

 BlueRobin®

Wireless Low-power Sensor Network

BM-USBRTXx USB Transceiver Unit
BM-USBDx USB Transceiver Dongle

Integration Guide
Date: 29th of July 2014
Revision: 1.1

1 Introduction

A BlueRobin interface DLL is available providing all functions required for a PC application to communicate
with a BM-USBRTX3/BM-USBRTX4 transceiver unit or a BM-USBD1/BM-USBD4 transceiver dongle via a
USB interface. It supports the following operating systems:

• Windows: WinXP, Windows 7, Windows 8, Windows 8.1
• MacOS: >= 10.7
• Linux: Kernel 2.9x

Currently only a 32-bit version is supported for Windows Operating Systems.

The System Development Kit (SDK) also includes code examples based on Microsoft Visual Studio MFC
(Microsoft Visual Studio 2008).

2 BlueRobin® Support in BM-USBRTXx and BM-USBDx

The transceivers provide full BlueRobin® receiver (RX mode) support with messaging system and high
speed data download.

3 Interface Function Overview

Function Description

rtxDll_GetVersion Get BlueRobin DLL Version
rtxDll_Initalize Initialize BlueRobin DLL
rtxDll_DeInitialize Deinitialize BlueRobin DLL
rtxDll_IsInitialized Check if BlueRobin DLL is initialized

rtxInterface_ScanForDevices Scan interface for all connected devices
rtxInterface_GetDeviceInfo Get device interface information
rtxInterface_UnplugDetectionStart Start device unplug detection
rtxInterface_UnplugDetectionStop Stop device unplug detection
rtxInterface_UnplugDetected Device unplug detection status function

rtxDevice_Open Open port the device is connected to
rtxDevice _Close Close previously opened port
rtxDevice _IsOpen Check if port has already been opened
rtxDevice _InitHardware Initialize device
rtxDevice_GetInfo Get device configuration and version info

rtxConfig_RxMode Configure BlueRobin RX mode operation
rtxConfig_RxLinkFailureLimit Set limit for consecutive lost data packets in RX mode
rtxConfig_RxSearchTimeout Set timeout when trying to find a transmitter in RX mode
rtxConfig_RxPairingSensitivity Set receiver sensitivity for transmitter pairing mode (ID set to 0) in RX mode
rtxConfig_RxSearchRatio Set ratio between active search time and search pause in RX mode

rtxRX_ChannelReset Reset RX channel to default settings
rtxRX_ChannelSetProfile Set profile of transmitter to be received on RX channel
rtxRX_ChannelGetProfile Get profile of RX channel
rtxRX_ChannelSetID Set ID of transmitter to be received on RX channel
rtxRX_ChannelGetID Get ID of RX channel
rtxRX_ChannelStart Start search or pairing for transmitter on RX channel
rtxRX_ChannelStop Stop RX channel
rtxRX_ChannelGetState Get state of RX channel

rtxRX_ChannelSendMessage Send message on RX channel
rtxRX_ChannelSendMessageData Send message data on RX channel
rtxRX_ChannelRequestDownload Request high speed data download on RX channel
rtxRX_ChannelClear Clear any pending message and data download request on RX channel

rtxRX_GetState Update internal buffers and return RX mode state
rtxRX_GetData Get new data received on any RX channel
rtxRX_GetMessageData Get requested message data received on any RX channel
rtxRX_GetDownload Get requested high speed data download received on any RX channel

4 API Function Details

4.1 DLL Functions

4.1.1 Get version of DLL

This function returns the main and sub version number of the rtxBlueRobin DLL.

unsigned short rtxDll_GetVersion(void);

Return Value:
Returns the main version number in the upper byte and the sub version number in the lower byte.

4.1.2 Initialize DLL

This function initializes the rtxBlueRobin DLL.

bool rtxDll_Initialize(void);

Return Value:
Returns true if DLL could be initialized successfully, otherwise returns false

Remarks:
Has to be called first before accessing any other function of the rtxBlueRobin DLL API.

4.1.3 Deinitialize DLL

This function unloads the rtxBlueRobin DLL.

bool rtxDll_DeInitialize(void);

Return Value:
Returns true if DLL could be unloaded successfully, otherwise returns false

Remarks:
Has to be called when closing the application so that all object threads and ports are released.

