication
You can only send Query requests over HTTPS, and you must include a signature in every Query request.
You must use either AWS signature version 4 or signature version 2. For more information, see Signature
Version 4 signing process and Signature version 2 signing process.

1835

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Types.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonParameters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonErrors.html
https://docs.aws.amazon.com/cli/latest/reference/rds/index.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/Query-Requests.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#rds_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#rds_region
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-2.html

Amazon Aurora User Guide for Aurora
Troubleshooting applications

Troubleshooting applications on Aurora
Amazon RDS provides specific and descriptive errors to help you troubleshoot problems while interacting
with the Amazon RDS API.

Topics
• Retrieving errors (p. 1836)
• Troubleshooting tips (p. 1836)

For information about troubleshooting for Amazon RDS DB instances, see Troubleshooting for
Aurora (p. 1827).

Retrieving errors
Typically, you want your application to check whether a request generated an error before you spend any
time processing results. The easiest way to find out if an error occurred is to look for an Error node in
the response from the Amazon RDS API.

XPath syntax provides a simple way to search for the presence of an Error node, as well as an easy way
to retrieve the error code and message. The following code snippet uses Perl and the XML::XPath module
to determine if an error occurred during a request. If an error occurred, the code prints the first error
code and message in the response.

use XML::XPath;
 my $xp = XML::XPath->new(xml =>$response);
 if ($xp->find("//Error"))
 {print "There was an error processing your request:\n", " Error code: ",
 $xp->findvalue("//Error[1]/Code"), "\n", " ",
 $xp->findvalue("//Error[1]/Message"), "\n\n"; }

Troubleshooting tips
We recommend the following processes to diagnose and resolve problems with the Amazon RDS API.

• Verify that Amazon RDS is operating normally in the AWS Region you are targeting by visiting http://
status.aws.amazon.com.

• Check the structure of your request

Each Amazon RDS operation has a reference page in the Amazon RDS API Reference. Double-check that
you are using parameters correctly. In order to give you ideas regarding what might be wrong, look at
the sample requests or user scenarios to see if those examples are doing similar operations.

• Check the forum

Amazon RDS has a development community forum where you can search for solutions to problems
others have experienced along the way. To view the forum, go to AWS Discussion Forums.

1836

http://status.aws.amazon.com/
http://status.aws.amazon.com/
http://forums.aws.amazon.com/index.jspa

Amazon Aurora User Guide for Aurora

Document history
Current API version: 2014-10-31

The following table describes important changes to the Amazon Aurora User Guide. For notification
about updates to this documentation, you can subscribe to an RSS feed. For information about Amazon
Relational Database Service (Amazon RDS), see the Amazon Relational Database Service User Guide.

Note
Before August 31, 2018, Amazon Aurora was documented in the Amazon Relational Database
Service User Guide. For earlier Aurora document history, see Document history in the Amazon
Relational Database Service User Guide.

You can filter new Amazon Aurora features on the What's New with Database? page. For Products,
choose Amazon Aurora. Then search using keywords such as global database or Serverless.

update-history-change update-history-description update-history-date

Amazon Aurora supports
Database Activity Streams
in the Asia Pacific (Jakarta)
Region (p. 1837)

For more information, see
Support for AWS Regions for
database activity streams.

February 16, 2022

Aurora MySQL version
2.10.2 (p. 1131)

Aurora MySQL version 2.10.2 is
available.

January 26, 2022

Performance Insights supports
new APIs (p. 1837)

Performance Insights
supports the following APIs:
GetResourceMetadata,
ListAvailableResourceDimensions,
and
ListAvailableResourceMetrics.
For more information, see
Retrieving metrics with the
Performance Insights API in
this manual and the Amazon
RDS Performance Insights API
Reference.

January 12, 2022

RDS Proxy supports
events (p. 1837)

RDS Proxy now generates
events that you can subscribe
to and view in CloudWatch
Events or configure to send to
Amazon EventBridge. For more
information, see Working with
RDS Proxy events.

January 11, 2022

Aurora MySQL version
2.08.4 (p. 1152)

Aurora MySQL version 2.08.4 is
available.

January 6, 2022

RDS Proxy available in additional
AWS Regions (p. 1837)

RDS Proxy is now available in
the following Regions: Africa
(Cape Town), Asia Pacific (Hong
Kong), Asia Pacific (Osaka),
Europe (Milan), Europe (Paris),
Europe (Stockholm), Middle

January 5, 2022

1837

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/WhatsNew.html
http://aws.amazon.com/about-aws/whats-new/database/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/DBActivityStreams.Overview.html#DBActivityStreams.Overview.requirements.Regions
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/DBActivityStreams.Overview.html#DBActivityStreams.Overview.requirements.Regions
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.API.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.API.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_GetResourceMetadata.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_GetResourceMetadata.html
https://docs.aws.amazon.com/performance-insights/latest/APIReference/API_GetResourceMetadata.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.events.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.events.html

Amazon Aurora User Guide for Aurora

East (Bahrain), and South
America (São Paulo). For more
information about RDS Proxy,
see Using Amazon RDS Proxy.

Amazon Aurora available
in the Asia Pacific (Jakarta)
Region (p. 1837)

Aurora is now available in the
Asia Pacific (Jakarta) Region. For
more information, see Regions
and Availability Zones.

December 13, 2021

DevOps Guru for Amazon RDS
provides detailed insights and
recommendations for Amazon
Aurora (p. 1837)

DevOps Guru for RDS mines
Performance Insights for
performance-related data.
Using this data, the service
analyzes the performance
of your Amazon Aurora DB
instances and can help you
resolve performance issues.
To learn more, see Analyzing
performance anomalies with
DevOps Guru for RDS in this
guide and see Overview of
DevOps Guru for RDS in the
Amazon DevOps Guru User Guide.

December 1, 2021

Aurora MySQL version
2.07.7 (p. 1161)

Aurora MySQL version 2.07.7 is
available.

November 24, 2021

Aurora PostgreSQL supports
RDS Proxy with PostgreSQL
12 (p. 1837)

You can now create an
RDS Proxy with an Aurora
PostgreSQL 12 database cluster.
For more information about RDS
Proxy, see Using Amazon RDS
Proxy.

November 22, 2021

Aurora MySQL version 3.01.0,
compatible with MySQL
8.0.23 (p. 1129)

Aurora MySQL version 3.01.0
is available. This version is
compatible with MySQL 8.0.23.
For full details, see Aurora
MySQL version 3 compatible
with MySQL 8.0.

November 18, 2021

Aurora MySQL version
2.09.3 (p. 1140)

Aurora MySQL version 2.09.3 is
available.

November 12, 2021

Aurora supports AWS Graviton2
instance classes for Database
Activity Streams (p. 1837)

You can use database activity
streams with the db.r6g instance
class for Aurora MySQL and
Aurora PostgreSQL. For more
information, see Supported DB
instance classes.

November 3, 2021

Amazon Aurora support for
cross-account AWS KMS
keys (p. 1837)

You can use a KMS key from
a different AWS account for
encryption when exporting DB
snapshots to Amazon S3. For
more information, see Exporting
DB snapshot data to Amazon S3.

November 3, 2021

1838

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/devops-guru-for-rds.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/devops-guru-for-rds.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/devops-guru-for-rds.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-rds.overview.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/working-with-rds.overview.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.MySQL80.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.MySQL80.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.MySQL80.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/DBActivityStreams.Overview.html#DBActivityStreams.Overview.requirements.classes
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/DBActivityStreams.Overview.html#DBActivityStreams.Overview.requirements.classes
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_ExportSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_ExportSnapshot.html

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL releases
13.4, 12.8, 11.13, and
10.18 (p. 1837)

New releases of Amazon Aurora
PostgreSQL-Compatible Edition
support compatibility with
PostgreSQL 13.4, PostgreSQL
12.8, PostgreSQL 11.13, and
PostgreSQL 10.18. For more
information, see Database
engine versions for Amazon
Aurora PostgreSQL.

October 28, 2021

Amazon Aurora supports
Babelfish for Aurora
PostgreSQL (p. 1837)

Babelfish for Aurora PostgreSQL
extends your Amazon Aurora
PostgreSQL-Compatible Edition
database with the ability to
accept database connections
from Microsoft SQL Server
clients. For more information,
see Working with Babelfish for
Aurora PostgreSQL.

October 28, 2021

Aurora MySQL version
2.10.1 (p. 1134)

Aurora MySQL version 2.10.1 is
available.

October 21, 2021

Amazon Aurora supports
Performance Insights
in additional AWS
Regions (p. 1837)

Performance Insights is available
in the Middle East (Bahrain),
Africa (Cape Town), Europe
(Milan), and Asia Pacific (Osaka)
Regions. For more information,
see AWS Region support for
Performance Insights.

October 5, 2021

Aurora MySQL version
1.23.4 (p. 1218)

Aurora MySQL version 1.23.4 is
available.

September 30, 2021

Configurable autoscaling
timeout for Aurora
Serverless (p. 1837)

You can choose how long
Aurora Serverless waits to find
an autoscaling point. If no
autoscaling point is found during
that period, Aurora Serverless
cancels the scaling event or
forces the capacity change,
depending on the timeout action
that you selected. For more
information, see Autoscaling for
Aurora Serverless.

September 10, 2021

Aurora supports X2g and T4g
instance classes (p. 1837)

Both Aurora MySQL and Aurora
PostgreSQL can now use X2g
and T4g instance classes. The
instance classes that you can use
depend on the version of Aurora
MySQL or Aurora PostgreSQL.
For information about supported
instance types, see DB instance
classes.

September 10, 2021

Aurora MySQL version
2.07.6 (p. 1163)

Aurora MySQL version 2.07.6 is
available.

September 2, 2021

1839

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/babelfish.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/babelfish.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.Overview.Regions.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.Overview.Regions.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL supports
version 13.3 (p. 1837)

Aurora PostgreSQL now
supports PostgreSQL version
13.3. For more information, see
Engine versions for Amazon
Aurora PostgreSQL. The
release supports Intel based
instance types R5 and T3, and
deprecates R4 instance types.
For information about supported
instance types, see DB instance
classes.

August 26, 2021

Aurora PostgreSQL releases
12.7, 11.12, 10.17, and
9.6.22 (p. 1837)

New releases of Amazon Aurora
PostgreSQL-Compatible Edition
support compatibility with
PostgreSQL 12.7, PostgreSQL
11.12, PostgreSQL 10.17, and
PostgreSQL 9.6.22 For more
information, see Database
engine versions for Amazon
Aurora PostgreSQL.

August 19, 2021

Amazon RDS supports RDS
Proxy in a shared VPC (p. 1837)

You can now create an RDS
Proxy in a shared VPC. For more
information about RDS Proxy,
see "Managing Connections
with Amazon RDS Proxy" in the
Amazon RDS User Guide or the
Aurora User Guide.

August 6, 2021

Aurora MySQL Serverless version
1.22.3 (p. 1270)

Aurora Serverless with MySQL
5.6 compatibility is available.
The release includes features
and bug fixes based on Aurora
MySQL version 1.22.3. For
more information about Aurora
Serverless, see Using Amazon
Aurora Serverless.

July 16, 2021

Aurora version policy
page (p. 1837)

The Amazon Aurora User Guide
now includes a section with
general information about
Aurora versions and associated
policies. For details, see Amazon
Aurora versions.

July 14, 2021

Aurora MySQL version
2.07.5 (p. 1164)

Aurora MySQL version 2.07.5 is
available.

July 6, 2021

Exclude Data API events from an
AWS CloudTrail trail (p. 1837)

You can exclude Data API events
from a CloudTrail trail. For more
information, see Excluding
Data API events from an AWS
CloudTrail trail.

July 2, 2021

Aurora MySQL version
1.23.3 (p. 1219)

Aurora MySQL version 1.23.3 is
available.

June 28, 2021

1840

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.VersionPolicy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.VersionPolicy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/logging-using-cloudtrail-data-api.html#logging-using-cloudtrail-data-api.excluding-cloudtrail-events
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/logging-using-cloudtrail-data-api.html#logging-using-cloudtrail-data-api.excluding-cloudtrail-events
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/logging-using-cloudtrail-data-api.html#logging-using-cloudtrail-data-api.excluding-cloudtrail-events

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL releases
4.1.0, 3.5.0, 2.8.0, and 1.10.0
compatible with PostgreSQL
12.6, 11.11, 10.16, and
9.6.21 (p. 1837)

New versions of Amazon Aurora
PostgreSQL-Compatible Edition
include 4.1.0 (compatible
with PostgreSQL 12.6), 3.5.0
(compatible with PostgreSQL
11.11), 2.8.0 (compatible with
PostgreSQL 10.16), and 1.10.0
(compatible with PostgreSQL
9.6.21). For more information,
see Database engine versions
for Amazon Aurora PostgreSQL-
Compatible Edition.

June 17, 2021

Amazon Aurora PostgreSQL-
Compatible Edition supports
additional extensions (p. 1837)

Newly supported extensions
include pg_bigm, pg_cron,
pg_partman, and pg_proctab.
For more information, see
Extension versions for Amazon
Aurora PostgreSQL-Compatible
Edition.

June 17, 2021

Cloning for Aurora Serverless v1
clusters (p. 1837)

You can now create cloned
clusters that are Aurora
Serverless v1. For information
about cloning, see Cloning a
volume for an Aurora DB cluster.

June 16, 2021

Aurora MySQL version
1.22.5 (p. 1225)

Aurora MySQL version 1.22.5 is
available.

June 3, 2021

Aurora MySQL version
2.10.0 (p. 1136)

Aurora MySQL version 2.10.0 is
available. Some of the highlights
include higher availability of
reader instances during writer
restarts, improvements to zero-
downtime patching (ZDP),
improvements to zero-downtime
restart (ZDR), and the binlog I/O
cache optimization.

May 25, 2021

Aurora global databases
available in China (Beijing)
and China (Ningxia)
Regions (p. 1837)

You can now create Aurora
global databases in the China
(Beijing) and China (Ningxia)
Regions. For information about
Aurora global databases, see
Working with Amazon Aurora
global databases.

May 19, 2021

FIPS 140-2 support for Data
API (p. 1837)

The Data API supports the
Federal Information Processing
Standard Publication 140-2
(FIPS 140-2) for SSL/TLS
connections. For more
information, see Data API
availability.

May 14, 2021

1841

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Extensions.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Extensions.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Extensions.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Extensions.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Clone.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Clone.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_RebootCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_RebootCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_RebootCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Updates.Patching.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Updates.Patching.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Replication.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Replication.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Replication.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Replication.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.regions
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.regions

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL patch
releases 3.2.7, 2.5.7, 1.7.7
compatible with PostgreSQL
11.7, 10.12, 9.6.17 (p. 1837)

New patch releases of Amazon
Aurora PostgreSQL-Compatible
Edition include release 3.2.7
compatible with PostgreSQL
11.7, release 2.5.7 compatible
with PostgreSQL 10.12, and
release 1.7.7 compatible with
PostgreSQL 9.6.17. For more
information, see Amazon Aurora
PostgreSQL releases and engine
versions.

May 11, 2021

Aurora PostgreSQL patch
releases 3.1.4, 2.4.4, 1.6.4
compatible with PostgreSQL
11.6, 10.11, 9.6.16 (p. 1837)

New patch releases of Amazon
Aurora PostgreSQL-Compatible
Edition include release 3.1.4
compatible with PostgreSQL
11.6, release 2.4.4 compatible
with PostgreSQL 10.11, and
release 1.6.4 compatible with
PostgreSQL 9.6.16. For more
information, see Amazon Aurora
PostgreSQL releases and engine
versions.

May 11, 2021

AWS JDBC Driver for PostgreSQL
(preview) (p. 1837)

The AWS JDBC Driver for
PostgreSQL, now available
in preview, is a client driver
designed for the high availability
of Aurora PostgreSQL. For more
information, see Connecting
with the Amazon Web Services
JDBC Driver for PostgreSQL
(preview).

April 27, 2021

Aurora PostgreSQL patch
releases 4.0.2, 3.4.2, 2.7.2,
1.9.2 compatible with
PostgreSQL 12.4, 11.9, 10.14,
9.6.19 (p. 1837)

New patch releases of
Amazon Aurora PostgreSQL-
Compatible Edition include
release 4.0.2 compatible with
PostgreSQL 12.4, release 3.4.2
compatible with PostgreSQL
11.9, release 2.7.2 compatible
with PostgreSQL 10.14, and
release 1.9.2 compatible with
PostgreSQL 9.6.19. For more
information, see Amazon Aurora
PostgreSQL releases and engine
versions.

April 23, 2021

The Data API available
in additional AWS
Regions (p. 1837)

The Data API is now available
in the Asia Pacific (Seoul) and
Canada (Central) Regions.
For more information, see
Availability of the Data API.

April 9, 2021

Aurora MySQL version
1.23.2 (p. 1219)

Aurora MySQL version 1.23.2 is
available.

March 18, 2021

1842

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.AuroraPostgreSQL.JDBCDriverPostgreSQL
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.AuroraPostgreSQL.JDBCDriverPostgreSQL
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.AuroraPostgreSQL.JDBCDriverPostgreSQL
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.AuroraPostgreSQL.JDBCDriverPostgreSQL
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.regions

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL patch
releases 4.0.1, 3.4.1, 2.7.1,
1.9.1 compatible with
PostgreSQL 12.4, 11.9, 10.14,
9.6.19 (p. 1837)

New patch releases of
Amazon Aurora PostgreSQL-
Compatible Edition include
release 4.0.1 compatible with
PostgreSQL 12.4, release 3.4.1
compatible with PostgreSQL
11.9, release 2.7.1 compatible
with PostgreSQL 10.14, and
release 1.9.1 compatible with
PostgreSQL 9.6.19. For more
information, see Engine versions
for Amazon Aurora PostgreSQL.

March 12, 2021

Amazon Aurora supports
the Graviton2 DB instance
classes (p. 1837)

You can now use the Graviton2
DB instance classes db.r6g.x
to create DB clusters running
MySQL or PostgreSQL. For more
information, see DB instance
class types.

March 12, 2021

RDS Proxy endpoint
enhancements (p. 1837)

You can create additional
endpoints associated with each
RDS proxy. Creating an endpoint
in a different VPC enables cross-
VPC access for the proxy. Proxies
for Aurora MySQL clusters can
also have read-only endpoints.
These reader endpoints connect
to reader DB instances in the
clusters and can improve read
scalability and availability for
query-intensive applications.
For more information about
RDS Proxy, see "Managing
Connections with Amazon RDS
Proxy" in the Amazon RDS User
Guide or the Aurora user guide.

March 8, 2021

Aurora MySQL version
2.07.4 (p. 1166)

Aurora MySQL version 2.07.4 is
available.

March 4, 2021

Aurora MySQL version
1.22.4 (p. 1225)

Aurora MySQL version 1.22.4 is
available.

March 4, 2021

Amazon Aurora available
in the Asia Pacific (Osaka)
Region (p. 1837)

Aurora is now available in the
Asia Pacific (Osaka) Region. For
more information, see Regions
and Availability Zones.

March 1, 2021

Aurora MySQL version
2.09.2 (p. 1143)

Aurora MySQL version 2.09.2 is
available.

February 26, 2021

1843

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL supports
enabling both IAM and Kerberos
authentication on the same DB
cluster (p. 1837)

Aurora PostgreSQL now
supports enabling both IAM
authentication and Kerberos
authentication on the same DB
cluster. For more information,
see Database authentication
with Amazon Aurora.

February 24, 2021

Aurora PostgreSQL patch
releases 3.3.2, 2.6.2, 1.8.2
compatible with PostgreSQL
11.8, 10.13, 9.6.18 (p. 1837)

New patch releases of Amazon
Aurora PostgreSQL-Compatible
Edition include release 3.3.2
compatible with PostgreSQL
11.8, release 2.6.2 compatible
with PostgreSQL 10.13, and
release 1.8.2 compatible with
PostgreSQL 9.6.18. For more
information, see Engine versions
for Amazon Aurora PostgreSQL.

February 12, 2021

Aurora global database now
supports managed planned
failover (p. 1837)

Aurora global database now
supports managed planned
failover, allowing you to more
easily change the primary
AWS Region of your Aurora
global database. You can use
managed planned failover with
healthy Aurora global databases
only. To learn more, see
Disaster recovery and Amazon
Aurora global databases. For
reference information, see
FailoverGlobalCluster in
the Amazon RDS API Reference.

February 11, 2021

Data API for Aurora Serverless
v1 now supports more data
types (p. 1837)

With the Data API for Aurora
Serverless v1, you can now use
UUID and JSON data types as
input to your database. Also
with the Data API for Aurora
Serverless v1, you can now have
a LONG type value returned
from your database as a STRING
value. To learn more, see Calling
the Data API. For reference
information about supported
data types, see SqlParameter
in the Amazon RDS Data Service
API Reference.

February 2, 2021

Aurora PostgreSQL supports
major version upgrades to
PostgreSQL 12 (p. 1837)

With Aurora PostgreSQL, you
can now upgrade the DB engine
to major version 12. For more
information, see Upgrading
the PostgreSQL DB engine for
Aurora PostgreSQL.

January 28, 2021

1844

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/database-authentication.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/database-authentication.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html#aurora-global-database-disaster-recovery.managed-failover
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html#aurora-global-database-disaster-recovery.managed-failover
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_FailoverGlobalCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.calling
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.calling
https://docs.aws.amazon.com/rdsdataservice/latest/APIReference/API_SqlParameter.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL release 4.0
compatible with PostgreSQL
12.4 (p. 1837)

Amazon Aurora PostgreSQL
release 4.0 is available and
compatible with PostgreSQL
12.4. For more information, see
Database engine versions for
Amazon Aurora PostgreSQL.

January 28, 2021

Aurora MySQL supports in-place
upgrade (p. 1837)

You can upgrade your Aurora
MySQL 1.x cluster to Aurora
MySQL 2.x, preserving the DB
instances, endpoints, and so
on of the original cluster. This
in-place upgrade technique
avoids the inconvenience of
setting up a whole new cluster
by restoring a snapshot. It also
avoids the overhead of copying
all your table data into a new
cluster. For more information,
see Upgrading the major version
of an Aurora MySQL DB cluster
from 1.x to 2.x.

January 11, 2021

AWS JDBC Driver for MySQL
(preview) (p. 1837)

The AWS JDBC Driver for MySQL,
now available in preview, is
a client driver designed for
the high availability of Aurora
MySQL. For more information,
see Connecting with the
Amazon Web Services JDBC
Driver for MySQL (preview).

January 7, 2021

Aurora supports database
activity streams on secondary
clusters of a global
database (p. 1837)

You can start a database a
database activity stream on a
primary or secondary cluster of
Aurora PostgreSQL or Aurora
MySQL. For supported engine
versions, see Limitations of
Aurora global databases.

December 22, 2020

Multi-master clusters with 4 DB
instances (p. 1837)

The maximum number of DB
instances in an Aurora MySQL
multi-master cluster is now
four. Formerly, the maximum
was two DB instances. For more
information, see Working with
Aurora Multi-Master Clusters.

