ANNEX F System Validation The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components. **Table F.1: System Validation** | Table F.1: System validation | | | | | | |------------------------------|--------------|-----------------|-----------------|--------------------|--| | Probe SN. | Liquid name | Validation date | Frequency point | Status (OK or Not) | | | 3846 | Head 750MHz | Mar. 06, 2014 | 750 MHz | OK | | | 3846 | Head 850MHz | Mar. 06, 2014 | 850 MHz | OK | | | 3846 | Head 900MHz | Mar. 01, 2014 | 900 MHz | OK | | | 3846 | Head 1750MHz | Mar. 03, 2014 | 1750 MHz | OK | | | 3846 | Head 1810MHz | Mar. 03, 2014 | 1810 MHz | OK | | | 3846 | Head 1900MHz | Mar. 07, 2014 | 1900 MHz | OK | | | 3846 | Head 1950MHz | Mar. 04, 2014 | 1950 MHz | OK | | | 3846 | Head 2000MHz | Mar. 04, 2014 | 2000 MHz | OK | | | 3846 | Head 2100MHz | Mar. 05, 2014 | 2100 MHz | OK | | | 3846 | Head 2300MHz | Mar. 05, 2014 | 2300 MHz | OK | | | 3846 | Head 2450MHz | Mar. 02, 2014 | 2450 MHz | OK | | | 3846 | Head 2550MHz | Mar. 08, 2014 | 2550 MHz | OK | | | 3846 | Head 2600MHz | Mar. 08, 2014 | 2600 MHz | OK | | | 3846 | Head 3500MHz | Mar. 09, 2014 | 3500 MHz | OK | | | 3846 | Head 3700MHz | Mar. 09, 2014 | 3700 MHz | OK | | | 3846 | Head 5200MHz | Mar. 10, 2014 | 5200 MHz | OK | | | 3846 | Head 5500MHz | Mar. 10, 2014 | 5500 MHz | OK | | | 3846 | Head 5800MHz | Mar. 10, 2014 | 5800 MHz | OK | | | 3846 | Body 750MHz | Mar. 06, 2014 | 750 MHz | OK | | | 3846 | Body 850MHz | Mar. 06, 2014 | 850 MHz | OK | | | 3846 | Body 900MHz | Mar. 01, 2014 | 900 MHz | OK | | | 3846 | Body 1750MHz | Mar. 03, 2014 | 1750 MHz | OK | | | 3846 | Body 1810MHz | Mar. 03, 2014 | 1810 MHz | OK | | | 3846 | Body 1900MHz | Mar. 07, 2014 | 1900 MHz | OK | | | 3846 | Body 1950MHz | Mar. 04, 2014 | 1950 MHz | OK | | | 3846 | Body 2000MHz | Mar. 04, 2014 | 2000 MHz | OK | | | 3846 | Body 2100MHz | Mar. 05, 2014 | 2100 MHz | OK | | | 3846 | Body 2300MHz | Mar. 05, 2014 | 2300 MHz | OK | | | 3846 | Body 2450MHz | Mar. 02, 2014 | 2450 MHz | OK | | | 3846 | Body 2550MHz | Mar. 08, 2014 | 2550 MHz | OK | | | 3846 | Body 2600MHz | Mar. 08, 2014 | 2600 MHz | OK | | | 3846 | Body 3500MHz | Mar. 09, 2014 | 3500 MHz | OK | | | 3846 | Body 3700MHz | Mar. 09, 2014 | 3700 MHz | OK | | | 3846 | Body 5200MHz | Mar. 10, 2014 | 5200 MHz | OK | | | 3846 | Body 5500MHz | Mar. 10, 2014 | 5500 MHz | OK | | | 3846 | Body 5800MHz | Mar. 10, 2014 | 5800 MHz | OK | | # **ANNEX G** Probe Calibration Certificate #### **Probe 3801 Calibration Certificate** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Auden Certificate No: EX3-3801_Jun14 Accreditation No.: SCS 108 # CALIBRATION CERTIFICATE EX3DV4 - SN:3801 Object QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure(s) Calibration procedure for dosimetric E-field probes June 18, 2014 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Power sensor E4412A | MY41498087 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 03-Apr-14 (No. 217-01915) | Apr-15 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919) | Apr-15 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920) | Apr-15 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-13 (No. ES3-3013_Dec13) | Dec-14 | | DAE4 | SN: 660 | 13-Dec-13 (No. DAE4-660_Dec13) | Dec-14 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | Signature Name Laboratory Technician Calibrated by: Jeton Kastrati Technical Manager Katja Pokovic Approved by: Issued: June 18, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory #### Calibration Laboratory of Certificate No: EX3-3801 Jun14 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization ϕ ϕ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 ## Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). EX3DV4 - SN:3801 June 18, 2014 # Probe EX3DV4 SN:3801 Manufactured: April 5, 2011 Calibrated: June 18, 2014 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) EX3DV4-SN:3801 June 18, 2014 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3801 **Basic Calibration Parameters** | Basic Calibration Fara | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 0.53 | 0.60 | 0.53 | ± 10.1 % | | DCP (mV) ^B | 100.2 | 98.4 | 100.9 | | **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ⁻
