
Executive Summary
Intel's Software and Services Group engineers recently worked with assembly and 
test factory engineers on a proof of concept focused on adopting deep-learning 
technology based on Caffe* for manufacturing package fault detection. The results 
proved that neural network technology can be applied to silicon manufacturing. 
They also showed that the Intel® architecture platform has competitive 
performance and can easily be used to provide both neural network training and 
inference support.

Background
Silicon packaging, one aspect of semiconductor manufacturing, is a complex and 
expensive process that requires high quality. During the packaging process, various 
factors, such as fingerprints, scratches, and stains, can cause cosmetic damage. 
These damages need to be manually inspected to determine whether they exceed 
the threshold of allowable damages. As the final checkpoint on the product line 
with more than 11 criteria rules, the inspection process is subjective due to the 
complexity of the damage scenarios and human error and inconsistency.

A deep neural network has been proven to outperform traditional methods in 
terms of image processing. Although topologies such as GoogLeNet have shown 
good accuracy on general ImageNet tests, questions remain as to whether these 
topologies can be used for high-quality manufacturing tests. Typically neural 
network training is done on a GPU, and whether the Intel® architecture platform 
can provide similar capability is yet another question. This proof of concept (PoC) 
provided positive answers to these questions.

Problem Statement
This PoC aimed to reduce the human review rate for package cosmetic damage at 
the final inspection point, while keeping the false negative ratio at the same level 
as the human rate. The input was package photos, and the goal was to perform 
binary classification on each of them, indicating whether the package was rejected 
or passed. Manual inspection followed a set of rejection criteria on damages of 
particular shapes and location and sizes exceeding a particular threshold. The 
manual inspection required a low false negative, and the majority of the input 
photos that were inspected passed. The unbalanced pass/reject input photo 
number ratio, coupled with complicated judgment criteria rules made the manual 
inspection work tedious and prone to errors.
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Solutions
SSG first proposed GoogLeNet V1 topology based on the convolutional neural network (CNN). This topology balances the 
training/inference time and testing accuracy, making it well suited for use as image classification. To tailor the topology, 
we took only the green channel input and reduced the Full Connection layer class from 1,000 to 2 for binary classification. 
The required top-1 accuracy is much stricter than that for the standard GoogLeNet V1 on ImageNet-1k (approximately 68.7 
percent).

The training was supervised learning. We took about 4,000 images as input, labeled them as either passed or rejected, and 
then rotated each image 36 times, 10 degrees each time, for data augmentation purposes. We did not augment the images 
with different scales, since the damage criteria were size sensitive. We fed the input into GoogLeNet V1 for training. For the 
output result, we classified each original image by 36 images result ensemble.
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In addition to CNN, we added region-based CNN (RCNN) to meet the strict false negative rate goal, which is typical for 
manufacturing. This goal is hard to achieve with a single CNN classification model. A major problem is that the human 
decision of “passed” or “rejected” is likely inconsistent with the class boundaries (for example, damages with a size around the 
threshold). These ambiguous labels confuse CNN. We first tackled the problem by sacrificing the false positive rate to reduce 
the false negative rate. To do this, we relabeled the input images to put images around the boundary into the rejected class. 
However, the results were still not satisfying. Even though the false negatives went down, the false positives went up rapidly. 
Eventually we decided to add RCNN to enhance the detection accuracy.

RCNN can detect an object's location, size, and type. We used the ZFNet-based Faster RCNN model. We leveraged the class 
probability output of CNN and further categorized the image samples into three classes: strong passed, rejected, and weak 
passed. The weak passed category, which has low confidence per CNN probability, is likely a result of ambiguous training, so 
we took the weak passed class output and fed it into the RCNN network. Any input with a detectable defect was put in the 
rejected class; otherwise the input was put in the strong passed class.

All rejected images were inspected again by humans, who served as the final gatekeepers.
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Results
The final output from the two concatenated networks was revealing. The false negative rate consistently met the expected 
human-level accuracy with the months' live manufacturing data testing. The false positive rate was approximately 30 percent, 
which means that 70 percent of the manual inspection effort was saved. The human inspectors used to identify one rejected 
image out of 10 input images. Now that rate is one out of three, which inspires them to work with lower workload.

We compared the prediction result from pure CNN to the CNN and RCNN approach. RCNN helped to reduce the false negative 
rate to the strict target, while still keeping the false positive within an acceptable range. Since human inspectors may also 
misclassify the image samples around the criteria boundary, the model also served as a cross-check to educate human 
inspectors and improve their inspection quality.

The deep neural network solution based on Caffe optimized for Intel architecture was developed by SSG and handed over to 
TMG engineers, who played the role of domain experts. Even without artificial intelligence knowledge, TMG engineers are able 
to easily fine-tune the network with new samples. Our practice showed that by gradually adding new unseen samples to the 
training set and retraining the models, this deep learning-based solution can show consistent performance over time.

Intel® Architecture for Training
The solution was initially designed to run on a GPU, but later a decision was made to migrate it to the Intel architecture 
platform. The requirement is to finish the GoogLeNet V1 training within 15 hours. With a little migration effort, we can run 
GoogLeNet V1 based on Caffe optimized for Intel architecture on the Intel® Xeon® processor E5-2699 and Intel® Xeon® 
Platinum 8180 processor platforms. Both these platforms can provide time to train within the requirement range.

We later decided to migrate the training to multi-node IA environment, leveraging the multi-node training feature provided 
by Intel Optimized Caffe. We run the training on 4 node and 8 nodes with OPA and Ethernet connection respectively. The IA 
multi-node training shows great performance with very high scaling efficiency, thus resulting in great TTT (Time To Train). The 
training can complete within 1 hour on 8-node Intel® Xeon® Platinum 8180 processor platforms

Conclusion
This PoC demonstrated that deep-learning technology can be applied to the manufacturing field with high-quality 
requirements. The architecture of CNN can learn the sophisticated features from the input images for classification. The 
combination of CNN and RCNN can provide low false negative rates with a reasonable false positive rate.

The PoC also proved that the Intel architecture platform can be used for real deep-learning application training. Both the Intel 
Xeon processor E5-2699 and Intel Xeon Platinum 8180 processor platforms can meet user requirements. Caffe optimized 
for Intel architecture improved the training performance by 100 times on Intel Xeon Platinum 8180 over Berkeley Vision and 
Learning Center Caffe on Intel Xeon processor E5-2699. This significant performance improvement, plus the great multi-node 
performance has made training on Intel architecture a reality.
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Optimization Notice

Intel's Compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimization include SSE2, 
SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by 
Intel. Microprocessors-dependent optimizations in this product are intended to use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel 
microprocessors. Please refer to the applicable product User and Reference Guide for more information regarding specific instruction sets covered by this notice. 
Notice revision #20110804

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may
cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more complete information visit www.intel.com/benchmarks.
Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system
configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.
Benchmark results were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as “Spectre” and “Meltdown”.
Implementation of these updates may make these results inapplicable to your device or system.
Intel, the Intel logo, Xeon are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.  
*Other names and brands may be claimed as the property of others. 
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