December 17, 2020

Aurora PostgreSQL
supports AWS Lambda
functions (p. 1837)

You can now invoke AWS
Lambda function for your Aurora
PostgreSQL DB clusters. For
more information, see Invoking a
Lambda function from an Aurora
PostgreSQL DB cluster.

December 11, 2020

1845

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Updates.MajorVersionUpgrade.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Updates.MajorVersionUpgrade.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Updates.MajorVersionUpgrade.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.JDBCDriverMySQL
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.JDBCDriverMySQL
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html#Aurora.Connecting.JDBCDriverMySQL
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html#aurora-global-database.limitations
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html#aurora-global-database.limitations
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/PostgreSQL-Lambda.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/PostgreSQL-Lambda.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/PostgreSQL-Lambda.html

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL releases
3.4.0, 2.7.0, and 1.9.0 (p. 1837)

New releases of Amazon
Aurora PostgreSQL-Compatible
Edition include release 3.4.0
(compatible with PostgreSQL
11.9), release 2.7.0 (compatible
with PostgreSQL 10.14), and
release 1.9.0 (compatible with
PostgreSQL 9.6.19). For more
information, see Database
engine versions for Amazon
Aurora PostgreSQL.

December 11, 2020

Aurora MySQL version
2.09.1 (p. 1145)

Aurora MySQL version 2.09.1 is
available.

December 11, 2020

Amazon Aurora supports the
Graviton2 DB instance classes in
preview (p. 1837)

You can now use the Graviton2
DB instance classes db.r6g.x in
preview to create DB clusters
running MySQL or PostgreSQL.
For more information, see DB
instance class types.

December 11, 2020

Amazon Aurora Serverless v2
(preview) is now available in
preview. (p. 1837)

Amazon Aurora Serverless v2
(preview) is available in preview.
To work with Amazon Aurora
Serverless v2 (preview), you
must apply for access. For more
information, see the Aurora
Serverless v2 (preview) page.

December 1, 2020

Aurora PostgreSQL is
now available for Aurora
Serverless v1 in more AWS
Regions. (p. 1837)

Aurora PostgreSQL is now
available for Aurora Serverless
v1 in more AWS Regions. You
can now choose to run Aurora
PostgreSQL Serverless in the
same AWS Regions that offer
Aurora MySQL Serverless.
Additional AWS Regions with
Aurora Serverless v1 support
include US West (N. California),
Asia Pacific (Singapore) Asia
Pacific (Sydney) Asia Pacific
(Seoul) Asia Pacific (Mumbai)
Canada (Central) Europe
(London) and Europe (Paris).
For a list of all Regions and
supported Aurora DB engines
for Aurora Serverless v1, see
Aurora Serverless. Amazon RDS
Data API for Aurora Serverless
v1 is also now available in these
same AWS Regions. For a list of
all Regions with support for the
Data API for Aurora Serverless
v1, see Data API for Aurora
Serverless

November 24, 2020

1846

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://pages.awscloud.com/AmazonAuroraServerlessv2Preview.html
https://pages.awscloud.com/AmazonAuroraServerlessv2Preview.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.AuroraFeaturesRegionsDBEngines.grids.html#Concepts.Aurora_Fea_Regions_DB-eng.Feature.Serverless
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.AuroraFeaturesRegionsDBEngines.grids.html#Concepts.Aurora_Fea_Regions_DB-eng.Feature.Serverless
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.AuroraFeaturesRegionsDBEngines.grids.html#Concepts.Aurora_Fea_Regions_DB-eng.Feature.Data_API
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.AuroraFeaturesRegionsDBEngines.grids.html#Concepts.Aurora_Fea_Regions_DB-eng.Feature.Data_API

Amazon Aurora User Guide for Aurora

Aurora MySQL version
1.23.1 (p. 1220)

Aurora MySQL version 1.23.1 is
available.

November 24, 2020

Amazon RDS Performance
Insights introduces new
dimensions (p. 1837)

You can group database load
according to the dimension
groups for database, application
(PostgreSQL), and session type
(PostgreSQL). Amazon RDS
also supports the dimensions
db.name, db.application.name
(PostgreSQL), and
db.session_type.name
(PostgreSQL). For more
information, see Top load table.

November 24, 2020

Aurora PostgreSQL releases
3.2.6, 2.5.6, and 1.7.6 (p. 1837)

New releases of Amazon
Aurora PostgreSQL-Compatible
Edition include release 3.2.6
(compatible with PostgreSQL
11.7), release 2.5.6 (compatible
with PostgreSQL 10.12), and
release 1.7.6 (compatible with
PostgreSQL 9.6.17). For more
information, see Database
engine versions for Amazon
Aurora PostgreSQL.

November 13, 2020

Aurora MySQL version
2.08.3 (p. 1154)

Aurora MySQL version 2.08.3 is
available.

November 12, 2020

Aurora MySQL version
2.07.3 (p. 1168)

Aurora MySQL version 2.07.3 is
available.

November 10, 2020

Aurora MySQL version
1.22.3 (p. 1226)

Aurora MySQL version 1.22.3 is
available.

November 9, 2020

Aurora Serverless v1 supports
Aurora PostgreSQL version
10.12 (p. 1837)

Aurora PostgreSQL for Aurora
Serverless v1 has been
upgraded to Aurora PostgreSQL
version 10.12 throughout
the AWS Regions where
Aurora PostgreSQL for Aurora
Serverless v1 is supported. For
more information, see Aurora
Serverless v1.

November 4, 2020

The Data API now supports tag-
based authorization (p. 1837)

The Data API supports tag-based
authorization. If you've labeled
your RDS cluster resources with
tags, you can use these tags
in your policy statements to
control access through the Data
API. For more information, see
Authorizing access to the Data
API.

October 27, 2020

1847

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.Components.AvgActiveSessions.TopLoadItemsTable
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.AuroraFeaturesRegionsDBEngines.grids.html#Concepts.Aurora_Fea_Regions_DB-eng.Feature.Serverless
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.AuroraFeaturesRegionsDBEngines.grids.html#Concepts.Aurora_Fea_Regions_DB-eng.Feature.Serverless
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.access
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.access

Amazon Aurora User Guide for Aurora

Amazon Aurora extends support
for exporting snapshots to
Amazon S3 (p. 1837)

You can now export DB snapshot
data to Amazon S3 in all
commercial AWS Regions. For
more information, see Exporting
DB snapshot data to Amazon S3.

October 22, 2020

Aurora global database supports
cloning (p. 1837)

You can now create clones of
the primary and secondary DB
clusters of your Aurora global
databases. You can do so by
using the AWS Management
Console and choosing the Create
clone menu option. You can also
use the AWS CLI and run the
restore-db-cluster-to-
point-in-time command with
the --restore-type copy-
on-write option. Using the
AWS Management Console or
the AWS CLI, you can also clone
DB clusters from your Aurora
global databases across AWS
accounts. For more information
about cloning, see Cloning an
Aurora DB cluster volume.

October 19, 2020

Amazon Aurora supports
dynamic resizing for the cluster
volume (p. 1837)

Starting with Aurora MySQL
1.23 and 2.09, and Aurora
PostgreSQL 3.3.0 and Aurora
PostgreSQL 2.6.0, Aurora
reduces the size of the cluster
volume after you remove data
through operations such as DROP
TABLE. To take advantage of
this enhancement, upgrade to
one of the appropriate versions
depending on the database
engine that your cluster uses.
For information about this
feature and how to check used
and available storage space for
an Aurora cluster, see Managing
Performance and Scaling for
Aurora DB Clusters.

October 13, 2020

Aurora PostgreSQL supports the
pglogical extension (p. 1837)

Aurora PostgreSQL now
supports the PostgreSQL
pglogical extension version
2.2.2. For more information, see
the Aurora PostgreSQL releases
3.3.0 and 2.6.0 at Database
engine versions for Amazon
Aurora PostgreSQL.

September 22, 2020

1848

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_ExportSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_ExportSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Clone.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Clone.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Performance.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Performance.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Performance.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html

Amazon Aurora User Guide for Aurora

Amazon Aurora supports volume
sizes up to 128 TiB (p. 1837)

New and existing Aurora cluster
volumes can now grow to a
maximum size of 128 tebibytes
(TiB). For more information, see
How Aurora storage grows.

September 22, 2020

Aurora PostgreSQL bug fix for
very specific queries that use
NOT EXISTS (p. 1837)

Fixed a bug for very specific
queries that use the NOT
EXISTS operator on Aurora
PostgreSQL releases that were
released on or after May 24,
2020. The fix is available in
Aurora PostgreSQL release 2.5.4
(compatible with PostgreSQL
10.12), Aurora PostgreSQL
release 2.6.1 (compatible with
PostgreSQL 10.13), Aurora
PostgreSQL release 3.2.4
(compatible with PostgreSQL
11.7), and Aurora PostgreSQL
release 3.3.1 (compatible with
PostgreSQL 11.8).

September 17, 2020

Aurora MySQL version
2.09.0 (p. 1148)

Aurora MySQL version 2.09.0 is
available.

September 17, 2020

Aurora PostgreSQL supports
the db.r5 and db.t3 DB instance
classes in the China (Ningxia)
Region (p. 1837)

You can now create Aurora
PostgreSQL DB clusters in the
China (Ningxia) Region that use
the db.r5 and db.t3 DB instance
classes. For more information,
see DB instance classes.

September 3, 2020

Aurora PostgreSQL releases
3.3.0, 2.6.0, and 1.8.0 (p. 1837)

New releases of Amazon Aurora
PostgreSQL-Compatible Edition
include Aurora PostgreSQL
release 3.3.0 (compatible with
PostgreSQL 11.8), Aurora
PostgreSQL release 2.6.0
(compatible with PostgreSQL
10.13), and Aurora PostgreSQL
release 1.8.0 (compatible with
PostgreSQL 9.6.18). For more
information, see Database
engine versions for Amazon
Aurora PostgreSQL.

September 3, 2020

1849

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.StorageReliability.html#aurora-storage-growth
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.StorageReliability.html#aurora-storage-growth
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html#AuroraPostgreSQL.Updates.20180305.254
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html#AuroraPostgreSQL.Updates.20180305.254
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html#AuroraPostgreSQL.Updates.20180305.254
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html#AuroraPostgreSQL.Updates.20180305.261
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html#AuroraPostgreSQL.Updates.20180305.261
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html#AuroraPostgreSQL.Updates.20180305.261
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html#AuroraPostgreSQL.Updates.20180305.324
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html#AuroraPostgreSQL.Updates.20180305.324
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html#AuroraPostgreSQL.Updates.20180305.324
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html#AuroraPostgreSQL.Updates.20180305.324
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html#AuroraPostgreSQL.Updates.20180305.331
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html#AuroraPostgreSQL.Updates.20180305.331
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html#AuroraPostgreSQL.Updates.20180305.331
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html

Amazon Aurora User Guide for Aurora

Aurora parallel query
enhancements (p. 1837)

Starting with Aurora MySQL
2.09 and 1.23, you can take
advantage of enhancements
to the parallel query feature.
Creating a parallel query cluster
no longer requires a special
engine mode. You can now turn
parallel query on and off using
the aurora_parallel_query
configuration option for any
provisioned cluster that's
running a compatible Aurora
MySQL version. You can
upgrade an existing cluster to
a compatible Aurora MySQL
version and use parallel query,
instead of creating a new cluster
and importing data into it. You
can use Performance Insights
for parallel query clusters. You
can stop and start parallel query
clusters. You can create Aurora
parallel query clusters that
are compatible with MySQL
5.7. Parallel query works for
tables that use the DYNAMIC
row format. Parallel query
clusters can use AWS Identity
and Access Management (IAM)
authentication. Reader DB
instances in parallel query
clusters can take advantage
of the READ COMMITTED
isolation level. You can also now
create parallel query clusters
in additional AWS Regions. For
more information about the
parallel query feature and these
enhancements, see Working with
parallel query for Aurora MySQL.

September 2, 2020

Aurora MySQL version
1.23.0 (p. 1221)

Aurora MySQL version 1.23.0 is
available.

September 2, 2020

Aurora MySQL version
2.08.2 (p. 1156)

Aurora MySQL version 2.08.2 is
available.

August 28, 2020

1850

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-mysql-parallel-query.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-mysql-parallel-query.html

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL releases
3.2.3, 2.5.3, and 1.7.3 (p. 1837)

New releases of Amazon Aurora
PostgreSQL-Compatible Edition
include Aurora PostgreSQL
release 3.2.3 (compatible with
PostgreSQL 11.7), Aurora
PostgreSQL release 2.5.3
(compatible with PostgreSQL
10.12), and Aurora PostgreSQL
release 1.7.3 (compatible with
PostgreSQL 9.6.17). For more
information, see Database
engine versions for Amazon
Aurora PostgreSQL.

August 27, 2020

Changes to Aurora
MySQL parameter
binlog_rows_query_log_events (p. 1063)

You can now change the
value of the Aurora MySQL
configuration parameter
binlog_rows_query_log_events.
Formerly, this parameter wasn't
modifiable.

August 26, 2020

Aurora MySQL version
2.04.9 (p. 1180)

Aurora MySQL version 2.04.9 is
available.

August 14, 2020

Aurora MySQL Serverless version
1.21.0 (p. 1270)

Aurora Serverless with MySQL
5.6 compatibility is available.
The release includes features
and bug fixes based on Aurora
MySQL version 1.21.0. For
more information about Aurora
Serverless, see Using Amazon
Aurora Serverless.

August 14, 2020

Support for automatic minor
version upgrades for Aurora
MySQL (p. 1837)

With Aurora MySQL, the setting
Enable auto minor version
upgrade now takes effect when
you specify it for an Aurora
MySQL DB cluster. When you
enable auto minor version
upgrade, Aurora automatically
upgrades to new minor versions
as they are released. The
automatic upgrades occur during
the maintenance window for the
database. For Aurora MySQL,
this feature applies only to
Aurora MySQL version 2, which
is compatible with MySQL 5.7.
Initially, the automatic upgrade
procedure brings Aurora MySQL
DB clusters to version 2.07.2. For
more information about how
this feature works with Aurora
MySQL, see Database Upgrades
and Patches for Amazon Aurora
MySQL.

August 3, 2020

1851

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Updates.Patching.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Updates.Patching.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Updates.Patching.html

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL supports
major version upgrades to
PostgreSQL version 11 (p. 1837)

With Aurora PostgreSQL, you
can now upgrade the DB engine
to major version 11. For more
information, see Upgrading
the PostgreSQL DB engine for
Aurora PostgreSQL.

July 28, 2020

Aurora PostgreSQL releases
3.1.3, 2.4.3, and 1.6.3 (p. 1837)

New patch releases of Aurora
PostgreSQL include Aurora
PostgreSQL release 3.1.3
(compatible with PostgreSQL
11.6), Aurora PostgreSQL
release 2.4.3 (compatible
with PostgreSQL 10.11), and
Aurora PostgreSQL release 1.6.3
(compatible with PostgreSQL
9.6.16). For more information,
see Database engine versions for
Amazon Aurora PostgreSQL.

July 27, 2020

Aurora PostgreSQL releases
3.2.2, 2.5.2, and 1.7.2 (p. 1837)

New releases of Amazon Aurora
PostgreSQL-Compatible Edition
include Aurora PostgreSQL
release 3.2.2 (compatible with
PostgreSQL 11.7), Aurora
PostgreSQL release 2.5.2
(compatible with PostgreSQL
10.12), and Aurora PostgreSQL
release 1.7.2 (compatible with
PostgreSQL 9.6.17). For more
information, see Database
engine versions for Amazon
Aurora PostgreSQL.

July 9, 2020

Amazon Aurora supports AWS
PrivateLink (p. 1837)

Amazon Aurora now supports
creating Amazon VPC endpoints
for Amazon RDS API calls
to keep traffic between
applications and Aurora in
the AWS network. For more
information, see Amazon Aurora
and interface VPC endpoints
(AWS PrivateLink).

July 9, 2020

RDS Proxy generally
available (p. 1837)

RDS Proxy is now generally
available. You can use RDS Proxy
with RDS for MySQL, Aurora
MySQL, RDS for PostgreSQL,
and Aurora PostgreSQL for
production workloads. For more
information about RDS Proxy,
see "Managing Connections
with Amazon RDS Proxy" in the
Amazon RDS User Guide or the
Aurora user guide.

June 30, 2020

1852

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/vpc-interface-endpoints.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/vpc-interface-endpoints.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/vpc-interface-endpoints.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html

Amazon Aurora User Guide for Aurora

Aurora Serverless version
2.08.3 (p. 1269)

Aurora Serverless with MySQL
5.7 compatibility is available.
The release includes features
and bug fixes based on Aurora
MySQL version 2.08.3. For
more information about Aurora
Serverless, see Using Amazon
Aurora Serverless.

June 24, 2020

Aurora Serverless version
2.07.1 (p. 1269)

Aurora Serverless with MySQL
5.7 compatibility is available.
The release includes features
and bug fixes based on Aurora
MySQL version 2.07.1. For
more information about Aurora
Serverless, see Using Amazon
Aurora Serverless.

June 24, 2020

Aurora global database write
forwarding (p. 1837)

You can now enable write
capability on secondary clusters
in a global database. With write
forwarding, you issue DML
statements on a secondary
cluster, Aurora forwards the
write to the primary cluster, and
the updated data is replicated
to all the secondary clusters.
For more information, see Write
forwarding for secondary AWS
Regions with an Aurora global
database.

June 18, 2020

Aurora MySQL version
2.08.1 (p. 1157)

Aurora MySQL version 2.08.1 is
available.

June 18, 2020

Aurora MySQL version 1.22.2 for
parallel query clusters (p. 1227)

Aurora MySQL version 1.22.2
is available when you create a
parallel query cluster.

June 18, 2020

Aurora MySQL version 1.20.1 for
parallel query clusters (p. 1233)

Aurora MySQL version 1.20.1
is available when you create a
parallel query cluster.

June 11, 2020

Aurora supports integration with
AWS Backup (p. 1837)

You can use AWS Backup to
manage backups of Aurora DB
clusters. For more information,
see Overview of backing up and
restoring an Aurora DB cluster.

June 10, 2020

Aurora PostgreSQL supports
db.t3.large DB instance
classes (p. 1837)

You can now create Aurora
PostgreSQL DB clusters that
use the db.t3.large DB instance
classes. For more information,
see DB instance classes.

June 5, 2020

1853

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-write-forwarding.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-write-forwarding.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-write-forwarding.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-write-forwarding.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Backups.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Backups.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html

Amazon Aurora User Guide for Aurora

Aurora global database supports
PostgreSQL version 11.7
and managed recovery point
objective (RPO) (p. 1837)

You can now create Aurora
global databases for the
PostgreSQL database engine
version 11.7. You can also
manage how a PostgreSQL
global database recovers from
a failure using a recovery point
objective (RPO). For more
information, see Cross-Region
Disaster Recovery for Aurora
global databases.

June 4, 2020

Aurora PostgreSQL releases
3.2.1, 2.5.1, and 1.7.1 (p. 1837)

New releases of Amazon Aurora
PostgreSQL-Compatible Edition
include Aurora PostgreSQL
release 3.2.1 (compatible with
PostgreSQL 11.7), Aurora
PostgreSQL release 2.5.1
(compatible with PostgreSQL
10.12), and Aurora PostgreSQL
release 1.7.1 (compatible with
PostgreSQL 9.6.17). For more
information, see Database
engine versions for Amazon
Aurora PostgreSQL.

June 4, 2020

Aurora MySQL version
2.08.0 (p. 1158)

Aurora MySQL version 2.08.0 is
available.

June 2, 2020

Aurora MySQL version 1.19.6 for
parallel query clusters (p. 1235)

Aurora MySQL version 1.19.6
is available when you create a
parallel query cluster.

June 2, 2020

Aurora MySQL supports
database monitoring
with database activity
streams (p. 1837)

Aurora MySQL now includes
database activity streams, which
provide a near-real-time data
stream of the database activity
in your relational database. For
more information, see Using
database activity streams.

June 2, 2020

The query editor available
in additional AWS
Regions (p. 1837)

The query editor for Aurora
Serverless is now available
in additional AWS Regions.
For more information, see
Availability of the query editor.

May 28, 2020

The Data API available
in additional AWS
Regions (p. 1837)

The Data API is now available
in additional AWS Regions.
For more information, see
Availability of the Data API.

May 28, 2020

RDS Proxy available in Canada
(Central) Region (p. 1837)

You can now use the RDS Proxy
preview in the Canada (Central)
Region. For more information
about RDS Proxy, see Managing
connections with Amazon RDS
proxy (preview).

May 28, 2020

1854

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html#aurora-global-database-disaster-recovery
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html#aurora-global-database-disaster-recovery
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html#aurora-global-database-disaster-recovery
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/DBActivityStreams.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/DBActivityStreams.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/query-editor.html#query-editor.regions
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/query-editor.html#query-editor.regions
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.regions
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.regions
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html

Amazon Aurora User Guide for Aurora

Aurora global database
and cross-Region read
replicas (p. 1837)

For an Aurora global database,
you can now create an Aurora
MySQL cross-Region read replica
from the primary cluster in the
same region as a secondary
cluster. For more information
about Aurora Global Database
and cross-Region read replicas,
see Working with Amazon
Aurora global database and
Replicating Amazon Aurora
MySQL DB.

May 18, 2020

RDS Proxy available in more
AWS Regions (p. 1837)

You can now use the RDS Proxy
preview in the US West (N.
California) Region, the Europe
(London) Region, the Europe
(Frankfurt) Region, the Asia
Pacific (Seoul) Region, the Asia
Pacific (Mumbai) Region, the
Asia Pacific (Singapore) Region,
and the Asia Pacific (Sydney)
Region. For more information
about RDS Proxy, see Managing
connections with Amazon RDS
proxy (preview).

May 13, 2020

Aurora PostgreSQL-Compatible
Edition supports on-premises
or self-hosted Microsoft active
directory (p. 1837)

You can now use an on-premises
or self-hosted Active Directory
for Kerberos authentication of
users when they connect to your
Aurora PostgreSQL DB clusters.
For more information, see Using
Kerberos authentication with
Aurora PostgreSQL.

May 7, 2020

Aurora MySQL multi-master
clusters available in more AWS
Regions (p. 1837)

You can now create Aurora
multi-master clusters in the
Asia Pacific (Seoul) Region, the
Asia Pacific (Tokyo) Region, the
Asia Pacific (Mumbai) Region,
and the Europe (Frankfurt)
Region. For more information
about multi-master clusters,
see Working with Aurora multi-
master clusters.

May 7, 2020

Performance Insights supports
analyzing statistics of running
Aurora MySQL queries (p. 1837)

You can now analyze statistics
of running queries with
Performance Insights for Aurora
MySQL DB instances. For more
information, see Analyzing
statistics of running queries.

May 5, 2020

1855

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Replication.CrossRegion.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Replication.CrossRegion.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-kerberos.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-kerberos.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-kerberos.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.AnalyzeDBLoad.AdditionalMetrics
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.AnalyzeDBLoad.AdditionalMetrics

Amazon Aurora User Guide for Aurora

Java client library for Data API
generally available (p. 1837)

The Java client library for the
Data API is now generally
available. You can download and
use a Java client library for Data
API. It enables you to map your
client-side classes to requests
and responses of the Data API.
For more information, see Using
the Java client library for Data
API.