4.1.4 Check if DLL has been initialized

This function can be used to check if the rtxBlueRobin DLL has already been successfully initialized.

bool rtxDll_IsInitialized(void);

Return Value:
Returns true if DLL has already been initialized successfully, otherwise returns false

4.2 Interface Functions

4.2.1 Scan for all BlueRobin devices on ports

This function checks all ports for connected BlueRobin devices having the specified device type, it returns the number of
connected devices and it generates an internal list with device details which can be accessed then using function
rtxInterface_GetInfo().

bool rtxInterface_ScanForDevices(bmiDeviceType DeviceType,
 int &NoOfDevicesFound);

Parameters:
DeviceType Scanning for BM-USBD1: bmiDEVTYPE_USBD1
 Scanning for BM-USBRTX3: bmiDEVTYPE_USBRTX3

NoOfDevicesFound Number of devices found with specified device type

Return Value:
Returns true if at least one device could be found, otherwise returns false

4.2.2 Get device information for a found BlueRobin device

After having scanned all ports for connected BlueRobin devices of a specific device type using function
rtxInterface_ScanForDevices() this function has to be used to get details for the found devices so that the
desired device to be opened can be selected.

bool rtxInterface_GetInfo(unsigned char DeviceIndex,
 rtxUsbDeviceInfo *DeviceInfo);

Parameters:
DeviceIndex Index into the device list generated by function rtxInterface_ScanForDevices(); starts at

0 and can be up to the number of found devices less 1 returned when scanning

DeviceInfo Contains the device information for the selected device
 typedef struct rtxUsbDeviceInfo
 {
 unsigned short DeviceType; // Device type identifier
 char PortName[256]; // Port name
 char PhysName[256]; // Physical name
 char DevDescr[256]; // Friendly name
 char EnumName[256]; // Enumerator name
 char LocationName[256]; // USB bus location identifier
 char SerialNumber[256]; // Serial number
 unsigned short Vid; // Vendor ID
 unsigned short Pid; // Product ID
 } rtxUsbDeviceInfo;

Return Value:
Returns true if device could be found and its information is available, otherwise returns false

4.2.3 Start to detect if a BlueRobin device has been unplugged

This function starts background checking if the specified BlueRobin device has been unplugged from the specified port.

bool rtxInterface_UnplugDetectionStart(const char *PortName);

Parameters:
PortName String specifying the port name; will be returned as a part of the USB device information when

calling function rtxInterface_GetInfo()

Return Value:
Returns true if BlueRobin device and port has been found, otherwise returns false

Remarks:
This function is in experimental state!

4.2.4 Stop to detect if a BlueRobin device has been unplugged

This function stops any previously started check for an unplug event.

bool rtxInterface_UnplugDetectionStop(void);

Return Value:
Returns true if detection could have been stopped, otherwise returns false

Remarks:
This function is in experimental state!

4.2.5 Signal an unplugged BlueRobin device

This function should be periodically checked to see if an unplug event happened.

bool rtxInterface_UnplugDetected(void);

Return Value:
Returns true if an unplug event has been detected, otherwise returns false

Remarks:
This function is in experimental state!

4.3 Device Functions

4.3.1 Open port

Opens the port the BlueRobin transceiver hardware is connected to. The BM-USBRX3 hardware is powered up when
opening the port. Some parts of the hardware require a start up time of up to 2 seconds so it could take up to that time to
open the port. No start up time and therefore no delay can be seen for BM-USBD1 transceiver dongles.

bool rtxDevice_Open(const char *PortName);

Parameters:
PortName String specifying the port name; will be returned as a part of the device information when calling

function rtxInterface_GetDeviceInfo()

Return Value:
Returns true if port could be opened and transceiver hardware could be found, otherwise returns false

Remarks:
Do not try to open more than one port for a BM-USBRTX3 transceiver unit at a time. Always close the port first before
trying to open the port again!

4.3.2 Close port

A successfully opened port has to be closed at the end of the application runtime to release all allocated memory and the
port itself.

bool rtxDevice_Close(void);

Return Value:
Returns true if port could be found and closed, otherwise returns false

4.3.3 Check if port has been opened

This function checks if a port to a BlueRobin device has already been opened.

bool rtxDevice_IsOpen(void);

Return Value:
Returns true if port is open, otherwise returns false

4.3.4 Initialize BlueRobin hardware

To initialize the connected transceiver hardware the following function has to be called once after opening the port and
before any further access to the hardware is done. It also returns the number of available channels in RX mode.

bool rtxDevice_InitHardware(unsigned char &MaxChannels);

Parameters:
MaxChannels Number of available channels

Return Value:
Returns true if the initialization was successful and false if accessing the hardware failed.