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 128.0 | ±2.7 % | | | | Y | 0.0 | 0.0 | 1.0 | | 134.4 | | | | | Z | 0.0 | 0.0 | 1.0 | | 146.7 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. June 18, 2014 EX3DV4-SN:3801 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3801 ## Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 9.44 | 9.44 | 9.44 | 0.35 | 1.00 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.15 | 9.15 | 9.15 | 0.80 | 0.64 | ± 12.0 9 | | 900 | 41.5 | 0.97 | 8.92 | 8.92 | 8.92 | 0.50 | 0.79 | ± 12.0 9 | | 1450 | 40.5 | 1.20 | 7.90 | 7.90 | 7.90 | 0.41 | 1.02 | ± 12.0 ° | | 1750 | 40.1 | 1.37 | 7.82 | 7.82 | 7.82 | 0.80 | 0.58 | ± 12.0 ° | | 1900 | 40.0 | 1.40 | 7.51 | 7.51 | 7.51 | 0.76 | 0.59 | ± 12.0 | | 2000 | 40.0 | 1.40 | 7.55 | 7.55 | 7.55 | 0.80 | 0.57 | ± 12.0 | | 2300 | 39.5 | 1.67 | 7.25 | 7.25 | 7.25 | 0.44 | 0.75 | ± 12.0 | | 2450 | 39.2 | 1.80 | 6.85 | 6.85 | 6.85 | 0.53 | 0.70 | ± 12.0 | | 2600 | 39.0 | 1.96 | 6.76 | 6.76 | 6.76 | 0.63 | 0.66 | ± 12.0 | | 5200 | 36.0 | 4.66 | 4.96 | 4.96 | 4.96 | 0.35 | 1.80 | ± 13.1 | | 5300 | 35.9 | 4.76 | 4.74 | 4.74 | 4.74 | 0.35 | 1.80 | ± 13.1 | | 5500 | 35.6 | 4.96 | 4.73 | 4.73 | 4.73 | 0.35 | 1.80 | ± 13.1 | | 5600 | 35.5 | 5.07 | 4.54 | 4.54 | 4.54 | 0.35 | 1.80 | ± 13.1 | | 5800 | 35.3 | 5.27 | 4.45 | 4.45 | 4.45 | 0.40 | 1.80 | ± 13.1 | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: EX3-3801_Jun14 June 18, 2014 EX3DV4- SN:3801 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3801 ## Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 9.11 | 9.11 | 9.11 | 0.65 | 0.75 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.12 | 9.12 | 9.12 | 0.80 | 0.66 | ± 12.0 % | | 900 | 55.0 | 1.05 | 8.91 | 8.91 | 8.91 | 0.80 | 0.67 | ± 12.0 % | | 1450 | 54.0 | 1.30 | 7.97 | 7.97 | 7.97 | 0.54 | 0.76 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.62 | 7.62 | 7.62 | 0.63 | 0.71 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.29 | 7.29 | 7.29 | 0.60 | 0.71 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 7.47 | 7.47 | 7.47 | 0.37 | 0.90 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.18 | 7.18 | 7.18 | 0.80 | 0.60 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 6.90 | 6.90 | 6.90 | 0.80 | 0.50 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 6.74 | 6.74 | 6.74 | 0.80 | 0.50 | ± 12.0 % | | 5200 | 49.0 | 5.30 | 4.17 | 4.17 | 4.17 | 0.45 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.03 | 4.03 | 4.03 | 0.45 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 3.93 | 3.93 | 3.93 | 0.45 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.84 | 3.84 | 3.84 | 0.45 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 3.94 | 3.94 | 3.94 | 0.50 | 1.90 | ± 13.1 % | ^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. Fat frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4-SN:3801 June 18, 2014 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: EX3-3801_Jun14 Page 7 of 11 EX3DV4- SN:3801 June 18, 2014 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ # reconverger accorn (ψ), υ – υ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) EX3DV4- SN:3801 June 18, 2014 # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EX3-3801_Jun14 Page 9 of 11 EX3DV4- SN:3801 June 18, 2014 # **Conversion Factor Assessment** # Deviation from Isotropy in Liquid Error (\phi, \theta), f = 900 MHz Certificate No: EX3-3801_Jun14 Page 10 of 11 EX3DV4- SN:3801 June 18, 2014 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3801 # Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -53.8 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Certificate No: EX3-3801_Jun14 #### **Dipole Calibration Certificate ANNEX H** # 835 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Accreditation No.: SCS 108 Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Issued: June 18, 2014 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates | JALIBRATION | CERTIFICATE | | | |---|--|--|--| | Object | D835V2 - SN: 4d | 120 | | | Calibration procedure(s) | QA CAL-05.v9
Calibration proce | dure for dipole validation kits abo | ove 700 MHz | | Calibration date: | June 16, 2014 | | | | The measurements and the unce | ertainties with confidence p | robability are given on the following pages ar | nd are part of the certificate. | | All calibrations have been condu | cted in the closed laborator | ry facility: environment temperature $(22 \pm 3)^{\circ}$ | | | All calibrations have been conducted that calibration Equipment used (M& | cted in the closed laborator | | | | All calibrations have been conductable Calibration Equipment used (M& Primary Standards | cted in the closed laborator | ry facility: environment temperature (22 \pm 3)° $^\circ$ | C and humidity < 70%. | | All calibrations have been conductal Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A | TE critical for calibration) ID # GB37480704 US37292783 | ry facility: environment temperature (22 \pm 3)° $^{\circ}$ Cal Date (Certificate No.) | C and humidity < 70%. Scheduled Calibration | | All calibrations have been conductable. Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A | TE critical for calibration) ID # GB37480704 US37292783 MY41092317 | Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) | Scheduled Calibration Oct-14 Oct-14 Oct-14 | | All calibrations have been conductable. Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator | TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) | Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) | Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 | | All calibrations have been conducted (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination | TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 | Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) | Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 | | All calibrations have been conductable. Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 | TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) | Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) | Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 | | All calibrations have been conductal Calibration Equipment used (M& Primary Standards Power Meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 | TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 | Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) | Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15 | | All calibrations have been conductal Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards | TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # | Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house) | Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15 Scheduled Check | | All calibrations have been conductal Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 | TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 | Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house) 04-Aug-99 (in house check Oct-13) | Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15 Scheduled Check In house check: Oct-16 | | All calibrations have been conductal Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 | TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # | Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house) | Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15 Scheduled Check | | All calibrations have been conductal Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 | Cited in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 | Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13) | Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15 Scheduled Check In house check: Oct-16 In house check: Oct-14 | | All calibrations have been conductal Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 | TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 | Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house) 04-Aug-99 (in house check Oct-13) | Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15 Scheduled Check In house check: Oct-16 | Certificate No: D835V2-4d120_Jun14 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d120_Jun14 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.5 ± 6 % | 0.94 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.29 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.54 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.00 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.2 ± 6 % | 1.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.43 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.47 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.59 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.23 W/kg ± 16.5 % (k=2) | # Appendix (Additional assessments outside the scope of SCS108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.0 Ω - 0.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.8 dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.6 Ω - 3.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 28.1 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1,396 ns | |----------------------------------|----------| | (| 11000110 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------------| | Manufactured on | June 29, 2010 | #### **DASY5 Validation Report for Head TSL** Date: 16.06.2014 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d120 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.94 \text{ S/m}$; $\varepsilon_r = 41.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.22, 6.22, 6.22); Calibrated: 30.12.2013; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.04.2014 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.38 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.61 W/kg SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.54 W/kg Maximum value of SAR (measured) = 2.81 W/kg 0 dB = 2.81 W/kg = 4.49 dBW/kg _____ ## Impedance Measurement Plot for Head TSL