April 30, 2020

Amazon Aurora available in the
Europe (Milan) Region (p. 1837)

Aurora is now available in the
Europe (Milan) Region. For more
information, see Regions and
Availability Zones.

April 28, 2020

Amazon Aurora available in the
Europe (Milan) Region (p. 1837)

Aurora is now available in the
Europe (Milan) Region. For more
information, see Regions and
Availability Zones.

April 27, 2020

Amazon Aurora available
in the Africa (Cape Town)
Region (p. 1837)

Aurora is now available in the
Africa (Cape Town) Region. For
more information, see Regions
and Availability Zones.

April 22, 2020

Aurora PostgreSQL releases
3.1.2, 2.4.2, and 1.6.2 (p. 1837)

New patch releases of Aurora
PostgreSQL include Aurora
PostgreSQL release 3.1.2
(compatible with PostgreSQL
11.6), Aurora PostgreSQL
release 2.4.2 (compatible
with PostgreSQL 10.11), and
Aurora PostgreSQL release 1.6.2
(compatible with PostgreSQL
9.6.16). For more information,
see Database engine versions for
Amazon Aurora PostgreSQL.

April 17, 2020

Aurora MySQL version
2.07.2 (p. 1170)

Aurora MySQL version 2.07.2 is
available.

April 17, 2020

Aurora PostgreSQL releases
3.1.1, 2.4.1, and 1.6.1 (p. 1837)

New patch releases of Aurora
PostgreSQL include Aurora
PostgreSQL release 3.1.1
(compatible with PostgreSQL
11.6), Aurora PostgreSQL
release 2.4.1 (compatible
with PostgreSQL 10.11), and
Aurora PostgreSQL release 1.6.1
(compatible with PostgreSQL
9.6.16). For more information,
see Database engine versions for
Amazon Aurora PostgreSQL.

April 16, 2020

1856

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.java-client-library
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.java-client-library
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.java-client-library
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL now
supports db.r5.16xlarge and
db.r5.8xlarge DB instance
classes (p. 1837)

You can now create Aurora
PostgreSQL DB clusters running
PostgreSQL that use the
db.r5.16xlarge and db.r5.8xlarge
DB instance classes. For more
information, see Hardware
specifications for DB instance
classes for Aurora.

April 8, 2020

Amazon RDS proxy for
PostgreSQL (p. 1837)

Amazon RDS Proxy is now
available for PostgreSQL. You
can use RDS Proxy to reduce
the overhead of connection
management on your cluster
and also the chance of "too
many connections" errors. The
RDS Proxy is currently in public
preview for PostgreSQL. For
more information, see Managing
connections with Amazon RDS
proxy (preview).

April 8, 2020

Aurora global databases
now support Aurora
PostgreSQL (p. 1837)

You can now create Aurora
global databases for the
PostgreSQL database engine.
An Aurora global database
spans multiple AWS Regions,
enabling low latency global
reads and disaster recovery from
region-wide outages. For more
information, see Working with
Amazon Aurora global database.

March 10, 2020

Aurora MySQL version
1.22.2 (p. 1227)

Aurora MySQL version 1.22.2 is
available.

March 5, 2020

Aurora MySQL version
1.20.1 (p. 1233)

Aurora MySQL version 1.20.1 is
available.

March 5, 2020

Aurora MySQL version
1.19.6 (p. 1235)

Aurora MySQL version 1.19.6 is
available.

March 5, 2020

Aurora MySQL version
1.17.9 (p. 1240)

Aurora MySQL version 1.17.9 is
available.

March 5, 2020

Support for major version
upgrades for Aurora
PostgreSQL (p. 1837)

With Aurora PostgreSQL, you
can now upgrade the DB engine
to a major version. By doing
so, you can skip ahead to a
newer major version when you
upgrade select PostgreSQL
engine versions. For more
information, see Upgrading
the PostgreSQL DB engine for
Aurora PostgreSQL.

March 4, 2020

1857

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Summary
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Summary
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Summary
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL
supports Kerberos
authentication (p. 1837)

You can now use Kerberos
authentication to authenticate
users when they connect to your
Aurora PostgreSQL DB clusters.
For more information, see Using
Kerberos authentication with
Aurora PostgreSQL.

February 28, 2020

Aurora PostgreSQL releases 3.1,
2.4, and 1.6 (p. 1837)

New releases of Amazon Aurora
PostgreSQL-Compatible Edition
include Aurora PostgreSQL
release 3.1 (compatible with
PostgreSQL 11.6), Aurora
PostgreSQL release 2.4
(compatible with PostgreSQL
10.11), and Aurora PostgreSQL
release 1.6 (compatible with
PostgreSQL 9.6.16). For more
information, see Database
engine versions for Amazon
Aurora PostgreSQL.

February 11, 2020

The Data API supports AWS
PrivateLink (p. 1837)

The Data API now supports
creating Amazon VPC endpoints
for Data API calls to keep
traffic between applications
and the Data API in the AWS
network. For more information,
see Creating an Amazon VPC
endpoint (AWS PrivateLink) for
the Data API.

February 6, 2020

Aurora machine learning support
in Aurora PostgreSQL (p. 1837)

The aws_ml Aurora PostgreSQL
extension provides functions
you use in your database queries
to call Amazon Comprehend
for sentiment analysis and
SageMaker to run your own
machine learning models.
For more information, see
Using machine learning (ML)
capabilities with Aurora.

February 5, 2020

Aurora PostgreSQL supports
exporting data to Amazon
S3 (p. 1837)

You can query data from an
Aurora PostgreSQL DB cluster
and export it directly into
files stored in an Amazon S3
bucket. For more information,
see Exporting data from an
Aurora PostgreSQL DB cluster to
Amazon S3.

February 5, 2020

Support for exporting DB
snapshot data to Amazon
S3 (p. 1837)

Amazon Aurora supports
exporting DB snapshot data
to Amazon S3 for MySQL
and PostgreSQL. For more
information, see Exporting DB
snapshot data to Amazon S3.

January 9, 2020

1858

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-kerberos.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-kerberos.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-kerberos.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.vpc-endpoint
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.vpc-endpoint
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.vpc-endpoint
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-ml.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-ml.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-ml.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-s3-export.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-s3-export.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/postgresql-s3-export.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_ExportSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_ExportSnapshot.html

Amazon Aurora User Guide for Aurora

Aurora MySQL version
2.07.1 (p. 1172)

Aurora MySQL version 2.07.1 is
available.

December 23, 2019

Aurora MySQL version
1.22.1 (p. 1228)

Aurora MySQL version 1.22.1 is
available.

December 23, 2019

Aurora MySQL release notes in
document history (p. 1837)

This section now includes history
entries for Aurora MySQL-
Compatible Edition release
notes for versions released
after August 31, 2018. For the
full release notes for a specific
version, choose the link in the
first column of the history entry.

December 13, 2019

Amazon RDS proxy (p. 1837) You can reduce the overhead
of connection management
on your cluster, and reduce
the chance of "too many
connections" errors, by using
the Amazon RDS Proxy. You
associate each proxy with an
RDS DB instance or Aurora DB
cluster. Then you use the proxy
endpoint in the connection
string for your application. The
Amazon RDS Proxy is currently
in a public preview state. It
supports the Aurora MySQL
database engine. For more
information, see Managing
connections with Amazon RDS
proxy (preview).

December 3, 2019

Data API for Aurora Serverless
supports data type mapping
hints (p. 1837)

You can now use a hint to
instruct the Data API for
Aurora Serverless to send a
String value to the database
as a different type. For more
information, see Calling the data
API.

November 26, 2019

Data API for Aurora Serverless
supports a Java client library
(preview) (p. 1837)

You can download and use a
Java client library for Data API. It
enables you to map your client-
side classes to requests and
responses of the Data API. For
more information, see Using the
Java client library for Data API.

November 26, 2019

1859

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.calling
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.calling
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.java-client-library
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html#data-api.java-client-library

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL release
3.0 (p. 1837)

Amazon Aurora PostgreSQL
release 3.0 is available and
compatible with PostgreSQL
11.4. Supported AWS Regions
include us-east-1, us-east-2,
us-west-2, eu-west-1, ap-
northeast-1, and ap-northeast-2.
For more information, see
Database engine versions for
Amazon Aurora PostgreSQL.

November 26, 2019

Aurora PostgreSQL is FedRAMP
HIGH eligible (p. 1837)

Aurora PostgreSQL is FedRAMP
HIGH eligible. For details about
AWS and compliance efforts,
see AWS services in scope by
compliance program.

November 26, 2019

READ COMMITTED isolation
level enabled for Amazon Aurora
MySQL replicas (p. 1837)

You can now enable the READ
COMMITTED isolation level
on Aurora MySQL Replicas.
Doing so requires enabling the
aurora_read_replica_read_committed_isolation_enabled
configuration setting at the
session level. Using the READ
COMMITTED isolation level
for long-running queries on
OLTP clusters can help address
issues with history list length.
Before enabling this setting,
be sure to understand how the
isolation behavior on Aurora
Replicas differs from the usual
MySQL implementation of
READ COMMITTED. For more
information, see Aurora MySQL
isolation levels.

November 25, 2019

Performance Insights supports
analyzing statistics of
running Aurora PostgreSQL
queries (p. 1837)

You can now analyze statistics
of running queries with
Performance Insights for Aurora
PostgreSQL DB instances. For
more information, see Analyzing
statistics of running queries.

November 25, 2019

More clusters in an Aurora global
database (p. 1837)

You can now add multiple
secondary regions to an Aurora
global database. You can take
advantage of low latency global
reads and disaster recovery
across a wider geographic area.
For more information about
Aurora global databases, see
Working with Amazon Aurora
global databases.

November 25, 2019

1860

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Reference.html#AuroraMySQL.Reference.IsolationLevels
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Reference.html#AuroraMySQL.Reference.IsolationLevels
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.AnalyzeDBLoad.AdditionalMetrics
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.AnalyzeDBLoad.AdditionalMetrics
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html

Amazon Aurora User Guide for Aurora

Aurora machine learning support
in Aurora MySQL (p. 1837)

In Aurora MySQL 2.07 and
higher, you can call Amazon
Comprehend for sentiment
analysis and SageMaker for
a wide variety of machine
learning algorithms. You use the
results directly in your database
application by embedding calls
to stored functions in your
queries. For more information,
see Using machine learning (ML)
capabilities with Aurora.

November 25, 2019

Aurora global database no
longer requires engine mode
setting (p. 1837)

You no longer need to specify
--engine-mode=global
when creating a cluster that
is intended to be part of an
Aurora global database. All
Aurora clusters that meet the
compatibility requirements
are eligible to be part of a
global database. For example,
the cluster currently must
use Aurora MySQL version 1
with MySQL 5.6 compatibility.
For information about Aurora
global databases, see Working
with Amazon Aurora global
databases.

November 25, 2019

Aurora global database is
available for Aurora MySQL
version 2 (p. 1837)

Starting in Aurora MySQL
2.07, you can create an Aurora
global database with MySQL 5.7
compatibility. You don't need to
specify the global engine mode
for the primary or secondary
clusters. You can add any new
provisioned cluster with Aurora
MySQL 2.07 or higher to an
Aurora Global Database. For
information about Aurora Global
Database, see Working with
Amazon Aurora global database.

November 25, 2019

Aurora MySQL version
2.07.0 (p. 1174)

Aurora MySQL version 2.07.0 is
available.

November 25, 2019

Aurora MySQL version
1.22.0 (p. 1229)

Aurora MySQL version 1.22.0 is
available.

November 25, 2019

Aurora MySQL version
1.21.0 (p. 1232)

Aurora MySQL version 1.21.0 is
available.

November 25, 2019

Aurora MySQL version
2.06.0 (p. 1176)

Aurora MySQL version 2.06.0 is
available.

November 22, 2019

Aurora MySQL version
2.04.8 (p. 1184)

Aurora MySQL version 2.04.8 is
available.

November 20, 2019

1861

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-ml.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-ml.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html

Amazon Aurora User Guide for Aurora

Aurora MySQL hot row
contention optimization
available without lab
mode (p. 1837)

The hot row contention
optimization is now generally
available for Aurora MySQL and
does not require the Aurora lab
mode setting to be ON. This
feature substantially improves
throughput for workloads with
many transactions contending
for rows on the same page. The
improvement involves changing
the lock release algorithm used
by Aurora MySQL.

November 19, 2019

Aurora MySQL hash joins
available without lab
mode (p. 1837)

The hash join feature is now
generally available for Aurora
MySQL and does not require the
Aurora lab mode setting to be
ON. This feature can improve
query performance when you
need to join a large amount of
data by using an equijoin. For
more information about using
this feature, see Working with
hash joins in Aurora MySQL.

November 19, 2019

Aurora MySQL 2.* support
for more db.r5 instance
classes (p. 1837)

Aurora MySQL clusters now
support the instance types
db.r5.8xlarge, db.r5.16xlarge,
and db.r5.24xlarge. For more
information about instance
types for Aurora MySQL clusters,
see Choosing the DB instance
class.

November 19, 2019

Aurora MySQL 2.* support for
backtracking (p. 1837)

Aurora MySQL 2.* versions now
offer a quick way to recover from
user errors, such as dropping
the wrong table or deleting the
wrong row. Backtrack allows you
to move your database to a prior
point in time without needing
to restore from a backup, and it
completes within seconds, even
for large databases. For details,
see Backtracking an Aurora DB
cluster.

November 19, 2019

Aurora MySQL version
2.04.7 (p. 1185)

Aurora MySQL version 2.04.7 is
available.

November 14, 2019

Aurora MySQL version
2.05.0 (p. 1179)

Aurora MySQL version 2.05.0 is
available.

November 11, 2019

Aurora MySQL version
1.20.0 (p. 1234)

Aurora MySQL version 1.20.0 is
available.

November 11, 2019

1862

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_AuroraMySQL_BestPractices.html#Aurora.BestPractices.HashJoin
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_AuroraMySQL_BestPractices.html#Aurora.BestPractices.HashJoin
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.Backtrack.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.Backtrack.html

Amazon Aurora User Guide for Aurora

Billing tag support for
Aurora (p. 1837)

You can now use tags to keep
track of cost allocation for
resources such as Aurora
clusters, DB instances within
Aurora clusters, I/O, backups,
snapshots, and so on. You can
see costs associated with each
tag using AWS Cost Explorer.
For more information about
using tags with Aurora, see
Tagging Amazon RDS resources.
For general information about
tags and ways to use them for
cost analysis, see Using cost
allocation tags and User-defined
cost allocation tags.

October 23, 2019

Data API for Aurora
PostgreSQL (p. 1837)

Aurora PostgreSQL now
supports using the Data API with
Amazon Aurora Serverless DB
clusters. For more information,
see Using the Data API for
Aurora Serverless.

September 23, 2019

Aurora MySQL version
2.04.6 (p. 1187)

Aurora MySQL version 2.04.6 is
available.

September 19, 2019

Aurora MySQL version
1.19.5 (p. 1235)

Aurora MySQL version 1.19.5 is
available.

September 19, 2019

Aurora PostgreSQL supports
uploading database logs to
CloudWatch logs (p. 1837)

You can configure your Aurora
PostgreSQL DB cluster to
publish log data to a log group
in Amazon CloudWatch Logs.
With CloudWatch Logs, you can
perform real-time analysis of the
log data, and use CloudWatch to
create alarms and view metrics.
You can use CloudWatch Logs
to store your log records in
highly durable storage. For more
information, see Publishing
Aurora PostgreSQL logs to
Amazon CloudWatch Logs.

August 9, 2019

Multi-master clusters for Aurora
MySQL (p. 1837)

You can set up Aurora MySQL
multi-master clusters. In these
clusters, each DB instance has
read/write capability. For more
information, see Working with
Aurora multi-master clusters.

August 8, 2019

1863

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_Tagging.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/custom-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/custom-tags.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.CloudWatch.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.CloudWatch.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.CloudWatch.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html

Amazon Aurora User Guide for Aurora

Aurora PostgreSQL supports
Aurora Serverless (p. 1837)

You can now use Amazon
Aurora Serverless with
Aurora PostgreSQL. An
Aurora Serverless DB cluster
automatically starts up, shuts
down, and scales up or down its
compute capacity based on your
application's needs. For more
information, see Using Amazon
Aurora Serverless.

July 9, 2019

Aurora MySQL version
2.04.5 (p. 1189)

Aurora MySQL version 2.04.5 is
available.

July 8, 2019

Aurora PostgreSQL releases
2.3.3 and 1.5.2 (p. 1837)

Amazon Aurora PostgreSQL-
Compatible Edition release 2.3.3
is available and compatible
with PostgreSQL 10.7. Amazon
Aurora PostgreSQL-Compatible
Edition release 1.5.2 is available
and compatible with PostgreSQL
9.6.12. For more information,
see Database engine versions for
Amazon Aurora PostgreSQL.

July 3, 2019

Cross-account cloning for Aurora
MySQL (p. 1837)

You can now clone the cluster
volume for an Aurora MySQL DB
cluster between AWS accounts.
You authorize the sharing
through AWS Resource Access
Manager (AWS RAM). The cloned
cluster volume uses a copy-on-
write mechanism, which only
requires additional storage for
new or changed data. For more
information about cloning for
Aurora, see Cloning databases in
an Aurora DB cluster.

July 2, 2019

Aurora PostgreSQL releases
2.3.1 and 1.5.1 (p. 1837)

Amazon Aurora PostgreSQL-
Compatible Edition release 2.3.1
is available and compatible
with PostgreSQL 10.7. Amazon
Aurora PostgreSQL-Compatible
Edition release 1.5.1 is available
and compatible with PostgreSQL
9.6.12. For more information,
see Database engine versions for
Amazon Aurora PostgreSQL.

July 2, 2019

Aurora PostgreSQL
supports db.t3 DB instance
classes (p. 1837)

You can now create Aurora
PostgreSQL DB clusters that use
the db.t3 DB instance classes.
For more information, see DB
instance class.

June 20, 2019

1864

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Clone.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Clone.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html

Amazon Aurora User Guide for Aurora

Support for importing data
from Amazon S3 for Aurora
PostgreSQL (p. 1837)

You can now import data from
an Amazon S3 file into a table
in an Aurora PostgreSQL DB
cluster. For more information,
see Importing Amazon S3 data
into an Aurora PostgreSQL DB
cluster.

June 19, 2019

Aurora PostgreSQL now
provides fast failover
recovery with cluster cache
management (p. 1837)

Aurora PostgreSQL now provides
cluster cache management
to ensure fast recovery of the
primary DB instance in the
event of a failover. For more
information, see Fast recovery
after failover with cluster cache
management.

June 11, 2019

Aurora MySQL version
1.19.2 (p. 1236)

Aurora MySQL version 1.19.2 is
available.

June 5, 2019

Data API for Aurora Serverless
generally available (p. 1837)

You can access Aurora Serverless
clusters with web services-based
applications using the Data
API. For more information, see
Using the Data API for Aurora
Serverless.

May 30, 2019

Aurora PostgreSQL supports
database monitoring
with database activity
streams (p. 1837)

Aurora PostgreSQL now includes
database activity streams, which
provide a near-real-time data
stream of the database activity
in your relational database. For
more information, see Using
database activity streams.

May 30, 2019

Aurora PostgreSQL release
2.3 (p. 1837)

Release 2.3 of Amazon Aurora
PostgreSQL-Compatible Edition
is available and compatible
with PostgreSQL 10.7. For more
information, see Version 2.3.

May 30, 2019

Aurora MySQL version
2.04.4 (p. 1190)

Aurora MySQL version 2.04.4 is
available.

May 29, 2019

Amazon Aurora
recommendations (p. 1837)

Amazon Aurora now provides
automated recommendations
for Aurora resources. For more
information, see Using Amazon
Aurora recommendations.

May 22, 2019

Aurora PostgreSQL releases
1.2.2, 1.3.2, 2.0.1, 2.1.1,
2.2.1 (p. 1837)

The following patch releases for
Amazon Aurora PostgreSQL-
Compatible Edition are now
available and include releases
1.2.2, 1.3.2, 2.0.1, 2.1.1, and
2.2.1. For more information, see
Database engine versions for
Amazon Aurora PostgreSQL.

May 21, 2019

1865

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraPostgreSQL.Migrating.html#USER_PostgreSQL.S3Import
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraPostgreSQL.Migrating.html#USER_PostgreSQL.S3Import
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraPostgreSQL.Migrating.html#USER_PostgreSQL.S3Import
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.cluster-cache-mgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.cluster-cache-mgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.cluster-cache-mgmt.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/DBActivityStreams.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/DBActivityStreams.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html#AuroraPostgreSQL.Updates.20180305.23
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_Recommendations.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_Recommendations.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html#AuroraPostgreSQL.Updates.20180305
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html#AuroraPostgreSQL.Updates.20180305
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html#AuroraPostgreSQL.Updates.20180305

Amazon Aurora User Guide for Aurora

Performance Insights
support for Aurora global
database (p. 1837)

You can now use Performance
Insights with Aurora Global
Database. For information
about Performance Insights
for Aurora, see Using Amazon
RDS performance insights. For
information about Aurora global
databases, see Working with
Aurora global database.

May 13, 2019

Aurora PostgreSQL release
1.4 (p. 1837)

Release 1.4 of Amazon Aurora
PostgreSQL-Compatible Edition
is available and compatible with
PostgreSQL 9.6.11. For more
information, see Version 1.4.

May 9, 2019

Aurora MySQL version
2.04.3 (p. 1191)

Aurora MySQL version 2.04.3 is
available.

May 9, 2019

Aurora MySQL version
1.19.1 (p. 1237)

Aurora MySQL version 1.19.1 is
available.

May 9, 2019

Performance Insights is available
for Aurora MySQL 5.7 (p. 1837)

Amazon RDS Performance
Insights is now available for
Aurora MySQL 2.x versions,
which are compatible
with MySQL 5.7. For more
information, see Using Amazon
RDS performance insights.

May 3, 2019

Aurora MySQL version
2.04.2 (p. 1193)

Aurora MySQL version 2.04.2 is
available.

May 2, 2019

Aurora global databases
available in more AWS
Regions (p. 1837)

You can now create Aurora
global databases in most
AWS Regions where Aurora is
available. For information about
Aurora global databases, see
Working with Amazon Aurora
global databases.

April 30, 2019

Minimum capacity of 1 for
Aurora Serverless (p. 1837)

The minimum capacity setting
you can use for an Aurora
Serverless cluster is 1. Formerly,
the minimum was 2. For
information about specifying
Aurora Serverless capacity
values, see Setting the capacity
of an Aurora Serverless DB
cluster.

April 29, 2019

Aurora Serverless timeout
action (p. 1837)

You can now specify the
action to take when an Aurora
Serverless capacity change times
out. For more information, see
Timeout action for capacity
changes.

April 29, 2019

1866

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html#AuroraPostgreSQL.Updates.20180305.14
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.setting-capacity.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.setting-capacity.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.setting-capacity.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html#aurora-serverless.how-it-works.timeout-action
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html#aurora-serverless.how-it-works.timeout-action
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html#aurora-serverless.how-it-works.timeout-action

Amazon Aurora User Guide for Aurora

Per-second billing (p. 1837) Amazon RDS is now billed in 1-
second increments in all AWS
Regions except AWS GovCloud
(US) for on-demand instances.
For more information, see DB
instance billing for Aurora.