Remarks:
BlueRobin RX mode has to be configured first.

4.3.5 Get transceiver unit configuration and version info

To get the number of configured channels in RX mode and the profile, ID and descriptor in TX mode (currently not
implemented) the following function can be used. Also the serial number and the software and hardware revisions will be
returned.

bool rtxDevice_GetInfo(rtxDeviceInfo *DeviceInfo);

Parameters:
DeviceInfo Device info if read successfully, passed in the following structure:
 typedef struct rtxDevInfo
 {
 unsigned char MaxChannels; // Number of available channels in RX mode
 unsigned char Profile; // Profile in TX mode (not used)
 unsigned long ID; // ID in TX mode (not used)
 unsigned char Descriptor; // Descriptor in TX mode (not used)
 unsigned long SerialNumber; // Device serial number
 unsigned short SwRev; // Device software revision
 unsigned short HwRev; // Device hardware revision
 } rtxDevInfo;

Return Value:
Returns true if the requested information could be read successfully and false if accessing the hardware failed.

4.4 Configuration Functions

4.4.1 Configure BlueRobin RX mode operation

In case the maximum possible number of channels is not required the number of channels to be used can be configured
with this function to increase the system performance. Optionally this function can also be used to preset channels with
profiles. There is no need to call this function if the maximum available number of channels has to be used without any
preset.

bool rtxConfig_RxMode(unsigned char MaxChannels,
 rtxPresetChannelProfile *ProfileList,
 unsigned char NoOfProfiles);

Parameters:
MaxChannels Number of required channels

ProfileList Pointer to array of structures (ProfileList[NoOfProfiles]) containing channel and profile
pairs to be preset; if no preset channels are required this parameter has to be set to NULL

 typedef struct rtxPresetChannelProfile
 {
 unsigned char Channels; // Number of channels to be preset with same profile
 unsigned char Profile; // Profile to be preset
 } rtxPresetChannelProfile;

NoOfProfiles Number of channel and profile pairs contained in the array

Return Value:
Returns true if both setting number of channels and presetting channels was successful and false if configuring failed.

Remarks:
Reducing the number of used channels results in an increased system performance.

4.4.2 Set limit for consecutive lost data packets

If an active channel does not get valid data packets over a certain period the synchronisation to the transmitter could get
lost due to timing deviations. This function sets the number of consecutive lost data packets after which an active
channel will be switched off or set to seach mode automatically. The default link failure limit is 8 packets, the valid range
is 1 to 200 packets.

bool rtxConfig_LinkFailureLimit(unsigned char Limit);

Parameters:
Limit Number of missed packets in a row causing a link failure

Return Value:
Returns true if the link failure limit could be changed and false if the change failed.

Remarks:
If the search timeout is set to 0 (see function rtxConfig_SearchTimeout()) a transmitter search will be started
automatically if the link failure limit is reached.

4.4.3 Set timeout when trying to find a transmitter

The time for trying to find a transmitter when starting a channel in both pairing and normal search mode can be set with
this function. It is specified in seconds. If the transmitter could be found within this time the channel changes from search
to active mode, otherwise it switches off. The default search timeout is 8 seconds, the valid range is 3 to 200 seconds.
Setting the timeout value to 0 results in an infinite search and an automatic search start in case the link failure limit is
reached.

bool rtxConfig_SearchTimeout(unsigned char Timeout);

Parameters:
Timeout Number of seconds the search on a channel will be stopped if the specified transmitter could not

be found or infinite search with automatic search start on link failure if timeout set to 0.

Return Value:
Returns true if the search timeout could be changed and false if the change failed.

Remarks:
In search mode the average current consumption is more than 200 times higher than in active mode, so if current
consumption is an issue the search timeout should be set to the smallest value acceptable for the application.

4.4.4 Set receiver sensitivity for transmitter pairing mode

This function has to be used to reduce the receiver sensitivity for a channel when pairing to a transmitter (ID set to 0) to
be able to only get transmitters close to the receiver. As soon as a transmitter could be found the sensitivity of the
corresponding channel will be set back automatically to its maximum value. Default setting is no sensitivity reduction, the
valid reduction range is 0 to 40 dB.

bool rtxConfig_PairingSensitivity(unsigned char Reduction);

Parameters:
Reduction Reduction of sensitivity in dB.