April 25, 2019

Sharing Aurora Serverless
snapshots across AWS
Regions (p. 1837)

With Aurora Serverless,
snapshots are always encrypted.
If you encrypt the snapshot
with your own AWS KMS key,
you can now copy or share the
snapshot across AWS Regions.
For information about snapshots
of Aurora Serverless DB clusters,
see Aurora Serverless and
snapshots.

April 17, 2019

Restore MySQL 5.7 backups
from Amazon S3 (p. 1837)

You can now create a backup
of your MySQL version 5.7
database, store it on Amazon S3,
and then restore the backup file
onto a new Aurora MySQL DB
cluster. For more information,
see Migrating data from an
external MySQL database to an
Aurora MySQL DB cluster.

April 17, 2019

Sharing Aurora Serverless
snapshots across
regions (p. 1837)

With Aurora Serverless,
snapshots are always encrypted.
If you encrypt the snapshot with
your own AWS KMS key, you can
now copy or share the snapshot
across regions. For information
about snapshots of Aurora
Serverless DB clusters, see
Aurora Serverless and snapshots.

April 16, 2019

Aurora proof-of-concept
tutorial (p. 1837)

You can learn how to perform
a proof of concept to try your
application and workload with
Aurora. For the full tutorial, see
Performing an Aurora proof of
concept.

April 16, 2019

Aurora Serverless supports
restoring from an Amazon S3
backup (p. 1837)

You can now import backups
from Amazon S3 to an Aurora
Serverless cluster. For details
about that procedure, see
Migrating data from MySQL by
using an Amazon S3 bucket.

April 16, 2019

1867

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/User_DBInstanceBilling.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/User_DBInstanceBilling.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html#aurora-serverless.snapshots
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html#aurora-serverless.snapshots
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html#aurora-serverless.snapshots
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-poc.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-poc.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.S3.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.S3.html

Amazon Aurora User Guide for Aurora

New modifiable parameters for
Aurora Serverless (p. 1837)

You can now modify the
following DB parameters for
an Aurora Serverless cluster:
innodb_file_format,
innodb_file_per_table,
innodb_large_prefix,
innodb_lock_wait_timeout,
innodb_monitor_disable,
innodb_monitor_enable,
innodb_monitor_reset,
innodb_monitor_reset_all,
innodb_print_all_deadlocks,
log_warnings,
net_read_timeout,
net_retry_count,
net_write_timeout,
sql_mode, and tx_isolation.
For more information about
configuration parameters for
Aurora Serverless clusters, see
Aurora Serverless and parameter
groups.

April 4, 2019

Aurora PostgreSQL
supports db.r5 DB instance
classes (p. 1837)

You can now create Aurora
PostgreSQL DB clusters that use
the db.r5 DB instance classes.
For more information, see DB
instance class.

April 4, 2019

Aurora PostgreSQL logical
replication (p. 1837)

You can now use PostgreSQL
logical replication to replicate
parts of a database for an Aurora
PostgreSQL DB cluster. For
more information, see Using
PostgreSQL logical replication.

March 28, 2019

GTID support for Aurora MySQL
2.04 (p. 1837)

You can now use replication with
the global transaction ID (GTID)
feature of MySQL 5.7. This
feature simplifies performing
binary log (binlog) replication
between Aurora MySQL and an
external MySQL 5.7-compatible
database. The replication can
use the Aurora MySQL cluster
as the source or the destination.
This feature is available for
Aurora MySQL 2.04 and higher.
For more information about
GTID-based replication and
Aurora MySQL, see Using GTID-
based replication for Aurora
MySQL.

March 25, 2019

Aurora MySQL version
2.04.1 (p. 1194)

Aurora MySQL version 2.04.1 is
available.

March 25, 2019

1868

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html#aurora-serverless.parameter-groups
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html#aurora-serverless.parameter-groups
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Replication.Logical.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Replication.Logical.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/mysql-replication-gtid.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/mysql-replication-gtid.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/mysql-replication-gtid.html

Amazon Aurora User Guide for Aurora

Aurora MySQL version
2.04 (p. 1196)

Aurora MySQL version 2.04 is
available.

March 25, 2019

Uploading Aurora
Serverless logs to Amazon
CloudWatch (p. 1837)

You can now have Aurora upload
database logs to CloudWatch for
an Aurora Serverless cluster. For
more information, see Viewing
Aurora Serverless DB clusters.
As part of this enhancement,
you can now define values for
instance-level parameters in a
DB cluster parameter group,
and those values apply to all DB
instances in the cluster unless
you override them in the DB
parameter group. For more
information, see Working with
DB parameter groups and DB
cluster parameter groups.

February 25, 2019

Aurora MySQL supports db.t3
DB instance classes (p. 1837)

You can now create Aurora
MySQL DB clusters that use
the db.t3 DB instance classes.
For more information, see DB
instance class.

February 25, 2019

Aurora MySQL supports db.r5
DB instance classes (p. 1837)

You can now create Aurora
MySQL DB clusters that use
the db.r5 DB instance classes.
For more information, see DB
instance class.

February 25, 2019

Performance Insights counters
for Aurora MySQL (p. 1837)

You can now add performance
counters to your Performance
Insights charts for Aurora
MySQL DB instances. For more
information, see Performance
Insights dashboard components.

February 19, 2019

Aurora PostgreSQL release
2.2.0 (p. 1837)

Release 2.2.0 of Aurora
PostgreSQL is available and
compatible with PostgreSQL
10.6. For more information, see
Version 2.2.0.

February 13, 2019

Aurora MySQL version
2.03.4 (p. 1197)

Aurora MySQL version 2.03.4 is
available.

February 7, 2019

Aurora MySQL version
1.19.0 (p. 1238)

Aurora MySQL version 1.19.0 is
available.

February 7, 2019

1869

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.viewing.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.viewing.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_WorkingWithParamGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_WorkingWithParamGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_WorkingWithParamGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.Components
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.Components
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html#AuroraPostgreSQL.Updates.20180305.22
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html#AuroraPostgreSQL.Updates.20180305.22

Amazon Aurora User Guide for Aurora

Amazon RDS Performance
Insights supports viewing
more SQL text for Aurora
MySQL (p. 1837)

Amazon RDS Performance
Insights now supports
viewing more SQL text in the
Performance Insights dashboard
for Aurora MySQL DB instances.
For more information, see
Viewing more SQL text in the
Performance Insights dashboard.

February 6, 2019

Amazon RDS Performance
Insights supports viewing
more SQL text for Aurora
PostgreSQL (p. 1837)

Amazon RDS Performance
Insights now supports
viewing more SQL text in the
Performance Insights dashboard
for Aurora PostgreSQL DB
instances. For more information,
see Viewing more SQL text
in the Performance Insights
dashboard.

January 24, 2019

Aurora MySQL version
2.03.3 (p. 1198)

Aurora MySQL version 2.03.3 is
available.

January 18, 2019

Aurora MySQL version
1.17.8 (p. 1240)

Aurora MySQL version 1.17.8 is
available.

January 17, 2019

Aurora MySQL version
2.03.2 (p. 1200)

Aurora MySQL version 2.03.2 is
available.

January 9, 2019

Aurora backup billing (p. 1837) You can use the Amazon
CloudWatch metrics
TotalBackupStorageBilled,
SnapshotStorageUsed, and
BackupRetentionPeriodStorageUsed
to monitor the space usage
of your Aurora backups. For
more information about how
to use CloudWatch metrics, see
Overview of monitoring. For
more information about how
to manage storage for backup
data, see Understanding Aurora
backup storage usage.

January 3, 2019

Performance Insights counters
 (p. 1837)

You can now add performance
counters to your Performance
Insights charts. For more
information, see Performance
Insights dashboard components.

December 6, 2018

Aurora global
database (p. 1837)

You can now create Aurora
global databases. An Aurora
global database spans multiple
AWS Regions, enabling low
latency global reads and disaster
recovery from region-wide
outages. For more information,
see Working with Amazon
Aurora global database.

November 28, 2018

1870

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.SQLTextSize
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.SQLTextSize
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.SQLTextSize
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.SQLTextSize
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.SQLTextSize
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/MonitoringOverview.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-storage-backup.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-storage-backup.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.Components
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights.UsingDashboard.html#USER_PerfInsights.UsingDashboard.Components
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html

Amazon Aurora User Guide for Aurora

Query plan management in
Aurora PostgreSQL (p. 1837)

Aurora PostgreSQL now provides
query plan management
that you can use to manage
PostgreSQL query execution
plans. For more information, see
Managing query execution plans
for Aurora PostgreSQL.

November 20, 2018

Query editor for Aurora
Serverless (beta) (p. 1837)

You can run SQL statements
in the Amazon RDS console on
Aurora Serverless clusters. For
more information, see Using
the query editor for Aurora
Serverless.

November 20, 2018

Data API for Aurora Serverless
(beta) (p. 1837)

You can access Aurora Serverless
clusters with web services-based
applications using the Data
API. For more information, see
Using the Data API for Aurora
Serverless.

November 20, 2018

Aurora PostgreSQL version 2.1
 (p. 1837)

Aurora PostgreSQL version 2.1
is available and compatible
with PostgreSQL 10.5. For more
information, see Version 2.1.

November 20, 2018

TLS support for Aurora
Serverless (p. 1837)

Aurora Serverless clusters
support TLS/SSL encryption. For
more information, see TLS/SSL
for Aurora Serverless.

November 19, 2018

Custom endpoints (p. 1837) You can now create endpoints
that are associated with an
arbitrary set of DB instances.
This feature helps with load
balancing and high availability
for Aurora clusters where some
DB instances have different
capacity or configuration than
others. You can use custom
endpoints instead of connecting
to a specific DB instance through
its instance endpoint. For more
information, see Amazon Aurora
connection management.

November 12, 2018

IAM authentication support in
Aurora PostgreSQL (p. 1837)

Aurora PostgreSQL now
supports IAM authentication.
For more information see IAM
database authentication.

November 8, 2018

Aurora MySQL version
2.03.1 (p. 1202)

Aurora MySQL version 2.03.1 is
available.

October 24, 2018

1871

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Optimize.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Optimize.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/query-editor.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/query-editor.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/query-editor.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html#AuroraPostgreSQL.Updates.20180305.21
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.html#aurora-serverless.tls
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.html#aurora-serverless.tls
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.Endpoints.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.Endpoints.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/UsingWithRDS.IAMDBAuth.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/UsingWithRDS.IAMDBAuth.html

Amazon Aurora User Guide for Aurora

Custom parameter groups
for restore and point in time
recovery (p. 1837)

You can now specify a custom
parameter group when you
restore a snapshot or perform a
point in time recovery operation.
For more information, see
Restoring from a DB cluster
snapshot and Restoring a DB
cluster to a specified time.

October 15, 2018

Aurora MySQL version
2.03 (p. 1203)

Aurora MySQL version 2.03 is
available.

October 11, 2018

Aurora MySQL version
2.02.5 (p. 1205)

Aurora MySQL version 2.02.5 is
available.

October 8, 2018

Aurora MySQL version
1.17.7 (p. 1241)

Aurora MySQL version 1.17.7 is
available.

October 8, 2018

Deletion protection for Aurora
DB clusters (p. 1837)

When you enable deletion
protection for a DB cluster, the
database cannot be deleted by
any user. For more information,
see Deleting a DB cluster.

September 26, 2018

Aurora PostgreSQL version 2.0
 (p. 1837)

Aurora PostgreSQL version 2.0
is available and compatible
with PostgreSQL 10.4. For more
information, see Version 2.0.

September 25, 2018

Stop/Start feature
Aurora (p. 1837)

You can now stop or start an
entire Aurora cluster with a
single operation. For more
information, see Stopping and
starting an Aurora cluster.

September 24, 2018

Aurora MySQL version
2.02.4 (p. 1206)

Aurora MySQL version 2.02.4 is
available.

September 21, 2018

Parallel query feature for Aurora
MySQL (p. 1837)

Aurora MySQL now offers an
option to parallelize I/O work
for queries across the Aurora
storage infrastructure. This
feature speeds up data-intensive
analytic queries, which are
often the most time-consuming
operations in a workload. For
more information, see Working
with parallel query for Aurora
MySQL.

September 20, 2018

Aurora MySQL version
1.18.0 (p. 1239)

Aurora MySQL version 1.18.0 is
available.

September 20, 2018

Aurora PostgreSQL version 1.3
 (p. 1837)

Aurora PostgreSQL version 1.3 is
now available and is compatible
with PostgreSQL 9.6.9. For more
information, see Version 1.3.

September 11, 2018

1872

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_RestoreFromSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_RestoreFromSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_RestoreFromSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_DeleteCluster.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html#AuroraPostgreSQL.Updates.20180305.20
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-cluster-stop-start.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-cluster-stop-start.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-mysql-parallel-query.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-mysql-parallel-query.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-mysql-parallel-query.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html#AuroraPostgreSQL.Updates.20180305.13

Amazon Aurora User Guide for Aurora

Aurora MySQL version
1.17.6 (p. 1242)

Aurora MySQL version 1.17.6 is
available.

September 6, 2018

New guide (p. 1837) This is the first release of the
Amazon Aurora User Guide.

August 31, 2018

1873

Amazon Aurora User Guide for Aurora

AWS glossary
For the latest AWS terminology, see the AWS glossary in the AWS General Reference.

1874

https://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	Amazon Aurora
	Table of Contents
	What is Amazon Aurora?
	Amazon Aurora DB clusters
	Amazon Aurora versions
	Relational databases that are available on Aurora
	Differences in version numbers between community databases and Aurora
	Amazon Aurora major versions
	Amazon Aurora minor versions
	Amazon Aurora patch versions
	Learning what's new in each Amazon Aurora version
	Specifying the Amazon Aurora database version for your database cluster
	Default Amazon Aurora versions
	Automatic minor version upgrades
	How long Amazon Aurora major versions remain available
	How often Amazon Aurora minor versions are released
	How long Amazon Aurora minor versions remain available
	Long-term support for selected Amazon Aurora minor versions
	Manually controlling if and when your database cluster is upgraded to new versions
	Required Amazon Aurora upgrades
	Testing your DB cluster with a new Aurora version before upgrading

	Regions and Availability Zones
	AWS Regions
	Region availability
	Aurora MySQL Region availability
	Aurora PostgreSQL Region availability

	Availability Zones
	Local time zone for Amazon Aurora DB clusters

	Supported features in Amazon Aurora by AWS Region and Aurora DB engine
	Backtracking in Aurora
	Aurora global databases
	Aurora machine learning
	Aurora parallel queries
	Amazon RDS Proxy
	Aurora Serverless v1
	Data API for Aurora Serverless

	Amazon Aurora connection management
	Types of Aurora endpoints
	Viewing the endpoints for an Aurora cluster
	Using the cluster endpoint
	Using the reader endpoint
	Using custom endpoints
	Specifying properties for custom endpoints
	Membership rules for custom endpoints
	Managing custom endpoints

	Creating a custom endpoint
	Console
	AWS CLI
	RDS API

	Viewing custom endpoints
	Console
	AWS CLI
	RDS API

	Editing a custom endpoint
	Console
	AWS CLI
	RDS API

	Deleting a custom endpoint
	Console
	AWS CLI
	RDS API

	End-to-end AWS CLI example for custom endpoints
	Using the instance endpoints
	How Aurora endpoints work with high availability

	Aurora DB instance classes
	DB instance class types
	Supported DB engines for DB instance classes
	Determining DB instance class support in AWS Regions
	Using the Amazon RDS pricing page to determine DB instance class support in AWS Regions
	Using the AWS CLI to determine DB instance class support in AWS Regions
	Listing the DB instance classes that are supported by a specific DB engine version in an AWS Region
	Listing the DB engine versions that support a specific DB instance class in an AWS Region

	Hardware specifications for DB instance classes for Aurora

	Amazon Aurora storage and reliability
	Overview of Aurora storage
	What the cluster volume contains
	How Aurora storage automatically resizes
	How Aurora data storage is billed
	Amazon Aurora reliability
	Storage auto-repair
	Survivable cache warming
	Crash recovery

	Amazon Aurora security
	Using SSL with Aurora DB clusters

	High availability for Amazon Aurora
	High availability for Aurora data
	High availability for Aurora DB instances
	High availability across AWS Regions with Aurora global databases
	Fault tolerance for an Aurora DB cluster

	Replication with Amazon Aurora
	Aurora Replicas
	Replication with Aurora MySQL
	Replication with Aurora PostgreSQL

	DB instance billing for Aurora
	On-Demand DB instances for Aurora
	Stopped DB instances
	Multi-AZ DB instances

	Reserved DB instances for Aurora
	Overview of reserved DB instances
	Offering types
	Size-flexible reserved DB instances
	Reserved DB instance billing example
	Deleting a reserved DB instance

	Working with reserved DB instances
	Console
	AWS CLI
	RDS API

	Viewing the billing for your reserved DB instances

	Setting up your environment for Amazon Aurora
	Sign up for AWS
	Create an IAM user
	Determine requirements
	Provide access to the DB cluster in the VPC by creating a security group

	Getting started with Amazon Aurora
	Creating a DB cluster and connecting to a database on an Aurora MySQL DB cluster
	Create an Aurora MySQL DB cluster
	Connect to an instance in a DB cluster
	Delete the sample DB cluster, DB subnet group, and VPC

	Creating a DB cluster and connecting to a database on an Aurora PostgreSQL DB cluster
	Create an Aurora PostgreSQL DB cluster
	Connect to an instance in an Aurora PostgreSQL DB cluster
	Delete the sample DB cluster, DB subnet group, and VPC

	Tutorial: Create a web server and an Amazon Aurora DB cluster
	Create an Amazon Aurora DB cluster
	Create an EC2 instance and install a web server
	Launch an EC2 instance
	Install an Apache web server with PHP
	Connect your Apache web server to your DB instance

	Amazon Aurora tutorials and sample code
	Tutorials in this guide
	Tutorials in other AWS guides
	Tutorials and sample code in GitHub

	Configuring your Amazon Aurora DB cluster
	Creating an Amazon Aurora DB cluster
	DB cluster prerequisites
	VPC, subnets, and AZs
	Additional prerequisites

	Creating a DB cluster
	New console
	Original console
	AWS CLI
	RDS API

	Settings for Aurora DB clusters

	Creating Amazon Aurora resources with AWS CloudFormation
	Aurora and AWS CloudFormation templates
	Learn more about AWS CloudFormation

	Using Amazon Aurora Serverless v1
	Advantages of Aurora Serverless v1
	Use cases for Aurora Serverless v1
	Limitations of Aurora Serverless v1
	Configuration requirements for Aurora Serverless v1
	Using TLS/SSL with Aurora Serverless v1
	How Aurora Serverless v1 works
	Aurora Serverless v1 architecture
	Autoscaling for Aurora Serverless v1
	Timeout action for capacity changes
	Pause and resume for Aurora Serverless v1
	Parameter groups and Aurora Serverless v1
	Modifying parameter values for Aurora Serverless v1

	Logging for Aurora Serverless v1
	Viewing Aurora Serverless v1 logs with Amazon CloudWatch

	Aurora Serverless v1 and maintenance
	Aurora Serverless v1 and failover
	Aurora Serverless v1 and snapshots

	Creating an Aurora Serverless v1 DB cluster
	Console
	Example for Aurora MySQL
	Example for Aurora PostgreSQL

	AWS CLI
	Example for Aurora MySQL
	Example for Aurora PostgreSQL

	RDS API

	Restoring an Aurora Serverless v1 DB cluster
	Console
	AWS CLI
	RDS API

	Modifying an Aurora Serverless v1 DB cluster
	Console
	AWS CLI
	RDS API

	Scaling Aurora Serverless v1 DB cluster capacity manually
	Console
	AWS CLI
	RDS API

	Viewing Aurora Serverless v1 DB clusters
	Monitoring capacity and scaling events for your Aurora Serverless v1 DB cluster

	Deleting an Aurora Serverless v1 DB cluster
	Console
	AWS CLI

	Aurora Serverless v1 and Aurora database engine versions
	Aurora MySQL Serverless
	Aurora PostgreSQL Serverless

	Using the Data API for Aurora Serverless
	Data API availability
	Authorizing access to the Data API
	Working with tag-based authorization
	Storing database credentials in AWS Secrets Manager

	Enabling the Data API
	Console
	AWS CLI
	RDS API

	Creating an Amazon VPC endpoint for the Data API (AWS PrivateLink)
	Calling the Data API
	Calling the Data API with the AWS CLI
	Starting a SQL transaction
	Running a SQL statement
	Running a batch SQL statement over an array of data
	Committing a SQL transaction
	Rolling back a SQL transaction

	Calling the Data API from a Python application
	Running a SQL query
	Running a DML SQL statement
	Running a SQL transaction

	Calling the Data API from a Java application
	Running a SQL query
	Running a SQL transaction
	Running a batch SQL operation

	Using the Java client library for Data API
	Downloading the Java client library for Data API
	Java client library examples

	Troubleshooting Data API issues
	Transaction <transaction_ID> is not found
	Packet for query is too large
	Database response exceeded size limit
	HttpEndpoint is not enabled for cluster <cluster_ID>

	Logging Data API calls with AWS CloudTrail
	Working with Data API information in CloudTrail
	Understanding Data API log file entries
	Excluding Data API events from an AWS CloudTrail trail

	Using the query editor for Aurora Serverless
	Availability of the query editor
	Authorizing access to the query editor
	Running queries in the query editor
	Database Query Metadata Service (DBQMS) API reference
	CreateFavoriteQuery
	CreateQueryHistory
	CreateTab
	DeleteFavoriteQueries
	DeleteQueryHistory
	DeleteTab
	DescribeFavoriteQueries
	DescribeQueryHistory
	DescribeTabs
	GetQueryString
	UpdateFavoriteQuery
	UpdateQueryHistory
	UpdateTab

	Using Amazon Aurora Serverless v2 (preview)
	How Aurora Serverless v2 (preview) works
	Instant autoscaling
	Logging with Amazon CloudWatch
	Monitoring capacity with Amazon CloudWatch

	Limitations of Aurora Serverless v2 (preview)
	Creating an Aurora Serverless v2 (preview) DB cluster
	Creating a snapshot of an Aurora Serverless v2 (preview) DB cluster
	Modifying an Aurora Serverless v2 (preview) DB cluster
	Modifying Aurora Serverless v2 (preview) DB cluster capacity
	Modifying your DB cluster to use a custom DB cluster parameter group

	Deleting an Aurora Serverless v2 (preview) DB cluster
	Restoring an Aurora Serverless v2 (preview) DB cluster to a point in time

	Using Amazon Aurora global databases
	Overview of Amazon Aurora global databases
	Advantages of Amazon Aurora global databases
	Limitations of Amazon Aurora global databases
	Getting started with Amazon Aurora global databases
	Configuration requirements of an Amazon Aurora global database
	Creating an Amazon Aurora global database
	Console
	Creating a global database using Aurora MySQL
	Using Aurora MySQL 5.6.10a for an Aurora global database