Return Value:
Returns true if the sensitivity reduction could be changed and false if the change failed.

4.4.5 Set ratio between active search time and search pause

To reduce the average current consumption when searching for a transmitter the search can be paused in regular
intervals. This function allows setting the search/pause ratio. Default ratio is 1, currently only a ratio of 0 for continuous
search and 1 for a search/pause ratio of ~2/1 are supported.

bool rtxConfig_SearchRatio(unsigned char Ratio);

Parameters:
Ratio Search/pause ratio, only 0 and 1 allowed.

Return Value:
Returns true if the search ratio could be changed and false if the change failed.

4.5 RX Channel Functions

4.5.1 Reset RX channel to default settings

To reset a channel to its default values (both profile and ID to 0) this function can be used.

bool rtxRX_ChannelReset(unsigned char Channel);

Parameters:
Channel Index of channel the reset has to be performed on; starts at 0
 rtxALL_CHANNELS can be used to reset all channels

Return Value:
Returns true if channel(s) could be reset and false if the reset failed.

4.5.2 Set profile of transmitter to be received on RX channel

To specify the profile of a transmitter to be received on a channel this function can be used. In combination with the ID
either only a unique transmitter will be received or if the ID is set to 0 any transmitter with the specified profile and not
already active on any other channel will be received (= pairing mode). The default channel profile setting is 0. It has to be
changed before being able to start a channel as 0 is an invalid profile. The valid profile range is 1 to 250. A channel has
to be switched off before its profile can be changed.

bool rtxRX_ChannelSetProfile(unsigned char Channel,
 unsigned char Profile);

Parameters:
Channel Index of channel the profile has to be set on; starts at 0
 rtxALL_CHANNELS can be used if the profile has to be set on all channels

Profile Profile to be set

Return Value:
Returns true if channel(s) could be set to the specified profile and false if the setting failed.

Remarks:
The profiles can also be set when configuring the BlueRobin RX mode operation using rtxConfig_RxMode().

4.5.3 Get profile of RX channel

The currently set profile can be read from a channel using this function.

bool rtxRX_ChannelGetProfile(unsigned char Channel,
 unsigned char &Profile);

Parameters:
Channel Index of channel the profile has to be read from; starts at 0

Profile Profile

Return Value:
Returns true if the profile could be read and false if accessing the hardware failed.

4.5.4 Set ID of transmitter to be received on RX channel

To specify the ID of a transmitter to be received on a channel this function can be used. In combination with the profile
either only a unique transmitter will be received or if the ID is set to 0 any transmitter with the specified profile and not
already active on any other channel will be received (= pairing mode). The default channel ID setting is 0. The valid ID
range is 1 to 16000000. A channel has to be switched off before its ID can be changed.

bool rtxRX_ChannelSetID(unsigned char Channel,
 unsigned long ID);

Parameters:
Channel Index of channel the ID has to be set on; starts at 0

ID ID to be set

Return Value:
Returns true if channel could be set to the specified ID and false if the setting failed.

Remarks:
The ID can also be set when configuring the BlueRobin RX mode operation using rtxConfig_RxMode().

4.5.5 Get ID of RX channel

The currently set ID can be read from a channel using this function. After pairing to a transmitter the ID of the found
transmitter can be read and then preset before any further channel start so that only the paired transmitter will be
received on this channel later on.

bool rtxRX_ChannelGetID(unsigned char Channel,
 unsigned long &ID);

Parameters:
Channel Index of channel the profile and ID has to be read from; starts at 0

ID ID

Return Value:
Returns true if the ID could be read and false if accessing the hardware failed.

4.5.6 Start search or pairing for transmitter on RX channel

If the ID is set to a value not equal to zero a search for a transmitter with this ID will be started, otherwise a search for
any transmitter not already active on any other channel will be started. If a channel is already active, starting it does not
have any effect.

bool rtxRX_ChannelStart(unsigned char Channel);

Parameters:
Channel Index of channel to be started; starts at 0
 rtxALL_CHANNELS can be used to start all configured channels at once

Return Value:
Returns true if the channel(s) could be started or was already active and false if the function failed.

4.5.7 Stop RX channel

If a channel is in active mode it can be stopped with this function. Any pending message will be sent before, the channel
configuration (profile and ID) will be kept. If a channel is already switched off it does not have any effect.

bool rtxRX_ChannelStop(unsigned char Channel);

Parameters:
Channel Index of channel to be stopped; starts at 0
 rtxALL_CHANNELS can be used to stop all active channels at once

Return Value:
Returns true if the channel(s) could be stopped or has already been switched off and false if the function
failed.

4.5.8 Get state of RX channel

To get the current state of a channel this function has to be used.

bool rtxRX_ChannelGetState(unsigned char Channel,
 unsigned char &ChannelState,
 unsigned char &MessageState,
 unsigned char &DownloadState);

Parameters:
Channel Index of channel the state is required; starts at 0

ChannelState Channel state if reading was successful:
 rtxCH_STATE_OFF Channel switched off
 rtxCH_STATE_RESTART Channel restarted after high speed data download
 rtxCH_STATE_SEARCH Channel in search mode with specified ID
 rtxCH_STATE_PAIRING Channel in pairing mode, ID set to 0
 rtxCH_STATE_ACTIVE Channel in active mode, no data or information available
 rtxCH_STATE_DATA Channel in active mode and new regular data or information

received; can be read using rtxRX_GetData()
 rtxCH_STATE_DATA_MESSAGE Channel in active mode and new regular data and new

message data received; can be read using
rtxRX_GetData() and rtxRX_GetMessageData()

MessageState Message state if reading was successful:
 rtxCH_STATE_MSG_IDLE No message pending
 rtxCH_STATE_MSG_PENDING Message sent, waiting for acknowledgement
 rtxCH_STATE_MSG_ACK Sent message acknowledged
 rtxCH_STATE_MSG_FAILED Sending message failed

DownloadState Data download state if reading was successful:
 rtxCH_STATE_DOWNLOAD_IDLE No data download pending
 rtxCH_STATE_DOWNLOAD_PENDING Data download in progress, number of processed bytes can be

read using rtxRX_GetDownload()
 rtxCH_STATE_DOWNLOAD_READY Requested data download received, can be read using

rtxRX_GetDownload()
 rtxCH_STATE_DOWNLOAD_FAILED Data download failed

Return Value:
Returns true if the state of the channel could be determined and false if the function failed.

4.6 RX Message Functions

4.6.1 Send message on RX channel

This function can be used to send a message including message info bytes to a transmitter after the next received data
packet.

bool rtxRX_ChannelSendMessage(unsigned char Channel,
 unsigned char Message,
 unsigned char *Data);

Parameters:
Channel Index of channel the message has to be sent on; starts at 0

Message Message identifier

Data Pointer to 5 bytes containing message info

Return Value:
Returns true if the message for the channel could be prepared to be sent (but not already sent!) and false if the
function failed.

Remarks:
Sending a message can also be requested if a channel is not already started, so e.g. a wake-up message could be sent
to a transmitter immediately after the first standby packet has been received. The periodically called function
rtxRX_GetState() signals any progress or failure in the message handling. Function rtxRX_ChannelGetState()
can be used to get more details of the current message handling state.

4.6.2 Send message data on RX channel

This function can be used to send message data to a transmitter after the next received data packet.

bool rtxRX_ChannelSendMessageData(unsigned char Channel,
 unsigned short Descriptor,
 unsigned char Size,
 unsigned char *Data);

Parameters:
Channel Index of channel the message data have to be sent on; starts at 0

Descriptor Data descriptor

Size Number of data bytes to be sent; valid range is 1 to 48

Data Pointer to data to be sent

Return Value:
Returns true if the message data for the channel could be prepared to be sent (but not already sent!) and false if the
function failed.

Remarks:
There is no built-in acknowledgement process for message data. If an acknowledgement is required it is recommended
to read back and verify the sent data or any other indicator showing a successful transfer.

4.6.3 Request high speed data download on RX channel

To send a request for a memory download to a transmitter after the next received data packet this function has to be
used. All active channels will be switched off temporary during download and set to restart state (search after high speed
data download) afterwards.

bool rtxRX_ChannelRequestDownload(unsigned char Channel,
 unsigned char Flags,
 unsigned long Address,
 unsigned long Size);

Parameters:
Channel Index of channel the data download has to be requested; starts at 0

Flags Data download options (currently not used, to be set to 0)

Address Start address for data to be downloaded

Size Number of bytes to be downloaded

Return Value:
Returns true if the request for the channel could be prepared to be sent (but not already sent!) and false if the
function failed.

Remarks:
The periodically called function rtxRX_GetState() signals any progress or failure in the data download handling.
Function rtxRX_ChannelGetState() can be used to get more details of the current download state.