	Creating a global database using Aurora PostgreSQL

	AWS CLI
	Creating a global database using Aurora MySQL
	Creating a global database using Aurora PostgreSQL

	RDS API

	Adding an AWS Region to an Amazon Aurora global database
	Console
	AWS CLI
	RDS API

	Creating a headless Aurora DB cluster in a secondary Region
	Using a snapshot for your Amazon Aurora global database

	Managing an Amazon Aurora global database
	Modifying an Amazon Aurora global database
	Modifying parameters for an Aurora global database
	Removing a cluster from an Amazon Aurora global database
	Console
	AWS CLI
	RDS API

	Deleting an Amazon Aurora global database
	Console
	AWS CLI
	RDS API

	Connecting to an Amazon Aurora global database
	Using write forwarding in an Amazon Aurora global database
	Enabling write forwarding
	Checking if a secondary cluster has write forwarding enabled
	Application and SQL compatibility with write forwarding
	Isolation and consistency for write forwarding
	Examples of using write forwarding

	Running multipart statements with write forwarding
	Transactions with write forwarding
	Configuration parameters for write forwarding
	Amazon CloudWatch metrics for write forwarding

	Using failover in an Amazon Aurora global database
	Recovering an Amazon Aurora global database from an unplanned outage
	Performing managed planned failovers for Amazon Aurora global databases
	Console
	AWS CLI
	RDS API

	Managing RPOs for Aurora PostgreSQL–based global databases
	Setting the recovery point objective
	Console
	AWS CLI
	RDS API

	Viewing the recovery point objective
	Disabling the recovery point objective
	Console
	AWS CLI
	RDS API

	Monitoring an Amazon Aurora global database
	Monitoring an Amazon Aurora global database with Amazon RDS Performance Insights
	Monitoring Aurora PostgreSQL-based Aurora global databases

	Using Amazon Aurora global databases with other AWS services
	Upgrading an Amazon Aurora global database
	Major version upgrades
	Minor version upgrades

	Connecting to an Amazon Aurora DB cluster
	Connecting to an Amazon Aurora MySQL DB cluster
	Connection utilities for Aurora MySQL
	Connecting with SSL for Aurora MySQL
	Connecting with the Amazon Web Services JDBC Driver for MySQL (preview)

	Connecting to an Amazon Aurora PostgreSQL DB cluster
	Connection utilities for Aurora PostgreSQL
	Connecting with the Amazon Web Services JDBC Driver for PostgreSQL (preview)

	Troubleshooting Aurora connection failures

	Using Amazon RDS Proxy
	Supported engines and Region availability for RDS Proxy
	Quotas and limitations for RDS Proxy
	Planning where to use RDS Proxy
	RDS Proxy concepts and terminology
	Overview of RDS Proxy concepts
	Connection pooling
	RDS Proxy security
	Using TLS/SSL with RDS Proxy

	Failover
	Transactions

	Getting started with RDS Proxy
	Setting up network prerequisites
	Setting up database credentials in AWS Secrets Manager
	Setting up AWS Identity and Access Management (IAM) policies
	Creating an RDS Proxy
	AWS Management Console
	AWS CLI
	RDS API

	Viewing an RDS Proxy
	AWS Management Console
	CLI
	RDS API

	Connecting to a database through RDS Proxy
	Connecting to a proxy using native authentication
	Connecting to a proxy using IAM authentication
	Considerations for connecting to a proxy with PostgreSQL

	Managing an RDS Proxy
	Modifying an RDS Proxy
	AWS Management Console
	AWS CLI
	RDS API

	Adding a new database user
	Changing the password for a database user
	Configuring connection settings
	IdleClientTimeout
	MaxConnectionsPercent
	MaxIdleConnectionsPercent
	ConnectionBorrowTimeout

	Avoiding pinning
	Deleting an RDS Proxy
	AWS Management Console
	AWS CLI
	RDS API

	Working with Amazon RDS Proxy endpoints
	Overview of proxy endpoints
	Using reader endpoints with Aurora clusters
	How reader endpoints help application availability
	How reader endpoints help query scalability
	Examples of using reader endpoints

	Accessing Aurora and RDS databases across VPCs
	Creating a proxy endpoint
	Console
	AWS CLI
	RDS API

	Viewing proxy endpoints
	Console
	AWS CLI
	RDS API

	Modifying a proxy endpoint
	Console
	AWS CLI
	RDS API

	Deleting a proxy endpoint
	Console
	AWS CLI
	RDS API

	Limits for proxy endpoints

	Monitoring RDS Proxy metrics with Amazon CloudWatch
	Working with RDS Proxy events
	RDS Proxy events

	RDS Proxy command-line examples
	Troubleshooting for RDS Proxy
	Verifying connectivity for a proxy
	Common issues and solutions

	Using RDS Proxy with AWS CloudFormation

	Working with DB parameter groups and DB cluster parameter groups
	Amazon Aurora DB cluster and DB instance parameters
	Creating a DB parameter group
	Console
	AWS CLI
	RDS API

	Creating a DB cluster parameter group
	Console
	AWS CLI
	RDS API

	Associating a DB parameter group with a DB instance
	Console
	AWS CLI
	RDS API

	Associating a DB cluster parameter group with a DB cluster
	Console
	AWS CLI
	RDS API

	Modifying parameters in a DB parameter group
	Console
	AWS CLI
	RDS API

	Modifying parameters in a DB cluster parameter group
	Console
	AWS CLI
	RDS API

	Resetting parameters in a DB parameter group to their default values
	Console
	AWS CLI
	RDS API

	Resetting parameters in a DB cluster parameter group
	Console
	AWS CLI
	RDS API

	Copying a DB parameter group
	Console
	AWS CLI
	RDS API

	Copying a DB cluster parameter group
	Console
	AWS CLI
	RDS API

	Listing DB parameter groups
	Console
	AWS CLI
	RDS API

	Listing DB cluster parameter groups
	Console
	AWS CLI
	RDS API

	Viewing parameter values for a DB parameter group
	Console
	AWS CLI
	RDS API

	Viewing parameter values for a DB cluster parameter group
	Console
	AWS CLI
	RDS API

	Comparing parameter groups
	Specifying DB parameters
	DB parameter formulas
	DB parameter formula variables
	DB parameter formula operators

	DB parameter functions
	DB parameter log expressions
	DB parameter value examples

	Migrating data to an Amazon Aurora DB cluster
	Migrating data to an Amazon Aurora MySQL DB cluster
	Migrating data to an Amazon Aurora PostgreSQL DB cluster

	Managing an Amazon Aurora DB cluster
	Stopping and starting an Amazon Aurora DB cluster
	Overview of stopping and starting an Aurora DB cluster
	Limitations for stopping and starting Aurora DB clusters
	Stopping an Aurora DB cluster
	Console
	AWS CLI
	RDS API

	Possible operations while an Aurora DB cluster is stopped
	Starting an Aurora DB cluster
	Console
	AWS CLI
	RDS API

	Modifying an Amazon Aurora DB cluster
	Modifying the DB cluster by using the console, CLI, and API
	Console
	AWS CLI
	RDS API

	Modify a DB instance in a DB cluster
	Console
	AWS CLI
	RDS API

	Settings for Amazon Aurora
	Settings that do not apply to Amazon Aurora

	Adding Aurora Replicas to a DB cluster
	Console
	AWS CLI
	RDS API

	Managing performance and scaling for Aurora DB clusters
	Storage scaling
	Instance scaling
	Read scaling
	Managing connections
	Managing query execution plans

	Cloning a volume for an Aurora DB cluster
	Overview of Aurora cloning
	Limitations of Aurora cloning
	How Aurora cloning works
	Understanding the copy-on-write protocol
	Deleting a source cluster volume

	Creating an Amazon Aurora clone
	Console
	AWS CLI
	Creating the clone
	Checking the status and getting clone details
	Creating the Aurora DB instance for your clone
	Parameters to use for cloning

	Cross-account cloning with AWS RAM and Amazon Aurora
	Limitations of cross-account cloning
	Allowing other AWS accounts to clone your cluster
	Granting permission to other AWS accounts to clone your cluster
	Console
	AWS CLI
	AWS RAM API
	Recreating a cluster that uses the default RDS key

	Checking if a cluster that you own is shared with other AWS accounts
	AWS CLI
	AWS RAM API

	Cloning a cluster that is owned by another AWS account
	Viewing invitations to clone clusters that are owned by other AWS accounts
	AWS CLI
	AWS RAM API

	Accepting invitations to share clusters owned by other AWS accounts
	Console
	AWS RAM and RDS API

	Cloning an Aurora cluster that is owned by another AWS account
	Console
	AWS CLI
	RDS API

	Checking if a DB cluster is a cross-account clone
	AWS CLI
	RDS API

	Integrating Aurora with other AWS services
	Integrating AWS services with Amazon Aurora MySQL
	Integrating AWS services with Amazon Aurora PostgreSQL
	Using Amazon Aurora Auto Scaling with Aurora replicas
	Before you begin
	Aurora Auto Scaling policies
	Service linked role
	Target metric
	Minimum and maximum capacity
	Cooldown period
	Enable or disable scale-in activities

	Adding a scaling policy
	Adding a scaling policy using the AWS Management Console
	Adding a scaling policy using the AWS CLI or the Application Auto Scaling API
	Registering an Aurora DB cluster
	AWS CLI
	RDS API

	Defining a scaling policy for an Aurora DB cluster
	Using a predefined metric
	Using a custom metric
	Using cooldown periods
	Disabling scale-in activity

	Applying a scaling policy to an Aurora DB cluster
	AWS CLI
	RDS API

	Editing a scaling policy
	Editing a scaling policy using the AWS Management Console
	Editing a scaling policy using the AWS CLI or the Application Auto Scaling API

	Deleting a scaling policy
	Deleting a scaling policy using the AWS Management Console
	Deleting a scaling policy using the AWS CLI or the Application Auto Scaling API
	AWS CLI
	RDS API

	DB instance IDs and tagging

	Using machine learning (ML) capabilities with Amazon Aurora

	Maintaining an Amazon Aurora DB cluster
	Viewing pending maintenence
	Applying updates for a DB cluster
	Console
	AWS CLI
	RDS API

	The Amazon RDS maintenance window
	Adjusting the preferred DB cluster maintenance window
	Console
	AWS CLI
	RDS API

	Automatic minor version upgrades for Aurora DB clusters
	Choosing the frequency of Aurora MySQL maintenance updates

	Rebooting an Amazon Aurora DB cluster or Amazon Aurora DB instance
	Rebooting a DB instance within an Aurora cluster
	Console
	AWS CLI
	RDS API

	Rebooting an Aurora cluster (Aurora PostgreSQL and Aurora MySQL before version 2.10)
	Rebooting an Aurora MySQL cluster (version 2.10 and higher)
	Checking uptime for Aurora clusters and instances
	Examples of Aurora reboot operations
	Finding the writer and reader instances for an Aurora cluster
	Rebooting a single reader instance
	Rebooting the writer instance
	Rebooting the writer and readers independently
	Applying a cluster parameter change to an Aurora MySQL version 2.10 cluster

	Deleting Aurora DB clusters and DB instances
	Deleting an Aurora DB cluster
	Deleting an empty Aurora cluster
	Deleting an Aurora cluster with a single DB instance
	Deleting an Aurora cluster with multiple DB instances

	Deletion protection for Aurora clusters
	Deleting a stopped Aurora cluster
	Deleting Aurora MySQL clusters that are read replicas
	The final snapshot when deleting a cluster
	Deleting a DB instance from an Aurora DB cluster
	Console
	AWS CLI
	RDS API

	Tagging Amazon RDS resources
	Overview of Amazon RDS resource tags
	Using tags for access control with IAM
	Using tags to produce detailed billing reports
	Adding, listing, and removing tags
	Console
	AWS CLI
	RDS API

	Using the AWS Tag Editor
	Copying tags to DB cluster snapshots
	Tutorial: Use tags to specify which Aurora DB clusters to stop

	Working with Amazon Resource Names (ARNs) in Amazon RDS
	Constructing an ARN for Amazon RDS
	Getting an existing ARN
	Console
	AWS CLI
	RDS API

	Amazon Aurora updates
	Identifying your Amazon Aurora version

	Backing up and restoring an Amazon Aurora DB cluster
	Overview of backing up and restoring an Aurora DB cluster
	Backups
	Backup window
	Restoring data
	Database cloning for Aurora

	Backtrack

	Understanding Aurora backup storage usage
	Creating a DB cluster snapshot
	Console
	AWS CLI
	RDS API
	Determining whether the DB cluster snapshot is available

	Restoring from a DB cluster snapshot
	Parameter group considerations
	Security group considerations
	Amazon Aurora considerations
	Restoring from a snapshot
	Console
	AWS CLI
	RDS API

	Copying a DB cluster snapshot
	Limitations
	Snapshot retention
	Copying shared snapshots
	Handling encryption
	Incremental snapshot copying
	

	Cross-Region snapshot copying
	
	

	Parameter group considerations
	Copying a DB cluster snapshot
	Console
	Copying an unencrypted DB cluster snapshot by using the AWS CLI or Amazon RDS API
	AWS CLI
	RDS API

	Copying an encrypted DB cluster snapshot by using the AWS CLI or Amazon RDS API
	AWS CLI
	RDS API

	Copying a DB cluster snapshot across accounts
	Copying an unencrypted DB cluster snapshot to another account
	Copying an encrypted DB cluster snapshot to another account

	Sharing a DB cluster snapshot
	Sharing public snapshots
	Viewing public snapshots owned by other AWS accounts
	Viewing your own public snapshots

	Sharing encrypted snapshots
	Allowing access to an AWS KMS key
	Creating an IAM policy to enable copying of the encrypted snapshot

	Sharing a snapshot
	Console
	AWS CLI
	RDS API

	Exporting DB snapshot data to Amazon S3
	Limitations
	Overview of exporting snapshot data
	Setting up access to an Amazon S3 bucket
	Identifying the Amazon S3 bucket for export
	Providing access to an Amazon S3 bucket using an IAM role
	Using a cross-account Amazon S3 bucket

	Using a cross-account AWS KMS key for encrypting Amazon S3 exports
	Exporting a snapshot to an Amazon S3 bucket
	Console
	AWS CLI
	RDS API

	Monitoring snapshot exports
	Console
	AWS CLI
	RDS API

	Canceling a snapshot export task
	Console
	AWS CLI
	RDS API

	Failure messages for Amazon S3 export tasks
	Troubleshooting PostgreSQL permissions errors
	File naming convention
	Data conversion when exporting to an Amazon S3 bucket
	MySQL data type mapping to Parquet
	PostgreSQL data type mapping to Parquet

	Restoring a DB cluster to a specified time
	Console
	AWS CLI
	RDS API

	Deleting a DB cluster snapshot
	Deleting a DB cluster snapshot
	Console
	AWS CLI
	RDS API

	Monitoring metrics in an Amazon Aurora cluster
	Overview of monitoring metrics in Amazon Aurora
	Monitoring plan
	Performance baseline
	Performance guidelines
	Monitoring tools
	Automated monitoring tools
	Amazon Aurora cluster status and recommendations
	Amazon CloudWatch metrics for Amazon Aurora
	Amazon RDS Performance Insights and operating-system monitoring
	Integrated services

	Manual monitoring tools

	Viewing cluster status and recommendations
	Viewing an Amazon Aurora DB cluster
	Console
	AWS CLI
	RDS API

	Viewing DB cluster status
	Viewing DB instance status in an Aurora cluster
	Viewing Amazon Aurora recommendations
	Responding to Amazon Aurora recommendations

	Viewing metrics in the Amazon RDS console
	Monitoring Amazon Aurora metrics with Amazon CloudWatch
	Viewing DB instance metrics in the CloudWatch console and CLI
	Console
	AWS CLI

	Creating CloudWatch alarms to monitor Amazon Aurora

	Monitoring DB load with Performance Insights on Amazon Aurora
	Overview of Performance Insights
	Database load
	Active sessions
	Average active sessions
	Average active executions
	Dimensions
	Wait events
	Top SQL

	Maximum CPU
	Amazon Aurora DB engine support for Performance Insights
	AWS Region support for Performance Insights
	Cost of Performance Insights

	Enabling and disabling Performance Insights
	Console
	Enabling or disabling Performance Insights when creating an instance
	Enabling or disabling Performance Insights when modifying an instance

	AWS CLI
	RDS API

	Enabling the Performance Schema for Performance Insights on Aurora MySQL
	Overview of the Performance Schema
	Options for enabling Performance Schema
	Configuring the Performance Schema for automatic management

	Configuring access policies for Performance Insights
	Attaching the AmazonRDSFullAccess policy to an IAM principal
	Creating a custom IAM policy for Performance Insights
	Configuring an AWS KMS policy for Performance Insights

	Analyzing metrics with the Performance Insights dashboard
	Overview of the Performance Insights dashboard
	Counter metrics chart
	Database load chart
	DB load sliced by dimensions
	DB load details for a dimension item

	Top dimensions table

	Opening the Performance Insights dashboard
	Analyzing DB load by wait events
	Analyzing running queries using the Performance Insights dashboard
	Overview of the Top SQL tab
	SQL statistics
	Load by waits (AAS)
	SQL information
	Preferences

	Analyzing running queries in Aurora MySQL
	Digest table in Aurora MySQL
	Per-second statistics for Aurora MySQL
	Per-call statistics for Aurora MySQL
	Viewing SQL statistics for Aurora MySQL

	Analyzing running queries in Aurora PostgreSQL
	Digest statistics for Aurora PostgreSQL
	Per-second digest statistics for Aurora PostgreSQL
	Per-call digest statistics for Aurora PostgreSQL
	Viewing SQL statistics for Aurora PostgreSQL

	Accessing the text of SQL statements
	Text size limits for Aurora MySQL
	Setting the SQL text limit for Aurora PostgreSQL DB instances
	Viewing and downloading SQL text in the Performance Insights dashboard

	Zooming In on the DB Load chart

	Retrieving metrics with the Performance Insights API
	AWS CLI for Performance Insights
	Retrieving time-series metrics
	AWS CLI examples for Performance Insights
	Retrieving counter metrics
	Retrieving the DB load average for top wait events
	Retrieving the DB load average for top SQL
	Retrieving the DB load average filtered by SQL
	Retrieving the full text of a SQL statement

	Logging Performance Insights calls using AWS CloudTrail
	Working with Performance Insights information in CloudTrail
	Performance Insights log file entries

	Analyzing performance anomalies with DevOps Guru for RDS
	Benefits of DevOps Guru for RDS
	How DevOps Guru for RDS works
	Insights
	Anomalies
	Causal anomalies
	Contextual anomalies

	Setting up DevOps Guru for RDS
	Turning on Performance Insights for your Amazon Aurora DB instances
	Configuring access policies for DevOps Guru for RDS
	Adding Amazon Aurora resources to your DevOps Guru coverage

	Monitoring OS metrics with Enhanced Monitoring
	Overview of Enhanced Monitoring
	Differences between CloudWatch and Enhanced Monitoring metrics
	Retention of Enhanced Monitoring metrics
	Cost of Enhanced Monitoring

	Setting up and enabling Enhanced Monitoring
	Creating an IAM role for Enhanced Monitoring
	Creating the IAM role when you enable Enhanced Monitoring
	Creating the IAM role before you enable Enhanced Monitoring

	Turning Enhanced Monitoring on and off
	Console
	AWS CLI
	RDS API

	Protecting against the confused deputy problem

	Viewing OS metrics in the RDS console
	Viewing OS metrics using CloudWatch Logs

	Metrics reference for Amazon Aurora
	Amazon CloudWatch metrics for Amazon Aurora
	Cluster-level metrics for Amazon Aurora
	Instance-level metrics for Amazon Aurora

	Amazon CloudWatch dimensions for Aurora
	Availability of Aurora metrics in the Amazon RDS console
	Aurora metrics available in the Last Hour view
	Aurora metrics available in specific cases
	Aurora metrics that aren't available in the console

	Amazon CloudWatch metrics for Performance Insights
	Performance Insights counter metrics
	Performance Insights counters for Aurora PostgreSQL
	Performance Insights counters for Aurora MySQL
	Native counters for Aurora MySQL
	Non-native counters for Aurora MySQL

	Performance Insights counters for Aurora PostgreSQL
	Native Counters for Aurora PostgreSQL
	Non-native counters for Aurora PostgreSQL

	OS metrics in Enhanced Monitoring
	OS metrics for Aurora

	Monitoring events, logs, and streams in an Amazon Aurora DB cluster
	Viewing logs, events, and streams in the Amazon RDS console
	Monitoring Amazon Aurora events
	Overview of events for Aurora
	Example of a DB cluster event
	Example of a DB instance event
	Example of a DB parameter group event
	Example of a DB cluster snapshot event

	Viewing Amazon RDS events
	Console
	AWS CLI
	API

	Using Amazon RDS event notification
	Overview of Amazon RDS event notification
	RDS resources eligible for event subscription
	Basic process for subscribing to Amazon RDS event notifications
	Delivery of RDS event notifications
	Billing for Amazon RDS event notifications

	Amazon RDS event categories and event messages
	DB instance events
	DB parameter group events
	DB security group events
	DB cluster events
	DB cluster snapshot events
	RDS Proxy events

	Subscribing to Amazon RDS event notification
	Console
	AWS CLI
	API

	Listing Amazon RDS event notification subscriptions
	Console
	AWS CLI
	API

	Modifying an Amazon RDS event notification subscription
	Console
	AWS CLI
	API

	Adding a source identifier to an Amazon RDS event notification subscription
	Console
	AWS CLI
	API

	Removing a source identifier from an Amazon RDS event notification subscription
	Console
	AWS CLI
	API

	Listing the Amazon RDS event notification categories
	Console
	AWS CLI
	API

	Deleting an Amazon RDS event notification subscription
	Console
	AWS CLI
	API

	Creating a rule that triggers on an Amazon Aurora event
	Tutorial: log the state of an instance using EventBridge
	Step 1: Create an AWS Lambda Function
	Step 2: Create a Rule
	Step 3: Test the Rule

	Monitoring Amazon Aurora log files
	Viewing and listing database log files
	Console
	AWS CLI
	RDS API

	Downloading a database log file
	Console
	AWS CLI
	RDS API

	Watching a database log file
	Console

	Publishing database logs to Amazon CloudWatch Logs
	Configuring CloudWatch log integration
	Engine-specific log information

	Reading log file contents using REST
	Aurora MySQL database log files
	Overview of Aurora MySQL database logs
	Aurora MySQL error logs
	Aurora MySQL slow query and general logs
	Log rotation and retention
	Size limits on BLOBs

	Publishing Aurora MySQL logs to Amazon CloudWatch Logs
	Managing table-based Aurora MySQL logs
	Configuring Aurora MySQL binary logging
	Accessing MySQL binary logs

	PostgreSQL database log files
	Overview of PostgreSQL logs
	Log contents
	Parameter groups

	Setting the log retention period
	Setting log file rotation
	Setting the message format
	Enabling query logging

	Monitoring Amazon Aurora API calls in AWS CloudTrail
	CloudTrail integration with Amazon Aurora
	CloudTrail events
	CloudTrail trails