4.6.4 Clear any pending message and data download request on RX channel

This function removes any pending message and data download request and clears all corresponding channel buffers.

bool rtxRX_ChannelClear(unsigned char Channel);

Parameters:
Channel Index of channel to be cleared; starts at 0

Return Value:
Returns true if the channel could be cleared and false if the function failed.

4.7 RX Data Functions

4.7.1 Update internal buffers and return RX mode state

The following function has to be called periodically with the update rate required by the application (typically one second).
It parses all data automatically sent by the transceiver hardware from the USB port buffer to the DLL buffers and signals
the availability of new data or information to the application.

bool rtxRX_GetState(unsigned short &State);

Parameters:
State Current state if reading was successful, signaled with the following flags:
 rtxSTATE_RX_DATA New channel data or information received; for details see

rtxRX_GetData()
 rtxSTATE_RX_MESSAGE Requested channel message data or information received; for details

see rtxRX_GetMessageData()
 stxSTATE_RX_DOWNLOAD New channel data download or progress info received; for details see

rtxRX_GetDownload()

Return Value:
Returns true if updating the buffers and the transceiver state was successful and false if accessing the hardware
failed.

Remarks:
It is recommended to call this function at least every two seconds to avoid buffer overflows.

4.7.2 Get new data received on any RX channel

This function has to be used to get received regular data on any channel together with signal strength and sequence
counter. To pass new data a FIFO buffer is used. This buffer is big enough to store data for at least 3 seconds, so calling
BR_GetState() to check for new data is required at least every 2 seconds to ensure no data will get lost. Also a lost
packet, a lost transmitter, a not successful search and an automatic search start will be indicated.

bool rtxRX_GetData(unsigned char &Channel,
 unsigned char &Type,
 unsigned char &SignalStrength,
 unsigned char &SequenceCounter,
 unsigned char *Data);

Parameters:
Channel Index of the channel the data have been received on; starts at 0

Type Type of data or information
 rtxCH_TYPE_DATA Data packet with 5 data bytes received
 rtxCH_TYPE_STANDBY Standby packet with one info byte received
 rtxCH_TYPE_DATA_LOST Data packet lost
 rtxCH_TYPE_TX_LOST Transmitter lost, channel switched off
 rtxCH_TYPE_TX_SEARCH Transmitter lost, new search started
 rtxCH_TYPE_SEARCH_STOPPED Search for transmitter not successful, channel switched off
 rtxCH_TYPE_STANDBY_SENT Transmitter successfully set to standby mode

SignalStrength RSSI level of the received data

SequenceCounter Sequence counter state when data have been received

Data Pointer to received data bytes or standby info byte

Return Value:
Returns true if new data are available and false if no new data have been received.

Remarks:
It is recommended to call this function as many times as it returns true after rtxRX_GetState() indicates new data
are available.

4.7.3 Get requested message data received on any RX channel

This function has to be used to get requested message data on any channel together with the signal strength. There is
only one message data buffer per channel, so received data should be read before requesting further message data on a
channel. Also indicates a failed message data request.

bool rtxRX_GetMessageData(unsigned char &Channel,
 unsigned char &State;
 unsigned char &SignalStrength,
 unsigned char &Size,
 unsigned char *Data);

Parameters:
Channel Index of the channel the message data have been received on; starts at 0

State Message state:
 rtxCH_STATE_MSG_OFF Channel not in active mode, message will be sent as soon as

channel is in active mode
 rtxCH_STATE_MSG_PENDING Message sent, waiting for acknowledgement
 rtxCH_STATE_MSG_ACK Sent message acknowledged
 rtxCH_STATE_MSG_FAILED Sending message failed

SignalStrength RSSI level of the received message data, set to 0 if message data request failed

Size Number of passed bytes

Data Pointer to buffer for passing data; has to be big enough to receive the number of requested
bytes (max. 48 bytes of message data are possible)

Return Value:
Returns true if new message data are available and false if no new message data have been received.

Remarks:
It is recommended to call this function as many times as it returns true after rtxRX_GetState() indicates new
message data are available. To avoid a buffer overflow for “unexpected” pending messages it is recommended to always
use a 48 byte buffer even if less bytes have been requested.