	Amazon Aurora log file entries

	Monitoring Amazon Aurora with Database Activity Streams
	Overview of Database Activity Streams
	How database activity streams work
	Asynchronous and synchronous mode for database activity streams
	Requirements for database activity streams
	Miscellaneous requirements

	Supported Aurora engine versions for database activity streams
	Supported DB instance classes for database activity streams
	Supported AWS Regions for database activity streams

	Network prerequisites for Aurora MySQL database activity streams
	Prerequisites for AWS KMS endpoints
	Prerequisites for public availability
	Prerequisites for private availability

	Starting a database activity stream
	Console
	AWS CLI
	RDS API

	Getting the status of a database activity stream
	Console
	AWS CLI
	RDS API

	Stopping a database activity stream
	Console
	AWS CLI
	RDS API

	Monitoring database activity streams
	Accessing an activity stream from Kinesis
	Audit log contents and examples
	Examples of an audit log for an activity stream
	DatabaseActivityMonitoringRecords JSON object
	databaseActivityEvents JSON Object
	Top-level fields in JSON record

	databaseActivityEventList JSON array

	Processing a database activity stream using the AWS SDK

	Managing access to database activity streams

	Working with Amazon Aurora MySQL
	Overview of Amazon Aurora MySQL
	Amazon Aurora MySQL performance enhancements
	Fast insert

	Amazon Aurora MySQL and spatial data
	CREATE TABLE
	ALTER TABLE
	CREATE INDEX

	Aurora MySQL version 3 compatible with MySQL 8.0
	Features from community MySQL 8.0
	New parallel query optimizations
	Release notes for Aurora MySQL version 3
	Comparison of Aurora MySQL version 2 and Aurora MySQL version 3
	Feature differences between Aurora MySQL version 2 and 3
	Instance class support
	Parameter changes for Aurora MySQL version 3
	Status variables
	Inclusive language changes for Aurora MySQL version 3
	AUTO_INCREMENT values
	Temporary tables on reader DB instances
	Storage engine for internal temporary tables
	Binary log replication
	Multithreaded replication
	Transaction compression for binary log replication

	Comparison of Aurora MySQL version 3 and community MySQL 8.0
	MySQL 8.0 features not available in Aurora MySQL version 3
	Role-based privilege model
	Authentication

	Upgrading to Aurora MySQL version 3
	Upgrade planning for Aurora MySQL version 3
	Example of upgrading from Aurora MySQL version 2 to version 3
	Example of upgrading from Aurora MySQL version 1 to version 3
	Troubleshooting upgrade issues with Aurora MySQL version 3
	Post-upgrade cleanup for Aurora MySQL version 3
	Spatial indexes

	Aurora MySQL version 2 compatible with MySQL 5.7
	Comparison of Aurora MySQL 5.6 and Aurora MySQL 5.7

	Security with Amazon Aurora MySQL
	Master user privileges with Amazon Aurora MySQL
	Using SSL/TLS with Aurora MySQL DB clusters
	Requiring an SSL/TLS connection to an Aurora MySQL DB cluster
	TLS versions for Aurora MySQL
	Encrypting connections to an Aurora MySQL DB cluster

	Updating applications to connect to Aurora MySQL DB clusters using new SSL/TLS certificates
	Determining whether any applications are connecting to your Aurora MySQL DB cluster using SSL
	Determining whether a client requires certificate verification to connect
	JDBC
	MySQL

	Updating your application trust store
	Updating your application trust store for JDBC

	Example Java code for establishing SSL connections

	Migrating data to an Amazon Aurora MySQL DB cluster
	Migrating data from an external MySQL database to an Amazon Aurora MySQL DB cluster
	Migrating data from MySQL by using an Amazon S3 bucket
	Before you begin
	Installing Percona XtraBackup
	Required permissions
	Creating the IAM service role

	Backing up files to be restored as an Amazon Aurora MySQL DB cluster
	Creating a full backup with Percona XtraBackup
	Using incremental backups with Percona XtraBackup
	Backup considerations

	Restoring an Amazon Aurora MySQL DB cluster from an Amazon S3 bucket
	Synchronizing the Amazon Aurora MySQL DB cluster with the MySQL database using replication
	Configuring your external MySQL database and your Aurora MySQL DB cluster for encrypted replication
	Synchronizing the Amazon Aurora MySQL DB cluster with the external MySQL database

	Migrating from MySQL to Amazon Aurora by using mysqldump
	

	Migrating data from a MySQL DB instance to an Amazon Aurora MySQL DB cluster by using a DB snapshot
	Migrating an RDS for MySQL snapshot to Aurora
	How much space do I need?
	Reducing the amount of space required to migrate data into Amazon Aurora MySQL
	Console
	AWS CLI
	

	Migrating data from a MySQL DB instance to an Amazon Aurora MySQL DB cluster by using an Aurora read replica
	Creating an Aurora read replica
	Console
	AWS CLI
	RDS API

	Viewing an Aurora read replica
	Console
	AWS CLI

	Promoting an Aurora read replica
	Console
	AWS CLI

	Managing Amazon Aurora MySQL
	Managing performance and scaling for Amazon Aurora MySQL
	Scaling Aurora MySQL DB instances
	Maximum connections to an Aurora MySQL DB instance
	Temporary storage limits for Aurora MySQL

	Backtracking an Aurora DB cluster
	Overview of backtracking
	Backtrack window
	Backtracking time
	Backtracking limitations

	Upgrade considerations for backtrack-enabled clusters
	Configuring backtracking
	Console
	Configuring backtracking with the console when creating a DB cluster
	Configuring backtrack with the console when modifying a DB cluster

	AWS CLI
	RDS API

	Performing a backtrack
	Console
	AWS CLI
	RDS API

	Monitoring backtracking
	Console
	AWS CLI
	RDS API

	Subscribing to a backtrack event with the console
	Retrieving existing backtracks
	AWS CLI
	RDS API

	Disabling backtracking for a DB cluster
	Console
	AWS CLI
	RDS API

	Testing Amazon Aurora using fault injection queries
	Testing an instance crash
	Syntax
	Options

	Testing an Aurora replica failure
	Syntax
	Options

	Testing a disk failure
	Syntax
	Options

	Testing disk congestion
	Syntax
	Options

	Altering tables in Amazon Aurora using fast DDL
	Instant DDL (Aurora MySQL version 3)
	Fast DDL (Aurora MySQL version 1 and 2)
	Fast DDL limitations
	Fast DDL syntax
	Fast DDL examples

	Displaying volume status for an Aurora MySQL DB cluster
	Syntax
	Example

	Tuning Aurora MySQL with wait events and thread states
	Essential concepts for Aurora MySQL tuning
	Aurora MySQL wait events
	Aurora MySQL thread states
	Aurora MySQL memory
	Buffer pool

	Aurora MySQL processes
	MySQL server (mysqld)
	Threads
	Thread pool

	Tuning Aurora MySQL with wait events
	cpu
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Identify the sessions or queries that are causing the problem
	Analyze and optimize the high CPU workload
	Follow the guidelines for optimizing queries
	Follow the guidelines for improving CPU usage
	Check for connection storms

	io/aurora_redo_log_flush
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Identify the problematic sessions and queries
	Group your write operations
	Turn off autocommit
	Use transactions
	Use batches

	io/aurora_respond_to_client
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Identify the sessions and queries causing the events
	Scale the DB instance class
	Check workload for unexpected results
	Distribute workload with reader instances
	Use the SQL_BUFFER_RESULT modifier

	io/file/innodb/innodb_data_file
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Identify and optimize problem queries
	Scale up your instance
	Make your buffer scan resistant

	io/socket/sql/client_connection
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Identify the problematic sessions and queries
	Follow best practices for connection management
	Scale up your instance if resources are being throttled
	Check the top hosts and top users
	Query the performance_schema tables
	Check the thread states of your queries
	Audit your requests and queries
	Pool your database connections

	io/table/sql/handler
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Identify the sessions and queries causing the events
	Check for a correlation with Performance Insights counter metrics
	Check for other correlated wait events

	synch/cond/mysys/thread_var::suspend
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Avoid locking tables
	Make sure that backup tools don't lock tables
	Long-running sessions that lock tables
	Non-InnoDB temporary table

	synch/cond/sql/MDL_context::COND_wait_status
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Identify the sessions and queries causing the events
	Check for past events
	Run queries on Aurora MySQL version 1
	Run queries on Aurora MySQL version 2
	Respond to the blocking session

	synch/mutex/innodb/aurora_lock_thread_slot_futex
	Supported engine versions
	Likely causes of increased waits
	Actions
	Find and respond to the SQL statements responsible for this wait event
	Find and respond to the blocking session

	synch/mutex/innodb/buf_pool_mutex
	Relevant engine versions
	Context
	Likely causes of increased waits
	Actions
	Identify the sessions and queries causing the events
	Use Performance Insights
	Create Aurora Replicas
	Examine the buffer pool size
	Monitor the global status history

	synch/mutex/innodb/fil_system_mutex
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Identify the sessions and queries causing the events
	Reorganize large tables during off-peak hours

	synch/mutex/innodb/trx_sys_mutex
	Relevant engine versions
	Context
	Likely causes of increased waits
	Actions
	Identify the sessions and queries causing the events
	Examine other wait events

	synch/rwlock/innodb/hash_table_locks
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Increase the size of the buffer pool
	Improve data access patterns
	Find SQL queries responsible for high load
	Reduce or avoid full-table scans

	synch/sxlock/innodb/hash_table_locks
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Increase the size of the buffer pool
	Improve data access patterns
	Reduce or avoid full-table scans
	Check the error logs for page corruption

	Tuning Aurora MySQL with thread states
	creating sort index
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Turn on the Performance Schema if it isn't turned on
	Identify the problem queries
	Examine the explain plans for filesort usage
	Increase the sort buffer size

	sending data
	Supported engine versions
	Context
	Likely causes of increased waits
	Inefficient query
	Suboptimal server configuration

	Actions
	Turn on the Performance Schema if it isn't turned on
	Examine memory settings
	Examine the explain plans for index usage
	Check the volume of data returned
	Check for concurrency issues
	Check the structure of your queries

	Working with parallel query for Amazon Aurora MySQL
	Overview of parallel query for Aurora MySQL
	Benefits
	Architecture
	Prerequisites
	Limitations

	Planning for a parallel query cluster
	Checking Aurora MySQL version compatibility for parallel query

	Creating a DB cluster that works with parallel query
	Creating a parallel query cluster using the console
	Creating a parallel query cluster using the CLI

	Turning parallel query on and off
	Aurora MySQL 1.23 and 2.09 or higher
	Before Aurora MySQL 1.23
	Turning on hash join for parallel query clusters
	Turning on and turning off parallel query using the console
	Turning on and turning off parallel query using the CLI

	Upgrade considerations for parallel query
	Upgrading parallel query clusters to Aurora MySQL version 3
	Upgrading to Aurora MySQL 1.23 or 2.09 and higher

	Performance tuning for parallel query
	Creating schema objects to take advantage of parallel query
	Verifying which statements use parallel query
	Monitoring parallel query
	How parallel query works with SQL constructs
	EXPLAIN statement
	WHERE clause
	Data definition language (DDL)
	Column data types
	Partitioned tables
	Aggregate functions, GROUP BY clauses, and HAVING clauses
	Function calls in WHERE clause
	LIMIT clause
	Comparison operators
	Joins
	Subqueries
	UNION
	Views
	Data manipulation language (DML) statements
	Transactions and locking
	B-tree indexes
	Full-text search (FTS) indexes
	Virtual columns
	Built-in caching mechanisms
	MyISAM temporary tables

	Using Advanced Auditing with an Amazon Aurora MySQL DB cluster
	Enabling Advanced Auditing
	server_audit_logging
	server_audit_events
	server_audit_incl_users
	server_audit_excl_users

	Viewing audit logs
	Audit log details

	Single-master replication with Amazon Aurora MySQL
	Using Aurora replicas
	Replication options for Amazon Aurora MySQL
	Performance considerations for Amazon Aurora MySQL replication
	Zero-downtime restart (ZDR) for Amazon Aurora MySQL
	Monitoring Amazon Aurora MySQL replication
	Replicating Amazon Aurora MySQL DB clusters across AWS Regions
	Before you begin
	Creating an Amazon Aurora MySQL DB cluster that is a cross-Region read replica
	Console
	AWS CLI
	RDS API

	Viewing Amazon Aurora MySQL cross-Region replicas
	Promoting a read replica to be a DB cluster
	Console
	AWS CLI
	RDS API

	Troubleshooting Amazon Aurora MySQL cross Region replicas
	Source cluster [DB cluster ARN] doesn't have binlogs enabled
	Source cluster [DB cluster ARN] doesn't have cluster parameter group in sync on writer
	Source cluster [DB cluster ARN] already has a read replica in this region
	DB cluster [DB cluster ARN] requires a database engine upgrade for cross-Region replication support

	Replication between Aurora and MySQL or between Aurora and another Aurora DB cluster (binary log replication)
	Setting up replication with MySQL or another Aurora DB cluster
	1. Turn on binary logging on the replication source
	2. Retain binary logs on the replication source until no longer needed
	3. Create a snapshot of your replication source
	4. Load the snapshot into your replica target
	5. Turn on replication on your replica target
	6. Monitor your replica

	Stopping replication between Aurora and MySQL or between Aurora and another Aurora DB cluster
	1. Stop binary log replication on the replica target
	2. Turn off binary logging on the replication source

	Using Amazon Aurora to scale reads for your MySQL database
	Start replication between an external source instance and a MySQL DB instance on Amazon RDS

	Optimizing binary log replication
	Multithreaded binary log replication (Aurora MySQL version 3 and higher)
	Optimizing binlog replication (Aurora MySQL 2.10 and higher)
	Optimizing binlog replication (Aurora MySQL 2.04.5 through 2.09)
	Overview of the large read buffer and max-yield optimizations
	Related parameters
	Enabling the max-yield mechanism for binary log replication
	Turning off the binary log replication max-yield optimization
	Turning off the large read buffer

	Synchronizing passwords between replication source and target

	Using GTID-based replication for Aurora MySQL
	Overview of global transaction identifiers (GTIDs)
	Parameters for GTID-based replication
	Configuring GTID-based replication for an Aurora MySQL cluster
	Disabling GTID-based replication for an Aurora MySQL DB cluster

	Working with Aurora multi-master clusters
	Overview of Aurora multi-master clusters
	Multi-master cluster terminology
	Multi-master cluster architecture
	Recommended workloads for multi-master clusters
	Active-passive workloads
	Active-active workloads

	Advantages of multi-master clusters
	Limitations of multi-master clusters
	AWS and Aurora limitations
	Database engine limitations

	Creating an Aurora multi-master cluster
	Console
	AWS CLI
	RDS API
	Adding a DB instance to a multi-master cluster

	Managing Aurora multi-master clusters
	Monitoring an Aurora multi-master cluster
	Data ingestion performance for multi-master clusters
	Exporting data from a multi-master cluster
	High availability considerations for Aurora multi-master clusters
	Replication between multi-master clusters and other clusters
	Upgrading a multi-master cluster

	Application considerations for Aurora multi-master clusters
	SQL considerations for multi-master clusters
	Connection management for multi-master clusters
	Consistency model for multi-master clusters
	Multi-master clusters and transactions
	Write conflicts and deadlocks in multi-master clusters
	Multi-master clusters and locking reads
	Performing DDL operations on a multi-master cluster
	Using Percona online schema change with multi-master clusters

	Using autoincrement columns
	Multi-master clusters feature reference
	Using read-after-write
	Checking DB instance read-write mode
	Checking the node name and role
	Describing cluster topology
	Using instance read-only mode

	Performance considerations for Aurora multi-master clusters
	Query performance for multi-master clusters
	Conflict resolution for multi-master clusters
	Optimizing buffer pool and dictionary cache usage

	Approaches to Aurora multi-master clusters
	Using a multi-master cluster for a sharded database
	Using a multi-master cluster without sharding
	Using a multi-master cluster as an active standby

	Integrating Amazon Aurora MySQL with other AWS services
	Authorizing Amazon Aurora MySQL to access other AWS services on your behalf
	Setting up IAM roles to access AWS services
	Creating an IAM policy to access Amazon S3 resources
	Creating an IAM policy to access AWS Lambda resources
	Creating an IAM policy to access CloudWatch Logs resources
	Creating an IAM policy to access AWS KMS resources
	Creating an IAM role to allow Amazon Aurora to access AWS services
	Associating an IAM role with an Amazon Aurora MySQL DB cluster

	Enabling network communication from Amazon Aurora MySQL to other AWS services
	Related topics

	Loading data into an Amazon Aurora MySQL DB cluster from text files in an Amazon S3 bucket
	Giving Aurora access to Amazon S3
	Granting privileges to load data in Amazon Aurora MySQL
	Specifying a path to an Amazon S3 bucket
	LOAD DATA FROM S3
	Syntax
	Parameters
	Using a manifest to specify data files to load
	Verifying loaded files using the aurora_s3_load_history table

	Examples

	LOAD XML FROM S3
	Syntax
	Parameters

	Related topics

	Saving data from an Amazon Aurora MySQL DB cluster into text files in an Amazon S3 bucket
	Giving Aurora MySQL access to Amazon S3
	Granting privileges to save data in Aurora MySQL
	Specifying a path to an Amazon S3 bucket
	Creating a manifest to list data files
	SELECT INTO OUTFILE S3
	Syntax
	Parameters
	Considerations
	Examples

	Related topics

	Invoking a Lambda function from an Amazon Aurora MySQL DB cluster
	Giving Aurora access to Lambda
	Invoking a Lambda function with an Aurora MySQL native function
	Working with native functions to invoke a Lambda function
	Syntax for the lambda_sync function
	Parameters for the lambda_sync function
	Example for the lambda_sync function
	Syntax for the lambda_async function
	Parameters for the lambda_async function
	Example for the lambda_async function

	Invoking a Lambda function with an Aurora MySQL stored procedure (deprecated)
	Aurora MySQL version considerations
	Working with the mysql.lambda_async procedure to invoke a Lambda function (deprecated)
	Syntax
	Parameters
	Examples

	Publishing Amazon Aurora MySQL logs to Amazon CloudWatch Logs
	Console
	AWS CLI
	RDS API
	Monitoring log events in Amazon CloudWatch

	Using machine learning (ML) with Aurora MySQL
	Prerequisites for Aurora machine learning
	Enabling Aurora machine learning
	Setting up IAM access to Amazon Comprehend and SageMaker
	Connecting an Aurora DB cluster to Amazon S3, SageMaker, or Amazon Comprehend using the console
	Creating an IAM policy to access SageMaker (AWS CLI only)
	Creating an IAM policy to access Amazon Comprehend (AWS CLI only)
	Creating an IAM role to access SageMaker and Amazon Comprehend
	Associating an IAM role with an Aurora MySQL DB cluster (AWS CLI only)

	Granting SQL privileges for invoking Aurora machine learning services
	Enabling network communication from Aurora MySQL to other AWS services

	Exporting data to Amazon S3 for SageMaker model training
	Using SageMaker to run your own ML models
	Character set requirement for SageMaker functions that return strings

	Using Amazon Comprehend for sentiment detection
	Performance considerations for Aurora machine learning
	Query cache
	Batch optimization for Aurora machine learning function calls

	Monitoring Aurora machine learning
	Limitations of Aurora machine learning

	Amazon Aurora MySQL lab mode
	Aurora lab mode features

	Best practices with Amazon Aurora MySQL
	Determining which DB instance you are connected to
	Best practices for using AWS features with Aurora MySQL
	Using T instance classes for development and testing
	Invoking AWS Lambda functions using native functions

	Best practices for Aurora MySQL performance and scaling
	Optimizing Amazon Aurora indexed join queries with asynchronous key prefetch
	Enabling asynchronous key prefetch
	Optimizing queries for asynchronous key prefetch

	Optimizing large Aurora MySQL join queries with hash joins
	Enabling hash joins
	Optimizing queries for hash joins

	Using Amazon Aurora to scale reads for your MySQL database

	Best practices for Aurora MySQL high availability
	Using Amazon Aurora for Disaster Recovery with your MySQL databases
	Migrating from MySQL to Amazon Aurora MySQL with reduced downtime

	Best practices for limiting certain MySQL features with Aurora MySQL
	Using multithreaded replication in Aurora MySQL version 3
	Avoiding XA transactions with Amazon Aurora MySQL
	Keeping foreign keys turned on during DML statements

	Amazon Aurora MySQL reference
	Aurora MySQL configuration parameters
	Cluster-level parameters
	Instance-level parameters

	MySQL parameters that don't apply to Aurora MySQL
	MySQL status variables that don't apply to Aurora MySQL
	Aurora MySQL wait events
	Aurora MySQL thread states
	Aurora MySQL isolation levels
	Available isolation levels for writer instances
	REPEATABLE READ isolation level for reader instances
	READ COMMITTED isolation level for reader instances
	Enabling READ COMMITTED for readers
	Differences in READ COMMITTED behavior on Aurora replicas

	Aurora MySQL hints
	Aurora MySQL stored procedures
	mysql.rds_assign_gtids_to_anonymous_transactions (Aurora MySQL version 3 and higher)
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_set_master_auto_position (Aurora MySQL version 1 and 2)
	Syntax

	mysql.rds_set_source_auto_position (Aurora MySQL version 3 and higher)
	Syntax
	Parameters
	Usage notes

	mysql.rds_set_source_auto_position (Aurora MySQL version 3 and higher)
	Syntax
	Parameters
	Usage notes

	mysql.rds_set_external_master_with_auto_position (Aurora MySQL version 1 and 2)
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_set_external_source_with_auto_position (Aurora MySQL version 3 and higher)
	Syntax
	Parameters
	Usage notes
	Examples

	mysql.rds_skip_transaction_with_gtid
	Syntax
	Parameters
	Usage notes

	Database engine updates for Amazon Aurora MySQL
	Aurora MySQL version numbers and special versions
	Checking or specifying Aurora MySQL engine versions through AWS
	Checking Aurora MySQL versions using SQL
	Aurora MySQL long-term support (LTS) releases
	Upgrade paths between 5.6-compatible and 5.7-compatible clusters

	Preparing for Amazon Aurora MySQL-Compatible Edition version 1 end of life
	Finding clusters affected by this end-of-life process
	Console
	AWS CLI
	RDS API

	Upgrading Amazon Aurora MySQL DB clusters
	Upgrading the minor version or patch level of an Aurora MySQL DB cluster
	Upgrading Aurora MySQL by modifying the engine version
	Enabling automatic upgrades between minor Aurora MySQL versions
	Upgrading Aurora MySQL by applying pending maintenance to an Aurora MySQL DB cluster
	Using zero-downtime patching
	Alternative blue-green upgrade technique

	Upgrading the major version of an Aurora MySQL DB cluster
	Upgrading from Aurora MySQL 2.x to 3.x
	Upgrading from Aurora MySQL 1.x to 2.x
	Planning a major version upgrade for an Aurora MySQL cluster
	Aurora MySQL major version upgrade paths
	How the Aurora MySQL in-place major version upgrade works
	How to perform an in-place upgrade
	Console
	AWS CLI
	RDS API

	How in-place upgrades affect the parameter groups for a cluster
	Changes to cluster properties between Aurora MySQL version 1 and 2
	In-place major upgrades for global databases
	After the upgrade
	Troubleshooting for Aurora MySQL in-place upgrade
	Aurora MySQL in-place upgrade tutorial
	Alternative blue-green upgrade technique

	Database engine updates for Amazon Aurora MySQL version 3
	Aurora MySQL database engine updates 2021-11-18 (version 3.01.0, compatible with MySQL 8.0.23)
	Improvements

	Database engine updates for Amazon Aurora MySQL version 2
	Aurora MySQL database engine updates 2022-01-26 (version 2.10.2)
	Improvements
	Integration of MySQL Community Edition bug fixes
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2021-10-21 (version 2.10.1)
	Improvements
	Integration of MySQL community edition bug fixes
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2021-05-25 (version 2.10.0)
	Improvements
	Integration of MySQL community edition bug fixes
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2021-11-12 (version 2.09.3)
	Improvements
	Integration of MySQL community edition bug fixes
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2021-02-26 (version 2.09.2)
	Improvements
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2020-12-11 (version 2.09.1)
	Improvements
	Integration of MySQL community edition bug fixes
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2020-09-17 (version 2.09.0)
	Improvements
	Integration of MySQL community edition bug fixes
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2022-01-06 (version 2.08.4)
	Improvements
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2020-11-12 (version 2.08.3)
	Improvements
	Integration of MySQL community edition bug fixes
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2020-08-28 (version 2.08.2)
	Improvements
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2020-06-18 (version 2.08.1)
	Improvements
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2020-06-02 (version 2.08.0)
	Improvements
	Integration of MySQL community edition bug fixes
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2021-11-24 (version 2.07.7)
	Improvements
	Integration of MySQL community edition bug fixes
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2021-09-02 (version 2.07.6)
	Integration of MySQL community edition bug fixes
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2021-07-06 (version 2.07.5)
	Improvements
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2021-03-04 (version 2.07.4)
	Improvements
	Integration of MySQL community edition bug fixes
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2020-11-10 (version 2.07.3)
	Improvements
	Integration of MySQL community edition bug fixes
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2020-04-17 (version 2.07.2)
	Improvements
	Integration of MySQL community edition bug fixes
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2019-12-23 (version 2.07.1)
	Improvements
	Comparison with Aurora MySQL Version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2019-11-25 (version 2.07.0)
	Improvements
	Integration of MySQL community edition bug fixes
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2019-11-22 (version 2.06.0) (deprecated)
	Improvements
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2019-11-11 (version 2.05.0) (deprecated)
	Improvements
	Integration of MySQL bug fixes
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2020-08-14 (version 2.04.9)
	Improvements
	Integration of MySQL bug fixes
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2019-11-20 (version 2.04.8)
	Improvements
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2019-11-14 (version 2.04.7)
	Improvements
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2019-09-19 (version 2.04.6)
	Improvements
	Integration of MySQL bug fixes
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2019-07-08 (version 2.04.5)
	Improvements
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2019-05-29 (version 2.04.4)
	Improvements
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2019-05-09 (version 2.04.3)
	Improvements
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2019-05-02 (version 2.04.2)
	Improvements
	Integration of MySQL bug fixes
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2019-03-25 (version 2.04.1)
	Improvements
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2019-03-25 (version 2.04.0)
	Improvements
	Integration of MySQL bug fixes
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2019-02-07 (version 2.03.4) (deprecated)
	Improvements
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2019-01-18 (version 2.03.3) (deprecated)
	Improvements
	Integration of MySQL bug fixes
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2019-01-09 (version 2.03.2) (deprecated)
	Improvements
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2018-10-24 (version 2.03.1) (deprecated)
	Improvements
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2018-10-11 (version 2.03) (deprecated)
	Improvements
	Integration of MySQL community edition bug fixes
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2018-10-08 (version 2.02.5) (deprecated)
	Improvements
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2018-09-21 (version 2.02.4) (deprecated)
	Improvements
	Integration of MySQL community edition bug fixes
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility

	Aurora MySQL database engine updates 2018-08-23 (version 2.02.3) (deprecated)
	Comparison with Aurora MySQL version 1
	MySQL 5.7 compatibility
	CLI differences between Aurora MySQL 2.x and Aurora MySQL 1.x
	Improvements

	Aurora MySQL database engine updates 2018-06-04 (version 2.02.2) (deprecated)
	Comparison with Aurora MySQL 5.6
	MySQL 5.7 compatibility
	CLI differences between Aurora MySQL 2.x and Aurora MySQL 1.x
	Improvements

	Aurora MySQL database engine updates 2018-05-03 (version 2.02) (deprecated)
	Comparison with Aurora MySQL 5.6
	MySQL 5.7 compatibility
	CLI differences between Aurora MySQL 2.x and Aurora MySQL 1.x
	Improvements
	Integration of MySQL bug fixes

	Aurora MySQL database engine updates 2018-03-13 (version 2.01.1) (deprecated)
	Comparison with Aurora MySQL 5.6
	MySQL 5.7 compatibility
	CLI differences between Aurora MySQL 2.x and Aurora MySQL 1.x
	Improvements

	Aurora MySQL database engine updates 2018-02-06 (version 2.01) (deprecated)
	Comparison with Aurora MySQL 5.6
	MySQL 5.7 compatibility
	CLI differences between Aurora MySQL 2.x and Aurora MySQL 1.x

	Database engine updates for Amazon Aurora MySQL version 1
	Aurora MySQL database engine updates 2021-09-30 (version 1.23.4)
	Improvements

	Aurora MySQL database engine updates 2021-06-28 (version 1.23.3)
	Improvements

	Aurora MySQL database engine updates 2021-03-18 (version 1.23.2)
	Improvements
	Integration of MySQL community edition bug fixes

	Aurora MySQL database engine updates 2020-11-24 (version 1.23.1)
	Improvements

	Aurora MySQL database engine updates 2020-09-02 (version 1.23.0)
	Improvements
	Integration of MySQL community edition bug fixes

	Aurora MySQL database engine updates 2021-06-03 (version 1.22.5)
	Improvements

	Aurora MySQL database engine updates 2021-03-04 (version 1.22.4)
	Improvements

	Aurora MySQL database engine updates 2020-11-09 (version 1.22.3)
	Improvements
	Integration of MySQL community edition bug fixes

	Aurora MySQL database engine updates 2020-03-05 (version 1.22.2)
	Improvements

	Aurora MySQL database engine updates 2019-12-23 (version 1.22.1)
	Improvements

	Aurora MySQL database engine updates 2019-11-25 (version 1.22.0)
	Improvements
	Integration of MySQL community edition bug fixes

	Aurora MySQL database engine updates 2019-11-25 (version 1.21.0)
	Improvements
	Integration of MySQL community edition bug fixes

	Aurora MySQL database engine updates 2020-03-05 (version 1.20.1)
	Improvements

	Aurora MySQL database engine updates 2019-11-11 (version 1.20.0)
	Improvements
	Integration of MySQL community edition bug fixes

	Aurora MySQL database engine updates 2020-03-05 (version 1.19.6)
	Improvements

	Aurora MySQL database engine updates 2019-09-19 (version 1.19.5)
	Improvements
	Integration of MySQL community edition bug fixes

	Aurora MySQL database engine updates 2019-06-05 (version 1.19.2)
	Improvements

	Aurora MySQL database engine updates 2019-05-09 (version 1.19.1)
	Improvements

	Aurora MySQL database engine updates 2019-02-07 (version 1.19.0)
	Features
	Improvements
	Integration of MySQL community edition bug fixes

	Aurora MySQL database engine updates 2018-09-20
	Features

	Aurora MySQL database engine updates 2020-03-05
	Improvements

	Aurora MySQL database engine updates 2019-01-17
	Improvements
	Integration of MySQL community edition bug fixes

	Aurora MySQL database engine updates 2018-10-08
	Improvements
	Integration of MySQL community edition bug fixes

	Aurora MySQL database engine updates 2018-09-06
	Improvements
	Integration of MySQL community edition bug fixes

	Aurora MySQL database engine updates 2018-08-14
	Improvements

	Aurora MySQL database engine updates 2018-08-07
	Improvements

	Aurora MySQL database engine updates 2018-06-05
	Improvements

	Aurora MySQL database engine updates 2018-04-27
	Improvements

	Aurora MySQL database engine updates 2018-03-23
	Improvements

	Aurora MySQL database engine updates 2018-03-13
	Zero-downtime patching
	New features
	Improvements
	Integration of MySQL bug fixes

	Aurora MySQL database engine updates 2017-12-11
	Zero-downtime patching
	New features
	Improvements
	Integration of MySQL bug fixes

	Aurora MySQL database engine updates 2017-11-20
	Zero-downtime patching
	Improvements
	Integration of MySQL bug fixes

	Aurora MySQL database engine updates 2017-10-24
	Zero-downtime patching
	New features
	Improvements
	Integration of MySQL bug fixes

	Aurora MySQL database engine updates: 2018-03-13
	Zero-downtime patching
	New features
	Improvements
	Integration of MySQL bug fixes

	Aurora MySQL database engine updates: 2017-09-22
	Improvements

	Aurora MySQL database engine updates: 2017-08-07
	Zero-downtime patching
	Improvements
	Integration of MySQL bug fixes

	Aurora MySQL database engine updates: 2017-05-15
	Zero-downtime patching
	New features:
	Improvements:
	Integration of MySQL bug fixes

	Aurora MySQL database engine updates: 2017-04-05
	New features
	Improvements
	Integration of MySQL bug fixes

	Aurora MySQL database engine updates: 2017-02-23
	New features
	Improvements
	Integration of MySQL bug fixes

	Aurora MySQL database engine updates: 2017-01-12
	New features
	Improvements

	Aurora MySQL database engine updates: 2016-12-14
	New features
	Improvements
	Integration of MySQL bug fixes

	Aurora MySQL database engine updates: 2016-11-10
	New features
	Improvements

	Aurora MySQL database engine updates: 2016-10-26
	Improvements
	Integration of MySQL bug fixes

	Aurora MySQL database engine updates: 2016-10-18
	New features
	Improvements
	Integration of MySQL bug fixes:

	Aurora MySQL database engine updates: 2016-09-20
	Improvements

	Aurora MySQL database engine updates: 2016-08-30
	New features
	Improvements
	Integration of MySQL bug fixes

	Aurora MySQL database engine updates: 2016-06-01
	New features
	Improvements
	Integration of MySQL bug fixes

	Aurora MySQL database engine updates: 2016-04-06
	New features
	Improvements
	Integration of MySQL bug fixes

	Aurora MySQL database engine updates: 2016-01-11
	Improvements
	Integration of MySQL bug fixes

	Aurora MySQL database engine updates: 2015-12-03
	New features
	Improvements:
	Integration of MySQL bug fixes

	Aurora MySQL database engine updates: 2015-10-16
	Fixes
	Improvements
	Integration of MySQL bug fixes

	Aurora MySQL database engine updates: 2015-08-24

	Database engine updates for Aurora MySQL Serverless clusters
	Aurora MySQL Serverless 5.7 engine updates 2021-07-16 (version 2.08.3)
	Aurora MySQL Serverless 5.7 engine updates 2020-06-18 (version 2.07.1)
	Aurora MySQL Serverless 5.6 engine updates 2021-07-16 (version 1.22.3)
	Aurora MySQL Serverless 5.6 engine updates 2020-08-14 (version 1.21.0)

	MySQL bugs fixed by Aurora MySQL database engine updates
	MySQL bugs fixed by Aurora MySQL 2.x database engine updates
	MySQL bugs fixed by Aurora MySQL 1.x database engine updates

	Security vulnerabilities fixed in Amazon Aurora MySQL

	Working with Amazon Aurora PostgreSQL
	Security with Amazon Aurora PostgreSQL
	Restricting password management
	Securing Aurora PostgreSQL data with SSL/TLS
	Requiring an SSL/TLS connection to an Aurora PostgreSQL DB cluster
	Determining the SSL/TLS connection status

	Updating applications to connect to Aurora PostgreSQL DB clusters using new SSL/TLS certificates
	Determining whether applications are connecting to Aurora PostgreSQL DB clusters using SSL
	Determining whether a client requires certificate verification in order to connect
	Updating your application trust store
	Updating your application trust store for JDBC

	Using SSL/TLS connections for different types of applications

	Migrating data to Amazon Aurora with PostgreSQL compatibility
	Migrating a snapshot of an RDS for PostgreSQL DB instance to an Aurora PostgreSQL DB cluster
	Console
	AWS CLI

	Migrating data from an RDS for PostgreSQL DB instance to an Aurora PostgreSQL DB cluster using an Aurora read replica
	Overview of migrating data by using an Aurora read replica
	Preparing to migrate data by using an Aurora read replica
	Creating an Aurora read replica
	Console
	AWS CLI
	RDS API

	Promoting an Aurora read replica
	Console
	AWS CLI
	RDS API

	Working with Babelfish for Aurora PostgreSQL
	Babelfish architecture
	Using Babelfish with a single database or multiple databases
	Choosing a migration mode

	Using Babelfish to migrate to PostgreSQL
	Creating an Aurora PostgreSQL cluster with Babelfish
	Console
	AWS CLI

	Connecting to a DB cluster with Babelfish turned on
	Finding the DNS writer endpoint and port number
	Performing client authentication
	Configuring a client to connect to the DB cluster
	Using a SQL Server client to connect to your DB cluster
	Using sqlcmd to connect to the DB cluster
	Using SSMS to connect to the DB cluster

	Using a PostgreSQL client to connect to your DB cluster
	Using psql to connect to the DB cluster
	Using pgAdmin to connect to the DB cluster

	Querying a database for object information
	Querying Babelfish to find Babelfish details
	Differences between Aurora PostgreSQL with Babelfish and SQL Server
	T-SQL limitations and unsupported functionality
	Unsupported functionality in Babelfish
	Commands for which certain functionality isn't supported
	Syntax for which certain functionality isn't supported
	Object types that aren't supported
	Functions that aren't supported
	Syntax that isn't supported
	Data types that aren't supported
	Column names that aren't supported
	Settings that aren't supported

	Using Aurora PostgreSQL extensions with Babelfish
	Enabling Aurora PostgreSQL extensions in your Babelfish DB cluster
	Using Babelfish with Amazon S3
	Using Babelfish with AWS Lambda

	Managing Babelfish error handling
	Babelfish escape hatches

	Configuring a database for Babelfish
	How Babelfish interprets SSL settings

	Babelfish collation support
	Managing collations
	Collation limitations and behaviors

	Troubleshooting for Babelfish
	Connection failure
	Using pg_dump and pg_restore requires extra setup

	Turning off Babelfish

	Managing Amazon Aurora PostgreSQL
	Scaling Aurora PostgreSQL DB instances
	Maximum connections to an Aurora PostgreSQL DB instance
	Temporary storage limits for Aurora PostgreSQL
	Testing Amazon Aurora PostgreSQL by using fault injection queries
	Testing an instance crash
	Testing an Aurora Replica failure
	Testing a disk failure
	Testing disk congestion

	Displaying volume status for an Aurora PostgreSQL DB cluster
	Specifying the RAM disk for the stats_temp_directory
	Scheduling maintenance with the PostgreSQL pg_cron extension
	Enabling the pg_cron extension
	Granting permissions to pg_cron
	Scheduling pg_cron jobs
	Vacuuming a table
	Purging the pg_cron history table
	Disabling logging of pg_cron history
	Scheduling a cron job for a database other than postgres

	pg_cron reference
	The pg_cron parameters
	The cron.schedule() function
	The cron.unschedule() function
	The pg_cron tables

	Tuning with wait events for Aurora PostgreSQL
	Essential concepts for Aurora PostgreSQL tuning
	Aurora PostgreSQL wait events
	Aurora PostgreSQL memory
	Shared memory in Aurora PostgreSQL
	Shared buffers
	Write ahead log (WAL) buffers

	Local memory in Aurora PostgreSQL
	Work memory area
	Maintenance work memory area
	Temporary buffer area

	Aurora PostgreSQL processes
	Postmaster process
	Backend processes
	Background processes

	Aurora PostgreSQL wait events
	Client:ClientRead
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Place the clients in the same Availability Zone and VPC subnet as the cluster
	Scale your client
	Use current generation instances
	Increase network bandwidth
	Monitor maximums for network performance
	Monitor for transactions in the "idle in transaction" state

	Client:ClientWrite
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Place the clients in the same Availability Zone and VPC subnet as the cluster
	Use current generation instances
	Reduce the amount of data sent to the client
	Scale your client

	CPU
	Supported engine versions
	Context
	How to tell when this wait occurs
	DBLoadCPU metric
	os.cpuUtilization metrics
	Likely cause of CPU scheduling

	Likely causes of increased waits
	Likely causes of sudden spikes
	Likely causes of long-term high frequency
	Corner cases

	Actions
	Investigate whether the database is causing the CPU increase
	Determine whether the number of connections increased
	The connections increased
	The connections didn't increase

	Respond to workload changes

	IO:BufFileRead and IO:BufFileWrite
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Identify the problem
	Examine your join queries
	Examine your ORDER BY and GROUP BY queries
	Avoid using the DISTINCT operation
	Consider using window functions instead of GROUP BY functions
	Investigate materialized views and CTAS statements
	Use pg_repack when you create indexes
	Increase maintenance_work_mem when you cluster tables
	Tune memory to prevent IO:BufFileRead and IO:BufFileWrite
	Increase the size of the work memory area
	Reserve sufficient memory for the shared buffer pool
	Manage the number of connections

	IO:DataFileRead
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Check predicate filters for queries that generate waits
	Minimize the effect of maintenance operations
	Find tables consuming unnecessary space
	Find indexes consuming unnecessary space
	Find tables that are eligible to be autovacuumed

	Respond to high numbers of connections

	IO:XactSync
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Monitor your resources
	Scale up the CPU
	Increase network bandwidth
	Reduce the number of commits

	ipc:damrecordtxack
	Relevant engine versions
	Context
	Causes
	Actions

	Lock:advisory
	Relevant engine versions
	Context
	Causes
	Actions

	Lock:extend
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Reduce concurrent inserts and updates to the same relation
	Increase network bandwidth

	Lock:Relation
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Reduce the impact of blocking SQL statements
	Minimize the effect of maintenance operations
	Check for reader locks

	Lock:transactionid
	Supported engine versions
	Context
	Likely causes of increased waits
	High concurrency
	Idle in transaction
	Long-running transactions

	Actions
	Respond to high concurrency
	Respond to idle transactions
	Respond to long-running transactions

	Lock:tuple
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Investigate your application logic
	Find the blocker session
	Reduce concurrency when it is high
	Troubleshoot bottlenecks

	lwlock:buffer_content (BufferContent)
	Supported engine versions
	Context
	Likely causes of increased waits
	Actions
	Improve in-memory efficiency
	Reduce usage of foreign key constraints
	Remove unused indexes

	LWLock:buffer_mapping
	Supported engine versions
	Context
	Causes
	Actions
	Monitor buffer-related metrics
	Assess your indexing strategy
	Reduce the number of buffers that must be allocated quickly

	LWLock:BufferIO
	Relevant engine versions
	Context
	Causes
	Actions

	LWLock:lock_manager
	Supported engine versions
	Context
	Fast path locking
	Example of a scaling problem for the lock manager

	Likely causes of increased waits
	Actions
	Use partition pruning
	Remove unnecessary indexes
	Tune your queries for fast path locking
	Tune for other wait events
	Reduce hardware bottlenecks
	Use a connection pooler
	Upgrade your Aurora PostgreSQL version

	Timeout:PgSleep
	Supported engine versions
	Likely causes of increased waits
	Actions

	Best practices with Amazon Aurora PostgreSQL
	Fast failover with Amazon Aurora PostgreSQL
	Setting TCP keepalives parameters
	Configuring your application for fast failover
	Reducing DNS cache timeouts
	Setting an Aurora PostgreSQL connection string for fast failover
	Other options for obtaining the host string
	Java example to list instances using the DescribeDBClusters API

	Testing failover
	Fast failover Java example

	Troubleshooting storage issues

	Replication with Amazon Aurora PostgreSQL
	Using Aurora Replicas
	Monitoring Aurora PostgreSQL replication
	Using PostgreSQL logical replication with Aurora
	Configuring logical replication
	Example of logical replication of a database table
	Logical replication using the AWS Database Migration Service
	Stopping logical replication

	Integrating Amazon Aurora PostgreSQL with other AWS services
	Importing Amazon S3 data into an Aurora PostgreSQL DB cluster
	Overview of importing Amazon S3 data
	Setting up access to an Amazon S3 bucket
	Using an IAM role to access an Amazon S3 bucket
	Console
	AWS CLI
	RDS API

	Using security credentials to access an Amazon S3 bucket
	Troubleshooting access to Amazon S3

	Using the aws_s3.table_import_from_s3 function to import Amazon S3 data
	Importing an Amazon S3 file that uses a custom delimiter
	Importing an Amazon S3 compressed (gzip) file
	Importing an encoded Amazon S3 file

	Function reference
	aws_s3.table_import_from_s3
	Syntax
	Parameters
	Alternate syntax
	Alternate parameters

	aws_commons.create_s3_uri
	Syntax
	Parameters

	aws_commons.create_aws_credentials
	Syntax
	Parameters

	Exporting data from an Aurora PostgreSQL DB cluster to Amazon S3
	Overview of exporting data to Amazon S3
	Verify that your Aurora PostgreSQL version supports exports
	Specifying the Amazon S3 file path to export to
	Setting up access to an Amazon S3 bucket
	Console
	AWS CLI

	Exporting query data using the aws_s3.query_export_to_s3 function
	Prerequisites
	Calling aws_s3.query_export_to_s3
	Exporting to a CSV file that uses a custom delimiter
	Exporting to a binary file with encoding

	Troubleshooting access to Amazon S3
	Function reference
	aws_s3.query_export_to_s3
	Alternate input parameters
	Output parameters
	Examples

	aws_commons.create_s3_uri

	Managing query execution plans for Aurora PostgreSQL
	Enabling query plan management for Aurora PostgreSQL
	Upgrading query plan management
	Basics of query plan management
	Performing a manual plan capture
	Viewing captured plans
	Working with managed statements and the SQL hash
	Working with automatic plan capture
	Validating plans
	Approving new plans that improve performance
	Deleting plans

	Best practices for query plan management
	Proactive plan management to help prevent performance regression
	Reactive plan management to detect and repair performance regression

	Examining plans in the apg_plan_mgmt.dba_plans view
	Listing managed plans
	Reference for the apg_plan_mgmt.dba_plans view

	Capturing execution plans
	Manually capturing plans for specific SQL statements
	Automatically capturing plans

	Using managed plans
	How the optimizer chooses which plan to run
	Analyzing which plan the optimizer will use

	Maintaining execution plans
	Evaluating plan performance
	Approving better plans
	Rejecting or disabling slower plans

	Validating plans
	Fixing plans using pg_hint_plan
	Deleting plans
	Exporting and importing plans