4.7.4 Get requested high speed data download received on any RX channel

This function has to be used to get a requested data download on any channel. There is only one data download buffer
for all channels, so received data should be read before requesting the next data download.

bool rtxRX_GetDownload(unsigned char &Channel,
 unsigned char &State;
 unsigned char &SignalStrength,
 unsigned long &Address,
 unsigned long &Size,
 unsigned char *Data);

Parameters:
Channel Index of the channel the data download has been received on; starts at 0

State Data download state:
 rtxCH_STATE_DOWNLOAD_OFF Channel not in active mode, data download will be started as

soon as channel is in active mode
 rtxCH_STATE_DOWNLOAD_PENDING Data download in progress; received bytes available in Size
 rtxCH_STATE_DOWNLOAD_READY Data download completed
 rtxCH_STATE_DOWNLOAD_FAILED Data download failed

SignalStrength RSSI level of the received data download, set to 0 if data download failed

Address Start address of downloaded data

Size Number of already processed bytes; has to be set to application buffer size to allow buffer
overflow check; max supported buffer size is 512kBytes

Data Pointer to buffer for passing data; has to be big enough to receive the number of requested data
bytes. Data will only be copied to buffer if download completed

Return Value:
Returns true if a new data download is available and false if no new data have been received.

Remarks:
This function is required to be called only once after rtxRX_GetState() indicates new data or information as not more
than one data download can be processed at the same time.

5 Integration Steps

5.1 Initialization

First of all the rtxBlueRobin DLL has to be initialized. Next steps are to scan for connected BlueRobin transceiver units or
dongles, to get the USB device info of the device to be used, to open the port to that device and to initialize the device.

Here is an example of how to search for and then initialize either a BM-USBRTX4 unit or if that one cannot be found a
BM-USBD1 dongle:

 int FoundDevices;
 rtxUsbDeviceInfo UsbDeviceInfo;

 // BlueRobin DLL not already initialized?
 if (!rtxDll_IsInitialized())
 {
 // Initializing DLL required before calling any further DLL function
 rtxDll_Initialize();
 }

 // Check if BM-USBD1 or BM-USBRTX4 device connected
 rtxInterface_ScanForDevices(bmiDEVTYPE_USBRTX4, FoundDevices);
 // No BM-USBRTX4 connected?
 if (FoundDevices == 0)
 {
 rtxInterface_ScanForDevices(bmiDEVTYPE_USBD1, FoundDevices);
 }
 // Also no BM-USBD1 connected?
 if (FoundDevices == 0)
 {
 // No BlueRobin transceiver device found
 ...
 }

 // USB device info for first found device not available?
 if (!rtxInterface_GetInfo(0, &UsbDeviceInfo))
 {
 // BlueRobin transceiver device info not found
 ...
 }

 // Port cannot be opened?
 if (!rtxDevice_Open(UsbDeviceInfo.PortName))
 {
 rtxDevice_Close();
 // Opening port for BlueRobin transceiver device failed
 ...
 }

 // Initializing transceiver to x channels failed?
 if (!rtxDevice_InitHardware(x))
 {
 rtxDevice_Close();
 // Could not initialize BlueRobin transceiver device
 ...
 }

 // Start unplugg detection of transceiver device
 rtxInterface_UnplugDetectionStart(UsbDeviceInfo.PortName);

Next the device information can be read from the opened transceiver, channel profiles have to be set and further
parameters affecting all channels can be set:

 rtxDevInfo DeviceInfo;
 rtxPresetChannelProfile ProfileList[1];

 // Get device information
 rtxDevice_GetInfo(&DeviceInfo);
 SerialNumber = DeviceInfo.SerialNumber;
 SoftwareRevision = DeviceInfo.SwRev;
 HardwareRevision = DeviceInfo.HwRev;
 MaxChannels = DeviceInfo.MaxChannels;

 // Set number of required channels to 20 and preset 10 of them with profile 33 and 10 with profile 99
 ProfileList[0].Channels = 10;
 ProfileList[0].Profile = 33;
 ProfileList[1].Channels = 10;
 ProfileList[1].Profile = 99;
 rtxConfig_RxMode(20, ProfileList, 2);

 // Infinite search on started channels
 rtxConfig_SearchTimeout(0);
 // Set number of lost packets in a row from a transmitter causing to search for it again to 6
 rtxConfig_LinkFailureLimit(6);

For receiving a transmitter on a channel it is recommended to first reset the channel, to set its ID to the transceiver ID to
be received if a specific transmitter has to be received and then to start the channel:

 // Channel to default settings
 rtxRX_ChannelReset(Channel);
 // Set transmitter ID to be received, not needed if any transmitter has to be received
 rtxRX_ChannelSetID(Channel, ID);
 // Start channel
 rtxRX_ChannelStart(Channel);

To stop receiving a transmitter on a channel the channel just has to be stopped:

 // Stop channel
 rtxRX_ChannelStop(Channel);

As soon as at least one channel has been started the state of the transceiver device should be checked periodically

 WORD wState;
 BYTE bChannel;
 BYTE bType;
 BYTE bSignalLevel;
 BYTE bSequenceCounter;
 BYTE bData[rtxMAX_MESSAGE_DATA_BYTES];
 DWORD dwID;

 // Getting state successful?
 if (rtxRX_GetState(wState))
 {
 // New data available?
 if ((wState & rtxSTATE_RX_DATA) > 0)
 {
 // Process all new regular data or information
 while (rtxRX_GetData(bChannel, bType, bSignalLevel, bSequenceCounter, bData))
 {
 // Next action dependent on received data/information type
 switch (bType)
 {
 // Data received
 case rtxCH_TYPE_DATA:
 // First get current ID of channel if not already read
 if (...)
 {
 // Get ID of found device
 if (rtxRX_ChannelGetID(bChannel, dwID))
 {
 // Store ID
 ...
 }
 }

 // Process received data
 ...
 break;

 // Data packet lost
 case rtxCH_TYPE_DATA_LOST:
 // Process packet lost information
 ...
 break;

 // Transmitter lost
 case rtxCH_TYPE_TX_LOST:
 // Does not happen when automatic search is set
 break;

 // Automatic search started again
 case rtxCH_TYPE_TX_SEARCH:
 // Process search start information
 ...
 }
 }
 }
 }
 else // Access to port failed
 {
 // Hardware error handling
 ...
 }

When ending the application the opened port has to be closed and the rtxBlueRobin DLL has to be released:

 // DLL already initialized?
 if (rtxDll_IsInitialized())
 {
 // Device already opened?
 if (rtxDevice_IsOpen())
 {
 // Stop all channels
 rtxRX_ChannelStop(rtxALL_CHANNELS);
 // Close COM port
 rtxDevice_Close();
 }
 // Unload DLL
 rtxDll_DeInitialize();
 }

6 FCC and IC Statements

FCC § 15.19
This device complies with Part 15 of the FCC rules. Operation is subject to the following two
conditions: (1) This device may not cause harmful interference, and (2) this device must accept
any interference received, including interference that may cause undesired operation.

FCC § 15.21 (Warning Statement)
[Any] changes or modifications not expressly approved by the party responsible for compliance
could void the user’s authority to operate the equipment.

FCC § 15.105
Note: This equipment has been tested and found to comply with the limits for a Class B digital
device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable
protection against harmful interference in a residential installation. This equipment generates, uses
and can radiate radio frequency energy and, if not installed and used in accordance with the
instructions, may cause harmful interference to radio communications. However, there is no
guarantee that interference will not occur in a particular installation. If this equipment does cause
harmful interference to radio or television reception, which can be determined by turning the
equipment off and on, the user is encouraged to try to correct the interference by one or more of
the following measures:
—Reorient or relocate the receiving antenna.
—Increase the separation between the equipment and receiver.
—Connect the equipment into an outlet on a circuit different from that to which the receiver is
connected.
—Consult the dealer or an experienced radio/TV technician for help.

Canada CNR-Gen Section 7.1.3
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject
to the following two conditions:(1) this device may not cause interference, and (2) this device must
accept any interference, including interference that may cause undesired operation of the device.
Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio
exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne
doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage
radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

ICES-003
This Class B digital apparatus complies with Canadian ICES-003.
Cet appareil numérique de la classe B est conforme à la norme NMB-003 du Canada.

RSS-Gen. 7.1.2:
The radio transmitter (IC: 8288A-BMUSBRTX4) has been approved by Industry Canaca to operate
with the antenna types listed below with the maximum permissible gain and required antenna
impedance for each antenna type indicated. Antenna types not included in this list, having a gain
greater than the maximum gain indicated for that type, are strictly prohibited for use with this
device.

 Antenna: PSKN3-925RS Rev SMA Plug (Male), Mobile Mark

UNITYGAIN (0 dB) or less

7 Change Log

Revision Content Made by Date
1.0 Initial revision RM 14 Jul 2014

1.1 RSS Gen Antenna use HGB 29 Jul 2014