	Parameter reference for query plan management
	apg_plan_mgmt.capture_plan_baselines
	apg_plan_mgmt.max_databases
	apg_plan_mgmt.max_plans
	apg_plan_mgmt.plan_retention_period
	apg_plan_mgmt.unapproved_plan_execution_threshold
	apg_plan_mgmt.use_plan_baselines

	Function reference for query plan management
	apg_plan_mgmt.delete_plan
	apg_plan_mgmt.evolve_plan_baselines
	apg_plan_mgmt.get_explain_plan
	apg_plan_mgmt.plan_last_used
	apg_plan_mgmt.reload
	apg_plan_mgmt.set_plan_enabled
	apg_plan_mgmt.set_plan_status
	apg_plan_mgmt.update_plans_last_used
	apg_plan_mgmt.validate_plans

	Publishing Aurora PostgreSQL logs to Amazon CloudWatch Logs
	Publishing logs to Amazon CloudWatch
	Console
	AWS CLI
	RDS API

	Monitoring log events in Amazon CloudWatch
	Analyze Aurora PostgreSQL logs using CloudWatch Logs Insights

	Using machine learning (ML) with Aurora PostgreSQL
	Prerequisites for Aurora machine learning
	Enabling Aurora machine learning
	Setting up IAM access to AWS machine learning services
	Automatically connecting an Aurora DB cluster to AWS services using the console

	Installing the aws_ml extension for model inference

	Using Amazon Comprehend for natural language processing
	Exporting data to Amazon S3 for SageMaker model training
	Using SageMaker to run your own ML models
	Creating a user-defined function to invoke a SageMaker model
	Passing an array as input to a SageMaker model
	Specifying batch size when invoking a SageMaker model
	Invoking a SageMaker model that has multiple outputs

	Best practices with Aurora machine learning
	Optimizing batch-mode execution for Aurora machine learning function calls
	Function migration from the SELECT statement to the FROM clause
	Using the max_rows_per_batch parameter
	Verifying batch-mode execution

	Exploiting parallel query processing
	Using materialized views and materialized columns

	Monitoring Aurora machine learning
	Using query plan management to monitor ML functions

	PostgreSQL function reference for Aurora machine learning
	aws_comprehend.detect_sentiment
	aws_sagemaker.invoke_endpoint

	Manually setting up IAM roles for SageMaker and Amazon Comprehend using the AWS CLI
	Creating an IAM policy to access SageMaker using the AWS CLI
	Creating an IAM policy to access Amazon Comprehend using the AWS CLI
	Creating an IAM role to access SageMaker and Amazon Comprehend
	Associating an IAM role with an Aurora PostgreSQL DB cluster using the AWS CLI

	Fast recovery after failover with cluster cache management for Aurora PostgreSQL
	Configuring cluster cache management
	Enabling cluster cache management
	Console
	AWS CLI

	Setting the promotion tier priority for the writer DB instance
	Console
	AWS CLI

	Setting the promotion tier priority for a reader DB instance
	Console
	AWS CLI

	Monitoring the buffer cache

	Invoking an AWS Lambda function from an Aurora PostgreSQL DB cluster
	Step 1: Configure your Aurora PostgreSQL DB cluster for outbound connections to AWS Lambda
	Step 2: Configure IAM for your Aurora PostgreSQL DB cluster and AWS Lambda
	Step 3: Install the aws_lambda extension for an Aurora PostgreSQL DB cluster
	Step 4: Use Lambda helper functions with your Aurora PostgreSQL DB cluster (Optional)
	Step 5: Invoke a Lambda function from your Aurora PostgreSQL DB cluster
	Example: Synchronous (RequestResponse) invocation of Lambda functions
	Example: Asynchronous (Event) invocation of Lambda functions
	Example: Capturing the Lambda execution log in a function response
	Example: Including client context in a Lambda function
	Example: Invoking a specific version of a Lambda function

	Lambda function error messages
	Function reference
	aws_lambda.invoke
	aws_commons.create_lambda_function_arn

	Using the oracle_fdw extension to access foreign data in Aurora PostgreSQL
	Turning on the oracle_fdw extension
	Example using a foreign server linked to an RDS for Oracle database
	Working with encryption in transit
	pg_user_mapping and pg_user_mappings permissions

	Managing PostgreSQL partitions with the pg_partman extension
	Overview of the PostgreSQL pg_partman extension
	Enabling the pg_partman extension
	Configuring partitions using the create_parent function
	Configuring partition maintenance using the run_maintenance_proc function

	Using Kerberos authentication with Aurora PostgreSQL
	Availability of Kerberos authentication
	Overview of Kerberos authentication for PostgreSQL DB clusters
	Setting up Kerberos authentication for PostgreSQL DB clusters
	Step 1: Create a directory using AWS Managed Microsoft AD
	Step 2: (Optional) create a trust for an on-premises Active Directory
	Step 3: Create an IAM role for Amazon Aurora to access the AWS Directory Service
	Step 4: Create and configure users
	Step 5: Enable cross-VPC traffic between the directory and the DB instance
	Step 6: Create or modify a PostgreSQL DB cluster
	Console
	AWS CLI

	Step 7: Create Kerberos authentication PostgreSQL logins
	Step 8: Configure a PostgreSQL client

	Managing a DB cluster in a Domain
	Understanding Domain membership

	Connecting to PostgreSQL with Kerberos authentication
	pgAdmin
	Psql

	Amazon Aurora PostgreSQL reference
	Amazon Aurora PostgreSQL parameters
	Viewing Aurora PostgreSQL DB cluster and DB parameters
	Aurora PostgreSQL cluster-level parameters
	Aurora PostgreSQL instance-level parameters

	Amazon Aurora PostgreSQL wait events
	Aurora PostgreSQL functions reference
	Overview
	aurora_list_builtins
	Syntax
	Return type
	Arguments
	Examples

	aurora_stat_dml_activity
	Syntax
	Return type
	Arguments
	Usage notes
	Examples

	aurora_stat_get_db_commit_latency
	Syntax
	Return type
	Arguments
	Usage notes
	Examples

	aurora_stat_system_waits
	Syntax
	Return type
	Arguments
	Usage notes
	Examples

	aurora_stat_wait_event
	Syntax
	Return type
	Arguments
	Usage notes
	Examples

	aurora_stat_wait_type
	Syntax
	Return type
	Arguments
	Usage notes
	Examples

	Amazon Aurora PostgreSQL updates
	Identifying versions of Amazon Aurora PostgreSQL
	Aurora version number
	PostgreSQL engine version numbers

	Amazon Aurora PostgreSQL releases and engine versions
	PostgreSQL 13.4
	Aurora PostgreSQL release 13.4

	PostgreSQL 13.3
	Aurora PostgreSQL 13.3.1
	Aurora PostgreSQL release 13.3.0

	PostgreSQL 12.8
	

	PostgreSQL 12.7, Aurora PostgreSQL release 4.2
	Aurora PostgreSQL 4.2.1
	Aurora PostgreSQL release 4.2.0

	PostgreSQL 12.6, Aurora PostgreSQL release 4.1
	Aurora PostgreSQL release 4.1.0

	PostgreSQL 12.4, Aurora PostgreSQL release 4.0
	Aurora PostgreSQL release 4.0.2
	Aurora PostgreSQL release 4.0.1
	Aurora PostgreSQL release 4.0.0

	PostgreSQL 11.13
	

	PostgreSQL 11.12, Aurora PostgreSQL release 3.6
	Aurora PostgreSQL 3.6.1
	Aurora PostgreSQL release 3.6.0

	PostgreSQL 11.11, Aurora PostgreSQL release 3.5
	Aurora PostgreSQL release 3.5.0

	PostgreSQL 11.9, Aurora PostgreSQL release 3.4
	Aurora PostgreSQL release 3.4.3
	Aurora PostgreSQL release 3.4.2
	Aurora PostgreSQL release 3.4.1
	Aurora PostgreSQL release 3.4.0

	PostgreSQL 11.8, Aurora PostgreSQL release 3.3
	Aurora PostgreSQL release 3.3.2
	Aurora PostgreSQL release 3.3.1
	Aurora PostgreSQL release 3.3.0

	PostgreSQL 11.7, Aurora PostgreSQL release 3.2
	Aurora PostgreSQL release 3.2.7
	Aurora PostgreSQL release 3.2.6
	Aurora PostgreSQL release 3.2.4
	Aurora PostgreSQL release 3.2.3
	Aurora PostgreSQL release 3.2.2
	Aurora PostgreSQL release 3.2.1

	PostgreSQL 11.6, Aurora PostgreSQL release 3.1
	Aurora PostgreSQL release 3.1.4
	Aurora PostgreSQL release 3.1.3
	Aurora PostgreSQL release 3.1.2
	Aurora PostgreSQL release 3.1.1
	Aurora PostgreSQL release 3.1.0

	PostgreSQL 11.4, Aurora PostgreSQL release 3.0 (unsupported)
	PostgreSQL 10.18
	

	PostgreSQL 10.17, Aurora PostgreSQL release 2.9
	Aurora PostgreSQL 2.9.1
	Aurora PostgreSQL release 2.9

	PostgreSQL 10.16, Aurora PostgreSQL release 2.8
	Aurora PostgreSQL release 2.8.0

	PostgreSQL 10.14, Aurora PostgreSQL release 2.7
	Aurora PostgreSQL release 2.7.3
	Aurora PostgreSQL release 2.7.2
	Aurora PostgreSQL release 2.7.1
	Aurora PostgreSQL release 2.7.0

	PostgreSQL 10.13, Aurora PostgreSQL release 2.6
	Aurora PostgreSQL release 2.6.2
	Aurora PostgreSQL release 2.6.1
	Aurora PostgreSQL release 2.6.0

	PostgreSQL 10.12, Aurora PostgreSQL release 2.5
	Aurora PostgreSQL release 2.5.7
	Aurora PostgreSQL release 2.5.6
	Aurora PostgreSQL release 2.5.4
	Aurora PostgreSQL release 2.5.3
	Aurora PostgreSQL release 2.5.2
	Aurora PostgreSQL release 2.5.1

	PostgreSQL 10.11, Aurora PostgreSQL release 2.4
	Aurora PostgreSQL release 2.4.4
	Aurora PostgreSQL release 2.4.3
	Aurora PostgreSQL release 2.4.2
	Aurora PostgreSQL release 2.4.1
	Aurora PostgreSQL release 2.4.0

	PostgreSQL 10.7, Aurora PostgreSQL release 2.3 (unsupported)
	Aurora PostgreSQL release 2.3.5
	Aurora PostgreSQL release 2.3.3
	Aurora PostgreSQL release 2.3.1
	Aurora PostgreSQL release 2.3.0

	PostgreSQL 10.6, Aurora PostgreSQL release 2.2 (unsupported)
	Aurora PostgreSQL release 2.2.1
	Aurora PostgreSQL release 2.2.0

	PostgreSQL 10.5, Aurora PostgreSQL release 2.1 (unsupported)
	Aurora PostgreSQL release 2.1.1
	Aurora PostgreSQL release 2.1.0

	PostgreSQL 10.4, Aurora PostgreSQL release 2.0 (unsupported)
	Aurora PostgreSQL release 2.0.1
	Aurora PostgreSQL release 2.0.0

	PostgreSQL 9.6.22, Aurora PostgreSQL release 1.11 (unsupported)
	Aurora PostgreSQL 1.11.1
	Aurora PostgreSQL release 1.11

	PostgreSQL 9.6.21, Aurora PostgreSQL release 1.10 (unsupported)
	Aurora PostgreSQL release 1.10.0

	PostgreSQL 9.6.19, Aurora PostgreSQL release 1.9 (unsupported)
	Aurora PostgreSQL release 1.9.2
	Aurora PostgreSQL release 1.9.1
	Aurora PostgreSQL release 1.9.0

	PostgreSQL 9.6.18, Aurora PostgreSQL release 1.8 (unsupported)
	Aurora PostgreSQL release 1.8.2
	Aurora PostgreSQL release 1.8.0

	PostgreSQL 9.6.17, Aurora PostgreSQL release 1.7 (unsupported)
	Aurora PostgreSQL release 1.7.7
	Aurora PostgreSQL release 1.7.6
	Aurora PostgreSQL release 1.7.3
	Aurora PostgreSQL release 1.7.2
	Aurora PostgreSQL release 1.7.1

	PostgreSQL 9.6.16, Aurora PostgreSQL release 1.6 (unsupported)
	Aurora PostgreSQL release 1.6.4
	Aurora PostgreSQL release 1.6.3
	Aurora PostgreSQL release 1.6.2
	Aurora PostgreSQL release 1.6.1
	Aurora PostgreSQL release 1.6.0

	PostgreSQL 9.6.12, Aurora PostgreSQL release 1.5 (unsupported)
	Aurora PostgreSQL release 1.5.3
	Aurora PostgreSQL release 1.5.2
	Aurora PostgreSQL release 1.5.1
	Aurora PostgreSQL release 1.5.0

	PostgreSQL 9.6.11, Aurora PostgreSQL release 1.4 (unsupported)
	PostgreSQL 9.6.9, Aurora PostgreSQL release 1.3 (unsupported)
	Aurora PostgreSQL release 1.3.2
	Aurora PostgreSQL release 1.3.0

	PostgreSQL 9.6.8, Aurora PostgreSQL release 1.2 (unsupported)
	Aurora PostgreSQL release 1.2.2
	Aurora PostgreSQL release 1.2.0

	PostgreSQL 9.6.6 Aurora PostgreSQL release 1.1 (unsupported)
	PostgreSQL 9.6.3, Aurora PostgreSQL release 1.0 (unsupported)
	Aurora PostgreSQL release 1.0.11
	Aurora PostgreSQL release 1.0.10
	Aurora PostgreSQL release 1.0.9
	Aurora PostgreSQL release 1.0.8
	Aurora PostgreSQL release 1.0.7

	Extension versions for Amazon Aurora PostgreSQL
	Extensions supported for Aurora PostgreSQL 13.x
	Extensions supported for Aurora PostgreSQL 12.x
	Extensions supported for Aurora PostgreSQL 11.x
	Extensions supported for Aurora PostgreSQL 10.x
	Aurora PostgreSQL apg_plan_mgmt extension versions
	Version 2.0 of the Aurora PostgreSQL apg_plan_mgmt extension
	Version 1.0.1 of the Aurora PostgreSQL apg_plan_mgmt extension

	Upgrading the PostgreSQL DB engine for Aurora PostgreSQL
	Overview of upgrading Aurora PostgreSQL
	Determining which engine version to upgrade to
	How to perform a major version upgrade
	Manually upgrading the Aurora PostgreSQL engine
	Console
	AWS CLI
	RDS API

	In-place major upgrades for global databases
	Automatic minor version upgrades for PostgreSQL
	Turning on automatic minor version upgrades
	Console
	AWS CLI
	RDS API

	Upgrading PostgreSQL extensions

	Aurora PostgreSQL long-term support (LTS) releases

	Best practices with Amazon Aurora
	Basic operational guidelines for Amazon Aurora
	DB instance RAM recommendations
	Monitoring Amazon Aurora
	Working with DB parameter groups and DB cluster parameter groups
	Amazon Aurora best practices presentation video

	Performing a proof of concept with Amazon Aurora
	Overview of an Aurora proof of concept
	1. Identify your objectives
	2. Understand your workload characteristics
	3. Practice with the AWS Management Console or AWS CLI
	Practice with the AWS Management Console
	Practice with the AWS CLI

	4. Create your Aurora cluster
	5. Set up your schema
	6. Import your data
	7. Port your SQL code
	8. Specify configuration settings
	9. Connect to Aurora
	10. Run your workload
	11. Measure performance
	12. Exercise Aurora high availability
	13. What to do next

	Security in Amazon Aurora
	Database authentication with Amazon Aurora
	Password authentication
	IAM database authentication
	Kerberos authentication

	Data protection in Amazon RDS
	Protecting data using encryption
	Encrypting Amazon Aurora resources
	Overview of encrypting Amazon Aurora resources
	Enabling encryption for an Amazon Aurora DB cluster
	Determining whether encryption is turned on for a DB cluster
	Console
	AWS CLI
	RDS API

	Availability of Amazon Aurora encryption
	Limitations of Amazon Aurora encrypted DB clusters

	AWS KMS key management
	Authorizing use of a customer managed key

	Using SSL/TLS to encrypt a connection to a DB cluster
	Certificate bundles for AWS Regions
	AWS GovCloud (US) certificates

	Rotating your SSL/TLS certificate
	Updating your CA certificate by modifying your DB instance
	Console
	AWS CLI

	Updating your CA certificate by applying DB instance maintenance
	Updating your CA certificate by applying maintenance to multiple DB instances

	Sample script for importing certificates into your trust store
	Sample script for importing certificates on Linux
	Sample script for importing certificates on macOS

	Internetwork traffic privacy
	Traffic between service and on-premises clients and applications

	Identity and access management in Amazon Aurora
	Audience
	Authenticating with identities
	AWS account root user
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Other policy types
	Multiple policy types

	How Amazon Aurora works with IAM
	Aurora identity-based policies
	Actions
	Resources
	Condition keys
	Examples

	Aurora resource-based policies
	Authorization based on Aurora tags
	Aurora IAM roles
	Using temporary credentials with Aurora
	Service-linked roles
	Service roles

	Amazon Aurora identity-based policy examples
	Policy best practices
	Using the Aurora console
	Allow users to view their own permissions
	Allow a user to create DB instances in an AWS account
	Permissions required to use the console
	Allow a user to perform any describe action on any RDS resource
	Allow a user to create a DB instance that uses the specified DB parameter group and subnet group
	Grant permission for actions on a resource with a specific tag with two different values
	Prevent a user from deleting a DB instance
	Deny all access to a resource
	Example policies: Using condition keys
	Example 1: Grant permission to create a DB instance that uses a specific DB engine and isn't MultiAZ
	Example 2: Explicitly deny permission to create DB instances for certain DB instance classes and create DB instances that use Provisioned IOPS
	Example 3: Limit the set of tag keys and values that can be used to tag a resource

	Specifying conditions: Using custom tags
	Example policies: Using custom tags
	Example 1: Grant permission for actions on a resource with a specific tag with two different values
	Example 2: Explicitly deny permission to create a DB instance that uses specified DB parameter groups
	Example 3: Grant permission for actions on a DB instance with an instance name that is prefixed with a user name

	Preventing cross-service confused deputy problems
	IAM database authentication
	Availability for IAM database authentication
	Limitations for IAM database authentication
	MariaDB and Aurora MySQL recommendations for IAM database authentication
	Enabling and disabling IAM database authentication
	Console
	AWS CLI
	RDS API

	Creating and using an IAM policy for IAM database access
	Attaching an IAM policy to an IAM user or role

	Creating a database account using IAM authentication
	Using IAM authentication with MariaDB or MySQL
	Using IAM authentication with PostgreSQL

	Connecting to your DB cluster using IAM authentication
	Connecting to your DB cluster using IAM authentication from the command line: AWS CLI and mysql client
	Generating an IAM authentication token
	Connecting to a DB cluster

	Connecting to your DB cluster using IAM authentication from the command line: AWS CLI and psql client
	Generating an IAM authentication token
	Connecting to an Aurora PostgreSQL cluster

	Connecting to your DB cluster using IAM authentication and the AWS SDK for .NET
	Connecting to your DB cluster using IAM authentication and the AWS SDK for Go
	Connecting using IAM authentication and the AWS SDK for Go V2
	Connecting using IAM authentication and the AWS SDK for Go V1.

	Connecting to your DB cluster using IAM authentication and the AWS SDK for Java
	Generating an IAM authentication token
	Manually constructing an IAM authentication token
	Connecting to a DB cluster

	Connecting to your DB cluster using IAM authentication and the AWS SDK for Python (Boto3)

	Troubleshooting Amazon Aurora identity and access
	I'm not authorized to perform an action in Aurora
	I'm not authorized to perform iam:PassRole
	I want to view my access keys
	I'm an administrator and want to allow others to access Aurora
	I want to allow people outside of my AWS account to access my Aurora resources

	Logging and monitoring in Amazon Aurora
	Compliance validation for Amazon Aurora
	Resilience in Amazon Aurora
	Backup and restore
	Replication
	Failover

	Infrastructure security in Amazon Aurora
	Security groups
	Public accessibility

	Amazon RDS API and interface VPC endpoints (AWS PrivateLink)
	Considerations for VPC endpoints
	Availability
	Creating an interface VPC endpoint for Amazon RDS API
	Creating a VPC endpoint policy for Amazon RDS API

	Security best practices for Amazon Aurora
	Controlling access with security groups
	VPC security groups
	Security group scenario
	Creating a VPC security group
	Associating a security group with a DB instance
	Associating a security group with a DB cluster

	Master user account privileges
	Using service-linked roles for Amazon Aurora
	Service-linked role permissions for Amazon Aurora
	Creating a service-linked role for Amazon Aurora
	Editing a service-linked role for Amazon Aurora
	Deleting a service-linked role for Amazon Aurora
	Cleaning up a service-linked role
	Deleting all of your clusters

	Amazon Virtual Private Cloud VPCs and Amazon Aurora
	Working with a DB instance in a VPC
	Working with a DB instance in a VPC
	Working with DB subnet groups
	Hiding a DB instance in a VPC from the internet
	Creating a DB instance in a VPC
	Step 1: Create a VPC
	Step 2: Add subnets to the VPC
	Step 3: Create a DB subnet group
	Step 4: Create a VPC security group
	Step 5: Create a DB instance in the VPC

	How to create a VPC for use with Amazon Aurora
	Create a VPC and subnets
	Create a security group and add inbound rules
	Create a DB subnet group

	Scenarios for accessing a DB instance in a VPC
	A DB instance in a VPC accessed by an EC2 instance in the same VPC
	A DB instance in a VPC accessed by an EC2 instance in a different VPC
	A DB instance in a VPC accessed by a client application through the internet
	A DB instance in a VPC accessed by a private network
	A DB instance in a VPC accessed by an EC2 instance not in a VPC

	Tutorial: Create an Amazon VPC for use with a DB instance
	Create a VPC with private and public subnets
	Create additional subnets
	Create a VPC security group for a public web server
	Create a VPC security group for a private DB instance
	Create a DB subnet group
	Deleting the VPC

	Quotas and constraints for Amazon Aurora
	Quotas in Amazon Aurora
	Naming constraints in Amazon Aurora
	Amazon Aurora size limits

	Troubleshooting for Aurora
	Can't connect to Amazon RDS DB instance
	Testing a connection to a DB instance
	Troubleshooting connection authentication

	Amazon RDS security issues
	Error message "failed to retrieve account attributes, certain console functions may be impaired."

	Resetting the DB instance owner password
	Amazon RDS DB instance outage or reboot
	Amazon RDS DB parameter changes not taking effect
	Amazon Aurora MySQL out of memory issues
	Amazon Aurora MySQL replication issues
	Diagnosing and resolving lag between read replicas
	Diagnosing and resolving a MySQL read replication failure
	Replication stopped error

	Amazon RDS application programming interface (API) reference
	Using the Query API
	Query parameters
	Query request authentication

	Troubleshooting applications on Aurora
	Retrieving errors
	Troubleshooting tips

	Document history
	AWS glossary

